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Preface

Evolution

This monograph was written over the past four years to serve as a text for advanced
graduate students in electrical engineering interested in the techniques of automatic speech
recognition and text to speech synthesis. However, the book evolved over a considerably
longer period for a significantly broader purpose. Since 1972, I have sought to demonstrate
how mathematical analysis captures and illuminates the phenomena of language and mind.

The first draft was written in 1975 during my tenure as a J. Willard Gibbs instructor
at Yale University. The manuscript grew out of my lecture notes for a graduate course
in pattern recognition, the main component of which was a statistical approach to the
recognition of acoustic patterns in speech. The connection to language and mind was
the result of both incorporating syntactic and semantic information into the statistical
decision-theoretic process and observing that the detection and identification of patterns
is fundamental to perception and intelligence.

The incomplete manuscript was set aside until 1983, at which time an opportunity to
resurrect it appeared in the guise of a visiting fellowship in the Engineering Department
of Cambridge University. A revised draft was written from lecture notes prepared for
another course in pattern recognition for third-year engineering students. This time, topics
of syntax and semantics were augmented with several other aspects of linguistic structure
and were encompassed by the notion of composite pattern recognition as the classification
of complicated patterns composed of a multi-leveled hierarchy of smaller and simpler
ones. This second draft also included a brief intellectual history of the collection of ideas
designated by what I will later argue is an unfortunate name, artificial intelligence (AI),
and a recognition of its role in speech.

Once again the manuscript was set aside until the occasion of my appointment to the
Department of Electrical and Computer Engineering at the University of Illinois. In 1997
I began organizing a program of graduate study in speech signal processing that would
include both instruction in the existing technology and research to advance it. In its present
form, the program comprises three tightly integrated parts: a course devoted to speech
as an acoustic signal, another course on the linguistic structure of the acoustic signal,
and research directed at automatic language acquisition. The first course required little
innovation as there are several texts that provide standard and comprehensive coverage
of the material. This book is a modification of my long-dormant manuscript and is now
the basis for both the second course covering mathematical models of linguistic structure
and the research project studying automatic language acquisition.
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Goals and Methods

Linguists, electrical engineers, and psychologists have collectively contributed to our
knowledge of speech communication. In recognition of the interdisciplinary nature of the
subject, this book is written so that it may be construed as either a mathematical theory
of language or an introduction to the technologies of speech recognition and synthesis.
This is appropriate since the speech technologies rest on psycholinguistic concepts of
the modularity of the human language engine. On the other hand, the models and tech-
niques developed by electrical engineers can quite properly be regarded as the single most
comprehensive collection of linguistic knowledge ever assembled. Moreover, linguistic
theories can only be applied and tested by embedding them in a mathematically ratio-
nal and computationally tractable framework. However, mathematical and computational
models are useful only to the extent that they capture the essential structure and function
of the language engine.

To the best of my knowledge, no single text previously existed that both covers all of
the relevant material in a coherent framework and presents it in such a multidisciplinary
spirit. A course of this nature could, heretofore, have been taught only by using several
texts and a collection of old scholarly papers published in a variety of journals. Moreover,
when significant portions of the material have been included in books on speech process-
ing, they have been, without exception, presented as immutable canon of the subject. The
unpleasant fact is that while modern speech technology is a triumph of engineering, it
falls far short of constructing a machine that is able to use natural spoken language in
a manner even approaching normal human facility. There is, at present, only an incom-
plete science of speech communication supporting a correspondingly limited technology.
Based on the assumption that the shortcomings of our technology are the consequence
of gaps in our knowledge rather than pervasive error, it does not seem unreasonable to
examine our current knowledge with an eye toward extracting some general principles,
thereby providing students with the background required to read the existing literature
critically and to forge a strategy for research in the field that includes both incremental
improvements and revolutionary ideas. Sadly, the recent literature is almost exclusively
about technical refinements.

There are several specific pedagogic techniques I have adopted to foster this perspective.
Discussions of all of the mathematical models of linguistic structure include their historical
contexts, their underlying early intuitions and the mechanisms by which they capture the
essential features of the phenomena they are intended to represent. Wherever possible,
it is shown how these models draw upon results from related disciplines. Since topics
as diverse as acoustics and semantics are included, careful attention has been paid to
reconciling the perspectives of the different disciplines, to unifying the formalisms, and
to using coherent nomenclature.

Another guiding principle of this presentation is to emphasize the meaningful simi-
larities and relationships among the mathematical models in preference to their obvious
but superficially common features. For example, not all models that have state spaces or
use dynamic programming to explore them serve identical purposes, even if they admit
of identical formal descriptions. Conversely, there are some obscure but significant sim-
ilarities amongst seemingly disparate models. For example, hidden Markov models and
stochastic formal grammars are quite different formally yet are similar in the important
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sense that they both have an observable process to account for measurements and an
underlying but hidden process to account for structure.

Finally, students should know what the important open questions in the field are. The
orientation of this book makes it possible to discuss explicitly some of the current the-
oretical debates. In particular, most current research is aimed at transcribing speech into
text without any regard for comprehension of the message. At the very least, this distorts
the process by placing undue emphasis on word recognition accuracy and ignoring the
more fundamental roles of syntax and semantics in message comprehension. At worst, it
may not even be possible to obtain an accurate transcription without understanding the
message. Another mystery concerns the relative importance of perceptual and cognitive
processes. Informed opinion has vacillated from one extreme to the other and back again.
There is still no agreement, as different arguments are often organized along disciplinary
boundaries.

When this book is used as a text for a graduate course on speech technology, Chapters 1
and 2 should be considered a review of a prerequisite course on speech signal processing.
Chapters 3 through 8 contain the technical core of the course and Chapters 9 and 10 place
the material in its scientific and philosophical context. These last two chapters are also
intended as guidance and motivation for independent study by advanced students.

Whereas a technical synopsis of the contents of this book is given in Chapter 1, here I
shall analyze it in a more didactic manner. The prerequisite material covered in Chapter 2
comprises succinct if standard presentations of the physics of speech generation by the
vocal apparatus, methods of spectral analysis, methods of statistical pattern recognition
for acoustic/phonetic perception, and a traditional taxonomy of linguistic structure. From
these discussions we extract a few themes that will appear frequently in the succeeding
chapters. First, the speech signal is a non-stationary time–frequency distribution of energy.
This both motivates the importance of the short-duration amplitude spectrum for encoding
the intelligence carried by the signal and justifies the use of the spectrogram which is
shown to be an optimal representation in a well-defined sense. Linear prediction is seen
as a particularly useful spectral parameterization because of its close relationship to the
geometry and physics of the vocal tract.

Second, speech is literate. Thus, the spectral information must encode a small finite
alphabet of symbols, the sequencing of which is governed by a hierarchy of linguistic
rules. It follows, then, that any useful analysis of the speech signal must account for the
representation of structured sequences of discrete symbols by continuous, noisy measure-
ments of a multivariate, non-stationary function of time. This is best accomplished using
non-parametric methods of statistical pattern recognition that employ a topological metric
as a measure of perceptual dissimilarity. These techniques not only are optimal in the
sense of minimum error, but also provide a justification for the direct normalization of
time scales to define a metric that is invariant with respect to changes of time scale in
signal.

The next six chapters are devoted to a detailed examination of techniques that address
precisely these unique properties of the speech signal and, in so doing, capture linguistic
structure. We begin with a study of probabilistic functions of a Markov process. Often
referred to in the literature as hidden Markov models (HMMs), they have become a
ubiquitous yet often seriously misunderstood mathematical object. The HMM owes its
widespread application to the existence of a class of techniques for robust estimation of its
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parameters from large collections of data. The true value of the HMM, however, lies not
in its computational simplicity but rather in its representational power. Not only does it
intrinsically capture non-stationarity and the transformation of continuous measurements
into discrete symbols, it also provides a natural way to represent acoustic phonetics,
phonology, phonotactics, and even prosody.

In this book we develop the mathematical theory incrementally, beginning with the
simple quantized observation case. We include a standard proof of Baum’s algorithm
for this case. The proof rests on the convexity of the log-likelihood function and is
somewhat opaque, providing little insight into the reestimation formulas. However, by
relating the parameter estimation problem for HMMs to the classical theory of constrained
optimization, we are able to give a novel, short, and intuitively appealing geometric proof
showing that the reestimation formulas work by computing a finite step in a direction
that has a positive projection on the gradient of the likelihood function. We then progress
to models of increasing complexity, including the little-known cases of non-stationary
observation distributions and semi-Markov processes with continuous probability density
functions for state duration.

We end the presentation of Chapter 3 with an account of two seminal but often over-
looked experiments demonstrating the remarkable power of the HMM to discover and
represent linguistic structure in both text and speech. The Cave–Neuwirth and Poritz
experiments are then contrasted with the common formulation based on the special case
of the non-ergodic HMM as a means of treating piecewise stationarity.

As powerful and versatile as it is, the HMM is not the only nor necessarily the best
way to capture linguistic structure. We continue, therefore, with a treatment of formal
grammars in the Chomsky hierarchy and their stochastic counterparts. The latter are seen
to be probabilistic functions of an unobservable stochastic process with some similarities
to the HMM. For example, we observe that the right linear grammar is equivalent to the
discrete symbol HMM. However, the more complex grammars provide greater parsimony
for fixed representational power. In particular, they provide a natural way to model the
phonology and syntax of natural language.

Based on these formalisms, Chapter 4 approaches the problem of parsing, that is, deter-
mining the syntactic structure of a sentence with respect to a given grammar. Despite
its central role in linguistics, this problem is usually ignored in the speech processing
literature because it is usually assumed that word order constraints are sufficient for
transcription of an utterance and the underlying grammatical structure is superfluous.
We prefer the position that transcription is only an intermediate goal along the way
to extracting the meaning of the message, of which syntactic structure is a prerequi-
site. Later we advance the idea that, in fact, transcription without meaning is a highly
error-prone process. Parsing a spoken utterance is beset by two sources of uncertainty,
variability of the acoustic signal and ambiguity in the production rules of the gram-
mar. Here we show that these uncertainties can be accounted for probabilistically in
two complementary ways, assigning likelihoods to the words conditioned on the acoustic
signal and placing fixed probabilities on the rules of the grammar. Both of these ideas
can be efficiently utilized at the first two levels of the Chomsky hierarchy and, in fact,
they may be combined. We develop probabilistic parsing algorithms based on the Dijk-
stra and Cocke–Kasami–Younger algorithms for the right linear and context-free cases,
respectively.
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In Chapter 5, we address the inverse of the parsing problem, that of grammatical infer-
ence. This is the problem of determining a grammar from a set of possibly well-formed
sentences, the syntactic structure of which is not provided. This is a classical problem
and is usually ignored by linguists as too difficult. In fact, the difficulty of this problem
is regarded by strict Chomskians as proof that the human language engine is innate. We,
however, treat the problem of grammatical inference as one simply of parameter esti-
mation. We show that the reestimation formulas for the discrete symbol HMM and the
little-known Baker algorithm for stochastic context-free grammars are actually grammat-
ical inference algorithms. Once the stochastic grammars are estimated, their deterministic
counterparts are easily constructed. Finally, we show how parsing algorithms can be used
to provide the sufficient statistics required by the EM algorithm so that it may be applied
to the inference problem.

Chapter 6 is a divertimento in which we reflect on some of the implications of our
mathematical models of phonology, phonotactics, and syntax. We begin by recalling an
instructive experiment of Miller et al. demonstrating quantitatively that human listeners
use linguistic structure to disambiguate corrupted utterances. This phenomenon is widely
interpreted in the speech literature to mean that the purpose of grammar is to impose
constraints on word order and thereby reduce recognition error rates in the presence of
noise or other naturally occurring variability in the speech signal. Moreover, this analysis
of Miller is the unstated justification for ignoring the grammatical structure itself and
using only word order for transcription.

The information-theoretic concept of entropy is correctly used in the literature on speech
recognition as a measure of the uncertainty inherent in word order, leading to the intuition
that recognition error rate rises with increasing entropy. Entropy is typically estimated by
playing the Shannon game of sequential prediction of words from a statistical analysis of
large corpora of text or phonetic transcriptions thereof. Here we take a unique approach
showing how the entropy of a language can be directly calculated from a formal speci-
fication of its grammar. Of course, entropy is a statistical property most easily obtained
if the grammar is stochastic. However, we show that entropy can be obtained from a
deterministic grammar simply by making some weak assumptions about the distributions
of sentences in the language. Taking this surprising result one step further, we derive
from the Fano bound a quantitative relationship among the entropy of a language, the
variability intrinsic to speech, and the recognition error rate. This result may be used to
explain how grammar serves as the error-correcting code of natural language.

All of the foregoing material is unified in Chapter 7 into a constructive theory of lan-
guage or, from the engineer’s perspective, the design of a speech recognition machine. We
discuss two basic architectures, one integrated, the other modular. The latter approach is
inspired by psycholinguistic models of human language processing and depends crucially
on the Cave–Neuwirth and Poritz experiments featured in Chapter 3. We note the use
of the semi-Markov model to represent aspects of prosody, phonotactics, and phonology.
We also demonstrate the ability of the modular system to cope with words not contained
in its lexicon.

In evaluating the performance of these systems, we observe that their ability to tran-
scribe speech into text without regard for the meaning of the message arguably exceeds
human performance on similar tasks such as recognizing fluent speech in an unknown
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language. And yet, this remarkable achievement does not provide speech recognition
machines with anything remotely like human linguistic competence.

It seems quite natural, then, to try to improve the performance of our machines by
providing them with some method for extracting the meaning of an utterance. On the
rare occasions when this idea is discussed in the literature, it is often inverted so that the
purpose of semantic analysis becomes simply that of improving word recognition accu-
racy. Of course, this is a very narrow view of human linguistic behavior. Humans use
language to convey meaningful messages to each other. Linguistic competence consists
in the ability to express meaning reliably, not to simply obtain faithful lexical transcrip-
tions. It is in this ability to communicate that our machines fail. Chapter 8, therefore, is
devoted to augmenting the grammatical model with a semantic one and linking them in
a cooperative way.

We begin with a description of a laboratory prototype for a speech understanding
system. Such a system should not simply be a transcription engine followed by a text
processing semantic module. We note that such a system would require two separate
syntax analyzers. Whereas, if the parsing algorithms described in Chapter 4 are used, the
requisite syntactic structure is derived at the same time that the word order constraints
are applied to reduce the lexical transcription error rate.

The most straightforward approach is to base the understanding system on the simplified
semantics of a carefully circumscribed subset of natural language. Such formal artificial
languages bear a strong resemblance to programming languages and can be analyzed
using compiler techniques. Such systems may be made to carry out dialogs of limited
scope with humans. However, the communication process is quite restricted and brittle.
Extension of the technique to another domain of discourse is time-consuming because
little if any data can be reused.

What is required to enable the machine to converse in colloquial discourse is a general-
ized model of unrestricted semantics. There are many such models, but they all reduce to
mathematical logic or searching labeled, directed graphs. The former rests on the intuition
that the extraction of meaning is equivalent to the derivation of logically true statements
about reality, said statements being expressed formally in first-order logic. The latter
model rests on the intuition that meaning emerges out of the properties of and relation-
ships among objects and actions and can be extracted by finding suitable paths in an
abstract graph. Such ideas have yet to be applied to speech processing. Thus, Chapter 8
concludes in an unsatisfying manner in that it provides neither theoretical nor empirical
validation of a model of semantic analysis.

Up to this juncture, the exposition is presented in the customary, turgid scientific style.
The mathematics and its application are objective and factual. No personal opinions
regarding their significance are advanced. For Chapters 9 and 10, that conservatism is
largely discarded as the unfinished work of the first eight chapters deposits us directly
on the threshold of some of the very deepest and most vociferously debated ideas in the
Western philosophical tradition. We are forced to confront the question of what sort of
theory would support the construction of a machine with a human language faculty and
we are obliged to assess the role of our present knowledge in such a theory. This profound
shift of purpose must be emphasized. In the two concluding chapters, then, the mathe-
matics nearly vanishes and, to preserve some semblance of intellectual responsibility, I
employ the first person singular verb form.
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It is my strongly held belief that a simulation of the human language engine requires
nothing less than the construction of a complete human mind. Although this goal has
proved to be utterly elusive, I insist that there is no inherent reason why it cannot be
accomplished. There is, however, a cogent reason for our quandary revealed by a critical
review of the intellectual history of AI.

In a remarkable work entitled Fin-de-Siècle Vienna: Politics and Culture, Carl E.
Schorske gives a highly instructive explanation for the unkept promises of AI. He con-
vincingly argues that cultural endeavors stagnate and fail when they become ahistorical
by losing contact with both their diachronic history (i.e. their intellectual antecedents)
and their synchronic history (i.e. their connections to independently developed but related
ideas), and become fixated in the technical details of contemporary thought. Although
Schorske did not include science in his analysis, his thesis seems highly appropriate there,
too, with AI as a striking instance. Specifically, the loss of history in rapid response to an
overwhelming but narrow discovery is made manifest by comparing the work of Norbert
Wiener and Alan Turing.

The first edition of Wiener’s Cybernetics was published in 1948, the very year that
ENIAC, the first electronic, stored program, digital computer became operational. From
this very early vantage point, Wiener has a fully diachronic perspective and recognizes
that from ancient times to the present, metaphors for mind have always been expressed
in the high technology of the day. Yet he clearly sees that the emerging computer offers
a powerful tool with which to study and simulate, information and control in machines
and organisms alike.

By 1950, Turing, on the other hand, had developed a deep understanding of the impli-
cations of his prior work in the foundations of mathematics for theories of mind. Since
the Universal Turing Machine, and, hence, its reification in the form of the digital com-
puter, is capable of performing almost any symbolic manipulation process, it is assumed
sufficient for creating a mental model of the real world of our everyday experience. This
intuition has evolved into what we today refer to as the “strong theory of AI”. It is an
almost exclusively contemporary view and was, in fact, Turing’s preferred interpretation
of thought as a purely abstract symbolic process. There is, however, a historical aspect to
the remarkable 1950 paper. This is not surprising since the ideas it expresses date from
the mid-1930s, at which time the metaphors for mind derived from classical electrome-
chanical devices. In the penultimate paragraph of the paper, Turing offers an astounding
and often overlooked alternative to the technical model of thought as symbolic logic. He
suggests that the symbols and the relations among them could be inferred from real-world
sensory data, a cybernetic and hence, historical view.

Unfortunately, the next generation of thinkers following Wiener and Turing fully
endorsed the mind–software identity and en route lost all semblance of the historical
trajectory. Based on my interpretation of Schorske, I submit that there have been no con-
ceptual advances since then in the AI tradition. There has been some technical progress
but no enlightenment. This is a rather frustrating conclusion in light of the elegance of
Turing’s theory which seemed to promise the immediate construction of an indisputably
mechanical mind.

The key to revitalizing research on the theory of mind lies in synthesizing the syn-
chronic and diachronic histories in what I call the cybernetic paradigm. This presently
unfashionable mode of interdisciplinary thought unifies Turing’s and Wiener’s work and
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comprises much of the material of the first eight chapters of this volume. My synthesis
leads to the following constructive theory of brain, mind, and language. The disembodied
mind is a fantasy. A well integrated sensorimotor periphery is required. Thought is almost
exclusively the product of associative memory rather than symbolic logic. The memory is
highly sensitive to spatiotemporal order and its episodic structure integrates all sensorimo-
tor stimuli. Thus, there are no isolated perceptual or cognitive functions. Memory is built
up from instincts by the reinforcement of successful behavior in the real world at large. As
a cognitive model of reality is acquired, a linguistic image of it is formed using specialized
brain structures. This “language engine” is primarily responsive to semantic information
while other levels of linguistic structure exist to make semantics robust to ambiguity. I
note in passing that this theory is in direct opposition to the well-known Chomskian view
that language is grammar. That is, the difficulty in language acquisition is precisely the
difficulty of learning the acoustic/phonetic, phonological, morphological, prosodic, and
syntactic rules that define language. Whereas, according to the theory described above,
Chomskian grammar is both an error-correcting code that makes communication reliable
and a framework upon which semantics is built. When the language is fully acquired,
most mental processes are mediated linguistically and we appear to think in our native
language, which we hear as our mind’s voice.

Finally, I describe a means of testing this theory of cognition by building an autonomous
intelligent robot. For the purposes of this experiment, sensorimotor function includes
binaural audio, stereo video, tactile sense, and proprioceptive control of motion and
manipulation of objects. Thus, I am able to exploit the synergy intrinsic in the combined
sensorimotor signals. This sensory fusion is essential for the development of a mental
representation of reality. The contents of the associative memory must be acquired by the
interaction of the machine with the physical world in a reinforcement training regime.
The reinforcement signal is a direct, real-time, on-line evaluation of only the success or
failure of the robot’s behavior in response to some stimulus. This signal comes from three
sources: autonomous experimentation by the robot including imitation, instruction of the
robot by a benevolent teacher as to the success or failure of its behavior, and instruction
of the robot by the teacher in the form of direct physical demonstration of the desired
behavior (e.g. overhauling the robot’s actuators). Such instruction makes no use of any
supervised training based on preclassified data. Nor does the robot use any predetermined
representation of concepts or algorithms. There is no research known to me which is
based on quite the combination of ideas I have described or quite the spirit in which I
invoke them. A unique feature of the approach I advocate is the central role of language
in the formation of the human mind.

As of this writing, my experiments have produced a robot, trained as described above,
of sufficient complexity to be able to carry out simple navigation and object manipulation
tasks in response to naturally spoken commands. The linguistic competence of the robot
is acquired along with its other cognitive abilities in the course of its training. This
result is due to the synergistic effect that the behavior of a complex combination of
simple parts can be much richer than would be predicted by analyzing the components in
isolation. Of course, I make no claim to have built a sentient being and I recognize that
my hypotheses are controversial. However, in my best scientific and technical judgment,
when a mechanical mind is eventually constructed, it will much more closely resemble
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the ideas expressed in the final two chapters than it does those of the previous six which
are so vigorously pursued at present.

I am, of course, fully aware that those readers who find the technical aspects of this
book worthwhile may well regard the final two chapters as a wholly inappropriate flight
of fancy. Conversely, those who are intrigued by my metaphysics may judge the plethora
of technical detail in the first eight chapters to be hopelessly boring. After 35 years of
research on this subject, my fondest hope is that a few will find the presentation, as a
whole, a provocative albeit controversial reflection on some significant scientific ideas
and, at the same time, an exciting approach to an advanced technology of the future.
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Introduction

1.1 Milestones in the History of Speech Technology

From antiquity, the phenomenon of speech has been an object of both general curiosity
and scientific inquiry. Over the centuries, much effort has been devoted to the study of
this remarkable process whereby our eating and breathing apparatus is used to transform
thoughts in the mind of a speaker into vibrations in the air and back into congruent
thoughts in the mind of a listener. Although we still do not have satisfactory answers to
many of the questions about speech and language that the ancients pondered, we do have
substantial scientific knowledge of the subject and an evolving technology based on it.

It is difficult to select a particular event or discovery as the origin of speech technology.
Perhaps the speaking machine of W. von Kempelen [153] in the mid-eighteenth century
qualifies. We can, however, safely say that the great body of classical mathematics and
physics enabled the invention of the telephone, radio, audio recording, and the digital
computer. These technologies gradually became the primary components of the grow-
ing global telecommunications network in which the conflicting criteria of high-fidelity
and low-bandwidth transmission demanded that attention be focused on the nature of the
speech signal. In the 1940s, basic research was conducted at Bell Telephone Laboratories
and the Research Laboratory of Electronics at the Massachusetts Institute of Technology
in auditory physiology, the psychophysics of acoustic perception, the physiology of the
vocal apparatus, and its physical acoustics. Out of this effort a coherent picture of speech
communication emerged. New instruments such as the sound spectrograph and the vocoder
were devised for analyzing and generating speech signals. Much of this knowledge was
encapsulated in the source–filter model of speech production which admitted of both a
mathematical formulation and a real electrical implementation. Building on this founda-
tion, analog circuitry was invented for both narrowband voice transmission and recognition
of spoken numbers by classification of acoustic patterns extracted from the speech signal.

By the early 1950s, it had been recognized that the digital computer would become
the tool of choice for analyzing signals in general and speech in particular. As a result,
speech research spent the next two decades or so converting the analog circuitry to its
digital equivalent. The relationship between digital signal processing (DSP) and speech
analysis was mutually beneficial. Because the bandwidth of the speech signal was well
matched to the processing speeds of the early computers, the new DSP techniques proved
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to be easy to use, efficient, and effective. Many DSP algorithms, such as those for linear
prediction and Fourier analysis, were particularly appropriate for speech and were quickly
adopted. This, in turn, resulted in the development of new and more general theories and
methods of DSP.

The mathematical theories of information and communication, random processes, detec-
tion and estimation, and spectral analysis went through similar transformations as they
were adapted for digital implementations. One important outcome of this metamorphosis
was the development of statistical pattern analysis. Such techniques were precisely what
was needed for automatic speech recognition and they were quickly applied. As in the
case of DSP, the success of pattern recognition for speech processing led to the devel-
opment of new general methods of pattern recognition. During this period, another basic
new mathematical theory appeared, that of probabilistic functions of a Markov process,
commonly known as hidden Markov models (HMMs) [27]. This theory was destined to
become the core of most modern speech recognition systems.

Concurrently, microelectronic technologies were rapidly developing. In particular, new
devices for fast arithmetic and special addressing schemes appeared, making small, low-
power speech processors readily available. These devices were responsible for the debut
in the early 1970s of the first of several generations of inexpensive speech recognition
systems for industrial applications.

The availability of all of these new digital techniques brought about spectacular
advances in speech recognition and naturally encouraged research on ever more diffi-
cult problems such as recognition of fluent utterances independent of the speaker. The
unbounded enthusiasm for these endeavors prompted John Pierce to write his infamous let-
ter entitled “Whither Speech Recognition”. Published in 1969, it was a scathing criticism
of speech recognition research warning that until cognitive processes were understood
and included in speech recognition machines, no progress would be made.

Perhaps Pierce was unaware that his concerns were being addressed elsewhere indepen-
dent of the work in speech recognition. Studies of language were under way. In particular,
Zelig Harris [119] and Noam Chomsky [45] had proposed formal specifications of gram-
mar and theories of their role in natural language. Marvin Minsky [222] and his students
at the MIT AI Laboratory proposed computational methods for representing the semantics
of natural language. Finally, in 1970 Allen Newell and several colleagues [233] drafted a
report to the Advanced Research Project Authority (ARPA) suggesting that formal mod-
els of syntax and semantics be incorporated into acoustic pattern recognition algorithms
to enable the construction of more sophisticated systems that could understand spoken
messages in the context of a simple, well-specified task.

The first attempt to realize the goals set forth in the Newell report was the ARPA speech
understanding initiative. Under this program several efforts were undertaken to construct a
speech recognition system based on the standard, modular model of the human language
engine. Naive implementations of this model failed. This was both disappointing and
surprising in light of the success of this model in speech synthesis. Although several com-
ponents and partial systems were built by teams at Carnegie Mellon University [206] and
Bolt Beranek and Newman, Inc. [332], they were never effective in speech recognition.

While the ARPA project was collapsing, Frederick Jelinek and his colleagues at IBM
and, independently, James Baker, then a student at Carnegie Mellon University, introduced
the hidden Markov model to speech recognition [20, 147]. The theoretical papers on the
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HMM had been written by Leonard Baum and his colleagues at the Institute for Defense
Analyses in the late 1950s [25, 26, 27, 28, 29]. Sadly, the applications of their work did
not appear in the open literature at that time, which may account for the delay of nearly a
decade before the method was used for speech recognition. In the HMM-based systems, all
aspects of linguistic structure are integrated into a monolithic stochastic model the param-
eters of which can be determined directly from a corpus of speech. The architecture also
supports an optimal statistical decision-theoretic algorithm for automatic speech recogni-
tion. Due to these important properties, the HMM methodology succeeded where the naive
linguistic model failed and an important lesson was learned. Chaotic, rule-based imple-
mentations of the otherwise useful modular model cannot be optimized since they lack
the mathematical rationality and computational tractability of the HMM-based systems.
At present, all speech recognition systems use the integrated HMM-based approach. Some
versions of it are now commercially available for use on personal computers; however,
their performance is not as reliable as one might wish.

The success of the HMM-based system focused attention on the transcription of speech
into text for use in a voice-operated typewriter or dictation machine. One important aspect
of the modular approach that the integrated HMM-based system does not address is that
of message comprehension. This is because only word order constraints have compu-
tationally tractable implementations that can be naturally fit into the HMM framework.
Although the need for semantics and underlying syntactic structure is obvious, the lack
of a compatible mathematical formulation makes it less attractive. At the present time,
the use of syntactic structure and semantic analysis is still an open question. Some early
speech understanding systems were actually constructed by Raj Reddy [272, 178] and
this author [179, 180] based on straightforward application of compiler technology to
carefully circumscribed data retrieval tasks. Unlike the HMM-based recognition systems,
these experiments remained in the laboratory for considerable time, ultimately appearing
in greatly simplified form in some telephone-based applications.

On the other hand, there are some simple, commercially successful uses of speech
understanding. These limited applications substitute automatic recognition of isolated
words and phrases from a limited vocabulary for a small number of single keystrokes on
a telephone touch pad. This straightforward exchange allows a speaker to perform some
simple functions selected from a carefully constructed menu. Such systems are used by
travel agencies and financial institutions over the public telephone network. They are quite
robust and well tolerated by the general population.

This brief account brings us to the present state of the art. In the sequel, we examine
in detail the theories and techniques that brought us to this juncture and we consider how
we might advance beyond it.

1.2 Prospects for the Future

The ultimate goal of speech technology is the construction of machines that are indistin-
guishable from humans in their ability to communicate in natural spoken language. As
noted, the performance of even the best existing machines falls far short of the desired
level of proficiency. Yet, a variety of human–machine communication tasks have been
demonstrated as research prototypes and some of that technology is now available com-
mercially.
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Solving the ultimate puzzle is valuable both as an intellectual achievement and for
the practical benefits it would confer on society. Eventually, telecommunications will
be provided by a vast digital packet switched network the terminal devices of which,
whether they be fixed or portable, will be more like computers than telephones and will
be on-line continuously. The present-day Internet has provided us enough of a glimpse
of this future to know that its value lies in its ability to connect every terminal to every
known source of information on the planet. If everyone is to take full advantage of this
remarkable resource, it must appear to every network subscriber as if he has his own
personal librarian to help him acquire whatever information or service he requires. Since
there are not enough trained librarians to go around, the service must be automated. The
point-and-click interface of today is inadequate for that purpose, especially for hand-held
devices. By contrast, a perfected speech technology would provide universal access to
most of the information available on the Internet by means of ordinary conversation.
This would greatly improve the ease and efficiency with which a mass society purchases
goods and services, maintains financial, medical, and other personal records, and obtains
information. An advanced technology could also be a component of prosthetic aids for
people afflicted with speech, hearing, and even cognitive disorders.

Most practitioners of speech technology believe that this futuristic vision is close at
hand. It is commonly supposed that the performance of today’s best experimental systems
is only an order-of-magnitude in error rate away from human performance and that even
existing technology is commercially viable. It is also a widely held view that the order
of magnitude improvement required for human-like performance will be achieved by
incremental improvement rather than revolutionary new insights and techniques [185].
Regardless of how the technology advances – and there is no reason to suppose it will
not – it is reasonable to expect that when the ultimate goal has been achieved, some of
the existing technology, imperfect though it may be, will have survived in familiar form.
It is prudent, therefore, to study the present state of the art while looking for radical new
methods to advance it.

1.3 Technical Synopsis

Modern speech processing technology is usually considered to comprise the three related
subfields of speech coding, speech synthesis, and automatic speech recognition. The latter
two topics refer to techniques for transforming text into speech and speech into text,
respectively. Speech coding is the process of faithful and efficient reproduction of speech
usually for communication between humans. We shall not address speech coding here
except to note, in passing, that a system composed of a speech recognition device and a
speech synthesizer could be made into the ultimate coder in which speech is transcribed
into text, transmitted at 50 bits per second and then converted back to speech. Methods for
speech recognition and synthesis are more naturally applied to the construction of systems
for human–machine communication by voice. It is the theory of such systems to which
these pages are largely devoted. We begin with the acoustic signal and proceed level by
level through the hierarchy of linguistic structure up to and including the determination
of meaning in the context of a conversation.

Chapter 2 is a review of the material considered to be prerequisite for our mathematical
analysis of the structure of language. This material is presented in highly condensed form
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as there are definitive texts for each of the four topics covered. First we review the physics
of speech production in the human vocal apparatus. Readers wishing a thorough treatment
of this subject are urged to consult Flanagan [86].

The physics of speech generation leads to the source–filter model of Dudley [69]
and to the importance of the short-duration amplitude spectrum. Representation of the
spectrum using Fourier analysis leads to the optimal formulation of the spectrogram
while linear prediction analysis yields a particular parameterization of the filter closely
related to the governing physics and geometry. Comprehensive studies of these topics may
be found in Riley [274] and Markel and Gray [211], respectively. Fletcher [89] provides
a thorough treatment of categorical perception, the process by means of which humans
classify acoustic patterns. This function is well described by the theory of statistical pattern
recognition. Here, we follow Patrick [241], emphasizing the non-parametric, Bayesian
approach.

Finally, we review the types of linguistic structure for which we will later develop
detailed, faithful, mathematical models. We adopt the broad taxonomy of C. S. Peirce [244]
and then refine and augment it with the classical presentation found in Chomsky and
Halle [47].

Chapters 3 through 8 provide mathematical models of several aspects of linguistic
structure. We begin with two powerful analytical tools, the probabilistic function of a
Markov process, otherwise known as the hidden Markov model, and the formal grammar.
First the HMM is developed in full mathematical detail, beginning with the basic discrete
symbol case. We then proceed to generalize the elementary case to that of elliptically
symmetric distributions, of which the Gaussian is a special instance. Then we advance to
the universal case of Gaussian mixtures and two special cases, the autoregressive process,
related to linear prediction, and the non-stationary autoregressive case. Next, turning our
attention to the hidden process, we relax the constraint of exponentially decreasing state
durations and consider semi-Markov processes and the problem of correlated observations.

In a similar manner, we develop the formal grammar by considering the members
of the Chomsky hierarchy in order of increasing parsimony of expression. For reasons
of computational complexity, the detailed analyses are confined to the right-linear and
context-free cases.

Finally, we recount two classical experiments based on the HMM demonstrating how
these models discover and represent linguistic structure. We show how both models can
be used to capture acoustic phonetics, phonology, phonotactics, syntax, and even some
aspects of prosody.

These mathematical models have desirable properties. They reflect the natural con-
straints on the order in which words and sounds are allowed to appear and they specify
the permissible phrase structures of the well-formed sequences. Phrase structure will later
be seen to be important to representation of meaning. In Chapter 4 we develop parsing
algorithms that enable both the optimal use of ordering constraints in speech recognition
and the determination of the underlying structure for subsequent use as an outline of
semantics. The parsing algorithms are seen to be applicable to both deterministic and
stochastic specifications of linguistic structure for either right-linear or context-free gram-
mars. The simple right-linear case has an equivalent HMM. Finally, we show how these
models may be used to express the syntax of natural language.
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Chapter 5 addresses the problem of inference of linguistic structure from data. First
we cast this as a generic problem of parameter estimation. The computational require-
ments of the estimation problem can be reduced by using parsing algorithms to count the
occurrences of particular types of structures. This allows us to transform the problem into
one of statistical estimation for which the well-known EM algorithm is ideally suited.
The classical experiments described in Chapter 3 may now be considered as instances of
grammatical inference.

Chapter 6 provides an information-theoretic characterization of and explanation for the
classical results of a set of experiments carried out by Miller et al. [220]. Their results
confirm the intuitively appealing notion that grammar is an error-correcting code. We show
how the classical Fano bound can be used to relate the entropy of a formal language,
the equivocation of an acoustic pattern recognizer, and the error probability of a speech
recognition system.

Chapter 7 combines the results of all of the foregoing chapters for the purpose of
designing speech recognition systems. We contrast two architectures, the integrated sys-
tem and the modular system. In the former, which is based on the non-ergodic HMM, all
levels of linguistic structure are assimilated into a single stochastic model and recognition
is based on an algorithm for evaluating its likelihood function. The latter is based on
the ergodic HMM as used in the Poritz [250] experiment but requires different models
for each specific aspect of linguistic structure. The individual models operate sequentially
according to the traditional conception of the human language engine. Finally, we demon-
strate how speech synthesis algorithms can be used to aid in the construction of both of
these systems.

Whereas Chapter 7 is concerned with systems that recognize speech by transcribing it
into ordinary text, Chapter 8 addresses the problem of understanding a spoken message in
the sense of executing a command as intended by the speaker. This requires not only the
incorporation of semantics – which, for this purpose, is defined as an internal, symbolic
representation of reality – but also a mapping from lexical and syntactic structure to
meaning. The simplest means to accomplish this is to adapt the semantics of programming
languages to building a compiler for a useful subset of natural language. We describe a
particularly instructive example of a system of this kind that is capable of performing
some of the functions of a travel agent.

Unfortunately, this method cannot be extrapolated to encompass unrestricted conversa-
tion. We must, then, consider more general models that might be capable of representing
the semantics of natural language. There are two such models available, mathematical
logic and labeled, directed graph searching. These more general models of semantics have
yet to be incorporated into a speech understanding system. Thus, our theory of language
and our experiments on human–machine communication by voice are incomplete.

In the final two chapters, we take up the challenge of advancing our theories and tech-
nologies. Obviously there is a significant component of speculation in so doing. Chapter
9 begins with the premise that communication with machines in natural spoken language
requires nothing less than a complete, constructive theory of mind. We carefully examine
the two existing theories, the information- and control-theoretic (i.e. cybernetic) perspec-
tive of Wiener [330], and the symbolic computation view of Turing [319]. We then offer
an explanation why such cogent theories have, thus far, failed to yield the expected results.
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The reason is simply that the theories are complementary but have, to date, always been
studied independently.

In Chapter 10 we propose a new theory of mind and outline an experimental program
to test its validity. The theory is a version of the notion of embodied mind which is a
synthesis of the cybernetic and computational perspectives. The experimental platform is
an autonomous robot that acquires cognitive and linguistic abilities by interacting with
the real world. When this approach was first suggested by Turing, it was technologically
infeasible. Today it is plausible. In fact, we give a detailed description of our exper-
iments with an autonomous robot that has acquired some limited abilities to navigate
visually, manipulate objects and respond to spoken commands. Of course, we have not
yet succeeded in building a sentient being. In fact, there are some daunting obstacles to
extending our methods to that point. However, at the time of this writing, a community
of researchers [1] around the world is organizing itself to pursue this ambitious goal by
a variety of approaches all in the same spirit as the one described here. This kind of
interdisciplinary research has an impeccable scientific pedigree and it offers the prospect
of new insights and corresponding technological advances.





2
Preliminaries

2.1 The Physics of Speech Production

Speech is the unique signal generated by the human vocal apparatus. Air from the lungs
is forced through the vocal tract, generating acoustic waves that are radiated at the lips
as a pressure field. The physics of this process is well understood, giving us important
insights into speech communication. The rudiments of speech generation are given in
Sections 2.1.1 and 2.1.2. Thorough treatments of this important subject may be found in
Flanagan [86] and Rabiner and Schafer [265].

2.1.1 The Human Vocal Apparatus

Figure 2.1 shows a representation of the midsagittal section of the human vocal tract due to
Coker [51]. In this model, the cross-sectional area of the oral cavity A(x), from the glottis,
x = 0, to the lips, x = L, is determined by five parameters: a1, tongue body height; a2,
anterior/posterior position of the tongue body; a3, tongue tip height; a4, mouth opening;
and a5, pharyngeal opening. In addition, a sixth parameter, a6, is used to additively alter
the nominal 17-cm vocal tract length. The articulatory vector a is (a1, a2, . . . , a6).

The vocal tract model has three components: an oral cavity, a glottal source, and an
acoustic impedance at the lips. We shall consider them singly first and then in combination.

As is commonly done, we assume that the behavior of the oral cavity is that of a lossless
acoustic tube of slowly varying (in time and space) cross-sectional area, A(x), in which
plane waves propagate in one dimension (see Fig. 2.2). Sondhi [303] and Portnoff [252]
have shown that under these assumptions, the pressure, p(x, t), and volume velocity,
u(x, t), satisfy

−∂p

∂x
= ρ

A(x, t)

∂u

∂t
(2.1a)

and

−∂u

∂x
= A(x, t)

ρc2

∂p

∂t
, (2.1b)
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Figure 2.1 Coker’s articulatory model
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Figure 2.2 The acoustic tube model of the vocal tract and its area function

which express Newton’s law and conservation of mass, respectively. In (2.1) ρ is the
equilibrium density of the air in the tube and c is the corresponding velocity of sound.

Differentiating (2.1a) and (2.1b) with respect to time and space, respectively, and then
eliminating the mixed partials, we get the well-known Webster equation [327] for pressure,

∂2p

∂x2
+ 1

A(x, t)

∂p

∂x

∂A

∂x
= 1

c2

∂2p

∂t2
. (2.2)
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The eigenvalues of (2.2) are taken as formant frequencies. We elect to use the Webster
equation (in volume velocity) to compute a sinusoidal steady-state transfer function for
the acoustic tube including the effects of thermal, viscous, and wall losses.

To do so we let p(x, t) = P(x, ω)ejωt and u(x, t) = U(x, ω)ejωt , where ω is angular
frequency and j is the imaginary unit. When p and u have this form, (2.1a) and (2.1b)
become (cf. [252])

−dP

dx
= Z(x, ω)U(x, ω) (2.3a)

and

−dU

dx
= Y (x, ω)P (x, ω), (2.3b)

respectively. In order to account for the losses we define Z(x, ω) and Y (x, ω) to be the
generalized acoustic impedance and admittance per unit length, respectively. Differentiat-
ing (2.3b) with respect to x and substituting for −dP/dx and P from (2.3a) and (2.3b),
respectively, we obtain

d2U

dx2
= 1

Y (x, ω)

dU

dx

dY

dx
− Y (x, ω)Z(x, ω)U(x, ω), (2.4)

which is recognized as the “lossy” Webster equation for the volume velocity.
The sinusoidal steady-state transfer function of the vocal tract can be computed by

discretizing (2.4) in space and obtaining approximate solutions to the resulting difference
equation for a sequence of frequencies. Let us write Uk

i to signify U(i�x, k�ω) where
the spatial discretization assumes �x = L/n with i = 0 at the glottis and i = n at the
lips, as is shown in Fig. 2.3. Similarly, we choose �ω = �/N and let 0 ≤ k ≤ N . We
shall define Ai, Y

k
i , and Zk

i in an analogous manner.
Approximating second derivatives by second central differences and first derivatives

by first backward differences, the finite difference representation of (2.4) is just

Uk
i+1 − 2Uk

i + Uk
i−1

(�x)2
=
(

1

Y k
i

)(
Uk

i − Uk
i−1

�x

)(
Y k

i − Y k
i−1

�x

)
+ Zk

i Y
k
i Uk

i , (2.5)

which is easily simplified to the three-point recursion formula

Uk
i+1 = Uk

i

(
3 + (�x)2Zk

i Y
k
i − Y k

i−1

Y k
i

)
+ Uk

i−1

(
Y k

i−1

Y k
i

− 2

)
. (2.6)

Given suitable values for Uk
0 and Uk

1 for 0 ≤ k ≤ N , we can obtain the desired trans-
fer function from (2.6). We shall return to consider the numerical properties of this
formula later.

First, however, we must find appropriate expressions for Y and Z to account for the
losses. Losses arise from thermal effects and viscosity but are primarily due to wall
vibrations. A detailed treatment of the wall losses is found in Portnoff [252] and is neatly
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Figure 2.3 The discretized acoustic tube model of the vocal tract

summarized by Rabiner and Schafer [265]. Portnoff assumes that the walls are displaced
ξ(x, t) in a direction normal to the flow due to the pressure at x only. The vocal tract
walls are modeled by a damped spring-mass system for which the relationship between
pressure and displacement is

p(x, t) = M
∂2ξ

∂t2
+ b

∂ξ

∂t
+ k(x)ξ(x, t), (2.7)

where M , b, and k(x) are the unit length wall mass, damping coefficient, and spring
constant, respectively.

The displacement of the walls is assumed to perturb the area function about a neutral
position according to

A(x, t) = A(x) + S(x)ξ(x, t), (2.8)

where A(x) and S(x) are the neutral area and circumference, respectively. By substitut-
ing (2.1a) into (2.1b) and, ignoring higher-order terms, transforming into the frequency
domain, Portnoff goes on to observe that the effect of vibrating walls is to add a term YW

to the acoustic admittance in (2.3b), where

YW(x, ω) = jwS(x, ω)

(
[k(x) − ω2M] − jωb

[k(x) − ω2M]2 + ω2b2

)
. (2.9)

The other losses that we wish to consider are those arising from viscous friction and
thermal conduction. The former can be accounted for by adding a real quantity Zv to the
acoustic impedance in (2.3a), where

Zv(x, ω) = S(x)

A2(x)

(ωρµ

2

)1/2
, (2.10)

where µ is the viscosity of air.
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The thermal losses have an effect which is described by adding a real quantity YT to
the acoustic admittance in (2.3b), where

YT (x, ω) = S(x)(η − 1)

ρc2

(
λω

2Cpρ

)1/2

, (2.11)

in which λ is the coefficient of heat conduction, η is the adiabatic constant, and Cp is the
heat capacity. All the constants are, of course, for the air at the conditions of temperature,
pressure, and humidity found in the vocal tract.

In view of (2.1), (2.9), (2.10), and (2.11) it is possible to set

Z(x, ω) = jωρ/A(x) + Zv(x, ω) (2.12)

and

Y (x, ω) = jωA(x)/ρc2 + YW(x, ω) + YT (x, ω). (2.13)

There are two disadvantages to this approach. First, (2.12) and (2.13) are computa-
tionally expensive to evaluate. Second, (2.9) requires values for some physical constants
of the tissue forming the vocal tract walls. Estimates of these constants are available in
[139] and [86].

A computationally simpler empirical model of the losses which agrees with the mea-
surements has been proposed by Sondhi [303] in which

Z(x, ω) = jωρ/A(x) (2.14)

and

Y (x, ω) = A(x)

ρc2

(
jω + ω2

0

α + jω
+ (βjω)1/2

)
. (2.15)

Sondhi has chosen values for the constants, ω0 = 406π , α = 130π , β = 4, which he then
shows give good agreement with measured formant bandwidths. Moreover, the form of
the model agrees with the results of Portnoff, as becomes clear when we observe that
YW(x, ω) in (2.9) will have the same form as the second term on the right-hand side of
(2.15) if k(x) ≡ 0 and the ratio of circumference to area is constant. In fact, Portnoff
used k(x) = 0 and the second assumption is not unreasonable. The third term on the
right-hand side of (2.15) may be seen to be of the same form as (2.10) and (2.11) (under
the assumption that the ratio of S to A is constant) by noting that

(jω)1/2 = (1 + j)(ω/2)1/2. (2.16)
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2.1.2 Boundary Conditions

With a description of the vocal tract in hand, we can turn our attention to the boundary
conditions. Following Flanagan [86], we have assumed the glottal excitation to be a
constant volume source with an asymmetric triangular waveform of amplitude V . Dunn
et al. [71] have analyzed such a source in detail. What is relevant is that the spectral
envelope decreases with the square of frequency. We have therefore taken the glottal
source Ug(ω) to be

Ug(ω) = V/ω2. (2.17)

For the boundary condition at the mouth we use the well-known Portnoff [252] and
Rabiner and Schafer [265] relationship between sinusoidal steady-state pressure and vol-
ume velocity,

P(L, ω) = Zr(ω)U(L, ω), (2.18)

where the radiation impedance Zr is taken as that of a piston in an infinite plane baffle,
the behavior of which is well approximated by

Zr(ω) = jωLr/(1 + jωLr/R). (2.19)

Values of the constants which are appropriate for the vocal tract model are given by
Flanagan [86] as

R = 128/9π2 (2.20)

and

Lr = 8[A(L)/π]1/2/3πc. (2.21)

It is convenient to solve (2.4) with its boundary conditions (2.17) and (2.18) by solving
a related initial-value problem for the transfer function

H(ω) = U(L, ω)/U(0, ω). (2.22)

At x = L,

−dU

dx

∣∣∣∣x=L
= A(L)

ρc2
(jω)P (L, ω) (2.23)

from which the frequency domain difference equation

−Uk
n − Uk

n−1

�x
= jk�ω

An

ρc2
P k

n (2.24)
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can be derived. Let

Uk
n = 1 (2.25)

and note that, from (2.18),

P k
n = Zr(k�ω)Uk

n . (2.26)

Substituting (2.25) and (2.26) into (2.24), we see that

Uk
n−1 = 1 + jk�ω

An�x

ρc2
Zr(k�ω). (2.27)

Now solving (2.6) for Uk
i−1, we get the reversed three-point recursion relation

Uk
i−1 = [1/(Y k

i−1/Y k
i − 2)]{Uk

i+1 − Uk
i [3 + (�x)2Zk

i Y
k
i − Y k

i−1/Y k
i ]}, (2.28)

where

Zk
i = jk�ωρ/Ai (2.29)

and

Y k
i = (Ai/ρc2)[jk�ω + ω2

0/(α + jk�ω) + (βjk�ω)1/2]. (2.30)

It is worthy of note that the ratio of admittances can be simplified and the Zk
i Y

k
i product

is independent of i, so that (2.28) becomes

Uk
i−1 = (Ai−1/Ai − 2)−1{Uk

i+1 − Uk
i [3 + (�x)2Z(k)Y (k) − Ai−1/Ai]}. (2.31)

Given the initial conditions of (2.25) and (2.27), we can compute Uk
0 by evaluating (2.31)

for i = n − 1, n − 2, . . . , 1. Then from (2.22),

H(k�ω) = Uk
n/Uk

0 = 1/Uk
0 . (2.32)

Finally, we compute the vocal tract output by multiplying the transfer function by the
excitation from (2.17) and the radiation load from (2.19),

P̂k = P̂ (k�ω) = H(k�ω)Ug(k�ω)Zr(k�ω), (2.33)

for 1 ≤ k ≤ N .
Figure 2.4 shows the power spectrum, 10 log10(|P̂ (ω)|2), plotted in dB and some

parameters for the phoneme /ah/. The area function used was obtained from X-ray
measurements and appears in Flanagan [86].

Figure 2.4 illustrates the single most important aspect of the speech. The intelligence
in speech is encoded in the power spectrum of the acoustic pressure wave. Different
articulatory configurations result in signals with different spectra, especially different
resonance frequencies called formants, which are perceived as different sounds. We shall
return to consider how these sounds form the basis of the linguistic code of speech in
Section 2.7.
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Figure 2.4 Frequency domain solution of the Webster equation

2.1.3 Non-Stationarity

The speech signal, p(t), is the solution to (2.2). Since the function A(x, t) is continuously
varying in time, the solution, p(t), is a non-stationary random change in time. Fortunately,
A(x, t) is slowly time-varying with respect to p(t). That is,∣∣∣∣∂A

∂t

∣∣∣∣ �
∣∣∣∣∂p∂t

∣∣∣∣ . (2.34)

Equation (2.34) may be taken to mean that p(t) is quasi-stationary or piecewise station-
ary. As such, p(t) can be considered to be a sequence of intervals within each one of which
p(t) is stationary. It is true that there are rapid articulatory gestures that violate (2.34),
but in general the quasi-stationary assumption is useful. However, as we shall discuss
in Sections 2.3, 2.4, and 2.6, special techniques are required to treat the non-stationarity
of p(t).

2.1.4 Fluid Dynamical Effects

Equation (2.2) predicts the formation of planar acoustic waves as a result of air flowing
into the vocal tract according to the boundary condition of (2.17). However, the Webster
equation ignores any effects that the convertive air flow may have on the function p(t).
If, instead of (2.1a) and (2.1b), we consider two-dimensional wave propagation, we can
write the conservation of mass as

∂u

∂x
= ∂u

∂y
= −M2 ∂p

∂t
, (2.35)
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where M is the Mach number. We can also include the viscous and convective effects by
observing

∂ux

∂t
= −∂p

∂x
− ∂

∂x

(
uxuy

) + ∂

∂x

[
1

NR

(
∂ux

∂x
+ ∂uy

∂x

)
− µxµy

]
, (2.36a)

∂uy

∂t
= −∂p

∂y
− ∂

∂y

(
uxuy

) + ∂

∂y

[
1

NR

(
∂ux

∂y
+ ∂uy

∂y

)
− µxµy

]
. (2.36b)

In (2.36a) and (2.36b) the first term on the right-hand side is recognized as Newton’s
law expressed in (2.1a) and (2.1b). The second term is the convective flow. The third
term accounts for viscous shear and drag at Reynolds number, NR, and the last term for
turbulence.

Equations (2.35) and (2.36) are known as the normalized, two-dimensional, Reynolds
averaged, Navier–Stokes equations for slightly compressible flow. These equations can
be solved numerically for p(t). The solutions are slightly different from those obtained
from (2.2) due to the formation of vortices and transfer of energy between the convective
and wave propagation components of the fluid flow. Typical solutions for the articulatory
configuration of Fig. 2.2 are shown in Figs. 2.4 and 2.5. There is reason to believe that
(2.35) and (2.36) provide a more faithful model of the acoustics of the vocal apparatus
than the Webster equation does [327].

2.2 The Source–Filter Model

The electrical analog of the physics discussed in Section 2.1 is the source–filter model
of Dudley [69] shown in Fig. 2.6. In this model, the acoustic tube with time-varying area
function is characterized by a filter with time-varying coefficients. The input to the filter
is a mixture of a quasi-periodic signal and a noise source. When the filter is excited by
the input signal the output is a voltage analog of the sound pressure wave p(t). The
source–filter model is easily implemented in either analog or digital hardware and is the
basis for all speech processing technology.

2.3 Information-Bearing Features of the Speech Signal

The conclusion to be drawn from the previous two sections is that information is encoded
in the speech signal in its short-duration amplitude spectrum [86]. This implies that by
estimating the power spectrum of the speech signal as a function of time, we can identify
the corresponding sequence of sounds. Because the speech signal x(t) is non-stationary it
has a time-varying spectrum that can be obtained from the time-varying Fourier transform,
Xn(ω). Note that x(t) is the voltage analog of the sound pressure wave, p(t), obtained
by solving (2.2).
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Figure 2.6 The source–filter model of speech production

2.3.1 Fourier Methods

The short-time Fourier transform is computed by observing the speech signal x(t) through
a finite window, {wn}N−1

n=0 , where wn = .54 − .46 cos( 2πn
N

). For computation x(t) is sam-
pled yielding the time series {xn}∞n=0, where xn = x(nT ) and T is the sampling interval
measured in seconds.

The short-time Fourier transform, Xn(ω), of the signal xn is given by

Xn(ω) =
∞∑

m=−∞
wn−mxme−jωm. (2.37)

Recall that the index, n, refers to time nT , indicating that Xn(ω) is a function of both
time and angular frequency, ω.

The signal, x(t), can be recovered from its short-time Fourier transform according to

xn = 1

w02π

∫ π

−π

Xn(ω)ejωndω (2.38)

The power spectrum, Sn(ω), of the signal at time nT is just

Sn(ω) = |Xn(ω)|2 , (2.39)

and, for 0 ≤ ω ≤ Bx and n = 0, 1, . . . , this is called the spectrogram. Sn(ω) is character-
istic of the sound {xn}N−1

n=0 .
Equation (2.37) can be conveniently evaluated at frequencies ωk = 2πk

N
by means of

the discrete Fourier transform (DFT)

Xn(ωk) =
N−1∑
m=0

wmxme
−j2πkm

N . (2.40)
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The computation of (2.40) is performed using the well-known fast Fourier transform
(FFT).

Then the spectrogram, Skn, at frequency ωk and time nT is just

Skn = |Xn(ωk)|2 , (2.41)

and Skn is an information-bearing feature of x(t).
Because Xn(ω) changes with time, it must be sampled at a rate sufficient to permit the

reconstruction of x(t). The bandwidth, Bx , of the speech signal x(t), is approximately
5 kHz, so the sampling rate, Fs , is 10 kHz. For the Hamming window, of length N = 100,
{wn}, the bandwidth, B, is

B = 2Fs

N
= 20 000

100
= 200 Hz. (2.42)

Thus the Nyquist rate for the short-time Fourier transform is 2B = 400 Hz. which at
Fs = 10 000 requires a value of Xn(ωk) every 25 samples. Since N = 100, the windows
should overlap by 75%.

A typical spectrogram computed from (2.41) is shown in Fig. 2.7. Time is on the
horizontal axis, frequency is on the vertical, and the power is the level of black at a given
time and frequency.
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Figure 2.7 Spectrogram of the sentence “When the sunlight stri(kes)”
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2.3.2 Linear Prediction and the Webster Equation

The method of linear prediction provides a particularly appropriate representation of the
power spectrum of the speech signal. If we assume that the speech signal at time n is
well predicted by a linear combination of p previous samples, we may write

xn =
p∑

k=1

akxn−k + en, (2.43)

where the weights, ak , of the linear combination are called the linear prediction coefficients
(LPCs) and the error at time n, en, is small with respect to xn when averaged over time. A
comprehensive treatment of linear prediction of speech is given in Markel and Gray [211];
however, for the purposes of this book, the following summary will suffice.

Equation (2.43) is equivalent to the source–filter model in the sense that the source
function, µn, is

µn = Gen (2.44)

for some constant gain, G. The filter is an all-pole filter with transfer function, H(z),
given by

H(z) = G

1 − ∑p

k=1 akz−k
, (2.45)

where the ak are just the LPCs from (2.43).
As in the case of Fourier analysis, (2.43)–(2.45) hold for short intervals of approxi-

mately 10 ms duration. For each such interval, we can obtain an optimal estimate of the
ak by a minimum mean square error (MMSE) technique.

The prediction error, En, is defined by

En =
N+p−1∑

m=0

e2
n+m. (2.46)

The MMSE is obtained by solving

∇aEn = 0, (2.47)

which is equivalent to solving the linear system




R(0) · · · R(p − 1)
...

. . .
...

R(p − 1) · · · R(0)






a1

a2
...

ap


 =




R(1)
...

