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Foreword

Today, our imagination is limited by the computer systems we have built.
The demand for sophisticated tools has grown faster than the corresponding
developments of the supporting science base.

Written by one of the leading experts in the �eld of solid-modeling sys-
tems, Geometric and Solid Modeling: An Introduction provides the start of
a scienti�c basis to support the coming revolution in computer-aided design.
It deals with the concepts and tools needed to design and implement solid-
modeling systems, and makes this information accessible to the novice, as
well as to the experienced designer.

Man has always distinguished himself from other animals with the aid of
language, art, and tools. Language and art remain man's way of representing
ideas, either for communicating them to other people or for giving them
permanence. Tools extend his strength and mobility.

In early society, tools were simple and the ideas behind their function and
manufacture were easily communicated, either verbally or by example. As the
complexity of tools increased, written drawings and other documents became
an essential component of design. In today's technologically advanced society,
in which tools have reached the complexity of a spacecraft, the development
of a design requires a team of engineers. Writing, and even drawing and
sculpting, are found to be inadequate; they are static and of too limited a
dimension for expressing complex designs.

Computers are revolutionizing our ability to represent, develop, and com-
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municate knowledge. By abstracting knowledge into procedures, computers
provide dynamic and powerful representations, and enhance our ability to
manipulate and expand our thoughts.

In the past, a new product was created by investigating a design in the
abstract, using paper, pencil and whatever other tools were available. The
design was communicated through the medium of engineering drawings to a
manufacturer who built the device. In the future, computers will be used to
explore much larger design spaces, and designs will be communicated directly
to machines manufacturing the product. The result will be a wider selection
of products of higher quality and lower cost.

Imagine using a computer model of an object instead of a physical pro-
totype to validate a complex design. The computer prototype would allow
changes with a few key strokes, as well as allow engineering analyses to be
automatically carried out. For example, a multi�ngered gripper could be
modeled and electronically simulated in various manipulation tasks, explor-
ing the advantage of the number and placement of �ngers.

In the early stages of a new technology, the techniques and methods of
the older technology are simply simulated. Gradually the full power of the
new technology is achieved as new methods utilizing the natural advantages
of the technology are developed. Thus it was not surprising that the initial
usage of Computer Aided Design systems was in automating drafting. To-
day, computer-aided-design (CAD) systems provide new representations of
objects as three-dimensional entities rather than as two-dimensional projec-
tions. Ultimately we will realize that an object is de�ned by something more
intrinsic than its shape.

Solid modeling and computer-aided design are quickly becoming vital to
economic productiveness. The sophistication of new products has necessi-
tated a coinciding sophistication in such engineering tools as computer-aided
design systems and analysis programs. The Boeing 767 could not have been
designed without such automated tools. Similarly, complex parts for space-
craft, robotic workcells and VLSI technology are accelerating this need.

Geometric and Solid Modeling: An Introduction is a welcome introduction
to an increasingly sophisticated and fast-growing �eld.

John E. Hopcroft
Cornell University
Ithaca
1989
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Chapter 1

Introduction

Solid modeling is rapidly emerging as a central area of research and de-
velopment in such diverse applications as engineering and product design,
computer-aided manufacturing, electronic prototyping, o�-line robot pro-
gramming, and motion planning. All these applications require represent-
ing the shapes of solid physical objects, and such representations and basic
operations on them can be provided by solid modeling.

As a �eld, solid modeling spans several disciplines, including mathemat-
ics, computer science, and engineering. In consequence, it is a broad subject
that must accommodate a diversity of viewpoints and has to meet a diversity
of goals. Sometimes, this diversity of goals can lead to conicting demands.
Current thinking on the subject views the proper resolution of these con-
icts to be application-dependent. That is, it is no longer thought realistic
to envision a comprehensive solid-modeling system that satis�es the needs
of all potential users. Rather, as it is argued, we should concentrate on con-
structing a software environment in which many tools for geometric and solid
computation are available and can be combined with ease as appropriate for
the speci�c application under consideration.

Whether we seek to build a complete system or wish to accumulate a
set of tools, we need to study and implement many geometric algorithms.
In this book, we explain what is needed for this task. Of necessity, we
must therefore cover techniques from computer science, numerical analysis,
symbolic computation, and many other areas. The relevant facts from these
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2 Introduction

areas are brought together as they are needed. Not only do we develop them
technically, we also explain their intuitive content as much as possible, for
we have found that intuitive explanations accelerate absorbing the material.
Moreover, an intuitive understanding of the ideas underlying a particular
subject serves as a guide when special topics are pursued further by reading
the pertinent literature, be it for research purposes or for specializing certain
methods as demanded by some application.

Geometric or surface modeling traditionally identi�es a body of techniques
that can model certain classes of piecewise parametric surfaces, subject to
particular conditions of shape and smoothness. It developed as a separate
�eld in several industries, including automobile, aerospace, and shipbuilding,
and has some of its intellectual roots in approximation theory. It is our view
that the streams of geometric and solid modeling are converging. As solid
modeling strives to extend the geometric coverage, there is an emerging need
to research the use of surface forms and the techniques to interrogate them.
Similarly, as geometric modeling contemplates building complete solid repre-
sentations from surface patches, the usefulness of traditional solid-modeling
techniques is more widely recognized. In anticipation of the growing impor-
tance of this convergence, a large part of this book is devoted to geometric
investigations of implicit and parametric surfaces.

Although we will develop a lot of machinery to deal with surface geome-
tries, we do not cover the traditional body of knowledge on parametric sur-
faces developed by classical geometric modeling. Instead, we concentrate on
the fundamental issues that are at the focal point of the possible integration
of geometric and solid modeling, and develop techniques that have the po-
tential to bridge the current gaps between the two areas of activity. Thus,
we understand geometric modeling in the more generic sense.

1.1 A Brief Historical Perspective of Solid Modeling

As a �eld, solid modeling is the outgrowth of several convergent develop-
ments. These include automatic drafting systems, free-form surface design,
and graphics and animation.

Computer drafting systems replace manual engineering drawing. Some
of the bene�ts are that electronic drawings can be modi�ed and archived
more easily, and that one may verify automatically the validity of a design
by a program rather than by human inspection. Complicated engineering
drawings may contain errors. Such errors in the electronic counterpart may,
in principle, be corrected without the risk of introducing new errors elsewhere.
However, programs to verify design validity are nontrivial, and research on
this subject continues.

Early e�orts in automated drawing resulted in wireframe modeling sys-
tems | that is, in systems in which only the edges and vertices of objects
are represented. This would be a natural representation, assuming that the
objective is to generate line drawings of the design, projected in certain
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Figure 1.1 Ambiguous Wireframe Object

directions. Unfortunately, there may be ambiguities in interpreting the rep-
resentation. A simple, well-known example of this phenomenon is shown in
Figure 1.1. The �gure shows a block with a beveled hole through its center.
It is not possible to deduce the direction of the hole, since it could lie in
any of the three principal directions. For this reason, wireframes are not the
preferred object representation. On the other hand, wireframe objects have
small storage requirements and can be accessed and displayed quickly. The
resulting line drawings constitute an acceptable visualization aid in many sit-
uations, and can provide a quick feedback between the modeling system and
the designer. For this reason, many modeling systems retain the capability
to generate wireframe drawings.

A second contributor to solid modeling has been free-form surface design,
using parametric surface patches and, in particular, various types of spline
surfaces. Surface design with splines originated in the automobile industry,
principally for car body design; in the shipbuilding industry, for the design
of ship hulls; and in the aircraft industry, for the design of wings, fuselages,
and so on. Free-form surface design in these areas has led to the �eld of
computer-aided geometric design (CAGD), primarily focusing on method-
ologies for designing curved surfaces subject to aesthetic or functional con-
straints. Research in CAGD has discovered many useful classes of parametric
surfaces and has developed a large repertoire of algorithms for their design,
analysis, and manipulation. These surfaces would be most useful in solid
modeling. As we stated, we cover basic concepts underlying the use of these
surfaces in solid modeling. Many books are available that cover the more
classical techniques of modifying the shapes of speci�c surfaces classes, and
we cite some of them at the end of this chapter.

The diÆculty of evaluating and representing the intersection of parametric
surface patches has hindered the development of solid modelers that incorpo-
rate parametric surfaces. Roughly speaking, the topology of a surface patch
becomes quite complicated when Boolean operations are performed. Find-
ing a convenient representation for these topologies continues to be a major
challenge.

It might seem peculiar to identify computer graphics as an area contribut-
ing to solid modeling. Indeed, the primary focus of computer graphics is to
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render realistic images of objects, and this can be done from data structures
that do not represent complete solids. However, there is a need in solid
design to obtain visual feedback, so we want to render images from solid
representations, and thus an understanding of graphics algorithms and the
surface representations used by them can be useful. Conversely, constructing
images from solid models is gaining in importance in animation and is also
used by rendering algorithms that support image generation in scenes from
changing points of view. Thus, computer graphics is beginning to deal with
solid models as data and could make useful contributions to visualization
techniques and to user-interface design.

1.2 Three Levels of Abstraction

Conceptually, a solid-modeling system spans three levels of abstraction:

1. The user of the modeling system is presented the highest level of ab-
straction, the user interface. He or she interacts with the system
through a design language that may be textual, visual, or both. On
this level, conceptual tools for constructing, modifying, archiving, and
destroying designs are available. Also, there may be various tools for
analyzing a design, perhaps even for reasoning about some of its prop-
erties.

2. Next, there is a lower level of abstraction comprising the mathemati-

cal and algorithmic infrastructure. The infrastructure implements the
conceptual operations available in the user interface, as well as a wide
range of auxiliary tools needed by these operations. Examples include
algorithms for constructing the intersection of two objects, or tools for
determining whether and how two curved surfaces intersect.

3. On the lowest level, there is the substratum of arithmetic and symbolic
computations that are used as primitives by the algorithmic infrastruc-
ture. In the most basic sense, this substratum consists of the hardware
capabilities for integer and oating-point arithmetic, and the logical
operations the chosen programming language o�ers for expressing com-
putations and viewing storage.

Computer science teaches that levels of abstraction should be kept logically
separate, and that lower levels must not unduly inuence higher levels. Yet,
as we shall see, this ideal situation appears to be presently unattainable, ex-
cept at the great expense incurred by exact arithmetic, so certain operations
done at the highest conceptual level take their particular form essentially
because of unreliabilities on the lowest level.
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1.2.1 User Interfaces

Much of the interest in solid modeling is due to the perceived value of au-
tomating the design and analysis of solid objects. If the �eld is to reap the
bene�ts that good solid-modeling systems could provide, then modeling must
be made as widely accessible as possible, and must be developed into as ex-
ible an instrument as possible. Much of this would be the result of having
good user interfaces that successfully engage people with minimum training
and increase the productivity of experienced designers.

It is widely accepted that user interfaces should have a strong visual com-
ponent, but clearly a textual interaction is also required; for instance, for the
sake of precision. Furthermore, if the modeling system is interfaced to an
analysis system, a more machine-oriented interface must also be present.

A major task of the interface is to present the user with a set of operations
for solid design and modi�cation. Among these operations are the well-known
Boolean operations, global modi�cations such as rounding and o�setting, and
local modi�cations such as edge beveling or face extrusion. In many cases,
the operations are not fully understood. For example, when sweeping an
area along a space curve to de�ne a volume, should we allow possible self-
intersection?

In doing detail design, we would like to concentrate our e�ort on local
areas of interest and to design them more or less without paying attention
to the rest of the design. Having completed the design of such features,
we could then specify their position and orientation in the larger design
through constraints. Much current research explores these goals of interface
design. It is not clear how best to de�ne features, yet we know that the
concept is needed. The notion of features is probably not a static concept;
that is, the same geometric design of an object will have di�erent features,
depending on the view point. For instance, if we consider how to evaluate
stress concentrations, then features such as sharp edges are of interest. If
we consider machining operations, we might be interested in the geometry
of holes and slots found on the object. The main diÆculty, it seems, is
to identify a catalog of forms de�ning a set of features of interest, and to
understand how these forms may interact. For example, if a slot is placed
at the edge of an object, as shown in Figure 1.2 to the right, should we still
consider it a slot?

Current thinking also stresses the need for conceptual design; that is, for
a coarse design laying out the overall structure without various details. It
is argued that a more eÆcient approach to engineering design is an overall
outlay of the rough shape, with rapid visual feedback, exploration of the
suitability of the design through some suite of analysis computations, fol-
lowed by a computationally intensive detailed design. This approach should
not only alleviate some of the delays incurred by certain expensive detailed
design operations, but also bring us closer to the long-term goal of design
by functionality. In the abstract, we may not care about a particular shape,
as long as it realizes a certain functionality. For example, in designing a
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Figure 1.2 Two Slot Positions

piston engine like the one shown in Figure 1.3, our functional goals might
include that the engine develop a certain power while not running too hot or
being too heavy. As design parameters, we might wish to vary piston size,
stroke length, wall thickness, and cooling-line placement. It seems certain
that design by functionality is a possibility, but we have no systematic body
of knowledge establishing this connection precisely in a range of applications.

1.2.2 Mathematical and Algorithmic Infrastructure

Infrastructure is traditionally the strongest and most prominent research
subject in solid modeling. Among the many questions addressed is the de-
velopment of eÆcient and robust algorithms and representations for solving

H
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Figure 1.3 Piston Engine



1.2 Three Levels of Abstraction 7

the geometry problems that arise in solid modeling. We mention a few:

1. Given two solid models, test whether they interfere with each other. If
so, determine the volume of their intersection.

2. Given two curved faces intersecting in a sharp edge, �nd a surface that
smoothly connects the two curved faces, thereby blending the edge.

3. Given a curved face of a solid model and a point on the surface, deter-
mine whether this point lies within the face boundary.

4. Given a closed piecewise algebraic curve in the plane, sweep it along a
space curve and determine the surface of the volume so swept.

Since eÆcient algorithms depend on suitable representations for solids and
their constituting elements (i.e., for their faces, edges, and vertices), it is
crucial to study di�erent schemata for representing them. Moreover, since
there are typically no uniform best choices, conversion algorithms between
di�erent representations must be designed. In all these algorithms, we must
account for eÆciency in space and time, as well as for numerical stability and
accuracy.

1.2.3 The Substratum Problem

The distinction between substratum and infrastructure may appear arbitrary,
and we should clarify why it is made here. When implementing many of the
geometric algorithms found in the literature, one encounters a fundamental
diÆculty: Even though an algorithm may have been meticulously imple-
mented, it need not be completely free from errors. But these errors seem
to be due neither to carelessness in the implementation, nor to a mistake in
the algorithm design. Rather, the error is due to an oversight | we take
for granted that the arithmetic operations in the geometric computation are
precise. Of course, we realize that oating-point arithmetic is approximate,
but we might have assumed that the errors so incurred are insigni�cant.
This is not always the case, and the distinction between substratum and
infrastructure helps to conceptualize the nature of the diÆculty.

A computer does two types of computation: symbol manipulation, which
can be done exactly, and numerical computation. The latter is exact only for
integer and rational arithmetic, and is subject to imprecision in oating-point
arithmetic. Floating-point error is due to the limited precision to which the
calculations are done and su�ers from roundo� and digit-cancellation errors.
The two problems are well known in numerical analysis and have given rise
to extensive research into designing algorithms that exhibit greater accuracy
and numerical stability, besides solving a problem eÆciently.

The vast majority of geometric computations in solid modeling are per-
formed in oating-point arithmetic. Since logical decisions are made based
on these calculations, errors incurred by the arithmetic should be of great
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concern. In particular, since the same logical decision may recur throughout
a computation but may have been based on di�erent calculations, there is
the possibility of making inconsistent decisions. It is precisely this possible
inconsistency that causes solid-modeling systems to fail on certain inputs.

The interplay of symbolic and arithmetic computation is a critical dimen-
sion in solid modeling and appears to be unparalleled. It raises fundamental
problems of profound mathematical content, and there is a growing sense in
the �eld that these problems need to be addressed urgently. At this time, it
appears that there are three choices:

1. Create a substratum implementing exact arithmetic. Typically, this
slows down all computations unacceptably, but in some situations a pri-
ori precision bounds exist, and then this approach may lead to accept-
able speeds.

2. Use an inexact arithmetic substratum, and hope for the best. This is
the traditional choice of system designers, and a great deal of e�ort
is subsequently expended to tune the system such that the occasional
catastrophic failures do not happen in typical applications.

3. Augment an inexact arithmetic substratum with speci�c algorithmic
steps that avoid catastrophic failure and are capable of delivering valid
results for all inputs. This alternative has been proposed only recently
and is the subject of much current research.

Note that an exact arithmetic substratum does allow a clean separation of
the various levels of abstraction. However, current technology does not have
the necessary tools to make this approach attractive in the curved-surface
domain, and we have to wait with this alternative until more progress has
been made.

The second choice does not permit a clean separation of substratum, in-
frastructure, and user interface. Systems implemented in this way will fail
occasionally, so the �rst phase of an implementation is usually followed by
a second, time-consuming phase in which the system is �ne-tuned to avoid
failures on common inputs. Although this �ne-tuning is often done by trial
and error, it can be ameliorated by careful consideration of the geometric
signi�cance of each error as it is encountered. Such systems are diÆcult to
maintain and changes to them are risky.

The third alternative, �nally, is to redesign a substratum in which oper-
ations such as point/surface incidence are supplemented by processing steps
that account for inaccuracies. At this time, it is hard to assess the impact
this approach may have on the complexity of the algorithm, and whether the
approach can achieve a strict separation of the levels of abstraction. Known
complexity bounds seem to be overly pessimistic, and much further work will
be needed before we can judge the ultimate utility of this approach. Research
on this subject is, of course, fueled by the hope that in this way we can reach
a middle ground somewhere between the expensive exact approach and the
complicated and unsatisfactory traditional approach.
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1.3 About This Book

This book deals primarily with the concepts and tools needed to design and
implement solid-modeling systems, their infrastructures, and their substrata.
Of necessity, this subject requires a considerable amount of mathematical fact
and thinking. We have made every e�ort to make the material accessible
even to the novice. The reader should be able to absorb the intuitive content
without much diÆculty. Going into the details may require some patience,
perhaps, but should not be daunting.

Throughout the book, algorithms and the underlying theory needed to
design them are in the foreground. Thus, designers, implementors, technical
leaders of solid-modeling groups, and academic researchers constitute the
primary audience of this book. Nevertheless, a prospective user of a solid-
modeling system should read Chapters 1 and 2 to gain an appreciation of the
�eld and of the basic concepts it exercises. Armed with these insights, he or
she should then be able to assess the true capabilities of the systems under
consideration. Chapter 4 provides an understanding of the �ner points, and
is useful when judging whether the system can provide the needed accuracy
and robustness.

Chapter 2 explains the basic concepts. It discusses �rst the conceptual
operations that one expects to �nd in a user interface, except for visualiza-
tion and archiving operations. The presentation is kept conceptual, rather
than technical, and is well suited to the casual reader who wishes to gain
an overview. The chapter then presents the two dominant representation
schemata used in solid modeling | namely, constructive solid geometry
(CSG), and boundary representation (B-rep). Basic geometric operations in
CSG are also sketched. The section on topological validity presents technical
material needed for devising algorithms that test whether a given boundary
representation is correct. There are other representation schemata, and they
are briey summarized at the end of Chapter 2.

In Chapter 3, we design an algorithm for Boolean operations on solids
given in a boundary representation. This algorithm serves as a useful frame
for developing an appreciation of the subtleties of representing and manip-
ulating solids. Representing, analyzing, and manipulating solid models by
computer is not a simple matter, and to implement competently modeling op-
erations such as the determination of the intersection of two solids is a project
of considerable complexity. For this reason, the intersection operation is dis-
cussed in depth. We restrict Chapter 3 to the intersection of polyhedra with
nonmanifold boundaries. Except for the treatment of tangencies and sin-
gularities, polyhedral intersection requires dealing with virtually all aspects
of this operation, so our restriction does not oversimplify the problem. The
polyhedral-intersection algorithm can be used as the basis for an extension
to curved solids. The added diÆculties encountered relate to mathematical
issues and accuracy questions that are discussed in Chapters 5 and 6.

Chapter 4 addresses the important substratum problem. There is at
present much discussion as to the true origin of the problem; hence, the chap-
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ter looks at di�erent manifestations of accuracy and robustness problems and
surveys a number of approaches proposed for solving them. It seems that
the polyhedral case is already very diÆcult, and we have restricted our pre-
sentation to this case only. As already mentioned, research on this subject is
relatively recent and has not yet matured, so the chapter concentrates more
on making the problems intelligible rather than on giving recommendations
for a \best" solution.

The balance of the book is devoted to the treatment of curved surfaces.
Chapter 5 begins this topic by looking at the representational requirements.
Surfaces can be represented parametrically or implicitly. Both representation
styles have strengths and weaknesses. For example, for an implicitly repre-
sented surface f(x; y; z) = 0, the problem of testing whether a given point p
lies on the surface is simple. If the same surface is represented parametrically,
then this question is diÆcult. On the other hand, it is simple to generate
points on a parametric surface. On an implicit surface, this would be much
harder. Hence, we will examine methods for converting between paramet-
ric and implicit surface forms. Curve and surface singularities add speci�c
subtleties to boundary representations of curved solids. If they are ignored,
geometric ambiguities may arise that are due to the fact that, between two
points in space, there might be di�erent connecting curve segments, both be-
longing to the intersection of the same pair of curved surfaces. An example of
this phenomenon is also discussed in Chapter 5, along with recommendations
on how to avoid it.

When we are dealing with curved surfaces, the evaluation of their intersec-
tion is a fundamental operation. Chapter 6 looks at a number of techniques
used to implement this operation. Speci�cally, by combining traditional nu-
merical techniques with symbolic computations from algebraic geometry, it
is possible to deal with complicated singularities. For plane curves, these
algebraic techniques are simple and e�ective. Such curves could be trimming
curves when intersecting parametric surfaces. For space curves presented as
the intersection of two implicit surfaces, complications arise that continue
to be research topics. Here, one expects that more sophisticated symbolic
computations will be needed.

Since symbolic algebraic computations require a working knowledge of
ideal theory, we have added a chapter on Gr�obner bases techniques. These
techniques include some very powerful algorithms for implicitization and in-
version, and provide completely general and comprehensive methods for solv-
ing systems of algebraic equations. The great generality of the algorithms
make them too slow to be of immediate routine use in production systems.
However, they hold much potential for providing specializations that could
play a major role in the manipulation and analysis of curved surfaces. We
touch on some of these specializations in the section on basis conversion.
This section also describes a strategy for implicitizing curves and surfaces
that can handle problem sizes that could not be attacked successfully by
other techniques known to us.
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1.4 Notes and References

As A. Requicha pointed out, the term solid modeling is of relatively recent
coinage: Early work used the term geometric modeling to refer to solid mod-
eling, and reserved the term surface modeling to refer to work on parametric
curves and surfaces.

There are several surveys dealing with solid modeling, including Requicha
and Voelcker (1983). The survey by Requicha (1988) is a recent update.
Voelcker, Requicha, and Conway (1988) is another survey of the area that
focuses on how solid modeling could be integrated into the manufacturing
process and on what the problems raised by this prospect are.

Geometric modeling in the current sense is the subject of the books by
Bartels, Beatty, and Barsky (1987), Farin (1988), and Mortensen (1985).
These books give good introductions to the rather large literature on the
subject.

In his book on solid modeling, M�antyl�a (1988) describes how to repre-
sent manifold polyhedral objects and how to implement Boolean operations
on them. He also describes a facility for storing and undoing previous de-
signs. Chiyokura (1988) describes the implementation of Designbase, a spe-
ci�c modeling system with some curved-surface capabilities. Briey, curved
solids can be designed and modi�ed by local operations, such as altering the
shape of certain edges and faces, but Boolean operations require that one of
the intersecting objects be polyhedral. All objects will have manifold sur-
faces. Chiyokura's book also discusses several classes of parametric curves
and surfaces.

The ambiguity of wireframes shown in Figure 1.1 was found by J. Shapiro
at the University of Rochester.
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Chapter 2

Basic Concepts

This chapter reviews the conceptual operations one expects to be present
in the user interface. Also discussed are constructive solid geometry and
boundary representation, two major representation schemata used in solid
modeling.

In constructive solid geometry (CSG) a solid is represented as a set-
theoretic Boolean expression of primitive solid objects, of a simpler structure.
Both the surface and the interior of an object are de�ned, albeit implicitly.
A boundary representation (B-rep), on the other hand, describes only the
oriented surface of a solid as a data structure composed of vertices, edges,
and faces. The orientation convention permits us to decide on which side of
the surface the solid's interior is located.1 This suÆces to describe the solid's
interior and exterior unambiguously, provided the surface and its geometric
embedding satisfy certain geometric and topological requirements.

CSG and B-rep have di�erent inherent strengths and weaknesses. For in-
stance, a CSG object is always valid in the sense that its surface is closed and
orientable and encloses a volume, provided the primitives are valid in this
sense. A B-rep object, on the other hand, is easily rendered on a graphic dis-
play system. In consequence, there is a discernible tendency to combine both
CSG and B-rep in an e�ort to take advantage of the di�erent strong points
a�orded by each. Such modelers are called dual-representation modelers.

1If only objects of bounded volume are represented, then a surface orientation is un-
necessary. However, we shall permit unbounded objects.

13
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To develop an understanding of the properties and algorithmic aspects of
these representations, we describe some of the basic operations on them. For
CSG, these include classifying points, curves, and surfaces with respect to a
solid; detecting redundancies in the representation; and approximating CSG
objects systematically. For B-rep, we review the possible surface types, the
winged-edge representation schema, and the Euler operators. A more exible
B-rep schema is given later in Chapter 3, where we discuss how to intersect
two polyhedra given in this representation.

Given a boundary representation, the question of whether it represents a
solid is of obvious practical interest. Algorithms for testing topological va-
lidity can be given, but should be based on precise mathematical de�nitions.
We develop formal de�nitions of what constitutes a valid solid in the topo-
logical sense, and derive from it a validity check. This material is intricate
and uses methods from algebraic topology. Although the intuitive content
is fairly obvious, it is necessary to develop the material carefully, since there
are many subtleties that are not apparent at �rst glance.

There are other solid representation schemata based on spatial subdivi-
sion; for example, octrees. We comment on them briey at the end of the
chapter, but do not go into the algorithmic aspects entailed by them.

2.1 Conceptual Operations and Primitives

Irrespective of the representation schema chosen, we must make available
conceptual tools for de�ning objects, for modifying them, and, eventually,
for archiving them. We discuss these operations now.

2.1.1 Primitives

A solid design is usually created in several steps that begin with an existing
design and modify it, or create a new design from primitive objects. The for-
mer situation presupposes an earlier design that is retrieved from a database.
The latter situation depends on a suitable notion of what constitutes a prim-
itive.

Primitive objects are selected from a universe of possible shapes. A shape
is instantiated by assigning values to certain parameters. Some systems allow
delaying parameter assignment. We give three examples of primitive object
de�nition.

1. Each primitive is selected from a set of solid shapes and is instantiated
by choosing values for certain dimensioning parameters that control the
�nal shape. For instance, a CSG modeler may use blocks, cylinders,
spheres, cones, and tori. The parameters in this case include the side
lengths of blocks, the diameter and length of cylinders, and so on.

2. A primitive is created by sweeping a contour along a space curve. Both
the shape of the contour and the shape of the space curve are de�ned
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Figure 2.1 Shape Variation Due to Parameter Values

by parameters. For instance, we can sweep a disk of radius r along a
line segment of length l, thus creating a solid cylinder. This approach
lends itself to generating and verifying cutting paths for numerically
controlled machining.

3. All primitives are algebraic halfspaces; that is, point sets de�ned as

f(x; y; z) j f(x; y; z) � 0g

where f is an irreducible polynomial.2 The coeÆcients of the polyno-
mial can be considered the shape parameters. This approach has been
used in several research systems.

We will discuss the �rst approach in the section on constructive solid geo-
metry (CSG). Note that, in a pure CSG modeler, the instantiation of the
shape parameters can be delayed. It is then possible to construct generic
designs. However, a generic design cannot be displayed or converted to
boundary representation, since di�erent parameter assignments could lead
to totally di�erent shapes. See also Figure 2.1, where we have varied the
diameter of the cylinder de�ning the hole. In some modelers, the parameters
carry default values that can be used to visualize generic designs.

In the second approach, various elementary operations have been proposed
for creating primitive solids. A typical example is sweeping: We are given an
object to be swept, and a path along which to sweep it, and thereby we de�ne
some volume. The object S to be swept could be a �nite area delimited by a
closed curve, or a solid. The path of the sweep typically would be a segment
of a space curve C, and could be open or closed. The primitive solid created
by this operation consists of the volume swept by S as it is moved along C.
An example is shown in Figure 2.2.

The mathematics of sweeping is more delicate and demanding than it
might seem at �rst glance. Foremost, it depends on certain conventions. We

2As explained in Chapters 5 and 7, a polynomial is irreducible if the point set de�ned
in the text cannot be decomposed into the union of simpler components. Technically, the
polynomial f is irreducible if it cannot be factored.
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Figure 2.2 A Circular Disk Swept Along a Line

need to �x a reference point on S that will traverse the curve C. We also
must de�ne how, if at all, the orientation of S varies as S moves along C,
and what the initial orientation is. These conventions must be determined
by default or by suitable parameters to the sweep operations. Then, there
could be degeneracy problems: If a planar area S with �xed orientation is
moved along a path C that has a tangent parallel to the plane containing
S, then the interior of the resulting volume could have self-intersections. In
the three-dimensional example shown in Figure 2.3, this is indicated by the
crease in the center that is the result of a self-intersection. Figure 6.6 in
Chapter 6 shows a two-dimensional example. Moreover, if the entire path C
is parallel to the plane of S, then we have de�ned an area instead of a volume.
If such cases are considered an error, we need algorithms for their detection.
If they are allowed, we need to give proper meaning to the results.

Usually, there is no closed-form mathematical description of the surface
bounding the swept volume. For example, the cylinder in Figure 2.2 is
bounded by �nite areas on two linear surfaces and on one quadratic sur-
face. Moreover, if the surface contains self-intersections or other types of
singularities, the areas of interest may not have a simple de�nition.

Important special cases include sweeping a sphere along a space curve
or across a surface of another solid. In the �rst case, we obtain a partial
description of the volume removed by a ball cutter as the cutting tool is

Figure 2.3 Sweep Degeneracies
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moved along the path of the sweep.3 Thus, this case has applications in
numerically controlled machining, and can be used to represent the e�ect
of cutting operations, either for automatic generation of cutter paths or for
veri�cation that such paths do not interfere with other parts of the solid to
be manufactured.

When a sphere is moved across a surface, we obtain a volume bounded by
the o�set of the surface. O�setting can be viewed as an operation on solids
or on surfaces, and has been used to de�ne global blending operations on
solids in which all edges are rounded or �lleted. We return to the subject of
o�sets and spherical sweeps in Chapters 6 and 7.

The third approach of using algebraic halfspaces as primitives raises dif-
�cult algorithmic problems and is the subject of current research. Unless
additional restrictions are placed on f, the generality of the primitives can be
overwhelming, and general algorithms such as the ones discussed in Chapter
7 should be considered.

Note that variations of the third approach have also been used. For ex-
ample, we could require that the polynomial f have degree no greater than
2 or 3. Doing so has the advantage that the specialized techniques discussed
in Chapter 5 suÆce to manipulate the resulting objects.

2.1.2 Local Modi�cations

Numerous local modi�cations to solids have been proposed. Most of them
operate on a boundary representation, and can be implemented using Euler
operations (see also Section 2.3.4). Figures 2.4 through 2.6 show several
examples.

If we operate on boundary representations with simple shape elements,
then local modi�cations could be inexpensive, provided that the geometric
shapes we manipulate are suÆciently simple. Local modi�cations do, how-
ever, require validity checks to avoid errors such as the one shown in Figure
2.7. Here, the face is extruded too far and interferes with other parts of the
solid.

3Strictly speaking, a ball cutter cannot physically remove the entire volume swept by
the sphere, since we must accommodate the shaft of the cutter.
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Figure 2.4 Extruding a Face

Figure 2.5 Beveling a Vertex

Figure 2.6 Altering Edge and Face Shape
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Figure 2.7 Error in Face Extrusion

2.1.3 Global Operations

There are several trivial global operations, including rotating and translating
solids. Regularized Boolean operations, explained in Section 2.2, are also
considered global operations, as are the operations of o�setting solids, and
of rounding all convex and �lleting all concave edges.

2.1.4 Undoing and Redoing

Ideally, solid design is an interactive process in which the designer experi-
ments with alternatives, modi�es them, corrects errors, and so on. Whereas
interactivity demands quick response time, exploring alternative designs and
correcting errors requires the possibility of undoing a sequence of operations,
or redoing some of them.

Undoing an operation requires minimally a history that records all opera-
tions leading, in sequence, to the present design. Then, in principle, we could
reconstruct the entire sequence of operations, from the beginning up to some
prior point. E�ectively, this undoes all subsequent operations. If alternatives
should be explored and if we wish to return to some of them, then the history
record must be a tree. An example of a history tree of designs is shown in
Figure 2.8.

Redoing a design from the root up to a speci�c alternative is inferior to
using a more direct undo capable of reversing the e�ect of an operation. The
diÆculty of the undo will depend on the way objects are represented. The
operation is easy in pure CSG. In boundary representation, local modi�ca-
tions are easy to undo, but Boolean operations are not. For diÆcult undo
operations, it is better to check point; that is, we store the representation of
the design prior to the operation, and then once more after its completion.
Then, undoing is simply a retrieval.

The cost of check pointing has to be balanced against the cost of inverting
the operation. If an undo is cheap, it is probably better not to check point,
especially in B-rep, where the data structures describing the current design
may be very large.

Having undone a partial design, we may wish to reconstruct a design
alternative previously de�ned. Since most operations include consistency
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Figure 2.8 History Tree of Design Figure 2.9 Indexing a History Tree

checking for their results, an explicit redo operation has the advantage that
such checks are not needed. Thus, a redo operation can be faster. Moreover,
for expensive operations such as union or intersection, redo can simply access
the check-pointed representation and is therefore also cheap.

The history tree should be presented to the user as an aid to remember
the various versions of design already explored. The presentation can be
augmented by an indexing scheme that generates default names for the design
based on the position in the history tree. Thus, instead of issuing a sequence
of undo and redo commands to reach a speci�c alternative, we can retrieve
the alternative directly by giving its name. A simple indexing scheme is as
follows:

Each tree vertex is indexed by a pair of numbers (i; j), where i
is the depth of the vertex, and j enumerates all vertices of equal
depth in the order of creation.

The depth of a vertex is determined as follows: The root has depth 0; if v
descends from a vertex w, then depth(v) = depth(w) + 1. Figure 2.9 shows
an example.
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Figure 2.10 Coordinate Frames for Two Standard Primitives

2.2 CSG Representation

In the strict sense, CSG is a method of representation, a design methodology,
and a certain standard set of primitive objects. So, a CSG object is \built"
from the standard primitives, using regularized Boolean operations and rigid
motions. We will sketch this methodology �rst, and will present some of the
properties and algorithms it entails. Later on, we will consider the possibility
of greatly enlarging the set of allowed primitives.

2.2.1 CSG Standard Primitives

The CSG standard primitives are the parallelepiped (block), the triangular
prism, the sphere, the cylinder, the cone, and the torus.4 They are generic in
the sense that they represent shapes that must be instantiated by the user to
chosen dimensions. Thus, to obtain a parallelepiped of edge lengths 1, 1, and
3, one might specify block(1; 1; 3), where the lengths are expressed in units
depending on conventions, or, perhaps, are given explicitly. Also depending
on convention would be the placement of the resulting object in space: With
each primitive object there is associated a local coordinate frame. Here, we
will place this coordinate frame as shown in Figure 2.10. These di�erent
local coordinate frames must be related to one another, by placing them
with respect to a common world coordinate frame, discussed later.

All standard primitives have a �nite domain. For example, the cylinder
always has a �nite radius and a �nite length. This convention seems to be
rooted in the thought that we always model �nite solids. We will see later
that it can be convenient to consider in�nite solids, at least as intermediate
steps, in the process of de�ning complex, �nite solids.

4Note that the prism or the parallelepiped is redundant.
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Figure 2.11 Procedure for Regularized Intersection

2.2.2 Regularized Boolean Operations

After instantiation, primitive objects can be combined using regularized Boolean
operations. The operations are the regularized union, denoted [�; regularized
intersection, denoted \�; and regularized di�erence, denoted ��. They di�er
from the corresponding set-theoretic operations in that the result is the clo-
sure of the operation on the interior of the two solids, and they are used to
eliminate \dangling" lower-dimensional structures. For example, to compute
A \� B, we proceed conceptually as follows:

1. We compute A\B in the set-theoretic sense. The result is a collection
of volumes, and additional faces, edges, and vertices. These additional
faces, edges, and vertices are lower-dimensional structures that we will
eliminate.

2. We now take the interior of A \ B. The interior consists of all those
points p 2 A \ B such that an open ball of radius �, centered at p,
consists only of points of A \B, for a suÆciently small radius �.

3. We form the closure of this interior, by adding all boundary points ad-
jacent to some interior neighborhood. A point q that is not an interior
point of A\B is adjacent to the interior if we can �nd a curve segment
(q; r) of suÆciently small length �, between q and another point r of
A\B, such that all points of this segment are interior points of A\B,
except q. Note that the lower-dimensional structures do not enclose
volume and are therefore not adjacent to the interior of A \B.

The resulting solid is the regularized intersection. Figure 2.11 illustrates the
procedure.

Note that, in practice, regularized Boolean operations are not imple-
mented in this manner. Rather, A \� B is implemented by classifying the
surface elements of A\B and eliminating lower-dimensional structures. This
explicit classi�cation is delayed until a geometric query requires it, as ex-
plained later, or until a conversion from CSG to B-rep is carried out; see also
Section 2.2.6.

Eliminating the lower-dimensional structures is desirable for de�ning solids.
However, in some applications, it may be desirable to retain them, possibly
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even in the interior of objects. For example, when considering solids as do-
mains in �nite element analysis, interior lower-dimensional structures might
represent certain constraints on how to discretize the domain, or might de�ne
the domain discretization outright. At present, this is a research topic, and
we do not explore this line of thought further.

Before the two objects are intersected, they must be positioned appropri-
ately with respect to each other. This is done by translations and rotations,
as needed. To make this positioning meaningful, we must establish a rela-
tionship between the local coordinate frames of the objects. A simple method
is to identify the local frames with a single, universal coordinate frame. The
universal frame is often referred to as the world coordinate frame.

Suppose we have positioned the two primitives, and have constructed an
intersection. Then, the resulting object should have a local coordinate frame
of its own, needed for subsequent positioning operations we might wish to
perform. By convention, we will use (a copy of) the world coordinate frame
for this purpose.

2.2.3 Construction of a CSG Object

The CSG representation of the simple bracket shown in Figure 2.12 is easily
worked out. We think of the bracket as the union of two blocks of respective
dimensions (1,4,8) and (8,4,1) with the hole subtracted by a cylinder of radius
1. Without the hole, we can specify the bracket as

block(1; 4; 8) [� x-translate(block(8; 4; 1); 1)

The hole is removed by subtracting a cylinder about the z axis, resulting in
the expression

(block(1; 4; 8) [� x-translate(block(8; 4; 1); 1)) ��

x-translate(y-translate(z-cylinder(1; 1); 2); 5)

The expression is conveniently drawn as a tree, as shown in Figure 2.13.
This tree can be considered to be the representation of the object, and is
customarily called a CSG tree. We see that the leaves of the CSG tree
are primitive solids, and the interior nodes are rigid motions and Boolean
operations.

In our example, the two blocks joined are touching, and the cylinder length
matches the bracket thickness. In practice, this is an unsafe speci�cation for
nonintegral dimensions because of the possibility of oating-point inaccura-
cies. It is thus advisable to allow for a safe amount of overlap when specifying
union operations. Here, then, is one place where substratum problems have
intruded into the higher design levels.

2.2.4 Point/Solid Classi�cation and Neighborhoods

Having built a CSG object, we might wish to interrogate its geometry in
various ways. The most elementary such query is to test whether a point
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Figure 2.12 Bracket

(x; y; z) is inside a solid, is on its surface, or is outside of it. This query is
usually referred to as a point/solid classi�cation. Other such queries include
a classi�cation of how a line intersects a solid, a classi�cation of how a surface
intersects a solid, and a test of whether two solids intersect in a nonempty
volume. These operations will be discussed later.

box (1,4,8) box (8,4,1)

x−translate (.,1)

x−translate (.,5)
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z−cylinder (1,1)
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Figure 2.13 Tree Representation of CSG Expression
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Point/solid classi�cation can be done with an algorithm that has a simple
conceptual structure. Despite its apparent straightforwardness, however, we
soon realize that a diÆculty may arise when the point lies on the surface of a
primitive, and this diÆculty necessitates the introduction of neighborhoods.

The basic idea underlying this and other such algorithms is to reduce the
point/solid classi�cation to a query of the primitives in the CSG tree. The
respective answers, one for each primitive, are then collated at each operation
node as appropriate. Thus, the algorithm is based on the divide-and-conquer
paradigm familiar from the literature.

Downward Propagation

Point/solid classi�cation is naturally implemented as a set of recursive pro-
cedures, but it might be simpler to think of it as passing messages between
the tree nodes. At the outset, the point coordinates are sent to the root of
the tree. From there, they are propagated into the tree down to the leaves,
possibly altered. At each leaf, the �nal coordinates describe the same point,
but with respect to the local coordinate frame of the primitive solid that the
leaf represents.

At the leaf, we classify the point as one of in, on, or out, depending on
whether the point is, respectively, in the interior, on the surface, or on the
outside of the primitive solid. This classi�cation is passed back up the tree, to
the root. At an operation node, the results from the subtree are coordinated.
So, we specify the �rst phase of the algorithm as follows.

1. If (x; y; z) arrives at a node specifying a Boolean operation, then it is
passed unchanged to the two descendants of the node.

2. If (x; y; z) arrives at a node specifying a translation or rotation, the
inverse translation or rotation is applied to (x; y; z), yielding a new
point (x0; y0; z0), which is sent to the node's descendant.

3. If (x; y; z) arrives at a leaf, then the point is classi�ed with respect to
that primitive solid, and the classi�cation is returned to the parent of
the leaf.

When classifying the point (2; 1; 0:3) with respect to the bracket, for in-
stance, we classify the point (2; 1; 0:3) with respect to block(1; 4; 8), the
point (1; 1; 0:3) with respect to block(8; 4; 1), and the point (�3;�1; 0:3)
with respect to z-cylinder(1; 1). The respective classi�cations are out, in,
and out.

Upward Propagation

In the second phase of the algorithm, the messages contain point classi�ca-
tions that must be combined at the Boolean operation nodes. No work is
done at nodes representing translation or rotation. Table 2.1 shows what to
do for union and intersection operation nodes.
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[� in on out

in in in in

on in on? on

out in on out

\� in on out

in in on out

on on on? out

out out out out

Table 2.1 Naive Neighborhood Combination for Union and Intersection

Neighborhoods

Implemented in this way, the algorithm will be incorrect. For example, clas-
sifying the point (1; 1; 0:5) with respect to the bracket yields an incorrect on.
The problem here is the classi�cation of points that lie on the surface of a
primitive solid. These points may lie on a primitive surface area that remains
a part of the surface of the solid described by the tree, and then using the
table yields the correct result. If, however, the point is on a surface area that
is not on the �nal surface | for example, because it becomes solid interior
as the point (1; 1; 0:5) does | then the tables do not suÆce. What is needed
in addition to the classi�cation as one of in, on, or out is the local geometry
of the solid in the vicinity of the point. The additional information is given
by a neighborhood of the point, as explained next.

A neighborhood of a point p = (x; y; z), with respect to the solid S, is the
intersection with S of an open ball of in�nitesimal radius � centered at p. We
used this concept to de�ne the interior of a solid, and recall that p is inside
S, i� the neighborhood is a full ball. The point p is on the outside, i� the
neighborhood is an empty ball. If p is on the surface of S, then the structure
of the neighborhood depends on the local topology of S at p. We explain the
possible topologies of these neighborhoods by restricting the local geometry
to planar surfaces; that is, by considering only polyhedra for the moment.

We decompose the surface of the solid into faces, edges, and vertices. Here,
a face is a closed subset of the surface all of whose points lie in the same
plane.5 An edge is the intersection of two adjacent faces, and a vertex is the
common intersection of three or more faces. For example, the surface of a
cube consists of 6 faces, 12 edges, and 8 vertices.

If a surface point is in the interior of a face, then its neighborhood is a
halfspace whose surface in the ball is a subset of the face. In Figure 2.14,
the ball neighborhood of such a point is shown, and the solid part of the
neighborhood has been shaded. Next, consider a point on an edge di�erent
from the two vertices. In the simplest case, the edge is adjacent to exactly
two faces, so the neighborhood is a wedge. For some CSG objects, however, it

5Strictly speaking, we may have to split the closed subset into two maximal components
such that the solid interior lies locally on the same side of the plane, for each component.
In this case, each component is a separate face.
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Figure 2.14 Neighborhood of an Interior Face Point

is possible that an edge is adjacent to an even number of faces that is greater
than two. In that case, the neighborhood of the point is a union of such
wedges, all with the edge in common, as exempli�ed in Figure 2.15. Again,
the solid part of the neighborhood is indicated by the shading.

Finally, consider a vertex. Again the simplest case is when all faces inci-
dent to the vertex are edge adjacent in a single cycle. In that case, the vertex
neighborhood is a cone. Some possibilities are shown in Figure 2.16. In gen-
eral, the faces incident to a vertex are organized in several cycles. In this
general form, the vertex neighborhood consists of a collection of cones, poss-
ibly with conical holes and touching along certain edges. All cones have the
vertex as common apex; see also Figure 2.17 for an example. Such a neigh-
borhood can be represented as a set of curves on the surface of a sphere. The
curves represent the intersection of the cone surfaces with the sphere, and
the resulting map on the sphere is two-colorable, with one color representing
solid interior, the other representing solid exterior.

In the case of curved surface elements, the neighborhood structure remains
topologically the same as in the polyhedral case, but the geometric structure
is more complicated. Often, we can approximate the curved surfaces with
the tangent planes at p. However, in situations where surface elements match
and combine in ways that alter the topology qualitatively, we must consider
the curved-surface geometry. Some of these situations are discussed in the
next section.

P . .P

Figure 2.15 Neighborhood of an Interior Edge Point



28 Basic Concepts

P . .P

Figure 2.16 Simple Neighborhoods
of a Vertex

Figure 2.17 General Neighborhood
of a Vertex

Re�ned Upward Propagation

The problem with Table 2.1 is that no geometric information on the neigh-
borhood structure is taken into consideration. Thus, although the union of
two halfspaces in general forms a wedge, it may remain a halfspace or be-
come a full solid ball. Since this geometric information is ignored, the tables
cannot always produce the correct answer.

Thus, to repair our method for processing the information during the
second phase of point/solid classi�cation, we must perform the respective
Boolean operation on the neighborhoods themselves. Only then do we obtain
correct answers. This requires accounting for the local geometry, devising
suitable data structures to represent neighborhoods, and transforming the
geometric data appropriately at the rigid motion nodes in the tree. Again,
we consider the polyhedral case �rst.

Representing the neighborhoods of interior or exterior points is trivial.
So, let p be a point on the surface of the solid de�ned by a subtree. If p
is in the interior of a face, then the neighborhood can be represented by
the plane equation of the face, oriented such that the plane normal points
to the exterior of the halfspace. If p is on the interior of an edge, then
the neighborhood is represented by a set of sectors in a plane containing p
that is perpendicular to the edge. Vertex neighborhoods, �nally, are inferred
from the adjacent edge neighborhoods. When performing Boolean operations
on boundary representations, it will again be useful to think in terms of
neighborhoods, so we will discuss this subject again in the next chapter.

At a union node, we must compute the union of the two neighborhoods
of p that reach the node from its left and right descendants. Except for the
trivial cases where one or the other neighborhood is the empty or the full ball,
we must merge the two data structures and inspect the result. We describe
this procedure conceptually.

Essentially, the following rules apply for merging neighborhoods at a union
node. Let NL and NR be the two neighborhoods at the descendants to the
left and to the right. Then the neighborhood N at the node is as follows:

1. If NL is the full ball, then N = NL. If NL is the empty ball, then
N = NR.
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Figure 2.18 Edge-Neighborhood Merge, General Position

2. If NL and NR are face neighborhoods, then N is an edge neighborhood
unless the two faces coincide. This case includes coplanar faces; then,
N will be a face neighborhood or the full ball, depending on how the
faces are oriented.

3. If NL and NR are edge neighborhoods, then N is in general a vertex
neighborhood whose cones are formed from the wedges of NL and NR;
see Figure 2.18. If the edges coincide, N will be an edge neighborhood,
unless the wedges match up to form a single face with p in the interior;
see also Figures 2.19 and 2.20.

4. If NL is a vertex neighborhood, and NR an edge neighborhood, then
N is a vertex neighborhood unless each of its solid cones is contained
in a wedge of NR.

5. If NL and NR are vertex neighborhoods, then N is a vertex neigh-
borhood, as shown in Figure 2.21, unless the cones match up to form
wedges or a face with p in the interior; see also Figures 2.22 and 2.23.

The remaining cases can be worked out easily, and analogous rules are for-
mulated for the other Boolean operations.

Clearly, the geometric processing required to cover all cases is not triv-
ial, even when we restrict our attention to polyhedral objects only. The
vertex-neighborhood merge is inherently complicated because the neighbor-
hood structure can be complex. The other cases gain in complexity because
of the exceptions that arise when the various geometric elements are in special
positions with respect to one another.

P
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Figure 2.19 Edge-Neighborhood Merge Producing an Edge
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Figure 2.20 Edge-Neighborhood Merge Producing a Face

2.2.5 Curve/Solid Classi�cation

A useful interrogation primitive is the classi�cation of a space curve against
a solid. The special case of the straight line can be used to generate shaded
images as follows. Consider a line through the view point and a screen pixel.
Classify that line against the solid, pick the nearest intersection point, and,
recalling which primitive is intersected at that point, compute the intensity
from the surface normal and the lighting information. Since this application
uses the algorithm a large number of times, it is important to implement it as
eÆciently as possible. The approximation techniques discussed here provide
additional strategies for speeding up the computations.

The algorithm for classifying a line or curve against the solid is organized
exactly like the point/solid classi�cation.

1. Send the line or curve description to the leaves. Partition the curve
into segments labeled inside, outside, or on the surface of the primitive.

2. Propagate the segments back upward, and merge them appropriately.

To classify a line against a primitive, we may parameterize the line and
substitute the parametric form into the implicit surface equations bounding
the primitive, thereby deriving a polynomial in one variable for each surface.
The roots of the polynomial de�ne the intersection points. Only those points
that lie on the primitive are considered further. The points are then sorted
along the line and are paired into segments with the appropriate labeling.
Example 2.1: We classify a line against a primitive cylinder. The

cylinder is z-cylinder(1; 2), and the line is

x = 2� 2�

y = 0

P P .P..

Figure 2.21 Vertex-Neighborhood Merge, General Position
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Figure 2.22 Vertex-Neighborhood Merge Producing an Edge

z = �

The cylinder's perimeter is given by x2 + y2 � 1 = 0, so the line/perimeter
intersection points correspond to the roots of (2�2�)2�1 = 0. The two roots
are � = 1=2 and � = 3=2, corresponding to the points p = (1; 0; 1=2) and
q = (�1; 0; 3=2). Both points are on the primitive, since they are above the
plane z = 0 and below the plane z = 2 that bounds the cylinder domain. The
intersections of the line with these planes are outside the primitive, and hence
are irrelevant. We sort and pair the two intersections found, and conclude
that the segment (p; q) is inside the primitive, and the unbounded segments
with parametric values (�1; 1=2) and (3=2;+1) are outside. 3

Classifying a curve against a primitive can be done in the same way, pro-
vided the curve has a parametric form. For such curves, we sort the inter-
section points by their parameter values. However, even when we consider
only those space curves that arise as the intersection of two standard CSG
primitives, we need not obtain curves that possess a parameterization. For
those curves, more complicated sorting procedures are needed.

Briey, if the curve lies on a parameterizable surface, then we may equiva-
lently sort the points by sorting the corresponding points in parameter space.
That is, instead of considering the point p = (x(s; t); y(s; t); z(s; t)) in three-
dimensional space, we consider the point q = (s; t) in parameter space. If
p is on the intersection with another surface, then q is on a plane algebraic
curve C in parameter space. This curve C is considered.

The curve C is decomposed into convex segments not containing any singu-
larities. Points Pk on a speci�c segment may be sorted by the angle between
the secant RPk connecting Pk with a suitable reference point R and a refer-
ence direction; see also Figure 2.24. All intersection curves between standard

... P
P

P

Figure 2.23 Vertex-Neighborhood Merge Producing a Face
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Figure 2.24 Sorting Curve Points on a Parametric Surface

primitives can be processed in this way. See Chapter 6 for information on
how to deal with singularities on plane algebraic curves. How to sort points
on a general space curve is not well understood.

2.2.6 Surface/Solid Classi�cation, Conversion to B-rep

A surface will intersect a solid in a number of areas. Each such area is
bounded by curve segments, where each segment is on the intersection of
the surface with one of the primitives of the solid. A general strategy for
determining the segments, and from them the respective areas, is therefore
as follows:

1. Intersect the surface with each of the primitives from which the solid
has been constructed.

2. Classify the resulting curves, thereby determining the bounding edges
of those surface areas that are inside or outside the solid, or are on the
solid's surface.

3. Combine the segments, appropriately oriented, constructing a bound-
ary representation of the respective surface areas.

Elaboration of this conceptual method leads to many details but is straight-
forward. The resulting algorithms are similar to, or use outright, the algo-
rithms for point/solid and for curve/solid classi�cation.

Surface/solid classi�cation, in turn, can be used to devise a method for
converting from a CSG to a boundary representation. Such a conversion
algorithm is based on the generate-and-test paradigm: We consider all pairs
of intersecting primitives in the CSG object A, obtaining for each a set of
space curves in which they intersect. By classifying each curve against the
solid, we can determine those segments that are on the surface of A. Each
segment will be an edge of the boundary representation. These segments
now de�ne, on the surface of the primitives, areas that will be the faces
of the boundary representation of A. By considering the neighborhoods, we
derive the topological information needed to determine the adjacencies and
incidences of the various faces.
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CDA
B

Figure 2.25 A Is �-Redundant in
A [� B

Figure 2.26 C Is 
-Redundant in
C \� D

2.2.7 Redundancies and Approximations in CSG Trees

Since a geometric query of a CSG tree grows at least linearly, and in some
cases quadratically, with the number of primitives, we investigate whether a
given CSG tree contains redundant subtrees that can be eliminated without
altering the object de�ned by the tree. The most blatant redundancy would
be a subtree that represents empty space. Such a subtree is said to de�ne the
null object, �, and a detection algorithm for � can be used to test whether
two CSG objects interfere: Let T1 and T2 be two CSG trees de�ning the
objects. Then the two objects do not interfere i� T1 \� T2 represents the null
object.

More generally, a subtree T 0 of the CSG tree T is redundant if replacing T 0

with the null object �, or with the complement 
 of the null object, does not
alter the shape de�ned by T. In the �rst case, we say that T 0 is �-redundant.
In the other case, we say that T 0 is 
-redundant.
Example 2.2: In Figure 2.25, the primitiveA is �-redundant in the CSG

expression A [� B, because A [� B = � [� B. In Figure 2.26, the primitive
C is 
-redundant in the CSG expression C \� D, because C \�D = 
 \� D.
3

Redundancies arise in contexts other than interference detection. It is
possible that a CSG tree T contains redundancies because it was constructed
by modi�cation of another CSG tree T1. Possibly, the object de�ned by T1
contains certain parts that are unnecessary for the object de�ned by T. In
such a situation, the designer may simply obliterate the entire unwanted
substructure, say by cutting it away using a di�erencing operation. If the
eliminated structure was de�ned by a complicated subtree in T1, then that
subtree would be redundant.

A general approach to redundancy detection is to approximate CSG ob-
jects by enclosing them in simple geometric shapes, and to derive criteria for
redundancy based on the approximations. When the approximating shapes
are suÆciently simple and are easily constructed, this approach leads to eÆ-
cient redundancy tests. Based on approximations, however, it can only yield
suÆcient criteria for redundancy. Hence, certain redundancies would remain
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undetected.
As approximating shapes, we could use spheres or boxes that are oriented

in a particular way. The advantage of spheres is that they are invariant
under rotation. This would not be true for boxes, whose edges are parallel
to the coordinate axes, but there are elegant data structures for using such
boxes, as explained in Chapter 3. We describe an approximation algorithm
for CSG objects whose structure is independent of the particular choice of
approximating shape. However, we shall assume that the CSG object is
completely contained within the approximating shape.

We �x a class � of approximating shapes. The algorithm begins by approx-
imating all primitives P in the tree with a shape �(P ) 2 �. By processing
the trees from the leaves to the root, we then determine the approximations
at all interior nodes by the following three rules.

1. If T = T1 [� T2, then �(T ) = �(�(T1) [� �(T2)).

2. If T = T1 \� T2, then �(T ) = �(�(T1) \� �(T2)).

3. If T = T1 �� T2, then �(T ) = �(T1).

We eliminate translations and rotations from consideration by distributing
them over the leaves. That is, we require that all primitives are positioned
with respect to the coordinate system of the �nal solid. Thus, we need only
a method for computing �(P ), where P is a primitive, suitably rotated and
translated, and an algorithm for approximating the union, intersection, and
di�erence of two approximations. It is now straightforward to show that
every point of the object de�ned by the CSG tree T must be contained in
the approximating shape.
Example 2.3: We let � be the class of all rectangles whose sides are

parallel to the axes. Then the approximation of (A [� B)�� (C [� D) is as
shown in Figure 2.27. The intermediate approximations are also shown. 3

The approximation algorithm yields a criterion for when a primitive or
a subtree in T is redundant. We noted that the approximation at the root
contains the entire object. Hence, if T 0 is any subtree of T, then only points
in �(T 0) \� �(T ) can contribute to the object de�ned by T. In particular, if
�(T 0)\� �(T ) = ;, then the subtree T 0 does not contribute to the �nal shape
and can be deleted from T. For example, the primitive D shown in Figure
2.27 is redundant by this criterion, and can be deleted.

2.2.8 Nonstandard Primitives

We can extend the primitives by adding other shapes to our repertoire.
For instance, we might add all quadric halfspaces | that is, ellipsoids,
paraboloids, hyperboloids, and cylinders and cones with conic base curves.
We could require that in�nite halfspaces, such as the hyperboloids, be re-
stricted to �nite domains, as we did with circular cylinders and cones, or
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Figure 2.27 Approximation of (A [
� B) �� (C [

� D): Y = �(C [
� D) and X =

�(A [� B) = �((A [� B)�� (C [� D)).

we could work with in�nite halfspaces. Less modest extensions might in-
clude various classes of sculptured surfaces, or even all irreducible algebraic
surfaces.

We can assess the diÆculties this enterprise raises by reviewing the basic
CSG algorithms we have presented. Recall that the basic classi�cation algo-
rithms follow the divide-and-conquer paradigm. The attractiveness of such
a strategy depends on the ease with which we can do the various classi�-
cations with respect to primitives, and the algorithmic complexity entailed
by analyzing neighborhoods, sorting points on surface intersections, deter-
mining adjacencies, and so on. With greater geometric complexities at the
primitive level, the diÆculty of these operations quickly increases, and even
the classi�cation against primitives can no longer be taken for granted.

In such a situation, a case-by-case analysis may become too complex, and
more general algorithms will be needed. Such algorithms are the subject of
Chapters 5, 6, and 7. They continue to be research topics. In geometric
and solid modeling, these algorithms are exercised many times. Each one
of them must be suÆciently fast, yield results of adequate accuracy, and
exhibit unfailing robustness. How best to negotiate these sometimes con-
icting demands is not clear at this time, and probably depends not only on
the geometric coverage, but also on the individual applications for which the
modeler is needed.
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2.3 Boundary Representations

We can represent a solid unambiguously by describing its surface and topo-
logically orienting it such that we can tell, at each surface point, on which
side the solid interior lies. This description has two parts, a topological de-
scription of the connectivity and orientation of vertices, edges, and faces,
and a geometric description for embedding these surface elements in space.
Historically, the representation evolved from a description of polyhedra.

Briey, the topological description speci�es vertices, edges, and faces ab-
stractly, and indicates their incidences and adjacencies. The geometric rep-
resentation speci�es, for example, the equations of the surfaces of which the
faces are a subset. The equations have been written such that, at a point p
in the interior of a face f , the surface normal points to the exterior of the
solid. More details are given later in Section 2.3.2, in this chapter, and in
Section 3.2, in Chapter 3.

2.3.1 Manifold Versus Nonmanifold Representation

A large segment of the literature requires that the surface represented by
a boundary representation be a closed, oriented manifold embedded in 3-
space. Intuitively, a manifold surface has the property that, around every
one of its points, there exists a neighborhood that is homeomorphic to the
plane. That is, we can deform the surface locally into a plane without tearing
it or identifying separate points with each other. Thus, surfaces that intersect
or touch themselves are excluded.

