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0.1 Preface

The aim of this book is to provide a concise introduction to algebraic geometry and to algebraic moduli theory. In
so doing, I have tried to explain some of the fundamental contributions of Cayley, Hilbert, Nagata, Grothendieck
and Mumford, as well as some important recent developments in moduli theory, keeping the proofs as elementary
as possible. For this purpose we work throughout in the category of algebraic varieties and elementary sheaves
(which are simply order-reversing maps) instead of schemes and sheaves (which are functors). Instead of taking
GIT (Geometric Invariant Theory) quotients of projective varieties by PGL(N), we take, by way of a shortcut,
Proj quotients of affine algebraic varieties by the general linear group GL(N). In constructing the moduli of
vector bundles on an algebraic curve, Grothendieck’s Quot scheme is replaced by a certain explicit affine variety
consisting of matrices with polynomial entries. In this book we do not treat the very important analytic viewpoint
represented by the Kodaira-Spencer and Hodge theories, although it is treated, for example, in Ueno [113], which
was in fact a companion volume to this book when published in Japanese.

The plan of the first half of this book (Chapters 1-5 and 7) originated notes taken by T. Hayakawa to a
graduate lecture course given by the author in Nagoya University in 1985, which in turn were based on the works
of Hilbert [20] and Mumford et al [30]. Some additions and modifications have been made to those lectures, as
follows.

(1) T have included chapters on ring theory and algebraic varieties accessible also to undergraduate students.
A strong motivation for doing this, in fact, was the desire to collect together in one place the early series of
fundamental results of Hilbert that includes the Basis Theorem and the Nullstellensatz.

(2) For the proof of linear reductivitty (or complete reductivity), Cayley’s w-process used by Hilbert is quite concret
and requires little background knowledge. However, in view of the importance of algebraic group representations
I have used instead a proof using Casimir operators. The key of proof is an invariant bilinear form on the Lie
space. The uniqueness property used in the Japanese edition was replaced with the positive definiteness in this
edition.

(3) T have included the Cayley-Sylvester formula in order to compute explicitly the Hilbert series of the classical
binary invariant ring since I believe both tradition and computation are important. I should add that this and
Section 4.5 are directly influenced by Springer [8].

Both (2) and (3) took shape in a lecture course given by the author at Warwick University in the winter of
1998.

(4) I have included the result of Nagata [11], [12] that even for an algebraic group acting on a polynomial ring,
the ring of invariants need not be finitely generated.

(5) Chapter 1 contains various introductory topics adapted from lectures given in the spring of 1998 at Nagoya
and Kobe Universities.

The second half of the book was newly written in 1998-2000 with two main purposes: first, an elementary
invariant-theoretic construction of moduli spaces including Jacobians and, second, a self-contained proof of the
Verlinde formula for SL(2). For the first I make use of Gieseker matrices. Originally this idea was invented by
Gieseker [72] to measure the stability of the action of PGL(N) on the Quot scheme. But in this book moduli
spaces of bundles are constructed by taking quotients of a variety of Gieeseker matrices themselves by the general
linear group. This construction turns out to be useful even in the case of Jacobians. For the Verlinde formula, I
have chosen Zagier’s proof [115] among three known algebraic geometric proofs. However, Thaddeus’s proof [112]
uses some interesting birational geometry, and I give a very brief explanation of this for the case of rank 2 parabolic
bundles on a pointed projective line.
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0.3 Introduction

(a) What is a moduli space?

A moduli space is a manifold, or variety, which parametrises some class of geometric objects. The j-invariant
classifying elliptic curves up to isomorphism, and the Jacobian variety of an algebraic curve are typical examples.
In a broader sense one could include as another classical example the classifying space of a Lie group. In modern
mathematics the idea of moduli is in a state of continual evolution and has an ever-widening sphere of influence.
For example:

by defining a suitable height function on the moduli space of principally polarised abelian varieties it was possible
to resolve the Shafarevich conjectures on the finiteness of abelian varieties (Faltings 1983);

the moduli space of Mazur classes of 2-dimensional representations of an absolute Galois group is the spectrum
of a Hecke algebra.

The application of these results to resolve such number theoretic questions as Mordell’s Conjecture and Fermat’s
Last Theorem are memorable achievements of recent years. Turning to geometry:

via Donaldson invariants, defined as the intersection numbers in the moduli space of instanton connections, one
can show that there exist homeomorphic smooth 4-manifolds which are not diffeomorphic.

Indeed, Donaldson’s work became a prototype for subsequent research in this area.

Here’s an anology. When natural light passes through a prism it separates into various colours. In a similar
way, one can try to elucidate the hidden properties of an algebraic variety. One can think of the moduli spaces
naturally associated to the variety (the Jacobian of a complex curve, the space of instantons on a complex surface)
as playing just such a role of ‘nature’s hidden colours’.

red
yellow
blue
violet

manifold

moduli prism

The aim of this book is to explain, with the help of some concrete examples, the basic ideas of moduli theory
as they have developed alongside algebraic geometry—in fact, from long before the modern viewpoint sketched
above. In particular, I want to give a succinct introduction to the widely applicable methods for constructing
moduli spaces known as geometric invariant theory.

If a moduli problem can be expressed in terms of algebraic geometry then in many cases it can be reduced
to the problem of constructing a quotient of a suitable algebraic variety by an action of a group such as the
general linear group GL(m). From the viewpoint of moduli theory this variety will typically be a Hilbert scheme
parametrising subschemes of a variety, or a Quot scheme parametrising coherent sheaves. From a group theoretic
point of view it may be a finite dimensional linear representation, regarded as an affine variety, or a subvariety
of such. To decide what a solution to the quotient problem should mean, however, forces one to rethink some
rather basic questions: what is an algebraic variety?, what does it mean to take a quotient of a variety? In this
sense the quotient problem, present from the birth and throughout the development of algebraic geometry, is
even today sadly lacking an ideal formulation. And as one sees in the above examples the ‘moduli problem’ is not
determined in itself but depends on the methods and goals of the mathematical area in which it arises. In some
cases elementary considerations are sufficient to address the problem, while in others much more care is required.
Maybe one cannot do without a projective variety as quotient; maybe a stack or algebraic space is enough. In
this book we will construct moduli spaces as projective algebraic varieties.

(b) Algebraic varieties and quotients of algebraic varieties

An algebraic curve is a rather sophisticated geometric object which, viewed on the one hand as a Riemann
surface, or on the other as an algebraic function field in one variable, combines analysis and algebra. The
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theory of meromorphic functions and abelian differentials on compact Riemann surfaces, developed by Abel,
Riemann and others in the nineteenth century, was, through the efforts of many later mathematicians, deepened
and sublimated to an algebraic ‘algebraic function theory’. The higher dimensional development of this theory
has exerted a profound influence on the mathematics of the twentieth century. It goes by the general name of
‘the study of algebraic varieties’. The data of an algebraic variety incorporates in a natural way that of real
differentiable manifold, of complex manifold, or again of an algebraic function field in several variables. (A field
K is called an algebraic function field in n variables over a base field k if it is a finitely generated extension of k
of transcendence degree n.) Indeed, any algebraic variety may be defined by patching together (the spectra of)
some finitely generated subrings Ry, ..., Ry of a function field K. This will be explained in Chapter 3.

This ring-theoretic approach, from the viewpoint of varieties as given by systems of algebraic equations, is
very natural; however the moduli problem, that is, the problem of constructing quotients of varieties by group
actions, becomes rather hard. When an algebraic group G acts on an affine variety, how does one construct a
quotient variety? (An algebraic group is an algebraic variety with a group structure, just as a Lie group is a
smooth manifold which has a compatible group structure.) It turns out that the usual quotient topology, and the
differentiable structure on the quotient space of a Lie group by a Lie subgroup, fail to work well in this setting.
Clearly they are not sufficient if they fail to capture the function field, together with its appropriate class of
subrings, of the desired quotient variety. The correct candidates for these are surprisingly simple: namely the
subfield of G-invariants in the original function field K, and the subrings of G-invariants in the integral domains
R C K (see Chapter 5). However, in proceeding one is hindered by the following questions.

Is the subring of invariants R“ of a finitely generated ring R again finitely generated?
Is the subfield of invariants K¢ C K equal to the field of fractions of R€?
Is K¢ C K even an algebraic function field?—that is, is K¢ finitely generated over the base field k?

Even if the previous questions can be answered positively and an algebraic variety constructed accordingly, does
it follow that the points of this variety can be identified with the G-orbits of the original space?

In fact one can prove property (3) quite easily; the others, however, are not true in general. We shall see in
Section 2.5 that there exist counterexamples to (1) even in the case of an algebraic group acting linearly on a
polynomial ring. Question (2) will be discussed in Chapter 6.

So how should one approach this subject? Our aim in this book is to give a concrete construction of some
basic moduli spaces as quotients of group actions, and in fact we will restrict exclusively to the general linear
group GL(m). For this case property (1) does indeed hold (Chapter 4), and also property (4) if we modify the
question slightly. (See the introduction to Chapter 5.) A correspondence between G-orbits and points of the
quotient is achieved provided we restrict, in the original variety, to the open set of stable points for the group
action. Both of these facts depend on a representation-theoretic property of GL(m) called linear reductivity.

After paving the way in Chapter 5 with the introduction of affine quotient varieties, we ‘globalise’ the con-
struction in Chapter 6. Conceptually, this may be less transparent than the affine construction, but essentially
it just replaces the affine spectrum of the invariant ring with the projective spectrum (Proj) of the semiinvariant
ring. This ‘global’ quotient, which is a projective variety, we refer to as the Proj quotient, rather than ‘projec-
tive quotient’, in order to distinguish it from other constructions of projective quotient variety that exist in the
literature.

An excellent example of a Proj quotient (and indeed of a moduli space) is the Grassmannian. In fact, the
Grassmannian is seldom considered in the context of moduli theory, and we discuss it here in Chapter 8. This
variety is usually built by gluing together affine spaces, but here we construct it globally as the projective spectrum
of a semiinvariant ring, and observe that this is equivalent to the usual construction. For the Grassmannian G(2,n)
We compute the Hilbert series of the homogeous coordinate ring. We use this to show that it is generated by the
Pliicker coordinates, and that the relations among these are generated by the Pliicker relations.

In general, for a given moduli problem, one can only give an honest construction of a moduli space if one
is able to determine explicitly the stable points of the group action. This requirement of the theory is met in
Chapter 7 with the numerical criterion for stability and semistability of Hilbert and Mumford, which we apply to
some geometrical examples from Chapter 5. Later in the book we construct moduli spaces for line bundles and
vector bundles on an algebraic curve, which requires the notion of stability of a vector bundle. Historically, this
was discovered by Mumford as an application of the numerical criterion, but in this book we do not make use of
this, as we are able to work directly with the semiinvariants of our group actions. Another important application,



which we do not touch on here, is to the construction of a compactification of the moduli space of curves as a
projective variety.

(c) Moduli of bundles on a curve

In Chapter 9 algebraic curves make their entry. We first explain:

what is the genus of a curve?

Riemann’s inequality and the vanishing of cohomology (or index of speciality); and
the duality theorem.

In the second half of Chapter 9 we construct, as the projective spectrum of the semiinvariant ring of a suitable
group action on an affine variety, an algebraic variety whose underlying set of points is the Picard group of a
given curve; and we show that over the complex numbers this is nothing other than the classical Jacobian.

In Chapter 10 we extend some essential parts of the line bundle theory of the preceding chapter to higher
rank vector bundles on a curve, and we then construct the moduli space of rank 2 vector bundles. This resembles
the line bundle case, but with the difference that the notion of stability arises in a natural way. The moduli
space of vector bundles, in fact, can be viewed as a Grassmannian over the function field of the curve, and one
can roughly paraphrase Chapter 10 by saying that a moduli space constructed given as a projective variety by
explicitly defining the Pliicker coordinates of a semistable vector bundle. (See also Seshadri [77].) One advantage
of this construction—although it has not been possible to say much about this in this book—is the consequence
that, if the curve is defined over a field k, then the same is true, a priori, of the moduli space.

In Chapter 11 the results of Chapters 9 and 10 are reconsidered, in the following sense. Algebraic varieties
have been found whose sets of points can be identified with the sets of equivalence classes of line bundles, or vector
bundles, on the curve. However, to conclude that ‘these varieties are the moduli spaces for line bundles, or vector
bundles’ is not a very rigorous way statement. More mathematical would be, first, to give some clean definition
of ‘moduli’, and ‘moduli space’, and then to prove that the varieties we have obtained are moduli spaces in the
sense of this definition. One answer to this problem is furnished by the notions of representability of a functor
and of coarse moduli. These are explained in Chapter 11, and the quotient varieties previously constructed are
shown to be moduli spaces in this sense. Again, this point of view becomes especially important when one is
interested in the field over which the moduli space is defined. This is not a topic which it has been possible to
treat in this book, although we do give one concrete example at the end of the chapter, namely the Jacobian of
an elliptic curve.

In the final chapter we give a treatment of the Verlinde formulae for rank 2 vector bundles. Originally,
these arose as a general dimension formula for objects that are somewhat unfamiliar in geometry, the spaces
of conformal blocks from 2-dimensional quantum field theory. (See Ueno [113].) In our context, however, they
appear as elegant and precise formulae for the Hilbert polynomials for the semiinvariant rings used to construct the
moduli of vector bundles. Various proofs are known, but the one presented here (for odd degree bundles) is that
of Zagier [115], making use of the formulae for the intersection numbers in the moduli space of Thaddeus [111].
On the way, we observe a curious formal similarity between the cohomology ring of the moduli space and that of
the Grassmannia G(2,n).

Convention: Although it will often be unnecessary, we shall assume throughout the book that the field & is
algebraically closed and of characteristic zero.
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Chapter 1

Invariants and moduli

This chapter explores some examples of parameter spaces which can be constructed by elementary means and with
little previous knowledge as an introduction to the general theory developed from Chapter 3 onwards. To begin,
we consider equivalence classes of plane conics under Euclidean transformations and use invariants to construct
a parameter space which essentially corresponds to the eccentricity of a conic.

This example already illustrates several essential features of the construction of moduli spaces. In addition
we shall look carefully at some cases of finite group actions, and in particular at the question of how to determine
the ring of invariants, the fundamental tool of the theory. We prove Molien’s Formula, which gives the Hilbert
series for the ring of invariants when a finite group acts linearly on a polynomial ring.

In Section 1.3, as an example of an action of an algebraic group, we use classical invariants to construct a
parameter space for GL(2)-orbits of binary quartics.

In Section 1.4 we review plane curves as examples of algebraic varieties. A plane curve without singularities
is a Riemann surface, and in the particular case of a plane cubic this can be seen explicitly by means of doubly
periodic complex functions. This leads to another example of a quotient by a discrete group action, in this case
parametrising lattices in the complex plane. The group here is the modular group SL(2,Z) (neither finite nor
connected), and the Eisenstein series are invariants. Among them one can use two, g» and g3, to decide when
two lattices are isomorphic.

1.1 A parameter space for plane conics
Consider the curve of degree 2 in the (real or complex) (z,y) plane
az? + 2bxy + cy® + 2dx + 2ey + f = 0. (1.1)

If the left-hand side factorises as a product of linear forms then the curve is a union of two lines; otherwise
we say that it is nondegenerate (Figure 1.1).
Figure 1.1

Let us consider the classification of such curves of degree 2, up to Euclidean transformations, from the point
of view of their invariants. The Euclidean transformation group G contains the set of translations

r—x+l, y—=y+m

as a normal subgroup, and is generated by these and the rotations. Alternatively, G can be viewed as the group
of matrices

p q I
X=|-¢ p m], P +q¢>=1. (1.2)
0 0 1

Curves of degree 2 correspond to symmetric 3 X 3 matrices by writing the equation (1.1) as

T

(z,y,1) 0,

QU
o o o
®
—
I

13
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and then under the Euclidean transformation (1.2) the symmetric matrix of the curve transforms by

a b d a b d
b ¢c e|l—=X'[b ¢ e]X.
d e f d e f

In other words, the 6-dimensional vector space V' of symmetric 3 X 3 matrices is a representation of the Euclidean

transformation group G (see Section 1.21.10). Now, geometry studies properties which are invariant under groups

of transformations, so let us look for invariants under this group action, in the form of polynomials F'(a,b, ..., f).
The transformation matrix (1.2) has determinant 1, and so the first invariant polynomial we encounter is

a b d
D=det| b ¢ e
d e f

Here D # 0 exactly when the degree 2 curve is nondegenerate, and for this reason D is called the discriminant of

b

will denote these by T' = a + c and E = ac — b%>. Moreover, any invariant polynomial can be (uniquely) expressed
as a polynomial in D, T, E. In other words, the following is true.

the curve. Next we observe that the trace and determinant of the 2 x 2 submatrix <a l;) are also invariant; we

1.1 PROPOSITION. The set of polynomials on V invariant under the action of G is a subring of Cla, b, c,d, e, f]
and is generated by D,T,E. Moreover, these elements are algebraically independent; that is, the subring is
C[D,T,E]. |

Proof. Let Gy C G be the translation subgroup, with quotient G/Gy = O(2), the rotation group of the plane.
We claim that it is enough to show that the subring of polynomials invariant under Gy is

Cla,b,c,d, e, f]°° = Cla,b,c,D]. (1.3)

This is because the polynomials in Cla, b, ¢] invariant under the rotation group O(2) are generated by the trace T
and discriminant E.
We also claim that if we consider polymonials in a, b, ¢, d, e, f and 1/E, then

179 1
C {a, b,c,d,e, f, E] =C {a, b,c,D, E] . (1.4)

It is clear that this implies (1.3), and so we are reduced to proving (1.4). The point here is that the determinant
D can be written

D = Ef + (2bde — ae* — cd?),
so that
_ D+ ae? + cd® — 2bde

/ = ,

and hence

1 1
(C{a,b,c,d,e,f,E] :C{a,b,c,d,e,D,E] .

So a polynomial F' in this ring (that is, a polynomial in a,b, ¢,d, e, f with coefficients which may involve powers
of 1/E) which is invariant under Gy has to satisfy

F(a,b,c,d+ al + bm,e + bl + cm, D) = F(a,b,c,d,e, D)

for arbitrary translations (I,m). Taking (I,m) = (—bt,at) shows that F' cannot have terms involving e, while
taking (I,m) = (—ct, bt) shows that it cannot have terms involving d; so we have shown (1.4). |
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1.2 REMARK. One can see that Proposition 1.1 is consistent with a dimension count as follows. First, V' has
dimension 6. The Euclidean group G has dimension 3 (that is, Euclidean motions have 3 degrees of freedom).
A general curve of degree 2 is preserved only by the finitely many elements of G (namely, 180° rotation about
the centre and the trivial element), and hence we expect that ‘the quotient V/G has dimension 3’. Thus we may
think of the three invariants D, T, E as three ‘coordinate functions on the quotient space’. O

The space of all curves of degree 2 is V =2 C%, but here we are only concerned with polynomials, viewed as
functions, on this space. Viewed in this sense the space is called an affine space and denoted A®. (See Chapter 3.)
We shall denote the subset corresponding to nondegenerate curves by U C V. This is an open set defined by
the condition D # 0. The set of ‘regular functions’ on this open set is the set of rational functions on V' whose
denominator is a power of D, that is,

C {a,b,c, d,e, f, %} .

Up to now we have been thinking not in terms of curves but rather in terms of their defining equations of
degree 2. In the following we shall want to think in terms of the curves themselves. Since two equations that
differ only by a scalar multiple define the same curve, we need to consider functions that are invariant under
the larger group G generated by G and the scalar matrices X = rI. The scalar matrix I multiplies the three
invariants D, E, T by r%,r* r2, respectively. It follows that the set

1 a
C {a,b, c,d,e, f, D
of G-invariant polynomial functions on U is generated by
3 3
A=y B=T, 0=
Among these three expressions there is a relation
AB - (C? =0,

so that:
a moduli space for nondegenerate curves of degree 2 in the Fuclidean plane is the
affine surface in A* defined by the equation xz — y> = 0.

(The origin is a singular point of this surface called a rational double point of type A,.)

One can also see this easily in the following way. By acting on the defining equation (1.1) of a nondegenerate
degree 2 curve with a scalar matrix rI for a suitable r € C we can assume that D(a,b,...,f) = 1. The set of
curves normalised in this way is then an affine plane with coordinates T, E. Now, the ambiguity in choosing such
a normalisation is just the action of wl, where w € C is an imaginary cube root of unity, and so the parameter
space for nondegenerate degree 2 curves is the surface obtained by dividing out the (T, E) plane by the action of
the cyclic group of order 3,

(T, E) = (wT,w’E).
The origin is a fixed point of this action, and so it becomes a quotient singularity in the parameter space.

Next, let us look at the situation over the real numbers R. We note that here cube roots are uniquely
determined, and so by taking that of the discriminant D of equation (1.1) we see that for real curves of degree 2
we can take as coordinates the numbers

_ E _T
=5 Ty

In this way the curves are parametrised simply by the real (a, 8) plane:

(i) Points in the (open) right-hand parabolic region 3% < 4« and the (closed) 4th quadrant o > 0, 8 < 0 do
not correspond to any curves over the real numbers. (It is natural to refer to the union of these two sets as
the ‘imaginary region’ of the («, 8) plane. See Figure 1.2.) The points of the parameter space are real, but
the coefficients of the defining equation (1.1) always require imaginary complex numbers. For example, the
origin (0,0) corresponds to the curve

V—1(z* — y?) + 2zy = 2x.
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Points of the parabola 3? = 4a in the 1st quadrant correspond to circles of radius 1/2/4.
Points of the open region 8% > 4a > 0 between the parabola and the 3-axis parametrise ellipses.
Points of the positive S-axis a = 0, § > 0 parametrise parabolas.

Points in the left half-plane a < 0 parametrise hyperbolas. Within this region, points along the negative
a-axis parametrise rectangular hyperbolas (the graph of the reciprocal function), while points in the 2nd
and 3rd quadrants correspond respectively to acute angled and obtuse angled hyperbolas.

Figure 1.2: The parameter space of real curves of degree 2

Let us now follow a rotation of this figure in the positive direction about the origin.

Beginning with a circle (eccentricity e = 0), our curve grows into an ellipse through a parabolic phase (e = 1)
before making a transition to a hyperbola. The angle between the asymptotes of this hyperbola is initially close
to zero and gradually grows to 180°, at which point (e = co) the curve enters the imaginary region. After passing
through this region it turns once again into a circle. (This is Kepler’s Principle.)

Figure 1.3: Transmigration of a conic

1.3 REMARK. In the case of an ellipse, our curve has a (Euclidean invariant) area which is equal to 7/v/a. In
particular, this area increases as the curve approaches the -axis, and one may think of a parabola, corresponding
to a point on the axis, as having infinite area. Taking this point of view a step further, one may think of a
hyperbola as having imaginary area. |

We have thus established a correspondence between real curves of degree 2 up to Euclidean transformations
and points of the (a,8) plane. The group G does not have the best properties (it is not linearly reductive—this
will be explained in Chapter 4), but nevertheless in this example we are lucky and every point of the («, 5) plane
corresponds to some curve.

Plane curves of degree 2 are also called conics, as they are the curves obtained by taking plane cross-sections
of a circular cone (an observation which goes back to Apollonius and Pappus). From this point of view, the
eccentricity e of the curve is determined by the angle of the plane (Figure 1.4).

Figure 1.4: Plane sections of a cone

To be precise, let ¢ be the angle between the axis of the cone and the circular base, and let 1 be the angle
between the axis and the plane of the conic. If we now let

sin v

sing’

then for e < 1, e = 1 and e > 1, respectively, the conic section is an ellipse, a parabola or a hyperbola. As is well
known, the eccentricity can also be expressed as

_ distance from the focus

e= .
distance to the directrix

(For a curve with equation (z/a)? £ (y/b)? = 1, where a < b, we find that e = /1 F (a/b)2.) This is not an
invariant polynomial function, but it satisfies an algebraic equation whose coefficients are invariants. Namely, it
is the invariant multivalued function satisfying the quartic equation

1 T?
2

2
_1 —o_ L
(e =D+ 5 2E

Although e is properly speaking multivalued, we can take advantage of the fact that we are considering conics
over the real numbers. In this case it is possible to choose a branch so that the function is single-valued for conics
with real coefficients.
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Suppose we extend the Euclidean transformation group to include also similarities (dilations and contractions).
Transforming a conic by a scale factor k multiplies & by VA2 and multiplies 8 by ¥k. So the ‘moduli space’ is
now the (a, 8) plane, minus the origin, divided out by the action of scalars

(e, B) = (VE2a, VEB).

In other words, it is a projective line (more precisely, the weighted projective line P(1 : 2); see Example 3.46 in
Chapter 3). The one dimensional parameter that we obtain in this way is essentially the eccentricity e.

The aim of the first part of this book is to generalise the construction of this sort of parameter space to
equivalence classes of polynomials in several variables under the action of the general linear group. In geometric
language, our aim is to construct parameter spaces for equivalence classes of general-dimensional projective
hypersurfaces with respect to projective transformations.

1.2 Invariants of groups

To say that a polynomial f(1,...,2,) in n variables is an invariant with respect to an n x n matrix A = (a;;)
can have one of two meanings:

(i) f is invariant under the coordinate transformation determined by A. That is, it satisfies

f(Az) = f (Z A1iTiy -y Z%i%’) = f(2). (1.5)

(ii) f is invariant under the derivation
0
Dy = T —
A Z “ ’&rj
0.

determined by A. In other words, it satisfies

of
DAf = Zal]xza—x] =0. (16)
i,j
In both cases, the invariant polynomials under some fixed set of matrices form a subring of Clzy,...,x,]. The

idea of a Lie group and of a Lie algebra, respectively, arises in a natural way out of these two notions of invariants.

(a) Hilbert series

To begin, we review the first notion 1.2(i) of invariance. (The second will reappear in Chapter 4.) Given a set of
nonsingular matrices T C GL(n), we consider the set of all invariant polynomials

{feCzy,...,zn] | f(Az) = f(z) for all A € T}.

Clearly this is a subring of C[z1,...,z,], called the ring of invariants of T. Notice that if f(x) is an invariant
under matrices A and B, then it is an invariant under the inverse A~! and the product AB. It follows that in
the definition of the ring of invariants we may assume without loss of generality that T is closed under taking
products and inverses. This is just the definition of a group; moreover, in essence we have here the definition of
a group representation.

1.4 DEFINITION. Let G C GL(n) be a subgroup. A polynomial f € Clzy,...,z,] satisfying
f(Az) = f(z) for all A € G

is called a G-invariant. O

We shall write S = Clxy,...,,] for the polynomial ring and S for the ring of invariants of G. Let us
examine some cases in which G is a finite group.
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1.5 EXAMPLE. Let G be the symmetric group consisting of all n X n permutation matrices—that is, having a
single 1 in each row and column, and 0 elsewhere. The invariants of G in Clzy,...,z,] are just the symmetric
polynomials. These form a subring which includes the n elementary symmetric polynomials

o) = Ym

oa(z) = EK]. T
on(x) = T1...Zp,
and it is well known that these generate the subring of all symmetric polynomials. O

1.6 EXAMPLE. Suppose G is the alternating group consisting of all even permutation matrices (matrices as in
the previous example, that is, with determinant +1). In this case a G-invariant polynomial can be uniquely
expressed as the sum of a symmetric and an alternating polynomial:

invariant ~ Jsymmetric ® alternating
polynomials [ = | polynomials polynomials | °

Moreover, the set of alternating polynomials is a free module over the ring of symmetric polynomials with the
single generator

O

1.7 EXAMPLE. Let G = {£I,} C GL(n), the subgroup of order 2, where I, is the identity matrix. This time
the set of invariant polynomials is a vector space with basis consisting of all monomials of even degree. As a ring
it is generated by the monomials of degree 2; in the case n = 2, for example, it is generated by z2, z1zs,23. O

Let S = Clz1,...,zy]).- Any polynomial f(z) = f(zi,...,2,) can written as a sum of homogeneous polyno-
mials:

f(x) = fo+ fi(z) + fa(z) + - + frop(x)  with deg fi(z) = i.
Invariance of f(z) is then equivalent to invariance of all the summands f;(z). Denoting by Sy C S the subspace
of homogeneous polynomials of degree d, it follows that there are direct sum decompositions

S=@P5Ss =P nSs.

d>0 d>0

(S and S are graded rings. See Section 2.5(a).) We can introduce a generating function for the dimensions of
the homogeneous components of S¢. This is the formal power series in an indeterminate t, called the Hilbert
series (also called the Poincaré series, or the Molien series) of the graded ring S¢:

P(t) ==Y (dim $% n Syt € Z[[t]].
d>0
1.8 ExampLE. The Hilbert series of the matrix groups in Examples 1.5 and 1.6 are given, respectively, by the

generating functions:

. 1
® DA —&) 1)

14+ tn(n—l)/2
A-ni-o) a-m

(i)
One sees this in the following way. First, if we expand the expression

1
(1-01)(1=03)---(1—0p)
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as a formal series, the terms form a basis of the infinite-dimensional vector space of symmetric polynomials. So,
substituting #* for o; we obtain (i) for the Hilbert series of Example 1.5. For Example 1.6, a similar argument
gives (ii) after noting that

S¢ = Clo1,...,00] ® Clo,...,00]A,

where deg A = n(n —1)/2.

Note that by a similar argument the full polynomial ring S = € Sy has Hilbert series P(t) = (1 —¢)7". In
particular, this gives the familiar fact that dim S; = ("gf{d) We will make more systematic use of this idea in
the proof of Molien’s Theorem below.

The Hilbert series is a very important invariant of the ring S¢ which, as these examples illustrate, measures
its ‘size and shape’:

1.9 PROPOSITION. If S¢ is generated by homogeneous polynomials fi,..., f. of degrees d,,...,d,, then the
Hilbert series of S is the power series expansion at t = 0 of a rational function

F(t)
(1 _tdl)...(l _tdr)

P(t) =

for some F(t) € Z][t].

Proof. We use induction on r, observing that when r = 1 the ring S is just C[f,] with the Hilbert series

1

P(t):1+td1+t2d1+---:1_7td_1.

For r > 1 we consider the (injective complex linear) map S¢ — S¢ defined by h ~ f — rh. We denote the image
by R C S¢ and consider the Hilbert series for the graded rings R and S“/R. These satisfy

Pgc (t) = Pr(t) + PSG/R(t).
On the other hand, dim(S% N S;) = dim(R N S414,), so that Pr(t) = t% Psc (t), and hence

Pga /p(t)
Pso(t) = T

But S¢/R is isomorphic to the subring of S generated by the polynomials fi, ..., f,—1, and hence by the inductive
hypothesis Pge /g(t) = F(t)/(1 —t%) - (1 — 1) for some F(t) € Z[t]. a

(b) Molien’s formula

There is a formula which gives the Hilbert series explicitly for the ring of invariants of any finite group. Given
an n X n matrix A, we call the polynomial

det(I, — tA) € C[t]

the reverse characteristic polynomial of A. Tts degree is equal to n minus the multiplicity of 0 as an eigenvalue of
A. Note that since its constant term is always 1, it is invertible in the formal power series ring C[[¢]].

1.10 MoLIEN’S THEOREM. The ring of invariants S C S = Clzy,...,z,] of any finite group G C GL(n) has a

Hilbert series given by:
1

1
P(t) = @l AXE;; T, ) © ).

Before proving this we recall some facts from the representation theory of finite groups. First, a linear
representation of a group G is a homomorphism

p:G— GL(V)
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from G to the automorphism group GL(V) of a vector space V. (One could also allow the case where p is an
antihomomorphism. Then the composition with the antiautomorphism G — G, g — g~ ' is a homomorphism.
However, in this book we are concerned mainly with invariant elements, so we will not worry about the distinction
between left- and right-actions.) In our situation, where G is a subgroup of GL(n), each homogeneous summand
Sq4 of the polynomial ring S becomes such a finite-dimensional representation of G. If V' is a finite-dimensional
representation, its character is the map

x:G—>C g — tr p(g).
One may consider the invariant subspace:
VG .={wveV|plgw=uvforal ge G}
The dimension of this subspace is precisely the average value of the character:

1.11 DIMENSION FORMULA. 1
dimVY = — Z x(9)-
Gl =,
Proof. Consider the averaging map

1
E:V >V, m—)—Zp(g)v.
Gl =2

This is a linear map which restricts to the identity map on V¥ C V and whose image is V. It follows from this
that dim VY =tr E = ﬁ > gec X(9)- (See Exercise 1.1 at the end of the chapter.) ad

Proof of Molien’s Theorem 1.10. Pick an element A € G, and let {z1,...,z,} be a basis of eigenvectors of A
in S, belonging to eigenvalues ay, . ..,a,. Note that A is diagonalisable since it has finite order (G is finite!). (In
fact, for the present proof it would be enough for A to be upper triangular.) The reverse characteristic polynomial

of A is then
det(l,, —tA) = (1 — a1t)(1 — ast) - - - (1 — ant).

Now consider the formal power series expansion of

1

(1—z)(1 —x2) - (1 —zp)

whose terms are precisely the monomials of the ring S, without multiplicity. The action of A on this series gives

1

(1—ajz1)(1 —aszz) -+ (1 — apzy)’

from which the trace of A acting on Sy may be read off as the sum of the coefficients in degree d. So if we make
the substitution #; = --- = z,, = t, we see that the character y4(A4) of A on Sy is precisely the coefficient of ¢¢

in the expansion of
1

(1 —a1t)(1 —ast) - (1 —aut)’

In other words, we obtain
1

A= —————
%:Xd( ) det(I, — tA)
If we now take the average over G and apply the Dimension Formula 1.11, we obtain Molien’s formula. a

1.12 ExampLE. The Hilbert series of the invariant ring of Example 1.7 is

1 1 1
P(t)zﬁ{(l—t)n+(1+t)n}'

1+¢2 11—t
P(t) = ——1 :
(1-¢)2 (1-1t?)3
The last expression can also be deduced (see Proposition 1.9) from the fact that the invariant ring S¢ has three
generators, A = x?, B = 115, C = 13, and one relation in degree 4, AC — B? = 0.

When n = 2 this reduces to
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(c) Polyhedral groups

We will consider some examples where G is the symmetry group of a regular polyhedron.

1.13 EXAMPLE. THE QUATERNION GROUP. The two matrices of order 4

) (8

generate a subgroup G C SL(2,C) of order 8, consisting of =15 and six elements of order 4. (These are isomorphic
to +1, +i, +j, £k obeying the rules of quaternion multiplication—hence the terminology.) By Molien’s Theorem,
therefore, the invariant ring of G' has a Hilbert series equal to

1 1 1 6 }_ 1+ 1— 2

P(t)zg{(l_t)2 + (1+t)2 + 1+ ¢2 (1_t4)2 - (1—t4)2(1—t6)‘

We can use this fact to determine the structure of the invariant ring. First (suggested by the denominator on the
right-hand side) we observe two invariants of degree 4:

A=z +y B = 2%y,
These elements generate a subring C[A, B] C S¢ with the Hilbert series

1

Next we observe an invariant of degree 6:
C=ay(a" —y").

Although C'is not in C[4, B], its square C? is, since
C? = A’B — 4B3. (1.7)

In fact, by Proposition 1.9, this relation in degree 12 shows that the subring C[4, B] ® CC[A4, B] C S has the
same Hilbert series as S“—so the two rings coincide, and we have shown:

1.14 PROPOSITION. The quaternion group G C SL(2,C) has an invariant ring
S¢ =C[A, B,C]/(C* — A’B + 4B?),

where A = 2* + y*, B = 2%y?,C = 2y(2* — y*) € Clz, y]. O

This example, the quaternion group of order 8, is also the binary dihedral group of the 2-gon. The zeros of
the degree 6 invariant C', viewed as points of the Riemann sphere, are the vertices of a regular octahedron.

Figure 1.5: The degree 6 invariant and the octahedron

One may consider, in the space with coordinates A, B, C, the surface with equation (1.7): the origin is a singular
point of this surface, called a rational double point of type Djy.
Let us examine these ideas for the case of the binary group of a regular icosahedron.

Figure 1.6: The icosahedron

1.15 REMARK. One can show that every finite subgroup of SL(2,C) is conjugate to a subgroup of the special
unitary group SU(2). On the other hand, there is a natural double cover SU(2) — SO(3), and it is well known
that every finite subgroup of SO(3) is cyclic, dihedral or the symmetry group of a Platonic solid. We therefore
have a nice classification of finite subgroups of SL(2,C), of which Examples 1.13 and 1.16 are examples. a
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1.16 ExXAMPLE. THE BINARY ICOSAHEDRAL GROUP. This is the group Gia9 C SU(2) containing +I, whose
quotient

Ggo = Glgo/{iIQ} C SU(Q)/{iIQ} = SO(3,]R)

is the rotation group of a regular icosahedron (recall that Ggo = As, the alternating group which permutes five
embedded octahedra). The orders of elements in the group G129 are distributed as follows:

order
no. of elements

12 3 4 5 6 10
11

20 30 24 20 24

Using Molien’s Theorem, the Hilbert series is

1 1 1 N
P(t)_m{(l—t)Q +(1+t)2 +2:752—2tc050+1}’

where the summation is over N = 30 edge rotations with § = /2, N = 20 face rotations with § = 7/3 and
another N = 20 with 27/3, and N = 12 vertices rotations each, with 8 = 7/5,27/5,3n /5 and 47 /5, respectively.
This gives an expression

PU) = 1 1 N 1 N 20 N 30
120 (1—-8)2 " (1+tH)2  14t+t2 0 1442
242 +t/2+ 1) 20 24(t2 —t/2+ 1)
T+t+824+83+t4  1—t+82  1—-t+2-3+¢4 [’
which simplifies to
147 1—¢%
P(t) = + _

(1—#12)(1— £20)  (1— £2)(1 — £20)(1 — £30)°

1.17 REMARK. As in the previous example, the significance of the right-hand side is that it suggests the existence
of generators of the invariant ring of degrees 12, 20 and 30 satisfying a single algebraic relation in degree 60.
Geometrically, we do not have far to look: if we inscribe the icosahedron in a sphere S2, viewed as the Riemann
number sphere CP! = C U {00}, then its vertices will determine 12 points of C U {00}, which are the roots of a
polynomial fi5 of degree 12. Similarly, the midpoints of the edges and the faces are the zero-sets of polynomials
Jso and Hyg, respectively. This is a general recipe for the binary polyhedral groups; for the icosahedron we
construct these polynomials algebraically next. (See also Klein [4], [5], Schur [26] Chapter II §5 or Popov and

Vinberg [6].) O
Let ay, ..., a2 be the coordinates of the 12 vertices, then, in S? = CU{oo}. Then the homogeneous polynomial
12
fisle,y) = [[(@ - auy)
i=1

is an invariant of G149, its linear factors permuted by the rotations of the icosahedron. By choosing coordinates
suitably, in fact, we can write
frza(@,y) = 2y(z' + 112°y° — y'7).

The Hessian determinant of f = fis,

1| foe f
H - Tx Ty
20(2:y) 121 | fye fuy

— —.7720 + 2285[715]/5 _ 494.75102/10 _ 2283753/15 _ yQO,
is then an invariant of degree 20. Moreover, the Jacobian determinant of f = fi2 and H = Hyy,

L fe
Jg[)(l',y) = % Pflx Pf;;

= 2%+ 5220%%y° — 1000522%'° — 10005z 0y*° — 522z°y*® + y*°,
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is an invariant of degree 30. The polynomials fi5, Hog, J3p are pairwise algebraically independent but together
satisfy the relation

J? + H? =1728f°.
It follows from these computations (i.e. from comparison with our expression for the Hilbert series) that the
invariant ring Clz,y]“?° is generated by f, H,J. To say this in other language, the quotient space A?/G1s9 is
isomorphic to the surface in A? with equation

w? = 1728u® — v3.

(This is made precise in the discussion of Section 5.1, and in particular in Corollary 5.17.) The origin is a singular
point of this surface called a rational double point of type Eg. In the minimal resolution of this singular point the
exceptional set is a configuration of eight intersecting P's whose dual graph is the Dynkin diagram Fg. (See Figure
1.7)

Figure 1.7

1.3 Classical binary invariants

(a) Resultants and discriminants

Given polynomials of degrees d, e,

flz) = apr?+arz?™' + - +ag1r+ag = ag Hle (x —\;)

¢ 1.
g(@) = bor* + bt 4 bz b =bo[[oy (@ — ), (18)

with agby # 0, we set
R(f,9) = agb§ [T(n — y)-
i,

The vanishing of R(f,g) is the condition for the equations f(z) = 0, g(z) = 0 to have a common root. It
follows from Example 1.5 (applied to permutations of the variables in the polynomial rings C[Ay,...,\s] and
Clu1,- .-, te]) that R(f,g) can be expressed as a polynomial in the coefficients of f and g:

1.18 LEMMA-DEFINITION. The R(f,g) is equal to the (d + ¢) x (d + e) determinant

ao al ... ... ad
ao al ... ... ad
a[ a[ e e a[
O e
bo by --- - b,
bo by - - b,

and is called the resultant of f and g.

Proof. First we observe:

Claim: f,g € Clz] possess a nonconstant common factor if and only if there exist nonzero polynomials u, v € C[z],
with degu < deg f and degv < degg, such that vf + ug = 0.

One direction is trivial: if f, ¢ have a nonconstant common factor then we can write f = uh, g = vh for some
u,v,h € Clz], and these u, v have the required properties. In the other direction, let f = pi*...p%s be the unique
factorisation of f into irreducibles. Then each p;* divides ug, so p; divides u or g. Since degu < deg f, some p;
must divide g, and this proves the claim.
Let C[z], denote the subset of polynomials of degree at most r; this is a finite dimensional vector space with
basis 1,z,...,2". The preceding claim can be interpreted in terms of a C-linear map:
pr.g  Clzln—1 ® Clz]m-1 = Clz]ntm=1, (u,v) = vf +ug,

)



o~ N~ sLLALLE A ALEL £ ALT P ALVALALT AN AT A APAV A WAL

and says that f,g have a nonconstant common factor if and only if this linear map has nonzero kernel. Since
it maps between spaces of equal dimension n + m, this is equivalent to the vanishing of det ps,. Now use the
standard basis of each space to write py 4 as a matrix, to deduce that the determinant of py 4 is that given in the
lemma. This shows that f and g have a common root if and only the resultant vanishes, and the lemma follows
easily from this. a

Given a single polynomial f(z) as in (1.8), the expression

D(f)y=a™" [ i=M)

1<i#j<d
is called its discriminant.
1.19 LEMMA. The discriminant of f(z) is equal to the resultant of f(x) and its derivative f'(z),
D(f) = R(f, ")
Proof. Consider the polynomial
g(z) = f(z +¢) = apz’ + a2z + -+ a)_,x +al, ay = ap.

By Lemma 1.18 we have

ao al ... .. ad
ao al .. .. ad
2d _ aO al e e ad
a (Nt e=X) =
0 Hz,]( 3 ]) ao a’l aii
ao a’l .. .. a’d
! !
ao al .. .. ad
aO al ... ... ad
aO al ... ... ad
aO al ... .. ad
_ d , .
= e X| g dg-a . aad
€ ! € !
o Bl a4—0ad
0 g g
a) —aq a',—aq
1701 oo, %az0d
0 £ €
Cancelling ape? and letting € — 0 now shows that
aO al ... .. ad
aIO al DR .. ad
2d—1 H ao ai T T aq /
a Ai— ) = - R )
T e B T (£, £)
(2
J day (d—1a; --- g1
dag (d—1)ar -+ -+ ag—
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It will be convenient to consider projective coordinates (z : y) € P* and homogeneous polynomials

d

d o d

fl@y) =Y a ( .)md’ P = apr? + daz® Ty + <2> az®2y? + -+ agy’.

i
i=0

(It is traditional, and useful, to include the binomial coefficients in our forms.) Note that ag = 0 is now allowed:

in this case, co = (1:0) is a zero of f(z,y). A multiple root of the equation f(z,y) = 0 is now a common root
of the equations

_(Z’,y) = 07

and so the necessary and sufficient condition for the existence of a multiple root is the vanishing of the resultant
of the partials:
of 0
r(%L 97
ox’ Oy

We introduce d + 1 independent variables &y, ..., &y for the coefficients of a general form and write, in the
classical notation of Cayley and Sylvester,

d

d o
F) = (Cor . Eafay) = Z&(i)w“y’- (1.9)
=0
1.20 DEFINITION. The resultant 10f 10f
D) =R (3@; 38_y>
S (d-1)& Ea—1
b (d-1& . e i
_ b (D& - e b
El (d_]_)é'2 é’d
S (d-1& . R
b od-D& &
is called the discriminant of the form (¢ {z,y). O

1.21 EXAMPLE. For the quadratic form

f(z,y) = &2° + 263y + &y°

we get the familiar discriminant

&% &

D(f) = & & = &2 — 5%

1.22 EXAMPLE. The discriminant of the cubic form
f(z,y) = &a® + 3&2°y + 3&ay”® + &y°

is

o 26 & 0

0 2

o 8| =86 386 - 30066 + 166 + 168,

0 & 2% &

This is equal, in fact, to the discriminant of the quadratic Hessian form
1 rxr xT
H(z,y) = = A (& — &)a” + (16 — &o&s)zy + (6 — &i&s)y”

6 fyz fyy
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We consider next the action of matrices

g= (: g) € GL(2)

on forms (¢ {z,y) in (1.9). That is, under the coordinate transformation (z,y) +

new form,
(€Y gx) = (Ef oz + By, vz + dy).

One can expand this and rewrite it as

The coefficients £;(g) can be written
Zgl ,8,7,0
where §f is homogeneous of degree d in «, 3,7, 9.
1.23 PROPOSITION. For all g € GL(2) the discriminant satisfies
D(¢g) = (det )~ x D(¢).

Proof. Viewing

€]z, 1) = Z&() -

-

4+ v r44afLiL AT AN 4A4LTES VA S

N~ A

(ax + By, vz + dy) we obtain a

as an equation of degree d over the rational function field C(&,...,&s), we can denote its roots (in a splitting

field) by A1, ..., Ag. Thus
(€lz,1) =& H(l“ = Aiy)

and the discriminant is

DO =" J[ -

1<i,j<d

Transforming by the matrix g = <3 g ) € GL(2) gives

(§fax + By, vz + dy)

d

i=1
It follows that g transforms the differences (A; — A;) to

Ni—B 0N —B _ (ab =By - \)

B

cran ]I («- 22

—YAita =N+ a (PN —a)(yA —a)’

and hence

(@0 = By)(Ai = Aj)

&0 [T, (az + By — \i(yz + 0y))

)

D(&g) = e’ ] = D(&)(det g) D).

(YA —a)(7Aj — @)

1<i,j<d

More generally, we can consider arbitrary homogeneous polynomials in the coefficients &g, ..., &4
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1.24 DEFINITION. If a homogeneous polynomial F'(&, ..., &) satisfies
F(¢g) = F(¢), forall g € SL(2),

then F'is called a classical binary invariant. O

The set of binary forms of degree d is a vector space V; of dimension d + 1 on which the general linear group
GL(2) acts by & — &g. (The spaces Vy, Vi, Vs, ... are all the irreducible linear representations of GL(2), and will
reappear in Chapter 4; see Section 4.4.) This induces an action of GL(2) on the polynomial ring S = C[&p, ..., 4],
and a classical binary invariant (of degree e) is an invariant homogeneous polynomial for the restriction of this

action to SL(2); that is, it is an element of S5 L@ Proposition 1.23 says that the discriminant is a classical
binary invariant of degree 2d — 2.

(b) Binary quartics

The general binary quartic form, with variable coefficients &y, &1, &2, €3, €4, looks like:
(Efw,y) = oa" + 4612y + 662 y” + 4&say® + &y (1.10)

As we shall see in Chapter 4 (see Proposition 4.69), the classical invariant ring C[&y, &1, &2, &3, £4]°7(®) has Hilbert
series

1
(1=2)(1—13)

In particular, this indicates (see Proposition 1.9) the existence of invariants of degree 2 and 3; we can verify this
as follows. We make a change of variables U = 22, V = 2zy, W = y? and note that

P(t) =

tt=U?, 23y =UV, 42> =V?>=4UW, 2> =VW, y*=Ww?2

It follows that the quartic equation (£{x,y) = O transforms to a pair of simultaneous quadratic equations in
UV, W:
EU? 426UV + &(V2 +2UW) + 26VIW + W2 = 0,
AW -V2 = 0.

These two quadratic forms are represented, respectively, by the symmetric matrices

o & & 2
& & &, -1 ,
& & & 2
which have relative characteristic polynomial
o & & 2 o &1 &+ 22
det || & & & | +A -1 = | & - &
& & & 2 EH+20 & &

= 4N — g2 (HX — g3(9)-

1.25 PROPOSITION. The coefficients

2@ = |8 2W4 ggﬂz&@—%@+%&
S & &

g3(§) = | & & & | =&&E& — &8 — & + 2668 — &,
& & &

are classical invariants of binary quartics.
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(For an interpretation of g» and g3, see Remark 1.29 at the end of this section.)

Proof. A matrix
_(a B
g—<7 s > € SL(2)

transforms U, V, W into
Q*U + aBV + B2W, 2ayU + (ad + 1)V + 266W, 72U + 0V + 6°W,

leaving the quadratic 4AUW — V2 invariant (it gets multiplied by (det g)> = 1). In other words, SL(2) acts by
orthogonal transformations of (U, V, W)-space—that is, SL(2) — SO(3)—with respect to the inner product

2
-1
2

In particular, it acts with determinant 1. (Not —1, since SL(2) is connected.) The matrix

o & & +2A
TN = & L —X &
EH+2\ & &4

transforms to

a? 2ary 72 a? af B2

af ad+ Py v | TN | 2ay ad+ By 285

32 266 52 o v6 52
It follows that the transformation leaves the relative characteristic polynomial, the determinant of 7'()), invari-
ant. O

1.26 REMARKS. (i) Geometrically, the characteristic equation 43 — go(£)\ — g3(¢) = 0 determines the three
reducible elements (line pairs) in the pencil of plane conics

EU? + 26UV + (& — NV +2(E+ 20)UW + 265VIV + &W? =0
—corresponding, in other words, to the linear combinations T'(\) of the two quadratic forms.
Figure 1.8: Reducible elements in the pencil of conics

(ii) Taking a root A of the cubic characteristic polynomial, the corresponding quadratic form factorises as a
product of linear forms. The simultaneous quadratic equations for U, V, W therefore reduce to a pair of
independent quadratic equations, which can be solved. This gives a method of solution of the general
quartic equation.

(iii) In Chapter 11 we will show that the Jacobian of the elliptic curve

= f(z,y)
determined by the binary quartic f(z,y) = (£ [, y) has equation

T2 =40 — g2 (O — g3(6).
(See Section 11.3(c). Another good reference is Cassels [1].)

The discriminant of the quartic form (1.10) can be expressed in terms of the invariants g»(£) and g3():

& 36 3% &
& 34 3% &
_ o 36 3% &
b = & 3% 35 &
& 3% 35 &
&1 3&% 38 &

= 92(6)* —27g3(6).
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Note that under the action of a scalar matrix (g 2) € GL(2) the expressions g2(£), g3(£) are multiplied by

a8, a'?, respectively. Consequently, the expression

_ 92(8)°
D(¢)

is invariant under the action of GL(2) and is finite-valued on binary quartics with no multiple factors. GL(2)-
invariance means that the function

. Jquartics without 3
T {multiple factors } -G (afz,y) = g2(a)"/Dla),

J(§)

is constant on the orbits of GL(2), that is, it maps each orbit to a single point of the line. Conversely (and as we
would expect, since the space of quartics is 5-dimensional and GL(2) is 4-dimensional):

1.27 PROPOSITION. The fibres of J are precisely the orbits of GL(2).
Proof. We observe that every binary quartic without multiple factors is equivalent under GL(2) to the form
(22 + %)% = Mz2® — ¢y?)? (1.11)

for suitable choice of A € C. To see this, one can first change coordinates so that the four zeros of the quartic
are 0,00 and some b,b~* € C. Next, applying the Cayley transformation, z + (2 — 1)/(z + 1), these four zeros
become —1,1,¢,—c € C. The quartic has therefore been transformed to

(z? —y?) (& — SyP).

Finally, this can be brought to the form (1.11) by rescaling y suitably.
For the quartic form (1.11), the function .J takes the value

407 = A+ 1)3
272\ — 1)2

and this expression has the property that

4p? —p+1)% 4N - A+1)°
27u2(p —1)2  27A2(A — 1)2

for precisely the six values

1 1 1 A
=\ — 1—= - 1-X —F. 1.12
l"t Y 1 _ A’ A’ A’ ) 1 _ A ( )
To complete the proof it therefore suffices to show that for each of these u the form (22 + y?)% — u(z? — y?)?
equivalent under GL(2) to (1.11). For example, the transformation

is

1
T —== Yy

m ) y

vV —iA
takes (1.11) to
1
(5[72 + y2)2 _ X(m2 _ y2)2-

Likewise,
1

E(m_y)

1
T —=(T+y), Yy~

V2
transforms (1.11) to
A =1)(z® +4°)° = Aa® - ).

The remaining cases are similar. (See Exercise 1.3). |
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What we have shown here is that the affine line A! = C (see Section 3.1(a)) is a parameter space for GL(2)-
equivalence classes of binary quartics without repeated factors. However, this was possible because we had a
particularly concrete description of the invariant ring, and such cases are rare. Indeed, the above proof is also
very special to the case of binary quartics. Nevertheless, it is still possible to construct moduli spaces in much
more general situations, and it will be our aim to show this in the rest of this book.

It is also important to understand the orbits under SL(2). Consider the map

{binary quartics} — A?, (afz,y) = (g2(a), g3(a)).

Since g» and g3 are classical invariants, ¥ maps SL(2)-equivalence classes to points of the plane, and conversely
each fibre is a single orbit (as before, this is suggested by a dimension count: dim(quartics) —dim SL(2) =5-3 =
2):

1.28 PROPOSITION. Two binary quartics (a{z,y), (b{z,y) without multiple factors are equivalent under the
action of SL(2) if and only if (g2(a), g3(a)) = (g2(b), g5(b)). O

This follows from Proposition 1.27 together with the general theory of Chapter 5 (see Example 5.25). However,
if both (afz,y) and (b]z,y) have repeated factors, then Proposition 1.28 no longer holds. For example, the
quartics #2y? and z2(y? — x?) both map to the point (3, 1), although they are inequivalent under SL(2). Similarly
the three forms, 23y, * and 0 all map to the origin g» = g3 = 0 but belong to distinct orbits.

Figure 1.9
This phenomenon too will be explained in a more general setting in Chapter 5.

1.29 REMARK. Here is one interpretation of the invariants g, and gs. Identify a binary quartic, up to scalar,
with its (unordered) zero set of four points 21, 29, 23, 24 in the projective line P! = CU {co}. Then the number A
appearing in the proof of Proposition 1.27 is—up to the ordering of the points—just the classical cross ratio
function

(21 — 23)(22 — 24)

(71 — 24)(22 — 23)

A=

When the points are re-ordered, A is invariant under the Klein subgroup of the permutation group Sy, and its
orbit under the quotient S;/Klein = S; is the set (1.12). We can express this by saying that the function J on
binary quartics factorises as

J=jo (cross ratio)

function
where ( ) )3
4N =X +1
i i Pl — P! A —
IR 7 TR (A1)

is a Galois extension with Galois group S3. This map j has three branch points 0,1, 00 € P'. We see that j = oo
if and only if two of z1, 22, 23, z4 coincide, while:

j =1 — g2 = 0
(that is, the cross ratio is —1, 2 or % and 21, 22, 23, 24 are said to be anharmonic), and
j=0 <= g3=0

(the cross ratio is —w or —w? where w® = 1, and 21, 29, 23, 24 are said to be equianharmonic). O

1.4 Plane curves

While polynomials are algebraic objects, they acquire geometrical shape from their interpretation as plane curves,
surfaces and hypersurfaces.
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(a) Affine plane curves

For example, the zero-set of f(z,y) = y?> — 2% — 2 (Figure 1.10) highlights at once certain features.
Figure 1.10: The affine plane curve y®> —x? — 23 =0
First, one observes that there is a singular point. Recall the following well-known fact.

1.30 ImpriciT FuNcTION THEOREM. If f(a,b) = 0 and %(a,b) # 0, then the condition f(z,y) = 0 expresses
y locally as a function of . That is, there exist positive realll numbers €,0 > 0 and an analytic function

Y : ]D)a,e — ]D)b75,
where D, . := {z € C | |z — a| < €}, satisfying f(z,Y (z)) = 0 and such that the map
Dae = Dye x Dy g, z = (2,Y(2))

is an isomorphism to a neighbourhood of the point (a,b) in the curve C' : f(z,y) =0. a

If the other partial derivative %(a, b) is nonzero then similarly = can be expressed locally as a function of y.
If in this way one of z or y can be taken as a local coordinate on the curve then the point (a,b) is said to be a
nonsingular point; otherwise it is said to be a singular point of the curve.

1.31 DEFINITION. A point (a,b) on the plane curve f(z,y) = 0 is called a singular point if

O

By definition, the set of singular points of the curve is the set of common zeros of the three polynomials

f(z,y),0f [0z, 0f[0y.

1.32 EXAMPLE. In the case f(z,y) = y? — 2°

— 2% of Figure 1.10, the simultaneous equations
yr—a? -t =20 -322 =2y =0

have only one solution (0,0), which is the unique singular point of the curve. a

Consider the Taylor expansion at (a,b) of the polynomial in Definition 1.31:

flzy) = f(a,b)

of of
oG u-vglen )
+3 (=P G L@ 426w -0 - 0 Lawn + -5 @)
+..

The point (a,b) is a singular point when the terms up to degree 1 in this expansion vanish. This has the following
generalisation.

1.33 DEFINITION. A point (a,b) on the curve C : f(z,y) = 0 is said to have multiplicity m on C if the partial
derivatives of f(x,y) all vanish at (a,b) up to degree m — 1,
(9i+jf
Oxi oyl

(a)b):()) OSZ-F]STTL—].,

but there exists a partial derivative of order m which is nonzero at (a,b). O
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The simplest kind of singular point is a point of multiplicity 2. In this case we can consider the quadratic
equation
o0 f o0 f o0 f
2 2
b b)=0

with coefficients as in the (nonvanishing) degree 2 term in the Taylor expansion.

3 (a,b) + 2&n

1.34 DEFINITION. A point (a,b) at which the curve C' has multiplicity 2 and the quadratic equation above does
not have a repeated root is called an ordinary double point. O

Example 1.32 has an ordinary double point at the origin. An example of a curve with a double point (that is,
a point of multiplicity 2) which is not ordinary is

This is called a simple singularity of type A,,. When n = 2 it is called a cusp.

(b) Projective plane curves

Next, instead of a polynomial in two variables f(x,y), we shall consider the geometry of a homogeneous polynomial
in three variables

f(z,y,2) = E ajjpx'z’ ", aijr € C.
it jth=d

If f(a,b,c) =0, then f(aa,ab,ac) = 0 for any nonzero scalar a € C. It is therefore natural, given a homogeneous
polynomial, to consider the zero-set

C: flx,y,2)=0
as defining a subset of the projective plane

P2 ={(a:b:c) | (a,b,c)# (0,0,0)}.
The projective plane P? is covered by three affine planes
Up={(1:b:¢)}, Us={(a:1:¢)}, Us={(a:b:1)}.
Consequently, the projective plane curve C' C P? is obtained by gluing the three affine plane curves

A2=U; D> C: fl,y,z)=0
A =2U,D> Cy: f(l‘,].,Z)ZO
A2>2U; D Cy: f(z,y,1) =0.

(Gluing, in general, will be explained in Chapter 3.)

1.35 EXAmPLE. Let f(z,y,2) = vz — 2

z — 3. The projective plane curve
C: yY’z—a’2—-23=0

does not pass through the point (1:0:0) and is therefore obtained by gluing the two affine curves

UsD Cy: z—2%22—2°=0
UsD C3: y2—22—-23=0

via the isomorphism

02_{R}_)03_{P>Q}7 (m,z)H(m/z,l/z),
where P={z=y=0},Q ={z=-1, y=0}, R={z = z = 0}. (See Figure 1.11.) O
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Figure 1.11: The projective plane curve y?z — 2%z — 2% =0

The singular points of the projective curve C C P? are just the singular points of the affine curves C;. As we
have seen in Example 1.32, C5 has the origin as its only singular point. The curve Cs is nonsingular. So in this
example, C' is a cubic curve with an ordinary double point at (0: 0 : 1) and nonsingular elsewhere.

The following fact is very convenient for locating the singular points of a projective plane curve directly from
the homogeneous polynomial f(z,y, z).

1.36 PROPOSITION. The singular points (a : b : ¢) of the plane curve C': f(z,y,z) = 0 are the common zeros of
the three partial derivatives:
of _9f of

8$(a,b’ C) 8y (a,b,c) = &(aabyc) =0.
Proof. Suppose that the polynomial f(z,y,z) has degree d. Then f satisfies Euler’s identity:

of =~ of ~Oof _
m@x +y6y +zaz =d- f(x,y,z).

It follows that the zero-set of the partials in the proposition coincides with the zero-set of the polynomials

fand, G, g

In the affine plane Us, this is just the set of singular points of the curve C3 = C N Us. Similarly, the zeros in Uy
and U, are the singular points of C; and Cl. a

2

In the example f(z,y,2) = y?z — 2%z —2°, the singular points are found by solving the simultaneous equations

—2zz —32% =2z =y> —2° =0,

and the only solution is (0:0: 1).
The following can be proved in much the same way.

1.37 PROPOSITION. A point (a : b : c) € P? has multiplicity > m on the curve C : f(x,y,2) = 0 if and only if
all partials of order m — 1 vanish at (a: b : ¢),

amflf ] )
W(a,b,c):O, Z+]+k:m—1

O

Just as in Euclidean geometry one investigates properties of figures which are invariant under rotations and
translations, so in projective geometry one studies properties that are invariant under projective transformations,
or, to say the same thing, properties which do not depend on a choice of projective coordinates. In the case of a
projective plane curve C : f(z,y,z) = 0, performing a projective transformation—or, equivalently, changing to
a different system of homogeneous coordinates—gives a curve with defining equation

M(z,y,2) = flax + by + cz,d'z + by +z,a"z+ 0"y + ') (1.13)
for some invertible matrix
a b ¢
M=1[d b | eGL3,0).
all bll cll

Thus, the projective geometry of plane curves amounts to the study of properties of homogeneous polynomials
which are invariant under transformations coming from invertible matrices in this manner. A typical example of
such a property is singularity. Another is irreducibility: a curve is said to be irreducible if its defining equation
does not factorise into polynomials of lower degree.

1.38 DEFINITION. Two plane curves are said to projectively equivalent if their defining equations are transformed
into each other by some invertible matrix M € GL(3,C). |
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Clearly projective equivalence is an equivalence relation, and in fact the classification of plane curves of degree
2 up to this equivalence is rather simpler than the problem of Section 1.1. A projective plane curve of degree 2
can be written
C: anz’+ a22y2 + a3322 + 2a12xy + 2a1372 + 2a923yz = 0.

If we take the coefficients as entries of a symmetric matrix

a11 @12 a3
A= axn ax» axs |, Qj5 = Qji,
a31 az2 ass

then the defining equation of the curve can be expressed in matrix form:

xr
(z,y,2)A |y | =0.
z

The change of coordinates (1.13) transforms the matrix A to

"

a a a a b c
MAM=1|b b b |A|l d bV ¢
c cl cll all bll /1

Consequently, we obtain the following from well-known facts of linear algebra.

1.39 PRoOPOSITION. Over the complex field C the projective equivalence class of a plane conic is determined by
the rank of its defining symmetric matrix. a

This means that in projective geometry there are only three equivalence classes of conic, of ranks 3, 2 and 1.
A rank 3 conic is projectively equivalent to 2z — y? = 0. Rank 2 is equivalent to zz = 0 and is therefore a union
of two distinct lines. The rank 1 case is equivalent to 4> = 0 and is therefore a double line.

Figure 1.12

In particular we see that, for degree 2 curves, being reducible is equivalent to being singular—however, this
is a feature special to conics. Let us classify singular irreducible plane curves of degree 3. One has already been
seen in Example 1.35, and there exists one other type.

1.40 PROPOSITION. An irreducible plane cubic curve which has a singular point is projectively equivalent to
one of the following:

(i) y*z = 2°;
(ii) y?z = 23 — 222,

Proof. Choose homogeneous coordinates so that the singular point is (0 : 0 : 1). Then the defining equation
f(z,y,2) of the curve C cannot include the monomials 2z, x22,y22, and so is of the form

f(z,y,2) = zq(z,y) + d(z,y)

for some forms ¢ of degree 2 and d of degree 3. By irreducibility, the quadratic form ¢(z,y) is nonzero, and hence
by making a linear transformation of the coordinates z,y it can be assumed to be one of

q(z,y) = zy, y°.

In the first case the cubic form d(z, y) must contain both monomials 23, y* (otherwise C is reducible). Making
a coordinate change z — z + ax + by gives

f(@,y,2) = ayz + (d(z,y) + az’y + bay?).

By choosing the coefficients a, b suitably we can bring the bracket to the cube of a linear form, and hence the
curve is projectively equivalent to type (ii).
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In the second case, d(x,y) must include the monomial z®. Changing coordinates by z + = + ky for a suitable
choice of coefficient k, one can kill the term 2y in d(z,y) and so obtain

f(x,y,2) = 2y + (az® + bry® + cy®) = y? (2 + bz + cy) + az®.
If we now take as new coordinates </ax, y and z + bz + cy, then the equation takes the form (i). a
Case (i) is the gluing of two affine cubics

UsD Cy: z=2°
U3D C3: y?=2°

via the isomorphism
Cy —{R} = C3 — {P}, (x,2) — (z/2,1/2),

where P = {x =y =0} and R = {z = z = 0}.

Figure 1.13: The projective curve y?z — 2% =0

1.5 Period parallelograms and cubic curves

The first plane curves one encounters which have moduli in a meaningful sense are the cubics. Changing our
point of view somewhat, we shall approach these in this section from the direction of doubly periodic complex
functions.

(a) Invariants of a lattice

Consider a parallelogram in the complex plane C with one vertex at the origin. The four vertices are then
0,w1,ws,w; +wy € C.
Figure 1.14

The area of this parallelogram is equal to the absolute value of the number

wlw2 — wle
)
2v/—1

called the oriented area. The set of parallelograms with positive oriented area is parametrised by

A= Im(wle) =

9 = {(wi,w2) | A(wi,w2) >0} C C2.

When A # 0 the complex plane is tesselated by the parallelogram and its translates by integer multiples of w;
and wy. The set of vertices of all the translated parallelograms then form a rank 2 free abelian subgroup of C
called a lattice. This lattice is uniquely determined by the parallelogram, but the converse is not true. For a given
lattice, giving a tesselating parallelogram is equivalent to specifying a Z-basis.

Figure 1.15: Fundamental domains of a lattice.

To say this another way, lattices in C are parametrised by the quotient space of the action of GL(2,Z) on C?
by

(w1, ws) — (awr + bwa, cwy + dws), (Z Z) € GL(2,Z).

If we restrict to parallelograms with positive oriented area, that is, to the open set 9 C C?, then we have an
action of the modular group SL(2,Z), and the quotient $)/SL(2,7Z) is a parameter space for lattices.
SL(2,7) is an infinite discrete group, neither finite nor connected. Nevertheless, the quotient $)/SL(2,7Z) can

be constructed using invariant forms—that is, invariant analytic functions—on $). The most basic of these are
the Eisenstein series, for each even number 2k > 4,

1
Gk (w1, w2) = Z

2k "
(a2 (0,0) (L F M)
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One can write this as a function of the lattice I' C C as
1
Gon(D) = > —p.
0#£~€r v

(This series is absolutely convergent as soon as 2k > 3. Note, moreover, that if 2k is replaced by an odd number
then Gy, vanishes identically.)

1.41 DEFINITION. An SL(2,7Z)-invariant holomorphic function F'(w;,ws) on ?) which satisfies, for all o € C*,
Flaw;,aws) = a Y F(wy,ws)

is called an automorphic function of weight w (in homogeneous form). a

1.42 REMARKS. (i) Multiplication of a lattice I’ by a nonzero complex number a € C corresponds to making a
rotation together with a dilation (or contraction). The action of C* by I' = aI' commutes with that of
the modular group SL(2,7Z).

(ii) By restricting to w; = 1, wy = 7, an automorphic function of weight w determines a holomorphic function
f(7) on the upper half-plane

$H={7r|Im7 >0}

which satisfies

f(7) = (c+dr) v f (ZIZ:)

Conversely, given a function f(7) satisfying this relation, the function

Fwr,w2) =wi “f (ﬂ)

w1

is an automorphic function of weight w. The definition above is therefore equivalent to the notion of a
(nonhomogeneous) automorphic form in one variable.

(iii) The first examples of automorphic forms are the Eisenstein series Gay, of weight 2k. One can show (see,
for example, Serre [7], chapter 7) that the ring of all automorphic forms (that is, the ring of all invariant

holomorphic functions on $)) has Hilbert series equal to

1
(1 —t4)(1—18)°

It follows from Proposition 1.9 that the ring is generated by G4 and Gs. a

Consider now the holomorphic map
H—C, (wi,ws) = (60G4(wr,ws), 140G (wr, ws)).
Clearly this map factors through the quotient space (that is, the quotient complex manifold) 9 /SL(2,Z).
1.43 THEOREM. The holomorphic map
9/SL(2,Z) — C, [[] = (u,v) = (60G4(T), 140G(T"))

is a bijection to the open set u® — 27v? # 0.
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(b) The Weierstrass o function

To prove Theorem 1.43 we shall make use of the Weierstrass g function

1 1 1
p(2) = plzw1,w2) = =" ( %s:(o 0) { (z —mwy —nwy)?  (mwy + nws)? } ’

or, alternatively,

p(Z)Zp(Z;F)ZZ—IQJr > {(%—%}

ogyer C\F T 7)

p(z) is a doubly periodic meromorphic function, that is,

p(z +wi1) = p(z +w2) = p(2),

with a double pole at each lattice point and regular elsewhere. Moreover, its Laurent expansion at the origin is
given by
1 - 2n
p(x) =5+ > 20+ 1)Ganga(T)2""
n=1
(Thus, as a generating function for the Eisenstein automorphic forms, o(z;wi,ws) ties together the moduli 7
plane and the doubly periodic z plane.)
The following properties of doubly periodic functions are fundamental.

1.44 LiouviLLE’S THEOREM. Let f(z) be a doubly periodic meromorphic function on the complex plane.
(i) If f(z) is holomorphic everywhere then it is constant.
(ii) The sum of the residues of f(z) over any period parallelogram is zero.
(iii) Over any period parallelogram f(z) has the same number of poles as zeros.
(iv) In a given period parallelogram, suppose that f(z) has zeros ui,...,u, and poles vy, ...,v,. Then

U+ -+ u,+vr+--+v, €I

Note that in parts (iii) and (iv), poles and zeros are to be counted with their multiplicities.
Proof. For (i), observe that an entire doubly periodic function is bounded, and therefore constant. Statements
(ii), (iii) and (iv) are obtained by integrating

Iz zf'(z
fe), L8, )
[ 1)
respectively, around the boundary of a period parallelogram. O

The derivative of p(z) is

1 1
! = 2| — - -
p(z) Z3+ Z (2—7)3
0#£v€l
2 [ee]
= —Z—3—§ 2n(2n + 1)Gapyo(T) 221

n=1

This is a doubly periodic meromorphic function with a triple pole at each lattice point and regular elsewhere. Let
g2(T) = 60G4(T), g3(T') = 140G4(T), and let f(z) = p'(2)? — 4p(2)® + g2(T)p(z) + g3(T'). Then, if one computes
the Laurent expansion of f(z) at the origin one finds that f(z) is holomorphic at the origin and vanishes there.
But f(z) is doubly periodic and holomorphic away from the lattice points, so by Liouville’s Theorem 1.44(i) we
obtain the identity

p'(2)* = 4p(2)° — g2(D)p(2) — g3(I). (1.14)

1.45 LeEMmMA. If f(X,Y) is a polynomial in two variables which vanishes when X = p(z), Y = ¢'(z), then
f(X,Y) is divisible by Y? — 4X3 — g5(T') X — g3(I).
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Proof. Viewing f(X,Y) as a polynomial in Y, let 7(X,Y’) be the remainder on division by Y2 —4X3—go(T') X —
93(T"). This has degree at most 1 in Y and has the property that r(p(z), ©'(z)) = 0. On the other hand, ¢'(z) is
an odd function, and so cannot be expressed as a rational function of the even function p(z). Hence r(X,Y") is
ZEero. a

1.46 LeMMA. The cubic equation 4X> — go X — g3 = 0 corresponding to the right-hand side of (1.14) has no
repeated root. In particular, its discriminant g3 — 27g3 is nonzero.

Proof. If @ € C were a repeated root then we could write (1.14) as

9'(2)* = 4(p(2) — )*(p(2) + 2a),

and hence
(c2E) = apte) +20)
p(2) —a '
This implies that the function ©'(z)/(p(2) — @) is doubly periodic with a simple pole at lattice points and regular
elsewhere; but this contradicts part (ii) of Liouville’s Theorem. a
Proof of Theorem 1.43. Differentiating both sides of (1.14) gives

p'"(2) = 6p(2)* — 592(T). (1.15)

Computing the Laurent expansion at the origin of each side of this equation, we obtain

2
1 & /2%-1 B 1 & -
T+ Z ( 3 >G2kz2k t= (Z_z + Z(Qk — )Gy 2> — 5G1,

k=2 k=2
and comparing coefficients yields a recurrence relation:

3

ot = GE D)@k T D(E—3)

(20 — 1)(2) — 1)G2iGaj, k>4 (1.16)
2

i+j=k

It follows from this that all G5y for £ > 4 can be expressed as polynomials in G4 and Gg. For example,

3

G3:7

5
G2, Gio = HG4G6.
Now, given two lattices I', T, if
Gu(l) = Gu(I"),  Ge() = Gg(I"),

then by the identity theorem it follows that p(z;T) = p(z;T") on the whole complex plane. The Weierstrass
function determines the lattice as the set of its poles, and so I' = I''. This shows that the map in Theorem 1.43 is
injective. That its image is in the complement of the curve u® — 27v? = 0 follows from Lemma 1.46. Surjectivity
on this open set follows from results of Chapter 9 (see Section 9.6). i

(c) The p function and cubic curves
Let us consider the holomorphic map
C — P?, 2 (p(2) 1 9'(2) : 1). (1.17)

Double periodicity means that this map factors down to the Riemann surface C/T". Moreover, (1.14) implies that
the image is contained in the cubic curve

Y27 =4X?% — g2 X 7% — g3 73, (1.18)
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The origin 2z = 0 is a double pole of p(z) and a triple pole of ©'(z), and so it maps to the point (0: 1:0) € P2
Moreover, this point is an inflection point of the curve; that is, its tangent line Z = 0 meets the curve with
multiplicity 3 here and has no further intersection points.

The cubic curve (1.18) is nonsingular by Proposition 1.36 and Lemma 1.46. Both the quotient C/T" and the
cubic are compact Riemann surfaces, and so the map is an isomorphism.

Figure 1.16

1.47 EXAMPLE. Let w; = 1. If ws = /=1 then Gg(I') = 0; so the Riemann surface C/T" is isomorphic to
the curve Y2Z = 4X?% — XZ% If wy = (=1 + /=3)/2 then G4(T') = 0, and it is isomorphic to the curve
Y27 =4X3 - 73, O

The curve (1.18) can also be viewed as the Riemann surface of the multivalued function /423 — g2z — g3. By
considering (elliptic) integrals

7{ dz
o \/42% — g2z — g3

along closed paths « on the surface we recover our lattice in the complex plane.

Figure 1.17: The Riemann surface of \/423 — g2z — g3. €1, ez, e3 are the three roots of 4z° — gyz — g3 = 0.

This is the subgroup I' C C counsisting of values of the integral taken along all (homology classes of) loops «
and defines a mapping (g2,¢g3) — T which is the inverse map of the map of Theorem 1.43. Indeed, this is a
strengthening of the theorem, linking in a very pretty way automorphic functions with periodic maps. Extensions
of this sort of discussion to more general algebraic varieties are one of the themes at the heart of moduli theory.

Finally, let us look at the relationship of the p function with functions on degenerations of the cubic curve.
First, consider a complex multiple al' of the lattice [' and its limit as || — co. The Eisenstein constants g (")
tend to zero, and the p function and its derivative approach

1 2

p(z) = = ©'(z) = >

Thus, in the limit, the holomorphic map (1.17) becomes
C — P?, 2 (21 =2:2%).
The image of this map is the singular cubic curve
YV?Z =4X°

with its singular point (0 :0 : 1) removed.
Next, we consider the effect of fixing one period, say, w; = m, and letting the other go to infinity, that is,
wy > kwa, and we take the limit as k — 0o. The behaviour of the p function and its derivative is then:

plz) — z_12 + Z { (2 —lmr)2 - (n7lf)2 } ’

neEZ

1 1
.73

sin® z

—2cosz
p'(z) = ——,

sin® z

and the map (1.17) becomes

1 1 —2cosz

Cos P M< - 71>
’ sin?z 3 sin®z

This map descends to the quotient C/Zm = C*, and its image is the singular cubic curve

V2Z=4(X+17) (X -32)
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with its singular point (=1/3:0: 1) removed.

In Proposition 1.40 the curve of part (i) corresponds to the origin of the (g2, g3) plane, while the curve of
part (ii) corresponds to the curve g5 — 27g5 = 0. The preceding discussion shows that in addition the p function
behaves well under degeneration to these cases.

1.48 REMARK. A nonsingular cubic curve always has exactly nine points of inflection. If we choose projective
coordinates so that one of these is (0 : 1 : 0) with tangent line Z = 0, then the defining equation of the curve
takes the form (1.18). On the other hand, it is also possible to choose coordinates in such a way that the nine
inflection points are

(-1:w":0), (0:-1:w), (W':0:-1),

for i =0,1,2, where w = e2™V=1/3_ For these coordinates the equation of the curve takes the form
X34Y3 42723 -3\XYZ =0, A # 1,w,w?, 00.

This is called the Hessian cubic. a

Exercises

1. A linear map E : V — V from a vector space to itself which satisfies E? = E is called a projection. Show that
the dimension of the image is equal to the trace of E.

2. Show that the determinant

o & & &
&G & & &
& & & &
& & & &

is a classical invariant for sextic binary forms
(€] z,y) = &oz° + 662°y + 156a"y” + 2062°y° + 15642y + 662y + E6y°.

@) Show that the six linear fractional transformations defined by (1.12) form a group, and that this group is
isomorphic to the symmetric group Ss.

(ii) Show that, under the action of this group on the field of rational functions C(\), the field of invariants is
generated by
(A =A+1)°
AZ(A—1)2



Chapter 2

Rings and polynomials

The aim of this chapter is to give a very brief review of the basic algebraic techniques which form the foundation
of invariant theory and of algebraic geometry generally. Beginning in Section 2.1 we introduce Noetherian rings,
taking as our point of departure Hilbert’s Basis Theorem, which was discovered in the search for a proof of
finite generation of rings of invariants. (This result will appear in Chapter 4). In Section 2.2 we prove unique
factorisation in polynomial rings, by induction on the number of variables using Gauss’s lemma. In Section 2.3 we
prove the important fact that in a finitely generated algebra over a field an element contained in all maximal ideals
is nilpotent. As we will see in Chapter 3, this observation is really nothing other than Hilbert’s Nullstellensatz.

A power series ring in one variable is an example of a valuation ring, and we discuss these in Section 2.4.
A valuation ring (together with its maximal ideal) is characterised among subrings of its field of fractions as a
maximal element with respect to the dominance relation. This will be used in Chapter 3 for proving the Valuative
Criterion for completeness of an algebraic variety.

In the final section we discuss Nagata’s example of a group action under which the ring of invariants which
is not finitely generated—that is, his counterexample to Hilbert’s 14th problem. This is constructed by taking
nine points in general position in the projective plane and considering the existence and non-existence of curves
of degree d with assigned multiplicity m at each of the points, and making use of Liouville’s Theorem on elliptic
functions.

2.1 Hilbert’s Basis Theorem

We begin with a discussion of the Basis Theorem, which is the key to Hilbert’s theorem of finite generatedness
that we will meet in Chapter 4. In Hilbert’s original paper [19] the word ideal is not used; and we would like to
state the Basis Theorem in a form close to that expressed by Hilbert. Today we learn that an ideal of a ring S is
a subset J C S satisfying:
reS,yeJ = zy €J
y,2€J = yEtzel

The following definition, however, is closer to the spirit of the original notion:

2.1 DEFINITION. Given a subset Y = {yx | A € A} of aring S, the set of all linear combinations

Z TAYX

A€A
(where the sum is finite—that is, zx = 0 for all but finitely many A € A) with coefficients zy € S is an ideal of S,
called the ideal generated by Y . a

This is completely analogous to the idea of a subspace spanned by some set of vectors in a vector space. If Y is
a finite set y1, - . ., Ym, then we denote the ideal generated by Y by (y1,-..,¥m). Any ideal that can be expressed
in this way is said to be finitely generated.

2.2 THEOREM. Let S = k[zy,...,z,] be a polynomial ring over an arbitrary (commutative) field k, and let .J
be an ideal generated by a subset Y C S. Then there exists a finite subset y1,...,ym € Y which generates J.

41
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(This is similar to the definition of a compact topology: that for an arbitrary open cover there can be found
a finite subcover.) We shall prove the theorem in the following well-known (and equivalent) form:

2.3 THEOREM. In the polynomial ring k[z1,...,z,] every ideal is finitely generated.

In the case of a single variable the following stronger result is true, which we shall prove as preparation for
the theorems above.

2.4 THEOREM. In the polynomial ring in one variable k[z], every ideal is generated by a single element.

Proof. We may assume that the ideal I C k[z] is nonzero, and we let f(z) be a nonzero polynomial in I with
minimal degree. It is then enough to show the following;:

Claim: Every g(z) € I is divisible by f(z).

We assume that g(z) # 0, and we shall prove the claim by induction on the degree d = deg g(z). (The case
d = 0 is trivial since g € I implies g = 0 if [ is a proper ideal.) By the way in which f(z) was chosen we have
m = d —deg f(z) > 0. Thus, for a suitable choice of constant a € k, the polynomial ¢, (x) = g(z) — az™ f(z) has
degree strictly less than d. On the other hand, g;(x) € I, so by the inductive hypothesis it is divisible by f(z).
Hence so is g(x). |

We can extract from this proof the ‘principle of the leading term’. For any commutative ring R we denote by
R[z] the ring of polynomials in one variable x with coefficients in R.

2.5 DEFINITION. (i) Given a polynomial
f(z) =ao+ a1z + -+ apz”™ € Rlz],
we denote by Lt f(z) the leading term a,z™ where a, # 0. If f(z) is identically zero then we define
Lt f(z) =0.
(ii) If I is an ideal in R[z], then we define Lt I to be the ideal generated by the set
{Lt f(2) | fz) € I}
of all leading terms of polynomials in 1. a

For an ideal I C R[z] let I<j C I be the subset consisting of polynomials in I with degree at most k, and let
ar C R be the set of coefficients of z* in all polynomials f(z) € I<j. Then Lt I can be expressed as

Zakx’“ =ay+mz+az+---C Rlz].
2

That is, Lt I consists of all polynomials for which the coefficient of each z* belongs to a.

2.6 LEMMA. (PRINCIPLE OF THE LEADING TERM.) Let I be an ideal in R[x], and suppose that
fi(z), ..., fn(x) € I. If the leading terms Lt fi(z),...,Lt fy(x) € Lt I generate Lt I, then the polynomi-
als fi1(z),..., fn(z) generate I.

Proof. We shall show by induction on degg(z) that, if g(z) € I, then it is contained in the ideal J =
(fi(z),..., fn(z)). (As before, if d = 0, then ¢ = 0.) By hypothesis, the leading term of g(z) can be expressed
in terms of Lt fi(x),...,Lt fn(z):

N
Lt g(z) = ZaixmiLt fi(x)
i=1

for suitable a; € R, and where we have set m; = deg g(x) — deg f;(x). This means that the polynomial

N
g1(z) = g() — Z a;z™ fi(z)

has strictly lower degree than g(z), and so by the inductive hypothesis belongs to J. This implies that g(z) it
belongs to J. a

A ring R in which every ideal is finitely generated is called a Noetherian ring.
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2.7 THEOREM. If R is a Noetherian ring, then the polynomial ring in one variable R[z] over R is also Noetherian.

Proof. Let I be an ideal in R[z]. The ideals a,, C R defined above form an increasing sequence a,, C a1,

and we set
a=Jan
n>0

It is clear that a is an ideal in R. By hypothesis, then, a is finitely generated. This means that we can find a
finite number of polynomials f;(z), f2(z),..., fa(xz) € I whose leading coefficients generate a. Denote by e the
maximum degree of the polynomials f;(x). This implies that a, = ae+1 = - -+ = a (the ascending chain condition).

Using the Noetherian property of R again, we can choose some more polynomials fari1(z),..., fn(z) €
I whose leading terms Lt fary1(z),...,Lt fn(z) provide generators for ag,aiz,...,a._12°"'.  Then
Lt fi(z),...,Lt far(x),Lt farqe1(z),...,Lt fy(z) is a finite set of generators for Lt I, and hence by Lemma
2.6 the polynomials fi(z),..., fn(z) generate I. a

If we repeat n times the operation of passing from the ring R to the polynomial ring R[z], then we obtain the
polynomial ring in n variables R[z1,...,z,]. It follows that if we apply Theorem 2.7 n times, starting from the
field &, then we obtain Theorem 2.3. a

2.2 Unique factorisation rings

It is well known that every integer m has a prime factorisation

m = £pi"py*...p"  where pi,p2,...,p are distinct primes,
and that this factorisation is unique. Polynomials in the polynomial ring k[z1,...,z,] have a similar property;

first we shall collect together some ideas that we need.

2.8 DEFINITION. (i) A ring R in which uv = 0 (for u,v, € R) only if one of u,v = 0 is called an integral domain.
(i) An element u € R for which there exists some v € R satisfying uv = 1 is called an invertible element.
(iii) An element u € R with the property that u = vw only if one of v,w is an invertible element is called an
irreducible element.
(iv) An element p € R is called a prime element if the ideal (p) C R that it generates is a prime ideal. In other
words, if a product vw is divisible by p, then one of v, w is divisible by p. O

(Recall that a prime ideal is an ideal p C R with the property that, if ab € p for some a,b € R, then at least
one of a, b is contained in p. Equivalently, an ideal p C R is prime if and only if the residue ring R/p is an integral
domain.)

The ring of rational integers Z is an integral domain, and its invertible elements are 1 and —1. Up to sign,
therefore, the irreducible elements in Z are exactly the prime numbers. When R is the polynomial ring k[z] in one
variable over a field k, the invertible elements are the nonzero constant polynomials and the irreducible elements
are the irreducible polynomials in the usual sense. In each of these cases, it follows from the Euclidean algorithm
that every element is prime. In general, every prime element is irreducible, but the converse is not true. (See
Exercise 2.1.)

2.9 DEFINITION. An integral domain R is called a unique factorisation domain if the following two conditions
are satisfied.

(i) Every irreducible element is prime.

(ii) An arbitrary element of R can be expressed as a product of (a finite number of) irreducible elements. O

2.10 THEOREM. The polynomial ring k[z1,...,x,] over a field k is a unique factorisation domain.
As in the previous section, this will follow inductively from:

2.11 THEOREM. IfR is a unique factorisation domain, then the polynomial ring R[z] is also a unique factorisation
domain.



-~ N~ seL4L AL £ ALEL & AUVALT AN 44T 4 VAL LT SV AAL AL

In the polynomial ring R[z] there are two kinds of prime elements. Let us begin with the simpler kind:
2.12 LEMMA. A prime element in the ring R is also prime in the ring R[z].
The proof of this follows easily from Exercise 2.2.

2.13 DEFINITION. A polynomial in R[z] is said to be primitive if it is not divisible by any prime element of R. O

Lemma 2.12 implies the following.
2.14 Gauss’s LEMMA. A product of primitive polynomials is again primitive.

From now on, R will be a unique factorisation domain and K will be its field of fractions. We shall view R
and R[z] as subrings of K and K[z]:

U U
R — Rz]

Note that a polynomial ¢(z) in K[z] can always be expressed as a product of a primitive polynomial in R[z] with
an element of K; moreover, such a representation is unique up to multiplication by invertible elements of R.

2.15 LEMMA. Suppose that q(z) € Klz] and that f(x) € R[z] is primitive. Then f(z)q(z) € R[x] implies
q(z) € Rlz].

Proof. As just noted, we can write g(z) = c¢'(z), where ¢'(z) is a primitive polynomial and ¢ € K. By

hypothesis, ¢¢'(z) f(z) € R[x], and by the Gauss Lemma 2.14 the product ¢'(z) f(z) is a primitive polynomial. It
follows that ¢ € R and so ¢(z) € R[x]. O

In other words, the property of a polynomial g(x) € R[z] being divisible by a primitive polynomial f(z) is the

same in the ring K[z] as in the ring R[z]. From this observation we deduce the following.

2.16 PROPOSITION. For a primitive polynomial f(x) € R[z] the following three conditions are equivalent.
(i) f(x) is an irreducible element in R[z].
(ii) f(x) is an irreducible polynomial in K|x].
(iii) f(z) is a prime element in R[z]. a

Together with Lemma 2.12, this exhausts all the prime elements of the ring R[z].

Proof of Theorem 2.11. That an irreducible element in R[z] is prime we have seen in Proposition 2.16. What
remains is to show that an arbitrary f(z) € R[z] can be expressed as a product of irreducible polynomials in
R[xz]. First of all, we can do this in K[z] and write

f(x)=g1(x) - gn ()

for gi(z),...,gn(z) € K[z]. Now, if we take a primitive polynomial h;(z) € R[z] which equals g;(x) up to
multiplication by an element of K, then f(z) is divisible by each h;(z) and we obtain

f(@) = chi(z) - hn(x)

for some ¢ € R. Now, by decomposing ¢ into primes in R, we get a prime decomposition of f(z) in R[z]. |

Later on we shall make use of the following property of unique factorisation domains.

2.17 PROPOSITION. Let R be a unique factorisation domain and p C R be a nonzero prime ideal containing no
other prime ideals ¢ C p of R except q = 0,p. Then p is generated by a single element.

(A prime ideal containing no other prime ideals q C p except q = 0, p is said to be of height 1.)

Proof. Pick any nonzero element u € p and decompose it into primes in R. Since p is a prime ideal, it must
contain one of the factors in this decomposition. Call this element v. Then v generates a prime ideal (v), but by
hypothesis this coincides with p. a
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2.3 Finitely generated rings

We begin by noting the following fact.

2.18 LEMMA. The polynomial ring k[x1, ..., x,] contains infinitely many irreducible polynomials. |
Indeed, if the field is infinite, it is enough to take the linear polynomials x; — a for a € k. The case of a finite

field is left to Exercise 2.6.

2.19 DEFINITION. Let S C R be a subring. An element b € R is said to be integral over S if it satisfies an
equation f(b) = 0 for some monic polynomial with coefficients in S:

fl@)=a"+az" ™ + -+ an1z +a, € S[a].

R is integral over S if every element of R is integral over S. a

2.20 LEMMA. Suppose that R is integral over a subring S C R and that a C S is an ideal. If a generates R,
that is aR = R, then a = S.

Proof. Since 1 € aR, we can write 1 = a;ry + - - - a7y, for some a; € a and r; € R. It is now enough to prove
the result in the subring R' = S[ry,...,ry] C R, since aR = R implies aR’ = R'. Since R’ is integral over S, it
is finitely generated as an S-module; so let by,...,by € R’ be generators. By hypothesis there exist coefficients
a;; € a such that

b1 = a11by +aieby +---+ainbn
by = as1b; +azby + - +aznby
by = an1bi +ansbs + - +annbn.
Let A be the determinant
aip @2 - 1N
A =det|Iy — 21 a22 aaN
aN1 an2 ' GNN
Then A — 1 € a while Aby = Aby = --- = Aby = 0 (multiply both sides of the matrix equation by the adjugate
matrix, noting that adj M x M =det M x I). Hence A=0and so 1 € a. a

2.21 LEMMA. If R is integral over S and R is a field, then S is also a field.

Proof. Let a € S be anonzero element. Then a~' € R is integral over S, so there exists some monic polynomial
fl@)=2" +az" " + -+ ap_12 + a, € S[x] satisfying
1 1 ap as Ap—1

I =ataiteat

+a, = 0.

Multiplying through by a”~! gives

1
—2 -1
——=a,+aa+-+a, 16" " +a,a”" ",
a

from which we see that a ! € S. |

2.22 LEMMA. Suppose that an integral domain B is algebraic and finitely generated over a subring A C B.
Then there exists a nonzero element a € A such that Bla™!] is integral over Ala™!].

Proof. Any element b € B is algebraic over A; this means that it satisfies an equation f(b) = 0 for some
nonzero polynomial f(z) with coefficients in A. Denote by 0 # L(b) € A the coefficient of the leading term, so
we can write

fx) =L®)z" +az" '+ +ap_1z +a, € Afz].

Consequently b is integral over A[L(b)~']. Given generators b"), ... (™) of B/A, the product a =
L({®W)---L(b™)) now has the required property. ad
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2.23 PROPOSITION. Let K be a field which is finitely generated as an algebra over a field k. Then the degree of
the extension K[k is finite.

Proof. 1t is enough to show that the extension K/k is algebraic. Let yi,...,yn be generators of K as a
k-algebra, ordered in such a way that:

(i) v1,--.,ym are algebraically independent; and

(ii) Ym+1,--.,yn are algebraic over k(y1,...,ynm).
Our aim is to show that M = 0. In the previous lemma, take B = K and A = k[yy,...,yn]: this gives a nonzero
polynomial f(yi, ...,y ) such that K is integral over k[yi, ...,y f(y1,---,ysm) ). By Lemma 2.21 this implies
that k[y1,...,ynm, f(y1,...,ym) *] is a field. So for any polynomial g(yi, ...,y ) we have

1 _ h(yi, .- ym)

9, ym)  Fly, - ym)”
for some natural number n and polynomial h(y:,...,ys). In other words, g divides a power of f. But by Lemma
2.18 there are infinitely many choices for irreducible g, if M > 0, and this forces M = 0. a

By a k-algebra we will mean a commutative ring containing the field & as a subring.

2.24 COROLLARY. If R is a finitely generated k-algebra and m C R is a maximal ideal, then the composition
k— R— R/m
is a finite (algebraic) field extension.

(Recall that an ideal m C R is mazimal if there are no ideals between m and R, or, equivalently, if the residue
ring R/m is a field.)

2.25 COROLLARY. Let R be a finitely generated k-algebra and S C R a subring containing k. If m C R is a
maximal ideal then m N S is a maximal ideal in S.

Proof. By the previous corollary k — R/m is a finite extension of fields; hence by Lemma 2.21 the intermediate
residue ring S/mN S is a field. m|

2.26 PROPOSITION. Let R be an integral domain finitely generated over a subring S. Then there exists an ideal
I C R such that SN T =0 and the ring extension S — R/I is algebraic.

Proof. Let K be the field of fractions of R, let k be the field of fractions of S and let R C K be the subring
generated by R and k. This is a finitely generated k-algebra, and, if we choose any maximal ideal m C R, then
k — R/m is an algebraic extension of fields. It follows that I = m N R has the required properties. a

2.27 THEOREM. Let R be a finitely generated k-algebra and a € R an element contained in all maximal ideals
of R. Then a is nilpotent.

Proof. We consider the linear polynomial 1 — az in R[z]. Let m C R[z] be an arbitrary maximal ideal; by
Corollary 2.25, the intersection m N R is a maximal ideal in R. Therefore m contains a, and this implies that it
cannot contain 1 — az. It follows (since m is arbitrary) that 1 — ax is an invertible element: that is, there exists
a polynomial ¢ + c1x + - - - + ¢, 2™ such that

(1 —az)(co+crz+ -+ +cpz™) = 1.