R(p)


 , (2.48)
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where R(k) is the autocorrelation function of x(t) at time n given by

Rn(k) =
N+k−1∑

m=1

wmwm+kxn+mxn+m+k (2.49)

with N ∼= 100. Because of the Toeplitz property of the correlation matrix and the rela-
tionship of the right-hand side of (2.48) to that matrix, there is an efficient algorithm for
solving for the ak due to Durbin [265]. Let E0 = R(0). Then, for 1 ≤ i ≤ p, compute
the partial correlation coefficients (PARCORs) according to

ki = 1

E(i−1)


Rn(i) −

i−1∑
j=1

a
(i−1)
j Rn(i − j)


 . (2.50)

Then, for 1 ≤ i ≤ p, compute the LPCs from

a
(i)
i = ki (2.51)

and, for 1 ≤ j ≤ i − 1,

a
(i)
j = a

(1−i)
j − kia

(i−1)
i−j . (2.52)

Then the residual error is updated from

E(i) = (1 − k2
i )E

(i−1). (2.53)

Finally, the desired LPCs for a pth-order predictor are

aj = a
(p)

j , for 1 ≤ j ≤ p. (2.54)

The PARCORs are the negatives of the reflection coefficients, that is,

ki = −Ai+1 − Ai

Ai+1 + Ai

(2.55)

From (2.55) we see that the LPCs are related to the area function, A(x), in the Webster
equation. In fact, Wakita [325] has shown that the linear predictor of (2.43) is equivalent
to the solution of the lossless Webster equation. Thus the very general method of linear
prediction is actually a physical model of the speech signal. In addition, the poles, zi

of H(z) in (2.45) are just the formants or resonances that appear in the solution to the
Webster equation as indicated in Fig. 2.4. Write the poles in the form of

zi = |z|ejθi . (2.56)



Preliminaries 23

The formant frequencies, fi , and bandwidths, σi , are determined by

θi = 2πfi

T
(2.57)

and

|z| = eσiT (2.58)

respectively.
The LPCs characterize the power spectrum of the speech signal in the sense that

lim
p→∞ |H(ω)|2 = |Sn(ω)|2; (2.59)

thus an alternative to the information-bearing features of the speech signal Skn, defined
in (2.41), is the set of LPCs defined in (2.54). In practice, the cepstral coefficients, cn,
defined by

cn = 1

2π

∫ π

−π

log |H(ω)|ejωn dω, (2.60)

are often used in preference to the ai themselves. Equation (2.60) can be evaluated
recursively from

c0 = log G (2.61)

and, for n = 1, 2, . . . ,

cn = an +
n−1∑
k=1

k

n
an−kck. (2.62)

Still other feature sets are obtained by taking time derivatives of the cn and by applying
a non-linear transformation to the frequency, ω, in (2.60). This modification is called the
mel-scale cepstrum [59, 314]. For the purposes of this discussion, all such feature sets
will be considered to be equivalent. We will refer to this assumption in Chapter 3.

2.4 Time–Frequency Representations

As discussed in Section 2.1.3, the speech signal is intrinsically non-stationary. Since all
feature sets of the signal are derived from time–frequency distributions of its energy, it
follows that there is some ambiguity in any such representation of the speech signal. The
following analysis serves to explain and quantify the effects of non-stationarity.
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In Section 2.3.1 we defined the spectrogram as a method for representing the time
variation of energy in the speech signal. Rewriting (2.37) and (2.39) in continuous time,
the spectrogram Sx(ω, t), of the signal, x(t), observed through the window g(τ), becomes

Sx(ω, t) =
∣∣∣∣
∫ ∞

−∞
g(τ)x(t + τ)e−jωτ dτ

∣∣∣∣
2

. (2.63)

It is natural to ask whether or not we can find a better time–frequency representation in
some well-defined sense. In particular, we seek another representation, Fx(ω, t), that will
give better estimates in both time and frequency of the time variation of the spectrum
due to non-stationarity. For example, the Wigner transform, Wx(ω, t), defined by

Wx(ω, t) =
∫ ∞

−∞
x
(
t + τ

2

)
x∗

(
t − τ

2

)
e−jωt dτ, (2.64)

will give perfect resolution of the FM chirp, xc(t) = ej (ω0t+ τ
2 mt2), at the expense of a

discontinuous component, δ(ω)2 cos(2ω0t). In comparison, Sx(ω, t) will give continuous
but poor resolution of xi(t). Perhaps there is an optimal compromise.

We begin by imposing the weak constraint on Fx(ω, t) that it be shift invariant in both
time and frequency. If this condition is satisfied then any Fx(ω, t) has the form

Fx(ω, t) = 1

2π
φ(ω, t) ∗ ∗Wx(ω, t) (2.65)

for some kernel ψ(ω, t). The symbol ** indicates convolution in time and frequency,
so that (2.65) may be conveniently evaluated by means of the two-dimensional Fourier
transform pair,

X(ν, τ) = F {x(ω, t)} =
∫∫ ∞

−∞
x(ω, t)e−j (νt+ωτ) dω dt (2.66a)

and

x(ω, t) = F−1 {X(ν, τ)} = 1

2π

∫∫ ∞

−∞
X(ν, τ)ej (νt+ωτ) dν dτ. (2.66b)

Then (2.65) may be replaced by

Fx(ω, t) = F−1 {�(ν, τ)Ax(ν, τ )} , (2.67)

where

�(ν, τ) = F {φ(ω, t)} (2.68a)

and

Ax(ν, τ ) = F {Wx(ω, t)} . (2.68b)
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For reasons that will become clear, �(ν, τ) defined in (2.68a) is sometimes called the
point-spread function, and Ax(ν, τ ) the ambiguity function.

From (2.67) and (2.68) we see that the spectrogram of (2.63) is a special case of (2.65)
and can be written as

Sx(ω, t) = Wg(ω, t) ∗ ∗Wx(ω, t), (2.69)

where Wg(ω, t) is understood to be the Wigner transform of the window function, g(τ).
A consequence of (2.69) is that if Fx(ω, t) is shift invariant and positive, then any such

distribution can be written as a superposition of spectrograms of the form

Fx(ω, t) =
∫ ∞

−∞
Sx(ω, t, gα(τ )) dα, (2.70)

where the spectrogram is constructed from the window function gα(τ) depending only
on the parameter, α.

Any Fx(ω, t) of the form of (2.70) will have some degree of localization and smooth-
ness. That is, the effect of the kernel function, φ(ω, t), will be to spread out the energy
at (ω, t) over an ellipse centered at that point and with semi-axes θω and θt . Perfect
localization corresponds to θω = θt = 0. We also require that the distribution of energy
be smooth, by which is meant that energy at point (ν, τ ) in the transform domain is
distributed over an ellipse centered at that point and with semi-axes �ν and �τ . Perfect
smoothness corresponds to the condition that �ν = �τ = 0.

Riley [274] has shown that Fx(ω, t) is governed by an uncertainty principle according
to which it is always the case that

σω�τ ≥ 1
2 (2.71a)

and

σt�ν ≥ 1
2 (2.71b)

with equality if and only if

φ(ω, t) = βe−t2/2θ2
T e−ω2/2θ2

�, (2.72)

where β, σ�, and σT are constants depending on φ(ω, t).
There are two important implications of (2.71) and (2.72). First and foremost, any

choice of Fx(ω, t) will cause some loss in resolution in both time and frequency. We
cannot overcome this consequence of non-stationarity. However, we will, in Section 2.6,
explore a different approach to the problem of non-stationarity based on (2.34).

Second, from (2.69), (2.70) and (2.72) it is clear that a useful Fx(ω, t) is a spectrogram
based on a Gaussian window in time and frequency with θT θ� = 1

2 . The improvement
resulting from this distribution may be judged by comparing the conventional spectrogram
shown in Fig. 2.8a with the improved spectrogram of Fig. 2.8b. Due to computational
complexity, the smoothed spectrogram is not used in practice. As a result, the features
typically used may have somewhat higher variances than could otherwise be obtained.
It is clear from Fig. 2.8 that the conventional spectrogram does provide reasonable
information-bearing features.
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(i)

(ii)

(a)

Figure 2.8 (a) (i) Spectrogram of the word “read” computed from contiguous 8.0 ms speech seg-
ments; (ii) pitch synchronous spectrogram of the word “read”. (b) (i) Smoothed pitch synchronous
spectrogram of the word “read”; (ii) smoothed pitch synchronous spectrogram of the word “read”
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Figure 2.8 (continued )

2.5 Classification of Acoustic Patterns in Speech

Everyday experience confirms the highly variable nature of speech. We are aware of the
wide ranges of voices, accents, and speaking styles present in ordinary discourse. Yet,
virtually all people seem to correctly understand spoken messages effortlessly. One expla-
nation for this remarkable ability is that speech is literate. That is, speech is characterized
by a relatively small number of distinct and somehow invariant acoustic patterns. Were
this not so, there would be little hope of learning to speak because, as Bruner et al. [40]
observe:

[W]ere we to utilize fully our capacity for registering the differences in things and to respond
to each event encountered as unique, we would soon be overwhelmed by the complexity of
our environment . . . . The learning and utilization of categories represents one of the most
elementary and general forms of cognition by which man adjusts to his environment. [40]

The ability of humans to perform the kind of categorical perception described above
has long been recognized as essential to our mental abilities. Plato [248] explained the
phenomenon in his theory of forms as follows.

You know that we always postulate in each case a single form for each set of particular
things, to which we apply the same name. Then let us take any set you choose. For example
there are many particular beds and tables. But there are only two forms, one of bed and one
of table. If you look at a bed, or anything else, sideways or endways or from other angles,
does it make any difference to the bed? Isn’t it merely that it looks different without being
different? And similarly with other things. . . . The apparent size of an object, as you know,
varies with its distance from our eye. So also a stick will look bent if you put it in the
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water, straight when you take it out and deceptive differences of shading can make the same
surface seem to the eye concave or convex; and our minds are clearly liable to all sorts of
confusions of this kind. . . . Measuring, counting and weighing have happily been discovered
to help us out of these difficulties and to ensure that we should not be guided by apparent
differences of size, quantity and heaviness, but by calculations of number, measurement and
weight.

In common parlance, we speak of our human abilities to recognize patterns. If asked,
we would almost certainly agree with the proposition that this ability we possess is a
significant aspect of our intelligence. Upon further reflection, we would find the conven-
tional meanings of the terms “pattern” and “intelligence” to be vague enough to cause
us difficulty in stating precisely how they are related. We call many diverse objects,
events and ideas “patterns”. We refer, for example, to sequences of numbers as they
occur in puzzles as having a “pattern”. We notice the “pattern” of a word exactly con-
tained in a longer one though the two may be unrelated in meaning. We speak of styles
of musical compositions as displaying patterns which render the romantic easily dis-
tinguished from the classical. Certainly to solve a puzzle or discover a camouflaged
sequence of letters or appreciate music requires intelligence. But what exactly does that
entail?

The modern explanation of pattern recognition is that the variability of patterns in
general and acoustic patterns in particular can be understood by a rigorous appeal to the
theory of probability. In Chapter 10 we shall return to the question of pattern recognition
and carefully compare the Platonic theory of forms with the modern mathematical theory
which we review below.

2.5.1 Statistical Decision Theory

The problem treated in the statistical pattern recognition literature [241] is illustrated in
Fig. 2.9. It is customary, though by no means necessary, to choose R

n, the n-dimensional
Euclidean space, as the vector space the points of which, xj , represent the “objects”
under consideration. The vector xj is the n-tuple (x1j , x2j , xnj

) whose components xjk

are called features. Each coordinate axis is a scale on which its corresponding feature is
measured, so the space is called the feature space.

In these pages, the features will be Fourier spectra as defined in (2.41), LPCs computed
from (2.50)–(2.54), or cepstra derived from (2.60) or (2.62). Based on the argument made
in (2.42), vectors of such features are measured approximately every 2.5 ms. Later, in
Chapter 3, we will refer to these vectors as observations.

In general, we shall be interested in the N -class pattern recognition problem which is
that of devising a decision rule, f , which classifies an unknown “object”, x, as a member
of at most one of the N classes. We are required to say “at most one class” because it
is often desirable to make no assignment of a particular vector x. This choice is referred
to as the “rejection option” and is but a technical matter which we shall not consider
further here. The patterns are regions of the feature space and will be designated by ωi

for 1 ≤ i ≤ N . The union of the ωi is called � and

{ωi}Ni=1 = � ⊆ R
n. (2.73)
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Figure 2.9 The point–set distance function as a measure of pattern dissimilarity

The decision rule, f , is written as

f (x) = ωi, (2.74)

meaning that the vector x is assigned to the ith class by the rule f . A rule of the form
(2.74) must be constructed on the basis of a training set, Y , comprising the set of vectors
{yj }Mj=1. Most often, though not necessarily, the training set wil be labeled, that is, each
vector will be correctly marked with its class membership. The subset of a labeled training
set corresponding to the ith class will be called Yi , so that yj ∈ Yi → yj ∈ ωi . This will
be denoted by writing y(i)

j . Obviously

Y = ∪N
i=1Yi , (2.75)

where

Yi = {y(i)
j }mi

j=1, (2.76)

and from (2.75) it is clear that

M =
N∑

i=1

mi. (2.77)
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The performance of a decision rule will be evaluated on the basis of a test set X =
{xl}Ll=1. This set is assumed to be correctly labeled, but we shall omit the superscript
indicating class membership when the meaning is unambiguous without it. To get the
truest measure of performance of a decision rule,

X ∩ Y = φ (2.78)

should be strictly observed. The most direct measure of performance is the extent to
which

f (y(i)
j ) = ωi, for 1 ≤ i ≤ N, 1 ≤ j ≤ mi, (2.79)

and

f (x(i)
l ) = ωi, for 1 ≤ l ≤ L. (2.80)

In practice, (2.79) will more often be satisfied than (2.80).
It will often be useful to define a “prototype” of the ith class y(i)

p . The most common
definition is

y(i)
p = 1

mi

mi∑
j=1

y(i)
j , (2.81)

which gives, in some sense, an “average” exemplar of the pattern ωi .

2.5.2 Estimation of Class-Conditional Probability Density Functions

As indicated in Figure 2.9, non-parametric decision rules assign an unlabeled vector mem-
bership in the pattern to which it is closest in terms of a well-defined distance measure,
D(x, ωi). This distance is the distance from a point to a set which must be constructed
from an ordinary topological metric. Recall that in elementary topology one defines a
metric d(x, y) on a vector space, say R

n, as any function satisfying

d(x, y) ≥ 0, (2.82a)

d(x, y) = d(y, x), (2.82b)

d(x, z) ≤ d(x, y) + d(y, z), (2.82c)

the positivity, symmetry and triangle inequality conditions. In practice, conditions (2.82)
are often not strictly observed.

Some well-known metrics are the following:

d(x, y) =
{

0, if x = y,

1, otherwise.
(2.83)
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This seemingly trivial metric can be extremely useful in problems involving a finite
number of attributes which are either present or not.

In continuous feature spaces the Minkowski p-metrics,

dp(x, y) =
[

N∑
i=1

| xi − yi |p
] 1

p

, (2.84)

are often used. There are three special cases of (2.84) in common usage: p = 1, p = 2,
and p = ∞, giving rise to the Hamming, Euclidean and Chebyshev metrics, respectively.
For p = ∞,

d(x, y) = max
i

{| xi − yi |} . (2.85)

In the next section we shall see the importance of metrics of the form

d(x, y) = (x − y)T (x − y)′, (2.86)

where T is any positive definite n × n matrix and the prime denotes vector transpose.
Any of the metrics (2.83)–(2.86), or others still, may be used to define point–set

distances. Perhaps the simplest of these is the distance to the prototype,

D(x, ωi) = d
(
x, y(i)

p

)
, (2.87)

where y(i)
p is defined by (2.81). The family of “nearest-neighbor” distances is, for reasons

which will be seen later, highly effective. Here we let

D(x, ωi) = d
(

x, x(i)
[k]

)
, (2.88)

where x(i)
[k] is the kth nearest neighbor to x in the set ωi . The kth nearest neighbor is

usually found by sorting the distances d(x, y(i)
j ) for 1 ≤ j ≤ mi so that

d
(

x, y(i)
j1

)
≤ d

(
x, y(i)

j2

)
≤ . . . ≤ d

(
x, y(i)

jmi

)
. (2.89)

The training vector in the kth term in the sequence (2.89) is, of course, x(i)
[k]. There is a

“rule of thumb” which states that one should set k ≤ √
mi .

There is an unusual distance which leads to what, for obvious reasons, is called the
“majority vote rule”:

D(x, ωi) = (ki)
−1, (2.90)

where ki is given by

ki =
∣∣∣Yi ∩ {

x[�]
}k

�=1

∣∣∣ . (2.91)
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We use | S | to denote the cardinality of the set S. Hence (2.91) defines ki as the number
of members of Yi which are among the K nearest neighbors of x without respect to class.

In a spirit similar to that of (2.88), one may define

D(x, ωi) = 1

K

K∑
k=1

d
(

x, x(i)
[k]

)
, (2.92)

which is just the average distance from x to the K nearest members of Yi . Alternatively,
we may weigh the distance by the number of samples of Yi which are within the distance
(2.92) of x. Thus let

D(x, ωi) = 1

�

K∑
k=1

d
(

x, x(i)
[k]

)
, (2.93)

where

� = max
j

{
j | d

(
x, x(i)

[j ]

)
≤ 1

K

K∑
k=1

d
(

x, x(i)
[k]

)}
. (2.94)

From (2.87)–(2.94) we get the family of non-parametric decision rules

f (x) = ωi ⇐⇒ D(x, ωi) ≤ D(x, ωj ), 1 ≤ j ≤ N. (2.95)

Rules of the form (2.95) are closest to our intuitive sense of classification. They are
easy to implement since the training process consists simply in collecting and storing the
labeled feature vectors. These rules often outperform all others in terms of classification
accuracy. They may, however, be quite costly to operate, especially in high-dimensional
spaces.

Thus far, we have simply stated the rules, justifying them only by an appeal to intuition.
We defer, until the end of the next section, a more rigorous analysis of their underlying
principles.

Parametric Decision Rules

The primary method of classification to be considered is that in which an unknown vector
is said to belong to the class of highest probability based on the values of the observed
features. This is denoted by

f (x) = ωi ⇐⇒ P(ωi | x) ≤ P(ωj | x), 1 ≤ j ≤ N. (2.96)

We can construct a classifier by treating feature vectors as random variables.
A consequence of Bayes’ law is that

P(ωi | x) = p(x | ωi)P (ωi)

p(x)
, (2.97)
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where P(ωi) is the “prior probability” of the ith class, that is, the probability of a vector
coming from ωi before it is observed; p(x) is the probability density function of the feature
vectors without respect to their class and p(x | ωi) is called the ith class-conditional
probability density function, by which term is meant that p(x | ωi) is the probability
density function of feature vectors which correspond to the ith pattern only.

Since the factor p(x) is common to p(x | ωi) for all i and assuming for a moment that
p(ωi) = 1

N
for all i, making the patterns equally likely a priori, we can rewrite (2.96) in

view of (2.97) as

f (x) = ωi ⇐⇒ p(x | ωi) ≥ p(x | ωj ), for 1 ≤ j ≤ N. (2.98)

The decision rule (2.98) is called the maximum a posteriori probability (MAP) rule.
The MAP rule is sometimes augmented by prior probabilities and a loss or cost function

to derive the “minimum risk rule”. The total risk of deciding ωi at x, R, is the loss summed
over all classes, which is computed from

Ri =
N∑

j=1

Lij

p(x | ωi)P (ωi)

p(x)
, (2.99)

where the loss function Lij is the penalty incurred for misclassifying ωj as ωi . It is
customary to let

Lij = cij (1 − δij ), (2.100)

where cij is a fixed cost for the ωj to ωi classification error and δij is the Kronecker delta
function. In this case we can substitute f (x) for ωi in (2.99) and solve it by finding that
f (x) which minimizes R. The solution

f (x) = ωi ⇐⇒ LijP (ωj )p(x | ωj ) ≤ LkjP (ωk)p(x | ωk), for 1 ≤ k ≤ N,

(2.101)

is called the “minimum risk” decision rule.
If we set cij = 1, then the risk becomes Pe, the probability of classification error. For

this particular loss function, called the zero–one loss function, (2.101) becomes

f (x) = ωi ⇐⇒ p(x | ωi)P (ωi) ≥ p(x | ωj )P (ωj ), for 1 ≤ j ≤ N. (2.102)

Rule (2.102), therefore, minimizes Pe, meaning that if the p(x | ωi) and P(ωi) are known
exactly, then no other classification scheme relying only on the feature vectors Y , can
yield a lower rate of incorrect classifications as the number of trials tends to infinity.

A standard proof of the optimality of (2.102) is given by Patrick [241]. The practical
meaning of the theoretical result is that we assume that p(x|ωi) can be estimated to any
desired degree of accuracy and that good estimates will provide a asymptotically optimal
performance in the limit as M gets large (see (2.77)).
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This important result can be demonstrated as follows. Let us define the point risk of a
decision rule, r(f (x)), by

r(f (x)) =
∑
j �=i

p(x | ωj )P (ωj )/p(x) (2.103)

= 1 − p(x | ωi)P (ωi)/p(x)

= Pe.

From (2.103) it is clear that Pe is minimized by the decision rule of (2.101), which we
shall designate as f ∗(x). The global risk of a decision rule, R(f (x)) is defined as

R(f (x)) = ERn{r(f (x))} (2.104)

=
∫

Rn

r(f (x))p(x) dx

=
∫

Rn

N∑
i=1

L(f (x), i)p(x | ωi).

Now note that all terms in the integrand of (2.104) are positive so it must be minimized
pointwise. Since we know from eq. (2.103) that the point risk is minimized by f ∗(x), so
must the global risk. Thus f ∗(x) is the optimal decision rule.

In many cases of practical importance, the physics of the process under study will
dictate the form of p(x | ωi) to be a member of a parametric family of densities. The
values of the parameters can then be estimated from the training data.

Perhaps the most useful parametric form is the multivariate normal or Gaussian density
function,

p(x | ωi) = 1

(2π)n/2 | Ui |1/2
E− 1

2 (x−µi )U
−1
i (x−µi )

′
, (2.105)

where µi is the mean vector defined by

µi = E{x(i)} (2.106)

and Ui is the covariance matrix whose jkth entry uijk is given by

uijk = E
{(

x
(i)
j − µij

) (
x

(i)
k − µik

)}
. (2.107)

The expectation operator, E, appearing in (2.106) and (2.107) computes the expected
value of p(x) from

E{g(x)} =
∫

Rn

g(x)p(x) dx. (2.108)
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The utility of the Gaussian density function stems from two facts. First, quite often
the actually observed features are really linear combinations of independent non-normal
random variables which are either unknown to us or not directly measurable. The well-
known central limit theorem tells us that such features are well described as Gaussian
random variables in the following sense. If xk are independent and identically distributed
random variables for 1 ≤ k ≤ K and having finite mean µ and variance σ 2, then the sum,
Sk = ∑K

k=1 xk, is a random variable such that

lim
k→∞

p

[
Sk − kµ√

kσ 2
< θ

]
=
∫ θ

−∞
e− y2

2 dy. (2.109)

In other words, as k increases, Sk becomes more nearly Gaussian.
Second, as is clear from (2.105), the normal density is completely specified by its first-

and second-order moments, which are easily estimated from training data by

µ̂i = 1

mi

mi∑
j=1

y(i)
j = y(i)

p (2.110)

and

Ûi = 1

mi

Y′Y − µ
′
iµi , (2.111)

where the j th row of Yi is y(i)
j for 1 ≤ j ≤ mi .

There are other closed-form density functions which can be used in the same way. The
more common ones are chi-square, beta, gamma, binomial, Poisson, Cauchy and Laplace.
If neither these nor any other closed-form density is appropriate, then one can resort to
several methods of approximating the class-conditional densities in terms of orthogonal
polynomials, potential functions, Parzen estimators or Gaussian mixtures.

Equivalence of the Basic Decision Rules

We are now in a position to observe several respects in which parametric and non-
parametric classifiers are equivalent. First, it is immediately clear that both methods have
a geometrical interpretation in that they implicity partition the feature space into disjoint
regions. In the non-parametric case, the decision boundary between ωi and ωj is just

{
X ∈ R

n | D(x, ωi) = D(x, ωj )
}

(2.112)

for whatever distance measure is chosen. Similarly in the parametric case, the decision
boundary is the locus {

x ∈ R
n | p(x | ωi) = p(x | ωj )

}
. (2.113)

Clearly (2.113) can be modified to accommodate (2.101) and (2.102) in an analogous
way.
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Figure 2.10 Non-linearly separable pattern classes

Note that, in general, the loci defined by (2.112) and (2.113) are not hyperplanes, and
can easily separate the pathological cases depicted in Fig. 2.10.

The relationship between the two decision rules is somewhat less obvious so that it
is helpful to motivate the analysis by considering the special case of normal densities.
Taking the natural log of both sides of (2.105), we get

loge(p(x | ωi)) = − 1
2

[
n loge(2π) + log | Ui | +(x − µi )U

−1
i (x − µi)

′
]
. (2.114)

Neither the first nor second terms on the right-hand side of (2.114) is dependent on x,
and U−1

i is positive definite, so that

D(X, ωi) = (x − µi )U
−1
i (x − µi)

′ (2.115)

is a well-formed metric. In fact it is a special case of (2.86) which is often referred to as the
Mahalanobis distance. Clearly, then, given values for µi and Ui , either a probability den-
sity or a distance function is equally well determined. Furthermore, the natural logarithm
is monotonic in its argument so that distance and density are inversely monotonically
related in the sense that

p(x1 | ωi) < p(x2 | ωi) ⇐⇒ D(x1, ωi) > D(x2, ωi). (2.116)

The inverse variation of the Mahalanobis distance and the normal density function
extends to arbitrary probability densities and metrics. The general relationship is eluci-
dated by the theory of non-parametric density estimation a central result of which is the
following theorem due to Fix and Hodges [241], stated here without proof.

Theorem 1 (Fix and Hodges). Let x ∈ R
n be a random variable of probability density

function p(x) continuous at x and let {yj }Mj=1 be a set of M observations of x. Define
a sequence of convex tolerance regions of x, {Ti}∞i=1, such that exactly ki of the yj lie
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inside Ti , a region enclosing volume �i . Further, let the tolerance regions be such that
they shrink rapidly enough around x so that

lim
M→∞

supyj ∈TM
{‖ x − yj ‖} = 0 (2.117)

but slowly enough so that

lim
M→∞

{M�M} = ∞ (2.118)

and

lim
M→∞

kM = ∞. (2.119)

Finally, define the sequence of functions

p̂M(x) = kM

M�M(x)
. (2.120)

Then p̂M(x) is a consistent estimator of p(x) in the sense that

lim
M→∞

ERn{p(x) − p̂M(x)} = 0. (2.121)

Equation (2.120) exactly captures our physical intuition of the inverse relationship of
density to volume. As illustrated in Figure 2.11, the {Tk} are of arbitrary convex shape.
Fraser [241] asserts that it is useful to let Tk be the sphere of radius ‖ x − x[k] ‖ centered at x.

The utility of the spherical tolerance regions is made manifest as follows. Let us define
the coverage, Ck , of the kth tolerance region as the probability that some observation x
lies interior to Tk . Thus

Ck =
∫
Tk

p(x) dx. (2.122)

Since Tk is dependent on {yj }Mj=1, Ck is itself a random variable on the unit interval
having probability density function g(Ck). Following Wilks [241], we observe that the
probability of exactly m out M new observations falling in Tk has the binomial distribution

p(|{x, ∈ Tk}| = m) = M!

m!(M − m)!
Cm

k (1 − Ck)
M−m, (2.123)

from which it follows that g(Ck) is the beta density β(m, M − m) independent of p(x).
In other words, the coverages of the spherical tolerance regions are not determined by the
underlying statistics of the observations. Such tolerance regions are said to be “distribution-
free”, the significance of which property is that the estimator (2.120) is equally valid for
all random variables. Of course, as is clear from (2.117)–(2.120) and (2.122), the theory
is an asymptotic one while, in practice, we never have infinitely many samples. Yet, in
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Figure 2.12 Points in the observation space {x1, x2, . . . , xn} drawn from class ωi having density
function f (z)

practice, one collects as large a set of training data as possible and most often achieves
good results.

The actual reduction to practice of the Fix and Hodges theorem rests on the observation
that in R

n, for spherical {Tk}, �k is proportional to d(x, x[k])
n for any proper metric

d(x, y). Thus from (2.120) and Figure 2.12, it is clear the p(x) and d(x, x[k]) bear an
inverse relationship to each other.
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Loftsgaarten and Quesenberry [204] derived (2.121) for the special case k = 1 from
which we get the nearest neighbor rule (2.88). For arbitrary k we get the generalized
kth nearest neighbor rule (2.88) of Patrick and Fischer [242]. Whereas the rules based
on (2.88) derive from applying the theory independently to each Yi , Cover and Hart [53]
used but a single sequence of tolerance regions on Y to show that ki

M
, where ki is as

defined in (2.91), is a consistent estimator of p(x | ωi) in the sense of (2.122). From this
result comes the “majority vote” classifier (2.90). The rules (2.92) and (2.93) do not admit
of distribution-free tolerance regions but are in the same spirit as those cited above and
have, in fact, been observed to outperform them [189].

2.5.3 Information-Preserving Transformations

As we noted earlier, the physical signal that we measure may be quite complex but
encoded in it is one of N patterns whose identity is our only concern. The signal is
transformed, in the sense that its representation is changed, by the measurement and
feature extraction process until it is finally decoded by the classifier. In this context, the
transformations involved will be useful to us to the extent that they leave the identity of
the patterns unaltered. In this sense these transformations may be said to be information-
preserving.

Mathematically, the process of changing the representation of a signal will be accom-
plished by the abstract transformation, T , which maps the abstract space of A into another
abstract space B, which we signify by writing

T : A → B; (2.124)

for any a ∈ A there will be some b ∈ B, in which case we say that b is the image of a

under T and write T (a) = b.
Let us suppose that we are using a particular pattern recognition system which manifests

classification error probability

pe =
N∑

i=1

∫
Ei

p(x | ωi) dx, (2.125)

where

Ei = {
x | p(x | ωi) < p(x | ωj ), i �= j

}
. (2.126)

If we now introduce the transformation T into the process we would like to observe
that

pe =
N∑

i=1

∫
T (Ei )

p(T (x) | ωi)d(T (x)), (2.127)

where

d(T (x)) =
n∑

i=1

∂T
∂xi

dxi. (2.128)
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If (2.127) is satisfied then T will be considered to be an information-preserving transfor-
mation.

It is easy enough to either measure pe empirically or compute it from (2.125) in order
to evaluate the quality of a transformation. It is more difficult to use pe in order to design
an information-preserving transformation. For this purpose it will often be desirable to
design T so that it preserves the topology of the space in the sense that if

D(x, ωi) > D(x, ωj ) (2.129)

then

D(T (x), ωi) > D(T (x), ωj ). (2.130)

If (2.130) holds whenever (2.129) does, then T will not alter the order of the distances
from x to the patterns and hence, by using decision rules (2.95), will not alter pe.

The method may be adapted to the discrete problem of feature extraction. In so doing
we seek a linear transformation, T , such that

y
′
m×1 = Tm×nx

′
n×1, (2.131)

thus T maps an n-dimensional feature space onto an m-dimensional one with m ≤ n.
We want T to be optimal in the sense that it minimizes E, the norm squared difference

between the n-dimensional feature space and its m-dimensional image under T . Let

E =
M∑
i=1

‖y −∑m
k=1 aiktk‖2

‖ yi ‖2
, (2.132)

where aik (for 1 ≤ i ≤ M , 1 ≤ k ≤ m) are constants to be determined and tk is the kth
row of T which we seek.

Setting ∂E
∂aik

= 0 for 1 ≤ i ≤ N , 1 ≤ k ≤ m, and solving for aik results in

m∑
j=1

aij (tj · tk) = yi · tk. (2.133)

If we require that T be orthonormal then (2.131) becomes simply

aik = yi · tk. (2.134)

Substituting (2.134) in (2.132) and expanding the numerator, we observe that we can
minimize E by maximizing

β =
m∑

k=1

tkUt
′
k (2.135)
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subject to the m orthonormality constraints

γk = ‖tk‖2 = 1, k = 1, 2, . . . , m. (2.136)

The desired maximum can be calculated by the method of Lagrange multipliers according
to which we set

dβ +
m∑

k=1

λkγk = 0, (2.137)

which reduces to

t
′
k(U − λkI) = 0, for 1 ≤ k ≤ m, (2.138)

where U is the covariance matrix of the training set Y and, by definition, λk is an
eigenvalue with corresponding eigenvector tk. U is obtained from

U = 1

M
Y′Y − u′u, (2.139)

u being the mean vector of Y , namely,

u = 1

M

N∑
i=1

mi∑
j=1

y(i)
j . (2.140)

Note that (2.139) and (2.140) are formally identical to (2.111) and (2.110), respectively.
Substituting (2.138) into (2.135), we find that at the maximum

β =
m∑

k=1

λk. (2.141)

Thus the maximum possible value of β is the sum of the m largest eigenvalues of U.
This occurs when the rows of T are the eigenvectors corresponding to those eigenvalues.
The significance of the eigenvalues is that they are the variances of Y in the directions of
the corresponding eigenvectors which are actually the coordinate axes of the new feature
space obtained from the transformation T .

The fidelity of the transformation T is just the error E, which can be shown to be

E =
n∑

k=m+1

λk, (2.142)

where the summation assumes that the eigenvalues are sorted in descending order of
magnitude. The smaller the value of E, the more information is preserved by the trans-
formation T .

Typically, if we plot the magnitude of the eigenvalues against their descending rank in
magnitude, we get the behavior shown in Fig. 2.13. When the magnitude of successive
eigenvalues drops sharply, we obtain an indication of the intrinsic dimensionality, n∗, of
the feature space.
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Figure 2.13 Plot of eigenvalues showing the intrinsic dimensionality n∗

2.5.4 Unsupervised Density Estimation – Quantization

Unsupervised density estimation locates the more populated regions of the space and
labels them as patterns. Algorithms which perform this function are often called clustering
procedures or quantizers. We shall consider a method for locating the clusters in unlabeled
data based on a generalization of the Lloyd–Max [203] quantizer. The method will appear
in Section 3.1.1.

In what follows, we shall assume we are given a finite set, �, of N observations,

� = {x1, x2, . . . , xN }. (2.143)

Let us assume that � contains samples of M > 1 different pattern classes. The observa-
tions are not assigned a priori to a class, nor are the classes themselves named. We simply
wish to be able to distinguish among the observations in a reasonable way, trusting that
the significance of the distinction will emerge from another source of information.

Finally, then, we are left to estimate the density F(z), by some robust but necessar-
ily suboptimal technique. Many such procedures are discussed in the literature [121].
Because of its generality and utility, we describe here one particular method called the
k-means algorithm [340].

The k-means procedure is an automatic iteration scheme which will quite reliably find
any specified number of clusters. Its properties are well understood [198]. The iteration
consists of three basic steps: classification, computation of cluster centers, and conver-
gence testing.

Assuming that we wish to find M clusters, we choose M arbitrary tokens to serve as
initial cluster centers. For simplicity, we set

x(i)
p = xi , for 1 ≤ i ≤ M. (2.144)
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Classification then proceeds on the basis of the nearest neighbor rule, namely,

xj ∈ ωi ⇐⇒ δ(xj , x(i)
p ) ≤ δ(xj , x(k)

p ), 1 ≤ k ≤ M. (2.145)

After (2.145) has been applied for 1 ≤ j ≤ N , we recompute the cluster centers using a
minimax criterion. That is, we let

x(i)
p = x(i)

j such that max
k

{δ(x(i)
j , x(i)

k )} is minimized for 1 ≤ i ≤ M. (2.146)

The convergence test consists of checking whether or not the same tokens are designated
as cluster centers as in the previous iteration. If not, another iteration is performed. If
the xi themselves were given in terms of coordinates instead of in terms of pairwise
dissimilarity values, then (2.146) could be replaced by

x(i)
p = 1

mi

mi∑
j=1

x(i)
j . (2.147)

2.5.5 A Note on Connectionism

During the past decade, there has been a resurgence of interest in connectionist theories.
Recent research on this topic can trace its origins to the work of McCulloch and

Pitts [215] who suggested that what was important about the central nervous system was
not the details of its electrochemical operation, but rather its implementation of Boolean
logic. Specifically, they showed that combinations of binary “neurons” could be used to
form a model of universal computation, the significance of which we will examine closely
in Chapter 9.

The “neural networks” of McColloch and Pitts influenced Rosenblatt [280] to propose
linear threshold devices or perceptrons, and Hebb [123] to devise still other neural mod-
els that could adapt to external stimuli and recognize patterns. Their research garnered
considerable attention because of the similarity of their models to real biological systems,
the likeness strengthened by the advent of the Hodgkin and Huxley [129] model of the
non-linear behavior of nerve cells.

The perceptrons of Rosenblatt came under attack on two fronts. Neurophysiologists
argued that they are too simple and monolithic to be considered serious models of
the structure of real brains. Then, mathematicians, especially Minsky and Papert [221],
demonstrated that they are computationaly weak models unable to implement logical
functions such as the XOR. However, a straightforward generalization of the perceptron
removed the mathematical objection. By cascading perceptrons to form the multi-layer
perceptron (MLP) of Fig. 2.14, general pattern recognition could be achieved. The train-
ing algorithm for the MLP was known to Rosenblatt but did not gain wide recognition
until Rumelhart [282] devised an algorithm based on propagating the classification errors
backward through the MLP. The method is, in fact, just a classical gradient optimization
procedure.

The power of the MLP to discriminate between patterns rests on the Kolmogorov
representation theorem [205] which states that any continuous function of N variables
can be computed using only linear combinations of non-linear continuous increasing
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Figure 2.14 A multi-layer perceptron neural network

functions of only one variable. This theorem is a response to the 13th problem of Hilbert
(cf. Reid [273]) regarding the solutions of general equations of seventh degree using
functions of only two variables. Its relevance to the MLP is that the activation equations
are exactly of the form considered by Kolmogorov and hence any arbitrary decision
boundary can be computed from them.

If the MLP or other related connectionist circuits are both powerful enough compu-
tationally and faithful enough biologically [134], then some technical questions must
be addressed. Given that the classifiers of (2.98)–(2.102) are optimal, what additional
information is captured in the biologically inspired theories but not available to sta-
tistical decision-theoretic methods that could provide for superior performance of the
former? Second, how are dynamics represented in neural models? Time is intrinsic in
the classical methods but not in the connectionist approach. Time is an essential element
of all pattern recognition in language. Finally, what benefit, if any, accrues to a rela-
tively uniform architecture composed of simple elements? Does it allow for integration
of diverse signals? Does it provide for robust performance in the presence of component
failures?

There are presently no definitive answers to these questions. It will be interesting to
see if answers emerge in the decades ahead.

2.6 Temporal Invariance and Stationarity

The motivation for the non-parametric methods is found in the observation that whereas
“instantaneous” spectra or other primitive measurements of the speech signal can be
compared without regard to their temporal location, sequences of these measurements,
such as are required to represent speech signals of greater temporal extent, must, due to
the non-stationarity of speech signals, take account of time to be meaningfully com-
pared. In particular, in order to compare word-length utterances, we shall require a
distance measure that is invariant to those local changes of time scale which are not
associated with the identity of the utterance. Conversely, a distance measure useful
for classification must be sensitive to other temporal variations that are information-
bearing.
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Figure 2.15 Changing time scales according to the function φ(τ)

A method for constructing just such a distance function was suggested by Vintsyuk
[322]. The reasoning is best understood by referring to Fig. 2.15 in which two words,
v and w ∈ V , are represented by the continuous functions x(t) and y(t), respectively.
Suppose that for any t ∈ [0, T ], the local or pointwise distance between x(t) and y(t)

is computed by evaluating the known function ρ(x(t), y(t)). To measure D(u, v), the
distance between x(t) and y(t), and hence between v and w, we must integrate the local
metric over some appropriate interval.

2.6.1 A Variational Problem

To achieve some measure of invariance with respect to local time scale, it is natural to
perform the integration in such a way that its minimum value is always obtained for the
particular x and y. Vintsyuk proposed that

D(v, w) = min
{φ(t)}

∫ T

0
ρ(x(t), y(φ(t)))g(t, φ(t), φ̇(t)) dt, (2.148)

where φ(t) is any function that maps the natural time scale of y(t) monotonically onto that
of x(t), and g is a weighting function which is small when φ(t) ∼= t and large otherwise.
Intuitively speaking, the effect of g is to prevent φ(t) from causing too abrupt or too
non-linear a change of time scale.
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Now note that (2.146) is an instance of the classical variational problem δJ = 0, where

J =
∫ t2

t1

F(τ, φ(τ), φ̇(τ )) dτ. (2.149)

In (2.149), F is a known function and φ̇ signifies, as usual, differentiation with respect
to time. The solution to (2.149) is found by solving the well-known Euler–Lagrange
equation (cf. [329, pp. 20ff.]).

∂F

∂φ
− d

dτ

∂F

∂φ̇
= 0. (2.150)

If

F(τ, φ(τ), φ̇(τ )) = ρ(x(τ), y(τ )) = [x(τ) − y(φ(τ))]2 (2.151)

and g = 1 for all t ∈ [t1, t2], so that there are no constraints other than the monotonicity
of φ, then (2.148) reduces to

∂

∂φ
‖x(τ) − y(φ(τ))2‖ = 0. (2.152)

If y is strictly monotonic increasing, (2.152) will be satisfied if ‖x(τ) − y(φ(τ))‖ is
identically zero, from which it follows that

φ(τ) = y−1(x(τ )), ∀τ ∈ [t1, t2], (2.153)

and hence D(v, w) = 0. A graphical construction of this solution is illustrated by the
numbered lines in Fig. 2.15.

Analytical solutions such as (2.153) are available only in special cases. Unfortunately,
several properties of the speech signal conspire to preclude such a simple solution. First,
(2.151) is not an appropriate local metric for speech. Based on evidence [110], we require,
at the very least, something of the form

ρ(x(τ), y(τ )) = log
||X(s, τ )||2
||Y(s, τ )||2 , (2.154)

where X(s, τ ) and Y(s, τ ) are, respectively, the “instantaneous”, that is, short-duration,
spectra of x(τ) and y(τ) at time τ and the norm is understood to be taken with respect to
the complex frequency s. In fact, the problem is somewhat more complicated than indi-
cated by (2.154) which accounts only for spectral information and ignores such prosodic
features as pitch and intensity.

Second, we must account for local variations in time scale that actually are information-
bearing. Thus g(τ) ≡ 1 and φ(τ) essentially unconstrained represent intolerable oversim-
plifications. More realistically, we should set

D(v, w) = min
{φ(t)}

∫ T

0
log

||X(s, τ )||2
||Y(s, τ )||2 g(τ) dτ, (2.155)
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Figure 2.16 A simple RC circuit as a problem in optimal control

in which φ(t) is subject to linear inequality constraints and g(t) is such that only mildly
non-linear solutions to (2.150) are allowed. Under such conditions, (2.155) will not be
analytically tractable.

In fact, however, equations similar to (2.155) also appear in optimal control problems
and were found by Bellman [31] to be amenable to numerical solution by a method he
called dynamic programming.

Consider the example of the simple circuit shown in Fig. 2.16. Suppose it is desired
to charge the capacitor C by means of the control voltage u(t) from initial voltage xi at
time t = 0 to some final voltage xt at time tt in such a way that the minimum amount
of energy J is dissipated by the resistor R. This is recognized as the variational problem
δJ = 0; that is, minimize J with respect to u(t), where

J = RC2
∫ tf

0
ẋ2 dt = 1

R

∫ tf

0
(u(t) − x(t))2 dt. (2.156)

In the notation of (2.149), F(t, u, u̇) = (1/R)(u(t) − x(t))2, and (2.150) reduces to
(d/dt)(u − x) = 0, the closed-form solution for which forces u(t) − x(t) to be constant.
For given values of x0, xf , and tf we can compute the exact u(t) needed.

2.6.2 A Solution by Dynamic Programming

This very simple problem can also be solved numerically by the method of dynamic
programming. First, the problem must be discretized so that the integral in (2.156) is
approximated by the summation

J =
n∑

l=0

�Jl = 1

R

n∑
l=0

[u(l�t) − x(l�t)]2 = 1

R

n∑
l=0

[ul − xl]
2, (2.157)

where �t = tf /n for some suitably large n and the boundary conditions are that u0 =
u(0), x0 = xi , and xn = xf .

Next, let x(t) be quantized so that it takes one of only m values {l�x}ml=1 with �x

and m chosen to provide adequate resolution over a sufficiently large range of values
of x. When the voltage drop across C is l�x, the circuit is said to be in the lth state.
Now let the state be changed every �t seconds by changing the voltage ul for l =
1, 2, . . . , n. Then for any particular program {ul}nl=1, the corresponding state sequence
can be computed from principles of elementary circuit theory. Since the circuit can be in
but m different states at each of n different times, there are exactly mn distinct programs
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for u(t). In principle, each one can be independently evaluated according to (2.157) and
the best one, in the sense of minimizing J , chosen. The chosen program is thus a discrete
time approximation to the solution of the continuous variational problem of finding u(t)

that minimizes (2.156).
Of course, for realistic values of m and n, the required number of evaluations of (2.157)

precludes the use of the naive exhaustive technique. Bellman’s well-known insight which
obviates the need for brute force is embodied by his optimality principle, which notes that
for problems such as minimizing (2.156), any program optimal for 0 ≤ l ≤ n is optimal
over any subinterval r ≤ l ≤ n for 0 ≤ r ≤ n.

The application of this principle to the solution of the RC circuit problem is illustrated
in Fig. 2.17. Let Jkr be the minimum value of J after any sequence of k state changes
terminating in state r . Let �Jlr be the incremental energy dissipated in changing the state
of the circuit from l to r by changing uk−1 to uk at time k�t . Then according to the
principle of optimality it follows that

Jkr = min
1≤l≤m

{
Jk−1,l + �Jlr

}
, (2.158)

for 1 ≤ k ≤ n and 1 ≤ r ≤ m. To start the procedure the boundary values are used to set
J0l , and thereafter only nm2 operations are needed rather than mn for the naive method.
After n state changes we will find Jmin = Jnr∗ , where r∗ is the state corresponding to the
desired xf . The sequence {uk}nk=0 is the sought-after optimal program. The technique is
called dynamic programming because it computes an optimal control policy or program
by adjusting the policy dynamically, that is, at each state change.

The purpose of the foregoing somewhat lengthy digression is to set the non-parametric
methods in their proper historical context. Vintsyuk noticed that the then new technique
of dynamic programming was precisely what was needed to evaluate the metric (2.155)
with appropriate constraints on φ(t) which, for the speech problem, plays the role of
the control u(t) in the above example. Since the original contribution by Vintsyuk, the
technique of dynamic programming has been independently applied to the automatic
speech recognition problem by several researchers [35, 37, 140, 288, 289, 290, 321] who

x

m∆x

xf

xi

r∆x

2∆x

∆x

∆t0 2∆t (k −1)∆t k ∆t (n −1)∆t n∆t = tf

Jnr* = Jmin

J1r Jk−1,r Jkr Jn−1,r

Figure 2.17 Dynamic programming solution of the optimal control of an RC circuit
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chose not to motivate their reports with the variational problem but instead focused on
the solution φ(t) and its effect of non-linear transformation of the time scale of one signal
to that of the other. Thus rather than accentuating the essential feature of the method, the
time-invariant distance measure D(v, w), they have obscured its significance by giving
primacy to the “alignment function”, φ(t), which is merely a by-product of the solution
and of considerably less importance in the actual classification process. As a result of
this emphasis, the method has come to be known as dynamic time warping (DTW):
“dynamic” no doubt from dynamic programming, and “time warping” not from science
fiction’s rendition of relativistic physics but rather to indicate non-linear transformation
of time scale.

A complete, and in several respects innovative, application of the method of Vintsyuk
was given by Itakura [140]. He advocated the use of dynamic programming with a par-
ticular set of features, linear prediction coefficients, a particular metric, the logarithm of
the ratio of prediction residuals, and a particular set of constraints on the derivative of the
time scale transformation. Since this method has gained many adherents, we shall briefly
describe it and use it as a generic non-parametric method.

As was the case with the optimal control problem, we begin by discretizing the problem
in time by sampling x(t) and y(t) every �t seconds, forming the sequences {x(n�t)}Nn=1
and {y(m�t)}Mm=1. At the first level, the sequences are blocked into frames of S samples
over which a pth-order autocorrelation analysis is performed from which the LPCs are
computed as in (2.50)–(2.54).

The crucial characteristic of the Itakura method is the choice of metric in the feature
space, namely

ρ(x(n�t), y(m�t)) = log
axRya

′
x

ayRya′
y

, (2.159)

where x(n�t) and y(m�t) are the frames centered about times n�t and m�t , respec-
tively; ax and ay are the p-dimensional LPC vectors derived from x and y, respectively,
and Ry denotes the pth-prder autocorrelation matrix of the frame y.

Itakura showed that the ratio of quadratic forms in (2.159) can be efficiently computed
by a p-dimensional inner product. Other properties of (2.159) are derived in [110], two
of which are relevant here: the metric captures the spirit of (2.82) but is not, strictly
speaking, a metric. While it is true that ρ(x, y) ≥ 0 for all x, y, it deviates slightly from
being symmetric and obeying the triangle inequality and is thus more correctly called a
distortion function. The non-negativity property, however, is sufficient to justify invoking
the Loftsgaarden and Quesenberry result.

Also important to Itakura’s method was his choice of constraints on φ(t) which are
introduced via the function g(t). First, there are global constraints

g(n�t) =




∞, if φ̇(n�t) < 1
2 ,

1, if 1
2 ≤ φ̇(n�t) ≤ 2,

∞, if φ̇(n�t) > 2,

(2.160)

which have the effect of limiting the overall compression or dilation of the time scale of
y(t) to a factor of 1

2 or 2, respectively. Second, certain local constraints are incorporated
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into g(t) so that the change of time scale is restricted locally to the same range as it is
globally. This is achieved by requiring

g(n�t) =




∞, if φ((n − 1)�t) = φ((n − 2)�t) = φ(n�t),

1, if 0 ≤ φ(n�t) − φ((n − 1)�T ) < 2,

∞, otherwise.

(2.161)

The choice of an LPC parameterization of the speech signal in conjunction with the
distance function of (2.159) and the constraints (2.160) and (2.161) lead to the following
discrete analog of the variational problem (2.155):

D(v, w) = min
φ

N∑
n=1

ρ(x(n�t), y(n�t)) · g(n�t). (2.162)

The combinatorial optimization problem (2.162) can be solved by a dynamic program-
ming algorithm analogous to (2.158). Let us omit the symbol �t so that, for any n ∈
[1, N ], φ(n) = m for some m ∈ [0,M] consistent with (2.160) and (2.161). Let us further
simplify the notation by letting d(n, m) stand for ρ(x(n�t), y(m�t)), so that d(n, m) is
the incremental distance associated with identifying frame n of x with frame m of y. The
minimum cumulative distance of the first n frames of x being mapped onto m frames of
y is designated by D(n, m). Then the minimization in (2.162) can be accomplished by
computing

D(n, m) = d(n, m) + min {D(n − 1, m)g(n − 1, m), D(n − 1, m − 1), D(n − 1, m − 2)} ,

(2.163)

for 1 ≤ n ≤ N, 1 ≤ m ≤ M , where φ(1) = 1 and φ(N) = M . Note that the boundary con-
ditions on φ are those that would be required to solve the Euler–Lagrange equation corre-
sponding to (2.159). At the end of recursive application of (2.163), D(v,w) = D(N, M).
In the process, we simultaneously constructed a function φ which relates the time scales
of v and w in such a way that D(v, w) is insensitive to their differences. If so desired,
we could explicitly recover φ from the execution of the procedure defined by (2.163).

The procedure is illustrated in Fig. 2.18 in which the interior of the parallelogram is the
feasible region for the combinatorial optimization problem (2.162) defined by the global
constraints (2.160) and the arrows indicate the local constraints (2.161) which restrict φ

to only those mild non-linearities which would be expected to result from changes in
speaking rate. A complete solution is shown in Fig. 2.19.

To use (2.163) to recognize an unlabeled utterance w as some word vi ∈ V , we perform
the analog of (2.95). We assume that we have available at least one labeled sample of
each vi ∈ V . We compute D(vi, w) for all vi ∈ V and decide that w ∈ v∗, where

v∗ = arg min
v∈V

{D(v, w)} , (2.164)

which, by analogy with (2.95), is the Bayesian decision based upon a nonparametric
estimate of the class-conditional density functions for the set of vocabulary words.
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Figure 2.18 Dynamic programming solution of the acoustic pattern recognition problem
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Figure 2.19 Dynamic time warping with speech templates

2.7 Taxonomy of Linguistic Structure

Sections 2.1 through 2.6 explain how information is encoded in the speech signal. The
remainder of this book is devoted to the analysis of the organization of the information-
bearing features according to various aspects of linguistic structure. We define the three
primary components of language: symbols, grammar, and meaning. The symbols of the
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Table 2.1 Taxonomy of linguistic structure

Symbols Grammar Meaning

acoustic-phonetic phonological morphological
prosodic phonotactic lexical

morphological semantic
syntactic pragmatic
prosodic prosodic

speech code are arbitrary, subject only to physical and articulatory constraints. Grammar
refers to the rules for making allowable sequences of symbols. Grammatical rules are the
arbitrary relationships of the symbols to each other without regard for meaning. However,
some aspects of grammar provide a framework for the expression of meaning. Finally,
meaning is the relationship between symbols and reality. Meaningful messages describe
the physical world and our mental image of it.

Each of these elements of language is composed of particular aspects of linguistic
structure. This is summarized in Table 2.1.

2.7.1 Acoustic Phonetics, Phonology, and Phonotactics

Linguistic analysis ultimately rests on the assumption that speech is literate. That is, all
of the acoustic patterns in the speech signal are well described by a small set of pho-
netic symbols. There are four broad phonetic categories, vowels, fricatives, plosives, and
nasals. Vowels are produced by vocal cord vibration modulating the air stream forced out
of the lungs and exciting the acoustic resonances of the vocal tract. Fricatives result from
an air jet, created by an articulatory constriction of the vocal tract, impinging on one of
its fixed surfaces. Plosives are generated by a sudden release of pressure built up behind
an articulatory closure of the vocal tract. Finally, nasals are those sounds produced by
connecting the nasal cavity to the vocal tract allowing sound to be radiated from the nos-
trils. Each of the broad phonetic categories has a characteristic acoustic spectrum. Vowel
spectra have prominent resonances called formants. Fricatives have high-pass spectra.
Plosives are identified by short bursts of broadband energy. Nasals are distinguished by
the presence of zeros in their spectra.

The broad phonetic categories may be divided into smaller classes according to the
place and manner of articulation. For vowels, place refers to the position of the tongue
body from front to back and from high to low. The front of the vocal tract is that part near
the mouth. The lower part of the vocal tract is the part nearest the movable part of the
jaw. Different positions of the tongue body correspond to different area functions which,
as shown in Section 2.1, result in different solutions of (2.2) each having a characteristic
spectrum. We will be more specific about this effect in a moment.

For phonetic categories other than vowels, place refers to the location of the constriction
of the vocal tract created by positions of the articulators. In these cases, place is defined
as labial (lips), dental (teeth), alveolar (ridge behind the teeth), palatal (hard palate), velar
(soft palate), pharyngeal (throat), and glottal (larynx).
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For all phonetic categories, manner refers method of generating the sound. The principal
methods are voicing (vibrating vocal cords), plosion (complete closure), frication (partial
closure), nasalization (opening the nasal cavity with the velum), and liquid (smooth slow
motion of the articulators). A typical phonetic inventory for English is shown in Table 2.2.
Each entry in the table has a distinct place and manner of articulation, resulting in a distinct
acoustic signal with a distinct spectrum. The symbols in the table stand for the sound
corresponding to the capitalized portion of the adjacent English word.

Sounds in the phonetic inventory in Table 2.2 can be defined in terms of their place
and manner of articulation. The vowels are, of course, all voiced. Their articulatory places
are shown in Table 2.3.

The vowels have distinct spectra and, in particular, characteristic formant frequencies.
These are shown in Table 2.4.

For broad phonetic categories other than vowels, the phonetic units can be arranged as
shown in Table 2.5.

The acoustic-phonetic symbols described above are joined in sequences according to
the grammatical rules of phonology and phonotactics. Phonology describes the ways in
which the sounds typically associated with a symbol are changed by the phonetic context

Table 2.2 The ARPAbet phonetic
inventory

Symbol Sound Symbol Sound

i hEEd v Voice
I hId T THick
e hAy D THose
E bEd s See
@ hAd z Zoo
a cOd S meSH
c pAW Z meaSUre
o hOE h Heat
U hOOd m Mother
u hOOt n North
R hEARd G riNG
x Ahead l Loop
A bUd L battLE
Y hIde M bottOM
W hOW N buttON
O bOY F baTTer
X rosEs Q baTman
p Pond w Won
b Bond y You
t Tug r Rope
d Dug C CHild
k Kit J Jug
g Got H WHere
f File # (silence)
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Table 2.3 Place of the vowels

Back Middle Front

High i
U a I

Middle o R E
A

Low c @

Table 2.4 Typical formant
frequencies (Hz) for the
vowels

Vowel f1 f2 f3

i 255 2330 3000
I 350 1975 2560
E 560 1875 2550
@ 735 1625 2465
a 760 1065 2550
A 640 1250 2610
c 610 865 2540
U 475 1070 2410
u 290 940 2180

Table 2.5 Place and manner for the broad phonetic categories

Voiced Labial Dental Alveolar Palatal Velar Glottal

Plosive b d J g
Fricative v D z Z
Nasal m n G
Liquid w l y h
Unvoiced
Plosive p t C k
Fricative f T s S

in which they appear. There are two primary reasons for the phonological variations of
sounds. First is the phenomenon of coarticulation of a sound due to the motions of the
articulators as they move from one typical place of articulation to another. Another way
to describe the coarticulatory effect is as a set of constraints on the ways A(x, t) in (2.2)
can change in time due to physiological and mechanical factors that determine the way
it changes in space. The second consideration is both aesthetic and practical. That is, it
is often desirable to change sounds in context so they will be more pleasing to the ear
and/or easier to produce by simplifying their articulatory motions.
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Phonotactics determines the allowable sequences of phonetic units. To some extent, the
order of sounds in an utterance is constrained by the physiology and mechanics of the
vocal apparatus. These factors are primarily reflected in the phonology of a language.
However, there are sound sequences in any language that are euphonious and easy to
articulate, yet they do not appear. We shall treat these restrictions as arbitrary rules that
must, however, be observed if the language is to be faithfully described.

