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Preface

The primary purpose of this book is to teach technique, and we have
emphasized method rather than generality. Many of the ideas we shall
introduce, from subharmonicity and maximal functions to Littlewood-
Paley integrals, Carleson measures, and stopping time constructions, extend
naturally to Euclidean space and beyond; but for unity and simplicity we
have limited their discussion to one dimension. Some of these ideas are
explored more fully in the books of Stein [1970] and Stein and Weiss [1971].

Our secondary purpose is to give a self-contained view of the contem-
porary theory of bounded analytic functions on the unit disc. To do that
we must treat in detail certain notions, such as conformal invariance, the
subharmonicity of log|f|,dual extremal problems, and, especially, Blaschke
products, which do not yet generalize well from their classical setting.
Readers interested in higher dimensions or in multiply connected domains
are only advised that the proofs in the text most resisting generalization are
those relying on Blaschke products or dual extremal problems. Freeing
certain single-variable proofs from these notions is tantamount to solving
some of today’s most difficult problems on the unit ball of C".

On the other hand, readers patient with one complex variable will be
rewarded with a theory richer in texture. For example, a basic question about
the conjugation operator leads to functions of bounded mean oscillation,
which leads to Carleson measures, and in turn, via Blaschke products or
duality, to interpolating sequences and the corona theorem. Only the last
link of the chain does not generalize. The proof of the H'-BMO duality and
the construction behind the corona theorem, both amenable to higher
dimensions, merge to yield a remarkable characterization, in terms of
Blaschke products, of the closed algebras between H® and L.

This book presents a particular viewpoint, both in method and material;
it is no encyclopedia. Some topics, such as interpolation problems and the
arguments behind the corona theorem, have been pursued at length, while
other topics, such as the applications of Banach algebra theory and the vast
interaction between H* and operator theory, have been minimized. (For the

X1



xii PREFACE

connections with operator theory, we recommend the excellent works of
Douglas [1972] and of Sarason [1979].) Whenever possible we have used
conformal invariance and real variables techniques. Over the past twenty
years, the renewed interest in H* has been prompted largely by functional
analytic questions, but I believe that solving some of the harder problems
now facing the subject requires returning to the disc or the circle and for-
mulating more constructive arguments.

Prerequisites for this book are basic courses in real and complex analysis;
the first eleven chapters of Rudin’s textbook [1974] should be sufficient. In
Chapter I we present some additional background not usually found in
elementary graduate courses. Chapters II-V form an introduction to Hardy
space theory, through conjugate functions, dual extremal problems, and some
of the uniform algebra aspects of H . We have based the theory on maximal
functions and on subharmonicity. (For different approaches, see the books
of Hoffman [1962a] and Duren [1970].) Chapters VI-X develop the ideas
surrounding the John-Nirenberg theorem, the geometry of interpolating
sequences, and the corona theorem. People already familiar with the field
will notice that these chapters largely grew out of two papers by Carleson
[1958, 1962a]. Much of the material in the last five chapters has not
appeared in monograph form before. The book is self-contained, and the
first half is basically a preparation for the second half. However, the early
sections of Chapters VI-VIII contain essential parts of today’s classical H”
theory, while a few specialized items have infiltrated Chapter IV. The notes
by Koosis [1980] provide a more elementary and less intense survey of some
of the topics we have considered.

Results are numbered lexicographically within each chapter, so that
“Theorem 1.3 is the third item of Section 1 of the same chapter, whereas
“Theorem 1.3 of Chapter I’ or *“ Theorem 1.1.3” is in Section 1 of Chapter I.
Independently, the same convention is used to number formulas, such as
“(1.10) of Chapter IIL.”

There are 31 figures in the text. Understand the figures and you understand
the book.

Each chapter ends with some bibliographical notes and a section called
“Exercises and Further Results.”” Some exercises are intended for beginners,
while others, the ““further results,” are theorems not in the text. They usually
include references, which serve also to suggest that they may not be elemen-
tary. Sometimes extensive hints have been given, and occasionally an exer-
cise with thorough hints is referred to later in the text. Especially satisfying
exercises have been marked with one, two, or three stars %.
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I

Preliminaries

As a preparation, we discuss three topics from elementary real or complex
analysis which will be used throughout this book.

The first topic is the invariant form of Schwarz’s lemma. It gives rise to the
pseudohyperbolic metric, which is an appropriate metric for the study of
bounded analytic functions. To illustrate the power of the Schwarz lemma,
we prove Pick’s theorem on the finite interpolation problem

f(zj)=wj, j=1,2,...,n,

with | f(z)| < L.

The second topic is from real analysis. It is the circle of ideas relating
Poisson integrals to maximal functions.

The chapter ends with a brief introduction to subharmonic functions and
harmonic majorants, our third topic.

1. Schwarz’s Lemma

Let D be the unit disc {z:|z| < 1} in the complex plane and let £ denote
the set of analytic functions from D into D. Thus | f(z)| < 1 if fe #. The
simple but surprisingly powerful Schwarz lemma is this:

Lemma 1.1. Iff(z) € B, and if f(0) = O, then
[f@)<l|zl, z#0,
| (0] < 1.

Equality holds in (1.1) at some point z if and only if f (z) = €'°z, ¢ areal constant.

(1.1)

The proof consists in observing that the analytic function g(z) = f(z)/z
satisfies |g| < 1 by virtue of the maximum principle

We shall use the invariant form of Schwarz’s lemma due to Pick. A Mobius
transformation is a conformal self-map of the unit disc. Every M&bius

1



2 PRELIMINARIES Chap. 1

transformation can be written as
. Z2 — 2o
(z) = €% ———
@ 1 —2zyz
with ¢ real and |z,| < 1. With this notation we have displayed z, = 7~(0).

Lemmal.2. Iff(z) € &, then

|f(2)—f(20)| Z = Zy
(12) 1= 7GIf@] = |T=zz 27 7%
and
W 1) !

< .
L—1fPF ~ 1-zf?
Equality holds at some point z if and only if f(z) is a Mobius transformation.

The proof is the same as the proof of Schwarz’s lemma if we regard (z)
as the independent variable and

f(2) — f(z0)

1 = f(z0)f(2)
as the analytic function. Letting z tend to z, in (1.2) gives (1.3) at z = z,, an
arbitrary point of D.
The pseudohyperbolic distance on D is defined by

Z— W
P(z,W)=’1

—wz |

Lemma 1.2 says that analytic mappings from D to D are Lipschitz continuous
in the pseudohyperbolic distance:

p(f(2),f(W)) < p(z, w).

The lemma also says that the distance p(z, w) is invariant under Mdbius
transformations:

p(z, w) = p(t(2), ©(w)).
We write K(z,, r) for the noneuclidean disc
K(zo, 1) = {z:p(z, ) < 1}, O0<r<l

Since the family 4 is invariant under the M&bius transformations, the
study of the restrictions to K(z,, r) of functions in 4 is the same as the study
of their restrictions to K(0, r) = {|w| < r}. In such a study, however, we
must give K(z,, r) the coordinate function w = 1(z) = (z — z¢)/(1 — Z, 2).
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For example, the set of derivatives of functions in % do not form a conformally
invariant family, but the expression

(1.4) L f@IA = |z
is conformally invariant. The proof of this fact uses the important identity

21— 2P = |zP) _
11— Zoz[?

Z — Zp

(1.5 1-—

(1 = zP)I7@),

1"‘202

which is (1.3) with equality for f(z) = t(z). Hence if f(z) = g(t(2)) = g(w),
then

1@ = 121 = lgWIIT@IA = [2]?) = [gW)IA — [w[*)

and this is what is meant by the invariance of (1.4).
The noneuclidean disc K(z,,r),0 < r < 1, is the inverse image of the disc
[w| < r under

Z_ZO

w=r(z)=1_22.
0

Consequently K(zq, r) is also a euclidean disc A(c, R) = {z:|z — ¢| < R},
and as such it has center

1.6 B
(1.6) C_l—rzlzolzzo
and radius

l_lzolz
1.7 R=r——5.
4 Tz

These can be found by direct calculation, but we shall derive them geometri-
cally. The straight line through 0 and z, is invariant under 7, so that 0K(zg, r)
= 7~ !(|w| = r) is a circle orthogonal to this line. A diameter of K(z,, r) is
therefore the inverse image of the segment [—rzy/|zol, rzo/lzo]]. Since
z = (W + zy)/(1 + zyw), this diameter is the segment

(1.8) [o, B] = [lzol —r zo |zl +7 2z ]

1 —rlzol 1zl 1 4 rlzol |20]

The endpoints of (1.8) are the points of K(zo, r) of largest and smallest
modulus. Thus ¢ = (x + f)/2 and R = (|B| — |a|)/2 and (1.6) and (1.7)
hold. Note that if r is fixed and if |zo| = 1, then the euclidean radius of
K(zy, r) is asymptotic to 1 — |zq].



4 PRELIMINARIES Chap. I
Corollary 1.3. Iff(z)€ &, then

£ O)] + =]
(19) @< T 0T

Proof. By Lemma 1.2, p(f(z), f(0)) < |z|, so that f(z) € K(f(0), |z]). The
bound on | f(z)| then follows from (1.8). Equality can hold in (1.9) only if f is
a M0bius transformation and arg z = arg f(0) when f(0) # 0. [

The pseudohyperbolic distance is a metric on D. The triangle inequality
for p follows from

Lemma 1.4. For any three points z,, z,, z, in D,

p(z9, 22) — p(z2, 21) < plzo,2,) < p(29, 25) + p(22, 21) .
1 = p(zg, 2)p(22, 21) 1 + p(zq, 25)p(z3, 21)

(1.10)

Proof. We can suppose z, = 0 because p is invariant. Then (1.10) becomes

[zo| + 24|
T L+ zollz4]

|zo] — 1241 21— 2o

1 —|zollz,|

(1.11)

1 —Zzyz4

If|z,| = r, then z = (z; — zy)/(1 — Zyz,) lies on the boundary of the non-
euclidean disc K(—z,, r). On this disc |z| lies between the moduli of the
endpoints of the segment (1.8). That proves (1.11). Of course (1.10) and
especially (1.11) are easy to verify directly. [

Every Mobius transformation w(z) sending z, to w, can be written

W — Wy _ e Z— 2y
1 —wew 1 —1Zz
Differentiation then gives
(1.12) W(zg)| = S Lol
. wiZ =—5.
0 1 - |Zo|2

This identity we have already encountered as (1.3) with equality. By (1.12)
the expression

_ 2|dz|
1=z

is a conformal invariant of the disc. We can use (1.13) to define the hyperbolic
length of a rectifiable arc y in D as

J‘ 2|dz|
y 1 =1zI*

(1.13) ds
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We can then define the Poincaré metric ¥(z,, z,) as the infimum of the hyper-
bolic lengths of the arcs in D joining z, to z,. The distance Y(z,, z,) is then
conformally invariant. If z, = 0, z, = r > 0, it is not difficult to see that

" dx 1+r
—3 2 = .
w(zb 22) J‘O 1 = |x|2 log 11—

Since any pair of points z; and z, can be mapped to 0 and p(z,, z,) =
|(z, — z1)/(1 — Z,z,)|,respectively, by a M6bius transformation, we therefore
have

1 + p(zh 22)
Z1, 25) = log ————=.
Ve 22) g 1 — p(zy, z3)

A calculation then gives

tanh Y(zy, z,)
2

Moreover, because the shortest path from O to r is the radius, the geodesics, or
paths of shortest distance, in the Poincaré metric consist of the images of
the diameter under all Mobius transformations. These are the diameters of
D and the circular arcs in D orthogonal to 0D. If these arcs are called lines, we
have a model of the hyperbolic geometry of Lobachevsky.

In this book we shall work with the pseudohyperbolic metric p rather
than with ¥, although the geodesics are often lurking in our intuition.

Hyperbolic geometry is somewhat simpler in the upper half plane # =
{z=x+1iy:y>0}.In#

p(zl’ ZZ) =

21 — 2y

p(zb zZ) =

7y — 2
and the element of hyperbolic arc length is
_ ldz|

v

Geodesics are vertical lines and circles orthogonal to the real axis. The
conformal self-maps of 5 that fix the point at co have a very simple form:

ds

1(2) = az + Xo, a>0, xpeR.

Horizontal lines {y = y,} can be mapped to one another by these self-maps
of #. This is not the case in D with the circles {|z| = r} in D. In 5 any two
squares

{xo <x<xo+hh<y<2h}

are congruent in the noneuclidean geometry. The corresponding congruent
figures in D are more complicated. For these and for other reasons, # is
often the more convenient domain for many problems.
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2. Pick’s Theorem

A finite Blaschke product is a function of the form

n

B(z) = &°[]

=1

zZ— Z;
1—_1, |Zj|<1.
—ZjZ

The function B has the properties

(i) B is continuous across D,
(ii)) |B| = 1ondD, and
(iii) B has finitely many zeros in D.

These properties determine B up to a constant factor of modulus one. Indeed,
ifan analytic function f(z) has (i)-(iii), and if B(z) is the finite Blaschke product
with the same zeros, then by the maximum principle, | f/B| < 1 and |B/f |
< 1,o0n D, and so f/B is constant. The degree of B is its number of zeros. A
Blaschke product of degree 0 is a constant function of absolute value 1.

Theorem 2.1 (Carathéodory). Iff(z) € &, then there is a sequence {B,} of
finite Blaschke products that converges to f(z) pointwise on D.

Proof. Write
f@=co+crz+---.

By induction, we shall find a Blaschke product of degree at most n whose
first n coefficients match those of f;

By=co+ciz+ 4 cuq2" +d "+l
That will prove the theorem. Since |cy| < 1, we can take

z+c
B0= _0.
1+C()Z

If |co| = 1, then By = ¢, is a Blaschke product of degree 0. Suppose that for
each g € # we have constructed B, _,(z). Set

_1 /=1
I= 1707

and let B,_, be a Blaschke product of degree at most n — 1 such that
g — B,_{ hasn — 1 zeros at 0. Then zg — zB,_, has n zeros at z = 0. Set
zB,_1(2) + f(0)

B,(z) = — .
1 + f(0)zB,_(2)
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Then B, is a finite Blaschke product, degree(B,) = degree(zB,_,) < n, and
29(z) + f(0) _ zB,_4(2) + S (0)
1+ f(0)zg(z) 1+ f(0)zB,-(2)
_ (- 1/OPeE) = Bia@)
(1 + f(0)zg(2))(1 + f(0)zB,_1(2))

so that f — B, has a zero of order nat z = 0. [

J(@) = B,(2) =

The coeflicient sequences {cy, ¢;, . . .} of functions in & were characterized
by Schur [1917]. Instead of giving Schur’s theorem, we shall prove Pick’s
theorem (from Pick [1916]). For {z4, ..., z,} a finite set of distinct points in
D, Pick determined those {wy, ..., w,} for which the interpolation

2.1 Jiz)=w;, j=12,...,n
has a solution f(z) € #.

Theorem 2.2. There exists f€ & satisfying the interpolation (2.1) if and only
if the quadratic form

n

Qn(tla ] tn) = Z

ike1 1 =2z,

I — w;w,

tjk

most h which solves (2.1).

is nonnegative, Q, > 0. When Q,, > 0 there is a Blaschke product of degree at

Pick’s theorem easily implies Carathéodory’s theorem, but its proof is more
difficult.

When n = 2 a necessary and sufficient condition for interpolation is given
by (1.2) in Lemma 1.2. It follows that Q, > Oif and only if |w,| < 1 and (1.2)
holds. This can of course be seen directly, since @, > 0 if and only if 1 —
|[w,| = 0 and the determinant of Q, is nonnegative:

(1= w A = w1?) (A =1z = |z,1%)
I _W1W2|2 - I —Z1zz|2 '

By the useful identity (1.5), this last inequality can be rewritten
W) — Wy Z1 — I3

s

1 - WIWZ 1 — ZIZZ

which is (1.2).

Proof. We use induction on n. The case n = 1 holds because the M6bius
transformations act transitively on D. Assume n > 1. Suppose (2.1) holds.
Then clearly |w,| < 1, and if |w,| = 1, then the interpolating function is
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the constant w, and w;=w,, 1 <j<n— 1. Suppose Q, > 0. Setting

ta=1,t=0,j <n, we see |w,| <1; and if |w,| = 1, then setting ¢t; = 0,

j # k,n,we see by (1.2) as before that w, = w,. We can therefore take B, = w,

if|w,| = 1. Thus the problem is trivial if |w,| = 1, and in any event, |w,| < 1.
Now assume |w,| < 1. We move z, and w, to the origin. Let

Z;— Z . W, — W,
Lt 1<j<nm w}=v—-1’_v_vv'\'/,
n'j

l1<j<n

There is f€ & satisfying (2.1) if and only if

22 9= (f (121 zzz) } W)/ (1 - (IZ: 222))

is in # and solves

(2.3) a(zy) = wj, l<j<n

Also, f'is a Blaschke product of degree at most n if and only if g is a Blaschke
product of degree at most n.

On the other hand, the quadratic form @, corresponding to the points
{z%, ..., 2,_1,0} and {w), ..., w,_4, O} is closely related to Q,. Since by a
computation

1 — Z Zk 1 - Izn|2 _ —
1—zz, (1—2Z,z)1 —2zz3) F
and
1 — w;w, 1 —|w,]?
£ = = - = BjBk’
I — w;w, - Wy w))(1 — w,wy)
we have
L=wiw, . 1—ww ,BJ s
tjtk = — —tk
I_sz l—ZjZk aj (xk
and
2.4) Oty 1) = Q“(B‘ f_t)

Thus Q;, > 0if and only if Q, > 0, and the problem has been reduced to the
case z, = w, = 0.
Let us therefore assume z, = w, = 0. There is f € # such that f(0) =0,

fe)=w, 1<j<n—1,
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if and only if there is g(z) = f(z)/z € & such that
(2.5) g(z) = wyjz;, 1<j<n-—1

Also, f'is a Blaschke product of degree d if and only if g is a Blaschke product
of degree d — 1. Now by induction, (2.5) has a solution if and only if the
quadratic form

én_ 181,y Spey) = Z (WJ/ZJ)(Wk/zk) 555

k=1 l_ZjZk

k

is nonnegative. This means the theorem reduces to showing
Qn = 0 had Qn—l 2 0
under the assumption z, = w, = 0.

Because z, = w, = 0, we have

n—1

Qulty, ., tn) = It |2+2ReZtt + Y

j=1 ,k11 ZjZy

Completing the square relative to ¢, gives

nclo)2oncl (1 — wiw,
Qn(tlsN'atn): tn+ th + Z ('—j_k_ 1)11'?“.
i=1 i1 \ 1 —zZ
Now
1 - ijk —1= ijk w; wk 11— (Wj/z_/)(wk/zk) 2.3
I—ijk 1 — ijk l_ZjZk J ke
Hence

(26) Qn(tl""’tn) + Qn—l(zltl’-'-’zn—ltn—l)'

n 2
Z L
j=1

Thus Q,,_ 1 =0 i~mplies Q. =0, and setting t, = —y 1! t;, we see also that
Q,>0impliesQ,_, >=0. O

Corollary 2.3.  Suppose Q, > 0. Then (2.1) has a unique solution f(z) € A if
and only if det(Q,) = 0. If det(Q,) = 0 and m < n is the rank of Q,, then the
interpolating function is a Blaschke product of degree m. Conversely, if a
Blaschke product of degree m < n satisfies (2.1), then Q,, has rank m.

Proof. 1If |w,| = 1 the whole thing is very trivial because then Q, = 0,
m =0, and B, = w,. So we may assume |w,| < 1. We may then suppose
z, = w, = 0, because by (2.4), 0, and @, have the same rank, while by (2.2),
the original problem has a unique solution if and only if the adjusted problem
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(2.3) has a unique solution. Also (2.3) can be solved with a Blaschke product of
degree m if and only if (2.1) can be also.

So we assume z, = w, = 0. Then (2.1) has a unique solution if and only if
(2.5) has a unique solution; and (2.1) can be solved with a Blaschke product
of degree m if and only if (2.5) can be solved with a Blaschke product of degree
m — 1. Consequently, by induction, all assertions of the corollary will be
proved when we show

Q.7 rank(Q,) = 1 + rank({J,_,).

Writing 0, _; = (a; ), we have

Q.= il

which has the same rank as

‘EO
ZjZya; g

10|,
1 i1

and the rank of this matrix is 1 + rank(Q,_,). O
Corollary 2.4. Suppose Q, > 0 and det(Q,) > 0. Let zeD, z # z;, j =1,

2, ..., n. The set of values
W={f(z):feB f(zp) =w;,1 <j<n}

is a nondegenerate closed disc contained in D. If fe B, and if f satisfies (2.1),
then f(z) € OW if and only if f is a Blaschke product of degree n. Moreover, if
w e 0W, there is a unique solution to (2.1) in B which also solves f(z) = w.

Proof. We may again suppose z, = w, = 0. Then det(0,_,) > 0 by (2.7).
By induction,

W: {g(z)ge'gasg(zj)= Wj/zj’l S.]Sn - 1}

is a closed disc contained in D. But then W = {z{: { € W} is also a closed disc.
Since w € 9W if and only if w/z € 6W, the other assertions follow by induc-
tion. [

We shall return to this topic in Chapter IV.
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3. Poisson Integrals

Let u(z) be a continuous function on the closed unit disc D. If u(z) is har-
monic on the open disc D, that is, if
Pu 0%
A = — —_— =
u o + a7 0,

then u(z) has the mean value property

2n
u(0) = % f u(e') do.
0

Let z, = re' be a point in D. Then there is a similar representation formula
for u(z,), obtained by changing variables through a M&bius transformation.
Let ©(z) = (z — zo)/(1 — Zoz). The unit circle dD is invariant under 7, and
we may write t(e’®) = ¢*. Differentiation now gives

dp 1 — |z 1 —r?

(31) d0 [P — 22 1—2rcos(0 — 0g) + 2 P-4

This function P, (0) is called the Poisson kernel for the point z, € D. Since
u(t~(z))is another function continuous on D and harmonic on D, the change
of variables yields

1 (= .
u(zo) = u(r~(0)) = 7 fo u(e®)P,(6) do.

