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Abstract

We use binary trees to analyze two algorithms, insertion sort and muitiple quickselect.
In each case, we consider the number of comparisons consumed as a measure of perfor-
mance. We assume that the ranks of the n data values being searched or sorted form a
random permutation of the integers {1,...,n}. For insestion sort, we consider the limiting
distribution of the number of comparisons consumed in the process of sorting the n keys.
We present an average-case analysis of the number of comparisons multiple quickselect
(MQS) requires for simultaneously finding several order statistics in the data set.

Using the concept of a “tree-growing™ search strategy, we prove that for most practical
insertion sorting algorithms, the number of comparisons needed for sorting n keys has
asymptotically a normal distribution. We prove and apply a sufficient condition for
asymptotic normality. The condition specifies a relationship between the variance of the
number of comparisons and the rate of growth in height of the sequence of binary trees
that the search strategy “grows.”

MQS is a variant of the popular Quicksort algorithm, modified to search for several
order statistics simultaneously. We show that. when p is an integer fixed with respect to

v



n. the size of the data set. MQS requires an average of (2H, « 1)n - 8pinn + O(])
comparisons to find p order statistics, where H,, is the pth harmoaic number. We assume
that the set of ranks of the p order statistics is selected at random from the collection of
all (:) possible sets of p ranks. Our result therefore represents a2 “grand™ average over
all possible sets of order statistics. In the process of calcuiating the grand average, we
find the distribution and moments of the number of descendants of a node ranked j in a
binary search tree of size n.

The main results presented in this dissertation will also appear in articies by Lent,

Mahmoud, and Bose (1996); and Lent and Mahmoud (1996).
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Chapter 1
Introduction

Sorting data files is a central problem in computing, with countless applications. Since
in many instances sorting consumes considerable computing time and data storage space,
practitioners must choose a sorting method suitable for the application at hand and the
available computing resources. Alternative sorting algorithms may often be compared
according to known performance measures such as speed and space requirements. Clas-
sical computer science literature provides average-case performance measures for some
algorithms (see Knuth 1973b, for example). Our intent in this dissertation is two-fold. In
Chapter 3, we seek to take sorting problems beyond average-case analysis into the domain .
of distribution theory, which offers a much fuller understanding of a sorting algorithm’s
performance. We show that for most popular implementations of insertion sort, the num-
ber of comparisons required for sorting a data set has asymptotically normal behavior. In
Chapter 4 we consider an algorithm designed to search a data set for a specified collection
1



of order statistics—a problem closely related to that of sorting a data set. We present
an average-case analysis of multiple quickselect, a vasiant of the popular Quickson ai-
gorithm (Hoare 1962) modified to select several order statistics simultaneously. Further
motivation for each problem is provided below.

Throughout this dissertation, we take the number of comparisons an algorithm per-
forms as a measure of its time complexity. We recognize that, in the case of insertion
sort, which we investigate in Chapter 3, practitioners may also consider the number of
movements of data items which must be performed in the course of the sorting. Com-
parisons, however, consume more time than other operations whose analysis is generally
much less interesting.

Binary trees serve as important tools in both Chapters 3 and 4. Chapter 2 therefore
provides an overview of their basic properties and the derivation of one property hereto-
fore unknown: the distribution and moments of the number of descendants of a node ina
random binary search tree. We use this new result in our analysis of multiple quickselect

in Chapter 4. In Chapter 5 we expand our results and discuss avenues of future research.

L1 Motivation for Analysis of Tree-growing Search
Strategies

Insertion sort is a popular on-line sorting algorithm. At each stage of the sorting, the data
obtained so far make up a sorted array. The algorithm reads in a new datum, searches
for its proper position in the array, and insests it. When a data file of size n > 2 is to

be sorted, the ith search is for the position of the (i + 1)st key, i = 1,2,.... We shall



denote the algorithm that performs the ith search by S; and call the collection of search
algorithms S = (S:}2, a search strategy. Daberkat (1982) and Panny (1986) have
studied the moments of the number of comparisons required for insertion sort with one
particular (linear) search strategy. In Chapter 3 we show that if the values in a data array
have been randomly selected from a continuous distribution, the number of comparisons
needed to sort the values by most practical search strategies has asymptotically normal
behavior. Thus we investigate properties of search strategies in general, with insertion
sort serving as a conspicuous application.

In order to insert a new key in a sorted data array, an implementation of insertion sort
selects a sequence of probes: keys in the sorted amray to which the algorithm compares
the new key. If the new key is larger than a given probe, the algorithm selects a larger
probe; if the probe’s value exceeds that of the new key, the search continues in the
segment of the data array containing keys smaller than the probe. In general, the search
algorithms applied for different keys in an insertion sort may be independent of each
other. One may, for example, imagine a search strategy S = {S;};2, in which S is
binary search and Si.., is linear search. Practitioners, however, usually prefer strategies
in which all the algorithms applied are coded as a single procedure which is then invoked
with different parameters at different stages of the sorting. Most efficient, easy-to-use
strategies thus possess certain consistency properties, which we will specify and use to
prove our main result. Rudimentarily, when all the search algorithms S; in a strategy S
specify probe positions through a reasonable function of the length of the fragment of
the data array being searched, we will call S a consistent sirategy.

3



In Chapter 3. we show that for all consistent strategies, the number of comparisons
used has asymptotically normal behavior. We derive the asymptotic means and variances
for two particular search strategies: binary search and linear search. In so doing we
show that, when a binary search strategy is used, the behavior of insertion sort compares
favorably to that of Quicksort, as regards the number of comparisons consumed. The
number of comparisons performed by binary insertion sort has a smaller mean and a
smaller variance than the number of comparisons performed by Quicksort, and it enjoys
asymptotically normal behavior. Though insertion sort requires more movements' of
data records—an inherent disadvantage of on-line sorting algorithms—it is often favored

in practice for its simplicity and versatility.

12 Motivation for Analysis of Multiple Quickselect

In statistical inference, statistics are frequently constructed based on a few order statistics
from a data set. Supposing the observed data set is X], ..., X, statistics based on order

statistics usually take the form
An=f (x(i|)7x(l'2)""' X(iv)) J

where f is a p-dimensional measurable function and X4, is the kth order statistic in the
data set, with p typically ranging between two and five. Applications of such statistics
abound in the literature of non-parametric methods. Distribution-free tolerance limits

(Wilks 1962, p. 334), distribution-free confidence intervals of quantiles—like Geert-
"The number of movements required duri insertion sort may be reduced through the use of pointers,
as in a linked list. mwm?"mm.:wﬁmﬁm:cn{udpﬁmm'swmﬁmm
complicate the search process, so they are not often used with large data sets.
4




sema's (1970) U-statistic confidence interval for median estimation—and the Hodges~
Lehmann class of statistics (Serfling 1980) are only a few examples in which a pair of
order statistics is needed. The five-statistic summary, comprising the smallest, the first
quartile, the median, the third quartile, and the largest in a data set, is commonly used
in business and other applications as a profile of the data.

Several aigorithms exist for the complete sorting of a data file. Fewer are known,
however, for the direct computation of a single order statistic, and even fewer for selecting
several order statistics simultaneously. Some randomized algorithms have been developed
for finding an order statistic (see Floyd and Rivest 1975), and some optimal aigorithms
exist for certain cases, e.g., for finding the smallest value. These optimal algorithms,
however, are designed to find specific order statistics and may not be easily modified
to work in other applications. The optimal algorithm for finding the smallest value, for
example, cannot be adapted in any direct way to search for a specified quantile like the
median in a file of arbitrary size. And specialized algorithms are generally not suitable
for use with weighted data, since the weights affect the rank of a desired quantile in the
data set (sec Lent and Modarres 1995).

A general aigorithm for selecting any order statistic, or group of order statistics, is thus
desirable in practice. Variants of Quicksort, the fastest known in-situ sorting algorithm,
suit this task. A modified version of Quicksort with occasional truncation of one side,
to be called multiple Quickselect (MQS), may be used to find several order statistics
from a given data set. This algorithm is especially useful for computing L-estimates,
as discussed in Chapter 4, where we study the average speed of MQS and describe a

5



specific application of the algorithm invoiving weighted data.



Chapter 2
Binary Trees

A binary tree is a hierarchical structure comprising nodes organized in levels. A node
can have either (a) no children—in which case the node is called a leaf (b) a left child,
(c) a right child, or (d) two distinct children, one left and one right. In all the binary
trees considered in this dissertation, the nodes carry labels having the following property:
All left descendants of a node—that is, the node’s left child and all descendants of the
left child—have label values less than that of the node, and all right descendants have
label values greater than that of the node. It is customary to draw a binary tree with
the root—the only node with no ancestors—at the top and the leaves at the bottom. The
level or depth of a specific node is the length of the path (the number of edges) from the
node to the root node, which is on level zero. The size of a binary tree is the number of
its nodes. If level k of a tree has 2* nodes—the maximum number possible—it is said to

be saturated. A tree in which all existing levels, except possibly the lowest, are saturated
7



is complete.>  The height of the tree is the length of the longest root-to-leaf path.
We extend a binary tree by adding enough external nodes to ensure that each original
imemal? node has two children. Each leaf thus has two extemnal nodes as children.
These external nodes, which appear as squares in our diagrams (see, for example, Figure
3.2.1), represent possible insertion positions in the tree. Since in many cases the display
of external nodes only obscures the shape of a tree, most figures in this dissertation depict
unextended binary trees.

When a binary tree T, is constructed from a permutation (or set whose ranks form
a permutation) 7 = (7 (1), ...,m(n)) of {l,...,n}, w(1) goes to the root of T,; each
subsequent element 7 (j) goes to the unique position found by comparing = (j) with the
root and then making a right or left tum, according as = (j) > = (1) or #(j) < =(1).
The procedure is repeated in the subtrees until an empty subtree—an insertion position—
is found. When the permutation comprising the ranks of the n data values is selected
at random from the set of all permutations of the integers {1,...,n} in such a way
that each permutation has an equal probability of selection, we call the tree a random
binary search tree! This model of randomness is suitable when the data values are
selected at random from any continuous distribution. Known as the random permutation
model, it is discussed in detail by Mahmoud (1992, Chapter 2). In this dissertation, we
base all applications of random binary search trees on the random permutation model.

Considering only the relative ranks of the data values, we may treat a data array of size

Some authors require that the nodes on the lowest level of a complete tree be positioned s far o the
left as possible, but the positioning of the nodes within a level is imelevant to our analysis.

3Using a paralle} term for the nodes of the unextended tree, we call the original nodes internal.

$Random binary search trees should not be confused with the deterministic decision trees we introduce
in the next chapter.



n as a random permutation of the integers {1, ..., n}. Figure 2.1 shows a binary search

tree being “grown”™ from a random permutation of the integess | through 8.
3

3 3 3
[ ]
\l 7 1 7
5 5

Figure 2.1. A binary search tree grown from
thepernutation 3 75148 26.

In Section 2.2, we derive the distribution of the number of descendants of a node
in a random binary search tree. We will use this result in analyzing the number of
comparisons performed by MQS:; it may have further applications in the analysis of other
algorithms. The distribution is related to some well-known properties of binary search

trees, which we now review,

2.1 Some Basic Properties of Binary Trees

Binary trees are widely used for storing data records in computers. Their properties
have been extensively studied by Lynch (1965), Arora and Dent (1969), Devroye (1991),

9



Mahmoud (1992), Dobrow and Fill (1995). and many others. In this section. we review

those properties of binary trees that refate to the material of this dissertation.

2.11 The Number of External Nodes in a Binary Tree

Recall that a binary tree of size n is constructed from n nodes and that we create the
extended tree by adding enough external nodes to ensure that each internal node has two
children. An extended tree of size n thus has a total of 2n nodes—internal or external—
that are children. Since all nodes in a binary tree are children except the root node, n— 1
of the 2n children are internal nodes, and the rest are external nodes. Thus the number

of external nodes in an extended binary tree of size nisalways2n—(n-1)=n+1.

2.12 The Height of a Binary Tree

The height of a binary tree—the length of the longest root-to-leaf path—is one less than
the maximum number of comparisons performed in an unsuccessful search for a data
value presumed to be stored in the tree. We will use this fact in Chapter 3 to establish a
sufficient condition for the asymptotic normality of the number of comparisons performed
in an insertion sort. Here we consider the range of h,, the height of a tree of size n. It

is easily seen (Mahmoud 1992, p. 58) that
llogan) <h,<n-1.

The upper bound is attained by trees having only one node on each level. Complete
trees contain the maximum possible number of nodes on each level, except possibly the

lowest, and attain the lower bound. For ¢ = 0, ..., |log; n| — 1, a complete tree of size
10



n has 2° nodes on the ith level. (Recall that we consider the root node the zeroth level.)
The lowest level of a complete tree may not be fully saturated, since there may not be

an imeger j such that n = 2 - 1. (Fill 1995 studies the probabilities of complete trees.)

2.1.3 External Paths in a Random Binary Search Tree

The external nodes of a binary search tree represent potential insertion positions. An
unsuccessful search for a panicular value in a tree follows one of the tree’s external
paths—paths from the root node to an external node. Let U, denote the length of a
randomly selected external path in a binary search tree created by successive insertion
from a random permutation of the integers {1,..,n}. That is, from a random binary
search tree of size n, we select one external node (out of the n + 1 extemal nodes),
giving each external node an equal probability of selection. We consider the length of
the path from the root node to the selected external node. Thus U, is subject to “double
randomness™ and denotes the number of comparisons performed during an unsuccessful

search in a random binary tree of size n. Lynch (1965) has shown that, for k = 1,..., n,

P{Ua=k} = (—n—{-l—), [:]
where (2] is the kth signless Stirling number of the first kind of order n. Mahmoud (1992,
pp- 71-78) provides a detailed analysis of U, and includes derivations of its mean and
variance:

E[Un] ~ Zlnn,

Var [Upn] ~ 2Inn.
I



On average, U, is of the same order of magnitude as the minimum value of the height h,,.
We may say, therefore, that randomly grown binary trees tead to be short and “bushy.”
Note that U, may be thought of as the number of ancestors of a randomly selected
extemal node in a random binary search tree. In the next subsection, we consider the

number of ancestors of an intemal node.

