H.Bupm
АЛГОРИТМЫ + СТРУКТУРЫ ДАННЫХ = ПРОГРАММЫ
Монография известного швейцарского специалиста по системномупрограммированию, знакомого советским читателям по переводу его книги«Систематическое программирование. Введение.» (М.: Мир. 1977). Она содержитописание и анализ основных алгоритмов, методов построения программ. Книгуможно использовать и как руководство по применению языка Паскаль в задачахматематического обеспечения ЭВМ.Для научных работников, преподавателей, аспирантов и студентов,специализирующихся по математическому обеспечению ЭВМ.
Содержание
Предисловие редактора перевода 5
Предисловие 7

1. Фундаментальные структуры данных 14
1.1. Введение 14
1.2. Концепция типа для данных 17
1.3. Простые типы данных 20
1.4. Стандартные простые типы 22
1.5. Ограниченные тисы 25
1.6. Массивы 25
1.7. Записи 30
1.8. Записи с вариантами 35
1.9. Множество 38
1.10. Представление массивов, записей и множеств 44
1.11. Последовательный файл 50
Упражнения 71
Литература 73
2. Сортировка 74
2.1. Введение 74
2.2. Сортировка массивов 77
2.3. Сортировка последовательных файлов 108
Упражнения 147
Литература 149
3. Рекурсивные алгоритмы 150
3.1. Введение 150
3.2. Когда не нужно использовать рекурсию 153
3.3. Два примера рекурсивных программ 156
3.4. Алгоритмы с возвратом 163
3.5. Задача о восьми ферзях 169
3.6 Задача об устойчивых браках 174
3.7. Задача оптимального выбора 182
Упражнения 186
Литература 188
4. Динамические информационные структуры 189
4.1. Рекурсивные типы данных 189
4.2. Ссылки или указатели 193
4.3. Линейные списки 198
4.4. Древовидные структуры 219
4.5. Сильно ветвящиеся деревья 278
4.6. Преобразования ключа (расстановка) 303
Упражнения 314
Литература 318
5. Структура языков и трансляторы 319
5.1. Определение и структура языка 319
5.2. Анализ предложений 322
5.3. Построение синтаксического графа 322
5.4. Построение программы грамматического разбора для заданного 332
синтаксиса
5.5. Построение таблично-управляемой программы грамматического 336 разбора
5.6. Преобразование БНФ в структуру данных, управляющую 340 грамматическим разбором
5.7. Язык программирования ПЛ/0 346
5.8. Программа грамматического разбора для ПЛ/0 352
5.9. Восстановление при синтаксических ошибках 361
5.10. Процессор ПЛ/0 373
5.11. Формирование команд 376
Упражнения 390
Литература 392
Приложение А 393
Множество символов ASCII 393
Приложение В 394
Синтаксические диаграммы Паскаля 394
Указатель программ 400
Указатель 401
Указатель программ
1.1. Вычисление степеней двойки 30
1.2. Сканер 42
1.3. Чтение вещественного числа 63
1.4. Печать вещественного числа 65
2.1. Сортировка

простымивключениями 79
2.2. Сортировка включениями 80

бинарными2.3. Сортировка простым выбором 82
2.4. Сортировка методом пузырька84
2.5. ІІІейкер-сортировка 862.6. Сортировка Шелла 89
2.7. Просеивание 93
2.8. Пирамидальная сортировка 95
2.9. Разделение 97
2.10. Быстрая сортировка 99
2.11. Нерекурсивная версия быстрой сортировки 100
2.12. Поиск k-го элемента 105
2.13. Сортировка простым слиянием 114
2.! 4. Сортировка естественным слиянием 121
2.15. Сортировка сбалансированным слиянием 126
2.16. Многофазная сортировка 138
2.17. Распределение начальных серий с помощью пирамиды 145
3.1. Кривые Гильберта 157
3.2. Кривые Серпинского 161
3.3. Ход коня 167
3.4. Восемь ферзей (одно решение) 172
3.5. Восемь ферзей (все решения) 174
3.6. Устойчивые браки 180
3.7. Оптимальная выборка 184
4.1. Включение в список 204
4.2. Топологическая сортировка 218
4.3. Построение идеально сбалансированного дерева 227
4.4. Поиск с включениями 236
4.5. Построение таблицы перекрестных ссылок 240

Указатель

Адельсон-Вельский 248
Адрес 44, 48
— абсолютный 374

- базовый 374
— возврата 374
- относительный 374

Алгол-60 17, 320
Алгоритм включения в Б-дерево 285
——в ББ-дерево 296
—— в сбалансированное дерево 254

- - в список 200
- вычисления n-го факториального числа 153
— грамматического разбора 324
- линейного просмотра 203
- поиска медианы 103
—— по дереву с включением 233
- построения кустарников 300
- сортировки включениями бинарными 79
———— простыми 78
- - с убывающим приращением (сортировка IIелла) 87
4.6. Построение оптимального дерева поиска 274
4.7. Поиск, включение и удаление в Б-дереве 290
4.8. Построение таблицы перекрестных ссылок с использованием функций расстановки 308
5.1. Грамматический разбор для синтаксиса из примера 5334
5.2. Грамматический разбор для языка (5.12) 343
5.3. Транслятор для языка (5.13) 345
5.4. Грамматический разбор для ПЛ/0 356
5.5. Грамматический разбор для ПЛ/0 с восстановлением при ошибках 368
5.6. Транслятор для ПЛ/0 380
—— выбором простым 81
—— обменом простым 83
—— пирамидальной 90
—— с разделением 96
—— слиянием естественным 115
- - слиянием многофазным 137
———— простым 109
- - сбалансированным N путевым 122
- удаления из Б-дерева 288
- - из сбалансированного дерева 256
— шейкер-сортировки 85
Алгоритмы рекурсивные 9
- с возвратом 9, 168

Анализ алгоритмов сортировки 79 , $80,82,85,88,94,100,113$
Балансировка 288
Банки данных 58
Барабаны магнитные 57
Барьер 79, 203, 233
ББ-дерево см. Б-дерево бинарное Б-дерево 282

Б-дерево бинарное 295
—— симметричное 298
Буквы латинские 24
Буфер 54
Бэйер 282, 289, 295, 298
Варианты в записях 35
Вес дерева 264
Ветвь 223
Возврат 9, 168, 325
Вольтер 13
Восстановление при ошибках 373
Время патентное 58
Выборочное изменение 28
Выравнивание 46
Выражение 17

- индексное 27

Высота дерева 220
Гаусс 169
Гильберт 156
Глубина дерева 220
Горизонтальное распределение 134
Готлиб 267
Грамматический разбор 10, 328

- - нисходящий 323
- - целеориентированный 328

Граф распознавания 328

- синтаксический 328
- - детерминированный 332

Графы 19
Данные 11
Дейкстра 7, 12
Декартово произведение 31
Декартовы координаты 15, 36
Дерево 10, 19, 219

- - АВЛ-сбалансированное 248
- бинарное 223
— вырожденное 220
- идеально сбалансированное 226
- лексикографическое 238
- оптимальное 263
- поиска 231
- сильно ветвящееся 223
- сортировки 91
- упорядоченное 220
- Фибоначчи 249

2-3 дерево 295
Диаграмма зависимости 361
Дизъюнкция логическая 23
Диски магнитные 57
Дискриминант типа 36
Длина пути 220
—— взвешенная 261
—— внешнего 220

- — внутреннего 220

Доступ последовательный 53

- прямой 58
- случайный 25

Заглядывание вперед 55, 68
Заголовок списка 314
Задача об устойчивых браках 174
— о восьми ферзях 169

- о ходе коня 164
- оптимального выбора 182
- поиска медианы 103
- построения школьного расписания 41
Запись (record) 8, 31, 48
- с вариантами 36

Запись бесскобочная 377

- инфиксная 230
- польская 377
- постфиксная 230
- префиксная 230

Инвариант цикла 28
Индекс 26, 44
Интерпретатор 373
Искусственный интеллект 163
Итерация 9, 99, 154
Карта (индексов) 123, 128
Квантиль 105
Ключ 76, 303
Ключей преобразование 303
Ключи переменной длины 318
Киут 77, 86, 134, 144, 264
Кольца 19
Конкатенация 51, 52, 54
Константа 17
Конструктор 20

- записи 32
- массива 26

Контекстная зависимость 322
Конфликт 304
Конфликтов разрешение 304
Конъюнкция логическая 23
Координаты 15, 31, 36

- декартовы 15, 36

Корень дерева 220
Коэффициент заполнения 312

- использования памяти 46

Кривая Гильберта 156

- Серпинского 158

Кустарники 299
Ландис 248, 249
Лента 54

- магнитная 108

Лист дерева 220
Лорин 77
Лукасевич 377
Мак-Вити 179
Мак-Крейт 289
Мантисса 15
Массив 19, 25, 44
Матрица 29
Машина ПЛ/0 373
Медиана 101, 103
Метасимволы 320
Метод деления пополам 28
— пузырька 84
— рассеянных таблиц 307
Множеств объединение 40

- пересечение 40
- разность 40
- сложение 40
- умножение 40

Множество 15, 19, 38
Множество-степень 38
Множеству принадлежность 40
Моррис 306
Нотация 52
Область переполнения 306
Обход дерева 229
Оператор варианта 37
— присоединения 34, 286

- процедуры 190
- условный 190
- цикла 29
- - с параметром 190
- - c предисловием 190

Операции булевские 23

- над файлами 54
- отношений 40
- преобразования 20

I/O-операции 62
Операция 17, 18, 19
Описание 17
Опробирование квадратичное 307

- линейное 306

Открытая адресация 306
Очередь 198
Ошибки наведенные 373
Память для программы 373

- оперативная 295

Паскаль 8, 11, 16, 19, 62
Переменная буферная 55
Переменные 17, 23
Переупорядочение списка 209
Пирамида 91
ПЛ/0 331, 349
ПЛ/1 20
Поддерево 223
Поиск бинарный 28

- в списке 202
— медианы 103
- по дереву с включением 233
- по списку самоорганизующийся 209
Поле 48
Поле признака 36
Порядок Б-дерева 282
- частичный 211
- числа 15

Последовательность 16, 19, 52
Потомок 220
Поэтапное уточнение 11, 67, 344
Правила подстановки 320

- порождающие 320
— построения графа 329
Правило «не поднимай панику» 363
Предложения 319
Преобразование (типов) 24
- ключей 303

Приоритеты операций 40
Присваивание 19, 21, 189
Проблема пустой строки 326
Программа рабочая 373

- таблично-управляемая 328

Просеивание 92
Просмотр на один символ вперед без возврата 323
Проход 109

- по списку 201

Процедура 190
Путь внешний 222

- внутренний 220

Разряд 15, 44
Расписание школьное 41
Распознавание предложений 322
Распределение горизонтальное 134
— памяти динамическое 51, 193
Расстановка 303

- повторная 318

Реализация 47, 50
Регистр адреса команды 374

- команды 374
_ вершины стека 374
Редактирование 67
Рекурсия 9, 99, 150
- косвенная 151
- прямая 151

СББ-дерево 298
Связка динамическая 374
Сегмент 57

- логический 58
- физический 58

Сектор 58
Селектор 20, 37

- записи 32
- массива 26 Серии 115
- максимальные 115
- фиктивные 132
- фиктивные 132

Серпинский 158
Символ 23, 40, 319

- начальным 320
- пустой 24

Символы внешние 363

- возобновления 363
- нетерминальные 320
- терминальные 320
- управляющие 393

Сканер 40, 341
Слияние 109

- двухфазное 115
- естественное 115
- каскадное 149
- многопутевое 122
- однофазное 110
- простое 109
- сбалансированное 110,122
— трехленточное 109
Слова размер 44
Словарь частотный 203
Слово памяти 44
Случайный доступ 25
Смещение 48, 374
Сопрограммы 144
Сортировка 9, 74, 77
- быстрая 96
- включениями 77
- - бинарными 80
—— простыми 78
- внешняя 75
- внутренняя 75
— выбором 77
- — простым 81
- массивов 75
— методом пузырька 84
- обменом 83
- — простым 83
- пирамидальная 91
- слиянием 109
- - многофазная 128
——— простым 109
— с помощью дерева 89
- топологическая 211
— устойчивая 79
- файлов 75
- ШІелла 88
i-сортировка 88
Список 10, 198
- двунаправленный 315
- циклический 314

Сравнение 19

- методов сортировки массивов 105

Ссылки 10, 19, 193
Стек 99, 374
Строка разрядов 49

- текущая 69

Структуры данных динамические 10
—— усложненные 8, 51
— - фундаментальные 8

- древовидные 219

Структурирования методы 19
Схемы программ 56
Таблица рассеянная 307

- расстановки 305

Таблично-управляемые программы 328
Таккер 266
Тексты 59
Тип базовый 18

- данных 17
- - регулярный 26
- - скалярный 19
- - составной 30
- - стандартный 19
- индексов 26
- рекурсивный 314

Транслятор 10, 17, 40, 319
Трансляция 40
Удаление из дерева 241

- из списка 200

Узел дерева внутренний 220
— — специальный 222
Уилсон 179
Уильямс 91
Указатели 10
Уолкер 263

Упаковка 47, 49
Уровень 220
Файл 14, 19, 53

- индексированный 58
— многоуровневый 57
— персональный 14
- с прямым доступом 58

Фиктивный элемент 79
Флойд 92
Фибоначчи деревья 249

- числа 131

Фиксация 378
Форма бэкус-наурова 320

- инфиксная 377
- постфиксная 377

Формула Эйлера 247
Функция 17

- Аккермана 188
- преобразования 24
— расстановки 304
- упорядочения 75
- факториал 150
- характеристическая 49

Ханойские башни 186
Хоop 7, 8, 12, 96, 103
Xу 266
Центроид 267
Цепочка 115
Цикл 16
Цифры арабские 15, 24

- двоичные !5
- римские 15

Числа вещественные 15

- комплексные 31
- натуральные 150
- с плавающей запятой 15
- факториальные 153
- цели с 15

Число гармоническое 83
— кардинальное $18,20,39,49,50$
Читаемый вход 59

- выход 59

IIIенкер-сортировка 85
Эвристика 267 Эйлер
— контекстно-свободный 322
Эйлерова константа 83
Эффективность 49, 105
Язык Ассемблера 18

- высокого уровня 16
- контекстно-зависимый 322
- машинно-зависимый 16
- машинно-ориентированный 16
- формальный 10

Языки программирования 16
Ячейка памяти 44

ПРЕДИСЛОВИЕ РЕДАКТОРА ГІЕРЕВОДА

Уже много лет говорят о кризисе в области программирования и создания программного обеспечения. Появилась масса теорий и направлений, авторы и апологеты которых обещают быстро доставить корабль программирования к земле обетованной. Уже были и языки высокого и очень высокого уровня, и структурное программирование, и доказательство правильности, и доказательное программирование, и масса всяческих технологий. Один из авторов языка Ада в своем интервью, опубликованном в старом и уважаемом программистами журнале Communication of the ACM (1984, № 4), договорился до того, что легкость написания программ, оказывается, и не была целью разработки этого нового языка программирования. В этой ситуации все труднее становится учить программистов хорошо программировать.

На словах все признают, что в основе программирования лежит творческий акт. У учеников нужно развивать способность творчески мыслить. И здесь огромна роль учителя, не столько рассказывающего о чем-то, сколько показывающего, как он делает то-то и то-то. Заметим, что в основе обучения и действий учителя лежит тот же творческий акт. Творчество не подвластно канонам, методнкам и, тем более, технологиям. Представьте себе учебник по технологии физики или еще лучше по технологии математики, по технологии соответствуюшего мышления. Блестящие книги Пойи лишь подтверждают правило, что творчеству учат Учителя. При обучении «творческим специальностям» ученики не столько слушают, сколько смотрят, что и как делает учнтель. Они наблодают весь процесс его творчества.

Но что же делать, если нужно обучать не десятки или сотни людей, а многие тысячи? В этом случае надо полагаться на «школы», во главе которых стоят такие крупные Учителя. В школах процесс обучения и воспитания опятьтаки осиован на показе, но носит более сложный характер и захватывает значительно большее количество учеников. В программировании таких школ несколько. Одна из зару. бежных школ находится в Цюрихе, во главе ее стоит Н. Вирт. Именно отсюда пришел элегантный Паскаль, завоевавший

почти весь мир, отсюда пришли Модула и Модула-2. Здесь появнлась книга «Систематическое программирование. Введение» (Пер. с англ. - М.: Мир, 1977), и отсюда же появляется книга, перевод которой читатель держит в руках.

В ней обобщен авторский опыт многолетнего обучения программированию. Искусство автора проявилось в том, что в своей книге он подчеркивает основополагающие принципы программирования, а не конкретные особенности того или иного модного языка программирования. Благодаря этому его книге суждена долгая жизнь. Здесь почти нет никаких рецептов, рекомендаций, методик. Это набор примеров программ, про которые автор говорит: «Смотрите, как и почему я это делаю».

Действительно, читатель, посмотрите. Если Вы только начинающий программист, то для Вас книга будет очень хорошим самоучителем. Если Вы достаточно опытны, то в ней Вы обнаружите многие тонкости, которые позволят Вам усовершенствовать Ваш стиль программирования. И наконец, если Вы первый раз окунаетесь в «море программирования» и не знаете, что такое ЭВМ, то лучше оставьте эту книгу на прилавке; пусть ее купят другие: ведь программистов так много, а хороших книг для них, к сожалению, так мало.
Д. Б. Подшивалов

ПРЕДИСЛОВИЕ

В последние годы программирование для вычислительных машин стало не только средством, владение которым оказывается решающим для успешной работы во многих прикладных областях, а также и предметом научного изучения. Из ремесла программирование превратилось в академическую дисциплину. Первые крупные шаги в этом направлении были сделаны в работах Э. Дейкстры и К. Хоора. «Заметки по структурному программированию» Дейкстры *) определили новый взгляд на программирование как на предмет научного изучения и поле для интеллектуальной деятельности; этот подход получил название «революции» в программировании. В статье «Аксиоматическая основа программирования для вычислительных машин»**) Хоор продемонстрировал, что программы поддаются точному анализу, основанному на математических рассуждениях. В этих работах убедительно показано, что можно избежать многих ошибок программирования, если программисты со знанием дела будут применять те методы и приемы, которые они ранее использовали интуитивно и часто неосознанно. Основное внимание в них уделено построению и анализу программ, или, более конкретно, структуре алгоритмов, представленных текстами программ. Причем совершенно ясно, что систематический и научный подход к построению программ важен в первую очередь в случае больших программ со сложными данными. Таким образом, методы программирования включают также и все варианты структурирования данных. Программы представляют собой. в конечном счете конкретные формулировки абстрактных алгоритмов, основанные на конкретных представлениях и структурах данных. Важный вклад в упорядочение широкого разнообразия терминов и концепций, относящихся к структурам данных, был сделан Хоором в статье «О структурной организации данных»**). Стало ясно, что решения о структурировании данных нельзя принимать без

[^0]знания алгоритмов, применяемых к этим данным, и наоборот, структура и выбор алгоритмов существенным образом зави. сят от структуры данных. Говоря короче, строение программ и структуры данных неразрывно связаны.

Предлагаемая книга начинается главой о структуре данных по двум причинам. Во-первых, мы интуитивно чувствуем, что данные предшествуют алгоритмам: нужно имегь некоторые объекты, прежде чем выполнять действия с ннми. Во-вторых (и это более непосредственная причина), хотл здесь и предполагается, что читатель знаком с основными понятиями программирования, но по традиции курсы введения в программирование явно уделяют больше внимания алгоритмам, оперирующим данными со сравнительно простой структурой. В связи с этим возникла необходимость в вводной главе о структуре данных.

На протяжении всей кннги, и в частности в гл. 1, мы следуем теории и терминологии, которые были предложены Хоором *) и реализованы в языке программирования Паскаль**). Суть этой теории состоит в том, что данные прелставляют собой прсжде всего абстракции реальных объектов и формулируются предпочтительно как абстрактные структуры, не обязательно реализованные в распространенных языках программирования. В процессе конструнрования программы представление данных постепенно уточняется вслед за уточнением алгоритма, все более подчиняясь ограничениям, накладываемым конкретной системой программирования. Поэтому мы определим несколько основных строительных конструкций - структур для данных, называсмых фундаментальными структурами. Особенно важно, џто эти конструкции довольно легко реализуются на современных вычислительных машинах, поскольку только в этом случае их можно действительно рассматривать как элементы реального представления данных, т. е. как «молекулы», возникающие на окончательном этале уточнения описаний данных. Это следующие структуры: запись, массив (фиксированного размера) и множество. Неудивительно, что эти основные строительные блоки соответствуют математическим обозначениям, которые также являются фундаментальными.

Краеугольным камнем этой теории структур данных служит различие между фундаментальными и усложпепными структурами. Фундаментальные структуры - это как бы молекуль (в свою очередь состоящие из атомов) ; они являются комлонєнтами, из которых состоят усложненные структуры.

[^1]Переменные фундаментальной структуры могут менять только свое значение, сохраняя форму или множество значений, которые они могут принимать. Таким образом, размер занимаемой ими памяти остается постоянным. Напротив, усложненные структуры характеризуются изменением не только значения, но $и$ формы во время выполнения программы. Поэтому для их реализации нужно применять более сложные приемы.

Последовательный файл, или просто последовательность, в этой классификации является промежуточным. Его длина, естествснно, изменяется, но это изменение формы тривиально. Поскольку последовательный файл играет важную роль практічески во всех вычислительных системах, мы рассмотрим его среди фундаментальных структур в гл. 1 .

Во второй главе описываются различные алгоритмы сортировки. Математический анализ некоторых из них раскрывает преимущества и недостатки разных методов и помогает программисту понять важность анализа при выборе подходящего способа решений стояшей перед ним задачи. Разграничение методов сортировки массивов и методов сортировки файлов (часто называемых внутренней и внешней сортировкой) демонстрирует решающее влияние представления данных на выбор алгоритмов и их сложность. Сортировке удедяется столько внимания, так как с ее помощью можно прекрасно иллюстрировать многие принципы программирования и ситуации, возникающие и в других задачах. Создается впечатление, что можно построить целый курс программирования, выбирая примеры только из задач соргировки.

Другая тема, которой часто пренебрегают в курсах введения в программирование, но которая важна для поннмания большого числа алгоритмических решений, - это рекурсия. Поэтому третья глава посвящена рекурсивньтм алгоритмам. В ней показано, что рекурсия - это обобщение повторения (ітсрации) и поэтому является важным и мощным средством программирования. K сожалению, при обучении программированию рекурсивные методы нередко демонстрируют па прримерах, в которых достаточно простой итерации. В гл. 3, нагротив, приводятся несколько примеров задач, где рекурсия позволяет получить решение наиболее естественным образом, тогда как использование итерации сделало бы программы громоздкими и трудными для понимания. Идеальным приложением рекурсии служит класс алгоритмов с возвратом, но наиболее очевидно ее использование в алгоритмах, работающих с данными, структура которых определена рекурсивно. Подобные случаи рассматриваются в двух последних главах; третья глава дает для них соответствующую подготовку.

В гл. 4 рассматриваются динамические структуры даннblх, т. е. такие структуры, которые изменяются во время выполнения программы. Показано, что рекурсивные структуры данных являются важным подклассом обычно используемых динамических структур. Хотя в таких случаях возможно и естественно рекурсивное определение, его обычно на практике не применяют. Вместо этого программист получает доступ к механизму реализации путем использования явных ссылок, или указателей. Данная книга следует этому принципу, отражающему современное положение вещей: гл. 4 посвящена программированию со ссылками, а также спискам, деревьям и примерам, требующим еще более сложных совокупностей данных. В ней рассматривается процесс, который часто (и не совсем верно) называют «обработкой списков». Довольно много места отведено организации деревьев, и в частности деревьев поиска. Глава заканчивается рассмотрением метода рассеянных таблиц, или «хеширования», который часто предпочитают деревьям поиска. Это дает возможность сравнить два принципиально различных метода решения часто встречающейся задачи.

Последняя глава состоит из краткого введения в теорию формальньх языков и грамматического разбора и из описания транслятора для небольшого и простого языка программирования для простой вычислительной машины. Мы включили эту главу по следующим причинам. Во-первых, квалифнцированный программист должен иметь некоторое представление о методах трансляции языков программирования. Во-вторых, постоянно растет число задач, в которых для удобства работы нужно определить некоторый простой язык ввода или управления. В-третьих, поскольку формальные языки определяют рекурсивную структуру на последовательностн символов, то процессоры для них служат хорошими примерами успешного применения рекурсии, которая позволяет добиться ясной структуры там, где программы оказываются большими и даже огромными. Для наших примеров мы использовали язык, называемый ПЛ/О, так как он является компромиссом между языком слишком простым, чтобы служить хорошим примером, и языком, транслятор для которого оказался бы столь большим, что его не имело бы смысла включать в книгу, предназначенную не только для разработчиков трансляторов.

Программирование - это искусство конструирования. Как можно научить конструкторской, изобретательской деятельности? Есть такой метод: выделить простейшие строительные блоки из многих уже существующих программ и дать их систематическое описание. Но программирование представляет собой обширную и разнообразную деятельность, часто

требующую сложной умственной работы. Ошибочно считать, что ее можно свести к использованию готовых рецептов. В начестве метода обучения нам остается тщательный выбор и рассмотрение характерных примеров. Конечно, не следует считать, что изучение примеров всем одинаково полезно. При этом подходе многое зависит от сообразительности и интуицни обучающегося. Это особенно верно для относительно сложных и длинных примеров программ. Они не случайно включены в эту книгу. Длинные программы обычно часто встречаются на практике, и они лучше всего подходят для выявления того неуловимого, но важного свойства, которое называют стилем или дисциплиной. Кроме того, они служат упражнением в искусстве читать программы, которым часто пренебрегают по сравнению с искусством писать программы. Главным образом по этой причине в качестве примеров берутся целиком большие программы. Читателю показывается, как постепенно создается программа, ему даются различные «моментальные снимки» ее развития, причем эти разработки дсмонстрируют метод поэтапного уточнения деталей. Я считаю важным, рассматривая программы в их окончательном виде, уделять достаточно внимания деталям, поскольку именно в них кроются основные трудности в программировании. Представить алгоритмы в чистом виде и дать их математический анализ было бы интересно с чисто академической точки зрения, но было бы нечестно по отношению к про-граммисту-практику. Поэтому я строго придерживался принцииа представлять программы в их окончательном виде на том лзыке, на котором они могут реально выполняться в вычислительной машине.

Разумеется, здесь возникает задача найти такую форму представления, которая может быть реализована на ЭВМ и одновременно является достаточно машинно-независимой, чтобы здесь использоваться. Для этого не подходят ни широко упогребительные языки, ни абстрактная нотация. Нужный компромисс обеспечивает язык Паскаль, который разработан специально для этой цели, поэтому и используется в данной книге. Программисты, знакомые с другими языками высокого уровня, смогут легко разобраться в программах на Паскале, так как его выражения поясняются в тексте. Но это не значит, что некоторая подготовка была бы излишней. Идеальную подготовку дает книга «Систематическое программирование» ${ }^{*}$, так как она тоже основана на Паскале.

[^2]Но она не может служить учебником языка Паскаль - для этого существуют более подходящие книги *).

Настоящая книга представляет собой сжатое и переработанное изложение нескольких курсов программирования, прочитанных в Федеральном технологическом институте (ETH) в Цюрихе. Многими идеями и взглядами, изложенными в этой книге, я обязан беседам со своими сотрудниками в ETH. В частности, мне хотелось бы выразить благодарность м-ру Г. Сандмейеру за внимательное прочтение рукописи и мисс Хейди Тейлер за внимание и терпение при перепечатке текста. Я хотел бы также отметить большое влияние, оказанное встречами рабочих групп 2.1 и 2.3 IFIP и особенно многочисленными беседами, которые я вел при этом с Э. Дэйкстрой и К. Хоором. Наконец, что не менее важно, ETH щедро предоставлял вычислительные машины, без которых была бы невозможна подготовка этой книги.
H. Bupt
*) K. Jensen and N. Wirth, PASCAL - User Manual and Report Lecture Notes in Computer Science, Vol. 18 (Berlin, New York; Springer-Verlag, 1974). [Имеется перевод: Пенсен К., Вирт Н., Паскаль. Руководство для пользователя и описание языка. - М.: Финансы и статистика, 1982.]

Наш высокочтимый г. Л. Эйлер делает ном в назидание следующее залвление. Он откровснно признает:
III. что, являясь королем математиков, он все же вечно будет краснеть за вызов здравому смыслу и повседневному опыту, брошенный выводом из его формулы, согласно которой тело под действием силы притяжения к центру сферы внезапио изменит направление движения к центру;
IV. что он сделает все возможное, чтобы больше не изменять разуму, доверяясь ошибочной формуле. Он на коленях молит прощения за то, что как-то, имея в виду парадоксальный результат, он заявил: «Вычислениям следует доверять больше, чем чувствам, даже если кажется, что это противоречит действительности»;
V. что впредь он никогда больше не станет делать вычисления на шестидесяти страницах для получения результата, который по здравом размышлении можио вывести в десяти строках; и если он когда-нибудь вновь соберется, засучив рукава, считать три дня и три ночи подряд, то он прежде потратит четверть часа на раздумья о том, какие методы вычисления для этого наиболее подходящи
Вольтер, Памфлет доктора Акакия, ноябрь 1752 г.

ФУНДАМЕНТАЛЬНЫЕ СТРУКТУРЫ ДАННЫХ

1.1. BBEAEHKE

Современная цифровая вычислительная машина первоначально предназначалась для облегчения и ускорения сложных и длительных вычислений. Однако при ее использовании обычно более важной оказывается способность хранить большой объем информации и обеспечивать доступ к нему, а способность вычислять, т. е. производить арифметические действия, во многих случаях отходит на второй план.

При этом обрабатываемая информация представляет собой в некотором смысле абстракцию какой-то части реального мира. Информация, доступная вычислительной машине, состоит из некоторых данных о действительности - таких данных, которые считаются относящимися к решаемой задаче и из которых, как предполагается, можно получить нужный результат. Данные являются абстракцией действительности, поскольку в них игнорируются некоторые свойства и характеристики реальных объектов, не существенные для решаемой задачи. Поэтому абстракция - это одновременно упрощение.

В качестве примера можно рассмотреть персональный файл служащего. Каждый служащий представлен (абстрагирован) в этом файле множеством данных, существенных либо для его характеристики, либо для процедур расчета. Это множество может включать некоторую идентификацию служащего, например его имя и заработную плату. Но вряд ли оно будет содержать такие несущественные данные, как цвет волос, вес и рост.

При решении какой-либо задачи как с помощью ЭВМ, так и без нее нужио выбрать некоторую абстракцию действительности, т. е. определить множество данных, описывающих реальную ситуацию. Этот выбор зависит от задачи, которую нужно решить. Затем следует выбрать способ представления этой информации. Здесь выбор определяется инструментамл, применяемыми для решения задачи, т. е. средствами, которые предоставляет вычислительная машина. В большинстве случаев эти два этапа взаимозависимы.

Выбор представления данных часто бывает затруднителен, он не определяется однозначно имеющнімися средствами. Его

следует осуществлять с учетом действий, производимых с данными. Хороший пример здесь - представление чисел, которые уже сами являются абстракциями свойств объектов. Если единственная (или по крайней мере основная) выполняемая операция - сложение, то лучший способ представить число n - это написать n черточек. При этом правило сложения окажется абсолютно простым и очевидным. Подобный принцип используется в римских цифрах, где правила сложения для небольших чисел также достаточно просты. С другой стороны, правила сложения небольших чисел, представленных арабскими цифрами, далеко не очевидны и требуют запоминания. Но при сложении больших чисел, а также при умножении и делении положение меняется. Представление чисел с помощью арабских цифр позволяет намного легче разложить эти операции на более простые благодаря системе записи, основанной на позиционном весе цифр.

Известно, что вычислительные машины используют внугреннее представление данных, основанное на двоичных цифрах (разрядах). Для человека такое представление неудобно из-за большого количества цифр в числе, но оно является наиболее подходящим для электронных схем, поскольку два значения (0 и 1) можно удобно и надежно кодировать наличием или отсутствием электрического тока, электрического заряда или магнитного поля.

Из приведенного примера видно, что при решении вопроса о представлении данных обычно имеется несколько уровней детализации. Пусть, например, нужно изобразить положение объекта в пространстве. На первом этапе берется пара вещественных чисел, например декартовы или полярные координаты. На втором этапе они представляются как числа с плавающей запятой: каждому вещественному числу x ставится в соответствие пара целых чисел, обозначающих мантиссу \mathfrak{f} и порядок e (напримср, $x=f \cdot 2^{e}$). На третьем этапе, когда учитывается, что данные должны располагаться в памяти ЭВМ, мы получаем двоичное позиционное представление целых чисел, и на последнем этапе двоичные числа могут представляться направлением магнитного поля в магнитном запоминающем устройстве. Ясно, что первый этап определяется в основном самой задачей, а последний тесно связан с используемым вычислительным устройством. Поэтому вряд ли следует требовать, чтобы программист сам определял способы представления чисел или даже характеристики запоминающего устройства. Эти «решения низшего уровня» можно предоставить разработчикам ЭВМ, так как они располагают наибольшей информацией о ее технологии, что позволяет им выбрать способ представления чисел, пригодный для всех (или почти всех) случаев.

С этой точки зрения очевидно значение языков программирования. Язык программирования описывает некоторуь абстрактную вычислительную машину, понимающую термины этого языка, что соответствует какому-то уровню абстракции от объектов, используемых реальной ЭВМ. Следовательно, работая с таким «языком высокого уровня», программист освобождается (и отстраняется) от вопросов представления чисел, если число - элементарный объект этого языка.

Применение языка, который предоставляет нодходящее множество основных абстракций, общнх для большинства задач обработкн данных, увеличивает надежность программ. Легче написать программу, основаниую на зиакомых нотациях для чисел, множеств, последовательностей и циклов, чем на разрядах, «словах» и переходах. Разумеется, в самой ЭВМ все даннье: и числа, и множества, и последовательности - будут представлены в впде большой совокупности разрядов. Но для программиста это несущественно, если ои не заботится о подробностях представления выбранных нм абстракций и если он уверен, что представление, которое выберет манина (или транслятор), подходит для его целей.

Чем блнже абстракции к конкретной ЭВМ, тем легчс разработчику языка выбрать предс'гавление данных и тем больше всроятность, что оно будет пригодно для всех (или почти всех) возможных задач. Это накладывает определенные ограничения на уровень абстракции от реальной вычнслительной машины. Например, не нмеет смысла вклочать в язык общего назначення в качествс основньх элементов данных геометрические объекты, так как из-за сложности их представления оио будет сильно зависеть от выполняемых с ними действий. Но природа этих действий и их частота будут нензвестны разработчику универсального языка и его транслятора, поэтому любое его решение в некоторых случаях будет непригодным.

В настоящей кннге эти соображения определяют выбор нотаций для описания алгоритмов и представления данных. Понятно, что мы хотим использовать привычную математическую нотацию, т. е. числа, множества, последоватеиьносги и т. д., а не такие машинно-зависимые понятия, как последовательности разрядов. Но ясно также, что желатсльно использовать язык, для которого суцествует эффективный транслятор. В равпой мере неразумно как использозать ма-пннно-ориентированный или машинно-зависимый язык, так и составлять программу для вычислительной машнны с помощью абстрактных нотаций, не затрагивая проблему представления.

В качестве компромисса между этими крайностями был разработан язык программирования Паскаль, который и ис-

пользуется в данной книге [1.3, 1.5]. Этот язык был успешно реализован на нескольких ЭВМ, и было показано, что он достаточно близок к реальным машинам, а его свойства и их реализация довольно понятны. Кроме того, этот язык близок к другим языкам, особенно к Алголу-60, поэтому наши выводы можно использовать также применительно и к этим языкам.

1.2. концЕПция тиПА для данных

В математике принято классифицировать переменные в соответствии с некоторыми важными характеристиками. Проводится строгое разграничение, во-первых, между вещественными, комплексными и логическими переменными, во-вторых, между переменными, представляощими отдельные значения, множества значений или множества множеств, в-третьих, между функциями, функционалами, множествами функций и т. д. При обработке данных такая классификация не менее (если не более) важна. Мы будем придерживаться того принципа, что каждая константа, переменная, выражение или функция бывают определенного типа. Этот тип существеиным образом характеризует множество значений, к которому принадлежит константа, которые можст принимать переменная или выражение или которые может вырабатывать функция.

В математическнх текстах тип переменной обычно определяется по ее виду без обращения к контексту, но в программах для вычислительных машин это неприменнмо, поскольку в них обычно используются буквы только одного вида, который допускает оборудование ЭВМ (латинские буквы). Поэтому широко нспользуется правило, что тип явно задается в описании константы, переменной или функции, которое предшествует в тексте их использованию. Это правило особенно важно потому, что транслятор должен выбрать представление объекта в памяти ЭВМ. Очевидно, что объем памяти, выделяемой для переменной, должен устанавливаться в зависимости от того, какие значения она может принимать. Если эта информация известна транслятору, то можно избежать так называемого динамического распределения памяти. Это часто позволяет реализовать алгоритм более эффективно.

Таким образом, рассматриваемая здесь концепция типа, которая включена в язык программирования Паскаль, имеет следующие основные свойства [1.2]:

1. Любой тип данных определяет множество значений, к которому принадлежит константа, которые может принимать переменная (или выражение), или вырабатывать операция (или функция).
2. Тип значения, задаваемого константой, переменной нли выражением, можно определить по их виду или описанию без необходимости выполнять какие-либо вычисления.
3. Каждая операция или функция требует аргументов фиксированного типа и выдает результат фнксированного типа. Если операция допускает аргументы нескольких типов (например, «十» используется для сложения как целых, так и вещественных чисел), то тип результата можно определить по специальным правилам языка.

Следовательно, транслятор может использовать информацию о типах для проверки вычислимости и правильности различных конструкций. Например, присваивание арифметической (вещественной) переменной булевского (логического) значения можно выявить без выполнения программы. Такая избыточность в тексте программы является важным вспомогательным средством разработки программ и рассматривается как существенное преимущество хороших языков высокого уровня перед машиниым кодом или символическим языком ассемблера. Конечно, в конце концов данные будут представлены в виде большого количества двоичных цифр независимо от того, была ли программа написана на языке высокого уровня с использованием концепции типа или на языке ассемблера, где типы отсутствуют. Для вычислительной машины память - это однородная совокупность разрядов без какой-либо структуры. Но именно абстрактная структура позволяет программисту определять типы данных на фопе однообразных записей в памяти ЭВМ.

Теория, которая используется в этой книге, и язык программирования Паскаль предполагают некоторые методы определения типов данных. В большинстве случаев новые типы данных определяются с помощью ранее определенных типов данных. Значения, принадлежащие к такому типу, обычно представляют собой совокупности значений компонент, принадлежащих к определенным ранее типам компонент, такие составные значения называются структурированными. Если имеется только один тип компонент, т. е. все компоненты принадлежат одному типу, то он называется базовым.

Число различных значений, принадлежащих типу T, называется кардинальным числом T. Кардинальное число определяет размер памяти, нужной для размещения переменной x типа T. Этот факт обозначается так - $x: T$.

Поскольку типы компонент могут также быть составными, можно построить целую иерархию структур, но конечные компоненты структуры, разумеется, должны быть атомарными. Следовательно, система нотаций должна допускать описание

и простых, неструктурированных типов. Самый простой метод описания простого типа - это перечисление значений этого типа. Например, в программе, связанной с плоскими геометрическими фигурами, может описываться простой тип, называемый фигурой, значения которого задаются идентификаторами прямоугольник, квадрат, эллипс, круг. Но кроме типов, задаваемых программистом, нужно иметь некоторые стандартные типы, которые называются предопределенными. Они обычно включают числа и логические переменные. Если значения некоторого типа упорядочены, то такой тип называется упорядоченным или скалярным. В Паскале предполагается, что все неструктурированные типы упорядочены, в случае когда значения явно перечисляются, считается, что они упорядочены в порядке перечисления.

Применяя эти правила, можно описывать простые типы н строить из них структурированные типы любой степени сложности. Однако на практике недостаточно иметь только один общий метод объединения тилов компонент в структуру. С учетом практических задач представления и использования данных универсальный язык должен располагать несколькими методами структурирования. Они могут быть эквивалентны в математическом смысле и различаться только операциями построения их значений и выбора компонент этих значений. Основные рассматриваемые здесь методы позволяют строить следующие структуры: массив, запись, множество и последовательность (файл). Более сложные структуры обычно не описываются как «статические» типы, а «динамически» создаются во время выполнения программы, причем их размер и вид могут изменяться. Такие структуры рассматриваются в гл. 4 - это списки, кольца, деревья и общие конечные графы.

Переменные и типы данных вводят в программу для того, чтобы их использовать в каких-либо вычислениях. Следовательно, нужно еще иметь и некоторое множество операций. Вместе с типами данных язык программирования задает некоторые простые, стандартные (атомарные) операции и методы структурирования, которые позволяют описывать сложные действия в терминах простых операций. Сутыо искусства программирования обычно считается умение составлять операции. Однако мы увидим, что не менее важно умение составлять данные.

Важнейшие основные операции - это сравнение и присваивание, т. е. проверка равенства (и порядка в случае упорядоченных типов) и команда «установки равенства». Принципиальное различие этих двух операций выражается четким различием их обозначений в тексте (хотя оно, к сожалению, скрыто в таких широко распространенных языках, как

Фортран и ПЛ/ 1 , которые используют знак равенства в качестве оператора присваивания):

Проверка равенства: $x=y$
Присваивание: $x:=y$
Эти основные операции определены для большинства типов данных, но следует заметить, что для данных, имеющих большой объем н сложную структуру, выполнение этих операций может сопровождаться довольно сложными вычислениями.

Кроме проверки равенства и присванвания имеется еще один класс основных, неявно определенных операций - тлк называемых операций преобразования. Этн операцни отображают одни типы данных в другие. Особенно они важны для составных типов. Составные значения строятся из значений компонент с помощью так называемых конструкторов, а зннчения компонент извлекаются с помощью так называемых селекторов. Таким образом, конструкторы и селекторы - это операции преобразования, отображаюцие типы компонеит в составные типы и наоборот. Каждому методу структурирования соответствует своя пара конструкторов и селекторов, обозначения которых четко различаются.

Стандартным простым тилам данных соответствует также некоторое множество стандартных простых операций. Следьвательно, вместе со стандартными типами данных: числами и логическими зиачениями - вводятся также соответствуощие арифметические и логические операции.

1.3. ПРОСТЫЕ ТИПЫ ДАННЫХ

Во многих программах целые числа используются в том случае, когда их собственно числовое значение несушественно и когда целое число указывает на выбор значения из небольшого множества возможных вариантов. В подобных случаях мы вводим новый, простой, неструктурированный тип T, перечисляя множества всех его возможных значений c_{1}, c_{2}, \ldots ..., c_{n} :

$$
\begin{equation*}
\operatorname{type} T=\left(c_{1}, c_{2}, \ldots, c_{n}\right) \tag{1.1}
\end{equation*}
$$

Кардинальное число T есть $\operatorname{card}(T)=n$.
Примеры:
tyре фигура $=$ (прямоугольник, квадрат, эллипс, круг)
tуре цвет $=$ (красный, желтый, эеленый) type пол $=$ (мужской, женский) type Boolear $=$ (false, true)
type день $=$ (понедельник, вторник, среда, четверг, плтница, суббота, воскресенье)
type валюта $=$ (франк, марка, фунт, доллар, шиллинг, лира, гульден, крона, рубль, крузейро, иена)
type обитель $=(a \partial$, чистилище, рай $)$
type транспорт $=($ поезд, автобус, автомобиль, пароход, самолет)
tуре звание $=($ рядовой, капрал, сержант, лейтенант, капитан, майор, полковник, генерал)
type объект $=$ (константа, тип, переменная, процедура, функция)
type структура $=$ (файл, массив, запись, множество)
type состояние $=$ (выключено, пустое, ошибка, перекос)
При определении таких типов вводится не только новый идентификатор типа, но одновременно - множество идентификаторов, соответствующих значениям этого типа. Эти идентификаторы могут затем использоваться в программе как константы, при этом программа становится намного понятней. Если, например, мы определим переменные s, d, r и b
var s: 120Ω
var d : день
var r : звание
var b : Boolean
то возможны следующие операторы присваивания:

$$
\begin{aligned}
& s:=\text { мужской } \\
& d:=\text { воскресенье } \\
& r:=\text { майор } \\
& b:=\text { true }
\end{aligned}
$$

Очевидно, что они намного более информативны, чем операторы

$$
s:=1 \quad d:=7 \quad r:=6 \quad b:=2
$$

которые будут им соответствовать, если s, d, r и b определить как переменные целого типа, а соответствующие константы изображать натуральными числами, определенными порядком перечисления. В дальнейшем транслятор может выявлять неуместное использование арифметических операций на таких нечисловых типах, как, например:

$$
s:=s+1
$$

Однако если тип считается упорядоченным, то полезно определить функции, которые выдают предшествующее и последующее эначения для своего аргумента. Эти функции

обозначаются как $\operatorname{succ}(x)$ (последующее значение) и $\operatorname{pred}(x)$ (предшествуощее значение). Упорядоченность значений типа T определяется правилом

$$
\begin{equation*}
\left(c_{i}<c_{i}\right) \equiv(i<j) \tag{1.2}
\end{equation*}
$$

1.4. СТАНДАРТНЫЕ ПРОСТЫЕ ТИПЫ

Стандартные простые типы - это типы, которые являются встроенными для большинства ЭВМ. Они включают целые числа, логические значення и множество символов печати. В крупных вычислительных машинах имеются также вещюственные ччисла и соответствующее множество простых операщий. Мы обозначаем эти типы идентификаторами:

> integer, Boolean, real, char.

Тип integer содержит подмножество целых чисел, размер которого может быть различным в разных вычислительных системах. Но предполагается, что все действия с данными этого типа являются точными и выполняются по обычным правилам арифметики и что вычисление прерывается, если результат оказывается за границами допустимого подмножества. Стандартные операции - это четыре действия арифметики: сложение (+), вычитание (-), умножение (*) и деление (div). Последнее должно давать целый результат, опуская возможный остаток, так, что для любых m и n

$$
\begin{equation*}
m-n<(m \operatorname{div} n)^{\bullet} n \leqslant m \tag{1.3}
\end{equation*}
$$

Операция взятия остатка определяется с помощью делення уравнеписм

$$
\begin{equation*}
(m \operatorname{div} n)^{*} n+(m \bmod n)=m \tag{1.4}
\end{equation*}
$$

Таким образом, $m \operatorname{div} n$ - это целое от деления m на n, а $m \bmod n$-остаток от деления.

Тип real обозначает подмножество вещественных чисел. В то время как арифметические действия с целыми числами дают точные результаты, для арифметических действий со значениями типа real допускается неточность в пределах ошибок округлення, так как в вычислениях участвует конечнос число цифр. В этом состоит явное различие между типами integer и real, существующее в большинстве языков программирования.

Делепие вещественных чисел, дающее вещественный результат, мы обозначаем косой чертой (/), а делешие целых чисел-div.

Два значения стандартного типа Boolean (булевское) обозначаются идентификаторами true (истина) и false (ложь),

Таблнца 1.1. Булевские операции

p	q	$p \vee q$	$p \wedge q$	$\neg p$
true	true	true	true true	false
false	true	false		
false	true	false false	true false	false
false	true			

Операции над булевскими значениями - это логические конъюнкция, дизъюнкция и отрицание, значения которых приведены в табл. 1.1. Логическая конъюнкция обозначается символом ' \wedge (или and), логическая дизъюнкция - символом \checkmark (или or), а отрицание - символом ᄀ (или not). Заметим, что операции сравнения дают результат типа Boolean. Следовательно, результат сравнения можно присваивать какойлибо булевской переменной или использовать в качестве операнда в булевских выражениях. Например, пусть даны булевские переменные p и q и целые переменные $x=5, y=8$, $z=10$, тогда присваивания

$$
\begin{aligned}
& p:=x=y \\
& q:=(x<y) \wedge(y \leqslant z)
\end{aligned}
$$

дают $p=$ false и $q=$ true.
Стандартный тил char включает множество печатаемых символов. К сожалению, не существует общего стандартного множества символов, принятого во всех вычислительных снстемах. Поэтому использование слова «стандартный» может здесь ввести в заблуждение; его следует понимать в смысле «стандартный для вычислительной системы, на которой должна выполняться данная программа».

По-видимому, наиболее широко используется множество символов, определенное Международной организацией по стандартизации (ISO), и особенно его американская версия ASCII (американский стандартный код для обмена информацией). Поэтому в приложении A дана таблица символов ASCII. Она включает 95 печатаемых (графических) символов и 33 управляющих символа; последние используются в основном для передачи данных и для управления печатающим устройством. Широко распространено подмножество из 64 печатаемых символов (только прописные буквы), которое называется ограниченным множеством ASCII.

Для того чтобы описывать алгоритмы, работающие с символами, т. е. значениями типа char, независимо от вычислительной системы мы определим некотпрые свойства

множества символов, делающие его связным. Это следующие свойства:

1. Тип char содержит 26 латинских букв, 10 арабских цифр и некоторое количество других графических символов таких, как знаки препинания.
2. Подмножества букв и цифр упорядочены и связны, т. е.

$$
\begin{align*}
& \left({ }^{\prime} A^{\prime} \leqslant x\right) \wedge\left(x \leqslant Z^{\prime}\right) \equiv x-\text { буква }, \\
& \left({ }^{\prime} 0^{\prime} \leqslant x\right) \wedge\left(x \leqslant 9^{\prime}\right) \equiv x \text { - цифра. } \tag{1.5}
\end{align*}
$$

3. Тип char содержит непечатаемый, пустой символ (пробел), который может использоваться как разделитель. (На рис. 1.1 пробелы обозначаются как -..)

Для написания программ в машинно-независимом виде особенно важно наличне функций преобразования между

Рис. I.I. Представления текста.
двумя стандартными типами char и integer. Мы называем эти функции $\operatorname{ord}(c)$ - порядковый номер символа c в множестве char и $\operatorname{chr}(i)-i$-й символ множества char. Таким образом, chr - это обратная функция от ord и наоборот, т. е.

$$
\begin{align*}
& \operatorname{ord}(\operatorname{chr}(i))=i \quad(\text { если } \operatorname{chr}(i) \text { определена }), \\
& \operatorname{chr}(o r d(c))=c \tag{1.6}
\end{align*}
$$

Особого внимания заслуживают функции

$$
\begin{gather*}
f(c)=\operatorname{ord}(c)-\operatorname{ord}\left(\left(^{\prime} 0^{\prime}\right)=\text { положение } с\right. \text { среди цифр, } \\
g(i)=\operatorname{chr}\left(i+\operatorname{ord}\left({ }^{\prime} 0^{\prime}\right)\right)=i \text {-я цифра. } \tag{1.7}
\end{gather*}
$$

Например, $f\left(3^{\prime}\right)=3, g(5)={ }^{\prime} 5^{\prime}$. Таким образом, f-обратная функция от g и наоборот, т. е.

$$
\begin{array}{ll}
f(g(i))=i & (0 \leqslant i \leqslant 9) \\
g(f(c))=c & \left(^{\prime} 0^{\prime} \leqslant c \leqslant 9^{\prime}\right) \tag{1.8}
\end{array}
$$

Эти функции преобразования используются для перевода внутреннего представления чнсел в последовательности цифр и наоборот. Они фактически и представляют собой такой перевод на простейшем уровне - для одной цифры.

1.5. ОГРАНИЧЕННЫЕ ТИПЫ

Часто бывает, что переменная принимает значения некоторого типа только в определенном интервале. Это можно выразить, определив переменную ограниченного типа, который описывается так:

$$
\begin{equation*}
\text { type } T=\min \ldots \max \tag{1.9}
\end{equation*}
$$

где \min и max - границы интервала.
Примероь:

$$
\begin{aligned}
& \text { type } 2 о д=1900 \ldots 1999 \\
& \text { type буква }=\text { ' } A^{\prime} \ldots ' Z^{\prime} \\
& \text { type цифра }=0^{\prime} \ldots ' 9^{\prime} \\
& \text { type офицер }=\text { лейтенант . .еснерал }
\end{aligned}
$$

Пусть даны переменные:
$\operatorname{var} y: 2 o \partial$
var $L: б у \kappa \theta a$

тогда присваивания $y:=1973$ и $L:==^{\prime} W^{\prime}$ разрешены, а $y:=$ $:=1291$ и $L:={ }^{\prime} 9^{\prime}$ не разрешены. Транслятор может проверять законность таких присваиваний только в том случае, ссли присваиваемое значение суть константа или переменная того же типа. Допустимость присваиваний вида

$$
y:=i \quad \text { и } \quad L:=c
$$

где i - типа integer, а c - типа char, можно проверить только во время выполнения программы. Системы, выполняющие такие проверки, оказались на практике чрезвычайно полезными для разработки программ. Использование ими избыточной информации для выявления возможных ошибок также является одной из основных причин применения языков высокого уровня.

1.6. МАССИВЫ

Массив - это, по-видимому, наиболее широко известная структура данных, так как во многих языках, включая Ал. гол-60 и Фортран, это единственная структура, которая существует в явном виде. Массив - это регулярная структура: все его компоненты - одного типа, называемого б́азовымя типом. Массив - также структура с так называемым случайным доступом, все его компоненты могут выбираться произвольно и являются одинаково доступными. Для обозначения отдельной компоненты к имени всего массива

добавляется так называемый индекс, позволяющий выбрать компоненту. Индекс должен иметь значение типа, определенного как тип индексов массива. Описание регулярного типа T задает, таким образом, не только базовый тип T_{0}, но и тип, индексов I:

$$
\begin{equation*}
\text { type } T=\operatorname{array}[/] \text { of } T_{0} \tag{1.10}
\end{equation*}
$$

Примеры:

$$
\begin{aligned}
& \text { type Row }=\text { array[1 . . 5] of real } \\
& \text { type Card }=\operatorname{array[1..80]~of~char~} \\
& \text { type alfa }=\text { array[1 . . 10] of char }
\end{aligned}
$$

Конкретное значение переменной
$\operatorname{var} x$: Row
если каждая компонента удовлетворяет равенству $x_{i}=2^{-i}$, может иметь вид, как показано на рис. 1.2.

x_{1}	0,5
x_{2}	0,25
x_{3}	0,125
x_{4}	0,0625
x_{5}	0,03125

Рис. I.2. Массив типа гош.
Составное значение x типа T со значениями компонент c_{1}, \ldots, c_{n} может задаваться с помощью конструктора ${ }^{*)}$ массива и оператора присваивания:

$$
\begin{equation*}
x:=T\left(c_{1}, \ldots, c_{n}\right) \tag{1.11}
\end{equation*}
$$

Операция, обратная конструктору, - селектор. Он позволяет выбрать из массива отдельную компоненту. Если в качестве переменной x рассматривать массив, то селектор массива обозначается с помощью имени массива, дополненного соответствующим индексом компоненты i :

$$
\begin{equation*}
x[i] \tag{1.12}
\end{equation*}
$$

При работе с массивами, особенно большими, обычно выборочно изменяют отдельные компоненты, а не строят заново
*) В языке Паскаль такие консгрукторы отсутствуют. - Прим. ред.

все составное значение. При этом переменная-массив рас-
, кается присваивание значения отдельным компонентам.

Пример:

$$
x[i]:=0.125
$$

Хотя при выборочном присваивании меняется только значение отдельной компоненты, с точки зрения построения концепции следует считать, что изменилось все составное значение.

То, что индексы массива, т. е. «имена» ero компонент, должны быть определенного (скалярного) типа, имеет весьма важные следствия. Индексы могут вычисляться, вместо индексной константы можно использовать индексное выражение. Значение этого выражения вычисляется, и результат определяет выбираемую компоненту. Такая общность дает ие только одно из важнейших и мощных средств программијования, но и приводит к одной из самых частых ошибок, так как полученное значение выражения может не понасть в интервал, заданный в качестве диапазона для индексов данного массива. Мы будем счнтать, что в случае такого ошибочпого обращения к несуществующей компоненте массива алекватная вычислительная система выдает предупреждение.

Обычно тип индексов должен быть скалярным, т. е. неструктурированным, тиюом, на котором определено отношение порядка. Если базовый тип массива также упорядоче!иый, то на таком регулярном типе имеется естественное отношение порядка. Для двух магсивов упорядочение опреде.ляется с помощью сравнения компонент с наименьшими индексами. Формально это можно описать следующим образом:

Если имеются два массива x и y, то отношение $x<y$ выполняется в том и только том случае, если существуст индекс k такой, что

$$
x[k]<y[k] \quad \text { и } \quad x \mid i]=y[i] \quad \text { для всякого } i<k . \quad \text { (1.13) }
$$

Наиример,

$$
\begin{gathered}
(2,3,5,7,9)<(2,3,5,7,11) \\
' L A B E L^{\prime}<' L I B E L '
\end{gathered}
$$

Одиако обычно считается, что массивы никак не упоря. дочены.

Кардинальное число составного типа равно произведению кардинальных чисел тинов его компонент. Поскольку все компоненты регулярного типа A принадлежат к одному и тому

же базовому типу B, мы получим

$$
\begin{equation*}
\operatorname{cardinality}(A)=(\operatorname{cardinality}(B))^{n} \tag{1.14}
\end{equation*}
$$

где $n=$ cardinality ($/$), а I - тии индексов массива.
В следующем небольшом фрагменте программы показано использование селектора для массива. Цель этой программы - найти наименьший индекс i компоненты со значением x. Поиск выполняется с помощыо последовательного просмотра массива a, описанного как

$$
\begin{align*}
& \text { var } a \text { : array }[1 . . N] \text { of } T ;\{N>0\} \\
& i:=0 ; \\
& \text { repeat } i:=i+1 \text { until }(a[i]=x) \vee(i=N) \text {; } \tag{1.15}\\
& \text { if } a[i] \neq x \text { then «в а нет такого элемента» }
\end{align*}
$$

В другом варианте этой программы примсняется распространенный прием фиктивного элемента, нли барьера, расположенного в конце массива. Использование барьера позволяет упростить условие окончания цикла:

$$
\begin{align*}
& \text { var } a: \operatorname{array}[1 . . N+1] \text { of } T ; \\
& i:=0 ; a[N+1]:=x ; \\
& \text { repeat } i:=i+1 \text { until а }[i]=x ; \tag{1.16}\\
& \text { if } i>N \text { then «в а нет такого элемента» }
\end{align*}
$$

Присваивание $a[N+1]:=x$ является примером выборочного изменения, т. е. изменения отдельной компоненты составной переменной. В обсих версиях (1.15) и (1.16) основным условием, выполняюшимся вне зависимости от того, сколько раз выполняется оператор $i:=i+1$, является

$$
a[j] \neq x \quad \text { для } \quad j=1 \ldots i-1
$$

Поэтому оно называется инвариантом цикла.
Разумеется, поиск можно значительно ускорить, если компоненты уже упорядочены (рассортированы). В этом случае чаще всего применяется метод повторного деления пополам интервала, в котором ищется нужный элемент. Такой прием называется методом деления пополам или бинарным поиском, он показан в программе (1.17). При каждом повторении просматриваемый интервал между индексами i и j делится пополам. Поэтому максимальное число требующихся сравнений равно $\left[\log _{2}(N)\right]$

$$
\begin{align*}
& i:=1 ; j:=N \text {; } \\
& \text { repeat } k:=(i+j) \text { div } 2 ; \tag{1.17}\\
& \text { if } x>a[k] \text { then } i:=k+\frac{1}{} \text { else } j:=k-1 \\
& \text { until }(a[k]:=x) \vee(i>j)
\end{align*}
$$

(Соответствующим инвариантным условием выхода из цикла является

$$
\begin{array}{lll}
a[h]<x & \text { для } & h=1 \ldots i-1 \\
a[h] \geqslant x & \text { для } & h=j+1 \ldots N
\end{array}
$$

Слсдовательно, если программа заканчивается при $a[h] \neq x$, то не существует $a[h]=x$ для $1 \leqslant h \leqslant N$.)

Компоненты массива могуг в свою очередь быть составнымн. Переменная-массив, компоненты которой являюотся масснвами, называется матрицей. Например,

$$
M: \operatorname{array}[1 . .10] \text { of Row }
$$

- это массив, состоящий из десяти компонент (строк), каждая из которых состоит нз пятн компонент вещественного типа. Этот массив называется матрицей 10×5 с вещественными компонентами. Селекторы могут соответствующим образом следовать один за другим, так что

$M[i][j]$

обозначает j-ю компоненту строки $M[i]$, являющейся i-й ком понентой $М$. Обычно это записывается короче, как

$$
M[i, j]
$$

и точно так же описанне

$$
M: \text { array }[1 \ldots 10] \text { of array }[1 \ldots 5] \text { of real }
$$

можно записать проще, как

$$
M: \text { array }[1 \ldots 10,1 \ldots 5] \text { of real }
$$

Если нужно выполнить некоторое действие со всеми компонентами массива или с расположенными подряд компонентамп какой-то части массива, то для этого удобно использовать оператор цикла, как показано в следующем примере.

Пусть дробь f представляется с помощью массива d, так, что

$$
f=\sum_{i=1}^{k-1} d_{i} * 10^{-i}
$$

т. е. в десятичном виде с $k-1$ цифрами. Теперь пусть f нужно разделить на 2. Для этого обычную операцию деления производят со всеми $k-1$ цифрами d_{i}, начиная с $i=1$. При этом деление цифры на 2 выполняется с учетом возможного переноса из предыдущей позиции, и на следующий шаг

передается возможный остаток (см. 1.18)

$$
\begin{align*}
& r:=10 * r+d[i] \\
& d[i]:=r \operatorname{div} 2 \tag{1.18}\\
& r:=r-2 * d[i]
\end{align*}
$$

Этот процесс используется в программе 1.1 для получения таблицы отрицательных степеней 2. Оператор цикла удобно использовать также и для деления пополам при вычисленни $2^{-1}, 2^{-2}, \ldots, 2^{-n}$; таким образом получается вложенность двух операторов цикла.
program power (output);
(десятичное представление отрицательных степеней двойки\} const $n=10$;
type digit $==0 . .9$;
var i, k, r : integer;
$d:$ array [1 . . n] of digit;
begin for $k:=1$ to n do
begin write($(\cdot) ; r:=0$;
for $i:=1$ to $k-1$ do
begin $r:=10 * r+d[i] ; d[i]:=r$ div 2 ;
$r:==r-2 * d[i] ;$ write $\left(\operatorname{chr}\left(d[i]+\operatorname{ord}\left({ }^{(} 0^{\prime}\right)\right)\right)$
end ;
$d[k]:=5 ;$ writeln('5’)
end
end.
Программа 1.1. Выqисление степеней двойки.
Результат для $n=10$ имеет вид
. 5
.25
.125
. 0625
.03125
. 015625
. 0078125
. 00390625
. 001953125
. 0009765825

1.7. ЗАПИСИ

Самый общий метод получения составных типов - 9то объединение компонент, принадлежащих к произвольным, возможно, тоже составным типам, в один составной тип. При•

меры из математики - это комплексные числа, состоящие пз двух вещественных чисел, и координаты точек, состоящие из двух или более вещественных чисел в зависимости от размерности пространства, заданного системой координат. Пример из обработки данных - это описанне людей с помощью нескольких существенных характеристик, таких, как имя и фамилия, дата рождения, пол и семейное положение.

В математике такой составной тип называется декартовим произведением типов компонент. Это связано с тем, что множество значений такого составного типа состоит из всех возможных комбинаций значений, взятых по одному из каждого типа компонеит. Следовательно, число таких наборов из n чнсел равно произведению количеств элементов всех составляющих множеств, так что кардинальное число составного типа равно произведению кардинальных чнсел всех типов компонент.

В обработке данных комбинированные типы, такие, как описания людей или объектов, часто встречаются в файлах или «банках данных» и представляют собой запнси существенных характеристик человека или объекта. Поэтому слово «запись» (record) стало широко принятым для обозначения подобной совокупности дакных, и мы будем использовать этот термин вместо термина «декартово произведение».

В общем виде составной тип T определяется следующим образом:

Cardinality $(T)=$ cardinality $\left(T_{1}\right) * \ldots * \operatorname{cardinality}\left(T_{n}\right)$
Примеры:

$$
\begin{aligned}
& \text { type Complex }=\text { record re: real; } \\
& \text { im: real } \\
& \text { end } \\
& \text { type Date }=\text { record day: 1.. 31 } \text {, } \\
& \text { month: 1. . 12; } \\
& \text { year: 1. . } 2000 \\
& \text { end }
\end{aligned}
$$

```
type Person \(=\) record name: alfa;
    firstname: alfa;
    birthdate: Date;
    sex: (male, female);
    marstatus: (single, married,
        widowed, divorced)
end
```

Значение типа T можно строить с помощью конструктора заииси*) и, следовательно, присваивать его переменной этого типа:

$$
\begin{equation*}
x:=T\left(x_{1}, x_{2}, \ldots, x_{n}\right) \tag{1.20}
\end{equation*}
$$

где x_{i} - значение типа компоненты T_{i}.
Пусть даны переменные-записи:
$z:$ Complex
$d:$ Date
$p:$ Person

им могут присваиваться отдельные значения, например, следующим образом (см. рис. 1.3):
$z:=$ Complex (1.0, - 1.0)
$d:=$ Date (1, 4, 1973)
$\mu:=$ Person ('WIRTH','CHRIS', Date(18, 1, 1966), male, single)
Идентификаторы s_{1}, \ldots, s_{n}, которые вводятся при определении комбинированного типа, являются именами отдельных

Date d

Person p

WIRTH CHRIS 18 1 male single	

Рис. 1.3. Записи типов Complex, Date, Person.
компонент переменных этого типа, они употребляются в селекторах записи, где их добавляют к переменной, обозначающей всю запись. Если имеется переменная x : T, то ее

[^3]i-я компонен'га обозначается как
$x . s_{i}$

Если такой сслектор стоит в левой части оператора присваивания, то происходит выборочное изменение x :

$$
x \cdot s_{i}:=x_{i}
$$

где x_{i} - значение выражения типа T_{i}.
Если даны переменные:
$z:$ Complex
$d:$ Date
$p:$ Person

то их можно использовать, например, со следующими селекторами:

z.im	(типа real)
d.month	(типа 1..12)
p.name	(типа alfa)
p.birthdate	(типа Date)
p.birthdate.day	(типа 1..31)

На примере типа Person мы видим, что компоненты записи могут в свою очередь быть составными. Таким образом, селекторы могут добавляться один к другому. Кроме того, разные составные типы могут комбинироваться различными способами. Например, i-я компонента массива a, который является компонентой записи r, обозначается как

$$
r . a[i]
$$

а компонента с селектором s, входящая в i-ю компонентузапись массива записей a, обозначается как

$$
a[i] . s
$$

Декартово произведение в принципе содержит все комбинации значений типов компонент. Однако следует заметить, что на практике не все такие комбинации могут быть «законными», т. е. иметь смысл. Например, тип Date, определенный выше, включает значення

$$
(31,4,1973) \text { и }(29,2,1815)
$$

хотя дней с такимн датами не существует. Таким образом, определение этого тила не отражает реального положения

вещей. Все же оно достаточно близко к практическим целям, и ответственность за то, чтобы при выполнении программы не возникали подобные бессмысленные значения, возлагается на программиста.

В следующем небольшом фрагменте программы показано использование записей. Его задача - сосчитать число «людей» в массиве a, которые одновременно принадлежат женскому полу и одиноки:

```
var \(a\) : array \([1 . . N]\) of Person;
    count: integer;
count \(:=0\);
for \(i:=1\) to \(N\) do
    if \((a[i]\). sex \(=\) female \(), \wedge(a[i]\) marstatus \(=\) single \()\) then
        count \(:=\) count +1 .
```

Инвариант цикла здесь

$$
\text { count }=C(i)
$$

где $C(i)$ - число одиноких женщин в подмножестве a_{1}, \ldots, a_{i}.
В другом варианте записи этого оператора используется конструкция, которая называется оператором присоединения:

$$
\begin{align*}
& \text { for } i:=1 \text { to } N \text { do } \\
& \quad \text { with } a[i] \text { do } \\
& \quad \text { if }(\text { sex }=\text { female }) \wedge(\text { marstatus }=\text { single }) \text { then } \tag{1.23}\\
& \quad \text { count }:=\text { count }+1
\end{align*}
$$

Выражение with r dos означает, что внутри оператора s селекторы переменной r можно использовать без префикса: считается, что все они ссылаются на переменную r. Таким образом, оператор присоединения позволяет сократить текст программы, а также предотвращает повторное вычисление адреса индексированной компоненты $a[i]$.

В следующем примере мы предполагаем, что некоторые группы людей в массиве а чем-го объединены (возможно, чтобы их можно было быстрее находить). Связующая информация выражается дополнительной компонентой записи Person, называемой link (связь). Эти компоненты соединяют записи в линейный список, так что для каждого человека легко можно найти предшествующую и последуюшую записи. Интересно, что при таком методе связывания можно легко просматривать спнсок в обоих направлениях, используя только одно число, хранящееся в каждой записи. Это делается следующим сбразом.

Предположим, что индексы трех последовате.тьных элемєнтов списка есть i_{k-1}, i_{k}, i_{k+1}. Значение link для k-го элемента берется равным $i_{k+1}-i_{k-1}$. При проходе по списку вперед i_{k+1} определяется двумя текуиими индексными переменными $x=i_{k-1}$ и $y=i_{k}$ по формуле

$$
i_{k+1}=x+a[y] \cdot \operatorname{link}
$$

а при проходе по списку в обратном направлении i_{k-1} onpeделяется с помошью $x=i_{k+1}$ и $y=i_{k}$ по формуле

$$
i_{k-1}=x-a[y] \cdot \operatorname{lin} k
$$

Пример объединения при помощи link всех лиц одного пола показан в табл. 1.2.

Таблица 1.2. Массив элементов типа Person

	First Name	Sex	Link
1	Carolyn	F	2
2	Chris	M	2
3	Tina	F	5
4	Robert	M	3
5	Jonathan	M	3
6	Jennifer	F	5
7	Raytheon	M	5
8	Mary	F	3
9	Anne	F	1
10	Mathias	M	3

Запись и массив шмеют общіее свойство: оба являются структурами со «случайным доступом». Запись - более универсальная структура, поскольку не требуется, чтобы типы всех ее компонент были одинаковы. С другой стороны, массив предоставляет бо́льшие возможности, так как селекторы его компонент могут выцисляться (если они представлены выражениями), тогда как селекторы компонент записи - это фиксированные идентификаторы, задаваемые в описании типа.

1.8. ЗАПИСИ С ВАРИАНТАМИ

В практической работе часто кажется удобным и естественным рассматривать два типа как варианты одного и того же типа. Например, тип Coordinate, введенный в предыдущем разделе, можно рассматривать как объединение двух

вариантов: декартовых и полярных координат, компонентами которых являются соответственно (a) две длины и (b) длина и угол. Для того чтобы определить, какой вариант принят в данный момент, вводится третья компонента. Она называется дискриминантом типа или полем признака.
> type Coordinate $=$
> record case kind: (Cartesian, polar) of
> Cartesian: ($x, \cdot y$: real);
> polar: (r: real; φ : real)
> end

Здесь имя поля признака - kind, а имена координат - либо x и y в случае значения Cartesian (декартовы), либо r и φ в случае значения polar (полярные).

Множество значений типа Coordinate есть объединение двух типов:

$$
\begin{aligned}
& T_{1}=(x, y: \text { real }) \\
& T_{2}=(r: \text { real } ; \varphi: \text { real })
\end{aligned}
$$

а его кардинальное число равно сумме кардинальных чнсел T_{1} и T_{2}.

Однако чаще всего приходится объединять не два полностыо различных типа, а два типа с частично совпадающими компонентами. Для такой ситуации применяется термин «запись с вариантами». Примером может служить тип Person определенный в предыдущем разделе, если сушественные характеристики доләкны записываться в файл в зависимости от пола. Например, для мужчины могут счнтаться в какой-то определенной ситуации существенными такие признаки, как вес и наличие бороды, а для женщины можно считать важными три ее основных размера (тогда как вес она может хранить в тайне). Исходя из этих допущений, получим следующее описание типа:

```
type Person=}
    record name, fi'stname: alfa;
        birthdate: Date;
            marstatus: (single, married, widowed, divorced);
        case sex: (male, female) of
        male: (weight: real;
            bearded: Roolean);
    female:(size: array[l . . 3] of integer)
end
```

Общий вид описания составного типа с вариантами:

```
type \(T=\)
    record \(s_{1}: T_{1} ; \ldots ; s_{n-1}: T_{n-1} ;\)
            case \(S_{n}: T_{n}\) of
            \(c_{1}:\left(s_{1,1}: T_{1,1} ; \ldots ; s_{1, r_{1}}: T_{1, n_{1}}\right) ;\)
                .............
            \(c_{m}:\left(s_{m, 1}: T_{m, 1} ; \ldots ; s_{m, n_{m}}: T_{m, n_{m}}\right)\)
    end
```

Здесь s_{i} и $s_{i j}$ - селекторы компонент, принадлежащих к типам компонент T_{i} и $T_{i j}$, а s_{n} - имя различающего поля признака типа T_{n}. Переменная x типа T состоит из компонент

$$
x . s_{i}, x . s_{2}, \ldots, x . s_{n}, x . s_{k .1}, \ldots, x . s_{k . n_{k}}
$$

в том и только том случае, когда текущее значение $x . s_{n}=c_{\text {в }}$. Компоненты $x . s_{1}, \ldots, x . s_{n}$ составляют общую часть m вариантов.

Таким образом, использование селектора $x . s_{k, h}(1 \leqslant h \leqslant$ $\leqslant n_{k}$) при $x . s_{n} \neq c_{k}$ следует рассматривать как серьезную ошибку программирования. Это может, например, означать (для типа Person, определенного выше,) проверку, является ли некая леди бородатой, или" (в случае выборочного присваивання) приписывание ей этого свойства!

Поэтому при использовании записей с вариантами требуется особое внимание. Лучше всего действия, связанные с каждым из вариантов, группировать в выбирающем селекторе, так называемом операторе варианта; его структура отражает структуру описания типа записи с вариантами:

```
case }x.\mp@subsup{S}{n}{}\mathrm{ of
    c
    c
            ...
        cm}:\mp@subsup{S}{m}{
end
```

Оператор S_{k} вынолняется в случае, когда для x выбирается k-й вариант, т. е. поле признака $x . s_{n}$ принимает значение c_{r}. Следовательно, для того чтобы предотвратить неправильное использование селекторов, нужно следить, чтобы каждый S_{i} содержал только селекторы

$$
x . s_{1}, \ldots, x . s_{n-1}
$$

и

$$
x \cdot s_{k \cdot 1}, \ldots, x \cdot s_{k, n k}
$$

В следующем небольшом фрагменте программы вычисляется расстояние между двумя точками A и B, заданными переменными a и b типа Coordinate (запись с вариангами). Способ вычисления выбирается в зависимости от четырех воз-

Рис. 1.4. Декартовы и полярные коордннаты.
можных комбинаций декартовых и полярных координат (см. рис. 1.4).
case a.kind of
Cartesian: case b.kind of
Cartesian: $d:=\operatorname{sqrt}(s q r(a . x-b . x)+\operatorname{sqr}(a . y-b . y)) ;$
Polar: $\quad d:=\operatorname{sqrt}(\operatorname{sqr}(a . x-b . r * \cos (b . \varphi)$ $-1-\operatorname{sqr}(a . y-b . r * \sin (b . \varphi))$
end;
Polar: case b.kind of
Cartesian: $d:=\operatorname{sqrt}(\operatorname{sqr}(a . r * \cos (a . \varphi)-b . x)$ $+\operatorname{sqr}(a . r * \sin (a . \varphi)-b . y)) ;$
Polar: $\quad d:=\operatorname{sqrt}(\operatorname{sqr}(a . r)+\operatorname{sqr}(b . r)$ $-2 * a . r * b . r * \cos (a . \varphi-b . \varphi))$
end
end

1.9. МНОЖЕСТВО

そроме массива и записи имеется третья фундаментальная стрјктура данных - множество. Соответствующий тип описывается следующим образом:

$$
\begin{equation*}
\text { type } T=\text { set of } T_{0} \tag{1.26}
\end{equation*}
$$

Значениями переменной x типа T являются множества элементов типа T_{0}. Множество всех подмножеств множества T_{0} называется множеством-степенью T_{0}. Таким образом, тип T - это множество-степень своего базового типа T_{0}.

Примеры:

$$
\begin{aligned}
& \text { type } \text { intset }=\text { set of } 0 \ldots 30 \\
& \text { type charset }=\text { set of char } \\
& \text { type } \text { tapestatus }=\text { set of exception }
\end{aligned}
$$

Во втором примере базовым типом является стандартное подмножество символов - тип char, в третьем примере-тип исключительных состояний магнитных лент, описанный как скалярный тип:
type exception $=($ unloaded, manual, parity, skew)
значения которого соответствуют различным состояниям устройства лентопротяжек. Если даны переменные:

```
is : intset
cs : charset
t : array[1..6] of tapestatus
```

то формировать и присваивать значения переменных-множеств можно, скажем, так: *)

$$
\begin{aligned}
& \text { is }:=[1,4,9,16,25] \\
& c s:=[‘+’, ‘-, ' * ’, ‘] \\
& t[3]:=\text { [manual }] \\
& t[5]:=[] \\
& t[6]:=\text { [unloaded. . skew] }
\end{aligned}
$$

Здесь значение, присваиваемое $t[3]$, - это множество, состоящее из одного элемента manual, t [5] присваивается пустое множество, что соответствует рабочему состоянию 5 лентопротяжки (какие-либо исключительные состояния отсугствуют), а $t[6]$ присваивается значение множества, включающего все четыре исключительных состояния.

Кардинальное число множества типа T равно

$$
\begin{equation*}
\operatorname{cardinality}(T)=2^{\text {cardinality }\left(T_{0}\right)} \tag{1.27}
\end{equation*}
$$

Это следует из того, что каждый из элементов cardinality (T_{0}) представляется в множестве одним из двух значений: «присутствует» или «отсутствует», и эти элементы входят в множество независимо друг от друга. Очевидно, что для эффективной и экономной реализации не только базовый тип

[^4]множества должен быть конечным, но и его кардинальное число - достаточно небольшим.

На всех множествах определены следующие элементарные операции:

$$
\begin{array}{ll}
* & \text { пересечение множеств } \\
+ & \text { объединение множеств } \\
\text { in } & \text { разность множеств } \\
\text { принадлежность множеству }
\end{array}
$$

Пересечение и объединение двух множеств часто называют соответственно умножением и сложением множеств; соответствующим образом определены приоритеты операций: операция пересечения имеет приоритет перед операциями объединения и разности, а они в свою очередь имеют приоритет перед операцней принадлежности. Операция принадлежности относится к классу операций отношений. Ниже приведены примеры выражений с множествами и полнос'гью эквивалентные им выражения со скобками:

$$
\begin{aligned}
& r * s+t=(r * s)+t \\
& r-s * t=r-(s * t) \\
& r-s+t=(r-s)+t \\
& x \operatorname{in} s+t=x \operatorname{in}(s+t)
\end{aligned}
$$

Наш первый пример использования множеств-программа простого сканера в трансляторе. Сканер - это процедура, задача которой - преобразовать последовательность символов в последовательность текстовых единиц транслируемого языка, так называемых лексем. При каждом вызове сканер считывает нужное число входных символов и выдает одну выходную лексему. Конкретные правила трансляции следующие:

1. Имеются следующие выходные лексемы: идентификатор, число, меньше-равно, больше-равно, присвоить-и лексемы, соответствуюцие отдельным символам, таким, как十, 一, * и т. д.
2. Лексема идентификатор выдается по прочтении последовательности букв и цифр, начинающейся с буквы.
3. Лексема число выдастся по прочтении последовательности цифр.
4. Лексемы меньше-равно, больше-равно и присвоить выдаются по прочтении соответствующих пар символов $<=$, $>=,:=$
5. Пробелы и концы строк опускаются.

B нашем распоряжении имеется простая процед!ра $\operatorname{read}(x)$, которая читает очередной снмвол из входной после-

довательности и присваивает его переменной x. Полученная выходная лексема присваивается глобальной переменной sym. Кроме того, имеются глобальные переменные id и num, назначение которых будет видно из программы 1.2 , а также ch, содержащая текущий символ входной последовательности. Массив лексем S задает отображение символов в лексемы, его индексы ограничены лишь теми символами, которые не являются ни цифрами, ни буквами. Как мы видим, использование множеств символов позволяет программировать сканер незавнсимо от нх !порядоченности.

Второй пример использования множеств - программа составления школьного расписания. Предположим, что каждый из M учеников выбирает для изучения какие-либо предметы из их общего числа N. Теперь нужно так построить расписание, чтобы можно было некоторые предметы читать одновременно и при этом не возникало бы конфликтов [1.1].

В принципе построение расписания - сложная комбинаторная задача. При ее решении нужно учитывать много различных факторов. Но в этом примере мы значительно упростим задачу и отвлечемся от реальной ситуации, для которой составляется расписание.

Прежде всего для того чтобы решить, какие предметы можно читать в одно и то же время, нужно проанализировать индивидуальные списки выбранных предметов, составленные учениками. Эти списки представляют собой перечисления предметов, которые нельзя читать одновременно. Поэтому вначале мы программируем процесс сокращения данных. Ученикам присваиваются номера от 1 до M, а предметам от 1 до N.

```
type course \(=1 \ldots N ;\)
    student \(=1 . . M ;\)
    selection \(=\) set of course;
var s: course;
    \(i\) : student;
    registration: array[student] of selection;
    conflict: array[course] of selection;
\{Определение множества курсов, вступающих в конфликт,
по спискам курсов, выбранных отдельными учащимися)
for \(s:=1\) to \(N\) do conflict \([s]:=\) [ ];
for \(i:=1\) to \(M\) do
    for \(s:=1\) to \(N\) do
    if \(s\) in registration \([i]\) then
        conflict \([s]:=\) conflict \([s]+\) registration \([i]\)
(Заметим, что из этого алгоритма следует \(s\) in conflict[s].),
```

```
var ch: char;
    sym: symbol;
    num: integer;
    id: record
        k: 0.. maxk;
        a: array [1. . maxk] of char
        end ;
procedure scanner;
    var chl: char;
begin [пропуск пробелов]
    while \(c h=\) ' \(ـ\) ' do read(ch);
    if \(c h\) in [' \(A\) ' . . ' \(Z\) '] then
        with id do
        begin sjm \(:=\) identifier \(; k:=0\);
            repeat if \(k<\operatorname{maxk}\) then
                begin \(k:=k+1 ; a[k]:=\) ch
                end ;
            read (ch)
            until 一( \(c h\) in ['A' . ' \(Z\) ' , ' 0 ' . . ' 9 '])
        end else
    if \(c h\) in [' 0 ' . . ' 9 '] then
        begin sym \(:=:=\) number; num \(:=0\);
            repeat num \(:=10 *\) num + ord \((c h)-\) ord (' \(\left.0^{\prime}\right)\);
                read (ch)
            until - ( \(c / h\) in [‘0’ . . '9’])
        end else
    if \(c h\) in ['<', ' \(\because\) ', ' \(>\) '] then
        begin ch1 \(:=c h ; \operatorname{read}(c h)\);
            if \(c h='=\) ' then
            begin
                if \(c h 1=\) ' \(<\) ' then \(s y m:=\) leq clse
                if \(\mathrm{chl}=\) ' x ' then \(\mathrm{sym}:=\) geq else \(\mathrm{sym}:=\) becomes;
                \(\operatorname{read}(c h)\)
            end
            else \(s y m:=S[c h]]\)
        end else
    begin (другие символы)
        sym \(:=S[c h] ; \operatorname{read}(c h)\)
    end
end \(\{\) scanner \(\}\)
```

Основная теперь задача - составить расписание, т. е. список читаемых предметов, так, чтобы они следовали в нужном порядке и не противоречили друг другу. Из множества всех курсов мы выбираем подмножества «неконфликтующих» предметов. Подмножества выбираются из переменной remaining, до тех пор пока множество оставшихся предметов не станет пустым.

```
yar \(k\) : integer;
    remaining, session: selection;
    timetable: array[1. . N] of selection;
\(k:=0\); remaining \(:=[1 . . N]\);
while remaining \(\neq[]\) do
    begin session \(:=\) следуюцая выборка;
        remaining := remaining - session;
        \(k:=k+1 ;\) timetable \([k]:=\) session
    end
```

Как определяется «следующая выборка»? Вначале берется любой из множества оставшихся предметов. Затем нз этого множества выбираются все такие предметы, которые «не конфликтуют» с выбранными ранее. Назовем множество таких предметов trialset. Затем будем исследовать каждый элемент множества trialset. Включение такого элемента в session зависит от того, пусто или нет пересечение множества предметов, уже включенных в session, с множеством предметов, конфликтующих с данным. Oператор «session:= $:=$ следующая выборка» принимает вид

```
var s,t: course;
    trialset: selection:
begin s:= 1;
        while }\neg(s\mathrm{ in remaining) do }s:=s+1
    session := [s]; trialset := remaining - conflict[s];
        for t}:=1\mathrm{ to }N\mathrm{ do
            if t}\mathrm{ in trialset then
            begin if conflict[t] * session =~ [ ] then
                session := session + [t]
            end
end
```

Конечно, такой способ выбора параллельно читаемых предметов не позволяет строить расписание оптимальным образом. В неудачных случаях множество выборок параллельных курсов может оказаться столь же велико, как и множество всех курсов, даже если существуют курсы, которые можно было бы читать параллельно.

1.10. ПРЕДСТАВЛЕНИЕ МАССИВОВ, ЗАПИСЕИ И МНОЖЕСТВ

Основная цель использования абстракций в программировании - обеспечить разработку, анализ и проверку про• граммы на основе законов, управляющих этими абстракциями. При этом нет необходимости знать, какими способами эти абстракции реализуются на конкретной вычнслительной машине. Однако квалифицированному программисту полезно разбираться в наиболее часто применяемых приемах представления основных абстракций программирования - таких, как фундаментальные структуры данных. Эти знання могут помочь программисту строить программу и описывать данные с учетом не только абстрактных свойств структур, но и их реализации на конкретной ЭВМ, принимая во внимание. ее свойства и присущие ей ограничения.

Проблема представления данных есть проблема отображения абстрактной структуры в память вычислительной машины. В первом приближении эта память представляет собой массив отдельных ячеек памяти, называемых словами. Индексы этих слов называются адресами:

var store: array[address] of word

Кардинальные числа типов address и word различны для разных вычислительных машин. Особенная сложность заключае́тся в разнообразии кардинальных чисел для слова. Логарифм кардинального числа называется размером слова, поскольку он равен количеству разрядов, из которых состоит ячейка памяти.

1.10.1. Представление массивов

Представление массива - это отображение (абстракт• ного) массива компонент типа T в память, которая представляет собой массив компонент типа word.

Массив следует отображать таким способом, чтобы можно было максимально просто и потому эффективно вычис.яять адреса его компонент. Адрес, или индекс памяти, $i j$-й компоненты массива вычисляется с помощью линейной функции отображения

$$
\begin{equation*}
i=i_{0}+j * s \tag{1.32}
\end{equation*}
$$

где i_{0} - адрес первой компоненты, а s - число слов, которые «занимает» компонента. Так как по определению слово есть минимальная доступная единица памяти, то, по-видимому, желательно, чтобы s было целым числом; в простейшем случае $s=1$. Если s - не целое число слов памяти (а так бывает довольно часто), то s обычно округляется до
Таблица 1.3. Фундаментальные структуры данных

Ctpyктура	Описание	Селектор	$\begin{gathered} \text { Доступ } \\ \text { к комппнентам } \\ \text { с помощью } \end{gathered}$	Тнпы компонент	Қардинальное число
Массив	a: array [$/]$ of T_{0}	$a[i](i \in l)$	Crектора с вычисляемым индексом i	Все компоненты одного типа T_{0}	$\operatorname{card}\left(T_{0}\right)^{\operatorname{card}(t)}$
Запись	$\begin{aligned} & r: \text { record } s_{1}: T_{1} ; \\ & s_{2}: T_{2} ; \\ & \cdots \\ & s_{n}: T_{n} \\ & \text { end } \end{aligned}$	$r . s\left(s \in\left[s_{1} \ldots s_{n}\right)\right]$	Селектора с именем компоненты поля	Moгут быть различными	$\prod_{i=1}^{i!} \operatorname{card}\left(T_{i}\right)$
, Множеств	s s set- of I_{0}	Отсутствует	Іроверки принадлежности с сперацией отношения in	Bсе компоненты одного типа (ска.яярного T_{0})	$2^{\operatorname{card}\left(T_{0}\right)}$

ближайшего большего целого числа [s]. В этом случае каждая компонента масснва занимает [S] слов, причем часгь слова величннй $[s]$ - s остается неиспользованной (см.

Рис. 1.0. Отоб́раженне массива в память.
рис. 1.5 п 1.6). Округлсние числа занимаемых слов до ближайшего целого называєгся выравниванием. Отношение размера памяти, которая отводнтся для описаиня структуры

Рис. 1.6. Представ.тение записи с выравниванием.
данных, к размеру действительно занятой памяти называется коэффициентом нспользования памяти:

$$
\begin{equation*}
u=\frac{s}{s^{\prime}}=\frac{s}{[s]} \tag{1.33}
\end{equation*}
$$

С одной стороны, разработчик стремится получить коэффициент использования памяти, близкий к 1. Но поскольку, с другої стороны, доступ к часгям слова - неясный и довольно пеэффективный процесс, разработчику приходится идти на некоторый компромисс. При этом он должен учитывать следующие обстоятельства:

1. Выравниванне поннжает коэффициент использования памяти.
2. Отказ от выравнивания может привести к неэффективному обращению к частям стова.
3. Обращение к частям слова может удлинить программу (оттранслированную) и этим свести на нет выигрыш, достигпутый отказом от выравнивания.

В действительности положения 2 и 3 обычно более важны, и трансляторы всегда автоматически применяют выравнивание. Заметим, что при $s>0.5$ коэффициент использования памяти всегда будет $u>0.5$. Однако, если $s \leqslant 0.5$, этот

Рис. 1.7. Упаковка шести компонент в одно слово
коэфчициент можно значительно увеличить, помещая в каждое слово более одной компоненты массива. Этот прием называется упаковкой. Если в слово упаковано n комшонент, го коэффициент использования памяти равен (см. рис. 1.7)

$$
\begin{equation*}
u=\frac{n \cdot s}{[n \cdot s]} . \tag{1.34}
\end{equation*}
$$

Доступ к i-й компоненте упакованного массива требует вычисления j - адреса слова, в котором расположена эта компонента, а также k - относительного адреса расположения компоненты внутри слова:

$$
\begin{align*}
& j=i \operatorname{div} n \\
& k=i \bmod n=i-j * n \tag{1.35}
\end{align*}
$$

Большинство языков программирования не дает программисту возможности управлять реализацией абстрактных структур данных. Однако полезно иметь возможность ука• зывать желательность упаковки хотя бы в тех случаях, когда в одно слово можно поместить более одной компоненты, поскольку при этом достигается экономия памяти в 2 и более раз. Мы вводим соглашение, что желательность упаковки будет обозначаться словом packed перед словом array (или record).
Пример:

$$
\text { type } a l \mathfrak{f} a=\text { packed array }[1 . . n] \text { of } c h a r
$$

Эта особенность нанболее ценна для вычислительных машин с длинными словами и сравнительно удобным доступом к отдельным частям слов. Важное свойство этого префикса состоит в том, что он не изменяет значение и правильность программы. Это означает, что можно выбирать любое из альтернативных представлений с уверенностью, что это не повлияет на смысл программы.

Ои́ычно можно существенно уменьшить затраты на доступ к компонентам упакованного массива, если сразу распаковать (или упаковать) весь массив целиком. Дело в том, что при этом возможен эффективный последовательный проход по всему массиву и пропадает необходимость вычислять сложную функцию отображения для каждой отдельной компоненты. Поэтому мы вводим две стандартные процедуры: раск: (упаковать) и unpack (распаковать). Пусть имеются пере. менные

$$
\begin{aligned}
& u: \text { array }[a . . d] \text { of } T \\
& p: \text { packed array }[b \ldots c] \text { of } T
\end{aligned}
$$

где $a \leqslant b \leqslant c \leqslant d$ - одного и того же скалярного типа. Тогда

$$
\begin{equation*}
\operatorname{pack}(u, i, p) \quad(a \leqslant i \leqslant b-c+d) \tag{1.36}
\end{equation*}
$$

эквивалентно

$$
p[j]:=u[j+i-b], \quad j=b \ldots c
$$

a

$$
\begin{equation*}
\text { unpack }(p, u, i) \quad(a \leqslant i \leqslant b-c+d) \tag{1.37}
\end{equation*}
$$

эквивалентно

$$
u[j+i-b]:=p[j], \quad j=b \ldots c
$$

1.10.2. Представление записей

Записи отображаются в память (размещаются) так, что их компоненты располагаются последовательно. Адрес какойлибо компоненты (поля) r_{i} относительно начального адреса залиси r пазывается смещением компоненты k_{i}. Оно вычислясгся слсд! ющим образом:

$$
\begin{equation*}
k_{i}=s_{1}+s_{2}+\ldots+s_{l-1} \tag{1.38}
\end{equation*}
$$

где s_{i} - размер в словах j-й компоненты. Поскольку у массива все компоненты одного типа, то

$$
s_{1}=s_{2,2}=\ldots=s_{n}
$$

и, следовательно,

$$
k_{l}=s_{1}+s_{2}+\ldots+s_{i-1}=(i-1) \cdot s
$$

Универсальность записн не позволяет вычислять относительные адреса ее компонент с помощью такой жк простой линейной функции, поэтому очень полезно ограничить доступ к ее ксмпонентам и пользоваться лишь фиксированными идснтификаторами. Это ограниченне позволяет узнать отиосительные адреса во время трансляции, что намного увеличнвает эффектнвность доступа к полям записи.

Если несколько компонент записи умещаются в одном слове памяти, то может идти речь об упаковке (см. рис. 1.8). Так же как для масснва, желательность упаковки можно указать в описании с помощью слова packed перед словом record. Поскольку смешения компонент вычисляются при трансляции, смещение компоненты внутри слова также мо-

Рис. 1.8. Представление упакованной записи.
жет определяться транслятором. Это значит, что для многих машин упаковка записей приводит к значительно меньшей потере эффективности, чем упаковка массивов.