From this it follows easily that a"*t! = 0 (Exercise 2.3). |

This last result will be the key to Hilbert’s Nullstellensatz in the next chapter.



2.4 Valuation rings

(a) Power series rings

A complex function f(z), regular in a neighbourhood of the origin, has a Taylor expansion of the form

oo
_ n Tirn ™
f(z) = Zanz , nlgr;o lan| < 400.
n=0
The set of all power series Y~ a, 2™ of this form, equipped with the usual rules of addition and multiplication,
forms a ring, called the convergent power series ring and denoted by C{z}.
A meromorphic function on a neighbourhood of the origin has a Laurent expansion of the form

oo
flz)= Z anz", lim {/|a,| < +oo.
n=—N

n—o0

The set of these Laurent series, again with the usual algebraic operations, is a field; moreover, this field is exactly
the field of fractions of C{z}.

These two examples are the prototype for the valuation rings and valuation fields that we will discuss in
the following. In our discussion, however, the topology of the complex number field C will play no part, and
accordingly we can view the convergence conditions in the definitions above as dispensable; these definitions
then make sense over an arbitrary field k. To emphasise this change of viewpoint we shall replace the analytic
coordinate z by the formal symbol . We then consider the set of formal power series

fO) = ant",  an €k
n=0

With the usual rules of addition and multiplication this set becomes a ring, called the formal power series ring
over k and denoted by k[[t]]. In contrast to the case of a convergent power series, f(t) is not to be interpreted as
a function. Only at ¢t = 0 is evaluation of f allowed, and this determines a surjective ring homomorphism

sp:k[lt]] =k, f(t) = f(0) = ao.

This is called the specialisation map, or reduction of the ring. Its kernel, ker sp, is the maximal ideal generated
by t. If f(0) # 0, then f(t) is an invertible element of k[[t]]. Moreover, although f(¢) is not a function, one can
nonetheless define the multiplicity of ¢ = 0 as a zero: this is the unique integer n > 0 for which there exists a
nonzero element u(t) € k[[t]] such that

Ft) = t"u(t),  u(0) #0.

Laurent series can also be considered formally. We consider the set of all formal series, allowing only finitely
many nonzero negative powers:

fit) = Zanz", an € k, #{n < 0| a, #0} < c0.
neZ

This set becomes a field under the usual algebraic operations, called the field of formal Laurent series and denoted
by k((t)). This is the field of fractions of the formal power series ring k[[¢]] and can be expressed as:

k(1) = lim ¢ VR[] = (¢ VR[]

N—o0
N

In fact, a nonzero element f(¢) in k((t)) can be written uniquely as

FO = t"u(t), () € KAl u(0) £0.

This integer n € Z is called the wvaluation of f(t) (with respect to the variable t) and is written v(f). Thus we
have a map
Uk((t))_O%Za fHU(f)a
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also called the valuation. At 0 € k((¢)) the valuation v(0) is not defined, but this will cause no problems; when
necessary it is convenient to adopt the convention that v(0) = +o0.
It is easy to verify the following properties of the valuation.

* v(fg) = v(f) +v(9);
o o(f + g) 2 min{v(f),v(9)};
e if v(f) # v(g) then equality holds.

(b) Valuation rings

In analysis one has notions of limits, such as the limit lim,,,~ a, of a sequence {a,}, and limits of functions,

such as -
S
lim 2 — 1.
t—0 ¢

In algebra the notions that correspond to such limiting processes are valuation rings and their specialisations.
2.28 DEFINITION. Let R be an integral domain with field of fractions K. If, for every x € K, either z € R or
1/z € R, then R is called a valuation ring. |
If R be an integral domain with field of fractions K, then the set R* of invertible elements in R forms a
subgroup of the multiplicative group K* of nonzero elements of K. We denote by
A=K"/R"

the (abelian) quotient group. Following the usual custom we shall write the group operation in A additively. Note
in particular that the residue class of 1 € K* is denoted 0 € A.

2.29 DEFINITION. For z,y € K* with residue classes Z,7 € A, we define
>y if z/y€eR.
O
This defines a partial ordering on the group A and is a total ordering if R is a valuation ring. In this case A,
together with the ordering >, is called the valuation group, and the natural homomorphism
v:K* — A, x — T.

is called the valuation of K with respect to the ring R.
Depending on the case being considered, it may also be convenient to introduce a maximal element +00 to A
and to define v(0) = +00. Then the valuation extends to the whole field K by

T ifx#0

v: K — AU {+o0}, ”(5”):{+oo ifx=0.

2.30 EXAMPLE. The ring of formal power series R = k[[t]] is a valuation ring with valuation group isomorphic
to the infinite cyclic group Z. The valuation v : K* = k((t)) — 0 — Z then coincides with that described in the

previous section. O

2.31 EXAMPLE. The collection of rational functions

g(t
{901 10,90 € b1 10) 0} < k),
allowing only denominators which are nonzero at ¢t = 0, is a valuation ring, again with valuation group Z. a

A valuation ring whose valuation group is infinite cyclic as in these examples is called a discrete valuation
ring. Another typical example is the ring Z, of p-adic integers.
Valuations have the following properties (already seen for the formal power series ring).



2.32 PROPOSITION. Let x,y € K.
(i) v(zy) = v(z) + v(y).
(i) v(z +y) > min{v(z),v(y)}.

Proof. We only need to prove (ii). It is sufficient to assume that both z and y are nonzero. By definition of
a valuation ring, one of z/y or y/x belongs to R; since the statement is symmetric in z,y, we may assume that
y/z € R. Then by definition v(y) > v(z), while (since 1+ (y/z) € R) v(1 +y/x) > v(1) = 0. Hence

v(z+y)=v(@(l+Y%) =v(@)+v(l+%)>v(z) =min{v(z),v(y)}.

O
The next fact is an easy exercise.
2.33 PROPOSITION. Let R be a valuation ring with field of fractions K and define
m={zcR| i ¢ R}U{0} C K.
Then m is the unique maximal ideal in R. In particular, every valuation ring is a local ring. O

2.34 EXAMPLE. The formal power series ring R = k[[t]] is a local ring with maximal ideal m generated by ¢, and
the quotient R/m is isomorphic to k. a

We next clarify the position occupied by the valuation rings among all local integral domains (Theorem 2.36
below).

2.35 DEFINITION. Let A, B be rings and m C A, n C B be maximal ideals. We say that (A, m) dominates (B,n)
if B < A is a subring such that m N B = n. The relation of dominance is written

(A,m) > (B,n).

Note that a ring/maximal ideal pair (A4, m) is always dominated by its localisation

An={Z sy ygmf.

This shows that a maximal element with respect to dominance is always a local ring. Moreover, the following is
true.

2.36 THEOREM. Let K be a field and R C K be a subring with maximal ideal m C R. If the pair (R, m) is
maximal among subrings of K (and maximal ideals in them) with respect to dominance, then R is a valuation
ring with field of fractions equal to K.

(The converse is also true—see Exercise 2.9.)
Proof. Pick an element € K. We will show that either z or 1/x € R. These inclusions will follow, respectively,
from the following two possibilities for z.

(1) z is integral over R.

In this case let R = R[z] C K be the subring generated by R and z, and let m C R be an arbitrary maximal
ideal. Then the intersection p = R Nm is a prime ideal in R and there exists a natural inclusion

R/p < R/f.

Here }NB/tTl is a field and is integral over R/p, so by Lemma 2.21 p is a maximal ideal. Since R is a local ring,
this implies p = m. But this says that (R, m) dominates (R, m), so, by the maximality hypothesis with respect to
dominance, equality holds. Thus z € R.
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(2) z is not integral over R.
In this case we let R = R[1/z] C K be the subring generated by R and 1/z.

Claim: 1/z is not an invertible element in R.

For otherwise we would have an element
ay +agr P4 Fage M 4 agrd e R[1/z]

equal to x. Multiplying this equality through by the denominator we obtain an equation

d+1 d d—1 _

T — a1z — asx -o-—agr —ag41 =0, a; €R,

contrary to hypothesis. _
It follows from the claim that there exists a maximal ideal m C R containing 1/z. As before, we consider the
prime ideal p = RN m and the natural inclusion

R/p < R/m.

But this map is surjective since 1/x € m; so in this case also p is a maximal ideal and hence equal to m. As in
case (1), we now argue from the maximality hypothesis that 1/z € R. O

From this theorem one can deduce the existence, for any field K, of valuation rings with field of fractions K.
(More precisely, K is any field that contains a subring which is not a field. A finite field, for example, does not
satisfy this requirement.) For in the set of all pairs (B, n), where B C K is a subring and n C B is a maximal
ideal, ordered by dominance, one notes that every chain has an upper bound (for this it is enough to take unions);
then by Zorn’s Lemma and Theorem 2.36, we see that every (B,n) is dominated by some valuation ring (A4, m)
in K.

This is already a strong result. However, by thinking more carefully about the residue fields involved we can
give a more precise formulation. Note that whenever (4, m) dominates (B,n) there is an induced inclusion of
residue fields B/n < A/m.

2.37 THEOREM. Let B be a subring of a field K and n C B be a maximal ideal. Then there exists a valuation
ring (R, m) dominating (B, n) whose field of fractions is K and such that the field extension

B/n— R/m
is algebraic.
Proof. Let k be the algebraic closure of the residue field B/n and fix an embedding B/n < k. Then denote by
h:B—k

the composition B — B/n < k. We now define an order relation on the set of pairs (4, g), where A is a subring
of K and g : A — k is a ring homomorphism, as follows. We set (A;1,¢91) > (A2, ¢2) if and only if (A;,ker ¢1)
dominates (As,ker go) in the sense of Definition 2.35 and ¢y : A1 — k restricts on Ay to g2 : A2 — k. On this
partially ordered set every chain has an upper bound. Consequently, there exists a maximal element (R, g) which
dominates (B, h). It is now enough to show that the pair (R, m), where m = ker g, is a valuation ring.

For this, we look again at the proof of Theorem 2.36. Although the property of being a valuation ring followed
from maximality, there were two cases to be considered. In case (1) the field extension

R/m < R/fm

was algebraic since the element z € K was integral. This means that the embedding of R/m in k induced by
g extends to an embedding of E/fﬁ in k. Hence the homomorphism g : R — k extends to a homomorphism
g : R — k. In case (2) we no longer have the extension of residue fields, but we nevertheless construct an
extension. For this, one can see that the maximal element (R, ker g) for the new order relation is a valuation
ring. O

Here is an example of a case in which the extension of residue fields is transcendental and at the same time
of a valuation ring which is not discrete.
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2.38 ExXAMPLE. Let K = k(z,y) be the field of fractions of the polynomial ring in two variables k[z,y]. The
subring

={ﬂ9wfwxmmekm,mm¢o}

g(x)
is a discrete valuation ring with residue field k and field of fractions k(z). The subring
fz,y) }
= z,y),9(x,y) € k[z,y], g(0, 0
{280 ja.g6o) € Mol 90 7

is a discrete valuation ring, with field of fractions k(z,y), which dominates B. Its residue field is k(y) and is a
transcendental extension of the residue field k of B.
Take a valuation ring C' whose field of fractions is equal to the residue field of A: for example,

_ [d) . .
= {2 ). e € Kl 0 20}
and define e.y)
T,y
R={ 22D fe.y) gt0.0) € ool 90.) € co}.

(This is called the composition of the valuation rings A and C.) This is (an example of) the valuation ring whose
existence is guaranteed by Theorem 2.37. R has the same residue field as B, but note that it is no longer discrete.
In fact, the valuation group of R is Z ® Z equipped with the lexicographic ordering. O

2.5 A diversion: rings of invariants which are not finitely generated

At the International Congress of Mathematicians at Paris in 1900, David Hilbert, who had proved the finite
generation of classical rings of invariants, posed the following question.

HILBERT’S 14TH PROBLEM: If an algebraic group acts linearly on a polynomial ring in finitely many variables,
is the ring of invariants always finitely generated?

Although it inverts the historical order of events, we will explain in the remainder of this chapter the coun-
terexample to this question due to Nagata [11].

2.39 REMARK. The fundamental result which we will prove in Chapter 4 (see Theorem 4.53) is that the answer
to Hilbert’s problem is yes if the group G is linearly reductive. In fact, the answer is also yes if G is the additive
(non-reductive) group C (or, more generally, of the field k. See Weitzenbdck [16] or Seshadri [15]). What about
the additive group C* for s > 2?7 Nagata found a counterexample for s = 13, and below we improve this to s = 6
(Corollary 2.46 below). (Since writing this book, the author has found counterexamples for s = 3 (Mukai [10]),
but the case s = 2 remains open!) a

(a) Graded rings

2.40 DEFINITION. A ring R with direct sum decomposition R = @, R(.) satisfying R)R(ery C R(eyer) i8
called a graded ring. O

The following fact is obvious, but is of fundamental importance because of its role in the proof of Hilbert’s
Theorem 4.51 later on (see Exercise 2.10).

2.41 PROPOSITION. Suppose that R is a graded ring for which R,y = 0 foralle < 0. If the ideal R, = @, R(e)
is finitely generated, then R is finitely generated as an algebra over R ).

More generally one can replace Z, indexing the summands in the definition of a graded ring, by any group or
semigroup. But note that in the above proposition, conversely, if the semigroup (or that part of it supporting the
grading) is not finitely generated, then the ring R will also not be finitely generated.

First, two examples.
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2.42 ExAMPLE. Consider the set of all polynomials f(z,y) in two variables, whose restriction to the z-axis is
constant. This defines a subring R C k[z,y]. A polynomial in R can be written

f(z,y) = constant + yg(z,y).

Thus, as a vector space over k, the ring R has a basis consisting of monomials z™y™ such that n > 1 or
(m,n) = (0,0) (see Figure 2.1). In other words, R is a semigroup ring, graded by the semigroup G C Z?
consisting of such pairs (m,n):

R= @ E{z™y"}.
(m,n)eG
It is clear that G is not finitely generated, and hence R also fails to be finitely generated. a

2.43 ExAMPLE. The vector subspace of k[x,z~!,y] spanned by monomials
{z™y" | —V2m < n < V2m}

is also a subring. Again, this is a semigroup ring graded by a semigroup which is not finitely generated. O

Figure 2.1: Two examples of infinitely generated rings

These examples can be generalised in the following way. Suppose that a ring R is bigraded, that is,

R= @ Ripm)

(m,n)€ez?
such that the product of R, ) and R, sy is contained in R,/ nynr)- Define the support of R to be
Supp R := {(m,n) € Z? | Rmny # 0}.
If R is an integral domain then Supp R is a subsemigroup of Z2.

2.44 PROPOSITION. If R is a bigraded integral domain and Supp R is not finitely generated as a semigroup,
then R is not finitely generated as a ring. a

(b) Nagata’s trick

Let A?N = C2N be a 2N-dimensional complex affine space with coordinates (pi,...,pn,q1,--.,qn), Where we
will assume that N > 3. (For the definition of affine space, see Section 3.1(a) in the next chapter.) We define an
action of CV on A?N by

Di F Diy
g Sipi + G,
for (s1,...,sn) € CV, and an action of (C*)Y on A%V by
pi —  lipi,
% = tig,
for (t1,...,tn) € C* x --- x C* = (C*)N. Note that these two actions commute. The ring of invariants for the
action of CV is C[py,...,pn], while the ring of invariants for the action of (C*)" is C, the constant functions

only.
We now pick N points w; = (a1,by),...,wy = (an,by) in the affine plane A%Z. With respect to these points,
we consider the subset G € CV of transformations s € CN which leave invariant the three rational forms

A = alq_1_+_..._+_aNq_N’
p1 PN
Y41 PN
c = L4
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Thus G C CV is a vector subspace of dimension N — 3.
Similarly, the set of transformations ¢ € (C*)"V which leave invariant the product D = p; ...px is a subgroup
of codimension 1, which we shall denote by T' C (C*)™.

2.45 THEOREM. Let N = 9. If the points wi,...,wy € A? are sufficiently general, then the ring of invariants
for the action of G -T = C% - (C*)® C GL(18,C) on the polynomial ring Clpy,...,pN,q1,---,qn] is not finitely
generated.

The following corollary follows from Hilbert’s Theorem 4.53 in Chapter 4, since the invariant ring is S”, where
S is the ring of G-invariants, acted on by the (linearly reductive) group T

2.46 COROLLARY. If N = 9 and the points w1, ...,wy € A% are sufficiently general, then the ring of invariants
Clpi,...,pN,q1,---,qn]¢ under the action of G = C° fails to be finitely generated. a

First of all, it is clear that the field of rational functions invariant under the action of the group G-T is generated
by A, B,C and D. Consequently, the ring of invariants consists of those rational functions in A, B, C', D which
are polynomials in p1,...,PN,q1,. -+, qn:

R := (C[pl,...,pN,ql,...,qN]G'T = C(A,B,C,D)NClp1,...,DN+q1,-- - qn]

C(C(pla"'apNaqu"'vqn)-

It is not hard to show that an element of R is necessarily a polynomial in A, B, C, that is, R C C[A, B,C,D,D1].
The invariant ring R is therefore bigraded by the degree in D and the homogeneous degree in A, B,C. We will

write
R = EB Rd,m)»

d>0
mEL

where
Riam) = {D4"™f(A,B,C) | f homogeneous of degree d}.

What is the support of this bigraded ring? Clearly, when m < 0, the homogeneous polynomial f is completely
arbitrary, while for large m > 0 the condition that D4=™ f(A, B,C) be a polynomial in p;, ¢; becomes nontrivial.
Nagata’s trick is the next lemma, which determines the support of this bigraded invariant ring in terms of the
geometry of plane curves.

2.47 LEMMA. For a homogeneous polynomial f(z,y, z) of degree d and for a positive integer m > 0, the following

are equivalent:
(i) D= f(A,B,C) € Rigm);
(ii) f(z,y,z) has a zero of multiplicity m at each of the points wy = (a; : by : 1),...,wy = (an : by : 1) € P2

Proof. Condition (i) means that the expansion of
DI-™mf(A B,C) =
(pl...pN)dfmf(alz_i+...+aNZ_z;,blg_i+...+bNZ_z;,1qo_i+...+Z_z]\vr)
has no denominator. The coefficient of (g1 /p;)? in the expansion of f(A, B,C) is f(a,b1,1), and so p}* fails to
appear in the denominator if and only if f(a,b;,1) = 0. The coefficient of (g1 /p1 )9 is

fm(al,bl, 1) <a2q—2 + - +(qu—N> +fy(a,1,b1, 1) <b2% + -+ qu—N>
P2 PN p2 PN

+fz(a17b171) <q_2 +e-+ q_N> )

b2 PN

where f., fy, f- are the partial derivatives of f. Thus p{”_l fails to appear in the denominator if and only if
fa(a1,b1,1) = fy(a1,b1,1) = f.(a1,b1,1) = 0. This proves the lemma for m = 1, 2; the cases m > 3 are similar. O
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2.48 REMARK. Nagata’s strategy (Nagata [11], [12]) is now to show that the set of pairs (d, m) for which there
exists a projective plane curve f(z,y,2) = 0 as in Lemma 2.47(ii) is an infinitely generated subsemigroup of Z2,
and hence by Proposition 2.44 that the ring of invariants is infinitely generated. In fact, this works if N = s2
is the square of a natural number s > 4: that is, there exist such plane curves only if d/m > s (so the ring is
supported on a semigroup similar to that of Example 2.43). a

In the case N = 9, on the other hand, the supporting semigroup is actually finitely generated, but nevertheless
the bigraded ring fails to be finitely generated. This is what we will show next, by exploiting the relationship
between plane cubics and doubly periodic complex functions.

(c) An application of Liouville’s Theorem

In order to prove Theorem 2.45 we are going to use the holomorphic map (1.17) (see Section 1.5(c)) to build a

set of N = 9 points wy, ..., wy € P? for which the ring of invariants
C[ply' -y PNHqLs - )QN]G.T = @ R(d,m)
d,meEZ

fails to be finitely generated. The key to this is the last part of Liouville’s Theorem 1.44. Fix a lattice in the
complex plane I' C C and a period parallelogram. Inside this parallelogram we pick nine distinct points

Wi,...,wy € Cmod T,

and we let
w1:(a1:b1:1),...,w9:(a9:b9:1)€A2 C]P)2

be their images under the map (1.17). Theorem 2.45 will follow from the following:
2.49 PROPOSITION. If, for all natural numbers n € N,

n(wy + -+ +wy) €T,
then the ring @d’m R(q,m) fails to be finitely generated.

The set of homogeneous polynomials f(z,y,z) of degree d is a vector space of dimension (d+1)(d+2)/2, and
the requirement that f vanish with multiplicity m at a given point imposes at most m(m + 1)/2 linear conditions
on this space. Hence:

dim Ry > $(d+1)(d+2) — §m(m+1)
(2.1)
= 3(d-3m)(d+3m+3)+1.

In particular, R4, # 0 whenever d > 3m. It turns out, from the way the nine points have been chosen, that
the converse is also true; and moreover, that when d = 3m equality holds in the above estimate.

2.50 LEMMA. Assume that m(wi + -+ wg) ¢ I'. Then:
(i) if d < 3m, then R(q m) = 0;
(ii) if d = 3m, then dim R4 ,) = 1.

Proof. Given f(A,B,C) € R4,m), we consider the function f(p(2),¢'(2),1). This is holomorphic away from
lattice points, with a pole of order at most 3d at the origin. On the other hand, note that it has a zero of order
at least m at each of the points wy, ..., wy.

(i) If d < 3m, then it follows from Theorem 1.44(iii) that f(p(2), p'(z), 1) is identically zero. By Lemma 1.45,
it can therefore be expressed as

f(mayv Z) = (y22 - 4:1"3 - ngZ2 - 9323)h(w5y72)'

But then h(z,y,2) € R(g—3m-1), and we can apply the same reasoning. By induction, then, f(z,y,z) = 0.
(ii) If d = 3m, it is enough to show, again, that f(p(z), ©'(z),1) = 0. If not, then by Theorem 1.44 (iii) and
(iv) we see that m(wy + -+ + Wy) € T', contrary to hypothesis. O
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By Lemma 2.50(i) together with (2.1), the bigraded ring ®d,m R(4q,m) has support
{(d,m) | d>3m, d >0} C Z?,

and this is finitely generated. However, we can show that the ring itself is not finitely generated by using (2.1)
and Lemma 2.50(ii).

Proof of Proposition 2.49. Let fo(x,y,2) = y*z —4a® — gowz® — g32® € R(31). By Lemma 2.50(ii), fo generates
all R4 m) along the line d = 3m (see Figure 2.2); so if R is finitely generated, then the remaining generators can
be chosen from the subring

= @B Rum

d>(34e)m

for some sufficiently small rational number ¢ > 0. For each such (d,m), multiplication by fo defines a sequence
of maps ; ; f
X X X
Riam)y = Riat3m+1) —> ==+ — Riatsa,mta)s

and these maps must all be surjective if R is generated by fo and R°. However, this is impossible, as (2.1) gives
for the dimensions an estimate

dim R(4130,m+a) > $me(d +3m +6a + 3) + 1,

which tends to infinity as a — oo. Hence R = 4,m B(a,m) cannot be finitely generated. a

Figure 2.2

2.51 REMARK. In fact, after writing the original version of this book the author realised that an alternative
argument could be given using the fact that the support of the bigraded quotient ring R/(fp) is not finitely
generated. This is closely related to an example of Rees (Rees [14]). o

Exercises

1. Show that in the integral domain Z[/—5] the number 3 is irreducible but not prime. Hint: Use, for example,

6=(14++v-5)(1-+v-5).
2. Show that if R is an integral domain, then the polynomial ring R[z] is also an integral domain.

3. For an element a in a ring R, suppose that the linear polynomial 1 — ax is an invertible element in the ring
R[z]. Show that a is nilpotent.

4. Show that an integral domain with only finitely many elements is a field.

5. Prove that an integral domain which contains a field k£ and is finite dimensional as a vector space over k is a
field.

6. Prove Lemma 2.18 in the case when k is a finite field.
7. Show that the formal power series ring k[[t]] over a field k is an integral domain.

8. Show that the only ideals in k[[t]] are the powers of the maximal ideal (¢™). (In particular, every ideal is
principal.)

9. Prove the converse of Theorem 2.36: every valuation ring is maximal in its field of fractions with respect to
dominance.

10. By studying the proof of Theorem 4.51, give a proof of Proposition 2.41.
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Chapter 3

Algebraic varieties

In the broadest terms, a manifold means a topological space equipped with a sheaf of rings which is locally
isomorphic to a given ringed space or spaces, its ‘local models’. For differentiable manifolds and complex mani-
folds, respectively, the local models are open sets in R” and C", together with the sheaves of differentiable and
holomorphic functions on these spaces. Algebraic manifolds, or varieties, are defined analogously. We first fix a
finitely generated field extension K of the ground field &, and then take as our local models the spectra Spm R
of rings having K as their field of fractions. In other words, an algebraic variety is obtained by gluing together
ringed affine varieties possessing the same algebraic function field. This chapter explains these notions of affine
varieties, their sheaves of rings and their gluings.

We begin by defining n-dimensional affine space A™ over the complex numbers C as the set C" equipped with
the Zariski topology and elementary sheaf of rings O assigning to a basic open set D(f) C C" the ring of rational
functions Clzy,...,2,,1/f(x)]. These constructions are easily generalised from A™ to the set Spm R of maximal
ideals in any finitely generated algebra R over any algebraically closed field k. One calls Spm R an affine variety,
and a morphism Spm R — Spm S is the same thing as a k-algebra homomorphism S — R. An algebraic variety
is then a ringed topological space obtained by gluing together affine varieties with a common function field, and
in good cases are separated: the most important examples are projective varieties (Section 3.2). Many properties
of affine varieties can be defined for general algebraic varieties using a covering by affine charts.

Section 3.3 explains categories and functors in elementary terms, and how an algebraic variety X determines
in a natural way a functor X from the category of algebras over the ground field £ to the category of sets. From
this point of view the idea of an algebraic group enters in a natural way: an algebraic group is simply an algebraic
variety G for which the functor G takes values in the category of groups. In the affine case, G = Spm A, this
property is equivalent to the existence of a k-algebra homomorphism A — A ® A (the coproduct) satisfying
various conditions.

A projective variety is a particular case of a complete algebraic variety. An variety X is called complete if
every projection with X as fibre is a closed map. In practice, however, completeness is usually verified by means
of the Valuative Criterion. We prove this in the final section and apply it to toric varieties: completeness of a
toric variety is equivalent to the property that its defining fan covers R™.

3.1 Affine varieties

(a) Affine space

To begin we will work over the field £ = C of complex numbers; this is familiar and convenient, though in fact
the only property of C that we need is its algebraic closure. By affine space A" we shall mean a ringed space
consisting of n-dimensional complex space C" as its underlying set, equipped with Zariski topology and structure
sheaf O, both of which we shall explain in this section.

Given an open set U C C" in the usual Euclidean topology, we denote by O**(U) the ring of holomorphic
complex-valued functions on U. This defines a sheaf

{open subsets of C*} — {rings}, U— O(U). (3.1)

o7
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By the complex analytic space C}, we shall mean the topological space C* equipped with the sheaf O*'. The
affine space A™ will be a polynomial version of this object.

First of all, given an ideal a C C[zy,...,z,], we define a subset V(a) C C" consisting of the common zeros of
all polynomials in a (or, equivalently, of a set of polynomials generating a):

V(a)={aeC" | f(a) =0 for all f € a}. (3.2)

This has the properties that for arbitrary families of ideals {a;| i € I} we have

V() =V (Z a,») ,

iel i€l
while for finite families {ay,...,a,} we have
U V) =v| ] a
1<i<r 1<i<r

In other words, the collection of all subsets V(a) C C" is closed under the operations of taking arbitrary inter-
sections or finite unions and contains § = V(C[x1, ..., z,]) and C* = V(0).

3.1 DEFINITION. The topology on C* with the subsets V(a) C C*, over all ideals a C Clzy,...,x,], as closed

sets is called the Zariski topology. We shall denote C" equipped with this topology by (Cglg. O
Given a polynomial f € Clzy,...,z,], we consider the complement of V((f)) C C",
D(f) = {a € C" | f(a) #0}. (3.3)
This is an open set, which we shall call a basic open set. Given two polynomials f,g € Clzy,...,z,], we have
D(fg) = D(f) N D(g),
so that the collection of basic open sets is closed under finite intersections. Moreover, for an ideal a C C[z1, ..., zy],
C' -V(a) = | D(f),
fea

so the open sets D(f) form a basis for the Zariski topology.
One can now define a sheaf (3.1) for the Zariski topology on Cjj,. This is in fact an example of an elementary
sheaf:

3.2 DEFINITION. Let X be a topological space, and let {/x be the set of its nonempty open subsets. Let K be
a set and Py its power set. A mapping
F:Ux — Pk

with the property that, for any collection of nonempty open sets {U;| i € I} C Ux,

F (U Ui> = Fy),

i€l iel

is called an elementary sheaf of subsets of K. a

Figure 8.1: An elementary sheaf

Note that since F(W) = F(UUW) = F(U) N F(W), an elementary sheaf always has the property that, for
open sets U, W € Ux,
UcW = F({U)D>FW).
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The set K may have more structure: if K is a module and every F'(U) is a submodule, then F is called an
elementary sheaf of modules; if K is a ring and every F(U) is a subring then F is called an elementary sheaf of
rings, and so on.

In the situation we are considering K will be the field C(z1,...,z,) of rational functions on X = Chig- This
is the field of fractions of C[zy,...,z,], consisting of rational expressions
g(xl ) ) mn)

T ) h ... n .
Wzt an) ere g,h € Clz1,...,x,) and h # 0

The polynomial g(z) is finite-valued at all points of C*, but the same is not true of the function g(z)/h(z).
However, if we allow for h(x) only powers f(z)™ then we obtain rational functions which are finite-valued at all
points of the basic open set D(f). We shall write

g(z)
e n 1 = PR Rl (3 ] Z
Gty 1) = { HE 1 9 € Qoo ], m> 0}
for this set of functions, which is a subring of C(z1, ..., ).
Now, in the spirit of (3.1), we define
O(D(f)) = Cla1, ..., zn, 1/ f(2)]; (3.4)

and, more generally, since any Zariski-open set U C alg 1S @ union

U=C"-V(a) =] D)

fea

of such sets, we define

o) = () OD(f)). (3.5)

f€a

3.3 ProPosITION. O : U — O(U) as above defines an elementary sheaf on CJj, of subrings of the rational
function field C(xy, ..., x,).

The proof of this will appear in a more general situation in the next section (Proposition 3.16).

3.4 DErFINITION. The Zariski topological space (C;‘lg equipped with the sheaf O is called n-dimensional affine
space, denoted by A™. O

Let p C Clz1,...,zy,] be a prime ideal. The closed set V(p) C CI,, equipped with the induced (Zariski)
topology and elementary sheaf O (defined by U NV (p) — OU NV(p)) := OU)/p N O(V)), is called an affine

variety.

3.5 ExAMPLE. Proposition 2.17, applied to the polynomial ring R = C[zy,...,z,], can now be expressed in
more geometrical language: an affine variety X C A" of codimension 1 is defined by the vanishing of a single
polynomial equation, X = V((f)), f € Clz1,...,z,]. An affine variety X C A" of codimension 1 is called an
affine hypersurface. When n = 2, this is a plane curve. a

(b) The spectrum

The affine space A™ is a triple consisting of an underlying space C", its Zariski topology, and structure sheaf
O. We shall see next that all three of these elements are determined by the polynomial ring Clz1, ..., z,] alone.
Once this is understood it is simple to define affine algebraic varieties more generally.

3.6 REMARK. We could retain the ground field C as in the previous section, but since the Euclidean topology
is not needed (and in the algebraic setting can even be misleading) it will be clearer to return to an arbitrary
algebraically closed ground field k. a
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We begin by observing that the ring homomorphism which assigns x; — a; € k for each i = 1,...,n: that is,
klzy,...,z,] =k, e fla, ... a,),

has kernel equal to the maximal ideal generated by the n linear polynomials

1 — ay, o — a2, N LTp — Ap.-
3.7 THEOREM. Every maximal ideal in the polynomial ring k[z1,...,z,] is of the form (z1 — a1,...,T, — ap)
for some ay,...,a, € k.
Proof. Let m C k[zy,...,z,] be an arbitrary maximal ideal. Then the residue field K = k[zy,...,z,]/m can

be viewed as a k-algebra, and is finitely generated. We consider the composition of ring homomorphisms
kE— Elzy,...,xn] = kz1,...,2,]/m=K.

This expresses K as a field extension of k, which by Proposition 2.23 is finite and therefore algebraic. But since

k is algebraically closed, this shows that & — K is an isomorphism. Hence there exist elements aj,...,a, € k
such that

ri=a; modm fori=1,...,n.
Therefore each z; —a; € m, and since (21 —ay, . .., T, —a,) is a maximal ideal it follows that (z1 —ay,...,z,—a,) =
m. O

Applying Theorem 3.7 and Theorem 2.27 to the quotient ring k[z1,...,z,]/a we obtain:

3.8 HILBERT’S NULLSTELLENSATZ. Let a C k[z1,...,z,] be any ideal. If a polynomial f € k[z1,...,x,] van-
ishes on V' (a), then f™ € a for some m € N. O

Given a ring R and an ideal a C R we shall write
Va={f€eR| f™ € afor some m € N}.

This is an ideal in R, called the radical of a. In this language, Hilbert’s Nullstellensatz says that, for an ideal
a C k[x1,...,x,], the ideal of all polynomials vanishing on V (a) is precisely v/a.

3.9 COROLLARY. For ideals a,b C k[z1,...,z,], V(a) C V(b) < Vb C a. o
3.10 DEFINITION. Given a ring R, the set Spm R of its maximal ideals is called the (maximal) spectrum of R. O

The full spectrum of R is the larger space Spec R consisting of all prime ideals in R, not just the maximal
ideals; but in this book we shall need only the maximal spectrum.

When R is the polynomial ring k[z1,...,z,], Theorem 3.7 says that there is a bijection between the maximal
spectrum Spm R = Spm k[z1,...,x,] and the underlying space k™ of the affine space A" over k. Generalising
this example, we now define the Zariski topology and sheaf of rings O on Spm R. First of all, given an ideal
a C R and an element f € R, we define subsets:

V() ={m|m>Da} CSpmR,
D(f) ={m|[f¢m} CSpmR.

When R = k[zy,...,zy] these definitions agree with (3.2) and (3.3). The following agrees with Definition 3.1:

(3.6)

3.11 DEFINITION. The subsets V(a), for arbitrary ideals a C R, are the closed sets of a topology on Spm R
called the Zariski topology. m|

3.12 EXAMPLE. The nonempty closed sets in the affine line A! are A! itself and all finite sets. In fact, for
dimension 1 the Zariski topology is the weakest topology for which single points are closed. O
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The Zariski topology is characterised by the following property.

3.13 PROPOSITION. If R is a Noetherian ring, then the topological space Spm R is Noetherian. In other words,
every descending chain of closed sets

Som RDZ1 D Zy DD Zp D ---
terminates after finitely many terms.

Proof. Let Z; = V(a;). By the Nullstellensatz we can suppose (since v/y/a = v/a) that \/a; = a;. Then by
Corollary 3.9 these ideals form an ascending chain

ap Cap C---ap, C---CR.

Since R is Noetherian, the ideal |J; a; C R is finitely generated, so that the chain terminates after finitely many
terms. O

Note that the Euclidean topology on C", for example, certainly does not have this property.

3.14 DEFINITION. A topological space is said to be irreducible if it satisfies the following equivalent conditions.
(i) X cannot be expressed as a union X; U Xo where X7, Xo C X are proper closed subsets.
(ii) Any two nonempty open subsets U;,Us C X have nonempty intersection Uy NUs # 0.  Otherwise X is
said to be reducible. m|

Note that two basic open sets D(f), D(g) C Spm R have intersection

D(f)nD(g) = D(fg).
If R is an integral domain, then f # 0 and g # 0 together imply fg # 0; so we obtain:

3.15 PROPOSITION. If R is an integral domain, then Spm R is irreducible. a

In this case, just as for affine space A", we can construct an elementary sheaf on Spm R. Since R is an
integral domain it has a field of fractions K. Given a nonzero element f € R we consider the subring R[1/f] C K
generated by R and 1/f. This is the set of all elements of K expressible with denominator a power of f.

3.16 PROPOSITION. Let R be an integral domain. Then the map from nonempty open sets of X = Spm R to
subrings of the field of fractions K of R:

OX -V(a))= () RIL/f]
0#£f€a

(or, equivalently, O(D(f)) = R[1/f] on the basic open sets) defines an elementary sheaf O of subrings of K on
X =Spm R. a

3.17 LEMMA. If the ideal a C R is generated by nonzero elements f; € a, i € I, then

(M RIY/f1=()RIL/f]

0#f€a i€l

Proof. The inclusion (o s, R[1/f] C ey R[1/ fi] is clear; we have to prove the converse. By hypothesis, an
arbitrary element f € a can be written
f=2aif;,

jeJ
where a; € R and J C I is a finite subset. Now suppose that € K belongs to the right-hand intersection. Then
for sufficiently large n € N we have f}* € R for all j € J. It follows that there exists some N € N such that
fNz € R, or, in other words, * € R[1/f]. Since f is arbitrary, this shows that z is contained in the left-hand
intersection. |

The following is clear.
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3.18 LEMMA. Nopeq BRI/ f1= Nogreya RIL/ - O

Proof of Proposition 3.16. First note that if V(a) = V(b), then, by Hilbert’s Nullstellensatz, v/a = v/b, so
that by Lemma 3.18 the mapping O is well defined. Now suppose that an open set U = X — V(a) is a union

Uier Ui, where Us = X — V(a;). Then
Vi(a) = ﬂ =V (Zm) .

il iel
The ideal ), a; is generated by the a;, so by Lemma 3.17:

o) = (o),

i€l

which shows that O is an elementary sheaf, as asserted. a

3.19 DEFINITION. Let R be a finitely generated integral k-algebra. Then the collection of data consisting of:
(i) the set Spm R,
(ii) the Zariski topology on Spm R,
(iii) the elementary sheaf O over Spm R,
is called an affine algebraic variety. O is called the structure sheaf of the variety. Writing X = Spm R, the
k-algebra k[X] := R is called the coordinate ring of X, and its field of fractions k(X) := K is called the algebraic
function field of X. a

3.20 ExaAMPLE. Let R = k[z1,...,z,]/p, where p C k[z1,...,2,] is a prime ideal. Then Spm R is precisely the
affine subvariety V' (p) C A" defined in the last section.

Conversely, Spm R is of this form for any finitely generated k-algebra R. To see this, suppose that r1,...,7r, €
R are generators and consider the surjective homomorphism

klz1,...,z,] > R i1, 1<i<n.

The kernel p C k[zy,...,x,] of this map is a prime ideal, so that R is of the form above and Spm R is isomorphic
to the affine subvariety V(p) C A™. This explains the terminology ‘coordinate ring’. |

Choosing a different set of generators r1,...,r!, € R in this example represents Spm R as a different subvariety

'm
of affine space V(p') C A™ where p’ C k[z1,...,7m,]. Thus Definition 3.19 improves on the ideas of part (a)
by describing the points of an affine variety only in terms of an integral domain R (its coordinate ring), and
independently of any particular ambient space A™ or A™.

We will explain next some important notions connected with this definition.

(c) Some important notions
MorprHISMS By Corollary 2.25, a homomorphism of finitely generated integral k-algebras
¢:S—>R
induces a map of maximal spectra
t¢:Spm R — Spm S, me ¢t (m).

With respect to the Zariski topology on each side, this map *¢ is continuous.
Write X = Spm R and Y = Spm S, and consider in turn the structure sheaves Ox and Oy. If U C Y is an
open set, then there is a natural induced k-algebra homomorphism

Oy(U) = Ox(("¢)'U).

Such a continuous map *¢ : X — Y together with its induced homomorphism of structure sheaves Oy — Oy is
called a morphism from X to Y.

If ¢ is surjective, then *¢ is a homeomorphism onto the closed subset V (p) C Spm S determined by the ideal
p=ker ¢ C S. In this case *¢ is called a closed immersion.
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3.21 PROPOSITION. If ¢ : S < R is an integral ring extension, then '¢ is surjective.

Proof. Let m C S be a maximal ideal. By Lemma 2.20, the ideal mR is not the whole of R, and so it is
contained in some maximal ideal M C R. Then M NS = m, showing that *¢ is surjective. O

One should note that the image of a morphism between affine varieties is not itself necessarily an affine variety:

3.22 EXAMPLE. The morphism
F:A2 A2 (2,y) = (2,2y)

has image consisting of the union
(A* = V(2)) U{(0,0)}.

Of these sets, A2 — V(z), the complement of the y-axis, is open and the second, the origin, is closed. Each is
an affine subvariety of A2 but their union is not.

Figure 3.2

ProbucTs Let X = V(m) C A” and Y = V(q) C A™ be affine subvarieties defined by prime ideals p C
klz1,...,z,) and q C k[y1,...,Ym]- Then the product of X and Y is by definition the affine variety

XxY = {(a1,---,an,b1,-..,bp) | f(a) =g(b) =0 forall f €pandgé€q}
c A,
Equivalently, X x Y = Spm R, where R is the quotient ring
R=k[z1,...,Tn,y1,---,ym]/(p + ).
This is precisely the tensor product of the coordinate rings of X and Y:

R=Ek[z1,...,z,]/p @ k[y1,-..,ym]/q-

(We leave to the reader the verification that the tensor product of integral k-algebras is again integral.)
The product X x X of X with itself contains a distinguished closed subvariety:

3.23 EXAMPLE. THE DIAGONAL. For any k-algebra R the tensor product R ®; R becomes a k-algebra with
multiplication law
(a®b)(c®d) =ac® bd.

With this ring structure there is a surjective homomorphism
m: R®y R — R, a®br ab,

and this determines a closed immersion
fm: X - X x X,

where X = Spm R. The image of this map is called the diagonal, denoted by A C X x X. a

GENERAL SPECTRA AND NILPOTENTS The construction above of a topological space Spm R equipped with
a sheaf of rings can be carried out even when the algebra R is not an integral domain.

3.24 DEFINITION. A ring R in which ab = 0, a,b € R, implies that either ¢ = 0 or b is nilpotent is called
primary. O
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If R is a primary ring over the field &, then the space X = Spm R is irreducible. To see this, we observe that
the subset n C R consisting of all nilpotent elements is a prime ideal, so the residue ring

Rred = R/ll

is an integral domain. As a topological space, X is exactly the same as X,eq := Spm R,eq; that is, the quotient
map R — Ryeq induces a homeomorphism X,eq := Spm Ryeqa — X . However, the structure sheaves Ox and Ox,_,
are distinct. Oy is defined exactly as in Proposition 3.16 and for each open set U C X there is a surjective ring
homomorphism

Ox = Ox,,.

In this sense Xieq is a closed subvariety of X, and one thinks of X as a ‘fattening’ of X,eq. Ox is the total fraction
ring of R (see Section 8.2(a)).

3.25 EXAMPLE. The simplest example of a primary ring that is not integral is R = k[e]/(e?): the residue class
of € is nonzero but its square is zero. Thus R.q = k and Spm R consists of the single point space Spm R eq
equipped with the ring R. Similarly, and more generally, one can consider the ring k[e]/ (™). a

3.26 EXAMPLE. Let p C R be a prime ideal. For each natural number n € N the variety Spm R/p™ has
underlying space equal to the closed subvariety Y = Spm R/p of X = Spm R; but, as in the previous example,
its coordinate ring R/p™ is a primary ring containing nilpotents. This is called the (n — 1)-st infinitesimal
neighbourhood of Y C X. a

Spectra of this kind, and their (formal) limits
Jlim Spm k[e]/(¢"),  lim Spm R/p",

are very important in deformation theory; the second limit is called the formal neighbourhood of Y C X.
More generally, one can construct the structure sheaf Ox on X = Spm R for more general k-algebras R in a
similar manner by using the primary decomposition of R.

DOMINANT MORPHISMS Let ¢ : X — Y be a morphism of affine varieties determined by a k-algebra homo-
morphism ¢ : S — R. Recall that by definition *¢ is a closed immersion when ¢ is surjective.

3.27 DEFINITION. If ¢ is injective, then '¢ : X — Y is called a dominant morphism. O

Let p C S be the kernel of ¢. This is a prime ideal, and by the isomorphism theorem ¢ decomposes as a
composition:

S —= S/p=2¢(S) — R. (3.7)

Correspondingly, the morphism *¢ decomposes as
X —>W =Spm S/p=Y, (3.8)
where the first map is dominant and the second is a closed immersion.

3.28 THEOREM. Let f : X — Y be a morphism of affine varieties, and let Z C Y be the Zariski closure of the
image f(X). Then f(X) contains a nonempty open subset of Z.

Proof. First note that by the decomposition (3.8) it is enough to consider the case when f is dominant, that
is, when ¢ : S — R is injective. By Proposition 2.26 there exists some residue ring R = R/I for which the
composition S < R — R is an algebraic ring extension. We can therefore assume that R is algebraic over S.
Then, by Lemma 2.22, there is a nonzero element a € S such that R[1/a] is integral over S[1/a]. So by Proposition
3.21 the image of f contains the open set D(a) C Y. O
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OPEN IMMERSIONS Let R be an extension of S contained in the field of fractions K of S. When the morphism
t¢ : Spm R — Spm S induced by the inclusion ¢ : S < R is a homeomorphism to an open subset, t¢ is called an
open immersion. The following example is typical.

3.29 EXAMPLE. Let

1 1
R:s[_,_._,_} C K
S1 Sm
be the extension obtained by adjoining the inverses of nonzero elements sy,..., s, € S. Then *¢ is a homeomor-
phism,
Spm R — Spm S — (V(s1) U---UV(sp)),
and so is an open immersion. a
LOCAL PROPERTIES Suppose that ai,...,a, € R generate R as a module over itself. In other words, there

exist by,...,b, € R such that
1="bia; + -+ bpan.

Then the sets D(a;) form an open cover of X = Spm R. (The set {ai,...,ay} is called a partition of unity. See
Definition 8.26.)

A given property P of X (or of R) is said to hold locally if, even if not satisfied by X (or R) itself, there
exists an open cover {D(a;),...,D(a,)} of the above form such that 3 holds for each open set D(a;) (or for each

3.2 Algebraic varieties

Just as a differentiable manifold, or a complex manifold, is obtained by gluing together copies of R” or C", so
an algebraic variety is an object obtained by gluing together affine varieties. We are going to explain this gluing
process next.

(a) Gluing affine varieties

3.30 DEFINITION. Let K be a field, finitely generated over k, and let X be a topological space equipped with an
elementary sheaf Ox of k-subalgebras of K. Then the pair (X, Ox) is called an algebraic variety—also a model of
the algebraic function field k(X) := K—if there exists an open cover {U;};cr of X with the following properties.
(i) Each U; is an affine variety with function field K.
(ii) For each pair 4,j € I, the intersection U; N Uj is an open subset of each of U;, U;. a

Figure 3.3: Gluing affine varieties

In general, algebraic varieties are constructed by a gluing construction in the sense of the following definition.

3.31 DEFINITION. Let (A,O4) and (B,Op) be two affine varieties with the same algebraic function field K.
(i) If there exists an affine variety C' and open immersions

Lty :C— A, tg: C = B,

then we shall say that A and B have a common open set C' and denote by A Uc B the topological space
obtained as the quotient of A U B by the equivalence relation t4(z) ~ tp(z) for z € C.
(ii) Given an affine variety C as in (i), we define an elementary sheaf O = Oy, p of subalgebras of K by
OU)=04(UNA)NOp(UNB) C K for nonempty open sets U C AU¢c B.
The ringed space (A Uc B, 0) is called the gluing of A and B along C. |

The space (A Ug B, O) thus constructed is an algebraic variety. A case that often arises is the following.
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3.32 DEFINITION. Let R and S be integral k-algebras with a common field of fractions K, and for nonzero
elements ay,...,a, € R and by,...,b, € S suppose that

1 1 1 1
R|l—,...,—|=8S|—,...,— | =TCK.
ay Qp b1 bm

Then the induced maps Spm 7' < Spm R and Spm T < Spm S are open immersions, and the resulting gluing
of Spm R and Spm S is called simple and written Spm R U7 Spm S. a

Clearly we do not obtain a new variety when R =S = T, and we shall disregard this trivial case.

3.33 DEFINITION. (i) If two affine varieties A, B are glued along a common open set C, then the image of the
diagonal inclusion

C—->AxDB
is called the graph of the gluing. When this is a closed subset of the product the gluing is said to be
separated.
(ii) An algebraic variety X is separated if it is covered by affine open sets {U;};cr such that for each i,j € T
the union U; U U; is a separated gluing. m|

3.34 REMARKS. (i) Separatedness of an algebraic variety is the analogue of the Hausdorff condition for a topo-
logical space; it is not related to the separatedness of a field extension!

(ii) An algebraic variety is separated if and only if its algebraic function field can be expressed as the field of

fractions of a local ring. m|

The following criterion allows one to check Definition 3.33(i) algebraically.

3.35 PROPOSITION. For a simple gluing Spm R Uy Spm S the following conditions are equivalent:
(i) the gluing is separated;
(ii) the subalgebra T' C K is generated by R and S. |

Note that condition (ii) here is not enough on its own to guarantee a gluing, as the following example shows.

3.36 EXAMPLE. R = k[z,zy] and S = k[zy,y] together generate T = k[z,y], but we do not get a gluing.
Indeed, each of Spm R, Spm S and Spm T is isomorphic to A?, and the morphism Spm T — Spm R is that of
Example 3.22. a

3.37 ExAMPLE. Let K be the rational function field k() in one variable. We can consider two different models
of K, each obtained by gluing two copies of the affine line A!.

(1) Take R =S = k[t] and T = k[t,1/t], the subalgebra of Laurent polynomials.
(2) Again each of R, S is the polynomial ring in one variable, but this time R = k[t], S = k[1/t] and T =
k[t, 1/t].

The graphs of these gluings can be pictured as in Figure 3.4.
Figure 3.4

What one sees is that in case (1) the origin is missing from the graph, which therefore fails to be a closed set.
This is therefore a nonseparated gluing. In case (2), on the other hand, the graph is closed and the gluing is
separated. Both cases illustrate Proposition 3.35.

In fact the algebraic variety that one obtains in case (2) in the projective line P! (see below). As already
mentioned, separatedness corresponds to the fact that (over a subfield k¥ C C) this is Hausdorff in its Euclidean
topology (though not in the Zariski topology!). (See Exercise 3.5.) Case (1), on the other hand, gives an algebraic
variety consisting of two lines identified at all points except their respective origins. This space therefore fails to
be Hausdorff even in the Euclidean topology. O
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Product varieties X x Y can be defined by gluing together the products of their affine charts. One should
note that the Zariski topology on a product of algebraic varieties is not the same as the product topology (as the
example A' x Al shows).

The notion of separatedness of an algebraic variety in part (ii) of Definition 3.33 does not depend on the choice
of open cover; in fact, the following holds.

3.38 PROPOSITION. For an algebraic variety X the following conditions are equivalent:
(i) X is separated;
(ii) the diagonal map X — X x X is a closed immersion. ad

Finally, we need to define morphisms of algebraic varieties.

3.39 DEFINITION. For algebraic varieties X,Y, a morphism f : X — Y consists of a continuous map of the
underlying topological spaces together with a homomorphism Oy — Ox of the structure sheaves—that is, for
every open set U C Y a ring homomorphism

Oy(U) = Ox(f~'U),

such that:
(i) there exist affine open covers {V;} of X and {U;} of Y with the property that each image f(V;) is contained
in some Uj; and
(ii) the restrictions

f

are morphisms of affine varieties. O

VZ.ZV;'—)U]'

In other words, just as algebraic varieties are constructed by gluing together affine varieties, so morphisms
between algebraic varieties are defined by gluing together morphisms between their affine charts.

(b) Projective varieties

We begin with a fundamental example of the gluing construction just described.

3.40 EXAMPLE. PROJECTIVE SPACE. Let K be the rational function field in n variables k(x1,...,x,), and
introduce n + 1 indeterminates Xy, X1, ..., X, such that z; = X;/Xo for i =0,1,...,n. Thus K is a subfield of
k(Xo,X1,...,X,). Now, for each i =0,1,...,n let

Xo Xy Xio1 Xipa X,

E)E)"') Xz ) Xz ,‘”’Xi

Ry, =k

Each polynomial ring Rx,, Rx,,...,Rx, is a subalgebra of K with K as its field of fractions. Note that each
affine variety Spm Rx, is isomorphic to A™.

For each i,j let Rx,x; = Rx,Rx, C K be the subalgebra generated by Rx, and Rx,;. Then Spm Ry, and
Spm Rx; have Spm Rx,x, as a common open set, and

Spm Rx; Ury,x, Spm Rx;

is a separated simple gluing. The algebraic variety obtained by gluing all of these affine spaces is projective
space P™. O

We now generalise this example to construct an algebraic variety Proj R from any graded ring R. Let
R = @eez R(c) be a graded ring which is an integral domain and suppose also that R(,) = 0 whenever e < 0. An
element f/g of the field of fractions K of R is said to be homogeneous if each of f, g is homogeneous in R; in this
case we define deg f/g = deg f — degg.



3.41 DEFINITION. (i) We denote by Ky C K the subfield consisting of elements of degree 0, including zero:

Ky = {5 | f,9€R, g#0, degfzdegg}U{O}-

(i) Given a nonzero homogeneous element h € R, we denote by Ry o C Ko the subalgebra

Rpo = {% | f€R, degf:ndegh} U {0}.

3.42 LEMMA. (i) For every nonzero homogeneous element h € R, the field of fractions of Ry, ¢ is K.
(ii) Given two homogeneous elements h,l € R, the gluing Spm Ry, o Ur Spm R; o, where T = Rp, oR; 0 C Ko,
is simple and separated.

Proof. Part (i) is obvious, and part (ii) follows from Proposition 3.35 once we have shown that the gluing is
simple. In other words, we have to show that T' = Ry, 0[1/p| for some p € R0 (and similarly that T = Ry 0[1/q]
for some ¢ € R;p). Let e € N be the lowest common multiple of degh and degl, so that e = adegh = bdegl,
say. A general element of T is of the form f/(h"1°), or F/(h%I®)™ for sufficiently large m € N and suitable
homogeneous F' € R with deg F' = 2me. This can be written

F F [(he\™

L (L) e Ry net

(halbym h2ma <lb> € Ry o[h"/17],

and hence T' = Ry, [1/p], where p = [°/h® € R}, as required. O

3.43 DEFINITION. (i) Given a finitely generated graded ring R = @,—, R(.), the algebraic variety with function
field K, obtained by gluing the maximal spectra Spm R}, ¢ for all nonzero homogeneous elements h € R is
denoted by Proj R.

(ii) If Ry = k, then the variety Proj R is said to be projective. a

3.44 PROPOSITION. If hy,..., h, € R are homogeneous generators, then Proj R is covered by the open sets
Spm Rhl,[); ey Spm Rhm,[)-

Proof. We have to show, given a homogeneous element h € R, that
m

Spm Ry C U Spm Ry, 0.
i=1

Note that hi,...,hn, are also generators of the ideal Ry = @, R) C R. Let e € N be the lowest common
multiple of the degrees of h and hq, ..., hy, so that

e=apdegh =aydeghy =+ - =a, deghpy,

for some ag,...,a, € N. Then h® is contained in the radical of the ideal (h{*,...,h%) C R, so we can write
hooN = fih{* + -+ + fh% for some N € N and homogeneous elements fi, ..., f,, € R. In other words,

ha1 ham
() o ()

and this says that the terms in brackets form a partition of unity in the ring Rp o (Section 3.1(c)). It implies that

m o
Spm Ry = U Spm Ry, 0 {W] ;

i=1

where each Spm Ry, o [h?i/h‘loN] is an open set in Spm Rp,; o. ]
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3.45 ExXAMPLE. Let R = k[X,, X1,...,X,], graded as usual by degree of polynomials. Then Proj R is nothing
other than n-dimensional projective space P" constructed in Example 3.40. (We will return to this fundamental
example in Section 6.1(a).) |

3.46 EXAMPLE. WEIGHTED PROJECTIVE SPACE. Given natural numbers ag,ai,...,a, € N, we take R =
k[Xo, X1,...,X,] to be a polynomial ring graded by deg X; = a; for each i = 0,1,...,n. So R = .2, Ry,
where R, is the vector space spanned by all monomials XFgoxmt .- X with Y a;m; = e. We write

ProjR=P(ag:ay :...:a,),
called a weighted projective space. Moreover, if the weights ag, a1, - .., a, have a common divisor, then an isomor-
phic projective variety is obtained by dividing ag, a4, ..., a, through by their common divisor, that is:
Plag:ay:...:ay,) ZP(ag/b:ay/b:...:a,/b), where b= gcd(ag,a,...,an).
(See also Example 3.72.) O

The following fact, which we shall need later, is a consequence of Proposition 3.5.

3.47 PROPOSITION. A subvariety of P" of codimension 1 is defined by the vanishing of a single homogeneous
equation. a

3.3 Functors and algebraic groups

(a) A variety as a functor from algebras to sets

An affine algebraic variety X, at the most elementary level, is a subset of k™ defined as the set of common zeros
of a system of polynomial equations

Fi(zi,...,2p) = Fa(21,...,20) = = F(21,...,20) = 0. (3.9)

What is more essential to X, of course, is not the particular choice of equations (3.9) but rather the ideal that
they generate. More than this, one can even view the particular choice of field &k in which one looks for solutions
as inessential to the system and define X as the solution set ‘for any number system in which the system makes
sense’.
To make this idea more precise it is convenient to use the language of functors. Let R be any k-algebra and
consider the set
X(R) = {(z1,...,2,) € R®" satisfying the system of equations (3.9).}

We call X(R) the set of R-valued points of the variety X. This is no more than a set, of course, and so on its
own does not have very much meaning. However, the point of view that follows turns out to be extraordinarily
powerful. Namely, suppose that we have a homomorphism f : R — S of k-algebras. It is plain to see that, if
(z1,...,2,) is an R-valued point of X, then (f(z1),..., f(z,)) is an S-valued point. In other words, f determines
a set mapping X (R) — X(5). Let us denote this mapping by X(f). If f: R — Sand g : S — T are two k-algebra
homomorphisms, then clearly

X(go f) = X(g) o X(f).

This observation can be expressed in formal language:

X is a (covariant) functor from the category of k-algebras to the category of sets.

We want to think of an algebraic variety not just in itself, but as a ‘program’ which takes as input a k-algebra
and outputs a set.

It is also important to note that this functor determined by an algebraic variety does not depend on how we
choose coordinates. Let X = Spm A, where

A=Kz, ... xn]/(FL,..., Fyp)
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is the quotient ring by the ideal generated by the system of equations (3.9). Given an R-valued point (aq,...,a,) €
X(R) we have a homomorphism of k-algebras

Elz1,...,zn] = R

obtained by mapping each z; — a;. The kernel is just the ideal generated by Fi,...,F),, and so we get a
homomorphism A — R. In this way we can identify

X(R) = Homy (4, R)

or, equivalently:
X(R) = Mory(Spm R, X). (3.10)

Moreover, if f : R — S is a homomorphism of k-algebras, then it induces a morphism f : Spm S — Spm R, and
the set mapping

X(f) : Mor(Spm R, X) — Mor(Spm S, X) (3.11)
is just given by composition g+ g o f:
Spm S N Spm R
N ' g
X

We can extend the functor X from affine varieties to arbitrary algebraic varieties. Since a variety X is obtained
by patching together affine varieties U;, for i € I, some index set, we obtain a functor X by ‘gluing’ the functors
U;; by definition of a variety this functor will not depend on the particular choice of our open cover {U;}ier.
Moreover, given k-algebras R, S and a homomorphism f : R — S, the interpretation of the set X (R) and the set
mapping X (f) are exactly the same as (3.10) and (3.11).

This point of view will be needed in Chapter 11.

(b) Algebraic groups

Let us now look at a case where this functorial point of view is particularly useful. This is the definition of an
algebraic group. Consider the most basic case of the special linear group G = SL(n). Taking as coordinates the
matrix entries (z;;)1<; j<n, this is the degree n hypersurface in n?-dimensional affine space:

G det|xij|—1:0.
Given a k-algebra R, the set of R-valued points is
G(R) = {(as;) € R | det|a;;| = 1} = SL(n, R).

In other words, G(R) is just the group of special linear matrices whose entries are in R. Moreover, given an
algebra homomorphism f : R — S, the induced map

G(f): SL(n,R) — SL(n, S)

is a homomorphism of groups. So we see that G = SL(n) is in fact a functor from the category of k-algebras to
the category of groups.
Generalising, we say that:

an algebraic variety G is an algebraic group if G is a (covariant) functor from the category of
k-algebras to the category of groups.

An example of an algebraic group which is not affine is the famous group law on a plane cubic curve. (See, for
example, Cassels [1] §7.) In the case when G is affine, one can make the following definition.
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3.48 DEFINITION. Let A be a finitely generated k-algebra. Then G = Spm A is called an affine algebraic group
if there exist k-algebra homomorphisms

w:A — A®pA (coproduct)
€e:A — k (coidentity)
t:A — A (coinverse)
satisfying the following three conditions.
(i) The following diagram commutes:
A — Aoy A
p lla®p

Ao A "2 A, Ax, A

(ii) Both of the compositions
ke A

e®1ly N N\
A5 Aw, A A

la®eN Va
ARk

are equal to the identity.
(iii) The composition (where the last map m is multiplication in the algebra)

AL A, A A4 A
coincides with e. m|
These three requirements correspond, respectively, to associativity and the existence of an identity element

and (right) inverses. The homomorphisms p,€,¢ induce natural transformations p,¢,¢, and these together with
the axioms above guarantee that the functor

G : {algebras over k} — {sets}
actually takes values in the category of groups.

3.49 ExaAMPLE. If G is any group, the group ring k[G] of G is the vector space (finite-dimensional if G is a finite
group) with basis {[¢g]}4ee and bilinear product defined (on basis vectors) by

m:k[G] x kK[G] — K[G]
(lgl,[R]) = [gh].

This makes k[G] into a k-algebra; we let A be its dual as a vector space, given the structure of a k-algebra by
componentwise addition and multiplication. Spm A now becomes an affine algebraic group by taking

p=m":A— A® A,

the dual of the multiplication map on k[G], € to be evaluation at 1 € G C k[G], and ¢ to be the pull-back of linear
forms under the involution of k[G] defined by inversion in G.
For example, when G is the cyclic group of order n we obtain

A= Kt/ (" — 1),
with pu(t) =t ®t, €(t) = 1 and 1(t) = t" . As a functor, Spm A assigns to a k-algebra R the group
Spm A (R) ={a€ R|a" =1}
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3.50 ExAMPLE. The spectrum of a polynomial ring in one variable A = k[s] can be given the structure of an
affine algebraic group by defining u(s) =s®1+1® s, €(s) = 0 and 1(s) = —s. This group is denoted by G,. As
a functor, it assigns to a k-algebra R the additive group R itself. As a variety, of course, it is isomorphic to A!. O

3.51 EXAMPLE. The spectrum of the ring of Laurent polynomials A = k[t,¢"!] is made into an affine algebraic
group by defining u(t) =t @ t, e(t) = 1 and «(t) = t~1. This group is denoted by Gy,. As a functor, it assigns to
a k-algebra R the multiplicative group R* of invertible elements in R. As a variety, it has an open immersion in
Al (as the complement of the origin) corresponding to the subring k[t] — k[t,t~]. O

3.52 EXAMPLE. Let A = k[z;;, (det z)~!] be the polynomial ring in n?

inverse of their determinant adjoined. Then Spm A is an open set in affine space A"" and becomes an affine
algebraic group by

variables z;;, 1 < ¢,j < n, with the

,U,(Hfij) = Zmi[ & Lij, E(Hfij) = (51']', L(.Tij) = (det m)_l(adj:n)ij.
=1

This is, of course, none other than the general linear group GL(n). In the case n = 1 it is precisely the
multiplicative group Gy, of Example 3.51. As a functor it assigns to a k-algebra R the group GL(n,R) of
invertible n X n matrices with entries in R. a

3.53 EXAMPLE. The ring Ay = k[z;;]/(det 2 — 1) is the quotient of A (from Example 3.52) by the ideal (det 2 —
1) C A. Observing that this ideal is contained in ker € and is preserved by u and ¢, we see that these maps induce
maps €o, flo, to on Ag, making Spm Ay into an affine algebraic group. This is a subgroup of Spm A = GL(n) and
is precisely the special linear group SL(n). |

The action of an algebraic group on an affine variety can also be viewed functorially in the same spirit. For
future use we give the precise definition.

3.54 DEFINITION. An action of an affine algebraic group G = Spm A on an affine variety X = Spm R is a
morphism G x X — X defined by a k-algebra homomorphism

ur:R— R®, A
satisfying the following two conditions.

(i) The composition
R™ Roy A% Ry kSR

is equal to the identity.
(ii) The following diagram commutes:

R LN R®, A
pr lpr®1y

R®, A 11@;'4 R®, A®; A.

3.4 Completeness and toric varieties

(a) Complete varieties

The Hopf fibration is a continuous surjection of the 2n + 1-dimensional sphere

S = (20,21, 2n) €O [z [P oo [zl = 1)
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onto complex projective space P¢ (with the Euclidean topology):

St circle fibre

!

52n+1 C R2n+2 — (CnJrl

i3 Hopf map
Pg

In particular, this implies that ¢ with its Euclidean topology is compact: that is, any infinite sequence of points
in PZ contains a convergent subsequence. The aim of this section is to discuss how this property should be
formulated for an algebraic variety.

3.55 DEFINITION. (i) A map f:X — Y of topological spaces is called closed if for every closed set Z C X the
image f(Z) C Y is closed.

(ii) An algebraic variety X is said to be complete if for any algebraic variety Y the projection morphism

X xY =Y is closed. a

Note that condition (i) is much stronger for the Zariski topology, with which we are concerned, than for the
Euclidean topology. For example, if Y is an irreducible curve, then the image f(Z) of a closed set Z C X must
be either finite or the whole of Y. More generally, if Y = A", then f(Z) must be the zero-set of some system of
polynomials.

On the other hand, it is easy to see that products and closed subsets of complete algebraic varieties are again
complete.

3.56 ExAMPLE. The affine line A is not complete, since the projection Al x A! — Al (z,y) — z, is not a
closed map. For example, the image of the closed set V (zy —1) C Al x Al = A? is the punctured line Al — {0}. O

Figure 3.5

We can use the same idea to make the following general observation.

3.57 PROPOSITION. The only complete affine variety is the single point Spm k. O

Proof. Suppose that X is a complete affine variety realised as a closed subvariety X C A™, and let z1,...,x,
be the coordinates on A”. We then consider the projection of the product X x Al — Al, (z,¢) — t. The image
under this projection of the closed set

Vizit—1)N(X x A')

does not contain 0 € A', and so by completeness it is either empty or a single point.
If the image is a single point, we let its coordinate be ¢t = a # 0. This means that

1
xev(n e
On the other hand, the image can be empty only if

X C V(Z’l)

In other words, we have fixed the value of the first coordinate z; for all points of X C A™. Similarly, we can
determine the values of the other coordinates o, ..., x,, so that X is a single point. O

There is a general criterion for determining completeness of a variety X. One should think of this as being
analogous to the criterion for compactness that any infinite sequence has a convergent subsequence. We make
use of the notion of R-valued points, that is, of the functor X from k-algebras to sets, introduced in the previous
section.
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3.58 VALUATIVE CRITERION FOR COMPLETENESS. Let X be a separated algebraic variety and suppose that
for an arbitrary valuation ring V' over k, with field of fractions Ky, the natural map

X(V) = X(Kv)
is surjective. Then X is complete.

Proof. Since the property of the projection X x Y — Y being closed is local, it is enough to assume that
Y := Spm S is an affine variety. Let Z C X X Y be a closed set. Without loss of generality we may assume
that Z is irreducible. Replacing Y by the Zariski closure of the image of the second projection m2|z : Z = Y, to
assume that this projection is a dominant morphism, we have to show that my|z is surjective.
Let y € Y be an arbitrary point, and let m C S be its corresponding maximal ideal. The projection ma|z
induces an embedding of fields
k(YY) — k(Z),

and hence by Theorem 2.37 there exists a valuation ring (V,m) in k(Z) dominating (S, m). Then there is an
injection S < V such that my NS = m.

The first projection 71|z : Z — X determines a k(Z)-valued point of X and hence a Ky -valued point of X.
By hypothesis this is induced by a V-valued point

Spm V — X

or, in other words, a homomorphism R — V', where Spm R C X is some affine neighbourhood. Tensoring this
with the inclusion S < V and composing with multiplication in V' gives a map

RS —=VerV =V,

and the composition with V' — V/my 2 k determines a point of X x Y. By construction this point belongs to
the closed set Z, and hence y is in the image of Z. m|

Our first application of the Valuative Criterion is the following.
3.59 PROPOSITION. The projective space P™ is complete.

Proof. Let V' be a valuation ring with valuation v : K, — A, and let (ap : a1 : ... : a,) be the homogeneous
coordinates of a Ky-valued point a € P" (see Example 3.40). Not all a; are zero, and among the nonzero
homogeneous coordinates we shall suppose that the valuation v(a;) € A is minimal.

We have seen in Example 3.40 that P™ is covered by n + 1 affine spaces Uy, U, ...,U, C P™, where each
U; = Spm R; = A™. Moreover, a € U; with coordinates

<a0 ax aj—1 Qjt1 Gn)

.7 .7 ) . ) . y*r )
aj aj a; a; a;

Since v(ai/a;) = v(a;) — v(a;) > 0 for each ¢ for which a; # 0, it follows that all coordinates are in V, so that a
is a V-valued point of U; C P". a

3.60 COROLLARY. Every closed subvariety of P™ is complete. a

(See also Corollary 3.73 at the end of the chapter.) Finally, we shall need the following fact later on (Sec-
tion 9.1).

3.61 PROPOSITION. If f : X — Y is a morphism of algebraic varieties, where X is complete and Y is separated,
then f is a closed map.

Proof. The graph T' — X X Y of f is a closed immersion since by definition it is the pull-back of the diagonal
A CY x Y under the map f x id. Then f can be expressed as the composition

XTIl XxY Y,

and since each of these maps is closed, so is f. m|
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(b) Toric varieties

We are now going to show how a complete algebraic variety, called a toric variety, can be obtained from data
consisting of a partition of the real vector space R into convex rational polyhedral cones. (For a good introduction
to this subject see Fulton [37].)

A point of R” whose coordinates are all integers will be called a lattice point, and we denote the set of these
by N = Z™ C R". A linear form f : R® — R determines a closed half-space H; = {z € R"| f(z) > 0}. By a
(convez) polyhedral cone we mean a finite intersection

o=Hy Nn---NHy, C R™.
The forms fi1,..., fm are called supporting functions of the cone o, and the intersections of o with the subspaces
V(fll)mmv(fla)C]Rna 1§11<</LaSm7

are called the faces of o.

For simplicity, we will always assume that a polyhedral cone in R” is n-dimensional—that is, not contained in
any linear hyperplane of R”. A polyhedral cone will be called nondegenerate if it contains no lines (1-dimensional
vector subspaces) of R”. It is rational if it is spanned by rays (1-dimensional faces) passing through lattice points.

3.62 DEFINITION. A finite set ¥ = {oy,...,0:} of rational convex polyhedral cones in R” is called a fan if every
intersection o; No; for ¢ # j is a face of o; and o;. ad

Let M C (R")V be the dual lattice of N, that is,
M ={f e (R") | f(x) € Z for all z € N}.

Corresponding to the fan ¥ there is a dual fan in (R")Y whose shared rays we will denote by I1,...,l; C (R*)V.
These define the faces of o1,...,0:. In the examples following we will identify R” with (R")Y via the standard
inner product and draw oy,...,0; and [q,...,[s in the same picture.

The group algebra k[M] of M (see Example 3.49) is a finitely generated algebra over k. Indeed, identifying
M = 7™ by choosing a basis identifies k[M] with the ring of Laurent polynomials in n variables:
Mn

EIM) S k21, .. mn, 2yt 20, (Mi,...,my) =™ .oz

In other words, elements of M become Laurent monomials and we extend by linearity. Moreover, the coproduct
p: k[M] — k[M] ® k[M], ™ ™M ™
(where we write 2™ = 2" ...z’ for m € M) makes the spectrum
T = Spm k[M]

into an affine algebraic group isomorphic to the n-fold product Gy, X -+ X Gy, -
Now consider a fan ¥. Each o € ¥ determines a semigroup

My,={me M| (m,a)>0 foral a €0},

where ( , ) denotes the natural nondegenerate pairing M x N — Z. This in turn determines a subalgebra
kE[M,] C k[M] of the Laurent polynomial ring. The assumption that o is nondegenerate implies that the field
of fractions of k[M,] is k(xi,...,x,)—or, more precisely, that the inclusion k[M,] < k[M] induces an open
immersion

T — Spm k[M,].

Moreover, the natural map
lo = k[My] = k[M,] ® k[M], ™ M ™

for m € M, defines an action of the group T on the affine variety Spm k[M,].
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3.63 LEMMA. Given a fan ¥ = {o1,...,01}, for each 1 <i < j <t the gluing
Spm k[M,,] Ur Spm k[M,,]

is simple and separated. g

This is a consequence of the defining condition on the intersection of the cones in a fan of Definition 3.62.
3.64 DEFINITION. Given a fan ¥ = {oy,...,0¢} in R", the gluing
X(E) = Spm k[M(n] Ugp ---Urp Spm k[MO't]

is a separated algebraic variety with algebraic function field k(z,...,,), called a toric variety. O

Note that the toric variety X (X) contains the torus 7' as an open set common to all the affine charts
Spm k[M,,], and that X (X) thus constructed carries a natural action of the group T'.

3.65 EXAMPLE. n = 1. The only possibility here is s = ¢t = 2, with

o1 =11 = Ryo,
(2] :l2 = ]RSO‘

In this case, k[M;] = k[z], k[M>] = k[z'], and the spectrum of each is the affine line Al. The gluing is that of
Example 3.37(2), and so
X(x%) =P

Note also that T' = Gy, , and this acts on X(X) = P! by (zo : 71) > (tzo : t 1z1) for t € Gy, . O

3.66 EXAMPLE. n = 2. Let ¥ = {0y,02,03,04} be the fan obtained by partitioning R? into its four quadrants:
s=t=4andly,...,l the rays spanned by (+1,0), (0,%£1). So

k[MZ] = k[milyy]
k(M) = klz7'y7!
k[My) = k[z,y ']
This is a simple gluing which gives the product
X(%) =P x P

O

3.67 EXAMPLE. n = 2. Let s =t = 3 and [y, 2,13 be the rays spanned by (1,0),(0,1),(—1,—1), respectively.
The cones 01,042,053 are the three regions shown in Figure 3.6.

Figure 3.6
We see that
k[Mi] = k[z,y]
k[Mz] = K[z~ z"y]
k[Ms] = K[y ay']

The toric variety obtained in this case is the projective plane (by defining homogeneous coordinates (X : X7 :
Xo)=(1:z:y))
X(%) =P
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A homomorphism Gy, — T is called a I-parameter subgroup of T. The set of these forms an abelian group,
and in fact, is none other than the lattice N C R™. Note that as an algebraic variety Gy, is isomorphic to the
projective line P! minus two points; more precisely, it is the intersection of the two affine charts A' of P!, and
these two charts are exchanged by the automorphism ¢ <> ¢! of Gy,.

The torus T acts on the toric variety X (X), and via this action any 1-parameter subgroup A : G, — T induces
an action of Gy, on X (X). Let us use the same symbol A to denote the composition

A:Gy =T — X(2).

If this morphism extends to a morphism G, C A! — X (), then we shall say that the 1-parameter subgroup A
has a limit in X(X). We are now ready to state the main theorem of this section.

3.68 THEOREM. Let ¥ be a fan in R” and let X(X) = |
the following three conditions are equivalent.
(i) X(X) is complete.
(ii) Every 1-parameter subgroup A : Gy, — T of the torus T C X (X) has a limit in X (X).
(iii) ¥ covers the space R",
R* = U .

ocEX

sex Spm k[M,] be its associated toric variety. Then

(c) Approximation of valuations

Our aim in the rest of this section is to prove Theorem 3.68. To begin, the following lemma is well known.
3.69 LEMMA. If P C R" is a convex cone not equal to R™, then there exists a half-space
Hy = {z e R" | f(z) > 0}

for some f € (R™)V, such that P C Hy. O

Let v : K* — A be a valuation of the rational function field K = k(xy,...,z,).

3.70 LEMMA. There exists a linear form f: M — R (unique up to a scalar multiple) with the property that

{2y = wem{Z)

Proof. Let
My, ={me M | v(z™) > 0}.

This is a saturated subsemigroup of the lattice M C (R™)Y, which means that M, = P N M for some convex
cone P C (R")V. If P = (R™)Y, then v(2™) > 0 for all Laurent monomials ™, which by inversion implies that
v(z™) = 0 for all Laurent monomials. In this trivial case, therefore, it is enough to take f = 0.

If P is a proper subset, take f to be a form as given by Lemma 3.69. This has the property that

oE™) >0 = f(m)>0
and hence, replacing m by —m, that
(E™) <0 = f(m)<0.

The lemma follows from these two statements. O

From this we deduce the following:

3.71 APPROXIMATION THEOREM. For any finite collectionmy, ..., my; € M there exists a linear form g : M — 7Z
with the property that for eachi =1,...,s:

>0 >0
v(ﬂfm"){ZO = g(mi){ZO

<0 < 0.
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Proof. We argue by induction on the rank of M, noting that the result is trivial on a sublattice of rank 1.
We consider the linear form f : M — R given by Lemma 3.70, whose kernel

Mo =ker fC M

is a sublattice of strictly lower rank than M. We re-order my, ..., my, if necessary, so that my,...,m, € M
and m,yq,...,mg; & My. Then f is R-valued but otherwise satisfies the requirements of the proposition for the
elements m,.y1,...,mg. Moreover, since the rational numbers QQ are dense in R, we can perturb f, preserving the
conditions of the proposition, to take values in Q (we just have to perturb the values taken on a basis). Multiplying
by a suitable positive integer to clear denominators we obtain a Z-valued form possessing the property of the

proposition on the elements m,.;1,...,mg. Let us denote this by gmain : M — Z.
If r = 0, that is, if none of the elements my, ..., mg are in My, then we are done. So if r # 0, let us turn our
attention to the elements my,..., m, € Mj.

By the inductive hypothesis there exists a form h : My — Z such that

>0 >0
U(mmi){:0 = h(mi){:0
<0 <0

foreachi=1,...,r. We let gsu, : M — Z be an arbitrary extension of h to the whole of M. Then it is clear that
for a sufficiently large integer N € Z the form

9 = Ngmain + gsub
has the required property. O
Proof of Theorem 3.68. (i) = (ii) Consider the graph of A : Gy, — T in the product A! x X (X):

[ CGn xT CA x X(2).

Denote its Zariski closure by T' C A' x X () and consider the projection I' — A'. By completeness the image
is a closed set, and by construction it contains Gy,. The projection is therefore surjective and an isomorphism
away from the origin of A'. But the local ring O o at the origin is a valuation ring, so by Example 2.31 and
Exercise 2.9 the projection I' — A! is an isomorphism. Its inverse morphism is then the graph of a morphism
A: Al - X(X) extending .

(ii) = (iii) It is enough to show, since the lattice directions are dense, that the cones of the fan cover the
lattice N C R". For z € N let \; : G, — T be the corresponding 1-parameter subgroup. This has a limit
Az : Al — X (%), and the limit point )\, (0) is contained in Spm k[M,] for some cone o € ¥. But this means
precisely that z € o.

(ili) = (i) Let Iy, ...,ls be the rays of the dual fan of ¥ spanned by lattice points my,...,my; € M. We will
apply the Valuative Criterion 3.58. Choose an arbitrary valuation ring V' with v : K}, — A, and a morphism
f : Spm Ky — X(X), which we can suppose without loss of generality maps into the torus part 7' C X (X)
(otherwise we apply the argument instead to the lower dimensional toric strata).

Let g € N = Hom(M,Z) be the linear form given by the Approximation Theorem 3.71 applied to my, ..., mg
and the valuation v. Since, by hypothesis, the fan ¥ covers R", it follows that g is contained in some cone
o; € ¥. This means that g(M,,) > 0. The corresponding coordinate ring k[M,,] is generated by some subset of
the Laurent monomials ™, ..., 2™, and for members of this subset we have g(m;) > 0 and hence v(z™7) > 0.
Hence k[M,,] is contained in the valuation ring V' C Ky, and so we obtain a V-valued point of X(X). This
extends the morphism f to

Spm Ky C Spm V -5 X (%),

as required. O

3.72 EXAMPLE. WEIGHTED PROJECTIVE SPACE. Let a = (ag,a1,-..,a,) be a primitive element of the lattice
N = 7™t that is,

ng(ao, A1y .-y an) =1.
Then the quotient N = N /Za is a free abelian group of rank n. If in addition all a; > 0, then a partitions the

first quadrant of N ® R = R™*! into n + 1 polyhedral cones of a fan with 1-dimensional faces spanned by a and
the standard basis vectors. This fan projects to a fan covering R* = N @ R.
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The complete toric variety associated to this fan in R™ is the weighted projective space P(ag : a1 : ... : ap)

of Example 3.46. When a9 = a; = --- = a, = 1, for example, it is nothing other than n-dimensional projective
space P,
Just as for P™, weighted projective space P(ag : a1 : ... : ap) can be described using n + 1 coordinates

Xo,X1,...,X,. Then k[M] has a basis of Laurent monomials
Xpoxm . X such that agmo +a1mq + -+ ap,m, = 0.
For each ¢ = 0,1,...,n, the corresponding subalgebra k[M;] C k[M] is spanned by those monomials for which

mj; >0 for all j # 1.

O
Figure 3.7
3.73 COROLLARY. Every projective variety Proj R is complete.
Proof. Let xg, 1, - .., x, be homogeneous generators of R with degrees ag, a1, - .., ay, and consider the surjec-

tive graded homomorphism
k?[Xo,Xl, .. ,Xn] - R

mapping X; — z;, where deg X; = a;. Denote the kernel by a C k[Xo, X1,...,X,]; then Proj R is isomorphic
to the closed subvariety of weighted projective space P(ap : a1 : ... : a,) defined by the ideal a. The weighted
projective space is complete by Example 3.72, and hence so is Proj R. O

3.74 REMARK. Note that this proof shows that a choice of homogeneous generators in the graded ring R,
of degrees ag,...,a,, is equivalent to specifying a closed immersion of Proj R in weighted projective space
P(ag : ... : ay). In particular, a closed subvariety of P" is precisely Proj R for some graded ring R generated in
degree 1. We will return to Proj in Section 6.1(a). |

Exercises
1. Show that n-dimensional Euclidean space R", for n > 1, is reducible in the sense of Definition 3.14. Show
that this space is not Noetherian.

2. Show that a Noetherian topological space can be (uniquely) expressed as a finite union of irreducible closed
sets.

3. Show that in a primary ring (Definition 3.24) the set of nilpotent elements is a prime ideal.

4. Let S = Z[v/—5], and let R be the ring obtained by adjoining (1 ++/—5)/2. Show that Spm R — Spm S is an
open immersion.

5. Let X be a topological space, and let X x X be the Cartesian product equipped with the product topology.
Show that the diagonal subset A C X x X is closed if and only if X is Hausdorff.

6. Consider the plane R? with topology coming from the usual Euclidean metric. Then the map
p: R — R
(z,y) = (22,y/2)

is a homeomorphism. When the cyclic group generated by ¢ acts on the punctured plane R? — {0}, show that
the quotient topological space is non-Hausdorff.

7. Give a direct proof that the weighted projective space P(ag : a1 : ... : a,) is complete, by the method of
Proposition 3.59.
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Chapter 4

Algebraic groups and rings of invariants

In general it is hard to construct rings of invariants—that is, to determine explicitly a set of generators and
relations. However, this is not actually necessary in order to say that a moduli space exists as an algebraic
variety. For this one would like to understand—in the precise manner of a Galois theory, so to speak—the
relationship between the invariant ideals in a ring and the ideals in its subring of invariants. What we need here
is that the group that is acting is linearly reductive: this is the central notion in this chapter.

We begin by giving a careful definition of a representation of an algebraic group. Various important properties
can be deduced only by following closely to this definition; for example, it allows us to deduce that all repre-
sentations are locally finite-dimensional. The set of local distributions supported at the identity in an algebraic
group G admits a convolution product, making it into a (noncommutative) algebra H(G), called the distribution
algebra. The tangent space of G at the identity element, called the Lie space g = Lie G, is a vector subspace of
H(G). As is well known, it inherits a Lie algebra structure, although we will not use this in this book. As well
as the Lie space, H(G) also contains a distinguished element (2, called the Casimir element, constructed using an
invariant inner product on the Lie space (Section 4.2). In Section 4.3 we use the Casimir element to prove the
linear reductivity of SL(n). We then prove Hilbert’s Theorem 4.53 that if a linearly reductive algebraic group
acts on a finitely generated algebra, then the invariant subalgebra is finitely generated. The key ingredient in the
proof of this is Hilbert’s Basis Theorem.

In Section 4.4 we determine the Hilbert series of the rings of classical binary invariants. Using the relation
ex f — f xe = h in the distribution algebra, we prove the dimension formula for (invariants of) SL(2). As an
application we derive the Cayley—Sylvester formula for the Hilbert series of the classical invariants for binary
forms.

In the final section of this chapter we give an alternative proof of linear reductivity for SL(2). This yields, in
addition, a proof of geometric reductivity of SL(2) over a ground field of positive characteristic.

4.1 Representations of algebraic groups

Let G = Spm A be an affine algebraic group over the field &.

4.1 DEFINITION. An (algebraic) representation of the group G (or of the algebra A) is a pair consisting of a
vector space V over k and a linear map uy : V — V ® A satisfying the following conditions.
(i) The composition
V% ve,ASy

is the identity, where € : A — k is the coidentity.
(ii) The following diagram commutes, where p4 : A - A ® A is the coproduct.

1% LA VopA

py 4 Lpuy @1y

Vord 'Y ve Ao A
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4.2 EXAMPLE. The coordinate ring A of the group G, together with the coproduct g, is itself an algebraic
representation. O

4.3 REMARK. Let us check that this is equivalent to the usual definition of a representation as a linear action of
GonV. If p: G — GL(n) is such a representation, then write k[X;;, (det X)~!] for the coordinate ring of GL(n)
and let f;; = p*X;; € A be the pull-back of X;; under p. In other words, the f;; are the entries of the n x n
matrix representation, viewed as functions on the group G. We then obtain an algebraic representation of G, in
the sense of Definition 4.1, by taking an n-dimensional vector space V', a basis {e;}, and the linear map given by

py sei > e @ fii.
J

Conversely, suppose that u: V — A® V is a finite-dimensional algebraic representation, and let z1,...,z, € V
be a basis. Then u extends naturally to a homomorphism of polynomial rings

klzy,...,xn] = Alz1, ..., z5]

This is just the same thing as a linear action of G on the dual space of V, viewed as an affine space, and this
construction is inverse to the first. m|

All of the usual notions concerning group representations can be defined in the spirit of Definition 4.1. In
what follows we shall often drop the subscript and write p = uy when there is no risk of confusion.

4.4 DEFINITION. Given a representation pu:V — V ® A of a group G = Spm A:
(i) a vector z € V is said to be G-invariant if u(z) =z ® 1;
(ii) a subspace U C V is called a subrepresentation if u(U) C U ® A. ad

4.5 REMARK. In characteristic zero the coordinate ring A of a connected algebraic group is an integral domain.
It follows from this that the above definitions are in this case equivalent to the usual notions for a rational
representation p : G — GL(V). (See Exercise 4.8.)

The above definitions have some immediate consequences. The first says, in the language of Remark 4.3, that
in any infinite dimensional representation only finitely many of the matrix entries f;; are nonzero:

4.6 PROPOSITION. Every representation V of G is locally finite-dimensional. In other words, every x € V is
contained in a finite-dimensional subrepresentation of the group.

Proof. We can write y(z) as a finite sum ), z; ® f; for some z; € V and linearly independent elements f; € A.
The linear span U C V of the vectors z; is then exactly what we require. First, it follows from Definition 4.1(i)

that
T = Z e(fi)zi,

(3

so that z € U. Second, the commutative diagram in Definition 4.1(ii) says that
S i) fi =Y wipalf) eEU® A® A,

Since the f; are linearly independent, this implies that u(z;) € U ® A for each i, so U C V is indeed a (finite
dimensional) subrepresentation. |

For the multiplicative group Gy, of Example 3.51, the representations are particularly simple to describe.
Given a vector space V and an integer m € Z, consider the map

V = Vektt!, Vi v @M,

This defines an algebraic representation of Gy,, called its representation of weight m. By taking direct sums of
these representations we get all representations of Gy, .
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4.7 PROPOSITION. Every representation V' of Gy, is a direct sum V =
subrepresentation of weight m.

mez Vim), where each Vi) CV is a

Given such a representation V' = @ V(,,) of G, a vector v € V) is said to be homogeneous of weight m.

Proof. For each integer m € Z define
Vimy={v eV | uv) =vet™}.

It is easy to verify that this is a subrepresentation of V' (see Exercise 4.4), and by construction it has weight m.
The proof that V = & Vim) is very similar to the proof of Proposition 4.6: begin by writing, for an arbitrary
veV,

meEZ
u(v) = Z UV @™ €V @ K[t t71].
meEZ

It follows from Definition 4.1(i) that v = ) vy, so it just remains to check that each vy, € V(,,). This will prove
the direct sum decomposition since obviously V{,,) N V() = 0 whenever m # n. However, Definition 4.1(ii) tells
us that

S pop)t =Y vp @t" ot eV A® A,

mEZ MEZ

and so by linear independence of the ™ € A it follows that yu(vy,) = v, ® t™ for each m € Z; hence vy, € Vipyy. O

It is also easy to classify the representations of the additive group G, (Example 3.50). Note, incidentally, that
our assumption that the field k has characteristic zero is essential in the next proposition, as well as in the two
examples which follow.

4.8 PROPOSITION. Every representation V' of G, = Spm k[s] is given by
) 4n
Ho) =310 @
for some endomorphism f € EndV which is locally nilpotent (that is, every vector is eventually killed by iterates

of f).

Proof. We have a sequence of linear maps d,, : V — V defined by

o0

u(w) = 3 6.(0) @ 5" € V @ ks].

n=0
By Definition 4.1 we see that do(v) = v and

o0

D b)) ®s" =Y ()@ (s@1+10s)",

from which it follows that
6m o 6n = (m M n) 6m+n-
m

The map f = §; therefore has the properties stated in the proposition. a

In the previous chapter (see Definition 3.54) we defined an action of a group G = Spm A on an affine variety
X =Spm R . We can now interpret this as simply a representation

ur:R— R®, A
which is also a ring homomorphism. The subset of G-invariants
RE={feR|ur(f)=fo1}

is a subring of R.
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4.9 EXAMPLE. An action of the multiplicative group G, = Spm k[t,t7 '] on X = Spm R is equivalent to
specifying a grading
R=D B> BB € Rinsn).
mEZ
The invariants of Gy, are then the homogeneous elements of weight 0 under this grading. Moreover, the linear
endomorphism of R which rescales each summand Ry,,) by m,

E:R-R, > fur Y mfm,

is a derivation of R. E is called the Fuler operator. Trivially, the Gy, -invariants in R are the elements killed by
E, that is, R® =ker E. O

4.10 EXAMPLE. An action of the additive group G, = Spm k[s] on X = Spm R is equivalent to specifying a
locally nilpotent derivation D € End R of the function ring R (see Definition 4.15 below). The action pgr : R —
R ® k[s] is then given by

STL

nr(f) =3 D"(f)e—
n=0
The G,-invariants in R are the elements killed by D, that is, R% = ker D. m]

We will later need to consider semiinvariants of group representations as well as invariants (see Chapter 6),
and for these we make the next two definitions.

4.11 DEFINITION. Let G = Spm A be an affine algebraic group. A (1-dimensional) character of G is a function
X € A satisfying
palx) =x®x,  x)x =1
O

Note that the characters of G are invertible elements of the function ring A, and in fact they form a multi-
plicative subgroup of these.

4.12 LEMMA. The characters of the general linear group GL(n) = Spm k[X;;, (det X) '] are precisely the integer
powers of the determinant (det X)", n € Z.

Proof. This is trivial: since det(X;;) is an irreducible polynomial, the only invertible elements of
k[Xj, (det X)™'] are, up to multiplication by a scalar, the powers (det X)™. For every n € Z and scalar \ € k,
moreover, A(det X)" is a character precisely when \ = 1. |

4.13 DEFINITION. Let x be a character of an affine algebraic group G, and let V' be a representation of G. A
vector x € V satisfying

py(x) =z ®x
is called a semiinvariant of G with weight x. The semiinvariants of V' belonging to a given character x of G form
a subrepresentation (see Exercise 4.4), which we shall denote by V,, C V. a

An algebraic group T' = Spm A which is isomorphic to a direct product of copies of Gy, is called an algebraic
torus. In this case the set X (T') of characters of T is a basis over k of the algebra A. The following fact follows
from Proposition 4.7.

4.14 PROPOSITION. Let T be an algebraic torus and let X (T') be its set of characters. Then every representa-
tion V of T is the direct sum of all its semiinvariant subrepresentations:

V= @ Vo

XEX(T)
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4.2 Algebraic groups and their Lie spaces

In this section we will define the Casimir operator associated to a representation of an algebraic group.

(a) Local distributions

4.15 DEFINITION. Let R be a commutative ring over k¥ and M an R-module (see Chapter 8). An M -valued

derivation is a k-linear map
D:R—M

satisfying the Leibniz rule D(zy) = D(y) + yD(z) for z,y € R. o

An R-valued derivation D : R — R will simply be referred to as a derivation of R.

4.16 EXAMPLE. Let R = k[t1,...,t,]. The first examples of derivations are the partial derivatives
0
— R — R.
Ot;

Fixing a1, ...,a, € k, a second example is the evaluation

0
a:R—k, fb—)a—ti(al,...,an).
This is a derivation with values in the R-module k = R/(t1 — a1, ...,tn — ay). a

One can generalise this example to any affine variety. Let p be a point of X = Spm R, with maximal ideal
m, C R. Then a k = R/m,-valued derivation is a linear map

a:R—k

with the property that
a(fg) = f(p)alg) + g(p)a(f)

for all f,g € R. We shall sometimes refer to a as a derivation of X at the point p € X. Note, in particular, that
such a derivation vanishes on mf, C R. It is this idea that we want to generalise next.

4.17 DEFINITION. Let p be a point of X = Spm R with maximal ideal m, C R. A local distribution with support
at p € X is a k-linear map a : R — k with the property that a(mﬁ)v) = 0 for sufficiently large N € N. a

The degree deg a of a local distribution supported at p is the minimum d € N such that a(mﬁ“) = 0. Every
local distribution of degree 0 is a scalar multiple of the evaluation map

ev, : R =k, = f(p).

4.18 LEMMA. For a k-linear map « : R — k, the following are equivalent:
(i) « is a derivation of X = Spm R at the point p € X;
(ii) « is a local distribution, supported at p € X, of degree 1 and satisfying a(1) = 0.

Proof. (i) = (ii) It has already been observed that « is a local distribution of degree 1, while a(1) = a(1-1) =
a(l) + a(l). Hence a(l) = 0.
(i) = (i) I f,g € R, then f — f(p),g — g(p) € mp, so that dega = 1 implies
a((f = f(P)(g —9(p))) = 0.