2.14 The Number of Ancestors of a Node in a Random Binary
Search Tree

Let A" represent the number of ancestors of a node ranked j in a random binary search
tree of size n. For notational simplicity (especially in the next section), we consider each
node an ancestor of itself but not a descendant of itself. Arora and Dent (1969) showed

that

E [A;n)] = Hn-j+1 + H]‘ -1,

where H, = 3%, 1/i, the nth harmonic number. The number of ancestors of j is the
number of comparisons that would be performed in a successful search for j in a binary
tree. Let A™ be the number of ancestors of a randomly selected internal node in a
random binary search tree. Like U, above, A™ is subject to double randomness. We can
find E [A""] by averaging E [A;")] over all values of j:

Efaw] = %[g}lj+§_:ﬂ,v]—l

7=
= 2+ Ha-nj-1

= 2(1+1)H,.-3
n

= 2lnn+0(l).
12



To obtain the second equality above, we have used the identity

Y H,=(n+1)Ha=n, 2.1)

1=l
found in Mahmoud (1992), p. 10.

We may also relate E [Ag"’] 10 the average number of descendants of j, as derived in
the next section: Suppose we are given a random permutation = of the integers {1, ...,n}
that results in a binary tree in which ;' # j is an ancestor of j. We may form a second
permutation, 7’ say, by swapping the positions of j and ;' in x. Then (as is clear from
the Claim on p. 15 below) #/ results in a binary tree in which j is a descendant of j'.
We thus establish a one-to-one correspondence between the set of permutations resulting
in trees in which j is an ancestor of ;' and the set of permutations resulting in trees in
which j is a descendant of j'. Let S™ be the number of descendants of j in a random

binary search tree of size n. Then

E[sM] = ,2,:. P {j' is a descendant of j}
I'#i
= Z P {j' is an ancestor of j}
= E [Ag"’] — P{j is an ancestor of itseif}

= Hn_j+| + Hj d 2. (2.2)

In the next section, we derive this average directly from the distribution of S§"). The
random variable Ag"’ — 1 denotes the level of the node ranked j in the tree, and it is clear
that A§"’ -1 has the mean of Sf'). Note, however, that the distributions of these two

random variables are quite different. Consider, for example, their probabilities of taking
13



the value zero: forj =1,..n

)

P{A§")—1=0}=P{j is the root of the tree}:-'-l-,

while
%, if j € {l.n};

3, otherwise.
These probabilities are easily proved. First,

p{sf")=o}=P{2pmcedeslinthepemu(aﬁon} =%.

P{Sf,"’ =0} = P{n — 1 precedes n in the permutation} =%;
similarly, for j € {2,3,...,.n - 1},
n) R . .. . 1
P{Sf =0}=P{]-land1+lprecede1 mthepennutauon}=§.

The full distribution of S{™ is derived in the next section.

2.2 The Number of Descendants of a Node in a Random
Binary Search Tree

Asbefore.letS§"’ be the number of descendants of j in a binary search tree constructed
from a random permutation of the integers 1 through n. For a cleaner notation, we
suppress the superscript n. To find P {S; = k}, k =0, ..,n -1, we find the number of

permutations of the n integers which correspond to binary trees in which j has exactly

k descendants.

14



Claim:® Let 7 be a permutation of the integers {1....n}. and let T, be the binary

tree grown from 7. Let j € {1....n}. and let T{") be the subtree of T, rooted at ;. The

following are equivalent:

l. T4 comprises nodes corresponding 10 the integers dy < - -+ < di4.

2. All of the following hold:

(a) The integers d,, ...,di4) are consecutive integers in {1,...,n} and include j.
(b) All integers in the set {d),...,di,} — {j} follow j in =.
(c) The integers d; — 1 and di4, + 1, if included in {1,...,n}, precede j in 7.

Proof of Claim: First we show that (1) implies (2). Since T, is constructed from a
permutation, all integers in a subtree of T, clearly must form a consecutive set. Also,
descendants of j must follow j in =, so all members of {dy,...,dc+1} — {j} follow j in
7. We show by contradiction that d; — 1 and dy, + 1, if they are in {1,..., n}, lie on
the path from the root to j in T,. Suppose dj — 1 is in {1, ...,n} and does not lie on the
path from the root 10 j. If d) precedes d) — 1 in =, then whend, — 1 is inserted into T,
it must be compared with d; and so must be a descendant of d; and thus also of j—a
contradiction. If d; — 1 precedes d, in =, then when d, is inserted into T, it must be
compared with d; — 1. Then since d; — 1 is not a descendant of j and does not lie on
the path from the root 10 j, d; cannot be a descendant of j—again a contradiction. A

similar argument shows that if diyy +1 is in {1,...,n}, it must lic on the path from the
$Devroye (1991) states this fact without proof.
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root 10 j. So clearly d; — 1 and diyy + 1, if they are in {1,...,n}, must precede j in .
and condition (2) is satisficd.

Next assuming condition (2) , let 7; be the (truncated) permutation obtained by trun-
cating 7 just before j, so that x; comprises integers preceding j in =. and let T, be
the binary tree grown from «;. Then T, contains d) — 1 and dp4y + |, if they are in
{1,...n}. Also, if dy — 1 is in {1,...,n}, it is the largest number in T, that is less than
J- Thus when j is inserted into T,, j must be compared with d; — 1, so d, — 1 lies on
the path from the root to j in T,,. Similarly, if di,y + 1 is in {1,...,n}, then diyy +1
is the smallest number greater than j in T, and so must lic on the path from the root
to j in T,. Let & be the fus{ number in the set {d,,...,dx1} — {7} 10 appear in . Let
s be the permutation obtained by truncating = just before 4, and let 7, be the binary
tree grown from 5. If § < j, then j is the smallest number greater than é in Ty, so
when & is inserted, it must be compared with j and thus become a descendant of j in
Tx. If 6§ > j, then j is the greatest number less than § in T,,, so again, § must join
TY), Similarly, when subsequent members of the set {d,,...,dx+1} — {j} are inserted,
they will be “sandwiched” (in rank) between either (a) d) — 1 and some member of T,
or (b) diyy + 1 and some member of TY; or (c) two members of TV, In any case,
they must join TY). So T4 includes dy, ..., di+1- Since TY' does not include d; — | or
di+1 + | (which, if they are in Ty, lic on the path from the root to j), T¥ comprises

only d, ..., dy,,. @

So to find the number of permutations corresponding to trees in which j has &
16



descendants, imagine the numbers | through n lined up in order from left to right.
Suppose a sliding window. just wide caough to covers 4 + | numbers, is placed over the
number j. The numbers appearing in the window make up the ordered set d; through
dy+1—the integers in the subtree rooted at j. (Later we will slide the window from side to
side as we consider all possible sets of k descendants of j.) Imagine a frame around the
window, with Icft‘and right sides just wide enough to cover one extra number each. The
sides of the window frame cover the numbers d, — | and di+) + 1, if they lie between
1 and n inclusive. If dy = 1, the left side of the window frame will not cover any
numbers; similarly for the right side of the frame if di,y = n. To find the number of
permutations resulting in trees in which j has k descendants, we consider the number of
ways to position the window around j; that is, we consider the number of choices for
the set of k descendants. For each set, we take into account the position of the window
frame, since any integers covered by the frame must precede j in the permutation.
Fork=0,..,.n—2, letd € {1,2} be the number of integers covered by the window
frame when j and its (fixed) descendants 4,,...,0; are visible in the window. Then

P {j has descendants 4, ...,6;, } may be expressed as
[numbcr of permutations of ] [ number of permutations of ]

integers covered by frame b1y i _ 0k
number of permutations of all integers T (k+0+ 1)
covered by window and frame
Simplifying this expression, we obtain
et ifd=1,
P {j has descendants 6, ..., 6} = { "+
m“—:z—)(m, ifo=2

So, for example, when k < min{(j —2),(n— j — 1)}, the window is narrow enough
17



so that we can slide it all the way to either side of j and each of the wo sides of the
frame will still cover one integer. We have & + | possible sets of & descendants, cach

with two frame integers, i.e., § = 2. Thus, for the case k < min {(j — 2),(n—j - 1)}.

2(k+1) 2

P =b =gk arn - Fro s 3

For other values of k, we must consider cases in which one or both sides of the frame
do not cover any integers. When j — 1 < k <n —j — |, the left frame will not cover
any integers if we slide the window all the way to the left side, but we can still slide it
all the way to the right side without sending it over the edge. So we have one set of k
descendants for which there is only one frame integer, and (j — 1) sets of k descendants

for which there are two frame integers. Thus forthecase j -1 <k <n-j-1,

o 1 l(;j-l) .
PS=8 =D TG ak+n e 1)

In general, for i € {1,2}, let a; denote the number of possible sets of k descendants of

j for which 8 = i. Considering all possible positions for the sliding window, we have

a; =0, a2=k+1, if k<min{j-2,n-j-1};
a=1,a=5-1, ifj-1<k<n-j-1
ay=1a=n-j, fn-3<k<j-2

a=2a=n-k-2 ifk>max{j-1l,n-j}.
Thenfork =0,....n-2,

a) 202

P{Si=k}=(k+2)(k+l) TEENk+2) (kr 1)

with @, and a; as given above. And trivially,

P{S; =n -1} = P {j appears first in the permutation} =%.
18



So for j < 2L, and for a positive integer m.

1=2
E[s7] = 2Z(k+3)(k+2)

" (k4 25+ kT
-
i z:x(‘-'+3)(k+2)(x_-+1) 2.3)
n-2 k’"

e L TR wErIE D
(n-1)"
i,
n

=) -

After simplifying this expression (using the MAPLE software) for the cases m = | and

m=2,wcobtain.forjs%l,

E[S;] = Hpj + H; -2, (2.4)
and
3 3
Esh = 0+ = +753
—(2j+5)Hja+ (2] —2n = 7) Ho-j42 2.5)

+2(n+1)Hpyy +2n.

The expression derived in Chapter 4 for the average number of comparisons used by
MQS involves sums, over all values of j, of the moments of S;. By symmetry we have,
for n even,

n/2

2" B[S}

2{(n+ 1) H, - 2n}

gsts,-l

2(n+ I)Hn -411,
19



where again we have used equation 2.1 to sum the Harmonic numbers. Using similar
identities, we can sum E [Sfl over j:
n/2

23 E s3]

3, I
2{5’! +—2-n—5(n+l)H,.}

= 3n?+17n-10(n + 1) H,.

> £(s]

For n odd,
(n~1)/2 (n-1)/2 (n-1)/2

Y ElSl= Y Heju+ Y Hi-(n-1),

)=l =1 =1

E [S;_;_x] = 2H=*L -2

By symmetry,

(n=1)/2

gs[s,-l =2 )gl E[S}] +E [Sap].
Plugging in the expressions above for 5,5, E|[S;] and E [Szyu| and simplifying gives,
for n odd,
zn:E[S,-] =2(n+1)H, - 4n,

j=l
the same formula obtained for even values of n. Similarly, for n odd,

(n-1)/2 (=12 (n-1)/2 1

E{S? = 5(n-1)+3 — +3 —_—
J.zg; [ ’] ( ) le j+1 Jz;; n-j+2
(n-1)/2 (n-1)/2
=2 Y (+DHiu=2 Y (n-j+2)Haja2 (26)
=1 =1
(n=1)/2 (n-1)/2
=3 2 Hjy -3 2 Hoji2+(n+1)(n = 1) Hopy
=1 j=t
+n(n-1),
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-2(n+3)H;§g-6Hn__ig_ (i)

12
2 —_
E[snf.] = 0+ —

+2(n+1) Hpyy + 2n.

Again we have

so, using expressions 2.6 and 2.7 above, we obtain
S E (57] =3n%+ 170~ 10(n + 1) Ha,
=1

again the same formula we derived for n even. For each fixed m > 3 and uniformly in

j < 28, we have, from equation 2.3,

E[s] = 2:[&""+0(1~"'“ |+ & e 0 (e
+2,"'§’;‘ [k~ 40 (k)] +2(n + 1) z [e2+0 (k)]

+n™ '+ 0 (nm—z)
2-9"" (p=j-y™ G-

m-1 m-1 m-1
[r-j-D)"? G-
+2J[ m-2 m-2
n=2"" (n=F-U""] i (2
+2n[ — ) +n +O(n )
_ =" i 2 i)™ 2 -2
m-1 m-1 m-2 m-2
2n(n ™ mpm-j-n™? m—2
— 2 - —— +n +o(n )
_ =" ' 2 ™! +jm—l( 12 )
m-1 m-2 m-1 m-=2
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2nm-l

m-2

= (__'.__ 2 )[(n-j)"‘"+j"*“]+n"*‘ (1+—2—)

-
T

+a™t 40 (n"'")

m-1 m-=2 m-2
+0 (n™?).
So for n even,
n/2 1 2 [n/2 . n/? .
YE[T] = (Fm-am) B0 ]
11 o
#" (34 7mg) +O (")
1 2 " -1 - n/2 - 1 1
= o-7) R2Ane T ']*" (3+7=2)
+O(n"‘")
= ( L __2 ) (n-l)’"_(n/z-l)'"+<n/2)'"]
m-1 m-2 m m m
1 m—
+nm(§+;-_—§)+0(n l)
1 2 n™ m(l 1 m—
= o) (7)) G ) vo ™)
[t 1 2 ~—
=rn [§+m—2+m(m-l)-m(m-2)]+o(n l)

= "m(; ml— 1) +0 (™).