1.10.3. Представление множеств

Множество s наилучшим образом представляется в памяти машины с помощью характеристической функции $C(s)$. Характеристическая функция - это массив логических значений, i-я компонента которого означает наличие или отсутствие i-го значения базового типа в множестве s. Размер этого массиз’ равен кардинальному числу базового тита множества:

$$
\begin{equation*}
C\left(s_{i}\right) \equiv(i \operatorname{in} s) \tag{1.39}
\end{equation*}
$$

Например, множество небольших целых чнсел

$$
s=[1,4,8,9]
$$

представляется последовательностыо логических значений F (false) и T (true)

$$
C(s)=(F T F F T F F F T T)
$$

если базовый тип множества s - целые числа, принадлежащие диапазону 0..9. В памяти машины пэслсдовательность логических значений изображается так называемой строкой разрядов (см. рис. 1.9).

Представление множеств их характеристической функцией позволяет реализовать операции объединения, пересечения и разности двух множеств с помощыо элементарных логичсских операций. Для ліббого элсмента i, принадлежащего

к базовому типу множеств x и y, имеют место следующие эквивалентности между операциями над множествами и логическими операциями:

$$
\begin{align*}
& i \text { in }(x+y) \equiv(i \text { in } x) \vee(i \text { in } y) \\
& i \text { in }(x * y) \equiv(i \text { in } x) \wedge(i \text { in } y) \tag{1.40}\\
& i \text { in }(x-y) \equiv(i \text { in } x) \wedge \neg(i \text { in } y)
\end{align*}
$$

Такие логические операции имеются на всех вычислительных машинах, более того, они выполняются одновременно над всеми элементами (разрядами) слова. Поэтому для более

Рис. 1.9. Представление множества в виде раэрядной строки.
эффективной реализации основных операций над множествами желательно, чтобы множеству соответствовало небольшое фиксированное число слов, над которыми кроме основных логических операций можно было бы выполнять также операцин сдвига. В этом случае проверка принадлежности выполняется с помошью сдвига и последующей проверки знакового разряда. Следовательно, проверку

$$
x \operatorname{in}\left[c_{1}, c_{2}, \ldots, c_{n}\right]
$$

можно реализовать значнтельно эффективнее, чем при помощи эквивалентного булевского выражения

$$
\left(x=c_{1}\right) \vee\left(x=c_{2}\right) \vee \ldots \vee\left(x=c_{n}\right)
$$

Поэтому следует использовать множества только с небольшими базовыми типами. Наибольшее значение кардинального числа базового типа, при котором реализация достаточно эффективна, зависит от длины слова соответствующей вычислительной машины. Разумеется, в этом отношенни предпочтительны машины с большой длиной слова. Если размер слова сравнительно невелик, можно использовать несколько слов.

1.11. ПОСЛЕДОВАТЕЛЬНЫЙ ФАИЛ

Общее свойство сгруктур данных, которые до сих пор обсуждались, а именно массива, записи и множества, за: пючается в том, что их кардинальное число конечно. Предполагается, что кардннальные числа типов их комлонент конечны. Поэтому они не слишком трудны для реализации; со•

ответствующсе представление легко находится для любой вычислительной машины.

Большинство так называемых усложненных структур: последовательности, деревья, графи ॥ г. д. - характеризуются тем, что их кардинальные числа бескинечны. Это отличие от базовых структур с конечными кардинальными числами очень важно и имеет существенные практические следствия. Например, определим последовательнуוо структуру следующим образом.

Последовательность с базовым типом T_{0} - это либо пустая последовательность, либо конкатенация последовательности (с базовым типом T_{0}) и значения типа T_{0}.

Тип T, определенный таким образом, содержит бесконечное число значений. Каждое отдельное значение состоит из конечного числа компонент, но это число не ограничено, т. е. для каждой данной последовательности можно построить более длинную.

Аналогичные рассуждения применимы ко всем другим усложненным структурам данных. Из этого прежде всего следует, что объем памяти, необходимый для размешения структуры усложкненного типа, неизвестен во время трансляции и может изменяться во время выполнения программы. Это требует динамического распределения памяти, при котором память занимается, если соответствующие значения «растут», и, возможно, освобождается, когда они «убывают». Поэтому проблема представления усложненных структур -чрезвычайно тонкая и сложная, и ее решение существенно влияет на эффективность работы и экономню памяти. Здесь можно принимать решения только с учетом того, какие простейшие операции и насколько часто должны выполняться на данной структуре. Поскольку эта информация пеизвестна разработчижу языка и транслятора, ему приходнтся нсключать усложненные структуры из языка (универсального). Отсюда также следует, что программист должен избегать использования таких структур, если при решении задачи можно ограничиться фундаментальными структурами данных.

В большинстве языков и трансляторов учитывается и используется тот факт, что все усложненные структуры состоят либо из неструктурированных элементов, либо из фундаментальных структур. Это позволяет использовать преимущества усложненных структур, не имея информации об их возможном применении. Если в языке имеются средства для динамического размещения компонент, для динамической связи компонент и ссылкі на них, то в нем могут создаваться произвольные структуры с помошью явных операций, определяемых программистом. Способы создания таких структур и работы с ними рассматриваются в гл. 4.

Однако существует структура, которая является усложненной, поскольку ее кардинальное число не ограничено, но которая так широко и часто используется, что ее приходится включить в число фундаментальных структур. Это - последовательность. Для описания абстрактного понятия последовательности мы вводим следующую терминологию и нотацию:

1. 〈 > обозначает пустую последовательность.
2. $\left\langle x_{0}\right\rangle$ обозначает последовательность, состоящую из единственной компоненты x_{0}, она называется единичной последовательностью.
3. Если $x=\left\langle x_{1}, \ldots, x_{m}\right\rangle$ и $y=\left\langle y_{1}, \ldots, y_{n}\right\rangle$ - последовательности, то

$$
\begin{equation*}
x \& y=\left\langle x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right\rangle \tag{1.41}
\end{equation*}
$$

есть конкатенация x и y.
4. Если $x=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ - непустая последовательность, го

$$
\begin{equation*}
\text { first }(x)=x_{1} \tag{1.42}
\end{equation*}
$$

обозначает первый элемент x.
5. Если $x=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ - непустая последовательность, то

$$
\begin{equation*}
\operatorname{rest}(x)=\left\langle x_{2}, \ldots, x_{n}\right\rangle \tag{1.43}
\end{equation*}
$$

есть последовательность x без первой компоненты. Следовательно, мы получаем инвариантное отношение

$$
\begin{equation*}
\langle f i r s t(x)\rangle \& r e s t(x) \equiv x \tag{1.44}
\end{equation*}
$$

Введение этих обозначені. й ис предполагает, что они будут использоваться в конкретных программах и обрабатываться реальными вычислительными машиналіи. В действительности весьма существенно, что операция конкатенации не используется в общем виде п обработка последовательностей ограничивается применением тщательно отобранного множества операций, предполага:ощих опреде.тснный порядож использования. Сами операторы определяются с помощьо абстрактных понятий последовательности и конкатенации. Тщательный выбор множества операторов, работающих с последовательностями, позволяет при реализации находить удобное и эффективное представление последовательности на любом данном запоминающем устройстве. В результате соответствующий механизм динами:еского распределения памятн может быть достаточно прсстым, что позволяет программисту работать, не вникая в его тонкости.

Для того чтобы было ясно, что последовательность, вводимая в качестве базового типа, допускает применение только ограниченного множества операторов, основанных на строго последовательном доступе к компонентам, эта струк-

тура называется последовательным файлом или просто файлом. По аналогии с определениями типа для массивов и множеств файловый тип определяется так:

$$
\begin{equation*}
\text { type } T=\text { file of } T_{0} \tag{1.45}
\end{equation*}
$$

Это значит, что любой файл типа T состоит из 0 или более компонент типа T_{0}.

Примеры:

$$
\begin{aligned}
& \text { type } t e x t=\text { file of } \text { char } \\
& \text { type } \text { deck }=\text { file of } \text { card }
\end{aligned}
$$

Смысл последовательного доступа заключается в том, что в каждый момент доступна лишь одна определенная компонента последовательности. Эта компонента определяется текуцей позицией механизма доступа. Позиция с помощью файловых операций может меняться. определяя либо следующую компоненту (см. get), либо первую компоненту всей последовательности (см. reset). Формально мы определим позицию файла, считая. что файл состоит из двух частей: части x_{L} слева от текущей позиции и части x_{R} справа от нее. Очевидно, что всегда справедливо равенство (инвариант)

$$
\begin{equation*}
x \equiv x_{L} \& x_{R} \tag{1.46}
\end{equation*}
$$

Второе, более важное следствие последовательного доступа заключается в том, что процессы формирования и просмотра последовательности не могут произвольно чередоваться. Таким образом, файл вначале строится при помощи последовательного добавления компонент (в конец), а затем может последовательно просматриваться от начала до конца. Поэтому принято считать, что файл находится в одном из двух состояний: либо формировання (записи), либо просмотра (чтения).

Преимущество строго последовательного доступа особен:!о ощутимо, если файлы размещаются на вспомогательных запоминающих устройствах, т. е. если происходит обмен между устройствами. Последовательный доступ - единственный метод, позволяющий успешно скрывать от программиста сложность механизмов такого обмена. В частности, он допускает применение буферизации - простого приема, который обеспечивает оптимальное пспользованне ресурсов сложной вычислительной системы.

Некоторые запоминающие устройства на самом деле допускают только последовательный доступ к находящейся на них информации. Очевидно, что к таким устройствам отно-

сятся все виды лент. Но даже на магнитных барабанах и дисках каждая отдельная дорожка представляет собой запоминающее устройство с последовательным доступом. Строго последовательный достуи - основное свойство всех устройств с механическим перемещением, а также некоторых других.

1.11.1. Элементарные операции над файлами

Теперь мы попытаемся сформулировать абстрактное понятие последовательного доступа с помо山ью некоторого множества элементарньх операций над файлами, которые имеютсл в распоряжении программиста. Оніи определяются в терминах понятий последовательности и конкатенации. Су. ществует операция, инициализнруюшая процесс формирования файла, операция, инициализирующая просмотр, операция, добавляющая компоненту в конец последовательности, и операция, позволяющая при просмотре переходить к следуощей компоненте. Две последние здесь определяются в форме, предполагаюцей наличие явной вспомогательной переменной, которая представляет собой буфер. Мы считаем, что такой буфер автоматическю связывается с каждой файловой переменной x, и обозначаем его через $x \uparrow$. Ясно, что если x - типа T, то $x \uparrow$ принадлежит его базовому типу T_{\jmath}.

1. Построение пустой последовательности. Операция

$$
\begin{equation*}
\text { rewrite }(x) \tag{1.47}
\end{equation*}
$$

означает присваивание

$$
x:=\langle \rangle
$$

Эта операция используется для уничтожения текущего значения x и инициации процесса построения новой последовательности, она соответствует разметке ленты.
2. Увеличеине последовательности. Операция

$$
\begin{equation*}
\text { put }(x) \tag{1.48}
\end{equation*}
$$

означает присваивание

$$
x:=x \&\langle x \uparrow\rangle
$$

которое фактически добавляет значение $x \uparrow$ к последовательности x.
3. Инициация просмотра. Операция
reset (x)
означает одновременные присваивания

$$
\begin{aligned}
& x_{L}:=\langle \rangle \\
& x_{R}:=x \\
& x \uparrow:=\text { first }(x)
\end{aligned}
$$

Эта операция используется для инициации процесса чтения последовательности.
4. Переход к следующей компоненте. Операция

$$
\begin{equation*}
\text { get }(x) \tag{1.50}
\end{equation*}
$$

означает одновременные присваивания

$$
\begin{aligned}
x_{L} & :=x_{L} \&\left\langle\text { first }\left(x_{R}\right)\right\rangle \\
x_{R} & :=\text { rest }\left(x_{R}\right) \\
x \uparrow: & =\text { first }\left(\text { rest }\left(x_{R}\right)\right)
\end{aligned}
$$

Заметим, что $\operatorname{first}(s)$ определено только при $s \neq\langle \rangle$.
Операции rewrite и reset не зависят от позиции буфера файла перед их выполнением. В любом случае они возвращают его к началу файла.

При просмотре последовательности необходимо иметь возможность распознавать ее конец, поскольку при достижении конца последовательности операция

$$
x \uparrow:=f i r s t\left(x_{R}\right)
$$

становится неопределенной. Достижение конца файла, очевидно, равнозначно тому, что правая часть x_{R} пуста. Гоэтому мы вводим предикат

$$
\begin{equation*}
e o f(x)=x_{R}=\langle \rangle \tag{1.51}
\end{equation*}
$$

который означает, что достигнут конец файла (end of file). Следовательно, операция $\operatorname{get}(x)$ может выполняться только при eof $(x)=$ false.

В принципе все действия с файлами можно выразить с помощью четырех основных файловых операций. На практике же часто бывает естественно объединять операции продвижения по файлу (get или put) с обращением к буферной переменной. Поэтому мы введем еще две процедуры, которые можно выразить в терминах основных операций. Пусть v переменная, а e - выражение базового типа T_{0} файла. Тогда

$$
\begin{gathered}
\operatorname{read}(x, v) \text { эквивалентно } \\
v:=x \uparrow ; \operatorname{get}(x)
\end{gathered}
$$

a

$$
\begin{gathered}
\text { write }(x, e) \text { эквивалентно } \\
x \uparrow:=e ; p u t(x)
\end{gathered}
$$

Преимущество использовання read и write вместо get и put связано не только с краткостью, но и с простотой концепции, поскольку теперь можно игнорировать существование буферной переменной $x \uparrow$, значение которой может быть и неопределенным. Однако буферная переменная бывает полезна для «заглядывания вперед».

Для выполнения этих двух процедур необходимы следующие јсловия:

$$
\begin{array}{rll}
\operatorname{-eof}(x) & \text { для } & \operatorname{read}(x, v) \\
\operatorname{eof}(x) & \text { для } & \text { write }(x, e)
\end{array}
$$

ПІри чтении файла предикат еоf (x) становится истинным, как только прочитана последняя компонента файла x. На этом основаны две схемы программ для последовательного формирования н обработки файла x. Дополнительными параметрами в этих схемах явяяются операторы R и S и предикат p. Запись файла . x :

```
rewrite(x);
while p do
    begin R(v); write(x,v)
    end
```

Чтение файла x :

$$
\begin{aligned}
& \operatorname{reset}(x) ; \\
& \text { while - eof }(x) \text { do } \\
& \quad \text { begin } \operatorname{read}(x, v) ; S(v) \\
& \quad \text { end }
\end{aligned}
$$

1.11.2. Файлы со сложной структурой

При решении многих прикладных задач необходимо в большие файлы ввести некоторую подструктуру. Например, книга, хотя и может рассматриваться как единая последовательность букв, подразделяется на главы и абзацы. Назначение подструктуры-задание неких явных точек отсчета, некоторых координат, которые позволят легче ориентироваться в длинной последовательности информации. Существующие запоминающие устройства часто дают определенные средства для представления таких точек отсчета (например, маркеры магнитной ленты) и позволяют находить их со скоростью большей, чем скорость просмотра информации между этимн точками.

В рамках принятой нами системы обозначений естественный способ ввести первый уровень подструктуры - это рассматривать подобный файл как последовательность элементов, которые в свою очередь являются последовательностями, т. е. как файл файлов. Предположим, что конечные элементы

или единицы принадлежат к типу U, тогда подструктуры будут типа

$$
T^{\prime}=\text { file of } U
$$

а весь файл — типа

$$
T=\text { file of } T^{\prime}
$$

Очевндно, что таким образом можно строить файлы с любым уровнем вложенности. В общем виде тип T_{n} можно определить с помощью рекурсивного соотношения

$$
T_{i}=\text { file of } T_{t-1}, \quad i=1 \ldots n
$$

и $T_{0}=U$. Такие файлы часто называют многоуровневыми файлами, а компоненту типа T_{i} называют сегментом*) i-го уровня. Примером многоуровневого файла является книга, в которой уровням сегментации соответствуют главы, разделы, абзацы и строки. Но наиболее общий случай - эго файл с одним уровнем сегментации.

Такой файл, сегментированный на одном уровне, никоим образом не идентичен массиву файлов. Прежде всего число сегментов файла может меняться, и файл по-прежнему может увеличиваться только с конца. В рамках введенных выше обозначений и при определении файла как

x : file of file of U

$x \uparrow$ будет обозначать доступный в текущий момент сегмент, а $x \uparrow \uparrow$ - доступную в текущий момент единичную компоненту. Соответственно $\operatorname{put}(x \uparrow)$ и $\operatorname{get}(x \uparrow)$ ссылаются на единичную компоненту, а put (x) и $\operatorname{get}(x)$ означают операции добавления очередного сегмента и перехода на очередной сегмент.

Сегментированные файлы удовлетворительно реализуются практически на всех запоминающих устройствах с последовательным доступом, включая ленты. Сегментация не меняет их важнеіішего свойства - носледовательного доступа либо к отдельным компонентам, либо (возможно, при помощи более быстрого механизма пропуска) к сегментам. Другие запоминаюшие устройства, а именно магнитные барабаны и диски, обычно содержат некоторое количество дорожек, каждая из которых представляет собой запоминающее устройство с последовательным доступом, но которое обычно слишком мало, чтобы вместить целый файл. Таким образом, на дисках файлы обычно распределяются на несколько дорожек и содержат соответствуюшую библиотечную информацию, связывающую эти дорожки. Очевидно, что

[^5]указатель начала каждой дорожки служит естественным маркером сегмента, и, возможно, обращение к нему легче и непосредственнее, чем к маркерам на каком-либо последовательном устройстве. Для адресации дорожек, с которых начинаются сегменты, и обозначения текущей длины сегментов может использоваться, например, индексированная таблица в основной памяти (рис. 1.10).

Это приводит нас к так называемым индексированныьи файлам (иногда также называемым файлами с прямым доступоя). В настоящее время барабаны и диски организованы

Рис. 1.10. Индексированный файл с пятью сегментами.
таким образом, что каждая дорожка содержит много физических меток, с которых может начинаться чтение или запись. Поэтому нет необходимости, чтобы каждый сегмент занимал ее целиком, поскольку это может привести к неэкономному расходованию памяти, если ссгменты коротки по сравнению с длиной дорожки. Область памяти между двумя метками называется физическим сегментом нли сектором в отличие от логического сегмента, который является понятием, относящимся к структуре данных программы. Разумеется, каждый физический сегмент содержит самое большее один логический сегмент, а каждый логический сегмент (даже пустой) занимает по меньшей мере один физический сегмент. Следует иметь в виду, что, хотя речь и идет о файлах «с прямым доступом», среднее время нахождения сегмента, так называемое латентнсє время, равно половине времени полного оборота диска.

У нидексированных файлов сохраняется также то основное свойство, что запись производится последовательно в их конец. Поэтому они особенно полезны в случаях, когда изменения происходят сравнительно редко. Изменения производятся либо при помощи увеличения файла, либо при помощи копирования и обновления всего файла. Просмотр может осуществляться намного быстрее, если нспользуются индексные указатели. Это типичная ситуация для так называемых банков данных.

Системы, которые допускают выборочное изменение фрагментов в середине файла, обычно сложны и пользоваться ими рискованно, поскольку новые порции информации полжны быть того же размера, что и старые, на место которых они записываются. Кроме того, при обработке большого объема данных не рекомендуется выб́орочное изменение, поскольку при лобой неудаче - чем бы она ни была вызвана: ошибкой программы или сбоем оборудования - по правилам должно существовать некоторое состояние, к которому следует вернуться, с тем чтобы возобновить и повторить прерванную работу. Поэтому обновление обычно происходит целиком: старый файл заменяется новой, измененной копией только после того, как последовательная проверка установит правильность нового файла. Для обновления последовательная организация является наиболее надежной. Ее следует предпочесть более сложным способам организации данных большого объема. Эти способы могут быть эффективнее, но они часто приводят к полной потере данных при сбое оборудования.

1.11.3. Тексты

Файлы, состояшие из компонент типа char (символьного), играют особо важную роль в вычислениях и обработке данных: они обеслечивают взаимодействие между вычислительными системами и пользователями. Читаемый вход, организуемый программистом, так же как читаемый выход, содержащий результаты вычислений, представляют собой последовательности символов. Поэтому таким типам данных присваивается стандартное имя:

type $t e x t=$ file of char

В конечном счете взаимодействие между вычислительным процессом и человеком можно представить двумя текстовыми файлами. Один из них содержит входную информацию (input) для вычислительного процесса, другой - результаты вычисления, называемые выходной информацией (output). С этого момента мы будем считать, что каждая программа содержит описания этих двух файлов, имеющие следующий вид:
varinput, output: text
Учитывая, что эти файлы соответствуют стандартным средствам ввода и вывода вычислительной системы (таким, как устройство чтения с перфокарт и устройство вывода на печать), мы будем считать, что файл input можно только читать, а в файл output можно только писать.

Поскольку эти два стандартных файла используются очень часто, мы определим, что если первый параметр

процедур read и write не является файловой переменной, то по умолчанию предполагаются соответственно файлы input и output. Кроме того, мы позволим этим двум стандартным процедурам иметь произвольное число аргументов. Суммируем введснные выше обозначения:

```
read(xl, ..., xn) означает reai(input, x1, ..., xnt)
write(xl,..., xn) означает write(output, x1, ..., xn)
read(f,xl,..., xn) означает
    beqin read(f,xl); ..; read(f,xn) end
write(f, xl, ..., xnt) означает
    begin write( }x,xl);\ldots;\mathrm{ write(f,xn) end
```

Тексты являются типичным примером последовательностей, в которых обнаруживается подструктура. Принятые единицы этой подструктуры - это главы, абзацы и строки. Оо́ычный спосо́́ изображения подструктуры текста - испојьзование специальных разделительных символов. Наио́олее известный пример - символ пробела, но подобные символы могут использоваться н для указания концов строк, абзацев и глав. Например, широко распространенное множество символов ISO, включая его амернканскуюо версию ASCII, содержит несколько таких элементов, называемых управляющнми снмволами (см. приложение A).

В этой книге мы не будем использовать специальные разделительные символы н задавать какой-либо способ предсгавления подструктуры. Вместо эгого мы рассмотрим текег как файл, состоящий из снмвольных последовательностей, представляющнх отдельные строки. Кроме того, мы июраннчимся одним уровнем подструктуры, а именно строкой. Однако вместо того, чтобы определить тексты как файлы файлов печатаемых символов, мы рассматриваем их как файлы символов и вводим дополнительные операщии и предикаты для управления, т. е. для отметки и распознавания строк. Их смысл легче понять, если предположить, что строки разделяются (гипотетическими) разделительными символами (не принадлежащими к типу char), а задача этих операций и предикатов - поиск и распознавание такнх символов-разделителей. Дополнительные операции следующие:
writeln(f) - добавить признак конца строки к файлу f.
readln(f) - пропустить символы файла f до символа, который непосредственно следует за очередным снмволом конца строки.
$e o l n(f)$ - булевская функция. Нстинна, если позиция файла указывает на прнзнак конца строки, иначе ложна. Предполагается, что если eoln(f) истинна, то $f \uparrow=$ пробел.

Теперь мы можем привести две схемы программ для записи и чтения текстов, подобно схемам для «записи» и «чтения» других файлов [см. (1.52) и (1.53)]. В этих схемах участвует текстовый файл f и уделяется должное вниманне формированию и распознаванию строчной структуры. Пусть $R(x)$ - оператор, присваиваюиций переменной x (типа char) некоторое значение. В нем также определяются условия p и q, означающие «это был последний символ строки»и «эго был последний символ файла». При чтении файла в начале каждой строки выполняется оператор U, а для каждого символа x выполняется олератор $S(x)$. В конце каждой строки выполняется оператор V.

Запись текста f :

```
rewrite \((f)\);
while \(\neg q\) do
    begin
        while \(\neg p\) do
            begin \(R(x)\); write \((f, x)\)
            end ;
        writeln \((f)\)
    end
```

Чтение текста f:

```
resct(f);
while \negeof(f) do
    begin U;
        while feoln(f) do
            begin read (f,x); S(x)
            end ;
            V;readln(f)
    end
```

Бывают случаи, когда построчная структура текста не содержит никакой существенной информации. Наше соглашение о значении буферной переменной при появлении признака конца строки [см. определение eoln(f)] позволяет в такнх случаях использовать простую схему. Заметим, что в соотвстствии с определением eoln каждый конец строки дает добавочный символ пробела.

$$
\begin{align*}
& \text { while } \neg \operatorname{eof}(f) \text { do } \\
& \text { begin } \operatorname{read}(f, x) ; S(x) \tag{1.56}\\
& \text { end }
\end{align*}
$$

В большинстве языков программирования принято допускать для процедур чтения и записи аргументы типа integer или real. Такое обобщение было бы строгим, если бы типы integer и real представлялись как массивы символов, компоненты которых обозначают отдельные цифры числа. Языки, ориентированные только на коммерческие приложения, действительно удовлетворяют такому определению: они требуют представления чисел в десятичных цифрах и в десятичной системе счисления. Но введение типов integer и real в качестве фундаментальных обладает важным преимуществом: можно опустить подобные детальные спецификации. Прп этом в системе можно ислользовать такие представления чисел, которые больше ей соответствуют. В действительности в системах, ориентированных на научные расчеты, всегда выбирают двоичное представление, так как оно почти во всех отношениях имеет преимушества перед десятичным.

Но из этого следует, что программист должен понимать, что невозможно читать числа или записывать их в файлы без соответствующих операций преобразования. Обычно эти операции неявно содержатся в операциях read и write с аргументами числовых типов. Однако профессиональный программист сознает, что такие операции (так называемые //O-oneрации) состоят из двух различных действий: обмена данными между различными запоминающими устройствами и преобразования представлений данных. Последнее действие может быть довольно сложным и занимать много времени.

В последующих главах этой книги операции чтения и записи с числовыми аргументами будут нспользоваться в соответствии с правилами языка программирования Паскаль. Эги правнла допускают некоторые спецификации формата для управления прошессом преобразования. Спецификации формата указывают число желательных цифр при операции записи. Это число символов, называемое также «шириной поля», записывается сразу после аргјмента следующим образом:

$$
\text { write }(f, x: n)
$$

Аргумент x должен записываться в файл f; его значение преобразуется в последовательность из (по крайней мере) п символов. Если необходимо, цифрам предшествует знак и соответствующее число пробелов.

Для того чтобы понять примеры программ, приводимые далее в этой книге, дальнейшие подробности не нужны. Однако мы включили сюда две подпрограммы (программы 1.3 и 1.4), преобразующие представления чисел, чтобы показать, насколько сложны подобные действия, неявно предполагающиеся в операторах записи. Эти процедуры преобразуют ве-
procedure readreal (var f : text; var x : real);
\{ чтение вещественного числа x из файла f \}
(далее идут константь, связанньіе с омдельной вычислительной системой]
const $148=281474976710656 ; \quad\{=2 * * 48\}$
limit $=56294995342131 ; \quad\{=t 48 \operatorname{div} 5\}$
$z=27 ; \quad\left\{=\operatorname{ord}\left({ }^{\prime} 0^{\prime}\right)\right\}$
$\lim 1=322 ; \quad$ \{максімальный порядок\}
$\lim 2=-292 ; \quad\{м и н и м а л ь н ы и ̆ ~ п о р я д о к\}$
type posint $=0 \ldots 323$;
var ch: char; $y:$ real; a,i,e: integer;
s,ss: boolean; \{знаки\}
function ten(e: posint): real; $\{=10 * * e, 0<e<322\}$,
var i : integer; t : real;
begin $i:=0 ; t:=1.0$;
repeat if $\operatorname{odd}(e)$ then
case i of
$0: t:=t$ * 1.0 El ;
$1: t:=t * 1.0 \mathrm{E} 2$;
2: $t:=t$ * 1.0E4;
3: $t:=t$ * 1.0E8;
4: $t:=t * 1.0 \mathrm{E} 16$;
5: $t:=t * 1.0 \mathrm{E} 32$;
6: $t:=t * 1.0 \mathrm{E} 64$;
$7: t:=t * 1.0 \mathrm{E} 128$;
8: $t:=t * 1.0 \mathrm{E} 256$
end ;
$e:=e \operatorname{div} 2 ; i:=i+1$
until $e=0$;
ten $:=t$
end ;
begin
(пропуск начальных пробелов)
while $f \uparrow={ }^{\prime}$ ' do $\operatorname{get}(f)$;
ch $:=f \uparrow ;$
if $c h=$ ' - ' then
begin $s:=\operatorname{true} ; \operatorname{get}(f) ; c h:=f \uparrow$
end else
begin $s:=$ false;
if $c h=$ ' + ' then
begin $\operatorname{get}(f) ; c h:=f \uparrow$
end
end ;
if $-7\left(c h\right.$ in $\left.\left[{ }^{\prime} 0^{\prime} .{ }^{\prime} 9^{\prime}\right]\right)$ then
begin message (' DIGIT EXPECTED'); halt;
end ;
$a:=0 ; e:=0$;
repeat if $a<$ limit then $a:=10 * a+\operatorname{ord}(c h)-z$ else $e:=e+1 f$
$\operatorname{get}(f) ; c h:=f \uparrow$
until $\neg\left(c h\right.$ in [' $\left.\left.0^{\prime} \ldots 9^{\prime}\right]\right)$;
if $c h=$ '.' then
begin \{чтение дробной части\} get (f); ch $:=f \uparrow$;
while $c h$ in ['0' . . '9'] do
begin if $a<$ limit then
begin $a:=10 * a+\operatorname{ord}(c h)-z ; e:=e-1$
end ;
$\operatorname{get}(f) ; c h:=f \uparrow$
end
end ;
if ch $=$ ' E ' then
begin \{чтение порядка\} $\operatorname{get}(f) ; c h:=f \uparrow$;
$i:=0 ;$
if $c h=$ - - then
begin $s s:=\operatorname{true} ; \operatorname{get}(f) ;$ ch $:=f \uparrow$
end else
begin $s s:=$ false; if $c h='+$ ' then begin $\operatorname{get}(f)$; ch $:=f \uparrow$ end
end ;
while ch in ['0' . . '9'] do
begin if $i<$ limit then begin $i:=10 * i+\operatorname{ord}(c h)-z$ end;
$\operatorname{get}(f) ; c h:=f \uparrow$
end ;
if $s s$ then $e:=e-i$ else $e:=e+i$
end ;
if $e<\lim .2$ then
begin $a:=0 ; e:=0$
end else
if $e>\lim 1$ then
begin message(' nUMBER TOO LARGE'); halt end;
$\{0<a<2 * * 49\}$
if $a \geq t 48$ then $y:=((a+1) \operatorname{div} 2) * 2.0$ else $y:=a$;
if s then $y:=-y$;
if. $e<0$ then $x:=y / \operatorname{ten}(-e)$ else
if $e \neq 0$ then $x:=y * \operatorname{ten}(e)$ else $x:=y$;
while $\left(f \uparrow={ }^{\prime \prime}\right) \wedge(\neg e o f(f))$ do $\operatorname{get}(f)$;
end \{readreal\}
Программа 1.3. Чтение вещественного числа.
procedure writereal (var f: text; x : real; n : integer);
(печать вещественного числа х с п символами в десятцчном виде с плавающей запятой)
〔следующие константы зависят от используемого представления вещественных чисел с плавающей запятай\}
const $t 48=281474976710656 ;(=2 * * 48 ; 48$-размер мантиссы $)$

$$
z=27 ; \quad\left\{\operatorname{ord}\left(^{\prime} 0^{\prime}\right)\right\}
$$

type posint $=0 . .323$; \{диапазон для десятичного порядка $\}$
var $c, d, e, e 0, e 1, e 2, i:$ integer;
function ten(e: posint): real; $\quad\{10 * * e, 0<e<322\}$
var i : integer; t : real;
begin $i:=0 ; t:=1.0$;
repeat if $\operatorname{odd}(e)$ then
case i of
$0: t:=t * 1.0 \mathrm{E} 1 ;$
$1: t:=t * 1.0 \mathrm{E} 2$;
$2: t:=t * 1.0 \mathrm{E} 4$;
3: $t:=t$ * 1.0E8;
4: $t:=t$ * 1.0 E 16 ;
5: $t:=-t * 1.0 \mathrm{E} 32$;
6: $t:=t * 1.0 \mathrm{E} 64$;
7: $t:=t * 1.0 \mathrm{E} 128$;
$8: t:=t * 1.0 \mathrm{E} 256$
end ;
$e:=c \operatorname{div} 2 ; i:=i+1$
until $e=0$;
ten $:=t$
end \{ten\};
begin \{требуются по крайней мере 10 символов: $b+9.9 \mathrm{E}+999$ \}
if $x=0$ then
begin repeat write($f,{ }^{\prime}$ '); $n:=n-1$
until $n \leq 1$;
write ($f,{ }^{\prime} 0$ ')
end else
begin
if $n \leq 10$ then $n:=3$ else $n:=n-7$;
repeat write(f;' '); $n:=n-1$
antil $n \leq 15$;
$\{1<n \leq 15$, число печатаемых цифр $\}$
begin (проверка знака, определение порядка)
if $x<0$ then begin write ($f,{ }^{\prime}-$); $x:=-x$
end else write ($f,{ }^{\prime}{ }^{\prime}$);
$e:==\operatorname{expo}(x) ; \quad\{c=\operatorname{cntier}(\log 2(a b s(x)))\}$ of $e \geq 0$ then
begin $e:=e^{*} 77$ div $256+1 ; x:=x / \operatorname{ten}(e)$;
if $x \geq 1.0$ then
begin $x:=x / 10.0 ; c:=c+1$ end
end else
begin $e:=(c+1) * 77 \operatorname{div} 256 ; x:=\operatorname{ten}(-e) * x$; if $x<0.1$ then begin $x:=10.0 * x ; e:=e-1$ end
end ;
$\{0.1 \leq x<1.0\}$
case n of (округление)
2: $x:=x+0.5 \mathrm{E}-2$;
3: $x:=x+0.5 \mathrm{E}-3$;
4: $x:=x+0.5 \mathrm{E}-4$;
5: $x:=x+0.5 \mathrm{E}-5$;
6: $x::=x+0.5 \mathrm{E}-6$;
7: $x:=x+0.5 \mathrm{E}-7$;
8: $x:=x+0.5 \mathrm{E}-8$;
9: $x:=x+0.5 \mathrm{E}-9$;
10: $x:=x+0.5 \mathrm{E}-10$;
11: $x:=x+0.5 \mathrm{E}-11$;
12: $x:=x+0.5 \mathrm{E}-12$;
13: $x:=x+0.5 \mathrm{E}-13$;
14: $x:=x+0.5 \mathrm{E}-14$;
15: $x:=x+0.5 \mathrm{E}-15$
end ;
if $x \geq 1.0$ then
begin $x:=x * 0.1 ; e:=e+1$;
end ;
$c:=\operatorname{trunc}(x, 48) ;\{=\operatorname{trunc}(x *(2 * * 48))\}$
$c:=10 * c ; d:=c \operatorname{div} t 48$;
write($\left.f, \operatorname{chr}(d+z),{ }^{\prime} . '\right)$;
for $i:=2$ to n do
begin $c:=(c-d * t 48) * 10 ; d:=c \operatorname{div} t 48 ;$
write $(f, \operatorname{chr}(d+z))$
end ;
writc($\left.f,{ }^{\prime} E^{\prime}\right) ; e:=e-1$;
if $e<0$ then

$$
\begin{aligned}
& \text { begin write }\left(f,{ }^{\prime}-\prime\right) ; e:=-e \\
& \text { end else write }\left(f,{ }^{\prime}+\prime\right) ; \\
& e 1:=e * 205 \text { div } 2048 ; e 2:=e-10 * e 1 ; \\
& e 0:=e 1 * 205 \text { div } 2048 ; e 1:=e 1-10 * e 0 ; \\
& \text { write }(f, \operatorname{chr}(e 0+z), \operatorname{chr}(e 1+z), \operatorname{chr}(e 2+z))
\end{aligned}
$$

end
end \{writereal\}
Программа 1.4. Печать вещественного чнсла.
щественные числа из десятичного в произвольное «внутреннее» представление и наоборот. (Константы в заголовках связаны с особенностями формата чисел с плавающей запятой в вычислительной машине CDC 6000: 11-разрядный двоичный порядок и 48-разрядная мантисса. Функция ехро (x) означает порядок x).

1.11.4. Программа редактирования файлов

В качестве примера применения последовательной структуры мы приведем следующую задачу, которая одновременио продемонстрирует методику разработки и пояснения программ. Этот метод называется методом поэтапного уточнения [1.4, 1.6], мы будем использовать его в этой книге при разборе многих алгоритмов.

Задача состоит в том, чтобы разработать программу, которая редактирует текст x, превращая его в текст y. Редактирование означает исключение или замену определенных строк или включение новых строк. Редактированием управляет последовательность команд редактирования, представленных стандартным текстом input. Эти команды имеют такой вид:

1, m. Вставка в текст после m-й строки.
D, m, n. Исключение строк от m до n.
R, m, n. Замена строк от m до n.
E. Окончание редактирования.

Каждая команда занимает одну строку в стандарлном файле input, который мы называем файлом команд, m и n-деслтичные номера строк, а вставляемые тексты должны непосредствснно следовать за командами l и R . Они заканчиваются пустой строкой.

Мы требуем, чтобы номера строк в комаидах редактирования шли в строго возрастающем порядке. Это правило обеспечивает строго последовательную обработку входного текста x. Очевидно, что состоянне работы определяется теку-

щей позицией x, т. е. номером строки, которая рассматривается в данный момент.

Предположим, что программа редактирования работает в интерактивном режиме и что, следовательно, файл команд представляет собой, например, данные, вводимые с терминала. В таком режиме работы весьма желательно, чтобы пользователь имел некоторую обратную связь. Подходящая и полезная форма обратной связи - это распечатка той строки, на которую продвинулся процесс редактирования после выполнения последней команды. Мы назовем эту строку текущей строкой. Вследствие нового требования, чтобы после выполнения каждой команды текущая строка выводилась на печать, нужно иметь явную переменную, в которой эта строка будет храниться после чтения из x и перед записью в y. Этот прием называется «заглядыванием вперед». Теперь можно предстэвить программу редактирования следующим образом:

```
program editor ( \(x, y\), input, output);
var Ino: integer; (номер текущей строки]
    cl : line; (текущая строка)
    \(x, y\) : text;
begin read instruction;
    repeat interpret instruction;
            write line;
            read instruction
    until instruction \(={ }^{\prime} E^{\prime}\)
end.
```

Попробуем теперь более подробно определить некоторые операторы. Уточняя «читать команду» и «выполнить коман$\partial \underline{», \text { мы обрашаем внимание, что команда обычно состоит из }}$ трех частей: кода команды и двух параметров. Поэтому мя вводим три переменные: code, m и n-для обмена между этими двумя операторами.

> var code,ch: char;
> $m, n:$ integer

Читать команду:

$$
\begin{align*}
& \text { read(code,ch); } \\
& \text { if } c h=\prime, \text { then } \operatorname{read}(m, c h) \text { else } m:=\ln 0 ; \tag{1.58}\\
& \text { if } c h=\prime \text { then } \operatorname{read}(n) \text { else } n:=m ;
\end{align*}
$$

Эта формулировка допускает команды с 0,1 или 2 параметя рами, 'гак как для «пропушеиных» спецификаций подставляюіся значения по умолчанию.

Вынолнить команду:

> copy;
> if code $=$ 'I' then
> begin putline; \quad insert;
> end else
> if code $=$ ' D ' then skip else
> if code $=$ ' R ' then
> begin insert;
> \quad skip
> end else
> if code $=$ ' E ' then copyrest else Error

На следующем этапе уточнения мы выразим операторы copy (копировать), insert (вставить) и skip (пропустить), использованные в (1.59), с помощью операций с отдельными строками getline и putline. Их общим свойством является цикличность структуры. Copy служит для переписи строк из x в y, начиная с текущей и кончая m-й строкой. Skip читает строки из x до n-й строки, не переписывая их в y.

На третьем, последнем этапе уточюения мы выражаем операции getline, putline, readline и writeline с помощью операций с отдельными символами. Мы видим, что до сих пор все действия касались исключительно целых строк и не делалось никаких специальных предположений о детальной структуре строки. Мы знаем, что строки являются последовательностями символов. Было бы заманчиво описать переменную
cl (содержащую текущую строку) как последовательность
var $c l$: file of char
Однако вспомним совет никогда не использовать структуру с бесконечным кардинальным числом, если имеется эквива. лентная фундаментальная структура (такая, как массив). Действительно, в этом случае рекомендуется использовагь массив. Это возможно, если мы ограничим длину строки, например, 80 символами. Итак, мы определим

var cl: array[1..80] of char

Следующие четыре подпрограммы используют с этим массивом индексную переменную i. Фактически же эта переменная используется локально и может в каждой процедуре описываться как локальная. Кроме того, теперь нужно епе ввести глобальную переменную L для обозначения длины лекущей строки.

$$
\begin{aligned}
& \text { Getline: } \quad i:=0 ; \operatorname{lno}:=\ln 0+1 ; \\
& \text { while } \rightarrow e o l n(x) \text { do } \\
& \text { begin } i:=i+1 ; \operatorname{read}(x, c l[i]) \\
& \text { end; } \\
& L:=i ; \operatorname{readln}(x) \\
& \text { Putline: } \quad i:=0 \text {; } \\
& \text { while } i<L \text { do }
\end{aligned}
$$

Readline: $i:=0$; while $\rightarrow e o l n($ input $)$ do begin $i:=i+1 ; \operatorname{read}(c l[i])$ end;

$$
L:=i ; \text { readln }
$$

Writeline: $i:=0$; write (lno); while $i<L$ do begin $i:=i+1 ;$ write(cl[i]) end; writeln
Условие noend в программе insert теперь легко можно выразить как

$$
L \neq 0
$$

На этом разработка программы редактирования файлов за. вершается.

УПРАЖНЕНИЯ

1.1. Пусть кардннальные чнсла стандартных типов integer, real и char обозначены через c_{h}, c_{R} и c_{c}. Каковы кардинальные числа следующих типов данных, определенных в этой главе в качестве примеров: пол, Boolean, день, буква, цифра, офицер, row, alfa, date, complex, person, coordinate, charset, tapestatus?
1.2. Как бы вы представили переменные типов, перечисленных в упр. 1.ls
(a) в памяти вычислительной машины, которой вы пользуетесь?
(b) на Фортране?
(c) на предпочнтаемом вами языке программнрования?
1.3. Какова последовательность команд (на вашей ЭВМ) для:
(a) операций размещения в памяти компонент упакованных записей и массивов н обращения к ним?
(b) операций над множествами, включая проверку принадлежности?
1.4. Можно ли во время выполнения программы контролировать правильность использования записей с варнантами? А во время трансляцин?
1.5. По каким причннам некоторые совокупности данных определяют как последовательные файлы, а не как массивы?
1.6. Предположим, что вам нужно представить последовательные файлы, определенные в разд. 1.11, на ЭВМ с очень большой оперативной памятью. Вам разрешается ввести ограничение, что длнна файла иикогда не превышает определенную величину L. Следовательно, вы можете представить файлы с помощью массивов.

Опишите возможную реализацию, включая выбранное предстадление данных и процедуры для элементарных файловых операций get, put, reset и rewrite, которые определены с помощью аксиом в разд. 1.11.
1.7. Выполните упр. 1.6 для сегментированных файлов.
1.8. Имеется железнодорожное расписание, содержащее список ежедневных рейсов поездов на нескольких линиях железной дороги. Найдите такое представление этих данных с помощью массивов, записей нли файлов, которое было бы удобно для понска времени прибытия и отправления поезда в пужном направлении для определенной станции.
1.9. Дан тскст T в виде файла и небольшой список слов в виде двух массивов A и B. Предлоложим, что слова - это небольшие массивы символов, максималыная длина которых фиксирована.

Напнинте программу, которая преобразует текст T в текст S, заменяя каждый раз слово A_{l} соответствующим словом B_{i}.
1.10. Какие изменения (лереопределенне констант и т. п.) необходимы, чтобы переделать программы 1.3 и 1.4 для имеюшейся у вас вычислительпой машины?
1.1I. Налишите программу, подобную программе 1.4, с заголовком
procedure writereal(var $f:$ text; x : real; n, m: integer)
Треб́уется преобразовать значение x в последовательность, состоящую по крайней мере нз n символов (их надо добавить в файл f), представпяюших x в десятичном виде с фиксированной залятой с m цифрами после запятой. Если необходимо, числу иожет предшествовать соответствующее количество пробелов и/или знак.
1.12. Перепишите текстовый редактор из разд. I.lI.4 в виде завершенной программы.
1.13. Сравните три слелующие версии бинарного поиска с (1.17). Какие из этих трех программ правнльны? Какие более эффективны? Мы предполагаем, что имеются следующие переменные и константа $N>0$:

> var $i, j, k:$ integer;
> $\quad a:$ array $[1 \ldots N]$ of $T ;$
> $\quad x: T$

Програмиа A:

$$
\begin{aligned}
& i:=1 ; j:=N \\
& \text { repeat } k:=(i+j) \text { div } 2 ; \\
& \quad \text { if } a[k]<x \text { then } i:=k \text { else } j:=k \\
& \text { until }(a[k]=x) \vee(i \geq j)
\end{aligned}
$$

Программа B :
$i:=1 ; j:=N ;$
repeat $k:=(i \nmid-j) \operatorname{div} 2$;
if $\boldsymbol{x} \leq a[k]$ then $j:=k-1$;
if $a[k] \leq x$ then $i:=k \cdot 1 \cdot 1$
until $\boldsymbol{i}>\boldsymbol{j}$
Программа C :
$i:=1 ; j:=N ;$
repeat $k:=(i+j)$ div $2 ;$
if $\boldsymbol{x}<a[k]$ then $j:=k$ else $i:=k+1$
until $i \geq j$
Укаэанис. Все лрограммы должиы заканчиваться при $a[k]=x$, если такая компонента существует, илн при $a[k] \neq x$, если нет компоненты со значенисм \boldsymbol{x}.
1.14. - ескоторая комлания проводит опрос, чтобы выяснить спрос на свою продукцию. Ес иродукция - это пластинки и магнитофонные леиты с песнями; самые популярные песни будут переданы по радио. Опрашиваемое население делится на четыре категории согласно полу и возрасту (скажем, моложе 20 и старше 20). Каждый опрашиваемый должсн назвать пять любимых песен. Песням ставятся в соответствие чнсла от 1 до N (например, пусть $N=30$). Результаты опроса представлены в файлс poll такого тина

```
type hit = 1..N;
    sex = (male, female);
    response =
            record name, furstname: alfa;
                    s:sex;
            age: integer;
            choice: array [1 . . 5] of hit
            end ;
var poll: file of response
```

Итак, каждый элемешт файла представляет опрашиваемого и содержнт его имя, фамилию, пол, возраст и пять любимых пессн в порядкө

предпочтення. Этот файл является входным для программы, которая должна получить следующие результаты:

1. Список песеп в порядке их популярности. Каждый элемент этого списка содержит номер песии и число упоминаний при опросе. Песии, которые ии разу не упоминались, исключаются из списка.
2. Четыре отдельных списка с именами и фамилнями всех отвечающих, которыс пазвали на первом месте одну из трех песен, наиболее популярных в их катсгории.
Всем пяти спискам должны предиествовать соответствующие заголовки.

ЛИТЕРАТУРА

I.I. DAHL O. J., DIJKSTRA E. W.. HOARE C. A. R., Structured Programming. - New York: Academic Press, 1972. [Имеется перевод: Дал О., Дейкстра Э., Хоор К., Структурное программирование. - М.: Мир, 1975.
1.2. HOARE C. A. R. Notes on Data Structuring. - Structured Programming. Dahl, Dijkstra, Hoare, 83-174. [Имеется перевод: Хоор K. Заметки о структурной организации данных. - В кн.: Дал О., Дейкстра Э., Хоор К. Структурное программированне. - М.: Мир. 1975, с. 98-197.1
1.3. JENSEN K., WIRTH N. PASCAL, User Manual and Report. - Lecture Notes in Computer Science. - Berlin: Springer-Verlag, 18, 1974. [Имеется перевод: Иенсен К., Вирт Н. ПАСКАЛЬ; Руководство для пользователя и описание языка. - М.: Финансы и статистика, 1982.$]$
1.4. WIRTH N. Program Development by Stepwise Refinement. - Comm. ACM, 14, No 4, 1971, 22I-227.
1.5. WIRTH N. The Programming Language PASCAL. - Acta Informatica. No. I, 1971, 35-63.
1.6. WIRTH N. On the Composition of Well-Structured Programs. - Computing Surveys, 6, No. 4, 1974, 247-259.

2.1. ВВЕДЕНИЕ

Основная цель этой главы - показать на множестве примеров, как используются структуры данных, описанные в предыдущей главе, и продемонстрировать влияние выбранной структуры данных на алгоритмы, выполняющие некоторое задание. Кроме того, сортировка служит хорошим примером того, что одна и та же цель может достигаться с помощьо различных алгоритмов, причем каждый из них имеет свои определенные преимущества и недостатки, которые нужно оценить с точки зрения конкретной сит уации.

Под сортировкой обычно понимают процесс перестановки объектов данного множества в определенном порядке. Цель сортировки - облегчить последующий поиск элементов в огсортированном множестве. В этом смысле элементы сортировки присутствуют почти во всех задачах. Упорядоченные объекты содержатся в телефонных книгах, в ведомостях подоходных налогов, в оглавлениях, в библиотеках, в словарях, на складах, да и почти всюду, где их нужно разыскивать. Даже маленьких детей приучают приводить вещи «в порядок», и они сталкиваются с некоторым видсм сортировки задолго до того, как узнают что-либо об арифметике.

Следовательно, методы сортировки очень важны, особенно при обработке данных. Казалось бы, что́ легче рассортировать, чем набор данных? Однако с сортировкой связаны многие фундаментальные приемы построения алгоритмов, которые и будут нас интересовать в первую очередь. Почти все такие приемы встречаются в связи с алгоритмами сортировки. В частности, сортировка является идеальным примером огромного разнообразия алгоритмов, выполняюпих одну н ту же задачу, многие из которых в некотором смыс,ле являются оптимальными, а большинство имеет какие-либо преимущества по сравнению с остальными. Поэтому на примере сортировки мы убеждаемся в необходимос'ги сравнительного анализа алгоритмов. Кроме того, здесь мы увидим, как при помоши усложнения алгоритмов можно добиться значительного увеличения эффективности по сравнению с более простыми и очевидными методами.

Зависимость выбора алгоритмов от структуры данных явленис довольно частое, и в случае сортировки она настолько

сильна, что методы сортировки обычно разделяют на две категории: сортировка массивов и сортировка (последовательных) файлов. Эти два класса часто называют внутренней и внешней сортировкой, так как массивы располагаются во «внутренней» (оперативной) памяти ЭВМ; для этой памяти характерен быстрый произвольный доступ, а файлы хранятся в более медленной, но более вместительной «внешней» памяти, т. е. на запоминающих устройствах с механическим

Рнс. 2.1. Сортировка массиеа.
передвижением (дисках и лентах). Это сушцсственнос различие можно наглядно показать на примере сортировки пронумерованных карточек. Представление карточек в виде массива соответствует тому, что все они располагаются перед сортирующим так, что каждая карточка видна и доступна (см. рис. 2.1). Представление карточек в виде файла предполагает, что видна только верхняя карточка из каждой стопки (см. рис. 2.2). Очевидно, что такое ограничение приведет к существенному изменению методов сортировки, но оно неизбежно, если карточек так много, что их число нз столе не уменьшается.

Прежде всего мы введем некоторую терминологию и систему обозначений, которые будем использовать в этой главе. Нам даны элементы

$$
a_{1}, a_{2}, \ldots, a_{n}
$$

Сортировка означает перестановку этих элементов в таком порядке:

$$
a_{k_{!}}, a_{k_{2}}, \ldots, a_{k_{n}}
$$

что при заданной функции упорядочения f справедливо отношение

$$
\begin{equation*}
f\left(a_{k_{1}}\right) \leqslant f\left(a_{k_{2}}\right) \leqslant \ldots \leqslant f\left(a_{k_{n}}\right) \tag{2.1}
\end{equation*}
$$

Обычно функция упорядочения не вычисляется по какому-то спсциальному правилу, а содержится в каждом элементе в виде явной: компоненты (поля). Ее значение называется ключом элемента. Следовательно, для представления элемента a_{i} особенно хорошо подходит структура записи. Поэтому мы определяем тип item (элемент), который будет

Рис. 2.2. Сортировка файла.
использоваться в последующих алгоритмах сортировки следующим образом:

$$
\begin{aligned}
& \text { type item -: record key: integer; } \\
& \text { (описание других компонент) } \\
& \text { end }
\end{aligned}
$$

«Прочие компоненты» -это все существенные данные об элсментс; поле $k е y$ - ключ служит лишь для идентификации элементов. Однако, когда мы говорим об алгоритмах сортировки, ключ для нас - единственная существенная компонента, н нет необходимости как-то определять остальные. Выбор в качестве типа ключа целого типа достаточно произволен; ясно, что точно так же можно использовать и любой тип, на котором задано отношение всеобщего порядка.

Метод сортировки называется устойчивым, если относитсльный порядок элементов с одинаковыми ключами не меняется при сортировке. Устойчивость сортировки часто бывает желательна, если элементы упорядочены (рассортированы) по каким-то вторичным ключам, т. е. по свойствам, не итра•山есным в нервичном ключе.

He следует считать, что данная глава представляет собой исчерпываюший обзор методов сортировки. Здесь лишь особенно подробно разбираются некоторые избранные методы. Заинтересованного читателя, желающего получить полное представление о сортировке, мы отсылаем к блестяцей и всеобъемлющей работе Д. Кнута [2.7] (см. также [2.10]).

2.2. СОРТИРОВКА МАССИВОВ

Основное требование к методам сортировки массивов экономное использование памяти. Это означает, что переупорядочение элементов нужно выполнять in situ (на том же месте) и что методы, которые пересылают элементы из массива a в массив b, не представляют для нас интереса. Таким образом, выбирая метод сортировки, руководствуясь критерием экономии памяти, классификацию алгоритмов мы проводим в соответствии с их эффективностью, т. е. экономией времени или быстродействием. Удобная мера эффективности получается при подсчете числа C - необходимых сравнении ключей и M - пересылок элементов. Эти числа определяются некоторыми функциями от числа n сортируемых элементов. Хотя хорошие алгоритмы сортировки требуют порядка $n \cdot \log n$ сравнений, мы сначала обсудим несколько несложных и очевидных способов сортировки, называемых простыми методами, которые требуют порядка n^{2} сравнений ключей. Мы решили рассмотреть простые методы прежде, чем перейти к более быстрым алгоритмам, по следующим трем важным причинам:

1. Простые методы особенно хорошо подходят для разъяснения свойств большинства принципов сортировки.
2. Программы, основанные на этих методах, легки для понимания и коротки. Следует помнить, что программы также занимают память!
3. Хотя сложные методы требуют меньшего числа операций, эти операции более сложны; поэтому при достаточно малых n простые методы работают быстрее, но их нє следует использовать при больших n.

Методы, сортирующие элементы \ln situ, можно разбить на три основных класса в зависимости от лежащего в их основе приема:

1. Сортировка включениями.
2. Сортировка выбором.
3. Сортировка обменом.

Теперь мы рассмотрим и сравним эти три принципа. Программы работают $с$ переменной-массивом a, компоненты

которой нужно рассортировать in situ. В этих программах используются типы данных item (2.2) и index, определенные так:

$$
\begin{align*}
& \text { type index }=0 \ldots n ; \\
& \text { var } a: \text { array }[1 \ldots n] \text { of item } \tag{2.3}
\end{align*}
$$

2.2.1. Сортировка простыми включениями.

Этот метод обычно используют игроки в карты. Элементы (карты) условно разделяются иа готовую последовательность a_{1}, \ldots, a_{l-1} и входную последовательность a_{i}, \ldots, a_{n}. На каждом шаге, начиная с $i=2$ и увеличивая i на единицу, берут i-й элемент входной последовательности и передают в готовую последовательность, вставляя его на подходящее место.

Таблица 2.1. Пример сортировки простыми включениями

Началвные кпючи	44	55	12.	42	94	18	06	67
$i=2$	44	55	12	42	94	18	06	67
$t=3$	12	44	55	42	94	18	06	67
$t=4$	12	42	44	55	94	18	06	67
$t=5$	12	42	44	55	94	18	06	67
$t=6$	12	18	42	44	55	94	06	67
$t=7$	06	12	18	42	44	55	94	67
$i=8$	06	12	18	42	44	55	67	98

Процесс сортировки включениями показан на примере восьми случайно взятых чисел (см. табл. 2.1). Алгоритм сортировки простыми включениями выглядит следующим образом:
for $i:=2$, to n do
begin $x:=a[i] ;$
«вставить x на подходящее место в $a_{1} \ldots a_{i}$ "
end
При поиске подходящего места удобно чередовать сравнения и пересылки, т. е. как бы «просеивать» x, сравнивая его с очередным элементом a_{j} и либо вставляя x, либо пересылая u_{1} направо и продвигаясь налево. Заметим, что «просеивание» может закончиться при двух различных условиях:

1. Найден элемент $a_{/}$с ключом меньшим, чем ключ x.
2. Достигнут левый конеи готовой последовательности.

Этот типичный пример цикла с двумя условиями окончания дает нам возможность рассмотреть хорошо известный прием

фиктивного элемента (кбарьера»). Его можно легко применить в этом случае, установив барьер $a_{0}=x$. (Заметим, что для этого нужно расширить диапазон индексов в описании а дп $0, \ldots, n$.) Окончательный алгоритм представлен в виде программы 2.1.

```
procedure straightinsertion;
    var \(i, j\) : index; \(\dot{x}\) : item;
begin
    for \(i:=2\) to \(n\) do
    begin \(x:=a[i] ; a[0]:=x ; j:=i-1\);
        while \(x . k e y<a[j]\).key do
                begin \(a[j+1]:=a[j]: j:=j-1\);
                end ;
            \(a[j+1]:=x\)
    end
end
```

Программа 2.1. Сортировка простыми включениями.
Анализ сортировки простыми включениями. Число C_{i} сравнений ключей при i-м просеивании составляет самое большее $i-1$, самое меньшее 1 и, если предположить, что все перестановки n ключей равновероятны, в среднем равно $i / 2$. Число M_{i} пересылок (присваиваний) равно $C_{i}+2$ (учитывая барьер). Поэтому обшее число сравнений и пересылок есгь

$$
\begin{array}{ll}
C_{\mathrm{mln}}=n-1 & M_{\min }=2(n-1) \\
C_{\mathrm{cp} .}=\frac{1}{4}\left(n^{2}+n-2\right) & M_{\mathrm{cp} .}=\frac{1}{4}\left(n^{2}+9 n-10\right) \tag{2.4}\\
C_{\max }=\frac{1}{2}\left(n^{2}+n\right)-1 & M_{\max }=\frac{1}{2}\left(n^{2}+3 n-4\right)
\end{array}
$$

Наименьшие числа появляются, если элементы с самого начала упорядочены, а наихудший случай встречается, если элементы расположены в обратном порядке. В этом смысле сортировка включениями демонстрирует вполне естественное поведение. Ясно также, что данный алгоритм описывает устойчивую сортировку: он оставляет неизменным порядок элементов с одинаковыми ключами.

Алгоритм сортировки простыми включениями легко можно улучшить, пользуясь тем, что готовая последовательность a_{1}, \ldots, a_{i-1}, в которую нужно включить новый элемент, уже упорядочена. Поэтому место включения можно найти значительно быстрее. Очевидно, что здесь можно применить бинарный поиск, который исследует средний элемент готовой последовательности и продолжает деление пополам, пока не будет найдено место включения. Модифицированный алгоритм cop-

тировки называется сортировкой бинарными включениями, он показан в программе 2.2.

```
procedure binaryinsertion;
    var \(i, j, l, r, m\) : index; \(x\) : item;
begin
    for \(i:=2\) to \(n\) do
    begin \(x:=a[i] ; l:=1 ; r:=i-1\);
        while \(l \leq r\) do
        begin \(m:=(l+r)\) div 2 ;
            if \(x\). key \(<a[m]\). key then \(r:=m-1\) else \(l:=m+1\)
        end ;
        for \(j:=i-1\) downto \(/\) do \(a[j+1]:=a[j]\);
        \(a[l]:=x ;\)
    end
end
```

Программа 2.2. Сортировка́ бинарными включениями.
Анализ сортировки бинарными включениями. Место включения найдено, если $a_{l} . k e y \leqslant x . k e y<a_{r} . k e y$. Таким образом, интервал поиска в конце должен быть равен 1 ; это означает, что интервал из i ключей делится пополам $\left[\log _{2} i\right]$ раз. Итак,

$$
C=\sum_{i=1}^{n}\left[\log _{2} i\right]
$$

Мы аппроксимируем эту сумму с помощью интеграла

$$
\begin{equation*}
\int_{1}^{n} \log x d x=\left.x(\log x-c)\right|_{1} ^{n}=n(\log n-c)+c \tag{2.5}
\end{equation*}
$$

где $c=\log e=1 / \ln 2=1.44269 \ldots$. Количество сравнений не зависит от исходного порядка элементов. Но из-за округления при делении интервала поиска пополам действительное чнсло сравнений для i элементов может быть на 1 больше ожидаемого. Природа этого «перекоса» такова, что в результате места́ включения в нижней части находятся в среднем несколько быстрее, чем в верхней части. Это дает преимущество в тех случаях, когда элементы изначально далеки от правильного порядка. На самом же деле минимальное число сравнений требуется, если элементы вначале расположены в обратном порядке, а максимальное - если они уже упорядочены. Следовательно, это случай неестественного поведения алгоритма сортировки:

$$
C \doteq n(\log n-\log e \pm 0.5)
$$

К сожалению, улучшение, которое мы получаем, используя метод бинарного поиска, касается только числа сравнений,

а не числа необходимых пересылок. В действительности поскольку пересылка элементов, т. е. ключей и сопутствующей информации, обычно требует значительно больше времени, чем сравнение двух ключей, то это улучшение ни в коей мере не является решающнм: важный показатель M по-прежнему остается порядка n^{2}. И в самом деле, пересортировка уже рассортированного массива занимает больше времени, чем при сортировке простыми включениями с последовательным поиском! Эгот пример показывает, что «очевидное улучшение» часто оказывается намного менее существенным, чем кажется вначале, и в некоторых случаях (которые действительно встречаются) может на самом деле оказаться ухудшением. В конечном счете сортировка включениями оказывается не очень подходящим методом для цифровых вычислительных машин: включение элемента с последуюиим сдвигом всего ряда элементов на одну позицию неэкономна. Лучших результатов можно ожидать от метода, при котором пересылки элементов выполняются только для отдельных элементов и на большие расстояния. Эта мысль приводит к сортировке выбором.

2.2.2. Сортировка простым выбором

Этот метод основан на следующем иравнле:

1. Выбирается элемент с наименьшим ключом.
2. Он меняется местами с первым элементом a_{1}.

Эти операции затем повторяются с оставшимися $n-1$ элементами, затем с $n-2$ элементами, пока не останется только один элемент - наибольший. Этот метод продемонстрирован на тех же восьми ключах в табл. 2.2.

Таблица 2.2. Пример сортировки простым выбором
Maчasbhbe каночи

44	55	12	42	94	18	06	67
06	55	12	42	94	18	44	67
06	12	55	42	94	18	44	67
06	12	18	42	94	55	44	67
06	12	18	42	94	55	44	67
06	12	18	42	44	55	94	67
06	12	18	42	44	55	94	67
06	12	18	42	44	55	67	94

Программу можно представить следующим образом:
for $i:=1$ to $n-1$ do
besin «присвоить k индекс наименьшего элемента из $a[i] \ldots$
... $a[n] » ;$
«поменять местами a_{l} и a_{k} "
end

Этот метод, называемый сортировкой простым выбором, в некотором смысле противоположен сортировке простыми включениями; при сортировке простыми включениями на каждом шаге рассматривается только один очередной элемент входной последовательности и все элементы готового массива для нахождения места включения; при сортировке простым выбором рассматриваются все элементы входного массива для нахождения элемента с наименьшим ключом, и этот один очередной элемент отправляется в готовую последовательность. Весь алгоритм сортировки простым выбором представлен в виде программы 2.3.
procedure straightselection;
var i, j, k : index; x : item;
begin for $i:=1$ to $n-1$ do
begin $k:=i ; x:=a[i] ;$
for $j:=i+1$ to n do
if $a[j] . k e y<x . k e y$ then
begin $k:=j ; x:=a[j]$
end;
$a[k]:=a[i] ; a[i]:=x ;$
end
end
Программа 2.3. Сортировка простым выбором.
Анализ сортировки простым выбором. Очевидно, что число С сравнений ключей не зависит от начального порядка ключей. В этом смысле можно сказать, что сортировка простым выбором ведет себя менее естественно, чем сортировка простыми включениями. Мы получаем

$$
C=\frac{1}{2}\left(n^{2}-n\right)
$$

Минимальное число пересылок равно

$$
\begin{equation*}
1 \quad M_{\min }=3(n-1) \tag{2.6}
\end{equation*}
$$

в случае изначаяьно упорядоченных ключей и принимает наибольшее значение:

$$
M_{\max }=\operatorname{trunc}\left(\frac{n^{2}}{4}\right)+3(n-1)
$$

если вначале ключи раслоложены в обратном лорядке. Среднее $M_{\text {ср. трудно определить, несмотря на простоту алгоритма. }}$. Оно зависит от того, сколько раз определяется, что k_{i} меньше всех предшествуюших величин k_{1}, \ldots, k_{1-1} при просмотре последоватсльности чнсел k_{1}, \ldots, k_{n}. Это значенне, взятое

в среднем для всех перестановок n ключей, число которых равно n l, есть

$$
H_{n}-1
$$

где H_{n} - п-е гармоническое число

$$
\begin{equation*}
H_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n} \tag{2.7}
\end{equation*}
$$

(см. Д. Кнут, т. 1).
Число H_{n} можно выразить как

$$
\begin{equation*}
H_{n}=\ln n+\gamma+\frac{1}{2 n}-\frac{1}{12 n^{2}}+\cdots \tag{2.8}
\end{equation*}
$$

где $\gamma=0.577216 \ldots$ - эйлерова константа. Для достаточно больших n мы можем опустить дробные слагаемые и, таким образом, аппроксимировать среднее число присваиваний на i-м проходе следуюшим образом:

$$
F_{i}=\ln i+\gamma+1
$$

Тогда среднее число пересылок $M_{\text {ср }}$. при сортировке выбором есть сумма F_{i}, где i принимает значения от 1 до n :

$$
M_{\mathrm{cp} .}=\sum_{i=1}^{n} F_{i}=n(\gamma+1)+\sum_{i=1}^{n} \ln i .
$$

Аппроксимируя далее сумму отдельных слагаемых с помощью интеграла

$$
\int_{1}^{n} \ln x d x=\left.x(\ln x-1)\right|_{1} ^{n}=n \ln n-n+1
$$

получаем приближенное значение

$$
\begin{equation*}
M_{c p .} \doteq n(\ln n+\gamma) \tag{2.9}
\end{equation*}
$$

Мы можем сделать вывод, что обычно алгоритм сортировки простым выбором предпочтительней алгоритма сортировки простыми включениями, хотя в случае, когда ключи заранее рассортированы или почти рассортированы, сортировка простыми включениями все же работает несколько быстрее.

2.2.3. Сортировка простым обменом

Классификация методов сортировки не всегда четко определена. Оба представленных ранее метода можно рассматривать как сортировку обменом. Однако в этом разделе мы остановимся на методе, в котором обмен двух элементов является основной характеристикой процесса. Приведенный ниже алгоритм сортировки простым обменом основан па

принципе сравнения $и$ обмена пары соседних элементов до тех пор, пока не будут рассортированы все элементы.

Как и в предыдущих методах простого выбора, мы совершаем повторные проходы по массиву, каждый раз просеивая наименьший элемент оставшегося множества, двигаясь к левому концу массива. Если, для разнообразия, мы будем рассматривать массив, расположенный вертикально, а не горизонтально и - при помоши некоторого воображения - представим себе элементы пузырьками в резервуаре с водой, обладающими «весами», соответствующими их ключам, то каждый проход по массиву приводит к «всплыванию» пузырька на соответствующий его весу уровень (см. табл. 2.3). Этот ме-

Таблица 2.3. Пример сортировки методом пузырька

тод широко известен как сортировка методом пузырька. Его простейший вариант приведен в программе 2.4.
procedure bubblesort;
var i, j : index; x : item;
begin for $i:=2$ to n do
begin for $\boldsymbol{j}:=\boldsymbol{n}$ downto \boldsymbol{i} do
if $a[j-1] . k e y>a[j] . k e y$ then begin $x:=a[j-1] ; a[j-1]:=a[j] ; a[j]:=x$
end
end
end \{bubblesort $\}$
Программа 2.4. Сортировка методом пуэырька.
, Этот алгоритм легко оптимизировать. Пример в табл. 2.3 показывает, что три последних прохода никак не влияют на порядок элементов, лоскольку те уже рассортированы. Очевидный способ улучшить данный алгоритм - это запоминать, производился ли на данном проходе какой-либо обмен. Если нет, то это означает, что алгоритм может закончить работу. Этот проиесс улучшения можно продолжить, если заломинать не только сам факт обмена, но и место (индекс) лоследнего

обмена. Ведь ясно, что все пары соседних элементов с индексами, меньшими этого индекса k, уже расположены в нужном порядке. Поэтому следующие проходы можно заканчивать на этом индексе, вместо того чтобы двигаться до установленной заранее нижней границы i. Однако внимательный программист заметит здесь странную асимметрию: один неправильно расположенный «пузырек» в «тяжелом» конце рассортированного массива всплывет на место за один прьход, а неправильно расположенный элемент в «легком» коние будет опускаться на правильное место только на один шаг на каждом проходе. Например, массив

1218424455679406

будет рассортирован при помощи метода пузырька за один проход, а сортировка массива

$$
9406121842445567
$$

потребует семи проходов. Эта неестественная асимметрия подсказывает третье улучшение: менять направление следующих один за другим проходов. Мы назовем полученный в результате алгоритм шейкер-сортировкой. Его работа показана в табл. 2.4 на тех же восьми ключах, которые использовались в табл. 2.3.

Таблица 2.4. Пример шейкер-сортиповки

Анализ сортировки методом пузырька и шейкер-сортировки. Число сравнений в алгоритме простого обмена равно

$$
\begin{equation*}
C=\frac{1}{2}\left(n^{2}-n\right), \tag{2.10}
\end{equation*}
$$

минимальное, среднее и максимальное количества пересыэк (присваиваний элементов) равны

$$
M_{\min }=0, \quad M_{\mathrm{cp} .}=\frac{1}{4}\left(n^{2}-n\right), \quad M_{\max }=\frac{1}{2}(n-n j . \quad(2.11) .
$$

```
procedure shakersort;
    var \(j, k, l, r:\) index; \(x:\) item;
begin \(l:=2 ; r:=n ; k:=n\);
    repeat
            for \(j:=r\) downto \(l\) do
            if \(a[j-1]\).key \(>a[j]\).key then
            begin \(x:=a[j-1] ; a[j-1]:=a[j] ; a[j]:=x\);
                \(k:=j\)
            end ;
        \(l:=k+1\);
        for \(j:=l\) to \(r\) do
            if \(a[j-1]\).key \(>a[j]\).key then
            begin \(x:=a[j-1] ; a[j-1]:=a[j] ; a[j]:=x\);
                \(k:=j\)
            end ;
        \(r:=k-1 ;\)
    until \(l>r\)
end \{shakersort\}
```

Программа 2.5. Шейкер-сортировка.

Анализ улучшенных методов, особенно метода шейкер-сортировки, довольно сложен. Наименьшее число сравнений есть $C_{\mathrm{mln}}=n-1$. Для усовершенствованного метода пузырька Кнут получил, что среднее число проходов пропорционально $n-k_{1} \sqrt{n}$ и среднее число сравнений пропорционально $\frac{1}{2}\left[n^{2}-n\left(k_{2}+\ln n\right)\right]$. Но мы замечасм, что все предложенные выше усовершенствования никоим образом не влияют на число обменов; они лишь уменьшают число избыточных повторных проверок. К сожалению, обмен двух элементов обычно намного более дорогостоящая операция, чем сравнения ключейұ, поэтому все наши уссвершенствования дают зна. чительно меньший эффект, чем можно было бы ожидать.

Анализ показывает, что сортировка обменом и ее небольшие улучшения хуже, чем сортировка включениями н выбором, и действительно, сортировка методом пузырька вряд ли имеет какие-то преимущества, кроме своего легко запомипающегося названия. Алгоритм шейкер-сортировки выгодно использовать в тех случаях, когда нзвестно, что элементь уже почти упорядочены - редкий случай на практике.

Можно показать, что среднее расстояние, на которое должен переместиться каждый из n элементов во время сорти* ровки, - это $n / 3$ мест. Это число дает ключ к понску усовериенствованных, т. е. более эффективных, методов сорти-

ровки. Bce простые методы в принципе перемещают каждый элемент на одну позицию на каждом элементарном шаге. Поэтому они требуют порядка n^{2} таких шагов. Любое улучшение должно основываться на принципе пересылки элементов за один цикл на большее расстояние.

Далее мы обсудим три усовершенствованных метода - по одному для каждого основного метода сортировки: включения, выбора и обмена.

2.2.4. Сортировка включениями с убывающим приращением

Некоторое усовершенствование сортировки простыми включениями было предложено Д. Л. Шеллом в 1959 г. Этот метод мы объясним и продемонстрируем на нашем стандартном примере из восьми элементов (см. табл. 2.5). На первом

Таблица 2.5. Сортировка включеннями с убывающим прнращением

2-сортировка:

j-сортировка:

06	12	18	42	44	55	67	94

проходе отдельно группируются и сортируются все элементы, отстояшие друг от друга на четыре позиции. Этот процесс называется 4 -сортировкой. В нашем примере из восьми элементов каждая группа ссдержит ровно два элемента. После этого элементы вновь объединяются в группы с элементами, отстоящими друг от друга на две позиции, и сортируотся заново. Этот процесс называется 2 -сортировкой. Наконец, на третьем проходе все элементы сортируются обычной сортировкой, или 1 -сортировкой.

Сначала может показаться, что необходимость нескольких проходов сортировкн, в каждом из которых участвуют все элементы, большс работы потребует, чем сэкономит. Однако

на каждом шаге сортировки либо участвует сравнительно мало элементов, либо они уже довольно хорошо упорядочены и требуют относительно мало перестановок.

Очевидно, что этот метод в результате дает упорядоченный массив, и также совершенно ясно, что каждый проход будет использовать результаты предыдущего прохода, поскольку каждая i-сортировка объединяет две группы, рассортированные предыдущей $2 i$-сортировкой. Т'акже ясно, что приемлема любая последовательность приращений, лишь бь последнее было равно 1 , так как в худшем случае вся работа будет выполняться на последнем проходе. Однако менее очевидно, что метод убывающего лриращения дает даже лучиие результаты, когда приращения не являются степенями двойки.

Таким образом, программа разрабатывается вне связи с конкретной последовательностью приращений. Все t приращений обозначаются через

$$
h_{1}, h_{2}, \ldots, h_{t}
$$

с условнями

$$
\begin{equation*}
h_{t}=1, \quad h_{t+1}<h_{t} \tag{2.12}
\end{equation*}
$$

Каждая h-сортировка программируется как сортировка простыми включениями, при этом, для того чтобы условие окончания поиска места включения было простым, используется барьер.

Ясно, что каждая h-сортировка требует собственного барьера и что программа должна определять его место как можно проце. Поэтому массив a нужно дополнить не одной компонентой $a[0]$, а h_{1} компонентами, так что теперь он описывается как

$$
a: \operatorname{array}\left[-h_{1} . . n\right] \text { of } \text { item }
$$

Этот алгоритм представлен в виде процедуры, названнои Shellsort [2.11] («сортировка Шелла») в программе 2.6 для $t=4$.

Анализ сортировки Шелла. При анализе этого алгоритма возникают некоторые очснь сложные матсматические задачи, многие из которых еще не решены. В частности, неизвестно, какая последовательность приращений дает лучшие результаты. Однако выявлен удивительный факт, что они не должны быть кратны друг другу. Это позволяет избежать лвления, которое видно в приведенном выше примере, где каждый проход сортировки объединяет две цепочки, которые ранее никак не взаимодействовали. В действительности желательно, чтобы взаимодействие между разными цепочками

```
procedure shellsort;
    const \(t=4\);
    var \(i, j, k, s:\) index; \(x\) : item; \(m: 1 \ldots t\);
        \(h\) : array [1..t] of integer;
begin \(h[1]:=9 ; h[2]: \neq 5 ; h[3]:=3 ; h[4]:=1\);
    for \(m:=1\) to \(t\) do
    begin \(k:=h[m] ; s:=-k ;\{\) место барьера \(\}\)
        for \(i:=k+1\) to \(n\) do
        begin \(x:=a[i] ; j:=i-k\);
            if \(s=0\) then \(s:=-k ; s:==s+1 ; a[s]:=x\);
            while \(x\).key \(<a[j]\).key do
            begin \(a[j+k]:=a[j] ; j:=j-k\)
            end ;
            \(a[j+k]:=x\)
        end
    end
end
```

Программа 2.6. Сортировка Шелла.
происходило как можно чаще. Можно сформулировать следующую теорему:
Если k-рассортированная последовательность i-сортируется, то она остается k-рассортированной.
Кнут [2.8] указывает, что разумным выбором может быть такая последовательность приращений (записанная в обратном порядке):

$$
1,4,13,40,121, \ldots
$$

где $h_{k-1}=3 h_{k}+1, h_{t}=1$ и $t=\left[\log _{3} n\right]-1$. Он рекомендует также лоследовательность

$$
1,3,7,15,31, \ldots
$$

где $h_{k-1}=2 h_{k}+1, h_{t}=1$ и $t=\left[\log _{2} n\right]-1$. Дальнейший анализ показывает, что в последнем случае затраты, которые требуются для сортировки n элементов с помощью алгоритма сортировки Шелла, пропорциональны n. Хотя это - значительное улучшение по сравнению с n^{2}, мы не будем в дальнейшем обращаться к этому методу, поскольку известны алгоритмы, работающие еще лучше.

12.2.5. Сортировка с помощью дерева

Метод сортировки простым выбором основан на повторном :ыборе наименьшего ключа среди n элементов, затем среди - І элемснтов и т. д. Понятно, что поиск наименьшего

ключа из n элементов требует $n-1$ сравнений, а поиск его среди $n-1$ элементов требует $n-2$ сравнений. Итак, как можно улучшить эту сортировку выбором? Это можно сделать только в том случае, если получать от каждого прохода больше информации, чем просто указание на один, наименьший элемент. Например, с помощью $n / 2$ сравнений можно определить наименьший ключ из каждой пары, при помощи

Рис. 2.3. Циклический выбор из двух ключей.
следующих $n / 4$ сравнений можно выбрать наименьший из каждой пары таких наименьших ключей и т. д. Наконец, при помощи всего n - l сравнений мы можем построить дерево выбора, как показано на рис. 2.3, и определить корень как наименьший ключ [2.2].

Рис. 2.4. Выбор наимеиьшего ключа.
На втором шаге мы спускаемся по пути, указанному наименьшим ключом, и исключаем его, последовательно заменяя либо на «дыру» (или ключ ∞), либо на элемент, находящийся на противоположной ветви промежуточного узла (см. рис. 2.4 и 2.5). Элемент, оказавшийся в корне дерева, вновь имеет наименьший ключ (среди оставшихся) и может быть исключен. После n таких шагов дерево становится пустым (т. е. состоит из «дыр»), и процесс сортировки закончен. Отметим, что каждый из n шагов требует лишь $\log _{2} n$ сравнений: Поэтому вся сортировка требует лишь порядка $n \cdot \log _{2} n$ элементарных операший, не считая n шагов, которье необходимы для построения дерева. Это - значительное улуч•

шение по сравнению с простым методом, требуюшим n^{2} шагов и даже по сравнению с сортировкой Шелла, которая требует $n^{1.2}$ шагов.

Конечно, при сортировке с помощью дерева задача хранения информации стала сложнее и поэтому увеличилась сложность отдельных шагов; в конечном счете для хранения возросшего объема информации, получаемой на начальном проходе, нужно строить некую древовидную структуру. Наша очередная задача - найти способы эффективной организации этой информации.

Рис. 2.5. Заполнение «дыр».
Разумеется, было бы весьма желательно избавиться от необходимости в дырах ($-\infty$), которые в конце заполняют все дерево и приводят к большому количеству ненужных сравнений. Кроме того, нужно найти способ представить дерево нз n элементов в n единицах памяти вместо $2 n-1$ единиц, как показано выше. Это действительно можно сделать с помошью метода, который его изобретатель Дж. Уильямс [2.14] назвал пирамидальной сортировкой. Ясно, что этот метод дает существенное улучшение по сравненио с более привычными способами сортировки по дерев.у.

Пирамида определяется как последовательность ключей $h_{l}, h_{l+1}, \ldots, h_{l}$
такая, что

$$
\begin{align*}
& h_{i} \leqslant h_{2 t} \\
& h_{i} \leqslant h_{2 t+1} \tag{2.13}
\end{align*}
$$

для всякого $i=l, \ldots, r / 2$. Если двоичное дерево представлено в виде массива, как показано на рис. 2.6, то, следовательно, деревья сортировки на рис. 2.7 и 2.8 являются пирамидами, и, в частности, элемент h_{1} пирамиды является ее наименьииим элементом

$$
h_{1}=\min \left(h_{1} \ldots h_{n}\right)
$$

Теперь предположим, что дана пирамида с элеменгами $h_{l+1}, \ldots, h_{\text {r }}$ для некоторых значений l и r и пужно добавить

новый элемент x для того, чтобы сформировать расширеннуо пирамиду h_{l}, \ldots, h_{r}. Возьмем, например, исходную пирамиду h_{1}, \ldots, h_{7}, показанную на рис. 2.7, и расширим эту пирамиду «влево», добавив элемент $h_{1}=44$. Новый элемент x сначала помещается в вершину дерева, а затем «просеивается» ло пути, па котором находятся меньшие по сравнению с ним элементы, которые одновременно поднимаются вверх; таким

Рис. 2.6. Массив h, расположенный в виде бинарного дерева.

Рис. 2.7. Пирамида из семи элементов.

Рис. 2.8. Просеивание ключа 44 через пирамиду.
образом формируется новая пирамида. В данном примере значени 44 сначала меняется местами с 06 , затем с 12 , и так формируется дерево, показанное на рис. 2.8. Далее мы процесс присеивания будем формулировать следующим образом: i, j - пара индексов, обозначающих элементы, которые нужно менять местами на каждом шаге просеивания. Мы предоставляем читателю возможность самому убедиться, что предложенный способ просеивания действительно позволяет сохранить условия (2.13), определяюшие пирамиду.

Изящный способ построения пирамиды in situ был предложен Р. У. Флойдом. В нем используется следующая про*

цедура просеивания (программа 2.7). Дан массив h_{1}, \ldots, h_{n}. ясно, что элементы $h_{n / 2+1} \ldots h_{n}$ уже образуют пирамиду, поскольку не существует двух индексов i, j, таких, что $j=2 i$ (или $j=2 i+1$). Эти элементы составляют последовательность, которую можно рассматривать как нижний ряд соответствующего двоичного дерева (см. рис. 2.6), где не тре-

```
procedure sift(l,r: index);
    label 13;
    var i,j: index; x: item;
begin i}:=l;j:=2*i;x:=a[i]
    while }j\leqr\mathrm{ do
    begin if }j<r\mathrm{ then
                if a[j].key>a[j+1].key then j:= j+1;
            if x .key \leqa[j] .key then goto 13;
            a[i]:=a[j];i:=j;j:=2*i {sift}
    end;
13: a[i]:== x
end
```

Программа 2.7. Просеивание.
буется никакого упорядочения. Теперь пирамида расширяется влево: на каждом шаге добавляется новый элемент и при помощи просеивания помещается на соответствующее место.

Таблица 2.6. Построение пирамидь

Этот процесс иллюстрируется табл. 2.6 и приводит к пирамиде, показанной на рис. 2.6. Следовательно, процесс построения пирамиды из n элементов in situ можно описать следующим образом:

$$
\begin{aligned}
& l:=(n \text { div } 2)+1 ; \\
& \text { while } l>1 \text { do } \\
& \quad \text { begin } l:=1-1 ; \operatorname{sif}(l, n) \\
& \quad \text { end }
\end{aligned}
$$

Для того чтобы рассортировать элементы, надо выполнить n шагов просеивачия: после каждого шага очередной элемент берется с вершины пирамиды. Вновь встает вопрос, куда помещать элементы с вершины и возможна ли сортировка in situ. Да, такое решение сушествует! На каждом шаге :13 пирамиды выбирается последняя компонента (скажем, x), верхний элемент пирамиды помещается на освободившееся место x, а x просеивается на свое место. В этом случае необходимо совершить n - 1 шагов, что показано на примере

Таблина 2.7. Пример пирамидальной сортировкн

пирамиды, приведенной в табл. 2.7. Этот процесс описынается с помощью прощедуры sift (программа 2.7) следующим образом:
$r:=n ;$
while $r>1$ do begin $x:=a[1] ; a[1]:=a[r] ; a[r]:=x ;$

$$
r:=r-1 ; \operatorname{sift}(1, r)
$$

end
Нз табл. 2.7 видно, что на самом деле в результате мы получасм последовательность в обратном порядке. Но это легко можпо исправить, изменив направление отношения порядка в процедуре sift. В результате мы получаем процедуру Heapsort, показанную в программе 2.8.

Анализ пирамидальной сортировки. С первого взгляда неочевидно, что этот метод сортировки дает хорошие результаты. Ведь элементы с большими ключами вначале просеиваются влево, прежде чем, наконец, окажутся справа. Действительно, эта процедура не рекомендуется для такого небольшого числа элементов, как, скажем, в нашем примере. Однако для больших n пирамидальная сортировка оказы-

```
procedure heapsort;
    var l,r: index; \(x\) : item;
    procedure sift:
        label 13;
        var \(i, j\) : index;
    begin \(i:=l ; j:=2 * i ; x:=a[i]\);
        while \(j \leq r\) do
        'begin if \(\boldsymbol{j}<\boldsymbol{r}\) then
                if \(a[j] . k e y<a[j+1]\). \(k e y\) then \(j:=j+1\);
            if \(x\).key \(\geq a[j]\).key then goto 13;
                \(a[i]:=a[j] ; 1:=j ; j:=2 * i\)
        end ;
    13: \(a[i]:=x\)
    end ;
begin \(l:=(n\) div 2\()+1 ; r:=n\);
    while \(l>1\) do
        begin \(l:=l-1\); sift
        end ;
    while \(r>1\) do
        begin \(x:=a[1] ; a[1]:=a[r] ; a[r]:=x\);
                \(r:=r-1 ;\) sift
            end
end \{heapsort\}
```

Программа 2.8. Пирамидальная сортировка.
вается очень эффективной, и чем больше n, тем она эффективнее - даже по сравненню с сортировкой Шелла.

В худшем случае необходимы $n / 2$ шагов, которые просеивают элементы через $\log (n / 2), \log (n / 2-1), \ldots, \log (n-1)$ позиций (здесь берется целая часть логарифма по основанию 2). Следовательно, на фазе сортировки происходит $n-1$ просеиваний с самое большее $\log (n-1), \log (n-2), \ldots, 1$ пересылками. Кроме того, требуютсл $n-1$ пересылок для того, чтобы отложить просеянный элемент вправо. Отсюда видно, что пирамидальная сортировка требует $n \cdot \log (n)$ шагов даже в худшем случае. Такие отличные характеристики для худшего случая - одно из самых выгпдных качеств пирамидальной сортировки.

Не совсем ясно, в каких случаях можно ожидать нанменьь шей (или наибольшей) эффективности. Но в принципе для пирамидальной сортировки, видимо, больше всего подходят случаи, когда элементы более или менее рассортированы в обратном порядке, т. е. для нее характерно неестественное

псведение. Очевидно, что при обратном порядке фаза построения пирамиды не требует никаких пересылок. Для восьми элементов из нашего примера минимальное и максимальное количества пересылок дают следующие исходные последовательности:

$$
\begin{gathered}
M_{\min }=13 \text { для последовательности } \\
946744551242186 \\
M_{\max }=24 \text { для последовательности } \\
.184212446556794
\end{gathered}
$$

Среднее число пересылок равно приблизительно $\frac{1}{2} n \cdot \log n$ и отклоневия от этого значения сравнительно малы.

2.2.6. Сортировка с разделением

После того как мы обсудили два усовершенствованных метода сортировки, основанных на принципах включения н выбора, мы введем третий, улучшенный метод, основанный на принципе обмена. Учитывая, что сортировка методом пузырька в среднем была наименее эффективной из трех алгоритмов простой сортировки, мы должны требовать значительного улучшения. Однако неожиданно оказывается, что усовершенствование сортировки, основанной на обмене, которое мы здесь будем обсуждать, дает вообще лучший из известных до сего врсмени метод сортировки массивов. Он обладает столь блестящими характеристиками, что его изобретатель К. Хоор окрестил его быстрой сортировкой [2.5, 2.6].

Быстрая сортировка основана на том факте, что для достижения наибольшей эффективности желательно производить обмены элементов на больших расстояниях. Предположим, что нам даны n элементов с ключами, расположенными в обратном порядке. Их можно рассортировать, выполнив всего $n / 2$ обменов, если сначала поменять местами самый левый и самый правый элементы и так постепенно продвигаться с двух концов к середине. Разумеется, это возможно, только если мы знаем, что элементы расположены стро!о в обратном порядке. Но все же этот пример наводит на некоторые мысли.

Попробуем рассмотреть следующий алгоритм: выберем случайным образом какой-то элемент (назовем его x), просмотрим массив, двигаясь слева направо, пока не найдем элемент $a_{i}>x$, а затем просмотрим его справа налево, пока не найдем элемент $a_{j}<x$. Теперь поменясм местами эти два элемента и продолжим процесс «просмогра с обменом», пока два просмотра не встретятся где-то в середине массива. В результате массив разделится на две части: левую - с клю-

чами меньшими, чем x, й правую - с ключами большими x. Теперь запишем этот алгоритм разделения в виде процедуры в программе 2.9. Заметим, что отношения $>$ и $<$ заменены на \geqslant и \leqslant, отрицания которых в операторе цикла с предусловнем - это $<$ и $>$. При такой замене \boldsymbol{x} действует как барьер для обоих просмотров.

```
procedure partition;
var w,x: item;
begin \(i:=1 ; j:=n\);
    выбор случайного элемента \(x\);
    repeat
        while \(a[i] . k e y<x\).key do \(i:=i+1\);
        while \(\times\).key \(<a[j]\).key do \(j:=j-1\);
        if \(i \leq j\) then
            begin \(w:=a[i] ; a[i]:=a[j] ; a[j]:=w ;\)
            \(i:=i+1 ; j:=j-1\)
        end
    until \(i>j\)
end
```

Программа 2.9. Разделение.
Если, например, в качестве x выбрать средний ключ, равный 42, нз массива ключей

$$
44 \quad 55 \quad 12 \quad 42 \quad 94 \quad 06 \quad 18 \quad 67
$$

то для того, чтобы разделить массив, потребуются два обмена

конечные значения индексов $i=5$ и $j=3$. Ключн a_{1}, \ldots \ldots, a_{i-1} меньше нли равны ключу $x=42$, ключи a_{j+1}, \ldots \ldots, a_{n} больше или равны x. Следовательно, мы получили два подмассива

$$
\begin{array}{ll}
a_{k} \cdot k e y \leqslant x \cdot k e y & \text { для } \quad k=1, \ldots, i-1, \\
a_{k} \cdot k e y \geqslant x \cdot k e y & \text { для } \quad k=j+1, \ldots, n \tag{2.14}
\end{array}
$$

и, следовательно,

$$
a_{k} \cdot k e y=x . k e y \quad k=j+1, \ldots, i-1
$$

Этот алгоритм очень прост и эффективен, так как основные величины, участвующие в сравнениях: i, j и x, можно во время просмотра хранить на быстрых регистрах. Ho он также может быть весьма неуклюжим, как видно из примера

с n одинаковыми ключами, в котором выполняется $n / 2$ обменов. Эти ненужные обмены можно легко устранить, заменив операторы просмотра на

> while $a[i] . k e y \leq x$. key do $i:=i+1$
> while $x . k e y \leq a[j]$. key do $j:=j-1$

Но тогда выбранный для сравнения элемент x, когорый находится в массиве, перестанет служить в качестве барьера для двух разнонаправленных просмотров. В случае когда в массиве все ключи одинаковы, просмотры выйдут за его границы, если не использовать более сложные условия окончания. Простота условий в программе 2.9 оправдывает излишние обмены, которые в среднем для «случайных» массивов происходят довольно редко. Небольшую экономию можно, однако, получить, заменив условие, управляющес обменом, на

$$
i<j
$$

вместе $i \leqslant j$. Но такую замену нельзя распространить на оба оператора

$$
i:=i+1 ; \quad j:=j-1
$$

которые поэтому требуют использования различных условий. Необходимость условия $i \leqslant j$ можно проиллюстрировать следующим примером при $x=2$:

1112111

Первый просмотр и обмен дают
1111112
причем $i=5, j=6$. Второй просмотр не изменяет массив и заканчивается с $i=7$ и $j=6$. Если бы обмен не подчинялся условию $i \leqslant j$, то произошел бы ошибочный обмен a_{6} и a_{7}.

В правильности алгоритма разделения можно убедиться на основании того, что оба утверждення (2.14) являются вариантами оператора цикла с постусловием. Вначале, при $i=1$ и $j=n$, они, очевидно, истинны, а при выходе с $i>j$ оии предполагают, что получен нужный результат.

Теперь нам пора вспомнить, что наша цель - не только разделить исходный массив элементов на бо́льшие и меньшие, іо также рассортировать его. Однако от разделения до сортировки всего лишь один небольшой шаг: разделив массив, нужно сделать то же самое с обеими полученными частямй, затем с частями этих частёй и т. д., пойа каждая часть нё

будет содержать только один элемент. Этот метод представлен программой 2.10 .