A manifold surface is orientable if we can distinguish two di�erent sides.
The procedure for deciding orientability can be thought of as follows. Pick
any point p, and de�ne arbitrarily a clockwise orientation around it. Main-
taining this orientation, move along any closed path on the surface. If there
exists a path such that it is possible to return to p with an opposite orienta-
tion, then the surface is not orientable; otherwise, it is orientable. Examples
of nonorientable surfaces include the M�obius strip and the Klein bottle. Ori-
entable surfaces include the sphere and the torus. Closed, orientable man-
ifolds partition the space into three regions that we may call the interior,
the surface, and the exterior, respectively. In Section 2.4.2 we explain these
concepts in greater detail.

The topological properties of manifolds are well understood. Thus, re-
stricting attention to manifold solids has the advantage that one can draw
on a rich mathematical theory for such objects. However, systematic work to
relate this topological theory to speci�c representation schemata is relatively
recent.

It is only recently that the requirement for manifold surface objects in
B-rep is being revised, partly because a regularized Boolean operation on
two manifold objects may yield a nonmanifold result. An example is shown
in Figure 2.28, where we have taken the regularized union of two L-brackets.
The problem is the edge (P;Q) that is adjacent to four faces. Three ap-
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Figure 2.28 A Non-
manifold Object

Figure 2.29 Two Possible Topologies

proaches to treating nonmanifold structures have been developed:

1. Objects must be manifolds, so operations on solids with nonmanifold
results are not allowed and are considered an error.

2. Objects are topological manifolds, but their embedding in 3-space per-
mits geometric coincidence of topologically separate structures.

3. Nonmanifold objects are permitted, both as input and as output.

Not much needs to be said about the �rst approach. It is straightforward
and appears to be satisfactory in many applications. Note, however, that
it unduly restricts modelers carrying out Boolean operations. Moreover,
depending on the internals of the modeling system, operations that produce
a nonmanifold object as an intermediate result might be disallowed even
when the �nal result would be a manifold object. Such restrictions might
not be convenient for the user.

In the second approach, we must give a topological interpretation of the
nonmanifold structures. In the example of Figure 2.28, we must interpret
the nonmanifold edge as two separate edges that happen to coincide. Two
possibilities exist, and Figure 2.29 shows them side by side. Which interpre-
tation should be chosen is discussed in Section 2.4. In this example, the left
interpretation is more natural. Briey, we choose an interpretation in which
the surface is triangulable without degenerate triangles. Note that such a tri-
angulation is possible for the left, but not for the right, interpretation shown
in Figure 2.29: In the right interpretation, the triangulation of the front face
must include an edge (P1; P2), since those two points are topologically dis-
tinct. They are, however, geometrically coincident; hence, this edge has zero
length | that is, the adjacent triangles are degenerate.

From a robustness point of view, the second approach is likely to lead to
diÆcult geometric problems, and analyzing them in the presence of geomet-
rically coincident but topologically separate surface elements could be intri-
cate. These diÆculties would be further exacerbated in the curved-surface
domain, in which the numerical problems are more severe. Moreover, no
eÆcient general algorithm for triangulating curved faces is known.
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In the third approach, nonmanifold edges and vertices are accepted. It is
our experience that this approach ultimately leads to the simplest algorithms
because it requires neither testing for the presence of the disallowed con�gu-
rations, nor special processing that derives topological disambiguations. The
algorithm for Boolean operations on polyhedra described in the next chapter
is based on this approach.

2.3.2 Winged-Edge Representation

The oldest formalized schema for representing the boundary of a polyhedron
and its topology appears to be the winged-edge representation. It describes
manifold polyhedral objects by three tables, recording information about
vertices, faces, and edges. We will describe a nonmanifold representation
scheme in Chapter 3.

The topological information is as follows. Each face is bounded by a set
of disjoint edge cycles, one of which is the outside boundary of the face, the
others bounding holes. In the face table, therefore, a representative edge of
each cycle is recorded. Each vertex is adjacent to a circularly ordered set of
edges, so the vertex table speci�es one of these edges for each vertex. Finally,
for each edge, the following information is given:

1. Incident vertices

2. Left and right adjacent face

3. Preceding and succeeding edge in clockwise order (explained later)

4. Preceding and succeeding edge in counterclockwise order

The edge is oriented by giving the two incident vertices in order, the �rst
being the from vertex, the second the to vertex. Left and right, as well as
clockwise and counterclockwise, are interpreted with respect to viewing the
oriented edge from the solid exterior. The information is shown schematically
in Figure 2.30. Various restrictions may be placed on faces. For example, we
may require that each face be bounded by a single cycle of edges, or even that
each face be triangular. Such restrictions might be imposed to increase the
uniformity of data structures, or to simplify processing for certain operations
on B-rep objects.

The geometric information consists typically of coordinates of the vertices
and plane equations for the faces. Each face equation has been written such
that its normal, at an interior face point, is directed toward the outside of
the solid. Thus, if two faces lie on the same plane P = 0, but in opposite
orientation, then both P = 0 and �P = 0 must be speci�ed.

The geometric informationmay also include parametric equations for spec-
ifying the edges in 3-space. In the case of curved solids, other information
may be required to avoid ambiguities, as discussed in Chapter 5.
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Figure 2.30 Winged-Edge Data Structure

Figure 2.31 shows a tetrahedron, where vertices, edges, and faces are la-
beled as shown. The topological data in its winged-edge representation is
summarized in Table 2.2.

2.3.3 The Euler{Poincar�e Formula

As we have seen, the topological data of a B-rep solid is symbolic informa-
tion. Unless care is exercised, this prescribed topology might be inconsistent
in the sense that there cannot exist a manifold solid whose vertices, edges,
and faces satisfy the prescribed incidence relationships. This problem be-
comes especially acute when the topological data are derived from geometric
information that is only approximate, due to oating-point errors. Hence,
there is interest in maintaining consistent topological data, and a number of
formulae have been found that must be obeyed by the number of vertices,

Edge Vertices Faces Clockwise Counter-

clockwise

Name from to left right pred succ pred succ

a 1 2 A D d e f b

b 2 3 B D e c a f

f 3 1 C D c d b a

c 3 4 B C b e f d

d 1 4 C A f c a e

e 2 4 A B a d b c

Table 2.2 Edge Table of the Tetrahedron, Winged-Edge Methodology
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Figure 2.31 Tetrahedron

edges, and faces. Note that these formulae provide necessary conditions, but
not suÆcient ones. In Section 2.4, we will derive necessary and suÆcient
conditions.

From a topological viewpoint, the simplest solids are those that have a
closed orientable surface and no holes or interior voids. We assume that
each face is bounded by a single loop of adjacent vertices; that is, the face
is homeomorphic to a closed disk. Then the number of vertices V, edges E,
and faces F of the solid satisfy the Euler formula:

V � E + F � 2 = 0

This fact is easily proved by induction on the surface structure. Extensions to
this formula have been made that account for faces not being homeomorphic
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to closed disks, the solid surface not being without holes, and the solid having
interior voids, as reviewed next.

We consider the possibility that the solid has holes, but that it remains
bounded by a single, connected surface. Moreover, each face is assumed to
be homeomorphic to disk. For example, the torus has one hole, and the
object in Figure 2.32 has two. It is a well-known fact that such solids are
topologically equivalent, i.e., homeomorphic, to a sphere with zero or more
handles. For example, the object of Figure 2.32 is homeomorphic to a sphere
with two handles, the latter shown in Figure 2.33. The number of handles is
called the genus of the surface. In general, with a genus G, the numbers of
vertices, edges, and faces obey the Euler{Poincar�e formula:

V � E + F � 2(1�G) = 0

Next, we further generalize by adding the possibility of internal voids.
These voids are bounded by separate closed manifold surfaces, called shells.
The number of shells will be denoted by S. Finally, we relax the requirement
that a face is bounded by a single loop of vertices, but require that each face
can be mapped to the plane. Thus, a sphere missing at least one point can
be a face. In Figure 2.34, a face is shown with four bounding loops. Note
that one of these loops consists of a single vertex, and another one of two
vertices connected by an edge. To account for faces of this complexity, we
must count, for each face, the number of bounding vertex loops. For the face
in Figure 2.34, this number is four. With L the total number of loops, the
relationship among the number of faces, edges, vertices, loops, and shells,
and the sum G of each shell's genus, is then

V � E + F � (L� F )� 2(S �G) = 0

An example solid illustrating this relationship is shown in Figure 2.35.
We may think of the quantities V, E, F, L, S, and G as existing in an

abstract six-dimensional space. The relationship among them is then the
equation of a hyperplane. Since the values of the variables must be non-
negative integers, we might view the relation as de�ning a lattice on this
hyperplane. For each solid with a given topological structure, there corre-
sponds a point in this lattice.

Although a manifold solid must satisfy the extended Euler{Poincar�e for-
mula, not every surface satisfying the formula will be the surface of a manifold
solid. For example, the cube is a manifold object with 6 faces, 12 edges, and
8 vertices. It has a single shell surface of genus zero. However, the surface
shown in Figure 2.36 has the same number of faces, edges, and vertices, yet it
is not the surface of any manifold solid, since it has a \dangling" quadrilateral
face attached to the prismatic part by a nonmanifold edge.
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Figure 2.32 An Object with Two Holes and with Faces Homeomorphic to Disks

2.3.4 Euler Operators

Conceptually, Euler operators can be thought of as creating and modifying
consistently the topology of manifold object surfaces. In particular, they can
create closed surfaces, and modify these surfaces by adding or deleting faces,
edges, and vertices. They also modify the surface genus by adding or deleting
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Figure 2.33 A Surface of Genus 2

handles. Euler operations are traditionally named by a string of the form
mxky, where m stands for make, and k stands for kill. The strings x and y
name the topological element types that are created or destroyed. The types
are vertex, edge, loop, face, and shell. Ordinarily, only one new element of
each type is created or destroyed, but sometimes several elements of the same
type are created or destroyed. For example, mek adds an edge and deletes
a face and a loop, whereas me adds an edge, a face, and a loop.

Euler operators are used as an intermediate language in some modeling
systems. Using them has the advantage of insulating, to a degree, the oper-
ations implemented on top of them from details of the data structures used
to represent the surface topology. Thus, in principle, the underlying repre-
sentation could be changed with minimal impact on the modeling system's
implementation. Another advantage is that Euler operators ensure topologi-

Figure 2.34 A Face with Four Bounding Loops
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Figure 2.35 Solid with 24 Vertices, 36 Edges, 16 Faces, 18 Loops, 2 Shells, and Genus
Sum 1

cal consistency throughout the modeling process. This can be advantageous
when the precise topology of the result of a modeling operation may be in
doubt because of imprecision of the numerical model data, as discussed in
Chapter 4.

As example of speci�c Euler operators, consider the operation of adding
an edge between two existing vertices. Depending on the two vertices des-
ignated, this operation has di�ering topological e�ects. In consequence, dif-
ferent Euler operations would be used to implement the operation. The
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Figure 2.36 Surface with 8 Vertices, 12 Edges, and 6 Faces

possibilities are as follows.

1. The new edge closes o� one part of a face from the rest. In this case,
the operation is called me. Its e�ect is to increase the number of
edges, faces, and loops by one each. An example is shown in Figure
2.37.

2. The new edge connects two di�erent loops bounding the same face. In
this case, the operation is called mekl. Here we have added one edge
and deleted one loop; see also Figure 2.38.

3. The new edge connects two vertices on two di�erent shells. In this case,
the operation is called meks. It merges the two shells, which includes
deleting a face on each shell and creating a new face that makes a
connection between the two surfaces. Figure 2.39 shows an example of
the meks operation. The interior shell is connected with the exterior
shell, opening the interior void to the outside by a conical face. Note
that for polyhedra, more than one edge would have to be created.

Note that these operations need additional speci�cations to ensure an
unambiguous placement of the new constructs. For example, in the meks
operation, it is not clear which faces should be deleted on each shell. Suitable
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Figure 2.37 me Operation

conventions for communicating this geometric information to the operation
are readily worked out, say via certain parameters.

The implementation of Euler operations increases in diÆculty with the
geometric coverage of the modeling system. We mentioned that there are
no eÆcient general algorithms that triangulate curved faces. Clearly, trian-
gulation of curved faces can be based on the me operation. Hence, this
operation will be diÆcult to implement unless the geometric coverage is suit-
ably restricted.

2.4 Topological Validity of B-rep Solids

A basic assumption underlying solid modeling is that we deal with topolog-
ically valid solid objects. The meaning of topological validity needs to be
made precise, for otherwise we cannot be assured that the computer repre-
sentations of solids and the algorithms using them are correct. This task is
especially important in B-rep, where we must infer, from a description of the
two-dimensional boundary, that a solid is de�ned. In this section, we give
a de�nition of topological validity. Based on this de�nition, it is possible to
derive an algorithm that tests whether a given data structure, intended as
a boundary representation of a solid, does in fact describe a solid. Such an

Figure 2.38 mekl Operation
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Figure 2.39 meks Operation

algorithm is also sketched, but no deep consideration has been given to its
implementation. Rather, it serves to elucidate the various aspects of topo-
logical validity.

Initially, we consider manifold solids. Thereafter, we discuss how to char-
acterize nonmanifold solids topologically. The material is fairly detailed, as is
necessary: The tools provided by topology are very general, and their naive
use can lead to subtle errors. Hence, it is important to develop the material
carefully and explicitly.

Checking topological validity has a geometric dimension. For instance,
each face in a B-rep must consist of manifold points. In the case of planar
faces, this condition is trivial; for curved faces, however, it is by no means a
straightforward computation. Moreover, the geometric dimension naturally
suggests broadening the topological-validity problem to a proper mathemat-
ical de�nition of the term solid that encompasses the other aspects as well.
Although we do not develop such a comprehensive de�nition, we discuss some
of the issues that are needed for for such a task. These issues arise from the
interaction of geometric and topological factors.

2.4.1 Topological Polyhedra

Our objective is to characterize a solid as a topological polyhedron. We ini-
tially think of a solid as a 3-manifold with boundary, and then impose a
triangulation to grasp better the structure of these manifolds. The result-
ing de�nition of a topological solid is preliminary because we characterize
the solid as an object without accounting for the surrounding space. By
characterizing subsequently the relationship between the solid and Euclidian
3-space, we re�ne this de�nition to a de�nition of manifold solids in the sense
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discussed in Section 2.3.1.

Topological Spaces

A topological space (X; T ) is a set X along with a system of subsets T, called
the open sets of X. The system T must satisfy the following two properties:

1. The intersection of �nitely many sets in T is again in T.

2. The union of sets in T is also in T.

Note that in�nite unions of open sets are permitted. Therefore, T must be
closed under �nite intersection and arbitrary union. A subset of X is closed
if its complement is open.

In the following discussion, we specialize the set X and assume that it
is the n-dimensional Euclidian space En or a subset thereof. En consists of
all points (x1; :::; xn), where the coordinates xk are real numbers. In E

n, we
consider the natural topology, using as our system of open sets all those sets
that can be obtained as the union of open balls. The open ball B(p; r), of
radius r > 0 centered at the point p = (x1; :::; xn), is de�ned as

B(p; r) = fq = (y1; :::; yn) j d(p; q) =

vuut
nX

k=1

(xk � yk)2 < rg

That is, B(p; r) consists of all points whose Euclidian distance from p is less
than r.

A neighborhood of a point p is any open set U that contains p. Note that
this de�nition of neighborhood has a di�erent meaning from that introduced
in Section 2.2.4. It can be shown that a subset of En is open precisely when
X contains a neighborhood of every point p in X.

The interior of a set U, denoted int(U), consists of all points p 2 U such
that U contains a neighborhood of p. The closure of a set U, denoted cl(U),
is the complement of the interior of the complement of U. Let :U denote the
set-theoretic complement of U. Then

cl(U) = :int(:U)

A map f from a topological space (X; T ) to another topological space
(X 0; T 0) is continuous if every neighborhood of f(p) in (X 0; T 0) is mapped
by f�1 to a neighborhood of p in (X; T ). If f is bijective (i.e., is one to
one and onto), and if both f and its inverse f�1 are continuous, then f is a
homeomorphism. Two topological spaces are topologically equivalent if there
is a homeomorphism between them.
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In En, we identify topological subspaces. A subspace is a subset Y of En

along with the relative topology consisting of the intersection of the open sets
of En with Y. Examples include open balls of any radius, but also closed
sets such as the unit cube consisting of all points p = (x1; :::; xn) such that,
for k = 1; :::; n, we have 0 � xk � 1. Note that an open set in the relative
topology need not be open in the containing topological space. For example,
the (relatively) open set U in the unit cube in E3, obtained as the intersection
with the open ball of radius 1 centered at (1; 1; 1); is not an open set in E3

since no neighborhood of (1; 1; 1), in E3, is contained in U.
An n-manifoldM in Em, where m � n, is a subspace that is locally home-

omorphic to En. That is, for every point p of M, there exists a neighborhood
U of p that is homeomorphic to En. An n-manifold with boundary is a sub-
space whose boundary point neighborhoods are locally homeomorphic to the
positive halfspace

En+ = f(x1; :::; xn) 2 En j x1 � 0g

and whose interior point neighborhoods are locally homeomorphic to En.
The hyperplane x1 = 0 is the boundary of En+.

Note that, in an n-manifoldM with boundary, we can distinguish between
interior and boundary points: A point p 2 M is an interior point if there
is a neighborhood U of p that is homeomorphic to En. A point p 2 M
is a boundary point if it has a neighborhood U that is homeomorphic to
a neighborhood of the point (0; :::; 0) in En+. In contrast, an n-manifold
consists of only interior points.

The boundary of an n-manifold with boundary can be shown to be home-
omorphic to an (n � 1)-manifold without boundary. Intuitively, a manifold
is connected if it cannot be decomposed into two disjoint manifolds.

A set in En is bounded if it is contained in an open ball. When a set is
both closed and bounded, it is compact.

We wish to de�ne a solid as a connected 3-manifold with boundary where,
in addition, the boundary is compact. This de�nition is too restrictive in
that it excludes nonmanifold solids. At the same time, it is also too general,
because it places no requirements on the space surrounding the solid.

Simplicial Complexes

We explain how to construct 3-manifolds combinatorially. The basic building
blocks are simplices of various dimensions that are put together in particular
ways to obtain manifolds. We explain how this is done.

Let p0 and p1 be two distinct points. The convex combination spanned by
p0 and p1 is the set

hp0; p1i = f�p0 + (1� �)p1 j 0 � � � 1g
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Geometrically, hp0; p1i is the closed line segment [p0; p1] in Euclidian space.
Similarly, we de�ne the convex combination spanned by three distinct points
as

hp0; p1; p2i = f(�p0 + (1� �)p1)�+ (1� �)p2 j 0 � �; � � 1g

= f�q + (1� �)p2 j q 2 hp0; p1i; 0 � � � 1g

If the pi are not collinear, then hp0; p1; p2i is a triangle with vertices p0, p1,
and p2. The notion of convex combination generalizes to arbitrary dimension:
The convex combination of the points p0; :::; pd+1 is

hp0; :::; pd+1i = f�q + (1� �)pd+1 j q 2 hp0; :::; pdi; 0 � � � 1g

We say that d + 1 points in d-dimensional real space Rd are linearly inde-
pendent if none of the points is contained in the convex combination of the
others. It is not diÆcult to show that we can de�ne hp0; :::; pdi equivalently
as

hp0; :::; pdi = f
dX

k=0

�kpk j �k � 0 and
dX

k=0

�k = 1g

Here, the numbers �k are the barycentric coordinates of the point
P

d

k=0 �kpk.
If the pk are linearly independent, then it can be shown that the barycentric
coordinates of every point in hp0; :::; pdi are unique.

A d-simplex is the convex combination of d+1 linearly independent points.
Moreover, d is the dimension of the d-simplex. Clearly, a 0-simplex is a point,
a 1-simplex is a line segment, a 2-simplex is a triangle, and a 3-simplex is a
tetrahedron.

The boundary of a d-simplex S consists of all (d� k)-simplices contained
in S, where k > 0, and is denoted @S: Every simplex in the boundary of S is
a face of S. A k-simplex that is a face is also called a k-face. The following
theorem is elementary.

Theorem

A d-simplex contains exactly

0
@ d+ 1

k + 1

1
A k-simplices as faces.

Moreover, two d-simplices are homeomorphic.
A simplicial complex C is a �nite set of simplices satisfying the following

restrictions:

1. Let S be a simplex in C, and let S 0 be one of its faces. Then S 0 is also
in C.

2. Let S1 and S2 be two simplices of C. Then their intersection is either
empty or is a simplex of C.
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Figure 2.40 A Simplicial Complex C

Figure 2.40 shows a simplicial complex; Figure 2.41 shows a set of simplices
that do not form a simplicial complex.

The dimension of the simplicial complex C is de�ned as the maximum
dimension of the simplices in C. The dimension of the simplicial complex in
Figure 2.40 is 2. It can be proved that the dimension of a simplicial complex
is invariant under continuous maps. If S is a d-simplex and d > 0, then the
boundary @S of S is a simplicial complex of dimension d� 1.

A subset of En is triangulable if it is homeomorphic to a simplicial com-
plex. A triangulable set is also called a topological polyhedron. Note that
the term is not used in a geometric sense, because a homeomorphism may
map a linear surface to a curved surface. Hence, the closed unit ball in E3

is a topological polyhedron since it is homeomorphic to a 3-simplex. Figure
2.42 shows several topological polyhedra of dimension 2. Moreover, given
a topological polyhedron M, the homeomorphism from a simplicial complex
onto M is a triangulation of M.

Figure 2.41 Simplices Not Forming a Simplicial Complex
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Figure 2.42 Topological Polyhedra of Dimension 2

Abstract Simplicial Complexes and Geometric Realization

Since we de�ned simplices as convex combinations of points, it is conceivable
that this de�nition is too narrow. That is, when constructing a simplicial
complex, can we obtain more complicated structures using simplices that are
only homeomorphic to convex combinations? From a topological point of
view, the answer is no, and is justi�ed as follows.

We de�ne an abstract simplex S as a �nite set of points, called the vertices
of S. Every proper subset of S is a face of S. If S consists of d + 1 points,
then we say that it has the dimension d. An abstract simplicial complex C
is de�ned as follows:

1. There is a �nite set of vertices V.

2. C is a set of subsets S of V with the property that all subsets of S are
in C.

Intuitively, the subsets S are the simplices in C.
It can be proved that every abstract simplicial complex C has a geometric

realization jCj in Euclidian space as a complex of simplices that are convex
combinations. That is, given an abstract complex C with vertices fv1; :::; vmg,
we can �nd m points in Euclidian n-dimensional space E such that, for every
abstract simplex S = hp0; :::; pdi in C, the points in E corresponding to the
pk are linearly independent and hence de�ne a simplex jSj in E that is a
convex combination of those points.

Theorem
If C is an abstract simplicial complex of dimension n, then C can
be realized by a corresponding concrete simplicial complex jCj in
E2n+1, where the vertices are points and the simplices are convex
combinations of them.

In other words, the abstract complex C has a \nice" piecewise linear re-
alization in a Euclidian space of suÆciently high dimension. Thus, we do
not lose generality by using the concrete de�nition of simplices as convex
combinations.
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Figure 2.43 Opposite Faces in a 3-Simplex

Manifold Triangulations

We return to the problem of characterizing manifolds as topological polyhe-
dra, and describe the local structure of a simplicial complex triangulating the
manifold. Because of the above, we may assume that the simplicial complexes
are piecewise linear in a suitable Euclidian space.

Let S be a d-simplex with vertices p0; :::; pd. A proper subset q0; :::; qr of
the vertices of S de�nes an r-simplex that is a face S1 of S. Let qr+1; :::; qd
be the remaining vertices of S. Then these vertices de�ne another face S2.
We say that S1 and S2 are opposite faces of S. Figure 2.43 shows examples
in the case of d = 3. Let S and S 0 be two simplices in a simplicial complex.
Then S and S 0 are adjacent if they have a common face. If S 00 is a face in
which S and S 0 are adjacent, then S and S 0 are incident to S 00. Finally, a
simplicial complex C is connected, if for all pairs of simplices S and S 0 in C,
we can �nd a sequence of simplices S1; :::; Sr in C such that, for 1 � k < r,
we have S = S1 and S 0 = Sr; and Sk is incident to Sk+1, or vice versa.

Let S be a simplex in some simplicial complex. S will be incident to a
�nite set of simplices S1; :::; Sr in C. For each simplex Si of which S is a face,
let Ti be the face of Si opposite S. The set of all such opposite faces is the
link of S in C; see Figure 2.44 for an example. We are now in a position to
characterize 2- and 3-manifolds in terms of simplicial complexes. Although
stated as de�nitions, these characterizations can be proved formally.

A 2-manifold without boundary is homeomorphic to a simplicial complex
C of dimension 2 satisfying the following restrictions:

1. Every 1-simplex in C is incident to exactly two 2-simplices.

2. The link of every 0-simplex in C is a triangulation of the circle.

See also Figure 2.45 for an illustration of the vertex structure in a 2-manifold
without boundary.

Similarly, a 3-manifold without boundary is homeomorphic to a simplicial
complex C of dimension 3 satisfying the following restrictions:
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Figure 2.44 Link of S Figure 2.45 Vertex Structure in
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1. Every 2-simplex in C is incident to exactly two 3-simplices.

2. The link of every 0-simplex in C is a triangulation of the sphere.

To so characterize 3-manifolds with boundary, we need to distinguish be-
tween simplices that are on the boundary of the manifold and ones that are
interior. We discuss only 3-manifolds with boundary.

Let S be a 2-simplex in the complex C. Then S is an interior face if it
is incident to exactly two 3-simplices of C, and is a boundary face if it is
incident to exactly one 3-simplex. Similarly, a 0-simplex is interior if its link
is a triangulation of the sphere, and is a boundary point if its link is a trian-
gulation of the disk. Note that we do not give an analogous characterization
of 1-simplices; such a characterization is not needed.

Formally, then, a 3-manifold with boundary is homeomorphic to a simpli-
cial complex C of dimension 3 satisfying the following restrictions:

1. Every 2-simplex is adjacent to one or two 3-simplices.

2. The link of every 0-simplex is a triangulation of the disk or the sphere.

This completes the explanation of the polyhedral structure of 2- and 3-
manifolds.

2.4.2 Manifold Solids

We wish to de�ne a topological solid as a 3-manifold with boundary, where, in
addition, the boundary should be compact. The intuition is that we should
have a �nite surface, but that in�nite volumes are permitted. As pointed
out before, this de�nition will not constrain the relationship between the
topological solid and the surrounding 3-space. Moreover, since in B-rep a
solid is implicitly described by a speci�cation of its surface, we must also
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P1
P2

Figure 2.46 A Wildly Embedded Simple Arc

clarify the relationship between a topological solid and its surface. We do
this now.

Embeddings in E3

We consider the relationship between a 3-manifold with boundary and the
surrounding space. This relationship needs to be examined because there are
\unreasonable" 3-manifolds in E3 that are homeomorphic to well-behaved
topological polyhedra. For example, a manifold can be unreasonable be-
cause it has a fractal-like surface. The diÆculty is rooted in the fact that
the characterization of manifolds as topological polyhedra requires only that
there be a homeomorphism from a simplicial complex of suitable structure
onto the manifold, without consideration of whether this homeomorphism
can be extended to the surrounding Euclidian space.

An embedding of the topological space (X; T ) into a topological space
(Y; T 0) is a homeomorphism between (X; T ) and a subspace Y 0 of Y. In par-
ticular, let X and Y 0 be subspaces of En. Depending on whether and how
the homeomorphism extends to a homeomorphism of the entire surrounding
space we call embeddings tame or wild. Wild embeddings lead to unrea-
sonable 3-manifolds in E3. A simple example is depicted in Figure 2.46,
which shows a wildly embedded arc in E3. By giving \thickness" to the arc,
we obtain a 3-manifold with compact boundary that can be shown to be
homeomorphic to a sphere. Clearly, this would not be a reasonable solid.

In view of this fact, we require, in addition, that a topological solid be
tamely embedded into E3. Rather than giving a formal de�nition, we will
argue later on that the primitives used in CSG and in B-rep guarantee that
we are working with tame embeddings.

Orientability

So far, we have characterized a topological solid in its entirety; that is, as
a three-dimensional object. In B-rep, however, we have only a description
of the boundary. We need to make a connection between the topological
structure of the solid and the topological structure of its boundary. This
connection requires the concept of orientability. Briey, we can prove the
following theorem.
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Figure 2.47 Orientations (p0; p1; p2) and (p0; p2; p1) of a 2-Simplex

Theorem
LetM be a connected 3-manifold with boundary embedded inE3.
Then the boundary of M is an embedded orientable 2-manifold
without boundary.

Note that we do not need to assume a tame embedding. A converse of this
theorem can be formulated which allows us to conclude from boundary prop-
erties that a topological polyhedron is enclosed. However, such a theorem
requires additional assumptions. These additional assumptions will involve
geometric properties of the embedding and are explained later.

Orientability is best visualized in terms of a triangulation of the manifold.
It can be shown that the orientability of a manifold is independent of the par-
ticular triangulation. That is, if the manifold is orientable, then every one of
its triangulations is orientable. Conversely, if the manifold has an orientable
triangulation, then the manifold is orientable. So, we explain orientability of
2-manifolds by orienting simplicial complexes that are a triangulation of the
manifold.

We orient a 2-simplex by cyclically ordering its vertices. For example,
the simplex hp0; p1; p2i can be oriented (p0; p1; p2). Figure 2.47 shows the
two possible orientations of the 2-simplex. Note that the orientation of a
2-simplex induces an orientation of every one of its 1-faces. More generally,
any d-simplex can be oriented in exactly one of two ways.

Let S and S 0 be two adjacent 2-simplices in a complex C, and assume that
they are adjacent in a 1-face S 00. Then S and S 0 are coherently oriented if
the orientations of S 00 induced by the orientations of S and S 0 are opposite.
Figure 2.48 shows two pairs of adjacent 2-simplices. The left pair is oriented
coherently, whereas the right pair is not.

Let C be a triangulation of a connected 2-manifold with or without bound-
ary. Then C is orientable i� all of its adjacent 2-simplices can be oriented
coherently. It can be shown that, if C is orientable, then it can be oriented in
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Figure 2.48 Coherent and Incoherent Orientations

exactly two ways, and for this reason there is a simple algorithm for testing
orientability. Roughly speaking, we pick any 2-simplex and orient it arbi-
trarily. Thereafter, we orient an adjacent 2-simplex coherently, continuing
iteratively until the manifold has been coherently oriented, or until we reach
a 2-simplex S adjacent to two other simplices that are already oriented in a
way that precludes orienting S coherently with both.

We return to the problem of formulating the converse of the preceding
theorem. We would like to obtain a characterization that is roughly as fol-
lows.

Theorem
Let M 0 be a compact, connected 2-manifold without boundary
that is tamely embedded into E3 and is oriented. IfM 0 satis�es a
property P, then M 0 is the boundary of a connected 3-manifold
that is tamely embedded in E3.

SuÆcient properties P are readily formulated. One possibility is to require
that E3 is triangulated in its entirety such that this triangulation also trian-
gulates M 0. However, rather than making P a global property, we formulate
a more local property of the embedding.

Intuitively, wild embeddings (and some tame embeddings) are unsatisfac-
tory because the manifold is \ru�ed." It appears that there is no purely
topological characterization of this intuitive notion, and we need to intro-
duce geometry to make the idea precise. Let M be an embedded 3-manifold
with compact boundary in E3. We say that M is of bounded variation if
every line in E3 intersects M in �nitely many segments and every plane in
�nitely many areas. Analogously, we say that a compact 2-manifold in E3

is of bounded variation if every line intersects it in �nitely many points and
every plane in �nitely many curves.

Throughout this book, we assume that the boundaries of solids can be
described by �nitely many subsets of algebraic surfaces. It is easy to show
that algebraic surfaces are always of bounded variation;6 hence, we do not

6Cf. Bezout's theorem in Section 5.3.3 of Chapter 5.
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have to make additional requirements on B-rep to achieve embeddings of
bounded variation. This simpli�es verifying topological validity. Note also
that embeddings of bounded variation are always tame.

Topological Validity of Manifold Solids

Consider a 3-manifoldM with boundary embedded in E3. Its boundary is an
embedded orientable 2-manifold M 0 without boundary, but M 0 need not be
connected. Thus, when given an embedded oriented 2-manifold M 0 without
boundary, we need to satisfy a compatibility condition so that its connected
components will collectively de�ne a solid. The compatibility condition de-
pends on the given orientation of the components.

Let M be an oriented, connected 2-manifold in E3. We call a point p not
onM interior toM if there is a triangulation C ofM satisfying the following
conditions:

1. There is a 2-simplex S of C oriented as (p0; p1; p2) such that the corre-
sponding points onM are seen from p in a counterclockwise orientation.

2. There is a point q in the image of S such that the line segment (p; q)
does not intersect M except at q.

Figure 2.49 illustrates the de�nition. It is not diÆcult to show that, with
this de�nition, the manifold partitions E3 into two open sets, one consisting
of all points that are interior, the other consisting of points that are neither
interior nor on M. The latter set is the set of exterior points.

Note that the de�nition of interior and exterior points agrees locally with
the convention of outward-pointing normals explained in Section 3.2 of Chap-
ter 3. Let (p0; p1; p2) be an oriented 2-simplex. For an acute angle, say at
p0, de�ne a normal direction as the cross product of the vectors (p0; p2) and
(p0; p1). Then this normal direction points locally to the exterior.

Given this de�nition of interior and exterior points, we can de�ne a man-
ifold solid as follows:

De�nition
A single-shell manifold solid A is a connected 3-manifold with
boundary embedded in E3. The boundary A0 of A is a compact,
connected 2-manifold without boundary, embedded in E3 with
bounded variation, and is oriented such that A consists of the set
of interior points of A0 along with A0.

Now assume that we have two disjoint connected oriented 2-manifolds, M 0

1

and M 0

2, in E
3. Each de�nes a set of interior points. We say that M 0

1 and
M 0

2 are oriented consistently if M 0

1 consists of interior points of M
0

2 whenever
M 0

2 consists of interior points of M
0

1. Figure 2.50 illustrates the de�nition for
the two-dimensional case. The bounding cycles on the left are inconsistently
oriented, those on the right are consistently oriented. Consequently, the
following is a de�nition of a multishell manifold solid.
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Figure 2.49 Interior Point p and Exterior Point q

De�nition
A multishell manifold solid A is a 3-manifold with boundary in
E3. The boundary A0 of A is a compact, oriented 2-manifold
without boundary, embedded in E3 with bounded variation. Let
A0

1; :::; A
0

r
be the connected components of A0. Then, for each

pair (i; k), where 1 � i < k � r, the components A0

i
and A0

k
are

consistently oriented.

Topological validity of a manifold B-rep solid is veri�ed as follows. We
assume that we are given a boundary representation specifying �nitely many
vertices, edges, and faces. Moreover, we assume that each face is a compact
subset of an algebraic surface, and that edges and vertices are intersections of
faces. These assumptions guarantee that the surface is of bounded variation
and that it is compact.

Let A0

1; :::; A
0

r
be the connected surface components described by the rep-

resentation. Perform the following steps.

1. Verify that the A0

k
are pairwise disjoint and that they do not self-
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Figure 2.50 Inconsistently and Consistently Oriented Boundaries of Orientable 2-
Manifolds

intersect.

2. Triangulate each A0

k
and verify that it is a 2-manifold without bound-

ary, using the triangulability conditions explained previously.

3. For each pair A0

i
and A0

k
of components, verify that their orientation is

consistent.

A topologically valid B-rep must satisfy all these criteria.
Step 1 tests that the geometric embedding into E3 makes sense. Self-

intersections create nonmanifold points on the boundary; hence, they must
not occur. This is primarily a geometric property of the embedding. Step 2
veri�es that the boundary is a 2-manifold without boundary. The assump-
tions on faces imply that the boundary is compact. It can be proved that a
closed 2-manifold embedded in E3 must be orientable. Hence, orientability
need not be tested explicitly. Note, however, that the triangulation of the
surface is computationally easy only for planar faces. Step 3, �nally, tests
whether the individual shells are oriented such that they collectively de�ne
the solid's interior and exterior.

All algebraic surfaces have bounded variation, and a B-rep describes �nitely
many compact subsets of algebraic surfaces. Therefore, the theorem above
implies that a B-rep satisfying the conditions checked for in the algorithm
de�nes a topologically valid solid.

2.4.3 Nonmanifold Solids

We sketch how to characterize nonmanifold solids from a topological per-
spective. Briey, we consider a nonmanifold solid as an immersion of several
manifold solids; that is, we allow the manifolds to intersect in E3. However,
we restrict intersections to sets of dimension 1 or 0. This point of view was
explained in Section 2.3.1 as the second approach to de�ning valid boundary
representations. That is, each such intersection is considered a geometric
coincidence of topologically di�erent parts of the manifold boundary.
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Figure 2.51 Resolution of Nonmanifold Structures

To identify the various manifold solids, we triangulate the nonmanifold
solid and consider the interior points of the resulting simplicial complex.
They decompose into several connected, open sets, each of which can be
understood as the interior of an immersed 3-manifold with boundary.

Reversing this process, we de�ne a nonmanifold solid as homeomorphic to
an oriented simplicial complex of dimension 3, such that the interior points
are an embedded 3-manifold of bounded variation. The closure of the set
creates a boundary that is compact and of bounded variation. In particu-
lar, this implies that the surface of a nonmanifold solid can be triangulated
without degenerate 2-simplices of zero area.

We adapt the validity test for manifold solid boundary representations to
test whether a given B-rep describes a valid nonmanifold solid. Briey, we
must \split" nonmanifold edges and vertices by locally considering the solid
interior, as implied by the given surface orientation. In e�ect, we construct
a set of surface components, each a 2-manifold without boundary. Each of
these components are then tested as described previously.

Intuitively, the splitting process \shrinks" the volume of the solid in�nites-
imally. After shrinking, the nonmanifold edges and vertices disappear. See
also Figure 2.51 for a two-dimensional example. Note, however, that this
topological resolution of nonmanifold edges and vertices will be di�erent in a
solid A and its complement solid, :A, because we shrink the interior of the
solid. Hence, shrinking the complement solid :A is equivalent to expanding
the solid A.

2.5 Spatial Decomposition

Apart from CSG and B-rep, there exist a number of solid representation
schemata, based, loosely speaking, on spatial decomposition. We briey
mention these schemata now. Most of them play a peripheral role in solid
modeling because of certain limitations. Nevertheless, many of them have
important special applications, including numerical analysis and geographic
databases.

The simplest decomposition schema is a uniform subdivision of space into
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Figure 2.52 Circle Represented by Uniform Subdivision of Space

a grid of cubes of speci�ed size, and marks all cubes that intersect the solid
interior. The solid would thus be represented by all marked cubes. Figure
2.52 illustrates the idea in two dimensions. This representation is approxi-
mate, and the size of the cubes will de�ne the degree of accuracy. In principle,
only the marked cubes need to be stored. Adjacency of two cubes could be
represented explicitly, or could be inferred from a cube's location in space.
Representations of this type are used in numerical analysis for domain dis-
cretization.

When a high degree of accuracy is required, the number of cubes may be
too great for this data structure to be considered convenient. Octrees ame-
liorate this problem by aggregating certain marked cubes into larger ones.
Conceptually, we partition space by several grids, each with mesh size twice
that of the previous one. Eight adjacent marked cubes are combined into a
larger marked cube, provided the larger cube lies in the next larger mesh.
Figure 2.53 illustrates the idea in two dimensions. Octrees are stored as trees
that essentially record this adjacency information. The interior nodes repre-
sent cube aggregations where not all component cubes are marked, whereas
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Figure 2.53 Octree Subdivision of Space

the leaves represent cubes that are marked or that do not intersect the solid
interior at all.

So far, we have discussed space decompositions in which the space elements
are in a speci�c implicit relationship with the coordinate system. This makes
it unattractive to rotate objects so represented. At the expense of more
complex adjacency and shape processing, we can drop this relationship and
allow irregular shape elements. In �nite element analysis, triangular and
tetrahedral space elements are used, as illustrated by Figure 2.54.

2.6 Notes and References

Early work on constructive solid geometry includes the work on TIPS by
Okino, Kakazu, and Kubo (1973), and the work on PADL by Voelcker et
al. (1974) and Requicha and Voelcker (1977). Most of the CSG material
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Figure 2.54 Irregular Subdivision of Space

presented here follows the various publications by that group, which relied
heavily on an algebraic formulation of the algorithms. See the bibliography
under the author names Brown, Tilove, Requicha, Rossignac, and Voelcker.

The approximation algorithm to CSG objects is due to Cameron (1985).
By considering di�erent approximation strategies, including approximating
only some of the primitives, Cameron devises several redundancy tests. Cameron's
algorithm also includes a downward phase in which the approximation at the
root of the CSG tree is propagated downward toward the leaves, possibly
further re�ning the approximation. Rossignac and Voelcker (1988) consider
redundancy determination without approximating primitives. Their idea is
to identify those surface areas of a primitive P that contribute to the surface
of the �nal solid de�ned by a CSG tree T. By analyzing the volumes de�ned
by the subtrees descending from the nodes on the path from P to the root
of T, they derive a description of a volume that must contain the surface
area of interest. They call this volume the active zone of P, and show how
knowledge of the active zone can be used to improve conversion from CSG to
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B-rep, detection of redundancies, and other operations on CSG trees. The
relationship between the active zone and the approximation approaches to
redundancy testing is described in Cameron and Rossignac (1988).

The winged-edge style of boundary representation is due to Baumgart
(1975). Many variants of the method, as well as several alternatives, have
been proposed and used in B-rep{based modeling systems since then. For
a survey of the various representation schemata, see Weiler (1986). Weiler's
thesis also contains much material on Euler operators, and on the problem
of whether a speci�c representation method is minimally topologically com-
plete. Nonmanifold boundary representations were apparently �rst proposed
by Wesley (1980). They were again advocated by Weiler (1986) and by Ho�-
mann, Hopcroft, and Karasick (1987). In each case, the motivation seems to
have been the observation that the internals of a number of geometric oper-
ations on polyhedra simplify when nonmanifold structures are permitted.

Paoluzzi et al. (1986 and 1988) implement Boolean operations on B-rep
solids by disambiguating the topology, as discussed in Section 2.3.1. They
assume that all faces have been triangulated before constructing the intersec-
tion or union of two polyhedra. With this restriction, they obtain a uniform
data structure representing polyhedra. They show that the needed storage
is at most 50 percent more than that of a winged-edge representation with
untriangulated faces.

M�antyl�a (1984) proves that Euler operations form a complete set of mod-
eling primitives for manifold solids. That is, every topologically valid poly-
hedron can be constructed from an initial polyhedron by a �nite sequence
of Euler operations. In M�antyl�a (1988), the use of Euler operations to im-
plement Boolean operations on polyhedra is explained. The explanation of
Euler operators in Chiyokura (1988) is more explicit on the interaction of
the topological and geometric aspects.

The section on topological validity reviews standard material from al-
gebraic topology. Good sources on the subject include Aleksandrov (1956),
Hocking and Young (1961), Schubert (1964), and Seifert and Threlfall (1947).
Hocking and Young (1961) give pictures of wildly embedded manifolds, in-
cluding Alexander's horned sphere and Antoine's necklace.

The Euler{Poincar�e formula can be generalized to manifolds of arbitrary
dimension; it is then called the Euler{Poincar�e characteristic of the manifold.
It is related to the dimensions of the homology groups of the manifold.

Requicha (1977) de�nes solids not only topologically but also geomet-
rically. The topological characterization is similar to ours. Requicha also
shows how the Euler{Poincar�e characteristic can be derived from homology
computations. Octree and other spatial subdivision schemata are presented
in depth in Samet (1989a,b).



66 Basic Concepts



Chapter 3

Boolean Operations on

Boundary Representation

Algorithms for determining the regularized union, intersection, or set dif-
ference of two solids can be used in B-rep and dual-representation modelers.
They can be used also to convert solids represented by CSG trees to an equiv-
alent B-rep. Thus, algorithms for Boolean operations on B-rep are sometimes
called boundary evaluation and merging algorithms.

These algorithms are not diÆcult conceptually, but their implementation
requires substantial work for several reasons. Layers of primitive geometric
and topological operations to implement them have to be designed. Finding
a good structure for these layers is not simple, and accounting for the many
special positions of incident structures in three dimensions can be tedious.
Moreover, the presence of curved surfaces introduces nontrivial mathematical
problems, and, since most of the algorithms require numerical techniques,
there is inevitably the problem of numerical precision and stability of the
calculations.

In this chapter, we consider the regularized intersection of two nonman-
ifold polyhedral solids given in B-rep. This avoids presenting up front the
mathematical problems arising from nonlinear geometric objects. The algo-
rithm presented here has not been specialized to the point where its structure
makes it unsuitable for extension to the curved case. Moreover, the majority
of geometric operations to be formulated will, with certain extensions, ap-
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ply to the curved-surface case. However, the need for high precision is more
exacting in the curved-surface case, and the possibility of curve and surface
singularities is a new dimension that necessitates additions to the algorithm.

It is desirable to use a B-rep in which the topological information is sepa-
rated from the geometric representation of the surfaces elements. Moreover,
as far as possible, the algorithm ought to be made independent of the speci�c
details of the geometric representation, since then extensions of the coverage
or alternatives to the chosen representation can be explored with minimum
programming. This is especially important in the curved-surface domain,
where di�erent geometric representations o�er di�erent advantages.

3.1 Chapter Organization

The intersection algorithm to be described has many details and depends
on many conventions. We begin the description by explaining the repre-
sentation, and introducing a number of low-level operations used repeatedly
throughout.

The heart of the algorithm is a method for intersecting two polyhedra, A
and B, each of which has one shell. Conceptually, the method subdivides
the faces of the two polyhedra along the curves in which their surfaces in-
tersect. This subdivision is re�ned to faces of the output polyhedron, and
the adjacencies of these faces are determined. Thereafter, the surface of the
intersection is completed by adding certain faces of A and of B. Two aspects
complicate this description:

1. The analysis and subsequent transfer of results must account for many
special cases that come about when surface elements on the two poly-
hedra align in speci�c ways.

2. The face subdivision does not proceed independently, face by face,
on each solid. Rather, each intersecting face pair is subjected to a
neighborhood analysis whose results are immediately transferred to all
adjacent surface elements.

The �rst complication is intrinsic to the problem. Often, descriptions in the
literature will omit many of these details to simplify the narrative, leaving
the reader to invent his or her own methods for handling them. The second
complication trades programming e�ort against robustness, and is discussed
later on. Our organization increases robustness, but at the price of additional
programming.

After the description of how to intersect single-shell polyhedra, we explain
how to intersect polyhedra with multiple shells. This requires fairly easy
extensions. We also mention how the union and di�erence operations can be
implemented by a simple modi�cation of the intersection algorithm.

In the form �rst sketched, the intersection algorithm requires testing of
each face pair for intersection. This is not eÆcient, and there should be
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a preceding computation that �lters out face pairs that cannot intersect.
A simple way to do this is to enclose each face in a box whose sides are
aligned with the coordinate axes, and to construct a list of intersecting boxes.
Clearly, if two enclosing boxes do not intersect, the faces inside them cannot
intersect and need not be considered together. A fast algorithm for box
intersection is described at the end of the chapter.

Note that such preprocessing steps cannot speed up certain cases of inter-
secting polyhedra. However, they do speed up the algorithm on average and
should therefore be incorporated.

At �rst reading, it may be advisable to skim or skip parts of the chapter.
Section 3.4, which describes how to intersect single-shell polyhedra, is the
key part. It requires a conceptual understanding of the representation and
of some of the geometric subroutines; this understanding can be obtained by
skimming Sections 3.2 and 3.3. Section 3.4.4 may be skipped, postponing the
various situations arising in neighborhood analysis. On subsequent reading,
Sections 3.5 and 3.6 explain multishell polyhedra and the reduction of other
Boolean operations to intersection.

Section 3.7 is self-contained. It presents box-intersection techniques with-
out assuming any background in computational geometry. The algorithm is
developed in stages, reviewing the needed data structures and discussing �rst
the simpler problems of interval and rectangle intersection.

Subsection 3.4.4, on neighborhood analysis, maps out the many positional
special cases that are encountered when implementing Boolean operations.
It is included for the less experienced system developer who may become
stymied by the many details. There is a second, less obvious purpose to this
subsection. When we study the various cases carefully, we form a conceptual
understanding of positional degeneracy as a cumulative impression, and we
develop a valuable ability to organize the algorithm concisely.

3.2 Representation Conventions

We assume that polyhedra have nonmanifold surfaces of �nite area. The
topological representation �xes the following information:

1. For each vertex, the adjacent edges and faces are given.

2. For each edge, the bounding vertices and the adjacent faces are spec-
i�ed. Moreover, the adjacent faces are cyclically ordered according to
how they intersect a plane normal to the edge, and pairs of adjacent
faces that enclose volume in between are identi�ed.

3. For each face, the bounding edges and vertices are given. They are
organized in a set of cycles locally enclosing the face area to the right,
as seen from the outside. Ordering information is given that speci�es
how the boundary graph is embedded in the face plane.
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The logical structure of this information is as described later. In the descrip-
tion, we do not distinguish between, for example, a face and a reference to
that face, since this distinction is unnecessary for understanding the algo-
rithms.

For the sake of speci�city, we describe how the geometric information is
stored. However, in the subsequent algorithm description, the exact format of
the geometric data is not essential. The geometric information is irredundant,
specifying only the equations for the planes containing faces. These equations
are oriented by the convention that the normal direction points locally to the
solid exterior. Edges are de�ned geometrically as the line segment connecting
the bounding vertices. Note that an edge may be adjacent to more than two
faces. Vertices are given as the intersection of speci�c planes containing
incident faces.

Irredundancy of the geometric information reduces the possibility of con-
tradictory data and therefore increases robustness. Moreover, since the
planes containing the faces of A \� B are a subset of the face planes of
A and B, no new geometric data are ever constructed. Hence, no inaccuracy
can be introduced through computed geometric information. On the other
hand, irredundancy of geometric data in the curved-surface domain must be
weighed against the computational cost of deriving coordinates for vertices.

Note that faces may consist of disjoint areas, provided these areas lie in
the same plane with the same orientation. Some Boolean algorithms have
been proposed that require that each face be a connected region, or a region
homeomorphic to a disk, or a convex polygon, or a triangle. Typically, such
constraints simplify the algorithms. However, one would then have to devise
an algorithm that subdivides certain surface areas of the result polyhedron,
since inputs with restricted face topologies do not always yield results that
satisfy these constraints as well. Thus, the work is shifted from the inter-
section algorithm to a postprocessing step that constructs legal faces for the
result object.

In the polyhedral case, this strategy is not without merit, even though it
may lead to unnecessary edges in repeated Boolean operations on an object.
It is unclear, however, whether the approach remains viable in the curved-
surface domain, because in that case triangulation or other forms of face
subdivision can be quite diÆcult.

3.2.1 Face Representation

A face is a �nite, nonzero area in a plane, bounded by one or more cycles
of vertices and edges. Edges are directed such that the face area locally lies
to the right, as seen from the exterior of the solid. Face planes have been
written such that the normal vector points locally to the solid's exterior. We
refer to this as the convention of outward-pointing normals, and use it, for
example, when determining the face direction vector as explained in Section
3.3.1.
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Figure 3.1 Legal Face Cycles (1; 2; 3; 4; 3; 5), (6; 7; 8), (9), and (10; 11; 12; 10; 13; 14)

A bounding cycle may be degenerate, containing the same vertex more
than once, or containing only one or two vertices. In these cases, the cycle
should not enclose zero face area. Thus, a single vertex may bound a zero-
area puncture in a face, but may not lie outside the face area. In particular,
edges must bound a nonzero area immediately to the right.

Example 3.1: Figure 3.1 shows several legal degenerate face cycles;
Figure 3.2 shows illegal ones. 3

Together, the edge cycles form an embedded directed, planar graph. Sepa-
rate connected components may be nested. This nesting structure is recorded
in a separate forest of trees. Each tree node corresponds to a connected
boundary component. Nested components are in subtrees. For example,
for the face shown in Figure 3.1, we have three trees in the forest. Two
trees consist of a single vertex each, and represent the cycles (1; 2; 3; 4; 3; 5)
and (10; 11; 12; 10; 13; 14), respectively. A third tree has two nodes. Its root
represents the cycle (6; 7; 8), and its descendant represents the cycle (9).

Consider a vertex u of the face f. The incident edges of u de�ne sectors
in the face plane that are alternately inside and outside the face f. Since
edges are oriented, the incident edges must alternate in direction, one being
oriented away from u, the other being oriented toward u. We order the edges
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Figure 3.2 Illegal Face Cycles (1; 2; 3; 4; 3), (5) and (6; 7; 8; 9; 10; 11; 9; 8)
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clockwise about u and consider them paired such that each pair encloses a
sector in f. Each pair is called an area-enclosing pair. Note that the clockwise
orientation is with respect to the solid exterior; that is, it depends on the
face-plane normal. We think of this pairing as a representation of the two-
dimensional neighborhood of u in the face plane.

Example 3.2: In the face cycle (1; 2; 3; 4; 3; 5) shown in Figure 3.1, the
vertex 3 is incident to the four directed edges (3; 5), (4; 3), (3; 4), and (2; 3).
There are two area-enclosing pairs at u; namely, (3; 5); (4; 3) and (3; 4); (2; 3).
3

Recall from Section 2.4 that the surface of a solid should be orientable.
Since all faces are planar, the orientation of the edge cycles ensures that
every triangulation of a face can be coherently oriented, assuming the orien-
tation is consistent. Here, consistency is exactly analogous to consistency of
orientation of the boundary components of topological solids.

3.2.2 Edge Representation

Consider an oriented edge e = (u; v). The adjacent faces de�ne wedges of
volume that are alternately inside and outside the solid. We order the adja-
cent faces clockwise about e as seen in the direction (u; v), and pair adjacent
faces that enclose a wedge of solid interior. Each pair is called a volume-

enclosing pair. Again, we think of this pairing as a representation of the
three-dimensional neighborhood of points in the interior of the edge. Rep-
resenting this information explicitly, we thus give the following information
for each edge:

1. Beginning and ending vertices, establishing a default orientation

2. An ordered, circular list of adjacent faces

3. A pairing establishing which face pairs enclose volume

The circular ordering and pairing can be represented by a single structure.
Note that the adjacent faces use the edge in alternating direction. We

explicitly annotate the face reference, indicating whether the edge is used
in the default orientation (u; v) or in the opposite orientation (v; u). This
alternation of edge directions implies that locally the surface of the solid can
be oriented coherently in the sense of Section 2.4 of Chapter 2.

3.2.3 Vertex Representation

Given a vertex, we must know all incident edges and adjacent faces. As
discussed in the previous chapter, the adjacent faces form cones that can be
nested, and the logical structure is a spherical map. Instead of representing
this structure explicitly, we let the algorithm infer it when needed; see also
Section 3.3.4.
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3.2.4 Surface Structure

We require �nite surface area for polyhedra, but permit in�nite volume. This
is convenient for reducing the union operation to an intersection and several
complementation operations. A polyhedron can have internal voids, and is
thus, in general, an object with several surface components. Each surface
component is a collection of vertices, edges, and faces that are adjacent.
These components are its shells and are organized into a forest of trees re-
ecting spatial containment and shell orientation.1 A face consisting of two
or more disjoint areas must not belong to di�erent shells.

Each shell is given as a list of faces and an indication of whether the
shell, taken separately, represents a polyhedron with �nite or in�nite volume.
This information is stored at the nodes of the shell trees. A node s is a
descendant of another node t if the shell stored at s is spatially contained
by the shell stored at t. Consider the shell structure of a cube with two
internal voids. The exterior surface is the shell s represented at the root. By
itself, it describes a solid of �nite volume, and is marked as such. The two
shells bounding the interior voids are t1 and t2. Separately, each describes
a polyhedron of in�nite volume. Both shells are nested in s, but not within
each other. In consequence, the shell forest is a single tree whose root is s
and whose two leaves are t1 and t2.

3.3 Geometric Operations

The intersection algorithm is developed in terms of simpler geometric opera-
tions that are used as subroutines. The most trivial ones, such as computing
vertex coordinates and testing point/line incidence are not described here.
Note, however, that in the context of robustness they will have to be consid-
ered in some detail, as discussed in the next chapter.

3.3.1 Face Direction Vector

Given an edge e of a face f, we will need to know the orientation of the edge
and the direction in the plane of f in which the interior of f lies. Suppose the
edge is de�ned by two incident vertices u and v, and we know an equation
ax + by + cz + d = 0 for the plane P containing the face f. The orientation
of the edge with respect to f is determined from the topological data that
specify how the edge is referenced by f.

The face direction vector is a vector fd in the plane P. The vector is
perpendicular to the edge tangent vector te and points to the interior of f
(Figure 3.3). It is de�ned for every point p on the edge. Since the edge is a
line segment, the vector does not depend on p. It is computed from the edge
orientation as referenced by f and from the normal vector nP = (a; b; c) of

1Each shell is a connected component of the 2-manifold bounding the solid, as discussed
in Section 2.4 of Chapter 2.
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Figure 3.3 Face Direction Vector

the plane P as the cross-product te�nP . Here, te is the edge tangent vector,
oriented by the edge direction. This computation also works for curved edges,
but then the surface normal nP and the edge tangent te depend on the point
p.

It is possible that the same edge is referenced twice by f, once in each
direction. In this case, we know that there is face interior on both sides of
the edge, and which of the two sides is needed must be determined from the
context; see also Section 3.3.3.

3.3.2 Splitting an Area- or Volume-Enclosing Pair

In the neighborhood analysis, we have to determine whether a face locally
extends to the interior or exterior of the other solid. This question is reduced
to determining whether a certain vector splits two paired vectors. Similarly,
in two dimensions, we may determine whether a line segment extends into
the interior of a face, which we do by determining whether the segment splits
an area-enclosing pair of edges.

Given an area-enclosing pair of edges (v1; u) and (u; v2), we wish to de-
termine whether a vector t = (u; w) lies in the area enclosed by the pair. If
so, we say that t splits an area-enclosing pair; see Figure 3.4 for an example.
To determine this, we order clockwise the three vectors t, (u; v1), and (u; v2)
about u, beginning with (u; v2). If, after sorting, t lies between the pair, then
it splits the pair.

Given a volume-enclosing pair of adjacent faces, we determine whether
the vector t lies inside the volume so bounded. If so, we say that t splits a

volume-enclosing pair. The test can be reduced to a test for splitting area-
enclosing pairs by projecting t onto the plane spanned by the face direction
vectors of the faces.
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Figure 3.4 Splitting an Area-Enclosing Pair

3.3.3 Ordering Points Along a Line and Pairing Them

The transversal intersection of two faces is a set of segments on a line. The
segments are obtained by �rst intersecting each face with the plane containing
the other face, followed by intersecting the segments. We address how to
intersect one face with the plane containing the other face.

Given a line representing the intersection of two face planes P and Q,
containing, respectively, the faces f and g, we order sequentially the points in
which the bounding edges of g intersect the plane P. Assuming no arithmetic
problem, the ordering of points is straightforward and can be done by sorting
them by one of the coordinates, depending on the slope of the line.

Having ordered the points, we now pair consecutive points such that the
line segment bounded by each pair represents an intersection of the face g
with the plane P (Figure 3.5). Since faces have �nite area, there cannot be
in�nite line segments, and so we pair consecutive points in sorted order. For
curved surfaces P and Q, the problem is much more complicated because
their intersection may be a complicated space curve.

We orient the line P \ Q (arbitrarily) by the cross-product of the plane
normals, t = nP �nQ, and order the intersection points accordingly. Compli-
cations arise from special positions where vertices of g lie on the line P \Q,
and from intersections with edges that must be considered in both orienta-
tions.

Let (u; v) be an oriented edge of g. If u is below P while v is above
it, then the intersection point is paired with the subsequent point in sorted
order; otherwise, it is paired with the previous point. If both (u; v) and (v; u)
must be considered, then the two intersection points must not be paired with
each other.

If a vertex of g is on the line P \Q, it is considered as a double intersection
point. Call the two intersections u1 and u2, in sorting order. Then, u1 is
paired with the preceding point if �t splits an area-enclosing pair of edges
incident to u, and u2 is paired with the succeeding point if t splits an area-
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Figure 3.5 Intersection-Point Sorting and Pairing

enclosing pair of incident edges. If �t or t is collinear to an incident edge of g,
then that edge is used to connect the respective copy of u with its predecessor
or successor. If neither t nor �t split an area-enclosing pair, then u is an
isolated point.

For example, in Figure 3.5, the �rst copy 21 of point 2 is paired with
the preceding point 1, but the second copy is not paired and is therefore
ignored. The intersection point 3 is isolated. Note that isolated points must
be recalled in later stages of the algorithm, and cannot be discarded outright.

3.3.4 Line/Solid Classi�cation

A general method for determining possible containment of two nonintersect-
ing bounding structures A and B is to connect a point on the boundary of
A by a line segment with a point on the boundary of B, and then to ana-
lyze how this line segment intersects the boundaries of the two structures.
However, the structure A may consist of several disconnected components,
as may B. Therefore, any containment conclusions drawn apply to only those
components of A and B that the line segment actually intersects. For ex-
ample, the line segment (p; q) in Figure 3.6 allows us to conclude that both
the component containing p and the component containing q will bound the
intersection of the two areas A and B, but it cannot reveal that the other
component of A is not part of the �nal boundary. For the �nal boundary,
the components are assembled by a sequence of the tests now described; see
also Section 3.5 on multishell objects. We explain the test �rst in the case
of faces.