2.7.2 Morphology and Lexical Structure

Morphology is another aspect of grammar that places further restrictions on sequences
of sounds used to form words, that is, on lexical structure. For example, specific sounds
may be appended to nouns to indicate case or number or to verbs in order to indicate
mood or tense. Also, a specific sound may be attached to a root word as a prefix or suffix
in order to alter the logical or spatial meaning of a word. For example, the prefix “un”
in English is the logical equivalent of negation and the suffix “er” changes the name of
an activity into the name of one who engages in that activity.

Two things are clear about morphology. First, it is widely used to increase the lexicon
of a language. Second, it is a grammatical function but it has significant consequences
for the meanings of words, hence its appearance in two columns of Table 2.1.

2.7.3 Prosody, Syntax, and Semantics

Prosody is that aspect of speech that a listener perceives as melody and emotion. The
physical correlates of prosody are f0, the vibration frequency of the vocal cords that a
listener perceives as pitch, energy as measured by the term G in (2.45), and duration of the
phonetic units which is reflected in speaking rate. Listeners are sensitive to words and/or
phonetic units that are pronounced faster or slower than average, the contrast marking
other aspects of linguistic structure.

Prosody is a suprasegmental feature of speech. That is, it is not a property of individual
acoustic-phonetic units, even though it may significantly affect their spectra, but rather is
properly associated with phrases, sentences, and longer discourses. Throughout this book
we shall ignore the suprasegmental effects of prosody, treating it instead as a special set
of symbols (i.e. segments) that have syntactic and semantic implications. Specifically,
prosodic contrasts are used as markers of phrase structure that have effects on meaning.

Syntax is the linguistic structure that describes the composition of sentences from
words without regard for meaning. There are two principal aspects of syntax. First is
the designation of a fixed set of syntactic constituents. At the lexical level, each word is
assigned to at least one such constituent, depending on its role in the sentence. Typically,
these constituents are the so-called parts of speech such as noun and verb. Second, the
parts of speech are organized into larger constituents called phrases according to well-
defined rules. Although these rules are independent of meaning, the determination of the
phrase structure of a sentence by parsing it into its syntactic constituents is a necessary
first step in the extraction and/or representation of meaning.

The linguistic structure that addresses the meanings of utterances is called semantics.
It also has two significant aspects. First is lexical semantics, which associates individual
words to the objects, qualities, and actions they represent. As mentioned in Section 2.7.2,
lexical semantics is partially dependent upon morphology. The second aspect of semantics
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with which we shall be concerned is compositional in nature, describing the way that
lexical semantics and phrase structure cooperate to express the variety of much richer
meanings of sentences.

2.7.4 Pragmatics and Dialog

Pragmatics refers to the relationship between utterances and speakers. Different speakers
may use the same words to express different semantics. They may also use the same
words differently in different social contexts, thereby conveying different meanings.

Dialog refers to the expression of meaning in ordinary conversation as opposed to
isolated utterances. Dialog conventions may substantially alter both syntactic rules and
semantic content. Dialog also poses the difficult problems of ellipsis, the omission of
words or phrases when they are understood by context, and the resolution of reference,
the determination of the proper attachment of modifiers to the words or phrases they
modify.

These aspects of linguistic structure are listed simply to acknowledge their existence.
They will not be explicitly discussed in these pages. The omission is not intended to
diminish their importance. As we shall later see, there is simply a lack of mathematical
machinery that can be brought to bear on these topics.

We will now proceed to the main concern of this book, the mathematical treatment
of phonology, phonotactics, and syntax in Chapters 3 through 7 and of semantics in
Chapters 8 through 10. Our analysis is neither standard nor exhaustive. Traditional exam-
inations of linguistic structure may be found in Chomsky and Halle [47], Jakobson [143],
Fant [83] and Oshika et al. [239]. These pages are concerned with the expression of the
essential aspects of linguistic structure in mathematical models.



3
Mathematical Models
of Linguistic Structure

3.1 Probabilistic Functions of a Discrete Markov Process

An important implication of the analysis of Section 2.1 is the non-stationarity of the
speech signal. In Section 2.4 we observed that a consequence of the non-stationarity is
an intrinsic uncertainty in computing the spectrum of the speech signal. In Section 2.6
we made an implicit model of the non-stationarity by forming a distance measure that is
insensitive to local variations of time scale. We will now develop an explicit method of
accounting for non-stationarity based on a powerful stochastic model. For the most part,
except for Section 3.1.5, we will assume that the speech signal is piecewise stationary.
As illustrated in Fig. 3.1, we will say that the segment, wk, on the interval from tk−1 to
tk is stationary. This is reasonable in view of equation (2.34).

A probabilistic function of a (hidden) Markov chain is a stochastic process generated by
two interrelated mechanisms, an underlying Markov chain having a finite number of states,
and a set of random functions, one of which is associated with each state. At discrete
instants of time, the process is assumed to be in some state and an observation is generated
by the random function corresponding to the current state. The underlying Markov chain
then changes states according to its transition probability matrix. The observer sees only
the output of the random functions associated with each state and cannot directly observe
the states of the underlying Markov chain; hence the term hidden Markov model.

In principle, the underlying Markov chain may be of any order and the outputs from
its states may be multivariate random processes having some continuous joint probability
density function. In this discussion, however, we shall restrict ourselves to consideration
of Markov chains of order one, that is, those for which the probability of transition to
any state depends only upon that state and its predecessor.

3.1.1 The Discrete Observation Hidden Markov Model

We shall limit the discussion to processes whose observations are drawn from a discrete
finite alphabet according to discrete probability distribution functions associated with the
states. It is quite natural to think of the speech signal as being generated by such a

Mathematical Models for Speech Technology. Stephen Levinson
 2005 John Wiley & Sons, Ltd ISBN: 0-470-84407-8
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t0 t1 t2 t3 t4 tn
x1 x2 x3 x4 xn

t

e

Figure 3.1 Segmenting the speech waveform

process. We can imagine the vocal tract as being in one of a finite number of articulatory
configurations or states. In each state a short (in time) signal is produced that has one of a
finite number of prototypical spectra depending, of course, on the state. Thus, the power
spectra of short intervals of the speech signal are determined solely by the current state
of the model, while the variation of the spectral composition of the signal with time is
governed predominantly by the probabilistic state transition law of the underlying Markov
chain. For speech signals derived from a small vocabulary of isolated words, the model
is reasonably faithful. The foregoing is, of course, an oversimplification intended only for
the purpose of motivating the following theoretical discussion.

Let us say that the underlying Markov chain has N states q1, q2, . . . , qN representing
the stationary intervals, and the observations are drawn from an alphabet, V, of M pro-
totypical spectra v1, v2, . . . , vM . The underlying Markov chain can then be specified in
terms of an initial state distribution vector π ′ = (π1, π2, . . . , πN) and a state transition
matrix, A = [aij ], 1 ≤ i, j ≤ N . Here, πi is the probability of qi at some arbitrary time,
t = 0, and aij is the probability of transiting to state qj given current state, qi , that is,
aij = Prob(qj at t + 1|qi at t).

The random processes associated with the states can be collectively represented by
another stochastic matrix B = [bjk ] in which, for 1 ≤ j ≤ N and 1 ≤ k ≤ M , bjk is the
probability of observing symbol vk given current state qj . The vk are obtained by quantiz-
ing the feature space using the algorithm of (2.144)–(2.147) in Section 2.5.4. We denote
this as bjk = Prob(vk at t |qj at t). Thus a hidden Markov model, M, shown in Fig. 3.2,
is identified with the parameter set (π , A, B).

To use hidden Markov models to perform speech recognition we must solve two specific
problems: observation sequence probability estimation, which will be used for classifica-
tion of an utterance; and model parameter estimation, which will serve as a procedure for
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Figure 3.2 A three-state hidden Markov model

training models for each vocabulary word. Both problems proceed from a sequence, O,
of observations O1O2 · · · OT where each Ot , for 1 ≤ t ≤ T , is some vk ∈ V.

Our particular classification problem is as follows. We wish to recognize utterances
known to be selected from some vocabulary, W , of words w1, w2, . . . , wv . We are given
an observation sequence, O, derived from the utterance of some unknown wi ∈ W and a
set of V models M1, M2, . . . , MV . We must compute Pi = Prob(O|Mi) for 1 ≤ i ≤ V .
We will then classify the unknown utterance as wi if and only if Pi ≥ Pj for 1 ≤ j ≤ V .

The training problem is simply that of determining the models Mi = (πi, Ai, Bi) for
1 ≤ i ≤ V given training sequences O(1), O(2), . . . , O(V ), where O(i) is known to have
been derived from an utterance of word wi for 1 ≤ i ≤ V .

One could, in principle, compute Prob(O|M) by computing the joint probability
Prob(O, s|M) for each state sequence, s, of length T , and summing over all state
sequences. Obviously this is computationally intractable. Fortunately, however, there is
an efficient method for computing P . Let us define the function αt (i), for 1 ≤ t ≤ T , as
Prob (O1O2 . . . Ot and qi at t |M). According to the definition α1(i) = πibi(O1), where
bi(O1) is understood to mean bik if and only if O1 ≡ vk; then we have the following
recursive relationship for the “forward probabilities”:

αt+1(j) =
[

N∑
i=1

αt (i)aij

]
bj (Ot+1), 1 ≤ t ≤ T − 1. (3.1)

Similarly, we define another function, βt(j) = Prob(Ot+1Ot+2 . . . OT |qj at t and M).
We set βT (j) = 1 for all j and then use the backward recursion

βt (i) =
N∑

j=1

aij bj (Ot+1)βt+1(j), T − 1 ≥ t ≥ 1, (3.2)

to compute the “backward probabilities”.
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The two functions can be used to compute P according to

P = Prob(O|M) =
N∑

i=1

N∑
j=1

αt (i)aij bj (Ot+1)βt+1(j) (3.3)

for any t such that 1 ≤ t ≤ T − 1. Equations (3.1) to (3.3) are from Baum [25] and are
sometimes referred to as the “forward–backward” algorithm.

Setting t = T − 1 in (3.3) gives

P =
N∑

i=1

αT (i) (3.4)

so that P can be computed from the forward probabilities alone. A similar formula for
P can be obtained from the backward probabilities by setting t = 1. These and several
other formulas in this section may be compactly written in matrix notation. For instance,

P = π ′B1AB2A · · · ABT 1, (3.5)

where 1 is the N -vector (1, 1, 1, . . . , 1)′ and

Bt =




b1(Ot ) O
b2(Ot )

. . .

0 bN(Ot)


 (3.6)

for 1 ≤ t ≤ T . From (3.5) it is clear that P is a homogeneous polynomial in the πi, aij ,

and bjk . Any of (3.3) through (3.5) may be used to solve the classification problem. The
forward and backward probabilities will prove to be convenient in other contexts.

When we compute P with the forward–backward algorithm, we are including the
probabilities of all possible state sequences that may have generated O. Alternatively, we
may define P as the maximum over all state sequences i = (i0, i1, . . . , iT ) of the joint
probability P(O, i). This distinguished state sequence and the corresponding probability
of the observation sequence can be simultaneously computed by means of the Viterbi
[323] algorithm. This dynamic programming technique proceeds as follows: Let φ1(i) =
πibi(O1) for 1 ≤ i ≤ N . Then we can perform the following recursion for 2 ≤ t ≤ T and
1 ≤ j ≤ N :

φt (j) = max
1≤i≤N

[φt−1(i)aij ]bj (Ot ) (3.7)

and

�t(j) = i∗, (3.8)

where i∗ is a choice of an index i that maximizes φt (i).
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The result is that P = max1≤i≤N [φT (i)]. Also the maximum likelihood state sequence
can be recovered from � as follows. Let qT = i∗, where i∗ maximizes P . Then for
T ≥ t ≥ 2, qt−1 = �t(qt ). If one only wishes to compute P , the linked list, �, need not
be maintained as in (3.8). Only the recursion (3.7) is required.

The problem of training a model, unfortunately, does not have such a simple solution. In
fact, given any finite observation sequence as training data, we cannot optimally train the
model. We can, however, choose π , A, and B such that Prob(O|M) is locally maximized.
For an asymptotic analysis of the training problem the reader should consult Baum and
Petrie [27].

We can use the forward and backward probabilities to formulate a solution to the
problem of training by parameter estimation. Given some estimates of the parameter
values, we can compute, for example, that the expected number of transitions, γij , from
qi to qj , conditioned on the observation sequence is just

γij = 1

P

T −1∑
t=1

αt(i)aij bj (Ot+1)βt+1(j). (3.9)

Then, the expected number of transitions, γi out of qi , given O, is

γi =
N∑

j=1

γij = 1

P

T −1∑
t=1

αt (i)βt (i), (3.10)

the last step of which is based on (3.2). The ratio γij /γi is then an estimate of the
probability of state qj , given that the previous state was qi . This ratio may be taken as a
new estimate, aij , of aij . That is,

aij = γij

γi

=
∑T −1

t=1 αt (i)aij bj (Ot+1)βt+1(j)∑T −1
t=1 αt (i)βt (i)

. (3.11)

Similarly, we can make a new estimate of bjk as the frequency of occurrence of vk in
qj relative to the frequency of occurrence of any symbol in state qj . Stated in terms of
the forward and backward probabilities, we have

bjk =
∑

t�Ot=vk
αt (j)βt (j)∑T

t=1 αt (j)βt (j)
. (3.12)

Finally, new values of the initial state probabilities may be obtained from

πi = 1

P
α1(i)β1(i). (3.13)

As we shall see in the next section, the reestimates are guaranteed to increase P , except
at a critical point.
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Proof of the Reestimation Formula

The reestimation formulas (3.11), (3.12), and (3.13) are instances of the Baum–Welch
algorithm. Although it is not at all obvious, each application of the formulas is guaranteed
to increase P except if we are at a critical point of P , in which case the new estimates
will be identical to their current values. Several proofs of this rather surprising fact are
given in the literature; see [25] [29]. Because we shall need to modify it later to cope
with the finite sample size problem, we shall briefly sketch Baum’s proof [25] here. The
proof is based on the following two lemmas:

Lemma 1. Let ui, i = 1, . . . , S be positive real numbers, and let vi, i = 1, . . . , S be non-
negative real numbers such that

∑
i vi > 0. Then from the concavity of the log function it

follows that

ln

(∑
vi∑
ui

)
= ln

[∑
i

(
ui∑
k uk

)
· vi

ui

]
(3.14)

≥
∑

i

ui∑
k uk

ln

(
vi

ui

)
(3.15)

= 1∑
k uk

[∑
i

(ui ln vi − ui ln ui

]
. (3.16)

Here every summation is from 1 to S.

Lemma 2. If ci > 0 i = 1, . . . , N, then, subject to the constraint
∑

i xi = 1, the function

F(x) =
∑

i

ci ln xi (3.17)

attains its unique global maximum when

xi = ci∑
i ci

. (3.18)

The proof follows from the observation that by the Lagrange method

∂

∂xi

[
F(x) = λ

∑
i

xi

]
= ci

xi

− λ = 0. (3.19)

Multiplying by xi and summing over i gives λ = ∑
i ci , hence the result.

Now in Lemma 1, let S be the number of state sequences of length T . For the ith
sequence, let ui be the joint probability

ui = Prob[state sequence i, observation O|model M]

= P(i, O|M).



Mathematical Models of Linguistic Structure 63

Let vi be the same joint probability conditioned on model M. Then

∑
i ui = p(O|M)

�= P(M), (3.20)∑
i vi = p(O|M)

�= P(M), (3.21)

and the lemma gives

ln
P(M)

P (M)
≥ 1

P(M)
· [Q(M, M) − Q(M, M)], (3.22)

where

Q(M, M)
�=
∑

i

ui ln vi. (3.23)

Thus, if we can find a model M that makes the right-hand side of (3.22) positive, we
have a way of improving the model M. Clearly, the largest guaranteed improvement by
this method results for M, which maximizes Q(M, M), and hence maximizes the right-
hand side of (3.22). The remarkable fact proven in Baum & Eagon [26] is that Q(M, M)

attains its maximum when M is related to M by the reestimation formulas (3.11) through
(3.13). To show this let the sth-state sequence be s0, s1, . . . , sT , and the given observation
sequence be Ok1 , . . . , OkT

. Then

ln vs = ln P(s, O|M) = ln πs0 +
T −1∑
t=0

ln ast st+1 +
T −1∑
t=0

ln bst+1(Ot+1). (3.24)

Substituting this in (3.22) for Q(M, M), and regrouping terms in the summations accord-
ing to state transitions and observed symbols, it can be seen that

Q(M, M) =
N∑

i=1

N∑
j=1

cij ln aij +
N∑

j=1

M∑
k=1

djk ln bj (k) +
N∑

i=1

ei ln πi. (3.25)

Here

cij =
s∑

s=1

p(s, O|M)nij (s), (3.26)

djk =
s∑

s=1

p(s, O|M)mjk (s), (3.27)

ei =
s∑

s=1

p(s, O|M)ri(s), (3.28)
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and for the sth-state sequence

nij (s) = number of transitions from state qi to qj ,

mjk (s) = number of times symbol k is generated in state qj ,

ri(s) =
{

1, if initial state is qi

0, otherwise.

Thus, cij , djk , and ei are the expected values of nij , mjk , ri , respectively, based on
model M.

Expression (3.25) is now a sum of 2N + 1 independent expressions of the type maxi-
mized in Lemma 2. Hence, Q(M, M) is maximized if

aij = cij∑
j cij

, (3.29)

bj (k) = djk∑
k djk

, (3.30)

πi = ei∑
i ei

. (3.31)

These are recognized as the reestimation formulas (3.11) through (3.13).

Solution by Optimization Techniques

Lest the reader be led to believe that the reestimation formulas are peculiar to stochastic
processes, we shall examine them briefly from several different points of view. Note that
the reestimation formulas update the model in such a way that the constraints

N∑
i=1

πi = 1, (3.32)

N∑
j=1

aij = 1, for 1 ≤ i ≤ N, (3.33a)

and
M∑

k=1

bjk = 1, for 1 ≤ j ≤ N, (3.33b)

are automatically satisfied at each iteration. The constraints are, of course, required to
make the hidden Markov model well defined. It is thus natural to look at the training
problem as a problem of constrained optimization of P and, at least formally, solve
it by the classical method of Lagrange multipliers. For simplicity, we shall restrict the
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discussion to optimization with respect to A. Let Q be the Lagrangian of P with respect
to the constraints (3.33a). We see that

Q = P +
N∑

i=1

λi


 N∑

j=1

aij − 1


 , (3.34)

where the λi are the as yet undetermined Lagrange multipliers.
At a critical point of P on the interior of the manifold defined by (3.32) and (3.33), it

will be the case that, for 1 ≤ i, j ≤ N ,

∂Q

∂aij
= ∂P

∂aij
+ λi = 0. (3.35)

Multiplying (3.35) by aij and summing over j , we get

N∑
j=1

aij
∂P

∂aij
= −


 N∑

j=1

aij


λi = −λi = ∂P

∂aij
, (3.36)

where the right-hand side of (3.36) follows from substituting (3.33a) for the sum of aij

and then replacing λi according to (3.35). From (3.36) it may be seen that P is maximized
when

aij =
aij

∂P
∂aij∑N

k=1 aik
∂P
∂aik

. (3.37)

A similar argument can be made for the π and B parameters.
While it is true that solving (3.37) for aij is analytically intractable, it can be used to

provide some useful insights into the Baum–Welch reestimation formulas and alterna-
tives to them for solving the training problem. Let us begin by computing ∂P/∂aij by
differentiating (3.3), according to the formula for differentiating a product,

∂P

∂aij
=

T −1∑
t=1

αt (i)bj (Ot+1)βt+1(j). (3.38)

Substituting the right-hand side of (3.38) for ∂P/∂aij in (3.37), we get

aij =
∑T −1

t=1 αt (i)aij bj (Ot+1)βt+1(j)∑N
j=1

∑T −1
t=1 αt (i)aij bj (Ot+1)βt+1(j)

. (3.39)

Then changing the order of summation in the denominator of (3.39) and substituting in
the right-hand side of (3.2), we get

aij =
∑T −1

t=1 αt (i)aij bj (Ot+1)βt+1(j)∑T −1
t=1 αt (i)βt (i)

. (3.40)
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The right-hand side of (3.40) is thus seen to be identical to that of the reestimation formula
(3.11). Thus, at a critical point, the reestimation formula (3.11) solves the equations (3.40).
Similarly, if we differentiate (3.3) with respect to πi and bjk , we get

∂P

∂πi

=
N∑

j=1

bi(O1)aij bj (O2)β2(j) = bi(O1)β1(i) (3.41)

and

∂P

∂bjk
=

∑
t�Ot=vk

N∑
i=1

αt (i)aij βt+1(j) + δ(O1, vk)πjβ1(j), (3.42)

respectively. In (3.42), δ is understood to be the Kronecker δ function.
By substituting (3.41) and (3.42) into their respective analogs of (3.37), we obtain the

reestimation formulas (3.13) and (3.12), respectively, at a critical point. Thus it appears
that the reestimation formulas may have more general applications than might appear
from their statistical motivation.

Equation (3.37) suggests that we define a transformation, T , of the parameter space
onto itself as

T (x)ij =
xij

∂P
∂xij∑N

k=1 xik
∂P
∂xik

, (3.43)

where T (x)ij is understood to mean the ij th coordinate of the image of x under T . The
parameter space is restricted to be the manifold such that xij ≥ 0 for 1 ≤ i, j ≤ N and∑N

j=1 xij = 1 for 1 ≤ i ≤ N . Thus the reestimation formulas (3.11), (3.12), and (3.13) are
a special case of the transformation (3.43), with P a particular homogeneous polynomial
in the xij having positive coefficients. Here the xij include the πi , the aij , and the bjk .
Baum and Eagon [26] have shown that for any such polynomial P [T (x)] > P(x) unless
x is a critical point of P . Thus the transformation, T , is appropriately called a growth
transformation. The conditions under which T is a growth transformation were relaxed
by Baum and Sell [29] to include all polynomials with positive coefficients. They further
proved that P increases monotonically on the segment from x to T (x). Specifically,
they showed that P [ηT (x) + (1 − η)x] ≥ P(x) for 0 ≤ η ≤ 1. Other properties of the
transformation (3.43) have been explored by Passman [240] and Stebe [307]. There may
be still less restrictive general criteria on P for T to be a growth transformation.

We can give T (x) a simple geometric interpretation. For the purposes of this discussion
we shall restrict ourselves to x ∈ R

N, xi ≥ 0 for 1 ≤ i ≤ N , and the single constraint
G(x) = ∑N

i=1 xi − 1 = 0. We do so without loss of generality, since constraints such as
those of (3.33) are disjoint, that is, no pair of constraints has any common variables. As
shown in Fig. 3.3, given any x satisfying G(x) = 0, T (x) is the intersection of the vector
X, or its extension, with the hyperplane

∑N
i=1 xi − 1 = 0, where X has components xi

∂P
∂xi

for 1 ≤ i ≤ N .
This may be shown by observing that a line in the direction of X passing through the

origin has the equation y = rX, where r is a non-negative scalar.
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DIR (T (x) − x)

q ≤ p/2

x2

xn

x1

(T (x) − x)

(x + hX)

T (x)

X
∇P

q

G (x) = ∑ xi − 1 = 0
n

i = 1

m(h) T (x) + (1 − m(h))x

x

Figure 3.3 The geometry of the Baum algorithm

Componentwise this is equivalent to

yi = rxi

∂P

∂xi

, for 1 ≤ i ≤ N. (3.44)

We can find that r for which y intersects the hyperplane G(x) = 0 by summing over i.
Thus

N∑
i=1

yi = r

N∑
i=1

xi

∂P

∂xi

= 1, (3.45)

since y lies on the hyperplane G(x) = 0. Rearranging (3.45), we have

r = 1∑N
i=1 xi

∂P

∂xi

(3.46)

and

yi =
xi

∂P

∂xi∑N
j=1 xj

∂P

∂xj

. (3.47)

Furthermore, as also shown in Fig. 3.3, the vector (T (x) − x) is the set of intersec-
tions of the vector (x + ηX) with the hyperplane G(x) = 0 for 0 ≤ η ≤ +∞ with T (x)

corresponding to η = +∞ and x to η = 0.
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Finally, in view of the result of Baum and Sell, quoted above, the vector (T (x) − x)

must also have a positive projection on ∇P . This, too, is easily seen. If P is a polynomial
with positive coefficients, then ∂P/∂xi ≥ 0 for 1 ≤ i ≤ N . From the definition of T it is
clear that

T (x)i ≥ xi ⇔ ∂P

∂xi

≥
N∑

j=1

xj

∂P

∂xj

= r, (3.48)

where r is some constant. Then it must be true that

N∑
i=1

[T (x)i − xi]

(
∂P

∂xi

− r

)
≥ 0, (3.49)

since both factors in each summand are of the same sign. Rearranging (3.49), we have

N∑
i=1

[T (x)i − xi]
∂P

∂xi

≥ r

N∑
i=1

[T (x)i − xi] = 0. (3.50)

The right-hand side is zero since
∑N

i=1 T (x)i = ∑N
i=1 xi = 1. Thus (T (x) − x) · ∇P ≥ 0,

proving that a step of the transformation has a positive projection along the gradient of
P .

This merely guarantees that we can move an infinitesimal amount in the direction of
(T (x) − x) while increasing P . The theorem of Baum and Eagon, however, guarantees
much more, namely that we can take a finite step and be assured of increasing P . A
geometrical interpretation and proof of this result is as follows.

We begin by recalling two simple properties of homogeneous polynomials. A well-
known theorem due to Euler states that if P(x) is a homogeneous polynomial with positive
coefficients,

N∑
L=1

xi

∂P

∂xi

= wpP (x), (3.51)

where the constant wp is the weight of P(x) and is equal the degree of each term in
P(x). This result is easily derived by differentiating P(x) and collecting terms.

The second result is that at a critical point of P subject to the constraint that∑N
i=1 xi = 1,

∂P

∂xi

= wpP (x). (3.52)

This follows from the method of Lagrange multipliers according to which

∇
(

P + λ

[
N∑

i=1

xi − 1

])
= 0 (3.53)
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at a critical point. Performing the differentiation indicated in (3.53), we find that the
Lagrange multiplier is just

λ = −∂P

∂xi

, 1 ≤ i ≤ N. (3.54)

Multiplying by xi and summing over i, we obtain

∑
i

[
xi − ∂P

∂xi

+ xiλ

]
= 0. (3.55)

Then, recalling the constraint on xi , (3.55) reduces to

∑
i

xi

∂P

∂xi

= −λ (3.56)

and, invoking Euler’s result (3.51), (3.56) becomes

−λ = wpP (x). (3.57)

Substituting the value of λ into (3.54) gives the result of (3.52). Note that (3.57) implies
that the gradient of P with respect to the constraint is normal to the plane G(x) specified
by the constraint. Note also that at a critical point

T (x)i =
xi

∂P

∂xi∑
j xj

∂P

∂xj

= xiwpP (x)

wpP (x)
= xi (3.58)

so that a critical point of P is a fixed point of the mapping T (x).
We can now use these results to extend (3.50) to the full theorem of Baum and Eagon.

Either (3.50) holds for some finite step �x in the direction of T (x) − x or ∇P · (T (x) − x)

becomes negative at that distance. If the latter is true then there must be a point, z, between
x and x + �x at which ∇P · (T (x) − x) = 0. This point will be a critical point of P(x)

with respect to the constraint G(x).
This critical point is the intersection of the vector x + ηX for some η > 0, with the

vector (T (x) − x). Because it is a critical point it is also the intersection of z + µZ with
(T (x) − x). Thus we have two equations for the unique line passing through the origin
and the point z, namely,

y = rX (3.59)
and

y = rZ. (3.60)

Thus the directions of lines (3.59) and (3.60) must be identical or

∂P

∂xi

= constant, for all i. (3.61)



70 Mathematical Models for Speech Technology

z

x

T(x)

y = r Z

y = r X

x + r X

O

O ′

Figure 3.4 The local maximum of the likelihood function cannot lie on the line segment T(x)–x.

But as shown in Fig. 3.4, this is impossible since if (3.61) were true, x would be a critical
point of P(x) and hence a fixed point of T (x) in which case x = T (x), a contradiction.

From this contradiction we conclude that z is not a critical point and ∇P · (T (x) − x) >

0 everywhere on the vector (T (x) − x). And finally P(x) ≥ P(x) everywhere on G(x)

with equality only at a critical point of P(x) corresponding to a fixed point of T (x). This
is the Baum et al. result.

While the reestimation formulas provide an elegant method for maximizing P , their
success depends critically on the constraint set (3.32)–(3.34). As we will suggest later,
in some cases there may be advantages in using classical optimization methods.

The principle of the classical methods is to search along the projection of ∇P on the
constraint space, G, for a local maximum. The method of Rosen [277], for example,
uses only ∇P and a crude search strategy. The method of Davidon is one of many quasi-
Newton techniques that uses the Fletcher–Powell [90] approximation to the inverse of the
Hessian of P and an exact line search with adaptive step size. There are many collections
of general purpose subroutines for constrained optimization that can be used to solve the
training problem. We have successfully used a version of the Davidon procedure from
the Harwell Subroutine Library [135]. However, for the constraints that π , A, and B be
stochastic, the computation can be greatly simplified.

We illustrate this by outlining the gradient search algorithm for the case where P is a
function of the variables x1, . . . , xN subject to the constraints xi ≥ 0 for 1 ≤ i ≤ N and∑N

i=1 xi − 1 = 0. For convenience we will call the last constraint G1, and the inequality
constraints on x1, . . . , xN as G2, . . . , GN+1, respectively.

An initial starting point x is chosen and the “active” constraints identified. For our
case G1 is always active. For i > 1, Gi is active if xi−1 = 0. Let Gnj

, j = 1, . . . , �

be the active constraints (with n1 = 1) at the initial point. Let Q = P +∑�
j=1 λjGnj

.
Then according to the Kuhn–Tucker theorem [125], the Lagrange multipliers, λj , are
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determined by demanding that ∇Q be orthogonal to ∇Gnj
for 1 ≤ j ≤ �. Now

∇Q = ∇P +
�∑

j=1

λj∇Gnj
= ∇P + �λ, (3.62)

where � is the N × � matrix with ij = (∇Gnj
)i = ∂Gnj

/∂xi , and λ is the vector with
components λj for j = 1, . . . , �. Thus the Kuhn–Tucker requirement is equivalent to

�′∇Q = 0 (3.63)

or, from (3.62),

λ = −(�′�)−1�′∇P. (3.64)

For our special constraints we have

i1 = 1, for 1 ≤ i ≤ N, (3.65)

and, for j �= 1,

ij =
{

1, if i = nj − 1,

0, otherwise.
(3.66)

With � defined this way,

�′� =




N 1 . . . 1
1 1 O
... O

. . .

1 1


 (3.67)

and (�′�)−1 may be shown to be

(�′�)−1 = 1

N − � + 1




1 −1 −1 · · · −1
−1 N − � 1 · · · 1
−1 1 N − � 1 1

...
. . . 1

−1 1 1 N − �


 . (3.68)

Substituting (3.68) into (3.64) gives λ. When this λ is substituted back into (3.62), it turns
out that the resulting vector ∇Q can be computed by the following simple steps:

(i) Compute ∇P and let S be the sum of all components of ∇P except (∇P)nj−1 , j =
2, . . . , �.
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(ii) Then

(∇Q)i = 0, i = nj , j = 2, . . . , l (3.69)

= (∇P)i − S

N − l + 1
otherwise. (3.70)

Finally, the values of P are searched along the line

x(η) = x + η
∇Q

‖ ∇Q ‖ (3.71)

for a maximum with respect to η. The procedure is repeated at this new point.
In applying this technique to the actual training problem, there will be 2N + 1 stochas-

ticity constraints analogous to G1 and a corresponding number of positivity constraints
analogous to G2,G3, . . . , GN+1. In this case we have the option of treating all the param-
eters and their associated constraints together, or we may divide them into disjoint subsets
and determine search directions for each subset independently.

Notice that this derivation does not require P to be of any special form. This may prove
to be an advantage since the Baum–Welch algorithm is not applicable to all P . Further-
more, the constraints may be changed. Although, as we shall see later, the Baum–Welch
algorithm can be somewhat generalized in this respect, it does not generalize to work
with arbitrary linear constraints.

Considerations for Implementation

From the foregoing discussion it might appear that solutions to the problems of hidden
Markov modeling can be obtained by straightforward translation of the relevant formulas
into computer programs. Unfortunately, for all but the most trivial problems, the naive
implementation will not succeed for two principal reasons. First, any of the methods
of solution presented here for either the classification or the training problem require
evaluation of αt(i) and βi(i) for 1 ≤ t ≤ T and 1 ≤ i ≤ N . From the recursive formulas
for these quantities, (3.1) and (3.2), it is clear that as T → ∞, αT (i) → 0 and β1(i) → 0
in exponential fashion. In practice, the number of observations necessary to adequately
train a model and/or compute its probability will result in underflow on any real computer
if (3.1) and (3.2) are evaluated directly. Fortunately, there is a method for scaling these
computations that not only solves the underflow problem but also greatly simplifies several
other calculations.

The second problem is more serious, more subtle, and admits of a less gratifying, though
still effective, solution. Baum and Petrie [27] have shown that the maximum likelihood
estimates of the parameters of a hidden Markov process are consistent estimates of the
parameters (converge to the true values as T → ∞). The practical implication of the
theorem is that, in training, one should use as many observations as possible which, as
we have noted, makes scaling necessary. In reality, of course, the observation sequence
will always be finite. Then the following situation can arise. Suppose a given training
sequence of length T results in bjk = 0. (It is, in fact, possible for a local maximum of P

to lie on a boundary of the parameter manifold.) Suppose, further, that we are subsequently
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asked to compute the probability that a new observation sequence was generated by our
model. Even if the new sequence was actually generated by the model, it can be such
that αt−1(i)aij is non-zero for only one value of j and that Ot = vk, whence αt (j) = 0
and the probability of the observation then becomes zero. This phenomenon is fatal to a
classification task; yet, the smaller T is, the more likely is its occurrence. Here, we offer
a general solution of constraining the parameter values so that xij ≥ εij > 0. Jelinek and
Mercer [150] have shown how to set the value of ε.

Finally, in this section we discuss the related problem of model stability. Baum and
Eagon [26] note that successive applications of the reestimation formulas converge to a
connected component of the local maximum set of P . If there is only a finite number of
such extrema, the point of convergence is unique to within a renaming of the states. The
component of the local maximum set to which the iteration converges as well as which
of the N ! labelings of the states is determined by the initial estimates of the parameters.
If we wish to average several models resulting from several different starting points to
achieve model stability, we must be able to match the states of models whose states
are permuted. We have devised a solution to this problem based on a minimum-weight
bipartite matching algorithm [174].

Scaling

The principle on which we base our scaling is to multiply αi(i) by some scaling coefficient
independent of i so that it remains within the dynamic range of the computer for 1 ≤
t ≤ T . We propose to perform a similar operation on βi(i) and then, at the end of the
computation, remove the total effect of the scaling.

We illustrate the procedure for (3.11), the reestimation formula for the state transition
probabilities. Let αt (i) be computed according to (3.1) and then multiplied by a scaling
coefficient, ct , where, say,

ct =
[

N∑
i=1

αt (i)

]−1

(3.72)

so that
∑N

i=1 ctαt (i) = 1 for 1 ≤ t ≤ T . Then, as we compute βt (i) from (3.2), we form
the product ctβt (i) for T ≥ t ≥ 1 and 1 ≤ i ≤ N . In terms of the scaled forward and
backward probabilities, the right-hand side of (3.11) becomes∑T −1

t=1 Ctαt (i)aij bj (Ot+1)βt+1(j)Dt+1∑T −1
t=1

∑N
�=1 Ctαt (i)ai�b�(Ot+1)βt+1(�)Dt+1

, (3.73)

where

Ct =
t∏

τ=1

cτ (3.74)

and

Dt =
T∏

τ=t

cτ . (3.75)
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This results from the individual scale factors being multiplied together as we perform the
recursions of (3.1) and (3.2).

Now note that each summand in both the numerator and the denominator has the
coefficient CtDt+1 = ∏T

τ=1 cτ . These coefficients can be factored out and canceled so
that (3.73) has the correct value aij as specified by (3.11). The reader can verify that this
technique may be equally well applied to the reestimation formulas (3.12) and (3.13). It
should also be obvious that, in practice, the scaling operation need not be performed at
every observation time. One can use any scaling interval for which underflow does not
occur. In this case, the scale factors corresponding to values of t within any interval are
set to unity.

While the above described scaling technique leaves the reestimation formulas invariant,
(3.3) and (3.4) are still useless for computing P . However, log P can be recovered from
the scale factors as follows. Assume that we compute ct according to (3.72) for t =
1, 2, . . . , T . Then

CT

N∑
i=1

αT (i) = 1, (3.76)

and from (3.76) it is obvious that CT = 1/P . Thus, from (3.74) we have

T∏
t=1

ct = 1

P
. (3.77)

The product of the individual scale factors cannot be evaluated but we can compute

log P = −
T∑

t=1

log ct . (3.78)

If one chooses to use the Viterbi algorithm for classification, then log P can be computed
directly from π, A, and B without regard for the scale factors. Initially, we let φ1(i) =
log[πibi(O1)] and then modify (3.7) so that

φt (j) = max
1≤i≤N

[φt−1(i) + log aij ] + log[bj (Ot )]. (3.79)

In this case log P = max1≤i≤N [φT (i)].
If the parameters of the model are to be computed by means of classical optimization

techniques, we can make the computation better conditioned numerically by maximizing
log P rather than P . The scaling method of (3.72) makes this straightforward.

First note that if we are to maximize log P , then we will need the partial derivatives
of log P with respect to the parameters of the model. So, for example, we will need

∂

∂aij
(log P) = 1

P

∂P

∂aij
= CT

∂P

∂aij
. (3.80)
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Substituting the right-hand side of (3.38) for ∂P/∂aij in the right-hand side of (3.80)
yields

∂

∂aij
(log P) = CT

T −1∑
t=1

αt (i)bj (Ot+1)βt+1(j) (3.81)

=
T −1∑
t=1

Ctαt (i)bj (Ot+1)βt+1(j)Dt+1

=
T −1∑
t=1

(
t∏

τ=1

cτ

)
αt (i)bj (Ot+1)βt+1(j)

(
T∏

τ=t+1

cτ

)
.

Thus if we evaluate (3.38) formally, using not the true values of the forward and backward
probabilities but the scaled values, then we will have the correct value of the partial
derivatives of log P with respect to the transition probabilities. A similar argument can
be made for the other parameters of the model and, thus, the scaling method of (3.72)
provides a means for the direct evaluation of ∇(log P), which is required for the classical
optimization algorithms. Later we shall see that the combination of maximizing log P

and this scaling technique simplifies the solution of the left-to-right Markov modeling
problem as well.

Finite Training Sets

The second point is complementary to the first in the sense that it arises exactly because
we can never have T large enough. The consequence of this unpleasant reality is that there
may be certain events of low probability that will not be manifest in a finite observation
sequence. Should such a sequence be used to estimate λ, these events will be assigned
probability zero, which values may later have catastrophic results when the parameter
estimates are used in classification and an event of low probability is actually encoun-
tered. Three methods for mitigation of this difficulty have been used in automatic speech
recognition. The method of Jelinek and Mercer [150] uses information other than that in
the observation sequence to estimate small probabilities. The method employed by Nadas
[227] is a different smoothing technique.

We now turn our attention to solving the problems created by finite training-set size.
As we noted earlier, the effect of this problem is that observation sequences generated by
a putative model will have zero probability conditioned on the model parameters. Since
the cause of the difficulty is the assignment of zero to some parameters, usually one or
more symbol probabilities bjk , it is reasonable to try to solve the problem by constraining
the parameters to be positive.

We can maximize P subject to the new constraints aij ≥ ε > 0, bjk ≥ ε > 0, most
easily using the classical methods. In fact, the algorithm described earlier based on the
Kuhn–Tucker theorem is unchanged except that the procedure for determining the active
constraints is based on ε rather than zero.

While the Lagrangian methods are perfectly adequate, it is also possible to build the
new constraints into the Baum–Welch algorithm. We can show how this is done by
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making a slight modification to the proof of the algorithm given earlier. Recall that the
proof of the Baum–Welch algorithm was based on maximization of 2N + 1 expressions
of the type maximized in (3.17) of Lemma 2. Since these expressions involve disjoint sets
of variables chosen from A, B, π , it suffices to consider any one of the maximizations.
In fact, it suffices to show how Lemma 2 gets modified. Thus we wish now to maximize

F(x) =
∑

i

ci ln xi (3.82)

subject to the constraints ∑
i

xi = 1 (3.83)

and
xi ≥ ε, i = 1, · · ·N. (3.84)

(From the following discussion it will be obvious that a trivial generalization allows ε to
depend on i.)

Now without the inequality constraints (3.84), Lemma 2 showed that F(x) attains its
unique global maximum when xi = ci/

∑
i ci . Suppose now that this global maximum

occurs outside the region specified by the inequality constraints (3.84). Specifically, let

xi = ci∑N
j=1 cj

{
≥ ε, for i = 1, . . . , N − l,

< ε, for i = N − l + 1, . . . , N.
(3.85)

From the concavity of F(x) it follows that the maximum, subject to the inequality con-
straints, must occur somewhere on the boundary specified by the violated constraints
(3.85). Now it is easily shown that if xi for some i > N − � is replaced by ε, then the
global maximum over the rest of the variables occurs at values lower than those given
above. From this we conclude that we must set

xi = ε, for i > N − l, (3.86)

and maximize

F̃ (x) =
N−l∑
i=1

ci ln xi (3.87)

subject to the constraint
∑N−l

i=1 xi = 1 − �ε. But this, analogously to Lemma 2, occurs
when

xi = (1 − lε)
ci∑N−l

j=1 cj

, i ≤ N − l. (3.88)

If these new values of xi satisfy the constraints, we are done. If one or more become
lower than ε, they too must be set equal to ε, and l augmented appropriately.
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Thus the modified Baum–Welch algorithm is as follows. Suppose we wish to constrain
bjk ≥ ε for 1 ≤ j ≤ N and 1 ≤ k ≤ M . We first evaluate B using the reestimation for-
mulas. Assume that some set of the parameters in the j th row of B violates the constraint
so that bjki

< ε for 1 ≤ i ≤ l. Then set b̃jki
= ε for 1 ≤ i ≤ l and readjust the remaining

parameters according to (3.89) so that

b̃jk = (1 − lε)
bjk∑N−l

i=1 bji

∀k �∈ {ki |1 ≤ i ≤ l}. (3.89)

After performing the operation of (3.89) for each row of B, the resulting B̃ is the optimal
update with respect to the desired constraints. The method can be extended to include
the state transition matrix if so desired. There is no advantage to treating π in the same
manner since, for any single observation sequence, π will always be a unit vector with
exactly one non-zero component. In any case, (3.89) may be applied at each iteration
of the reestimation formulas, or once as a post-processing stage after the Baum–Welch
algorithm has converged.

Non-Ergodic Hidden Markov Models

For the purposes of isolated word recognition, it is useful to consider a special class of
absorbing Markov chains that leads to what we call left-to-right models. These models
have the following properties:

(i) The first observation is produced while the Markov chain is in a distinguished state
called the starting state, designated q1.

(ii) The last observation is generated while the Markov chain is in a distinguished state
called the final or absorbing state, designated qN .

(iii) Once the Markov chain leaves a state, that state cannot be revisited at a later time.

The simplest form of a left-to-right model is shown in Fig. 3.5, from which the origin of
the term left-to-right becomes clear.

In this section we shall consider two problems associated with these special hidden
Markov models. Note that a single, long-observation sequence is useless for training such
models, because once the state qN is reached, the rest of the sequence provides no further

q1

b1(0)

q2

b2(0)

q3

b3(0)

q4

b4(0)

a11 a22 a33 a44 = 1

a12 a23 a34

Figure 3.5 The left-to-right (non-ergodic) HMM.
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information about earlier states. The appropriate training data for such a model is a set
of observation sequences obtained by several starts in state q1. In the case of isolated
word recognition, for instance, several independent utterances of the same word provide
such a set. We wish, therefore to modify the training algorithm to handle such training
data. We also wish to compute the probability that a single given observation sequence,
O1, O2 . . . , OT , was produced by the model, with the assumption that O1 was produced
in state q1 and OT in state qN . The three conditions mentioned above can be satisfied as
follows:

Condition (i) will be satisfied if we set π = (1, 0, · · · , 0) and do not reestimate it.
Condition (ii) can be imposed by setting

βT (j) =
{

1, for j = N,

0, otherwise.
(3.90)

Condition (iii) can be guaranteed in the Baum–Welch algorithm by initially setting aij = 0
for j < i (and in fact for any other combination of indices that specify transitions to be
disallowed). It is clear from (3.43) that any parameter once set to zero will remain zero.
For the gradient methods the appropriate aij are just set to zero and only the remaining
parameters are adjusted.

The modification of the training procedure is as follows. Let us denote by O =
[O(1), O(2), . . . , O(K)] the set of observation sequences, where O(k) = O

(k)
1 O

(k)
2 · · · O(k)

Tk

is the kth sequence. We treat the observation sequences as independent of each other and
then we adjust the parameters of the model M to maximize

P =
K∏

k=1

Prob(O(k)|M) =
K∏

k=1

Pk. (3.91)

Since the Baum–Welch algorithm computes the frequency of occurrence of various events,
all we need to do is to compute these frequencies of occurrence in each sequence separately
and add them together. Thus the new reestimation formulas may be written as

aij =
∑K

k=1

∑Tk−1
t=1 αk

t (i)aij bj (O
(k)
t+1)β

k
t+1(j)∑K

k=1

∑Tk−1
t=1 αk

t (i)β
k
t (i)

(3.92)

and

bij =
∑K

k=1

∑
t�Ot (k)=vj

αk
t (i)β

k
t (i)∑K

k=1

∑Tk

t=1 αk
t (i)β

k
t (i)

. (3.93)

As noted above, π is not reestimated.
Scaling these computations requires some care since the scale factors for each individual

set of forward and backward probabilities will be different. One way of circumventing
the problem is to remove the scale factors from each summand before adding. We can
accomplish this by returning the 1/P factor, which appears in (3.9) and (3.10) and was
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cancelled to obtain (3.11), to the reestimation formula. Using the reestimation formula
for the transition probabilities as an example, (3.92) becomes

aij =
∑K

k=1
1
Pk

∑Tk−1
t=1 αk

t (i)aij bj (O
(k)
t+1)β

k
t+1(j)∑K

k=1
1
Pk

∑Tk−1
t=1 αk

t (i)β
k
t (i)

. (3.94)

If the right-hand side of (3.94) is evaluated using the scaled values of the forward and
backward probabilities, then each term in the inner summation will be scaled by Ck

t Dk
t+1,

which will then be canceled by the same factor which multiplies Pk . Thus, using the
scaled values in computing (3.92) results in an unscaled aij . The procedure is easily
extended to computation of the symbol probabilities. Also note that for the purposes of
classification only one subsequence is to be considered so that either (3.78) or (3.79) may
be used unaltered to compute P .

To apply Lagrangian techniques to left-to-right models we note that, upon taking log-
arithms of (3.91), we have

log P =
K∑

k=1

log Pk. (3.95)

The derivatives needed to maximize log P in (3.95) can be obtained by evaluating expres-
sions for the derivatives of each individual subsequence and summing. For example, for
aij we have (cf. (3.80) and (3.81))

∂

∂aij
(log P) =

K∑
k=1

∂

∂aij
(log P) = Ck

T

Tk−1∑
t=1

αk
t (i)bj (O

(k)
t+1)β

k
t+1(j). (3.96)

As in all previous cases, an analogous formula may be derived for the other parameters.
In practice, A and B for left-to-right models are especially sparse. Some of the zero

values are so by design, but others are dependent on O. Parameters of this type will be
found one at a time by standard line search strategies. We have found that the convergence
of the Lagrangian techniques can be substantially accelerated by taking large enough steps
so that several positivity constraints become binding. The corresponding variables are then
clamped and (3.89) is applied before beginning the next iteration.

Matrix Notation

Several of the formulas derived above are much more compact in matrix notation. Let ′
denote matrix transposition, as usual, and let the column vectors π and 1, and the matrices,
A, Bt , t = 1, . . . , T , be defined as above. Also let αt and β t be column vectors with
components αt (i), i = 1, . . . , N and βt (i), i = 1, . . . , N , respectively. Then the recursion
for αt is

αt+1 = Bt+1A′αt , t = 1, . . . , T − 1. (3.97)
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The recursion for β t is

β t = ABt+1β t+1, t = T − 1, . . . , 1. (3.98)

The starting values are

α1 = B1π , (3.99)

βT = 1. (3.100)

The probability P is given by

P = β ′
tαt , for any t in (1, T ). (3.101)

The special cases t = 1 and t = T give

P = π ′B1β1 (3.102)

and
P = 1′αT = 1′BT A′BT −1 · · · A′B1π . (3.103)

In each of these formulas P can be regarded as the trace of a 1 × 1 matrix, which (as
expanded in (3.103)) is a product of several matrices. The fact that the trace of a product
of matrices is invariant to a cyclic permutation of the matrices can be used to advantage
in finding the gradient of P . Define ∇AP as the matrix whose ij th component is ∂P/∂aij .
Similarly, define ∇BP and ∇πP . Then it is straightforward to show that

∇πP = B1β1, (3.104)

∇AP = ∑T −1
t=1 αtβ

′
t+1Bt+1, (3.105)

(∇BP)jk = ∑
t�Ot=k(A

′αt−1)j (β t )j . (3.106)

In the last equation, if O1 = vk then the corresponding term in the sum is just π ′β1.

3.1.2 The Continuous Observation Case

The analyses described in Section 3.1.1 have been applied to several types of HMM other
than the discrete symbol model with which we began this chapter. The most obvious
generalization is that of replacing the discrete probability distributions with continuous
multivariate density functions. In these cases, we omit the vector quantization stage and
use the measurements, xt ∈ R

d , directly. For compatibility with the notation used for the
discrete case, we shall call the observations Ot , bearing in mind that they are just the
d-dimensional primary measurements that were called xt in Section 2.5.4.

In addition to the discrete symbol case, Baum also considered models in which the
observations drawn from qj are distributed according to

bj (Ot ) = N (Ot , µj , σj ), (3.107)
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where N (x, µ, σ ) denotes the univariate Gaussian density function of mean µ and vari-
ance σ 2. Later, Liporace [200] analyzed the d-dimensional multivariate problem. For this
case, the parameter space � = {AN × {Rd}N × {Ud}N } · AN is the set of all N × N row-
wise stochastic matrices and Ud is the set of all real symmetric positive definite, N × N

matrices. Following the precise strategy outlined above, the reestimation formulas are
derived:

µjr =
∑T

t=1 αi(j)βt (j)Otr∑T
t=1 αt (j)βt (j)

(3.108a)

for 1 ≤ j ≤ N and 1 ≤ r ≤ d , where µjr and Otr are the rth components of the reestimate
of the j th mean vector and the t th observation, respectively; similarly

ujrs =
∑T

t=1 αt (j)βt (j)(Otr − µjr)(Ots − µjs)∑T
t=1 αt (j)βt (j)

(3.108b)

for 1 ≤ j ≤ N and 1 ≤ r, s ≤ d , where ujrs is the entry of Uj in the rth row and sth
column. The formula for the state transition matrix for this case is identical to (3.11) with
the replacement of Ot by Ot .

Gaussian Mixtures

Consider an unobservable n-state Markov chain with state transition matrix A = [aij ]n×n.
Associated with each state j of the hidden Markov chain is a probability density function,
bj (x), of the observed d-dimensional random vector x. Here we shall consider densities
of the form

bj (x) =
m∑

k=1

cjkN (x, µjk , Ujk ), (3.109)

where m is known; cjk ≥ 0 for 1 ≤ j ≤ n, 1 ≤ k ≤ m;
∑m

k=1 cjk = 1 for 1 ≤ j ≤ n; and
N (x, µ, U) denotes the d-dimensional normal density function of mean vector µ and
covariance matrix U.

It is convenient then to think of our hidden Markov chains as being defined over a
parameter manifold � = {An × Cm × R

d × Ud}, where An is the set of all n × n rowwise
stochastic matrices; Cm is the set of all m × n rowwise stochastic matrices; R

d is the usual
d-dimensional Euclidean space; and Ud is the set of all d × d real symmetric positive
definite matrices. Then, for a given sequence of observations, O = O1, O2, . . . , OT , of
the vector x and a particular choice of parameter values λ ∈ �, we can efficiently evaluate
the likelihood function, Lλ(O), of the hidden Markov chain by the forward–backward
method of Baum [25].

The forward and backward partial likelihoods, αt (j) and βt(i), are computed recursively
from

αt (j) =
[

n∑
i=1

αt−1(i)aij

]
bj (Ot ) (3.110a)
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and

βt (i) =
n∑

j=1

aij bj (Ot+1)βt+1(j), (3.110b)

respectively. The recursion is initialized by setting α0(1) = 1, α0(j) = 0 for 2 ≤ j ≤ n,
and βT (i) = 1 for 1 ≤ i ≤ n, whereupon we may write

Lλ(O) =
n∑

i=1

n∑
j=1

αt (i)aij bj (Ot+1)βt+1(j) (3.111)

for any t between 1 and T − 1.

The Estimation Algorithm

The parameter estimation problem is then one of maximizing Lλ(O) with respect to λ

for a given O. One way to maximize Lλ is to use conventional methods of constrained
optimization. Liporace, on the other hand, advocates a reestimation technique analogous
to that of Baum et al. [25, 28]. It is essentially a mapping T : � → � with the property
that LT (λ)(O) ≥ Lλ(O), with equality if and only if λ is a critical point of Lλ(O), that is,
∇Lλ(O) = 0. Thus a recursive application of T to some initial value of λ converges to
a local maximum (or possibly an inflection point) of the likelihood functions. Liporace’s
result [200] relaxed the original requirement of Baum et al. [28] that bj (x) be strictly log
concave to the requirement that it be strictly log concave and/or elliptically symmetric.
We will further extend the class of admissible pdfs to mixtures and products of mixtures
of strictly log concave and/or elliptically symmetric densities.

For the present problem, we will show that a suitable mapping T is given by the
following equations:

aij = T (aij ) =
∑T −1

t=1 αt (i)aij bj (Ot+1)βt+1(j)∑T −1
t=1 αt (i)βt (i)

, (3.112)

cjk = T (cjk ) =
∑T

t=1 ρt (j, k)βt (j)∑T
t=1 αt (j)βt (j)

, (3.113)

µjk = T (µjk ) =
∑T

t=1 ρt(j, k)βt (j)Ot∑T
t=1 ρt(j, k)βt (j)

, (3.114)

and

Ujk = T (Ujk ) =
∑T

t=1 ρt(j, k)βt (j)(Ot − µjk )(Ot − µjk )
′

∑T
t=1 ρt (j, k)βt (j)

(3.115)

for 1 ≤ i, j ≤ n, 1 ≤ k ≤ m and 1 ≤ r , s ≤ d . In (3.113)–(3.115),

ρt(j, k) =




cjk
∂bj

∂cjk
|O1, for t = 1,

∑n
i=1 αt−1(i)aij cjk

∂bj

∂cjk
|Ot , for 1 < t ≤ T .

(3.116)
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Proof of the Formulas

A general strategy for demonstrating that reestimation formulas similar to (3.108) and
(3.109) for several different families of HMMs both exist and have the above mentioned
desirable behavior rests on certain properties of the function

Q(λ, λ) = L(O|λ) log[L(O|λ)], (3.117)

often referred to as the auxiliary function. It is closely related to and motivated by the
Kullback–Leibler statistic [164] which, for the case of the HMM, is given by

I (λ, λ) =
∫

O

L(O|λ) log

[L(O|λ)

L(O|λ)

]
dµ(O). (3.118)

The significance of (3.118) is that it expresses the mean over the observation space O of
the amount of information per observation for discrimination between λ and λ. According
to the principle of minimum cross entropy [299], the best estimate, λ, for the true model
parameter given prior estimate λ is the one that minimizes (3.118). Since the likelihood
function is everywhere non-negative, this can be accomplished by maximizing Q(λ,λ)

in (3.117) with respect to λ. A reestimation formula is a solution for λ of

∇λQ(λ, λ) = 0, for any λ ∈ �, (3.119)

having the form F(λ) = λ, where F is a mapping of � onto itself, and possessing the
property that

Q(λ, λ) ≥ Q(λ,λ). (3.120)

That iterations of F will ultimately converge to a local maximum of the likelihood function
follows from three properties of the auxiliary function. It is easily shown that (i) in general,

Q(λ, λ) ≥ Q(λ, λ) ⇒ L(O|λ) ≥ L(O|λ), (3.121)

and (ii)

λ = F(λ) ⇒ ∇λL(O|λ) = 0. (3.122)

Also it may be possible to show on a case basis that (iii) for a given L(O|λ), λ = F(λ)

is the unique global maximum of Q(λ,λ).
In several cases of interest that will be listed later, property (iii) can be shown to hold

by proving that, for λ = F(λ),

∇λQ(λ,λ) = 0 (3.123)

and, for λ satisfying (3.123), that the eigenvalues of

∂2Q

∂λi∂λ
j

(3.124)
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for any pair, λi , λj , of components of λ are all negative, and finally, that Q(λ, λ) → −∞
as λ → ∞ or λ → ∂�. If (3.123) obtains then λ is a critical point of Q. If the Hessian
(3.124) is negative definite then λ is a local maximum. Finally, if the auxiliary function
tends to a large negative number as λ approaches either the point at infinity or the finite
boundary of the parameter space, if one exists, then λ is, in fact, a global maximum.