Процедура sort рекурсивно вызывает сама себя. Такое использование рекурсии в алгоритмах - очень мощное средство. Мы обсудим его позже в гл. 3. В некотсрых языках программирования старого образца рекурсия по некоторым техническим причинам запрещена. Сейчас мы покажем, как

```
procedure quicksort;
    procedure sort (l,r: index);
        var i,j: index; x,w: item;
    begin i:== l; j:=r;
        x :=a[(l--r) div 2];
        repeat
            while a[i] .key<x .key do i:= i+1;
            while }x.key<a[j].key do j:=j-1
            if i\leqj then
            kegin w:=a[i];a[i]:=a[j];a[j]:=w;
                i:= i-1; j:= j-1
            end
        until i>j;
        if l< < then sort(l,j);
        if i<r then sort(i,r)
    end ;
begin sort(1,ti)
end {quicksort}
```

Прогргмма 2.10. Быстрая сортировка.

можно выразить тот же алгоритм в виде перекурсивной процедуры. Очевидно, что при этом рекурсия представляется как итерацня, причем необходимы некоторые дополнительные операции для хранения информации.

Основа итеративного решения - ведение списка запросов на разделения, которые еще предстоит выполнить. После каждого шага нужно произвести два очередных разделения, и лишь одно из них можно выполнить непосредственно при с.яедующей итерации, запрос на другое заносится в список. Важно, разумеется, что запросы из списка выполняются в обратной последовательности. Это предполагает, что первый занесенный в список запрос выполняется последним и наоборот; список ведет себя как пульсирующий стек. В следующей нерекурсивной версии быстрой сортировкн каждый запрос представлен просто левым и правым индексами, определяющими границы части, которую впоследствии нужно

будет разделить. Џтак, мы вводим переменную-массив, называемую stack, и индекс s, указывающий на самую последнюю запись в этом стеке (см. программу 2.11). Каким доль

```
procedure quicksort 1;
    const m=12;
    var i,j,l,r: index;
        x,w: item;
        s: 0 .. m;
        stack: array [l..m] of
        record l,r: index end;
begin s}:=1;\operatorname{stack[1] l:=1; stack[l] .r:= n;
    repeat {выбор запроса из вершиньи стека}
        l:= stack[s] .l; r:= stack[s] .r; s:=s-1;
        repeat {split a[l] ... a[r]}
            i:=l;j:=r;x:=a[(l+r) div 2];
            repeat
                while a[i] .key < x .key do i:= i+1;
                while x .key < a[j] .key do j:=j-1;
                if i}\leqj\mathrm{ then
                begin w:=a[i];a[i]:=a[j];a[j]:=w;
                i:=i+1;j:= j-1
                end
            until i>j;
            if i<r then
            begin {запись в стек запроса на сортировку
                правой части)
                s:= s+1; stack[s] l:= i; stack[s].r:=r
            end ;
            r:=j.
        until l}\geq
    until s=0
end {quicksort 1}
```

Программа 2.11.Нерекурсивная версия быстрой сортировки.

жен быть размер стека m, мы обсудим при анализе быстрой сортнровки.

Анализ быстрой сортировки. Для того чтобы проанализцровать свойства быстрой сортировки, мы должны сначалӑ изучить поведение процесса разбиения. После выбора гра́-

ницы x процессу разбиения подвергаетсл весь массив. Таким образом, выполняется ровно n сравнений. Число обменов можно оценить при помощи следующего вероятностного рассуждения.

Предположим, что множество данных, которые нужно разделить, состоит из n ключей $1, \ldots, n$, и мы выбрали x в качестве границы. После разделения x будет занимать в массиве позицию x. Число требующихся обменов равно числу элементов в левой части x - 1 , умноженному на вероятность того, что ключ нужно обменять. Ключ обменивается, если он не меньше чем x. Вероятность этого равна $(n-x+1) / n$. Ожндаемое число обменов вычисляется при помощи суммирования всех возможных вариантов выбора границы и деления этой суммы на n :

$$
\begin{equation*}
M=\frac{1}{n} \sum_{x=1}^{n} \frac{x-1}{n} \cdot(n-x+1)=\frac{n}{6}-\frac{1}{6 n} \tag{2.15}
\end{equation*}
$$

Следовательно, ожидаемое число обменов равно приблизительно $n / 6$.

Если предположить, что нам очень везет и мы всегда выб́ираем в качестве границы медиану ${ }^{*}$, то каждое разделение разбивает массив на две равные части и число проходов, необходимых для сортировки, равно $\log n$. Тогда общее число сравнений составит $n \cdot \log n$, а общее чнсло обменов -$(n / 6) \cdot \log n$. Разумеется, нельзя ожидать, что мы все времл будем попадать на медиану. На самом деле, вероятность этого равна всего лишь $1 / n$. Но к удивлению, если граница выбирается случайным образом, эффектнвность быстрой сортировки в среднем хуже оптимальной лишь в $2 \cdot \ln 2$ раз.

Однако быстрая соргировка все же имеет свои «подводные камни». Прежде всего при небольших значениях n ее эффективность невелика, как и у всех усовершенствованных методов. Ее преимущество по сравнению с другими усовершенствованными методами заключается в том, что для сортировки уже разделенных небольших подмассивов легко можно применить какой-либо простой метод. Это особенно ценно, если говорить о рекурсивной версии программы.

Тем не менее остается проблема наихудшего случая. Как тогда ведет себя быстрая сортировка? Ответ, к сожалению, разочаровывает. Здесь проявляется слабость быстрой сортировки (которая в таких случаях становится «медленной сортировкой»). Рассмотрим, например, неблагоприятный случай,
*) См. следующий раздел. - Прим. переө.

когда каждый раз в качестве x выбирается наибольшее значение в подмассиве. Тогда каждый шаг разбивает сегмент нз n элементов на левую часть из $n-1$ элементов и правую часть, состоящую из одного элемента. В результате вместо $\log n$ необходимо n разбиений, и скорость работы в наихудшем случае оказывается порядка n^{2}

Очевидно, что эффективность алгоритма быстрой сортировки определяется выбором элемента x. В нашем примере программа выбирает в качестве x элемент, расположенный посередине. Заметим, что почти с тем же успехом можно было бы выбрать либо первый, либо последний элемент: $a[l]$ или $a[r]$. Но при таком выборе нанхудший вариант встретится, когда массив уже предварительно рассортирован; быстрая сортировка в этом случае проявляет определенную «неприязнь» к тривиальной работе и предпочитает беспорядочные массивы. При выборе среднего элемента в качестве границы это странное свойство быстрой сортировки менее заметно, так как уже рассортированный массив становится оптимальным случаем! Действительно, средняя скорость работы здесь оказывается несколько выше, если выбирается средний элемент. Хоор считает, что выбор x должен быть «случайным», или в качестве x нужно выбирать медиану из небольшого числа ключей (скажем, из 3 -ех) [2.12, 2.13]. Такой осмотрительный выбор почти не влияет на среднюю скорость быстрой сортировки, но значительно улучшает скорость в худшем случае. Как мы видим, быстрая сортировка напоминает азартную игру, где следует заранее рассчитать, сколько можно позволить себе проиграть в случае невезения.

Из этого нужно сделать важный вывод, на который программист должен обратить особое внимание. K чему приводит наихудший случай, разобранный выше в связи со скоростью выполнения программы 2.11? Мы видим, что при каждом разбиении правая часть подмассива состонт из одного элемента; запрос на сортировку этой части заносится в стек для последующего выполнения. Следовательно, максимальное число запросов и поэтому необходимый общий размер стека оказываются равными n. Конечно же, это абсоиютно неприемлемо. (Заметим, что с рекурсивной версней дело обстоит не лучше, а на самом деле даже хуже, поскольку система, допускающая рекурсивный вызов іроцедур, довнна автоматически сохранять значения локальных переменных и парамет ров прн всех вызовах процедур, и для этой цели она нспользует неявный стек.) Это можно исправить, если хранить з стеке запрос на сортировку более длинной части и сразу продолжать дальнейшее разделіение коротких частей. В этом случае размер стека можно ограничить до $\mathrm{m}=$ $=\log _{2} n$.

Неоо́ходимое изменение программы 2.11 касается лишь часги, фикснрующей новые запросы. Она теперь имеет вид

```
if j-l<r-i then
begin if i<r then
    begin {записи запроса на сортировку правой части}
        s:=s+1; stack[s] .l:= i; stack[s].r:=r
    end;
    r:=j {продолжение сортировки левой части)
end else
begin if l<j then
    begin {запись в стек запроса на сортировку леввй части}
            s:= s+1; stack[s].l:= j stack[s].r:= j
    end;
    l:=i {продолжкение сортировки правой части}
end
```


2.2.7. Поиск медианы

Медианой последовательности из n элементов называется элемент, значение которого меньше (или равно) половины n элементов и больше (или равно) другой половины. Например, медиана

$$
\begin{array}{lllll}
16 & 12 & 99 & 95 & 18 \\
87 & 10
\end{array}
$$

есть 18 .
Задачу поиска медианы принято связывать с сортировкой, так как медиану всегда можно найти следующим способом! рассортировать n элеменгов и затем выбрать средний элемент. Но разделение, которое выполняет программа 2.9, позволяет потенциально найти медиану значительно быстрее. Рассматриваемый здесь метод дает возможность решать и более общую задачу поиска элемента с k-м по величине значением из n элементов. Поиск медианы является частным случаем для $k=n / 2$.

Алгоритм, изобретенный К. Хоором [2.4], работает следующим образом. Прежде всего применяется операция разделения, используемая при быстрой сортировке, с $l=1$, $r=n$ и с $a[k]$, выбранным в качестве разделяющего значения (граннцы) x. Получаются значения индексов i и j, такие, что

1) $a[h] \leqslant x$ для всех $h<i$,
2) $a[h] \geqslant x$ для всех $h>j$,
3) $i>j$.

Возможны три варианта:

1. Разделяющее значение x было слишком мало; в результате граница между двумя частями ниже искомого значения k. Процесс разбиения следует повторить для элементов $a[i], \ldots, a[r]$ (см. рис. 2.9).

Рис. 2.9. Граница слишком низко.
2. Выбранная граница x была слишком велика. Операцию разбиения следует повторить на подмасснве $a[l], \ldots, a[j]$ (см. рис. 2.10).

Рис 2.10. Граница слишком высоко.
3. Значение k лежит в интервале $j<k<i$: элемент $a[k]$ разделяет массив в заданной пропорции и, следовательно, является искомым (см. рис. 2.11).

Рис. 2.11. Граница проведена правнльно.
Процесс разбиения повторяется до появления сіучая 3. Этой итерации соответствует следующий фрагмент программы:

$$
\begin{align*}
& l:=1 ; r:=n ; \\
& \text { while } l<r \text { do } \\
& \quad \text { begin } x:=a[k] ; \\
& \quad \text { partition }(a[l] \ldots a[r]) ; \tag{2.18}\\
& \quad \text { if } j<k \text { then } l:=i ; \\
& \text { if } k<i \text { then } r:=j
\end{align*}
$$

3а формальным доказательством корректности этого алгоритма мы отсылаем читателя к статье Хоора. Теперь мы можем целиком написать всю программу Find.

```
procedure find ( \(k\); integer);
    var \(l, r, t, j, w, x:\) integer;
begin \(l:=1 ; r:=n\}\)
    while \(l<r\) do
    begin \(x:=a[k] ; i:=l ; j:=r\);
        repeat \(\{s p l i t\}\)
            while \(a[i]<x\) do \(i:=i+1\);
            while \(x<a[j]\) do \(j:=j-1\);
            if \(i \leq j\) then
                begin \(w:=a[i] ; a[i]:=a[j] ; a[j]:==w\}\)
                    \(i:=i+1 ; j:=j-1\)
                end
            until \(i>j\);
            if \(j<k\) then \(l:=i\);
            if \(k<i\) then \(r:=j\)
    end
end \(\{\) find \(\}\)
```

Программа 2.12. Поиск k-го элемента.
Если предположить, что в среднем каждое разбиение уменьшает вдвое размер подмассива, в котором содержится искомый элемент, то число необходимых сравнений равно

$$
\begin{equation*}
n+\frac{n}{2}+\frac{n}{4}+\ldots+1 \doteq 2 n \tag{2.19}
\end{equation*}
$$

т. е. порядка n. Этим объясняется эффективность программы Find при нахожденин медиан и других квантилей и ее преимущество по сравнению с приходящим вначале в голову методом сортировки вссго множества элементов для выбора k-го по величине (такой метод в лучшем случае дает порядок $n \cdot \log n)$. Олнако в худшем случае каждый шаг разбиения уменьшает размер множества, в котором ищется нужный элемент, только на 1 , и поэтому требуется порядок n^{2} сравнений. Следовательно, этот алгоритм тоже вряд ли стоит использовать для небольшого чнсла элементов (скажем, меньше 10).

2.2.8. Сравнение методов сортировки массивов

В завершение нашего обзора методов сортировки мы плі пытаемся сравнить их эффективность. Пусть n по-прежнему обозначает число сортируемых элементов, а C и M - соответственно количество необходимых сравнений ключей и

пересылок элементов. Для всех трех простых методов сориировки можно дать замкнутые аналитичеєкие формулы. Они приведены в табл. 2.8. Заголовки столбцов Min, Max, Средн. определяют соответственно минимумы, максимумы и ожидасмые средние значения для всех n ! перестановок n элементов.

Таблица 2.8. Сравнение простых методов сортировки

	міn	Средн	мах
Простье включения	$C=n-1$ $M=2(n-1)$	$\left(n^{2}+n-2\right) / 4$ $\left(n^{2}-9 n-10\right) / 4$	$\left(n^{2}-n\right) / 2-1$ $\left(n^{2}+3 n-4\right) / 2$
Простой выбор	$C=\left(n^{2}-n\right) / 2$ $M=3(n-1)$	$\left(n^{2}-n\right) / 2$ $n(\ln n+0,57)$	$\left(n^{2}-n\right) / 2$ $n^{2} / 4+3(n-1)$
Простой обмен (метод пузырька)	$C=\left(n^{2}-n\right) / 2$	$\left(n^{2}-n\right) / 2$ $\left(n^{2}-n\right) * 0,75$	$\left(n^{2}-n\right) / 2$ $\left(n^{2}-n\right) * 1,5$

Для усовершенствованных методов нет достаточно прон стых и точных формул. Все, что можно сказать, - это что стоимость вычислений равна $c_{i} \cdot n^{1.2}$ в случае сортировки Шелла и $c_{i} \cdot n \cdot \log n$ в случаях пирамидальной и быстрой сор. тировок.

Эти формулы дают лишь приблизительную оценку эффективности как функции от n; они допускаюот классификацню алгоритмов сортировки на простые (n^{2}) и усовершенствованные, или «логарифмические» $(n \cdot \log n)$. Однако для практических целей полезно иметь некоторые экспериментальные данные, которые могут пролить свет на коэффициенты c_{i}, лозволяющие проводить дальнейшую оценку различных методов. Кроме того, в этих формулах не учитываются затраты на другие операции, отличные от сравнений ключей и пересылок элементов, такие, как управлєние циклами н т. д. Разумеется, эти факторы в какой-то степени зависят от конкретных систем, но тем не менее неко'орый пример эксперимен* тально полученных данных является информативным. В табл. 2.9 приведено время (в миллисекундах), которое затратила система Паскаль на вычислительной машнне CDC 6400 на выполнение сортнровки описанными здесь методами. В трех столбцах указано время, потребовавшееся для сортировки уже рассортированного массива, случайной персстановки и массива с обратным порядком элементов. Јевое

Тайлица 2.9. Время выполнения программ соргировки

	$\underset{\substack{\text { масскв }}}{\text { Упордочий }}$		СлучаАныямасснв		Упорядоченаы а обратном порядк массив	
Простое включение	12	23	366	1444	704	2836
Бинарное включенге	56	125	373	1327	662	2490
Простой выбор	489	1907	509	1956	695	2675
Метод пузырька	540	2165	1026	4054	1492	5931
Метод пузырька с ограничением	5	8	1104	4270	1645	6542
Ш⿺йкер-сортировка	5	9	961	3642	1619	6520
Сортировка Шелла	58	116	127	349	157	492
Пирамидальная сортировка	116	253	110	241	104	226
Быстрая сортнровка	31	69	60	146	37	79
Сортнровка слиянием*)	99	234	102	242	99	232

* См. разд. 2.3.I.

число в каждой колонке дано для массива из 256 элементов, а правое - для 512 элементов. Эти данные демонстрируют явное отличие методов n^{2} от методов $n \cdot \log n$. Примечательны следующие моменты:

1. ГЈреимущество сортировки бинарными включениями по сравнению с сортировкой простыми включениями действительно ничтожно, а в случае уже имеющегося порядка вообще отсутствует.
2. Сортировка методом пузырька определенно является наихудшей среди всех сравниваемых методов. Ее улучшенная версия - шейкер-сортировка все-таки хуже, чем сортировка простыми включениями и простым выбором (кроме патологического случая сортировки уже рассортированного массива).
3. Быстрал сортировка превосходит пирамидальную сортировку в отношении 2 к 3 . Она сортирует массив с элементами, расположенными в обратном порядке практически так жее, как уже рассортированный.

Следует добавить, что эти данные были получены при сортировке элементов, состоящих только из ключа без сопутствующей информации. Это - не слишком реалистичное допущение; в табл. 2.10 показано, как влияет увеличение размера элементов на скорость работы программ. В выбранном примере сопутствующие данные занимают в 7 раз больше памяти, чем ключ. Левое число в каждой колонке показывает время, нужное для сортировки записей без сопутствующих

Tайлица 2.i0. Время выполнения программ сортировки (Ключи с сопутствующей информацией)

	Јпорядоченный масеив		$\underset{\text { массив }}{\substack{\text { Слуй } \\ \text { май }}}$		Уппрядочениыи в обратном порялие массив	
Простые включения	12	46	366	1129	704	2150
Бинарные включения	56	76	373	1105	662	2070
Простой выбор	489	547	509	607	695	1430
Метод пузырька	540	610	1026	3212	432	5599
Mетод пузырька с ограничением	5	5	1104	3237	1645	5762
Шейкер-сортировка	5	5	961	3071	1619	5757
Сортировка Шел.та	58	186	127	373	157	43j
Пирамида.льная сортировка	116	264	110	246	104	227
Быстрая сортировка	31	55	60	137	37	75
Сортировка с.лиянием*	99	196	102	195	99	187

*, См. разм. 2.3.1.
данных, правое - отражает сортировку с сопутствующими данными; $n=256$. Обратите внимание на следэющие детали:

1. Сортировка простым выбором дает сущсствснный выигрыш и оказывается лучшим из простых методов.
2. Сортировка методом пузырька по-прежнему является наихудшим методом (она еще больше сдала свои позиции!!, и лишь ее «усовершенствование», называемое шейкерсортировкой, еше ч丬ть хуже в случае массива с обратным порядком.
3. Быстрая сортировка даже укрепила свою позицию в качестве самого быстрсго метода и оказалась дєйствительно лучшим алгоритмом сортировки.

2.3. СОРТИРОВКА ПОСЛЕДОВАТЕЛЬНЫХ ФАИЛОВ

2.3.1. Простое слияние

K сожа.тению, алгоритмы сортировки, рассмотренные в предыдушей главе, неприменимы, если сортируемые данные не помещаются в оперативной памяти, а, например, расположены на внешнем запоминаюшем устройстве с последовательным доступом, таком, как магнитная лента. В этом случае мы описывасм данные как (лоследовательный) файл, который характеризуется тем, что в каждый момент имеется непосредственный доступ к одному и только одному элементу. Это - строгое ограничение по сравнению с возможностями, которые дает массив, и поэтому здесь приходится применять другие методы сортировки. Основной метод - это сортировка

слияниен. Слняние означает объединенне двух (или болес) упорядоченных последовательностей в одну упорядоченную последовательность при помощи циклического выбора элементов, доступных в данный момент. Слияние - намного более простая операция, чем сортировка; она используется в качестве вспомогательной в более сложном процессе последовательной сортировки. Один из методов сортировки слиянием называется простым слиянием и состоит в следуюшем:

1. Последователь: лгть a разбивается на две половины b и $с$.

飞. Последовательиости b и $с$ сливаются при помощи объединения отдельных элементов в упорядоченные пары.
3. Полученной последовательности присваивается имя a, и повторяются шаги 1 и 2 ; на этот раз упорядоченные эары слкваются в упорядоченные четверки.
\& Предьдщиие шаги повторяотся: четверки сливаются в восьмервн, и весь процесс продолжается до тех пор, пока не будет упорядочена вся последовательность, ведь дтины сливаемых последовательностей каждый раз удваиваются.

В качестве примера рассмотрим последовательность
$\begin{array}{lllllll}44 & 55 & 12 & 42 & 94 & 18 & 06\end{array} 67$
На пєрвсм шаге разбиение дает последовательности

$$
44 \quad 55 \quad 12 \quad 42
$$

$$
\begin{array}{llll}
94 & 18 & 06 & 67
\end{array}
$$

Слияние отдельных компонент (которые являются упорядоリенными последовательностямі длины 1) в упорядоченные лары дает

$$
44944^{\prime} 1855^{\prime} 06122^{\prime} 4267
$$

]loвое разбиение пополам и слияние упорядоченных пар дают

$$
\begin{array}{llllllll}
06 & 12 & 44 & 94 & 18 & 42 & 55 & 67
\end{array}
$$

Түстье разбиение и слияние приводят, наконец, к нужному резу:льтату:

$$
\begin{array}{llllllll}
06 & 12 & 18 & 42 & 44 & 55 & 67 & 94
\end{array}
$$

Операция, которая однократно обрабатывает все множество дгнных, называется фазой, а наименьший подпроцесс, который, повторяясь, образует процесс сортировки, называется проходом или этапом. В приведенном выше примере сортировка производится за три прохода, каждый проход состоит из фазы разбиения и фазы слияния. Для выполнения сортировки требуются три магнитные ленты, поэтому процесс называется трехленточным слиянием.

Собственно говоря, фазы разбиения не относятся к сортировке, поскольку они никак не переставляют элементы; в ка-ком-то смысле они непродуктивны, хотя и составляют половину всех операций переписи. Их можно удалить, оо́ъединив фазы разбиения и слияния. Вместо того чтобы сливать элементы в одну последовательность, результат слияния сразу распределяют на две ленты, которые на следующем проходе будут входными. В отличие от двухфазного слияния этот метод называется однофазным или сбалансированныцм слиянисм. Оно имеет явные преимущества, так как требует вдв:ее меньше операций переписи, но это достигается ценой использования четвертой ленты.

Ряс. 2.12. Сортировка двух массивов методом простого слияиня.
Разберем программу слияння подробно; предположим сначала, что данные расположены в виде массива, который, однако, можно просматривать только строго последовательно. Другая версня сортировки слиянием будет основана на файловой структјре, это позволит сравнить эти программы и показать строгую зависимость формы програм:мы от представления ее данных.

Вместо двух файлов можно легко использовать один массив, есл: рассматривать его как последовательность с двумя концами. Вместо того чтобы сливать элементы из двух исходных файлов, мы можем брать их с двух концов массива. Таким образом, общий вид объединенной фазы слияния-разб!сния можно изобразить, как показано на рис. 2.12. Направление пересылки сливаемых элементов меняется (переключается) после каждой упорядоченной пары на первсм проходе, после каждой упорядоченной четверки на втором проходе и т. д.; таким образом равномерно заполняются две выходные последовательности, представленные двумя концамн одного массива (выходного). После каждого прохода два массива меняются ролями: входной становится выходным и наоборот.

Программу можно еще больше упростить, оо́ъединив два концептуально различных массива в один массив двойной

длины. Итак, данные будут представлены следующим окразом:

$$
\begin{equation*}
a: \operatorname{array}[1 . .2 * n] \text { of item } \tag{2.20}
\end{equation*}
$$

Пусть индексы i и j указывают два исходных ээє иєита, тогда как k и l обозначают два места пересылки (с:. рис. 2.12). Исходные данные - это, разумеется, элементы a_{1}, \ldots, a_{4}. Очевидно, что нужна булевская переменная ир для указания направления пересылки данных; $u p=$ true будет означать, что на текущем проходе компоненты a_{1}, \ldots, a_{n} будут пересылаться «вверх» - в переменные $a_{n+1}, \ldots, a_{2 n}$, тогда как up $=$ false будет указывать, что $a_{n+1}, \ldots, a_{2 n}$ должны переписываться «вниз» - в a_{1}, \ldots, a_{n}. Значение ир строго чередуется между двумя последовательнь:ми проходами. И наконец, вводится переменная p для обозначения длины сливаемых подпоследовательностей (p-наборов). Ее начальное значение равно 1 , и оно удваивается перед каждым очередным проходом. Для простоты мы будем считать, что n - всегда степень двойки. Итак, первая версия программы простого слияния имеет такой вид:

```
procedure mergesort;
    var \(i, j, k, l:\) index;
        up: Boolean; \(p\) : integer;
begin \(u p:=\) true \(; p:=1\);
    repeat (инициация индексов)
        if \(u p\) then
            begin \(i:=1 ; j:=n ; k:=n+1 ; l:=2 * n\)
            end else
                begin \(k:=1 ; l:=n ; i:=n+1 ; j:=2 * n\)
                end;
            «слияние \(p\)-наборов последовательностей \(i\) и \(j\)
            в последовательности \(k\) и \(l\) »;
            up \(:=-u p ; p:=2 * p\)
        until \(p=n\)
    end
```

На следующем этапе мы уточняем действие, описанное на естественном языке (внутри кавычек). Ясно, что этот проход, обрабатывающиї n элеменгов, состоит из последовательных слияний p-наборов. После каждого отдельного саияния направление пересылки переключается из нижнего в верхний конец выходного массива или наоборот, чтобы обеспечить одинаковое распределение в обоих направлениях. Если сливаемые элементы посылаются в нижний конец массива, то индексом пересылки служит k и k увеличивается на 1 после

каждой пересылки элемента. Если же они пересылаются в верхний конец массива, то индексом пересылки является l и l после каждой пересылки уменьшается на 1. Чтобы упростить операцию слияния, мы будем считать, что место пересылки всегда обозначается через k, и будем менять местами значения k и l после слияния каждого p-набора, а приращение индекса обозначим через h, где h равно либо 1 , либо -1 . Уточнив таким образом «конструкцию», мы получаем

$$
\begin{aligned}
& n:=1 ; m:=n ;\{m \text {-номера сливаемых элементов| } \\
& \text { repeat } q:=p ; r:=p ; m:=m-2 * p ;
\end{aligned}
$$

«слияние q элементов из i и r элементов из j, ивдекө засылки есть k с приращением h »;

$$
\begin{equation*}
h:=\mathrm{m}-h ; \tag{2.22}
\end{equation*}
$$

обмен значениями k и l
until $m=0$
На следующем этапе уточнения нужно сформулировать саму операцию слияния. Здесь следует учесть, что остаток подпоследовательности, которая остается непустой после слияния, добавляется к выходной последовательности при помощи простого копирования.

$$
\begin{aligned}
& \text { while }(q \neq 0) \wedge(r \neq 0) \text { do } \\
& \text { begin (выбор элемента из } i \text { или } j \text {) } \\
& \text { if } a[i] . k e y<a_{[j]}[\text {. } k e y \text { then } \\
& \text { begin «пересылка элемента из } i \text { в } k \text {. } \\
& \text { увеличение } i \text { м } k » ; q:=q-1 \\
& \text { end else } \\
& \text { begin «пересылка элемен่та из } j \text { в } k \text {, } \\
& \text { увеличение } j \text { и } k \text { » ; } r:-=r-1
\end{aligned}
$$

После уточнения опсраций копирования остатков программа будет ясна во всех деталях. Перед тем как записать ее полностыо, мы хотим устранить ограничение, в соотвегствни с которым n должно быть степенью двойки. На какую часть алгоритма это повлияет? Легко убедиться в том, что в более общей ситуации лучше всего использовать прежниі метод до тех пор, пока это возможно. В данном случае это означает, что мы продолжаем слияние p-наборов, пока длнна остатков входных последовательностеї ие станет меньше μ. Это вілияет только на ту часть, где определяются значепия
q и r - длины последовательностей, которые предстоит слить. Вместо трех операторов

$$
q:=p ; \quad r:=p ; \quad m:=m-2 * p
$$

используются следующне четыре оператора, и, как может убедиться читатель, здесь эффективно применяется описанная выше стратегия; заметим, что m обозначает общее число элементов в двух входных последовательностях, которые осталось слить:

$$
\begin{aligned}
& \text { if } m \geqslant p \text { then } q:=p \text { else } q:=m ; \quad m:=m-q ; \\
& \text { if } m \geqslant p \text { then } r:=p \text { else } r:=m ; \quad m:=m-r ;
\end{aligned}
$$

И наконец, чтобы обеспечить окончание работы программы, нужно заменить јсловие $p=n$, управляющее внешним циклом, на $p \geqslant n$. После этих модификаций мы можем попытаться описать весь алгоритм в виде законченной программы (см. программу 2.13).

Анализ сортировки слиянием. Поскольку на каждом проходе p удваивается ॥ сортировка заканчивается, как только $p \geqslant n$, она гребует $\left[\log _{2} n\right]$ проходов. По определению при каждом проходе все множество из n элементов копируется ровно один раз. Следовательно, общее число пересылок равно

$$
\begin{equation*}
M=n \cdot\left[\log _{2} n\right] \tag{2.24}
\end{equation*}
$$

Число C сравнений по клочу еще меньше, чем M, так как при копировании остатка последовательности сравнения не производятся. Но, поскольку сортировка слиянием обычно применяется при работе с внешними запоминающими устройствами, стоимость операцпй пересылки часто на несколько порядков превышает с'тоимость сравнений. Поэтому подроб. ный анализ числа сравненнй не представляет особого практического интереса.

Алгоритм сортировкн слиянием выдерживает сравненис даже с усовершенствованными методами сортировки, которыс обсуждались в предыдушем. разделе. Но затраты на управлоние нндексами довольно высоки, кроме того, существо!иыли недостатком являегся пспользование памяти размером 2 н элементов*). Поэтому сортировка слиянием редко иримсняется при работе с массивами, т. е. данным!, расположе!ными в оперативной памяти. Цифры, характеризующие бьстродействне сортировки слиянием в режиме реального времени, содержатся в послетни строках табл. 2.9 и 2.10 . Зти показатели лучше, чем у пирамидальной сортировкн, но хуже, чем у быстрой сортировкки.

[^6]```
procedure mergesort;
 var \(i, j_{s} k_{3} l_{s} t i\) index;
 \(h, m, p, q, r\) : integer; \(u p:\) boolean;
 \{ а имеет индексы 1, . . , 2*n\}
begin \(u p:=\) true; \(p:=1\);
 repeat \(h:=1 ; m:=n ;\)
 if \(u p\) then
 begin \(i:=1 ; j:=n ; k:=n+1 ; l:=2 * n\)
 end else
 begin \(k:=1 ; l:=n ; t:=n+1 ; j:=2 * n\)
 end ;
 repeat (слияние серий из \(i\) и \(j\) в \(k\))
 (\(q\) - длина серии из \(i, r\) - длина серии из \(j\)
 If \(m \geq p\) then \(q:=p\) else \(q: m m ; m:=\widetilde{m}-q\);
 if \(m \geq p\) then \(r:=p\) else \(r:=m ; m:=m-r\);
 while \((q \neq 0) \wedge(r \neq 0)\) do
 begin (слияние)
 if \(a[i] . k e y<a[j] . k e y\) then
 begin \(a[k]:=a[i] ; k:=k+\dot{h} ; i:=i+1 ; q:=q-1\).
 end else
 begin \(a[k]:=a[j] ; k:=k+h ; j:=j-1 ; r:=r-1\)
 end
 end ;
 \{копирование остатка серии из \(j\) \}
 While \(r \neq 0\) do
 begin \(a[k]:=a[j] ; k:=k+h ; j:=j-1 ; r:=r-1\)
 end ;
 \{копирование остатка серии из 1\}
 while \(q \neq 0\) do
 begin \(a[k]:=a[i] ; k:=k+h ; i:=1+i: g: v=q-1\)
 end ;
 \(h:=-h ; t:=k ; k:=l ; l:=t\)
 until \(m=0\);
 \(u p:=\neg u p ; p:=2 * p\)
 until \(p n\);
 if \(\rightarrow u p\) then
 for \(i:=1\) to \(n\) do \(a[i]:=a[i+n]\)
end \{mergesort \(\}\)
```

Программма 2.13. Сортировка простым слиянием.

### 2.3.2. Естественное слияние

В случае простого слияния мы ничего не выигрываем, если данные уже частично рассортированы. На $k$-м проходе длина всех сливаемых подпоследовательностей меньше или равна $2^{\text {\& }}$ без учета того, что более длинные подпоследовательности уже могут быть упорядочены и их можно было бы сливать. Фактически можно было бы сразу сливать какие-либо упорядоченные подпоследовательности длиной $m$ и $n$ в одну последовательность из $m+n$ элементов. Метод сортировки, при котором каждый раз сливаются две самые длинные возможные подпоследовательности, называется естественным слиянием.

Упорядоченную подпоследовательность часто называют цепочкой. Но, поскольку слово «цепочка» чаще используется для обозначения последовательности символов, мы будем использовать слово серия, когда речь идет об упорядоченной подпоследовательности. Мы называем подпоследовательность $a_{i}, \ldots, a_{l}$, такую, что

$$
\begin{align*}
& a_{k} \leqslant a_{k+1} \quad \text { для } \quad k=i, \ldots, j-1, \\
& a_{l-1}>a_{l},  \tag{2.25}\\
& a_{l}>a_{l+1},
\end{align*}
$$

максимальной серией или, короче, серией. Итак, сортировка естественным слиянием сливает не последовательности фиксированной, заранее заданной длины, а (максимальные) серии. Серии имеют то свойство, что при слиянии двух последовательностей, каждая из которых содержит $n$ серий, возникает одна последовательность, содержащая ровно $n$ серий. Таким образом, на каждом проходе общее число серий уменьшается вдвое, и число необ́ходимых пересылок элементов в худшем случае равно $n \cdot\left[\log _{2} n\right]$, а в обычном случае даже меньше. Ожидаемое число сравиений, однако, намного больше. так как кроме сравнений, необходимых для упорядочения элементов, требуются еще сравнения соседних элементов каждого файла для определения концов серии.

Следующим нашим упражнением будет разработка алгоритма естественного слияния тем же поэтапным методом, который использовєлся при объяснении алгоритма простого слияния. Вместо массива он обрабатывает последовательный файл и представляет собой несбалансироваиную двухфазную трехлентөчную сортировку слиянием. Пусть исходная последовательность элементов задана в виде файла $c$, который в конце работы должен содержать результат сортировки. (Разумеется, в реальных процессах обработки исходные данные для сохранности сначала переписываются с ленты в рабочий файл с.) Њспользуются две вспомогательные ленты $a$ и $b$. Каждый проход состоит из фазы распределения, которая распределяет серии поровну из $с$ в $a$ и $b$, и фазы слияния,

которая сливает серии из $a$ и $b$ в $c$. Этот процесс показан на рис. 2.13.


Рис. 2.13. Фазы сортировки и проходы сортировки.
В качестве примера в табл. 2.11 показан файл с в исходном состоянии (строка 1) и после каждого прохода (строки

Таблица 2.11. Пример сортировки естественным слиянием

| 17 | $31^{\prime}$ | 5 | $59^{\prime}$ | 13 | 41 | 43 | $67^{\prime}$ | 11 | 23 | 29 | $47^{\prime}$ | 3 | 7 | $71^{\prime}$ | 2 | 19 | $57^{\prime}$ | 37 | 61 |
| ---: | ---: | ---: | ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | 17 | 31 | $59^{\prime}$ | 11 | 13 | 23 | 29 | 41 | 43 | 47 | $67^{\prime}$ | 2 | 3 | 7 | 19 | 57 | $71^{\prime}$ | 37 | 61 |
| 5 | 11 | 13 | 17 | 23 | 29 | 31 | 41 | 43 | 47 | 59 | $67^{\prime}$ | 2 | 3 | 7 | 19 | 37 | 57 | 61 | 71 |
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 57 | 59 | 61 | 67 | 71 |

2-4). В естественном слиянии участеуют 20 чисєл. Заметим, что требуются только три прохода. Соргировка закапчивается, как только число серий в с будет равно 1. (Предполагается, что в исходном файле имеется хотя бы одна непустая серия.) Итак, пусть переменная $l$ используется для полсчета числа серий, сливаемых в с. Если мы опрєделим глобальные объекты

$$
\begin{align*}
& \text { type tape }=\text { file of item; }  \tag{2.26}\\
& \text { var } c: \text { tape }
\end{align*}
$$

то программу можно написать слелуюиим образом:
procedure naturalmerge;
var l: integer;
$a, b:$ lape;
begin
repeat rewrite(a); rewrite $(b) ; \operatorname{reset}(c)$;
distribute;
reset(a); reset(b); rewrite(c);
$l:=0 ;$ merge
until $l=1$
end

广існо, что две фазы выражаются двумя отдельными операторами. Теперь их надо уточнить, т. е. описать более подробно. Подробные описания можно лио́о непосредственно вставить в текст, лио́о представить в виде прощедур, и тогда сокращенно записанные операторы следует рассматривать как вызовы процедур. На этот раз мы изберем последний способ и определим

```
procedure distribute; . {uз с в а и b}
begin
 repeat copyrun(c,a);
 if -cof(c) then coplrunc;b;
 until cof(c)
end
```

и

```
procedure merge;
begin {из а < b вс}
 repeat mergermin; l:-:l:1
 until cof(b);
 if -cof(a) then
 begin copyrmm(a,c); l:= l+1
 end
```

end

Предполагается, что при таком способе распределения в файлах $a$ и $b$ оказывается либо равное число серий, либо файл $a$ содержит на одну серню больше, чем $b$. Поскольку соответствующие пары серий сливаются, в файле $a$ молкет оказаться лишняя серия, которую следчет просто переписать. Процедуры merge is distribute формулируются с помощью подчнненных процед!р mergerun и copyrun, задачи которых понятны. Теперь опишем эти процедуры более подробно; они требуют введения гтобальной булевской перемениой е»г (end of the run), значение которой показывает, достигнут ли конец ссрии.

```
procedure copyrun(var x,y: tape);
begin {nерепись одной серии из х в y}
 repeat copy(x,y) until eor
end
```

```
procedure mergerun;
begin [слияние серий изаиввс)
 repeat if \(a^{\uparrow} . k e y<b_{\hat{\jmath}} \cdot k e y\) then
 begin cop \(y^{\prime}(a, c)\);
 if eor then copyrun(b,c)
 end else
 begin copy \((b, c)\);
 if eor then copyrun \((a, c)\)
 end
 until eor
end
```

Процесс сравнения и выбора по ключу при слиянии серий завершается, как только будет исчерпана одна из двух серий. После этого остаток другой серии, который еще не исчерпаи, нужно переслать в выходную серию с помощью простого копирования. Это осуществляется вызовом процедуры copyrun.

Обе эти процедуры определены с помощью подчнненной процедуры copy, которая пересылает элемент из файла $x$ в файл $y$ и определяет, достигнут ли конец серии. Ее легко написать, используя операторы read и write. Для того чтобы найти конец серии, нужно сохранять ключ последнего прочитанного (переписанного) элемента для сравнения со следующим. Это «заглядывание вперед» достигается использованием буферной переменной файла $x \uparrow$.

## procedure $\operatorname{cop} y($ var $x, y:$ tape $)$;

var buf: item;
begin read ( $x, b u f$ ); write $(y, b u f)$;
if $\operatorname{eof}(x)$ then eor $:=$ true else eor $:=b u f . k e y>x \uparrow . k e\}$.
end
На этом построение процедуры сортировки естественным слиянием закончено. К сожалению, как может заметить внимательный читатель, эта программа некорректна, поскольку в некоторых случаях она неправильно производит сортировку. Рассмотрим, например, такую последовательность входных данных:

Распределяя пос.ледовательные серии поочередно в файлы $a$ и $b$, мы получим

$$
\begin{aligned}
& a=3^{\prime} 71319^{\prime} 293743^{\prime} 576171^{\prime} \\
& b=2511 \text { ' } 1723311^{\prime} 414759{ }^{\prime} 67
\end{aligned}
$$

Эти последовательности легко сливаются в одну серию, после чего сортировка заканчивается. Хотя этот пример и не при-

водит к ошибочному поведению программы, он показывает, что простое распределенне серий в несколько файлов может дать в результате меньшее число выходных серий, чем входных. Это происходит потому, что первый элемент ( $i+2$ )-й серни может быть больше, чем последний элемент $i$-й серии, что прнведет к автоматнческому слиянию двух серий в одну.

Хотя и предполагается, что процедура distribute посылает серии поровну в оба файла, действительные количества выход!ых сернй в $a$ и $b$ могут значительно различаться. Однако наша процедура будет только сливать пары серий и заканчиваться, как только будет прочнтан файл $b$, теряя при этом остаток одного из файлов. Рассмотрим такие исходные данные, которые сортируются (и усекаются) за два последовательных прохода:

Таблица 2.12. Неправнльный результат работы программы сортировки слиянием

| 17 | 19 | 13 | 57 | 23 | 29 | 11 | 59 | 31 | 37 | 7 | 61 | 41 | 43 | 5 | 67 | 47 | 71 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 57 | 71 | 11 | 59 |  |  |  |  |  |  |
| 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 57 | 59 | 71 |  |  |  |  |  |  |

Эта ошнбка типична для многнх sитуацнй. Она вызвана тем, что упускается нз виду одно из воэможіых последствий, казалось бы, простой операцни. Она также типична в том смысле, что существует несколько способов ее исправления и нужно выбрать один из иих. Часто имеются две возможности, различие между которыми носит принципиальный характер:

1. 门ы вндим, что операция распределения написана некорректно и не удовлетворяет требованно, чтобы число серий на двух лентах было одинаковым (нлн различалось не более чем на 1). Придерживаемся принятой ранее схемы и соответствующнм образом исправляем неправильную процедуру.
2. Мы видим, что исправление неправильно написанной части १ребует серьезных модификаций, и ищем способы изменить другие части алгоритма, чтобы повлиять на работу некорректной части.

Вообще говоря, первый способ выглядит более понятным и надежным, а также более честным; он в достаточной мере свободен от непредусмотренных послєдствий и сложных побочных эффектов. Следовательно, это тот путь, который обычно рекомендуется.

Однако надо указать, что бывают случаи, когда не следует пренебрегать второй возможностью. Поэтому ниже мы покажем на этом примере, как можно исправить ошибку,
program mergesort (input, output);
[3-ленточная, 2-фазная сортировка естественнья слиянием ]
type item $=$ record key: integer
(nрочие no:лs)
end ;
tape $=$ file of item;
var $c$ : tape; $n$ : integer; buf: item;
procedure list (var f: tape);
var $x$ : item;
begin $\operatorname{reset}(f)$;
while - eof $(f)$ do
begin read ( $f, x)$; write(output, x.key) end ;
writeln
end $\{l i s t\}$;
procedure naturalmerge;
var $l$ : integer; \{число сливаемых серий\}
eor: boolean; \{индикатор конца серии\}
$a, b:$ tape;
procedure copy(var . . $y$ : tape);
var buf: item;
begin read ( $x, b u f$ ); write( $y, b u f)$;
if $\operatorname{eof}(x)$ then eor $:=$ true else eor $:=b u f . k e y=x^{\wedge} . k e y$
end ;
procedure copyrun (var $x, y$ : tape);

repeat $\operatorname{cop} y(x, y)$ until cor
end ;
procedure distributc;
begin $\left(\begin{array}{lll}и з & с & a \cdot u b\end{array}\right)$
repeat cops:run $(c, a)$;
if 一oof $(c)$ then cop):a!l $(c, b)$
until cof(c)
end ;
procedure mergertm;
begin $\left\{\begin{array}{ll} \\ 3 & a\end{array}\right.$ b $b$ ec $\}$
repeat
if $a_{\hat{i}}^{\hat{i}}$.key $\leq b_{\hat{i}}^{\hat{i}}$.key then
begin copy $(a, c)$;
if eor then copyrun $(b, c)$
end else
begin copy (b,c);

```
 if cor then copyrun (a,c)
 end
 until eor
 end ;
 procedure merge;
 begin {uз a и b в c}
 while -eof(a) \Lambda -.oof(b) do
 hegin mergerum; l:= l:-1
 end;
 while - eof (a) do
 begin copyrun (a,c);l:= !'1
 end;
 while -cof(b) do
 begin cop.rim((b,c); l:= l-+1
 end ;
 list (c)
 end ;
begin
 repeat rewrite(a); rewrite(b); reset(c);
 distribute:
 reset(a); reset(\dot{b}); rewrite(c);
 l:== 0; merge;
 until l=1
end ;
begin (основная программа; чтение входной
 последовательности с 0 в конце)
 rewrite(c); read(buf.key);
 repeat write(c.buf); read(buf.key)
 until buf .ke! =: 0:
 list (c);
 naturalmerge
 list(c)
end .
```

Программа 2.14. Сортировка естествеіиым слиянием.

изменив процедуру с.пияния, а не процедуру распределения, которая изначально является ошнбочной.

Это значит, что схему распределения мы оставляем нетронутой, а отказываемся от требования, чтобы серии распределялись поровну на две ленты. B результате программа может работать неоптимальным образом. Однако в худшем варианте она сохраняят те же характеристикы; щрокiв того,

случай существенно неравномерного распределения статистически крайне маловероятен. Поэтому соображения эффективности не являются серьезным аргументом против этого решения.

Если требование о распределении серий поровну отменено, то процедуру слияния следует изменить таким образом, чтобы после достижения конца одного из файлов копировался весь остаток другого файла, а не только одна серия.

Это - несложное изменение, оно намного проще, чсм какое-либо изменение схемы распределения. (Мы предлагаем читателю самому убедиться в правоте этого утверждения.) Пересмотренная версия алгоритма слияния включена в окончательную программу 2.14 .

### 2.3.3. Сбалансированное многопутевое слияние

Затраты на последовательную сортировку пропорциональны числу проходов, так как по определению на каждом проходе происходит перепись всего множества данных. Один из способов уменьшить это число - распределять серии на более чем две ленты. Слияние $r$ серий, которые поровну распределены на $N$ лентах, дает в результате последовательность из $r / N$ серий. Второй проход уменьшает это число до $r / N^{2}$, а третий - до $r / N^{3}$, и после $k$ проходов остается $r / N^{k}$ отрезков. Итак, общее число проходов при сортировке $n$ элементов $N$-путевым слиянием $k=\left[\log _{N} n\right]$. Поскольку на каждом проходе производится $n$ операций переписи, обшее число операций переписи в худшем случае будет

$$
M=n \cdot\left[\log _{N} n\right] .
$$

В качестве следующего упражнения мы построим программу сортировки, основанной на многопутевом слиянии. Чтобы подчеркнуть различие между этой программой и описанной выше процедурой естественного двухфазного слияния, мы определим многопутевое слияиие как однофазную сбалансированную сортировку слиянием. Это означает, что на каждом проходе имеется равное число входных н выходных файлов, в которые поочередно распределяются следующие одна за другой серии. При использовании $N$ файлов алгоритм будет основан на $N / 2$-путевом слиянии, если считать, что $N$ четно. Следуя принятой ранее стратегии, мы не будем заботиться о том, чтобы предотвратить автоматическое слияние двух соседних серий, попавших на одну ленту. Следовательно, нам приходится разрабатывать программу слияния без требования, чтобы на входных лентах содержалось строго одинаковое число серий.

В этой программе мы впервые встречаем естественное использование структуры данных, представляющей собой массив файлов. В самом деле, удивительно, насколько велико отличие этой программы от предыдущей в результате перехода от двухпутевого к многопутевому слиянию. Это происходит прежде всего потому, что теперь процесс слияния не может просто завершаться после того, как будет исчерпан один из входных файлов. Вместо этого нужно вести список входных файлов, которые пока активны, т. е. не исчерпаны. Другое усложнение возникает из-за необходимости переключать группы входных и выходных лент после каждого прохода.

Вначале, в дополнение к двум знакомым нам типам item и tape, определим тип номера ленты:

$$
\begin{equation*}
\text { tapeno }=1 . . N \tag{2.33}
\end{equation*}
$$

Очевидно, что номера лент нужны, для того чтобы индексировать массив файлов. Бу'дем считать, что исходная последовательность элементов задана переменной
f0: tape

и для сортировки мы имеем в распоряжении $N$ лент, где $N$ четно:

$$
\begin{equation*}
f: \text { array }[\text { tapeno }] \text { of tape } \tag{2.35}
\end{equation*}
$$

Для решения проблемы переключения лент рекомендуется использовать карту ленточных индексов. Вместо того чтобы обращаться к ленте непосредственно с помощью индекса $i$, к ней адресуются через карту $t$, т. е. вместо
$f[i]$ мы пишем $f[t[i]]$,
где карта определена как

$$
\begin{equation*}
t \text { : array }[\text { tapenc }] \text { of tapeno } \tag{2.36}
\end{equation*}
$$

Если первоначально $t[i]=i$ для любого $i$, то переключение прсизводится просто при помощи обмена пар компонент кајты

$$
\begin{gathered}
t[1] \leftrightarrow t[n h+1] \\
t[2] \leftrightarrow t[n h+2] \\
\ldots \\
t[n h] \leftrightarrow t[n],
\end{gathered}
$$

где $n h==n / 2$. Следовательно, мы всегда можем считать

$$
f[/[1]], \ldots, f[t[n h]]
$$

входнымн лентамми, а

$$
f[t[n h+1]], \ldots, f(t[n]]
$$

выходными лентами. (В дальнейшем мы будем пазывать $f[t[j]]$ просто «лентой $j »$.$) Теперь в первом приближении$ алгоритм можно записать следующим образом:
procedure tapemergesort;
var $i, j$ : tapeno;
$l:$ integer; \{ число распределяе.иьл серий\}
$t$ : array [tapeno] of tapeno;
begin (распределение начальных серий на $t[1] \ldots t[n h]$ \}
$j:=-n h ; l:=0 ;$
repeat if $j<n h$ then $j:=j+1$ else $j:=1$;
«перепись одного отрезка сf0 на ленту $j\}$ );
$l:=l+1$
until $\operatorname{cof}(f 0)$;
for $i:=1$ to $n$ do $t[i]:=i$;
repeat (слияние из $t[1] \ldots t[n h]$ в $t[n h+1] \ldots t[n])$ «установка входных лентп»;
$l:=0$;
$j:=n h+1 ;(j$-индекс выходной лентыы) repeat $l:=l+1$; «слияние серии а с входных лент на $t$ [j]» if $j<n$ then $j:=j+1$ else $j:=n h+1$ until «все входные ленты исчерпаньы»; «переключение ленть!»
until $l=1$;
\{отсортированный файл находится на ленте $t$ [1]]
end
Прежде всего уточним операцию копирования, которая используется при начальном распределении серий; вновь введем вспомогательную переменную для буферизации последнего считанного элемента
buf: item

и заменим «перепись одного отрезка с $f 0$ на ленту j» оператором

$$
\begin{align*}
& \text { repeat read }(f 0, \text { buf }) \text {; } \\
& \quad \text { write }(f[j], \text { buf })  \tag{2.38}\\
& \text { until (buf.key }>f 0 \uparrow . k e y) \vee \operatorname{eof}(f 0)
\end{align*}
$$

Перепись серии заканчивается, либо когда встречается первый элемент следующей серии (buf.key $>f 0 \uparrow . k e y$ ), либо когда достигается конец всего входного файла (eof (f0)).

Теперь в алгоритме сортировки остались операторы

1) установка входных лент;
2) слияние серии с входных лент на ленту $t[j]$;
3) переключение ленты

и предикат
4) все входные ленты исчерпаны,

которые нужно определить более подробно. Во-первых, мы должны аккуратно вести учет текущих входных файлов. Заметим, что количество «активных» входных файлов может быть меньше чем $N / 2$. Действительно, максимальное число входных файлов может быть равно числу серий; сортировка заканчивается в том случае, когда остается только один файл. Причем может оказаться, что количество серий в начале последнего прохода сортировки меньше чем nh. Поэтому мы вводим переменную $k 1$ для обозначения числа текущих входных файлов. Инициацию $k$ м мы включим в oneратор (1) следующим образом:

$$
\begin{aligned}
& \text { if } l<n h \text { then } k 1:=l \text { else } k 1:=n h \text {; } \\
& \text { for } i:=1 \text { to } k 1 \text { do } \operatorname{reset}(f[l[[i]]) \text {; }
\end{aligned}
$$

Понятно, что оператор (2) должен уменьшать значение $k \mathrm{l}$, как только исчерпывается какой-либо входной файл. Следовательно, предикат (4) легко можновыразить отношением

$$
k 1=0
$$

Оператор (2) уточнить труднее; он содержит циклический выбор нанменьшего ключа из текущих входных данных; выбранный таким образом элемент, посылается в выходной файл, т. е. на текущую выходную ленту. Этот процесс осложняется еще тем, что нужно искать конец каждой серии. Конец серии считается достигнутым, если (1) очередной ключ меньше текущего, нли (2) достигнут конец входного файла. В последнем случае лента исключается из работы путем уменьшения $k 1$, в первом случае отрезок закрывается, т. е. файл перестает участвовать в дальнейчем выборе элементов, но только до тех пор, пока не окончится формирование текущей выходной серии. Отсюда ясно, что необходима вторая переменная $k 2$ для обозначения числа входных лент, которые в текущий момент используются для выбора следующего элемента. Это значение вначале полагается равным $k_{1}$ и уменьшается, когда какая-либо серия закрывается по условию (1).

К сожалению, недостаточно ввести переменную $k 2$ : мало знать число лент - нужно знать точно, какие именно ленты
program balancedmerge (output);
\{сбалансированная п-путевая сортировка слиянием)
const $n=6 ; n h=3 ; \quad$ (число лент)
type item $\Rightarrow$ record
key: integer
end ;
tape $=$ file of item;
tapeno $=1 . . n$;

- var leng, rand: integer; \{используются для формирования файла\} eot: boolean; \{конец ленты)
buf: item;
f0: tape; \{ $f 0$ - входная лента со случайньюми числами\}
$f$ : array [1..n] of tape;
procedure list(var $\dot{f}$ : tape; $n$ : tapeno);
var $z$ : integer;
begin writeln('TAPE', $n: 2) ; z:=0$;
while $\rightarrow \operatorname{eof}(f)$ do
begin read( $f$, buf); write(output, buf.key: 5); $z:=z+1$; if $z=25$ then begin writeln(output); $z:=0$; end
end ;
if $z \neq 0$ then writeln (output); reset( $f$ )
end $\{$ list $\}$;
procedure tapemergesort;
var $i, j, m x, t x$ : tapeno;
$k 1, k 2, l$; integer;
$x$, min: integer;
$t$, ta: array [tapeno] of tapeno;
begin (распределение начальных серий на $t[1] \ldots t[n h]$ )
for $i:=1$ to $n h$ do rewrite $(f[i])$;
$j:=n h ; l:=0 ;$
repeat if $j<n h$ then $j:=j+1$ else $j:=1$;
(перепись одной серии с $\cap 0$ на ленту $j$ )
$l:=l+1$;
repeat $\operatorname{read}(f 0, b u f)$; write $(f[j]$, buf)
until (buf .key $>f 0 \uparrow . k e y$ ) $\vee$ eof $(f 0)$
until $e \circ f(f 0)$;
for $i:=1$ to $n$ do $t[i]:=i$;
repeat $\{$ слияние с $t[1] \ldots t[n h] н a t[n h+1] \ldots t[n]\}$
if $l<n h$ then $k l:=l$ else $k 1:=n h$,
\{ $k 1$-число входных лент на этой фазе\}
for $i:=1$ to $k l d o$
begin reset $(f[r[i]]) ; \operatorname{list}(f[t[i]], t[i]) ; \quad t a[i]:=t[i]$ end :


```
 \(j:=n h-l-i ; \quad\{j\)-иидекс выходной ленты \(\}\)
 repeat \{слияние серий с \(t[1] \ldots t[k 1]\) на \(t[j]\}\)
 \(k 2:=k 1 ; l:=1 ; 1 ; \quad\{k 2\)-число входных лент,
 участвующих в слиянии
 repeat (өыбор наименьшего элемента)
 \(i:=1 ; m x:=1 ; \min :=f[t a[1]] \uparrow . k e y ;\)
 while \(i<k 2\) do
 begin \(i:=i+1 ; x:=f[t a[i]] \uparrow . k c y ;\)
 if \(x<\min\) then
 begin \(\min :=x ; m x:=i\)
 end
 end ;
 (наименьший элемент на \(\operatorname{ta}[m x]\), пересылка его на \(t[j]\))
 \(\operatorname{read}(f[t a[m x]], b u f) ;\) eot \(:=\operatorname{eof}(f[t a[m x]])\);
 write(\((f[t[j]]\), buf);
 If eot then
 begin rewrite (\(f[t a[m x]])\); (исключение ленты! \()\)
 \(t a[m x]:=t a[k 2] ; t a[k 2]:=t a[k 1] ;\)
 \(k 1:=k 1-1 ; k 2:=k 2-1\)
 end else
 If buf .key \(>f[t a[m x]] \uparrow\).key then
 begin \(t x:=t a[m x]: t a[m x]:=t a[k 2] ; t a[k 2]:=t x\);
 \(k 2:=k 2-1\)
 end
 - until \(k 2=0\);
 If \(j<n\) then \(j:=j+1\) else \(j:=n h+1\)
 until \(k 1=0\);
 for \(i:=1\) to \(n h\) do
 begin \(t x:=t[i] ; t[i]:=t[i+n h] ; t[i+n h]:=t x\)
 end
 until \(l=1\);
 \(\operatorname{reset}(f[[[1]]) ; \operatorname{list}(f[t[1]], t[1])\); [отсортированный байл
 находится на t[1])
end \{tqpemergesort \(\}\);
begin \{формирование случайного файла \(f 0\) \}
 leng \(:=200 ;\) rand \(:=7789\); rewrite \((f 0)\);
 repeat rand \(:=(131071 *\) rand \()\) mod 2147483647 ;
 buf .key \(:=\) rand div 2147484; write(\(f 0\), buf); leng :=a leng -1
 until leng \(=0\);
 \(\operatorname{reset}(f 0) ; \operatorname{list}(f 0,1)\);
 tapemergesort
end .
Программа 2.15. Сортировка сбалансированным слиянием.
```

еще участвуют в игре. Очевидный прием - использовать массив булевских переменных, отражаюших активность лент. Однако мы предпочитаем другой метод, при котором более эффективно работает процедура выбора, являошаяся в конечном счете наиболее часто повторяюшейся частью алгоритма. Вместо булевского масснва вводится вторая карта лент $t a$. Эта карта используется вместо $t$ так, что $t a[1]$... $\ldots t a[k 2]$ - индексы лент, участвуюших в работе. Итак, оператор (2) можно залисать следующим образом:

```
k2:=k1;
repeat «выбор минимального ключа, пусть
 ta[mx] - номер его ленты»;
 read(f[ta[mx]], buf);
 write(f[t[j]], buf);
 if eof (f[ta[mx]]) then «исключение ленты»> else-
 if buf.key>f[ta[mx]]\uparrow.key then «закрыть серию»
until k2=0
```

Поскольку количество устройств-носителей магнитных лент, доступных в вычислительной системе, обычно довольно мало, алгоритм выбора, который нужно уточнить на следующем этапе, может также представлять собой простой линейный поиск. Оператор «исключение ленты» предполагает уменьшение $k 1$ и $k 2$, а также изменение значений индексов в карте $t a$. Оператор «закрыть серию» просто уменьшает $k 2$ и должным образом переупорядочивает компоненты $t a$. Подробно это показано в программе 2.15 , которая является окончательным уточнением (2.37) при помощи (2.39). Заметим, что ленты освобождаются процедурой rewrite, как только прочитана последняя серия. Оператор «переключенне ленты» разработан в соответствин с данными ранее пояснениями.

### 2.3.4. Многофазная сортировка

Теперь мы знаем необходимые приемы и псдготовлены к тому, чтобы разработать и запрограммировать другой алгоритм сортировки, работающий более эффективно, чем алгоритмы сбалансированной сортнровки. Мы видели, что при сбалансированном слиянни устраняются операции простого копирования, поскольку распределение и слияние объединены в одну фазу. Возникает вопрос: можно ли еше лучше использовать имеюшиеся ленты? Да, это действительно возможно; очереднөе усовершенствование заключается в том, чтобы отказатьєя от строгого понятия прохода, т. е. использовать ленты более хитрым способом, чем тот, когда считают, что всегда имеется $N / 2$ входных лент и столько же выход-

ных, и меняют ролями входные и выходные лещты после каждого отдельного прохода. При этом понятие прохода становится нечетким. Этот метод был нзобретен Р..Л. Гилстадом [2.3] и назван многофазной сортировкой.

Вначале проиллюстрируем его на примере работы с тремя лентами. В каждый момент элементы сливаются с двух лент на третью. Как только одна из входных лент окажется исчерпанной, она сразу становится выходной лентой для слияния с той ленты, которая сще не исчерпана, и с той, которая до этого была выходной.


Рис. 2.14. Многофазная сортировка слиянием с тремя лентами, содержащими 21 серию.


Рис. 2.15. Многофазная сортировка слиянием с шестью лентами, содсржащими 65 серий.

Поскольку мы знаем, что $n$ серий на. каждой входной ленте превращаются в $n$ серий на выходной ленте, нам нужно только вести список числа серий на каждой ленте (вместо того, чтобы определять действительные клююии). На рис. 2.14 предполагается, что вначале две вхоыиыс лешты fl и $\{2$ содержат соответственно 13 и 8 серий. Таким образом, на первом «проходе» 8 сернй сливаются с $j_{1}$ и $i 2$ на $f 3$, на втором «проходе» оставш!еся 5 серий сливаются с $f 3$ и $f 1$ на $f 2$ и т. д. В конце работы на ленте $f 1$ содержится отсортированный файл.

Второй пример демонстрирует многофазный метод с 6 лентами. Пусть вначале имеюгся 16 серий на $\int 1,15$ - на $\{2,14$ - на $\{3,12$ - на $\{4$ и 8 - на $f 5$; на первом частичном

проходе 8 серий сливаются на $f 6$; в конце работы на ленте f2 содержится отсортированное множество элементов (см. рис. 2.15).

Многофазная сортировка более эффективна, чем сбалансированная сортировка, поскольку, если даны $N$ лент, она всегда имеет дело с ( $N-1$ )-путевым слиянием вместо $N / 2$ путевого слияния. Поскольку число требующихся проходов приблизительно равно $\log _{N} n$, где $n$ - число сортируемых элементов, а $N$-число входных лент для слияния, многофазный метод обещает дать значительное улучшение по сравнению со сбалансированным слиянием.

Разумеется, в приведенных примерах было тщательно подобрано распределение начальных серий. Для того чтобы узнать, какие исходные распределения серий требуются длп правильной работы алгоритма, мы пойдем обратным путем, начиная с окончательного распределения (последняя строка на рис. 2.15). Переписывая таблицы для этих двух примеров и поворачивая каждый ряд на одну позицию по отношению к предыдущему ряду, мы получаем табл. 2.13 и 2.14 для шести проходов и для трех и шести лент соответственно.

Таблица 2.13. Идеальное распределение серий на двух лентах

| $l$ | $a_{1}^{(l)}$ | $a_{2}^{(l)}$ | $\sum a_{i}^{(l)}$ |
| :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 1 |
| 1 | 1 | 1 | 2 |
| 2 | 2 | 1 | 3 |
| 3 | 3 | 2 | 5 |
| 4 | 5 | 3 | 8 |
| 5 | 8 | 5 | 13 |
| 6 | 13 | 8 | 21 |

Таблица 2.14. Идеальное распределение серий на пяти лентах

| $l$ | $a_{1}^{(l)}$ | $a_{2}^{(l)}$ | $a_{3}^{(l)}$ | $a_{4}^{(l)}$ | $a_{5}^{(l)}$ | $\sum a_{i}^{(l)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 0 | 0 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 5 |
| 2 | 2 | 2 | 2 | 2 | 1 | 9 |
| 3 | 4 | 4 | 4 | 3 | 2 | 17 |
| 4 | 8 | 8 | 7 | 6 | 4 | 33 |
| 5 | 16 | 15 | 14 | 12 | 8 | 65 |

Из табл. 2.13 можно вывести соотношения

$$
\left.\begin{array}{l}
a_{2}^{(l+1)}=a_{1}^{(l)},  \tag{2.40}\\
a_{1}^{(+1)}=a_{1}^{(l)}+a_{2}^{(l)}
\end{array}\right\} \text { для } l>0
$$

и $a_{1}^{(0)}=1, a_{2}^{(0)}=0$. Полагая $a_{1}^{l}=f_{l}$, мы получаем

$$
\begin{align*}
f_{t+1} & =f_{t}+f_{i-1}, \quad \text { для } \quad i \geqslant 1, \\
f_{1} & =1  \tag{2.41}\\
f_{0} & =0
\end{align*}
$$

Это - рекурсивные правила (или рекуррентные соотношения), определяющие так называемые числа Фибоначчи:

$$
0,1,1,2,3,5,8,13,21,34,55, \ldots
$$

Каждое число Фибоначчи представляет собой сумму двух предшествующих чисел. Итак, для того, чтобы многофазный метод с тремя лентами работал правильно, числа начальных серий на двух входных лентах должны быть двумя соседними в ряду Фибоначчи. А что можно сказать относительно второго примера (табл. 2.14) с шестью лентами? Правила построения чисел легко записать в таком виде:

$$
\begin{align*}
& a_{5}^{(l+1)}=a_{1}^{(l)} \\
& a_{4}^{(l+1)}=a_{1}^{(l)}+a_{5}^{(l)}=a_{1}^{(l)}+a_{1}^{(l-1)} \\
& a_{3}^{(l+1)}=a_{1}^{(l)}+a_{4}^{(l)}=a_{1}^{(l)}+a_{1}^{(l-l)}+a_{1}^{(l-2)}  \tag{2.42}\\
& a_{2}^{(l+1)}=a_{1}^{(l)}+a_{3}^{(l)}=a_{1}^{(l)}+a_{1}^{(l-1)}+a_{1}^{(l-2)}+a_{1}^{(l-3)}, \\
& a_{1}^{(l+1)}=a_{1}^{(l)}+a_{2}^{(l)}=a_{1}^{(l)}+a_{1}^{(l-1)}+a_{1}^{(l-2)}+a_{1}^{(l-3)}+a_{1}^{(l-4)} .
\end{align*}
$$

Подстановка $f_{i}$ вместо $a_{1}^{l}$ дает

$$
\begin{align*}
f_{i+1} & =f_{i}+f_{i-1}+f_{i-2}+f_{i-3}+f_{i-4} \quad \text { для } i \geqslant 4, \\
f_{4} & =1,  \tag{2.43}\\
f_{l} & =0 \text { для } i<4 .
\end{align*}
$$

Эти числа являются так называемыми числами Фибоначчи порядка 4. В общем виде числа Фибоначчи порядка $p$ определяются следующим образом:

$$
\begin{align*}
& f_{i+1}^{(p)}=f_{i}^{(p)}+f_{i-1}^{(p)}+\ldots+f_{i-p}^{(p)} \quad \text { для } \quad i \geqslant p \\
& f_{p}^{(p)}=1  \tag{2.44}\\
& f_{i}^{(n:}=0 \quad \text { для } \quad 0 \leqslant i<p
\end{align*}
$$

Заметим, что обычные числа Фибоначчи имеют порядок $].$
Теперь мы убедились, что исходные числа серий для идеальной многофазной сортировки с $n$ лентами должны быть суммами $n-1, n-2, \ldots, 1$ (см. табл. 2.15) последовательных чисел Фибоначчи порядка $n-2$. Из этого следует, что алгоритм многофазного слияния применим только к таким входным данным, в которых число серий есть сумма

Таблица 2.15. Количество серий, при которых возможнс идеальное распределение

| $n$ |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $l$ | 3 | 4 | 5 | 6 | 7 | 8 |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 2 | 3 | 5 | 7 | 9 | 11 | 13 |
| 3 | 5 | 9 | 13 | 17 | 21 | 25 |
| 4 | 8 | 17 | 25 | 33 | 41 | 49 |
| 5 | 13 | 31 | 49 | 65 | 81 | 97 |
| 6 | 21 | 57 | 94 | 129 | 161 | 193 |
| 7 | 34 | 105 | 181 | 253 | 321 | 385 |
| 8 | 55 | 193 | 349 | 497 | 636 | 769 |
| 9 | 89 | 355 | 673 | 977 | 1261 | 1531 |
| 10 | 144 | 653 | 1297 | 1921 | 2501 | 3049 |
| 11 | 233 | 1201 | 2500 | 3777 | 4961 | 6073 |
| 12 | 377 | 2209 | 4819 | 7425 | 9841 | 12097 |
| 13 | 610 | 4063 | 9289 | 14597 | 19521 | 24097 |
| 14 | 987 | 7473 | 17905 | 28697 | 38721 | 48001 |
| 15 | 1597 | 13745 | 34513 | 56417 | 76806 | 95617 |
| 16 | 2584 | 25281 | 66526 | 110913 | 152351 | 190465 |
| 17 | 4181 | 46499 | 128233 | 218049 | 302201 | 379399 |
| 18 | 6765 | 85525 | 247177 | 428673 | 599441 | 755749 |
| 19 | 10946 | 157305 | 476449 | 842749 | 1189041 | 1505425 |
| 20 | 17711 | 289329 | 918385 | 1656801 | 2358561 | 2998753 |

$n-1$ таких сумм Фибоначчи. Итак, возникает важный вопрос: что делать, если число начальных серий не является такой идеальной суммой? Ответ прост (и типичен для подобных ситуаций): мы предполагаем существование гипотетичіских пустых серий, таких, что сумма реальных и гипотетических серий дает идеальную сумму. Пустые серии называются фиктисноли сериями. Но этот ответ на самом деле неудовлетворитетен, так как сразу вызывает следующий, более трудный вопрос: как распознаются фиктивные серии при слиянии? Перед тем как ответить на него, мы вернемся к упомянутой выше проблеме распределения действителыых и фиктивных серий на $n-1$ лентах.

Однако, для того чтобы найти полходящее правнло распределения, мы должны знать, как сливаются настояцие и фиктивные серии. Ясно, что выбор фнктизной серии с $i$-й ленты означает, что $i$-я лента не участвуег в слиянии; в результате слияние происходит с менее чем $i-1$ лент. Спиянне фиктивных серий со всех $n-1$ входных лент не предполагает никакой действительной операции слияния, а означает просто запись фиктивной серни на выходную ленту. Из этого можно

сделать вывод, что фиктивные серии нужно распределять на $n$ - I лент как можно более равномерно, так как мы заинтересованы в активном слиянии с наибольшего возможного числа входных лент.

Забудем на некоторое время о фиктнвных сериях и рассмотрим задачу распределения неизвестного числа серий иа $n$ - 1 лент. Ясно, что в процессе распределения можно получать числа Фибоначчи порядка $n-2$, определяющие желательнь! количества серий на каждой ленте. Предположив, например, что $n=6$, и ссылаясь на табл. 2.14 , мы начинаем с распределения серий, указанных в строке с номером $l=1(1,1,1,1,1)$; если имеются еще серии, мы переходим ко второй строке $(2,2,2,2,1)$; если входные данные еще не исчеппаны, распределение производится в соответствии со следу'ющей строкой (4, 4, 4, 3, 2) и т. д. Номер строки мы будем называті, !ровнем. Очевидно, что чем больше число серий. тем выше будет уровень чнсел Фибоначчи, который в дапном случае равен количеству проходов, или переключений тент, необходимых для последующей сортировки.

Алгоритм распределения теперь, в первом приближении, можно сформулировать следующим образом:

1. Пусті перед нами стоит цель - числа Фибоначчи порядка $n-2$, уровня 1.
2. Распределяем серии согласно поставленной цели.
3. Если цель достигнута, вычисляем следующий уровень чнсел Фибоначчи; разность между числами этого уровня и числами предыдущего уровня представляет собой новую цель распредсления. Возвращаемся к шагу 2. Если цели нельзя достичь, потому что входные данные исчерпаны, распределение заканчивается.
Правила вычисления следующего уровня чисел Фибоначчи содержатся в их определенин (2.44). Итак, мы можем сосредоточнть внимание на шаге 2 , где при заданной цели последовательные серии должны распределяться поочередно на $n-1$ лент. Именно здесь в наших рассуждениях должныы віовь появиться фиктивные серин.

Предположим, что, повышая уровень, мы записываем следующую цель с помощью разностей $d_{i}$ для $i=1, \ldots$ $\ldots, n-1$, где $d_{i}$ обозначает число серий, которые на данном шаге нужно отправить на ленту $i$. Теперь можно считать, что мы сразу помещаем $d_{i}$ фиктнвных серий на леату $i$ и рассматрнваем последующсе распределение как замену фиктивных серий действительнымн так, что при каждой замене $d_{l}$ уменьшается на 1. Такім образом, $d_{i}$ будет указывать чісло фиктивных серий на ленте $i$, когда входные данные будут исчерпапы.

Неизвестно, какой алгоритм дает оптимальное распределение, но следующий, предлагаемый нами метод оказался очень хорошим. Он называется горизонтальным распределением (см. [2.7], т. 3, стр. 322); этот термин становится понятным, если представить себе серии сложенными в виде пирамиды, как показано на рис. 2.16 для $n=6$ уровня 5 (см. табл. 2.14).

Для того чтобы получить равномерное распределение оставшихся фиктивных серий как можно более быстрым способом, при замене их на действительные уменьшается высота пирамиды: фиктивные серии берутся с горизонтальных уровней слева направо. При таком способе серии распределяются на ленты в последовательности, указанной числами на рис. 2.16.


Рис. 2.16. «Горизонтальное распределение» серий.
Теперь мы можем описать алгоритм в виде процедуры, называемой selecttape, которая вызывается каждый раз, когда переписана какая-либо серия и нужно выбрать ленту, с которой берется очередная серия. Мы предполагаем, что существует переменная $j$, обозначающая индекс текущей выходной ленты. Переменные $a_{i}$ и $d_{i}$ обозначают числа идеального и фиктивного распределений для ленты $i$ :

$$
\begin{align*}
& j: \text { tapeno; } \\
& \text { a,d: array }[\text { tapeno }] \text { of index; }  \tag{2.45}\\
& \text { level: integer }
\end{align*}
$$

Эти переменные инициируются следующими значениями:

$$
\begin{array}{rlll}
a_{1}=1, & d_{l}=1 & \text { для } \quad i=1 \ldots n-1, \\
a_{n}=0, & d_{n}=0 & \text { (фиктивные), } \\
j=1, & & \\
\text { level } & =1 . & &
\end{array}
$$

Отметим что selecttape должна вычислять следующую строку табл. 2.14 , т. е. значения $a_{l}^{(l)}, \ldots, a_{n-1}^{(l)}$, каждый раз при уве-

личении уровня. В это же время вычисляется также «очередная цель», т. е. разности $d_{i}=a_{i}^{(l)}-a_{i}^{(l-1)}$. Приведенный алгоритм основан на том, что результирующее значение $d_{i}$ уменьшается при увеличении номера строки (ведущие вниз ступени на рис. 2.16). (Отметим, что исключением является переход с уровня 0 на уровень 1 ; следовательно, этот алгоритм должен использоваться, начиная с уровня 1.) Selecttape заканчивает работу, уменьшая $d_{i}$ на 1 ; это соответствует заменө фиктивной серии на ленте $j$ действительной серией:

```
procedure selecttape;
 var i: tapeno; z: integer;
begin
 if d[j]<d[j+1] then }j:=j+1 els
 begin if }d[j]=0\mathrm{ then
 begin level }:=\mathrm{ level }+1;z:=a[1]
 for i:=1 to n-1 do
 begin d[i]:=z+a[i+1]-a[i];a[i]:= z+a[i+1]
 end
 end ;
 j:=1
 end ;
 d[j]:=d[j] -1
end
```

Предполагая, что у нас есть процедура для переписи серии с $f 0$ на $f[j]$, мы можем записать начальную фазу распределения следующим образом (как обычно, считаем, что на входе имеется по крайней мере одна серия):

> repeat selecttape, copyrun until $\operatorname{eof}(f 0)$

Но здесь мы должны остановиться и вспомнить эффект, который наблюдался при распределении серий в рассмотренном ранее алгоритме естественного слияния: из-за того, что две серии, последовательно записанные на одну ленту, могут образовать одну серию, реальное количество серий на лентах может не совпасть с ожидаемым. Когда алгоритм сортировки разрабатывался таким образом, что его работа не зависела от количества серий, этот побочный эффект можно было спокойно игнорировать. Но при многофазной сортировке мы особенно заботимся о том, чтобы знать точные количества серий на каждой ленте. Следовательно, нам приходится учитывать возможность такого случайного слияния.

Поэтому нельзя избежать нового усложнения алгоритма распределення. Оказываєтся необходимым сохранять ключ

последнего элемента последней серии каждой ленты. Для этого мы вводим переменную
last: array[tapeno] of integer
Теперь алгоритм распределения можно представить слсдующим образом:

> repeat selecttape;
> if last $[j] \leq f 0 \uparrow$. key then «npodoлжжeние npeжнней cepuu»;
> copyrun; last $[j]:=f 0 \uparrow$. key
> until eof $(f 0)$

Здесь содержится очевидная ошибка: мы забыли о том, что last $[j]$ получает (определенное) значение только после переписи первой серии! Правильное решение состоит в том, что вначале распределяется по одной серии на каждую из $n-1$ лент без обрашения к last $[j]$. Оставшиеся серии распределяются согласно (2.49):

```
while \(\neg e o f(f 0)\) do
begin selecttape;
 if last \([j] \leq f 0 \uparrow\).key then
 begin (продолжсение прежкней серии)
 copyrun;
 if \(\operatorname{eof}(f 0)\) then \(d[j]:=d[j]+1\) else copyrun
 end
 else copyrun
end
```

Предполагается, что присваивание значсний $\operatorname{last}[j]$ включено в процедуру copyrun.

Теперь мы, наконец, готовы взяться за основной алгоритм многофазной сортировки слиянием. Его принципиальная структура подобна основной части программы $n$-путевого слияния: имеется внешний цикл, в теле которого сливаются серии, пока не будут исчерпаны все входные данные, внутреіний цикл, в теле которого сливается по одной серин с каждой входной ленты, и самый внутренний цикл, в теле которого выбирается начальный ключ и элемент передается в выходной файл. Принципиальные отличия следуюцие:

1. На каждом проходе имеется только одна выходная лента вместо $n / 2$.
2. Вместо переключения $n / 2$ входных и $n / 2$ выходных лент после каждого прохода ленты чередуются. Это достигается с помощыо карты ленточных индексов $t$.
3. Число вдодных лент меняется от серии к серии; в началт каждой серии оно определяется по счетчикам $d_{i}$ фиктивных серий. Если $d_{i}>0$ для всех $i$, то $n-1$ фиктивных серий сливаются в одну фиктивную серию при помоши простого увеличения счетчика $d_{n}$ выходной ленты. В противном случае со всех лент, у которых $d_{i}=0$, сливается по одной серии, а для всех остальных лент $d_{i}$ уменьшается, что означает исключение одной фиктнвной серии. Число входных лент, участвующих в слиянии, мы обозначаем через $k$.
4. Невозможно установить окончание фазы при помощи состояния конца файла ( $n-1$ )-й ленты, поскольку могут понадобиться дальнейшие слияния, в которых участвуют фиктивные серии с этой ленты. Вместо этого теоретически необходимое число серий определяется по коэффициентам $a_{i}$. Коэффициенты $a_{i}$ были вычислены на фазе распределения; теперь их можно вычислить в «обратном порядке».

Теперь, согласно этим правилам, сформулируем основну!о часть алгоритма многофазной сортировки, предполагая, что все $n$ - 1 лент с начальными сериями перемотаны на начало и установлены начальные значения в карте ленточных индек$\operatorname{coв} t_{i}=i$ :
repeat \{слияние с $t[1] \ldots t[n-1]$ на $t[n]$ )
$z:=a[n-1] ; d[n]:=0 ; \operatorname{rewrite}(f[t[n]]) ;$
repeat $k:=0$; \{слияние одной серии\} \{определение числа $k$ входных лент, участвующих в слиянии, for $i:=1$ to $n-1$ do if $d[i]>0$ then $d[i]:=d[i]-1$ else begin $k:=k+1 ; t a[k]:=t[i]$ end ; if $k=0$ then $d[n]:=d[n]+1$ else «слияние одной действительной серии с t[1] . . .t[k]» $z:=z-1$
until $z=0$;
$\operatorname{reset}(f[t[n]])$;
«переключение лент в карте $t$; вычисление $a[j]$ для следующего
уровня»;
rewrite $(f[t[n]]) ;$ level $:=$ level -1
until level $=0$;
\{отсортированный файл находится на t[1]\}

Операция действительного слияния почти идентична с прогјаммой п-путевой сортировки слиянием, единствепная

```
program polysort (output);
(многофазная сортировка с п лентами)
const n=6; [число лент)
type item = record
 key: integer
 end ;
 tape = file of item;
 tapeno = 1..n;
var leng, rand: integer; {используются оля формирования файла)
 eot: boolean;
 buf: ttem;
 f0: tape; {f0-входная лента со случайными числами}
 f: array [1..n] of tape;
procedure list (var f: tape; n: tapeno);
 var z: integer;
begin z:=0;
 writeln ('TAPE', n: 2);
 while ~eof(f) do
 bégin read(f, buf); write(output, buf.key: 5); z:=z+1;
 if z=25 then
 begin writeln (output); z:=0
 end
 end ;
 if z\not=0 then writeln.(output); reset(f)
end {list};
procedure polyphasesort;
 var i,j,mx,tn: tapeno;
 k, level: integer;
 a,d: array [tapeno] of integer;
 {а[]]-идеальное число серий на ленте \}
 [d[j]-число фиктивных серий на ленте j]
 dn,x,min,z: integer;
 last: array [tapeno] of integer;
 [last[j]-ключ канечной серии на.ленте j]
 t,ta: array [tapeno] of tapeno;
 {карты номеров ліент)
 procedure selecttape;
 var i: tapeno; z: integer;
 begin
 if d[j]<d[j+1] then }j:=j+1\mathrm{ else
 begin if d[j]=0 then
 begin level := level + 1; z:= a[1];
```

```
 for i:= 1 to n-1 do
 begin d[i]:=z+a[i+1] - a[l];a[i]:= z + a[i+1]
 end
 end ;
 j:=1
 end ;
 d[j]:=.d[j] -1
 end ;
 procedure copyrum;
 begin (перепись одной серии с f0 на ленту j)
 repeat read(f0, buf); write(f[j], buf);
 until eof(f0)\vee (buf .key > f0\uparrow .key);
 last[j]:= buf.key
 end ;
begin [распределение начальных серий)
 for }i:=1\mathrm{ to }n-1\mathrm{ do
 begin a[i]:=1;d[i]:=1:.rewrite(f[i])
 end ;
 level:= 1; j:= 1;a[n]:=0;d[n]:=0;
 repeat selecttape; copyrun
 until eof(f0) \vee (j=n-1);
 while ᄀeof(f)do
 begin selecttape;
 if last[j]}\leqf0\uparrow.key the
 begin (продолжение прежннй серии)
 copyrur;
 if eof(f0) then d[f]:= d[j] + 1 else copyrun
 end
 else copyrun
 end;
 for i:= 1 to n-1 do reset(f[i]);
 for i:= 1 to n do t[i]:= i;
 repeat {слияние с t[1] ...t[n-1} на t[n]}
 z:=a[n-1];d[n]:=0; rewrite(f{t[n]);
 repeat }k:=0; {слияние одной серии}
 for }l:=1\mathrm{ to }n-1\mathrm{ do
 if d[i]>0 then d[i]:= d[i]-1 else
 begin }k:=k+1;ta[k]:=t[i
 end ;
 If }k=00\mathrm{ then }d[n]:=d[n]+1 els
 begin {слияние одного действительного отрезка
 ct[1] .. t[k]}
```

```
repeat \(i:=1 ; m x:=1\);
 \(\min :=f[t a[1]] \uparrow . k e y ;\)
 while \(i<k\) do
 begin \(i:=i \dagger 1 ; x:=f[t a[i]] \uparrow\).key;
 if \(x<\min\) then
 begin \(\min :=x ; m x:=i\)
 end
 end ;
 \(\{t a \mid m x\}\) содерэкит наименьший элемент, пересылка
 его на \(t[n]\}\)
 \(\operatorname{read}(f[t a[m x]], b u f) ;\) eot \(:=\operatorname{eof}(f[t a[m x]])\);
 write(\(f[t[n]\), buf);
 if (buf.key \(>f[t a[m x]] \uparrow . k e y) \vee\) eot then
 begin (сброс этой лентыы)
 \(t a[m x]:=\}[k] ; k:=k-1\)
 end
until \(k=0\)
\(z:=z-1\)
```

end ;
until $z=0$;
$\operatorname{reset}(f[t[n]) ; \operatorname{list}(f[t[n]], t[n]) ;$, переключение ленты $\}$
tn $:=t[n] ; d n:=d[n] ; z:=a[n-1] ;$
for $i:=n$ downto 2 do
begin $t[i]:=t[i-1] ; d[i]:=d[i-1] ; a[i]:=a[i-1]-z$
end ;
$t[1]:=t n ; d[1]:=d n ; a[1]:=z ;$
\{отсортированный файл находится на $1[1]\}$
$\operatorname{list}(f[t[1]], t[1]) ;$ level $:=$ level -1
until level $=0$;
end \{polyphasesort\} ;
begin [формирование случайного файла]
leng $:=200 ;$ rand $:=7789$;
repeat rand $:=\left(131071^{*}\right.$ rand $) \bmod 2147483647$;
buf .key $:=$ rand div 2147484; write(f0, buf); leng :mieng - 1
until leng $=0$;
$\operatorname{reset}(f 0) ; \operatorname{list}(f 0,1)$;
polyphasesort
end

разница заключается в том, что алгоритм исключения ленты несколько проще. Как производится поворот карты ленточных индексов и соответствующих счетчиков $d_{i}$ (и перевычисление коэффициентов $a_{i}$ при переходе на низший уровень)-очевидно, это можно подробно видеть в программе 2.16, которая полностью описывает алгоритм многофазной сортировки.

### 2.3.5. Распределение начальных серий

Мы пришли к сложным программам последовательной сортировки, поскольку более простые методы, работающие с массивами, требуют наличия достаточно большой памяти с произвольным доступом, чтобы хранить все сортируемое множество данных. Очень часто такой памяти нет, вмесго нее приходится использовать достаточно вместительные запомннающие устройства с последовательным доступом. Мы видим, что методы последовательной сортировки, рассмотренные выше, не требуют практически никакой оперативной памяти, кроме буферов для файлов и, разумеется, самой программы. Но в действительности даже небольшие вычислительные машины обладают некоторой оперативной памятью с произвольным доступом, которая почти всегда больше той, которая требуется для разработанных здесь программ. Непроститсльно было бы не попытаться использовать ее оптнмальным образом.

Решение заключается в комбинировании методов сортировки массивов и файлов. В частности, адаптированнуо сортировку массивов можно использовать на фазе распределения начальных серий так, чтобы в результате эти серии имели длину $l$, приблизительно равную размеру имеющейся оперативной памяти. Очевидно, что на последующих проходах ннкакие дополнительные сортировки массивов не дадут какоголибо улучшения, так как длина участвующих в них серий постоянно растет и, следовательно, всегда будет больше имеющейся оперативной памяти. Поэтому мы можем сосредоточить внимание на оптимизации алгоритма, который формирует начальные серии.

Конечно, мы сразу обращаемся к логарифмическим методам сортировки массивов. Наиболее подходящий из них это сортировка с помощьо дерева, или пирамидальная сортировка (см. разд. 2.2.5). Пирамиду можно рассматривать как туннель, через который должны пройти все компоненты файла, некоторые - быстрее, некоторые - медленнее. Наименьший ключ легко извлекается с вершины пирамиды, а его замешение - очень эффективный процесс. Пропуск компоненты с входной ленты $f 0$ через весь «пирамидальный тун-

нель» $h$ на выходную ленту $f[j]$ можно просто описать следующим образом:

$$
\begin{align*}
& \text { write(f }[j], h[1]) ; \\
& \operatorname{read}(f 0, h[1]) ;  \tag{2.51}\\
& \operatorname{sift}(1, n)
\end{align*}
$$

«Sift» («просеивание») - это процесс, описанный в разд. 2.2.5. Новая вставляемая компонента $h[1]$ просеивается на соответствующее место. Отметим, что $h[1]$ - наименьший элемент в пирамиде. Пример дан на рис. 2.17.

## Состояние до передачи элемента:



Состояние после передачи очередного элемента:


Рис. 2.17. Просеивание ключа через пирамиду.

В конечном счете программа значительно усложняется, поскольку:

1. Пирамида $h$ вначале пуста и прежде всего должна быть заполнена.
2. К концу работы пирамида заполнена лишь частично, а в самом конце становится пустой.
3. Нужно сохранять информацию о начале новых серий, для того чтобы вовремя сменить индекс выходной ленты $j$.

Прежде всего опишем формально переменные, явно участвующие в работе:

$$
\begin{align*}
& \operatorname{var} f 0: \text { tape; } \\
& \quad f: \text { array }[\text { tapeno }] \text { of tape; }  \tag{2.52}\\
& h: \text { array }[1 . . m] \text { of } \text { item; } \\
& l, r: \text { integer }
\end{align*}
$$

$m$ - размер пирамиды $h$. Для обозначения $m / 2$ мы используем константу $m h ; l$ и $r$-индексы в $h$. Процесс пропуска элементов через пирамиду можно теперь разбить на пять отдельных этапов:

1. Прочесть $m h$ первых элементов с $f 0$ и записать их в верхнюю половину пирамиды, где не требуется никакого упорядочения ключей.
2. Прочесть $m h$ остальных элементов и записать их в нижнюю половину пирамиды, просеивая каждый элемент на соответствующее место (построить пирамиду).
3. Установить $l$ в $m$ и вынолнить для оставшихся на $f 0$ элементах следующнй шаг: отправить $h[1]$ на текущую выходную ленту. Если его ключ меньше или равен ключу следующего элемента входной ленты, то этот следующий элемент принадлежит той же серии и его можно просеять на подходящее место. В противном случае надо уменьшить размер пирамиды и поместить новый элемент во вторую, «верхнюю» пирамиду, которая строится для следующей серии. Границу между двумя пирамидами обозначим индексом $l$. Итак, «нижняя»», или текущая, пирамида состоит из элементов $h[1] \ldots h[l]$, а «верхняя», или следующая, пирамида - из $h[l+1] \ldots h[m]$. Если $l=0$, то нужно сменить выходную ленту и вновь установить $l$ в $m$.
4. Теперь входные ленты исчерланы. Вначале установить $r$ в $m$, затем сбросить на выходную ленту нижнюю часть пирамиды, заканчивающую текущую серию, одновременно построить верхнюю часть и постепенно переместить ее в позиции $h[l+1] \ldots h[r]$.
5. Последняя серия формируется из оставшихся элементов пирамиды.

Теперь мы можем подробно описать эти пять этапов в виде законченной программы, вызывающей процедуру selecttape как только найден конец серии и нужно совершить некоторое действие, изменяющее индекс выходной ленты. В программе 2.17 вместо этого используется фиктивная процедура: она просто подсчитывает число сформированных серий. Все элементы записываются на ленту $f 1$.

Если теперь мы попытаемся объединить эту программу, например, с программой многофазной сортировки, то столкнемся с серьезной трудностью. Она возникает по こледующим причинам: программа сортировки содержит вначале довольно сложную процедуру для переключения лент и предполагает наличие процедуры copyrun, которая записывает на выбранную ленту ровно одну серию. С другой стороны, программа пирамидальной сортировкн представляет собой сложную процедуру, предполагающую налнчне закрытой процедуры selecttape, которая просто выбирает новую ленту. Проблемы не возникало бы, если бы в одной (или обеих) программе нужная процедура вызывалась лишь в одном месте, однако она вызывается в нескольких местах в обенх программах.

В такой ситуации лучше всего использовать так называемую сопрограмму, как обычно рекомендуется, когда сосуществуют несколько процессов. Самый типичный пример -.. комбинация процесса, который порождает поток информации, и процесса, который ее использует. Связь порожденне/использование можно выразить в виде двух сопрограмм. Одна из них может быть основной программой.

Сопрограмму можно рассматривать как процедуру, или подпрограмму, которая содержит одну или несколько точек прерывания. Если встречается такая точка прерывания, то управленне возвращается в программу, вызвавшую эту сопрограмму. При повторном вызове сопрограммы ее выполнение возобновляется с этой точки прерывания. В нашем примере мы можем рассматривать многофазную сортировку как основную программу, вызываюоцую соругип, которая построена в виде сопрограммы. Она состоит из основного гела программы 2.17, где каждый вызов selecttape геперь представляет собой точку прерывания. Проверку на конец файла нужно всюду заменить проверкой, достигла ли сопрограмма своего конца. Логично заменить eof(f0) на eoc (copyrun).

Анализ и выводы. Какой эффсктивности можно ожидать от многофазной сортировки с начальным распределением серий с помощью пирамидальной сортировки? Вначале мы обсудим, каких улучшений следует ожидать от исполіззования пирамиды.

В последовательности со случайно распределенными клиочами средняя длина серий равна 2. Какова эта длина после того, как последовательность пропущена через пирамиду размером $m$ ? Казалось бы, нужно ответить $m$, но, к счастью, результат вероятностного анализа на самом деле намного лучше, а именно равен $2 m$ (см. [2.7], т. 3, с. 304). Поэтому, ожидаемый коэффициент улучшения равен $m$.
program distribute( $f 0, f 1$,output);
(начальное распределение серий с помощью пирамидальной сортировки)
const $m=30 ; m / \imath=15$; (размер пирамиды)
type item $==$ record
key: integer
end ;
tape $=$ file of item;
index $=0 . . \mathrm{m}$;
var $l, r$ : index;
f0,f1: tape;
colut: integer; \{счетчик серий\}
$h$ : array $[1 . . m]$ of item; (пирамида)
procedure selecttape;
begin count $:=$ count +1 ;
(фиктивная прочедура; подсчитывает число распределенных
серий)
end \{selecttape\};
proccdure sift(l,r: index);
label 13;
var $i, j$ : integer: $x$ : item;
begin $i:=l ; j:=2 * i ; x:=h[i]$;
while $j \leq r$ do
begin if $j<r$ then
if $h[j] . k e y>h[j+1]$.key then $j:=j+1$;
if $x$.key $\leq h[j]$.key then goto 13 ;
$h[i]:=h[j] ; i:=j ; j:=2 * i$
end ;
13: $h[i]:=x$
end ;
begin (формирование начальных серий с помощью пирамидальной сортировки\}
count $:=0 ; \operatorname{reset}(f 0) ;$ rewrite( $f 1$ );
selecttape;
\{этап 1: заполнение верхней части пирамиды $h$ \}
$l:=m ;$
repeat $\operatorname{read}(f 0, h[l]) ; l:=l-1$
until $l=m h$;
\{эпап 2: заполнение нижней части пирамиды $h$ \}
repeat $\operatorname{read}(f 0, h[1]) ; \operatorname{sift}(l, m) ; l:=1-1$
until $l=0$;
\{этап 3: пропуск серий через пиримиоу