Consider a face f and a face g, both in the same plane and oriented the
same way. We assume that the boundaries of f and g do not intersect, and
wish to test whether one face boundary contains the other. We select a point
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Figure 3.6 Classi�cation of Multiple-Boundary Components

p on the boundary of f and a point q on the boundary of g, and connect them
with a line segment (p; q). The segment intersects the boundaries of f and g
in a number of points that must be ordered linearly and that then partition
the line (p; q) into intervals. Each interval is classi�ed as being outside of
f or in f, and, likewise, as being outside of g or in g. Since p is on the
boundary of f and q is on the boundary of g, there is some interval with one
endpoint that is an intersection of the line (p; q) with the boundary of f, and
the other endpoint that is an intersection with the boundary of g. We pick
the �rst such interval encountered, scanning the intervals in order beginning
at p. There are four possible classi�cations of this interval, as shown in Table
3.1. Associated with each is a position of the two faces relative to each other.
Figures 3.7 and 3.8 illustrate the four cases, with the interior as implied by the
orientation of the bounding cycles. The interval classi�cation is essentially
the same operation that was done in the intersection-point pairing along the
line P \ Q described previously. As with that operation, care has to be
exercised when the segment (p; q) intersects a boundary at a vertex.

Now consider testing the possible containment of two solids A and B

Test Example Action

in f, in g f and g intersect both components are kept

in f, out g g is contained in f the g component is kept

out f, in g f is contained in g the f component is kept

out f, out g f and g do not intersect neither component is kept

Table 3.1 Containment Classi�cation for f and g



78 Boolean Operations on Boundary Representation

In/OutIn/In

p
f

q g

f
p

q
g

Figure 3.7 The Classi�cations \in f, in g" and \in f, out g"

whose boundaries do not intersect. In spirit, we proceed exactly as for faces,
selecting a point p on the surface of A and a point q on the surface of B, and
connecting these two points with a line segment. As before, the intersection
of (p; q) with the boundaries of A and B induces an interval partition, and
the individual intervals are again classi�ed as being inside or outside of the
solids. Again, Table 3.1 governs the outcome of the test, based on the �rst
interval encountered, going from p to q, that is bounded by an intersection
with the boundary of A and an intersection with the boundary of B.

The classi�cation of intervals in the solid case is more complicated, how-
ever, and we explain it further. Conceptually, it is an analysis of the neigh-
borhood of the intersection points. Thus, it is easiest for interior face points,
more complicated for interior edge points, and hardest for vertices.

First, if the segment intersects in the interior of a face f of A, then the
direction vector t = (p; q) is compared in angle against the face normal
nf of f. If the angle is less than 90Æ | that is, if the dot product nf � t

f

g
f

p q
g

qp

Out/In Out/Out

Figure 3.8 The Classi�cations \out f, in g" and \out f, out g"
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Figure 3.10 Classi�cation for Edge
Interior

is positive | then the interval preceding the intersection is in A, and the
interval succeeding it is outside of A. Otherwise, the preceding interval is
outside, and the succeeding interval is inside, of A; see also Figure 3.9.

Next, assume that (p; q) intersects at the interior of an edge e of A. Here we
must determine whether t and �t split volume-enclosing pairs. That is, if t
splits a volume-enclosing pair of the faces adjacent to e, then the succeeding
interval is inside of A. If not, it is outside of A. The same analysis of the
vector �t classi�es the preceding interval with respect to A; see also Figure
3.10. Note that both t and �t must be classi�ed.

Finally, assume that (p; q) intersects at the vertex u of A. Here we must
determine whether t, and �t, are in the interior of a solid cone de�ned by
the faces incident to u. Since this neighborhood is not explicitly represented,
we investigate the structure by intersecting it with a suitable plane. We pick
a plane R that contains the line (p; q) and an interior point w of some face
adjacent to u. Since u is in the plane R, the vertex appears on R as a point
with lines radiating outward. Each line represents the intersection of some
adjacent face of u with R.

The sectors de�ned by these lines are classi�ed as inside or outside of A.
Since R contains w, there is at least one nonempty sector. Then t and �t
are classi�ed by the sector in which they lie. Accordingly, we now classify
the interval on (p; q). See Figure 3.11 for an illustration of the process.

Since the classi�cation is fairly complex and expensive for vertex intersec-
tions, we may wish to choose a di�erent point q to avoid this case. Thus, it
is a good idea to choose p and q to lie in the interior of faces. Although this
does not guarantee that all other intersection points are located favorably,
subsequent random perturbations of the positions of p and q will usually
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Figure 3.11 Classi�cation for Vertex Intersection

succeed in creating well-behaved intersections everywhere. Typically, one or
two perturbations suÆce.

Recall from Section 2.4 that the connected components of the boundary of
a multishell solid should be consistently oriented. The shell-containment test
just described can be used to test whether the components are consistently
oriented. It is not diÆcult to prove that two components are consistently
oriented i� the containment test determines an \in/in" or an \out/out" clas-
si�cation.

3.4 Intersection of Two Shells

We consider �rst the intersection of two polyhedra, A and B, each with a
surface consisting of a single shell. The intersection of multishell polyhedra
will be considered subsequently. We conceptualize the process of intersection
as follows:

1. Determine which pairs of faces f 2 A and g 2 B intersect. If there are
none, test shell containment only and skip steps 2 through 4.

2. For each face f of A that intersects a face of B, construct the cross-
section of B with the plane containing f. Then determine the surface
area of A \� B that is contained in f.

3. By transferring the relevant line segments discovered in step 2, deter-
mine the faces of B that contain some of the surface area of A \� B
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and must be subdivided. Subdivide these faces, and by exploring the
face adjacencies of B, �nd and add all those faces of B contained in
the interior of A. Likewise, �nd and addall faces of A contained in the
interior of B.

4. Assemble all faces so found into the solid A \� B.

This conceptual structure is also suited to the curved-surface domain.

3.4.1 Robustness Considerations

A drawback of the organization just presented is its sensitivity to failure
because of numerical imprecision. If step 2 considers each face of A inde-
pendently, certain intersection structures may be inconsistently analyzed for
adjacent faces. In consequence, the algorithm could fail for legitimate inputs.

Example 3.3: Figure 3.12 illustrates the problems numerical error could
cause when implementing the proposed conceptual algorithm. We analyze
whether and how the edge e = (u; v) of B intersects two adjacent faces f1 and
f2 of A. When considering these faces, the edge e is intersected with the re-
spective face planes. When this is done independently, the intersection-point
coordinates could have di�erent precision. In consequence, it is possible that
e will be judged to intersect the edge between f1 and f2 when considering
face f1, but that e will not be recognized to intersect the edge when consid-
ering f2. This apparent inconsistency could cause a catastrophic failure of
the implemented algorithm. 3

Similar robustness problems are endemic to the following popular algo-
rithm for Boolean operations. First, mark on the surface of A the curves
in which B intersects A. Then, reverse the roles of A and B, and repeat
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this step. Thereafter, assemble the surface of A \� B by adjacency explo-
ration. This method is attractive because it reduces the programming e�ort.
However, the independent subdivision of the surfaces of A and B gives many
opportunities for inconsistencies due to numerical error. Thus, this paradigm
is also not robust.

We re�ne the conceptual structure of our algorithmwith the goal of achiev-
ing local consistency and avoiding problems such as the one illustrated in
Figure 3.12. Our strategy is to avoid asking the same geometric question
more than once. That is, all intersection information is immediately posted
to all adjacent faces:

1. Determine which pairs of faces f 2 A and g 2 B intersect. If there are
none, then do a shell-containment test only and skip steps 2 through
4.

2. For each intersecting pair of faces, f of A and g of B, construct the
points and curves in which they intersect. For each intersection, analyze
the three-dimensional neighborhood and transfer its elements to all
adjacent faces of A and of B.

3. By exploring the face adjacencies of A and of B, �nd and add all those
faces of either solid that are in the interior of the other.

4. Assemble all faces into the solid A \� B.

3.4.2 Intersecting-Pairs Determination and Shell Containment

We elaborate on step 1 of the algorithm, detecting pairs of intersecting faces.
The obvious method for determining whether the face f 2 A intersects the
face g 2 B is actually to intersect these faces. Since all face pairs would be
so tested, there is no hope that the algorithm could perform well in those
situations where A and B have many faces but only a few of them actually
intersect. Instead, it is convenient to enclose each face in a box whose sides
are parallel to the coordinate planes, and to ask whether the box containing
f intersects the box containing g. If the boxes do not intersect, then the
faces cannot intersect. If the boxes do intersect, then the faces may or may
not intersect, and we continue with the remaining steps.

There is an O(n log2(n)+J) algorithm for intersecting the boxes, where n
is the number of boxes and J is the number of intersecting box pairs found.
Since J may be quadratic in n, we cannot improve the worst-case running
time for polyhedral intersection, but we can signi�cantly improve the average
running time. A box-intersection algorithm with this time performance is
described later in this chapter.

Since box intersection can determine only that two faces do not intersect,
we may arrive at a situation where some boxes intersect, yet later in step 2,
we determine that the surfaces of A and B do not intersect after all. In this
case, we must run the shell-containment test following step 2.
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Assuming that the surfaces of A and B do not intersect, we distinguish
four possibilities:

1. The surface of A\�B consists of both the surface of A and the surface
of B.

2. A \� B = B.

3. A \� B = A.

4. A \� B is empty.

These four situations are precisely the four possibilities of the line/solid clas-
si�cation, discussed previously, corresponding, respectively, to \in A, in B,"
\in A, out B," \out A, in B," and \out A, out B."

3.4.3 Face Intersection and Neighborhood Analysis

Having found all candidates of intersecting face pairs, we proceed to step 2
of the algorithm and construct their intersection. Although this step is con-
ceptually not hard, the details tend to get in the way. Moreover, it requires
intermediate data structures that are incomplete edge and face subdivisions.
Conceptually, we repeat the following tasks for the intersecting faces f of A
and g of B:

1. Construct and analyze the points and line segments of their intersec-
tion.

2. Transfer the results to all adjacent faces of A and of B.

3. Link up the intersection elements into complete face and edge subdivi-
sions.

After this operation has been performed for all intersecting faces, we know
implicitly the surface area of A \� B that lies on the surface of A and of B,
except the faces of A that lie inside B and the faces of B that lie inside A.

Example 3.4: Consider the intersecting boxes A and B shown in Figure
3.13. Four faces of B and one face of A are subdivided in the process of face-
pair intersection. In the end, we have discovered �ve of the six faces bounding
A \� B. The sixth face is discovered in a later step of the algorithm. The
important point is that, when intersecting the faces f and g, both f and g are
subdivided by a line segment. A technical diÆculty is that the intersection
line segment introduced on f does not yet de�ne a valid subdivision of f.
The subdivision of f is completed only after f has been intersected with four
faces of B. 3
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Figure 3.13 Two Intersecting Boxes

Determining and Placing Intersecting Elements

Let g be a face ofB that we suspect intersects the face f of A. We intersect the
bounding edges of g with the plane P containing f. Excluding for the moment
the case that g is contained in P (i.e., that every edge of g is contained in
the plane), the edges will intersect P in a number of points that lie on a line
l. The line l is the intersection of the plane Q containing g and the plane
P. If an edge e of g is contained in P but g is not, then the vertices of e
are considered the intersection points of the edge with P. The intersection
points are sorted along l and are paired as described previously. Thereafter,
we intersect the line l with f, obtaining a second set of segments. The two
sets are then intersected, and the resulting segments are placed on f, g, and,
possibly, other adjacent faces, as appropriate.

If f and g are in the same plane, then they must be intersected as polygons.
The result area is on the surface of A\�B, provided both faces have the same
orientation. If the faces have opposite normals, then f \ g will be a lower-
dimensional structure that is eliminated by regularization. See Figure 3.14
for an example.

The intersection of f and g consists of line segments and points. Segments
are either edges or edge segments, or they represent the intersection of two
face interiors. Note that there may be isolated vertices. Points and lines both
are analyzed. In particular, the points bounding a segment are analyzed, as
is the segment interior. The results of this analysis are

1. The placement of oriented segments on faces

2. The segmentation of edges

3. The placement of certain points on faces and edges
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Figure 3.14 Coplanar Faces with Opposite Orientation

4. The creation of adjacency constraints between points and segments

Placing points on an edge de�nes a segmentation of the edge. Segments
so de�ned may have to be re�ned later, when other points on the edge are
discovered.

Example 3.5: Consider Figure 3.15, assuming that the faces f and
g are intersected �rst. Here, the segment (w1; w2) is placed on f in the
orientation (w2; w1) and on g in the opposite orientation. The edge (u1; v1)
of g is subdivided by placing the point w1 on it. The resulting segment
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Figure 3.15 Placing Points and Segments
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(u1; w1) would have to be further subdivided if another face of A intersected
it. This is not the case in the �gure. Similarly, the segment (u2; w2) is created
by placing w2, and is not further subdivided later.

Now assume we intersect next the faces f1 and g. Then the edge (u2; v2)
of g is collinear with the edge (w3; w2) of f1. Both edges are subdivided
by placing the segment (w2; u2). Here we know that the segment cannot be
further subdivided, since the two edges overlap. On g, the segment is placed
in the orientation (w2; u2), consistent with the orientation in which g uses
the edge (u2; v2). An analysis of the three-dimensional neighborhood reveals,
moreover, that the segment should not be placed on f1, since the area of f1
adjacent to the segment lies in the exterior of B. 3

Segment Orientation

A segment that is placed on a face f represents part of the boundary of the
intersection A \� B. It will be oriented such that the interior of the face
of A \� B bounded by it is locally to the right. The correct orientation is
deduced from the orientation of the two face planes. Figure 3.16 shows a
simple example. In some cases, two oriented line segments are placed on f,
indicating that the �nal bounding cycle of edges is degenerate.

3.4.4 Neighborhood Analysis

To analyze the intersection of face pairs, we consider the three-dimensional
neighborhoods of the intersection line segments and points in the subdivision.
We recall that the interior and the endpoints of a segment must be analyzed.
There are six major cases, indexed by the intersecting structures:

1. A face of one solid intersects the face of another solid at a point interior
to both.



3.4 Intersection of Two Shells 87

v f

g

u

g

f

Figure 3.17 Face/Face Intersection

2. An edge of one solid intersects a face of the other solid at a point
interior to both edge and face.

3. An edge of one solid intersects an edge of the other solid at a point
interior to both edges.

4. A vertex of one solid intersects a face of the other solid in the interior.

5. A vertex of one solid intersects an edge of the other solid in the interior.

6. A vertex of one solid intersects a vertex of the other solid.

All cases exhibit a conceptual similarity in that the progression from face
to edge and then to vertex entails similar processing, but involves more and
more faces.

Face/Face Intersection

The generic case arises from a transversal intersection of two faces, shown
on the left in Figure 3.17. The segment (u; v) generates two oriented line
segments, one on f, the other on g. The orientation is computed from face
normals. See also Figure 3.16. The interior of (u; v) will be only on f and
on g, but the endpoints require further analysis as described later, and this
analysis involves additional faces.

For the degenerate case, arising when f and g are in the same plane, we
analyze the interior of a region by comparing the face normals. Normals of
equal direction mean that the area is on the surface of A \� B. Normals of
opposite direction mean that the area is not on the surface of A \� B. See
also Figure 3.16.

Edge/Face Intersection

Assume that the edge e = (u; v) of B intersects the interior of the face f of
A. Ordinarily, the edge intersects the face in one point, as shown in Figure
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3.18 on the left. We assume this point is in the interior of f. The edge is
subdivided by w. There must be a segment of e, bounded by w, that lies inside
A. Whether this segment is contained in (u; w) or in (w; v) is determined by
computing the dot product of the direction vector (u; v) and the face normal
nf . We also know that the faces of B adjacent to e all intersect f, so we must
make sure that the respective segments are recognized as adjacent to w.

In the degenerate case, the edge e lies in the plane of f, as shown in Figure
3.18 on the right. The edge is then subdivided by the boundary of f into
a number of segments. These segments must be transferred to f and to all
faces g adjacent to e. Transfer and orientation is determined as follows.

For the face f, we consider vectors perpendicular to e in the plane of f, in
each direction. We ask whether these vectors split a volume-enclosing pair of
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Figure 3.19 Transfer for Degenerate Edge/Face Intersection to f



3.4 Intersection of Two Shells 89

g2

g
1

n
g1

g
1

n
g2

g
2

e

fd
1

nf

f

fd 2

Figure 3.20 Transfer for Degenerate Edge/Face Intersection to gi

faces adjacent to e. If so, the segment is transferred to f with the appropriate
orientation. In consequence, f receives zero, one, or two directed lines for
each segment of e contained in f. Figure 3.19 shows an example in which two
segments of opposite orientation are transferred.

Next, consider the face g adjacent to e. By computing the dot product of
the face direction vector of g with the normal of f, we determine whether g
extends locally into the interior of A. If so, every segment of e is transferred
to g, in the same orientation as e has on the boundary of g. Otherwise, no
segment is transferred. See also Figure 3.20.

Edge/Edge Intersection

Assume that edge e of A intersects edge e0 of B. In the generic case, shown on
the left of Figure 3.21, the edges intersect in a single point w that subdivides
both edges. This case can be considered as several edge/face intersections,
one for each face f adjacent to e. At most two of these cases can be de-
generate. Thereafter, we determine whether e and/or e0 contain segments
bounded by w that lie in the interior of the other solid. This requires the
line/solid classi�cation described previously.

The degenerate edge/edge intersection case arises when the two edges are
collinear and overlap, as shown in Figure 3.21 to the right. The case general-
izes degenerate edge/face intersection. The segment of overlap is transferred
in the appropriate direction to each of the adjacent faces whose face direction
vector(s) split a volume-enclosing pair of faces of the other solid. See also
Figure 3.22.
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Vertex/Face Intersection

When a vertex u is in the interior of a face f, we have to satisfy adjacency
constraints. Figure 3.23 shows an example. The faces gk adjacent to u may
intersect f in segments that must be incident to u. In addition, certain
edges incident to u will extend into the interior of f. They are determined
by computing dot products, and de�ne edge segments interior to the other
solid. Note that such segments may be further subdivided, as discussed
before. Here u plays the role of w in the edge/face intersection analysis.

Vertex/Edge Intersection

Assume that vertex u of A intersects the interior of edge e of B. This case
is conceptually a collection of vertex/face intersections, one for each face
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Figure 3.22 Transfer for Degenerate Edge/Edge Intersection
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adjacent to the edge. The analysis of which edges of u extend into the
interior of B is more complicated and is done as described in the edge/edge
intersection analysis. In addition, the edge e = (v; w) is subdivided by u,
and we need to determine whether the segments (v; u) and (u; w) extend into
the interior of A. See also Figure 3.24.

Vertex/Vertex Intersection

Assume that vertex v of A coincides with vertex u of B, as in Figure 3.25.
We determine all edges incident to u that extend into the interior of B and,
conversely, all edges incident to v that extend into the interior of A. This
is essentially a line/solid classi�cation; see Section 3.3.4. However, since the
line is induced by the position of the intersecting solids, we cannot simplify
the classi�cation procedure by perturbing its position. In addition, we must

u

Figure 3.24 Vertex/Edge Intersection
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Figure 3.25 Vertex/Vertex Intersection

make sure that all intersection segments of adjacent faces are incident to u
and v.

3.4.5 Face Subdivision

We have placed points and line segments subdividing edges and faces. We
think of the points and segments as vertices and edges of a graph. We
continue to refer to the graph vertices as points and to the graph edges as
segments, to distinguish them from the edges and vertices of A and B. The
purpose of neighborhood analysis has been to embed the graph consistently
on both surfaces, and to obtain correct incidences at its points. After all face
pairs have been intersected, the graph has the following properties:

1. If (u; v) is a segment that is not a complete edge, then the incidences
at the points u and v are completely known.

2. If (u; v) is a segment and the incidences at u are not completely known,
then u is a vertex of, say, A, and the missing incidences at u are initial
segments of all edges of A incident to u.

Property 1 follows from the neighborhood analysis. For property 2, observe
that (u; v) must be an edge of A that is included in the graph because v
intersects the surface ofB and (u; v) extends into the interior of A. Since (u; v)
is not subdivided further, no other point of it can intersect the boundary of
B. Hence the vertex u must be an interior point of B. Let (u; w) be any edge
of A. Since u is in the interior of B, either (u; w) is contained in B, or an
initial segment (u; w1) of it is in B. In the latter case, the point w1 is an
intersection with the surface of B, and has already been discovered.

Thus, we can subdivide all faces of A and of B that intersect the boundary
of the other solid by exploring the subgraph consisting of all points and
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segments contained in a face f, adding, when needed, undivided edges (u; w)
of f adjacent to a vertex u that is not a point in the subgraph:

1. Initialize a list L of all points in f.

2. If L is empty, stop. Otherwise, initialize the stack S to contain a point
u in L.

3. If S is empty, return to step 2. Otherwise, pop u from S and delete it
from L. Mark u as explored.

4. Let E1 be the set of all segments incident to u contained in f. If u is not
a point, then let E2 be all edges of f not containing a point; otherwise,
E2 is empty.

5. Order the edges and segments in E1[E2 cyclically about u in the plane
of f, and construct area-enclosing pairs.

6. For each (u; w) or (w; u) in E1 [ E2, stack w if it is unexplored. Then
return to step 3.

When the exploration is �nished, we have a complete subdivision of f from
which we obtain faces of A \� B by organizing into cycles the segments and
edges considered and determine how they may be nested. Note that the
algorithm is organized as a depth-�rst search.

3.4.6 Adjacencies in the Result

After completion of step 2, we are now ready to �nd the missing faces of
A \� B. The missing faces are those faces of A that are in the interior of B,
and, vice versa, the faces of B that are in the interior of A. They are found
by considering edge adjacencies.

We recall from the neighborhood analysis that the face adjacencies of
each segment must be known, since at least one point of the segment is on
the boundary of one of the solids. Hence, missing faces are precisely those
faces that are edge adjacent to an undivided edge (u; w), added in the face-
subdivision phase just described, or faces that are vertex adjacent to an
undivided edge (u; v) that is a segment with u not being a point. Again, by
exploration of the adjacency structure, all such faces can be found:

1. Let F1 be the set of all faces of A \� B constructed by the subdivision
given previously, and mark them as unprocessed. Set F2 to the empty
set.

2. If all faces in F1 [ F2 have been processed, then stop. We have found
all faces of A \� B.

3. For all unprocessed faces f in F1 [ F2, mark f as processed. For each
edge (u; v) of f where u is not a point, add to F2 all faces incident
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Figure 3.26 A Multishell Polyhedron in Two Dimensions

to u in A or in B that have not been subdivided, and mark them as
unprocessed.

Note that F2 accumulates all faces of A and of B that are contained in
the interior of the solid. When implementing the algorithm, it is useful to
remember which vertices u have already been considered, to avoid redundant
processing.

3.4.7 Single-Shell Intersection Summary

By analyzing the three-dimensional neighborhoods of face-pair intersections,
we have found segments and points making up the curves of intersection.
The complete neighborhood analysis implies that the graph is consistently
embedded on the two surfaces, and that the adjacencies have been correctly
determined, except for certain adjacencies that are inherited from the bound-
ary cycles of the faces. Considering each face intersecting the boundary of
the other solid, we have completed the graph and have constructed a consis-
tent subdivision of those faces of each solid that are not completely in the
interior of the other solid. Finally, by considering certain undivided edges,
we completed the surface of A \� B, adding those faces that are completely
in the interior of the other solid.

3.5 Multishell Objects

In general, a multishell polyhedron A consists of several disjoint polyhedra
P1; P2; : : : Pm. At most one of these polyhedra has in�nite volume, and the
remaining ones have �nite volume, since we required that solids have a �nite,
bounded surface. Figure 3.26 illustrates this in two dimensions.

Consider the in�nite polyhedron P1. It �lls the entire space except for
a �nite number r of voids that contain the remaining polyhedra P2; : : : Pm.
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Figure 3.27 Polyhedron as Intersection of Single-Shell Polyhedra

Each void is bounded by a shell S that, taken separately, bounds a single-
shell in�nite polyhedron; see also Figure 3.27. Moreover, the forest of shell
trees of A contains r trees, each root representing one of the voids of P1.
We think of such a polyhedron as the intersection of r single-shell polyhedra
with disjoint shells.

The �nite polyhedra Pi are bounded by an exterior, positive shell and
may have internal voids in turn. Again, we think of each polyhedron as the
intersection of several single-shell polyhedra. One of them, bounded by the
external shell, has �nite volume. The others are of in�nite volume and are
bounded by the shells of the internal voids.

We therefore write A = P1 [ P2 [ : : : [ Pm, where each component is the
intersection of single-shell polyhedra. Likewise, B = Q1[Q2[ : : :[Qr. Since
the Pi are pairwise disjoint, as are the Qi, the intersection of A and B is

A\�B = (P1\
�Q1)[(P1\

�Q2)[: : :[(P1\
�Qr)[(P2\

�Q1)[: : :[(Pm\
�Qr)

Each intersection Cik = Pi \
� Qk is the intersection of a set of single-shell

polyhedra. Moreover, the polyhedra Cik must be disjoint; thus, their union is
trivially determined. It follows that the intersection of multishell polyhedra
reduces to the simultaneous intersection of several single-shell polyhedra.

Now it is simple to modify the single-shell intersection algorithm to inter-
sect more than two shells at once, because the algorithm makes no essential
use of the fact that the surface of single-shell polyhedra is connected, except
for the conclusion that two shells either intersect or else must be analyzed
with a shell-containment test. In the more general setting, therefore, the
algorithm is run as before, subdividing the appropriate faces of intersect-
ing shells and merging these shells through surface exploration. Thereafter,
we consider the remaining, nonintersecting shells, classifying them by the
shell-containment test, adding or deleting shells as required.
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3.6 Complement, Union, and Di�erence

To complement an object, we must reverse the surface orientation. This is
done as follows:

1. Multiply each face equation by �1, thereby inverting the orientation
of the face interior.

2. Reverse the orientation of every boundary vertex cycle of a face.

3. Change the pairing of volume-enclosing pairs by moving it over by one
entry, reverse the edge direction, and reverse the cyclic order of adjacent
faces. Thus, the pairing ((a; b); (c; d)) in the cyclical order (a; b; c; d) is
changed to ((a; d); (c; b)).

The forest of shell trees is modi�ed by complementing at each node the
indication of whether the shell at that node encloses �nite or in�nite vol-
ume. Note that complementation takes time proportional to the size of the
boundary representation; that is, it is linear in the number of faces.

To compute the union of two objects, we apply de Morgan's law and
compute instead :(:A\�:B). The di�erence A��B is computed as A\�:B.

3.7 Face-Boxing Techniques

An iso-oriented box is a parallelepiped whose sides are parallel to the coor-
dinate planes. We seek a fast algorithm for reporting all intersecting pairs
among a set of iso-oriented boxes, so as to reject as nonintersecting certain
face pairs in polyhedral intersection. For each face, the smallest iso-oriented
box is used that completely contains the face. For a planar face, the box is
found by determining the maximum and minimum coordinates of the vertices
of the face, and each box can be speci�ed as three intervals, [x0; x1], [y0; y1],
[z0; z1], that specify the extreme coordinate values. The algorithm developed
here solves the following problem:

Problem
Given n iso-oriented boxes, report in O(n log2(n) + J) steps all
intersecting pairs of boxes, where J is the number of pairs re-
ported.

First, we develop the algorithm by considering one- and two-dimensional ver-
sions. In the two-dimensional case, we seek a fast algorithm for reporting
intersections among iso-oriented rectangles. This problem can be solved in
O(n log(n) + J) steps, as can the one-dimensional interval-intersection prob-
lem.

After giving an O(n log(n) + J) algorithm for rectangle intersection, we
then develop an O(n log2(n)+J) algorithm for the same problem. Although
slower, this algorithm then allows us to intersect boxes within the same time
bound. Various data structures will be needed, and these are explained �rst.
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3.7.1 The Static Interval Tree

This section develops an algorithm for the interval-intersection problem:

Problem
Given a set S of intervals I1; :::; In of the real line, store them in a
data structure such that, for any given query interval Q, we can
determine all intervals in S that intersect Q. Moreover, the time
needed to �nd the intersecting intervals is proportional to log(n)
and to the number of intersecting intervals.

This problem is static in the sense that the set S is �xed. Eventually, the
solution is adapted to a situation in which the set S changes, thus solving
a dynamic version of the problem. This change will be easy after the static
solution has been understood.

The algorithm for interval intersection uses a tree as basic data structure,
to direct the search for intersecting pairs. The nodes of the tree are annotated
with various additional data structures. The underlying tree will be called
a range tree. After suitable embellishments, we obtain from it an interval

tree. We explain the structure and construction of these trees in stages. The
algorithm will integrate these stages.

Assume that the intervals are given as the pairs of numbers

[a1; b1]; : : : ; [an; bn]

The range tree T carrying the interval information is a binary tree whose
leaves are the distinct values ak and bk, in ascending order. Let u be an
interior node of T, with left subtree T1 and right subtree T2. Then the node
u contains a number x that lies between the maximum leaf value in T1 and
the minimum leaf value in T2. This number is called the split value of u, and
will be denoted split(u).

Example 3.6: Assume we have intervals I1 = [�1; 6], I2 = [�2; 3],
I3 = [0; 4], I4 = [2; 7], I5 = [3; 4], and I6 = [�2;�1]. The range tree T
is shown in Figure 3.28. As split values, we have chosen the arithmetic
mean of the maximum and minimum leaf values in the left and right subtree,
respectively. 3

Recall that the half-open interval (x; y] is the set fzjx < z � yg. Each
node in the tree represents a half-open interval (x; y] of the real line, called
its range. The tree root represents the half-open real line (�1;1]. Let u be
a node in the tree representing the range (x; y], and assume that split(u) =
s. Then the left child of u represents the range (x; s], and the right child
represents the range (s; y]. In the preceding example, the root represents
the range (�1;1]. The left child, with split value �0:5, represents the
range (�1; 2:5], and the right child, with split value 5, represents the range
(2:5;1]. The interior node with split value 3.5 represents the range (2:5; 5].



98 Boolean Operations on Boundary Representation

5

−1.5

−0.5

2.5

3.51.0 6.5

−1−2 0 2 3 4 6 7

Figure 3.28 Range Tree T

Given a set S of intervals, the range tree is easy to construct: Sort all
interval endpoints in ascending order into a list L = (x1; x2; : : : ; xm), where
m � 2n. For L we construct a range tree top-down by splitting L into
two lists of equal size, L1 = (x1; : : : ; xp) and L2 = (xp+1; : : : ; xm), where
p = dm=2e. The tree's root has the split value (xp + xp+1)=2. The left and
right subtrees are now constructed from L1 and L2, respectively, in the same
way. Note that the range-tree construction requires O(n log(n)) steps.

At the nodes of the range tree, we store the intervals of S. The interval
[a; b] is stored at the unique node u satisfying the following:

1. [a; b] is contained in the range of u.

2. [a; b] contains split(u), but does not contain the split value of any
ancestor of u.

All intervals at u are stored in two lists, with the left endpoints in the list
left search(u), sorted in ascending order, and the right endpoints in the
list right search(u), sorted in descending order.

Example 3.7: In the range tree of Example 3.6, the intervals I1; I2; I3;
and I4 are all stored at the tree root, the interval I5 is stored at the node
with split value 3.5, and the interval I6 at the node with split value �1:5. 3

The intervals are stored in the tree in two phases. In the �rst phase, the
left search lists are constructed. Then, by an obvious modi�cation, the right
search lists are constructed.

1. Sort all intervals of S by the left endpoint ak in ascending order into a
list L.

2. Propagate the list down into the tree, beginning at the root.
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3. At each node u, break the incoming list L into the lists L1, L2 and L3,
where L1 contains the intervals [a; b] with b < split(u), L2 contains
the intervals containing split(u), and L3 contains the intervals [a; b]
with split(u) < a.

4. Propagate the list L1 to the left descendant of u, propagate the list L3

to the right descendant of u, and store the intervals in L2 at u.

The list L is split by sequentially scanning it. Each entry in it is scanned once
at each node at which the containing list is considered. Thus, it is scanned
at most log(n) times. Therefore, all intervals are added to the range tree in
O(n log(n)) steps.

Recall that in a preorder traversal of a binary tree, the root of a subtree
is visited, followed by its left and right subtrees being visited. By applying
this rule recursively, beginning with the root of the tree, all nodes are visited
in preorder.

The data structure, as developed, is not suÆciently exible. The problem,
briey, is that the intervals may be clustered at very few tree nodes, so
locating nodes with stored intervals may require too much searching. Thus,
we link all nodes containing stored intervals in a doubly linked list. In this list,
the nodes are in preorder. Furthermore, each tree node is marked if it, or any
descendant of it, contains stored intervals. It is clear that these annotations
can be added in O(n log(n)) steps. After we add these annotations, we
have now constructed an interval tree. The interval tree for the intervals of
the example is shown in Figure 3.29. The node marks are represented by
asterisks. The doubly linked list of nonempty tree nodes is shown by dashed
arrows.
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Figure 3.30 Node Sets Used for Querying for Interval Intersection

3.7.2 Static Interval Query

The problem of static interval query is solved using an interval tree. Let S
be the set of intervals, Q = [a; b] the query interval. We construct an interval
tree for S.

In the interval tree, we identify a node set P, consisting of all nodes u
whose range has a nonempty intersection with the query interval but is not
completely contained in Q. We also identify a set C of nodes each of whose
range is contained in Q. Since, at each level in the tree, the set of represented
ranges is a partition of the root range, the set P has at most two nodes at
each depth, and consists of three paths, P1, P2, and P3. Here P1 consists of
all nodes whose ranges contain Q. The path P1 begins at the root and ends
at the node u1 whose split value is in Q; the path P2 consists of all nodes
whose range contains the left endpoint a of Q, but not all of Q; and the path
P3 consists of all nodes whose range contains the right endpoint b of Q, but
not all of Q. Figure 3.30 shows these node sets schematically. Note that the
nodes of C are in subtrees rooted in right descendants of nodes in P2, or in
subtrees rooted in left descendants of nodes in P3. If the query interval is a
point (i.e., if a = b) then the sets P2, P3, and C are empty.

Example 3.8: Let Q = [2; 5:5] be a query interval to be tested against
the intervals I1 through I6. In the interval tree of Figure 3.29, the root is the
only member of the set P1, since its split value is in Q. The set P2 consists
of the nodes with split value �0:5 and 1, and the leaf labeled 2. The set P3

consists of the nodes with split value 5, 6.5, and the leaf labeled 6. The set
C contains only those nodes in the subtree whose root has split value 3.5. 3

The overall structure of the algorithm for reporting all intersections with
the query interval is now as follows:
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1. Construct an interval tree for S.

2. Identify the path P1.

3. Identify the paths P2 and P3.

4. By processing the path nodes and their descendants appropriately,
identify all intersecting intervals.

Step 2 is performed as follows. With u initially the tree root, identify
the path P1 by selecting the left (resp., right) descendant of u provided the
split value s = split(u) satis�es b < s (resp., s < a). We continue until we
encounter the �rst node u1 whose split value is contained in the interval Q.

At u1, we initiate construction of P2 and P3. The path P2 begins at the
left descendant of u1 and is identi�ed as follows. At node u, select the left
(resp., right) descendant of u as the next node provided that a � split(u)
(resp., a > split(u)). The path P3 begins at the right descendant of u1. To
identify the remaining nodes, pick at node u the left (resp., right) descendant
provided that b � split(u) (resp., b > split(u)). For degenerate query
intervals [a; a], the paths P2 and P3 are empty. In this case, care must be
exercised if a = split(u) for an interior node u.

We now discuss how to identify intersecting intervals along the paths Pi,
i = 1; 2; 3. Let u be a node on one of the paths and s = split(u). If s < a,
then an interval stored at u intersects Q i� its right endpoint y satis�es
a � y. Hence, by scanning the right endpoints of intervals stored at u, in
descending order, we identify all intersecting intervals in time proportional to
their number. If b < s, then an interval at u intersects Q i� its left endpoint
x satis�es x � b. These intervals are found by scanning the left endpoints in
ascending order, in time proportional to their number. Finally, if s is in Q,
then all intervals at u intersect Q.

The nodes in C are in subtrees rooted in right descendants from nodes in
P2, and in left descendants of nodes in P3. They are characterized by the
fact that the range represented at any node in C is completely contained
within Q. Hence, all intervals stored at such nodes will intersect Q. For the
sake of speed, we must avoid searching through all nodes of these subtrees.
Intuitively, we �nd the �rst node in the set C that contains intervals, using
the node marks. To do so, we examine the nodes in P2, beginning at the leaf
and ending at the left descendant of u1, until we �nd a marked node that
has a marked right descendant not contained in P2. If no such node can be
found, we try the analogous procedure with the nodes in P3, beginning at the
right descendant of u1 and ending at the leaf, searching for a left descendant
not in P3. If no such node can be found, then C contains no intervals.
Otherwise, we have found the leftmost node in C that contains intervals. The
remaining nodes in C containing intervals are found by following the linked
list. It is not diÆcult to see that the entire procedure requires O(n log(n))
steps for constructing the interval tree, plus O(log(n)+J) steps to report all
intersections, assuming J intervals intersect Q.
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3.7.3 Rectangle Intersection

We are given a set of rectangles whose intersecting pairs we want to �nd.
Each rectangle is given as the pair of intervals [x0; x1]�[y0; y1], the rectangle's
projection on the x and y axis, respectively. The algorithm will use interval
intersection as one of its operations.

Rectangle intersection will be based on the line-sweep paradigm: By sweep-
ing a line that is parallel to the x axis, in increasing y direction, any intersect-
ing rectangle pair must appear as an intersecting pair of x intervals. These
intervals are the intersection of the rectangles with the line. As the line
sweeps upward, the interval [x0; x1] of the rectangle [x0; x1]� [y0; y1] appears
at the line position y0, and disappears at the line position y1.

We sort the numbers xi and build an interval tree from them that initially
does not contain any stored intervals. In this way, we will be able to store
each interval at some time during rectangle intersection. Next, we sort the
numbers yi in ascending order, and consider them in sequence. For each
particular number y, we have a set of rectangles [x0; x1]� [y; y1] beginning at
y, and another set of rectangles [x0

0; x
0

1]� [y0; y] ending at y.
The beginning rectangles de�ne a set of x intervals that must be inserted

into the interval tree. Before insertion, each of these intervals is tested for
intersection with the intervals already in the tree. Intersecting intervals cor-
respond to rectangle intersections. Thereafter, the x intervals of ending rect-
angles are deleted from the tree. It is clear that the outlined algorithm is
correct, and that it does not report an intersecting pair of rectangles more
than once. Moreover, rectangle intersection can be reported quickly, based
on the algorithm for interval intersection, provided we can insert and delete
intervals eÆciently.

Example 3.9: In Figure 3.31, we are at a y position at which we must
insert the interval I4 corresponding to rectangle 4, and delete the interval I2
corresponding to rectangle 2. Before deleting I2, we use I4 as query interval
and report all intersections. Then we delete I2 and insert I4. 3

To support quick interval insertion and deletion, we must modify the
left search and right search lists, organizing them as balanced search
trees rather than as lists. These trees must support logarithmic-time in-
sertion and deletion, and they must allow linear-time sequential access to
the stored values in sorted order. For example, a 2-3 tree will satisfy these
requirements.

An interval Q = [a; b] is inserted as follows: The interval is added to the
node u1 that is last in the path P1. Note that P1 was found as part of �nding
all intervals in the tree that intersect Q. Insertion into the left search and
right search trees is routine. If there are already intervals stored at u1, we
are now done. Otherwise, we must update the linked list of nonempty tree
nodes and, possibly, the node marks on the path from u1 to the tree root.
Clearly, updating the node marks is trivial.

Recall how to visit the nodes of a binary tree in inorder. Beginning at
the root of the tree, a node v is visited as follows: If v is a leaf, then visit
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it; otherwise, visit recursively all nodes of the left subtree, then visit v, and
�nally visit the nodes of the right subtree. The order in which the tree nodes
are encountered is called inorder.

To locate where to insert u1 into the list of nonempty tree nodes, we
search for the �rst nonempty node succeeding u1 in inorder. This node is
found using the node marks. If u1's right descendant uR is marked, then the
needed nonempty tree node is found by exploring the leftmost marked path
beginning with uR. If that node is not marked, we must back up toward
the root until we �nd a marked ancestor who is not empty or whose right
descendant is not in P1 and is marked. Clearly, locating this node requires
no more than O(log(n)) steps.

Now consider deleting an interval Q. We �rst �nd the node u1 at which
the interval is stored, and delete its endpoints from the search structures
unless other intervals at u1 share that endpoint. If Q was the only interval at
u1, we must delete u1 from the linked list of nonempty nodes, and, possibly,
delete the node mark of u1 and some of its ancestors. Because the node list
is doubly linked, node deletion is simple.

In summary, we have shown that intervals can be inserted and deleted in
time proportional to log(n). In consequence, intersections among a set of n
rectangles can be reported in O(n log(n)+J) steps, where J is the number of
intersecting pairs. The simplicity of the algorithm makes its implementation
quite practical.
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3.7.4 The Segment Tree

The rectangle-intersection algorithm described previously is based on dy-
namic interval intersection. In principle, a similar extension to three di-
mensions is possible: Sweep a plane in the z direction and test, at certain
positions, whether there are intersections among the rectangles in which the
boxes intersect the sweep plane. We do not use the O(n log(n) + J) rectan-
gle intersection for this purpose, since the recursive line sweeps for �nding
intersecting rectangles would consume too much time. Instead, we develop
a more exible data structure that supports rectangle intersection without a
line sweep. This data structure is called a segment tree, and is an annotated
balanced binary search tree, recording a set of intervals.

We are given n intervals [ak; bk] with distinct endpoints ci, where 1 � i �
m and m = 2n. We assume that the ck are enumerated in ascending order.
The underlying binary search tree has 2m + 1 leaves representing, from left
to right, the partition of the real line induced by the endpoints.

(�1; c1); [c1]; (c1; c2); [c2]; : : : ; [cm]; (cm;+1)

The tree is constructed in much the same way as the range tree. Like the
range tree, the interior nodes have split values to support binary search, only
now we must indicate, at each node, whether the left descendant is chosen if
the query value is less than, or not greater than, the split value. An interior
node represents a segment that is the union of the segments of its descendants.
We store an interval Ik = [ak; bk] in this tree at a node u provided Ik contains
the range of u but not the range of u's ancestor. When we have completed
this annotation, we have constructed a segment tree. Note that Ik can be
stored at more than one tree node, but not at more than 2h nodes, where
h is the tree height. The ranges at which a given interval is stored are a
partition of the interval. It is not diÆcult to see that a segment tree can be
constructed in O(n log(n)) steps.

Example 3.10: The segment tree for the intervals I1 = [2; 3], I2 = [5; 7],
I3 = [2; 4], and I4 = [3; 5] is shown in Figure 3.32. The interval [3,5] is stored
at the two nodes marked with asterisks. 3

Now consider the problem of locating all those intervals in a set S that
contain a query point q. We proceed as follows. From S, we construct a
segment tree. Using this tree as a binary search tree, we locate the leaf in
whose range q lies. Clearly, all intervals stored at the nodes on the path
from the tree root to the leaf containing q will contain q. Furthermore,
since leaves represent disjoint segments, no other interval of S can contain q.
Note also that no interval stored along the path is repeated. Therefore, all
containing intervals can be found in O(log(n) + J) steps, ignoring the time
for constructing the segment tree.
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3.7.5 Interval, Rectangle, and Box Intersection

In the one-dimensional case, we are given a set S of n intervals and Q = [a; b],
the query interval. We observe that an interval Q0 in S intersects Q i� one
of the following is true:

1. a is in Q0.

2. The left endpoint of Q0 is in the half-open interval (a; b].

We will need two search structures, one for each intersection criterion.
The �rst search structure is a segment tree Tseg for the intervals in S. The

second search structure is a balanced binary search tree Tbin , built with only
the left endpoints of intervals in S. Let x be a left endpoint of an interval in S,
and l be the leaf at which x is stored. Then we store the interval belonging
to x at every node of the path from the root to l. Thus, at each interior
node u, we have stored all intervals whose left endpoints are the leaves of the
subtree rooted in u.

We test interval intersection as follows. All intervals intersecting Q by the
�rst criterion are found by searching Tseg for the intervals containing a. To
�nd intersections by the second criterion, we locate in Tbin the search paths
for a and for b. The intervals at the point of path bifurcation intersect Q
by the second criterion, excluding those intervals that have the left endpoint
a. Since the two intersection criteria are mutually exclusive, we have found
all intersecting intervals without duplication. Clearly, the trees can be con-
structed in O(n log(n)) space and time. So, O(log(n) + J) steps suÆce to
report all intersections with a query interval.

Example 3.11: Figure 3.33 shows the segment tree for the interval set
S of Example 3.10, and Figure 3.34 shows the binary search tree. Assume
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a query interval Q = [4; 6]. The search of the segment tree with the left
endpoint 4 ends at the leaf [4]. So, the intervals I3 and I4 intersect Q by the
�rst criterion. Next, we search the tree Tbin with the arguments 4 and 6. The
search paths bifurcate at the leaf labeled 5; hence, the interval I2 intersects
Q by the second criterion. 3

Now consider locating all those rectangles in a set S that intersect the
query rectangle Q = [x0; x1] � [y0; y1]. The rectangles in S de�ne a set of y
intervals and a set of x intervals. We proceed as follows. For the y intervals,
we construct the trees Tseg and Tbin . Consider the rectangles that correspond
to a set of y intervals to be stored at each node in these trees. They induce,
for each node u, a set of x intervals Xu. With Xu, we construct at each u a
nested pair of trees Tseg(u) and Tbin(u).

We use these data structures as follows. With the y interval [y0; y1], we
locate all intersecting y intervals induced by S. Then, we solve separately the
intersection problem for [x0; x1] at each node. Clearly, we thus identify all
intersecting rectangles.

Let S contain n rectangles. To understand space and time requirements,
we recall that each interval is stored at no more than O(log(n)) di�erent
nodes, in each tree. Thus, there are O(n log(n)) x intervals for which we
construct the nested pairs of trees initially. From this, it follows that the
needed data structures can be built in O(n log2(n)) space and time, and
that the query time for reporting all intersections with the query rectangle
is O(log2(n) + J).

Finally, consider box intersection. We can build a doubly nested data
structure, or adopt the sweep paradigm. The �rst approach yields anO(n log3(n)+
J) box-intersection algorithm; the second one yields the slightly fasterO(n log2(n)+
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J) method. In the sweep paradigm, we now have to enter and delete rectan-
gles dynamically into the nested tree pairs. This can be done in a manner
analogous to that used for the dynamic version of the interval tree.

3.7.6 Red-Blue Intersection

When enclosing faces with iso-oriented boxes, the boxes enclosing adjacent
faces will intersect. However, intersections among boxes enclosing faces of
the same polyhedron are not of interest. We discuss a way of excluding such
intersecting pairs.

Given the polyhedra A and B, we color the boxes enclosing faces of A red,
and color boxes enclosing faces of B blue. The red-blue intersection problem
is to report intersecting pairs of red and blue boxes without spending time
on �nding, and ignoring, blue-blue and red-red intersecting pairs. Clearly,
rectangle and interval intersection have analogous problem variants. We
solve the red-blue box intersection problem using the static version of box
intersection. Briey, from the set of blue boxes we construct the needed data
structures. Then, we use the red boxes to query the blue data structure for
intersection. The details are straightforward, as are the details for red-blue
rectangle intersection, and for red-blue interval intersection.

3.7.7 Implementation Remarks

Some form of box intersection should be incorporated into every solid mod-
eler. However, many asymptotically fast algorithms have a considerable
start-up cost and are intricate to program. Thus, simpler versions may be
contemplated. For example, it may suÆce to implement only rectangle inter-
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section and to accept the lower resolution of nonintersecting face pairs. In
our experiments, this strategy was satisfactory.

If we replace the balanced search trees at the nodes of the dynamic in-
terval tree with lists, the programming required is further reduced. In small
applications, there is no appreciable running-time di�erence. However, when
many intervals are stored at the same node, then this simpli�cation spoils
the performance of the algorithm. Ultimately, the attractiveness of these
compromises depends on the mix of applications.

The box-intersection algorithm is somewhat harder to implement than
is rectangle intersection based on line sweep. Moreover, the segment tree
appears to be less robust because of the many leaves that represent point
intervals. For this reason, the boxes to be tested for intersection should be
enlarged by a small tolerance �. This will make box intersection robust.

3.8 Notes and References

The conceptual topological data structures explained in Section 3.2 have
been designed for convenience of accessing various adjacencies. Irredundant
representations will store less information. See Weiler (1986) for a study of
irredundant topological data structures. Irredundancy of the geometric data
is motivated by robustness considerations. As mentioned, geometric irredun-
dancy for curved solids might not be cost-e�ective, but perhaps an attractive
alternative would be to annotate the data structures with approximate geo-
metric data to be made precise by a suitable numerical computation when
needed.

Boolean operations on polyhedra in B-rep have been implemented many
times. Descriptions include Braid (1975), Hillyard (1982), M�antyl�a (1986),
Okino et al. (1973), Voelcker et al. (1974), and Wesley et al. (1980).

The brief description in Requicha and Voelcker (1985) stresses the impor-
tant role of local neighborhood analysis. The description does not assume
manifold boundaries. M�antyl�a (1988) describes an intersection algorithm in
considerable detail, but restricts himself to manifold solids. Moreover, his
algorithm is based on a symmetric design in which the role of A and B is
interchanged for the purpose of face subdivision; hence, one should expect
robustness problems. Chiyokura (1988) describes a similar algorithm, also
restricted to manifold polyhedra. Both methods use Euler operators to im-
plement surface subdivision.

Paoluzzi et al. (1986) describe a polyhedral modeler for which all faces
must be triangles. Although the surfaces topologically are manifolds, surface
structures may coincide geometrically. Thus, the algorithm must disam-
biguate the topology in the manner described in Section 2.3.1 of Chapter 2.
Laidlaw et al. (1986) describe a method in which all faces must be convex
polygons, but the solid surfaces need not be manifolds. By carefully observing
properties of convex polygons, their algorithm attempts to increase local ro-
bustness. However, no global processing is done to ensure consistency of the
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resulting surface structures, and they experience algorithm failures for cer-
tain inputs. The observation that two or three random perturbations suÆce
to eliminate complicated vertex intersection cases in line/solid classi�cations
is due to Laidlaw et al. (1986).

Ho�mann, Hopcroft, and Karasick (1987) and Karasick (1988) describe
an algorithm based on the conceptual structure discussed at the beginning
of Section 3.4. For robustness purposes, the algorithm was subsequently
modi�ed, adding a form of local neighborhood analysis to achieve a consistent
subdivision of adjacent faces. The processing is somewhat more complicated,
because the underlying structure of the algorithm requires more special-case
processing than the version we give here. However, the Karasick modeler
also includes global consistency computations that explore the consequences
of, say, nonincidence between a vertex v and a face f along a path of edges
beginning at v. See Karasick (1988) for a detailed description.

Euler operations are often mentioned as a conceptual infrastructure with
which to implement higher-level geometric operations, including solid inter-
section. In our view, operations such as line/solid classi�cation or sorting and
pairing points along a line should also be considered part of the infrastruc-
ture. Implementing the placement of points and segments with help of Euler
operations has the advantage that at all times A and B have valid boundary
description. However, the orientation information needed to later interpret
points and segments as part of face subdivisions would require extensions to
Euler operations or a subsequent separate neighborhood classi�cation. We
prefer to combine this classi�cation with the placement of points and lines,
for robustness reasons.

Box intersection and related techniques are described in the computational
geometry literature. Our description of these algorithms follows Mehlhorn
(1984). Many of the technical concepts in that section are standard in the
literature on algorithms. See, for example, Aho, Hopcroft, and Ullman (1974)
for tree traversals, balanced binary search trees, and other basic techniques.
The method to solve the red-blue version of the problem was suggested to
me by M. Sharir. Rectangle intersection was implemented by J. Sasaki in
1986 for the Karasick modeler. Karasick (1988) reports that it speeds up
polyhedral intersection to almost an O(n log(n)) behavior when intersecting
several hundred randomly positioned cubes.
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Chapter 4

Robust and Error-Free

Geometric Operations

Despite much work and great advances in geometric and solid modeling,
practical implementations of geometric modeling operations remain error-
prone, and the goal of implementing correct, eÆcient, and robust systems
for carrying them out has not yet been attained. This fact seems to originate
from an underlying characteristic that sets geometric computations apart
from other application areas in computer science and engineering. There
is agreement that the problem is serious, but what strategy has the best
chance of solving it is not agreed on. The diÆculty seems to be rooted in the
interaction of approximate numerical and exact symbolic data.

Geometric objects belong conceptually to a continuous domain, yet they
are almost always analyzed by algorithms doing discrete computation. These
algorithms typically treat a very large discrete domain | for instance, the set
of all representable oating-point numbers | as though it were a continuous
domain. This approach may lead to acceptable results in many cases, but it
does not work in all situations. In particular, when implementing Boolean
operations on solids in B-rep, the problem manifests itself in occasional fail-
ures of the implemented algorithm.

We now examine these problems in detail restricting attention to the lin-
ear case. Polyhedra and other piecewise linear geometric objects, in three
dimensions, consist of points, edges and polygonal faces that are in speci�c
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spatial relationship to one another. The speci�cation of such objects consists
of two parts: numerical information, recording vertex coordinates or plane
equations; and symbolic data specifying face and edge boundaries, adjacen-
cies, and incidences.

Usually, the numerical data describing a geometric object are given only
approximately, using oating-point numbers. In consequence, there may be
imprecision that leads to contradictory information about the represented
object. For instance, the representation may require that four adjacent faces
meet in a common vertex, yet the numerical plane coeÆcients for the faces
may specify four planes that intersect in four closely spaced points, rather
than in a single point.

Most implementors are well aware of this imprecision and make allowance
for it by suitably relaxing incidence tests. However, this approach does not
succeed in all cases, because it is diÆcult to control the implications of ap-
proximate incidence tests. In particular, using limited-precision numbers
often has the consequence that the outcome of a numerical computation is
sequence-dependent and inaccurate. If the computation is to decide symbolic
facts | for example, whether a vertex is incident to a face | the imprecision
constitutes incomplete or erroneous information.

Geometric algorithms typically make many such decisions, and all de-
cisions so made must be logically consistent, whether based on correct or
incomplete information. This is not always a simple matter. For instance,
the same decision can sometimes be determined by di�erent computations
that yield contradictory information. Given these possibilities, we must ask
what it means for a geometric algorithm to be correct, and for it to deliver
an acceptable result for all legitimate inputs.

4.1 Chapter Overview

Since the implementation of geometric algorithms is commonly based on
oating-point arithmetic, we show in Section 4.2 some of the consequences
that the various numerical inaccuracies can have. Even for line-intersection
problems in the plane, oating-point errors may result in geometric contradic-
tions that are usually not anticipated by the algorithm. As we demonstrate,
these problems increase in seriousness when we iterate and/or compound
geometric operations.

Polyhedral intersection can be implemented correctly when using �xed-
precision rational arithmetic. Such implementations can achieve acceptable
eÆciency provided we correctly anticipate the needed internal precision at
which all intermediate calculations are carried out, but they also necessi-
tate reexamining some elementary operations that are commonly taken for
granted. This approach is discussed in detail in Section 4.3.

We cannot understand the central core of the robustness problem unless
we make a clear distinction between ideal Euclidian geometry and its discrete
representation in the computer. In Section 4.4, we discuss this distinction
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by de�ning what constitutes a suitable model for a representation, and what
might be a good representation for an ideal geometric object. In the dis-
cussion of these concepts, we will see that a recurrent theme in increasing
robustness is to achieve consistent interpretations of noisy numerical data
and computations. In this framework, we can distinguish several basic ap-
proaches to achieving robustness:

1. Restructure the algorithm such that all interpretations of noisy numer-
ical data and computations are logically independent.

2. Make interdependent logical decisions by respecting the symbolic data
exactly, but possibly perturbing the numerical data somewhat.

3. When making interdependent logical decisions, give priority to the nu-
merical data, possibly altering the meaning of the symbolically repre-
sented topological problem data.

The �rst approach assumes that inconsistencies in the representation are
probably not fatal unless they lead to contradictory topological conclusions.
Thus, this approach tries to devise geometric algorithms in which, for exam-
ple, an incidence determination is made by only one numerical computation,
and all consequent incidences and nonincidences are explicitly recorded at
that time. The algorithm of Chapter 3 for performing Boolean operations
on polyhedra has been designed based on this concept.

Philosophically speaking, the second approach assumes that the symbolic
data have, in principle, an exact representation, and so we should trust them
implicitly. This approach is discussed in Sections 4.4.1 and 4.4.4. The tech-
nical problems entailed by this approach are how to interpret the numerical
data consistently and how to limit the numerical perturbations needed to
achieve this consistency.

The third approach, discussed in Section 4.4.5, tries to obtain smaller
perturbations by altering the meaning of geometric elements such as lines.
Roughly speaking, a line may be replaced by a curve, possibly piecewise
linear, with certain properties, such as monotonicity in speci�c directions or
a maximum deviation from a straight line. The technical challenges faced
by the third approach include how to use the results of such an algorithm
in subsequent geometric computations. Sections 4.5 and 4.6 summarize this
material and give references to the literature.

4.2 Floating-Point Arithmetic

Geometric computations customarily use oating-point arithmetic, since it
o�ers both eÆciency and exibility. However, oating-point arithmetic has
a number of subtleties that need to be understood. Without a careful ac-
counting for these subtleties, oating-point computations may be the source
of unexpected program failure.
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4.2.1 Numerical Errors in Floating-Point Arithmetic

A oating-point number consists of an exponent and a mantissa. Both are
�xed-length integers, which implies that they constitute a discrete set of
representable rational numbers. Three types of errors must be considered
when analyzing the accuracy of oating-point numbers:

1. Conversion errors: Since input numbers are usually decimal, whereas
the machine operates with binary numbers, we cannot always represent
exactly the number desired. For example, the decimal 0.6 is equal to
the periodic binary fraction 0:1001 1001::. because 3=5 =

P1
i=1 9=16

i.

2. Roundo� errors: Since a � b in general requires higher precision to rep-
resent exactly than does either a or b; the representation of the product
may be inexact in the last represented digit. For example, with �ve-
digit mantissas, the product 0:24665 � 0:63994 = 0:15784 12010 would
be rounded to 0:15784; thereby incurring an error of approximately
1:2 � 10�6.

3. Digit-cancellation errors: The di�erence of two nearly equal numbers a
and b has fewer signi�cant digits than does either a or b. For instance,
the di�erence of 0:90905 � 102 and 0:90903 � 102 is 0:20000 � 10�2. As-
suming a �ve-digit mantissa, 0:20000 clearly has only one signi�cant
digit, unless a and b happen to be exact numbers.

Moreover, if a geometric shape is expressed by means of a graphical user
interface, it may not be possible to specify numerical data precisely.

Since geometric operations usually require extensive numerical calcula-
tions, the propagation of these errors is of great concern and inuences the
accuracy and validity of the geometric operations profoundly. We will demon-
strate with several examples that elementary geometric computations are
sensitive to such errors, and that elementary geometric conclusions can be
invalidated in consequence.

4.2.2 Geometric Failures Due to Floating-Point Arithmetic

We discuss several ways in which a geometric algorithm may fail, assum-
ing that the numerical computation is done using oating-point arithmetic.
In the examples, we assume double-precision IEEE standard oating-point
computation. The crucial fact is that the computation is carried out with
limited-precision arithmetic. We can extend the precision to triple or quadru-
ple precision. This has the e�ect of narrowing the range of inputs for which
the geometric algorithm will fail, but it cannot eliminate such failures com-
pletely as long as a priori bounds are placed on the precision.

Many geometric questions of incidence can be answered by di�erent se-
quences of numerical computation. The di�erent sequences of computation
are equivalent when exact arithmetic is used. When using oating-point
arithmetic, however, these computations may yield di�erent answers. The
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following examples illustrate this fact and show how it can a�ect solid mod-
eling operations.

Incidence Asymmetry

Consider implementing a test of whether two points in the plane are equal.
Speci�cally, assume that the point u is the intersection of the pair of lines
(L1; L2); and that the point v is the intersection of the lines (L3; L4). The
line equations are the input to the following algorithm:

1. Compute the coordinates of u.

2. By substitution into the line equations L3 and L4; conclude that u = v
if both L3(u) and L4(u) are smaller than some tolerance.

Intuitively, this algorithm ought to be equivalent to a second version in
which the roles of u and v are reversed. We demonstrate that this need not
be the case. We assume the following:

1. The intersection (ux; uy) of the lines

a1x+ b1y + c1 = 0

a2x+ b2y + c2 = 0

is computed as follows:

D = a1b2 � a2b1

ux = (c2b1 � c1b2)=D

uy = (a2c1 � a1c2)=D

2. The point (ux; uy) is assumed to lie on the line ax + by + c = 0 if the
distance is small; that is, if jaux + buy + cj < �

p
a2 + b2.