Generalization of the Proof in Section 2.1.1

To prove property (iii), one cannot deal directly with the auxiliary function but must
first represent it as a linear combination of terms of the form L(O, S|λ) log[L(O, S|λ)]
with positive coefficients. Each such term is the contribution to Q(λ, λ) due to the state
sequence S ∈ QT .

If property (iii) is true then the maximization of L(O|λ) is achieved as illustrated
in Fig. 3.6. Starting at any λ ∈ �, property (iii) guarantees that λ = F(λ) increases Q.
Property (i), (3.121), ensures that this results in an increase in L unless λ is a fixed point
of F , in which case Q is unchanged and by property (ii), (3.122), λ is a critical point,
that is, a local maximum or possibly an inflection point, of L. Different initial points,
under successive transformations, will be mapped onto different local maxima depending
solely on their location in � with respect to the separatrices.

Equations (3.112) and (3.113) for the reestimation of aij and cjk are identical to (3.11)
and follow directly from a theorem of Baum and Sell [29] because the likelihood function
Lλ(O) given in (3.111) is a polynomial with non-negative coefficients in the variables
aij , cjk , 1 ≤ i, j ≤ n, 1 ≤ k ≤ m.

To prove (3.114) and (3.115) our strategy, following Liporace, is to define an appropriate
auxiliary function Q(λ, λ). This function will have the property that Q(λ, λ) > Q(λ,λ)

implies Lλ(O) > Lλ(O). Further, as a function of λ for any fixed λ, Q(λ, λ) will have a
unique global maximum given by (3.114)–(3.116).

λ0 λ1 λ2 λp

SEPARATRIX

λ0

Q (λλ0, λ) Q (λλ0, λ)

Q (λλ1, λ)

Q (λλp – 1λ)

λ1

(0|λ2)
(0|λ1)
(0|λ0)

∇λ     (0|λp) = 0     (0|λ)

f (λ)

Λ

Figure 3.6 The role of the auxiliary function in the Baum algorithm
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As a first step toward deriving such a function, we express the likelihood function as
a sum over the set, S, of all state sequences S:

Lλ(O) =
∑
S

Lλ(O, S) (3.125)

=
∑
S

T∏
t=1

ast−1st

m∑
k=1

cst kN (Ot , µst k, Ust k).

Let us partition the likelihood function further by choosing a particular sequence, K =
(k1, k2, . . . , kT ) of mixture densities. As in the case of state sequences we denote the set
of all mixture sequences as K = {1, 2, . . . , m}T . Thus for some particular K ∈ K we can
write the joint likelihood of O, S, and K as

Lλ(O, S, K) =
T∏

t=1

ast−t stN (Ot , µst kt , Ust kt )cst kt . (3.126)

We have now succeeded in partitioning the likelihood function as

Lλ(O) =
∑
S∈S

∑
K∈K

Lλ(O, S, K). (3.127)

In view of the similarity of the representation (3.127) to that of Lλ in [200], we now
define the auxiliary function

Q(λ, λ) =
∑

S

∑
K

Lλ(O, S, K) logLλ(O, S, K). (3.128)

When the expressions for Lλ and Lλ derived from (3.127) are substituted in (3.128),
we get

Q(λ, λ) =
∑
S∈S

∑
K∈K

T∑
t=1

γst kt t logN (Ot , µst kt
, Ust kt ), (3.129)

where γst kt t ≥ 0. The innermost summation in (3.129) is formally identical to that used
by Liporace in his proof; therefore, the properties which he demonstrated for his auxiliary
function with respect to µ and U hold in our case as well, thus giving us (3.114) and
(3.115). We may thus conclude that (3.126) is correct for T defined by (3.114)–(3.116).
Furthermore, the parameter separation made explicit in (3.126)–(3.129) allows us to
apply the same algorithm to mixtures of strictly log concave densities and/or elliptically
symmetric densities as treated by Liporace in [200].

Discussion

Liporace [200] notes that by setting aij = pj , 1 ≤ j ≤ n, for all i, the special case of a
single mixture can be treated. It is natural then to think of using a model with n clusters
of m states, each with a single associated Gaussian density function, as a way of treating
the Gaussian mixture problem considered here.
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Figure 3.7 Equivalence of the Gaussian mixture HMM and the standard HMM

The transformation can be accomplished in the following way. First we expand the state
space of our n-state model as shown in Fig. 3.7, in which we have added states j0 through
jm for each state j in the original Markov chain. Associated with states j1, j2, . . . , jm

are distinct Gaussian densities corresponding to the m terms of the j th Gaussian mixture
in our initial formulation. The transitions exiting state j have probabilities equal to the
corresponding mixture weights. State j0 is a distinguished state that is entered with prob-
ability 1 from the other new states, exits to state j with probability ajj , and generates no
observation in so doing. The transition matrix for this configuration can be written down
by inspection. A large number of the entries in it will be zero or unity. As these are unal-
tered by (3.112) and (3.113), they need not be reestimated. Using this reconfiguration of
the state diagram, Liporace’s formulas can be used if bj (x) is any mixture of elliptically
symmetric densities.

A variant on the Gaussian mixture theme results from using bj (x) of the form of a
product of mixtures,

bj (x) =
D∏

r=1

m∑
k=1

cjkrN (xr , µjkr , Ujkr ). (3.130)

What we have considered so far is the special case of (3.130) for D = 1.
From the structure of our derivation it is clear that for hidden Markov chains having

densities of the form (3.130), reestimation formulas can be derived as before by solving
∇λQ(λ,λ) = 0. Such solutions will yield results quite analogous to (3.112)–(3.116). Note
that this case too can be represented as a reconfiguration of the state diagram.

One numerical difficulty which may be manifest in the methods described is the phe-
nomenon noted by Nadas [227] in which one or more of the mean vectors converge to
a particular observation while the corresponding covariance matrix approaches a singular
matrix. Under these conditions, Lλ(O) → ∞ but the value of λ is meaningless. A prac-
tical, if unedifying, remedy for this difficulty is to try a different initial λ. Alternatively,
one can drop the offending term from the mixture since it is only contributing at one
point of �.
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Finally, we call attention to two minor facets of these algorithms. First, for flexibility
in modeling, the number of terms in each mixture may vary with state, so that m in
(3.109) could as well be mj . A similar dependence on dimension results if m in (3.130)
is replaced by mjr . In either case, the constraints on the mixture weights must be satisfied.

Second, for realistic numbers of observations, for example, T ≥ 5000, the reestimation
formulas will underflow on any existing computer. The basic scaling mechanism described
in Section 3.1.1 can be used to alleviate the problem but must be modified to account
for the fact that the ρtβt product will be missing the t th scale factor. To divide out the
product of scale factors, the t th summand in both numerator and denominator of (3.113),
(3.114), and (3.115) must be multiplied by the missing coefficient.

3.1.3 The Autoregressive Observation Case

Another case which is particularly appropriate for the speech signal is one studied by
Poritz [251, 250] in which the stochastic process at each state is Gaussian autoregressive,
that is, it assumes the linear prediction model of (2.43) used by Itakura [140]. In the Poritz
model, the observation sequence comprises samples of the speech signal itself blocked
into frames. The t th frame, designated O(t) for 1 ≤ t ≤ T , is just the sequence of m

samples, O(t)
1 , O(t)

2 , . . . , O(t)
m . The state-dependent stochastic processes are based on an

entire frame so that

bj (O(t)) = 2√
2πσj

e
−aj Rj a

′
j
/σ 2

j (3.131)

where aj and Rj have the same meaning as in (2.48) for a pth-order autocorrelation
analysis, and the parameter space for the model is � = {AN × {Rp}N × {R+}N } where
R+ denotes the set of strictly positive real numbers.

The αt (j), βt (i),L(O|λ) and the reestimates aij are calculated directly from (3.110a),
(3.110b), (3.111), and (3.112), respectively, using bj (O(t)) from (3.131) in place of bj (Ot ).
The reestimates of the “gain” σ 2

j and the autocorrelation matrix Rj are reminiscent of the
usual LPC analysis. Thus

σ 2
j = aj Rj a

′
j∑T

t−1 αt (j)βt (j)
, 1 ≤ j ≤ N, (3.132)

and
aj = (1, −Cj D−1

j ), 1 ≤ j ≤ n, (3.133)

where Cj and Dj arise from partitioning the autocorrelation matrix by separating the first
row and the first column so that

Rj =
[

Bj Cj

Cj Dj

]
(p+1)×(p+1)

. (3.134)

Thus Dj is a pth-order Toeplitz matrix for which the inverse required by (3.133) can be
efficiently computed [211], which method is summarized in (2.50)–(2.54). The Rj are
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actually computed from

Rj =
T∑

t=1

αt(j)βt (j)YtY
′
t , (3.135)

where Yt is the usual data matrix

Yt =




O
(t)
p+1 O

(t)
p+2 · · · O

(t)
m

O
(t)
p O

(t)
p+1 · · · O

(t)
m−1

...
...

...

O
(t)
1 O

(t)
2 · · · O

(t)
m−p−1




(p+1)×(m−p−1)

. (3.136)

Poritz has performed a significant experiment based on this method, the implications
of which on speech recognition will be examined in Section 3.1.7.

All of the aforementioned types of HMMs are amenable to an interesting modification.
The observable process can be made dependent not only on the present state but also on
its successor, so that instead of bj (Ot ) we have bij (Ot ), meaning that Ot was generated
in the transition from qi to qj . This will, of course, increase the size of the parameter
space but will simultaneously afford greater representational power.

3.1.4 The Semi-Markov Process and Correlated Observations

Essential to the fidelity of the proposed model is the ability to account for the durations
of the symbols of the speech code explicitly and flexibly. The traditional hidden Markov
model is inadequate in this respect since the probability of remaining in state qi for
duration τ, Prob[τ |qi], is proportional to aτ−1

ii , where aij = Prob[qj at t + 1|qi at t]. This
exponential distribution of state durations is inappropriate if the states of the hidden
Markov model are to represent linguistically meaningful components of the speech code.

A significant improvement to the standard model results from the introduction of a
discrete set of duration probabilities. In the Ferguson [84] model shown in Fig. 3.8a,
Prob[τ |qi] is specified for 1 ≤ τ < �t and 1 ≤ i ≤ n. At time t , the process enters
state qi for duration τ with probability Prob[τ |qi], during which time the observations
Ot+1, Ot+2, . . . , Ot+τ are generated. It then transits to state qj with probability aij .
The parameters Prob[τ |qi] are estimated from an observation sequence, along with all of
the other parameters of the model, by means of a reestimation formula. Unfortunately,
n�t additional parameters must be so determined for an n-state model. Since, in general,
many observations of the source are required to get a single measurement of duration,
the Ferguson method requires an enormous amount of training data. The relation between
the Ferguson model and the standard HMM is explored below.

The alternative is to use a parametric family of continuous probability density functions,
di(τ ), 1 ≤ i ≤ n, τ ∈ R

+, to provide the duration probabilities. If only a few parameters
are required to completely specify the di(τ ), then the complexity of the Ferguson model
is greatly reduced. In fact, Ferguson acknowledges the possibility of using continuous
densities, and Russell and Moore [286] have studied the case for the Poisson distribution.
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Figure 3.8 Standard HMM equivalent to a VDHMM

It is proposed here that the two-parameter family of gamma distributions given in (3.137)
is ideally suited for the purpose [32]:

di(τ ) = η
vi

i

(vi)
τ vi−1e−ηiτ , τ > 0. (3.137)

The mean value of τ is vi/ηi and its variance is vi/η
2
i . Several members of the family are

shown in Fig. 3.9 displaying di(τ ) for varying vi with fixed ηi and varying ηi with fixed
vi , respectively. The relationship between the variable-duration model and the standard
HMM is as follows.

It might first appear that the introduction of duration probabilities destroys the Marko-
vian character of the underlying process. In fact, however, we can construct an ordinary
HMM which is identical to the variable duration model. First note that in the Fergu-
son model aii = 0 for 1 ≤ i ≤ n, which fact allows the construction shown in Fig. 3.8b
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Figure 3.9 The gamma distribution as a durational density

transforming the n-state Ferguson model into an n�t-state conventional HMM. The new
model has transition probabilities aijτ = aij Prob[τ |qi] for 1 ≤ τ ≤ �t , and ajτ+1jτ = 1
for �t − 1 ≤ τ ≤ 1, for each transition from qi to qj of probability aij in the variable-
duration model. The observation probabilities for the new states qiτ , for 2 ≤ τ ≤ �t , are
bij for 1 ≤ k ≤ m when the previous state in the original model was qi .

The model constructed according to Fig. 3.8b has the desired Markovian property.
Clearly aijτ ≥ 0. Also, for 1 ≤ i ≤ n,

n∑
j=1

�t∑
τ=1

aijτ =
n∑

j=1

�t∑
τ=1

aij Prob[τ |qi] (3.138)

=
n∑

j=1

aij

�t∑
τ=1

Prob[τ |qi]

=
n∑

j=1

aij = 1,

so the transition matrix for the Markov chain is well formed.
It is also true that a given observation sequence will have the same likelihood in

either model. To see that this is so, we need only compare one state transition in the
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variable-duration model with its equivalent state sequence in the new model. Namely,

aij Prob[τ |qi]
τ∏

t=1

bi(Ot ) = aijτ bi(O1)

τ−1∏
t=1

ajτ−t+1jτ−t bi(Ot+1) (3.139)

since the product of transition probabilities on the right-hand side of (3.139) is unity and,
by construction aij = aijτ Prob[τ |qi]. The left-hand side of (3.139) is the likelihood of
O1, O2, . . . , Oτ given qi at t = 1 and qj at t = τ in the variable-duration model. The
right-hand side of (3.139) is the likelihood of O1, O2, . . . , Oτ given the unique path of
length τ from qi to qji

in the constructed model. Since these likelihoods are equal and
since the new model is well formed, the two models are equivalent.

The Continuously Variable-Duration (CVD) Hidden Markov Model

In a sense, the CVDHMM is equivalent to the Ferguson model in that, for 1 ≤ τ ≤ �t ,

Prob[τ |qi] =
∫ τ

τ=1
di(t)dt (3.140)

and if di(t) = 0 for t > �t , then
∑�t

τ=1 Prob[τ |qi] = 1. Whereas the parameters of the
Ferguson model can be obtained by applying the Baum reestimation formulas from
Section 3.1.1 to an equivalent standard HMM, parameters of the CVDHMM must be
obtained by the methods described in this section.

With duration probabilities derived from (3.137) we are in a position to define our
stochastic model (CVDHMM). As in the conventional case, we shall have n states,
q1, q2, . . . , qn, in the unobservable process. The state transition matrix A = [aij ]n×n,
however, is subject to the constraint that aii = 0, 1 ≤ i ≤ n.

The observable processes bi(x), x ∈ R
m, 1 ≤ i ≤ n, will be assumed to be Gaussian of

mean µi and covariance Ui . The model is illustrated in Fig. 3.10.
The likelihood function, L(O|λ), of the model is defined over observation sequences

O = O1, O2, . . . , Oτ , where Ot ∈ R
m for 1 ≤ t ≤ T , and parameters λ in the parameter

manifold �. Thus, for λ ∈ �,

λ = (A, {µi}ni=1, {Ui}ni=1, {vi}ni=1, {ηi}ni=1). (3.141)

As in the case of the conventional hidden Markov models, the likelihood function may
be recursively evaluated after defining partial forward and backward likelihoods. Let

ai(j) = L(O1, O2, . . . , Ot and qj at t |qi at t + 1, i �= j and λ) (3.142)

and

βt (i) = L(Ot+1, Ot+2, . . . , Oτ and qj at t − 1, j �= i|qi at t and λ). (3.143)
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Figure 3.10 The hidden semi-Markov model

Then for 1 ≤ j ≤ n and 1 ≤ t ≤ T , the forward likelihoods are computed from

αt (j) =
∑
τ≤t

n∑
i = 1
i �= j

αt−τ (i)aij dj (τ )

τ∏
θ=1

bj (Ot−τ+θ ). (3.144)

The product in (3.144) should, strictly speaking, be replaced by
bj (Ot−τ+1, Ot−τ+2, . . . Ot ), the joint likelihood of the τ observations. If we make
the usual assumption of independence we get (3.144).

To begin the recursion (3.144) we set α0(i) = 0 for i �= 1. We assume, without loss of
generality, that the process is in state q1 at t = 0 so that α0(1) = 1 and the transition aij

is not included. This accounts for the event of the first τ observations emanating from
the initial state prior to the occurrence of any state transitions. In what follows, the same
significance of α0(t) will be assumed wherever it appears.

Similarly, a recursion in reverse temporal order is used to compute the backward like-
lihoods. For 1 ≤ i ≤ n and T − 1 ≥ t ≥ 1,
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βt (i) =
∑

t≤T −t

n∑
j = 1
j �= i

aij dj (τ )

τ∏
θ=1

bj (Ot+θ )βt+τ (j). (3.145)

The recursion (3.145) is started by setting βτ (i) = 1 for 1 ≤ i ≤ n. Note that if τ

is fixed equal to 1 then (3.144) and (3.145) reduce to the standard forward–backward
recursions for ordinary hidden Markov models except that aii is not necessarily zero and
di(1) = 1; cf. [25].

With the partial likelihoods available, the likelihood function can be evaluated from

L(O|λ) =
n∑

i=1

n∑
j = 1
j �= i

∑
τ≤t

αt−τ (i)aij dj (τ )

τ∏
θ=1

bj (Ot−τ+θ )βt (j) (3.146)

for any t ∈ [1, T ]. An especially simple form of (3.146) is

L(O|λ =
n∑

i=1

ατ (i). (3.147)

Also note that, as in the case of the standard hidden Markov model,

L(qi at t |O, λ) = αt (i)βt (i). (3.148)

Parameter Estimation

Estimation of the parameters of a hidden Markov model is accomplished by maximizing
L(O|λ) with respect to λ for a given O. Due to the special properties of the likelihood
function, it can be locally optimized by an efficient algorithm that does not explicitly
require differentiation. This technique, often called reestimation, is described in detail
earlier. For the purposes of this discussion, it suffices to say that the solution to

∇λQ(λ, λ) = 0, (3.149)

where
Q(λ, λ ) = L(O|λ) logL(O|λ ), (3.150)

is of the form λ = T (λ), where the transformation T may be shown to have the desired
properties that T : � → � and L(O|λ) ≥ L(O|λ) with equality if λ is a critical point of
L. Thus recursive application of T to some initial point λ0 ∈ � will converge to a local
maximum of the likelihood function.

The derivation of a reestimation formula for the transition probabilities for the present
model is formally identical to that for the standard hidden Markov model [25]. Without
belaboring the point, we simply write:

aij =
∑T

t=1

∑
τ≤t at−τ (i)aij di(τ )

∏τ
θ=1 bj (Ot−τ+θ )βt (j)∑T −1

t=1 αt (i)βt (i)
. (3.151)
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In (3.151), as in the formula for the transition probabilities of the standard model, the
numerator and denominator are still open to the usual interpretation as the expected
number of transitions from state qi to qj and the expected number of visits to state qi ,
respectively.

The formulas for the parameters of the observable and durational processes are suffi-
ciently different from the standard case to warrant a slightly more detailed treatment. Let
us first consider the case of the means of the observable processes. Differentiating (3.184)
with respect to µj , we get

∂L
∂µj

=
T∑

T =1

∑
τ≤t

n∑
i = 1
i �= j

αt−τ (i)aij dj (τ )

[
∂

∂µj

τ∏
θ=1

bj (Ot−τ+θ )

]
βt(j), (3.152)

where the derivative with respect to a vector is understood to be the vector whose compo-
nents are the partial derivatives with respect to the components of the parameter vector.
In (3.152), the summations on t and τ occur since we are differentiating a product. Recall
that bj (x) = N (x, µj , Uj ), whence the term in brackets on the right-hand side of (3.152)
becomes

τ∑
r=1




τ∏
θ = 1
θ �= r

bj (Ot−τ+θ )


 ∂Nj

∂µj

|Ot−τ+θ (3.153)

=
τ∑

r=1




τ∏
τ = 1
θ �= r

bj (Ot−τ+θ )


 bj (Ot−τ+r )U

−1
j (Ot−τ+r − µj )

′

=
[

τ∏
θ=1

bj (Ot−τ+θ )

]
·
[

τ∑
θ=1

U−1
j (Ot−τ+θ − µj )

′
]

,

where ′ denotes the matrix transpose operation. Substituting the rightmost part of (3.153)
for the bracketed term in (3.152), setting the result to zero and multiplying by U−1

j

yields

T∑
t=1

∑
τ≤t

n∑
i = 1
i �= j

αt−τ (i)aij dj (τ )

τ∏
θ=1

bj (Ot−τ+θ )

[
τ∑

θ=1

Ot−τ+θ

]
βt(j) (3.154)

=
T∑

t=1

∑
τ≤t

n∑
i = 1
i �= j

αt−τ (i)aij dj (τ )

τ∏
θ=1

bj (Ot−τ+θ )[τµjβt (j).
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Finally, solving (3.154) for µj gives

µj =
∑T

t=1

∑
τ≤1

∑n
i=1 αt−τ (i)aij dj (τ )

∏τ
θ=1 bj (Ot−τ+θ )βt (j)

[∑τ
θ=1 Ot−τ+θ

]
∑T

t=1

∑
τ≤t

∑n

i = 1
i �= j

ταt−τ (i)aij dj (τ )
∏τ

θ=1 bj (Ot−τ+θ )βt (j)
.

(3.155)
The numerator of the right-hand side of (3.155) is the expected value of the sums of
observations due to state qj , while the denominator is the expected duration of state qj ;
hence it is reasonable that their quotient be an estimate of µj .

A similar argument leads to a reestimation formula for Uj . First note that:

∂Nj

∂Uj

|ot = bj (Ot )

[
−1

2
U−1

j − 1

2
(Ot − µj )U

−1
j (U−1

j )′(Ot − µj )
′
]

. (3.156)

From (3.156) we obtain an expression for (∂L)/(∂Uj ) which can be solved for Uj by
steps analogous to those taken in (3.152)–(3.155). The outcome is a formula for Uj

which is identical to (3.156) except that
∑τ

0=1 Ot−τ+θ is replaced by
∑τ

θ=1(Ot−τ+θ −
µj )(Ot−τ+θ − µj )

′. This formula has an intuitive explanation corresponding to that for
µj since the numerator is the sample variance of sums of observations.

Turning our attention to the durational parameters, we find that the derivation of a
formula for ηj follows the general outline given above. Straightforward differentiation of
dj (τ ) as given in (3.137) produces

∂dj

∂ηj

|τ = dj (τ )

[
vj

ηj

− τ

]
, (3.157)

from which an expression for ∂L/∂ηj is immediately obtained, manipulation of which in
the by now familiar way yields

ηj = vj

∑T
t=1 αt (j)βt (j)∑T

t=1

∑
τ≤t τ

∑n

i = 1
i �= j

αt−τ (i)aij dj (τ )
∏τ

θ=1 bj (Ot−τ+θ )βt (j)
. (3.158)

This pleasant pattern does not emerge when we consider the parameter vj . The problem
is immediately apparent as soon as we take the partial derivative of dj (τ ) with respect
to vj :

∂dj

∂vj

|τ = log ηj + log τ − d

dv
|vj

/(vj ). (3.159)

The gamma function and its derivative are inescapable, so that when we carry out the
usual algebra on (∂L)/(∂vj ) we arrive at:

�(vj ) =

∑T
t=1

∑
τ≤t log(ηj τ )

∑n

i = 1
i �= j

αt−τ (i)aij dj (τ )
∏τ

θ=1 bj (Ot−τ+θ )βt (j)

∑T
t=1 αt (j)βt (j)

, (3.160)
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where � is the traditional notation for the digamma function [2]. The � function is
continuously differentiable and strictly monotonic increasing on R

+ with a real zero at
roughly 1.461. In addition, �(x) is easily obtained from Abromovitz and Stegun [2] for
x ∈ R

+,

�(x + n) =
n=1∑
k=1

1

x + k
+ �(x + 1), (3.161)

and for x ∈ (−1, 1),

�(x + 1) = −γ +
∞∑

k=1

(−1)k+1ζ(k + 1)xk, (3.162)

where γ is Euler’s constant, 0.557+, and ζ(·) is the Riemann zeta function. Twenty terms
of (3.162) suffice to compute to full machine precision in 32-bit floating-point format so
that (3.160) can be solved numerically for vj . Applying Newton’s method to (3.160), an
improving sequence of estimations of vj is obtained from:

v
(k+1)
j = v

(k)
j − �(v

(k)
j ) − C

� ′(v(k)
j )

, (3.163)

where the superscripts indicate iteration number, the constant C is just the right-hand side
of (3.160) and the polygamma function in the denominator is computed from formulas
given in Abromovitz and Stegun [2] analogous to (3.161) and (3.162):

� ′(x + 1) =
∞∑

n=0

(−1)n(n + 1)ζ(n + 2)xn (3.164)

and

� ′(x + n) = −
n−1∑
k=1

1

(x + k)2
+ �(x + 1). (3.165)

Because � is well behaved for positive arguments, the iterates of (3.163) converge very
rapidly to a solution of (3.160), making it a useful reestimation formula.

Proofs of the Formulas

As noted at the beginning of the previous section, in order for the reestimation formulas
derived therein to be useful, it must be proven that they always provide valid parameter
values that increase the likelihood function. Fortunately, it is not difficult to do so in this
case since we can rely on powerful theorems proven in connection with standard hidden
Markov models.

Since the likelihood function (3.146) is a polynomial in the aij with positive coefficients,
the correctness of (3.151) is ensured by the method of Section 3.1.1. One need only
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observe that A is rowwise stochastic and the right-hand side of (3.146) is of the proper
form. The former is true by definition, while the latter follows from straightforward
differentiation and some rearrangement of terms.

The correctness of the formulas for the other parameters is an immediate consequence of
a result due to Baum et al. [29] which ensures the correctness of a reestimation formula if
λ is a critical point of Q(λ, λ) and if the probability density function, f , of the observations
is log concave in λ. In the present case, the first criterion is satisfied by construction. The
property of log concavity is easily established by differentiation of the relevant density
functions with respect to each of the parameters. In all cases except for the vj , one

observes directly that ∂2

∂λ2 log(f (λ)) < 0 everywhere on �. For the vj we find that:

∂2

∂v2
j

log(dj (τ )) = − d�

dvj

. (3.166)

It is well known [109] that

d�

dv
=

∞∑
k=1

1

(v + k)2
, (3.167)

hence the right-hand side of (3.166) is strictly negative for vj ∈ R
+, allowing us to

conclude that dj (τ ) is log concave in vj .
A final technical point should be made regarding the applicability of the result of Baum

et al. [29]. The auxiliary function considered in their proof has a single summation over
time while the present one requires two, one on t and a second on τ . For fixed τ , each
summand in our Q is formally identical to the one treated by Baum et al. Thus each term
is strictly log concave. The sum of log concave functions is log concave, allowing the
result to be extended to the continuously variable-duration case.

Scaling

Although the reestimation formulas given above are theoretically correct, they suffer
from the numerical problem that αt (i) and βt (j) tend rapidly to zero as t increases. To
be useful, their values must be kept within the limited dynamic range of a real computer.
The same fundamental idea as was described in Section 3.1.1 can be adapted for the
variable-duration case, namely,

a
′
t (i) = wtαt(i) (3.168)

and

β
′
t (j ) = wtβt (j), (3.169)

where the scale factors, (wt )
T
t=1, are given by:

wt =
[

n∑
i=1

αt (i)

]−1

, (3.170)
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a fortuitous consequence of which is that:

log(L(O|λ)) = −
T∑

t=1

log(wt ). (3.171)

Since (3.170) is applied for t = 1, 2, . . . , and since the recursive calculation of α and
β now explicitly involves not merely one, but all previous values, the sum on t will be
meaningless unless each term is multiplied by the same coefficient. Thus for each τ we
must supply the τ − 1 missing scale factors. Doing so, the scaled a and β recursions
analogous to (3.144) and (3.145) become

αt (j) =
∑
τ≤t

n∑
i = 1
i �= j

α
′
t−τ (i)aij dj (τ )

[
τ−1∏
θ=1

wt−θbj (Ot−τ+θ )

]
bj (Ot ), (3.172)

and

βt (i) =
∑

t≤T −t

n∑
i = 1
j �= i

aij dj (τ )

[
τ−1∏
θ=1

wt−τ+θ bj (Ot−θ )

]
bj (Ot+τ )β

′
t+τ (j), (3.173)

respectively. Note that there is still a potential problem since the bracketed terms must fall
with the dynamic range of the computer. We have not yet encountered a problem in this
respect. It should be clear that as long as this difficulty does not arise, the actual scaling
operation (3.170) can be performed at any regular interval, not necessarily at every time
step.

When the α and β terms are scaled in this way, the expressions which arise in the
reestimation formulas will have a common factor which can be divided out. For example,
in determining the state sequence we may observe that

α
′
t (i)β

′
t (i)/wt = αt (i)βt (i)

T∏
t=1

wt (3.174)

for any i. Since the scaled α and β terms always include the common factor on the right-
hand side of (3.174), the left-hand side can be used in (3.148) and the state sequence can
be found by maximizing it over i for each t .

The reestimation formulas can also be evaluated by exploiting the common coefficient
formed by the product of scale factors. For example, to scale (3.151) we observe that
wt−τ+1, wt−τ+2, . . . , wt−1 are absent from each term in the numerator while wt appears
twice in every term in the denominator. Treating the missing and extra coefficients accord-
ingly, we may rewrite (3.151) in terms of the scaled α and β values, namely,

aij =
∑T

t=1

∑
τ≤t α

′
t−τ (i)aij dj (τ )

[∏τ−1
θ=1 wt−τ+θ bj (Ot−τ+θ )

]
bj (Ot )β

′
t (j )∑T −1

t=1 α
′
t (i)β

′
t (i)/wt

. (3.175)
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The common term may now be divided out of the right-hand side of (3.175), giving a
true value for aij from the scaled α and β terms. Equations (3.155), (3.158), and (3.160)
may be treated in just the same manner.

3.1.5 The Non-stationary Observation Case

The stochastic processes studied in Sections 3.1.1–3.1.4 all assume piecewise or quasi-
stationarity, that is, the states of the model correspond to stationary regimes in the observed
signal within which the statistics are time-invariant. As discussed in Section 2.1, how-
ever, the articulatory generation of the speech signal requires that the articulators be in
continuous motion, causing the power spectrum of the signal to be a continuous function
of time, the behavior of which is governed by mechanical constraints on the articulatory
mechanism. We can imagine that as a sequence of sounds is produced by the vocal appa-
ratus, the articulators move along well-determined trajectories between target positions
(refer to Figs 2.1 and 2.3) corresponding to the individual sounds. We can account for
this co-articulation of sounds by relaxing the assumption of quasi-stationarity to include
those non-stationary processes in which the continuous time variation is created by a
deterministic function of time. This is accomplished by the non-stationary autoregressive
model of Liporace [200] which is a combination of his earlier non-stationary LPC model
[199], the autoregressive model discussed in Section 3.1.3, and the semi-Markov model
of section 3.1.4.

The general equation for this kind of process is

yt =
M∑

m=1

csk
m (t − τk)yt−m + nt , t = τk, . . . , τk + dk − 1, (3.176)

where τk denotes the starting time for the kth segment, dk denotes the kth segment
duration, sk denotes the state underlying the kth segment, and nt denotes a Gaussian
distributed random noise at time t . The random noise is state-dependent with zero mean
and has noise variance σ 2

sk
. The non-stationarity arises from the time variation of the

regression coefficients, cm.
The first segment starts at time M + 1; therefore, τ1 = M + 1. Data points for the first

segment, which is generated using (3.176) with k = 1, will last from time t = M + 1 to
t = τ1 + d1. Thus, the second segment starts at time τ2 = τ1 + d1 and ends at τ2 + d2 − 1.

After all the data points for a segment have been generated, the next state is selected
according to the state transition matrix A = {aij , i = 1, . . . , S, j = 1, . . . , S}. This matrix
gives the probability of going from state i to state j .

After the state for a segment is selected, then the whole process repeats. The duration is
selected from the state-dependent duration distribution. Then data are generated using the
recursive equation 3.176. This whole process continues for all the segments k = 1, . . . , K ,
where K is the maximum number of segments in the speech data.

Regression Coefficients

The regression coefficients {cj
m(t), m = 1, . . . , M, j = 1, . . . , S} are generated as a lin-

ear combination of another function un(t):
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cj
m(t) =

N∑
n=0

cj
mnun(t), m = 1, . . . , M, j = 1, . . . , S. (3.177)

From this equation, it can be seen that the c
j
mn are just a set of constants not dependent

on time. However, the function un(t) does depend on time and this makes up the time-
varying components of the c

j
m(t). In other words, it is the un(t) which makes the data

nonstationary. Using either a power series or a Fourier series we get, respectively,

un(t) = tn, (3.178)

un(t) =
{

cos nωt, n even,

sin nωt, n odd.
(3.179)

Parameters

There are five parameters for the model: σ 2, the variance for the first M samples; A =
{aij }, the matrix for state transition probabilities, where aij is the probability from state i to
state j ; P(d|j), the state duration probabilities, d = 1, . . . , D, j = 1, . . . , S; c

j
m(t), the

parameters of the time-dependent regression coefficients, m = 1, . . . ,M, j = 1, . . . , S;
and σ 2

j , the state-dependent noise variance, j = 1, . . . , S.

Calculation of Probability

To start the process of finding the parameters given the data, first assume that a set
of parameters is known and that the probability density needs to be calculated. It is
shown that inductive calculation for finding the probability density is less computationally
intensive than direct computation. Then the result from inductive calculations is used in
the re-estimation of the parameters.

Direct Calculation
Given the observations sequence Y, but not the original parameters, we want to reestimate
the values of the parameters from the observed values. The criterion for doing this is to
find the set of parameters that will maximize the probability density of Y.

To do this, suppose that we are already given a set of parameter values known collec-
tively as λ. Then the probability density of Y given that the parameter values are λ can
be written as follows:

pλ(Y) =
∑

x
pλ(Y, x) =

∑
x
pλ(Y|x)Pλ(x), (3.180)

where x is a possible realization, pλ(Y, x) is the joint probability density of the joint
occurrence of Y and x, pλ(Y|x) is the probability density of Y given x, and Pλ(x) is the
probability of the sequence x. The state–duration pair sequence for a possible realiza-
tion, x, is denoted by (s1, d1), (s2, d2), . . . , (sKx , dKx ), where the number of segments is
dependent on the particular sequence x. The term Pλ(x) denotes the probability of the
sequence x for the set of parameters values λ. As can be seen from the equation above,
this summation is over all possible sequences and will be computationally intensive.
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Following is the brief outline from Liporace’s paper for the calculation. Since the
current active state depends only on the previous state, we have

Pλ(x) = as1P(s1, d1)

Kx∏
k=2

ask−1skP (dk|sk), (3.181)

where as1 denotes the probability of starting from the first state s1.
Let G(y; m, σ 2) denote the univariate Gaussian density on y with mean m and variance

σ 2. Then

Pλ(Y|x) = Pλ(Y1,M)

Kx∏
k=1

Pλ(Yτk,τk+dk−1|Y1,τk−1, x) (3.182)

=
M∏
t=1

G(yt ; 0, σ 2)

Kx∏
k=1

τk+dk−1∏
t=τk

G(yt ; E(yt |Y1,t−1, x), σ 2
sk

). (3.183)

The first product term from t = 1 to t = M in 3.183 is the probability density function
due to the first M samples, which are generated from Gaussian random variables with
mean 0 and variance σ 2. The rest of the terms in 3.183 come from the rest of the samples.

For the model, each segment is generated autoregressively; therefore, within each seg-
ment:

E(yt |Y1,t−1, x) =
M∑

m=1

N∑
n=0

csk
mnun(t-τK)yt−m, t ∈ [τk, . . . , τk + dk − 1]. (3.184)

Substituting equations 3.181, 3.183, and 3.184 into 3.180, we get the probability density
function of Y, which can be calculated directly. However, calculating the pλ(Y) for a
given set of parameter values λ directly using this formula takes a lot of computational
power because we need to consider all possible paths, and even the simplest path with
the smallest number of possible segments requires considerable computation.

Inductive calculation
In the standard HMM, there is an inductive method of calculating the probability of the
observations using forward and backward probabilities. There is also an inductive method
to find pλ(Y) in this model. This method is analogous to the forward and backward
probabilities for the continuous-duration case of section 3.1.4.

The following notation will be used for the rest of this section:

p(·) Probability density function of an argument
P(·) Probability of an argument
(j, d)τ State j and duration d begin at time τ

(j, ·)τ State j begins at time τ

(·, d)τ Duration d begins at time τ
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We require the following definitions:

α∗
τ (j) = pλ(Y1,τ−1, (j, ·)τ );

β∗
τ (j) = pλ(Yτ,T |Y1,τ−1, (j, ·)τ );

ατ (j, d) = pλ(Y1,τ+d−1, (j, d)τ );
βτ (j, d) = pλ(Yτ+d,T |Y1,τ+d−1, (j, d)τ );

uj (t, τ ) =
M∑

m=1

N∑
n=0

cj
mnun(t − τ)yt−m;

gj (t, τ ) = G(yt ; uj (t, τ ), σ 2
j )

the latter being the univariate Gaussian density on yt with mean uj (t, τ ) and variance σ 2
j .

The idea for the inductive calculation is to look at the state which is active at any time
τ ∈ [M + 1, . . . , T ]. A state j is active at time τ if and only if state j begins at some
time τ − d ′ + 1, d ′ ∈ [1, . . . ,D] with duration d ≥ d ′.

For τ ∈ [M + 1, . . . , T ],

pλ(Y) =
S∑

j=1

D∑
d ′=1

D∑
d=d ′

pλ(Y, (j, d)τ−d ′+1) (3.185)

and identically in τ . Also

pλ(Y, (j, d)τ ) = pλ(Y1,τ+d−1, (j, d)τ )pλ(Yτ+d,T |Y1,τ+d−1, (j, d)τ ) (3.186)

= ατ (j, d)βτ (j, d) (3.187)

A comment here is that {ατ (j, )} is analogous to the forward probability in the standard
HMM, while {βτ (j, d)} is analogous to the backward probability in the standard HMM.

Substituting 3.187 into 3.185,

pλ(Y) =
S∑

j=1

D∑
d ′=1

D∑
d=d ′

ατ−d ′+1(j, d)βτ−d ′+1(j, d), τ ∈ [M + 1, . . . , T ], (3.188)

where {ατ (j, d)} and {βτ (j, d)} can be calculated inductively as follows.
The values for α∗

τ (j) can be computed inductively for all time τ and states j by using
the following equations:

α∗
τ (j) = pλ(Y1,τ−1, (j, ·)τ ) (3.189)

=
S∑

i=1

D∑
δ=1

α∗
τ−δ(i)aij P(δ|i)

τ−1∏
τ−δ

gi(t, τ − δ). (3.190)
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Since the first segment always starts from state 1, the initial condition for α∗
τ (j) is

α∗
τ (j) = 0, for j = 1, . . . , S, τ = 1, . . . , M,

α∗
M+1(j) =

{
1, if j = 1,

0, otherwise.

Alternatively, we can use the following for each state j :

α∗
M+1(j) = 1

M
, for j = 1, . . . , S.

After all the values for α∗
τ (j) are calculated, ατ (j, d) can be calculated from α∗

τ (j) induc-
tively as follows:

ατ (j, d) = pλ(Y1,τ+d−1, (j, d)τ ) (3.191)

= pλ(Yτ,τ+d−1|Y1,τ−1, (j, d)τ )P (d|j)pλ(Y1,τ−1, (j, ·)τ ) (3.192)

=
τ+d−1∏

t=τ

gj (t, τ )P (d|j)pλ(Y1,τ−1, (j, ·)τ ) (3.193)

=
τ+d−1∏

t=τ

gj (t, τ )P (d|j)α∗
τ (j), (3.194)

where gj (t, τ ) is defined at the beginning of this section.
Because

β∗
τ+d(k) = pλ(Yτ+d,T |Y1,τ+d−1, (k, ·)τ+d ) (3.195)

it can be concluded that

β∗
τ+d(k) =

S∑
l=1

D∑
δ=1

pλ(Yτ+d,τ+d+δ−1, (l, ·)τ+d+δ, (·, δ)τ+d |Y1,τ+d−1, (k, ·)τ+d )] (3.196)

=
S∑

l=1

D∑
δ=1

β∗
τ+d+δ(l)P (δ|k)akl

τ+d+δ−1∏
t=τ+d

gk(t, τ + d). (3.197)

The initial conditions used for β∗
t (k) are

β∗
T (k) = 1, k = 1, . . . , S.

This is because there is the probability of ending in any of the states at the end of the
data sequence. All β∗

t (k) can be calculated for all time t and states k, starting from time
t = T and going back in time.
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Then, using β∗
t (k), βτ (k, d) can be calculated as follows:

βτ (j, d) = pλ(Yτ+d,T |Y1,τ+d−1, (j, d)τ ) (3.198)

=
S∑

k=1

ajk β
∗
τ+d(k). (3.199)

From 3.199, it can be seen that

βτm(jm, dm) = βτn(jn, dn), if τm + dm = τn + dn and jm = jn. (3.200)

This may save a little computation time. Also, during the implementation, it is found that
calculating and saving all gj (t, τ ) and then calculating and saving all

∏τ+d−1
t=τ gj (t, τ ),

rather than calling this function every time, saves some computation time.

Parameter Reestimation

There is a set of re-estimation formulas for updating the parameters such that the new
parameter values λ always give a monotonic increase in the likelihood of the observation
Y, with respect to the current parameter values λ, that is, pλ(Y) > pλ(Y).

As in standard HMM, there is an initial guess for each of the parameters. Then each
parameter is updated until the likelihood appears to have converged such that an ad hoc
criterion has been met (e.g., when the increase in the likelihood value is less than some
number ε). For this discussion, a fixed number of iterations is used instead because it can be
seen from the plots of the likelihood functions when the ad hoc criterion has been reached.

Even though the ad hoc criterion or the fixed number of iterations is easier to test for,
this is not valid in general. This is because there is a possibility for the likelihood function
to reach convergence, but the parameter values may still be changing. The true conver-
gence criterion should depend on the parameter values and not the likelihood values, and
this is achieved when the parameter values no longer change. When the true convergence
criterion has been met, then the set of values found corresponds to the point where the
gradient of the Q function with respect to each of the different parameters is 0. This is
explained below.

Auxiliary Function

The reestimation formulas are derived from the auxiliary function

Q(λ,λ) =
∑

x

pλ(Y, x) log pλ(Y, x). (3.201)

As noted in Section 3.1.2, we have:

1. Q(λ,λ) > Q(λ, λ)) ⇒ pλ(Y) > pλ(Y).
2. Under mild orthodoxy conditions on Y, Q(λ, λ) has a unique global maximum λ. This

global maximum is a critical point and coincides with λ if and only if λ is a critical
point of pλ(Y).
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3. The point λ at which Q(λ, λ) is maximized is expressible in closed form in terms of
the inductively computable quantities {ατ (j, d), βτ (j, d)}.

Statement 1 says that increasing the value of the auxiliary Q function with respect to
the new parameters means that the probability density of Y or likelihood of Y also
increases. Statement 2 says that the likelihood for the new parameter values λ will always
increase the likelihood with respect to current parameters, unless it is a critical point.
This is because with every update, the new parameters will always give a better or equal
likelihood value. Statement 3 says that it is practicable to determine the new parameter
values because an inductive process can be stopped after a certain number of iterations;
however, it may be impossible to find the new parameters using the closed-form solution.

Outline of Derivation of Reestimation Formulas

The derivations are very long and will not be given in detail. However, a basic outline
is provided. In essence, the gradient of the Q function with respect to each of the five
parameters is taken, subject to the stochastic constraints.

First, the auxiliary function Q(λ, λ), given earlier in terms of pλ(Y, x) and log pλ(Y, x),
is written in terms of the five parameters by substituting 3.181, 3.183, and 3.184
into 3.180, then imposing the following stochastic constraints for some of the parameters
in the new parameter set λ:

S∑
j=1

aij = 1, i = 1, . . . , S, (3.202)

and
D∑

d=1

P(d|j) = 1, j = 1, . . . , S. (3.203)

The first constraint 3.202 states that the sum of the probabilities leaving a state should
be equal to 1 and the second constraint 3.203 states that the sum of the probability of
duration for any state should equal 1.

Next, use Lagrange multipliers to incorporate these constraints into the Q function
to give another function Q∗(λ, λ). Thus the new auxiliary function, Q∗(λ, λ), with the
constraints, is

Q∗(λ,λ) = Q(λ, λ) −
S∑

i=1

θi


 S∑

j=1

aij − 1


−

S∑
j=1

εj

(
D∑

d=1

P(d|j) − 1

)
(3.204)

where θi and εj are Langrange multipliers.
Then the gradient of Q∗(λ, λ) with respect to each of the five new parameters is set

equal to 0 (as in the standard procedure for finding the critical point of a function). For
example, ∂Q∗(λ, λ)/∂aij = 0 is solved. From the above discussion, the critical point will
correspond to a global maximum of Q. Since Q has increased with respect to the new
parameters, this means that the likelihood with respect to the new parameter has also
increased, that is, pλ(Y) > pλ(Y).
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Reestimation Formulas

The variance for the first M data samples does not require reestimation:

σ 2 = 1

M

M∑
t=1

y2
t . (3.205)

The rest of the parameters do require re-estimation. The reestimation formulas for âij ,
P̂ (d|j), and σ̂ 2

j are as follows:

âij =
∑T

τ=M+1
∑D

d=1 ατ−d (i,d)aij β
∗
τ (j)∑T

τ=M+1
∑D

d=1 ατ−d (i,d)βτ−d (i,d)
, i, j = 1, . . . , S, (3.206)

P̂ (d|j) =
∑T

τ=M+1 ατ (j,d)βτ (j,d)∑T
τ=M+1

∑D
δ=1 ατ (i,δ)βτ (i,δ)

, j = 1, . . . , S, d = 1, . . . , D, (3.207)

σ̂ 2
j =

∑T
τ=M+1

∑D
d=1 ατ (i,d)βτ (i,d)

∑τ+d−1
t=τ (yt−µj (t,τ ))2∑T

τ=M+1
∑D

d=1 dατ (i,d)βτ (i,d)
, j = 1, . . . , S. (3.208)

In the above formulas, ατ (i, d), βτ (i, d), β∗(j) and µj(t, τ ) have already been defined.
The reestimates for the autoregressive coefficients were calculated as follows. For each

j = 1, . . . , S,

M∑
m=1

N∑
n=0

Rj
mqnr ĉ

j
mn = R0q0r q = 1, . . . ,M, r = 0, . . . , N, (3.209)

where

Rj
mqnr =

T∑
τ=M+1

D∑
d=1

ατ (j, d)βτ (j, d)

t+d−1∑
t=τ

yt−myt−qun(t − τ)ur(t − τ). (3.210)

Letting M = 2, N = 1, for j = 1, . . . , S, 3.209 can be written out explicitly as


R
j

1100 R
j

1110 R
j

2100 R
j

2110

R
j

1101 R
j

1111 R
j

2101 R
j

2111

R
j

1200 R
j

2110 R
j

2200 R
j

2210

R
j

1201 R
j

1211 R
j

2201 R
j

2211






ĉ
j

10

ĉ
j

11

ĉ
j

20

ĉ
j

21


 =




R
j

0100

R
j

0101

R
j

0200

R
j

0201


 (3.211)

which can be written compactly as

R j ĉ j = r j . (3.212)

The R j matrix is symmetric; this can be seen from 3.210 since it is symmetric about
n and r , as well as m and q. Therefore, it is only necessary to compute the values in
the upper triangle of this matrix. As always, when using a computer to solve 3.211, one
should avoid finding the inverse of R j to find ĉ j because this operation may be unstable
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numerically and also takes a lot of computation. Rather, other more numerically stable
and faster methods for solving the regression coefficients ĉ j can be used, which do not
involve matrix inversion. As in Section 3.1.3, if R j is positive definite, since it is already
symmetric, Cholesky factorization can be used [265].

The computational complexity of this model renders it difficult to implement and costly
to apply. Tan [309] has produced a successful Monte Carlo simulation of the algorithm
but, despite its obvious appropriateness, it has yet to be applied to the speech signal.

3.1.6 Parameter Estimation via the EM Algorithm

The parameter estimation problem is analogous to the statistical approach to a seemingly
very different problem, that of estimation from incomplete data. Dempster et al. [62]
indicate that in the 1950s, statisticians were thinking of a random process for which
only incomplete data was available as a doubly stochastic process. The output of the
“true” but hidden process x was thought of as passing through a second process y which
censored the input and produced the observed data. Both processes were considered to
be parameterized in λ and the problem was to determine λ from the observables.

The statistician’s solution to this problem has come to be known as the EM algorithm: E
for expectation and M for maximization. The algorithm is succinctly described as follows.
Let τ(x) be any sufficient statistic for x, meaning that, in a precise sense, τ contains
complete information about x. Suppose that we have an estimate of the parameter λ.
Then the so-called E-step of the algorithm calls for the estimation of τ(x) from

τ = E{τ(x)|y, λ}, (3.213)

where E{·|·} is the expectation operator. Thus solving (3.213) gives a new estimate of
τ(x), τ , conditioned on the present estimate of the parameter λ and the observations y.
This is followed by the M-step in which we solve

E{τ(x)|λ} = τ (3.214)

to get a new estimate, λ, of the parameter. Iterative applications of (3.213) and (3.214)
yield better estimates of λ. In general, there are no closed-form solutions for (3.213) and
(3.214) so the Bayesian solution is used, yielding λ as the maximum likelihood estimator
of the parameter given λ and τ . Generalizations and proof of convergence of the EM
algorithm are given in [62].

Baum and his colleagues [27–29] recognized that the parameter estimation problem for
the HMM could be considered an interesting special case of a doubly stochastic process,
whereupon they were able to derive a particular solution to (3.213) and (3.214).

3.1.7 The Cave–Neuwirth and Poritz Results

We now turn our attention to two important empirical results based on the theory of
hidden Markov models described in Sections 3.1.1 through 3.1.6. The two experiments
clearly demonstrate the remarkable power of the HMM to both discover and represent
aspects of linguistic structure as manifest in text and speech. This is possible because,
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like linear prediction described in Section 2.4.2 and time scale normalization discussed in
Section 2.6.2, the HMM is a general model of a time series that is particularly appropriate
for speech and naturally captures acoustic phonetics, phonology, and phonotactics.

Markov [212] used the stochastic model that now bears his name to analyze the text of
Eugene Onegin. More recently, Cave and Neuwirth [43] have given a modern interpreta-
tion of his experiments in a highly instructive way. Using ordinary text from a newspaper
as an observation sequence, they estimated the parameters of a family of HMMs. They
then showed how the parameter values can be used to infer some significant linguistic
properties of English text.

The observation data for the experiment comprised T = 30 000 letters of ordinary text
from the New York Times. The text was preprocessed to remove all symbols except the
26 letters of the English alphabet and a delimiter (blank or space) used to separate words.
Thus, M was fixed at 27. The observation sequence, O, was then the entire text.

A family of models corresponding to N = 1, 2, 3, . . . , 12 was generated by applying
the algorithm of (3.11)–(3.13) to the entire observation sequence until convergence was
reached. The state sequence for each model was determined from (3.7) and put into
correspondence with the observation sequence. Many of the entries in the A and B matrices
converged to zero, indicating impossible state transitions and impossible observations for
a given state, respectively. These four quantities make possible the formulation of two
kinds of rules governing English text. First are those rules that identify a particular state
with a linguistic property of an observation. Conversely, we have rules that determine
which state generated a particular observation based on the linguistic properties of the
observation.

The case for N = 6 provides a good example. In this case, it was discovered that only
vowels were produced by state 2. This is an example of the first type of rule. Whenever
a blank was present in the observation sequence, the model was in state 6. This is an
example of the second type of rule. In addition, it was found that state 3 was associated
exclusively with consonants, state 1 was a vowel successor, and state 5 was a consonant
successor. Some more complicated rules were also discovered; for example, word-final
letters could come only from states 1, 2, or 4 whereas word-initial letters could only
arise in states 2, 3, or 5. Of course, the state transition matrix determines the allowable
sequences of letters having specific properties.

It is remarkable that the HMM discovers these important properties of text (for which
linguistic categories had already been named) without any information other than that
which is implicit but camouflaged in the text.

The Poritz [250] result comes from an experiment which was, no doubt, inspired by the
Cave–Neuwirth result. The experiment is identical in spirit, with speech as the observ-
able process instead of text. In this case, the autoregressive model of Section 3.1.3 was
derived from readings of short paragraphs of about 40 seconds in duration. A five-state
model was estimated and then the state sequence corresponding to the speech signal was
determined. By listening to those intervals of the signal that correspond to each of the
five states, their identities were easily determined. State 1 produced only vowels. State 2
indicated silence. State 3 was reserved for nasals; state 4, plosives; and state 5, fricatives.
Moreover, the state transition matrix determined the phonotactic rules of these five broad
phonetic categories. The spectra corresponding to the state-dependent autoregressive pro-
cesses were exactly those that would be predicted by solutions to the Webster equation
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for the vocal tract geometry appropriate to the phonetic category. In a manner analogous
to that of the Cave–Neuwirth result, the Poritz result shows how broad phonetic cate-
gories and phonotactics can be discovered in the speech signal without recourse to known
linguistic categories.

These two results are the best available demonstration of the appropriateness of the
HMM formalism for extraction and representation of linguistic structure. These results
form the empirical basis for the speech recognition systems which we will study in
Chapter 7.

3.2 Formal Grammars and Abstract Automata

We may think of a language as a (possibly infinite) list of sentences, each composed of a
sequence of words. Allowable sequences of words are produced according to a finite set
of grammatical rules. We shall call such a set of rules a formal grammar G, and the list
generated by it, the language, L(G).

The grammar G is a mathematical object composed of four parts and is designated by
G(VN, VT , S, R). VN signifies a finite set of non-terminal symbols disjoint with respect
to VT , a finite set of terminal symbols. The terms “terminal” and “non-terminal” refer to
whether or not, respectively, the symbols may appear in a sentence. Non-terminals are
traditionally designated by upper-case letters, terminals by lower-case. Thus a sentence
will contain only lower-case letters. The distinguished non-terminal S is called the start
symbol since all sentences in the language are derived from it. The kernel of the grammar
is the set R of rewriting or production rules, a member of which is customarily indicated
by α → β, where α and β stand for elements of the set {VN ∪ VT }∗, and the notation L∗
is taken to mean the set of all subsets of L. A rewriting rule allows the replacement of the
arbitrary string appearing on the left-hand side of the rule by the arbitrary string on the
right wherever the left-hand member appears in any other string. A special case is that for
which β = φ, the null symbol. The effect of this rule is to cause the string α to vanish.

A grammar generates sentences in a language by the following operations. A string
γ is said to derive the string δ, written γ ⇒ δ, if and only if γ = η1αη2, δ = η1βη2,

and ∃α → β ∈ R where η1 and η2 are arbitrary strings. The transitive closure of the
derivation operator is γ

∗⇒ δ, read γ ultimately derives δ, meaning that γ = ζ0, δ = ζT ,
and ζt−1 ⇒ ζt for 1 ≤ t ≤ T . Then

L(G) = {W ∈ V ∗
T | S

∗⇒ W }, (3.215)

meaning that a language comprises all those strings of terminal symbols that S ultimately
derives under the set R. From (3.215) one may thus infer that if G imposes any constraint
on word order then L(G) ⊂ V ∗

T .
A simple example will serve to clarify the notation. Let VN = {S, A}, VT = {a, b}, and

R be defined by

S → aS,

S → bA,

A → bA,

A → φ.

(3.216)
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According to (3.216), the start symbol can be transformed into a sequence of arbitrarily
many as followed by another sequence of any number of bs. Thus we may write

L(G) = {ambn | m, n > 0}. (3.217)

3.2.1 The Chomsky Hierarchy

The Chomsky hierarchy [46] is a particularly significant taxonomy of formal grammars
according to their complexity and representational powers. Depending upon the form of
R, grammars are classified as either regular, context-free, context-sensitive, or phrase-
structure, in increasing order of complexity. Regular grammars, of which (3.216) is an
example, have rules of the form A → a or A → aB.

Context-free grammars, so called because their production rules may be applied inde-
pendent of the symbols surrounding the non-terminal on the left-hand side, have rules of
the form A → α. Naturally, context-sensitive grammars have rules of the form αAβ →
αγβ which map the non-terminal A onto the string γ only in the left and right context of
α and β, respectively. Finally, the phrase-structure grammars have the unrestricted rules
α → β. Each class in the hierarchy is properly included in the one above it.

That this differentiation among formal grammars is deeply meaningful requires a proof
which goes too far afield for the purposes of this exposition. The reader interested in
pursuing these ideas should consult [112], [120], and [133]. Since, however, that fact has
implications for the algorithms we are about to discuss, the following examples should
lend it some credence. Note that in (3.217) there is no relationship between m and n.
If we require, for example, m = n for any m, then no set of regular rules will suffice.
However, the context-free rules S → aSb, S → φ will generate exactly the language
L(G) = {anbn | n > 0}. In other words, regular grammars cannot count while context-
free grammars can count the elements of one set, that is, the length of the string of bs.
Similarly, if we wish to append another string of as, then no set of context-free rules is
powerful enough. The context-sensitive rules S → ABSa, BA → AB, S → φ, Aa → aa,
Ab → ab, Bb → bb, Ba → ba do, in fact, generate the language, L(G) = {anbnan | n >

0}. Thus whereas context-free grammars can count one set, context-sensitive grammars
can count two. Finally, we note, without offering any justification, that, in a certain sense,
any computational process can be expressed as a phrase-structure grammar [319].

In (3.219) we derive the sentence a3b3c3 for the context-sensitive case: according to
the rewrite rules of (3.218). The rules are numbered and the rule used for a particular
step in the derivation is indicated by the number of the rule in parentheses.