```
 l:=m;
 while \negeof(f0) do
 begin write(f1,h[1]);
 if h[1].key \leqf0\uparrow .key then
 begin (новая запись принадлежит той же серии)
 rcad(f0,h[1]); sift(1,l);
 end else
 begin {новая запись принадлежит следующей серии}
 h[1]:= h[l]; sift(l,l-1);
 read(f0,h[l]); if l\leqmh then sift(l,m);l:m l-];
 if l=0 then
 begin { пирамида заполнена; начать новую сврию)
 l:=m; selecttape;
 end
 end
end ;
{этап 4: сброс нижней части пирамидыъ}
r := m;
repeat write(f1,h[1]);
 h[1]:= h[l]; sift(1,l-1);
 h[l]:=h[r];r:== r-1;
 if l}\leqmh\mathrm{ then sift(l,r);l:=l-1
 until l = 0;
 |этап 5: сброс верхней части. пирамиды; формирование
 последней серии)
 selectlape;
 while r>0 do
 begin write(fl,h[1]);
 h[1]:=h[r];\operatorname{sift (1,r); r:=r-1}
 end ;
 writeln (count)
end.
```

Программа 2.17. Распределение начальных серий с помощью пирамиды.
Оценку свойств многофазной сортировки можно получигь нз табл. 2.15, определив максимальное число начальных серий, которыс можно отсортировать за данное количество частичных проходов (уровней) при заданном числе $n$ лент. Например, при $n=6$ лентах и пирамиде размером $m=100$ файл, содержащий до 165680100 начальных серий, можно отсортировать за 20 частичных проходов. Это - отличные характеристики.

Рассматрнвая программу, представляющую собой комбннацию многофазной и пирамидальной сортировки, нельзя яе поразиться ее сложности. Ведь она выполняет ту же самую, легко определимую задачу переупорядочения множества элементов, что и любая из коротких программ, основанных на простых методах сортировки массивов. Из всего сказанного в этой главе можно сделать следующие выводы:

1. Между алгоритмом и структурой данных существует тесная связь; структура данных оказывает большое влияние на вид программы.
2. Прн помощи усложнения программы можно значительно повысить ее эффективность, даже когда структура данных, с которой она работает, плохо соответствует поставленной задаче.

## УПРАЖ НЕНИЯ

2.1. Какие из алгоритмов, представленных программами $2.1-2.6,2.8,2.10$ и 2.13 , являются методами устойчивой сортировки?
2.2. Будет ли программа 2.2 работать правильно, если в условии окончания цикла заменить $l \leqslant r$ на $l<r$ ? Будет ли она по-прежнему правнльной, если операторы $r:=m-1$ и $l:=m+1$ упростить до $r:=m$ и $l:=m$ ? Если нет, найдите множества значений $a_{1} \ldots a_{n}$, при которых измененная программа будет работать неправильно.
2.3. Запрограммируйте три метода простой сортировки и измерьте время их работы. Найдите веса, на которые нужно умножить коэффициенты С и $М$, чтобы получигь оценки реального времени.
2.4. Протестируйте программу пирамидальной сортировки 2.8 с различными произвольными входными последователыностями и определите, сколько раз в среднем выполняется оператор goto 13. Поскольку это число сравнительно мало, интересен следующий вопрос: имеется ли способ извлечь проверку

$$
x . k e y \geqslant a[j] . k e y
$$

из цикла с предусловием?
2.5. Рассмотрите следующую «очсвидную» версию программы разделения 2.9:

$$
\begin{aligned}
& i:=1 ; j:=n ; \\
& x:=a[(n+1) \text { div } 2] . \text { key; } \\
& \text { repeat } \\
& \quad \text { while } a[i] . k e y<x \text { do } i:=i+1 ; \\
& \quad \text { While } x<a[j] . \text {.key do } j:=j-1 ; \\
& \quad w:=a[i] ; a[i]:=a[j] ; a[j]:=w \\
& \text { until } i>j
\end{aligned}
$$

Найдите множества значений $a_{1} \ldots a_{n}$, для которых эта версня работает неправильно.
2.6. Напишите программу, которая комбинирует алгоритмы быстрой сортировки и сортировки методом пузырька следующим образом: используется быстрая сортировка для получения (неотсортированшых)

подмассивов длиной $m(1 \leqslant m \leqslant n)$; затем для завершения задачи используется сортировка методом пузырька. Отметим, что последняя теперь может проходить по всему массиву, минимизируя тем самым затраты на управление. Найдите значение $m$, минимизирующее общее время сортировки.

Примечание. Ясно, что оптимальное значение $m$ будет достаточно мало. Тогда, может быть, стоит позволить, чтобы сортировка методом пузырька проходила по всему массиву ровно $m-1$ раз, вместо того чтобы определять последний проход, на котором не производилось ннкаких обменов.
2.7. Проведите тот же эксперимент, что и в упр. 6 с сортировкой простым выбором вместо сортировки методом пузырька. Конечно, сортировка простым выбором не может проходить по всему массиву, поэтому ожидаемый объем работы с индексами несколько болыше.
2.8. Напишите рекурсивный алгоритм быстрой сортировки согласно указанию, џто сортировку меньшего подмассива следует выполнять раньше сортировки более длинного подмассива. Выполните первую задачу при помощи нтеративного оператора, а последнюю - при помощи рекурсивного вызова. (Слсдовательно, ваша процедура сортировки будет содержать один рекурсивный вызов в отлнчие от программы 2.10, содержащей 2 вызова, и программы 2.11, не содержащей ни одного.)
2.9. Найдите перестановку ключей $1,2, \ldots, n$, для которой быстрая сортировка вєдет себя наихудшим (наилучшим) образом ( $n=5,6,8$ ).
2.10. Напишите программу естественного слияния, которая, подобно программе простого слияния 2.13, работает на массиве двойной длины с двух концов в середину. Сравните ее характеристики с характеристиками программы 2.13.
2.11. Заметьте, что при двухпутевом естественном слиянии мы не просто слепо выбираем наименьшее значение из имеющихся ключей. Вместо этого, когда встречается конец серии, остаток другой серии просто переписывается в выходную последовательность. Например, слияние

$$
\begin{aligned}
& 2,4,5,1,2, \ldots \\
& 3,6,8,9,7, \ldots
\end{aligned}
$$

дает последовательность

$$
2,3,4,5,6,8,9,1,2, \ldots
$$

вместо лоследователь:ости

$$
2,3,4,5,1,2,6,8,9, \ldots
$$

которая кажется лучше упорядоченной. Почему принята такая стратегия?
2.12. Зачем пужна псремеиная $\boldsymbol{\text { п в п пограмме 2.15? При какнх условнях }}$ выполняется оператер

$$
\mathbf{b} \text {-gin rewrite }(f[t a[m x]]) ; \ldots
$$

а прн какнх - оператор
begin $t x:=t a[m x] ; \ldots$ ?
2.13. Почему в программе многофазной сортировки 2.16 требуется переменная last, а в программе 2.15 она не нужна?
2.14. Суцествует метод сортировки, похожий на многофазную сортировку: так называемое каскадное слияние [2.1, 2.9]. Он использует другой

принцип слияния. Если, например, даны шесть лент $T 1, \ldots, T 6$, каскадное слияние, нач!ная также с *идеального распределения» серий на $T 1, \ldots, T 5$, выполняст пятипутевое слияние с $T 1, \ldots, T 5$ на $T 6$, пока $T 5$ не станет пустой, затем (не затрагивая $T 6$ ) четырехпутевое слиянне на $T 5$, затем трехпутевое слиянне на $T 4$, двухпутевое слияние на $T 3$ и, наконец, перепись с $T 1$ на $T 2$. Следующий проход работает таким же образом, начиная с пятипутевого слияния на $T 1$ и т. д. Хотя эта схема кажется хуже многофазного слияния, поскольку временами оставляет некоторые ленты без работы, а также выполняет олерации простого копирования, она, к удивлению, оказывается лучше многофазной для очень больших файлов н для шести и более лент. Напншите хорошо структурированную программу каскадного слияния.

## ЛИТЕРАТУРА

2.1. BETZ B. K., CARTER: - ACM National Conf., 14, 1959, Paper 14
2.2. FLOYD R. W. Treesort (Algorithms 113, 243), Comm. ACM, 5, No. 8, 1962, 434, Comm. ACM, 7. No. 12, 1964, 701.
2.3. GILSTAD R. L. Polyphase Merge Sorting - An Advanced Technique. Proc. AFIPS Easter Jt. Comp. Conf. 18, 1960, 143-148.
2.4. HOARE C. A R. Proof of Program. FIND. - Comm. ACM, 13, No. 1, 1970, 39-45.
2.5. HOARE C. A. R. Proof of Recursive Program: Quicksort. - Comp. J., 14, No. 4, 1971, 391-395.
2.6. HOARE C. A. R. Quicksort. - Comp. J., 5, No. 1, 1962, 10-15.
2.7. KNUTH D. E. The art of Computer Programming, 3, -Reading, Mass.: Addison-Wesley, 1973. [Имеется перевод: Кнут Д. Искусство програм. мирования для ЭВМ, т. 3. - М.: Мир, 1978.]
2.8. KNUTH D. E. The art of Computer Programming, 3, 86-95. [Имеется перевод: Кнут Д. Искусство программирования для ЭВМ, т. З. - М.: Мир, 1978, с. 108-119.]
2.9. KNUTH D. E. The art of Computer Programming, 3, 289. [Имеется перевод: Кнут Д. Искусство программирования для ЭВМ, т. 3. - М.: Мир, 1978, с. 342.$]$
2.10. LORIN H. A Guided Bibliography to Sorting. - IBM Syst. J., 10, No. 3, 1971, 244-254.
2.11. SHELL D. L. A Highspeed Sorting Procedure. - Comm. ACM, 2, No. 7, 1959, 30-32.
2.12. SINGLETON R. C. An Efficient Algorithm for Sorting with Minimal Storage (Algorithm 347). - Comm. ACM, 12, No. 3, 1969, 185.
2.13. Van EMDEN M. H. Increasing the Efficiency of Quicksort (Algorithm) 402) - Comm. ACM, 13, No. 9, 1970. 563-566, 693.
2.14. WILliAMS J. W. J. Heapsort (Algorithm 232). - Comm. ACM, 7, No. 6, 1964, 347-348.

## РЕКУРСИВНЫЕ АЛГОРИТМЫ

## 3.1. ВВЕДЕНИЕ

Объект называется рекурсивным, если он содержит сам себя или определен с помощью самого себя. Рекурсия встречается не только в математике, но и в обыденной жизни. Кто не видел рекламной картинки, которая содержит свое собственное изображение?

Рекурсия является особенно мощным средством в математических определениях. Известны примеры рекурсивных определений натуральных чисел, древовидных структур и нецоторых функций:

1. Натуральные числа:
(a) 1 есть натуральное число;
(b) целое число, следующее за натуральным, есть натуральное число.
2. Древовидные структуры:
(a) О есть дерево (называемое пустым деревом);
(b) если $t_{1}$ и $t_{2}$ - деревья, то


есть дерево (нарисованное сверху вниз).
3. Функция факториал $n$ ! для неотрицательных целых чисел:
(a) $0!=1$,
(b) если $n>0$, то $n!=n \cdot(n-1)$ !

Очевидно, что мощность рекурсии связана с тем, что она позволяет определить бесконечное множество объектов с помощью конечного высказывания. Точно так же бесконечные вычисления можно описать с помощью конечной рекурсивной программы, даже если эта программа не содержит явных циклов. Однако лучше всего использовать рекурсивные алгоритмы в тех случаях, когда решаемая задача, или вычисляемая функция, или обрабатываемая структура данных определены с помощью рекурсии. В общем виде рекурсивную программу $P$ можно изобразить как композицию $\mathscr{P}$ базовых

операторов $S_{l}$ (не содержащих $P$ ) и самой $P$ :

$$
\begin{equation*}
P \equiv \mathscr{P}\left[S_{i}, P\right] . \tag{3.1}
\end{equation*}
$$

Необходимое и достаточное средство для рекурсивного представления программ - это описание процедур, или подпрограмм, так как оно позволяет присваивать какому-либо оператору имя, с помощью которого можно вызывать этот оператор. Если процедура $P$ содержит явное обращение к самой себе, то она называется прямо рекурсивной; если $P$ содержит обращение к процедуре $Q$, которая содержит (прямо


Рис. 3.1. Рекурсивное изображение.
или косвенно) обращение к $P$, то $P$ называется косвенно рекурсивной. Поэтому использование рекурсии не всегда сразу видно из текста программы.

С процедурой принято связывать некоторое множество локальных объектов, т. е. переменных, констант, типов и процедур, которые определены локально в этой процедуре, а вне ее не существуют или не имеют смысла. Каждый раз, когда такая процєдура рекурсивно вызывается, для нее создается новое множество локальных переменных. Хотя они имеют те же имена, что и соответствующие элементы множества локальных переменных, созданного при предыдущем обращенин к этой же процедуре, их значения различны. Следуюиис правила области действия идентификаторов позволяют исключить какой-либо конфликт при использовании имен: идентифнкаторы всегда ссылаются на множество неременных, созданное последним. То же правило относится.к параметрам процедуры.

Подоб́но операторам цикла, рекурсивные процедуры могут привести к бесконечным вычислениям. Поэтому необ́ходимо рассмотреть проблему окончания работьє процедур. Очевидно, что для того, чтоб́ы работа когда-либо завершилась, необходимо, чтобы рекурсивное обращение к процедуре $P$ подчинялось условию $B$, которое в какой-то момент перестает выполняться. Поэтому более точно схему рекурсивных алгоритмов можно представить так:

$$
\begin{equation*}
P \equiv \text { if } B \text { then } \mathscr{P}\left[S_{i}, P\right] \tag{3.2}
\end{equation*}
$$

или

$$
\begin{equation*}
P \equiv \mathscr{P}\left[S_{i}, \text { if } B \text { then } P\right] \tag{3.3}
\end{equation*}
$$

Основной способ доказать, что выполнение операторов цикла когда-либо заканчивается, - определить функцию $f(x)$ ( $x$ - множество переменных программы), такую, что $f(x) \leqslant 0$ удовлетворяет условию окончания цикла (с предусловнем или с постусловием), и доказать, что при каждом повторении $f(x)$ уменьшается. Точно так же можно доказать, что выполнение рекурсивной процедуры $P$ когда-либо завершится, показав, что каждое выполнение $P$ уменьшает $i(x)$. Наиболее надежный способ обеспечить окончание процедуры - связать с $P$ параметр (значение), скажем $n$, и рекурсивно вызывать $P$ c) значением этого параметра $n-1$. Тогда замена условия $B$ ні $n>0$ гарантирует окончание работы. Это можно изобразить следующими схемами программ:

$$
\begin{gather*}
P(n) \equiv \text { if } n>0 \text { then } \mathscr{P}\left[S_{i}, P(n-1)\right]  \tag{3.4}\\
P(n) \equiv \mathscr{P}\left[S_{i}, \text { if } n>0 \text { then } P(n-1)\right] \tag{3.5}
\end{gather*}
$$

На практике нужно обязательно убедиться, что наибольшая глубина рекурсии не только конечна, но и достаточно мала. Дело в том, что при каждом рекурсивном вызове процедуры $P$ выделяется некоторая память для размещения ее переменных. Кроме этих локальных переменных нужно еще сохранять текущее состояние вычислений, чтобы вернуться к нему, когда закончится выполнение новой активации $P$ и нужно будет вернуться к старой. Мы уже наблюдали подобную ситуацию при разборе процедуры быстрой сортировки в гл. 2. Было обнаружено, что при «наивном» составлении программы из оператора, разделяющего $n$ элементов на две части, и двух рекурсивных вызовов, сортирующнх эти две части, глубина рекурсии в худшем случае может приолижаться к $n$. При разумном изменении процедуры оказалось, 'то можно ограничить эту глубину $\log n$. Разница между значениями $n$ и $\log n$ вполне достаточна для того, чтобы случай, крайне не подходящий для использования рекурсии, превратить в тот, в котором рекурсия вполне практична.

## 3.2. КОГДА НЕ НУЖНО ИСПОЛЬЗОВАТЬ РЕКУРСИЮ

Рекурсивные алгоритмы наиболее пригодны в случаях, когда поставленная задача или используемые данные определены рекурсивно. Но это не значит, что при наличии таких рекурсивных определений лучшим способом решения задачи непременно является рекурсивный алгоритм. В действительности из-за того, что обычно понятие рекурсивных алгоритмов объяснялось на неподходящих примерах, в основном и возникло широко распространенное предубеждение против использоваиия рекурсии в программировании и приравнивание ее к неэффективности. Повлиял на это и тот факт, что широко распространенный язык программирования Фортран запрещает рекурсивное использование подпрограмм и тем самым не допускает рекурсию, даже когда ее применение оправданно.

Программы, в которых следует избегать использования рекурсии, можно охарактеризовать следующей схемой, изображающей их строение. Это схема (3.6) и эквивалентная ей (3.7):

$$
\begin{align*}
& P \equiv \text { if } B \text { then }(S ; P)  \tag{3.6}\\
& P \equiv(S ; \text { if } B \text { then } P) \tag{3.7}
\end{align*}
$$

Эти схемы естественно применять в тех случаях, когда вычисляемые значения определяются с помощью простых рекуррентных соотношений. Рассмотрим, например, широко известный пример вычислений факториалов $f_{i}=i$ !:

$$
\begin{align*}
i & =0,1,2,3, \quad 4, \quad 5, \ldots \\
f_{l} & =1,1,2,6,24,120, \ldots \tag{3.8}
\end{align*}
$$

«Нулевое» число определяется явным образом как $f_{0}=1$, а последующие числа обычно определяются рекурсивно - с помощью предшествующего значения:

$$
\begin{equation*}
f_{i+1}=(i+1) \cdot f_{i} \tag{3.9}
\end{equation*}
$$

Эта формула предполагает использование рекурсивного алгоритма для вычисления $n$-го факториального числа. Если мы введем две переменные $/$ и $F$ для значений $i$ и $f_{i}$ на $i$-м уровне рекурсии, то увидим, что для перехода к следующему числу в последовательности (3.8) необходимы следующие вычиспения:

$$
\begin{equation*}
I:=I+1 ; \quad F:=I * F \tag{3.10}
\end{equation*}
$$

и, подставив (3.10) вместо $S$ в (3.6), мы получаем рекурсивную программу

$$
\begin{align*}
& P \equiv \text { if } I<n \operatorname{then}(I:=I+1 ; F:=I * F ; P) \\
& I:=0 ; F:=1 ; P \tag{3.11}
\end{align*}
$$

Первую строку в (3.11) можно так записать на принятом нами языке программирования Паскаль:

```
procedure \(P\);
begin if \(I<n\) then
 begin \(I:=I+1 ; F:=I * F ; P\)
 end
end
```

Чаще употребляемая, но эквивалентная, по существу, форма дана в (3.13). Вместо процедуры здесь вводится так называемая процедура-функция, т. е. некоторая процедура, с которой явно связывается вычисляемое значение. Поэтому функцию можно использовать непосредственно как элемент выражения. Тем самым переменная $F$ становится излишней, а роль $/$ выполняет явный параметр процедуры.

```
function \(F(I:\) integer \()\) : integer;
begin if \(I>0\) then \(F:=I * F(I-1)\)
 else \(F:=1\)
end
```

Совершенно ясно, что здесь рекурсию можно заменить обычной итерацией, а именно программой

$$
\begin{align*}
& I:=0 ; F:=1 \\
& \text { while } I<n \text { do }  \tag{3.14}\\
& \quad \text { begin } I:=I+1 ; F:=I * F \\
& \quad \text { end }
\end{align*}
$$

В общем виде программы, соответствующие схемам (3.6) или (3.7), нужно преобразовать так, чтобы они соответствовали схеме (3.15):

$$
\begin{equation*}
P \equiv\left(x:=x_{0} ; \text { while } B \text { do } S\right) \tag{3.15}
\end{equation*}
$$

Есть и другие, более сложные рекурсивные схемы, которые можно и должно переводить в итеративную форму. Примером служит вычисление чисел Фибоначчи, определяемых с помощью рекуррентного соотношения

$$
\begin{equation*}
\mathrm{fib}_{n+1}=\mathrm{fib}_{n}+\mathrm{fib}_{n-1} \text { для } n>0 \tag{3.16}
\end{equation*}
$$

и iib $_{1}=1$, $\mathrm{fib}_{0}=0$. При непосредственном, «лобовом» подходе мы получим программу

> function Fib(n: integer): integer;
> begia if $n=0$ then $F i b:=0$ else
> if $n=1$ then $F i b:=1$ else
> Fib $:=F i b(n-1)+F i b(n-2)$
end

При вычислении $\mathrm{fib}_{n}$ обрашение к функции $F i b(n)$ приводит к рекурсивным активациям этой процедуры. Сколько раз? Мы можем заметить, что каждое обращение при $n>1$ приводит к двум дальнейшим обращениям, т. е. общее число обращений растет экспоненциально (см. рис. 3.2). Ясно, что такая программа непригодна для практического использования.


Рис. 3.2. 15 вызовов $\operatorname{Fib}(n)$ при $n=5$.
Однако очевидно, что числа Фибоначчи можно вычислять по итеративной схеме, при которой использование вспомогательных переменных $x=\mathrm{fib}_{i}$ и $y=\mathrm{fib}_{i-1}$ позволяет избежать повторного вычисления одних и тех же значений:

$$
\begin{aligned}
& \left\{\text { вычисление } x=\text { fі } b_{n} \text { для } n>0\right\} \\
& i:=1 ; x:=1 ; y:=0 \\
& \text { while } i<n \text { do } \\
& \quad \text { begin } z:=x ; i:=i+1 ; \\
& \quad x:=x+y ; y:=z
\end{aligned}
$$

(Заметим, что три присваивания $x, y$ и $z$ можно выразить всего лишь двумя присваиваниями без использования вспомогательной переменной $z: x:=x+y ; y:=x-y$.)

Итак, вывод таков: следует избегать рекурсии, когда имеется очевидное итеративное решение поставленной задачи.

Но это не означает, что всегда нужно избавляться ог рекурсии любой ценой. Во многих случаях она вполне применима, как будет показано в следующих разделах этой главы и в последующих главах. Тот факт, что рекурсивные процедуры можно реализовать на нерекурсивных по сути машннах, говорит о том, что для практических целей любую рекурсивную программу можно преобразовать в чисто итеративную. Но это требует явного манипулирования со стеком рекурсий, и эти операции до такой степени заслоняют сучь программы, что понять ее становится очень трудно. Следовательно, алгоритмы, которые по своей природе скорея рекурсивны, чем итеративны, нужно представлять в виде

рекурсивных процедур. Чтобы лучше понять это, мы предлагаем читателю сравнить программы 2.10 и 2.11.

Оставшаяся часть этой главы посвящена разработке пекоторых рекурсивных программ в тех случаях, когда рекурсия полностью оправданна. Кроме того, в гл. 4 н 5 также широко используется рекурсия, если, конечно, структуры данных естественно и очевидно приводят к рекурсивным решениям.

## 3.3. ДВА ПРИМЕРА РЕКУРСИВНЫХ ПРОГРАММ

Симпатичный узор на рис. 3.5 состоит из суперпозиции пяти кривых. Эти кривые строятся на основе некоторого регулярного образца, и предполагается, что !! можно нарисовать с помощью графопостроителя, управляемого вычислительной машиной. Наша задача - найти рекурсивную схему, по которой можно написать программу, уираваяющую граффопостроителем. Рассматривая рисунок, мы обиаружіваем, что


Рис. 3.3. Кривые Гильберта порядка 1, 2 і 3.
три наложенные друг на друга кривые имеют форму, показанную на рис. 3.3. Мы обозначаем их через $H_{1}, H_{2}$ и $H_{3}$. На рисунках видно, что $H_{i+1}$ получается соединением четырех $H_{i}$ вдвое меньшего размера, соответствующим образом повернутых и связанных вместе тремя соединительными линнями. Отметим, что можно считать, что $H_{1}$ состоит нз четырех пустых $H_{0}$, связанных тремл прямыми лнннями. Кривая $H_{i}$ называется кривой Гильб́рта і-го порядка в честь его первооткрывателя Д. Гильбберта (1a91).

Предположим, что у нас имеются следующие осиовные средства для построення графов: две координаты - переменные $x$ и $y$, процедура setplot (устанавливающая перо в точку с координатами $x$ и $y$ ) и процедура plot (перецвигающая перо, которое при этом чертит прямую из текущей точки в точку, обозначенную $x$ и $y$ ).

Поскольку каждая кривая $H_{i}$ состоит из четырех вдвое меньших копий $H_{i-1}$, то естественно построить процедуру, ри-
program Hilbert(pf,output);
изображение кривых Гильберта порядка от 1 до $n$ \}
const $n=4 ; h 0=512$;
var $i, h, x, y, x 0, y 0$ : integer;
$p f$ : file of integer; \{plot file\}
procedure $A(i$ : integer);
begin if $i>0$ then
begin $D(i-1) ; x:=x-h ;$ plot;
$A(i-1) ; y:=y-h ; p l o t ;$
$A(i-1) ; x:=x+h ; p l o t ;$
$B(i-1)$
end
end;
procedure $B(i:$ integer $)$;
begin if $i>0$ then
begin $C(i-1) ; y:=y+h ; p l o t ;$

$$
B(i-1) ; x:=x+h ; \text { plot }
$$

$B(i-1) ; y:=y-h ; p l o t ;$
$A(i-1)$
end
end ;
procedure $C(i:$ integer $)$;
begin if $i>0$ then
begin $B(i-1) ; x:=x+h ;$ plot; $C(i-1) ; y:=y+h ;$ plot; $C(i-1) ; x:=x-h ; p l o t ;$ $D(i-1)$
end
end:
procedure $D(i$ : integer $)$;
begin if $i>0$ then
begin $A(i-1) ; y:=y-h ;$ plot; $D(i-1) ; x:=x-h ;$ plot; $D(i-1) ; y:=y+h ;$ plot; C(i-1)
end
eidd;
begin startplot;
$i:=0 ; h:=h 0 ; x 0:=h$ div $2 ; y 0:=x 0 ;$
гереат $\{$ изображение кривой Гильберта порядка $i$ )
$i:=i+1 ; h:=h \operatorname{div} 2 ;$
$x 0:=x 0+(h \operatorname{div} 2) ; y 0:=y 0+(h \operatorname{div} 2) ;$
$x:=x 0 ; y:=y 0$; setplot;

## $A(i)$ <br> until $i=n$; <br> endplot <br> end .

Программа 3.1. Кривые Гильберта.
суюшую $H_{i}$ в виде композиции четырех частей, каждая из которых рисует $H_{i-1}$ соответствующего размера и с нужным поворотом. Если мы обозначим эти четыре части $A, B, C$ и $D$, а подпрограммы, рисующие соединительные линии, - в виде стрелок, указывающих соответствующее направление, то получим следующую рекурсивную схему (см. рис. 3.3):

$$
\begin{array}{ll}
\leftrightarrows A: & D \leftarrow A \downarrow A \rightarrow B \\
\sqcap B: & C \uparrow B \rightarrow B \downarrow A  \tag{3.19}\\
\leftrightarrows C: & B \rightarrow C \uparrow C \leftarrow D \\
\leftarrow D: & A \downarrow D \leftarrow D \uparrow C
\end{array}
$$

Если длину соединительной линии обозначить через $h$, то процедуру, соответствующую схеме $A$, можно легко выразить с помощью рекурсивных обращений к описанным аналогичным образом процедурам $B$ и $D$ и самой процедуры $A$ :
procedure $A(i$ : integer $)$;
begin if $i>0$ then
begin $D(i-1) ; x:=x-h ;$ plot;
$A(i-1) ; y:=y-h ; p l o t ;$
A(i-1); $x:=x+h ; p l o t ;$ $B(i-1)$
end

- end

Эта процедура инициируется один раз основной программой для каждой кривой Гильберта, которые накладываются одна на другую, образуя данный рисунок. Основная программа задает исходную точку для кривой, т. е. начальные значения $x$ и $y$, и единичное приращение $h$. Величина $h_{0}$ соответствует ширине всей страницы и должна удовлетворять равенству $h 0=2^{k}$ для некоторого $k \geqslant n$ (см. рис. 3.4). Программа рисует всего $n$ кривых Гильберта (см. программу 3.1 и рис. 3.5).

Похожий, но несколько более сложный и эстетически утонченный рисунок приведен на рис. 3.7. Он также получен с помощью наложения нескольких кривых; две такие крнвые показаны на рис. 3.6. Кривая $S_{i}$ называется кривой Серпинского $i$-го порядка. Какова рекурсивная схема для такой


Рис. 3.4. Рамка для кризых.


Рис. 3.5. Кривые Гильберта порядка $H_{1}, \ldots, H_{s}$.

кривой? Попробуем в качестве основного строительного о́лока выделить лист $S_{1}$, возможно, без одного ребра. Но это не приводит нас к нужному решению. Принципиальное различие между кривыми Серпинского и Гильберта заключается в том, что кривые Серпинского являются замкнутыми (без соединительыых линий). Это означает, что основная рекурсивная схсма должна давать разомкнутую кривую, а четыре части соединяются линиями, не принадлежащими самому рекурсивиому узору. Действительно, эти связн представляют собой

$S_{1}$

$\mathrm{S}_{2}$

Рис. 3.6. Кривые Серпинского порядка 1 и 2
четыре прямые в четырех внешних «углах», изображенных на рис. 3.6 жирными линиями. Можно считать, что они принадлежат к непустой начальной кривой $S_{0}$, представляющей собой квадрат, стоящий на одном угле.

Теперь легко построить рекурсивную схему. Четыре составляющне фигуры вновь обозначаются $A, B, C$ и $D$, а соединительные линии рисуются явно. Заметим, что четыре рекурсивные кривые действительно одинаковы с точностью до новорота на $90^{\circ}$.

Основной образ кривых Серпинского следующий:

$$
\begin{equation*}
S: A>B \ltimes C<D \rightarrow \tag{3.2I}
\end{equation*}
$$

а объединенные рекурсивные фигуры строятся по таким схемам:

$$
\begin{align*}
& A: A \not B \Rightarrow D \rightarrow A \\
& B: B \leftrightarrow C \Downarrow A \leadsto B \\
& C: C \nleftarrow D \leftarrow B \leftarrow C  \tag{3.22}\\
& D: D \rightarrow A \Uparrow C \nless D
\end{align*}
$$

(Двойные стрелки обозначают линии двойной длнны.)

```
program Sierpinski (pf,output);
|изображение кривых Серпинского порядка от 1 до n|
const n := 4; h0 = 512;
var i,h,x,y,,x0,y0: integer;
 pf: file of integer;
procedure A(i: integer);
begin if i>0 then
 begin A(i-1); x:== x+h; y:= y-h; plot;
 B(i-1); x:=x + 2*h; plot;
 D(i-1); x:== x+h; y:= y+-h; plot;
 A(i-1)
 end
end ;
procedure B(i: integer);
begin if }i>0\mathrm{ then
 begin B(i-1); x:=x-h;y:=y-h; plot;
 C(i-1); y:= y-2*h; plot;
 A(i-1); x:=x+h;y:== y-h; plot;
 B(i-1)
 end
end ;
procedure C(i: integer);
begin if i>0 then
 begin C(i-1); x:=x x-h; y:= y+h; plot;
 D(i-1); x:=x-2*h;plot;
 B(i-1); x:=x-h; y:= y-h;plot;
 C(i-1)
 end
end;
procedure D(i: integer):
begin if i>0 then
 begin D(i-1); x:=x+h; y:= y+h; plot:
 A(i-1); y:= y + 2*h; plot;
 C(i-1); x:=x-h;y:= y+h; plots
 D(i--1)
 end
end ;
begin startplot;
 i:=0 0;h:= h0 div 4; x0:==2*h; y0:= 3*h;
 repeat }i:==i+1;x0:=x0-h
 h:=h div 2; y0:=y0+h;
 x:=-x0; y:=y0; setplot;
 A(i); x:=x+h; y:=y-h; plot;
```

$$
\begin{aligned}
& \qquad \begin{array}{l}
B(i) ; x:=x-h ; y:=y-h ; \text { plot; } \\
C(i) ; x:=x-h ; y:=y+h ; \text { plot } ; \\
D(i) ; x:=x+h ; y:=y+h ; \text { plot }
\end{array} \\
& \text { until } i=n ; \\
& \text { endplot }
\end{aligned}
$$

Программа 3.2. Кривые Серпинского.

Используя те же примитивы для операций построения, что и в случае кривых Гильберта, приведенную выше рекурсивную схему легко преобразовать в (прямо и косвенно) рекурсивный алгоритм:

```
procedure \(A(\) (\(\mathbf{i}\) integer \()\);
begin if \(i>0\) then
 begin \(A(i-1) ; x:=x+h ; y:=y-h ;\) plot;
 \(B(i-1) ; x:=x+2 * h ;\) plot;
 \(D(i-1) ; x:=x+h ; y:=y+h ; p l o t ;\)
 \(A(i-1)\)
 end
end
```

Эта процедура соответствует первой строке рекурсивной схемы (3.22). Процедуры, соответствующие фигурам $B, C$ и $D$, строятся аналогично. Основная программа строится по схеме (3.21). Она должна установить начальные значения для координат рисунка и задать длину единичной линии $h$ в зависимости от формата бумаги, как показано в программе 3.2. Результат работы этой программы при $n=4$ показан на рис. 3.7. Заметим, что $S_{0}$ не рисуется.

Как можно убедиться, в этих примерах рекурсия используется весьма элегангно. Правильность программ легко следует из их структуры и схем построения. Кроме того, использованне явного параметра уровня $i$ в соответствин со схемой (3.5) гарантирует окончание программ, так как глубина рекурсии не может быть больше $n$. По сравнению с этой рекурсивиой формулировкой эквивалентные программы, которые избегают явного использования рекурсии, чрезвычайно сложны и трудны для понимаиня. Мы предлагаем читателю самому в этом убедиться, попытавшись разобраться в программах, приведенных в [3.3].


Pис. 3.7. Кр!вые Серпинского $S_{1}, \ldots . S_{4}$.

## 3.4. АПГОРИТМЫ С ВОЗВРАТОМ

Особенно ннтересиый раздел программирования - это задачи ;з области «искусственного пнтеллекта». Здесь пужно строить алгопитмы, которые щаходят решешие определенной залачи !с по фиксированным правилам вычисления, а мето\%ом проб и ошпбок. Обычно процесс проб и ошибок разделяется на отдельные подзадачи. Часто эти подзадачи наиболее естествеино опнсываются с помощью рекурсии. Процесс ! роб н ошибок можно рассматривать в общем виде как поисковый процесс, который постепенно строит и просматривает (а также обрезает) дерево подзадач. Во многих случаях такие деревья понска растут очень быстро, обычно экспоненцнально, в зависимости от заданного параметра. Соответствепно увеличивается стоимость поиска. Часто дерево поиска можно обрезать, используя только эвристические соображения, и тем самым сводить количество вычислений к јавумиым пределам.

Здесь мы не собираемся обсуждать общие эвристичсские правнла. Предмет этой главы - общий принцип разбиения таких задач на подзадачи и использование в них рекурсии. Вначале мы продемонстрируем основные принципы на хорошо известном примере -- задаче о ходе коня.

Дана доска $n \times n$, содержащая $n^{2}$ полей. Конь, который ходит согласно шахматным правилам, помещается на поле с начальными координатами $x_{0}, y_{0}$. Нужно покрыть всю доску ходами коня, т. е. вычислить обход доски, если он существует, из $n^{2}-1$ ходов, такой, что каждое поле посещается ровно один раз.

Очевидно, что задачу покрытия $n^{2}$ полей можно свести к более простой: или выполнить очередной ход, или установить, что никакой ход невозможен. Поэтому мы будем строить алгоритм, который пытается сделать очередной ход. Первая попытка выглядит так:
procedure попытка следующего хода;
begin инициация выборки ходов;
repeat выбор следуюицего возможного хода из списка очередньт ходов;
if он приемлем then
begin запись хода;
if доска не заполнена then
begin попытка спедующего хода;
if неудача then стирание предыдуцего хода
end
end
 end

Если мы хотим более точно описать этот алгоритм, то должны выбрать некоторое представление дтя данных. Очевидно, что доску можно представить в виде матрицы, скажем, $h$. Введем также тип индексирующих значений:

$$
\begin{align*}
& \text { type iridex }=1 . . n \text {; } \\
& \text { var } h: \text { array }[\text { index, index }] \text { of } \text { integer } \tag{3.25}
\end{align*}
$$

Так как мы хотим сохранять историю последовательного «захвата» доски, то мы будем представлять каждое поле доски целым чнслом, а не булевским значением, которое отражало бы просто факт занятия поля. Очевидно, можно остановиться на таких соглашениях:
$h[x, y]=0$ : поле $\langle x, y\rangle$ не посещалось,
$h[x, y]=i: \quad$ поле $\langle x, y\rangle$ посещалось на $i$ м ходу ( $1 \leqslant i \leqslant i^{2}$ ).
Теперь нужно выбрать подходящие параметры. Они долж:ы определять начальные условия для следующего хода, а

тдкже сообщать о его удаче или неудаче. Первая задача выполняется заданием координат поля $x, y$, с которого делается ход, а также номером хода $i$ (для его фиксации). Для решения второй задачи нужен булевский параметр-результат: $q=t r u e$ означает удачу, $q=f a l s e$ - неудачу.

Какие операторы можно теперь уточнить на основе этих реінний? Разумеется, «доска не заполнена» можно выразить как « $i<n^{2} »$. Кроме того, если ввести две локальные переменные $u$ н $v$ для обозначения координат возможного хода, определяемых по правилам хода коня, то предикат «приемлєм» можно выразить как логическую коньюнкцию двух условиї: чтобы новое поле находилось на доске, т. е. $\mathbf{l} \leqslant u \leqslant n$ и $1 \leqslant v \leqslant n$, и чтобы оно ранее не посещалось, т. е. $h[u, h]=$ $=0$. Фиксация допустимого хода выполняется с помощью п!:ісваивания $h[u, v]:=i$, а отмена хода (с'гирание) - как $h[\iota . \imath]:=0$. Если при рекурсивном вызове этого алгоритма в качестве параметра-результата передается локальная переменная $q$ l, то вместо «ход был удачным» можно подставить $q$ l. Такнм образом, мы прихолим к программе (3.27):

```
procedure try (\(i\) : integer; x,y: index; var \(q\) : boolean);
var \(u, v\) : integer; ql: boolean;
begin инициация выбора ходов;
 repeat пусть \(u, v\) - координать следующего хода,
 определяемого шахматными правилами;
 if \((1 \leq u \leq n) \wedge(1 \leq v \leq n) \wedge(h[u, v]=0)\) then
 begin \(h[u, v]:=i\);
 if \(i<\operatorname{sqr}(n)\) then
 begin \(\operatorname{try}(i+1, u, v, q 1)\);
 if \(-q 1\) then \(h[u, v]:=0\)
 end else \(q 1:=\) true
 end
 until \(q 1 \vee\) (нет других ходов);
 \(q:=q 1\)
end
```

Еще один этап уточнения, и мы напишем программу улке по.пностью на нашем языке программирования. Надо заметить, что до сих пор программа разрабатывалась совершенно независимо от правил хода коня. Мы вполне умышленно откладывали рассмотрение частных особенностей задачи. Но теперь нора обратить на них внимание.

Ec.эи задана начальная пара координат $\langle x, y\rangle$, то имеется восемь возможных координат $\langle u, v\rangle$ следующего хода. На рис. 3.8 они пронумерованы от 1 до 8 .

Получать $u$, $v$ из $x, y$ просто-будем прибавлять к ним разности координат, помещенные либо в массиве пар разностей, либо в двух массивах отдельных разностей. Пусть эти массивы обозначены через $a$ и $b$ и соответствующим образом инициированы. Для нумерации следующего возможного хода можно использовать индекс $k$. Подробиости показаны в программе 3.3. Рекурсивная процедура вызывается


Рис. 3.8. Восемь возможных ходов коня.
в первый раз с параметрами $x_{0}, y_{0}$ - координатами поля, с которого начннается обход. Этому полю присваивается значение 1 , осгальные поля маркируются как свободные:

$$
h\left[x_{0}, y_{0}\right]:=1 ; \quad \operatorname{try}\left(2, x_{0}, y_{0}, q\right)
$$

Не следует упускать еще одну деталь. Переменная $h[u, \stackrel{v}{ }]$ сүцествует лишь в том случае, когда $и$ и у находятся внутри границ массива 1...n. Следовательно, выражение в (3.27), подставленное вместо «он приемлем» в (3.24), осмыслеино, только если его первые две составляющие истинны. В программе 3.3 это условие подходящам образом переформулнровано, кроме того, двойное отношение ! $\leqslant u \leqslant n$ заменено выражением $u$ in $[1,2, \ldots, n]$, которое при достаточно малых $п$ обычно бывает более эффективным (см. разд. 1.10.3). В табл. 3.1 приведены решения, полученные при исходных позициях $\langle 1,1\rangle,\langle 3,3\rangle$ для $n=5$ и $\langle 1,1\rangle$ для $n=6$.

Параметр-результат $q$ и покальную переменную $q 1$ можно заменить глобальной переменной и тем самым несколько упростить программу.

Каким образом теперь можно обобщить этот прнмер? Какой схеме, типичной для задач подоб́ного рода, он следует? Какие выводы можно сделать, изучая его? Характерная черта этого алгоритма состоит в том, что он предпринимает какието шаги по направлению к общему решению, эти шаги фиксируются (записываются), но можно возвращаться обратно и стирать записи, если оказывается, что шаг не приводит к

```
program knightstour (output);
const \(n=5\); nsq \(=25\);
type index = 1., \(n\);
var \(i, j\) : indc.x;
 q: boolean;
 \(s\) : set of index;
 \(a, b\) : array [1. . 8] of integer;
 \(h\) : array [index, index] of integer;
procedure try (i: integer; \(x, y\) : index; var \(q\) : boolean);
 var \(k, u, v:\) integer; \(q 1:\) boolean;
begin \(k:=0\);
 repeat \(k:=k+1 ; q 1:=\) falsc;
 \(u:=x+a[k] ; v:=y+b[k] ;\)
 if \((u\) in \(s) \wedge(v\) in \(s)\) then
 if \(l[u, \imath]=0\) then
 begin \(h[u, v]:=i\);
 if \(i<n s q\) then
 begin try \((i+1, u, v, q 1)\);
 if \(\neg q 1\) then \(h[u, v]:=0\)
 end else \(q 1:=\) true
 end
 until \(q 1 \vee(k=-8)\);
 \(q:=q 1\)
end \(\{t r y\}\);
begin \(s:=[1,2,3,4,5]\);
 \(a[1]:=2 ; b[1]:=1\);
 \(a[2]:=1 ; b[2]:=2\);
 \(u[3]:=-1 ; b[3]:=2\);
 \(a[4]:=-2 ; b[4]:=1\);
 \(a[5]:=-2 ; b[5]:=-1\);
 \(a[6]:=-1 ; b[6]:=-2\);
 \(a[7]:=1 ; b[7]:=-2\);
 \(a[8]:=2 ; b[8]:=-1\);
 for \(i:=1\) to \(n\) do
 for \(j:=1\) to \(n\) do \(h[i, j]:=0\);
 \(h[1,1]:=1 ; \operatorname{try}(2,1,1, q) ;\)
 if \(q\) then
 for \(i:=1\) to \(n\) do
 begin for \(j:=1\) to \(n\) do write(\(h[i, j]: 5)\);
 writeln
 end
 else mriteln(\({ }^{\text {NO SOLUTION })}\)
end.
```

Таблнца 3.1. Три обхода конем

| 1 | 6 | 15 | 10 | 21 |
| :---: | :---: | :---: | :---: | :---: |
| 14 | 9 | 20 | 5 | 16 |
| 19 | 2 | 7 | 22 | 11 |
| 8 | 13 | 24 | 17 | 4 |
| 25 | 18 | 3 | 12 | 23 |


| 23 | 10 | 15 | 4 | 25 |
| :---: | :---: | :---: | :---: | :---: |
| 16 | 5 | 24 | 9 | 14 |
| 11 | 22 | 1 | 18 | 3 |
| 6 | 17 | 20 | 13 | 8 |
| 21 | 12 | 7 | 2 | 19 |


| 1 | 16 | 7 | 26 | 11 | 14 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 34 | 25 | 12 | 15 | 6 | 27 |
| 17 | 2 | 33 | 8 | 13 | 10 |
| 32 | 35 | 24 | 21 | 28 | 5 |
| 23 | 18 | 3 | 30 | 9 | 20 |
| 36 | 31 | 22 | 19 | 4 | 29 |

решению, а заводит в «тупик». Такое действие называется возвратом. Из схемы (3.24) можно вывести общую схему (3.28), если предположить, что число возможных далынейших путей на каждом шаге конечно:
procedure try;
begin инициировать выборку возможных шагов;
repeat выбрать следующий шаг;
if nриемлемо then
besin записать его;
if решение неполно then
begin попробовать очередной шаг;
if неудачно then стереть запись
end
end
until yдача $\vee$ больше нет путей
end

сзумеется, в конкретиых программах эта схема может воннощаться различнымн способами. Часто в них используется явный параметр уровня, оо́означающий глубину рекурсии ॥ допускаюощий простое $\searrow$ словне окончания.

Если, кроме того, на каждом шаге число исследуемых дальнеӥших путей фнксировано, скажем равно $m$, то используется схема (3.29), вызываемая оператором «try (1)»:

```
procedure try(i: integer);
 var k: integer;
begin k:=0;
 repeat k:=k+1; вибрать }k\mathrm{ -й возможньєй путь;
 if приемлено then
 begin запntcatь его;
 if }i<n\mathrm{ then
 begin try(i+1);
 if не!дачно then стереть запись
 end
 end
 until yдачно V (k=m)
end
```

В остальной части этой главы рассматриваются еще три примера. В них представлены различные воплощения абстрактпой схемы (3.29). Эти примеры также призваны иллюсгрировать подходящее нспользование рекурсии.

## 3.5. ЗАДАЧА О ВОСЬМИ ФЕРЗЯХ

Задача о восьмп ферзях - хорошо известный пример испоыьзования метода проб и ошнбок и алгоритмов с возвратим. В 1850 г. ею занимался К. Ф. Гаусс, но полного ее решения он не дал. Это и не уциительно. Для подобных задач харантерио отсутстве аналитнеского решения. Вместо этого онi! требуют большого объема пзнурительных вычислений, тсргения и аккуратности. Поэтому такие задачи стали почти нскюючительно прерогативой вычислительных машин, которые обладают этими свойствами в гораздо большей степени, че): . 10 ди, даже гениа.тьные.

Задача о восьми ферзях поставлена следующим образом (см. также [3.4]): нужно так расставить восемь ферзей па шахматной доске, чтобы ни одип ферзь не угрожал друromy.

Используя схему (3.29) в качестве образца, мы легко получаем следующую предварительную версию алгоритма:

## procedure try(i:integer); <br> begin

инициировать выбор позиции для i-го ферзя;
repeat выбрать позицию;
if безопасно then
begin поставить ферзя;
if $i<8$ then
begin $\operatorname{try}(i+1)$; if неудачно then убрать ферзя
end
end
until удачно $\vee$ нет больще позиции
end
Чтобы идти дальше, нужно выбрать некоторое представллние для данных. Поскольку мы знаем, что по шахматным правнлам ферзь бьет все фигуры, расположенные на той же горіізонтали, вертикали или диагонали доски, то пы заключаеи, что каждая вертикаль может содержать одного и только о.гного ферзя, так что $i$-го ферзя можно сразу помещать і:а $i$-ю вертикаль. Итак, параметр $i$ становится индексом вертнкали, а выбор познции ограничивается восемью возножными значениями индекса горизонтали $j$.

Осталось решить, как представить расположение восьми ферзей на доске. (чевидно, что доску можно было бы вновь изобразить в внде квадратной матрицы, но после некоторого размышления мы обнаруживаем, что такое представление значительно усложнило бы проверку безопасности позицни. Это крайне нежелательно, носкольку такая операция выполняется наиболее часто. Поэтому нужно выб́рать представление, которое насколько возможно упростит эту проверку. Лучше всего сделать наиболее доступной ту информацию, которая дейстіительно важна и чаще всего используется. В нашем случае это не расположение ферзей, а информация о том, помещен ли ферзь на данной горизонталн пли диагонали. (Мы уже знаем, что на каждой $k$-і̆ вертикали уже помещен один ферзь для $1 \leqslant k \leqslant i$.) Это приводит к следующим описаmиу переменных:

$$
\begin{align*}
\text { vai } & x: \text { array }[1 \ldots 8] \text { of integer; } \\
a & : \text { array [1..8] of Boolean; } \\
h & \text { : array }[b 1 \ldots b 2] \text { of Boolcun; }  \tag{3.31}\\
c & : \text { array }[c 1 \ldots c 2] \text { of Boolean; }
\end{align*}
$$

где
$x[i]$ указывает позицию ферзя на $i$－й вертикали；
$a$［i］означает，что на $j$－й горизонтали нет ферзя；
$b[k]$ означает отсутствие ферзя на $k$－й $\swarrow$－диагонали；
$c[k]$ означает отсутствие ферзя на $k$－й $\downarrow$－диагонали．
Выбор индексных границ $b 1, b 2, c 1, c 2$ определяется，ис－ хо，七я из способа，которым вычисляются индексы $b$ и $c$ ；мы замечаем，что на $\swarrow$－диагонали все поля имеют одну и ту же сумму коордннат $i$ и $j$ ，а на ф－диагонали постоянна разность координат $i-j$ ．Соответствуюшее решение показано в про－ грамме 3．4．


Рис．3．9．Одно из решений задачи о восьми ферзях．
При таких данных оператор «поставить ферзя» принимает с．ъедующую форму：

$$
\begin{equation*}
x[i]:=j ; \quad a[j]:=\text { false } ; \quad b[i+j]:=\text { false } ; \quad c[i-j]:=\text { false } \tag{3.32}
\end{equation*}
$$

При уточнении оператора «убрать ферзя» мы получаем

$$
\begin{equation*}
a[j]:=\text { true } ; \quad b[i+j]:=\text { true } ; \quad c[i-j]:=\text { true } \tag{3.33}
\end{equation*}
$$

а условие «безопасно» выполняется，если поле 〈i，j〉 нахо－ дится на горизонтали и диагонали，которые еще свободны （представлены как true），что можно описать логическим вы－ ражением

$$
\begin{equation*}
a[j] \wedge b[i+j] \wedge c[i-j] . \tag{3.34}
\end{equation*}
$$

Этим завершается разработка алгоритма，который пол－ ностью описан в программе 3．4．Она дает решение $x=(1,5$ ， $8,6,3,7,2,4)$ ，которое изображсно на рис．3．9．

```
program eightqueen 1 (output);
(поиск одного решения задачи о восьми ферзях
var \(i\) : integer; \(q\) : boolean;
 \(a\) : array [1:. 8] of boolean;
 \(b\) : array [2..16] of boolean;
 c: array [-7 . . 7] of boolean;
 \(x\) : array [1.. 8] of integer;
 procedure \(\operatorname{try}(i\) : integer; var \(q\) : boolean);
 var \(j\) : integer;
 begin \(j:=0\);
 repeat \(j:=j+1 ; q:=\) false;
 if \(a[j] \wedge b[i+j] \wedge c[i-j]\) then
 begin \(x[i]:=j\);
 \(a[j]:=\) false \(; b[i+j]:--\) false \(; c[i-i]:=-\quad\) false;
 if \(i<8\) then
 begin try \((i+1, q)\);
 if \(\neg q\) then
 begin \(a[j]:=\) true \(; b[i+j]:=\operatorname{true} ; c[i-j]:=\) true
 end
 end else \(q:=\) true
 end
 unti! \(q \vee(j=8)\)
 end \(\{\operatorname{try}\}\);
 begin
 for \(i:=1\) to 8 do \(a[i]:=\) true;
 for \(i:=2\) to 16 do \(b[i]:=\) true;
 for \(i:=-7\) to 7 do \(c[i]:==\) truc;
 try \((1, q)\);
 if \(q\) then
 for \(i:=1\) to 8 do write (\(x[i]: 4\));
 vriteln
end
```

Программа 3.4. Восемь ферзей (одно решение).
Прежде чем закончить разбор задач, связанных с шахматной доской, мы воспользуемся задачей о восьми ферзях для иллюстрации важного обобщения алгоритма проб и ошибок. В общих словах это обобщение заключается в том, чтобы находить не одно, а все решения поставленной задачи.

К этому обобщению легко перейти. Вспомним, что множество возможных путей строится по строго определенной снстеме, так чтобы никакой путь не предлагался более одного

раза. Эго свойство аллоритма соответствует поиску по дереву, при котором каждый узел лосещается только один раз. Это позволяет - после того как решение найдено и должным образом зафиксировано - просто переходить на следующий возможный путь. Общая схема такого алгорнтма (3.35) получена из (3.29) :

```
procedure try(i: integer);
 var k: integer;
begin
 for }k:=1\mathrm{ to }m\mathrm{ do
 begin выбор k-го nymu;
 if приемлемо then
 hegin запись его
 if i<n then try(i+1) else nечать рвшвния;
 стирание записи
 end
 end
end
```

Зап:етим, что благодаря тому, что условие окончания цикла упростипось до одной составляющей $k$ 起 $m$, оператор цикла с постусловием естественно заменить на оператор цикла с паү子метром. К удивлению, поиск всех возможных решений описнвается более простой программой, чем поиск одного реп!ения.

Обобщенный алгоритм, который находит все 92 решения з: дачи о восьми ферзях, представлен в пр́ограмме 3.5. На сапом деле существует только 12 принципиалььно различных реізений; на!иа программа не учитывает симметрию.

іаолица 3.2. Цвенадцать решении задачи о восьми ферзях

| $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ | $x_{7}$ | $x_{\mathbf{B}}$ | $N$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5 | 8 | 6 | 3 | 7 | 2 | 4 | 876 |
| 1 | 6 | 8 | 3 | 7 | 4 | 2 | 5 | 264 |
| 1 | 7 | 4 | 6 | 8 | 2 | 5 | 3 | 200 |
| 1 | 7 | 5 | 8 | 2 | 4 | 6 | 3 | 136 |
| 2 | 4 | 6 | 8 | 3 | 1 | 7 | 5 | 504 |
| 2 | 5 | 7 | 1 | 3 | 8 | 6 | 4 | 400 |
| 2 | 5 | 7 | 4 | 1 | 8 | 6 | 3 | 72 |
| 2 | 6 | 1 | 7 | 4 | 8 | 3 | 5 | 280 |
| 2 | 6 | 8 | 3 | 1 | 4 | 7 | 5 | 240 |
| 2 | 7 | 3 | 6 | 8 | 5 | 1 | 4 | 264 |
| 2 | 7 | 5 | 8 | 1 | 4 | 6 | 3 | 160 |
| 2 | 8 | 6 | 1 | 3 | 5 | 7 | 4 | 336 |

```
program eightqueens (output);
var \(i\) : integcr;
 \(a\) : array [1.. 8] of boolean;
 \(b\) : array [2..16] of boolean;
 \(c\) : array [-7. . 7] of boolean;
 \(x\) : array [1.. 8] of intcrei;
procedure print;
 var \(k\) : integer;
begin for \(k:=1\) to \(\&\) do write \((x[k]: 4)\);
 writeln
end \(\{\) print \(\}\);
procedure \(\operatorname{try}(i:\) integer);
 var \(j\) : integer;
begin
 for \(j:=1\) to 8 do
 if \(a[j] \wedge b[i+j] \wedge c[i-j]\) then
 begin \(x[i]:=j\);
 \(a[j]:=\) false \(; b[i+j]:=\) false \(; c[l-j]:=\) false \(;\)
 if \(i<8\) then \(\operatorname{try}(i+1)\) else print;
 \(a[j]:=\) truc \(; b[i+j]:==\) true; \(c[i-j]:=\) true
 end
end \(\{t r y\}\);
begin
 for \(i:=1\) to 8 do \(a[i j:=:\) trile;
 for \(i:=2\) to 16 do \(b[i]:=\) true;
 for \(i:=-7\) to 7 do \(c[i]:=\) true;
 try (1)
end
```

Программа 3.5. Восемь ферзей (все решенияя).
В табл. 3.2 приведены первые 12 решений. Число $N$ указывает частоту проверок безопасности полей. Ее среднее значе. ние для всех 92 решений равно 161 .

## 3.6. ЗАДАЧА ОБ УСТОИЧЧВЫХ БРАКАХ

Пусть даны два непересекающихся множества $A$ и $B$ с одинаковыми кардинальными числами, равными $n$. Нужно найти некоторое множество пар $\langle a, b\rangle$ из $n$, такое, чтобы $a$ in $A$ і $b$ in $B$ удовлетворяли некоторым ограничениям. Для выбора таких пар существует много разных критериев; один из них называется «правилом устойчивых браков».

Предположим, что $A$ - множество мужчин, а $B$ - множество женщин. Каждый мужчина и каждая женщнна устанавливают определенный порядок предпочтения для своих возможных партнеров по браку. Если $n$ пар выбрано таким објазом, что существуют какие-то мужчина и женщина, не состояине в браке друг с другом, но предпочитающие друг друга своим действительным супругам, то такое множество браков считается неустойчивым. Если же такой пары не суцествуєт, то множество называется устойчивьцм.

Эта снтуация типична для многих похожих задач, в которых распределение зависит от каких-то предпочтений, как, гапример, выбор школы учащимися, выбор рекрутами различыых родов войск и т. д. Пример с браками отчасти выбран нитуштивно; заметим, однако, что установленный порядок предпочтений инвариантен и не нзменяется по мере образования пар. Это упрощает задачу, но и песколько искажает действительность (как любая абстракция).

Решение можно искать слєдуюшим образом: пробовать последовательно объединять в пары члены двух множеств, пока оба множества не будут исчерпаны. Намереваясь найти ece јстойчивые распрєделения, мы можем легко набросать решение, используя в качестве образца схему программы (3.35). Пусть $\operatorname{tr} \ell(\mathrm{m})$ - алгоритм поиска партнерши для мужчнны $m$, и пусть поиск происходит согласно списку предпочтений этого мужчины. Приведем первую версию, осиованнџю на этих допущениях:

```
precedure \(\operatorname{try}(m: m a n)\);
 var \(r\) : rank;
begin
 for \(r:=1\) to \(n\) do
 begin выбрать r-ю женцину из списка предпочтений муж-
 чиноє \(m\);
 if приемлено then
 begin записать брак;
 if \(m\) - не последний мущчина then \(\operatorname{iry}(\operatorname{succ}(\) m \()\))
 else записать устойчивое множество;
 от.ненить брак
 end
 end
 end
```

Вновь мы пе можем двигаться дальше, пока пе решим, как представлять данные. Определим три скалярных типа; для простоты пусть их значения будут целыми числами от 1 до n. Хотя формально эти три типа одинаковы, присваивание им пазличиых имен значительно проясняет программу.

В частности, сразу понятно, что означает какая-либо переменная:

$$
\text { type } \begin{align*}
& \operatorname{man}=1 \ldots n ; \\
& \text { woman }=1 \ldots n ;  \tag{3.37}\\
& \operatorname{rank}=1 \ldots n ;
\end{align*}
$$

Исходные данные представляются двумя матрицами, в которых указан порядок предпочтеннй мужчин и женщин их партнерами:
var wmr: array[man, rank] of woman
mw': array[woman, rank] of man
$w m r[m]$ обозначает список предпочтений, установленный мужчиной $m$, т. е. $w m r[m][r]=w m r[m, r]$ - женщина, которая занимает $r$-е место в списке предпочтений мужчины $m$. Точно так же тwr[w]-список предпочтений женщины w, а $\operatorname{mwr}[w, r]$ - мужчина, занимающий $r$-е место в ее списке.

Результат представляется в виде массива женщнн $x$, такого, что $x[m]$ обозначает партнершу мужчины $m$. Для сохранения симметрии (называемой также «равноправнем») между мужчинами и женщинами, вводится дополнительный массив $y$, такой, что $y[w]$ обозначает партнера женщины $w:$

$$
\begin{array}{r}
\text { var } x: \text { array[man] of woman; } \\
y: \text { array[woman] of man; } \tag{3.39}
\end{array}
$$

Ясно, что в массиве $y$ нет особой нужды, поскольку он содержит информацио, которая уже представлена в массиве $x$. В самом дете, ляя тюбых $m$ и $ш$, состоящих между собюй в браке, выполняются равенства

$$
\begin{equation*}
x[y[w]]=w, \quad y[x[m]]=m \tag{3.40}
\end{equation*}
$$

Следовательно, значение $y[w]$ можно установить просто поиском по $x$; но использование массива $y$ явно повышает эффективность. Информация, представленная в массивах $x$ и $y$, нужна для определения устойчивости предлагаемого множества браков. Поскольку это множество строится постепенно, путем выбора отдельных пар и проверки устойчивости множества после каждого такого предлагаемого брака, $x$ и $y$ используются еше до того, как будут заполнены. Для того чтобы. знать, какие компоненты уже определены, можно ввести бу.левские массивы
singlem: array[man] of boolean
singlew: array[woman] of boolean

с такими значениями:
$\rightarrow$ singlem $[m]$ предполагает, что $x[m]$ определено, $\neg$ singlew $[w]$ предполагает, что у $[w]$ определено.

Но, рассматривая предлагаемый алгоритм, легко обнаружить, что семейное положение мужчины можно определить просто по значению $m$ следующим образом:

$$
\begin{equation*}
\neg \text { singlem }[k] \equiv k<m . \tag{3.42}
\end{equation*}
$$

Поэтому массив singlein можно удалить; соответственно мы упростим имя singlew до singie.

После соответствующих соглашений алгоритм принимает вид (3.43). Предикат «nриемлемо» можно изобразить в виде конъюнкции single и stabie («устойчивый»), где stable фупкция, которую еще надо будет уточнить.

```
procedure try(m: man);
 var r: rank; w: woman;
begin for r := l to }n\mathrm{ do
 begin w::<= wmr[m,r];
 if single[w] ^ stable then
 begin }x[m]:=w; y[w]:=m; single[w]:== false;
 if m<n then try(succ(m))
 else запись устойчивого множества;
 single[w]:=> true
 end
 end
end
```

Здесь все еще заметно больное сходство с программой 3.5.
Теперь основная задача - уточнить алгоритм определения устойчивости. К сожалению, устойчивость нельзя представить таким же простым выражением, как безопасность позиции ферзя в программе 3.б. Нужно прежде всего иметь в виду, что устойчивость по определению следует из сравнения предпочтенй, или рангов. Но ранги мужчин и женщин нигде в нашнх описанных до сих пор данных явно не представлены. Конечно, ранг женщины $w$ с точки зрения мужчнны $m$ можно вычислить, но лишь с помощью трудоемкого поиска $w$ B $w m r[m]$.

Так как вычисление устойчивости - очень частое действие, желательно, чтобы эта информация была более доступна. Для этогз мы будем использовать две матрицы

> rmw: array[man, woman] of rank;
> rwm: array[woman, man] of rank;

такие, что $r m w\left[m, x^{\prime}\right]$ сзначает ранг іс'й женщины в списке предпочтений $m$-го мужчни, а гшт $\mid \omega, m$ ] ранг $m$-го мужчины в списке $\boldsymbol{w}$-й женщины. Ясно, что значения этих вспомогательных массивов постояннь! :1 могут быть получены с. самого начала пз значений штr и тши.

Значение предиката stable (yстойчивый) телерь вычисЯяется в строгом соответствии с его исходиым определением. Вспомним, что мы исследуем возможность брака между $m$ и $\mathfrak{w}$, где $w=w m r[m, r]$, т. е. $w$ имеет ранг $r$ в $m$-м списке предпоџтений. Будучи оптџмистами, мы вначале предполагаем, ӵто устойчивость сохранилась, а затем пытаемся найти возможные источники неприятностей. Где они могут таиться? Есть две симметричные возможности:

1. Может существовать женщина ри, предпочтителыіая для $m$ по сравненню с $\boldsymbol{w}^{\prime}$, которая сама предпочитает $m$ своему мужу.
2. Может существовать мужчина $p m$, предпочтительный для $w$ по сравнению с $m$, который сам предпочитает $ш$ своей жене.

Исследуя нсточник непріятностей 1 , мы сравниваем ранги $r o m[p w, m]$ н $r w m[p \omega, y[p w]]$ для всех жкенщин, кєто币ых $m$ предпочитает своей невесте $w$, т. е. для всех $p \omega=๙ \cdot m r[m, i]$, таких, что $i<r$. Мы знаем, что все эти женшины эже выданы замуж, так как если бы какая-то из них быта еще одинока, $m$ выбрал бы ее раliьше, чсмі $\underset{\sim}{\text {. Этот процесс проверки }}$ можно сформулировать в виде простого линейного понска; s означает устойчивость:

```
\(s:=1\) ние ; ьi \(:=1\);
while \((i<r) \wedge s\) do
 begin \(p w:=w m r[m, i] ; \quad i:=i+1 ;\)
 if \(\rightarrow \operatorname{single}[p w]\) then \(s:=r w m[p w, m]>r w m[p w, y[p w]]\)
 end
```

Нсследуя источник неприятностей 2, мы должны рассмотреть всех мужчин рі, которых т предпочитает своему предполагаемому партнеру $m$, т. е. всех $p m=\operatorname{mwr}[\ddot{i}, i]$, таких, что $i<$ rwm [w, $m$ ]. Как н при нсследованни источника 1 ,
 здесь нужно быть вниматєльными, чтобы не производить сравщений с участием $x[p m]$, где $p m$ еще не женат. Нєоб́ходимой предосторожностью будет проверка $p m<m$, поско.тьку мы знаем, что все мужчины, предшествующие $m$, уже женаты.

Весь алгоритм представлен в программе 3.6. Тебл. 3.3 содержит множество входиых данных, соответствуюших масси-

Таблица 3.3. Пример вхюдных данных для задачи об устойчивых браках

| Ранг | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Мужчина 1 выбирает жеищину 7 | 2 | 6 | 5 | 1 | 3 | 8 | 4 |  |
| 2 | 4 | 3 | 2 | 6 | 8 | 1 | 7 | 5 |
| 3 | 3 | 2 | 4 | 1 | 8 | 5 | 7 | 6 |
| 4 | 3 | 8 | 4 | 2 | 5 | 6 | 7 | 1 |
| 5 | 8 | 3 | 4 | 5 | 6 | 1 | 7 | 2 |
| 6 | 8 | 7 | 5 | 2 | 4 | 3 | 1 | 6 |
| 7 | 2 | 4 | 6 | 3 | 1 | 7 | 5 | 8 |
| 8 | 6 | 1 | 4 | 2 | 7 | 5 | 3 | 8 |
| Женшина 1 выбирает мужчину 4 | 6 | 2 | 5 | 8 | 1 | 3 | 7 |  |
| 2 | 8 | 5 | 3 | 1 | 6 | 7 | 4 | 2 |
| 3 | 6 | 8 | 1 | 2 | 3 | 4 | 7 | 5 |
| 4 | 3 | 2 | 4 | 7 | 6 | 8 | 5 | 1 |
| 5 | 6 | 3 | 1 | 4 | 5 | 7 | 2 | 8 |
| 6 | 2 | 1 | 3 | 8 | 7 | 4 | 6 | 5 |
| 7 | 3 | 5 | 7 | 2 | 4 | 1 | 8 | 6 |
| 8 | 7 | 2 | 8 | 4 | 5 | 6 | 3 | 1 |

вам w'mr и mwr. И наконец, в табл. 3.4 приведены девять молученных решений.

Таблица 3.4. Решения задачи об устойчивых браках

|  |  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ | $x_{7}$ | $x_{8}$ | $r m$ | $r w$ | $c^{*}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Pешение | 1 | 7 | 4 | 3 | 8 | 1 | 5 | 2 | 6 | 16 | 32 | 21 |
|  | 2 | 2 | 4 | 3 | 8 | 1 | 5 | 7 | 6 | 22 | 27 | 449 |
|  | 3 | 2 | 4 | 3 | 1 | 7 | 5 | 8 | 6 | 31 | 20 | 59 |
|  | 4 | 6 | 4 | 3 | 8 | 1 | 5 | 7 | 2 | 26 | 22 | 62 |
|  | 5 | 6 | 4 | 3 | 1 | 7 | 5 | 8 | 2 | 35 | 15 | 47 |
|  | 6 | 6 | 3 | 4 | 8 | 1 | 5 | 7 | 2 | 29 | 20 | 143 |
|  | 7 | 6 | 3 | 4 | 1 | 7 | 5 | 8 | 2 | 38 | 13 | 47 |
|  | 8 | 3 | 6 | 4 | 8 | 1 | 5 | 7 | 2 | 34 | 18 | 758 |
|  | $y^{*}$ | 3 | 6 | 4 | 1 | 7 | 5 | 8 | 2 | 43 | 11 | 34 |


Решение ! 二решение, оптимальчое для мужтин.
Решене $9=$ решение, оптимальное для женщин.

По своей сути этот алторнтм основан на простой схеме поиска с возвратом. Ero эффективность зависит в основном от удачного построения схемы усекания дерева решения. Несколько более быстрый, но более сложный и менее понятный алгоритм предложен Мак-Вити и у'илсоном [3.1, 3.2]; которые, кроме того, распространили его на случай множеств (мужчин и женщин) неодинакового размера.

```
program marriage (input,outpit);
\{задача о стабильных браках\}
const \(n=8\);
1ype man \(:=1 . . n\); woman \(-.1 . . n ;\) rank \(:=1 . . n\);
var \(m\) : man; \(w\) : woman; \(r\) : rank;
 ninr: array [man, rank] of w'cman;
 mbr: array [woman, rank] of man;
 rmw: array [man, woman] of rank;
 rиm: array [woman, man] of rank;
 \(x\) : array \([\mathrm{man}]\) of woman;
 y : array [woman] of man;
 single: array [woman] of boolcan;
procedure print;
 var \(m\) : man; rm, rw: integer;
begin \(\mathrm{rm}:=0 ; r w: \cdots=0\);
 for \(m:=-1\) to \(n\) do
 begin write (\(x[m]: 4\));
 \(r m::=r m\) : \(r m w[m, x[m]] ; r w:=r w+r w m[x[m], m]\)
 end ;
 writeln (rm:8,rw:4);
end \(\{\) print \(\}\);
procedure \(\operatorname{try}(m: m a n)\);
 var \(r\) : rank; w: woman;
 function stablc: boolean;
 var pm: man; pw: woman;
 i, lim: rank; s: boolcan;
 begin \(s:=\) true; \(i:=1\);
 while \((i<r) \wedge s\) do
 begin \(p w:=w m r[m, i] ; i:=i+1\);
 if \(\rightarrow \operatorname{single}[p w]\) then \(s:=\operatorname{rwm}\left[\Gamma^{w}, m\right]>\operatorname{rwn}[p w, y[p w]]\)
 end ;
 \(i:=1 ; \lim :=r w m[w, m] ;\)
 while \((i<l i m) \wedge s d o\)
 begin \(p m:=m w^{\prime}[w, i] ; i:=i+1\);
 if \(p m<m\) then \(s:=r m w[p m, w]>m m w[p m, x[p m]]\)
 end ;
 stable \(:=s\)
 end \(\{\) stable \(\}\);
 begin \(\{t r y\}\)
 for \(r:=1\) to \(n\) do
 begin \(w:=w m r[m, r]\);
```

```
 if single[\(w]\) then
 if stable then
 begin \(x[m]:=w ; y[w]:=m\); single \([w]:=\) false;
 if \(m<n\) then \(\operatorname{try}(\operatorname{succ}(m))\) else print;
 single \([w]:=\) true
 end
 end
end \(\{t r y\}\);
besin \{основная программа\}
 for \(m:=1\) to \(n\) do
 for \(\boldsymbol{r}:=1\) to \(\boldsymbol{n}\) do
 begin \(\operatorname{read}(w m r[m, r]) ; r m a[n, w m r[m ; r]]:=r\)
 end ;
 for \(w:=1\) to \(n\) do
 for \(r:=1\) to \(n\) do
 bégin \(\operatorname{read}(\operatorname{mwr}[w, r]) ; \operatorname{rwm}[w, m w r[w, r]]:=r\)
 end ;
 for \(w:=1\) to \(n\) do single \([w]:=\) true;
 try (1)
end
```

Программа 3.6. Устойчивые браки.

Алгоритмы такого вида, как в двух последних примерах, даюшие все возможные решения задачи (при определенных ограничениях), часто используются для выбора одного или нескольких решений, которые в каком-то смысле являются оптимальными. В данном примере можно было бы, допустим, интересоваться решеннем, которое в среднем больше удовлетворяет мужчнн, или женщин, или всех.

Отметим, что в табл. 3.4 указаны суммы рангов всех жен-山и:и с точки зрения их мужей и суммы рангов всех мужчин с точки зрения нх жен. Это значения

$$
\begin{equation*}
r m=\sum_{m=1}^{n} r m w[m, x[m]], \quad r w=\sum_{m=1}^{n} r w m[x[m], m] . \tag{3.46}
\end{equation*}
$$

Решение с наименьшим значением rm называется устойчивым решением, оптимальным для мужчин, а с наименьшим $r w-у с т о и ̆ ч и в ы м ~ р е ш е н и е м, ~ о п т и м а л ь н ы м ~ д л я ~ ж е н щ и н . ~ П р и ~$ нзбранной стратегии поиска первыми вычисляются решения, хорошие с точки зрения мужчин, а благоприятные для женщин решения даются в конце работы. В этом смысле алгоритм ориентирован на сильный пол. Но его можно быстро

изменить, систематически поменяв ролями мужчин и женщин, т. е. заменив $m w r$ на wmr и $r m w$ на rwm.

Здесь мы не будем далее обобщать эту программу, а оставим поиск оптимального решения в качестве очередного и последнего примера алгоритма с возвратом.

## 3.7. ЗАДАЧА ОПТИМАЛЬНОГО ВЫБОРА

Наш последний пример алгоритма с возвратом - это логическое обобщение двух предыдущих алгоритмов, которые строятся по общей схеме (3.35). Вначале мы нспользовали принцип возврата для нахождения одного решения данной задачи. Это было показано на примерах хода коня и задачи о восьми ферзях. Затем мы задались целью найти все решения задачи; примерами были восемь ферзей и устойчнвые браки. Теперь мы хотим найти оптимальное решение.

Для этого нужно получить все возможные решення и в процессе их получения оставлять только то, которое в некотором смысле является оптимальным. Если предположить, что оптимальность определена с помощью некоторой функции $f(s)$, принимающей положительные значения, то алгоритм можно получить из схемы (3.35) заменой оператора «печать решения»на оператор
if $f($ solution $)>f($ optimum $)$ then optimum $:=$ solution
В переменной optimum хранится лучшее из полученных до сих пор решений. Разумеется, ее нужно должным образом инициировать; кроме того, значение $f$ (optimum) принято хранить в другой переменной, чтобы избежать ее частого перевычисления.

В качестве примера общей задачи поиска оптнмального решения мы выбираем следующую важн!ю и часто встречающуюся задачу: найти оптимальную вьіборку из заданного множества объектов, подчиненную некоторым ограничениям. Выборки, составляющие приемлемые решения, строятся постепснно, с помощью исследования отдельных объектов базового множества. Процедура try описывает процесс исследования пригодности объекта для включения в выборку; она вызывается рекурсивно при переходе к следующему' ои́ъекту, пока все объекты не будут рассмогрены.

Мы видим, что из рассмотрения каждого объекта можнно сделать два возможных вывода: либо включить объект в текуцую выборку, либо не включать его. Поэтому здесь не удастся использовать операторы цикла; вместо этого нужно явно описать оба случая. Это показано в (3.48); предполо-

жим, что объекты пронумерованы $1,2, \ldots, n$ :
procedure try(i: integer);

## begin

1: if включение приемлемо then
begin включить $i$-й объект;
if $i<n$ then $\operatorname{try}(i+1)$ else проверить оптимальность; иはалить $i$-й объект
end;
2: if невключение приемлемо then if $i<n$ then $\operatorname{try}(i+1)$
else проверить оптимальность
end
 выборки; поэтому ясно, что критерии приемлемости должны значительно ограничить котичество рассматризасмых возможностей. Для пояснсния возьмем конкретный пример: п!еть каждый из $n$ об́ъектов $a_{1}, \ldots, a_{n}$ обладает весом і 11 ценностыо $\tilde{\sim}$. Оптнмальным густе считается множество с паибольшей сумарной цснностью компонент, а ограниченнсы пусть служит и. прсдельный общий вес. Эта задача хорошо знакома всем отправтяющимся в путешествие, которые јпаковывают чемоданы, стараясь так выбрать $n$ преяметов, чтобы нх обшая ценность была максимальной, а об́ши:: вес не прсвышал какого-то допустимого предела.

Сеперь мы можем решить, как представить известные факты в виде данных. Из вышесказанного легко получаются такие описания:

$$
\begin{align*}
& \text { type index }=1 \ldots n ; \\
& \text { object }=\text { record } w, v: \text { integer end } \\
& \text { var } a: \text { array [index] of object; }  \tag{3.49}\\
& \quad \text { limw, totv, maxv: integer; } \\
& s, \text { opts: set of index }
\end{align*}
$$

Переменные lımच̈ и totv обозначают предельный вес и общую ценность всех $n$ объектов. Фактически эти два значения в течение всего процесса отбора постоянны; через $s$ обозиачается текущая выборка объсктов, где каждый объект прсдставлен свонм пменем (индексом); opts есть оптималиная выборка, потченная до сих пор, а тахच - ее ценность.

Теперь посмотрим, каковы критерии присмиемостн объекта для текущей выборки. Когда речь, ндет о включчнии, объект можно включить в выборку, если он удовлетворяет допустимому весу. Если же не удовлетворяет, то можно прекратить попытки добавлять новые объекты в текущей выборке. Но если рассматривать невклочение, то критсрием приемлемости, т. е. возможности продолжать построение текущей
program selection (input,output);
( поиск оптимальной выборни объсктов при ограничениях
const $n=10$;
type index $=1 . . n$;
object $=$ record $v, w:$ integer end;
var $i$ : index;
a: array [index] of object;
limw, totv, maxv: integer;
w1, w2, w3: integer;
s, opts: set of index;
$z$ : array [boolean] of char;
procedure try(i: index; tw,av: integer);
var av1: integer;
begin (попыткка включения объекта $i$ )
if $t w \nmid a[i] \cdot w \leq l i m w$ then
begin $s:=s+[l] ;$ if $i<n$ then $\operatorname{try}(l+1, t w+a[i] \cdot n$; $a x)$ clse
if $a v>m a x v$ then
begin maxv $:=a v ;$ opts $:=s$
end ;
$s:=s-[i]$
end ;
\{попытка исключения объекта i\} ar $1:==a v-a[i] . v$;
if avl $>$ maxv then
begin if $i<n$ then $\operatorname{try}(i+1, t w, a v 1)$ cise
begin maxv $:=a v 1$; opts: ..s
end
end
and $\{$ try $\}$;
begin totv $:=0$;
for $i:=1$ to $n$ do
with $a[i]$ do
begin read $(w, v) ;$ totv $:=$ totv $+v$
end;
$\operatorname{read}(w 1, w 2, w 3)$;
$z[r$ rue $]:={ }^{\prime} *^{\prime} ; z[f a l s e]:=. \quad$ ';
write( ${ }^{\prime}$ WEIGHT ');
for $i:= \pm 1$ to $n$ do write (a[i] .w: 4);
:riiein; write ('value ');
for $i:=1$ to $n$ do write (a[i] .v:4);
writeln;
xepcat $\operatorname{limw}:=w \perp ; \operatorname{maxv}:=0 ; s:=[] ;$ opls $:=[]$;

$$
\begin{aligned}
& \operatorname{try}(1,0, \text { totc); } \\
& \text { write(limw); } \\
& \text { for } i:=1 \text { to } n \text { do write( } \quad \text { ', } z[i \text { in opts }] \text { ); } \\
& \text { writeln; wl :=w1 +w2 } \\
& \text { until } w 1>w 3 \\
& \text { end }
\end{aligned}
$$

## Программа 3.7. Оптимальная выборка.

выборки, будет возможность получить без этого объекта такую общую ценность выборки, которая была бы не меньше полученного до сих пор оптимума. Ведь иначе продолжение поиска. хотя и будет давать какие-то решения, никогда не приведет к оптимальному, следовательно, на этом пути бесполезен какой-либо дальнейший поиск. С учетом этих двух условий мы определяем, какие существенные величины нужно вычнслять для каждого шага в процессе отбора:

1. Общий вес $t w$ выборки $s$, полученной до сих пор.
2. Общую ценность $a v$ текущей выборки $s$, которой еще можно достичь.

Эти два значения удобно представить в виде параметров процедуры try.

Условие «включение приемлемо» в (3.48) теперь можно еформулировать как

$$
\begin{equation*}
t w+a[i] . w \leqslant l i m w \tag{3.50}
\end{equation*}
$$

а последующую проверку оптимальности - как

$$
\begin{align*}
& \text { if av }>\text { maxv then } \\
& \text { begin }\{\text { запись нового oптимума }\}  \tag{3.51}\\
& \text { opts }:=s ; \text { maxv }:=a v \\
& \text { end }
\end{align*}
$$

Последнее присваивание связано с тем соображением, что достижимое значение будет получено после просмотра всех $n$ объектов.

Условие «невключение приемлемо» в (3.48) выражается как

$$
\begin{equation*}
a v-a[i] . v>\max v \tag{3.52}
\end{equation*}
$$

Так как позднее оно снова используется, значение av-- $a\lfloor i] . v$ присваивается переменной $a v 1$, чтобы нзбежать по. вторного вычисления.

Всю программу полностью теперь можно получить из (3.48) с помощью (3.52), добавив соответствующие олераторы инициации глобальных переменных. Следует отметить, что здесь удобно используются операции над множествами.

Результат выполнения программы 37 с заданными предельными весами от 10 до 120 іоказан в табл. 3.5 .

Таблица 3.5. Пример результата работы программы оптимальной выборки
$\left.\begin{array}{ccccccccccc}\hline \begin{array}{c}\text { Вес } \\ \text { Значепие }\end{array} & 10 & 18 & 20 & 17 & 19 & 25 & 21 & 27 & 23 & 25\end{array}\right) 24$

## УПРАЖНЕНИЯ

3.1. (Хапойские башни.) Даны три стержия и $n$ дисков разного размера, Диски можно надевать на стержни, строя таким образом «башни». Пусть вначале диски находятся на стержне $A$ в порядхе убывающего размера, как показано на рис. 3.10 для $n=3$. Нужно переместить $n$


Рис. 3.10. Ханойские башни.
дисков на стержень $C$ так, чтобы они остались в том же порядке. Этого нужно добиться, соблюдая следующие правила:

1. На каждом шаге ровно один диск перемещается с одного стержня на другой.
2. Диск большего размера нельзя помещать на меныинй.
3. Стержень $B$ можно использовать в качестве промежуточного.

Постройте алгоритм, который выполняет эту задачу. Заметим, что башнн удобно рассматривать как состоящую из одного диска па самом верху и из башни, состоящей из остальных дисков. Опишите этот алгоритм в виде рекурсивной программы.
3.2. Напишите процедуру, которая формирует все $n$ ! перестановок $n$ элементов $a_{1}, \ldots, a_{n}$ in situ, т. е. без иопользования другого массива. Получнв очередную перестановку, вызвать параметрическую процедуру $Q$, которая может, например, выводить полученную перестановку.

Указанне. Рассматривайге задачу получения всех перестановок элементов $a_{1}, \ldots, a_{m}$ как состоящую из $п$ подзадач, строящих все перестановки $a_{1}, \ldots, G_{m-1}$, за которыми следует $a_{m}$, и так, что в $i$-й подзадаче сначала меняются местамн два элемешта $a_{i}$ и $a_{m}$.
3.3. Опредслите рекурсивную схему д.тя рис. 3.11, который представляет собой наложение четырех кривых $W_{1}, W_{2}, W_{3}, W_{4}$. Эта структура сход-


Pac. 3.11. $W$-кривые порядка 1 -4.
на с кривыан Серлинского (3.21) и (3.22). На основе рекурсивной схемы получнте рекурсивную программу, которая черт!!т этн кривые.
3.4. Лишь 12 из 92 рсшєний, вычисляемых программой восьми ферзей существенно различпы. Остальные можно получить с помощью осевой или центральной симметрнй. Придумайте программу, которая находит 12 основных решений. Заметим, что, например, поиск в вертикали 1 можно ограничить позицнями 1-4.
3.5. Измените программу устойчивых браков так, чтобы она иаходила оптимальное решсние (для мужчин и для женщин). Следовательно, она станет программой, работающей по принцилу «ветвления с ограничением» подобно программе 3.7.
3.6. Некоторая железнодоржпая компания об́служивает $n$ станинй $S_{1}, \ldots$ $\ldots, S_{n}$. Опа предполагает улучшить информационнос обслуживаіне клиентов с помощью информационіых терминалов, управляемых вычислительной машиной. Клиеня наэ̆иает название своей станции огправления $S_{A}$ и станции назначения $S_{D}$, и ему должна выдаваться схема расписаний поездов с минимальным общим временем поездкн.

Разработайте программу для вычисления нужної информацин. Пусть расписание (представляющее собой ваш ба:як данньіх) изображено соответствующей структурой даиных, содержающей время отправлешия ( $==$ прибытия) всех имсюшихся поездов. Разумеетса, не все станцыи связаны непрерывными линиями (см. также упр. 1.8).
3.7. Функция Аккермана $A$ определена для всех неотрицатслыых цслых аргументов $m$ п $n$ следующим образом:

$$
\begin{aligned}
& A(0, n)=n+1 \\
& A(m, 0)=A(m-1,1) \quad(m>0) \\
& A(m, n)=A(m-1, A(m, n-1)) \quad(m, n>0)
\end{aligned}
$$

Разработайте программу, которая вычисляет $A(m, n)$ без использова. ния рекурсии.

В качестве образиа нспользуйте программу 2.11 - нерекурсивную версию быстрой сортировкн. Определите мнэжество правил для общего случая преобразовання рекурсивной программы в нтеративную.

## ЛИТЕРАТУРА

3.I. McVITIE D. G., WILSON L. B. The Stable Marriage Problem. - Comm. ACM, 14, No. 7, 1971, 486-492.
3.2. McVITIE D. G., WILSON L. B. Stable Marriage Assignment for Unequal Sets. - BIT, 10, 1970, 295-309.
3.3. Spase Filling Curves, or How to Waste Time on a Plotter. - Softiea-re-Practice and Experience, 1, No. 4, 1971, 403--440.
3.4. WIRTH H. Frogram Development by Stepwise Refinement. - Comm. ACM, 14, No. 4, 1971, 221-227.

# ДИНАМИЧЕСКИЕ ИНФОРМАЦИОННЫЕ СТРУКТУРЫ 

## 4.1. РЕКУРСИВНЫЕ ТИПЫ ДАННЫХ

В гл. 1 мы определили фундаментальные соруктуры данных: массив, запись и множество. Эти структуры называются фундаментальными, так как, во-первых, они представляют собой строительные блоки, из которых формируются более сложные структуры, и, во-вторых, они чаще встречаются на практике. Цель описання типа данных и последующего определения некоторых переменных как относящихся к этому типу состоит в том, чтобы зафиксировать раз и навсегда размер значений, которые могут присванваться этим переменным, и соответственно размер выделяемой для них памяти. Поэтому описанные таким образом переменные называются статическими. Однако многие задачи требјют более сложных информационных структур. Для таких задач характерно, что использјемые в них структуры изменяются во время выполнения. Поэтому они называются диналическими структурами. Разумеется, на каком-то уровне детализации компоненты этих структур являются статическнми, т. е. относятея к одному из фундаментальных типов данных. Эта глава посвящена конструированию и анализу динамических информационных структур, а также работе с ними.

Примечательно, что существуют некоторые близкие аналоги между методами структурирования алгоритмов и методами структурирования данных. Как и при любых аналогиях. остаются некоторые различия (иначе мы имели бы дело с ндентичностью), тем не менее сравнение методов структурирования программ и данных полезно для их понимания.

Элементарным, неструктурированным оператором является присваивание. Соответствующий ему тип даных - скалярный, неструктурированный. Оба они являются атомаюными стронтельными блоками для составіных операторов и типов данных. Простейшие структуры, полччаемые с помощью перечнсления, или следования, - это составной оператор и запись. Оба состоят из конечного (обынно небольшого) количесгва явно перечислясмых компонент, которые могут разлнчаться. Если все компонеиты одинаковы, их не нужно выписывать отдельно: для того чтобы описать повторения, число которых известно и конечно, мы пользуемся

оператором цикла с лараметром (for) и массивом. Выбор нз двух или более вариантов выражается условным нли выбирающим оператором н соответственно записью с вариантами. И наконец, повторение нензвестное (потенииально. бесконечное) количество раз выражается оператором цикла с предусловием (while) нли с постусловием (repeat). Соответствјющая структура данных - последсвате.льность (файл) - прлстейший вид структурь!, допускаюшей построение тинов с бесконечным кардинальным чнслом.

Возникает вопрос: а существует ли структура данных, которая подобным жке образом соответствует оператору процедуры? Разумеется, нанболее нитересная и новая по сравиениюо с другими операторами особенность процед!р - это возможность рекурсии. Значєния типа данных, который можио назвать рекурсивным, допжны содержать одн! и.ти более компонент того же типа, что и все значєние, по аналогии с процедурой, содержащей один нли более вызовов самой себя. Как и в процедурах, в такнх определеннях типов рекурсия может быгь прямой нли косвенной.

Простой пример объекта, тип которого можно спределить рекурсивно, - арифметическое выражєние, встречаюиееся в языках программирования. Рек!рсия отражает возможность вложенности, т. е. использования закыюченных в скобки подвыражений в качестве операндов в вь!раженин. Мтак, пусть выражение здесь опрсдсляєтся нефорэальо следующим образом:

Воражение состоит из тсрма, за которым следует зиак пперации, за которым следует терм. (Этти два терма являотся операндаии соответствующей операции.) Терм - это іибо переменная, представленная идентификатором, либо выражспие, заключенияе в скобжа.

Тип данных, значениями лоторого являются подойные выражения, легко можно описать с помоіцью известного уже средства - рекурсии *).

$$
\begin{align*}
& \text { type expression }= \text { record op: operator; } \\
& \text { opd } 1 \text {, ond } 2: \text { term. } \\
& \text { end; } \\
& \text { type term }= \text { record }  \tag{4.1}\\
& \text { If } t \text { then (id: aifa) } \\
& \text { end (subex: expression) }
\end{align*}
$$

[^7]Итак, каждая переменная типа term состоит из двух компог нент: поля прнзнака $t$ и, если $t$ истинно, поля $i d$, иначе -
1.

2.

3.

4.


Рис. 4.1. Расположение в памяти рекурсивных записей.
поля subex. Теперь рассмотрим в качестве примеров следующие четыре выражения:

1. $x+y$
2. $x-(y * z)$
3. $(x+y) *(z-w)$
4. $(x /(y+z)) * w$

Эти выражения можно представить, как показано на рис. (4.1), на котором наглядно видна их вложенная, рекурровка:

```
type term= record
 case t: Bootcan of
 true: (id: alfa)
 false:(subex: expression)
 end
```

Одиако «зацикливание» в описаниях типов: term определяется через $e x$ pression, a expression через term - обычно также запрешается. Гаким об: разои, подобного рода рекурспвные описания тиюов в Паскале не применяются. Для построения динамическнх структур в нем используется аппарат динамического размещения переменных и ссылок, описанчый ниже. Прим. перев.

ивная структура. Эти схемы определяют также размещение тих выражений в памяти.

Другой пример рекурсивной информационной структуры енеалогическое дерево. Пусть генеалогическое дерево со-

'ис. 4.2. Структура генеалогического дерева. стоит из имени человека и двух генеалогических деревьев его родителей. Такое определение неизбежно приводит к бесконечной структуре. Реальные генеалогические деревья конечны, потому что на каком-то уровне сведения о предках отсутствуют, Если мы вновь используем рекурсивную структуру, как показано в (4.3), то этот факт мы можем учесть:

```
type ped = record
 if known then
 (name: alfa;
 father, mother: ped)
 end
```

(Заметим, что каждая переменная типа ped (от pedigrec - «генеалогическое дерево». - Перев.) содержит но крайней мере одну комионенту - поле признака known («иэвестен»). Если его зпачение истинно, то имеются еще три поля; иначе больше нет полей.) Отдельное значение, обоначенное (рекурсивным) конструктором записи

$$
\begin{gathered}
x=(T, T e d,(T, F r e d,(T, A d a m,(F),(F)), F)), \\
(T, M a r y,(F),(T, E v a,(F),(F)))
\end{gathered}
$$

зображено на рис. 4.2, причем, глядя па рисунок, можно акже сделать выводы о возможном расположении данных памяти. (Так как рассматривается только одно определение ипа, мы пропускаем идентификатор типа ped перед каждым :онструктором.)

Здесь очевидна важная роль вариантов: это единственное редство, позволяющее сделать рекурсивную структуру коечной, поэтому в рекурсивном определении всегда участвуют

варнанты. В этом особенно наглядно прослеживается аналогия между стрјктурами программ и данных. Қаждая рекурсивная процедура также должна обязательно содержать условный оператор, чтобы ее выполнение могло когда-нибудь закончиться. Ясно, что окончание выполнения для процедуры соответствует конечности кардинального числа для типа данных.

## 4.2. ССЫЛКК ИЛИ УКАЗАТЕЛИ

Характерная особ́енность рекурсивных структур, которая отличает их от основных структур (массивов, записей, множеств), - их способность изменять размер. Поэтому для рекурсивно определенных структур невозможно установить фиксированный размер памяти, и поэтому транслятор не может гриписать компонентам такой переменной определенные адреса. Д:яя решения этой проблемы чаще всего применяется метод динамического распределения памяти, т. е. выделения памяти для отдельных компонент в тот момент, когда они появляются во время выполнепня программы, а не во время трансляцин. В этом случае транслятор выделяет фиксированный объем памяти для хранения адреса динамическн размещаемой компоненты, а не самой компоненты. Например, генеалогическое дерево, изображенное на рис. 4.2, можно представить в виде отдельных, вполне возможно, не расположенных рядом в памяти записей - по одной для каждого человека. Эти запнси связываются с помощьо адресов, находящихся в соответствующих полях father («отец») п mother («мать»). Графически это лучше всего изобразить стрелками (см. рис. 4.3).

Следует подчеркнуть, что использование ссылок для реализации рекурсивных структур - чисто технический прием. Прогпаммисту необязательно знать об их сушествовании. Память может выделяться автоматически, как только упоминается новая переменная. Однако если использование ссылок или указателей сделать явным, то можно строить более разнообразные структуры данных, чем те, которые можно задать ллшь с помощью рекурсивных определений. В частности, в этом случае можно определять «бесконечные», ил! циклические, структуры. Кроме того, на одну и ту же подструктуру можно ссылаться из разных мест, т. е. относнть ее к несколькнм разным структурам. Поэтому в современных языках программирования принято обеспе்чивать явное мұ. нипулирование не только данными, но и сеылками на них. Это предполагает четкое разграничение в обозначениях данных и ссылок на них. С.тедовательно. нужно ввести типыы данных. значениями которых являются ссылкл (указатели)

на другие данные. Для этого мы используем такие обозначення:

$$
\begin{equation*}
\operatorname{type} T_{p}=\uparrow T \tag{4.4}
\end{equation*}
$$

В описании типа (4.4) имеется в виду, что значениями типа $T_{p}$ являются ссылки на данные типа $T$. Таким образом, стрелка в (4.4) читается как «ссылка на». Существенно, что тип элементов, на которые ссылаются значения типа $T_{p}$, задан в его определении. Мы говорим, что $T_{p}$ связан с $T$. Эта


Рис. 4.3. Структура, связанная ссылками.
связь отличает ссылки в языках высокого уровня от адресов в языке ассемблера и является очень важным средством увеличения надежности программ с помощью избыточности обозначений.

Значения ссылочных типов создаются всякий раз, когда динамически размещается какой-либо элемент данных. Мы будем придерживаться соглашения, чтобы каждый такой случай явно выделялся в программе в отличие от ситуации, когда предполагается, что при первом упоминании элемента он автоматически размещается в памяти. Для динамического размещения данных мы вводим встроенную процедуру' пеш. Если дана ссылочная переменная $p$ типа $T_{p}$, то оператор

$$
\begin{equation*}
\text { new }(p) \tag{4.5}
\end{equation*}
$$

выделяет память для переменной типа $T$, создает ссылку типа $T_{p}$ на эту новую переменную и присваивает значение этой ссылки переменной $p$ (см. рис. 4.4). Тсперь сама ссылка обозначается как $p$ (т. е. является значением ссылочной переменной $p$ ). В отличие от этого через $p \uparrow$ обозначается переменная, на которую указывает $p$ (т. е. динамнчески размещенная переменная типа $T$ ).

Выше упоминалось, что каждл ¿1 реєурснвный тип для того, чтобы его кардинальное чнс,:о было конечным, должен содержать некоторый вариант. 11аијолее типичный случай показан на примере генеапогнчскопо дерева: после признака принмает одно из двух значения (булевских); когда оно принимает значение false, все ирочие компоненты отсутствуют. Это изображается такой схемой опнсаний:

$$
\begin{equation*}
\text { type } T=\operatorname{record} \text { if } p \text { then } S(T) \text { end } \tag{4.6}
\end{equation*}
$$

$S(T)$ означает послсдовательность определений полей, содержащую хотя бы одно поле тина $T$, что приводит к рекурсии.


Рис. 4.4. Динамическое размещение переменной $p \dagger$.

Все структуры тинов, описанных по образу (4.6), предсгавляют собой древовидную (или списковую) структуру, подобную изображенной на рис. 4.3. Недостаток такой єгруктуры - наличие ссылок на элементы, состоящие только нз одного поля признака; т. е. не содержащие ннкакой существенной информации. Применение метода ссылок дает возможность легко экономить память, так как позволяет включить ипформацию поля признака в значение самой ссылки. Обыіно принято расширять область значений типа $T_{p}$, добавляя к ней значение, которое не ссылается ни на какой элсмент. Мы обозначаем его спецнальным символом nil и считаем, что nil автоматически является элементом всех ссылочных типов, описанных в программе. Это расширение области ссылочных значений позволяет создавать конечные структуры без явного использовання вариантов (условий) в (рекурсивных) описаниях.

Новые формулировки описаний типов данных (4.1) и (4.3), основанные на явных ссылках, даны соответственно в (4.7) и (4.8). Заметим, что в случае (4.8) (который соответствует схеме (4.6)) отсутствует вариант, поскольку $p \uparrow$.known=false теперь выражается как $p=$ nil. Измененис названия типа ped на person («человек») отразкает новую точку зрения на структуру, связанную с использованием явных ссылок. Вместо того чтобы рассматривать вначале данную структуру как целостное образованне, а затем выделять в ней подструктуры и их компоненты, мы обращаем внимание в первую очередь на компоненты, а их взаимосвязь (основанная на ссылках)

из любого фиксированного описання не очевидна.

| type expression $=$ record op: operator; |  |
| :---: | :---: |
|  | opd1, opd2: $\hat{\mathrm{t}}$ term end; |
| type term | ```-mecord if t then (id: alfa) else (sub: \hat{expression)}``` |
|  | end |
| type person | $=$ record nume: alfa; |
|  | father, mother: $\uparrow$ person end |

Структура данных, представляющая генеалогическое дерево, показанная на рис. 4.2 и 4.3, здесь вновь изображается на рис. 4.5, где ссылки на неизвестных лиц обозначены через


Pisc. 4.5. Структура с nil. nil. Очевидно, что при этом достигается значительная экономия памяти.

Обращаясь вновь к рис. 4.5, предположким, что Фред и Мэри - брат и сестра, т. е. имеют общих отца и мать. Такой случай легко выразить, заменнв два значения nil в соответствуюших полях двух запиcей (mother-у Фреда и fat. her - у Мэри). Реализация, при которой концепция ссылок скрыта или используются другие приемы управления памятью, вынуждала бы программиста представить записи Адама и Евы по два раза каждую. Хотя при просмотре данных не имеет значення, представлены эти два идентичных отца (или две матери) двумя запнсями или одной, разница сажна, когда допускается виборочное изменение. Когда ссылки используются как явыые элементы данных, а не как скрытые вспомогательные средства реализации, программист мо»ет явно указывать случаи «разделения» памяти (в смыслс совместного владения какой-либо областью памяти).

Другое следствие использогания явных ссылок - возможкность определягь и обрабатывать циклические структуры данных. Разумеется, эта дополннтельная гибкость не только уветичиваст возможности, но и требует большей осторожности, так как работа с циклическими структурами легко может привести к бесконечным вычислениям.

То, что мощность и гибкость тесно связаны с опасностью ошио́очного нспользования, - явленне, широко известное в программировании. Особенно это касается оператора безусловного перехода (goto). Возможно, продолжая аналогию между структурами программ и структурами данных, чисто рекурсивные структуры данных можно поместить на уровень, соответствующий процөдуре, тогда как введение ссылок можно сравнить с использованием операторов (goto). Так же как с помощьо оператора (goto), можно строить любые программные схемы (включая циклы), так и с помощью ссылок можно создавать структуры данных любого вида (в том числе циклические). Соответствия между структурами программ и струкхурами данных указаны в табл. 4.1.

Таблица 4.1. Соответствия между структурами программ и даниых

| Схема строения | Олератор | Тип данных |
| :---: | :---: | :---: |
| Атомарный элемеит | Присваивание | Скалярный тип |
| Перечислеиие | Составной оператор | Запись |
| Известное число повторений | Oператор цикла с параметром | Массив |
| Выо̃ор | Условный оператор | Запись е вариантами, объединение типов |
| Нензвестное число повторений | Оператор цикла с предусловнем илн постусловием | Последовательность, или файл |
| Рекурсия | Оператор процедуры | Рекурсивыый тип дан॥ы |
| $У_{\text {ниверсальный граф }}$ | Оператор безусловного перехода | Структура, связанная ссылками |

В гл. 3 было показано, что итерация есть частный случай рекурсии и что вызов рекурсивной процедуры $P$, описанной по схеме

## procedure $P$;

begin
if $B$ then begin $P_{0} ; P$ end end
»де $P_{0}$ - оператор, не содержащий $P$, эквивалентен итеративному onepatopy
while $B$ do $P_{0}$
Аналогии, указанные в табл. 4.1, позволяюот обнаружить такую же связь между рекурсивными типами данных и после-

довательностьо. В самом деле, рекурсивный тип, определяемый по схеме

$$
\begin{align*}
& \text { type } T= \operatorname{record} \\
& \text { if } B \text { then }\left(t_{0}: T_{0} ; t: T\right)  \tag{4.19}\\
& \text { end }
\end{align*}
$$

где $T_{0}$ - тип, не содержащий $T$, эквиваленген файловому тигу данных

## file of $T_{0}$

и может быть им заменеп. Отсюда видно, ито рекурсию можно заменять итерацией в программах и описаниях данных в том (и только в том) случае, если имя процедуры или типа появляется только один раз в конце (или начале) своего описания.

Остальная часть этой главы посвящена созданию и обработке структур данных, компоненты которых связаны явными ссылками. Особое значение придается структурам простой формы; приемы работы с более сложными структурами можно получить из способов работы с основными видами структур. Эти виды - линейные списки, или цепочки, самый простой случай, а также деревья. Предпочтение, которое мы оказываем этим «строительным блокам», не означает, что на практике не встрсчаются более сложные структуры. В действытельности следуюшая история, напечатанная в щорихской газете в июле 1922 г., доказывает, что ирретулярность может появляться даже в структурах, которые обычно счнтаются образцом регулярности, таких, как (семейные) деревья. В этой исторни говорится о человеке, который так опнсывает несчастье своей жизни:

Я женился на вдове, у которой была взрослая дочь. Мой отец, который довольно часто нас навещал, влюбился в мою падчерицу и женился на ней. Следовательно, мой отец стал моим зятем, а моя падчерица стала моей матерью. Спустя несколько месяцев, моя жена родила сына, который стал шурином мосго отца и одновременно моим дядей. У жеиы моего отца, то есть моей палчерицы, тоже родп.тся сын. Таким образем, у меня появится брат и одновременно виук. Моя жена является моей бабушкой, так как она мать моей матери. Следоватсльно, я муж мосй жены и одновременно ее внук, другими словами, я-свой собствениый дсдушка.

## 4.3. ЛИНЕЙНЫЕ СПИСкИ

### 4.3.1. Основные операции

Самый простой способ соединить, или связать, множество элементов - это расположить нх линейно в списке, или в очереди. В этом случае каждый элемент содержит только одну ссылку, связывающую его со следующим элементом сииска.

Пусть тип $T$ описаи, как показано в (4.11). Каждая перемеиная этого типа состоит из трех компонснт: идентифицирующего ключа, ссылки на следующий элемент и, возможно, другой информации, нс указаиной в (4.11).

$$
\begin{array}{r}
\text { type } T=\text { record key: integer; } \\
\text { next }: \uparrow T ;  \tag{4.11}\\
\text { end } \cdot \cdots . .
\end{array}
$$

Список элементов типа $T$ показан на рис. 4.6. Переменнаяссылка $\rho$ указывает на первую компоненту списка. По-видимому, самое простое действие, которое можно выполнить со


Рис. 4.6. Пример списка.
списком, показанным на рис. 4.6, - вставить в его начало некоторый элемент. Прежде всего этот элемент типа $T$ размещается в памяти, ссылка на него присваивается вспомогательной ссылочной переменной $q$. После этого ссылкам присваиваются новые значения, как показано в (4.12):

$$
\begin{equation*}
\text { пеш }(q) ; \quad q \uparrow . \text { nexl }:=p ; \quad p:=q \tag{4.12}
\end{equation*}
$$

Заметим, что здесь важен порядок следования этих трех опсраторвв.

Операция включения элемента в начало списка определяет, как можно построить такой список: начиная с пустого списка, послсдоватсльно добавлять элементы в его начало. Процесс формирования списка описан в (4.13); здесь число связываемых элементов равно $n$.

$$
\begin{aligned}
& p:=\text { nil; }\{\text { начало } \text { c пустого списка \} } \\
& \text { while } n>0 \text { do } \\
& \quad \text { begin new }(q) ; q \uparrow . n e x t:=p ; p:=q ; \\
& \quad q \cdot . \text { кey }:=n ; n:=n-1 \\
& \text { end }
\end{aligned}
$$

Әто-- самый простой способ́ построения списка. Но при этом полученшый порядок элемснтов обратен порядку их «постуиления». 13 пекоторих случаях это нежелательно; следовагельно, новые элементы долж!ы добавляться в конец списка.

Хотя конец легко найти проходом по списку, такой непосредственный подход потребовал бы затрат, которых просто избежать, используя вторую ссылку $q$, которая всегда указывает на последний элемент. Такой метод применяется, например, в программе 4.4, формирующей перекрестные ссылки на заданный текст. Недостаток такого метода состоит в том, что первый включаемый элемент приходится обрабатывать иначе, чем остальные.

Явное использование ссылок намного упроюцает некоторые операцин, которые иначе были бы сложными и запутанными; среди элемептарных действий со списками есть включение


Рис. 4.7. Включение в список после $p \uparrow$.
и удаление элементов (выборочное изменение списка) и, разумсется, просмотр списка. Вначале мы рассмотрим включєние в список.

Предположим, что элеменг, на который указывает ссылка $q$, нужно включить в список после элемента, на который !казывает ссылка $p$. Необходимые присваивания значений ссыякам показаны в (4.14), а их результат изображен на рис. 4.7.

$$
\begin{equation*}
q \uparrow \cdot n e x t:=p \uparrow . n e x t ; \quad p \uparrow . n e x t:=q \tag{4.14}
\end{equation*}
$$

Если требуется включение перед элементом, указанным $p \uparrow$, а не после него, то кажется, что однонаправленная цепочка связей создает трудность, поскольку нет «прохода» к элементам, предшествуюшим данному. Однако простой «трюк» позволяет решить эту проблему; он показан в (4.15) и на рис. 4.8. Допустим, чго ключ нового элемента есть $k=8$.

$$
\begin{align*}
& n e w(q) ; \quad q \uparrow:=p \uparrow  \tag{4.15}\\
& p \uparrow \cdot k e y:=k ; \quad p \uparrow \cdot n e x t:=q
\end{align*}
$$

«Трюк» состоит в том, что новая компонента в действительности вставляется после $p \uparrow$, но затем происходит обмен значениями между иовым элементом и $p \uparrow$.

Теперь мы рассмотрим процесс удаления из списка. Удаление элемента, следующего за $p \uparrow$, очевидно. В (4.16) оно показано в комбинации с одновременным добавлением уда.

ляемого элемента в начало другого списка (на которое указывает $q$ ), причем $r$ - вспомогательная переменная типа $\uparrow T$.

$$
\begin{array}{ll}
r:=p \uparrow . \text { next } ; & p \hat{\uparrow} . \text { next }:=r \uparrow . \text { nexl } ; \\
r \uparrow . \text { next }:=q ; & q:=r \tag{4.16}
\end{array}
$$

Рис. 4.9 иллюстрирует процесс (4.16) и показываこт, что он состоит из циклического обмена значениями трех ссылок.


Рис. 4.8. Включение в сиисок перед $p \uparrow$.
Труднее удалить сам указанный элемент (а не следующии за ним), поскольку мы сталкиваемся с той же проблемои, что и при включении перед $p \uparrow$ : возврат к элементу, который


Рис. 4.9. Удаление пз списка и включение в другой список.
предшествует указанному, невозможен. Но можно удалить последующий элемент, предварительно переслав сго значение ближе к началу списка. Это довольно очевидный и простой прнем, но его можно применить только в случае, когда у $p \uparrow$ есть последующий элемент, т. е. он не является последним элементом списка.

Теперь мы перейдем к основной операции прохода по списку. Предположим, что операция $P(x)$ должна выполняться с каждым элементом списка, первый элемент которого есть $p \uparrow$. Эту задачу можно выразить следующим образом:
while список, на который указывает $р$, непуст do
begin выполнить операцию $P$;
перейти к следующему элементу
end

Подробнее это действие описывается оператором (4.17):

$$
\begin{align*}
& \text { while } p \neq \text { nil do } \\
& \text { begin } P(p \uparrow) ; p:=p \uparrow \text {.next }  \tag{4.17}\\
& \text { end }
\end{align*}
$$

Из определения оператора цикла с предусловием и списковой структуры следует, что $P$ будет выполнено для всех элементов списка и ни для каких других.

Очень частая операция-поиск в списке элемента в заданным ключом $x$. Так же как в случае файлов, поиск ведется строго последовательно. Он заканчивается, либо когда элемснт найден, либо когда достигнут конец списка. Снова предположим, что начало списка обозначено ссылкой $p$. Первая попытка сформулировать задачу такого поиска приводит к следующему:

$$
\begin{equation*}
\text { while }(p \neq \text { nil) } \wedge(p \uparrow . k e y \neq x) \text { do } p:=p \uparrow . n e x t \tag{4.18}
\end{equation*}
$$

Однако следует заметить, что при $p=$ nil не существует $p \uparrow$. Следовательно, вычисление условия окончания может потребовать обращения к несуществующей переменной (в отличис от переменной с неопределенным значением) и может привести к ошибке при выполнении программы. Это можно исправить, используя либо явный выход из цнкла, выраженный оператором безусловного перехода (4.19), либо вспомогательную булевскую переменную, отмечающую, найден или нет нужный ключ (4.20).

$$
\begin{align*}
& \text { while } p \neq \text { nil do } \\
& \quad \text { if } p \uparrow . \text { key }=x \text { then goto Found }  \tag{4.19}\\
& \quad \text { else } p:=p \uparrow . \text { next }
\end{align*}
$$

Использование оператора безусловного перехода требует присутствия в каком-то месте метки для перехода; несовместимость этого оператора с оператором цикла видна из того факта, что условие while при этом вводит в заблуждение: тело цикла не обязательно выполняется, пока $p \neq$ nil.

$$
\begin{align*}
& b:=\text { true; } \\
& \text { while }(p \neq \text { nil }) \wedge b \text { do } \\
& \quad \text { if } p \uparrow . \text { key }=x \text { then } b:=\text { false }  \tag{120}\\
& \quad \text { else } p:=p \uparrow . n e x t
\end{align*}
$$

### 4.3.2. Упорядоченные списки и реорганизация списков

Алгоритм (4.20) сильно напоминает подпрограммы поиска при просмотре массива или файла. В самом деле, файл - это в сущности линейный список, в котором гехніка

связн с последующим элементом остаегся неопределенной или неявной. Поскольку элементарные операции над файлами не дюпускают включение иовых элементов (развс что в конец) нин удалснис (развс что уничтоженне всех элементов), у разработчнка есть большая возможность выбора способэв прелставления, н он может использовать так»ке последовательное расположение, помещая следующие одна за другой компонснты в смежные области памяти. Линейные списки с явпыми ссылками обеспечивают бо́льицуо гибкость и поэтому ил следует использовать, когда требуется такая дополнительная гибкость.

В качестве примера мы рассмотрим теперь задачу, к которої будем постоянно обращаться в этой главе, чтобы продемонстрировать на ней работу разлнчных методов. Она состонт в чтении нскоторого текста, выборе из него всех остальных слов и подсчете частоты их появлсния, т. с. в составлении частотного словаря.

Очевидно, что для этого нужно составить список слов, найденных в тексте. Каждое очереднос слово, прочитанное в тексте, ицется в списке. Если слово найдено, счетчик его частоты увеличивается, в противном случае слово добавляется к списку. Мы будем называть этот процесс просто поиском, хотя ясно, что в него входит также и включение.

Чтобы сосредоточить внимание на основной задаче обрабогки списка, мы предположим, что слова уже выдслены из исследуемого текстд, закодированы целыми числами и находятся во входном файле.

Формулировка этой процедуры, называемой search (noиск), непосједственно следует из (4.20). Переменная root указывает па пачало списка, в который вставляются новые слова, это действие определено в (4.12). Полный алгоритм оппсан в программе 4.1; здесь есть подпрограмма для распечагкн полученного списка слов в виде таблицы. Печать таблицы служнт прнмером действия, выполняемого с каждым элемептом списка одии раз, схема этого процесса уже была прпведена в (4.17).

Алгоритм линейного просмотра в программе 4.1 напоминает процедуру поиска в масспвах и файлах, где, в частности, использустся простой способ упрощения условия окончания цикла: использование барьера. Прн понске по списку также можно пользоваться барьером, он представляется фиктивным элементом в конце списка. Новая процедура (4.21), заменяющая процедуру поиска в программе 4.1, предполагает, что добавлена глобальная переменная sentincl и что инициация переменной root заменена операторами

$$
\text { new(sentinel); rool }:=\text { sentinel } ;
$$

```
program list (input,output);
\{простое включение в список\}
 type ref \(=\uparrow\) word;
 word \(=\) record key: integer;
 count: integer;
 next: ref
 end ;
 var \(k\) : integer; root: ref;
 procedure search (\(x\) : integer; var root: ref);
 var w: ref; \(b\) : boolean;
 begin \(w:=r o o t ; b:=\) true;
 while (\(w \neq\) nil) \(\wedge b\) do
 if \(w \uparrow\).key \(=x\) then \(b:=\) false else \(w:==w \uparrow\).next;
 if \(b\) then
 begin (новый элемент) \(w:=\) root; new (root);
 with root个 do
 begin key \(:=x\); coumt \(:=1\); next \(:=w\)
 end
 end else
 \(w \uparrow\).count \(:==w \uparrow\).count +1
 end \(\{\) search \(\}\);
 procedure printist (w; ref);
 begin while \(w \neq\) nil do
 begin writch (\(w \uparrow\).key, wi.coumt);
 \(w:=\) wi.ne.t
 end
 end \{printlist\} ;
begin root :- nil; read \((k)\);
 while \(k \neq 0\) do
 begin siarch (\(k\), root); reall \(k\))
 end ;
 printlist(root)
end
```

Программа 4.1. Включелие в список,

создаюшцими элемент, который будет использоваться в качестве барьера (sentinel):

```
procedure search(x: integer; var root: ref);
 var \(w: r e f\);
begin \(w:=\) root; sentinel \(\hat{1}\).key \(:=x\);
 while wi.key \(\neq x\) do \(w:=w \hat{\imath} \cdot m e x t\);
 if \(w \neq\) sentinel then \(w_{\hat{\jmath}}^{\hat{\imath}}\).count \(:=w_{\imath}^{\hat{\imath}}\).count \(-\frac{1}{l}\) cl
 begin \{новый элемент\} \(w:=\) root; new(rooi; ; (4.21)
 with root \(\hat{.}\) do
 begin key \(:=x\); count \(:=1\); next \(:=w\)
 end
 end
end \(\{\) search \(\}\)
```

Разумеется, в этом примере плохо используется мощность и гибкость связанного списка; при понске можно допустить линейный просмотр всего списка только в том случае, ес.ıи чнсло элементов ограниченно. Однако легко найти подходя-山ее усовершенствование: поиск в цпорядоченном списке. Ести список упорядочен (например, по возрастанию ключей), то поиск заканчивается не позднее чем встретится первый ключ, больший, чем искомый. Упорядочение списка достигается включением новых элементов не в начало, а в соответств!ющие по порядку места. Фактически благодаря легкости включения в связанный список упорядочение обеспечивается почти без дополнительных затрат, т. е. его гибкость используется полностью. Масснвы и файлы такой возможности не дают. (Однако заметим, чго даже упорядоченные списки не предоставляют ничего эквивалентного бинарному поиску в масснвах.)

Поиск в упорядочепном списке - типичный пример ситуацни, описанной в (4.15), когда элемент нужно вставлять перед данным, а имен:’ перед первым элементом, нмеюцим больший ключ. Однаки предложснный здесь прием отличен от того, который применялся в (4.15). Вместо копирования значений прн проходе списка нсиользэются две ссылки: w2 отстает на однн шаг от wl и, такнм образом, указывает на место включения, когда wl находит слишком большой ключ. В общем виде этап включения показан на рис. 4.10. Предварнтельно мы должны рассмотреть два обстоятельства:

1. Ссылка на повый элемент (ш3) должна присванваться $\omega^{2} 2 \uparrow$.next, кроме случая, когда спнсок еше пуст. Для простоты и эффективности мы предпочитаем не использовагь для проведения этого различия условный оператор. Един-

ственный слособ изб́ежать этого - добавить в нача.то списка фиктивный элемент.
2. Проход по спіску с двумя ссылками, спускающимнся на расстоянин в однн шаг, трсб́ует, чтобы список содержал по меньшей мере одии элсмепт (кроме фиктивного). Поэтому ふлюченне первого элемента следует проводнть иначс, чем всех остальных.

Пџоцсдура, построснная в соответствии с этими јаазанi!л:!!, прнведена в (4.23). Она использует вспомогатетьную


Рис. 4.10. Включсиие в упорлдоченыый список.
прощедуру insert («включение»), которую нужно локально пписать в search. Oиа размещает в памяти и инициирует ноঊйй элсмент ъ 3 , таким образом:

```
procedure insert(w': ref);
 var w3: ref;
begin new(w3);
 with \(w 3 \uparrow\) do
 begin key \(:=x\); count \(:=1 ;\) next \(:=w\)
 ena ;
 \(w 2 \hat{\{ }\), next \(:=w 3\)
end \{insert\}
```

Минциация «root $:=$ nil» в программе 4.1 соответственпо заменяется на

$$
\text { new }(\text { root }) ; \quad \text { rool } \uparrow . n e x t:=\mathrm{nil}
$$

В соответствии с рис. 4.10 мы определяем условие перехода к следующему элементу при просмотре списка; оно состонт ліз двух частей, а нменно:

$$
(w \mid \uparrow . k e y<x) \wedge(w \mid \uparrow \cdot n e x t \neq \mathrm{nil})
$$

Ниже приведена процедура поиска:

```
procedure search(\(x\) : integer; var root: ref);
 var \(w 1, w 2\) : ref;
begin \(w 2:=\operatorname{root} ; w 1:=w 2 \hat{\}}\).next;
 if \(w 1=\) nil then insert (nil) else
 legin
 while \((w 1 \hat{\jmath} . k e y<x) \wedge(w 1 \uparrow . n e x t \neq\) nil \()\) do
 begin \(w 2:=w 1 ; w 1:=w 2 \hat{\jmath} . n e x t\)
 end ;
 if \(w 1 \uparrow . k e y=x\) then \(w 1 \uparrow\).count \(:=w 1 \uparrow\).count +1 else
 insert(\(w 1\))
 end
end \(\{\) search \(\}\);
```

K сожалению, несмотря на всю нашу осторожносгь, сюда вкралась ошибка. Мы предлагаем читателю, прежде чеп двигаться дальше, найти здесь логический подвох. Тем же, кго предпочитает избежать этой работы детектива, достаточно сказать, что (4.23) будет всегда проталкиеать включенный первым элемент в конец списка. Ошибку можно исправить, указав, что, если поиск заканчивается при невыполнении второй части условия, новый элемент нужно включать после $w 1 \uparrow$, а не перед ним. Следовательно, оператор «insert (w))» заменяется на

$$
\begin{aligned}
& \text { begin if } w 1 \uparrow \text {.next }=\text { nil then } \\
& \quad \text { begin } w 2:=w 1 ; w 1:=\text { nil } \\
& \text { end; } \\
& \text { insert }(w 1)
\end{aligned}
$$

Увы, доверчивый читатель внсвь введен в заблуждение, так как алгоритм (4.24) ло-прежнему неверен. Чтсбы обнаружшть опибку, предположим, что новый ключ лежит между последним п прсдпоследним ключами. Это привсдет к тому, что обе часги у'словия продолже!ия цикла окажутся ложными, когда будет достиглут конец списка, и, следовательно, включение произойдет после конечного э.тсмента. Еслл тот же ключ появится позже, он будет вцлючен правнльно и, таким образом, окажется в таблице в двух местах. Это можно исправить, заменив уеловие

$$
w l^{\hat{1} . n e x t}=\text { nil }
$$

в (4.24) 11 a

$$
\omega \mid \hat{\imath} \cdot k e y<x
$$

Чтобы ускорить понск, условие продолжения в операторе инкла можно вновь упростить, нспользуя барьер. Это гребу'ет присутствия фиктивного элемента как в начале, так и в конце. Сґедовательно, список должен иныциироваться следующими операторами:

$$
\text { new(root); new(sentinel); root } \uparrow \text {.next:=sentinel; }
$$

и процедура поиска заметно упрощается, что видно из (4.25)

```
procedure search(x: integer; var root: ref);
 var w1,w2,w3: rcf;
begin }\mu2:=\mathrm{ root;wl:=w2^.mext; sentincl^.kcy :== x;
 while wl. .key<x do
 begin w2:=wl;w1:= w2个.me.rt
 end;
 if (w1\hat{i}.key==x) 人(w1\not= sentinel) then,
 w1\hat{\imath}.count :=w wh.count + 1 else
 begin пск(w3); {включение w3 между w.1 и w2}
 with w3^ do
 begin key := x; count :=1; next ::==w1
 end;
 w2^.next := w 3
 end
end {search}
```

Tеперь пора спросить, какого вынгрыша можно ждать от гияска в упорядоченном списке. Учитывая, что дополнительное усложнепие невелико, не следует ожидать каких-то потрясающих результатов.

Lопустим, что все слова встречаюося в тексте с одинаковоіі частотої. В этом случае, как только все слова окажутся в сииске, вынгрыш, достигнутый при помощи лексикографического упоря,дччения, фактичсскн будет нпчтожен; здесь познияя слова нс пмеет значения, поскольку важна лишь сумма всех шагов и все слова ишутся с одннаковой частотой. Одиако выигрыш дост!гается при включснии нового слова. Вместо всего списка просматривается в среднем только окојо половіны списка. Следоватсльно, вклюочения в јпорядочсныый синсок стоит использовать лишь в сілччае, когда нужио построить словарь с большим числом различных слов, по сравненио с частотой появления. Поэтому приведенные выше проиедуры служат в основнои в качестве упражненнї в программированин, а не для практияского применения.

Помсщать данные в связанныї список рекомениуетея в тои слэлас, если уисло элементов мало (скажем, < $\quad$ о0) , заранее нензвестно п, болсе того, нет ппкакой ннформации

о частоте обращення к ним. Типичный пример - таблица имен в трансляторах с языков программирования. Как только встречается описание, новое имя добавляется к списку, а при выходе из об.тасти деӥствия описания имя уда:яяется из списка. Простые связанные списки стоит использовать, если речь идет о сравнительно коротких программах. Даже и в этом случае можно значительно повысить эффективность доступа благодаря очень просгому приему, который мы здесь еще раз рассмотрим в первую очередь в связи с тем, что он с,пужит хороиим прнмером для демонстрацни гибкости структуры связанного спнска.


P!с. 4.11. Список до переупорядочения.
认掊 гекста программ характерно частое скопленис одного и того же идентификатора, т. е. за одннм вхождением часто следует одно или более повторных вхождений того же слова. Это наводит на мысль реорганизовать список после каждого обращения, переставляя найденное слово в начало списка, так как тем самым миннмизируется длнна прохода по списку при след!ющем поиске того же слова. Этот метод называется поискол по списку с переупорядочением, или - несколько претенциозно - салоорганизующимся поиском по списку. Опнсывая соответствуююций алгоритм в виде процедуры, которуюо можпо повставить в программу 4.1, мы учтем предыдущий опыт и с самого начала введем барьер. Действительно, его наличие в этом случас нс только јскоряет поиск, но и упроıаст программу. С самого начала список не пуст, а уже содсржит барьер. Начальные операторы следующие:

$$
\text { new(sentinel); root }:=\text { sentinel; }
$$

Заметим, что основное различие между новым алгоритмом и простым понском по списку (4.21) - переупорядочение при нахождении элемента. Найденный элемент отделяется, нли. удаляется со своего старого места и вставляется в начало. Это удаление слова требует нспользования двух ссылок при поиске, чтобы можно было установить местонахождение эле-

меита $\omega 2 \uparrow$, предшествующего найденному элементу w $\uparrow \uparrow$, чго в свсюо очєредь требует особого обращения с первым элементом (т. е. с пустым списком). Чтобы чнтатель мог наглядно представить себе процесс изменения связей, мы отсылаем его к рис. 4.11. На нем нзображены две ссылки в момент, когда wl опознан в качестве искомого элемента. Конфигурация списка после соответствующего переупорядочения показана на рис. 4.12, а новая процедура понска целиком описана ниже:
procedure search(x: integer; var root: ref);
var w1,w2: rof;
begin $w 1:=$ root; sentincli.key $:=x$;
if $w=$ sentincl then
begin [nервый элемент] nен(root);
with root $\uparrow$ do
begin key $:=x$; count $:=1$; next $:==$ sentinel end
end else
if $w 1 \uparrow . k c y=x$ then $w l_{\hat{i}}$.count $:=w 1 \uparrow$.count +1 clse
begin $\{$ search $\}$
repeat $w_{2}:=w 1 ; w_{1}:=w 2_{i}^{\wedge} . m e x t$
until wli.kcy $==x$;
if $w: 1=$ sentinel then
begin [включениие) w2:= root; new(root);
with root $\uparrow$ do
begin key $:=x$; coumt $:=1$; next $:=w 2$
end
cnd clse
begin (иайден, теперь переупорядочивание списка)
$w 1 \hat{\jmath}$.count $:=w 1 \hat{1} . c o u n t-1$;
w2 .next: w. whent; w1 next $:=$ root; root $:=w 1$
end
end
and (search)
Выигрыш при таком метоле поиска сильно зависит от степени скопления входных даниых. При задаином коэффициенте скопления улучшение болие ощутнмо в сллчае больших спнсков. Для того чтобы получить представление о примерной величине выигрыша, который можно ожидать, были проведены эмпирические измгрения. Пр:ввденная выше программа составления частотого саиваря прнменялась к короткии

н огіоснельно длинным текстам, затсм сравнивались методы линейного упорядочения (4.21) и переупорядочения списков


Pıс. 4.12. Спасок послт переупорядсчения.
(4.26). Рсзјльтаты пзмерений приводятся в табл. 4.2. K сожаленно, наибольший вынгрыш достигается в случаях, когда

Таблица 4.2. Сразнение методов понска по списку

|  | Tect 1 | Tect 2 |
| :---: | :---: | :---: |
| Число различиых ключей | 53 | 582 |
| Число появлений ключей | 315 | 14341 |
| Время поиска с упорядочением | 6207 | 3200622 |
| Время поиска с переупорядочением | 4529 | 681584 |
| Коэффициент улучшения | 1,37 | 4,70 |

понему-либо требуется другая органнзация данных. Мы вернемся к этому примеру в разд. 4.4.

### 4.3.3. Приложение: топологическая сортировка

Хороший пример использования гибких, динамических структур данных - процесс топологической сортировки. Имеется в виду сортировка элементов, для которых определен частичный порядок, т. е. !порядочение задано не на всех, а только на некоторых парах элементов. Это довольно тнпичная ситуация. Приведем несколько таких примеров.

1. В толковом словаре слова определяются с помощью других слов. Еслн слово $v$ определено с помощью другого слова $w$, мы обозначим это как $v<w$. Топологическая сортировка слов в словаре означает расположение их в таком порядке, чтобы всс слова, участвуюшие в определении даниого слова, находились раньше его в словаре.
2. Задача (например, технический проект) разб́ивается на ряд подзадач. Выполнение одних подзадач обычно должно предшествовать выполнснию других подзадач. Если ползадача $v$ должна предшествовать подзадаче $\ddot{w}$, мы пишем $v<w$. Топологическая сортировка означает выполнение подзадач в таком порядке, чтобы перед началом выполнения каждсй подзадачи все необходимые для этого подза• дачи были јже выполнены.
3. В университетской программе одни предметы опираются на материал других, поэтому некоторые курсы студенты должны прослушать раньше других. Если курс v содержит матернал для курса $w$, мы пишем $v<w$. Топологическая сортировка означает чтение курсов в таком порядке, чтобы ни один курс не читался раньше того, на материале которого он основан.
4. В программе некоторые процедуры могут содержать вілзовы других процедур. Если процедура $v$ вызывается в процедуре $w$, мы обозначаем это как $v<w$. Топологическая сортировка предполагает расположение описаний процед! $р$ в таком порядке, чтобы вызываемые процедуры описывғлись раньше тех, которые их вызывают *).

В общем виде частичный порядок на множестве $S$ - это отношение между элементами этого множества. Оно обозначается символом $<$, читается «предшествует» и удовлстворяет трем следуюшим свойствам (аксиомам) для любых различных элементов $x, y$ и $z$ из $S$ :
(1) если $x<y$ и $y<z$, то $x<z$ (транзитивность),
(2) если $x<y$, то не $y<x$ (асимметричность),
(3) не $x<x$ (иррефлексивность).

По понятным соображеиия мы будем считать, что множество $S$, которое нужно топологнчески рассортировать, является конечным. Поэтому отношєние частичного порядиа можно проиллюстрировать с помошью диаграммы нли графа, в котором вершины обозначают элсменты $S$, а стрелки изображают отношение порядка. Прнмер приведен на рис. 4.13.

Цель топологической сортировки - преобразовать частичный порядок в линейный. Графически это означает расположение вершин графа в ряд так, чтобы все стрелки были направлены вправо, как показаюо на ріс. 4.14. Свойства (1). и (2) частичного порядка обеспечиваюэт отсјтствие циклов. Это как раз и есть то необходимое уссовие, при котором возможно преобразование к линейному порядку.

[^8]Как найти одно из возможных линейных упорядочсний? Рецепт достаточно прост. Мы начинаем с того, что выбираем какой-либо элемент, которому не предшествует иикакой другой (хотя бы один такой элемент существует, нначе имелсл бы цикл). Этот элемент помещается в начало списка п исклюочается из множества $S$. Оставшееся множество по-прежнему


Рис. 4.13. Частично уппрядоченное множество.

частично упорядочено; таким образом, можно виовь применить тот же самый алгоритм, пока множество не станет пустым.

Для того чтобы подробнее сформулировать этот алгоритм, нужно описать структуры данных, а также выбрать представление $S$ и отноиения порядка. Это представленис зависит от


Рис. 4.14. Линейное расположсние частично упорлдоченного множества, приведенного на рис. 4.13.

выполняемых• дсйствий, особснно от операции выбора элемента без прсдшественников. Поэтому каждый элемент улобно представить тремя характеристиками: идентифицирующим ключом, множеством сысдующих за ним элементов («последователсй») и счетчнком предшествующих элементов («предшествсников»). Поскольку $n$ - число элементов в $S$ нс задано a priori, это множество удобно организовать в внде свлзанного списка. Следовательно, каждый дескриптор элемента содержит сще поле, связываюцее его со следующим элементом списка. Мы будем счютать, что ключи - это целыс

числа (необязательно последовательные от 1 до $n$ ). Анальгично множество последователей каждого элемента можно представить в виде связанного списка. Каждый элемент списка послсдователей шеким образом идентифицирован и связан со следуошим элементом этого списка. Если мы назовем дескрнпторы главного списка, в котором каждый элемені нз $S$ содержитея ровно один раз, ведуиими (leaders), а дескрипторы списка последователей ведомнми (trailers), то мы полулим такие опшсаиия типов данных:

$$
\begin{align*}
& \text { type lref }=\uparrow \text { leader; } \\
& \text { tref }=\uparrow \text { trailer; } \\
& \text { leader }=\text { record } k e y, \text { count: integer; } \\
& \text { trail: tref; } \\
& \text { next: lref }  \tag{4.28}\\
& \text { end; } \\
& \text { trailer }=\text { record id: lref; } \\
& \text { next: tref } \\
& \text { end }
\end{align*}
$$

Предположим, что множество $S$ и отношения порядкӑ на нем первоначально заданы в виде последовательности пар ключей во входном файле. Входные данные для примера, изображенного на рис. 4.13, показаны в (4.29), где символы $<$ добавлены для ясности:

$$
\begin{array}{llllll}
1<2 & 2<4 & 4<6 & 2<10 & 4<8 & 6<3 \\
1<3 & 3<5 & 5<8 & 7<5 & 7<9 & 9<4  \tag{4.29}\\
9<10 & & & & &
\end{array}
$$

Первая часть программы топологической сортировки должна прочитать входной файл и преобразовать входные данные в структуру списка. Это производится последовательным чтсннем пар ключеи $x$ и $y(x<y)$. Обозначим ссылки на их представления в списке ведущих через $p$ и $q$. Эти записи ищутся в сииске п, ссли их там нет, добавляются к нему. Эту задачу выполняет функция, называемая $l$. (located). Затем к списку ведомых для элемента $x$ добавляется новый дескриптор, идентифицированный как $y$, счетчик предшественников для $y$ увеличивается на 1. Такой алгоритм соответствует фазс евода (4.30). На рис. 4.15 показаиа структура, сформированная при обработке входных данных (4.29) с помощью алгоритма (4.30). В этом фрагменте программы есть обращения к функции $L(w)$, дающей ссылку иа компоненту списка с клочом ш (см. также программу 4.2). Мы предполагаем, что последовательность входных пар клю-


чей заканчивается дополнительным нулем.

$$
\begin{aligned}
& \{ф а з а \text { ввода }\} \operatorname{read}(x) ; \\
& \text { new }(\text { head }) ; \text { tail }:=\text { head } ; z:=0 ; \\
& \text { while } x \neq 0 \text { do } \\
& \text { begin read }(y) ; p:=L(x) ; q:=L(y) \text {; } \\
& \quad \text { new }(t) ; t \uparrow . i d:=q ; t \uparrow . \text { next }:=p \uparrow . t r a i l ; \\
& \quad p \uparrow . t r a i l:=t ; q \uparrow \text {.count }:=q \uparrow . c o u n t+1 \text {; } \\
& \quad \text { read }(x) \\
& \text { end }
\end{aligned}
$$

После того как на фазе ввода построена структура данных, показанная на рис. 4.15 , можно провести саму топологиче. скую сортировку, описанную выше. Но поскольку она состоит в последовательном выборе элемента с нулевым счетчиком предшественников, вндимо, разумно вначале собрать все


Рис. 4.16. Список всдущих с иулсвыми счетчикамп.
такие элементы в связанную цепочку. Поскольку мы знаем, что исходная цепочка ведуших виоследствии не понадобигся, то жс самое поле next можно использовать повторно для связывания в цепочку ведущих, не имеющих предшественников. Такая замена одной цепочки на другую часто встречается при работе со списками. Это подробно описано в (4.31) ; для удобства новая цепочка стронтся в обратном порядке.

```
\{поиск ведуицих с 0 предıиественников\}
 \(p:=\) head; head \(:=\) nil;
 while \(p \neq\) tail do
 begin \(q:=p ; p:=q \uparrow . n e x t ;\)
 if \(q \uparrow\).count \(=0\) then
 begin \{включение \(q \uparrow\) в новуо цепочку\}
 \(q \uparrow\). next \(:=\) head; head \(:=a\)
 end
 end
```

Если обратиться к рис. 4.15, то мы увидим, что цепочка next ведуцих заменяется на цепочку, изображенную на рис. 4.16. Связи, отсутствующие на этом рисунке, остались прежними.

После всех этих подготовительных действнй, направленных на то, чтобы выработать подходящее представление частично упорядоченного множества $S$, мы можем, наконец, перейти к собственно топологичсской сортировке, т. с. формированию выходной последовательности. В первом, грубом приближении это можно описать слсдующим образом:
$q:=$ head;
while $q \neq$ nil do
begin \{вывести этот элемент, затем исключить его\}
writeln( $q \uparrow . k e y) ; z:=z-1$;
$t:=q \uparrow . t r a i l ; \quad q:=q \uparrow$. next $;$
куменьшить счетчик предшественников у всех его после-
дователей в списке ведомых $t$; если какой-либо счетчнк
стал равен 0 , добавить этот элемент к списку ведущих $q$ » end

Оператор в (4.32), который осталось уточнить, осуществляет еще один проход по списку [см. схему (4.17)]. На каждом шаге вспомогательная переменная $p$ указывает на ведущий дискриптор, счетчик которого нужно уменьшить и провсрить на равенство нулю.

```
while \(t \neq\) nil do
begin \(p:=t \uparrow . i d ; p \uparrow\).count \(:=p \uparrow\).count -1 ;
 if \(p \uparrow\).count \(=0\) then
 begin (включение \(p \uparrow\) в список ведущих]
 \(p \uparrow\).next \(:=q ; q:=p\)
 end;
 \(t:=t \uparrow \cdot n e x t\)
end
```

На этом завершается разработка программы топологической сортировки. Обратите вниманис, что был введен счетчик $z$ для подсчета ведуших дескрипторов, сформированных на фазе ввода. Этот счетчик уменьшается каждый раз, когда ведущий дескриптор выводится на фазе вывода. Поэтому он должен вновь стать равным 0 в конце работы программы. Если он не смог вернуться к 0 , это указывает, что в структуре остались элементы и среди них нет таких, у которых отсутствуют предшественники. Очевидно, что в этом случае множество $S$ не является частично упорядоченным.

Приведенная выше программа фазы вывода служит примером работы со списком, который «пульсирует», т. е. элементы которого добавляются и удаляются в непредсказуемом порядке. Следовательно, это пример процесса, полностью

```
program topsort(input,oultput);
type lref \(=\uparrow\) leader;
 tref \(=\uparrow\) trailer;
 leader \(=\) record key: intcger;
 count: integer;
 trail: tref;
 next: lref;
end ;
 trailer \(=\) record id: lref;
 next: tref
 end ;
var head, tail, \(p, q\) : lref;
 \(t\) : tref; \(z\) : integer;
 \(x, y\) : integer;
function \(L(w:\) integer \()\) : lief;
 \{ссылка на ведушего с ключом w \}
 var \(h\) : Iref;
begin \(h:=\) head; tail \(\uparrow . k e y:=w\);
 while \(h \uparrow . k e y \neq w\) do \(h:=h \uparrow . n e x t ;\)
 if \(h=\) tail then
 begin (списке нет элемента с ключом w]
 new(tail); \(z:=z+1 ;\)
 \(h \uparrow\).count \(:=0 ; h \uparrow\). trail \(:=\) nil \(; h \uparrow . n e x t:=\) tail
 end ;
 \(L:=h\)
end \(\{L\}\);
begin (инициачия списка ведуцих фиктивным элементов\}
 new(head); tail \(:=\) head; \(z:=0\);
\{фаза ввода \(\}\) read \((x)\);
 while \(x \neq 0\) do
 begin \(\operatorname{read}(y)\); writeln \((x, y)\);
 \(p:=L(x) ; q:=L(y) ;\)
 new \((t) ; t \hat{!} \cdot i d:=q ; t \uparrow . n e x t: \doteq p \uparrow . t r a i l ;\)
 \(p_{\hat{\wedge}}^{\hat{2}}\) trail \(:=-\quad t ; q^{\uparrow}\).count \(:=q^{\hat{}}\).count \(+1 ;\)
 \(\operatorname{read}(x)\)
 end ;
\{понск ведуиих со счетчиком-0 \}
 \(p:=\) head; head \(:=\) nil;
 while \(p \neq\) tail do
 begin \(q:=p ; p:=p \uparrow\). Hext;
 if \(g \hat{\jmath}\).count \(=0\) then
 begin \(q \uparrow\).next \(:=\) head; head \(:=q\)
```

```
 cnd
 end ;
\{фаза вывода \(\quad q:=\) head;
 while \(q \neq\) nil do
 begin writeln(q \(\uparrow . k e y) ; z:=z-1\);
 \(t:=q \uparrow\). trail; \(q:=q \uparrow . n e x t ;\)
 while \(t \neq\) nil do
 \(\operatorname{begin} p:=t \uparrow . i d ; p \uparrow\).count \(:=p \uparrow\) count \(-1 ;\)
 if \(p \uparrow\).count \(=0\) then
 begin (включение \(p^{\dagger}\) в \(q\)-список)
 \(p \uparrow\). next \(:=q ; q:=p\)
 end;
 \(t:=t \uparrow\).next
 end
 end ;
 if \(z \not \neq 0\) then writell ('THIS SET IS NOT PARTIALLY ORDERED')
end .
```

Программа 4.2. Топологическая сортировка.
используюшего гибкость, которую обеспечивает явно связаиный список.

## 4.4. ДРЕВОВИДНЫЕ СТРУКТУРЫ

### 4.4.1. Основные понятия и определения

Mь видели, что последовательности и списки можно опире- $^{\text {в }}$ делить следуюшим образом: любая последовательность (список) с базовым типом $T$ - это либо:

1) пустая последовательность (список) ; либо
2) конкатенация (цепочка) нз эョемента типа $T$ и последовательности с базовым типом $T$.
Здесь для определения принципов стрјктурирования (следования или итерации) используется рекурсия. Следование и итерация встречается настолько часто, что нх обычно считают фундаментальными «образами» как структур данных, так и «управления» в программах. Однако всегда следует помнить, что с помощью рекурсий их только можно определять, но рекурсми можно эффективно и элегантно нспользовать для определения более сложных структур.

Хорошо известным примером служат деревья. Пусть древовндная структура определяется следуюшим образом: древовидная структура с базовым типом $T$ - это либо:

1) пустая структура; либо
2) узел типа $T$, с которым связапо конечное число древовидных структур с базовым типом $T$, называемых поддеревьями.
$11 з$ сходства рекурсивных определений носледовательностей и древовидных структур видно, что последовательность (список) есть древовидная структура, у которой каждый узел пмеет не более одного «поддерева». Поэтому последовательность (список) пазывается также вырожденным деревом.

Существует несколько способов изображения древовидной структуры. Например, пусть базовый тип $T$ есть множество букв; такая древовидная структура разными способами изображена на рис. 4.17. Все эти представления демонстрируют одну и ту же структуру и поэтому эквивалентны. С помощью графа можно наглядно представить разветвляющиеся связи, которые по понятным причинам привели к общеупотребительному термнну «дерево». Однако довольно странно, что деревья принято рисовать перевернутыми или - если кто•то предпочитает иначе выразить этот факт - изображать кории дерева. Но последняя формулировка вводит в заблуждение, так как верхний узел $(A)$ обычно называют корнем. Хотя мы сознаем, что в природе деревья представляют собой несколько более сложиые образования, чем наши абстракции, мы будем в дальнейшем древовидные структуры называть просто деревьями.

Упорядоченное дерево - это дерево, у которого ветви кагк. дого узла јпорядоченны. Следовательно, два упорядоченных дерева на рис. 4.18-это особые, отличные друг от друга деревья. Узел $y$, который находится непосредственно под узлом $x$, называется (непосредственным) потомком $x$; если . находится на уровне $i$, то говорят, что $y$ - на уровне $i+1$. Наоборот, узел $x$ называется (непосредственным) предком !! Считается, что корень дерева расположен иа уровне 1. Максимальный уровень какого-либо элемента дерева называется его глубиной нли высотой.

Если элемент не имеет потомков, он называется терминалоним элементом или листом, а элемент, не являющийся термннальным, называется внутренним узлом. Число (непосрсдственных) нотомков внутреннего узла называется его степенью. Максимальная степень всех узлов есть степень дерева. Число ветвей, или ребер, которые нужно пройти, чтобы продвннуться от корня к узлу $х$, называется длнной пути к л. Корень нмеет длину пути 1 , его непосредственные потомки длину пути 2 и т. д. Вообще, узел па уровне $i$ нмеет длину п!ти $i$. Длина пути дерева определяется как сумма длин путсї всех его узлов. Она также называется длнной внутреннего пути. Например, длина внутреннего пути дерева, изобра-

(a)
(b)

$$
\langle A(B\langle D(I), E(J, K, L)), C(F(O), G(M, N), H(P))]\rangle
$$(b)


(c)


Рис. 4.17. Представления древоиидноі̆ стрјктуры: (а) вложенные множества; (b) вложенные скобки; (c) ломаная последовательность; (d) граф.

женного на рис. 4.17 , равна 52. Очевидно, что средняя длина nути $P_{l}$ есть

$$
\begin{equation*}
P_{1}=\frac{1}{n} \sum_{i} n_{i} \cdot i \tag{4.34}
\end{equation*}
$$

где $n_{i}$ - число узлов на уровне $i$. Для того чтобы определить, что называется длиной внешнего пути, мы будем дополиять дерево специальным јзлом каждый раз, когда в нем встречается нулевое поддерево. При этом мы считаем, что все јзлыы должны иметь одну и ту же степень - степень дерева. Следовательно, подобное расширение дсрева предполагает запол-


Рис. 4.18. Два различных бинарных дсрева.
нение пустых ветвей, разумеется, при этом специальные јзлы не имеют дальнейших потомков. Дерево на рис. 4.17, дополненное специальными узлами, показано на рис. 4.19, где специальные узлы изображены квадратиками.


Рис. 4.19. Териариое дерево со спешалыыыи узлами.
Длина внешнего пути теперь определлется как сумма длнн путей всех специальных узлов. Если число специальных узлов на эровне $i$ есть $m_{i}$, то средняя длина внешнего пути $P_{E}$ равна

$$
\begin{equation*}
P_{E}=\frac{1}{m} \sum_{i} m_{i} \cdot i \tag{4.35}
\end{equation*}
$$

У дерева, приведенного на рис. 4.19, длина внешнего пути равна 153.

Число специальных $У з л о в ~ m, ~ к о т о р ы е ~ н у ж н о ~ д о б а в и т ь ~$ к дереву степени $d$, непосрсдственно зависит от числа $n$ игходных узлов. Замстим, что на каждый узел указывает ровно одна ветвь. Следоватсльно, в расширенном поддереве имеется $m+n$ ветвей. С другой стороны, из каждого исходного узла выходят $d$ ветвей, а из спецнальных узлов - ни одной. Поэтому всего имеется $d i n+1$ ветвей ( 1 дает ветвь, !казывающую на корень). Из этих двух формул мы получаем следующее равенство между чиспом $\boldsymbol{m}$ спецнальных узпов и $n$ исходных узлов: $d n+1=m+n$, или

$$
\begin{equation*}
m=(d-1) n+1 \tag{4.36}
\end{equation*}
$$

Максимальное число узлов в дереве заданной высоты.$!$ достигается в случае, когда все узлы имеют $d$ поддеревьев, кроме узлов уровня $h$, не имеющих ни одного. Тогда в дереве степени $d$ первый уровень содержит 1 узел (корень), уровень 2 содержит $d$ его потомков, уровень 3 содержит $d^{2}$ потомков d узлов уровня 2 и т. д. Это дает следующую величину:

$$
\begin{equation*}
N_{d}(h)=1+d+d^{2}+\ldots+d^{h-1}=\sum_{i=0}^{h-1} d^{i} \tag{4.37}
\end{equation*}
$$

в качестве максимального числа узлов для дерева с высотой $h$ и степеньо $d$. При $d=2$ мы получаем

$$
\begin{equation*}
N_{2}(h)=\sum_{i=0}^{h-1} 2^{i}=2^{h}-1 \tag{4.38}
\end{equation*}
$$

Упорядоченные деревья степени 2 играют особо важную роль. Оніл называются бинарными деревьями. Мы определяем упорядоченное бинарное дерево как конечное множество элелентов (узлов), каждий из которых либо пуст, либо состоит из корня (узла), связанного с двумя различньєми бинарными деревьями, называемыми левым и правым поддеревом корня. В следующих пунктах этого раздела мы будем рассматривать исклочительно бинарные деревья и поэтому будем употреблять слово «дерево», имея в виду «упорядоченное бинарнье дерсво». Деревья, имеющие степень больше 2, называются сильно ветвящимися деревьлни (multiway trees), они pacсматриваются в разд. 5 этой главы.

Знакомыми примерами бинарньх деревьев являются фамильное (генеалогическое) дерево с отцом и матерью человека в качестве сго потомков (!), нстория теннисного туррнира, где узлом является каждая игра, определяемая ее победителем, а поддеревьями - две предыдущие игры соперников; арифметическөе выражение с двухместными операциями, где каждая

операция представляет собой ветвящийся узел с операндами в качестве поддеревьев (см. рис. 4.20).

Теперь мы обратимся к проблеме представления деревьев. Ясно, что изображение таких рекурсивных структур (точнее, рекурсивно определенных. - Прим. ред.) с разветвлениями предполагает использование ссылок. Очевидно, что не пмеет смысла описывать переменные с фиксированной древовидной с'руктурой, вместо этого узлы определяются как переменные


P:九с. 4.20. Выражение $(a+b / c)^{*}\left(d-e^{*} f\right)$, представлениое в виде дерева.

с фиксированной структурой, т. е. фиксированного тила, где степень дерева определяет число компонент-ссылок, указываюших на поддеревья данного узла. Ясно, что ссылка на пустое поддерево обозначастся через nil. Следовательно, дерево на рис. 4.20 состоит из компонент такого типа:

$$
\begin{align*}
& \text { type node }= \text { record } \rho p: \text { char; } \\
& \text { left, right: } \uparrow \text { node }  \tag{4.39}\\
& \text { end }
\end{align*}
$$

и может строиться, как показано на рис. 4.21.
Ясно, что существуют слособы представления абстрактной древовндной структуры в терминах других типов данных, например таких, как массив. Это - общепринятый способ во всех языках, где нет средств динамического размещения компонент и указания их с помощью ссылок. В этом сэучае дерсво на рис. 4.20 можно представить переменной-массивом, описанной как

$$
\begin{align*}
& t: \text { array }[1 \ldots 11] \text { of } \\
& \text { record op: char; } \\
& \text { left, right: integer }  \tag{4.40}\\
& \text { end }
\end{align*}
$$

и со значениями компонент, приведенными в табл. 4.3.

Хотя подразумевается, что масснв $t$ представляет абстрактную структуру дерева, мы будем называть его все жс не деревом, а масснвом согласно явному определенио. Мы не будем обсуждать другие возможные представления деревьев в систсмах, где отсугствует динамическэе распределение памяти,


Рис. 4.21. Дерево, представленное как структура данных.
носкольку мы считаем, 'то системы программирования и языки, имеющие это свойство, являются или станут широко расиространенными.

Таблица 4.3. Дерево, представленное с помоиью массива

| 1 | $*$ | 2 | 3 |
| :---: | :---: | :---: | :---: |
| 2 | + | 6 | 4 |
| 3 | - | 9 | 5 |
| 4 | 1 | 7 | 8 |
|  | $*$ | 10 | $11^{\bullet}$ |
| 6 | $a$ | 0 | 0 |
| 7 | $b$ | 0 | 0 |
| 8 | $c$ | 0 | 0 |
| 9 | $d$ | 0 | 0 |
| 10 | $e$ | 0 | 0 |
| 11 | $f$ | 0 | 0 |
|  |  |  |  |

Прежде чем обсуждать, как лучше использовать деревья и как выполнять операции с деревьями, мы покажем на при-

мсре, как программа может строить дерево. Предположим, что нужно сформировать дерево, содержащее узлы типа, описанного в (4.39), а значеннями узлов будут $n$ чисел, прочитанных из входного файла. Для усложнения задачи потребуем построить дерево с $n$ узлами и минимальной высотой.

Чтобы достичь минимальной высоты при данном числе јзлов, нужно располагать максимально возможное число узлов на всех уровнях, кроме самого нижнего. Это можно сделать очень просто, если распредслять все поступающие узлы


Рис. 4.22. Идеально сбалансированные деревья.

поровну слева и справа от каждого узла. В результате построенное дерево при данном $n$ имеет вид, как показано на рис. 4.22 для $n=1, \ldots, 7$.

Правило равномерного распределения при известном числе узлов $n$ лучше всего формулируется с помощью рекурсии:

1. Взять один узел в качестве корня.
2. Построить левое поддерево с $n l=n \operatorname{div} 2$ узлами тем же способом.
3. Построить правое поддерево с $n r=n-n l-1$ узлами тем же способом.

Это правило описано рекурсивной процедурой tree, входящей в программу 4.3, которая читает входной файл и строит ндеально сбалансированное дерево. Мы получаем такое определение:

```
program buildtrec(input,output);
type ref \(=\hat{\mathrm{i}}\) node;
 node \(=\) record key: integer;
 left, right: ref
 end;
var \(n\) : integer; root: ref;
function tree(n: integer): ref;
 yar newnode: ref;
 \(x, n l, n r:\) integer;
begin \{построение идеально сбалансированного дерева с \(\boldsymbol{n}\) узлами\}
 if \(n=0\) then tree \(:=\) nil else
 begin \(n l:=n\) diy 2; \(n r:=n-n l-1\);
 read \((x)\); new(newnode);
 with newnode个 do
 begin key \(:=x ;\) left \(:=\) tree \((n l) ;\) right \(:=\operatorname{tree}(n r)\)
 end;
 tree \(:=\) newnorl:
 cad
end \(\{\) tree \(\}\);
procedure printtree(t: .ref; \(h\) : integer);
 var \(i\) : integer;
begin \{nечать дерева \(t\) со сдвигом \(h\) \}
 if \(t \neq\) nil then
 with \(t_{\hat{\jmath}}\) do
 begin printtree(left, \(h-+-1\));
 for \(i:=1\) to \(h\) do write \(\left({ }^{\prime} \quad\right.\) ');
 writeln(key);
 printtree(right, \(h+1\))
 end
end \(\{\) print!rce \(\}\);
begin \{первое целое число есть число узлов\}
 \(\operatorname{read}(n)\);
 root \(:=\) tree \((n)\);
 'printtree(root,0)
end .
```

Программа 4.3. Построение идеально сбалансированного дерева.

Церево идеально сбалансировано, если для каждого сго узла количества узлов в левом и правом поддереве различаются не более чем на 1.

Предположим, например, что имеются следующие входные данные для дерева с 21 узлом:

$$
\begin{array}{rrrrrrrrrrrrr}
21 & 8 & 9 & 11 & 15 & 19 & 20 & 21 & 7 & 3 & 2 & 1 & 5 \\
6 & 4 & 13 & 14 & 10 & 12 & 17 & 16 & 18 & & &
\end{array}
$$

Тогда программа 4.3 строит идеально сбалансированное дерево, ноказанное на рис. 4.23.


Рис. 4 23. Дерево, построенное с помощью программы 4.3.
Отметим простоту и ясность этой программы, достигнутые благодаря использованию рекурсивных процедур. Очевидно, что рекурсивные алгоритмы особенно уместны, когда программа должна обрабатывать данные, структура которых определена рекурсивно. Это вновь отражается в процедуре printtree, которая печатает полученнос дерево: нустое дерево не печатается для поддерева уровня $L$, а вначале печатается его левое поддерсво, затем узел, который выделяется предшествующими $L$ пробелами, и, наконец, печатается его правое поддерево.

Пренмущесгво рекурсивного алгоритма особенно наглядно по сравнению с его нерекурсивной формулировкой. Читателю предлагается проявить свою нзобретательность и написагь нерекурсивнуіо ирограмму, строящую такие же деревья, прежде чем смотреть на (4.41). Эта программа приведена без дальнейших комментариев и может служить упражнением для читателя. Ему предлагается выяснить, как и ночему опа работает.

```
program buildtree(input,output);
type ref \(=\uparrow\) node;
 node \(=\) record key: integer;
 left, right: ref
 end ;
var \(i, n, n l, n r, x\) : integer;
 root,p,q,r,dmy: ref;
 \(s\) : array [1. . 30] of \{стек\}
 record \(n\) : integer; rf: ref
 end ;
begin \{первое целое число есть число узлов\}
 \(\operatorname{read}(n) ;\) new(root); new(dmy); (фиктивный элемент)
 \(i:=1 ; s[1] . n:=n ; s[1] . r f:=\) root \(;\)
 repeat \(n:=s[i] . n ; r:=s[i] . r f ; i:=i-1 ;\) (из стека)
 if \(n=0\) then \(r \uparrow\), right \(:=\) nil else
 \(\operatorname{begin} p:=d m y\);
 repeat \(n l:=n\) div \(2 ; n r:=n-n l-1\);
 \(\operatorname{read}(x) ; \operatorname{new}(q) ; q \uparrow . k e y:=x ;\)
 \(i:=i+1 ; s[i] . n:==n r ; s[i] . r f 1=q ;\{\) с стек) \(\}\)
 \(n:=n l ; p \uparrow\).left \(:=q ; p:=q\)
 until \(n=0\);
 \(q \uparrow . l e f t:=\) nil \(; r \uparrow . r i g h t:=d m y \uparrow . l e f t\)
 end
 until \(i=0\);
 printtree (root \(\uparrow . r i g h t, 0)\)
end .
```


### 4.4.2. Основные операции с бинарными деревьями

Имеется много задач, которые можно выполнять на древовидной структуре; распространенная задача - выполнение заданной операцин $P$ с каждым элементом дерева. Здесь $P$ рассиатривается как параметр более общей задачи посещения всех узлов, или, как это обычно называют, обхода дерева.

Если рассматривать эту задачу как единый последовательный процесс, то отдельные узлы посещаются в некотором определенном порядке и могут считаться расположенными линейно. В самом деле, описание многих алгоритмов существенно упрошается, если можно говорить о переходе к следующему элементу дерева, имея в виду некоторое упорядочение.

Сушествуют три принципа упорядочения, которые естественно вытекают из структуры деревьев. Так же как и саму.

древовидную структуру, их удобно выразить с помощью рекурсии. Обращаясь к бинарному дереву на рис. 4.24 , где $R$ обозначает корень, а $A$ и $B$ - левое и правое поддеревья, мы можем определить такиє три упорядочения:

1. Сверху вниз: $R, A, B$ (посетить корень до поддеревьев), 2. Слева направо: $A, R, B$
2. Снизу вверх: $A, B, R$ (посетить корень после поддеревьев)

Обходя дерево на рнс. 4.20 и выписывая символы, находящиеся в узлах, в том порядке, в котором они встречаются, мы получаем следующие последовательности:

1. Сверху вниз: $\quad *+a / b c-d * e f$
2. Слева тіправо: $\quad a+b / c * d-e * f$
3. Снизу вверх: $\quad a b c /+c l e j *$ - *

Мы узнаем три формы записи выражений: обход сверху вниз дает префиксную запись, обход снизу вверх - постфикс-


Рис. 4.24. Бикариое дерево.
ную запись, а обход слева направо дает привычную инфиксную запись, хотя и без скобок, необходимых для определения порядка выполнения операций.

Tenepь выразим эти три метода обхода как три конкретные программы с явным параметром $t$, означаюшим дерево, с которым они имеют дело, и неявным параметром $P$, означающим операцию, которую нужно выполнить с каждым узлом. Введем следуюшие определения:

$$
\begin{aligned}
\text { type } r e f= & \text { fnode } \\
n \omega_{i} l e & \text { recond... } \\
& \text { left,right: ref } \\
& \text { end }
\end{aligned}
$$

Эти три метода легко сформулировать е виде рекурсивных процедур; сни вновь служат прнмером того, что действия

с рекурсивно определенными структурами данных лучше всего описываются рекурсивными алгоритмами.

```
procedure preorder(t: ref);
begin if \(t \neq\) nil then
 begin \(P(t)\);
 preorder \((t \uparrow . l e f t)\);
 preorder (\(t \uparrow . r i g h t)\)
 end
end
```

procedure postorder(t: ref);
begin if $t \neq$ nil then
begin postorder ( $t \uparrow$.left $)$;
postorder ( $\mathrm{T}^{\uparrow}$. right $)$;
$P(t)$
cud
end
procedure inorder(t: ref);
begin if $t \neq$ nil then
begin inorder ( $t \uparrow . l e f t)$;
$P(t)$;
inorder( $t \uparrow . r i g h t)$
end
end

Отметим, что ссылка $t$ передается как параметр-значение. Эт отражает тот факт, что здесь существенна сама ссылка (указание) на рассматриваемое поддерево, а не переменная, значение которой есть эта ссылка и которая могла бы изменить значение, если бы $t$ передавался как параметр-переменная.

Пример подпрограммы, осуществляющей обход дерева, -это подпрограмма печати дерева с соответствующим сдвигом, выделяющим каждый уровень узлов (см. программу 4.3).

Бинарные деревья часто используются для представления множеств данных, элементы которых ищутся по уникальному, только им присущему ключу. Если дерево организовано таким образом, что для каждого узла $t_{i}$ все ключи в левом поддереве меньше ключа $t_{i}$, а ключи в правом поддереве больше ключа $t_{i}$, то это дерево называется деревом поиска. В дереве поиска можно найти место каждого ключа, двигаясь начиная от корня и переходя на левое нли правое поддерево каждого узла в зависимости от значения его ключа. Как мы видели,
n элементов можно организовать в бинарное дерево с высотой не более чем $\log n$. Поэтому для поиска среди $n$ элементов может потребоваться не более $\log n$ сравнений, если дерево идеально сбалансировано. Очевидно, что дерево - намного более подходящая форма организации такого множества да!ных, чем линейный список, который рассматривался в предыдущем разделе.


Рис. 4.25. Дерсво поиска с барьером.
Так как этот поиск проходит по. единственному пути от корня к искомому узлу, его можно запрограммировать с помощью итерации (4.46) :

$$
\begin{aligned}
& \text { function loc }(x: \text { integer; } t: \text { ref }): \text { ref; } \\
& \quad \text { var found: boolean; } \\
& \text { begin found }:=\text { false; } \\
& \text { while }(t \neq \text { nil }) \wedge \sim \text { found do } \\
& \text { begin } \\
& \quad \text { if } t \uparrow . k e y=x \text { then found }:=\text { true else } \\
& \quad \text { if } t \uparrow . k e y>x \text { then } t:=t \uparrow . \text { left } \text { else } t:=t \uparrow . \text { right } \\
& \text { end; } \\
& \quad l o c:=t \\
& \text { end }
\end{aligned}
$$

Функция $\operatorname{loc}(x, t)$ имеет значение nil, если в дереве с корнем $t$ не найдсно ключа со значснием $x$. Так же как в случає поиска по списку, сложность условия окончания цикла за-

ставыяет искать лучшее решение. При поиске по списку в конце его помещается барьер. Этот прием можно применить и в случае поиска по дереву. Использоваңие ссылок позволяет связать все термипальные узлы дерева с одним и тем же барьером. Полученная структура - это уже не просто́ дерево, а скорее, дерево, все листья которого прицеплены внизу к одниму якорюо (см. рис. 4.25). Барьер можно также считать общнм прсдставлением всех внешних (специальных) узлов, которыми дополняется исходное дерево (см. рис. 4.19). Полџченная в результате упрощенная процедура поиска описана ниже:

```
function \(\operatorname{loc}(x:\) integer; \(t:\) ref \():\) ref;
begin \(s \uparrow . k e y:=x ;\) (барьер)
 while \(t \uparrow\).key \(\neq x\) do
 if \(x<t \uparrow . k e y\) then \(t:=t \uparrow\).left else \(t:=t \uparrow . r i g h t ;\)
 \(l o c:=t\)
end
```

Отметим, что если в дереве с корнем $t$ не найдено ключа со значением $x$, то в этом случае $\operatorname{loc}(x, t)$ принимает значение $s$, т. е. ссылки на барьер. Ссылка на $s$ просто приннмает на ссбя роль ссылки nil.

### 4.4.3. Поиск по дереву с включением

Возможности техники динамического размещения переменых с доступом к ним черсз ссылки вряд ли полностью проявляются в тех прнмерах, где. построенная, структура данных остается неизменной. Более подходящими примерами служат задачи, в которых сама структура дерева изменяется, т. е. дерево растет и/или уменьшается во время выполнения программы. Это также случай, когда другие представления данных, такие, как массив, не подходят и когда дерево с элементами, связаныыми ссылками, как раз и есть подходящая структура.

Прежде всего рассмотрим случай постоянно растущего, но нькогда не убываюшего дерева. Хорошим примером этого является задача построения частотного словаря, которая уже разбнралась, когда речь шла о связанных списках. Вернемся к ней снова. В этой задаче задана последовательность слов и нужно установить число появлений каждого слова. Это означает, что, начиная с пустого дерева, каждое слово ищется в дереве. Если оно найдено, увеличивается его счетчик появлений, если нет - в дерево вставляется новое слово (с начальным значением счетчика, равным 1). Мы называем эту: задачу

поиском по дереву с включением. Предполагаются следующие описания типов:

$$
\begin{aligned}
& \text { type ref } \curvearrowleft \uparrow \text { word; } \\
& \text { word }=\text { record } \\
& \quad \text { key: integer; } \\
& \quad \text { count: integer; } \\
& \text { left, right: ref } \\
& \quad \text { end }
\end{aligned}
$$

Считая, кроме того, что у нас есть исходный файл ключей $f$, ? переменная root указывает на корень дерева поиска, мы можем записать программу следующим образом:

$$
\begin{aligned}
& \operatorname{reset}(f) ; \\
& \text { while } \neg \operatorname{eof}(f) \text { do }
\end{aligned}
$$

begin read ( $f, x)$; search( $x, r o o t$ ) end
Определение пути поиска здесь вновь очевидно. Но если он приводит в «тупик», т. е. к пустому поддереву, обоэначен-


Рис. 4.26. Включение в упорядоченное бинарное дерево.
ному ссылочным значением nil, то данное слово нужно вставить в дерево на место пустого поддерева. Рассмотрим, например, бинарное дерево, показанное на рис. 4.26, и включение в него слова «Paul». Результат показан пунктирными линиями на том же рисунке.

Целиком работа алгоритма приведена в программе 4.4. Процесс поиска представлен в виде рекурсивной процедуры.

Отметим, что ее параметр $p$ передается как параметр-переменная, а не как параметр-значение. Это существенно, поскольку в случае включения переменной должно присваивоться некоторое новое значение ссылке, которая перед этим имела значсние nil. Для входной последовательности, состояшей из 21 числа, которая обрабатывалась с помощью программы 4.3, построившей дерево на рис. 4.23, программа 4.4 строит бинарное дерево поиска, показанное на рис. 4.27.


Рис. 4.27. Дерево поиска, построенное с помощью программы 4.4.
Использование барьера вновь несколько упрощает задачу, что показано в (4.50). Понятно, что в начале программы переменная root должна инициироваться ссылкой на барьер, а не значением nil, и перед каждым поиском очередного слова нскомое значение $x$ должно присваиваться полю ключа в барьере

```
procedure search(x: integer; var p: ref);
begin
 if x< p\uparrow.key then search(x, p\uparrow.left) else
 if x>p\uparrow.key then search(x,p\uparrow.right) else
 if p}\not=s\mathrm{ then }p\uparrow\mathrm{ .count := p^.count +1 else
 begin (включение) new(p);
 with p\uparrow do
 begin key :=x; left :=s; right := s; count :=1
 end
 end
end
```

```
program treesearch(input,output);
[поиск с включением по двоичному дереву〕
type ref \(=\uparrow\) word;
 word \(=\) record key: integer;
 count: integer;
 left, right: ref;
 end ;
var root: ref; \(k\) : integer;
procedure printtree(w: ref; l: integer);
 var \(i\) : integer;
begin if \(w \neq\) nil then
 with \(w \uparrow\) do
 begin printtree(left, \(l-1\) 1);
 for \(i:=1\) to \(l\) do write(' \(\quad\);
 writeln(key);
 printtree(right, l+1)
 end
end ;
procedure \(\operatorname{search}(x:\) integer; var \(p:\) ref);
begin
 if \(p=\) nil then
 begin (слова нет в дереве; включить его)
 new (\(p\));
 with \(p \uparrow\) do
 begin key \(:=x\); count \(:=1\); left \(:==\) nil ; right \(:==\) nil
 end
 cnd else
 if \(x<p \uparrow\).key then \(\operatorname{search}(x, p \hat{p}\).lefi \()\) else
 if \(x>\mathrm{p} \uparrow . k e y\) then \(\operatorname{search}(x, p \uparrow . r i g h t)\) else
 \(p \uparrow\).count \(:=p \uparrow\).count +1
end \(\{\) search \(\}\);
begin root := nil;
 while \(\neg\) eof (input) do
 begin read \((k)\); \(\operatorname{search}(\dot{k}\), root \()\)
 end ;
 printtree(root,0)
end
```

Еще раз, теперь уже последний, построим альтернативну:о версию этой программы, отказавшись от использования рекурсни. Но сейчас избежать рекурсии не так просто, как в случае без включения, так как для того, чтобы производить включение, нужно помнить пройденный путь по крайней мере на один шаг назад. В программе 4.4 он запом!нается автоматически при использовании параметра-переменной.

Чтобы правильно привязать включаемую компоненту, мы должны иметь ссылку на ее предка и знать, включается она в качестве правого или левого ноддерева. Для этого вводятся две переменные: $p 2$ и $d$ (для направления):

```
procedure search(\(x\) : integer; root: ref);
 var \(p 1 . p 2: r e f ; ~ d:\) integer;
begin \(p 2:=\) root; \(p 1:=p 2 \hat{1}\).right; \(d:=1\);
 while \((p 1 \neq\) nil \() \wedge(d \neq 0)\) do
 begin \(p 2:=p 1\);
 if \(x<p 1 \hat{1} . k e y\) then
 begin \(p 1:=p 1 \hat{\jmath}\).left ; \(d:=-1\) end else
 if \(x\) ンン \(p 1 \uparrow\).key then
 begin \(p 1:=p 1\).right; \(d:=1\) end else
 \(d:=0\)
 end ;
 if \(\cdot d=0\) then \(p l \hat{i}\).count \(:=p 1 \hat{\uparrow}\).count \(\therefore 1\) else
 begin [включение] new(\(p 1\));
 with \(p l \hat{\vdots}\) do
 begin \(k e y^{\prime}:=x\); left \(:=\) nil \(;\) right \(:=\) nil ; count \(:=1\)
 end ;
 if \(d<0\) then \(p 2 \hat{\text {. }}\).left \(:=p 1\) else \(p 2 \uparrow\). right \(:=p 1\)
 end
end
```

Как и в случае поиска с включеннем по списку, используются две ссылки $p 1$ и $p 2$, такие, что в процессе понска $p 2$ всегда указывает на предикат $p \mathrm{l} \uparrow$. Чтобы удовлетворить этому условню в начале поиска, вводится вспомогательный фиктивный элемент, на который указывает root. Начало действительного дерева поиска обозначается ссылкой root $\uparrow$.right. Поэтому программа должна начннаться операторами

$$
\text { new (root }) ; \text { root } \uparrow . r i g h t:=\text { nil }
$$

вместо начального присваивания

Хотя задача этого алгорнтма - поиск, его можно пирименить и для сортировки. В самом деле, он очень напоминает мстод сортировки вкјючением, а поскольку вместо массива используется дерево, пропадает необходимость перемещения компонент выше места включення. Сортировку с помощьо дерева можно запрограммировать почти столь же эффективно, как н лучшие методы сортировки массивов. Но небходимо принять некоторые меры предосторожности. Разумеется, при появлении одинаковых ключей, теперь надо поступать иначе. Если в случае $x=p \uparrow . k e y$ алгоритм работает так же, как и в случае $x>p \uparrow . k e y$, то он представляет метод устойчивой сортировки, т. е. элементы с одинаковыми ключами появляются в той же последовательности при обычном обходе дерева, что и в процессе их включения в дерево.

Вообще говоря, имеются лучшие способы сортировки, но в задачах, где требуется и поиск, и сортировка, алгоритм поиска по дереву с включением весьма рекомендуется. Он действительно очень часто применяется в трансляторах и программах работы с банками данных для организации объектов, которые нужно хранить и искать в памяти. Подходящий пример - построение таблицы перекрестных ссылок для заданного текста. Исследуем эту задачу подробно.

Haша цель - написать программу, которая (читая текст $f$ и печатая его с добавлением последовательных номеров строк) собирает все слова этого текста, сохраняя при этом номера строк, в которых они встречались. Когда этот просмотр закончится, нужно построить таблицу, содержащую все собранные слова в алфавитном порядке, со списками соответствјюииих строк.

Очевндно, что дерево понска (называемое также лексикографическим деревом) лучше всего подходит для представления слов, встречаюшихся в тексте. Теперь каждый узел не только содержит слово в качестве значения ключа, но одноіременно представляет собой начало списка номеров строк. Каждую запись номера строки мы будем называть отлеткой. Следовательно, в этом примере мы встречаем п деревья, и линейные списки. Программа состоит из двух основных частсй (см. программу 4.5) : фазы чтення текста п построения дерева и фазы печати таблицы. Ясно, что последняя является частным случаем процедуры обхода дерева, где посещение каж. дого узла предполагает печать значения ключа слова и проход по связанному с ним спшску номеров строк (отметок). Кроме того, полезно привести еще некоторые пояснения, относящнеся к программе 4.5:

1. Словом считается любая последовательность букв и цифр, начннающаяся с буквы.
```
program crossref(f,output);
\{построение тиблицы перекрестных ссылок с использованием
двоичного дерева
const \(c 1=10 ; \quad\{\) длина слова \(\}\)
 с2 = 8; (количесппво слов в (троке)
 ; \(3=6\) 6; (количество цифр в числе)
 с4 \(=9999\); \{максимальный номер строки\}
type \(a l f a=:\) packed array \([1 \ldots c 1]\) of char;
 wordref = 个word;
 itemref \(=\hat{\imath} \mathrm{itcm} ;\)
 :rord \(=\) record key: wlu;
 first, last: itemref;
 left, right: wordref
 end ;
 item = packed record
 lno: 0...At;
 next: itemref
 end ;
var root: wordref;
 \(k, k 1:\) integer;
 n: integer;
 \{номер текущей строки\}
 id: alfa;
 \(f\) : text;
 a: array [l..ccl] of char;
procedure search (var wl: wordref);
 var \(w\) : wordref; \(x\) : itemref;
begin \(w:=w l ;\)
 if \(w=\) nil then
 begin new(w); new(x);
 with w个 do
 begin \(k e l^{\prime}:=\) id; left \(:=\) nil; right \(:=\) nil;
 first \(:=x ;\) last \(:=x\)
 end ;
 \(x \hat{1} \cdot \operatorname{lno}:=n ; x \hat{1} \cdot n e x t:=\) nil; wi :-.,
 end else
 if \(i d<w_{\uparrow} . k e y\) then \(\operatorname{search}(w \uparrow . l e f t)\) else
 if id \(>w_{\hat{1}}\). key then \(\operatorname{search}(w \uparrow . r i g h t)\) else
 begin new \((x) ; x \uparrow\). lno \(:=n ; x \uparrow\). next \(:=\) nil;
 \(w_{1}^{\hat{1}}\).last \(\uparrow\).ne.xt \(:=x ; w_{\hat{1}}^{\hat{\prime}}\).last \(:=x\)
 end
end \(\{\) search \(\}\);
procedure printtree(w: wordref);
```

```
 procedure printword(w: word);
 var l: integer; x: itemref;
 begin write (' ', w.ke:);
 x:=w.first; l:== 0;
 repeat if l== c2 then
 begin writeln;
 !:== 0; write (' ':c1+1)
 end ;
 l:=l}+1;\mathrm{ write (...lno:c3); x:=x^.next
 until }x=\mathrm{ nil;
 writeln
 end {printword};
begin if w}\not==\mathrm{ nil then
 begin printtree(w\hat{\imath}.left);
 printword(w\hat{i}); printtree(w\hat{\imath}.right)
 end
end {printtree};
begin root := nil; n:== 0; k1:=c1;
 page (output); reset(f);
 while -.enf(f) do
 begin if }n=c4\mathrm{ then }n:=0\mathrm{ ;
 n:== n+1; write (n:c3); {следующая строка)
 write (' ');
 while -.eoln(f) do
 begin (просмотр непустой строки)
 if f}\hat{}}\mathrm{ in ['A' . . ' ' '] then
 begin k:= 0;
 repeat if k<cl then
 begin k:=: k+1;a[k]:=f\uparrow:
 end;
 write (f\hat{)}:\mathrm{ :get (f)}
 until -(f个 in ['A' . . 'Z','0' . . '9']);
 if k}\geqk1\mathrm{ then }k1:==k\mathrm{ else
 repeat a[k1]:=' '; k1:=kl-1
 until k1 =: k;
 pack (a,1,id); search(root)
 end else
 begin (проверка на кавьччу или комментарий)
 if f\uparrow=='"' then
 repeat write(f\hat{)});\operatorname{get}(f)
 until f\hat{i}\ldots
 if f\hat{\imath}= '{' then
```

```
 repeat write(f }\uparrow);\operatorname{get}(f
 until \cdotf\uparrow= '}';
 write (f\uparrow); get (f)
 end
 end ;
 writeln; get(f)
 end ;
 pagc(output); printtrec(root);
end
```

Программа 4.5. Пострпение таблицы перекрестных ссылок.
2. В качестве ключа хранятся только первые $c l$ символов. Таким образом, два слова, у которых первые $c l$ символов не различаются, считаюотся одинаковыми.
3. Эти cl символов упаковываются в массив id (типа alfa). Если $c l$ достаточно мало, во многих вычислительных машннах такие упакованные массивы могут сравниваться с помощью одной команды.
4. Переменная $k 1$ - это индекс, который используется в следующем пнвариантном условин, касающемся буфера симbо:10в $a$ :

$$
a[i]=\prime \text { для } \quad i=k 1+1 \ldots c l .
$$

Это означает, что слова, состоящне из менее чем сl символов, дополняются соответствуюцим количеством пробелов.
5. Желательно, чтобы номера строк в таблице перекрестных ссылок печатались в возрастающєм порядке. Поэтому список отметок должен формироваться в том же порядке, в каком они печатаются. Это требование предполагает использование в каждом слове-узле двух ссылок, из которых олна указывает на первый, а вторая - на последний элемент списка отметок.
6. Сканер строится таким образом, что слова в кавычках и внутри комментариев не включаются в таблицу перекрестных ссылок; при этом предполагается, что кавычки и комментарии не переходят через концы строк.

В табл. 4.4 показан результат обработки некоторого текста программы.

### 4.4.4. У даление из дерева

Теперь мы переходим к задаче, обратной включению, а именно удалению. Нам нужно построить алгоритм для удаления узла с ключом $x$ из дерева с упорядоченными ключами. K сожалению, јдаление элемента обычно не так просто, как

Таблица 4.4. Пример распечатки, полученной в результате работы программы 4.5.