We assume � = 10�10; a reasonable bound for double precision. We ask
whether u and v are incident using two di�erent methods:

1. Compute the coordinates of u; conclude that u = v i� u is on both L3

and L4.

2. Compute the coordinates of v; conclude that u = v i� v is on both L1

and L2.
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The line coeÆcients follow. Since 2�23 � 10�7; they di�er from 1 and 0 by
amounts that are several orders of magnitude larger than �.

a1 = �1 b1 = 1 c1 = 0

a2 = �(1 + 2�23) b2 = 1� 2�23 c2 = 2�22

a3 = 1 b3 = 0 c3 = �(1 + 2�15)

a4 = 0 b4 = 1 c4 = �(1 + 2�15)

These coeÆcients can be represented exactly in double precision. The coor-
dinates of the points are now computed to be

u = L1 \ L2 = (1:0; 1:0)

v = L3 \ L4 = (1:000030517578125; 1:000030517578125)

They are both exact. Moreover, since (a2i + b2i ) is approximately between 1
and 2, the evaluation of the line equations after substituting point coordinates
yields an error that can be compared directly with �. We obtain the values

L3(u) � �3 � 10�5 > �

L4(u) � �3 � 10�5 > �

from which we conclude that u cannot be incident to v; since it is too far
from each of the lines whose intersection is v. But we also obtain

L1(v) = 0 < �

L2(v) � �7 � 10�12 < �

from which we must conclude that v is incident to u; since it lies extremely
close to both lines. Therefore, although they ask the same geometric ques-
tion, the two computations yield contradictory results.

Graphically, the situation is summarized in Figure 4.1. The bound � con-
ceptually de�nes a narrow band around each line Li such that every point in-
side that band is considered to lie on Li. In consequence, there is a diamond-
shaped region enclosing each vertex w; the intersection of the two bands, such
that every point inside the diamond region is considered coincident with w.
Depending on how the two diamonds intersect, the vertices are considered
coincident or not.

How does this asymmetry a�ect a solid modeler? Recall the problem of
intersecting two solids, A and B, in boundary representation, and consider
the following conceptual approach:
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Figure 4.1 Vertex Incidence Regions

1. Mark on the surface of solid A the curves in which the surface of solid
B intersects.

2. Reverse the roles of A and B and repeat step 1.

3. Construct the surface of A \ B by merging the relevant parts of the
boundary of A and B.

This algorithm will decide every vertex/vertex incidence with two di�erent
computations that are the three-dimensional analogue of the preceding al-
gorithms. Thus, a oating-point implementation will claim contradictory
incidences on certain inputs A and B; and the curves marked on both solids
will be incompatible in that case, causing the algorithm to fail.

Incidence Intransitivity

Consider introducing symmetry into the point-equality test by asking \is
the distance between u and v smaller than a speci�c threshold?" using the
following method:

1. Compute the coordinates of u and of v; by intersecting the respective
lines.

2. If the Euclidian distance between u and v is smaller than �; decide
u = v; otherwise, decide u 6= v.
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This method is symmetric, but it does not exhibit transitivity. Speci�cally,
we choose the three points u; v; and w such that u is incident to v; v is
incident to w; but u is not incident to w. We assume that epsilon is 10�10.

u = (0; 0) v = (0; 0:8 � 10�10) w = (0; 1:6 � 10�10)

Clearly, the distance between the adjacent pairs is less than �; but the dis-
tance between u and w is greater than �.

Assume we intersect two polyhedra, A andB; where one of the edges (u; w)
of A is somewhat shorter than 2�. Consider a position of B in which one of its
vertices v is approximately in the middle of the edge. Having implemented
the symmetric vertex incidence test, we are in the uncomfortable situation
that v is incident to two di�erent vertices of A.

Compensating for the intransitivity of point coincidence is diÆcult. A
typical approach is to avoid the problem by requiring that no edge of a poly-
hedron is shorter than a speci�c tolerance Æ. The magnitude of Æ must be
related to �. In our example, Æ > 2� is necessary. However, every pair of ver-
tices, whether adjacent or not, must be separated by Æ; and possible incidence
computations among derived points | for example, edge/face intersections
| may necessitate other such minimum-feature-size constraints. The result-
ing Æ will depend on the details of the geometric operation, but the possibility
of propagating errors makes it diÆcult to derive good values.

Topology Violations

The inaccuracy of numerical calculations has other implications for the valid-
ity of deduced geometric fact. In particular, when determining how the edges
of two polyhedra intersect in three dimensions, we might deduce a con�gura-
tion such as the one shown in Figure 4.2. When intersecting the edge (u; v)
with the top face, we may well conclude that it is suÆciently close to the
edge (w;w0); due to large positional perturbations caused by the shallow an-
gle at which (u; v) intersects the top face. Now, when intersecting (u; v) with
the side face, a more accurately determined point of intersection can lead
us to conclude that (u; v) does not intersect (w;w0). This inconsistency in
incidence determination constitutes a violation of the topology that is likely
to cause trouble subsequently. Avoiding this problem requires coordinating
di�erent incidence computations; for instance, as we did in Chapter 3. As we
will see later in this chapter, determining that all decisions have been fully
coordinated may be hard.

4.2.3 Line-Intersection Conditioning

As we have seen, the result of a oating-point computation may have consid-
erable error, yet at other times it may be exact. It is not always possible to
quantify precisely how oating-point errors propagate in complex sequences
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Figure 4.2 Topological Inconsistency When Intersecting Edges

of numerical calculations. However, a sensitivity analysis can be performed
that estimates the likely actual error. This analysis is based on the following
concept.

We assume that the result of a oating-point calculation is exact. But,
instead of being exact for the actual inputs to the computation, the results
are exact for some other inputs that are a perturbation of the actual ones.
Intuitively, if a small input perturbation yields only a small change in the
result, it is reasonable to assume that such a calculation has only a small
error. If, on the other hand, small input perturbations | due, for example,
to roundo� | may result in large changes of the result, then the computation
is likely to have large errors in the result.

More precisely, if an input is changed by �; the output changes by a func-
tion Æ(�). For small values of �; there may exist a constant � such that
Æ(�) � ��. If � is small, then Æ(�) is small whenever � is small, and we say
that the calculation is stable or well conditioned. If � is large, then Æ(�) is
large for small �. In that case, we speak of an unstable, or ill-conditioned

calculation. The number � is called the condition number.
Note that a calculation may be ill conditioned because of inherent sen-

sitivities of the problem to input perturbation, or because of the details of
the algorithm used. Although problem ill conditioning is unavoidable, we
may be able to circumvent ill-conditioned computations by redesigning the
algorithm.

Numerical analysis has developed many stable algorithms. Nevertheless,
the propagation of numerical errors cannot always be kept small, since the
sensitivity to input perturbations depends in part on the nature of the prob-
lem. As an example, we analyze the condition number of the problem of
determining the intersection of two lines in the plane. Intuitively, we expect
that the intersection can be determined with good accuracy when the lines
intersect at nearly a right angle, and we expect poor accuracy for lines that
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intersect at angles close to zero or 180Æ.
Finding the intersection of two lines involves matrix inversion. Given the

lines

a1x + b1y + c1 = 0

a2x + b2y + c2 = 0

we invert the matrix

A =

0
@ a1 b1

a2 b2

1
A

Matrix inversion has been studied extensively in numerical analysis, and
the condition number of a matrix A measures the sensitivity of the inverse
A�1 to perturbations in the entries of A. So, the accuracy with which the
matrix can be inverted can be estimated by the condition number of A.

The condition number of a matrix can be calculated from the norm of the
matrix and its inverse. A matrix norm is a function f that maps the matrix
A to a nonnegative real number with the following properties:

1. f(A) = 0 i� A contains all zeros.

2. If A and B have the same dimension, then f(A+B) � f(A) + f(B).

3. For any real number u; f(uA) = jujf(A).
The in�nity norm of the n� n matrix A is

k A k1 = max
1�i�n

(
nX

j=1

jaijj)

The condition number of A is given by

� = k A k1 k A�1 k1

We derive the condition number of the matrix A in terms of the angle between
the two lines.

Assume that each line equation has been adjusted such that the sum of
the squares of the coeÆcients of x and y is one. That is,

a21 + b21 = 1 and a22 + b22 = 1
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Then the matrix becomes

A =

0
@ cos(�) � sin(�)

cos(� + �) � sin(�+ �)

1
A

where � is the angle between the x axis and the �rst line, and � is the angle
between the two lines. The inverse of A is

A�1 = � 1

sin(�)

0
@ � sin(�+ �) sin(�)

� cos(� + �) cos(�)

1
A

So, we can estimate k A k1� 2 and k A�1 k1� 2= sin(�); assuming � <
180Æ. Therefore,

� � 4

sin(�)

This estimate shows that the system is well conditioned for angles � close to
90Æ; and is ill conditioned for angles close to 0Æ or 180Æ.

Under extremely favorable circumstances, we expect a perturbation of the
input coeÆcients of order 2�t; where t is the mantissa length, due to roundo�
in the last representable digit. For small angles �; we have sin(�) � �. Hence,
for an intersection angle of 1=2m; we expect to lose about m+2 binary digits.

We demonstrate the loss of precision due to small perturbation; for exam-
ple, due to roundo�. Assume that the line intersection (ux; uy) is computed
as before:

D = a1b2 � a2b1

ux = (c2b1 � c1b2)=D

uy = (a2c1 � a1c2)=D

We consider the pair of lines:

�x + y = 0

�(1 + q)x+ (1� q)y + 2q = 0

With q = 1=2m and m > 5; these lines intersect exactly in the point (1; 1);
at an angle q of less than 1Æ. Moreover, as long as m does not exceed the
mantissa length, the coeÆcients are exact in oating-point representation.
With these coeÆcients, the intersection point (1; 1) is determined without
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Figure 4.3 going in and going out Operations

error by oating-point arithmetic. We then perturb the coeÆcients by p =
1=2t; choosing t to machine precision. Speci�cally, we solve the following
perturbed system, expected to lead to the largest deviations with a coeÆcient
error no greater than machine precision:

�(1 + p)x+ (1� p)y = 0

�(1 + q � p)x+ (1� q + p)y + 2q = 0

With q = 1=218; the two lines intersect at approximately 1 arc second, re-
sulting in a condition number of 220. So, we expect to lose about 20 signif-
icant binary digits when perturbing the system by machine precision, cor-
responding roughly to 6 decimals. Double-precision arithmetic carries ap-
proximately 16 decimals in a mantissa of 53 bits. The computation for the
unperturbed system yields exactly (1:0; 1:0). The perturbed system yields
the point (1 + 3 � 10�11; 1 + 3 � 10�11) for t = 53; in good agreement with
predictions.

It is important to remember that the conditioning of line intersection is
inherent in the problem, not in the speci�c algorithm. Some algorithms will
do consistently better than others by avoiding, where possible, computations
that incur larger perturbations. However, only exact arithmetic will always
handle ill-conditioned intersections accurately, provided the input data are
not corrupted.

4.2.4 Compound Geometric Operations

A speci�c diÆculty with geometric computation is that we want to subject
a geometric object to several operations in sequence. That is, the output of
one computation becomes the input to the next. In this situation, precision
losses in one operation may accumulate, and may be magni�ed by subsequent
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p

Figure 4.4 Example Pentagon

operations. We consider a simple geometric problem that demonstrates this
phenomenon.

Consider a pentagon P in the plane. We draw the �ve diagonals of P ; their
intersections de�ne a contained, smaller pentagon Q. Let us call the operation
of passing from P toQ going in, and write symbolicallyQ = in(P ). Similarly,
we extend the �ve sides of P to their intersections, thus obtaining a larger
pentagon Q0 that contains P. We call this operation going out, and write
Q0 = out(P ). Clearly, P = out(in(P )) and P = in(out(P )); see Figure 4.3.
Beginning with P; let us iterate the going in operation m times, obtaining
Q = inm(P ); and then compute P 0 = outm(Q). Ideally, the coordinates of
the vertices of P and of P 0 should be equal. In practice, they may di�er by
a large error, even for small values of m.

We take the pentagon with vertices at (0; 0); (1; 0); (0; 1); (1 + p; 1); and
(1; 1+p); for small values of p; see also Figure 4.4. Table 4.1 shows the results,
with all computations done in double precision. The table demonstrates
dramatically that the numerical results from this simple geometric operation

p out2(in2()) out3(in3()) in2(out2()) in3(out3())

0.1 9 � 10�14 2 � 10�12 1 � 10�14 1 � 10�13
0.01 8 � 10�12 2 � 10�9 6 � 10�13 7 � 10�11
0.001 5 � 10�10 2 � 10�6 5 � 10�8 9 � 10�8
0.0001 5 � 10�8 1 � 10�3 5 � 10�5 2 � 10�4
0.00001 4 � 10�7 7 � 10�1 1 � 10�1 2 � 10�1
0.000001 2 � 10�4 7 � 10�1 1 � 10+2 5 � 10+2

Table 4.1 Absolute Error for Iterating going in and going out Operations
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can be quite inaccurate.
To understand the reason for the poor accuracy, we must analyze the

angles between intersecting lines as a function of p. In the �rst going in

operation, no angle is smaller than 45Æ. In the next going in operation,
angles as small as tan(p) arise; in the third operation, angles diminish to
approximately tan(p2). So, with small values for p; the composite condition
number for computing out3in3(P ) is proportional to 1=p3. Hence, in the
column labeled in3(out3()); we expect the error to grow at least with 103;
and this is con�rmed by the experiments.

4.3 Exact Rational Arithmetic

Given the accuracy problems of oating-point arithmetic, it is tempting to
use exact numbers throughout. For geometric objects with linear elements,
the most natural choice is to use rational numbers. As we saw in the case
of the pentagon problem, however, the iteration of geometric operations can
result in an unbounded growth of the digits we need to represent. For this
reason, we must limit the numerical precision by de�ning a grid of repre-
sentable planes beforehand.

We now study an exact approach to polyhedral intersection based on lim-
ited precision rationals. After discussing the grid of representable points,
lines, and planes, we explain the details of polyhedral intersection in this
framework. To maintain correctness, however, simple operations such as
translation and rotation must be considered carefully, since they require ap-
proximating points and planes that are not necessarily directly representable.
We conclude with a discussion of some of the strengths and weaknesses of
this approach.

4.3.1 The Grid of Representable Elements

Consider polyhedra in which the face equations are given numerically, and all
other information is symbolic. Thus, vertices are de�ned as the intersection
of three distinct planes, and lines containing edges as the intersection of two
distinct planes. A plane equation has the form

ax+ by + cz + d = 0

where a; b; c; and d are integers. We bound the magnitude of the coeÆcients
by requiring that �L � a; b; c � +L; where L might be 248 � 1. Moreover, d
is bounded by the square of L; as �L2 � d � L2.

The rationale for bounding the constant coeÆcient d di�erently is shown
in Figures 4.5 and 4.6, for two dimensions. In Figure 4.5, all coeÆcients are
bounded uniformly. We see that the resulting grid is less uniform than is the
grid of Figure 4.6, obtained by bounding d as explained previously. When
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computing with projective point coordinates (x; y; z; w),1 then these bounds
become uniform.

Since the projective point (x; y; z; w) corresponds to the aÆne point (x=w; y=w:z=w),
when w 6= 0, each point coordinate and each plane coeÆcient is then an in-
teger of magnitude at most L.

4.3.2 Boolean Operations

We are given two polyhedra with exact plane equations. When we perform
regularized Boolean operations on them, the faces bounding the result will
be contained in the faces of the input polyhedra. It follows that the set of
equations needed to specify the geometric position of the result polyhedron is
a subset of the equations of the input polyhedra. Thus, it is always possible to
represent the result of Boolean operations provided the input polyhedra are
representable, and there will be no growth in the precision of the numerical
data.

When examining the algorithm in Chapter 3, we see that the numerical
calculations needed to construct the result polyhedron are all reducible to
testing whether a point u; given as the intersection of the planes P1; P2; and
P3; is above, on, or below a plane P4. This test can be implemented as follows.
Let Pi = aix + biy + ciz + di = 0; and i = 1; 2; 3; 4. The coordinates of the
intersection u = (ux; uy; uz) can be computed from the following expressions:

D =

���������

a1 b1 c1

a2 b2 c2

a3 b3 c3

���������

Ux = �

���������

d1 b1 c1

d2 b2 c2

d3 b3 c3

���������

Uy = �

���������

a1 d1 c1

a2 d2 c2

a3 d3 c3

���������

Uz = �

���������

a1 b1 d1

a2 b2 d2

a3 b3 d3

���������

1See Section 5.2 in Chapter 5.
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Figure 4.5 Grid of Lines ax+ by + c = 0; Where jaj; jbj; jcj < 3

Figure 4.6 Grid of Lines ax+ by + c = 0; Where jaj; jbj < 3; and jcj < 9
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as

ux = Ux=D

uy = Uy=D

uz = Uz=D

Thus, the point u will be above, on, or below the plane P4 i� the expression

a4ux + b4uy + c4uz + d4

is greater than, equal to, or less than zero, respectively. Multiplying by D;
this expression becomes

a4Ux + b4Uy + c4Uz + d4D

which is the development of the determinant

J =

������������

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4

������������

However, since D may be negative, we must correlate the signs of J and of
D. Thus, u is above P4 i� J and D both have the same sign; it is below P4

i� J and D have opposite signs. The point u is on P4 i� J = 0.
Example 4.1: Consider the intersection u = (1; 1; 1) of the three planes

P1 : x � 1 = 0; P2 : y � 1 = 0; and P3 : 1 � z = 0. Given the plane
P4 : x + y � z = 0; we test whether u is above, on, or below P4. The
determinant J evaluates to �1; so u is not on P4. Moreover, the determinant
D is �1; so u is above P4. 3

The evaluation of J requires summing products of the form aibjckdl. Each
product is bounded by L5; and there are at most 24 such products; hence,
the magnitude of J can be bounded by 24L5. If the precision bound L is
expressed in terms of l binary digits, then this means that performing Boolean
operations requires 5l + 5 binary digits for all intermediate computations.
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4.3.3 Rigid Motions

If a grid plane is rotated or translated, it is clear that the resulting plane may
not be representable. For example, when rotating the plane z = 0 about the
x axis by 30Æ; we obtain the plane ay+ bz = 0 with a coeÆcient ratio a : b of
1 :

p
3. Thus, this plane cannot be represented with integer coeÆcients. In

consequence, we must investigate ways in which to perform these operations
approximately, without violating the integrity of objects. In particular, a
plane P that should be moved to a position Q0 that is not representable
must be moved instead to a nearby plane Q that is representable. We call
this process element rounding. Throughout, we assume that every plane
equation ax + by + cz + d = 0 is reduced; that is, there is no common factor
dividing all four coeÆcients.

Translation

Consider the translation

x1 = x� tx

y1 = y � ty

z1 = z � tz

It maps the plane
P : ax + by + cz + d = 0

to the plane
P 0 : ax1 + by1 + cz1 + e = 0

where e = d+ atx + bty + ctz. Since P is reduced, P 0 must also be reduced.
Hence, P 0 is representable i� jej � L2. In that case, the translation is exact.
Otherwise, the plane is not representable and must be rounded, as described
later.

Rotation

Every rotation can be expressed as a sequence of rotations about the coor-
dinate axes. We therefore restrict the discussion to a single rotation about
the z axis. Rotations about the other coordinate axes are analogous. Such a
rotation corresponds to a coordinate transformation of the form

x1 = ux� vy

y1 = vx+ uy

where u2 + v2 = 1; that is, u = cos(�) and v = sin(�). Without loss of
generality, we assume that �90Æ � � � 90Æ.
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t

(u’,v’)

Figure 4.7 Parameter Interpretation of t

Given an angle �; u and v could be irrational. Therefore, we locate a
nearby angle �0 such that u and v are rational; that is, we seek a rational
point (u0; v0) on the unit circle close to the point (u; v). A simple method for
�nding rational points on the circle is to use the rational parametric form of
the circle, given by

u0 =
1� t2

1 + t2

v0 =
2t

1 + t2

where we substitute a rational number for t. The parameter t has a geometric
meaning, shown in Figure 4.7, and can be expressed in terms of � as t =
tan(�=2). From the rational approximation m=n of t; we obtain the rational
point (u0; v0); where

u0 =
n2 �m2

n2 +m2

v0 =
2nm

n2 +m2

on the unit circle. Using this point, the plane

P = ax + by + cz + d = 0
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is thus transformed into the plane

P 0 = a0x1 + b0y1 + cz + d = 0

where a0 = au0 � bv0 and b0 = av0 + bu0. After clearing the denominator and
reducing the equation, the resulting coeÆcients might exceed L in magnitude,
and, if so, the plane must be rounded.

4.3.4 Rational Approximations

The operations of the previous section necessitate two types of approxima-
tions:

1. Given a positive real number w; �nd a rational number p=q approxi-
mating w such that q does not exceed a bound Q.

2. Given a plane equation ax+by+cz+d = 0; �nd a nearby plane equation
that is representable; that is, �nd a plane a0x+ b0y + c0z + d0 = 0 with
integer coeÆcients such that ja0j; jb0j; jc0j � L; and jd0j � L2.

As we shall see, the techniques for approximating a real number can be used
for the second problem also.

Rational Approximations of a Real Number

Let w be a positive real number. We wish to approximate w by a rational
number p=q such that q � Q. We exclude exhaustive search, since it takes
time proportional to Q; and hence is too slow in practice.

The �rst method will simply use q = Q. Let p = [wQ] be the closest
integer to wQ. Then the rational p=Q is an approximation of w. Moreover,
since jwQ�[wq]j � 0:5; the error in this approximation is bounded by 1=(2Q).
We call this the naive approximation method. For example, with w = 0:123
and Q = 100; we obtain the approximation 12=100 = 3=25; with a total error
of 0:003. Note that the approximation can be constructed in constant time.

The second method uses continued fractions to approximate w. The
continued-fraction representation of a positive real w is an in�nite sequence
of integers (k0; k1; k2; :::) such that w is the limit of convergents ui of the form

u0 = k0; u1 = k0 +
1
k1
; u2 = k0 +

1

k1 +
1

k2

;

u3 = k0 +
1

k1 +
1

k2 +
1

k3

; � � �



4.3 Exact Rational Arithmetic 131

Given a positive real number w; the following algorithm constructs the continued-
fraction expansion of w:

1. Set r0 = w and k0 = bwc.
2. Repeat the following for i = 1; 2; :::; until ri = ki: Set

ri =
1

ri�1 � ki�1
ki = bric

If w is a rational number, then the algorithm terminates eventually with
rn = kn. In this case, we de�ne kn+1 = kn+2 = ::: = 0. Otherwise, the
algorithm determines an in�nite sequence of integers ki.

The computation of the ith convergent

ui = k0 +
1

k1 +
1

k2 + � � � 1

ki�1 +
1

ki

is facilitated by the following recurrence. For i = 0; 1; 2; :::; let ui = pi=qi;
and de�ne p0 = k0; q0 = 1; p�1 = 1; q�1 = 0. Then

ui =
kipi�1 + pi�2
kiqi�1 + qi�2

for i � 1. The convergents ui = pi=qi are rational approximations of w whose
precision is

jw � uij � 1

q2i
Since we bound the denominator of the approximation, it makes sense to

speak of the best approximant of w. If Q is the bound on the denominator,
then p=q is the best approximant if

jw � p

q
j � jw � r

s
j

for all integers r and s such that 0 < s < Q. It is known from number theory
that the best approximant of w either is a convergent ui of the continued-
fraction expansion of w; or else has the form

kpi�1 + pi�2
kqi�1 + qi�2
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where ki=2 � k < ki. The latter fraction is called a quasi-convergent.
Using these facts, we therefore determine an approximation for w as fol-

lows:

1. Compute the continued-fraction expansion, as speci�ed previously.

2. On determination of the next ki; test whether qi = kiqi�1 + qi�2 is
greater than Q. If so, set n = i � 1 and stop; otherwise, continue the
expansion.

3. Determine the largest k between kn+1=2 and kn+1 such that kqn+qn�1 �
Q. Choose either un or the quasi-convergent using k; depending on
which rational is closer to w.

Thus, we obtain a rational approximant p=q satisfying q � Q. It can be
shown that the error of this approximation is bounded by 1=(qQ). We call
this the continued-fraction approximation method.

To analyze the complexity of the continued-fraction method, we consider
the number of iterations needed to construct the approximant. Clearly, the
slowest growth of the denominator sequence (q1; q2; :::) happens when all ki
are 1. In this case, the qi form the Fibonacci sequence,

1; 1; 2; 3; 5; 8; 13; :::

Let � = (1 +
p
5)=2. From number theory we know that the ith Fibonnaci

number is larger than �i�2. Hence, the method requires O(log(Q)) steps and
determines the best approximant p=q with q < Q.

The continued-fraction method is easy to implement. However, the re-
peated divisions can introduce errors in the approximation. For example,
when approximating 0:123; the following sequence of pairs (ri; ki) is deter-
mined, using double-precision oating-point arithmetic:

k0 = 0 r0 = 0:123

k1 = 8 r1 = 0:13008107624663445

k2 = 7 r2 = 0:687513271369275

k3 = 1 r3 = 0:45451737681859816

k4 = 2 r4 = 0:20013590459294717

k5 = 4 r5 = 0:9966046923658309

k6 = 1 r6 = 0:00340687500229432343

k7 = 293 r7 = 0:5241220372356565
...

...
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Here, r7 should be 1, since the correct expansion of 0:123 is

(0; 8; 7; 1; 2; 4; 1; 0; 0; 0; :::)

Thus, it is important to compare the accuracy of the convergents with the
original number at each step in the expansion iteration.

Element Rounding

Now consider approximating an arbitrary plane equation by one whose coef-
�cients are bounded by L and L2; respectively. For notational simplicity, we
broaden the problem and approximate

a1x+ a2y + a3z + a4 = 0

where the ai are reals and should be approximated with integers bounded
separately by jaij � Li. It is our intention to reduce this problem to separate
approximation problems for the coeÆcients.

The ratio jaij=Li measures by how much the coeÆcient ai exceeds its
bound. Dividing by the maximum ratio, we obtain a plane equation b1x +
b2y + b3z + b4 = 0; in which one coeÆcient is jbkj = Lk and the others obey
jbij � Li. Next, we divide by bk and obtain an equation in which the kth

coeÆcient is 1.

w1x+ w2y + w3z + w4 = 0; wk = 1

By approximating the wi with rationals jpi=qj � jwij; where q � Lk; we
obtain the approximate equation

r1x + r2y + r3z + r4 = 0; rk = 1

After multiplying with q; all coeÆcients satisfy the required bounds. Thus,
we have reduced the problem of approximating the coeÆcients simultane-
ously to a problem of approximating each coeÆcient separately, albeit with
a uniform bound on the denominator.
Example 4.2: Consider the plane equation

3:2x+ 4:5y + 12:3z + 30 = 0 (4.1)
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where the coeÆcients of x; y; and z should be bounded by 3, and the constant
term by 9. The maximum ratio is 12:3=3 = 4:1; hence, we divide by 4:1 and
obtain

0:7804878x+ 1:0975610y + 3z + 7:3170732 = 0

Subsequent division by 3 yields the equation

0:2601626x+ 0:3658537y + z + 2:4390244 = 0

So, with a bound q = 3; the approximation to equation (4.1) is therefore

1

3
x +

1

3
y + z +

7

3
= 0

which is equivalent to
x+ y + 3z + 7 = 0

3

The naive method for constructing a rational approximant to a real lends
itself naturally to the problem of element rounding, since the rational ap-
proximations will have uniform denominators.

The continued-fraction method, in contrast, often gives better approxi-
mants, but it does not result in uniform denominators. By using the de-
nominator bound 4

p
Lk; we can circumvent this diÆculty, and we can also

construct plane-equation approximants.

4.3.5 Object Reconstruction

If a polyhedron has been subjected to a translation or a rotation, some of
its elements may have been rounded. In consequence, the integrity of the
object may have been violated. To appreciate this problem, consider Fig-
ures 4.8 through 4.10, where we have restricted the modeling domain to two
dimensions.

Figure 4.8 shows the union of 150 triangles, randomly generated with one
vertex on a circle of radius 10�4; and the other two vertices on the unit
circle. We observe that the boundary of the resulting object contains many
small features, such as the narrow crack shown in magni�cation in Figure
4.10. When translating or rotating the object, we have no guarantee that
in the new position there exist representable grid lines that can bound such
a feature. Possibly, then, element rounding may have altered the feature to
look as shown in Figure 4.11, so a simple polygon might be changed to one
whose edges intersect.

To sidestep this problem, we reduce it to the primitive objects from which
all complex polyhedra are built using Boolean operations. That is, when
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Figure 4.8 Union of 150 Random Triangles

translating or rotating a complex polyhedron P; we separately translate or
rotate the primitives from which P has been built, and then reconstruct P
from the resulting primitive objects. If the primitives can be translated or
rotated without violating their integrity, then this reconstruction approach
eliminates the problem for complex polyhedra, albeit with a penalty in eÆ-
ciency. Moreover, the topology may change slightly, since element rounding
may alter somewhat the shape of each primitive.

We now consider the problem of maintaining the topological integrity of
primitive objects. Presumably, this problem is simpler, since the topology of
primitive objects can be kept very simple. That is, we could restrict the prim-
itives to be parallelepipeds, from which all polyhedra could be constructed
in principle by a suitable sequence of regularized Boolean operations. More
generally, we postulate that all primitive polyhedra are trihedral; that is, ex-
actly three faces are incident at each vertex. Trihedral polyhedra are also
called simple in the literature. So, when slightly altering the plane equation,
trihedral vertices remain trihedral, unless an incident edge of the primitive
object is small compared to the positional perturbation of the plane.
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Figure 4.9 Border, Magni�ed Three Times

Assume that the primitive object is a parallelepiped, with the six plane
equations

Px0 : �x = 0 Px1 : x = a

Py0 : �y = 0 Py1 : y = b

Pz0 : �z = 0 Pz1 : z = c

Here a; b; and c are the side lengths of the parallelepiped and are positive.
They are rational, with a numerator that is less than L2 and a denominator
that is less than L. We note that the vertices on the plane Px0 lie below
the plane Px1; and that the vertices on the plane Px1 lie below the plane

Figure 4.10 Border, Magni�ed 500 Times
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Figure 4.11 Possible Feature Alteration Through Translation or Rotation

Px0. Similarly, the vertices on the plane Py0 lie below the plane Py1; and so
on. Thus, we have 24 consistency conditions specifying that a certain vertex
lies below a certain plane. It is clear that these can be evaluated for the
translated or rotated primitive, after element rounding. When satis�ed, the
new primitive is topologically valid. If one or more condition is violated, then
the motion destroys the integrity of the primitive.

4.3.6 Remarks on Using Rational Arithmetic

When using rational arithmetic, it is crucial to control the growth of digits
in repeated geometric operations. This is accomplished by requiring that all
shape elements be derived from a �xed grid of representable planes. Because
translation and rotation may require element rounding, object reconstruc-
tion from separately translated or rotated trihedral primitives may be nec-
essary. Moreover, the primitives must satisfy a minimum-feature-separation
criterion, so we can be assured that the shape alterations due to element
rounding do not invalidate the topology.

Although rational approximation to real numbers is fairly well understood,
the process of approximating planes in this context is not fully explored. For
example, the quality of the plane approximation depends on which part of
it is the �nal face area. If this area is in the vicinity of the origin, small
rotations of the plane can be tolerated, provided the center of rotation is
nearby. If the face area is distant, small rotations about the origin can lead
to large positional perturbations of the face.

The method has been based on representing the plane equations numeri-
cally. Alternatively, we could represent vertex coordinates, placing a bound
on the precision. When we do so, a plane on which a set of points lies has
coeÆcients that must be of bounded length. Again, translations and rota-
tions may necessitate element rounding and object reconstruction. Rather
than being trihedral, the primitives now must have triangular faces so that
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positional perturbations of the vertices, due to element rounding, can be ac-
commodated. In this style of representation, element rounding seems easier
and better behaved, since rounding vertex coordinates does not cause large
perturbations elsewhere.

As mentioned earlier, element rounding may introduce slight shape alter-
ations. When reconstructing an object, there is no guarantee that two prim-
itives that intersect prior to a rigid motion will also intersect afterwards. In
consequence, the reconstructed object may di�er in detail from the original
object. It is unclear whether the approach can be modi�ed in such a way
that the object topology is preserved.

4.4 Representation and Model

When working with oating-point numbers, imprecise numerical results are
inevitable. In consequence, internal inconsistencies of the representation of
a geometric object are possible. So, we need to elucidate what is described
by such a representation. Only after we are in possession of a precise geo-
metric meaning of such representations can we address the question whether
a geometric algorithm has been correctly implemented. Thus, we introduce
the concepts of representation and model. After these concepts have been
explained and a de�nition of correctness has been given, we discuss several
approaches to robust geometric computations and related results that illus-
trate some of the technical diÆculties.

A representation is a data structure intended to describe a geometric ob-
ject, possibly using imprecise arithmetic data. It contains symbolic data
describing adjacencies and incidences, and, usually, arithmetic data, such as
the plane coeÆcients for each face. A representation has a model, if there
exists an object in Euclidian space satisfying the symbolic part of the de-
scription precisely. To the numerical data of the representation, there cor-
responds numerical data of the model. The numerical model data might
require in�nite-precision numbers.

As an example, consider the representation of a cube, whose symbolic data
speci�es only the topology of vertices, edges, and faces, but makes no mention
of the fact that the faces are square and that opposite faces are parallel. Then
any six-sided trihedral polyhedron with quadrilateral faces will be a model,
irrespective of the approximate numerical data of the representation that
might have been given as vertex coordinates. It is clear that this de�nition
of model is too broad to be useful, so we attempt to capture more accurately
the intent of the representation.

Clearly, the intuition of a representation is that the numerical data given
are close to the exact data intended. Therefore, it makes sense to compare
the exact numerical data of the model with the approximate numerical data
of the representation: A model M of a given representation R is �-close, if
the largest deviation of the numerical data of the representation from the
exact model data is not greater than �. This is an absolute error notion that
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suÆces for our purposes, but it could clearly be replaced by a relative error
de�nition.

A given representation may have exact numerical data. In this case, the
representation is its own model, and such a model is called the natural model
of the representation. To determine whether a given representation possesses
a natural model, we verify whether the numerical data, considered to be exact
as written, are consistent with the topological data. Of course, this requires
suÆcient precision in the calculation so as not to lose information. In some
cases it is clear that the representation has a natural model. For example, a
point set in the plane always has a natural model, since there are no symbolic
data to be satis�ed. On the other hand, the representation of a polyhedron
need not have a natural model.

We can now clarify when a k-ary geometric operation op is correctly im-
plemented: The implementation of op is correct, if for every legitimate input
representation Ri there exists a model Mi such that the following are true:

1. The algorithm constructs an output representation R without failing.

2. There is a model M of R such that M = op(M1; :::;Mk).

The de�nition is further re�ned to capture the precision of the algorithm
as follows: Given that each model Mi is �-close to its representation, the
model M is Æ(�)-close to R. Here, one wants a function Æ such that Æ(�) is
not excessively large compared to �.

In the case of polyhedra, it is common to assume that the representation
describes a model that is �-close to a given representation. This is often
expressed by saying that there is a \fuzz region" enveloping the surface, and
that the intended exact polyhedron lies within this fuzz region. As we shall
demonstrate next with an example, from a mathematical point of view, this
appealing intuitive concept is defective.

4.4.1 Models of Purely Symbolic Representations

We consider whether a purely symbolic representation of a geometric object
possesses a model. No numerical data are given in the representation; hence,
a model exists i� we can assign real numbers to the symbolic coordinates
such that the constraint equations implied by the symbolic representation
are satis�ed. We wish to show that this existence question is nontrivial.

As an example, we consider geometric objects consisting of lines, given as
[a; b; c]; and points, given as (u; v; w); where a; b; c; u; v; and w are symbols.
We consider points and lines in projective 2-space. See also Section 5.2 of
Chapter 5.

The triple [a; b; c] symbolizes the line equation ax + by + cz = 0; where
z is the homogenizing variable. The triple (u; v; w) are the projective point
coordinates. Specifying that the point P = (u; v; w) is incident to the line
L = [a; b; c] means that the equation au+ bv + cw = 0 can be satis�ed, and
we write this fact as L(P ).
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We specify an arrangement of points and lines by the following rules:

(D1) All lines and points must be declared in advance, as triples of symbols.
No two lines and no two points so declared are equal.

(D2) If a point P is incident to a line L; then this fact is explicitly stated
as L(P ). If two lines L1 and L2 intersect in the declared point P; then
this fact is expressed explicitly by the two incidence statements L1(P )
and L2(P ).

(D3) No other incidences exist among declared points and lines except those
explicitly stated.

These rules mirror the common requirement of boundary representation
schemata that vertices, edges, and faces be distinct, and that they do not
intersect except in explicitly speci�ed adjacencies.

Given a symbolic object speci�cation in the preceding methodology, we
investigate whether it can be realized as a point/line con�guration in real
two-dimensional projective space P2. That is, we ask whether there exists
an assignment of real numbers to the symbols such that

1. The equations entailed by (D2) are satis�ed.

2. All points and lines are distinct and satisfy (D3).

Consider the following con�guration, consisting of nine distinct points,

P1 = (u1; v1; w1); : : : ; P9 = (u9; v9; w9)

and of nine distinct lines

L1 = [a1; b1; c1]; : : : ; L9 = [a9; b9; c9]

The required incidences are as follows:

L1(P1); L1(P3); L1(P5); L2(P2); L2(P4); L2(P6);

L3(P1); L3(P2); L3(P7); L4(P2); L4(P3); L4(P9);

L5(P3); L5(P4); L5(P8); L6(P4); L6(P5); L6(P7);

L7(P5); L7(P6); L7(P9); L8(P1); L8(P6); L8(P8);

L9(P7); L9(P8); L9(P9)

This con�guration exists in P2 and is shown in Figure 4.12. However, if the
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Figure 4.12 Realizable Point/Line Con�guration

last incidence constraint, L9(P9); is removed, then there is no such con�gu-
ration in P2; since that would contradict Pascal's theorem, a fact not easily
recognized mechanically.

Consider a conic in which a hexagon has been inscribed. Pascal's theorem
states that opposite sides of the hexagon intersect in three points that must
be collinear. In Figure 4.12, the conic is degenerate in that it consists of
the two lines L1 and L2. The hexagon has the vertices P1 through P6. The
opposite sides P1; P2 and P4; P5 intersect in the point P7. The other two
pairs of opposite hexagon sides intersect in the points P8 and P9. By Pascal's
theorem, therefore, P7, P8, and P9 must lie on the line L9.

This example demonstrates that a purely symbolic representation raises
existence problems. Were we to base geometric operations on this representa-
tion, we would have to verify, for each object, whether it has a model | that
is, whether the object exists. There are algorithmic techniques for deciding
such questions, but they require potentially excessive symbolic computations
and an elaborate theoretical machinery to justify their correctness. Some
citations are given at the end of the chapter.

A further diÆculty with the purely symbolic representation is that an
actual embedding may require irrational coordinates. We demonstrate this
fact with the following example. Consider the con�guration shown in Fig-
ure 4.13, consisting of the nine points P1; :::; P9 and the nine lines L1; :::; L9.
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Figure 4.13 Incidence Con�guration Requiring Irrational Points

All incidence constraints are easily satis�ed, except the incidence of point
P9 with each of the four lines (P1; P5); (P2; P6); (P3; P7); and (P4; P8). The
con�guration is realized by the pentagram some of whose points have irra-
tional coordinates. We assume that it can also be realized with rational point
coordinates, and derive a contradiction from this assumption.

If the con�guration can be realized with rational coordinates, then every
rational projective transformation of it must preserve both the incidences
and the rationality of the coordinates. From projective geometry, we know
that there exists a nonsingular projective transformation mapping two given
quadruples of points into each other, provided that no three points in a
quadruple are collinear.2 So, we may assume without loss of generality that
the projective (x; y; w) coordinates of P1; P2; P3; and P4 are (0; 0; 1); (1; 0; 1);
(1; 1; 1); and (0; 1; 1); respectively.

Assume �rst that neither P7 nor P8 is at in�nity. Then P7 may be assigned
the coordinates (a; 0; 1) and P8 the coordinates (b; 0; 1). Note that a 6= 0
and b 6= 0; since all points must be distinct. So, P6 = (a; a; 1 + a); and
P5 = (1; 1� b; 2� b). The coordinates of P9 are (b; b� a; 1 + b� a); because
P9 is the intersection of the lines (P4; P8) and (P3; P7). The point P9 is also
incident to the lines (P1; P5) and (P2; P6); hence,

b + a2 � 2a = 0

2In Section 5.5.5 of Chapter 5, such transformations are explicitly constructed. Note
that the transformation will be rational when mapping between points with rational
coordinates.
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b2 � a = 0

Elimination of a yields the polynomial b4� 2b2+ b = 0 with the roots b1 = 0;
b2 = 1; b3 = �1

2
(
p
5 + 1); b4 = 1

2
(
p
5 � 1). The rational roots b1 and b2

yield degenerate con�gurations. Hence, the realization of the nondegenerate
con�guration requires irrational coordinates, assuming all points are at a
�nite distance from the origin.

Since the con�guration is symmetric, it suÆces to consider that P7 is at
in�nity. Since P8 is on the line (P1; P7; P2) and is not equal to P7; we have
therefore the coordinate assignments P7 = (1; 0; 0) and P8 = (b; 0; 1). A
simple computation shows that now P3 and P6 must coincide, as must P4

and P9. But then P9 cannot lie on (P2; P6) = (P2; P3). In summary, the
point coordinates in this con�guration cannot all be rational, no matter how
the con�guration is realized in the plane.

4.4.2 The Role of Decision Making

Assume we implement a geometric algorithm using oating-point arithmetic.
We know that we must deal with imprecise numerical data, and that we
cannot always be certain that the outcome of some numerical computation
allows us to draw correct conclusions. By carefully analyzing the condition
number of each calculation, we can establish the following paradigm:

A numerical computation C is carried out. Subsequent process-
ing depends on making a logical decision based on whether the
outcome of the computation is positive, zero, or negative. As
long as the magnitude of the result r exceeds a certain threshold
t(C); we can make a correct decision based on r. If the magni-
tude of r is smaller than t(C); then a decision based on r alone
is uncertain.

When the decision is uncertain, we could make it arbitrarily; for instance,
we could require that a result r of magnitude jrj < t(C) is understood to
mean r = 0. But such a decision could have consequences for other, later
decisions, so we must make each decision in a logically consistent manner.

The paradigm allows us to identify three basic approaches to devising
robust geometric algorithms:

1. Restructure all computations such that the logical decisions are inde-
pendent.

2. Establish consistency of the decisions by symbolic reasoning. The rea-
soning steps analyze the logical dependencies and assume that the sym-
bolic data are exact as written.

3. Establish consistency, altering the symbolic data as necessary.
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4.4.3 Irredundant Decision Making

Inconsistencies among geometrically related logical decisions arise when dif-
ferent numerical computations are performed independently, even though
their results are not independent. Therefore, we attempt to restructure the
algorithm such that di�erent computations that determine geometrically de-
pendent questions are eliminated. This practical idea is illustrated by the
algorithm for regularized intersection of Chapter 3. It requires a careful ex-
amination of the possible dependencies present among the numerical steps.

It seems unlikely that the approach is capable of eliminating all possi-
bilities for failure. However, since the robustness of an algorithm increases
perceptibly even when interdependencies are eliminated only partially, this
approach is very attractive in practice.

4.4.4 Preserving Symbolic Data

Dependencies of logical decisions are not always simple to recognize. So, we
add symbolic computations to determine logical consequences. How diÆcult
is such symbolic reasoning in speci�c situations? In the case of intersecting
two simple polygons in the plane, it is not at all diÆcult. However, when
intersecting three polygons simultaneously, or when intersecting polyhedra,
it could be quite hard.

Intersecting Polygons

Consider the problem of intersecting two polygons in the plane. This prob-
lem is suÆciently simple that all uncertain numerical results can be decided
independently and no symbolic reasoning will be needed to maintain consis-
tency. Nevertheless, the problem is not trivial and, by altering it slightly, we
increase its diÆculty.

Polygon intersection requires as subroutines numerical calculations to de-
cide whether two edges intersect and whether, in particular, a vertex of one
polygon is incident to an edge of the other polygon. The speci�c logical
diÆculty in an implementation is that the incidences, as determined by the
algorithm, may not be satis�able in Euclidian geometry; that is, that there
need not be models of the input polygons that satisfy the incidences deter-
mined in the course of intersection. In view of this, we say that an edge
e of polygon A is overconstrained if it contains one or more vertices of the
polygon B in its interior.3 For overconstrained edges we need to prove that
these additional incidences can be satis�ed in Euclidian geometry without
sacri�cing the fact that the edge is a line segment. Note that vertex/vertex
incidences do not create such problems.

As an example, consider the two n-gons shown in Figure 4.14. If the inter-
section algorithm determines that every vertex of the �rst n-gon is incident

3We refer here to the relative interior of the edge; that is, to the edge without its end
points.
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Figure 4.14 Intersecting Two n-Gons

to an edge of the second n-gon, and vice versa, then no two polygons exist
in Euclidian geometry that satisfy every one of these incidences:

Proposition

Given two polygons A and B in the Euclidian plane, there is at
least one edge that is not overconstrained.

Proof

Assume that the two polygons have m and n vertices, respec-
tively. A vertex of polygon A cannot overconstrain two or more
edges of B; hence, if every edge is overconstrained, then m = n.
Consider the convex hull of the vertices of the two polygons. Then
at least one vertex, say of A; must be a vertex of the convex hull,
and this vertex cannot constrain any edge of B. Hence, there is
at least one edge in B that is not overconstrained. 2

Now, if at least one edge is not overconstrained, then we can construct two
model polygons4 that satisfy all incidences that may have been postulated
by the implementation. This is done by a placement strategy that constructs
the model polygons in a speci�c sequence. The intuition is as follows: If an
edge is not overconstrained, then it can be placed last. Thus, we remove all
such edges, with their vertices, obtaining a set of polygonal arcs. Some of
the removed edges have constrained other edges, so now there will be new
unconstrained edges, since we removed edges along with their endpoints.
These edges are removed next, and the procedure is repeated until no edges
remain. Thereafter, the edges are reconstructed in Euclidian space and are
placed such that the required incidences are satis�ed. Since, at the time of
placing, an edge is not overconstrained, there is no diÆculty preserving the
linearity of all edges. Thus, we can construct model polygons that satisfy

4Polygons need not be simple; that is, the boundary is allowed to self-intersect.
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all required incidences, and therefore can also obtain a model that is the
intersection of these input models.

With these observations in mind, we implement polygon intersection in
the expected manner, but require that any two vertices of a given polygon
are no closer than 3� to each other, and that the minimum distance from
any vertex to another edge is also at least 3�. If any vertex of A is closer
than � to an edge or vertex of B; then we decide that the distance is zero. If
every edge is overconstrained, then we arbitrarily undo one such incidence.
This must create an unconstrained edge somewhere, and hence permits the
construction of suitable models establishing correctness.

After two polygon representations have been so intersected, the resulting
representation need not satisfy the minimum separation bound on vertices
and edges. Thus, a postprocessor may be needed that restores the minimum-
feature-separation condition. Postprocessing may require obliterating short
edges; that is, it a�ects the symbolic data as well.

A key factor in the correctness of this procedure is that we do not consider
additional constraints such as the possible collinearity of di�erent polygon
edges. Were we to do so, then the approach would fail because now a single
vertex of B could overconstrain two or more edges of A.

A similar diÆculty arises when intersecting three polygons simultaneously,
for a single vertex of one polygon may simultaneously overconstrain an edge
in each of the other two polygons. In particular, we can obtain con�gurations
such as the one shown in Figure 4.12 from superimposing three polygons.
We conclude that the simultaneous intersection of three or more polygons is
more diÆcult, since it allows us to create con�gurations that are the subject
of theorems in projective geometry. That is, in such problems, di�erent
incidence decisions are logically interdependent in possibly complex ways.

Remarks on Preserving Symbolic Data

Incidence requirements can lead to diÆcult reasoning problems. Polygonal
intersection is free of these diÆculties as long as we do not require satisfac-
tion of additional positional properties, such as the collinearity of di�erent
edges. These constraints can be introduced, for example, by considering the
simultaneous intersection of three or more polygons.

Polyhedral intersection in three dimensions is considerably more diÆcult,
since it no longer is evident how to reposition a face consistently to satisfy
incidence decisions. As an example, consider the polyhedron A shown in
Figure 4.15. Assume we need to adjust the plane containing the face f to
accommodate some incidence decisions we made when analyzing the position
of A with respect to some other polyhedron B. Since we must preserve the
planarity of f; at most two vertices can remain in the original position. At
the other vertices, therefore, the shape and, possibly, the position of adjacent
faces must also be changed to preserve the topological structure. In conse-
quence, the operation of repositioning a face requires a global alteration of
the polyhedron. Whether such an alteration can be carried out | that is,
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f

Figure 4.15 Repositioning the Face f Requires Changing Adjacent Faces

whether there exists a model of the altered polyhedron representation | is
not immediately clear.

The stringent requirement that the topological data agree between rep-
resentation and model also a�ects what bounds can be established on the
closeness Æ of the output model M; as a function of the closeness � of the
input modelsM1 andM2. The reason for this is foremost a technical one: As
stated, when proving correctness of an implementation in this framework, we
have to show that we can satisfy the incidence constraints introduced during
the course of the computation, by consistently repositioning the elements of
the input models. In all likelihood, this repositioning is sequential, for proof
purposes; for instance, as in the polygon intersection algorithm. But the
repositioning sequence a�ects the �nal position of the vertices, edges, and
faces. For example, consider the con�guration shown in Figure 4.16. Here,
positioning vertices in the order 1, 3, 4, 5, 2, 7, 6 is much more favorable
than is positioning them in the order 1, 2, 7, 6, 3, 4, 5, since a small position
perturbation of the vertices 2, 6, and 7 leads to a large perturbation of the
vertices 3 and 5. Thus, not only would we like to show that a consistent
sequence of repositioning operations exists, for all inputs and all incidence
decisions based on the inputs, but also that the speci�c sequence leads to
small positional perturbations.

4.4.5 Altering the Symbolic Data

So far, we have required that the symbolic data of the representation be
satis�ed by the model. Thus, the symbolic data are considered more trust-
worthy than are the numerical data, when deducing the intended meaning
of a given representation. The rationale for giving priority to the symbolic
data is that they can be represented easily without error. Assuming that
there exists a reliable method for de�ning geometric objects, the symbolic
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Figure 4.16 Sequence Dependence of Positional Perturbation

data in the representation ought to be correct as given. However, objects
are often constructed from other objects by geometric operations, so there
is the chance that the implementation has introduced some unintended al-
terations into the symbolic data. Especially if some elements of an input
object have been repositioned over large distances, the topology of the out-
put object could well di�er from what was intended. Therefore, if altering
the symbolic data slightly would result in smaller positional perturbations,
we could also take the view that the numerical data are more accurate than
are the symbolic data. This motivates exploring the consequences of chang-
ing the symbolic data; for example, by subdividing edges and faces, followed
by slight positional perturbations of the subdivided elements.

For polygonal regions in the plane, we can base such an approach on the
concept of normalizing the input data. We postulate that no two vertices
are closer than some tolerance �; and that, likewise, no vertex is closer to
an edge than �. The algorithm alters the input data to satisfy these two
requirements. Two operations are needed, vertex shifting and edge cracking,
illustrated in Figures 4.17 and 4.18.

Vertex shifting merges two vertices that are closer than � into a single
one. There is no diÆculty doing this if we base the representation on vertex
coordinates. Having so identi�ed all vertices that lie close, we next apply
edge cracking and subdivide any edge provided that there is a vertex that
lies close to it. If the edge is (u; v); and w lies close to it, then (u; v) is
replaced by the two edges (u; w) and (w; v). Thus, new edges and vertices
are introduced, thereby modifying the symbolic, topological data.

The sequential nature of eliminating near coincidence of vertices and edges
in the subdivision method can introduce positional perturbations that are
much larger than �. An example for edge cracking is shown in Figure 4.19.
Here, the initial cracking of (u0; v0) by the vertices u1 and v1 brings the
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v

Figure 4.17 Vertex Shifting

vertices u2 and v2 close to the middle segment (u1; v1); which is cracked
next. This, in turn, introduces further subdivision, so the largest vertex
displacement, in this case, is proportional to n�; where n is the number of
vertices.

4.5 Discussion

We have discussed several competing approaches for dealing with the accu-
racy and robustness problems in geometric computation. Roughly speaking,
they fall into one of four categories:

1. Guarantee exact data by using bounded rational arithmetic, or exact
algebraic numbers.

2. Ameliorate the problem by restructuring the algorithm to limit the
redundancies among the numerical computations performed.

3. Include reasoning steps in the computation, but try to satisfy the sym-
bolic input data exactly.

4. Alter the meaning of the geometric elements; that is, modify the sym-
bolic data in an attempt to minimize positional perturbations.

u v

w w

u v

Figure 4.18 Edge Cracking
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Figure 4.19 Additive Positional Perturbation in Edge Cracking

So far, exact approaches have not had a signi�cant impact on geometric
modeling systems in practice, due to the perceived ineÆciency of implement-
ing exact arithmetic computations. It may well turn out, however, that the
tradeo� between robustness and eÆciency is so exacting that we may have
to reevaluate our demands for eÆciency.

For linear geometric objects, the bounded-precision-rational arithmetic
approach o�ers both accuracy and a measure of eÆciency. However, the
need to reconstruct P for a rigid motion and the fact that this may alter the
topology of P are limitations. It is not clear how conveniently the approach
can generalize to geometric objects with nonlinear elements. Speci�cally, the
intersection of planes with integer coeÆcients is a rational point, but the
intersection of quadric surfaces with integer coeÆcients need not be rational.
Already in two dimensions, the intersection of the circle x2 + y2 � 1 = 0
with the line x � y = 0 is irrational. Once the range of coeÆcients is �xed,
it is clear that there must be a �xed minimum distance between any two
representable distinct points. However, estimates of the needed precision to
separate them are unfavorable.

In Section 4.4.1, we showed that the topology of certain objects may lead
to existential problems, since not all object descriptions make sense. We
concentrated on purely symbolic descriptions to show that this problem is
independent of whether or not we have numerical data. An important con-
clusion to draw from the example is that the familiar description of geometric
objects using inexact numerical data may contain subtle errors.

The existence problem is the main motivation for drawing a distinction
between representation and model. It is clear that we cannot simultane-
ously represent all geometric models; a simple counting argument shows that.
More important, we cannot naively assume that a given representation makes
sense, even though, based on approximate metric data, the computer is able
to give, for instance, a graphical rendering of it that appears to be meaning-
ful.
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In practice, heuristics are employed that ameliorate but do not eliminate
the robustness problem. Conceptually, we view these heuristics as attempts
to reduce the logical interdependence of decisions that are based on numerical
computations. For example, when intersecting polyhedra, the asymmetry of
the algorithm presented in Chapter 3 ensures that many incidence questions
are not asked in two di�erent ways. Rather, once incidence or nonincidence
has been decided on, this fact is used to subdivide the faces of polyhedron
A and of polyhedron B simultaneously. Other heuristics include structuring
the computations such that numerical input data are used where possible,
rather than derived numerical data being used. For example, when testing
edge/edge intersection, the computations are expressed in terms of the plane
equations involved, and do not use a derived parametric representation of
the two edges.

A strict adherence to the topological data seems to necessitate symbolic
reasoning. In general, such reasoning can be expensive; see also the next
section. It is possible that some geometric operations of interest to solid
modeling do not require expensive reasoning, but this topic is relatively un-
explored.

4.6 Notes and References

Condition numbers and related concepts for analyzing the sensitivity of
oating-point algorithms are standard techniques in numerical analysis. In
the case of linear geometric objects, books on matrix techniques, such as
Golub and van Loan (1983), are useful. The pentagon example of Section
4.2.4 was proposed by Dobkin and Silver (1988), who advocate extending the
precision of the mantissas dynamically during the computations as required.
Similar numerical examples can be generated with matrices. First, multiply
A and its inverse each m times with itself. Then, multiply the resulting
matrices with each other, and compare the product to the identity matrix.

The material on exact rational arithmetic is from a lecture K. Sugihara
gave in 1987 at the IMA Summer Program on Robotics at the University
of Minnesota. This material is appearing now; see Sugihara and Iri (1988
and 1989). Tighter bounds can be given on the internal precision needed to
decide incidence. Using Hadamard's inequality, Sugihara bounds the magni-
tude of the determinant J by 16L5. For sharp lower bounds on the minimum
separation distance see Yu (1991). Several element-rounding techniques are
discussed in Sugihara (1987). For plane rounding, Sugihara also considers
the basis-reduction method | see, for example, Lov�asz (1986) | which usu-
ally gives better results than does the continued-fraction method. However,
both methods ignore the interaction between coeÆcient perturbation and the
locality of the �nal face on the plane.

Karasick, Lieber, and Nackman (1989) experiment with adaptive tech-
niques for reducing the cost of rational arithmetic without bounding the
precision of the rationals involved. Given a determinant jAj with rational



152 Robust and Error-Free Geometric Operations

entries whose sign must be determined, they try to transform jAj to another
determinant jA0j whose entries are also rationals but have numerators and
denominators of smaller precision. Under certain conditions, the determi-
nant jA0j has the same sign as jAj and can be found quickly. In that case,
the evaluation of jA0j is cheaper. If the conditions are not met, then jAj must
be evaluated and no savings are realized. Karasick, Lieber, and Nackman
report that a Delaunay triangulation algorithm with rational arithmetic can
be sped up by several orders of magnitude using this approach.

The notion of representation and model, and the approach to designing
robust implementations that preserve the symbolic data, were developed in
Ho�mann, Hopcroft, and Karasick (1988). The paper notes the connec-
tion between Pascal's theorem and the simultaneous intersection of three
polygons, and an expanded version discusses the line con�guration requiring
irrational coordinates. The idea of limiting the interdependence of numerical
computation is from Ho�mann, Hopcroft, and Karasick (1987).

The problem of whether a speci�c point/line con�guration can be realized
in Euclidian geometry can be investigated using oriented matroid theory.
Bokowski and Sturmfels (1986) and Bokowski, Richter, and Sturmfels (1989)
give an algorithm solving the problem. See also Bokowski and Sturmfels
(1989).

A variation of the embedding problem arises in geometric theorem prov-
ing: Given an embedded con�guration, we typically ask whether certain addi-
tional incidences are satis�ed. Di�erent techniques for solving such problems
can be found in Chou (1988), in Kapur (1986), and in Kutzler (1988). All
algorithms for geometric theorem proving may require exponential running
times on planar con�gurations composed from circles and lines. As Hong
(1986) shows, the symbolic computations arising in this context can be re-
placed by equivalent numerical computations carried out at suÆciently high
precision. However, in the case of con�gurations consisting of circles and
lines, exponentially many digits may be needed. See also Section 7.6 in
Chapter 7 for a Gr�obner basis approach to geometric theorem proving.

The method of Section 4.4.5 is called data-normalization; see Milenkovic
(1988). Milenkovic proposes a second paradigm for altering the symbolic
data, called the hidden-variable method. In it, each line is replaced by an
x; y-monotonic curve having the property that the curve does not intersect
a line parallel to the coordinate axes more than once and is close to the line
within some global bound. The method is based on careful computations of
line-intersection points. Whenever a new intersection point is determined,
consistency calculations are performed that may re�ne other line-intersection
points, so that a topologically consistent function can be constructed that
assigns to each point/line pair one of the labels on, above, or below, with
the obvious meaning.

A related approach to �nite-precision geometric computation is presented
in Greene and Yao (1986). Considering an integer grid of representable points
and a set of line segments whose endpoints are representable, they break line
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segments to reposition intersections on representable points. Theorems are
given that prove termination and consistency of the procedure.

Recall that the result of certain numerical computations must be compared
with zero, and that conclusions are drawn depending on whether the result
is positive, zero, or negative. For instance, the computation might determine
the Euclidian distance of a point from a plane, and the result would then
indicate whether the point is on the positive or negative side of the plane,
or that it lies on the plane. Let us call the zero case a positional degeneracy.
Positional degeneracies can be eliminated by perturbing the coordinates of
the elements relative to each other, after which we would need to consider
only two possible outcomes; namely, whether the result is positive or negative.

Most geometric algorithms simplify substantially when positional degen-
eracies are eliminated from consideration, and this is a major motivation
of research on this subject. Edelsbrunner and M�ucke (1988) propose the
\SOS method," and prove that the �nal perturbations eliminate all exist-
ing degeneracies while not creating new ones. Yap (1988) presents a similar
technique. Both schemes require fairly simple geometric input objects and
exact arithmetic. Edelsbrunner and M�ucke (1988) consider points and elimi-
nate collinearity of three and coplanarity of four or more points. Yap (1988)
takes a more abstract approach. Under the assumption that all numerical
computations can be expressed as �xed polynomials in the input parameters,
he shows that consistent perturbations exist that eliminate the possibility of
any polynomial evaluating to zero.

It would seem that perturbation schemes not only pay o� in that geometric
algorithms become simpler, but that they also could increase robustness.
However, two diÆculties must be addressed:

1. We must ascertain that a perturbation is permissible. In the context of
solid modeling, a positional degeneracy such as the coincidence of two
face planes may be intentional. A perturbation of the relative position
of the planes could be contrary to the designer's intentions, and hence
would be inappropriate.