This is the Poisson integral formula.
Notice that the Poisson kernel P,(6) also has the form

i0 +
P,(6) = Re S~ 2,
e —2Z

so that for ¢® fixed, P,(6) is a harmonic function of z € D. Hence the function
defined by

(3.2) uD) =5 [Pos@

is harmonic on D whenever f(6) € L'(0D). Since P,(6) is also a continuous
function of 6, we get a harmonic function from (3.2) if we replace f(6) df by
a finite measure du(6) on 0D. The extreme right side of (3.1) shows that the
Poisson integral formula may be interpreted as a convolution. If z = re®,
then

P 2(0) =P, r(00 - 0)
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and (3.2) takes the form
1
u2) = 5= [ POy = 6)1(8) db = (P, » 100

This reflects the fact that the space of harmonic functions on D is invariant
under rotations.

Map D to the upper half plane 3 by w — z(w) = i(1 — w)/(1 + w). Fix
wo € D and let z, = z(w,) be its image in . Our map sends 6D to R U {0},
so that if w = ¢® €D, and w # — 1, then z(w) = t € R. Differentiation now
gives

1 Yo

1 do
—_ P HE=__°  __p = iVo-
o Pwo( )dt P (xo — t)z + y% zo(t), 29 Xo + Yo
The right side of this equation is the Poisson kernel for the upper half plane,
P,(t) = P,(xo — t). (The notation is unambiguous because z, € # but

yo ¢ #.) Pulling the Poisson integral formula for D over to #, we see that

3.3) u(z) = fP,(t)u(t) dt = ny(x — Hu(t) dt

whenever the function u(z) is continuous on 3 U {00} and harmonic on #.
When ¢ € R s fixed, the Poisson kernel for the upper half plane is a harmonic
function of z, because

1 1
P(t)= p Im(t — z>'

From its defining formula we see that P(t) < c, /(1 + t*), where ¢, is a
constant depending on z. Consequently, if 1 < g < oo, then P(t) e LYR),
and the function

(.4) u(z) = f P(0)f(0) dt

is harmonic on # whenever f(t)e LP(R), 1 < p < oo. Moreover, since
P (1) is a continuous function of ¢, (3.4) will still produce a harmonic function
u(z) if f(¢) dt is replaced by a finite measure du(t) or by a positive measure
du(t) such that

1
f T3 2 ) <

(so that { P(t) du(t) converges).
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Now let f(t) be the characteristic function of an interval (¢,, t,). The re-
sulting harmonic function

12

w(z) = f Py(x — 1) dt,
t

called the harmonic measure of the interval, can be explicitly calculated. We

get

1 zZ—t, o
ma—;m4 )-~,

Z“'tl T

where a is the angle at z formed by ¢, and t,. See Figure I.1. This angle « is con-
stant at points along the circular arc passing through ¢,, z, and t,, and a is the
angle between the real axis and the tangent of that circular arc. A similar
geometric interpretation of harmonic measure on the unit disc is given in
Exercise 3.

7 2

Figure 1.1. A level curve of o(z2).

The Poisson integral formula for the upper half plane can be written as a
convolution

we) = [Py = 010 di = (B, )0

This follows from the formula defining the Poisson kernel, and reflects the
fact that under the translations z - z + x,, x, real, the space of harmonic
functions on # is invariant. The harmonic functions are also invariant under
the dilations z — az, a > 0, and accordingly we have

Py(0) = (1/y)P(t/y),

which means P, is homogeneous of degree —1 in y. The Poisson kernel has
the following properties, illustrated in Figure 1.2:

(i) Pyt) =0, [Pyr)dt = 1.
(ii) P,iseven, P(—t) = P/t).
(iii) P, is decreasing in t > 0.
(v) Py1) < 1/my.
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For any 6 > 0,

(V) supy>s Py(1) = 0 (y - 0).
(i) [iy>s Py() dt > 0 (y — 0).

Moreover, {P,} is a semigroup:

(Vll) P)’1 * Pyz = P}’1+y2‘

m 8/m

Figure I.2. The Poisson kernels P, and P, 4.

The first six properties are obvious from the definition of P,(t), and prop-
erties (iv)—(vi) also follow from the homogeneity in y. Property (vii) means
that if u(z) is a harmonic function given by (3.4), then u(z + iy,) can be
computed from u(t + iy,), t € R, by convolution with P,. To prove (vii),
consider the harmonic function u(x + iy) = P, , (x). This function extends
continuously to # U {oo0}. Consequently by (3.3),

P, 4y, (x) = nyz(x — tu(t) dt = (Py, * P, )(x).
An important tool for studying integrals like (3.4) is the Minkowski
inequality for integrals:
If u and v are o-finite measures, if 1 < p < oo, and if F(x, t) is v X p{ mea-

surable, then

< jnF(x, )l g V().

H fF(x, t) dv(x)

LP(p)

This is formally the same as Minkowski’s inequality for sums of L”(u)
functions and it has the same proof. The case p = 1 is just Fubini’s theorem.
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For p > 1 we can suppose that F(x, t) > 0 and that F(x, ¢) is a simple func-
tion, so that both integrals converge. Set

G(t) = (fF(x, 1) dv(x))p—l.
Then with g = p/(p — 1),

p—1

’

LP(u)

16 oy = H f F(x, 1) dv(x)

and by Fubini’s theorem and Holder’s inequality,

H fF(x, 1) dv(x) ’ = fG(t) JF(x, 1) dv(x) du(t)
LP(u)
= f G(D)F(x, t) du(t) dv(x)
< f 16l I FC, D)l gy d¥(0)

= 1G] 2o an(x, Ol dV(X).

Canceling ||G/| L4, from each side now gives the Minkowski inequality.
Using Minkowski’s inequality we obtain

i/p
(3.5) ( luCx, )I? dx) <ifl,, l<p<uw,
if u(x, y) = P, *f(x), fe L?; and
(3.6) f|u<x, Wldx < fldm

fu(x,y) =Pyxu= j P,(x — t) du(t), where p is a finite measure on R. For
p = oo the analog of (3.5), sup,|u(x, y)| < || fl«, is trivial from property
(i) of P(1).
Theorem 3.1

(@) If1 <p<ooandiff(x)eL? then

(b) When f(x)e L*, P, = f converges weak-star to f(x).

(c) Ifduis a finite measure on R, the measures (P, * p)(x) dx converge
weak-star to dp.

(d) When f(x) is bounded and uniformly continuous on R, P, x f(x) con-
verges uniformly to f(x).
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Statement (b) means that for all g€ L?,

f 9By N0 dx = [ g x> 0)

Statement (c) has a similar meaning:
[oeae, < ax > g an) -0

for all g € Co(R), the continuous functions vanishing at co. It follows from
Theorem 3.1 that f€ L? is uniquely determined by the harmonic function
u(z) = Py *f(x) and that a measure u is determined by its Poisson integral
P, » u. Note also that by (a) or (b)

lirr(l)HPy fll,=1fll,, 1<p<oo

By (3.5) and property (vii), the function || P, * f ||, is monotone in y.

Besides Minkowski’s inequality, the main ingredient of the proof of the
theorem is the continuity of translations on L?, 1 <p < oo: If f.(t) =
f(t — x), then | f, — f|l, = 0 (x = 0). (To prove this approximate f in L?
norm by a function in Co(R).) The translations are not continuous on L®
nor are they on the space of finite measures; that is why we have weaker
assertions in (b) and (c). The translations are of course continuous on the
space of uniformly continuous functions, and for this reason (d) holds.

Proof. Let fe?, 1 < p < oco. When p = o0 we suppose in addition that
fis uniformly continuous. Then

Py f(x) — f(x) = f P S (x — 1) — f(x)) dt.
Minkowski’s inequality gives
IPyef = f1, < [BAOLG = F1,

when p < oo, because P, > 0. The same inequality is trivial when p = co.
For 6 > 0, we now have

1Py*f—fll, < f

|t]<é

OIS, — 1, di + fl POIS, — 1, dr.

t|>é

Since [ Py(t)dt = 1, continuity of translations shows that .[Itls& is small
provided ¢ is small. With ¢ fixed,

[ <um,| pwa-o ¢-0
|t]>é lt1>é
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by property (vi) of the Poisson kernel. That proves (a) and (d). By Fubini’s
theorem, parts (b) and (c) follow from (a) and (d), respectively. [

Corollary 3.2. Assume f(x) is bounded and uniformly continuous, and let

(Py*f)x)  y>0,
f), y=0.

Then u(x, ) is harmonic on # and continuous on ¥.

u(x, y) = {

This corollary follows from (d). We also need the local version of the corol-
lary.
Lemma 3.3. Assume f(x)eL?, 1 < p < o0, and assume f is continuous at
xo. Let u(x, y) = P, * f(x). Then
Hm  u(x, y) = f(xg)-

(x, y)—*xo

Proof. We have

PAOLF(x — 1) — f(xo)| dt + f

HEY

lu(x, y) — f(x0)] < f

|t] <o
With § small and |x — x,| small, [|;<; is small. With 6 fixed, [}, tends to
zero with y. [

Notice that the convergence is uniform on a subset E = R provided the
continuity of fis uniform over x, € E and provided | f(x,)|is bounded on E.

It is important that the Poisson integrals of L? functions and measures are
characterized by the norm inequalities like (3.5) and (3.6). The proof of this
in the upper half plane requires the following lemma.

Lemma 3.4. If u(z) is harmonic on # and bounded and continuous on
then

mn:fmu—nmoa

Proof. The lemma is not a trivial consequence of the definition of P,(t),
because u(z) may not be continuous at co. Let

U(z) = u(z) — ~[Py(x — tu(t) dt.

Then U(z) is harmonic on J#, and bounded and continuous on 3, and
U =0on R, by Lemma 3.3. Set

U(2), y =0,
V) = {— UG, y<o.
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Then V is a bounded harmonic function on the complex plane, because V
has the mean value property over small discs. By Liouville’s theorem, V
is constant; V(z) = V(0) = 0. Hence U(z) = 0 and the lemma is proved. []

Theorem 3.5. Let u(z) be a harmonic function on the upper half plane #.
Then

(@) If1 < p < o0, uis the Poisson integral of a function in L? if and only if
3.7 supllu(x, y)ll Lr@x < 0.
y

(b) u(z) is the Poisson integral of a finite measure on R if and only if
(3.8) sup Jlu(x + iy)| dx < oo.
y
(c) u(z2) is positive if and only if
u(z) =cy + fP,,(x — 1) du(t),

where

du(t)
1+ ¢

Proof. We have already noted that (3.7) and (3.8) are necessary conditions
because of Minkowski’s inequality. Suppose u(z) satisfies (3.7) or (3.8). Then
we have the estimate

2 \1/p
(3.9) lu(z)| < (n—y) supllu(x, M)l Le(ax)»

n>0

which we now prove: Write { = ¢ + in. Then by Hélder’s inequality,

= | [ o azanl

Az, y)

(ny ﬂ( P ae dﬂ)
2y 1/p
( j f |u(€+u1)|”dédn>
/p
< (—) sup(fw(é +inl? dé) .
ny n>0
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The estimate (3.9) tells us u(z) is bounded on y > y, > 0, and Lemma 3.4
then gives

u(z + iy,) = ny(x — Hu(t + iy,) dt.

Let y, decrease to 0. If 1 < p < oo, the sequence f,(t) = u(t + iy,) is bounded
in LP. By the Banach—Alaoglu theorem, which says the closed unit ball of the
dual of a Banach space is compact in the weak-star topology, {f,} has a
weak-star accumulation point f'€ LP. Since Poisson kernels are in L9, g =
p/(p — 1), we have

u(z) = lim u(z + iy,) = lim ny(x —0f,@)dt = J.Py(x — 1) f(t) dt.

The proof of (b) is the same except that now the measures u(t + iy,) dt,
which have bounded norms, converge weak-star to a finite measure on R.

The easiest proof of (c) involves mapping s back onto D, using the
analog of (b) for harmonic functions on the disc, and then returning to .
A harmonic function u(z) on D is the Poisson integral of a finite measure v
on 0D if and only if sup, | |u(re®)| d0 < co. The measure v is then a limit of
the measures u(re’®) d6/2n in the weak-star topology on measures on dD. If
u(z) > 0, then the measures u(re'’) df are positive and bounded since

% fu(reio) db = u(0),

and so the limit v exists and v is a positive measure. That proves the disc
version of (c). Now map D to 4 by w— z(w) = i(1 — w)/(1 + w). The
harmonic function u on 5 is positive if and only if the harmonic function
u(z(w)), which is positive, is the Poisson integral of a positive measure v on
0D. Consider first the case when v is supported on the point w = — 1, which
corresponds to z = 00. Then

1 —|w?

1T+ w?

u(z(w)) = v({—1HP(—1) = w({—1})
=v({=1}) Im z = v({-1})y.

Now assume v({—1}) = 0. The map z(w) moves v onto a finite positive
measure ¥ on R, and for t = z(e®)

P(60) = n(1 + t*)P,(1).
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In this case we have
ue) = [P = 0 duto)
where
p=n(l + t?)v.
The general case is the sum of the two special cases already discussed. [J

The results in this section also hold in D, where they are easier to prove,
when we write

; |
wre®) = 5- [P0 = 0)1(0) do,

.2
l—r i0

1= 2r cos(d — @) + 12’ —re

Most of these results also hold if {P,()} is replaced by some other approxi-
mate identity. Suppose {¢,(1)},-, is a family of integrable functions on R
such that

@) [out)dt=1,
(®) loll; <M,

and such that for any 6 > O,
(C) l%myao Sup|t|>5|(py(t)| = 0’
(d) timy_o fys l@,(0)] dt = O.

Then the reader can easily verify that Theorem 3.1 and its corollary hold for
@, *fin place of P, *f.

4. Hardy-Littlewood Maximal Function

To each function fon R we associate two auxiliary functions that respec-
tively measure the size of fand the behavior of the Poisson integral of f. The
first auxiliary function can be defined whenever f is a measurable function
on any measure space (X, u). This is the distribution function

m(A) = u({xe X :| ()| > A}),

defined for A > 0. The distribution function m(4) is a decreasing function
of A,and it determines the L? norms of f. If fe L*,thenm(1) = Ofor 2 > || f |,
and m(4) > Ofor A < | f|,; and so we have

Ifle = sup{i:m(4) > O}.
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Lemma 4.1. If (X, p) is a measure space, if f(x) is measurable, and if 0 < p
< o0, then

4.1) flfl" du = f P22~ (A d

Proof. We may assume f vanishes except on a set of o-finite measure,
because otherwise both sides of (4.1) are infinite. Then Fubini’s theorem
shows that both sides of (4.1) equal the product measure of the ordinate set
{(x,4):0 < A <|f(x)|?}. That is,

firrau= | folf'pxp-l didu = f:pv-lu(lfl > 1) dA

e o)

=f pAP Im(A)dA. O

0

We shall also need a simple estimate of m(A) known as Chebychev’s in-
equality. Let fe LP,0 < p < o0 and let

E,={xeX:|f(x)|> A},
so that u(E;) = m(4). Chebychev’s inequality is
m(A) < | £115/3°.

It follows from the observation that

WPU(E,) < f FPde <1 12
E,

A function f'that satisfies
m(A) < A/AF

is called a weak LP? function. Thus Chebychev’s inequality states that every
L? function is a weak L? function. The function | x log x| ™! on [0, 1] is not in
L', but it satisfies m(1) = o(1/A) (A = ), and so it is weak L'.

The other auxiliary function we shall define only for functions on R.
Recall Lebesgue’s theorem that if f(x) is locally integrable on R, then

1 x+k
42 lim —— t)dt =
(4.2) lim 2= x_hf() S
k=0
for almost every x € R. To make Lebesgue’s theorem quantitative we replace
the limit in (4.2) by the supremum, and we put the absolute value inside the
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integral. Write |I| for the length of an interval I. The Hardy-Littlewood

maximal function of fis
1
My = sup - [ 170l de
xel l” I

for flocally integrable on R. Now if fe L?, p > 1, then Mf(x) < co almost
everywhere. This follows from Lebesgue’s theorem, but we shall soon see a
different proof in Theorem 4.3 below. The important thing about Mfis that it
majorizes many other functions associated with f.

Theorem 4.2. For o > 0 and t € R, let ' (t) be the cone in S with vertex t
and angle 2 arctan o, as shown in Figure 1.3,

L) = {(x,p):]x —t| <ay,0 <y < 0}
Let f e L'(dt/(1 + t?)) and let u(x, y) be the Poisson integral of f(t),

u(x, y) = ny(s) f(x — s)ds.

Then
4.3) suplu(x, y)| < A, Mf(t), teR,

Ca(t)

where A, is a constant depending only on .

Figure 1.3. The cone I',(1), 2 = 3.

The condition f€ L'(dt/(1 + t*)) merely guarantees that | P,(s)f(x — s) ds
converges.

Proof. We may assume t = 0. Let us first consider the points (0, y) on the
axis of the cone I',(0). Then

ww=fmwwn

and the kernel P,(s) is a positive even function which is decreasing for positive
s. That means P ,(s) is a convex combination of the box kernels (1/2h)y_ 5, (s)
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that arise in the definition of M. Take step functions h,(s), which are also
nonnegative, even, and decreasing on s > 0, such that h,(s) increases with n
to P,(s). Then h,(s) has the form

N

Z an(—x,-,x,-)(S)

j=1
witha; > 0,and [ h, ds = ) ; 2x;a; < 1. Sec Figure 1.4. Hence

< jh,,(s)lf(s)l ds < jinjaj%j fjijlf(s)l ds < Mf(0).

‘ [mr6 ds
Then by monotone convergence

10, )| < ny(s)If(s)l ds < M (0).

N

7

N

)

7
7/
Z //
o
> ////;/;7 Z
Y ? 7 7
7 7
007
-V '////,"/.‘4['/,94_/_4/// A7
0 X Xy Xy

Figure 1.4. P,(s) and its approximation h,(s), which is a positive combination of box kernels
(/261 ) 1(5)

Now fix (x, y) € I',(0). Then | x| < ay,and P(x — s) is majorized by a positive
even function (s), which is decreasing on s > 0, such that

fl//(s)ds <A, =1+ 37["—‘

The function is Y(s) = sup{P(x — t):|t| > s}. Approximating Y(s) from
below by step functions h,(s) just as before, we have

[worre1ds < 4.m70
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and
MnMSJWMHm%sAMMW

which is (4.3). O

Theorem 4.2 is, with the same proof, true for Poisson integrals of functions
on 0D, where the cone is replaced by the region

e — z|

T =<z:-————<alzl<ly a>1,
1 —|z|

which is asymptotic, as z — €', to an angle with vertex e*. The theorem is
quite general. The proof shows it is true with P (x — s) replaced by any
kernel @, (x — s) which can be dominated by a positive, even function Y(s),
depending on (x, y), provided that ¥ is decreasing on s > 0 and that [ (s) ds
< A, whenever (x, y) € I(t) (see Stein, [1970]).

The Hardy-Littlewood maximal theorem is this:

Theorem 4.3. Iffe LP(R), 1 < p < oo, then Mf () is finite almost everywhere.
(a) Iffe LY(R), then Mf is weak L*,
{eeR:Mf(t) > A < @/DIfll,,  A>0.
(b) Iffe LX(R), with 1 < p < o0, then Mfe L*(R) and
IMSf 1, < Ayl
where A, depends only on p.

In (a) we have used |E| to denote the Lebesgue measure of E < R. That
Mf < oo almost everywhere follows from (a) or (b). Condition (a) says the
operator Mf is weak-type 1-1. The weak-type inequality in (a) is the best
possible result on Mfwhen fe L. Notice that if f # 0, then Mf cannot pos-
sibly be in L', because for large x

c

3x
M@z [ lolaz S
l4x| J_. | x]
if || I, # 0.If f'is supported on a finite interval I, then |, Mf(t) dt < oo if and
only if [, | f|log*| f] dt < 00; we leave the proof as an exercise. By letting
f(®) = (1/h)x0,n(t), and sending h — 0, one can see that the constant in (a)
cannot be improved upon.
The proof of Theorem 4.3 will use two additional theorems: a covering
lemma of Vitali type for part (a) and the Marcinkiewicz interpolation theorem
for part (b).
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Lemma 4.4. Let u be a positive Borel measure on R and let {I,,...,1,} be a
finite family of open intervals in R. There is a subfamily {J,, ..., J,} such that
the J; are pairwise disjoint and such that

.iu(J.-) > %ﬂ(@ll j)-

Proof. By induction {I,,...,I,} can be replaced by a subfamily of intervals
such that no interval I; is contained in the union of the others and such that
the refined family has the same union as the original family. Write the I; in
the refined family as (a;, ;) and index them so that

‘11 SO!;_S--'O!,,.

Then B;,, > B; since otherwise I;,, < I, and a;,, > B;_, since otherwise
I;cI;_yulj,,. Therefore the even-numbered intervals and the odd-
numbered intervals comprise pairwise disjoint subfamilies. Then

o) + Zu(l,-)zu( I,-),
jeven Jjodd Jj=1

and for {J;} we take either the even-numbered intervals or the odd-numbered
intervals, which ever gives the larger sum. [

Proof of Theorem 4.3(a). Let fe L' and let A > 0. The set E; = {t: Mf(t)
> A} is open, and therefore measurable. For each ¢ € E; we have an open
interval I containing ¢ such that

al

— | |flds > 4,

)
which is the same as

1
44) <5 [ir14s
1

Let K be a compact subset of E; and cover K by finitely many intervals

I,,...,I,thatsatisfy (4.4). Applying the lemmato {I,,...,I,} gives us pairwise
disjoint intervals J,, J,, ..., J, that satisfy (4.4) such that

Ul
ji=1

<2 Z [J;l.
j=1
Then

K| <

G

Letting | K| increase to | E,| gives us part (a). [

1 2
<25 [ rnas<3 firias
J

i



26 PRELIMINARIES Chap. 1

The proof of part (b) depends on the interpolation theorem of Marcin-
kiewicz.

Theorem 4.5. Let (X, p) and (Y, v) be measure spaces, and let 1 < p; < o0.
Suppose T is a mapping from L*(X, p) + LP'(X, y) to v-measurable functions
such that

@) IT(f + 9| < ITFW| + [ TgW)I;
(i) v({y:ITfMI > A < (A/DIflly,  feL';
(i) v({y:ITfW] > ) < (/DI f)" fel™;

(when p, = o0 we assume instead that
ITf o < A1l fll0)-
Then for 1 < p < p,,
ITfll, < Al fllp,  feL?
where A, depends only on Ay, Ay, p, and p,.