Then by symmetry we have, for n even and each fixed m > 3,

ZE[S"']-n (l+—l-)+0(n"" )

j=1
It is easy to verify that this result also holds for odd values of n: only three terms of the

sum over j may differ in this case, and these do not affect the term of order n™.



Chapter 3
Tree-growing Search Strategies

In this chapter we study classes of search strategies which may be used for sorting a
data set by insertion sort. Insertion sort is an on-line sorting algorithm. At each point
in time, all data values obtained so far are stored in a sorted array. When a new datum
appears, the algorithm finds its comrect position in the array and inserts it—perhaps
moving some previously obtained data to new positions in order to make room. Let S;
denote the algorithm used to perform the ith search (the search for the correct position
of the (i +1)st key), and let S = {S;}:Z,. We will call S a search strategy. Most
commonly used search strategies possess certain consistency properties, which we define
in this chapter. Using these properties, we will show that when, for each integer ¢, the
search algorithm S; specifies a sequence of probes defined as reasonable functions of the
lengths of the data subarrays being searched, the number of comparisons consumed in
the sorting has asymptotically normal behavior.
3



3.1 Classes of Search Strategies

To identify a class of reasonable probe-selection functions, we introduce decision trees:
deterministic binary trees whose nodes correspond to the positions of the probes selected
by a search algorithm. The position of the first probe chosen becomes the root of the
decision tree; the positions of the second probes—at most one on each side of the first
probe—become its children, and so forth. A probe falling at one of the ends of the data
array will not have two internal nodes as children; one or both of its children will then
be external nodes in the extended tree. The algorithm S; is represented by T, a decision
tree of size i whose root-to-leaf paths represent the possible probe sequences of S;. We
shall call the search strategy S a tree-growing strategy if, for every positive integer i,
the shape of T;,; may be obtained by adding an intemal node in one of the insertion
positions—one of the external nodes—of T;. Since the tree-growing property provides an
element of consistency across algorithms in the search strategy, we will restrict our class
of consistent strategies to those possessing this property.

Assume the ranks of the data elements being sorted form a random permutation of
the integers {1, ...,n}, as is the case when the data values are selected at random from
any continuous distribution. Let the random variable C,, be the total number of times S
compares a new key to a probe during the sorting of the first n keys. The class of normal

search strategies comprises strategies for which C, is asymptotically normal; that is

Ca-ElCa]

Although the asymptotic mean and variance of C, obviously depend on the particular
24
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strategy S, we shall see that the normality of a subclass of tree-growing strategies—the
consistent strategies—may be established by relating the variance of C,, to the rate of
growth in height of the decision trees in the family T = {T;}Z, . Figure 3.1 shows
the relationships between the three classes of search strategies: consistent strategies are

tree-growing by definition, and we will show that they are normal.

Figure 3. 1. Clasmes of search straegies

The next section provides examples of tree-growing search strategies. In Section 3.3
we identify a subclass of tree-growing strategies as consistent. The remaining sections
focus on the normality of consistent strategies. Section 3.4 gives a sufficient condition for
the normality of tree-growing strategies. We use this condition to establish the normality
of two commonly used strategies—binary search and linear search—in Section 3.5. We
also establish their full asymptotic distributions, including the asymptotic means and
variances which serve as centering and scaling factors. In Section 3.6, we use the

sufficient condition to prove our main result: all consistent strategies are normal. We
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extend this result further in Section 3.7, to include some tree-growing implementations

of Fibonaccian search.

3.2 Examples of Tree-growing Strategies

We illustrate the tree-growing property through simple examples. One commonly used
strategy known as Linear Search from the Bottom always selects as a first probe the
largest value in the data array being searched. (We assume here that the largest value is
at the “bottom” of the array and the smallest value at the “top.”) When searching for the
position of the (i + 1)st key, Linear Search from the Bottom probes positions i, i -1, {2,
and so forth, until it discovers a key less than the (i + 1)st key. If it finds such a key in
position j, it inserts the new key in position j+ 1. Though Linear Search from the Bottom
is inefficient, it is useful for searching sequential access data files (e.g., data stored on
a tape, as discussed by Hu and Wachs 1987). Figure 3.2.1 shows the decision trees of
Linear Search from the Bottom. The shape of T, is obtained from T; by adjoining a
leaf to replace the leftmost external node of T;. The i nodes of T; are relabeled in T4,
and it is the shape of T;,, that evolves from that of T; by “tree-growing.”

Variants of Linear Search from the Bottom include the obvious Linear Search from
the Top as well as a slightly more complex method called c-jump search. Still based on
sequential searching, c-jump search starts at the “top” of the data array and advances ¢
positions at a time. When it finds a probe larger than the new key, it reverses direction
and performs a linear search “from the bottom” of the relevant fragment (a fragment of

size ¢ — 1) of the array. Three—jump search is illustrated by the three decision trees of
26



Figure 3.2.2,

i fol
jel i
i-2 i-1
-3 -2

1
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i-4 ¢ -1
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Fexe3.2.2. The tootmdnd deciion tom of teeojarp saxch

A more efficient search method, also commonly used, is binary search, which always
probes the middle position of the remaining postion of the list. Thus when the search
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has been confined to a fragment of the data array between an upper bound u and a lower
bound !, binary search chooses the probe in position [1*‘31 . For i = 6, the decision tree

representing binary search is that of Figure 3.2.3.
4

Fgure3.2.3. The (unexended) decision tree of binary search
Though all of the search strategies discussed above lie in the class of consistent

strategies defined in the next section, strategies reasonable for some applications lie
outside this class. Examples include Alternating Linear Search—a hybrid of Linear
Search from the Bottom and Linear Search from the Top—which is represented by the
decision trees of Figure 3.2.4. Figure 3.2.5 shows a decision tree for Fibonaccian search,
a method so called because its decision tree is endowed with a recursive partition that
follows the Fibonacci number sequence. When the tree size is Fi., — 1, where F; is
the jth Fibonacci number,® the two subtrees of the root node have sizes Fi — 1 and
Fi-1 — 1, and the property propagates recursively in the subtrees. Fibonaccian search
is sometimes preferred to binary search because Fibonaccian search requires only the
operations of addition and subtraction to compute the position of the next probe (see

Knuth 1973b, Section 6.2.1), whereas binary search requires division—a more complex

computing operation.

“The usual definition of the Fibonacci number F; is Fj = Fj.) + Fj_a, with Fp =0, F, =1.
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Like Alternating Linear Search, Fibonaccian search fails to meet our consistency
criteria. We will see, however, that all of the search strategies discussed here are normai,

except possibly some implementations of Fibonaccian search.

3.3 Consistent Strategies

In this section we present a condition on the search strategy S that is equivalent to the

"The nomality of Fibonaccian search may depend on the search strategy used when the number of
keys in the ammay being searched is not of the form Fi — 1. In Sectioa 3.7 we discuss two implementatioas
of Fibonaccizn search for which we can prove normality.
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tree-growing property and give a rigorous definition of consistency.

Let T, be the tree representing the scarch algorithm S,—the algorithm used to insen
the (i + 1)st key. Let A; be the sorted array formed by the first : keys. Think of 4;
as a string of beads laid on a table and numbered from left to right. We search for the
correct position of the (i + 1)st key by successively selecting probes in A;, at each step
comparing the (i + 1)st key to the selected probe. Think of the probes as beads which
we remove from the ctring, thus breaking the string into many beaded string fragments.
At the first step in the insertion, we select one probe (remove one bead); at the second
step, we again select one probe, but the probe we select depends on the outcome of our
comparison of the (i + 1)st key to the first probe. Thus there are two possible second
probes: one in case the (i + 1)st key is larger than the first probe and another in case it is
smaller (unless, of course, the first probe selected falls at one of the ends of A;—in this
case, the algorithm would specify only one probe at the second step). In general then, at
the jth step in the insertion (j > 1), the algorithm specifies up to 27=! possible probes.

Let P; be the set of all possible positions for the first j probes in the insertion of
the (i + 1)st key. Then P,; has at most 27 — 1 elements, which correspond to the nodes
on levels zero through j - 1 of T; and also to the collection of beads we have taken out
of the string in the first j steps. Let A(,j,1), A(%, ,2), ... A(i,7,2?) be the subarrays
of A; (some may be empty) created by the partitioning which results from deleting all
elements of P;. Think of these as the beaded string fragments left after taking out all
the beads corresponding to the clements of P,;. Note that there are at most 2/ such string
fragments; there will be less than 27 fragments if at any stage we have taken out some

3



beads that were adjacent to each other or some that were on the ends of the original
string. So if we have some adjacent probes or probes at the ends of the array. some of
the subamrays A(i, j, k) will be empty. Let /;;, be the length of A(i,j,k), k = 1.2,..,2
(zero if A(i, j, k) is empty). Atthe (j+1)st step in the insertion, we select one probe from
each of the nonempty subarrays (or remove one bead from each of the string fragments
that are left). Let p;;x be the position of the next probe within the subarray A(i, j,k),
if A(i, j,k) is not empty. That is, we number the beads in each of the string fragments
separately from left to right and let p;; be the position of the bead to be removed from

the fragment corresponding to A(i, j, k), relative to the other beads in the fragment.

Claim: The search strategy S has the tree-growing property if and only if, for all i, j,
and k such that A(i, 7, k) is not empty,
Pije = f(lije 3. k),
for some function f such that
Sl + 1,5,k) = f(lije, 3, k) + allije, 5, k),

and a(l;j¢, j, k) takes values in the set {0,1} .

Remark: The condition above, which we will call the tree-growing condition, implies
that (1) the probe selected in A(i, j, k) at the (j + 1)st step cannot depend directly on
i+ 1, the label of the insertion; and (2) if the array A(i, j, k) were larger by one clement,

the position of the probe selected would be either p;;x or pijx + 1. In other words, if the
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string were one bead longer, we would select either the same bead or the bead to the

right of this bead (recalling that the beads are laid on a table and numbered from left to

night).

Proof of Claim: We first show that the tree-growing condition implies the tree-growing
property. To visualize the argument we present, think of the beads in the original string
of i beads as corresponding to the internal nodes of T; and the beaded string fragments
as corresponding to subtrees within T;. The aext bead to be removed from one string
fragment corresponds to the root of the subtree formed by the beads within the fragment;
the beads to the left of this bead (if any) comrespond to the left sub-subtree. while the
beads to the right of it (if any) correspond to the right sub-subtree. In order to compare
T and T4, (the trees representing the search strategies for inserting the (i + 1)st and
(i + 2)nd keys), we wish to number the internal nodes on each level of these trees from
left to right and compare the subtrees rooted at each level. To make the numbering easier,
visualize two infinite complete binary trees 7; and 7,,,. We superimpose T; onto 7; by
marking the nodes in 7; which also appear in T;; we superimpose T;; similarly onto 7;4,.
At each level j in 7; and 7;,.;, number the 27 subtrees rooted at level j from left to right.
Note that the sizes of the left and right subtrees rooted at level one of T; are {;;, and
l;a2, respectively (the sizes of the subarrays A(i, 1,1) and A(i, 1,2)). That is, after we
have removed one bead from the original string, we are left with two string fragments,
one with /;, , beads and one with ;, ; beads. The tree-growing condition says that if

the original string of beads we had started with had been longer by one bead, we would
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have selected either the same bead or the bead to the right of that bead. Therefore, the
lengths of the two string fragments we would get if the original string had beca one bead
longer are the same as those we get by partitioning the shorter string, except that, if we
had started with the longer string, one of the two string fragments would be longer by

one bead. In symbols, by the tree-growing condition we have

Dio.1» if O(i, 0, l) =0;
Piv100 =
pioa +1, ifa(i,0,1)=1,
where p;.10, is the first probe chosen in the (i + 2)nd insertion. In terms of the lengths

of the subarrays A(i + 1,1,1) and A(i. 1,1), we must have either

Livigg =gy and lig g2 =lig2+1

or

liviag = ligg +and ligg 2 = liga-

Next consider the lengths of the beaded string fragments left after removing the one
or two beads selected at the second step in the (i + 2)nd insertion. The tree-growing
condition implies that the lengths of the four (or fewer) fragments left after the second
removal of beads would be the same for a string with ¢ or i + 1 beads, except that one
of the fragments obtained from the longer string would have one additional bead. The
lengths of the beaded string fragments from a string of length i + 1 correspond to the
numbers of marked nodes in the subtrees rooted at level two in 7:4;. So in terms of the
subtrees of 7, and 7;, the tree-growing condition, as it applies to the choices for p;,

and p;,),12, implies that the number of marked nodes in the kth subtree (k=1,...,4)
3



rooted at level two in 7,,., must be the same as the number of marked nodes in the kth
subtree rooted at level two in 7;, except that one of the four subtrees in 7,., will have
one additional marked node. In general. [;;i is the number of marked nodes in the ith
subtree rooted at level j in ;. And by the tree-growing condition, applied successively
to the probes selected at steps one through j, the number of marked nodes in the kth
subtree rooted at level j in 74 will be the same as the number of marked nodes in the
kth subtree rooted at level j in 7;, except that one of the subtrees in 7,,; will have one
additional marked node. Since this implies that the extra node contained in one of the
subtrees of T;,, must eventually fall to one of the insertion positions (external nodes) of
T;, the tree-growing property must hold.

Arguing by contradiction, it is easy to see that the tree-growing property implies the
tree-growing condition. For if the tree-growing condition did not hold, the size of one of
the subtrees of 7., would differ from that of the corresponding subtree of T; by more
than one. Thus we could not obtain T;,, from T; simply by inserting a node at one of

the insertion positions.