2. The challenge in designing a perturbation scheme is to maintain the
integrity of the geometric objects whose elements have been so per-
turbed. As we saw in the example of point/line incidences, this can be
a diÆcult problem.

The �rst diÆculty is problem-dependent, and there are applications in which
perturbation makes sense. For instance, perturbations seem to be appro-
priate when eliminating hidden lines during graphic display operations; see
Sugihara (1989).

The second diÆculty is technical in nature. For example, Yap's method
would need to be extended such that the zeros of a certain subset of the
polynomials are preserved. This subset would contain polynomials that ex-
press constraints of incidence, coplanarity, and so on. Such extensions have
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not been incorporated thus far. However, geometric theorem proving could
provide the necessary tools fairly conveniently.



Chapter 5

Representation of Curved

Edges and Faces

The focus of this chapter is the question of how to represent curved surface
elements in boundary representation. Simple conventions suÆce for the pla-
nar situation. For example, the geometric locus of an edge can be speci�ed
by the coordinates of its two bounding vertices. Curved boundary elements
are not that simple, and we have to give a two-part description, consisting
of a surface or space curve, the carrier of the face or edge, and a boundary

description that delimits a subarea or segment. In the case of planar faces,
the carrier is the plane containing the face and the boundary description is
an edge graph. The carrier for an edge of a polyhedron is a line and can be
inferred from the vertices.

In this chapter, we explore some of the issues arising when speci�c con-
ventions are chosen for the two parts. In the case of the carrier speci�cation,
we discuss ways in which the surface can be given, and explain techniques for
converting between them. When specifying the bounding structure of edges
and faces, some geometric problems must be considered to avoid ambiguities.
These are also discussed.

We restrict attention to algebraic surfaces and curves. This restriction is
reasonable in the sense that the class is very rich and includes most of the
curves and surfaces used in, for instance, engineering design. In particular,
this class includes all the major parametric surfaces used in geometric mod-
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eling, including Bezier surfaces, nonuniform rational B-splines, and so on. It
does not include all surfaces and space curves, however. For example, the
helix is not an algebraic space curve.

5.1 Chapter Overview

We begin with a brief review of aÆne versus projective space. Although one
ordinarily considers geometric objects in aÆne spaces only, there is a tech-
nical advantage to considering them also in projective space. For example,
the question whether a curve has a rational parametric form cannot be de-
cided unless curve properties \at in�nity" are taken into account, and these
properties are revealed when the curve is considered in projective space.

We then explain basic properties of implicit and parametric curve and
surface representations. Both methods have distinct and complementary
advantages. In the case of implicit surfaces, it is straightforward to decide
whether a given point in space is or is not on the surface. For a parametric
surface, on the other hand, it is easy to generate points that lie on the surface.

Because of such complementary strengths, the problem of how to convert
from one form to the other is of great practical interest. General techniques
exist for converting from parametric to implicit form, at least in principle,
and we review here a simple version based on the Sylvester resultant. In
Chapter 7, we show how to use Gr�obner bases techniques for this purpose.

Whereas the conversion from parametric to implicit form is always poss-
ible, the conversion from an implicit to a parametric form depends on speci�c
properties not shared by all algebraic curves and surfaces. These properties
are fairly technical in nature and determining them algorithmically is dif-
�cult, so we omit this characterization. Instead, we give several methods
for parameterization that are applicable to restricted classes of curves and
surfaces.

Parameterization of quadratic curves and surfaces is a classical problem,
and we give two di�erent methods. We then discuss in detail the parame-
terization of cubic curves. Some higher-degree curves and surfaces are easy
to parameterize, including the class of monoids. For this reason, monoids
have been proposed by some authors as a basic shape element in geometric
modeling. We discuss monoid parameterization also.

Up to this point, the material deals with representations of the carrier of
edges and faces. The identi�cation of edges and faces on curved carriers raises
problems not encountered in the polyhedral domain, as discussed toward the
end of the chapter. The problem here is that the geometric and topologi-
cal structure of the carrier creates opportunities for ambiguities in that, for
example, the speci�cation of an edge as a segment bounded by two points
on a space curve could be interpretable in di�erent ways. In consequence,
additional data are needed to disambiguate the representation.
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5.2 AÆne and Projective Spaces

We will use both aÆne and projective spaces. AÆne n-dimensional space is
the familiar n-space.1 Using Cartesian coordinates, a point in this space has
coordinates

(x1; x2; :::; xn)

where the xi are always �nite. Ordinarily, the coordinate values of the xi
are real numbers, but for some results from algebraic geometry we must also
consider points with complex coordinates. When this fact is critical, we will
mention it explicitly.

Projective n-dimensional space consists of points with n + 1 coordinates
(x0; x1; x2; :::; xn); where not all xk are zero. Again, each coordinate value is �-
nite. Moreover, for nonzero numbers t; both (x0; x1; :::; xn) and (tx0; tx1; :::; txn)
describe the same point. The variable x0 is sometimes called the homoge-

nizing variable. We will usually write it as the �rst coordinate. However,
any one of the other variables could be considered to be the homogenizing
variable, a fact we will illustrate further.

As before, we may have to consider complex coordinates. In projective
space, the points (0; x1; :::; xn) are said to be points at in�nity. These points
form the hyperplane x0 = 0. In particular, for n = 2; the points at in�nity
comprise the line at in�nity.

AÆne n-space can be considered a restriction of projective n-space by
requiring x0 6= 0. In this sense, we might say that aÆne space is the �nite part
of projective space. In turn, projective n-space can be embedded into aÆne
n + 1 space as follows: Consider each point (a0; a1; a2; :::; an) of projective
space as the line

x1 = a1t

x2 = a2t
...

xn = ant

xn+1 = a0t

In consequence, projective n-space is the space of all lines in aÆne (n + 1)-
space that contain the origin. The restriction of projective n-space to aÆne
n-space may now be considered to be all points in which the embedded line
space intersects the plane xn+1 = 1. Figure 5.1 illustrates the embedding
of two-dimensional projective space into three-dimensional aÆne space. In
the �gure, the point P = (a0; a1; a2) of projective 2-space corresponds to
the line l through the origin of aÆne 3-space. The point p = (a1=a0; a2=a0)

1Euclidian space, considered in Chapter 2, Section 2.4, is aÆne space endowed with
the Euclidian distance metric.
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Figure 5.1 Embedding Projective Space into AÆne Space

corresponding to P in aÆne 2-space is embedded into aÆne 3-space as the
intersection of the line l with the plane x3 = 1.

In aÆne spaces, the origin (0; 0; :::; 0) is a distinguished point. In projec-
tive n-space, we distinguish n+ 1 fundamental points with the coordinates

(1; 0; :::; 0; 0)

(0; 1; :::; 0; 0)
...

(0; 0; :::; 1; 0)

(0; 0; :::; 0; 1)

For example, in the projective plane, the point (1; 0; 0) is the aÆne origin,
the point (0; 1; 0) is the intersection of the x axis with the line at in�nity,
and the point (0; 0; 1) is the intersection of the y axis with the line at in�nity.
The fundamental points span the tetrahedron of reference.

An aÆne transformation is a linear transformation of the form

y1 = a11x1 + a12x2 + :::+ a1nxn + b1

y2 = a21x1 + a22x2 + :::+ a2nxn + b2
...

yn = an1x1 + an2x2 + :::+ annxn + bn

Intuitively, an aÆne transformation may shear or stretch a geometric shape.
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Figure 5.2 AÆne Transformation of a Circle

Simple examples include rotations and reections. Note that the matrix

0
BBBBBB@

a11 a12 � � � a1n

a21 a22 � � � a2n
...

...
...

an1 an2 � � � ann

1
CCCCCCA

can be singular, in which case the transformation achieves a parallel projec-
tion.
Example 5.1: The aÆne transformation

y1 = x1

y2 = x1 + x2

changes the circle x21 + x22 � 1 into the ellipse 2y21 � 2y1y2 + y22 � 1. See also
Figure 5.2. 3

A projective transformation is a linear transformation of the form

y0 = a00x0 + a01x1 + a02x2 + :::+ a0nxn

y1 = a10x0 + a11x1 + a12x2 + :::+ a1nxn

y2 = a20x0 + a21x1 + a22x2 + :::+ a2nxn
...

yn = an0x0 + an1x1 + an2x2 + ::: + annxn
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Figure 5.3 Projective Transformation of a Circle

It is well known that a projective transformation can change a circle into
any conic section. Singular projective transformations are routinely used in
computer graphics for computing perspective images.
Example 5.2: The projective transformation

y0 = x2

y1 = (x0 + x1)=2

y2 = (x0 � x1)=2

changes the circle x21+x22�x20 into the hyperbola y
2
0�4y1y2; shown in Figure

5.3. 3

5.3 Implicit Representations

5.3.1 Implicit Surfaces

Every algebraic surface in aÆne 3-space is determined by an implicit equation

f(x; y; z) = 0

where f(x; y; z) is a polynomial in the unknowns x; y; and z. The surface
consists of all points (x; y; z) that satisfy this equation. In solid modeling,
real coordinates are considered. However, to apply results from algebraic geo-
metry, we must allow complex coordinates; see also Section 7.2.1 in Chapter
7.

The surface is irreducible if f does not factor over the �eld of com-
plex numbers; that is, if there do not exist two nonconstant polynomi-
als h(x; y; z) and k(x; y; z); possibly with complex coeÆcients, such that
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f(x; y; z) = h(x; y; z)k(x; y; z). A surface that is not irreducible is reducible.
For example, the cylinder x2 + y2 � 1 = 0 is an irreducible surface, but
x2+y2 = 0 is a pair of planes, for x2+y2 = (x+ iy)(x� iy). The planes have
points with complex coordinates and intersect in the real line x = y = 0.
Note that, over the �eld of real numbers, x2 + y2 does not factor. Deter-
mining algorithmically whether a given polynomial f(x; y; z) factors over the
�eld of complex numbers is diÆcult.

Reducibility of a surface f = 0 means geometrically that the surface can be
decomposed into two separate surfaces, each of which can be described sep-
arately by an implicit equation. This requires examining the surface in com-
plex space, since we can �nd examples of surfaces in real three-dimensional
space that appear to consist of two disjoint components that are, in fact,
connected when complex surface points are considered.

The gradient or normal vector of the surface f(x; y; z) = 0 is the vector
(fx; fy; fz); where fx; fy; and fz are the partial derivatives of f by x; y; and z;
respectively. For example, the gradient of the sphere f = x2+y2+z2�1 = 0
at the point (x; y; z) is (2x; 2y; 2z). So, at (1; 0; 0); the gradient is (2; 0; 0).
Sometimes, the gradient vector is normed to length 1. A point (x0; y0; z0) on
an irreducible surface f = 0 is regular if the gradient at the point is not the
zero vector. Otherwise, the point is singular.

For every surface point, there exists a tangent space to the surface, con-
sisting of all tangent lines to the surface at that point. It can be proved that,
at a regular point, the tangent space is a plane, called the tangent plane. At
a singular point, the tangent space is a cone; that is, it is a surface generated
by lines each containing the singular point.

Assume that the surface f = 0 contains the origin. It is not diÆcult to
show that, at the origin, the equation of the tangent space is given by the
terms of lowest degree in f. For example, the sphere x2 + y2 + z2 � 2x = 0
contains the origin and has at that point the tangent plane 2x = 0.

The terms of lowest order are called the initial form of f. If the origin is
a regular point of f = 0; then the initial form is linear; that is, the tangent
space equation is that of a plane. If the origin is singular, then the initial
form of f is nonlinear and describes the tangent cone.

Consider the initial form h(x; y; z) of f(x; y; z); and assume that the origin
is a singular surface point. All terms in h have equal degree d > 1. Consider
any point p = (a; b; c) on the surface h = 0; where p is not the origin. Then
the point q = (ta; tb; tc) is also on h = 0 for all values of t; since h(q) = tdh(p).
It follows that h contains the line

x = ta

y = tb

z = tc

Note that this line contains the origin. Since the line is constructed with an
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arbitrary point p 6= (0; 0; 0) on h = 0; we have shown that the initial form
de�nes a cone whose vertex is the origin.

The initial form gives information about the surface geometry at the ori-
gin. Similarly, the degree form of f, consisting of all terms of highest degree
in f, yields information about the surface behavior at in�nity.

The polynomial f describing a surface f = 0 is not a unique description of
the surface, since cf(x; y; z) = 0 also describes the surface, provided that c is
not zero. For this reason, a surface of degree n can be considered as a point
in projective m-space, where m + 1 is the number of possible coeÆcients;
that is,

m =

0
@ n + 3

3

1
A� 1 =

n(n2 + 6n + 11)

6

For example, to each quadric in 3-space there corresponds a point in projec-
tive 9-space, since a quadric is speci�ed by the ratio of 10 coeÆcients.

The formula form is derived as follows. Let T (n; k) be the number of terms
of degree up to n that can be formed with k variables. Clearly, T (n; 1) = n+1.
When forming all terms with k+1 variables, we can group them by xj; where
x is one of the variables. Then the group for xj consists of all terms xju;
where u is formed with k variables and has degree 0; 1; :::; n�j. The possible
terms u are, therefore, all terms of degree up to n� j that are formed with
k variables, so

T (n; k + 1) =
nX

j=0

T (j; k)

By induction, one shows easily that

T (n; k) =

0
@ n + k

k

1
A

Note that m = T (n; 3)� 1.
If f is multiplied with a polynomial g; then the zeros of the product

g(x; y; z)f(x; y; z) = 0 are of the union of the zeros of f = 0 and of the
zeros of g = 0. When g is varied, only the zeros of f are in every zero set.
This motivates de�ning the surface f = 0 as the set of common zeros of
all polynomials of the form g(x; y; z)f(x; y; z); where g is any polynomial,
including the trivial polynomial c; where c is a constant. The set of all such
polynomials is an ideal | more precisely, a principal ideal | and f is a
generator of the ideal. Ideals will be discussed in Chapter 7.

The polynomial f(x; y; z) = 0 describes a surface in aÆne 3-space. The
corresponding surface in projective 3-space is obtained through homogenizing

the polynomial f ; that is, by substituting x=w for x; y=w for y; and z=w for
z in f; followed by clearing the denominators.2 The resulting polynomial

2Note that we use the same coordinate variables for the aÆne and the projective spaces.
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F (x; y; z; w) is the homogeneous form of f. All of its terms are of equal order.
Similarly, the aÆne form can be obtained from F by substituting 1 for w in
F. For example, the aÆne quadric

x2 + 2x+ y2 + z2 � 1 = 0

is homogenized as

x2 + 2xw + y2 + z2 � w2 = 0

We have used w as the additional, homogenizing variable. However, by
a simple homogeneous transformation, we can rename variables. In e�ect,
the embedding of aÆne space into projective space is changed by such a
transformation. For example, consider x = 0 to be the plane at in�nity.
Then the aÆne part of projective space consists of the points

��
y

x
;
z

x
;
w

x

� ���� x 6= 0
�

so the �nite part of the surface x2 + 2xw + y2 + z2 � w2 = 0 is the surface

1 + 2w + y2 + z2 � w2 = 0

in aÆne (y; z; w)-space. This may change the shape of the surface since
now, as it were, we \see" a di�erent �nite part of it. In our example, the
sphere x2 + 2x+ y2 + z2 � 1 = 0; in (x; y; z)-space, has been changed to the
hyperboloid 1 + 2w + y2 + z2 � w2 = 0; in (y; z; w)-space.

5.3.2 Implicit Curves

An algebraic space curve is the common intersection of two or more surfaces.
Although solid modeling usually restricts attention to those space curves that
are the intersection of just two surfaces, one should remember that certain
space curves cannot be de�ned algebraically as the intersection of only two
surfaces.3

As in the case of surfaces, a space curve can be understood as the set
of common zeros of all polynomials of the form u1f1 + u2f2 + � � � + ukfk;
where the ui are arbitrary polynomials in x; y; and z; and the fi are �xed
polynomials de�ning the intersecting surfaces. The polynomials of this form
constitute the ideal generated by the fi.

3There are subtleties in this statement that are discussed in Chapter 7, Sections 7.2.5
and 7.2.6.
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A rational map between two projective spaces of the same dimension is a
map

y0 = F0(x0; :::; xn)

y1 = F1(x0; :::; xn)
...

yn = Fn(x0; :::; xn)

where the Fi are homogeneous polynomials of the same degree. It induces
the rational map

yi =
Fi(1; x1; :::; xn)

F0(1; x1; :::; xn)

between the embedded aÆne spaces. A rational map is birational if it is
invertible; that is, if there exists an inverse rational map. Simple examples
of birational maps are provided by the (rational) parametric representation
of certain curves and surfaces. Here, a parametric curve is in birational
correspondence with a line, and a parametric surface is in birational corre-
spondence with the plane. From algebraic geometry, we know that every
algebraic space curve is in birational correspondence with some plane alge-
braic curve. As we shall see, this fact plays a role in some surface-intersection
algorithms.

5.3.3 Bezout's Theorem

Algebraic geometry has studied the relationship between the degree of an
algebraic curve and the number of points in which that curve intersects an-
other algebraic curve. The �rst theorem of this kind is due to Bezout and is
as follows.

Theorem

Let f and g be two algebraic curves of degree m and n; respec-
tively. If f and g intersect in more than mn points, then they
have a common component.

In consequence, two curves that do not share a common component have at
most mn intersection points. By assigning multiplicities to some of these
intersections, we can put the theorem into a stronger form.

Theorem

Let f and g be two algebraic curves of degree m and n; respec-
tively. Then f and g intersect in exactly mn points, or they have
a common component.

In this form, Bezout's theorem is valid only if we consider the complex curve
points, as well as curve points at in�nity. In the parlance of Chapter 7,
we must consider the curves in projective space over an algebraically closed
ground �eld.
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We can use Bezout's theorem to explain when a curve point is a multiple
point. Take a point u on the plane algebraic curve f of degree n and consider
a set of lines through u. By Bezout's theorem, most of these lines intersect
f in n points. If a line intersects f in n � 1 additional points, then u is a
simple or a regular point. A point that is not simple is a multiple or singular
point. Note that it is not appropriate to infer multiplicities from the graphs
of the curves in real aÆne space.

It is known that an algebraic curve has only a �nite number of points
that are not simple, and that a line has no multiple points. So, if all lines
through u intersect f in less than n�1 additional points, then u is a multiple
point. This de�nition of a multiple point is useless, however, because of the
following.

Consider turning a line l through the curve point u. As the line rotates,
centered at u; it intersects f in a �xed number of additional points, say n�m;
where m is the multiplicity of u; except for �nitely many positions at which
l intersects f in less than n � m additional points. Each such exceptional
position de�nes a tangent to f at u.4 If u is a regular point, there is only one
such exceptional position. If u is a multiple point, then there could be up to
m di�erent exceptional positions, where m is the multiplicity of the point.
Therefore, we de�ne point multiplicity as follows.

The point u on the curve f has multiplicity m if an in�nite number of lines
through u intersect f in n�m additional points. In particular, if in�nitely
many lines intersect f in n � 2 additional points, then u is a double point.
Again, this procedure makes sense only if complex as well as real curve points
are considered, and when intersections at in�nity are considered.

Bezout's theorem can be generalized to surfaces and space curves as fol-
lows.

Theorem

An algebraic space curve of degree m intersects an algebraic sur-
face of degree n in mn points unless a curve component is con-
tained in the surface. Two algebraic surfaces of degree m and n;
respectively, intersect in an algebraic curve of degree mn unless
they have a common component.

As before, we must consider the curves and surfaces in complex projective
space.

4Let f be a curve that contains the origin. Then we can show that the exceptional line
positions are given by the roots of the initial form of f.
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5.4 Parametric Representations

5.4.1 Parametric Surfaces

Some, but not all, algebraic surfaces possess a parametric representation.
Such a representation consists of three functions:

x = h1(s; t)

y = h2(s; t)

z = h3(s; t)

For speci�c values of s and t; these functions assign the coordinates of a
surface point in (x; y; z)-space. For example, the unit sphere can be param-
eterized by

x =
1� s2 � t2

1 + s2 + t2

y =
2s

1 + s2 + t2

z =
2t

1 + s2 + t2

From the parameter values s = t = 1; we obtain, for instance, the point
(�1

3
; 2
3
; 2
3
) on the sphere.

In the example of the sphere, the parameterization does not \reach" the
point (�1; 0; 0); unless in�nite values of s and t are permitted. We refer to
such points as singularities of the parameterization. In�nite parameter values
raise computational problems. Later, we give a projective parameterization
of the sphere that avoids such singularities.

We view a parametric representation as a map from the (s; t)-plane to the
surface in (x; y; z)-space. Most of the time, this map will be rational; that
is, the functions h1; h2; and h3 will be ratios of polynomials in s and t. In
special situations, they can be polynomial. A mathematical characteriza-
tion of when a rationally parameterizable surface has, in fact, a polynomial
parameterization is a nontrivial problem. Note, however, that a rational
parameterization of a surface in aÆne (x; y; z)-space corresponds to a poly-
nomial parameterization of the same surface in projective (w; x; y; z)-space.
The projective unit sphere is de�ned parametrically as

x = 1� s2 � t2

y = 2s

z = 2t

w = 1 + s2 + t2



5.4 Parametric Representations 167

We typically view (s; t)-space as an aÆne plane, expecting that distinct
pairs (s; t) correspond to distinct surface points. We call such a parameter-
ization an aÆne parameterization. On occasion, we will want a projective

parameterization. Then the map is between a projective plane with, say,
(r; s; t) coordinates and the surface in (x; y; z)-space. For u 6= 0; (r; s; t) and
(ur; us; ut) yield the same surface point, since both coordinate triples refer
to the same point in the projective plane. A projective parameterization of
the aÆne unit sphere is

x =
r2 � s2 � t2

r2 + s2 + t2

y =
2rs

r2 + s2 + t2

z =
2rt

r2 + s2 + t2

A projective parameterization of the projective unit sphere is

x = r2 � s2 � t2

y = 2rs

z = 2rt

w = r2 + s2 + t2

Note that the parameter triple (r; s; t) = (0; 1; 1) is mapped to the point
(�1; 0; 0) on the aÆne sphere that could not be reached with �nite (s; t)
values by the aÆne parameterization.

5.4.2 Parametric Curves

Some, but not all, algebraic curves possess a parametric representation. For
example,

x(t) =
1� t2

1 + t2

y(t) =
2t

1 + t2

is an aÆne parameterization of the unit circle in the aÆne plane. Again, we
consider the parametric representation as a map, from a line with coordinate
t to a curve in (x; y)-space. The point (�1; 0) on the circle is a singularity
for this parameterization.
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Again, the curve can be projectively parameterized. The projective pa-
rameterization of the circle is given by

x(r; t) =
r2 � t2

r2 + t2

y(r; t) =
2rt

r2 + t2

The pair (r; t) de�nes a point on a projective line. The projective param-
eterization maps the point (r; t) = (0; 1) to the singular point of the aÆne
parameterization.

As an example of a parametric representation of a space curve, we mention
the twisted cubic:

x(t) = t

y(t) = t2

z(t) = t3

A curve or surface parameterization is faithful if all but �nitely many
distinct parameter values correspond to distinct curve or surface points. For
example, the parameterization

x(s) = � s4 + 2s3 + 3s2 + 2s
s4 + 2s3 + 3s2 + 2s+ 2

y(s) =
2(s2 + s+ 1)

s4 + 2s3 + 3s2 + 2s+ 2

(5.1)

of the unit circle is not faithful. To see this, observe that with t = s2 + s+1
we obtain from equation (5.1) the familiar parameterization of the circle.
Thus, for all t; we have

(x(s0); y(s0)) = (x(s1); y(s1))

where s0 and s1 are the roots of s
2 + s + 1 = t.

5.4.3 Computer-Aided Geometric Design

In computer-aided geometric design (CAGD), there is a rich body of knowl-
edge about special classes of parametric curves and surfaces. These classes
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are typically de�ned as linear combinations of certain base functions. Exam-
ples are Bezier curves and surfaces, and B-spline curves and surfaces. The
importance of these curve and surface classes, briey, stems from the follow-
ing:

1. There is a method for constructing a curve or surface from a certain
polygon or polyhedron, such that the shape of the polygon (polyhe-
dron) gives a geometric intuition of, and control over, the shape of the
curve (surface).

2. There are a number of elegant methods for evaluating and manipulating
such curves and surfaces.

3. There are algorithms for aggregating larger curves or surfaces from
patches of individual parametric curves or surfaces such that smooth-
ness conditions between the patches are satis�ed.

An in-depth discussion of these classes and their associated algorithms is
beyond the scope of this book. At the end of this chapter, we cite a number
of references on the subject.

5.5 Conversion from Implicit to Parametric Form

A useful capability in solid modeling is the conversion between implicit and
parametric surface representations, since each form has di�erent inherent
strengths. Whereas all curves and surfaces with a rational parametric form
can be converted to implicit form, at least in principle, not all implicit alge-
braic curves and surfaces possess a rational parametric form. In the case of
curves, a complete characterization is given by Noether's theorem.

Theorem

A plane algebraic curve f(x; y) = 0 possesses a rational paramet-
ric form i� f has genus 0.

Roughly speaking, the curve genus measures the di�erence between the actual
number of double points of f and the maximum number of double points a
curve of the same degree as f may have. One knows that a plane curve of
degree n can have no more than (n�1)(n�2)=2 double points, and this fact
has an elementary proof. However, counting the number of double points of
f is more subtle and involves the behavior at in�nity as well as the internal
structure of singular points. Algorithms for determining the genus exist but
are nontrivial.

A similar characterization exists for surfaces, �rst given by Castelnuovo.
For this characterization, two surface invariants are de�ned from which nec-
essary and suÆcient conditions for the existence of a parametric form are
formulated. The invariants are not easily portrayed in intuitive terms.

The proof of Noether's theorem does not provide an eÆcient or simple
computation for deriving a curve parameterization. However, for curves of
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Implicit Form Parametric Form

Circle x2 + y2 � r2 = 0 x(t) = r 1� t2

1 + t2
y(t) = r 2t

1 + t2

Ellipse x2

a2
+ y2

b2
� 1 = 0 x(t) = a 1� t2

1 + t2
y(t) = b 2t

1 + t2

Hyperbola x2

a2
� y2

b2
� 1 = 0 x(t) = a 1 + t2

1� t2
y(t) = b 2t

1� t2

Parabola y2 � 2px = 0 x(t) = t2

2p
y(t) = t

Table 5.1 Standard Parameterization of Conics

degree 2 and 3, and for curves of special types such as monoids, simple
techniques do exist. We de�ne monoids later and describe how to param-
eterize them. Little appears to be known about the numerical behavior of
these techniques, and the literature on this subject customarily assumes exact
arithmetic.

5.5.1 Conics

We can use two basic approaches when parameterizing a conic:

1. Transform the conic into one for which a parametric form is already
known, and then transform back this standard parameterization.

2. Parameterize the curve by a pencil of lines (de�ned later) through some
curve point.

The �rst method requires a coordinate transformation of the conic that uses
standard methods from linear algebra. The second method, with an ap-
pealingly simple underlying geometric idea, uses a modicum of coordinate
transformations to simplify the implicit equation of the conic. It requires
knowledge of a real curve point.

Since conics are well understood, the parameterizations for circle, ellipse,
hyperbola, and parabola are well known when the curves are positioned suit-
ably. We list them in Table 5.1.

A simple strategy for parameterizing a given conic is, therefore, �rst to
transform the coordinate system so that the conic is properly positioned,
then to retrieve a standard parameterization, and �nally to apply the inverse
transformation to the parametric representation.

First Method of Conic Parameterization

Any nondegenerate conic can be transformed into one of the conics in Table
5.1, using translations and rotations of the coordinate system. Formulae for
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computing the necessary transformation directly from the coeÆcients of the
implicit curve equation are known, but are not reproduced here. Instead, we
develop a more general method based on projective transformations, since it
generalizes directly to quadric surfaces. Note, however, that projective trans-
formations do not necessarily preserve the type of the conic. For example,
it is possible that an ellipse is mapped to a hyperbola. For the purpose of
curve parameterization, this is immaterial.

The general implicit conic equation, in homogeneous form, is

a11x
2 + a22y

2 + a33w
2 + 2a12xy + 2a13xw + 2a23yw = 0

It can be written as the bilinear form

(x y w)

0
BBB@

a11 a12 a13

a12 a22 a23

a13 a23 a33

1
CCCA

0
BBB@

x

y

w

1
CCCA = 0

Let

A =

0
BBB@

a11 a12 a13

a12 a22 a23

a13 a23 a33

1
CCCA

be the coeÆcient matrix of the conic. We seek a nonsingular matrix T such
that B = T�1AT is diagonal. If the matrix A does not have full rank, then
some diagonal elements of B will be zero. Since A is symmetric, it can be
shown that such a matrix T exists and is real-valued.

The matrix T is a coordinate transformation, mapping the point (x y w)
to the new point (x1 y1 w1) = (x y w)T . A conceptually simple method for
�nding it is to apply separate Jacobi rotations R; each designed to zero an
o�-diagonal element. For example, the element a12 is canceled by a rotation
about the w axis of the form

R =

0
BBB@

cos(�) sin(�) 0

� sin(�) cos(�) 0

0 0 1

1
CCCA

The element a13 is canceled by a rotation about the y axis, and the element
a23 by a rotation about the x axis. The rotation matrices can be found as
follows. Let

A0 =

0
@ m p

p n

1
A
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be the 2 � 2 submatrix containing the element p we wish to cancel. Apply
the rotation matrix

RT =

0
@ c �s

s c

1
A

where c = cos(�) and s = sin(�). Then the (1; 2)-element becomes

(RTA0R)1;2 = (RTA0R)2;1 = p(c2 � s2)� cs(n�m) = 0

Hence,
2cs

c2 � s2
=

2p

n�m

That is, to zero the element (RTA0R)1;2 in the matrix, we must choose an
angle � such that

tan(2�) =
2p

n�m

If m = n; then � = 45Æ. Note that the angle � can always be restricted to
be between �45Æ and 45Æ.

Let

B =

0
BBB@

�1 0 0

0 �2 0

0 0 �3

1
CCCA

be the �nal diagonal matrix obtained. We distinguish the following cases:

� Rank 3; �1; �2; �3 6= 0. The conic to be parameterized is irreducible.

� Rank 2; �i; �j 6= 0; �k = 0. The conic consists of two distinct lines.

� Rank 1; �i 6= 0; �j; �k = 0. The conic consists of two coincident lines.

If the conic consists of lines, then the original conic is reducible. In this case,
each component should be parameterized separately as a line; only the rank
3 case is of interest.

The standard parameterization for the nondegenerate case depends on the
signs of the �i. If all �i have the same sign, then the conic is imaginary. It
is not possible to transform an imaginary conic to a real-valued one, or vice
versa, since we apply real-valued rotation matrices. Hence, the original conic
is also imaginary, so this case is not of interest.

If only �1 and �2 have the same sign, then the transformed conic is an

ellipse or a circle. With �i = 1=
q
j�ij, the conic is parameterized by

x(t) = (1� t2)�1

y(t) = 2t�2

w(t) = (1 + t2)�3
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If �1 has the opposite sign of �2 and �3; then the transformed conic is a

hyperbola. With �i = 1=
q
j�ij, it is parameterized by

x(t) = (1 + t2)�1

y(t) = 2t�2

w(t) = (1� t2)�3

Example 5.3: Consider the hyperbola x2+4xy+3y2�4 = 0. Its matrix
is

A =

0
BBB@

1 2 0

2 3 0

0 0 �4

1
CCCA

Only a12 needs to be canceled. We determine

� =
1

2
arctan(2) � 31:172Æ

which yields as rotation matrix

RT =

0
BBB@

0:851 �0:526 0

0:526 0:851 0

0 0 �4

1
CCCA

Then B = RTAR is

B =

0
BBB@
�0:236 0:0 0

0:0 4:236 0

0 0 �4

1
CCCA

It is diagonal and represents a hyperbola. As an aÆne curve, this conic is
parameterized by

x1(t) = 4:117
1 + t2

1� t2

y1(t) = 0:972
2t

1� t2
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The rotation matrix corresponds to the following coordinate transformation

x = 0:526y1 + 0:851x1

y = 0:851y1 � 0:526x1

from which we can recover a parameterization of the original hyperbola. 3
Since a rotation a�ects o�-diagonal elements other than the one we are

zeroing out, a complete implementation of this approach must apply rota-
tions iteratively, possibly more than once for each o�-diagonal element. To
understand the nature of the iteration, we recall the concept of matrix norms
from Section 4.2.3 of Chapter 4. In particular, the Frobenius norm of the
m� n matrix A is de�ned as

kAkF =

0
@ mX

i=1

nX
j=1

jaijj2
1
A
1=2

The Frobenius norm has the evident property that it is invariant under ro-
tation. Hence, if C = RTAR; then kAkF = kCkF . In the remainder of this
section, we will use only the Frobenius norm and so will drop the subscript
F.

We introduce a measure of how close the matrix A is to being diagonal
and consider the quantity

o�(A) =
X
i6=j

jaijj2

It is our plan to reduce this quantity with each rotation. If we can do that,
then by repeated rotations we can minimize o�(A); thereby making progress
toward diagonalizing the matrix. Note that

kAk2 = o�(A) +
X
i

jaiij2

Let C = RTAR be a rotation that zeros the ij-element in A. Then the
Frobenius norms of A and C are equal. Observing how the diagonal elements
aii and ajj change, we note that

o�(C) = o�(A)� 2jaijj2 + 2jbijj2 = o�(A)� 2jaijj2
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Hence, the quantity o�(C) has decreased with twice the square of the entry
in A that we zeroed. It follows that repeated rotations, each zeroing an o�-
diagonal element of largest magnitude, will drive o�(A) to zero. For example,
parameterizing the parabola x2+2xy+y2+2y�1 = 0 in this way will require
more than three rotations.

This iterative algorithm for diagonalizing A is numerically stable and has
quadratic convergence. For the purpose of backsubstitution, the product of
the individual rotation matrices should be accumulated.

Second Method of Conic Parameterization

A pencil of lines through a point p is a set of lines each containing p. The
geometric idea on which the second parameterization method of conics is
based can be stated as follows:

1. Pick a point p = (u; v) on the conic and consider a pencil of lines
through p. There is a one-parameter family of lines in the pencil.

2. The line l(t) in the pencil will intersect the conic in p and in one other
point (x(t); y(t)). This additional point provides the curve parameter-
ization.

Therefore, a point p must be found, and the lines in the pencil must be
quanti�ed by a parameter t. For t; there is usually a natural choice. We
demonstrate the idea with the circle x2 + y2 � 1. Thereafter, we show how
the geometric idea expresses itself algebraically.

Consider the circle x2 + y2 � 1 = 0. We choose the point p = (�1; 0) and
consider the lines

l(t) : y = tx + t

that pass through p; see also Figure 5.4. Then the intersection points of the
lines in the pencil and the circle are found by substituting for y and solving
for x:

x2(1 + t2) + 2t2x+ t2 � 1 = 0

hence

x =
�t2 �

q
t4 + (1� t2)(1 + t2)

1 + t2
=

�t2 � 1

1 + t2

Of the two roots, �1 represents the x coordinate of the �xed point p; whereas
the other yields the x coordinate of the variable point x(t) in which l(t) also
intersects the circle. In this way, we derive the familiar form

x(t) =
1� t2

1 + t2

y(t) =
2t

1 + t2



176 Representation of Curved Edges and Faces

t
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y

p

(x(t),y(t))

Figure 5.4 Parameterization of the Unit Circle

The procedure has a simple algebraic expression if the point p is cho-
sen with care. To grasp this fact more generally, we pass to homogeneous
coordinates (x; y; w).5 Let

a11x
2 + a22y

2 + a33w
2 + 2a12xy + 2a13xw + 2a23yw = 0

be the homogenized equation. In general, we expect that none of the quadratic
terms will vanish. However, if the conic contains one of the fundamental
points, then the equation becomes linear in the corresponding variable. For
example, if (0; 0; 1) is a point on the conic, then the equation has no w2

term. Similarly, if (0; 1; 0) is on the conic, the y2 term is absent. Thus, when
a fundamental point is on the conic, then the conic equation will be linear in
one variable, and that variable is then an explicit function of the other two.
By considering the other two variables as projective parameter coordinates,
therefore, we have a parameterization of the conic.
Example 5.4: Given the circle x2 + y2 � 2xw = 0 that contains the

origin (0; 0; 1); we derive the parameterization:

x = s

y = t

w = (s2 + t2)=2s

This is a projective parameterization of the projective form of the conic. We
set s = 1 to obtain aÆne parameter coordinates, and divide by w to pass

5Note that the homogenizing variable w is the third coordinate.



5.5 Conversion from Implicit to Parametric Form 177

to aÆne curve coordinates. For the aÆne form of the circle, therefore, we
obtain the aÆne parameterization

x(t) = 2=(1 + t2)

y(t) = 2t=(1 + t2)

3

Our strategy for parameterizing a conic is to translate or rotate the coordi-
nate system so that the curve will pass through one of the three fundamental
points, and then to parameterize the transformed curve. Applying the inverse
coordinate transformation, we so obtain a parameterization for the original
conic. The structure of the parameterization for conics is thus as follows:

1. If the curve already contains one of the fundamental points (0; 0; 1);
(0; 1; 0); or (1; 0; 0); then skip steps 2 and 4.

2. If the curve has a real point at in�nity, change the coordinate system
such that this point becomes (0; 1; 0). If there is no real point at in�nity,
�nd a real point at �nite distance and change the coordinate system
such that the point becomes (0; 0; 1).

3. Parameterize the curve.

4. Apply the inverse transformation to the parameterization.

Preference is given to �nding a real point at in�nity because that is a simpler
computation.

A point at in�nity can be found by setting w = 0 in the homogeneous
conic equation. The resulting quadratic equation a11x

2 + 2a12xy + a22y
2 = 0

is homogeneous in x and y; and has the solution

x = �a12 �
q
a212 � a11a22

y = a11

If the solution is complex, then no real points exist at in�nity. This will be
the case whenever the discriminant a212� a11a22 is less than zero. Otherwise,
let (u; v; 0) be the curve point corresponding to the real solution (u; v) of the
homogeneous equation. Then the transformation

x = x1 + uy1

y = vy1

w = w1
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is nonsingular and brings this point to (0; 1; 0). After dehomogenizing, the
transformed conic has the form

y1(cx1 + d) + q(x1) = 0

where q(x1) is a quadratic polynomial in x1. This curve is parameterized
as x1 = t; y1 = �q(t)=(ct + d). Using the transformation equations, a
parameterization of the original curve is obtained.

If the curve has no real point at in�nity and is not imaginary, then the
conic must be an ellipse. A real point on it can be found by locating a
point at which one of the partials vanishes, say fx = 0. The point can then
be brought to the origin by translation, after which the curve equation is
parameterized as described before.
Example 5.5: Consider the conic x2+6xy+5y2�2x�2y�1 = 0; whose

homogeneous form is x2+6xy+5y2�2xw�2yw�w2 = 0. The discriminant
of x2 + 6xy + 5y2 is 4, so we expect two real solutions, corresponding to two
points at in�nity; that is, the conic is a hyperbola. One of the solutions is
(�1; 1); corresponding to the point (�1; 1; 0) at in�nity. The transformation

x = x1 � y1

y = y1

maps the (aÆne) curve to

4x1y1 + x21 � 2x1 � 1 = 0

which is parameterized as

x1(t) = t

y1(t) =
1 + 2t� t2

4t

Backtransformation yields, for the original curve, the parameterization

x(t) =
5t2 � 2t� 1

4t

y(t) =
1 + 2t� t2

4t

3
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Example 5.6: Consider the conic x2 + 4y2 � 2x � 16y + 13 = 0. Since
x2+4y2 has a negative discriminant, the conic has no real points at in�nity;
thus, it is either an ellipse or an imaginary ellipse. The partial derivative by
x de�nes the line 2x� 2 = 0; and the intersection of this line with the conic
determines the two points at which the curve has a tangent parallel to the
x axis. We substitute 1 for x in the conic to locate these points, obtaining
4y2 � 16y + 12; hence, (1; 3) is a point on the conic with tangent parallel to
the x axis. We translate the curve by

x = x1 + 1

y = y1 + 3

and obtain

x21 + 4y21 + 8y1 = 0

Note that this curve contains the origin, and that its homogeneous form is
linear in w. We consider how the lines x1 � ty1 = 0 intersect this conic.
Substituting, we obtain

t2y21 + 4y21 + 8y1 = y1(t
2y1 + 4y1 + 8) = 0

Here, y1 = 0 corresponds to the intersection at the origin; hence, the lines
intersect the curve at (0; 0) and at

y1 =
�8

t2 + 4

x1 =
�8t
t2 + 4

This constitutes a parameterization of the translated curve. Translating
back, we obtain the parameterization

x = �8t
t2 + 4

+ 1 = t2 � 8t+ 4
t2 + 4

y = �8
t2 + 4

+ 3 = 3t2 + 4
t2 + 4

for the original conic. 3
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5.5.2 Quadrics

First Method

As in the case of conics, we can iteratively diagonalize the matrix represen-
tation of the quadric using rotations. Let

0
BBBBBB@

�1 0 0 0

0 �2 0 0

0 0 �3 0

0 0 0 �4

1
CCCCCCA

be the diagonal matrix so obtained. We classify the surfaces �rst by rank.
Here, rank 2 and 1 are not of interest, since in this case the quadric surface
consists of two planes.

Rank 4 splits into several cases, according to the signature of the matrix;
that is, according to the distribution of signs of the diagonal elements. After
suitably renaming variables, and possibly multiplying the conic equation with
�1; we have three di�erent cases to distinguish:

1. �1; �2; �3; �4 > 0: The quadric is imaginary. We denote this case by
(+;+;+;+).

2. �1; �2; �3 > 0; �4 < 0: The quadric is elliptic. We denote this case by
(+;+;+;�).

3. �1; �2 > 0; �3; �4 < 0: The quadric is hyperbolic. We denote this case
by (+;+;�;�).

Similarly, for rank 3, we distinguish the cases (+;+;+; 0); and (+;+;�; 0).
The case (+;+;+; 0) means that the surface is imaginary. The projective
parameterization of the nonimaginary surfaces is given in Table 5.2. In each

case, we must multiply the ith coordinates with �i = 1=
q
j�ij. Note that the

rank 3 surfaces are cones and cylinders.

Second Method

The second method for parameterizing conics also generalizes to quadrics: A
real point is picked on the surface, and a pencil of lines through this point
is considered. Again, the lines intersect the quadric in one additional point,
and we obtain in this way a surface parameterization. Since the lines are
in three-dimensional space, each member of the pencil must be �xed by two
independent parameters.

The algebraic method is closely analogous to the one for conics. We wish to
move a real point of the surface to one of the fundamental points of projective
three-dimensional space | that is, to (0; 0; 0; 1); (0; 0; 1; 0); (0; 1; 0; 0); or
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Signature Parametric Form

(+;+;+;�) x = r2 � s2 � t2 y = 2rs

z = 2rt w = r2 + s2 + t2

(+;+;�;�) x = r2 � s2 + t2 y = 2rs

z = 2rt w = r2 + s2 � t2

(+;+;�; 0) x = r2 � s2 + t2 � 2rt y = 2rt� r2 � s2 � t2

z = 2sr � 2st w = 1

Table 5.2 Projective Parameterization of Quadric Surfaces

(1; 0; 0; 0). Correspondingly, the equation simpli�es with one of the quadratic
terms vanishing in the homogeneous form. Thereafter, the parameterization
proceeds as in the case of conics. For example, with the surface passing
through (0; 1; 0; 0); its equation is linear in y. Hence, choosing x = s and
z = t expresses y as a rational function of s and t.

A real surface point at in�nity is found by investigating the homogeneous
equation at w = 0. The substitution w = 0 gives a homogeneous form
that describes a conic. This is the conic in which the quadric intersects the
plane at in�nity. This conic may have real points, found as described previ-
ously, and any such point can then be moved to (0; 1; 0; 0) by a coordinate
transformation. Alternatively, we may deal with a closed surface (i.e., the
ellipsoid), in which case we �nd a real point by locating where on the surface
two of its partial derivatives vanish simultaneously. The details are quite
straightforward.

5.5.3 Cubic Curves

Not all irreducible cubic curves have a rational parametric form. Those that
do have a singular point that must be a double point. From a geometric point
of view, the rational parameterization is analogous to conic parameterization:
We select the double point on the cubic and consider a pencil of lines through
it. Each line in the pencil must intersect the cubic in only one additional
point. By parameterizing the pencil, we thus can parameterize the cubic.
This idea is illustrated in Figure 5.5 for the curve y2 � x2 � x3 = 0; whose
double point is the origin. Thus, this curve is parameterized by the pencil of
lines y = tx.

We describe an algorithm for parameterizing a cubic f(x; y) = 0. Using
several birational transformations, the algorithm brings the cubic f(x; y) = 0
into the form

y22 = g(x2)

where the polynomial g(x2) has degree 4. If g(x2) has a double root, then
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1

t

(x(t), y(t))
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x

Figure 5.5 Parameterizing a Singular Cubic Curve

the cubic f is parameterizable; otherwise, a rational parametric form does
not exist. As we will see, the parameterization process makes use of the
parameterization algorithm for conics.

The curve transformations are as follows. First, we �nd a real point of
the curve at in�nity and bring it to (0; 1; 0). This new coordinate system
will be named (x1; y1). A real point at in�nity must always exist, and when
this point is (0; 1; 0); then the cubic will not have a y31 term. To understand
this observation, we substitute (0; 1; 0) into the homogeneous form F of the
cubic. We obtain a value equal to the coeÆcient of the y31 term in F. So, if
(0; 1; 0) is a curve point, the coeÆcient of y31 must vanish.

Second, possibly after multiplying with a linear polynomial in x1; the curve
equation is changed to y22�g(x2) = 0; where y2 has the form h(x1)y1+k(x1);
where h(x1) is at most linear in x1; and k(x1) is at most quadratic. Finally,
if g(x2) has the double root �; then we let y3 = y2=(x2��) and parameterize
the resulting conic in y3 and x3. The conic parameterization, in turn, yields
a parameterization for the cubic.

Consider a cubic f(x; y) assuming that it is regular in both x and y; that
is, both the x3 and the y3 term are present. To �nd a real point at in�nity,
we �nd a real root of the polynomial formed by all terms of degree 3 in f.
Since this polynomial is a cubic homogeneous form, there is always a real
root, say (�v; u). We thus can write f as

f = (ux+ vy)f2(x; y) + g2(x; y)

where f2 is homogeneous of degree 2, and g2 is at most of degree 2. The
needed root, (�v; u); could be found after substituting 1 for y; using a numer-
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ical subroutine or the Cardano formulae. We transform f by the nonsingular
transformation

x = x1 � vy1

y = uy1

Then the transformed cubic can be written as

h1(x1)y
2
1 + h2(x1)y1 + h3(x1) = 0

where hi is a polynomial of degree at most i. By multiplication with 4h1(x1);
this equation can be rewritten as

(2h1(x1)y1 + h2(x1))
2 = (h2(x1))

2 � 4h1(x1)h3(x1)

Setting y2 = 2h1(x1)y1 + h2(x1) and x2 = x1; we thus obtain

y22 = h4(x2)

where h4 has degree 4 or less.
We investigate the roots of h4. If there is at least one double root �; then

we can set y3 = y2=(x� �) and so obtain the conic

y23 = q(x2)

This conic is parameterized, and, by backsubstitution, a parameterization of
the original cubic is obtained. Note that if � is complex, then its conjugate
~� is also a double root and we set y3 = y2=((x� �)(x� ~�)). Thus a param-
eterization with real coeÆcients is possible. However, if h4 has no multiple
roots and has degree 3 or 4, then the curve y23 = h4(x1) has genus 1 and does
not possess a rational parameterization. Since the original cubic f has been
mapped to this curve birationally, it follows that f cannot be parameterized
and is a nonsingular cubic.

Example Parameterization of a Cubic

Consider the cubic

f = 28y3 + 26xy2 + 7x2y + x3=2 + 28y2 + 16xy + 7y + 3x=2
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The degree form is 28y3+26xy2+7x2y+x3=2 and has the root (�2; 1). That
is, we can write

f = (x+ 2y)(14y2 + 6xy + x2=2) + 28y2 + 16xy + 7y + 3x=2

We substitute

x = x1 � 2y1

y = y1

to obtain

4(x1 � 1)y21 + 4(x21 + 4x1 + 1)y1 + (x31 + 3x1)=2 = 0

After multiplication with (x1 � 1); we obtain the equivalent form

4(x1 � 1)2y21 + 4(x1 � 1)(x21 + 4x1 + 1)y1 + (x41 � x31 + 3x21 � 3x1)=2 = 0

We set y2 = 2(x1 � 1)y1 + x21 + 4x1 + 1 and obtain

y22 = (x41 + 17x31 + 33x21 + 19x1 + 2)=2

The right-hand side has the double root x1 = �1; so we set y3 = y2=(x1 + 1)
to obtain

2y23 = x21 + 15x1 + 2

This is a conic with the parameterization

x1 =
t2 � 2

2t + 15

y3 = � t2 + 15t+ 2p
2(2t+ 15)

Recalling the substitution y3 = y2=(x1 + 1), we now obtain

y2 = � (t2 + 15t+ 2)(t2 + 2t+ 13)p
2(2t+ 15)2
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Since y2 = 2(x1 � 1)y1 + x21 + 4x1 + 1; we obtain next

y1 = �[(p2 + 1)t4 + (8
p
2 + 17)t3 + (60

p
2 + 45)t2 + (44

p
2 + 199)t

+(109
p
2 + 26)] = [

p
2(4t3 + 22t2 � 128t� 510)]

Numerator and denominator have the common root 1 � 3
p
2. Thus, the

parametric expression for y1 simpli�es to

y1 =
(
p
2 + 1)t3 + (6

p
2 + 12)t2 + (30

p
2 + 21)t+ (11

p
2 + 40)p

2(4t2 � (12
p
2� 26)t� (90

p
2 + 30))

From this parameterization, we �nally obtain the parameterization of the
original curve.

As an example of a nonsingular cubic, consider y2 � x3 + x = 0. It is
already in the form y22 = x32 � x2 = h4(x2). Here, h4 is of degree 3 with the
distinct roots �1; 0, and 1, so the curve does not have a rational parametric
form.

5.5.4 Monoids

A curve of degree n with a point of multiplicity n � 1 is called a monoid.
Conics trivially are monoids, as are cubic curves possessing a double point
(i.e., singular cubics). By Bezout's theorem, a line through an (n � 1)-
fold point p intersects the curve in at most one additional point. Hence,
a pencil of lines through p can be used to parameterize the monoid. The
parameterization of conics and cubics has followed this strategy.

When the curve point of multiplicity (n�1) is the origin, then the equation
of the monoid has the form

f(x; y) = hn(x; y)� hn�1(x; y) = 0

where hn is homogeneous of degree n and hn�1 is homogeneous of degree
n� 1. The curve parameterization is then simply

x(s; t) = s
hn�1(s; t)

hn(s; t)
y(s; t) = t

hn�1(s; t)

hn(s; t)

This parameterization is projective, since it is derived from the pencil of lines

x(�) = s�

y(�) = t�
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We can make it an aÆne parameterization by choosing s = 1 or t = 1. For
s = 1; we have

y = tx;

and, for t = 1;
x = sy:

Example 5.7: Consider the monoid

x4 � 3x3y + x2y2 + 2y4 � x3 � 3x2y + y2x = 0

Here, h4 = x4�3x3y+x2y2+2y4 and h3 = x3+3x2y�y2x. Choosing s = 1;
we have h4(1; t) = 1�3t+ t2+2t4 and h3(1; t) = 1+3t� t2; hence, we obtain
the parametric form

x(t) =
1 + 3t� t2

1� 3t+ t2 + 2t4

y(t) =
t(1 + 3t� t2)

1� 3t+ t2 + 2t4

3

A surface of degree n is a monoid or monoidal surface if it contains a
point of multiplicity n� 1. Monoidal surfaces include all quadrics, any cubic
surface with a double point, any quartic surface with a triple point, and so
on. When the (n � 1)-fold point is at the origin, the equation of such a
surface becomes

f(x; y; z) = hn(x; y; z)� hn�1(x; y; z) = 0

where hn has degree n and hn�1 has degree n�1. The surface is parameterized
by a pencil of lines through the origin. Each line in the pencil is determined
by a point (r; s; t) of the projective plane and is given by the (parametric)
equations

x(�) = r�

y(�) = s�

z(�) = t�

Therefore, the projective form of the surface parameterization is simply

x(r; s; t) = r
hn�1(r; s; t)

hn(r; s; t)
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y(r; s; t) = s
hn�1(r; s; t)

hn(r; s; t)

z(r; s; t) = t
hn�1(r; s; t)

hn(r; s; t)

and can be changed to the familiar aÆne parameterization by setting, for
instance, r = 1.
Example 5.8: Consider the unit sphere

x2 + y2 + (z � 1)2 � 1 = 0

which contains the origin. We have h2(x; y; z) = x2+y2+z2 and h1(x; y; z) =
2z. Hence, this sphere is (projectively) parameterized by

x(r; s; t) =
2rt

r2 + s2 + t2

y(r; s; t) =
2st

r2 + s2 + t2

z(r; s; t) =
2t2

r2 + s2 + t2

as is readily veri�ed. An aÆne parameterization can be derived by setting
one of the three parameters to 1. 3

5.5.5 Parametric Domains

We mentioned previously that there is a rich literature on parametric curves
and surfaces. To be more precise, the literature on that subject concentrates
on patches of parametric curves and surfaces; that is, only a �nite part of the
curve or surface is considered. Typically, the patch is de�ned by restricting
the parameter(s) to a domain. In the case of curves, the domain might be the
interval [0; 1]; in the case of surfaces, the domain might be the unit square
[0; 1]� [0; 1].

So far, we have discussed parameterizing curves and surfaces without re-
gard to how the parameterization might be used. For example, if we consider
a patch on the surface just parameterized, we may want to adjust the pa-
rameterization such that the patch is de�ned over a standard domain. We
therefore consider the following problem.

Problem

Given a parameterized surface, and given four distinct surface
points, by their parametric coordinates; reparameterize the sur-
face, such that the parametric coordinates of the four given points
are the corners of the unit square.
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The reparameterization can be done based on a projective parameterization.
From the given projective parameterization (r; s; t); we derive another pro-

jective parameterization (u; v; w) such that the four corners are mapped as
desired. Let the four corners be (ri; si; ti); in clockwise order. We seek a
linear transformation A relating the two parameterizations as follows:

�

0
BBB@

r

s

t

1
CCCA = A

0
BBB@

u

v

w

1
CCCA

such that (r1; s1; t1) is mapped to (0; 0; 1); (r2; s2; t2) is mapped to (1; 0; 1);
and so on. Note that, since (r; s; t) and (�r; �s; �t) determine the same point
on the projective plane, the proportionality factor � is needed. From projec-
tive geometry, we know that such a linear map exists, provided that no three
of the points (ri; si; ti) are collinear. Thereafter, the (u; v; w) parameteriza-
tion is dehomogenized by setting w = 1.

We formulate a system of linear equations determining A. The unknowns
are the coeÆcients ajk of A; and the proportionality factors �i. For i =
1; 2; 3; 4; we write

�i

0
BBB@

ri

si

ti

1
CCCA = A

0
BBB@

ui

vi

wi

1
CCCA (5.2)

We obtain 12 linear equations in 13 unknowns. Solving the system, we obtain
A; and hence the new parameterization with the required domain.
Example 5.9: Consider the unit sphere parameterized as before:

x(r; s; t) =
2rt

r2 + s2 + t2

y(r; s; t) =
2st

r2 + s2 + t2

z(r; s; t) =
2t2

r2 + s2 + t2

We wish to map a surface patch with the parametric corner coordinates
(0; 2; 1); (1; 4; 1); (3; 5; 1); and (4; 1; 1); see also Figure 5.6. To �nd the ap-
propriate projective transformation, we formulate the linear equations (5.2)
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S

r

Figure 5.6 Patch Corners in Parameter Space

and obtain

0 = a13

2�1 = a23

�1 = a33
...

�4 = a31 + a33

Note that the ajk are the entries of A. The solution yields the matrix

A = �

0
BBB@

4 5 0

�5 14 6

�2 2 3

1
CCCA

Note that � is a free constant. So, we can reparameterize the sphere by
substituting 4u + 5v for r; �5u + 14v + 6w for s; and �2u + 2v + 3w for t.
After dehomogenizing with w = 1; the resulting parameterization maps the
corners of the domain [0; 1]� [0; 1] as desired. 3

5.6 Conversion from Parametric to Implicit Form

Classical elimination theory provides tools for converting from rational para-
metric representations to implicit representations. Briey, if a curve is given
as

x(t) = p(t)=r(t)

y(t) = q(t)=r(t)
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then the pair of polynomial equations, obtained by clearing the denominator
r(t), describes the curve

x � r(t)� p(t) = 0

y � r(t)� q(t) = 0

These are polynomial equations in the variables x; y; and t. If t is eliminated
from them, a single equation in x and y is obtained that is the implicit curve
equation. Similarly, one eliminates the two parameters s and t from three
polynomial equations obtained from a parametric surface representation, thus
implicitizing a surface.

5.6.1 Resultants

One method for eliminating a variable from two polynomial equations is by
forming the resultant. In the simplest case, there is only one variable to be
eliminated; and thus we are, in e�ect, testing whether the two polynomials
have a common root. We discuss this case in some detail. Let

f(x) = anx
n + an�1x

n�1 + : : :+ a0

and
g(x) = bmx

m + bm�1x
m�1 + : : :+ b0

be two univariate polynomials, of degree n and m. Clearly, f and g have a
common root i� there are polynomials hf and hg of degree less than m and
n; respectively, such that

f(x)hf (x) = g(x)hg(x) (5.3)

We set
hf (x) = um�1x

m�1 + : : :+ u1x+ u0

and
hg(x) = vn�1x

n�1 + : : :+ v1x + v0

Then the coeÆcients uk and vk can be determined by symbolically multiply-
ing out equation (5.3). The result is a polynomial in x all of whose coeÆcients
must vanish. Each coeÆcient, in turn, is a linear form in the unknowns uk
and vk. By setting the x coeÆcients to zero, we obtain a system of linear
equations in uk and vk; and this system has a nontrivial solution i� equation
(5.3) has a nontrivial solution. Now equation (5.3) has a nontrivial solution
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i� the linear system is underconstrained; that is, i� the system's determinant
is zero. The system's determinant has the following form:

�������������������������

an an�1 � � � a0 0 � � � 0

0 an � � � a1 a0 � � � 0
...

. . . . . .

0 � � � 0 an an�1 � � � a0

bm bm�1 � � � b0 0 � � � 0

0 bm � � � b1 b0 � � � 0
...

. . . . . .

0 � � � 0 bm bm�1 � � � b0

�������������������������

So, f and g have a common solution i� this determinant is zero. The deter-
minant is called the Sylvester resultant, and we will denote it Resx(f; g).

In principle, the resultant can be applied to multivariate polynomials. A
main variable x is identi�ed, and the coeÆcients ak and bk are now poly-
nomials in the remaining variables. In this case, a zero resultant does not
necessarily imply a common solution to the two polynomials, since it is poss-
ible that the two lead coeÆcients an and bm have a common solution. In
that case, the resulting polynomial Resx(f; g) has additional factors identi-
fying the common roots of the lead coeÆcients. Summarizing, the following
theorem can be proved.

Theorem

Let f(x0) and g(x0) be multivariate polynomials of degree n and
m; respectively, with coeÆcients that are polynomials in the vari-
ables x1; :::; xn. Then Resx(f; g) = 0 i� there is a common so-
lution of f and g, or the leading coeÆcients of f and g vanish
simultaneously, or the coeÆcient polynomials of f or of g have a
common root.

Consider the bivariate polynomials f(x; y) = xy2 � x2y + y2 + x2 + 1 and
g(x; y) = x2y2 � y2 � 3xy + x. We consider them polynomials in y with
coeÆcients that are polynomials in x; and obtain as resultant

Resy(f; g) =

������������

x + 1 �x2 x2 + 1 0

0 x+ 1 �x2 x2 + 1

x2 � 1 �3x x 0

0 x2 � 1 �3x x

������������
so that

Resy(f; g) = (x + 1)(x7 � 3x6 + x5 + 2x4 + 3x3 + 11x2 + x+ 1)
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When formulating f and g as polynomials in y; the lead coeÆcients are x+1
and x2� 1; respectively. Both vanish simultaneously for x = �1; as reected
in the presence of the factor x+ 1.

Geometrically, the Sylvester resultant constitutes an orthographic projec-
tion along the axis of the variable that is eliminated. The following con-
sideration shows that some extraneous factors have a geometric signi�cance.
Consider three polynomial equations in three variables | say, f(x; y; z) = 0;
g(x; y; z) = 0; and h(x; y; z) = 0. The three equations de�ne three surfaces,
and the common solutions to f; g; and h are the points at which all three
surfaces intersect. We eliminate �rst z; obtaining two equations in x and y
| say, f1(x; y) = Resz(f; g) and g1(x; y) = Resz(g; h). Note that the curve
f1 = 0 contains the projection of the space curve that is the intersection
f = 0 \ g = 0. Similarly, g1 = 0 contains the projection of the intersection
g = 0 \ h = 0. A common intersection of the three surfaces must also be
an intersection of the two plane curves f1 and g1. However, if there are two
points p = (a; b; c) and q = (a; b; d) in 3-space, where c 6= d; and p is on the
intersection f \ g while q is on the intersection g \ h; then p0 = (a; b) is an
intersection of g1 = 0 with h1 = 0 but is not a common intersection of the
three surfaces. These \phantom" intersections must give rise to extraneous
factors when we eliminate one of the variables from f1 and g1.