The hypothesis that the domain of T is L(X, p) + LPY(X, w)is just a device
to make sure Tfis defined when feL?, 1 < p < p,. For fe L?, write f =

SXisis1 Hf i< =fo + fi. Then | fo| < [fIPe L' and | ;] < | fIP/?* € L.
Before proving the theorem, let us use it to prove the remaining part (b) of the
Hardy-Littlewood maximal theorem.

Proof of Theorem 4.3(b). In this case the measure spaces are both (R, dx).
The operator M clearly satisfies the subadditivity condition (i). Condition (ii)
we proved as part (a) of the Hardy-Littlewood theorem. We take p;, = oo and
condition (iii) holds with 4, = 1. The Marcinkiewicz theorem then tells us

IMfll, < Al fll,, 1<p<co

which is the assertion in part (b) of Theorem 4.3. It of course follows that
Mf < oo almost everywhere. []

Proof of Theorem 4.5. Fix fe L?,1 < p < p,, and fix 1 > 0. Let
E, = {y:ITf(y)| > 4}

We are going to get a tight grip on v(E,) and then use lemma 4.1 to estimate
[ TS ,- The clever Marcinkiewicz idea is to split fat 4/24,. Write

fo =fX<x: £ > A/241)> fi :fX<x: Ifx)| < 4/24}
Then |Tf(y)| < | T/ + I Tfi(»)|, and E; = B; L C;, where

B, = {y:ITfeWI > 42},  Ci={y:ITHO) > 4/2}.
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Now by (ii) we have

A A
By <222 0pl <25 [ iftaw
1f1>4/24,
To estimate v(C,) we consider two cases. If p; = oo, then || f,1l, < 4/24, and
by (iii) C, = . (This explains the presence of 4, in the definitions of f, and
fi) If py < 00, we have by (iii)

2 P 2A P1
v(cl)s(iAlufln,,,) N
Ifl<4/24,

We bound v(E;) by v(B,) + v(C;) and use Lemma 4.1. The case p, = o is
easier:

ITf |2 = f pAr=1y(E,) dA sj pp-l<79 f | f|dy>d1
0 0 |f1>24/24,

AOAl

2A44|f|
<2Aopf|f|f P dddy = 27 flfl”du,

because p — 2 > —1. Hence Tfe L?.If p; < oo, we have the same thing plus
an additional term bounding v(C;):

® 24
HTfHZSf Pl"_l(Tof lfldu) dA
0 Ifl> 4724

© QA
+ f pAP~1! ( lpll) f | fIP du dA.
0 If1< /24,

The first integral we just estimated in the proof for p, = 0. The second
integral is

o) V4
24,7 ﬁfl“ [F wnr dran= (24.)°p fw du
Aq|f] D1—PD

2

because p — p, — 1 < — 1. Altogether this gives

ITAl, < 4,1,
with

Agssz';-l(A‘)” 4 Aw )
p—1 p,—p

which proves the theorem. [
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It is interesting that as p — 1, 4, < A/(p — 1) for some constant A, and if
py = oo, then lim,, , 4, < A,. For the maximal function we obtain

AP = p2P*i/(p — 1),

Other splittings of f=f, + f; give more accurate estimates of the de-
pendencies of 4, on A, and A; (see Zygmund [1968, Chapter XII]).

5. Nontangential Maximal Function and Fatou’s Theorem

Fix a > 0, and consider the cones
() ={zeH:|x —t| <ay}, reR

If u(z) is a harmonic function on 3, the nontangential maximal function of u
atteRis

u*(t) = suplu(z)|.
Tult)

The value of u* depends on the parameter o, but since « has been fixed we will
ignore that distinction,

Theorem 5.1.  Let u(z) be harmonic on 3 and let 1 < p < co. Assume
sup flu(x + iy)|P dx < o0.
y
If p > 1, then u*(t) € L?, and
(5.1) lu*||5 < B, sup Jlu(x + iy)|? dx.
y
Ifp = 1, then u* is weak L, and
5.2) [{t:u*(@) > A} < %sup ~[lu(x + iy)| dx.
¥

The constants B, depend only on p and «.

Proof. Letp > 1. Then u(z) is the Poisson integral of a function f'(¢) € L*(R),
and

1/p
Ifll, < SUp<f|u(x + iy)|P dx) .

Theorem 4.2 says that u*(t) < 4, Mf(t), and the Hardy-Littlewood theorem
then yields (5.1).
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If p = 1, we know only that u(z) is the Poisson integral of a finite measure u
on R and

f|du| < sup flu(x T iy)ldx,
y

because u is a weak-star limit of the measures u(x + iy) dx, y — 0. Define

M(dpu)(t) = sup(|u|(D)/[1]).

tel

The proof of Theorem 4.2 shows that u*(t) < A, M(du)(t). And the proof of
part (a) of Theorem 4.3 shows that M(du)(t) is weak L' and

2
{1 MO > 1 <5 fdml.

Therefore (5.2) holds in the case p = 1. [

The nontangential maximal function u* will be more important to us than
the Hardy-Littlewood maximal function Mf. The next corollary is stated to
emphasize the strength of Theorem 5.1.

Corollary 5.2. If u(z) is harmonic on # and if p > 1, then
fsuplu(x + iy)|? dx < B, sup flu(x + iy)|P dx.
y y

Note that Corollary 5.2 is false at p = 1. Take u(x, y) = P, *f(x), fe L,
f= 0. Then sup,|u(x, y)| > Mf(x) and Mf¢ L".

Theorem 5.3 (Fatou). Let u(z) be a harmonic function on X and let
1 < p < 0. Assume

supllu(x + iy)ll Loy < 0.
y

Then for almost all t the nontangential limit

lim  u(z) =f(t)

Iy(t)ysz—:
exists.
Ifp > 1,u(z) is the Poisson integral of the boundary value functionf (t), and if
1 <p< oo,

flu(x + iy) — f(x)ll, =0 (y—0).

If p = 1, then u(z) is the Poisson integral of a finite measure p on R, and p is
related to the boundary value function f(t) by

du = f(t) dt + dv,

where dv is singular to Lebesgue measure.
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Proof. First, let 1 < p < oo and assume u(z) is the Poisson integral of a
function f(t) € L?. We will show u(z) has nontangential limit f(¢) for almost
all . We can assume f is real valued. Let
Q(t) = lim u(z) — lim u(z),
z-t z-t
where z is constrained to I',(t). Then by the maximal theorem Q(t) <
2u*(t) < 24, Mf (1), so that Q,, as well as the limes superior and the limes
inferior, is finite almost everywhere. The function Q (t) represents the non-
tangential oscillation of u at ¢, and u has a nontangential limit at ¢ if and only
if Q1) = 0.
By Theorem 5.1, and by Chebychev’s inequality if p > 1, we have

2 p
(53) H{e:Qu1) > ¢} < Bp(g ||f||,,) :

Now if g € L? and if in addition g € Co(R), then by Theorem 3.1, Q, = 0 for
allt,and so Q, = Q. Take g € Co(R) so that || f + g|, < &°. Then

000 > ol = 10970 > 81 < B3 17+ g1,) < e

Consequently Q(t) = 0 almost everywhere and u has a nontangential limit
almost everywhere. The limit coincides with f(¢) almost everywhere because
u(x, y) converges in L? norm to f(x). That proves the theorem in the case
1 < p < o and, provided that u(z) is the Poisson integral of an L' function,
in the case p = 1.

Let p = o0, and let u(z) = (P, * f)(x), with f(t)e L*. Let A > 0 and write
f() = f1(®) + f5(t) where f, =0 on (—A, A) and f, € L. Then u(z) =
uy(z) + uy(2), where uj(z) = (P, * f))(x),j = 1, 2.1t was proved above that u,(z)
has nontangential limit f;(¢) almost everywhere, and by Lemma 3.3 u,(z) has
limit f,(¢t) = 0 everywhere on (— A, 4). Hence u(z) converges to f(t) non-
tangentially almost everywhere on (— A, A). Letting 4 — 0 we have the
result for p = 0.

Now let p = 1 and assume

supll f(x + iy)llL1ax < .
y

Then u(z) is the Poisson integral of a finite measure 4 on R. Write du =
f(t) dt + dv, where dv is singular to dx, and let u,(z) = (P, * f)(x), u,(z) =
(P, * v)(x). Then u(z) = uy(z) + u,(z). It was shown above that u,(z) has
nontangential limit f(¢) almost everywhere. Because v is singular, the next
lemma shows u,(z) has nontangential limit zero almost everywhere, and that
concludes the proof. [
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Lemma 5.4. If v is a finite singular measure on R, then (P, * v)(x) converges
nontangentially to zero almost everywhere.

Proof. We may assume v > 0. Because v is singular, we have

. v((t—ht+h)
S TR

for Lebesgue almost all ¢. Indeed, if (5.4) were not true, there would be a
compact set K such that |[K| > 0, v(K) = 0, and

—v((t — h,t + h))
Ez—h>

(5.4) 0

a>0, all tek.

Cover K by finitely many intervals I; such that v(U I;) < & and such that
v(I;) > a|I;|. By the covering lemma 4.4, pairwise disjoint intervals {J;} can
be chosen from the {I;} such that

2 2
|K|szz|1.~|<azvu.~)<f,

a contradiction for ¢ sufficiently small.
Suppose (5.4) holds at ¢t € R. Let z € I' (¢) and suppose for simplicity that
Re z = t. Since v > 0, we have

pye00) = |

|s—t]| <Ay

Pﬁ—9m®+J Pt — s) d¥(s).

|s—t|> Ay

The second integral does not exceed (nAy)~!{dv. If we approximate
P,(8)x)5< 4,(s) from below by even step functions. as in the proof of Theorem
4.2, we see that

J‘ Pt — s)dv(s) < sup w
|s—t| <Ay h<Ay 2h

Choosing 4 = A(y) so that Ay — 0 (y = 0) but A%y — oo (y — 0), we obtain
P, xv(t) > 0 (y — 0) if (5.4) holds at ¢. The estimates when |x — t| < ay are
quite similar and we leave them to the reader. [

A positive measure o on S is called a Carleson measureif there is a constant
N(o) such that

(5.5) a(Q) < N(o)h
for all squares
0={xog<x<xo+h0<y<h}

The smallest such constant N(o) is the Carleson norm of o.
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Lemma 5.5. Let o be a positive measure on 3, and let « > 0. Then ¢ is a
Carleson measure if and only if there exists A = A(%) such that
(5.6) a({|u(@)| > A}) < A|{t:u*@) > 4}|, A>0,

for every harmonic function u(z) on S, where u*(t) is the nontangential maximal
function of u(z) over the cone {|x — t| < ay}. If A is the least constant such
that (5.6) holds, then

c1(@)A < N(0) < c,(0)A.

Proof. We take o = 1. The proof for a different o is similar. Assume o is a
Carleson measure. The open set {¢:u*(r) > A} is the union of a disjoint
sequence of open intervals {I,}, with centers ¢(I). Let T; be the tent

T, = {z:|x — c(I)| + y < |I;|/2},

an isosceles right triangle with hypotenuse I;. If |u(z)| > 4, then u*(t) > Aon
the interval {|t — x| < y} and this interval is contained in some I;. See
Figure L.5. Consequently,

[+ o)

{z:lu()| > 4} = |J T.

j=1

By (5.5) we therefore have
o((z:1u(z)| > ) < ¥ o(T) < N(@) T || = N@)I{t :u*@) > A},

and (5.6) holds.

) > {If—xl<y} 13

Figure LS.

Conversely, let I be an interval {x, < t < xo + h} and let u(z) =P, * f(x)
with f(x) = 44y, (x). Then u(z) > A on the square Q with base I, so that by
(5.6) and the maximal theorem,

o(Q) < Al{t:u*(t) > A} < (AC/A)| fll; < ACh,

and o is a Carleson measure. [
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Theorem 5.6 (Carleson). Let fe L*(R) and let u(z) denote the Poisson
integral of f. If 6 is a positive measure on the upper half plane, then the following
are equivalent.

(a) o is a Carleson measure.
(b) Forl < p < 0, and for all fe LP(R), u(z) € L*(0).
(¢) Forl<p< o0,

[uori<c, [irra,  serr
(d) For all fe L'(R), we have the distribution function inequality
oz: 1@ > ) < @/ [I1@1a, 2> 0

If (b) or (c) holds for one value of p, | < p < o0, then (a) holds.

The constants C, depend only on p and the constant N(o) in (5.5). In fact, if
(a) holds, we can take C, = N(6)B, where B,, is the constant in Theorem 5.1
with o = 1. If (c) or (d) holds then (5.5) holds with N(o) < 4°C,,.

Proof. 1If (a) holds, then by (5.6) and Theorem 5.1, (c) and (d) hold. Clearly,
(c) implies (b), and if (b) holds for some p, then the closed graph theorem for
Banach spaces shows that (c) holds for the same value of p.

Now suppose that (d) holds or that (c) holds for some p, | < p < . As
in the proof of Lemma 5.5, take I = {x, <t < xo + h}, and set u(z) =
Py xf(x), f(t) = 4x,(t). Then | f|, = 4h''? and u(z) > 1on Q = I x (0, h).
Hence

oQ) < o) > 1) < €, [I71F de = 4Cyh
and (5.5) holds. O

6. Subharmonic Functions

Let Q be an open set in the plane. A subharmonic function on Qis a function
v:Q - [— o0, ) such that

(a) v is upper semicontinuous:

v(zo) = Iim v(z), Zo €Q,

z—zo

(b) for each z, € Q there is r(zo) > O such that the disc A(z,, r(z,)) =
{z:]z — z4| < r(z4)} is contained in Q and such that for every r < r(z,),

|
(6.1) u(zp) < -2 f£2_20|<rv(z) dx dy.
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The semicontinuity guarantees that v is measurable and bounded above on
any compact subset of Q. Therefore the integral in (6.1) either converges or
diverges to — o0.

Every harmonic function is subharmonic, but our primary example of a
subharmonic function is v(z) = log| f(z)|, where f(z) is an analytic function
on Q. It is clear that v(z) is upper semicontinuous. Condition (6.1) is trivial
at a point z, for which f(z) = 0.1ff(z,) # O, then log f(z) has a single-valued
determination on some neighborhood of z,, and v(z) = Re(log f(z)) is
harmonic on this neighborhood. Hence (6.1) holds with equality if f(z,) # 0.

Lemma 6.1 (Jensen’s Inequality). Let (X, u) be a measure space such that
W is a probability measure, u(X) = 1. Let ve L*(u) be a real function, and let
@(t) be a convex function on R. Then

<p< f v du) < Jgo(v) dp.

Proof. The convexity of ¢ means that ¢(t) is the supremum of the linear
functions lying below ¢:

o(ty) = supfaty + b:at + b < ¢(t), te R}.

Whenever at + b < ¢(t), we have
a(fvdu) +b= f(av +b)du < f(p(v)du,

and the supremum of the left sides of these inequalities is @(f v dy). O

Jensen’s inequality is also true if | fdu = — oo, provided that ¢ is defined
at t = — oo and increasing on [ — o0 ,00). The proof is trivial in that case.

Theorem 6.2. Let 1(z) be a subharmonic function on Q, and let ¢(t) be an
increasing convex function on [ — o0, o), continuous at t = —o0. Then @ o v
is a subharmonic function on Q.

Proof. Since every convex function is continuous on R, ¢ is continuous on
[—o0, o). It follows immediately that ¢ o v is upper semicontinuous. If
zo € Q and if r < r(zy), then because ¢ is increasing

o(0(zo)) < <p(;i— H o(z) dx dy).

A(zo, 1)
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By Jensen’s inequality, then

Potzo) < j j o(v) dx dy,

A(zo,r)
which is (6.1) for @(v). [

For example, if f(z) is analytic on , then | f(z)|” = exp(p log| f(z)|)is a
subharmonic function on Qif 0 < p < 00, and

log™ | f(z)] = max(log| f(2)I, 0)

is also a subharmonic function on Q. Notice the contrast with the situation
for harmonic functions, where we have |u|? subharmonic only for p > 1 (by
Holder’s inequality).

Theorem6.3. Let v:Q — [ —oc, o0) be an upper semicontinuous function.
Then v is subharmonic on Q if and only if the following condition holds: If
u(z) is a harmonic function on a bounded open subset W of Q and if

Iim (v(z) — u(z)) <0

Wsz—
for all { € OW, then
v(z) < u(z), ze W.

Proof. Assume v(z) is subharmonic on Q. Let u(z) and W be as in the above
statement. Then V(z) = v(z) — u(z) is subharmonic on W, and

Iim V() <0
Waz—
for all { e OW.

Using a standard maximum principle argument we now show V < 0 in
W. We can assume W is connected. Let a = supy, V(z) and suppose a > 0.
Let {z,} be a sequence in W such that V(z,) — a. Since a > 0, the z, cannot
accumulate on 0W, and there is a limit point z € W. By the semicontinuity,
V(z) = a, and the set

E={zeW:V(z) = a}

is not empty. The set E is closed because V is upper semicontinuous and has
maximum value a.

If z, € E, then because V(z) < a on W, the mean value inequality (6.1)
shows V(z) = a almost everywhere on A(zg, r), for some r > 0. Hence E is
dense in A(z,, r). Because E is closed this means A(zy, r) = E, and E is open.
Since W was assumed to be connected, we have a contradiction and we
conclude that a < 0.
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Conversely, let z, € Qand let A(z,, r) = Q. Since v is upper semicontinuous
there are continuous functions u,(z) decreasing to v(z) on 6A(zq, r) as n — oo.
Let U,(z) be the harmonic function on A(z,, r) with boundary values u,(z).
After a suitable change of scale, U, is obtained from u, by the Poisson integral
formula for the unit disc. From Section 3 we know that U, is continuous on

A(zy, r). By hypothesis we have v(zy) < U,(z,), and hence

1 . 1 .
v(zp) < lim — Ju,,(zo + re®)df = — fv(zo + re'’) b
n 2 2n
by monotone convergence. Averaging these inequalities against r dr then
gives (6.1), and so v(z) is subharmonic. [

The proof just given shows that if v(z) is subharmonic on £, then (6.1) holds
for any r > 0 such that A(z,, r) = Q. It also shows that we can replace area
means by circular means in (6.1). The condition

1 )
w(zy) < 7 Jv(zo + re'®) do,

0 < r < r(zy), is therefore equivalent to (6.1).

Corollary 6.4. If Qisaconnected open set and if v(z) is a subharmonic function
on Q such that v(z) £ — o0, then whenever A(z,y, r) = Q,

1 .
— fv(zo + re®) df > — 0.
2n

Proof. Let u,(z) be continuous functions decreasing to v(z) on dA(z,, r),
and let U (z) denote the harmonic extension of u, to A(z,, r). If

1 .
— Jv(zo + ré®) df = — o0,
2n

then since v is bounded above and since Poisson kernels are bounded and
positive, we have

1 .
7 JPZ(G)U(ZO + re'®) df = — o, lz] < L.

Consequently U,(z) > —oo for each zeA(zy, r), and by Theorem 6.3
v = —o0 on A(zq, r). The nonempty set

{zeQ:1v(z) = —ooon a neighborhood of z}

is then open and closed, and we again have a contradiction. [
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Theorem 6.5. Let v(z) be a subharmonic function in the unit disc D. Assume
v(iz)F —0. ForO<r<1,let

u(z), |z] =,
vlz) =1 1

I sz/,(B)v(re“’) de, lz| <r.

Then v,(z) is a subharmonic function in D, v,(z) is harmonic on |z| < r,v,(z) >
v(z), z€ D, and v(2) is an increasing function of r.

Proof. By Corollary 6.4 and by Section 3 we know v,(z) is finite and har-
monic on A0, r) = {|z| < r}. To see that v,(z) is upper semicontinuous at a
point z, € dA(0, r) we must show

u(z0) = Tim v,(2).

zZ—Zo
lz| <r

This follows from the approximate identity properties of the Poisson kernel
and from the semicontinuity of v. Write z, = re’®. For ¢ > 0 there is § > 0
such that v(re’®) < v(zo) + € if |6 — 0,] < 8. Then if |z| < r and if |z — z,]
1s small,

1
@<y | PO + 0

1 .
+ = [su vre"’)f P, .(0)do
2n( up (re") o (6)

< v(zp) + 2e.

Hence v, is upper semicontinuous.
If we again take continuous functions u,(z) decreasing to v(z) on dA(0, r),
then as in the proof of Corollary 6.4 we have
(z) < v(2).

Because v is subharmonic, this inequality shows that v,(z) satisfies the mean
value inequality (6.1) at each point z, with |z,| = r. Consequently v,(z) is a
subharmonic function on D.

If r>s, then v, = (v,),, and since for any subharmonic function v,
v(z) = 1(z), the functions v,(z) increase with r. [

Corollary 6.6. If v(z) is a subharmonic function on D, then

m(r) = 51; fv(rew) do

is an increasing function of r.
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The subharmonic function v(z) on Q has a harmonic majorant if there is a
harmonic function U(z) such that v(z) < U(z) throughout Q. If Q is con-
nected, if v(z) # —oo in Q, and if v(z) has a harmonic majorant, then the
Perron process for solving the Dirichlet problem produces the least harmonic
majorant u(z), which is a harmonic function majorizing v(z) and satisfying
u(z) < U(z) for every other harmonic majorant U(z) of v(z) (see Ahlfors
[1966] or Tsuji [1959]). Since we are interested only in simply connected
domains, we shall not need the beautiful Perron process to obtain harmonic
majorants. We can use the Poisson kernel instead.

Theorem 6.7. Let v(z) be a subharmonic function in the unit disc D. Then v has
a harmonic majorant if and only if

1 .
sup — Jv(re"’) d6 = sup v,(0) < oo.
T he least harmonic majorant of v(z) is then

u(z) = lim | P,,(0)v(re"®) d6/2n = lim b,(z).
r—1 r—1
Proof. 1f sup, v,(0) is finite, then by Harnack’s theorem the functions v,(z)
increase to a finite harmonic function u(z) on D. Since v(z) < v,(z), u(z) is a
harmonic majorant of v(z). Conversely, if U(z) is harmonic on D, and if
U(z) = v(z) on D, then by Theorem 6.3, U(z) > v,(z) for each r. Consequently,
sup, v,(0) < oo, and again u(z) = lim, v,(z) is finite and harmonic. Since
v(z) < U(z), we have u(z) < U(z), and so u(z) is the least harmonic majorant.