(1) S → ABSc

(2) S → λ

(3) BA → AB

(4) Ab → ab

(5) Aa → aa

(6) Bb → bb

(7) Bc → bc

(8) A → a

(3.218)
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S

(1) ABSc

(1) ABABScc

(1) ABABABSccc

(2) ABABABccc

(7) ABABAbccc

(3) ABAABbccc

(6) ABAAbbccc

(3) AABAbbccc

(3) AAABbbccc

(6) AAAbbbccc

(5) AAabbbccc

(5) Aaabbbccc

(8) aaabbbccc

(3.219)

Properties and Representations

The languages generated by formal grammars have some useful computational properties
and representations. A particularly interesting case is the finite language for which

|L(G)| = N < ∞. (3.220)

Any finite language can be generated by a regular grammar from which we can count the
sentences in the language. Let the matrix C have elements cij defined by

cij = |{Ai → vAj }| (3.221)

for any v ∈ VT and 1 ≤ i, j ≤ |VN |.
Powers of C have a particular significance, namely the number, Nk , of sentences of

length k is given by

Nk = esCkef , (3.222)

where es is the vector (1, 0, 0, . . . , 1) and ef is the vector (0, 0, 0, . . . , 1). These vectors
correspond to an arrangement of the grammar such that the start symbol is the first
non-terminal and the null symbol is the last. The generating function

P(Z) =
K∑

k=1

NkZ
k (3.223)

will be important in the discussion of grammatical constraint in Section 6.2.4. In (3.223)
K is the length of the longest sentence, which must be finite since

K∑
k=1

Nk = N (3.224)

which, from (3.220), is assumed finite.
Any context-free grammar can be written in a canonical form called Chomsky normal

form (CNF) in which all rules are either of the form A → a or A → BC. The CNF is
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S

B

E

C

FD

W1 W W +1 Wk Wk+1 Wm W|w |

Figure 3.11 Parse tree for a sentence in a context-free language

naturally related to a binary tree as shown in Fig. 3.11. The root of the tree is the start
symbol. All other nodes of the tree are labeled with non-terminals. Each node, except for
the leaves of the tree and their predecessors, have two successors corresponding to the
left and right non-terminals on the right-hand side of A → BC, respectively. The CNF
of a context-free grammar gives rise to the binary tree structure of Fig. 3.11, which is
analogous to the directed graph structure for regular grammars shown in Fig. 3.12.

A → α = B1B2 . . . Bm, Bi ∈ {VN ∪ VT }, (3.225)

becomes

{
A → αC1C2 . . . Cm

Ci → Bi ⇔ Bi ∈ VT
(3.226)

then

A → C1D1,

D1 → C2D2,

D2 → C3D3,
...

Dm−3 → Cm−2Dm−2,

Dm−2 → Cm−1Cm.

(3.227)

An example of the construction of (3.225)–(3.227) is given below. Consider the CF
production rules
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a) S → bA, e) S → aB,

b) A → a, f) B → b,

c) A → aS, g) B → bS,

d) A → bAA, h) B → aBB.

(3.228)

The rules (3.228) generate the language

L(G) =
{

an1bm1an2bm2 . . . ant bmt . . . anT bmT |
T∑

t=1

nt =
T∑

t=1

mt

}
. (3.229)

Note that (3.228b) and (3.228f) are already in CNF. Then (3.228a) and (3.228e) become

S −→ C1A,

C1 −→ b,
(3.230)

and
S −→ C2B,

C2 −→ a,
(3.231)

respectively. Similarly, (3.228c) and (3.228g) are transformed into

A −→ C3S,

C3 −→ a,
(3.232)

and
B −→ C4S,

C4 −→ b,
(3.233)

respectively. Finally, (3.228d) and (3.228h) result in the CNF rules

A −→ C5AA,

C5 −→ b,

A −→ C5C6,

(3.234)

and similarly,
B −→ C7BB,

C7 −→ a,

B −→ C7C8.

(3.235)

3.2.2 Stochastic Grammars

Another approach to the use of formal syntax in speech recognition is one based upon
stochastic grammars by means of which we shall be able to uncover some interesting
interrelationships among the algorithms we have discussed thus far. Stochastic grammars
are similar to the deterministic ones we have been examining except that their production
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rules have associated probabilities. The stochastic grammar Gs(VN, VT S, Rs, θ) has non-
terminal, terminal, and start symbols over which its stochastic productions Rs are defined
to have the form

α
pαβ→ β, (3.236)

where pαβ > 0 is understood to be the probability of applying the rule α → β. The charac-
teristic grammar Gs of the stochastic grammar Gs is just the deterministic grammar formed
by removing the probabilities from all rules in Rs . Thus stochastic grammars are assigned
to classes of the Chomsky hierarchy according to the classes of their respective char-
acteristic grammars. If W ∈ L(Gs), then W ∈ L(Gs) and W has the probability P(W).
If Gs is unambiguous, that is, there exists exactly one derivation for each W ∈ L(G),
then P(W) is just the product of the probabilities associated with the rules from which
S

∗⇒ W . That is,

P(W) =
∑

S
∗⇒W

∏
t

pαt−1αt . (3.237)

If ∑
W∈L(Gs)

P (W) = 1, (3.238)

the grammar Gs is said to be consistent. All regular stochastic grammars are consistent.
The conditions under which stochastic context-free grammars are consistent are known
[34]. Consistency conditions for more complex grammars are not known. A summary of
the theory of stochastic grammars is available in [94].

In the case of stochastic languages, W ∈ L(Gs) if and only if P(W) > θ . This deter-
mination can be made for the regular and context-free classes by the algorithms discussed
in Chapter 4.

3.2.3 Equivalence of Regular Stochastic Grammars and Discrete HMMs

There is an important relationship between doubly stochastic processes and stochastic
grammars. First, discrete-symbol HMMs are equivalent to regular stochastic grammars.

Production rules of the form Ai

pij→ vAj account for the hidden Markov chain in that
the non-terminal symbols Ai, Aj correspond to states qi, qj . Productions of the form

Aj

pjk→ vk correspond to the observable process, so that pjk is equivalent to bjk = bj (Ot )

when Ot = vk ∈ VT .
Note that the likelihood function of the discrete symbol HMM for the observation

sequence O = O1O2 . . . OT can be written as

L(O|λ) =
∑

q∈QT

T∏
t=1

aqt−1qt bqt (Ot ). (3.239)
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If we identify the sentence W ∈ L(G) with the observation sequence, O, meaning that
Ot ∈ VT , then we can compare (3.226) and (3.229) to see that

pαtαt+1 = aqt qt+1bqt+1(θt+1). (3.240)

Going in the other direction has no unique solution. If the pαβ are known then the aij

and bjk can be assigned any values so that their product is pαβ .
A stochastic context-free grammar is not equivalent to any HMM but it has a related

structure. Rules of the form Ai

pijk→ AjAk constitute a hidden stochastic process, and rules

of the form Ai

Ak→ Uk an observable one.

3.2.4 Recognition of Well-Formed Strings

Given any sequence of terminal symbols, W ∈ V ∗, we would like to determine whether
or not W ∈ L(G). In the cases of regular and context-free grammars, this question is
answered by abstract automata called finite-state automata (FSA) and push-down automata
(PDA), respectively.

An FSA is a labeled, directed graph in which the vertices (states) are labeled with non-
terminal symbols, and the edges or state transitions are labeled with terminal symbols.
For every rule of the form A → aB, the FSA contains a state transition labeled a joining
the two states labeled A and B. This is depicted in Fig. 3.12. A state, labeled A, may be
designated as a final state if there is a rule of the form A → a. Then W ∈ L(G) if and
only if there is a path from state S to a final state whose edges are labeled, in order, with
the symbols of W .

A BA       aB

a

d(A,a) = B

A

A ′

B

a

a
l

b

C

A        aB
B        bC

<ab>

Figure 3.12 The relation between right-linear production rates and finite-state automata
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For the context-free case, the PDA can construct a tree such as the one shown in
Fig. 3.11 whenever the string, W , is well formed.

For the regular and context-free cases, the FSA and PDA, respectively, are minimal
automata in the sense that they are the least complex machines that can answer the
membership question. As such they are rather inefficient for determining the structure
(e.g. derivation) of W ∈ L(G). For that reason, we will not consider them further. In
Chapter 4 we will again address these questions in computationally efficient algorithms
not based on either the FSA or PDA.

3.2.5 Representation of Phonology and Syntax

Formal grammars were developed, at least in part, to provide an abstract representation
of the grammar of natural language. The definitions given above can be made more
intuitively appealing by emphasizing that motivation.

Context-sensitive grammars are ideally suited for describing phonological phenomena
such as the way the pronunciation of a given sound changes because of its phonetic
environment. Rules of the form αAβ −→ αγβ exactly capture this effect since they may
be interpreted to mean that the phones derived from the non-terminal A are rendered as the
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Figure 3.13 A finite state automaton for a restricted subset of natural language
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specific phones derived from the string γ (thereby allowing for insertions and deletions)
when the preceeding and succeeding sounds derive from α and β, respectively. Cohen
and Mercer [50] have compiled a comprehensive grammar for American English.

Regular languages are appropriate for the representation of carefully circumscribed
subsets of natural language applicable to a particular limited domain of discourse. In
Fig. 3.13 we have used ordinary vocabulary words for the terminal symbols. We can thus
generate an English sentence by starting at node 1 and following any path to either node
5 or node 6, reading the associated labels as we traverse each edge. For obvious reasons,
such a directed graph is often called a state-transition diagram of the grammar.

For context-free rules, an approximation of a natural language may be obtained. For
example, non-terminal symbols can be thought of as generalized parts of speech. In par-
ticular, the start symbol S represents the part of speech 〈sentence〉. (The angle brackets are

Trigram

big balck cat

Prob [ cat | black, big ]

cat

| k | | ac | | t |

| k |

Base for m

(c)

(b)

(a) Phonetic

1 2 3 4 5
a45a34a12 a23

a33

b1k

p (d |1) p (d |2)

b2k

Figure 3.14 The non-ergodic HMM used for speech recognition
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used to distinguish the word they enclose from the same vocabulary word.) The produc-
tion rule 〈sentence〉 → 〈subject〉 〈predicate〉 may be interpreted to mean that 〈sentence〉
may have two components called 〈subject〉 and 〈predicate〉 which appear in that order.
A grammar of English might also contain the rules 〈subject〉 → 〈adjective〉 〈noun〉 and
〈predicate〉 → 〈verb〉 〈adverb〉. If we also include the rules 〈adjective〉 → white, 〈noun〉
→ horses, 〈verb〉 → run, and 〈adverb〉 → fast, then we can produce the sentence “white
horses run fast”. Note that the absence of the angle brackets signifies terminal symbols
which are, in this case ordinary members of the English lexicon. If we now add further
rules which invite the replacement of the names of the parts of speech by specific vocabu-
lary words of that type, then the rules given above can be used to produce many sentences
having the same grammatical structure; namely, 〈adjective〉 〈noun〉 〈verb〉 〈adverb〉.

The context-free rule discussed in Section 3.2.1 of the form S −→ aSb is, for obvious
reasons, called a “center embedding” rule. This rule exists in ordinary English. Start with
the sentence

The rat ate the cheese,

which is easily derived from the context-free rules above.
Now use the center embedding rule to add a modifier of “rat” giving the sentence

The rat the cat chased ate the cheese.

Similarly, adding a modifier for cat we get an unusual but well-formed sentence,

The rat the cat the dog bit chased ate the cheese.

Even more unwieldy sentences can be created by recursive application of center embed-
ding.

Stochastic grammars can also be used to represent ordinary syntax. This is usually
done in the form of a Markov chain as shown in Fig. 3.14c. The word order proba-
bility P(Wn|Wn−1, Wn−2) is equivalent to a set of production rules of the form A1

p1→
Wn−2A2, A2

p2→ Wn−1A3, and A3
p3→ WnA4.

We will return to a more detailed consideration of these ideas in Section 4.3.



4
Syntactic Analysis

4.1 Deterministic Parsing Algorithms

A particular problem addressed by formal language theory that is directly relevant to our
discussion is that of parsing sentences in a language. Specifically, given G and W ∈ V ∗

T ,
we wish to know whether or not W ∈ L(G) and, if so, by what sequences of rules S

∗⇒ W .
Recall from Section 3.2.4 that these questions can be answered by different kinds of

automata for languages in the different complexity classes of the Chomsky hierarchy. In
particular, right-linear or regular languages can be analyzed by finite-state automata, and
context-free languages by push-down automata.

Unfortunately, the conceptual simplicity of these machines makes them inefficient
analyzers of their respective languages in the most general cases. There are, however,
optimally efficient parsers that can be implemented on more complex machines such as
general-purpose computers or other Turing-equivalent models of computation. We shall
consider the significance of this fact in Chapter 9.

4.1.1 The Dijkstra Algorithm for Regular Languages

The optimal general parser for regular languages is obtained by casting the parsing prob-
lem as an optimization problem. Suppose W ∈ V ∗

T , W = w1w2 . . . wn. Each wj ∈ W

corresponds to the interval from tj−1 to tj in the speech signal and has the cost C(wj ),
and the sentence W has total cost C(W) given by

C[W ] = min
V ∈V ∗

T




|W |∑
j=1

C[vj | tj−1, tj ]


 (4.1)

(see Fig. 4.1). Parsing symbol strings has no explicit notion of time. Only word order
is required. Hence, the interval (tj−1, tj ) can be replaced by the word order index, j . If
we let C(vj ) = 0 if and only if vj = wj and 1 otherwise, then C(W) = 0 if and only if
W ∈ L(G). In the process of computing C(W), we will get S

∗⇒ W as a by-product.

Mathematical Models for Speech Technology. Stephen Levinson
 2005 John Wiley & Sons, Ltd ISBN: 0-470-84407-8
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x (t )

W ∈ (G)

t0 t1 t2 t3 t 4 t k

w1 w2 wk

Figure 4.1 Lexical segments of a speech signal

The solution to this problem can be obtained by a dynamic programming algorithm
due to Dijkstra [65]. In the case of regular grammars, let ψj(B) be the prefix of length
j of some W ∈ L(G) having minimum cost, and denote by φj (B) its cost. Initially
ψ0(B) = λ∀B ∈ VN and φ0(B) = 0 if and only if B = S, and ∞ otherwise. Then for
1 ≤ j ≤ |W | and ∀B ∈ VN ,

φj (B) = min
{A→aB}

{φj−1(A) + C[a | tj−1, tj ]} (4.2)

and

ψj(B) = ψj−1(A) ⊗ a, (4.3)

where

a = arg min
{A→aB}

{φj (B)}. (4.4)

Then Ŵ = ψ|W |(λ) and C[Ŵ ] = φ|W |(λ). For notational convenience we have assumed
that λ ∈ VN . Note that (4.2) and (4.3) are similar to the Viterbi algorithm (3.7) and (3.8)
except that the set over which the optimization occurs is different. Note also that in both
algorithms the required number of operations is proportional to |W | · |VN |.
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4.1.2 The Cocke–Kasami–Younger Algorithm for Context-free Languages

The context-free case is based on the general context-free parsing algorithm of Younger
[338]; cf. [101]. There is an added complication in this case since the grammar must first
be transformed into Chomsky normal form [133, pp. 51ff.] so that the rules are of either
the form A → BC or A → a (see Section 3.2.1).

Let ψij (A) be the string, α, spanning the ith to the j th word position in W of minimum
cost such that S

∗⇒ α, and let φij (A) be its cost. Initially,

φii(A) = min
{A→a}

{C[a | ti−1,i]} (4.5)

and

ψii(A) = a = arg min
{A→a}

{φij (A)} (4.6)

for 1 ≤ i ≤ |W |. All other values of φ and ψ are undefined at this point. Then for
1 ≤ i, j ≤ |W |,

φij (A) = min
{A→BC}

{
min
i≤l<j

{φil(B) · φl+1,J (C)}
}

(4.7)

and

ψij (A) = ψil ⊗ ψl+1,j (C), (4.8)

where

(l, B,C) = arg min
{A→BC}
i≤l<j

{φij (A)}. (4.9)

The derivation S
∗⇒ W can be reconstructed from (4.9) according to

(l, B,C) = ψ1N(s), (4.10)

where N = |W |. Then for the left subtrees

(l, B, C) = ψ1l(B), (4.11)

and for the corresponding right subtrees

(l, B, C) = ψl+1,N (l, B, C) (4.12)

Finally, Ŵ = φ1|W |(S) and C[Ŵ ] = ψ1|W |(S). The operation of this algorithm is shown
in Fig. 4.2. Note that the number of operations required by (4.7)–(4.9) is proportional to
|W |3 and in fact the algorithm itself is a form of matrix multiplication [120, pp. 442 ff.].
An important application of this algorithm will appear in Section 5.4.

As we move further up the Chomsky hierarchy, the computational complexity of parsing
algorithms increases drastically. An algorithm similar to (4.7)–(4.9) for context-sensitive
grammars was given by Tanaka and Fu [310] but has an operation count that is exponential
in |W |.
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Figure 4.2 An example of the Cooke–Kasami–Younger algorithm

4.2 Probabilistic Parsing Algorithms

In the following cases we shall assume that word boundaries tj are known so that
only word order, j , is important. However, the words themselves are only known
probabilistically.

4.2.1 Using the Baum Algorithm to Parse Regular Languages

Recall from Section 3.2.3 that an HMM is equivalent to a regular stochastic grammar.
Recall also from Section 3.2.4 that regular grammars have an equivalent FSA the transi-
tions of which correspond to the production rules of the equivalent grammar. From these
observations we conclude that finding the state transitions in an HMM is tantamount to
parsing a sentence.

From Section 3.1.1 we know that the state, qt , at time t is found from

qt = arg max
1≤i≤N

{αt (i)βt (i)}. (4.13)
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Determination of the state sequence from (4.13) is equivalent to parsing since each qt

corresponds to some Ai ∈ VN . A state transition from qi to qj at time t corresponds to
the rule Ai → wtAj . The aij are assumed known and bj (Ot ) is the probability that wt

is the word vk given qj at t .

4.2.2 Dynamic Programming Methods

The type of parser system we are concerned with is shown in Fig. 4.3, and its operation
is formally described below.

Let the language, L, be the subset of English used in a particular speech recognition
task. Sentences in L are composed from the vocabulary, V , consisting of the M words
v1, v2, . . . , vM . Let W be an arbitrary sentence in the language. Then we write W ∈ L and

W = w1w2 · · · wk, (4.14)

where each wi is a vocabulary word which we signify by writing wi ∈ V for 1 ≤ i ≤ k.
Clearly W contains k words, and we will often denote this by writing |W| = k. Similarly,
the number of sentences in L will be denoted by |L|.

The sentence W of (4.14) is encoded in the speech signal x(t) and input to the acoustic
recognizer from which is obtained the probably corrupted string

W̃ = w̃1w̃2 · · · w̃k, (4.15)

where w̃i ∈ V for 1 ≤ i ≤ k but W̃ is not, in general, a sentence in L.
The acoustic recognizer also produces the matrix [dij ] whose ij th entry, dij , is the

distance, as measured by some metric in an appropriate pattern space, from the ith word,
w̃i , to the prototype for the j th vocabulary word, vj , for 1 ≤ i ≤ k and 1 ≤ j ≤ M.

The syntax analyzer then produces the string

Ŵ = ŵ1ŵ2 · · · ŵk, (4.16)

R(τ)

WORD
RECOGNIZER

PARSER

GR

WW
~

[dij]

{ j }

i,|W|

Figure 4.3 Maximum likelihood parsing system
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for which the total distance, D(Ŵ), given by

D(Ŵ) =
k∑

i=1

diji
, 1 ≤ ji ≤ M, (4.17)

is minimized subject to the constraint that Ŵ ∈ L. Thus the syntax analysis is optimal in
the sense of minimum distance.

Since, in general, W̃ 	∈ L, whereas W was assumed to be grammatically well-formed
(i.e. W ∈ L), the process should correct word recognition errors.

In principle one could minimize the objective function of (4.17) by computing D(W)

for all W ∈ L and choosing the smallest value. In practice, when |L| is large, this is
impossible. One must perform the optimization efficiently. It has been shown by Lipton
and Snyder [201] that for a particular class of languages one can minimize D(W) in
time proportional to |W |. In fact one can optimize any reasonable objective function
in time linear in the length of the input.

The particular class of languages for which the efficiency can be attained is called the
class of regular languages. For the purposes of this discussion we shall define the class
of regular languages as that class for which each member language can be represented
by an abstract graph called a state transition diagram.

A state transition diagram consists of a finite set of vertices or states, Q, and a set of
edges or transitions connecting the states. Each such edge is labeled with some vi ∈ V .
The exact manner of the interconnection of states is specified symbolically by a transition
function, δ, where

δ: (Q × V ) → Q. (4.18)

That is, if a state qi ∈ Q is connected to another state qj ∈ Q by an edge labeled vm ∈ V ,
then

δ(qi, vm) = qj . (4.19)

We also define a set of accepting states, Z ⊂ Q, which has the significance that a string
W = w1w2 · · · wk , where wi ∈ V for 1 ≤ i ≤ k, is a well-formed sentence in the language,
L, represented by the state transition diagram if and only if there is a path starting at q1

and terminating in some qj ∈ Z whose edges are labeled, in order, w1, w2, . . . , wk .
Alternatively, we may write W ∈ L if and only if

δ1(q1, w1) = qj1,

δ2(qj , w2) = qj2,
...

δk(qjk−1, wk) = qjk ∈ Z.

(4.20)

We may then define the language, L, as the set of all W satisfying (4.17). An example
of these concepts is shown in Fig. 4.4. The accepting states are marked by asterisks.
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While the definition given above of a regular language is mathematically rigorous, it is
not the standard one used in the literature on formal language theory but rather has been
specifically tailored to the notational requirements of this section. The interested reader
is urged to refer to Hopcroft and Ullman [133] for a standard and complete introduction
to formal language theory.

In the following discussion we shall restrict ourselves to finite regular languages, that
is, those for which |L| is finite. This restriction in no way alters the theory but its practical
importance will become obvious in what follows. The finiteness of the language implies
that its state transition diagram has no circuits, that is, no paths of any length starting and
ending at the same state. Thus there is some maximum sentence length which we shall
denote, lmax. We now turn to the problem of efficiently solving the minimization problem
of (4.17). To do this we shall define two data structures, � and �, which will be used to
store the estimates of D(Ŵ) and Ŵ, respectively.

The first stage of the algorithm is the initialization procedure in which we set

�i(q) =
{

0, for q = q0 and i = 0,

∞ otherwise,
(4.21)

�i(q) = 0, 1 ≤ i ≤ |W| = k,∀q ∈ Q. (4.22)

The data structures have two indices. The subscript is the position of the word in the
sentence and the argument in parentheses refers to the state so that the storage required
for each array is, at most, the product of lmax + 1 and |Q|, the number of states in the
set Q.

After initialization we utilize a dynamic programming technique defined by the follow-
ing recursion relations:

�i(q) = min
	

{�i−1(qp) + dij } (4.23)

where the set 	 is given by

	 = {δ(qp, vj ) = q}. (4.24)

Then

�i(q) = �i−1(qp)ŵi, (4.25)

where ŵi is just the vj which minimizes �i(q). Equation (4.25) is understood to mean
that the word ŵi is simply appended to the string �i−1(qp).

Unfortunately, the concatenation operation is not easily implemented on general-purpose
computers so we change the recursion of (4.25) by making � into a linked list structure
of the form

�1i(q) = qp, (4.26)

�2i(q) = ŵi . (4.27)
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Then when i = k we can trace back through the linked list of (4.27) and construct the
sentence Ŵ as follows: First, find qf ∈ Z such that

φk(qf ) = min
q∈Z

{�k(q)}, (4.28)

set q = qf and then, for i = k, k − 1, k − 2, . . . , 1,

ŵi = �2i(q), (4.29)

q = �1i(q). (4.30)

Thus the sentence Ŵ is computed from right to left.
The operation of the above algorithm is illustrated in Figs 4.5–4.7. Figure 4.5 shows the

vocabulary words of the language diagrammed in Fig. 4.8 along with numerical codes and
a sample [dij ] matrix. Figure 4.6 shows the details of the operation of the algorithm for
i = 0, 1, 2. Figure 4.7 shows the results after the sentence has been completely analyzed.

By locating the smallest entry in each column of the sample [dij ] matrix of Fig. 4.7,
it can be seen that the acoustic transcription of the sentence from which this matrix was
produced is WOULD SOME IS TO FARE. Clearly this is not a valid English sentence
nor is there any path through the state transition diagram of Fig. 4.8 whose edges are so
labeled.

Following Fig. 4.6 the reader can trace the operation of the algorithm as it computes the
valid sentence having the smallest total distance. First the � and � arrays are initialized
according to (4.21). To make the figure easier to read, this has been shown only for i = 0.

Note that there are two transitions from state 1: one to state 2 labeled I, and the other to
state 8 labeled HOW. Accordingly, �1(2) is set to 7, the metric for I; �11(2) is set to 1,
the state at the beginning of the transition and �21 is set to 3, the code for the transition
label I. Similarly, �1(8) is set to 2, the metric for HOW; �11(8) is set to 1 as before and
�21(8) is set to 26, the code for HOW. All other entries remain unchanged.

In the next stage more transitions become possible. Note, in particular, that there are
two possible transitions from state 2 to state 3. In accordance with (4.23), the one labeled
NEED is chosen since it results in the smallest total distance, 13, which is entered in
�2(3); �12(3) is set to 2 the previous state, and �22(3) is set to 28, the code for NEED.
Transitions to states 7, 9, and 22 are also permissible and thus these columns are filled
in according to the same procedure.

The completion of this phase of the algorithm results in � and � as shown in Fig. 4.7.
We can now trace back according to (4.29) and (4.30) to find Ŵ. From Fig. 3.13 we see
that there are two accepting states, 5 and 6. �5(6) is 8 which is less than 30, the value
of �5(5), so we start tracing back from state 6. The optimal state sequence is, in reverse
order, 6, 11, 10, 9, 8, 1. The corresponding word codes which, when reversed, decode to
the sentence: HOW MUCH IS THE FARE.

One final note: from the operation of the algorithm it should be clear that it is not neces-
sary to retain �i(q) for 0 ≤ i ≤ |W|. At the ith stage one needs only �i−1(q) to compute
�i(q). Thus the storage requirements are nearly halved in the actual implementation.

In closing, we should note that this scheme is formally the same as (though conceptually
different from) the Viterbi [323] algorithm and similar to methods used by Baker [19] and
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(a)

CODE VOCABULARY WORD I = 1 I = 2 I = 3 I = 4 i = 5

1 IS 9 9 1 8 4

2 FARE 2 2 5 3 1

3 I 7 3 2 3 2

4 WANT 2 9 4 7 3

5 WOULD 1 5 4 8 2

6 LIKE 2 5 2 6 5

7 SOME 2 1 9 8 3

8 INFORMATION 7 7 4 7 8

9 PLEASE 2 3 2 4 9

10 T0 4 5 8 1 7

11 MAKE 6 3 9 8 5

12 A 4 7 6 9 8

13 RESERVATION 3 6 7 8 9

14 RETURN 9 7 6 4 8

15 THE 8 6 5 2 3

16 MORNING 3 4 5 6 7

17 FIRST 8 6 8 7 5

18 CLASS 5 5 4 3 9

19 SEAT 9 9 8 7 3

20 NON-STOP 3 3 4 5 8

21 FLIGHT 9 8 3 5 6

22 WILL 6 7 7 6 5

23 PAY 4 4 4 4 3

24 IN 3 3 3 6 9

25 CASH 5 4 3 7 6

26 HOW 2 9 8 7 5

27 MUCH 6 2 8 4 9

28 NEED 7 6 5 4 3

(b)

POSITION

CODE WORD 1 2

3 I 7 3

4 WANT 2 9

28 NEED 7 6

5 WOULD 1 5

22 WILL 6 7

26 HOW 2 9

27 MUCH 6 2

Figure 4.5 (a) The full distance matrix for a five-word sentence. (b) Distance matrix for the first
two words of a five word sentence
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Figure 4.7 The complete recognition matrix � for a five-word sentence
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Figure 4.8 FSA for the first two words of the English fragment
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stochastic parsing techniques discussed in Fu [96] and Paz [243]. The crucial difference
is that in the cited references estimates of transitions probabilities are used, whereas in
this method the transitions are deterministic and the probabilities used are only those
conditioned on the input x(t).

4.2.3 Probabilistic Cocke–Kasami–Younger Methods

The Cocke–Kasami–Younger algorithm of (4.5)–(4.12) can be adapted to the case in
which the words are known only probabilistically. The only modification required is that
the initialization procedure, (4.5) becomes

φii(A) = min
{A→a}

{− log P(wi = a|x(t))}, (4.31)

where P(wi = a|x(t)) is the probability that the ith word in the sentence is the word
a ∈ VT given the signal, x(t). Once this initialization has been accomplished, the rest of
the algorithm is exactly as described in Section 4.1.2.

4.2.4 Asynchronous Methods

The most difficult case of probabilistic parsing is the one in which there is uncertainty
with respect to both the words in the sentence and the word boundaries in the speech
signal. Unknown word boundaries force us to abandon the simple notion of word order
and replace word indicies with actual time intervals in the signal. This greatly increases
the computation complexity.

In this case, as in Section 4.2, the sentence W is assumed to be the word string
v1v2 . . . vn but the words are only known probabilistically. Now, however, we will assume
that W is encoded in the speech signal x(t) which is represented by a sequence of
measured feature vectors O = O1, O2, . . . , Ot , . . . , OT . Each Ot occurs at real time t

and Ot ∈ R. Thus the word vj corresponds to some subsequence of O, Ot1 , Ot2 , . . . , Otm .
The problem is asynchronous in the sense that words can be of different durations and
the hypothetical word vj can end at a different time from an alternative, wj .

Then the parsing problem becomes finding

Ŵ = arg max
W∈L(G)


arg max

t,	t




∑
j

C(wj |t, t + 	t)





 . (4.32)

For regular languages the maximization problem of (4.32) can be solved by modifying
(4.23) to account for time instead of word index. Thus

φt (j) = min
{Ai

pij→vAj }
{min

τ<t
{φt−τ (i) − log(L(Ot−τ , Ot−τ+1, . . . , Ot |λv)) − log(pij )}},

t = 1, 2, . . . T . (4.33)

In (4.33) log(L(Ot−τ , Ot−τ+1, . . . Ot |λv)) is the cost, C(v, t − τ, t), of classifying the
interval from t − τ to t as word v. The likelihood function L(Ot−τ , Ot−τ+1, . . . Ot |λv) is
the likelihood function of an HMM for word v and having parameter vector λv .
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The solution to the context-free case is a variant on (4.7). Initially we set

φtI tF (A) = min

{A
PAv→ v}

{C(v, tI , tF ) − log pAv}, for 1 ≤ tI < tF ≤ T . (4.34)

Then (4.34) becomes

φtI tF (A) = min
{A

pABC→ BC}
{ min
tI <τ<tF

{φtI τ (B) + φτ+1tF (C) − log PABC}}, for 1 ≤ tI < tF ≤ T .

(4.35)

The optimal Ŵ is recovered as in (4.8)–(4.12).
In both the regular and context-free cases, we may carry out the computations exhaus-

tively, allowing any word v to be associated with any interval of x(t)–i.e. any subsequence
of O–as long as the intervals corresponding to successive words are contiguous.

Alternatively, we can reduce the computation by searching over a word lattice of the
most likely words and intervals. Such a word lattice is shown in two equivalent graphical
forms in Fig. 4.9.

4.3 Parsing Natural Language
The algorithms described in Sections 4.1 and 4.2 can be applied to natural language to
determine linguistic structure of different types. Since the algorithms are independent of
specific grammars, all that is missing is a formal expression of the grammatical structure
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W13, L13

O1 Oτ1 Oτ2 Oτ3 Oτ5 Oτ4

WORD LATTICE

t

Figure 4.9 Two graphical representations of a word lattice
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under consideration. The following are examples of grammars used in natural language
applications.

4.3.1 The Right-Linear Case

Regular languages are best suited to describing the phonotactics of natural language
although, as was illustrated in Section 4.2.2, they may also be used to analyze subsets of
natural language syntax. In fact, a complete and moderately complex example appears in
Chapter 8.

An example of Japanese phonotactics is given in Fig. 4.4 which shows the finite-
state automaton corresponding to the regular grammar for generating phrases and short
sentences used in requesting time table information. The terminal alphabet comprises five
vowels and twelve consonants. State 1 is the start state, and states 70, 74 and 76 are final
states. Figure 4.10 shows two forms of the same phone lattice typical of those generated
by an acoustic-phonetic pattern recognition scheme. The actual likelihood values are not
shown, but the phones are arranged in order of decreasing likelihood from top to bottom.
Time is ordered from left to right in units of fixed duration.

An example of the operation of the parsing algorithm is shown in Fig. 4.11. The
top of the figure shows a phone lattice like the one in Fig. 4.10. The correct phonetic
classification is indicated by circles around the best transcription of each segment. Notice
that several correct phones appear far down the list.

After parsing the phone lattice with the algorithm of (4.33) the correct transcription
of the utterance is obtained as indicated at the bottom of the figure. The indicated word
boundaries are found by another procedure not included in the parser. The correct tran-
scription “Roku zi ni hun hatsu no” means “one (a train) leaving at 6:02 AM”.

AI E I OP
Z
S
H
K

T
P
K
S

KY

P
T
S

U
NN
D
Z
N
M
B

P
T

S
ZY

(a)

(b)

1 2 3 4 5 6 7 8 0 10

AI E I OP
Z
S
H
K

T
P
K
S

KY

P
T
S

U
NN
D
Z
N
M
BP

T

S
ZY

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

11

Figure 4.10 Two representations of a phone lattice in Japanese
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Z E G B H S W H B S M

M S

W H

H

Z

D A N A M B H Z Z Z H N

R O K U IZ I UN H

H A T U N O

N N

B O R U T Z Z H G D W W

M U O K R W R N H M G

R E S E M M G E M E P E G A R A

N A H A G U N U N A W U S O N O O
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T O D U N I G I O R A T U R O

Figure 4.11 A phone lattice for the Japanese sentence “A train leaving at 6 a.m.”

4.3.2 The Markovian Case

Present-day commercial speech recognizers represent natural language syntax as a
Markov n-chain. That is, word order is governed by the n-gram probabilities,
p(wn|wn−1, wn−2, . . . , w1), the probability that the word wn will be preceeded in order
by the words wn−1, wn−2, . . . , w1. Tables of n-grams are compiled from large corpora
of text containing more than 109 words. Even from such large databases, it is difficult to
get reliable statistics for n > 3. In some cases of frequently occurring n-grams, fifth- or
sixth-order statistics can be estimated.

Parsing, in this case, reduces to application of a dynamic programming algorithm similar
to (4.22) except that states represent n − 1 grams, and the transitions the n-gram probabil-
ities. Even in cases where n ≥ 5, this algorithm enforces word order but gives little indi-
cation of syntactic structure. We will see the significance of this deficiency in Chapter 8.

4.3.3 The Context-Free Case

Unlike the Markovian models of syntax, context-free models both respect word order
and provide syntactic structure. Natural language is not strictly context-free but is well
approximated by such grammars. Tomita [316] gives the following skeletal grammar of
English containing only 40 rules but capturing a surprising degree of important structure.
Word strings can be parsed with respect to this grammar in a highly efficient way using
the algorithms of Sections 4.1.2 and 4.2.3.
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adjm −→ *adj
adjm −→ *adj adjm
adjm −→ advm *adj
adjm −→ adjm *conj adjm
advm −→ *adv advm
advm −→ *adv
advm −→ advm *conj advm
dir −→ dir *conj dir
dir −→ pp vp
dir −→ vp
dir −→ vp pp
nm −→ *n
nm −→ *n nm
np −→ np *conj np
np −→ np1 *that s
np −→ np1 s
np −→ np1
np0 −→ nm
np0 −→ adjm nm
np0 −→ *det nm
np0 −→ *det adjm nm
np1 −→ adjm np0 pp pp
np1 −→ adjm np0 pp
np1 −→ adjm np0
np1 −→ np0 pp
np1 −→ np0
np1 −→ np0 pp pp
pp −→ pp *conj pp
pp −→ *prep np
s −→ np vp pp pp
s −→ np vp pp
s −→ pp np vp
s −→ np vp
s −→ s *conj s
start −→ dir
start −→ np
start −→ s
vc −→ *aux *v
vc −→ *v
vp −→ vc np
vp −→ vp *conj vp
vp −→ vc

These rules are only the structure-building rules expressed in general context-free form.
That is, all the symbols used in these rules are non-terminals. Symbols beginning with *
are preterminals which they appear on the left-hand side of lexical assignment rules whose
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right-hand side is a single terminal symbol signifying an ordinary vocabulary word. For
example,

*conj −→ AND
*conj −→ BUT
*conj −→ OR
*n −→ BOY
*prep −→ TO
*prep −→ IN
*prep −→ ON
*prep −→ WITH
*v −→ RUN
*v −→ BE

The number of such rules is limited only by the size of the vocabulary and could include
all entries in a standard dictionary.

The non-terminal symbols refer to specific parts of speech as follows:

adj adjective
aux auxiliary verb
adv adverb
conj conjunction
det determiner
dir directive
n noun
np noun phrase
pp prepositional phrase
prep preposition
s sentence
that indicator
v verb
vc compound verb
vp verb phrase

A far better grammar for English is given in [316, pp. 177ff.]. This one has about 400
rules and is still practical with modern computers.





5
Grammatical Inference

5.1 Exact Inference and Gold’s Theorem

The term “grammatical inference” refers to that aspect of language acquisition in which
the rules of grammar are learned. Here, grammar is construed in the broad definition used
in Section 2.7 to include phonology, phonotactics, morphology, and syntax. Grammatical
inference also connotes a formal logical method for acquiring the rules of grammar.
Humans appear to learn language reliably and effortlessly, and this ability is regarded by
Chomsky [45] and his followers to be an extraordinary feat inexplicable by any theory
except that it is inherent in the architecture of our brains.

An early result that appears to justify this conclusion is due to Gold [105], who proved
that the rules of right-linear or context-free grammar cannot be correctly inferred from any
number of well-formed examples even if they were actually generated by such a formal
mechanism. Gold also showed that if, as shown in Fig. 5.1, there were available an oracle
that could indicate whether or not a string was well formed, and if both types of examples
were given, then, asymptotically, the exact grammar can be correctly inferred. This result
is often cited to demonstrate the futility of formal methods of language acquisition. We
will return to this matter in Chapter 10. This chapter, however, will treat grammatical
inference as a problem in estimating the parameters of the stochastic models introduced
in Chapters 3 and 4. When the problem is cast in this way, we find that, in a well-defined
sense, it is quite tractable.

5.2 Baum’s Algorithm for Regular Grammars

Section 3.2.3 and 3.2.4 provide the basis for treating grammatical inference as a param-
eter estimation problem for regular grammars. Equations (3.239) and (3.240) relate the
parameters of an HMM to those of a regular stochastic grammar. From this it follows that
the Baum algorithm of (3.11)–(3.13) is a method of grammatical in inference. There is,
however, a more direct method. Figure 3.12 shows that the syntactic structure of a sen-
tence in a regular grammar is represented by a state sequence in the FSA that recognizes
the corresponding regular language.

Combining these ideas, we can devise an algorithm for the inference of regular gram-
mars by counting states in the state sequence. The desired grammar has production rules

Mathematical Models for Speech Technology. Stephen Levinson
 2005 John Wiley & Sons, Ltd ISBN: 0-470-84407-8
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Figure 5.1 A block diagram of grammatical inference

of the form

Ai

aij→ vAj , ∀v ∈ VT , (5.1)

and

Aj

bjk→ vk for some vk ∈ VT . (5.2)

Recalling the EM algorithm of Section 3.1.6, we can estimate aij in (5.1) according to

aij = Nij

Ni

, (5.3)

where Nij is the number of transitions from state qi to state qj in the state sequence
obtained by parsing a set of sentences, {Wi}. Similarly, bjk is estimated by

bjk = Nk

Nj

, (5.4)

where Nk is the number of occurrences of vk while in state qj and, as in (5.3), Nj is the
number of visits to state qj .

According to the EM algorithm, the estimates of (5.3) and (5.4) are refined by recursive
application of the parsing process followed by recounting the events (i.e. state pairs and
state–word pairs) that are the sufficient statistics for the parameters. When this process
converges, we have our desired grammar in the form of (5.1) and (5.2). If one wishes to
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have a characteristic grammar instead of the stochastic one, all production rules whose
probabilities are zero are dropped and the non-zero probabilities of the remaining rules
are ignored.

5.3 Event Counting in Parse Trees

The observed relationship between discrete symbol HMMs and regular stochastic gram-
mars can, in fact, be generalized in the sense that stochastic grammars may be thought of
as doubly stochastic processes. The hidden process is that which rewrites the non-terminal
symbols while the observed process produces the terminal symbols from them. The for-
mer are called structure-building rules, and the latter lexical assignment rules. Thus in
the context-free case, the hidden process comprises all the production rules of the form
A → BC while the observable process results from rules of the form A → a. Although
the separability of the processes vanishes if we move further up the Chomsky hierarchy,
the concept is still valid and we can imagine stochastic models in which the underlying
process is of any desired complexity.

At least at the context-free level, and perhaps even beyond it, algorithms corresponding
to those we examined for HMMs exist. We have already seen that probabilistic parsing
algorithms provide a way to evaluate a likelihood function P(W). They also provide a
means to determine derivations, the analog of state sequences, and to estimate parameters.
The key to these algorithms lies in replacing (4.8) by

ψij (A) = (l, B, C), (5.5)

where l, B, and C are as defined in (4.9). At the termination of the recursion (4.7)–(4.8)
we can recover the derivation of W from ψ . The process is one of constructing the
“parse tree” illustrated in Fig. 3.11. The root of the tree is S so we begin by examining
ψ1|W |(S) = (B, C, k). This means that there are two subtrees whose roots are B and C

and which account for w1 through wk and wk+1 through w|W |, respectively. Now we
examine ψ1k(B) and ψk+1|W |(C) each of which indicates the formation of two subtrees.
The two branching from B,D, and E, span symbols 1 to l and l + 1 to k, respectively,
while those branching from C account for the single terminal symbol wk+1 and F the
rest of the sentence, that is, m = k + 2. Recursion over ψ allows the construction of the
entire tree from which we may simply read the derivation. A node B with two successors,
C and D, indicates the production rule B → CD. A node C with the single successor
signals the application of the rule C → c. This process is described by (4.10)–(4.12).

The “parse tree” also offers the solution to the parameter estimation problem, in
which we are given W = w1w2 . . . wT and from which we must determine {PABD |
A, B,C ∈ VN } and {PAa | A ∈ VN, a ∈ VT }. The solution to this problem advocated by
Fujisaki [100] follows the EM algorithm and the Viterbi algorithm. Given an estimate
of the parameters, produce a parse tree for W . Next, count events. Let N(A, B,C) be
the number of occurrences of the rule A → BC and let N(A, X, Y ) be the number of
occurrences of rules A → XY where X, Y ∈ VN . Then a new estimate of PABC is

P ABC = N(A, B,C)

N(A, X, Y )
. (5.6)
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Similarly

P Aa = N(A, a)

N(A, x)
, (5.7)

where N(A, a) is the number of applications in the derivation of W of A → a and N(A, x)

of A → x for any x ∈ VT . Iteration of this procedure will give improved estimates of the
parameter values.

5.4 Baker’s Algorithm for Context-Free Grammars

Baker [21] has devised another version of the algorithm of Section 5.2 based on Baum’s
idea of a likelihood function. For reasons that will become clear, this method is sometimes
called the inside-outside algorithm. The algorithm is used to estimate the parameters, λ,
of a CNF grammar with structure-building rules of the form

Ai

aijk→ Ajak (5.8)

and lexial assignment rules of the form

Aj

bjk→ vk. (5.9)

Thus λ = (. . . , aijk . . . , bjk, . . . ).
Given a sentence W = L(Gs), where W = w1w2 . . . wT with wt ∈ VT and Gs having

rules given by (5.8) and (5.9), we can compute the likelihood, P(W |λ), that W ∈ L(G).
From Figure 5.2 we see that in any parse tree of W , we have the condition that the subtree
that spans the string wsws+1 . . . wt−1wt has the root Ai . We denote this condition by the
term Ai(s, t). In particular, A1 = S must span the sentence W .

We denote the “inside probability” that Ai spans ws . . . wt , for 1 ≤ s < t ≤ T , by

αst (i) = P [ws, ws+1, . . . wt−1wt |Ai(s, t), λ], (5.10)

Aj

Aj

Ai

Aj

An

Ak

Am

A1 = S

w1
wp ws wt wq

WTbst (i ) bst (i )ast (i )

Figure 5.2 Operation of the Baker algorithm
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with the special case that

αtt (i) = bik if wt = vk. (5.11)

The αt(i) can be computed recursively according to

αst (i) =
t−1∑
r=s

|VN |∑
j=1

|VN |∑
k=1

αsr (j)aijkαr+1t (k), (5.12)

for 1 ≤ s < t ≤ T . In particular, the likelihood function

P(w|λ) = α1T (s), (5.13)

and it is this value that we wish to maximize with respect to λ.
Analogous to (5.7) we have the “outside probability” of the phrases to the left and right

of ws . . . wt on condition Ai(s, t), namely,

βst (i) = P [w1w2 . . . ws−1, wt+1wt+2 . . . wT |Ai(s, t), λ], (5.14)

with β1T (i) = 1 if and only if i = 1, and 0 otherwise. The βst (i) can also be computed
recursively according to

βst (i) =
s−1∑
p=1

|VN |∑
m=1

|VN |∑
l=1

βpt (l)almiαps−1(m) (5.15)

+
T∑

q=t+1

|VN |∑
n=1

|VN |∑
l=1

βsq(l)alinαt+1q(n).

Note that the first term on the right hand side of (5.15) accounts for the left complement
of ws . . . wt and the second term, the right.

Baker now invokes the EM procedure obtaining the analog of (5.3) for the Hidden
process

aijk =

T∑
s=1

T∑
t=1

t−1∑
r=s

αsr (j)aijkαr+1t (k)βst (i)

T∑
s=1

T∑
t=1

t−1∑
r=s

|VT |∑
m=1

|VT |∑
n=1

αsr (m)aimnαr+1t (n)βst (i)

(5.16)

and for the observable process

bjk =

∑
t�wt=vk

αtt (j)βtt (j)

T∑
t=1

αtt (j)βtt (j)

. (5.17)
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To obtain reliable results, (5.16) and (5.17) must be carried out for a large set of
W ∈ L(Gs) and combined as the parameters were in the case of the non-ergodic HMM;
refer to (3.92) and (3.93). Note also that the parameter values obtained from (5.16) and
(5.17) define the grammars Gs and Gc in the same way as they did in the event counting
procedure.



6
Information-Theoretic Analysis
of Speech Communication

6.1 The Miller et al. Experiments

Chapters 2 through 5 have provided us with a mathematically well-defined and com-
putationally tractable means of discovering and representing several different aspects of
linguistic structure. One naturally asks what purpose is served by this structure. This
chapter gives the first of two different but related answers to that question.

Experience with the expanding nationwide telephone network led to the intuition that
“simple” speech was more likely correctly understood than “complicated”. Unfortunately,
this observation leaves undefined measures of the complexity and reliability of a mes-
sage. In 1948, Claude Shannon clarified these issues with his mathematical theory of
communication [295] which we now call information theory.

In the early 1950s psychologists and linguists began to be influenced by Shannon’s
work and, in particular Miller et al. [220] devised experiments to quantify the reliability
of natural language communication in an information-theoretic sense.

6.2 Entropy of an Information Source

Information theory defines entropy and explains its role in the recovery of messages
that have been corrupted by noise. These ideas are usually developed for abstract codes
based on certain algebraic structures. We humans communicate in a special code called
natural language which has a very complex structure quite different from that of its
artificial cousins. Despite the structural differences, natural language performs many of the
same functions as other codes and, in principle, admits of the same information-theoretic
treatment. The code of natural language is its grammar, which comprises phonology,
phonotactics, morphology and syntax. These are the categories of rules which govern
the formation of permissible sentences. This aspect of linguistic structure is quite well
understood and well modeled mathematically. For the purposes of computing entropy it
is most convenient to treat grammar as a high-order Markov chain. Unfortunately, this
ignores some important properties of grammar that are not captured by the Markov model.

Mathematical Models for Speech Technology. Stephen Levinson
 2005 John Wiley & Sons, Ltd ISBN: 0-470-84407-8
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However, even when formal models of grammar have no inherent probabilistic properties,
it is possible to compute the entropy of a language directly from its grammatical rules
without appeal to some putative Markovian principle. Once the entropy is calculated, we
can use it to construct a bound on the probability of decoding error for a special optimal
decoder used in conjunction with an acoustic classifier characterized by its confusion
matrix and represented as a noisy channel with an appropriate equivocation.

We now consider algorithms for computing various statistical properties of finite lan-
guages. Relative redundancy is of major interest since it is a measure of grammatical
constraint which is, in turn, indicative of the acoustic error correction ability provided by
the language when used in a speech recognition system.

6.2.1 Entropy of Deterministic Formal Languages

For the purposes of this discussion we shall regard a finite language as one which has
a state transition diagram with no circuits in it. Readers interested in a complete and
rigorous introduction to formal language and automata theory may consult Hopcroft and
Ullman [133].

The state transition diagram consists of a finite set of states, Q, a finite vocabulary, V ,
and a transition function, δ, which imposes the grammatical constraints. This function is
defined as the mapping

δ: (Q × V ) → Q, (6.1)

which means that each transition in the diagram is of the form

δ(qi, v) = qj , (6.2)

where (6.2) is understood to mean that from state qi ∈ Q one transverses a branch labeled
by some v ∈ V to get to the state qj ∈ Q. There may be many such branches connecting
any pair of states although each branch connecting the same pair of states must have a
distinct label.

The state transition diagram defines sentences in the following way. There is an initial
state, qi , and a set of accepting states Z ⊂ Q. A valid sentence w consists of the labels
of all the branches traversed (in order) along any path starting at q1 and terminating at
some accepting state qi ∈ Z. We shall call the set of all sentences in the language L (G),
and the set of state sequences S.

We require that the grammar, G, be unambiguous. That is, given any sentence W ∈
L(G), there is exactly one state sequence in S associated with it. Note, however, that
because there may be many transitions between a pair of states, there are, in general,
many sentences which are generated by the same state sequence.

We define an important quantity characterizing the state transition diagram, its con-
nectivity matrix, C, whose ij th entry, cij , is the number of branches from qi to qj .
Formally,

cij = |{δ(qi, v) = qj : v ∈ V ; qi, qj ∈ Q}|. (6.3)

Because L(G) is finite, a state, qi may appear at most once in any state sequence in S.
This implies that qi �= qj in equation (6.2), making the diagonal entries of C all zero.
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Efficient Enumeration Algorithms

In this section we develop efficient algorithms for computing:

(a) the probability, P(v), of the occurrence of the vocabulary word v in the set of
sentences, L(G);

(b) the probability, P(qi) of the occurrence of the state qi in the set of state sequences,
S;

(c) the probability of transition from state qi , to state qj , denoted by P(qj |qi), qi, qj ∈ Q.

These algorithms are efficient counting techniques and the probabilities are based on rela-
tive frequencies of events assuming the sentences of the language, L (G), are equiprobable.
In a later section we will compute the entropy for another set of sentence probabili-
ties – the one that maximizes entropy.

We begin, for convenience, by adding one absorbing state, qa , and the transitions

δ(qj , ·) = qa whenever qj ∈ Z (6.4)

to the state transition diagram. The period is a sentence termination symbol which may
or may not be required to locate sentence boundaries depending upon whether or not the
language is self-punctuating.

We redefine the connectivity matrix, C, of the state transition diagram by

C = [cij ], 1 ≤ i, j ≤ |Q| + 1, (6.5)

where the ij th entry cij is the number of transitions from state qi to state qj . Similarly,
we define a connectivity matrix C(v) for all v ∈ V . This is just the connectivity matrix
of the state diagram obtained by removing all branches whose label is different from v.
Thus the ij th entry of C(v), cij (v), is either zero or one according to

cij (v) =
{

1 if δ(qj , v) = qj ,

0 otherwise.
(6.6)

Clearly, then,

C =
∑
v∈V

C(v). (6.7)

From C we shall compute the following quantities:

(a) the vector s whose ith element, si , is the total number of occurrences of the state qi

in the set of all permissible state sequences, S;
(b) the matrix, T, whose ij th entry, tij , is the number of transitions from state qi to state

qj in the set of all permissible state sequences, S;
(c) the number, N (v), of occurrences of the vocabulary word v for all v ∈ V in all

sentences in the language, L(G).



146 Mathematical Models for Speech Technology

The required counting procedures follow from the following lemma, stated here without
proof.

Lemma: Let

B = (I − C)−1. (6.8)

Then for i �= j the ij th entry of B, bij , is exactly the number of paths from qi to qj .

Now let r′ and u be the first row and last column of B, respectively. Then from the
lemma, ri , the ith element of r′, is the number of paths from q1 to qi ; similarly, ui , the
ith element of u, is exactly the number of paths from qi to qa .

The number of paths from q1 to qa passing through qi is just riui . We have assumed
that L(G) is finite, hence qj occurs at most once in any state sequence. Thus rjuj is
exactly the number of occurrences of qj in S. We have thus shown that

sj = riuj . (6.9)

Similarly, cijuj is the number of paths from q1 to qa having qi as the second state.
Therefore ricij uj is the number of paths from q1 to qa in which a transition from qi to
qj occurs. This shows that

tij = ricij uj . (6.10)

Finally, let

m(v) = C(v)u, for all v ∈ V. (6.11)

The ith component of m(v), mi(v), is the number of paths from qi to qa whose first
transition is δ(qi, v) = qj for some qj ∈ Q. Thus rimi(v) is the number of sentences in
which the state qi is succeeded by the word v. The total number of occurrences, N (v),
of the word v in all sentences in the language is therefore

N (v) =
|Q|+1∑
i=1

rimi(v) = r′C(v)u. (6.12)

Let Q be the total number of state occurrences in S. Then

Q =
|Q|+1∑
i=1

si =
|Q|+1∑
i=1

riui = r′u. (6.13)

From (6.12), the total number of words, N used in all sentences of L(G) is just

N =
∑
v∈V

N (v) = r′Cu (6.14)
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or

N = r′u − r′(I − C)u = Q − u1; (6.15)

the last relationship in (6.15) follows directly from the definitions of r′ and u.
One last quantity will be required. The total number of sentences in the language is

just

|L(G)| = u1 = r|Q|+1. (6.16)

The desired probabilities are now easily computed according to:

P(v) = N (v)

N = r′C(v)u
r′u − u1

, (6.17)

P(q1) = s1

Q = r1u1

r′u
, (6.18)

and

P(qj |qi) = ricij uj

riui

= cijuj

ui

. (6.19)

From these quantities, some useful, well-known, information-theoretic properties of
L(G) can be computed. The zeroth-order entropy per word of L(G) is

H0(L(G)) = log2(|V|), (6.20)

while the first-order entropy is just

H1(L(G)) = −
∑
v∈1

P(v) log2(P (v)). (6.21)

The uncertainty associated with the state qi can be shown to be

H(qi) = −
|Q|+1∑
i=1

P(qj |qi) log2

[
P(qi |qj )

cij

]
. (6.22)

Substituting the value of P(qi |qj ) from (6.19), we get

H(qi) = log2(ui) −
|Q|+1∑
j=1

cijuj

ui

log2(uj ). (6.23)

Finally, the entropy of the language can be computed by substituting (6.18) and (6.23)
into the well-known expression for the entropy of a Markov process:

H(L(G)) =
|Q|+1∑
i=1

H(qi)P (qi). (6.24)
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In the above discussion, N includes occurrences of “.”, the terminating symbol, and
Q includes occurrences of qa , the absorbing state. If these are to be ignored because the
language is self-punctuating then u1 must be subtracted from N and Q since “.” is the
final word in each sentence and qa is the last state in the corresponding state sequence.

A Direct Method for Finding the Entropy

If one is not interested in the state, symbol or transition probabilities then H(L(G)) can
be computed directly.

Since the selection of a sentence uniquely determines the words in it, it is intuitively
obvious that the entropy of a language is the quotient of the uncertainty associated with
the selection of a sentence from the language and the average sentence length. We omit
the formal proof of this observation and simply write

H(L(G)) = −∑
w∈L(G) P (w) log2(P (w))

E{|w|} (6.25)

where P(w) is the probability of the sentence w ∈ L(G) and E{|w|} is the average
sentence length over all w ∈ L(G). Then assuming all sentences to be equally likely, we
finally get:

H(L(G)) = log2(|L(G)|)
E{|w|} = u1 log2(u1)

(N )
. (6.26)

Computation of Maximum Entropy

In general, in speech communication tasks, all sentences are not equally likely as semantic
and pragmatic knowledge bias the listener’s expectations of what the speaker is about to
say. If one had an accurate estimate of the probability of each sentence in the language,
then the entropy could be computed from

H(L(G)) = −∑
w∈L(G) P (w) log(P (w))∑

w∈L(G) P (w)|w| = H

E
. (6.27)

In (6.27) the numerator, H , is the entropy per sentence and the denominator, E is simply
the average sentence length.

For any language which could be used for practical communication the P(w) are too
difficult to estimate. An alternative is to find the maximum value of H(L(G)) attained by
any set of sentence probabilities. This would then be a measure of the minimum amount
of grammatical constraint imposed by the language.

This can be accomplished by maximizing the right-hand side of (6.27), subject to the
constraint that

∑
w∈L(G)

P (w) = 1. (6.28)
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We shall use the method of Lagrange multipliers in which the desired extremum can
be found by solving

∂

∂P (w)


H

E
+ λ

∑
w∈L(G)

P (w)


 = 0, w ∈ L(G) (6.29)

where λ is the Lagrange multiplier. Carrying out the differentiation gives

−E(1 + log(P (w))) + |w|H
E2

+ λ = 0, ∀w ∈ L(G). (6.30)

Let P̂ (w), ∀w ∈ L(G) be the solution of these equations, and let Ê and Ĥ be the
corresponding values of E and H . For convenience, we let

α = Ĥ

Ê
(6.31)

Then rearranging (6.30) gives

log(P̂ (w)) = α|w| + λ(Ê − 1). (6.32)

Multiplying (6.32) by −P̂ (w) and summing over w ∈ L(G), we have

Ĥ = Ĥ − [λ(Ê − 1)], (6.33)

which shows that the term in brackets is identically zero. Thus

log(P̂ (w)) = α|w|, (6.34)

where α is chosen so as to satisfy the constraint of (6.28).
In order to determine α, and ultimately H(L(G)), we proceed as follows. Substituting

the values of P̂ (w) from (6.34) into the constraint of (6.28) yields

∑
w∈L(G)

e−α|w| = 1. (6.35)

Let Nk be the number of sentences of length k. That is,

Nk = |{w ∈ L(G) : |w| = k}|. (6.36)

We can then rewrite (6.35) as

lmax∑
k=1

Nke
−αk − 1 = 0, (6.37)
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where lmax is the length of the longest sentence. Clearly, (6.37) is a polynomial in e−α

and has a real root, x0, with 0 ≤ x0 ≤ 1 since Nk > 0 for all k. This root is easily and
accurately computed numerically.