5.6.2 Implicitization of Curves and Surfaces

The resultant provides us with an algorithm to convert parametric curves
and surfaces into implicit form. In the case of curves, we need to compute

f(x; y) = Res t(xr(t)� p(t); yr(t)� q(t))

For example, recalling the parameterization of the unit circle (Table 5.1), we
have

Res t(x(1 + t2)� (1� t2); y(1 + t2)� 2t) = 4(x2 + y2 � 1)

Here, no extraneous polynomial factors appear.
In the case of surfaces, we must eliminate two variables in succession. For

example, the sphere that we parameterized as a monoid, with r = 1; requires
dealing with the equations

x(1 + s2 + t2)� 2t = 0 (5.4)

y(1 + s2 + t2)� 2st = 0 (5.5)

z(1 + s2 + t2)� 2t2 = 0 (5.6)
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We begin by eliminating s from equations (5.4) and (5.5), and also from
equations (5.5) and (5.6). This yields the equations

4t2(y2 + t2x2 + x2 � 2tx) = 0

4t2(t2z2 + z2 � 2t2z + t2y2) = 0

After dropping the common factor 4t2; we now eliminate t and obtain

(x2 + y2 + z2 � 2z)(y6 + y4(x2 + z2)� 2y2z(y2 + 2x2) + 4x2z2) = 0

Note that the second factor is extraneous.
We observe that surface implicitization using the Sylvester resultant is

not an attractive method, since even in such simple examples complicated
extraneous factors are generated. Since polynomial factorization is a diÆcult
problem, it is not always easy to recognize the extraneous factors and to
eliminate them. Moreover, the Sylvester resultant requires forming large
matrices for higher-degree surfaces that can be costly to evaluate. We will
discuss some alternatives in Sections 7.5.1 and 7.8.3 in Chapter 7.

5.7 Edge Identi�cation

We have divided the representation of edges and faces into two parts: A
description of the carrier (a space curve or surface) and a description of
the boundary delimiting the area or interval of interest on the carrier. The
preceding material in this chapter has dealt with techniques for representing
the carrier, and has described elementary methods for manipulating these
representations. We now turn to the boundary speci�cation for edges. If
curved edges are not speci�ed carefully, the boundary description of objects
could contain ambiguities.

In favorable cases, the carrier of the edge is a space curve that possesses
a parameterization. In that case, one may represent the carrier parametri-
cally and identify the edge by giving an interval of parameter values. This
identi�es the edge unambiguously. In general, however, the carrier is not
parameterizable and so must be de�ned as the intersection of surfaces. In
that case, the identi�cation of the edge on the carrier is more delicate.

As a segment of a space curve, an edge boundary consists simply of the
two bounding vertices; that is, of the two curve points. However, the global
geometry of the carrier may be such that the two points do not identify a
curve segment uniquely, so that additional information will be needed. In
the following discussion, we assume that the edge carrier has been speci�ed
by an intersecting pair of surfaces.
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5.7.1 Topological Aspects

Recall from Chapter 2, Section 2.4, the de�nition of a topologically valid
solid. The de�nition considered two separate aspects:

1. The topological structure of solids was characterized abstractly, in the
simplest case as a connected 3-manifold with compact boundary.

2. The relationship between the solid and the surrounding space was char-
acterized by considering how the solid is embedded in three-dimensional
space.

If we begin with a geometric description of the carrier, the speci�cation of the
edge as a segment on that carrier seems to be simply a matter of identifying
a startpoint and an endpoint. However, there are complications.

If the curve is closed, then two points on it partition the curve into two
segments, and we need to know which of the two segments is the edge. This
problem did not occur with straight lines, for at most one of the line segments
is �nite.6 This motivates orienting the carrier. If the carrier is a simple
closed curve, distinct start and end vertices will specify a segment on it
unambiguously.

If the space curve contains singularities, then it does not need to be home-
omorphic to a circle. In that case, two points may partition the curve into
more than two segments, so there could be several segments, each oriented
from the start to the end vertex. An example is shown later in Figure 5.12.
Here, we ask whether some segments can be ruled out because they would
lead to geometric or topological inconsistencies later. We will show that a
global resolution of edge ambiguities cannot be guaranteed.

The constructions demonstrate the need to identify segments of space
curves by more information than just bounding vertices and orientation. Two
methods have been proposed. One method uses an auxiliary vertex placed
at the interior of the edge; the other method provides additional directional
information at the two bounding vertices.

5.7.2 Edge Orientation

In Chapters 2 and 3, we oriented edges so that there could be a reference
direction, giving meaning to concepts such as left and right adjacent faces. In
the linear case, edges have distinct vertices u and v; and the edge (u; v) may
simply be considered oriented from u to v. When extending this approach to
curved edges, we must make some modi�cations: Since a curved edge may be
closed, the speci�cation (u; v) cannot imply an orientation. A subdivision of
such edges is necessary to de�ne an edge orientation at the same time, using
this technique. A minimum of three vertices is needed on a closed curve. A

6In projective space, a line is a closed curve. Two distinct points de�ne two segments,
but at most one is �nite. This segment must be chosen because we assume that the
boundary of solids is compact.
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disadvantage of this approach is that we must traverse an edge, say (u; v);
before we can decide whether the initial direction of traversal was the correct
one. This is unsatisfactory in general.

A better method for orienting edges is to orient the carrier directly. Let
f and g be two surfaces whose intersection contains the edge. Let rf and
rg be the surface gradients. We consider orienting the curve locally at the
point p by the directed tangent

t(p) = rf(p)�rg(p)

As long as p is not singular on f or on g; and f and g are not tangent to each
other at p; the vector t(p) exists. Let us call this convention the cross-product
method.

The cross-product method has several properties that complicate its use.
In particular,

rf �rg = �(rg �rf) = r(�g)�rf

So, we must distinguish between f and�f; and hence must adopt the surface-
orientation conventions of Section 3.2 in Chapter 3. Now we must give the
two surfaces in order. We propose to �x this order implicitly as

(left face, right face)

declaring the carrier orientation to be rf � rg; where f = 0 is the carrier
of the left face, and g = 0 is the carrier of the right face, and both f and g
have been oriented correctly.

However, this convention gives the expected results only when the angle
between the face normals at p is acute. Otherwise, the order should be (right
face, left face); see also Figure 5.7. Therefore, we specify the orientation by
explicitly annotating the edge with the surface pair, ordered depending on
the angle of intersection.

The angle between two curved faces varies along the edge, and our conven-
tion is defective if it changes from acute to obtuse, or vice versa, because then
the carrier orientation as described by the gradient pair should be reversed.
An example is shown in Figure 5.8, with the intersection of f : z = 0 and
g : z + y2� x2 � x3 = 0; a plane curve, oriented uniformly as rf �rg. The
orientation reverses at the singularity at the origin where rf and rg are
collinear. It is not diÆcult to see that a surface intersection curve must have
a singularity at every point p at which the surface gradients are collinear.
Hence, it is useful to require that there be no singularities in an edge inte-
rior. Thus, we require a vertex at every singular curve point that is part of
the surface of the object that we wish to represent.
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Left Right Left Right

Figure 5.7 Implicit Edge Orientation as Left Face � Right Face
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z

Figure 5.8 Intersection of f : z = 0 and g : z+ y2�x2 �x3 = 0; Oriented as rf �rg
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Figure 5.9 Grooved Toroidal Object
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If the carrier is a parameterized space curve, then its parameterization
implies an orientation. Most of the diÆculties in specifying the edge unam-
biguously disappear in this case, for we consider the edge to be the curve
segment de�ned by an interval of parameter values. Since not all algebraic
space curves can be parameterized, however, this method is of limited utility.

5.7.3 Singularities on Edges

If an edge (u; v) is assumed to be oriented by the cross-product method,
subject to the details just described, it is still possible that there are two or
more curve segments that are both oriented from u to v. In this case, the
edge may have been ambiguously de�ned, since we do not know locally which
of the segments (u; v) is intended.

Conceivably, some of the segments cannot be used because of other prop-
erties of the boundary. For example, by choosing a particular segment e;
we might not be able to �nd a consistent boundary for some of the faces.
Possibly, then, such a local ambiguity could be resolved by global geometric
properties of the data structure. We demonstrate now that global properties
need not resolve ambiguities when we use implicit algebraic surfaces.

We assume that there are no curve singularities in the interior of edges,
that every edge cycle contains at least three vertices, and that the segment
orientation so implied is consistent with the local curve orientation by the
cross-product method. With all these conventions, we now construct an
ambiguous boundary representation.

We unambiguously construct an object with CSG operations. Then, we
give a boundary representation for it and show that there is a second inter-
pretation that de�nes a di�erent solid. In the CSG de�nition, each primitive
volume is speci�ed by an implicit algebraic equation f = 0; and is the closure
of the set of all points p for which f(p) < 0. Thus, we deal with regular sets,
albeit not always of �nite volume. Speci�cally, we use the Cartesian cylinder
C : y3 + z3 � 6yz = 0; and the standard CSG primitives.

We construct the grooved toroidal object shown in Figure 5.9 by subtract-
ing tori T2 and T3 from the halved torus T1 \H; where H is the half-space
y � 0. The corresponding CSG expression is ((T1 \ H) � T2) � T3. The
tori dimensions are as indicated in the �gure. Next, we take the cylinder C;
described previously and shown in Figure 5.10. The surface orientation of C
is as indicated by the gradient vectors drawn in the �gure. The intersection
(((T1 \ H) � T2) � T3) \ C is as shown in Figure 5.11, and is the �nal ob-
ject. We give a boundary description of the object in Tables 5.3{5.5. The
boundary description could be the result of a conversion algorithm trans-
lating CSG trees to boundary representations, or the description could have
been constructed directly from Figure 5.11 by an unwary designer.

In the description, we assume that the edges are oriented as speci�ed by
the vertex pair written, and this is consistent with the carrier orientation by
the cross-product of left-face gradient with right-face gradient, and by the
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x
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z

Figure 5.10 The Cartesian Cylinder C

cross-product of the surface gradients as indicated. Edge e1; then, is oriented
from vertex v1 to vertex v3. The opposite direction is indicated by negating
the edge symbol; for instance, �e1 denotes the edge e1 in opposite direction.

We consider which curve segment constitutes an edge in the description
given in the tables. The complete intersection curve of the torus T1 with C is
shown in Figure 5.12. Based on local information, the edge (v6; v4) can lie in
one of four directions at v6. One, in the �x direction, must be excluded, since
it does not directly connect to v4. Another one, in the x direction, cannot
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6

Figure 5.11 Object (((T1 \H)� T2)� T3) \ C
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Vertex Coordinates

v1: (�6; 0; 0)
v2: (�4; 0; 0)
v3: (�2; 0; 0)
v4: (2; 0; 0)

v5: (4; 0; 0)

v6: (6; 0; 0)

Vertex Incidences

v1: (e1;�e3; e7)
v2: (e3;�e2; e8)
v3: (e2;�e1; e9)
v4: (e5;�e9;�e4)
v5: (e6;�e8;�e5)
v6: (e4;�e7;�e6)

Table 5.3 Vertex Tables of (((T1 \H)� T2)� T3) \ C

be correct, since then the left and right faces of the edge would be incor-
rectly situated. They also would require a di�erent edge orientation by the
cross-product convention. The remaining two directions give consistent in-
terpretations with the convention of outward-pointing normals, the topology
of the boundary description, and the curve orientation by the cross-product
method. For global topological consistency, the direction choices must agree
at all vertices. We verify that there are two consistent interpretations of the
boundary description. The second interpretation is shown in Figure 5.13.
Note that the two interpretations are not congruent to each other and have
di�erent volumes.

Face Equation

a: (x2 + y2 + z2 � 4)2 + 32(z2 � x2 � y2 � 4) + 256 = 0

b: �(x2 + y2 + z2 � 1)2 � 18(z2 � x2 � y2 � 1)� 81 = 0

c: �(x2 + y2 + z2 � 1)2 � 50(z2 � x2 � y2 � 1)� 625 = 0

d: y3 + z3 � 6yz = 0

e: y3 + z3 � 6yz = 0

Face Boundary

a: (�e1; e7; e4;�e9)
b: (�e2; e9; e5;�e8)
c: (�e3; e8; e6;�e7)
d: (e1; e2; e3)

e: (�e4;�e6;�e5)

Table 5.4 Face Tables of (((T1 \H)� T2)� T3) \ C
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Edge Incident Left, Right Carrier

Vertices Face Orientation

e1 (v1; v3) (a; d) a� d

e2 (v3; v2) (b; d) b� d

e3 (v2; v1) (c; d) c� d

e4 (v6; v4) (e; a) e� a

e5 (v4; v5) (e; b) e� b

e6 (v5; v6) (e; c) e� c

e7 (v1; v6) (c; a) c� a

e8 (v2; v5) (b; c) b� c

e9 (v3; v4) (a; b) a� b

Table 5.5 Edge Table of (((T1 \H)� T2)� T3) \ C

5.7.4 Edge-Identi�cation Information

The constructions in the previous section demonstrate that we must specify
the following information to identify edge segments on space curves unam-
biguously:

1. The geometry of the carrier; for example, as the intersection of two
surfaces

2. The bounding vertices of the edge

3. The intended curve branch

4. The orientation of the branch, at each vertex

The branch orientation and identi�cation are needed because a vertex of the
edge may be at a curve singularity.

Let (f; g) denote the intersection of the surfaces f and g; and consider a
singular point p on it. At such a point, we have one or more distinct branches
of the curve. In general, it is not possible to isolate one of the branches by
selecting a better choice of g or by using additional surfaces to intersect
with. If singular points are con�ned to vertices, then the edge segment is
homeomorphic to a line, and therefore can be identi�ed unambiguously by
an interior point of the edge, as shown in Figure 5.14. The strength of
this method is its simplicity. A drawback is its inconvenience: To locate
the correct branch and direction at each vertex, we must trace the edge,
beginning with the interior point, in both directions.

Another way to identify the branch is to give directional information at
the vertices. In the simplest case, the desired branch is identi�ed by the di-
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Figure 5.12 Complete Torus/Cylinder Intersection

rected tangent at each vertex. This method suÆces for all nodal singularities;
that is, for singularities at which locally the curve consists of a number of
continuous branches that intersect transversally. More diÆcult singularities
are shown in Figures 5.15 and 5.16. The singularity in Figure 5.15 is a cusp.
The curve has only one branch at the point and the branch is singular. The

1
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3

6

5

4

z

y

x

Figure 5.13 Second Interpretation of the Representation
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Figure 5.14 Branch Identi�cation by Interior Point

singularity in Figure 5.16 is a tacnode. Here, the curve has two branches
that intersect tangentially. Intuitively, such singularities require informa-
tion about higher-order derivatives. This information may be based on the
quadratic transformations explained in Section 6.5.2 of Chapter 6. Note that
the singularities shown in Figures 5.15 and 5.16 arise for surfaces of fairly
low degree: The cusp is the intersection of the cubic surface y2 � x3 + z = 0
with the plane z = 0; and the tacnode is the intersection of the parabolic
cylinder z � y2 = 0 with the quartic surface z � x4 � y4 = 0; approximately
a �gure of revolution.

The ambiguities constructed here depend on the fact that the curves and
surfaces involved are not parametric. Indeed, when edges and faces can be
de�ned in terms of domains on parametric curves and surfaces, the informa-

 x

y

Figure 5.15 Cuspidal Singularity of y2 � x3 + z = 0 \ z = 0
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Figure 5.16 Tacnodal Singularity of z � x4 � y4 = 0 \ z � y2 = 0

tion listed here is easily derived from the parameterization and the domain.
Unfortunately, many space curves are not parameterizable | even the inter-
section curves of parameterizable surfaces. For example, the intersection of
two cylinders is, in general, a space curve that cannot be represented in a
rational parametric form.

5.8 Notes and References

Many books on aÆne and projective spaces explain the details sketched in
Section 5.2. See, for example, Klein (1925), or Semple and Kneebone (1952).

The sections on implicit and parametric representations present standard
material from algebraic geometry. Brieskorn and Kn�orrer (1986) contains an
exposition of many of these concepts, and illustrates them with many exam-
ples. More condensed and rigorous accounts can be found in van der Waerden
(1939), Walker (1950), and many other books on algebraic curves and alge-
braic geometry. The following chapters present additional information on
the intuition behind the algebraic concepts.

The geometry of conics has been studied in great detail by many authors.
A nice exposition is found in Hilbert and Cohn-Vossen (1952). Formulae
for determining the type of conics and quadrics directly from the coeÆcients
of their equations, and methods for transforming conics to standard form
through translation and rotation, can be found in mathematical handbooks,
including Bronstein and Semendjajew (1961).

A good entry into the literature on special classes of parametric surfaces
is the survey article by B�ohm, Farin, and Kahmann (1984). Textbooks on
the subject include Mortenson (1985), Bartels, Beatty, and Barsky (1987),
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and Farin (1988).
The �rst method for parameterizing conics and quadrics uses a method

due to Jacobi. Our exposition is adapted from Golub and van Loan (1983).
Jacobi rotations are numerically stable and the iteration has quadratic con-
vergence. The second method for parameterizing conics and quadric surfaces
is from Abhyankar and Bajaj (1987a).

Abhyankar and Bajaj (1987b) give the method for parameterizing cubic
curves. Their paper also gives a technique for parameterizing cubic surfaces,
but the resulting parameterization is not necessarily faithful. A di�erent
method for parameterizing cubic surfaces is given in Sederberg and Snively
(1987).

Abhyankar and Bajaj (1987c,d) present techniques for parameterizing gen-
eral algebraic curves. By extension, the method for parameterizing plane
algebraic curves also determines whether the curve has genus zero.

Monoids were well known in the nineteenth century, and were used as a
tool to classify algebraic space curves. In the more recent literature, they
are presented again by Sederberg (1983), where they are called dual forms in
recognition of the ease of converting between the parametric and the implicit
form.

Classical elimination theory has developed a number of di�erent resultant
formulations, including formulations that achieve the elimination of two vari-
ables in a single step. An early systematic exposition can be found in Netto
(1892). Technically, the resultant formulates a system of linear equations
symbolically. Macaulay (1902 and 1916) recognized that the extraneous fac-
tors are related to the presence of dependent equations, and attempts to
eliminate these factors by identifying them as suitable minors of a larger
determinant.

Recent interest in elimination theory was stimulated by Sederberg's thesis
(1983), which explains the resultant formulations of Sylvester, Bezout, and
Dixon. Sederberg (1983) advocates the utility of resultants for implicitizing
parametric curves and surfaces. However, as noted in Sederberg and Parry
(1986a), using resultants becomes unattractive for curves of degree higher
than 4. Many symbolic algebra systems such as Macsyma have implemented
the Sylvester resultant.

Macaulay's idea of eliminating dependencies by dividing by a minor has
been pursued algorithmically in Canny (1986). The conversion from para-
metric to implicit form can be done directly by formulating a linear system
numerically rather than symbolically. In that case, no extraneous factors are
present. See also Chuang and Ho�mann (1989).

The material on boundary-representation ambiguities is adapted from
Ho�mann and Hopcroft (1987c). The proposal to identify edge segments
by an interior, regular curve point is due to Requicha (1980b).



Chapter 6

Surface Intersections

Evaluating the intersection of two surfaces is a recurring operation in solid
modeling | for example, when intersecting B-rep objects. Surface intersec-
tion is not an easy problem, and continues to be an active topic of research.
Some of the reasons for this continued activity are not hard to identify: A
good surface-intersection technique has to balance three conicting goals:
eÆciency, robustness, and accuracy.

Typically, a numerical algorithm is eÆcient, but is not fully robust and
so may fail in certain cases. Furthermore, the accuracy a numerical method
can deliver varies with the surface degree, with the local surface geometry
at the intersection curve, and with the angle at which the surfaces intersect.
Algorithms based on exact arithmetic, on the other hand, are fully robust and
accurate, but are normally slow. Perhaps the goals of eÆciency, robustness,
and accuracy cannot be met simultaneously without some compromises, and
we might have to negotiate those compromises judiciously, as appropriate for
the particular application. Further research is needed to clarify this picture.

In this chapter, we will look at tracing approaches to evaluating surface
intersection. Surface intersections can be traced directly, or we can reformu-
late the intersection problem such that other curves are traced from which
information about the surface intersection is computed. In the purest ver-
sion, a curve-tracing scheme performs the following conceptual operation
repeatedly:

At a point p on the intersection, a local approximation of the

205
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curve is constructed; for example, the curve tangent at p. By
stepping along the approximation a speci�c distance, we obtain
an estimate of a next curve point that we then re�ne using an
iterative method.

Such an algorithm requires solving the following subproblems:

1. Find an initial point p on the intersection curve.

2. Determine a local approximant at p.

3. Select a suitable step size and step along the approximant.

4. Re�ne the new point estimate to a curve point.

We will not consider how to �nd an initial starting point, but will concentrate
on the remaining steps.

Tracing schemes can be augmented and generalized. We consider two
major ways to do this:

� Certain surface operations are naturally formulated using several alge-
braic equations in more than three variables. This motivates extending
the numerical tracing schemes to work in n-dimensional spaces, where
n > 3.

� Surface intersections can always be mapped to the equivalent problem
of evaluating a plane algebraic curve. An attractive aspect of this
approach is its ability to cope with singular curve points, a traditional
weakness of numerical curve-tracing algorithms.

6.1 Chapter Overview

First, we explain a purely numerical tracing method for evaluating the inter-
section of two implicit surfaces, f(x; y; z) = 0 and g(x; y; z) = 0. Technically,
the approximant used at a current curve point p is a truncated Taylor expan-
sion of the intersection. The step length is determined adaptively, and the
next point estimate is re�ned iteratively using the Newton{Raphson method.
This method is eÆcient and, when implemented carefully, accurate. How-
ever, it is not fully robust and will fail in areas where the intersection curve
is singular or nearly so.

The Taylor approximant used in the numerical method is derived by solv-
ing a certain system of linear equations whose coeÆcients depend on the
partial derivatives of the two surfaces. It turns out that this formulation is
a special case of solving a system of n� 1 algebraic equations in n variables,
assuming that the equations are independent and the corresponding hyper-
surfaces intersect transversally. This observation can be applied in di�erent
ways. For example, we can formulate the intersection of two parametric
surfaces equivalently as solving three algebraic equations in four variables.
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Other applications include intersecting derived surfaces, including o�set sur-
faces. We explore such applications in Section 6.3. An advantage of the
higher-dimensional formulation is that the algebraic degrees involved are of-
ten low, and this appears to increase the numerical accuracy of the method
in many cases. A disadvantage is that the processing time at each point is
greater, since the linear system solved to �nd the curve approximant is now
of size (n� 1)� n; where n is the number of variables.

The intersection of two algebraic surfaces is an algebraic space curve,
whether the surfaces have been speci�ed implicitly or in parametric form. It
is known that every algebraic space curve can be mapped to a plane algebraic
curve. In consequence, surface intersection can be approached as follows:

1. Map the surface intersection to a plane algebraic curve f(u; v) = 0.

2. Evaluate the plane curve f.

3. Map the points of f back to points on the surface intersection.

In Section 6.4, we present a number of techniques for mapping surface
intersections to plane algebraic curves. Using these mapping techniques, it is
therefore possible to trace surface intersections by equivalently tracing plane
curves. In Section 6.5, we describe a method for evaluating a plane algebraic
curve that is capable of dealing with curve singularities. The idea of the
method is as follows. Trace f with an ordinary numerical method. When
approaching a singularity at a curve point p; apply a transformation that
locally changes f to another curve g that is not singular at the corresponding
point. Trace the transformed curve g and map each point of g back to f.
After the singularity of f has been passed, resume tracing f. The method
integrates numerical and symbolic computation. An advantage is its ability
to cope with curve singularities. A disadvantage is that the map from a
surface intersection to a plane algebraic curve can be diÆcult to construct.

Tracing a surface intersection in n-dimensional space and mapping the
problem to a plane algebraic curve, are, in a sense, two extremes. Generally,
when given n� 1 equations in n variables, we have the option of eliminating
none, some, or all but two of the variables. This implies that there are
tradeo�s that should be explored. Such tradeo�s are not yet well understood.

6.2 Intersecting Two Implicit Surfaces Numerically

Given two implicit surfaces, f(x; y; z) = 0 and g(x; y; z) = 0; and a point
p = (px; py; pz) on their intersection, we wish to trace the intersection curve,
beginning at p. The tracing direction is �xed by the cross-product con-
vention explained in the previous chapter. So, a positive trace proceeds in
the direction rf � rg; whereas a negative trace proceeds in the direction
�rf �rg.

We assume that, at each point p; the surface gradients rf and rg are
linearly independent; that is, the two surfaces intersect transversally at p. In
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that case, the intersection curve is regular at p. If the gradients vanish or are
linearly dependent, then the curve has a singularity at p and the numerical
approach cannot be used without considerable changes and additions.

Assume that p is a regular point on the intersection of f and g. There
is a neighborhood of p in which a local parameterization of the intersection
curve exists. The local parameterization is a vector-valued function

r(s) =

0
BBB@

rx(s)

ry(s)

rz(s)

1
CCCA

of a scalar variable s. Note that rx(s) denotes the x component of the vector
r(s). Analogously, ry(s) and rz(s) denote the y and z component, respec-
tively.

It can be shown that the function r(s) is analytic in a neighborhood of p.
By Taylor's theorem, therefore, this function may be written

r(s) = r(0) + sr0(0) +
s2

2
r00(0) +

s3

6
r000(0) + � � �

where p = r(0). The value of the �rst derivative of r(s) at s = 0 is r0(0); that
of the second derivative is r00(0); and so on. The tracing procedure repeats
the following steps:

1. At the curve point p; construct a local approximant of r(s), to some
order.1

2. Using this approximant and a step value s0; determine the next point
q = r(s0).

3. By Newton iteration, bring q closer to the intersection of f and g.

Typically, the order of approximation is �xed. First-order approximations use
the curve tangent at p as the local approximant. This is often implemented
because the tangent is so easy to compute, as t = rf � rg. Higher-order
approximants allow larger steps. There is a tradeo� between the added time
needed to compute a higher-order approximant, and the time saved by the
ability to take larger steps. Degree-3 approximants seem to provide a good
balance in that the determination of the approximant is not too costly, and
the approximant accounts for both the curvature and the torsion at p.

1In the following discussion, r(s) will also denote the approximant.
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6.2.1 Construction of the Approximant

We view the intersection of f and g as a vector function r(s); parameterized
by the scalar variable s; with p = r(0); and write

r(s) = r(0) + sr0(0) +
s2

2
r00(0) +

s3

6
r000(0) + � � �

since the curve is not singular at p by assumption. The approximant is an ini-
tial segment of this series and is determined by �nding the components of the
derivatives of r; up to some order. Technically, this involves the formulation
of a linear system, which always has the following structure:

rf � r(m)(0) = bf;m

rg � r(m)(0) = bg;m
(6.1)

Here, r(m)(s) denotes the mth derivative of r(s) by s. The coeÆcients bf;m
and bg;m depend on the partial derivatives of f and g at p; and the derivatives
of r up to order m� 1.

Since the system is underdetermined, it does not have a unique solution,
and we must make certain choices. These choices have a geometric interpre-
tation, and will result in an approximant where the values for r00 and r000 are
explicitly related to curvature and torsion at p.

Setting Up the Linear System

We determine the derivative values, r0(0); r00(0); r000(0); from the partial
derivatives of f and of g. When p = (px; py; pz) is a regular point of the
surface f, by Taylor's theorem, there exists a neighborhood of p in that

f(x; y; z) = f(px + Æx; py + Æy; pz + Æz) =
X
i;j;k

fi;j;kÆ
i
xÆ

j
yÆ

k
z

for real numbers Æx; Æy; and Æz. The coeÆcients fi;j;k in the sum denote
expressions

fi;j;k =
1

i!j!k!

@i+j+k

@xi@yj@zk
f(px; py; pz)

Let f(px; py; pz) and f(px + Æx; py + Æy; pz + Æz) be points on the curve r(s).
Assuming that p = r(0) and (px + Æx; py + Æy; pz + Æz) = r(s); we set

Æx = r0xs+ r00xs
2=2 + r000x s

3=6 + � � �

Æy = r0ys+ r00ys
2=2 + r000y s

3=6 + � � �

Æz = r0zs+ r00zs
2=2 + r000z s

3=6 + � � �
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where r0x denotes the x-component of the vector r0; and so on.2 Then, we
have

(Æx)
2 = (r0x)

2s2 + r0xr
00
xs

3 + � � �

(Æx)
3 = (r0x)

3s3 + � � �

ÆxÆy = r0xr
0
ys

2 + (r00xr
0
y + r0xr

00
y)s

3=2 + � � �

ÆxÆyÆz = r0xr
0
yr
0
zs

3 + � � �

and so on.
Since the curve r is on f, substitution of these quantities must yield iden-

tically zero; hence, the coeÆcient of sm must vanish for each m. For m = 1;
2, 3, we therefore obtain the equations

f1;0;0r
0
x + f0;1;0r

0
y + f0;0;1r

0
z = bf;1

f1;0;0r
00
x + f0;1;0r

00
y + f0;0;1r

00
z = bf;2

f1;0;0r
000
x + f0;1;0r

000
y + f0;0;1r

000
z = bf;3

The righthand sides bf;k are computed from the partials of f and lower-order
derivatives of r

bf;1 = 0

bf;2 = �2[f2;0;0(r
0
x)

2 + f0;2;0(r
0
y)

2 + f0;0;2(r
0
z)

2

+f1;1;0r
0
xr
0
y + f1;0;1r

0
xr
0
z + f0;1;1r

0
yr
0
z]

bf;3 = �6[f2;0;0r
0
xr
00
x + f0;2;0r

0
yr
00
y + f0;0;2r

0
zr
00
z + f1;1;0(r

00
xr
0
y + r0xr

00
y)=2

+f1;0;1(r
00
xr
0
z + r0xr

00
z)=2 + f0;1;1(r

00
yr
0
z + r0yr

00
z)=2

+f3;0;0(r
0
x)

3 + f0;3;0(r
0
y)

3 + f0;0;3(r
0
z)

3

+f2;1;0(r
0
x)

2r0y + f1;2;0r
0
x(r

0
y)

2 + f2;0;1(r
0
x)

2r0z

+f1;0;2r
0
x(r

0
z)

2 + f0;2;1(r
0
y)

2r0z + f0;1;2r
0
y(r

0
z)

2 + f1;1;1r
0
xr
0
yr
0
z]

With the bf;m as the right-hand sides, we can rewrite these equations in
vectorial notation as

rf � r0 = bf;1

rf � r00 = bf;2

rf � r000 = bf;3

2We write r instead of r(0); r0 instead of r0(0); and so on.
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The equations for g are developed analogously. In particular, we have

rg � r0 = bg;1

rg � r00 = bg;2

rg � r000 = bg;3

where

bg;1 = 0

bg;2 = �2[g2;0;0(r
0
x)

2 + g0;2;0(r
0
y)

2 + g0;0;2(r
0
z)

2

+g1;1;0r
0
xr
0
y + g1;0;1r

0
xr
0
z + g0;1;1r

0
yr
0
z]

bg;3 = �6[g2;0;0r
0
xr
00
x + g0;2;0r

0
yr
00
y + g0;0;2r

0
zr
00
z + g1;1;0(r

00
xr
0
y + r0xr

00
y)=2

+g1;0;1(r
00
xr
0
z + r0xr

00
z)=2 + g0;1;1(r

00
yr
0
z + r0yr

00
z)=2

+g3;0;0(r
0
x)

3 + g0;3;0(r
0
y)

3 + g0;0;3(r
0
z)

3

+g2;1;0(r
0
x)

2r0y + g1;2;0r
0
x(r

0
y)

2 + g2;0;1(r
0
x)

2r0z

+g1;0;2r
0
x(r

0
z)

2 + g0;2;1(r
0
y)

2r0z + g0;1;2r
0
y(r

0
z)

2 + g1;1;1r
0
xr
0
yr
0
z]

We put these equations into matrix form. A is a 2 � 3 matrix whose rows
are the gradients of f and of g; and all partials of f and of g are evaluated
at p. Then the system is

Ar(m) =

0
@ bf;m

bg;m

1
A

Although this system is only 2�3; solving it without giving proper attention
to its numerical properties will waste accuracy in the solution. Hence, we
should carefully choose a numerically stable solution technique. A good
choice is singular value decomposition, sketched in Section 6.1.4.

As output, singular value decomposition delivers, in our case, two scalars,
�1 and �2; three orthonormal vectors in three-dimensional space, U1; U2; U3;
and an orthogonal 2 � 2 matrix V. From these quantities, we construct a
solution of the form

r(m) = �mU1 + �mU2 + mU3

where the coeÆcients �m and �m are determined by V; �1; and �2. The
details are deferred to Section 6.2.4.
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Figure 6.1 The Space-Curve Triad

Choosing the Undetermined CoeÆcients

The linear system is underdetermined and has an in�nity of solutions. So,
choices must be made for the m to arrive at a canonical solution. Our
strategy is to choose values such that the derivative values reveal some of the
intrinsic geometric structure of the curve at the point p.

From di�erential geometry, we recall that at the point p of a space curve,
the moving triad forms a natural local coordinate system.3 The triad con-
sists of three orthonormal vectors, the tangent vector t, the principal normal

vector n, and the binormal vector b, where b = t� n. Their directions are
de�ned by the tangent, the curvature, and the torsion of the space curve.

The curve tangent t at the point p is the limiting position of curve secants
(p; q); where q approaches p. The plane perpendicular to t is the normal

plane N at p. We consider a plane through the tangent and an additional
curve point r. As r approaches p; this plane approaches as limit position
the osculating plane S. The perpendicular to t in the osculating plane is the
principal normal n. The plane perpendicular to bothN and S is the rectifying
plane R. The perpendicular to t in the rectifying plane is the binormal b; see
also Figure 6.1. At a regular point, the curve intersects the osculating plane
but remains on one side of the rectifying plane.

We consider three points r; p; and q on the curve. They de�ne a circle. As
r and q approach p; the limit position of the circle is the circle of curvature

3The moving triad is also called the Frenet frame.
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Figure 6.2 Local Curve Projections

.

and lies in S. Its radius � is the radius of curvature at p. Now consider
four curve points. If the points are not coplanar, they de�ne a sphere. As
three of the points approach the fourth point p; the limiting position of this
sphere is the osculating sphere. The center of the osculating sphere is in the
normal plane, and the sphere intersects the osculating plane in the circle of
curvature.

Intuitively, the torsion at p is obtained by considering how the osculating
plane changes with p. Consider the angle between the osculating planes at p
and a nearby curve point q. As q approaches p; the ratio between this angle
and the arc length (p; q) approaches as limit the torsion T of the curve at p.

We orient the curve at p by choosing a direction for the tangent t; and
we denote the unit vector in this direction by t. Then, we orient the normal
toward the concave curve side; that is, toward the center of the circle of
curvature. The unit vector in this direction will be n. Finally, we orient
the binormal by the vector b = t � n; as shown in Figure 6.1. With these
conventions of orientation, the projection of the space curve onto each of the
three planes is locally as shown in Figure 6.2.

As the point p moves on the space curve the vectors t; n; and b vary
obeying the Frenet{Serret formulae.

dt

ds
= �n

db

ds
= �Tn

dn

ds
= Tb� �t (6.2)

Here, s is the arc length, � = 1=� is the curvature, and T is the torsion of
the curve.

Now U3; as determined by singular value decomposition, is a unit vector
in the tangent direction. So, we choose 1 = �1; depending on the tracing
direction, and observe that r0 = �U3. By choosing 2 and 3 properly, we
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relate the higher-order derivatives r00 and r000 to the moving triad at p. Since

r00 =
dt

ds
= �n

r00 should be perpendicular to t. So, we choose 2 = 0. Hence, the curvature
at p will be

� =
q
�2
2 + �2

2

Finally, we have

r000(s) =
d

ds
(�n) =

d�

ds
n+ �

dn

ds
= �0n + �Tb� �2t

But r000 = �3U1 + �3U2 + 3t; so, by orthogonality, we have 3 = ��2.
Moreover, we can compute the torsion at p by projecting r000 onto b and
dividing the length of the projected vector by �.

Recall that the method for determining the quantities 1; 2; and 3 just
presented is not the only one. We can understand di�erent strategies by
interpreting them geometrically. For simplicity, we consider �rst-order ap-
proximants and interpret the e�ect of choosing a value for 1. Now, with
1 = 1; the estimated curve point obtained as

q = r(0) + s r0(0)

has distance s from p. If 0 < 1 < 1; then the distance is less than s; with
1 > 1; it is greater than s. Hence, the choices for m determine how r(s) is
parameterized.

6.2.2 Selection of Step Size

We have constructed an approximant r(s) to the curve at p; now we must
choose a step length s0 to obtain a subsequent curve-point estimate r(s0).
Choosing a safe step length requires understanding the radius of convergence
of the full Taylor series. To this end, we consider each coordinate of r sepa-
rately as a function of s. For each coordinate of r(s); we have a function

F (s) =
1X
n=0

ans
n (6.3)
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This series will converge absolutely for all values of s that satisfy jsj < R;
and will diverge for all values jsj � R; where

R = lim sup janj
1=n

We assume that R = 0 whenever janj
1=n is unbounded. Therefore, the radius

of convergence for the full Taylor series of r is the minimum R of the three
coordinate functions F (s).

In practice, the determination of R is diÆcult except in those cases where
simple recurrences or closed-form expressions can be given for the coeÆcients
an. Thus, we opt for a simpler heuristic in which the contribution of the
quadratic and cubic terms to the next point estimate is kept small. For
example, since r0 has unit length, we may choose s0 such that both

ks20r
00(0)k

2
<
js0j

10
and

ks30r
000(0)k

6
<
js0j

10

Since the step sizes could become arbitrarily small, a minimum step size
should also be speci�ed. This simple strategy does well in many cases.

6.2.3 Newton Iteration

At the point p; we have constructed a third-order approximant r(s); we have
determined adaptively a step length s0; and now we have a new point estimate
q = r(s0). Using Newton iteration, we re�ne this estimate until we are on
the intersection of f and g with acceptable accuracy. The iteration is based
on the following, �rst-order approximation of the two surfaces:

rf(qk) ��k = �f(qk)

rg(qk) ��k = �g(qk)

where �k = (Æx; Æy; Æz)
T . Note that this system has the same structure as

does system (6.1). Solving it for �k; we obtain the next point estimate as

qk+1 = qk +�k

As in the approximant construction, we solve the linear system using singular
value decomposition. For the solution �k; we set the coeÆcient of U3 to zero,



216 Surface Intersections

since it represents lateral movement that will not improve the quality of the
new estimate signi�cantly. We continue with the iteration until

kqk+1 � qkk < 10�tkqkk

where t is a precision parameter. Typically, we have t = 10 for double-
precision oating-point computations, and we require two or three iterations
to achieve this accuracy.

6.2.4 Singular Value Decomposition

Singular value decomposition is a method for solving systems of linear equa-
tions that may be singular. It is a numerically stable method of considerable
exibility, and is a part of many widely available software libraries.

Using Singular Value Decomposition

Assume that we are given the linear system

Ar = b (6.4)

From the system matrix A; the singular-value-decomposition algorithm con-
structs three matrices U; S; and V such that

A = V SUT (6.5)

where the matrices have the following properties:

1. The matrices U and V are orthogonal; that is, UUT and V V T are the
identity matrices.

2. The matrix S is diagonal and its diagonal entries are nonnegative and
decreasing.

When we are using the method for the intersection of two implicit surfaces,
the matrix V is 2� 2; U is 3� 3; and S is

S =

0
@ �1 0 0

0 �2 0

1
A
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where �1 � �2 � 0. If the surfaces intersect transversally, moreover, then
�2 > 0. Using equation (6.5), we transform system (6.4) to

S(UT r) = V Tb

Let Ui be the i
th column in U; and denote by (V Tb)i the i

th component of
the vector V Tb. Since U is orthogonal, the vectors Ui are also orthogonal.
Then it can be proved that the solution of system (6.4) is

r = �U1 + �U2 + U3

where the scalar coeÆcients � and � are given by

� = (V Tb)1=�1

� = (V Tb)2=�2

The last coeÆcient  is arbitrary, and the column vector U3 is in the null
space of A. When intersecting two implicit surfaces, the null space at a regular
curve point is spanned by rf � rg. Hence, U3 is the tangent direction to
the curve at p = r(0). Note, however, that the direction of U3 could be equal
to or opposite the direction rf �rg.

First Phase of the Algorithm

The singular-value-decomposition algorithm transforms the matrix A in two
phases. Let A be m � n; where m � n. In the �rst phase, A is changed to
a matrix B in lower bidiagonal form. This is done using Householder trans-
formations that multiply A left and right with certain orthogonal matrices.

B =

0
BBBBBBBBBBBB@

a11 0 0 : : : 0 0 0 : : :

a21 a22 0 : : : 0 0 0 : : :

0 a32 a33 : : : 0 0 0 : : :
...

...
...

...
...

...

0 0 0 : : : am�1m�1 0 0 : : :

0 0 0 : : : amm�1 amm 0 : : :

1
CCCCCCCCCCCCA

At each step, we zero all elements to the right of the ith diagonal element by
multiplying A from the right with a matrix Ui; and then zero all elements
below the (i + 1; i)-element by multiplying from the left with Vi.
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Figure 6.3 The Vector n

A Householder transformation is essentially a reection about the direc-
tion of a column vector n; and is e�ected by a matrix of the form

P = I �
2nnT

nTn

P is symmetric and orthogonal. Given a column vector x; the vector n can
be chosen such that Px is a multiple of the unit vector e1 = (1; 0; 0; : : :)T .
To do so, we use

n = x + �e1

where � is kxk2; see also Figure 6.3. A calculation shows that the matrix P
so constructed from n has the desired e�ect on x.

We use Householder transformations to zero out blocks of entries in the
matrix A. First, we zero all elements to the right of the (i; i)-element. Let
x = (x1; : : : ; xi; xi+1; : : : ; xn) be the ith row in the matrix. We multiply A
from the right with an n� n matrix Ui of the form

Ui =

0
@ I 0

0 P

1
A

where I is the (i�1)�(i�1) identity matrix, and P is the Householder matrix
for (xi; xi+1; : : : ; xn)

T . Next, we zero all elements below the (i+1; i)-element
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by multiplying from the left with a matrix Vi. If (y1; :::; yi; yi+1; : : : ; ym)
T is

the ith column of A; then we multiply with

Vi =

0
@ I 0

0 P

1
A

where I is i � i and P is the Householder matrix for (yi+1; :::; yn)
T . In this

way, we can change A to a lower bidiagonal form.

Second Phase of the Algorithm

In the second phase of singular value decomposition, an iteration is done
to diagonalize the output from the �rst phase. The iteration uses Givens

rotations, and it has similarities with the procedure to diagonalize a real
symmetric matrix discussed in Chapter 5, Section 5.5.1.

We consider a rotation matrix that di�ers from the identity only in the
four entries (i; i); (i; j); (j; i); (j; j):

J(i; j; �) =

0
BBBBBBBBBBBBBBBB@

1
. . .

...
...

: : : c : : : �s : : :
...

. . .
...

: : : s : : : c : : :
...

...
. . .

1

1
CCCCCCCCCCCCCCCCA

where s = sin(�) and c = cos(�). By a computation analogous to the deriva-
tion of Jacobi rotations, we can show that the jth element of the row vector
x = (:::; xi; :::; xj; :::) is canceled in xJ(i; j; �); provided � is such that

cos(�) = xi=(x
2
i + x2j)

sin(�) = xj=(x
2
i + x2j)

The resulting vector is equal to x except for the ith and the jth components.
We apply Givens rotations as follows: In the lower bidiagonal matrix B,

we initially zero the element b21 with a rotation J(1; 2; �)TB. Since B is not
symmetric, this results in a nonzero entry b12. We cancel the element a12 with
a rotation J(1; 2; �). This reintroduces a21 and an element a31. The element
a31 is canceled next in J(1; 3; �)TB; introducing a nonzero element a23. We
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Figure 6.4 Sequence of Givens Rotations in Phase 2 of Singular Value Decomposition

handle a23 just like we have a12; pushing the unwanted element to position a34
with two rotations. In this manner, the unwanted element is percolated down.
When it reaches the position an�1;n; it disappears with the next rotation,
leaving us again with a matrix in lower bidiagonal form. This sequence is
illustrated in Figure 6.4. It can be shown that, when suitably starting out
the initial rotation to cancel a21; the magnitude of the o�-diagonal entries is
diminished with each such sequence of Givens rotations.

Implementation

Our description of the singular-value-decomposition algorithm leaves out a
number of important implementation details. First, the structure of the
Householder matrices is such that they do not need to be formed explicitly.
The vector n can be used directly, and this results in an O(n2) cost for each
transformation step of A. Similar considerations apply to the second phase.
Moreover, we should partition the matrix at each zero o�-diagonal entry,
treating the resulting blocks of submatrices separately, and permute rows
and columns suitably so that the diagonal elements of S are nonincreasing.

6.3 Tracing in Higher Dimensions

The numerical tracing method we have described is not limited to evaluating
the intersection of two implicit surfaces in 3-space; but it is easily generalized
to intersecting n� 1 hypersurfaces in n-space, where n > 3. We sketch this
generalization and discuss several applications.

6.3.1 The Method

We generalize the material of Section 6.2 to the problem of tracing the inter-
section of a system of n� 1 algebraic hypersurfaces in n-dimensional space.
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Let

f1(x1; x2; :::; xn) = 0

f2(x1; x2; :::; xn) = 0
...

fn�1(x1; x2; :::; xn) = 0

be the surfaces that must be intersected. We assume that we are given a
regular point p on the intersection. The algorithm considers a local param-
eterization of the intersection, in a neighborhood of p; as a vector function
r(s) of a scalar variable s. Note that r(s) now has n scalar components, one
for each variable xi. We proceed as follows:

1. At the curve point p; determine an initial segment of the Taylor expan-
sion of r(s) at p; by solving a linear system of the form

Ar(m) = bm

The rows of A are the gradients of the fi; and the entries of bm depend
on the partial derivatives of the fi and the derivatives of r up to order
m� 1.

2. Determine a suitable step value s0; and derive a new curve point esti-
mate q = r(s0).

3. Re�ne the estimate q to a curve point using Newton iteration.

As before, the linear systems are derived by considering the Taylor expan-
sion at p for each surface fi; and deriving from it expressions for the curve
derivatives r0; r00; and so on. Let f

(k)
i denote the partial derivative of fi by xk;

and f
(k;j)
i denote the partial derivative of f

(k)
i by xj. Moreover, let ri denote

the ith component of r. Then, the �rst derivative of r(s) is determined from
n� 1 equations of the form

f (1)i r01 + f (2)i r02 + � � �+ f (n)i r0n = 0

The second derivative is determined from n� 1 equations of the form

f
(1)
i r001 + f

(2)
i r002 + � � �+ f

(n)
i r00n = bi;2
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where the right-hand side is

bi;2 = �(f
(1;1)
i r01

2 + f
(2;2)
i r02

2+ � � � +f
(n;n)
i r0n

2)

�2(f
(1;2)
i r01r

0
2 + f

(1;3)
i r01r

0
3+ � � � +f

(1;n)
i r01r

0
n

+f
(2;3)
i r02r

0
3+ � � � +f

(2;n)
i r02r

0
n

. . .

+f
(n�1;n)
i r0n�1r

0
n)

The third-order derivative of r can be obtained analogously.
Using singular value decomposition to solve the system, there are free

parameters to be chosen corresponding to the m in the three-dimensional
case. Here we choose 1 = �1 and 2 = 0.4 A suitable stepping length may be
determined with the same heuristics as those used in the three-dimensional
case. Thereafter, Newton iteration is used to re�ne the new curve-point
estimate. The details are straightforward.

6.3.2 Numerically Intersecting Two Parametric Surfaces

The traditional approach to intersecting two parametric surfaces is to use
subdivision and piecewise linear approximation. When an initial intersec-
tion point p is known, however, the numerical approach becomes directly
applicable, greatly simplifying the problem.

Let the surfaces be given as

x = G1;1(u1; v1) x = G2;1(u2; v2)

y = G1;2(u1; v1) and y = G2;2(u2; v2)

z = G1;3(u1; v1) z = G2;3(u2; v2)

Then the intersection is given by the equations

F1(u1; v1; u2; v2) = G1;1(u1; v1)�G2;1(u2; v2) = 0

F2(u1; v1; u2; v2) = G1;2(u1; v1)�G2;2(u2; v2) = 0

F3(u1; v1; u2; v2) = G1;3(u1; v1)�G2;3(u2; v2) = 0

4A generalization of the Frenet{Serret formulae to n dimensions exists and can be used
to devise a strategy for determining 3. Alternatively, we can designate a subset of three
coordinates and determine 3 based on them alone, using the method of Section 6.2. This
alternative is natural in some applications, including o�set surface intersection, discussed
later.
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that is, by three equations in the four unknowns u1; v1; u2; and v2. These
equations de�ne a curve r(s) in four-dimensional space:

r(s) =

0
BBBBBB@

u1(s)

v1(s)

u2(s)

v2(s)

1
CCCCCCA

The surface intersection is recovered from r(s) using the functions Gj;k

0
BBB@

x

y

z

1
CCCA =

0
BBB@

G1;1(u1(s); v1(s))

G1;2(u1(s); v1(s))

G1;3(u1(s); v1(s))

1
CCCA =

0
BBB@

G2;1(u2(s); v2(s))

G2;2(u2(s); v2(s))

G2;3(u2(s); v2(s))

1
CCCA

Example 6.1: Consider intersecting two bicubic surfaces. Assume that
the �rst surface is given by

x = G1;1(u1; v1) = 3v1(v1 � 1)2(u1 � 1)3 + 3u1

y = G1;2(u1; v1) = 3u1(u1 � 1)2v31 + 3v1

z = G1;3(u1; v1) = (u21 � 5u1 + 5)v31 � 3(u31 + 6u21 � 9u1 + 1)v21

and the second surface by

x = G2;1(u2; v2) = u32v
2
2 � u32

y = G2;2(u2; v2) = u22v2 + 2u32v
3
2

z = G2;3(u2; v2) = u2v
3
2 + u22v2

Then the equations to be traced are

3v1(v1 � 1)2(u1 � 1)3 + 3u1 � u32v
2
2 + u32 = 0

3u1(u1 � 1)2v31 + 3v1 � u22v2 � 2u32v
3
2 = 0

(u21 � 5u1 + 5)v31 � 3(u31 + 6u21 � 9u1 + 1)v21 � u2v
3
2 � u22v2 = 0

The points obtained by the trace have the coordinates (u1; v1; u2; v2) and
trace simultaneously the image of the intersection curve in both parameter
spaces. The curve in 3-space is recovered from (u1; v1) via the coordinate
functions G1;j; or from (u2; v2) via G2;j; where j = 1; 2; 3. 3
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6.3.3 Surface Operations in Higher Dimensions

Some surface-intersection problems can be expressed straightforwardly as
the simultaneous intersection of n� 1 hypersurfaces in n-dimensional space,
where n > 3. Given such a formulation, we can use the generalized tracing
method. As an illustration, we consider o�set surface intersection. Other
surface operations may be similarly expressed and treated; see the notes at
the end of the chapter.

A number of geometric operations on solid models require o�setting a
given surface by some distance r. That is, given a surface f, we wish to
determine a surface g such that, for every point p of f, there is a point q on
g such that the distance between p and q is exactly r; and the line (p; q) is
perpendicular to f at p.

There are methods for determining an implicit equation for the r-o�set g
of f. Here, f could be implicit or parametric. However, o�setting may entail
considerable symbolic computation, and it may therefore be advantageous
to circumvent determining g explicitly, and to reformulate the problem in a
higher-dimensional space.

O�set Surface Construction Using Envelopes

Consider a parametric surface f given by

x = f1(s; t)

y = f2(s; t)

z = f3(s; t)

Let n(s; t) = (nx(s; t); ny(s; t); nz(s; t)) be the unit normal to f ; that is, n is
a vector of length 1. Then, the points

x = f1(s; t) + rnx(s; t)

y = f2(s; t) + rny(s; t)

z = f3(s; t) + rnz(s; t)

(6.6)

are on the r-o�set of f. The formula (6.6) can be used as the de�nition of the
r-o�set of f, but the disadvantage is that this formulation is not algebraic,
since n involves a square root. In fact, examples can be constructed such
that the surface described by (6.6) is not algebraic. It is, however, part of an
algebraic surface. To �nd this algebraic surface, we must consider the points
at distance r on both sides of f. We describe a method for determining the
two-sided o�set surface.

We consider a family of spheres S of radius r; each of whose centers is
constrained to lie on the surface f. The envelope of this family contains the set
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f

Figure 6.5 O�set Curve as Envelope of Circles

of points whose distance from f is r. Figure 6.5 illustrates this concept in two
dimensions. Intuitively, the envelope points are determined by intersecting
a sphere in generic position with two adjacent spheres, di�erentially moved
in independent directions on the surface. Using techniques from di�erential
geometry, we can prove that we �nd these points by solving a system of
algebraic equations.

Theorem

The envelope points of a family of surfaces S(x; y; z; �1; �2); pa-
rameterized by �1 and �2; satisfy the three equations

S = 0 (6.7)

@S

@�1

= 0 (6.8)

@S

@�2
= 0 (6.9)

The theorem generalizes to all dimensions. In our situation, we apply the
theorem as follows. Given the parametric surface f as

x = f1(s; t)

y = f2(s; t)

z = f3(s; t))

we consider the spheres

S : (x� f1(s; t))
2 + (y � f2(s; t))

2 + (z � f3(s; t))
2 � r2 = 0
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Note that �1 = s and �2 = t. We form the partial derivatives of S by s and
by t and obtain

Ss : �2(x� f1)
@f1
@s

� 2(y � f2)
@f2
@s

� 2(z � f3)
@f3
@s

St : �2(x� f1)
@f1
@t

� 2(y � f2)
@f2
@t

� 2(z � f3)
@f3
@t

By eliminating s and t from the three equations, an algebraic description of
the o�set surfaces is obtained.

For implicit f, equations (6.8) and (6.9) should be replaced with the di-
rectional derivatives in two independent tangent directions on the surface f,
and an additional equation is needed that expresses that the centers of the
sphere must lie on the implicit surface. The pattern is as follows:

S : (x� u1)
2 + (y � u2)

2 + (z � u3)
2 � r2 = 0

f(u1; u2; u3) = 0

ruS � t1 = 0

ruS � t2 = 0

(6.10)

Here, t1 and t2 are two linearly independent tangent vectors to f at the point
(u1; u2; u3); and

ruS =

 
@S

@u1
;
@S

@u2
;
@S

@u3

!

Elimination of u1; u2; and u3 from the set of equations (6.10) results in an
implicit equation describing the o�set of f.

We could now eliminate s and t in the parametric case, or eliminate u1; u2;
and u3; in the implicit case. The result, in each case, is an implicit equation
for the o�set surface which then is intersected with some other surface, say
g. However, the symbolic computations incurred by the elimination step
could be forbidding. So, we will intersect g with the system of equations
describing the o�set, thus tracing the intersection in a dimension higher than
three. Example 6.2 illustrates the method. Such a trace derives the following
additional information:

� In the parametric case, each point is traced in �ve dimensions, and
has the coordinates (x; y; z; s; t). Here, p = (x; y; z) is the point on
the intersection of the o�set surface of f with g. The point (s; t) in
parameter space determines the footpoint of p; that is, the point on f
at distance r from p.
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� In the implicit case, each point is traced in six dimensions, and has the
coordinates (x; y; z; u1; u2; u3). Again, p = (x; y; z) is the point on the
o�set surface intersection with g; and (u1; u2; u3) is its footpoint on f.

Note that we can intersect two o�set surfaces with each other by combining
the respective systems of equations. This raises the dimensionality of the
problem, but not its diÆculty.

It is important to note the following points about the envelope method
for formulating o�sets:

1. The o�set surface may self-intersect. In applications, self-intersections
are undesirable, and \interior" surface parts may be obtained that one
wants to eliminate. See Figure 6.6 for an illustration in two dimensions.
Neither formulation (6.6) nor the envelope method will automatically
eliminate those interior parts.

2. In constructing an algebraic description of o�set surfaces, we operate
implicitly over the �eld of complex numbers, and we obtain certain
surface components at in�nity. Both result in additional points that
are described by the equations.5 Figure 6.7 shows an example in two
dimensions. Those points are not generated in formulation (6.6). On
the other hand, that formulation cannot handle singularities.

In our view, these phenomena are due to the fact that algebraic computations
implicitly require projective spaces over an algebraically closed ground �eld,
as explained in Section 7.2.1 in Chapter 7. Insisting on working in real aÆne
spaces substantially reduces the available mathematical machinery.
Example 6.2: Consider the ellipsoid f = 2x2+9y2+18z2� 18. We plan

to intersect its o�set by 1 with a cylinder h = (x� 3)2+ y2� 1. We consider
a sphere of radius 1 centered at the point p = (u1; u2; u3) of the ellipsoid:

S : (x� u1)
2 + (y � u2)

2 + (z � u3)
2 � 1 = 0

2u21 + 9u22 + 18u23 � 18 = 0

Here, the second equation ensures that p lies on the ellipsoid. To �nd the
directional derivatives of S; we must determine two independent tangent
directions to the ellipsoid at p. Now the gradient at p is

rf = (4u1; 18u2; 36u3) = 2(2u1; 9u2; 18u3)

5In the case of parametric curves, some of these additional points can be eliminated by
dividing out certain factors. See also the notes at the end of the chapter.
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Figure 6.6 Interior O�set Part at
Self-Intersections

Figure 6.7 Additional O�set Points
at Singularity

Hence, perpendiculars to rf will be tangent directions. We choose

t1 : (�9u2; 2u1; 0)

t2 : (0;�18u3; 9u2)

and observe that t1 ? rf; t2 ? rf; and that t1 and t2 are linearly indepen-
dent when u2 6= 0. Moreover,

ruS = 2(�(x� u1);�(y � u2);�(z � u3))

Equations (6.8) and (6.9) specialize to

ruS � t1 = 9(x� u1)u2 � 2(y � u2)u1

ruS � t2 = 18(y � u2)u3 � 9(z � u3)u2
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Figure 6.8 Intersecting a Cylinder with an O�set of an Ellipsoid

Therefore, the intersection with h is described by the equations

(x� u1)
2 + (y � u2)

2 + (z � u3)
2 � 1 = 0

2u21 + 9u22 + 18u23 � 18 = 0

9(x� u1)u2 � 2(y � u2)u1 = 0

18(y � u2)u3 � 9(z � u3)u2 = 0

(x� 3)2 + y2 � 1 = 0

(6.11)

These are �ve equations in the six unknowns x; y; z; u1; u2; u3. Here, x; y; and
z are the coordinates, in 3-space, of the intersection curve of the o�set of f
with g. Moreover, q = (u1; u2; u3) is the footpoint of p = (x; y; z) on f ; that
is, it is a point on f such that the surface normal through q passes through
p; and such that the Euclidian distance (p; q) is the o�set distance. Rather
than eliminating the unknowns u1; u2; and u3; we trace the intersection curve
in six dimensions, tracking simultaneously the intersection of the o�set with
g; as well as the footpoint curve on f. Figure 6.8 shows this trace. 3
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6.4 Mapping Surface Intersections to Plane Curves

A general approach to surface-intersection evaluation is to map the surface
intersection to a plane curve h(u; v) = 0. The approach is appealing for a
number of reasons. For one, a plane curve can be traced through singular-
ities, as explained later in this chapter. An analogous process for surface
intersection could be devised in principle, but it would be substantially more
complex because it would have to map the intersecting surfaces simultane-
ously such that the singularity of their intersection would be resolved.

On the other hand, the mapping approach has to face a number of diÆ-
culties that reduce its attractiveness. These include the cost of constructing
the map, the numerical inaccuracies that might arise in the substitution pro-
cess, and, �nally, the high degree of h; which is, in general, the product of
the surface degrees and usually leads to numerical diÆculties. We discuss
several techniques that can be applied in various situations. None of them
avoid all the problems mentioned.

6.4.1 Substitution Maps

In a substitution map, we substitute the parametric form of one surface into
the implicit form of the other, thereby obtaining a plane curve in the param-
eter space of the �rst surface. If we intersect a parametric with an implicit
surface, the cost of constructing the map is just the cost of doing the sub-
stitution. Otherwise, we must add the cost of converting the representation
of one of the surfaces from parametric to implicit, or vice versa. In most of
those situations, the cost of the representation conversion will dominate.