O

Since by continuity u(z) = lim,_,; u(rz), the least harmonic majorant of
v(z) can also be written

u(z) = lim | P,(0)v(re®) d6/2n.

r—1

In particular, if v(z) > 0 and if v(z) has a harmonic majorant, then its least
harmonic majorant is the Poisson integral of the weak-star limit of the
bounded positive measures v(re'?) df/2n.

Theorem 6.8. Let v(z) be a subharmonic function in the upper half plane # . If
sup le(x +iy)|dx=M < o0,
y
then v(z) has a harmonic majorant in # of the form
@) = [ Pyx = 0 duco

where p is a finite signed measure on R.
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Proof. The inequality
2
6.2) v(z) < - sup J‘|v(é + in)| d¢, z=x+1iy, y>0,
n

is proved in the same way that the similar inequality (3.9) was proved to
begin the proof of Theorem 3.5.
Fix y, > 0 and consider the harmonic function

u(z) = u,(z) = ny_yO(z — tu(t, yo) dt,

defined on the half plane {y > y,}. We claim v(z) < u(z) on y > y,. To see
this, let ¢ > 0 and let A > 0 be large. Let u,(¢) be continuous functions de-
creasing to v(t + iyp) on [— A, A], and let

A
U2z) = f P,_,(x — u,t) dt, ¥ > Yo,
.y

be the Poisson integrai of u,. The function
V(z) = v(z) — eloglz + i| — U,(2)

is subharmonicon y > y,. With ¢ fixed we havelim,_, , V(z) = — o0, by (6.2),
and if A is large we have
Iim V(z)<0

z=(t, yo)
for [¢t| > A, again by (6.2). If |t| < A, then Tim__, ,, V(z) < v(t, yo) —
u,(t, yo) < 0. It follows from Theorem 6.3 and a conformal mapping that
V(z) < 0ony > y,.Sending n — o0, then A — o0, and then ¢ — 0, we obtain
v(z) < u(z) on y > y,. The measures v(t, y,) dt remain bounded as y, — 0,
and if du(r) is a weak-star cluster point, then
lim u,(z) = ny(x — t) du(t)

yo—0
is a harmonic majorant of v(z). O

The function u(z) is actually the least harmonic majorant of v(z), but we
shall not use this fact.

Notes

See the books of Ahlfors [1973] and Carathéodory [1954, Vol. II], and
Nevanlinna’s paper [1929] for further applications of Schwarz’s lemma.

Pick [1916], studied the finite interpolation problem (2.1) for functions
mapping the upper half plane to itself. Theorem 2.2 follows easily from
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Pick’s work via conformal mappings (see Nevanlinna [1919]). The proof in
the text is from Marshall [1976¢], who previously [1974] published a slightly
different proof. See Sarason [1967], Sz.-Nagy and Koranyi [1956] and
Donoghue [1974] for operator-theoretic approaches to that theorem.

The coefficient sequences for functions having positive real parts on D
were characterized by Carathéodory [1911] and by Toeplitz [1911]. Schur’s
theorem [1917], is that there exists f€ # with expansion

f@)=co+ciz+ -+ c,2"+ 0"

if and only if the matrix I, — A¥A, is nonnegative definite, where I, is the
(n + 1) x (n + 1) identity matrix and

co cl e cn

0 Co Cpn—
A, =

0 0 ¢

A proof is outlined in Exercise 21 of Chapter IV. See Tsuji [1959], for a
derivation of Schur’s theorem from the Carathéodory-Toeplitz result.
Pick’s theorem and Schur’s theorem are both contained in a recent result by
Cantor [1981] who found the matrix condition necessary and sufficient for
interpolation by finitely many derivatives of a function in £ at finitely many
points in D.

The maximal function was introduced by Hardy and Littlewood [1930],
but its importance was not widely recognized until much later. In their proof
Hardy and Littlewood used rearrangements of functions. Lemma 4.4 is from
Garsia’s book [1970], where it is credited to W. H. Young. Also see Stein
[1970] for another covering lemma, which is valid in R", and for a more
general discussion of maximal functions and approximate identities.

The books by Zygmund [1968] and by Stein and Weiss [1971] contain
more information on the Marcinkiewicz theorem and other theorems on
interpolation of operators.

Fatou’s theorem is from his classic paper [1906], which was written not
long afier the introduction of the Lebesgue integral. Theorem 5.6 is from
Carleson [1958, 1962a]. This proof of Lemma 5.5 is due to E. M. Stein.

We have barely touched the vast theory of subharmonic functions. Among
the numerous important references we mention Tsuji [1959] and Hayman
and Kennedy [1976] as guides to the literature.

Some authors call the inequality

1 .
logl f)] < 5 [1og] 51 do
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and its relatives Jensen’s inequality, but we reserve the name for the inequality
of Lemma 6.1. Because the logarithm is concave, the two candidates for the
name “Jensen’s inequality” actually go in opposite directions.

Exercises and Further Results

1. Letf(z)e #satisfy f(0) =0,| f'(0)| = > 0.1f | z] < n < 6, then
o—n
@12 (1 - ”5)lzl,

and in the disc {|z| < #n}, f(2) takes on each value w,

5 —
wl < (1 - n’;)n
exactly one time. (Hint: If g(z) = f(z)/z, then p(g(z), f'(0)) < |z|.)

2. Suppose f(z)e A.
(a) If f(z) has two distinct fixed points in D, then f(z) = z.
(b) Let e > 0, and suppose p(f(z,), z;) < & and p(f(z,), z;) < ¢ for z;
and z, distinct points of D. If z lies on the hyperbolic geodesic arc joining z,
to z,, then

p(f(z2), z) < Ce'’?
with C an absolute constant. (Hint: We can assume thatz = 0,z, = —r < 0,
z, = s > 0, and that f(z,) = z,. Then f(0) € K(z,, r) n K(z,, s + ¢) and the
euclidean description of the discs K(z,, r) and K(z,, s + ¢) yield an upper
bound for | /(0)] = p(f(0), 0).)

(c) Let € and €' be distinct points of 8D. Suppose {z,} and {w,} are
sequences in D such that z, — €, w, - ¢ and such that p(f(z,), z,) = 0,
p(f(w,), w,) = 0. Then f fixes each point of the geodesic from e* to ¢'®, and
hence f(z) = z.

This result will reappear in Chapter X, Exercise 9.

3. LetI = (6,,6,)be an arc on the unit circle D. Then
0>
w(z) = f P,(6) df/2m, z€eD,
0,
is the harmonic measure of I. Show

w(z) = a/n — (0, — 60,)/2~,

where « = arg((e®®? — z)/(¢"®* — z)), as shown in Figure 1.6 (see Carathéodory
[1954] or Nevanlinna [1953]).
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N

Figure 1.6.

4. For z, we D define the Gleason distance as
d(z, w) = sup{| f(2) — f(W)|: fe B}

and define the Harnack distance as

H(z,w) = sup{((—)) u harmonic on D, u > 0}
Then
1
() HGw = o2,
.. 4d(z, w) B
(ii) m = p(z, w),

where p(z, w) = |(z — w)/(1 — wz)|. To prove (i) compare Poisson kernels;

to prove (ii) consider (f(z) — f(W))/(1 — f(W)f(2)), f€ &.
A related identity,

1P = Pull = - [1P0) = Pu®) 46 = 2 = 2 cos™ ptz,w)

follows from Exercise 3 and conformal invariance. For (i) and (ii) see KOnig
[1969] or Bear [1970].

5. [If g(z) is bounded and analytic in the angle

I = zeD:|1_2|<oc, o> 1,
1 —|z|
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and if lim ,_,; g(x) = a, then in any smaller angle I,

lim g(z) = a

I''sz-1
(Hint: Normal families.)
6 (Julia’s lemma). The region
11—z
W, = {1_—|Z|2 <kp, k>0,

is a disc in D tangent to dD at z = 1. It is called an orocycle. Let fe % and
suppose there is a sequence {z,} in D such that z, —» 1,f(z,) = 1, and

L=l
1 —1z,]
Then f(W,) = W,, for all k > 0. Equivalently,
11— f@ 11—z
<A ,
1= 1f@P 1—|z|?

In particular, A > 0. (Hint: Choose r, so that (1 — |z,])/(1 — r,) = k. Then
the noneuclidean discs K(z,, r,) converge to W,, while the noneuclidean discs
K(f(z,), r,) converge to W,,. But by Schwarz’s lemma, f(K(z,, r,) <
K(f(z,), r,)- See Julia [1920] and Carathéodory [1929].)

%7 (The angular derivative). For fe # set
11 —f(Z)|2/|1 -z

A < oo.

zeD.

B =

su .
veb L= [f@P T =2
(a) Suppose B = co. If z, — 1, then by Julia’s lemma

1 — 11l
1 - 'an -

Consequently

im L2/@_

Isz—1 -z

1_
I'= zeD:| Z|<a, oa> 1.
1—|z|

within any angle

(b) Suppose B < o0. Then B > 0 and by Julia’s lemma
lim L= 1@
im —————

> B.
z—1 1 —|Z|
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Take z, = x, real, x, —» 1. Then

1 —
1= fCe)l? < B = 1 fCe)) T

and f(x,) — 1. Moreover, the inequalities
e PAC R RN ) S ACA T el WA e
L=, 14O ™ L+ O =1 fGe) (1 = x,)

1 —fC)I? 11—
<
L= 1fCa)lP (1 = x,)°

show that

1 —
AL
1 —x,

So when z, = x,, the hypotheses of Julia’s lemma hold with A = B. Further-
more,

B tim LG _ o 11— 1)

1 —x, 1 —x,

_ _ 2)1/2
Smll SOl < BY? lim 1 [ f(x) - B

1—x, 1 —x2 ’

so that
‘l—f(xn) L [CATI
1 —x, 1 = f(x)I

It follows that arg(1 — f(x)) — 0 as x — 1 and consequently that

S =] 1= fG)
x11 1 —Xx <11 1—x 11 1 —X

B.

(c) Again suppose B < oo. Then in any angle I' = {|1 — z|/(1 — |z|)
<aj,

< 2Ba.

‘l—f(Z)
z

Using Exercise 5, conclude that

im L=/9 _ 5 and  lim s =B,

Iaz-1 -2z Iaz-1

for any angle I'.
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(d) There is another proof using the Poisson integral representation of
positive harmonic functions. Write F(z) = (1 + f(2))/(1 — f(2)). Then

_ 2
Re F(z) = :1_4';((22))% > 0,

and there is ¢ > 0 such that

LI 2 2 n 2
ReF@) = | oot duto) = M0 e [ due®)

where yghasno massat 0. Clearly B > 1/u({0})and B = oo unless u({0}) > 0.
Also,

l—lf(Z)lz/l—IZI2 *

n |1 -z
TSP T =z~ MOD+ f_"mduo(e),

and when z — 1 within an angle I, the integral has limit 0. Consequently
= 1/u({0}). Since

l+f@z) 1+:z
l—f) 1~z

similar reasoning shows that

n eie +z )
u({0}) + f - dueid) + ic,

lim _L— % ~1 fim (1 -2+ (@) _

I'sz—1 1 - f(Z) I'sz—1 1 —f( )
8. Suppose f(z) is a function from D to D such that whenever z;,

z,, z5 are distinct points of D there exists g € # (depending on z,, z,, z3) such
that

#({03).

g(z) =f(zp, j=12,3

Then f is analytic. (Either use Pick’s theorem or show directly that f(z)
satisfies the Cauchy-Riemann equations.)

9. Let u(z) be a real-valued harmonic function on the unit disc D.
Show u(z) is the difference of two positive harmonic functions if and only if

sup flu(re“’)l db < oo,

and if and only if u(z) is the Poisson integral of a finite signed measure on éD.
Give an example of a harmonic function not the difference of two positive
harmonic functions.
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10. Let E = R be compact, |E| =0. Then there are harmonic functions
Vi(z)on #,n=1,2,...,such that
(i) V2 =0,
(i) limy,,., V(2) = +o,allt€E,
(ii)) lim,., V(z) =0, all ze .
11. (a) Write fe L., if f is measurable and if | f| is integrable over
any compact set. If fe L (R), then almost everywhere

X +

lim — h| 1) — f(x)| dt = 0.

h—0 2h x—h

The set of x for which this holds is called the Lebesgue set of f(x). (Hint: The
proof of Theorem 5.3 shows that

1 x+h
x) = lim — t) dt
feo=lmo |0

almost everywhere. Replacing f'by | f — ¢|, ¢ rational, then yields the result.)
(b) Let o(x)eL’, | o(x) dx = 1. Let y(x) be the least even decreasing
majorant of |@(x)],

Y(x) = sup |e@)|.

Itz x|

If y(x) € L', then the operator

1 x—t
M = - - d
o S(X) Supy <p( y )f(t) t

y>0

is weak-type 1-1,
2 My () > 21 < 5 171
and M, is bounded on L?, 1 < p < oo,
IMg fll, <Cllfll,, 1<p<oo
IffeL’,1 < p < oo, then

¥

(E.1) f(x) = limi q)(" t) £ dt

y—0
almost everywhere. More precisely, (E.1) holds at every point of the Lebesgue

set of f, which is independent of ¢.
(¢) Formulate and prove a similar result about nontangential conver-

gence and nontangential maximal functions.
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12. If f(x) has support a bounded interval I, then |, Mfdx < oo if
and only if_f, |fllog* | f|dx < oo (Stein [1969]).

13. Let u be a positive Borel measure on R, finite on compact sets,
and define

M, 100 = sup— [ 171

Isx M

Show

WM, ) > ) <5 [1f1du

and
flMufl”du <C, Jlfl"du, 1<p<oo.

Conclude that for g-almost all x,

x+h

1
}.1-{12) m . [ f@t) — f(X)| du(t) = 0,  feL'(w).

14. If u is a positive singular measure on R, then almost everywhere
with respect to p,

(G — b x + b))
l —
ot 2h

15. Let v(z) be a positive subharmonic function on the unit disc and
define

m(r) = fv(re'o) do.
Then log m(r) is an increasing convex function of log r. That is, if logr =
tlogr, + (1 —t)logr,,0 <t < 1, then
log m(r) < t log m(ry) + (1 — t) log m(r,).

16. If ¢(z) is of class C? on a neighborhood of the closed disc A(z,, R)
={z:|z — z,| < R}, then

?(z) = % fo o(zo + Re®)ydo — — Jj log

A(zo, R)

R
P ’A(p(z) dx dy

by Green’s theorem.
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%17. Let v(z) # — oo be upper semicontinuous on a plane domain Q.
(@) IfveC? and if Av = 8%v/0x* + 0*v/dy* > 0, then v is subharmonic
on Q. (Use Exercise 16.)
(b) Let x(z) € C*(R?) satisfy

=0, wWz)=0, |z|>1, jx(z)dxdy= 1.
Assume y is radial, y(z) = x(]z|). Set x(z) = ¢~ *x(z/e). Then
0r 1@ = [wtz = wydx dy
is C*®on Q, = {ze Q:dist(z, 0Q) > ¢}. Prove v is subharmonic if and only if

Aw*y) =0

on Q,, for all ¢ > 0. In that case v * x, decreases to v(z) everywhere on Q.
(c) Let C3(Q) denote the space of infinitely differentiable functions
having compact support contained in Q. If ¢ € CF(Q) and if fe C*(Q), then

fJ;lfA(p dx dy = fjﬂ(p Afdx dy

(Green’s theorem again). If

fffA¢dxdy20
Q

when ¢ > 0, ¢ € CF(Q), then fis subharmonic on Q (take ¢(z) = y(zo — 2)).
The weak Laplacian of ve L} (Q) is the functional

Co(Q)>s¢0 - fLu Ag dx dy.

If v is upper semicontinuous and if its weak Laplacian is nonnegative, that
18, if

fva(pdxdyZO
Q

whenever ¢ > 0, ¢ € CF(Q), then v * x, is subharmonic for every ¢ > 0, so
that v is subharmonic. Therefore v(z) is subharmonic if and only if its weak
Laplacian is nonnegative.

(d) The weak Laplacian of log|z — z4|, zo € Q is a familiar measure.
Find the measure.
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(e) Ifu(z)issubharmonic on Q, then by the Riesz representation theorem,
the weak Laplacian is a positive Borel measure finite on compact subsets of
Q. Denote this measure by Av. Then on Q,

—1
(z) = — j log ! d Av(w) + h(z)
2n Jq, |z — w|

where h, is harmonic on Q. This is called the Riesz decomposition of the
subharmonic function v(z) (see F. Riesz [1926]).



11
FP’Spaces

The classical theory of the Hardy spaces H” is a mixture of real and complex
analysis. This chapter is a short introduction to this theory, with special
emphasis put on the results and techniques we will need later.

The theory has three cornerstones:

(i) nontangential maximal functions;
(ii) the subharmonicity of | f |? and log| f | for an analytic function f(z);
(iii) the use of Blaschke products to reduce problems to the case of a
nonvanishing analytic function.

There are two H? theories, one for the disc and another for the upper half
plane. We introduce these twin theories simultaneously.

1. Definitions

Let 0 < p < o0 and let f(z) be an analytic function on D. We say fe H?
= H?(D) if

1 .
sup 5 [17Ge9lP d0 = 1f1fs < co.

If p = oo, we say fe H® if f(z) is a bounded analytic function on D and we
write

I/l = sup| f(2)]-

zeD

Thus the unit ballof H®, { fe H* : | f ||, < 1} is the class # considered in the
first two sections of Chapter I. The remarks on subharmonic functions in
Chapter I show that f(z) € H? if and only if the subharmonic function | f(z)|?
has a harmonic majorant, and that for p < oo, || f||4» is the value of the least
harmonic majorant at z = 0. This second definition of H? in terms of har-

50
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monic majorants is conformally invariant. It is used to define H? functions
on any plane domain or Riemann surface.

However, the H? spaces on the upper half plane # have a special definition
that is not conformally invariant. Let f(z) be an analytic function on #. For
0 < p < oo, we say f(z) e H? = H?(dt) if

sup flf(x L iy dx = [ f e < .
y

When p = oo we write H® for the bounded analytic functions on 5, and we
give H® the norm | f||, = sup, | f(z)|. Note that the definition of H?(dt)
involves all y, 0 < y < oo, instead of only small values of y, like, say,
0 < y < 1. For example, if
e—iZ/p
g(Z) - (l + Z)Z/p,
then | |g(x + iy)|P dx = me’(1 + y)~ ', but g(z) ¢ H?(dt).

Let z = 1(w) = i(1 — w)/(1 + w) be the conformal mapping of D onto .
Clearly fo e H*(D) if and only if fe H®(dt). However, for p < oo, H?(D)
and H?(dt) are unfortunately not transformed into each other. For example,
HP(D) contains nonzero constants, but H?(dt) does not. In order to treat
HP(D) and H”(dt) together, we prove two simple lemmas.

Lemma 1.1. If 0 <p < oo and if f(z) e H?(dt), then the subharmonic
Sunction | f(z)|P has a harmonic majorant u(z) in # and

u@) < (1/m)ll f llfs -
Proof. This follows from Theorem 6.8 of Chapter I. [

Lemma 1.1 shows that if f(z) € H?(dt), then g(w) = f(t(w)) € H?(D) and
”g"m <A/ fllge-

Lemma1.2. If0 < p < oo and if f(z) is an analytic function in the upper half
plane such that the subharmonic function | f (z)|” has a harmonic majorant, then
n-1l/p
F(z) = mf (2)

is in H?(dt) and
(L) |FIE < u(i)

where u(z) is the least harmonic majorant of | f(z)|P.
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Proof. Let u(z) be the least harmonic majorant of | f(z)|P. The positive
harmonic function u(z) has the form

(1.2) u(z) =cy + ny(x — t) du(t),
where ¢ > 0 and where p is a positive measure on R such that

f(l + )"V du(t) < oo.

Consequently,

|[F(2))” =

IP <l;u(z)
ey raamo A e gk

so that by (1.2) and Fubini’s theorem,

) 1 1
fIF(x +iy)lPdx <cy+ - f] g ny(x — t) du(t) dx

=cy+ JP1+y(t) du(t) = —c + u((1 + y)i).
Therefore, F(z) € H?(dr). The proof of Theorem 1.6.8 shows that
fIF(x + iy)|P dx
is a decreasing function of y. Hence,

|Fll%e = lim | |F(x + iy)|? dx

y—0
and
1 du(t) .

Fll4p = —c + lin()) u((1 + y)i) = o <u@). O
y—’

Lemma 1.2 shows that if g(w) € H?(D), then
—1/p

e

g(w(z)) € H"(dt),

where w(z) = 17 !(2), and |F| g» < ||gllg». We shall see in Section 3 that the
converse of Lemma 1.2 is true and that ||F| g» = |gllg». Notice that because
(z + i) %/" has no zeros on #, the family of zero sets of H? functions is
invariant under z = t(w).
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For p > 1, H? is a normed linear space. For p < 1, the inequality
|21 + 2, < [z, 17 + [ 2,17
shows that H? is a metric space with metric
d(f, 9) = I1.f = gllfs-
Theorem 1.3. For 0 < p < oo, H? is complete.

Proof. We can assume p < co. We give the proof in the upper half plane;
the reasoning for the disc is very similar. The key inequality

(1.3) |fGx+inl < @) fllgs, ¥ >0,

follows from (6.2) of Chapter I. It shows that any H? Cauchy sequence {f,}
converges pointwise on J# to an analytic function f(z). Fatou’s lemma then
shows

£ e + i9) = e + )P dx < lim flfm(x +iy) = filx + ip)|P dx

m— o

< th “fm —fn”I}’Ip-

m— oo

Hence || f — f,ll§» < lim,, . .|| f,, — ful%», and H? is complete. [

2. Blaschke Products

We show that the zeros {z,} of a nonzero H” function on the disc satisfy
Blaschke’s condition

2.1) (1 —|z)) < .

It is noteworthy that (2.1) does not depend on p. When (2.1) holds, special
H® functions called Blaschke products will be constructed to have {z,} as

zeros. Blaschke products will play an expanding role in the later chapters of
this book.