Expanding and using the fact that a(f(p)g(p)) = f(p)g(p)a(1l) = 0 gives
a(fg) = a(f)g(p) + alg) f(p),

as required. O

It follows from the lemma that the vector space Dery(R, R/m,) of derivations of X = Spm R at p € X is
isomorphic to the dual of m,/m2.
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4.19 DEFINITION. The k-vector space (m,/m2)V = Dery (R, R/m,) is called the Zariski tangent space of X at
the point p. O

4.20 REMARK. The dimension of the Zariski tangent space at p € X is greater than or equal to the dimension of
the variety X at p; X can be defined to be nonsingular at p if and only if the two dimensions are equal. (This is
equivalent to Definition 9.44 in Section 9.3(b).) Over a field k of characteristic zero an algebraic group is always
nonsingular. |

We now have a vector space isomorphism
{local distributions with degree < d} = (R/m{*!)Y,

and when d = 1 this decomposes into
k& (mp/m2)Y,

where, by Lemma 4.18, the two summands are spanned by the evaluation map ev, and by derivations at p
respectively.
More generally, for each d < e the natural projection R/m;f)+1 — R/mZ“ induces an injection

(R/my™)Y < (R/mi+h)Y.
There is therefore an ascending sequence:
kC (R/m2)Y C (R/m))Y C---C (R/miTH)Y C -

The space of local distributions supported at p can thus be identified with the limit (that is, the union) of this
sequence.

(b) The distribution algebra

If G = Spm A is an affine algebraic group with coordinate ring A, we will denote by H(G) the vector space of
distributions a : A — k supported at the identity element e € G. The Zariski tangent space of G at this point is
called the Lie space of G and is denoted by g = Lie(G) C H(G).

4.21 REMARK. The vector space g acquires from H(G) (together with its convolution product, which we are
about to define) the structure of a Lie algebra. This is outlined in Exercise 4.3. However, we are not going to use
the Lie algebra structure in this book. a

Let pu = pa: A — A® A be the coproduct on G.

4.22 DEFINITION. If o, 8 € H(G) are distributions supported at the identity, the convolution product a* 3 of a

and 3 is the composition
A A0A S ke kS

O

4.23 LEMMA. The convolution product of a, 8 € H(G) is again a distribution supported at the identity a* 3 €
H(G), and
degax [ < dega + deg .

Proof. Since (e, e) — e under the group operation G x G — G, we have
pm) CmA+Am,
where m = m,. Since u is a ring homomorphism, this implies, for a,b € N,

p(matoH) Z m' @m.
i+j=a+b+1
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Taking a = dega and b = deg f3, it follows from a(m®*!) = 0 and B(mP*1) = 0 that a x B(m2*0*1) = 0, which
proves the lemma. O

Evaluation at the identity € = eve € H(G) is an identity element for the convolution product. Moreover, it
follows from the associative law for the coproduct u (Definition 3.48(i)) that * is associative and thus makes H(G)
into an associative algebra, called the distribution algebra of the algebraic group G.

4.24 REMARK. In general, the distribution algebra is infinite-dimensional and noncommutative. If £ has char-
acteristic zero, it is a theorem of Cartier that 7{(G) is the universal enveloping algebra of a Lie algebra. a

4.25 EXAMPLE. Consider the multiplicative group G = G, = Spm k[t,t !]. The vector space of distributions
supported at the identity is, by definition,

H(Gw) = lim (k[t]/(t — 1)™)".

n— 00
As an algebra this is isomorphic to the polynomial ring k[E] where

d

E=— Skttt k
dt [7 ]_>7

t=1

and Lie(Gy,) is the 1-dimensional linear span of E. In fact, by definition E x E takes f(t) € k[t,t!] to

8 d\?
tt' == t
g’ ) it <dt> 1
=t'= t=1
Similarly, the n-th power E*" = E % --- % E is equal to (0%/0t")|4=1. O

4.26 EXAMPLE. Similarly to the previous example, the additive group G, = Spm k[s] has distribution algebra

H(Ga) = lim (k[s]/(s")" = kDI,

n—o0

This is the polynomial ring generated by

D= — 1k k.
as| . [s] —

O

A homomorphism of algebraic groups G — G’ induces a ring homomorphism H(G) — H(G’') and a linear
map of Lie spaces Lie(G) — Lie(G"). (This is also a homomorphism of Lie algebras in the sense of Exercise 4.3.)
Note that the induced homomorphism of function rings is in the reverse direction, A" — A, but our constructions
dualise this once more so that both functors H and Lie are covariant.

We return now to the representations of G = Spm A. Let uy : V — V ® A be an algebraic representation,
with an associated linear representation p : G — GL(V). For each distribution o € H(G) consider the k-linear
map

VS VoA vVerSV.

We will denote this composition by p(a) € End V. From the associativity of p (Definition 4.1(ii)) we obtain:

4.27 LEMMA. The map p: H(G) — End V is a ring homomorphism. O

In other words, the representation V' is a (noncommutative) #(G)-module. A vector v € V' is G-invariant if
and only if
Fe)v = a(l)v
for all @ € H(G). In particular (by Lemma 4.18(i)), p(a)v = 0 if a € g = Lie(G). That is, the Lie space g kills
all of the G-invariants in V.
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4.28 EXAMPLE. Let V be a representation of Gy,, and decompose a vector v € V into its homogeneous compo-
nents v =), vp under the action of Gy, . Then

u(v) = va Qt™,

and so the generating distribution

d
= — m) — E
i, € H(Gm) = k[E]
acts by p(E) : v — > muvy,. In other words, it coincides with the Euler operator of Example 4.9. O

Consider the action of G on itself by conjugation:

GxG— G, (z,9) — grg™".
This induces an action of G on its coordinate ring A. Since the identity element e € G is fixed under conjugation,
the action preserves the maximal ideal m = m,, and in particular it induces a k-linear action on each quotient
A/m™ and on its dual space. It follows that #(G) becomes a linear representation of G. On the other hand,
given a representation p : G — GL(V), the space End V also becomes a linear representation, by conjugation
T — p(g)Tp(g)~* for T € End V and g € G. With respect to this action we have:

4.29 LEMMA. The map p: H(G) — End V is a homomorphism of G-representations. a

In particular, the Lie space g is a subrepresentation of 7 (G); this is called the adjoint representation and is
denoted by
Ad: G — GL(g).

4.30 ExXAMPLE. Consider the general linear group GL(n) with coordinate ring A = k[X;;, (det X)~']. The Lie
space gl(n) of GL(n) is the k-vector space with basis

0
0Xij|x_r,

Eij = : k?[Xij, (detX)il] — k

for 1 < i,j < n. (Note that this generalises Example 4.25.) This space is isomorphic to the vector space of
n x n matrices over k, by mapping E;; to the matrix with a 1 in the (i, j)-th entry and Os elsewhere. With this
identification the adjoint representation is

Ad(g) : gl(n) — gl(n) M s gMg™.

4.31 ExXAMPLE. The special linear group SL(n) has coordinate ring A = k[X;;]/(det X — 1). We can identify
its Lie space sl(n) as follows. It is the Zariski tangent space (m/m?)V, where m C A is the ideal at the identity
matrix, and a tangent vector is therefore a ring homomorphism f : A — k[t]/(¢?) for which the composition
4L k[t]/(t*) — K[t]/(t) = k coincides with the map A — A/m. In other words, if we write € for the residue
class t mod t* and k[e] = k[t]/(t?), then a tangent vector is a matrix I + eM which satisfies

l=det(I+eM)=1+¢€tr M,

since €2 = 0. Hence sl(n) C gl(n) is the vector space of n x n matrices over k with trace zero. |

(c) The Casimir operator

Consider now an inner product on the Lie space, that is, a symmetric and nondegenerate bilinear form
K:gXxg—k.

We will assume that & is invariant under the adjoint representation Ad : G — GL(g).
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4.32 DEFINITION. Let k be a G-invariant inner product on g, as above. Let X1,..., Xy € g be a basis of g and
let X1,..., X} € g be its dual basis with respect to x. The distribution

Q=X;xX| + -+ Xn*x Xy € H(G)

is called the Casimir element over G with respect to k. O

4.33 PROPOSITION. The Casimir element  is independent of the choice of basis {X1,...,Xn}.

Proof. A second basis {Y1,...,Yn}, with dual basis {Y{,..., Y} is related to the first by
N N
Y; =) a;X;, Y/=) a;X}, i=1,...,N,
Jj=1 Jj=1

where A = (a;;), A" = (aj;) are some matrices satisfying A’A’ = Iy. So we compute

N N [N N
Y VixY] = a;ij X *(Z%H)
i=1 i=1 \ j=1 k=1
N
! !
- 3 (o) o
jk \i=1
= Z(sijj*Xllc:Q7
Jik
as required. O

For the Casimir element for SL(n), see Example 4.48 below.
Since the inner product k is assumed to be G-invariant, for each g € G the sets

{Ad(g)(X1),...,Ad(9)(Xn)},  {Ad(9)(X1),...,Ad(9)(XN)},

are again dual bases. We therefore deduce:

4.34 COROLLARY. The Casimir element Q € H(G) is invariant under the action of G on the distribution alge-
bra. ad

Let p: G — GL(V) be a representation of G. This is an H(G)-module via the homomorphism p : H(G) —
End V of Lemma 4.27. In particular, the Casimir element 2 determines a linear endomorphism of V,
p(Q): V=V,
called the Casimir operator (with respect to the inner product k). By Lemma 4.29 and Corollary 4.34 this is

invariant under the conjugation action of G on End V: that is, it commutes with the action of G. Moreover,
since g kills the G-invariants V¢ C V, so does the Casimir operator. In other words:

4.35 COROLLARY. The Casimir operator is an endomorphism of each representation V of G, and

VY Cker (p(Q)).
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4.3 Hilbert’s Theorem

(a) Linear reductivity

4.36 DEFINITION. An algebraic group G is said to be linearly reductive if, for every epimorphism ¢ : V. — W of
G representations, the induced map on G-invariants ¢© : V¢ — W& is surjective. O

There are various equivalent definitions (see also Lemma 4.74 below):

4.37 PROPOSITION. The following conditions are all equivalent.
(i) G is linearly reductive.
(ii) For every epimorphism ¢ : V — W of finite-dimensional representations the induced map on G-invariants
¢ : VG - W is surjective.
(iii) If V is any finite-dimensional representation and v € V is G-invariant modulo a proper subrepresentation
U C V, then the coset v+ U contains a nontrivial G-invariant vector.

Proof. (i) implies (ii) trivially. Applying (ii) to the quotient map V' — V/U gives (iii), so we just have to
show that (iii) implies (i). We suppose that ¢ : V' — W is an epimorphism of G representations and that
#(v) = w € W for some v € V. By local finite dimensionality (Proposition 4.6) there exists a finite-dimensional
subrepresentation Vo C V containing v. Now v € Vj is G-invariant modulo the subrepresentation Uy = Vp Nker ¢,
so by property (iii) there exists a G-invariant vector v’ € Vp such that v’ — v € Up. Since ¢(v') = w, we have
shown that ¢ : V& — WY is surjective. m|

4.38 PROPOSITION. Every finite group is linearly reductive.

Proof. Suppose that V is a finite-dimensional representation and v € V is a vector invariant modulo a
subrepresentation U C V, and set
v g-v.
|G| >

9eG
Clearly v’ is G-invariant, while
“v — V)
-G 2
geG
is contained in U. So we have verified condition (iii) of Proposition 4.37. i

4.39 REMARK. The homomorphism R : V — V& used in this proof, R = ﬁ Y geq 9 is called a Reynolds oper-

ator and corresponds to Cayley’s Q2-process in the work of Hilbert. (See Sturmfels [28].) One could, alternatively,
prove the proposition by using R to verify Definition 4.36 directly, but we have used the criterion of Proposi-
tion 4.37 because this is the approach that we will take to prove the linear reductivity of SL(n) (Theorem 4.43). O

Direct products of linearly reductive algebraic groups are linearly reductive; moreover, if H C G is a normal
subgroup and G is linearly reductive, then so is the quotient G/H. Conversely, if both H and G/H are linearly
reductive, then G is linearly reductive.

4.40 ExAMPLE. If G is an algebraic group whose connected component at the identity is linearly reductive, then
G is linearly reductive. a

4.41 PROPOSITION. Every algebraic torus (Gy, )Y is linearly reductive.

Proof. 1t is enough to prove this for T' = Gy, ; again, we shall check condition (iii) of Proposition 4.37. By
Proposition 4.7, a representation V' and a subrepresentation U have weight decompositions

V= Vi, U=EDUwm):
MEZL meEZ

with U,y C V). T-invariance of an element v = ) v(,,) modulo U means that v(,,) € U for all m # 0. It
follows that v(q) is a T-invariant element of the coset v + U, as required. a
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4.42 EXAMPLE. An example of a group which is not linearly reductive is the additive group G, = k. To see
this, consider the 2-dimensional representation given by

1 ¢
Ga — GL(2), t»—><0 1).

Then restriction to the z-axis,
V= klz,y] = W= klz,y]/(y) = k[z],

is a surjective homomorphism of G, -representations. But V% = k[y], W& = k[z], so the induced homomorphism
on invariants is not surjective. O

Our aim in the remainder of this section is to prove:
4.43 THEOREM. The special linear group SL(n) is linearly reductive.

The general linear group GL(n) is generated by its centre, which is isomorphic to Gy,, and the subgroup
SL(n). It can therefore be expressed as a quotient GL(n) = (Gm x SL(n))/Z,, and so we obtain:

4.44 COROLLARY. GL(n) is linearly reductive. ad

4.45 REMARK. The proof of Theorem 4.43 will be modelled on that of Proposition 4.38, using a Reynold’s
operator R : V — VS (Remark 4.39). In this case R will be constructed using the Casimir operator for the
representation V. For the case n = 2, on the other hand, we will give an alternative and more direct proof in
Section 4.5. m|

Let U be any finite-dimensional vector space. The Lie space of GL(U) is canonically isomorphic to End U,
and the adjoint representation is the conjugation action of GL(U) on this space (Example 4.30). Associating to
a pair of endomorphisms of U the trace of their composite

k:End U x End U — k, (f,g9) —tr fg, (4.1)

defines a nondegenerate inner product (symmetric bilinear form) on End U. We will write s(f) = &(f, f). The
following is clear.

4.46 LEMMA. k is invariant under the adjoint action of GL(U). In other words,
klafa™) = w(f)
is satisfied for all f € End U and o € GL(U). O

The Lie space s[(U) of the special linear group SL(U), as a subgroup of GL(U), is the subalgebra of End U
consisting of trace zero endomorphisms (Example 4.31). We shall denote the restriction of the inner product s
to sl(U) by the same symbol.

4.47 LEMMA. k Is a nondegenerate inner product on sl(U) invariant under the adjoint action of SL(U).

Proof. k is nondegenerate on End U, and with respect to  the subspace s[(U) is the orthogonal complement
of the identity element Iy;. Since x(Iyy) = dim U # 0, it follows that x is nondegenerate on sl(U). ad

4.48 EXAMPLE. Let us calculate the Casimir element for SL(n), using this inner product. Let e;; denote the
sparse n X n matrix with a single 1 in the -th row and the j-th column. Let f;; = ej; and, fori =1,...,n—1, let

1
hi = eii — €it1,i41, mi =en + -+ e — 5(611 + o+ enn)-

Then the Lie space sl(n) has dual bases

{eijtici U{fisticij U{hiti,  {fijlici Udeijtics U{miti
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By Definition 4.32, we now compute

1
Q=" (eij » fis + figwei) + €+ el = —(enn +--+ enn)”
i<j

For example, in the case n = 2 the Casimir element is

1
Q:e*f+f*e+§h*h

=(30) =(8) =00 0)

(See also Section 4.4(a) below.) |

where

4.49 PROPOSITION. For a representation p : SL(n) — GL(V') the following are equivalent.
(i) The representation is trivial.

(ii) p() = 0.
(iii) tr p(Q) = 0.

Proof. (i) implies (ii) by Corollary 4.35, and this implies (iii) trivially; so we just have to show that (iii)
implies (i).

Let T C SL(n) be the torus subgroup of diagonal matrices and h C sl(n) its Lie space. Under the action of
T the representation V has, by Proposition 4.14, a character space decomposition

v= P W
XEX(T)
Each x : T'— Gy, corresponds to a linear form with integer coefficients ¥ : h — k, and for each h € §) we have
tr p(h)* = (dim V3 )x(h).
x#1

It follows that if tr p(h) = 0 for all h € b, then dim V), = 0 for all nontrivial characters x € X (7I')—or, in other
words, V' is a trivial representation of the torus T'. Since diagonalisable elements are dense in SL(n), this implies
that V' is also trivial as a representation of SL(n).

The proposition is proved, therefore, if we can show that tr p(Q2) = 0 implies tr p(h) = 0 for all h € . We
will do this just for SL(2); the general case is similar. We have seen that the Casimir element is

Q = exf+fxe+LhxheH(SL(2)

= e+ )2 +3(V/Te— V=1f)* + }h?,

e+f:<(1) 3) ﬁ(e—f)z(_ﬁ_—l “?) hZ((l) _01>

are conjugate in sl(2). Hence

where the matrices

() = St p(h),
and we are done. a

In particular, if the Casimir operator p({2) of a representation V is nilpotent, then the representation is
trivial. Applying this to the subrepresentation ker p(Q)" shows that ker (p(Q))™ c VSL(™ for any integer
m > 0. Combining this with Corollary 4.35, we conclude:

4.50 CoroLLARY. VW = | | ker (5(02))™. m
m>0
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Proof of Theorem 4.43. Given a finite-dimensional representation V' of SL(n) we shall construct a Reynolds
operator R : V — V5" analogous to the averaging operator R = 1/|G] >_gec 9 used in the proof of Proposi-
tion 4.38 for the case of a finite group. This is constructed from the Casimir operator Cy := p(2) € End V as
follows. Let N = dimV, and let

xv(t) =tN +etN T 4 ey t™

be the characteristic polynomial of Cy, where ¢y_,, # 0. The Reynolds operator is constructed by substituting
the Casimir into the polynomial

1

tm

1
e T
CN—m

P(t) := p——

That is, R := P(Cy). This is a homomorphism of SL(n)-representations, and by the Cayley-Hamilton theorem
it satisfies

Cy'P(Cy) =0.
It follows from Corollary 4.50 that the image of P(Cy) is contained in V5%(m),

We can now follow the proof of Proposition 4.38 and apply the criterion in Proposition 4.37(iii) for linear
reductivity. Suppose that U C V is a subrepresentation and that v € V' is SL(n)-invariant modulo U. This means
that p(sl(n))v C U, and hence Cyv € U. It follows from the way we have defined P(t) that P(Cy)v —v € U,
and so the vector v’ = P(Cy)v satisfies the requirements of Proposition 4.37(iii). o

(b) Finite generation

Let G be an algebraic group acting on a polynomial ring S, preserving the grading.

4.51 TueoreM. (HILBERT [19]) If G is linearly reductive, then the ring of invariant polynomials S is finitely
generated.

Proof. We will essentially follow the original reasoning of Hilbert. The invariant ring is graded by

SY = s9ns..

e>0

Let Sf C S% be the span of the invariants of positive degree and denote by J C S the ideal generated in S by
Sf. By Theorem 2.2, in fact, J is generated by finitely many polynomials f,..., fx € Sf. In other words, the
S-module homomorphism

N
¢:S®--®S—>J  (h,....hn) > > hifi
i=1

is surjective.
Claim: S is generated by fi,..., fn. We pick an arbitrary homogeneous invariant A € S¢. To show that h

belongs to k[fi,..., fn] we shall use induction on degh. If degh = 0, then h is a constant, so this is clear. If
deg h > 0, then h belongs to the homogeneous ideal .J, and therefore to the invariant subspace J¢, where we can
view J as a representation of G. The map ¢ above is a surjective homomorphism of G-representations, so by
linear reductivity the induced map of invariants S¢ @ - --® S¢ — J is surjective. There therefore exist invariant
polynomials A, ..., hly € S such that

N
h=" " hifi
i=1
The f; all have positive degree, so degh} < degh. By the inductive hypothesis we may therefore assume that

each h} € k[f1,..., fn] and hence h € k[f1,..., fn] also. ad

Note that the last part of this proof is really just Proposition 2.41.
We turn now to the general case of G acting on a finitely generated k-algebra R. We shall show that, again,
the invariant subring R is finitely generated, by reducing to the case of a polynomial ring as above.
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4.52 LEMMA. Suppose that an algebraic group acts on a finitely generated k-algebra R. Then there exists a set

of generators r1,...,rn of R whose k-linear span (ry,...,rn) C R is a G-invariant vector subspace.

Proof. Let s1,...,sp € R be any set of generators. By local finiteness (Proposition 4.6) each s; is contained in
a finite-dimensional subrepresentation V; C R of G. It therefore suffices to extend sy,...,sp to a basisry,...,ry
of the finite-dimensional subspace ), V; C R. O

Geometrically, this lemma says that an affine algebraic variety acted on by an algebraic group can always be
equivariantly embedded in an affine space A" on which G acts linearly.

4.53 THEOREM. If a linearly reductive algebraic group G acts on a finitely generated k-algebra R, then the
invariant ring RC is finitely generated.

Proof. Pick generators r1,...,ry of R as in Lemma 4.52. Then there is a surjective k-algebra homomorphism
S =k[z1,...,zn] = R

given by mapping x; — 7; for each ¢ = 1,..., N. Via this map G acts on the ring S, and by Theorem 4.51 the
invariant ring S¢ is finitely generated, while by linear reductivity the induced map S¢ — RY is surjective. It
follows that R is finitely generated. |

4.4 The Cayley-Sylvester Counting Theorem

In order to gain a concrete understanding of any invariant ring it is essential to be able to compute its Hilbert
series. In this section we shall describe some methods for determining the Hilbert series for the case of classical
binary invariants.

(a) SL(2)

Let us write a general unimodular 2 X 2 matrix as

X = <Cc‘ 2) € SL(2).

The Lie space s[(2) of SL(2) has a basis consisting of three derivations:

0 0 (2 @
\8a 0d)|_;’

=l T vely,

These correspond to the three subgroups of SL(2)

SN
N = {( ;’) s e } ~ G,
T = {(3 0) ItEkX} ~ Gon.

We can represent these basis elements, in the manner of Example 4.30, as matrices

=(30) =(0) =00 %)

The adjoint action of SL(2) on s[(2) is by conjugation, and its restriction to 7' C SL(2) is therefore given by

+ 0 e — tle
Ad (0 t1> : {f»—)t—2f (4.2)
h— 0.

VAR



L. L - sLd4 AL ML L A Ay S A AL VS e A AT RS A AL AL T R

The invariant inner product (4.1) from Section 4.3(a) is given by the symmetric matrix
010
1 00
0 0 2

with respect to the basis e, f, h € s[(2). We may therefore construct an orthonormal basis
e+f e—f h
V2 V=2 V2
and, as we have seen in Example 4.48, Casimir element

Q=exf+frxe+shxhe H(SL(2)). (4.3)

We now consider the basic representation S = k[z,y] of SL(2), and the action on S of the Lie space sl(2) C
H(SL(2)) and of the Casimir element on S, via the homomorphism p : H(SL(2)) — End S. For simplicity we
will usually drop the tilde and write just p : H(SL(2)) — End S. This should not cause any confusion.

4.54 EXAMPLE. SL(2) acts on the right on the polynomial algebra S = k[z,y] by

fa (30 = fas+ pue+d)

Let us compute the derivative at the identity of the restriction of this action to the subgroup N* C SL(2):

flz,y)- (é i) = f(z +sy,y),

dis _ {f(a:,y)- <é f)} = y%f(w,y)-

£ e (2 9))=ebsen

For the subgroup T' C SL(2) the restriction of the adjoint action is given by

so we obtain

Similarly, for N~ C SL(2) we find

fz,y) - <3 t91> = f(ta,t™y),

t 0 _of of
t:1{f(35ay)'<0 t_1>}—$%—ya—y-

We conclude that the representation of the Lie space p : s[(2) — End S is given by

B B ) B
p(e)—ya, p(f)—ﬂfa—y, p(h)—ﬂfa—ya—y-

and we must differentiate at t = 1:

d

dt

From (4.3) the Casimir operator is

p(Q) = ple)p(f) + p(f)o(e) + 5p(h)?

I
&
+
[
=

whereE:xa% +y8%. O
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In this example, for each d € N the binary forms of degree d give a subrepresentation V3 C S. Note that by
Euler’s Theorem the Casimir operator on Vj is the scalar d + d?/2.

4.55 REMARK. The following inhomogeneous description of the representation V; will reappear at the end of
this chapter. Namely, V; can be viewed as the d + 1-dimensional vector subspace of k[z] consisting of polynomials
of degree at most d. Then SL(2) acts on the right on V; by:

f@- (5 7) = e+ oyir L),

(b) The dimension formula for SL(2)

If V is a finite-dimensional representation of SL(2), then under the action of the torus 7' C SL(2) it has a
weight-space decomposition (see Proposition 4.7)

V=D Vim- (4.4)

mEZ

The following follows from (4.2):

4.56 PROPOSITION. (WEIGHT SHIFT.) Under p : sl[(2) — End V we have

p(€) : Vim)y = Vim+2), P(f) : Vimy = Vim—2)-

O
4.57 LEMMA. In the distribution algebra H(SL(2)) the following relation holds:
exf—fxe=h.
Proof. We fix independent variables a, b, c,d and a’,b’, ¢, d’" as the entries of matrices
X = <Z 2) X' = (Z,I Zﬁ)
By definition of the convolution product, the element e x f evaluated on a polynomial F(X) in a,b, ¢, d gives
OPF(XX')
oo |x_xi_;
One easily checks that this is equal to
w " OF (X)
oboc |y, oa |y_;
Similarly, the value of f xe at the polynomial F(X) is
M " OF(X)
oboc |y, od |x_;
Subtracting these two expressions yields the identity in the lemma. O
4.58 COROLLARY. The Casimir element of SL(2) is
Q=exf+fxe+tshxh =2exf—h+ihxh =2fxe+h+ thxh.
O

This allows us to locate explicitly the invariants of SL(2) in the representation V:
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4.59 COROLLARY. VLX) =ker {e: Vig) = V) }.

Proof. Clearly VSL(2) C V[;), and indeed it is contained in ker e since it is killed by the Lie space s/(2). But
conversely, every v € ker e is killed by the Casimir operator, by Corollary 4.58. By Proposition 4.50, this implies
that v € VSL(2), O

The dimension formula for VS22 will follow once we show that the map in Corollary 4.59 is surjective. In
fact:

4.60 LEMMA. The composition €? : V(_yy — V(g) — V(o) is an isomorphism.

Proof. First let us show that e? is injective. If v € ker €, then the vector e(v) € V(o is SL(2)-invariant by
Corollary 4.59. In particular, fe(v) = 0. It follows that

p(Qv =p(2f xe+h+ Shxh)v =0,

so that, by Proposition 4.50, v € V(). But v lies in the —2-weight space, which contains no nonzero invariants;
hence v = 0.

By a similar argument the homomorphism f2 : Vi2) = V(—2) is injective. It follows that dim V(_5) = dim Vs,
and hence that e? is an isomorphism. O

It follows from this that e : V(o) — V() is surjective, and we deduce:

4.61 DIMENSION FORMULA. If V' is any finite-dimensional representation of SL(2), with weight-space decom-
position (4.4) with respect to the torus T C SL(2), then

dim VL) = dim Vo) — dim V).

The generating function

chy (q) = Y dim Vi)™ € Z[g,q ]
MEZL

of the weight-space decomposition (4.4) is called the (formal) character of the representation V. For example,
the space V; of binary forms of degree d has character

qd+1 . qfdfl
chy, (@) =¢ "+q¢ P+ 4¢P+ ¢ = —
qa—4q

4.62 COROLLARY. dim VSE() = — Res (¢ — ¢ ")chy (q). i

q:
(c) A digression: Weyl measure
By Cauchy’s integral formula we can re-express Corollary 4.62:

1
dim VSE®?) = ——% —q YHchy(g)d
im 57 Pla—a ")chv(a)da,

where the integral is taken with winding number 1 around the origin. Taking the unit circle with parametrisation
q = €'’ transforms the integral to

dim V£ = % / (1 — cos 20)chy (e*)d6. (4.5)
0

(We have used here the Weyl symmetry chy (¢) = chy (g !). This can be seen from the definition of the character,

using conjugation by the element <_01 (1)> € SL(2).)
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Note that every conjugacy class of the maximal compact subgroup SU(2) C SL(2,C) has a unique represen-
tative of the form N
e 0
A(t‘))—<0 em) for 0 <6 <m.
Thus, if we define a Weyl measure
w(@) =1—cos26 =2sin’ 6,

then, noting that [ p(f)df = m, we see that the dimension formula (4.5) has the form of an average of the class
function chy (8) = chy (e;9) with respect to the measure p.

Figure 4.1: Weyl measure pu(f) = 2sin” 6

Let us compare this situation with the Dimension Formula 1.11 for representations of a finite group G. If we
denote by ¢y, ..., C G its conjugacy classes, then, noting that the character y : G — C of the representation is
a class function, the Dimension Formula 1.11 can be written:

e
. 1
dim VY = [l Z leilx(ci)-
i=1

In other words (again noting that Zle u(c;) = |G]), the dimension is given as the average of the character with
respect to the measure u(c) = |c|.

In conclusion, then, in both cases of G a finite group or the compact Lie group SU(2) we see that the dimension
formula can be interpreted as the average of the character over the conjugacy classes of the group, with respect
to cardinality or the Weyl measure, respectively.

(d) The Cayley-Sylvester Formula

As an application of the dimension formula we are now going to compute the Hilbert series of the classical
binary invariant ring. If V' is any n-dimensional representation of SL(2), we consider the induced action of
SL(2) on the polynomial ring S(V) = k[x1,...,z,] of functions on V. Let ay,...,a, € Z be the weights (not
necessarily distinct) of the torus T' C SL(2) (see Section 4.4(a)) occuring in the weight-space decomposition of
the representation V' (Proposition 4.14). The function

(1 —gut)(1- qizt) ST A (IV - <g q01>v> i

is called the q-Hilbert series of the representation. Then Molien’s Theorem 1.10 for finite groups has the following
analogue for SL(2).

P(q;t) =

4.63 PROPOSITION. The invariant ring S(V)5%(?) has Hilbert series
P(t) = = Res (g —q” ) P(g;).
Equivalently, if P(q;t) =", ., cm(t)g™, then P(t) = co(t) — ca(t).

Proof. This is similar to the proof of Molien’s Theorem. First, by making a linear change of coordinates we
can assume that xy,...,z, diagonalise the action of T' = Gy,. Then we note that the power series expansion of

1
1—z)(1 —ma) - (1 — )

lists once each all the monomials of the ring S, and that the action on this expression of
q O
(0 o ) eT

R(qalxla s 7qanwn) = (

R(xly"'amn) = (

yields
1

1—qma)(1—q®z)- - (1= zy)
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When this is expanded, the sum of the coefficients in degree e is precisely the formal character chy,_ (q) of the
representation V.. It follows from this that

o0

Z chy, (q¢)t° = R(¢™'t,...,q¢""t) = P(q;t).

e=0
From Corollary 4.62
dim S5 NV, = — Res (¢ —¢~")chv, (9),

and hence the Hilbert series is

P(t) == Res 3 (¢ —q~")chv. ()t* = = Res (4 = ¢~ )P(g:1).

O

In particular, consider the representation V' = Vj of binary forms of degree d (see Example 4.54). The d + 1

monomials z¢, 241y, ... y? are already a basis diagonalising the action of 7" and are transformed to
gt ety gyt
by the element (g q91 > The ¢-Hilbert series is therefore
¢ 1
Plg;t) =] =T
i=0
4.64 DEFINITION. The g-analogue of an integer d, of its factorial and of the binomial coefficients are, respectively:
¢’ —q*
(i) [dy=q" " +¢" P+ g PP =
q—q
d
(i) (]! = T (e
i=1

O

The corresponding classical notions are obtained by letting ¢ — 1. In this sense the following proposition is
the g-analogue of the binomial theorem

(1)

e>0
4.65 PROPOSITION.
d

1 d+el| .
) =t DI S
pr el A ol € lg

Proof. Denote the left-hand side by
d

¢(a,t) =[] 1= g2

i=0
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and its power series expansion in t by

B, t) = _ac(@t?,  ao(g) =1.

e>0

Note that ¢(q,t) satisfies the functional equation

o) = L ola ).
Comparing terms on both sides, this gives
ae(9)q* = ae 1¢°" =a.(q) —ac1q7"
Rearranging, we obtain the recurrence relation
)= T a0
for the coefficients of ¢(g,t), from which the proposition follows. a

d .d—1

Returning to the representation Vy of SL(2), with basis z?, 2% 1y, ...,y%, let &,...,&; be the dual basis of

V. From Propositions 4.63 and 4.65 we deduce:

4.66 THEOREM. The Hilbert series of the classical invariant ring k[, ..., &5 for binary forms of degree d
is given by:
d+e
PO (#) = — —q! ‘.
(== Resg—a")| | ot
e>0 q
For the purpose of computing it is convenient to make a change of variable v = ¢?. Then
[d—f-e} _ et 1fgle+2)g---le+dlg
€ 14 [g[2]g - [d]g

Lo (L= (1= u2) (1wt
(I—u)(1—u?)-- (1 —ud)

and (note that the denominator begins with the quadratic factor!)

—q RS . (4.6)

—(g—q7") [

d+e o —de—1 (]- —u6+1)(]_ —ue+2)...(]_ _ueer)
€ q

For a formal power series f(u) € Z[[u]] we shall denote the coefficient of u™ by [f(u)], € Z.

4.67 CAYLEY-SYLVESTER FORMULA. The vector space k[&, ... ,§d]eSL(2) of classical invariants of degree e for
binary d-ics has dimension

(1 — w1 —ut?) - (1 — uetd)
m(d,e) = (1—wu?)-- (1 —u?) de/?
0 if de is odd.

if de is even,

Proof. The dimension m(d, e) is equal to the residue appearing in Theorem 4.66, and we may note that, if de
is odd, then this residue vanishes since the expansion of (4.6) contains only even powers of g. We shall therefore
assume that de is even. Writing

(1 — w1 (1 — utt?) .- (1 — uetd)
(1—u?)--- (1 —u?) )

R(u) =
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we have

1 —de—

mld,) = 5 § e R da,
i)

where the path of integration is a small circle around ¢ = 0. Under the change of variable v = ¢2, du = 2qdg,

this is equal to

1 —de/2 u”!
5 Pu 5 R(u)du,

where the contour now has winding number 2 about v = 0 and is therefore

m(d,e) = L%u‘deﬂ_lR(u)du

21

= Resu %/2"1R(u)

=0

[R(u)]ae/a-

4.68 COROLLARY. (HERMITE RECIPROCITY) m(d,e) = m(e,d). a

(e) Some computational examples

4.69 PROPOSITION. For 2 < d < 6, the Hilbert series P\Y)(t) of the classical invariant ring for binary d-ics is
given by the following table:

d | PD(t)
1
2
11—t
1
3
11—t
1
4 R —
(1—t2)(1—13)
5 1+1¢'8
(T =91~ 5)(1 - t12)
6 1+¢'

=) — (1 —o)(1 - 0)
Proof. We shall just do the cases d = 4, 5, leaving the others to the reader. From the Cayley-Sylvester formula,

(1 — w1 —ut?)(1 —ut3)(1 - ue+4)]
(I —u?)(1 —u?)(1—ut) 2e

m(4,e) =

In this expression we can expand the numerator, ignoring terms of degree greater than 2e:

'1 _ ueJrl _ ue+2 _ ue+3 _ ue+4

m(d,e) = L (=) (1 —wud)(1 —u?) Le

[(1T—u)(1- 119/2)(1 - u2>L - {(1 —uut;(ti : Z:fluj u4>L

- la- u>(11+—f2/>2(1 - u3>L - [(1 —u)(1 —uu2>(1 - u%L
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(where for the last term we have simply factorised 1 — u*). Exchanging u3/2 and u between the two numerators,
and noting that the second then has no integer powers in its expansion, we see that

1
=) -a)],’

e

m(4,e) =

and hence that P™ (t) = 1/(1 — t?)(1 — 3).
We now turn to the case d = 5. Since m(5,e) = 0 whenever e is odd, it is enough to consider even values

e = 2a. Then
(1 _ u2a+1)(1 _ u2a+2)(1 _ u2a+3)(1 _ u2a+4)(1 _ u2a+5)

(I —u?)(1—u?)(1—u*)(1—ud)

Expanding the numerator and ignoring terms of degree greater than 5a, we obtain:

m(5, 2a) = {

5a

1
m(3,2a) = [u_u%a_u%a—uﬂa—uﬂka

_{ u+u?+ud +ut +ud }
1—u?)(1—-u?)(1—u)(1—-ud)],,

(4.7)

N wd + ut + 2u® 4+ 2ub 4+ 207 + ud + u?
(1-uw)(1-u)(1—u*)(1-u?) |,

We deal with each of these three brackets. The first can be rewritten:

{(1 —u?)(1 - u3)1(1 —ut)(1— u5)]5a

B (1+u?+ut +u® +ud) (1 + o +ub + 0+ u'2)(1 + vt + ud + ul? + ul)
- (1= ul%)(1 — u)(1 — u2)(1 - ) .

(14 u® + 4w 4 5t + Tu?0 4 40 + 3u0
B (1 —u?)(1—ul®)(1—ul®)(1—u?) 50
where, in the last step, the numerator has been expanded ignoring terms that are not divisible by 5.
The second bracket in (4.7) can be rearranged similarly:
u+u? +ud +ut 4+’ o Ju(l+ e +ut)(1 + ut + u®) (1 4w+ u?)
(1—u?)(1—u?)(1—ut)(1-ud)],, N (I —uf)(1 —u?)(1—ul?)(1—u?) 30

[2143 +2u8 + 3w +ul + u15]
(1—u?)2(1—ud)(1—u'?) |,

The third bracket is:
|:’U,3 +ut + 2u® + 2ub + 2u” + u® +u9] _ [u3(1 +u+u?+uP +ut)(1 +u2)}

- )1 - )1 — a1 - ) - )1 — @)L —uh)(l - )

ud
- [(1 —u)(l—u?)*(1 - u3)L '
It follows from these computations that the Hilbert series is given by

1+t +42 +583 + Tt + 45 + 385 2t 4+ 22 + 33+t +1°

P(S)(\/Z) - 1 -1 —2)(1 - 8)(1— ) o (1—1)2(1 —2)(1 —t4)
t3
oo na-eera—n)

14+¢°
(1—2)(1 —t4)(1 —¢5)°
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O

In the cases d = 2,3, the discriminant D (&) € k[&, ..., £q)°"® has degree 2,4, respectively (Examples 1.21
and 1.22).

For the case d = 4, we have constructed in Chapter 1 (see Section 1.3(b)) invariants g2(&),g3(£) €
ko, . - ,54]SL(2) of degrees 2,3, respectively. In fact, g and g3 are algebraically independent: this can be
seen by restricting to the subspace £ = &4, & = & = 0, on which the invariants reduce to

926 =& +38, g6 = (& - &)&.

These determine a map k% — k2, (&0, &) — (g2, 93) which is clearly surjective (since one can separate variables),
SO g2, g3 cannot satisfy any polynomial identity. From Propositions 4.69 and 1.9 we can therefore conclude:

4.70 COROLLARY. The ring of invariants k[, . .., 4% is generated by the discriminant D(¢) when d = 2,3,
and by g2(£), g3(§) when d = 4. a

The higher degree cases are less simple, but by constructing the invariant rings explicitly the following results
are known. (See also Schur [26].)

4.71 EXAMPLE. For d = 5, the Hilbert series can be written as

1—¢%
PO (t) =
(1 —t4) (1 —#8)(1 — #12)(1 — #18)’
and, indeed, the invariant ring k[&, ... ,55]SL(2) has four generators of degrees 4,8,12,18 satisfying a single

relation of degree 36. Similar for d = 6,

1— t30
PO (1) = ,
=&)L= (1 — P)(1 — £0)(1 — 1)
and the invariant ring has five generators of degrees 2,4,6,10,15 and a single relation of degree 30. O

4.72 EXAMPLE. (SHIODA, 1967 [27]) For d = 8, the Hilbert series is

1+t8+t9+t10+t18

PO = aomasma—ma-ma eI =1

Lt Yot + Nlas ' — 1
=) (1 - 81— )1 - )1~ 5)(1 — ) (1 — B) (I — ) (1 — £1%)

where the first expression is obtained from the Cayley-Sylvester formula, and the second is a convenient rearrange-
ment. In this case the ring k[&, ..., &] L) is generated by nine invariants Jo(€),. .., Jio(€). These satisfy five
relations of degrees 16, .. .,20, which in turn satisfy five syzygies. More precisely, the relations can be expressed
as the Pfaffians of the five principal 4 X 4 minors of a skew-symmetric matrix

0 fe(J) f(J) fs(J)  fo(J)
0 f(J) folJ)  fio(J)
0  fi)) ful) |,

- 0 f12(J)
0
where each f;(J) is a weighted homogeneous polynomial of degree i, with deg J,,, = m. |

4.73 REMARK. In fact, a Gorenstein ring of codimension 3 is always defined by an odd number 2k +1 of relations
in its generators, and, by a theorem of Buchsbaum and Eisenbud [22], these relations can always be expressed as
the Pfaffians of the principal 2k x 2k minors of a skew-symmetric matrix, as above. |

The case d = 7 we prefer quietly to omit, though the interested reader may like to compute P()(¢) for him or
herself, or consult Dixmier and Lazard [24].
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4.5 Geometric reductivity of SL(2)

We shall give in this section an alternative proof of linear reductivity in the special case of SL(2). We begin by
extending Proposition 4.37.

4.74 LEMMA. For an algebraic group G the following conditions are equivalent.
(i) G is linearly reductive.
(ii) Given a finite-dimensional representation V of G and a surjective G-invariant linear form f : V — k there
exists an invariant vector w € V¢ such that f(w) # 0.
(iii) Given a finite-dimensional representation V of G and an invariant vector w € V¢ there exists an G-invariant
linear form f : V — k such that f(w) # 0.

Proof. (i) implies (ii) immediately from Definition 4.36, with G acting trivially on W = k. Conversely, (ii)
implies (i) using the formulation of Proposition 4.37(ii). If v € WY, then we can decompose W as a representation
of G,as W = k{v}®W' (Exercise 4.6). Then by condition (ii) the composition V¢ C V' — W — k{v} is surjective.

(ii) is equivalent to (iii) by replacing V by its dual V'V and noting that the space of G-invariant forms is
Homg (VV, k) = Homg(k, V) = VY, where G acts trivially on k. m]

It is the formulation of linear reductivity given by part (iii) of the lemma that we shall verify for SL(2). First,
by linear reductivity of Gy, = T C SL(2), we can find a T-invariant linear form e : V' — k such that e(w) = 1,
and using this form we can define a map

¢:V = k[SL(2)]

by ¢(x)(g) = e(g-z) for x € V and g € SL(2). Equivalently, ¢ is the composition of the group action (see
Definition 4.1) with e ® 1:
V2% V@ k[SL2)] £ ke k[SL(2)] = k[SL(2)].

The following properties of ¢ are easy to check.

4.75 LEMMA. (i) ¢(w) is the constant function 1.
(ii) For all x € V the function ¢(z) is invariant under the right-action of T, that is, (V') C k[SL(2)]T.
(iii) ¢ is a homomorphism of SL(2) representations.

We will give an explicit description of the invariant ring k[SL(2)]”. The coordinate ring of SL(2) is
k[SL(Q)] = k[w,y,z,t]/(a:t —Yyz - 1)5
and this carries left- and right-actions of the group by left- and right-translation:
Ty a b Ty a v
<z t) - (c d> (z t> (c’ d )’

We consider the right-action restricted to the torus T C SL(2) and the left-action of SL(2) on the invariant
subalgebra k[SL(2)]T. Since

z y\(a 0 \_(az g7y

z t 0 ¢! gz q 't )’

k[z,y, 2z, 8] = k[zy, at, 2y, 2t).

we have

The polynomial zt — yz — 1 is itself T-invariant, and so
E[SL2)]T = k[zy, xt, zy, 2t]/ (xt — yz — 1).

We can give this ring another description. For each natural number n € N let R,, be the following set of
rational functions in variables u, v:

Ry = { L | deg, 1) <, e, fluo) <.

)
u—v)"
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This is a vector space of dimension (n + 1)2, and R, C R,,+1. The union

R=J R, = lim R,

n—00
n>0

is a subalgebra of k[u,v,1/(u — v)] C k(u,v); while the function field k(u,v) is a representation of SL(2) via

au+b av+b a b
= — _» — SL(2).
YTard T wrd ( d>e 2)
Note that under this action
au+b av+b u—v

YTV i td w+d (cu +d)(cv +d)’

from which it follows that R, C k(u,v) is a subrepresentation. More precisely, R, is isomorphic to the ten-
sor product V,, ® V,,, where V,, is the (n + 1)-dimensional irreducible representation of SL(2) as described in
Remark 4.55.

4.76 LEMMA. There exists an isomorphism
RS E[SL(2)|" = k[zy, ot, zy, 2t] / (xt — yz — 1)

induced by mapping u > z/z, v — y/t, 1/(u —v) — zt. a

The proof of this is easy and is left to the reader.

Second proof of Theorem 4.43 for n = 2. We have to construct an invariant linear form f € Homgp,(2)(V, k)
such that f(w) # 0, and we begin with ¢ : V' — k[SL(2)] constructed above. By Lemmas 4.75 and 4.76, the
image of ¢ : V — k[SL(2)]T = R is contained in the finite-dimensional vector space R,, for some n. By definition,
a general element is of the form

f(u,v)

(u —v)"

where f(u,v) = Z aijuvd,

0<4,j<n

Taking the determinant of the coefficient matrix (a;;)o<i,j<n defines a function det : R,, = k which is homogeneous
of degree n + 1 and is SL(2)-invariant. Note that at the constant function

w—v)? u — nun—lv + n un_2U2 et (—’U)n
1= Eu - v;n = ((i)_ o7 € R, C k[SL(2)]”
det takes the value
1
—n i
det (Tzl) _ H <”>
11{;
(~1)" ' =
(=1)"

Let h: R, — k be the formal differential of det at 1 € R,,, that is, the linear coefficient in the expansion of

der (14220,

Then h is an SL(2)-invariant linear map given by

% I || (”)

i=0 i M
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In particular,

Hence (using Lemma 4.75(i)) the composition
f=ho¢:V >R, —k

is an invariant linear form f € Homgr(2)(V, k) with the required property. a

Notice that in this proof the only place where we have used the assumption that the field & has characteristic
zero is in the final step (4.8). In positive characteristic, even if we cannot use the differential h, we can nevertheless
move the goalposts and use the function det to modify the condition of Lemma 4.74(iii):

4.77 DEFINITION. An algebraic group G is geometrically reductive if, given a finite-dimensional representation
V of G and an invariant vector w € V9, there exists a G-invariant homogeneous polynomial function f: V — k
satisfying f(w) = 1. ad

4.78 THEOREM. (SESHADRI [76]) If char k = p > 0, then SL(2) is geometrically reductive.

Proof. In the proof above we may take n = p¥ — 1 for sufficiently large v. Then

v v v n
(u _ U)n — (U' — 'U)p — uf —oP — Z it
u—v u—v i—0

In particular, the form det : R, — k takes the value 1 at 1 € R,,. So in this case the composition
f=detogp:V - R, =k

has exactly the properties asserted in the theorem. O

4.79 REMARKS. (i) Obviously linear reductivity implies geometric reductivity, and over a field k of characteristic
zero the converse is also true and the two conditions are equivalent. In positive characteristic, however,
geometric reductivity is a strictly weaker condition, and in fact the only connected linearly reductive groups
are tori. In particular, SL(n) for n > 2 is geometrically reductive but not linearly reductive.

(ii) It is actually the property of geometric reductivity that the construction of quotient varieties depends
upon. It turns out that both the finite-generatedness of the invariant ring and the separation of orbits by
the invariants follow from the geometric reductivity of the group. m|

Exercises

1. If D and D' are derivations of a ring R, show that their commutator [D, D'] = DD’ — D'D is also a derivation.

2. Let o € H(G) be a distribution supported at the identity of an algebraic group G, let R = k[G], and denote
by D, € End R the k-linear endomorphism

R Ry R ko RTR.
Show that the following two conditions are equivalent;:

(i) @: R — kis a k = R/m-valued derivation;
(ii) Dy : R — R is a derivation of R.
3. Show that the set Lie(G) of derivations at the identity is closed in distribution algebra #(G) under the

commutator [a, f] = ax f — B xa. (The Lie space Lie(G) equipped with this commutator product is called
the Lie algebra of the algebraic group G.)
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Let x € k[G] be a character of an algebraic group G, and let V' be a linear representation of G. Show that
Vyi={veV |puv(v)=vax}

is a subrepresentation.

. Let puy : V= V@EK[G] and pw : W — W ® k[G] be two representations of an algebraic group G.

Show that the tensor product U ® V' is a representation of G via the composition
UV "SR UgklGloV okGS UV G 0 klG] 28 UsV ekl

where m : k[G] ® k|G] — k[G] is multiplication in the ring.
Show that the space Homy (U, V') of k-linear maps from U to V is also a representation of G.

Show that f € Homy (U, V) is G-invariant if and only if f is a G-module homomorphism.

. Suppose that G is linearly reductive, and let W be a subrepresentation of a finite-dimensional representation

V of G. Prove that V decomposes as a direct sum of representations V= W & W'. Hint: Apply linear
reductivity to the surjective map of representations Homy (V, W) — Homy (W, W).

. Let

0—-U—->V->W-=0

be an exact sequence of representations of (G. Show that the induced sequence of spaces of invariants
05U VY 5 w¢

is exact. (That is, the functor which takes invariants is left-exact.)

. Let p: V — V ® k[G] be a representation of an algebraic group G. Let g € G(k) be a k-valued point and

m, C k[G] the corresponding maximal ideal. Denote by p(g) € End V' the composition
VSV ek M Ve kS V.

Show that, if the coordinate ring k[G] is an integral domain, then a vector v € V' such that p(g)(v) = v for
every g € G(k) is a G-invariant.
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Chapter 5

The construction of quotient varieties

Suppose that an algebraic group G acts on an affine variety X = Spm R (where we assume throughtout that R
is an integral domain over k). We will consider the map to affine space

¢: X — A" e (fi(z),..., fulz)),

given by some G-invariant functions fi, ..., f, € R®. Since each f; is G-invariant, it is constant on the G-orbits. It
follows that the map ¢ sends each orbit to a single point. This suggests—although a slight oversimplification—the
essential idea for constructing a quotient variety by means of the invariant functions:

Aim: By taking sufficiently many invariants fi,..., f, € RY, can we obtain a ‘quotient variety’ X/G as the image
o(X) C A™?

First of all, what do we mean by ‘sufficiently many’ here? If the group G is linearly reductive then by Hilbert’s
Theorem 4.51 the invariant ring R is finitely generated. In this case it should be enough to take fi,..., f, to
be a set of generators. Second, our use of the word ‘quotient’” begs the following question:

Question 1: Do two distinct G-orbits always map to distinct points under ¢?

Given that the functions fi,..., f, used to define ¢ generate all the invariants, this can be rephrased: given
two distinct orbits of the G-action, does there exist any invariant form taking different values on the two orbits?

Moreover, if we ask for a ‘variety’ as the quotient, then we cannot avoid the following question. We have seen
in Example 3.22 that the image of a morphism of algebraic varieties need not itself be an algebraic variety.

Question 2: Is the image of ¢ in A™ an algebraic variety?

We shall examine these questions in this chapter, and to what extent it is valid and consistent to view the
image of ¢(X) C A" (or more fundamentally Spm R%) as the quotient of X by G. It turns out that Question 1
can be completely answered when G is linearly reductive, although the question first has to be modified slightly.
On the other hand, it is not always the case that the quotient space of an affine variety is an algebraic variety at
all (in any natural way), and so the above strategy has its limits.

The contents of this chapter are as follows. When a linearly reductive algebraic group G acts on an affine
variety X = Spm R as above, the morphism ® : X — X //G := Spm R¢ induced by the inclusion R C R
is called the affine quotient map. In Section 5.1 we show that this is surjective and determines a one-to-one
correspondence between closed G-orbits in X and points of X //G. A point of X is called stable if it belongs to a
closed G-orbit of the same dimension as G. The stable points form an open subset X5 C X, and the restriction
of ® to X*® is a ‘geometric quotient’ in the sense that its fibres are precisely the G-orbits in X®.

In the second section we apply this general theory to the classical case of hypersurfaces in P*. Theset X = U, 4
of nonsingular hypersurfaces of degree d in P" is an affine variety in which (for d > 3) every point is stable for
the action of G = GL(n + 1). Thus X/G exists as an affine variety parametrising smooth hypersurfaces up to
projective equivalence. This is an open subset in the projective variety Proj R,, 4, where R, 4 = k:[Vn,d]SL("“)
is the ring of classical invariants. Proj R, 4 is the moduli space of ‘semistable’ hypersurfaces of degree d in P,
though we postpone the question of what semistable means geometrically until Chapter 7.

This is an example of a group action of ‘ray type’, for which a projective variety appears in a natural way as
the quotient. We will study these more systematically in Chapter 6.

109
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5.1 Affine quotients

(a) Separation of orbits

We begin with an example.
5.1 ExaMPLE. Consider the action of the multiplicative group Gy, on the affine plane A2, given by
(z,y) = (tz, t™y) for t € G, .

The orbits of this action are of three types:
(i) The origin (0,0) is an orbit consisting of one point.
(ii) For each nonzero a € k the hyperbola xy = a is a single orbit.
(iii) The z-axis minus the origin and the y-axis minus the origin are orbits.

Figure 5.1

On the other hand, this action induces a Gy, -action on the coordinate ring R = k[z, y], for which the invariant
ring R® is generated by the monomial zy. This generator determines, according to the recipe given in the
introduction to this chapter, a map

¢ A% = AL, (z,y) — zy.

This map separates the orbits (ii) but cannot distinguish the three orbits of (i) and (iii), all of which map to zero.
(Compare this with Exercise 3.6). O

Even in this simple example, and even though the group Gy, is linearly reductive, we have found a counterex-
ample to Question 1 posed above. What is it that goes wrong here? The answer is quite simple: Question 1, as
stated, overlooks the fact that the map ¢ is continuous. Every fibre of ¢ (that is, the preimage of each point) is a
closed set. So if there is any orbit of the G-action which is not a closed set, then the answer to Question 1 must
be negative. How can one get round this?

This example is quite typical and suggests the following general ideas.

(i) First, we could identify to a single point the three orbits which the invariants fail to separate.

(ii) Alternatively, note that the fixed point of the group action (0,0) is the ringleader of the troublemakers
here: it is at just this point that the dimension of the stabiliser subgroup jumps. Removing this bad point
levels up the dimensions of the stabilisers, and then we will get a good quotient.

(iii) On the other hand, even after carrying out (ii) the quotient that we obtain fails to be Hausdorff (or, in the
language of algebraic geometry, separable). For this, we have to go a step further and remove, also, the
z- and y-axes before taking the quotient. This done, we finally obtain a nice quotient of A' x G, modulo
Gm , namely, Al.

Although the last approach (iii) has its merits, it is the first approach (i) that we shall follow in this chapter.
(But see also the remarks at the beginning of Section 6.3.)

5.2 DEFINITION. Two G-orbits 0,0’ C X are said to be closure-equivalent if there exists between them a
sequence of orbits
) 2017027---50n—170n :OI

with the property that O; N Oy 1 # 0 for each i = 1,...,n — 1. O

Invariant forms, because they are continuous, take the same value on closure-equivalent orbits. We should
therefore modify Question 1 as follows.

Question 3: Do any two closure-inequivalent G-orbits map to distinct points under ¢?

Equivalently, given any two closure-inequivalent orbits, does there exist an invariant form taking distinct values
on the two orbits? And to this, linear reductivity of the group gives us a complete answer:
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5.3 THEOREM. (NaGcATA, MUMFORD) Suppose that a linearly reductive group G acts on an affine variety X.
Given two orbits O,0' C X, the following three conditions are equivalent.
(i) The closures of O, 0" have a common point, O N O’ # ).
(ii) O and O' are closure-equivalent.
(iii) O and O' fail to be separated by the G-invariants k[X].

Proof. (i) = (ii) = (iii) is already clear. We shall prove the converse, (iii) = (i). In other words, we will
show that if O N O’ = (), then the orbits O, Q' are separated by k[X]%.

Step 1. Let a C R := k[X] be the ideal of functions vanishing on the closure O, and similarly let ' C R be
the ideal of O’. We consider the ideal a + a’ generated by a and a’. By hypothesis, the zero-set in X of the sum
is empty, and so by Hilbert’s Nullstellensatz 3.8 (take f = 1!) we have a +a' = R.

Step 2. The subsets O,0' C X are preserved by the action of G, and this means that the ideals a,a’ C R are
subrepresentations of G. Then the homomorphism of R-modules

ada — R, (a,a') = a+d,

is also a homomorphism of G-representations. By step 1 it is surjective, and so by linear reductivity (Defini-
tion 4.36) the map

(aNR%) @ (¢ N RY) - RY

is also surjective. In particular, there exist invariants f € aN R and f' € a' N R” satisfying f + f' = 1. The
function f vanishes on the orbit O and takes the value 1 on the orbit O, so we are done. a

5.4 COROLLARY. If G is a linearly reductive group acting on an affine variety X, then distinct closed G-orbits
are separated by the G-invariants k[ X]“. O

5.5 COROLLARY. If G is a linearly reductive group acting on an affine variety, then each closure-equivalence
class contains exactly one closed orbit. Moreover, this is contained in the closure of every orbit in the same
equivalence class.

Proof. By the previous corollary the closure-equivalence class can contain at most one closed orbit, so we just
have to prove the existence of one. Let O be an orbit with minimal dimension in its equivalence class: we claim
that this is a closed set. For if not, then the boundary O — O is a nonempty union of G-orbits which are both
closure-equivalent to O and of smaller dimension, giving a contradiction. For the last part, if O’ is an equivalent
orbit, then O N O’ = O N O’ is nonempty. But by continuity O’ is a union of orbits, so O C O'. m]

It follows from Theorem 5.3 that the image ¢(X) C A" parametrises the closure-equivalence classes of G-orbits
in X; or, from Corollary 5.5, that it parametrises the closed G-orbits. On the other hand, for nonreductive groups
the theorem is certainly not true:

5.6 ExampLE. Consider the action of the additive group G, on the affine plane by
(z,y) = (z,tz +y) fort € G,.

The orbits are of the following two types:
(i) each vertical line away from the y-axis is an orbit;
(ii) each point on the y-axis is a single orbit.

Figure 5.2

In particular, we see that in this example every orbit is a closed set. (In fact, this is true whenever a unipotent
group acts on an affine variety.) On the other hand, the invariant ring is k[z] C k[z,y], which fails to separate
any of the orbits of type (ii). Indeed, the group G, is not linearly reductive (see Example 4.42). |
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(b) Surjectivity of the affine quotient map
Next we consider Question 2 from the introduction to this chapter. We are interested in the map to affine space
¢:X_>An7 CU’—)(fl(.’L'),,fn(fL')),

given by generators fi,..., fn € R® of the ring of invariants. The Zariski closure of the image Y C A™ of this
map is the set of all (ai,...,a,) € A" satisfying:

F(ay,...,a,) =0 for all polynomial relations F(f1,...,fr) =0

1
among the generators fi,..., fn € RY. (5.1)
In other words, Y is the zero-set of the kernel I C k[ay, ..., a,] of the homomorphism
klai,...,an] = R® a;— f; fori=1,...,n.

A priori ¢ maps X to Y, and we would like to know that it is surjective on this set.

5.7 PROPOSITION. If the group G is linearly reductive, then the image ¢(X) C A" is equal to its Zariski closure
Y C A" above.

Proof. The idea of the proof is similar to that of Hilbert’s Theorem 4.51. Starting with a point a =
(a1,...,ay) €Y, that is, satisfying (5.1), we consider the homomorphism of R-modules

T:R®--®R— R, (bi,....by) = Y bi(fi — ai).
i=1

Since each f; —a; € R is G-invariant, we see that 7 is in fact a homomorphism of G-representations. Also, we
observe that the induced map 7¢ on G-invariants is not surjective: its image is the maximal ideal m, C RY
corresponding to the point @ € Y. Since G is linearly reductive, this implies that 7 itself cannot be surjective;
its image is therefore contained in some maximal ideal m C R. By Corollary 2.25, the intersection m N R“ is a
maximal ideal in R“, and therefore it coincides with the maximal ideal m,. This shows that a € Y is the image
of the point of X corresponding to m. m|

The closed subvariety Y = ¢(X) C A" depends on the choice of generating invariants fi,..., f,. In other
words, Y = Spm [ay,...,a,]/VI. However, the ideal I is radical (that is, v/ = I, since R C R contains no
nilpotents) and so Y is precisely the spectrum Spm R¢.

5.8 DEFINITION. We denote the affine variety Spm R® by X //G. The inclusion R“ C R determines a morphism
of affine varieties
¢ X - X//G,

which we shall call the affine quotient map. a
What we have proved is the following.
5.9 THEOREM. If G is a linearly reductive group acting on an affine variety X, then the affine quotient map
®:X — X//G = Spm k[X]“

is surjective and gives a one-to-one correspondence between points of X //G and closure-equivalence classes of
G-orbits in X. O

In addition, ® has the following property.

5.10 PROPOSITION. If Z C X is a G-invariant closed subset, then its image ®(Z) is also closed.
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Proof. Let a C R be the ideal of Z. This is G-invariant, and so G acts on the residue ring R/a. By linear
reductivity, the surjective ring homomorphism R — R/a restricts to a surjective map R% — (R/a)“. The kernel
is R% N a, and so we obtain an isomorphism

RY/(RE Na)= (R/a)°.

Let us now interpret this geometrically. R /(R% Na) is the coordinate ring of the closure in X //G of ®(X), while
(R/a)% is that of Z//G. Taking spectra, this therefore says that ® induces an isomorphism of affine varieties

Z/|G = ®(2).
By Theorem 5.9, the affine quotient map Z — Z//G is surjective, and this is just the restriction of ®. m|

For any subset A C X //G, the preimage ® A C X is G-invariant; if ® 1A is closed then it follows from
Proposition 5.10 that A is closed.

5.11 COROLLARY. The affine quotient map ® is a submersion. That is, if the preimage ®'A C X of a subset
A C X//G is open, then A is an open set. o

(c) Stability
Corollary 5.4 motivates the following fundamental notion.

5.12 DEFINITION. Suppose that a linearly reductive group G acts on an affine variety X. A point x € X is said
to be stable for the action of G if the following two conditions are satisfied.

(i) The orbit Gz C X is a closed set.

(ii) The stabiliser subgroup Stab(z) = {g € G | gz = =} is finite.
We denote the set of all stable points for the G-action by X* C X. a

Note that, given x € X, the orbit Gz is the image of the map
Y 1 G = X, g+— gz,

while the fibres of 1, are the left-cosets of Stab(z) in G. Thus the conditions (i) and (ii) of the definition are
equivalent to requiring that v, be a proper morphism (since the fibres are affine, so that 1,, being proper implies
that the fibres are complete and affine, and therefore finite).

5.13 PROPOSITION. Let Z C X be the locus of points & € X for which Stab(z) is positive dimensional. Then
X¢ is the complement in X of ®~1(®(Z)).

Proof. Suppose that ®(z) € ®(Z). If € Z, then condition 5.12(ii) fails; while if z ¢ Z, then the fibre
®~1(®(z)) contains at least two G-orbits, and by Corollary 5.5 the orbit Gz (which does not have minimal
dimension) cannot be closed—so condition 5.12(i) fails. This shows that ®~*(®(Z)) C X — X°?; the converse is
similar. O

5.14 COROLLARY. All points are stable, X° = X, if and only if all points of X have finite stabiliser. a
By considering the map

GxX— XxX, (9,2) = (g, x),

determined by the group action, we see that Z C X is a closed set. In fact, let ZcCG x X be the pull-back of
the diagonal A C X x X; then Z is the locus along which the fibres of the projection Z — X onto the second
factor (that is, the stabiliser subgroups) have positive dimension. Since Z is also G-invariant, we deduce from
Proposition 5.10:

5.15 PROPOSITION. The stable set X° C X and its image ®(X*) C X //G are open sets. O
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Suppose that z € X is stable and that the orbits Gz and Gy, for another point y € X, are closure-equivalent.
Since Gz is a closed set, this implies that Gz C Gy. Since dim Gz = dim G > dim Gy, it follows that Gx = Gy.
From Theorem 5.3, therefore, we obtain:

5.16 THEOREM. Suppose that a linearly reductive group G acts on an affine variety X, and suppose that ¢ € X
is a stable point for the action. Then for any y € X — Gz there exists an invariant function f € k[X]“ such that

f(x) # f(y). 0

Let us denote the image ®(X?®) of the stable points by X*/G. This is an open subset of X //G and we have a
commutative diagram:

X* c X
1 1@
X*/G c X//G.

5.17 COROLLARY. The restriction X* — X?®/G of the affine quotient map ® gives a one-to-one correspondence
between points of X°/G and G-orbits in X*. i

In this situation, one says that X*/G is a geometric quotient of X* by G. (For a more precise definition see
Mumford et al [30] Chapter 4.)

5.2 Classical invariants and the moduli of smooth hypersurfaces in
P

We can apply the general theory of the last section to study the moduli of smooth hypersurfaces in P". In
Section 5.2(a) we show that the set of these is an affine variety, defined by the nonvanishing of the discriminant,
and in Section 5.2(b) we show that every smooth hypersurface is stable for the action of the general linear group.

(a) Classical invariants and discriminants

A form of degree d in n + 1 coordinates g, x1,.-.,Z, can be written
flro,x1,...,20) = Z arz’.
|I|:d
In this notation I = (ig,%1,...,i,) is a multiindex, 0 < za < n for each a, ranging through (”+d) values for which

[I] := > iq = d. For each multundex, the monomial ! = ¥z ... zi» comes with coefficient ay € k.

We will denote by Vj, 4 the vector space of homogeneous polynomials f(z) of degree d, and by V, 4 the
associated affine space. (Thus V; 4 = V4 in the notation of earlier chapters.) This space has dimension ("?:d)
GL(n + 1) acts on V,, 4 on the right by f(z) — f(gz). Equivalently, if we introduce ("#%) independent variables

&1 as coefficients for the generic form

(fﬁl‘) = Z 611‘[ € k[l’o,...,l’n;...,fj,..-],

| I|=d

, and

then a matrix ¢ = (a;;) € GL(n) transforms the form (¢ ) to

fﬁgﬂf Z fI Z(I()]l'] (Zaljl’j)il ...(Zanja:j)i",

|T]=d

which, after expanding and gathering monomials z', can be written as

(Eglz) =) &g

| |=d
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The transformed coefficients £;(g) can be expressed as
&lg) =Y giér
|J|=d

for some polynomials g7 € k[a;;]. (See Chapter 1 for the binary case n = 1).
The following generalises Definition 1.24.

5.18 DEFINITION. If a homogeneous polynomial F(§) satisfies
F(&g) = F(¢) for all g € SL(n + 1),

then F' is called a classical (n 4+ 1-ary) invariant. ad

Let H,, 4 = PV, 4. In terms of H,, 4 we can interpret the classical invariants in more geometric language.

5.19 PROPOSITION. For a homogeneous polynomial F(§) € k[V,, 4] the following two conditions are equivalent:
(i) F(§) is a classical invariant;
(ii) the subvariety F(¢) =0 in Hy 4 is GL(n + 1)-invariant.

Proof. It is enough to prove (ii) = (i), that is, that F'(£) is SL(n+ 1)-invariant when the projective subvariety
F(§) =0is GL(n + 1)-invariant. We may also assume that F(§) is irreducible. Then the ideal of the subvariety
has a generator which is unique up to multiplication by a unit in the polynomial ring k[¢], that is, by a nonzero
constant. This shows that the 1-dimensional subspace of k[¢] spanned by F'is GL(n+1)-invariant. By Lemma 4.12,
every character of GL(n+1) is a power of the determinant, and it follows that F'(£) is invariant under the subgroup

SL(n+ 1). O
As in the case n = 1, the discriminant is a basic example of a classical invariant. Before we define it, let
X C P” be a hypersurface f(xo,21,-..,2n) = 0 in P*, where f(zo,x1,...,2,) is a homogeneous polynomial of
degree d. Recall that p € P™ is a singular point of X if it is a solution of the simultaneous equations
of _of _ . _of _,
61‘0_61'1_ _61‘n_ '

X is said to be nonsingular (or smooth) if these equations have no nonzero solutions. (See Section 1.4.)
We shall denote by H Zifgllg C H,, 4 the set of all singular hypersurfaces X C P™. In order to analyse H Zif;g we
introduce the subset
Z ={(p,X) | p € P" is a singular point of X C P"}

of the product P x H, 4. In coordinates Z is defined by n + 1 equations,

) )
fas Dbl == o 3! =0, (52)
1 nog

In particular, Z C P" x Hy, 4 is a closed subvariety. Consider the projections to the two factors:

Z

(v NP
P H,..

First, note that the image of ¢ is precisely Hflilzlg. On the other side of the diagram, for any p € P™ the fibre

¥ ~1(p) is the set of all hypersurfaces that are singular at the point p, and by (5.2) this set is defined by n + 1
linear equations in H, 4. It follows that

dimZ = dimP" + fibre dimension of v

> n+dimHy,q—(n+1)

dim H, 4 — 1.
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In fact it is easy to see that equality holds: the image of ¢ is a proper subset since there exist nonsingular
hypersurfaces (Exercise 5.1), and has the same dimension as Z because there exist hypersurfaces with exactly
one singular point (Exercise 5.2). Hence dim Z < dim H, ¢4 — 1 and we conclude that
dim H*™# = dim Z = dim H,, 4 — 1.

Since the projective space P™ is complete, moreover, Hzilzlg C H, 4 is a closed subset, and by Proposition 3.47
this implies that it is defined by a single homogeneous equation.

5.20 DEFINITION. The defining equation D(§) € k[V,, 4] of the hypersurface dim Hf:rgllg C dim Hy, ¢ (determined
up to multiplication by a scalar) is called the discriminant of forms of degree d on P, or of degree d hypersurfaces
in P™. (This generalises Definition 1.20 for the case n = 1.) o

It is clear that H fbif:ig is invariant under GL(n + 1), and so Proposition 5.19 implies:

5.21 COROLLARY. The discriminant D(£) is a classical invariant. ad

5.22 EXAMPLE. For degree d = 2, the space V,, » of quadratic forms can be naturally identified with the vector
space of (n+1) x (n+ 1) symmetric matrices (a;;), a;; = aj;. Such a matrix determines the quadric hypersurface

) C P™ with equation
Z Qi TiT; = 0.
i,j

Then @ is singular if and only if det |a;;| = 0; thus the discriminant in this case is D(a;;) = det |a;;|. O

(b) Stability of smooth hypersurfaces

We need one more key fact for the construction of a moduli space for smooth hypersurfaces. This is due to
Jordan [34] and Matsumura and Monsky [32].

5.23 THEOREM. Any homogeneous polynomial f € k[zg,z1,...,2,] with degree > 3 is invariant under at most
finitely many g € GL(n + 1).

Proof. We shall prove the equivalent statement that f is invariant under no nonzero element of the Lie space
gl(n +1). Recall from Example 4.30 that gl(n + 1) is the vector space of all (n+ 1) x (n + 1) matrices A = (a;;),
0 <4,j <mn. Such a matrix determines a partial differential operator

0
DA = Z ai’jmja_mi,
l7]
and the action of gl(n + 1) on polynomials induced by that of GL(n + 1) is

of
f — DAf = Zai’jxja_xi-

4,3

We have to show that the linear subspace {A € gl(n+1) | Da(f) = 0} is zero. Let f; = % foreachi =0,1,...,n.

Then nonsingularity of the homogeneous polynomial f(zg,z1,...,z,) means that the e(fuations
folzo, 1, .. xn) = filzo,x1,- -, Tn) =+ = ful®o,®1,...,2,) =0

have no nonzero solutions. This implies that the maximal ideal m = (zg,z1,...,2,) C k[zo,Z1,...,2,] IS a

minimal prime divisor of the ideal (fo, f1,..., fn)-

Claim: f; is not a zero-divisor modulo the ideal (fo, ..., fi, ..oy fn) forany i =0,1,...,n. It is enough to consider

the case i = 0. By Krull’s Principal Ideal Theorem (see Atiyah and Macdonald [9] Chapter 11, or Eisenbud [61]
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Section 8.2.2) every minimal prime ideal containing (fi, ..., f,) has height < n. Since m has height n + 1, there
isno h & (fi,..., fn) with foh € (f1,..., fn)—proving the claim.
Returning now to the equation D4 f = 0, this is equivalent to an identity

n

Z li(x)fi(x) =0 for linear forms [;(z) = Z a;;T;.
=0

i=0
By the claim, this forces each I;(x) to be in the ideal (fo,. .., fi, ..+, fn). But by hypothesis deg f;(x) > 2, so we
must have /;(z) = 0 for each 4, and hence A = 0. o

The set of nonsingular homogeneous equations of hypersurfaces of degree d is an open subset of V,, ; defined
by D(§) # 0. We shall denote this open set by U, 4; it is an affine variety with coordinate ring

k[Un,d] = klér, D(€)71].
Then GL(n + 1) acts on this variety, and by Theorem 5.23 and Corollary 5.14 we have:

5.24 COROLLARY. For d > 3, every point of U, 4 C V), 4 Is stable for the action of GL(n + 1). O

By Corollary 5.17, therefore, there exists a good quotient whose points parametrise precisely the GL(n + 1)
orbits,
®:Upq— Umd/GL(TL +1).

This quotient Uy, ¢4/GL(n + 1) is called the moduli space of smooth hypersurfaces of degree d in P™; its points are
in one-to-one correspondence with projective equivalence classes of such hypersurfaces.
The following example has already been seen in Chapter 1.

5.25 EXAMPLE. BINARY QUARTICS. The variety U; 4 is the set of all binary quartic forms (writing &o,&1,...,&
instead of &p4, 13, - -+, &10)

(Efm,y) = Loa* + 4612%y + 6627y + 4&xy° + Ly € Vigy
without repeated linear factors. By Corollary 4.70 and the fact that

D(¢) = 92(5)3 - 2793(5)2;
the invariant ring k[&, ..., &, D(€) 1 9L is generated by g2(£)?/D(€). Hence the affine quotient map is

5 - __ | binary quartics without
147 repeated linear factors

}ﬁx, € 02(6)/D(O).

The moduli space, parametrising G'L(2)-equivalence classes of binary quartics, is in this case the affine line Al.
The reader should compare this with the proof of Proposition 1.27. a

5.26 EXAMPLE. PLANE cuBICS. Ternary cubic forms (£ z,y,z)—or equivalently, plane cubic curves—Ilive in
the vector space

2

_ 3,3 .3 ,.2 2 2 2 2
V2,3— <1‘ Y L, 2, Y, Y 2,27, Y, Y27, 2, ,myz)

As affine space Va3 =2 A0 this has coordinate ring

E[V2 3] = E[&300, 030, 003, €210, 0215 E102, 1205 012, 2015 €111,

and it is a classical result of Aronhold [21] that the ring k[Vs,3]3%() is generated by two algebraically independent
invariants S(§) and T'(§), where deg.S = 4 and degT = 6. In particular, the discriminant D(¢) is in k[S,T] and
is computed to be

D =T? +645°.

(To give S, T explicitly one uses the canonical form of a cubic,

C: 2% +y°+ 2%+ 6mayz =0. (5.3)
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Then S =m —m*, T =1—20m? — 8m® and D = (1 + 8m3)3.)
Restricting to the nonsingular cubics, the ring k[¢7, D(€)~']F()
Hence the affine quotient map is

is generated by a single invariant S(€)3/D(€).

S(©)°
D(¢)

B:Usy = {nonsmgular } 1

plane cubics A &

Thus the moduli space, as in the previous example, is the affine line Al.

For reference later on, let us say a bit more about this example. The SL(3)-invariance of S and T' means that
they have some projective geometric interpretation: the conditions S = 0 and 7' = 0 are projectively invariant
properties of a cubic, and one can ask what they mean geometrically. The Hessian of a plane cubic f(z,y,z) € Va3
is the cubic

02f|0%x  9°f|Ooxdy O*f/0x0z
H(f)(z,y,2) = | 0°f[0ydx 0°f|0%  0°f[0ydz | € V3.
0%f)020x 0°f]020y 0*f]0°z

As a plane curve, H(f)(z,y,z) = 0 is the locus of points in P? whose polar conic with respect to f(z,y,z) = 0
is a pair of lines. The interpretation of S,T is now the following (an exercise for the reader, using the canonical
form (5.3)). First,

S=0 = H(f) factorises as three lines

or, equivalently, if and only if f is a sum of three cubes I$ + I3 + I3 of linear forms /;(z,y, z). On the other hand,
T=0 = H(H(f)) = f up to a scalar.

For more details we refer the reader to Salmon [35] or Elliot [33]. O

(c) A moduli space for hypersurfaces in P"

We will now construct a complete variety which compactifies the affine moduli space Uy q/GL(n + 1) of the last
section. This is intended to serve as a motivating example for the construction of the projective quotient in the
next chapter, but nevertheless it is very classical and we will return to it in Chapter 7 after we have discussed
the Hilbert-Mumford numerical criterion for stability and semistability.

We consider the ring of classical invariants

o0
B = MU = G120
e=0

graded by degree, and the projective variety Proj R, ¢ (Definition 3.43). By construction, this is covered by affine
open sets Spm Rp o for homogeneous elements F' € R = Ry, 4. By Hilbert’s Theorem 4.51, the ring R,, 4 is finitely
generated, and so Proj R, 4 is covered by Spm Rp, o,...,S5pm R, o for some finite set of classical invariants
Fi(8),..., Fn(f) generating the invariant ring R, 4 (Proposition 3.44). On the other hand, it is easy to verify

that
1 GL(n+1)
Rpo =k [51, 3G

)

and hence we have:

5.27 PROPOSITION. For each classical invariant F(¢) €  k[V, 4% "D the affine variety
Spm k[¢r, F(€)~1¢F (1) js contained in Proj Ry, 4 as an open set. ]

5.28 REMARKS. (i) This proposition will be a special case of Remark 6.14(iv) in the next chapter. It says that
the projective quotient is constructed by gluing together the affine quotients by GL(n + 1) of localisations

Vn,a — {F = 0}, where F runs through all classical invariants.
(ii) The next proposition says that the function field of each affine variety Spm Rpo—that is, the field of
fractions of Rpo—is equal to the field of invariant rational functions k(¢ [)GL(”H). This observation will
be generalised in Proposition 6.16 in the next chapter. a
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5.29 PROPOSITION. The field of fractions of k[¢r, F/(€) 1 |9L("+1) js equal to the field of invariant rational func-
tions k(&)GL(nth),

Proof. Let deg F' = h > 0. An arbitrary rational function can be written as a ratio of polynomials A(¢)/B(£).
Then GL(n+ 1)-invariance forces A and B to be homogeneous of the same degree—let this be e = deg A = deg B.
Then the two rational functions

A(E)B(&)M 1 B(¢&)h
0O = S~ WO = T
are both GL(n + 1)-invariant elements of k[¢7, F((€) 1], and their ratio is equal to A()/B(€). ad

If in Proposition 5.27 we take F' to be the discriminant, then from Corollary 5.24 we arrive at;:

5.30 COROLLARY. For d > 3, the moduli space U, q4/GL(n + 1) of smooth hypersurfaces of degree d in P™ is
contained as an open subset in Proj R, 4. O

(d) Nullforms and the projective quotient map

We conclude this chapter by explaining the sense in which the projective variety Proj R, q is itself a quotient of
Vn,a by GL(n + 1) (Definition 5.36).

5.31 DEFINITION. A form of degree d

(afzo,x1,...,2,) = Z arz! €V, 4
[I|=d

with the property that F(ar) = 0 for every nonconstant classical invariant F' € R, 4 was called by Hilbert a
nullform. In Mumford’s terminology, such a form is also called unstable. If a form is not unstable, it is called
semistable. O

Let F(&¢) € Rpa = k:[&]SL("“) be an arbitrary invariant. This decomposes uniquely as a sum of homogeneous
classical invariants

F(§) = Floy + F1y (&) + Foy (&) + - + Fl¢)(§),

where deg F{;)(§) = i. It follows that a € V,, 4 is a nullform if and only if F((a) = F(0) for every F' € Ry, 4. By
Theorem 5.3 we deduce:

5.32 PROPOSITION. A form a € V,, 4 is a nullform if and only if the closure of its SL(n + 1)-orbit contains the
origin, that is, 0 € SL(n + 1) - a. |
Together with Theorem 5.16, this implies:

5.33 COROLLARY. Ifa €V, 4 is a nullform, then it is not stable for the action of SL(n + 1). ad

If a € V,, 4 is not a nullform, then it is semistable, so the corollary says:
stable =—> semistable.
Note that if two forms a, b € V,, 4 are in the same SL(n+1)-orbit, then stability of one is equivalent to stability
of the other (Definition 5.12). Similarly, since a classical invariant F' € R,, 4 is constant on SL(n + 1)-orbits, its

non-vanishing is independent of the GL(n + 1)-action on forms. So we have:

5.34 LEMMA. If two forms a,b € V,, 4 are in the same GL(n + 1)-orbit, then a is a nullform if and only if b is a
nullform. O
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5.35 EXAMPLE. A binary quartic a € V; 4 is a nullform if and only if the equation (a{z,y) = 0 has a root of
multiplicity > 3.
To see this, recall (see Corollary 4.70) that the ring Ry 4 of SL(2)-invariants is generated by

92(8) ola — 46183 + 363,
93(6) = Eoaba — Eo&3 — &8s + 2616263 — €5,

If (afx,y) = 0 has a root of multiplicity > 3, then it is GL(2)-equivalent to one of x*, 23y, each of which has
g2(a) = gs(a) = 0 and is therefore a nullform. Conversely, if a is a nullform, then in particular its discriminant
vanishes, D(a) = 0. This means that it has a multiple root, which up to GL(2) we can take to be z = 0, so that

(alz,y) = 2*(p2® + qzy +ry?).
The condition g»(a) = 0 then implies r = 0, so that = 0 has multiplicity > 3.
This example will be generalised in Proposition 7.9 and Example 7.10. a

Consider now the affine quotient map for the action of SL(n + 1),
®:V,q— Spm R, 4.

In this notation the set of nullforms is ®~1(®(0)), and we shall denote the complement of this set, the set of
semistable forms, by V3’ ; C 'V, 4. This is precisely the union of open sets

VS, = {Fia) £ 0} U---U{F(a) £ 0}

for generators Fi,...,F. € R,q. Then the affine quotient maps ®; : {Fi(a) # 0} —» U, =
Spm k[¢r, F3(€) 1 GL(+D for i = 1,...,r, glue together to give a surjective morphism

V3, — Proj Ry q.
5.36 DEFINITION. VU is called the projective quotient map, and
Vora//GL(n + 1) := Proj Rnq

is called the moduli space of (semistable) hypersurfaces of degree d in P™. O

5.37 EXAMPLE. BINARY FORMS.

d=2,3. Each of Ri» and R;3 is of the form k[D], a polynomial ring in one variable generated by the
discriminant. It follows that in each of these cases Proj R consists of a single point. (See Example 3.45.)

d=4. In this case Ry 4 = k[g2, 93], a polynomial ring in two variables with weights degg> = 2, deggs = 3.
Hence Proj R1 4 =2 P(2 : 3), that is, the moduli space of binary quartics is a weighted projective line. In fact, this
variety is isomorphic to P'. O

Let R be the graded ring of Example 3.46, and let F'(Xo, X1,...,X,) € R. be a homogeneous polynomial of
degree e. Then the quotient ring R/(F') is an integral domain which inherits a grading from R. The projective
variety Proj R/(F) can be identified with the zero set

{F(X0,X1,...,Xn) =0} CP(ap:a1:...:ay)
and is called a weighted hypersurface of degree e.

5.38 EXAMPLE. BINARY QUINTICS. As we have seen in Example 4.71, the invariant ring R, 5 is of the form
]{?[X(), Xl, XQ, X3]/(F(X0, Xl, XQ, X3)), where degF = 36, and where

deg Xo =4, degX; =8, degXy =12, degX3=18.

It follows that the moduli space of binary quintics is isomorphic to a weighted surface of degree 36 in the 3-
dimensional weighted projective space P(4: 8 : 12 : 18).

BINARY SEXTICS. Similarly, in the case d = 6 the moduli space Proj R; ¢ is isomorphic to a weighted
hypersurface of degree 30 in P(2:4:6:10: 15).

BINARY ocTICS. From Example 4.72, the moduli space of binary octics Proj R g is a 5-dimensional subvariety
of P(2:3:4:5:6:7:8:9:10) defined by five 4 x 4 Pfaffians. ad
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For forms in three variables—that is, curves in P?—determining the ring of classical invariants Rs 4 is not
easy, and we shall mention only the following result.

5.39 EXAMPLE. PLANE CUBICS. As we have seen in Example 5.26, the ring of classical invariants
Ry = k[Vy 3]

is precisely the polynomial ring k[S,T| where deg S = 4 and degT = 6. Hence the moduli space of plane cubic
curves is naturally isomorphic to the weighted projective line P(2 : 3). m|

We next note that in this projective quotient variety there is a well-defined notion of stability.

5.40 LEMMA. For a nonzero form a € V,, 4 the following conditions are equivalent:
(i) a is stable for the action of SL(n + 1) on V,, 4. In other words, the orbit SL(n + 1)a C V4 is closed and
the stabiliser Stab(a) C SL(n + 1) is finite.
(ii) a is stable for the action of GL(n + 1) on any open set {F(§) # 0} C V,, 4, for F € Ry, 4, containing a.

Proof. Tt is clear that finiteness of the stabiliser in (i) is equivalent to finiteness of the stabiliser in (ii); we
have to show that closure of the orbits of ¢ in (i) and (ii) are equivalent. First let us assume (i)—that is, that
SL(n+1)-a C V, 4 is closed. Then by the Nagata-Mumford Theorem 5.3 there exists some classical invariant
H (&) such that H(a) # 0. This determines a morphism H : V,, 4, — A!, and we consider its restriction to the

orbit of a:
{H(E) # 0}
U
H :GL(n+1)-a — A'—{0}.

This map H' is surjective and its fibre is a disjoint union

U w'SL(n+1) - a, wN =1, N =degH. (5.4)
1<i<N

By hypothesis this is closed in V,, 4, and hence the orbit GL(n + 1) - a is a closed set.
Conversely, assume (ii). Then
GL(n+1)-an{F() =F(a)}

is a disjoint union as in (5.4) and so SL(n + 1) - a is closed in V,, 4. O

5.41 DEFINITION. (MUMFORD [30]) A nonzero form a € V,, 4, and the corresponding hypersurface in P, are
said to be stable if the conditions (i), (ii) of Lemma 5.40 are satisfied. |

5.42 EXAMPLE. Every nonsingular hypersurface of degree > 3 (or, in the case n = 1, every binary form without
repeated linear factors) is stable by Corollary 5.24. a

Note that stability depends only on the GL(n + 1)-orbit of a form; also, that stability implies semistability.
By Proposition 5.15, the set of stable forms V;, ; C V,, 4 and its image ¥(V}, ;) C Proj R, 4 are open sets. By
Corollary 5.17, \II(VZ 4) barametrises projective equivalence classes of stable hypersurfaces of degree d in P" via
the restricted map

vV U( ;’d) C Vif’d//GL(n +1) =Proj Ryq-
We write
Vo a/GL(n+ 1) := ¥ (V ),

n7

called the moduli space of stable hypersurfaces.
To summarise the constructions of this section:

nonsingular = stable => semistable (not a nullform).
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Correspondingly, we have constructed moduli spaces:

DOAYGL+D) o W GL@D) o VGt )
| | |
i i le h f;
nons;ngular. hif.persurfa‘uces stable hypersurfaces up ien}ulstgzsi reyé)e;is‘tl;l;(lzsz
up o projective equiva- to projective equivalence P aut
lence of GL(n + 1)-orbits

It turns out that, even if the structure of the invariant ring R,, 4 = k[f[]SL(”H) is not known, it is nevertheless
possible to classify the stable forms and the nullforms. We will return to this question in Chapter 7 (Section 7.2(a)).

Exercises

1. For each n,d give an example of a nonsingular hypersurface f(zo,z1,...,2,) =0.

2. For each n,d give an example of a hypersurface f(zo,z1,...,z,) =0 with exactly one singular point.



Chapter 6

The projective quotient

Let G be an algebraic group acting on an affine variety X. In the last chapter we discussed the following strategy
for defining a quotient variety of X by G:

(A) For suitable G-invariant functions fi,..., f, € k[X]“, consider the map to affine space
X — A", z = (fi(z),..., fu(z)),

and take for the quotient the image of this map.

In this manner we constructed quite explicitly a moduli space for nonsingular hypersurfaces in P"; and by gluing
together affine varieties obtained in this way (in other words, using Proj) we constructed a compactification of
the moduli space.

Although at an elementary level this approach works well, the following improvement has a wider scope for
applications:

(B) fo, f1,---, fn need not be G-invariants, nor even regular functions on X, but their ratios f;/f; should all
be G-invariant rational functions. (To be precise the f; should be G-invariant sections of a G-linearised
invertible sheaf—see Section 6.2.) Thus chosen, we have a rational map (that is, a map defined on a
nonempty open set in X) to projective space

X - — =P z = (folx): filz) ... ful)),
and we take the image of this map.

Just as we arrive at an affine variety Spm k[X]“ via (A), via (B) we arrive at a projective quotient, often called
the GIT (geometric invariant theory) quotient. While (A) is the basic technique for constructing a quotient
locally, (B) is generally more useful for constructing quotients globally. In fact, (A) is just the special case of
(B) in which one takes fo = 1 and G-invariant regular functions fi,..., f,. Moreover, the point of view of (B) is
closely related to the so-called ‘moment map’, which allows one to construct symplectic reductions of symplectic
manifolds and complex K&hler manifolds.

Note that the map to projective space in (B) fails to be defined at the common zeros of fy(x), fi(x),..., fu(z).
It is in this respect that the construction differs significantly from that of (A). By taking as many functions
fo, fi,--., fn as possible, one can reduce this common zero-set, but in general it will remain nonempty. Those
points that remain in the zero-set for any choice of functions are called the unstable points for the group action
(Hilbert’s nullforms in the classical case of hypersurfaces studied in the last chapter (see Definition 5.31)).

Here is a summary of the chapter. For a linearly reductive group G acting on an affine variety X = Spm R
and a choice of character x € Hom(G, G ), we construct in Section 6.1 the Proj quotient map ®, : X — — —
X/ xG = Proj @,,cz Rgm, which is a rational map defined on the open set X° of semistable points with respect
to x. This improves on the affine quotient X //G (which is the case of the trivial character x = 1) and is obtained
by gluing together affine quotient maps of covering open sets. A classical example is the moduli space Proj R, 4
of semistable hypersurfaces in Chapter 5, where R, 4 coincides with @, R)ij with G = GL(n + 1), x = det
and R = k[V,, 4] B

In Section 6.2 we briefly discuss a generalisation X //,,G := Proj S(M)% in which M is an invertible GR-
module and S(M) is its symmetric tensor algebra. The quotient X'// G is the case M = R with G-action via

123
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X : G = Gy,. This generalisation allows one to answer fully the ‘Italian problem’ (for locally factorial X) of
constructing a birational quotient: that is, there exists some M for which X //,,G has function field equal to
kE(X)C.

When the character x € Hom(G, G ) moves, the Proj quotient X //, G undergoes a birational transformation.
A flop is a special case of this. We examine in Section 6.3 some examples of such moving quotients of torus actions
on affine space, which have natural descriptions as toric varieties. In complex geometry the different quotients
are parametrised by the symplectic moment map.

6.1 Extending the idea of a quotient: from values to ratios

Throughout this section we work with an affine variety X = Spm R. Recall that the quotient constructed in the
last chapter followed the first of the three approaches introduced in the discussion following Example 5.1:

(i) Identify to a single point orbits which the ring of invariants fails to separate.

When an algebraic group G acts on the affine variety X, by definition it acts on its coordinate ring R and one
considers the affine quotient map
® : Spm R — Spm R®.

What we showed was that when G is linearly reductive this map expresses Spm R® as a parameter space for
the closure-equivalence classes of G-orbits in X (Theorem 5.9). Moreover, as we will see in Chapter 11 (see
Example 11.8), Spm RY is even a categorical quotient. Nevertheless, the quotient problem for affine varieties
does not end here. We still need one key idea which concerns the invariant rational functions on X.

In ring-theoretic language, the action G ~ X is written as a coaction (see Definition 3.54)

px : R — R ®y k[G]. (6.1)
To say that a function f € R is G-invariant then means that ux(f) = f ® 1.

6.1 DEFINITION. We shall denote the field of fractions of R by Q(R) or, alternatively, by k(X). An element
a/b € Q(R) is called G-invariant if it satisfies:

(a® Dux () = (b Dux(a).

O

Note that G-invariance of an element does not depend on how it is represented. Moreover, it is a property
closed under addition, multiplication and division, and the set of invariant elements is therefore a subfield of Q(R).
This is called the invariant field and written Q(R)“. Or, denoted k(X)¥, it is called the invariant function field
of X under the group action.

THE ITALIAN PROBLEM: If an algebraic variety X has a quotient under the action of G, does this quotient have
function field equal to k(X)%?

We call this question ‘Ttalian’ in honour of the Italian school of algebraic geometry that left for posterity so
much work on birational geometry. (See also the preface to the first edition of Mumford et al [30].) A variety
satisfying this requirement is called a birational quotient. Stability (Definition 5.12) gives one solution to the
problem of finding birational quotients.

6.2 PROPOSITION. Suppose that a linearly reductive algebraic group G acts on an affine variety X, and that
there exists a stable point for the action. Then every invariant rational function can be expressed as a ratio of
invariant regular functions. In other words, k(X)% coincides with the field of fractions of k[X]%.

Proof. The set of stable points is a (by hypothesis, nonempty) open set X* C X. Let h/f, for f,h € R, be an
invariant rational function on X = Spm R; we shall write Ry = R[1/f] and (R®)" = R%[h/f] (see Section 8.2(a)
in the next chapter). Then, corresponding to the inclusions

R; D (R%) D RY,
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we obtain a sequence of dominant morphisms (see Definition 3.27)
X D {f(z) #0} = Y':=Spm (RY) = Y := Spm RC.

By Theorem 3.28, the image of a dominant morphism contains a nonempty open set. Moreover, G-invariance of
h/f implies that every orbit collapses to a single point under the map {f(z) # 0} — Y’. We claim that this
forces the element h/f to be algebraic over the field Q(R“). Suppose it were transcendental. In this case Y’
would have dimension strictly greater than that of Y. But this contradicts the fact (see Corollary 5.17) that the
fibres of the (nontrivial) quotient map X*® — Y are single orbits.

So h/f satisfies some irreducible polynomial equation over Q(R%), of degree n, say. This means that over
some open set the morphism Y’ — Y is n-to-one. By the same reasoning as above (that is, Corollary 5.17) we
must have n = 1. Hence h/f € Q(R%). m]

It follows from the proposition that, if Spm R contains any stable points for the action of G, then Spm R¢
satifies the Italian condition. However, there are many examples in which this is not the case.

6.3 EXAMPLE. Let the multiplicative group Gy, act on affine space A"*! by rescaling coordinates:

(o, %1, -, xn) > (txo,tx1,. .., txy), t € G-
Expressed ring-theoretically, Gy, acts on the polynomial ring k[zo,x1, . .., x,] by simultaneously multiplying every
variable x; by t € Gy,. The only invariants in k[zg, z1,. .., z,] are the constants, so the affine quotient map is the

trivial morphism
®: A" — Spm k,

collapsing the whole space to a single point.

Geometrically, one might find it unreasonable that the quotient of an n + 1-dimensional variety by a 1-
dimensional group should be a single point. However, the orbits of the action G, ~ A"*! are of two kinds:

(i) lines through the origin, and

(ii) the origin itself.