Substituting the values of P̂ (w) from (6.34) into the expression for the entropy of
(6.27) and simplifying gives the result

H(L(G)) = log2(x0) = α, (6.38)

by recalling that x0 = e−α .
Similarly, using the values of P̂ (w) in the expression

E{|w|} =
∑

w∈L(G)

P̂ (w)|w|, (6.39)

we finally compute the average sentence length which corresponds to the maximum
entropy of (6.38) as

E{|w|} =
lmax∑
k−1

Nkke−αk. (6.40)

For eqs. (6.37) and (6.40) the values of Nk are easily computed

Nk = c
(k)
1a . (6.41)

That is, Nk is simply the last entry in the first row of the kth power of the connectivity
matrix, C.

The relative redundancy, R(L(G)), which measures grammatical constraint is just

R(L(G)) = 1 − H(L(G))

log2(|V |) . (6.42)

6.2.2 Entropy of Languages Generated by Stochastic Grammars

The most direct way to obtain the entropy of a source is to assume that it is Markovian,
generating the infinite sequence of words W = w1w2w3 . . . with wi ∈ VT . Then

H(W) = H(L(G))

= lim
n→∞

{
−

n∑
i=1

p(wi |wi−1, wi−2, . . . , w1) log p(wi |wi−1, wi−2, . . . , w1)

}
.

(6.43)

The stochastic grammar, G, according to which the source generates words, wi , is implicit
in the n-gram probabilities but can be expressed explicitly. The set, Q, of states of the
underlying stochastic right-linear grammar is

Q = {
qki−1,ki−2,...,k1 |wl = vkl

, l = 1, 2, . . . i − 1
}

(6.44)
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and the production rules are

qki−1,ki−2,... ,k1
p(wi |wi−1,wi−2,... ,w1)−−−−−−−−−−−−→wiqki ,ki−1,... ,k2 . (6.45)

Notice that

|Q| = |VT × VT × . . . × VT︸ ︷︷ ︸
n−1 times

|=|VT |n−1=N . (6.46)

Then the state transition matrix, A, of the Markov chain is

A = [aij ]N×N = N (qi , qj )∑
k N (qi , qk)

, (6.47)

where N (qi , qj ) is the number of occurrences of the state sequence (qi , qj ) in the gen-
eralization of W .

Using the well-known formula for the entropy of a Markov chain, we can compute
H(L(G)) from

H(L(G)) =
N∑

i=1

p(qi)H(qi), (6.48)

where the p(qI ) are the stationary probabilities of the Markov chain and the H(qi) are
the uncertainties associated with the individual states, qi , given by

H(qi) =
∑
v6qi

p(v) log p(v), (6.49)

where the p(v) are the probabilities that the word, v, is generated in the state, qi . Thus
p(v) is just the n-gram probability

p(v) = p(v|wi−1, wi−2, . . . , w1) (6.50)

and the stationary probabilities are the eigenvectors of A found by solving

Ap = p, (6.51)

where

p = (p(q1), p(q2), . . . , p(qN)). (6.52)

Note that (6.51) relies on the fact that the eigenvalues of A all have unit magnitude.
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Now, instead of making the Markovian assumption, let us suppose that W is generated
by Gs , a known stochastic context-free grammar. We define the generating function of
this grammar according to

gj (z1, z2, . . . , zK) =
∑

�(Aj )

pAj βz
r1
1 z

r2
2 . . . z

rK
K , (6.53)

where �(Aj ) is the set of all production rules of the form Aj

pAj β−→ β and Aj ∈ VT , β ∈
{VN ∪ VT }∗. The variable zj accounts for β derived from Aj . The generating function
(6.53) is thus a function of K variables, where K = |VN |. The exponents, rl , are the
numbers of occurrences of Al ∈ VN in the string β.

The generating function (6.53) allows us to define the first moment matrix, E, whose
ij th entry, eij , is the expected number of occurrences of Aj ∈ β for the production

rule Ai

p→ β. The expectation is taken with respect to all sentences, W ∈ L(Gs). The
significance of the generating function is that

eij = ∂gj

∂zi

|z1=z2=z3...=zK=1 =
∑

�(Aj )

ripAj β . (6.54)

Note that if Gs is transformed into Chomsky normal form then

rl =




0 if Aj

p→ AmAn, m, n �= l,

1 if Aj

p→ AmAl, m �= l,

2 if Aj

p→ AlAl.

(6.55)

This simplifies the evaluation of (6.54).
We also need to know the expected sentence length over all W ∈ L(Gs). Using the

formula for the sum of a geometric series, we have (cf. (6.8))

∞∑
k=0

Ek = (I − E)−1. (6.56)

As in (6.39), the average sentence length is

|W | =
∑

W∈L(Gs)

|W |P(W) (6.57)

= (1, 0, 0, . . . 0)[I − E]−1x, (6.58)

where x = (x1, x2, . . . , xK) and xk is the expected number of terminal symbols appearing

on the right-hand side of Aj

pjk→ βjk , thus

xj =
∑

k

pjk, (6.59)
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and the sum is indexed over all productions of the form Aj

pjk→ Vk or Aj

pk→ ρjk and
Vk ∈ βjk.

Finally, we get the entropy of the language from

H(L(Gs)) = (1, 0, 0, . . . , 0)[I − E]−1y/|W |, (6.60)

in which |W | comes from (6.57) and y = (y1, y2, . . . , yK), and each yj comes from

y = −
∑

k

pjk log(pjk). (6.61)

In (6.61) the index set and the pjk are the same as those of (6.59).

6.2.3 Epsilon Representations of Deterministic Languages

The discussion in Section 6.2.1 applies to finite deterministic languages, whereas that
of Section 6.2.2 addresses infinite stochastic languages. There is a surprising connection
between the two. Recall that a stochastic grammar is consistent if and only if (cf. (3.238))

∑
w∈L(Gs)

P (w) = 1. (6.62)

We generalize (6.62) to define an ε-representation, Lε, of L(Gs) whenever Lε ⊂ L(Gs)

such that ∑
w∈L∈

p(w) = 1 − ε. (6.63)

If Gs is a consistent context-free stochastic grammar then for any ε > 0 there is a finite
Nε such that

Lε = {W ∈ L(Gs)| |W | ≤ Nε} (6.64)

is an ε-representation of L(Gs) and thus satisfies (6.63); see [34].
The result (6.64) is remarkable because in an infinite language it is intuitive that sen-

tences of all lengths would be needed to satisfy (6.63). However, the context-free structure
of the grammar provides for an arbitrarily good approximation to L(Gs) using sentences
of finite length. The implication of this result is that the methods of Section 6.2.1 are
good approximations to those of Section 6.2.2.

6.3 Recognition Error Rates and Entropy

We are now in a position to formalize and quantify the Miller et al. results of Fig. 6.1.
In the classification system shown in Fig. 6.2, a message, W encoded on x(t), from an
information source is assumed to be well formed with respect to the grammar, G. The first
stage of the classification process is a word-by-word identification of W without regard
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Figure 6.2 Block diagram of a speech recognizer using a probabilistic parser

for G. This process is error-prone and results in the corrupted interpretation, W̃ , of W .
In general, W̃ is not well formed. The second stage of the process uses the methods of
Chapter 4 to find Ŵ ∈ L(G) such that p(Ŵ |x(t)) is maximized. The following analysis
will show the relationship among the complexity of the source defined by its entropy,
H(L(G)), the accuracy of the classifier as characterized by its equivocation, H(W |W̃ ),
and pe, the average probability of word error in Ŵ .

6.3.1 Analytic Results Derived from the Fano Bound

A classic result in information theory is the Fano bound [81] relating source entropy,
channel equivocation, and decoding error probability. It states that

H(v|ṽ) ≤ H(pe) + pe log2(|VT | − 1), (6.65)

where the symbol v ∈ VT is transmitted, ṽ ∈ VT is received and pe is the probability that
ṽ �= v. The equivocation of the channel, H(v|ṽ) is the average uncertainty in bits that v
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was transmitted given that ṽ was received:

H(v|ṽ) = −
∑

v,ṽ∈VT

p(v, ṽ) log p(v|ṽ) (6.66)

We define

H(pe) = pe log2 pe + (1 − pe) log2(1 − pe), (6.67)

which may be interpreted to mean the uncertainty in bits of just whether or not v = ṽ.
Inequality (6.65) may be considered to state that the equivocation is bounded above

by the sum of two uncertainties. The first is the uncertainty in the correctness of the
decision and the second is the uncertainty of the remaining |VT | − 1 symbols if ṽ is
incorrect. This term has a factor of pe accounting for the fact that an error occurs with
probability pe.

The effective vocabulary size, |VT |eff, of the source is

|VT |eff = 2H(L(G)), (6.68)

and the efficiency, η, of the source is

η = H(L(G))

log2 |VT | = log2 |VT |eff

log2 |VT | ≤ 1, (6.69)

with equality if and only if L(G) = V ∗
T , which is equivalent to |VT |eff = |VT |. We may

thus rewrite (6.65) as

H(v|ṽ)η ≤ H(pe) + pe log2(2
H(L(G)) − 1) (6.70)

≤ H(pe) + pe log2(2
H(L(G)))

= H(pe) + peH(L(G)).

Substituting η from (6.69), we get

H(v|ṽ)

log2 |VT | − 1

H(L(G))
≤ pe. (6.71)

The first term on the left-hand side of (6.71) is fixed for a given language and classifier,
in which case increasing the entropy of the source increases the lower bound on the error
probability.
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Figure 6.3 Error rate as a function of the negative of signal to noise ratio for the recognition
system of Levinson [183]

6.3.2 Experimental Results

The four different conditions used in the Miller et al. experiment as shown in Figure 6.3
actually correspond to four sources of different entropies: digits, words, nonsense syllables
and sentences. For any particular source the error probability increases with decreasing
signal to noise ratio. The important result, however, is that the degradation decreases
monotonically with decreasing source entropy at any fixed signal to noise ratio. This is
exactly the behavior predicted by (6.71).

The Miller et al. experiments are based on the performance of human listeners. How-
ever, the same behavior is obtained for automatic speech recognizers. The results of an
early experiment by Levinson et al. [183] are shown in Figure 6.3. The two curves are,
respectively, the probability of error in W̃ and Ŵ . The uncertainty in W̃ is log2 |VT | >

H(L(G)), the uncertainty in Ŵ . Thus the two curves are ordered as predicted by (6.71)
at any fixed value of σ which is inversely related to signal to noise ratio.



7
Automatic Speech Recognition
and Constructive Theories
of Language

The theories and methods described in Chapters 3, 4, and 5 can be combined and used to
form a constructive theory of language and a technology for automatic speech recognition.
We will consider two approaches to the “language engine”, one integrated and the other
modular. We will then briefly describe the way that our mathematical models can be
applied to the problems of speech synthesis, language translation, language identification,
and a low-bit-rate speech communication.

7.1 Integrated Architectures

The first approach to the “language engine” is one in which several levels of linguistic
structure are captured and compiled into a single monolithic model that can then be
used to automatically transcribe speech into text. This model was introduced by Jelinek
et al. [146] and has been refined over the past three decades. It is the state of the art
in automatic speech recognition and the basis for most commercial speech recognition
machines.

The basic model is shown in Fig. 7.1 in which the dashed lines indicate that all rep-
resentations of linguistic structure are analyzed by a single process. Acoustic phonetics
and phonology are represented by an inventory of sub-word models. Typically there are
several allophonic variants of each of the phones listed in Table 2.2. Each phone is rep-
resented by a three-state HMM of the type illustrated in Fig. 3.5 in which the Markov
chain is non-ergodic and the observable processes are Gaussian mixtures.

Allophonic variation is described by triphone models in which the acoustic properties
of a given phone are a function of both the preceeding and following phones. That is,
each phone appears in as many different forms as are required to account for all of the
phonetic contexts in which it occurs.

The lexicon is simply a pronouncing dictionary in which each word is “spelled” in terms
of the triphones of which it is made in citation form. Thus the word v is the sequence of

Mathematical Models for Speech Technology. Stephen Levinson
 2005 John Wiley & Sons, Ltd ISBN: 0-470-84407-8



158 Mathematical Models for Speech Technology

SUBWORD
MODELS

LEXICON GRAMMAR SEMANTICS

SPECTRAL
ANALYSIS

SPEECH
INPUT

FEATURE
VECTOR

WORD MODEL
COMPOSITION

WORD
MODEL

LANGUAGE
MODEL

WORD-LEVEL
MATCH

SENTENCE-LEVEL
MATCH

RECOGNIZED
SENTENCE

Figure 7.1 The integrated architecture for automatic speech recognition (from Rabiner [257])

phones

v = f1 f2 . . . fk, (7.1)

where the ith phone, fi , is the particular allophone (triphone)

fi = (fi−1, fi, fi+1). (7.2)

The intuition behind the triphone model is that each phonetic unit has a target artic-
ulatory position characterized by the second state and transitions into and out of it
characterized by the first and third states, respectively. The initial transition of phone
fi is modified by the preceeding phone, fi−1. Similarly, the final transition is affected by
fi+1. The idea is illustrated in Fig. 7.2.

In the model of Fig. 7.1, the only notion of syntax is that of word order as specified
by an n-gram probability. If the sentence, W , is the word sequence

W = v1v2 . . . vK, (7.3)

where vk is some entry (word) in the lexicon of the form of (7.1), then word order is speci-
fied by p(vk|vk−1, vk−2, . . . , vk−n). If an n-gram has probability 0, then the corresponding
word sequence is not allowed.

All of the information described above may be compiled into a single, large lattice of
the form shown in Fig. 7.3 and 7.4. The large oval states represent words, and the small

fi −1 fi +1fi

q1 q2 q3

Figure 7.2 The triphone model for fi
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Figure 7.3 The HMM representation of the phonology of the production rule A → WB
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Figure 7.4 The integrated HMM

circular states the quasi-stationary regions of the phones. Decoding the sentence, W , is
the process of finding the path through the lattice of maximum likelihood.

The dynamic programming algorithm for this process is just

φt (j, v) =
max

{j − 1 ≤ i ≤ j} {φt−1(i, v)a
(v)
ij b

(v)
j (Ot )}, (7.4)
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which accounts for state transitions and observations within the word v. The model for
the word v is just the concatenation of all the triphone models listed for the word v in
the lexicon.

The transitions between words are evaluated according to

φt (1, w) = max
{p(w|v)}

{φt−1(1, w), φt−1(N, v)p(w|v)}. (7.5)

Note that, for convenience, we have written (7.5) to maximize only over bigram proba-
bilities. The algorithm can easily be generalized to account for n-grams.

The trellis can also be searched by means of a “best-first” algorithm according to which

φt (q) = φt−1(p)a(v)
pq b(v)

q (Ot )L̂, (7.6)

where the priority queue is initialized according to

φ1(1) = b
(v)
1 (O1)L̂

T −1. (7.7)

L̂ is the heuristic function, p and q are any two states in the trellis that are connected by
a transition, and the priority queue, φ, is arranged so that

φti1
(pi1) > φti2

(pi2) > · · · > φtiN
(piN ). (7.8)

The value of L̂ is usually taken to be

L̂t = E{L(Ot , Ot+1, . . . , OT |λ)}. (7.9)

In light of (7.8), (7.6) is interpreted to mean that p is the first entry of the queue and
is extended to state 1, the value of which is then inserted into the queue in the proper
position to maintain the ordering of (7.8). This algorithm will yield the same result as
that of (7.4).

In actual practice the trellis is unmanageably large. If there are 30 000 words in the
lexicon each containing five phones thus requiring 15 states, then for each frame, Ot ,
there are of the order of 105 nodes in the lattice. If a typical sentence is 5 seconds in
duration, then, at 100 frames per second, there are 107 nodes in the lattice each one
of which requires the computation of either (7.4) or (7.6). This cannot be accomplished
within the constraints of real time.

The solution to the real-time problem is to heuristically prune the lattice. There are
two methods for doing so. The first method is usually called “beam search”, according to
which (7.4) is modified to allow only “likely” states by thresholding φt (j, v) according to

φt (j, v) =
{

φt (j, v), if φt (j, v) < �φmax,

0, otherwise.
(7.10)

According to (7.10) only those nodes of the lattice are evaluated whose likelihood is some
small factor, �, times the maximum value.
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The best first search of (7.6) is pruned by limiting the size, N , of the priority queue
of (7.8). As a result only the N best nodes will be explored and less likely ones will be
dropped from the queue.

These heuristics may induce search errors. That is, at some time t , the heuristic may
terminate the globally optimal state sequence because it is locally poor. Empirical studies
are required to set the values of either � or N to achieve the desired balance between
computation time and rate of search errors.

7.2 Modular Architectures
The modular architecture is based on a completely different model of the “language
engine” than is used in the integrated architecture. The modular design uses a separate
representation of each level of linguistic structure and analyzes each level independently
but in sequence. This design is shown in Fig. 7.5, from which we see that the phonetic and
phonological structure is analyzed first with respect to the hidden semi-Markov model
of Fig. 7.6, yielding a phonetic transcription. The phone sequence is then analyzed to
determine the identities and locations of the words, which process is called lexical access
and which produces a word lattice. Finally, the syntactic analysis is performed by means
of an asynchronous parsing algorithm.

7.2.1 Acoustic-phonetic Transcription

Since each state of the acoustic-phonetic model corresponds to a single phone, a phonetic
transcription may be obtained by finding the optimal state sequence using the dynamic
programming algorithm

φt (j) = max
1≤i≤N

{
max
τ<t

{
φt−τ (i)aij dij (τ )

τ−1∏
θ=0

bij (Ot−θ )

}}
. (7.11)

Recall that (7.11) maximizes the joint likelihood of the state and observation sequences, q
and O, respectively. Also note that (7.11) differs from (3.7) in that the durational densities
and the observation densities are indexed by state transition rather than present state. This
means that there are more parameters to estimate but a better representation of phonology
is obtained.
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Figure 7.5 Block diagram of a modular automatic speech recognition system (from [188])
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Figure 7.6 The acoustic-phonetic model of the modular architecture

The state sequence is recovered from the lattice of φt (i) by setting

γt (j) = i∗, δt (j) = τ ∗, (7.12)

where i∗ and τ ∗ maximize the right-hand side of (7.11). Then set

qT = arg max
i

{φT (i)} (7.13)

and

qt−δ(qt ) = γt (qt ). (7.14)

The qt are the desired state sequence, and the duration of each state is d̂t = t − δ(qt ).
These sequences will then be used in the process of lexical access.

7.2.2 Lexical Access

Lexical access is a procedure for locating words in the error-ridden state sequence. It is
a search procedure, illustrated schematically in Fig. 7.7, that looks for optimal matches
between the phonetic transcriptions of words given in the lexicon and the corrupted
phonetic transcription obtained from (7.12).
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Figure 7.7 Operation of the lexical axis procedure

The matching process is a dynamic programming algorithm, illustrated in Fig. 7.8, in
which the reference sequences from the lexicon are compared to the test sequence obtained
from the phonetic transcription. Note that this is a comparison of symbol sequences in
which insertions, deletions, and substitutions are allowed by the local constraints on the
dynamic programming algorithm as shown in Fig. 7.9.

In order to implement the algorithm, we must first define the costs of substitution,
deletion, and insertion of phones in the transcription. We begin with substitution since it
is used to define the other two costs. Recall that each phonetic unit, wj , is characterized by
the Gaussian distribution N (x, µj , Uj ). Thus it is natural to say that the cost of substituting
one phone for another is just the dissimilarity between their respective distributions. In
general, the dissimilarity between two arbitrary probability density functions pi(x) and
pj (x) is measured by the Kullback–Leibler statistic [164]

D(pi(x)||pj (x)) =
∫

Rd

pi(x) log

[
pi(x)

pj (x)

]
dx. (7.15)

Note that although D(pi(x)||pj (x)) is not a true metric, it is the case that D(pi(x)||pj (x))

≥ 0 with equality if and only if pi(x) = pj(x) for all x ∈ �d . This has the sensible inter-
pretation that the cost of a correct transcription is zero.

In the Gaussian case, with

pi(x) = 1√
2πd |U−1

i |1/2
e− 1

2 (x − µi )U
−1
i (x − µi ), (7.16)
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(7.15) becomes

Dij = D(pi(x)||pj (x)) = 1

2
[tr(UiU−1

j ) + log

[ |Uj |
|Ui |

]
− d + (µ − µj )

′U−1
j (µi − µj )],

(7.17)

where Dij is the dissimilarity between the ith phonetic unit and the j th phonetic unit.
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Based on (7.17), we define the substitution cost of replacing the ith phonetic unit with
the j th phonetic unit at the t th segment of the transcription as

Sij = Dij d̂t , (7.18)

where d̂t is the duration of the t th unit obtained from (7.12).
Now the following heuristic is used for the cost of insertions and deletions. A deletion

is a substitution of silence (phonetic unit i = 1) for the decoded unit. Similarly, the cost
of an insertion is that of a substitution of the inserted unit for silence. Thus the cost of
deleting phonetic unit i, Di , is

Di = S1i , (7.19)

while the cost of inserting phonetic unit i is

Ii = Si1. (7.20)

Note that because (7.17) is not symmetric, Di 	= Ii in general.
Using the substitution, insertion, and deletion costs from (7.18), (7.20), and (7.19),

respectively, the dynamic programming algorithm of Fig. 7.8 and 7.9 becomes

Clk = min{Clk−1 + Ik, Cl−1k + Dk,Cl−1k−1 + Slk}, (7.21)

where Clk is the cumulative cost of matching the corrupted phonetic transcription
q̂1q̂2 . . . q̂l with the phonetic spelling of word v taken from the lexicon, q1q2 . . . qk . Then
Ik is the cost of inserting q̂k after ql . Similarly, Dk is the cost of deleting q̂k from the
transcription and Slk is the cost of substituting q̂l for qk .

The initial conditions are

C00 = 0,

Cl0 =
l∑

j=1

D1d̂j , (7.22)

C0l =
l∑

j=1

I1d̂j .

7.2.3 Syntax Analysis

Syntax analysis is accomplished by adapting the asynchronous parser of (4.33) to the case
where the log-likelihood function is replaced by the cost function Clk described above.
We thus have

φk(B) = min
{A→vB}

{min
l

{φk−l (A) + C
(v)
k−l,k}}. (7.23)

Note that there is a different cost for each hypothetical word v. All costs are computed
from (7.21). Then, using the reconstruction procedure of (4.26)–(4.30), we get the optimal
lexical transcription of the utterance and its syntactic structure.
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7.3 Parameter Estimation from Fluent Speech

In order to implement the systems described in Sections 7.1 and 7.2, the parameters of
their respective acoustic-phonetic models must be estimated. Because these models are
intended to represent fluent speech, from any speaker, they cannot be trained from isolated
utterances. Also, because of the large size of the models and the number of parameters
they require, it is not practical to use speech data that has been segmented and labeled
by expert phoneticians. Fortunately, there are nearly automatic procedures requiring a
minimum of intervention by linguists. All that is needed is a phonetic transcription of
a large corpus of fluent speech. In fact, as we shall see, even the transcription can be
obtained automatically from ordinary text. Thus all that is ultimately required is speech
data and its corresponding transcription.

7.3.1 Use of the Baum Algorithm

For the kinds of models used in the integrated architecture, the Baum algorithm is used to
estimate the parameters of sequences of phones rather than individual ones. The training
data is assumed to be a large set of spoken utterances, {xi(t)}Ni=1.

Each signal, xi(t), encodes a sentence Wi composed of the words wi1wi2 . . . wini
. Each

wij is in a fixed lexicon V from which we can obtain the pronunciation of any entry in
terms of a predetermined list of phones (e.g. the list in Table 2.2). Thus

wij = φk1φk2 . . . φkmi
. (7.24)

Associated with each triphone, φkj−1φkj
φkj+1 on the right-hand side of (7.24) there is an

HMM of the form illustrated in Fig. 7.2. Each such model is characterized by a parameter
vector, λkj . Thus for any sentence, Wi , we can easily construct a corresponding HMM
by concatenating all of the models in the correct sequence determined by the sequence of
words (7.3) and the pronunciation of each word (7.24), taking into account the triphonic
context for each phone including those that appear at word boundaries. Then the Baum
algorithm (3.112)–(3.115) is used to estimate all the λkj

together from the observation
sequence derived from xi(t).

This process is carried out for each Wi, i = 1, 2, . . . , N . Whatever values are obtained
for the λkj

from Wi become the initial values for the Baum iteration for Wi+1. Of course,
in general, Wi 	= Wi+1 so different subsets of the parameters are reestimated for each
Wi . Even with randomly assigned initial values, the process converges to a useful result
provided the training sentences contain sufficiently many examples of each triphone.
Hundreds of hours of speech data are needed, but the process is automatic and requires
only computer time.

There are two ways to estimate the parameters of the model of Fig. 7.2. First, because
the model has many fewer parameters than that of the integrated architecture, a far smaller
training data set is required. In fact, a few hundred sentences will suffice. A data set of
this size is small enough that it can be segmented and labeled by hand. Since each
segment corresponds to one phone without regard for its context, all the data for a phone
can be pooled and sample statistics can be calculated. These will give sufficiently good
starting values for the means and covariances required by the model of (3.141) to use the
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reestimation procedure exactly as indicated in (3.151), (3.155), (3.158), and (3.163) on
the entire training set without regard for the segments and labels.

Another approach is to use the triphonic models obtained by the procedure used to
estimate the parameters of the integrated architecture in place of the observation densities.
That is, use L(O|λj ) instead of bj (O). The parameter λj is obtained by averaging the
parameters for the j th phone over all phonetic contexts. According to this procedure,
the model changes slightly. Instead of a single state for each phone, we now have a
three-state, left-to-right HMM. The state transition matrix, A, is unchanged but aij is the
probability of a transition from the last state of the ith phone to the first state of the j th.
It is this second method upon which the performance figures given in Section 7.4 are
based. The first method has not been applied to vocabularies larger than 1000 words, so
no claims for its performance can be made.

The transition parameters, aij , were obtained directly from the lexicon by counting the
number of bigram sequences of phones in words and ignoring word junctures. Though a
crude estimator, it is sufficient for good performance.

7.3.2 The Role of Text Analysis

The method used to obtain the parameters of the HMM used in the integrated architecture
can be significantly refined by using the text analyzer of a text-to-speech synthesis system.

A text-to-speech synthesizer is a system for converting ordinary text into the equivalent
acoustic signal. Such a system has two main parts: a text analyzer to generate a phonetic
transliteration of the text, and a synthesizer to render the phone sequence acoustically.
We will say more about the latter in Section 7.5.1.

A diagram of the text analyzer is shown in Fig. 7.10. The particular part of the system of
interest here is the process by which ordinary text is transliterated into a phone sequence.
This process can be used to select the triphone models to be concatenated and reestimated
based on a given training sentence.

The part of the system that is relevant to this discussion is at the center of the figure and
performs the function of determining the pronunciation of words from the text. There are
four parts to the procedure, the pronunciation listing in a dictionary, morphological rules
for deriving inflected forms from root words, rules for rhyming, and letter-to-sound rules.

The primary method of pronunciation is by direct search of the dictionary which con-
tains a phonetic spelling for each entry. In order to keep the dictionary as small as
possible, only root words are listed. Inflected forms derived from the addition of prefixes
and suffixes indicating tense, number, and mood are omitted as are compound forms. In
this way, the dictionary for English is reduced to approximately 40 000 entries.

The morphological rules give the pronunciations of the common inflected forms, mainly
for nouns and verbs, to account for their declensions and conjugations, respectively.
Irregular noun and verb forms for plurals and participles are listed in a table of exceptions.

The dictionary plus morphology will account for the pronunciation of most words. If,
however, they fail to apply to a word encountered in a text, a set of rules about rhyming
can be invoked. These rules will find a word which is likely to rhyme with a given word
and from which the pronunciation can be determined.

Finally, if all else fails, the system resorts to letter-to-sound rules. Such rules are unre-
liable for English, the spelling of which is often not easily reconciled with pronunciation.
However, as a last resort the rules are likely to yield an intelligible if not correct result.
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Figure 7.10 The text analysis system of a text-to-speech synthesizer

The combination of the four methods produces a surprisingly efficient and robust pro-
nunciation. It is good enough so that a phonetic transcription laboriously generated by a
linguist is not required and may safely be replaced by the automatically generated tran-
scription. By doing so, the entire training procedure is automated. Thus large text corpora
can simply be read aloud and the pronunciation obtained automatically from the text.

It is probably true that other components of the text analyzer could be used to make
more refined HMMs of phonetic units. The use of prosodic features is very attractive in
this regard. However, at the present time, the state-of-the-art technology does not make
use of this information.

7.4 System Performance

Progress in automatic speech recognition has been significant over the past thirty years.
Systems based on the integrated architecture described in Section 7.1 are commercially
available as software for the now ubiquitous personal computer at prices suitable for the
consumer electronics market. The same technology is embedded in large-scale telecom-
munications systems for use in the public switched telephone network. Most telephone
subscribers have used such systems, some without even being aware they were talking
to a machine, for a variety of information retrieval tasks. Laboratory prototypes of the
system described in Section 7.2 have also been successfully tested.
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Scientists and engineers who have witnessed the development of speech technologies
over the decades are justified in noting the amazing improvement in the technology. The
state-of-the-art devices are truly a marvel of engineering. Systems constrained to small
vocabularies and highly circumscribed applications record accuracies above 90% averaged
over unrestricted user populations. Makers of large-scale systems claim similar results for
vocabularies of tens of thousands of words. However, all of the commercial systems
and laboratory prototypes suffer from two deficiencies. First, performance is not robust.
That is, it is subject to degradation and even catastrophic failure in just moderate signal-
to-noise ratios (SNR <20 dB). Performance is also not robust with respect to accents,
colloquial discourse, and variation of voice quality, especially children’s voices. Second,
the technology described in Sections 7.1 and 7.2 addresses only the transcription of speech
into text. As such, it has no representation of meaning. We will consider the implications
of these deficiencies in the final three chapters.

7.5 Other Speech Technologies

Thus far, the only technology we have considered is automatic speech recognition. There
are, however, other aspects of speech communication that can be studied and used in prac-
tical applications based on the models used in automatic speech recognition. In fact these
applications are easily understood in light of the methods used in automatic speech recog-
nition. The following is a brief survey of such applications. The survey is oriented toward
unsolved research problems in speech communication rather than the well-understood
aspects of speech that have already found their way into applications.

7.5.1 Articulatory Speech Synthesis

There are two independent aspects of speech synthesis. First, there must be an ortho-
graphic representation (e.g. ordinary text) of the speech signal to be generated. Second,
there must be a method for producing the desired acoustic signal from its orthography.
The former has already been discussed in Section 7.3.2. The standard method for the
latter is based on linear prediction as described in Section 2.3.2. This is really synthesis
by analysis. That is, in order to perform the synthesis, a previous analysis must have been
done on natural speech from which the parameters of the synthesizer are derived. While
this method is suitable for many practical applications, it does not address the problem of
synthesizing speech from first principles requiring no data extracted from speech signals.
Speech synthesis from first principles is called articulatory synthesis and is based on the
ideas developed in Section 2.1. The synthetic speech signal is the solution to the Webster
equation for the boundary conditions governed by vocal tract geometry which is deter-
mined by the articulatory gestures required to make the desired phonetic elements. If a
perfect model of the physical acoustics of the vocal apparatus and the articulatory dynam-
ics were available, it should be possible to synthesize any desired voice and manner of
speech. In particular, it should be possible to mimic a specific speaker based on only his
individual vocal physiology. This capability would open the possibility of using an artic-
ulatory synthesizer to improve the speech of hearing-impaired children by getting them
to imitate a visual display of the articulatory dynamics of normal speech by comparison
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with a simultaneous display of their own faulty articulation. An early attempt at this was
made by Fallside [79].

Although articulatory synthesizers have been constructed by Coker [51], Hafer [115],
and Huang [136], they have remained as curiosities of the laboratory because they are
inferior to synthesis by analysis methods with respect to both voice quality and intelligi-
bility. The relatively poor performance of articulatory synthesizers is a strong indication
that our models of the speech signal are deficient and should be the subject of research.

7.5.2 Very Low-Bandwidth Speech Coding

High-fidelity speech can be stored and/or transmitted at approximately 50 kilobits per
second (kb/s). Waveform coders can maintain the fidelity at 16 kb/s. There is some
degradation in voice quality at 8 kb/s and speaker identity is lost though intelligibility
is preserved at 4 kb/s. At data rates below that, speech quality is seriously compromised.

In contrast, text can be stored and/or transmitted at only 100 bits per second. This
suggests the ultimate coding mechanism. Use a speech recognizer to convert speech to
text, adding a few bits per second to encode individual qualities of the speaker’s voice.
Then decode the transmission using an articulatory synthesizer. Of course, no technology
presently exists to implement this idea. It is, however, plausible and an interesting area
for research.

7.5.3 Automatic Language Identification

An application that is little studied but more within the reach of existing technique is
automatic language identification. The term is intended to mean naming a speaker’s lan-
guage from a brief sample of his natural fluent or even colloquial speech. One way to
do this is to make an acoustic-phonetic model and lexicon for each language of interest.
If the model is of the form described in Section 7.2, then a single decoder based on the
modular architecture described there but omitting the parser can be implemented as shown
in Fig. 7.11. Given an utterance in an unknown language, it could then be transcribed
according to each of the models and identified as the language corresponding to the model
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Phonemotactic Models
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Phonemotactic Models
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Spanish Lexicon
and Word Trigrams

Lexical Access
French Lexicon
and Word Trigrams

Score

Figure 7.11 Language identification system
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yielding the highest value of its likelihood function. An experiment by Hironymous [126]
indicates the feasibility of this idea. More elaborate heuristics for language identification
are discussed by Li [196].

7.5.4 Automatic Language Translation

Attempts to translate text from one language to another have been made from time to
time since the 1950s. Such notions have inspired both writers of science fiction and come-
dians. Recently, text translation services have become commercially available, providing
low but useful quality of translations of technical documents. There have also been some
attempts to translate spoken messages from one language into another. Often referred to
as translating telephony, the intended use is to allow monolingual speakers of different
languages to converse over the telephone. One such experimental system built by Roe
et al. [276] is shown in Fig. 7.12. The system comprises speech recognizers and synthe-
sizers for both source and target languages, a bilingual dictionary, and a syntax transducer
that transforms parse trees in the source language into equivalent ones in the target lan-
guage. When restricted to a sufficiently limited domain such as banking and currency
exchange, reliable, real-time translation of ordinary conversation is possible. A summary
of the system performance is shown in Fig. 7.13.

In the distant future, one can imagine combining such a system with an advanced
articulatory synthesizer, a language identification device and a low-bit-rate coder. One
can then envision the following scenario. A telephone subscriber can call a long-lost
relative in another country whose language he never learned. His speech and that of the
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Translation

Recognition Translation Percent

Correct Good 86%

Semantically Exact Good 4%

Semantically OK Good 1%

Correct OK 1%

Semantically OK OK 3%

Bad OK 1%

Bad Bad 4%

Examples

Uttered Translated

Sem. Ex./Good lire liras

Sem. OK/Good a two F com. una com. de 2 F

Correct/OK would i see querría ver

Sem. OK/OK Irish currency el dinero irlandés

Bad/OK

96% at least OK

for German marks por marcos alem.

Bad/Bad 3 yen a las 3 de la tarde

Figure 7.13 Performance of the spoken language translator

called party are automatically identified thereby invoking the appropriate translator. Both
sides of the conversation are translated idiomatically, preserving emotional content and
personality. The signals are then encoded to conserve bandwidth and decoded at the other
end of the line so that each listener hears a perfect translation rendered in the actual voice
of the speaker. More research is definitely needed.



8
Automatic Speech Understanding
and Semantics

8.1 Transcription and Comprehension
The term “speech understanding”, as it occurs in the electrical engineering literature,
refers to the automatic understanding of natural spoken language by a machine such as a
digital computer. It is important to realize at the outset that, as of this writing, no artificial
device exists which is capable of “speech understanding” so defined. While there is no
inherent reason why such a device could not be constructed, to date only machines of
significantly reduced linguistic capability have been demonstrated.

The notion of “speech understanding” emerged in the early 1970s from the field of
automatic speech recognition which preceded it by approximately 25 years. The two
disciplines are, of course, closely related but, as Newell et al. [233] realized, are distinct
in an important sense. Whereas recognition is the operation of transcribing speech into
some conventional orthographic representation, understanding requires that the machine
generate some formal symbolic representation of the meaning of the spoken message and
perhaps even perform an appropriate physical activity based on the derived interpretation.
Thus recognition is an abstract pattern recognition problem while understanding entails
cognitive abilities.

One might well ask what the purpose of recognizing speech would be if not to under-
stand it. It is quite possible that some of the pioneers of speech recognition envisioned
speech understanding but felt that the latter was beyond the realm of any science they
knew, whereas practical techniques for acoustic pattern recognition existed. They there-
fore restricted their efforts to the recognition of isolated words for the purpose of giving
simple commands to a machine [63, 70]. For example, if it were possible to recognize
a sequence of spoken numbers with distinct pauses between them, one could dial a tele-
phone by voice. As useful as this might be, it does not qualify as speech understanding
as defined here.

As soon as a spoken digit recognition machine was demonstrated, research embarked
on a more ambitious recognition task, that of building a dictation machine or a voice-
operated typewriter. This goal has yet to be accomplished. Arguably, the elusive nature
of the voice-operated typewriter was one factor which prompted the coining of the term

Mathematical Models for Speech Technology. Stephen Levinson
 2005 John Wiley & Sons, Ltd ISBN: 0-470-84407-8
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“speech understanding”. The differentiation between it and mere speech recognition was
an implicit proposition that one must understand speech in order to transcribe it. Behind
the proposition was a deep belief that understanding required an entirely different kind
of computation, one that was the subject of research in artificial intelligence (AI).

This issue has yet to be resolved. As this chapter is being written there are programs
commercially available that purport to take dictation. There are also experimental systems
which display a rudimentary ability to understand some spoken dialogs. Neither of these is
possessed of anything remotely like human linguistic and/or cognitive ability. In this brief
section, we shall explore the fundamental theories and computational algorithms which
are employed by existing speech understanding machines. We shall then consider some
of the issues whose resolution might ultimately lead to the development of true speech
understanding systems. The reader is reminded, however, that no definitive conclusions
can be offered since the complexities of our human abilities to communicate in natural
spoken language are still shrouded in mystery.

8.2 Limited Domain Semantics
If the vocabulary and subject matter are carefully circumscribed so as to apply only
to a restricted domain of discourse and if the grammar is such that all well-formed
sentences have a unique and unambiguous meaning, then automatic semantic analysis is
computationally feasible. The general architecture of such a system is shown in Fig. 8.1
and its operation is explained below.
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AIRLINE
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FACTS
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Figure 8.1 Architecture of an automatic speech understanding system
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8.2.1 A Semantic Interpreter

The semantic processor of a conversational mode airline timetable and information system
is essentially an interpreter for the formal language of Fig. 8.2. It may be thought of simply
as a mapping

S : (Q × V ) → A, (8.1)

where Q is the set of states in the state diagram of the language, V is its terminal alphabet
or vocabulary, and A is a set of actions which we define precisely below. The mapping
in (8.1) is used in the following way. Let W̃ be the recognized input sentence and q̃ its
state sequence, with

W = v1v2 · · · vn, vi ∈ V, for 1 ≤ i ≤ n, (8.2)

and

q = q0q1q2 · · · qn, qi ∈ Q, for 0 ≤ i ≤ n. (8.3)

Then compute

S(qi, vi) = αi ∈ A, for 1 ≤ i ≤ n. (8.4)

Since S is not necessarily defined for all state–word pairs, some αi may be �, the null
action. The set of non-null actions determines the response, R(Ŵ ), to input Ŵ , which we
denote by

{αi |αi �= � => R(Ŵ )}. (8.5)

The semantic mapping, S, comprises 126 rules of the form of (8.4). To precisely define
the actions, αi , we must look at the communication aspect of semantics.

A well-known abstraction of the communication process is described by Fodor [91]
and Minsky [222] as follows. For A to communicate with B, both must have a model or
internal representation of the subject. A takes the state of his model and encodes it in a
message which he transmits to B. B decodes the message in terms of his subject model
and alters its state accordingly. Communication takes place to the extent that B’s model
is isomorphic to the state A’s would be in had he received the same message. This is
embodied in the task model, U , which is a finite universe of items which represent the
categories in the database which the system understands. Actions, then, mediate between
the input, the database, and the task model. An action αi , is a 4-tuple (see Table 8.1),

αi = αi(X, Uj ,K, Uk), (8.6)

where X ∈ V ∗ (usually X ∈ V ), Uj is the present configuration of the task model, K

is a response code, and Uk is the new configuration of the task model. Thus the αi

are instructions for a classical finite-state machine. The instructions correspond to the
following actions: on input X with the present state of model Uj , respond with a sentence
of form K and change the state of the model to Uk .
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Table 8.1 Semantic categories

Category Sample

1 Information I want some information, please.
2 Reservation I would like to make a reservation.
3 Travel plans I want to go to Boston on Monday evening.
4 General flight departure times At what times do flights leave Chicago for Denver on

Thursday afternoon?
5 Number of flights How many flights go from Washington to Miami on the

morning of the oh one May ?
6 Aircraft type What plane is on flight number five?
7 Fare How much is the fare from Detroit to Seattle on Sunday?
8 Meals Is a meal served on the flight?
9 Flight choice I will take flight six one to Philadelphia.

10 Seat selection I need two first-class seats.
11 Aircraft choice I prefer the Boeing seven oh seven.
12 Exact time specification I want to leave at six a.m.
13 Repeat information Please repeat the departure time.
14 Specific flight times When does flight number one to Los Angeles arrive?
15 Method of payment I will pay by American Express.
16 Phone number My home phone number is five three six two one five two.
17 Non-stop flight request I would like a non-stop flight.
18 Elapsed time What is the flight time from New York to Denver on

Wednesday night?
19 Stops How many stops are there on the flight to Miami?

There are 15 elements of the task model; these are defined in Table 8.2. There are five
ways to alter the state of the task model. Information can be directly given by the user;
he can, for example, specify his destination, D. We can denote this by

u1 ← D. (8.7)

Next, we have default values which can be imposed. For example, unless otherwise
specified, the number of tickets, Nt , is assumed to be one, and we have

u11 ← Nt = 1. (8.8)

A database lookup can also alter the state of the u-model as follows. A flight number,
Nf , a destination, D, and a class, C, provide sufficient information to look up the fare,
F , in the Official Airline Guide. Thus

[u1 = D�u6 = Nf �u7 = C]
L=> u10 = F. (8.9)

An element of U can be computed from the values of other elements, for example, flight
time, Tf , determined by point of origin, O, destination, D, arrival time, Ta , and departure
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Table 8.2 Elements of the task model

Element Symbol Definition

u1 D Destination city
u2 M Meals served
u3 Dw Day of the week
u4 Td Departure time
u5 Ta Arrival time
u6 Nf Flight number
u7 C Flight class
u8 A Aircraft type
u9 Ns Number of stops
u10 F Fare
u11 Nt Number of tickets
u12 Np Telephone number
u13 P Method of payment
u14 Tf Elapsed (flight) time
u15 O Flight origin city

time, Td . Origin and destination supply time zone information, while arrival and departure
time give elapsed time. We say, then, that

[u1 = D�u4 = Td�u5 = Ta�u15 = 0]
�=> u14 = Tf . (8.10)

Finally, an element of U can be computed from user-supplied information which is not
part of a flight description and is not stored as such. For instance, a departure date uniquely
specifies a day of the week, Dw, by

[nm�nd�ny]
F=> u3 = Dw, (8.11)

where nm is the month, nd is the date, ny is the year, and F is a perpetual calendar
function.

We can now give an example of a complete action. Suppose W was a request for the
fare of a previously selected flight. Semantic decoding would enable action no. 14:

a14 = (How much fare, u10 = F �= 0, K = 23, u10 = F). (8.12)

That is, on a fare request, if u10 is some non-zero value, set the response code, K , to
23 and leave u10 unchanged. A value of F = 0 would indicate that a flight had not been
selected as illustrated in (8.12), and a different response code would be issued, causing
a message so indicating to be generated. The complete ensemble of actions which the
system needs to perform its task is composed of 37 4-tuples similar to that of (8.6). This
brings us to consideration of the response generation procedure. Responses in the form
of English sentences are generated by the context-free grammar, Gs :

Gs = [VN, VT , σ0, P ], (8.13)
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where VN is the set of non-terminal symbols, VT is the set of terminal symbols (a vocab-
ulary of 191 English words), σ0 is the start symbol, and P the set of production rules.
The production rules are of two forms:

σ0 → γ ∈ (VN ∪ VT )∗ (8.14)

and
B → b; B ∈ VN, b ∈ VT or b = λ, (8.15)

where λ is the null symbol. There are 30 productions of the form of (8.14) in P . Each
one specifies the form of a specific reply and is designated by a response code, K . There
are several hundred productions of the type of (8.15). Their purpose is to insert specific
information into the skeleton of a message derived from a production of the other kind.
As an example, consider an input requesting to know the number of stops on a specific
flight. The appropriate response code is K = 26 and the production rule to which it
corresponds is

σ0 → THIS FLIGHT MAKES B1B2.

If u9 = Ns = 2, then the following productions will be applied:

B1 → TWO,
B2 → STOPS,

resulting in the output string of symbols

S = THIS FLIGHT MAKES TWO STOPS.

In the actual implementation, S is represented in the form of a string of ASCII characters.
This is the form accepted by the text-to-speech synthesizer [236, 237] which produces an
intelligible speech signal from S by rule.

8.2.2 Error Recovery

The components of the system described in Section 8.2.1 are integrated under a formal
control structure shown in the flow chart of Fig. 8.3. It has two modes of operation, a
normal mode and one for recovery from some error condition. The former is quite straight-
forward and is best illustrated by a complete example of the system operation. Consider
the input sentence Ŵ = I WANT TO GO TO BOSTON ON TUESDAY MORNING.
The state diagram of the sentence is Fig. 8.4, from which we immediately see that state
sequence, q, is

q = (1, 2, 3, 7, 33, 11, 12, 13, 14, 15).

Four state–word pairs from S apply:

(33, GO) = α1,
(12, BOSTON) = α2,
(14, TUESDAY) = α3,
(15, MORNING) = α5.
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Figure 8.3 The error recovery algorithm

The actions invoked are the following:

α1 = (GO, U, 0, U0),
α2 = (BOSTON, U0, 0, U1 ← U0 + u1 ← D),
α3 = (TUESDAY, U1, 0, U2 ← U1 + u3 ← Dw),

α5 = (MORNING, U2, 1, U3 ← U2 + U4 ← Td;U3
L=> C).
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1 2 3 7 33 11

12131415

I WANT TO GO TO

ON BOSTONTUESDAYMORNING

Figure 8.4 State sequence for semantic analysis

Table 8.3 State of the task model after
processing the input sentence of Fig. 8.4

u1 = 1 Boston
u2 = 0 no meals
u3 = 2 Tuesday
u4 = 1000 ten a.m.
u5 = 1047 ten forty seven a.m.
u6 = 3 flight number three
u7 = 1 coach (by default)
u8 = 208 DC-9
u9 = 0 no stops
u10 = 56 $56.00
u11 = 1 1 seat (by default)
u12 = 0 phone number unknown
u13 = 0 method of payment unknown
u14 = 0 flight time not calculated
u15 = 7 New York (by default)

Action α1 causes the task model in any state to be initialized to state U0 and no response
to be made. Next, α2 changes the state from U0 to U1 by fixing the destination; no
response is generated. Similarly, α3 causes the day of the week to be defined. Finally,
α5 fixes an approximate hour of departure permitting a database lookup which gives a
complete flight specification. The response code is set to 1. The state of the task model
after the lookup is shown in Table 8.3. The response code, K = 1, causes application of
the production rule

σ0 → FLIGHT NUMBER B1B2 LEAVES B3 AT B4B5B6B7

ARRIVES IN B8 AT B9B10B11B12.

From the meaning corresponding to u6, we have

B1 → λ,
B2 → THREE.

From u15 we get

B3 → NEW YORK.
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From u4,

B4 → λ,
B5 → λ,
B6 → TEN,
B5 → A.M.

From u1,

B8 → BOSTON.

And finally, from u5,

B9 → TEN,
B10 → FORTY,
B11 → SEVEN,
B12 → A.M.

Thus, S is FLIGHT NUMBER THREE LEAVES NEW YORK AT TEN A.M. ARRIVES
IN BOSTON AT TEN FORTY SEVEN A.M. The voice response unit then utters the
sentence.

An error condition occurs, putting the system in error recovery mode, for one of two
reasons. Either the total distance for one or more content words exceeds a preset rejection
threshold, or, due either to an error on the part of the user of the system or a catastrophic
failure of the acoustic/syntactic processing, the (q, Ŵ ) pair is inconsistent with the current
state of the task model. The error recovery mode is essentially an elaborate heuristic,
the purpose of which is to prevent communication from collapsing in the presence of
ambiguity. The procedure is shown schematically in the flow chart of Fig. 8.3. The effect
of this heuristic is to formulate a response to the input responsible for the error condition
which will elicit from the user whatever information is required to resolve the ambiguity.
The difficulty of this task is somewhat reduced by the fact that, by construction of the
grammar, the appearance of a syntactic ambiguity is impossible. The decision blocks in
the flow chart choose the sentential form of the response (i.e. production rules of the form
(8.14)) while the processing blocks select the appropriate terminal symbols using rules of
the form (8.15). Some examples of operation in this mode are given below.

By detaching the semantic processor, we can measure the accuracy with which the
syntax-directed level-building algorithm can transcribe sentences. For this purpose, a set
of 50 sentences using every vocabulary word and every state transition was constructed.
These sentences were then spoken over dialed-up telephone lines by four speakers, two
male and two female, at an average rate of 171 words/min. The test sentences ranged in
length from 4 to 17 words. Two sentences containing telephone numbers were only weakly
syntactically constrained, while others requesting or giving flight information were quite
stylized. The utterances were band-pass-filtered from 200 to 3200 Hz, digitized at 6.67 kHz
sampling rate and stored on disk files which were subsequently input to the syntax-directed
level-building algorithm. The results of this test are summarized in Table 8.4.

In order to keep response time to a minimum, all on-line tests were performed in the
speaker-dependent mode. Even under these conditions it takes about 1 minute to get a
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Table 8.4 Effects of syntax on speech recognition

Speaker Total Total Speaker-trained Speaker-independent
(sex) sentences words

Correct Correct Correct Correct
sentences words sentences words

S.E.L. (M) 59 478 56 470 55 470
A.E.R. (M) 50 424 46 417 42 413
K.L.S. (F) 50 424 42 393 43 413
C.E.S. (F) 50 424 35 349 41 408

Totals 209 1750 179 1629 181 1704

86% 93% 87% 97%

response to a sentence 2 seconds length. To determine the correct response rate of the
system, it was evaluated on a corpus of 351 sentences spoken by five male and two
female speakers. After syntactic processing, 21 sentences contained word recognition
errors. However, after semantic analysis 15 of these were correctly understood, despite
the errors, and correct responses were made. In the remaining 6 cases, a semantic anomaly
was detected, causing the machine to pose a question to the user who could then correct
the problem. Thus we achieved a recognition accuracy of more than 98% and, when
recognition errors occurred, communication did not break down.

These two tests give a statistical characterization of the system as one which is rea-
sonably robust and fails gracefully. It is important, however, to look at some details of
performance. For this purpose we constructed several ‘problems’ for the system to ‘solve’
each of which was supposed to reveal its ability to perform specific functions. Some sam-
ple transactions are listed below. The first is the simplest kind of interchange, a simple
flight request.

Machine: THIS IS THE BELL LABORATORIES FLIGHT INFORMATION SYSTEM
MAY I HELP YOU

User: I WOULD LIKE TO MAKE A RESERVATION PLEASE
M: PLEASE SPECIFY YOUR TRAVEL PLANS
U: I WANT TO GO TO BOSTON ON TUESDAY MORNING
M: FLIGHT NUMBER THREE LEAVES NEW YORK AT TEN A.M.

ARRIVES IN BOSTON AT TEN FORTY SEVEN A.M.
U: I WANT TO LEAVE AT ELEVEN O’CLOCK
M: FLIGHT NUMBER FOUR LEAVES NEW YORK AT ELEVEN A.M.

ARRIVES IN BOSTON AT ELEVEN FORTY FIVE A.M.
U: I WILL TAKE FLIGHT NUMBER FOUR
M: YOUR RESERVATION ON FLIGHT NUMBER FOUR TO BOSTON

ON TUESDAY IS CONFIRMED THANK YOU

A slightly more interesting conversation is the following:

M: THIS IS THE BELL LABORATORIES FLIGHT INFORMATION SYSTEM
MAY I HELP YOU
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U: I WOULD LIKE TO GO TO CHICAGO
M: PLEASE SPECIFY THE DAY OF YOUR DEPARTURE
U: I WANT TO LEAVE AT FOUR P.M.
M: PLEASE SPECIFY THE DAY OF YOUR DEPARTURE
U: I WANT TO DEPART ON THE TWO FIVE MAY
M: FLIGHT NUMBER NINE TWO LEAVES NEW YORK AT FOUR P.M.

ARRIVES IN CHICAGO AT FIVE TWENTY FIVE P.M.
U: WHAT PLANE IS ON THE FLIGHT
M: THE AIRCRAFT IS A BOEING SEVEN TWENTY SEVEN
U: HOW MUCH IS THE FARE
M: THE ROUND TRIP COACH FARE IS ONE HUNDRED

FORTY TWO DOLLARS
U: I WANT A FIRST CLASS SEAT
M: ONE SEAT THANK YOU
U: WHAT IS THE FARE
M: THE ROUND TRIP FIRST CLASS FARE IS ONE HUNDRED EIGHTY

FOUR DOLLARS
U: PLEASE REPEAT THE ARRIVAL TIME
M: THE ARRIVAL TIME IS FIVE TWENTY FIVE P.M.
U: I WILL TAKE THE FLIGHT
M: YOUR RESERVATION ON FLIGHT UMBER NINE TWO TO

CHICAGO ON FRIDAY IS CONFIRMED THANK YOU

The following set of user inputs was carefully chosen to give the machine some difficulty:

M: THIS IS THE BELL LABORATORIES FLIGHT INFORMATION
SYSTEM MAY I HELP YOU

U: I WANT ONE FIRST CLASS SEAT ON FLIGHT NUMBER THREE
ONE TO DENVER ON SUNDAY

M: I AM SORRY THE FLIGHT IS NOT AVAILABLE ON SUNDAY
U: I WANT TO GO ON SATURDAY
M: FLIGHT NUMBER THREE ONE LEAVES NEW YORK AT

NINE FORTY FIVE A.M. ARRIVES IN DENVER AT ONE TEN P.M.
U: WHAT IS THE FLIGHT TIME
M: THE FLIGHT TIME IS FIVE HOURS AND TWENTY FIVE MINUTES
U: HOW MANY STOPS ARE THERE ON THE FLIGHT
M: THIS FLIGHT MAKES ONE STOP
U: I WANT A NON-STOP FLIGHT
M: I AM SORRY THERE ARE NO MORNING NON-STOP

FLIGHTS AVAILABLE
U: I WANT TO GO AT FOUR P.M.
M: FLIGHT NUMBER ONE SIX LEAVES NEW YORK AT FOUR

FIFTY P.M. ARRIVES IN DENVER AT SEVEN P.M.
U: WHAT STOPS ARE THERE ON THE FLIGHT
M: THIS FLIGHT MAKES NO STOPS
U: IS A MEAL SERVED ON THE FLIGHT
M: DINNER IS SERVED
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U: I WILL TAKE FLIGHT SIX FIVE
M: I AM SORRY THERE IS NO FLIGHT SIX FIVE TO DENVER
U: I WILL TAKE FLIGHT ONE SIX
M: YOUR RESERVATION ON FLIGHT NUMBER ONE SIX TO DENVER ON

SATURDAY IS CONFIRMED THANK YOU

Questions need not occur in a logical sequence, as illustrated below:

M: THIS IS THE BELL LABORATORIES FLIGHT INFORMATION SYSTEM
MAY I HELP YOU

U: AT WHAT TIME DOES FLIGHT FOUR FOUR TO LOS ANGELES
DEPART

M: THE DEPARTURE TIME IS NINE P.M.
U: WHAT IS THE FARE FROM NEW YORK TO SEATTLE ON

SUNDAY MORNING
M: THE ROUND TRIP COACH FARE IS THREE HUNDRED EIGHTY

EIGHT DOLLARS

Finally, we observe that the machine can, to some extend, deal with non-sequiturs:

M: THIS IS THE BELL LABORATORIES FLIGHT INFORMATION SYSTEM
MAY I HELP YOU

U: I WANT SOME INFORMATION
M: WHAT DO YOU WANT TO KNOW
U: I WILL TAKE THE FLIGHT
M: WHAT DID YOU SAY
U: IS A MEAL SERVED ON THE FLIGHT
M: FOR WHAT FLIGHT ARE YOU REQUESTING INFORMATION

From the above, the reader can easily observe that the dialogs which the system can sus-
tain are not highly natural or sophisticated. The fact remains that speech communication,
however stilted, has been achieved. Two results of this achievement are of significance.
First, when one interacts with a system that communicates in a merely vaguely natural
way, his perception of this machine is changed. Conventional notions of speech recogni-
tion accuracy and algorithms for data retrieval assume a secondary importance as attention
is sharply focused on transmission of information. It is quite clear that the state of the art in
speech recognition is advanced enough to support research in complete human–machine
communication systems. Second, the synergistic effect of integrating several crude com-
ponents into an interactive system is to produce a machine with greater capacities than
might otherwise be expected. As the sophistication of the components increases and as
their interaction becomes more complex, their behavior will at some point become a sur-
prise even to their builders. In this last regard, one point should be emphasized. Unlike
most systems which are reputed to be intelligent, the response of this one to a given input
cannot be predicted, nor can a particular type of behavior be produced on demand. In
this sense, the system can create surprises, even for its constructors.