The tree-growing property provides some similarity of probe selection functions
within and across the algorithms S;, i = 1,..,n. We restrict our class of consistent

strategies to those which possess additional consistency properties:

Deflnition: Let S = {Si}:, be a tree-growing strategy for insertion sort. We call S a

consistent strategy if, for all i, j, and k such that A(i, j, k) is not empty, S; specifies the
4



relative rank (within A(i, ], k)) of the probe selected in A(z, j, k) by

Pijk = @s{lize)s 1 < pijie < lijee,

where the function g has the following property: if gs (n) = min (¢s (n) —- l.n — s (n)),

then lim,-. gs(n) /n exists.

In words, gs (n) is the size of the smaller subtree rooted at level one of T,, and consistency
requires that the propostion of nodes belonging to the smaller subtree approach a limit
as n approaches infinity. Note also that for the consistent strategies, the position of the
probe p;;. within A (i, j, k) depends only on /i, the length of the subarray. Since the

consistent strategies are tree-growing, we have

wsllije + 1) = ps(lije) + as(lije),

and as(l;;) takes values in the set {0,1}. Examples of consistent strategies include
c—jump search, which is specified by the function
¢ iflip>g

ws (Lije) =
lijx, otherwise.

In this case, lim,—. g5 (n) /n = 0.
For Alternating Linear Search, however, the pasition of the next probe is a function of
both l,'jg and ] .
1, jeven;
Dijk =
lijh ] odd.
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Thus p;,e is not a function of the length only—it depends explicitly on j (the step
number). So, though Alternating Linear Search is tree-growing (sec Figure 3.2.4), it is

not consistent.

3.4 A Sufficient Condition for Normality of
Tree-Growing Strategies

Let T; be the decision tree for S;, the search algorithm used to insert the (i + 1)st key
by the consistent search strategy S = {S;}®,. Let h; denote the height of T, let X,
denote the number of comparisons made by S;, and let C, = 7! X;, the total number
of comparisons required by S for sorting n keys. For each positive integer n, the random
variables X),..., Xo_) and C, may be defined on the space of random permutations of
the integers {1,...,,n}. Each insertion is performed independently of all others, so we

may take the X;'s to be independent random variables. Let s2 = Var[C,]. If we show

that, for every € > 0,
lim < f f (X; - E[Xi])*dP =0,
n— §2 — JX,~EX\]|>esm}

we will know by the Lindeberg Theorem (see Billingsley 1986, p. 368) that C,, is
asymptotically normal.
Lemma 3.1: If h, = 0(sy,), then S is a normal strategy.

Proof: Fori = I,...,n— 1, let Y; = X; — E[X,], and let %; denote the distribution

function of Y;. Then

P{lYi]> hn+1} < P{max (X;, E[Xi]) > h; + 1} =0,
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since X; cannot exceed h; + 1. Now if h, = o(s,) and ¢ > 0. there is a constant N,

such that, for all n >. Noha+1<cs, Thenfori=1.....n -1,

i(y) < *dF; (y) =0,
/{mze-n) VdFi ) < /um>h-.+u yiFi Q)

because the integral is taken over a set of zero probability. Thus for n > N,

uf f ydFi(y) =

=1 {lyi>esa}

lim =S [ YF 0 =0,

n =1

and the normality of S follows from the Lindeberg theorem. B
As we will see in Chapter 5§ (subsection S.1.2), there are tree-growing strategies that

do not satisfy the condition of Lemma 3.1.

3.5 Normality of Two Commonly Used Search Strategies

We illustrate the use of the sufficient condition for normality by showing the normality of

. two search strategies commonly used for insertion sort: binary search and linear search.

For these we obtain the full asymptotic distributions, using the asymptotic means for
centering and variances for scaling. We begin by introducing some notation to be used
here and in later sections.

Notation: Let S = {S;}Z, be a consistent strategy, and let T = {T;};2, be the se-

i=1
quence of decision trees representing S. For i = 1,...,n, let h; be the height of T},

and for k = 1,2, ..., let L, = min{i: h; = k}, and Uy = max{i: h;=k}. That is,
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T, Tiosts o Tu, are the only trees in 7 that have height k, and thus Uy + | = L,.,.
Define Uy = 1, and for k = 1,2, ..., let me = Ui = Us—. As before, let C, denote the
number of comparisons needed to sort the first n keys by insertion sort using S. and X,
the number of comparisons required for inserting the (i + 1)st key. (Again C, and the
Xi's may be defined on the space of random permutations of the integers {1, ....n}.)

We define the symbol 2 as used here and in later sections: If x and ¥ are functions
of n, we say that x (n) = Q(¥(n)) if there are positive constants N' and & such that for
aln>N,

Ix(n) > k[y(n)].

Since C, and the X;’s are defined on the same probability space, we may write

n-1
C,. = Z X.-.
i=1

n-1

E[Cil = g E[X]],

and, since we assume the X;'s are independent,
n~1
2 =Var[C,] = ; Var [X)].

Binary Search is a consistent strategy which, when searching a subarray of length [,
selects as a probe the element whose rank (relative to the other elements in the subarray)
is [£]. This strategy results in a sequence of complete decision trees. The external nodes
of the complete decision tree representing the binary search algorithm S; lie only on

one or two levels: the lowest level |log,i| (if i + 1 is a power of 2) or the two lowest
38



levels. |log,:] and |log; ] +1. Thus X; = |log, i} + B, where B; is a Bemoulli random

variable that assumes the value one with probability

2 (i + 1 - 2lom)
t+1

the proportion of external nodes at level [log, i| + 1 (see Knuth 1973a, Exercise 2.3.4.5-

J). So
2(i+ 1 - 2lom)) ,
E[X']= i+l + UOEZ‘J’

and

n-12 i+1_2l|082‘1 n-1

ElG] = Y ( el )+Zuog,i1
=1 i=1
= nlog;n+0(n).

For binary search, Ui = 2¢*! - 1, the number of nodes in a complete tree of height
so m; = 2¢. To compute 32,,), we may first sum the variances of the X;'s corresponding

to trees of height k, for k = 1, ..., j, and then sum over k :

j_ -1
32,, = Z z Var [XLH-"l .

k=1 i=0

Again using the result about the number of nodes on levels [log,i| and |log;i| +1

2=l X3 20+1) 2(i +1)
E:OV“’[X"'*‘]‘ E.; (2'=+i+l) (1—2*+i+l)'

Some straightforward algebraic manipulation shows that

2o 21l = (i+1)
EOVGT[XL.HI = 22 ® i+l Z:,,(Z*+i+l)z

2 [2" ~ 2% (Hpor — Hy)|
-4 [2" - 25 (Hpuir = Hp) + 4% (H(gnn H‘,E))]

= 6(2%) [Haews — Hp] - 4 [HE), - - HJ)| -2,
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where H™ =T 1/i™, the nth harmonic number of order m. (We omit the superscript

when m is 1.) To simplify this expression, we use the asymptotic approximations
1
H,=Inn +‘y+0(;),

where v is Euler's constant, and

Ll | 1
(1 I —
B = 6 n+0(n2)
Using these we obtain
2%
Var[X.,+i] = (6In2—-4)2*+0(1).
1=0
Then
Jj -1
&, = 3 3 VarlXud
k=1 i=0

(6In2 -4)2j:2"+0(j)
k=1
= Q(U)).

Also, if 0< 1< 2 -1,

[}
gvm [xL,+,.] = ¢i¥! (21 +lz+ T - 5}1_) +6(2) (Hyuer - Hy) -2 +0(1).

Thus for general n = L; + i, where 0< i < 27 - |,

. 1 1 . . .
8% 4i =85, + 4! (m - '27) +6 (2’) (Hy4i+1 = Hy) =20 + 0(j).

Since, in the case of binary search, Ay, = O (InU;), there is a positive constant ¢ such

that sy, = (\/U;) = @ (exp (chy, )) . Then for i =0, ...,m; - 1,

SL’ +1 > SU)_ 9
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2 (exp (¢ [he, « = 1))

0 (exp (e, ) -

That is, s, = Q(exp (chn)) , 50 ha = 0(3a) , and the condition of Lemma 3.1 is satisfied.

Writing n = L; + i and simplifying the above expression for s ,; gives

s.=n ( gi —2+ZE +O(inn),

where

fa=logan - logyn].
(The sequence {f,}o., is dense, but not uniformly dense, on the interval [0.1), as
discussed by Kuipers and Niederreiter 1974.) Then

Ca—nlog;n p

\/’m: — N(0,1),

where

_6(1+ f)In2—6 4
= A -2+4T'

An

Figure 3.5.1 shows the graph of the analytic continuation of the function A, = A (f,)
to the real line, as f, ranges over the interval [0,1). The function attains its minimum

value (approximately 0.1519119) at the point

W(-25)+2
__(-E"-L— - 1 =0.14146968...,

In2
where W (z) is the principal branch of the omega function. (See Fritsch et al. 1973.) It
attains its maximum value (approximately 0.1744492) at

W (0,-3%) +2
In2

- 1 = 0.70705937...,
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where W (0,z) is the zeroth branch of the omega function. Intuitively, we can think of
A, as an asymptotic average of the variances of {Xj, ..., Xn}. Thus A, increases in n
as long as Var[X,] > Aa-1. This occurs while the numbers of external nodes on the
two lowest levels of T, are close and thus f, is close to 4. When one level of T, has
many more external nodes than the othes, Var{X..] is small, and A, tends to decrease.
As each level of the tree fills up, and f, takes on increasing values in the interval [0, 1),
A, campletes one cycl;: it moves from 6in 2 ~ 4 (approximately 0.1588831) down to
its minimum (for that cycle), then up to its maximum (for that cycle) and finally back
down to 61n2 - 4. With each new cycle, A, more closely approximates its analytic

continuation.

A(x)

Figare 3.5.1. The saalytic continustion of the function A(f, ) cato the imerval (0,1).
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A second commonly used consistent strategy is linear search which, when searching
an array of size [, always selects as a probe the data element of rank ! (Linear Search
from the Bottom) or the data element of rank 1 (Linear Search from the Top). For linear

search it is known (see Gonnet and Baeza-Yates 1991) that

E|Ca =-'-l;-+0(n),

3
Var [Cy] ~ 23(-5

Since s2 = Q(n®), and h, = n - 1, the sufficient condition holds for the linear search

strategy; thus

Ch- n2/4 D 1
= 28 (0.55).

3.6 Normality of Consistent Strategies

In this section we use the sufficient condition for normality to prove that all consistent
strategies are normal. Let S = {S;}2, be a consistent strategy represented by the
decision trees T = {T;} 2, , and let X;, Cn, 3, Li, Uy, and my be as defined. We begin
by establishing some properties of consistent strategies.

Property k: For each positive integer i, the decision tree T; representing an algorithm

from a consistent strategy has at least one external node on each unsaturated level.

The right subtree of the tree in Figure 3.6.1, for example, has the following shape

characteristic: its left sub-subtree is complete down to level two while its right sub-
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subtree has neither internal nor external nodes on level two. The third level of the tree
is therefore both unsatusaled and bereft of extemnal nodes. We will show that this tree

cannot be part of a sequence of decision trees representing a consistent strategy.

Figure 3.6.1. An exeended decisin tree that cannot
spresent an ajgorihm from a
- amsisient stagy

Proof of Property 1: The first probe specified by S;, i = 1,2,..., divides an array of
size i into two subarrays. Let gs (i) denote the size of the smaller of the two subarrays
and g5 (i) the size of the larger. (Naturally we define gs(0) = g¢5(0) = 0.) For a
cleaner notation, we suppress the subscript S. If T; had an incomplete level with no
external nodes, T; would contain a subtree whose two sub-subtrees (left and right) had
the following property: one sub-subtree would be complete down to a level A, while the
other would have neither intemal nor external nodes at level ). Since S; is a consistent

algorithm, this would imply that for some number n’ < i, the size of the subtree,
g™ (n') =0, and g™ (¢’ (n')) > 0

(where g% (i) = g (g (g - - (), the function g composed p times, fora positive integer

p). This is a contradiction, since g must be nondecreasing but ¢’ (n') < n’. @
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Property 2: For consistent strategies. the sequence {m; }ew| is nondecreasing in k. so
Ue/mp < k + 1.

Proof of Property 2: Let g and ¢’ be as defined. (Again we suppress the subscript
S.) Then for each positive integer i. the larger subtree (rooted at level one) of T has
the same shape as Tj(;), the decision tree for Sy(;). Since height is monotonic in size,
the larger subtree of T, ,,—Ty,,, being the smallest decision tree in 7 having height
k + 1—has the shape of T;,, the smallest decision tree in T whose height is k. So
9 (Le+1) = Lu; similarly, ¢’ (Ui+1) = Us. Also, by the tree-growing property, if iz > i),
then ¢/ (iz) > ¢ (i1) , and iz — g’ (i2) 2> &1 — ¢ (i1) . Since for all ¢, ¢’ (i) < i, this implies

(taking iy = g’ (i) and iz = 4) that _

i-g' i) 24 () -9 06).

My = U = Ui
= Ukr1 =9 (Uen)
2 g (Uer) - 9'(9' (Ues1))
= U= Ui
= m.
Since the m,'s are nondecreasing in k,

Ue _1+mi+ma+---+m
Mg M

<k+1 @

We now present the main result of this chapter.
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Theorem 3.1: All consistent strategies are normal.

Proof: If lim, . g(n)/n = 1/2, the strategy is similas to binary search: the rate of
growth in h, is O (Inn) , while the rate of growth in s2 is  (n) , so the sufficient condition
clearly holds. Now assume lim, . g (n) /n = c for some constant ¢ € (0,1/2). Let h,
be the height and 3, the number of complete levels of a decision tree of size n. We first
show that in this case, there are positive constants N, and ¢, such that ¢; < | and for
n > N, we have

Bn < cihn.