Of these, only the second is a closed orbit. Thus all orbits are closure equivalent, so this example does not
contradict Theorem 5.9.
Figure 6.1: The orbits in Example 6.3 (n =1)

On the other hand, we can observe that although there are no (nonconstant) invariants, there are plenty of
invariant rational functions. These are all quotients f(z)/g(z), where f,g € k[zo,z1,...,2,] are homogeneous
polynomials of the same degree deg f = degg. Equivalently, they are all the rational functions of the ratios
x1/%o, ..., Tn/To, and so the invariant function field is

E(xo,x1,...,2,)5 =k (ﬂ’.‘.’ﬂf_n)‘

This has dimension (that is, transcendence degree over k) equal to n = dim A"™! — dim G,,. As the reader
can guess, the ‘correct’ quotient satisfying the Italian condition in this example is projective space P", which
parametrises all of the orbits away from the origin. We shall justify this in what follows. a

(a) The projective spectrum

We are going to construct a new quotient of the form Proj R (see Section 3.2(b)). First, let us consider again
the construction of projective space P™ by gluing together affine spaces in Example 3.40. It could be defined
alternatively by the following four steps.

(i) As a set, P™ consists of all ratios (ap : aj : ... : ay), or, in other words,
P" = (k"' — {0})/k*.

(ii) As a topological space, P™ is given the Zariski topology. That is, we take as a basis of open sets the
complements Uy C P of zero-sets of homogeneous polynomials f(zo,21,...,2n),

Ur={(ap:a1:...:ay) | flag:ai:...:ay) #0}.
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(iii) As a variety, P™ has algebraic function field (see Definition 3.30)

K0:k<ﬁ,...,x—”>.
Iy o

(iv) The structure sheaf Op- is the elementary sheaf of subrings of Ky (see Definition 3.2) given on the basic
open sets by

Opn :Up — {fim | f,g are homogeneous polynomials with degg = mdeg f, m > 0} .

In fact, what we have described here is nothing other than the projective spectrum Proj R (Definition 3.43) of a
graded integral domain over k,
R=D Rm)-

m>0
Let us consider those homogeneous ideals of R which are maximal among homogeneous ideals, called mazimal
homogeneous ideals. Of these there are two kinds:

(HO) Sums J + Ry, where
Ry =D Rm)
m>0
is the ‘irrelevant ideal’ and J is a maximal ideal in Rq).
(H1) Those not containing the irrelevant ideal R .

Maximal homogeneous ideals of type (HO) are actually maximal ideals of R, but those of type (H1) are not. In
case (H1), the residue ring is isomorphic to a polynomial ring in one variable, in fact.

By definition, a homogeneous ideal is just an ideal which is invariant under the natural action of Gy, on R.
Consequently, maximal homogeneous ideals correspond geometrically to Gy, -invariant closed sets in Spm R which
are minimal among such sets. Those of type (HO) are fixed points under the action G, ~ Spm R, while in case
(H1) they are the closures of 1-dimensional orbits.

Given a homogeneous element a € R we can define a ring

b
Roo = {—n | a,b are homogeneous polynomials with degb = m dega, m > 0} .
a

(See Definition 3.41.) Given also a maximal homogeneous ideal m C R not containing a we obtain a maximal

ideal ;
{_n | bem} CRQ’U.
a

Conversely, any maximal ideal in R, determines, by the set of numerators of its elements, a maximal ideal in
R. In this way we arrive at the following description of Proj R.

6.4 PROPOSITION. The ringed space given by the following four properties is an algebraic variety, and is iso-
morphic to the variety Proj R of Definition 3.43 constructed by gluing affine varieties.

(i) Set: the underlying set is that of maximal homogeneous ideals in R of type (H1).
(ii) Topology: the set of these ideals is equipped with the Zariski topology. That is, a basis of open sets consists
of
Us={m|a¢gm}

for homogeneous elements a € R.
(iii) Function field: this is the field of ratios of homogeneous elements of R of equal degree (together with zero),

Ky = {% | a,be R, dega= degb} U {0}.
(iv) Structure sheaf: O is the sheaf of subalgebras of Ky defined on basic open sets by
O(Ua) = Ra,O-
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One should note that Proj R contains less information than the graded ring R. To see this, let j be a natural
number and consider the grade subring generated in degrees divisible by j,

R[j] = @ R(n]) .

n>0

Replacing R by RU! does not change the collection of coordinate rings Ry = (R[j])am and the gluing data they
determine, and it follows that restriction of maximal homogeneous ideals defines an isomorphism of algebraic
varieties

Proj R Proj RV,  mw— mnRU. (6.2)

Next, note that for each maximal homogeneous ideal m C R the restriction to elements of degree zero mN R,
is a maximal ideal of R(y), and so there is a mapping

¢ : Proj R — Spm R, m = mnN R). (6.3)

To see that this is a morphism of algebraic varieties, consider its restriction to the affine varieties Spm R, o from
which Proj R is obtained by gluing. Each R, contains R as a subring and so has an induced morphism of
spectra Spm R, — Spm Rg). This is nothing other than the restriction of (6.3).

The map ¢ is called the structure morphism of Proj R. The following example is trivial but will be needed
later.

6.5 EXAMPLE. Let R be a finitely generated algebra over k. The polynomial ring in one variable Rg)[u] is a
graded ring by assigning deg R(o) = 0, degu = 1. In this case the structure morphism

Proj R(O) [U] = Spm R(O)

is an isomorphism of varieties. O

The degree zero component Ry, as well as being a subring of R, is also the residue ring modulo the irrelevant
ideal R . Corresponding to the projection R — R(q), then, there is a closed subvariety F' C Spm R which is the
image of Spm R(p). As a set this consists of the maximal (homogeneous) ideals of type (H0) above; and in fact
the map Spm R — F' C Proj R is an isomorphism whose inverse is the restriction of the structure morphism.
As already noted, if we let Gy, act on Spm R via its graded action on R, F is just the set of fixed points. Maximal
homogeneous ideals of type (H1) are in one-to-one correspondence with the Gy, orbits in Spm R — F'. In other
words, as a set:

Proj R = (Spm R — F)/k*.

6.6 REMARK. We need to make a technical remark which will be needed later. A graded ring R need not be
an integral domain for Proj R to be defined as an algebraic variety. More generally, let Rg be the localisation
of R by the multiplicative set S C R of nonzero homogeneous elements of positive degree. (For the definition of
localisation, see Section 8.2.) Assume, first, that Rg is an integral domain or, equivalently, that Ry is an integral
domain for every h € S. Then the field of fractions of R; does not depend on h € S. Gluing their spectra
Spm Rj,, we obtain an algebraic variety which we also denote by Proj R. In fact, this is isomorphic to Proj R
where R is the image of the natural homomorphism R — Rg and is an integral domain.

Our assumption that Rgs is an integral domain is not essential here. Rather it is enough that Rg is locally
integral. This is satisfied, in particular, if Spm R is smooth away from the fixed-point set F' C Spm R. Then
Proj R can be defined, similarly, as a disjoint union of algebraic varieties. a

(b) The Proj quotient

Suppose that our affine variety X = Spm R is acted upon by the group G,,. By Proposition 4.7, the ring R has
a direct sum decomposition

R= P Rwm) (6.4)

mEeZ

in which R(,,) is the summand of weight m for the action. Note that the invariant ring RCm is the same as Ro)-
Note also that the group action preserves the algebra structure of R, and so R becomes a graded ring via this
decomposition.
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6.7 DEFINITION. The action Gy, ~ X is said to be of ray type if, in the decomposition (6.4), either R,y = 0 for
all m < 0 or R, =0 for all m > 0. By exchanging ¢ with ¢~' in Gy, = Spm k[t,¢™"], if necessary, it is enough
to assume that R(,,) = 0 for all m < 0, so that

R= D Rm)-
m>0
O
As we have seen in the previous section, the closed set F' C X determined by the irrelevant ideal in R is the
fixed point set for the action of Gy,, and Proj R can be viewed as the quotient by Gy, of the complement X — F'.

Moreover, if we choose a nonzero homogeneous element a € R, then R, o = (Ra4)(o) and there is a commutative
diagram, where Spm R, is the basic open set D(a) (see Chapter 3, (3.6)):

Spm R, = D(a) — X-—-F CX
| | (6.5)
Spm R,0= D(a)//Gn — ProjR

The left-hand vertical map is the affine quotient map for the action G, ~ D(a) C X. Since X — F' is covered
by open sets of the form D(a), this shows that the right-hand vertical map X — F' — Proj R is a morphism of
algebraic varieties and is locally an affine quotient map. This suggests the following terminology.

6.8 DEFINITION. If G,, ~ X = Spm R is an action of ray type, then the projective spectrum Proj R =: X //Gy,
is called the Proj quotient of X by Gy, . m|

Denoting by ® the affine quotient map and by ¢ the structure morphism (6.3), the following diagram commutes:

X-F < X

! 1@ (6.6)
Proj R N Spm Ry = Spm RGm
Thus the Proj quotient is precisely (the base change of) an affine quotient away from the fixed point set F'.

6.9 EXAMPLE. When G, acts on A»*! by z — tz, t € G, the action on the polynomial ring R =
k[xo, 1, ..., xy,] is ray type, while FF = {0} and diagram (6.6) is:

At — 10} —  Ant!

+ 1@

Pm N Spm k = point

O

Let us now consider an action on X = Spm R of a general algebraic group G. In many cases where the
invariant regular functions and the invariant rational functions disagree the source of the disagreement, as in
Example 6.3, is the multiplicative group Gy,. (Though see also Example 6.21 in the next section.) What we
are going to do next, using the preceding discussion, is to build a projective quotient X//XG associated to each
1-dimensional representation

X :G = Gy = Spm k[t t7'].

Consider the function ¢ pulled back to G via x: we shall use the same symbol x to denote this function. For
the coproduct ug (Definition 4.11) this function satisfies ug(x) = x ® x-



e LA A AL TS TR A8 A A S AR Y M AT A & A srs e sy e S Ae S SRS

6.10 DEFINITION. A function f € R on X = Spm R satisfying

IUX(f) = f XX,
where px is the coaction (6.1), is called a semiinvariant of weight x for the G action. (See Definition 4.13.) This
condition can be written set-theoretically as f(g-x) = x(g)f(z) for all g € G, z € X. |

6.11 EXAMPLE. Let G = GL(n) and w € Z be an integer. Then the determinantal power y = det" is a 1-
dimensional character of G, and by Lemma 4.12 every character is of this form. A semiinvariant f € R with respect
to x = det" is called a classical semiinvariant of weight w. Set-theoretically this means that f(g-z) = (det g)* f(x)
for all g € GL(n), z € X. o

Obviously the set of semiinvariants of a given weight x is a vector subspace of R, and we denote this space
by Rg. A product of semiinvariants of weights x, x' is again a semiinvariant of weight xx’. In particular, this
means that the direct sum

P RS (6.7)

meZ
has the structure of a graded ring.

6.12 DEFINITION. The action of G on X = Spm R is of ray type with respect to x € Hom(G,Gy,) if either
R)ij =0 for all m < 0 or for all m > 0. If Hom(G, Gy, ) = Z, then this definition is independent of the choice of
x and we will just say that the action G ~ X is of ray type. a

Just as for Gy, -actions, it is enough to assume that Rgm = 0 for all m < 0, and then the ring of semiinvariants

is
P RS- (6.8)
m>0
Notice that because of the isomorphism (6.2) the projective spectrum of this graded ring depends only on the
ray Ry spanned by x in the real vector space Hom(G, Gy, ) ®z R. (The set of characters Hom(G, Gy, ) is a finitely
generated free abelian group.)

6.13 DEFINITION. Let G ~ X = Spm R be any action and x € Hom(G, Gy, ) a character.
(i) The projective spectrum
o ; €
X//,,G := Proj @ R
m>0
of the graded ring (6.8) is called the Proj quotient in direction x of the action G ~ X.
(ii) A point x € X satisfying f(z) # 0 for some semiinvariant f € R with weight equal to some positive power
x™, n > 0, is said to be semistable with respect to x; if no such f exists, then x € X is called unstable. The
set of points semistable with respect to x is an open set which we denote by X}* C X. a

How do we know that the ring of semiinvariants (6.8) is finitely generated? By Example 6.5 we can identify
X = Spm R with Proj R[u]. We let G act on the graded ring R[u] with a twist by x~!, that is:

g-(feou")=(g9 - f)®x(g)~"u™, forge€d, f€ Randm >0.

Then the ring (6.8) is precisely the invariant ring under this action, and hence it follows from Hilbert’s Theo-
rem 4.51 that, if G is linearly reductive, then the ring (6.8) is finitely generated. From the inclusion homomorphism

P RS < Rlu]
m>0

we obtain a rational map
X--=X/,G.

In concrete terms this is given by x — (fo(z) : fi(z) : ... : fu(z)) € Plap : a1 : ... : an), where fo,..., fn €
D,.>o0 Rfjm are generating semiinvariants of degrees ay, - . ., a,. The rational map is therefore defined on the open
set X;°, and the morphism

o XY = X/ G (6.9)

is called the Proj quotient map in direction .
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6.14 REMARKS. (i) First of all, suppose that x = 1 is the trivial character. The constant function f =1 € R

(iii)

is a (semi)invariant satisfying f(z) # 0 for every x € X, so all points of X are semistable. On the other
hand, for every m > 0 the space Rfm is nothing but the ring of G-invariants, and so the graded ring (6.8)
reduces to the polynomial ring R[u]. Thus by Example 6.5 its Proj is isomorphic to Spm RY, and so
the Proj quotient coincides with the affine quotient. In this sense the Proj quotient extends the idea of the
affine quotient.
When the character x is nontrivial, the semiinvariant ring (6.8) is the same as the ring of invariants in R
under the action of the kernel

Gy :=ker {G =5 Gy}
More precisely, Rx = @(RGX)(m), where the grading is the weight-space decomposition under the action
of G/Gy = G, and then

(R (m) = RS

Thus the Proj quotient X //, G is obtained by taking the affine quotient of X by G, but replacing Spm
by Proj .
Generalising (6.6) there is a commutative diagram:

X;S — X

Lo, L®
(6.10)

Proj R% = Proj | P RS | = X/, G % X//G =Spm R¢
m>0

Thus on the open set X7* C X the Proj quotient is obtained by base change from the affine quotient.
If f € R is a semiinvariant in direction y, then the following diagram commutes:

Gn D(f) = X¥ CX

V ' (6.11)

Spm (R[L/f)® = DN/G <= X/, G

Here the left-hand vertical map is the affine quotient and the right-hand vertical map is the Proj quotient.
In this way one sees that the Proj quotient map is an affine quotient map locally, and indeed is obtained
by gluing such maps. Hence X//XG is a moduli space for closure-equivalence classes of G-orbits in the
semistable set X7°. (But note that this is not the same as closure-equivalence in X.)

The motivating example for all of this is the moduli space of hypersurfaces of degree d in P™ discussed
in the last chapter. Here X = V,, 4, the affine space of forms of degree d acted on by G = GL(n + 1),
and we use the character y = det, for which G, = SL(n + 1). The semiinvariant ring is none other than
Ryaq= k:[Vn,d]SL(”H) and the moduli space is Proj Ry, g = Vy,q// 4o GL(n + 1).

Finally, note that, in view of Remark 6.6, under suitable conditions we can define the Proj quotient X // XG
as a disjoint union of algebraic varieties even if the semiinvariant ring is not an integral domain. In
particular, it is enough that the semistable set X}® is smooth. O

Remark 6.14(iv) allows us to generalise Proposition 6.2. First we need to define stability with respect to a
character x; note that for the trivial character y = 1 the following definition agrees with Definition 5.12 of the
previous chapter.

6.15 DEFINITION. If x € X is a semistable point with respect to character x then z is stable with respect to x if
the orbit G, -« C X, where G, = ker ¥, is a closed set and the stabiliser subgroup {g € G | g-« = x} is finite. O

6.16 PROPOSITION. Suppose that a linearly reductive algebraic group acts on an affine variety X and that X
contains stable points with respect to a character x of G. Then every invariant rational function can be expressed
as a ratio of semiinvariants of weight x. In particular, the algebraic function field of X //, G is k(X )< o
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The quotient X //, G therefore satisfies the Italian condition. In addition, it follows from diagram (6.11) that
all of the results of Section 5.1(c) can be extended unchanged to the present situation, and in particular we obtain:

6.17 PROPOSITION. If all x-semistable point are stable, X;* = X7, then the fibres of the map X} — X//XG are
closed orbits. a

In this last situation we denote the quotient by X/, G, often called the geometric quotient. (See Mumford et
al [30] Chapter 4.)

(c) The Proj quotient by a GL(n) action of ray type

The classical case of the above construction arises when G is the general linear group GL(n) and the character x
is the determinant
det : GL(n) = Gy, .

Indeed, the motivating example of the previous chapter was exactly of this form (Remark 6.14(ii)). Although we
do not have anything new to add for this case, it will be used so often in what follows that it is worth restating
the important points in this section.

First of all we take the ring of invariants of the kernel SL(n) of det. This ring RSL(™) is acted upon by Gy,
identified with the quotient group GL(n)/SL(n). The ring of invariants is graded by this action:

L
RSL(n) — @ wa)(n)_
wWEZ
We note that R(Suf)(n) = R(C;gt()"w) , the semiinvariants of weight w for the action of GL(n) (Example 6.11).

The action of GL(n) on an affine variety X = Spm R is of ray type if and only if the induced action of G,
on RSL(M ig of ray type. Just as in Definition 6.7, it is enough to assume (by exchanging g <+! ¢~ in the GL(n)
action if necessary) that R(Suf)(n) = 0 for all w < 0. In this case Proj R5F(™ is the Proj quotient of the action
GL(n) ~ X.

Thus the Proj quotient X //GL(n) is obtained by taking the affine quotient X //SL(n) but replacing the affine
spectrum with the projective spectrum, and it parametrises closure-equivalence classes of GL(n)-orbits in X*5.
(Note that it does not parametrise closure-equivalence classes in X, as the baby example 6.9 shows!) Diagram
(6.10) now looks like:

X9 — X

\ @
Proj RSL™ 25 Spm RGL(™

6.18 EXAMPLE. BINARY FORMS REVISITED. GL(2) acts, by transformation of binary forms (£ {z,y) of degree
d, on the d + 1-dimensional affine space

Va ={({lz,y)} = Spm k[¢o, &1, - -, &al-

The graded ring of semiinvariants of GL(2) is the same as the ring of invariants of SL(2). More precisely, given
a polynomial F'(€),

(F(f) is SL(2) invariant and> — <F(£) is GL(2) semiinvariant)

homogeneous of degree m of weight w = dTm

In the case d = 4, the semiinvariant ring is k[g2, g3] generated by g2(£) of weight 4 and g3 (&) of weight 6, and the
Proj quotient V4//GL(2) is isomorphic to P! (Proposition 1.25 and Corollary 4.70). O

A point z € X is semistable with respect to an action GL(n) ~ X of ray type if there exists a semiinvariant
f € R = Ek[X] of positive weight for which f(x) # 0. A semistable point # € X is stable if the orbit SL(n)-z C X
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is closed and the stabiliser subgroup is finite, and on the stable set X* C X* the Proj quotient is a moduli space
for GL(n)-orbits.

This is a generalisation of the definition of a semistable form (Definition 5.31). Let F C X be the fixed point
set under the action of the scalar matrices G, C GL(n); this will be called the irrelevant set. The following is
then essentially Theorem 5.32.

6.19 PROPOSITION. The following conditions on a point x € X are equivalent:
(i) z € X is semistable;
(ii) the closure of the orbit SL(n) - x does not intersect the irrelevant set F C X .

Proof. (i) = (ii) By semistability there exists a semiinvariant f of positive weight satisfying f(x) # 0. This
f is therefore nonzero on the orbit SL(n) - z. On the other hand, f is identically zero on F’; so (ii) follows.
(ii) = (i) By Theorem 5.3, = and F are separated by some invariant: that is, there exists f € R3L(™)

R = k[X], for which f(z) # 0 and f|r = 0. But vanishing on F' implies that f € Rf_L(n), and hence by taking
homogeneous components of f we obtain (i). ad

In almost all applications one has Ry = k, and in this case the Proj quotient is a complete variety. (In
general, it is proper over the affine quotient Spm R%.) Here the fixed point set F is a single point, which we shall
denote by O € X.

6.20 COROLLARY. When Ry = k, * € X is semistable for the action of GL(n) if and only if O ¢ SL(n) - x. O

In the moduli construction for hypersurfaces in P” this was Proposition 5.32.

6.2 Linearisation and Proj quotients

Apart from Definition 6.23, most of this section will not be used afterwards in this book, but nonetheless we
include it for completeness and for the sake of clarity. Beginners are invited to skip it. Taking Example 6.3 as
point of departure, and also motivated by the case of projective hypersurfaces in Chapter 5, we have developed
and extended the notion of quotient variety. However, as the next example shows, even in the absence of Gy, it
can happen that there are not enough invariants to make the theory work.

6.21 EXAMPLE. First consider the quadric surface in Y C A3 with equation
AC-B*+ ;=0

If we identify Y with the set of symmetric 2 x 2 matrices with determinant —1/4, then it is acted upon by SL(2)
in the usual way:
t
A B A B
(4 8) (2 2)n pesua

Note that the stabiliser subgroups are the conjugates of T C SL(2) consisting of diagonal matrices (q qO >

Thus Y is the quotient variety SL(2)/T. (See Section 4.5.)
Next, consider the set L of matrices of the form

T A B—%
z B-{—% C

and of rank 1. Then L is a 3-dimensional closed subvariety in A®. The map forgetting z, z,
LY, (A,B,C,z,z) = (A, B, C),

is surjective and its fibre is a 1-dimensional vector space with

1
)
0 B+: C ) (6.12)
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as its origin. In other words, L is a line bundle over Y (in the geometric sense, rather than the algebraic sense of
the next chapter). Moreover, the group SL(2) also acts on L:

T A B—% = axr + bz Al B’—%
z B+% C cx +dz B’+% C’ ’

A B A B\ b
(B, C,):P<B C) P, P:(‘CL d)eSL(Q).

There are two orbits of this action: an open orbit isomorphic to SL(2) and a closed orbit consisting of points
(6.12) isomorphic to Y.

The variety we are interested in is the 4-dimensional fibre product X := L Xy L. In more concrete terms, this
is the set of rank 1 matrices of the form

where

This is a closed subvariety of A7, and the map forgetting 1,2, 21, 22 expresses X as a rank 2 vector bundle
X =Y.

That is, each fibre is a 2-dimensional vector space.
Claim: under the above action SL(2) ~ X, the only invariants are the constant functions.

qg 0
0 ¢!

T1 x> 1 0 gry qra2 1 0
- X.
P (0 000>H<0 0 00)°€
This has a limit as ¢ — 0, which is contained in the zero section of the vector bundle X — Y. Similarly, at other
points of X, we see that all orbits are closure-equivalent to points of the zero section. Thus, if f is an invariant,
then by SL(2)-invariance and continuity its value at each point is equal to its value at a limiting point in the zero
section. But the zero section is isomorphic to Y, on which SL(2) acts transitively. Hence f is constant, proving

the claim.
On the other hand, x5/, is an invariant rational function and generates the invariant function field k(X)%. O

For example, the element ( ) € SL(2) maps

Even in cases of this sort, it is nevertheless possible to construct a birational quotient by using G-linearised
invertible R-modules, which we define next.

6.22 DEFINITION. Suppose as usual that G acts on an affine variety X = Spm R. Then a GR-module is a
representation of G which is also an R-module M for which the defining coaction

is a homomorphism of R-modules, where R acts on M ®y, k[G] via up : R = R ®y, k[G]. In other words,
un(ar) = pr(a)ur(m) for a € R, m € M. |

Reversing the roles of G and R in this definition:

6.23 DEFINITION. Given an R-module M, a G-linearisation of M is a coaction pua : M — M ®y, k[G] making
M into a GR-module. i
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Suppose M is an invertible R-module (see Definition 8.60) and admits a G-linearisation. Then the tensor
algebra of M, that is, the direct sum of tensor products

S(M) = @ Mo,

m>0

has the structure of a commutative algebra over R on which the group G acts. We can therefore consider its ring
of invariants, which by Hilbert’s Theorem is finitely generated. On the other hand, since M is locally isomorphic
to R (by definition of an invertible R-module) S(M) is locally isomorphic to the polynomial algebra R[u]. So it
follows from Example 6.5 that the structure morphism Proj S(M) — Spm R is an isomorphism, and in the same
manner as (6.9) we obtain a morphism

X358 — X // ;G = Proj S(M)“.
This is called the Proj quotient coming from the G R-module M.

6.24 ExamPpLE. If x is a 1-dimensional character of G, then the homomorphism

R — R ®y, k[G], a—a®x!

is a G-linearisation of R itself viewed as an R-module. Thus the pair (R, x) defines a GR-module, and the
corresponding Proj quotient is precisely X //XG, defined as the projective spectrum of the graded ring of -
semiinvariants (Definition 6.13). o

Here is an example of an invertible G R-module which is not isomorphic to R.

6.25 ExAMPLE. Let X be the 4-dimensional variety of Example 6.21, and consider the following subspace of the
function field k(X):

M={fek(X) |z f€k[X], z1f € E[X]}.

The ring of invariants in S(M) is generated by 1,x2/x1. Moreover, the complement of the zero section in X is
exactly the set of semistable points with respect to M. Thus the quotient is the projective line P!.

Note that x; = z; = 0 defines the codimension 1 subvariety L C X, and it is usual to denote the module M
by Ox(—L). Since the rational function 1 /23 on X is SL(2)-invariant, so is its zero set L, and hence M carries
an SL(2)-linearisation. |

Examination of this example indicates another solution to the ‘Italian problem’ of constructing birational
quotients.

6.26 THEOREM. Suppose that a linearly reductive group G acts on an affine variety X, where k[X] is locally
a unique factorisation domain (X is said to be locally factorial). Then there exists a GR-module M whose
associated projective quotient X //,,G has rational function field equal to the invariant function field k(X)%. O

Since we are not going to make any use of this result, we merely sketch the proof. Let f1,..., fa be generators
of the field k(X)%, and let D C X be the sum of the polar divisors (f;)so. Then we let M be the set of rational
functions with poles at most along D:

M ={fek(X)|(f)+D =0}
Local factoriality now implies that as a k[X]-module M is invertible. It is also a representation of G since D is

G-invariant. Finally, the invariants of the tensor algebra S(M) include the functions 1, fi,..., fx, and so X //,,G
is a birational quotient.
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6.3 Moving quotients

Taking the problem of invariant rational functions as our starting point, we have now generalised the idea of a
quotient variety in the following way.

e First, we abandoned the hope of getting a quotient that classifies all orbits of the group action.
e After removing the unstable orbits, we considered the quotient problem restricted to as large as possible
an open set.

In terms of the ideas suggested in Section 5.1(a), we have moved from approach (i) to (i)4(ii)+(iii). In this
generalisation, if the group action is not of ray type, then we obtain different quotients depending on the choice
of 1-dimensional character of G (or, more generally, the choice of a G-linearised invertible module). For example,
an action of Gy, which is not of ray type, corresponding to the identity, trivial and inverse characters Gy, — Gy,
we obtain three quotients:

character | quotient

identity twt X/ Gn =Proj Ry
trivial t—1 X/[oGm =Proj Ry
inverse  t—tt | X//_Gn =ProjR_

(R—, Ry and Ry denote the subspaces of the graded ring R = @,,.;, R() determined by the Gy,-action with
m < 0, m =0 and m > 0, respectively.) We will denote these three quotients by X_, Xy, X;. As an example,
we begin by considering a simple flop.

(a) Flops
Consider the affine space AV on a finite-dimensional representation of the multiplicative group Gy,. By Propo-
sition 4.41, the action of Gy, can be diagonalised: that is, one can find coordinates x1,...,zn with respect to
which the action of t € Gy, is

(1,...,zn) = (%21, .., "V TN)
for some fixed integers ay,...,any € Z. We may assume without loss of generality that all of the aq,...,ay are

nonzero. What is important here is the distribution in 7 of the values taken in this sequence; we shall consider
here the simple case in which +1 occurs p times and —1 occurs ¢ times for some p + ¢ = N. We rename the last
g coordinates y1, ..., Yyq; then (reordering if necessary) the action of ¢t € G, is

(T1y ey Ty YLy -y Yg) > BTy, ooty t tyr, ot y,). (6.13)
We now give to the coordinate ring R = k[z1,...,Zp, 1, - -,Ys] of AV a grading by defining

degz; =1 i=1,...,p,

: 6.14
degy; = -1 j=1...,q. ( )

In this graded ring R = @,,.,, R(n), the component Ry is generated by pq invariants x;y; while the subalgebra
Ry is equal to Ry [z1,...,xp]. Thus Proj R, is the variety constructed by gluing p affine open sets

Spm Ry[1/z1)), ..., Spm Ri[l/zp]o).
Proj R_ is constructed similarly.
6.27 THEOREM. (i) Xy is the subvariety of affine space APY consisting of p x q matrices of rank at most 1,

211 - Zlq
rank e <1.

Zpl e qu

This is defined by (5) x () quadratic equations
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for 1 <i<i' <p,1<j<j" <q. Equivalently, X is the affine cone over the Segre variety PP~1 x P4~1 C
PPa=1 (see Section 8.1(b)).
(ii) X, is the subvariety of Xo x PP~! defined by
X;={(Z,x=(21:...:3)) |rank ('x,2) <1}.

(iii) X _ is the subvariety of Xy x P9~1 defined by

X:{(Z,y:(yl:...:yq)) | rank <§>51}

O

The cases p or ¢ = 0 we have already seen in Example 6.3. The cases p or ¢ = 1 are exceptional. Of these,
the case p = ¢ = 1 is particularly exceptional, and in fact there are isomorphisms X1 = Xj.

6.28 EXAMPLE. In the case p = ¢ = 1, the action of G, on A? is by

(z,y) = (tz, t'y).

This is the example we gave in Section 5.1(a) to illustrate the problem of separating orbits. The three quotients
X_, Xp, X, are all isomorphic to Al. O

6.29 EXAMPLE. The case p = ¢ = 2 is well known and is the basic 3-dimensional flop. We write p;; = z;y;;
recall that these are the generating invariants of R. Thus

Xo = Spm k[z1y1,z1y2, T2y1, T2y2]
= Spm k[pu,p12,p21,p22]/(p11p22 - p12p21)-

This is a quadric hypersurface in A* with an isolated singular point at the origin. X, and X_ are both resolutions
of this singular point, and the exceptional sets (that is, the fibres over the origin) C; and C_ are both copies of
P!. The two morphisms

Xi—Ci - Xo— {0} X_—-C_

are both isomorphisms, but the composition Xy — Cy < X_ — C_ does not extend in either direction to an
isomorphism of X with X_ (it is a proper birational map). a

Figure 6.2: A flop

As in this example, when p,q > 2 the three quotients X_, Xy, Xt all have the same rational function field,
but the rational maps
X ¢+ -=X;

cannot be extended in either direction to a morphism.
6.30 REMARKS. (i) Denote by )Z'o the blow-up of Xy C AP? at the origin. Then the morphism )Z'o — X resolves

the singular point of Xy, with exceptional set isomorphic to the product PP~! x P4~!, In fact this mapping
is via X4, and there is a commutative diagram:

X;() e d X+
+ +
X_ = X

This is precisely the fibre product of the maps X4+ — Xj.
(ii) We have a pair of varieties X4 together with subvarieties C;. C Xy, C_ C X_ whose complements are
isomorphic. In this situation, suppose that (the restriction to C+ of) the canonical line bundle O(K) (that
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is, the determinant line bundle det Q2x of the cotangent vector bundle, also denoted wx—see Definition 9.44
in Chapter 9) changes from negative to positive as we pass from X_ to Xy. Such a birational map is
called a flip and is supposed to take one step towards a minimal model of the function field. In the present
example we have

O(K)le. =Opa-ilp—q),  O(K)lc, = Opr-1(q = p).

Hence, if p < ¢, then the birational map X_ — — — X is a flip (and its inverse X; — — — X_ is an
inverse flip). See Mori and Kollar [39].

(b) Toric varieties as quotient varieties

When the action of G on X is not of ray type with respect to x € Hom(G, Gy, ), the projective quotient X // NE
depends on the ray Ry - x in Hom (G, Gy, ) ®7 R, and not just on the direction R - x.
We begin with an example which in effect compactifies that of part (a) above. Consider two actions of G, on

X = Apta+l.

A(S): (1, Tpy Y1y Ygs 2) V> (ST, ooy STp, Y1, - -+ Ygs SZ)

() (T1, o Ty Y1y ey Ygn 2) > (X1, Ty tYL, -, EY g, E2),
where s,t € G,,. The two actions commute and so define an action of the 2-dimensional torus G = G, x Gy, .
The characters of G correspond to pairs of integers a,b € Z,

Xap : G = G, (s,t) — 520,

We shall sometimes denote this character simply by (a,b).

When (a,b) = (0, 1) the action on X of ker xo,1 is A and the associated ring of invariants is the polynomial ring
Elyi,...,y4]. Here we assign the grading coming from the action of xg1(s,t) = ¢, which is the standard grading
with degy: = --- = degy, = 1. By Remark 6.14(ii), the Proj quotient X//(OJ)G is therefore P?~!. Similarly, the

Proj quotient, X//(l,o)G is PP~1. Neither is a birational quotient.

Next, consider (a,b) = (1,1). The kernel of x;,; acts on X as A(s)u(s)™', s € Gn, and the ring of invariants
is k[ziy;, z]1<i<p, 1<j<q- Hence in this case the Proj quotient X //(, ;)G is the affine cone over the Segre variety
Pr—t x pe—t C preL,

Now suppose that the character x, has a direction in between (0,1) and (1,1). Then the projective quotient
X//(mb)G has the structure of a PP-bundle over P?~!. This bundle has a section = P?~! which collapses to the

vertex of the Segre cone as we move to X//(1 1)G- Similarly, the quotient in any direction between (1,1) and
(1,0) is a P4-bundle over PP~L.
Figure 6.3: Wall crossing

The birational transformation of X //, ;)G as the ray in the direction (a,b) crosses over the ray (1,1) is a flop.
This phenomenon is called wall crossing.
As another example, let us take a look at a sextic del Pezzo surface with a torus action. Think of A% as the

space of 2 x 3 matrices
r1 X2 I3
iy ys) '

The two tori (G, )? and (Gy,)? act on this space, on the left and right, respectively, as the diagonal matrices

s 2
< ! So > ) t2
t3

These two actions commute, and the diagonal subgroup Gy, of each has the same action. There is therefore a
1-dimensional subgroup of Gp? X Gy, ® which acts trivially, and we let G be the quotient by this subgroup. This
is a 4-dimensional torus G' = Gp,* acting on A%. The group Hom(G, Gy, ) of characters

(51,82 : b1, ta, tg) > 91532401 ¢b24bs
can be identified with the abelian group

{(0,1,0,2 : b1,b2,b3) S 75 | ai +ay = by + by +b3}.
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The natural coordinates on A® are semiinvariants for the G-action with weights given in the following table:

semiinvariant T To T3
weight € Hom(G, Gy, ) | (10:100) (10:010) (10:001)
semiinvariant Y1 Y2 Y3
weight € Hom(G, Gy, ) | (01:100) (01:010) (01:001)

These weights are the six vertices of a triangular prism (the effective polyhedron). The centroids of the five faces
of this prism form the vertices of a 6-sided polyhedron (two tetrahedra glued along a triangular face), which we
will denote by N (called the nef polyhedron).

Figure 6.4: Semiinvariants by weight

We can describe how the Proj quotient AS // G depends on the ray direction of a character

X = (al,a2 : bl,bQ,b3) € Hom(G,Gm).

(i) If Ry - x lies outside N, then the quotient is either empty or a single point.
(ii) If Ry - x is the direction of the top vertex (21 : 111) of N, then the semiinvariants are generated by

Y1r2r3, T1Y2T3, T1T2Y3-

Taking the projective spectrum we see that the quotient is P2. Simlilarly, the quotient at the bottom
vertex (12 : 111) is P2.

(iii) If Ry - x is the direction of one of the three remaining vertices (11 : 011), (11 : 101), (11 : 110) of N, then
the semiinvariant rings are k[ysxs, 22ys], k[ysx1, x3y1], k[y1 T2, £1y2], respectively. So these three quotients
are each isomorphic to P'.

(iv) If Ry - x is the direction of an interior point of N, then the Proj quotient is a toric variety defined by the
fan as shown in Figure 6.5. This is a surface obtained by gluing six copies of A? (see Section 3.4(b)).

Figure 6.5: The fan of a sextic del Pezzo surface

Particularly pretty is the point x = (33 : 222). One can read off from the fan that the surface is P? blown
up at three points, or equivalently P* x P! blown up in two points. (See, for example, Fulton [37].) In this
case we get seven generating semiinvariants:

2 2 2 2 2 2
T1T2X3Y1Y2Y3, ToX3Y3Y3, T3T1Y3Y1, T1T2Y1Y2,
2 2 2 2 2 2
L2T3Y2Ys3, L3T1Y3Y1, L1T3Y1Ys,

and these embed the quotient variety in PS. The image is called the del Pezzo surface of degree 6.
(v) The reader may like to examine the remaining cases for him- or herself. They are all toric varieties.
In fact, it is known that every toric variety can be represented as a quotient of affine space AN by some torus
action.

(c) Moment maps

What we have seen in this chapter is that, from the point of view of Proj quotients, it is most natural to think
of quotient varieties as occuring in families. We can move from one to another in a suitable parameter space.
In terms of differential geometry, and viewing complex varieties as symplectic manifolds, what is responsible for
this phenomenon is a moment map. One can define precisely what is meant here, but we shall just indicate how
it arises naturally in some of our examples. (But see Mumford et al [30] or McDuff and Salamon [40].) First
consider the action G, ~ A"t! of Example 6.3. We assume that the ground field is the field of complex numbers
C; thus C* acts on the space C**! by scalar multiplication. In this case the moment map is

n
N:CnJrl _>]R7 (Z();Zl:---;zn)'_)2|zi|2'
i=0
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This map is invariant under the action of the subgroup U(1) = {z € C* | |z| =1} C C*, and for any real number
a € R one can consider the restricted action of U(1) on the fibre p~!(a) and its orbit space

Xo=p"Ha)/U(D).

It is easy to see that we get:
| p'(a) X,

a>0]8t  Cp»
a =0 | point point
a <0 | empty empty

These quotients are parametrised by the real line, passing from CP” to the empty set with a single point appearing
as we cross the boundary. This corresponds to the three algebraically constructed quotients

Proj Ry =P", Proj Ry = point, Proj R, = empty set.

One can also view p as a Morse function on C**!, for which the origin is a critical point of index (0,2n), and the
sphere S27t! is the level set for a > 0.

Figure 6.6: The moment map

The moment map of the action (6.13) of Section 6.3(a) is the map
P q
piCPrY S R (@1, @Yty e ey Yg) Z |lz]? — Z ly;|?.
i=1 j=1

Again, p is a Morse function on CP*¢ = R?PT2¢  with the origin as a critical point of index (2p, 2q).
The moment map giving the sextic del Pezzo surface is

p:C - R C RS,

xr X X
(20 ) o (Sl il on P+ ool + oo oal? + )

Yr Y2 Y3
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Chapter 7

The numerical criterion and some
applications

Our aim in this book is to study the Proj quotient, and some applications of this, when an algebraic group G acts
on an affine variety X. In fact, as we have seen, this is not a quotient of X, but of its subset X*° C X of semistable
points for the group action, and to get a good quotient we have to restrict further still to the set X® C X5 of
stable points. But in general this leaves unanswered the fundamental problem of determining whether or not a
given point 2 € X is (semi)stable. Let us review very briefly how, in general, we will answer this question in some
particular cases.

(1) In Chapter 5 we have already looked at the action of GL(n+1) on the affine space of homogeneous polynomials
of degree d in n + 1 variables fq(xo,%1,-..,%n), and we have seen that all nonsingular forms are stable
(Corollary 5.24).

(2) In Chapter 8 we are going to consider the action of GL(r) on the affine space of r X n matrices, and it
will turn out that stability and semistability are both equivalent to the condition of having maximal rank
(Proposition 8.1).

(3) In Chapter 10, under the action GL(N) ~ Alty 2(HY(L)), we will see that a point is semistable if and only
if it is the Gieseker matrix of a semistable rank 2 vector bundle with determinant L (Propositions 10.69
and 10.70 and Lemma 10.81).

In each of these examples semistability is shown using some explicit semiinvariants—in case (1) the discrimi-
nant, in (2) the determinantal minors and in (3) the Pfaffian minors.

Nevertheless, it is possible to determine the (semi)stable points of a group action even without knowing the
semiinvariants, and that is what we will discuss in this chapter. It should be regarded essentially as an interlude,
though, as the numerical criterion will not be needed in later chapters for the moduli constructions for line
bundles and vector bundles. For the classical examples of Section 7.2, on the other hand, it does give very explicit
geometric information.

7.1 The numerical criterion

Although similar results can be shown for any linearly reductive group, we will restrict our attention in this
chapter to the general linear group GL(n); and we will restrict ourselves, moreover, to actions GL(n) ~ X of
ray type (Definitions 6.7 and 6.12). We will denote by F' C X the fixed point set under the multiplicative group
Gm C GL(n) of scalar matrices, called the irrelevant set (see Section 6.1(c)).

(a) 1-parameter subgroups

7.1 DEFINITION. Let G be any algebraic group. A nontrivial homomorphism A : Gy, — G is called a 1-parameter
subgroup of G, or 1-PS for short. O

141
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If G acts on a variety X, then the group Gy, acts on X via the 1-PS A: that is, z — A(t) -z, z € X, t € Gy, .
If we regard Gy, < A! by taking the spectrum of the inclusion of rings k[t] < k[t,t7!], so that G, = Al — {0},
then we can consider the limit lim;_,o A(¢) - .

7.2 DEFINITION. If a 1-PS )\ : G, — X extends to a morphism A' — X, then the image of the origin 0 € A! is
called the limnit of X as t — 0 and written lims_q A(t) - x. O

In what follows we shall always assume that the variety X is separated (Definition 3.33). This guarantees the
uniqueness of limits. The following two theorems are together called the Hilbert-Mumford Numerical Criterion.

7.3 THEOREM. THE HILBERT-MUMFORD NUMERICAL CRITERION. For an action GL(n) ~ X of ray type and
a point x € X the following conditions are equivalent.
(i) = € X is semistable.
(ii) For every 1-PS in SL(n) C GL(n) the limit lim; ,o A(t) - = either does not exist or, it exists but it is not
contained in the irrelevant set F' C X. m|

7.4 THEOREM. For an action GL(n) ~ X of ray type and a point z € X the following conditions are equivalent.
(i) © € X is stable.

(ii) = ¢ F and the limit lim;_,o \(t) -  does not exist for any 1-PS in SL(n) C GL(n). |
Given integers r1,...,r, € Z, not all zero, with r; + --- + r,, = 0, we have a 1-PS, called a diagonal 1-PS:
tm
tre
Gm — SL(n), tw— . . (7.1)
trn

In fact, every 1-PS in SL(n) is conjugate to a diagonal 1-PS. More precisely, the following is true.

7.5 PROPOSITION. For every 1-PS X\ : G, — SL(n) there exist integers r1 < ry < --- < r, for which X\ is
conjugate in SL(n) to the diagonal 1-PS (7.1). o

The kind of group action GL(n) ~ X that we often encounter is where X is a vector space V, viewed as an
affine space, and the action GL(n) ~ V is a linear representation. Typically, the centre G,, C GL(N) acts by
r—tMy z €V, t € Gy, for some positive integer M € N, and in this situation the irrelevant set F is just the
origin 0 € V. It is for this case that we will prove the two theorems above. Namely:

x € V is semistable <= for every 1-PS A : G — SL(n),

(7.2)

lim;_,o A(t) - ¢ does not exist

v€Visstable = any 1-PS X : Gn, — SL(n).

(7.3)

(b) The proof

By definition of an action of an algebraic group, if R is any algebra over k, then SL(n,R) acts on V ®; R. In
particular, if R is an integral domain with field of fractions K, then we get an action SL(n,K) NV @ K.

7.6 PROPOSITION. Suppose that y € V belongs to the closure of the orbit SL(n) -z C V. Then there exist a
(not necessarily discrete) valuation ring (R, m) and a matrix = € SL(n, K) such that R/m = k and satisfying the
following two conditions.

(a) E-z €V @ R;

(b) E-x =y mod m.

(1] [1]
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Proof. We will write G = SL(n). Let W C V be the closure of the orbit G - z. Then the dominant morphism
G — W, g+— gz corresponds to an injective homomorphisms of rings:

W] o  k[G]
N N
kW) < k(G)

Let n be the maximal ideal of y € W. By Theorem 2.37, there exists a valuation ring (R, m) dominating (k[W], n)
with field of fractions k(G) and residue field isomorphic to k.

Any morphism of affine varieties Spm A — SL(n) determines an element of SL(n,A). In particular, the
identity map G — SL(n) determines a matrix = € SL(n, k[G]), and we can view this as belonging to SL(n, k(G)).
But then Z-2 € V @ k[W] and E - 2 = y mod n, as required. O

To understand what is going on in this proof we can give an analytical explanation as well. This captures the
essential idea behind the more general case.

If y e W =G -z, then we can find a holomorphic map ¢ : A — W of the disc A = {z € C| |z| < 1} such that
#(0) = y and ¢(A’") C G -z, where A’ = A — 0. Suppose that the restriction of ¢ to A’ lifts to a holomorphic
map ¢ : A’ = G. We then have a commutative diagram:

A Y @

N S

A Y weveer

Let C{{z}} be the ring of germs of holomorphic functions at the origin 0 € A, and let K be its field of fractions.
The map 1 then corresponds to an element ¥(z) € SL(n, K). Since ¢(0) = y, it follows that

lim U(z) -z =y.
z—0
So R := C{{z}} and = := ¥(z) satisfy conditions (a) and (b) of the proposition.
In general, if (R,m) is a valuation ring and Z € SL(n,K) a matrix satisfying conditions (a) and (b) of

Proposition 7.6, then we will write
ligl Ex=y.

There are now two essential lemmas. We let R be a valuation ring and K its field of fractions.
7.7 LEMMA. Any n X n matrix = € Mat, (K) can be expressed as a product
= =ADB,
where D = diag(&:, ..., &,) is a diagonal matrix and A, B € SL(n, R).

Proof. If E = 0, this is trivial; so we can assume that Z = (§;;) # 0. We then consider the minimum vy of
the valuations v(;;) of the nonzero entries of Z. After multiplying on the left and right by permutation matrices
we may assume that this minimum value is vy, = v(£11). We can now write

100 -~ 0 1|z 23 -+ 2n ST

y2 11 0 01 O 0 | x «x

Ys 01 = 0] 0 1 — 0 *x % :
Yn 1 0 1 0 | *x = *

where y; = —&i1 /&1 and z; = —& j/&1. Note that both y;, z; belong to R by the way we have chosen & 1. Thus
both of the matrices on the left-hand side belong to SL(n, R). We now repeat the argument for the (n—1) x (n—1)
submatrix on the right-hand side, until we obtain a diagonal matrix

&
&
D= . L u(6) <o) < < v,

&n
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satisfying the requirements of the lemma. a

Let A be the valuation group of R (see Section 2.4(b)). This is a totally ordered additive group. Given a finite
set of elements x1, ..., xn € A, the next lemma, which is essentially Proposition 3.71, says that linear inequalities
on these elements can always be replaced by inequalities on a corresponding set of rational integers.

7.8 PROPOSITION. Let x1,...,Xn € A and let ® C Z™ be any finite subset. Then there exist integersry,...,r, €
Z with the property that, for all (a1, ...,a,) € ®,

>0 >0
a1X1+"'+aan{=0 S a1r1+---+anrn{:0 (7.4)
<0 < 0.

Outline of the proof. The elements x1,-.., X, € A partition Z" into three subsemigroups:

Cy = {(ar,...,ap) | a1x1 + -+ apxn > 0},
Co = {(al)--'yan)|a1X1+"'+aan:0}>
C- = {(a1,...,as) [arx1 + -+ anxn < O}

There now exists a hyperplane
rzy + -+ rpx, =0

in R” which contains Cy and which partitions R” into half-spaces which intersect Z™ in Cx. (In the case n = 2,

this is called a Dirichlet section.) Since ® is a finite set, the real numbers r1, ..., r, can be made rational by a small

perturbation; they can then be assumed to be integers by multiplying through by their common denominator.

(See Section 3.4(c).) m|
Let us denote the second expression in (7.4) by (a | r1,..., ).

Proof of (7.2). By Proposition 6.19 we just have to show that the following are equivalent:

(a) 0 € SL(n) - z.

(b) limg_o A(¢) - = 0 for some 1-PS A\ : Gy, — SL(n).
(b) = (a) is obvious, and we just need to show (a) = (b). By Proposition 7.6 (with y = 0) there exists a
valuation ring R, with field of fractions K, and a matrix = € SL(n, K) such that

lim=-z =0. .
imZ -z 0 (7.5)
By Lemma 7.7 we can write
&
B &
= = ADB, _D = ,
&n
where A, B € SL(n,R) and &, ...,&, € K. Let T C SL(n) be the group of diagonal matrices; the action of T' on
V' can be diagonalised using a suitable basis ey, ..., e, € V. Each vector e; then spans an eigenspace on which
T acts with some weight
a; = (ail,. . .,am) € Zn,
in the sense that
t1
ta
e = PSR Lt ey, 1<i<m. (7.6)
tn

Let p : SL(n) — SL(V') be the linear representation giving the action that we are considering. (So g -« means
p(g)x.) Then p(E) = p(A)p(D)p(B) and there exists a limit limp p(A) with determinant 1. This implies, by (7.5),
that

lim p(D) (p(B)z) = 0. (7.7)
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Using the basis above we will write
Bz =p(B)x = fie1 + -+ fmem.- (7.8)
Since B € SL(n, R), the coefficients f; belong to R, and (7.6) says that
p(D) (p(B)z) = £ frer + -+ + & fmem,

where &2 = £'1&5? ... €%, Since the limit of this expression is zero, we must have v(£? f;) > 0 for each
1=1,...,m. Hence
o(fi) =0 = (&) >0. (7.9)

We now consider the residue classes modulo the valuation ideal m C R of B and f;; we denote these by B¢
SL(n,k) and f; € k. Reducing (7.8) mod m gives

B-z=fiei+ + fpem€V.
y (7.9), v(€2) > 0 whenever f; # 0. It follows that (7.7) remains valid with B replaced by B:

lim p(D) (p(B)a) = 0.

We now apply Proposition 7.8 to the set of weights ® = {a;}"; of the representation p and the values
v(&1),...,v(&,) € A. This tells us that there exist integers r1,...,r, € Z such that for all 1 <i < m:

v(*) >0 <= (a;|ry,...,mn) >0.

For this set of integers we have

i
t"2 _
im | eme=e
e
But p(B) € SL(n, k), and so we have constructed a 1-PS proving (b). O

Proof of (7.8). The proof here is similar to that above; we will suppose that z € V is semistable but not
stable, and show that in this case lim;_,o A(t) - = exists for some 1-PS A. Let us write G = SL(n). There are two
possibilities that we have to consider:

(a) The case in which the orbit G - x is not closed.
(b) The case in which the stabiliser G, = {g € G | ¢ - ¢ = =} is not finite.

In case (a) we apply Proposition 7.6 to a point y in the boundary of the closure W = G - z. This gives a matrix
= € SL(n, K) such that
li]r%nE-:n:y¢G-:v,

and writing = = ADB we have
lilr%nD(B-:n) =ygG-u.

Using the same basis as in the previous proof we have (7.8),
B .z = fieg +-+ fmem, fi € R,
and modulo the maximal ideal n C R at y,
F-mz?lel +---+7mem.
Since the limit exists we have v(£% f;) > 0 for each i = 1,...,m, and so by the same argument as before

fi#0 = w(E)>0.
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Since the limit is not contained in G - z, the diagonal matrix D is not contained in SL(n, R); so v(&) < 0
for some component &. We now apply Proposition 7.8 to the set of weights ® consisting of the single vector
(0,...,0,1,0,...,0) (i-th entry) to obtain (r1,...,r,) with r; < 0 and such that there exists a limit

£
i _
lim ) - (p(B)z) .

t—0
t

This deals with case (a). For (b), we remark that G = SL(n) is an affine variety and that the stabiliser G, C G is
a closed subvariety, and therefore is itself an affine variety. So it follows from Proposition 3.57 and the Valuative
Criterion 3.58 that there exist a valuation ring R (with field of fractions K') and a matrix = € SL(n, K) satisfying:

(i)

(1]

‘r =, (ii) li]{_inE does not exist.

By Lemma 7.7 we can write = = ADB. Now, by (ii) we must have v(§;) < 0 for some component §; of D; and
since p(A) (p(D)p(B)z) = z it follows that the limit limg p(D) (p(B)x) = z exists. The proof is now the same as
for case (a). ad

7.2 Examples and applications

(a) Stability of projective hypersurfaces

We can apply the Hilbert-Mumford Criteria (7.2) and (7.3) to answer the question left open at the end of
Chapter 5: what is the geometric interpretation of stability of homogeneous polynomials in n 4+ 1 variables under
the action of GL(n + 1), or, equivalently, of hypersurfaces in P" under the action of the projective group?

The first case n = 1 of binary forms is easy to deal with. In the case of any ray-type action of GL(2),
(semi)stability is determined by the limits under a single 1-PS (up to conjugacy in SL(2))

A:Gn = SL(2), te <3 t01> . (7.10)
7.9 PROPOSITION. (i) A binary form (a{z,y) of degree d is stable if and only if every linear factor has multi-
plicity < d/2.
(ii) A binary form (a}x,y) of degree d is semistable if and only if every linear factor has multiplicity < d/2.

Proof. We will deal with parts (i) and (ii) simultaneously and prove the ‘only if’ direction first.
Writing

d—

(aiﬁf,y):aoﬂfd-l-dalm 1y+...+adyd,

we may assume coordinates chosen (that is, move the form within its GL(2)-orbit) so that the multiple zero is
y = 0. This means that
ap = a1 =+ = Am—-1 =0.

d) l‘i d—i

We shall prove (ii) first. By hypothesis, m > d/2 in this case. Thus (afz,y) is a sum of terms ai(i y

for i > d/2, so that under the action of the torus

Gm - T CSLZ2) tm <3 t91>
we have lim;_,o(a ] tz,t~'y) = 0. This shows that (a]x,y) is a nullform by Corollary 6.20.

For part (i) assume that m > d/2. If d is odd this implies m > d/2 so the result already follows from (ii); we
may therefore assume that d = 2s is even. Then, by hypothesis, m > s and we can assume that equality holds,
again by part (ii). Thus

apg=a; = =as_1 =0, as # 0.
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So under the torus action we have

lim (aftz,t™'y) = asz’y®.

t—0
Observe that the form as2°y® € V; 4 is nonstable, since its stabiliser in SL(2) contains T and is therefore positive-
dimensional. If it is contained in the orbit SL(2)a C V; 4 then a also fails to be stable; otherwise, if it is not
contained in the orbit SL(2)a, then this orbit is not closed, and so again a is nonstable.

To prove the converse, we assume that (a § z,y) fails to be stable. By (7.3) this is equivalent to the existence
of limy_,o A(t) - @ under some 1-PS, which by changing coordinates (that is, conjugating in SL(2)) we can take
to be (7.10). This is equivalent to z dividing (a | z,y) with multiplicity > d/2. This proves part (i). Similarly,
lim; o A(t) - @ = 0 is equivalent to z dividing (a]z,y) with multiplicity > d/2, and so part (ii) follows from
(7.2). m|

7.10 EXAMPLE. d = 4. A binary quartic is stable if and only if it has no repeated linear factors. a

When we pass from two variables to three or more the number of 1-PSs that have to be considered increases
rapidly. The following generalisation of the binary case is proved similarly, but we omit the details as they are
illustrated by the examples below.

7.11 PROPOSITION. Let (afz) € V,, 4 be a homogeneous form of degree d in n variables.
(i) (a}z) is a nullform, that is, it fails to be semistable under the action GL(n) ~ V,, 4, if and only if there
exists a vector (ry,...,r,) € Z"™ such that ar = 0 for all I such that (I |ry,...,r,) >0.
(ii) (a{z) fails to be stable under the action GL(n) ~ V, 4 if and only if there exists a nonzero vector
(riy...,rn) € Z™ — {0} such that ay = 0 for all I such that (I | ry,...,ry) > 0. |

This proposition has a simple geometric interpretation. Consider the case n = 3. (This is entirely repre-
sentative of the general case.) Suppose we arrange the monomials of degree d in z,y,z in a triangle in the
plane

{(il,i2,i3)EZXZXZ|i1+i2+i3:d, il,i2,i320}.

Then a 1-PS (7.1) determined by a vector r = (r1,7s,73) corresponds to the line r* through the centroid, and
the condition for a form (afz,y,z) to be a nullform is that all the monomials occuring nontrivially (that is,
with nonzero coefficient) in the form lie in the open half-plane strictly on one side of r*. Failure to be stable is
equivalent to all monomials appearing nontrivially lying in the closed half-plane on one side of r*. (See Figure 7.2.)

Figure 7.2: Stability of plane quartics

7.12 EXAMPLE. PLANE cuUBICS. The singular behaviour of a cubic in P? is classified by the nine types shown
in Figure 7.1.
Figure 7.1: Classification of plane cubics

We claim:
(i) A plane cubic curve C' C P? is semistable if and only if its only singular points are ordinary double points.
(ii) C' C P? is stable if and only if it is nonsingular.

In Figure 7.1, in other words, case (1) is stable (this already follows from Corollary 5.24) and cases (2), (4)
and (6) are semistable, while the others are all nullforms. Note, incidentally, that all the nullforms belong to
closure-equivalent orbits.

Proof. The proofs of (i) and (ii) are entirely similar, and we will just prove (ii). We arrange the cubic monomials
in z,y,z in a triangle with xyz at the centroid, and let the line r* (corresponding to a diagonal 1-PS) rotate
through this point. As the line varies we examine the geometry of the cubic curve whose equation is supported
in the closed half-plane on one side or other of the line.

For example, for r = (2, —1, —1) the equation of the curve lives in the half-plane:



e A S~ seL4LLE LA ALEUL T -~ sLd4- LT VA ALJALDAE VAL VAV A AVt AT A Vil 448 4 A ve AL AL TS

(where the right-hand triangle shows the weight of the corresponding monomial). This is precisely the condition

for C C P? to have a singular point at (1 : 0 : 0). Conversely, if C' is singular then by choosing homogeneous
coordinates so that the singular point is at (1 : 0 : 0) we see in this way that C' is not stable.
A second possibility, corresponding to r = (1, —2,1), is:

This is equivalent to C' containing the line y = 0 as a component; and conversely, again, if C' contains a line, then

we can assume, by changing coordinates, that it is this one.
Finally, we note that up to symmetry of .y, z these two cases contain all possibilities as the line r' rotates
about the centroid. m|

For higher degree plane curves the enumeration of singular types quickly becomes horrendous, but nevertheless
a similar analysis is possible. We will content ourselves with the statement for degree 4.

7.13 EXAMPLE. PLANE QUARTICS.
(i) A plane quartic curve C' C P? is semistable if and only if it has no triple point, and is not the sum of a
plane cubic and an inflectional tangent line.
(ii) A semistable plane quartic curve C' C P? is stable if and only if it has no tacnode.
(A tacnode is a double point with a single tangent line with contact of order 4. Its local canonical form is
y* =a) =

Figure 7.2 shows the case of a nullform (with equation supported on the right-hand side of the line) which is
the union of a plane cubic and an inflectional tangent. (See also Mumford [47].)

(b) Cubic surfaces

We turn now to cubic surfaces in P?. Our first aim is to show:

7.14 THEOREM. A cubic surface S C IP? is stable under the action GL(4) ~ V3 3 if and only if it has finitely
many ordinary double points and no worse singularities.

7.15 REMARK. We should first say a few words about double points. Suppose P is a double point of a surface
S C A3, and choose corrdinates so that P = (0,0,0) is the origin. Then the equation of S decomposes into
homogeneous polynomials

f2(1',y,2) + f3(a:,y,z) +-= 07

where, by hypothesis, fo # 0. The rank of the double point is then defined to be the rank of the quadratic form
fo(x,y,2). An ordinary double point is, by definition, a double point of rank 3. The tangent cone of S at P is the
quadric cone {fa(z,y,z) = 0} C A® with vertex P. If P € S is a double point of rank 2, then the tangent cone is
a pair of planes (that is, f factorises as a product of linear forms) and the intersection of these planes is called
the azis of the double point. a

A 1-PS A : Gy, = SL(4) will be called normalised if its image is in the torus
T = {diag(tg,tl,t2,t3) | totitals = 1} C SL(4)

and it is of the form
At diag(t™,t™, 172, 87), where rg > ry > ry > r3.

(Note that g + 1 + 2 + 3 = 0. In particular, r3 < 0.) Every 1-PS is conjugate to a normalised 1-PS, and so
when we apply the Hilbert-Mumford criterion it is sufficient to consider only normalised 1-PSs.
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We want to look for cubic surfaces which have a limit as £ — 0 under such a 1-PS: that is, which fail to be
stable. The equation of such a surface must be a linear combination of monomials from the set

MP(\) = {waby2? | arg + bry + cry + drg > 0}.
We will denote the set of all 20 cubic monomials in w, x,y,z by M.

7.16 NoOTATION. We denote the monomial m = w?z’yz? by (a,b,c,d|, the 1-PS u : ¢t — diag(t™,t™, "2 1"3)
by |ro,71,72,73), and the inner product arg + bry + cra + drs by (m | u) = (a,b,c,d | ro,71,72,73). O

7.17 PROPOSITION. If X is any normalised 1-PS, then M®()) is a subset of one of:

(1) M®(1,1,0,-2), (2) M®(2,0,—1,-1), (3) M®(1,0,0,-1).

O
We will prove this in a moment. We need to put a partial ordering on the monomial set M by:
! for all
>mlformym' € M = (MIA)2{m'|A) 711
= term,m normalised 1-PSs . ( )
With this definition the following fact is easily checked.
7.18 LEMMA.
a>ad
(a,b,c,d| > (a',V,c,d| <<= {a+b >a + 0
a+b+c>d +b +¢.
O

From this lemma we obtain Figure 7.3, where the right-hand column is 3a + 2b + c.

Figure 7.3: Partial ordering of the monomial set M

Now the subset M®(\) C M is an ideal with respect to the partial ordering, in the sense that, if m € M®()\)
and m’ > m, then m' € M®()\). Dually, its complement M ~(\) C M has the property that, if m € M~ (\) and
m > m’, then m’ € M~ (\). Because of these properties, in order to prove an inclusion relation M®(\) C M®(u)
or, equivalently, that M®(X) N M~ (u) = 0, it is enough to check just the maximal elements of M~ (u):

7.19 PROPOSITION. The following conditions are equivalent:
() MB(\) € M (n).
(ii)) (m | A) < 0 for every maximal monomial m € M~ (u).

Proof. (i) is equivalent to M~ (u) N M®(X) = 0, while, if M~ (u) has maximal monomials my,...,my, then
n
M~ () = J{m € M |m; > m}.
i=1
This immediately implies that (i) is equivalent to (ii). ad
Proof of Proposition 7.17. For the three sets (1), (2), (3) we find the following:

1-PS p monomials of M~ (p) | maximal elements
|17 1707 _2> (yaz)Qza (wam)(yaz)z wyz

|2507_17_1> (.T,y,Z)Q(y,Z) mQy

|1,0,0,—1) (z,y,2)%2, wz? 2z, wz?

We have to show that M ~(\) contains one of these sets, for any normalised 1-PS \.
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If either wyz € M~ ()\) or 22y € M~ ()\) then we are done, so suppose not: that is,
(1,0,1,1| A) >0, (0,2,1,0 | A) > 0.
We now observe (using ro + r1 + 72 + r3 = 0) that
2(1,0,1,1 [ A +(0,2,0,1 | A) = (2,2,2,3 | \) = r3 < 0
and
(1,0,1,1 [ A) +(0,2,1,0 | A +(1,0,0,2 | ) = (2,2,2,3 | \) = r3 < 0,
and these inequalities force (0,2,0,1] A) < 0 and (1,0,0,2 | A} < 0, or in other words 2z and wz?> € M—()\). O

Proof of Theorem 7.14. We first assume that S is not stable and examine its singularities. By the Hilbert-
Mumford Criterion (7.3), instability means that the equation of S has a limit as ¢ — 0 under some 1-PS A, which
we can assume to be normalised. Existence of the limit, in turn, implies that the equation of S belongs to the
linear span of the monomials M®()), and by Proposition 7.17 it therefore belongs to the linear span of one of
the sets (1),(2),(3). We consider each of these in turn.

A general cubic S C P? spanned by M®(1,1,0,—2) has the form

c(w,z,y) + zq(w,z) =0

where ¢ is a cubic and ¢ is a quadratic form. S therefore has a singular point at P = (0: 0 : 0 : 1). But the
tangent cone at this point is ¢(w,z) = 0, which has rank 2, so that P is not an ordinary double point.
Next, M®(2,0,—1,—1) spans cubics of the form

wq(w, z,y,2) + az® =0,

where ¢ is quadratic. Such a cubic contains the line w = z = 0, and on this line we can find a singular point
whose tangent cone contains the plane w = 0, and is therefore not an ordinary double point.
Finally, a cubic spanned by M®(1,0,0,—1) has the form

C('lU,.’L',y,Z) + l(w,x,y)wz = 07

where ¢ is cubic and [ is linear. This has a rank 2 double point at P = (0: 0 : 0 : 1) whose tangent cone is the
pair of planes l(w,z,y)w = 0.

We now have to show the converse, that, if S C P? is stable, then it has only ordinary double points. But
this is easy: if the point P = (0:0:0: 1) were a singular point worse than an ordinary double point, then the
equation of S would (after a suitable choice of homogeneous coordinates) necessarily be of the form M®(1,1,0,—2)
above—and such a cubic is not stable. m|

7.20 THEOREM. (HILBERT [20].) A cubic surface S C P? is semistable under the action GL(4) ~ V3 3 if and
only if it has at most finitely many singularities of the following types:

(1) ordinary double points,

(2) rank 2 double points whose axes are not contained in S.

7.21 REMARK. One says that the surface has (at most) rational double points, of type A; in case (1) or type
A, in case (2). |

Theorem 7.20 is proved in the same way as Theorem 7.14, using the numerical criterion (7.2). Given a
normalised 1-PS X\ = |rg, 71,72, 73) we define

M*(\) = {w*z"y°2" | aro + bry + cry + drs > 0}.
A cubic surface unstable with respect to A then has equation in the linear span of M ™ ().
7.22 PROPOSITION. If \ is any normalised 1-PS, then M™()) is a subset of one of:

(1) M+(37 1) 17 _5)’ (2) M+(3)37 _17 _5)’ (3) M+(37 _1: _1: _1)'
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Proof. Exactly the same as the proof of Proposition 7.17. We begin by noting (where M© denotes the
complement, of M+ in M):

1-PS i monomials of M©(u) maximal elements
|371717_5> (w,x,y)(w,y)z, (w,m,y)z2, Z3 wrz

|3)37_]-7_5> (w,m)(y,z)z, (y,z)3 wyz, y3
|3>_1>_1>_1> (m,y,z)B z?

If M©(\) contains wzz or x°, then it contains M©(3,1,1,-5) or M©(3,—1,—1,—1), respectively, and we are
done. If not, then both of (1,1,0,1 | A) and (0,3,0,0 | A) are strictly positive. From the equalities

(0,3,0,0 | A) +3(1,1,0,1|\) = 0,
3(1,0,1,1| A) +(0,3,0,0| A) = 0,
therefore, it follows that (0,3,0,0 | A) < 0 and (1,0,1,1 | A) < 0, and hence that M®()) contains

M9(3,3, -1, -5). 0

Proof of Theorem 7.20. Suppose that S C P? is unstable. Then its equation lives in the linear span of one of
the sets (1), (2), (3) of the previous proposition, and we consider each of these in turn.
In M*(3,1,1,-5), a general cubic S C P? has the form

c(w,z,y) + aw?z = 0.

This has a rank 1 double point at (0: 0 : 0 : 1) whose tangent cone is the double plane w? = 0. In M*(3,3,—1, —5)
a general cubic has the form

yQI(w,a:) + yql(wam) + ZQQ(U},.’L’) + C(’U),.’L') =0.

Again, this surface has a double point at (0:0:0: 1) with tangent cone ¢2(w, z) = 0 and axis w = z = 0 which
lies on the surface. Finally, a cubic in M¥(3,—1,—1,—1) looks like

wq(w,z,y,2) =0,

which is reducible (and in particular is singular along a plane conic).
From this analysis we conclude that, if the cubic surface S C P? is unstable, then one of the following holds:

(a) S has a triple point.
(b) S has a double point of rank 1.
(c) S contains the axis of a rank 2 double point.
(d) S is reducible.
The converse is easy and we leave it to the reader. O

Finally, we will classify the closed orbits of semistable points under the action GL(4) ~ V3 3. Of course, all
stable orbits are closed; for the nonstable orbits the problem is, to which of the types (1), (2), (3) of Proposi-
tion 7.17 do they belong? Note that, if an orbit is closed, then it can be represented by the limit of a point under
any 1-PS. As an example, let us see what happens when we take a cubic of type (1) and pass to the limit under
the 1-PS A =[1,1,0, —2). A monomial m remains in the limit if and only if (m | A) =0, and the only monomials
with this property are y> and wxzz. The limiting cubic is therefore of the form ay® + bwzz, and semistability
guarantees that both a,b # 0. We therefore have a candidate for a closed semistable and nonstable orbit:

SL(4) - (y® — wzxz)

In fact, if we apply the same reasoning to types (2) and (3), then we find (up to scalar) the same orbit again, and
no others. We just have to check:

7.23 PROPOSITION. SL(4) - (y* — wzz) is a closed orbit.

Proof. The surface S : y®> — wzz = 0 is semistable since it has three singular points (1:0:0:0),(0:1:0:
0),(0:0:0:1) which are all rank 2 double points whose axes do not lie on S. (In fact, these axes are the edges
of the tetrahedron of reference passing through the last vertex (0 : 0 : 1 :0).) Consider the closure of the orbit
SL(4) - (y> — wxz). This must contain a closed orbit, and what we have seen above is that the latter must be
projectively equivalent to the orbit of y> — wzz. But this means that SL(4) - (y* — wxzz) is itself closed. a
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7.24 THEOREM. The moduli space of semistable cubic surfaces V3 3 //GL(4) is the one-point compactification of
the geometric quotient V3 ; /G L(4) which parametrises projective equivalence classes of stable cubic surfaces. O

The single point that we add corresponds to the closure equivalence class of semistable surfaces which are not
stable, and this class is represented by the unique closed orbit of the surface y®> = wzz.

7.25 REMARK. It is easy to see that the surface S : y® = wzz is the image of the rational map
P2 — — — P3, (a:b:c) = (a®b:bc: abe: Pa).

It is therefore isomorphic to the quotient of P? by the cyclic group Z/3 generated by the automorphism

o:P? - P2 (x:y:2)- (y:z:x).
O
(c) Finite point sets in projective space
Let us consider finite (unordered) point sets in projective space A = {p1,...,pq} C P™ and their stability under

the action of the general linear group GL(n +1) ~ S?P™. Of course, the symmetric product S?P™ is not an affine
variety, so to define stability we need to embed it in a suitable projective space in such a way that GL(n+ 1) acts
on its affine cone.

In the case n = 1 we can view {pi,...,ps} C P! as the zero-set of a binary form of degree d,
d
Fy(z,y) = [[ (012 — asy),
i=1
where p; = (a1 : b1),...,pq = (aq : bg). In other words, SYP' = P(V}), and the quotient we are considering is

Va//GL(2). Then, as we have seen in Proposition 7.9,

the set {p1,...,pqs} C P! — 1o more t.hap [d/2] of the .
is semistable points coincide.

This has the following generalisation. We can view the set A = {p1,...,pa} C P" as a hypersurface of degree
d, reducible as a union of d hyperplanes, in the dual projective space (P™)V, as follows. In terms of homogeneous

coordinates we write ' ] '
pi = (a(()z) :agl) s a%’))
and the linear form with these coordinates as coefficents as
Tp: (0, T1, ..., &p) 1= a[()i)wo + agi)wl + -+ a%)mn.

We then associate to the unordered point set A the homogeneous polynomial

d
mA(Zo, 1y e X)) = ani(xo,xl,...,mn),
i=1

and by unique factorisation (Theorem 2.10) the set A C P™ is completely determined by this polynomial.

7.26 DEFINITION. The point set A C P™ will be called (semi)stable if the corresponding degree d form mp is
(semi)stable. ad
7.27 PROPOSITION. A point set A C P is stable under the action of GL(n + 1) if and only if

FANP _dimP+1
1A n+1

for every projective subspace P C P™. If the inequality < is satisfied, then, then A is semistable.
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Proof. We will assume that the inequality holds and deduce that the form m,(z), and hence A, is stable,
leaving the converse to the reader.
Let u: Gy, — SL(n+ 1) be an arbitrary 1-PS; we have to show that there is no limit lim;_,o pu(t) - ma (). We

first choose homogeneous coordinates (zo : @1 : ... : @) for which u is normalised so that
Wt diag(t™ ™ L ), where rg <71y <--- <7y,
Let P, C P™ be the subspace defined by g = --- =z, 1 = 0, and let a; be the number of points in A N Pg.
The form 74 () contains (with nonzero coefficient) the monomial
R e NP LE T

with weight (with respect to )
w = (ap — ap=1)70 + (An—1 — @p—2)T1 + -+ + (@1 — @o)Tn—1 + AoTh.-

The inequality in the proposition, applied to Py, implies that

< ﬂd
%= n +17
and hence
W = apro — an-1(ro — 1) — Ap—2(r1 —7T2) — -
—a1(rn—2 — p—1) — ao(rp—1 — ry)
—1)d
< dT()— T:_l(’l"o —7“1) —%(T‘l —7"2)—"'
_Q_d( _ ) — L( — )
nt 1 Tn—2 —Tnpn-1 n+1 Tn—1 —Tn
= L((n—kl)r —n(rg—r1) —(n—=1)(ry —r2) —
= nr1 0 0 1 1 2
_Q(Tn72 - rnfl) - (Tnfl - rn))
= 0.
This shows that u(t) - ma (z) does not have a limit as ¢t — 0, as claimed. a

7.28 ExXAMPLE. Five points in P?. In this case, stability and semistability are equivalent and a set is stable if
and only if:

(1) the five points are all distinct, and

(2) no four of the points lie on a line. O

7.29 EXAMPLE. Six points in P?. Here a set is stable if and only if:
(1) the six points are all distinct,

(2) no three of the points lie on a line, and

(3) no five of the points lie on a plane.

Semistability is equivalent to conditions (1), (3), and
)

(2") no four points lie on a line. O
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Chapter 8

Grassmannians and vector bundles

It is well known that the set of vector subspaces of a fixed dimension in a fixed vector space is a projective
algebraic variety, called the Grassmannian. We are going to examine the Grassmannian as an example of a Proj
quotient by a group action of ray type. In Section 8.1, using a construction of this variety by means of invariants,
we shall study, in the case G(2,n), its coordinate ring. We compute its Hilbert series, its generators and their
relations.

From Section 8.2 we shall review, as preparation for the chapters which follow, the theory of modules over a
ring. We discuss localisation and gluings by partitions of unity, free modules, tensor products and flat modules.
In Section 8.3 we define locally free modules and invertible modules, and the properties of these which follow
from flatness.

The set of equivalence classes of invertible modules forms an abelian group under the tensor product, called
the Picard group of the ring. For the ring of integers of an algebraic number field, for example, this coincides
with the divisor class group. In Section 8.4 we calculate the Picard group explicitly in the cases of an imaginary
quadratic field and of an affine hyperelliptic curve (that is, a quadratic extension of the polynomial ring k[z]).
This paves the way for the later discussion of the Jacobian variety.

Just as one obtains an algebraic variety by gluing together affine spectra of algebras, so too one can glue
invertible modules, or locally free modules, over a ring to form line bundles, or vector bundles, over algebraic
varieties. The line bundles (vector bundles of rank 1) form a group Pic X under ®, which coincides with Pic R
when X = Spm R is affine.

In the final section we construct the tautological line bundle on projective space and the universal vector
bundle on a Grassmannian G(r,n), and use this to show that the Grassmannian represents the functor Gr(r,n)
which assigns to a ring R the set of locally free rank r submodules of R®™ up to isomorphism. We compute the
tangent space of G(r,n) at a point and of the Grassmannian functor which it represents.

8.1 Grassmannians as quotient varieties

The set of r X n matrices is an rn-dimensional vector space, and via multiplication on the left by r x r matrices
this vector space becomes a representation of the general linear group GL(r). We denote this space, viewed as
an affine space, by Mat(r,n). We shall consider its quotient by the action of GL(r).
First of all, let
T11 T12 -t Tin
X = (8.1)

Tr1 Ty2 - Trn

be a matrix of independent variables. Using these variables we identify k[Mat(r,n)] with k[z;;], on which GL(r)
acts. We consider the projective spectrum of the semiinvariant ring

K[Mat(r,n)]52") = € k[Mat (r, n)] (" (8.2)
w>0

The weight w of a homogeneous polynomial is 1/r times its degree; so in particular all components of negative
weight are zero, and the only polynomials of weight zero are the constants. In other words, the action GL(r) ~

155
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Mat(r,n) is of ray type (Definition 6.12). Moreover, the fixed point set F' of the multiplicative group of scalar
matrices Gy, C GL(r) is just the origin O € Mat(r,n) (see Section 6.1(a)).

For each subset I = {i1 < --- <i,} C {1,...,n} we will denote by X7 the r x r submatrix of (8.1) constructed
from columns iy,...,%7,. The minor det X; is a homogeneous polynomial of degree r in k[Mat(r,n)] and is a
semiinvariant of weight 1.

8.1 PROPOSITION. Given a matrix A € Mat(r,n), the following are equivalent:
(i) A is stable for the action of GL(r).
(ii) A is semistable for the action of GL(r).
(iii) A has rank r.

Proof. (i) = (ii) is trivial. For (ii) = (iii), we suppose rank A < r. Then, by moving A within its GL(r)
orbit we may assume that its first row is zero:

0 0 0
A: * ok *
X %k e e F3

The 1-parameter subgroup of the special linear group A : G,, — SL(r) defined by

t—’r‘+1
t
Alt) =
t
acts on the left on Mat(r,n) and sends A to

0 0 - --- 0
Bk tx ee eee tx
T

As t — 0 this tends to the origin O, which therefore lies in the closure of the SL(r) orbit of A.

(iii) = (i) If A has rank r, then there is a submatrix A; whose determinant is nonzero. Since det Ay is a
semiinvariant of positive weight, it follows that A is semistable. Moreover, the set of matrices of rank r is an open
set on which the stabiliser subgroup in GL(r) is trivial. It then follows from Corollary 5.14 that all the orbits in
this subset are closed. a

We assume from now on that r < n. The projective spectrum of k[Mat(r,n)]3%(") then parametrises the set
of stable GL(r)-orbits in Mat(r,n). (This follows from Theorem 5.3, though in the present case it is also easy to
prove directly.) By associating to a matrix A € Mat(r,n) the space spanned by its rows, this orbit space coincides
with the set of r-dimensional subspaces of a fixed n-dimensional vector space.

8.2 DEFINITION. The projective spectrum
G(r,n) := Proj k[Mat(r, n)]3*(")

is called the Grassmannian variety of linear r-planes in k™. a

The unstable points in Mat(r,n) are the matrices for which all 7 X r minors det X; are zero. Thus G(r,n)
is covered by (") affine varieties {det X; # 0}/GL(r). Moreover, each of these affine varieties is isomorphic to

A"("=7)  For example, when I = {1,2,...,r} each orbit in the affine open set is uniquely represented by a matrix
10 - 0 % -- =%

R 3)
0 0 - 1 % --- x

in which the r(n — r) entries * serve as coordinates on A”(»~")_ (Note that each % is a GL(r) invariant rational
form on Mat(r,n).)
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8.3 EXAMPLE. The case r = 1 is the construction of projective space P" in Examples 3.40 and 3.45. a

In the remainder of this section we shall examine the semiinvariant ring (8.2) in the case r = 2.

(a) Hilbert series

As a representation of SL(2), the vector space Mat(2,n) is the direct sum Vi & --- ® V; of n copies of the 2-
dimensional irreducible representation V; (see Section 4.4(a)). The g-Hilbert series (see Section 4.4(d)) of V; is
P(q;t) = 1/(1 —qt)(1 — ¢ 't), so the g-Hilbert series of Mat(2,n) is

1

Pl = a—pna —g o

It follows from Proposition 4.63 that the invariant ring k[Mat(2,n)]°*(> has Hilbert series

) invariant E ' —q
Zd {forms of degree k }t N Iq{:eg {(1 —qt)"(1 — qlt)"} '

The expression in square brackets is

Gz (s ()i

1

and by reading off the coefficient of ¢~' and replacing ¢ by v/t we obtain the following.

8.4 PROPOSITION. The Hilbert series of the semiinvariant ring (8.2), computing the dimensions of the spaces of
weight w semiinvariants, is equal to:

Po(t) = Z dlm( [Mat(2 n)]SL(2))

- S

w=0

The expression in braces, the dimension of the space of semiinvariants of weight w, is

Ho(w) = (w+n—-1)(w+n-—2) ((1:;—_%7{)—(5)_2) (w+3)*(w+2) (w+1)’ (8.4)

which is a polynomial in w of degree 2n — 4.
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8.5 ExAMPLE. For n < 6 these polynomials are:

Hy(w) = 1
Hy(w) = (w+2)2(!w+1)
_ (w;?)
R
(197
Hs(w) = (w+4)(w+3212!;u+2)2(w+1)
- (7)) ()
He(w) = (w+ 5)(w + 4)?(w + 3)%(w + 2)>(w + 1)

54!

(737 ro"3T) o)+ (737)

With these coefficients we obtain Hilbert series:

1
R =7
1
P3(t) = (1—t)3
1+t 1—1¢2
Pi(t) = =
W0 = T oe
P 143t + ¢ 1582+ 582 — 15
5O = =gy =TI
Pa() 1+ 6t + 62 + ¢ 1 — 15¢2 + 35¢% — 21¢* — 21¢° + 355 — 15¢7 + ¢°
6 = = .

(1— 1) - 1-0e

The cases n = 2,3, 4 correspond, respectively, to the simplest Grassmannians G(2,2) = {point}, G(2,3) = (P?)V
and the quadric G(2,4) C P5. (See Example 8.18). o

(b) Standard monomials and the ring of invariants

The following is the first fundamental theorem of invariant theory.

8.6 THEOREM. The ring of (semi)invariants k[Mat(r,n)]L(") is generated by the (™) minors det Xy, |I| =r, of
the matrix (8.1). o

We will give a proof of this for the case r = 2. By Proposition 8.1, the common zero-set in Mat(2,n) of
all the positive weight semiinvariants consists of the matrices of rank < 1. The projectivisation of this set in
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PMat(2,n) = P2~ ! is the image of the Segre map

1 n—1 2n—1 . . . aiby -+ aib,
P x P — P y ((al.a2),(b1.....bn))»—><a2b1 a2bn>.
Writing
X:(”fl T2 mn) (8.5)
Yy Y2 0 Yn
for the matrix of indeterminates (8.1), denote by I,, C k[z1,...,Zn,¥1,...,Yns] the ideal of polynomials vanishing

identically on the Segre variety. This is the kernel of the homomorphism

klxi, ..., Tny1y---5yn] = Kk[s1,82,t1,...,1p]
T, —  Sit;, (86)
Yyj = SQtj.

This kernel contains, in particular, the 2 x 2 minors

Ty Ty

, 1<i<j<n. 8.7
I <i<j< (8.7)

pij(z,y) =

The case r = 2 of Theorem 8.6 reduces, using the claim made in the proof of Theorem 4.51, to the following
statement.

8.7 THEOREM. The homogeneous ideal I,, of the Segre variety P* x P" — P?"~! is generated by the minors (8.7).

It will be convenient to adopt the notation x = (z1,...,2n), ¥ = (Y1,-.--,Un), k[x,¥y] =
k[mla--'awnayla"'ayn]-

8.8 DEFINITION. A standard monomial in k[x,y] is a monomial

Liy Lig - -LiyY51Yjo - - - Ysjp» ilS"'Sia; ]1SS]b7

for which i, < j;. O

Let I, C k[x,y] be the ideal generated by the minors p;j(x,y). The idea, to show that I, C I}, is to
‘straighten’ arbitrary monomials, modulo I}, into standard monomials.

8.9 LEMMA. (STRAIGHTENING QUADRATIC MONOMIALS.) Every quadratic monomial is congruent to a standard
monomial modulo I},.

Proof. z;x; and y;y; are already standard monomials, as is z;y; if ¢ < j. If ¢ > j we just note that z;y; is
congruent to x;y;, which is standard, modulo p;;(z,y). a

8.10 LEMMA. (STRAIGHTENING HIGHER MONOMIALS.) An arbitrary monomial in k[x,y] is congruent to a
standard monomial modulo I},.

Proof. Consider a monomial m = z;, ...%;,y;, -..y; as in Definition 8.8 and suppose that i, > ji. We write
a(m) = ig — j1. Using the minor p;,j, (z,y) we can replace x;,y;, by xji1y;,, and repeating this operation if
necessary (since z;, or y; may occur with multiplicity in m) we can replace m by another monomial m’ in the
same residue class modulo I, in which one or other of z;, or y;, does not appear. We then have a(m') < a(m).
Repeating this procedure we eventually obtain a monomial m' for which a(m”) < 0 and which is therefore
standard. m|

The monomial in Definition 8.8 is of degree d = a + b. If we substitute z; — s1t;, y; — sat;, then we obtain
a monomial
S%Sgtil ti2 e tiatj1 th N tjb)

which has degree d in each of s := (s1,s2) and t := (1, ...,t,). We will call this a monomial of bidegree (d,d) in

(s,t).
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8.11 LEMMA. The map induced by the substitution (8.6)

standard monomials 5 {degree d } » {degree d }
of degree d monomials in s monomials in t

is bijective.

Proof. Any monomial of bidegree (d, d) in (s, t) can be written uniquely as s¢sbt;, ...t t;, ...t; witha+b=d
and 1 <43 <+ < < gy <--- < jp. But this is the image of the standard monomial x;, ...z, y;, --.Yj, - a

Proof of Theorem 8.7. We have seen that I), C I,,, and it remains to show the reverse inclusion. As d varies, the
monomials of bidegree (d, d) in s, t form a basis of (the image of) k[x,y]/I,. On the other hand, by Lemma 8.10,
the standard monomials generate k[x,y]/I),. Hence the two ideals I,,, I}, coincide. O

(c) Young tableaux and the Pliicker relations

A Young diagram of size (ki1,...,k.) is an array of r rows of empty boxes, with k; in the i-th row. Rectangular
Young diagrams, for which k; = --- = k. = w, say, provide a useful tool for describing the weight w summand of
the semiinvariant ring k[Mat(r,n)]34("). Here we restrict ourselves to the case r = 2 and will only be concerned
with Young diagrams of size (w,w):

We are going to use these to determine the relations among the generating minors p;;(z,y) of the homogenous
coordinate ring k[Mat(2,n)]°%() of the Grassmannian G(2,n).

8.12 DEFINITION. (i) A Young diagram of size (w,w) in which each box contains an integer from {1,...,n} is
called a Young tableau (for Mat(2,n)):

il i2 . iw
]1 ]2 e .]UJ

1< ia:jﬁ <n.

(ii) A standard tableau (for Mat(2,n)) is a Young tableau whose entries satisfy the two conditions:

11 Liig <ve Ky

S1 . ; :
(51) N<jp<<Ju
i1 o Tw
(S2) A A - A
i J2 Jw
O
8.13 EXAMPLES. w = 1. Here a standard tableau looks like with ¢ < j.
w = 2. If n = 3, for example, there are exactly six standard tableaux:
1]1 1]1 12 1]1 12 2|2
212 213 213 313 313 313
O

8.14 LEMMA. The number of standard tableaux of size (w,w) for Mat(2,n) is equal to

n+w-—1 2_ n+w\ /Mm+w-—2
w w+1 w—1 )
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Proof. First, the number of Young tableaux of size (w,w) satisfying just condition (S1) is

n+w-—1 2
w .

(Choosing either row is equivalent to choosing w objects from 1,...,n, Ry,..., Ry—1 where R, denotes the rule
‘let 14 = iq+1’.) Within this set we will classify those Young tableaux that are not standard. Suppose T is a Young
tableau satisfying condition (S1), and that the first column from the left in which condition (S2) is violated is the

a-th. In other words, i1 < ji, ..., ig—1 < ja—1, but i, > j,. In this situation we obtain a pair of nondecreasing
sequences:
le"'SjaSiaSia+1S"'Siw Oflengthw"_]-;
i1 < oot < o1 < < of length w — 1.
The set of such pairs has cardinality (Z:_’f) ("I’ff), by the same reasoning as above. It is therefore enough to
show that the map
{nonstandard Young} nondecreasing sequences nondecreasing sequences (8.8)
tableaux of length w + 1 of length w — 1 )

is a bijection. We will construct the inverse map. Given sequences

10 L ip Kov gy Ky,
J1 < < w1,

we want to construct a nonstandard Young tableau N. First we compare ig and j;. If ig < ji, then

g I B il AL
W |Jr|J2]| | Jw=1

will do. If i9 > j1, then the first column of NV will be

J1
10

and we then compare i; and jo. If i1 < jo, then we take

Y A I A B S L
20 |11 [J2 || Jw=1

and we are done. If ¢; > jo, then the first two columns are determined:

J1 | Jo
to | @1

and we compare i> and j3. Repeating this process we eventually obtain a nonstandard tableau and an inverse of
the map (8.8). m|

We now consider the ideal of relations among the 2x 2 minors (8.7); that is, the kernel of the ring homomorpism
S = klpijli<ij<n — k[Mat(2,n)]5"®), pi; = pij(z,y).

We denote this kernel by J, C S.
For distinct numbers ,7, k,l € {1,...,n} consider the 4 x 4 determinant

Ty Tj T X

Yi Yi Y Y1
Ty Tj T Iy

Yi Yi Y Y1
Evaluating this by the Laplace expansion along the first two rows yields an identity

These (7)) relations are called the Plicker relations for the ring k[Mat(2,n)]L(?).

The following is a special case (for r = 2) of the second fundamental theorem of invariant theory.
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8.15 THEOREM. The ideal J, C S = k[p;;] is generated by the Pliicker relations

DijPrl — PikPj1 + DjkDil, 1<i<j<k<i<n

Proof. To each monomial of degree w in S corresponds a Young tableau of size (w,w) by

il i2 . iw
]1 ]2 e .]UJ

Pirjy o Piwjw =

A monomial which corresponds in this way to a standard tableau is called a standard monomial. Let J], C S be
the ideal generated by the Pliicker relations—so clearly J/, C J,. For i < j < k < I, the Pliicker relation (8.9)
can be interpreted as saying that the monomial

pjkPit = Pikpjt — pijpr mod Jy,
is nonstandard but is expressed as a sum of standard monomials modulo .J},. (This is ‘quadratic straightening’—
compare with Lemma 8.9.) Thus, by applying this process inductively one sees that an arbitrary monomial in S
is congruent modulo J), to a standard monomial. In other words, the residue ring S/.J), is spanned, as a vector
space, by standard monomials. On the other hand, by Proposition 8.4 and Lemma 8.14, the number of standard

monomials of degree w is equal to the dimension of (S/.J,)w, and hence dim(S/J},), < dim(S/.J,). The reverse
inequality holds because J;, C .J,, and so the two ideals are equal. O

8.16 REMARKS. (i) It follows from this proof that for each w € N the standard monomials of degree w form a
basis of (S/.J,)w = k[Mat(2,n)]( .

(ii) As well as an action of GL(r) on the left, the space Mat(r,n) has an action on the right by GL(n).

Consequently, the semiinvariant ring k[Mat(r,n)]3*(") is a representation of the group GL(n). Moreover,

the weight w summand k[Mat(r, n)]?j)(r) is a finite-dimensional subrepresentation, and using the theory

of characters one can show that it is irreducible. a

(d) Grassmannians as projective varieties
By Theorem 8.6, the Grassmannian G(2,n) = Proj k[Mat(2,n)]/(?) has an embedding as a closed subvariety of
(5) —1 = (n—2)(n + 1)/2-dimensional projective space:

G(2,n) — P(=2(n+1)/2,

This map is called the Plicker embedding. By Proposition 8.4, the polynomial H, (w) of degree 2n — 4 (see (8.4))
is the Hilbert polynomial of G(2,n), which means the following.

Suppose that S = @,,_, Sw is a graded integral domain with Sy = k and generated over k by S;. Then (see
Remark 3.74) X = Proj S has a closed immersion in a projective space PV, where N + 1 = dimy, S;.

(i) There exists a polynomial Hg(z) € Q[z] such that for some wy € N
dim Sy, = Hg(w) for all w > wy.

Hs(z) is called the Hilbert polynomial of S.
(ii) The degree of Hg(x) is equal to the dimension of X.
(iii) The leading coefficient of Hg(z) is equal to (deg X)/m!, where m = dim X . That is,

deg X
Hs(z) = m!

™ + lower degree terms, m = dim X.
By definition, the degree of X is the number of intersection points
XNH N---NHp

with m general hyperplanes in PV .

From (8.4) we obtain the following. (And we will return to re-examine this degree in the next subsection.)
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1 2n —4
8.17 PROPOSITION. G(2,n) C P(*=2(»+1)/2 hag degree ] ( " 5 ) O
n—1\n-—

This number is called the ((n — 2)-nd) Catalan number and has various interpretations in combinatorics. For
low values of n it takes the following values.

8§ 10 12 14 16 18 20
14 42 132 429 1430 4862 16796

dimG(2,n) | 2 4
1 2

6
deg G(2,n) 5

By Theorem 8.15, the Grassmannian G(2,n) C P*("=3)/2 is cut out (scheme-theoretically) by the (}) quadrics
determined by the Pliicker relations of Theorem 8.15. Note, incidentally, that these quadrics are exactly the 4 x 4
Pfaffian minors of the n x n skew-symmetric matrix P := (p;j)1<i,j<n. (See Section 10.3(a).)

8.18 EXAMPLES. G(2, 3) is isomorphic to the projective plane P2.
G(2,4) is isomorphic to a nonsingular quadric hypersurface in P°.
G(2,5) C P® has codimension 3 and degree five and is the zero-set of 5 quadrics.
G(2,6) C P! has codimension 6 and degree 14 and is the zero-set of 15 quadrics. In this case the 15
quadrics are the partial derivatives, with respect to the 15 homogeneous coordinates, of the cubic Pfaffian
of the 6 x 6 skew-symmetric matrix of Pliicker coordinates. a

The first and second fundamental theorems of invariant theory say that the homogeneous coordinate ring of
the Grassmannian R = k[Mat(2,n)]°%(?), as a module over the polynomial ring S = k[p;;], can be expressed in
an exact sequence as follows:

0« R+« S« (Z)S(—Q).

Here S(e) denotes the graded S-module equal to S but with grading shifted by e. In this sense the arrows are all
homomorphisms preserving the gradings. For the first few values of n one can use Example 8.5 to deduce that
the exact sequence extends as follows:

G(2,4): 0+ R+ S+ S(-2)«0

G(2,5): 0 R+ S+ 55(—2) «+ 55(—3) «+ S(-5) « 0.

G(2,6) : 04 R+« S« 155(=2) < 355(=3) + 215(—4) & 215(—5)
+ 355(—6) < 155(—7) « 85(—8) « 0.

(e) A digression: the degree of the Grassmannian

We will briefly explain the degree appearing in Proposition 8.17 from another more topological point of view—
and the reader can happily skip this at a first reading. Our main reason for including this is that the ideas, in
particular the use of the Pascal triangle, will reappear in Chapter 12 in connection with the intersection numbers
in the moduli spaces of vector bundles and parabolic bundles, and the case of the Grassmannian may serve as a
useful preliminary example.