Automatic Speech Understanding and Semantics 189

8.3 The Semantics of Natural Language

The method of semantic analysis for limited domains discussed in Section 8.2 does not
truly capture the semantics of natural language. The meanings of words are restricted to
their use as information in the database but the general common-sense meanings are not
present. Thus “Boston” is merely a page in the Official Airline Guide, not a city nor any
of the things that we ordinarily associate with the notion of “city”. The same is true of
the semantics of “going” or “time”.

Formalizing the semantics of natural language in all of its generality is a difficult
problem to which there is presently no comprehensive solution. Most research on the
subject rests on two principles. The first is that semantics depends on syntax. The second
is that semantic analysis must generate a symbolic representation of the physical world
that allows for predictions of reality by reasoning, is expressive enough to extend to
all aspects of reality, and allows for different syntactic structures to generate the same
meaning.

Syntax is connected to semantics in two principle ways. Structure-building rules of
the form A −→ BC, A,B,C ∈ VN , provide an abstraction of meaning. For example, the
abstract meaning of S −→ NP VP is that a sentence has an actor (NP), an action, and an
object acted upon (VP). Then, the second syntactico-semantic relationship is captured by
lexical assignment rules of the form A −→ w, A ∈ VN , w ∈ VT . Thus the meaning of the
word, w, is the real concept to which it refers and its syntactic rule is determined by the
part of speech represented by A. By applying lexcial semantics to the abstract structure,
a specific meaning is obtained.

There are many variations on this idea, all of which fall into two categories: graphical
methods and logical methods. In graphical methods, the nodes of a graph represent lexical
semantics and the directed, labeled edges of the graph express relationships between the
nodes they connect. Making the edges directed allows the notion of ordering the nodes
in time, space or other scales.

Logical methods rest on the idea that sentences have meaning when they make true
assertions about the world. The truth is verified by formal logical operations. If a sentence
can be shown to be true then its meaning can be derived with the help of syntax.

8.3.1 Shallow Semantics and Mutual Information

Although it does not address the question of semantic structure or the means by which
words are related to reality, information theory does give a means of capturing word sense.
That is, words have different connotations when they are used in conjunction with other
words. The word “bank” refers to different things when we speak of a “river bank” and
a financial institution. The deep semantics of these usages is the existence of a common
meaning, if there is one.

In the integrated architecture, semantics is only weakly represented by mutual infor-
mation. That is the word pair v1v2 has mutual information

I (v1, v2) = log
p(v1, v2)

p(v1)p(v2)
. (8.16)
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Figure 8.5 A typical semantic network

Values of I (v1, v2) may be used to bias the n-gram probabilities. This is semantic infor-
mation in the sense that two words that appear together frequently may have similar or
complementary meanings.

8.3.2 Graphical Methods

Most graphical interpretations of semantics, of which there are numerous variants, can be
traced back to the semantic net of Quillian [254]. In semantic nets, the relationships that
label the edges are those of subset, quality, property, conjunction, disjunction, negation,
instance, etc. The method is best explained by the diagram of Fig. 8.5 which represents
the concept of “dog”. The unstated assumption of this approach is that the required fidelity
and expressiveness of this model can be achieved simply by exhaustively and laboriously
making graphs of all the many objects in the world and connecting them appropriately.
Unfortunately, to date, only toy examples have been implemented to demonstrate the
principle.

8.3.3 Formal Logical Models of Semantics

Logical methods of semantic analysis rely on two types of formal logic, the propositional
logic and the first-order predicate calculus, the latter being an extension of the former.

An important motivation for the development of mathematical logic was to address
questions about the foundations of mathematics and particularly the nature of mathematical
truth. Although mathematical truth is not the same as psychological truth, there is a strong
intuitive sense that there is a close relationship between logical reasoning and how our
minds know the “truth” about our quotidian existence and how that knowledge is expressed
in natural language. It is this intuition that we will examine now. Then, in Chapter 9, we
will return to a consideration of the consequences of formal logic in the development of
mathematical models of cognition.

If there is to be a mathematical model of the general semantics of natural language – as
opposed to the highly circumscribed domains of discourse exemplified by the method of
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Section 8.2 – it must include a complete mental representation of physical reality. Formal
logic is well suited to the task in that it has the following desirable properties.

First, it provides a verifiable model, the ability of which to represent reality can be
empirically evaluated. It allows for a canonical meaning that can be expressed in different
syntactic structures. It includes an inference procedure whereby conclusions can be drawn
about specific or related ideas and events. Finally, it is expressive enough to encompass
a complete model of the world.

A brief description of formal logic will suffice to demonstrate how a logical formulation
of semantics displays these desirable properties. We begin with propositional logic which
is concerned with the truth of statements called predicates. Thus in this formalism, there
are two constants, T for “true” and F for “false”. There are arbitrarily many predicates,
P , Q, R, . . . , each of which is either true or false. The predicates are formed according
to the following syntax

〈atom〉 −→ T (8.17)

〈atom〉 −→ F

〈atom〉 −→ P

〈atom〉 −→ Q

...

〈sentence〉 −→ 〈atom〉
〈sentence〉 −→ 〈complexsentence〉

〈complexsentence〉 −→ (〈sentence〉)
〈complexsentence〉 −→ 〈sentence〉〈op〉〈sentence〉
〈complexsentence〉 −→ ¬ 〈sentence〉

〈op〉 −→ ∧ (logical “and”)

〈op〉 −→ ∨ (logical “or”)

〈op〉 −→ ¬ (negation)

〈op〉 −→⇒ (implication)

〈op〉 −→⇐⇒ (if and only if )

Predicates joined by logical operators are evaluated according to the operator prece-
dence ordering ¬,∧, ∨, ⇒,⇐⇒ unless enclosed in parentheses, in which case the
parenthetical relations must be resolved first. Thus the predicate

¬P ∨ Q ∨ R ⇒ S (8.18)

is equivalent to
((¬P)V (Q ∧ R)) ⇒ S. (8.19)

Given truth values for P, Q, R, S, the predicate (8.19) can be evaluated as either T or F .
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The propositional logic of (8.17) is not sufficiently rich for a general model of semantics.
We can, however, obtain a sufficiently expressive model called the first-order predicate cal-
culus by augmenting (8.17) with additional operators and constants, variables, quantifiers
and functions. To accommodate these additions we use a similar syntax.

〈 formula〉 −→ 〈atom〉 (8.20)

〈 formula〉 −→ 〈 formula〉〈op〉〈 formula〉
〈 formula〉 −→ 〈quant〉〈var〉〈 formula〉
〈 formula〉 −→ ¬〈 formula〉

〈atom〉 −→ 〈pred(term)〉
〈term〉 −→ 〈function(term)〉
〈term〉 −→ 〈const〉
〈term〉 −→ 〈var〉

〈op〉 −→ = (equality)

〈quant〉 −→ ∀(universal , i .e. “for all”)

〈quant〉 −→ ∃ (existential , i .e. “there exists”)

〈quant〉 −→ ∃! (unique existential)

〈const〉 −→ A

〈const〉 −→ B

〈const〉 −→ C

...

〈var〉 −→ x

〈var〉 −→ y

〈var〉 −→ z

...

〈function〉 −→ F

〈function〉 −→ G

〈function〉 −→ H

...

All other symbols are as defined in (8.17). Notice that in (8.20) both functions and
predicates have arguments. A predicate can have a null argument, in which case it is as
defined in the propositional logic. Predicates, functions and formulas all take values of
either T or F .
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As noted earlier, a desirable property of a semantic model is the capacity for inference
or reasoning. Both propositional logic and first-order predicate calculus admit of formal
procedures for inference. The following rules of inference allow the evaluation of complex
formulae.

If P is true and (P ⇒ Q) is true then Q is true. This is the formal expression of
“if–then” reasoning. If

∧n
i=1 Pi is true then Pi is true for i = 1, 2, 3, . . . , n. If Pi is

true for i = 1, 2, . . . , n, then
∧n

i=1 Pi is true. If Pi is true for some i, then
∨n

i=1 Pi is
true for any subset {pi |1 ≤ i ≤ n}. Double negation means that ¬(¬P) ⇐⇒ P is always
true for any P . Finally, one can use the notion of contradiction in the resolution rule; if
¬P ⇒ Q is true and Q ⇒ R is true, then ¬P ⇒ R is true. In general, these rules of
inference are transitive, so that we can use chains of the form P0 ⇒ P1 ⇒ . . . ⇒ Pn.

In Section 8.3.4 we will see the way inference is used in semantic analysis. Of pri-
mary importance, however, is the expressiveness of the first-order predicate calculus. The
foregoing discussion has been entirely abstract. We now must be specific and consider a
particular ontology in order to apply the abstraction. That is, we need to choose a set of
predicates and functions that will allow us to symbolically represent nearly all aspects of
reality in natural language.

We start with lexical semantics which is just the meaning of isolated words or, alterna-
tively, a mapping from a word to the object, action or idea to which it refers. For example,
the predicate, book(x), is true if and only if the variable x is, in reality, a book. Similarly
the verb “give” is represented by the function give(P, Q, R), where P = object(x), Q =
donor(y) and R = recipient(z). The function, give(P, Q, R), is defined to mean that the
object x is transferred from the donor, y, to the recipient, z.

Also included amongst the necessary predicates are those that represent time by means
of verb tense and aspect (i.e. event time relative to message time). In addition, there
should be ways to indicate beliefs and imagination as putative but not necessarily real
entities.

An example of the use of the first-order predicate calculus to express natural language
is the following. Consider the sentence “Every dog has his day”, rendered logically as
follows:

∀d dog (d) ⇒ ∃ a day (a) ∧ owns(d, a) ∧ has (d, a). (8.21)

A direct translation of (8.21) is: For all d , where d is a dog, it is the case that there exists
a day, a, and d owns a and the function has(d, a) is true, that is, d possesses a.

Two issues are immediately apparent. First, the symbolic representation implicit in the
examples given above does not include any method for making the mapping between
symbol and referent. The symbols are utterly abstract. We will consider this problem
further in Chapter 10.

Second, as a purely practical matter, in order to make this method expressive, we need
to exhaustively enumerate all elements of the ontology of common reality and devise
a predicate or function for each in a way that allows for consistent verifiability. If we
construe the ontology in a more circumscribed way, we are back to limited domain
semantics and the logic might just as well be replaced by a finite-state machine. The
CYC project of Lenat [177] is an attempt to codify the common-sense knowledge of
lexical semantics. The project has met with dubious success for written language only. In
Chapter 10, we shall also suggest a means to avoid the problem of exhaustive enumeration.
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8.3.4 Relationship between Syntax and Semantics

Syntactic structure has a strong effect on meaning. Figure 8.6 shows two different parses
for the sentence “John saw the man with the telescope”. In the first case the adjectival
prepositional phrase “with the telescope” is attached to the direct object “man”, and the
sentence is interpreted to mean that the man was carrying the telescope. In the second case
the prepositional phrase is adverbial, modifying the verb “saw”, yielding the interpretation
that John used the telescope to see the man.

The syntactico-semantic connection is best illustrated by the famous example due to
Chomsky [45]. He proposes that the sentence “Colorless green ideas sleep furiously” is
syntactically well formed but semantically anomolous, that is, meaningless. It is easy to
verify the syntactic validity of the sentence. It can be parsed with respect to the grammar
of Section 4.3.3 yielding a single parse tree. However, application of the logical inference
technique of Section 8.3.3 would discover the logical contradiction between the predicates
colorless(x) and green(x) which cannot both be true for a given x. Furthermore, the
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function sleep(animal (x)) would be undefined since animal(ideas) would be false. Also,
furiously(action) would be undefined since action = sleep(x) is an invalid argument of
the function furiously(action). Thus the sentence is logically false and/or undefined, hence
meaningless.

However, there is a semantically valid interpretation of the sentence. Suppose we take
“colorless” to be the opposite of “colorful”, thus colorless(x) = uninteresting(x). Also
let green(x) = naive(x). Under these definitions “colorless” and “green” are not logi-
cally inconsistent so green(ideas) would be true. Moreover, an idea can be “dormant” so
sleep(ideas) = dormant(ideas) is well defined. Finally, furiously(sleep) could be inter-
preted to mean that the ideas were forced into dormancy and when they awake, they will
do so resentfully. This is perhaps a poetic interpretation of the sentence, but it is far from
absurd and it illustrates the difficulty of designing an exhaustive symbolic ontology.

Having considered lexical semantics, we must now examine the meaning of sentences.
It is here that syntax becomes important. First, note that all lexical items are assigned a
part-of-speech label. This is the role of the lexical assignment rules of Section 3.2.1. For
example, we have production rules such as 〈verb〉 −→ run or 〈noun〉 −→ boy .

The lexical assignment rules make a strong connection to semantics because nouns
are specific objects or ideas that play the role of either agents or entities acted upon.
Verbs are actions, functions of the agents. Adjectives are qualities or properties of nouns.
Adverbs are qualities or properties of verbs, adjectives or other adverbs. Prepositions
provide location, orientation or direction in space and time.

These syntactico-semantic constituents are combined according to a predicate argument
structure, the most basic of which is the subject–verb–object (SVO) rule

S −→ NP VP = (agent, action, object). (8.22)

The significance of (8.22) is that the basic syntactic rule S −→ NP VP maps onto the
semantic interpretation (SVO). Then the complete syntactico-semantic analysis proceeds
as follows. First the syntactic structure for the sentence, “John gave the book to Mary”
shown in Fig. 8.7 is obtained from a parser and grammar as explained in Sections 4.1.2
and 4.3.3. The parse tree is built up from the lexical entries to the root, S, of the tree.
Then the λ-calculus is used to verify that the sentence is well formed. In this notation,
the term λx simply means that the argument, x, of the function, F(x, y), has not been
bound to a particular value. When the value of x is determined, say A, then λxF (x, y)

is replaced by F(A, y). The result of this operation is shown in Fig. 8.8. A second pass
through the parse tree from the lexical entries to the root resolves all of the λ meaning
that the sentence is semantically valid. Had there been an unresolved λ then the sentence
would be semantically anomolous. For the example as given, all arguments are bound
and we get a logical expression of the meaning

In this simple case, the predicate is unambiguous so there is no need to use inference
procedures to check for consistency. In general that is not the case, as was indicated in
Chomsky’s example.

8.4 System Architectures

At the time that the first speech understanding systems were built [180, 272], speech
recognition was based on recognizing whole words as the fundamental acoustic patterns.
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One consequence of this was that only small vocabularies – a few hundred words – could
be reliably recognized, and consequently only highly stylized utterances pertaining to a
highly circumscribed topic of conversation could be understood. From the early experi-
ments, it soon became obvious that speech understanding systems needed larger vocabu-
laries to demonstrate truly interesting behavior. The techniques of whole word recognition
could not be extended to large vocabularies because they relied on a crude and implicit
method of capturing the lower levels of linguistic structure in word- or phrase-length
acoustic templates.

To attain the desired versatility, explicit representations of phonetics, phonology and
phonotactics were required. That is, recognition had to be based on the inventory of
fundamental sounds (phonetics) in speech as the primitive acoustic patterns to be recog-
nized. Then rules about how these sounds change in different phonetic contexts (phonol-
ogy) had to be applied and finally, rules specifying the order in which phonetic units
can appear in sequences (phonotactics) had to be imposed. These aspects of linguistic
structure were well understood and carefully documented by Chomsky [45], Chomsky
and Halle [47] and others [238, 239]. However, the number and subtlety of these rules
made their simple, direct incorporation in a computer program very cumbersome and
fragile.

The solution to the conflicting requirements of large vocabularies and robust principles for
representing known linguistic structure emerged from studies in the application of hidden
Markov models to speech recognition (Chapters 3 and 7). Speech understanding systems are
usually conceived as having two functionally separate parts: a “front end” which performs
the signal processing and pattern recognition and a “back end” which takes the transcription
produced by the “front end” and derives from it the intended meaning of the utterance. The
“front end” may be thought of as the speech recognition part and the “back end” as the
speech understanding part. The “back end” is based on the methods described in this chapter.
The only connection between the two parts is a transcription of the speech input into text.
As we shall see in Chapters 9 and 10, this is a weak model.

8.5 Human and Machine Performance

The foregoing discussion completes our consideration of the entire speech chain from
acoustics through semantics. The section on general semantics is, of necessity, incom-
plete. While the methodology is straightforward, the details are absent. This is because
they depend critically on an exhaustive implementation of all necessary predicates and
functions. No doubt, different individuals would make different choices of ontologies and
produce different representations of them. Even the best of such compilations would have,
at best, a tenuous hold on reality but there are no known procedures to automatically gen-
erate the semantic constituents from data, as was done for all other aspects of linguistic
structure. As a result, there are no general speech understanding systems that have a natu-
ral language ability even remotely comparable to human competence. Unfortunately, this
remains an open problem. Chapters 9 and 10 offer some thoughts about how to solve it.





9
Theories of Mind and Language

9.1 The Challenge of Automatic Natural
Language Understanding

The progression of mathematical analyses of the preceding pages may be used to construct
machines that have a useful but limited ability to communicate by voice. It is now
appropriate to ask what is required to advance the technology so that machines can
engage in unrestricted conversation. The conventional answer is incremental improvement
of existing methods. In these final two chapters, I offer an alternative. I suggest that
machines will be able to use language just as humans do when they have the same
cognitive abilities as humans possess, that is, they have a mind.

After centuries of study, the mind remains one of the most elusive objects of scientific
inquiry. Among the many mysteries are how the mind develops and functions, how it
engenders intelligent behavior, and how it is related to language. Such questions have
been formulated in different ways and have been addressed from different perspectives.
No general agreement amongst different schools of thought has yet emerged. Nonethe-
less, I wish to enter the fray. My answer is in two parts, a brief historiography and an
experimental investigation derived from it.

The essential feature of my brief intellectual history is that it comprises both a diachronic
and a synchronic analysis. That is, the subject is considered with respect to both its evo-
lution across historical epochs and its development within a particular period. In the case
of the sciences of mind, both perspectives are known to philosophers and historians but
are often ignored by scientists themselves. They, and even those readers who are already
steeped in the historical facts, may wish to endure yet another interpretation and the
significance I ascribe to it.

9.2 Metaphors for Mind

The diachronic view of mind is best expressed by the founder of cybernetics, Norbert
Wiener. In the introduction to his seminal 1948 treatise, Cybernetics, Wiener observed
that over the entire history of Western thought, metaphors for mind have always been
expressed in terms of the high technology of the day. He says:

Mathematical Models for Speech Technology. Stephen Levinson
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At every stage of technique since Daedalus or Hero of Alexandria, the ability of the artificer
to produce a working simulacrum of a living organism has always intrigued people. This
desire to produce and to study automata has always been expressed in terms of the living
technique of the age. [330]

Wiener devised a particular metaphor for the mind which he regarded as spanning the
entire historical trajectory. He explained:

Cybernetics is a word invented to define a new field of science. It combines under one
heading the study of what in a human context is sometimes loosely described as thinking
and in engineering is known as control and communication. In other words, cybernetics
attempts to find the common elements in the functioning of automatic machines and of the
human nervous system, and to develop a theory which will cover the entire field of control
and communication in machines and living organisms. The word cybernetics is taken from
the Greek kybernetes, meaning steersman. If the 17th and early 18th centuries were the age
of clocks, and the later 18th and 19th centuries the age of steam engines, the present time is
the age of communication and control. [330]

Thus it is clear that Wiener construed mental function as the cooperation of many kinds
of processes which he characterized as information flow and control and which he called
cybernetics. For example, he generalized the very technical notion of the negative feedback
principle to include the adaptation of complex systems and living organisms to changing
environments. Similarly, he expanded the definition of stability to apply to any process,
including cognition, used to maintain biological homeostasis. These ideas, he reasoned,
would lead to an understanding of the incredible reliability of human cognitive functions
such as perception, memory and motor control.

Although the synchronic history is best expressed in rigorous mathematical terms, it,
too, can be faithfully summarized. The discipline with the unfortunate name of artificial
intelligence – unfortunate because the word “artificial” cannot be cleared of its pejorative
connotation of “fake” – was constructed out of the remains of the attempt to establish
mathematics on an unassailable foundation. The failure of this effort led to a specific
model of mental function. In 1937, Turing [319] resolved the decidability problem posed
by Hilbert [273] by means of a model of computation which, despite its abstract nature,
made a powerful appeal to a physical realization. Exactly when he came to appreciate
the implications of his result is a subject of some debate [118, 128]. However, by 1950,
his universal computer emerged as a “constructive” metaphor for the mind, allowing him
to clearly set down what we today refer to as the strong theory of AI. This, in principle,
could be experimentally verified by taking an agnostic position on the question of what
the mind really is and requiring only that its behavior be indistinguishable from that of a
computational mechanism by a human observer. In his seminal paper of that year which
established the foundations for the field of AI, Turing asserted:

The original question, “Can machines think?” I believe to be too meaningless to deserve
discussion. Nevertheless I believe that at the end of the century the use of words and general
educated opinion will have altered so much that one will be able to speak of machines
thinking without expecting to be contradicted.” [320]
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The adventure starting from the crisis in the foundations of mathematics, around 1910, and
ending with the emergence of the strong theory of AI is a fascinating journey which helps
to explain why the Turing machine was so seductive an idea that it caused a revolution
in the philosophy of mind.

9.2.1 Wiener’s Cybernetics and the Diachronic History

I shall begin by elaborating upon Marshall’s commentary [213] on Wiener’s definition of
cybernetics cited above. In so doing, I take the liberty of summarizing the entire history
of thought about mind in the single chart of Figure 9.1.

Each row of Fig. 9.1 is a coarsely quantized time line on which the evolution of one
of four mechanical metaphors for mind is traced by selecting specific examples. Each
one represents a diachronic history that is simply an expansion of the notion expressed
by Wiener about the significant inventions that became metaphors for mind in different
centuries. Each individual entry in the chart represents an isolated history of the specific
invention. There is also a migration of ideas, a synchronic history, as one proceeds along
the columns. The right-hand column composes what I shall later describe in detail as the
cybernetic paradigm.

The metaphor of “control” begins with the invention, perhaps too ancient to attribute,
of the rudder. I know of no specific philosophical theory of mind that finds its roots in
the nautical steering mechanism; however, allusions to rudders permeate our language in
such expressions as “steering a course to avoid hazards”, presumably by thinking. This
suggests that the control of motion was recognized as a natural analogy to intellectual
activity, a spirit controlling a body.

Equally plausible is the connection between mental function and the Archimedean
science of hydraulics. The motivation might have been the need for sanitation in growing
metropolitan areas. To early philosophers such as Herophilus, the control of flow of fluids
through ducts provided a striking image of thoughts and emotions coursing through the
channels of the human mind.

Pre-industrial Industrial Information Mathematical
period period age abstraction

Rudder Governor Feedback Control
Thermostat amplifier theory

Hydraulic Telegraph Internet Communication
systems Information

theory

Wax tablets Photographic AUDREY Pattern
plates classification

theory

Clocks Analytical ENIAC Theory of
engine computation

Figure 9.1 Metaphors for mind
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In Section 2.5 we cited the Platonic theory of forms as a precursor to statistical pattern
recognition. One could view early written symbols as designations for forms by stylized
indentations made in wax or stone. Similarly, mental images were likened to impres-
sions on wax tablets created by impinging sensory stimuli and manipulated by thought
processes.

The ability to count and mechanical aids for that activity were also known in ancient
times. The notion of generalized mechanical calculation seems not to emerge until later.
European scholars fascinated by the wizardry of the French and German horologists
envisioned the brain as a vast clockwork. In particular, Leibniz proposed his theory of
monads as the fundamental calculators of the universe.

The industrial period witnessed a significant advance of the cybernetic paradigm toward
a more recognizable and cogent form. Control mechanisms such as the governor and the
thermostat, which tamed the temperamental steam engines, provided a vivid image of
thought as the control of motion and power. Also in this period, thoughts ceased to be
imagined as fluid flows controlled by pumps and valves but rather as electrical messages
transmitted by telegraph wires. Wax tablets were discarded as an embodiment of memory
in favor of the more refined photographic plate. And Babbage carried the identification
of thought as clockwork to its mechanical extreme in his analytical engine.

In our own modern information age, the mastery of electromagnetic and electronic
phenomena, enabled by the impressive power of classical mathematical analysis, resulted
in the recasting of the cybernetic paradigm in electronics rather than mechanics. Control
over steam engines was extended to intricate servomechanisms according to the principles
of the feedback amplifier.

Telegraphy evolved into telephone and then into the modern global communication
network in which information, whether it be text, image, audio, or video, is digitally
encoded, packetized, multiplexed, routed, and reconstructed at its designated destination.
The internet is so complex that it is often likened to the human central nervous system.

While photography is able to record visual images in exquisite detail, it is, by itself,
incapable of analyzing the content of an image. It thus accounts for memory but not
perception. Electrical circuits, however, offered the possibility of analyzing and identifying
patterns that were stored in a memory. One of the earliest examples of this class of
devices was AUDREY, which was capable of reliably recognizing spoken words [70].
The principles on which AUDREY was designed were easily generalized and extended
to other problems of automatic perception.

While Babbage apparently did not recognize the full generality of his analytical engine,
Turing did indeed understand the universality of his computer. Once again, modern elec-
tronic technologies provided an embodiment of an abstract theory. In the late 1940s and
early 1950s, ENIAC [107], EDVAC [107], and several other computers were constructed,
ushering in the era of the “electronic brain” and allowing, for the first time in history,
serious entertainment of the notion of building a thinking machine.

Today, these histories are encapsulated in four mathematical disciplines: control theory,
information theory, statistical decision theory, and automata theory. Collectively, these
areas of applied mathematics formalize and rationalize problems of control, communica-
tion, classification, and computation. I call the unification of these ideas the cybernetic
paradigm or, making an acronym of its components, C4. I assert that the cybernetic
paradigm is the ideal tool for the eventual construction of an artificial intelligence. It
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provides a quantitative, rational means for exploring the several intuitively appealing
metaphors for mind that have persisted in Western culture. At the risk of overstating the
argument, I remind the reader that C4 is a union of different but related theories. Its utility
derives from this collective property. One cannot hope to emulate human intelligence by
considering only a part of the collection.

It is worth considering the components of the cybernetic paradigm in slightly more
detail in their modern abstract form. This will enable me to describe how the constituent
theories are related to each other, how they may be used to explain processes occurring in
the human organism and why they are uniquely appropriate for the design of an intelligent
machine.

The kinds of machines to which the four theories are applicable are represented by
the following four canonical diagrams. Figure 9.2 shows the prototypical control system.
The plant is required to maintain the response, y(t), close to a dynamic command, x(t).
This is accomplished by computing a control signal, z, and comparing it with the input.
The plant may be something as simple as a furnace, and its controller a thermostat. At
the other extreme, the plant might be a national economy, and the controller the policies
imposed upon it by a government.

Figure 9.3 is the famous model due to Shannon [295] of a communication system.
A message represented by the signal, x(t), is transmitted through some medium and is
received as a signal, y(t), which is decoded and interpreted as the intended message. To
be useful, y(t) should be similar, in a well-defined sense, to x(t). The model applies to
a spacecraft sending telemetry to earth or two people having a conversation.

Figure 9.4 depicts the canonical pattern recognition machine. The signal, x(t), is mea-
sured and its relevant features extracted. These values are compared with prototypical
values stored in memory and a decision is made by selecting the reference pattern, y(t),
to which the input signal is most similar. Once again, the range of processes fitting into

n(t )

x(t ) x̂ (t )plant

control

Σ

Figure 9.2 The feedback control system

n(t )

x (t ) x̂ (t )channel

Figure 9.3 The classical model of a communication system (After Shannon)
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Figure 9.4 The classical pattern recognition system

x (t ) y (t )logic

memory

Figure 9.5 The canonical model of a computer (after Turing)

this schema is quite large. It encompasses simple problems such as automatic recognition
of barcodes and subtle ones such as identifying an artist from his paintings.

Finally, Fig. 9.5 shows an abstract digital computer. Data and/or programs, x(t), are
read into a finite-state logic element that operates on x(t) and produces an output, y(t).
Such devices may be highly specialized, such as a four-function arithmetic calculator, or
very general in purpose, as in the case of a mainframe computer.

These four systems are interchangeable in some cases. For example, a control system
can be used to perform pattern recognition if the output, y(t), is quantized and is always
the same for a well-defined class of command signals, x(t). A pattern recognizer may be
thought of as a communication channel whose fidelity is measured by the probability of
a correct classification. And, as I shall remind the reader in the next section, a general-
purpose computer can be programmed to simulate the other three systems.

It is also the case that implementations of any of these systems in electronic hardware
have, as subsystems, one or more of the other systems. Thus, the control circuit in a
servomechanism can be a microcomputer. Conversely, the auxiliary memory of a computer
system such as a “hard drive” may contain several servomechanisms for fetch and store
operations. The connection between the logic unit and the memory of a computer is
a communication channel, while sophisticated communication channels usually contain
computers to perform the coding functions. In pattern recognition systems, the features
may be measured by instruments that are stabilized by feedback control systems and
feature extraction may be accomplished by numerical computation. These are but a few
examples of the interrelations among the four pillars of the cybernetic paradigm.

Figures 9.2 through 9.4 all show the symbol, n, signifying an unwanted signal called
noise because any physical measurement has some uncertainty associated with it. All
of the systems must be designed to function in the presence of corrupting noise. The
computer depicted in Fig. 9.5 is not so afflicted, nor does it have any provision for
dealing with ambiguity. I shall return to this important distinction when I discuss the role
of the cybernetic paradigm in the mind.
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Not only are the systems of Figs. 9.2 through 9.5 present in all of our modern machin-
ery, they are also essential to the proper function of the human organism. Homeostasis
and locomotion are accomplished by means of electrochemical feedback control sys-
tems. Neural transduction of the electrically encoded messages necessary for locomotion
and distribution of biochemically encoded commands required for homeostasis through
the circulatory system are well described as communication systems. Sensory perception
is presumed to be achieved by exquisite feature extractors and decision mechanisms.
And, of course, control of the entire organism in thought and action is assumed to be a
computational process.

Wiener’s historical perspective insists that intelligence is not simply a process of abstract
thought but rather of the harmonious functioning of all aspects of our physical being and,
as such, it requires all aspects of the cybernetic paradigm.

9.2.2 The Crisis in the Foundations of Mathematics

The isolated history of AI is the history associated with the single box in the lower
right-hand corner of Fig. 9.1. It is the story of an insight which resulted from the glorious
failure of an attempt to establish mathematics on an unimpeachable theoretical foundation
once and for all.

Although cracks in the structure of mathematics had been visible since Hellenic times
(e.g. Euclid’s inability to eliminate the troublesome parallel postulate), the crisis did not
become acute until the late nineteenth century as a result of thinking about large numbers
encountered in the summation of infinite series. A brief outline of events is the following:

1. Cantor’s theory of transfinite numbers [42] leads to controversy over the continuum
hypothesis.

2. The ensuing debate causes a threefold schism of mathematics into the intuitionist,
formalist, and logical schools.

3. Intuitionists, such as Brouer [39], deny the existence of infinite numbers and accept
only arbitrarily large numbers.

4. Logicians, such as Russell and Whitehead [285], trace the problem to impredicative
(i.e. self-referential) sets.

5. The formalists, such as Hilbert [273], assert that all mathematical questions can be
resolved by proofs based on an appropriate set of axioms. There can be no “ignora-
bimus”.

6. Gödel [104] proves the incompleteness theorem and thereby invalidates the formalist
approach.

7. Turing [319] proves the undecidability theorem, thereby strengthening Gödel’s result.
8. The mechanism of Turing’s proof is a universal computer in the sense that it can

emulate any possible computation.
9. Church [48] derives a similar result using lambda calculus.

10. The Church–Turing hypothesis is recognized as the theoretical foundation of AI.

A comprehensive treatment of the many aspects of this outline is well beyond the scope
of this short essay. Such a discussion would require consideration of everything from
the common thread of mathematical reasoning using the technique of diagonalization
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to the philosophical conflicts between realism and spiritualism and between free will
and determinism. However, a bit more detail is required to support the position I am
advocating.

Let me begin my rendition of the story with Cantor and his ideas about different
degrees of infinity. Cantor was the son of a Lutheran minister who wanted his boy to
pursue a life of service to God. Cantor, however, was not prepared to abandon his work
in mathematics. He rationalized the conflict away by professing his hope that the beauty
of his mathematics would attest to the glory of God and thus both appease his father and
satisfy his intellectual aspirations.

Cantor’s transfinite numbers are the cardinalities of different infinite sets. He began by
comparing the set of “natural numbers” (i.e. positive integers) with the set of rational
numbers. He observed that there are infinitely many naturals but, since the rationals are
pairs of naturals, there should, in some sense, be more of them. But Cantor demonstrated
by means of a diagonalization argument that this intuitively appealing notion is, after
careful examination, flawed. The essence of his argument is illustrated in Fig. 9.6. By
tracing along the indicated path, it is clear that there is a one-to-one mapping from
naturals onto rationals. This means that the naturals and rationals have the same infinite
cardinality which Cantor called the first transfinite number, aleph null (ℵ0). Cantor then
asked whether or not such a map exists from naturals onto reals. To answer the question,
he constructed the matrix of Fig. 9.7 in which each row is a power series representation
of a rational number, and the columns of the matrix correspond to the integral powers.
Call the ij th entry in the matrix dij . Now consider the real number whose nth digit is
dnn + 1. In the example it would be 2.64117.. . . This number cannot be a row of the
matrix because, by construction, it differs from the nth row in at least the nth column.
Thus there cannot be a one-to-one mapping from naturals onto reals. This is interpreted
to mean that there are more reals than naturals. This argument is particularly important
because it invokes the summation of a power series such as a Fourier series which was
the source of the argument about infinite numbers.

The cardinality of the reals is represented by symbol c, designating the continuum. In
the sense of isomorphism illustrated in Figs. 9.6 and 9.7, c > ℵ0. Then there must be
some number, ω, that lies between the two. Cantor proposed that w is actually the largest
integer and, using it, he constructed an entire, linearly ordered number system such that

ℵ0 < ω < ω1 < ω2 < . . . < c, (9.1)

1 2 3 4 5 ......

1 1 1/2 1/3 1/4 1/5 .....
2 2 1 2/3 2/4 2/5 .....
3 3 3/2 1 3/4 3/5 .....
4 4 2 4/3 1 4/5 .....
5 5 5/2 5/3 5/3 1 .....
. . . . . .
. . . . . .
. . . . . .

Figure 9.6 Mapping the rationals onto the integers
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1 2 3 4 5 6 ...

1 1. 0 0 0 0 0 ...
2 0. 5 0 0 0 0 ...
3 0. 3 3 3 3 3 ...
4 0. 2 5 0 0 0 ...
5 0. 2 0 0 0 0 ...
6 0. 1 6 6 6 6 ...
. . . . . . .
. . . . . . .
. . . . . . .

Figure 9.7 The reals cannot be mapped onto the integers

which he called the transfinite number system. Cantor was convinced that the beauty
of his creation was a tribute to God’s own handiwork, but his colleagues did not even
accept its validity, let alone its sanctity. A bitter controversy ensued causing, or at least
contributing to, Cantor’s lapse into insanity.

The controversy centered around what came to be known as the “continuum hypothesis”
which denies the existence of the system of (9.1). Intuitionists were opposed on the
grounds that there is no infinite number let alone orders of infinite numbers. It was equally
clear to the logicians that the whole enterprise made no mathematical sense because
implicit in the diagonalization argument is the notion of impredicative sets which are based
on self-reference. That is, an infinite set, the integers, is a subset of itself, the rationals.
This kind of construction must lead to inconsistencies that they called antinomies. As
we shall soon see, they were partially correct. The formalists, lead by Hilbert, took a
more sympathetic approach. They said that the continuum hypothesis should admit of a
definitive resolution; it should be possible to prove that either transfinite numbers exist or
they do not exist. In fact, formalists generalized their position on the continuum hypothesis
asserting that it must be possible to prove every true statement within a well-defined,
suitably rich axiomatic (i.e. formal) system without recourse to some absolute physical
interpretation, intuitive appeal, or lack thereof. This was a bold position since classical
mathematics was inspired by physics. Moreover, the formalist’s doctrine declared that
there should be no constraint on mathematical thought as long as logic and an appropriate
set of axioms are not violated. Under these conditions, there can be no ignorabimus.
Nevertheless, no proof of the existence of Cantor’s strange mathematical objects was
forthcoming.

In 1931, Kurt Gödel destroyed Hilbert’s hopes of establishing absolute certainty within
any “interesting” axiomatic system by proving the incompleteness theorem.

Theorem 1 (Gödel). Any axiomatic system the structure of which is rich enough to
express arithmetic on the natural numbers is either complete or consistent but not both.

An axiomatic system is complete if all true statements within it can be proven true and all
false statements can be proven false. An axiomatic system is consistent if both a statement
and its negation cannot be simultaneously true.
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This remarkable theorem is proven by contradiction. In essence, the proof produces a
version of the liar’s paradox in which one is given a card the front of which asserts that
the statement on the back of the card is false. The back of the card, however, states that
the statement on the front of the card is true. Thus both statements are true if and only if
they are false. Generating a formal contradiction of this type within an ordinary arithmetic
system is arduous and a complete rendering of the proof cannot be given here. However,
we can give a sketch of the proof in a manner that will provide a good intuition for the
main ideas. The reader interested in a detailed rendering of the incompleteness theorem
should consult Nagel and Newman [229].

To gain a better appreciation of Gödel’s basic argument, consider the well-known
Richard paradox. All arithmetic statements can be written, however awkwardly, in ordi-
nary English. Then the statements can linearly ordered, in a manner analogous to the
construction of Fig. 9.7, by simply arranging the statements in lexicographic order. Thus,
every arithmetic statement has an integer associated with it. Next we define a special
property of arithmetic statements. We will say that a statement is Richardian if and only
if the statement is not true of its own ordinal number. For example, if the statement “N
is prime” were to occur in the N th position of the list of statements where N is not a
prime number, then the statement would be Richardian. Alternatively, if N were, in fact,
prime, then the statement would not have the Richardian property.

Notice that the Richardian property is, by definition, a statement about arithmetic and
it obviously can be expressed in English. Eventually the following statement will appear
on our lexicographically ordered list with ordinal number, Nr : The sentence of number
Nr is Richardian. By definition of Richardian, the statement number Nr is Richardian if
and only if it is not Richardian. In fact, this is not a paradox at all because the method
used for generating the statements, namely English, has not been defined in the arithmetic
system. However, the structure of the argument is useful if the Richardian property can be
replaced by some other property that can be strictly defined within the arithmetic system.

Cantor’s diagonalization technique, as it appears in the Richard paradox, can be used
to prove the incompleteness theorem. To do so, the error of the Richard paradox must be
avoided by making explicit that performing arithmetic operations and proving theorems
about arithmetic are actually different encodings of the same fundamental symbolic pro-
cess. Gödel devised an ingenious method for mapping statements about the integers onto
the integers without going outside arithmetic itself. The method has come to be known
as Gödel numbering or indexing.

Gödel’s coding scheme begins with the primary operations of arithmetic shown in
Fig. 9.8. This is essentially the logical system described in Section 8.3.3. The numbering
system shown in Fig. 9.8 can be used to form the Gödel number for any arithmetic
statement. Consider the example of

(∃x)(x = Sy), (9.2)

which asserts the existence of some number, x, that is the successor of some other
number, y. First we assign an integer to each symbol according to the table of Fig. 9.8.
Thus (9.2) is represented by the sequence of integers

8 4 11 9 8 11 5 7 13 9 (9.3)
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symbol integer example or meaning

˜ 1 negation∨
2 logical OR

=> 3 implication
∃ 4 existence
= 5 equality
0 6 zero
S 7 successor
( 8 left bracket
) 9 right bracket
, 10 delimiter

x 11 numerical variables
y 13 represented by primes
z 17 greater than 10
.
.
.

p 112 arithmetic propositions
q 132 represented by squares
r 172 of primes greater than
. 10 such as x = y or
. p = q
.

P 113 logical predicates
Q 133 represented by cubes
R 173 of primes greater than
. 10 such as prime or
. composite
.

Figure 9.8 Gödel numbering system

from which we construct the Gödel number, N , for (9.2) by using the integers in the
sequence (9.3) as powers of successive primes. That is,

N = (28)(34)(511)(79)(118)(1311)(175)(197)(2313)(299), (9.4)

which is a large but finite number.
The next step is the definition of a sequence of predicates ending with Dem(x, y) which

means that the sequence of arithmetic statements having Gödel number x is a proof of
the statement with Gödel number y. The lengthy construction of this predicate is omitted
here. The important point is that this predicate allows the formation, reminiscent of the
Richard paradox, “The theorem, G, of Gödel number N is not provable”. Once we have
this statement, we can, in principle, form a matrix in which each statement is evaluated
for every integer and shown to be either true or false. This enumeration procedure will,
in principle, eventually lead to the diagonal element of the matrix corresponding to G

being evaluated on its own Gödel number, N . This leads to the paradox that some G is
provable if and only if it is not provable. Thus it must be the case that there is some G
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that is not provable or else there is some G that is both provable and not provable. In
other words, the system is either incomplete or inconsistent.

A corollary to the incompleteness theorem is that there is no escape from its effect.
Suppose one were to find a true theorem that is not provable. Such a theorem could simply
be added to the list of axioms but that would simply postpone the agony because Gödel’s
result ensures that another unprovable theorem would be created. In fact, to bring this long
discussion back to Cantor, in 1963, Cohen [49] showed that the continuum hypothesis
is independent of the axioms of set theory and can be appended or not, either choice
leading to some other unprovable result. And so Hilbert’s formalist goal was shown to
be unattainable.

It is interesting to note that the failure to make mathematical reasoning absolute came
quickly on the heels of a similar failure in physics to vindicate the Enlightenment philos-
ophy by constructing an absolute interpretation of reality. Early twentieth-century physics
was stricken by confusion resulting from thinking about small masses moving at high
velocities. The confusion was resolved by the 1905 theory of special relativity and the
1927 theory of quantum mechanics with its intrinsic principle of uncertainty. Together
these theories denied the possibility of absolute frames of reference and exact positions
and momenta. This failure in physics has recently been seriously misinterpreted in a way
that has an impact on theories of mind. I will return to this problem in the next chapter.
First, however, I must finish this history with an account of its most important event.

9.2.3 Turing’s Universal Machine

Although the formalists were devastated by Gödel’s theorem, there was still hope. Hof-
stadter [130] explains the loophole, noting that in 1931 one could have imagined that
there were only a few anomalous unprovable theorems or, better still, that there existed
a formal procedure whereby one could decide whether or not any theorem was provable.
Were that the case, then a weaker formalism could still be pursued in which all provable
theorems could be proven.

Unfortunately for the formalists, Turing resoundingly quashed this hope in 1936 with
his undecidability theorem. Although Church [48] proved the same result beautifully and
elegantly using his recursive function theory, it was Turing’s method with its decidedly
mechanical flavor which led to the digital computer and AI.

Turing proposed the machine shown in Fig. 9.9. It comprises three main parts, a tape or
memory arranged in cells in which one symbol may be written, a head or sensor capable
of reading the symbols written on the tape, and a finite state controller. The operation of
the Turing machine is completely specified by a set of instructions of the form

I = {< qi, aj , qk, d, al >}. (9.5)

A single instruction is the term of (9.5) enclosed in angle brackets and is understood to
mean that when the machine is currently in state qi and the head is reading symbol aj ,
the state changes to qk, the head moves as specified by d , and the symbol al is written
on the tape. The states, qi , are members of a finite set, Q. The symbols are selected from
a finite alphabet, A, and the head movements are restricted allowing d to assume values
of only +1, 0, or −1 corresponding to movement one cell to the right, no movement, or
one cell to the left, respectively.
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Figure 9.9 Turing machine

Ordinary Turing machines are those for which Q, A, and I are chosen so that the
machine computes a specific function. We can then consider the entire ensemble of
such machines indexed by their Gödel numbers defined as follows. Let [−1] = 3; [0] =
5; [+1] = 7; [ai] = 9 + 4i; [qj ] = 11 + 4j . Then the j th instruction < q, a, r, d, b > has
the Gödel number

gj = (2[q])(3[a])(5[r])(7[d])(11[b]). (9.6)

Finally, a Turing machine with instructions {I1, I2, . . . , In} has Gödel number G defined
by

G =
n∏

j=1

p
gj

j , (9.7)

where pj is the j th prime and gj is the Gödel number of the j th instruction computed
from (9.6).

Then Turing makes the stunning observation that one need not construct a special-
purpose machine to evaluate a specific function because there is a universal machine
that will emulate the behavior of any other Turing machine. One need only know the
Gödel number of the desired machine. If one writes that Gödel number on the tape of
the universal machine, it will exactly compute the corresponding function and write the
answer on the tape just as the indexed machine would do. In modern parlance, we would
call the Gödel number of the desired machine a program for the universal machine now
known as a digital computer. We shall return to this crucial idea in a moment. Let us first
examine how this universal machine was used to prove the undecidability theorem.

In the matrix of Fig. 9.10, the ij th element, aij , is the j th symbol of the result
calculated by the machine with Gödel number Gi . Thus the nth row of the matrix,
anm, n = 1, 2, 3, . . . , is a computable number or a decidable theorem. Now form the
number {ann + 1} for n = 1, 2, 3, . . . , N . By definition it is not in the matrix constructed
thus far, hence we do not know whether or not it is computable. So we continue generat-
ing the matrix and we either find the number or not. If we do not find it, we still cannot
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1 2 3 4 5 ...

1 a11 a12 a13 a14 a15 ...
2 a21 a22 a23 a24 a25 ...
3 a31 a32 a33 a34 a35 ...
. . . . . . ...
. . . . . . ...
. . . . . . ...

Figure 9.10 Matrix of the digits of computable numbers

decide whether or not it is computable. If we do find it, it gives rise to a new number
constructed as previously done which is not in the matrix. Thus we will never be able
to test all the numbers and there must always be uncomputable ones. Hence we cannot
separate the theorems into provable and unprovable classes.

In order to carry out this enumeration and diagonalization, we must have a universal
machine to carry out all possible computations. The aij are computed by giving the
universal machine the Gödel numbers Gi from (9.7). There is no machine more powerful
than the universal machine in the sense that the addition of states, symbols, tapes, or
initial data on the tape will not enable the augmented machine to enlarge the class of
computable numbers it generates.

9.2.4 The Church–Turing Hypothesis

A technically correct if somewhat narrow interpretation of Turing’s work is that it killed
the formalist school of mathematics by depriving it of any sense of perfectibility. A
slightly broader interpretation is that it dispatched the Enlightenment tradition, already
left moribund by the successive shocks of relativity, uncertainty, and incompleteness.
Indeed, undecidability might be seen as the fourth and final blow that rid the world, once
and for all, of any illusion of perfectibility.

Nevertheless, an optimist will be quick to remind us that, in effect, Turing freed mathe-
matics from the onerous burden of discovering God’s one and only true mathematics and
allowed mathematicians to invent new objects and theories having an aesthetic of their
own as well as the possibility of future utility. The terror of being cut adrift from some
of our most cherished moorings of intellectual security is also mitigated by the success
of relativity and quantum mechanics.

I should like to propose, however, that the most far-reaching effect of undecidability
was that it made possible the development of a constructive theory of mind. I choose my
words carefully here because, though very tempting, it is, I shall soon argue, a serious
error to make an immediate identification of the universal Turing machine and the human
mind.

To understand the long and tortuous chain of reasoning stretching from the Turing
machine to mind, we must first recall that there were other theories, contemporane-
ous with Turing’s, from which the undecidability result might have emerged. Earlier
we alluded to Church’s lambda calculus, and there was also the Kleene [157] formal-
ism and the McCulloch–Pitts networks [215]. What distinguishes Turing’s work from
that of his contemporaries is that Turing’s theoretical vehicle was blatantly mechanical
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and fairly screamed for a physical embodiment, whereas the equivalent approaches of his
colleagues were studiously abstract and not at all physically compelling. In fact, Hodges
[128] suggests that it was Turing’s practical and mechanistic world view that fostered his
almost palpable approach to the seemingly obscure problems of meta-mathematics.

His biographer’s interpretation notwithstanding, Turing’s universal machine, however
physically appealing, might have remained, in another era, a purely mental construct. In
the early decades of the twentieth century, however, automatic reading and writing of
symbols on tapes were well known as were devices that could rapidly switch among two
or more stable states. Thus, one could easily imagine building a universal Turing machine
capable of performing in an acceptably short interval the vast number of operations
required for its utility.

Even so, there is yet another intuition required to bring forth a new metaphor for mind.
Turing surely noticed that he had devised a single “machine” that could be instructed to
emulate any member of an infinite class of “machines”. It has been argued by Hamming
[118] that Turing originally thought of his machine as merely a numerical calculator and
did not appreciate its more general ability to manipulate abstract symbols in accordance
with abstract rules. I regard this speculation as arrogant nonsense. Turing’s letters [128]
indicate that even as a schoolboy he had been captivated by mechanical analogies to
human physiological functions.

It is this rational, tractable versatility that lends credence to the notion of a mechanism
of thought. The leap from the Turing machine to mind is expressed in the Church–Turing
hypothesis, which contends that any process admitting of a formal specification called
an effective procedure can be effected by a universal Turing machine. The motivation
for this hypothesis lies in the range of activities in which we humans engage and which
are generally considered to be indicative of our intelligence. We can imagine that we
could, if necessary, write out a sequence of directions describing how any given activity
is performed. We also observe that human skills can be taught by formal instruction.
We deduce from these observations that intelligent behavior, the consequence of men-
tal function, can be formally specified and hence, in principle, realized by a suitably
programmed universal Turing machine. The only missing piece of the puzzle is the
Gödel number for the mind. This is the objective of the modern constructive theory
of mind.

9.3 The Artificial Intelligence Program

9.3.1 Functional Equivalence and the Strong Theory of AI

The history that culminates in the Church–Turing hypothesis is the basis for the modern
discipline of artificial intelligence. The hypothesis is restated in the so-called strong theory
of AI which I paraphrase as “The mind is a program running on the computer called the
brain”. The clear implication is that thought processes in our minds are functionally
equivalent to the manipulation of abstract symbols by a suitably constructed computer
program.



214 Mathematical Models for Speech Technology

9.3.2 The Broken Promise

When it first appeared, this new theory of mind was quite shocking. In fact, one could
easily argue that it was more socially dislocating than the undecidability result that gen-
erated it. After all, it is one thing to imagine the mind as some immense clockwork, all
the while secure in the knowledge that such a machine could never actually be built. It
is quite a different matter to propose that an obviously constructible machine be capable
of thought. Yet, it appeared quite likely that the new idea would succeed. Turing himself
expended a substantial effort in convincing the scientific community and the public alike
that an intelligent machine could now be built.

The strong theory of AI has some weaknesses. The term “effective procedure” as applied
to human behavior is not rigorously defined, making it impossible to determine that there
is an equivalent program for the universal machine. Then, even if “effective procedure”
were well defined, the Church–Turing hypothesis still requires a proof. And then, even if
a proof were available, it would still be required to constructively demonstrate that there
are “effective procedures” for at least a large number of thought processes. Finally and
most importantly, how shall we select those thoughts, skills, and actions that constitute
intelligent behavior? Is intelligence just thinking or is there more?

On the other hand, the strong theory has a powerful intuitive appeal. Even if there are
substantial gaps in the chain of reasoning, it is still the case that the digital computer
is capable of performing an infinite number of different symbol manipulation processes
and should, therefore, be sufficient for creating a mental model of the world and thereby
displaying intelligent behavior. It is easy to understand how the first generation of scien-
tists and engineers who developed the computer were easily persuaded that the intuitions
were essentially correct and that the creation of a true thinking machine was not only
inexorable but also close at hand.

Unfortunately, the theory was far more difficult to reduce to practice than anyone had
imagined. The incipient field of AI found itself perpetually making ever more extravagant
promises and irresponsible claims followed by rationalizations after regularly failing to
realize them. It is not unfair to say that AI has shed a great deal of light on computation
while doing little more than heat up debates on mind. One naturally wonders why the
promise remains unfulfilled to this day.

9.3.3 Schorske’s Causes of Cultural Decline

In his magnum opus on European intellectual history, Schorske [292] gives a highly
instructive explanation for the unkept promises of AI. He convincingly argues that cultural
endeavors stagnate and fail when they lose contact with their intellectual antecedents (i.e.
their diachronic and synchronic histories) and become fixated in the technical details of
contemporary thought.

In the fields of greatest importance to my concern – literature, politics, art history, phi-
losophy – scholarship in the 1950’s was turning away from history as its basis for self
understanding . . . . In one professional academic field after another, then, the diachronic line,
the cord of consciousness that linked the present pursuits of each to its past concerns, was
either cut or fraying. At the same time as they asserted their independence of the past, the
academic disciplines became increasingly independent of each other as well. . . . The his-
torian seeks rather to locate and interpret the artifact temporally in a field where two lines
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intersect. One line is . . . diachronic, by which he establishes the relation of a text or system
of thought to previous expressions in the same branch of cultural activity. . . . The other
is . . . synchronic; by it he assesses the relation of the content of the intellectual object to
what is appearing in . . . a culture at the same time. The diachronic thread is the warp, the
synchronic one is the woof in the fabric of cultural history.

Although Schorske did not include science in his analysis, his thesis seems highly
appropriate there, too, with AI as a striking instance. I submit that the chart of Fig. 9.1
is faithful to Schorske’s notion, expressed in the excerpt above, of the intellectual cloth
into which the history of mechanical metaphors for mind is woven. Applying Schorske’s
argument to AI, I conclude that the dismal outcome of the early experiments in AI can
be attributed to the loss of the relevant synchronic and diachronic histories.

The digital computer is the technological tour de force of our age. In keeping with
Wiener’s observation, our high technology quickly generated a new metaphor for mind. In
fact, soon after their commercial introduction, computers were publicly called “electronic
brains” and became the heroes and villains of popular cinema.

The new metaphor was, indeed, more justifiable than any of its predecessors. The
computer was versatile, reliable and fast, operating at electronic speeds capable of per-
forming overwhelmingly lengthy calculations in heretofore unimaginably brief times.
Surely, this was a thinking machine and we were utterly seduced by its power and
beauty.

9.3.4 The Ahistorical Blind Alley

The difficulty arose only when, due to a subtle misinterpretation of a developing theory
of computation, we fell into the trap of hubris from which we seemed unable to extricate
ourselves. The result was that proper consideration was not accorded to history. Because
we knew that the computer could carry out any computation, we concluded that we
could concentrate exclusively on symbolic computation. This was an unfortunate but not
unreasonable error. Since, according to the new metaphor, intelligence was understood to
be the result of manipulating symbols and since the computer is the ultimate symbolic
calculator, the simulation of intelligence must be reducible to entering the appropriate
symbols into the computer and executing the appropriate programs which operate on
those symbols. Everything that intelligence entails can be contained in the computer in
an abstract, symbolic representation.

9.3.5 Observation, Introspection and Divine Inspiration

To many practitioners of the new art, the argument was incontrovertible. As we shall see,
it is far from specious. The fallacy is discovered only when one asks where the symbols
and programs originate. The obvious answer was that the programmer would chose the
symbols and processes based on careful observation, introspection, argumentation, extreme
cleverness, and divine inspiration. It was perfectly clear that the mind is representational,
so why not simply discover the representations by any available means?

This methodology is inherently restricted to a particular moment in time. It has only
two technical concerns, programs and data, which, in an automata-theoretic sense, are
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Aspect Computational Model Cybernetic Model

representation symbols signals
coding discrete continuous
memory local distributed
stimuli independent integrated
focus syntax semantics
design synthetic adaptive
strategy static dynamic

Figure 9.11 Aspects of mind and language

equivalent. Thus, attention is focused on knowledge representation and organization. Pro-
grams are procedural knowledge, whereas data is declarative knowledge, and both are
entirely symbolic.

AI systems that are built on this premise fall under the rubric of rule-based designs.
As such, they have two distinct components. First, they utilize the rigorous techniques of
computing for both algorithms and data structures. For example, algorithms may be based
on fundamental principles of searching, sorting, parsing, and combinatorial optimization.
Data structures often employ binary trees, directed graphs, linked lists, queues, and formal
grammars. Sometimes, however, it is not clear how to use such techniques to simulate
some aspects of intelligence, thus giving rise to the second component, heuristics. In this
case, the programmer constructs rules on an ad hoc basis. Often expressed as logical
predicates, the rules take the form: if the predicate P is true then execute function F .
(Compare this with the explanation of semantics given in Chapter 7.) Both the predicates
and the actions can be very complicated. Such rules often operate on lists having no
discernible order. In instances when quantification is required, values on completely arbi-
trary scales are assigned. The only connection that rule-based systems have to physical
reality is their author. Thus, intelligence is treated as a disembodied, abstract process. As
such, it must be based on a priori choices of symbols representing whatever properties
the programmer can detect in the real objects they signify and a loose collection of rules
describing relations among the objects. The methods by means of which symbols are
created, numerical values assigned, and rules inferred are largely subjective. This often
results in inconsistent definitions, arithmetic absurdities and the competition – or even
contradiction – of many rules to explain the same phenomenon. The extreme example of
this approach is the CYC project of Lenat [177], and it should come as no surprise that
after decades of exhaustingly detailed work, this and other such systems have met with
little success.

9.3.6 Resurrecting the Program by Unifying the Synchronic and Diachronic

At this point it is instructive to compare the components of mind in the different per-
spectives espoused by Turing and Wiener. The simple chart of Fig. 9.11 suffices for the
purpose.