Theorem 2.1. Let f(z) be an analytic function on the disc, f # 0, and let {z,}
be the zeros of f(z). If log| f(z)| has a harmonic majorant, then

Z(l — |z,|) < oo0.
If£(0) 0 and if u(z) is the least harmonic majorant of log| f(z)|, then
2 (1 —z,]) < u(0) — log| f(0)].
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Proof. Replacing f(z) by f(z)/z" if necessary, we can assume f(0) # 0. Then
by Theorem 1.6.7,

sup floglf(re“’)l d0/2n = u(0),

where u is the least harmonic majorant of log| f(z)|. Fix r < 1 so that
|z,| # rfor all n,and let z,, ..., z, be those zeros with |z;| < r. Then f(rz) is
analytic on the closed disc and f(rz) has zeros z,/r, z,/r, . .., z,/r. Let B(z) =
[T3=1 (z — zy/r)/(1 = Z;z/r), a finite Blaschke product with the same zeros
as f(rz), and let g(z) = f(rz)/B,(z). Then g is analytic and zero free on D, so
that

1 .
loglg(O)] = 5 [loglg(e®)] b.

Since |g(e®)| = | f(re’®)], this gives the familiar Jensen formula

logl )| + ¥, tog ~ = - [1og] fre")| d.

|zl <r j

Letting r tend to 1 then yields

X log < lim 5 [log] £(re")| 48 — logl fO) = u0) ~ log| O]

Since 1 — |z;| < log(1/|z;]), the theorem is proved. [

Iffe H?(D), then log| f| < (1/p)| f I’, and log| f | has a harmonic majorant.
Hence, if f € HP(D), or by Lemma 1.1 if f(w) = F(z(w)) where F € H"(dt), then

Y= z,]) < oo

Theorem 2.2. Let {z,} be a sequence of points in D such that
Y (A = |z,]) < 0.
Let m be the number of z, equal to 0. Then the Blaschke product

-2z, z — 2,

22 B(z) =z" []

|zn] #0 |Zn| 1— E"Z

converges on D. The function B(z) is in H*(D) and the zeros of B(z) are pre-
cisely the points z,, each zero having multiplicity equal to the number of times
it occurs in the sequence {z,}. Moreover |B(z)| < 1 and

|Be”)| = 1

almost everywhere.
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By definition, a Blaschke product on D is a function of the form (2.2).
Proof. We can suppose |z,| > 0 for all n. Let

—Z, 2 — Z,

b(z) = .
D= T=5:

Then the product [ | b, converges on D to an analytic function having {z,} for

zeros if and only if D |1 — b,(z)| converges uniformly on each compact

subset of D. But by a calculation,

|20 + 2| za] | 1+ |z|

1 — <
21 =2,z 1D <7

|1 —b"(Z)|= (1 _lznl)

and the convergence follows from (2.1).
Since |b(z)| < 1, it is clear that B(z) € H® and |B(z)| < 1. The bounded

harmonic function B(z) has nontangential limits | B(e”®)| < 1 almost every-

where. To see that |B(e®®)| = 1 almost everywhere, set B,(z) = | [} bi(2).

Then B/B, is another Blaschke product and

B(0) 1 (|B(e")

B,(0) | = 2n J|B,(")]

Letting n — oo now yields

1 i
df = 5 le(e’)IdB.

1 i0 _
5;J|B(e )Ndo =1,

so that | B(e'?)| = 1 almost everywhere. [

The purpose of the convergence factors —Zz,/|z,| is to make )  arg b,(z)
converge. To remember the convergence factors, note that they are chosen
so that b,(0) > 0.

By Theorem 2.1 and Theorem 2.2, the analytic function f(z) has a factor-
ization

f(2) = B(z)g(z),  zeD,

where B(z) is a Blaschke product and where g(z) has no zeros on D, if and
only if the subharmonic function log| f(z)| has a harmonic majorant.
In the upper half plane condition (2.1) is replaced by

@23) i <™ =%t i,

and the Blaschke product with zeros {z,} is

A\ m 2 _
B(Z)=(Z—l) I |Z;+1|Z Zn

z+1i ZH#Z,,-%-IZ—Z,,
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If the moduli | z, | are bounded, (2.3) becomes Y y, < <0, and the convergence
factors are not needed because l_[ ((z — z,)/(z — z,)) already converges.

Theorem 2.3 (F. Riesz). Let 0 < p < co. Let f(z)€ H’(D), f # 0, let {z,}
be the zeros of f(z), and let B(z) be the Blaschke product with zeros {z,}. Then
9(z) = f(2)/B(z) is in H?(D) and

lgllgr = ”f”m-

Proof. 1t was noted above that B(z) converges when fe H”. Let B, be the
finite Blaschke product with zeros z,, z,,. .., z,, and let g, = f/B,. Fixr < 1.
Then by Theorem 1.6.6,

f a.reP S < lim

R-1

flf(Re“’) P do
|BRE®)F 21’

If 1 — R is small, then | B,(Re®)| > 1 — ¢, so that

flgn(re"’)|"—<hm SR L = | o

R—1

Since |g, | increases to |g|, and since |g| > | f |, this gives |gllf> = || fl|f»-

Theorem 2.3 is also true for H?(dt), because the proof of Theorem 1.6.8
shows that

sup [ f(x + iy)|Pdx =lim || f(x + iy)|? dx.
y

y=0

Blaschke products have a simple characterization in terms of harmonic
majorants.

Theorem 2.4. Letf(z)€ H*(D), || flo < 1. Thenthefollowing are equivalent.

(@) f(z) = AB(z), where A is constant, |A| = 1, and B(z) is a Blaschke
product.

(b) lim,_, [log|f(re®)| d6/2n = 0

(c) The least harmonic majorant of log| f(z)| is 0.

Proof. Theorem 1.6.7 shows that (b) and (c) are equivalent.

Suppose f(z) is the Blaschke product with zeros {z,}, and let ¢ > 0. We
may divide f(z) by a finite Blaschke product B,(z) so that |(f/B,)(0)| > 1 — e.
Since B, is continuous on D and |B,(¢"%)| = 1,

f (ré) | d

’l

lim |log| f(re®®)| d0 = lim log

r-1 r-1
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But since log| f/B,| is subharmonic and negative,

log(l —¢) < flog % <0.

S e
E,,(re )

Therefore (b) holds.
Suppose (c) holds. Let g(z) = f(z)/B(z), where B(z) is the Blaschke product
formed from the zeros of f(z). Then

log| f(2)| < loglg(z)| <0

because || f|l, < 1. Since log|g(z)| is a harmonic majorant of log| f(z)|,
(c) implies that log|g(z)| = 0. Hence g(z) = A, where 4 is a constant and
|A] = 1, and so (a) holds. [J

3. Maximal Functions and Boundary Values

Let f(z) € H?(dt). If p > 1, we know from Chapter I that the nontangential
maximal function f*(¢) is in L?, and that f(z) converges nontangentially to
an L” function f (t) almost everywhere. An important feature of the H spaces
is that these results remain true for all p, 0 < p < 0.

Theorem3.1. Let 0 < p < oo and let f(z) be a function in H?(dt). Then for
any o > 0, the nontangential maximal function

S¥) = sup [f(2)]

ze (1)

is in LP(R) and
(3.1) If*15 < Auli f 1es

where the constant A, depends only on a. Moreover, for almost all t e R, f(z)
has a nontangential limit f (t) € LP(R) satisfying

(3.2) flf(t)l” di = 111 = 1 f B
and
(3.3) lim £t + iy) — f@)IE = 0.

y—0

Proof. Except for the fact that the constant 4, in (3.1) does not depend on p,
the case p > 1 of the theorem is proved in Section 5 of Chapter I. To stretch p
below 1 we use Theorem 2.3 above. Suppose fe H?, f = 0. Let B(z) be the
Blaschke product formed from the zeros of f(z) and let g(z) = f(2)/B(z2).
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Then |gllg> = | fllg», and since |f(2)| <[g(@)|, |f*@®)| <1g*(@)|. Let
p, > L. Since g has no zeros and g € H?, the analytic function g”/?* is in H".
Consequently (g*)PP* = (gP'P*)* is in L?, and hence by Theorem 1.5.1,

lg*15 = I@*)"™ 15 < B,,llglf»-

Taking p, = 2 we see that (3.1) holds with a constant independent of p,
because f* < g*.

Now G(z) = (g(z))"/’* has a nontangential limit G(t) almost everywhere.
Taking p,/p to be a positive integer m, we see that g(z) = G(z)™ also has non-
tangential limits. Since B(z) has boundary values almost everywhere we con-
clude that f(z) has a nontangential limit almost everywhere. It now follows
from (3.1) and the dominated convergence theorem that f(¢) € L?(R) and
that (3.2) and (3.3) hold. (O

The equality (3.2) establishes an isometry between H?(dt) and a closed sub-
space of LP(R). For p < 1, although L? is not a Banach space, it is, like H?, a
complete metric space under the metric d(f, g) = || f — gll5. When p > 1,
this space of boundary values of H? functions has a simple characterization.

Corollary 3.2. Let 1 <p < oo and let f(t)e LF(R). Then f(t) is almost
everywhere the nontangential limit of an HP(dt) function if and only if its
Poisson integral

f(@) =P+ f(x)

is analytic on #. The Poisson integral f(z) is then the corresponding HP
Junction.

Proof. If fe L*(R) and if f(z) = P, *f(x) is analytic, then by Chapter I,
f(z) € H?(dt) and f(z) converges nontangentially to f(¢).

Conversely, suppose f(z) is some H” function. If p > 1, then by Theorem
3.5, Chapter I, f(z) has nontangential limit f(t) and f (z) = P, * f(x). The case
p = 1 requires Theorem 3.1. When f(z) € H!, (1.3) and Lemma 1.3.4 yield

fz +ie) = sz(t)f(t + ie) dt, e > 0.

By (3.3), this means f(z) is the Poisson integral of its boundary function
f@. O

See Exercise 2 for some other characterizations of the boundary values of
HP? functions. Because of (3.2), we often identify f(z) € H? with its boundary
function f(t).+ However, we prescribe no method of regaining f(z) from f(¢)
when p < 1.

T And we often write || £}, for the equal | f || 4,-
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Theorem 3.1 is of course also true on the unit disc. Equality (3.2) for the
correspondence f(z) — f(e'®) then shows that H?(D) is isometric to a closed
subspace of the Lebesgue space LP(d0/2n). And if p > 1, f(z) is the Poisson
integral of f(e'). The analog of (3.3),

: iy i0 pﬁ _
lim [|f(re®) = S5 =0,
coupled with the fact that f(rz), r < 1, is trivially the uniform sum of its
Taylor series, tells us this: For p < oo, the space of boundary functions of
HP(D) coincides with the closure in L*(d0/27) of the analytic polynomials.
Moreover, if a sequence p,(e'®) of polynomials converges to f (') in L?, then
by (3.2) for the disc, [|p, — f %> — 0. Since H?(D) = H'(D), p > 1, we see
that for p > 1, the boundary values of an H?(D) function have Fourier series

f(eiO) ~ Z a, eino
n=0
supported on the nonnegative integers, and its Fourier coefficients
1 0\ —ind .1 f(z2)dz
=— e~ d = lim — e
4= 52 [ e lims ), T

are the Taylor coefficients of the H” function f(z) = ), a,z". Thus H? theory
is a natural bridge between Fourier analysis and complex analysis.

In the upper half plane we see from (3.3) that the uniformly continuous
functions in H® n H? are dense in H?, because for fe H?,

i 2\lp
If(x+ly)|s(n—y) Ifllgz, y>0,

and
i 2 /4\Yr
| f'(x +ipl < y (n—y) I fllar

by the preceding inequality and by Schwarz’s lemma, scaled to the disc
A(z, y/2). We will need some very smooth classes of analytic functions that
are dense in H?(dt) and that will play the role of the polynomials in the disc
case. Let N be a positive integer, and let Ay be the family of H*(dt) functions
satisfying

(i) f(2)is continuous on # and f(t) is infinitely differentiable, f€ C*.
(i1) lim|z|_.co|z|N|f(z)| =0,zeH#.

Corollary 3.3. Let N be a positive integer. For 0 < p < o, the class Wy is
dense in HP(dt). For f(z) € H®, there are functions f,(z) in Wy such that | f,|| o
< I f |, and such that f,(t) < f(t) almost everywhere.
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Proof. Were it not for the decay condition (ii), we could approximate f by
the smooth functions f(z + i/n), which converge in H? norm to f(t) if p < o0
and which converge boundedly pointwise almost everywhere to f(r) if p = 0.
Now there are some special functions g,(z) such that

(a) gk(z) € QIN- o
(d) lgl2)l < 1,ze#.
(C) gk(Z)—> 1,ze #.

Before we construct the functions g,, we note that the functions
Jx(2) = 9.2 f (z + i/n)

in A, then give the desired approximation.
The heart of the proof, constructing the functions g,(z), will be done in the

unit disc, where w = —1 corresponds to z = oo. Let o, < 1, o, = 1. The
function
W+ o N+1
h(w) =
) @+%»

has an (N + 1)-fold zero at —a,. These h,(w) are bounded by 1, and with N
fixed they converge to 1 uniformly on compact subsets of D\ {— 1}. Then the
functions

i—z

gi(2) = h(oyw), w = itz

satisfy (a)-(c). [
Now we can clarify the relation between H?(D) and H”(dt).

Corollary 3.4. Let 0 < p < o0, let f(z) be an analytic function in the upper
half plane and let

-1/p

T
F(z) = ——-f(2).
@) = Gy @
Then | f(2)|P has a harmonic majorant if and only if F(z) € HP. In that case
(3.4) IF (& = u(i),

where u(z) is the least harmonic majorant of | f(z)|P.

Proof. Let g(w) = f(z), z = i(1 — w)1 + w). The corollary asserts that
g € H?(D) if and only if F € H?(dt), and that ||g|l, = |F|,. If N > 2/p and if
F e Ay, then the corresponding function g(w) is bounded on D and, because
df/2n corresponds to dt/n(1 + t),

[1s0r% = [iFor ar
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By the density of Wy in HP, it follows from (3.2) that g € H?(D) whenever
F € H?(dt) and that

lglla, = 1Flx,.

Since Lemma 1.2 shows F e H?(dt) if g(w)e HP(D), that concludes the
proof. O

Incidentally, the fact that we have the equality (3.4) instead of the inequality
(1.1) means that in the formula (1.2) for the least harmonic majorant of
| f(2)|7, the constant term is ¢ = 0. We shall see in Section 4 that the least
harmonic majorant is the Poisson integral of the L' function | f(¢)|”.

The next corollary is noteworthy because of the recent discovery, forp < 1,
of its converse, which will be proved in Chapter III.

Corollary 3.5. Let0 < p < o0 and let u(z) be a real-valued harmonic function
on the upper half plane 3. If u(z) is the real part of a function f(z) € H, then

u*(t) = sup|u(z)|
Ta(t)

is in LA(R).
The proof from Theorem 3.1 is trivial.

Let us reexamine the boundary values in the case p = 1. If the harmonic
function u(z) satisfies

sup flu(x + iy)| dx < oo,
y

then u(z) need not be the Poisson integral of its nontangential limit u(z). All
we can say is that u(z) is the Poisson integral of a finite measure. However, if
u(z) is also an analytic function, then the measure is absolutely continuous,
and its density is the boundary value u(t). The reason is that the maximal
function u*(t) is integrable.

Theorem 3.6. Iff(z) € H'(dt), thenf(z) is the Poisson integral of its boundary
values:

(3.5) fl@) = ny(x —)f(@)dt.

Conversely, if u is a finite complex measure on R such that the Poisson integral

f(2) = Py u(x) is an analytic function on S, then p is absolutely continuous
and

du = f(t) dt,
where f(t) is the boundary function of the Poisson integral f (z) of u.



62 HP SPACES Chap. II

Proof. 1ff(z)€ H', then (3.5) was already obtained in the proof of Corollary
3.2. Conversely, if f(z) = P, * p(x) is an analytic function, then by Minkow-
ski’s integral inequality it is an H function and hence it is the Poisson integral
of its boundary value f(t). The difference measure dv(t) = du(t) — f(t) dt
has Poisson integral zero, and so v = 0 by Theorem [.3.1. [J

Lemma 3.7. Let f(z) € H'. Then the Fourier transform
6= [ swe a0

foralls < 0.

Proof. By the continuity of f — f, we may suppose f€ Wy. Then for s < 0,
F(z) = f(z)e”*™* is also in Wy. The result now follows from Cauchy’s
theorem because

j |F(Re®)|R d6 - 0 (R=- ). O
0

Notice that

3.6 P,(t) = ! t 14

(3.6) i\t -z t—2z)

Also notice that for fe H', Lemma 3.7 applied to (t — Z)~ }f (¢) yields
SO 40, mz>o0.
t—z

Theorem 3.8. Let du(t) be a finite complex measure on R such that either

(a) du(e) =0 on Imz<0,
t—z
or
(b) f(s) = fe'z"i" du(t) =0 on s<0.

Then du is absolutely continuous and du = f(t) dt, where f(t)€ H'.

Proof. 1If (a) holds, then by (3.6) f(z) = P, * u(x) is analytic and the result
follows from Theorem 3.6.
Assume (b) holds. The Poisson kernel P (t) has Fourier transform

J.e—Znisth(t) dt = efznlsly’
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because P,(—s) = P(s) since P, is real, and because if s <0, e 2" is
the bounded harmonic function with boundary values e™ ™. Let f,(x) =
P, * u(x). By Fubini’s theorem, f, has Fourier transform

e”™i(s), s20,

fy(s)z{ 0, s <0,

Since f, € L', Fourier inversion implies

_f;,(x) — J‘ezﬁxs"y(s) ds = f eZm’(x+iy)sﬁ(s) ds.

0

Differentiating under the integral sign then shows that f(z) = f,(x) is analytic,
and Theorem 3.6 now implies that f(z)e H!. [

The disc version of Theorem 3.6, or equivalently Theorem 3.8, is one half
of the famous F. and M. Riesz theorem. The other half asserts that if f(z) € H',
f # 0,then | f(t)| > 0 almost everywhere. This is a consequence of a stronger
result proved in the next section.

The theorem on Carleson measures, Theorem 1.5.6, also extends to the
HP spaces, 0 < p < 1, because the key estimate in its proof was the maximal
theorem.

Theorem 3.9 (Carleson). Let g be a positive measure in the upper half plane.
Then the following are equivalent

(@) o is a Carleson measure: for some constant N(o),
a(Q) < N(o)h
Jor all squares
O0={xg<x<xo+h0<y<h}

(b) For0<p < oo,

[iPde < aipige,  seme

() Forsome p,0 < p < w0, f€ L¥(o) for all fe H".

Proof. That (a) implies (b) follows from (3.1) and Lemma 1.5.5 just as in the
proof of Theorem L.5.6.

Trivially, (b) implies (c). On the other hand, if (c) holds for some fixed
P < o, then (b) holds for the same value p. This follows from the closed
graph theorem, which is valid here even when p < 1 (see Dunford and
Schwartz [1958, p. 57]). One can also see directly that if there are {f,} in
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HP with | f,]l, = 1 but j' | f,|? do — oo, then the sum Z «, f,» when the a,
are chosen adroitly, will give an H? function for which (c) fails.

Now suppose (b) holds for some p > 0. Let Q be the square {x, < x <
Xo + Yo, 0 <y < yo} and let

Yo e
@) = (n(z Z)),

where zo = X, + iy,. Then fe H? and | f||5 = [ P, (t) dt = 1. Since | f(z)|?
> (57y,) "1, z€ Q, we have

a(Q) < o({z:1 f(2)] > (Smyo)™ P}) < SmAy,
so that (a) holds. [

4. (1n) [ (Qogl f(®)I/A + £3) dt > — o0

A fundamental result of H? theory is that the condition of this section’s
title characterizes the moduli of H? functions | f(t)| among the positive L?
functions. In the disc, this result is due to Szegd for p = 2 and to F. Riesz for
the other p. For functions analytic across 0D, the inequality (4.1) below was
first noticed by Jensen [1899] and for this reason the inequality is sometimes
called Jensen’s inequality. We prefer to use that name for the inequality
about averages and convex functions given in Theorem 1.6.1.

In this section the important thing about an H? function will be the fact that
the subharmonic function

log| f(re®)| < (1/p)|f (re®)I?

is majorized by a positive L' function of 6. It will be simpler to work at first
on the disc.

Theoremd4.1. If0 < p < o and iff(z) € H?(D),f # 0, then
1 i0
%floglf(e ) df > — 0
Iff(0) # 0O, then
1 .
@) logl £(O)] < - [logl 1”1 0,
and more generally, if f (z,) # 0

42 togl o)l <5 [10g] £(e*)1P.,(6) b.
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Proof. By Theorem 1.6.7 and by the subharmonicity of log| f|,

log| £(2)] < lim — f log| f(re’®)| P,(6) d6.

r-1 27I

Since log| f(re'®)| — log| f(e'®)| almost everywhere, and since these functions
are bounded above by the integrable function (1/p)| f*(6)|?, where f* is the
maximal function, we have

flog* | (re®)| P (6) d6 — flog* | /()| P, (6) do.

Fatou’s lemma can now be applied to the negative parts to give us

lim % flog| f@re®)|P,,(0) dO < % flogl f(®)| P, (0) ab.

r—1

This proves (4.2) and (4.1). The remaining inequality follows by removing
any zero at the origin. [

Note that the same result in the upper half plane

@.3) log| f(z0)] < f log| f(O) P.(0) dt,  fe HP,

follows from Theorem 4.1 and from Lemma 1.1 upon a change of variables.

Corollary 4.2. Iff(z)e H? and if f(t) = 0 on a set of positive measure, then
f=0.

Corollary 4.2 gives the other half of the F. and M. Riesz theorem. If dpu(t)
is a finite measure such that P, u(x) is analytic, then not only is du ab-
solutely continuous to dt, but also dt is absolutely continuous to du.

Corollary 4.3. Let 0 < p, r < oc. If f(z) € H? and if the boundary function
f()e L’ thenf(z)e H'.

This corollary is often written
H°nL" c H"

Proof. Applying Jensen’s inequality, with the convex function ¢(s) =
exp(rs) and with the probability measure P (x — 1) dt, to (4.3) gives

fE < flf(t) rPyGx — 1) dt.

Integration in x then yields fe H". [
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Theorem 4.4. Let h(t) be a nonnegative function in LF(R). Then there is
f(z) € H?(dt) such that | f(t)| = h(t) almost everywhere if and only if

log h(t)

Wd[ > — Q0.