```
PROGRAM. PERMUTE (OUTPUT);
2 CONST N = 4;
3 VAR I: INTEGER;
4 A: ARRAY [1..N] OF INTEGER;
5
6 PROCEDURE PRINT;
7 YAR I: INTEGER;
8 BEGIN FOR 1 := 1 TO N DO WHiTE (A[I]:3):
9 WRITELN
10 END {PRINT} ;
12 PROCEDURE PERM (K: INTEGER);
13 VAR I,X: INTEGER;
14 BEGIN
15 IF K = 1 THEN PRINT ELSE
-16 BEGIN PERM (K-1);
17 FOR | := 1 TO K-1 DO
18 BEGIN X := A[I]; A[I] := A[K]; A[K] := X;
19 PERM (K-1);
21 END
22 END
23 END [PERM] ;
25 BEGIN
26 FOR | := 1 TO N DO A[I] := 1;
27 PERM (N)
28 END.
```

11
20
24

| ARRAY | 4 |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| A | 4 | 8 | 18 | 18 | 18 | 18 | 20 | 20 |
|  | 20 | 20 | 26 |  |  |  |  |  |
| BEGIN | 8 | 14 | 16 | 18 | 25 |  |  |  |
| CONST | 2 |  |  |  |  |  |  |  |
| DO | 8 | 17 | 26 |  |  |  |  |  |
| ELSE | 15 |  |  |  |  |  |  |  |
| END | 10 | 21 | 22 | 23 | 28 |  |  |  |
| FOR | 8 | 17 | 26 |  |  |  |  |  |
| IF | 15 |  |  |  |  |  |  |  |
| INTEGER | 3 | 4 | 7 | 12 | 13 |  |  |  |
| I | 3 | 7 | 8 | 8 | 13 | 17 | 18 | 18 |


| K | 12 | 15 | 16 | 17 | 18 | продолжения |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | 18 | 13 | 20 |
|  | 20 |  |  |  |  |  |  |  |
| N | 2 | 4 | 8 | 2\% | 27 |  |  |  |
| OF | 4 |  |  |  |  |  |  |  |
| OUTPUT | 1 |  |  |  |  |  |  |  |
| PERMUITE | 1 |  |  |  |  |  |  |  |
| PERM | 12 | 16 | 19 | 27 |  |  |  |  |
| PRINT | 6 | 15 |  |  |  |  |  |  |
| PROCEDURE | 6 | 12 |  |  |  |  |  |  |
| Program | 1 |  |  |  |  |  |  |  |
| THEN | 15 |  |  |  |  |  |  |  |
| TO | 8 | 17 | 26 |  |  |  |  |  |
| VAR | 3 | 7 | 13 |  |  |  |  |  |
| WRITELN | 9 |  |  |  |  |  |  |  |
| -WRITE | 8 |  |  |  |  |  |  |  |
| X | 13 | 18 | 18 | 20 | 20 |  |  |  |

включенне. Оно просто в случае, когда удаляемый элемент является терминальным узлом или имеет одюого потомка.

(a)

(b)

(c)

(d)

(e)

Рис. 4.28. Удаление из дерева.
Трудность заключается в удалении элементов с двумя потомками, поскольку мы не можем указывать одной ссылкой на два направления. В этом случае удаляемый элемент нужно заменить либо на самый правый элемент его левого подде-

рева, либо на самый левый элемент его правого поддеревд. Ясно, что такие элементы не могут иметь более одного потомка. Подробно это показано в рекурсивной процедуре, называемой delete (4.52). Она различает три случая:

1. Компоненты с ключом, равным $x$, нет.
2. Компонента с ключом $x$ имеет не более одного потомка.
3. Компонента с ключом $x$ имеет двух потомков.
```
procedure delete (\(x\) : integer; var \(p:\) ref);
 var \(q\) : ref;
 procedure del (var r: ref);
 begin if \(r \uparrow\).right \(\neq\) nil then \(\operatorname{del}(r \uparrow . r i g h t)\) else
 begin \(q_{\uparrow}^{\uparrow} . k e y:=r \uparrow . k e y ; q^{\uparrow}\).count \(:=\underset{\sim}{\uparrow} \uparrow\).count \(; \quad 1\)
```



```
 end
 end ;
begin \{delete\}
 if \(\boldsymbol{p}=\) nil then writeln (' WORD IS NOT IN. TREE') else
 if \(x<p \uparrow\).key then \(\operatorname{delete}(x, p \uparrow\).left \()\) else
 if \(x>p \uparrow\).key then \(\operatorname{delete}(x, p \uparrow . r i g h t)\) else
 begin \{delete \(p \uparrow\) \} \(q:=p\);
 if \(q \uparrow\).right \(=\) nil then \(p:=q \uparrow\).left else
 if \(q \uparrow . l e f t=\) nil then \(p:=q \uparrow\).right else del (\(q \uparrow\).left);
\{dispose \((q)\) \}
 end
end \{delete\} gonuerce sicuthesicict it gosci-
```



Вспомогательнал рекурсивная процедура del вызывается только в $3-$ сл слчае. Она «спускается» вдоль самой правой ветви левого поддерева удаляемого узла $q \uparrow$ и затем заменяет существенную информацию (ключ и счетчик) в $q \uparrow$ соответствуюцими значениями самой правой компоненты $r \uparrow$ этого левого поддерева, посте чего ог $r \uparrow$ можно освободиться. Процедуру dispose (q) можно рассматривать как обратную процедуре пеш (q). Последияя занимает память для новой ком. поненты, а псрвая может применяться для указання вычнслительной системе, что память, которую заннмает $q \uparrow$, можно освободить и потом вновь использовагь (некоторый вид чисткн памятіі).

Для иллюострации работы процедуры (4.52) мы отсылаем читателя к рис. 4.28. Задано начальное дерево (а), из которого последовательни удаляются узлы с ключами $13,15,5$, 10. Получєнные деревья показаны на рис. 4.28 ( $\mathrm{b}-\mathrm{e}$ ).

### 4.4.5. Анализ поиска с включениями по дереву

Довольно естественно испытывать некоторое недоверие к алгоритму поиска по дереву с включениями. Во всяком случае, до тех пор, пока мы не узнаем более детально о его работе, мы будем испытывать некоторые сомнения. Прежде всего многих программистов беспокоит то, что обычно мы не знаем, каким образом будет расти дерево, и не имеем никакого представления о форме, которую оно примет. Мы лишь можем догадаться, что оно, скорее всего, не будет идеально сбалансированным. Поскольку среднее число сравнений, нсобходимых для нахождения ключа в идеально сбалансированном дереве с $n$ узлами, приблизительно равно $h=\log n$, то число сравнений в дереве, сформированном этим алгоритмом, будет больше $h$. Но насколько больше?

Рис. 4.29. Распределение весов по ветвям.


Прежде всего легко найти наихудший случай. Допустим, что ключи поступают уже в строго возрастающем (или убывающем) порядке. Тогда каждый ключ вставляется непосредственно справа (или слева) от предшествующего, и построенное дерево оказывается полностью вырожденным, т. е. оно превращается в линейный список. В этом случае средние затраты на поиск равны $n / 2$ сравнениям. Очевидно, что в таком наихудшем случае алгоритм поиска малоэффективен, и, кажется, что наши сомнения оправдываются. Конечно, встает вопрос, насколько вероятен такой случай. Точнее, мы хотели бы знать длину $a_{n}$ пути поиска, усредненную по всем $n$ ключам и усредненную по всем $n$ ! деревьям, которые получаются в результате $n$ ! перестановок $n$ исходных различных ключей. Эта задача анализа алгоритмов оказывается достаточно простой и приводится здесь не только как типичный пример такого анализа, но и из-за практической важности полученного результата.

Пусть даны $n$ различных ключей со значениями 1, 2, ... ..., n. Предположим, что они появляются в случайном порядке. Вероятность того, что первый ключ, который становится корневым узлом, будет иметь значение $i$, есть $1 / n$. Его левое поддерево в конце работы будет содержать $i-1$ узлов, а правое поддерево - $n-i$ узлов (см. рис. 4.29). Пусть средняя длина пути в левом поддереве обозначается через
$a_{i-1}$, а в правом поддереве $a_{n-i}$. Вновь предполагается, что все возможные перестановки оставшихся $n$ - 1 ключей равновероятны. Средняя длина пути в дереве с $n$ узлами равна сумме произведений уровня какдого узла и вероятности обращения к нему. Если предположить, что все узлы ищутся с одинаковой вероятностью, то

$$
\begin{equation*}
a_{n}=\frac{1}{n} \sum_{i=1}^{n} p_{i} \tag{4.53}
\end{equation*}
$$

где $p_{i}$ есть длина пути до узла $i$.
В дереве на рис. 4.29 мы разделяем узлы на три класса:

1. $i-1$ узлов в левом поддереве имеют среднюю длину пути $a_{:-1}+1$.
2. Корень имеет длину пути, равную 1.
3. $n-i$ узлов в правом поддереве имеют среднюю длину пути $a_{n-i}+1$.

Следовательно, (4.53) можно представить в виде суммы трех слагаемых:

$$
\begin{equation*}
a_{n}^{(i)}=\left(a_{i-1}+1\right) \frac{i-1}{n}+1 \cdot \frac{1}{n}+\left(a_{n-1}+1\right) \frac{n-i}{n} \tag{4.54}
\end{equation*}
$$

Искомая величина $a_{n}$ теперь получается как среднее $a_{n}^{t}$ для всех $i=1, \ldots, n$, т. е. для всех деревьев с ключами $1,2, \ldots, n$ в корне:

$$
\begin{align*}
a_{n} & =\frac{1}{n} \sum_{i=1}^{n}\left[\left(a_{i-1}+1\right) \frac{i-1}{n}+\frac{1}{n}+\left(a_{n-1}+1\right) \frac{n-l}{n}\right]= \\
& =1+\frac{1}{n^{2}} \sum_{i=1}^{n}\left[(i-1) a_{i-1}+(n-i) a_{n-l}\right]=  \tag{4.55}\\
& =1+\frac{2}{n^{2}} \sum_{i=1}^{n}(i-1) a_{l-1}=1+\frac{2}{n^{2}} \sum_{i=1}^{n-1} i \cdot a_{l}
\end{align*}
$$

Уравнение (4.55) представляет собой реккурентное соотношение для $a_{n}$ вида $a_{n}=f_{1}\left(a_{1}, a_{2}, \ldots, a_{n-1}\right)$. Отсода мы можем получить более простое реккурентное соотношение вида $a_{n}=f_{2}\left(a_{n-1}\right)$ следующим образом:

Нз (4.55) непосредственно получаем
(1) $a_{n}=1+\frac{2}{n^{2}} \sum_{i=1}^{n-1} i \cdot a_{l}=1+\frac{2}{n^{2}}(n-1) a_{n-1}+\frac{2}{n^{2}} \sum_{l=1}^{n-2} i \cdot a_{l}$,
(2) $a_{n-1}=1+\frac{2}{(n-1)^{2}} \sum_{l=1}^{n-2} i \cdot a_{l}$.

Умножив (2) на $(n-1 / n)^{2}$, мы получим
(3) $\frac{2}{n^{2}} \sum_{i=1}^{n-2} i \cdot a_{i}=\frac{(n-1)^{2}}{n^{2}}\left(a_{n-1}-1\right)$

и, подставив (3) в (1), получим

$$
\begin{equation*}
a_{n}=\frac{1}{n^{2}}\left(\left(n^{2}-1\right) a_{n-1}+2 n-1\right) \tag{4.56}
\end{equation*}
$$

Оказывается, что $a_{n}$ можно представить в нерекурсивной, закрытой форме с помощью гармонической функции

$$
\begin{align*}
H_{n} & =1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n} \\
a_{n} & =2 \cdot \frac{n+1}{n} H_{n}-3 \tag{4.57}
\end{align*}
$$

[Недоверчивый читатель может проверить, что (4.57) удонлетворяет рекурсивному соотношению (4.56).]

Из формулы Эйлера (используя константу $\gamma \cong 0,577$ )

$$
H_{n}=\gamma+\ln (n)+\frac{1}{12 n^{2}}+\ldots
$$

мы получаем для больших $n$ соотношение

$$
a_{n} \cong 2[\ln (n)+\gamma]-3=2 \ln (n)-c .
$$

Поскольку средняя длина пути в идеально сбалансированном дереве приблизительно равна

$$
\begin{equation*}
a_{n}^{\prime}=\log (n)-1 \tag{4.58}
\end{equation*}
$$

опуская постоянное слагаемое, которое становится незначнтельным для больших $n$, мы получаем

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{a_{n}}{a_{n}^{\prime}}=\frac{2 \ln n}{\log n}=2 \cdot \ln 2=1.386 \tag{4.59}
\end{equation*}
$$

Что дает нам результат этого анализа (4.59)? Из него мы можем сделать вывод, что, сгараясь всегда строить идеально сбалансированное дерево вместо «случайного» дерева, получаемого программой 4.4, мы могли бы, по-прежнему предполагая, что все ключи появ.пяются с равной вероятностыо, ожкидать среднего выигры!џла в цлине пути поиска не более $39 \%$. Ударение следует сделать на слове «среднего», поскольку, разумеется, выигғыш может быть намного больше в неудачном случае, когда формируемое дерево полностью вырождается в список, но вероятность этого случая невелика (если все лерестановки $n$ ключей равновероятны). В связи

с этим следует отметить, что ожидаемая средняя длина пути в «случайном» дереве растет тоже строго логарифмически по отношснию к числу его узлов, несмотря на то что в хулшем случас длина пути увеличивается в линейной завंисимости.

Цифра $39 \%$ накладывает ограничения на объем дополнительных затрат, которые имеет смысл вкладывать в какуюолибо доперестройку структуры дерева при включении элементов. Разумеется, отношение $r$ между частотой обращений (понска) к узлам (информации) и частотой включений суцестеенно влияет на границу, до достижения которой эти затраты выгодны. Чем больше этот коэффициент, тсм больше выиюрыш от такой процедуры перестройки. Цифра $39 \%$ достаточно пнзка, и в большинстве случасв выигрыш от такой процедуры по сравнению с простым алгоритмом включения в дерево не оправдывает затрат, если только число узлов и соотношение между поиском и включением не оказываются велики (или если можно не опасаться худщего случая).

### 4.4.6. Сбалансированные деревья

Нз прсдыдущих рассуждений ясно, что процедура включения, восстанавливающая идеальную сбалансированность структуры дерева, вряд ли будет выгодна, поскольку такое восстановление после случайного включения -- довольно сложная операция. Но ее можно упростить, если дать менее строгое определение «сбалансированности». Такой несовершенный критерий сбалансированности может•потребовать более прастой перестройки дерева при небольшом уменьшении срецнего быстродействия поиска.

Одно такое определение си́алансированности было дано Адельсоном-Вельским и Јlандисом [4.1]. Критерий сбалансированности следующий:

Дерево является сбалансированным тогда и только тогда, когда для каждого узла высота его двух поддеревьев раз. личается не более чем на 1.

Дерсвья, удовлетворяющие этому условию, часто называют АВЛ-деревьями (по фамилиям их изобретателей). Мы будем называть их просто сбалансированньмии деревьями, так как их критерий сбалансированности оказывается нанболее подходящим. (Отметим, что все идеально сбалансированные деревья являются также АВЛ-сбалансированными.)

Это определение не только простое, но также приводит к легко выполнимой балансировке, а средияя длина поиска остается практически такой же, как у идеально сбалансырованного дерева.

Со сбалансированными деревьями можно выполнять следующие операции за $O(\log n)$ единицу времени даже в худшем случае:

1. Найти узел с данным ключом.
2. 'Включить узел с данным ключом.
3. Удалить узел с данным ключом.

Это явлиется прямым следствием теоремы, доказанной Адельсоном-Вельским и Ландисом, которая утверждает, чго сбалансированнос дерево никогда не будет более чем на 45 \% выше соответствующего идеально сбалансированного дерева независимо от количества узлов. Если мы обозначим высоту сбалансированного дерева с $n$ узлами чсрез $h_{b}(n)$, то

$$
\begin{equation*}
\log (n+1) \leqslant h_{b}(n) \leqslant 1.4404 \cdot \log (n+2)-0.328 \tag{4.60}
\end{equation*}
$$

Разумеется, оптимум достигается, если дерево идеально сбалансировано, при $n=2^{k}-1$. Но какова структура наихудшёго АВЛ-сбалансированного дерева?

، Чтобы найти максимальную высоту $h$ всех сбалансированных деревьев с $п$ узлами, возьмсм фиксированное $h$ и попробуем построить сбалансированное дерево с миннмальным количеством узлов. Такая стратегия рекомендуется, поскольку, как и в случае минимального $h$, это значение может быть достигнуто тслько при некоторых, определенных значениях $n$.


Рис. 4.30. Деревья Фибсначчи высотой 2, 3 и 4.
Обозначим такое дерево с высотой $h$ через $T_{h}$. Очевидно, что $T_{0}$ - пустое дерево, а $T_{1}$ - дерсво с одним узлом. Чтобы построить дерево $T_{h}$ для $h>1$, мы зададим корень с двумя поддеревьями, которые также имеют минимальное число узлов. Следовательно, поддеревья также являются $T$-деревьями. Очевидно, что одно поддерево обязано иметь высоту $h-1$, а другому позволено иметь высоту на единицу меньше, т. е. $h-2$. На рис. 4.30 показаны деревья высотой 2, 3 и 4. Поскольку принцип их организацни напоминает принцип построения чисел Фибоначчи, подобные деревья называются деревьями Фибоначчи. Они определяются следующим образом:

1. Пустое дерево есть дерево Фибоначчи с высотой 0 .
2. Один узел есгь дерево Фибоначчи с высотой 1 .
3. Если $T_{h-1}$ и $T_{h-2}$ - деревья Фибоначчи с высотой $h-1$ и $h-2$, то $T_{h}=\left\langle T_{h-1}, x, T_{h-2}\right\rangle$ есть дерево Фибоначчи с высотой $h$.
4. Никакие другие деревья не являются деревьями Фиблначчи.
Число узлов в $T_{\text {h }}$ опрсделяется простым рекуррентным соотношением:

$$
\begin{align*}
& N_{0}=0, \quad N_{1}=1, \\
& N_{h}=N_{h-1}+1+N_{h-2}, \tag{4.61}
\end{align*}
$$

$N_{i}$ - это количества узлов, для которых можно получить наихудший случай (верхнюю границу $h$ ) из (4.60).

### 4.4.7. Вкпючение в сбалансированное дерево

Посмотрим, что может произойти, когда в сбалансированное дерево включается новый узел. Пусть дан корень $r$ с левым и правым поддеревьями $L$ и $\underset{\sim}{R}$. Предположим, что в $L$


Рис 4.31. Сбалансированное дерево.
включается новый узел, вызывая увеличение его высоты на 1 . Возможны три случая:

1. $h_{L}=h_{R}: L$ и $R$ становятся неравной высоты, но критерий сбалансированности не нарушается.
2. $h_{L}<h_{R}: L$ н $R$ приобретают равную высоту, т. с. сбаланснрованность даже улучшается.
3. $h_{L}>h_{R}$ : критерий сбалансированности нарушается, и дерево нужно перестраивать.
Рассмотрим дерево на рис. 4.31. Узлы с ключами 9 и 11 можно вставить без балансировки; дерево с корнем 10 становится односторонним (случай 1), а с корнем 8 улvчшает свою сбалансированность (случай 2). Однако включение узлов 1, 3, 5 или 7 требует последующей баланснровки.

При внимательном изучснии этой ситуации можно обнаружить, что имеются лишь две существенно различные возмож-

ности, требуюшие индивидуального подхода. Оставшиеся могут быть получены симметричными преобразованиями этих двух. Случай 1 определяется включением ключа 1 или 3 в дерево на рис. 4.31, случай 2 - включением узла 5 или 7.


Рис. 4.32. Несбалансированность, возиикающая при вклюлении.
Эти два случая в общем внде показаны на рис. 4.32, где поддеревья обозначены прямоугольниками, а увеличение высоты при включении указано перечеркнутыми квадратами. Простые преобразования этих двух структур восстанавливают


Рис. 4.33. Восстаповление балаиса.
нужную сбалансированность. Их результат приведен на рис. 4.33; отметим, что допускаются перемещения лишь в вертикальном направлении, в то время как относительное горизонтальное расположение показанных узлов и поддеревьез должно оставаться без изменений.

Алгоритм включения и балансировки полностью определяется способом хранения информацни о сбалансированности дерева. Крайнее решение состоит в хранении этой информа-

ции полностью неявно в самой структуре дерева. Но в этом случае показатель сбалансированности узла должен заново вычисляться каждый раз, когда узел затрагивается включением, что приводит к чрезвычайно высоким затратам. Другая крайность - явно хранить показатель сбалансированности в информации, связанной с каждым узлом. Тогда определение (4.48) типа узла расширяется до

$$
\begin{align*}
& \text { type node }=\text { record key: integer; } \\
& \text { count: integer; } \\
& \text { left,right: ref; }  \tag{4.62}\\
& \text { bal: -1.. }+1 \\
& \text { end }
\end{align*}
$$

В дальнейшем мы будем интерпретировать показатель сбл лансированности узла как высоту его правого поддерева минус высота его левого поддерева и будем строить алгоритм, исходя из узлов описанного в (4.62) типа.

В общих чертах процесс включения узла состоит из последовательности таких трех этапов:

1. Следовать по пути поиска, пока не окатжется, что ключа нет в дереве.
2. Включить новый узел и определить новый показатель сбалансированности.
3. Пройти обратно по пути поиска и проверить показатель сбалансированности у каждого узла.

Хотя этот метод требует некоторой избыточной проверки (ссли сбалансированность устансвлена, то для гиредков соответствующего узла ее проверять уже не надо), мы будем вначале придерживаться этой, очевидно, корректной схемы, так как ее можно реализовать с помощью простого расширения уже разработанной процедуры поиска с включением из программы 4.4. Эта процедура описывает операцию пощка для каждого отдельного узла, и благодаря рекурсивной формулировке ее можно дополнить операцией, выполняемой «ио дороге назад вдоль пути поиска». На каждом шаге должна передаваться информация о том, увеличилась ли высота поддерева (в которое произведено включение). Поэтому мы добавим к списку параметров процедуры булевскую переменную $h$, означающую «высота поддерева увеличи.лась». Очевидно, что $h$ должна быть параметром-переменной, поскольку используется для передачи результата.

Теперь предположим, что алгоритм возвращается к узлу с левой ветви (см. рис. 4.32) с указанием, что ее высота уве-

личилась. Мы должны различать три возможные ситуации в зависимости от высоты поддеревьев перед включением:

1. $h_{L}<h_{R}, p \uparrow . b a l=+1$, предыдущая несбалансированность в $p$ уравновешивается.
2. $h_{L}=h_{R}, p \uparrow . b a l=0$, вес склоннлся висво.
3. $h_{L}>h_{R}, p \uparrow . b a l=-1$, необходима балансировка.

В третьем случае показатель сбалансированности корня левого поддерева (скажем, pl $\uparrow . b a l$ ) определяет, который из случаев (1 нли 2 на рнс. 4.32) пмеет мссто. Если левое поддерево этого узла тоже выне правого, то мы имеем дело со сіучаем 1, иначе - со слјчаем 2. (Убедитесь, что в этом случае левос поддерево корня не может иметь показатель сбалансированности, равный 0.) Необходимые операции балансировки полностью заключаются в обмене значениями ссылок. Фактически ссылки ои́меннваются значениями по кругу, что прнводит к однократномソ или двјкратном! «повороту» двух или трех !злов. Кроме «вращення» ссылок следует также изменить соотвегствующие показатели сбалансированности узлов. Подроб́но это показано в процедуре поиска, включения и балансировки (4.63).

Принцип работы алторитма показан на рис. 4.34. Рассмотрим бннарное дерево (а), которое состоит только пи двух јзлов. Включсние ключа 7 вначале дает несбаяансированное дерево (т. е. линейный список). Его балансировка требуст однократного правого $(R R)$ поворота, давая в результате ॥деально сбалансированное дерево (b). Последующее включение узлов 2 и 1 дает нссбалансированное поддерево с корнем 4. Это поддерево балансируется однократным левым ( $L L$ ) поворогом (d). Далее включение ключя 3 сразу нарушает критерий со́алансированности в корневом узле 5 . Сбалансированность теперь восстанавливастся с помощыю более сложного двукратного поворота налево и направо ( $L R$ ); результатом явяяется дерево (е). Тсперь при следующем включенни потерять сбалансированность может лишь узел 5. Действительно, вкіюочение уз.та 6 до.тьно привестн к четвертому внду балансировкн, описанному в (4.63): двукратному повороту направо и на, тево $(R L)$. Окончательюос дерево показано на рис. 4.34 (f). С эффектнвностью алгорнтма включения в сбалансированное дерево связалы следјющие два особо нитересных вопроса:

1. Если все $n$ ! перестановок $n$ ключей появляются с одинаковой вероятностыо, то какова ожидаемая высота формщруемого сбалашсированного дерева?
2. Какова вероятность, что включение приведет к балаисировке?
```
procedure search(x: integer; var \(p: r e f ;\) var \(h\) : boolean);
 var \(p 1, p 2\); ref; \(\quad\{h=\) folse \(\}\)
begin
 if \(p=\) nil then
 begin \{слова нет в дереве; включить его\}
 new(p); \(h:=\) true;
 with \(p \uparrow\) do
 begin key \(:=x\); count \(:==1\);
 left \(:=\) nil ; right \(:=\) nil ; bal \(:==0\)
 end
 end else
 if \(x<p \hat{\wedge}\).key then
 begin \(\operatorname{search}\left(x, p^{\uparrow} . l e f t, h\right)\);
 if \(h\) then \{выросла левая ветвь\}
 case \(p \uparrow . b a l\) of
 1: begin \(p \uparrow . b a l:=0 ; h:=\) false
 end ;
 \(0: p_{\hat{\jmath}}^{\hat{i}} b a l:=-1\);
 -1: begin (балансировка) \(p 1:=p \uparrow\).left;
 if \(p 1 \uparrow \cdot b a l=-1\) then
 begin (однократныий LL-noворот)
 \(p \uparrow . l e f t:=p l \uparrow . r i g h t ; p 1 \uparrow . r i g h t:=:=p ;\)
 \(p \hat{\uparrow} \cdot b a l:=0 ; p:=p l\)
 end else
 begin (двукраіпный LR-nоворот) \(\quad\) (\(2:=p 1 \uparrow . r i g h t ;\)
 \(p 1 \uparrow . r i g h t:=p 2 \uparrow . l e f t ; p 2 \uparrow . l e f t:=p 1 ;\)
 \(p \hat{p}\).left \(:=p 2 \hat{p}\).right ; p2个.right \(:=p\);
 if \(p 2 \uparrow . b a l=-1\) then \(p \uparrow . b a l:=+1\) else \(p \dagger . b a i:=0\);
 if \(p 2 \uparrow . b a l:=+1\) then \(p I \uparrow . b a l:=-1\) else \(p 1 \uparrow . b a l:=0\);
 \(p:=p 2\)
 end ;
 \(p \uparrow . b a l:=0 ; h:=\) false
 end
 end
 end else
 if \(x>p \uparrow\).key then
 begin \(\operatorname{search}(x, p \uparrow . r i g h t, h)\);
 if \(h\) then \{выросла правая ветвь\}
 case \(p \uparrow . b a l\) of
 \(-1:\) begin \(p_{\hat{\jmath}}\). bal \(:=0 ; h:=\) false
 end ;
 0: \(p_{\hat{\imath}} . b a l:=+1\);
 1: begin \{балансировка\} \(p 1:=p \hat{\imath}\).right;
```

```
 if \(p 1 \uparrow . b a l=+1\) then
 begin \{однократный \(R R\)-поворот)
 \(p \uparrow . r i g h t:=p 1 \uparrow . l e f t ; p 1 \uparrow\).left \(:=p ;\)
 \(p \uparrow . b a l:=0 ; p:=p 1\)
 end else
 begin \{двукратный RL-nоворот\} \(p 2:=p 1 \uparrow\).left;
 \(p 1 \uparrow\).left \(:=p 2 \uparrow\).right \(; p 2 \uparrow\). right \(:=p 1\);
 \(p \uparrow\).right \(:=p 2 \uparrow\).left \(; p 2 \uparrow\).left \(:=p\);
 if \(p 2 \hat{\wedge} . b a l=-1\) then \(p \hat{\uparrow}\).bal \(:=-1\) else \(p \uparrow . b a l:=0\);
 if \(p 2 \uparrow . b a l=-1\) then \(p 1 \uparrow . b a l:=-1\) else \(p 1 \uparrow . b a l:=0\);
 \(p:=p 2\)
 end ;
 \(p \uparrow . b a l:=0 ; h:=\) false
 end
 end
 end
 else
 begin \(p \uparrow\).count \(:=p \uparrow\). count \(+1 ; h:=\) false
 end
end \(\{\) search\}
```

Математический анализ этого сложного алгоритма пока не произведен. Эмпирические проверки оправдывают предположение, что ожндаемая высота сбалансированного дерева, которое строится в (4.63), равна $h=\log (n)+c$, где $c$ - малая константа ( $c \cong 0,25$ ). Это значит, что на практике АВЛ-сбалансированные деревья ведут себя так же, как идеально сбалансированные деревья, хотя с ними намного легче работать. Эмпирически можно также предположить, что в среднем бадансировка необходима приблизительно один раз на каждые два включения. При этом однократный и двукратный повороты одинаково вероятны. Пример на рис. 4.34 явно был тщательно подобран, чтобы показать как можно больше поворотов при миннмальном числе включений.

Из-за с.тожності операций балансировки счнтается, что сбалансированныс деревья следует использовать лишь в том случае, когда поиск информации происходит значительно чаще, чем включение. Это, в частности, верно потому, что ソзлы таких деревьев поиска обычно для экономии памяти реализуются как плотно упакованные записи. «Скорость» нзменения показателей сбалансированности, занимающих только по два разряда каждый, и обращения к ним часто является решающим фактором, определяющим эффективность

операции перебалансировки. Эмпирические оценки говорят, что сбалансированные деревья теряют большую часть свосй привлекателыпости, если нужна плотная упаковка записи.

(a)

(d)

(b)

(e)

(c)

(f)

Рис. 4.34. Включение в сбалансированное дерево.
В самом деле, трудно превзойти простой и очевидный алгоритм включения в дерево!

### 4.4.8. Удаление из сбалансированного дерева

Учитывая наш опыт с удалением нз дерева, мы можем предположить, что в случае сбалансированных деревьев удаление будет еще более сложным, чем включение. Это верно, хотя операция балансировки остается в основном такой же, что и при включепии. В частности, балансировка состоит из одпократного или двукратного поворота узлов.

Удаление из сбалансированного дерева основано на алгоритме (4.52). Простыми случаями являются удаление терминальных узлов и узлов с одним потомком. Если же узел, который нужно удалить, имеет два поддерева, мы вновь будем заменять его самым правым узлом левого поддерева. Как и в случае включения (4.63), добавляется булевский пара-метр-переменная $h$, означающий, что «высота поддерева уменьшилась». Bопрос о перебалансировке рассматривается только при $h=$ true. Значение $\operatorname{tr}$ ие присваивается $h$ при нахождении и удалении узла или если сама балансировка уменьшаст высоту поддерева. В программе (4.64) мы вводим две
(снмметричные) операцин балансировки в внде процедур, так как в алгоритме удаления к ним обращаются несколько раз. Отметим, что balance 1 нспользуется, когда уменьшается высота левого, а balance 2 - правого поддерева.

(a)

(c)


(g)

(b)

(d)


(h)
$\rho_{\text {нс. }} 4.35$. Удаления из сбалансированноги дерева.

Работа нашей процедуры нллюстрируется на рис. 4.35. Если задано сбалансированное дерево (а), то последовательное удаменне уэыов с ключами $4,8,6,5,2$, 1 и 7 дает деревья (b),..., (h).

Удаление клоча 4 само по себс просто, так как он представляет собой терминальный узел. Однако при этом появ』яется несбалансированность в узле 3. Его бапанісировка тре-

бует однократного поворота налево. Балансировка вновь становится необходимой после удаления узла 6. На этот раз правое поллсјево корня балансируется однократным поворотом направо. У'даление узла 2 , хотя само по себе просто, гак как он пмеет тотько одного потомка, вызывает сложный двікратный поворот направо и налево. И четвертый случай: лвџ̣кратный поворот налево и направо вызывается удалением узла 7, который прежде заменяется самым правым элементом левого поддереэа, т. е. јзлом с ключом 3.

```
procedure delete(x: integer; var \(p\) : ref; var \(h_{1}\) : boolean);
 var \(q\) : ref; \(\quad\{h=\) false \(\}\)
 procedure balancel(var p: ref; var \(h\) : boolean);
 var \(p 1, p 2: r c f ; b 1, b 2:-1 \ldots+1 ;\)
 begin \{ \(\ell\)-true, левал ветвв стала короче \(\}\)
 case \(p_{\uparrow}\).bal of
 \(-1: \quad p_{\hat{\jmath}} . b a l:=0\);
 0 : begin \(p_{\hat{\jmath}} . b a l:=+1 ; h:=\) fulse
 end ;
 1: begin \(\{\) балансировка\} \(p 1:=p \uparrow . r i g h t ; b 1:=p 1 \uparrow . b a l ;\)
 if \(b 1 \geq 0\) then
 begin \{однократный \(R R\)-noвороוn\}
 \(p_{\hat{i}}^{\hat{.} . r i g h t}:=p 1 \uparrow . l e f t ; p 1 \uparrow . l e f t:=p ;\)
 if \(b 1=0\) then
 begin \(p \uparrow \cdot b a l:=+1 ; p 1 \uparrow . b a l:=-1 ; h:=\) false
 end else
 begin \(p_{\hat{\jmath}} . b a l:=0 ; p 1 \hat{\jmath} . b a l:=0\)
 end ;
 \(p:=p 1\)
 end else
 begin \{двукратный \(R L\)-nоворот \(\}\)
 \(p_{2}:=p 1 \hat{1} . l c f t ; b 2:=p 2 \hat{\prime} . b a l ;\)
 \(p 1 \hat{\imath} . l e f t:=p 2 \hat{\imath} . r i g h t ; p 2 \hat{\imath} . r i g h t:=p 1 ;\)
 \(p_{i}^{\hat{\prime}}\).right \(:=p 2 \hat{i} \cdot l e f t ; p 2 \hat{j} \cdot l e f t:=p\);
 if \(b 2=\div 1\) then \(p_{\hat{\jmath}} . b a l:=-1\) clse \(p_{1}^{\prime} . b a l:=0\);
 if \(b 2=-1\) then \(p 1 \hat{j} . b a l:=-1\) clse \(p 1 \uparrow . b a l:=0\);
 \(p:=p 2 ; p 2 \hat{\jmath} \cdot b a l:=0\)
 end
 end
 end
end \{balance 1\};
```

procedure balance2(var $p:$ ref; var $h$ : boolean);
var $p 1, p 2:$ ref; $b 1, b 2:-1 \ldots+1$;
begin \{ $h \div$ trие, правая ветвь стала короче $\}$
case $p \uparrow$.bal of
1: $p_{\uparrow} . b a l:=0$;
0 : begin $p \uparrow$.bal $:=-1 ; h:=$ false end ;
-1 : begin \{балансировка $\} p 1:=p \hat{\imath}$.left; $b 1:=p 1 \hat{\imath} . b a l ;$
if $b 1 \leq 0$ then
छеgin .(однократный $L L$-поворот)
$p \uparrow$. left $:=p 1 \hat{\uparrow}$.right $; p 1 \hat{1}$. right $:=p ;$
if $b 1=0$ then
begin $p_{\uparrow}$ :bal $:=-1 ; p 1 \uparrow . b a l:=+1 ; l:=$ false
and else
begin $p_{\mathrm{i}}^{\hat{2}} . b a l:=0 ; p 1 \hat{\mathrm{C}} . \mathrm{bal}:=0$
end;
$p:=p 1$ end else
begin \{двукратный LR-nоворот\}
$p 2:=-p 1 \uparrow$. .ight $; b 2:=p 2 \uparrow . b a l ;$


if $b 2=-1$ then $p \uparrow . b a l:=+1$ else $p \uparrow . b a l:=0$;
if $b 2=+1$ then $p 1 \uparrow . b a l:=-1$ else $p 1 \uparrow . b a l:=0$;
$p:=p 2 ; p 2 \uparrow . b a l:=0$
end
end
end
end \{balance2\};
procedure del(var r: ref; var $h$ : bootean);
begin $\{h=$ false $\}$
if $r \uparrow$.right $\neq$ nil then
begin $\operatorname{del}(r \uparrow . r i g h t, h)$; if $h$ then balance2 $(r, h)$
and else
\}egin $q \uparrow . \dot{k e y}:=r_{\hat{i}}^{\wedge}$. key; $q \uparrow$. count $:=\boldsymbol{r} \uparrow$.count; $r:=r \uparrow$.left $; h:=$ true
end
end ;
Vegin \{delcte\}
if $p=$ nil then
begin writell ('KEY IS NOT IN TREE'); $h:=$ false end else

```
 if \(x<p \uparrow\).key then
 begin delete \((x, p \uparrow\).left,\(h)\); if \(h\) then \(\operatorname{balance}(p, h)\)
 end else
if \(x>p \uparrow\).key then
 begin \(\operatorname{delete}(\dot{x}, p \uparrow . r i g h t, h)\); if \(h\) then balance \(2(p, h)\)
 end else
begin (удаление \(p \uparrow)^{-} q:=p\);
 if \(q \uparrow\).right \(=\) nil then
 begin \(p:=q \uparrow\). left \(; h:=\) true
 end else
 if \(q \uparrow\). .left \(=\) nil then
 begin \(p:=q \uparrow\).right; \(h:=\) true
 end else
 begin \(\operatorname{del}(q \uparrow . l e f t, h)\);
 if \(h\) then \(\operatorname{balance} 1(p, h)\)
 end ;
 \{dispose(q)\}
end
end \{delete\}
```

Очсвидно, что удаление элемента в сбалансированном дсреве может также быть выполнено за (в худшем случае) $O(\log n)$ шагов. Тем не менее не следует упускать из виду существенную разницу в выполненни процедур включения и удаления. В то время как включение одного ключа может вызвать самое большее один поворот (двух или трех узлов), удаление может потребовать поворота в каждом узле вдоль пути поиска. Рассмотрим, например, удаление самого право:о узла в дереве Фибоначчи. Удаление любого узла в дереве Фибоначчи вызывает уменьшение его высоты, а удаление самого правого узла требует максимального числа поворотов. Таким образом, мы полуиили самое неудачное сочетание: нанхудший выбор узла в наиболее плохом варианте сбалансированного дерева! Но насколько вооб!це вероятны повороты? Удивытельный результат эмпирических проверок показал, что в то время как один поворот вызывается приблизительно каждыми двумя включениями, тем не менее при удалении мы имеем дело с одним поворотом на целых пять удалений. Поэтому удаление из сбалансированного дерева примерно так же просто - или так же трудно, - как и включсние.

### 4.4.9. Оптимальные деревья поиска

До сих пор в наших рассуждениях об организации деревьев поиска мы исходили из предположения, что частота обращения ко всем узлам одинакова, т. е. что все ключи

с равной вероятностью становятся аргументами поиска. Повиднмому, это - наилучшее допущение, если нет сведений о распределении частоты обращений. Но существуют случаи (скорее исключение, чем правило), когда имеется информация о вероятности обращений к отдельным ключам. Для таких случаев обычно характерно, что ключи остаются постоянными, т. е. дерево поиска не подвергается ни включенияи, ни удалениям, а сохраняет постоянную структуру. Типичным примером служит сканер транслятора, который для каждого слова (идентификатора) определяет, является ли оно


Рис. 4.36. Деревья поиска с тремя узлами.
зарезервированным (ключевым) словом. Статистические измерения, проведенные на сотнях транслируемых программ, могут в этом случае дать точные сведения о частоте появления отдельных ключей и, следовательно, о вероятности обрамцения к ним.

Предположим, что $p_{i}$ - вероятность обращения к узлу $i$ в дереве поиска:

$$
\begin{equation*}
\operatorname{Pr}\left\{x=k_{i}\right\}=p_{l}, \quad \sum_{l=1}^{n} p_{l}=1 \tag{4.65}
\end{equation*}
$$

Теперь мы хотим организовать дерево понска так, чтобы обшіее число Шагов поиска, подсчитанное для достаточно больни):о количества опытов, было минимальным. Для этого припинем каждому узлу в определении длины пути (4.34) некоторый вес. Узлы, к которым часто обращаются, считаются тяжелыми, а посещаемые редко - легкими. Тогда взвешенная Өлина пути есть сўмма всех путей от корня к каждому узлу, умноженных на вероятность обрацения к этому узлу:

$$
\begin{equation*}
P_{I}=\sum_{l=1}^{n} p_{i} h_{l} \tag{4.66}
\end{equation*}
$$

$h_{i}$ - уровень узла $l$ (или его расстояние от корня +1 ). Наша цель-минимизировать взвеєиенную длину пути для данного распределения вероятностей.

В качествс примера рассмотрим множество ключей $1,2,3$ с вероятностями обращения $p_{1}=1 / 7, p_{2}=2 / 7$ и $p_{3}=4 / 7$. Эти три ключа можно расположить в виде деревьев понска пятью различными способами (см. рис. 4.36).

Взвешенные длины пути этих деревьев вычисляются в соответствии с (4.66):

$$
\begin{aligned}
& P_{I}^{(d)}=\frac{1}{7}(1 \cdot 3+2 \cdot 2+4 \cdot 1)=\frac{11}{7}, \\
& P_{I}^{(b)}=\frac{1}{7}(1 \cdot 2+2 \cdot 3+4 \cdot 1)=\frac{12}{7}, \\
& P_{I}^{(c)}=\frac{1}{7}(1 \cdot 2+2 \cdot 1+4 \cdot 2)=\frac{12}{7}, \\
& P_{I}^{(d)}=\frac{1}{7}(1 \cdot 1+2 \cdot 3+4 \cdot 2)=\frac{15}{7}, \\
& P_{I}^{(e)}=\frac{1}{7}(1 \cdot 1+2 \cdot 2+4 \cdot 3)=\frac{17}{7} .
\end{aligned}
$$

Итак, в этом примере оптимальным оказывается не идеа.тьно сбалансированное дерево, а вырожденное.

Пример сканера в трансляторе сразу наводит на мысзь, что эту проблему следует рассматривать при нссколько более общем условии: слова, встречающиеся в исходном тексте, пе всегда являются зарезервированными словами; в действительности это скорее исключение, чем правило. Выяснение того, что данное слово не является ключом в дереве поиска, можно рассматривать как обращение к гипотетическому «специальному узлу», вставленному между меньшим и большим ключами (см. рис. 4.19) и имеющему соответствующую данну виешнего пути. Если известна также вероятность $q_{i}$ того, что аргумент поиска $x$ лежит мсжду двумя ключами $k_{i}$ и $k_{i+!}$, го это может существенно повлиять на структуру оптимального дерева поиска. Поэтому мы обобщим задачу, учитывая и неудачные поиски.

Общая взвешенная длина имеет теперь следующий вид:

$$
\begin{equation*}
P=\sum_{i=1}^{n} p_{i} h_{i}+\sum_{j=0}^{m} q_{i} h_{l}^{\prime} \tag{4.67}
\end{equation*}
$$

где

$$
\sum_{i=1}^{n} p_{i}+\sum_{j=0}^{m} q_{j}=1
$$

$h_{i}$ - уровень внутреинего узла $i, h_{j}^{\prime}$ - уровень висшнего уз:ла j. Среднюю взвснениую длину пути можно назвать «ценой» дерева поиска, так как она является мерой ожидиемого количества затрат на поиск. Дерево поиска, структура которопо дает минимальную цену для всех деревьев с заданным мно-

жеством ключей $k_{i}$ и вероятностями $p_{i}$ и $q_{i}$ обращений, назы виется оптимальньм деревом.

Для нахождения оптимального дерева не обязательно, чтобы сумма всех $p$ и $q$ равнялась 1 . На самом деле значения вєпоятностей обычно находятся с помощью экспериментов, в іоторых подсчитываются обращения к узлам. Вместо вен роятностей $p_{i}$ и $q_{i}$ мы в дальнейшем будем использовать показатели частоты обращений, которые обозначим как
$a_{i}=$ число поисков с аргументом $x$, равным $k_{i}$,
$j_{j}=$ число поисков, когда аргумент $x$ лежит между $k_{j}$ и $h_{i+1}$
По соглашению $b_{0}$ есть число поисков, когда $x$ меньше $k_{1}$, а $b_{n}$ - частота поисков, когда $x$ больше $k_{n}$ (см. рис. 4.37).


Ряс. 4.37. Дерево поиска с указанием частоты обращсний.
В дальнейшем мы будем через $P$ обозначать общую взвешенн! ю длину пути вместо средней длины пути:

$$
\begin{equation*}
P=\sum_{i=1}^{n} a_{i} h_{l}+\sum_{j=0}^{n} b_{l} h_{l}^{\prime} . \tag{4.68}
\end{equation*}
$$

1так, благодаря использованию э. периментально измеренных частот мы не только избавились от необходимости вычислять вероятность, но и получили возмо: 'ость иметь дело только с целыми числами при нашем понске оптимального дерера.

Гсли учесть, что число возможных конфигураций из $n$ узлоз растет экспоненциально вместе с $n$, задача нахождения опт:!мума при больших $n$ кажется совершенно безнадежной. Одияко оптимальные деревья имеют одно ъажное свойство, которое помогает их находить: все их поддеревья тоже являются оптимальными. Например, если дерево на рис. 4.37 оптимально для данных $a$ и $b$, то поддерево с ключами $k_{3}$

и $k_{4}$, как известно, также оптимально. Эта особенность иредполагает алгоритм, который систематически находит все бо́лышие и большие деревья, начиная с отдельных узлов как нанменьших возможных поддеревьев. Таким образом, дерево растет «от листьев к корнюо», что является, поскольку мы привыкли рисовать деревья сверху вниз, направлением «сніну вверх» [4.6].

Основой нашего алгоритма служит уравнение (4.69). Пусть $P$ - взвешенंная длина пути дерева, а $P_{L}$ и $P_{R}$ - взвешенные длины левого и правого поддеревьев его корня. Понятно, что $P$ - это сумма $P_{L}, P_{R}$ и числа случаев, когда понск проходит по единственному пути к корню, что является просто общим числом $W$ случаев поиска.

$$
\begin{gather*}
P=P_{L}+W+P_{R}  \tag{4.69}\\
W=\sum_{i=1}^{n} a_{i}+\sum_{l=0}^{n} b_{j} \tag{4.70}
\end{gather*}
$$

Мы называем $W$ весом дерева. Тогда его средняя длина пути будет $P / W$.

Из этих рассуждений видно, что необходимо обозначить, веса и длины пути поддеревьев, состояцих из какого-то чнсла ключей. Пусть $w_{i j}$ обозначает вес, а $p_{i j}$ - длину пути оптимальнюго поддерева $T_{i j}$, состоящего из узлов с клюочами $\boldsymbol{k}_{i+1}$, $k_{i+2}, \ldots, k_{j}$. Эти величины определяются рекуррентными соотношениями (4.71) и (4.72):

$$
\begin{array}{ll}
w_{l l}=b_{l} & (0 \leqslant i \leqslant n), \\
w_{l j}=w_{l, l-1}+a_{i}+b_{j} & (0 \leqslant i<j \leqslant n), \\
p_{l i}=w_{l i} & (0 \leqslant i \leqslant n) \\
p_{l!}=w_{i j}+\operatorname{minil}_{i<k \leqslant 1}\left(p_{l, k-1}+p_{k j}\right) & (0 \leqslant i<j \leqslant n) . \tag{4.72}
\end{array}
$$

Последнсе равенство непосредственно следует из (4.69) и определения олтимальности.

Поскольку существует приблизительно (1/2) $n^{2}$ значений $p_{i j}$ и так как (4.72) требует выбора среди $0<j-i \leqslant n$ значений, поиск мннимума займет приблизительно $(1 / 6) n^{3}$ операций. Кнут показал, что при помощи следующих рассуждений можно избавиться от множителя $n$ и таким образом сохранить практическую ценность этого алгоритма.

Пусть $r_{i j}$ - значение $k$, при котором достигается минимум в (4.72). Можно ограничить поиск $r_{i j}$ намного меньшим интервалом, т. е. уменьшить число оценочных шагов $j-i$. Это основано на следующем наблюдении: если мы нашли корень $r_{i j}$ оптнмального поддерева $T_{i j}$, то ни добавление к дерену справа какого-либо узла, ни удаление его самого левого узла

ні.ьодд не смогут сдвинуть этот корень влево. Это свойство можно представить как

$$
\begin{equation*}
r_{i, j-1} \leqslant r_{i j} \leqslant r_{i+1, j} \tag{4.73}
\end{equation*}
$$

чา ограннчивает поиск возможных значений $r_{i j}$ диапазоном $r .-1, \ldots, r_{i+1, i}$ и дает общее чнсло элементарных шагов $O\left(n^{2}\right)$. Теперь можно построить алгоритм оптимизации со всэми деталями. Мы нспользуем следующие определения $\%$ - оптимальные деревья, состоящие из узлов с клюочами $k_{i+1}, \ldots, k_{j}$ :
$1 u_{i}:$ частота поиска $k_{1}$.
2. $b_{i}$ : частота поиска аргумента $x$, лежащего между $\boldsymbol{k}_{i}$ и $\boldsymbol{k}_{j+1}$.
$3 \dot{u}_{i j}: \sec T_{i j}$.
4. $p_{: j}$ : взвешенная длина пути в $T_{i j}$.
5. гіі: индекс корня $T_{i j}$.

「с.эи дан

$$
\text { type index }=0 \ldots n
$$

мы описываем следующие массивы:
$a:$ array $[1 . . n]$ of integer;
$b:$ array $[$ inde $x]$ of integer;
$p, w:$ array $[$ inde $x$, index] of integer;
$r:$ array $[$ index, index] of index

Предположим, что вес $w_{i j}$ получен из $a$ и $b$ очевидным способом (см. 4.71). Рассмотрим теперь w как аргумент процедуры, которую мы должны написать, а $r$ будем считать ее результатом, так как $r$ полностыо описывает структуру. Переменнуо р можно рассматривать как промежуточный результат. Начиная рассмотрение с наименьших возможкных поддеревьев, 'г. с. не содержащих вообще никаких узлов, мы переходим ко все бо́льшим и бо́льшим деревьям. Обозначим ширину $j$ - $i$ поддерева $T_{i j}$ через $h$. Тогда мы можем простым способом найти значения $f_{i i}$ для всех деревьев с $h=0$ согласно (4.72) :

$$
\begin{equation*}
\text { for } i:=0 \text { to } n \text { do } \rho[i, i]:=w[i, i] \tag{4.75}
\end{equation*}
$$

В случае $h=1$ мы имеем дело с деревьями, состоящими из одного узла, который, разумсется, является корнем (рис.4.38):

$$
\begin{align*}
& \text { for } i:=0 \text { to } n-1 \text { do } \\
& \text { begin } j:=i+1 ; p[i, j]:=p[i, i]+p[j, j] ; r[i, j]:=j  \tag{4.76}\\
& \text { end }
\end{align*}
$$

Заметим, ито $i$ обозначает левую, а $j$-правую границу ниндексов в рассматриваемом дереве $T_{i j}$. Для случаев $h>1$ мы используем оператор цикла с параметром $h$, принимающим значения от 2 до $n$, причем случай $h=n$ перекрывает все дерево $T_{0, n}$. В каждом случае минимальная длина пути $p_{i /}$ и соответствующий индекс корня $r_{i j}$ определяются простым


Рнс. 4.38. Оптимальное дерево с одним узлом.
оператором цикла с параметром; индекс $k$ принимает значения на интервале, заданном в (4.73):
or $h:=2$ to $n$ do
for $i:=0$ to $n-h$ do
begin $j:=i+h$;
«найти $m$ и $\min =$ минимум $(p[i, m-1]+p[m, j])$ для всех $m$, таких, что $r[i, j-1] \leqslant m \leqslant r[i+1, j] » ; p[i, i]:=$ $\min +w[i, j] ; r[i, j]:=m$
end
Детальное описание оператора, заключенного в кавычч:и, можно найти в программе 4.6. Средняя длина пути в $T_{0, \text {, }}$ теперь определяется коэффициентом $p_{0, n} / w_{0, n}$, а его корень есгь узел с индексом $r_{0, n}$.

Из алгоритма (4.77) видно, что затраты на определение оптимальной структуры имеют порядок $O\left(n^{2}\right)$, объем необходимой памяти составляет также $O\left(n^{2}\right)$. Это неприемлемо, если $n$ очень велико. Поэтому крайне желательны алгоритмы с большей эффективностыю. Один нз них - алгоритм, разработанный Ху и Таккером [4.5], который требует только $O(n)$ объема памяти и $O(n \cdot \log n)$ вычислений. Но он подходиг только для случаев, когда ключи имеют нулевую частоту ( $a_{i}=0$ ), т. е. когда учитываются только неудачные случаи поиска. Другой алгоритм, также требующий $O(n)$ единиц памяти и $O(n \cdot \log n)$ вычислений, был описан Уолкером

и Готлибом [4.11]. Однако с помощью этого алгоритма можно построить не оптимальное, а лишь почти оптимальное дередо. Поэтому он может основываться на эвристических принципах. Основная идея следующая:

Предположим, что узлы (настоящие и специальные) распределены на линейной шкале с весами, соответствующими ! ч частотам (или вероятностям) обращения. Найдем узел, б.тнжайший к «центру тяжести». Этот узел называется центроидом и имеет индекс

$$
\begin{equation*}
\frac{1}{w}\left(\sum_{i=1}^{n} i \cdot a_{l}+\sum_{j=0}^{n} j \cdot b_{l}\right) \tag{4.78}
\end{equation*}
$$

окрутленный до ближайшего целого. Если все узлы имеют одинаковый вес, то корень искомого оптимального дерева очевидным образом совпадает с центроидом и - как нам представляется - в большинстве случаев будет находиться в б.тизком соседстве с цеитроидом. Тогда на ограниченном иџтервале ищется локальный оптимум, после чего эта же процедура применяется к двум полученным поддеревьям. Вероятность того, что корень находится очень близко от цептроида, возрастает с увеличением размера дерева $n$. Қак только поддеревья достигают «обозримого» размера, их оптимум можно определять с помощьо описанного выше точного алгоритма.

### 4.4.10. Изображение древовидной структуры

Теперь мы перейдем к сопутствующей задаче: как сформировать выходной файл, который изображает структуру дерева в достаточно ясной, графической форме, если в нашем распоряжении имеется только обычное печатающее устройство? Иначе говоря, мы хотели бы нарисовать дерево, печатая кточи в виде узлов и соединяя их соответственно горизонта.тьыыми и вертнкальными линнями.

На устройстве построчной печати, входные данные которо:о прсдставляются в виде текстового файла, т. е. в виде !оследовательности символов, мы можем «двигаться» лишь строго последовательно слева направо и сверху вниз. Поэтому кажется разумным вначале построить представление дерева, которос близко соответствует его топологической структуре. Затем па следуощем этапе нужно упорядоченно отобразигь эту картину на печатаемую страницу и вычислить точные копрдинаты узлов н дуг.

Для решення первой задачи мы можем воспользоваться нашим опытом работ с алгоритмами формирования дерева, и поэтому мы без колебаний выбираем рекурсивное решение рекурсивно поставленной задачи. Мы строим функцию, назы-

ваемую tree, подобную той, которая использовалась в программе 4.3. Параметры $i$ и $j$ ограничивают значения индексов узлов, которые принадлежат дереву. Его корень определяется как узел с индексом $r_{i j}$. Но прежде всего нам нужно описать тип переменных, представляющих узлы. Они должны содержать две ссылки на поддеревья и ключ узла. Для целей, которые будут обсуждаться на следующем этапе, вводятся также два дополнительных поля, называемые pos и link. Описания типов показаны в (4.79), и процедура-функция включена в программу 4.6.

$$
\begin{align*}
\text { type ref }= & \uparrow \text { node; } \\
\text { node }= & \text { record } \begin{array}{l}
\text { key: alfa; } \\
\\
\\
\\
\\
\text { pos: lineposition; } \\
\text { left, right, link: ref }
\end{array}
\end{align*}
$$

Отметим, что эта процедура подсчитывает число формп!руемых узлов с помощью глобальної переменної-счетчнка $k$. $k$-му узлу присваивается $k$-й ключ, а поскольку ключи упоаядочены в алфавитном порядке, $k$, умноженнос иа постоянный масштабный коәффициент, дает горизонтальную координату каждого ключа; это значсние сразу заломинается вместе с остальной информациєй. Заметим также, что мы отказались от соглашения, что ключи являются целыми числами, и сч!п таем, что они относятся к типу alfa, означающему масснвы символов определенного (максималиного) размера, на которых задан алфавитный порядок.

Чтобы ясно представить ссбе, џто мы теперь получили, рассмотрим рис. 4.39. Если дано множество из $n$ кліочей н вычисляемая матрица $r_{i j}$, то опсраторы

$$
k:=0 ; \quad \text { root }:=\operatorname{tree}(0, n)
$$

сформируют связанную древовидную структуру с горизоитальными позициями узлов, содержацнмисл в их записях, и вертикальными позициями, неявно заданными их уровнєм в дереве.

Телерь мы можем псрейти к следующему этапу: отображснію дерева на сграницу. В этом случае мы должны продвисаться строго последовательно от уровня корня вниз. На каждом інаге обрабатывается один ряд (уровень) узлов. Но какім образом мы находим узлы, лежание в одном ряду? Для этой цели, а именно связывания вместе узлов, находя, щихся на одном уровне, ранес мы ввели полс записи, называемие link. Устанавливасмые связи показаны пуиктирными линиями на рис. 4.39. На каждом эาапе работы предлоліа гается наличие цепочки, связывающей узыы, которые нужнј налечатать в одном горизонтальном ряду. Мы называсм эту

щепочку c:urront (текушей). Рассматривая каждый узел, мы определяем его потомков (если они пмеются) и связываем их во вторую цепочку', которую мы называем next (следуюњей). Когда мы продвигаемся на один уровень вниз, цепочка ncxt становится цспочкой current, а next присваивается знацсние nil.


Рис. і.j9. Дсрево, нарисоваиное с помощьо программы 4.6.
Подробно этот алгоритм онисан в программе 4.6. Следуговин заммечания могут проясн!ть некоторые моменты:

1. Спискн (цепочки) !3:10в, находянихся на одном уровне, чормируются слева направо, в результате самый тевый
 џагаться в поряаке появления, синсок нужно инвертировать. Это пронсходит в тот момент, когда цегочка next стаilosincs! цепо'кой current.
2. Строкл, в которої псчатаются клнчи (главная строка), содсржнт также горнзонта,тьные части «дуг» (см. рис. 4.40). Перемениье $u 1, u 2, u^{3}, ~ и 4$ обозначают начаиьные и коньч-

3. Каждой гиавної стиоке предшсетізюг три строки, изображающие вертнкатнные части дуг.
 составляющие - это процепра постросния оптимальноюо де-
 изоо́ражения дерева с заданнюми нидексами јзлов $r$. Вся





в частности написанных на языке Паскаль. Такая программа вначале читается, ее идентификторы и зарезервированные слова распознаются с јстановкой счетчиков $a_{:}$и $b_{j}$ при нахождении зарезервированного слова $k_{i}$ и идентификаторов мсжду $k_{i}$ и $k_{i+1}$. После печати частотной статистики программа лереходит к вычислению длины пути идеально сбалансированного дерева, определяя корни его поддеревьев. Госте этого печатается средняя длина пути и нзображается полученное дерево.

Таб́лица 4.5. Частоты появлешй ключевых слов

| 4 | 7 ARRAY |
| ---: | :---: |
| 14 | 27 BEGIN |
| 19 | 0 CASE |
| 15 | 2 CONST |
| 8 | 5 DIV |
| 0 | 0 DOWNTO |
| 0 | 20 DO |
| 0 | 8 ELSE |
| 0 | 28 END |
| 1 | 0 FILE |
| 0 | 12 FOR |
| 0 | 2 FUNCTION |
| 0 | 0 GOTO |
| 9 | 13 IF |
| 23 | 2 IN |
| 208 | 0 LABEL |
| 22 | 0 MOD |
| 17 | 10 NIL |
| 24 | 7 OF |
| 17 | 2 PROCEDURE |
| 0 | 1 PROGRAM |
| 53 | 1 RECORD |
| 6 | 8 REPEAT |
| 16 | 0 SET |
| 10 | 13 THEN |
| 0 | 12 TO |
| 6 | 2 TYPE |
| 1 | 8 |
| 39 | 5 UNTIL |
| 0 | 8 |
| 0 | 0 WHILE |
| 37 | 203 |
| 549 |  |

```
program optimallree(input,output);
const }n:=31; {число ключей}
 kln = 10; {максимальная длина ключча)
type index=0..n;
 alfa = packed array [l..kln] of char;
var ch: char;
 k1, k2: integer;
 id: alfa; {идентификатор или служебное слово)
 buf: array [l..kln] of char; {буфеер символов)
 key: array [1..n] of alfa;
 i,j,k: integer;
 a: array [1..n] of integer;
 b: array [index] of integer;
 p,w: array [index,index] of integer;
 r: array [index,index] of index;
 suma, sumb: integer;
function baltree(i,j: index): integer;
 var k: integer;
begin k:= (i+j+1) div 2;r[i,j]:=k;
 if }i\geqj\mathrm{ then baltree :=b[k] else
 baltree := baltree(i,k-1)+b\operatorname{baltree}(k,j)+w[i,j]
end {baltree};
procedure opttree;
 var x, min: integer;
 i,j,k,h,m: index;
begin {аргумент: w, результат: p,r}
 for }i:=0\mathrm{ to }n\mathrm{ do p[i,i]:= w[i,i]; {щирина дерева }h=0
 for }i:=0\mathrm{ to }n-1\mathrm{ do {щирина дерева }h=1
 begin j:=i+1;
 p[i,j]:=p[i,i]+p[j,j]; r[i,j]:=j
 end;
 for }h:=2\mathrm{ to }n\mathrm{ do {h-ширина текущего дерева}
 for i:= 0 to n-h do {i-левый индекс текущего дерева)
 hegin j:=i+h; {j-правый индекс текущего дерева)
 m:=r[i,j-1]; min :=p[i,m-1] + p[m,j];
 for k:=m+1 to r[i+1,j] do
 begin x:=p[i,k-1] + p[k,j];
 if }x<m\mathrm{ min then
 begin m:=k; min :=x
 end
 end;
 p[i,j]:=min}+w[i,j];r[i,j]:=
 end
```

end \{opttree\};
procedure printtree;
const $l w=120 ; \quad$ [размер строки АЦПУ)
type ref $=$ 个node;
lineposition $=0 . .1 w$;
node $=$ record key: alfa;
pos: lineposition;
left, right, link: ref
end ;
yar root, current, next: ref; $q, q 1, q 2:$ ref; $i, k$ : integer; u, u1, u2, u3, u4: lincposition;
function $\operatorname{tree}(i, j:$ index): ref;
var $p: r e f ;$
begin if $i=j$ then $p:=$ nil else
begin new' $(p)$;
$p^{\uparrow}$. Icft $:=\operatorname{tree}(i, r[i, j]-1) ;$
$p_{\uparrow}^{\uparrow} \cdot \operatorname{pos}:=\operatorname{trunc}((l w-k \ln ) * k /(n-1))+(k \ln \operatorname{div} 2) ; k:=k+1 ;$ $p \uparrow . k e y:=k e y[r[i, j]] ;$ $p \uparrow$.right $:=\operatorname{trec}(r[i, j], j)$ end ; tree : $=p$
end ;
begin $k:=0$; root $:=\operatorname{trce}(0, n)$;
current $:=$ root $;$ root $\hat{\wedge}$.link $:=$ nil;
next $:=$ nil;
while current $\neq$ nil do
begin \{продвижение вниз, счачала печать вертикальных строк\}
for $i:=1$ to 3 do
begin $u:=0 ; q:=$ current;
repeat $u 1: \leadsto q^{\hat{!}}$.pos;
repeat write(' '); $u:=u=u-1$
until $u=u$;
write(' $\mid$ ') $; u:=u+1 ; q:=q \uparrow \cdot \operatorname{link}$
until $q=$ nil;
writeln
end ;
\{печать главной строки; сборка $\tau<x$ потомков, спускаясь по узлам текущего списка, и формирование следующего списказ

```
 \(\ddot{q}:=\) current; \(u:=0\);
 repeat unpack(\(q \uparrow\).key, buf, 1);
 \{иентральный ключ\} \(i:=k \ln\);
 while buf \([i]=\) ' ' do \(i:=i-1\);
 \(u 2:=q \uparrow \cdot p o s-((i-1) \operatorname{div} 2) ; u 3:=u 2+i\);
 \(q 1:=q \uparrow . l e f t ; q 2:=q \hat{\jmath}\). right;
 if \(q 1=\) nil then \(u 1:=u 2\) else
 begin \(u 1:=q 1 \hat{i}\).pos; \(q 1 \uparrow . \operatorname{link}:==:\) !ext ; next \(:=q 1\)
 end ;
 if \(q 2=\) nil then \(u 4:=u 3\) else
 begin \(u 4:=q 2^{\hat{2}} \cdot p o s-1 ;(b 2 \hat{-} \cdot m k:=\) next \(;\) next \(:=q 2\)
 end ;
 \(i:=0\);
 while \(u<u 1\) do begir writct \({ }^{\prime}\) '); \(u:=u+1\) end ;
 while \(u<u 2\) do begin write \(\left({ }^{\prime}-\prime\right) ; u:=u+1\) end ;
 while \(u<u 3\) do begin \(i:=i+1\); write(buf[i]); \(u:=u+1\) end;
 while \(u<u 4\) do begin write \(\left({ }^{\prime}-1\right) ; u:=u+1\) end ;
 \(q:=q \uparrow \cdot \operatorname{link}\)
until \(q=\) nil;
writeln;
(инвертирование следующего списка и превращение его
в текуший\}
current \(:=\) nil;
while next \(\neq\) nil do
 begin \(q:=\) next; next \(:==q\) 个.lirk;
 \(q \hat{\jmath} \cdot\) link \(:=\) clirrent \(;\) current \(:=q\)
 end
 end
end \{printtree\};
xigin \{инициация пабыиць ключей и счстчиков\}
 key[1] := 'ARRAY'; key[2]:= 'BEGIN';
 key [3] := 'CASE'; key[4] :=: 'CONST';
 key[5]:='Div'; key[6]:='DOWNTO':
 key[7] := 'DO'; \(\operatorname{key[8]:==~'ELSE';~}\)
 key[9] :== 'END'; .kej[10] :== 'FILE';
 key[11] := 'FOR'; key[12]:== 'FUNCTION';
 key[13] := 'GOTO'; ke! [14]:== 'IF';
 \(k e y[15]:=\) 'IN'; ker[16] :=:- 'IASEL';
 key[17] :=: 'MOD'; kel[1S] :=:= 'NIL';
 key[19] := 'OF'; hel[20] : \(:=\) ': PROCEDURE';
 \(k e y[21]:=\) 'PROGRAM'; ke, [22] : =: 'RECORD';
 \(k e y[23]:=\) 'REPEAT'; key[24] :--- 'SET';
```



```
key[27] := 'TYPE'; key[28]:= 'UNTLL';
key[29]:=='VAR'; key[30]:= 'WHILE';
key[31]:= 'WITH';
for i:=1 to n do
 begin a[i]:=0; b[i]:=0
 end ;
b[0]:= 0; k2 :== kln;
{просмотр входного тексіпа и определение а и b)
while \negcof(input) do
begin read(ch);
 if ch in ['A' . . 'Z'] then
 begin (идентификатор или служебное слово) k1::= 0;
 repeat if kl<kln then
 begin k1:== k1+1; buf[k1]:=ch
 end;
 read(ch)
 until דch in ['A'.. 'Z', '0'.. '9']);
 if k1\geqk2 then k2:= k1 else
 repeat buf[k2]:=' '; k2:=k2-1
 until k2= k ;
 pack(buf,1,id);
 i:= 1; j:=n;
 repeat k:=(i+j) div 2;
 if key[k]\leqid then i:= k+1;
 if key[k]\geq id then j:= k-1;
 until i>j;
 if key[k]=id then a[k]:=a[k] +1 else
 begin }k:=(i+j)\mathrm{ div 2; b[k] := b[k]+1
 end
 end clse
 If ch=:"'% then
 repeat read(ch) until ch = '"'\prime else
 if ch }=\mathrm{ = '{' then
 repeat read(ch) until ch= ' ''
end;
writell ('Keys and frequencies of occurrence:)!
suma :=0; sumb :== b[0];
for i:=- 1 to n do
begin suma := suma+a[i]; sumb := sumb -i-b[i];
 writeln(b[l-1],a[i],' ', kc.|[i])
end;
writeln(b[n])s
```

```
 writeln(' ———' ;
 иriteln(sumb, suma);
 (определение ш из а и \(b\))
 for \(i:=0\) to \(n\) do
 begin \(x^{\prime}[i, i]:=b[i]\);
 for \(j:=i+1\) to \(n\) do \(w[i, j]:=w[i, j-1]+a[j]+b[j]\)
 end ;
 write('AVERAGE PATH LENGTH OF BALANCED TREE= ');
 writeln(baltrec \((0, n) / w[0, n]: 6: 3)\); printtrec;
 opttree;
 write('AVERAGE PATH LENGTH OF OPtimal TREE=');
 writcln(\(p[0, n] / w[0, n]: 6: 3)\); printfree;
 \{исследөвание только спужебных слов, установив \(b=0\))
 for \(\boldsymbol{i}:=0\) to \(\boldsymbol{n}\) do
 begin \(w[i, i]:=0\);
 for \(j:=i+1\) to \(n\) do \(w[i, j]:=w[i, j-1]+a[j]\)
end ;
opttree;
writeln('OPTIMAL TREE CONSIDERING KEYS ONLY');
printtres
end
```

Программа 4.6. Построение оптимального дерева понска.
На третьем этапе вызывается процедура opllrce, которзя строит оптимальнос дерево понскэ; затем последнее изображается. И наконец, те же процедуры используются для построения и изображения оптимального дерева с учетом лишь частот обращений к ключам.

В табл. 4.5 и на рис. 4.40-4.42 приведены результаты, полученные программой 4.6 при обработке ее собственного текста. Различия трех рисунков показываюот, что сбалансированное дерево нельзя счнгать даже близким к оптимальному и что частоты поиска незарезервированных слов сильно влияют на выбор оптимальной структуры.

## 4.5. СИЛЬНО ВЕТВЯЩИЕСЯ ДЕРЕВЬЯ

До сих пор мы ограничивали наши рассуждения деревьям!!, в которых каждый узел имсет самое большее двух потомков, т. е. бинарными деревьямн. Этого вполне достаточно, если, например, мы хотим представить ролственные отношения с предпочтсннем «восходящей линии», т. е. когда для каждого человека указываются его родители. В конце концов, ни у кого не бывает более двух родителей. Но как быть тому,

кто предпочитает изображать «нисходяцую линию»? Ему придется столкнуться с тем фактом, что некоторые люди имеют более двух детей, поэтому его деревья будут содержать узлы со многими ветвями. За неимением лучшего термина мы будсм называть их сильно ветвящциися деревьями.

Разумеется, в таких структурах нет ничего необычного, мы уже встречали все средства программирования и описания данных, нужные для того, чтобы справиться с такими ситуациями. Если, например, задана абсолютная верхняя граница количества детей (что, по-видимому, является неким футуристическим предположением), то можно представить детей в виде компоненты-массива в записи, представляющей человска. Но если число детей у разных людей сильно варьируется, то это может привести к неэкономному расходу памяти. В этом случае намного правильнее расположить потомство в виде линейного списка со ссылкой в записи родителей на самого младшего (или самого старшего) отпрыска. Возможное описание типа для такого случая показано в (4.80), а возможная структура данных приведена на рис. 4.43.

$$
\begin{aligned}
& \text { type person }= \text { record name: alfa; } \\
& \text { sibling: } \uparrow \text { person; } \\
& \text { offspring: } \uparrow \text { person }
\end{aligned}
$$

Мы замечаем, что при повороте этого рисунка на $45^{\circ}$ он будет выглядеть как идеальное бинарное дерево*). Но это неверная точка зрения, поскольку функционально эти две ссылки имеют совершенно различное значение. Обычно нельзя обращаться с братом, как с сыном, поэтому так не следует поступать даже при описании данных. Этот пример легко можно было бы распространить и на более сложные структуры данных, включив еще какие-то компоненты в запись для каждого лица; таким образом можно было бы изображать другие родственные связи. Одна из таких связей, которую нельзя в принципе вывести из отношений братства и потомства, - это связь между мужем и женой или обратное отношение отцовства и материнства. Такая структура быстро разрастается в сложный, реляционный «банк данных», который может отображаться в несколько деревьев. Алгоритмы, работаюшие с такими структурами, тесно связаны с их описаниями; поэтому не имеет смысла определять для них какиелибо общие правила или методы работы.

Однако имеется практически очень важная область применения сильно ветвяшихся дерєвьев, которая представллст

[^9]

общий интерес. Это - формирование и использование крупномасштабных деревьев поиска, в которых необходимы и включения, и удаления, но для которых оперативная память недостаточно велика или слишком дорогостояща, чтобы использовать ее для долговременного хранення.

Прсдположим, что узлы дерева должны храниться на виешием запоминающем устройстве, таком, как диск. Введсиные в этой главе динамические структуры данных особенно подходят и для хранения на внешних запоминающих устройствах. Принципиально новое - это лишь то, что ссылки представляют собой адреса па диске, а не адреса оперативной


Рис. 4.44. Бинарное дсрево, разделенное на «страницы».
памяти. Если множество данных, состоящее, например, из миллиона элементов, хранится в виде бинарного дереза, то для понска элемента потребуется в среднем около $\log _{2} 10^{6} \cong$ $\cong 20$ шагов поиска. Поскольку теперь каждый шаг включает обращение к диску (с собственным латентным временем), б\%дет весьма желательна организация памяти, требующая меньше обращений. Сильно ветвящееся дерево является идеальным решением этой проблемы. Если происходит обращение к некоторому одиноцному элемснту, расположенному на виешнем устройстве, то без больших дополнительных затрат можно обращаться также к целой группе элементов. Отсюда следует, что дерєво нужно разделить на поддеревья, считая, что все эти поддеревья одновременно полностью доступны. Мы будем называть такие поддеревья страницами. На рис. 4.44 показано бинарное дерево, разделенное на страницы, состоящие из 7 узлов каждая.

Уменьшение количества обращений к диску - а телерь обращение к каждой странице предполагает обращение к диску --- может быть значнтельным. Предположим, что мы решили помсщать ша странице 100 узлов (это разумнал цифра), тогда дерсво понска, содержащее миллион элементов,

потребует в среднем только $\log _{100} 10^{\circ}=3$ обращений к страницам вместо 20 . Но конечно, если дерево растет «случайным образом», то наихудший случай может потребовать даже $10^{4}$ обращений! Понятно, что в случае сильно ветвящихся деревьев почти обязательна схема управления их ростом.

### 4.5.1. Б-деревья

При поиске критерия управляемого роста нужно сразу отвергнуть идеальную сбалансированность, так как она требует слишком больших затрат на балансировку. Очевидне, что правила необходимо несколько смягчить. Очень разумньй критерий был сформулирован Р. Бэйером [4.2]: каждая страница (кроме одной) содержит от $n$ до $2 n$ узлов при заданном постоянном $n$. Следовательно, в дереве с $N$ элементами и максимальным размером страницы $2 n$ узлов наихудший случай потребует $\log _{n} N$ обращений к страницам, а обращения к страницам составляют, как известно, основную часть затрат на поиск. Кроме того, важный коэффициент использования памяти составляет не менее $50 \%$, так как страницы заполнены хотя бы наполовину. При всех этих преимуществах данная схема требует сравнительно простых алгоритмов поиска, включения и удаления. В дальнейшем мы подробно их изучим.

Рассматриваемые структуры данных называются $\boldsymbol{\sigma}$-деревьями и имеют следующие свойства ( $n$ называется порядком Б-дерева):

1. Каждая страница содержит не более $2 n$ элементов (ключей).
2. Каждая страиица, кроме корневой, содержит не менее $n$ элементов.
3. Каждая страница является либо листом, т. е. не имеет потомков, лиоо имеет $m+1$ потомков, где $m-$ число находящихся па ней ключей.
4. Все листья находятся на одиом и том же уровне.

На рис. 4.45 показано Б-дерево порядка 2 с 3 уровнями. Все страницы содержат 2, 3 или 4 элемента. Исключением является корень, которому разрешается содержать только однн элемент. Все листья находятся на уровне 3 . Ключи расположены в возрастающем порядке слева направо, если спросктировать дерево на однн у'ровень, всгавляя потомков между ключами, находящимися на странице-предке. Такое расположение представляет естественное развитие принципа органйзации бинарных деревьев поиска и определяет метод поиска элемента с заданным ключом. Рассмотрим страницу, имеющую вид, как показано на рис. 4.46, и пусть задан аргумент
nонсна х. Предполагая, что страница считана в оперативную память, мы можем использовать известные методы поиска среди ключей $k_{1}, \ldots, k_{m}$. Если $m$ достаточно велико, можно применить бинарыый поиск, если оно сравнительно небольшое, подойдст простой последсвательный понск. (Заметим, что

Р.л. 4.45. Б-дерево иорядаа :

время, требующееся для поиска в оператнвной памяти, вероятно, пренебрежнмо мало по сравнению со временем, которое занимает считывание страницы с внешнего устройства


Рис, 4.46. Страпица Б-дерева, содержащая $m$ ключей.
в оперативную память). Если поиск неудаден, мы имеєм одну нз следуюших ситуаций:

1. $k_{i}<x<k_{i+1}$ для $1 \leqslant i<m$. Мы продолжаем понск на странице $p_{i} \uparrow$.
2. $k_{m}<x$. Поиск продолжается на странице $p_{m} \uparrow$.
3. $x<k_{1}$. Понск продолжается на странице $p_{0} \uparrow$.

Если в каком-то случае ссылка равна nil, т. е. нет соответствующего потомка, то элемента с ключом $x$ нет во всем дереве и поиск заканчивается.

К уднвленно, вклюмение в Б-дерево также выполняется сравнительно просто. Если элемент вставллется в страницу, содержащую $m<2 n$ элементов, то процесс включения огра• ничивается этой страницей. Линь включение в уже заполненную страницу влняет на структуру дерева н может вызвагь появление новых страниц. Чтобы понять, что происходит в этом случае, рассмотрим рис. 4.47, на котором показано

включение ключа 22 в Б-дерево порядка 2. Оно состоит из следующих этапов:

1. Выясняется, что ключ 22 отсутствует. Включение в страницу $C$ невозможно, так как $C$ уже заполнена.
2. Страница $C$ расщепляется иа две страницы, т. е. размещается новая страница $D$.
3. Количество $m+1$ ключей поровну распределяется на $C$ и $D$, а средний ключ перемещается на один уровень вверх. на страницу-предка $A$.

Эта весьма элегантная схема сохраняет все основные свойства Б-деревьев. В частности, при расщеплении получаютсн


Рис. 4.47. Включение ключа 22 в Б-дерево.

страницы, содержащие ровно $n$ элементов. Разумеется, включение элемснта в страницу-предка может вновь вызвать переполнение этой страницы, что приведет к распространению расщепления. В экстремальном случае оно может распространиться до корня. Это и есть единственный случай увеличения высоты Б-дерева. Следовательно, Б-дерево растет странным способом: от листьев к корню.

Теперь на основе этих приблизительных описаний мы разработаем детальную программу. Уже ясно, что здесь лучше всего подойдет рекурсивная формулировка, так как процесс расщепления может распространяться назад вдоль пути поиска. Оо́щая структура программы будет сходна со структурой программы включения в сбалансированное дерево, хотя детаии будут отличаться.

Прежде всего нужно сформулировать описание страницы. Мы выбираем расположение элементов в виде массива:

$$
\begin{aligned}
& \text { type page }= \text { record } m: \text { index; } ; \\
& p 0: \text { ref; } \\
& \epsilon ; \text { array }[1 \ldots n n] \text { of item } \\
& \text { end }
\end{aligned}
$$

где

$$
\begin{aligned}
& \text { const } n n=2 * n ; \\
& \text { type ref }=\uparrow \text { page; } \\
& \quad \text { index }=0 \ldots n n
\end{aligned}
$$

11

> type item: record key: integer;
> $p:$ ref;
> count: integer
> end

Здесь вновь компонента count заменяет всевозможную прочую информацию, ко'орая может быть связана с каждым элементом, но не играет никакой роли в самом процессе поиска. Заметим, что каждая страница содержит пространство для $2 n$ элементов. Поле $m$ указывает, сколько элементов размсщено в действительности. Поскольку $m \geqslant n$ (за исключением страницы-корня), использование памяти гарантируется по крайней мере на $50 \%$.

Алгоритм поиска с включением по Б-дереву является џастью программы 4.7; он оформлен в виде ироцедуры search. Его основная структура проста и напоминает структуру простого понска по бинарному дереву, с той разницей, что дальнсйший путь выбирается не из двух возможных ветвей. Вместо этого «понск внутри страницы» оформлен как бинарный понск в массиве.

Алгоритм включения сформулирован в виде отдельной процсдуры лишь для ясности. Эта процедура вызывается после того, как search указывает, что элемент нужно передать вверх по дереву (в направлении к корню). Для указания использустся булевский параметр-результат $h$, он играет роль, подобную $h$ в алгоритме включения в сбалансированное дерево, ;де он сообщает, что поддерево выросло. Если $h$ истинно, то второй лараметр-результат $u$ представляет передаваемый вверх элемечт. Отметим, что включение начинается с гнпотетнческих страннц, а пменно «специальных узлов» (см. рис. 4.19); новый элемент сразу отправляется через параметр « на страницу-лист для включения. Набросок схемы приведен B (4.83).

Если после вызова search в основной программе параметр $h$ истинен, это означает расщепление страницы-корня. Поскольку эта страница играет особую роль, процесс нужно запрограммировать отдельно. Он состоит из размещения новой корневой страницы и включения в нее одного элемента, переданного через параметр $u$. Следовательно, новая стра-
procedure search(x: integer; a: ref; var h: boolean; var u: item); begin if $a=$ nil then
begin \{ $x$ нет в дереве\}
Присвоение значения $х$ элементу и, усіпановка $\boldsymbol{h}$ в true, указывая, что элемент и передается вверх по дереву
end else
with $a \uparrow$ do
begin (поиск $x$ на странице а $\uparrow$ ) двоичный поиск в массиве; if найдено then увеличение счетчика появлений элемента elso begin search ( $x$, потомок, $h, u$ )
if $h$ then (передача вверх элемента $u$ )
if (число элементов на $a \uparrow$ ) $<2 n$ then включение и в страницу а и установка ї в false else расщепление страницы и передача вверх среднсго элемента end
end
end

ница-корень содержит только один элемент. Детали можно посмотреть в программе 4.7.

На рис. 4.48 показан результат работы программы 4.7 при построєнии Б-дерева со следуюшей последовательностьіо вставляемых ключей:

```
20; 40 10 30 15; 35 7 26 18 22; 5; 42 13
46 27 8 32; 38 24 45 25;
```

Точки с запятой указывают моменты размещення новых страниц. Включение последнего ключа вызывает два расщепления и размещение трех новых страниц.

Отметим особую роль в этой программе оператора присоединения with. Это видно уже в (4.83). В первую очередь он означает, что внутри оператора, перед которым стоит соответствующий заголовок, идентифнкаторы компонент (полеї) страннцы автоматическн относятся к страинце $a \uparrow$. Если реально страннцы размещаются во внешней памяти, что, разумеется, необходимо в больших системах банклв данных, то оператор with дополнительно означает передачу указанной страницы в оперативную память. Поэтому каждос об́ращение к search предполагает размещенне в оперативной памяти

одной страницы, всего же необходимо самое большее $k=$ $=\log _{n} N$ рекурсивных обращений. Следовательно, если дерево содержит $N$ элементов, мы должны иметь возможность јазместить в оператнвной памяги $k$ страниц. Это накладывает
(3)

(b)

(c)

(d)

(e)


Puc. 4.48. Рост Б-дерева горядка 2.
ограничсние на размер страницы $2 n$. На самом деле нам пужно иметь возможность разместить даже больше, чем $k$ страниц, так как включение может вызвать их расщепление. Естественно, что корневую страннцу лучше постоянно хранить в оперативной памяти, поскольку каждый поиск всегда начинается с корня.

Еще одно положительное качество Б-деревьев - это их удобство и экономичность в случае чисто последовательного

изменения всего 厄́анка данных. Гри этом каждая странниа вызывается в оперативную память ровно один раз.

Ууаление элементов из Б-дерева очень просто в общих чертах, но сложно з деталях. Мы можем выделить два различных сллчая:
!. Элемент, который нужно удалить, находится на страииполисте; тогда алпоритм 'далення прост и очевиден. $_{\text {ия }}$
2 Этот элемент не на странице-листе; тогда его нужно заме. нить на один ипи два лекснкографически смежных элемента, которые находятся на страницах-лнстьях и которые легко удалнть.

В случае 2 поиск смежного ключа аналогичен поиску такого же ключа при удалении из бннарных деревьев. Мы спускаемся по самым правым указателям вниз к листу $P$, заменяем удаляемый элемент на самый правый элемент $P$ и затем јмменьшаем размер $P$ на 1.

В любом случае после уменьшения размера нужно проверить число элементов $m$ на үменьшенной страннце, так как, ссли $m<n$, будет нарушено основное свойство Б-дсревьев. Если это произошло, нужно совершить некоторые дополнительные действия; это условие недостатка обозначается булевской переменной-параметром $h$.

Единственный выход - одолжить пли отоб́рать элеме!!т с одной нз соседних страниц, а поскольку это требует вызова страницы $Q$ в оперативную память - относительно дорогостоящей операции, - то мы попытаемся наилучшим образом воспользоваться этой нежелательной ситуацией и заберсм сразу больше одного элемента. Обычню элементы $P$ и $Q$ поровн; распределяются на обе страницы. Это называется балансировкой.

Разумеется, может оказаться, что с $Q$ нельзя забнрать элементы, так как она тоже уже достигла своего минимального размера $n$. В этом случае общее чнсло элементов на $\downarrow$ и $Q$ разно $2 n-1$, и мы можем слииь эти две страпицы в одну, добавив средний элемснт со страницы-предка $P$ и $Q$, а затем можем полностью располагать страннцей $Q$. Это -- процесс, в точности обратный расицплению страннц. Eго можно иаблюдать, рассматривая удаление ключа 22 на рис. 4.47.

Удаление среднего ключа на странице-предке может вновь уменьшить ее размер ниже допустимой границы $n$, требуя тем самым дальнеїшнх специальных мер (балансировки нли слияния) на более высоком уровне. В энстремальном слјчае слияние страниц может распространиться по всему пути к корню. Если корень Јменьшается до размера 0, он удаляется, что вызываст уменьшенне высоты Б-дерева. Это сдинственный случай, !огда высота Б-дерева может јменьшнгься.

На рис. 4.49 показан постепенный распад Б-дерева с рис. 4.48 при последовательном удалении ключей:

2545 24; 38 32; $827461342 ; 52218$ 26;
735 15;
Точки с запятой снова указывают места «скачков», т. е. освобождения страниц. Алгоритм удаления включен в программу

(f) 10203040

Рис. 4.49. Распад Б-дерєва порядка 2.
4.7. Особенно примечательно его сходство с алгоритмом удаления из сбалансированного дерева.

Исчерпывающий анализ свойств Б-деревьев выполнсн в статье Бэйера и Мак-Крейта [4.2]. В частности, в ней рас-

```
program Btree(input,output);
(поиск, включение и удаление в Б-дереве)
const \(n=2 ; n n=4 ;\) (размер страницы)
type ref \(=\uparrow\) page;
 item \(=\) record key: integer;
 p: ref;
 count: integer;
 end ;
 page \(=\) record \(m: 0 \ldots n n ;\) \{число элементов \(\}\)
 p0: ref;
 \(e\) : array [1..nn] of item;
 end ;
var root, \(q\) : ref; \(x\) : integer;
 \(h\) : boolean; \(u\) : item;
procedure search(\(x\) : integer; \(a\) : ref; var \(h\) : boolean; var \(v\) : item);
| Поиск ключа \(x\) в Б-дереве с корнем а; если найден, увеличение
счетчика, иначе включение в дерево элемента с ключом \(x\) и
счетчиком 1. Если элемент должен передаваться на низший
уровень, присвоить его \(v\); \(h\) :-«дерево стало выше»]
 var \(k, l, r\) : integer; \(q\) : ref; \(u\) : item;
 procedure insert;
 var \(i\) : integer; \(b:\) ref;
 begin \{ включение и справа от \(a \uparrow\). e[r]\}
 with \(a_{\hat{\imath}}\) do
 begin if \(m<n n\) then
 begin \(m:=m+1 ; h:=\) false;
 for \(i:=m\) downto \(r+2\) do \(e[i]:=e[i-1]\);
 \(e[r+1]:=u\)
 end else
 begin \{странича \(a \uparrow\) заполнена; расщепить ее и присвоить
 полученный элемент \(v\)) пеw(b);
 if \(r \leq \boldsymbol{n}\) then
 begin if \(r=n\) then \(v:=\sim u\) else
 begin \(v:=e[n]\);
 for \(i:=n\) downto \(r+2\) do \(e[i]:=e[i-1]\);
 \(e[r+1]:=u\)
 end ;
 for \(i:==1\) to \(n\) do \(b \uparrow . e[i]:=a \uparrow . e[i+n]\)
 end else
 begin (включение и в первую страницу)
 \(r:=r-n ; v:=e[n+1]:\)
 for \(i:=1\) to \(r-1\) do \(b \uparrow, e[i]:=a \uparrow, e[i+n+1]\);
 \(b \uparrow, e[r]:=u ;\)
```

```
 for i:=r+1 to n do b\uparrow.e[l] := a^.e[i+n]
 end ;
 m:=~ n;b\uparrow.m:= n;b\uparrow.p0:=~ v .p; v .p := b
 end
 end {with}
 end {insert};
begin (поиск ключа х на страниче а^; h-false)
 if a}\mathrm{ nil then
 begin (элемента с ключом х нет в дереве\ l/:= truе;
 with v do
 begin key := x; count := 1; p:= nil
 end
 end else
 with a^ do
 begin l:= 1; r:=m; {двоичный поиск в массиве}
 repeat }k:=(l+r)\operatorname{div}2
 if }x\leqe[k].key then r:=k-1
 if }x\geqe[k].key then l:=ek+1
 until r<l;
 if l-r>1 then
 begin {найдено} e[k] .count :=me[k] .count + 1;h:= jaise
 end else
 begin [элемента нет на этой странице)
 if r}=0\mathrm{ then q:= p0 else q:=e e[r].p;
 search(x,q,h,u); if }h\mathrm{ then insert
 end
 end
end {search};
```

```
procedure delete(x: integer; a: ref; var h: boolean);
{ поиск и удаление ключа х в Б-дереве а; если на странице
не хватает элементов, то балансировка с соседней страницей.,
если это возможно, иначе - слияние;
h:= «на странице а не хватает элементов»|
 var i,k,l,r: integer; q: ref;
 procedure underflow(c,a; ref; s: integer; var h: boolean);
 {а-страница с нехваткой, с-страница-предок\
 var b: ref; i,k,mb,mc: integer;
 begin mc:=c\uparrow.m; {h=true, a\uparrow.m= \dot{n}-1}
 if }s<mc\mathrm{ then
 begin {b:=cтраница справа от a} s:=s+1;
 b:=c\uparrow.e[s].p; mb:= b\uparrow.m;k:= (mb-n+1) div 2;
 {k-число элеміентов на соседней странице b)
 a\uparrow.e[n] := c\uparrow.e[s]; a\uparrow.e[n] .p:= b\uparrow.p0;
 if }k>0\mathrm{ then
 begin (nересылка }k\mathrm{ элементов с b на a)
 for i:== 1 to k-1 do a\uparrow.e[i+n]:= b\uparrow.e[i];
 c\uparrow.e[s]:= b\uparrow.e[k]; c\uparrow.e[s] .p := b;
 b\uparrow.p0:= b\uparrow.e[k].p; mb:=mb-k;
 for i}:=1\mathrm{ to mb do b^.e[i]:=b b个.e[i+k];
 b\uparrow.m:=mb;a\uparrow.m:= n-1+k;h:= false.
 end else
 begin {слияние странич а и b}
 for. }i:=1\mathrm{ to }n\mathrm{ do }\mp@subsup{a}{1}{\uparrow}.e[i+n]:=b b\uparrow.e[i]
 for i:=s to mc-1 do c\uparrow.e[i]:=c\uparrow.e[i+1];
 a\uparrow.m:= nn;c\uparrow.m:=mc-1;{dispose(b)}
 h:=c\uparrow.m<n
 end
 end else
 begin {b,:=cтраница слева от a}
 if s=1 then b:=c\uparrow.p0 else b:==c\uparrow.e[s-1] .p;
 mb:==b\uparrow.m+1;k:=(mb-n) div 2;
 if }k>0\mathrm{ then
 begin {пересылка }k\mathrm{ элементов со странича b на a)
 for }i:=n-1 downto 1 do a\uparrow.e[i+k]:=a\uparrow.e[i]
 a\uparrow.e[k]:=c^.e[s]; a^.e[k].p:= a^.p0; mb:=mb-k;
 for i:= k-1 dowato 1 do }a\uparrow.e[i]:=b\uparrow.e[i+mb]
 a\uparrow.p0:= b\uparrow.e[mb].p;
 c\uparrow.e[s]:= b\uparrow.e[mb];c\uparrow.e[s] .p:=a;
 b\uparrow.m:=mb-1; a\uparrow.m:= n-1+k;}h:=\mathrm{ false
 end else
 begia {слияние странии а и b)
```