The most common interpretation of the ENIAC box (in Fig. 9.1) and the one favored
by Turing himself is an implementation in which the machine engages only in abstract
thought and communicates with the real world via only a keyboard. However, in the
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penultimate paragraph of the 1950 paper Turing [320] suddenly offers an alternative
approach from a more nearly Schorskian perspective that is much more aligned with the
cybernetic paradigm:

We may hope that machines will compete with men in all purely intellectual fields. But
which are the best ones to start with? Even this is a difficult decision and people think that
a very abstract activity like playing chess would be the best. It can also be maintained that
it is best to provide the machine with the best sense organs that money can buy and then
teach it to understand and speak English. This process could follow the normal teaching of
a child. Things would be pointed out and named, etc. Again, I do not know what the right
answer is but I think both approaches should be tried.

I argue that although the ahistorical approach could, in principle, succeed – we could
guess the Gödel number for mind – it is highly unlikely. This approach ignores one of
the most important purposes of intelligence, that of ensuring the survival of the relatively
slow, relatively weak, relatively small human animal in a complex and often hostile
environment. While it is true that some of the representations necessary for survival
could be transmitted genetically or culturally, many critical behaviors are acquired by
each individual through long periods of interaction with his environment. In order to
acquire sufficient knowledge about and skills to function well within his surroundings,
that is, to define symbols and build programs, sensorimotor function is required. This
is the domain of the cybernetic paradigm, and thus I advocate an approach based on a
synthesis of the synchronic and diachronic histories in the spirit of Turing’s alternative.





10
A Speculation on the Prospects
for a Science of Mind

10.1 The Parable of the Thermos Bottle: Measurements and Symbols

The story is told of a conversation that ensued when a small group of scientists repre-
senting different disciplines met over lunch. The discussion wandered politely, becoming
intense upon reaching the matter of important unanswered questions. A physicist spoke
passionately about the quest for a unified field theory. A biologist reminded his colleagues
about the debate over the causes and timing of evolutionary development. A psychologist
lamented the confusion over the nature of consciousness. And an anthropologist raised
the issue of the environmental and genetic determinants of culture. An AI researcher who
had been writhing uncontrollably in his desire to participate in the scientific braggado-
cio finally managed to insinuate himself into the conversation. “My colleagues and I”,
he ventured, “have been seeking to understand the thermos bottle.” When this evinced
only quizzical stares from his companions, he became impatient. “Well, look,” he urged,
“in the winter you put hot tea into a thermos and it stays hot.” Puzzlement turned to
incredulity. With frustration rising in his voice he persisted, “But in the summer you fill
it with iced tea and it stays cold.” Bemused silence descended. In total exasperation he
cried, “Well. . . how does it know!!?”

What some, perhaps, will find deliciously and maliciously funny about this anecdote
is its caricature of a far too prevalent proclivity to ascribe all phenomena to cognitive
process rather than physical law. Buried beneath the perhaps mean-spirited nature of the
parable, there lies a profound insight. Mental activity entails both physics and compu-
tation in complementary roles. To say, as I did in Chapter 9, that the mind is to be
understood by a synthesis of its synchronic and diachronic histories is to recognize that
while abstract, symbolic representation of the world is required, reality is presented to us
only in the form of continuous, sensorimotor measurement. That is, the symbols, which
are the basic elements of the contemporary perspective, derive from the measurements
that are the province of the historical viewpoint. Cognition depends on symbolic repre-
sentation, whereas measurement relies on physical sensors and actuators. Measurements
may be transformed into symbols. Unless this transformation is well understood, there
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can be no hope of formulating a sophisticated theory of mind without which, I argue, it is
impossible to develop a useful technology for human–machine communication by voice.

Most engineers working on human–machine communication would argue that exactly
the reverse of my argument is true. That is, if an advanced technology depends on under-
standing the mind, then there is little hope of achieving the goal. The mind is properly
relegated to the realm of philosophy, and thus it can never be understood in a way that
has any scientific basis or technological implications. I utterly reject this point of view.
Just as the mathematical models presented in the first eight chapters of this volume are
both a theory of language and the basis of speech technology, so can a rigorous theory
of mind support a more advanced language processing technology. However, the new
science we seek will not evolve from armchair research. Before I offer a concrete, exper-
imental approach to the problem, I am obliged to make a brief digression to consider
whether or not it is even sensible to search for a science of mind.

10.2 The Four Questions of Science

In order to speculate on how a science of mind might develop, it is helpful to consider
other questions addressed by the sciences. As I suggested in the parable of the thermos
bottle, science comprises four areas of inquiry that, taken together, completely cover
its legitimate domain. Science asks about cosmos, life, mind, and society. As listed, the
subjects of science are arranged in order of increasing complexity. That is, life results from
the intricate composition of many small, inorganic, physical objects. As living organisms
evolve to higher orders of complexity, minds emerge. Finally, societies may be considered
to be large organized collections of minds.

10.2.1 Reductionism and Emergence

Each level of the scientific hierarchy emerges out of its predecessor in the sense that the
science at one level must be distinct from but consistent with that of its predecessors.
One might view this constraint as a generalization of reductionism in which successful
theories at one level need not be directly expressed in terms of the essential constituents
of the preceding levels but cannot result in contradictions of the theories that govern
them. Thus, biological life develops from sufficiently complex combinations of inanimate
matter, the behavior of which is well described by physics. Yet, it may not be useful to
describe biological phenomena in terms of the behavior of the simplest physical objects
involved in them. For example, it is possible, in principle, to explain the behavior of large
biomolecules directly by solving the Schrödinger equation. Up to the present, this has only
been accomplished for simple atoms, but there can be no doubt that the necessary solutions
exist even if the techniques required to compute them are presently lacking [134, 131]. It
appears, however, that even if such solutions were available to us, it is far more useful
to consider the interactions of specific biomolecules such as proteins and amino acids to
understand living organisms, remaining secure in the knowledge that these larger objects
conform to the laws of physics the detailed expressions of which need not concern biolo-
gists. Not only do we obtain more parsimonious descriptions, but also one hopes that the
relevant dynamics of biological systems are expressed in terms of a set of state variables
that depend in a complicated way on physics but interact with each other in a simple
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and essential way for the characterization of biological laws. For example, this effect is
evident within physics itself in the case of gases. The kinetic-molecular theory assures us
that gases are composed of particles in continuous motion. In principle, the behavior of
gases could be determined from the laws of mechanics governing the interactions of point
masses. Due to the large numbers of particles involved, a trivial measure of complexity, it
is, at best, impractical to study gases from this perspective. However, the state variables of
temperature, pressure, and volume provide elegant descriptors of an ideal gas and we can
understand, in principle, how they are related to the underlying kinetic-molecular theory
without resort to knowledge of the dynamics of individual particles. Unfortunately, no
such theories yet exist in biology.

The phenomenon of emergence as described above avoids, I believe, some of the diffi-
culties that arise from theories of consilience [57], of which Wilson’s sociobiology [331]
is an instance. According to Wilson and his followers, human social behavior is genet-
ically determined. While I am sympathetic to the idea that there are genetic influences
in both personal and social interactions, the proposal of a direct genetic encoding of all
behavior violates the spirit of emergence. That is, it ignores the effects of the specific,
and as yet unknown, psychological and sociological dynamics. However, the principles
of emergence do offer the possibility of a rigorous understanding of social behavior with
which Wilson might well be satisfied.

Emergence also seems to provide a better way to study mind than does the blatantly
reductionist theory proposed by Penrose [245], who views mind and consciousness as a
result of quantum mechanics. Like consilience, the “quantum mind” skips two stages of
emergence. Unlike consilience, there is absolutely no reason to suppose that mind is a
quantum effect. I propose to elaborate on emergence as it relates to a science of mind in
Section 10.3.1.

10.2.2 From Early Intuition to Quantitative Reasoning

I raised the issue of sociobiology only for the purpose of contrasting its premises with
those of emergence. I do not intend to address sociological questions further. Rather, I
would like to address the somewhat less ambitious question of what a sufficiently advanced
psychology (i.e. science of mind) would have to be in order to support a technology of
natural human–machine communication. To do so, I need to make a digression explaining
how I construe science.

I subscribe to the doctrine of scientific realism which asserts, first and foremost, that
science seeks to discover objective reality. This quest has a long tradition beginning
with what Holton [132] calls the “Ionian Enchantment”, Thales’ idea that the world is
comprehensible by means of a small number of natural laws. The subjects of these laws
are assumed to be absolutely real. Thus, electrons, genes, and mental representations,
listed in ascending order on my scale of scientific complexity, are assumed to exist even
though they are not directly observable.

A contemporary rendering of this theory is given by Margenau [210] whose “construc-
tual plane” shows how observation and reasoning establish that all matter and process
is real and there is no place for the supernatural. This does not mean that everything
is knowable or that all processes are possible. Prohibitions against perpetual motion or
arbitrarily high velocities are not problematic, for example, because they violate estab-
lished principles. The extent to which the universe is not knowable is knowable. The
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incompleteness of a theory is easily recognizable when there is widespread controversy
about it.

The means by which science seeks explanations of objective reality are well known to
every schoolchild. The so-called scientific method proceeds from observation to testable
hypothesis leading to experimental evaluation. Although not considered part of the basic
method, its motivation springs from curiosity and astute perception leading to early intu-
ition, a critical form of reasoning in which relationships are postulated even though no
causal argument can be formulated. The origins of early intuitions will be considered in
Section 10.4.2.

What is often omitted from considerations of the scientific method is the requirement
of quantitative reasoning expressed in a mathematical formalism. Many intellectual pur-
suits employ reasoning akin to the scientific method but they make no pretense of using
mathematics. The relationship between science and mathematics is rarely explored by his-
torians of science who leave the task to practitioners of science such as Hadamard [114],
Poincaré [249], and Wigner who observed:

The miracle of the appropriateness of the language of mathematics for the formulation of the
laws of physics is a wonderful gift which we neither understand nor deserve. [328]

Dirac elucidated the role of mathematics in science, noting that:

The physicist, in his study of natural phenomena, has two methods of making progress: (1)
the method of experiment and observation, and (2) the method of mathematical reasoning.
The former is just the collection of selected data; the latter enables one to infer results about
experiments that have not been performed. There is no logical reason why the second method
should be possible at all, but one has found in practice that it does work and meets with
remarkable success. This must be ascribed to some mathematical quality in Nature, a quality
which the casual observer of Nature would not suspect, but which nevertheless plays an
important role in Nature’s scheme.

One might describe the mathematical quality in Nature by saying that the universe is so
constituted that mathematics is a useful tool in its description. However, recent advances in
physical science show that this statement of the case is too trivial . . .

The dominating idea in this application of mathematics to physics is that the equations
representing the laws of motion should be of a simple form. The whole success of the scheme
is due to the fact that equations of simple form do seem to work. The physicist is thus provided
with a principle of simplicity which he can use as an instrument of research. [66]

Einstein made an even stronger claim for the role of mathematics in scientific discovery:

[A]ny attempt to derive the fundamental laws of mechanics from elementary experience is
destined to fail. [77]

After asserting that the axiomatic foundations of physics cannot be inferred from expe-
rience but that they can be correctly deduced by mathematical reasoning, he admits the
need for experiment to guide the mathematics:

[N]ature actualizes the simplest mathematically conceivable ideas. It is my conviction that
through purely mathematical construction we can discover these concepts and the necessary
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connections between them that furnish the key to understanding the phenomena of nature.
Experience can probably suggest the mathematical concepts, but they most certainly cannot
be deduced from it. Experience, of course, remains the sole criterion of mathematical con-
cepts’ usefulness for physics. Nevertheless, the real creative principle lies in mathematics.
Thus in a certain sense I regard it true that pure thought can grasp reality, as the ancients
dreamed. [77]

Although science may have humble origins in curiosity regarding common experiences
and intuitive explanations of them, much more is required. Science reaches its maturity
only when it expresses laws of nature in mathematics, tests them against experiments
based on quantitative measurements and finds them consistent with all other known laws.
For example, one is tempted to say that the citation at the beginning of Section 2.5 shows
that Plato understood pattern recognition. Upon further reflection, however, it becomes
clear that this conclusion can only be reached by reading the ancient text with twenty-first
century eyes. Looking back, we interpret the words with respect to our modern theories.
But Plato had no way to quantify his ideas. He had no rigorous theory of probability.
He did not even have the analytic geometry required to define a feature space. Plato
had an early intuition about patterns but no mathematical expression of it and, hence, no
science.

At this time, only physics is mature. As Hopfield notes, biology is maturing:

[B]iology is becoming much more quantitative and integrated with other sciences. Quantifica-
tion and a physical viewpoint are important in recent biology research – understanding how
proteins fold, . . . how contractile proteins generate forces, how patterns can be spontaneously
generated by broken symmetry, how DNA sequences coding for different proteins can be
arranged into evolutionary trees, how networks of chemical reactions result in “detection”,
“amplification”, “decisions”. This list could be a lot longer. [134]

Another important branch of mathematics relevant to biology is developing, the theory
of dynamical systems operating far from equilibrium. Life may be seen as a collection of
mechanisms preventing the descent into equilibrium or death by homogeneity.

Psychology and sociology are in their infancy but there is no reason to believe that
they will not someday mature in the same sense that physics has done and biology is now
doing. In fact, we have already had a glimpse of the mathematics needed to express the
natural laws of biology, psychology, and sociology. The rudiments of a general theory
of emergence are beginning to appear. One theme will certainly be that of properties
of stochastic processes. Note that we have appealed to such mathematics in Chapters
3–6. General theories of complex systems will also borrow from thermodynamics, statis-
tical mechanics, and information theory such notions as state variables, phase transitions,
multivariate nonlinear dynamics – especially those operating far from equilibrium, and
complexity measures. I shall return to this point in Section 10.5.

10.2.3 Objections to Mathematical Realism

My characterization of science will, no doubt, raise many objections. I cannot completely
subdue them but I propose to comment as best I can on the more common ones.
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The Objection from the Diversity of the Sciences

This argument rests on the proposition that biology, psychology, and sociology are intrin-
sically different from physics and need not follow the same path to success. The citation
from Hopfield casts some doubt on the proposition as it applies to biology. The cases for
psychology and sociology are not so easily made. In fact, none other than Wiener has
expressed considerable pessimism in this regard.

I mention this matter because of the considerable, and I think false, hopes which some of my
friends have built for the social efficacy of whatever new ways of thinking this book may
contain. They are certain that our control over our material environment has far outgrown our
control over our social environment and our understanding thereof. Therefore, they consider
that the main task of the future is to extend to the fields of anthropology, of sociology, of
economics, the methods of the natural sciences, in the hope of achieving a like measure of
success in the social fields. From believing this is necessary, they come to believe it possible.
In this, I maintain, they show an excessive optimism, and a misunderstanding of the nature
of all scientific achievement.

All the great successes in precise science have been made in fields where there is a certain
high degree of isolation of the phenomena from the observer. [330]

Wiener invokes the Maxwell demon problem, in which the observer has such a profound
effect on the observed that no regularities can be reliably obtained, for the social sciences.
While it is impossible to dismiss this argument entirely, it is essentially an argument from
pessimism, the antidote to which is given by von Neumann and Morgenstern:

It is not that there exists any fundamental reason why mathematics should not be used in
economics. The arguments often heard that because of the human element, of the psycho-
logical factors etc., or because there is – allegedly – no measurement of important factors,
mathematics will find no application, can all be dismissed as utterly mistaken. Almost all
of the objections have been made, or might have been made, many centuries ago in fields
where mathematics is now the chief instrument of analysis. [324]

It is worthwhile to consider a specific instance of the general argument. The geocentric
theory of the solar system was gradually replaced with a heliocentric one by Copernicus,
Galileo, and Kepler. It was not, however, until Newton and Leibniz introduced the calculus
that the new theory could be completely vindicated. The problem with the geocentric
theory was only partially due to its reliance on naive observation. The deeper difficulty was
that, as a purely geometric theory, it concerned itself simply with the apparent locations
of the sun and planets. There was no explanation of what caused the planets to move.
The motions might just as well been the result of the planets being bolted to some giant
clockwork. Until Newton, there was simply no mathematics to analyze quantities that
change in time with respect to other quantities and thus no way to explain forces that
might hold the planets in their orbits and determine their motions. The Ptolemaic solar
system was adequate for timing religious rituals. With its epicycles upon epicycles it was
quite accurate in its limited predictive abilities. But it could not support even the most
elementary physics. That would have to wait until the completely new calculus vastly
extended the existing static geometry. Centuries later, with the invention of several new
branches of mathematics, we have come to understand that accurate measurements of time
and position are impossible without a mature physics. Today, accurate navigation relies
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on relativistic corrections in the computation of satellite orbits. It takes a certain lack
of imagination to believe that there will be no new mathematics that opens up biology,
psychology, and sociology just as the calculus revealed physics.

The Objection from Cartesian Duality

The mind–body dichotomy is usually attributed to Descartes, who believed that humans
alone are endowed with both a physical body and an incorporeal soul infused in it by God.
The Greek word psyche is, in modern translations, alternatively rendered as either mind
or soul, indicating some identification of our mental function with the supernatural. In
essence, the objection is theological, placing the sacred soul, the seat of the mind, beyond
the reach of science. This is, of course, in polar opposition to my definition of scientific
realism and the conflict cannot be resolved. Even if one were to construct a machine,
indistinguishable in its mental abilities from a human, a believer in dualism would reject
it as a nothing but a superficial simulation of mind and perhaps a blasphemy.

The Objection from either Free will or Determinism

There are two other contradictory theological arguments that decry any exact science as
a challenge to the essence of God. The conflict was framed as early as 1820 by Laplace,
who wrote:

An intelligent being who knew for a given instant all the forces by which nature is ani-
mated and possessed complete information on the state of matter of which nature con-
sists – providing his mind were powerful enough to analyze these data – could express in
the same equations the motion of the largest bodies of the universe and the motion of the
smallest atoms. Nothing would be uncertain for him and he would see the future as well as
the past at one glance. [172]

If such an idea is odious to the theologians when expressed only as a claim about physics,
imagine how blasphemous it would be if extended to include mental activity. A science
of mind must be viewed as an assault on the sanctity of the soul and thus as a sacrilegious
violation of ethics.

But there is a contradictory aspect to determinism. Along with a soul, God has given
man free will. If all of his actions are predetermined then volition is an illusion. We can
perhaps escape from the paradox by asserting the existence, as a fundamental property
of reality, of thermodynamic and quantum randomness. Thus the vision of Laplace must
be amended to include the notion of stochastic process as a model for limitations on
the precision of measurements and other phenomena that admit of only a probabilistic
explanation.

There is some debate about the legitimacy of probabilistic theories in scientific realism.
Perhaps the best-known rejection of probability as a valid scientific explanation comes
from Einstein:

Quantum mechanics is very impressive. But an inner voice tells me that it is not yet the real
thing. The theory produces a good deal but hardly brings us closer to the theory of the Old
One. I am at all events convinced that He does not play dice. [75]
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Einstein was never able to satisfactorily resolve the issue. Quantum mechanics survives
as a highly successful theory, and the mathematical theory of random processes permeates
the cybernetic paradigm. Indeed, the several theories of linguistic structure discussed in
Chapters 3–6 of this volume are stochastic models. No matter which side of the debate
about free will and determinism one chooses, he runs afoul of religious doctrine. Perhaps
Einstein has provided the solution with his enlightened faith:

I believe in Spinoza’s God who reveals himself in the orderly harmony that exists, and not
in a God who concerns himself with the fates and actions of human beings. [76]

Dennett [64] has argued that thermodynamic and quantum randomness do not account
for free will because at the level of psychological and social behavior these random
fluctuations have zero mean and, hence, no effect. This does not diminish the value of
stochastic models of behavior. It simply says that free will is not a consequence of a
stochastic process.

We certainly feel as if we have free will. A better explanation of the phenomenon is
that it is a consequence of our conscious minds (see Section 10.4). That is, we are able
to decide amongst many possible courses of action and we hold ourselves responsible to
make these choices.

Thus the world is, if not perfectly deterministic, at least predictable up to some statis-
tically characterizable limits. We consciously use this fact to evaluate the consequences
of our actions and make decisions accordingly. The conclusion is that neither free will
nor determinism prohibit a science of mind.

The Postmodern Objection

Postmodernism traces it origins to French and German philosophy and is largely a reaction
to the discontents of modern society. As a literary device, it is used to portray the confu-
sion and wreckage of our era. In this role it can be quite effective. As a philosophy that
denies the possibility of objective truth, insisting instead that truth flows from persuasion
and coercive power, it is a strident opponent of scientific realism. Perhaps the postmodern
school is an expression of a profound disappointment at our seeming inability to establish
a sane society. Perhaps it resulted from a misinterpretation of either the intrinsic limi-
tations on our knowledge of physics and mathematics as described in Section 9.2.4, or
the empiricists’ interpretation of science as merely a consistent explanation of reality. In
any case, postmodernism mocks those claims it supposes science to be making with a
counterclaim that all science is simply a social construction. Thus it should be no surprise
that postmodernism reserves special contempt for definitive sciences of mind and society.
The postmodern perspective is so alien to the scientist that it is difficult to imagine that
anyone would actually advance such ideas. But these notions have, in fact, been seri-
ously proposed. Latour is a leading advocate of the social construction of science. He
begins with disingenuous praise for the goals of science, only to end by devaluing them
as outmoded:

We would like science to be free of war and politics. At least we would like to make
decisions other than through compromise, drift and uncertainty. We would like to feel that
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somewhere, in addition to the chaotic confusion of power relations, there are rational rela-
tions . . . surrounded by violence and disputation we would like to see clearings – whether
isolated or connected – from which would emerge incontrovertible, effective actions . . . The
Enlightenment is about extending these clearings until they cover the world . . . Few people
still believe in the advent of the Enlightenment . . . [173]

Next he dismisses the validity of scientific reasoning.

We neither think nor reason. Rather we work on fragile materials – texts, inscriptions, traces,
or paints – with other people. These materials are associated or dissociated by courage or
effort; they have no meaning, value or coherence outside the narrow [social/political] network
that holds them together for a time. [173]

He then goes on to deny the possibility of any universal scientific principle:

Universality exists only “in potentia”. In other words it does not exist unless we are pre-
pared to pay a high price of building and maintaining costly and dangerous [social/political]
liaisons. [173]

Aronowitz extends Latour’s notion to mathematics noting that “[N]either logic nor math-
ematics escapes the contamination of the social” [7]. In particular, Campbell asserts
that the contaminating social influences are capitalism, patriarchy and militarism, saying
that “[M]athematics is portrayed as a woman whose nature desires to be the conquered
Other” [218].

The postmodern attack on science is disingenuous. Its intellectual veneer is but a sub-
terfuge for its virulent, if bankrupt, political agenda that abhors anything it regards as
authoritarian and exalts all forms of cultural and intellectual relativism. It rejoices in the
replacement of the canon of the Great Books with an anti-intellectual eclecticism. What
could possibly be more authoritarian than a science that claims objective truth and requires
of its practitioners the mastery of an imposing canon? Hence its unbridled derision of
science.

Politics may be adversarial, but science is definitely not. Unlike a politician, nature does
not change her design of the universe when science seems close to understanding aspects
of it. Nor are the principles of scientific investigation subject to change even when nature
consistently frustrates the efforts of science to discover her secrets. As Einstein once [74]
remarked: “Subtle is the Lord but malicious He is not.” Of course, his reference to the Lord
is intended to mean the God of Spinoza, as cited above. From the scientific perspective,
postmodernism has been completely discredited by the recent Sokal hoax in which the
journal Social Text published, as a serious scholarly paper, a parody entitled “Transgressing
the Boundaries: Towards a Transformative Hermeneutics of Quantum Gravity” [302]!

Beginning the New Science

I am certain that the answers to a few of the usual objections to my new positivism will
not satisfy my critics. I fear that not even the realization of my proposal will accomplish
that. However, I am not at all discouraged by the daunting task of producing the required
new science. I am convinced that the ideas expressed above will eventually generate
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natural laws that we cannot yet even imagine. I must be content to be a participant
in the early phases of development of psychology and sociology. I take comfort in the
fact that physics needed more than three centuries to mature and it is not yet a finished
product. While I cannot hope to invent the new mathematics that I posit exists, I can
offer a working hypothesis, an experimental method, and a means of evaluating a novel
constructive theory of mind.

10.3 A Constructive Theory of Mind

Proceeding on the assumption that a mature, quantitative science of mind can be discov-
ered but painfully aware that neither the mathematics nor epistemology to support it yet
exists, I can only offer a proposal to explore the terrain by means of a constructive theory.
I use the term “constructive” not to mean helpful but rather to imply that in the process
of building a machine with the desired behavior, an analytical theory of that behavior will
become evident. I propose to build a stochastic model of mind with sufficiently many
degrees of freedom that its detailed structure can be estimated from measurements and
optimized with respect to a fidelity criterion. Then, a post-optimization interpretation of the
model will, I predict, yield the desired analytical theory. The Poritz experiment recounted
in Section 3.1.7 is, by this definition, a successful constructive theory of broad-category
acoustic phonetics and phonotactics. If the original model is severely underdetermined,
there is the risk that the model will capture artifacts present in the measurements. For-
tunately, the real world is characterized by regularities too prominent and too consistent
to be accidental. Wherever possible, the model should be constrained to reflect these
regularities just as Poritz did (refer to Section 3.1.7).

10.3.1 Reinterpreting the Strong Theory of AI

As we noted in Section 9.3.2, the preferred demonstration of the strong theory of AI is a
direct synthesis of a discrete symbolic model perfectly isomorphic to reality and unaffected
by any uncertainty in the measurement of the physical correlates of the putative symbols.
This method avers that the sensorimotor periphery may be safely ignored but it requires
the full computational power of the universal Turing machine to be effective. In contrast,
Turing’s alternative as described in Section 9.3.6 uses the power of the universal machine
only to simulate the physical processes from which the symbols, defined by probability
distributions, derive. Thus cognitive function emerges from the solution to the presently
unknown equations of motion underlying the mechanisms of mind. This will be the
legitimate solution to the problem of the thermos bottle.

10.3.2 Generalizing the Turing Test

As noted in Section 9.2, Turing proposed that an artificial intelligence could, in princi-
ple, be evaluated experimentally. Taking an agnostic position on what mind really is,
he suggested that the requirement should be only that the behavior of the machine be
indistinguishable from that of a human by a human judge. This method of discrimina-
tion has come to be known as the “Turing test”. Turing envisioned the “imitation game”
would be conducted in the domain of abstract mental activity and communication would
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be only via a teletypewriter. If, however, we are to follow Turing’s alternative discussed
in Section 9.3.6, then the test must be appropriately modified.

Turing’s alternative advocates connecting the machine to the real world via sense
organs, and in Section 10.4 I shall propose augmenting the sensory function with a
motor function. This implies a mechanical mind that is no longer restricted to engage
in abstract thought alone. Rather, the machine is embodied, interactive, and adaptive.
Embodiment allows for the symbols to be grounded in perception, locomotion, propri-
oception, and manipulation. Interaction suggests that the machine will continually both
respond to and cause changes in a real physical environment. Adaptation refers to the
ability of the machine to alter its perceptions and actions in response to observed changes
in its environment in order to make its behavior as successful as possible.

Under Turing’s alternative, the criterion for winning the imitation game must be mod-
ified accordingly. I propose that the criterion be one of interesting behavior in which
cognitive process is evident. In particular, the acquisition and subsequent use of spoken
language should be considered essential. By itself, language acquisition is not sufficient
to conclude that there is a mind supporting it. However, if the experiment is conducted
properly, the machine can be carefully instrumented, thereby allowing for the observation
of internal changes corresponding to the development of significant and identifiable men-
tal states. Thus, the generalized Turing test should evaluate both observable and internal
behavior. I will return to this idea in Section 10.5.

10.4 The Problem of Consciousness

No serious treatment of a science of mind can long avoid the problem of consciousness,
so before proceeding on to my proposed experiment based on Turing’s alternative, I am
obliged to comment on it. The literature on consciousness has a long history and is far
too vast to even survey here. There are six recent books on the subject that give, at least,
a modern perspective. Readers who are intrigued by this subject may wish to indulge
in works by Damasio [56], Edelman and Tononi [73], McGinn [216], Tomasello [315],
Fodor [92], and Penrose [245]. Collectively they comprise some 1300 pages and present
quite different although related perspectives, including neurophysiology, connectionism,
robotics, philosophy, psychology, and physics. For reasons that will become clear, I
propose to summarize the problems in a few brief paragraphs.

Scholars differ on the definition of consciousness. There are several explanations based
on information-theoretic models of perception, pattern recognition, sensory fusion, devel-
opment and identification of mental states, attention, volition, and the awake–asleep
distinction. Most philosophers agree that these concepts are closely related to conscious-
ness but are not its essence. The crux of the issue is the experience, that is, the visceral
feeling of our contacts with physical reality. There is, philosophers insist, a difference
between function and experience. Thus, when a stimulus impinges on our sensory organs
and we feel the sensation of color, sound, smell, or touch, something more than sim-
ple information processing is occurring. Moreover, it will be impossible to comprehend
mind, let alone simulate it, without accounting for experience as a consequence of func-
tion and separate from it. In fact one of the best-known arguments against the symbolic
computation theory of AI is due to Searle [293], who opines that a symbol processor, no
matter how sophisticated it might appear, can never be conscious in the experiential sense.
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Such a machine would be, to use the vernacular, a zombie, going through the motions of
everyday activity without conscious awareness.

If one accepts this definition of consciousness and its implications for a theory of
mind, one has few alternatives. One can become embroiled in questions of duality. One
can either deny the problem or label it beyond our capacity to solve. Or one can postulate
the existence of some additional natural process to explain it. The difficulty with these
alternatives is that they all spring directly from the armchair. As such, they are the result
of the same fallacy that plagued the symbolic computation approach to AI. The definition
of consciousness is based on an informal description of a subjective process analogous
to the introspective determination of the symbolic representations of reality. It is also an
instance of the thermos bottle problem in which it is asked not “How does it know?”
but rather “How does it experience?” while, of course, ignoring the underlying objective
aspects of mind. Because of the intrinsic subjectivity of the conventional definition, there
is no way to test its validity and, hence, no possible resolution of the issue.

There is a simple three-part answer to all of these questions. First, consciousness is
nothing other than the mind’s self-awareness. Regardless of the computations the mind
is performing, it has a symbolic representation for itself that can enter into any or all
of them. Second, experience is epiphenomenal. As such, it is an observable but irrel-
evant artifact of the particular machine in which the mind is implemented. According
to my doctrine of functional equivalence, different machines will produce different, but
still intelligent, behavior and will have different physical manifestations of experience.
In the human and probably higher animals, the feeling of experience is a by-product of
the electrochemical signals that constitute thought. Third, experience, like the mind that
generates it, is emergent. When signals that mediate the complexity of an appropriately
organized physical mechanism are great enough, the conscious mind emerges from them.
Jaynes [145] argues that the emergence of mind was a behavior learned socially mil-
lennia ago that has been culturally transmitted since then. Jaynes argues further that the
emergence was marked by the recognition that the internally audible thought process was
actually one’s own and did not originate outside one’s body. This idea was the focus
of acrimonious controversy. Because Jaynes made the tactical error of placing a date
on the initial emergence of consciousness based on a literary analysis, he was criticized
on historical grounds. Unfortunately, the issues of timing completely overshadowed the
intriguing proposal that consciousness was acquired. I find this a fascinating conjecture
because of its compatibility with the embodied, interactive, adaptive, emergent mind of
the cybernetic paradigm. The problem then, as I argued in Section 9.3.6, is to find those
quantities and the relationships among them that form the basis for mind.

10.5 The Role of Sensorimotor Function, Associative Memory
and Reinforcement Learning in Automatic Acquisition
of Spoken Language by an Autonomous Robot

It is tempting to say that I was inspired to undertake this research simply as a result of
reading Turing’s 1950 paper. Although I actually read it in an undergraduate psychology
course, the original motivation is much more mundane. The methodology I am advocating
here is based on a few early intuitions which arose from the difficulties I encountered
in my research on speech recognition based on the material in Chapters 2–8. What I
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and many of my colleagues observed was that the signals we were analyzing seemed to
have huge variabilities. Yet humans perceive these very signals as invariant. Humans rarely
misunderstand a sentence or misclassify a visual scene, even a moving one. The obvious
conclusion is that humans and machines are using quite different pattern recognition tech-
niques based on quite different learning mechanisms. Machines rely on statistical models
optimized with respect to preclassified data. The models are fixed upon completion of
training, whereas humans optimize performance and are continuously adapting their strate-
gies. Machines can achieve useful levels of performance only on artificially constrained
tasks, whereas humans must achieve successful behavior in a world constrained only by
the laws of nature. Therefore, the first intuition is that it may well be useful to try to sim-
ulate these aspects of human behavior. These early intuitions motivating my experiments
were first outlined in [184]. The following six short sections explain my working hypoth-
esis about mind and language. Section 10.5.7 then describes my experimental method for
developing and testing my hypothesis.

10.5.1 Embodied Mind from Integrated Sensorimotor Function

The experiment described in Section 10.5.7 is predicated on the assertion that there is
no such thing as a disembodied mind. While the mind is representational and thought
processes well described as computational operations on the abstract symbolic represen-
tations, no such symbolic representations can arise without the sensorimotor function of
the body. Theories of “the embodied mind” have existed since Turing himself proposed
the idea in his seminal 1950 paper which described the first mathematically rigorous
computational model of intelligence. More recently, Johnson [151], Lakoff and John-
son [167], and Jackendoff [141, 142] have given comprehensive treatments of the idea
from the perspective of psycholinguistics. There have been other speculations on this sub-
ject, but they have not been in the mainstream of AI. More importantly, there has been
very little experimental work on “embodied mind”. One research project which definitely
recognizes the importance of combined sensorimotor function in intelligent behavior is
the COG project of Rodney Brooks at MIT [83]. There is also significant support for
the importance of integrated sensorimotor abilities from psycholinguistics in Tanenhaus
et al. [311, 312] showing the relationship of vision and language and new work in neu-
rophysiology surveyed by Barinaga [23] demonstrating the existence of neural pathways
from the motor areas of the brain to the cognitive areas.

The importance of the integration of all sensory and motor signals is revealed by
thinking about perception and pattern recognition. If one examines the signals from indi-
vidual sensory modalities independently, they appear to have large variances and hence
overlapping distributions leading to large classification error probabilities. This is exactly
because the signals have been projected onto a space of lower dimension from the space
of higher dimension in which the integration of all sensorimotor modalities is properly
represented. In that space of much larger volume, the signals are widely separated and
robust classification can be achieved.

10.5.2 Associative Memory as the Basis for Thought

The mind is an associative pattern recognition engine that measures the proximity of one
signal to another. For general pattern recognition proximity is a measure of similarity.
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For vision, proximity implies continuity or connection. For reasoning, proximity leads to
causality and prediction.

I submit that the primary mechanism of cognition is an associative memory that has the
following properties. First, it must be able to relate input stimuli to desirable behavior.
Second, the contents of the memory must be reliably retrieved when some stimuli are
missing or corrupted. Third, the memory must be content addressable so that the pre-
sentation of any single stimulus will evoke all the related stimuli and their associated
responses. The associative memory is capable of storing representations of stimuli of
complex structure, thereby allowing for fusion of sensory modalities and motor functions
and the recognition of intricate sequences thereof. The latter is particularly important
for the grammar (i.e. phonology, morphology, and syntax) of language, although other
complex memories may also be encoded in the same manner. However, rules governing
the formation of such sequences are merely the code in which memories are represented.
They serve two particular purposes, namely, to afford the memories some immunity to
corruption and to make semantic processing robust and efficient.

There are many ways to implement an associative memory with the desired properties.
The simplest is the nonparametric maximum likelihood pattern recognition algorithm,
discussed in Section 2.5. According to this model, the extracted sensory features are
simply time-stamped and concatenated in a long vector. This method has the advantage
of computational simplicity but suffers from its inability to represent relationships among
stimuli.

The preferred approach is to use a stochastic model that captures both probability
distributions of stimuli and their underlying structure. Any of the mathematical models
discussed in Chapter 3 are suitable for this purpose, but the most directly applicable is the
hidden Markov model in which the observation densities are used to capture the statistics
of the sensory data and the hidden state transitions become associated with structure.
Details of the implementation are given in Section 10.5.7.

10.5.3 Reinforcement Learning via Interaction with Physical Reality

The content of the associative memory is acquired by reinforcement. I define “rein-
forcement” to mean that the probabilities of forming associations amongst stimuli and
responses are increased when the responses are useful or successful and decreased oth-
erwise. Initially, all associations except for a few instincts have probability zero. These
probabilities can be changed based on perceived reinforcement signals. Reinforcement is
provided in three ways. First, in the absence of any outside stimulus, the robot goes into
autonomous exploration mode. In this mode, it moves randomly about the environment,
scanning for events of interest. The pace of its motions is governed by a timer simulating
attention span. While scanning, the robot compares its sensory inputs to memory. When
good matches are found, the associated actions are carried out and the memory updated
as required. If no relevant memories are retrieved, the robot looks for high correlations
amongst its sensory inputs and stores the corresponding events in memory. Stability of
the robot should allow for safe continuation of this mode for indefinite periods. This
operation, which I call the cognitive cycle, is shown in Figure 10.1.

The most important mode of reinforcement is that of interactive instruction by a teacher.
In this mode, the instructor will give explicit hard-wired reinforcement signals to the robot.
Following the procedure established in the earlier pilot experiments, the instructor will
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Figure 10.1 The basic cognitive cycle

give positive reinforcement by lightly flexing the robot’s whiskers and negative feedback
by preventing the motion in progress, thus stalling one or more of its actuators. Rein-
forcement of this type can be given while the robot is in autonomous exploration mode;
however, its primary purpose is for language learning. Used this way, the instructor will
initiate a sequence of verbal inputs, responses, and reinforcements. The robot’s responses
will be drawn from memory if an appropriate one exists. Failing that, a response will be
generated at random. Correct setting of audio interest instincts and span of attention will
facilitate this behavior.

The third form of reinforcement is direct demonstration. In this mode, the instructor will
overhaul one or more of the robot’s actuators, causing it to make some desired motion.
The robot will record the sequence of positions and associate them with other sensory
stimuli present during the operation, including speech. The intent is for the robot to learn
verbs. For example, the instructor could turn the steering motors to the left while saying
“turn left”. Another example would be to turn the robot toward a red object while saying
the word “red”.

It is of utmost importance to distinguish this process from simple Skinnerian behavior-
ism. Although the robot is trained based on stimuli and responses to them, the mapping
is not a simple one. The memory is symbolic, representational, and capable of learning
complex relationships such as those needed to acquire and use language.

Once the mechanics of reinforcement are established, the main work of the project,
the learning experiments, can begin. It should be obvious that significant ambiguity is
present in the training as described above. Of course, we do not expect the robot to learn
from single examples as humans often do. At least initially, instruction of the robot will
require careful selection of stimuli and will result in slow progress. We expect that order
of presentation will be important and we plan to experiment to see which sequences result
in the most versatile, stable behavior.
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10.5.4 Semantics as Sensorimotor Memory

Semantics is exactly the memorization of the correlation of sensorimotor stimuli of dif-
ferent modalities. A sufficiently large collection of such memories constitutes a mental
model of the world. In particular, language is acquired by memorizing the associations
between the acoustic stimulus we call speech and other sensorimotor stimuli. When lan-
guage is acquired it enables the symbolic manipulation of most, but not all, of the mental
model. The semantics of language is thus a symbolic representation of reality. However,
the symbols and relations among them are not predetermined by a human creator but,
rather, acquired and memorized in the course of interaction with the surroundings. The
reinforcement regime will cause the contents of memory to converge to a configuration
in which the acquired symbols reflect the observed regularities in the environment.

It is important to note that sensorimotor function forms the basis for much of semantics.
In addition to concepts such as color which can only be understood visually, temperature
and pain which are essentially tactile, force which is haptic, and time which can only be
understood spatially, the meanings of many common words are derived from morphemes
for direction or location concatenated with morphemes denoting specific physical actions.
Such words can only be understood by direct appeal to a well-developed spatial sense
and motor skills. As the associative memory grows, words formed in this manner can
be associated with mental activities yielding meanings for abstract operations, objects,
and qualities. For example, the sensations of force and balance, which are first defined
in terms of their sensorimotor correlates, can later be used in a nonphysical sense to
mean “persuade” or “compare”, respectively. Obviously, the abstract words acquire their
meanings only by analogy with their primary sensorimotor definitions.

Regardless of how the memory is implemented and trained, an important aspect of these
experiments is to take frequent snapshots of it to analyze the development of memory
associated with specific functions. Such data could serve as valuable diagnostics for the
training procedure. I expect that as training progresses and the robot’s behavior becomes
more interesting, I might be able to identify the emergence of concept-like constructs.

10.5.5 The Primacy of Semantics in Linguistic Structure

Modern linguistics is dominated by the generative paradigm of Chomsky [45] that views
grammar (i.e. acoustic phonetics, phonology, phonotactics, morphology, prosody, and
syntax) as the core of language. Grammar is considered to be a complex system of
deterministic rules unlike the probabilistic models studied in this book. In a now classic
example (see Section 8.2), Chomsky considers the sentence “Colorless green ideas sleep
furiously” which is grammatically well-formed but semantically anomalous. This sentence
and the ungrammatical word sequence “Ideas colorless sleep furiously green” are said to
have zero probability of occurrence and thus cannot be distinguished on that basis. What
must, therefore, be important is the grammatical structure, or lack thereof, of the two
sequences. It is this phenomenon to which traditional linguistics attends.

My working hypothesis is inherently non-Chomskian in its characterization of language.
As defined in Section 10.5.3, successful behavior is the goal of reinforcement learning.
Successful behavior requires intelligence which is just the procedure for extracting mean-
ing from the environment and communicating meaningful messages. Thus language is a
critical aspect of intelligence and semantics is the primary component of language. All
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other aspects of linguistic structure are simply the mechanisms for encoding meaning and
are present in service to the primary function of language, to convey meaning and to
make it robust in the presence of ambiguity.

10.5.6 Thought as Linguistic Manipulation of Mental Representations of Reality

It is important to emphasize that the primary mechanism of thought is mnemonic, not
logical. This implies that the full computational power of the universal Turing machine
is not required. The universal machine is used to implement the “fetch”, “store”, and
“compare” operations of the associative memory. It is true that humans learn to reason,
and this ability can contribute to successful behavior. However, logical reasoning is a very
thin appliqué learned later in life, used only infrequently and then with great difficulty.
It is not a native operation of the mind and, even when learned, it is based on memory.
Humans simulate the formal logic of computers by analogic reasoning in which the
unknown behavior of an object or organism is deduced from the memorized behavior of
a similar object or system. Such reasoning is error-prone. But, even in competent adults,
most cognitive function derives from associative memory.

Memory is built up from instincts by the reinforcement of successful behavior in the real
world at large. As a cognitive model of reality is formed using appropriate computational
mechanisms, a structure-preserving linguistic image of it is formed. When the language is
fully acquired, most mental processes are mediated linguistically and we appear to think
in our native language which we hear as our mind’s voice.

10.5.7 Illy the Autonomous Robot

The experimental vehicle with which the ideas outlined above are explored is a quasi-
anthropomorphic, autonomous robot, affectionately named Illy by her creators. However,
before I undertook to build Illy, I did a pilot study with a simple device. In order to keep
the engineering problems to a minimum, I used a child’s toy called “Petster”, a battery-
operated platform in the form of a cat. Locomotion is provided by two wheels, each turned
independently by a motor. The cat has photosensors, not cameras, for eyes, microphones
in its ears, a piezoelectric sonar device on its collar, a loudspeaker in its head, and an
RS232 communication port. Most important, however, are the microswitch in its tail, a
touch sensor on the back of its neck and accelerometers on the motors. By connecting the
port to a computer, one can send instructions to the on-board microcontroller to make the
motors work and generate five different sounds through the speaker. The cat was connected
to a computer equipped with a speech recognizer with a 2000-word vocabulary. That is,
it had acoustic phonetic models for 2000 words but did not have a syntactic or semantic
model. I built an associative memory using an information-theoretic multilayer perceptron
described by Gorin [124] and used it to relate speech and other stimuli to actions. I trained
the cat using the following reinforcement regime. I spoke to the machine in isolated
words or short phrases. If I used words the recognizer knew, the computer would send a
corresponding code to the cat which would then perform some action. If the action were
appropriate I signaled by patting the cat on the neck and the perceptron weights would
be changed accordingly. If the action were wrong, I signaled either by pulling the cat’s
tail or preventing it from moving, thus stalling out the motors. The activity would then
stop but no change would be made in the memory. After about five minutes of patient
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training, the cat could learn a number of words and phrases which would cause it to move
forward, backward, left, right, stop, and make a specific one of five available sounds (e.g.
purr, meeow, hiss). I used any words or phrases I chose and various ways to express the
same command. Despite this variation, the learning behavior was repeatable. Details of
the memory architecture and training algorithms are given in Henis and Levinson [124].

Obviously, this was not a very sophisticated experiment. It did, however, show that
lexical semantics and a simplistic word-order syntax could be acquired from virtually
unconstrained speech in a real-time, on-line reinforcement training scheme when phonet-
ics, phonology, and phonotactics are prespecified. The experiment also provided a better
appreciation of the theoretical issues and practical difficulties that would be encountered
in advancing this kind of investigation. Based on Petster, a more precise expression of
the fundamental ideas was formulated [186, 187]. The Petster device, however, was inad-
equate because it did not have a visual sense nor arms and hands. Therefore, a new robot
and control software was built in my laboratory.

Illy, The new machine, Illy (see Fig. 10.2), is based on the Trilobot platform manufac-
tured by the Arrick Robotics company. My students and I have added audio [194, 195]
and video [341, 342, 343] capabilities to the platform and have connected it to a network
of small computers and workstations with large memories [186]. The robot communi-
cates with the network via wireless ethernet [186]. I mounted two electret microphones
and two small color-video cameras on the robot’s movable head to provide for binaural
hearing and binocular vision. The robot also has a single arm and hand with two degrees
of freedom allowing for shoulder and thumb movement, enabling both lifting and grip-
ping. A simple microprocessor and some auxiliary circuits govern all sensory and control
functions [186]. A Pentium PC with video, audio and ethernet cards is mounted on-board.
To meet the significantly larger power budget for the added hardware, the original power
supply was replaced by a 12 volt motorcycle battery.

Illy is equipped with 14 sensors, including an array of touch-sensitive whiskers, com-
pass, tilt sensor, thermometer, odometer, battery charge sensor, tachometer and steering

Figure 10.2 Three versions of Illy: Illy-I (center), Illy-II (left), and Illy-III (right)
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angle indicator. There are two motors, one for each wheel, together providing both steer-
ing and locomotion. The status of all of these instruments is transmitted to the network
via the radio link. There are provisions for several other user-provided control signals,
including a standard RC servomotor and ample channel capacity to communicate them
along with all the other data.

The on-board control system accepts commands to operate the motors and read the sen-
sors in the form of a simple alphanumeric machine language. Instructions are transmitted
to the controller via the radio link. In a similar fashion, codes indicating the results of the
instructions and the status of the controller are returned to the network. Instructions may
be combined to form programs.

Software

The control system for Illy is a distributed programming environment in which processes
reside transparently on any of the networked computers or the on-board computer. The
system allows for real-time, on-line operation at a rate of three complete executions of
the cognitive cycle of Fig. 10.1 per second. The system is robust enough to allow for
long periods of reliable operation in the autonomous exploration mode. This is essential
for learning to take place.

The main program in this framework is called IServer. For a particular data stream,
IServer sets up a ring buffer in shared memory. An example of a source process which
reads audio data from the sound card and writes it to the ring buffer and a sink process
for sound source localization, which accesses the audio data and uses it to determine the
direction a sound is coming from is shown in the top left of Fig. 10.3.

Because of the demanding requirements of the input processing and the limited com-
puting power available on Illy, much of the processing must take place on the networked
computers. To support this, the IServer program includes a special sink process with the
sole purpose of taking the data in the ring buffer and sending it across the network. On
another machine, a corresponding source process receives this data and writes it to the
ring buffer on its machine. A sink process on this other machine accesses this data in
exactly the same manner as if it were on the original machine.

The lower right part of Figure 10.3 demonstrates this process, again using audio pro-
cessing as an example. In this case, the sound source location program is running on
Illy, and accesses audio from the ring buffer as before. A speech recognition program is
running on another machine and needs access to the same audio data. For this to happen,
an audio server running on Illy takes data from the ring buffer and sends it to the audio
source process which writes it to its ring buffer just like any other source of audio data.
The speech recognition program reads the data in the same manner as before. The ring
buffer on a networked machine may also have an audio server which sends the audio data
to other machines.

The ring buffer is divided into segments, the total number and size of which depends
on the data type. Each segment is protected by a locking semaphore, so that a source
process will not write to any block that is being read from, and a sink process will not
read from a block that is being written to. Each segment of data includes a generic header
specifying the byte count, a time stamp, and a sequence number.

This system, along with some general distributed shared memory and a separate server
which manages connections among machines, forms the basis for our software framework,
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Figure 10.3 The IServer distributed computing architecture (on-board part, top left and remote
part, bottom right)

upon which the aforementioned cognitive model is implemented including a central con-
troller and a common centralized associative memory. The system has allowed us to take
many disparate components and make them work together in a seamless fashion.

Associative Memory Architecture

The associative memory, the function of which is described in Section 10.5.2, is designed
as follows. There is a separate group of HMMs for each modality – a set of HMMs for
auditory inputs, a set of HMMs for visual inputs, etc. The states of these HMMs are
used as the inputs to the next layer of HMMs. The structure is illustrated in Fig. 10.4.
The benefits of this arrangement are that the initial layer of input processing can be
reused by multiple models on the next level, and that each level of states has a particular
meaning. In the example in Fig. 10.5, the states of the auditory HMMs are used by both
the auditory-tactile HMM and the audio-visual HMM. The state of the audio-visual HMM
might represent the simultaneous stimuli of the word “apple” and the image of an apple.
Temporal sequences of the states of the HMMs are used as inputs to higher-level HMMs
for more complex recognition. For example, we use sequences of phonemes or allophones
as inputs to the multi-modality models at higher levels.

Performance

The autonomous exploration mode depends for its operation on the following programmed
instinctual behaviors. First, Illy is irritable, that is, she will always make some response to
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every stimulus. Illy gets hungry when her battery is nearly drained. When that condition
is detected she will sound an alarm and seek the nearest human to help her. Illy has some
self-defense behaviors. She avoids collisions with large objects but will delay for a short
time before initiating evasive action. She has a preference for brightly colored objects,
medium intensity wideband noises, and localized rapid motions. She avoids obstacles in
her path of motion, dark shadows, and high temperatures. Illy has a sleep instinct in which
she is physically inactive but executes a clustering program to compress and combine data
stored in memory. This idea is based on an interpretation of Robins and McCallum [275].
Finally, Illy has an instinct to imitate both speech and gestures, including arm, hand, and
head motions.

Some of the more complex behaviors we have been able to demonstrate include
sound source localization [194], object recognition and manipulation [342], navigation
in response to voice command [202], visual object detection, identification, and loca-
tion [343], visual navigation of a maze [197], and spoken word and phrase imitation [158],
all of which, except for acoustic source localization, are learned behaviors. Illy is shown
running a maze in Fig. 10.5.

While these functions hardly qualify Illy as a sentient being, I regard them as a firm
foundation on which to support far richer cognitive activity. I anticipate the time when
Illy will do something surprising and make a good showing on the generalized Turing
test outlined in Section 10.3.2.

Obstacles to the Program

I am sure that critics can offer many possible reasons for what they foresee as an
inevitable failure of the experiment described above. There are several aspects of my
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Figure 10.5 Illy-I runs a maze

working hypothesis that some consider suspect. My theory of functional equivalence is
open to objection from those who believe that only biological brains, or at very least
their mathematical isomorphs, can give rise to mind. My notions of associative memory,
reinforcement, and semantics may also raise some eyebrows.

I regard all of these criticisms as the same in the sense that they all assert that some
essential part of my hypotheses is inadequate or absolutely incorrect. I cannot provide
any better support for my ideas than I have already done. I cannot refute any competing
theories any more than I have already done. However, such armchair debates will never
resolve the differences of opinion and I see no purpose in prolonging them.

There is a particular class of objections, however, that concern me deeply. These are
problems that result from a usefully correct working hypothesis but an incomplete or
inadequate experimental expression of it. I can imagine four such catastrophic errors.
The first pitfall might result from an gross underestimate of the threshold of complexity
required for the emergence of significant mental activity. The brain has some tens of
trillions of neurons; perhaps that number of components is required to effect the kinds of
behavior I hope to simulate.

The second problem might arise from a misunderstanding of the relative importance
of adaptation on evolutionary time scales and learning on somatic time scales. Perhaps
the billions of years of evolution were required to produce specific brain structures for
specific cognitive purposes. Perhaps one cannot compensate for a lack of this optimization
by clever adaptive processes over the relatively short period available for reinforcement
learning.

A third issue might arise from a failure to appreciate the importance of acute perception
and skilled motor control. Humans and animals are possessed of exquisite sensors and
actuators. Perhaps these organs are required to bring perception to a level from which
mental models of reality can be produced. Perhaps the cameras, microphones, servomotors,
and other devices used in Illy are too crude to support intelligent behavior.
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Finally, there is the ubiquitous problem known as the curse of dimensionality. Perhaps
there are too many degrees of freedom and too little time to collect data for reinforcement
learning to be effective.

I have no cogent replies to these objections. Nor is there any proof that they are fatal.
Perhaps the experiments will inform the argument and indicate whether or not my working
hypothesis and my enthusiasm for it are justified. Highly ambitious projects like the early
attempts at flight are a venerable strategy for progress.

10.6 Final Thoughts: Predicting the Course of Discovery

The current euphoria about automatic speech recognition is based on the characterization
of progress in the field as a “paradigm shift”. This use of the term is inappropriate and
misleading. The phrase was first used by Kuhn [163] to describe scientific revolution.
As applied to automatic speech recognition, it casts incremental, technical advances as
profound, conceptual scientific progress.

The difference is best understood by example. The change from a geocentric to a
heliocentric model of the solar system alluded to in Section 10.2.3 is a Kuhnian “paradigm
shift”. Placing the sun rather than the earth at the center of the solar system may seem
like a radical idea. Although it is counterintuitive to the naive observer, it does not, by
itself, constitute a paradigm shift. The revolutionary concept arises from the consideration
of another aspect of the solar system besides planetary position. The Ptolemaic epicycles
do predict the positions of the planets as a function of time. In fact, they do so more
accurately than the crude elliptical orbits postulated by Kepler. Indeed, the incremental
improvement made by compounding epicycles on epicycles allows the incorrect theory
to appear more accurate than the coarse but correct one. Clearly, heliocentricity alone is
not the paradigm shift.

If, however, one asks what force moves the planets on their observed regular paths and
how it accounts for their velocities and accelerations, the geocentric theory stands mute
while the mechanical foundation of the heliocentric model turns eloquent. This, then, is
the paradigm shift and its consequences are enormous. Epicycles may be acceptable for
making ritual calendars but Newtonian mechanics not only opens new vistas but also,
upon refinement, becomes highly accurate.

There is a very close analogy between astronomy and automatic speech recognition. At
the present moment, we think of speech recognition as transcription from speech to some
standard orthography. This decoding process corresponds to the computation of celestial
location only. It ignores the essence of speech, its capacity to convey meaning, and is thus
incomplete. The paradigm shift needed in our discipline is to make comprehension rather
than transcription the organizing principle, just as force replaced location as the central
construct in celestial mechanics. If one can calculate the forces acting on the planets, one
can determine their orbits, from which the positions are a trivial consequence. Similarly,
if one can extract meaning from an utterance, the lexical transcription will result as a
by-product. Unfortunately, as we noted in Chapter 8, the process is often inverted by the
attempt to use meaning to improve transcription accuracy rather than making meaning
the primary aspect.

I view the experiment described in Section 10.5 as an attempt to instigate a paradigm
shift in speech technology. This is an ambitious goal which runs counter to the prevailing
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ethos. We live in an age in which technique is prized over concept. This is not unreasonable
because our daily lives depend on a technological cornucopia that has been slowly and
steadily improving for several decades. It is not surprising that even the inventors are
enchanted by the magic they themselves have wrought. Consequently, when technocrats
predict the future of a promising new technology, they tend to be overly optimistic for
the near term and overly pessimistic for the long haul. This happens because technical
forecasting is always based on extrapolating what is presently known based on incremental
improvement without regard for the possibilities of unproven, speculative approaches.
Thus it is not surprising that the prediction for automatic speech recognition is that the
existing performance deficits will be soon overcome by simply refining present techniques.

My prediction is that advances in our understanding of speech communication will
come painfully slowly but eventually, perhaps many decades hence, automatic speech
recognition at human performance levels will be ubiquitous. In the near term, incremental
technical advances will result in a fragile technology of small commercial value in special
markets, whereas major technological advances resulting from a true paradigm shift in the
underlying science will enable machines to display human linguistic competence. This,
in turn, will create a vast market of incalculable social and commercial value.

It is, of course, entirely possible that the technocrats are correct, that a diligent effort
resulting in a long sequence of incremental improvements will yield the desired perfected
automatic speech recognition technology. It is also possible that this strategy will come
to grief because of the “first step fallacy” of Dreyfus [67] who warns of the impossibility
of reaching the moon by climbing a tree. Such a strategy appears initially to head in the
right direction but soon progress stops abruptly or tragically, far short of the goal, when
the top of the tree is reached or the small upper limbs will no longer support the climber’s
weight. It seems obvious to me that the prudent plan is to openly acknowledge the risks
of incrementalism and devote some effort to the plausible speculative approaches.

Perhaps more important, however, is recognition of the uniqueness of our particu-
lar technological goal. Unlike all other technologies that are integral parts of our daily
lives because they provide us with capabilities otherwise unattainable, speech technology
promises to increase the utility of a function at which we are already exquisitely profi-
cient. Since using the present state of the art requires a serious diminution of our natural
abilities and since we presently cannot leap the performance chasm between humans and
machines, it seems only prudent that we should invest more in fundamental science in the
expectation that it will eventually lead not only to a mature speech technology but also
to many other things as yet unimagined. This strategy would, of course, alter the existing
balance among science, technology, and the marketplace more in favor of precommercial
experimentation while reducing the emphasis on immediate profit. There is good reason to
believe, however, that ultimately this strategy will afford the greatest intellectual, social,
and financial reward.
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