4.4)
Proof. It has already been proved that (4.4) is a necessary condition. To
show (4.4) is sufficient, note that since log h < (1/p)|h|?, (4.4) holds if and
only if log h € L'(dt/(1 + t?)). Let u(z) be the Poisson integral of log h(t) and
let v(z) be any harmonic conjugate of u(z). (Since S is simply connected,
there exists a harmonic conjugate function v(z) such that u + iv is analytic.
The conjugate function v(z) is unique except for an additive constant.) The
function we are after is

f(Z) — eu(z)+iv(z)’
which is an analytic function on . When p < oo Jensen’s inequality again
gives

QP < f P,(x — DD I? dr

and therefore fe H?. If p = oo then u is bounded above and so fe H®. []

When p = o0, (4.4) is especially important. Let h > 0, h e L®, and suppose
1/he L®. Then f = ¢“*" € H® and also

1/f= e_(“+iv)€H°°.

In other words, f is an invertible function in H®. We write f € (H®)™!. For
emphasis, we state this fact separately, writing g = log h, so that ge L*® if
heL® and 1/he L*.

Theorem 4.5. Every real-valued function g(t) in L® has the form log| f(1)|,
where fe (H®)™ ! is an invertible function in H®.

In the language of uniform algebra theory, Theorem 4.5 asserts that H* is
a strongly logmodular subalgebra of L*. It is also a logmodular subalgebra
of L*, which means that the set

log|(H®)"'| = {log| f(1)|: fe H®, 1/ fe H*}

is dense in Lg, the space of real L*® functions. The Banach algebra aspects of
H* will be discussed in some detail later; for the present we only want to say
that Theorem 4.4 is a powerful tool for constructing H? functions.

Let h(t) > O satisfy

|log h(t)| dt <
1+ ¢2
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The function

f(Z) = eu{z)+iv(z),
where
4.5) u(z) = P, * (log h)(x)

and where v(z) is a harmonic conjugate function of u(z), is called an outer
function. The outer function f(z) is determined by h(t) except for the uni-
modular constant factor arising from the choice of the conjugate function
v(z). The function | f(z)| has boundary values h(t) almost everywhere, and
Jensen’s inequality with (4.5) shows that f(z) € H? if and only if h(t) € L".
Outer functions in H? can be characterized in several ways.

Theorem 4.6. Let0 < p < oo and let f(z) € HP, f % 0. Then the following are
equivalent.

(@) f(z2) is an outer function.
(b) For each z € H#, equality holds in (4.3); that is,

4.6) log| f(2)] = floglf(t)le(x “

(c) For some point z, € H, (4.6) holds.
(d) Ifg(z)e H? and if |g(t)| = | f(t)| almost everywhere, then

g <|f(@)|, zeH.

(e) f(z) has no zeros in # and the harmonic function log| f(z)| is the Pois-
son integral of a function k(t) such that

|k(t)| dt <

kKt e [P
0 eVe P
1+ 2 ’

Proof. First, () is merely a rewording of the definition of an outer function
in HP, because any function f(z) without zeros is an exponential, f = e** ",
u = log| f|. Thus (a) and (e) are equivalent.

By definition, (a) implies (b). If (b) holds, then we see (d) holds by applying
(4.3) to the function g(z) in (d). Moreover, if (d) holds, and if g(z) is an outer
function determined by log| f(z)|, then the analytic function f(z)/g(z)
satisfies

| f(2)/g(2)] = 1,

so that f = Ag, |A| = 1, and fis an outer function. Hence (a), (b), (d), and (e)
are equivalent.
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Trivially, (b) implies (c). Now assume (c¢) and again let g(z) be an outer
function determined by log| f(¢t)|. Then | f(z)/g(z)| < 1, and if (c) holds, the
maximum principle shows that| f/g| = 1,and sof(z)is an outer function. []

The function S(z) = €% has no zeros in the upper half plane, and S(z) € H®,
but S(z) is not an outer function, because log|S(z)| = —y is not a Poisson
integral.

Corollary 4.7. Iff(z) € H? and if for some r > 0, 1/f(z) € H', then f(2) is an
outer function.

This holds because f satisfies (4.6).

Corollary 4.8. Let f(z) € H?. Either of the following two conditions imply that
f(2) is an outer function.

(@ Ref(z)>0,zes#.
(b) There exists a C! arc T terminating at O such that

f(#) < C\I.

Proof. If (a) holds then f + ¢ is an outer function for any ¢ > 0. Now be-
cause Re f > 0,

flog|f(t) + &|Py(x — t) dt - floglf(t)le(x — t)dt

as ¢ - 0, by dominated convergence on {t:|f(t)] > 4} and by monotone
convergence on {t:|f(t)] < 1}. Hence (4.6) holds for f and f is an outer
function.

The above argument shows that f(z) is an outer function if Re f(z) > 0
on the set {| f(z)| < 1}. Now assume (b). Replacing f(z) by if(z), 4] = 1,
we can also assume that I has tangent vector (1, 0) at z = 0. This means that
if ¢ is sufficiently small, the analytic function

g(z) = (f(2)/3)'*

satisfies Re g(z) > 0 if |g(z)| < 1. Hence g is an outer function, and f = 6%g°
is an outer function. O

5. The Nevanlinna Class

In this section we continue to use the fact that log| f(z)| has a harmonic
majorant if f(z) € H?, but now the important thing will be that the least
harmonic majorant is a Poisson integral.
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An analytic function f(z) on D or 4 is in the Nevanlinna class, f€ N, if the
subharmonic function log* | f(z)| has a harmonic majorant. This definition
is conformally invariant and the Nevanlinna classes on D and 4 therefore
coincide, but it is easier to discuss N on the disc, where it is characterized by

(5.1) sup J‘log+ | f(re®)| d0/2n < oo.

It is clear that H? < N for all p > 0, because log* | f(2)| < (1/p)| f(2)1.

Theorem 5.1.  Let f(z) be an analytic function on D, f # 0. Then f€ N if and
only if log| f(z)| has least harmonic majorant the Poisson integral of a finite
measure on 0D.

Proof. If

log| /(2)] < f P.(6) du(6)

for some finite measure, then

log* | f(2)] < sz(e) du* (6),

where u* is the positive part of u, and hence log™ | f(z)| has a harmonic
majorant.

Conversely, if fe€.N, then log* | f(z)| is majorized by some positive har-
monic function U(z). Since log| f(z)| < log™ | f(2)], log| f(z)| has a least
harmonic majorant u(z), and clearly u(z) < U(z). Thus

u(z) = U(z) — (U(2) — u(2))

is the difference of two positive harmonic functions, and consequently u(z) is
the Poisson integral of a finite measure. []

The proof of Theorem 5.1 really shows that a subharmonic function v(z) is
majorized by a Poisson integral if and only if v* = max(v, 0) has a harmonic
majorant, and that when this is the case, the least harmonic majorant of v(z)
is a Poisson integral.

Lemma 5.2. Let f(z)e N, f £ 0. Let B(z) be the Blaschke product formed
from the zeros of f(z). Then B(z) converges, and g(z) = f(z)/B(z) is in N.
Moreover, log|g(z)| is the least harmonic majorant of log| f(z)|.

Proof. Since log| f(z)| has a harmonic majorant, we know from Section 2
that B(z) converges. Let u(z) be the least harmonic majorant of log| f(z)].
Then since | B(z)| < 1, it is clear that

u(z) < log|g(2)].
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On the other hand
log|B(z)| = log| f(2)| — loglg(z)| < u(z) — log|g(z)I.
By Theorem 2.4, this means that
0 < u(z) — log|g(2)]
and hence u(z) = log|g(z)|. It of course follows that g(z)e N. [

Theorem 5.3. Let f(z) € N, f % 0. Then f(z) has a nontangential limit f (*®)
almost everywhere, and

(5.2) log| f(e®)| e L'(d0).
The least harmonic majorant of 10g| f(z)| has the form | P(8) du(@), where
(5.3) du(0) = log| f(0)| d6/2n + dus,

with dug singular to do.

Proof. Let g(z) = f(z)/B(z), where B(z) is the Blaschke product with the
same zeros as f(z). We know from Theorem 5.1 and Lemma 5.2 that

(54) loglg(2)] = f P.(6) di(0).

Write du = k(0)(d0/2n) + du,, where dy, is singular to d6. By (5.4) and by
Theorem L1.5.3, log|g(z)| has nontangential limit k() almost everywhere.
Since |B(e?)| = 1 almost everywhere, it follows that log| f(z)| has non-
tangential limit k(@) almost everywhere. Therefore (5.2) and (5.3) will be
proved once we show there exist nontangential limits for f(z).

By (5.4), log|g(z)| is the difference of two positive harmonic functions:
log|gl = u; — u,,u; = 0. Let vj(z) be a harmonic conjugate function of u (z).
Because D is simply connected, v,(z) is well defined, and v(z) is unique if we
set v(0) = 0. Then

log g(z) = (u, + ivy) — (U, + ivy) + ic
with ¢ a real constant, and hence

eice = (uz+iv2)

g(z) = e—(u1+iv1) )

The bounded functions e~ */) have nontangential limits almost every-
where, and these limits cannot vanish on a set of positive measure. Con-
sequently g and f = Bg have nontangential limits. []
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If f(z)e N, f # 0, then by (5.2)

flog|f(9)| 4 > — oo.

However, the sharper inequality
do
59 logl )1 < [10g1 /O IP.O) 5.

which was proved for H? functions in Section 4, can fail for f(z) € N. Consider
the function

1+z
1 -2

g(z) = exp

Then log|g(z)| = (1 — |z[*)/(]1 — z|*) = P,(1). The function g is in N, and
the measure determined by log|g(z)| is the unit charge at ¢*® = 1. Since

do
loglg(@] = 1> 0= [logla®] 2.

(5.5) fails for g(z).

This counterexample contains the only thing that can go wrong with (5.5)
for a function in N. The right side of (5.5) is a harmonic function; it majorizes
log| f(z)| if and only if it is bigger than the least harmonic majorant of
log| f(z)|, which is the Poisson integral of the measure du in (5.3). Com-
paring (5.3) with (5.5), we therefore see that (5.5) is true for f(z) € N if and
only if the singular term dp, in (5.3) is nonpositive.

The functions in N for which du, < 0 form a subclass of N called N*. We

give the classical definition: Let f(z)€ N. We say f(z) e N* if

lim |log*| f(re'®)| d6 = flog+ | f(e)] db.

r-1
Theorem 5.4. Let f(z)€ N,f % 0. Then the following are equivalent.

(@) f(z)eN".
(b) The least harmonic majorant of log* | f(0)| is

do
flog* 7OIP.6)S
() ForallzeD,

log| ()] < flog | £(0)|P(6) g,
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(d) The least harmonic majorant of log| f(z)| is the Poisson integral of

do
=1 )| —
du = log| fO)| T + dus,
where du, 1 d6 and
du, < 0.
Proof. We have already proved that (c) and (d) are equivalent.
If f(z) € N, then log* | f(z)| has least harmonic majorant

U@ = [ P.0) o)

where the positive measure v is the weak-star limit of the measures
log* | f(re®)| d0/2n,

by Theorem 1.6.7 and the remark thereafter. By Fatou’s lemma,

dao ; do
[rog 17@1P.0) % < tim [108* 1761 P05 = [P0 av6)

r—1

and hence
)
(56) log* 1 O)| 22 < av,
2n

because a measure is determined by its Poisson integral. By definition
f(z2)e N7 if and only if the two sides of (5.6), which are positive, have the
same integral. Thus fe N* if and only if

x40
log* | £(e")| 5= dv

and (a) and (b) are equivalent.

Finally, a comparison of the least harmonic majorants of log| f(z)| and
of log*| f(z)|, as in the proof of Theorem 5.1, shows that (b) and (d) are
equivalent. [

It follows from (b) or (c) that
N> N* o HP, p>0.

It also follows that f(z) € HP if and only if f(z)e N* and f(e®) € L?. This
fact generalizes Corollary 4.3 and it has the same proof, using Jensen’s
inequality with (c). This fact can be written

N* nL? = HP, p>0.
The example given before Theorem 5.4 shows that N n L? # HP.
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We return to Theorem 5.3 and use formula (5.3) to obtain an important
factorization theorem for functions in N. Let f(z) € N, f # 0. Let B(z) be the
Blaschke product formed from the zeros of f (z), and let g(z) = f(2)/B(z). Then
g(z)e N, and log|g(z)| is the Poisson integral of the measure p in (5.3). By
Theorem 5.4, fe N* ifand only ifge N *.

It is not hard to recover g, and therefore also f = Bg, from the measure p.
We actually did that in the proof of Theorem 5.3, but let us now do it again
more carefully. Write

(5.7 dp = log| f(8) d0/2n — (dpy — dpy),
where du; > 0 and du; L d6. The function

i0 . do
F) = exp( [5G 1081 766 2—n)

is an outer function on the disc, because

F(Z) — eu(z)+iu(z),

where u(z) is the Poisson integral of log| f(e®)| and v(z) is a conjugate
function of u(z) normalized by v(0) = 0. Among the outer functions associated
with log| f(6)], F(z) is determined by the condition F(0) > 0.

Similarly, let

10
(5.8) ,(z)_exp( J e Lk ,(9)) i=12

Then Sz) is analytic on D, and S(z) has the following properties:

(i) Sj(z) has no zeros in D,

(i) |S{9)l <1,
(iii) |S{e)| = 1 almost everywhere, and
(v) S(0) > 0.

Properties (i) and (iv) are immediate from (5.8). Since

(59) logls (=)l = — [ P.0) dufo)

property (i) holds because y > 0 and property (iii) follows from Lemma
1.5.4 because dp; L do. A function with properties (i)-(iv) is called a singular
Junction. Every singular function S(t) has the form (5.8) for some positive
singular measure. This measure is determined by (5.9).

We now have

loglg(z)| = log|F(2)| + log|S,(z)| — log|S,(z)|
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by the decomposition (5.7) of u. Since g(z) has no zeros on D, log g(z) is
single valued and hence

log g(z) = ic + log F(z) + log S,(z) — log S5(z),
¢ a real constant, so that
9(z) = €“F(2)8,(2)/S:(2).
We have now proved most of the Canonical Factorization theorem:
Theorem5.5. Let f(z)e N, f # 0. Then
(5.10) f(2) = CB2)F(2)S(2)/Sx(2),  |Cl=1,

where B(z) is a Blaschke product, F(z) is an outer function, and S,(z) and S,(z)
are singular functions. Except for the choice of the constant C, |C| = 1, the
factorization (5.10) is unique. Every function of the form (5.10) is in N.

Proof. We have already derived the factorization (5.10). There can be no
difficulties about the uniqueness of the factors because B(z) is determined by
the zeros of f(z), and as |B(e)| = |S,(e)| = |S,(e®)| = 1 almost every-
where, F(z) is determined by log| f(e”®)|. S, and S, are then determined by
the least harmonic majorant of log| f'|. If f(z) is a function of the form (5.10),
then

log| f(2)| < log|F(z)| + log|S,(z)| — log|S,(2)I,

so that log| f(z)| is majorized by a Poisson integral. It now follows from
Theorem 5.1 that f(z)e N. O

Corollary 5.6. Let f(z)e N, f # 0. Then in (5.10) the singular factor S, = 1
ifand only if f(z)eN™.

Proof. S,(z) = 1 if and only if
dp = log| f(0)[(d6/27) — dp,,

with du, > 0, and this holds if and only if fe N*. [

For emphasis we state
Corollary5.7. Iff(z)€ H?, p > O, then f(z) has a unique decomposition

f(z) = CB(2)S(2)F(2),

where |C| = 1, B(z) is a Blaschke product, S(z) is a singular function, and F(z)
is an outer function in HP.
Corollary 5.8. Let f(z)e N*. Then f(z) € H? if and only if the outer factor
F(z) is in H".

The proofs of these corollaries are left to the reader.
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6. Inner Functions

An inner function is a function f(z) € H® such that | f(e')| = 1 almost
everywhere. Every Blaschke product is an inner function, and so is every
singular function

i0
S(z) = exp(— f e du(e)),

-

where the measure dyu is positive and singular to df. By the Factorization
Theorem 5.5, every inner function has the form

f(2) = €“B(2)S(2),

where ¢ is a real constant, B is a Blaschke product, and S is a singular func-
tion. If f(z)e N* and if | f(¢®)| = 1 almost everywhere, then f is an inner
function, because N* n L*® = H®. However, if f(z) = 1/S(z), where S is a
nonconstant singular function, then fe N and | f(e®)] = 1 almost every-
where, but f(z) is not an inner function. If it were, then for z € D we would
have | f(z)| < 1and [1/f(z)| < 1, but this is impossible.

Theorem 6.1. Let B(z) be a Blaschke product with zeros {z,},and let E = 0D
be the set of accumulation points of {z,}. Then B(z) extends to be analytic on
the complement of

Eu{l/z,:n=12 ..}

in the complex plane: In particular B(z) is analytic across each arc of (0D)\E.
On the other hand, the function | B(z)| does not extend continuously from D to
any point of E.

Proof. Let {B,(z)} be the finite Blaschke products converging to B(z). Then
B,(1/z) = 1/B,(2)

by reflection. Hence lim,_, ., B,(z) exists on {z:|z| > 1}\{1/z,:n = 1,2,...}
and the limit is an analytic function on that region. If z; € 6D\E and if 6 > 0
is small, then each B, is analytic on A = A(z,, 6) and {B,(z)} converges
boundedly on JA\dD. By the Poisson integral formula for A, for example,
this means {B,(z)} converges on A. Hence B(z) is analytic except on

Euf{l/z,in=1,2,..)

If z, € E, then
lim |B(z)| = 0,

D>z-zg
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while since | B(e®)| = 1 almost everywhere,

fim |B(z)| = 1.

D>z—-zp
Thus | B| does not extend continuously to z,. [

Aside from the Blaschke products, the simplest inner function is the
singular function

S = exp(ﬂ),
z—1
generated by the point mass at 1. A calculation shows that S and all its deriva-
tives have nontangential limit 0 at ¢® = 1. Under w = (1 + z)/(1 — 2), the
disc D is conformally mapped to the right half plane {Re w > 0}, so that
z =1 corresponds to w = o, and so that dD\{1} corresponds to the
imaginary axis. Thus S(z) = e " is analytic across dD\ {1} and S(z) wraps
0D\ {1} around ¢D infinitely often. The vertical line Re w = a, & > 0, comes

from the orocycle
1—|z?
C,={r—— =uap
: {ll—zlz ’

This is a circle, with center /(1 + o) and radius 1/(1 + «), which is tangent to
0D at 1. On this orocycle | S(z)| = e~ % and S wraps C,\ {1} around [{| = e¢™*
infinitely often. The function S(z) has no zeros in D, but for every {, 0 < |{|
< 1, 8(z) = { infinitely often in every neighborhood of z = 1.

Recall the notation

0 _
(e = {zeD:le d <a}, o> 1

1 —|z|
for the conelike region in D with vertex €.

Theorem 6.2. Let S(z) be the singular function determined by the measure u
on 0D, and let E = 0D be the closed support of u. Then S(z) extends analytically
to C\E. In particular S(z) is analytic across each arc of (OD)\E. On the other
hand, | S(z)| does not extend continuously from D to any point of E. For any
o > 1 and for u-almost all 0

lim S(z) =0, zeT,(e").

If

. (0 —h0+h)
1) lm = e~
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then every derivative S"(z) of S(z) satisfies
(6.2) lim S™(z) =0, zeTl(e®.

2 ei0

Proof. For any measure y on 0D, the function

i0
J‘e +zd ()
é

is analytic at all points not in the closed support E of u. Hence S(z) is analytic
on C\E.
If p is singular, then
oo B0 — 1,0+ 1)) _
h=0 2h
for u-almost all . This follows from Lemma 1.4.4 by repeating the proof of

Lemma 1.5.4, with dx and du interchanged. For z € I',(e?) and for | — 0] <
1 — |z|* we have

(6.3)

P.(p) > l - F

Setting h = 1 — |z|?, we therefore obtain
~10g[S()| > 2 u(© = h, 0 + h)) > o0

as z - € z eI ("), whenever (6.3) holds at #. This shows |S| does not
extend continuously at any point of E.
If (6.1) holds at 6, then by similar reasoning
lim (—log|S(z)| + nlog(l — |z|*) = o0

Ta(0)2z—ei®

foreveryn = 1,2,.... Hence we have
1S(z)|
(6.4 lim ———5==0
Ta(0)2z—ei® (1 - I I )

Now fix z in I',(0) and consider two discs
Ay = Az a(l - |z]?), A, = Az a1 — |z ).
If £(0) is analytic on A,, and if

o _,
- ="

sup
then

sup| f™(O)| < C(a, n)e,
Az
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where C(a, n) depends only on a and n. This is an easy consequence of
Schwarz’s lemma on A,, or of the Poisson integral formula for A,. By (6.4)
we therefore have

S™(z) = 0
as z — €%, ze [",(0), whenever (6.1) holds at €. [

Theorem 6.3. Let fe H?, p > 0, and let " be an open arc en 0D. If f(z) is
analytic across I, then its inner factor and its outer factor are analytic across I'.
If f(2) is continuous across T, then its outer factor is continuous across T'.

Proof. Write f = BSF, where B is a Blaschke product, S is a singular func-
tion, and F is an outer function. We may suppose f % 0. If f is analytic or
continuous across I', then F is bounded on any compact subset of I', because
|[Fl=1flonT.

Suppose fis analytic across I'. If the zeros of B had an accumulation point
on I', then f would have a zero of infinite order at some point of I'. This is
impossible and so B is analytic across I'. Let u be the measure determining S.
If u had a point charge at ¢” € T, then S, and hence also f, would have a zero
of infinite order at ¢, by Theorem 6.2. Thus u({e®}) = 0 for all @ e I". Now if
#(K) > 0 for some compact subset K of I', then K is uncountable and by
Theorem 6.2, f(z) has infinitely many zeros on K. Therefore u(K) = 0 and
S is analytic across I'. Hence F = f/BS is analytic across I'.