```
 b\uparrow.e[mb] := c^.e[s]; b\uparrow..e[mb] .p:= a^.p0;
 for i}:=1\mathrm{ to }n-1\mathrm{ do }b\uparrow.c[i+mb]:=a\uparrow.e[i]
 b\uparrow.m:= nn;c\uparrow.m:= mc-1; {dispose(a)}
 h:=c\uparrow.m<n
 end
 end
 end {underflow};
 procedure del(p: ref; var h: boolean);
 var q: ref; {глобальный a,k}
begin
 with p\uparrow do
 begin q:=e[m].p;
 if q}\not==\mathrm{ nil then
 begin del(}q,h)\mathrm{ ; if }h\mathrm{ then underflow(}p,q,m,h
 end else
 begin p\uparrow.e[m] .p:= a\uparrow.e[k] .p; a^.e[k]:= p\uparrow.e[m];
 m:=m-1;h:=m<n
 - end
 end
end {del};
begin {delete}
 if a= nil then
 begin writeln ('KEY IS NOT IN TREE'); }\boldsymbol{h}:=\mathrm{ false
 end else
 with a}\\mp@code{do
 begin l:= 1;r:=m; {двоичный поиск в массиве}
 repeat k:== (l+r) div 2;
 if }x\leqe[k].key then r:=k k-1
 if }x\geqe[k].key then l:=k+1
 until l>r;
 if r=0 then q::=p0 else q:=e e[r], p;
 If l-r> 1 then
 begin {найден; теперь yдаление e[k]}
 if q}=\mathrm{ nil then
 begin (a-терминалькая страница) m:=m-I; }h:=m<n
 for i:=k to m do e[i]:=e[i+1];
 end else
 begin }\operatorname{del}(q,h);\mathrm{ if }h\mathrm{ then underflow (a,q,r,h)
 end
 end else
 begin delete(}x,q,h);\mathrm{ if }h\mathrm{ then underflow(a,q,r,h)
 end
```

end
end \{delete\};
procedure printtree( $p$ : ref; l: integer);
var $i$ : integer;
begin if $p \neq$ nil then
with $p \uparrow$ do
begin for $i:=1$ to $l$ do write(' ' '; for $i:=1$ to $m$ do write(e( $[i]$.key: 4); writeln; printtree $(p 0,1+1)$; for $i:=1$ to $m$ do prinittree(e[i] $. p, l+1)$
end
end ;
hegin root $:=$ nil; $\operatorname{read}(x)$;
while $x \neq 0$ do
begin writeln('SEARCH KEY', $x$ );
search (x,root,h,u);
if $h$ then
begin \{өключение новой корневой страницы\} $q:=$ root $;$ new(root)
with root $\uparrow$ do
begin $m:=1 ; p 0:=q ; e[1]:=u$
cnd
end ;
printtree(root,1); read(x)
end ;
$\operatorname{read}(x)$;
while $x \neq 0$ do
begin writeln('delete key', $x$ );
delete( $(x$, root, $h$ );
If $h$ then
begin (улненьшен размер корневой сіпраницы)
if root $\uparrow . m=0$ then
begin $q:=$ root $;$ root $:=q \uparrow \cdot p 0 ;\{$ dispose $(q)\}$
end
end ;
printtree(root,1); read(x)
end
end

Программа 4.7. Поиск, включение и удаление в Б-дереве.

сматривается вопрос об оптимальном размере страницы $\boldsymbol{n}$, который сильно зависит от характеристик памяти и вычислительной снстемы.

Вариации схемы Б-дерева обсуждаются в книге Кнута ([2.7], т. 3, с. $567-570$ ). Одно важное замечание заключается в том, что расщепление страницы следует задерживать тем же способом, каким задерживается слияние страпиц: балансировкой соседних страниц. Остальные предлагаемые улучщения, по-видимому, не дают ничеге существенного.

### 4.5.2. Бинарные Б-деревья

Разновидность Б-деревьев, которая кажется наименее интересной, - Б-деревья первого порядка $(n=1)$. Но иногда стоит об́ратить внимание и на этот случай. Ясно, однако, что Б-деревья первого порядка бесполезны для представления больших, упорядоченных, индексированных множеств данных, требующих внешней памяти; примерно $50 \%$ всех страниц будут содержать только один элемент. Поэтому мы забудем о внешней памяти и вновь рассмотрим деревья понска, расположенные в оперативной памяти.

Бинарное Б-дерево (ББ-дерево) состоит из узлов (странии) с одним или двумя элементами. Следовательно, страница содержит две или три ссылки на потомков, отсюда термин $2-3$ дерево. Согласно определению Б-деревьев, все инстья находятся на одном уровне, а все нетерминальные страницы, в том числе корень, имеют двух или трех потомков. Поскольку теперь мы имеем дело только с оперативной памятью, то обязательно оптимальное использование памяти, и поэтому представление элементов узла в виде массива здесь не подходит. Альтернатива этому - динамическое, связанное размещение, т. е. внутри каждого узла имеется связанный список элементов длиной 1 или 2. Поскольку каждый узел імеет не более трех потомков и поэтому должен содержать самое большее три ссылки, мы попытаемся комбинировать ссылки на потомков и ссылки в списке элементов, как показано на рис. 4.50. Тем самым узел Б-дерева теряет свою целостность, и элементы выполняют роль узлов в обычном бинарном дереве. Но необходимо различать ссылки на потомков (вертикальные) и ссылки на «братьев» - элементы той же страницы (горизонтальные). Поскольку лишь ссылки направо могут быть горизонтальными, для указания этого различня достаточно одного разряда. Поэтому мы вводим булевское поле $h$, фиксирующее «горизонталь». Описание узла дерева, основанное на таком представлении, дано в (4.84). Оно было предложено Р. Бэйером [4.3] в 1971 г. Деревья поиска, по-

строенные из таких узлов, гарантируют максимальную длину пути $p=2 \cdot[\log N]$.
type node $=$ record key: integer;

# left,right: ref; <br> $h$ : boolean 

end
Рассматривая проблему включения, следует различать четыре возможные ситуации, которые возникают при увеличе-



Следует заметить, что при поиске ключей нет особой разннцы, двигаемся мы по горизонтальной или вертикальной
. (1)



(2)



(3)

(4)



Рис. 4.51. Включение узлов в ББ-дерево.
ссылке. Поэтому забота о том, чтобы левая ссылка в случае 3 становилась горизонтальной, хотя страница по-прежнему содержит не более двух узлов, кажется надуманной. Действительно, алгоритм включения проявляет странную асимметрию

при увеличении роста левого и правого поддеревьев, поэтому организация ББ-дерева кажется несколько искусственной. У нас нет «доказательств» необычности такой организацни, и лишь ннтуиция говорит нам, что здесь «что-то не то», и нам следует избавиться от такой асимметрии. Это ведет к понятию симметричного бинарного Б-дерева (СББ-дерева), которое также было предложено Бэйером [4.4] в 1972 г. Такое по-


Рис. 4.52. Вклочсине в СБG-дерсвьл.
строение дает в среднем несколько более эффективные деревья понска, но алгоритмы включения и удаления при этом несколько сложнее. Кроме того, теперь каждый узел требует двух разрядов (булевские переменные $t h$ и rh) для обозначения природы его ссылок.

Поскольку мы собираемся детально остановиться на пройлеме включения, то нам надо еще раз определить различпя в четырех случаях роста поддеревьев. Они показаны на рис. 4.52 , на котором наглядно видна полученная снмметрия. Заметим, что всегда, когда растет поддерево узла $A$, не имеющего братьев, корень этого поддерева становится братом $A$. Этот случай не нуждается в дальнейшем обсуждении.

Четыре случая, приведенные на рис. 4.52, иллюстрируют псреполнение страницы и последующее ее расщепление. Они отмечены в соответствии с направлениями горизонтальных ссылок, связывающих трех братьев на рисунках в среднем столбце. Исходная ситуация показана в левом столбце, в среднем столбце показано, что узел, находящийся внизу, подннмается с ростом поддерева; на рисунках правого столбца појазан результат перестановки узлов при расщеплении страпぃиы.

Желательно больше не возвращаться к понятию страниц, ॥: основе которого разработана эта организация, так как все, и чему мы стремимся, - это ограничить максимальную длину пти поиска значением $2 \cdot \log N$. Для этого нужно только, чгобы нигде на пути поиска не встречались две последовательные горизонтальные ссылки. Но нет причины запрещать лобые узлы с горизонтальными ссылками налево и направо. Поэтому мы определяем СББ-дерево как дерево со следующими свойствами:

1. Каждый узел содержит один ключ и не более двух поддеревьев (ссылок).
2. Каждая ссылка либо горизонтальная, либо вертикальная. Ни на каком пути поиска нет двух последовательных горизонтальных ссылок.
3. Все терминальные узлы (узлы, не имеющие потомков) находятся на одном (терминальном) уровне.
Цз этого определения следует, что самый длинный путь поиска не более чем в два раза превосходит высоту дерева. Так как никакое СББ-дерево с $N$ узлами не может иметь высоту, бјлтьшю $[\log N]$, то $2 \cdot[\log N]$ является верхним пределом длины пути поиска.

Что́ы читатель наглядно представил себе, как растут эти деревья, мы отсылаем его к рис. 4.53. На нем показаны изменения четырех деревьев при последовательных включениях элементов с ключами, перечисленными в строках (4.85), где точки с запятой отмеџают моменты увеличения высоты дерева:

$$
\begin{array}{llllllll}
\text { (1) } & 1 & 2 ; & 3 ; & 4 & 5 & 6 ; & 7 ; \\
\text { (2) } & 5 & 4 ; & 3 ; & 1 & 2 & 7 & 6 ;  \tag{4.85}\\
\text { (3) } & 6 & 2 ; & 4 ; & 1 & 7 & 3 & 5 ; \\
\text { (4) } 4 & 2 & 6 ; 1 & 7 ; & 3 & 5 ;
\end{array}
$$

Эти рисунки особенно наглядно иллюстрируют третье свойство Б-деревьев: все терминальные узлы находятся на одном уровне. Поэтому хочется сравнить эти структуры с только что подстриженными садовыми кустарниками. Мы будем называть такие структуры кустарниками.

Алгоритм построения кустарников сформулирован в (4.87). Он основан на определении типа узла (4.86) с двумя компонентами $l \mathrm{~h}$ и $r$, обозначающими горизонтальность левой и правой ссылок.

$$
\begin{align*}
& \text { type node }= \text { record } k e y: \text { integer; } ; \\
& \text { count: integer: } \\
& \text { left,right: ref; }  \tag{4.86}\\
& l h, r h: \text { boolean } \\
& \text { end }
\end{align*}
$$

Рекурсивная процедура search вновь строится по основной схсме алгоритма включения в бинарное дерево [см. (4.87)]. Добавляется третий параметр $h$; он указывает, изменилась ли структура поддерева с корнем $p$, и полностью соответствует параметру $h$ в программе поиска в Б-дереве. Однако нужно отметить последствия представления «страниц» в виде связанных списков: проход любой страницы происходит с помощью одного или двух обращений к процедуре поиска. Мы должны различать два случая: когда поддерево (обозначенное вертикальной ссылкой) выросло, и когда узел-брат (обозначенный горизонтальной ссылкой) получил другого брата и, следовательно, требуется расщепление. Эта проблема легко решается введением следующих трех значений $h$ :

1. $h=0$ : никаких изменений структуры дерева не требуется.
2. $h=1$ : узел $p$ получил брата.
3. $h=2$ : поддерево $p$ увеличилось в высоте.

Заметим, что действия, предпринимаемые для переупорядочения узлов, очень напоминают те, которые были разработаны для алгоритма поиска в сбалансированном дереве (4.63). Из (4.87) видно, что все четыре случая можно реализовать простыми поворотами ссылок: однократными поворотами налево или направо и двукратными поворотами налево и направо или направо и налево. В самом деле, процедура (4.87) оказывается несколько проще, чем (4.63). Ясно, что схема кустарниковых деревьев является альтериативой критерию АВЛ-сбалансированности. Поэтому возможно и желательно сравнение их характеристик.

Мы отказываемся от анализа точными, математическими методами и обратим основное внимание на некоторые существенные различия. Можно доказать, что $А В Л$-сбалансированные деревья являются подмножеством кустарниковох деревьев. Таким образом, класс последних шире. Отсюда следует, что их длина пути в среднем больше, чем у АВЛ-деревьев. Отметим, что в этом отношении «наихудший слу-
procedure search ( $x$ : integer; var $p$ : ref; var $h$ : integer);
var $p 1, p 2$ : ref;
begin
if $p=$ nil then
begin \{слова нет в дереве, вставить его)
$\operatorname{new}(p) ; h:=2$;
with $p \uparrow$ do
begin key $:=x$; count $:=1$; left $:==$ nil; right $:=$ nil; $l h:=$ false; rh $:=$ false
end
end else
if $x<p \uparrow$.key then
begin search $(x, p \uparrow$. left, $h)$;
if $h \neq 0$ then
if $p \uparrow$. lh then
begin $p 1:=p \uparrow$.left $; h:=2 ; p \uparrow . l h:=$ false;
if $p 1 \uparrow$.lh then
begin $\{L L\} p \uparrow$.left $:=p 1 \uparrow$.right;
$p 1 \uparrow . r i g l t:=p ; p 1 \uparrow . l h:=$ false $; p:=p 1$
end else
if $p 1 \uparrow . r h$ then
begin $\{L R\} p 2:==p 1 \uparrow . r i g h t ; p 1 \uparrow . r h:=$ false;
$p 1 \uparrow$. right $:=p 2 \uparrow$. left $; p 2 \uparrow$.left $:=p 1 ;$
$p \uparrow$. left $:=p 2 \uparrow . r i g h t ; p 2 \uparrow . r i g h t:=p ; p:=p^{2}$
end
end else
begin $h:=h-1$; if $h \neq 0$ then $p \uparrow . l h:=$ true
end
end else
if $x>p \uparrow$. key then
begin search ( $x, p \uparrow$, right, $h$ ); '
if $h \neq 0$ then
if $p \uparrow$. rh then
$\operatorname{begin} p 1:=p \uparrow . r i g h t ; h:=2 ; p \uparrow . r h:=$ false; if $p 1 \uparrow$.rh then $\operatorname{begin}\{R R\} p \uparrow$ right $:=p 1 \uparrow$.left;
$p 1 \uparrow . l e f t:=p ; p 1 \uparrow . r h:=$ false $; p:=p 1$ end else if $p 1 \uparrow$. lh then begin $\{R L\} p 2:=p 1 \uparrow$. left $; p 1 \uparrow .1 \mathrm{lh}:=$ false; $p 1 \uparrow$. left $:=p 2 \uparrow$.right; $p 2 \uparrow$. right $:=p 1 ;$ $p \uparrow$.right $:=p 2 \uparrow . l e f t ; p 2 \uparrow$. left $:=p ; p:=p 2$ end
end else
begin $h:=h-1$, if $h \neq 0$ then $p \uparrow \cdot r h:=$ true end end else
begin $p \uparrow$.count $:=p \uparrow$.count $+1 ; h:=0$ end end \{search\}
(1)




(2)



(3)



(4)



Рис. 4.53. Формирование «кустарниковых» деревьсв при последовательностях включеннй (4.85).

џай»-дерево (4) на рис. 4.53. С другой стороны, в кустарпиковых деревьях перестройка узлов будет происходить реже. Поэтому сбалансированные деревья предпочтительны в тех случаях, когда понск ключей пронсходнт намного чаще, чем включение (или удаление). Если это соотношение умеренное, можно предпочесть схему кустарниковых деревьев.

Очень трудно сказать, где проходит граница. Это во многом зависит не только от соотношения между частотой понска и частотой изменения структуры, но и от особенностей реализации. В часгности, записи узлов могут иметь плотно упакованное представление, следовательно, обращение к полям потребует выборки части слова. Во многих реализациях работа с булевскими полями ( $l h, r h$ в случае кустарниковых деревьев) может быть более эффективной, чем с полями из трех значений (bal в случае сбалансированных деревьев).

## 4.6. ПРЕОБРАЗОВАНИЯ КЛЮЧА (РАССТАНОВКА]

Сформулируем основную задачу, к которой мы обращаемся в последнем разделе, в дополнение к задачам, демонстрирующим методы динамического размещения данных:

Задано множество $S$ элементов, характеризующихся значениями ключей, на которых задано отношение порядка. Как организовать $S$, чтобы поиск элемента с заданным ключом $k$ требовал как можно меньше затрат?

Очевидно, что в памяти ЭВМ к каждому элементу в конце концов обращаются с помощьо его адреса $a$ в памяти. Следовательно, поставленная задача - это в сущности задача нахождения подходящего отображения $H$ ключей (К) в адреса $(A)$.

$$
H: K \rightarrow A
$$

В прсдыдущих разделах это отображение было реализовано в виде алгоритмов поиска по спискам и деревьям, основанных на различных способах их организации. Здесь мы предлагаем другой, более простой и во многих случаях очень эффективный подход. Тот факт, что он также имеет некоторыс недостатки, будет обсуждаться позже.

В этом методе используется организация данных в виде массива. Поэтому $H$ - это отображение, которое преобразует ключи в индексы массива, что дало термин преобразование ключей, обычно применяемый для обозначения этого приема. Следует заметить, что нам не придется использовать какиелибо процедуры динамического размсщения, поскольку массив - одна из базовых, статических сгруктур. Таким образом, эгот раздел несколько чужероден в главе о динамических

информационных структурах, но поскольку преобразование ключей часто используется в той же области, где наряд! с ним в качестве конкурентов используются древовидньіс структуры, то, по-видимому, его обсуждение здесь уместно.

Основная трудность преобразования ключей заключается в том, что множество возможных значений ключей намного обширнее, чем множество имеющихся адресов памяти (индексов массива). Типичный пример - использование слов длиной, скажем, до 10 букв алфавита в качестве ключей для иденти. фикации индивидуумов в множестве, например, до тысячи человек. Следовательно, имеются $26^{10}$ возможных ключеї, которые нужно отобразить в $10^{3}$ возможных индексов. Поэтому очевидно, что $H$ - это функция, отображающая «много в один». Если дан некоторый ключ $k$, то первый этап в операции поиска - это вычисление соответствующего индекса $h=H(k)$, а второй - очевидно, необходимый этап - проверка, действительно ли элемент с ключом $k$ находится в массиве (таблице) $T$ по адресу $h$, т. е. проверка $T[H(k)] \cdot k e y=k$. Сразу возникают два вопроса:

1. Какую функцию $H$ следует использовать?
2. Как поступать в ситуяции, когда $H$ не дает местонахождения нужного элемента?

Ответ на второй вопрос заключается в том, что нужно использовать какой-то метод для получения нового адреса, скажем, с индексом $h^{\prime}$, а если там вновь нет нужного элемента, то с третьим индсксом $h^{\prime \prime}$ и т. д. Случай, когда на указанном месте находится другой ключ, а не искомый, называется конфликтом, задача получения альтернативных индексов называется разрешением конфликтов. Далее мы обсудим выбор функции преобразования и методы разрешения конфликтов.

### 4.6.1. Выбор функцик преобразования

Основное требование к хорошей функции преобразовання состонт в том, чтобы она распределяла ключи как можно более равномерно по шкале значений индексов. Кроме выполнения этого требования, распределение не связано никакой схемой, и даже желательно, чтобы оно производило впечатление совершенно случайного. Такая особенность дала этому методу несколько ненаучное названне «расстановки» (хеширования), а $H$ называется функцией расстановки*). Разумеется, она должна эффективно вычисляться, т. е. состоять

[^10]нз очень небольшого числа основных арифметических действий.

Предположим, что имеется функция ord $(k)$, которая определяет порядковый номер ключа $k$ во множестве всех возможных значений ключей. Предположим далее, что индексы массива заıимают интервал целых чисел $0 \ldots N-1$, где $N-$ размер массива. Тогда очевидным решением является

$$
\begin{equation*}
H(k)=\operatorname{ord}(k) \bmod N \tag{4.88}
\end{equation*}
$$

Эта функция обладает тем свойством, что значения ключей равномерно распределяотся на всем интервале индексов, позтому она служит основой большинства преобразований ключей. Кроме того, она очень эффективно вычисляется при $N$, равном степени двойки. Но как раз этого случая следует избегать, если ключи являются последовательностями букв. Предположение, что все ключи равновероятны, в этом случае совершенно ошибочно. В результате слова, различающиеся лишь несколькими символами, будут с большой вероятностыо отображаться в одинаковые индексы, что приведет к чрезвычайно неравномерному распределению. Поэтому рекомендуется, чтобы $N$ в (4.88) было простым числом [4.7]. Отсюда следует, что придется выполнять операцию целого деления, которую нельзя заменить простым маскированием двоичных разрядов. Но это не является препятствием для большинства современных вычислительных машин, которые имеют встроенную команду деления.

Часто употребляется свертка, состоящая из выполнения логических операций, таких, как «исключающее или» на некоторых частях ключа, представленного последовательностью двоичных цифр. Эти операции на некоторых машинах могут выполняться быстрее, чем деление, но не всегда можно быть уверенным, что они равномерно распределяют ключи на интервале индексов. Поэтому мы не будем подробно обсуждать такие методы.

### 4.6.2. Разрешение конфликтов

Если строка в таблице, соответствующая заданному ключу, не содержит нужный элемент, то имеет место конфликт, т. е. два элемента имеют ключи,отображающиеся в один и тот же индекс. Нужна вторая проба с использованием другого индекса, который однозначно получается на основе данного ключа. Существует несколько методов получения таких вторичных индексов. Очевидный и эффективный метод*) - свя-

[^11]зывание в цепочку всех элементов с одинаковым первичным индексом $H(k)$. Этот прием называется непосредственным сцеплением. Элементы такого списка могут либо находиться в первичной таблице, либо нет, в последнем случае память, в которой они размещаются, называется областью переполнения. Этот метод довольно эффективен, хотя ои имеет тот недостаток, что нужно вести вторичные списки и что каждая строка должна содержать пространство для ссылки (или индекса) на список элементов, вступающих с ним в конфликт.

Другой метод разрешения конфликтов состоит в том, чтобы полностью отказаться от ссылок и просто просматривать один за другим различные элементы таблицы, пока не будет найден нужный элемент или не встретится свободное место, что означает отсутствие в таблице данного ключа. Этот метод называется открытой адресацисй [4.9]. Разумеется, последовательность индексов при вторичных пробах для данного ключа должна быть всегда одной и той жке. Можно набросать примерно такой алгоритм просмотра таблицы:

$$
\begin{aligned}
& h:=H(k) ; i:=0 ; \\
& \text { repeat } \\
& \text { if } T[h] . k е у=k \text { then элемент найден else } \\
& \quad \text { if } T[h] . k е у=\text { свободно then элемента нет в } \\
& \text { таблице else } \\
& \quad \text { begin }\{к о н ф л и к т\} ~ \\
& i:=i+1, h:=H(k)+G(i) \\
& \text { end } \\
& \text { until найден или нет в таблице (или таблица полна) }
\end{aligned}
$$

Для разрешения конфликтов в литературе предлагались различные функции. Обзор этой темы Моррисом в 1968 г. [4.8] стимулировал активную деятельность в этой области. Простейший метод - это, считая, что таблица круговая, исследовать следующее место и так до тех пор, пока не будег найден элемент с заданным ключом или не встретится свободное место. Следовательно, $G(i)=i$; индексы $h_{i}$, используемые для понска, в этом случае имеют вид:

$$
\begin{align*}
& h_{0}=H(k) \\
& h_{l}=\left(h_{0}+i\right) \bmod N, i=1 \ldots N-1 \tag{4.90}
\end{align*}
$$

Этот метод называется линейным опробированием, он имеет тот недостаток, что элементы обычно скапливаются вокруг первичных ключей (ключей, при которых мы не столкнулись с конфликтом при включении). В идеале, конечно, следует выбирать такую функцию $G$, которая вновь равномерно рассеивает ключи на оставшемся пространстве. Но на практике это требует слишком больших затрат, и предпочтение от-

дается методам, представляющим компромисс; будучи простыми для вычисления, они все же лучше линейной функции (4.90). Один из них состоит в использовании квадратичной функции, такой, что последовательность индексов для опробирования есть

$$
\begin{align*}
& h_{0}=H(k) \\
& h_{l}=\left(h_{0}+i^{2}\right) \bmod N \quad(i>0) \tag{4.91}
\end{align*}
$$

Отметим, что вычисление следующего индекса не требует возведения в квадрат, если использовать рекуррентное соотношение (4.92) для $h_{i}=i^{2}$ и $d_{i}=2 i+1$ :

$$
\begin{align*}
& h_{i+1}=h_{i}+d_{i}  \tag{4.92}\\
& d_{l+1}=d_{i}+2 \quad(i>0)
\end{align*}
$$

с $h_{0}=0$ и $d_{0}=1$. Эгот метод называется квадратичным опробированием, он успешно позволяет избежать первичного скопления, хотя практнчески не требует никаких дополнительных вычисленнй. Небольшой недостаток заключается в том, что при опробировании рассматриваются не все строки таблицы, так что при включении можно не встретить свободного места, хогя такие места еще остаются. Фактически если ее размер $N$ - простое число, то при квадратичном опробировании используется по меньшей мере половина таблицы. Это можно получить из следующих рассуждений: если $i$-я и $j$-я пробы приводят к одной и той же строке таблицы, то справедливо равенство

$$
i^{2} \bmod N=j^{2} \bmod N
$$

или

$$
i^{2}-j^{2} \equiv 0(\bmod N)
$$

Разбивая разность на два множителя, мы получаем

$$
(i+j)(i-j) \equiv 0(\bmod N)
$$

Поскольку $i \neq j$, мы видим, что либс $i$, либо $j$ должно быть не менее $N / 2$, чтобы получить $i+j=c N$, где $с$ - целое число.

На практике этот недостаток не так существенен, поскольку необходимость выполнять $N / 2$ вторичных проб для разрешения конфликтов встречается очень редко и лишь в том случае, когда таблица уже почти заполнена.

Чтобы на примере продемонстрировать метод рассеянных таблиц, мы переписали программу 4.5 - формирование таблицы перекрестных ссылок - в виде программы 4.8. Принципиальное отличие заключается в формулировке процедуры поиска (search) и в замене ссылочного типа шordref таблицей слов $T$. Функция расстановки $H$ есть модуль размера таблицы; для разрешения конфликтов выбрано квадратичное

```
program crossref(f,output);
{построение таблицы перекрестных ссылок с использованием
расстановки}
label 13;
const c1=10; {длина слова}
 c2 = 8; {количество слов в строке }
 c3 = 6; {количество цифр в числе}
 c4 = 9999; {максимальный номер строки}
 p=: 997; {простое число}
 free =='
type index = 0..p;
 itemref = = item;
 word = record key: alfa;
 first, last: itemref;
 fol: index
 end;
 item = packed record
 lno: 0. .c4;
 ne.xt: itemref
 end ;
var i, top: index;
 k,k1: integer;
 n: integer; {номер текущей строки}
 id: alfa;
 f: text;
 a: array [1 . .cl] of char;
 t: array [0 . .p] of word; {массив для расстановки}
procedure search;
 var h,d,i: incux;
 x: itemref; f: boolean;
 {глобальные переменные: t, id, top}
begin }h:=\operatorname{ord}(id)\operatorname{mod}p
 f:== false; d:=1;
 new(x); x个.lno := n; x^.next :== nil;
 repeat
 if t[h].key = id then
 begin {найдено} f:= true;
 t[h] .last\uparrow.next :== x; t[h].last := x
 end else
 if t[h].key = free then
 begin {новый элемент} f:== truс;
 with t[h] do
 begin key :== id; furst :== x; lost :=x; fol:= top
```

```
 end;
 top:=h
 end else
 begin {конфликт} }h:=h+d;d:=d+2
 if }h\geqp\mathrm{ then }h:=h-p
 if d=p then
 begin writeln('TABLE OVERFLOW'); goto 13
 end
 end
 until f
end {search} :
procedure printtable;
 var i,j,m: index;
 procedure printword(w: word);
 var l: integer; x: itemref;
 begin write(' ', w.key);
 x := w.first; l:= 0;
 repeat if l==c2 then
 begin writeln;
 l:= 0; write(' ':cl+-1)
 end ;
 l:= l+1; write(}x\uparrow.\operatorname{lno}:c3);x:=x\uparrow.nex
 until }x=\mathrm{ nil;
 writeln
 end {printword};
begin i:= top;
 while }i\not=p\mathrm{ do
 begin {просмотр связанного списка и поиск минимального ключа}
 m:= i; j:= t[i].fol;
 while }j\not=p\mathrm{ do
 begin if t[j].key <t[m].key then m:=j;
 j:=-t[j].fol:
 end ;
 printword(t[m]);
 if m}\not=i\mathrm{ then
 begin t[m].key :=t[i].key;
 I[m].first :=r[i].first; t[m].last }:=t[i].las
 end;
 i:=t[i].fol
 end
end {printtable};
begin }n:=0;kl:=cl;top:=p;reset(f)
```

```
 for \(i:=u\) to \(p\) do \(t[i]\) key \(:=\) free;
while \(\rightarrow \operatorname{cof}(f)\) do
begin if \(n=c 4\) then \(n:=0\);
 \(n:=n-1-1 ;\) write(n:c3); \{следующая строка\}
 write(' ');
 while \(\neg e o \ln (f)\) do
 begin (просмотр непустой строки)
 if \(f \uparrow\) in ['A' . ' \(\mathrm{Z}^{\prime}\) '] then
 begin \(k:=0\);
 repeat if \(k<c l\) then
 begin \(k:=k-\mid-1 ; \quad a[k]: m f \uparrow ;\)
 end ;
 write \((f \uparrow) ; \operatorname{gct}(f)\)
 until \(\neg\left(f \uparrow\right.\) in ['A' . ' \(Z^{\prime},{ }^{\prime} 0^{\prime}\). . ' \(\left.\left.9^{\prime}\right]\right)\);
 If \(k \geq k 1\) then \(k 1:=k\) else
 repeat \(a[k-1]:=\prime \quad ; \quad k 1:=k 1-1\)
 until \(k l=k\);
 pack(a,1,id); search;
 end clse
 begin (проверка на кавычку или комментарий)
 if \(f \uparrow={ }^{\prime \prime \prime \prime}\) then
 repeat writc \((f \uparrow) ; \operatorname{get}(f)\)
 until \(f \uparrow={ }^{\prime \prime \prime}\) else
 If \(f \uparrow=\) ' \(\{\) ' then
 repeat write \((f \uparrow) ; \operatorname{get}(f)\)
 until \(\left.f \hat{\uparrow}={ }^{\prime}\right\}\) ';
 write \((f \hat{\jmath}) ; \operatorname{get}(f)\)
 .end
 end ;
 writeln; get(\(f\))
end ;
13: page; printable
end .
```

Программа 4.8. Построенне таблицы перекрестных ссылок с использованием функций расстановки.

опробирование. Отметим, что для эффективной работы существенно, чтобы размер таблицы был простым числом.

Несмотря на то что метод преобразования ключа в этом случае очень эффективен - намного эффективнее, чем использование деревьев, - он имеет недостаток. После просмотра текста и выбора слов мы хотим расположить эти слова

в алфавитном порядке. При работе с деревьями это очень просто, так как в их основе уже лежит упорядоченность. Но это не так в случае преобразования ключа. Вот здесь и сказывается, что таблицы - «рассеянные». Поэтому печати таблицы должна предшествовать сортировка (для простоты в программе 4.8 используется сортировка простым выбором); но кроме того, оказывается полезным сохранять историю включения элементов, для чего они связываются в специальный список. Поэтому преимущества метода расстановки при поиске отчасти уменьшаются из-за необходимости дополнительных действий при выполнении всей задачи построения упорядоченной таблицы перекрестных ссылок.

### 4.6.3. Анализ метода преобразования ключа

Очевидно, что в наихудшем случае включение и понск при использовании метода расстановки будут иметь очень плохие характеристики. Ведь вполне может быть, что аргумент поиска будет таким, что все пробы будут попадать как раз на занятые места и пропускать нужные (или свободные). В самом деле, тому, кто использует метод расстановки, нужно свято верить в теорию вероятностей. Всё, в чем мы хотим быть уверенными, - это что в среднем число проб мало. Следующие вероятностные рассуждения показывают, что оно даже очень мало.

Вновь предположим, что все возможные ключи равновероятны и функция расстановки $H$ равномерно рассеивает их по всему интервалу нндексов. Затем предположим, что нужно вставить ключ в таблицу размером $n$, которая уже содержит $k$ элементов. Вероятность попадания на свободнос место с первого раза в этом случае равна $1-k / n$. Одновременно это есть вероятность $p_{1}$ того, что потребуется только одно сравнение. Вероятность, что понадобится ровно одна вторая проба, равна вероятности конфликта ири первой попытке, умноженной на вероятность попадания на свободное место в следующий раз. В целом мы получаем вероятность $p_{i}$ того, что включение потребует $i$ проб:

$$
\begin{align*}
& p_{1}=\frac{n-k}{n}, \\
& p_{2}=\frac{k}{n} \cdot \frac{n-k}{n-1}, \\
& p_{3}=\frac{k}{n} \cdot \frac{k-1}{n-1} \cdot \frac{n-k}{n-2},  \tag{4.93}\\
& \cdot \\
& p_{i}=\frac{k}{n} \cdot \frac{k-1}{n-1} \cdot \frac{k-2}{n-2} \cdot \ldots \cdot \frac{k-i+2}{n-i+2} \cdot \frac{n-k}{n-i+1}
\end{align*}
$$

Следовательно, среднее значение числа проб, требующихся при вставке $(k+1)$-го ключа, равно

$$
\begin{align*}
& E_{k+1}=\sum_{i=1}^{k+1} i \cdot p_{i}=1 \cdot \frac{n-k}{n}+2 \frac{k}{n} \cdot \frac{n-k}{n-1}+\ldots \\
& \quad \ldots+(k+1) \cdot\left(\frac{k}{n} \cdot \frac{k-1}{n-1} \cdot \frac{k-2}{n-2} \cdots \frac{1}{n-k+1}\right)=\frac{n+1}{n-k+1} \tag{4.94}
\end{align*}
$$

Поскольку число проб при включении элемента равно числу проб при его поиске, результат (4.94) можно использовать для вычисления среднего числа $E$ проб, требующихся при обращении к произвольному ключу в таблице. Вновь обозначим через $n$ размер таблицы, а через $m$ - число ключей, находящихся в таблице. Тогда

$$
\begin{equation*}
E=\frac{1}{n v} \sum_{k=1}^{m} E_{k}=\frac{n+1}{m} \sum_{k=1}^{m} \frac{1}{n-k+2}=\frac{n+1}{m}\left(H_{n+1}-H_{n-m+1}\right), \tag{4.95}
\end{equation*}
$$

где $H_{n}=1+\frac{1}{2}+\ldots+\frac{1}{n}-$ гармоничсская функция. Функцию $H_{n}$ можно аппроксимировать следующим образом: $H_{n} \cong$ $\cong \ln (n)+\gamma$, где $\gamma$ - эйлерова константа. Если, кроме того, в (4.95) $m /(n+1)$ заменить на $\alpha$, то мы получим

$$
\begin{align*}
E=\frac{1}{\alpha}(\ln (n+1)-\ln ( & n-m+1))= \\
& =\frac{1}{\alpha} \ln \frac{n+1}{n+1-m}=\frac{-1}{\alpha} \ln (1-\alpha) \tag{4.96}
\end{align*}
$$

где $\alpha$ приблизительно равно отношению занятой и имеющейся памяти, называемому коэффициентом заполнения; $\alpha=0$ предполагает пустую таблицу, $\alpha=n /(n+1)$ - заполненную таблицу. Среднее значение $E$ числа проб при поиске или включении случайно выбранного ключа как функции от коэффициента заполнения $\alpha$ приведено в табл. 4.6.

Таблица 4.6. Среднее значение числа проб как функция от коэффициента загрузки

| $\alpha$ | $E$ |
| :--- | :--- |
| 0,1 | 1,05 |
| 0,25 | 1,15 |
| 0,5 | 1,39 |
| 0,75 | 1,85 |
| 0,9 | 2,56 |
| 0,95 | 3,15 |
| 0,99 | 4,66 |

Полученные числа действительно вызывают удивление; они показывают чрезвычайно высокую эффективность метода преобразования ключа. Даже если таблица заполнена на $90 \%$, понадобится в среднем только 2,56 пробы, чтобы либо оБнаружить местоположение ключа, либо найти свободное место! Особо отметим, что эта цифра не зависит от абсолютного џисла имеющихся ключей, а зависит лишь от коэффициеита заполнения.

Проведенный выше анализ основан на использовании ме.тода разрешения конфликтов, который равномерно рассеивает ключи на оставшемся пространстве. Методы, применяемыс на практике, несколько менее эффективны. Подробный анализ линейного опробирования дает следующее (4.97) среднее знаџение числа проб [4.10]:

$$
\begin{equation*}
E=\frac{1-\alpha / 2}{1-\alpha} . \tag{4.97}
\end{equation*}
$$

Некоторые значення $E(\alpha)$ перечислены в табл. 4.7. Результаты, полученные даже при худшем методе разрешения конфликтов, так высоки, что возникает соблазн рассматривать преобразования ключей (расстановку) как всеобщую панащею. Ведь эффективность этого метода даже выше, чем у самых утонченных методов организацин деревьев, которые здесь рассматривались, во всяком случае, если сравнивать количество шагов, необходимых для поиска и включения. Поэтому важно отчетливо представлять себе некоторые недостатки мстода расстановки, которые очевидны при беспристрастном изученин.

Таблица 4.7. Среднее значение числа проб при линейном опробировании

| $\boldsymbol{c} \boldsymbol{\alpha}$ | $\boldsymbol{E}$ |
| :--- | :---: |
| 0,1 | 1,06 |
| 0,25 | 1,17 |
| 0,5 | 1,50 |
| 0,75 | 2,50 |
| 0,9 | 5,50 |
| 0,95 | 10,50 |

Разумеется, основной недостаток по сравнению с методами, использующими динамическое размещение, состоит в том, чго размер таблиць фиксирован и не может приспосабливаться к действительным потребностям. Поэтому необходимо достаточно хорошо оценить a priori количество классифицируемых элементов данных, если мы хотим избежать неэкономного использования памяти, а также низкой эффективности (или даже переполнения таблицы). Даже если число элементов

точно известно, что бывает крайне редко, для получения хорошей эффективности нужно, чтобы размер таблицы был несколько больше (скажем, на $10 \%$ ).

Второй главный недостаток метода рассеянной памяти становится очевидным, если ключи надо не только вставлять и разыскивать, но и удалять, так как удаление из таблицы очень затруднено, если не используется прямое связывание в цепочку элементов из области переполнения. Итак, справедливость требует отметить, что древовидные структуры не тсряют своей привлекательности и в самом деле предпочтительны, если объем данных снльно варьируется и временами даже уменьшается.

## УПРАЖНЕНИЯ

4.1. Введем понятие рекурсивного типа

$$
\text { rectype } T=T_{0}
$$

как объединения множества зиачепй, определенных типом $T_{0}$ с единственным значением none «ничто», т. е.

$$
T=T_{0} \cup\{\text { none }\}
$$

Определение тіпа ред [см (4.3)] можно, например, упростить до

$$
\begin{aligned}
\text { rectype ped }= & \text { record name: alja; } \\
& \text { end father, molher: ped }
\end{aligned}
$$

Как располагается в памяти рекурснвиая структура, соответствующая рис. 4.2?

Вероятно, реализация такой структуры будет основаиа на схеме динамического распрелеления памяти, и поляя, называемые father и motlier в приведснном выше примере, будут содержать ссылки, получаемые автоматически, но скрытыс от программиста. Какие трудности встретятся при ре:лизации такой структуры?
4.2. Определите структуры данных, описанные в последнем параграфе разд. 4.2, в терминах записей и ссылок. Можно ли, кроме того, представить такую родственную совокупность с помощью рекурсивных тинов, предложснных в прсдыдущем упражнении?
4.3. Предположим, что очередь «первым вошел - первым вышел» $Q$ с элсмеятами типа $T_{0}$ реализована в виде связанного списка. Определите соответствуощую структуру данных, процедуры включения и удаления элемента из $Q$ и функцию, проверяющую, пуста илн нет очерсдь. В процедурах должны иметься собствсныые средства для экономного перенспользования памятн.
4.4. Предположим, что записи в связанном списке содержат ключевое поле типа inleger. Напишитс программу сортировки списка в порядке возрастания значений ключей. Затсм сформулируйте процедуру, формирующую список, в котором элементы расположены в обратном порядке.
4.5. Циклическне списки (см. рис. 4.54) обычно формируются с так называемым заголовком списка. Какой смысл имеет использование такого заголовка? Напншите процедуры включения, удаления " поиска элемента с заданным ключом. Сделайте это, как предполагая существование заголовка, так и без него.


Рис. 4.54. Круговой список.


Рис. 4.55. Двунаправленный список.
4.6. Дөунаправленный список - это список элементов, которые связаны с обеих сторои (см. рис. 4.55). Обе связи исходят из заголовка. Аналогично предыдущему упражнению напишите пакет процедур для поиска, включения и удалення элемеитов.
4.7. Будет ли программа 4.2 правильно работать, если некоторая пара $\langle x, y\rangle$ встретится во входном файле более одного раза?
4.8. Сообщение «’THIS SET IS NOT PARTIALLY ORDERED'» («ДAHHOE МНОЖЕСТВО НЕ ЯВЛЯЕТСЯ ЧАСТИЧНО УПОРЯДОЧЕННЫМ») в программе 4.2 во многих случаях малоинформативно. Дополиите программу, чтобы она ныдавала последовательность элементов, которые образуют цнкл, если он ииеется.
4.9. Напншите программу, которая чнтает текст программ, находит все определения и вызовы процедур подпрограмм и пытается установить толологическое упорядочение на подпрограммах. Пусть $P<Q$ выполняется ,если $P$ вызызастся в $Q$.
4.10. Нарисуйте дерево, которое построит программа 4.3, если входной файл состоит из $n+1$ чисел $n, 1,2,3, \ldots, n$.
4.11. В каком порядке встречаются узлы при обходе дерева на рнс. 4.23 сверху вниз, слева направо и снизу вверх?
4.12. Найдите правило постросиия последовательности из $n$ чисел, для которой программа 4.4 сформирует идеально сбалансированное дерево.
4.13. Рассмотрим два порядка обхода бинарных деревьев:
(a)
(1) Обойти правое поддерево.
(2) Посетить корень.
(3) Обойти левое поддерево.
(b)
(1) Посетить корень.
(2) Обойти правое поддерево.
(3) О5ойти левое поддерево.

Нмеются ли какие-либо простые соотношения между последовательностями узлов, получаемыми при этих порядках обхода и теми, которые дают три порядка, определенные выше в тексте?
4.14. Определите структуру данных для представления $n$-арных дерсвьев. Затем напишите проиедуру, которая обходит $n$-арное дерево и формирует бинарное дерево, содержащее те же элементы. Предположим, что ключ, расположенный в элементе, занимает $k$ слов и каждая ссылка занимает одно слово памяти. Какова будет экономня памяти при использованин бинарного дерева по сравнению с $n$-арным?
4.15. Предположим, что дерево построено на основе следующего описания рекурсивной структуры данных (см. упр. 4.1):

$$
\begin{aligned}
\text { rectype tree }= & \text { record } x \text { : integer; } \\
& \text { end } \text { left, right: tree }
\end{aligned}
$$

Сформулнруйте процедуру, которая находит элемент с заданным ключом $x$ и выполняет операцию $P$ с этим элементом.
4.16. В файловой системе каталог файлов органнзован в виде упорядоченного бинарного дерева. Каждый узел обозначает файл и содержит имя файла, а также среди прочего дату последнего обращения к нему, закод!ррованнуго в внде целого чнсла.

Напишите программу, которая обходит дерево и удаляет все файлы, последнсе обращение к которым происходило до определешюй даты.
4.17. В пекоторой древовидной структуре частота обращения к каждому элементу измеряется эмпирически - приписыванием каждому узлу счетчика обращений. Через определенный интервал времени организация дерева нзменяется при помощи обхода всего дерева и формирования пового дерева с пспользованием программы 4.4, которая вставляет элементы в порядке убывания счетчиков частоты обращепий. Напишите программу, которая выполняет эту реорганизацию. Будет ли средияя длина путп в этом дереве равна, хуже или намного хулке, чем в оптимальном дереве?
4.18. Метод анализа алгоритма включения в дерево, описанный в разд. 4.5, можно также использовать для вычисления средних значсний для числа сравнений $C_{n}$ н числа пересылок (обменов) $M_{n}$, которые вылолняются с помощью алгоритма быстрой сортировки (программа 2.10) прн обработке $n$ элементов массива, считая, что все $n$ ! перестановок $n$ ключей $\{1,2, \ldots, n\}$ равновероятны. Найдите аналогию и определите $C_{n}$ и $M_{n}$.
4.19. Нарисуйте сбалансированное дерево с 12 узлами, пмеющее максимальную высоту среди всех сбалансированных деревьев с 12 узлами. В какой последовательности нужно включать узлы, чтобы процсдура (4.63) сформировала это дерево?
4.20. Найдите такую последовательность из $n$ включаемых элементоз, чтобы процедура (4.63) выполняла каждое из четырех действий балан. сировки ( $L L, R R, R L, L R$ ) по крайней мере одии раз. Какова мнн!мальная длина $n$ такой последовательности?
4.21. Найдите сбалансированное дерево с ключами 1...n и персстановку этих ключей, такие, чтобы прн работе проиедуры удаления (4.64) опа выполняла каждую из четырех подпрограмм балансировки по крайней мере одии раз. Какова последовательность с минимальной длиной $n$ ?
4.22. Какова средняя длина пути в дереве Фибоначчи $T_{n}$ ?
4.23. Напишите программу, которая формирует дерево. илизкос к оптимальному в соответствии с алгоритмом, основаиным па єыборе цептроида в качестве корня (4.78).
4.24. Предположим, что ключи $1,2,3 \ldots$ вставляются в пустос Б-леревл порядка 2 (программа 4.7). Какие элючи вызывают расщепление страниц? Какие ключи вызывают увеличени высоты дерева?

Если ключи удаляются в гом же порядке, то какие ключи вызывают слияние (и освобождение) страииц и какие ключи вызывают уменьшение высоты? Ответьте на этот вопрос для случаев (а) схемы удаления, использующей балансировку (как в программс 4.7), и (b) схемы без балапспровки (при недостаче берется один элемент с соседней страницы).
4.25. Напишите программу поиска, включения и удаления ключей в бинарном Б-дерсве. Используйте определение типа узла (4.84). Схема включения показана на рис. 4.51.
4.26. Найдите последовательность вставляемых ключей, которая, начишая с пустого симметричного бинарного Б-дерева, заставляет процсдуру (4.87) выполнить все четыре действия балансировки ( $L L, R R, L R, R L$ ) по крайней мере один раз. Какова самая короткая последовательность?
4.27. Напишите процедуру удаления элементов в симметричном бипариом Б-дереве. Затем найдите дерево и короткую последовательность удалсний, вызывающую появленне всех четырех ситуаций балансировки хотя бы по одному разу.
4.28. Сравиите работу алгоритма включения и удаления для б:нарных деревьев, АВЛ-сбалансированных деревьев и для симметричных бинарных Б-деревьев на вычислительной машине. В частности, исследуйте влнянис упаковки данных, т. е. экономного представления данных с использованисм только двух разрядов для храчения информацни о сбалансироваиности каждого узла.
4.29. Модифицируйте алгоритм печати в программе 4.6 таким образом, чтобы его можно было использовать для изображения симметричиых бинарных Б-деревьев с горизонтальными и вертикальными ветвями.
4.30. Если количество ипформации, связанной с каждым ключом, относительно велико (по сравнению с самим ключом), эту информацию не рекомендуется помещать в рассеянную таблицу. Объясните почему и предложите схему для представления такого множества данных.
4.31. Рассмотрите предложения о решении проблемы скопления с помощыо деревьев переполнения вместо списков переполнения, т. е. оргаинзации тех клочей, которые вступают в конфликт, в виде дерева. Следовательно, каждый вход в рассеянную таблицу можно рассматр!явать как корень (возможио, пустого) дерева (древовидиая расстановка).
4.32. Прсдложите схему выполнения включсний и удалений в рассеяпиой таблнце с использованием квадратичных приращений для разрешения конфликтов. Сравните экспериментально эту схему с простой организацией бннарного дерева, задавая случайные последовательности ключей для включения и удалешия.
4.33. Основной недостаток метода расстановки состоит в том, что размер таблицы должен быть фиксированным, тогда как число элементов неизвестно. Предположим, что ваша вычислительная система содержит механизм динамичсского распредетения памяти. который позволяет в любой момсит выделять память. Следовательно, когда рассеяниая

таблица $H$ заполнена (или поути заполнена), то формируется большая таблица $H^{\prime}$, н все ключи из $H$ пересылаются в $H^{\prime}$, после чего память, заиятая $H$, возвращается в распоряжение системы. Этот процесс можно пазвать повторной расстановкой. Напишите программу, которая выполняет повторную расстановку для таблицы $H$ размером $n$.
4.34. Очень часто ключи являются не целыми числами, а последовательностями букв. Эти слова могут сильно различаться по длине и поэтому не могут удобно и экономно размещаться в полях фиксированного размера. Напншите программу, которая работает с рассеянной таблицей и ключами переменной длины.

## ЛИТЕРАТУРА

4.1. Адсльсон-Вельский Г. М., Ландис Е. М. Один алгоритм органнзацни информации. - Доклады АН СССР 146, 1962, с. 263-266.
4.2. BAYER R., McCREIGHT E. Organization and Maintenance of Large Urdered Jndexes. - Acta Informatica, 1, No. 3, 1972, 173-189.
4.3. BAYER R. Binary B-trees for Virtual Memory.- Proc. 1971 ACM SIGFIDET Workshop, San Diego, Nov. 1971, 219-235.
4.4. BAYER R. Symmetric Binary B-trees; Data Structure and Maintenance Algorithms. - Acta Informatica, 1, No. 4, 1972, 290-306.
4.5. HU T. C., TUCKER A. C. - SIAM J. Applied Math, 21, No. 4, 1971, 514-532.
4.6. KNUTH D. E. Optimum Binary Search Trees. - Acta Informatica, 1, No. 1, 1971, 14-25.
4.7. MAURER W. D. An Improved Hash Code for Scaller Slorage. - Comin. ACM, 11, 1968, No. 1, 35-38.
4.8. MORRIS R. Scatter Storage Techniques. - Comm. ACM, 11, No. 1, 1968, 38-43.
4.9. PETERSON W. W. Addressing for Random-access Storage. - IBM J. Res. and Dev., 1, 1957, 130-146.
4.10. SCHAY G., SPRUTH W. Analysis of a File Addressing Method. Comm. ACM, 5, No. 8, 1962, 459-462.
4.11. WALKER W. A., GOTLIEB C. C. A Top-down Algorithm for Constructing Nearly Optimal Lexicographic Trees. - Graph Theory and Computing, New York: Acadeniic Press, 1972, pp. 303-323.

## СТРУКТУРА ЯЗЫКОВ <br> И ТРАНСЛЯТОРЫ

В этой главе мы постараемся разработать транслятор для простого, «рудиментарного» языка программирования. Такая разработка может послужить примером систематического, хорошо структурированного подхода при написании программы нетривиальной сложности и размера. При этом можно продемонстрировать практическое применение методов, рассмотренных в предыдущих главах. Кроме того, мы постараемся дать общее представление о структуре трансляторов и принципах их работы. Знание этого предмета позволит лучше разобраться в искусстве программирования на языках высокого уровня, а также облегчит программисту разработку соб́ствеиных систем, предназначенных для конкретных целей и областей применения. Но, поскольку, как известно, теория траисляторов - сложный и обширный предмет, в этом отношснии данная глава будет носить лишь вводный и обзорный характер. По-видимому, главное, что следует уяснить, - это что структура транслятора отражает сгруктуру языка и сложность - или простота - языка решающим образом влияет на с.тожность его транслятора. Поэтому мы начнем с описания строення языка, а затем сосредоточим внимание исключнтельно на простых структурах, для которых можно построить простые, модульные трансляторы. Такие простые языковые конструкции оказываются достаточными для удовлетворения практически всех потребностей, возникающих при использованни языков программирования.

## 5.1. ОПРЕДЕЛЕНИЕ И СТРУКТУРА ЯЗЫКА

В основе каждого языка лежит словарь. Его элементы ои́ычно называют словами, но в теории формальных языков их называют символами. Языки характеризуются тем, что нскоторые последовательности слов считаются правильными предложениями языка, а другие - неправильными, или пе принадлежащими данному языку. Чем же определяется, является ли некоторая последовательность слов правильным предложснием? Обычно это определяется грамматикой, синтаксисом (можно сказать-структурой) языка. Синтаксис

определяется как множество правил или формул，которые задают множество（формально правильных）предложений． Такое множество синтаксических правил не только позволяет установить，принадлежит лн некоторая заданная последова－ тельность слов множеству предложений языка，но при этом определяет структуру предтожения，которая устанавливает его смыст．Поэтому ясно，что синтаксис и семантика （＝смысл）тесно связаны между собой．Следовательно，опре－ деления，связанные со структурой，всегда следует рассмат－ ривать кӑк средство распознавания смысла．Но это не поме－ шает нам изучить вначале исключительно структурные аспек－ ты языка，отвлекаясь от их связи со смыслом，т．е．от их ин－ терпретации．

Рассмотрим，например，предложение «Копки спят»．Слово «кошки»－подлежащсе，а «спят»－сказуемое．Это предло－ жение принадлежит языку，который можно описать，напри－ мер，при помощи следуюших синтаксических правил：

$$
\begin{aligned}
& \langle\text { предложение〉::=<подлежащее〉〈сказуемое〉 } \\
& \text { 〈подлежащее〉::=кошки| собаки } \\
& \text { 〈сказуемое〉 }::=\text { сплт } \mid \text { едят }
\end{aligned}
$$

Смысл этих трех строчек таков：
1．Предложение состоит из подлежащего，за которым следует сказуемое．
2．Годлежащее состоит либо из одного слова «кошки»，либо из одного слова «собаки»．
3．Сказуемое состоит либо из слова «спяг»，либо нз слова «едят»．

Идея заключается в том，что любое предложенис можно по－ лучить из начального сиявола 〈предложенне〉 последователь－ ным применением прави．л подстановки．

Формализм，или нотация，нспользованный при написании этих правил，называется бэкус－науровой формой（БНФ）． Впервые она была использована для описания Алгола－60 ［5．7］．Синтаксические единнцы〈предложение〉，〈подлежащее〉 и 〈сказуемое〉 называются нетерминальными символами，сло－ ва кошки，собаки，спят и едят－терминальными символами， а правила－порождающими правилами．Символы ：：＝и｜－ это метасимволь＊）языка БНФ．Если для краткости мы бу－ дем ．использовать отдельные заглавные буквы для нетерми－ нальных символов，то данный пример можно переписать сле－ дуюшим образом：

[^12]
## Пример 1:

$$
\begin{align*}
& S::=A B \\
& A::=x \mid y  \tag{5.1}\\
& B::=z \mid w
\end{align*}
$$

и язык, определенный этим синтаксисом, будет состоять из четырех предложений $x z, y z, x w, y w$.

Приведем теперь более точные, математические определения:

1. Пусть язык $L=L(T, N, P, S)$ задан:
(a) словарем $T$ терминальных символов;
(b) множеством $N$ нетерминальных символов (грамматических категорий) ;
(c) множеством $P$ порождаюших правил (синтаксисом);
(d) символом $S$ (из $N$ ), называемым начальным символом.
2. Язык $L(T, N, P, S)$ есть множество последовательностей терминальных символов $\xi$, которые могут порождаться из $S$ по правилу 3 (приведенному ниже):

$$
\begin{equation*}
L=\left\{\xi \mid S \rightarrow \xi \quad \text { и } \quad \xi \in T^{*}\right\} \tag{5.2}
\end{equation*}
$$

(для обозначения последовательностей символов мы используем греческие буквы), $T^{*}$ означает множество всех последовательностей символов из $T$.
3. Последовательность $\sigma_{n}$ может порождаться последовательностью $\sigma_{0}$ в том и только в том случае, если имеются последовательности $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1}$, такие, что каждое $\sigma_{i}$ может непосредственно-порождаться $\sigma_{i-1}$ по правилу 4 (приведенному ниже) :

$$
\begin{equation*}
\left(\sigma_{0} \rightarrow \sigma_{n}\right) \leftrightarrow\left(\sigma_{i-1} \rightarrow \sigma_{i}\right) \text { для } i=1 \ldots n . \tag{5.3}
\end{equation*}
$$

4. Последовательность $\eta$ может непосредственно порождаться последовательностью $\xi$ в том и только в том случае, если сушествуют последовательности $\alpha, \beta, \xi^{\prime}, \eta^{\prime}$, такие, что:
(a) $\xi=\alpha \xi^{\prime} \beta$;
(b) $\eta=\alpha \eta^{\prime} \beta$;
(c) $P$ содержит порождаюшее правило $\xi^{\prime}::=\eta^{\prime}$.

Примечание. Правило вида $\alpha::=\beta_{3}\left|\beta_{2}\right| \ldots \mid \beta_{n}$ используется как сокращенная запись для множества порождающих правил:

$$
\alpha::=\beta_{1}, \quad \alpha::=\beta_{2}, \ldots, \alpha::=\beta_{n} .
$$

Например, последовательность $x z$ из примера 1 можно получить с помощью следующих шагов непосредственного порождения: $S \rightarrow A B \rightarrow x B \rightarrow x z$; следовательно, $S \xrightarrow{*} x z$, и по-

скольку $x z \in T^{*}$, то $x z$ есть предложение языка, т. е. $x z \in L$. Отметим, что нетерминальные символы $A$ и $B$ появляются только на промежуточных шагах, а окончательный шаг должен дать последовательность, состоящую только из терминальных символов. Грамматические правила называются по* рождающими, потому что они определяют, как новые последовательности могут формироваться, или порождаться.

Язык называется контекстно-свободным в том и только в том случае, если он может быть определен с помощью кон-текстно-свободного множества порождающих правил. Множея ство порождающих правил контекстно-свободно тогда и толь• ко тогда, когда все его члены имеют вид

$$
A::=\xi \quad\left(A \in N, \xi \in(N \cup T)^{*}\right),
$$

т. е. если его левая часть состоит из одного нетерминального символа, который может заменяться на последовательность, стоящую в правой части, независимо от контекста, в котором он встречается. Если порождающее правило имеет вид

$$
\alpha A \beta::=\alpha \xi \beta
$$

то оно называется контекстно-зависимым, так как замена $A$ на $\xi$ может иметь место только в контекстах $\alpha$ и $\beta$. Далее мы ограничим рассмотрение только контекстно-свободными языками.

Из примера 2 видно, как при помощи рекурсии конечное множество порождающих правил может задавать бесконечное множество предложений.
Пример 2:

$$
\begin{align*}
& S::=x A \\
& A::=z \mid y A . \tag{5.4}
\end{align*}
$$

Начальный символ $S$ может порождать следующие предложения:

$$
\begin{aligned}
& x z \\
& x y z \\
& x y y z \\
& x y y y z
\end{aligned}
$$

## 5.2. АНАЛИЗ ПРЕДЛОЖЕНИИ

[Задача трансляторов, или «языковых процессоров», - это в первую очередь не порождение, а распознавание предложениїі и нх структуры. Это означает, что шаги порождения, которые формируют предложение, должны реконструироваться

при чтении предложения，т．е．проходиться в обратном по－ рядке．В принципе это очень трудная，а иногда и невыполни－ мая задача．Ее сложность сильно зависит от правил порож－ дения，которые определяют язык．Разработка алгоритмов рас－ познавания для языков с достаточно сложной структурой－ задача теории синтаксического анализа．Здесь же наша цель－разработать метод построения алгоритмов распозна－ вания，достаточно простых и эффективных для практического применения．Это значит，что вычислительные затраты на ана－ лиз предложения должны находиться в линейной зависимости от длины предложения，в самом худшем случае функция за－ висимости может быть $n \cdot \log n$ ，где $n$－длина предложения． Разумеется，мы не можем ставить задачу поиска алгоритма распознавания для любого заданного языка，будем реали－ стами и поступим наоборот：построим некоторый эффектив－ ный алгоритм，а затем определим，с каким классом языков он может работать［5．3］．

Из основного требования эффективности следует в первую очередь，что каждый очередной этап анализа должен выби－ раться лишь в зависимости от текущего состояния процесса и от одного следующего читаемого символа．Другое наиболее важное требование－чтобы ни к какому этапу не было по－ вторного обращения．Эти два требования известны как техни－ ческий термин просмотр на один символ вперед без воз－ врата．

Основной метод，который мы здесь разберем，называется нисходящим грамматическим разбором，поскольку，применяя этот метод，мы будем пытаться реконструировать этапы по－ рождения（которые в принципе образуют дерево）от началь－ ного символа к конечному предложению，т．е．сверху вниз $[5.5,5.6]$ ．Вернемся к примеру 1 ：нам дано предложенйе «Собаки едят»，и мы должны определить，принадлежит ли оно языку．По определению предложение принадлежит языку， только если оно может порождаться из начального символа〈предложение〉．Из грамматических правил следует，что пред－ ложение должно состоять из подлежащего，за которым сле－ дует сказуемое．Теперь мы можем разделить задачу на две подзадачи：вначале нужно определить，может ли какая－либо начальная часть предложения порождаться из символа 〈под－ лежащее〉．Действительно，собаки может непосредственно по－ рождаться из этого символа，поэтому мы убираем символ собаки из входного предложения（т．е．сдвигаемся на один шаг）и переходим к следующей подзадаче：определить，может ли оставшаяся часть предложения порождаться из символа〈сказуемое〉．Поскольку ответ вновь положительный，резуль－ тат анализа положительный．Процесс работы можно изобра－ вить такой схемой，где слева показаны стоящие задачи，

а справа－еще не прочитанная часть входного предложения：

| 〈предложение〉 |  | собаки едят |
| :---: | :---: | :---: |
| 〈подлежащее〉 | 〈сказуемое〉 | собаки едят |
| собаки | （сказуемое） | собаки едят |
|  | 〈сказуемое） | едят |
|  |  |  |

Вторая схема демонстрирует процесс анализа предложения $x y y z$ в соответствии с порождающими правилами примера 2 ：

| $S$ | $x y y z$ |
| :--- | ---: |
| $x A$ | $x y y z$ |
| $A$ | $y y z$ |
| $y A$ | $y y z$ |
| $A$ | $y z$ |
| $y A$ | $y z$ |
| $A$ | $z$ |
| $z$ | $z$ |

Поскольку обратное прослеживание этапов порождения предложения нӓзывается грамматическим разбором，описан－ ный выше алгоритм есть алгоритм грамматическогбтазбора． В обоих примерах отдельные подстановки можно производить однозначно при проверке одного очередного символа во вход－ ном предложении． K сожалению，это не всегда бывает воз－ можно，что видно из следующего примера：
Пример 3：

$$
\begin{align*}
& S::=A \mid B \\
& A::=x A \mid y  \tag{5.5}\\
& B::=x B \mid z
\end{align*}
$$

Мы пытаемся проанализировать предложение $x x x z$

| $S$ | $x x x z$ |
| :--- | ---: |
| $A$ | $x x x z$ |
| $x A$ | $x x x z$ |
| $A$ | $x x z$ |
| $x A$ | $x x z$ |
| $A$ | $x z$ |
| $x A$ | $x z$ |
| $A$ | $z$ |

＂попадаем впросак．Трудность возникиет иа самом первом шаге，когда решение о замене $S$ на $A$ нли $B$ нельзя принять на основе лишь первого символа．Можно прослеживать один

из возможных выборов, а затем возвращаться, если этот путь не дает нужного решения. Такое действие называется возвратом. В языке примера 3 число возможных шагов, на которые приходится иногда возвращаться, не ограничено. Понятно, что подобная ситуация крайне нежелательна; следовательно, нужно избежать таких особенностей языка, которые приводят к возврату при грамматическом разборе. Поэтому мы принимаем рещение, что будем рассматривать только такие грам матические системы, в которых начальные символы альтернативных правых частей порождающих правил различны.

## Ограничение 1:

Если дано порождающее правило

$$
A::=\xi_{1}\left|\xi_{2}\right| \ldots \mid \xi_{n},
$$

то множества начальных симвојов всех предложений, которые могут порождаться из различных $\xi_{i}$, не должны пересекаться, т. e.

$$
\text { first }\left(\xi_{i}\right) \cap \operatorname{first}\left(\xi_{j}\right)=\varnothing \text { для всех } i \neq j .
$$

Множество first( $\xi$ ) есть множество всех терминальных символов, которые могут встречаться в начале предложений, полученных из $\xi$. Пусть это множество вычисляется согласно следующим правилам:

1. Если первый символ аргумента терминальный, то

$$
\text { first }(a \mathfrak{\xi})=\{a\}
$$

2. Если первый символ нетерминальный и стоит в левой части порождающего правила

$$
A::=\alpha_{1}\left|\alpha_{2}\right| \ldots \mid \alpha_{n},
$$

то

$$
\text { first }(A \xi)=\text { first }\left(\alpha_{1}\right) \cup \text { first }\left(\alpha_{2}\right) \cup \ldots \cup \text { first }\left(\alpha_{n}\right) .
$$

В примере 3 можно заметить, что $x \in \operatorname{first}(A)$ и $x \in \operatorname{first}(B)$. Следовательно, в первом порождающем правиле нарушено ограничение 1. На самом деле, легко найти синтаксис для языка примера 3 , удовлетворяющий ограничению 1. Нужно отложить разделение на части до тех пор, пока не будут пройдены все $x$. Следующие порождающие правила эквивилентны правилам (5.5) в том смысле, что они порождают то же множество предложений:

$$
\begin{align*}
& S::=C \mid x S, \\
& C::=y \mid x . \tag{5.5a}
\end{align*}
$$

К сожалению, ограничение 1 недостаточно сильно, чтобы избавить нас от дальнейших неприятностей. Рассмотрим

Пример 4:

$$
\begin{align*}
& S::=A x, \\
& A::=x \mid \epsilon . \tag{5.6}
\end{align*}
$$

Здесь є обозначает нулевую последовательность символов. Если мы попытаемся разобрать предложение $x$, то можем попасть в следуюший «тупик»:

| $S$ | $x$ |
| :--- | :--- |
| $A x$ | $x$ |
| $x x$ | $x$ |
| $x$ | - |

Трудность возникает из-за того, что мы должны были следовать правилу $A::=\epsilon$ вместо $A::=x$. Эта ситуация называется проблемой пустой строки, она связана со случаем, когда нетерминальный символ может порождать пустую последовательность. Чтобы ее избежать, мы вводим

## Ограничение 2:

Для любого символа $A \in N$, который порождает пустую последовательность $(A \xrightarrow{*} \boldsymbol{\epsilon}$ ), множество начальных символов не должно пересекаться со множеством символов, которые могут появляться в предложениях языка справа от какой-либо последовательности, порождаемой $A$ (внешними сімволами $A)$, т. е.

$$
\text { first }(A) \cap \text { follow }(A)=\varnothing
$$

Множество foliow (A) определяется так: берутся все порождающие правила $P_{i}$ вида

$$
X::=\xi A \eta,
$$

затем для каждой последовательности $\eta_{i}$, стоящей справа от $A$, определяется ее множество начальных символов $S_{i}=$ $=$ first $\left(\eta_{i}\right)$. Множество follow $(A)$ - объединение всех таких множеств $S_{i}$. Если хотя бы одна $\eta$ может порождать пусту!о последовательность, то множество follow ( $X$ ) следует также включить в follow ( $A$ ) B примере 4 ограничение 2 нарушается для символа $A$, поскольку

$$
\operatorname{first}(A)=\operatorname{follow}(A)=\{x\} .
$$

[Повторение подобных последовательностей символов в предложениях обычно задается в порождающих правилах с помощью рекурсии. Например, порождающее правило

$$
A::=B \mid A B
$$

описывает множество предложений $B, B B, B B B, \ldots$ Однако использование такого правила теперь запрещено ограниче-

нием 1 , так как

$$
f i r s t(B) \cap f i r s t(A B)=\operatorname{first}(B) \neq \varnothing
$$

Если мы заменим это правило его слегка модифицированной версией

$$
A::=\epsilon \mid A B
$$

порождающей последовательности $\epsilon, B, B B, B B B, \ldots$, то нарушим ограничение 2, поскольку

$$
f i r s t(A)=f i r s t(B)
$$

и, следовательно,

$$
\operatorname{first}(A) \cap \operatorname{follow}(A) \neq \varnothing \cdot
$$

Очевидно, что два эти ограничения запрещают использование определений с «левой рекурсией». Простой способ избежать таких форм - это либо использовать правую рекурсию

$$
A::=\epsilon \mid B A
$$

либо расширить БНФ-нотацию с тем, чтобы она допускала явное выражение повторений. Поэтому определим $\{B\}$ как множество последовательностей

$$
\epsilon, B, B B, B B B, \ldots
$$

Қонечно, нужно учитывать, что каждая такая конструкция может порождать пустую последовательность. (Фигурные скобки $\}$ являются метасимволами расширенной БНФ.)

Эти рассуждения, а также пример преобразования порождающих правил (5.5) в (5.5a) могут навести на мысль, чго «трюки» с преобразованием грамматик позволяют решить все проблемы синтакснческого анализа. Но не следует забывать, чтัбструктура предложений связана с их смыслом и что смысл синтаксических конструкций обычно выражается через смысл их компонент. Рассмотрим, например, язык, состоящий из выражений, которые включают сперанды $a, b, c$ и знак минус, обозначающий вычитание:

$$
\begin{aligned}
& S::=A \mid S-A \\
& A::=a|b| c
\end{aligned}
$$

Согласно этой грамматике, предложение $a-b-c$ имеет структуру, которую с использованием скобок можно выразить следующим образом: $((a-b)-c)$. Но если эту грамматику преобразовать в эквивалентную, но свободную от левой рекурсии

$$
\begin{aligned}
& S::=A \mid A-S, \\
& A::=a|b| c,
\end{aligned}
$$

то это же предложение получит другую структуру, которую можно выразить как $(a-(b-c))$. Учитывая принятое значение вычитания, мы виднм, что эти две формы вовсе не эквивалентны с точки зрения семантики.
Следует сделать вывод, что при определении языка, обладающего смыслом, нужно всегда принимать во внимание его ссмантическуо структуру, поскольку синтаксис должен ее отражать゙.

## 5.3. ПОСТРОЕНИЕ СИНТАКСИЧЕСКОГО ГРАФА

В предыдущем разделе был описан алгоритм нисходящего распознавания, применимый к грамматикам, которые удовлетворяют ограничениям 1 и 2. Теперь мы перейдем к реализации этого алгорнтма в виде конкретной программы. При этом можно использовать. два различных метода. Один из них - это написать универсальную программу нисходящего гјамматического разбора, пригодную для всех возможных грамматьк (удовлетворяющих ограничениям 1 и 2). В этом случае конкретные грамматики задаются этой программе в виде данных некоторой структуры, которая в каком-то смысле управляет ее работой. Поэтому такая программа называется таблично-управляемой. Другой метод - разрабатывать программу нисходящего грамматического разбора специально для заданного конкретного языка; при этом его си!гтксис по определенным правилам отображается в последовательность операторов, т. е. в программу. Мы по очереди рассмотрим оба этих метода, каждый из которых имеет свои препмущества н недостатки. При построении транслятора для цонкретного языка программирования вряд ли потребуется высокая гибкость и параметризацня, свойственные универсальнсіи программе, тогда как программа грамматического разбора, предназначенная спешиально для данного языка, обычно оказывается более эффективной и с ней легче работать, поэтому такой подход предпочтителен. В обоих случаях иојезно представлять заданный синтаксис в виде так назывдемого синтаксического графа, или графа распознавания. Такой граф отражает управленис ходом работы при грамматическом анализе предложения.

Для нисходящего грамматического разбора характерно, что иель анализа известна с самого начала. Эта цеть - распозиать предложение, т. е. последовательность символов, которая может порождаться из начального символа. Применение порождающего правила, т. е. замена одного символа последовательностьо символов, соответствует расщепленио одной цели на некоторое число подцелей, которые должны следовать в опредсленном порядке. Поэтому нисходящий метод можно называть также и целеориснтированным грамматиче-

ским разбором. При построении программы грамматического разбора можно воспользоваться этим очевидным соотвегствием между нетерминальными символами и целями: для каждого нетерминального символа строится своя процедура грамматического разбора. Цель каждой такой процедуры распознавание части предложения, которая может порождаться из соответствующего нетерминального символа. Поскольку мы хотим построить граф, представляющий всюо программу грамматического разбора, то каждый нетерминальный снмвол будет отображаться в подграф. Поэтому мы приходим к таким правилам построения синтаксического графа:
Правила построения графа:
A1. Каждый нетерминальный снмвол $\Lambda$ с соответствующим множеством порождающих правил

$$
A::=\xi_{1}\left|\xi_{2}\right| \ldots \mid \xi_{n}
$$

отображается в синтаксический граф $A$, структура которого определяется правой частью порождаюшего правила в соответствии с A2-A6.
A2. Каждое появление терлинального символа $x$ в $\xi_{i}$ соответствует олератору распознавания этого символа во входном предложении. На графе это изобра»кается ребром, помеченным символом $x$, заключенным в кружок.


А3. Каждому появлению нетерминального символа $B$ в $\xi_{i}$ соответствует обращепие к процедуре распознаваиия $B$. На графе это изображается ребром, помеченным символом $B$, заключенным в квадрат:


А4. Порождающее правило, имеющее вид

$$
A::=\xi_{1}|\ldots| \xi_{n}
$$

отображается в граф


где каждое $\boldsymbol{\xi}_{\boldsymbol{t}}$ получено применением правил A 2 A6 к $\xi_{i}$.
A5. Строка $\xi$, имеющая вид

$$
\xi=\alpha_{1} \alpha_{2} \ldots \alpha_{m}
$$

отображается в граф


где каждое $\alpha_{1}$ получсно применением правил А2-А6 $\mathrm{K} \alpha_{i}$.
А6. Строка $\xi$, имеющая вид

$$
\xi=\{a\}
$$

отображается в граф


где $\lfloor\boldsymbol{\mu}$ получено применением правил $A 2-A 6$ к $\alpha$ Пример 5:

$$
\begin{align*}
& A::=x \mid(B), \\
& B::=A C  \tag{5.7}\\
& C::=\{+A\} .
\end{align*}
$$

Здесь $<+>, x,($, и) - терминальные символы, а $\{$ и $\}$ приналлежит расширенной БНФ и, следовательно, являются метасимволами. Язык, порождаемый из $A$, состоит из выражений с операндами $x$, знаком операции «十» и скобками. Примеры предложений:

$$
\begin{aligned}
& x \\
& (x) \\
& (x+x) \\
& ((x))
\end{aligned}
$$

Графы, полученные с помощью применения шести правил построения графов, показаны на рис. 5.1. Заметим, что эту систему графов можно свести в один граф, подставив соответственно $C$ в $B$ и $B$ в $A$ (см. рис. 5.2).
[Синтакснческий граф является эквкивалентным представлением грамматики языка; его можно использовать вместо

множества порождающих правил БНФ. Эго очень удобная форма, и во многих (если не в большинстве) случаев она предпочтительнее БНФ. Разумеется, граф дает более ясное и точное представление о структуре языка, а также позволяет лучше представить себе процесс грамматического разбора,


Рис. 5.1. Синтаксические графы для синтаксиса прим. 5.
Граф лвляется подходящим представлением, котодое может служить отправной точкой для разработчика языка.. Примеры полных определений языков с помощью синтаксических графов даны в разд. 5.7 для ПЛ/0 и в приложении $B$ для Паскаля.


Рис. 5.2. Сводный синтаксический граф, соответствующий прим. 5.
[Для того чтобы обеспечить детерминированный грамматический разбор с просмотром вперед на один символ, о́ыли установлены ограничения 1 и 2. Как проявляются эти ограничения при графическом представлении синтаксиса? Здесь особенно наглядно видны удобство и ясность такого представления.

1. Ограничению 1 соответствует требование, чтобы при каждом разветвлении можно было выбрать ветвь, по которой

будет идти дальнейший разбор по очередному символу на этой ветви. Это означает, что никакие две ветви не должны начинаться с одного и того же символа.
2. Ограничению 2 соответствует требование, чтобы если ка-кой-либо граф $A$ можно пройти, не читая вообще никаких входных символов, то такая «нулевая ветвь» должна помечаться всеми символами, котлрые могут следовать за $A$. (Это влияет на решение о переходе на эту ветвь.)
Легко проверить, удовлетноряет ли некоторая система графов этим двум ограничениям, не обращаясь к представлению грамматики с помощью БНФ. В качестве вспомогательного шага для каждого графа $A$ определяются множества first $(A)$ и follow $(A)$. Затем непосредственно можно проверить выполнение ограничений 1 и 2. Систему графов, которая удовлетворяет этим двум ограничениям, мы будем называть детерминированным синтаксическим графом:-

## 5.А. ПОСТРОЕНИЕ ПРОГРАММЫ ТРАММАТИЧЕСНОГО РАЗБОРА ДЛЯ ЗАДАННОГО СИНТАКСИСА

ППрограмму, которая распознает какой-либо язык, легко построить на основе его детерминированного синтаксического графа (если такой граф существует). Этот граф фактически представляет собой блок-схему программы. Но при ее разработке рекомендуется строго следовать правилам преобразования, подобным тем, с помощью которых можно предварительно получить из БНФ графическое представление синтаксиса. Эти правила перечислены ннже. Они применяются в определенном контексте, который предполагает наличие основной программы, содержащей процедуры, которые соответствуют различным подцелям, а также процедуру перехода к очередному символу.

Для простоты мы будем считать, что предложение, которое нужно анализировать, представлено файлом input и что терминальные символы - отдельные значения типа char. Пусть символьная переменная ch: char всегда содержит очередной читаємый символ. Тогда переход к следующему символу выражается оператором

## read(ch)

Основная программа будет состоять из оператора чтения первого символа, за которым следует оператор активацни основной цели грамматического разбора. Отдельные процедуры, соответствующие целям грамматического разбора или графам, получаются по следующим правилам. Пусть оператор, полученный с помощью преобразования графа $S$, обозначается через $T(S)$.

Правила преобразования графа в программу:
B1. Свести систему графов к как можно меньшему числу отдельных графов с помощью соответствующих по,дстановок.
B2. Преобразовать каждый граф в описание процедуры в соответствии с приведенными ниже правилами B3-B7.
В3. Последовательность элементов


переводится в составной оператор

$$
\text { begin } T\left(S_{1}\right) ; T\left(S_{2}\right) ; \ldots ; T\left(S_{n}\right) \text { end }
$$

В4. Выбор элементов


переводится в выбирающий или условный оператор

| case $c h$ of |
| :--- | :--- |
| $L_{1}: T\left(S_{1}\right) ;$ |
| $L_{2}: T\left(S_{2}\right) ;$ |
| $\cdots \cdots \cdots$ |
| $L_{n}: T\left(S_{n}\right)$ |
| end |$\quad$| if $c h$ in $L_{1}$ then $T\left(S_{1}\right)$ else |
| :--- |
| if $c h$ in $L_{2}$ then $T\left(S_{2}\right)$ else |
| $\ldots \ldots \ldots$. |
| if $\operatorname{ch}$ in $L_{n}$ then $T\left(S_{n}\right)$ else |
| error |

где $L_{i}$ означает множество начальных символов копструкции $S_{i}\left(L_{i}=f i r s t\left(S_{i}\right)\right)$.
Примечание. Если $L_{i}$ состоит из одного символа $a$, то, разумеется, вместо «ch in $L_{i}$ » нужно писать «сh $=a$ ».
В5. Цикл вида


переводится в оператор

$$
\text { while ch in } L \text { do } T(S)
$$

где $T(S)$ есть отображение $S$ в соответствии с правилами B3-B7, а $L$ есть множество $L=$ first (S) (см. предыдущее примечание).
B6. Элемент графа, обозначающий другой граф $A$


переводится в оператор обращения к процедуре $A$.
B7. Элемент графа, обозначающий терминальный символ


переводится в оператор
if $c h=x$ then read $(c h)$ else error

где error - процедура, к которой обращаются при появлении неправильной конструкции.
Теперь покажем применение этих правил на примере преобразования редуцированного графа, изображенного на
program parse (input, output);
var ch: char;
procedure $A$;
begin if $c h=$ ' $x$ ' then read (ch) else
if $\mathrm{ch}={ }^{-1}\left({ }^{\prime}\right.$ then
begin read $(c h) ; A$;
while $c h='+$ ' do
begin read (ch); A
end ;
If $c h={ }^{\text {IF }}$ ')' then read(ch) else error
end else error
end ;
begin read(ch); A
end
Программа 5.1. Грамматический разбор для синтаксиса из прим. 5. рис. 5.2 (пример 5), в программу грамматического разбора (программа 5.1):

При этом преобразовании свободно применялись некоторые очевидные правила программирования, позволяющие упростить программу. Например, при буквальном переводе четвертая строка имела бы вид

$$
\begin{aligned}
& \text { if } c h=\text { ' } x \text { ' then } \\
& \text { if } c h=\text { ' } x \text { ' then read }(c h) \text { else error } \\
& \text { else. . . }
\end{aligned}
$$

Ясно, что ее можно сократить, как это сделано в программе. Операторы чтения в пятой и седьмой строках тоже получены с помощью такого же упрощения.
[По-видимому, полезно определить, когда вообще возможны подобные упрощения, и показать это непосредственно в виде графов. Два основных случая покрываются следующими дополиительными правилами:
B4a


$$
\begin{aligned}
& \text { If } c h= \text { ' } x_{1} \text { ' then begin } \operatorname{read}(c h) ; T\left(S_{1}\right) \text { end else } \\
& \text { if } c h=\text { ' } x_{2} \text { ' then begin } \operatorname{read}(c h) ; T\left(S_{2}\right) \text { end else } \\
& \text {............ } \\
& \text { if } c h=\text { ' } x_{n}^{\prime} \text { then begin } \operatorname{read}(c h) ; T\left(S_{n}\right) \text { end else error }
\end{aligned}
$$

B5a


$$
\begin{aligned}
& \text { while } c h=' x^{\prime} \text { do } \\
& \text { begin read }(c h) ; T(S) \text { end }
\end{aligned}
$$

Кроме того, часто встречающуюся конструкцию
$\operatorname{read}(c h) ; T(S) ;$
while $B$ do
begin read(ch); $T(S)$ end

можно, разумеется, выразить короче:

$$
\begin{equation*}
\text { repeat } \operatorname{read}(c h) ; \quad T(S) \text { until } B \tag{5.8}
\end{equation*}
$$

Мы намеренно не описываем пока процедуру error («ошибка»). Поскольку сейчас нас интересует лишь, как определить, правильно ли входное предложение, мы можем считать, что эта процедура заканчивает работу программы. Конечно, на практике в случае появления неправильных конструкций нужно использовать более тонкие приемы. Они будут рассматриваться в разд. 5.9.

## 5.5. ПОСТРОЕНИЕ ТАБЛИЧНО-УПРАВЛЯЕМОЙ ПРОГРАММЫ ГРАММАТИЧЕСКОГО PAЗ5ОРА

Вместо того чтобы для каждого языка составлять специальную программу по правилам, изложенным в предыду• щем разделе, можно построить одну, универсальную программу грамматического разбора. Конкретные грамматики задаются этой универсальной программе в виде исходных данных, предшествующих предложениям, которые нужно разобрать. Универсальная программа работает в строгом соогветствии с методом простого нисходящего грамматического разбора; поэтому она довольно проста, если основана ня детерминированном синтаксическом графе, т. е. если предложения можно анализировать с просмотром вперед на один символ без возврата.

- Итак, грамматика, (мы предполагаем, что она представлена в виде детерминированного множества синтаксических графов) преобразуется в подходящую структуру данных, а не в структуру программ [5.2]. Естественный способ представить граф - это ввести узел для каждого символа и связать эти узлы с помощью ссылок. Следовательно, «таблица» - это не просто массив. Правила преобразования очевидны и приведены ниже. Узлы этой структуры представляют собой записн с вариантами, один для терминального, а другой - для нетерминального символа. Первый идентифицируется терминальным символом, который он обозначает, второй - ссылкой на структуру данных, представляющую соответствующий нетерминальный символ. Оба варианта содержат две ссылки: одна указывает на следующий символ, последователь (suc), а другая связана со списком возможных альтернатив (alt). Описание соответствующего типа данных приведено в (5.9), а граФически узел можно изобразить как


Выясняется, что еще нужен элемент, представляющий пустую последовательность, символ «пусто». Мы обозначим его с помощью терминального элемента, называемого empty (5.9).

$$
\begin{align*}
& \text { type pointer }=\uparrow \text { node; } \\
& \text { node }== \\
& \text { record suc, alt: pointer; } \\
& \text { case terminal: boolean of }  \tag{5.9}\\
& \text { true: (tsym: char); } \\
& \text { false: (nsym: hpointer) } \\
& \text { end }
\end{align*}
$$

Правила преобразования графов в структуре данных аналогичны правилам Bl—B7.
Правила преобразования графов в структурах данных
C1. Свести систему графов к как можно меньшему числу отдельных графов с помощью соответствующих подстаноBOK.
С2. Преобразовать каждый граф в структуру данных согласно правилам СЗ—С5, приведенным ниже.
СЗ. Последовательность элементов (см. рисунок к правилу B3) преобразуется в следующий список узлов:


C4. Список альтернатив (см. рисунок к правилу B4) преобразуется в такую структуру данных:


С5. Цикл (см. рисунок к правилу В5) преобразуется в следующую структуру:


В качестве примера на рис. 5.3 показана структура, полу* ченная из графа, соответствующего синтаксису примера 5 (рис. 5.2). 〔труктура данных идентифицируется узлом-заго-


Рис. 5.3. Структура данных, пүедставляющая граф рис. 5.2.
ловком, который содержит имя нетерминального символа (цели), к которому относится структура. Пока в заголовке необходимости нет, так как можно вместо поля цели указывать непосредственно на «вход» в соответствующую структуру. Однако заголовок можно использовать для хранения выводимого на печать имени структуры:

$$
\begin{aligned}
& \text { type hpointer }=\uparrow \text { header; } \\
& \text { header }= \\
& \text { record entry: pointer; } \\
& \text { sym: char } \\
& \text { end }
\end{aligned}
$$

Программа, производящая грамматический разбор предложения, представленного в виде последовательности символов входного файла, состоит иэ повторяющегося олератора,

описывающего переход от одного узла к следующему узлу. Она оформлена как процедура, задающая интерпретацию графа; если встречается узел, представляющий нетерминальный символ, то интерпретация графа, на который он ссылается предшествует завершению интерпретации текущего графа. Следовательно, процедура интерпретации вызывается рекурсивно. Если текущий символ (sym) входного файла сов• падает с символом в текущем узле структуры данных, то процедура переходит к узлу, на который указывает поле suc, иначе - к узлу, на который указывает поле alt:

```
procedure parse(goal: hpointer; var match: boolean);
 var s :.pointer;
begin.s := goal\uparrow.entry;
 repeat
 if }s\uparrow\mathrm{ .terminal then
 begin if s\uparrow.tsym = sym then
 begin match := true; getsym
 end
 else match := (s \uparrow.tsym = empty)
 end
 else parse(s\uparrow.nsym, match);
 if match then s:= s\uparrow.suc else s:=s\uparrow.alt
 until s=~ nil
end
```

Программа грамматического разбора (5.11) «стремится» к новой подцели $G$, как только она появляется, не проверяя даже, содержится ли текуший символ входного файла в множестве начальных символов соответствующего графа first (G). Это предполагает, что в синтаксическом графе не должно существовать выбора между несколькими альтернативными нетерминальными элементами. В частности, если какой-лио́о нетерминальный символ может порождать пустую последовательность, то ни одна из правых частей соответствующих ему порождающих правил не должна начинаться с нетерминального символа.

На основе (5.11) можно построить более сложные таб-лично-управляемые программы грамматического разбора, которые могут работать с более широкими классами грамматик. Небольшая модификация позволяет также осуществлять и возвраты, но это будет сопровождаться значительной потерей эффективности.

Представление синтаксиса с помощью графа имеет один существенный недостаток: вычислительные машины не могут читать графы. Но перед началом грамматического разбора

нужно каким－то образом строить структуру данных，управ－ ляющих программой．В этом смысле представление грамма－ тик в БНФ оказывается идеальным в качестве исходных данных для универсальной программы грамматического раз－ бора．Поэтому следующий раздел посвящен разработке про－ граммы，которая читает правила БНФ и по правилам B1－B6 преобразует их во внутреннюю структуру данных，с которой может работать программа грамматического разбора（5．11）． ［5．8］．

## 5．6．ПРЕОБРАЗОВАНИЕ БНФ В СТРУКТУРЫ ДАННЫХ， УПРАВЛЯЮЩИЕ ГРАММАТИЧЕСКИМ РАЗБОРОМ

Транслятор，распознающий порождающие правила БНФ и преобразующий их в какое－то другое представление，как раз служит примером программы，входные данные которой можно рассматривать как предложения，принадлежащие некоторому языку．Действительно，саму БНФ можно считать некоторым языком，имеющим свой собственный синтаксис，который，ра－ зумеется，также можно описать с помощью порождающих правил БНФ．Следовательно，его транслятор может служить примером распознавателя，который помимо этого преобразует входные данные，т．е．，вообще говоря，является процессором． Поэтому мы будем действовать следующим образом：

Шаг 1．Определим синтаксис метаязыка，называемого РБНФ（расширенной БНФ）．
Шаг 2．Построим распознающую программу для РБНФ в соответствии с правилами，приведенными в разд．5．4．
Шаг 3．Расширив эту программу，превратим ее в трансля－ тор и объединим с таблично－управляемой про－ граммой грамматического разбора．

Пусть метаязык，т．е．язык，на котором пишутся синтакси－ ческие правила，описан следующими порождающими прави－ лами：

$$
\begin{align*}
& \text { 〈правило〉 }::=\langle\text { символ〉 }=\text { 〈выражение〉 } \\
& \text { 〈выражение〉::=〈терм〉\{,〈терм>\} } \\
& \text { 〈терм } \quad::=\langle ф а к т о р\rangle\{\langle ф а к т о р\rangle\}  \tag{5.12}\\
& \text { 〈фактор〉 }::=\langle с и м в о л\rangle \mid ~[\langle т е р м\rangle] ~
\end{align*}
$$

Заметим，что в порождающих правилах входного языка ис－ пользуются иные метасимволы，чем в БНФ．Это делается по двум причинам：

1．В（512）нужно отличать символы языка от метасим－ волов．
2. Желательно использовать более привычные символы печатаюшего устройства, в частности использовать один знак ( $=$ ) вместо ( $::=$ ).
Соответствие между обычной БНФ и нашей входной версией показано в табл. 5.1. Кроме того, каждое наше порождающее

Таблица 5.1. Метасимволы и символы языка

| БНФ | РБНФ |
| :---: | :---: |
| $::=$ | $=$ |
| 1 | [ |
| 1 | $]$ |

правило должно заканчиваться точкой. При использовании этого входного языка для описания с̈интаксиса примера 5 (5.7) мы получаем

$$
\begin{align*}
& A=x,(B) . \\
& B=A C .  \tag{5.13}\\
& C=[+A] .
\end{align*}
$$

Чтобы упростить построение транслятора, мы будем считать, что терминальные символы - это отдельные буквы и каждое порождающее правило пишется в отдельной строке. Это позволяет использовать во входном тексте пробелы (чтобы его было удобнее читать), которые транслятор игнорирует. Но тогда оператор read(ch) в правиле В7 нужно заменить вызовом процедуры, которая определяет очередной учитываемый символ. Эта процедура - простейшая разновидность, лексического сканера, или просто сканера. Задача сканера выделить из входной последовательности обычных символов очередной символ языка *) Это не всегда бывает так легко, как в нашем примере, поскольку мы до сих пор предполагали, что символы языка - это отдельные буквы, а на самом деле - это особый и на практике редко встречаюшийся случай.

Наконец, мы постулируем, что в нашем входном языке БНФ нетерминальные символы представляются буквами $A-H$, а терминальные символы - буквами $I-Z$. Это чистая условность, не связанная ни с какими серьезными причинами, но она избавляет от необходимости задавать словари терминальных и нетерминальных символов перед списком порождающих правил.

[^13]Убедившись, что (5.12) удовлетворяет ограничениям 1 и 2 , и действуя строго по правилам Bl - В7, мы получаем программу 5.2, которая распознает язык, определенный в (5.12). Заметим, что сканер называется getsym.

На третьем шаге разработки транслятора нужно прочитанные порождающие правила БНФ преобразовать в структуру данных, которая может интерпретироваться процедурой грам. матического разбора (5.11). К сожалению, этот этап не поддается формализации в отличие от этапа, связанного с построением программы распознавания. Поэтому мы просто нарисуем структуры, соответствующие каждой конструкции

## Множители:

1. (symbol)

2. [term)


Слагаемыея


## Выражевия!