But first an even easier example. Throughout this section our field will be k£ = C.

8.19 ExAMPLE. What is the degree of the Segre variety
P" x P — PV, (x,5) = x -y,

where N = n(n + 2)? We have to compute in the cohomology ring H*(P" x P" Z), which is isomorphic to
Z|x,y]/I, where the generators z,y are the hyperplane classes ¢; (O(1)) pulled back from each of the two factors
and I = (z"1,y" 1) is the ideal of relations.

The class z"y", of top degree, is Poincaré dual to a point, while the hyperplane class in the Segre space PV
is ¢ + y. So the required degree is the integer d € Z such that

(x+y)*™ =dz"y" mod I.

By simple binomial expansion this number is d = (2:)
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Notice that this binomial coefficient is computed from a Pascal triangle, truncated by the relations 2"+! =
y" 1 = 0. For example, in the case n = 4, the degree d = 70 comes from:

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
) 10 10 5
15 20 15
35 35
70

Notice also that if we fiddle this Pascal triangle by replacing the left-hand central column with Os, then the Catalan
numbers appear in the central column, and the degree 14 at the bottom is (according to Proposition 8.17) that
of the 8-dimensional Grassmannian G(2, 6)!

1
0 1
1 1
0 2 1
2 3 1
0 5 4
5 9
0 14
14
It is this phenomenon that we are going to explain. a

The Grassmannian G(r,n) carries a tautological vector subbundle and quotient bundle:
0= F— 0% = Q0.

(See Section 8.5(b) below.) If F has Chern classes z1,...,z, and Q has Chern classes si,...,s,_, then the total
Chern classes satisfy

c(F)e(Q) =1, (F)=1+az1+ - +z, c¢(Q) =145+ +5p_p. (8.10)

In other words, the s; are polynomials in the z; defined by the formal power series expansion

> si(w, ..t L (8.11)

= 14zt + -zt

It is known that the classes z1,...,2,,s1,...,S,—, generate the cohomology ring H*(G(r,n),Z) and that (8.10)
generates all the relations among them. (See, for example, Bott and Tu [51].) In particular, it follows that the
cohomology ring is generated by just z,...,z, with r relations s,,_41 =--- =5, =0:

H*(G(r,n),Z) =Z[x1,. .., Tr)/(Sn—r+1;- - 5n)- (8.12)

These relations are an obvious consequence of the fact that rank Q@ =n — r.

Proof of Proposition 8.17. We now restrict our attention to the case r = 2 and the Grassmannian G = G(2, n).
We will write the cohomology ring as

H*(G) Z) = Z[A> B]/(snfl) Sn):
where A = —z1, B = x2 and the polynomials s;(A, B) are determined, via (8.11), by the recurrence relation

Sit1 — As; + Bs;_1 =0, so=1, s1=A. (813)
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For example,

Sy = A2 —B,
S3 = A3 — QAB,
S4 = A* —3A%B + B2,

and so on.

Note that A = ¢1(FY) = ci(det F¥). In other words, it is the hyperplane class in the Pliicker embedding.
Our problem, therefore, is to determine the class AN where N = dimG = 2(n — 2).

On the other hand, B™ 2 is Poincaré dual to a point. This is because B is the second Chern class of FV, and
so is Poincaré dual to the zero-set of a global section of FV, that is, of the set of lines contained in a hyperplane
of P*~!. So B"~2 is Poincaré dual to the set of lines contained in n — 2 general hyperplanes—that is, a P!.

Hence the degree of G(2,n) C P(»=2)(»+1)/2 i5 the number d € Z such that
A?"=2) = ¢ B"2 mod (sp_1,Sn)-

Now, just as in Example 8.19, this number is determined by a Pascal triangle. Namely, spread out the monomials
in A, B, s; of top degree < N = dim G in an array (illustrated here for n = 6):

B4
AB381
A?B3 A2B2%s,
A3B281 A3B83
A*B? A*Bs, A*sy
A5le A583
AGB . A682
A S1
A8

The recurrence relation (8.13) says precisely that this array is a Pascal triangle, with each entry obtained by
adding those diagonally above it. From this it follows at once that the degree d is the bottommost entry in the
Pascal triangle:

1

1
1 1

2 1
2 3 1

1
n—2

d

Each entry in the array is the number of descending paths from the top (corresponding to B*). In particular,
the degree d is the Catalan number

2n-4! 1 [2n—4

n—D)!n-2! n-1\n-2)
(See, for example, Conway and Guy [53] p.105. Counting descending paths in the right-hand Pascal triangle is
equivalent to counting ‘mountain ranges’. Alternatively, see Stanley [58], where many combinatorial interpreta-
tions of Catalan numbers can be found in Ex. 6.19 (pp. 219-229).) |
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8.2 Modules over a ring
Let R be a (commutative) ring. An action of R on an abelian group M is a map
R x M — M, (a,m) — am,

which is distributive, a(m + m') = am + am’, associative, a(a’'m) = (aa’)m, and satisfies Om = 0 and 1m = m.
Equivalently, we have a ring homomorphism R — Hom(M, M). An abelian group M equipped with such an
action of R is called an R-module. Homomorphisms of R-modules M — N, submodules N C M, quotient
modules M/N and direct sums M & N of R-modules are all defined in the usual way. We refer the reader to
Atiyah and Macdonald [9] for a more systematic treatment than we can give here.

8.20 EXAMPLES. (i) Every abelian group is a module over the ring Z, while a module over a field k is the same
as a vector space over k.
(ii) Any ring R is itself an R-module. In this case, the submodules are nothing other than the ideals of R.
(iii) Any ring homomorphism ¢ : R — S makes S into an R module by the action as := ¢(a)s for a € R,
s€S. |

If M is an R-module and a C R is an ideal, then
aM :={am|a€a, me M} C M

is a submodule. The ring R acts on the quotient M /aM, and the restriction of this action to a is zero. Hence
M/aM is actually an R/a-module. This is called the reduction of M modulo a.

(a) Localisation

Localisation is a notion complementary to that of reduction M/aM. Let Sp C R be the subset consisting of
elements which are not divisors of zero, and on the Cartesian product R X Sy define an equivalence relation

(x,y) ~ (@'y) <= =zy =y (8.14)

We denote the equivalence class of (z,y) by z/y. The set of equivalence classes (R x Sp)/ ~ can then be given a
ring structure by the rules:

z  xy +a'y

y oy gy

T A (8.15)
y v vy’

This ring is called the total fraction ring of R and is denoted by Q(R). When R is an integral domain, Q(R) is
its field of fractions. The injection R < Q(R), z > {, identifies R with a subring of its total fraction ring.

We now generalise this construction. A subset S C R — {0} containing 1 € R is called multiplicatively closed
if z,y € S implies zy € S. We can then define an equivalence relation on the product R x S by

(z,y) ~ (2',y') <= s(zy' —yz')=0 for someseES. (8.16)

In the same way as (8.15) we now put a ring structure on the set of equivalence classes (R x S)/ ~. This ring is
denoted S~'R. Note that if S = Sy, and therefore contains no divisors of zero, then the two equivalence relations
(8.14) and (8.16) coincide. Thus S, 'R is equal to the total fraction ring Q(R).

The map

R SR, zw % (8.17)

is a ring homomorphism whose kernel is the set of z € R such that sz = 0 for some s € S. In general, therefore,
it is not injective.

8.21 EXAMPLE. Localisation at one element. If a € R is not nilpotent, then the set S = {1,a,a?,a3,...} does
not contain zero and is multiplicatively closed. In this case S™'R is denoted by R,. O
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When R is an integral domain, R, is the subring R[1/a] of the field of fractions generated by R and 1/a which
has already been used in discussing algebraic varieties, and in particular the construction of the structure sheaf
(see Section 3.1).

8.22 DEFINITION. The complement S = R — p of a prime ideal p C R is a multiplicatively closed set which
excludes zero. In this case the ring R, := S™!'R is called the localisation of R at p. O

The reason for the terminology is that R, is a local ring, that is, a ring containing a unique maximal ideal.
This ideal consists of elements expressible as x/s, where 2 € p, and is denoted by pR,. By construction of R,,
all elements not contained in pR, are invertible, and it follows that pR, C R, is maximal and, moreover, is the
unique maximal ideal.

The following is a very important fact about local rings. The reader should compare the proof with that of
Lemma 2.20.

8.23 NAKAYAMA’S LEMMA. Let M be a finitely generated module over a local ring (R,m). Then M = mM
only if M = 0.

Proof. Let my, ..., m, be generators of M. Then the condition M = mM says that

for some r X r matrix with entries in m. Rewriting this as

mi

(I, — A4) : =0

.

and multiplying on the left by the adjugate of the R valued matrix I, — A, we obtain relations
det(I, — Aym; =0 foreachi=1,... r.
But det(l, — A) is of the form 1+ a, for a € m, and hence is not contained in m. Since (R, m) is a local ring, this
implies that det(I, — A) is an invertible element of R, and hence m; = --- =m, = 0. O
Nakayama’s lemma is often used in the following form, whose proof we leave as an exercise.

8.24 COROLLARY. Let M be a finitely generated module over a local ring (R,m). Then elements my,...,m,

generate M if and only if their residue classes Ty, ...,m, span the quotient M /mM as a vector space over the
field R/m. a

In this situation, if my,...,m, € M/mM are a basis over R/m, then we say that m1,...,m, form a minimal
system of generators of M.

We can now generalise the above construction of fractions, with respect to a multiplicatively closed subset
S C R, to any R-module M. First we put the same equivalence relation (8.16) on the product M x S. Then we
define an action of S™'R on the set of equivalence classes (M x S)/ ~ by

= X —=—. (8.18)

s’ ss!

)

m  m' _ sm'+s'm a_m _ am
s s! ss! S
This defines an S~! R-module which we denote by S™'M. Analogously to (8.17), there is a natural map M —
S~'M with kernel
ker {M — S *M} = {m € M | sm =0 for some s € S}. (8.19)

Corresponding to Example 8.21 and Definition 8.22, we can define localisations M, at a nonnilpotent element
a € R, and M, at a prime ideal p C R.

In the case when S is the set Sy of ring elements which do not divide zero, Q(M) := S, ' M is called the total
fraction module.

8.25 DEFINITION. An R-module M is called a torsion module if Q(M) = 0. If the natural map M — Q(M) is
injective, then M is said to be torsion free. O
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(b) Local versus global

Let b C R be any ideal and a € R any ring element. In the ring R, the set of elements of the form z/a™ with
n € N and = € b is an ideal which we denote by bR,. Note that, if a € b, then 1 € bR,; so we get a proper ideal
only if a ¢ b. If b C R is a prime ideal, then bR, C R, is also a prime ideal, and b is the inverse image of bR,
via the map R = R,.

For the set of maximal ideals, in particular, we therefore have a bijection:

Spm R, = D(a) :={m | a ¢ m} C Spm R.

(When R is an integral domain, we have already seen this in Section 3.2.) Note that, if @ € R is nilpotent, then
R, = 0 (and more generally M, = 0 for any R-module M), and so D(a) is the empty set. (This is the converse
of Theorem 2.27.)

8.26 DEFINITION. Suppose that the ideal generated by a1, ..., a, € R contains 1. That is, there exist by, ..., b, €
R such that
a1b1+---+anbn: 1.

Then the set {ai,...,a,} is called a partition of unity. In this case we have |J;_, D(a;) = Spm R. Given an
R-module M, the collection of localisations R, ,..., R,, and M,,..., M,, is called a covering of M. O

(See the paragraph on local properties in Section 3.1(c).) By expanding the relation (aiby + - - - + apby)” =1
for N € N sufficiently large, we find:
8.27 LeEMMA. If {ay,...,a,} Is a partition of unity, then for any natural number k € N the set of powers
{ak,...,ak} is also a partition of unity. O
Note that the coverings of an R-module M given by {ai,...,a,} and {a¥,... ak} are the same.

8.28 ProvrosITION. If {ay,...,a,} is a partition of unity and M is an R-module, then the natural homomor-
phism
M-o>M,® --®M,, m—(—
is injective.
Proof. Suppose that m € M belongs to the kernel. That is, m/1 € M, is zero for each i = 1,...,n. By (8.19)
this means that for some k € N we have

But by Lemma 8.27 this implies that m = 0. a
8.29 COROLLARY. If an R-module M admits a covering {M,,} for which every M,, =0, then M = 0. o

In other words, the property M = 0 holds locally, in the sense of Section 3.1(c), if and only if it holds globally.
Such properties are common; in particular we shall often use the following.

8.30 PROPOSITION. Let f : M — N be a homomorphism of R-modules, and let {a4,...,a,} be a partition of
unity of R. If all the localisations

fa; i Mo, > Ny, i=1,...,n,
are isomorphisms (or injective, surjective, zero), then f is an isomorphism (or injective, surjective, zero, respec-
tively). |

The ‘localness’ of the vanishing of a module can also be expressed ‘pointwise’:

8.31 LEMMA. The following properties of an R-module M are equivalent.
(i) M =0.
(ii) My =0 at every maximal ideal m C R.
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Proof. (i) implies (ii) is trivial; we shall prove that (ii) implies (i). Given m € M, let
Ann(m) ={a € R | am = 0}.

This subset is an ideal in R, called the annihilator of m € M. We shall show that Ann(m) = R for all m € M,
this will show that M = 0. Pick a maximal ideal m C R. Then (8.19) and the hypothesis that S™*M = M,, =0
imply that Ann(m) contains the complement S of m. This shows that Ann(m) is not contained in any maximal
ideal m C R, and is therefore equal to R. O

It is important to examine next the gluing principles by which a module M is reconstructed from a covering
{M,,}. First note that for each i,j the compositions

M = M,, = My, and M — M,, — M,,,,
agree.
8.32 PROPOSITION. The sequence

.
M = @B M, z D Mas,
i i,

is ezxact in the sense that, given any collection of elements {x; € M,,} obeying the compatibility condition
T; = xj € My,q; for all i, j, there exists a (unique) element m € M such that x; = m/1 for each i.

Proof. Replacing the partition of unity {ai,...,a,} by {a¥,..., ak} if necessary, it is enough to assume that
each z; = m;/a; for some m; € M. By hypothesis, (a;a;)?(ajm; — a;m;) = 0 for some p € N, and we can take p
to be the same for all 7,j. By Lemma 8.27 there exist elements by,...,b, € R such that Zj a?“bj = 1. If we
take m = 3, a%b;jm;, then for each i we find

af“m = Z(aiaj)paibjmj = Z(aiaj)pajbjmi = al'm,.
J J
Hence in the module M,, we have m/1 = a?m;/a?*" = z;. The uniqueness of m follows from Proposition 8.28. O

Let Hom(S, R) be the set of ring homomorphisms S — R.
8.33 PROPOSITION. Given a covering {R,,} of the ring R, the following sequence is exact:
T
—
Hom(S, R) — HHom(S, R,,) N HHom(S, Raa;)-
7 ]
O

Proposition 8.32 allows one to reconstruct the module M itself by gluing. (This is a special case of descent
under a faithful flat morphism.)

8.34 PROPOSITION. Suppose that a ring R admits a covering {R,,} and data consisting of the following.

(i) For each i an R,,-module M;,
(ii) for each pair ¢,j an isomorphism f;; : (M;)a; = (M;)a, satisfying:
(iii) for each triple 4, j, k, the cocycle condition fi; fir = fir : (Mi)ajar — (Mi)a;a;-

Then there exists, uniquely up to isomorphism, an R-module M such that M,, = M; for each i. a
To prove this it is enough to take for M the kernel of the homomorphism

Y T o
i i,j ij

We leave the details to the reader.
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(c) Free modules

The following generalises the notion of a basis in a vector space.

8.35 DEFINITION. A free basis in an R-module is a subset B = {m;};c satisfying the following conditions.
(i) B generates M over R.
(ii) >, a;m; =0 for a; € R only if all a; = 0. a

An R-module M which admits a free basis is said to be free. Equivalently, M is isomorphic to a direct sum
of copies of R.

8.36 LEMMA. Let M be a free R-module with a free basis B.
(i) For any maximal ideal m C R, the quotient module M /mM has dimension equal to |B| as a vector space
over the field R/m.
(ii) The cardinality |B| is independent of the choice of basis and depends only on the module M.

Proof. (i) follows simply from the fact that the set {2 | m € B} C M/mM is a vector space basis. Part (ii)
follows from (i). ad

This cardinality is called the rank of the free module M. When R is an integral domain, it is also equal to
the dimension of Q(M) as a vector space over the field of fractions Q(R).
Every free module is torsion free (Definition 8.25). In special cases the converse is also true (see Exercise 7.2):

8.37 PROPOSITION. If R is a principal ideal domain, then every finitely generated torsion free R-module M is
free. O

The case R = Z is well known. By Theorem 2.4 the proposition also applies to the case R = k[z]. In the
following chapters we shall often use the following (see Exercise 8.3):

8.38 COROLLARY. If R is a discrete valuation ring (Section 2.4(b)) then every finitely generated torsion free
R-module is free. o

We now suppose that R contains the field k. If B = {m;};cs is a free basis, then the expression of an element
m € M as m =), a;m; determines a linear map

M — R ®y M, ml—)Zai(}@mi.

(3

If we view the vector space R ®; M as an R-module by multiplication on the first factor, then this map is a
homomorphism of R-modules. This homomorphism can be used to characterise free modules.

8.39 LEMMA. Suppose R contains the field k and there exists a homomorphism of R-modules f : M — R®y M
(that is, f(am) = (a ® 1) f(m) for a € R and m € M) satisfying the following two conditions:

1. the composition of f with the map
R, M —- M, a®m— am
is the identity map;
2. the following diagram commutes:

M — R®, M

fi l1Ir® f

R®, M — R®, R®p M
a®m — a®l®m
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Then M is a free R-module. Moreover, any basis of the k-vector space
My={me M| f(m)=1®m}
is a free basis for M.

Proof. My C M is a vector subspace over k, and so it is enough to show that the natural homomorphism of
R-modules
¢:R®y My — M, a®m— am

is an isomorphism. Suppose that Zj bjm; = 0 for some b; € R and m; € My. Applying f to this relation:
OZZf(bjmj):Z(bj®l)f(m]) Z(b ® 1)(1 ® m;) Zb ®m;.
J J J
This shows that ¢ is injective.

Next, let {b;};e.s be a basis for R as a vector space over k. Given any m € M, we can write f(m) = Z]. bj®@m;
for some m; € M. Applying the commutative diagram (2) we have

D bhieleom; =Y b;® f(m;).
i i

But {b;} was chosen to be a basis, so we conclude that 1 ® m; = f(m;) for each j, which means that m; € M.
By condition (1), m = Ej b; ® mj, and hence ¢ is surjective. a

(d) Tensor products and flat modules

The tensor product of two R-modules is a notion that unifies those of reduction modulo an ideal M/aM on the
one hand, and localisation S~'M on the other.
Let {m;}ics be a set of generators of M. Then the R-module homomorphism

RO — M, (ai)ier = Y aim;

is called a free cover of M, and we denote its kernel by Kj; C R®!. Now let N be another R-module. Then the
subset
{(ain)ier | (a:)ier € Ka, n € N} ¢ N®7

generates a submodule which we denote by KN c N®T,
8.40 DEFINITION. (i) The tensor product of M and N over R is defined to be the quotient R-module
M ®g N = N®'/KyN.

(ii) Given m = Y a;m; € M and n € N, the residue class of (a;n);c; in N®/ /Ky N is independent of the
choice of generators {m;};c; and is denoted by

m®née M®gN.
O

The R-module M ®pg N is independent of the choice of generators, up to isomorphism. Many of the important
operations on modules can be expressed as tensor products.

8.41 EXAMPLES. (i) Let a C R be an ideal. Then the module M = R/a is generated by a single element, so
that Kpy = a and R/a ®g N = N/aN. In particular, note that R@zr N = N.
(ii) The tensor product is distributive over direct sums:

(My ® M) ®g N = (M; ®r N) @ (Mz ®g N).

In particular, if M is a free module of rank r, then M @ N = N7,

(iii) Let M = S~'R, where S C R is a multiplicatively closed subset. Taking {1/s}scs as a system of generators,
we see that K s is generated by differences [1/s] —t[1/st] € R®. Thus the tensor product ST'!R®pg N is
isomorphic to ST N. |
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One can now easily verify commutativity and associativity of the tensor product:

M ®r N
L®r (M ®grN)

N ®r M,
(L®g M)®g N.

1R

(8.20)

Moreover, by definition of the tensor product, any R-module homomorphism f : Ny — N> induces an R-module
homomorphism

fM:M®RN1—)M®RN2; m®n'_>m®f(n)'

In other words, M ®p is a functor from the category of R-modules to itself.
We now come to a very important notion.

8.42 DEFINITION. An R-module is flat if for every homomorphism f : Ny — Ns of R modules,

f: Ny = N injective — f:M ®gr N, — M ®pg N, is injective.

8.43 EXAMPLES. (i) Every free module is flat.
(ii) Let S C R be a multiplicatively closed subset. It follows easily from (8.19) that, if f : Ny — N» is an
injective R-module homomorphism, then f : ST'N; — S™I Ny is also injective. By Example 8.41(iii), this
implies that S~'R is a flat R-module. O

From part (ii) together with Example 8.41(iii) and the fact that the tensor product of two flat modules is
again flat we deduce the following.

8.44 LEMMA. A module M is flat over R if and only if the localisation M,, is flat over Ry, for every maximal
ideal m C R. O

The first indication of the importance of flatness is the following.
8.45 PROPOSITION. Over a local ring (R, m) every finitely generated flat module is free.

Proof. Suppose that M is an R-module with a minimal system of generators mq,...,m, € M. We will show
that this system is a free basis. Let

ami+---+am, =0
be a linear relation among the generators, and let a C R be the ideal generated by the coefficients aq,...,a, € R.
Then the element
a:=ami+---+a-dm, EaQRQr M

is in the kernel of the R-module homomorphism
a®r M - M =R®r M,

and therefore o = 0 if M is flat. We want to deduce from this that a; = --- = a,, = 0. We consider the vector
space over R/m,

(a/ma) Op/m (M/mM).

Note that this is a quotient module of a ®g M and that ). @; ® m; = @ = 0. But by definition of a minimal
system of generators this implies that all the (generating) elements @y, ...,a, € a/ma are zero. By Nakayama’s
Lemma 8.23 this implies that a = 0, and we are done. a
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8.3 Locally free modules and flatness

(a) Locally free modules

Unlike the vanishing M = 0, the properties M = R and of being free are not local properties.

8.46 DEFINITION. An R-module M is locally free if it admits a covering {M,,} by some partition of unity
ai,...,a, € R, for which each M,, is a free R,,-module. O

Given some mild conditions, local freeness can be characterised in terms of the localisations at maximal ideals:

8.47 PROPOSITION. Suppose that R is a Noetherian ring and that M is a finitely generated R-module. Then
the following are equivalent.

(i) M is locally free.

(ii) For every maximal ideal m C R the localisation My, is a free Ry-module.

Exercise 8.5 shows that the hypothesis that M is finitely generated cannot be relaxed.

Proof. (i) = (ii) Let {a1,...,an} C R be a partition of unity as in Definition 8.46. Then the multiplicatively
closed set R —m contains some a;. By hypothesis, M,, is a free R,,-module, and hence M,, is a free R,-module.

(i) = (i) Let m C R be a maximal ideal and let my/s,...,m,/s € My be a free basis, where m; € M and
s € R, s ¢ m. We then consider the homomorphism of R-modules

Ro®---Ry = My, (a1,....a,) 5 Y 2%,

‘ S
=1

Denote the kernel and cokernel by K,C. These are both R-modules whose localisation at m is zero; they are
finitely generated, and so there exists a ring element ¢ ¢ m such that tK = tC = 0. Therefore, taking a = st, the
localisation M, is a free R,-module.

What we have shown is that for every maximal ideal m C R there exists a, € R —m for which the localisation
M, is free. The ideal generated by the a, as m ranges through all maximal ideals is the whole of R. Since R is
Noetherian, a finite subset of a,, can be taken to give a partition of unity, and hence M is locally free. a

8.48 PROPOSITION. A finitely generated module M over a Noetherian ring R is locally free if and only if it
is flat.

Proof. If M is locally free, then each localisation My, at a maximal ideal m C R is a free Ry-module, and
therefore a flat Ry-module by Example 8.43(1). By Lemma 8.44, this implies that M is flat over R. Conversely,
if M is flat, then each localisation M, is flat over R,, and therefore free by Proposition 8.45. Hence M is locally
free by Proposition 8.47. a

If M is a locally free module, then by Lemma 8.36 the set of maximal ideals for which dim g/, (M/mM) equals
some value r is an open subset of Spm R. Hence:

8.49 PROPOSITION. If M is any locally free R-module, then dimp/y, (M /mM) is constant on connected compo-
nents of Spm R. a

The rank of a locally free module (at a maximal ideal m C R) is defined to be this dimension dim g/, (M /mM).
By Lemma 8.36 it is equal to the rank of the free localisations of M.

8.50 REMARKS. (i) Partitions of Spm R into two disjoint open subsets correspond to (nontrivial) idempotents
e € R, €2 = e. See Exercise 7.6.
(ii) If R has no nontrivial nilpotents, then the converse of Proposition 8.49 is also true. See Exercise 8.7. O

Many of the linear algebra constructions that are familiar for vector spaces carry over in a similar manner for
locally free modules.
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8.51 PROPOSITION. If M, N are locally free R-modules, then the following hold.
(i) The direct sum M @ N is locally free, and rank M & N = rank M + rank N.
(ii) The R-module Hompg(M, N) is locally free and rank Hompg(M, N) = rank M x rank N.
(iii) The tensor product M ®g N is locally free and rank M @ N = rank M x rank N.

Proof. We will prove (iii). By hypothesis there are partitions of unity {ai,...,a,} and {by,...,by} giving
coverings {M,,} and {N;;} by free modules. Then the collection {a;b;} is also a partition of unity and each
Ma,p;, Nagp, is free. Therefore the tensor products My, ® Ngp, are free (tensor products of free modules are

R

free by Example 8.41(ii)); and since ® commutes with localisation, it follows that M ®g N is locally free. O

The special case N = R of part (ii) of this proposition is called the dual of the locally free module M, and
denoted
MY := Hompg(M, R).

8.52 PROPOSITION. If M is any locally free module, then (MV)V = M.

Proof. The evaluation map
M x Homg(M,R) = R, (m,f)+— f(m)

determines an R-module homomorphism
M — Hompg(Hompg(M,R),R) = (M")".

If M is a free module, this is an isomorphim. But Hompz commutes with localisation, and so by Proposition 8.30
it is also an isomorphism for any locally free module M. a

The next fact will be needed in Section 8.5(b) later on.

8.53 LEMMA. If M is a locally free R-module, and R — S is any ring homomorphism, then M ®g S is a locally
free S-module. a

(b) Exact sequences and flatness

A sequence of R-module homomorphisms
s N I N IS N
is ezxact if, at each term, Im f; | = ker f; C N;. Of particular importance is the case
0— Ny - Ny —» N3 — 0, (8.21)
in which the map N; — Ns is injective and the map Ny — Nj is surjective. This is called a short exact sequence.
8.54 PROPOSITION. For the short exact sequence (8.21):

(i) if Ny, N5 are flat, then N is flat;
(ii) if Ny, N5 are flat, then N is flat. O

Before proving this we need some preliminary facts. The first of these is really the background to the definition
(8.42) of flatness.

8.55 LEMMA. (RIGHT EXACTNESS OF ®pg) If the sequence
N1 — Ny - N3 — 0
is exact and M is any R-module, then the sequence
M®r N, - M®r N2 = M ®r N3 =0

is exact.
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Proof. We counsider first the case M = R/a, where a C R is an ideal. We have a commutative diagram with
exact rows: f 9
N1 — N, — N3 —0

U U
aNo — aN3—0

A residue class @ € Ny/aN, maps to zero under g/ag if and only if n € N, lies in f(N1) + aN», and this in turn
is equivalent to saying that 7 is in the image of Ny /aN;. This proves the lemma for M = R/a, using Example
8.41(1).

For the general case we return to Definition 8.40. If M = R®!/Kj;, then the tensor product is M @z N =
N®! /K N. We now consider the diagram

NPT NPT — NPT 0
U U
KMN2 — KMN3 — 0

and apply the same reasoning as in the first case. O

It follows from this that if M is a flat R-module, then the functor M ® g takes short exact sequences to short
exact sequences. Such a functor is said to be ezact.
A flat module need not be free, and one can discuss whether there exists a free basis.

8.56 LEMMA. Suppose that M, N are R-modules and M is flat. Suppose also that elements mq,...,m, € M
and ny,...,n, € N satisfy Y . m; ®n; =0 € M ®gr N. Then it is possible to express

my ai1 A1s
. ! . !
= : mq + -+ : mg
my Qr1 Ay s
for some m!,...,m}; € M and ring elements a;; satisfying
@11 -t QAls
(n1,...,n.) =0.
Qr1 Ayrs

Proof. We consider the homomorphism
ajq r
f:R@®--@®R—>N, a=| 1 | an,
i=1

a
and tensor with M. Writing K = ker f, the flatness of M implies that we obtain an exact sequence
MopK+Mo--oM ™2 MogN.

Since m = (my,...,m,) € kerl® f, it follows that m is equal to the image of Ej.:l m;®a; for some my,...,m; €
M and ay,...,a; € K. O

We are now moving towards the proof of Proposition 8.54. The following is well known.

8.57 SNAKE LEMMA. Let
00— U — V — W —0

fi gl hl

0— U — VI — W —0
be a commutative diagram of modules in which each row is exact. Then there is an exact sequence

0—>kerf—>kerg—>kerhi>cokerf—>cokerg—>cokerh—>0

where the connecting map § : ker h — coker f is defined by 0 : w — g(v) € U'mod f(U), where v € V is a lift
of w. a
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8.58 LEMMA. Suppose
0— N L Ny — Ny —0

is a short exact sequence of R-modules and that N3 is flat. Then for any R-module M the homomorphism
ly®f: M®r N - Mg N
is injective.

Proof. As in the proof of Lemma 8.55, we write M = R®!/Kj;. Then, applying the Snake Lemma to the

commutative diagram
Ky®rNy — NP MepNy —0

Ty ®f T e Ty f

Ku®rN, — NP - MorN =0
we obtain an exact sequence

Ky®rNs — NP!
I I

ker f1 — ker 1y ® f — coker 1g,, ® f — coker f.

Since f is injective, ker f®7 = 0. On the other hand, Kj; — R®! is injective and N3 is flat, so coker 1x,, ® f —
coker f®7 is also injective. Hence ker 1), ® f = 0. a

Proof of Proposition 8.54. Let f : A — B be an injective homomorphism of R-modules and consider the

commutative diagram:
N, ®r B — Ny®rB — N3®prB

Th T f2 Tfs

NMorA 5 N,ogpA — Ns®pA

(i) If f1 and f5 are injective, then fo is injective.
(ii) By Lemma 8.58 the lower left map « is injective. If f5 is injective, then this implies that f; is injective. O

One can summarise the results of this section as follows.
8.59 THEOREM. Let R be a Noetherian ring and
Ny i)Ng—)Ng—)---—)Na,l — N, — 0

an exact sequence of flat R-modules. If the R-module ker f is finitely generated, then it is locally free. a

8.4 The Picard group

8.60 DEFINITION. (i) A locally free R-module L of rank 1 is called an invertible R-module. Equivalently, L is

an R-module locally isomorphic to R.
(ii) The set of all isomorphism classes of invertible R-modules is denoted by PicR. ad

By Proposition 8.51, the tensor product of two invertible modules is again invertible. Moreover, if L is an
invertible module then tensoring with its dual gives

L®g LY = Homg(L,L) = R.

For this reason we write LY = L~! in this case, and PicR becomes a group under the operation ®g, called the
Picard group of R. By (8.20) this is an abelian group.
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(a) Algebraic number fields

An ideal a C R is called an invertible ideal if there exists an ideal b C R such that ab = c¢R for some ¢ € R not
dividing zero. An invertible ideal is an invertible R-module (Exercise 8.8), and historically these were the first
invertible modules to be studied.

8.61 EXAMPLE. In the integral domain R = Z[+/—7] the ideal a = (2,1 + /—7) is invertible since
a?=daa=(2,1+V-7(2,1-vV-7) = (4).

In this example a is locally free but not free. (Compare this with Exercise 2.1.) |

Recall that a root of a monic polynomial with coefficients in R is said to be integral over R (Definition 2.19).

8.62 LEMMA. Let R be a subring of a field K.
(i) An element b € K is integral over R if and only if the subring R[b] C K is finitely generated as an
R-module.
(ii) The set of b € K that are integral over R is a subring of K, called the integral closure of R in K.
(iii) Suppose that b € K is a root of an equation

f([]j) = UIOCEn + almn_l + -t ap_1T+ay = 0’

whose coefficients a; € K are all integral over R. Then the coefficients of f(z)/(x — b) are also integral
over R.

(iv) Given polynomials f(z) = }i_a;z" ™" and g(z) = 7", bjz™ 7 € Klz], suppose that f(z)g(z) € R[z].
Then the products a;b; € K are all integral over R.

Proof. (i) is well known and is an application of the determinant trick used in the proof of Lemma 2.20 and
Nakayama’s Lemma 8.23, to the action of b on R[b].

(ii) follows from (i).

(iii) Multiplying the equation by af~"' shows that aob is integral over R. So if we write f(z) = ag(z —b)z" "' +
g(z), then the polynomial g(x) has the same properties as f(x) but has degree one less. The result therefore
follows by induction on the degree.

(iv) We can assume that agbg # 0. Let aq, ..., amyn be the roots of f(z)g(z) = 0 in some algebraically closed
field containing K. Then for each subset I C {1,...,m +n} it follows from (iii) that aobo [];-; c is integral over
R. Using the relations between the roots of an equation and its coefficients, each a;b; can be expressed as some
sum of such products, and by (ii) it is therefore integral over R. |

Let K be an algebraic number field, that is, a finite extension of the rational numbers Q, and let Og be the
ring of algebraic integers in K,
Ok := (integral closure of Z in K) C K.

8.63 PROPOSITION. Every nonzero ideal a C Ok is invertible.
Proof. Suppose that a has generators ay, ..., a, and consider the polynomial
fx)=aiz" '+ +ap_1x+a, € Oklx].

If K has degree d = [K : Q], then we can construct d polynomials f() = f, f?) ... (@ ¢ C[z], whose coefficients
are the conjugates in C of ay, . ..,a, € K over Q. Let g(z) = f*) ... f(9); then f(x)g(z) € Z[z] and g(x) € Ok[z].
Let m be the greatest common divisor of the coefficients of f(z)g(z) and b C Ok the ideal generated by the
coefficients of g(x). Clearly m € ab, and Lemma 8.62(iv) applied to f(z)g(z)/m shows that ab C mOg. Hence
ab = mOk and a is an invertible ideal. O

8.64 DEFINITION. Let R be a subring of a field K.
(i) A finitely generated R-submodule of K is called a fractional ideal of R. A fractional ideal generated by a
single element is called a principal fractional ideal.
(ii) Two fractional ideals a,b C K are equivalent if a = ¢b for some ¢ € K — {0}. o
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By Proposition 8.63, every nonzero fractional ideal a of the ring of algebraic integers Ok is an invertible
Oxk-module. Conversely, by choosing a basis for the total quotient module Q(a) (as a 1-dimensional vector space
over Q(Ok)) we see that every invertible Ox-module is isomorphic to some fractional ideal a C K, and the
equivalence class of a is independent of the choice of basis. We arrive at:

8.65 PROPOSITION. The Picard group of the ring of integers Ok in an algebraic number field K is isomorphic

to its divisor class group
nonzero fractional ideals

Cl (OK) =

 principal fractional ideals’

(b) Two quadratic examples

We will compute the Picard group Pic R for two examples: for the ring of integers R = Ok of an imaginary
quadratic number field K, and for the coordinate ring R = k[C] of an affine hyperelliptic curve C. Useful
references for this section are Taussky [59], or Borevich and Shafarevich [50].

We shall call a matrix with entries in a ring R an R-matrix for short; and we shall say that two R-matrices
A, B of the same size n X n are R-similar if A = XBX ! for some invertible matrix X € GL(n, R).

8.66 THEOREM. Suppose that the ring of algebraic integers O is generated by a single element oo € Ok, that
is, Ok = Z|a], and suppose that « is a root of a polynomial of degree n = [K : Q), irreducible over Q,

fl@)=a"+az"" + -+ an 1z +an € L[a].
Then there is a natural bijection between the following two sets:
(1) Pic Ok;

(2) Z-similarity classes of n x n Z-matrices with characteristic polynomial equal to f(X).

Proof. Let a be an invertible Ox-module. This is torsion free, and so by Proposition 8.37 it is free of rank n

as a Z-module. Let aq,...,a, € a be a free basis over Z. Now a is a Og = Z[a]-module, and so
aq aq
Q =M
[e7%) (77}

for some n X n Z-matrix M. Moreover, f(M) = 0 since f(a) = 0. Since f(x) is irreducible over Q, it is precisely
the minimal polynomial of M, and the characteristic polynomial since it has degree n. While M depends on the
choice of Z-basis ay, .. ., a, € a, its Z-similarity class does not. And if we start with two isomorphic Og-modules
a,a’, then the matrices M, M’ that we obtain are similar. We have therefore constructed a map from (1) to (2).

Conversely, suppose we are given a n X n Z-matrix M whose characteristic polynomial is equal to f(z). Then
by the Cayley-Hamilton Theorem the mapping a — M determines a ring homomorphism

Zla) — End Z".

This homomorphism makes Z™ into an Og = Z[a]-module; let us denote it by ays. Extending the coefficients to
Q makes this module a,s into a rational vector space naturally isomorphic to K. In other words, ays <— K as a
fractional ideal of Ok . We have therefore constructed a map from (2) to (1) which is precisely the inverse of that
above. a

We want to consider, in particular, the case of a quadratic number field (@(\/ 3). We suppose that d # 0,1 and
that d is squarefree. The ring of integers is then

Z [1+ﬁ] if =1 mod 4,

Ova= Z[\/E] if d % 1 mod 4.
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8.67 COROLLARY. There are a natural bijections among the following three sets:

(1) Pic O_3;
(2) Z-similarity classes of 2 x 2 Z-matrices satistying the condition

dl, = (2M — I)? ifd =1 mod 4
dl, = M? ifd # 1 mod 4;
(3) GL(2,Z)-orbits of integral quadratic forms ax® + bxy + cy? satisfying

d ifd=1mod4

2 — ——
b _4“_D'_{4d if d 1 mod 4,

where the GL(2,7) action on quadratic forms is the usual one twisted by the determinant:

<Z/2 l;/Z)H(detA)A(Zﬂ 2/2>At.

8.68 REMARK. If d < 0, then the set of quadratic forms with discriminant D is a union of positive definite and
negative definite forms. These subsets are transposed by the action of GL(2,Z) but are preserved by SL(2,7).
The set (3) is therefore equivalent to:

(3") SL(2,7Z)-orbits of positive definite integral quadratic forms az? + bzy + cy? with discriminant D. ]

Proof. The bijection between (1) and (2) follows directly from Theorem 8.66. To map from (2) to (3), suppose
first that dI, = M?. This is equivalent to saying that M has trace zero and determinant —d, so M can be written

as / b2
b/2 —a
M_<C _b/2>, G,C—Z——d.

()= (50 )

is a symmetric matrix defining a quadratic form ax?+bxy+cy? with discriminant 4d. Moreover, under a similarity
M +— AM A~ the matrix M’ transforms to

AMA ( 0 1 ) — AM ( 0 1 >A—1 ( 0 1 ) — (det A)AM' AL

Then

-1 0 -1 0 -1 0
This construction determines a bijection between (2) and (3) in the case d Z 1 mod 4. The case d = 1 mod 4 is

similar. a

For an imaginary quadratic field, where d < 0, the Picard group Pic O 5 is now completely determined by
the following fact.

8.69 LeMMA. (GAuUSS) Each SL(2,Z) orbit of positive definite integral quadratic forms ax® + bxy + cy® has a

unique representative satisfying —a <b<a<cor0<b<a=c. O

The set of complex numbers (—b + v/D)/2a for which these inequalities are satisfied lie in the region shown
in Figure 8.1.
Figure 8.1: The fundamental region

8.70 ExAMPLE. Taked = —41. Using Lemma 8.69, a complete set of 2x2 Z-matrices M satisfying M2+411, = 0,
up to Z-similarity, is given by

0 1 1 2 +1 3 +1 6 +2 )
—41 0 )’ -21 -1 )’ -14 F1 )’ -7 F1 )’ -9 F2 )
Hence the imaginary quadratic field Q(/—41) has class number 8 (that is, |Pic O /| = 8), and its ideal classes
are represented by:
(17 \% _41)5 (25 1 + \% _41)7 (37:F1 + \% _41)a
(6, F1 +v—41), (5,F2+ v—41).

(For an example where d = 1 mod 4, see Exercise 8.9.) O
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We can apply the same reasoning as for Z to the polynomial rlng k[z] (see Propos1t10n 8.37), and we will
consider next the Picard group of the quadratic extension k[z,+/d(z)], where d(z) € k[z] is a nonconstant

polynomial. We assume that d(z) has no square factors in k[z]. Then k[z,/d(z)] is the integral closure of k[z]
in the field k(z, \/d(z)).

8.71 PROPOSITION There is a natural bijection between the following two sets:

(1) Pic k[z, \/d(z)],

(2) k[z]- S1m11ar1ty classes of 2 x 2 k[z]-matrices M satisfying M* = d(x)I>. ad
We can write such a k[z]-matrix in terms of three polynomials f(z), g(z), h(z) € k[z] as
_( 9&) —f(=) 2 _ _
M= ( 1o IO @2 - @) = de) (3.22)

Under the bijection of Proposition 8.71, this matrix corresponds to the isomorphism class in the Picard group of

the ideal
(f(z),9(z) — Vd(z)) C klz,/d(z)].

Within the k[z]-similarity class of the matrix (8.22) we can choose f(z) to have minimal degree and replace g(x)
by its remainder on division by f(z). By this means, we find a representative for which

deg g(z) < deg f(z) < h(z).

This is the analogue of Gauss’s Lemma 8.69. If d(x) has odd degree, then equality cannot hold on the right, and
we conclude:

8.72 LEMMA. Ifdegd(x) = 2p+1, then the k[x]-similarity class of the matrix (8.22) has a uniquely representative
satisfying deg g(z) < deg f(x) < p < h(z) and f(z) monic. ad

8.73 EXAMPLE. Suppose deg d(xz) = 3. Then f(x) is either constant or linear. The constant case corresponds
to a principal ideal in k[z, /d(z)]; otherwise, f(z) is linear and g(z) is constant. If g(z) = b, then f(z) =z — a,
where a is a root of d(z ) — b2 = 0. What we have shown is that there is a bijection, when degd(x) = 3, between
the Picard group of k[z, \/d(z)] and the elliptic curve

C: {y> = d(@)} U {oo},

given by:
C | Pic k[z, \/d(z)]

point (a,b) ideal class (z — a,b — vVa? — 1)
point at infinity oo | principal ideals

Via this correspondence, in fact, the group structure of Pic k[z, /d(z)] coincides with the well-known group law
@ on the plane cubic curve C C P? which is uniquely determlned by the rules:

p,q,r € C collinear < pdqgdr =0,

point at infinity oo = group identity 0.
O
8.74 EXAMPLE. Suppose degd(z) = 5. Then deg f(z) < 2. If deg f(z) = 2, then the matrix (8.22) takes the
form
ct+e —(z—a)(z—as)
h(z) —cx —e ’
where, moreover, the line y = cz + e is that passing through the two points p; = (a1,b1), p» = (a2, b2) of the

affine hyperelliptic curve C' = {y? = d(z)}. (If the two points coincide, then y = cx + e is the tangent line to the
curve.) The corresponding ideal is

(z — a1)(@ — az),cx + € — /(@) € Klz, /A@))
It follows that Pic k[z,/d(x)] corresponds birationally to the symmetric product Sym?C' of the curve. |
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In general, the story is this: the Picard group of k[z,/d(z)] can be given the structure of a p-dimensional
algebraic variety, where deg d(z) = 2p + 1, and this variety is birationally equivalent to the symmetric product
SymPC of the hyperelliptic curve of genus p

C: {y* = d(z)} U {o0}. (8.23)

(See Example 9.7 in the next chapter.)

8.5 Vector bundles

Let X be an irreducible topological space and F an elementary sheaf on X. If K is the total set in which F
takes values (Definition 3.2), it may happen that F' actually takes values in some smaller subset K’ C K. It is
convenient, and should not lead to any confusion, to agree always to take the smallest such set. This smallest
total set of the sheaf is the inductive limit taken over nonempty open sets in X with respect to the inclusion

relation:
Foop :=1lim F(U) = F(U).
gen = lim o) = F)
U0

The set Fyen will be called the (minimal) total set of the sheaf, or the stalk at the generic point.

8.75 EXAMPLE. If R is an integral domain and X = Spm R with its Zariski topology, then we have defined the
structure sheaf as an elementary sheaf of rings in the total set Q(R), the field of fractions of R. (See Section 3.1.)
In this case Q(R) is also the minimal total set. o

If we fix a point p € X, we can put the same partial ordering by inclusion on the collection of open sets
containing p by
U>V < UcCVW

Recall that U C V = F(U) D> F(V). The limit over all open sets containing p

F, := lim F(U) = U F)
peU

is called the stalk of F' at the point p € X.

8.76 EXAMPLE. If X = Spm R, then p € X corresponds to a maximal ideal m C R. In this case the stalk of the
structure sheaf F' = Oy is the localisation of R at m,

Oxp = Rn.

In general, if Y C X is an irreducible closed subset, then the limit

lim F(U) = F(U
Y NU#0D ) Yﬂgﬂ )

is called the stalk of F at (the generic point of) Y. The stalks Fyen and F), are special cases of this.

(a) Elementary sheaves of modules

Let O be any elementary sheaf of rings on the topological space X.

8.77 DEFINITION. An elementary sheaf of O-modules on X is an elementary sheaf M satisfying the following
conditions.
(i) The total set Mgen is an Ogen-module. Denote the corresponding action by ¢ : Ogen X Mgen = Mgen-
(ii) For every open set U C X we have ¢(O(U) x M(U)) € M(U). O
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Condition (ii) says that every M(U) is an O(U)-module, and it also follows that at every point p € X the
stalk M, is an Op-module.

8.78 DEFINITION. Let R be an integral domain, and let M be a torsion free R-module (that is, M — Q(M)).
Then the total fraction module Q(M) is a vector space over the field of fractions Q(R), and on the affine variety
X =Spm R we define an elementary sheaf of Ox-modules M with total set M, = Q(M) by assigning to each
basic open set D(a) C X, a € R — {0}, the localisation

M(D(a)) = M, = {aﬁn |meM, n> o} C Q(M).

Note that this generalises the construction of the structure sheaf Ox itself (Section 3.1). Note also that the
stalk of M at a point p € X corresponding to a maximal ideal m C R is the localisation M, = My

8.79 REMARK. We have assumed here that R is an integral domain; but if R is a primary ring (Definition 3.24),
a torsion free R-module determines in the same way an elementary sheaf of Ox-modules. a

8.80 EXAMPLE. Let R be an integral domain, let p C R be a prime ideal and let M be a torsion free module
over R/p. (In particular, M is also an R-module, though not necessarily torsion free.) Define on X = Spm R an
elementary sheaf of Ox-modules with total set Q(M) by assigning to a basic open set D(a) C X, a € R — {0},
the R,-module
ME if a g p,
{ 0 if a €p,

where @ € R/p is the residue class of a. This construction gives an extension of the elementary sheaf M on the
closed subset Y = Spm R/p C X to the whole of X, which is zero on the complement X — Y.

A special case occurs when p is a maximal ideal m corresponding to Y = {p} C X, a single point, and
M = R/m. In this case we obtain an elementary sheaf on X which assigns to an open set U C X the module

R/m ifpeU,
0 ifpgU.
This is called the skyscraper sheaf supported at the point p. O

Suppose that M, N are elementary sheaves of abelian groups on X. A sheaf homomorphism f : M — N
consists of a group homomorphism of the total sets

fgen : Mgen — Ngena

which for every open set U C X satisfies
feen(M(U)) C N(U).

If M, N are elementary sheaves of O-modules and fgen is a homomorphism of Ogen-modules, then f: M — N
is called an O-homomorphism.

8.81 DEFINITION. A homomorphism f : M — N of elementary sheaves of modules is said to be injective,
surjective or an isomorphism if at every point p € X the induced homomorphism on the stalks f, : M, = N,
has the respective property. O

If f is injective, then on every open set U C X the induced homomorphism M (U) — A(U) is injective.
However, the same is not true if we replace injective by surjective. It is for this reason that sheaf cohomology
theory is important. (See Section 10.1.)
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(b) Line bundles and vector bundles

8.82 DEFINITION. On an algebraic variety X an elementary sheaf L of Ox-modules is called an invertible sheaf,
or a line bundle, if it has the following two properties:
(i) The stalk Lgen at the generic point is a 1-dimensional vector space over the function field £(X).
(ii) L is locally isomorphic to the structure sheaf Ox. In other words, there exists an open cover {U;};ecr of
X such that each restriction L|y, is isomorphic to Oy,. |

We include condition (i) for clarity, although it is not hard to see that it follows from (ii). This definition is
the special case r =1 of the following.

8.83 DEFINITION. An elementary sheaf on an algebraic variety X whose stalk at the generic point is an r-
dimensional vector space over k(X) and which is locally isomorphic to the direct sum O%" is called a locally free
sheaf, or a vector bundle of rank r. a

Intuitively, a vector bundle of rank r is a family of r-dimensional vector spaces parametrised by the variety
X. (This follows from Proposition 8.49.)

Figure 8.2: A vector bundle E

8.84 EXAMPLE. The structure sheaf Ox is itself a line bundle, called the trivial line bundle. The direct sum
O%" is a vector bundle called the trivial vector bundle of rank r. O

Just as for modules, the tensor product of two vector bundles of ranks r,s is a vector bundle of rank rs
(Proposition 8.51(iii)). In particular, the tensor product of two line bundles is again a line bundle, and the set of
isomorphism classes of line bundles on X becomes a group under ®, called the Picard group Pic X.

The following lemma follows from Proposition 8.34.

8.85 LEMMA. Every vector bundle on an affine variety X = Spm R is a sheaf of the form M (as in Definition 8.78)
for some locally free R-module M. a

We next define the pull-back of a vector bundle £ on X under a morphism of varieties f : ¥ — X. We
suppose that X has an affine open cover {U; = Spm R;} and Y has an affine open cover {V; = Spm S;}, and
that f is obtained by gluing affine morphisms f; : V; — U; corresponding to ring homomorphisms R; —+ S;.
Then both S; and the restriction Ey; are Rj-modules, and we form the tensor product Ey; ®g; S, which is also
an S;-module. Gluing these Sj-modules we obtain a sheaf of Oy-modules, which by Lemma 8.53 is locally free.
This is called the pull-back of the vector bundle E to Y and is denoted by f*E. Even when S is not an integral
domain, the pull-back f*FE under a morphism f : Spm S — X still makes sense as a locally free S-module, by
Proposition 8.34.

On every projective variety Proj R there exists a distinguished line bundle. Here

R=~r.

e>0
is a graded integral domain generated by Ry = k and R;. Let K = Q(R) be its field of fractions, and for i € Z let

_ |9 |g,h € R are homogeneous ele-
Ki = { ‘ ments and degg — degh =i C K.

Each K; is a 1-dimensional vector space over the field K.

8.86 DEFINITION. For each i € Z we define an elementary sheaf of Ox-modules on X = Proj R, with total set
K;, by assigning, on basic open sets Uy where f is homogeneous,

9 | g € R is homogeneous and '
Us = {fm deg g —mdeg f = i for some m > 0 C Ki.

This sheaf is a line bundle and is denoted by Ox (7). In particular, Ox (1) is called the tautological line bundle on
Proj R. O
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We observe that as 1-dimensional vector spaces over Ky there are canonical isomorphisms
Ki® K; 2 K j, KY=K_,.
These translate into canonical isomorphisms between line bundles on X = Proj R:
Ox (i) ® Ox(j) = Ox(i+j),  Ox(i)~" = Ox(—i).
8.87 ExAMPLE. Consider projective space

P" = Proj R = Proj klzo,z1,..., %]

Here
_J9 |g,h € R are homogeneous poly-
Ki= {h nomials and degg — degh =i C k(@o, @1, ).
The dual Op(—1) of the tautological line bundle is in this case called the tautological line subbundle and can be

viewed as the line subbundle of the trivial vector bundle O;‘f (n+1) spanned by the element (zo,x1,...,zy,). More

precisely, this can be described in terms of the affine open sets U; = {z; # 0} C P™. On each U; = Spm R, o we

can consider the R, o-submodule L; C Ri{ﬁ*”

(2.2, 2) e G,

) ) .
T x; x; i

generated by

Since the ¢-th component is 1, it follows that L; is a direct summand isomorphic to R, o. On the overlaps U; NU;
the submodules L; and L; coincide, and hence they glue to a line bundle on P™. This line bundle is Op(—1). O

This example generalises to the Grassmannian G = G(r,n). Namely, the r rows of the matrix (8.1) determine
a vector subbundle F of rank r of the trivial vector bundle (’)g”. In terms of the affine open cover by sets

D(det X;) = {det X; # 0}/GL(r), the rows of (X;)~'X generate a submodule F; C O%E‘det x;)- This is a rank r

vector bundle on each affine open set, and glues to a vector bundle F C (’)g" on the Grassmannian, called the
universal subbundle on G(r,n).

(c) The Grassmann functor

We define an equivalence relation on data consisting of an R-module M and an ordered set of n elements
my,...,my € M by

(M;my,...,mp) ~ (M'sml,...,m!)

if and only if there exists an isomorphism f : M — M' taking each m; — m).

8.88 DEFINITION. The Grassmann functor Gr(r,n) is the functor from the category of rings to the category of
sets which assigns to a ring R the set

(M;my,...,m,) where M is alocally free R-
module of rank r generated by mq,...,m,

} /isomorphism
and assigns to a ring homomorphism f: R — S the set mapping
[M;my,...,my] = [M®gS;m ®1,...,m, ®1].

(See Lemma 8.53.) |

Although this functor is defined on arbitrary rings R, we will only be concerned, in what follows, with rings
containing the field k. What we want to show next anticipates (and serves as a model for) the discussion of
Chapter 11, and we refer the reader to Section 11.1(a) for the necessary definitions.

8.89 PROPOSITION. The functor Gr(r,n) is isomorphic to the functor G(r,n) associated to the Grassmannian
variety G(r,n).
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In the language of Chapter 11 one says that the Grassmannian G(r,n) is a fine moduli space for the Grassmann
functor (Definition 11.5). Before proving the proposition, let us first look at the relation between the functor
Gr(1,n) and the projective space P*~!. This functor assigns to a ring R an equivalence class of invertible
R-modules M equipped with n generators my,...,m, € M.

(1) Suppose that M is free, and choose an isomorphism M = R. This identifies my, ..., m, with ring elements
ai,.-.,a, € R, which define a partition of unity. So the ring homomorphisms for ¢ =1,...,n
T T T m;
k[—%...,—"]—)Rai, s
€X; xT; T my;

define, by passing to the spectra and gluing, a morphism
¢ :Spm R — P"L,

If we choose a different isomorphism M = R, then the ring elements aq,...,a, € R are multiplied by some
invertible element of R, and we obtain the same morphism Spm R — P"~!.

(2) More generally, M may not be isomorphic to R but is locally isomorphic, so we can choose a covering
{M,,} with each M,, = R,,. By (1) we obtain a morphism

@i : Spm R,, — P71
and the maps ;, p; coincide on Spm R,,,;. Hence by Proposition 8.33 we get a morphism ¢ : Spm R — pr—1,

What we have shown is that the functor Gr(1,n) assigns to a ring R a set which can be viewed as the set of
morphisms ¢ : Spm R — P"~!. Moreover, this has the property that the sheaf M on Spm is the pull-back of the
tautological bundle:

P Op(l) 2 M,

and the inclusion Op(—1) C OF™ pulls back to the inclusion of R-modules
(my,...,my,): MY — R®",

Proof of Proposition 8.89. First of all we note that if there is a morphism ¢ : Spm R — G(r,n), then this
will determine a vector bundle on Spm R which is the pull-back of the universal subbundle p*F C R®". By
Lemma 8.85, the dual vector bundle ¢*F" comes from a locally free R-module of rank r and the dual of the
inclusion in R® determines n generators my, ..., m, € M. This shows that there is a map of functors

G(r,n) = Gr(r,n), o " FY. (8.24)

We will construct the inverse of this map.
Let M be a locally free R-module of rank r. If M is free, then a chosen free basis mi,...,m, € M = R®"
can be represented as an r X n R-matrix, and so we obtain a map

Spm R — Mat(r,n).
Moreover, the composition of this map with the quotient by GL(r)
Spm R — Mat(r,n) — — — Mat(r,n)//GL(r) = G(r,n)

is a morphism independent of the choice of free basis. We denote this morphism by ¢ s,m-.
In general, if M is not free, then by gluing affine open sets on which the localisations of M are free an in the
discussion (2) above, we obtain a morphism

©M,m : Spm R — Mat(r,n) — G(r,n).

This is called the classification morphism of (M;m4,...,m,), and is characterised by the property that it pulls
back the universal subbundle F C (’)g” to the inclusion of R-modules MY — R®", Thus the map

gr(r,n)%G(r,n), (M;mlv---amn)'_)‘pM,m

is the inverse of (8.24). |
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(d) The tangent space of the functor

Given a ring R and a maximal ideal m C R, the quotient m/m? is a vector space ove the field R/m. Recall
that the dual space (m/m?)V is called the (Zariski) tangent space of R (or of Spm R) at m (Definition 4.19). If
R/m = k then tangent vectors of R at m are ring homomorphisms

f:R— Ek[t]/(?)

for which the composition R N k[t]/(#*) — K[t]/(t) = k coincides with the map R — R/m.
In what follows we shall write, as usual, € for the residue class ¢t mod > and k[e] = k[t]/(t?). (See Examples 3.25
and 4.31.)

8.90 DEFINITION. Given a functor
F : {rings over k} — {sets}

and an element z € F(k), we define the tangent space of F' at x to be

inverse image of z € F(k) under)
fal'= F(k[e).
(Fk[em:F(k[e]) — F(k) C F(k[e])

This has the structure of a vector space over k. (It is a straightforward exercise to prove this, and the reader may
consult Schlessinger [48]. However, for readers meeting these notions for the first time it is probably not a very
useful exercise, as in each application the vector space structure will be obvious from the context.) O

An algebraic variety (or, more generally, a scheme) X determines a functor
X : {rings} — {sets}.

(See Section 3.3(a).) Then, after taking an affine open cover of X, at each k-valued point z € X (k) the tangent
space T, X C X (k[e]) in the sense of Definition 8.90 coincides with the Zariski tangent space.

8.91 PROPOSITION. The tangent space to the Grassmannian G(r,n) at a point [U] € G(r,n) corresponding to
an r-dimensional subspace U C k™ is canonically isomorphic to Homy (U, k™ /U).

Proof. We will use the Grassmann functor Gr(r,n), though alternatively we could use an affine open cover of
G(r,n). To the point [U] € G(r,n) there corresponds an exact sequence of vector spaces

0-U—Ek"—>V =0, (8.25)

and a tangent vector at [U] is then an exact sequence of free k[e]-modules

05U =kl >V =0 (8.26)
whose reduction modulo (€) coincides with (8.25). Let w1, ..., u, € k™ be a basis of U, and let
uy + €vy, ..., up + €v, € kle]”
be a free basis of U as a k[e]-module. Since €2 = 0, it follows that eui,...,eu, € 17, and this is a basis of Ue.

This shows that the given tangent vector determines, via (8.26), a well-defined linear map
U—-V=k"/U, u; = v; mod U,

and this correspondence defines an isomorphism T} G — Hom (U, k" /U). a

Exercises

1. Show that for n > 3 the Hilbert series P,(t) of the semiinvariant ring k[Mat(2,n)]5"?) satisfies
Po(t™') + t"Py(t) = 0.

(See Proposition 8.4.)
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. Prove Proposition 8.37 by induction on the dimension of the total fraction module Q(M) as a vector space
over the field of fractions Q(R).

. Prove Corollary 8.38 by showing that a minimal system of generators is a free basis.

. For R-modules L, M, N show that
Hompr(M ®r N, L) = Homg(M,Hompg(N, L)).
(This says that the functors ® g N and Hompg (N, -) are adjoint.) Use this to give another proof of Lemma 8.55.

. Show that the Z-module M C Q consisting of rational numbers with square free denominator satisfies condition
(ii) of Proposition 8.47 but is not locally free. (The author learnt this counterexample from M. Hashimoto.)

. If Spm R is a union of disjoint open sets Uy, Us, show that Uy = D(e), Us = D(1 — e) for some idempotent

e? = e. (Note that an idempotent e decomposes the ring as R = Re ® R(1 — e).)

. Let M be a finitely generated module over a local integral domain (R, m). Show that if
dimp/m M/mM = dimgg) Q(M)

then M is a free module.

. Show that an invertible ideal a C R (see Example 8.61) is an invertible R-module.

. By considering the Z-similarity classes of 2 x 2 Z-matrices N satisfying

N? + 1191, = 0, N =TI, mod 2,

show that the imaginary quadratic field Q(v/—119) has class number 10. (That is, the group Pic O g has
order 10.)
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Chapter 9

Curves and their Jacobians

Every curve of genus g has associated to it a g-dimensional algebraic variety called its Jacobian. Analytically,
over the field of complex numbers, this is a complex torus C? /T'c where I'c is a lattice. Given a basis w1, ..., w,
of holomorphic 1-forms on the curve, I'c is the lattice of periods

rC:{</aw1,...,/awg> foraeHl(C,Z)}C@. (9.1)

There is a natural map from the curve C' to the Jacobian, and this extends to a map, called the Abel-Jacobi map,
from its group of divisors to the Jacobian. Classically one uses theta functions to show that the Jacobian is a
projective variety. However, in this chapter we will adopt a different approach, using invariants to construct a
projective variety whose underlying set is the Picard group of C' (Section 9.4), and then showing that over k = C
this variety agrees with the complex torus just described (Section 9.6).

The first three sections and Section 9.5 prepare the way for this construction. A nonsingular algebraic curve
is a variety whose local rings are all discrete valuation rings. This leads to the notion of order of pole of a rational
function at a point, gap values at a point and the vector space A(D) of rational functions with poles bounded by
a positive divisor D. The (arithmetic) genus is the number of gap values at any point. In Section 9.1 we discuss
these notions and prove Riemann’s inequality, which gives a lower bound for dim A(D) in terms of the genus.

The inequality itself is just a formal consequence of the definitions; however, its depth lies in the underlying
facts that the genus is finite and equal to the dimension of the cohomology space H'(O¢) (Section 9.2). We
show that line bundles on C correspond bijectively to linear equivalence classes of divisors, and in this language
A(D) = H°(O¢(D)) while the index of speciality i(D) is the dimension of H'(O¢(D)). Riemann’s inequality
becomes the Riemann-Roch formula (9.15) for L € Pic C,

dim H°(L) — dim H* (L) = deg L — 1 + g.

A variety X = Spm R is nonsingular at a point € X with maximal ideal m C R if the graded ring
groR = @m!/m'*t! is isomorphic to a polynomial ring. In Section 9.3, after explaining nonsingularity and
differential modules, we extend Theorem 5.3 on the separation of closed orbits to deal with infinitely close orbits.
An orbit G- C X is a free closed orbit if it is stable with trivial stabiliser; and we show that, if X is nonsingular
at all points of a free closed orbit, then the quotient X /G is nonsingular at the image point of this orbit, with
dimension = dim X — dim G.

In Section 9.5 we review duality and de Rham cohomology, and in the final section we show that over the
complex numbers our quotient variety is isomorphic to €9 /I'c. The key to this is Abel’s theorem.

9.1 Riemann’s inequality for an algebraic curve

Among algebraic varieties, the simplest are the curves, and we begin this section with some facts about affine
curves. Let R be a Noetherian integral domain, finitely generated over a field k, and we assume that Spm R has
more than one point. Then a maximal ideal m C R is nonzero, and so by Nakayama’s Lemma 8.23 applied to the
localisation Ry, the quotient m/m? is also nonzero.

189
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9.1 LEMMA. The following conditions on a maximal ideal m C R are equivalent.
(i) dimp)y(m/m?) = 1.
(ii) The localisation R, is a discrete valuation ring.

Before proving this we note that on passing to the localisation at m condition (i) is preserved, in the sense that
it implies mRy, /m? Ry, is 1-dimensional over the field Ry, /mR,,. Nakayama’s Lemma, in the form of Corollary 8.24,
says that if T spans this space, where 7 € mRy, m € m?Ry,, then 7 generates the maximal ideal mRy, C Rn.
Such an element 7 € mR,, is called a regular parameter at the maximal ideal m.

Proof. We shall prove (i) = (ii) and leave the converse to the reader. Given property (i), let 7 € mR,, be a
regular parameter.

Claim: The descending chain of ideals Ry, D mRy, = (1) D (7)? D (7)® D - -+ has intersection zero.

To prove this, suppose a € ﬂi>0(7r)i. Then for each n > 0 there is an element a,, € Ry, such that a = a,,7#". Each
a, = Ta,11, and so we have an ascending chain of principal ideals

(ap) C (a1) C (az) C (as) C ---

Since Ry, is Noetherian, (ay) = (an+1) for some N € N, and in particular ayy; = anb for some b € Ry,. This
implies that (1 — br)ay = 0. But 1 — br is invertible (it is outside the unique maximal ideal), and so ay = 0,
which implies that a = 0, proving the claim.

It follows from this that every nonzero element a € R,, has a unique expression ¢ = un™ for n > 0 and some
invertible element v € R,,. Hence the field of fractions Q(R) = Q(R.,) has the corresponding property that every
nonzero element a € Q(R) has a unique expression a = uzn" for some integer n € Z and element u € Q(R),
u € mRy. The map

M —_ n
vm: Q(R) = ZU {o0},  aws {Zo gz;g" #0
is then the required discrete valuation. O

9.2)

Since every variety X is constructed by gluing affine varieties, at each point p € X the stalk of the structure
sheaf Ox ; is a local ring by Example 8.76.

9.2 DEFINITION. A nonsingular algebraic curve over a field k is an algebraic variety over k such that at every
point p € C the local ring O¢,), is a discrete valuat, thenion ring. We denote by

vyt k(C) = Z U {0}

the valuation (9.2) at the point p € C. A rational function f € k(C) is regular at p if v,(f) > 0 and has a pole of
order n if v,(f) = —n < 0. m|

9.3 ExamPLE. Let C C A? be an affine plane curve f(z,y) = 0 having no singular points in the sense of
Definition 1.31. Then C' is a nonsingular algebraic curve.

To see this, we consider the maximal ideal of a point p = (a,b) € C' C A2, Thisism = (z —a,y —b) C k[z,y].
By hypothesis, the partial derivatives 0f/0x, df /0y do not both vanish at (a,b), and so f ¢ m%. Thus at each
point p € C, with maximal ideal m C O¢,,, the residue class of f spans a 1-dimensional kernel of the restriction
m/m? — m/m?. Hence

dimg m/m? = dim m/m? — 1 = 1.

Hence Ocp is a discrete valuation ring by Lemma 9.1. ad

In what follows we shall be interested in nonsingular algebraic curves C' which are projective. This means
that C' is embedded as a closed subvariety in projective space and is therefore complete by Corollary 3.60 (or by
Corollary 3.73).

9.4 LEMMA. Let C be a projective nonsingular algebraic curve. If a rational function f € k(C) is regular
everywhere, then it is constant. In other words,

{f €k(C)|vy(f)y>0forallpeC}=k.
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Proof. If f € k(C) is regular everywhere, then it determines a morphism C — A!. By Proposition 3.61, the
image is a closed set and therefore a complete affine variety. By Proposition 3.57, this image is a single point,
and so f is a constant function. a

From now on, unless indicated otherwise, a curve will always mean a projective nonsingular algebraic curve.
The simplest examples are projective plane curves

C:{f(z,y,2) =0} CP?,

defined by the vanishing of a homogeneous polynomial f(z,y,z) whose partial derivatives 0f/dz, 0f /0y, 0f [0z
have no common zeros in P2. (See Proposition 1.36.) As an exercise, the reader should note that nonsingularity
of a projective plane curve implies irreducibility.

(a) Prologue: gap values and the genus

Fix a point p on a curve C'. We say that a natural number n € N is a gap value at p € C' if there does not exist
any rational function f € k(C') which is regular away from p and has a pole of order n at p.

9.5 ExAMPLE. Let C = P! and p = oo € P'. The rational function field k(P') is the field of Laurent polynomials
f(z) in one variable, and a function regular away from oo is just a polynomial. The order of pole at oo is
n = deg f(z), and such polynomials exist for every n > 1. Hence there are no gap values. O

9.6 EXAMPLE. Let C be a 1-dimensional complex torus C/(Z + Z7), and let p = O € C be the origin. By
Liouville’s Theorem 1.44(ii) there are no meromorphic functions on C' holomorphic away from O and with only
a simple pole at O. On the other hand, the Weierstrass p-function is holomorphic away from O with exactly a
double pole at O, and by taking successive derivatives ', ", ... there is a function with exactly one pole of order
n at O for arbitrary n > 2. Hence the set of gap values in this case is {1}. O

9.7 ExamPLE. Let f(x) be a polynomial of degree 2¢g + 1 without any repeated roots. Then the nonsingular
algebraic curve obtained as the 1-point compactification

C: {y® = f(2)} U {oo}

of the affine plane curve y?> = f(z) is called a hyperelliptic curve. This is a 2-sheeted cover of the projective line
P! branched over the roots of f(z) = 0 and the point co € P!. (When k = C, this curve is the Riemann surface
of the 2-valued function /f(z).) The rational function z € k(C) has a double pole at co € C, while y € k(C)
has a pole of order 2g + 1 here. Both functions are regular at all other points. Since the function field k(C') is
generated by z,y, the set of gap values at co is exactly {1,3,5,...,29 — 3,29 — 1}. a

Figure 9.2: The gap values of y> =27 — 1

At a point p € C the gap values themselves depend on the particular point. (Though Examples 9.5 and 9.6
are exceptional in this respect. In both cases the curve is acted upon transitively by automorphisms, and so the
gap values happen, in these examples, to be the same at all points.) However, what turns out to be the case is
that the number of gap values is independent of the point, and that this number is equal to the genus of the curve
C (Corollary 9.21). Thus in the three examples above the genus is 0, 1, g, respectively.

We can interpret this number in the following way. Choosing a regular parameter t at the point p € C', each
rational function can be expanded about p as a Laurent series in ¢. Taking the principal part of this Laurent
series gives a linear map of vector spaces over k

f € k(C) such that

PPy : 4 va(f) 20 — k((t))/k[[t)] =t~ k[,
for all ¢ € C — {p}

The number of gap values at p is the dimension of the cokernel of this map. Now, not only is the number of gap
values independent of the point p € C, but in a certain sense the vector space coker pp, is also independent of
the point. This will become clear when we introduce the cohomology space H'(O¢) (see Section 9.2(a)).
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(b) Divisors and the genus

Our goal at this point is the Riemann-Roch Formula 9.29 for a line bundle on a curve, and we will approach this
in the way it was approached historically, using the language of divisors.

9.8 DEFINITION. The divisor group of a curve C is the free abelian group
Div C = P Zp
peC

generated by all the points of C. An element of this group
D= Z npp (finite sum)
peC

is called a divisor on C. a

The degree of a divisor D is defined to be the sum of its coefficients deg D = EpEC np, and D is a positive
divisor, written D > 0, if n, > 0 for all p € C. If the difference of two divisors D — D' is positive, we write
D>D'.

9.9 DEFINITION. (i) Given a discrete valuation ring R, v : Q(R) — Z U {oo} and integer n € Z we set
R(nv) :={z € Q(R) | v(z) + n > 0}.

For example, R = R(0) D R(—v) D R(—2v) D --- and R(—v) is a maximal ideal in R.
(ii) For the valuation vy, of the local ring O¢ , at a point on a curve C' we write simply Oc¢ p(np) := Oc p(nvy).

Then for a divisor D =} - nyp we define

A(D) = () Ocp(npp) = {f € K(C) | vp(f) +np >0 forall peC}.
peC

In other words, A(D) is the set of rational functions on C' with orders of poles bounded by the coefficients
of the divisor . ad

The following facts are clear.

(I) A(D) is a vector subspace of k(C) over k.
(IT) If D > D', then A(D) D A(D').
(III) A(0) =k (by Lemma 9.4).
(IV) For any point p € C we have dim A(D + p)/A(D) < 1.
(V) For any positive divisor D,
dim A(D) < deg D + 1. (9.3)

(This follows inductively from (IV), starting from (III).)

Note that for any divisor D € Div C there exists some positive divisor D’ such that D' > D. From properties
(IT) and (V), therefore, we deduce:

9.10 LEMMA. For all D € Div C the vector space A(D) is finite-dimensional. ad

The difference between the two sides of the inequality (9.3) is an important quantity, which we will denote by
j(D) :=deg D+ 1 —dim A(D). (9.4)

The following is one of various ways to define the genus of a curve.
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9.11 DEFINITION. For any curve C' the supremum taken over positive divisors:

g:=supj(D) €{0,1,2,...,00}
D>0

is called the (arithmetic) genus of C. o

In this language, a gap value at a point p € C is a natural number n € N for which A(np) = A((n — 1)p).
Hence the number of gap values p € C is given by:

<number of gap ) = sup j(np) < g. (9.5)

values at p € C n>0

Next, by the same reasoning as for (9.3), we note that if D > D', then
dim A(D) < deg(D — D') + dim A(D")

and hence:
D>D' = j(D)>j(D) (9.6)

Since every divisor is bounded above by a positive divisor, this shows that the positivity condition in Definition 9.11
can be dropped and the supremum taken over arbitrary divisors. That is:

g= sup j(D). (9.7)
DeDiv C
In particular, this implies
dimA(D) > degD +1—g forall D € Div C. (9.8)

This is called Riemann’s inequality, once we have proved the following:

9.12 THEOREM. The genus g of a curve is finite.

(c) Divisor classes and vanishing index of speciality

We are going to prove Theorem 9.12 in the next section. For the moment we will assume its validity and examine
the divisors on a curve a little more closely. The set of divisors is a slightly artificial object, but it contains a
distinguished subset which reflects very closely the world of rational functions on the curve.

9.13 DEFINITION. (i) For each nonzero rational function f € k(C) we define a divisor

(f):=>_ vp(f)p € Div C.

peC

This is called a principal divisor.
(ii) The set of all principal divisors {(f) | f € k(C) — 0} is a subgroup of Div C, and the equivalence relation
modulo this subgroup is called linear equivalence.
(iii) The quotient group
Cl C := Div C/{principal divisors}

is called the divisor class group of the curve. a

9.14 REMARK. This is the analogue for the function field k(C) of the divisor class group of an algebraic number
field (Section 8.4(a)). The analogue of Proposition 8.65 will be Proposition 9.34. |

If two divisors D, D' are linearly equivalent, then they differ by a principal divisor D — D" = (h), h € k(C),
and the map f +— fh defines a linear isomorphism A(D') = A(D). In particular, dim A(D) = dim A(D'), and so:

9.15 LEMMA. The dimension of A(D) depends only on the divisor class of D. O
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9.16 DEFINITION. For a divisor D € Div C the number
i(D):=g—j(D) =dimA(D)—degD—-14+g>0

is called the indez of speciality of D. a

Note that by (9.6),
D>D" = i(D)<iD). (9.9)

9.17 LeEMMA. If divisors D, D" are linearly equivalent, then i(D) = i(D").

Proof. From (9.7) and (9.4),

i(D) dimA(D) —degD + sup {degF — A(F)}

FeDiv ¢

dimA(D) + sup {deg(F — D) — A(F)}.
FeDiv C

As F ranges through all divisors, so does F' — D, and so

i(D) = dimA(D) + sup {degF — A(D + F)}. (9.10)
FeDiv C

If D,D’ are linearly equivalent, then D + F, D’ + F are linearly equivalent, and hence Lemma 9.15 implies
i(D) = i(D"). O

9.18 COROLLARY. If divisors D, D' are linearly equivalent, then deg D = deg D'. a

We will give two sufficient conditions for i(D) = 0. The first is in terms of the degree of D. Note that by
Definition 9.16, if deg D < g — 1, then i(D) > 0. This condition is sharp in the following sense:

9.19 LEMMA. There exists a divisor D.,, with
deg Dyan = 9 — 1, i(Dyan) = 0.

Proof. Theorem 9.12 implies the existence of some divisor D with i(D) = 0. If A(D) = 0, then, by Defini-
tion 9.16, deg D = g — 1, and so it suffices to take Dy, = D. So assume that deg D > g — 1 and A(D) # 0. This
means we can find a nonzero rational function f for which (f)+ D > 0. Choosing a point p € C at which f(p) # 0
we have f ¢ A(D — p), and so A(D)/A(D — p) = k. This implies j(D — p) = j(D), and so i(D — p) = (D) = 0.
We now repeat the argument, subtracting points n = deg D — g + 1 times to obtain

ADD—=pi—-=pn)=iD—p1——pn) =0.

We then take Dyan = D —p1 — -+ — pp. -

This has the following important application, complementary to Riemann’s inequality (9.8). In fact, its proof
works for singular curves as well.

9.20 VANISHING THEOREM. IfdegD > 2g — 1, then i(D) = 0 and
dim A(D) =degD — g+ 1.

Proof. We apply Riemann’s inequality (9.8) to the difference D — Dy,,, where Dy,, is the divisor constructed
in Lemma 9.19. This says, since deg(D — Dyay) > g, that A(D — Dyapn) # 0. Thus D is linearly equivalent to
Dyapn + F for some positive divisor F' > 0. Hence by (9.9) and Lemma 9.17 we see that i(D) = 0. o

We have seen in (9.5) that the number of gap values at a point p € C' is the supremum of j(np) for n > 0, and
that this supremum is at most g. But if n > 2¢g—1, then the vanishing theorem implies that j(np) = g—i(np) =g,
and so we arrive at:
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9.21 COROLLARY. At any point p € C' the number of gap values is equal to the genus of C. In particular, this
number does not depend on the point. a

The second sufficient condition for the vanishing of i(D) is that A(D) has big enough dimension:
9.22 LEMMA. Ifdim A(D) > g, then i(D) = 0.

Proof. Suppose, for a contradiction, that i(D) # 0, and fix a point p € C. Then i(D +p) is equal either to (D)
or to i(D) — 1, and so it must happen that i(D + np) = 1 for some n > 0. The divisor D' = D + np then satisfies
dim A(D’) > dim A(D) > g and i(D') = 1. On the other hand, by Theorem 9.20, we must have deg D' < 2¢g — 2.
By Definition 9.16, therefore,

dimA(D") =degD'+1—g+i(D") <g.

9.2 Cohomology spaces and the genus

In this section we are going to interpret the genus of a curve C' as the dimension of a certain cohomology space,
and deduce from this its finiteness (Theorem 9.12). In fact we shall do the same also for the index of speciality
i(D) of a divisor (see (9.13)).

(a) Cousin’s problem

We first consider, at a given point p € C, the quotient module £(C)/Oc¢,, over the local ring O¢, (Definition 9.9).
Let t, € m,;Oc,p be a regular parameter. We can identify k(C') = Oc p[t;'] (this is localisation at ¢, in the sense
of Example 8.21), and the elements

toh % e k(O)

can be viewed as a basis of k£(C)/Oc¢,p, as a vector space over k. In other words, every rational function f € k(C)
uniquely determines coefficients ¢_1,¢_»,...,c_n such that

N
f= Zc,it;i mod Oc,p.
i=1

This residue class of f in k(C)/O¢ , is called the principal part (or singular part) of the function f at p € C.

CousiN’s PROBLEM: Given Cousin data consisting of finitely many points p1,...,pm € C and a principal part
a; € k(C)/Oc¢,p, at each point, when does there exist a rational function f € k(C) satisfying f = a; mod Oc p,
at all of the points?

(This is also known as Cousin’s first problem, or as Mittag-Leffler’s problem.)

For C = P! it is easy to see, using a global coordinate, that such a function always exists. The same is true
for any affine curve C' € A™ (Exercise 9.4). And for a single point p € C, Cousin’s problem corresponds to the
problem of computing the gap values at p (Section 9.1(a)).

A different sort of example is the following.

9.23 ExAMPLE. Consider the field of meromorphic functions on the complex plane C, doubly periodic with
respect to a lattice I' = Z2. (See Section 1.5.) By Liouville’s Theorem 1.44(ii), the space of functions having a
simple pole at each of two cosets p+ v and ¢+ T and holomorphic elsewhere is 1-dimensional (Exercise 9.3). Thus
the Cousin problem for simple poles at p,q € C/T" cannot in general have a solution. O

The key tool for solving Cousin’s problem is the notion of cohomology. We will think of the Cousin data
Eal, ... ,an)) as an element of the infinite direct sum @pec k(C)/Oc p, called the principal part space of C
Figure 9.3).
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9.24 DEFINITION. The linear map
pp : k(C) = @ k(C)/Oc,

peC
which assigns to a rational function its principal part at each point of the curve is called the principal part map
on C. Its cokernel
H*(O¢) = coker pp

is called the cohomology space of the structure sheaf O¢ (or of C with coefficients in the sheaf O¢). a

Figure 9.3: The principal part space
Thus Cousin’s problem is equivalent to that of computing H'(O¢).

9.25 PROPOSITION. The dimension over k of the cohomology space H'(O¢) is equal to the genus g of the
curve C'.

Proof. Given a positive divisor D = ZpEC npp, we consider the ‘truncated’ principal part map

ppp : A(D) = @) Ocp(np) /Oy =: Op (D). (9.11)
peC

The kernel is the field of constant functions k. The dimension of Op(D) is >
has dimension equal to j(D). On the other hand, the diagram

AD) - Op(D)
N N

k(C) — @pec k‘(C)/Oo’p

commutes, so that there is an injective linear map

pec tp = deg D, and so coker ppp

coker pp, < coker pp = H'(O¢).
Now, H*(O¢) is the union of the images of coker ppy, as D > 0 ranges through all positive divisors, and hence

dim H'(O¢) = sup dim coker pp,, = sup j(D) = g,
D>0

D>0
by Definition 9.11. a
We note from this proof that
H'(O¢) = [l)i% coker {ppp : A(D) = Op(D)}. (9.12)

9.26 REMARK. One can also consider a multiplicative version of Cousin’s problem. We define an elementary
sheaf O with the multiplicative group k(C')* of nonzero rational functions as its total set, defined on open sets
U c C by
Of : U ~ { regular nowhere vanishing functions on U }.
At each point p € C the stalk (’)é’p is the group of invertible elements in O¢ . We then have a ‘multiplicative
principal part map’
§:k(C) = @ K(C)* /O,
peC
and we define H! (Of) to be coker §. What is the analogue of Cousin’s problem in this case? At each point p € C'
a valuation gives an isomorphism of k(C)* /O p With Z. Thus the direct sum above is nothing other than the
divisor group Div C, and the map J assigns to a function f € k(C)* its principal divisor (f) (Definition 9.13).
In particular,

H'(0%) =ClC.

Figure 9.4: Multiplicative principal parts and divisors
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(b) Finiteness of the genus

In the expression (9.12) for the cohomology H'(O¢) we take a limit over positive divisors as more points are
added or, equivalently, as the coefficients over C' go to infinity. However, the next proposition shows that the
group can be computed by a limit using just one fixed divisor.

9.27 PROPOSITION. Let D be a positive divisor in C' and suppose that the complement of its support U = C'— D
is affine. Then

1 .
H' (O¢) = coker @ k(C)/Ocp ¢ = JLH;O coker pp,,p-
pEsuppD
In particular, the genus is given by g = sup,,»q j(nD).
In fact, one can show that the assumption that U is affine is unnecessary, as this is always the case. This is
essentially an exercise using Theorem 9.20.

Proof. We decompose the principal part space as
@ k(C)/Ocp @ k(C)/Oc,q
pEsuppD qeU

Since U is affine, the map k(C) = €,cr; k(C)/Oc,q is surjective (that is, Cousin’s problem for an affine curve
always has a solution) and its kernel is the coordinate ring k[U] = O¢/(U). Hence, by Definition 9.24,

H*(O¢) = coker @ E(C)/Ocyp
pEsuppD
Now since -
= [JA(nD) and, by (9.11), P kC)/Oc, = U Onp(nD),
n=1 pEsuppD n=1
we obtain the limit in the propostion. a

Proof of Theorem 9.12. We consider a fixed embedding of C' in some projective space P". Let H C P"™ be
a hyperplane and CNH =: D = p; + -+ - + pg its intersection with C'. For simplicity we will assume that this
intersection is transverse. (There always exists a transverse hyperplane section in this sense (see Exercise 9.5);
though in fact this assumption is not essential in the proof that follows.)

Figure 9.5: A space curve

We take homogeneous coordinates (zg : 1 : ... : z,) for which H has equation zo = 0. For each intersection
point p; we can find another hyperplane, defined by some linear form [;(z), passing through p; but not through
the remaining d — 1 points. The ratio [;(x)/zo defines a rational function on C' belonging to the space A(D). We
consider the product

;= o) lf”z L@ ¢ \((@=1)D).

T

The function f; has a pole of order d — 1 at p; and at each p;, j # i, a pole of order at most d — 2. Together,
therefore, fi,. .., fq generate A((d—1)D) modulo A((d—2)D). Next we introduce a hyperplane not containing any
of the points py,...,p4, defined by a linear form I(z), and consider the rational function fy € k(C) determined
by the ratio I(x)/zo. This has a simple pole at each p;, and for a € N the functions f§f1,..., f§fs generate
A((d — 1+ a)D) modulo A((d — 2+ a)D). It follows (denoting the affine open set C' — D by U) that

coker @ E(C)/Oc,p = U Onp(nD)

pEsuppD n=1
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coincides with the cokernel of
PP(q—2)p : A(d —=2)D) = O@—2)p((d - 2)D),

and in particular it is finite-dimensional. By Proposition 9.27 this shows that H'(O¢) is finite-dimensional. O

9.28 EXAMPLE. A nonsingular plane curve C' C P? of degree d has genus
g=1(d—1)(d-2).

To see this, we choose homogeneous coordinates so that the line o = 0 intersects C' transversally in d points
P1,-..,pa- The complementary open set is an affine curve Cy : {f(z,y) = 0} C A2, taking zo = 0 as the line at
infinity. Letting D = p; + - - - 4+ pg, we have

A(nD) = {polynomials h(z,y) with degh < n}
~ {polynomials f(z,y)h(x,y) with degh <n —d}’

Hence, if n > d, then
dimA(rD) = ifn+1)n+2)—t(n+1-d)(n+2-d)
= nd—d(d-3).

So j(nD) =degnD +1—dimA(nD) = (d — 1)(d — 2)/2, and the genus formula follows from Proposition 9.27. O

Figure 9.6: The genus of a plane curve

Generalising the cohomology space H'(Oc¢), for any divisor D = ZpEC npp € Div C' we define

H'(Oc/(D)) = coker { k(C) = €D k(C)/Oc,p(npp) ¢ - (9.13)
peC

Note that the kernel is A(D). The cokernel can also be expressed as the limit, taken over positive divisors
F = ZpEC mpp € Div C,

H'(Oc(D)) = lim coker § A(F + D) = €D Ocyy(my +1y)p) [Ocp (myp)
B peC

Its dimension is therefore equal to the index of speciality i(D) (see (9.10)). Substituting into Definition 9.16 we
arrive at:

9.29 RIEMANN-ROCH FORMULA. (WEAK FORM.)
dim A(D) — dim H'(Oc(D)) = deg D + 1 — g.
a
We will write Riemann-Roch in the language of line bundles in (9.15) below. Historically, the formula was

written
dim A(D) —dimA(K¢ — D) =degD+1—g

(the ‘strong form’). We shall discuss the divisor K¢ in Section 9.5 and more general Riemann-Roch theorems in
Chapter 12.
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(c) Line bundles and their cohomology

A divisor on a curve C is an object analogous to a fractional ideal in an algebraic number field K (Definition
8.64); and just as a fractional ideal determines an invertible Og-module, and hence a line bundle on Spm O
(Definition 8.78 and Lemma, 8.85), so each divisor on the curve C' determines a line bundle on C.

9.30 DEFINITION. Given a divisor D =3 _, npyp € Div C, the assignment

peC
(open set U C C) ﬂ Oc,p(npp)
peU

defines an elementary sheaf with total set k(C'), which is denoted O¢ (D). o

Note that D > D' if and only if Oc(D) D Oc(D'). In particular:
D>0 < 0O¢CO¢(D) < Oc(-D)cCO¢.

Moreover, Oc(D) = Oc(D’) if and only if D, D' are linearly equivalent; and, in particular, Oc(D) = O¢ if and
only if D is a principal divisor.
It is clear that O¢(D) is a line bundle (Definition 8.82), but in fact the converse is also true:

9.31 LEMMA. Every line bundle with total set k(C) is O¢/(D) for some D € Div C.

Proof. Let L be a line bundle on C' and consider the stalk L, at a point p € C. Let ¢, be a regular parameter
at p. Then L, is an O¢ py-module of rank 1 contained in k(C), and so it can be identified with ¢;Oc ) for some
n =:n, € Z. Then, on some sufficiently small open set U C C' containing p, Ly is the same as t;Oy. Consequently,
np = 0 except at finitely many points, and so L determines a divisor D = — ) n,p. By construction, L and
Oc (D) have the same stalk at all points of the curve, and so they are equal. O

Of course, any 1-dimensional vector space over k(C) is isomorphic to k(C'), so we have proved:

9.32 COROLLARY. Every line bundle on a curve C' is isomorphic to Oc(D) for some D € Div C. O

Although this corollary appears to reduce the notion of a line bundle on a curve to the simpler idea of a
divisor, line bundles remain nevertheless an important tool. Indeed, the key advantage of line bundles is that
the total set, as a sheaf, is not restricted to be k(C'). The tautological line bundle on projective space is a
good example (Definition 8.86), as is the canonical line bundle ¢, which will enter the story a little later (in
Section 9.5). It is possible to develop the theory of curves without line bundles, using only divisors, but this leads
to an unnecessarily constricted view of the subject.

9.33 DEFINITION. The degree of a line bundle L € Pic C is defined to be deg D, where L = Ox (D). a

It follows from Corollary 9.18 that this definition is independent of the choice of divisor used. Moreover, from
the isomorphisms
Oc(D) ® Oc(D') =2 Oc(D + D'), Oc(D)™! = Oc(-D), (9.14)

it follows that the degree satisfies
deg L® M = deg L + deg M, deg L' = —deg L.

The isomorphisms (9.14) say that assigning to a divisor on C its associated line bundle defines a group homo-
morphism
Div C — Pic C, D — O¢(D).

Since O¢(D) = O¢ if and only if D is a principal divisor, we have the analogue of Proposition 8.65 for a function
field:



bl S~ isLLALE £ ALEL Ve VL ALDY AW 44T A ALV e AV A AeSRL AL TS

9.34 PROPOSITION. The Picard group of a curve is isomorphic to its divisor class group,

PicC = ClC.

Given any vector bundle E on C, its space of global sections is defined to be
HY(E) := () Ep C Egen-
peC

For example, in the line bundle case H°(O¢ (D)) = A(D). An element of the stalk Ege, is a rational section of
the bundle, and assigning its principal part at each point of the curve gives a prinipal part map which is a linear
map of vector spaces over k,

ppE : Egen — @ Egen/Ep-
peC

By definition, ker ppy = H°(E), and we define
H'(E) := coker ppp,

called the cohomology space of E. In the case E = O¢(D), this is the same as the cohomology H'(Oc¢ (D))
already defined. The Riemann-Roch Theorem 9.29 therefore takes the form

dim H°(L) —dim H' (L) = degL — 1 +¢g (9.15)

for any L € Pic C.
The following fact is clear from the definition.

9.35 LEMMA. If a homomorphism of vector bundles E — F' is surjective (Definition 8.81), then the induced
linear map H'(E) — H'(F) is surjective. m]

Given a divisor D and a vector bundle E, the tensor product E(D) := E ® O¢(D) is another vector bundle
having the same total set as E. The stalk Ege, is the inductive limit (that is, the union) of H°(E(D)) as D
ranges over all positive divisors. Suppose that f € FEge, is a rational section contained in H°(E(D)), where
D =3 ccnpp > 0. Then its principal part ppg(f) is contained in

@ Ey(npp)/ Ep, where Ey(npp) := Oc,p(npp) - Ep.
peC
Denoting this vector space by E(D)/E, the principal part map restricts to
PPE.p : H°(E(D)) - E(D)/E,
assigning to each rational section of E with poles bounded by the positive divisor D its principal part. Then the

linear map coker ppp p — H'(E) is injective, and H'(E) is the limit

HY(E) = [l)ig}) coker ppp p = [E;JO coker ppg p- (9.16)

Finally, a linear map of vector bundles £ x F' — (G induces a commutative diagram:

H(E) X Fyen - Ggen
! 4

HO(E) x D cc Feen/Fp = Do Geen/Gop
Taking the vertical cokernels gives a linear map
H°(E) x H'(F) —» HY(G), (9.17)

called the cup product in cohomology.
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(d) Generation by global sections

Let L be a line bundle on C and let s € H°(L) be a global section. We choose a neighbourhood U C C of p and
an isomorphism ¢ : L|y = Oy. Via ¢ the restriction s|y maps to an element of O¢(U), and, in particular, takes
some value ¢(s)(p) € k. This value taken at the point p depends on the choices of U and ¢ made, but whether or
not ¢(s)(p) is zero, and indeed the order of zero at p, depend only on p and the section s. The order of vanishing
of the function ¢(s) at p is called the order of s at the point p € C and denoted ord,(s).

9.36 DEFINITION. (i) Given a nonzero section s € H°(L), we define a positive divisor (s)g := > pec(ordy(s))p,
called the divisor of zeros of s.

(ii) The set of points p € C contained in the support of (s)o for all nonzero sections s € H°(L) is called the

base point set of the line bundle L. If this set is empty, we say that L is base point free. a

Let {s1,...,5n} be a basis of H°(L) and consider the linear map of vector spaces over k(C),
k(c)@n_)Lgena (fla---:fn)’_>f131+"'+fn3n-

This determines, as the map on the stalks at the generic point, a sheaf homomorphism (’)g” — L. This can be
expressed in basis independent terms as

evy : HO(L) Qr Oc — L,
called the evaluation homomorphism for the line bundle L.

9.37 PROPOSITION. The following conditions on L € Pic C are equivalent.
(i) L is base point free.
(ii) The evaluation homomorphism is surjective. That is, at every point p € C the induced O¢ p-module
homomorphism on stalks H°(L) @y, Oc,, — L, is surjective.

Proof. (i) is equivalent to saying that H°(L) — L,/m,L, is surjective at all points, and this is equivalent
to (ii) by Nakayama’s lemma. o
A line bundle L € Pic C enjoying property (ii) is said to be generated by global sections.
9.38 PROPOSITION. If deg L > 2g, where g is the genus of the curve, then L is generated by global sections.

Proof. Given any point p € C, we have deg L(—p) = deg L — 1 > 2g — 1, so that by Theorem 9.20 the line
bundle L(—p) has vanishing cohomology. Hence, from (9.16), for every positive divisor D > 0 the principal part
map

PP1(—p),p : H(L(D —p)) = L(D — p)/L(—p)

is surjective. In particular, we see by taking D = p that p is not a base point. a

9.3 Nonsingularity of quotient spaces

In this section we introduce differential modules and give a general definition of nonsingularity. We show that
the nonsingularity of a free closed orbit under a group action is passed down to the quotient variety. Differential
modules on a curve will also play an important part in the discussion of duality in Section 9.5.