Suppose f is continuous across I'. Let K = {6 e ": f(e") = 0}. Then, as a
function on I', F is continuous at each point of K, because |F|=|f|on T
and |[F|=00on K.OnI'\K, | f| > 0, so that B and S cannot tend to zero at
any point of '\ K. Then B and § are analytic across I'\ K and F is continuous
on I'. The Poisson integral representation now implies that F is continuous
onDuUT. O

A compact set K in the plane has positive logarithmic capacity if there is a
positive measure ¢ on K with ¢ # 0 such that the logarithmic potential

U(z) = flog 7 do()

is bounded on some neighborhood of K. If K = D, then K has positive capa-
city if and only if K supports a positive mass ¢ for which Green’s potential

C

6.5) Go2) = f log| =% | do(2)

-z
is bounded on D, because the term [g log|1 — {z|da({) is always bounded
on D. An arbitrary set E is said to have positive capacity if some compact
subset of E has positive capacity. Since log 1/|{]| is locally integrable with
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respect to area, any set of positive area has positive capacity. There are
perfect sets of capacity zero, but these sets are very thin. For example, the
Cantor ternary set on [0, 1] has positive capacity (see Tsuji [1959]).

The Green’s potential G,(z) in (6.5) clearly satisfies G,(z) > 0, z € D. Since
¢ is finite and supported at a positive distance from 0D, we have

(6.6) G, is continuous and zero at each point of dD.

Further information about logarithmic capacity and potentials can be
found in Tsuji’s book [1959], but we shall need only the facts cited above.
If B(z) is a Blaschke product, let us agree to also call
e“B(z)
a Blaschke product when c is a real constant.
Theorem 6.4 (Frostman). Let f(z) be a nonconstant inner function on the

unit disc. Then for all {, |{| < 1, except possibly for a set of capacity zero, the
function

f2) = ¢
K-t

is a Blaschke product.

Proof. Let K be a compact set of positive capacity and let ¢ be a positive
mass on K such that G,(z) is bounded on D. We shall show

o({{ € K : f, is not a Blaschke product}) = 0
and that will prove the theorem. Let
1-{f(2)
{—f(2

Then ¥V > 0 and V is bounded. Because f(z) is an inner function, (6.6) and
dominated convergence imply that

V@) = G(f(2) = flog do(0).

lim | V(re®) do = 0.

r—-1
Hence, by Fatou’s lemma,
o db
f lim flogl fre®)| 5= do({) = 0.
Kr—1 27[
Because ¢ > 0 and log| f;| < 0, this means

o dO
lim |log| f(re®)| 3 = 0

r—1



80 H?” SPACES Chap. II

for g-almost every {. Theorem 2.4 then shows that f; is a Blaschke product
for g-almost all {. [

Corollary 6.5. The set of Blaschke products is uniformly dense in the set of
inner functions.

Proof. 1ff(z) is an inner function and if |{] is small, then

1f=fillo <e
By Frostman’s theorem f, is a Blaschke product for many small {. O

Corollary 6.5 should be compared to Carathéodory’s theorem 1.2.1, in
which a weaker form of convergence, namely, pointwise bounded con-
vergence, is obtained, but in which it is assumed only that || |, < 1.

Let fe H*(D) and let z, € D. The cluster set of f at z, is

Cl(f.20) = ) JO A AGo, M)
r>0
Thus { € CI(f, z,) if and only if there are points z, in D tending to z, such that
f(z,) = . The cluster set is a compact, nonempty, connected plane set. It is a
singleton if and only if fis continuous on D U {z,}. The range set of f at z, is

R(f, z0) = ﬂof(D N A(zg, 1)),
so { € A(f, z,) if and only if there are points z, in D tending to z, such that
flizy)={ n=1,2,.... In other words, the range set is the set of values
assumed infinitely often in each neighborhood of z,. The range set Z(, z,)
is a Gy set. Clearly Z(f, zo) = CI(f, z,). If f(z) is analytic across z,, and not
constant, then CI(f, z,) = f(zo), and #(f, zo) = .

Theorem 6.6. Let f(z) be an inner function on D, and let z, € 0D be a singu-
larity of f(z) (that is, a point at which f(z) does not extend analytically). Then

Cl(f,20) =D
and
A(f, z0) = D\L,
where L is a set of logarithmic capacity zero.

Theorem 6.6 shows that, despite Fatou’s theorem, the boundary behavior
of an H* function can be rather wild. For example, if f(z) is a Blaschke
product whose zeros are dense on éD, or if f(z) is the singular function
determined by a singular measure with closed support D, then the conclu-
sion of Theorem 6.6 holds at every z, € 0D, even though f(z) has nontan-
gential limits almost everywhere.
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Proof. Since sets of capacity zero have no interior, the assertion about the
range sets implies the assertion about the cluster set.

We are assuming f(z) is not analytic across any arc containing z,. If f(z)
is a Blaschke product, then z, is an accumulation point of the zeros of /'(z).
Thus 0 € Z(, z,) if fis a Blaschke product. In general

f@) - ¢
1 ={f(2)
is a Blaschke product when { ¢ L, a set of capacity zero. Since f; also has a

singularity at z,, we see that for { ¢ L, z, is an accumulation point of the zeros
of f;, therefore z,, is an accumulation point of the {-points of f(z). []

J2) =

That proves Theorem 6.6, but by using Theorem 6.2 we can get more
precise information. Suppose f(z) is an inner function, suppose z, is a singu-
larity of f(z) and suppose { € D\Z(f, z,).- Then the inner function f; is not a
Blaschke product. Moreover, the proof above shows its Blaschke factor
cannot have zeros accumulating at z,. Write f, = B, S,. We have just showed
that B, is analytic across z,. Hence S, has a singularity at z,. Two cases now
arise.

If z, is an isolated singularity of S, on dD, then the singular measure u
giving rise to S, contains an atom at z,. In this case S, and all its derivatives
tend nontangentially to O at z,. It follows readily that f,(z) and all its deriva-
tives tend nontangentially to 0, so that nontangentially f(z) tends to {, while
all the derivatives of f(z) tend to 0. These conclusions also hold if y satisfies
(6.1) at z,. It is quite clear that for fixed z,, there can be at most one point
{ e D\A({, z,) at which these conclusions can hold.

The alternative case is that u({z,}) = 0. Then by Theorem 6.2, z, is the
limit of a sequence of points {e*"} at each of which S, has nontangential limit
0, and therefore at each of which f(z) has nontangential limit {. In this case
Theorem 6.2 tells us even more. Either u is continuous on some neighborhood
of zy, or u assigns positive mass to each point in a sequence ¢ tending to
zo. If 1 is not continuous, there are e — z, such that at each point e, f(z)
tends nontangentially to {, and each derivative f %)(z) tends nontangentially
to 0. If u is continuous, then by Theorem 6.2 each neighborhood of z, con-
tains uncountably many e at which f(z) tends nontangentially to {.

The above reasoning can be summarized as follows:

Theorem 6.7. Let f(z) be an inner function on D and let z, € D be a singu-
larity of f(z). For |{| < 1 at least one of the following holds.

(@) (s in the range set of f at z,.
(b) f(2) has nontangential limit { at z,, and each derivative f™ has non-
tangential limit 0 at z,.
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(c) zq is the limit of a sequence of points " on 0D, and (b) holds at each
e,

(d) Each neighborhood of z, on 0D contains uncountably many points at
which f(z) has nontangential limit (.

Considerably more about cluster theory can be found in the interesting
books of Noshiro [1960] and of Collingwood and Lohwater [1966].

7. Beurling’s Theorem

Let H be a separable Hilbert space with basis {£,, &;, &,, ...}. The shift

operator S on H is defined by

S(é j) = 5 j+1
or, equivalently,

S(Z a;¢;) = Z a;j&js1-

Beurling used inner functions to characterize the (closed) invariant subspaces
for S. If we identify H with H? by taking &, = ¢*°, then the operator S be-
comes multiplication by z,

S(f) = # ().

A subspace M of H? is invariant under S if zM < M, that is, if zf(z)e M
whenever fe M. Equivalently, M is invariant if p(z)M < M for every poly-
nomial p(z). Since M is closed, this is the same as saying H*M < M where
H*M = {gf : g€ H®, fe M}, because by Exercise 4 each g € H® is a point-
wise bounded limit of a sequence of polynomials.

Theorem 7.1 (Beurling). Let M be a subspace of H? invariant under S. If
M £ {0}, then there is an inner function G(z) such that

(7.1) M = GH? = {G(2)f(z): fe H*}.

The inner function G is unique except for a constant factor. Every subspace of
the form (7.1) is an invariant subspace for S.

Proof. Every subspace of the form (7.1) is closed in L?, because |G| = 1.
Every such subspace is clearly invariant under multiplication by z. Moreover
if G, and G, are inner functions such that

G1H2 = G2 HZ,

then G, = G,h, G, = Gk, h, k € H. This clearly means G, = AG,, || = 1,
because G,/G, and G,/G, are both inner functions in H*.
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Now let M be an invariant subspace, M # {0}. Then there is fe M,
f=az*+ 12" + - with g, # 0. Choose fe M with the least such k
and write M = z*M . Then M, — H? is also invariant (and closed), and we
might as well assume M = M,. Thus we assume M contains a function f;
with f5(0) # 0.

Let g, be the orthogonal projection of 1 € H2 onto M. Then g, € M and
1 — g, 1s orthogonal to M. Consequently

1 , -
e fe"“’go(e)(l — go(8)) db = 0, n=0,12,...
because z"go(z) € M. Since for n > 1, z"g(z) vanishes at z = 0, this gives

1 . 1 .
o= [ 1a0®F do = o [ergo(@ a6 =0,
2n 2n

n=1,2, .... Hence the Fourier coefficients of |g, |

and |g, |* is constant,

vanish except at n = 0

1
190l = ¢ = o= [lgol? d0 = 1o,

Ifgo = 0,then 1 = 1 — g, is orthogonal to M and all functions in M vanish
at z = 0, contrary to our assumption. Thus g, # 0, and

G = go/llgoll2

is an inner function in M.
Clearly GH?> = M, because M is invariant. Now suppose h € M is orthog-
onal to GH?. Then as g, = |¢,//G € GH?,

. ———do
fhe”‘”"go((?)— =0, n=012....
2n
But 1 — g, is orthogonal to M, and z"he M, n = 1,2, ..., so that
) — db . ——— d
0= inf 1 — = J\ inf - —
[rema - go@) g =~ [heg® o, n=12,...,

sinf:e z"h(z) vanishes at z = 0. Hence the L' function hg, has zero Fourier
series, and so hg, = 0. As |go| > 0, we see that h = 0 and hence M = GH?>.

O

Let G, and G, be two inner functions and let M, = G,H?, M, = G, H?
be their invariant subspaces. Then M; = M, if and only if G, € M,. This
happens if and only if G, divides G,, G; = G,h, he H2. When G, divides G,
the quotient G, /G, is another inner function. Now let # be a nonempty family
of inner functions. There is a smallest invariant subspace M containing %.
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It is simply the intersection of all invariant subspaces containing ¥. This
subspace M has the form M = G, H? for some inner function G, so that G,
divides every function in 4. If G, is another inner function which divides
every function in ¢, then M, = G,H? contains ¥, so that M = M, and G,
divides G,,. Thus % has a greatest common divisor G, which is unique except
for a constant factor. We have proved the following:

Corollary 7.2. Every nonempty family 4 of inner functions has a greatest
common divisor.

There is another way to prove Corollary 7.2 that gives us an idea of what
G, lookslike. Write G, = B, S, with B, a Blaschke product and S, a singular
function determined by the measure u,. If G = BS is in %, then B, divides
B and S, divides S. This means on the one hand that the zeros of B include
the zeros of By, and on the other hand that y, < u, where p is the measure
associated with S. Hence B, is the Blaschke product with zeros [} {G~'(0):
G € 9}. And u, is the greatest lower bound of the set & of measures attached
to the functions in 4. Any nonempty set & of positive Borel measures has a
greatest lower bound p,. For any Borel set E, uq(E) is defined by

N
to(E) = inleﬂj(Ej)’
i~

where the y; run through % and where {E,, ..., Ey} runs through all parti-
tions of E into Borel sets.
Let £ denote the set of polynomials in z.

Corollary 7.3. Let f(z) € H>. Then f(2) is an outer function if and only if
Pf = {p(2)f(2):pe P} is dense in H>.

Proof. Let M be the closure of Zfin H2. Then M is invariant under the shift
operator, so that M = GH? for some inner function G(z). Since f€ M, we
have f = Gh, he H* So if f is an outer function, then G is constant and
M = H>.

Now write f = Fh, with F an inner function and h an outer function. If F
is not constant, then FH? is a proper closed invariant subspace containing
2f and so Zfis not dense in H2. [

Corollary 7.3 says that for any outer function f(z) € H?, there are poly-
nomials p,(z) such that

(72) [it-prrg -0

A sharper version of (7.2) can be proved directly.
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Theorem 7.4. Let f(z) be an outer function. Then there are functions { f,} in
H® such that

(7.3) | @ f(@)] <1,
(7.4) O f©O)—>1  almost everywhere.
Proof. Let

un(g) = min(An s logl f(e) I )’

where A, is a large number to be determined later. Let f, be the outer function
with log| f,| = u, and with £,(0) f(0) > 0. Then | f,| < e*", and since u,(0)
+ log| f(8)| <0, (7.3) holds. If 4, — oo, then |lu, + log|f |, » 0 and
£,(0)f(0) — 1. Let A, — oo so fast that

Y (1 = £00)£(0) < co.

Then ) |1 = £, f13 = X AL+ [£,.f13 —2Ref,(0)f(0)} <2} {1 - £,(0)£(0)}
< o0, which implies (7.4). [

The invariant subspaces of H?, 0 < p < oo, are described in Exercise 18.
An invariant subspace of H* is an ideal in the ring H*. The weak-star
topology on H® is defined by the basic open sets

< 1},

where F,, ..., F,e L' and f, € H®. It is the weak-star topology of L* re-
stricted to the subspace H®.

n

ﬂl {feH"":

j=

[rFd0 = (5,500

Theorem7.5. Let I be a nonzero ideal in H*. If I is weak-star closed, then
there is an inner function G such that

(7.5) I = GH>.
The inner function G is unique except for a constant factor, and every set of the

Jorm (7.5) is a weak-star closed ideal in H®.

Proof. 1t is clear that G is essentially unique and that (7.5) defines a weak-
star closed ideal.
~ Now let I # {0} be a weak-star closed ideal. Let M be the closure of I
in H*, We claim

(7.6) M~ H® =1

Since M = GH? for an inner function G and M n H® = GH®>, (7.6) implies
(7.5).
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Clearlyl « M n H*. Let ge M n H®. Then there are g, in I such that

lgn — gll2 = 0.
We shall modify (a subsequence of) the g, by taking functions h, € H® so that

Thagall o < 19
and

h,g9.,— ¢ almost everywhere.

This implies h,g, — g weak-star. The modification, which is the heart of the
proof, resembles the proof of Theorem 7.4. We may assume that |g||, = |
and that

lgn — gll2 < 1/n?,

so that g, — g almost everywhere. Since log|x| < |x| — 1, it follows that
do do a1
log* —gf —1—<f —g|l—< .
Jlstaisi= [ dal-n< [l a5 <
Let h, be the outer function with

log|h,| = —log™|g.|,  h,(0)> 0.

Then |h,g,| < 1 and

1 2 1
1 —h(0)=1—exp— f(—log+|g,,|) dd<1—e M <.
2n n
Hence ) |1 — h,[13 =Y. (1 + |[h,|5 — 2Reh,(0)) < 2> (1 — h,(0)) < oo and
h, — 1 almost everywhere. []

The most interesting ideals of H® are the maximal (proper) ideals. Since
H® is a Banach algebra with unit, the maximal ideals are the kernels of the
homomorphisms m: H® — C (see Chapter V). If a weak-star closed ideal
GH® is maximal, then the inner function G has no proper divisors. Any
singular function S(z) has infinitely many divisors; for example, any power
S'(z),0 <t < 1, of S is a divisor of S. Hence G has no divisors if and only if

G(z) = e* 220 |zl <1, [Al=1
1 -_ Zoz
In that case GH® is the maximal ideal
(1.7 {feH™:f(z0) = 0}
and the complex homomorphism is
m(f) = f(zo).

These are the only weak-star closed maximal ideals.
H*™ has many other maximal ideals that are not weak-star closed. For
example, let S(z) be a nonconstant singular function. Then S(z) is not in-
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vertible in the ring H®, so that by Zorn’s lemma S(z) lies in some maximal
ideal. But because S(z) has no zero in D, this maximal ideal does not have the
form (7.7).

The maximal ideals of H® will be studied in Chapters V and X below.
Here we only say that (7.7) does describe all the maximal ideals of H* which
can be obtained constructively. (The term “constructive” will remain
undefined.)

Notes

See Parreau [1951] and Rudin [1955a] for discussions of the Hardy spaces
on general domains, where it is necessary to define H? in terms of harmonic
majorants.

Theorem 2.3 is due to F. Riesz [1923]. Blaschke products were introduced
by Blaschke [1915]. Theorem 2.4 was published by Frostman [1935].

Theorem 3.1 is from Hardy and Littlewood [1930]. The analogs of (3.2)
and (3.3) for the disc had already been proved earlier by F. Riesz [1923].
Theorem 3.6 is from the famous paper [1916] of F. and M. Riesz; the proof
in the text is apparently due to Bochner. Some applications of that funda-
mental result are included among the exercises for this chapter. Theorem 3.9
will be very important to us later.

On the circle, the integrability of log| /|, f€ H?, was first noticed by
Szeg6 [1921] for p = 2 and by F. Riesz [ 1923] for the other p. The Canonical
Factorization theorem is due to Smirnov [1929]. See F. Riesz [1930] for a
parallel result on subharmonic functions outlined in Exercise 20.

Theorem 6.4 is from Frostman’s thesis [1935], an important paper linking
function theory to potential theory. See Seidel [1934] and the books of
Collingwood and Lohwater [1966], Noshiro [1960], and Tsuji [1959] for
further results on the boundary behavior of inner functions.

Beurling’s theorem is from his famous paper [1948]. The books of Helson
[1964] and Hoffman [1962a] give more thorough discussions of invariant
subspaces.

Different approaches to Hardy space theory are presented in the books of
Duren [1970], Hoffman [1962a], Privalov [1956], and Zygmund [1968].

Exercises and Further Results

1. Suppose f'e HP. Then
f=gh
with g, he H?? and |lg|5, = [lhll2, = I/ 132 Also,
f=h+/
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with f;€ H? an outer function and || f;ll, < | fl,. (Factor out the Blaschke
product. If fis an inner function take f; = (f + 1)/2,f, = (f — 1)/2.)

2. (a) Let f(t)e LA(R), 1 < p < . Then f is the nontangential
limit of an H?(dt) function if and only if one (and hence all) of the following
conditions hold:

(i) The Poisson integral of f(¢) is analytic on .
(i1)) When p < oo,

f@®

t—z

dt =0, Imz <0,

and when p = oo,

J‘f(t)<;— : )dt=0, Imz <0,
t—z

t'—ZO

where z, is any fixed point in the lower half plane.
(i) ForallgeH% q = p/(p — 1),

ffgdt=0.

(iv) For 1 < p < 2 (so that the Fourier transform is defined on L? by
Plancherel’s theorem)

f(s) = lim ' f@)e ™ dt = 0

N—-w ¢v—-N

almost everywhere on s < 0.

Part (iv) is one form of the Paley—-Wiener theorem.

(b) Now let fe LP(0D), 1 < p < . Then fis the nontangential limit of
an HP function if and only if one of the following holds:

1. The Poisson integral of f is analytic on D.
2. [e"f(edf=0,n=1,2,....
3. If

1 .
Hp = {g eHT: g(0) = 5 [ o) d6 = 0},
with ¢ = p/(p — 1), then

ffgd0=0

for all g e HY.
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4. On|z|>1,

1O _,
2niJ { — z )

If fe H?, p > 1, then
1 f(©) dl
(z) =— f , z| < L.
f 27i 1Z]=1 ( -z | I
3 (The jump theorem). Let fe L'(8D). Then on |z| < 1

L (fQd 1 [(f©dl 1 i
2—7_”, C—Z '—2—7_51_ (_ I/E—Zj‘f(ee)Pz(O)dg

Consequently,

im (L (SO e L SQATY
EITH: (27ri f{ re' 4 omi C—e“’/r) = f(e")

almost everywhere. This result is more transparent on the upper half plane.
See Exercise 111.10 below for further information.

4. Let f(e®)e L*(0D). Then f is the nontangential limit of an H*
function if and only if there exists a uniformly bounded sequence of analytic
polynomials p,(z) such that p,(e’) — f(e'®) almost everywhere. If fe H® then
p(z)— f(2), z € D,and p,(z) may be chosen so that | p,||, < || f|l». (Hint: Use
Cesaro means, or approximate f(rz), r < 1, by Ap(z) where p(z) is a Taylor
polynomial for f(rz) and 4 = | /' /Ilpll )

5. (a) Iff(z)e HP(D), then

1 t/p
s (TH) i

and the derivatives f™(z) satisfy

1
(n), S
If (Z)l S Cn,p(l _ |Z|)n+(1/p) Hf”Hp-
These estimates are sharp for every p (except for constant factors); for

example, take f(z) = (1 — |20/l — Zo2)*)!/2.
(b) If f € H?, then by Fourier series or by Green’s theorem,

I, = f(l 12D @I dx dy < el fI2.

More generally, if ¢ > 2, then

o= [La == fireenias) s ar < iz
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(Hint: Let p = (1 + r)/2.) Then
0y 1g—2 . o2 g q—2)/2
[f'(re®) "% < 7(1 Y27 |f'(pe™)|* do

(c) IffeH?andif g > 2, then
1 . 2/q
I, = f (1 - r)_z/“[flf(re"’)l" d0] dr
0

I < CULOP + J,).
(Hint: Integrate by parts, using

satisfies

0 . . .
3 1N < el fe) 17 | f e,

Then apply Holder’s inequality and the Cauchy-Schwarz inequality.)
(d) If0 < p < 1andif fe H? then by part (a),

1-p
[1r0em1a0 < c,,ufnm{(1 T ||f||m} ,

so that

f £ Ge) dO < ¢l f 14571 — r)e- ””"(f | £(re)| d")p'

Consequently

11_ (1/p)-2 0 d0dr < C,|lfl% [(1 =r)" i d0pd.
fo( " flf(re ) dodr < 1| f( " (flf(re ) ) r

If f has the form g%, g € H?, then the integral on the right is I, ,p» and hence

1
f (1 = pim=2 flf(re"")l d8 dr < C1)| f s
0

forallfe H?,0 < p < 1.
See Hardy and Littlewood [1932a] or Duren [1970] for further details.