```
program parser(input, output);
label 99;
const empty = '*';
var sym: char;
procedure getsym;
begin
 repeat read(sym); write(sym) until sym }\not=\mp@subsup{}{}{\prime}
end {getsym};
procedure error;
begin writeln;
 writeln (' INCORRECT INPUT'); goto 99
end {error};
procedure term;
 procedure factor;
 begin
 if sym in ['A' . .'Z', empty] then getsym else
 if sym = '[' then
 begin getsym; term;
 if sym = ']' then getsym else error
 end else error
 end {factor};
 begin factor;
 while sym in ['A' . . 'Z', '[', empty] do factor
 end {term};
 procedure expression;
 begin term;
 while sym = ',' do
 begin getsym; term
 end
 end {expression};
 begin {основная программа\
 while नeof(input) do
 begin getsym;
 if sym in ['A' . . 'Z'] then getsym else error;
 if sym = '=' then getsym else error;
 expression;
 if sym }\not= '! then error
 writeln; readln;
 end;
 99: end
Программа 5.2. Грамматический раэбор для языка (5.12).
```

языка. Формируемые структуры выдаются как параметры-результаты соответствующих процедур распознавания языковых конструкций; таким образом, эти процедуры превращаются в процедуры трансляции. Естественно, в качестве результатов передаются не сами структуры, а ссылки на них $p, q, r$ (см. рис. на с. 342).

Ясно, что процедура factor формирует новые элементы структуры данных; остальные же две процедуры связывают их в линейные списки, при этом term использует для связывания поле suc, а expression - поле alt. Подробности показаны в программе 5.3.

Метод обработки нетерминальных символов нуждается в некотором пояснении. Нетерминальный символ может встретиться в качестве фактора раньше, чем появится в левой части порождающего правила. Процедура find (sym,h) ищет заданный символ sym в линейном списке, где собраны все заголовки нетерминальных символов. Если символ найден, ссылка на него присваивается $h$, а если он еще не содержится в этом списке, то добавляется к нему. В процедуре find применяется метод барьера, подробно обсуждавшийся в гл. 4.

Программа 5.3 состоит из трех частей, каждая обрабатывает определенный раздел входного файла. Часть 1 читает порождающие правила и преобразует их в соответствующие структуры данных. Часть 2 читает и идентифицирует один символ - это начальный символ, с которого начинается порождение предложения языка. (Ему предшествует знак $\$$, разграничивающий части 1 и 2 входных данных.) Часть 3 есть программа грамматического разбора (5.11), читающая входные предложения и анализирующая их в соответствии со структурами данных, сформированными в части 1 .

Примечательно, что программа 5.3 получена просто с помощью включения добавочных операторов в неизмененну:о программу 5.2. Старая программа только распознавала правильно сформированные предложения, на ее основе можно построить новую, расширенную программу, которая не только распознает, но и транслирует предложения. Такой метод построения процессоров для работы с языком при помощи поэтапного уточнения, или, скорее, поэтапного дополнения, очень полезен. Он позволяет разработчику сосредоточить винмание исключительно на каком-то одном аспекте обработкн языка, прежде чем обратиться к другим аспектам, и поэтому облегчает проверку правильности транслятора или, во всяком случае, обеспечивает высокий уровень надежности при разработке программы. В нашем довольно простом примере разработка транслятора состоит из двух этапов. Более сложные языки и более сложные задачи трасляции требуют значительно большего числа отдельных этапов дополнения. Очень
program generalparser (input, output);
label 99;
const empty = '॰';
type pointer $=$ Mnode;
hpointer $=\uparrow$ header;
node $=$ record suc, alt: pointer; case terminal: boolean of true: (tsym: char); false: (nsym: hpointer)
end ;
header $=$ record sym: char; entry: pointer; suc: hpointer
end ;
var list, sentinel, h: hpointer;
p: pointer;
sym: char;
ok: boolean;
procedure getsym;
begin
repeat read(sym); write(sym) until sym $\neq{ }^{\prime \prime}$
end \{getsym\} ;
procedure find(s: char; var $\boldsymbol{h}$ : hpointer);
\{поиск в списке нетерминального символа s, если его нет,
включение его)
var h1: hpointer;
begin $h 1:=$ list ; sentinel $\uparrow . s y m:=s$;
while $h 1 \uparrow$.sym $\neq s$ do $h 1:=h 1 \uparrow$.suc;
if $h 1 \doteq$ sentinel then
begin,\{включение $\}$ new (sentinel);
$h 1 \uparrow . s u c:=$ sentinel; $h 1 \uparrow . e n t r y:=$ nil
end ;
$h:=h 1$
end $\{$ find $\}$;
procedure error;
begin writeln;
writeln ('INCORRECT SYNTAX'); goto 99
end \{error\};
procedure term (var p,q,r: pointer);
var $a, b, c:$ pointer;
procedure factor (var $p, q$ : pointer);
var $u, v:$ pointer; $h:$ hpointer ;
begin if sym in [' $A^{\prime}$. . ' $Z^{\prime}$, empty] then

## begin (символ) new (a);

if sym in [' $\mathrm{A}^{\prime}$. . ' $\mathrm{H}^{\prime}$ ] then
begin (нетерминальный\} find $(s y m, h)$;
$a \uparrow . t e r m i n a l:=$ false $; a \uparrow . n s y m:=h$
end else
begin (терминальный)
$a \uparrow . t e r m i n a l:=$ true $; a \uparrow . t s y m:=$ sym
end ;
$p:=a ; q:=a ;$ getsym
end else
if $\operatorname{sym}=$ ' $[$ ' then
begin getsym; term $(p, a, b) ; b \uparrow . s u c:=p ;$
new $(b) ; b \uparrow . t e r m i n a l:=$ true $; b \uparrow . t s y m:=$ empty;
$a \uparrow$.alt $:=b ; q:=b$;
if $s y m=$ ']' then getsym else error
end else error
end \{factor\} ;
begin factor $(p, a) ; q:=a$;
while sym in ['A' . . 'Z', '[', empty] do
begin factor $(a \uparrow . s u c, b) ; b \uparrow . a l t:=$ nil $; a ;=b$
end ;
$r:=a$
end $\{$ term $\}$;
procedure expression (var $p, q$ : pointer);
var $a, b, c$ : pointer;
begin $\operatorname{term}(p, a, c): c \uparrow . s u c:=$ nil;
while $\operatorname{sym}=$ ',' do
begin getsym;
term( $a \uparrow . a l t, b, c): c \uparrow . s u c:=$ nil; $a:=b$
end ;
$q:=a$
end \{expression\} ;
procedure parse (goal: hpointer; var match: boolean) $\boldsymbol{f}^{\prime}$
var $s$ : pointer;
begin $s:=$ goal $\uparrow . e n t r y ;$
repeat
if $s \uparrow$.terminal then
begin if $s \uparrow . t s y m=s y m$ then
begin match $:=$ true; getsym end
else maich $:=$ (s $\uparrow . t s y m \approx$ empty)

```
 end
 clse parse(s\uparrow.nsym, match); .
 if match then }s:=s\uparrow.suc else's:=s\uparrow.al
 motil s= nil
end {parse};
begin {порождающие правила}
 getsym; new(sentinel); list := sentinel;
 while sym }\not=\mathrm{ '$' do
 begin find(sym,h);
 getsym; if sym =' =' then getsym else error;
 expression (}h\uparrow..entry,p); p\uparrow.alt := nil
 if sym }\not=\mathrm{ '.' then error;
 writeln; readln; getsym
 end ;
 h:= list; ok := true; {проверка, все ли символы определены!
 while }h\not=\mathrm{ sentinel do
 begin if }h\uparrow.entry=nil the
 begin writeln(' UNDEFINED SYMBOL ', h\uparrow.sym);
 ok := false
 end ;
 h:=h\uparrow.suc
 end;
 if -ook then goto 99;
{цель)
 getsym; find(sym,\dot{h}); readln; writeln;
[предложения}
 while - eof (input) do
 begin write(' '); getsym; parse(h,ok);
 if ok ^(sym='`) then writeln (' CORRECT')
 else writeln (' INCORRECT');
 readln
 end;
99: end .
```

Программа 5.3. Транслятор для языка (5.13).

похожая разработка, состоящая из трех этапов, будет рассматриваться в разд. 5.8-5.11.

Как видно из разработки программы 5.3, программы, управляемые синтаксическими таблицами, или, вернее, управляемые структурой данных, обеспечивают свободу и гибкость, отсутствующие в специальных программах грамматического разбора. Хотя такая дополнительная гибкость в принципе не нужна, она оказывается весьма существенной в трансляторах для так называемых расширяемых языков. Расширяемые языки можно дополнять новыми синтаксическими конструкциями более или менее по усмотрению программиста. Так же как входной файл программы 5.3 , входной файл для транслятора с расширяемого языка содержит раздел, определяющий расширения языка, используемые в последующей программе. Более сложные схемы позволяют даже изменять язык в процессе трансляции, чередуя части транслируемой программы с разделами новых определений языка..

Однако, хотя эти идеи могут показаться весьма привлекательными, попытки реализовать подобные трансляторы оказались довольно неудачными. Дело в том, что синтаксический анализ - лишь часть всей задачи трансляции и на самом деле даже не самая существенная часть. Ее легче всего формализовать и, следовательно, представить с помощью систематизированной табличной структуры. Гораздо труднее формализовать смысл языка, т. е. выход, или результат трансляции. До сих пор эта задача не была сколько-нибудь удовлетворительно решена, и этим объясняется то, почему разработчики трансляторов относятся к расширяемым языкам с гораздо большим энтузиазмом до их реализации, чем после. Остальную часть этой главы мы посвятим разработке скромного транслятора для конкретного, небольшого языка программирования.

## 5.7. язык пРоГРАММиРовАния пл/о

Оставшиеся разделы этой главы посвящены разработке транслятора для языка, который мы назовем ПЛ/0. При создании этого языка учитывались два условия: во-первых, транслятор не должен оказаться слишком громоздким для этой книги, во-вторых, желательно было продемонстрировать большинство основных принципов трансляции языков программирования высокого уровня. Несомненно, можно было выбрать как более простой, так и более сложный язык; ГІЛ/0 является одним из возможных компромиссов между языками достаточно простыми для ясности изложения и достаточно сложными, чтобы ими стоило заниматься. Значительно более

сложный язык - Паскаль, транслятор для которого был разработан с применением тех же методов. Его синтаксис дан в приложении В.

Если говорить о структуре программы, то ПЛ/0 достаточно полон. Қонечно, в нем в качестве основной конструкции на уровне языка содержится оператор присваивания. Другие структурные концепции - это следование, условное выполнение и цикл, представленные знакомыми формами begin/end-, if-, while. В ПЛ/0 включено также и понятие подпрограммы, следовательно, там есть описания процедур и оператор вызова процедуры:

Что же касается типов данных, то ПЛ/0, бесспорно, удовлетворяет требованию простоты: единственный тип данных это целые числа. Разумеется, в ПЛ/0 присутствуют обычные операции арифметики и сравнения.

Наличие процедур, т. е. более или менее самостоятельных частей программы, дает возможность ввести концепцию локальности объектов (констант, переменных и процедур). Поэтому в заголовке каждой процедуры есть описания объектов; эти объекты считаются локальными для процедуры, в которой они описаны.

Это краткое введение позволяет представить себе синтаксис ПЛ/0. Этот синтаксис изображен на рис. 5.4 с помощью 7 диаграмм. Преобразовать диаграммы во множество эквивалентных порождающих правил БНФ мы предоставляем читателю. Рис. 5.4 является убедительным примером выразительности этих диаграмм, которые позволяют сформулировать синтаксическое описание целого языка программирования в столь краткой и хорошо воспринимаемой форме.

Следующая программа, написанная на ПЛ/0, демонстрирует некоторые свойства этого мини-языка. Эта программа содержит знакомые алгоритмы умножения, деления и нахождения наибольшего общего делителя двух натуральных чисел.

## 5.8. ПРОГРАММА ГРАММАТИЧЕСКОГО РАЗБОРА ДЛЯ ПЛ/О

В качестве первого этапа построения транслятора для ПЛ/0 нужно разработать программу грамматического разбора. Это можно сделать, строго следуя правилам построения B1-B7, приведенным в разд. 5.4. Но этот метод примении, только если синтаксис удовлетворяет ограничениям 1 и 2. ГІоэгому мы обязаны проверить это условие в его формулиировке для синтаксических графов.

Ограничение 1 требует, чтобы каждая ветвь, выходящая из разветвления, вела к отличному от других начальному символу. Это очень просто проверить по синтаксическим дна-


Блок


Oператор



Выраженче


Множатали


Рис. 5.4. Сентаксис ПЛ/о.

$$
\text { const } m=7, n=85 \text {; }
$$

var $x, y, z, q, r$;
procedure multiply;
var $a, b$;
begin $a:=x ; b:=y: z:=0$;
while $b>0$ do
begin
if odd $b$ then $z:=z+a ;$

$$
a:=2 * a ; b:=b / 2 ;
$$

end
end ;

```
procedure divide;
 var w;
begin \(r:=x ; q:=0 ; w:=y\);
 while \(w \leq r\) do \(w:=2 * w\);
 while \(w>y\) do
 begin \(q:=2 * q ; w:=w / 2 ;\)
 if \(w \leq r\) then
 begin \(r:=r-w ; q:=q+1\)
 end
 end
end ;
```

procedure gcd;
var $f, g$;
$\operatorname{begin} f:=x ; g:=y ;$
while $f \neq g$ do
begin if $f<g$ then $g:=g-f ;$,
if $g<f$ then $f:=f-g$;
end ;
$z:=f$
end ;
begin
$x:=m ; y:=n$; call multiply;
$x:=25 ; y:=3$; call divide;
$x:=84 ; y:=36$; call gcd;
end.

лраммам рис. 5.4. Правило 2 относится ко всем графам, которые могут ироходитьея без чтения Һакого-либо символа. Единственный такой граф в синтаксисе ПЛ/0-это тот, который описывает операторы. Ограничение 2 требует, чтобы все начальные символы, которые могут стоять сразу после операторя, отличались от начальных символов операторов. Поскольку в дальнейшем будет полезно знать множества начальных и последующих символов для всех графов, мы определим этн множества для всех 7 нетерминальных символов (графов) синтаксиса ПЛ/0 (кроме «программы»). Используя табл. 5.2, можно убеднться в соблюденни нужного условия, т. е. в том, чго множества начальных и последующих символов операторов не пересекаются. Тем самым разрешается применение правил построения программы грамматического разбора B1-B7.

Таблица 5.2. Начальные и внешиие символы в ПЛ/0

| Нетерминальныи символ $S$ | Начальыме символы $L(S)$ | Внешние символы $F(S)$ |
| :---: | :---: | :---: |
| Блок | const var procedure иде!чтификатор <br> if call legin while | , ; |
| Oператор | идентификатор саll bagin if while | ; end |
| Условне | odd + - ( идентификатор число | then do |
| Выраженне | + - ( идентификатор число | .; ) R end then do |
| Слагаемое | идентификатор число ( | $\text { ;) } \mathrm{R}+-$ end then do |
| Множитель | идентирикатор число ( | $\begin{aligned} & \text {; }) ~ R+-\cdots / 1 \\ & \text { end then do } \end{aligned}$ |

Внимательный читатель должен был заметить, что основные символы ПЛ/0 не являются обычными отдельными буквами, как было в предыдущих примерах. Они могут быть такими последовательностями, как, например, BEGIN или (: =). Как и в программе 5.3 , для работы с чисто внешними представлениями или при лексической обработке входной последовательности символов используется так называемый сканер. Он оформлен в виде процедуры getsym, задача которой - выбрать из входного файла очередной основной символ. Сканер щыполняет следующие действия:

1. Пропускает разделители (пробелы).
2. Распознает зарезервированные слова, такие, нак BEGIN, END и т. п. $^{\text {. }}$
3. Распознает незарезервированные слова в качестве идентификаторов. Текущиі̆ идентификатор присваивается глобальной переменной, называемой id.
4. Распознает последовательности цифр в качестве чисел. Значение числа присваивается глобальной переменной пит. 5. Распознает пары специальных знаков,


Рис. 5.5. Диаграмма зависимости для ПЛ/0. такие, как (:=).

При чтении входной последовательности сканер getsym использует локальную процедуру getch, которая читает очередной символ. Кроме этой основной задачи getch также:

1. Распознает и пропускает информацию о концах строк.
2. Переписывает входной файл в выходной, формируя, таким образом, распечатку программы.
3. Печатает в начале каждой строки еє номер или другую подобную информацию.

С помощью сканера осуществляется необходимый просмотр вперед на один символ. Кроме того, вспомогательная процедура getch допускает просмотр еще на один входной символ. Следовательно, наш транслятор «заглядывает» вперед на один основной символ плюс один входной символ.
【Пдробно эти процедуры показаны в программе 5.4 , которая представляет собой полную программу грамматического разбора для ПЛ/0. В действительности она уже несколько расширена в том смысле, что попутно собирает идентифика: торы описанных констант, переменных и процедур в таблицу. При появлении идентификатора внутри оператора он ищется в этой таблице, так как нужно установить, был ли идентификатор должным образом описан. Отсутствие такого описания можно рассматривать как синтаксическую ошибку, поскольку это формальная ошибка при построении текста программы, а именно использование «незаконного» символа. Тот факт, что эту ошибку можно обнаружить лишь с помощью хранения информации в таблице, есть следствие присущей языку контекстной зависимости, проявляющейся в следующем правиле: все идентификаторы соответствующего контекста должны быть описаны. На самом деле практически все языки программирования в этом смыгле контекстно зависимы; тем не менее

конгекстно-свободный синтаксис позволяет их описать наилучшим образом и очень полезен при построении трансляторов для этих языков. Проверка некоторых контекстных зависимостей может легко включаться в общие схемы, примером чему служит использование таблицы идентификаторов в рассматриваемой программе.

Перед тем как строить отдельные процедуры грамматичсского разбора, соответствующие отдельным синтаксическим графам, полезно установить, как эти графы взаимосвязаны. Для этого строится так называемая диаграмма зависимости; она изображает связи между графами, т. е. для каждого графа $G$ указывает все такие графы $G_{1} \ldots G_{n}$, с помощью

```
program PL0 (input, ouiput);
\{ транслятор с ПЛТ/0, только синтаксический анализ \}
label 99;
const norw \(=11\); \{число зарезервированных слов
 \(t x \max =100 ; \quad\) [длина таблиць имен \(]\)
 птах \(=14 ; \quad\) \{максимальное число чифр в числах \(\}\)
 al \(=10 ; \quad\{\) длина имен\}
type symbol \(=\)
 (nul, ident, number, plus, minus, times, slash, oddsym,
 eql, neq, lss, leq, gtr, geq, lparen, rparen, comma, semicolon,
 period, becomes, beginsym, endsym, ifsym, thensym,
 whilesym, dosym, callsym, constsym, varsy'm, procsym);
 alfa \(=\) packed array [1. .al] of char;
 object \(\sqsupset\) (constant, variable, procedure);
var ch: char;
 sym: symbol; \(\quad\) последний прочитанный символ языка\}
 id: alfa; \(\quad\) последнее прочитанное имя
 num: integer; \{последнее прочитанное число\}
 cc: integer; \{счетчик символов\}
 Il: integer; \{длина строки\}
 \(k k\) : integer;
 line: array [1. . 81] of char;
 a: alfa;
 word: array [1. . norw] of alfa;
 wsym: array [1. . norw] of symbol;
 ssym: array [char] of symbol;
 table: array [0. . txmax] of
 record name: alfa;
 kind: object
 end;
```

```
procedure error (n: integer);
begin writeln(' ':cc, '}', n:2); goto 99
end {error};
procedure getsym;
 var }i,j,k: integer
 procedure getch;
 begin if cc=ll then
 begin if eof(input) then
 begin write (' PROGRAM INCOMPLETE'); goto 99
 end;
 l :=0; cc:= 0; write(');
 while Teoln(input) do
 begin ll:=ll+1; read(ch); write(ch); line[ll] :=~ ch
 end;
 writeln;ll:= ll+1; read(line[ll])
 end;
 oc:=cc+1;ch:= line[cc]
 end {getch};
beg:n {getsym}
while ch ם ' ' do getch;
 if ch ln ['A' . . 'Z'] then
 begin (имя, или зарезервированное слово) k:=> 0;
 repeat if }k<al\mathrm{ then
 begin }k:=k+1;a[k]:=~ c
 end;
 getch
 antil \neg(ch in ['A' . . 'Z', '0' . . '9']);
 If }k\geqkk\mathrm{ then }kk:=k\mathrm{ else
 repeat a[kk]:='';kk:=kk-1
 until }kk=k
 ld}:=a;i:=1;j:= norw
 repeat k:=(i+j) div 2;
 If id }\leq\mathrm{ word[k] then f:=k-1;
 if id }\geq\mathrm{ word[k] then }t:=k+
 untll i>j;
 If }i-1>j\mathrm{ then sym:= wsym[k] else sym :=> ident
 end else
 if ch in ['0' . . '9'] then
 begin {число} }k:=0; num:=0; sym:= number
 repeat num := 10*num + (ord(ch)-\operatorname{ord}(\mp@subsup{}{}{\prime}0'));
 k:=k+1; getch
 until ᄀ(ch in ['0' . . '9']);
 if }k>\mathrm{ nmax then error (30)
```

```
 end else
 if ch := ':' then
 begin getch;
 if ch= ' }=\mathrm{ ' then
 begin sym := becomes; getch
 end else sym:= nul;
 end else
 begin sym:= ssym[ch]; getch
 end
end {getsym};
procedure block (tx: integer);
 procedure enter (}k\mathrm{ : object);
 begin [зӓпись объекта в таблицу]
 tx:=tx+1;
 with table[tx] do
 begin name := id; kind := k;
 end
 end {enter};
 function position (id: alfa): integer;
 var i: integer;
 begin (поиск имени id в таблице)
 table[0].name := id; i:= tx;
 while table[i].name }\not=\mathrm{ id do }i:=i-1
 position:= i
 end {position};
 procedure constdeclaration;
 begin if sym = ident then
 begin getsym;
 if }sym=eql the
 begin getsym;
 if sym = number then
 begin enter (constant); getsym
 end
 else error (2)
 end else error (3)
 end else error (4)
 end {constdeclaration};
 procedure vardeclaration;
 begin if sym = ident then
 begin enter (variable); getsym
 end else error (4)
 end {varleclarction};
```

procedure statement;
var $i$ : integer;
procedure expression;
procedure term;
procedure factor;
var $i$ : integer;
begin
if $s y m=$ ident then
begin $i:==$ position(id);
if $i=0$ then error (11) else
if table[i].kind $=$ procedure then error (21);
getsym
end else
if $s y m=$ number then
begin getsym
end else
If $s y m=$ lparen then
begin getsym; expression;
if sym $=$ rparen then getsym else error (22)
end
else error (23)
end \{factor\};
begin $\{$ term $\}$ factor;
while sym in [times, slash] do
begin getsym; factor
end
end $\{$ term $\}$;
begin \{expression\}
if sym in [plus, minus] then
begin getsym; term
end else term;
while sym in [plus, minus] do
begin getsym; term
end
end \{expression\} ;
procedure condition;
begin
If $s y m=$ oddsym then
begin getsym; expression
end else
begin expression;
if $-(s y m$ in [eql, neq, lss, leq, gtr, geq]) then error (20) else

```
 begin getsym; expression
 end
 end
 end {condition};
 begin {statement}
 if sym = ident then
 begin i:= position(id);
 if i=0 then error (11) else
 if table [i] .kind }\not=\mathrm{ variable then error (12);
 getsym; if sym = becomes then getsym else error (13);
 expression
 end else
 if sym = callsym then
 begin getsym;
 if sym }\not=\mathrm{ ident then error (14) else
 begin i:= position(id);
 if i=0 then error (11) else
 if table[i] .kind }\not=\mathrm{ procedure then error (15);
 getsym
 end
 end else
 if sym= ifsym then
 begin getsym; condition;
 if sym = thensym then getsym else error (16);
 statement;
 end else
 If sym = beginsym then
 begin getsym; statement;
 while sym = semicolon do
 begin getsym; statement
 end;
 if sym = endsym then getsym else error (17)
 end else
 if sym = whilesym then
 begin getsym; condition;
 if sym = dosym then getsym else error (18);
 statement
 end
 end {statement};
begin {block}
 if sym= constsym then
 begin getsym; constdeclaration;
```

while sym $=$ comma do
begin getsjm; constdeclaration
end ;
if $s y m=$ semicolon then getsym else error (5)
end;
if $\operatorname{sym}=$ varsym then
begin getsym; vardeclaration;
while sym $=$ comma do begin getsym; vardeclaration end;
If sym $=$ semicolon then getsym else error (5)
end;
while sym = procsym do
begin getsym;
if $s y m=$ ident then begin enter (procedure); getsym end
else error (4);
If sym $=$ semicolon then getsym else error (5);
block ( $t x$ );
if $s y m=$ semicolon then getsym else error (5);
end;
statement
end $\{b l o c k\}$;
begin \{основная программа\}
for ch $:=$ ' $\mathrm{A}^{\prime}$ to ${ }^{\prime} ;$ ' do ssym[ch] := nul;
word[ 1] : $=$ 'BEGIN'; word[ 2] $:=$ 'CALL $\quad$;
word [ 3] := 'CONST'; word[ 4]: $=$ 'DO
word [ 5] := 'END '; word[ 6] := IF $\quad$;
word [ 7] $:=$ 'ODD '; word [ 8] $:=$ 'PROCEDURE';
word [9] := 'THEN '; word[10] $:=$ 'VAR ';
word $[11]:=$ 'WHILE';
wsym[ 1] $:=$ beginsym; wsym[ 2] := .callsym;
wsym [ 3] := constsym; wsym [ 4]:= dosym;
wsym [.5] $:=$ endsym; wsym [ 6] $:=$ ifsym;
wsym [7]: $:=$ oddsym; $\quad$ wsym [ 8] $:=$ procsym;
wsym [ 9] $:=$ thensym; wsym[10] $:=$ varsym;
wsym[11]:= whilesym;
$\operatorname{ssym}\left[{ }^{\prime}+{ }^{\prime}\right]:=$ plus; $\quad \operatorname{ssym}\left[{ }^{\prime}-^{\prime}\right]:=$ minus;
$\operatorname{ssym}\left[{ }^{\prime} *^{\prime}\right]:=$ times; $\quad \operatorname{ssym}[' / ']:=$ slash;
$\operatorname{ssym}\left[{ }^{\prime}\left({ }^{\prime}\right]:=\right.$ lparen $\left.; \quad \operatorname{ssym}\left[{ }^{\prime}\right)^{\prime}\right]:=$ rparen;
ssym $\left[^{\prime}='\right]:=$ eql; $\quad \operatorname{ssym}\left[\left[^{\prime},\right]:=\right.$ comma;

```
ssym['.']:= period; ssym['\not=']:= neq;.
ssym['<']:= lss;
ssym['\leq'] := leq; ssym['\geq']:= geq;
ssym[';']:= semicolon;
page(output);
cc:= 0; ll:= 0; ch:=' '; kk := ai; getsym;
block (0);
if sym = period then error (9);
99: writeln
end.
```

Программа 5．4．Грамматический разбор для ПЛ／0．

которых определен $G$ ．Соответственно это определяет，какие процедуры будут вызываться другими процедурамй．Диа－ грамма зависимости для ПЛ／0 показана на рис．5．5．

Циклы на рис． 5.5 обозначают появление рекурсии．По－ этому важно，чтобы в языке，на котором реализуется транс－ яятор ПЛ／0，была разрешена рекурсия．Кроме того，диа－ грамма зависимости позволяет сделать выводы об́ иерархи－ ческой организации программы грамматического разбора．На－ пример，все процедуры могут содержаться（быть описаны как локальные）в процедуре，которая анализирует конструкцию〈программа〉（которая поэтому будет главной программой в программе грамматического разбора）．Далее，все про－ цедуры，нзображенные на диаграмме ниже 〈блок〉，могут определяться как локальные в подпрограмме，представляю－ щей цель разбора 〈блок〉．Разумеется，все эти процедуры вы－ зывают сканер getsym，который в свою очередь вызывает getch．

## 5．9．ВОССТАНОВЛЕНИЕ ПРИ СИНТАКСИЧЕСКИХ ОШИБКАХ

До сих пор программа грамматического разбора лишь устанавливала，принадлежит ли входная последовательность символов языку．В качестве побочного результата она также определяла структуру предложения．Но если встречалась не－ правильная конструкция，задача программы могла счнтаться выполненной и она могла закончить работу．Разумеется，на практике такая схема неприемлема．Вместо этого транслятор должен выдавать соответствующую диагностику об ошибках ＂продолжать проиесс грамматического разбора，возможно находя дальнейшне ошнби．Чтобы продолжат，работу，нужно либо сделать какие－то предположения о гом，что́ на самом

деле имел в виду автор неправильной программы, либо пропјстить некоторую часть входной последовательности, либо сделать и то, и другое. Сделать достаточно разумные предположения о действительных намсреннях программиста - довольно сложно. До сих пор это пе удавалось формалнзовать, поскольку формальный подход к снитакснсу и грамматическому разбору не учитывает многие факторы, снльно влияющие на человеческое сознание. Например, распространенной ошибкой является пропуск знаков пунктуации, таких, как точка с запятой (не только в программировании!), но весьма маловероятно, что кто-то пропустит знак «十» в арифметическом выраженин. Для программы грамматического разбора и точка с запятой, и плюс - просто терминальные символы без какого-либо существенного различня; а ція целовека точка с запятой почти нс имеет значения и в коице строки кажется избыточной, тогда как знак арифметической операции, бесспорно, осмыслен*). Прн разработке подходяцей системы восстановлення следует приннмать во внимание многие подобныс соображения, которые связаны с конкрегным языком и не могут обобщаться для всех контекстно-свободных языков.

Все же суцествуют некоторыс правила и рекомендации, действующие не только в рамках одного языка, такого, как ПЛ/О. Для них, пожалуй, характерно, что они в равной мере связаны как с исходной кон!епцией языlа, так и с механизмом восстановлення в программе юрамматического разбора. Прекде вссго совершенно ясно, что эффекгивнос восстановление возможно нли, во всяком случае, намного облегчается лишь в случае языка с простой структурой. В частности, если при обнаруженнн ошнбкн пропускается какая-го часть входной последовательности, то язык об́язатсльно должен содержать служебноие слова, неправнльное употребление которых крайне маловероятно и которые поэтому могут использоваться для возобновления грамматического разбора. В ПЛ/О это правило строго соблюдается: каждый оператор начинается с однозначного служебного слова, такого, как begin, if, while; то же относится к описаниям: они начинаются с var, const или procedure. Мы назовем это правилом служебных слов.

Bropoe правило более непосредственно связано с построением программы грамматического разбора. Для нисходящего

[^14]анализа характерно, что цели разбиваются на подцели; при этом процедуры вызывают другис процедурі!, соответствующие этим подцелям. Bторое правило определяет, что еесли процедура грамматического разбора оо́наруживает ошибку, то она не должна прекращать работу н сооб́щать о случившемся вызвавшей ее процедуре. Вместо этого она должна самостоятельно продолжать просмотр текста до того места, откуда можно возобновить анализ. Мы назовем это правилом «не поднимай панику». Из него следует, что из процедуры грамматического разбора не может быть другого выхода, кроме обычного завершения работы...
-Правило «не поднимай панику» можно интерпретировать следующим образом: при появлении неправильной конструкции процедура должна пропустить входной текст, пока не встретится символ, который по правилам может следовать за той конструкцией языка, которую она пыталась обнаружить. Это означает, что каждой процедуре грамматического разбора в момент текущей ее активацни должно быть известно множество внешних символов.

Поэтому на первом этапе уточиения (или дополнения) мы снабдим каждую процедуру грамматического разбора явным параметром fsys, который задает возможные внешние символы. В конце каждой процедуры вставляется явная проверка: действительно ли следующий символ входного текста содержится среди этих внешних символов (если это уже не обусловлено логикой программы)?

Все же с нашей стороны было бы неразумио при всех обстоятельствах пропускагь входной текст цо следующего появления такого внешнего символа. В конце концов, программист мог по ошибке пропусгить всего одии симвот (например), точку с запятой), а игнорированне текста до следующего внешнего символа может иметь гибельные последствия. Поэтому ко множествам символов, которые прекращают пропуск текста, мы добавим служебные слова, огмечающие начало конструкции, которую не следует пропускать. Таким образом, символы, передаваемые в качестве параметров процедуре грамматического разбора, - это символы возобновления, а не просто внсшние символы. Мы можем считать, что множкества символов возобновления с самого начала содержат отдельные служебные слова и при проходе нерархии подцелей грамматического разбора постепенно дополняются внешними символами этих подцелей Для удобства вводится общая подпрограмма, называемая test, - она выполняет описанную выше проверку. Эта процедура (5.17) имеет три параметра:

1. Множество sl допустимых следующих симво,лов; если текущий символ к нему не принадлежит, то имеет место ошибка
2. Множество $s 2$ дополнитсльных символов возобновления, появление которых определенно является ошибкой, но которые ни в косм случае не следует пропускать.
3. Номер $n$, который ирисваивается ошибке, если происдура се обнаружит.
```
procedure test (s1, s2: symset; \(n\) : integer);
begin if \(\neg(s y m\) in \(s 1)\) then
 begin \(\operatorname{error}(n) ; s 1:=s 1+s 2\);
 while \(\neg(s y m\) in \(s 1)\) do getsym
end
end
```

Процедуру (5.17) удобно использовать при входе в процедуру грамматического разбора для проверки, является ли текущий символ допустимым начальным символом анализируемой конструкции. Это рекомендуется во всех случаях, когда процедура $X$ вызывается безусловно, как в операторе

$$
\text { if } s y m=a_{1} \text { then } S_{1} \text { else }
$$

$$
\text { if } s y m=a_{n} \text { then } S_{n} \text { eise } X
$$

который получен из порождаюшего правияа

$$
\begin{equation*}
A::=a_{1} S_{1}|\ldots| a_{n} S_{n} \mid X . \tag{5.18}
\end{equation*}
$$

В этих случаях параметр sl должен содержать множество начальных символов $X$, а $s 2$ - множество внешних символов $A$ (см. табл. 5.2). Подробно эта процедура показана в программе 5.5 , которая представляет собой дополненную верспио программы 5.4. Для удобства читателя вся программа приведена полностью, за исключенисм инициации глобальных переменных и процедуры getsym, оставшихся без изменений.

Предполагаемая до сих пор схема пытается возобновить грамматический разбор, вернуться на правильный путь, пропустив один или о́олее символов входного текста. Но это неудачная стратегия во всех случаях, когда ошибка вызвана пропуском символа. Опыт говорит о том, что такие ошибки фактически связаны с символами, выполняющими чисто синтаксическне функции н не представляющими какого-либо дсйствия. Примсром служит точка с запятой в ПЛ/0. Однако, поскольку множества виешних символов дополнены определенными служсбными словами, на самом деле грамматнческий разбор вовремя прекращает пропуск символов, т. е. ведет себя так, яак если бы забытый символ был вгтавлен. Это видно нз той части программы (5.19), которая анаиизирует

сиєтвные операторы. Она «встав:1яет» пропущенные точки с заіятой перед ключевыми словами. Множество, называемое stutbegsys, есть множество начальных символов конструкции «оператор».

```
if sym = beginsym then
begin getsym;
 statement([semicolon, endsym]+fsys);
 while sym in [semicolon]+ statbegsys do
 begin
 if sym = semicolon then getsym else error;
 statement([semicolon, endsym]-卜fsys)
 end;
 if sym = endsym.then getsym else error
end
```

О том, насколько успешно эта программа обнаруживает синтаксические ошибки и справляется с необычными ситуацнями, можно судить по программе ПЛ/0 (5.20). Ee pacпечатка является результатом работы программы 5.5, а в табл. 5.3 перечислены возможные сообщения об ошибках, соответствующие номерам ошибок в программе 5.5.

Таблица 5.3. Сообщения об ошибках, выдаваемые транслятором с ПЛ/0

1. = вместо :=
2. Нет числа после $=$
3. Нет $=$ после идентнфикатора
4. Нет идентификатора после const, var, procedure
5. Пропущсна запятая или точка с запятой
6. Неверный символ после описания процедуры
7. Het onepatopa
8. Неверный символ после опсраторной части блока
9. Нет многоточия
10. Пропущена точка с запятой между операторами
11. Нсописанный идентификатор
12. Недопустимое присваивание коистанте или процедуре.
13. Требуется $:=$
14. Нет идентификатора после саll
15. Вызов константы или переменной вместо процедуры
16. Требуется then
17. Требуется точка с запятой или end
18. Требуется do
19. Невериый символ после оператора
20. Требуется сравиение

21 Выражение содєржит идентификатор процедуры
22. Отсутствует правая скобка
23. Нсверный символ носле множите.тя
24. Невсрный снмвол в начале выражения
30. Сиишком большое число

Программа (5.20) получена в результате намеренного вве. дения синтаксических ошнбок в (5.14) - (5.16).

```
const \(m=\%, n=x\)
var \(x_{n} 1, \sim, q, r\);
 \(\uparrow 5\)
 个 5
procedure multiply;
 var \(a, b\)
 begin \(a:=u ; b:=y ; z:=0\)
 \(\uparrow 5\)
 \(\uparrow 11\)
 while \(b>0\) do
 \(\uparrow 10\)
 begin
 if \(o d d b\) do \(z:=z+a ;\)
 †16
 个19
 \(a:=2 a ; b:=b / 2\);
 \(\uparrow 23\)
 end
 end ;
procedure divide
 yar 1f;
 个 5
 const two \(=2\), three \(:=3\);
 个 7
 个 1
\(\operatorname{begin} r=x ; q:=0 ; w:=y ;\)
 个13
 \(\uparrow 24\)
 while \(w \leq r\) do \(w:=\) two*w;
 while \(w>y\)
 begin \(q:=(2 * q ; w:=w / 2)\);
 \(\uparrow 18\)
 \(\uparrow 22\)
 if \(w \leq r\) then
 begin \(r:=r-w q:=q+1\)
 \(\uparrow 23\)
 end
 end
end ;
procedure gcd;
 \(\operatorname{var} f, g\);
\(\operatorname{begin} f:=x ; g:=y\)
```

```
 while \(f=g\) de
 \(\uparrow 17\)
 begin if \(f<g\) then \(g:=g-f\);
 if \(g<f\) then \(f:=f-g\);
 \(z:=f\)
end ;
begin
 \(x:=m ; y:=n\); call multiply;
 \(x:=25 ; y:=3\); call divide;
 \(x:=84 ; y:=36\); call \(g c d\);
 call \(x ; x:=\operatorname{gcd} ; \operatorname{gcd}=x\)
 \(\uparrow 15\)
 \(\uparrow 21\)
 \(\uparrow 12\)
 \(\uparrow 13\)
 \(\uparrow 24\)
end .
 \(\uparrow 17\)
 \(\uparrow 5\)
 \(\uparrow 7\)
PROGRAM INCOMPLETE
```

Все же ясно, что никакая схема, которая доститочно эффективно гранслирует правильные предложения, не сможет так же эффективно справляться со всеми возможными неправильными конструкциями. Да и как может быгь иначе!


Рис. 5.6. Синтаксис с модифицированным составным оператиром.
Любая схема восстановления, реализованная с раразумными затратами, потерпит неудачу, т. е. не сможет адекватно обработать нскоторые ошибочные конструкции. [Однако хороний транслятор должеІ обладать такими важными свойствами:

1. Никакая входная последовательность не должна приводить к катастрофе.
2. Все конструкиии, которые по определенио языка являются нсзаконными, должны обнаруживаться и отмечаться.
program PLO (input, oufput);

label 99;
```
const norw = 11; {количесmво зарезервнрованных словј
 t>max == 100; {длина тибличьи имен}
 mmах = 14; {максима,тьое количество циявр в числал)
 al=10; {}\quad{\mathrm{ длнна имен)
```

type symbol $=$
(nul, ident, number, plus, minus, times, slash, odds.s.m,
eql, neq, lss, leq, gtr, geq, lparen, rparen, comma, semicolon,
period, becomes, beginsym, cndsym, ifswm, thensym.
whilesym, dosym, callsim, comstsim, v(mssm, procsym);
alfa $=$ packed array $[1 \ldots a l]$ of char;
object $=$ (constant, rariable, procedure);
symset $=$ set of symbol;
צar ch: char; \{последний прочитаниьй вкодной символ\}
sım: sjmbol; \{последний прочитанный симво.т.qзьки\}
id: alfa; $\quad$ пос:леднее прочьтанпое имяя
mum: integer: \{nоследнее прочинанное число\}
сс: integer; \{счетчик символов
7l: integer; \{длина строк"\}
$k k$ : integer;
linc: array [1. . 81] of char:
a: alfa;
Hord: array [L . . norw] of alfic;
wisy: array [ 1 . . norw] of simbol;
ssym: array [char] of stmbol;
declbegsy:s, stabegsy:s, facbegsys: symset;
table:: array [0 . t.imax] of
record name: alfa;
kind: object
end ;
procedure error (n: integer);
begin writeln(' ':cc, ' $\hat{i}$ ', n: 2);
end \{error\};
procedure test (s1,s2: slimset; n: integer);
begin if - ( $s y m$ in $s 1$ ) then
begin error $(11) ; s 1:=s 1 \div s 2$;
while -( $s!m$ in $s 1)$ do getsym
end
end $\{$ test $\}$;
procedure block (tx: integer; fsys: symset);
procedure chter ( $k$ : cobject);
begin \{запись объекта в таблииу)
$t x:=t x+1 ;$
with table $[t x]$ do
begin name $:=i d ;$ kind $:=k$;
end
end \{enter\};
function position (id: alfa): integer;
var $i$ : integer;
begin (поиск имени id в таблице)
tabie $[0]$.name $:=i d ; i:=t x$;
while table $[i]$ name $\neq$ id do $i:=i-1$;
position : $=i$
end \{position\};
procedure constdeclaration;
begin if $s y=$ ident then
begin getsym;
if sym in [eql, becomes] then
begin if $s y m=$ becomes then error (1);
getsym;
if $s y m=$ number then
begin enter (constant); getsym
end
else error (2)
end else error (3)
end else error (4)
end \{constdeclaration\};
procedure vardeclaration;
begin if $s: m=$ ident then begin enter (variable); getsym end else error (4)
end \{rardeclaration\};
procedure statement ( $f$ sy's: symset);
var $i$ : integer;
procedure expression (fsy's: symset);
procedure term (fsys: syinset);
procedure factor ( $f$ sjs: symset);
var $i$ : integer:
begin test (facbegsys, f̈sys, 24);
while sym in facbegsys do

```
 begin
 if sym= ident then
 begin i:= position (id);
 if i=00 then error (11) else
 if table[i].kind = procedure then error (21);
 getsym
 end else
 if sjm = number then
 begin getsym;
 end else
 if sym= lparen then
 begin getsym; expression ([rparen]+fs's);
 if sjm = rparen then getsjm else error (22)
 end;
 test(fsy's, [lparen], 23)
 end
 end {factor};
 begin {term} factor (fsys-[[times, slash]);
 while sym in [times, slash] do
 begin getsym; factor(fsy:s-i[times, slash])
 end
 end {term};
begin {expression}
 if sym in [plus,minus] then
 begin getsym; term(fsjs+ [plus, minus])
 end else term(fsy'+[plus, minus]);
 while sym in [plus, minus] do
 begin getsym; term(fsys+[plus, minus])
 end
end {expression} ;
procedure condition(fsys: symset);
begin
 if }sym=oddsym the
 begin getssm; expression(fs);s);
 end else
 begin expression ([eql, neq, lss, gtr, leq, geq]+fsys);
 if -(sym in [eql, neq, lss, leq, gtr, geq]) then
 error (20) else
 begin getsym; expression (fsy's)
 end
 end
end {condition};
```

```
begin {statement}
 if sym= ide;ll then
 begin i:= position(id);
 if i=0 then error (11) else
 if table[i].kind }\not=\mathrm{ variable then error (12);
 getsym; if sym = becomes then getsym else error (13);
 expression(fsys):
 end else
 if sym= callsym then
 begin getsym;
 if sym }\not=\mathrm{ ident then error'(14) else
 begin i:= position(id);
 if i=0 then error (11) else
 if table[i] .kind }\not=\mathrm{ procedure then error (15);
 getsym
 end
 end else
 if sym = ifsym then
 begin getsym; condition ([thensym, dosym]+fsy's);
 if sym = thensym then getsym else error (16);
 statement(fsys)
 end else
 if sym = beginsym then
 begin getsym; statement([semicolor, endsym]-fsys);
 while sym in [semicolon]+statbegsys do
 begin
 if sym = semicolon then getsym else error (10):
 statement([semicolon, endsym]+fsys)
 end;
 if sym = endsym then getsym else error (17)
 end else
 if sym = whilesym then
 begin getsym; condition([dosym]+fsys);
 if sym = dosym then getsjam else crror (18);
 statement(fsys);
 end;
 test(fsys, [], 19)
end {statement};
begin {block}
 repeat
 jf sym = constsym then
```

```
 begin getsym;
 repeat constdeclaration;
 while s.1m :- commmu do
 begin gets!m; constdeclaration
 end;
 if sym= semicolon then gelsymm else error (5)
 until sj'm}\not=\mathrm{ ident
 end ;
 if sjm= varsym then
 begin getsym;
 repeat lardeclaration;
 while sym == comma do
 begin getsjm; rardeclaration
 end;
 if sym== scmicolon then gelsym else crror (5)
 until sym }\not=\mathrm{ ident;
 end ;
 while sym == procssm do
 begin getsjm;
 if }sym=\mathrm{ ident then
 begin enter (procedure); getsym
 end
 else error" (4);
 if sym= semicolon then getsym else crror (5);
 block (t.x, [semicolon]\cdot|-fsys);
 if sym:= semicolon then
 begin getsim; test(statbegs)s-i [ident, procsjm], fsjs, 0)
 end
 èlse error (5)
 end ;
 test(statbegsy's-+[ident], declbegsy's, 7)
 until -(s!m in declbegsys);
 statement([semicolon, endsym] +fsys);
 test(fs)'s, [], 8);
end {block};
begin {основная программяа}
 ... Инициация(см. программу 5.4)...
 cc:== 0; ll :== 0; ch :-- ''; kk :=- al; gctsym;
 block (0, [period] --declbegsis : suabegsys);
 if sym \not= period then error (9);
99: writelw
end .
```



``` ошиб์ках.
```

3. Ошибки, встречающисся довольнс часто и действительно являющиеся ошнбками программиста (вызванными недосмотром или недопоныманием), должны правильно диагностнроваться и не вызывать, ねаних-.ынбо дальнейших отклонений в работе трансаятора - соои́щений о так называе.


Предлагасмая схема восстановлення работает удовастворительно, хотя, как всегда, возможно ее лальноїнсе усовејшенствование. Ее преимуцество в том, ито ина построена систематнческим образом но нескоиьюнм основыым правилам. Эти основиые правнла просто разрабоганы с помощьо выбора параметров, основаниого на эвристияских соображениях и оныте практического использования языка".

### 5.10. ПРОЦЕССОР ПЛ/0

В самом деле, прнмечательно, что до сих пор транслятор ПЈІ/0 разрабагывался в полном неведснин, для какой машины он должен формировать рабочую программу. Да и с какой с'гати структура маиины должна влиять на схему синтаксического анализа и воссгановления при ошибках? Болсе того, она деїствителино не доләна влиять. Вмесго этого собственно схема формирования кода для любой вычислительной машины должна накладываться на алгорнтм грамматнческого разо́ора методом поэгапного угочнения существующей программы. Поскольку геперь мы готовы к этому, нужно выбрать процессор, для котороюо пронзводится трансіяция.

Чтобы описание транслятора остава,лось лостатооно простым и свободиым от посторонннх соображслий, связанных с конкретными особенностями какого-либо реального процессора, мы иридусмаем свою собствепиую вычислительную машнну, слсцнајьно прислособленную для ПЛ/О. Это нский гипотетическнй пролессор, который не существует на самом деле (в аппаратном ви,д) ; в!и назовем его лашиної ПЛ/О.

В этом разделе мы не будем подробно объясиять, ночему мы выбрали имешо так!ю мапинную архнтектуру. Вместо этого данный раздел бу’дет служить руководством по процессору, состоящим из вводного интуитивного описания, за которым будет следовать подробнос определение процессора с помощью алгоритма. Эта форма.!нзаин может служить примером аккуратного и нодробного описания для реальных процессоров. Наш алгоритм последователіно интерпретирует команды ПЛ/0 н пазывается интериретатором.

В машину ПЛ/0 входят две областн памяти, регистр команды и три регистря адресов. Поиять для програныия, называемой рабочей програлмой, загружается трансяятороп

и во время интерпретации программы не пзменяется. Ее можно считать памятью, допускающей только счнгывание. Область паняти для хранения даняыхх оргаинзована в виде стеки, и все арифммтнескис действия выполняются с двумя Элементами на вериине сгека, прнчем результат записывается на место опсрандов. Верхний элемент а»рссуется (индексируется) с помощью регистра вериинь стека Т. Ресистр команды I содержит команду, которая интерпретируется в данный момент. Регистр адреса команды $P$ указывает следующую команду, которую нужно будет интерпретировать.

Каждая процедура в машине ПЛ/0 может содсржать локальные переменные. Поскольку процелуры могут вызываться рекурсивно, память для этих перемснных нельзя выделить до действительного обращення к процедурс. Следовательно, сегменты данных для отдельных процедур последовательно помешаются в стек $S$. Так как вызовы процедур строго подчинены схеме «первым вошел - последним вышел», стек являстся подходяшим способом размещения. Каждая процедура обладет своей собственной ннформацней: адресом команды ее вызова (так называемым адресоя возврата), и адресом сегмента данных вызвавшей ее процедуры. Эти два адреса нужны для правильного возобновления работы программы после завершення работы процедуры. Их можно рассматривать как внутренние, или неявные локальные переменные, помешаемые в сегменте данных процедуры. Мы называем их адресом возврита RA и динамической связкой DL. Начало динамической цепочки, т. е. адрес размещенного последним сегмента даных, сохраняется в регистре базовоно адреса $B$.

Поскольку дейсгвитс:льне выделение памятн пронсходит во время выполнения (иптерпретании) программы, транслятор не может формировать рабочую программу с абсолютными адресами. Он может лишь задать расположение переменных внутри сегмента даниых, поэтому способен выдавать только относительнои адреса. Интерпретатор должен добавлять к этому так называемому смещенио базовый адрес соответствующего сегмента данных. Если переменная локальна в процедуре, интерпретируемой в дапный момент, то этот базовый адрес задается регистром $B$. В противном случае его можно получить, спускаясь по цепочке сегментов данных. Однако транслятору может быть известна тольжо статьческая глубина пути доступа к переменной, тогда как динамическая цепочка (цепочка динамических связок) отражает динамическую историю обрдшсний к процедурам. К сожалению, эти два пути доступа не обязательно одинаковы.

Например, пчсть процедчра $A$ обращается к процедуре $B$, описанной как іокальная в $A$, процедура $B$ вызывает $C$, опй

санную как локальная в $B$, а $C$ вызывает $B$ рекурсивно. Мы говорим, что $A$ описана на уровне $1, B$ - на уровне $2, C$ - на !ровне 3 (см. рис. 5.7). Если в $B$ имеется обращение к переменной $a$, описанной как локальная в $A$, то транслятору известно, что между $A$ и $B$ супесгвует разница уровней, равная 1. Однако один шаг по динамической цепочке приводит к переменной, локальной в $C$ !


Рис. 5.7. Стек машины дяя ГЈЈЈ/0.

Поэтому ясно, что нужно иметь вторую цепочку связей, которая связывает сегменты данных такнм способом, чтобы транслятор мог правильно воспринимать ситуацию. Мы назовем элементы этой цепочки статической связкой SL.

Итак, адреса формируются в внде пар чнсел, указывающих статическую разность уровней и относительное смещение внутри сегмента данных. Мы считаем, что каждая ячейка памяти может содержать адрес или целое число.

Множество команд машины ПЛ/0 приспособлено к требованиям языка ПЛ/О. Оно содержит такие команды:

1. Засылки чисел (констант) в стек (LIT).
2. Считывания переменных в вершину стека (LOD).
3. Записи значения, находящегося в вершине стека (STO). (Соответствует оператору присваивания.)
4. Команда активации подпрограммы, соответствующая обращениюк процедуре (CAL).
5. Выделение памяти для стека путем увеличения указателя стека $T$ (INT).
6. Команды условной и безусловной передачи управления, используемые в условных операторах и циклах (JMP, JPC).
7. Команда, выполняющая арифметические действия и сравнения (OPR).
Так как в команду должны входить три компоненты, то она имеет следующий формат (см. рис. 5.8). Здесь присут-


> Рис. 5.8. Формат команды.

ствуют код операции ( $f$ ) и параметр, состоящий из одной или дву:х частей ( $a$ и $b$ либо только $a$ )*). В случае команды OPR, выполняющей некоторое действие, параметр а задает это действие; в других случаях это либо число (LIT, INT), либо адрес в программе (JMP, JPC, CAL), либо адрес данных (LOD, STO).

Подробно работа машины ПЛ/0 определяется процедурой, называемой interpret, которая является частью программы 5.6, объединяющей законченный транслятор с интерпретатором в систему, которая транслирует, а затем выполняет программы на ПЛ/0. Мы предлагаем в качестве упражнения модифицировать эту программу, чтобы она формировала рабочую программу для какого-либо существующего процессора. Необходимое для этого увеличение программы можно считать мерой того, насколько выбранная вычислительная машина подходит для поставленной задачи.

Безусловно, представленную вычислительную машину ПЛ/0 можно было бы организовать более искусно, с тем чтобы некоторые операции выполнялись эффективнее. Например, можно было бы улучшить механизм адресации. Принятая схема была выбрана из-за ее простоты, а также потому, что все усовершенствования должны фактически основываться на ней и из нее выводиться.

### 5.11. ФОРМИРОВАНИЕ КОМАНД

Чтобы транелятор мог сформировать команду, ему должны быть известны ее код операции и параметр, который представляет собой либо число (саму константу), либо адрес. Эти значения транслятор связывает с соответствующими иденти-
*) Поле $b$ в команде (или параметре) использјется для указаиия уровня (level). - Прия. ред.

фикаторами при обработке описаний констант, переменных и процедур. Для этой цели таблица идентификаторов дополнена атрнбутами, присущими каждому идентификатору. Если идентификатор обозначает константу, то его атрибутом является значение этой константы, если идентификатор обозннओает переменную, то его атрибутом является ее адрес, состояший из смещения и уровня, а если он обозначает прощедуру, то его атрибутамн являются адрес входа в эту процедуру и ее уровень. Расширенное соответствующим образом описание переменной table («таблица») показано в программе 5.6. Это наглядный пример поэтапного уточнения (нли дополнения) описания данных, происходящего одновременно с уточнением операторной части программы.

В то время как значения констант задаются в тексте программы, определять адреса транслятор должен самостоятельно. Язык ПЛ/0 достаточно прост, поэтому переменные и команды размещаются в памяти последозательно. Следоватєльно, каждое описание переменной сопровождается јвеличением индекса размещєння данных на 1 (так как каждая псременная по опредслению машины ПЛ/0 занимает ровно одну ячейку памяти). Индекс размещения данных $d x$ должен иницинроваться в начале трансляции любой процедуры, поскольку ее сегмент данных первоначально пуст. [В действите.тьности $d x$ получает начальное значение 3 , так как каждый сегмент данных содержит по крайней мере три внутреннне переменные R.A, DL, SL (см. предыдуший раздел).] Соответствующие вычисления, позволяющие определить атрио́уты идентификатора, включены в процедуру enter, которая доо́авляет в таблицу новые ндентификаторы.

При наличии этой информации об операндах команды формируются довольно просто. Благодаря стековой органивации машины ПЛ/0 сушествует практически однозначное соответствие между опера!ддами и операциями исходного языка, с одной стороны, и командами раӧочей программы, с другой стороны. [Транслятор лишь, должен выцюлнить необходимое преоо́разопанне в постсыксную форму Постфиксная формм означает, что знакь операции всегда стедуют за своими пперандами, а пе вставляются между ними, как в ои́ьчной цификсной форме. Постфнксную форму нногда также называют польской записью (так как ее «изобрел» поляк Лукасевіч) нли бссскобочной записью, так как она делает скоб́ки из.тишними. Примеры соответствия между инфиксной и ностфиксной формами записи выражений приведены в табл. 5.4 (см. также разд. 4.4.2).
[Очень простой способ выполнения такого преобразования. опісан в процедурах expression и term из программы 5.6. Он состоит в том, что передача знака арифметической операции

Таблица 5.4. Выражения в инфиксной и постфиксной записях

Инфиксная   запись	Постфиксная   запись
$x+y$	$x y+$
$(x-y)+z$	$x y-z+$
$x-(y+z)$	$x y z+\cdots$
$x *(y+z) * w$	$x y z+* w *$

просто задерживается этот момент читатель должен убедиться, что взанмная связь процедур грамматнческого разбора учитывает соответствующую интерпретацию принятых правил приоритета различных операций

Трансляция условных операторов и циклов несколько менее тривиальна. В этом случае нужно формировать команды перехода, для которых сам адрес перехода иногда еще нензвестен. Если обязательно, чтобы формируемые команды располагались строго последовательно в виде выходного файла, то необходима двупроходная схема транслятора. На втором проходе неполные команды перехода дополняются адресами. Другое решение, реализованное в данном трансляторе, - это помещение команды в массив, т. е. в память с непосредственпым доступом, что позволяет вставлять недостающие адреса, как только они становятся известны. Такую операцию иногда называют фиксащией (fixир).

Единственное дополнительное действие, которое нужно выполнять при формировании такого перехода вперед, - это запомннанне его местоположения, т. е. индекса в памяти для программы. Затем во время фиксации этот адрес используется для нахождения неполной команды. Детали опять можно видеть в программе 5.6 (см. процедуры, обрабатывающие операторы условия и цикла). Команды, соответствующие этим операторам, формируются по следующему шаблону ( $L 1$ и $L 2$ означают адреса команд):
if $C$ then $S \quad$ while $C$ do $S$
команды для условия $C \quad \mathrm{Ll}$ : команды для $C$ JPC LI
команды оператора $S$
L1:...
JPC L2
команды для $S$
JMP Ll
L2: ...
Для удобства вводится вспомогательная процедура, называемая gen. Ей задаются три параметра, из которых она формирует команду. При этом автоматически увеличивается индекс $c x$, указывающий место, куда помещается очередная команда.

Ниже в мнемонической форме приведена программа, по.тученнал при трансляции процедуры умножения (5.14). Комментарии с правой стороны добавлены лишь для пояснения,

2	INT	0,5	выделить память для связоки локальнььх переменных
3	LOD	1,3	$x$
4	STO	0,3	$a$
5	LOD	1,4	$y$
6	STO	0,4	$b$
7	LIT	0,0	0
8	STO	1,5	$z$
9	LOD	0,4	$b$
10	LIT	0,0	0
11	OPR	0,12	$>$
32	JPC	0,29	
13	LOD	0,4	$b$
14	OPR	0,7	нечетно
15	JPC	0,20	
16	LOD	1,5	$z$
17	LOD	0,3	$a$
18	OPR	0,2	+
19	STO	1,5	$z$
20	LIT	0,2	2
21	LOD	0,3	$a$
22	OPR	0,4	*
23	STO	0,3	$a$
24	LOD	0,4	$b$
25	LIT	0,2	2
26	OPR	0,5	1
27	STO	0,4	$b$
28	JMP	0,9	
29	OPR	0,0	bo3bpam
Рабочая программа, соотвстствующая процедуре ПЛ/0 (5.14).			

При трансляции с языков программирования обычно приходится решать значительно более сложные задачи, чем те, которые решал транслятор с языка ПЛ/0 для машины ПЛ/0 [5.4]. Большинство из них с гораздо большим трудом полдаются четкой организации. Если читатель попытается расширить данный транслятор, приспособив его либо для более мощного языка, либо для более привычной вычислительной машины, то он вскоре убедится в правоте этого утверждения. Тем не менее основной изложенный здесь подход к разработке с.тожных программ по-прежнему остается в силе, и его ценность даже возрастает в случае более тонких и сложных задач. Он действительно успешно применялся при построении круіных трансляторов [5.1, 5.9].

```
program PLO(input,output);
(транслятор с ПЛ/О с формированием рабочей программы)
label 99;
const norw \(=11 ; \quad\) [число зарезервированных слов \(]\)
 t.xmax \(=100 ; \quad\{\) длина таблицы имен \(\}\)
 птах \(=14 ; \quad\) \{максимальное количество цифр в числах \(\}\)
 \(a l=10 ; \quad\{\) длина имен \(]\)
 amax = 2047; \(\quad\) [максимальный адрес]
 lеvmax \(=3\); \(\quad\) \{максимальная глубина вложенности блоков \(\}\)
 схтак \(=200 ; \quad\) \{размер массива кодов \(]\)
type ssmbol \(=\)
 (nul, ident, number, plus, minus, times, slash, oddsym,
 eql, neq, lss, leq, gtr, geq, lparen, rparen, comma, semicolon,
 period, becomes, begins \(\mathrm{y} m\), endsym, ifs 1 m , thens \(1 m\),
 whilesy'm, dosym, callsym, constsym, varsym, procsym);
 \(a l f a=\) packed array \([1 \ldots a l]\) of char;
 object \(=\) (constant, variable, procedure);
 symset \(=\) set of symbol;
 \(f c t=(\) lit, opr, lod, sto, cal, int, jmp, jpc); \(\{\) \{функции \(\}\)
 instruction \(=\) packed record
 \(f: f c t ; \quad\) (код функции \(\}\)
 1: 0..lегmax; \{уровень\}
 a: 0...атах; \{смещение\}
 end ;
\{ LIT 0,a : загрузка константы а
 OPR \(0, a\) : выполнение операции а
 LOD \(l\),a : загрузка переменной \(l, a\)
 sто \(l, a\) : запись переменной \(l, a\)
 CAL \(l, a\) : вызов процедуры а на уровне \(l\)
 INT 0,a : увеличение \(t\)-регистра на а
 JMP \(0, a\) : переход на а
 JpC \(0, a\) : условный переход на а \}
var ch: char; (последний прочитанный входной символ)
 sym: sjmbol; \{последний прочитанный символ языка)
 id: alfa; \{последнее прочитанное имя)
 num: integer; \{последнее прочитанное число
 cc: integer; \{счетчик символов\}
 Il: integer; \{длина строки\}
 \(k k\), err: integer;
 cx: integer; \{индекс размещения команды\}
 line: array [1 . . 81] of char;
 a: alfa;
 code: array [0 . . cxmax] of instruction;
```

word: array [1. . norw] of alfa;
w.s.m: array [1. . norw] of symbol;
ssjom: array [char] of symbol;
mnemonic: array [fct] of
packed array [1. . 5] of char;
declbegsy:s, statbegsys, faclogssis: sjmset;
table: array [0. . txmax] of record name: alfa;
case kind: object of constant: (iul: integer);
variable, procedure: (level, adr: integer)
end ;
procedure crroí( $n$ : intcger);

```
begin writeln(' :***', ' ': cc-1, ' '`', n:2); err := err+1
```

end \{error\};
procedure gctsjm;
var i.j;k: integer;
procedure getai; ;
begin if $c c=l l$ then
begin if eof (input) then
begin write(' PROGRAM INCOMPLETE'); goto 99 end;
Il:= 0; cc:=0; witc(c.: 5,' );
while -coln(input) do
begin $l l:=l l+1 ; \operatorname{read}(c h) ;$ write $(c h) ;$ line $[l l]:=$ ch end;
writeln; $l l:=l l+1 ; \operatorname{read}($ line $[l l])$
end ;
$c c:=c c+1 ; c h:=\operatorname{line}[c c]$
end $\{$ geich $\}$;
begin \{getsymi\}
while ch =.: ' ' do getch;
if $c h$ in [' $A^{\prime}$. . ' $Z^{\prime}$ ] then
begin \{имяя или зарезервированное слово\} $k:=0$;
repeat if $k<a l$ then
begin $k:=k+1 ; a[k]:=c h$
end ;
getch
until - (ch in ['A' . ' $\mathrm{Z}^{\prime},{ }^{\prime} 0^{\prime}$. . ' $\left.\left.9^{\prime}\right]\right)$;
if $k \geq k k$ then $k k:=k$ else repeat $a[k k]:={ }^{\prime} \prime ; k k:=k k-1$ until $k k=k$;

```
 id:=a; i:= 1; j:= norw;
 repeat }k:=(i+j)\operatorname{div}2
 if id \leq word[k] then j:== k-1;
 if id}\geq\mathrm{ word[k] then }i:=k+
 until i}>j
 if i-1>j then sym := wsym[k] else sym := ident
 end else
 if ch in ['0' . . '9'] then
 begin {число} k := 0; num := 0; sjm := mumber;
 repeat num := 10*num + (ord(ch)-ord('0'));
 k:== k+1; getch
 until }\neg(ch in ['0' . . '9']);
 if }k>\mathrm{ nmax then error (30)
 end else
 if ch = ':' then
 begin getch;
 if ch = '=' then
 begin sym :== becomes; getch
 end else sym := nul;
 end else
 begin sym := ssym[ch]; getch
 end
end {getsym};
procedure gen(x:fct;y,z: integer);
begin if cx>cxmax then
 begin write(' PROGRAM TOO LONG'); goto 99
 end;
 with code[cx] do
 begin}f:=x;l:=y;a:=
 end;
 cx:=cx+1
end {gen};
procedure test(s1,s2: symset; n: integer);
begin if }\neg(sym in sl) the
 begin error(n); s1:= s1 + s2;
 while }\neg(sym in s1) do getsym
 end
end {test};
procedure block(lev,tx: integer; fsys: symset);
 var dx: integer; {индекс размещения данных}
 tx0: integer; {начальный индекс таблицы\
 cx0: integer; {начальный индекс программы}
```

```
 procedure enter(k: object);
 begin {запись объекта в табличу}
 tx:= tx + 1;
 with table[tx] do
 begin name := id; kind := k;
 case k of
 constant: begin if num > amax then
 begin error (30); num :=0 end ;
 val := num
 end ;
 variable: begin level }:=\mathrm{ lev; adr }:=~dx;dx:=dx+1
 end;
 procedure: level := lev
 end
 end
 end {enter};
 function position(id: alfa): integer;
 var i: integer;
 begin (поиск имени id в таблиие,
 table[0] .name := id; i := tx;
 while table[i] .name }\not=id\mathrm{ do }i:=,i-1
 position := i
 end {position};
 procedure constdeclaration;
 begin if sym = ident then
 begin getsym;
 if sym in [eql,becomes] then
 begin if sym = becomes then error(1);
 getsym;
 if sym = number then
 begin enter(constant); getsym
 end
 else error (2)
 end else error (3)
 end else error (4)
 end {constdeclaration};
procedure vardeclaration;
begin if sym = ident then
 begin enter(variable); getsym
 end else error (4)
end {vardeclaration};
```

```
procedure listcode;
 var i: integer;
begin
 for i:= cx0 to cx-1 do
 with code[i] do
 writeln(i, mnemonic[f]:5,l:3, a:5)
end {listcode};
procedure statement(fsys: symset);
 var i,cx1,cx2: integer;
 procedure expression(fsy's: symset);
 var addop: symbol;
 procedure term(fsys: symset);
 var mulop: symbol;
 procedure factor(fsys: symset);
 var i: integer;
 begin test(facbegsys, fsys, 24);
 while sym in facbegsys do
 begin
 if sym = ident then
 begin i:= position(id);
 if }i=0\mathrm{ then crror (11) else
 with table[i] do
 case kind of
 constant: gen(lit, 0, val);
 variable: gen(lod, lev-level, adr);
 procedure: error (21)
 end;
 getsym
 end else
 if sym= number then
 begin if num > amax then
 begin error (30); numn := 0
 end;
 gen(lit, 0, num); get.sym
 end else
 if sym = lparen then
 begin getsym; expression([rparen]-\fsys);
 if sym = rparen then getsj'm else crror (22)
 enil;
 test(fsys,[lparen], 23)
 end
 end {factor};
```

begin $\{$ term $\}$ factor (fsys $+[$ times, slash $]$;
while sym in [times, slash] do begin mulop $:=$ sym; getsym; factor (fsys $+[$ times, slash $])$;
if mulop $=$ times then $\operatorname{gen}(o p r, 0,4)$ else gen(opr, 0,5 ) end
end $\{$ term $\}$;
begin \{expression\}
if $s y m$ in [plus, minus] then
begin addop :=sym; getsym; term(fsys $+[$ plus, minus $]$ );
if addop $=$ minus then gen $(o p r, 0,1)$
end else term(fsys $+[p l u s s, m i n u s])$;
while $s y m$ in [plus, minus] do
begin addop $:=s y m ;$ getsym; term( $f_{s y s}+[$ plus, minus]);
if addop $=$ plus then $\operatorname{gen}(o p r, 0,2)$ else $\operatorname{gen}(o p r, 0,3)$
end
end \{expression\} ;
procedure condition( $f_{s y s}$ : symsct);
var relop: symbol;
begin
if $s y m=$ oddsym then
begin getsym; expression(fsj:s); gen(opr, 0,6 )
end else
begin e.xpression([eql, neq, lss, gtr, leq, geq]+fsys);
if -(sym in [eql, neq, lss, leq, gir, geq]) then
crror (20) else
begin relo $_{n}$ : $=s_{y} \mathrm{~m}$; getsym; expression( $f_{s y s}$ );
case relop of cql: $\operatorname{gen}(o p r, 0,8)$;
neq: $\operatorname{gen}(o p r, 0,9)$;
lss: gen(opr,0,10);
geq: gen(opr,0,11);
gtr: gen(opr,0,12);
leq: gen(opr, 0,13 );
end
end
end
end \{condition\} ;
begin \{statement $\}$
if $s y m=$ ident then
begin $i:=$ position(id);
if $i=0$ then error (11) else
if table[i].kind $\neq$ variable then
end ;
getsym; if sym $=$ becomes then getsym else error (13);
expression(fsys);
if $i \neq 0$ then
with table[i] do gen(sto, lev-level, adr)
end else
if $\mathrm{sym}=$ callsym then
begin getsym;
if sym $\neq$ ident then error (14) else
begin $i:=$ position(id);
if $i=0$ then error (11) else
with table[ $[$ ] do
if kind = procedure then gen (cal, lev-level, adr)
else error (15);
getsym
end
end else
if $\mathrm{sym}=$ ifsym then
begin getsym; condition( $[$ thensym, dosym $]+f$ sys $)$;
if $\mathrm{sym}=$ thensym then getsym else error (16);
$c x 1:=c x ; \operatorname{gen}(j p c, 0,0)$;
statement (f.sy's); code[cx1].a $:=c x$
end else
if $\mathrm{sym}=$ beginsym then
begin getsym; statement ([semicolon, endsym] $+f$ sys);
while sym in $[$ semicolon $]+$ statbegsys do
hegin
if sym $==$ semicolon then getsym else error (10);
statement $([$ semicolon, endsym $]+f$ sys $)$
end ;
if $\operatorname{sym}=$ endsym then getsym else error (17)
end else
if sym $=$ whilesym then
begin $c x 1:=c x$; getsym; condition $\left([\right.$ dosym $\left.]+f_{s y s}\right)$;
$c x 2:=c x ; \operatorname{gen}(j p c, 0,0) ;$
if $\mathrm{sym}=\mathrm{m}=$ dosj m then getsym else error (18);
statement $(f s y s) ; \operatorname{gen}(j m p, 0, c x 1) ; \operatorname{code}[c x 2] . a:=c x$
end ;
tcst(fsys, [ ], 19)
end \{statement $\}$;
begin $\{b l o c k\} d x:=3 ; t x 0:=t x ;$ table[tx] $. a d r:=c x ; \operatorname{gen}(j m p, 0,0)$;
if lev> le max then error (32);
repeat

```
 if sym = constsym then
 begin get.sym;
 repeat constdeclaration;
 while sym}=\mathrm{ comma do
 begin getsym; constdeclaration
 end;
 if symt = semicolon then getsym else error (5)
 until sym}\not==\mathrm{ ident
 end;
 if sym= varsym then
 begin getssm;
 repeat vardeclaration;
 while sym = comma do
 begin getsym; vardeclaration
 end;
 if sym = semicolon then getsym else crror (5)
 until sym}\not=\mathrm{ ident;
 end ;
 while sym= procsym do
 begin gctsym;
 if sym= ident then
 begin enter(procedure); gctsym
 end
 else crror (4);
 if sy,iz = semicolon then getsym else error (5):
 block(lev+1,tx;[semicolon]}]--\mp@subsup{f}{vys}{*})
 if s.mm =- semicolon then
 begin gctsym; test(statbegsys+[ident, procsym], fsys, 0)
 end
 else crror (5)
 end;
 test(statbegsy's +[ident], declbegs!'s, 7)
 until -(sym in declbegsys);
 code[table[tx0].adr].a:= cx;
 with table[t.0] do
 begin adr := c.x; {начальный адрес команд}
 end;
 c.x0 := cx; gen(int,0,dx);
 statement([semicolon, endsym]+fsys)!
 gen(opr,0,0); {return}
 lest(fsys, [], 8);
 listcode;
end {block};
```

```
procedure interpret;
 const stacksize = 500;
 var p,b,t: integer (регистр програмльы, регистр указателя
 стека, базовый ресистр)
 i: instruction; (регистр команды)
 s: array [1 . . stacksize] of integer; {память для данныхх)
 function base(l: integer): integer;
 var b1: integer;
 begin bl := b; (поиск базы l уровнями нижес)
 while}l>0\mathrm{ do
 begin bl:=s[bl];l:= l-1
 end;
 base :=b1
 end {base};
begin writeln(' START PL/j0);
 t:=0;b:= 1;p:=0;
 s[1]:= 0; s[2]:==0;s[3]:=0;
 repeat }i:=\operatorname{codc[p]; p:= p+-1;
 with i do
 casef of
 lit: begin t:= t-1; s[t]:=a
 end;
 opr: case a of {oперачия}
 0: begin (8038рam)
 t:=b-1;p:=s[t+3];b:=s[t+2];
 end;
 1:s[t]:=-s[t];
 2: begin t:=t-1;s[t]:=s[t]+s[t+1]
 end;
 3: begin t:=t-1; s[t]:=s[t]-s[t+1]
 end;
 4: begin t:=t-1; s[t]:=s[t] * s[t+1]
 end;
 5: begin t:=t-1; s[t]:=s[t] div s[t+1]
 end;
 6: s[r]:= ord(odd(s[t]));
 8: begin t:= t-1; s[t]:= \operatorname{ord}(s[t]=s[t+-1])
 end;
 9: begin t:== t-1; s[t]:= ord(s[t]\not=s[t+1])
 end;
 10: begin t:= t-1; s[t]:= ord(s[t]<s[t+1])
 end;
```

```
 11: begin t:=t-1;s[t]:= ord(s[t]\geqs[t+1])
 end ;
 12: begin t:= t-1;s[t]:= ord(s[t]>s[t+1])
 end ;
 13: begin t:=t-1; s[t]:= ord(.s[t]\leqs[t+1])
 end ;
 end ;
 lod: begin t:= t-}-1;s[t]:=s[base(l)+a]
 end ;
 sto: begin s[base(l)+a]:=s[t]; writeln(s[t]);t:= t-1
 end ;
 cal: begin {формирование отметки в новом блоке)
 s[t+1]:= base(l);s[t+2]:= b; s[t+3]:= p;
 b}:=t+1;p:=
 end ;
 int:t:=t+a;
 jmp:p:= a;
 jpc: begin if }s[t]=0\mathrm{ then p:=a;t:=t-1
 end
 end {with, case}
 until p=0;
 write(' END PL/O');
end {interpret};
begin {основная программа)
 for ch := 'A' to ';' do SSym[ch] := mul;
 word[1]:= 'BEGIN'; word[2]:= 'CALL ';
 word[3] := 'CONST'; word[4] := 'DO ';
 Mord[5] := 'END '; word[6] := 'IF ';
 word[7] := 'ODD '; 'word[8] := 'PROCEDURE';
 word[9] := 'THEN '; word[10] := 'VAR ';
 uord[11] := 'WHILE';
 wsjm[1] := beginsym; wsym[2]:= callsym;
 usym[3] :=: constsym; wsym[4] := dosym;
 wsym[5]:= cndsym; wsym[6]:= ifsym;
 wsym[7] := oddsym; wsym[8]:= procsym;
 wsym[9]:= thensym; wsym[10]:= varssm;
 wsym[11] := whilesjm;
 ssym['+']:= plus; ssjm['-']:= minus;
 ssym['*'] := times; sssm['/'] := slash;
 ssjm['('] := lparen; ssym[')'] := rparen;
 ssym['='] := eql; ssym[','] := comma;
 ssym['.'] := period; ssym['\not=']:= neq;
 ssjm['<']:= lss; sssm['>']:= gtr;
 ssym['\leq']:= leq; ssym['\geq']:= geq;
```

ssym[';'] $:=$ semicolon;
mnemonic[lit] := 'LIT '; mnemonic[opr]:= 'OPR';
mnemonic[lod] $:=$ 'LOD'; mnemonic[sto] $:=$ 'sTo';
mnemonic[cal] $:=$ 'CAL'; mnemonic[int] $:=$ 'INT';
mnemonic[jmp] $:=$ 'JMP'; mnemonic[jpc] $:=$ 'JPC';
declbegsys $:=$ [constsym, varsym, procsym];
statbegsys $:=[$ beginsym, callsym, ifsym, whilesyn];
facbegsy's $:=$ [ident, number, lparen];
page(output); err $:=0$
$c c:=0 ; c x:=0 ; l l:=0 ; c h:=\prime, \quad$; $k k:=a l ;$ getsym;
block $(0,0,[$ period $]+$ declbegsy's + statbegsys $)$;
if $s) m \neq$ period then $\operatorname{error}(9)$;
if err $=0$ then interpret else write( $($ errors IN PL/O Program $)$;
99: writelr.
end .
Программа 5.6. Транслятор для ПЛ/0

## УПРАЖНЕНИЯ

5.1. Рассмотрим следуюший синтаксис:

$$
\begin{aligned}
& S::=A \\
& A::=B \mid \text { if } A \text { then } A \text { else } A \\
& B::=C|B+C|+C \\
& C::=D|C * D| * D \\
& D::=x|(A)|-D
\end{aligned}
$$

Каковы здесь термина.тьные и нетерминальные символы? Определите множества самых левых и внсшних символов $L(X)$ и $F(X)$ для каж. дого нетерминапьиого символа $X$. Постройте последовательность шагов грамматичсского разбора для следующих предложенийл

$$
\begin{aligned}
& x+x \\
& (x+x) \cdot(+-x) \\
& (x *-+x) \\
& \text { if } x+x \text { then } x * x \text { else }-x \\
& \text { if } x \text { then if }-x \text { then } x \text { else } x+x \text { else } x * x \\
& \text { if }-x \text { then } x \text { else if } x \text { then } x+x \text { else } x
\end{aligned}
$$

5.2. Удовлетворяет ли грамматнка упр. 5.1 ограничениям 1 и 2 для ни. сходяшего грамматического разбора с просмотром вперед на один спмвол? Если нет, пайдите эквивалентныї синтакслс. который удовлетворяет этим ограничениям. Изобразите этот сннтаксис в виде синтаксического графа и структуры да!ных, используемой в программе 5.3 .

5．3．Выполните упр． 5.2 для следующего синтаксиса：

$$
\begin{aligned}
& S::=A \\
& A::=B \mid \text { if } C \text { then } A \mid \text { if } C \text { then } A \text { else } A \\
& B::=D=C \\
& C::=\text { if } C \text { then } C \text { else } C \mid D
\end{aligned}
$$

Примечанне．Если это необходнмо，вы можете удалить или заме－ иить какую－либо конструкцию，чтобы сделать применимым односим－ вольный ннсходящий грамматический разбор．
5．4．Рассмотрите нисходящий грамматический разбор для следующего синтаксиса：

$$
\begin{aligned}
& S::=A \\
& A::=B+A \mid D C \\
& B::=D \mid D * B \\
& D::=x \mid(C) \\
& C::=+x \mid-x
\end{aligned}
$$

На сколько снмволов вперед нужно смотреть，чтобы анализировать предложения согласно этому синтаксису？
5．5．Преобразуйте описание ПЛ／О（рис．5．4）в эквивалентное множество порождающих правил БНФ．
5．6．Напишите программу，которая определяет мняжества начальных и внешних симоволов $L(S)$ и $F(S)$ для каждого нетерминального сим－ вола $S$ в заданном множестве порождающих прав！л．

Примечание．Используйте часть программы 5.3 для построения внутреннего представления синтаксиса в виде структуры данных．За－ тем работайте с этой связанной структурой．
5．7．Расширьте язык ПЛ／О и его транслятор，включив в него следующие операторы：
（a）Условный оператор вида
〈оператор〉 $::=$ if $\langle y с л о в и е\rangle ~ t h e n ~ 〈 о п е р а т о р 〉 ~ e l s e ~(o n e p a-~$ тор）
（b）Олератор цикла вида
（оператор）：：＝repeat 〈оператор〉 \｛；〈оператор）\} until 〈условие〉

Есть ли какие－либо особые трудности，которыс м：слли бы привести к изменению формы или питерпретации указанных（тсратороп？Вво－ дить какие－то дополиителыые команды в систему машины ПЛ／0 ви не должіны．

5．8．Расширьте язын ПЛ／0 н сго траислятор，добавив в него парамстры процедур．Рассмотрите два возиожных решения и выберите одно из шнх для реализации：
（а）Параметры－значения．Фактяческие параметры обращения являют－ ся выражениями，значення которых присваиваюотся локальыым псременным，представляющим формалышые параметры，заданные в заголовке процедуры．
（b）Ппраметры－переменныє．Фактические параметры являются пере－ менными．При вызове они подставляются на место формальных

параметров. Параметры-перемеиные реализуются с помощью передачи адресов фактических параметров в места, выделенные для формальных параметров. Доступ к фактическим параметрам осуществляется косвенно через переданный адрес. Следова гельно, па-раметры-переменные обеспечивают доступ к переменным, определенным вне процедур, и поэтому правила области определения можно изменить следующим образом: в каждой процедуре непосредственно доступны только локальные переменные; доступ к нслокалыным переменным возможен только через параметры.
5.9. Расширьте язык ПЛ/0 и его транслятор, добавив переменнье-массивы. Пусть диапазон индексов такой переменной а указывается в ее описанніз как

$$
\text { var } a(\text { low: high })
$$

5.10. Модифицируйте транслятор ПЛ/О, чтобы ои формировал рабочую программу для имеющейся у вас вычнслительной машины.

Примечание. Формируйте программу на языке ассемблера, чтобы избежать проблем, связаиных с загрузкой. На первом этапе не пытайтесь оптимизировать рабочую программу, например использовать регистры. Возможная оптимизация должна включаться лишь на четвертом этапе уточнення транслятора.
5.11. Расширьте программу 5.5 в программу, называемую pretlyprint («красивая печать»). Задача этой программы - читать тексты ПЛ/0 и печатать их в форме, которая естественным образом отражает структуру текста при помощи соответствующего разделения на строки и абзащы. Вначале аккуратно определите правила деления на строки и абзацы, основанные на синтаксической структуре ПЛ/0; затем реализуйте их, вставив операторы печати в программу 5.5. (Разумеется. нз сканера иужно убрать операторы печати.)

## ЛИTEPATYPA

5.1. AllMANN U. The Method of Structured Programming Applied to the Development of a Compiler.-International Computing Symposium 1973, A Günther et al., eds., Amsterdam: North-Holland Publishing Co., 1974, 93-99.
5.2. COHEN D. J., GOTLIEB C. C. A List Structure Fornt of Grammars for Symiactic Analysis. - Comp. Surveys, 2, No. 1, 1970, 65-82.
5.3. FLOYD R. W. The Syntax of Programming Languages - A Survey. LEEE Trans., EC-13, 1964, 346-353.
5.4. GRIES D. Compiler Construction for Digital Compulers. - New-York: Wiley, 1971. ГИмеется перевод: ГРИС Д. Конструированне компиляторов д.ля цифровых вычислительных машин. - М.: Мир, 1975.]
5.5. KNUTH D. E. Top-dowir Syntax Analysis. - Acta Informalica, 1, No. 2, 1971, 79-110.
5.6. LF.WIS P. M., STEARNS R. E. Syntax-directed Transduction, J. ACM, 15, No. 3, 1968, 465-488.
5.7. NAUR P. Report on the Algorithm:c Language ALGOL 60. - ACM, 6, No. 1, 1963, 1-17.
5.8. SCHORRE D. V. META II, A Syntax-oriented Compiler Writing Language. -- Proc. ACM N'atl. Conf., 19, 1964, D 13. I-11.
5.9. WIRTH N. The Desigi of a PASCAL Compiler. - Software - Practice and Experience, 1. No. 4, 1971, 309-333.

## ПРИЛОЖЕНИЕ А

## МНОЖЕСТВО СИМВОЛОВ АSCII

$y^{x}$	0	1	2	3	4	5	6	7
0	nu!	dlo		0	(1)	P	-	p
$1 \cdot$	sok	dcl	1	1	A	0	Q	q
2	six	dc2	"	2	B	R	$b$	
3	eix	dc3	\#	3	C	S	c	$s$
4	eot	dct	\$	4	D	T	d	t
5	enq	nak	\%	5	E	U	$\bigcirc$	U
6	ack	syo	\&	6	F	$v$	1	$v$
7	bel	etb	,	7	G	W	$g$	w
8	bs	can	(	8	H	$x$	h	$\times$
9	ht	end	)	9	,	Y	1	$y$
10	1 f	sub	*	:	$J$	z	,	$z$
11	vt	esc	+	;	K	[	k	[
12	ff	fs	,	$<$	$L$	1	1	1
13	cr	g3	-	$\square$	M	1	m	\}
14	so	rs	.	$>$	N	$\uparrow$	$n$	$\sim$
15	si.	us	$l$	?	0	-	0	del

Порядковый номер спмвола определяегся по его коордннатам ; таблице как

$$
\operatorname{ord}(c h)=16 * x+y .
$$

Спмволы с порядковыми номерамн от 0 до 31 и 127 - так пазываемые ціравляюицие симво.иы, используемые для перегачи данных и управления устройствами. Снмвол с порядковым номером 32 есть пробел.

## ПРИЛОЖЕНИЕ В

## СИНТАКСИЧЕСКИЕ ДИАГРАММЫ ПАСКАЛЯ



Переменная


Слагаемое


Простое виражение


## Выражение



Cobion парамігров





## Программа



## УКАЗАТЕЛЬ ПРОГРАММ

$\begin{array}{llll}\text { 1.1. Вычнсление степеней двойки } 30 & 3.2 \text {. Кривые Серпинского } 161 \\ \text { 1.2. Сканер } 42 & 3.3 \text {. Хол коня } 167\end{array}$
1.3. Чтение вещественного числа 63
1.4. Печать вещественюого числа 65
2.1. Сортировка простымі включеннями 79
2.2. Сортировка бинарнымі включениями 80

- 2.3. Сортировка простым выбором 82
2.4. Сортировка методом пузырьにa 84
2.5. Шейкер-сортировка 86
2.6. Сортировка Шелла 89
2.7. Просеиваиие 93
2.8. Пирамидальная сортировка 95
2.9. Разделенис 97
2.10. Быстрая сортировка 99
2.11. Нерекурсисная версия быстрої сортировки 100
2.12. Поиск $k$-го элемента 105
2.13. Сортировка простым слиянiscm 114
2.!4. Сортировка естествениым слияиием 121
2.15. Сортировка сбалансированным слиянием 126
2.I6. Многофазная сортировка 138
2.17. Распределенне начальных сериі̆ с помощью пирамиды 145
3.1. Кривぃе Гильберта 157
3.4. Восемь ферзей (одно решсиие) 172
3.5. Восемь фсрзсй (все решения)
174 174
3.6. Устойчивыс браки 180
3.7. Оптнмальная выборка 184
4.1. Включепие в список 204
4.2. Топологическая сортировка 218
4.3. Построение идеально сбалансированного дерева 227
4.4. Поиск с включениями 236
4.5. Построение таблицы перекрестных ссыллок 240
4.6. Построение оптима:ьного исрева понска 274
4.7. Поиск, включение ॥ удаление в Б-дереве 290
4.8. Построенне таблицы перекрсстных ссылок с использованием функциіи расстановки 308
5.1. Грамматический разбор . дія сінтаксиса из примера 53.34
5.2. Грамматический разбор для
5.3. Траислятор ㄴ.7л язька (5.13) 345
5.4. Грамматическнй разбор лля ПЛ!0 356
5.5. Грамматический разбор для ПЛ!0 с восстаиов.тением при ошибках 368
5.6. Транслягор діял ПЛ/0 380


## УКАЗАТЕЛЬ

Адельсон－Вельский 248
Адрес 44， 48
－абсолотный 374
－базовый 374
－возврата 374
－отиос！тельны！ 374
Алгс．7－60 17， 320
Алторитм витыотения в Б－дерево 285
—— в ББ－торего 296
－－в сбалаисированное дсрево 254
－－в список 200
－вытисаєния $n$－го фактор：асаниго ！исла 1：53
－－рамматического разбора 324
－．лнейного просмотра 203
－－поиска медиань 103
－．－по дереву с включением 233
－－построения пустарников 300
－сортирпаки вклочепиями бннар． แ．лии 79
－－－mpactsen 78
＿．－－с уо́тіпюющим прираще－ ：！：см（сортйровка Шелла） 87
－－выбороя простдім 81
－－объеном простым 83
－－－пирамидаль！ои！ 90
－－с разделения 96

－．．．－сыяние：миогофианыя 137
—－－простн： 109
－－сбалаисированным N－пyте－ вמ！1？2
－－yıаления из Б－дерева 288
．－．－из со́атадсироваи！ого дерева 2：6


－－с вовиッハッ9， 168
Аиатиз а．тгритмов сортировки 79，
$80,82,85,88,94,100,113$
Балаиясіровка 288
Банки даиных 58
Барабаны vагнитные 57
Барьер 79，203， 233
ББ－дсрево см．Б－лерево бннарное

Б－дерево 282
Б－дерево бинарное 295
－－симметричное 298
Буквы латинские 24
Буфер 54
Бэйєр 282，289，295， 298
Варианты в записях 35
Вес дерева 264
Ветвы 223
Возврат 9，168， 325
Волитер 13
Восстановлешие при ошибках 373
Время патентное 58
Выборочное изменение 28
Выравничание 46
Выражение 17
－индексное 27
Высота дерева 220
Гаycc 169
Гилиберт 156
Глубина дерева 220
Горизоиталыое распределение 134
Готлиб 267
Грамматический разбор 10， 328
－－нисходящий 323
－－－целеорнентироваиный 328
Граф расіознавания 328
－сннтаксический 328
－－детерминнроваиный 332
Графы 19
Даиные 11
Дейкстра 7， 12
Декартово проғзведение 31
Декартовы кпорлинаты 15,36
Дерсеп 10，19， 219
－АВЈ－сбалансированное 248
－бинарное 223
－вырожденное 220
－идеально сбалансироваиное 226
－лексикографниеское 238
－оптимальное 263
－поиска 231
－сильно ветвчщееся 223
－сортировки 91

- упорядоченное 220
- Фибоначчи 249
$2-3$ дерево 295
Диаграмма зависимости 361
Дизъюнкция логическая 23
Диски магннтные 57
Дискриминант типа 36
Длина пути 220
-     - взвешенная 261
-     - внешнего 220
… виутрениего 220
Доступ последовательный 53
- прямой 58
- случайный 25

Заглядывание вперед 55, 68
Заголовок списка 314
Задача об устойчивых браках 174

- о восьми ферзях 169
- о ходе коня 164
- оптимального выбора 182
- поиска медианы 103
- построення школьного расписаіия 41
Запись (record) 8, 31, 48
- с вариантами 36

Запись бесскобочная 377
~ иифнксная 230

- польская 377
- постфиксная 230
- префиксная 230

Инвариант цикла 28
Индекс 26, 44
Muтерпрстатор 373
Ускусственный интеллект 163
Итсрация 9, 99, 154

Карта (индексов) 123, 128
Квантнль 105
Ключ 76, 303
Ключей преобразование 303
Ключи переменной длины 318
Кнут 77, 86, 134, 144, 264
Кольца 19
Конкатенация 51, 52, 54
Константа 17
Kонструктор 20

- записн 32
- массива 26

Коитскстная завнсимость 322
Kонфликт 304
Конфликтов разрешение 304
Конъюнкция логическая 23
Кооряинаты 15, 31, 36

- декартовы 15,36

Kореиь дсрева 220

Коэффицнент заполнения 312

- нснользования памяти 46

Кривая Гильберта 156

- Серпинского 158

Кустарникн 299
Ландис 248, 249
Лента 54

- магнитная 108

Лист дерева 220
Лорин 77
Лукасевич 377

Мак-Вити 179
Мак-Крейт 289
Мантнсса 15
Массив 19, 25, 44
Матрица 29
Машина ПЛ/0 373
Медиана 101, 103
Метасимволы 320
Метод деления пополам 28

- пузырька 84
- рассеянных таблиц 307

Множеств объединение 40

- пересечение 40
- разность 40
- сложсн:іе 40
-- умноккение 40
Множество 15, 19, 38
Множество-степень 38
Множеству принадлежность 40
Моррис 306

Нотация 52

Область переполнения 306
Обход дерева 229
Оператор варианта 37

- присоединения 34, 286
- процедуры 190
- услөвный 190
- цикла 29
-     - с параметром 190
-     - с предисловнем 190

Операции булевские 23

- над файлами 54
- отношений 40
- преобразовання 20
[/O-опсрации 62
Операция 17, 18, 19
Описание 17
Опробирование квадратичное 307
- линейное 306

Открытая адресация 306
Очередь 198
Ошибки наведенные 373

Память для программы 373

- оперативная 295

Паскаль 8, 11, 16, 19, 62
Переменная буферная 55
Переменные 17, 23
Переупорядочение списка 209
Пирамида 91
ПЈІ/0 331, 349
ПЛ/। 20
Поддерево 223
Поиск бинарный 28

- в списке 202
- медианы 103
- по дереву с включением 233
- по списку самооргаиизующийся 209
Поле 48
Поле признака 36
Порядок Б-дерева 282
- частичный 211
- числа 15

ЛІоследовательпость 16, 19, 52
Потомок 220
Поэтапное уточнение 11, 67, 344
Правнла подстановки 320

- порождающие 320
- построения графа 329

Правило кне поднимай панику» 363
Предложения 319
Преобразование (типов) 24

- ключей 303

Приоритеты операций 40
Присваивание 19, 21, 189
Проблема пустой строки 326
Программа рабочая 373

- таблично-управлясмая 328

Просенвание 92
Просмотр на один снмвол вперед без возврата 323
Проход 109

- по списку 201

IIроцедура 190
Путь внешний 222

- внутренний 220

Разряд 15, 44
Расписание школьное 41
Распознавание предложений 322
Распределение горизонтальное 134

- памяти дннамическое 51, 193

Расстановка 303

- повторная 318

Рсализация 47, 50
Регистр адреса команды 374

- команды 374
- вершины стека 374

Редактирование 67

Рекурсия 9, 99, 150

- косвениая 151
- прямая 151

СББ-дерево 298
Связка динамическая 374
Сегмент 57

- логический 58
- физический 58

Сектор 58
Селектор 20, 37

- записи 32
- массива 26

Серии 115

- максимальные 115
- фиктивные 132
- фиктивные 132

Серпинский 158
Символ 23, 40, 319

- начальный 320
- пустой 24

Сヶмволы внешние 363

- возобновления 363
- нетерминальные 320
- терминальные 320
- управляющис 393

Сканер 40, 341
Слияние 109

- двухфазное 115
- сстественное 115
- каскаднос 149
- м могопутевое 122
- однофазное 110
- простое 109
- сб́алаисироваиное 110,122
- трехленточное 109

Слова размер 44
Словарь частотный 203
Слово памяти 44
Случайныї доступ 25
Смещенне 48, 374
Сопрограммы 144
Сортировка 9, 74, 77

- бистрая 96
- включениями 77
-     - бmарными 80
— - простыми 78
- внешняя 75
- внутренняя 75
- вьібором 77
-     - простым 81
- массивов 75
- методом пузырька 84
- обменом 83
-     - простым 83
- пирамидальная 91
- слиянием 109
— - многофазная 128
— — простым 109
- с помощьо дерева 89
- топологическая 211
- устойчивая 79
- файлов 75
- Шелла 88
i-сортировка 88
Список 10, 198
- двунаправленный 315
- циклический 314

Сравиение 19

- методов сортировки массидов 105
Ссылки 10, 19, 193
Стек 99, 374
Строка разрядов 49
- текущая 69

Структуры даниых динамические 10

-     - усложненныс 8, 51
-     - фупдаментальныс 8
- дрсвовидыые 219

Структурирования методы 19
Схемы программ 56
Таблица рассеяиная 307

- расстанонки 305

Таблично-управллемые программы $3 \approx 8$
Таккер 266
Тексты 59
ТнII базовый 18

- данных 17
-- - регулярный 26
-     - скаляриьтй 19
— - составной 30
-     - стандартный 19
- индексов 26
- рекурснвный 314

Тринслятьр 10, 17, 40, 319
Трапсляция 40
Удаление из дсрева 241
-. из списка 200
Узел дерсва виутреший 220

-     - спепиальный 222

Уилсон 179
уtiдtram 91
Указатсли 10
Уолкср 265
Упаковка 47, 49
Уровень 220
Файл 14, 19, 53

- нидсксированиый 58
- миогоуровисвыї 57
- нерсональннй 14
- с прямым доступом 58

Фнктивныіі элемент 79
Флойд 92
Фибоничи деревья 249

- чис.!а 131

Фнксанing 378
Форма бэкус-наурова 320

- иифн!сная 377
- постфиксная 377

Формула Эй.гера 947
Фуикция 17

- Aкксриаа:а 188
- преобразования 24
- расстановки 304
- упорлдочения 75
- факториал 150
- характеристическая 49

Хапойские башни 186
Xoop 7, 8, 12, 96, 103
$X y 266$
Цеитроид 267
Цепо:на 115
Цикл 16
Цифры арабскис 15, 24

- двоитные 15
- римскгіс 15

Чисыа веществениые 15

- компиексиые 31
- натуриаыме 150
- с плаваницсі Јапятой 15
- фактариалиние 153
- целs: 15

Число тар:яоииеское 83

- кардіналыние 18, 20, 39, 49, 50

Читаемый нход 59

- выход 59

Шеїкер-сортировка 85
Эвристика 267

Зйжрова коистиита 83
Эффектівыость 49, 105
Язык Ассемблсра 18

- высокего уровня 16
— контекстио-зависимы:і̆ 322
- контекстно-свободныі̆ 322
- машіпно-зависимый 16
- машннно-ориснтированыыї 16
- формальняії 10

Языки програм:ирования 16
Ячейка памяти 44
Предисловие редактора перевода ..... 5
Предисловне ..... 7

1. Фундаменталькые структуры данных ..... 14
1.1. Введение ..... 14
1.2. Концепц!я типа для данных ..... 17
1.3. Простые типы данных ..... 20
1.4. Стандартные простые тияы ..... 22
1.5. Ограниченные тигіх ..... 25
1.6. Массивы ..... 25
1.7. Записи ..... 30
2. Записи с вариантами ..... 35
1.9. Множество ..... 38
1.10. Представление массивов, записей и м:ожеств ..... 44
1.11. Последовательный файл ..... 50
Упражнения ..... 71
Литература ..... 73
3. Сортировка ..... 74
2.1. Введение ..... 74
2.2. Сортировка массивов ..... 77
2.3. Сортировка последовательных файлов ..... 108
Упражнения ..... 147
Литература ..... 149
4. Рекурсивные алгоритмы ..... 150
3.1. Введение ..... 150
3.2. Когда не нужно использовать рекурсию ..... 153
3.3. Два примера рекурсивных программ ..... 156
3.4. Алгоритмы с возвратом ..... 163
3.5. Задача о восьми ферзях ..... 169
3.6. Задача об устойчивых браках ..... 174
3.7. Задача оптимального выбора ..... 182
Упражнения ..... 186
Литература ..... 188
5. Динамические информационные структуры ..... 189
4.I. Рекурсивные типы данных ..... 189
4.2. Ссылки или указатели ..... 193
4.3. Линейные списки ..... 198
4.4. Древовидные структуры ..... 219
4.5. Сильно ветвящиеся деревья ..... 278
4.6. Преобразования ключа (расстановка) ..... 303
Упражнения ..... 314
Литература ..... 318
6. Структура языков и трансляторы ..... 319
5.1. Определение и структура языка ..... 319
5.2. Анализ пред.ложений ..... 322
5.3. Построение синтаксического графа ..... 322
5.4. Построение программы грамматического разбора для задан- ного синтасиса ..... 332
5.5. Построение таблично-управляемой программы грамматическо- го разбора ..... 336
5.6. Преобразоваие БНФ в структуру данпых, управляюшую грамматическим разбором ..... 340
厄.7. Лзык программирования ПЛ/0 ..... 346
5.8. Грограмма грамматического разбора для ПЛ/0 ..... 352
5.9. Восстановление при синтаксичсских ошибках ..... 351
5.10. 11роцсесор 17л/0 ..... 373
5.11. Формироваине команд ..... 376
Упражисния ..... 390
Литература ..... 392
Прнложение А ..... 303
Миожество символов ASCll ..... 393
Приложение В ..... 394
Сиитакснческне диаграммы Паскаля ..... 394
Указатсль программ ..... 400
укизатель ..... 401

[^0]:    *) В кииге: О. Дал, Э. Дейкстра, К. Хоор, Структурное программирование: Пер. с англ. - М.: Мир, 1975.
    **) B Comm, ACM, 12, № 10 (1969), 576--583.
    ***) В книге «Структурное арограммирование» см. сноску выше.

[^1]:    *) См. первую сноску на предыдущей странице.
    **) N. Wirth, The Programming Language Pascal, Acta Informatica, I, No. 1 (1971), 35-63.

[^2]:    *) N. Wirth (Englewood Cliffs, N. J.: Prentice-Hall, INC., 1973). [Имеется перевод: Вирт Н. Систематическое программирование. Введение. - М.: Мир, 1977.]

[^3]:    *) В яэыке Паскаль такие конструкторы также отсутствуют. - Прим. ред.

[^4]:    *) В отличие от принятой нотации мы нспользуем для множества не (!игурные, а Івадратные скобки. В фигурные скобки заключаются коммситарин в программах.

[^5]:    *) Слово жсегмент» встречается, пожалуй, только в этой книге. Прим. ред.

[^6]:    *) Наномни, "то з итератівном варианте аигоритма бысгрой сорин.
     мачнтельно солише. - Пям:і. р:

[^7]:    *) Описание тила term в (4.1) не принадлежит языку Паскаль: в нем ще используєтся конструкция if...then...else для выраження варианта в записи. ظолсе правнльной с точки зрения Пасналя была бы формули-

[^8]:    *) Очевидио, что использование рекурсии делает невозможным такое упорядочение. - Прим. перев.

[^9]:    *) О бинариости скорее свндетельствует наличие двух ссылок. - Прия. ред.

[^10]:    *) Следует отметить, что в советской литературе впервые этот метод был описаи А. П. Ершовым и наззан им «функциями расстановки». Прим. ред.

[^11]:    *) Это, конечно, метод разрешения конфликтов, а не метод получення вторичных нндексов. - Прим. ред.

[^12]:    ＊）Метасимволы не принадлежат описываемому языку，а относятся к языку описания．Метасимволами являются также（）．－скобки нетерми－ нальных символов．－Прим．перев．

[^13]:    *) : Напомним, что символы языка суть множество терминальных и нетерминальных символов, «построенных» нз обычно вводимых символов системы. - Прим. ред.

[^14]:    *) Может быть, эти соображения патолкнут читателя !а мысль, что в современных языках пјограммирования слишком уж миого вниман!я было удетено формальной синтаксической пробтематікс. Ј это !!а этапе, когда лы ставим задаяу общєния с. манннои на есьественном языке! Приs!. pert.