(a) Differentials and differential modules

Let k be an algebraically closed field and K a finitely generated extension field of k. A k-linear map ¢ : K — K
obeying the Leibniz rule

V(fg) = fo(g) +gv(f)  forall fge K

is called a derivation of K over k. The set of derivations is a finite-dimensional vector space over K denoted
by Q) Ik and its dual space g/ is called the space of differentials of K over k. Its dimension is equal to the
transcendence degree of the extension:
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(See, for example, Eisenbud [61] §16.5.) By definition, the space of differentials comes with a k-linear map
dK K — QK/ka
which takes f € K to the evaluation functional ¢ — ¥(f). This map satisfies

drx(fg) = fdrxg + gdx f for all f,g e K.

Every derivation is a composition K %, 0 Kk — K for some linear map Qg — K.

There are two important variations of this idea. Let R be a finitely generated integral domain over k. Then
we can consider derivations of R taking values in the field of fractions of R, and in the residue field at a maximal
ideal m C R, respectively:

Y:R—Q(R)  satisfying ¢(fg) = fo(g) + gv(f), (9.18)

v:R— R/m=k  satisfying ¢(fg) = fi(g) + g¢(f). (9.19)

In the first case, derivations (9.18) are in one-to-one correspondence with derivations of the field Q(R) over k.
Those of the second case (9.19) are elements of the Zariski tangent space (m/m?)V at the maximal ideal (see
Definition 4.19 and Section 8.5(d)). This can be seen as follows. The residue ring R/m?, as a vector space over
R/m = k, has a direct sum decomposition R/m? = k1®m/m?, and projection on the second summand determines
a k-linear map

dm : R — R/m? — m/m?

It i% easy to check that this obeys the Leibniz rule, and every derivation (9.19) can be expressed as a composition
R ™ m/m? - k for some linear form (Zariski tangent vector) v € (m/m?)V.

9.39 DEFINITION. Let R be a finitely generated algebra over k and let I be the kernel of the multiplication map
R®,R— R, a®b— ab.

Then the R-module Qg := I/1? is called the (Kdhler) differential module of R. O

If S C R is a multiplicative subset, then it is easy to verify that
QS*lR/k EsilﬂR/k. (9.20)

Also, the k-linear map
dr : R = Qg a—a®l-—1®a mod I?

satisfies the Leibniz rule, and dg is universal for linear maps R — M (where M is an R-module) obeying the
Leibniz rule. In particular, we have the following.

9.40 PROPOSITION. (i) The total fraction module Q(Q2r) (see Section 8.2(a)) is isomorphic to Qg (g)-
(ii) At a maximal ideal m C R, the quotient Qr/mQp is isomorphic to the Zariski cotangent space m/m?. O

When R is an integral domain, Q(Q2g) is a vector space over Q(R) of dimension equal to the transcendence
degree of Q(R)/k. On the other hand, by localisation at m we see that Q(€2g) is spanned by dimj(m/m?) elements,
and so:

dimg (m/m?) > Tr.deg Q(R)/k. (9.21)

(This is still true if R is not an integral domain, but we will not go into this.)
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(b) Nonsingularity

Given a ring R and an ideal I C R, the direct sum

= I R I I? [
gr,R = @Im:? EOFOFO (9.22)

is a graded ring with the natural multiplication.

9.41 DEFINITION. A Noetherian ring R is regular at a maximal ideal m C R if gr,R = @2, m!/m'*! is
isomorphic to a polynomial ring over the residue field R/m. a

We now return to the situation where R is finitely generated over the field k. Let ay,...,a, € m be a basis,
modulo m?, of m/m?, and consider the ring homomorphism

klzi,...,zn] = R, T Q.
Then, for every [ > 0, the induced map
klz1,...,x0)/(x1,. .., 20)" = R/m!

is surjective, and so regularity of R at m means that this is an isomorphism for every [ > 0. In particular, the
completion of R at m is isomorphic to the formal power series ring;:

E[[z1,...,2,]] S R := lim R/m!.

By Krull’s intersection theorem (see, for example, Eisenbud [61] §5.3) (), m'Ry = 0, so the map Ry, — R is
injective. In particular, it follows that Ry, is an integral domain.

9.42 DEFINITION. (i) A point p € X in a variety X is a nonsingular point if it is contained in an affine open
set Spm R C X, where R is an integral domain over k regular at the maximal ideal m C R corresponding

to p.
(i) A set {a1,...,a,} C m whose residue classes define a basis of the Zariski cotangent space m/m? is called
a reqular system of parameters at m. O

This generalises the definition of one regular parameter following Lemma 9.1.

9.43 EXAMPLE. The polynomial ring k[z1, ..., z,] is obviously regular at all maximal ideals, and therefore affine
space A" is nonsingular at all points. Consequently, any variety obtained by gluing affine open sets isomorphic
to A™ is also nonsingular everywhere. Projective space P* and Grassmannians G(r,n) are examples. a

If R is regular at a maximal ideal m, then a regular system of parameters ay,...,a,, € m is algebraically
independent over k, and hence equality holds in (9.21). In particular, if R is regular at all maximal ideals, then
by Proposition 9.40 and Exercise 7.7 the differential module Qg is locally free.

9.44 DEFINITION. A variety X is nonsingular if it is nonsingular at all points. If X is covered by affine open
sets Spm R, then by (9.20) the locally free modules Q. glue together to determine a vector bundle Qx, called
the cotangent bundle of X. a

We will give a functorial characterisation of nonsingular varieties. Consider as an example the case of the affine
space X = A" = Spm S, where S = k[z1,...,z,]. We can observe that for any ring homomorphism ¢ : S — A
and any surjective homomorphism f : A" — A there exists a homomorphism ¢’ : S — A’ such that the following

diagram commutes:
AI

lift o' | f surjective

S X4
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The map ¢’ is called a lift of ¢. The existence of this lift means that the map from A’-valued points to A-valued
points of X induced by f,
X(f): X(A") = X(A4), (9.23)

is surjective (see Section 3.3(a)). A nonsingular variety is one which has this property whenever A, A’ are Artin
local rings:

9.45 DEFINITION. An Artin ring (over k) is a finitely generated ring containing k& which satisfies the following
equivalent conditions.

(i) R is finite-dimensional as a vector space over k.

(ii) R has only finitely many maximal ideals, and these are all nilpotent. O

9.46 LEMMA. Every Artin ring has a decomposition as a direct sum of Artin local rings. |

(See Exercise 9.1.) The next result is the main tool that we will use later for proving nonsingularity of our
moduli spaces.

9.47 PROPOSITION. For a variety X the following properties are equivalent.
(i) X is nonsingular.
(ii) For any surjective homomorphism of Artin local rings f : A" — A the map (9.23) is surjective.

Proof. We will prove (ii) = (i) in the case X = Spm R. Choose elements z1,...,z, € m giving a basis of
m/m?, and consider a polynomial ring k[yi, ..., y,]- We can construct a ring homomorphism

ot Rjm? = k[y1, .-, unl/(W1s- - yn)?
by mapping residue classes T; — ¥;. We now apply condition (ii) to the projection homomorphisms
A =y, ynl/ s yn)t = A= Ry, Y]/ (e, )P
This tells us that for every natural number I € N the homomorphism s extends to a homomorphism

pus RIm' = klys, . ynl /(0 - 9n)'s

and hence 7y, ..., T, are algebraically independent in gr R. |

(c) Free closed orbits

Suppose that a linearly reductive algebraic group G acts on an affine variety X. In Chapter 5 it was shown
that any two distinct closed orbits O; # O are separated by the invariants of the G-action (Theorem 5.3 and
Corollary 5.4). To show that the quotient variety is nonsingular, we need to extend this result to the limit as O
and Os approach infinitely close to each other.

9.48 DEFINITION. A closed orbit G -2 C X is called a free closed orbit if the map G — G -z, g — g -z is an
isomorphism. Equivalently, the orbit is stable (Definition 5.12) with trivial stabiliser subgroup. |

Let X = Spm R and let I C R be the ideal of the orbit G - C X. Then [ is invariant under the coaction
p: R — k|G] ®; R.

(That is, u(I) C k[G] ® I.) The coaction therefore induces a map R/I — k[G] ®; R/I, and for a free closed
orbit this is isomorphic to the coproduct k[G] ®y, k[G] — k[G]. We want to consider the map

I/I? > K[G] ®, I/ T2

induced by p. Via the above isomorphism, this is a homomorphism of k¥[G]-modules. On the other hand, I/I? is
also a representation of G and is therefore a k[G]-module equipped with a G-linearisation (see Definition 6.23).
The next lemma shows that I/I? is isomorphic to (I/1?) ®y, k[G].
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9.49 LEMMA. A k[G]-module M having a G-linearisation is free. More precisely, any basis of the space of
invariants MY is a free basis of M as a k|[G]-module.

Proof. Let v : M — k[G] ® M be the coaction of G on M. This is a homomorphism of k[G]-modules. Define
a linear map
o k[G] @, M — k[G] @, M, a®@m— pg(a) - (1®m).

If i : kE[G] — k[G] is the coinverse map, then
ogo(i®1ly)oo

is an isomorphism, and in particular it follows that ¢ is an isomorphism. Let pug.q = (pg ® 1) o ug : k[G] —
k[G] ® k[G] ® k[G]. Then by the same reasoning as for o, the linear map

T: kGl ® k[Gl ® M — k[G] ® k[G] ® M, a®@b@m— puggla)(l®b®m)
is also an isomorphism. We now define a map f by the commutative diagram

M L kG oM
I Lo

M 5 kG oM

and apply Lemma 8.39. By the associative law for the (co)action f satisfies the conditions of the lemma, while
o(My) = M. Hence
MC @ k[G] = M

is an isomorphism. O

We now apply the linear reductivity of G to the surjective linear map of representations I — I/I?. This,
together with Lemma 9.49, implies that there exist G-invariant elements fi,..., f. € I¢ which form a free basis
modulo 12, where r is the rank of I/I? as a k[G]-module. By Nakayama’s lemma (or, more precisely, by the
matrix trick used in its proof) fi,..., f. generate I in some neighbourhood of the orbit G - z, in the sense that
there exists b € R, congruent to 1 modulo I, such that the homomorphism of Rjp-modules

Ry@--- @Ry > IRy,  (g1,--,9)) »ufi+ -+ g fr (9.24)
is surjective.
9.50 LEMMA. There exists b = 1 mod I, as above, which is G-invariant.

Proof. Let a={b€ R | bl C (f1,...,fr)}. Then a C R is an ideal and is also a representation of G. Since
1 € a+ I, it follows from linear reductivity (Proposition 4.37) that 1 € a% + I¢. |

Let T € X//G be the image of # € X under the affine quotient map X = Spm R — X //G = Spm R%,
corresponding to a maximal ideal m = I N R® = I¥ ¢ R®. Applying linear reductivity to the surjective map of
representations (9.24), we see that m is generated by f1, ..., f» in some neighbourhood of Z. The same is true for
any power m/, and we have shown the following.

9.51 THEOREM. Let G-z C X = Spm R be a free closed orbit with defining ideal I C R.
(i) There exist invariants f1,..., f. € RY whose residue classes modulo I? form a free basis of I/1?.
(ii) There exists a G-invariant affine open set U C X containing G - x such that the restrictions of fi,..., fr
to U generate I.
(iii) If m C RY is the maximal ideal of the image of x in X //G, then every power m! is generated by

(fl,...,fr)l. O

Suppose, further, that X is nonsingular at the point z € X. Then the fibre at z of the graded ring gr; R (that
is, its quotient by the maximal ideal m) is a polynomial ring in r := dim X — dim G variables. It then follows
from part (ii) of the theorem that gr,, R“ is isomorphic to a polynomial ring in r variables, and we conclude:

9.52 COROLLARY. If an affine variety X is nonsingular at every point of a free closed orbit GG - x then the affine
quotient X //G is nonsingular at the image point T € X //G, with dimension = dim X — dim G. |
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9.4 An algebraic variety with the Picard group as its set of points

Fix a curve C' of genus g and an integer d € Z. We are going to construct in this section a g-dimensional
nonsingular projective variety, the Jacobian of C, whose underlying set is Pic?C, the set of isomorphism classes
of line bundles on C of degree d.

(a) Some preliminaries

We will assume throughout this section that d > 2g¢, and we fix a line bundle L € Pic??C. We note that every
line bundle ¢ € Pic?C has the following properties:

(i) H'(¢) =0.
(ii) ¢ is generated by global sections.
(i) dim H(§) =d+1—g=:N > g.

We set £ := L@ ¢! € Pic?C and note that & also has all of the properties (i) to (iii). The key tool in the algebraic
construction of the Jacobian is the multiplication map

HO(&) x HY(§) — H°(L), (s,t) — st.

9.53 DEFINITION. Given a line bundle ¢ € Pic?C, a pair (S,T) consisting of a basis S = {s1,...,sny} of H°(€)

~

and a basis T = {t1,...,tx} of H°(§) is called a double marking of €. a

Given a line bundle ¢ € Pic?C and a double marking (S,T), we introduce the following N x N matrix with
entries in H°(L):
Sltl s SltN
V(8,T) = :
SNt1 s SNtN
If we fix a rational section of L, then ¥(&,S,T) can be viewed as a matrix of rank 1 over the function field k(C).
9.54 DEFINITION. We denote by Maty(H°(L)) the set of N x N matrices with entries in H°(L). The sub-

set of matrices of rank 1 over k(C) or, equivalently, those for which all 2 x 2 minors vanish, is denoted by
Matn 1 (H°(L)). |

9.55 REMARK. A matrix ¥ of rank 1 over a field (or unique factorisation domain) K is expressible as a product:

ai
(bl,...,bm), ai,bjEK.

Gn
Moreover, these vectors are unique up to scalar multiplication in the sense that if

ay
U= (b,

then aj = ca;, b = ¢~'b; for some ¢ € K. O

The following proposition says that when ¥ is of the form ¥(£,S,T), the line bundle £ can be recovered as
the image of the linear transformation determined by the matrix.
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9.56 PROPOSITION. Given a matrix ¥ € Maty 1(H"(L)), the following two conditions are equivalent.
(1) The N rows and the N columns of ¥ are linearly independent over k.
(2) ©=T(£ S,T) for some € € Pic’C' and double marking (S, T).
Moreover, the line bundle ¢ is the image ¢ C L®N of the sheaf homomorphism determined by ¥,

() : OZN — LoV,

Proof. (2) => (1) is clear, and we just have to show (1) => (2). Let ¢ be the image of (¥) : OSN — LON.
That £ is a line bundle follows from the fact that ¥ has rank 1 as a matrix over k(C). To see that deg¢ = d,
observe that, since ¥ has rank N over k, we have dim H°(¢) > N > g, and so by Lemma 9.22 we have H'(£) = 0.
From this it follows that degé > N + g — 1 = d. But the same reasoning deg L — deg & = degg > d and hence
deg& < d. So ¢ € Pic’C. That ¥ = ¥(¢, S,T) follows from Remark 9.55. a

9.57 REMARK. This construction can also be explained in terms of divisors. The matrix ¥(£,S,T) has
rank 1 over the function field k£(C) and is therefore a product of k(C)-valued vectors ? = (f1,-..,fn) and
7 = (91,...,9~5). Then & = Og(D), where D is the greatest common (positive) divisor of the polar divisors

(fl)ma---:(fN)oo- O

The space of matrices Mat(H°(L)) is a vector space over k isomorphic to the direct sum of N? copies of
H°(L), and the general linear group GL(N) acts on this space by left and right multiplication. In particular, this
gives an action of the direct product GL(N) x GL(N), under which the image of the group homomorphism

Gm — GL(N) x GL(N), te (tIn,t7 ' Iy) (9.25)
acts trivially. We therefore consider the cokernel
GL(N,N):=GL(N) x GL(N)/Gy,. (9.26)

The coordinate ring of GL(N) is the localisation of the polynomial ring k[z;;] at det z and is graded by homoge-
neous degree:
K[GL(N)] = k[zij, (detz) '] = @D K[GL(N)].,  degz;j = 1.
eEL

Hence

GL(N,N) = Spm (@ E[GL(N)]e ®& k[GL(N)]e> .
€EL
Note that, since GL(N) is linearly reductive, so is GL(N, N).

As a representation of GL(N, N) the space Maty(H(L)) is isomorphic to a direct sum of dim H°(L) copies of
the space Matx (k) of square matrices over k. This can be viewed as an affine space A", where n = N2 dim H°(L),
and Maty 1 (H°(L)) as a closed subvariety. In particular, Maty,1(H°(L)) is an affine variety (or, more precisely,
each irreducible component is an affine variety, and the discussion below applies to each irreducible component)
and is preserved by the action of GL(N, N). This action is of ray type.

The set of matrices ¥ satisfying the linear independence condition (1) in Proposition 9.56 forms an open set

U(L) C Matyn 1 (HO(L)),

which is therefore a parameter space for double-marked line bundles (£,.S,T) of degree d. Moreover, the open set
U(L) is preserved by the action of GL(N, N).

9.58 PROPOSITION. Matrices ¥, ¥' € U(L) give isomorphic line bundles &,¢' if and only if they belong to the
same GL(N, N)-orbit. m|

We have therefore identified the set Pic?C' with the space of GL(N, N)-orbits in ¢(L) C Maty 1 (H?(L)).
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(b) The construction

We are going to study the Proj quotient of the action GL(N, N) ~ Maty,1(H°(L)), using the character

0:GL(N,N) = Gy, (A, B) — det Adet B. (9.27)
We denote the kernel of § by SL(N, N). Semiinvariants and semistability will always be taken with respect to
this character. We will show in this section that stability and semistablity coincide and that the open set of stable
points is precisely (L) C Maty,1(H°(L)), defined above.

Any linear form f : H°(L) — k induces a map, which we will denote by the same symbol, f : Maty(H°(L)) —
Maty (k). Then the function

Maty (H(L)) = k, U > det f(T)

is a homogeneous polynomial of degree N and is a semiinvariant of weight 1 for the action of GL(N, N). From
this we see (see Definition 6.13):

9.59 LEMMA. Let ¥ be a matrix in Matn(H®(L)). If there exists a linear form f : H°(L) — k such that
det f(¥) # 0, then ¥ is semistable. m|

An important case arises when f is the evaluation map at p € C,
ev,: H(L) — L/m,L =k,
or a sum of evaluation maps at points of some divisor. Since the diagram
HO(§) x HO(6) — HO(L)
evy | lev,
§/mpg X é\/mpé\ - L/m,L

commutes, the matrix ev,(¥({,S,T)) € Matn (k) is the product of the column and row vectors obtained from
the entries s1,...,sy € H(§) and t1,...,tx € HO(£) via the evaluation maps

evy  HO(6) = ¢/mp =k, evy: HO(E) — £/my€ 2 k.

9.60 LEMMA. Let fi,...,fn be the nonzero evaluation maps of L at points py,...,pny € C, and let f =
fit -+ fn:HYL) = k. Then det f(¥(£,S,T)) is equal to the product of the determinants

det {(evp,,...,evpy) : HO(&) = k¥ },
det {(evpl,...,eva) L HO(E) - k@N}.
Proof. Just observe that

f(sit1) -+ f(snt1)

f(¥(E,S8,7)) = "
f(sitn) -+ f(sntw)
si(p1) - si(pw) ti(pr) - tn(p)
sv(p) o siow) )\ o) o tnw) )

where s;(p;) := ev,;(s;) and so on. On the right-hand side, the first matrix is the matrix representing the map
(eVpys---revpy ) HO(€) — kPN and the second is the matrix representing (evy,,...,ev,y) : H(§) —» k®N. O
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Note that the kernel of (ev,,,...,evp,y) : H°(&) — kPN is the space H°(&(—py — -+ — pn)), and similarly

for EA If the points py,...,pn can be chosen so that these kernels vanish, then by the lemma it will follow that
det f(¥(&,S,T)) #0, so that U(£,5,T) is semistable. On the other hand, for a general point p; € C we have

dim H°(¢(~py)) = dim H'(§(~p1)) = N — 1.
Then, for a general choice of a second point py € C,
dim HO(¢(—py = p2)) = dim HO(€(=ps = p)) = N - 2.
Repeating this N times we see that there exist points py,...,py € C such that
dim H*(¢(=py — -+ — pn)) = dim H(€(=p1 — - — pn)) = 0.

So indeed, if we take f : H°(L) — k to be the sum of the evaluation maps at these points, then Lemma 9.60
guarantees that det f(¥ (£, S,T)) # 0, and hence that ¥(¢,S,T) is semistable.
Even better, stability follows from the next lemma.

9.61 LEMMA. If A, B € GL(N) are matrices satistying AV(¢,S,T)B = ¥(£,S,T), then A and B are both scalar
matrices and AB = Iy. O

Proof. By hypothesis, the following diagram commutes:
ogN & pen
Al B
ogN & pen

This defines an automorphism of the line bundle £ = Im (¥), and this is just multiplication by a scalar ¢ € k.
Thus A = cly and B = ¢ 'y |

Summarising, we have shown:

9.62 PROPOSITION. Every matrix U (¢, S,T) is stable with respect to the action of GL(N, N) and the character .
That is, U(L) C Maty , (H°(L)). O

Conversely, the matrices ¥(&, S, T) exhaust all the semistable elements of Maty,1 (H°(L)).

9.63 PROPOSITION. If ¥ € Maty ;(H°(L)) is semistable, then the N rows and the N columns are linearly
independent over k. In other words, Maty , (H°(L)) C U(L).

Proof. Suppose the rows are linearly dependent. Then we can choose a basis of H°(L) with respect to which

0 --- 0
o= R
x % *

Multiplying on the left by the 1-parameter subgroup A : Gy, — SL(N), t + diag(t=N*1,t,... 1), gives

tx tx - tx

which tends to the origin as ¢ — 0. If the columns are linearly independent we argue similarly, multiplying on
the right by A(t). In both cases we see that the closure of the orbit SL(N, N) - ¥ contains the origin, and so ¥
is unstable. m|



il S~ isLLALE £ ALEL Ve VL ALDY AW 44T A ALV e AV A AeSRL AL TS

We have arrived at an action of ray type GL(N,N) ~ Maty 1 (H°(L)) for which, by Propositions 9.62 and
9.63, Mat}y , (H°(L)) = Maty , (H°(L)) = U(L).
The Proj quotient

Matd ; (H°(L))/GL(N, N) = Proj k[Maty, (H°(L))]5*(N-N) (9.28)

is therefore a good quotient in the sense that its points correspond one-to-one to the orbits of the group action.
(Notice that this quotient construction is valid once we know that the affine variety Maty , (H°(L)) is smooth,
by Remark 6.14(vi). This will be proved in Proposition 9.68 below.)
We conclude:

9.64 THEOREM. The quotient variety (9.28) is a projective variety whose underlying set is Pic?C'. |

By the proof of Proposition 9.62 and by construction of the projective quotient, given N distinct points
Pi,--.,pN € C, the subset

{€ePic’c | B (6(=pr =+ —pn) = H* (E-p1 — -+ = pw)) =0}
is an affine open set. This is the complement of two translates, in the abelian group Pic C, of the theta divisor
0 :={¢| H°(¢) #0} C Pic!'C. (9.29)

The quotient variety (9.28) is covered by affine open sets of this type.

(c) Tangent spaces and smoothness

Let (£,5,T) be a line bundle on C' with a double marking. What is the tangent space to the affine variety
Matn 1 (H®(L)) at the point ¥(&,S,7)? As in Section 8.5(d) we let k[e] = k[t]/(t*) with €2 = 0, € # 0. Then a
tangent vector to the affine space Matx(H®(L)) at ¥(¢,S,T) can be written

81t1 + aq1€ sltN+a1Ne
U(E,8,T) + Ae = : ; . ai; € H(L). (9.30)
syti +anie -+ SNEIN +anNE

For this to be a tangent vector to the subvariety Maty 1 (H°(L)) it is necessary and sufficient to have rank 1 as
a matrix over k(C) ® k[e]. This implies the following.

9.65 LEMMA. The matrix (9.30) is a tangent vector to Maty, , (H (L)) if and only if there exist rational sections
81,...,8% €&en and ti,...,ty € Egen such that

s8] s1

!
SN SN

Proof. The condition is equivalent to

51 + sie
U S, T)+ Ae = (t1 +the, ... tn + tye),
SN + slye
which in turn is equivalent to the matrix having rank 1. a

We can rewrite the condition in the lemma as

sh s1

(tr,..stn) = — : (... th) + A
/

SN SN
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and interpret this in terms of its principal parts. Namely, at each point p € C it gives a congruence modulo the
stalk Ly,
sh S1
(t1,-.-,tN) = — : (t,...,ty) mod Ly.
sy SN
The local ring O¢,) is a unique factorisation domain, and so (using Remark 9.55) there exists a rational function
hy, € k(C) such that

sh 51
=h, mod &, (9.31)
sy SN
(th, ... th) = —hy(ts,...,tn) mod &,
Although the function h,, itself is not uniquely defined, its principal part h, mod O¢ is.
9.66 DEFINITION. Let TyMatjy ;(H®(L)) be the tangent space to Maty ; (H°(L)) at ¥. We define a linear map
Ty : TyMatyy  (H°(L)) - H'(O¢)

by assigning to A € TyMat}y ; (H°(L)) the cohomology class of the principal part (hy)pec € @,cc k(C)/Oc,p,
where h,, is the rational function defined by (9.31). o

9.67 PROPOSITION. (i) The kernel of the linear map my is equal to the tangent space at ¥ € Maty , (H°(L))
to the orbit of the action GL(N, N) ~ Maty , (H°(L)).
(ii) The linear map my is surjective.

In other words, denoting the Lie space of GL(N, N) by gl(N, N), we have an exact sequence
gl(N,N) — TyMaty ,(H°(L)) =% H'(Oc) — 0.

Proof. (i) If m(A) = 0, then there exists a rational function h € k(C) such that, at every point p € C, the

components of the vectors

st s8] s1

= : —h : mod &,

s shy SN

and ~
(t, .. i) == (t, ..., tN) + h(t1,...,tn) mod &

belong to H°(¢) and HO(E), respectively. Then

S1 S1
A= : (t1,...,tN) + : (), ),
s SN
and it is therefore tangent to the GL(N, N)-orbit at ¥.
(ii) Let
ae@Pkr(C)/Ocy
peC

be an element of the principal part space. Multiplying by s;,t; we obtain elements

as; € @ ggen/fpa atj € @ ggen/fp
peC peC
whose cohomology classes are zero by the hypotheses made at the beginning of Section 9.4(a). We can therefore
find rational sections s; € {gen and ¢} € {gen having as;, at; as their principal parts. Then for each 4, j we have
sitj — sit; € H°(L), and if we take this as (i, j)-th entry of a matrix A, then 7(A) is precisely the cohomology
class of a. m|



-~ S~ isLLALE £ ALEL Ve VL ALDY AW 44T A ALV e AV A AeSRL AL TS

9.68 PROPOSITION. The open set Mat’y , (H°(L)) C Maty,1(H°(L)) of stable points for the action of GL(N, N)
is nonsingular.

Proof. We will use Proposition 9.47. Let f : A’ — A be a surjective homomorphism of Artinian local rings over
k with maximal ideals n C A, n’ C A’. As a vector space A = k-1&n, and so an A-valued point of Maty , (H°(L))
can be written
siti +ann - sty +ain

U(E S T)+P= : : , (9.32)
snti +ant -+ SNIN +ann
where a;; € H°(L) ®, A, and the matrix (9.32) has rank 1 over k(C) ®; A. This can therefore be expressed as
51+ q1
\I’(E,S,T)'FP: . (t1+T1,...,tN+T‘N)

SN +aqN

for some rational sections g; of the vector bundle £ ®; n on C, and r; of the vector bundle E@k n. The sections
si,t; are nonzero, and so the functions

1+ﬁ, 1+ﬁek(0)®kA
S tj

have well-defined logarithms. We define:
1 qi 1 Ty =
S; = Si IOg (1 + S_> € fgen O 1, tj = tj lOg <1 + t_> € ggen R n.
i J

These satisfy

VA
—

»
—_

(t1,...,tN) = — : (t1,...,ty) mod L®gn
sy SN
and therefore determine, by taking principal parts as in Definition 9.66, an element of H*(Oc ®j n) which we
will denote by 7 (log P).
Now by Lemma 9.35 there exists an element o/ € H'(O¢ ®; n') which maps under f to 7(log P). By the
same argument as in the proof of Proposition 9.67(ii) we can construct an A’-valued point ¥(¢,S,T) + P’ €

Maty , (H°(L)) for which n(log P') = o', and by using the exponential function for matrices we see that this
maps under f to the A-valued point ¥(£,S,T) + P, as required. |

9.69 REMARK. This proof makes implicit use of the series expansion

(—=2)"

n

log(1+2z)=— Z
n=1

and is therefore only valid in characteristic zero. In fact, one could give an alternative proof which also works in
positive characteristic, using the methods of Section 10.4(a) later on. O

By Lemma 9.61, every closed orbit of the action GL(N,N) ~ Maty,1(H°(L)) is isomorphic to GL(N,N);
and hence from Proposition 9.68 and Corollary 9.52 we conclude:

9.70 THEOREM. The projective variety Maty , (H®(L))/GL(N, N) is nonsingular, and at every point its tangent
space is isomorphic to H*(O¢). m|
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9.5 Duality

Let C be a (nonsingular projective) curve. By using a distinguished line bundle, the dualising line bundle on
C, it is possible to express cohomology spaces as the duals of spaces of global sections, a tool which is endlessly
useful. Although this duality has a very powerful abstract formulation, we will give a quite concrete account using
differentials and residues. Later in the section we will define algebraic de Rham cohomology for use in Section 9.6.

(a) Dualising line bundles

We begin by re-examining the definition of the cohomology space H'(L). The stalk Lge, at the generic point is
a 1-dimensional vector space over k(C). We consider the diagonal linear map

A:Lgen + @ Lgen,  fr (o fofifs00)

peC

9.71 DEFINITION. We define HV (L) to be the vector space of linear forms

a: P Leen = k

peC

which vanish on the diagonal A(Lgen). |

Clearly HV(L) is a vector space over k(C), and the dual of the cohomology space H'(L) can be identified
with the k-linear subspace

H'(L)" = {a | a vanishes on @, Ly} C HY(L).
More generally, for any divisor D = Zp npp we can identify
H'(L(-D))" = {a | a vanishes on D, cc Lo(—npp)} C HY(L). (9.33)
The next definition gives a natural choice for the line bundle L and the linear map a.

9.72 DEFINITION. (i) A linear form a : H'(L) — k, viewed as an element of H" (L)

a:@Lgen—Hc, aoA =0,
peC

is called nowhere vanishing if for all ¢ € C it satisfies

a|Lg® @ Ly | #0.

peC—{q}
(ii) If there exists a nowhere vanishing linear form on H'(L), then L is called a dualising line bundle on C. O
One can see the existence of a dualising line bundle in the following way. Let L be a line bundle of maximal

degree such that H'(L) # 0—such a line bundle exists by Theorem 9.20 and turns out to be a dualising line
bundle. This is because at every point ¢ € C the cohomology of L(q) = L ® O¢(gq) vanishes, so that

Li® P Lp|+ALgn) =P Leen.

peC—{q} peC

Hence any nonzero a € H'(L)Y C HY (L) is nowhere vanishing.
Next, fixing a nonzero linear form oo € H*(L)V, consider the k(C)-linear map

k(C) — HY(L), f= fa.

This map is clearly injective, and its restriction to functions f such that (f) + D > 0 determines a linear map
H°(Oc¢(D)) = H'(L(-D))".
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9.73 THEOREM. If a € H'(L)V is a nowhere vanishing linear form, then for any divisor D € Div C' the map
H°(Oc (D)) = H'(L(=D))Y,  fw fa
is an isomorphism. Equivalently, the composition

H°(O¢(D)) x HY(L(-D)) — H'(L) = k,

where the cup product is (9.17), is a nondegenerate pairing.
To prove this we first need:
9.74 LEMMA. Ifa € H'(L)V is nowhere vanishing and 3 € H*(L(—D))" satisfies B = fa, then f € H°(O¢(D)).

Proof. Let (f) = >, app and D = 3 nyp. The hypothesis that 3 € H'(L(-D))¥ means that
@D,cc Lp(—npp) C ker B, and so B = fa implies that

@ L,(—(ap + np)p) C ker a.
peC

But @, Lp C ker a, and hence the assumption that a is nowhere vanishing forces a, +n, > 0 for all p € C.
Hence (f)+ D > 0. O

Proof of Theorem 9.73. (Weil [68].) We just have to show surjectivity; pick 3 € H'(L(—D))V. Then, for any
positive divisor F' > 0 we have injective linear maps

H°(O¢(F)) = HY(L(-D - F))Y, h— hp3

and

H°(O¢(D + F)) — H'(L(-D — F))", b ha.
If the degree of F is sufficiently large then the dimension of H'(L(—D — F))V is just deg F plus a constant, and the
same is true of the dimensions of H°(O¢ (F)) and H°(O¢(D+F)). For F > 0 of sufficiently high degree, therefore,
these two subspaces have nonzero intersection; that is, there exist h € H°(Oc(F)) and h' € H°(Oc(D + F))
satisfying h3 = h'a. Hence 8 = (h'/h)a, and we just need to check that h'/h € H°(Oc(D)). But this follows
from Lemma 9.74. a

A divisor K € Div C such that L = O¢(K) is a dualising line bundle is called a canonical divisor. (Such
divisors exist by Corollary 9.32.) Applying Theorem 9.73 to K and 0 € Div C' we obtain the following.

9.75 COROLLARY. If L is a dualising line bundle on C, then the vector spaces H'(O¢) and H°(L) are dual and
dim H'(L) = 1. O

Combining this corollary with the Riemann-Roch formula (9.15) yields g — 1 = dim H°(L) — dim H'(L) =
deg L + 1 — g, and hence:

9.76 COROLLARY. If L = O¢(K) is a dualising line bundle, then deg K = 2g — 2, where g is the genus of C'. O

(b) The canonical line bundle

The cotangent bundle ¢ of a curve C is a line bundle whose total set (1) is a 1-dimensional vector space over
kE(C). This is called the canonical line bundle on C. At each point p € C the stalk Q¢ ), of Q¢ is generated by
dtp, where t, € m,O¢,;, is a regular parameter. (See Section 9.3(a).)

Now, the principal parts of (3¢ have a very special property. Call an element w € Q) a rational differential.
At each point p € C this has a Laurent expansion

oo
> antydt,
n=—N
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with respect to a regular local parameter, and the coefficient a_; is independent of the choice of this parameter.
This coefficient is called the residue of w at p and denoted

Resw:=a_1.
P
The sum of residues over all points of the curve vanishes:
9.77 RESIDUE THEOREM. Every rational differential w € () satisfies ZpEC R;)as w = 0.

Outline of the proof. For any finite sheeted cover C — C" we can define a trace map on differentials,
tr Qk(C) — Qk(CI),

with the property that for any w € €;(c) one has

Z Rl?sw: Z R{;as tr (w).

peC gecC’

(See, for example, Iwasawa [63].) To prove the theorem for a general curve C' one can use this fact to reduce to
the case of C' = P!, for which the proof is a simple computation.

Alternatively, when the ground field is k = C, the curve C can be viewed as a compact Riemann surface. In
this case we can take a triangulation containing all the poles of w in the interiors of faces and apply Cauchy’s
residue formula to the faces. The total integral vanishes since C is orientable, so that all the contour integrals
along the edges cancel out. a

It follows from this result that

a: @ Qi) /Qop = k, (wp) Z Res w,
peC i

defines a nonzero linear form on H*(Q2¢), and hence that H!(Q¢) # 0. More than this, if we view « as an element
of HY(C), then it is nowhere vanishing in the sense of Definition 9.72—hence Q¢ is a dualising line bundle. From
Theorem 9.73 and Corollary 9.75 we get the following.

9.78 THEOREM. (i) For any divisor D € Div C' the vector spaces H*(O¢ (D)) and H'(Qc(—D)) are canonically
dual.

(ii) The cohomology space H'(O¢) is canonically dual to the space H°(Q¢) of regular differentials (also called
differentials of the first kind). In particular, the genus g of C' is equal to the number of linearly independent
regular differentials. (This is called the geometric genus.)

(iii) dim H'(Qc) = 1 and deg Q¢ = 2g — 2. 0

It follows from the Residue Theorem 9.77 that H°(Qc(p)) = H°(Q¢) for every point p € C. By Theo-
rem 9.78(i), on the other hand, H!(Qc(p)) = 0. It follows that for every positive divisor D > 0,

dim H°(Q¢ (D)) = dim H°(Q¢) + deg D — 1.
Applying this to D = np for n > 2 and to D = p + ¢ for p,q € C, we obtain:

9.79 THEOREM. (i) (Existence of differentials of the second kind.) For every point p € C' and integer n > 2
there exists a rational differential with a pole of order n at p and regular elsewhere.

(ii) (Existence of differentials of the third kind.) For every pair of distinct points p,q € C there exists a

rational differential with a simple pole at each of p,q and regular elsewhere. Moreover, there exists such a

differential with residues 1, —1 at p, q, respectively. O
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(c) De Rham cohomology

A rational differential ¢ € Q) with zero residue at every point is called a differential of the second kind.

9.80 ExaMPLE. The differential df of a rational function f € k(C), called an ezact differential, is a differential
of the second kind. a

Although this example is an extreme case, it is nevertheless the case that, given a differential ¢ of the second
kind, there exists for every p € C' a rational function f, € k(C) satisfying

df, = ¢ mod Q¢,p.

(This requires that the ground field k& has characteristic zero, an assumption that we have not needed up to now.)
The function f, is uniquely determined modulo O¢ ,, and taking the principal part at all points of the curves
defines an element

| o= (fec € B HC)/Oc,

peC

Theorem 9.79(i) says that there is an exact sequence:

0 — H(Qc) — {j;fizng; of the} by B ke)/0e, — 0. (9.34)
peC

9.81 DEFINITION. The quotient of the vector space of differentials of the second kind modulo exact differentials,

HcliR(C) - {differentials of the second kind}
{df | fek(C)} ’

is called the algebraic de Rham cohomology space of the curve C. a

Factoring out the sequence (9.34) by the exact differentials yields an exact sequence
0 — H°(Qc) — Hig(C) — HY(Oc) — 0, (9.35)

called the Hodge filtration of HJg (C). We are now going to construct a disinguished bilinear form on the de Rham
cohomology.

9.82 DEFINITION. Let ¢,9 € Q) be differentials of the second kind.
(i) Given a point p € C, define

(@ [P)p = Res fyp €k, where f, € k(C), df, = ¢ mod Q¢ .
(ii) Set (¢ |¥) =X peclp | ¥)p € k. 0

Clearly, (|), and (|) are both k-valued bilinear forms on the vector space of differentials of the second kind.

9.83 LEMMA. (i) (|) is skew-symmetric, that is, (¢ | ¢¥) + (¢ | @) = 0.
(ii) (p | df) = 0 for any rational function f € k(C).
(iii) (p | ) = 0 if both ¢,v € H°(Qc). O

Proof. (i) Pick p € C and suppose that df = ¢, dg = ¢ at p. Then fi¢ + gp = d(fg) at p and has has no
residue at this point. Hence (|}, is skew-symmetric.

(ii) (¢ | df) = >, Res (fy) =0 by the Residue Theorem 9.77.

(iii) is immediately ¢lear from the definition. ad

It follows from part (ii) of the lemma that (|) induces a skew-symmetric bilinear form on algebraic de Rham
cohomology, for which we will use the same notation:

() : Hig(C) x Hiz(C) = k. (9.36)

This is called the de Rham cup product.
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9.84 PROPOSITION. The de Rham cup product is a nondegenerate pairing.

Proof. Pick a basis of HJg (C) extending a basis of H°(Q¢). With respect to such a basis, according to Lemma
9.83, the cup product is represented by a (skew-symmetric) matrix

()

The matrix A represents the cup product H°(Q¢) x HY(O¢) — k, which we have seen in Theorem 9.78 is
degenerate. It follows that the above matrix has nonzero determinant, and so the de Rham cup product is
nondegenerate. a

9.85 COROLLARY. If ¢ € H}z(C) annihilates H°(Q¢) in the cup product, that is, (¢ | w) = 0 for all w €
HO(Qc), theﬂl/}EHO(Qc). O
9.6 The Jacobian as a complex manifold

In this section we will let k& be the field C of complex numbers, and consider a nonsingular projective algebraic
curve, which we shall view as a compact Riemann surface. In particular, the topology on C will be the usual

complex topology. Fixing a point py € C and choosing a basis of holomorphic differentials wy, ... ,w, € H(Qc),
we define a holomorphic map
P P P t
AJ:C—C/T¢, pe | W= </ wl,...,/ wg> , (9.37)
Po Po Po

where I'c C C is the period lattice (9.1). This is called the Abel-Jacobi map. This map expends additively to
the abelian group of divisors Div C, and we use the same symbol AJ to denote the Abel-Jacobi map on divisors.
Note that its restriction to divisors of degree zero,

AJ :Div’C — C/T¢, D:anpHanAJ(p),
does not depend on the choice of base point py € C. Abel’s Theorem says that ker AJ C Div’C is precisely the
subgroup of principal divisors.

9.86 ABEL’S THEOREM. If D =) npyp € Div’C is a divisor of degree zero, then D is a principal divisor if and
only if the abelian integral
P
S @
0

peC p

is contained in the period lattice T C CY. In other words, D is principal if and only if AJ(D) = 0. a

Note that the case g = 1 is Liouville’s Theorem 1.44(iv) and its converse (Exercise 9.12). We will give a proof
of Abel’s Theorem below, but first we use it to show the following.

9.87 THEOREM. When k = C, the quotient variety Maty,1(H°(L))/GL(N,N) constructed in Section 9.4 is
isomorphic to the complex torus CY /T'c. In particular, it is irreducible.

Proof. Given a point ¥ = (a;;)1<ij<n € Maty;(H°(L)), where a;; € H°(L), let Dy 1Div C be the greatest
common divisor of the zero-sets (a1;)o, 1 < j < N, along the first row (see Definition 9.36). Then we consider

the holomorphic map
Maty, , (H(L)) = C7 /T, W AJ(Dy,y).

Each GL(N, N) maps down to a single point, and so this induces a map
o: Matf\,,l(HO(L))/GL(N, N) - T /T¢.

Then ¢ is holomorphic, and by Abel’s Theorem, is injective. Since it is a map between compact complex manifolds
of the same dimension, it is an isomorphism. O

Figure 9.1: The Abel-Jacobi map
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(a) Compact Riemann surfaces

If we regard the complex curve C' as a Riemann surface, then we have a notion of holomorphic functions and
meromorphic functions on C, the latter locally a ratio of holomorphic functions. If f(z) is a holomorphic function
(where z is a complex coordinate on the Riemann surface), then, for small r > 0,

1 2m

f(2) f(z 4+ re?)ad, (9.38)

and from this it follows that, if f(z) is nonconstant, then it cannot attain its maximum modulus at an interior
point of its domain. (This is the mazimum modulus principle.) Since C' is compact, this implies that there are

no nonconstant functions holomorphic everywhere on C.
A rational function is meromorphic on its domain, and in fact the converse is also true:

9.88 PROPOSITION. Every meromorphic function on C' is rational, that is, it belongs to C(C).

Proof. For any divisor D € Div C' denote by A?**(D) the set of meromorphic functions satisfying (f) + D > 0.
We have just shown, for example, that A2*(0) = C. Note that by the same reasoning as for (9.3) this space
satisfies

dim A*"(D) < degD + 1.
Now, given a meromorphic function f, we fix a divisor D for which f € A®*(D), and for some positive divisor F' > 0
we consider the two subspaces A(D+F) and fA(F) C A**(D+F). By Riemann’s inequality (9.8), both subspaces
have dimension bounded below by deg F'+ constant, while we have just shown that dim A**(D + F) < deg F+
constant. Hence, when deg F' is sufficiently large,

A(D + F)N fA(F) # 0.
In other words, we can find rational functions g, h such that g = fh # 0, and so f is itself rational. a

Next we will view C as a real 2-dimensional manifold and consider its homology groups H;(C,Z). The
alternating sum of its Betti numbers

e(C) =Y (-1)'b;j=2—by, b =rank zH;(C,Z),

is called the Euler number of C', and it is well known that this can be computed from a triangulation as

e(C) = (number ) 3 <number> N (number )

of vertices of edges of faces
9.89 PROPOSITION. If C' has arithmetic genus g (Definition 9.11), then e(C) = 2 — 2g.

Sketch Proof. For the Riemann sphere Pl this is clear (Example 9.5 and Corollary 9.21). For a general
curve C' it is enough, by Theorem 9.78(iii), to show that e(C') = —degQ¢, and to do this we use a finite cover
m:C — P="PL Let py,...,pn € C be the ramification points of m, with ramification indices e,...,e, € N.
Then the canonical line bundle on C' is given by

h
Qo =21 Oc (Z(ei - 1)pi> .

i=1

Taking degrees on both sides,
h

deg Q¢ = d - deg Qp + Z(ei - 1),
i=1
where d = degn is the degree of the cover. On the other hand, by taking suitable triangulations (so that on
C lifts the triangulation on P} and all of the branch points in P{. are vertices) the Euler numbers upstairs and
downstairs are related by

h
() = d-e(B) = 3 (ei — 1),

=1

and from these two identities it follows that e(C) = — deg Qc¢. o
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9.90 COROLLARY. A complex curve of genus g has Betti number by = 2g. a

In other words, the genus coincides with the topological genus of C' as a Riemann surface—the number of
‘holes’ in C, in its well-known guise as a rubber tube.

(b) The comparison theorem and the Jacobian

When k = C, a rational differential ¢ € Q¢(c) will be called an abelian differential. One can consider the contour
integrals of ¢; in particular, if « is a closed contour on C' avoiding the poles of ¢, then

/an(C

9.91 LEMMA. An abelian differential ¢ is a closed 1-form, meaning that dp = 0 away from the poles of ¢, where
d is the exterior derivative on the real surface C.

is called a period of the abelian differential (.

Proof. Locally (away from its poles) p can be written as f(z)dz, where z = x + /—1y is a local complex
coordinate and f(z) is a holomorphic function. Let u(z,y),v(x,y) be the real and imaginary parts of f(z) so that

do = (u+ v/ —1v)(dx + vV —1dy) = (udx — vdy) + vV—1(udy + vdz).

The exterior derivative is then

dp = (duAdx—dvAdy)+/—1(duAdy+ dv A dz)
ou Ov ou Ov
- =+ = V=1|———)deAd
-G m) (G g) e
and this vanishes by the Cauchy-Riemann equations. a

From this lemma and Stokes’ Theorem,

/ <p=/dso,
08 3

it follows that the period ¢ around a closed contour « in C'— {poles of ¢} depends only on the homology class of
«. If, in addition, ¢ is a differential of the second kind, that is, ¢ has no residues, then it follows that the period is
also defined independently of how the contour winds around the poles, and hence depends only on the homology
class of a in C. On the other hand, the periods of exact differentials df and logarithmic exact differentials df / f
all vanish, and it follows that contour integration induces a bilinear pairing of abelian groups

H(C,Z)x Hin(C) = C,  (ay9) / o (9.39)

This can be re-expressed as
Hi(C,Z) = Hqr(C)Y

H}x(C) — Hom(H,(C,7),C) = H'(C,C). (9.40)

Let us call (9.40) the comparison map.
9.92 PROPOSITION. The comparison map is an isomorphism H} (C) = H*(C, C).

Proof. By Corollary 9.90 we only need to show that it is injective. Fix a base point py € C' and consider the
path integral
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as a function of a moving endpoint p € C, where ¢ is a differential of the second kind. To suppose that (the
de Rham class) ¢ maps to zero under the comparison map means that f is a single-valued function on the Riemann
surface C'. But then f is meromorphic and ¢ = df, and so, using Proposition 9.88, ¢ is an exact differential. O

A Riemann surface carries a natural orientation, and so any two closed paths «, f have a well-defined in-
tersection number (« - 3) € Z. This depends only on the homology classes of the paths, and so it determines a

bilinear form
H,(C,Z) x H (C,Z) — Z. (9.41)

Poincaré duality says that this pairing is unimodular: that is, there exist homology bases
{ar, ..., as}, {af,...,a5,}

with respect to which the intersection pairing is given by the identity matrix, («; - a;-) = 0;5. The cup product of
two cohomology classes fi, fo € H'(C,C) =2 Hom(H,(C,Z), Q) is then defined by

29
fiUfe= Z filaq) f2(ef).

i,j=1
This does not depend on the choice of the bases.

9.93 PROPOSITION. (BILINEAR RELATIONS FOR DIFFERENTIALS OF THE SECOND KIND.) The following diagram
commutes, relating the comparison map and the cup products in cohomology.

Hip (C) x Hyg (C) Woc
3 b x2my/—-1
HY(C,C) x HY(C,C) - C
Proof. Taking a symplectic basis of homology
{a1,...,a4,01,.-.,84} (9.42)
we can cut the Riemann surface open as in Figure 9.8.
Figure 9.8: (a) Riemann surface C, and (b) the surface cut open.

Since, for all 1 <14,j < g,
(ai-a;)=(Bi-B;) =0, (a;i Bj) =6y,
the dual basis is

{ﬂl,...,b’g,—al,...,—ag}.

What we have to show, therefore, given differentials of the second kind ¢, v, is the relation

S(fef o[ o] e)=rvein

=1

Consider, in the domain D obtained by cutting C' open, the path integral

s = ["v.

This is a meromorphic function of p € D and can integrate the product fy around the boundary of D. By
Cauchy’s residue theorem this is

/E)ngaz%r\/—_lz Rﬁs fo,

peD

and the bilinear relation follows from this. O
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From now on we will identify Hip (C) and H*(C,C) and simply write H(C).
The bilinear relations and the identification of Proposition 9.93 allow us to define the Jacobian by an analytic
construction. In the first instance it is the real 2g-dimensional torus
R HY(C,R)

(S1)20 = PN VAT = oV TH(C.Z) (9.43)

From the Hodge filtration (9.35),
0— H°(Q¢) = HY(C) = H(O¢) = 0
U
H'(C,R)
and Lemma 9.95 below we obtain an isomorphism of real vector spaces H'(C,R) = H'(O¢).

9.94 DEFINITION. The analytic Jacobian of C' is the torus (9.43) equipped with the complex structure coming
from the above isomorphism:
HY(O
Jacng = — 290
2/ —1HY(C,Z)

By Poincaré duality we obtain an isomorphism

an NHO(QC)V_ g
Jac C_)iHl(C,Z) =C/Te,

where ' C C is the period lattice (9.1) of C. An alternative expression again is

anpv_ H'(0) _H'(C,C)
0 = e TV TH(C.2) . HO(0)

9.95 LeEMMA. HY(Qc)NH'(C,R) =0 in H'(C).

Proof. Suppose w € H°(2c) N H(C,R). Then the periods of w are all real numbers, so the imaginary part of

the integral
P
flp) = / w

is a (single-valued) function on C and has the harmonicity property (9.38). By the maximum principle the
imaginary part is therefore constant, and hence by the Cauchy-Riemann equations the function f itself is constant,
and hence w = df = 0. a

(c) Abel’s Theorem

Given an abelian differential 1), we can represent its residues as a divisor with complex coefficients

Res ¢ := E ( Res ¢)p € Div C' ®7C.
p
peC

9.96 DEFINITION. An abelian differential with only simple poles is said to be of logarithmic type, and if, in
addition, the residue at every point is an integer, then a differential of logarithmic type is said to be of divisor
type. O

9.97 EXAMPLE. For any rational function f € C(C) the logarithmic derivative df /f is an abelian differential of
divisor type, called a logarithmic exact differential. Its residue Res df /f is just the principal divisor (f) € Div C
determined by f (Definition 9.13). o
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By the residue theorem, the divisor Res % has degree zero. By Theorem 9.79, therefore, there is an exact
sequence

0 —s H(Q0) —» {abehan differentials

Res 0
of divisor type } Divie — 0. (9-44)
9.98 REMARK. The quotient

abelian differentials of divisor type
Hll)el(c) =

logarithmic exact differentials df/ f
is called the Deligne cohomology of C. Dividing (9.44) through by the group C(C)* then gives an exact sequence
0— H°(Q¢) = H ., (C) = Pic®C — 0.

Figure 9.7 summarises the geography of abelian differentials on a curve. a

Figure 9.7: Abelian differentials

Consider the integral of an abelian differential ) along a path « in C' avoiding the poles of . Replacing a by
a path making one additional circuit of a pole p € C' changes the integral by the addition of 27/— Res ¥; and
so if 4 is of divisor type, then the quantities

/ ¢ mod 27v—17Z

and

exp/¢€@*

depend only on the homology class of « in the curve. The exponential exp fa Y is called a multiplicative period
and defines multiplicative versions of (9.39) and (9.40),

{abelian differentials

of divisor type } x H(C,Z) = C

and
) {abelian differentials

— ! *
of divisor type } — Hom(H,(C,Z),C) = H*(C,C"). (9.45)

By the same reasoning as in Proposition 9.92 we get the following.

9.99 PROPOSITION. The group homomorphism (9.45) has kernel ker p = {logarithmic exact differentials}, and
so induces an isomorphism
Hpo (C) = H'(C,C).

O

The bilinear relation for pairs of differentials of the second kind (Proposition 9.93) can be extended to pairs
consisting of a holomorphic differential and an abelian differential of divisor type:

9.100 PROPOSITION. (BILINEAR RELATIONS FOR DIFFERENTIALS OF DIVISOR TYPE.) The following diagram
commutes.

abelian differentials
of divisor type

} £, HY(C,C*)

Res | l

DivlC - Jac*"C
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Proof. Let ¢ be an abelian differential of divisor type and let @ = (wi,...,w,), where {wi,...,w,} is a basis
of H°(Q2¢). Using the symplectic basis (9.42) of H;(C,7Z), what we have to show is the relation

Z(/aiw/iﬁ—/md/&@z2m/—_1AJ(Res¢)

=1
modulo the period lattice. We use the same proof as for Proposition 9.93: define a holomorphic vector-valued

function on the domain D )
T = / o

and integrate the product ’L/J? around the boundary of D. By Cauchy’s residue theorem
/ vF =20V=1Y Res7,
oD e 7
and the bilinear relation follows. m|

Proof of Abel’s Theorem 9.86. First, we apply the above bilinear relation to a logarithmic exact differential
df / f- By Proposition 9.99, this maps under p to the trivial element, and hence Res df/f = (f) € Div°C lies in
the kernel of the Abel-Jacobi map. So we have proved half of Abel’s Theorem. For the converse, suppose that
D € Div’C and AJ(D) = 0. Since Res is surjective (Theorem 9.79), we can write D = Res 1 for some abelian
differential of divisor type . By Proposition 9.100 again, p(¢)) is in the kernel of H!(C,C*) — Jac*"C, that is,
p() is in the image of H°(Q¢). In other words, there exists w € H°(Q¢) such that all the multiplicative periods
of ¢ — w are trivial,

/(¢ —w) € 2ry/—=17Z for all a« € H{(C,Z).
So by Proposition 9.99, ¢ — w = df /f for some f € C(C), and hence D = Res ¢ = Res (v —w) = (f) is a
principal divisor. O

Exercises

1. Show that the two conditions of Definition 9.45 are equivalent, and prove Lemma 9.46.
2. Show that a curve of genus 0 is isomorphic to P'.
3. In the situation of Example 9.23, use the Weierstrass (-function

C(z)z%—k > <L+l+%>

yeb—qo} N2~ VT

to show that there exists a meromorphic function on C/T" with a simple pole at each of p + T, ¢ + T', and
holomorphic elsewhere. (Consider linear combinations of ((z — p) and ((z — q).)

4. If C is a nonsingular affine curve, show that the principal part map

pp : k(C) = D k(C)/Oc,

peC
is surjective.

5. If C C P” is a nonsingular projective curve, show that there exists a hyperplane H C P™ intersecting C
transversally. (This means that at each intersection point the tangent spaces of C' and H intersect transversally
in the tangent space of P".) Hint: use the discussion of Section 5.2(a) to show that the parameter space for
hyperplanes not intersecting C' transversally has dimension at most n — 1.
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10.
11.

12.

(i)
(i)
(iii)

. Show that if a line bundle L € Pic C' is generated by global sections, then it defines a morphism to projective

space
C—P!  n=dimH(L).

(See Section 8.5(c).) Prove that this is an embedding if deg L > 2g + 1.

If R is a ring generated over k by ay,...,a,, show that the differential module (1g/;, is a generated as an
R-module by day,...,da,.

. Suppose that a ring R over k is nonsingular at every maximal ideal. Show that R is a direct sum of integral

domains.

. Show that any two dualising line bundles on C' are isomorphic.

Prove that if the genus of C' is positive, then the canonical line bundle Q¢ is generated by global sections.

Let E be a vector bundle on a curve C.

If U C C is an affine open set, show that there is an exact sequence
0 — H°(E) — E(U) — P E, — H'(E) — 0.
pgU

(Use the proof of Proposition 9.27.)

If U,V C C are two open sets, show that there is an exact sequence

0— HE)— EU)2EYV)—EUNV)— H'(E) — 0.

In the setting of Exercise 9.3, let D = Zp npp be a divisor of degree zero on the complex torus C/T". For the
function

f(z) =exp (2#\/—_12np /Z ((z —p)dz)

show the following.
f(2) is a meromorphic function on the complex plane C.
If the sum Ep npp € C belongs to the lattice I' C C, then f(z) is doubly periodic with period lattice I

In case (ii), the principal divisor determined by f(z), viewed as a meromorphic function on C/T', is equal to
D. (This is a special case of Abel’s Theorem.)



Chapter 10

Stable vector bundles on curves

As in the last chapter, C' will be a nonsingular projective algebraic curve of genus g, which we just call a curve
for short. In this chapter we are going to study vector bundles on C. The key point in the construction of a
moduli space for vector bundles is the notion of stability introduced by Mumford [31] (see Definition 10.20). The
goal of this chapter is to show that, fixing any line bundle L on C', the set of isomorphism classes of stable vector
bundles with determinant line bundle isomorphic to L

rank 2 stable vector bundles F

SUc(2,L) = {with det E~ L

} /isomorphism

can be given the structure of an algebraic variety. Briefly, the idea of the construction is the following. Just as
for the construction of the Jacobian in the previous chapter, we assume that L has sufficiently high degree to
guarantee that F is generated by global sections, and we consider the skew-symmetric bilinear map

H°(E) x H*(E) — H°(L), (5,8) = sAs'.

This form has rank 2, and we denote by Altx 2(H°(L)) the affine variety which parametrises such skew-symmetric
forms of rank < 2 in dimension N = dim H°(E). (See Section 10.3(b) for notation.) We will use this wedge
product to reduce our moduli problem to the quotient problem for the action of GL(N) on Alty 2(H°(L)). One
encounters various difficulties that do not appear in the line bundle case of the last chapter, but it turns out that
the notion of stability is the correct way to resolve these problems, and one proves the following.

10.1 THEOREM. Suppose that the line bundle L has degree > 4g — 1.

(i) There exists a Proj quotient
Alt ,(H" (L)) //GL(N)

which is a projective variety of dimension 3g — 3.
(ii) The open set
Alty o (HO(L))/GL(N)

has underlying set SUc(2,L). Moreover, it is nonsingular and at each point E € SUx(2, L) its tangent
space is isomorphic to H' (sl E).
(iii) If deg L is odd, then

Alty o (H"(L))//GL(N) = Alty ,(H(L))/GL(N) = SUc/(2, L)

is a smooth projective variety. a

One basic technique for working with vector bundles is, by passing to subbundles and quotients, to reduce to
the case of line bundles. In Section 10.1 we illustrate this method by proving various basic results that will be
needed later. We prove the Riemann-Roch Theorem for vector bundles, the unique decomposition of a bundle
into indecomposable subbundles and the classification of extensions by their cohomology classes. In Section 10.2
we restrict our attention to rank 2 vector bundles and investigate some of their properties. In Section 10.3 we
introduce the notion of a Gieseker point of a rank 2 vector bundle, and we show that semistability under the

225
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action of the general linear group is equivalent to semistability of the vector bundle. We prove this by direct
construction of semiinvariants, using Pfaffians, and without recourse to the Hilbert-Mumford numerical criterion
of Chapter 7. (The same statement is true with semistability replaced by stablility, but for that we do need the
numerical criterion, and this is discussed briefly in Section 10.4(c).) In Section 10.4 we put all of these ideas
together to prove Theorem 10.1.

10.1 Some general theory

Let E be a vector bundle on C. Thus E is an elementary sheaf with total set Egen, a finite-dimensional vector
space over k(C), and for each nonempty open set U C C defines a O¢(U)-module E(U). We denote the stalk at
a point p € C' by E, C Ege,. For each positive integer ¢ we can define in a natural way a vector bundle /\Z E
whose total set is the exterior power /\Z Egen. In particular, if r = r(E) is the rank of E, then

det E:=\"FE

is a line bundle, called the determinant line bundle of E. An Oc-module homomorphism f : E — F between
vector bundles E, F' will simply be called a homomorphism, and we denote the set of these by Hom(E, F).

(a) Subbundles and quotient bundles

Note that the following two definitions are not the same!

10.2 DEFINITION. A vector bundle F' on C is a subsheaf of E if:
(i) Fyen C Egen is a vector subspace over k(C'); and
(ii) F(U) C E(U) is a submodule over O¢(U), for every open set U C C.
In this case we write E C F. a

10.3 DEFINITION. A subbundle F C FE is a subsheaf which satisfies, in addition:
(i) F(U) = E(U) N Fgen for every open set U C C. ad

If D > 0 is a positive divisor, then Oc(—D) C O¢ is a subsheaf but not a subbundle. Indeed, a line bundle
has no nonzero subbundles. More generally, if ' C E is a subbundle, then F(—D) C E is a subsheaf, but not a
subbundle if D # 0. But in the other direction, starting with any subsheaf F' C E we can construct a subbundle,
called the saturation of F' in E, as the elementary sheaf

U~ E(U)N Fgen.

If F C E is a subbundle, then, although for each open set U C C the quotient E(U)/F(U) is a submodule of the
quotient vector space Egen/Fgen, in general the mapping U — E(U)/F(U) does not define an elementary sheaf.
However, using the stalks, the mapping

U {f € Egen/Fgen | f € Ep/F, forallpe U}

does define an elementary sheaf, and this is what we call the quotient E/F. Note that the natural projection
maps
EU) — (E/F)(U)

are not in general surjective, although they are surjective on the stalks, and so E — E/F is called a surjective
map of sheaves (see Definition 8.81). This is a delicate point in the theory of sheaves, and it is important to treat
it with care.

We now take an affine open cover {U;}, U; = Spm R;, of our curve. The restrictions E|y, and F|y, come from
some R;-module M; and submodule N; C M;. The condition that F' C E is a subbundle is equivalent to requiring
that each quotient R;-module be torsion free, and the quotient bundle E/F is the elementary sheaf obtained by
gluing the modules M;/N;. Since the local ring O¢, ) at each point p € C is a discrete valuation ring, it follows
that each M;/N; is a locally free R;-module (Corollary 8.38). From this we conclude:
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10.4 LEMMA. If E is a vector bundle on a curve C and F' C E is a subbundle then the quotient E/F is a vector
bundle. O

A sequence of vector bundle homomorphisms
0—-F—>E—->G—-0 (10.1)
is exact if at each point p € C the stalk maps
0—-F,—-E,—-G,—=0

form an exact sequence of O¢ ,-modules. In this case we will view F' as a subbundle of E and G as its quotient
bundle E/F.

10.5 DEeFINITION. The exact sequence (10.1) is split if any of the following equivalent conditions are satisfied.
(i) There exists a subbundle (or subsheaf) G’ C E for which the composition G' < E — G is an isomorphism.
(ii) There exists a homomorphism f : G — E for which the composition G Ly B> Gisan isomorphism.

(iii) There exists a homomorphism g : E — F for which the composition F' — E 2y Fisan isomorphism.
In this case, either of the maps f or g is called a splitting of the sequence. a

Let f : E — F be a vector bundle homomorphism. Locally this is a homomorphism of O¢-modules, and the
image Im f is the sheaf obtained by gluing the image modules. This is a vector bundle with total set equal to
Im {fgen : Egen = Fgen} and is a subsheaf of F'. It can also be defined as follows. First note that

U ker {E(U) - F(U)}

defines an elementary sheaf with total set ker fgen. This is a subbundle ker f C E, and we can define the image
sheaf to be the quotient
Im f:= E/ker f — F.

A homomorphism f : E — F induces homomorphisms of exterior powers
ANFNESNF  0<i<min{r(B),r(F)}.
If r(E) = r(F) = r, then we write det f = A" f for the homomorphism of determinant line bundles.

10.6 PROPOSITION. Let f : E — F be a homomorphism between vector bundles of the same rank. Then f is
an isomorphism if and only if det f : det E — det F' is an isomorphism of line bundles. |

(b) The Riemann-Roch formula

Let E be a vector bundle of rank r. If N C Egen is a vector subspace over k(C'), then
U—EU)NN

defines a subbundle of E. In this way it is always possible to construct exact sequences of the form (10.1); and by
using this one can deduce properties of E from properties of bundles of lower rank, and finally from line bundles.
In this section we are going to use this method to derive a Riemann-Roch formula for vector bundles.

10.7 DEFINITION. The degree deg E € Z of a vector bundle is the degree of its determinant line bundle det E. O

If E lies in an exact sequence (10.1), then there is an isomorphism
det F @ det G = det E,

and hence deg ' = deg F' + deg G. In other words, degree is additive on exact sequences.
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Recall from Section 9.2 that the spaces H°(E) and H!(E) are defined to be the kernel and cokernel of the
principal part map:

0 — H°(E) — Egen — P Egen/E, — H'(E) — 0.
peC

We will write hi(E) = dim H*(E) for i =0, 1.
The exact sequence (10.1) gives rise to a long exact sequence of cohomology spaces as follows. First, it induces
a commutative diagram, in which each row is exact:

0— Feen — Egen — Ggen —0
V V ! (10.2)
0— ®pec Feen/Fpy — @pec Egen/Ey, — @pec Ggen/Gp — 0
Applying the Snake Lemma 8.57 to (10.2) yields an exact sequence
0 — HY(F) - H(E) » H°(G) - HY(F) —» H'(E) » H*(G) - 0. (10.3)
The connecting map § : H°(G) — H'(F) is in this case called the coboundary map.

10.8 PROPOSITION. For any vector bundle E on C the vector spaces H°(E) and H'(E) are both finite-
dimensional over k.

Proof. When FE is a line bundle this has been proved in the last chapter (see Section 9.2(c)). For higher rank
we can use induction on the rank of E. Using any proper k(C')-vector subspace of Ege, we have an exact sequence
(10.1), and hence an exact sequence (10.3). By the inductive hypothesis, the spaces H*(F), H°(G), H'(F), H' (G)
are all finite-dimensional, and hence so are H(E), H'(E). ]

10.9 CoOROLLARY. If E is a vector bundle, then the degree of its line subbundles L C E is bounded above.

Proof. Since H°(L) is a subspace of H°(E), we have h®(L) < h°(E). Then by Theorem 9.20 either deg L <
2g—2ordegL=h"(L) +g -1 < h(E) +g- 1 .

Since the sequence (10.3) is exact, it follows that the alternating sum of the dimensions of its terms is zero
(Exercise 10.3). Thus

hO(E) = h'(E) = (h°(F) = h'(F)) + (1°(G) = 1 (G)) -

In other words, h® — h' is additive on exact sequences.

10.10 RIEMANN-ROCH FORMULA. (WEAK FORM.) If E is a vector bundle of rank r on a curve C' of genus g,
then

h°(E) — h'(E) = degE —r(g — 1).
Proof. Let RR(E) = h°(E)—h'(E)—deg E+r(g—1). We shall show that RR(E) = 0 by induction on r; in the

line bundle case r = 1 we have already seen this in (9.15). In general, we can construct an exact sequence (10.1),
and this sequence satisfies RR(E) = RR(F) + RR(G). But RR(F) = RR(G) = 0 by the inductive hypothesis. O

In the same spirit, we can derive duality for vector bundles. This says that the cup product defines an
isomorphism H'(E) = H°(EY ® Q¢)VY, proved again by induction on the rank (see Exercise 10.4):

10.11 THEOREM. For any vector bundle E on a curve C' the cup product
HY(E) x H*(EY @ Q¢) — H' () 2k,

where Q¢ is the canonical line bundle, is a nondegenerate pairing. m|
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Finally, given two vector bundles E, F', we can define an elementary sheaf Hom (E, F) of local homomorphisms
from E to F by
U — Homo @, (E(U), F(U)).

This has total set Homy,c)(Egen, Fgen) and is isomorphic to EY ® F'. It has stalk Home,. , (Ep, F},) at p € C, and
its space of global sections is the vector space Hom(E, F') of (global) homomorphisms from E to F. In the case
E = F we write

End E=Hom(E,E), sl E:=ker {tr :End E — O¢}.

Both of these bundles have degree zero, and so by Theorem 10.10 they satisfy

ho(End E) —h*(End E) = r%(g-1),

ho(sl E) — h'(sl E) r2 —1)(g— 1). (10.4)

(c) Indecomposable bundles and stable bundles

10.12 DEFINITION. A vector bundle E is decomposable if it is isomorphic to the direct sum E; @ E5 of two
nonzero vector bundles; otherwise, F is indecomposable. O

10.13 ExXAMPLE. Every line bundle is indecomposable. a

If E admits an idempotent, that is, an endomorphism f € End E satisfying f2 = f, then E = ker f®ker (1—f);
and conversely, if E = E; ® E», then f = (0, 1) is such an idempotent. Thus decomposability is equivalent to the
existence of an idempotent not equal to 0 or 1 (the identity endomorphism) on E. An arbitrary vector bundle is
isomorphic to a direct sum of indecomposable bundles, and this decomposition is unique in the following sense.

10.14 THEOREM. (ATIYAH [70]) If a vector bundle E has two direct sum decompositions into indecomposable
bundles, E = E1 ®---® E,, = F| ®---® F,, then m = n and Ey,..., E, are isomorphic to Fy,...,F,, after
reordering suitably. a

The completeness of the curve C is essential in this theorem, as Exercise 10.5 shows. We prove the theorem
first for the case of a rank 2 bundle. Suppose that

E=L®Ly=M; ® M,,

where Ly, L, and M, M- are line bundles. We have to show that either Ly =2 M;, Ly =2 M, or L1 = M,
Lo =2 M. For each M = M, or My we have homomorphisms

i: M — FE, j:E— M,

where ¢ is injective, j is surjective and j o¢ = idps. In terms of the decomposition £ = L; & Lo we can write
i = (i1,i2), where i1 : M — Ly, ia: M — Lo and j = ji + ja, where ji : Ly — M, jo : Ly — M. These maps
then satisfy

jl Oil +]2 Oi2 = ldM
An endomorphism of the line bundle M is just multiplication by a scalar (i.e. an element of k) and so at least

one of j; o4y or js oiy must be an isomorphism—suppose j; o i;. But then M is a direct summand of L, and
since L is irreducible, we conclude that M = L. O

The general case of Theorem 10.14 follows from:
10.15 PROPOSITION. The following conditions on a vector bundle E are equivalent.

(1) E is indecomposable.
(2) If f1, f» € End E and f; + f» is an isomorphism, then one of f; or f, is an isomorphism. a

10.16 REMARK. Condition (2) is equivalent to saying that End E is a local ring: that the set of noninvertible
elements is the maximal ideal. i
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Given an endomorphism f : E — E, consider the determinant det f : det E — det E. This is just multiplica-
tion by a scalar because det F is a line bundle, and this scalar is nonzero if and only if f is an isomorphism. Now,
for an arbitrary scalar A consider det(f — Aid). This is a polynomial of degree r(E) in A and is the characteristic
polynomial of the endomorphism f. In particular, if « is an eigenvalue then f — « -id fails to be an isomorphism.

10.17 LeMmMA. If E is indecomposable, then f € End E has only one eigenvalue. O

Proof. Suppose f has distinct eigenvalues «, . Then its characteristic polynomial can be expressed as a
product of two polynomials without common factors:

det(f —A-id) = p(N)a(A),  pla) = ¢(B) =0.
There exist polynomials a()), b(\) satisfying
p(Na(A) +q(M)b(A) =1,

so that the endomorphism h = p(f)a(f) € End E satisfies h(1 — h) = 0 by the Cayley-Hamilton theorem. This
implies that E is the direct sum ker h @ ker (1 — h), and since h and 1 — h are both nonzero, we conclude that E
is decomposable. O

Proof of Proposition 10.15. (1) = (2) Suppose that E is indecomposable and that f = fi + f» is an
isomorphism but f; is not an isomorphism. Then f; f~! fails to be an isomorphism. By the lemma, its only
eigenvalue is 0, so it is nilpotent. But then fof ' =1 — f; f ! is an isomorphism, and this implies that f5 is an
isomorphism.

(2) = (1) If E is decomposable, then there exists a nonzero, nonidentity idempotent f = f2. Then neither
of f, 1 — f is an isomorphism, although the sum is an isomorphism. a

10.18 DEFINITION. A vector bundle E is simple if its only endomorphisms are scalars, End E = k. a

A simple vector bundle is necessarily indecomposable, though the converse is not true, as we will see in the
next section (Proposition 10.45). But (10.4) implies the following, which is relevant to the moduli theory for
vector bundles (see Exercise 10.1).

10.19 LeEmMA. If E is indecomposable, then

h(End E) = r’(g—1)+1,
hl(sl E) = (r*>—=1)(g—1).

O

10.20 DEFINITION. A vector bundle E is stable (or semistable, respectively) if every vector subbundle F' C E

satisfies
deg F’ deg E

rank F'  rank
The ratio u(E) := deg E/rank E is called the slope of E, and stability of E can be expressed as u(F) < u(E)

for all subbundles F C E. To avoid confusion with other notions of stability we shall sometimes refer to this
property as slope stability. O

(or < respectively).

10.21 REMARK. Note that when deg E and rank E are coprime, stability and semistability are equivalent. O

The following lemma follows from Exercise 10.1.

10.22 LeMMA. Let L be a line bundle on C. Then a vector bundle E is (semi)stable if and only if L ® E is
(semi)stable. o



e L ML AL T ALV A A AL AV A

Stability of E can also be expressed by saying that u(G) > u(FE) for every quotient bundle G = E/F of E.
Passing to the dual bundle, quotients become subbundles and we see:

10.23 LEMMA. A vector bundle E is (semi)stable if and only if its dual bundle EV is (semi)stable. O

The next fact will be important in the moduli theory.

10.24 PROPOSITION. Let E, E' be semistable vector bundles of the same rank and degree, and suppose that one
of them is stable. Then every nonzero homomorphism between E and E' is an isomorphism.

Proof. Let r and d be the common rank and degree of the two bundles, and let f : E — E’ be a homomorphism
with image F' C E'. Since E, E' are semistable, we have

< p(F) <

Y

SR
SR

and so u(F) = d/r. If rank F' < r, then this contradicts the stability of E or E', and hence rank F = r. In
particular, this means that fgen : Egen — Ejgep is an isomorphism of vector spaces over k(C), and so det fgen is
also an isomorphism. This implies that det f : det E — det E’ is injective, and since deg E = deg E’, it follows
that det f is an isomorphism. Hence f is an isomorphism by Proposition 10.6. a

10.25 COROLLARY. Every stable vector bundle is simple.

Proof. An endomorphism f € End E induces, at each point p € C, an endomorphism of the fibre E/E(—p) =
k®". Let a € k be an eigenvalue of this map, and consider f —« -id € End E. This is not an isomorphism, so by
Proposition 10.24 it is zero. O

Recall that if L is a line bundle with deg L > 2g — 2, then H'(L) = 0 (Theorem 9.20). For general vector
bundles this kind of vanishing condition on cohomology does not hold; however, for semistable bundles one can
show something similar.

10.26 PROPOSITION. If E is a semistable vector bundle with u(E) > 2g — 2, or if E is stable and pu(E) > 29— 2,
then H(E) = 0.

Proof. By hypothesis, every quotient line bundle of E has degree greater than 2g — 2. On the other hand, the
canonical line bundle Q¢ has degree equal to 2g — 2, and so there is no nonzero homomorphism E — Q¢. Hence
H!'(E) = 0 by Theorem 10.11. O

Proposition 9.38 also generalises to semistable vector bundles:

10.27 PROPOSITION. If E is semistable and pu(E) > 2g — 1, or if E is stable and u(E) > 2g — 1, then E is
generated by global sections.

Proof. By the previous proposition, H'(E(—p)) = 0 for every point p € C. It follows that, for every positive
divisor D > 0, the restricted principal part map

H(E(D - p)) = E(D - p)/E(-p)

is surjective. In particular, taking D = p shows that the evaluation map H°(E) — E/E(—p) is surjective at every
point p € C. O
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(d) Grothendieck’s Theorem

Grothendieck’s Theorem gives a complete classification of vector bundles on the projective line P'. First consider,
on any curve, a short exact sequence of vector bundles

E: 0-M—->E—L-—DO. (10.5)
Tensoring with the dual bundle LV gives a short exact sequence
0— Hom(L,M)— Hom(L,E) = End(L) — 0, (10.6)
and its associated long exact sequence of vector spaces
0 — Hom(L, M) — Hom(L,E) — End(L)
— HY(Hom(L,M)) — H*(Hom(E, M)) — H'(End(L)) — 0.
10.28 DEFINITION. The image under the coboundary map ¢ of id € End(L), which we will denote by
§(E) € H (Hom(L, M)),

is called the extension class of the exact sequence (10.5). |

By construction, if §(E) = 0, then there exists a homomorphism f : L — E for which the composition
L L ESL (where the second map is the surjection of (10.5)) is the identity endomorphism of L. In other
words, the sequence (10.5) splits. In particular, we see:

10.29 PROPOSITION. If H'(Hom(L,M)) = 0, then every exact sequence (10.5) splits. a

We will apply this fact to P!. Since the genus is zero, the cohomology of a line bundle L is particularly simple.
Namely,
H°(L)=0 ifdegL < -1,
HY(L)=0 ifdegL > —1,
while, by Riemann-Roch,
h°(L) — h*(L) = deg L + 1.

10.30 LEMMA. Every rank 2 vector bundle on P! is isomorphic to a direct sum of two line bundles.

Proof. Tensoring with a line bundle if necessary, it is enough to assume that deg £ = 0 or —1. First, by the
Riemann-Roch Theorem 10.10 we note that H°(E) # 0, and so E contains O¢ as a subsheaf. This saturates
to a line subbundle M C E, and M = O¢(D) for some positive divisor D > 0. In particular, deg M > 0, and
denoting the quotient by L = E/M we have an exact sequence

O—-M—FE—L—O0.

However, deg L ' ® M = —deg E + 2deg M > —1, so that H*(L~! ® M) = 0. By Proposition 10.29, therefore,
the sequence splits. O

10.31 GROTHENDIECK’S THEOREM. Every vector bundle on P! is isomorphic to a direct sum of line bundles.

Proof. We prove this by induction on the rank r > 2 of E starting with the previous lemma. By Corollary 10.9
there exists a line subbundle M C E whose degree m = deg M is maximal among line subbundles of E.

Claim: Every line subbundle L C F := E/M has deg L < m.

Consider the preimage L C E of L under the projection £ — F. This is a rank 2 vector bundle, and degz =
m + deg L. By Lemma 10.30, it contains a line subbundle of degree at least deg L /2, so that, by the way M was
chosen, we have (m + deg L)/2 < deg L. The claim follows from this.
By the inductive hypothesis, and the claim, the quotient bundle F' is isomorphic to a direct sum Ly ®--- DL,

of line bundles of degrees deg L; < m. Since H*(L; ' ® M) = 0 for each i, it follows that the exact sequence

r—1

0-M—E—>F=L -0
i=1

splits. O
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(e) Extensions of vector bundles

Given vector bundles L and M, we are going to classify bundles E having M as a subbundle with quotient L.
First of all, let us make precise the meaning of the classification problem.

10.32 DEFINITION. (i) A short exact sequence (10.5)
E: 0O-M—=FE—-L—-0

is called an eztension of L by M.
(ii) Two extensions E and E' are equivalent if there exists an isomorphism of vector bundles f : E = E' and a

commutative diagram:
0O —— M — E — L — 0

I fi I

O — M — E — L — 0
O

Note that the extension class §(E) defined in Definition 10.28 depends only on the equivalence class of the
extension in this sense. The main result of this section is the following.

10.33 THEOREM. The assignment

{extensions

of L by M }/equivalence — H'(Hom(L, M))

given by E — 6(E) (Definition 10.28) is a bijection.

We will prove this in the case when L is a line bundle. Tensoring with L~! transforms the exact sequence of
Definition 10.32(i) to
0L '9M = E— Oc—0,

and it is therefore enough to consider the case L = O¢:
E: 0-M—E— Oc—0. (10.7)
The coboundary map in the induced long exact cohomology sequence is
§:H(O¢) — HY (M),

and the extension class §(E) € H*(M) is the image under this map of the constant section 1 € H°(O¢).

First of all, let us follow carefully the construction of Lemma 8.57 which defines the coboundary map. We
choose a rational section s € Ege,, mapping to the constant section 1 € H°(O¢). The principal part (s mod Ej,)pec
can then be viewed as belonging to the principal part space of M; let us denote this by ¢ € @pec Mgen/Mp. The
extension class §(E) is then 0 mod Mgen € H'(M). We are going to prove Theorem 10.33 by actually giving a
finer classification using o and not just its cohomology class.

10.34 DEFINITION. (i) A framed extension is a pair (E,s) consisting of an extension E as in Definition 10.32(i)
and a splitting s : Lgen — Egen 0f the exact sequence of vector spaces

0 = Mgen — Egen =+ Lgen — 0.

(ii) Two framed extensions (E,s) and (E',s') are equivalent if there exists an isomorphism of extensions f :
E — E’' such that the diagram
s
Egen — Lgen

fgen 4 |

’

S
E’ — Lgen

gen

commutes with the diagram in Definition 10.32(ii). o
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In the case when L = O¢, a framed extension determines naturally an element o = o(E, s) € @pec Mgen /My,
and again this depends only on the equivalence class of the framed extension.

10.35 PROPOSITION. The map

{framed extensions }

of Oc: by M /equivalence — GB Mgen /M,

peC
given by (E, s) — o(E, s) is a bijection.

If we fix an extension of O¢ by the M, then the choice of a framing is up to an element of Mge,. Replacing
s by s + m for some rational section m € Mgen has the effect of adding the principal part of m (at each point
of C) to o(E, s). The cohomology class of o(E, s) does not, therefore, depend on s, and this cohomology class is
precisely 6(E) € H'(M). It follows that in the case L = O¢, Theorem 10.33 follows from Proposition 10.35.

Proof of Proposition 10.35. We will construct an inverse map. As a simplest case let us construct an exten-
sion (10.7) starting from a point p € C' and a rational section s € Mgen. To do this we first take an affine open
neighbourhood U C C of the point, chosen small enough that s is regular on U — {p}. Here and below, when
working on an affine variety we will always denote a module and its corresponding sheaf of modules by the same
symbol. We let

Ml X (p,5) Ov C Mgen & k(U) = Mgen & k(C)

be the Opy-submodule generated by M|y @ 0 and (s,1):

Mlu X(p,5) Ou ={(m + fs,f) |m € M|y, f€Ouv}.
This submodule depends only on the principal part (s mod M),) € Mgen /M, of s at p. Clearly:
(1) M|y X (p,s) Ov contains as a submodule M |i7(= M| @ 0), with quotient module isomorphic to Or; and

(2) the two submodules
Ml X (p,s) Oy, M|U@OUCMgen@k‘(C)

are equal on U — {p}.
Consequently, we obtain a vector bundle on C by gluing along U — {p} the two bundles:
(a) M|y X (p,s) Ov on U;
(b) M & Oc¢ on C — {p}.

We can denote the resulting bundle by M X, ;) Oc.

More generally, given a collection of points pi,...,p, € C and rational sections s1,...,5, € Mgen, choose
affine neighbourhoods p; € U; C C so that each s; is regular on U; — {p;}. Then, just as above, we can construct
a vector bundle on C which restricts to:

(a) M
(b) M ©O¢ on C — {pla"')pn}'
This vector bundle depends only on the principal part

Ui X (pi,s:) Ov; on each U;

o= (Si)lgign S @ Mgen/Mpi?

i=1

and we will denote it by M X, O¢. By construction there is an exact sequence
0—>M—)M><la(’)o—)(/)c—>0,

and the assignment ¢ — M X, O¢ is inverse to that of Proposition 10.35. |

It remains to prove Theorem 10.33 for a general cokernel line bundle L. The exact sequence (10.6) in Sec-
tion 10.1(d) determines at the generic point an exact sequence of vector spaces over k(C),

0 — Hom(Lgen, Mgen) = Hom(Lgen, Egen) = End Lgen — 0.

Choosing a lift of the identity 1 € End Lgen to Hom(Lgen, Fgen) is equivalent to giving a framing of the extension
E, and in just the same way as for Proposition 10.35 one can prove:
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10.36 PRroOPOSITION. The map

Hom(Lgen, Mgen)
Hom(Ly, Mp)

/equivalence —» @

peC

framed extensions
of L by M

given by (E, s) — 6(E, s) is a bijection. |

Dividing out this bijection by the action of Hom(Lgen, Mgen) now yields Theorem 10.33.

10.2 Rank 2 vector bundles

We are now going to look at vector bundles of rank 2 in more detail.

(a) Maximal line subbundles

Given a vector bundle E, we have seen (Corollary 10.9) that the degrees of its line subbundles are bounded above.
Let us look more closely at this in the case when E has rank 2. We suppose that E is an extension

0O—-L—-FEF—M-—DO0,

where L, M are line bundles, and that N C E is a line subbundle. If N is a subsheaf of L, then N = L; if not,
then the composition
N—E—+M

is nonzero, and so N is isomorphic to a subsheaf of M. This shows:

10.37 LEMMA. If E is an extension of rank 2 as above and N C E is a line subbundle, then either N = L or
deg N < deg M. In particular, every line subbundle satisfies deg N < max{deg L, deg M }. a

If E is not semistable, then it has a line subbundle of degree strictly greater than deg E/2. Such a line bundle
is called a destabilising line subbundle, and the lemma implies the following.

10.38 PROPOSITION. A rank 2 vector bundle E has at most one destabilising line subbundle. a

If E is indecomposable or simple then the next two lemmas give upper bounds for the degree of its line
subbundles in terms of the degree of E.

10.39 LEMMA. If E is a simple vector bundle of rank 2, then every line subbundle L C E satisfies
2degL < degE +g—2.

Proof. Let M be the quotient line bundle E/L. Simplicity of E implies that H°(M ~! ® L) = Hom(M, L) = 0.
On the other hand, indecomposability and Proposition 10.29 imply that H'(M ! ® L) # 0. Applying Riemann-
Roch to the line bundle M ~! ® L, therefore, we get

“1>(M* QL) -hW (M ®L)=—degM +degL+1—g.

The inequality in the lemma follows from this and the relation deg ' = deg L + deg M. a

The following is proved in a similar manner, and we omit the details.
10.40 LEMMA. If E is an indecomposable vector bundle of rank 2, then every line subbundle L. C E satisfies

2degL < degE + 2g — 2.
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(b) Nonstable vector bundles

Let us summarise some of the conclusions of the previous sections:
indecomposable <= simple <= stable =—> semistable.

The reverse implications, however, do not hold in general. Propositions 10.38 and 10.45 below show that simple
#= stable, and indecomposable 7= simple, respectively.

10.41 PROPOSITION. Let L, M be line bundles satisfying deg L > deg M and Hom(M,L) = 0. Then every
nonsplit extension of M by L is simple.

Proof. Suppose that E is such an extension
0O—-L—->E—->M-—0

and that f is an endomorphism of E. By hypothesis, L is a destabilising subbundle of E, so that by Proposi-
tion 10.38 the image f(L) is either L or 0. If it is 0, then f factors through the quotient M:

f:E—-M—E.

But since the extension is nonsplit, Hom(M, E) = Hom(M,L) = 0, and so f = 0.

Suppose, on the other hand, that f(L) = L. Then the restriction f|r : L — L is multiplication by some
constant a € k. This implies that the endomorphism f — a -idg is zero on L, so, by the first part of the proof, it
follows that f = a-idg. a

10.42 ExaMPLE. Let C be a curve of genus ¢ > 3. For each 1 < d < g — 2 there exists a line bundle ¢ € Pic?C
with H°(¢) = 0. By the Riemann-Roch Theorem, H*(£¢) # 0, and so there exists a nontrivial extension

0=2E&¢—FE—0Oc—0,
which is unstable but simple. O
We next consider the case when E contains a line subbundle of degree exactly deg E/2. Letting M = E/L,

we have an extension
0—>L—-E—>M—Q0, deg L = deg M. (10.8)

In this case F is semistable but not stable.

10.43 DEFINITION. Given a bundle E as in (10.8) which is semistable but not stable, we let gr(E) = L@ M. If
E is stable, then gr(E) = E. m|

10.44 PROPOSITION. The direct sum gr(FE) depends only on the vector bundle E and not on the choice of
extension (10.8).

Proof. Suppose that L' C E is another line subbundle of degree deg E/2 and consider the composition L' <
E — M. If this is zero, then L' = L; otherwise, L' = M. On the other hand, E/L' = det E ® L'~!, and so the
bundle gr(E) obtained from L' C E is isomorphic to L & M. |

Next, we construct indecomposable bundles which are not simple.

10.45 PROPOSITION. Let 0 - L — E — M — 0 be a nonsplit extension with Hom(M,L) # 0. Then E is
indecomposable but not simple.

Proof. Tt is enough to assume that L = O¢. The exact sequnce can then be written as
0> 0Oc— E— Oc(—D) =0, (10.9)

where D is some positive divisor. First note that H°(E) is 1-dimensional. If ¢ is an endomorphism of E, then
we will denote by H°(¢) the induced linear automorphism of H°(E).
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Suppose that H°(¢) = 0. Then ¢ maps the line subbundle O¢ to zero, and therefore factors through the
quotient O¢(—D):
¢:E— Oc(—D) = E.

Since the sequence (10.9) is nonsplit, it follows that the composition of ¢ with the surjection E — O¢(—D) is
zero. In other words, the image of ¢ is contained in the line subbundle Oc C E, so that ¢ s induced by an element
of Hom(Oc(—D), O¢):

¢:E— Oc(—-D) - Oc — E.

If, on the other hand, H%(¢) # 0, then it is multiplication by a constant a € k. Then, by considering ¢ —a-idg
we reduce to the previous case, and this shows that

End E =k @ Hom(O¢(—D), O¢).
Hence F is not simple, and E is indecomposable by Proposition 10.15 |
10.46 REMARKS. (i) Every rank 2 vector bundle which is indecomposable but not simple is described by the
construction of this proposition.

(ii) There exist exact sequences
O=-L—-E—-M-=0

which are nonsplit but in which the vector bundle E is decomposable. For example, on the projective line
P = P! with homogeneous coordinates (z : y):

0— O]p(—l) — Opp0Op — O]p(l) —0
c —  (cy,—cx)
(a,b —  az+ by

This sequence is nonsplit by Theorem 10.14. a

(c) Vector bundles on an elliptic curve
We now suppose that C' has genus 1. By the Riemann-Roch Theorem every line bundle L on C satisfies
hO(L) — h' (L) = deg L.
Moreover:
(i) if deg L > 0, then H'(L) =0,
(i) if deg L < 0, then H°(L) = 0,
(iii) if deg L = 0 and L % Oc, then H°(L) = H'(L) = 0.

We will give a complete classification of all indecomposable rank 2 vector bundles on the elliptic cure C'. We
consider first the case of odd degree.

10.47 PROPOSITION. On a curve of genus 1, given a line bundle L of odd degree, there exists, up to isomorphism,
a unique indecomposable rank 2 vector bundle E with det E = L.

Proof. Tt is enough to consider the case deg L = 1. Since H'(L!) is 1-dimensional, there is, up to isomorphism,
just one nonsplit exact sequence
0—>0c—E—L—O0.
Claim: h°(E) = 1.

Since H?(L) # 0, it follows that L contains O¢ as a subsheaf. Let E' C E be the inverse image of this subsheaf.
The dual L~! < O¢ of the inclusion O¢ <+ L induces an injective map

HY(L™") = H'(Oc),
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and it follows from this that E’ is a nonsplit extension
0= 0Oc—=E = 0Oc—0.

Hence h°(E') = 1 and, since h°(L) = 1, this shows that h°(E) =1 too.

The indecomposability of the vector bundle E can now be proved by the same reasoning as in the proof
of Proposition 10.45. We have therefore proved the existence part of the proposition, and it remains to show
uniqueness. Fixing L of degree 1 and F with det E = L, we have H°(E) # 0 by Riemann-Roch, so that E
contains O¢ as a subsheaf. But applying Lemma 10.40 to the saturation of this subsheaf shows that O must be
a line subbundle, and so E is precisely the bundle constructed above. O

In fact, the vector bundle constructed in Proposition 10.47 is also stable, and therefore simple.
We next consider the case of even degree.

10.48 PROPOSITION. On a curve of genus 1 every indecomposable rank 2 vector bundle of even degree is an
extension of the form

O—-M-—>FE—->M-—=0

for some line bundle M on C'.

Proof. Tt will be sufficient to consider the case deg E = 2. By Riemann-Roch, h°(E) > 2, so that we can use
two linearly independent sections s,t € H°(E) to construct a homomorphism

f:0c®0Oc — E, (a,b) — as + bt.
Claim: f is injective.

Suppose not. Then the image is a subsheaf of rank 1, and we denote its saturation by L C E. Then deg L > 2
because h°(L) > 2. But this contradicts Lemma 10.40.

Since deg F = 2, the homomorphism f cannot be surjective. In other words, there exists some point p € C' at
which the induced map k ® k — E/E(—p) fails to be an isomorphism. This means that E contains O¢(p) as a
subsheaf and, by Lemma 10.40, as a line subbundle. The quotient line bundle M = E/O¢(p) then has degree 1.
But indecomposability of E implies that H'(M ~!(p)) # 0, and hence M is isomorphic to Oc(p), proving the
proposition. a

Putting these results together we obtain:

10.49 PROPOSITION. (ATIYAH [71]) Let E be a rank 2 vector bundle over a curve C of genus 1, with determinant
line bundle det E' = L.
(i) Ifdeg L is odd, then E indecomposable <= E simple <= E stable <= E semistable. Moreover, SUx(2, L)
is a single point.
(ii) If deg L is even, then are no simple bundles (and therefore no stable bundles), but E indecomposable =
E semistable. o

10.3 Stable bundles and Pfaffian semiinvariants

Under the action of the algebraic group GL(N, N) on the affine space of square matrices Mat x (k) the determinant
function is a semiinvariant, and in the last chapter we used this fact to show stability under the group action
on matrices ¥(¢,S,T) (in Maty (H(L)) for a fixed line bundle L) representing line bundles ¢ € Pic?C. In this
section, in the same spirit, we are going to study the semistability of Gieseker points associated to rank 2 vector
bundles. For this, the central notion, with which we will build our semiinvariants, is that of the Pfaffian of a
skew-symmetric matrix, and we begin with a discussion of Pfaffians.
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(a) Skew-symmetric matrices and Pfaffians

Let Alty (k) be the vector space of skew-symmetric N x N matrices over k. A matrix A = (a;j)1<ij<n in
Alt (k) has zeros on the main diagonal and is determined by the entries above the diagonal, and we will adopt
the following notation:

@12 @3 --- QA1 N-1 ai,N
@23 - QA2 N—1 as N
A=
aAN-—2N—-1 QaN—2 N
aN—1,N
Thus, for example, an element of Alty(k) is written [a].
Such a matrix determines an element of degree 2 in the exterior algebra A{ei,...,en), which we will denote
by
2
op = Z aijei/\eje/\(el,...,eN>,
1<i<j<N
and this correspondence defines an isomorphism Altx (k) = A*(e1, - .., en).

The general linear group GL(N) acts on Altx (k) by
A XAXY A€ Alty(k), X € GL(N).