If B, is bounded above by some constant, there is nothing to prove, so assume that
limp_.o B = 00. (The limit must exist, because {f,},-, is nondecreasing in n.) Since
limaxg(n)/n = ¢ < 1/2, there is a positive constant ¢z < 1/2 and an integer N;
such that for n > Ny, g(n) < cyn. That is, the smaller subtree of a decision tree of size
n > N, has fewer than c;n nodes. Further, each subtree of size n > N, also has this
property; that is, its smaller sub-subtree has at most c;n nodes. Consider the number
of times we can successively apply the function g to the size of the tree (or subtree)
and still obtain as a result an integer greater than N,. As n grows, the number of such
applications also grows, approaching a limit of infinity. Thus there is a constant integer

c3 such that for n large enough,
- -a (1\®
@ Dim) < (3) n
where, by definition, g®) (n) = ¢ (g("‘” (n)) . Since g*-Y (n) = 1, we have

a
ki (-;-) n>1
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Taking logarithms on both sides of the inequality gives
(Bn—c3)lncz —c3In2+1Inn >0,

and, rearranging, we obtain

Inn In2
,@,<_.+c;.(l-__).
in() In(%)
Since k, 2 |logyn], and c; < 1/2, this implies that there are positive constants N, and

¢ such that ¢; < 1 and for n > Ny,
Ba < c1hn.

In the notation introduced at the beginning of the previous section, we have shown that

there is a constant j, such that for j > jo,
ﬂl'j S clj!
where j;; is the number of complete levels of Ty, ., i =0,1,...,m; — 1. By Propenty 1,

Ti,+: has at least one external node on every level below §;;, so for i =0,...,m; - 1,

Var (XL,+.') > l

L+ [k E XL,+.)]
}

> A -

> v§

k=g,

where / =j—-F;+1,and p' = E(XL,+i) — B + 1. Since the sum of squares above

may be minimized by setting 4’ = (7' + 1) /2, we have



_ 1[i@en@ie) JE 0 iu e
U 6 2 4
R ¥ "
- ${G o)
_ 20

U; -

Recalling that j' > (1 - ¢,) j for sufficiently large j, we have

Var (XL,-H) = 9-[%!1)'
J

m,z-lvar(XLrH) - milg_(fl
i=0

= U

()70
2 ()0
= ().

where we have used Property 2 to obtain the inequality. So

] me—

1 -
"?J,- = Z Z Var(xl.b-i-i)

La(¥)
Q(s)-

Thus sy, = @ (j#) , which implies that j =0 (s, ), of hy = 0(s,). @

3.7 Normality of Other Tree-growing Search Strategies

Properties | and 2 of consistent strategies, as is clear from their proofs, apply to all tree-

growing strategies for which the position of each probe depends only on the length of the
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data subarray being searched. Here we consider tree-growing strategies which, though
not consistent, retain this characteristic and thus possess properties ! and 2. The proof
given above clearly works for strategies in which the limit limn_.o g(n) /n does not
exist, as long as liMa—ocg (1) /n < 1/2. One example of such a strategy is the following
tree-growing implementation of Fibonaccian search:® Let the position of the probe to

be selected in an array of size n be specified by

4
n, if n<3;

§(n)= 1 n=Fyn1 +1, if Finyet <1< Fegnpt + Fegmper = 1

Fimye1s if Fiqny+1 + Fign)-1 S0 < Fiye2 = 1

.

where, for n > 3, k(n) is such that
Finy+1 <1 < Fignpas

and F; is the ith Fibonacci number.

Using this strategy, we “grow” the Fibonacci tree of size Fi,) — 1 into a Fibonacci
tree of size Fi.2 — 1 in the following way: We first add Fi_, nodes to the larger subtree
of Tf,,, -1, bringing the size of this subtree to Fi,, — 1. Then we add Fi._; nodes to
the smaller subtree, bringing its size to F; — 1. The new Fibonacci tree then has size
Fioy -1+ F_ +Fe2=Fipa- 1. We may think of this tree-growing strategy as a
“fast growing” implementation of Fibonaccian search, since the corresponding decision
trees grow rapidly in height as n grows. Figure 3.7.1 shows the trees representing this

strategy for n = 13 and n = 14.

SNot all implementations of Fibonaccian search have the tree-growing property (sée Kauth 1973b,
Section 6.2.1). We restrict our discussion to tree-growing implementations.
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Fewe 3.7.1. Decision tyees of a fast-gmwing implementation
of Fibonaccian sserch

With this strategy we have, using our previous notation,

= gn) . Fey-1
hm“« n - k!%pk.“—l

i (1V5) ¢
k—oo (1 /,/5') P+
1

|

where

. g(n) _ Fiy -1
iR o n k= Fry 4 Fio -1
-1
= kh_?;,¢k+l+¢k-|
= 1.
T @+
= 0.276393... .
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Since we do, however, have lima.—g(n) /n < 1/2. this strategy is normal.

The following proposition further expands the class of strategics for which we can
prove normality.
Proposition 3.1: Any search strategy S for which [in-xg(n)/n = ky € (0,1/2) is
normal.
Proof: Let ¢’ (n) be as defined. Since liln—.ccg (n) /n = k; > 0, there are constants jp

and k, such that k; < | and for j > jo we have ¢’ (U;) < k2U;. Then for j > jo,
g (Uy) < KU
Forexamplg. for j = jo + 2 we have
9® (Usos2) = ¢ (' Ups2)) = 9 Usor1) < k2Ujpa1 = kog’ (Uip42) < KUjgu2.
Since g'u-=) (U;) > 1, this implies that
1< U,
and, taking logarithms gives
(i — jo)Inkz+1InU; 2 0.

Rearranging, we obtain
InU; .
i S —% +Jo.
In ()
Thus there is some constant k3 > 0 such that for j > jg, U; > exp (k7). Using the facts

that s2 = Q (n) for all tree-growing strategies,? and, writing j = h,, that U;_; < n, we

9t is easily proved by induction that the variance of C, is minimized in the case of binary search, for
which we have shown that s> = §}(n).

51



have
35 = 2(n) = Q(exp (kshn)),
so hy=o0(s,). @

Another implementation of Fibonaccian search provides a practical example of a
strategy for which Proposition 3.1 applies. Let the position of the probe to be selected
in an array of size n be determined by the function
{ n, if n<2;

§2(n) = 1 Fin)s if Fipy1 £ 8 < Fenper + Figmy-2 — 1;

| n- Fem + 1, if Finyt + Fin)-2 S < Figappz = 1;

where Fi,) is as previously defined. This strategy is similar to the one determined by
€ above, except we add nodes to the smaller subtree first, then to the larger—this is
a slow-growing implementation of Fibonaccian search. Figure 3.7.2 shows its decision

trees forn =13 and n = 14.

Figure 3.7. 2. Decision trees of a sowgrowing implementation
of Fibonsccian search

With this strategy we have, using our previous notation,
= g _ o R-l

fimy oo n ke Fa+Fa-1
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]
g
I

Here, again, we do not have consistency, since

. gr) _ . Fey -1
i == = Jim 2=
= ﬁmw:
k—ec0 (1/\/§)¢1¢+|

1

¢2 *
but the normality of this Fibonaccian strategy follows from Proposition 3.1.

We have seen that all strategies for which either
En—ocg (n)/n<1/2

or
imn—g(n) /n>0

are normal. One remaining case, the class of strategies for which im,_g(n) /n =
1/2 and lims—wg(n)/n = 0, is more problematic. For a subset of these strategies, a
modification of the proof for consistent strategies suffices: If there are positive constants

N,andc.suchthatc|<landforn>N|,

ﬁn < clh'na

then the sufficient condition holds, as for the case of consistent strategies where the
limit of g(n) /n is less than one half. If for every number c in the interval [0,1) we

have (G, > ch, infinitely often, the tree becomes nearly complete infinitely often. In
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this case, we have alternating “stages™ of growth in height in the sequence T. The
following argument shows that the number of nodes added between “shifts” of g (n) /n.
from its upper limit to its lower limit, approaches infinity very quickly: For every =
in the interval (0,1/4), there are sequences of integers {n; }io, and {n/}7, such

that for each positive integer i we have ni; < ni, < n(i+ne, 9(nic) /nie >  —¢. and

g(ni,) /n}, < ¢. Since by the tree-growing property g (n;,) > g(n;.). we may write

n;; > g(niz)
3

> (1/2 ‘E) n.-z’

£

for each i. Then since

liml/—z.—e- = 00,
€0 £

we have

n
lim lim = = 00.
=00 g—0 N

It is also clear from the tree-growing property that
Riipnye 2 MG, (2 - 2¢),

so the number of nodes added between shifts of g (n) /n from its lower to its upper limit
also approaches infinity. During stages in which g (n) /n is less than 1/2, T will resemble
a sequence of trees representing a consistent strategy with lim,_.9(n) /n < 1/2. If
g(n) /n remains close to 1/2 for a large number of consecutive integers (as it must
for the tree to fill out), the family 7 may contain subsequences of nearly complete

trees. If the length of these subsequences approaches infinity as n approaches infinity,
54



the subsequences will resemble sequences of trees representing consistent strategies with
limp—nc g (n) /n = 1/2: that is, we will have hy, = O (InU,), so U, = Q(exp (kj)) for
some k£ > 0. In each type of stage then, as the number of nodes added within a stage
approaches infinity, we have h, = o(s,). Intuition thus suggests that normality holds
in the case of these “oscillating” strategies. Examples of such strategies, Lowever, are

difficult to concoct and unlikely to be used.
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Chapter 4
Average-case Analysis of Multiple
Quickselect

Quicksort, a sorting algorithm invented by Hoare (1962), is among the most efficient
known methods of sorting an array of data values selected at random from a continuous
distribution. Quicksort begins by selecting one data value (often the first value) from the
amray lo use as a pivor. By comparing the pivot to each of the other values in the array,
Quicksort places the pivot in its correct sorted position. In the process, Quicksort assigns
all values less than the pivot to positions left of the pivot and all values greater than
the pivot to positions right of the pivot. Thus the original array is partitioned into two
smaller unsorted arrays, one on each side of the pivot. In recursive fashion, Quicksort
then begins the partitioning process afresh with each of the smaller arrays.

Many have studied the distribution of the number of comparisons required by Quick-

soi. Régnier (1989), for example, used martingale theory to show that the number of
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comparisons. when suitably standardized, has a distribution that converges to a limiting
distribution. Rusler (1991) characterized this distribution as a fixed point of a coatraction,
and Hennequin (1987) computed its first five cumulants. ln addition. Hennequin (1991)
gave a general formula for the pth cumulant of this distribution (where p is an integer
greater than one). Tan and Hadjicostas (1995) provided more information about the tail
of the limiting distribution. All of these researchers assumed that the data values being
sorted had been selected at random from a continuous probability distribution. Under
this model of randomness, which we also adopt here, the ranks of the data elements form
a random permutation of the integers | through n, the size of the data set. Eddy and
Schervish (1995) examined the performance of Quicksort under alternative models of
randomness, e.g., assuming the ranks of the data values follow a triangular distribution.
Mahmoud, Modarres, and Smythe (1995) analyzed the distribution of the number of
comparisons required by Quickselect, a variant of Quicksort, to find one order statistic
in a set of random values from a continuous distribution. Quickselect performs the same
partitioning routine prescribed in Quicksort, but, secking only the ith order statistic,
partitions only subarrays containing the ith position. After each partition step, if the
pivot is not the order statistic sought, Quickselect continues its search in the subarray to
the left or right of the pivot—whichever contains the ith position—and abandons the other
subarray. Multiple quickselect (MQS) is a variant of Quicksort modified to search for
two or more order statistics at a time. Like Quickselect, MQS relies on the partitioning
procedure found in Quicksort. Since more than one order statistic is sought, however, |
MQS specifies one or both of the subarrays created in a partition step as containing
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desired statistics. Thus after completing a partition step, MQS may or may not abandon

one fragment of the data array.

4.1 Operation of Multiple Quickselect

Operationally, MQS may be implemented as a procedure that receives four integral pa-
rameters F, L. B, and T, while giobally accessing the data array A(l..n] and the array
OS (1..p] containing the (sorted) ranks of the desired order statistics. The parameters F
and L indicate the first and last positions in the portion of A to be searched; similarly
B and T denote the bottom and top positions of the subarray of the array OS for whose

elements MQS is to search within A. The initial call is

MQS(i,n,1,p);

and the algorithm first goes through the usual partition'® of A [F..L] as in Quicksort (see,
for example, Sedgewick 1988). The partitioning procedure selects a pivot and moves it to
its correct position in the list, position k say, creating two random subarrays A (F..k — 1]
and Afk + 1..L]. Next MQS searches OS [B..T] for the rank k of the pivot. If & is
not found in OS[B..T] but there is an integer r such that ail elements of OS|B..r]
are less than & and all elements of OS|[r + 1..T| exceed k, then MQS searches for
OS|B..r] within A[F..k - 1] and for OS [r + 1..T] within A[k + 1..L]. These searches

are accomplished by the two recursive calls

'Wemmmmmmmmn-lmmmmmmm
n; a modification of the standard partitioning algorithm accomplishes this.
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IWQS(Fck- l,qu);
MQS(k+1,L.r+1.T);

If. on the other hand, k is found within OS at position r. the algorithm announces its

finding of one of the order statistics. stores its value A [k|, and proceeds with the calls

MQS(F,k—-1,B,r-1);
MQS(k+1,L,r+1,T);

The recursive process continues until all elements of OS have been found. Figure 4.1.1
gives formal code for a Pascal-like implementation of MQS. (In this implementation, the
ammays A, OS, and R—an array in which MQS stores the values of the order statistics
after finding them-—are accessed globally.)