Intersecting Two Parametric Surfaces

When intersecting two parametric surfaces, we implicitize one of them. Im-
plicitization is always possible, and can be done either by resultant compu-
tations or by Gr�obner bases techniques. The resultant-based computation
su�ers from the extraneous factor problem. If the implicitized surface is

f(x; y; z) = 0

and the parametric surface is

x = g1(u; v)

y = g2(u; v)

z = g3(u; v)
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then the plane algebraic curve is

h(u; v) = f(g1(u; v); g2(u; v); g3(u; v)) = 0

We can then trace h = 0 in u; v space, and map each point via the rational
functions gi.
Example 6.3: Consider the intersection of the parametric surfaces

f :

8>>><
>>>:

x = st

y = st2

z = s2
and g :

8>>><
>>>:

x = u2 � v2

y = 2uv

z = u2 + v2

We implicitize the surface f using the Gr�obner bases method discussed in
Section 7.5.1 of Chapter 7. and obtain the implicit form

x4 � y2z = 0

Substitution of the second surface into this implicit form yields the plane
curve

h : (u2 � v2)4 � 4u2v2(u2 + v2) = 0

Each point (u; v) of h corresponds to the point (u2 � v2; 2uv; u2 + v2) on g;
which must also be on f ; hence, it is a point on the intersection. A trace of
h is shown in Figure 6.9. 3

Intersecting Two Implicit Surfaces

When intersecting two implicit surfaces, we would like to parameterize one
of them. Not every implicit surface possesses a rational parametric form,
however, so this approach needs to be modi�ed. It can be shown that the
intersection of two implicit surfaces always lies on a parameterizable surface.
That is, given the surfaces

f(x; y; z) = 0

g(x; y; z) = 0

there is a surface h that is parameterizable and contains the intersection of
f and g. The surface has the form

h(x; y; z) = h1f + h2g = 0
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u

v

Figure 6.9 Trace of (u2 � v2)4 � 4u2v2(u2 + v2) = 0

where the coeÆcients h1 and h2 are polynomials. The computation for ob-
taining h is conceptually simple, as is the parameterization, since h will be
a monoid whose singular point we will know.

We describe the derivation of h. First, we homogenize f and g; obtaining
F (w; x; y; z) and G(w; x; y; z). As long as w 6= 0; the curve F \G is identical
to f \ g. We select one of the variables as main variable, and rewrite F and
G as polynomials in this variable, say w:

F = unw
n + un�1w

n�1 + � � �+ u1w + u0

G = vn0wn0

+ vn0�1w
n0�1 + � � �+ v1w + v0

Without loss of generality, we can assume that n � n0 > 1; and determine
the polynomials

F1 = unw
n�n0

G� vn0F

G1 = (u0G� v0F )=w

In e�ect, in F1; we cancel the highest terms in w; in G1; we cancel the lowest
term. Note that both F1 and G1 contain the intersection curve of F and G;
since they are algebraic combinations of the two surfaces.

Both F1 and G1 have degree at most n�1 in w. If one of them is linear in
w; then we stop; we have found the desired surface. If neither is linear, then
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we repeat the calculation using F1 and G1 in place of F and G. Since at each
step the maximum degree in w is lowered by at least one, the computation
derives the desired monoid equation after at most n steps, in the form

wHm�1(x; y; z) +Hm(x; y; z) = 0

This surface is then parameterized by

w(u; v; s) = �Hm(u; v; s)=Hm�1(u; v; s)

x(u; v; s) = u

y(u; v; s) = v

z(u; v; s) = s

as described in Section 5.5.4 of Chapter 5. The parametric forms are now
substituted into the equation of G and give a plane curve in homogeneous
form. After dehomogenizing, this is the desired plane curve.
Example 6.4: Consider the intersection curve of the cylinder f =

x2 + (z + 1)2 � 1 = 0 and the sphere g = x2 + y2 + (z + 2)2 � 4 = 0.
Homogenizing, we obtain F = x2 + z2 + 2zw and G = x2 + y2 + z2 + 4zw.
The intersection curve is an irreducible degree-4 space curve with a nodal
singularity at the origin. We select z as the main variable. Accordingly, we
compute

F1 = G� F = y2 + 2zw

G1 = [(x2 + y2)F � x2G]=z = y2z + 2(y2 � x2)w

Both polynomials are linear in z. F1 is simpler and has the parameterization

z = �
s2

2u
w = u

x = v

y = s

Substitution into G yields the plane curve

s4 + 4u2(v2 � s2) = 0



234 Surface Intersections

s

v

Figure 6.10 Space Curve and Its Planar Image in Parameter Space of Monoid

Dehomogenizing with u = 1 yields s4� 4(v2� s2) = 0. Both the space curve
and its planar image are shown in Figure 6.10. 3

Example 6.4 is favorable because the degree of the plane curve obtained is
the minimum degree possible. In general, the monoid method will introduce
extraneous factors and will yield plane curves of higher degree than needed.
An example of this phenomenon is easily constructed.

We intersect the torus

(x2 + y2 + z2 � w2)2 + 8w2(z2 � x2 � y2 � w2) + 16w4 = 0

with the ellipsoid

36(x� w)2 + 4(y � w)2 + 9z2 � 36w2 = 0

We apply the monoid construction,6 and obtain in three steps a rational
surface of degree 8. The respective degrees obtained in each step are as
follows:

Fi degrees : 4 6 8

Gi degrees : 5 4 9

6In practice, one should parameterize the ellipsoid or the torus, since both are rationally
parameterizable.
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Figure 6.11 Ellipsoid/Torus Intersection in Parameter Space

Note that the degree drop in the second stage is due to a common factor of
degree 4 of the w0 coeÆcients.

We use the monoid of degree 8 and substitute its parametric form into
the equation of the ellipsoid. This yields a plane curve of degree 16 that
factors. The curve has three components, of degree 2, 6, and 8, respectively.
The degree-2 component is 36x2 + 4y2 + 9z2; and is the intersection of the
ellipsoid with the plane at in�nity. We can verify that this curve is not
on the torus, and conclude that the degree-2 component is an extraneous
factor. By Bezout's theorem, we expect an intersection curve of degree 8. In
conjunction with the rejection of the degree-2 component, this implies that
the degree-6 component is also extraneous, so the degree-8 component is the
sought curve. It is shown in Figure 6.11.

6.4.2 Projection Methods

The second general approach to mapping a space curve to a plane curve is
to use projection. In principle, the construction of these maps is straightfor-
ward. The main problem, however, is that the point from which to project
must be chosen carefully: A poorly chosen point will result in a map that
cannot be inverted. Such a projection map would not permit mapping the
points of the plane curve back to space-curve points, so that the plane-curve
trace would yield no information.
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Figure 6.12 Projection of the Cylinder/Sphere Intersection

If we assume that the two surfaces intersect transversally | that is, that
the surface gradients are linearly independent almost everywhere | and that
the curve itself is irreducible, then it can be shown that a good projection
point can be chosen by the following computation:

1. Transform the surface equations by a nonsingular linear transformation
with symbolic coeÆcients.

2. Project the intersection by a resultant computation.

3. Choose random numeric values for the coeÆcients and verify that the
projection does not degenerate.

Note that step 3 succeeds with a probability of one. Almost all assignments
will result in a nonsingular linear transformation. Moreover, assignments
failing to produce a good projection are in directions at which in�nitely
many curve-point pairs line up. Those directions constitute a ruled surface,
and any view point not on that surface yields a suitable projection.
Example 6.5: We consider the surfaces of Example 6.4, intersecting

f : x2 + (z + 1)2 � 1

g : x2 + y2 + (z + 2)2 � 4
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Instead of substituting with symbolic coeÆcients aij; we substitute

x = u+ v + w

y = u+ 2v + 4w

z = u� 2v � w

For random values, we expect that none of the aij are zero, and that none
of the coeÆcient expressions vanish, after substitution. This is also the case
for this substitution, although it is not based on random values.

With this substitution, we obtain the polynomial F (u; v; w) from f, and
the polynomial G(u; v; w) from g. We eliminate one of the variables | say,
w | obtaining a polynomial H(u; v) = Resw(F;G); where

H(u; v)=4 = 400v4 � 960uv3 � 952v3 + 1256u2v2 + 1848uv2 + 490v2

�816u3v � 1554u2v � 784uv + 289u4 + 588u3 + 294u2

Recall that the initial form of a polynomial consists of the terms of lowest
degree. Consequently, the initial form of the curve H is h0 = 490v2�784uv+
294u2. The initial form factors h0 = 98(v�u)(5v�3u); that is, the singularity
of H at the origin is a node.

The curve H is shown in Figure 6.12. It has three singularities. The one
at the origin corresponds to the singularity of the surface intersection. The
other two have been introduced by the projection.

We stated that the projection will succeed with high probability. As ex-
ample of a poor projection point, consider the assignment

x = w; y = v; z = u

Here we obtain the plane curve

(v2 + 2u)2

That is, we obtain a double parabola. There is no rational map from this
plane curve to the space curve, so tracing the parabola would be useless. 3

6.5 Plane Algebraic Curves

We now consider how to trace a plane algebraic curve f(x; y) = 0. Tracing
a plane algebraic curve is fundamental, because every algebraic space curve



238 Surface Intersections

can be mapped birationally to a plane algebraic curve. This observation has
been used in various ways in the surface-intersection problem, and continues
to be researched as an approach to intersection evaluation. The method to
be described can trace through curve singularities of arbitrary structure.

As before, the bulk of the tracing will be done numerically, and the rou-
tines continue to be structured as before:

1. Construct a local approximant at the curve point p.

2. With a selected step size, derive a new curve-point estimate q.

3. Re�ne the estimate q iteratively, obtaining a curve point.

The numerical tracing routine performs very well, except at singularities. All
purely numerical tracing routines fail at a singular curve point for the same
reason: Technically, the routines depend on the underlying assumption that
there exists a system of linear equations that determines the local structure
of the curve with suÆcient accuracy. In our case, this was the system of
equations (6.1). At a singular point, however, these equations are nonlinear,
as explained later, and approaching the problem as a linear one would be
inappropriate. Hence, we seek methods for analyzing singularities.

Rather than dealing directly with nonlinear equations, we will apply a
classical result from algebraic geometry that states that every algebraic curve
f(x; y) = 0 can be transformed birationally into a curve g(x; y) = 0 that is
devoid of singularities. Thus, we plan to trace g in the vicinity of singular
points of f, and to map the points of g back to corresponding points of f.

It would be nice if we needed to trace only g. Unfortunately, g cannot
be so used, since we might have to pass through in�nity. So, we trace f
whenever possible and trace only the critical segments of f on g | the
segments containing singularities.

6.5.1 Place of a Curve

In this section, we de�ne the notion of a place of an algebraic curve. We
need this concept to analyze the nature of singularities and to elucidate the
e�ect of quadratic transformations used by the tracing algorithm to resolve
singularities.

De�nition of Place of a Curve

At the point p = (a0; b0) of the plane algebraic curve f(x; y) = 0; we de�ne
the formal power series

x(s) = a0 + a1s+ a2s
2 + � � �

y(s) = b0 + b1s+ b2s
2 + � � �

(6.12)
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and require that f(x(s); y(s)) � 0. We think of the pair as a local parame-

terization of f. It is called a place of f at p; and exists because of Newton's
theorem.

Newton's theorem generalizes the implicit function theorem: The implicit
function theorem states that, for a regular curve point p at which the partial
derivative fy is not zero, there exists a neighborhood U in which an analytic
function y = h(x) can be de�ned such that f(x; h(x)) � 0; for all x in U. By
introducing a new variable s and de�ning two analytic functions x = h1(s)
and y = h2(s); such that f(h1(s); h2(s)) � 0; the hypothesis fy 6= 0 can be
abolished. Furthermore, by allowing possibly more than one pair of functions
of the form of equation (6.12) at p; the assumption that p is not singular
can be removed. So generalized, we obtain Newton's theorem, which says,
roughly, that given a polynomial f(x; y) and a point p = (a0; b0) on it, there
exist power series of the form of equation (6.12) such that

f(x(s); y(s)) � 0 (6.13)

These power series can be viewed as formal series, in which case equation
(6.13) is an algebraic identity; or they can be considered as de�ning analytic
functions, in which case their convergence properties must be considered as
well. In the following discussion, we adopt the former point of view.

The notion of place is more speci�c than that of a curve point. At a regular
curve point p; the curve f has only one place, and that place can be shown
to be essentially the Taylor expansion of f at p. At singular points, the curve
may have several places. When considered within the disk of convergence, a
place is simply an analytic curve branch.

Basic Properties of Places and Singularities

A place is regular if a1 and b1 are not simultaneously zero; otherwise, it is
singular. We say that the place is centered at (a0; b0). For example, the place

x(s) = s

y(s) = s+
1

2
s2 �

1

8
s3 � : : :

is regular, whereas the place

x(s) = s2

y(s) = s3

is singular. If a curve has exactly one regular place centered at (a0; b0); then
(a0; b0) is a regular curve point. Otherwise, it is a singular curve point. Thus,
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a singular curve point is one at which the curve has either one singular place
or at which the curve has two or more places. In the latter case, none, some,
or all of the places could be singular as well.

The de�nition of a singular curve point in terms of places can be shown to
be equivalent to the de�nition in terms of vanishing partial derivatives. We
de�ne the derivative h0(s) of the series h(s) = a0+ a1s+ a2s

2+ a3s
3+ � � � as

h0(s) = a1 + 2a2s+ 3a3s
2 + � � �

Then, it can be shown that at the regular curve point (a0; b0) the partial
derivatives of f are proportional to the derivatives of the place; that is,

fx(a0; b0) = �x0(0)

fy(a0; b0) = �y0(0)

where � 6= 0.
The order of a power series a1s+ a2s

2 + a3s
3 + � � � is the minimum index

k such that ak 6= 0. Similarly, the order of a place centered at the origin is
the smallest index k such that ak and bk are not both zero. The order of a
regular place is always one, the order of a singular place is always greater
than one. A place

x(s) = a1s+ a2s
2 + � � �

y(s) = b1s+ b2s
2 + � � �

intersects a curve g(x; y) = 0 at the origin with multiplicity k if k is the order
of the power series g(x(s); y(s)). Intersection multiplicity is also called order

of contact.
Example 6.6: The place (x(s) = s2; y(s) = s3) intersects the line x + y

with multiplicity 2, since x(s)+y(s) = s2+ s3 has order 2. However, the line
y = 0 intersects the place with multiplicity 3. 3

Let P1 = (x1(s); y1(s)) and P2 = (x2(s); y2(s)) be two places centered
at the origin. We would like to de�ne their intersection multiplicity at the
origin as k whenever the �rst k + 1 coeÆcients of x1(s) and x2(s) and of
y1(s) and y2(s) agree. This problem is not quite so simple, because there are
di�erent ways to write the power series. Moreover, since the line x + y = 0
has the place (x(s) = s; y(s) = s) at the origin, such a de�nition would
not be compatible with the intersection multiplicity of places with curves.
The proper de�nition requires reparameterizing the two places such that a
canonical form is obtained, after which the multiplicity | or, equivalently,
the order of contact | can be de�ned as the order of a certain power series.
The details are omitted.

A key theorem from algebraic geometry states that two places either are in
contact of �nite order, or else are equal. Later on, we will use this theorem to
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show that the di�erent places centered at the same singular point of a curve
can be \separated." Such a separation is one of the key aspects of resolving
curve singularities. Note that the theorem is reminiscent of Bezout's theorem.

If we think of a place as an analytic branch, then it makes sense to de�ne
its tangent. Intuitively, a tangent to the place

x(s) = a0 + a1s+ a2s
2 + � � �

y(s) = b0 + b1s+ b2s
2 + � � �

is a line through (a0; b0) that intersects the place with a higher multiplicity;
that is, it is in higher order of contact with the place than almost all other
lines.
Example 6.7: Consider the place (x(s) = s2; y(s) = s3); centered at the

origin. Let

ux+ vy = 0

be a line through the origin, where u and v are not both zero. We have

ux(s) + vy(s) = us2 + vs3

So, the line intersects the place with multiplicity 2, except when u = 0; for
then the intersection multiplicity is 3. Therefore, y = 0 is tangent to the
place (s2; s3). 3

It can be proved that there is exactly one tangent to a place. Moreover,
it can be proved that at a regular curve point the tangent to the place is the
curve tangent, and that at a singular point p the curve tangents consist of
the tangents to the places of the curve that are centered at p. In particular,
if the origin is a point on f, then the tangent lines to f at the origin are the
linear factors of the initial form of f. Thus, the notion of tangency to a place
is more speci�c than is the concept of tangent space introduced in Section
5.3.1 of Chapter 5.

A Method for Computing Places

Given a point p = (a0; b0); one way to determine the place(s) of f(x; y) is to
set up the series of equations (6.12) formally, to substitute them into f, and
to set the coeÆcients of the resulting power series to zero. For example, let
f = y2 � x2 � x3; and consider the point (0; 0). We substitute

P
i�1 ais

i for
x; and

P
i�1 bis

i for y; and set the coeÆcient of each power of s to zero. This
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yields the following system

a21 � b21 = 0

2b1b2 � 2a1a2 � a31 = 0

2b1b3 + b22 � 2a1a3 � a22 � 3a21a2 = 0

2b1b4 + 2b2b3 � 2a1a4 � 2a2a3 � 3a21a3 � 3a1a
2
2 = 0

...

(6.14)

which has the solutions

x(s) = s

y(s) = s+
1

2
s2 �

1

8
s3 � � � �

and

x(s) = s

y(s) = �s�
1

2
s2 +

1

8
s3 � � � �

Each solution is a distinct regular place of f at the origin. Since f has more
than one place, it is singular at (0; 0); which is also evident from the nonlinear
initial form y2 � x2 = (y � x)(y + x) and from the graph of the curve shown
in Section 6.5.3 in Figure 6.14 on the left.

The system of equations derived in this way agrees formally with the
system of equations (6.1), formulated in Section 6.2. The connection becomes
evident when considering the derivatives of a place

x0(s) = a1 + 2a2s+ 3a3s
2 + : : :

y0(s) = b1 + 2b2s + 3b3s
2 + : : :

Higher-order derivatives are de�ned analogously. Then, the system of equa-
tions (6.14) can be shown to be of the form

rf � r(m) = bf;m

with r = (x(s); y(s)). Thus, the di�erence between the regular and the
singular case is simply that in the regular case this system is linear, whereas
in the singular case it is nonlinear.
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Places on Space Curves

The notion of place generalizes directly to higher-dimensional algebraic curves.
As before, the system of equations (6.1) can be formulated and solved for
each space-curve point. For regular curve points, the system is linear; for sin-
gular curve points, it is nonlinear. When solving such a system, the following
theorem is helpful.

Theorem

Let (x1(s); x2(s); :::; xn(s)) be a place of an algebraic space curve.
Then the parameter s can be chosen such that one of the coor-
dinates xj has the form

xj(s) = sk

For a regular curve point, k will be 1, so this theorem specializes to the
implicit function theorem.

6.5.2 Quadratic Transformations

Let f(x; y) = 0 be a plane algebraic curve on which the origin (0; 0) is a
singular point. We wish to construct a birational transformation � from the
curve f to a curve g with the following properties. The transformation is
bijective in a neighborhood of the origin, except, possibly, at the origin.7

Moreover, each place of f centered at the origin is mapped to a regular place
of g; and the center of each such place is a regular point of g.

Intuitively, � separates all places of f at the origin, and, if any one of them
is a singular place, it is transformed by � into a nonsingular place centered
at a regular curve point of g. Thus, � \resolves" the singularity into several
regular curve branches situated at di�erent nonsingular points. Note that we
consider only singularities at the origin. This is suÆcient, because a singular
curve point can always be brought to the origin by a change of coordinates.

The birational map e�ecting a resolution of the singularity is constructed
incrementally from two quadratic transformations T1 and T2:

T1 : x1 = x

y1 = y=x

T2 : x2 = x=y

y2 = y

7Strictly speaking, � is not bijective on certain lines. When constructing �; we will
ensure that these \exceptional lines" are not tangent to the branch we trace.
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Figure 6.13 Quadratic Transformation T1 : (x; y)! (x; y=x)

Initially, we restrict attention to T1. Its inverse is evidently x = x1 and
y = x1y1. The basic properties of T1 are as follows:

1. T1 maps the set f(x; y) j x 6= 0g bijectively onto the set f(x1; y1) j x1 6=
0g.

2. The points (0; y) with y 6= 0 are mapped to in�nity in the (x1; y1)-plane.

3. As we approach the origin on a curve branch, the limit of the image
points is the image of the origin on the branch. This limit depends on
the direction of approach: If the branch has a tangent with slope m at
the origin, then that branch will intersect the y1 axis in (0; m).

Figure 6.13 shows the e�ect of T1 on select lines. The coordinate lines x = m
are mapped to x1 = m for m 6= 0. The coordinate lines y = m are mapped
to the hyperbolas y1x1 = m. Finally, the lines y = mx are mapped to the
lines y1 = m for m 6= 0. The e�ect of T2 is analogous.

6.5.3 Branch and Curve Desingularization

Assume that f(x; y) = 0 has a singularity of order k at the origin, and
that the initial form of f is not yk. When T1 is applied to f, then the total
transform of f is xk1g(x1; y1) = 0. The lines xk1 = 0 are not of interest, and
we consider g(x1; y1) = 0 as the proper transform of f. In favorable cases, the
points of g corresponding to the origin of the (x; y)-plane are not singular.
Figures 6.14 and 6.15 show two examples. In more complicated situations,
there are singularities at the corresponding points of g; but the structure of
these singularities has been simpli�ed in some sense. This statement can
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Figure 6.14 Resolution of a Nodal Singularity

be made precise, but requires considerable mathematical machinery, so we
restrict our exposition to a somewhat simplistic but intuitive version.

Intuitively, then, there are a number of places at the singularity at the
origin that are mapped as follows by T1: Two places of contact order k will
be mapped to two places with order of contact at most k� 1. Moreover, the
image of a singular place will be a place that, if still singular, has a singularity
that is structurally simpler. Remarkably, singular places become regular
after �nitely many applications of quadratic transformations T1 and/or T2.
Moreover, since di�erent branches cannot have in�nite-order contact, they
must separate after �nitely many quadratic transformations.

So far, we have not commented on the use of T2. Briey, if a place has the
y axis as tangent, T1 maps it to in�nity where it cannot be further analyzed
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Figure 6.15 Resolution of a Cuspidal Singularity
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Figure 6.16 Tracing with Desingularization

without passing to the projective plane. Thus, we transform such a branch
with the help of T2.

6.5.4 Tracing with Desingularization

The idea of tracing with desingularization is as follows:

1. Beginning at a regular curve point p; we trace f using the numerical
procedure outlined previously.

2. When approaching a singularity q; the numerical trace is suspended at
a point r prior to reaching q. Then f is translated such that q becomes
the origin.

3. Depending on the tangent direction of the branch we are currently
tracing, we transform f to g with T1 or T2. Then, beginning at the
point r1 of g corresponding to r; we trace g until we have crossed the
singularity, mapping the points on g to f by the inverse of T1 or T2.

See also Figure 6.16 for an illustration of the idea. This procedure must
be implemented recursively, since a single quadratic transformation may not
suÆce to resolve the singularity. The major practical concerns are locating
the singularity while tracing, and accounting for the intended direction of the
trace. Since we do a coordinate transformation to bring the singularity to
the origin, we also have to cope with imprecise coordinates of the singularity.
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6.5.5 Locating Singularities

When we are numerically tracing f, an impending singularity is detected from
the condition number of the matrix

0
@ fx �fy

fy fx

1
A

The singular point is the simultaneous intersection of f = 0; fx = 0; and
fy = 0; and can be found iteratively or by direct methods.

Least-Squares Approach

An iterative approach can be based on a least-squares formulation as follows:
Beginning with a nearby curve point p0; we construct a sequence of points
p0; p1; p2; ::. converging to the singularity. Let pi+1 = pi + (Æx; Æy). Then we
solve the linear system

0
BBB@

fx fy

fxx fxy

fxy fyy

1
CCCA
0
@ Æx

Æy

1
A = �

0
BBB@

f

fx

fy

1
CCCA

We rewrite this system in matrix notation as

A� = b

where � = (Æx; Æy)
T . This overconstrained system corresponds to the least-

squares problem

ATA� = ATb

For higher-order singularities, higher-order partials may also vanish. Thus, if
A does not have full rank, we extend the system by adding, for each vanishing
partial h; the equation

hxÆx + hyÆy = �h

In this manner, a matrix ATA of full rank is obtained.
Numerically, the least-squares problem is best solved by singular value de-

composition of A� = b; since the formation of AAT signi�cantly diminishes
the obtainable precision. Nevertheless, the method has diÆculties with at
cusps | for example, with singularities such as y2 � x2m+1 = 0; m� 1.
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Using Constrained Minimization

We may consider locating a singularity as a constrained-minimization prob-
lem:

Problem

Minimize f 2x + f 2y subject to the constraint f(x; y) = 0.

With the help of Lagrangian multipliers, this problem can be converted to
an unconstrained minimization problem by minimizing

L = f 2x + f 2y + �f

where � is the Lagrange multiplier. An extremum of L then satis�es the
following equations:

Lx = 0

Ly = 0

L� = 0

(6.15)

These are three algebraic equations in three variables; that is, they represent
the intersection of three algebraic surfaces in (x; y; �)-space. Given an initial
guess (x0; y0); the intersection will include a nearby curve singularity. An
initial guess for � must also be given; it could be 1, for instance.

Newton's method cannot be used to solve the system of equations (6.15)
without attention to some details. To understand the reason, we expand
the partials of the goal function L from which the matrix for the Newton
iteration is formed.

Lx = 2(fxfxx + fyfxy) + �fx

Ly = 2(fxfxy + fyfyy) + �fy

L� = f

The matrix of the linear system used in Newton's method is therefore

0
BBB@

u11 u12 fx

u21 u22 fy

fx fy 0

1
CCCA (6.16)

where
u11 = 2(f 2xx + fxfxxx + f 2xy + fyfxxy) + �fxx

u12 = 2(fxxfxy + fxfxxy + fxyfyy + fyfxyy) + �fxy

u21 = 2(fxxfxy + fxfxxy + fxyfyy + fyfxyy) + �fxy

u22 = 2(f 2xy + fxfxyy + f 2yy + fyfyyy) + �fyy
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Since fx ! 0 and fy ! 0 as we approach the singularity, the last row
vanishes and matrix (6.16) becomes singular. However, the last row governs
the change in �; which is irrelevant as long as we stay on the curve f. So, we
could restrict attention to the 2� 2 submatrix

0
@ u11 u12

u21 u22

1
A (6.17)

This modi�cation will not help for higher-order singularities where, in addi-
tion to fx and fy; the higher-order partials fxx; fxy; and fyy vanish as well.

Reduction to Root Finding

Locating the singularities of the curve f(x; y) = 0 can be reduced to �nding
the roots of a univariate polynomial as follows. By forming the resultant
Resy(f; fx); we obtain a univariate polynomial P (x). Its roots are the x
coordinates of those curve points at which fx vanishes. The partial derivative
fx vanishes at all singular curve points, and it vanishes at all regular curve
points at which the curve tangent is parallel to the x axis. So, we must
determine P (x); and, for each root a; we need to test whether there is a
singular curve point (a; ya). The ordinates ya can be determined as the roots
of the polynomial f(a; y).
Example 6.8: Consider the curve

f = x3 + 3x2y + 3xy2 + y3 � 3x2 � 2xy � 3y2 + 5x� 3y � 4

The partial derivatives are

fx = 3x2 + 6xy + 3y2 � 6x� 2y + 5

fy = 3x2 + 6xy + 3y2 � 2x� 6y � 3

The y-resultant of f and fx is

Resy(f; fx) = 432x4 � 2464x3 + 5256x2 � 4968x+ 1755

with the two real roots

a1 = 1:5

a2 = 1:2037037:::
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For the abscissa a1 the only ordinate value is b1 = �0:5. For the other real
root, we obtain the ordinate values b21 = �1:0925926; b22 = �0:5290596; and
b23 = �0:5290596. Here, fx does not vanish at (a2; b22) and at (a2; b23); and
fy does not vanish at (a2; b21); hence, all three points are regular. However,
both fx and fy vanish at (a1; b1); which therefore is a singularity of f. 3

From a practical perspective, the cost of computing P (x) can be expected
to be noticeable. On the other hand, the computation needs to be done only
once. A second reduction method to root �nding, based on Gr�obner bases
techniques, will be discussed in Section 7.4.3 of Chapter 7.

6.5.6 Bringing the Singularity to the Origin

When we are determining the locus of a nearby singularity numerically, the
resulting coordinates will be imprecise. However, the validity of the trans-
formations T1 and T2 depends on the origin being a singularity. Intuitively,
small perturbations in the position of the singularity will introduce low-order
terms with small coeÆcients in the translated polynomial �f . These terms
should be eliminated. To identify them, we recall that the term cxiyj occurs
in f i� the partial derivative

1

i!j!

@i+j

@xi@yj
f(0; 0) = c

Since the value of partial derivatives is invariant under translation, it fol-
lows that the term cxiyj should be absent in �f i� the corresponding partial
vanishes at the singularity located prior to translation. Vanishing low-order
partials are discovered as part of the least-squares iteration, but must be
determined explicitly in the case of other methods for determining the sin-
gularity.

6.5.7 Preserving the Direction of Tracing

At nonsingular points, we locally orient f by the tangent vector (�fy; fx). At
a singularity, curve segments locally belonging to the same analytic branch
may be oriented in an opposite direction, necessitating a reversal of the nom-
inal tracing direction. An example is shown in Figure 6.17. We establish a
relationship between the orientation of the curve f and the orientation of its
proper transform g with the goal of recognizing when to reverse the tracing
direction after having passed through a singular point.

Let p = (a0; b0) be a nonsingular point of f, where a0 6= 0. Let

x(s) = a0 + a1s+ a2s
2 + :::

y(s) = b0 + b1s+ b2s
2 + :::
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x

y

Figure 6.17 Curve Orientation of f = y2 � x2 � x3 by (�fy; fx)

be the place of f centered at p. The place de�nes a branch orientation by
increasing s. This orientation agrees with the standard orientation (�fy; fx)
whenever

sign(fx(a0; b0)) = sign(b1)

sign(fy(a0; b0)) = sign(�a1)

Otherwise, it is opposite. At the corresponding point p1 = (a0; b0=a0) of g;
the transformed curve g has the place

x1(s) = x(s)

y1(s) = y(s)=x(s) = c0 + c1s + c2s
2 + :::

Since x(s) = x1(s); the curve and its transform are oriented the same way,
by increasing s. Moreover, dividing y(s) by x(s); we obtain

c0 = b0=a0

c1 = (b1a0 � a1b0)=a
2
0

and so on. Hence, relating this to the standard orientation by a proportion-
ality constant �; we have

gy = �fy

gx = �(xfx + yfy)=x
2
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Figure 6.18 Correlation of Standard Curve Orientations

If sign(�) = 1; then both f and g are traced in the same direction, relative
to the standard orientation; otherwise, we trace g in the opposite direction.
Since no orientation reversal can happen on the fully desingularized branch,
we obtain the following recursive algorithm for maintaining a consistent di-
rection of traversal:

1. Traverse f in the direction u(�fy; fx); where u = 1 or u = �1.

2. When changing over to the proper transform g of f, compute the sign
of � for the corresponding points p of f and p1 of g at which we switch.

3. If � > 0; the transform g is traversed in the direction u(�gy; gx); oth-
erwise, it is traversed in the opposite direction.

4. Assume recursively that we have the traversal direction u0(�gy; gx) at a
regular point p01 of g. When reverting to tracing f at the corresponding
point p0; compute the sign of � again, and, if necessary, complement u.

Example 6.9: Figure 6.18 illustrates the method for maintaining con-
sistent traversal direction in the presence of singularities. Assume we are
tracing the curve f : y2 � x2 � x3 = 0 beginning at the point A in the
direction (�fy; fx). At point B; we switch to tracing the proper transform
g : y21 � 1 � x1 = 0 because of the impending singularity at the origin. We
determine the proportionality factor between the partials of f at B and the
partials of g at the corresponding point B1. We �nd that � is positive, and
trace g in the direction (�gy; gx). At the point C1 of g; we determine that
we have safely passed the singularity and switch back to tracing f at the
corresponding point C. Again, we investigate � to �nd that this time it is
negative. Therefore, we continue traversing f in the direction (fy;�fx). 3
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6.6 Remarks on Surface Intersection

Sections 6.4 and 6.5 showed how to reduce surface intersection to the eval-
uation of a plane algebraic curve. As mentioned before, the ability of the
plane-curve tracing method to cope with complicated singularities is a strong
advantage of this approach, especially since, until now, a comprehensive
method for handling surface-intersection singularities has not been devel-
oped and implemented. However, the approach has to cope with a number
of practical diÆculties, including the following:

1. Implicitizing a parametrically de�ned surface entails substantial sym-
bolic computation for surfaces such as bicubic patches.

2. Although it is conceptually trivial to substitute a parametric into an
implicit form, it is subtle in practice, because of possible oating-point
errors. Exact arithmetic is, of course, free from such errors, but is more
expensive.

3. The plane algebraic curve eventually obtained is typically of very high
algebraic degree. For example, the intersection of two bicubic surface
is in general an algebraic curve of degree 324. At such high degrees,
severe numerical problems are often encountered.

Many of these diÆculties are remedied by tracing in higher dimensions. For
instance, the intersection of two bicubics is easily traced in four dimensions,
and ordinary double-precision oating-point arithmetic delivers accurate re-
sults. On the other hand, higher-dimensional approaches are traditionally
perceived as being slow. Probably, this perception can be corrected with a
sophisticated implementation of the method. However, the method raises
a number of research issues to which there are, at this time, only partial
answers. We mention the following issues:

1. Finding a starting point for the trace is harder in higher dimensions.
It is certain that subdivision and domain-shrinking techniques can be
generalized directly; however, unless care is exercised, the complexity
of these methods grows exponentially with the dimension.

2. In a higher-dimensional space, complicated singularities might be present
on the intersection curve. These could be diÆcult to analyze and re-
solve.

3. By elimination, it is always possible to reduce the number of equations
and variables at the expense of raising the degree of the algebraic equa-
tions. The tradeo� entailed by this strategy is not understood, and no
method is known for introducing additional variables and equations
that lowers the algebraic degrees of the equations.

More research and experimentation is needed to understand these issues in
depth, and to assess the proper role of the di�erent approaches to surface
intersection.
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6.7 Notes and References

In many cases, initial starting points for the trace will be intersections of
the curve to be traced with another surface. In that case, the methods from
Section 7.4 in Chapter 7 could be used. There are other methods, including
subdivision strategies, lattice methods, and homotopy continuation. See, for
example, Pratt and Geisow (1986) and Morgan (1987).

The material of Section 6.2 is mostly from Bajaj, Ho�mann, Hopcroft,
and Lynch (1988). Our exposition of singular value decomposition is based
on Golub and van Loan (1983). For an elementary introduction to di�er-
ential geometry and the properties of the moving triad, see Hilbert and
Cohn-Vossen (1952). Montaudouin, Tiller, and Vold (1986) discuss step-
size selection in the context of an explicit approximant to a plane curve; that
is, they use an approximant of the form y = a0 + a1x+ a2x

2 + � � � ; based on
the implicit function theorem.

The idea of tracing surface intersections in higher dimensions is mentioned
in Bajaj, Ho�mann, Hopcroft, and Lynch (1988), where it is applied to the
numerical intersection of parametric surfaces. Ho�mann (1988) discusses
applications of the higher-dimensional formulation, including o�sets, equal-
distance surfaces, and variable-radius blending surfaces. The paper explores
the suitability of using the higher-dimensional formulation as a representation
for such surfaces, and reports experiences with an implementation. Subdi-
vision and approximation methods for surfaces de�ned as n � 2 algebraic
equations in n variables are currently being explored.

Farouki and Ne� (1989) discuss the algebraic formulation of o�sets of ra-
tional plane curves, and show that the extraneous points at singularities can
be eliminated by dividing out common factors of the derivatives of the coor-
dinate functions. It is unclear whether this approach generalizes to implicit
algebraic curves. The envelope theorem is discussed in Spivak (1975), Vol-
ume 2. Farouki and Ne� (1989) contains �gures similar to our �gures 6.6
and 6.7.

There is a rich literature on quadratic transformations and on the desingu-
larization of plane algebraic curves. For a projective version, see, for example,
van der Waerden (1939). For an aÆne version, see, for example, Abhyankar
(1983). Semple and Kneebone (1959) give a lucid description of the e�ect
of quadratic transformations on the curve places at a singularity. Roughly
speaking, the e�ect of quadratic transformations on the power series is akin
to a shifting operation in which the coeÆcients a0 and b0 are dropped, and
the remaining coeÆcients shift to the left. Since each place has a regular
structure for suÆciently high exponents of s; repeated quadratic transforma-
tions eventually strip o� the leading, irregular coeÆcient structures, leaving
only the trailing, regular part. When that has happened, the place has been
desingularized, and the various places can be separated. See Walker (1950)
for a discussion of places, order of contact of places, tangents to places, and
other properties.

The formulation of nonlinear equations for determining the places at a
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singularity, and the correspondence with the system of equations (6.1), is
from Ho�mann (1988), who also notes the monoid computation when seek-
ing to map the intersection of implicit surfaces to plane curves. The monoid
computation was well known in the nineteenth-century geometry literature,
where it was used as a technical device for classifying di�erent types of space
curves of low degree. See, for example, Snyder and Sisam (1914). Owen
and Rockwood (1987) analyze singularities on surface/surface intersections
by constructing locally a second-order approximant to each surface and an-
alyzing the possible types of singularities of the approximants. The method
cannot deal with all types of singularities.

Mapping surface intersections to plane algebraic curves has been advo-
cated repeatedly | by Geisow (1983), by Farouki (1986a), and by many
other authors. The approach has many appealing aspects, but so far does
not seem to have had a deep e�ect on practice. Because substitution is such
a natural conceptual operation, some authors overlook that it may intro-
duce substantial oating-point errors. A good discussion of this and related
practical points can be found in Prakash and Patrikalakis (1988).

The section on projection methods presents material from Abhyankar and
Bajaj (1987d). Garrity and Warren (1988) propose a di�erent method for
projecting implicit surface intersections to plane algebraic curves. Their
method removes the requirement that the two surfaces must intersect trans-
versally in an irreducible space curve, and is based on a classical theorem that
says that all but �nitely many points on a line are good projection points,
provided the line does not intersect the space curve.

Locating singularities precisely is one of the main practical concerns when
implementing the plane curve trace. The least-squares approach is from
Bajaj, Ho�mann, Hopcroft, and Lynch (1988). Its convergence can be slow,
but the use of overrelaxation could improve the convergence rate. Using
constrained optimization is a natural idea. Prakash and Patrikalakis (1988)
use the technique with good success for ordinary singularities. In the case
of higher-order singularities, they suggest an adaptive extension of the goal
function to be minimized. The extension uses higher-order partial derivatives
in a manner similar to the least-squares method described. Sederberg (1988)
proposes a subdivision scheme for locating singularities that assumes that the
curve has been expressed in a special Bernstein basis form. For a method to
translate a polynomial into Bernstein form see, for example, Waggenspack
and Anderson (1986).
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Chapter 7

Gr�obner Bases Techniques

Beginning with Descartes, mathematics has been developing tools to formu-
late and prove geometric theorems algebraically, and, vice versa, to express
geometric facts in algebraic terms in an e�ort to interpret algebraic theorems
geometrically. The resulting discipline of algebraic geometry is of interest to
us because it delivers a symbolic representation of geometric objects that
allows us to compute with geometric objects using symbolic manipulation.
We have made periodic use of this fact in the preceding chapters, formu-
lating algorithms that accept algebraic equations as input and deliver, as
output, other algebraic equations. Examples have included converting be-
tween implicit and parametric forms, approximating surface intersections by
parametric expressions, mapping space curves to plane curves, and so on.

In this chapter, we examine these computations in more detail. More
speci�cally, we concentrate on computing with ideals. Ideals are sets of poly-
nomials that describe elementary geometric objects symbolically, and are a
natural representation of geometric objects. We can often �nd the solution
of a system of linear equations more conveniently by considering linear com-
binations of the given equations. Likewise, when solving systems of algebraic
equations, considering algebraic combinations of them may lead to an eas-
ier solution, as long as the solution set is not altered. The set of all such
algebraic combinations is an ideal.

The algorithms of this chapter are very general and are capable of solv-
ing, in principle, a wide spectrum of diÆcult and important problems. Such

257
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generality does not come without its price, however, for some of the com-
putations can be very space and time intensive. Therefore, we must weigh
carefully where and when to apply these techniques. However, research is
appearing that aims at specializing the algorithms given here in situations
not requiring the full generality they currently embody. This work could
result in highly eÆcient and sophisticated tools for addressing some of the
diÆcult mathematical problems faced by geometric and solid modeling.

7.1 Chapter Overview

The algorithms to be discussed require a working knowledge of algebra and
algebraic geometry. As in Chapter 5, we therefore begin with an informal
review of the needed vocabulary and concepts, for the bene�t of the nonspe-
cialist. The purpose of the informality is to develop the intuition underlying
these terms and ideas. So, we relate the mathematical concepts to applica-
tions that are already quite familiar. Once armed with the road maps pro-
vided here, the reader can consult books on algebra or algebraic geometry
for further details.

The central data structure in the chapter is a special set of polynomials
de�ning an ideal. This set is a Gr�obner basis of the ideal. An ideal has many
generating sets de�ning it, but the advantage of a Gr�obner basis is that many
algorithmic problems can be solved easily once a Gr�obner basis is known.

We are interested in those algorithmic problems that arise from applica-
tions in geometric and solid modeling. However, the concept of a Gr�obner
basis is best grasped by considering �rst a more abstract problem; namely,
the question whether a given polynomial g is in a given ideal I. Assuming
that the ideal is given by the polynomials ff1; :::; frg; we ask whether the
polynomial g can be written as an algebraic combination of the fj; that is,
whether g = h1f1+ � � �+hrfr for some polynomials hj. This problem of ideal
membership can be answered using a Gr�obner basis of the ideal.1

With this problem as the focus, we explain in Section 7.3 what a Gr�obner
basis is, how to construct it, that the basis depends on certain term orderings,
and how to use it to decide ideal membership.

Solving systems of algebraic equations is a fundamental activity in geo-
metric and solid modeling. Section 7.4 therefore discusses how to solve sys-
tems of algebraic equations using Gr�obner bases. We give a general algorithm
and discuss as geometric applications how to �nd all points in which three
or more surfaces intersect, and how to �nd all singular points of an algebraic
curve. This section also contains an example discussing some of the subtleties
that arise when we use Gr�obner bases methods to solve a system of algebraic
equations, in which the individual equations contain symbolic parameters.
This situation arises, for example, when we wish to �nd the singularities of a

1This problem has a geometric signi�cance: Roughly speaking, g can be so written
whenever the surface g = 0 contains all points that are the common intersection of the
surfaces fj = 0. Section 7.2.6 explains why this interpretation is not exact.
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family of curves, or to locate surface intersections for families of intersecting
surfaces.

Section 7.5 considers operations on curves and surfaces such as implic-
itization, inversion, and o�setting. These are mathematically demanding
problems for which Gr�obner bases methods provide uniform solutions.

Section 7.6 briey sketches the applicability of Gr�obner bases methods to
geometric theorem proving. The techniques developed for this problem have
bearing on the robustness problem in geometric modeling in that they can
provide general reasoning capabilities for the problems discussed in Chapter
4 in Section 4.4, on representations and models.

Constructing a Gr�obner basis can be resource intensive, because of both
the need for exact arithmetic and the possibility of generating and analyzing
many polynomials. This fact hinders using Gr�obner bases in practice. For
this reason, Section 7.7 reviews known complexity results and discusses our
experience with using Gr�obner bases in geometric applications. It turns
out that recent research on basis conversion has signi�cantly improved the
eÆciency of this approach. Section 7.8 explains the method and gives a
variant that can handle large-scale elimination problems. This material, we
believe, is of great practical consequence and is paradigmatic of possible
specializations that could be eÆcient and of widespread applicability.

7.2 Algebraic Concepts

7.2.1 Fields, Rings, and Polynomials

The simplest object we consider is described by a single algebraic equation
of the form

f(x1; :::; xn) = 0

where f is a polynomial in n variables. We think of the variables as coordi-
nates in an n-dimensional Cartesian space. Depending on the interpretation
of the coordinates, the space corresponds to aÆne or to projective space.
When substituting speci�c values for the xi satisfying the equation, we ob-
tain certain points on the (n�1)-dimensional hypersurface implicitly de�ned
by f. For example, in 3-space, the equation

x2 + y2 + z2 � 1 = 0

de�nes the unit sphere.
So far, we have tacitly assumed that the possible values for the xi are real

numbers. But we can use di�erent sets of values, thereby giving a di�erent
meaning to f and to the space containing the hypersurface it de�nes. Such
a set of possible values must be drawn from a �eld; that is, it must have
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elements that may be added, subtracted, multiplied, and divided. We usu-
ally �x the �eld of coordinate values, concentrating on the geometry of the
Cartesian space, and call it the ground �eld.

A �eld can be �nite, or it can be in�nite. Simple examples of a �nite �eld
include the integers modulo a �xed prime number p. For our purposes, the
�eld R of real numbers is of primary interest. However, algebraic geometry
has considered mostly the �eld C of complex numbers. For instance, when
considering the equation

x2 + y2 = 0

over C, this equation describes the two complex lines

x + iy = 0 and x� iy = 0

intersecting at the origin. Over the reals, the equation would describe just
one point; namely, the origin. Therefore, we have to be aware that subtle
problems can arise when we try to apply classical algebraic geometry to real
spaces. The reason algebraic geometry has been developed primarily for
the ground �eld C is that then certain fundamental theorems have uniform
validity; for example, theorems on the dimensionality of hypersurfaces.

Let us denote the ground �eld by k; avoiding for the moment a commit-
ment to a speci�c one. A univariate polynomial over k has the form

mX

i=0

aix
i

where x is a variable symbol, and the coeÆcients ai are numbers in k. The set
of all univariate polynomials in x is denoted by k[x]. We can add and subtract
polynomials from each other and we can multiply them, but we cannot, in
general, divide two polynomials. A set in which addition, subtraction, and
multiplication are de�ned is called a ring. The set k[x] is a ring.

Whether a polynomial can be factored will depend on the ground �eld k.
The polynomial

x2 + 1

does not factor over the reals, but it will factor as (x � i)(x + i) over the
complex numbers. A polynomial that factors nontrivially is called reducible.
One that cannot be factored is irreducible. The example x2 + 1 shows that
reducibility is a relative notion that depends on the ground �eld.

7.2.2 Field Extensions and Rational Functions

A �eld may be considered a sub�eld of a larger �eld, provided the arith-
metic operations are compatible in both �elds. For example, the �eld R is a
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sub�eld of C. It can be convenient to think of this relationship as a process
of enlarging the smaller �eld by adding new elements to it. This process is
referred to as a �eld extension. A �eld extension may be done for pragmatic
reasons. For instance, complex numbers were \invented" so that the polyno-
mial x2 + 1 would have roots. More generally, the fundamental theorem of

algebra states that, over the complex numbers, every univariate polynomial
can be factored into linear factors.

When extending a �eld, we adjoin the elements of the larger �eld. To
keep things simple, we adjoin only as many elements as are needed. That
is, when adjoining a new element u to a �eld k; we include automatically all
elements that must be added as consequence of the �eld operations | that is,
all elements obtained from u and the elements in k by successive additions,
subtractions, multiplications, and divisions. Thus, when extending R to C,
we adjoin the imaginary unit i. In fact, it turns out that all other complex
numbers then can be expressed as a+ bi; were a and b are reals. If the �eld
k is extended by some new element u; the new �eld is denoted k(u).

There are two types of �eld extensions: algebraic extensions and tran-

scendental extensions. In an algebraic extension, we adjoin an element that
is the root of a speci�c polynomial q 2 k[x]. It can be shown that all
elements of the extension �eld so obtained can be expressed in the form
a0 + a1u+ a2u

2 + :::+ am�1u
m�1; where the degree of q is m.

For example, an algebraic extension of R is C, which has the additional
property that every polynomial inR[x] factors into linear components. When
extending the reals to the complex numbers, we adjoin the root i of x2 + 1.
Therefore, all complex numbers can be expressed as a+ bi. If we begin with
the �eld Q of rational numbers, we might also adjoin a root of x2 � 2; and
obtain the �eld Q(

p
2). All elements in this �eld can be written as a+ b

p
2;

where a and b are rational numbers. We might then extend the resulting
�eld by adjoining a root of some other polynomial.

By adjoining to Q the roots of all univariate polynomials with rational
coeÆcients, we get the �eld of algebraic numbers. After that, we would still
miss some real numbers, such as �; that are transcendental. The second type
of �eld extension, then, is a transcendental extension in which the element
adjoined to the �eld k does not satisfy any algebraic relation | that is, is not
the root of any polynomial in k[x]. When adjoining a transcendental x to k,
new elements are obtained from the transcendental and the elements of k by
successive additions, subtractions, multiplications, and divisions. These new
elements can be written uniquely as ratios of relatively prime polynomials
in the transcendental, p(x)=q(x); where q is not the zero polynomial. The
set of all these ratios is denoted k(x). It is a �eld because there is a natural
division operation de�ned on these ratios. Note that the assumption that x
is transcendental (i.e., is not the root of some polynomial) implies that we
do not accidentally divide by zero (i.e., by a root of q(x)).

Transcendental �eld extension might seem a rather remote concept. From
our perspective, however, transcendental extensions correspond to computing



262 Gr�obner Bases Techniques

with symbolic parameters. For example, consider a sphere of radius r. We
write

x2 + y2 + z2 � r2 = 0

as its equation. We consider this a polynomial over x; y; and z; but con-
ceptualize r as a parameter, and treat it di�erently from the variables x; y;
and z. When computing with this equation, perhaps for purposes of de�ning
another surface whose shape depends somehow on the radius of the sphere,
we may freely form expressions involving r; such as

y2 + z2 � r

r2 + 1
= 0

de�ning, say, a cylinder whose radius is a rational function of r. Although
we do not think of instantiating these surfaces with transcendental numbers,
we compute with r as though it were transcendental.

7.2.3 Multivariate Polynomials and Ideals

We form multivariate polynomials with more than one variable symbol. Us-
ing the symbols x1; :::; xn; such a polynomial is written

mX

j=1

ajx
e1;j
1 x

e2;j
2 � � �xen;jn

where the coeÆcients aj are in the ground �eld k. The exponents ei;j are, of
course, nonnegative integers.

Just as in the univariate case, we can add, subtract, and multiply multi-
variate polynomials, but we cannot, in general, divide two multivariate poly-
nomials. The set of all multivariate polynomials in the variables x1; :::; xn is
denoted k[x1; :::; xn] and forms a ring.

We saw in the case of univariate polynomials that the reducibility of a
polynomial (i.e., whether it can be factored) depends on the ground �eld.
This is still the case for multivariate polynomials, but there are also mul-
tivariate polynomials that cannot be factored over any ground �eld. Such
polynomials are called absolutely irreducible. The polynomial x2+y2+z2�1
is absolutely irreducible.

We �x a ground �eld k; and consider the n-dimensional aÆne space kn

over k. The points in this space are n-tuples (x1; x2; :::; xn); where the xi take
on values in k. We consider the hypersurface f = 0 de�ned by a multivariate
polynomial f. We assume that f is irreducible; that is, that it does not factor.
We observe that any multiple cf of f de�nes the same hypersurface, where c
is a nonzero �eld element. Moreover, for any polynomial g; the hypersurface
gf = 0 certainly includes the hypersurface f = 0. This raises the question of
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whether there exists a unique algebraic representation for the hypersurface
f = 0. The answer is yes, but the unique representation requires a set of
polynomials, rather than a single one.

Consider the surface f = 0; and let g be any polynomial. All surfaces
gf = 0 will contain the surface f = 0. Moreover, for �xed f in k[x1; :::; xn];
the intersection of all surfaces gf = 0; where g varies over k[x1; :::; xn]; is
precisely the surface f = 0. So, for �xed f, we consider the set

Ihfi = fgf 2 k[x1; :::; xn] j f �xedg

as the description of the surface. In Section 7.2.6, we explain that this
description is not always unique.

Ihfi has the property that the sum and di�erence of any two polynomi-
als in the set is again in Ihfi. Moreover, the product of any polynomial
in k[x1; :::; xn] with an element of Ihfi is again in Ihfi. Sets with these
properties are called ideals.

Now consider a �nite set F of polynomials f1; f2; :::; fr in k[x1; :::; xn].
We form all algebraic combinations of the fi; that is, we form the set of
polynomials

IhF i = fg1f1 + g2f2 + � � �+ grfr j gi 2 k[x1; :::; xn]g

Clearly, IhF i is an ideal. We say that IhF i is the ideal generated by F, and
that F is a generating set of IhF i. Generating sets are not unique, and
a basic theme of this chapter is to �nd generating sets that have special
properties that are useful for solving geometric problems.

The nonuniqueness of generating sets has been used implicitly; for in-
stance, in surface intersection. When determining the intersection of two
quadrics f and g; we may proceed as follows. First, replace one of the
quadrics with a ruled quadric surface f 0 = �f + �g; where � and � are
suitable numbers; that is, with a cylinder, a cone, or a hyperboloid. Then
compute f 0 \ g instead of f \ g. The same intersection is obtained, but the
reformulated problem simpli�es the treatment of special cases. Algebraically,
we have replaced the generators ff; gg of the ideal describing the intersection
curve with the generators ff 0; gg.

7.2.4 The Residue Class Ring of an Ideal

Given an ideal I in the ring k[x1; :::; xn] of multivariate polynomials over
the ground �eld k; we consider the residue class ring RI of I. The elements
in RI are equivalence classes of polynomials in k[x1; :::; xn]; that is, they are
disjoint subsets of k[x1; :::; xn]; where two polynomials p and q are in the same
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equivalence class i� their di�erence p � q is in the ideal I. Computations in
residue class rings will be considered later, in Section 7.8.1.

We denote the elements of RI with [p]; where p is any polynomial in the
equivalence class [p]. The operations on the equivalence classes are induced
in the natural way via

1. [p] + [q] = [p + q]

2. [p][q] = [pq]

As an example, let I be the ideal generated by fx2; yg. The elements in I
have the form ux2+vy; where u and v are polynomials in k[x; y]. It is easy to
see that p� q is in the ideal I whenever p and q have the same constant term
and the same x term; that is, p = a+bx+ ::. and q = a+bx+ :::; for numbers
a and b in k. Hence two such polynomials are in the same equivalence class.

The residue class ring RI of an ideal may be considered to be a vector
space over the ground �eld k. Moreover, if I is a zero-dimensional ideal
| that is, if there are only �nitely many points (a1; :::; an) 2 kn satisfying
every polynomial in I | then the residue class ring can be shown to be a
�nite-dimensional vector space.

7.2.5 Algebraic Sets and Varieties

We consider the ideal I � k[x1; :::; xn] generated by the set F = ff1; :::; frg.
Let p = (a1; :::; an) be a point in kn such that g(p) = 0 for every g 2 I. The
set of all such points p is the algebraic set V (I) of I. Clearly, for p to be in
the algebraic set V (I); it suÆces that fi(p) = 0 for every generator fi in F.

In three dimensions, the algebraic surface f = 0 is the algebraic set of
the ideal Ihfi. The intersection of two algebraic surfaces f and g in 3-space
is an algebraic space curve. Hence, such a curve is the algebraic set of the
ideal Ihff; ggi.2 It is not true that every algebraic space curve can be de�ned
as the intersection of two surfaces. Additional surfaces may be required in
certain cases. An example is the twisted cubic, a curve parametrically de�ned
as

x = t

y = t2

z = t3

See also Figure 7.1. To de�ne it, we need to intersect three algebraic surfaces.
For example, we could intersect a paraboloid with two cubic surfaces

x2 � y = 0 \ y3 � z2 = 0 \ z � x3 = 0

Later, we explain why two surfaces alone do not suÆce, which motivates us to
consider ideals with generating sets that contain more than two polynomials.

2In the following, we will write Ihf; gi instead of Ihff; ggi.
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x

z

y

Figure 7.1 Twisted Cubic (t; t2; t3)

When we are given a set F = ff1; :::; frg of generators, we expect in
general that the algebraic set de�ned by it in kn has dimension n�r. This is
an analogy to linear algebra, where a set of r linear equations in n variables
de�nes, in general, a linear subspace of dimension n � r. Just as in linear
algebra, this requires that the equations fi = 0 be algebraically independent.
However, the matter becomes more complicated in the algebraic case, in that
the algebraic set of the ideal IhF i could consist of several components, some
of which might have di�erent dimensions.

Let us consider the algebraic set V (I) de�ned by the ideal I in kn. It
is possible that V (I) is the union of two or more point sets, each of which
can be de�ned separately by an ideal. In this case, we say that the set V (I)
is reducible. The notion is analogous to polynomial reducibility: A multi-
variate polynomial f that factors describes a surface consisting of several
components. Each component belongs to an irreducible factor of f. In the
same spirit, the reducibility of an algebraic set V (I) mirrors the fact that we
can decompose the ideal I into several components, although this no longer
looks like polynomial factorization in general. Each such ideal component
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Figure 7.2 Reducible Intersection of Two Cylinders

de�nes a component of the algebraic set V (I). If an algebraic set V (I) can-
not be decomposed, we say that V (I) is a variety, or, more simply, that it is
irreducible.

As an example, consider the intersection curve of the two cylinders

f1 : x2 + y2 � r2 = 0

f2 : y2 + z2 � r2 = 0

Since the cylinders intersect through their axes and have equal radii, the
intersection consists of two ellipses in the planes

g1 : x+ z = 0 and g2 : x� z = 0

as shown in Figure 7.2. Each ellipse can be described separately, as the
intersection of one of the cylinders with one of the planes. One of them is
the intersection of f1 with g1; that is, it is the algebraic set belonging to the
ideal generated by ff1; g1g. The other ellipse is the algebraic set of the ideal
generated by ff1; g2g. Each ellipse is irreducible. Hence, we can summarize
the situation as follows: The ideal I1 = Ihf1; f2i is reducible, and decomposes
into the ideals I2 = Ihf1; g1i and I3 = Ihf1; g2i; the algebraic set V (I1) is the
union of the two varieties V (I2) and V (I3).
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Figure 7.3 Irreducible Intersection of Two Cylinders

Now consider the intersection of two cylinders, one with the radius 1, the
other with the radius

p
2.

f1 : x2 + y2 � 1 = 0

f2 : y2 + z2 � 2 = 0

Here the intersection curve, shown in Figure 7.3, appears to be reducible.
However, it is not reducible, and the two components cannot be de�ned sep-
arately by polynomials. To understand this fact, we recall Bezout's theorem
from Section 5.3.3 in Chapter 5. The theorem states that two irreducible
surfaces of degree m and n intersect in a curve of degree mn. So, the curve
shown in Figure 7.3 has degree 4. The union of two curves of degree m and
n is a reducible curve of degree m + n. Were the intersection curve shown
in Figure 7.3 reducible, the two components would each have to have degree
2, since neither can be of degree 1. But every degree 2 space curve is pla-
nar, and the components in the �gure evidently are not planar. Hence, the
intersection is irreducible.

Recall the earlier assertion that the twisted cubic cannot be de�ned alge-
braically as the intersection of two surfaces. It can be shown that this curve
has degree 3, since a plane in general position will intersect it in three points.
By Bezout's theorem, therefore, the curve would have to be the intersection
of a plane and a cubic surface. But the twisted cubic is not a plane curve,
so this would be a contradiction.
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7.2.6 Prime Ideals and Radicals

Let V be a variety; that is, an irreducible algebraic set in kn. This means
that there is an ideal I � k[x1; :::; xn] de�ning V. In fact, there may be
several such ideals, for the ideal I may contain redundancies not reected in
V as a set of points. We consider the intersection curve V of the cylinder
f1 above with the plane g1. We know it is an ellipse, and is a variety. The
ideal J1 = Ihf1; g1i de�nes V; but so does the ideal J2 = Ihf1; g21i. J1 and
J2 are di�erent ideals, since J2 does not contain g1; but contains the higher
powers of g1. On the other hand, every polynomial in J2 is also in J1; so J2
is a proper subset of J1.

Viewed geometrically, as an algebraic set of J1; the ellipse V is the inter-
section of a cylinder with a plane, whereas, understood as an algebraic set
of J2; it is the intersection of a cylinder with the double plane g21 = 0. In the
latter case, we should consider the points of V to count double, once for each
of the two planes g1 = 0. Hence, the variety V does not reect the algebraic
multiplicity of the ideal elements.

To associate with an algebraic set V a unique ideal, we introduce the
notion of radical ideal. An ideal I is a radical ideal of V if V = V (I) and
I is maximal. That is, every other ideal J with V = V (J) is contained in
I. Given an algebraic set V; there is a unique radical ideal I = Rad(V ) such
that V = V (I). If V is a variety, then the radical ideal is a prime ideal. A
prime ideal I has the property that, whenever a reducible polynomial is in I;
then at least one of its factors is in I. The ideal J1 is a prime ideal. The ideal
J2 is not. We can see that J2 is not prime, because g21 is in J2; but neither
of its two linear factors is.

The distinction between an algebraic set as a set-theoretic object and as
an algebraic object is important. Viewed set-theoretically, the points in the
set have no multiplicity | hence the concept of radical ideals. Viewed as
an algebraic object, the points may have higher multiplicity. The twisted
cubic illustrates this distinction. Viewed set-theoretically, we argued that it
cannot be de�ned as the intersection of two algebraic surfaces, because of
Bezout's theorem. However, if the curve points are considered as having a
higher multiplicity, then the twisted cubic (t; t2; t3) is in fact the intersection
of

y2 � xz = 0 \ x3 � 2xyw + zw2 = 0

The two surfaces are tangent to each other in the curve, so each curve point
has multiplicity 2 and Bezout's theorem is satis�ed. In general, it is not
known whether every algebraic space curve can be de�ned as the intersection
of only two surfaces, in this sense.