Under this action the rank of A is invariant; more precisely, the matrices A € Altx (k) of any constant rank make
up a single GL(N)-orbit. The following fact is fundamental here.

10.50 ProproSITION. Every skew-symmetric matrix has even rank. O

Because of this, the properties of the group action GL(N) ~ Alty (k) depend in an essential way on whether
N is even or odd.

EVEN SKEW-SYMMETRIC MATRICES. Let N € N be an even number.

10.51 DEFINITION. The Pfaffian of a skew-symmetric matrix A € Alty (k) is the number Pfaff A € k defined

by
N

oN? =0an...Noa=(N/2)(Plaff A)er A...Aey € New,... en) 2k

The Pfaffian is a homogeneous polynomial of degree N/2 in the entries a;; of A and can be written
1
Paff A= D sen(Haa)2)056)7() - G (N-1) £(N);
" fexn
where ¥ is the symmetric group of permutations of N letters and N!! denotes the ‘subfactorial’
NI=N(N-2)(N—-4)---6-4-2, (N—1)ll=(N—-1)(N—-3)---5-3-1.

Note that in the case N = 2 this is simply
Pfaff [a] = a.

For N > 2, the Pfaffian can be evaluated by expansion in a similar manner to the determinant: for ¢ < j, let A;;
denote the (N —2) x (N — 2) skew-symmetric submatrix obtained from A by deleting the i-th and j-th rows and
columns. Then

N
Pfaff A= (—1)/a;;Pfaff Ay;. (10.10)
j=2

As a polynomial, Pfaff A is a sum of (N — 1)!! monomials with coefficients +1.
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10.52 EXAMPLE. In the case N =4,

{ 12 @13 ai4 ]
Pfaff (23 @24 | = Q12034 — (13024 + A14023.
[ s |

In the case N = 6, one sees:

a12 @13 G14 Q15 0A16
(23 (A24 Q25 (26

Pfaff a34 QA35 Q36
Qa5 Q46
56

a34 Aazs a36

= apoPfaff Q45 Q46
a56
Q24 Q25 A26 a23 G25 A26
—a13Pfaff 45 Q46 + a14Pfaff ass (436
L as6 | L as6 |
@23 A24 QA26 @23 A24 A25
—a15Pfaff aszs Aa36 + alﬁpfaff ass Aass
L 46 | L Q45 |
G14 Aais Gie 14 Q15 0aie 56
= —det| axa a5 a2 +(023;—0137012) 24 Q25 A26 —Q46
a34 azs a36 a3z4 azs a36 Q45

The following facts are easy to check.

10.53 PROPOSITION. (i) The Pfaffian is a square root of the determinant:
det A = (Pfaff A)2.

In particular, Pfaff A # 0 if and only if A has rank N.
(ii) For any N x N matrix X we have

Pfaff (X AX") = (det X)(Pfaff A).

Thus the Pfaffian is a semiinvariant of weight 1 (with respect to the character x = det) for the action
GL(N) ~ Altn (k).
(iii) For any B € Maty/s(k) and C € Alty/»(k) we have

0 B

Pfaff < _Bt C

> = (=1)>*" det B.

ODD SKEW-SYMMETRIC MATRICES. Now let N be an odd number. The Pfaffian of A € Alty (k) is no longer
defined, but instead we can consider the Pfaffians of its diagonal (N — 1) x (N — 1) minors.
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10.54 DEFINITION. The radical vector of an odd skew-symmetric matrix A € Alty (k) is the N-vector

Pfaff A1
—Pfaff AQ
rad A = ((_1)i—1pfaff Ai)1<i<N = Plaff Ay )
(—I)N_leaff An
where A; denotes the submatrix obtained from A by deleting the i-th row and column. O

We can begin by noting the following formula, which will be needed in Chapter 12. (The case N = 3 follows
from Example 10.52.)

10.55 ExaAMPLE. If A, A" are skew-symmetric N X N matrices, where N is odd, and B is any N x N matrix of
rank < 2, then

A B

Pfaff (—Bt A

) = (rad A)'B(rad A").

The radical vector is essentially the power

N—-1
0'1(4N71)/2 S /\ (61,...,61\{)

of 04 € N*(e1, ..., en). The following properties are easily verified.

10.56 PROPOSITION. Consider A € Alty(k).
(i) rank A <n —1, and rank A <n —1 if and only ifrad A = 0.
(ii) A-rad A =0.
(iii) If X is an N x N matrix and X* is its matrix of cofactors, then

rad (X AX") = X*trad A.

Although in this case the only semiinvariants of the action GL(N) ~ Alty(k) are the constants, we can
nevertheless do the following. Given three skew-symmetric matrices A, B,C € Alty(k), we can consider the
scalar product

(rad A)'B rad C. (10.11)
Under the action of X € GL(N), this product transforms to
(rad A X*(XBX')(X*rad C) = (det X)*(rad A)!B rad C. (10.12)

It follows that the expression (10.11) is a semiinvariant of weight 2 for the diagonal action of GL(N) on the direct
sum

Altn (k) @ Altn (k) @ Altn (k)

(or direct product, if we view Alty (k) as affine space).
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SKEW-SYMMETRIC MATRICES OF RANK 2. A skew-symmetric matrix A € Alty(k) has rank A < 2 if and
only if all of its 4 x 4 minor Pfaffians vanish. Matrices with this property will play an important role in what
follows; the following is the skew-symmetric analogue of Lemma 9.55.

10.57 PROPOSITION. Let K be a field (or a local Artinian ring—this possibility will be needed in Section 10.4(a))
and let A € Altn(K). If A has rank 2, then there exists a 2 X N matrix

_ ay ao [ an
W= < by by --- by )
such that, for all 1 <i,j7 < N, the (i, j)-th entry of A is the (i,j)-th 2 x 2 minor of W. In other words,

i 01
A_W<_10>W.

Moreover, the matrix W is unique up to the action of SL(2, K) on the left. |

We omit the proof of this result. The matrix W represents a point of the Grassmannian G(2,N), and the
entries of A are the Pliicker coordinates of this point.

(b) Gieseker points

We are now going to establish a one-to-one correspondence between isomorphism classes of rank 2 vector bundles
satisfying some appropriate conditions and GL(N)-orbits in an affine space Altn (V') of skew-symmetric matrices
with entries in a suitable vector space V. The precise statement is Corollary 10.62, and this is the analogue of
Proposition 9.58 in the line bundle case. This construction is the key to proving Theorem 10.1.

10.58 NOTATION. For the rest of this chapter we fix a line bundle L € Pic C' and consider rank 2 vector bundles
E with det E = L. By Riemann-Roch we have

h°(E) — h'(E) =deg L +2 —2g =: N.

The natural number N will always take this value.
Aset S ={s1,...,sny} C H°(E) of N linearly independent global sections is called a marking of the vector
bundle E, and the pair (E, S) is called a marked vector bundle. a

In the line bundle case of the previous chapter (see Section 9.4(a)) we needed the key properties that:

(i) HY(E) =0.
(ii) E is generated by global sections.

These properties were guaranteed by taking large enough degree. For rank E > 2, this is no longer quite the case,
and we will usually impose conditions (i) and (ii) as additional hypotheses—though note that they are satisfied
by semistable bundles of sufficiently high degree, by Propositions 10.26 and 10.27. When they are satisfied we
have N = h°(E), and a marking S is a basis of H°(E). Moreover, generation by global sections means that the
homomorphism

N
(s1,-..,5N8) : OSN — E, (fi,e s fn) = fisiy (10.13)
=1

is surjective. At the same time, there is a homomorphism
(s1A, ..., snA) : E = (det B)®N, te (st At,...,sNAL) (10.14)

which, if F is generated by global sections, is injective. To explain this, recall that the stalk at the generic point
Egen is a 2-dimensional vector space over the function field k£(C'), so there is a skew-symmmetric bilinear form

A Egen X Egon = det Egen 22 k(C). (10.15)



A e RS M AL LSS A VLT A gAY AT &4 A0 As £ AT VAT sAALT P ALADAL AL T AN i

Thus sAs=0and sAs' +s"As=0for s,s' € Egn. Moreover, if s,s’ are global sections of E, then s A s is a
global section of det E, and so restriction of (10.15) defines a skew-symmetric k-bilinear map

H°(E) x H°(E) — H°(det E), (s,8") = sAs.

The bilinear form (10.15) induces an isomorphism Ege, = Hom(FEgen, det Fgen). In particular, each global section
s € H°(E) determines a homomorphism

sSAN: E — det E, t— sAt.

10.59 DEFINITION. (GIESEKER [44]) Given a vector space V, we will denote by Alty (V) the set of skew-
symmetric N X N matrices whose entries belong to V. Given a marked vector bundle (E, S) with det E = L, the
skew-symmetric matrix

S1
Tgs = : A(51,...,5N)
SN
[ sy Asy siAs3 -+  SsiASN
So ANSg - So N SN
= : : € Altn(H®(L))
L SN—1 A SN
will be called the Gieseker matriz, or Gieseker point, of E corresponding to the marking S. a

10.60 PROPOSITION. Given S = {sy,...,sy} C H°(E), the composition of (10.13) and (10.14)

O%N (815--28N) E (s1/,...,8NA) L@N

is given by the matrix Tp.s € Alty (HO(L)). ad

Note that any matrix T € Altx(H°(L)) determines a vector bundle map
(T): OZN — LON,
and this is skew-symmetric in the sense that the dual map (T) : (L=1)®N — OZN | after tensoring with L, is
equal to —(T'). Moreover, because of Proposition 10.60, when T is a Gieseker matrix of a bundle E the image

sheaf of (T') is nothing other than FE itself:

10.61 PROPOSITION. Suppose that H'(E) = 0 and that E is generated by global sections. Then, for any
marking S, E is isomorphic to the image of the homomorphism

(Tgs): OFN — LN

defined by its Gieseker point. a

We now consider the action GL(N) ~ Alty(H°(L)) given by
T XTX!,  TeAlty(H(L), X €GL(N),

where we view Alty(HY(L)) as an affine space A", where n = h°(L) x N(N — 1)/2. This action is of ray type.
If we assume H'(E) = 0, so that the marking S is a basis of H°(E), then the GL(N)-orbit of its Gieseker points
depends only on the isomorphism class of £ and not on the choice of S. Conversely, Proposition 10.61 guarantees
that the vector bundle E can be recovered from any Gieseker point, and hence:



10.62 COROLLARY. The mapping (in the setting of Notation 10.58)

isomorphism classes of .
. GL(N)-orbits
1
{vector bundles E with H(E) = 0} — {in ltn (H°(L)) }

and generated by global sections

sending F to the orbit of its Gieseker points Tk s is injective. a

10.63 EXAMPLE. Suppose that E = £ & is a direct sum of line bundles, and that S C HO(E) = H°(¢) & HO(€)
is the union of sets {s1,...,sm} C H°(§) and {t1,...,t,} C H°(§). Then L = ¢ ® £ and

TE,S:<_\I,9 %), where ¥ =

sity -0 Sitm
Sntl o Sntm
In this case, everything we are going to do for rank 2 bundles reduces to the constructions of the preceding chapter

for the action GL(N,N) ~ Maty,1 (H°(L)). O

We next ask for the stabilisers of these points.

10.64 LEMMA. Suppose that H'(E) = 0, that E is generated by global sections and that FE is simple. Given a
marking S and a matrix X € GL(N),

XTE7SXt = TE75 if and only if X = iIN.
Proof. The hypothesis XTg sX! = Tg s is equivalent to the commutativity of the diagram:
ogh =g pen
Xt} T X
ogh =g pen

This diagram determines an endomorphism ¢ of E, and the assumption that E is simple implies that ¢ = cidg
for some ¢ € k. But then X = X* = ¢- Iy, and in particular, ¢ = 1. O

10.65 REMARK. Note that —Iy € GL(N) acts trivially on the whole space Alty(H°(L)). ad

(c) Semistability of Gieseker points

We now need to consider the question of (semi)stability of a point 7' € Alty(H®(L)) under the action of GL(N),
with respect to the determinant character g — det g. We will show that if E is a rank 2 vector bundle with
H'(E) =0 and deg E > 4g — 2, then the Gieseker points T g are semistable if and only if E is slope-semistable
as a vector bundle. (Conversely, we will see that if deg L > 4g — 2, then every semistable T' € Altx(H°(L)) is a
Gieseker point of a semistable vector bundle—this is Proposition 10.81 below.)

A semiinvariant of weight w is a polynomial function F' = F(T') € k[Alty(H°(L))] with the property

F(g-T)=(detg)"F(T), forall ge GL(N),

and the unstable set in Alty(H®(L)) is the common zero-set of all semiinvariants of positive weight. Recall,
moreover, that a point T is unstable if and only if the closure of its SL(IN)-orbit contains the origin. A ‘Gieseker
point’ ¥(£,S,T) of a line bundle & is always stable (Proposition 9.62). However, for vector bundles this is no
longer the case. For rank greater than 1 the following phenomenon appears.
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10.66 PROPOSITION. Let S be a marking and M C E a line subbundle of the vector bundle E, and consider
the vector subspaces (S) C H°(E) (of dimension N) and H°(M) C H°(E).
(i) If there exists M C E such that

N
dim (H°(M) N (S)) > 2>
then the Gieseker point Tg s € Altn(HC(L)) is unstable.
(ii) If there exists M C E such that
N
dim (H°(M) N (S)) > >

then Tg,s € Alty(HY(L)) fails to be stable.

Proof. Let a = dim H(M) N (S) and b = N — a. Since the question is independent of the choice of Gieseker
point within its GL(N)-orbit, it likewise depends only on the linear span (S) and not on S itself. We may
therefore assume S chosen so that its first a vectors belong to H°(M) N (S). The skew-symmetric matrix g g
will then have a block decomposition in which the top left-hand a x a block contains only zeros:

0 | B
A NEL}

We now consider the 1-parameter subgroup

t_b

tes g(t) = € SL(N).

ta

This acts by

0 t* "B
TE,S = g(t)TE7sg(t)t = < _tabet I tZaC )

In case (i) we are assuming that a > b. So letting ¢ — 0 shows that 0 € SL(N) - Tk g, so the Gieseker point is
unstable.
For case (ii), assume that ¢ = b. In this case the limit as ¢ — 0 is the matrix

0 B
n- (512
Either C = 0, so that T g = Ty already has positive-dimensional stabiliser, or else C' # 0 but the orbit of T g

contains the nonstable point T in its closure and therefore fails to be closed. In either case, Ty, g fails to be
stable. -

On account of this phenomenon we make the following definition.
10.67 DEFINITION. Let E be a rank 2 vector bundle. If
hO(M) < 1h°(E) (resp. <) for every line subbundle M C E
then we say that E is H-semistable (resp. H°-stable). m]
If H'(E) = 0, then in Proposition 10.66 we have N = h°(E) and (S) = H°(E). The proposition therefore
says:

10.68 COROLLARY. Suppose that H'(E) =0 and let T = Tg s be any Gieseker point of E. Then:
(i) if T is GL(N)-semistable, then E is H-semistable;
(i) if T is GL(N)-stable, then E is H°-stable. m]
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The relationship with slope-semistability is given by the following (but see also Exercise 9.8):

10.69 PROPOSITION. Suppose that H'(E) = 0 and deg E > 4g — 2. Then E is H®-semistable if and only if it is
slope-semistable.

Proof. First observe that by Riemann-Roch any line bundle M satisfies

0y _ pl
hO(M) _ hl(M) _ M = degM — degE
Since H*(E) = 0, this implies
0 0
@ —RO(M) < (@ - hO(M)> +ntany = 38 E _ jes . (10.16)

Letting M run through the line subbundles of E, this shows at once that H%-semistability of E implies slope-
semistability.
For the converse, suppose that there exists a line subbundle M C E for which the left-hand side of (10.16) is
negative. Note that, by hypothesis,
h°(E) = deg E + 2 — 2g > 2g,
and therefore h°(M) > h°(E)/2 > g. By Lemma 9.22 this implies that H!(M) = 0, so equality holds in (10.16).
Hence the right-hand side of (10.16) is negative. a

We next show the converse of Corollary 10.68(i). (We can also show the converse of part (ii) if we use the
Hilbert-Mumford numerical criterion. For this, see Section 10.4(c).)

10.70 PROPOSITION. Suppose that H'(E) = 0. Then, if the vector bundle E is H°-semistable, then its Gieseker
points Tg s € Altx(H®(L)) are semistable for the action of GL(N).

The proof of this will occupy the remainder of this section. As preparation, we investigate some elementary
properties of HC-semistability.
A quotient line bundle Q = E/M of an H%-semistable vector bundle E satisfies

ho(Q) 2 h°(E) — h°(M) > 5h°(E).

1
2

10.71 LeEMMA. If E is H-semistable and h°(E) > 2, then E is generated by global sections at a general point
p € C. In particular, h®(E(—p)) = h°(E) — 2 at the general point.

Proof. Consider the evaluation homomorphism
H°(E)® Oc — E.

The image sheaf has h°(E) linearly independent sections; if it had rank 1, then its saturation would be a line
bundle violating H°-semistability. So the image has rank 2. O

The following is the technical key to proving Proposition 10.70.

10.72 LeEMMA. If E is H%-semistable and h°(E) > 4, then there exists a point p € C for which the bundle
E(—p) is H®-semistable.

Proof. (RAYNAUD [75].) Let h°(E) = n. At a general point p € C we have h®(E(—p)) = n—2 by Lemma 10.71.
We suppose that at every point the bundle F(—p) is H’-unstable and therefore contains some line subbundle,

which we will denote by M?(—p) C E(—p), with

RO(MP(—p)) > g 1.

Claim: The line subbundle MP C FE is independent of the choice of the general point p € C.
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Granted the claim, we have a line subbundle M (= MP) C E which satisfies

KM (-p) > 5 —1

at a general point of the curve. But this implies h°(M) > n/2, contradicting the H-semistability of E, and we
are done.
To prove the claim, let ¢ € C' be another, distinct, point. We first consider the case n > 5. Then

W(E(=p)) =n—2> g
and this implies that E(—p) is generically generated by global sections (otherwise we get a line subbundle of
E(—p) C E violating the H°-semistability of E). Hence h°(E(—p — q)) = n — 4. On the other hand,

hO(MP(=p = q)) + h°(M(=p - q)) = B°(MP(~p)) = 1+ B°(M?(~q)) =1 > n — 4.
This implies that
07 H(MP(—p—q) NH*(M*(=p — q)) C H*(E(-p — q)),
and hence the line subbundles M?(—p — q)), M4(—p — q¢) C E(—p — q) coincide. Hence M? = M?1.
Now consider the case n = 4. We now have h°(E(—p)) = 2 and h°(MP(—p)) > 2, and so H’(E(-p)) =
H°(MP(—p)). In particular,
H°(E(-p—q)) = H(M"(-p —q)) = k.
Similarly
H(E(-p—q)) = H*(M"(—p — q)) = k.
So again the two line subbundles M?(—p—q)), M%(—p —q) C E(—p— q) have a common global section, and they
therefore coincide. a

Proof of Proposition 10.70. To show semistability of a Gieseker point T g we have to exhibit a semiinvariant
of positive weight which is nonzero at Ty 5. We consider separately the cases when N is even or odd. (Note that
N = deg L mod 2.)

When N is even we can construct semiinvariants as follows. For any linear form f : H°(L) — k we can
evaluate f on the entries of a matrix T € Alty(H®(L)) to obtain a skew-symmetric matrix f(T') € Alty (k).
Then, by Proposition 10.53(ii), the function

Altn(HO (L)) — k, T s Pfaff f(T)

is a semiinvariant of weight 1.
By repeated use of Lemmas 10.71 and 10.72 we can find points p,...,pyn/2 € C such that

HY(E(=py — -+ —pny2)) = 0. (10.17)

If we let ev; = evy, : H°(L) — k be the evaluation map at the i-th point, then (10.17) says that the linear map
of N-dimensional vector spaces

N/2
g:=(evi,....evny)  HO(E) = D E/E(-pi)
i=1
is an isomorphism. Now consider the skew-symmetric pairing
HY(E) x H(E) 25 H°(L) L5 &,

where f :=evy +---+evy/z : H'(L) — k. This pairing has matrix f(Tg,s), and transforms via the isomorphism
Iny>

g to a skew-pairing kY x & — k with matrix <
_IN/2 0

) . In other words, there is a commutative diagram:
H°(E) x H'(E) % H(L)
gxgl Lf (10.18)

EN x kN — k
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Using Proposition 10.53(ii), it follows that Pfaff f(Tg s) is equal to det g # 0. Hence the Gieseker point Tg s €
Altn (HO(L)) is semistable. O

We turn now to the case when N is odd. In this case the strategy for producing semiinvariants, using
Proposition 10.56 and the remarks following, is to use triples of linear forms f, f’,h : H°(L) — k. From these and
from T' € Alty(HO(L)) we get vectors rad f(T),rad f'(T) € k" and a skew-symmetric matrix h(T) € Alty (k).
We then form the scalar product

Altn(H°(L)) — k, T ~ (rad f(T))'h(T)rad f'(T).
By (10.12), this is a semiinvariant of weight 2.

10.73 REMARK. Since minus the identity —Iy € GL(N) acts trivially on Alty(H°(L)), it follows that if F is
a semiinvariant of weight w, then F' = det(—Iy)"F. When N is odd this implies that there are no nonzero

semiinvariants of odd weight. a
We now choose N points py,...,pny € C, and we let ev; : H°(L) — k be the i-th evaluation map, as before.
We set

f:ev1+---+evN_1, f':evN+1 +---+evy_1, h=-evn.
= 3

The proof of Proposition 10.70 is now completed by the following:

10.74 LEMMA. If E is H"-semistable, then there exist points pi,...,pny € C such that, for any marking S C
HO(E),
(rad f(Ts,s))' M(Te,s)rad f'(Tp,s) # 0,

where f, f', h are defined as above.

Proof. Let n := (N — 1)/2. The function f : H°(L) — k is the sum of the evaluation maps at the points
Pi,.-.,Pn € C, and by Proposition 10.56(i)

rad f(Tsp) #0 = W' (E(-p1—-—pn)) =1

Moreover, via the diagram (10.18) one sees that if these equivalent conditions hold, then the vector rad f(Ts,g)
spans the 1-dimensional space

HY(E(—=p1 —-+- —pp)) = ker {(evy,...,ev,) : H(E) — k*"},

relative to the basis S C H°(E).

Now by repeated use of Lemma 10.72 we can find points p1,...,p,—1 € C such that E(—p; —--- —pp_1) is
H°-semistable and h°(E(—p; — -+ — pn_1)) = 3. We then pick two general points p,,p,+1 € C and two global
sections s,t € H°(E(—p; — --+ — pn_1)) such that s(p,) = t(pnt1) = 0. These sections are necessarily linearly
independent and, by H-semistability, generate a subsheaf of rank 2. Thus if p, is general, then the fibre at this
point will be generated by global sections. Hence, with respect to the N points

DP1s---5Pn—1,PnsPn+1,P15---,Pn—1;Pn,

the scalar product of the lemma is nonzero. O

10.4 An algebraic variety with SU¢(2, L) as its set of points

Our aim is now to prove Theorem 10.1. For this we need to study the GL(N)-orbits in the affine space
Altny(H°(L)) coming from vector bundles via Corollary 10.62.

By identifying L = O¢(D) for some divisor D € DivC we can view elements T € Alty(H°(L)) as skew-
symmetric matrices with entries in the function field k(C); we then observe that the Gieseker points T g, as
matrices over k(C'), have rank 2 (Proposition 10.60).
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10.75 DEFINITION. The set of matrices T' € Alty(H®(L)) of rank < 2 over k(C) is a closed subvariety which
we denote by Alty2(H°(L)) C Alty(HO(L)). |

(¥ ?

Let (%), for 1 <i,j < Nand 1 < a < h%L), be coordinates in the affine space Alty(H°(L)). Then
Altn2(HO(L)) C Alty(HO(L)) is defined by (7} )h°(L?) equations determined by the vanishing of global sections,

[ Tij Tk Ty -|
Pfaff [ Tj Tji J = Tjj O Tkl — Tijk O Tji + x; 0 Tjk S HO(L2),
kl

T

for 1 <i<j<k<l<N,and where z;; :== (Zﬂgy)hgaghO(L) € H°(L) and o : H°(L) x H°(L) — H°(L?) is the
natural multiplication map.
If T'# 0, then the rank condition is equivalent to saying that the image E of the sheaf homomorphism

(T): OFN — LoV
is a rank 2 vector bundle.

10.76 REMARKS. (i) E can also be described in the following way. The rank condition of Definition 10.75
together with Proposition 10.57 says that

w01
T_W<_10 W

for some 2 x N matrix

W:(fl fo - fN)
g 92 -+ gN

of functions f;, g; € k(C). The N columns of W span a subsheaf of the constant sheaf k(C) & k(C'), and
this subsheaf is precisely E.

(ii) Alternatively, F is then the Oc-module spanned by the two rows of W in k(C)®N. In other words, we
are viewing F as a point in the Grassmannian G(2, N) over the function field k(C), S as a choice of
homogeneous coordinates in ]P’,?Ea;, and the Gieseker point Tg s as the corresponding matrix of Plicker
coordinates of E. m|

(a) Tangent vectors and smoothness

In this section we will prove the following.

10.77 PROPOSITION. Let E be a rank 2 vector bundle with det E = L and H'(E) = 0. Then:
(i) Alty(H(L)) is smooth at each Gieseker point Tg 5.
(ii) If E is simple, then the quotient of the tangent space to Alty »(H°(L)) at a Gieseker point Tk s by the
Lie space gl(N) is isomorphic to H'(sl E):

Try sAlty2(H°(L))/gl(N) = H' (sl E).

Given vector spaces U, V', the space Hom(U, V) of linear maps f : U — V can be viewed as an affine space.
There is then, for each natural number r, a subset Hom,.(U, V) C Hom(U, V') consisting of linear maps of rank
< r and defined as a closed subvariety by the vanishing of all the (r + 1) x (r 4+ 1) minors.

10.78 LEMMA. Suppose that f € Hom,(U,V) has rank exactly equal to r. Then the tangent space to
Hom,(U,V) at f is equal to
Sg:={h| h(ker f) CIm f} C Hom(U,V).
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Proof. Choose bases of U and V so that the matrix representing f : U — V is in canonical form
diag(1,...,1,0,...,0). If h: U — V is another linear map, then f + eh, where €2 = 0, € # 0, is represented by a

matrix
L0\, (A]|B
00 ‘\C :

Since €2 = 0, the only possible nonzero (r + 1) x (r + 1) minors in this matrix are the entries of D (concatenated
with the block I,.). Hence the condition that all (r 4+ 1) x (r + 1) minors be zero is equivalent to D = 0. But this
is the case if and only if h(ker f) C Im f. ad

In the tangent vector space Sy there are two vector subspaces to consider. One consists of h satisfying
h(ker f) = 0, which is equivalent to factoring through an element of Hom(Im f,V). The other consists of h
satisfying h(U) C Im f or, in other words, h comes from an element of Hom(U,Im f). The intersection consists
of endomorphisms of Im f, and in this way we obtain an exact sequence of vector spaces:

0 = End(Im f) - Hom(Im f,V) @ Hom(U,Im f) = Sy = 0. (10.19)

Now suppose that V = UV, and consider the subset Hom™ (U,U") of skew-symmetric linear maps: those
f:U — UV, that is, equal to minus their transpose (dual) map. Suppose that f € Hom™ (U,U") has rank < r.
This means that all its (r 4+ 2) x (r + 2) Pfaffian minors vanish, and these Pfaffians define a closed subvariety
Hom, (U,UY) C Hom™ (U,U"Y).

10.79 LEMMA. Suppose that f : U — UV is skew-symmetric and has rank equal to r. Then the tangent space
to Hom, (U,U") at f is equal to
Sy :=={h | hker f) CIm f} C Hom™ (U, UY).

O

We will skip the proof as it is exactly the same as that of the previous lemma, replacing determinants with
Pfaffians.

The two subspaces {h | h(ker f) = 0} and {h | L(U) C Im f}, when the maps f,h are skew-symmetric, are
exchanged by taking the transpose; moreover, the intersection

{h | hiker f) =0}N{h | R(U) CIm f} NHom™ (U,U")

is exactly the space of endomorphisms of Im f which preserve a skew-symmetric form. We will denote this
space by End™ (Im f). In the case r = 2, for example, this is just the subspace si(Im f) C End(Im f) of linear
endomorphisms with trace zero. From (10.19) we obtain an exact sequence:

0 — End” (Im f) - Hom(U,Im f) — 57 — 0. (10.20)

In order to prove Proposition 10.77, we are going to apply Lemma 10.79 over the function field k(C). Before
doing that we will use Lemma 10.78 to show again that the Picard variety constructed in the last chapter has
tangent space H!(O¢).

Second proof of Proposition 9.67. From a double marked line bundle (¢, S,T) we have constructed a matrix
sity -+ Si1tN
U=9(,5T) =

syt; -+ SNIN

This determines a sheaf homomorphism (¥) : OS5~ — L®N whose image is isomorphic to ¢, and we consider the
subsheaf .
Sy = {h | h(ker (¥)) C &} C Hom(OZN, LPN) = BN,

This is a subbundle, and we will apply Lemma 10.78 to the map on stalks at the generic point

(T)gen : k(C)EN — LEN

gen *
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This says that the tangent space to Maty,1(Lgen) at (¥)gen is the space of global sections H%(Sy). Corresponding
to (10.19), there is an exact sequence of vector bundles on C

0— End € — Hom(&, L) @ Hom(OEN ,€) — Sy — 0,
and hence R
0= Oc — PN 1O 5 Sy — 0.
Now H'(¢) = H'(£) = 0 by the hypotheses made at the beginning of Section 9.4(a), so that taking global sections

gives an exact sequence:

0— HY(Oc) — HOE)®H'(E) — H°Sy) — HY (Oc) —0
|
gl(N) ®© gl(N)
This is exactly the sequence asserted in Proposition 9.67. a

The vector bundle case is entirely similar.

Proof of Proposition 10.77(ii). Let E be a simple rank 2 vector bundle with Gieseker point T = Tg,s €
Altn 2 (HO(L)). We apply Lemma 10.79 to the map on stalks at the generic point coming from (T') : OSN — LN
(whose image is E). This determines a subbundle

Sy = {h | h(ker (T)) C B} C Hom ™ (OEN,L®N) = [®NWN-1/2,

The tangent space to Alty 2(Lgen) at (T)gen is then the space of rational sections of S, and that of Alty2(HO(L))
is H°(S7). Corresponding to (10.20) we have an exact sequence of vector bundles on C:

0— sl E— Hom(OZN,E) - Sy — 0.
But Hom(OEN, E) = E®N while H'(E) by hypothesis, and so taking global sections gives:

0— HslE) — Hom(OSN,E) — HS;) — H' (sLE) —0

I
gl(NV)

Since E is simple, we have sl E = 0, while Hom(O%N ,E) is the tangent space at the Gieseker point of the
GL(N)-orbit. O

Proof of Proposition 10.77(i). We will use Proposition 9.47. Let f: A’ — A be a surjective homomorphism
of local Artinian rings, with maximal ideals n C A, n' C A’. Let T = (a;j)1<i,j<n be an A-valued point
of Alty 2(H®(L)) whose reduction modulo n is the Gieseker matrix 7. We have to show that this lifts to an
A’-valued point. It is enough to prove this for the case dimker f = 1.

Let € be a vector spanning ker f. By Proposition 10.57, the matrix 7 can be expressed as

St ANsy Sy Asg - s1 ANSN
Sso ANsg - S2 N SN

T =
SN—1 A SN

for some rational sections s; € Fgen®y, A. Since this is an A-valued point of Alty »(H?(L)), the entries a;j := s;As;
belong to H(L ®, A). Since f is surjective, we can lift each s; to an element s} € Ege, ®p A’, and each a;; to an
element aj; € H°(L ®y A"), preserving the skew-symmetry. The matrix

!

(siAs5—ai) ciicn (10.21)

then determines a rational section of Hom*((’)gN, LON) @ A’, and since this section vanishes when we apply f,
it is in fact a rational section of

Hom™ (O, L) @y, ker f = Hom ™ (OGN, LV )e.
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Moreover, its principal part is (s; A s%)1<i,j<n and is contained in S ®j A'. It follows that at each point p € C
this matrix determines a principal part in the vector bundle 87 ®y ker f. By hypothesis, H!(S7) = 0, and so
these principal parts come from a global rational section. In other words, there exist s{,..., s\ € Egen such that
(10.21) is everywhere the principal part of

(i +sle) A (55 + 5;!6))19.7]_9, — (i N3j)i<ijen s
where 5; is the reduction of s; modulo n. Hence, if we set

T = ((si + sie) A (s + Sye))gmgN

then the entries of 7' are everywhere regular and 7' is an A’-valued point of Alty o(H®(L)) lifting 7. ad

(b) Proof of Theorem 10.1

We now take our fixed line bundle L to have degree > 4g—1, and we consider the action GL(N) ~ Alty o(H°(L)).
Suppose that E € SUx(2,L). Then by Proposition 10.26 we have H'(E) = 0, so the orbit GL(N) - Tk s of
a Gieseker point depends only on E and not on the marking S. By Proposition 10.27, moreover, E is generated
by global sections and is therefore recovered up to isomorphism from its Gieseker points (Lemma 10.61). And by
Propositions 10.69 and 10.70, the Gieseker points of E are semistable for the action of GL(N).
Conversely, suppose that 7' € Alty 2(H°(L)) is a semistable point for the GL(N) action. The columns of T
are vectors in H°(L)®V and as for Proposition 9.63 in the line bundle case we can show the following.

10.80 LEMMA. If T € Altn2(HO(L)) is semistable, then the N columns of T' are linearly independent vectors
in H°(L)®N over k.

Proof. Suppose not. Then by a suitable change of basis (that is, by moving within the GL(N)-orbit) we can
assume that the first row and column of T' are zero:

0 0 0
0 =x *
T =
0 =x *
The action of the 1-parameter subgroup
t—N+1
t
te g(t) = . € SL(N)
t
maps T to
0O 0 --- 0
, 0 2% - t2x
g(OTg(0) = | ,
0 2% .- 2%
and letting ¢ — 0 shows that the origin is in the closure of the SL(N)-orbit; so T' is unstable. |

Given a semistable point T' € Alty o(H(L)), let E C L®Y be the image of the homomorphism
(T): OFN — LN,

10.81 PROPOSITION. Suppose that deg L > 4g — 2 and that T € Alty2(H°(L)) is semistable for the action of
GL(N). Then E = Im (T) C L%V satisfies:
(i) H'(E) = 0;
(i) det E = L;
(iii) E is semistable.
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Proof. (i) Let V' C H°(E) be the space of global sections coming from the surjection OZ" — E. Lemma 10.80
implies that dim V' = N, and, in particular, that h°(E) > N. By Theorem 10.11, the vanishing of H'(E) implies
that there is a nonzero homomorphism f : E — Q¢, and this induces a linear map V — H°(Q¢). The kernel of
this map then has dimension at least N — g > ¢, and so, letting M :=ker f C E, we have

N
dim H*(M)NV > 5
From (the proof of) Proposition 10.66, it follows that 7" is unstable.
(ii) Consider the bilinear pairing

05N x O8N = L, (u,v) = u'Tw.
This is skew-symmetric and vanishes if u or v € ker (T'), and hence defines a sheaf homomorphism
N E — L.

We have to show that this is an isomorphism, and for this it is enough to check that deg L < deg E' (and hence
deg L = deg E). But by construction
degL —29+2= N < ho(E),

while by part (i) H'(E) = 0, so that
h(E) = deg E — 29 + 2,

and we are done.
(iii) By construction T is a Gieseker point of the vector bundle E, and so semistablility follows from Proposi-
tions 10.66 and 10.70. a

Proof of Theorem 10.1. In view of Remark 6.14(vi), we have a Proj quotient once we know that the semistable
set Alt% ,(H°(L)) is smooth. But this follows from Proposition 10.81(i), which guarantees the condition H*(E) =
0, together with Proposition 10.77(i).

Now consider the open set Alty ,(H(L))/GL(N) of stable orbits. First note that, for each stable Gieseker
point T', the vector bundle E = Im (T') is stable. This follows from Corollary 10.68 and the proof of Proposi-
tion 10.69. Conversely, if E is stable as a vector bundle, then it is simple, so by Lemma 10.64 its Gieseker points
T have finite stabiliser and hence are stable for the GL(N)-action. We therefore arrive at a bijection:

SUc(2,L) = Alty o (H°(L))/GL(N).

By Lemma 10.64, moreover, under the action GL(N)/{£In} ~ Alty ,(H®(L)) all orbits are free closed orbits.
Thus, by Corollary 9.52, the open set Alty ,(H°(L)) is nonsingular.
Moreover, when FE is stable,
dim H' (sl E) =39 — 3

by Lemma 10.19. This proves parts (i) and (ii). For part (iii) we note that when degL is odd, stability and
semistability of E are equivalent by Remark 10.21, and so the conclusions of parts (i) and (ii) coincide. O

(c) Remarks on higher rank vector bundles

One can generalise the Gieseker matrices of this chapter to higher rank vector bundles. Let E be a vector bundle
on C of rank r, and suppose that det £ = L. The total set Ege, is an r-dimensional vector space over the function
field £(C), and one can consider skew-symmetric multilinear maps

Egen X -+ X Egen = Lgen.
Such a map defines by restriction a skew-symmetric multilinear map over k

H°(E) x -+ x H°(E) — H°(L), (81,--,8:) = S1A ... A5y
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If N := dim H°(E), then, after choosing a basis, this defines an element of Hom (A" k®N, H°(L)), called a
Gieseker point of E. There is a natural group action on the Gieseker points,

GL(N) ~ Hom (/r\ k@N,HO(L)> :

coming from the action on k™ or, equivalently, by changing basis in H°(E).
10.82 DEFINITION. A vector bundle E is called H°-semistable if
WF) _ hO(E)
rank F' — rank FE

for every subbundle F' C E.

The following extends (and gives an alternative proof of) Proposition 10.70.

10.83 PROPOSITION. (GIESEKER [72]) If a vector bundle E is H®-semistable and is generated by global sections,
except possibly at finitely many points, then its Gieseker points are semistable for the action of GL(N).

Proof. Notationally this is rather cumbersome in general, so we will just illustrate the proof by giving it in
the case of rank r = 4. Let us suppose that some Gieseker point T € Hom (/\r EON, HO(L)) is unstable. By the
numerical criterion (7.2) this means that some 1-PS X : Gy, — SL(N) satisfies

lim \(t) - Tg = 0.
t—0
Take a basis S = {s1,52,...,sn} of H*(E) which diagonalises \, that is:

tr

tr where r1 +---+ry =0 and
rp <ry < <N

'~

Now, each (si,s;j,sk,51) € H(E) x -+ x H°(E) maps, under \(t) - T, to t"Fmitr+rig, A si A s A s;. By
hypothesis, then,
SiNSsjNsg NS =0
whenever r; +r; + 1 + 1 < 0.
We now introduce three conditions on the basis S C H°(E):

*1 81 Asip =0¢€ HO(\*E) for all i < N/4.

*2 81 Asip1 Asjpr =0€ HY(A® E) for all i < N/4 and j < N/2.

*3 51 A Sit1 Asjy1 Asiir =0€ HO(\* E) = H(L) for all i < N/4, j < N/2 and k < 3N/4.

Claim: 1 + riy1 + 7j41 + i1 < 0 whenever i < N/4, j < N/2 and k <3N/4.

This claim, which we will prove in a moment, implies that x3 is always satisfied. Suppose that x5 is not. Then
some suitable choice of si,s;11,5;41 € S spans a subsheaf whose saturation is a rank 3 subbundle F' C E.
Condition *3 tells us that for each k < 3N/4 the section sy is contained in H°(F) C H°(E), and this implies
that E is H°-unstable.

If x5 is satisfied but x; is not, then similarly we can construct a rank 2 subbundle with enough sections to
violate H%-semistability; while if ; is satisfied, then we get a destabilising line subbundle. In each case we have
a contradiction. It just remains to prove the claim.

For this, consider the step function f(z) defined on the half-open interval [0, N) by f(z) = rpy; for z € [p,p+1).
By monotonicity of the function we have

Tt i i e = f(0)+ () + f(4) + f(k)
s+ () +r(3)+ 1 (3F)

4 (N 4 &
N/O f(x)dx:N;rizo.

IN

IN
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Using Proposition 10.83, one can construct a quasiprojective moduli space SU¢c(r, L) for stable vector bun-

dles of rank r and fixed determinant line bundle L, as the quotient by GL(N) of a closed subvariety of
Hom (/\r EON, HO(L)). (More precisely, a subscheme, though the subset of semistable points that we quotient is
in fact nonsingular.) When the rank r and degree of L are coprime, stability and semistability coincide and the
quotient is a nonsingular projective variety. There even exists, in these cases, a universal vector bundle on the
product C x SUq(r, L).

Exercises

. Let E be a vector bundle of rank r on a curve C. Show the following.

If L is a line bundle, then deg(E ® L) = deg E + r deg L.

If F'is a vector bundle of rank s, then

deg(E® F) = sdeg E + rdeg F, w(E®F)=u(E) + u(F).

. For a rank 2 vector bundle E, prove the following isomorphism:

EV>2E® (detE)™".

If

0-Vi—W—=- -2V, —V,=0
is an exact sequence of vector spaces, show that Y, (—1)*dim V; = 0.

THE FIvE LEMMA. In the commutative diagram of abelian groups

U1 — UQ — U3 — U4 — U5

+ + + + +

i — Vo = V5 = Vi — V3
the rows are exact and the vertical maps U; — V; are isomorphisms for i = 1,2,4,5. Show that U3 — V3 is an
isomorphism.
Use the Five Lemma to complete the proof of Theorem 10.11
In the ring of integers R = Z[/—5] of the algebraic number field Q[y/—5], show that the ideal a = (2,1++/=5)
is a direct summand of the free module R & R.

Let R = k[z,v 2z + 1]. Show that the ideal a = (r — 2,v23 + 1 — 3) is a direct summand of the free module
R ® R, and is not isomorphic to R.

. If E, E' are semistable vector bundles on a curve satisfying u(E) > u(E'), show that Hom(E, E') = 0.
. Given a vector bundle E on a curve, show that the slopes of all subbundles of F are bounded above.

. Prove Proposition 10.69 without the hypothesis H'(E) = 0.
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Chapter 11

Moduli functors

‘A moduli space is an algebraic variety which parametrises the set of equivalence classes of some objects.” This
explanation is reassuring psychologically, but it is not terribly precise. A moduli space of vector bundles, for
example, ought to carry a family of bundles which ‘controls’ all equivalence classes. (Similarly for a moduli space
of varieties, although we do not treat this case in this book.) In Chapter 9 we constructed a projective variety,
as a quotient of Matx 1 (H°(L)) (for some fixed line bundle L), whose underlying set was Pic?C’, the set of line
bundles of degree d. But this raises some obvious questions:

(1) The set Pic?C' is uniquely determined by the curve C, but is the same true of the algebraic variety with
Pic?C as its set of points? In particular, our construction depended on the choice of a line bundle L. Is the
isomorphism class of the quotient variety independent of this choice?

(2) By tensoring with line bundles we get surjective maps Pic?C' — Pic°C. With respect to the algebraic variety
structures that we have constructed on these sets, do these maps become morphisms (that is, polynomial
maps)?

In order to answer these questions, the fundamental notion is that of a family and, following from this, the notions
of fine and coarse moduli space, which we explain in Section 11.1(a). The variety Pic?C not only has the set of
isomorphism classes of line bundles as its set of points—it actually supports a family of line bundles in which
each isomorphism class is uniquely represented. This is the first main result in this chapter:

11.1 THEOREM. The quotient variety Maty ; /GL(N, N) represents the Picard functor Pic{, for families of line
bundles of degee d on C. a

In particular, it will follow from this that the projective variety Pic?C does not depend on the choice of
auxiliary line bundle L. It is called the algebraic Jacobian (or Picard variety) of the curve.
The answer to question (2) is also affirmative:

11.2 COROLLARY. Pic°C is an algebraic group. 0

The linear algebraic groups that we have considered so far in this book, such as GL(N) and GL(N, N), are
affine algebraic groups. Pic’C is not, and it has very different properties. It is a projective algebraic group, and
in particular it is complete. (A complete algebraic group is called an abelian variety.)

Figure 11.1: The Picard functor

In the second part of this chapter we study the analogue of the Picard functor for rank 2 vector bundles.
Although the definition is very simple, it turns out that we lose many good properties enjoyed by the Picard
functor. To begin with, the functor no longer takes values in the category of groups, but only sets. Second,
because of the jumping phenomenon, the moduli functor is not representable by an algebraic variety and does not
even admit a coarse moduli space (Definition 11.6). It admits a best approximation by an algebraic variety only

257
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after we restrict the class of vector bundles which we study: namely, the (semi)stable bundles. We therefore restrict
our attention mainly to the moduli functor SU¢(2, L) for stable rank 2 vector bundles with fixed determinant
line bundle L. In the case when deg L is odd we can obtain results similar to those for the Picard functor. (When
deg L is odd, N :=deg L + 2 — 2¢ is also odd. See Section 10.3(b).)

11.3 THEOREM. Assume that deg L is odd. Then the projective quotient Alty, ,(H°(L))/GL(N) is a fine moduli
space for stable rank 2 vector bundles on C' with determinant line bundle L. In other words, it represents the
moduli functor SUc (2, L). o

The main tools used to prove these two theorems are direct images and cohomology modules, and we explain
these in Section 11.1. In particular, the key idea here is the Base Change Theorem 11.15. We then introduce the
Picard functor, and prove Theorem 11.1 at the end of this section. For this we have to construct the Poincaré line
bundle. This really comes out of the quotient construction, using rings of invariants, of the Jacobian: the affine
variety Maty 1 (H°(L)) carries a line bundle, or more fundamentally a module over the coordinate ring, and the
Poincaré line bundle is constructed as the submodule of invariant elements.

In Section 11.2, as well as proving Theorem 11.3, we consider the moduli problem for vector bundles of even
degree deg L. In this case, the moduli space that we obtain by considering only stable vector bundles is not
complete but is contained as an open set in the projective quotient variety Alty 2(H°(L))//GL(N). This open
set parametrises isomorphism classes of stable vector bundles; its complement is the quotient of the Jacobian of
C by £1 (the Kummer variety) and parametrises S-equivalence classes (Proposition 11.37) of semistable bundles.

Finally, in Section 11.3 we present various explicit examples. We also touch a little on the question of moduli
over nonalgebraically closed ground fields.

11.1 The Picard functor

(a) Fine moduli and coarse moduli

Typically, a ‘moduli problem’ for some class of objects in algebraic geometry consists of a notion of family
parametrised by affine varieties Spm R, and the problem is thought of as solved if there is a universal family
parametrised by a variety X with the property that every family over Spm R is uniquely induced by pulling back
via a morphism Spm R — X.

Formally, the moduli problem is a functor:

F : {algebras over k} — {sets}, R +— (set of familes over Spm R)

On the other hand, recall from Section 3.3(a) the interpretation of a variety X as a functor X from (finitely
generated) k-algebras to sets, by assigning to an algebra R the set of solutions over R to the equations defining
X. More precisely, it follows from (3.10) that, given a k-algebra R, the set X(R) can be identified with the set
of morphisms Spm R — X.

11.4 DEFINITION. Suppose that F,G are two functors from the category of k-algebras to the category of sets.
A natural transformation (or functorial morphism) p : F — G is a family

{r(R) : F(R) = G(R)}r

assigning a set mapping p(R) to every k-algebra R and such that, for every k-algebra homomorphism f: R — S,
the following diagram commutes:

FR) "M amr)

F(f){ LG(f)
Fs) A qs)

If there exist natural transformations p : F' — G and 7 : G — F satisfying 7p = idp and pr = idg (where idg
means the natural transformation F' — F', which is the identity mapping on every set), then the functors F,G
are said to be isomorphic. O
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Now, every morphism of varieties X — Y induces a natural transformation of functors X — Y’; and conversely
it can be shown that every natural transformation X — Y arises from a morphism of varieties in this way. (This
is easy in the case when X and Y are both affine varieties.)

Returning to our moduli problem, a solution, or ‘moduli space’, is an isomorphism of the functor F' with the
functor

X : {algebras over k} — {sets}, R +— (set of morphisms Spm R — X).

11.5 DEFINITION. A functor F' from k-algebras to sets is said to be representable, and to be represented by a
variety X (or more generally a scheme X), if it is isomorphic to the functor X. X is called a fine moduli space
for the functor F'. m|

Unfortunately, in many moduli problems one cannot expect to have a representable functor. (See Exam-
ple 11.32 below.) For this reason the following notion of ‘coarse moduli’ was proposed by Mumford.

11.6 DEFINITION. Given a functor
F : {algebras over k} — {sets},

a variety (or scheme) X is said to be a best approximation to F' if it satisfies the following condition.
(i) There exists a natural transformation p : F' — X which is universal among natural transformations from
F' to variety functors (or, more precisely, scheme functors). In other words, given any 7 : F — Y there
exists a unique morphism f : X — Y making the following diagram commute:

F 2 X
™S L f
Y.

A best approximation X is called a coarse moduli space for the functor F if it satisfies, in addition:
(ii) for every algebraically closed field k' D k, the (set) map p(k') : F(k') = X (k') is bijective. O

There are two immediate remarks to make: first, that fine implies coarse, and second, that coarse (or best
approximation) implies unique. That is, if Y is also a coarse moduli space for the functor F', then by the universal
property there are natural transformations between X and Y in both directions, and these are inverse to each
other and hence come from an isomorphism X =Y.

11.7 ExaMmPLE. By Proposition 8.89, the variety G(r,n) is a fine moduli space for the Grassmann func-
tor Gr(r,n). ad

11.8 EXAMPLE. APPROXIMATION OF THE QUOTIENT FUNCTOR. We can explain the meaning of the affine
quotient map of Chapter 5 from this point of view. Recall that for an algebraic group G the functor G takes
values in the category of groups. Moreover, if G acts on a variety X, then the functor G acts on the functor X
and so determines a quotient functor

X /@ : {algebras over k} — {sets}, R— X(R)/G(R).

The affine quotient map ® : X — X //G is characterised as being a best approximation of the quotient functor
X/G. In other words, ® has the following universal property: given any morphism ¢ : X — Y which is constant
on G-orbits in X, there exists a unique morphism f : X //G — Y making the following diagram commute:

X X XxJ/G

o Lf
Y.

By Corollary 5.17, moreover, the open subset X?®/G is a coarse moduli space for the functor X°/G. O
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(b) Cohomology modules and direct images

Let A be a finitely generated algebra over k. We shall consider the extension A®y k(C') of A, extending coefficients
from k to the function field k(C'). Also, we denote by A ®; O¢ the elementary sheaf on C defined by the ring
extensions

U~ A, Oc(U).
The pair consisting of the topological space C and the elementary sheaf A ®; O¢ we denote by C4.

11.9 DEFINITION. A wvector bundle on C4 is an elementary sheaf £ of A ®; O¢ modules satisfying the following
conditions.

(i) The total set (denoted Egen) is a locally free A ®y, k(C)-module.

(ii) If U C C is an affine open set, then £(U) is a locally free A ®; Oc(U)-module. o

In the case A = k, of course, £ is nothing but a vector bundle on the curve C.

In what follows we will only consider A-modules of finite rank. Since the rank of a locally free module is
locally constant, this number depends only on the connected component of Spm A.

Let £ be a vector bundle on C4 and let f: A — A’ be a ring homomorphism. Then we can define a vector
bundle on C4+, denoted £® 4 A', by taking total set Egen ® 4 A’ and assigning to each open set U C C the extension
E(U) ®a A’. The vector bundle £ ®4 A’ is called the pullback under the morphism Spm A’ — Spm A. In the
case A — A, we also refer to extension of coefficients from A to A" and, when A" = A/I, to reduction modulo an
ideal I C A. In particular, if m C A is a maximal ideal, then we get a vector bundle £ ®4 (A/m) = E/m& on C.
If this maximal ideal corresponds to a point ¢ € Spm A, then this vector bundle is denoted by &|c ¢, or simply
by &£ when this is not likely to lead to confusion.

For vector bundles on Cj4, just as for vector bundles on C, we can define a space of global sections H® and
cohomology space H'. Namely, the stalk of £ at a point,

gp = U E(U)a

peU

is a module over A®y Oc . We then define H® and H' to be the kernel and cokernel, respectively, of the principal
part map:
0— HY(E) — Egen 22 P Egen/Ep — H'(E) — 0.
peC

This is an exact sequence of A-modules.

11.10 DEFINITION. The A-module H°(E) is called the (zeroth) direct image of & on Spm A. The A-module
H (&) is called the cohomology module, or the first direct image of £ on Spm A. a

11.11 ExAMPLE. If Eis a vector bundle on C and £ = E® A, then H°(£) = HY(E)®A and H!(£) = HY(E)®A.
For example, if £ = O¢ ®y, A, then H°(£) = A and HY(£) = HY(O¢) ® A =2 A®9. O

In this example we see that each H!(£) is a finitely generated free A-module. More generally:
11.12 THEOREM. If £ is a vector bundle on C s, then H°(£), H'(E) are both finitely generated A-modules.

11.13 COROLLARY. If £ is a vector bundle on C4, then H*(€ @ Oc(D)) = 0 for some positive divisor D > 0.

Proof. For each point ¢ € Spm A there exists some positive divisor D; on C satisfying H'(€|cx:(D:)) =
0. By Nakayama’s Lemma 8.23 (and Theorem 11.12) ¢ has an open neighbourhood U; C Spm A such that
H'(E|cxie(Dy)) = 0 for every t' € U;. One can cover Spm A with finitely many such neighbourhoods and then
take D to be a divisor bounding the corresponding divisors Dy. a

In order to prove the theorem we need:

11.14 LeEMMA. For any vector bundle £ on C 4 there exists a finite set of line bundles L1, ..., Ly on C together
with a surjective sheaf homomorphism (L1 & ---® Ly) ®x A — £.



Proof. The stalk at the generic point Egen is generated by finitely many elements as a module over k(C) ®; A.
This means that there is a positive divisor D > 0 and a sheaf homomorphism O¢(—D)®N(©) — £ which is

surjective away from finitely many points pi1,...,p, € C. We can then find rational sections s1,...,sn(1) € Egen
which are regular away from p; and generate the stalk &£,,. Hence there exists some positive divisor D; > 0 and a
sheaf homomorphism O¢(—D)®N(©) @ O (=D, )®N (M) — € surjective away from the points ps, ..., p,. Repeating
this construction at the remaining points, we get the lemma. a

Proof of Theorem 11.12. Let K be the kernel of the homomorphism given in the lemma, and consider the
exact sequence
0>K—=>(L1®---®Ly)@rA—>E 0.

From the part of the exact cohomology sequence
(H' (L) @@ H' (Ly)) @ A — H'(§) — 0,

where each H'(L;) is a finite-dimensional vector space, it follows that H' () is a finitely generated A-module. In
particular, H!(K) is also finitely generated, and so the part of the cohomology sequence

(H(L)) & ---® H'(Ly)) ® A — H°(E) — H'(K)

shows that H°(€) is also finitely generated. o

11.15 BASE CHANGE THEOREM. Let £ be a vector bundle on C4. Then for any ring homomorphism A — A’
there exists, for each i > 0, a natural homomorphism of A’-modules

Hi(E)@a A — H(E @4 A). (11.1)
In particular, it will be important to understand the case
H{(E) @4 AJm — H(E @4 A/m), (11.2)

where A’ = A/m at some maximal ideal m C A.
By right-exactness of the tensor product (Lemma 8.55) together with Nakayama’s Lemma and Lemma 8.31
we obtain the following facts.

11.16 LEMMA. (i) For i =1 the base change homomorphisms (11.1) and (11.2) are surjective.
(i) If H' (&) = 0 for every t € Spm A, then H!(£) = 0. O

If we express H(€) as the cokernel of a homomorphism of free A-modules
[ ABM 4 gON,

then we have
dim H' (€ ®4 A/m) = N —rank (f ®4 A/m).

The rank of a linear map is a lower semicontinuous function, and so we obtain:
11.17 LeEMMA. For any vector bundle £ on C'4 the function
Spm A = 7,  t— dimH'(&)
is upper semicontinuous with respect to the Zariski topology. In other words, for each a € Z,
{t|dim H'(&;) > a} C Spm A

is a closed subset. a

For H°(€) the following facts are fundamental.
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11.18 THEOREM. Suppose & is a vector bundle on Cy with H*(€) = 0. Then the following hold:
(i) H°(E) is locally free as an A-module; and
(ii) for every ring homomorphism A — A' the base change homomorphism

HO(E) @ A" — HY(E @4 A)
is an isomorphism.

Proof. (i) Let {U,V} be an affine open cover of C'. By the same reasoning as for Exercise 8.11 there is an

exact sequence
0— H°E) — EU)EWV) — EUNV) — HY(E) — 0.

Note that £(U),E(V),E(U NV) are all flat as A-modules. Since H!(£) = 0, therefore, it follows from Proposi-
tion 8.54 that H°(&) is also flat. But H°(&) is finitely generated by Theorem 11.12, so by Proposition 8.48 it is
locally free.

(ii) By Lemma 8.58, tensoring with any A-algebra A’ preserves exactness of the above sequence, and this
implies that H°(£) ®a A' =2 HO(E @4 A'). ]

11.19 REMARK. In fact, alittle more than this is true when Spm A is reduced (that is, A contains no nilpotents).
Namely, the A-module H°(£) is flat, and hence the conclusions (i) and (ii) of the theorem hold, provided the
dimension h°(&;) is constant over Spm A. (See Mumford [81], pp. 50-51.) o

Intuitively, H°(£) can be thought of as the vector bundle on Spm A whose fibre at ¢ € Spm A is the space of
global sections H°(&;) = H°(E|cxt)-

11.20 COROLLARY. If £ is a vector bundle on Cy4, then the function Spm A — Z, t — deg&; is constant on
connected components of Spm A.

Proof. We apply Theorem 11.18 to the vector bundle £(D), where D is the divisor constructed in Corol-
lary 11.13. This satisfies the requirement that H' vanishes, so the function ¢ — dim H°(&;(D)) is locally constant
(using Proposition 8.49). By Riemann-Roch, therefore, deg (D) is locally constant. a

It follows from Corollary 11.20 and Riemann-Roch that the integer h(&;) — h'(&;) is locally constant on
Spm A. Combining this with Lemma 11.17 we see:

11.21 PROPOSITION. For any vector bundle £ on Cy the function
Spm A — 7,  t+ dim H°(&)

is upper semicontinuous: for each a € Z the subset {t | dim H°(&;) > a} C Spm A is closed. ad

(c) Families of line bundles and the Picard functor

A vector bundle £ on Cy4 associates to each point ¢ € Spm A (corresponding to a maximal ideal m C A) a vector
bundle & on C (by pull-back via Spm A/m — Spm A), and we can observe that this correspondence does not
change if £ is replaced with £ ® 4 M for any invertible A-module M.

11.22 DEFINITION. (i) Two vector bundles £,&" on Cy4 are equivalent if £ = & ®4 M for some invertible

A-module M.
(ii) By an algebraic family of vector bundles on C parametrised by Spm A we mean an equivalence class (in
the sense of (i)) of vector bundles on Cy. o

The set, of families of line bundles parametrised by Spm A becomes a group under tensor product, and this
group is just Pic C'4/Pic A. Furthermore, given a ring homomorphism f : A — A’, the pull-back of a family via
Spm A’ — Spm A is well defined (if £ and £’ are equivalent, then so are £ ® 4 A’ and £' @4 A’), and the pullback
of families of line bundles is a group homomorphism

®f : Pic C4/Pic A — Pic Ca//Pic A, L L4 A
If g: A" — A" is another ring homomorphism, then this operation satisfies

(@g)(®f) = ©gf.



11.23 DEFINITION. The covariant functor

Pice {ﬁ‘mtely generated } R {groups}
rings over k

which assigns A — Pic C'4/Pic A is called the Picard functor for the curve C. O

Given a family of line bundles £ € Pic C4/Pic A, the degree of L|c«; is constant on connected components of
Spm A (Corollary 11.20). We will denote by Picl C Picc the subfunctor which assigns families of line bundles
of degree d. The following proposition is then half of Theorem 11.1; the remaining part, that the moduli space is
fine, will be proved in Section 11.1(d).

11.24 PROPOSITION. Let L € Pic*’C/, where d > 2g, and let N = d 4+ 1 — g, as in Section 9.4(a). Then the
projective quotient Maty , (H°(L))/GL(N,N) is a coarse moduli space for the Picard functor Pic. ad

11.25 COROLLARY. The isomorphism class of the variety Jq := Maty ,(H°(L))/GL(N,N) depends only on C
and d, and not on the line bundle L € Pic??C. a

Proof of Proposition 11.24. The idea is similar to that of Proposition 8.89 for the Grassmann functor. For
each finitely generated k-algebra A, our aim is to find a natural bijection between line bundles = on C4 such that
degZ; = d at every t € Spm A, up to equivalence, and morphisms Spm A — J;. Let = := L4 ®o Z. Then by
Theorem 11.18 both of H°(Z), H°(Z) are localy free A-modules of rank N, and their fibres at a point t € Spm A
are the spaces H°(C,Z,), H°(C,Z,). There then exists a bilinear homomorphism of A-modules:

HO(E) x H°(Z) » H°(L) ®; A. (11.3)

Step 1. We first consider the case when both of H°(Z), H° (é) are free A-modules. Let S, S be free bases. Via
(11.3), these determine an N x N matrix with entries in H°(L) ®, A, and so we get a morphism to an (affine)
space of matrices, Spm A — Maty (H?(L)). This maps into the closed subvariety

Maty 1 (H°(L)) C Maty(H®(L))

defined by the vanishing of the 2 x 2 minors and, moreover, into the open set Maty ;(H"(L)), since for all

t € Spm A, the line bundles =4, Et are generated by global sections. We will denote this map by
@:Spm A — Matfv’l(HO(L))
and the composition of ¢ with the quotient map by
¢:Spm A — J; = Mat} , (H°(L))/GL(N, N)

The map ¢ depends only on the equivalence class of = (in the sense of Definition 11.22) and not on the choice of

S, S.

Step 2. We now take an affine open cover
Spm A=U,U...uU,

such that the A-modules H°(Z) and H° (é) restrict to free modules on each U;. For each ¢, by choosing free bases
of H(E)|y, and H°(Z)|y, we obtain a map @; : U; = Matyy ; (H°(L)) as in Step 1, and on intersections U; N U;
the maps @; and @; differ only by the choice of free bases of H°(Z)|y,nu, and HO(E) vinu; - It follows that the
corresponding maps ¢; : Uy = Jgq and ¢; : U; = Jq agree on the intersection U; N Uj;, and by gluing we therefore
obtain a morphism

~

¢ :Spm A — Jg.
This is called the classifying map for the family of line bundles =.
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Let Z,Z' be two line bundles on C4 which are locally equivalent as families of line bundles on C. By this we
mean that there is an open cover of Spm A as above, such that on each open set the restrictions Z|y, and Z'|y,
are equivalent. For these line bundles the classifying maps ¢, ¢’ : Spm A — J; are the same, and in particular
we see that ¢ depends only on the equivalence class of = (Definition 11.22). This verifies the first requirement for
Ja to be a coarse moduli space: we have constructed a natural transformation of functors Picg — Jq. Moreover,
it follows from the results of Chapter 9 that over an algebraically closed field this is bijective in the sense of
Definition 11.6(ii), as required.

Step 8. Finally, we have to show universality (Definition 11.6(i)). Suppose that we have a natural trans-

formation 1 : Picd — Y for some variety Y. Over the product C' x Maty 1 (H°(L)) there is a tautological

homomorphism of vector bundles
Og]vaat - (L OMat)@N :
Restricted to the open set C' x Maty, , (H°(L)), this map has rank 1 at each point, and its image is a line bundle.
We denote this line bundle on C' x Matyy ; (H°(L)) by Q, called the universal line bundle. Composing the natural
transformation Maty  (H°(L)) — Pic, defined in the obvious way by pullback of Q, with ¢ gives a natural
transformation of functors
Mat, , (H°(L)) — Pic, 5 Y.

Since the line bundle Q is trivial on GL(N, N)-orbits, it follows that the corresponding morphism
Maty ; (H%(L)) — Y descends to the quotient, and so we obtain a morphism J; — Y with the required proper-
ties. |

(d) Poincaré line bundles

We begin by returning to Section 9.3(c) and extending the discussion of that section from ideals (that is, orbits) to
modules (vector bundles). Let G be a linearly reductive algebraic group acting on an affine variety X = Spm R,
and let M be an R-module with a G-linearisation (Definition 6.23). Thus M is also a representation of G and
has a subset of invariants M C M which, by definition of a linearisation, is an R“-module.

11.26 LEMMA. If M is a finitely generated module over a Noetherian ring R, then M is finitely generated as
an R%-module.

Proof. The idea of the proof is the same as that of Hilbert’s Theorem 4.51. Denote by M’ C M the submodule
generated by M¢. Since R (and M) are Noetherian, it follows that M’ is finitely generated. Letting my,...,m,, €
M' be generators, the map

R&---®R— M, (ai,...,an) = army + -+ + apmy,
is surjective, and hence by linear reductivity the induced map
RY®---®R% —» (M")¢ = M“
is surjective, so that M is generated as an R“-module by my, ..., m,. a

11.27 PROPOSITION. Suppose that all orbits of G ~ Spm R are free closed orbits and that M is a locally free
R-module. Then M€ is a locally free R®-module and M = MY ® e R.

Proof. Let I C R be the ideal of an orbit, with corrsponding maximal ideal m = I N R ¢ R®. Then M/IM
is a k[G]-module with a G-linearisation and so is a free k[G]-module by Lemma 9.49. By linear reductivity we
can find my,...,m, € MY whose residue classes my,...,m, € M/IM are a free basis, and hence the natural
homomorphism of R-modules

MY @pe R— M

is an isomorphism along each orbit. Since, by Lemma 11.26, M is finitely generated, it follows from Nakayama’s
Lemma that this homomorphism is surjective. But it is also injective because M is locally free. O

The projective quotient map in the direction of some character x € Hom(G, G, ),
=2, : X°° > X/,G,

is locally an affine quotient map, and so we obtain:



11.28 COROLLARY. Suppose that all semistable points are stable and that every orbit of the action G ~ X*° =
X% is a free closed orbit. Then, given a vector bundle E on X with a G-linearisation, there exists a vector bundle
Ey on X?/G such that E = ®*E. O

We now return to the proof of Proposition 11.24, and we will apply Corollary 11.28 to the universal line
bundle Q. This had the property that

(1x@)*Q=Z under 1 x@:C xSpm A — C x Maty, (H°(L)).

Let R be the coordinate ring of the affine variety Maty 1 (H®(L)). There is a tautological homomorphism of
R-modules 7 : R®N — R®N g, H°(L) given in the obvious way by matrix multiplication. Gven a linear map
f:H°(L) — k, we then get a homomorphism of R-modules as the composition

7 : RPN Iy RN @, HO(L) *24 R®N @ k = ROV,

When f is the evaluation map at a point p € C' this homomorphism has rank < 1 everywhere, and on the open
set Maty, , (H°(L)) its image is precisely the line bundle

Qp = Q|p><Mat-

The group GL(N) x GL(N) acts on R, and using this action we let it act on the source and target RPN of
the homomorphism ¢y, respectively, by

fi 9-fi fi g-fi
: —~ A : ) : — : BH1.
In 9-In In g-In
The map ¢y is then a GL(N) x GL(N)-homomorphism, and in particular GL(N) x GL(N) acts on the R-
module Q. Similarly, the universal line bundle Q carries a GL(N) x GL(N)-linearisation, under which (¢,¢t=') €
GL(N) x GL(N) acts nontrivially. However, this element acts trivially on the line bundle Q@ ® Q! with its

induced linearisation, and so this line bundle possesses a GL(N, N)-linearisation. According to Corollary 11.28,
therefore, Q ® Q; L'is the pullback of some line bundle

Pgq € Pic C x J,.
This is called the Poincaré line bundle.

11.29 REMARK. More generally, let D = )" .m;p; € DivC be a divisor of degree 1. Then the line bundle
Q®r [1; ©;™ descends to C' x Jg. O

11.30 LEMMA. Let = be a line bundle on C'4 with classifying map ¢ : Spm A — J;. Then E is equivalent to
the pullback (1 X @)*Pg vial x ¢ : Cy — C x J4.

Proof. Let £ = (1 x ¢)*P,4. By construction of the classifying map, = is already locally isomorphic to £. In
other words, Z|cxy, = L|cxp, over some affine open cover Spm A =U; U...UU,. Thus M := H'(E® L7!) is
an invertible A-module, and the natural homomorphism

LRIsM— =

is an isomorphism. Hence Z and £ are equivalent. a

This lemma gives the crucial ‘universal’ property of the Poincaré line bundle, which makes J; a fine, and
not just a coarse, moduli space. Precisely, it says that the correspondence ¢ — (1 x ¢)*Py gives a natural
transformation of functors

Ja — Picd,

which is inverse to the natural transformation given in Proposition 11.24. Hence the Picard functor Picd is
represented by the quotient variety J4, and we have proved Theorem 11.1.
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11.2 The moduli functor for vector bundles

Given a finitely generated ring A over k, a family of vector bundles of rank r on C parametrised by Spm A is
an equivalence class of vector bundles of rank r on C4 (Definition 11.22). Denote the set of such families by
VBc(r)(A). Given a ring homomorphism f : A — A’ let VBo(r)(f) : VBe(r)(A) — VBca(r)(A') denote the
pullback of families via Spm A’ — Spm A. We have then defined a covariant functor

_ [ finitely generated sets
VBo(r) : {rings over k } - { }’

called the moduli functor for vector bundles of rank r on the curve C. Of course, the case r = 1 is (after forgetting
the group structure) the Picard functor

VBc(1) = Pice.

Figure 11.2: The moduli functor for vector bundles

If £ is a vector bundle on C'4, then its determinant det £ is a line bundle on C4, and this operation commutes
with pullback under morphisms Spm A’ — Spm A. Moreover, if £ and £’ are equivalent vector bundles, then
det £ and det £’ are equivalent line bundles, and so the determinant is well defined on families. We therefore have
a natural transformation of functors,

det : VB (r) = Pice.

In particular, if L is any line bundle on C, then we can define (for any A) a family L4 := L ®; A on Cy4. This is
called a constant family, and we consider its preimage under det (the ‘fibre functor’):

11.31 DEFINITION. Given L € Pic C', we denote by

VBe(r, L) : {ﬁmtely generated } . {sets }

rings over k

the functor which associates to objects A the set of families £ on C4 for which det £ is equivalent to the constant
family L4 € Picc(4). O

A ‘moduli space’ for vector bundles (of rank r) is an object which in some suitable sense approximates the
functor VB (r) (or its ‘connected components’ of vector bundles with fixed degree) or VB¢ (r, L). However, as
soon as r > 2, a coarse moduli space, or a best approximation in the sense of Definition 11.6, cannot exist for the
following reason.

11.32 EXAMPLE. THE JUMPING PHENOMENON. There exist families of vector bundles of rank > 2, say &£
parametrised by 7' = Spm A, with the following property. For some dense open set U C T'and all u € U, t € T,

c =g, iftel,
& ifteT-U.

For example, let L € Pic C be a line bundle and fix an extension of O¢ by L with (nonzero) extension class
e € H'(L). Then each a € k determines an extension

0—-L—E,—0Oc—0

with extension class ae € H*(L). This illustrates the jumping phenomenon, with 7' = A!, because E, = E; for
all a # 0, and we can guarantee that this is indecomposable by choosing H°(L) # 0 (by Proposition 10.45) while,
on the other hand, Fg 2 L ® O¢ ¥ E;.

How do we see that this is an algebraic family of vector bundles? We claim that there exists an exact sequence
of vector bundles on Cy4, where A = k[s],

0= Lepk[s] > & — Oc @k k[s] =0
with the property that for every a € k the reduction of £ modulo m = (s — a) C k[s] is isomorphic to E,, that is,

g|C><a = Ea-
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To prove this, we let {U,V} be an open cover of C' and represent the extension class e € H'(L) by an element
b e L(UNV) (Exercise 8.11). The vector bundle E; is then obtained by gluing the bundles Oy & Ly and Oy & Ly

along U NV using the transition matrix ( é ll) ) . The extension & is then defined by gluing (Oy ® Ly) ®y, ks]
and (Ov @ Lv) @ k[s] along U NV using the transition matrix ( (1) bls ) m|

Now suppose that X were a coarse moduli space for the moduli functor VB (r), r > 2, and {&}ier some
jumping family as above. By the coarse moduli property there is then a morphism f : T — X with the property
that some dense open set U C T maps to a single point, but whose image f(7T") C X contains more than one
point, a contradiction.

This phenomenon forces us, if we want to construct a moduli space as an algebraic variety, to restrict to some
smaller class among the vector bundles that we are considering.

11.33 DEFINITION. Given a line bundle L € Pic C, we denote by SUc(r, L) C VBc(r, L) the subfunctor which
associates to a ring A the set of families £ on C4 for which &; is stable for all points t € Spm A. a

Note that stability depends only on the equivalence class of the vector bundle £ on C'4 representing the
family (Lemma 10.22). For the same reason, tensoring with any line bundle £ € Pic C, £ — £ ®p,. £ induces an
isomorphism of functors

SUc(r,L) = SUc(r,L ® €7). (11.4)

It follows that the isomorphism class of the functor St (r, L) depends only on deg L mod r, and not on L itself.
In the rest of this section we restrict to » = 2 and consider separately the cases when deg L is odd or even.

(a) Rank 2 vector bundles of odd degree

When deg L is odd we have already shown in the last chapter that the quotient variety Alty ,(H®(L))/GL(N)
has SUc(2, L) as its underlying set of points. In this section we are going to prove Theorem 11.3.
As in the last chapter (see Theorem 10.1) we assume that deg L > 4g — 1 and we let N = deg L + 2 — 2g.

11.34 PROPOSITION. Suppose that degL > 49 — 1 is odd. Then the quotient variety Myp =
Alty ,(H(L))//GL(N) is a coarse moduli space for the functor SU¢(2,L).

The proof is similar to that of Proposition 11.24 for the Jacobian case. First we construct a natural transfor-
mation of functors

SUc(2,L) = My, (11.5)

and then we show that this satisfies the universal property.
Let A be a finitely generated ring over the field £ and £ be a rank 2 vector bundle on C'4. We suppose that
& is stable for all ¢ € Spm A and that det £ =2 L4 ® M for some invertible A-module M (that is, for some line
bundle on Spm A). We consider the A-module H°(&) of global sections (Definition 11.10). By Proposition 10.26
and Theorem 11.18, this is a locally free A-module of rank N. We will consider the skew-symmetric A-bilinear
map:
H°(&) x H*(&) — H°(det &) = H°(L) @y, M, (5,) = s At

Step 1. We first consider the case where H°(E) and M are both free A-modules. Then, by choosing free bases,
the above map determines a skew-symmetric N x N matrix with entries in H°(L) ®; A. In other words, we get
a morphism

@ :Spm A — Alty(H (L)).

The image of this map is contained in the zero-set of the 4 x 4 Pfaffian minors

Alty 5 (HO(L)) C Alty (HO(L)),
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and by Theorem 11.18 the image of each ¢t € Spm A is exactly a Gieseker point of the vector bundle & = & x«t-
As we saw in the last chapter, this is stable for the action of GL(N), and so the morphism @ maps into the open
set Alty »(H®(L)). We denote the composition of ¢ with the quotient map Alty ,(H®(L)) — My, by

@:Spm A — M.

This map depends only on £ and not on the choice of basis for H°(E).

Step 2. Choose an affine open cover
Spm A=U,U---UU,

such that the restriction of H°(€) and M to each U; are both free modules. Just as for the Picard functor, this
gives, using Step 1, a morphism ¢ : Spm A - M.

Step 3. We have therefore constructed the natural transformation (11.5), and we will now check that it has
the universal property. On the product C' x Alty (H°(L)) there is a natural tautological homomorphism,

ON - ON
Ocsar = (LR Oa) ™,

given by matrix multiplication, whose restriction to C' x Alty o(H°(L)) has rank 2. The image is then a rank 2
vector bundle whose restriction to C' x Alty ,(H’(L)) we denote by Q.

Now suppose that we have a natural transformation of functors SU-(2,L) — X for some other variety X.
Applying it to the vector bundle Q then determines a morphism Alty ,(H°(L)) — X; and since Q is preserved
by the action of GL(N), this descends to a morphism of the quotient M; — X. a

Proof of Theorem 11.3. It is enough to show that the vector bundle Q descends to the product C' x M.
However, by construction @ comes with a natural GL(N)-linearisation in which the element —In € GL(N)
(which acts trivially on Alty ,(H°(L))) acts as —1, so that Q cannot descend as it is. We can solve this problem
by ‘twisting” Q as a GR-module (where G = GL(N) and R is the coordinate ring of Alty ,(H°(L))). That is,
we consider Q' := Q ®g D, where D denotes the trivial R-module linearised by det g for g € GL(N). Here —Ix
acts trivially, and we have a line bundle Q" which carries a GL(N)/ £ Iy linearisation. (Note that this is only
possible when deg L, and hence N, is odd!)

By Lemma 10.64, all the orbits of the action GL(N)/ + In ~ Alty ,(H°(L)) are free closed orbits, so that,
by Corollary 11.28, Q' is the pullback of some vector bundle &/ on C x My. Pulling back I via morphisms
Spm A — M, then defines an inverse of the natural transformation (11.5), and hence the functor S¢ (2, L) is
represented by the variety M. m|

More precisely, the functor SU:(2, L) is represented by the pair consisting of My, and the vector bundle ¢/
on C' x My. This is called the universal bundle.

(b) Irreducibility and rationality

It follows from (11.4) that the functor SU (2, L) is represented by an algebraic variety for every line bundle L of
odd degree, and from now on we will denote this variety by SUx (2, L). It is independent of L up to isomorphism,
and we will show that it is irreducible and rational.

Consider a stable vector bundle E € SU¢(2,L) when deg L = 2g — 1. By Riemann-Roch we have h°(E) —
h'(E) = 1, so that h°(E) > 0 and E contains O¢ as a subsheaf. The saturation of this subsheaf is a line
subbundle isomorphic to O¢ (D) for some positive divisor D € DivC, and there is an exact sequence:

0— Oc¢(D)—- E — L(-D)— 0. (11.6)

Note that stability of E implies that d :=degD < g — 1.
Let us first consider the case D = 0. Here, the equivalence class of the extension

00O —FE—-L—0

is parametrised by the cohomology space H'(L~!), and by Riemann-Roch this has dimension 3g — 2. The
isomorphism class of the bundle is parametrised by the projectivisation of this space, and there is a moduli map
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from the open set Uy parametrising stable bundles:

Uo C PHY(L7!)x=p3y—3

fol
SUC(27 L)

What about the case D > 07 Positive divisors of degree d on C' are parametrised by the d-fold symmetric
product Sym?C. (This is a nonsingular variety of dimension d.) For each D € Sym?C, the extensions (11.6)
are parametrised by the cohomology space H'(L~!(2D)), which has dimension 3g — 2 — 2d, and in this case
we obtain a moduli map from the open set U, of stable bundles in a projective bundle over Syde’ with fibre
PH'(L~'(2D)):

U C P39-3-2d_pypdle — Sym?C

fal

SUC(27 L)

The images of the maps f;: Uy — SUc(2,L) for 0 < d < g — 1 cover the moduli space. On the other hand, each
Uy, if nonempty, has dimension 3g — 3 — d; since dim SU¢(2, L) = 3g — 3, it follows that Uy must be nonempty.
The map fy is therefore dominant; and since Uy is irreducible, it follows at once that SUqx(2, L) is irreducible.

11.35 PROPOSITION. SUc(2,L) is a rational variety when deg L is odd.

Proof. We have seen that a general stable bundle E € SUx(2, L) is a (nonsplit) extension of L by O¢. In
particular, h%(E) > 1. If h°(E) > 1 for a general stable bundle, then the general fibre of fy wold be positive-
dimensional, contradicting the fact that dim Uy = dim SU¢(2,L). Hence h°(E) = 1 for general E € SU¢(2, L),
and so fy is birational—that is, it is an isomorphism over an open subset of the moduli space. O

(c) Rank 2 vector bundles of even degree

We showed in the last chapter that when deg L is even the Gieseker points T s of a semistable vector bundle
E € SUc(2,L) are semistable for the action of GL(N) on Altx2(H®(L)) (Propositions 10.69 and 10.70). In a
moment we will show that if E is a stable vector bundle, then its Gieseker points T g are GL(NN)-stable. This
implies, in particular, that the quotient variety Alty ,(H°(L))/GL(N) has SUc(2,L) as its underlying set of
points. However, unlike the odd degree case, there are now semistable vector bundles which are not stable, and
as a consequence the quotient variety Alty ,(H®(L))/GL(N) is not complete. It is contained as an open set in
the projective variety
SUC(2,L) i= Alty,(HO(L)) JGL(N),

and one can ask what the geometric points of this bigger variety correspond to in terms of vector bundles. This
is answered by Proposition 11.37.
We will assume that deg L > 4g — 2.

11.36 PROPOSITION. The Gieseker points of a stable vector bundle are GL(N)-stable.

Proof. We have already observed in the proof of Theorem 10.1 (Section 10.4(b)) that a Gieseker point Tg, s
of a stable bundle E has finite stabiliser, using Lemma 10.64 and the fact that E is simple. So we just have to
show that the orbit of T g is closed.

So suppose that T' € Alty2(H°(L)) is in the closure W of the orbit GL(N) - Tg,s of E. We have seen in
Section 10.4(b) that such T is the Gieseker point of some semistable vector bundle E'. Moreover, there exists a
vector bundle £ on C' x W such that £|cx: = E for ¢ in an open set of W and £|ox: 22 E' for ¢ in the boundary.
Namely, £ is the restriction of the universal bundle Q constructed in the proof of Proposition 11.34. If we apply
semicontinuity (Proposition 11.21) to the bundle EY ® £, we see that

dim Hom(E, E") > dim Hom(E, E) > 1,
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so that there exists a nonzero homomorphism E — E’. But this is then an isomorphism by Proposition 10.24.
This shows that the orbit GL(N) - Ty g is closed. a

11.37 PROPOSITION. If E,E' are rank 2 vector bundles with the same determinant line bundle L and Gieseker
points Tg 5, TE s, then the following are equivalent:

(i) gr E 2 gr E' (see Definition 10.43);

(ii) Tg g, Tr s are closure-equivalent under the action of GL(N).

Bundles E, E’ satisfying condition (i) are said to be S-equivalent.

Proof. By Proposition 11.36, the Gieseker orbit of a stable vector bundle is closed and of maximal dimension;
so if either of E, E' is stable, then (by Corollary 5.5 and its proof) condition (ii) is equivalent to Tg s, TEr,s being
in the same GL(N)-orbit. We therefore only need to consider the case where neither of E, E' is stable: in other
words, we assume that they are extensions of line bundles:

0-L—>FE—M-—0, deg L = deg M
0—-L - E —- M —0, deg L' = deg M.

Since, by hypothesis, deg L = deg M > 2g— 1, it follows that h°(L) = h°(M) = h°(E)/2. So let S = {s1,...,sn}
be a basis of H°(E) in which s1,...,sy/, are a basis of H°(L) C H°(E). Then T s has the form

(542)

Now let

g(t) = € SL(N).

Then, as we have already seen in the proof of Proposition 10.66,
0 |B
. t _
lim g(#)T,59(t)" = < “B 0 ) :

But this is the Gieseker point of the decomposable vector bundle L & M = gr(E), and we see that Ty (g, is
contained in the closure of the orbit GL(N) - Tg,s. Hence we have shown that (i) implies (ii).

For the converse, the idea is the same as in the proof of Proposition 11.36. Suppose that the two orbit closures
have an intersection point:

T € GL(N) ‘Tgs N GL(N) “Tgr sr.

Then T is a Gieseker point of some semistable vector bundle F', and, as in the proof of Proposition 11.36, we can
find a family of vector bundles £ which is equal to E on an open set and jumps to F' on the boundary. We then
apply upper semicontinuity (Proposition 11.21) to the family L=! ® &£, where L C E is the same line subbundle
as above. This gives

dim Hom(L, F') > dim Hom(L, E) > 1,

so that L is contained as a line subbundle in F'. By the same reasoning L’ is also a line subbundle of F'. But since
F is semistable, this implies that either L & L' or F' = L @ L'. Either way, we conclude that gr(F) = gr(E'). O

Recall that if £ is a line bundle, E: L ® €71, and the multiplication map
HO(¢) x H°(§) - H°(L)

is represented by a matrix 7', then the vector bundle £ = £ & ghas as a Gieseker point the matrix

(o)
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(Example 10.63). This means that the map
Pic’?C —» SU-(2,L), €@,

is induced in the quotient by the map

Maty/z1 (H(L)) = Altno(HO(L)), T~ < _?Ft :g ) :

Thus SU¢(2, L) contains SUx(2, L) as a an open set, with complement (the semistable boundary) equal to the
image of Pic?/2C' (called the Kummer variety).

11.38 REMARK. Unlike the odd degree case, SUc(2, L) is not a fine moduli space. That is, it can be shown that
there is no universal vector bundle on the product C x SU¢(2, L). (See Ramanan [74].)

11.3 Examples

In this section we explain, first, how one can write down explicitly the construction of the Jacobian given in
Section 9.4, and then we give some examples of moduli spaces of vector bundles.

(a) The Jacobian of a plane quartic

Let C' C P? be a nonsingular plane curve of degree e defined by a homogeneous polynomial equation f.(z,y,z) = 0.
As we saw in Section 9.2, this has genus g = (e — 1)(e — 2)/2. For the auxiliary line bundle L of degree 2d used
in Section 9.4 we will take the restriction to C of Opz(e — 1), with d = e(e —1)/2. When e = 3,4 we have d > 2g,
so that by the methods of Section 9.4 we can construct Pic?C' as the quotient variety

Mat; ; (H°(L))/GL(e,e).

We may identify H°(L) with the set of homogeneous polynomials of degree e — 1 in coordinates z, y, z.
Let us consider the case of a plane quartic curve—that is, e = 4. In this case,

Pic®C = Mat} , (H°(L))/GL(4,4),

where Maty 1 (H°(L)) consists of 4 x 4 matrices

dll(x)yaz) d12(1',y,2) dlg(l’,y,Z) d14(:r,y,z)
A= d21(a:,y,z) d22(1',y,2) dzg(l’,y,Z) d24(:r,y,z)
dgl(l',y,Z) d32(1',y,2) d33(:r,y,z) d34(:r,y,z)
di(z,y,2) daz(x,y,2) das(z,y,2) das(z,y,2)

of cubic forms d;;(z,y, 2) all of whose 2 x 2 minors vanish on C in other words, these 2 x 2 minors are 36 sextics
which are divisible by the quartic fi(z,v, z) defining C' C P2.

11.39 PROPOSITION. A matrix A € Maty,1(H°(L)), as above, is stable under the GL(4,4) action if and only if
it is of one of the following forms.
(1) A is the matrix of cofactors of a 4 x 4 matrix of linear forms

M = (lij(z,y,2))1<i,j<4, where det M = f4(z,y,2).

(2) A is of the form, up to the action of GL(4,4),

t .’If
A= (dey.2) | 9(x y, 2)x" x={ v
q'(,y,2)x | I(z,y, 2)xx .

where degl =1, degq = degq’ = 2, degd = 3, and qq’' — Id = f4.
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Proof. By Propositions 9.62 and 9.63, stability is equivalent to the matrix having rank 4 over the field k. We
consider the cofactor matrix A* of A. Recall that for an N x N matrix this has the properties:

(i) (A")* = (det A)N=24; (i) det A* = (det A)N~1.

In the present case, A* is a 4 x 4 matrix of forms of degree 9, and these are all divisible by f7. There are therefore
two possibilities: either A* =0, or A* = f7M, where M = (I;j(z,y,2)) is a nonzero matrix of linear forms. Let
us first deal with the latter case. Taking determinants, we have (det A)> = f§ det M, and by unique factorisation
this implies that det M = f,, det A = f7. Hence

(A*)* 1 .1

R A

ot A7 = T (FM)* =0,

and we have case (1) of the proposition.
The second case is when A* vanishes identically or, equivalently, A has rank 2 over the function field k(C).
In this case, up to the GL(4,4) action A can be written

where B is a 3 x 3 matrix of cubic forms with rank 1. By Remark 9.55 it is easy to see that, up to the action of
GL(4,4), the block B can be written as [(z,y, z)xx! for some linear form /. Since A has rank 1 along the curve
C C P2, this forces it to take the form (2) of the proposition. a

The second case corresponds to an element of Pic®C of the form O¢ (1) ® Oc(p + p') for some points p,p’ € C,
while all other line bundles correspond to the first case. We can identify the same quotient with Pic2C' by the
bijection

Pic’C = PictC, £ E®0c(),
and then the set of matrices (2) is the theta divisor
0 ={Oc(p+7) | p,p' € C} = Sym’C,

while the set of matrices (1) is its complement.

(b) The affine Jacobian of a spectral curve

For any curve of genus g the set
0 :={Ocp1+-+Dg—1) | P1,--.,pg—1 € C} CPic? 'C

is called the theta divisor in Pic?”'C, and its complement is an affine variety. As we have seen in Section 9.4(b),
Pic?'C is a projective variety and by construction there exists a semiinvariant whose zero-set is © (or, more

precisely, is 20). This complement,
Aff.Jac C :=Pic! 'C - 0O,

is called the affine Jacobian of C. The affine Jacobian of a plane curve of degree e can be described explicitly in
the following way.

11.40 PROPOSITION. Given a homogeneous polynomial f.(z,y,z) of degree e, denote by Mat.(z,y, z; fe) the
set of e X e matrices of linear forms

M = (l;j(z,y, 2))1<i,j<e such that det M = f.(z,vy,2).

This is a closed subvariety in affine space A™, n = 3e%, which is acted on by SL(e) x SL(e) via M — gMg'. Then
the plane curve C = {f.(z,y,z) = 0} C P? has affine Jacobian equal to the affine quotient

Aff Jac C = Mat}(z,y, z; fo)/SL(e) x SL(e).



This proposition is a special case of Theorem 11.41 below. When e = 3 or 4, we obtain a completion (or, in
other words, a compactification) of the affine Jacobian by assigning to a matrix M € Mat,(x,y, z; fe) its matrix
of cofactors.

The e-sheeted cover C — P! defined by the equation

T+ fm(may)Te_l + me(x>y)Te_2 +--t f(e—l)m(mvy)T + fem(x,y) =0, (117)

where each f;(z,y) is homogeneous of degree i, if it is nonsingular, is called a spectral curve of degree e and
index m. In particular, every nonsingular plane curve C C P2 is a spectral curve of index 1.

11.41 THEOREM. Let C — P! be the spectral curve (11.7) and denote by Mat.(z,y; C) the set of e x e matrices
M = (hij(z,y))1<i,j<e of homogeneous polynomials of degree m, with a fixed characteristic polynomial

det(M — 71.) = left-hand side of (11.7).

Then Mat,(z,y;C) is an affine variety on which SL(e) acts by conjugation, M — gMg~, g € SL(e), and the
affine quotient is the affine Jacobian of C,

Aff.Jac C = Mat(z,y; C)/SL(e).

O

This theorem is the analogue for function fields of Theorem 8.66. It can be proved in a similar manner, making
use also of Grothendieck’s Theorem 10.31. We omit the details here, but see Beauville et al. [78], [79].

(c) The Jacobian of a curve of genus 1

Let C be a curve of genus 1. Over an algebraically closed field the variety Pic?C is always isomorphic to C'. Here
we shall consider what happens when the field k is not necessarily algebraically closed. (For example, the rational
numbers k£ = Q. For simplicity we shall, nevertheless, continue to assume that k has characteristic zero.)

First of all, note that C' need not necessarily possess any rational points over k. If C' does have a rational
point, then by taking this to be on the line at infinity in the projective plane C' can be represented as the plane
cubic

y? =42’ — gox — g3, 92,93 € k.

This is called the Weierstrass canonical form of a plane cubic.

11.42 DEFINITION. Let C' be a curve of genus 1 over k. A curve J over k which possesses a rational point over
k and which is isomorphic to C' over the algebraic closure k is said to be arithmetically the Jacobian of C. a

In the construction of Pic?C given in Section 9.4, suppose that the auxiliary line bundle L is defined over k.
Then the quotient variety Pic?C is also defined over k.

11.43 REMARK. We are not assuming here that the Poincaré line bundle is defined over k, and so we view Pic?C
only as a coarse moduli space. However, it is clear from the construction that there will exist such a Poincaré
line bundle provided C' possesses a k-rational point or, more generally, a divisor of degree 1 defined over k. (See
Remark 11.29.) |

When C'is defined over k there exists some positive line bundle Ly defined over k.

deg Ly = 1. In this case, by taking the zero-set of a global section we get a rational point of C' over k, and hence
C is arithmetically its own Jacobian.

When deg Lo > 2, we see by taking L = L2 in the quotient construction of Section 9.4 that Pic?C is arithmetically
the Jacobian of C. This can be identified with Pic°C by ®Ly : Pic’C = Pic?C.

deg Ly = 2. In this case dim H°(Ly) = 2, and the ratio of two linearly independent global sections determines a
2-sheeted cover C' — P!, This has four branch points, which are the zeros of a binary quartic

(a]z,y) = apz® + 4a1 23y + 6asz®y” + 4aszzy® + asy?,
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and C' can be represented as
C: 712 =apz* +4a12°y + 6a,2%y + daszy® + asy?. (11.8)
Since C' is defined over k, the coefficients ag, - . ., a4 belong to k.

11.44 THEOREM. If C is the genus 1 curve (11.8), then the arithmetic Jacobian Pic’C is the affine plane curve

2 Qg a1 a2
y2 = det |z -1 —la ax a3
2 as a3 Q4

together with its point at infinity.

11.45 REMARK. The right-hand side in this equation is the cubic used in the solution by radicals of the quartic
(a{z,y) = 0. We have already used this equation in Section 1.3(b) (See Remark 1.26.) o

Theorem 11.44 will follow from the next proposition. If L is any line bundle of degree 4 then dim H°(L) = 4,
and four linearly independent sections define an embedding C' < P?, whose image is a curve of degree 4 and is
the intersection of two quadric surfaces qo (o, z1, T2, 3) = q1(x0, 1, %2,23) = 0. For each i = 0,1 we can write

qi(x0, 21,22, 73) =xX'Qix, X = (T, 71,22, 23)"
for symmetric 4 X 4 matrices Qo, ()1, and we consider the relative characteristic polynomial
det(zQo + yQ1)-
This is a binary quartic in z, y.

11.46 ProrosiTION. If C is the genus 1 curve qo(zo, 1,22, 23) = q1(To,T1,T2,23) = 0 then the arithmetic
Jacobian Pic?C' is the double cover of P! with equation

7% = det(zQo + yQ1).

O

Proof of Theorem 11.44. Let L = L2, and let 2%, 2xy,y?,7 € H°(L) be a basis for the global sections, where
x,y € H°(Lg). This basis determines an embedding,

C — P3, (x:y: 1) (22 : 22y 9% : 7) =: (xo : 21 : T2 : T3),

whose image is contained in the quadric surfaces

CU% —4dxgrs = 0,
aow% + 2a1xox1 + a1(2x0T2 + x%) + 2azx1T2 + a4m% — CU% = 0.
The relative characteristic polynomial of these quadrics is
2 ap ai a2
-1
det |-z p| @ 9 )
2 as a3z Q4
[0 | -1
and this is the right-hand side of the equation in the theorem. a

In order to prove Proposition 11.46 we follow the construction of Section 9.4 when d = 2 and the auxiliary
line bundle is L as above. Pic?C is the quotient variety

Mata,i (H(L))//GL(2,2), (1L.9)



where Maty 1 (H°(L)) consists of 2 x 2 matrices of linear forms in = = (z9, 1, T2, 73)

li1 (CU) l12($)
l21 (1‘) l22 (1‘)
whose determinant vanishes on C' C P?. In other words, the determinant of such a matrix is a linear combination

of qo(z) and ¢ (z). It happens that the ring of semiinvariants determining the quotient variety (11.9) is well
known and can be written down explicitly.