Figure 4.1.1. A Pascal-like Implementation of MQS

procedure MQS(F. L. B, T: integer):

vark Q: inieger:

{OS comtains the ranks of the p order stanstics; R conuins their values, once found.)
begin (MQS)

if B<T then

begin (if)
PartitiontF. L. k):

{"Partition” returms &, the correct pasition of the pivor.}
Search (k. Q);

{“Search” searches OS for k. returning o value of p if k exceeds the largest value in OS and a value of O if k is less than the smallest
value in OS: otherwise. if k is vt in OS. Search returns the position of the Aighest value less than k in 0S.)

if Q=0 then MQSI(F. k-1, B, T):
else if OS[Q] = k then

[One order stasistic has been found.|

begin [if]
RIQI:=Alk):
MQS(F. k1.8, Q-1);
MQS(ke1. L Q+1. );
end fif)

else

begin [eise]
MQS(F. k1. 8, Q):
MQS(k+1, L. Q1. T);
ond [eise)
end (Y]
end; [MQS)
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The algorithm is particularly useful for computing L-estimates. a class of linear statis-
tics discussed in detail by Serfling (1980, Chapter 8). An L-estimate is a function of the

form

L,. = iC.'X(.').

Often many of the coefficients c; are identical, and onc may compute L, without com-

pletely sorting the data array. If we wish to compute, for example, the a-trimmed mean,

defined as
T - "-f' X
T n-— 2LnOJ i=|{naj+1 -

we may use MQS to identify the two bounding order statistics X(|naj+1) and X(n—(naj).
In the process of selecting these, MQS will place all intermediate order statistics in
the aray positions (|na) + 2}, ..., (r — [na] — 1). We need not sort these intermediate
values, since we seek only their average.

Chapter | provides additional examples of applications in which “all purpose” selec-
tion algorithms like MQS prove useful. In the next section, we calculate the average
number of comparisons MQS uses in finding p order statistics in a data array of size
n, assuming that p is fixed with respect to n. Our formula for the average number of
comparisons involves the moments of S, the number of descendants of a node of rank
Jj in a random binary search tree of size n. The distribution of this random variable and
an expression for its moments are derived in Chapter 2. In Section 4.3, we discuss an

example in which we apply a “weighted” variant of MQS to a data set.
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4.2 The Average Number of Comparisons Performed by
MQS

In this section we examine the number of comparisons MQS requires for finding p order
statistics. Having noted the algorithm’s versatility, we assume here that the ranks of the
p order statistics have been selected at random without replacement from the integers
{1,...,n}. With this assumption, our average number of comparisons will represent a
“grand” average over all possible sets of p order statistics as well as over all possible
permutations of the ranks in the data array. Our method of analysis relies on the dis-
tribution of random *‘Quicksort trees”—binary trees whose subtrees correspond to the
partition steps performed by Quicksort, the root of each subtree being the data value of
the pivot in the corresponding partition. Figure 4.2.1 shows an example of a Quicksort
tree in which n = 15, and the partition procedure selects the first clement in A [F..L} as
the pivot.

The “MQS tree” is formed by “pruning” from the Quicksort tree all nodes corre-
sponding to data values not used as pivots by MQS. In Figure 4.2.1, the MQS tree for
the example is shown with solid edges, while the pruned nodes are joined to the tree
with dashed edges. We use the Quicksort trees and MQS trees to analyze the number of
comparisons consumed by MQS. (As in Chapter 2, we consider each node in the tree an
ancestor of itself but not a descendant of itself.) By analogy with Quicksort, we see that
if we use MQS to find the p order statistics ranked j,, jz, ..., j, in a2 data asray, the total
number of comparisons needed will be the same as the total number of descendants of
all ancestors of 3y, ja, ..., jp in the Quicksort tree comresponding to the data asray, or the
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total number of descendants—in the Quicksort tree—of all nodes in the MQS tree. By
counting the descendants of all nodes in the MQS tree of Figure 4.2.1, we can see that,

in this example, MQS uses a total of 38 comparisons to find the three order statistics.

Dons Arvoy
I::im]rr]n[solml I6l40ll02| ] IWIIMTS%IR'I”'
prvor = 78 (rank 8)

BB ﬁo|:luoz|m]m[m[m]n|m|
Naofoo l 2713 59] s [ 16 I::Izulmlmlmlnlusol

prvol « 40 (rank ) prvot = 102 (rank 10)

Lslwelznln :m, TR m:m MTENT|

n Array OS
| 4 1 7 ] 12 ]

[ o [ 7 R}
i t
e rank of prot = 8

M

rank of prot = §

Figuere 4.2.1. A dats arvay in which MQS senrches for thres srder sististics. The
correspendiag MQS tree (solid) inciudes oll data cloments that serve 28 pivets.

We assume our implementation of the Quicksort partition step ensures that the relative
ranks of the data clements in a subarray of size n’, created by the partitioning, form a
random permutation of the integers {1, ..., 7'} . It is a classical result (Régnicr 1989) that
the distribution of the number of comparisons required by Quicksort for a partition step

in which the data value ranked j is the pivot is the same as the distribution of the number
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of descendants of a node j in a binary search tree formed by successive insertion from a
random permutation of the integers (1, ..., n} . We usc this cquivalence principle to prove

Theorem 4.1. We also need the following lemma:

Lemma 4.1:

P ()it
Z( 11) (:’)=HP'

=1
Proof: We prove this by induction on p. The basis (p = l)is easily verified. Assuming

the assertion true for p, we have, by Pascal’s identity,

£ (0)- ()

- S £5E(T)

where, in the second sum, we have used the classical identity

1 n+1 _ 1 n
n+i\m+1) m+1i\m/)

)

i i

So

;( l)'+'(p+l) §( 1)'+-(i) p+l[§( .+.(p+1)+(p;1)_

By the induction hypothesis, the first sum is H,,, and by the binomial theorem, the second

sum is — (1 = 1)**! = 0. Therefore,

p+l i+1
Z———( lz) (p-:-l) Hy, + -:-l Hppy. B
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Suppose n data values are selected at random from a continuous distribution. Let p
be a positive integer fixed with respect to n, and assume the ranks of p order statistics
are selected at random without replacement from (1....,n}. Under these assumptions,

we have the following theorem:

Theorem 4.1: MQS requires an average of
(2H, +1)n-8plnn+0(1)

comparisons, where H, = 3°F_, 1/i, the pth harmonic number.

Proof: Let C!™ denote the number of comparisons between data values that MQS

performs in searching for the p order statistics. Then

=Y S, @.1)

j=t
where S denotes the number of descendants of node j in the Quicksort trec come-
sponding to the data array; and
1, if j is an ancestor of at least one of the p order statistics;

5=
»
0, otherwise.

The number of descendants of the node of rank j is the number of comparisons Quicksort
performs in the partition step in which j is the pivot—Quicksort compares the value of
the root node to that of each of its descendants. But unless one of the desired order
statistics lies in the subarray comesponding to the subtree rooted at j, MQS will not

perform the partition step, and we will have [{;’ = 0.
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Since all the random variables in this chapter depend on n. the size of the data array,
we suppress the superscript. We find £ (C,] by conditioning on the valuc of S,. First

note that for k=0.....n— 1.

E(lplSi=k] = P{l=1|S5;=k}
= P{j is an ancestor of at least one of the p order

statistics |S; = k}
= 1~ P({j is not an ancestor of any of the p order

statistics |S, = k}

L (n-k-l)‘
()
where, to obtain the last equality, we have used our assumption that the ranks of the p

order statistics were selected at random without replacement from the integers (1,....n} .

Then
j=1 =1 k=0 (:)
= ST kP(s = k) “2)
Jj=1 k=0
1 &) fa—-k-1
-Elggk( ‘ )P{S,-=k}.
Now
Zg_:okP (5 =k} = X E15] = ECA, @3

where C, is the number of comparisons Quicksort would require to sort the entire data

array. (Note that we may consider Quicksort a special case of MQS, the case in which
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all order statistics are to be computed.) Then from equations 4.1, 4.2, and 4.3,

n n-—|
E[C,) = E|C.] - ZZL[]’] n—k—i)}P{Sj=k}. (4.4)
n' - l) j=lk=0 L=l
To simplify equation 4.4, we will use Pochhammer's symbol for the rising factorial:
> [p
(z)pzz(z+l)---(z+p—l)=:[r]z', 4.5)
r=l

where [‘,’] is the rth signless Stirling number of the first kind, of order p. Differentiating

equation 4.5 gives

(z)

= : r[ ] =t (4.6)

Rewriting equation 4.4 with this notation, we have

"J=oz+1

3 ) k(n—p—k),P{S; =k}

n p+ )p]:lk:ﬁ

Bl - T L% [g:[](n—p L)]P{s-k}

ElGl = ElG)-

= E(C)] |
n- pH)pg:go ZHE( V) ()k‘(n-p)"‘ P{S; =k},

where we have used identity 4.5 and the binomial theorem. Isolating the terms containing

the first and second moments of S;, we obtain

Elc) = E[Cl)
(- p+ 1),,2.:.;. f (= ES] @
i p+ 1>,,§§. ,, rin—p" E[S] @48)
Ty p+ >,,§.3,§,::i (=0 ( )(n-p)"‘ [si1]. a9)
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We examine each of expressions 4.7, 4.8, and 4.9 separately. First, using equations 4.3

and 4.5 and the expression for 7., E(S;] = E[C.] given in Section 2.2,

S Pl - S "”Zs[sl
"'P+1p,=n-| r ’ o (n-p+1), =
(n-p)
—ms[cn}
= -(1-5)ee
= -E[C\+2pH, +0(1). (4.10)
Similarly, applying identity 4.6 in expression 4.8 and using the expression for 3", [S;*‘]
derived in Section 2.2, we have
1 r- = (n—p)
(n-p+l)”_,,_,Hr(n p) ‘E[S?] = ;E[Sf]m
1 1
b e
= -,E-;E[Sz] (1--)
of-=
S [0 ()

- %[:;n2 - 10(n + 1) H, +17n]

(-2 o)l

= 3pn—10pH, +O(l). @11

Rearranging expression 4.9 gives

f:[p (n—p) Z':( 1)eH () (1-_)"" M i

Silrlin-p+1), 5 =

To simplify this, we use the asymptotic approximation

(1-2)" -1+0()
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along with a result from Section 2.2: For fixed ¢ > 2,
n F S¢+l
Z—[—j-l =n (1+3) +0(1).
=1 M t
When we substitute these into expression 4.12, the sum on ¢ becomes (for fixed r > 1)

s () o (1+3) o] = alSewr () 1]
*'"[2: )M()-2r +0(1)

t=1

nf0+1+2H. ~3r|+0(1),

where we have used Lemma 4.1 to obtain the second equality. Next we observe that

(an;—f_)sz=1+o(%)

and that for each r < p, we have

_(n-p) -
[ mp+ D), —_— (2H, +1 - 3r)n=0(1).

Then we may rewrite expression 4.12 as

(n—-p)®

(n_p+l)p(2ﬂ,+l—3p)n+2[](n P+ (H, +1-3r)n+0(1),

and simplifying this gives
(2H, +1-3p)n+0O(1). 4.13)

Finally, substituting expressions 4.10, 4.11, and 4.13 for 4.7, 4.8, and 4.9, respectively,
gives

E[C,] = (2H, + 1)n - 8pH, + O(1).
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This result is consistent with that of Mahmoud et al. (1995), who showed that

E[C)] =3n - 8H, + 13-%.

When p exceeds one, however, an exact expression for the total number of comparisons
involved will depend on the particular implementation of MQS: some comparisons will
be needed berween partition steps to determine which segments of the partitioned data
array may be abandoned. To determine this, we find the relative rank of the final position
of the pivot within the array OS; in the code of Figure 4.1, this is accomplished by the
call

Search (0S.k,Q) .

The comparisons performed during the search of OS may not be the same type of
comparisons performed within the partition steps; the data elements may be real numbers,
for example, and the ranks of the order statistics integers. We show in Appendix A,
however, that the average number of such comparisons is O (1), assuming any reasonable
search method is used. Thus the average number of comparisons MQS performs in

selecting the p order statistics is

(2H, +1)n~8pinn+0(1). B

4.3 An Example

To illustrate the flexibility and performance of MQS, we used it to compute several sets of

quantiles from family income data collected through the Current Population Survey (CPS).
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The CPS is a monthly household survey sponsored by the Bureau of Labor Statistics and
designed primarily for measuring unemployment levels and rates. Each year in March,
supplementary questions related to personal and family income are added to the regular
CPS questionnaire. Median incomes for various demographic groups are estimated from
the March supplement data and published in the Census Bureau's P-60 series.

Each CPS sample family represents a large number of families in the total population
and is therefore assigned a sample weight—an estimate of the number of families that
the sample family represents. These weights reflect the family’s probability of being
selected for the CPS as well as the results of a series of ratio adjustments. The CPS
sample design is state-based: families living in different states have different probabilities
of selection, which vary from about 1/100 to 1/3000. Sample weights are also adjusted
to be consistent with a set of independently derived population estimates for states and
various demographic groups. A series of adjustment factors is applied to each weight, so
the weight for each sample family may be unique. (See Appendix B for a more detailed
discussion of CPS estimation procedures.)

The sum of the weights of all families in the sample is an estimate of the number of
families in the population. A proper algorithm for selecting income quantiles must there-
fore take the sample weights into account. The weighted median income, for example,
is not necessarily the median income of the sample but rather the sample estimate of the
population median, defined as follows: Assume the data array A comprises n records,
each consisting of a family income value A [i] and a sample weight w;, and suppose the
array is sorted by income. The weighted median may be defined as A [ig], where iy is
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an integer such that

0 1 &
§wi > EZwi

and

o1 1 n

; w; < 5; w;.
That is, half the total weight of the sample is assigned to sample families with incomes
equal to or below the weighted median. A variant of MQS, incorporating a weight
variable, may be used. The weighted version of MQS keeps track of the total weight—a
sum of family weights—on each side of the pivot and selects “weighted” quantiles.