Note that the problem should be considered projectively. Again, the
twisted cubic illustrates the situation. In aÆne space, the twisted cubic
(t; t2; t3) is the intersection of

y3 � z2 = 0 \ x2 � y = 0



7.3 Gr�obner Bases 269

When embedded into projective space, however, the surfaces intersect at
in�nity in a triple line.

7.3 Gr�obner Bases

An ideal can have many di�erent generating sets. Depending on the use
to which we want to put them, some generating sets will be better than
others. We consider �rst in detail the problem of testing whether a given
polynomial g is in some ideal I. We consider a class of generating sets that
allows conceptually simple algorithms to decide ideal membership. These
generating sets are Gr�obner bases, and although ideal membership is not a
central problem in solid modeling, Gr�obner bases are also advantageous for
many of the problems that are important to geometric and solid modeling.
We seek a solution to the ideal membership problem.

Problem

Given a �nite set of polynomials F = ff1; : : : ; frg and a polyno-
mial g; decide whether g is in the ideal generated by F ; that is,
whether g can be written in the form g = h1f1+h2f2+ � � �+hrfr;
where the hi are polynomials.

The diÆculty of the problem is to determine the coeÆcient polynomials hi.
When no special assumptions can be made about the generators, deciding
whether g is in the ideal is not easy. For instance, even when the fi are all
quadratic and the polynomial g is quartic, we cannot assume a priori that
the coeÆcient polynomials are of degree 2 or less.

We will solve the ideal membership problem by repeatedly rewriting g until
g has been simpli�ed to the point where the original question can be answered
by inspection. Speci�cally, we will repeatedly subtract from g multiples of
the fi. Since these multiples are in IhF i; it is clear that the rewritten g is
in the ideal i� g is in the ideal. Moreover, if g is in the ideal, then there
must exist some rewriting sequence that reduces g to zero. Whether such a
rewriting sequence can be found easily depends on speci�c properties of the
generators.

7.3.1 Lexicographic Term Ordering and Leading Terms

Assume that we are rewriting some polynomial g 2 IhF i with the goal of
reducing it to zero. At each rewriting step, we would like assurance that we
are making progress toward this goal. This means that, at each step, we want
to obtain a polynomial that is in some sense simpler than the preceding one.
So, we must de�ne an appropriate notion of \this polynomial is simpler than
that one." We develop it from an ordering of individual terms in polynomi-
als. This gives us �rst a concept for judging whether a single term is more
complicated than another one. Moreover, given f and g; we will declare that
f is more complicated than g if the most complicated term of g precedes the
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most complicated term of f in the term ordering. The term ordering to be
introduced now is only one possibility. Later, we will also introduce di�erent
orderings.

Assume that all polynomials are in k[x1; :::; xn]. A product of the form

x1
e1x2

e2 � � �xnen

with ei � 0, is called a power product. We de�ne a lexicographic ordering,
written �; of the power products as follows:

1. 1 � x1 � x2 � : : : � xn.

2. If u � v; then uw � vw for all power products w.

3. If u and v are not yet ordered by rules 1 and 2, then order them
lexicographically as strings.3

For instance, with n = 2; setting x1 = x and x2 = y; we have the following
ordering of power products:

1 � x � x2 � ::: � xk � ::: � y � xy � x2y � ::: � y2 � xy2 � :::

Every term in a polynomial g consists of a coeÆcient and a power product.
The term whose power product is largest with respect to the ordering � is
called the leading term of g; written lt(g). Among all the terms of g; lt(g)
is considered the most complicated term. The leading term consists of the
leading coeÆcient, lcf (g); and the leading power product, lpp(g).

De�nition

The polynomial f is simpler than the polynomial g if lpp(f) �
lpp(g).

Example 7.1: Assuming x � y; the leading term of g = 2y3 � xy2 + x2

is 2y3. The leading coeÆcient of g is 2; and the leading power product is
y3. The leading term of h = 3xy3 � x2 + 1 is 3xy3; with the leading power
product xy3. Since y3 � xy3; we consider h to be more complicated than g.
3

7.3.2 Rewriting and Normal-Form Algorithms

We are given a polynomial g; and a set of polynomials F = ff1; :::; frg. We
plan to rewrite g using the polynomials in F, simplifying g at each step, until
it cannot be further simpli�ed. When g cannot be further simpli�ed, we say

3The power product xa11 xa22 � � �xann precedes xb11 xb22 � � �xbnn lexicographically as a string
if there is 1 � r � n such that ar < br and ar+1 = br+1; : : : ; an = bn.
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that g is in normal form with respect to F. A normal form of g with respect
to F is denoted by NF (g; F ). The rewriting is done as follows:

Input: A set F of polynomials, and a polynomial g.

Output: A normal form NF (g; F ) of g with respect to F.

Method:

1. Set g0 = g and i = 0.

2. For i = 0; 1; 2; ::. repeat step 3 until gi cannot be rewritten;
then output gi and stop.

3. If there is a polynomial f in F such that the leading power
product of f divides a power product p in gi; then rewrite gi
as gi+1 = gi � buf; where b is the quotient of the coeÆcient
of p by lcf (f) and u = p=lpp(f).

Note that any term of gi could be rewritten in step 3.
It can be shown that the rewriting algorithm must terminate. Step 3

eliminates a term in gi; but it may introduce more new terms, so termination
is not immediately obvious. However, observe that, since the cancellation is
done with the leading term of f, the newly introduced terms in gi+1 must
precede the term just eliminated from gi in the term ordering. Thus, to show
termination, we must show that the terms introduced in step 3 cannot form
an in�nite descending chain in the ordering.
Example 7.2: Let F = fy2+x2�1; xy�x2+1g; let g = 2y3+x2�xy2;

and let x � y. The leading terms are, respectively, y2; xy; and 2y3. We
rewrite g in three steps, obtaining g3 as a normal form of g with respect to
F.

g = g0 = 2y3 � xy2 + x2

! g1 = g � 2y(y2 + x2 � 1) = �xy2 � 2x2y + 2y + x2

! g2 = g1 � (�y)(xy � x2 + 1) = �3x2y + 3y + x2

! g3 = g2 � (�3x)(xy � x2 + 1) = 3y � 3x3 + x2 + 3x

3

Note that the normal form is not necessarily unique, since there may be
more than one f 2 F with which to rewrite g in step 2, leading to di�erent
sequences of rewriting steps with possibly di�erent outcomes. For example,
when using y2 + x2 � 1 to rewrite g1; we obtain eventually the normal form
2y � x3 + x2 + x.

If the normal form arrived at by the preceding algorithm is known to be
unique, then it can be shown that g is in the ideal precisely when NF (g; F ) =
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0. Therefore, we will look for special generating sets with the property that
normal forms are unique.

7.3.3 A Membership Test for Ideals

We would like to use the rewriting method for deciding whether g is in the
ideal generated by F. Fortunately, there always exists a set G of polynomials
that generates the same ideal as F and has the property that the rewriting
algorithm produces unique normal forms. Such a set is called a Gr�obner basis
of the ideal IhF i. Thus, the ideal membership problem is solved as follows:

Input: A set F of polynomials, and a polynomial g.

Output: \Yes" if g is in the ideal generated by F ; \No" otherwise.

Method:

1. Construct a Gr�obner basis from F.

2. Compute h = NF (g;G). If h = 0; then output \Yes"; other-
wise, output \No."

Example 7.3: Consider the ideal generated by

F = f(x� 1)2 + y2 � 2; (x+ 1)2 + y2 � 2g

where x � y. We ask whether x�y is in the ideal generated by F. So, we �rst
construct the Gr�obner basis G for the ideal, as explained later. The basis is

G = f�x; y2 � 1g

Then, we compute the normal form of x � y with respect to G. It is y (i.e.,
not zero); hence, x� y is not in the ideal generated by F. 3

Geometrically, F de�nes two circles, and the algebraic set de�ned by F
consists of the intersection points of these circles. We note that the inter-
section points are easier to compute from the Gr�obner basis G than from
F. This will generally be the case for Gr�obner bases constructed with the
lexicographic term ordering.

7.3.4 Buchberger's Theorem and Construction of Gr�obner Bases

There are several algorithms for constructing a Gr�obner basis from a given
set F based on Buchberger's theorem. Technically, they all rewrite the input
polynomials, thereby simplifying them and adding certain polynomials that
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are, roughly speaking, least common multiples of the input polynomials. The
polynomials added are called S-polynomials. Gr�obner bases algorithms are
not yet widely available, and for this reason we sketch a simple version that
can be implemented without great diÆculties. The algorithm to be described
consists of two conceptual operations:

1. Consider a polynomial, and bring it into normal form with respect to
some set of generators G.

2. From certain generator pairs, compute S-polynomials and add their
normal forms to the generator set.

Initially, the set G is the input set F of polynomials. Considering each pair
of generators, an S-polynomial is constructed for the pair and is rewritten
into normal form. If the normal form is not zero, then it is added to G.
Eventually, G is transformed into a Gr�obner basis in this way.

Note that all coeÆcient arithmetic must be exact. Floating-point arith-
metic would introduce errors that would e�ectively change the ideal described
by the input polynomials. The sensitivity to such arithmetic errors, and the
precise consequences of numerical errors on the algebraic sets described, are
not understood at this time.

De�nition

Let f and g be two polynomials with respective leading power
products uf and ug. Let w be the least common multiple of these
power products, such that w = vfuf = vgug for some power
products vf and vg. Let cf be the leading coeÆcient of f, cg the
leading coeÆcient of g. Then the polynomial

S(f; g) = cgvff � cfvgg

is the S-polynomial of f and g; and is denoted S(f; g).

Example 7.4: Let f = 2x2y�x+1; g = 3xy2�2y2+x. Then uf = x2y; ug =
xy2; vf = y; and vg = x. Hence, S(f; g) = 3yf�2xg = 4xy2�3xy+3y�2x2.
3

The algorithm for computing a Gr�obner basis of F is based on Buchberger's
theorem.

Theorem

Let G be a set of polynomials in k[x1; :::; xn]. Then the following
are equivalent:

1. G is a Gr�obner basis.

2. For all f; g 2 G we have NF (S(f; g); G) = 0.
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Thus, the basic idea is to generate S-polynomials from pairs in the set G;
and to add their normal forms to G. It can be proved that this process must
terminate. The basis computation is now as follows:

Input: A set F of polynomials.

Output: A Gr�obner basis G of the ideal generated by F.

Method:

1. Set G := F; and let B be the set of all pairs ff1; f2g of
polynomials in G; with f1 6= f2.

2. While B is not empty, repeat the following steps. Thereafter
stop; G is a Gr�obner basis.

3. Delete a pair ff1; f2g from B; and compute the normal form
h = NF (S(f1; f2); G).

4. If h 6= 0; then add to B all pairs of the form ff; hg; where
f 2 G; and add h to G.

Example 7.5: We illustrate the algorithm with the set F = ff1; f2g,
where

f1 = 2x2y � x + 1

f2 = 3xy2 � 2y2 + x

We assume x � y. Initially, G = ff1; f2g and B = fff1; f2gg. We begin by
removing the pair ff1; f2g from B; and constructing its S-polynomial

S(f1; f2) = 4xy2 � 3xy + 3y � 2x2

Now S(f1; f2) is reduced using f2. After clearing denominators, we obtain a
normal form

f3 = 8y2 � 9xy + 9y � 6x2 � 4x

Then f3 is added to G; and the pairs ff1; f3g and ff2; f3g are added to B.
Next, we construct S(f1; f3). Two reduction steps using f1 and clearing of
denominators bring S(f1; f3) into the normal form:

f4 = �8xy + 8y + 12x4 + 8x3 + 9x2 � 18x+ 9
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We add f4 to G and add to B the pairs ff1; f4g; ff2; f4g; ff3; f4g. Next,
we construct S(f2; f3). Reduction using f3; f1; and f4 results in the new
polynomial

f5 = �8y � 20x4 � 8x3 � 15x2 + 34x� 19

The next S-polynomial, S(f1; f4) yields the normal form

f6 = 4x5 + 3x3 � 8x2 + 7x� 2

At this point in the algorithm, we have a set G consisting of f1; :::; f6; and
a set of pairs B containing 11 unprocessed pairs. Each of these unprocessed
pairs will generate an S-polynomial, and each of these S-polynomials can be
reduced to zero. Thus, no new pairs are generated, and the set ff1; :::; f6g is
a Gr�obner basis. 3

7.3.5 Improved Basis Construction and Reduced Gr�obner Bases

Most of the variants of the algorithm given previously concentrate on elim-
inating certain pairs from B before reducing the S-polynomials constructed
from them. A pair can be eliminated if we can show that its S-polynomial
must reduce to zero. Other modi�cations order the pairs in B by various
strategies that increase the chances of so eliminating pairs. One such strat-
egy is to remove early those pairs from B whose leading power products
have a small least common multiple. These heuristics can result in signi�-
cant speedups and should be implemented.

We give two criteria for eliminating a pair fh1; h2g from B. The �rst
criterion is as follows. If there is another polynomial h3 inG with the property
that the leading power product of h3 divides the least common multiple of
the leading power products of h1 and h2 in G; and if both pairs fh1; h3g and
fh2; h3g are not in B; then the pair fh1; h2g does not need to be considered.
Intuitively, the presence of h3 implies that the S-polynomial of h1 and h2 will
reduce to zero. For example, consider the situation in the basis construction
just after processing the pair ff2; f4g. The next pair ff3; f4g would generate a
least common multiple of xy2. We try to apply the criterion, using for h3 the
polynomial f2 whose leading power product divides xy2. Both ff2; f3g and
ff2; f4g are not in B; so the criterion applies. In our example, the criterion
eliminates four more pairs.

The second criterion to eliminate pairs states that, if the leading power
products of f1 and of f2 are coprime, then the pair ff1; f2g is redundant. As
an example, consider the pair ff5; f6g whose leading power products are y
and x5; respectively. Since they are coprime, S(f5; f6) must reduce to zero.
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So far, the algorithm only adds new polynomials to G. It is possible to
remove certain other polynomials during the computation. Briey, if f can
be reduced to zero using the polynomials in G � ffg; then f is redundant
and can be deleted. Moreover, if the normal form of f is not zero, then
f can be replaced with its normal form. Here, unprocessed pairs involving
f are replaced by pairs involving the normal form of f. When these steps
are incorporated, we obtain a reduced Gr�obner basis that is then unique,
provided the leading coeÆcients are scaled by some convention. The reduced
Gr�obner basis in Example 5, without coeÆcient scaling, is

f5 = �8y � 20x4 � 8x3 � 15x2 + 34x� 19

f6 = 4x5 + 3x3 � 8x2 + 7x� 2

From now on, we consider only reduced Gr�obner bases.

7.3.6 Admissible Term Orderings

We have described the Gr�obner basis construction with respect to a lexi-
cographic ordering of terms. Other orderings are possible, and the basis-
construction algorithm should be implemented such that it works with every
suitable ordering. Most generally, the basis calculation can be based on any
admissible term ordering.

De�nition

An admissible term ordering�a is a total order of power products
that satis�es

1. 1 �a xi; for all variables xi.

2. For all power products u; v; and w; u �a v implies uw �a

vw.

The two major term orderings in current use are the lexicographic and the
total degree ordering. Both can be further varied by permuting the variables.
For instance, in k[x; y]; we can construct either ordering with x � y or with
y � x. Moreover, they can be combined in various ways.

The total degree ordering, denoted by �t; is de�ned by requiring that all
power products of degree n precede the power products of degree n+1. Two
power products of equal degree are ordered lexicographically. For example,
for two variables with x �t y; we have

1 �t x �t y �t x
2 �t xy �t y

2 �t x
3 �t � � �

The reverse lexicographic total degree ordering, denoted by �r; is de�ned
by requiring that all power products of degree n precede all power products
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of degree n + 1. Two power products of equal degree are ordered in reverse

lexicographic order. For example, for two variables with x �r y; we have

1 �r y �r x �r y
2 �r xy �r x

2 �r y
3 �r � � �

Example 7.6: The Gr�obner basis of the set F of Example 7.5 with
respect to the total degree ordering is

4x3 � 10xy + 4y + 3x� 3

8y2 � 9xy � 6x2 + 9y � 4x

3

The ordering used can profoundly inuence both the time needed to con-
struct a Gr�obner basis and the basis size. In most applications, it appears
that using the total degree ordering or the reverse lexicographic total degree
ordering is much faster and leads to smaller bases than using the lexico-
graphic ordering. On the other hand, the lexicographic ordering has many
useful properties that would make it the ordering of choice in most geometric
applications.

One consequence of this situation is current research on basis conversion.
The idea is to construct a Gr�obner basis with the total degree ordering, and
then transform this basis to another Gr�obner basis with respect to the lex-
icographic ordering. Algorithms for this conversion are discussed in Section
7.8.

7.4 Solving Algebraic Equations

Many geometric applications require solving a system of algebraic equations.
If F = 0 is a system of algebraic equations, then constructing a Gr�obner
basis for the ideal generated by F yields an equivalent system G = 0 that
has the same solution set but is often easier to solve. In this section, we
explore this approach.

Given a system F of algebraic equations, it can be shown that F has no
solutions i� 1 is in the Gr�obner basis G of the ideal generated by F. This
theorem does not require that G be constructed with a special term ordering.
However, if we wish to determine actual solutions of the system F, then the
term ordering used matters.

7.4.1 Triangularizing Algebraic Equations

A Gr�obner basis of I constructed with the lexicographic ordering contains
information about the elimination ideals of I, and can be used to solve alge-
braic equations. Let I � k[x1; :::; xn] be an ideal. Then the set of polynomials
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in I that contain only the variables x1; :::; xr is

Ir = ff 2 I j f 2 k[x1; :::; xr]g = I \ k[x1; :::; xr]

In the ring k[x1; :::; xr]; the set Ir is evidently an ideal, and we call it the
rth elimination ideal of I. As we shall see, these ideals help in solving an
algebraic system F = 0; and much information about them is implicit in a
Gr�obner basis for IhF i; as stated by the following key theorem.

Theorem

Let F be a set of polynomials in the variables x1; :::; xn; and G
be a Gr�obner basis for the ideal I generated by F with respect
to the lexicographic ordering based on x1 � ::: � xn. Then, for
1 � r < n; the polynomials G \ k[x1; :::; xr] are a Gr�obner basis
of the elimination ideal Ir = I \ k[x1; :::; xr].

This theorem implies, roughly, that a lexicographic Gr�obner basis is a tri-
angular system of polynomial equations. We use it as follows to solve the
system F = ff1 = 0; :::; fk = 0g.

Input: A set F = ff1; :::; fkg of polynomials in k[x1; :::; xn].

Output: All solutions of F in the set Xn if F has �nitely many so-
lutions, or a message that F has in�nitely many solutions.

Method:

1. Construct a reduced lexicographic Gr�obner basis G for IhF i;
with x1 � x2 � � � � � xn.

2. If 1 2 G; then stop: F does not have any solution.

3. If G does not contain a univariate polynomial g1 in k[x1];
then stop: The solution to F does not consist of a �nite set
of points.

4. Let g1 be a polynomial of lowest degree in G \ k[x1]; and let
X1 = f(�) j g1(�) = 0g be the roots of g1.

5. Repeat steps 6 and 7 with i = 2; :::; n.

6. Initialize Xi to the empty set.

7. For each (�1; :::; �i�1) in Xi�1; substitute �s for xs in G \
k[x1; :::; xi]; where 1 � s � i � 1. From among the resulting
univariate polynomials select one of lowest degree that is not
identically zero, say p. Then, let �1; :::; �r be the roots of
p. Add to Xi all tuples of the form (�1; :::; �i�1; �s); where
s = 1; :::; r.
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It can be shown that the polynomial g1 selected in step 4 is unique, and
that the algorithm correctly determines all solutions of F. Note that certain
polynomials in G \ k[x1; :::; xi]� k[x1; :::; xi�1] may vanish for speci�c values
in Xi. The examples that follow illustrate this point.

7.4.2 Finding Surface Intersections

We can use the algorithm to solve nonlinear equations for �nding the inter-
section of algebraic surfaces.
Example 7.7: We compute the intersection of the three cylinders

x2 + y2 � 1 = 0

x2 + z2 � 1 = 0

y2 + z2 � 1 = 0

Using the lexicographic ordering with x � y � z; the Gr�obner basis G is

fx2 � 2; y2 � 2; z2 � 2g

This system is especially simple since it is diagonal. The roots of the �rst
polynomial are x = �1=p2. Substitution into other equations is not neces-
sary, since they do not mention x. The roots of the second and third equation
are y = �1=p2 and z = �1=p2. Thus, we have eight di�erent solutions,
given by the eight combinations of solutions to the three equations. 3
Example 7.8: We compute the intersection of the surfaces

z2 + 2yz + 2xz + y2 + 2xy + x2 � 1 = 0

z2 � 2yz � 2xz + y2 + 2xy + x2 � 1 = 0

z2 � 2yz + 2xz + y2 � 2xy + x2 � 1 = 0

z2 + 2yz � 2xz + y2 � 2xy + x2 � 1 = 0

z2 + y2 � x� 1 = 0

Here, the �rst four quadratic surfaces are pairs of planes bounding an oc-
tahedron. The plane pairs intersect in the six points (�1; 0; 0); (0;�1; 0);
(0; 0;�1). The �fth surface is a paraboloid of rotation that passes through
�ve of these points but not through the point (1; 0; 0). The Gr�obner basis
computed for this set is G = G1 [G2 [G3; where

G1 = fx2 + xg
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G2 = fxy; y3 � yg
G3 = fxz; yz; z2 + y2 � x� 1g

The set X1 consists of the roots of x
2 + x; and is

X1 = f(�1); (0)g

We substitute �1 for x in the basis subset G2 and obtain �y as the lowest-
degree polynomial in y. Its root is 0, so we add the pair (�1; 0) to X2. Next,
we substitute 0 for x and obtain the polynomial y3 � y; with roots 1, �1;
and 0, as the lowest-degree nontrivial polynomial. Thus, the �nal set X2 is

X2 = f(�1; 0); (0; 1); (0;�1); (0; 0)g

For the set X3; we explore the four substitutions for x and y de�ned by X2.
With three of them, we obtain a linear polynomial in z; with the unique root
0 in each case. The fourth substitution, (0; 0); yields z2�1; with roots 1 and
�1. Hence, X3 is

X3 = f(�1; 0; 0); (0; 1; 0); (0;�1; 0); (0; 0; 1); (0; 0;�1)g

These are all the solutions of the original system of equations. 3

7.4.3 Locating Singularities

In Section 6.5.5 in Chapter 6, we discussed locating singularities of plane
algebraic curves, and we described several methods. If the curve coeÆcients
are known precisely, then we can apply the Gr�obner basis method to pre-
compute all singularities by solving the system ff = 0; fx = 0; fy = 0g. We
give two examples.
Example 7.9: Consider the cubic curve f = 28y3 + 26xy2 + 28y2 +

7x2y + 16xy + 7y + x3=2 + 3x=2. We considered parameterizing this curve
in Section 5.5.3 of Chapter 5. As a rational cubic, it must have a singular
point, which we �nd by solving the system

ff = 0; fx = 0; fy = 0g

With the ordering y � x; we obtain the Gr�obner basis f2y + 1; xg Hence, f
has one singular point, at (0;�1=2). 3
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Example 7.10: Consider the quartic g = x4+x2y2�y2�2x2+1. Using
the lexicographic ordering, the Gr�obner basis of fg; gx; gyg is

fx4 � 2x2 + 1; y2 + 2x2 � 2; x2y � yg

Hence, there are two curve singularities, at (�1; 0). 3

7.4.4 Basis Determination with Symbolic Quantities

The curve g of Example 7.10 is a member of a family of quartics given by

f(a) = x4 + x2y2 � y2 � 2a2x2 + a4

with g = f(1). It would be attractive to determine the locus of the singular-
ities of the curve f(a) irrespective of the value of a.

The algorithm presented for solving systems of algebraic equations can be
used without diÆculties in extension �elds. If a is transcendental, then we
can compute the Gr�obner basis for ff; fx; fyg over k(a). However, the results
of this computation are not necessarily valid when a takes on certain values
that are algebraic numbers. The problem is that the necessary coeÆcient
arithmetic may entail computing with polynomials in a that could be zero
for certain speci�c values. For transcendentals, this problem does not arise,
since a transcendental cannot be the root of any polynomial.

Consider determining the Gr�obner basis for ff; fx; fyg in k(a)[x; y]. The
input set to the basis computation is

f1;1 = x2y2 � y2 + x4 � 2a2x2 + a4

f1;2 = 2(xy2 + 2x3 � 2a2x)

f1;3 = 2(x2y � y)

We use the lexicographic ordering with x � y. Before forming any S-
polynomials, we simplify f1;1; replacing it with f1;1�yf1;3=2; and we eliminate
the factor 2 from the other two polynomials. We obtain the set

f2;1 = x4 � 2a2x2 + a4

f2;2 = xy2 + 2x3 � 2a2x

f2;3 = x2y � y
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The S-polynomial of f2;2 and f2;3 is f2;4 = y2 + 2a2x2 � 2a2. After adjoining
it, we reduce f2;2 by replacing it with f2;2 � xf2;4 + 2xf2;1; and we obtain

f3;2 = 2(1� a2)x3 � 2a2(1� a2)x

If a is transcendental, then the structure of f2;3 is x
3+bx. If a = �1; however,

then this polynomial is zero. Hence, for a = 1; the Gr�obner basis could di�er
structurally from the one obtained for the transcendental a. This is indeed
so. When a is transcendental, we obtain the Gr�obner basis

fy; x2 � a2g

Substitution of a = 1 would yield the set fy; x2 � 1g. However, as we saw
in Example 7.10, the Gr�obner basis for ff(1); f(1)x; f(1)yg is fx4 � 2x2 +
1; y2 + 2x2 � 2; x2y � yg.

So, when considering a family of polynomials with some parameters a1; :::; am;
the Gr�obner basis can be computed over k(a1; :::; am). The results will be
valid for transcendental values and for those algebraic values for the ai for
which none of the coeÆcient polynomials generated during the basis com-
putation vanish. For \exceptional values" for which one or more coeÆcient
polynomials in the ai vanish, a separate computation is needed.

7.5 Operations on Curves and Surfaces

As we saw, a Gr�obner basis for F � k[x1; :::; xn]; constructed with the lexico-
graphic ordering, provides the elimination ideals I1; :::; In�1 of I at the same
time. In the case of zero-dimensional ideals, we used this fact to simplify
structurally a set of algebraic equations that we wanted to solve. By trian-
gularizing the system of equations, we reduced the problem to �nding the
roots of univariate polynomials. We now explore a di�erent aspect of the tri-
angularization procedure using the Gr�obner basis construction as a general
elimination procedure.

7.5.1 Implicitization and Inversion

If a surface is given parametrically as

x = h1(s; t)

y = h2(s; t)

z = h3(s; t)
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then its implicit form can be determined by elimination of s and t. In Section
5.6.1 of Chapter 5, we explored using the Sylvester resultant as an elimination
tool, and observed that repeated application leads to extraneous factors.
These factors are intrinsic because the method is based on projection. For
polynomial functions hi; the Gr�obner basis approach achieves simultaneously
the elimination of s and t; as well as a surface inversion. We demonstrate
the procedure with an example.
Example 7.11: Consider the parametric surface

x = st

y = st2

z = s2

We construct the Gr�obner basis with the lexicographic ordering for the cor-
responding ideal

F = fx� st; y � st2; z � s2g
Ordering the variables z � y � x � t � s; we obtain the Gr�obner basis

G = f x4 � y2z;

tx� y; tyz � x3; t2z � x2;

sy � x2; sx� tz; st� x; s2 � z g

In G; the �rst polynomial, x4 � y2z; is the implicit surface form. Note the
absence of extraneous factors. Polynomials tx � y and sy � x2 are the �rst
polynomials in the basis that introduce the variables t and s; respectively.
They provide an inversion of the surface; that is, given a point (x; y; z) on
the surface, we can determine its parametric coordinates (s; t) from these
polynomials. Moreover, the linearity of these two polynomials in t and s
implies that the surface parameterization is faithful; that is, to each point
(x; y; z) there corresponds only one point (s; t) in parameter space. 3

7.5.2 O�set Surfaces

In Section 6.3.3 of Chapter 6, we gave a procedure for determining the o�sets
of an algebraic surface f. The procedure consisted of formulating a family
of spheres of radius equal to the o�set distance with centers on the surface
f, and determining the envelope of this family of spheres. If the algebraic
equation of the o�set surface is needed, then we must eliminate the generic
coordinates of the sphere centers. The elimination can be done using Gr�obner
bases constructed with the lexicographic ordering.
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Example 7.12: We consider o�setting the ellipsoid 2x2+y2+z2�2 = 0
by the distance 1. Applying the procedure of Section 6.3.3 in Chapter 6, we
obtain the following equations.

(x� u1)
2 + (y � u2)

2 + (z � u3)
2 � 1 = 0 (7.1)

2u21 + u22 + u23 � 2 = 0 (7.2)

(x� u1)u2 � 2(y � u2)u1 = 0 (7.3)

(y � u2)u3 � (z � u3)u2 = 0 (7.4)

Equation (7.1) is the sphere de�ning the o�set distance, and equation (7.2)
places the sphere's center on the ellipsoid. The other two equations are the
derivatives of the sphere in two linearly independent tangent directions. We
order the variables x; y; z; u1; u2; u3; and construct the Gr�obner basis for these
equations, obtaining an implicit form of degree 9 with 32 terms. 3

Closer inspection of the surface computed in Example 7.12 reveals an
extraneous factor y; which is found to be present because of the problem
formulation and is not a consequence of applying the Gr�obner basis method.
For the directional derivatives (7.3) and (7.4), we used the tangent directions

t1 : (�u2; 2u1; 0)
t2 : (0;�u3; u2)

They become linearly dependent when u2 = 0. This condition holds on
the intersection curve of the ellipsoid with the plane y = 0. Consider the
spheres centered on that curve. For every point on that curve, the directional
derivatives are in the direction (0; u; 0); hence, all points of a sphere that are
in the plane y = 0 satisfy the di�erential conditions (7.3) and (7.4), and since
these points cover a two-dimensional region in the y = 0 plane, we obtain the
extraneous factor y. Choosing for the directional derivatives the tangents

t3 : (�u2; 2u1; 0)
t4 : (�u3; 0; 2u1)

we obtain the extraneous factor x instead.
We can reformulate the o�set problem to avoid the degeneracies. However,

since the extraneous factor has such a simple structure, it seems easier just
to factor it out.
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Figure 7.4 Geometric Example Theorem

7.6 Geometric Theorem Proving

Gr�obner bases can be used in geometric theorem proving. That is, given
a geometric theorem, there are systematic procedures for translating a geo-
metric con�guration into an algebraic formula and posing the conclusion of
a geometric theorem as a problem of ideal membership whose answer deter-
mines whether the theorem holds.

This work is of potential use in robustness problems. As pointed out
in Section 4.4 of Chapter 4, coping with numerical uncertainty can be ap-
proached as a reasoning problem in that the interpretation of a numerical
result is considered to be a logical decision that must be consistent with all
other such decisions. Of course, each decision has a geometric meaning | for
example, whether two edges intersect, whether a vertex is incident to a face,
and so on. If we can account for this geometric meaning, then the symbolic
reasoning establishing consistency is related to proving geometric theorems.

In this section, we briey sketch how the Gr�obner basis approach to geo-
metric theorem proving works. We begin with a brief sketch of the method,
and illustrate the various technical issues using the following example:

Geometric Example Theorem

If two line segments AB and CD are congruent, then so are their
halves.

Figure 7.4 shows an instance of this theorem.
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7.6.1 Outline of the Proof Method

We will translate the geometric theorem into a logical formula of the form

(8x1; :::; xn)((f1 = 0 ^ � � � ^ fr = 0)) g = 0) (7.5)

where g = 0 and the fi = 0 are polynomial equations in the variables
x1; :::; xn. The xi are point coordinates. The part (f1 = 0 ^ � � � ^ fr = 0) ex-
presses the hypothesis of the theorem. In our example, the hypothesis asserts
that the line segments AB and CD are congruent. The part g = 0 expresses
the theorem's conclusion | in our example, the congruence of the segment
halves.

Formula (7.5) formally states that, for all values (x1; :::; xn) for which
every fj(x1; :::; xn) is zero, g(x1; :::; xn) is also zero. Abstractly, the set of
polynomials F = ff1; :::; frg generates an ideal J = IhF i. Associated with
J is the algebraic set V (J) consisting of all points (x1; :::; xn) for which all
polynomials in J vanish. Formula (7.5) states that the hypersurface g = 0
contains the algebraic set V (J). Algebraically, therefore, formula (7.5) says
that the polynomial g is in the radical ideal of the algebraic set V (J). See
also Section 7.2.6.

We prove that g is in the radical ideal Rad(V (J)) by assuming that it is
not and deriving a contradiction from this assumption. Suppose we can �nd
a point (x1; :::; xn) such that all fj 2 F vanish but g does not. Then, we
have proved that g is not in the radical ideal Rad(V (J)); and the point is a
counterexample of the theorem to be proved. That is, we try to satisfy the
formula

(9x1; :::; xn)(f1 = 0 ^ � � � ^ fr = 0 ^ g 6= 0)

The inequality g 6= 0 is transformed into an equality by introducing a new
variable z:

(9x1; :::; xn; z)(f1 = 0 ^ � � � ^ fr = 0 ^ gz � 1 = 0) (7.6)

Clearly, gz � 1 = 0 is possible only for points at which g does not vanish.
In view of the preceding discussion, we consider the ideal generated by

the set ~F = F [ fgz � 1g consisting of all the fj and the polynomial gz � 1.
This ideal contains a point (x1; :::; xn; z) i� formula (7.5) is false; that is, i�
formula (7.6) can be satis�ed. In that case, the theorem is not valid.

The decision of whether there are points in the algebraic set of the ideal
generated by ~F is made by investigating whether the system of algebraic
equations ~F = 0 has a solution. To �nd that out, we construct a Gr�obner
basis G for the ideal Ih ~F i. There is a solution to the system ~F = 0 i� 1 is
not in the basis G. See also Section 7.4.

Proving a geometric theorem with the Gr�obner basis approach, therefore,
proceeds as follows:
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1. Translate the geometric theorem into formula (7.5).

2. By introducing a new variable, change the formula into the format of
formula (7.6). Let ~F be the set of polynomials in this formula.

3. Construct a Gr�obner basis for the ideal generated by ~F . The geometric
theorem is true i� 1 is not in the basis.

Note that the basis can be constructed with respect to any admissible term
ordering.

7.6.2 Translating Geometric Con�gurations

The basic idea of translating a geometric con�guration into a set of algebraic
formulae is to assign symbolic coordinates to the points and to express the
con�guration as algebraic equations in these coordinates.

Let the points of the �rst segment be A; P;B; and let those of the second
segment be C;Q;D; as shown in Figure 7.4 before. The hypothesis of the
example theorem is rephrased to make its structure more apparent:

� The points A; P; and B are collinear.

� The points C; Q; and D are collinear.

� The segments AB and CD are congruent.

� P is the midpoint of AB.

� Q is the midpoint of CD.

The conclusion is

� The segments AP and CQ are congruent.

We explain how each assertion is translated.
Consider three points A; P; and B. With point coordinates A = (xA; yA);

P = (xP ; yP ); B = (xB; yB); we express that the points are collinear:

xA � xP
yA � yP

=
xA � xB
yA � yB

Clearing the denominator, we have stated collinearity by the polynomial
equation

(xA � xP )(yA � yB)� (xA � xB)(yA � yP ) = 0 (7.7)

Implicit in the statement \A; P; and B are collinear" is the assumption
that at least two of the points A; P; and B are distinct. If this assumption
is not expressed by the algebraic formulation, then the translation process is
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not faithful, and we risk the possibility of \proving" false geometric theorems.
We can express that two points are not coincident as

xA � xP 6= 0 _ yA � yP 6= 0

Therefore, the statement \A; P; and B are collinear" can be expressed by
the following conjunction

(xA � xP )(yA � yB)� (xA � xB)(yA � yP ) = 0

^ (xA � xP 6= 0 _ yA � yP 6= 0)

^ (xA � xB 6= 0 _ yA � yB 6= 0)

Note that in this formulation we have expressed that A and B are di�erent
points, and that A and P are di�erent points, but we have not expressed that
P and B are di�erent points. In the following, other constraints will establish
that P and B are not coincident, thereby compensating for the asymmetry
of the formula.

To express the congruence of the line segments AB and CD; we state that
they have equal length:

(xA � xB)
2 + (yA � yB)

2 � (xC � xD)
2 � (yC � yD)

2 = 0

The fact that P is the midpoint of the segment AB is expressed by requiring
that the segments AP and PB have equal length:

(xA � xP )
2 + (yA � yP )

2 � (xP � xB)
2 � (yP � yB)

2 = 0

The entire theorem can now be expressed as the following formula, which is
universally quanti�ed in all coordinate variables.
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[(xA � xP )(yA � yB)� (xA � xB)(yA � yP ) = 0

^ (xA � xP 6= 0 _ yA � yP 6= 0)

^ (xA � xB 6= 0 _ yA � yB 6= 0)

^ (xC � xQ)(yC � yD)� (xC � xD)(yC � yQ) = 0

^ (xC � xQ 6= 0 _ yC � yQ 6= 0)

^ (xC � xD 6= 0 _ yC � yD 6= 0)

^ (xA � xB)
2 + (yA � yB)

2 � (xC � xD)
2 � (yC � yD)

2 = 0

^ (xA � xP )
2 + (yA � yP )

2 � (xP � xB)
2 � (yP � yB)

2 = 0

^ (xC � xQ)
2 + (yC � yQ)

2 � (xQ � xD)
2 � (yQ � yD)

2 = 0]

=)
(xA � xP )

2 + (yA � yP )
2 � (xC � xQ)

2 � (yC � yQ)
2 = 0

(7.8)

7.6.3 Formula Manipulation

Formula (7.8) is not yet in the format of formula (7.5), because of the in-
equalities and the disjunctions (_) in the hypothesis part. We change the
formula by �rst replacing the inequalities with equalities, and then replacing
the disjunctions with products.

By introducing the additional variables zi; i = 1; :::; 8; we replace all in-
equalities in the hypothesis part of formula (7.8) with equalities. For exam-
ple,

xA � xP 6= 0 _ yA � yP 6= 0

is replaced with

(xA � xP )z1 � 1 = 0 _ (yA � yP )z2 � 1 = 0

Each disjunction is next replaced with a product. So, for example,

(xA � xP )z1 � 1 = 0 _ (yA � yP )z2 � 1 = 0

is changed into

((xA � xP )z1 � 1)((yA � yP )z2 � 1) = 0

With these changes, the theorem has been expressed in the required format
and can be proved as described.
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7.6.4 Choice of Coordinate Axes and Other Heuristics

The process of constructing a Gr�obner basis from the set ~F is facilitated
by choosing a suitable coordinate system. For example, the origin of the
coordinate system can be placed at the point A; and the x axis laid through
the segment AB. Moreover, after suitable scaling, we can assume that B =
(1; 0). The e�ect of these heuristics is that some variables are eliminated and
that some of the polynomials simplify.

Other simpli�cations are possible. For example, having expressed that
A 6= B and P is the midpoint of the segment AB; it follows that A 6= P; so
the polynomial expressing this inequality can be deleted. Similarly, C 6= Q is
implied. Other heuristics can be formulated based on similar basic geometric
observations.

7.7 Complexity

Construction of a Gr�obner basis is a potentially time-consuming process. It
has been shown that the worst-case complexity is doubly exponential. That
is, given a set F in k[x1; :::; xn] with highest degree m; the Gr�obner basis
could contain polynomials of degree proportional to 22

m

. In the case of
zero-dimensional ideals, the corresponding bound is 2m; so this case is more
favorable.

When F is in k[x1; x2] (i.e., contains bivariate polynomials), more speci�c
complexity bounds are available. Ifm is the highest degree of any polynomial
in F, it can be shown that the degree of any polynomial occurring throughout
the basis computation is bounded by m2 for arbitrary admissible orderings,
and by 2m� 1 for the total degree ordering.

For trivariate polynomials, the following bound is known. Let d be the
lowest degree, and m be the highest degree, of any polynomial in the input
set F. Then any polynomial generated during the basis computation has a
degree of at most 2d(8m+ 1), when using the total degree ordering.

Practical experience shows that the running time depends heavily on the
variable ordering, and on the choice of the coordinate system. Possible co-
eÆcient growth can also inuence the running time signi�cantly. All these
phenomena are demonstrated now.

7.7.1 Simple Basis Experiments

It is instructive to consider the actual running times for the basis compu-
tations done in this chapter. First, we consider Examples 7.3 through 7.11.
These are relatively small computations in which variable ordering and term
ordering a�ect the running times only insigni�cantly. The computations were
done on a Symbolics 3650 Lisp machine using the Gr�obner basis implemen-
tation provided with Macsyma 412.45. Table 7.1 summarizes the results.
Times are given in seconds for both the lexicographic and the total degree
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Example Lexicographic Total Degree

3 0.05 0.05

5, 6 0.16 0.14

7 0.06 0.06

8 0.32 0.37

9 0.23 0.23

10 0.12 0.10

11 0.27 0.21

Table 7.1 Time in Seconds to Construct the Gr�obner Basis

orderings. As the values indicate, no signi�cant di�erence is observed be-
tween the lexicographic ordering and the total degree ordering. In many
cases, both orderings lead to the same basis, indicating that the ideals with
which we deal are structurally extremely simply. Moreover, the polynomials
involved are sparse, due to favorably chosen coordinate systems.

7.7.2 Large Basis Computations

The use of basis computations to eliminate variables in curve and surface
operations can lead to signi�cantly longer running times. Here, the e�ect of
term orderings becomes very noticeable. It appears that the ideals de�ned in
these problems have a complicated structure, as evidenced by long running
times during which many S-polynomials are formed and reduced.

Table 7.2 shows the timings for several runs of Example 7.12. We observe
that the running times di�er dramatically between basis computations using
the lexicographic ordering and basis computations using the total degree

Variable Total Degree Lexicographic

Ordering Ordering Ordering

x; y; z; u1; u2; u3 1.76 216.54

z; x; y; u1; u2; u3 2.19 787.78

y; z; x; u1; u2; u3 5.81 217.82

x; y; z; u2; u3; u1 2.69 1101.99

x; y; z; u2; u1; u3 3.13 252.20

Table 7.2 Time in Seconds to Construct the Gr�obner Basis
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ordering. Also, when the variables are arranged di�erently, the running times
can vary signi�cantly.

7.7.3 CoeÆcient Growth

Gr�obner bases algorithms assume exact arithmetic and are therefore imple-
mented using rational arithmetic. Much of the observed time can depend
on the size of the rationals manipulated. A simple experiment demonstrates
this point.

Consider again the three-cylinder intersection of Example 7.7. We order
the variables x � y � z and construct the basis with the lexicographic
ordering in a total time of 0.06 seconds. Next, we rotate the cylinders, �rst
about the z axis by an arc of 1, then about the x axis by an arc of 1/2,
and, �nally, again about the z axis by an arc of 1, using single-precision
oating-point arithmetic. The coeÆcients of the three new equations are
then converted to rational numbers by Macsyma's RAT function. The three
cylinders are now in general position, and their eight points of intersection
are expected to have di�erent x coordinates. Due to numerical errors in
rotating and in converting to rationals, the cylinders have become slightly
elliptic, but there are still eight intersections. We compute the Gr�obner basis
for these three equations, now consuming 405 seconds, yielding the basis

G1 = fh1(x); y � h2(x); z � h3(x)g

where h1 has degree 8, and h2 and h3 both have degree 7. That is, the
running time has been prolonged by almost four orders of magnitude.

In the longer computation, 231 polynomial pairs are considered. From
30 pairs, S-polynomials are formed and reduced. Using the �rst criterion of
Section 7.3.5, we eliminate 114 pairs. Applying the second criterion, we reject
an additional 87 pairs. In large part, therefore, the longer running time is
due to the huge rationals involved, which have numerators and denominators
with a magnitude of about 10700.

7.8 Basis Conversion

We have seen that a lexicographic Gr�obner basis is a very useful data struc-
ture that can yield much information about an ideal and its algebraic set.
However, experience shows that, in geometric modeling, the known methods
for constructing a lexicographic base often demand excessive resources, both
in time and in space. This is a serious limitation that should be addressed.

A basic approach to overcoming the ineÆciencies of the lexicographic ba-
sis construction would be to reformulate the algorithms that use the bases
such that they use instead bases constructed with an ordering that leads to
better performance. Indeed, constructing a total degree Gr�obner basis is an
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acceptably eÆcient computation in many situations. In some cases, we can
reformulate the algorithms. For example, there is an algorithm for solving
a system of algebraic equations that has �nitely many solutions, based on a
total degree basis.

Another general idea is to construct �rst the Gr�obner basis using the
total degree ordering, and then to convert this basis to a Gr�obner basis
with respect to the lexicographic ordering. If the conversion can be done
eÆciently, then this method will solve the problem for all algorithms that
require a lexicographic basis.

EÆcient basis conversion is known to exist for zero-dimensional ideals;
that is, for ideals whose algebraic set consists of �nitely many points. We
explain this method conceptually, and explain a variation of it that can be
used for variable elimination.

7.8.1 Computing in the Residue Class Ring

We plan to compute in the residue class ring RI to reduce certain algebraic
computations to linear algebra problems. Recall from Section 7.2.4 that RI

is a vector space over the ground �eld k. The elements of RI are equivalence
classes; that is, they are sets of polynomials in k[x1; :::; xn]. Computing with
equivalence classes will be reduced to computing with certain representatives;
that is, in each class, we will identify a unique polynomial and compute with
it.

Let p be any polynomial in k[x1; :::; xn]. The equivalence class of p in RI

is denoted [p]. The representative of the class [p] will be denoted by �p.
Given a Gr�obner basis G of I; we use �p = NF (p;G) as the representative

of the equivalence class [p] of the polynomial p. It can be shown that

NF (p;G) = NF (q; G) () [p] = [q]

So, for each equivalence class, we have a unique representative. In particular,
the representative for the equivalence class of the polynomials in the ideal is
zero. We exploited this fact when testing ideal membership in Section 7.3.
The following observation is not diÆcult to prove.

Theorem

Let a and b be numbers in k. Then

NF (au+ bv; G) = c(aNF (u;G) + bNF (v;G))

where c is a nonzero constant.
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Applying the theorem repeatedly, we see that, for polynomials uj and num-
bers aj; we have

mX

j=0

ajuj 2 I ()
mX

j=0

ajNF (uj; G) = 0 (7.9)

This is true in particular for power products ui. The importance of formula
(7.9) is that it allows us to test ideal membership incrementally using linear
dependence tests.

7.8.2 Basis Conversion for Zero-Dimensional Ideals

We sketch an algorithm for the following problem: Given a Gr�obner basis
G for a zero-dimensional ideal I in k[x1; :::; xn] with respect to some admis-
sible order, construct a lexicographic Gr�obner basis G0 for I. The algorithm
proceeds as follows:

1. For j = 0; 1; 2; :::; generate power products uj = x
e1;j
1 x

e2;j
2 � � �xen;jn in a

suitable order, and compute �uj = NF (uj; G).

2. For each j; test whether there exists a linear dependence

�uj �
j�1X

i=0

ai�ui = 0

If so, add the polynomial p to G0; where

p = uj �
j�1X

i=0

aiui

Two problems must be solved for this algorithm to work. We must generate
the power products uj in such an order that every polynomial p discovered in
step 2 is in the lexicographic basis G0. Moreover, we must have a termination
criterion. The following theorem addresses the �rst problem. In conjunction
with the fact that, for a zero-dimensional ideal I; the vector space RI is
�nite-dimensional, we can then derive a termination criterion.

Theorem

Let U be the set of all power products u that are not a multiple
of some leading power product of a polynomial in the Gr�obner
basis G of I. Then, the equivalence classes [u] of the u 2 U are
linearly independent and form a basis of RI .

Note that the theorem does not assume that I is zero-dimensional. However,
if I is zero-dimensional, then RI has �nite dimension and the set U is �nite.
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Conversion Algorithm

We discover the polynomials in G0 by generating all power products in in-
creasing lexicographic ordering. Note that this must not be done naively, for
then the algorithm would not terminate. For example, there are in�nitely
many power products xj1; j = 0; 1; 2; :::; that precede the power product
x2. By the preceding theorem, however, we can skip multiples of leading
power products. Let L be the set of leading power products of the polyno-
mials already discovered in the basis G0. Beginning with the power product
x01 � � �x0n = 1; we generate the next power product in lexicographic order,
but skip all multiples of the power products in L. Deferring the details of
power-product generation for the moment, the basis-conversion algorithm is
as follows. In it, the function next(u; L) generates the next power product
subject to the constraints implied by L.

Input: A Gr�obner basis G; with respect to some admissible term
ordering, of the zero-dimensional ideal I.

Output: A lexicographic Gr�obner basis G0.

Method:

1. Set G0; L; U; and U 0 to empty, and set u to 1.

2. While the basis G0 is not complete, do steps 3 through 6.
Thereafter, stop; G0 is a lexicographic basis for I.

3. Determine �u = NF (u;G); and test whether �u is a linear com-
bination of the elements in U 0.

4. If �u is linearly independent, then add u to U; and �u to U 0;
and skip step 5.

5. Let �u =
Pm

j=1 aj�uj; for some �uj in U 0. Add u�Pm
j=1 ajuj to

G0; and add u to L.

6. Replace u with next(u; L). The basis G0 is complete if next
determines that no successor exists.

It can be shown that this algorithm correctly determines the lexicographic
basis in a �nite number of steps.

Various optimizations should be incorporated in the reduction to normal
form and in the determination of linear dependence. With these optimiza-
tions, and assuming that G is a reduced basis with respect to the reverse
lexicographic total degree ordering, it can be shown that the algorithm re-
quires O(n3D2+nD3) steps, where n is the number of variables and D is the
size of U; assuming that the arithmetic operations on the coeÆcients require
unit cost. Practical experience shows that using basis conversion is much
faster than is constructing the lexicographic basis directly.
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Figure 7.5 Staircase of Leading Power Products

The Staircase

We discuss how to implement the function next(u; L) that generates the next
power product in the basis conversion. We restrict our discussion to the
bivariate case n = 2. The general case is relatively straightforward.

Let G0 be a reduced lexicographic Gr�obner basis for the ideal I in k[x; y].
The leading power products of the polynomials in G0 must be relatively
prime, and therefore form a staircase pattern, as shown in Figure 7.5. In the
�gure, the point (i; j) represents a power product xiyj. Five leading power
products are shown. Each de�nes a rectangular area whose points represent
power products that are multiples of the power product. These areas are
shaded. The set U; therefore, consists of the equivalence classes of all power
products belonging to points outside any shaded area. In the �gure, the basis
is of a zero-dimensional ideal and the set U is �nite.

The function next(u; L) has to generate the power products in U in in-
creasing lexicographic ordering. Since the leading power products in G0 are
not known in advance, next will generate them also. However, since a linear
dependence is discovered, these power products are then added to the set L
instead. Figure 7.6 shows the sequence in which the power products will be
generated, assuming that the algorithm discovers the leading power products
of Figure 7.5. The function next(u; L) is now as follows:

Input: A power product u; a set of power products L.
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Figure 7.6 Power-Product Generation Sequence

Output: The power product v that is next in lexicographic order and
is not a multiple of any w 2 L.

Method:

1. Set u1 = xu.

2. If u1 is not a multiple of any power product in L; then return
with v = u1.

3. If u1 = xayb is a multiple of some w = xiyj in L and a = 1;
then stop: No successor of u exists that is not a multiple of
some w in L. Otherwise, return with v = yb+1.

A Basis-Conversion Example

We illustrate basis conversion with a simple example. Consider the ideal in
k[x; y] generated by

G = fx3 + 2xy � x + 1; y2 + x� 3g

G is already a Gr�obner basis with respect to the total degree ordering, and the
ideal IhGi can be shown to be zero-dimensional. We generate the monomials
1; x; x2; ::. with the following normal forms.
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NF (1; G) = 1

NF (x;G) = x

NF (x2; G) = x2

NF (x3; G) = �2xy + x� 1

NF (x4; G) = �2x2y + x2 � x

NF (x5; G) = �4xy � 5x2 + 2y + 13x� 1

NF (x6; G) = �4x2y + 12xy + 13x2 � 6x+ 5

At this point, we discover a linear dependence among the normal forms:

NF (1; G)� 2NF (x;G)� 11NF (x2; G)

+6NF (x3; G)� 2NF (x4; G) + NF (x6; G) = 0

Hence, we have found a polynomial in G0; namely,

1� 2x� 11x2 + 6x3 � 2x4 + x6

The set U is, at this point, f1; x; x2; x3; x4; x5g. We add the leading power
product x6 of p to L. Since x7 is a multiple of x6; the next power product
generated is y. The monomial y cannot be simpli�ed and is already in normal
form. y = NF (y;G) is not linearly independent because

�NF (1; G)� 11NF (x;G) + 5NF (x2; G)

�2NF (x3; G) + NF (x5; G)� 2NF (y;G) = 0

Therefore, the polynomial

�1� 11x+ 5x2 � 2x3 + x5 � 2y

is also in G0. So, we add the polynomial to G; and add the leading term, y;
to L.

At this point, no lexicographic successor to y can be found that is not
a multiple of y or of x6. In consequence, the algorithm terminates, having
found the lexicographic basis

G0 = f1� 2x� 11x2 + 6x3 � 2x4 + x6; �1� 11x+ 5x2 � 2x3 + x5 � 2yg
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7.8.3 Variable Elimination

One idea underlying the basis-conversion algorithm is to discover polynomi-
als in I by determining linear dependency relations in RI . This idea can
be applied in a more general way to ideals that are not necessarily zero-
dimensional, and it can be used in geometric applications. The general set-
ting is as follows:

Given an ideal I in k[x1; :::; xn] that is known a priori to con-
tain a polynomial p in k[x1; :::; xr]; for some r < n; �nd such a
polynomial p of lowest degree.

Note that we can solve this problem in principle by constructing a lexico-
graphic Gr�obner basis. However, constructing a lexicographic basis is often
too time consuming, so we seek an alternative. The problem has the following
geometric applications:

1. The intersection of two surfaces f(x; y; z) = 0 and g(x; y; z) = 0 is to
be projected onto the (x; y) plane. The ideal I is generated by ff; gg
in k[x; y; z]. The projection p is a polynomial in k[x; y].

2. A parametric surface x = h1(s; t); y = h2(s; t); z = h3(s; t) is to be
implicitized. Assuming that the hi are polynomials, the ideal I is in
k[x; y; z; s; t] and is generated by fx � h1; y � h2; z � h3g. The sought
polynomial p is the implicit form of the surface, and is in k[x; y; z].

3. The o�set of an implicit surface f(x; y; z) = 0 is to be determined. As
described in Section 6.3 of Chapter 6, we formulate four polynomial
equations de�ning an ideal I in k[x; y; z; u; v; w]. The o�set equation
is a polynomial p in k[x; y; z].

Other applications are readily formulated in which we are given a system of
polynomial equations and seek to eliminate several variables, thus deriving
an implied polynomial equation in fewer variables.

The modi�ed algorithm requires a description of the ideal by a Gr�obner
basis with respect to some admissible term ordering, and is as follows:

Input: A Gr�obner basis G for I � k[x1; :::; xn]; and an index r < n.

Output: A polynomial p 2 k[x1; :::; xr] in the ideal, provided such a
polynomial exists.

Method:

1. Beginning with 1, generate the power products formed with
x1; :::; xr; in the total degree ordering. For each such power
product u; do step 2.

2. Compute �u = NF (u;G) and test whether there exists a linear
dependence between �u and the normal forms previously gen-
erated. If there is a linear dependence, then output the cor-
responding polynomial de�ned by this dependence and stop.
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Note that this algorithm will not terminate if the ideal does not contain a
polynomial p in k[x1; :::; xr]. Its use is therefore restricted to situations in
which p is known to exist. This is the case in many geometric applications.
Example 7.13: Consider the parametric de�nition of the parabola x = t;

y = t2. We consider the ideal I generated by G = fx�t; y�t2g. With respect
to the total degree ordering with x � y � t; G is a Gr�obner basis. We seek
a polynomial in x and y in I. We generate the following power products and
normal forms:

NF (1; G) = 1

NF (x;G) = t

NF (y;G) = t2

NF (x2; G) = t2

We discover the linear dependence NF (x2; G)� NF (y;G) = 0, and from it,
we obtain the polynomial y � x2 in I. Having found this polynomial, the
algorithm stops. 3

7.9 Notes and References

The algebraic concepts reviewed here are found in most graduate-level texts
on algebra and algebraic geometry. However, these texts often present the
material in a more concise and abstract form, thereby making it harder for
the nonspecialist to access. The algebraic de�nition of the twisted cubic
(t; t2; t3) was provided by S. Abhyankar.

The concept of Gr�obner bases is due to Buchberger (1965). Buchberger
designed and implemented the basis-construction algorithm and investigated
many ideal-theoretic applications, including the solvability of systems of al-
gebraic equations, and computations in the residue class ring RI ; see Buch-
berger (1965 and 1970). For a proof of Buchberger's theorem, see also Buch-
berger (1976). Buchberger (1985) o�ers a good survey of Gr�obner bases
algorithms and their many applications. The chapter contains a very read-
able introduction to the basis construction and to some of the mathematical
applications, including the basis-construction algorithm and the method for
solving algebraic equations discussed in this chapter.

Mishra and Yap (1987) analyze the complexity of the basis computa-
tion from a computer-science perspective. Buchberger, Collins, and Kutzler
(1988) survey applications including geometry theorem proving, and compare
Gr�obner bases techniques with competing algorithms, such as Wu's method
and Collins' quanti�er-elimination procedure.

The two criteria given in Section 7.3.5 for avoiding the formation of cer-
tain S-polynomials are from Buchberger (1970 and 1976). The theorem on
the elimination ideals in Section 7.4.1 is due to Trinks (1978). Kobayashi,
Moritsugu, and Hogan (1987) present a modi�ed version to solve systems of
algebraic equations with �nitely many solutions. Their method determines
the next coordinate value from a polynomial of the form xi = h(x1; :::; xi�1).
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In a lecture at Oberwolfach in 1989, V. Weispfenning considered Gr�obner
bases construction with symbolic quantities and traced the e�ect of vanishing
coeÆcient polynomials.

Geometric theorem proving is a vigorous research area that is producing
a rich spectrum of results. The refutational approach is due to Kapur, and
the article in Kapur (1989) gives a good overview of the technique. Our brief
presentation is adapted from Kutzler (1988). Kutzler takes great care in
devising the translation process such that no implicit assumption is forgot-
ten, and considers the connection to the foundational theories of geometry.
Inequalities such as those used to formulate collinearity are known as non-
degeneracy conditions.

In Wu's approach to geometric theorem proving, presented by Chou (1988),
not all such inequalities are formulated. Instead, the method �nds certain
subsidiary conditions that express these inequalities. In a sense, therefore,
the method can make an \approximate" geometric theorem precise, provided
the algebraic form of the nondegeneracy conditions is interpreted geomet-
rically. Kapur and Mundy (1988) present a collection of papers from an
international workshop on geometric reasoning.

There have been investigations into the e�ect of oating-point arithmetic
on the basis calculations. Errors introduced by oating-point arithmetic
a�ect the basis construction in the sense that new polynomials added to
the basis in the course of the computation may have terms di�erent from
those that would be present were exact arithmetic used. This implies that
certain S-polynomials do not reduce to zero in the oating-point case, and
that the ideal therefore will be altered in ways that are diÆcult to assess
geometrically. The presentation by Auzinger and Stetter (1988 and 1989)
seems to be the only published work on this topic. In unpublished work,
Chuang and Ho�mann found in 1988 that interval arithmetic techniques
were not promising, even in cases where the algebraic problem corresponded
to well-conditioned transversal surface intersection.

Signi�cant advances in the wider applicability of Gr�obner bases should
come from the identi�cation of speci�c subproblems that permit specializing
to highly eÆcient algorithms. The complexity analyses of the bivariate and
trivariate cases, in Buchberger (1983) and Winkler (1984), are the �rst steps
in this direction. Basis conversion and its modi�cation are other examples
of progress.

The basis-conversion algorithm for zero-dimensional ideals is described
in Faug�ere, Gianni, Lazard, and Mora (1989). It has very good practical
performance and permits us to construct much larger lexicographic Gr�obner
bases than would otherwise be possible.

The modi�cation of the basis-conversion algorithm for eliminating vari-
ables in other ideals was conceived in discussions with B. Buchberger and
J. Davenport, in December 1988 and January 1989. An experimental version
was implemented by J.-H. Chuang and W. Bouma on top of Kapur's Gr�obner
basis implementation. Preliminary experiments with the algorithm are very
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encouraging. Implicit forms of o�set surfaces and parametric surfaces have
been computed that could not be obtained with the Macsyma implemen-
tations of the Sylvester resultant or with the lexicographic Gr�obner basis,
because of lack of adequate virtual memory.
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