11.47 THEOREM. Let Mats(zo,...,2,,) be the set of 2 X 2 matrices of linear forms in x, . ..,Z,,. This space is
acted on by GL(2,2), and the ring of semiinvariants has the following generators.

(1) Weight 1. The (m + 1)(m + 2)/2 coefficients of the quadratic form det M(z), where M(z) €
Mats (g, - - -, Zm ). These are quadratic forms on Mats (o, - - ., Tm)-
(2) Weight 2. Writing M (z) € Mata(zo,- .., Tm) as

Moxo + Myxy + -+ -+ My,

the (™) determinants det |M;, M;, My, M| for i < j < k < [, where each M; is viewed as a vector in k*.
These are quartic forms on Mats(zo,...,Zm)- a

This follows from the next result, due to Weyl ( [60] Theorems (2.9A) and (2.17A)). The 4-dimensional vector
space of 2 x 2 matrices V' = Mato (k) carries an inner product,

M, M' — tr (M*M"),

where M™* denotes the matrix of cofactors of M. With respect to this inner product the action of the image of
SL(2) x SL(2) in GL(2,2) lives in the special orthogonal group SO(V').

11.48 THEOREM. Let V,(, ) be any n-dimensional inner product space. Under the diagonal action of SO(V)
on a direct sum V & --- @V = @" V, the ring of invariants has the following generators. Moreover, when r < n
these generators are algebraically independent.

(1) The (’"51) inner products fi;(vi,...,vp) 1= (v, v;), for 1 <i<j<r.

(2) The (7) determinants fi(vi,...,v,) := det|vi,, ..., v, |, where I = {1 <iy < -+ <ip, <r}. O

The quotient
Mats (2o, 1,22, 73)//GL(2,2)

is a variety of dimension 4 x4 —7 = 9, and by Theorem 11.47 it is embedded in 10-dimensional weighted projective
space (110 : 2). The square of the semiinvariant (2) can be expressed as a quartic form in the semiinvariants (1)
(in fact the determinant), and hence the quotient is a quartic hypersurface in P(11 : 2). To say this another way,
it is a double cover

7 : Mats(zo, 1, T, 73) [/GL(2,2) 25 PP = {quadrics in P?}

branched over a quartic hypersurface B C P°.

Proof of Proposition 11.46. The variety Pic?C for the curve C C P? is the inverse image 7' (P'), where
P' C P? is the span of Qp and Q1. The intersection of this line with B is the zero-set of the relative characteristic
polynomial, so the proposition follows. |

deg Ly = 3. In this case dim H°(Ly) = 3 and the ratios of the global sections define an embedding of the curve
as a plane cubic C' C P2. Since Lg is defined over k, the equation f3(z,y,2) = 0 of the cubic has coefficients in
k. By Proposition 11.40, the affine Jacobian of C' is the quotient variety

Mats (2, y,z; fs) [/ SL(3) x SL(3),

and the arithmetic Jacobian of C is the one-point compactification of this variety. Let us denote a general element
of Mats(z,y,2; f3) by M = Moz + My + M>z.
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11.49 PROPOSITION. The ring of semiinvariants of the action GL(3,3) ~ Mats(z,y, z) has Hilbert series

1—¢6
(1—6)10(1 — 2)(1 — 13

and has the following 12 generators.

(1) Weight 1. The 10 coefficients (that is, mixed determinants) of the cubic form
det(M().T + Mly + MQZ).

(2) Weight 2. The trace
fM) = tr (Mg M7 My),

where M} is the matrix of cofactors of M.
(3) Weight 3. The trace

O

(This proposition is a rephrasing of the results of Teranishi [87] on the ring of invariants of the conjugation
action SL(3) ~ Mats(z,y,2).)
From the Hilbert series and the known weights of the generators it follows that there must be a relation among
these generators of the form
g> +asg =aof> + asf? + asf + as, (11.10)

in which each a; is a homogeneous polynomial of degree 7 in the 10 generators of weight 1. This shows that the
affine Jacobian of the plane cubic C' is the plane cubic (11.10) in which the a; are obtained by specialising the 10
weight 1 semiinvariants to the 10 coefficients of the defining equation f3(z,y,z) of C.

11.50 REMARK. The arithmetic Jacobian of a curve of genus 1 in degree 2 was investigated by Weil in [88]. In
a remark on this paper in his collected works he makes the following observation.

The ‘covariants’ of a plane cubic f(z,y, z) = 0 are generated by three forms denoted classically by H, J, © (see
Salmon [35]). Of these, H = H(f) is the Hessian (see Example 5.26), of degree 3, and J, © are both sextics. This
means that every covariant plane curve with respect to the action of the projective group is a polynomial in H, J, ©
with coefficients in k[Vy 3]37() = k[S, T]. (For example, the degree 9 covariant consisting of the inflectional lines
of the cubic can be shown to have equation 5Sf2H(f) — H(f)? — fO(f) =0.)

These generating covariants satisfy a single relation:

y? =423 4+ 108Sx2* — 27T 23, where 2 = 0,y = J, z = H2.

Weil’s observation is that this is precisely the equation of the arithmetic Jacobian of f(z,y,z) = 0. a

(d) Vector bundles on a spectral curve

We will extend Theorem 11.41 in this section to describe the moduli of rank 2 vector bundles on the spectral
curve (11.7). First, let us make some remarks about the cofactors of a skew-symmetric e x e matrix. Let A = (a;;)
be such a matrix, where e is even, and denote by A;; the skew symmetric (e —2) x (e — 2) submatrix obtained
by deleting the i-th and j-th rows and columns of A.

11.51 DEFINITION. The cofactor matriz of a 2 x 2 skew-symmetric matrix is defined to be

0 a\* [0 -1

—a 0 L1 0 '
If Ais an N x N skew-symmetric matrix for even N > 4, then its cofactor matrix 424 is defined to be minus the
N x N skew-symmetric matrix whose (i, j)-th entry is (—1)"/Pfaff A4;;. O
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For example, when N = 4,

a b ¢ f —e d —f e —d
d e = c —b = —c b
f a —a

Corresponding to the identity AA* = (det A)I, where A* is the matrix of cofactors (transposed) of a general
square matrix A, the cofactor matrix of a skew-symmetric matrix satisfies:

AA = (Pfaff A)I.

Before we come to general spectral curves, let us return to plane quartics C' C_]P’2. With respect to the
line bundle L = O¢(3), the compactified moduli space of semistable vector bundles SU (2, L) is the projective
quotient

Alts »(H®(Oc(3))) [/GL(8),

where Alts »(H°(O¢(3))) is the affine variety of 8 x 8 skew-symmetric matrices [d;;(z,y,2)] whose entries are
cubic forms in the homogenous coordinates z,y,z and whose 70 4 x 4 Pfaffian minors are all divisible by the
quartic fs(x,y, z) which defines the curve.

Moreover, mapping A — A*3 defines a morphism

Alts 2(H°(Oc(1)))//SL(8) — Alts »(H®(0c(3))) //GL(8) = SUc(2, L),

where the left-hand space is the affine quotient of the affine variety Altg 2(H°(Oc(1))) (in the affine space A8*)
of 8 x 8 skew-symmetric matrices of linear forms in z,y,z with Pfaffian equal to f4(z,y,z). This map is an
open immersion and its image is the set of (S-equivalence classes of) semistable vector bundles E satisfying
H°(E(-1)) = 0.

Note that det E(—1) =2 Q¢. More generally, suppose that E is a vector bundle with canonical determinant
det E = Q¢ on a curve C. If H(E) = 0, then E is semistable, and this condition defines an open subset of
SUc(2,L). In fact, as we saw in the proof of Proposition 10.70, its complement is the zero-set of a semiinvariant
and this open subset is therefore an affine variety,

—aff N
SUL (2,00) = {E | H(E) =0} C SU(2,90).
Proposition 11.40 and Theorem 11.41 now extend to the following.
11.52 PROPOSITION. If C is the plane curve {f.(z,y,2z) = 0} C P2, then
——aff
SUe (2,00) = Altae(2,y, 2 f) [/ SL(2e),

where Alto.(x,y, z; fe) is the affine variety of skew symmetric 2e X 2e matrices with Pfaffian equal to f.(x,y,z). O

11.53 THEOREM. Let C' — P' be the spectral curve (11.7) of degree e and index m,

T4 fn(@, )T+ fom (@, )T T 4+ flemtym (T, )T + fem(x,y) = 0.

Let Altoe(x,y,2; C) be the set of 2e x 2e skew-symmetric matrices A = (h;;(x,y)) of homogeneous polynomials
of degree m, with fixed characteristic polynomial

pr(aer( 5 §)) = e ol 7
"‘+f(e71)m(35ay)7'+fem($,y)-

Then H
SU (2,00) = Alta (,y, 2;C) //Sp(2e).
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(e) Vector bundles on a curve of genus 2

A curve that can be expressed as a double cover C' 24 P! of the projective line is called a hyperelliptic curve
(Example 9.7). The number of branch points is always even and is 2g + 2, where g is the genus. We will consider
here the case g = 2. Then, if we take homogeneous coordinates (z : y) on P!, the curve can be expressed as

C: 7%= fs(z,y)

for some sextic form fg(z,y) = (ao,.--,a62,y). We denote by Oc(1) the pullback of the tautological line
bundle on P!. (In terms of divisors, this is Oc(p + ¢), where {p,q} C C is the inverse image of a point of P1.)
Since deg Oc (1) = 2 and h°(Oc(1)) > 2, it follows from Riemann-Roch that Oc¢(1) = Q¢, the canonical line
bundle, and that h°(Oc(1)) = 2. By Riemann-Roch and the Vanishing Theorem 9.20 we have h°(Oc(2)) = 3
and h°(O¢(3)) = 5. We can therefore take as bases

2, 2zy,y° € H°(Oc(2)),  2°,32%y,3zy°,y°, 7 € H*(Oc(3)).

The latter determines an embedding C' < P* whose image is the intersection of four quadrics (using homogeneous
coordinates (zo : @1 : T2 : T3 : Tq))

ToTy — T3 = ToTz — T1 Ty =T 73 — T3 = 0
aoT: + 2017071 + a2(2T0w2 + 73) + 2a3(ToT3 + T1T2) (11.11)
+aq(2z173 + 23) + 2057273 + agri = 3.

The construction of Chapter 10 gave a variety parametrising rank 2 vector bundles E with det E = L, for
some line bundle L € Pic C, which satisfy H'(E) = 0 and the condition that E is generated by global sections.
By Propositions 10.26 and 10.27, these two conditions are guaranteed for all semistable bundles if deg L > 4g
and for all stable bundles if degL > 4g — 2. For g = 2, let us take L = O¢(3) and construct the moduli space
SUx(2,0c¢(3)) of stable vector bundles with this determinant.

In this case, a stable bundle E has h°(E) equal to N = 4 (see Notation 10.58), and so SU¢ (2, Oc(3)) is the
open set of stable points in the projective quotient of the action

GL(4) ~ Alty2(H®(Oc(3))).

An element of Alty »(H%(Oc(3))) is a 4 x 4 skew symmetric matrix of linear forms in o, ..., zs which has rank 2

along the curve C' C P*, or, in other words, whose Pfaffian is a linear combination of the four quadrics (11.11).
First of all, we consider the action of GL(4) on the affine space Alty(xq, 1,2, 73, 24) = Alty(k) @ H(Oc(3))

of matrices without any rank condition. The 6-dimensional vector space Alty4(k) comes with an inner product,

(X,Y) — tr X2y,

and this inner product is preserved by the subgroup SL(4) C GL(4); that is, SL(4) acts on Alty(zo, z1, 22,23, 24)
by SL(4) — SO(6). We can therefore apply Theorem 11.48 to obtain:

11.54 PROPOSITION. The ring of semiinvariants of the action GL(4) ~ Alty(zo,z1,x2,23,24) has 15 alge-
braically independent generators of weight 1. These are the coefficients Pf;; of the quadratic form

Pfaff A = prl](A)ZEZZE], A€ A1t4($0,$1,$2,$3,$4).

i<y

It follows that the projective quotient Alty(zo, 21,72, T3, 24)//GL(4) is isomorphic to P4 and that

linear span of 4 points
Alty 2(zo, 21, %2, T3,24) //GL(4) = | corresponding to the ~ p3 c P4,
quadrics (11.11)



One can be more precise than this. Let (A : p : v : p) be homogeneous coordinates in the P spanned by the
quadrics (11.11). Then the general quadric in this space has discriminant

A ap ap az ag

-2\ —u v ap ax as a4

det A - —2v tr as as a4 as
14 v a3 a4 Qa5 Aag

The zero-set of this determinant is a quartic surface K, C P2, and the moduli space SU¢(2, Oc(3)) is precisely
the complement P3 — KCy. In fact, K4 is a well-known surface called the Kummer quartic surface (see, for example,
Hudson [80]): it is the quotient of the Jacobian of C' by the involution [-1] and has exactly 16 nodes.

11.55 REMARK. The four quadrics (11.11) can be used to define a rational map P* — — — P3, indeterminate
along the curve C — P*. This resolves to a morphism of the blow-up along the curve:

f: BlgP* — P3.

There are three possibilities for the preimage of a point p € P3.

(i) If p € P? — Ky, then f~!(p) is a nonsingular conic (isomorphic to P!).
(i) If p € K4 — {16 nodes}, then f~!(p) is a reducible conic (a pair of lines).

(iii) If p € {16 nodes of K4}, then f~!(p) is a cone over a twisted cubic P*.

When g > 3 and L has odd degree, the moduli space SU¢(2, L) of semistable vector bundles is singular along
the boundary. However, it has a good desingularisation SU¢(2, L) and also a conic bundle:

P 25 SUc(2,L) =5 SU(2,L).

That is, 7 is an isomorphism over the open set SU¢(2, L) of stable bundles, and the fibres of ¢ are conics. These
conics are nonsingular (irreducible) over 771SU¢(2, L) and are line pairs over the boundary. See Seshadri [86] or
Narasimhan and Ramanan [82]. o

Finally, we remark that one can construct moduli spaces not only for stable bundles, but more generally for
simple bundles. Let us see what sort of object this is in the case of genus 2 that we have been considering. Consider
the set Sim¢ (2, O¢) of simple rank 2 vector bundles with trivial determinant. It follows from Lemma 10.39 that
every simple vector bundle is semistable, and this makes it quite easy to describe the space Sim¢ (2, O¢) as there

is a surjective map L
Sim¢ (2, Oc) — P? — {16 nodes of K4} C SU(2,0c). (11.12)

Away from the Kummer surface K4 this map is an isomorphism, while the simple bundles which are not stable
are parametrised by the Jacobian J¢ := Pic’C’ away from its 2-torsion points Jo[2], in the following way. Given
a € Jo, a® 2 Oc, we can associate extensions

0—salt>E -a—0,

0 a— FE,—>al=o.

Each Ej; is simple if and only if the extension is nonsplit, and in this case it is unique up to isomorphism since
h'(a?) = 1. As vector bundles, E; and E» are not isomorphic, but they represent the same point of SU¢ (2, O¢)
by Proposition 11.37. Hence the map (11.12) is 2-to-1 over the Kummer surface K4. Thus Sim¢(2,O¢) is a
nonseparated algebraic space, or (over k = C) a non-Hausdorff complex space, and cannot be made into a variety
or scheme.

11.56 REMARK. On the other hand, when ¢ = 2 and L has odd degree (so stable and semistable are equivalent)
it happens that Sim¢ (2, L) = SUx(2, L). Moreover, it was shown by Newstead that this variety embeds in P® as
a complete intersection of two quadrics. (See Newstead [83] or Desale and Ramanan [91].) o
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Exercises

1. Prove the following claims concerning the tangent space of functors (Definition 8.90).
(i) The tangent space of the Picard functor Picc is isomorphic at every point to H(Oc¢).

(ii) The functors VBc(r) and VBc(r) have tangent spaces, at a vector bundle E, isomorphic to H!(£nd E) and
H!(sl E), respectively.

2. Let C C P? be a nonsingular plane cubic f3(z,y,z) = 0. Let

qi(z,y,2) q2z,y,2) qs(z,y,2)
M:=| qi(z,y,2) @2(z,y,2) ¢3(z,y,2)
e1(z,y,2) g2(z,y,2) @3(,y,2)

be a 3 x 3 matrix of quadratic forms, all of whose 2 x 2 minors are divisible by f3(z,y,z). Show that M is
stable under the action of GL(3,3) if and only if one of the following holds:

(i) M is the matrix of cofactors of a 3 x 3 matrix of linear forms N = (I;;(z,y, 2)) satisfying det N = f3(z,y, 2);

or

2?2 wzy w2

(i) M=| zy y* yz
rz yz 2>



Chapter 12

Intersection numbers and the Verlinde
formula

Let C be a curve of genus g and let L be a line bundle on C'. In Chapter 10 we constructed a projective moduli
space SU¢(2,L) for semistable rank 2 vector bundles on C' with determinant line bundle L. As a variety this
depends only on the parity of deg L, so there are two cases: when deg L is odd it is equal to SUx(2, L) and is
nonsingular; when deg L is even it is the completion of SU¢(2, L) by adding the Kummer variety. Let us denote it
by N or N for the even and or odd cases, respectively. On NG there exists (in each case) a naturally defined
standard line bundle L (see Section 12.3), and these satisfy the Verlinde formulae:

) k 2 g—1k+1 1
dim HO (NG, £2F) = (%) > ——= (12.1)
j=1 (sin kj—fz)
2k+1 (_l)j_l
dim HO(N, £%%) = (k + 1)~ > Section - (12.2)
st sin;k%)

On account of their beauty and importance, these formulae have attracted the interest of many mathematicians
since Thaddeus [111].

In this chapter we will restrict ourselves to the odd degree case, for which the moduli space is fine, and we
will prove the Verlinde formula (12.2) via the intersection numbers among cohomology classes

ci(£) =a€ H*Ng), BeH'NgZ), yeHNg),

defined by means of the universal vector bundle. These classes are called the Newstead classes, and the full
intersection formula among them is

glm!
(g —p)!

(@™BP) = (—1)"229727P by—1—n—p for m + 2n + 3p = 3g — 3, (12.3)
where b, € Q is a rational number defined by the Taylor expansion z/sinz = ), brz?* when k > 0 and is zero
when k£ < 0. In fact, we only need this for p = 0,

(@™B™) = (=1)"m49 by,  m+2n=3g—3, (12.4)

and it this form of the formula that we prove here.

The first two sections of the chapter introduce some background for proving the Verlinde formula (12.2). In
Section 12.1 we show that the right-hand side is a polynomial in k; in Section 12.2 we review the Riemann-Roch
Theorem in order to show that the left-hand side is a polynomial in k.

The heart of the chapter is Section 12.3, where we begin by defining the standard line bundle £ on N, g -
This is closely tied up with the invariant theoretic construction of SUx(2, L) from Chapter 10—in fact, the space

281
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of global sections H O(Ng’,ﬁk), for £ > 0, is exactly the space of weight 2k semiininvariants under the action
GL(n) ~ Alty n(H°(L)) from which the moduli space was constructed as quotient.

As a differentiable manifold, N is the same for all curves C' of genus g. In fact, by a theorem of Narasimhan
and Seshadri [73] and Donaldson [92], it is essentially the parameter space for equivalence classes of representa-
tions of the fundamental group (more precisely, a central extension of the fundamental group) =1 (C) in SU(2).
Consequently it depends only on the topology of C'. We can therefore choose the curve to be hyperelliptic, and for
this case we consider the first direct image W of a certain line bundle on C' x N5 . This W is a vector bundle on
N¢ of rank 4g on which the hyperelliptic involution of C induces an involution which decomposes it as a direct
sum W+ @& W~. By the Riemann-Roch Theorem for curves with involution, the bundles W+ and W~ have ranks
39+ 1 and g — 1, respectively, and a consequence of this is that:

¢s(W) = ey (W) = cyia(W) =0, (12.5)

Moreover, by Grothendieck-Riemann-Roch with involution these Chern classes can be expressed explicitly as
polynomials in the Newstead classes «, 3,7, and the identities (12.5) therefore give relations among these co-
homology classes. These are called the Mumford relations (Atiyah and Bott [89] §9, Zagier [115] §6) and are
precisely analogous to the relatons ¢;,—r+1(Q) = -+ = ¢,(Q) = 0 in the cohomology ring of the Grassmannian
G(r,n) (Section 8.1(e)).

In Section 12.4 we deduce (12.2) and (12.4) from the Mumford relations. Although this is purely an exercise
in computation, it turns out not to be so easy. The ring we have to work with is

Qlev, 8,71/ (cg (W), €441 (W), co42(WT)),

and as a limbering-up exercise we examine the subring v = 0 (called the secant ring for genus g). In this
case the intersection numbers that we get are none other than the natural numbers called the secant numbers
(Definition 12.9).

The Verlinde formula can be generalised to the moduli spaces N, of rank 2 stable quasiparabolic vector
bundles on a curve C' of genus g with n marked points. When g = 0 (that is, when the curve is P') the formula is

o I s~ (=¥
dim H (No,n, O(—IK)) = —, (12.6)

2041 & ( 2j+1 )”
j=0 (sin o7

41+-2

where O(—K) is the anticanonical line bundle, that is, the determinant of the tangent bundle, and O(—IK) =
O(—K)®'. (When n is odd the anticanonical line bundle is primitive and I € Z; when n is even it possesses a square
root and [ € %Z) We prove this, just in the case when n is odd, in the final section of the chapter. Here again
one can define standard cohomology classes a, 3 satisfying Mumford relations of the form c,(W) = ¢g1 (W) =0
for some vector bundle on the moduli space. In this case, in fact, the classes «, 8 generate the secant ring of
genus g, and so again the Verlinde formula can be proved using a Riemann-Roch theorem. Finally, we indicate
an alternative proof of (12.6) using the birational geometry of the moduli space N .

A warning: this chapter differs from its predecessors in being an exposition of some relatively recent research.
For this reason it is less self-contained, and some difficult topics may be treated with less explanation, or fewer
references to the literature, than might be desirable. I hope that the reader will bear this in mind.

12.1 Sums of inverse powers of trigonometric functions

(a) Sine sums

To begin, given natural numbers n, k € N we define the following sum, which can be thought of as taken over the
vertices in the upper half-plane of a regular 2k-gon:

k—1 1

. ity 2n’
j=1 (sin 4)
Dividing by k2" and taking the limit as k — oo one obtains
n(k 2¢(2
V) 20m)

k—o0 k2n - 7T2n

Vi(k) ==

, (12.7)
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where ( is the Riemann zeta function
1 1 1
— 1 _ _ _
C(s) = totm Tt
12.1 PROPOSITION.

o0
ZVn s1n "r=1- ktanxcotkz.

n=1

We will prove this in a moment.

12.2 REMARK. Substituting z/k for z and letting k — oo yields the identity:

25):1((270 (%)Qn =1—zxcotz.

O
Moreover, by using Cauchy’s residue theorem one can deduce:
12.3 COROLLARY. Lot
— t
Vin(k) = Res [#dm] .
z=0 s x
O
Proof of Proposition 12.1. Using cos kx + isinkz = (cos x + isinx)* we see that
(—=1) cothF=2i g
cotkx = Ll ) ]Em) T
>i (1) (5;1,) cot z
This implies that y = cot (:r + %) for j =0,1,...,k — 1 are the distinct roots of an equation of degree k,
Z(_l)i k yk—2i — cot ka(—l)i k yk—2i—1 =0
- 2i - 2i+1 ’
Reading off the linear coefficient gives an expression for the sum of roots,
k—1 i
kcot kx = t —
cot kx = Z co <a: + A )
7j=0
and from this we deduce:
ktanz cot k 1+ tan v kz_:l cot | z + in + cot i
nz r = T+ — T — =
2 = k k
= sin? x
= 1-y — =
; sin? % —sin’z
o0
= 1- Z Vi (k sm
O

It follows from Corollary 12.3 that V,, (k) is a polynomial in k of degree 2n, whose coefficients can be expressed
in terms of the Laurent coefficients of cot x and cosec?x at x = 0. In particular, (12.7) gives its leading term:

V() = <M> ECS (12.8)

7T2n
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(b) Variations

The sum V), (k) corresponded to the Riemann zeta function via (12.7). Corresponding to the series

1—2—15+%—%+---, 1+(_315)n+%+(_715)n+---,
we introduce, respectively, the trigonometric sums
k—1 k—1
]z:; (sin ]”) j=0 (sm M)

12.4 REMARK. Note that in terms of the numbers V,,(k), V~ (k) and U, (k), the Verlinde formulae (12.2), (12.1)
and (12.6) can be written:

. kE+2\7"
dim HO(N, £2F) = (T) Vo1(k +2),
dim HO(N , £®F) = (k+1)"V, 2k +2),
O
Clearly
Vo(k) = Vu(k)—2V,(k/2) (when k is even)
So from Proposition 12.1 and the relations
x
- = cot - —cotx, tanz = cot x — 2 cot 2z,
sinx 2
we deduce:
12.5 PROPOSITION.
o0
kt
Z Vo (k)sin®z = — e when k is even, and
— sin kx
Z Usn (k sm = ktanztankz.
O
12.6 COROLLARY. Ifk is even, then
V., (k) = Res $da:
n ~ 2=0 |sinkzsin®"z ’
O

Next, observe that U, (k) has an alternative expression using cosines:

(k‘) (k 1)n/2 Z

cos 27 ’T
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12.7 PROPOSITION. Suppose k is odd. Then

k(1 + sin kz)
coszcoskr

Z Un(k)sin" 'z =
n=1

Proof. Using the trigonometric identity
coskx = Z(—l)i K sin? z cosk =2 ¢
- 2i
we see that y = cos (:r + Z)JT”) for j =0,1,...,k — 1 are the roots of an equation of degree k,

Z(_l)i <§z> (1—y°)'y" % = coska.

(2

Since k is odd, the linear term in this equation is (—1)(*=1/2ky. Hence, by the relation between the coefficients
of an equation and sum of reciprocals of its roots we obtain

k—1

k 1
NGO -
coskz = cos (z + 2T)
and from this it follows that
k—1
k 1 1 1
— (_p-vel I .
cos kz =1 2; cos (z+ HT)  cos (z — 2T)

k—1 2jm
= (~pEe Y COS;?COST
2 2JT a2

=0 COST S —sintw

o0
= coszw Z Usmy1 (k) sin®™ z,

m=0

where, in the last line, we have expanded (1 —u)™' = 1+ u + u® + -+ with u = sinz/cos(2jm/k). This
gives an equality between the even part of the series in the proposition and the even part of the function of x
on the right-hand side. The corresponding statement for the odd part of the series follows immediately from
Proposition 12.5. a

12.8 COROLLARY. If k is odd, then

n 1 +si
Un (k) s { + sin kz dw}.

k coskzsin”™ x

In particular, Up(k)/k is a polynomial in k of degree n. O

(c) Tangent numbers and secant numbers
12.9 DEFINITION. In the Taylor expansion

1+sinx

x? > x"
= F, Fix+FEy—+--- = E,—
CoS T o+ Iz 22!+ 7;) " n!

the coefficient E, is called the n-th secant number, or Euler number, if n is even (these are the coefficients of
secz, in other words), and is called a tangent number if n is odd (the coefficients of tan ). a
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For low values of n these numbers look like:

neven |0 2 4 6 8 10 12 14

E, 1 1 5 61 1385 50521 2702765 199360981
nodd [1 3 5 7 9 11 13 15

E, 1 2 16 272 7936 353792 22368256 1903757312

They can be expressed as:

2n+2n! 1 1 1 1
En = antl <1 + (_3)n+1 + 5+l + (_7)n+1 + gn+1 + - > . (12.9)

To see this, multiply both sides of Proposition 12.7 by sinz, to give (for k& odd)

_ ktanz(1 + sin kx)
B cos kx '

Z U, (k) sin™ x

n=1
In this identity replace z by z/k and let k — oo. Noting, from the definition of U, (k), that asymptotically
Un(k)

Jj=0

for large k, the identity (12.9) follows.
There is a third way to present the numbers E,,, which we will describe next. This is analogous to the Pascal
triangle construction of the Catalan numbers (Section 8.1(e)). First we need:

12.10 LEMMA. For each integer n > 0 there exists a polynomial P, (y) € Z[y] with the property that

d\" [ 1
cos T <%> (cosw) = P,(tanz).

Proof. We use induction on n, starting with the trivial case Py(y) = 1. For the inductive step, differentiate
both sides of the equation with respect to z to give

d\"" [ 1 _ d"l_lP,(t)
cose dx cosT sma dx cosxz ) cos2z ane).

Pry1(y) = yPa(y) + (1 +y*) P (y). (12.10)
O

This shows that

As we see from this proof, the sequence of polynomials {P,(y)},>0 is determined by the initial condition
Py(y) =1 and the recurrence relation (12.10). In particular, one sees that for even and odd values of n, P,(y) is
an even or odd function, respectively, and can therefore be written as

Pn(y) = En,nyn + En,n72yn72 + En,nf4yn74 + -

If n is even, then the constant coefficient is

b~ () ()

The recurrence relation (12.10) implies, for the coefficients E,, j,

= secant number FE,,.
z=0

Epyik =kEp g1+ (k+1)Ep jy1. (12.11)
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In other words, the numbers E,, j, occupy a ‘twisted’ Pascal triangle, in which each entry is the sum of the adjacent
entries in the preceding row, multiplied by k& whenever the diagonal is between columns k£ — 1 and k:

Secant numbers and E, j for n =k mod 2

n\k | 0 1 2 3 4
0 |1
1
2 |1 2
5 6
4 |5 28 24
61 180
6 |61 662
1385
8 |1385

This table generates the secant numbers recursively. Namely, the diagonal is just the sequence E, , = n!, as
follows from (12.11). We then twist and add down to the left.

The tangent numbers can be described in a similar manner. For n > 0 there exist polynomials @, (y) € Z[y]
such that

d n
(E) tanz = Q,(tan ),

and these satisfy a recurrence relation
Qn+1(y) = 1 +y)Q(y)-

Together with the initial condition Qo(y) = y, this determines a sequence of functions {Q,(y)}»>0 which are even
or odd as n is odd or even, respectively. In this case, for n > 1,

Qn(y) - En,n+1yn+1 + En,nflynil + En,nf?)ynig + -,
where the E, j satisfy the same recurrence relation (12.11) as above and occupy a twisted Pascal triangle:

Tangent numbers and E,_1  for n =k mod 2

k]l 2 3 4 5
1 |1
1
3 |2 2
8 6
5 |16 40 24
136 240
7 | 272 1232
1385
9 | 7936

As in the previous case, the numbers in the first column are precisely the tangent numbers:

En—l,l =

dQn—l
dy

= <i> ! tan x
=0 dz

= tangent number E,.

=0

The tangent and secant numbers E,, are the ‘zigzag numbers’ in the book [53] of Conway and Guy.

12.2 Riemann-Roch theorems

Given a holomorphic vector bundle E on a compact complex manifold X, one often needs to know the dimension
of the vector space H°(X, E) of global sections. In general this is difficult to measure, and one considers instead
the easier quantity

x(X, E) := dim H*(E) — dim H'(E) 4+ dim H?*(E) — dim H*(E) + - - -,
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where H(E) = H'(X,E) is the i-th cohomology group with coefficients in the sheaf of sections of E. This is
called the Fuler-Poincaré characteristic of E. For any exact sequence

0—-FE —FEy,—> E;—0

it satisfies
X(XaEl) - X(XaEQ) +X(X7E3) =0.

What we will see is that x(X, E) can be computed just from the topological invariants of X and E. For more
details we refer the reader to Hirzebruch [98] or Fulton [94].

Let Qx be the cotangent vector bundle on X, and let wx be its determinant line bundle, called the canonical
line bundle on X. (For the case when X is an algebraic curve see Section 9.5.)

12.11 KODAIRA VANISHING THEOREM. If L is a holomorphic line bundle on X for which L®w;(1 is ample then
H{(X,L) =0 for all i > 0. m|

In this situation, the dimension of the space H°(X,L) of global sections reduces to the (simpler) Euler
characteristic x (X, L).

12.12 REMARKS. (i) Suppose that the set of all global sections of a line bundle M on X has no common zeros.
These sections then define a morphism X — P¥, where N + 1 is the dimension of the space of sections. If
this morphism is an embedding, then the line bundle M is said to be very ample. If some tensor power of
M is very ample, then M is ample.

(ii) If X is a curve, then a line bundle is ample if and only if its degree is positive. In this case, therefore,
the Kodaira Vanishing Theorem reduces to Theorem 9.20. In the general case it is known that ampleness
of a line bundle M depends only on its Chern class ¢;(M). (See, for example, Griffiths and Harris [54]
chapter 1.) o

(a) Some preliminaries

Let X be a compact complex manifold and E a rank r complex vector bundle on X. This has a (total) Chern
class
co(E)=1+ci(B)+c(BE)+- +c.(BE) € H(X,Z), ¢(E)€ H*(X,Z).

On exact sequences
0—FE —FEy,—> E3—0

this satisfies

c(Er)e(Es) = c(Es); (12.12)
and the Chern class of the dual vector bundle EV is given by

ci(EY) = (=1)ici(E).
In particular, the Chern class of X is defined to be the Chern class of its tangent bundle T'x:

c(X)=e(Tx)=1+ca1(Tx)+c2(Tx)+ - +cn(Tx), wheren =dimX.

Next we consider the formal power series expansion, in the ring of power series in infinitely many variables

Q[[z1, 2, . . .]], of the infinite product:
T1 T2

X
l—e %1 1—e %

The term of degree m in this expansion is a symmetric homogeneous polynomial in the variables zi1,zs,...

and can therefore be expressed as a polynomial in the elementary symmetric polynomials o1,...,0,. (See

Macdonald [101].) If we denote this polynomial by Td,,(o1,...,0m), then:

[l = St
=1 m=0

1 1, 1
= 1+§UI+E(01 +02)+ﬂ0102+"'



12.13 DEFINITION. (i) The Todd class of a vector bundle E of rank r is

td E = Z Tdp(cL(B), . .., e (E)) € H*(X,Q).

m=0
(ii) The Todd class of a complex manifold X is defined to be that of its tangent bundle,
td X :=td Tx.

The component in top degree td, (X) € H?>"(X,Q) = Q, where n = dim X, is called the Todd characteristic
of X. m|

Like the Chern class, the Todd class is multiplicative on exact sequences. That is, if
0—FE, - FEy,— E; =0

then it follows from (12.12) that

td(Ey)td(Es) = td(E2). (12.13)
The Todd class can also be computed as follows. We can write
T gy P2
1—e® sinh /2
The last factor here is a power series in z2. Letting m,,(z;) = o(z?) be the elementary symmetric polynomial in
the squares z%,z3, ..., the homogeneous term of degree 2m in the expansion of the infinite product
- sinh /2
is a polynomial in 7y, ..., Ty, which we denote by A\m(ﬂ'l, ..., Tm)- Then we have
2 _ ,o01/2
H {—=m =€ ! ZAm(m,ﬂz,...,wm).

i=1 =1
Given a vector bundle F of rank r, set

pZ(E) :(_l)iCZi(E@Ev)a i:]-:"'ara
called the Pontryagin classes of E. In this language, the Todd class is given by

td E = e ()/? f:im(pl (E),p2(E), ..., pm(E)). (12.14)

i=1

(b) Hirzebruch-Riemann-Roch

If X is a complex manifold of dimension n with its natural orientation, the top component of the rational
cohomology ring H2"(X,Q) is canonically isomorphic to Q by evaluation on the fundamental class of X, and we
denote the composition of this isomorphism with projection of cohomology to H?"(X,Q) by

| rxo-e

For o € H*"(X,Q) we shall also use the symbol (a) to denote [y o € Q.

12.14 THEOREM. HIRZEBRUCH-RIEMANN-ROCH FOR THE STRUCTURE SHEAF. The Euler-Poincaré character-
istic of the structure sheaf of a complex manifold X is equal to the Todd characteristic of X,

X(X,(’)X):/ td X.
X



bl S~ sLLALLE A LA L A& AT A AAUDWIAAL S A AL AT AU At e A4 e Y vyt i A &AL VW A &

In the curve case n = 1, this says x(X,0x) = %deg ¢1(X), which we have already shown in Chapter 9
(Propositions 9.25 and 9.89). In the surface case n = 2, it says

X(X,0x) = 35 (a1 (X)? + ex(X))

In the theory of algebraic surfaces this is called Noether’s formula.
12.15 ExXaMPLE. Let X be projective space P". Here there exists an exact sequence, called the Fuler sequence,
0 = Opn = Opn (1)@ 5 Tp — 0.

Letting h = ¢1(Op= (1)), it follows from (12.13) that

h n+1
P" = n (1)@ = :
td td Opn (1) — %

The class h is Poincaré dual to a hyperplane in P™ and has self-intersection number (k™) = 1. So, applying the
Hirzebruch-Riemann-Roch Theorem, we obtain

ho\" 1

The last identity can be proved by induction on n using the fact that (1 — e=%)™" = n(1 — =)™ — (1 —
efz)fnfll O

12.16 REMARK. More precisely, one can say that dim H°(Op») = 1 while HY(Op») = 0 for all i > 0. The
dimensions of these cohomology spaces are birational invariants, and in particular this shows that y(Ox) =1
whenever X is a rational variety. O

Next we consider a line bundle L on X and its Chern class ¢;(L) € H?(X,Z). The exponential function of
¢1(L) is a finite sum and determines a rational cohomology class

e = 3° all)™ H*(X,Q).

m!
m>0

12.17 THEOREM. HIRZEBRUCH-RIEMANN-ROCH FOR A LINE BUNDLE. The Euler-Poincaré characteristic of a
(holomorphic) line bundle L on a complex manifold X is given by:

X(X,L) = / et td X,
X
In particular, x(X, L*) is a polynomial in k of degree n = dim X . O

12.18 ExAMPLE. Let X be projective space P" and L = Opx(1) be its hyperplane line bundle. In this case

Hirzebruch-Riemann-Roch says
h h n+1
(e = [ ( (=) )

ekm

e ]5,293 (1 _ efz)n+1

n+k
L
Of course, this is the number of linearly independent forms of degree k in n + 1 variables. (See the remark
following Example 1.8.) o
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12.19 EXAMPLE. If X is a complex torus, then the tangent bundle Tx is trivial and so td (X) = 1. Hence in
this case

xx, 0= @

In other words, the Euler characteristic is equal to the self-intersection of the line bundle divided by n!. In
particular, this shows that the self-intersection of a line bundle on an n-dimensional complex torus is always
divisible by n!.

The (analytic) Jacobian Jac C of a curve C of genus g is a g-dimensional complex torus, and its cohomology
ring is therefore equal to the exterior algebra generated by H'(C,Z):

H*(Jac C,Z)= \ H'(C,Z).
Letting v, ...,a4,B1,...,8, € H'(C,Z) be a symplectic basis (the dual basis of (9.42)), it is known that the
theta line bundle O;(0©) on the Jacobian has Chern class
@) =a1 ABLA---NagABy € H?(Jac C, 7).
Thus

g9
(1 ABL A Nag ABg)? =g [] ewi A Bi
i=1

and hence O;(0) has self-intersection g!. It follows from Hirzebruch-Riemann-Roch above that
dim H°(Jac C, 0;(kO)) = kY. (12.16)

The Verlinde formulae (12.1) and (12.2) can be viewed as nonabelian versions of this formula. O

In order to generalise from line bundles to vector bundles we need to replace the class e“t(¥) by the Chern
character:

12.20 DEFINITION. The sum of powers ) . " is for each m > 1 a symmetric polynomial in the variables z;, and
is therefore a polynomial in the elementary symmetric polynomials oy, . . . , 0y, which we denote by s, (01, - - -, 0 p)-
If E is a vector bundle then we define

1
cho(E) =rank E, chim (E) = —sm(c1(E),...,cm(E)) form >1.
m!
The sum
ch E= ) chy(E) € H*(X,Q)
m>0
is called the Chern character of E. ad

Note that the Chern character of a line bundle L is ch L = ec1(£),

12.21 EXAMPLE. In general, if E has Chern classes ¢, ¢, 3, ..., then
chi(E) = ¢,
cho(E) = %c% — c2,
ch3(E) = %c? — %0102 + %03.
O
The Chern character, unlike the Chern class, is additive on exact sequences, that is,
0—-FE, -FEy,—>FE3; 0 =— chE;—chEs;+chE3=0. (1217)

12.22 THEOREM. HIRZEBRUCH-RIEMANN-ROCH FOR A VECTOR BUNDLE. The Euler-Poincaré characteristic of
a (holomorphic) vector bundle E on a complex manifold X is given by:

X(X,E) = / ch(E) td(X).

X
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(c) Grothendieck-Riemann-Roch for curves

Given a proper morphism f : X — Y between algebraic varieties and an algebraic vector bundle £ on X, one
can define its direct image sheaf f.€ and its higher direct images RYf.£, for ¢ > 0, on Y (Definition 11.10). In
general, these sheaves are not vector bundles, but let us pretend that they are. (This assumption is justified by
the fact that the direct images are coherent sheaves. This means that they have resolutions by locally free sheaves,
so that the Chern character is defined using the additivity property on exact sequences.) Then it is possible to
express the alternating sum of Chern characters

> (~1)%h R'f.E € H*(Y,Q)
a
in terms of the Chern character ch £ and the ‘Todd character’ of f. This generalises Hirzebruch-Riemann-Roch
(where Y is a point) and is called the Grothendieck-Riemann-Roch Theorem. Here we shall consider only the
special case X = C x Y, where C is a curve and where f : C x Y — Y is the projection to the second factor.
(For a more general statement the reader may refer to Fulton [94], for example.)

First, take an affine open cover [ J, Spm A4; of Y and consider the restriction of £ to each open set C'x Spm A;.
This defines a vector bundle on the curve C4, in the sense of Definition 11.9 and so determines 4; modules H°(&;)
and H'(&;). If these are locally free modules, then they define, by gluing over the open cover, a pair of vector
bundles f.€ and R'f.&, which are the direct image bundles.

Kiinneth’s Theorem says that the cohomology ring of the product C'xY is the tensor product of the cohomology
rings of C' and Y. In other words, there is an isomorphism of graded rings

H*(CxY)=2 H*(C)® H*(Y).
The cohomology of the curve C' has three components H°(C), H*(C) and H?(C), and so the cohomology of
C x Y is the direct sum of three pieces:
H°(C)® H*(Y), H'(C)® H*(Y), H?*(C)o H*(Y).
The Chern character of a vector bundle £ on the product C' x Y can therefore be decomposed as
ch & = chV& + ch™/Pe + chWe,  chVe € H¥(C)® H* (V).
Now ch¥& can be viewed as an element of H*(Y). On the other hand, the fundamental class of a point
n € H*(C,Z) determines a natural isomorphism fC : H?(C,Q) = @, and using this isomorphism we can view
ch& as an element of H*(Y'), which we will denote by ch(l)(c‘,')/n.

12.23 THEOREM. GROTHENDIECK-RIEMANN-ROCH FOR f:(C xY — Y.
ch f.& —ch R'f,.£ = ch™M (&) /n — (g — 1)ch (&),
When Y is a point this is nothing but the Riemann-Roch formula 10.10. |

From this formula one reads off the Chern character (of f.€ or R'f.E ). The following remark is useful for
recovering the Chern classes from the Chern character in general. First, for any vector bundle F' consider the

derived Chern class
d(F) =) ialF). (12.18)
i>1

From the relations between elementary symmetric polynomials and sums of powers, this derived class satisfies

¢(F) = [ D (1) il chi(F) | e(F). (12.19)

i>1

Since the logarithmic derivative ¢/(F)/¢(F) of the Chern class is additive on exact sequences, it follows that the

Chern class can be written "F)
c
F) =
P =exp [ S,
where [ denotes the formal inverse of the derivative (12.18). Hence

e(F) = exp/Z(—l)iili! ch;(F).

i>1
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(d) Riemann-Roch with involution

Suppose that the curve C has an involution ¢ : C'— C' (that is, an automorphism of order 2), and suppose that o
lifts to a vector bundle E (still with order 2). In this case o acts also on the vector spaces H° (E) and H ! (E). We
will denote the invariant and anti-invariant subspaces (that is, the eigenspaces of £1) by H*(E)" and H*(E)~,
and write

x(E)* = dim H*(E)* — dim H'(E)*.

Moreover, if p € C' is a fixed point of o, then the involution acts in the fibre E, and we denote by Ej, E, CE,
the invariant and antiinvariant subspaces. The following is proved in Desale-Ramaman [91].

12.24 PROPOSITION. Given an involution ¢ acting on a vector bundle E as above, we have

X(E)YY —x(BE)” = = Z (dimEf —dimE, ),

p€eFix(o)

where Fix(o) C C denotes the set of fixed points. |

12.25 EXAMPLE. Let F' be any vector bundle on the curve C.
(i) f E:=F®o*F, then x(E)" —x(E)” =0.
(ii) If E:= F® 0*F, then

2
X(E)Y —x(BE)" =5 Y (dim S°F, — dim /\ F,,) = %rank F x |Fix()].

p€EFix(o)

O

Let f : F — F' be a homomorphism of rank 2 vector bundles, and suppose that the two bundles have
isomorphic determinant line bundle. Then, by tensoring the dual map f¥ : F'Y — FV with det F = det F' we
obtain a bundle map

FU=fV @1yt F' = F,
called the adjoint of f. (See also Exercise 10.2.)

12.26 EXAMPLE. Suppose that F' is a rank 2 vector bundle on C' whose determinant is o-invariant, that is,
det FF = o*det F. Given any (local) homomorphism f : F — o*F, we can pull back the adjoint map f33 :
0*F — F to obtain a homomorphism ¢* f24 : F — ¢*F. Moreover, the mapping

[ oy,
composed with itself, recovers f. It therefore defines a lift of o to the vector bundle
E :=Hom(F,0*F) = F¥ ® o*F.

At a fixed point p € C, the invariant subspace Ep+ is 1-dimensional (spanned by the identity endomorphism in F},)
while the antiinvariant subspace £, is the 3-dimensional space sl(F},) of tracefree endomorphisms. It follows that

X(E)" = x(E)” = —|Fix(0)].

O

Proposition 12.24 can be globalised in much the same way as the Riemann-Roch Theorem globalises to
Grothendieck-Riemann-Roch. Let Y be a complete nonsingular variety, and suppose that the involution o x 1y of
C x Y lifts to a vector bundle E on the product. Then the involution acts in the direct images 7. E and R'w,.E,
where 7 : C X Y — Y is the projection, and we set

Xx(E)* := ch(m.E)* — ch(R'7,E)*.

For each fixed point p € C the vector bundle E|,xy decomposes into invariant and antiinvariant subbundles

+ :
By, and we have:
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12.27 PROPOSITION.

Xr(E)* — X (E -=§ > (chE|pr (B],y)) .
€Fix

12.3 The standard line bundle and the Mumford relations

Let C be a (complete nonsingular algebraic) curve of genus g, let L be a line bundle on C of odd degree, and let
U be a universal vector bundle on the product C' x SUx(2, L). For every E € SUx(2, L) the restriction to C' X [E]
of the determinant line bundle det ¢/ is isomorphic to L, and so detlf can be expressed as a tensor product,

detd LR, (12.20)

where ® is some line bundle pulled back from SUc(2,L). (It is enough to take ® to be the direct image of
det!d ® L=1. That this is a line bundle follows from the base change theorem in the form of Remark 11.19.) In
particular, the first Chern class of &/ can be written:

) =ci(L)®1+ 13 ¢, ¢ =c,(®) € H*(SU(2,L)). (12.21)

(a) The standard line bundle

We are now going to define a natural line bundle on the moduli variety SUc(2,L): this is the line bundle £
which appears in the left-hand side of (12.2). First of all, we observe that by using the universal bundle &/ we can
construct, given a point p € C, two vector bundles on SU¢x(2, L), namely the direct image and the restriction:

7T*u7 u|p><SUc(2,L)7
where 7 : C' x SU¢(2,L) — SUc(2, L) is projection on the second factor. In order for m.U to be a vector bundle
we assume that d := deg L is sufficiently large, so that
HY'(E)=0 forall E € SUx(2,L), (12.22)

and the direct image is locally free by Lemma 11.16 and Theorem 11.18. As in Chapters 10 and 11, we set
N :=d + 2 — 2g: this is the dimension of H°(E) for each E € SUx(2, L) and hence the rank of 7. U.

12.28 DEFINITION. (i) If L € Pic C satisfies the condition (12.22) then the standard line bundle (not to be
confused with the canonical line bundle!) on the moduli variety SUx(2, L) is defined to be

L= (detu|pxSUc(2,L))N ® (det mld) 2.

This is also called the determinant line bundle.

(ii) If L € Pic C does not satisfy the condition (12.22), then we choose a line bundle ¢ on C of sufficiently
high degree that L ® &2 satisfies (12.22). The standard line bundle on SU(2, L) is then defined to be the
pullback of £ under the isomorphism

SU(2,L) 25 SUC(2,L ® €2).
O

At first sight it appears that this definition depends on various choices, but in fact this is not the case. First
of all, det (u|stUC(2,L)) is isomorphic to the line bundle ® in (12.20), and this shows that £ does not depend on
the choice of p € C. How about its dependence on U7 Any other universal bundle is of the form U ® 7*W¥, where
¥ is some line bundle on SU¢(2, L), and replacing U with U ® 7*¥ has the effect of tensoring det (Z/{|pX5UC(27L))
by ¥2. On the other hand, it follows from the projection formula

(U @ 7*V) =¥ @ U

that det m.U gets tensored by ¥V, Hence the tensor product in the definition remains unchanged, and so £ as
defined in 12.28(i) is independent of the choice of universal bundle.
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12.29 PROPOSITION. The standard line bundle defined in Definition 12.28(ii) is independent of the choice of {. O

Proof. It is sufficient to prove this in the case £ = O¢(q) for some point ¢ € C. The pull-back of £ under ®&
is the line bundle defined as in (i) but using the (pulled back) universal bundle &' := Oc(q) ® U. In part (i) of
the definition we note that U,y sy, (2,1) remains unchanged when we replace U by U'. On the other hand, .U’
fits into an exact sequence

0 = mld = Tl = Uyisue2,n) = 0,

so that N becomes N + 2, while det 7,/ gets tensored by det U,y s, (2,1)- Altogether, then, replacing U by U’
has the effect of tensoring £ by

(det u|p><SUc(2,L))2 ® (detUlyxsUc(2,1)) -

But we have already noted that each determinant is isomorphic to ®, and so the product is trivial. a

We are now going to construct global sections of the standard line bundle. We consider a vector bundle
obtained by ‘pinching’ the trivial rank 2 bundle O¢c & O¢ at points p1,...,pny € C. This means the subsheaf
F C O¢ @ O¢ that is constructed as follows. For each i = 1,..., N we choose (a; : b;) € P! and define

F:{(S,t) | a;s + bit = 0 mod m; for alli:l,...,N} C Oc @ O¢, (1223)

where m; C O¢ is the maximal ideal of the point p;. By pulling F back to C' x SU¢(2, L), tensoring with &/ and
then taking the direct image, we obtain an exact sequence of vector bundles on SUq(2, L):

N
T (FoU) — m (UP?) L5 PUlpisven) — Bim (FOU). (12.24)
i=1
In this sequence, f is a bundle map between vector bundles of equal rank 2N. Consequently, its determinant
det f defines a global section of

N

(det . (U®%)) " ® det (@u

i=1

Di XSUc(2,L)> = ‘6

At a point [E] in the moduli space f has fibre map
N
(€Vpy,---revpy) : HO(E)®® — P E/m;E,
i=1

with kernel HY(E ® F). Thus the zero set of the global section det f € H°(L) consists exactly of points [E] for
which H*(E ® F) # 0.

12.30 REMARK. While the homomorphism f depends on the choices made in (12.23), the global section of £
depends only on the isomorphism class of F. This is because the zero set of det f corresponds to the Fitting
ideal of the torsion sheaf R'7.(F ® U). (For uniqueness of the Fitting ideal see Northcott [105].) The section
det f € H°(L) is called the determinantal section defined by F. |

Recall the construction of SU(2, L) in Chapter 10, as Proj of the ring of semiinvariants of the group action
GL(N) ~ Altn2(H?(L)). It therefore carries line bundles of the form O(i) (see Section 8.5(b)) whose space of
global sections is the space of semiinvariants of weight ¢. In fact, we have already observed in Remark 10.73 that
(when deg L is odd) there are no semiinvariants of odd weight. In this case, therefore, there is no line bundle
O(1), and we will refer to O(2) as the tautological line bundle.

12.31 PROPOSITION. The standard line bundle £ on SUc(2,L) is isomorphic to the tautological line bundle
O(2) on the Proj quotient Alty ,(H°(L))/GL(N). Moreover, under this identification the determinantal section
of F, at a Gieseker matrix T € Altx(H®(L)), is

Pfaff (evpl (T(al,bl)) + -t evpy (T(aN,bN))) R (12.25)
where

~ a*T  abT
T(a,b) = <abT b2T> S Alth(HO(L))
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Proof. For each p € C there is a skew-symmetric isomorphism

Ulpxsuez,n) = U pxsuez,n) © @.
Now consider the following composition of f from (12.24) with its tranpose tensored with ®:

N N

N \%
U — P Ulpixsveer = PU xsveen) @2 — (TUP)" @ @.
i=1 =1

By construction this is skew-symmetric and has rank 2 everywhere. Its pullback via the quotient map
Alty ,(H°(L)) = SUc(2,L)

is a homomorphism of rank 2N trivial vector bundles which is represented at T' € Alty ,(H®(L)) by the matrix

evp, (T(al,ln)) + ot evpy (T(aNbe)) .

It is clear that the function which assigns to T' the Pfaffian of this matrix is a weight 2 semiinvariant, and hence so
is the determinantal section of the vector bundle F'. But this implies that the standard line bundle is isomorphic

to O(2). m|

12.32 REMARK. In our proof of stability of Gieseker points in Chapter 10 (see Lemma 10.74) we actually used
the special case of the above proposition in which:

(1:0) if1<qi<¥L

T
(@i b)) =< (0:1) f X <i<N-1
(1:1) ifi=N.

In this case (12.25) takes the form (in the notation of Lemma 10.74)

f(T)  evpT
Pfaff (evaT F1(T) >

The matrix ev,, T has rank < 2, and so by the formula of Example 10.55 the Pfaffian above is equal to the
semiinvariant (rad f(7T"))*h(T)rad f'(T) used in the proof of Proposition 10.70. (In this case the vector bundle F
is obtained from the direct sum of two line bundles by pinching at one point.) |

1
1

(b) The Newstead classes

In this section we are assuming that deg is odd, so SUx(2,L) = N in the notation of the introduction to this
chapter, and we will often write just A/ to denote this moduli space. The second Chern class of the universal
bundle has a Kiinneth decomposition which we will write as:

aU)=nw+y+1xx,
where n € H?(C) is the fundamental class of a point and
w € H*(N), Y e H3(N) @ H'(O), x € H*(N).
By (12.21) and Grothendieck-Riemann-Roch, the direct image m.{ has first Chern class
a(md)=—w+ (d+1-g)o.
Hence, by Definition 12.28, the standard line bundle £ has Chern class

ca(lL)=(d+2-29)p—2(—w+ (d+1—g)¢p) =2w —dop =: .
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One can see the uniqueness of the class a—that is, its independence of the choice of universal bundle //—again in
the following way. Since I/ is unique up to tensoring with a line bundle from A, the tensor product UV ® U does
not depend on the choice of &/ and therefore neither does the second Chern class or its Kiinneth decomposition

U oU) =de(U) —ar(U)? =20 ® (2w — dg) + 49 — 1 ® (¢ — 4x).

In particular, the first term 27 ® «, and hence «, is independent of &//. But the same is true also of the last term,
which we will denote by

B:=¢? —4x € HY(N).

Finally, the middle term 1) is uniquely determined, but this is not itself a cohomology class on N. Squaring,
however, does determine a class on the moduli space:

PP =1n®y,  y€HYN).

These three cohomology classes a, 8,y on A are called the Newstead classes on the moduli space (Newstead [104]).
In terms of these we can now take the first step towards the Verlinde formula (12.2).

12.33 PROPOSITION. -
g—
(k1) VB/2
sinh \/(3/2 ’

We prove this by applying Hirzebruch-Riemann-Roch to the line bundle £*. This says:

dim H(N, £F) :/
N

XN, %) = / ek td(N). (12.26)
N
To compute the Todd class we use:
12.34 LeEMMA. The tangent bundle of./\/'(; is isomorphic to R'm,sl U. O

We have seen in Theorem 10.1 that the tangent space at the point [E] is the vector space H!(sl E). The
isomorphism
TN,[E] = I{1 (Sl E)
is called the Kodaira-Spencer map, and the proof of the lemma involves globalising this to an isomorphism of

vector bundles on N, though we omit the details here.

Proof of Proposition 12.33. We apply Grothendieck-Riemann-Roch for the projection 7 : C' x A” = A to the
bundle sl U. By definition of the Newstead classes we have

ca(slU) =co(UY QU) =2n@a+ 4 — 1® B.

The total Chern class of sl U is just 1 + ca(sl U), so the odd degree components of the Chern character vanish

and the even degree components are

chop (sl 1) = 2D c2(sl L)

(2r)!
By the Grothendieck-Riemann-Roch Theorem 12.23, therefore,
2(g —1)B"
c1(Tw) = 2a, chor(Ty) = % for r > 0. (12.27)
In particular,
g—1)p"

ch(Tw) + ch(Tyy) = 69 — 6 + Z AL((T),;
r>0 ’

and it follows from (12.19) that the logarithmic derivative of the Chern class of Ty & T}/ is

CI(TN@TX/) __4(9_1)257': _4(9_1)6

c(TvoTy) =~ 1-3



Hence ¢(Tn ® Tyr) = (1 — 8)?92. So by (12.14) the Todd class is

td(A) = e T2 FN) = o <7\/B/ 2 >2g_2 .

sinh /3/2
Hence from (12.26) we obtain
2g—2
X(ﬁk) — / e(k+1)a < \/3/2 > ]
N sinh \/3/2
Since ¢1(T) = 2a (by (12.27)), it follows that the anticanonical line bundle K" is ample (Remark 12.12), and
so the proposition follows from the Kodaira Vanishing Theorem 12.11. a

(c) The Mumford relations

We will assume now that C' is a hyperelliptic curve, that is, a 2-sheeted cover of the projective line C' 24 pt (see
Example 9.7). We let 0 : C — C be the covering involution. The fixed points of ¢ are the ramification points of
C over P!, and there are precisely 2g + 2 of them which we will denote by pi,...,p2y+2 € C. We fix one of these
points p = p; and consider the moduli space SUc(2,Oc(p)). If E is a stable rank 2 vector bundle on C' with
det E = O¢(p), then by Exercise 10.6 we have

Hom(E, 0c*E(—p)) = 0. (12.28)

We consider the vector bundle F := EY ® ¢*E ® Oc/(—p). This is a bundle of rank 4 to which the involution o
lifts, and with H°(F) = 0 by (12.28). By Riemann-Roch, x(F) = —4g and therefore H'(F) has dimension 4g.
By Example 12.26, its invariant and antiinvariant subspaces satisfy

—dim H'(F)" +dim HY(F)™ = —2g — 2,

and hence
dim H*(F)* =3g+1, dim HY(F)” =g - 1. (12.29)

We can globalise this bundle over the moduli space. The hyperelliptic involution induces an involution, which we
will also denote by o, on C' x SUx(2,Oc(p)) by acting on the first factor. Let

W= R'm. (U @ 0c*U 20, Oc(—p)).

Again by (12.28) this is a vector bundle on SUc(2,O¢(p)) of rank 4g. Since the (0-th) direct image is zero,
Grothendieck-Riemann-Roch 12.23 says:

—ch(W) = ch™ U @ o*U ® Oc(—p)) /n— (g — 1)ch® UY @ o* U ® Oc(—p)). (12.30)
The hyperelliptic involution ¢ acts on the cohomology groups H!(C,Z) as multiplication by (—1), so that
c(o™U) = er(U), e(U)=new-9Y+1xX,

and hence
U @cU) = c3UY @o*U) =0,
U @cU) = mRa—11 4,
aU o) = Ane-7y.

We now compute using the logarithmic derivative of the Chern class of W. Using (12.30) and the base change
Theorem 11.15 we obtain

W) _(1-9)(=20)—2(a—F+2y) _ 2a—gh+27)

(W) 1-5 1-0

We now decompose W under the involution. By base change and (12.29) the subbundles W*, W~ have ranks
3g + 1 and g — 1, respectively; while by Proposition 12.27 their Chern characters satisfy

2g+2
~h(WH) + k(W) = 13 (ch(Ox) — ch(sl Ulyxn)

= —(9+1) (e\/B - 67\/3) .
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It follows that

(W) *

W) W) VB VB >:(29+2)B

-
= (s e) -
W) a—(29+1)8+2y dCW™)  a+p+2y
c(Wt) 1-5 ’ c(W-)  1-8

Now, since W~ has rank g — 1, it follows that in the expansion of

c(W™) = exp/%}gy

all terms of degree > 2g vanish. The resulting relations among the Newstead classes «, 3,7 € H*(N), generated
by

and hence

(12.31)

¢ (W) = ¢gur (W) = gua (W) =0, (12.5)

are called the Mumford relations.

12.4 From the Mumford relations to the Verlinde formula

We consider the polynomial ring in three indeterminates Q[A, B,C] in which the degree of a polynomial is
computed using weights
degA =1, degB=2, degC =3.

A, B,C will correspond to the Newstead classes «, 3,27, and we can interpret the second identity in (12.31),
from which the Mumford relations are to be read off, as follows. If ¢;(W™) = (e, 8,27), then the sequence of
polynomials &; can be put together in a generating function

F(t) =Y &(A,B,0)t" € QA, B, C][[t]],

r>0
and this function satisfies a differential equation:

(1— BtQ)Cil—j = (A+ Bt+C8®)F(t), F(0) = 1. (12.32)

This initial value problem is equivalent to the following recurrence relation for the coefficients:

=1, (r+ 1§41 = A& +rB&—1 + C&—n, forr >0, (12.33)

where we let £ = 0 when r < 0. For example, & = A, & = %(A2 + B) and & =
Equivalently, the differential equation can also be solved to give

e o (5 + 25 i )

(A% + 5AB + 20).

1
6

F(t) =
(12.34)

C+AB
1 1+t\/§ 2BVB
V1—Bt2 \1-tVB )

By the Mumford relations we will mean the ideal of Q[A, B, C] generated by &,(A, B, C),&,4+1(4,B,C),....

(a) Warming up: secant rings

As a warm-up we are going to examine the case where C = 0. Although it will not be needed in the proof of
(12.2), it is an interesting exercise in itself and will reappear in Section 12.5 (b).
In this case we have a sequence of polynomials in two variables &, (A4, B), determined by a differential equation

F'(t) A+ Bt
F(t) 1-Bt%’

F(0) =1,
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for the generating function F(t) = >, & (A, B)t". This is equivalent to a recurrence relation:
(r+1)&4+1(A,B) = A¢.(A,B) +rB¢,_1 (A, B), &=1, & =0forr<O. (12.35)

The polynomials &.(A, B) for r > g generate a homogeneous ideal I, C Q[A, B], and because of the recurrence
relation (12.35) this is generated by just two polynomials, {,(A, B) and ;41 (A, B). The residue ring

R, :=QA,B]/I,

is a graded ring, called the secant ring of genus g. What we will see is that it generates the secant numbers of
Section 12.1(c) in the same way that the cohomology ring of the Grassmannian G(2,n) generates the Catalan
numbers (Section 8.1(e)).

12.35 EXAMPLE. One sees & = A, 26 = A*+ B, 36 = $A(A + B) + 2AB and 4§, = tA(A% +54AB) + 3(A* +
B)B. Hence

Ry = Q4,B]/(A,A* +B)=Q[A,B]/(A,B) =Q

Ry, = Q[AvB]/(A2 +B)A3+5AB) :@[A]/(A3))

R3; = Q[A,B]/(A3 +5AB, A* + 14A’B + 9B?).

We will denote by «, 8 € R, the residue classes modulo I, of A, B € Q[A4, B].

12.36 PROPOSITION. (i) The polynomials §,.(A, B)B?, as r, s range though all nonnegative integers, are a basis
for Q[A, B] as a vector space over Q.
(ii) The subset of &.(A, B)B® with r + s > g is a basis for I.
(iii) The secant ring has basis {&,(a, 3)5° }rys<g—1-

Figure 12.1: The secant ring Rs

Proof. (i) Monomials A" B® can be ordered lexicographically with A > B. With this ordering, the recurrence
relation (12.35) implies that the maximal monomial (with nonzero coefficient) in &,.(A, B) is A". Hence for every
r, s the monomial A" B® appears as the maximal monomial in (A4, B)B?. The elements &,.(A, B)B® are therefore
expressed in terms of the basis {A"B?} by a unimodular triangular matrix.

(ii) Let J, C Q[A, B] be the vector subspace with basis {{,(, )5°}r4s>4. Clearly BJ, C J,, and so it follows
from (12.35) that AJ, C J, as well. Hence J, is an ideal. On the other hand, &;,&,4+1 € Jy, so that I, C J,. So
we just have to show that &.(a, 5)3° belongs to I, whenever r + s > g, and for this we use induction on s. For
s = 0 it is true by definition of I,, while if £, B®* € I, for s > 0, then

1 r+2
Bt = (§,B)B* = ———A(&11B°) + ——&40B% € 1.
gr (gr ) r+1 (§r+1 ) + "+ 1€r+2 € 1y
(iii) This is an immediate consequence of (i) and (ii). O

12.37 COROLLARY. Let Ry = @(Ry)(m) as a graded ring. Then (Ry)(24_2) is spanned by 39!, while (Ry) )
vanishes for m > 2g — 1. m|

12.38 COROLLARY. The secant ring R, has dimension g(g + 1)/2 over Q, and Hilbert series

o (1 —9)(1 — t9+1)

gzjotm dimo(Ro)em) = A==
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12.39 REMARK. More generally, suppose that Qzi,...,z,]/(F1,...,F,) is finite-dimensional, where

Fi,...,F, € Qz1,...,2,] and degrees are weighted by degz; = a; € N Then the quotient
Qz1,-..,zn]/(Fi,...,F,) has dimension [],degF;/[[,a; and Hilbert series (as a graded ring) [],(1 —
tde8 £y /TT.(1 — t*). (See Proposition 1.9 in Chapter 1.) a

R, is generated in top degree by (—3)9~!, and we shall use this element to identify (R) (42— Q. Composing
with projection Ry — (Ry)(24—2) defines a linear map which we will formally denote by

/:Rg—>@.

If we consider the ‘intersection numbers’ [ &a’(—B)* (where i + j + 2k = 2g — 2, and so only depends on i, k),
then we find nothing other than the two index secant numbers of Section 12.1(c):

12.40 PROPOSITION. For i, j,k satisfying i + j + 2k = 29 — 2 we have

/fi(aaﬂ)aj(—ﬂ)k =Fyy_ 2 2k—i;-

2

In particular, | a?9~2 is equal to the secant number Es,_».

Proof. Each side is defined by the same recurrence relation, (12.35) and (12.11), respectively, and so the
identity follows inductively. a

The basis of Rs and the twisted Pascal triangle of its intersection numbers

degree 8—2k—i\i |0 1 2 3 4
8 | 5" 0 1
& 1
6 3° &af” 2 1 2
&18? &3 5 6
4 | p &0 & 4 5 28 24
&8 $ 61 180
2 B & 6 61 662
& 1385
0 1 8 1385

12.41 REMARK. Notice that the secant ring R, is isomorphic to the intersection ring of the Grassmannian
G(2, g+1) additively, though not multiplicatively. What we see is that, just as the Pascal triangle of Section 8.1(e)
tabulates the degrees of the cohomology classes s; B¥ with respect to the Pliicker hyperplane class A, so the Pascal
triangle above records the degrees of the classes &;(—/3)* with respect to the ‘hyperplane class’ a = c;(£). a

This proposition implies that

k297272nE o 1‘2nd.'If
ka(_gyn _ 2g—2—2n — v
oo - B w5

and from this it follows that for any power series f(z) we have

N f(2®)dz
/ek f(=B) = Res {7@@_1 — km} .

In particular, taking f(z) = (v/x/sin/z)?9~! and applying Corollary 12.8 yields:

2g—1
k VB — d
fe ¢ (sinh\/B) - ljzeg [coskzsiizg—lz] (1236)
= Lo® when ks odd.

This illustrates our strategy for evaluating the right-hand side of Proposition 12.33 in order to prove the Verlinde
formula. Of course, to do this we must work in the full ring Q[A, B, C/I, without the restriction C' = 0.
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(b) The proof of formulae (12.2) and (12.4)

We now return to consider the original polynomials in three variables defined by the recurrence relation (12.33)
and to the homogeneous ideal I, C Q[A, B,C] generated by &,(A,B,C) for r > g. Because of (12.33) it is
generated by the three polynomials &, &g41,&g+2. Our aim is to study the residue ring Q4, B,C]/I,.

Just as for the secant rings, we can construct a basis of Q[4,B,C]/I, as a rational vector space, but in
this case polynomials such as &.(A4, B,C)C?® are not enough, and we have to work a bit harder. Let ¢1,¢s be
independent variables and consider the product F'(t;)F(t2) of two generating functions, each defined by the
differential equation (12.32) with coefficients &.(A, B, C). This product is symmetric in ¢1,t2 and can therefore
be expressed as a power series in the elementary symmetric polynomials, which we will write as

r =1t +to, y = —tita.

(We change the sign of ¢;t5 in order to be consistent with the literature.) This series can be written, then, as

H(z,y) = F(t))F(t2) = Y &e2"(-y)* (12.37)

r,s>0

for some coefficients &, s = & 5(A4,B,C) € QA, B,C]. Note that degé&.s = r + 2s, where A, B,C have de-
grees 1,2, 3.

12.42 REMARK. Each &, is a polynomial in &;,&,€3,.... For example, by multiplying out (12.37) we find
E10=6, 81 =& 28, 60=&E and & 1 = § & —3&;. These polynomials can also be read off by observing that
the left-hand side of (12.37) is nothing other than the formal resultant of F/(t) = 3, <, &t" and G(t) := t* —zt—y,

that is:
1 & & & & & &b &
1 & & & & & &% &
1

—y -z
-y —x 1
-y —z 1
H(z,y) = -y —x 1
-y —x 1
-y —z 1

(See Section 1.3(a).) For example, by noting that the " term comes from the top-left (r +2) x (r + 2) block, we
see that &.o0 =&, O

We now look for recurrence relations satisfied by the polynomials &, (A, B, C). First of all, by the chain rule,
the partial derivatives satisfy

OH OH  oH  OH 0H  OH

=ty =t .
ot1  o0xr oy’ ots  0r Oy
Solving these equations we get:

OH OH

— = o — o

aCE tl — t2 8t1 8752

ti(A+ Bty + Ct3 A+ Bty + Ct3
- 1 1 £01) b 22 D)) F(z,y)
m—@ 1 - B 1 — Bt2

_ (1-By)(A+Cy) +2(B+Cx)
- (I—By)Q—BCUQ H(l‘,y),

0H 1 <8H 8H> _ (1 - By)(B+Cz) + Bz(A + Cy)H(a:,y).

oy ti—ty \Ot, Oty (1 — By)? — Ba?
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These equations can be written in matrix form as

OH/ox\ 1 A+Cy _ (1-By x
<8H/8y>_detMM<B+Cm>H’ WhereM_( Be 1-By)

Inverting, it follows that

OH OH
0H 0H

From these equations we obtain two recurrence relations (in which we take &, =0 if r or s < 0):
S§T7S = _(T + S)B€T,8—1 - Cgr—l,s—la (1238)

(7' + 1)£r+1,s - (1“ + 1)B£r+1,sfl - (S + 1)£r71,s+1 = Afr,s + Cgr,sfl- (12-39)

The first of these determines all the polynomials &, given the boundary polynomials &, ¢ and & s. It also
determines &y s = (—B)® (since &0 = 1). The boundary polynomials &, on the other hand, are equal to &, as
we have observed in Remark 12.42, or as can be seen using (12.38) (with s = 1) and (12.39) (with s = 0), which
together show that &, satisfies the recurrence relation (12.33). The polynomials &, ; € Q[A, B, C] are therefore
completely determined.

12.43 PROPOSITION. (i) As a vector space over Q the polynomial ring Q[A, B, C] has basis & s(A, B,C)C*,
where 1, s,t range through all nonnegative integers.
(ii) The subset consisting of & s(A, B,C)C* for r + s+t > g is a basis for the ideal I, C Q[A, B,C].

Proof. For both parts the idea is exactly the same as for Proposition 12.36.

(i) We order monomials lexicographically with A > B > C and note that, by (12.33), the maximal monomial
appearing (with nonzero coefficient) in &.(A4, B, ') is A". Hence by the recurrence relation (12.38) and the fact
that &0 = & (Remark 12.42), A"B* appears as the maximal monomial in & s(A, B, (), and this implies that
the set of &, 5(A4, B,C)C" is a basis of the polyomial ring.

(ii) Denote by J, C Q[A, B, C] the vector subspace spanned by &, (A4, B,C)C" with r + s + ¢ > g. This is an
ideal: it is clear that CJ, C Jy, and AJ, C J,, BJ, C J, follow from (12.33) and (12.38).

Since &, € J, for all r > g, it follows that I, C J,. So it just remains to see that &, (A, B,C)C! € I, for all
r 4+ s+t > g. This can be shown by a double induction using Remark 12.42. |

It follows from this proposition that the residue ring Q[A4, B, C]/I, has a basis
&5(A,B,C)C* mod I, r+s+t<g-1. (12.40)

The basis element with (strictly) highest degree is C9~! with degree 3g — 3 (noting that degé, s(4,B,C)C! =
T+ 2s + 3t), and we see that CY~! spans all monomials of degree 3g — 3 modulo I.

12.44 PROPOSITION. Let m,n > 0 be nonnegative integers satisfying m + 2n = 3g — 3. Then
m!
A™B" = (—1)nbg_1_nacg ' mod I,,

where b, € Q is a rational number defined by the Taylor expansion x/sinz =), brz2* when k > 0, and is zero
when k < 0.

Proof. We introduce a polynomial ring in one variable Q[T"] and define a linear map

B:QAB.C QT fo S BT (12.41)
h=0



where Fj, is a linear map Q[A, B, C] — Q defined on monomials by

1
(=1)"m/!p! (h ; )bh_n_p if m 4+ 2n + 3p = 3h,

Ej, : AmB"CP v (12.42)

0 otherwise.
(Note that (12.41) is a finite sum since, for any polynomial f, the number Ej(f) is nonzero for only finitely

many h.)

Claim: Under the linear map Q[A, B, C][[z,y]] — Q[T][[z,y]] induced by E, the generating function H(z,y) of
(12.37) transforms to the constant 1 € Q[T][[z, y]]-

The claim shows that E kills all &, (A4, B,C) with r, s not both zero. By Proposition 12.43 and (12.40) it follows
that E descends to the residue ring

@[Aa 37 C]/Ig - @[T]7
with 1-dimensional image coming from the component in top degree (C9~1). The proof of the proposition is then
completed by applying E to each of C9~! and A™B" (that is, applying E,_1 to each of these):
E:C ' g9 A™B" s (=1)"mlby 1,797 .

Since both monomials belong, modulo I, to the span (C9~'), on which E is injective, the proposition follows.
Before proving the claim, we will write down the map E in terms of A, B,C*, where C* := C'+ AB. This is

given by
P

Ep(AmBMC*)P) = Z(’?)Eh(z‘lmﬂB"”C”_j)

j=0
P .

; h+1
= (=1)""plmlby_p_, Z(_l)p—] (m + ]) ( + > .

iz J p—J

We now use the binomial coefficient identity
L fa+j5\[b+p a—b>b
(—1)“< i )(p_j> = ( ) ) (12.43)
j=0

with a =m, b=h + 1 — p to deduce that (12.42) is equivalent to the following. We write k := h —n — p.

(—=1)*m!(2k — 1)!
Ep: AmBY(C*)P > {  (2k—1-p)!

0 otherwise.

bi if m+2n+3p=3h
kHm o 2ntop =3k, (12.44)

We now prove the claim. First, substituting (12.34) into the defining formulae (12.37) gives

H(z,y)

1 <1+x\/§—By

C*/2BVB
V1 - By)? - Bz® \1-2vB - By>

= 1 exp { Cr + —C* tanh ! /B }
B 2 B 1-B

_ smh0eX {Aw+< 0 _a:) *}

VB BVB B ’

where we have set
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From (12.44) we see that

E (BneAaH-C*z) — T VziT )
sinh (\/:1:3T(1 + zT))
So for general power series f(B),w(B) we have
V3T

E (f(B)CAIJFC*w(B)) = f(CUT) sinh ( 23T (1 + w(xT)T)) .

Applying this to

6(B) =
By = A2 By=22L_ 2%
£(3) wB) =2 2~

we obtain E (H(z,y)) = 1, as claimed. |

We can now prove the intersection formula (12.4) and the Verlinde formula (12.2). We will compute the
right-hand side of Proposition 12.33 by the same methods that we used for (12.36).
First of all, since the Newstead classes «, 3, satisfy the Mumford relations, it follows from Proposition 12.44

that they satisfy
m! _
(@™p") = (‘Dnbg—l—n?(Q'Y)g "

This identity implies that

/ ek (=p)" = ck®973 2, |, = ck?7" Res
N

2" kdx
z=0 ’

2292 sin kx
where ¢ := (27)97!/g!l. An arbitrary power series f(x) therefore satisfies

F(@?)kdw ] .

229 2sinkx

/ ek f(—B) = ck?~! Res {
N 0

r=

In particular, if we take

and apply Corollary 12.6, then we obtain:

/eka< VB/2 >2g2 k! es{ kda
N sinh \/3/2 491 w=0 |sinkzsin®972(z/2)

ckd—t
= FVg_l(Qk)

On the other hand, irreducibility of A" (see Section 11.2(a)) implies that when k¥ = 1 the left-hand side of
Proposition 12.33 is 1, and hence ¢ = 497!, From this and Proposition 12.33, the formulae (12.2), (12.4) and also

(971 = gl29~"

all follow.

12.5 An excursion: the Verlinde formula for quasiparabolic bundles

The Verlinde formula has various generalisations. One can replace vector bundles of rank 2 by higher rank
bundles, or one can replace the structure group SL(2) by more general algebraic groups. Here, however, we shall
generalise the curve C to a curve with marked points, and prove the formula (12.6).
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(a) Quasiparabolic vector bundles

On the projective line P! there do not exist stable vector bundles of rank greater than 1 (Theorem 10.31).
However, there do exist stable quasiparabolic vector bundles, and one can construct a moduli space for these.

12.45 DEFINITION. (i) A quasiparabolic vector bundle of rank r on a curve C is a pair consisting of a vector
bundle E of rank r and a subsheaf E' C E which is a vector bundle of the same rank r.
(ii) The degree of a quasiparabolic vector bundle is

1
deg(E' C E) := §(deg E' +degE).

(iii) A rank 2 quasiparabolic vector bundle E' C E is stable if every line subbundle £ C E satisfies
deg(¢' C &) < 2deg(E' C E), where ¢ :==¢(NE'.

s usual, if < is replaced by < then C E is semustable. a
A 1, if <i laced b hen E' C E i stabl

A quasiparabolic vector bundle (E' C E) has a determinant (quasiparabolic) line bundle
det(E' C E) := (det E' C det E).

We necessarily have
det B' = det E ® Oc(—D)

for some positive divisor D, and this divisor is uniquely determined by the inclusion homomorphism E' C E.
In what follows we will consider the case where D = p; + --- + p, for distinct points py,...,p, € C. The
quasiparabolic bundle E' C E is then equivalent to data consisting of the vector bundle F together with a
codimension 1 vector subspace U; C E,,, in the fibre of E at each point py,...,p, (Figure 12.2).

Figure 12.2: A rank 2 quasiparabolic vector bundle

For a fixed quasiparabolic line bundle L' C L we denote:

stable quasiparabolic rank 2
SUZ™(2,L' C L) := < vector bundles E' C E / isomorphism.
with det(E' C E) = (L' C L)

If (L’ C L) = (L(—p1 — --- — pn) C L) (with the standard inclusion—that is, as the sheaf of local sections
of L vanishing at the points p;), then E' C E can be viewed as a quasiparabolic bundle on the marked curve
(C;p1,...,pn)- In this case we shall also use the notation SUS™ (2, L; p1, - .., pn).

12.46 THEOREM. (MEHTA-SESHADRI [102] for g > 2; BAUER [90] when g = 0.) Let p1,...,p, € C be distinct
points on a curve C' of genus g. Then there exists a nonsingular quasiprojective variety N, , of dimension 3g—3+n
with SUS™ (2, L;p1, . ..,pn) as its set of points, and with the following properties.

(i) If n is odd, then N, ,, represents the moduli functor for stable quasiparabolic of rank 2 and determinant
L(—p1 —---—py) C L. This means that there exists a universal quasiparabolic bundle U’ C U on C X Ny p,
from which every family of stable quasiparabolic bundles is obtained (up to equivalence) as a pull-back.
Moreover, N, ,, is projective in this case.

(ii) Ifn is even, then Ny, is a best approximation to the functor for stable quasiparabolic bundles.

(iii) At the point [E' C E] € N, corresponding to a stable quasiparabolic bundle (E' C E) the tangent space
is isomorphic to
T[E’CE]Ng,n = Hl (C, 5l(El C E))



M 487 LA sSSP A ss T e e & sy e A 2 Ay Y A aS st s S Y A s T SRS

12.47 REMARK. Although we will not carry this out here, we will indicate briefly how one can prove this theorem
in the same spirit as the construction of SUx(2, L) as a quotient variety in Chapter 10. There, we represented
SUc(2,L) as the underlying points of Altyo(H°(L))//GL(N), where Alty o(H®(L)) consists of N x N skew-
symmetric matrices with entries in H°(L) and rank < 2 over the function field k(C). We will modify this by
considering the diagonal action of GL(N) on

Altno(HO(L)) x AN x .- x AN
————

n times
where each AV has the natural linear action of GL(N). In this product consider the subset
Al P (H°(L)) = {(T,u1,-..,un) | evy,(T) Au; = 0 for all 4}.
It is easy to see that this is an affine subvariety which is preserved by the GL(N) action. Moreover, this action

extends to the larger group G = GL(N) x Gy, X -+ X Gy, where Gy, % - - - X Gy, acts diagonally on AN x -+ x AN
by homotheties. With these definitions one can show that N, is the quotient variety AltR ;" (H°(L))//G. O

The last statement in Theorem 12.46 has the following meaning. Let End(E' C E) be the vector bundle of
(local) endomorphisms of E which map the subsheaf E’ to itself. The trace of an element of End(E' C E) takes
values in the line bundle O¢(—p; — -+ — py,), and there is a direct sum decomposition

End(E' CE) =2 Oc(—p1 — - —pn) ®sl(E' CE),

where sl(E’ C E) denotes the subbundle of tracefree endomorphisms.
Part (iii) of the theorem globalises as follows.

12.48 PROPOSITION. When n is odd the tangent bundle of N , is isomorphic to the Ist direct image:
Ty, , = R'mslU' C U), m:C X Nyp— Ny,

where (U' C U) is the universal quasiparabolic bundle. O

Let E' C E and F' C F be two rank 2 quasiparabolic vector bundles.
12.49 DEFINITION. A quasiparabolic homomorphism from E' C E to F' C F is a bundle homomorphism E — F

which maps E' — F'; we denote the space of quasiparabolic homomorphisms by Hom ((E' C E), (F' C F)). These
are the global sections of a subsheaf

Hom ((E' C E),(F' C F)) C Hom(E, F)

consisting of local homomorphisms which take E’ — F’. This is a vector bundle of rank 4. a

The following is a quasiparabolic version of Exercise 10.6.

12.50 LEMMA. Let E' C E and F' C F be semistable rank 2 quasiparabolic vector bundles with deg(E' C E) >

deg(F' C F). Then Hom ((E' C E),(F' C F)) =0. O
Suppose that E' C E is a rank 2 quasiparabolic bundle with det E' = det E ® Oc(—p1 — -+ — pn)- Then
E":=E® Oc(—p1 — -+ — py) is a subsheaf of E' and so we obtain a new quasiparabolic bundle E" C E'. Tt is

then easy to show the following.

12.51 LEMMA. E’' C E is (semi)stable if and only if E" C E' is (semi)stable. O

Since deg(E" C E') = deg(E' C E) — n, we can put these two lemmas together to obtain:
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12.52 PROPOSITION. Suppose that a rank 2 quasiparabolic bundle E' C E is semistable and that £ is a line
bundle with deg{ > n/2, where det E' = det E ® Oc(—p1 — -+ — pp). Then

Hom (E" C E")® ¢, (E' C E)) =0.

Now consider the 4-dimensional vector space End(FEgen) over k(C). This is self-dual via the trace inner product
End(Egen) X End(Egen) =+ Oc, (f,9) = tr fg.

The two vector bundles End(E’ C E) and Hom ((E" C E'),(E' C E)) both have End(FEgen) as their total set
and, in fact, they are mutually dual with respect to this inner product. Combining this observation with the
duality Theorem 10.11 we deduce:

12.53 CoROLLARY. If E' C E is a semistable rank 2 quasiparabolic bundle and £ is any line bundle with
deg¢ > n/2, where det E' = det E ® Oc(—p1 — -+ — pp), then

H' (C,End(E' C B)® Qe ® &) = 0.

(b) A proof of (12.6) using Riemann-Roch and the Mumford relations

From now on we take C' = P! and fix an odd number n > 3, and n points pi,...,p, € P!. By Theorem 12.46
we have a moduli space Nj ,, for rank 2 stable quasiparabolic vector bundles on P!, and N, is a nonsingular
projective variety of dimension n—3. Moreover, there exists a universal quasiparabolic bundle &/’ C U on P! x A ,,,
and this determines cohomology classes ap € H?(Np ) and 8 € HY(Np ) by

co(End U) =2h @ ap —1® S, (12.45)

where h € H?(P!) is the class of a point in P! (that is, h = ¢;(Op1(1))).
For each of the points py, ..., p, € P! we can consider the restriction U/, x5 , - In this restriction the subsheaf
U'" defines a line subbundle and its quotient:

0= M = Ulpixn,, — MM =0,
and for each ¢ = 1,..., n these line bundles determine a class
8; i= c1(MP°) — e (M5™) € H*(No ).

By definition of 8 (12.45) it follows that
52 = 8. (12.46)

(3

We will also put

a:=20+ Y 0 (12.47)
i=1

We now apply Grothendieck-Riemann-Roch to the rank 3 vector bundle s/(i{’ C i) on the product P* x A ,,.
Using the exact sequence (alternatively, one can just compute directly)

0= mesl U > PMM™) ! @ MI™ = RlmslU' CU) =0 (12.48)

i=1
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we obtain

td (Rimsl@U' CU)) = td(msl U') ] td (M)~ @ M)

= <sin\f//§/2>2€26i/2 <sin\I{B\//§/2>n
e®/? <ﬂ>n2
sinh /3,2

By Proposition 12.48 we note that this is equal to the Todd class of N ,, and in particular & = ¢1(Tns, ,, ). Thus,
by Hirzebruch-Riemann-Roch:

n—2
elotd No,n:/ e2lH)a/2 <ﬂ> : (12.49)
N

X(NO,n)O(_lK)) = / Sth\/B/Q

N

We will now write n = 2g + 1 (where g > 1) and consider the direct image sheaf
W =m (slU' CU) ® Opi(g—1)).

This is a vector bundle by Corollary 12.53, and by Grothendieck-Riemann-Roch (we leave the computation to
the reader)

dW) a+p

c(W) 1-5"

The classes «, 3 therefore satisfy the relations of the secant ring R, (Section 12.4(a)). In other words, since by
Riemann-Roch the vector bundle W has rank g — 1, we see that

& (a,8) =0 forallr >g.

One can call these the quasiparabolic Mumford relations (and, by the usual recurrence relations, they are generated
by the two relations for r = g,¢g + 1). As we saw in Proposition 12.40 (taking ¢ = 0), these relations imply that

(ajﬁk) = E2g—2—k(6971) for j + 2k =29 — 2.
Hence, using (12.49) and (12.36) we obtain

2g—1
X Nozgi1, O(—IK)) = /Ne(zm)a/z <s1n\l{57\//32/2>

1
= ——Usy—1(2L+1)(B/4)7 1.
S Usy (2 1)(5/4)
We shall see shortly (Theorem 12.56) that the varieties Ap , are rational. This implies that x (Np24+1,0) =1
(Remark 12.16), and so the case [ = 0 of the above formula says that (3)9~! = 49=1. From this we obtain the
quasiparabolic Verlinde formula (12.6)

21

(M O(-IK)) = 1 (=1
X X029+ TA+TE (P
J= Sin 4l+2ﬂ'

On the other hand, the line bundle O(—K) is ample, and so by Kodaira Vanishing 12.11 this formula actually
computes, for [ > 0, the dimension of the space H°(Np 2441, O(—1K)).
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12.54 REMARK. Here is a table of low values of h° (Np ,, O(—ID)) coming from the Verlinde formula (12.6),
where D generates the Picard group of N ,—that is, D = K when n is odd, and D = K/2 when n is even:

n \[]0 1 2 3 4 5 6 7 8
3 11 1 1 1 1 111
4 12 3 4 5 6 7 8 9
5 15 13 25 4 61 8 113 145
6 1 4 11 24 45 76 119

7 1 21 141 521 1401 3101

8 1 8 43 160 461

9 1 85 1485 10569

10 1 16 171

11 1 341 15565

Notice that at level 1:

29 when n = 2g + 2,

0 —
h (NO,nao(_D))_{1_+_4+42+___+4g1 Whenn:2g—+—1.

Similarly, at level 2:

1+ Z?:l 22i-1 when n = 2g + 2,
h® (Non, O(=2D)) = .
14439, (5)57 1 whenn = 29+ 1.

(c) Birational geometry

One can express Definition 12.45(iii) by saying that ‘stability of a quasiparabolic vector bundle E' C E is the
average of stability of the vector bundles E and E”. Generalising this idea, one can consider a ‘weighted average’
of the stabilities of E and E’. In other words, one can define a degree

deg,(E' CE)=(1—a)degFE + adeg E', a€R,

and then define stability accordingly for each value of the parameter a € R. If we note that deg,(E' C E) =
deg E — an, where n = deg E — deg E’, then we see that there is a further generalisation. Namely, suppose that
det B' = Oc(—p1 — -+ — pn) ® det E, and attach a number a; € R (called a weight) to each point p; € C. Then
we can define a degree

deg,(E' CE) :=degE — Z a;length, (E/E"), where a = (ay,...,a,).

i=1
We then define stability for the pair E' C E using this notion of degree.

12.55 DEFINITION. (i) A quasiparabolic vector bundle E’ C E together with assigned weights aq,...,a, € R at
the points py,...,pn € C, where det E' = Oc(—p1 — -+ — pn) ® det E, is called a parabolic vector bundle.
(ii) A parabolic vector bundle (E' C E;aq,...,a,) of rank 2 is stable if, for every line subbundle ¢ C E,

deg, (&' C &) < 3 deg,(E' C E), where ¢ = ENE.
O

Note that if the weights a; are all 0, then this coincides with stability of the vector bundle E; if all a; = 1, then
it coincides with stability of E'; and if all a; = 1/2, then it coincides with stability of E' C E as a quasiparabolic
bundle (Definition 12.45).

Of course, the key point here is that there should exist a moduli space for parabolic vector bundles with fixed
determinant det(E’ C E) and weights a = (aq,...,a,), and this is indeed the case, by Mehta and Seshadri [102].

Now restrict, as in the last section, to the projective line ¢ = P!, with an odd number n = 2g + 1 of
points pi,...,p2g4+1 € P! fixed. We let by, ... yDagy1 € P29~2 be the images of pi,...,pag+1 under the Veronese
embedding v : P! — P2972 of degree 29 — 2. For a € R?9T! let Nya be the moduli space of rank 2 stable
parabolic bundles on (P';pi,...,pag41) with weights a.
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12.56 THEOREM. (BAUER [90]) For g suitably chosen weights a(®, a(") ... al¢=1) ¢ R*9*+! the moduli spaces

Noaw = P72, 0<i<g—1,
are nonsingular projective varieties of dimension 2g — 2 and have the following structure.
(i) ]Pfg;2 is isomorphic to P?972,
(ii) §2g)_2 is the blow-up of P*9=2 at the points Py, ..., Day1-
(i) P?¢ z+1 is obtained from ]P’?g 2
]P?ig) is blown up along a finite number

29+1 2g+1 29+1

g+1) L (2041) (2041

1+1 1—1 1—3
of subvarieties = P, and then the exceptional divisors are contracted down in a different direction to
subvarieties = P29—3=1 jn P92

by the following flop (or more precisely, a reverse flip). (See Section 6.3(a).)

(i+1)°
(iv) ]P’(;’:IQ) is isomorphic to the moduli space of quasiparabolic bundles Ny 2 1. O
=29-2 =29-2 =29-2 =29—2
P — Poy ™ == PUTy = P = Nogg
3 Big Bang

]P)2972

12.57 EXAMPLES. g = 2. In this case N5 is the blow-up of P? at 5 points. This is called the guartic del Pezzo
surface and embeds in P* as a complete intersection of two quadrics.

g = 3. In this case Np 7 is obtained from the blow-up ]IB‘(*I) of P* at 7 points by flopping along 22 lines, each

line transforming to a P? in the moduli space. These lines are
(a) the proper transforms of the (;) = 21 lines in P* joining pairs of the points p,...,pr; and
(b) the proper transform of the rational normal quartic v(P') C P* through the 7 points.

g = 4. The moduli space Np g is obtained from P® as follows. First blow up at 9 points. Then flop along the
following 37 lines, transforming them into P*s:
(a) the proper transforms of the (g) = 36 lines in P® joining pairs of the 9 points; and
(b) the proper transform of the rational normal sextic v(P') C P® through the 9 points.
Finally, flop along the following 93 P2s, transforming them into P3s:
(c) the proper transforms of the (3) = 84 planes in P® containing 3 of the 9 points; and
(d) the proper transforms of the 9 cones over v(P') C P5 with vertices at each of the 9 points. o

An alternative proof of the Verlinde formula for quasiparabolic bundles might be given by analysing how the
Euler-Poincaré characteristic X (NVj o), O(—IK)) changes under the flops described by Theorem 12.56. (This is a
parabolic version of Thaddeus’s proof [112] of the Verlinde formula (12.2).)

We will not do this here, but just remark on the following interesting consequence. The sequence of flops
determines a birational isomorphism between ]P’?lg)_2 and Np 2441, which is an isomorphism in codimension 1. This
gives us an isomorphism between spaces of global sections of corresponding line bundles, and in particular it gives
us an equality:

21 i
. ~og_ 1 (-1) Usg—1(20+1)
0/m29—2 _ g9
dim HO (P}, ™, O(~IK)) = T §: L NET T Al (12.50)
=0 (sm 4l+2ﬂ-)

This gives the dimension of the vector space of forms of degree [(2g — 1) in the homogeneous coordinates
L0, %1, ..., T2y o which vanish at the points By, ..., Py, € P22

Now, in the case of the plane (that is, g = 2) such linear systems blowing up finite sets of points have been
thoroughly studied classically; for < 8 points in general position, for example, the resulting surfaces are the del
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Pezzo surfaces, which play an important role in various different geometrical contexts. For P2, too, the blow-ups
along finite point sets are also fairly well understood. (See, for example, Semple and Roth [107] chapter 8 §2.)
However, for P4 and higher, such an extraordinary formula as (12.50) is completely unexpected and is, I think, a
truly remarkable discovery. Yet all that is needed is to pass to the nice model N 2441, and the dimension formula
simply reduces, using Kodaira vanishing, to a Riemann-Roch calculation.
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