Table 4.1 shows the number of comparisons the weighted variant of MQS performed
between data values. Note that weighted MQS consumed only about 6.3n comparisons,
where n denotes the size of the data array, to select a set of five weighted quantiles:
the quantiles 0.10, 0.25, 0.50, 0.75, and 0.90. Five runs of Quickselect, by contrast,
performed 12.3n comparisons, nearly twice the number needed by MQS. to find the
same values.

Theorem 4.1 shows that, if the five quantiles desired were randomly selected, MQS
would perform approximately 5.6n comparisons, on average, in its search for the quantile
values. Intuitively, it is clear that MQS needs more comparisons to find quantiles spaced
far apart from one another in the data asray than it needs to find quantiles spaced closer
together: quantiles spaced closer together will, on average, have a larger number of
common ancestors in the MQS tree. Thus it makes sense that the number of comparisons
consumed in the search for the five quantiles 0.10, 0.25, 0.50, 0.75, and 0.90 should

slightly exceed the average required for the case of randomly selected quantiles. When
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the four additional income quantiles 0.01, 0.05, 0.95, and 0.99, were added to the set
of desired statistics, MQS required approximately 6.7n comparisons—about the same
number predicted theoretically for randomly selected quantiles—to find the new set of

MQS may be accelerated by a simple modification: the insertion of imaginary pivots
or dividers. In the case of the CPS income data, the dividers may also be used to compute
estimates of the numbers of families in specific income ranges. A set D comprising j
dividers in sorted order is inserted as follows: the median of D is selected as the first
“pivot” and used to partition the data amay A into right and left subarrays, Ay, and
Arigis, say. (Elements of D are not inserted into the data set.) By removing the median
from D, we break D into two sublists Dies; and Dyigae. The dividing algorithm is then
applied recursively to (Aiese, Diese) and (Arignt, Drigne) -

Table 4.1. Comparisons Needed by MQS
1993 CPS Income Data (n = 65.582)

Number of Number of Approzimate
Comparisons | Comparisons Avenge
Divided by » Number of
Comparisons
{from formula)
Divided by n
Finding the 5 quantiles 0.10, 0.25, 0.50, 0.75,
and 0.90
S runs of Quickselect, no dividers 808,568 12.3 56
MQS., no dividers 412.026 6.3 5.6
‘ , § tight dividers 390,110 $9 56
MQS. § loose dividers 374.003 $.7 56
|__MQS, 10 loose dividers 347.989 53 5.6
Finding the 9 quantiles 0.01, 0.05, 0.10, 0.25,
0.50, 0.75, 0.90, 0.95, and 0.99
MQS. no dividers 431927 6.7 6.1
MQS. 10 loose dividers 389,715 59 6.7

The five dividers were placed at 10,000, 20,000, 30,000, 40,000, and 50,000; the ten dividers were
placed as 10,000 through 55,000, at increments of 5,000.
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If we are using the dividers merely as a means of accelerating MQS, the data values
that tie with the divider may be left on either side of the data array. In this casc we
call the dividers “loose” dividers. Inserting a loose divider requires only one standard
Quicksort partition step with the divider value serving as the pivot. The partition step
places all data values larger than the divider on one side of the array and all values less
than the divider on the other side. Data values that tie with the divider are simply left in
their original positions. If estimates of the numbers of families in various income ranges
are desired, we must insert the dividers in such a way that the data records of all families
whose incomes tie with a divider are placed on the same side of the divider. The partition
step used for inserting these “tight” dividers must be modified to check for ties and place
them on a particular side of the data array, thus consuming some additional comparisons.

Appropriate divider values for a particular application depend on both the user’s prior
knowledge about the data set and the information the user seeks to obtain from the set.
If little or no prior information is available, a sample of data values may be selected and
its quantiles used as loose dividers. In most practical applications, however, the user’s
prior knowledge of the distribution of the data values is sufficient to suggest a suitable
set of dividers. If the number of values falling within particular ranges must also be
computed, as is often the case when the data represent an income distribution, predefined
tight dividers must be used.

Table 4.1 shows results of several runs of MQS, with dividers, on the CPS family
income data set. Inserting dividers at constant increments improved the performance
of MQS on this data set, even when tight dividers were used. providing estimates of
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the numbers of families in various income ranges (the ranges between the dividers) at
virtually no additional cost.

It should be noted that survey income data are subject to “heaping”-—many respon-
dents round their incomes to the nearest hundred or thousand, creating spikes in the
sample income distribution. Heaping improves the performance of the Quicksort parti-
tioning process: when partitioning an array of identical values, the partition step breaks

the array in the middle.
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Chapter 5
Avenues of Future Research

5.1 Problems on Tree-growing Search Strategies

5.1.1 More Normal Tree-growing Strategies

In addition to the consistent strategies discussed in Chapter 3, many other tree-growing
strategies are normal. Intuitively, if a strategy comesponds to a set of decision trees
T = {T:};2, for which the height of T; grows at a steady rate as i grows, the strategy is
likely to be normal. In fact, we can prove the normality of all search strategies S whose
corresponding decision trees 7 satisfy one of the two sets of conditions specified by the

following two propositions.

Proposition 5.1: Let S be a tree-growing strategy whose corresponding decision trees T

satisfy the following conditions:
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. my =0 (k') for some < in the interval (0,1) ; and
2. U/m,=0 (k““) for some & in the interval (0.1) : and

3. the tree T; is complete down to a certain level; below this level, T; has at least one
external node on every cth level for some constant c.

Then S is normal.

Proof: Let kg and c; be such that, for k > ko, we have m,/k!* < ¢,. For k > kq, let

M, be the number of nodes inserted between nodes labeled Uy, and U,. Then

k
Af[k S chiz
i=ko

S czkay
for some positive constant c;. Let hyy, denote the height of a complete tree with M,
nodes. Then

o < [Jogz (c2b%)] = (5 ) mk +0 1),

and there are constants ¢} and k; such that, for k > ky,
huh Sc’,lnk

So for k > ky, the tree Ty, can only be complete down to level kj+c) Ink. Then Ty, has
at least one external node on every cth level below level &, + ¢ Ink. For each positive

integer 7, let j' = |j/c| . Then for ' > kj and i = 0,1,...,m; — 1, we have

Var [XL,+i] 2 E;TlaTl- {;Z% [Ck— E(XL,“)]Z_cszl“j}
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c?
2 T

J

L " n2 LJ,_)"']I'I]
{Z (k" - u] } T

k=t
where j” = j' — kg + | and

, E[Xe] -k 1
po= . :

Following the argument used for consistent strategies in Chapter 3, we note that the sum
of squares

o J n?
S [ - p]

k=1

may be minimized by setting u' = (;” + 1) /2. Then

I " 2 2 .
Var [Xe,4] ﬁ{ ) [k" - l] } - arln]

v

U, k=1 2 Uj
A (™ 20
= E{-I?-FO(J an)}.
Recalling that j” = | j/c] —ko+ 1, there is a positive constant ¢/ such that, for sufficiently

large j, we have j” > ¢}j. Thus

Var [XL,.“‘] = %js—)

]

Then

m,z-l Var [XL,“] _ m,z-l m

i=0 i=0 Uj

where ¢ = 1 — 4, and we have used condition (2) to obtain the third equality. So

s =§:j MZ,-lVar [Xe,wi] = (5%
U, Ly+s 2 ) .
k=1 i=0
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and the condition of Lemma 3.1 holds. @

Propasition 5.1 applies to strategies whose corresponding decision trees grow quickly
and steadily in height. It is clear, for example, that Alternating Linear Search satisfies

the conditions of the proposition and is therefore normal.

Proposition 5.2: Let S be a tree-growing strategy whose corresponding decision trees T

satisfy the following conditions:

. m, =Q(k'*) for some £ > 0; and

2. Var(X) =0(1).

Then S is normal.

Proof: In this case, we have

] my-l

3?],, z Z Var [XLh'f'd

k=1 =0

J me-1

= X 3 o0

é Q (k.l-#-z)

=0 (j2+¢) .

Fori=0,..m;-1,
SLy+i > W, = N (J'H-e) ,

so the condition of Lemma 3.] is satisfied. @
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Proposition 5.2 applies to strategies whose decision trees grow slowly in height but
never approach completeness. Consider, for example. a strategy that selects the probe
Pijk according to the function

/3] . ] even:

Dijk =

|2L:5/3] , j odd.
For this strategy, it is easy to show that the height of the decision tree of size n is O (In n)
as n approaches infinity, so clearly m;. = 2(k?). In each set of siblings in these decision
trees, one sibling has roughly twice as many descendants as the other (provided neither
are leaves). Since every subtree of the decision trees is lop-sided, the variances of the
Xi's cannot approach zero, so Proposiﬁon 5.2 applies. We may also see that this strategy
is normal by simply noting that the operation of taking mirror images of trees—or of
subtrees within trees—does not affect normality, since the number of external nodes on
cach level of a tree remains the same when subtrees are “flipped” from side to side.
Every strategy that is consistent up to the operation of taking mirror images of subtrees
is therefore normal. The “rightmost tape-optimal” strategies developed by Hu and Wachs
(1987) provide interesting examples of this type of strategy.

The conditions of Propositions 5.1 and 52 are stated as properties of the sequence of

decision trees 7. Future research may be directed toward restating them as p;'openies of

the corresponding search strategy S.

5.12 Randomized Search Strategies
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We can show, however, that not ail tree-growing strategies are normal. Consider. for
example, a strategy whose sequence of decision tees is identical to the sequence of
random binary search trees grown by successive insertion of the ranks of the data values
in the array. Each key inserted into the data array would carry a label identifying its order
of appearance—the first key would carry a label of 1, the second a label of 2, and so forth.
When searching a given subarray, the algorithm would simply probe the element with
the lowest “order of appearance™ value of all elements in that subarray. In the random
permutation of Figure 2.1, for example, the number 3 would carry an order of appearance
value of 1, so that each new integer to be inserted into the array would first be compared
to the number 3. Similarly, the number 7 would carry an order of appearance value
of 2; each new integer greater than 3 would next be compared to the number 7, and so
forth. The algorithm would thus generate a sequence of decision trees identical to the one
shown in Figure 2.1. The process of finding the next probe, of course, would require more
searching—and thus addijtional comparisons—but the number of comparisons performed
between data values would have the same distribution as the sum of the depths of all
internal nodes in the random binary search tree. As noted in Section 4.2, this is also
the distribution of the number of comparisons Quicksort performs when sorting a set of
data values whose ranks form a random permutation. Régnier (1989) has shown that this
number of comparisons has a limiting distribution that is not normal. The condition of
Lemma 3.1 does not apply, since thé X;'s in this case are not independent and the height
of each decision tree is a random variable.

A modification of this strategy renders it nommal but robs it of its tree-growing prop-
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erty: Suppose that, when searching a given subarray, we simply select a probe at random.,
giving each element of the subarray an equal probability of being selected as the probe.
In this strategy, the probe sequence used in the search for the correct position of each key
is completely independent of the probe sequences used for the other keys. That is, we
have introduced double randomness: the final position of the new key is random. and so
is the tree branch “grown™ by the sclected probe sequence. Suppose, for example, that
the algorithm inserts a new key into an array of eight keys, and the value of the new key
lies between the values of the fourth and fifth keys in the existing array. The sequence
of randomly sclected probes in this case might be {2,7,4,5}. Then if the next key to
be inserted into the new array (of nine keys) has a value between the first and second
values in the existing array, the algorithm might randomly generate the probe sequence
{6,4,3,1,2} or perhaps the sequence {9,2,1}. The new probe sequence need not be
similar to the one used for inserting the previous key.

Since this algorithm selects the probe sequences randomly and independently, the
distribution of the number of comparisons consumed by the search for the correct position
of the (i + 1)st key is the same as that of U;, the number of comparisons performed
during an unsuccessful search in a random binary search tree of size i. Then the number
of comparisons required for sorting n keys by this insertion sort strategy is given by

n—1
R, = g Ui,
and the U;’s are independent. To show the asymptotic normality of R,, we use the

Lyapunov central limit theorem, as stated by Mahmoud (1992, p. 41):
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Lyapunov’s Theorem: Ler X, X>, X3, ... be a sequence of independent random vari-
ables. Let E[Xp] = pn, Var(Xa] = a2, and E [IX,. - u,.ls] = [ exist for each n

(on # O for at least one value of n). Furthermore, let

A= (z":ﬁ.-)m,

1=1

B, = (z":a,?)m.

=1
If limp e Aa/Bn =0, the random variable Y, = (X%, (Xi — p;)) /Bn converges in
distribution to N (0,1).
We first show that
Bn = E U~ E(U.IF| < 8Hz,, +0 (1’ (nr).
The distribution of U,,, as stated in Section 2.1.3, is given by
P{U, =k} = (-n-%)—,[:]

for k =1,...,n. Its mean and variance are

E{UJ = 2(Hui—1)

~ 2inn,
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and

Var([Uy] = 2Hn. —4HZ, +2

~ 2inn.
Thus
n=1
n—1
=2 Z Huyr=n
=l
~ 2nlnn,
and, by the independence of the U;'s,

n-1
Var[R,,] = ZVQT[U,]
=1
n—l n—i
S SRS S e
i=l

i=]

~ 2nln.

We show in Appendix A that

= 2k
k§=:1 k"'(n + I [:] =8H,,+0 (ln2 n) .

= 3 3 2k n
Bn §|k_E’[U,,]| (_n.m[k]
3 3 2" n
< E_:l[max(k,a[v,.])] m[k]

< k§=:1 [k3 +(E [Unl)"’] (n .2*. 1) [k]
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+(E[Ua))*

n 2k n
= % S .
=L (n+ 1)! [k

k=1

= 8H3, +(2(Hnn = 1) +O(Inn)

16H2,, + O (In’n).

Now it is clear that
ZH? <nH3 =O(nln3n).
=1
So with A, and B, as defined in Lyapunov’s theorem, we have
b g ST+ O(un)
== B, T "= (2% i+0(n)'
!O!nlnsn!)m
e 72
(2nln n)
= 0

1/3

R.—2nlnn R
v2nlnn

Section 3.7 provided examples of normal tree growing strategies that are not consis-

N(0,1).

tent. In this section, we have discussed an example of a non-normal tree-growing strategy
and a non-tree-growing normal strategy. Thus we have now seen at least one example

of each possible type of strategy shown in Figure 3.1.

5.2 Problems on Analysis of MQS

The average-case analysis of MQS presented in Chapter 4 has been extended by Prodinger
(1996), who calculated the average number of comparisons MQS uses in searching for a

specific set of order statistics. This average, of course, depends on the ranks of the order
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statistics sought. Remaining problems in the analysis of MQS include the calculation of
the higher moments and the probability distribution of C),.
Using the notation and method from the average-case analysis, we begin the caicula-

tion of the variance with
Var(C,| = E[C¥| - E*[G;)-

We know that E?[Cp) ~ n? (1 + 2H,)?, so we must find E [Cg] . Using our previous

o|E)]

ZlE [51'212] +2Z Z E[SJSI'IJPI)'P]
J=

J=l j=j+l

notation,

E(cl]

P

We can find the leading term of =7, E [S?1%| using the following asymptotic approx-

imation, derived in Section 2.2, for a fixed integer t > 0:

z:—;"‘—ILJ-E?J-=n"(1+—2—)+O(n).

nt t+1

Then from the development shown in Section 4.2,

f_‘E[s,?l,?, = ZZE’[S’I,,IS k] P{S; = k}
- Z";"z':kz[l--(——?:)- ]P{S,:k}.

We proceed as in our calculation of £ [C)):

:=1[ g - Jz:;:gvp{s,
o E s B G (o]
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xP{S; =k}
- ;E[sf}—(x-f)znjs[s}]
+i[]’ (n-p) i( l)‘“()( z)_‘i_[sﬂ

(n-p+1), o =
p
= ;;S;‘_la[s?]
L fp] _(n-p) I 2
+Z[}(n p+l),§:( l()[ (”ﬁ)*om}
(n—pfn? |& t+l z+1_(i)_
" (- p+l>,[§( b ()+2§( iy
"“p (n-p) ¢ e+ 2
+X ]<n mrra Al () (14 557) o
Observing that, for r < p,
(n-p) n?
mop+ny, 00
we have
- 272 2 L t (f)
J;E[SJIM] =n [1—2{‘;0(—1) m—l}]+0(n)
= n"'[l-—2(;—::-l--— )]+O(n)
= (3-—pil)n2+0(n),
where we have used the identity

2 e
,Z:o("l)wl p+1

to obtain the second equality. To prove this identity, we simply note that, by the binomial
theorem,

gjo[)'(-x)‘ (’t’)z‘d:::[)l(l —z)’dz:pil.
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Next we must find an expression for E{S;SjI,ply,] when j < j'. Let T; be the
subtree rooted at j. We will use the symbols L and /" to mean, respectively, “is disjoint
from” and “is an ancestor of.” Thus for example, if the two subtrees T, and T are
disjoint, we write T; L T}, and if j is an ancestor of j', we will write j / j'. With this

notation we have

n—} n-1

E(S;Spliplip) = Y Y WWE(Liply,|S; = k, Sy =K ] P{S; = k.Sp = k')
k=0 k'=0
n-1 k-1

Y Y KKE(Lplyp|S; =k, Sy =¥.,j / §]

k=1 =0
xP{S;=k,Sy =kK.j / i’}

1

n—1 k'~
+ Y KNE(Liplyp|S;=k,Sy =K,j' / j]
k=1 k=0

XP{S,‘ =k,Sjl =k’,j' /]}

n=3n—-k-3
+3° % KKE(Lyly!S; =k, S; =K. T; L Ty

k=0 ¥K=0
XP{S,' =k,Sy =k’,Tj LT,-I}.

The first two terms in the above expression are clearly equal. So when the ranks of the p
order statistics are selected at random, without replacement, from the integers {1, ...,n},

we have

n=t k-1 n—k-1
E(S;Splplys) = 2)° Y k¥ [1 - L—L‘Z] P{S;=kSp=¥F,j /j}

k=1k=0 (;)
n-3n-k-3 n—k—k'-2

+y Zkk’[l— L ]P{s,:k,s,.,:y,nlrj,},
k=0 k'=0 (’)

To compute these sums, we need the joint distribution of S{" and S%, for each integer
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j and j' # ;. Known resuits, however, provide grounds for the following conjecture:
Var(Cp| ~ n®.

Mabhmoud et al. (1995) have shown that this result holds for the case p = 1, while
Régnier (1989) has shown it for the case p = n—that is, for Quicksort. It seems likely,
therefore, that it hoids for all intermediate values of p. Simulation results discussed by

Lent and Modarres (1995) support this conjecture.



Appendix A
Additional Calculations

A.1 Calculation for Analysis of Tree-growing Search
Strategies

Propasition A.I: For n > 3,

SRt

DMy U'H 8H3+1+O(ln n).

Proof: By the definition of the kth Stirling number of the first kind of order n,
ik(k—l)(k-z)z"‘:'n =-‘f-[z(z+l)---(z+n—l)l
k=1 k dz? .
So to find Y°_, k (k - 1)(k-2)z*[;]. we compute the third derivative of z (z +1) -+ -
(z +n — 1) and evaluate the result at z = 2. This gives
ke - 2] = 8wt 01 (Han = 0 - 3(Huns -1 (5 - 1)
k=1
(Hl(l:-?l )]v

where H{™ is the nth harmonic number of order m. Thus

Zk(k k-2 =y l)'H 8H3,y +0 (H,).
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Since Mahmoud (1992, p. 75) shows that

n 2k n
2 ~dH?
Lk (n+1)! [L} AHurr,

k=1

the proposition follows. @

A.2 Calculations for Analysis of MQS
Proposition A.2: Under the assumptions of Theorem 4.1, the average number of partition

steps performed by MQS is 2pIlnn+ O(1).

Proof: Let D{*) represent the number of partition steps MQS performs. Then

Dg = -0

j=t
where

) 1, if j has any descendants;
J

0, otherwise,
and I is as defined in Section 4.2. Let S™ be defined as in Chapters 2 and 4, and

again we will suppress the superscript. Since

E[l1S; =k =1- (:E; '
we have, by conditioning on S;,
E [X"EQ,-I,-,] = jzn:lg [l - '('%:'):2] P{S; =k}
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=1

»
i

Proceeding as in Section 4.2, we obtain

P{S; =k}

n n-l

T &

J"l k=0

[H(n k- z)]P{S—k}

ED,] = 22P{S,=k}
1=l k=1
n p ] n-|
ToTT R || (P L P S =k} (A1)

n—p PJ=lr-l.. k=1
n P fnl

,.-p+1,,§,,§__r<n-p) 'E(S)) (A2)
= - rp‘ t+1 ) r—-t

,,_,,),1”:):‘;_:2_,1;( ~-1) ( (n-p)"E[S]. A3

We examine each of the above expressions separately. Simplifying expression A.1 gives

2P % pis; = k)

P j=1 k=l

__(n-p),
(n-p+1)

We simplify expression A.2 using the identity

p-l

@)y

M

j=0

introduced in Section 4.2. Thus

>

bR — p+z

2 (n-p),
Z [J](n P+l)

j=
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(1--);;_:[19{3 = k}
—égP{S—L}
235 (s, =4}

j=lk=l

n n-l
-Y Y P{S;=k+0(1). (A9
j=1 k=1

2

- trei(-2)
Efiof?)



= %[2(n+l)Hn—4n](l—£)

x [p+0(%)}

= 2pH, +0(1). (A.5)

Expression A.3 equals

)i[p] o2y Z':( l)‘“()( )_‘ ;_L_l (A6)

r=1 n—p+lp!—2

Recalling from Section 2.2 that for fixed ¢ > 1,

Z_[_J. =0(1),

)=l

we can reduce expression A.6 to

g[f] 1+0(3)] L};( 1)""()( -2y ‘]O(l)=0(l). A7)

Substituting expressions A.4, A.5, and A.7 for A.l, A.2, and A.3, respectively, we have
ED))=2pH.+0(). ®

Recall from Chapter 2 that the average level (or average number of ancestors) of
a node in a random binary search tree is 2Inn + O(1). Thus the average number of
partition steps needed for finding one order statistic by Quickselect is 2Inn + O (1).
The average number of paritition steps needed for p independent runs of Quickselect
is therefore 2plnn + O(1)—the same as the average number required for finding p
order statistics by MQS. So it is clear that the number of partition steps MQS needs to
completely separate the searches for the p order statistics is O (1). This result reveals

the rudimentary shape of a typical MQS tree. The number of nodes on each of the
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highest levels varies, but below the first O (1) levels the tree has p “branches.” each
cormresponding to a search for one of the order statistics and cach having an average

height of 2Inn + O(1).
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Appendix B
Overview of CPS Estimation Procedures

The CPS sample consists of selected clusters of housing units, some identified as col-
lections of addresses (from a list frame) and others as small geographic areas (from an
area frame). Each cluster is expected to include approximately four housing units. lnier-
viewers collect data on all persons living in the selected housing units. The U.S. Census
Bureau, using all the sample data, computes a weight for each sample person. These are
estimates of the number of actual persons each sample person represents. Weights for
sample families are simply the person weights of family heads. The estimation process

involves four main steps.

1. data “cleaning,”
2. basic weighting,
3. noninterview adjustment, and

4. ratio estimation.
Data cleaning refers to the process of refining the raw data—correcting for inconsistent
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or missing items—to render them suitable for use in estimation. Weights for all sample

persons are computed through the remaining three steps.

B.1 Basic Weighting
In the basic weighting procedure, data from each sample person are weighted by the
inverse of the person's probability of selection—a rough estimate of the number of persons
the sample person represents. Adding the “base weights” of all sample persons having a
given characteristic (e.g., all persons in a given income range) yields a simple unbiased
estimate of the number of persons in the population possessing the characteristic. Under
the current CPS sample design, almost all personsinthesamcsmtehavgthesame
probability of selection.

When a selected cluster of housing units is found to contain many more units than
expected, ficld subsampling is carried out. (This happens only when the cluster is iden-
tified as a geographic area.) Appropriate adjustment factors ase then applied to the base

weights to account for the subsampling.

B.2 Noninterview Adjustment

In the noninterview adjustment procedure, the weights of persons in all interviewed
households are adjusted to account for occupied sample households whose residents were
not interviewed because of impassable roads, refusals, or unavailability of respondents.
Households not interviewed make up about six percent of the occupied sample house-

holds each month. Noninterview clusters are formed by grouping together households in
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geographic areas deemed similar in labor force characteristics, and a noninterview adjust-
ment factor—the inverse of the proportion of eccupied sample households interviewed—is
computed for each cluster. This factor is then applied to the weight of each interviewed

person in the cluster.

B.3 Ratio Estimation

Two stages of ratio adjustments are applied to CPS weights. To understand the purpose
of the first-stage ratio adjustment, we must briefly review the CPS sample design. In
the CPS, large geographic areas, such as counties and cities, are designated as primary
sampling units (PSUs). Simi!ar PSUs are grouped together, within state, to form strata.
One PSU is selected from each stratum, and sample houscholds from the selected PSU
represent the entire straum. Some densely populated PSUs are in strata by themselves
and thus are selected with certainty and called self-representing (SR). All other strata are
called non-self-representing (NSR), since the sample PSUs in these strata represent not
only themselves but also the other PSUs in their respective strata.

The first-stage ratio adjustment reduces the contribution to variance that results from
selecting a sample of PSUs rather than drawing sample households from every PSU in
the nation. For each state, the following ratio is computed, using data from the most
recent decennial census, for two race cells (black and non-black):

total population of all NSR strata
estimated population of all NSR strata, based on sample PSUs’

Since the adjustment factors are based entirely on decennial census data, they do not

change from month 10 month.
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The sample distribution may differ somewhat from the population distribution in
characteristics such as age, race, sex, and area of residence. Since these characteristics
are correlated with labor force status and other characteristics of interest, the sample
weights are adjusted to agree with distributions of various population characteristics. as
estimated from other data sources (primarily the decennial census, adjusted for census
undercount.)

Second-stage ratio adjustment is performed both to reduce variability of the survey
estimates and to correct for CPS undercoverage. The adjustment procedure weights the
sample person records to provide sample estimates consistent with three sets of popuiation

estimates, called controls:

1. state (for persons aged 16 or over)—S51 cells
2. age/sex/ethnic origin (Hispanic or non-Hispanic)—19 cells, and

3. age/sex/race—118 cells

Second-stage ratio adjustment is performed separately for each of the eight panels or

rotation groups'! that make up the monthly CPS sample proceeds as follows.

l. CPS sample records are cross-classified by state.

2. Weighted sample population estimates are calculated for states by adding the weights
of sample persons in each state.

"'Households in the same rotation group enter and leave the CPS sample together: houscholds remain
in sample for four months, leave the sample for eight months, and then re-enter for another four months.

97



3. The weight of each person is multiplied by the following ratio, calculated for the
persan’s state of residence:
independently derived state population estimate
state population estimate from CPS sample

4. Steps | through 3 (which accomplish adjustment to state population controls) are
repeated for age/sex/ethnic origin and age/sex/race groups.

S. Steps | through 4 are repeated five times, for a total of six iterations.

This three-way raking procedure results in CPS sample population estimates for each
control characteristic (age, sex, etc.) that virually equal the corresponding independent
population estimates.
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