6. When 1 < p < oo, it follows from Exercise 2 that the dual space of
HP(D)is LYHY,q = p/(p — 1). When 0 < p < 1, H? has a dual space which
can be identified with a space of Lipschitz continuous analytic functions.
We outline the proofin the case 3 < p < 1. For0 < a < 1, let A4, be the space
of analytic functions ¢(z) on D satisfying the Lipschitz condition

lo(zy) — @(z)| < K|z, — 2,/
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(a) If ¢(z) is analytic on D, then ¢ € A4, if and only if
l9'(2)| < e(1 = [z])*7".

If ¢ € A,, the estimate above follows from Cauchy’s theorem for the circle
[¢ — z| = 1 — |z|. For the converse, integrate ¢’ along the contour pictured
in Figure IL1.

Figure IL.1.

(b) Lett<p<1and seta=1/p— 1. If fe H? and @€ A4,, then by
Green’s Theorem

lzl=r

1 —d — 1 —
o ) 1E0@ T =00 + - | fl | J@9@ dxdy

By part (a) and by 5(d),

jfl @Ie@Idxdy < Cl

Hence the limit

1 -
L) =tims [ f@e@ %

r—1 27“ lz| =r

exists and defines a bounded linear functional on H?. If ¢(z) = Z a,z", then
L,(2z") = a,.
(c) Conversely, suppose L is a linear functional on HP, { < p < 1, such
that |L(f)| < B| f | u»,f€ H?. For |w| < 1, set

1
1 —wz

ful2) =

=) wz"
n=0



92 H? SPACES Chap. II

The series converges in H? norm (it converges uniformly) and f, € H®.
Define

)

o(w) = L(f,) = Y, L(z"w"

n=0

Then
l@'(w)| < Blz/(1 — Wz)*||y»,

and the easy estimate

- 1+ |w] 12”f df
P.l?%?r < —
” w“Zp = (1 _ lwl) Pw(e) 27'[,

valid for 2p > 1, yields
l@'W)] < eB(1 — [w])!™1P = cB(1 — |w|)~

Hence ¢ € A,. By the series expansions above, L,(z") = L(z"),n = 0,1,2,...,
and so L = L, because the polynomials are dense in H.

See Duren, Romberg, and Shields [1969] for the full story, 0 < p < 1. On
the other hand, the spaces L?, 0 < p < 1, have no nonzero bounded linear
functionals.

7 (Lindelsf [1915]). Let f(z) € H®.
(@) If

m = ess im| f(e”)| = lim| £ (e*)1(- 5,50 >

0-0 -0

then

lim |f(z)| < m.
D>z—1

(Use the subharmonicity of log| f(z)].)

(b) If
lim f(e®) = a,
6lo
then
lim f(z) =a,
Q5sz-1

where Q; = {zeD:arg(l — z) < n/2 — 6},6 > 0.(Consider log]| f(z) — al.)
(c) If
lim f(e®) = a, lim f() = B,
010

60
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then a = f§ and
lim f(z) = o
D>z-1
(d) Boundedness is not essential for these results. It is enough to assume
that for some n > 0, fe H (D n {|z — 1| < n}), that is, that | f|? has a
harmonic majoranton D N {|z — 1| < n}.

8 (a) (Hardy’s inequality). Iff= )=, a,z"€H', then

la,l
ngo P < x| fll;.
(Write f = gh, |gll3 = |hl3 = |fll;, g, he H:. If g =) b,2", h=) ¢,z
set G =), |b,|z", H=l|c,|Z" and F = GH. Then

0 @« 1

y lal o $ S ihdled = 5 [,

o+ 17 Son+1,=%

where p € L, @, = 7.)

(b) Let f=) a,z"eH'. Then f(e”) is equal almost everywhere to a
function of bounded variation if and only if /'€ H*. In that case f(e") is
absolutely continuous, f(z) is continuous on |z| < 1, and

Y la,| < oo.
When '€ H',

ie' lim f'(re’®) = dif) f(e®)

r-1
almost everywhere (Hardy and Littlewood [1927], and Smirnov [1933]).

%9. Let Q be a simply connected open set bounded by a Jordan curve
[, and let f:D - Q be a conformal mapping. By a famous theorem of
Carathéodory (see Ahlfors [1973] or Tsuji [1959]) the mapping f(z) has
a one-to-one continuous extension from D onto Q.
(@) The curve I is rectifiable if and only if f' € H*.
(b) IfT is rectifiable and if E < I is a closed set, then

length(E) = f | (€] d6.
£YE)
Thus E has length zero if and only if f ~ !(E) has length zero.

(c) Moreover, if T is rectifiable, then the mapping f(z) is conformal
(?ngle preserving) at almost every e'’. More precisely, if f' has nontangential
limit €, and if y is a curve in D terminating at " such that the angle

a= lim arg(l — e )

yoz—-ei®
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exists and a # + m/2, then the curve f(y) meets the tangent line to I at (')
in the same angle o.

Parts (a) and (b) are due to F. and M. Riesz [1916]; see also Smirnov
[1933].

%10 (The local Fatou theorem). Let u(z) be a harmonic function on
D. We say that u(z) is nontangentially bounded at ¢ e T = oD if u(z) is
bounded on some cone

i0
1",,(e“’)={zeD:lz_e |<a}, a> 1.

1 —|z|
If E is a measurable subset of T and if u(z) is nontangentially bounded at each
point of E, then u(z) has a nontangential limit at almost every point of E. By
elementary measure theory there is a compact set F < E, |[E\F]| < ¢, and
there are M > 0 and o > 1 such that |u(z)| < M on

Q= | I,

eifeF
The domain Q is simply connected (it is a union of rays from the origin)
and 0Q is a rectifiable curve (02 consists of F and a union of tentlike curves
over the components of T\ F, and the tent over an arc I < T has length not
exceeding c(a)|I]|). By Exercise 9, u(z) has a nontangential limit, from
within Q, at almost every point of F. Nontangential convergence from within
all of D now follows easily: If ¢ is a point of density of F, that is, if

_IFA[0—25,0+6]
m 2 =

and if § > a, then for some r < 1,

1

{lz] > r} nTh(e®) = Q.
Consequently,

lim u(z)
Tp(ei9)>z—ei®

exists for all B > 1 for almost all ¢’ € F.

The same conclusion holds if it is merely assumed that u(z) is bounded
below on some I',(e') for each ¢ € E. It also holds when the harmonic func-
tion is replaced by a meromorphic function. It follows from the above
reasoning that a meromorphic function having zero nontangential limit on a
set of positive measure must vanish identically on D. The corresponding
assertion for radial limits is false (see Privalov [1956] or Bagemihl and
Seidel [1954]).
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The original source for this theorem is Privalov [1919]; see also Zygmund
[1968, Vol. I1]. A different elementary proof will be given in Chapter IX.

11 (Plessner’s theorem). Let f(z) be meromorphic in D. A point
¢ € T is a Plessner point for f(z) if the angular cluster set of f(z) at ¢” is the
full Riemann sphere S2. In other words, for all « > 1 and for all r < 1,

ST N {lzl > 1}

is dense on S2. The circle T splits into three disjoint Borel sets, T = N u
P u G, such that

(@ INI=0,
(ii) Every point of P is a Plessner point for f(z), and
(i) f(z) has finite nontangential limit at each point of G.

(For rational we C, let E,, = {&: (f — w)™ ' is nontangentially bounded at
¢®}. Then P = T\ E,, is the set of Plessner points for f(z), and (f — w)~!
has nonzero nontangential limit at almost every ¢” € E,,. See Plessner [1927]
or Tsuji [1959].)

12 (Morera’s theorem). Suppose that g(z) € H'(|z| > 1), that is, that
g(1/z) € HY(D). Also suppose that f(z) € H'(D) and that f(e”®) = g(e*®) almost
everywhere on an arc I < T. Set

) f(2), lz] <1,
F(z)_{g(z), 1z] > 1.

Then for z, € I and for 6 > 0 small,

1 f F©O

2mi

d{ =F(z), z€A(zq,0)\T,
[{—20|=6 {—z
so that F(z) has an analytic extension across I N {|z — z,| < 6}. Thus F(z)
extends analytically across 1.

13.  Let f(z) be analytic on D.

(@) IfRef(z) = 0, then fe HP for all p < 1. (Write f = €%, |Im ¢| < /2.
Then | f(z)|P = e?Re¢® < (cos p(n/2))” ' Re(f?(z)), so that | f(z)|” has a
harmonic majorant.)

(b) If fe H' and if f(e) is real, then f is constant. This result is sharp,
because [(1 + z)/(1 — z)] € H? for all p < 1, by part (a).

(¢) 1Iffe H'? and if f(e") is real and positive almost everywhere, then f is
constant.

(d) There are local versions of (b) and (c). Let I be an arc on T. If fe H!
and if f (") is real almost everywhere on I, then f has an analytic extension
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across I. This follows from Morera’s theorem. If h(z) = f(1/z), then he
H'(|z| > 1) and f = h almost everywhere on I.

Similarly, if fe H'/? and if f(e®) > 0 almost everywhere on I, then f
extends analytically across I. Write f = Bg?, where g € H' and B is a Blaschke
product. Then g(1/zZ) € H'(]z| > 1) and on I

B(2)g*(2) = g(2)9(1/2),

so that by Morera’s theorem and reflection both B(z)g(z) and g(z) extend
across I.

The H'/? results have another proof using maximal functions and sub-
harmonicity instead of Riesz factorization. Let v(z) = Im(f'/?(2)), with the
root chosen so that v(z) > 0. Then v(z) is well-defined and subharmonic on D
and 0 < v(z) < | f(2)|"?, so that by the maximal theorem and Theorem
1.6.7, v has least harmonic majorant

u(z) = JPZ(G)v(eio) ao/2n.

Iff (e) > Oalmost everywhere, thenv(z) = Oand f(z)is constant. Iff (¢”®) > 0
almost everywhere on an arc I, then for each z, € I there is 6 > 0 such that
O<u(z)<lonV=Dn{|z—2zy] <8} Then0 < v(z) < 1 on V, so that
[Im(1 + f(2))] < 2 Re(1 + f(2)), ze V. Hence 1 + fe H' (V). Using a con-
formal map from V onto D, we see that 1 + fis analytic across T n V. This
proof is due to Lennart Carleson.

Part (c) is due to Helson and Sarason [1967] and, independently, Neuwirth
and Newman [1967]. The H'/? result in part (d) is from Koosis [1973].

14. (a) The local version of Corollary 4.8(a) is valid when p > 1.
Suppose f€ H'(D). If Re f > 0 almost everywhere on an arc I < T, then the
inner factor of f(z) is analytic across I.

The case p > 1, which we shall use in Chapter IV, is easier. Let u(z) be the
Poisson integral of x;(0) arg f(¢*®) and let v(z) be the harmonic conjugate of
u(z). By Exercise 13(a) e~ **® e H? for all p < 1, so that F = fe” '+
€ H'2, Since F > 0 on I, the inner factor is analytic across I.

The following proof for p = 1 is due to P. Koosis. Replacing I by a subarc
we can suppose that f has nontangential limits at the endpoints 6,, 8, of I
and that Re f(e"%) > 0,j = 1, 2. Let T be a circular arc in D joining ¢! to
€2, Varying I', we may assume infy| f(z)| > 0. Let U be the domain bounded
by I' U I, and let © be a conformal mapping from D onto U. We are going to
show that F = fo 7is an outer function. Because 7 can be computed explicitly,
it will follow easily that

lim | log| f(re®®)| d0 = L log|f(e®)| dO

r-14vJ
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for any compact subarc J of I, which means that the inner factor of f(z) has
no singularities on 1.

Let I'; be a compact subarc of " such that Re f> 0 on I'\I'; and let
y=1" I(T';). Then Re F > 0 almost everywhere on T\, while F(e') is C*®
and nowhere zero on y. Let u € C*°(T) satisfyu = Oon T\y, and |u — arg F|
< m/2 on y, and let g(z) = u(z) + iv(z) where u(z) is the Poisson integral of
u(e™) and v(2) is its conjugate function. In the next chapter we shall see that
g(z)e H*. Then since Re Fe™* > 0 almost everywhere and Fe “e H',
Corollary 4.8 shows that Fe™ " is an outer function.

(b) When p < 1 the result of part (a) above fails. Let {z,} be a Blaschke
sequence and let B,(z) be the finite Blaschke product with zeros z,, 1 < k < n,
normalized so that B,(0) > 0. Let v, € L®, v,(¢’®) = + /2, be such that

lv(e”’) — arg B,(e”)| < n/2
modulo 27. Let v,(z) be the Poisson integral of v,(e®) and let u,(z) be its
conjugate function, u,(0) = 0. Then Re(e*"~ ") > 0, so that
G, = B,e""e HP
for any p < 1, and Re G,(¢"®) > 0 almost everywhere.

Now for fixed p < 1 and for {zi, z,, ..., z,} already selected, we can
choose z,,,; with 1 — |z, | so small that we have

1Gaes — Gl < 27"

Then G, converges almost everywhere and in H? to a limit G and Re G(¢)
>0.Now G(z,) =0,n=1,2,..., but G # 0, because |G(0)| = lim, B,(0).
No constraints have been made on arg(z,) and we can arrange that {z,} is
dense on T. Then the inner factor of G does not extend across any arc of T.

15.  Suppose f(z) € N, the Nevanlinna class. For any a > 0, the non-
tangential maximal function

f*(O) = sup| f(2)]

Ta(0)
satisfies

16

flog If(re"’)l—, A>1,

r<i
Where A, depends only on «. From this estimate it follows that f(z) has non-

tangential limit f(e'®) almost everywhere and that

[1081 @)1 a0p27 < sup [10g* | ey doym

r<i
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16. Let f(2) be analytic on D. Then f(z)€ N if and only if f = f,/f3,
where f; e H®, j = 1, 2, and f, is nowhere zero. The denominator f, can be
taken to be an outer function if and only if fe N*(F. and R. Nevanlinna
[1922]).

17. Let 2 be the set of polynomials in z, and let f € H*(D). Then 2f =
GH?, where G is the inner factor of f.

18. (a) Let 0 < p < oo. If M is a closed subspace of H? invariant
under multiplication by z, then M = GHP for some inner function G. (See
the proof of Theorem 7.5.)

(b) Now let M be a closed subspace of L?,0 < p < oo (if p = oo assume
M is weak-star closed). Suppose zM < M. If zM = M, so that ZM = M,
then M = ygL” for some Borel set E. If zM & M, then M = UH? for some
U € L® such that |U| = 1 almost everywhere.

%19 (Littlewood’s theorem on subharmonic functions). Let u be a
positive measure on D satisfying

1
(E.1) flog ] du() < oo.
The Green’s potential
L_°¢
U,e) = [1og] == ‘ )

is superharmonic on D (— U, is subharmonic). If 1 is discrete with unit masses,
p=Y19,,z+#0, then the hypothesis (E.1) is equivalent to the Blaschke
condition ), (1 — |z,|) < oo, and U,(z) = —log|B(z)|, where B(z) is the
Blaschke product with zeros {z,}. Littlewood proved [1929]

(i) lim,,, j Uy re®)dd =0
and
(i) Nmp g, ,op0 Uy(z) =0

almost everywhere. These generalize the corresponding results about
Blaschke products from Section 2.
After a calculation, the identity

! 1
27 f 8
follows from the mean value property of harmonic functions. Then Fubini’s
Theorem yields (i).
We prove (ii) in the upper half plane for vertical convergence. Because the
problem is local, we assume u has support the unit cube @ = [0, 1] x (0, 1].

{loglzl, r<l|z|<1,

re — z
1 —re ¥z log r, lz| <7,
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The hypothesis (E.1) transforms into
f y du(x, y) < 0,
)

and the potential now has the form

Uyz) = flog g 'du(C)

We must show lim,_ o U,(x + iy) = 0 almost everywhere on [0, 1]. Let u, be
the restriction of u to the strip

A, =0n{2"<Im{ <271}

and let v, be the vertical projection of 27 "u, onto [0, 1], v,(E) = 27"u(E x
(27", 27"*17). By hypothesis, we have

©
2 vl < 0.
n=1

Write
Uu(z) = U (2) + Uy(2),
where
z—(
vi@=| o au(?),
[i-z|> y/4 z—¢(
and
z-¢(
vo=[ g au(®)
l-zl<ya |2 —¢
Yy =Im z. We discuss U, and U, separately.
When |{ — z| > y/4, we have
z—{ m .
lo <c , (=¢+in.
gz—(’ x— O+ +n) 1

Hence

d wm
Vi =c), f GO + G+ ®

N wm ©
<2, f G-+ rm O CM( 2 dv">(")’

n=N+1
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where M(dv) denotes the Hardy-Littlewood maximal function of the measure
v. For any fixed N,

u m

llm dﬂn C = 09
yqo; =07+ G+ )

so that by the weak type estimate for M(dv),

<lm S Y vl =0

N—=w © n=N+1

{x:lim Ui(x + iy)>s}

y-0

To treat U,(z) we suppose z € A,. Then

n+1

2
Uy(z) <c2" ), log -

k=n—1 J|{—x|<2-n

dvk(ﬁ)s

¢

because {|{ — z| < y/4} meets only A,_,, A,, and 4, ;. Since the integrand
is positive and even, we have

J‘ 2
log
le=xl<2-n [ X T

Hence

dt

2| 4@ < CM@) f log|2

< C27"M(dv)(x).

n+1
U(x +iy) < 3 M(dv(x)
k=n-1
and U,(x + iy) - 0 (y — 0) almost everywhere.
A related result will be proved in Chapter VIII, Section 3.

%20. The Canonical Factorization theorem has a generalization to
subharmonic functions. The proof uses the Riesz decomposition theorem
(Chapter I, Exercise 17) and Littlewood’s theorem (Exercise 19).

(a) Let v(z) be a subharmonic function on D, v ¥ — o0, and let u > 0 be
its weak Laplacian. Then for |z| < r < 1,

1 1-1¢z
o) = o)~ 5= | 108 125 o

where u,(z) is harmonic on |z| < r.
(b) If v(z) has a harmonic majorant then its least harmonic majorant is
u(z) = lim,_,; u,(z), and we have

(z) = u(z) — (1/2m)U ,(2).

In particular, the potential converges wherever v(z) > — o0, and Littlewood’s
theorem applies to U ,(2).
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© If
sup fv*(re“’) do/2rn < oo

then the least harmonic majorant u(z) is the Poisson integral of a finite
measure k d0/2n + do, where o is singular, so that by part (ii) of Littlewood’s
theorem, v(z) has notangential limit k(') almost everywhere.

(d) In the special case v(z) = log|f(z)|, fe N, f(0) # 0, we obtain
Theorem 5.5 as a corollary of the results in (b) and (c).

See F. Riesz [1930].



II

Conjugate Functions

After some preliminaries, which identify the conjugate operator with the
Hilbert transform, we prove the famous Marcel Riesz theorem and some of its
variants. Then we discuss the more recent, but also most basic, theorem that
the conjugate function and the nontangential maximal function belong to the
same L7 classes.

1. Preliminaries

Let f()e L'(T), T denoting the unit circle D. Supposing for a moment
that /() is real valued, we let u(z) be the Poisson integral of /() and let #i(z)
denote the harmonic conjugate function of u(z), normalized so that #(0) = 0.
Since
e’ +z
el —z

P.(¢) = Re

we have
e’ + z
e’ —z

@+ i) = o [ (o) do

and
1
i) = 5 [0.0)1 (o) do,

where

_ e’ +z\ 2r sin(6 — @) e
Qo) = Im(ei‘” - z) T1-2rcos@—g)+ 2 ST

These formulae define the conjugate function ii(z) even when f(0) is complex
valued.

102
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The kernel —Q.(¢) = Q0 — @) is the conjugate Poisson kernel.t The
kernels Q, do not behave at all like an approximate identity, because Q,(6)
is an odd function and because |Q,||, ~ log 1/(1 — r). Nevertheless, the
conjugate function i(z) has nontangential limits almost everywhere on T.

Lemma 1.1. If fe L\(T), then i(z) has nontangential limit f(0) almost
everywhere on T.

Proof. We may suppose f(8) > 0. The analytic function g(z) = u(z) + ii(z)
then has nonnegative real part, and G(z) = g(z)/(1 + g(z)) is bounded. The
function G(z) has nontangential limit G(6) almost everywhere, and G(6) = 1
on at most a set of measure zero. Consequently g = G/(1 — G) has a finite
nontangential limit almost everywhere, and so does its imaginary part #i(z).

O

The linear mapping

HOERFI0)

is called the conjugation operator. The conjugate function f can also be
calculated using a principal value integral.

Lemma 1.2. Let f(6) € L'(T). For almost every 0

P | )
(L) 70) = TZEL-M‘:O‘( . )f((p) do.

In particular, the limit in (1.1) exists almost everywhere. Moreover,

(1.2) < CMf(9),

S b—¢
e — 5 L_¢|>1_,C°t( . )f((p)d(p

where C is an absolute constant and where Mf is the Hardy- Littlewood maximal

Junction of f.
Proof. Notice that for 6 # 0,

. . 2r sin 0 sin 6 0
lim Q.(0) = 1 = = Z o=
ro1 2.9 ,1_.n: 1—2rcos@+r* 1—cosb cot 2 2:(),

which is the kernel in (1.1). Set e = 1 — r. For ¢ < 6 < 7, we have
(1 —r)*sin @
(1 — cos B)(1 — 2r cos 0 + r?)

0.(0) — 0,(0) =

1 - 1 -
= 1 QOP0) < 7 0:(1 = NP,6).

P t The minus sign in —Q.(¢) is to ensure that Q(¢) = Q(¢) when z = r. With this notation,
=~ Q. is analytic in |z| < 1 and ¢ — P,(0) + iQ,(6) extends to be analytic in |z| < 1.
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Since (1 — r)Q,(1 — r) < 2, this gives

2
(1.3) 10:(0) = QO] < 7—— PAO)

+r

for ¢ < |0] < 7. On the other hand, for |#] < ¢ = 1 — r, we have
(1.4) 100)] < 1/e.

Now

) 1 0 —
ii(re®®) — o fw_ | cot( (p) f(o)do ’

101 /(6 — @) do

lpl<e

1
too [ 100 - 0@ 156 - o)l do.
T Jlpl>e

< —
2n

By (1.3), (1.4), and Theorem 1.4.2. the last two integrals are dominated by

CMf(0), and (1.2) is proved.
To prove (1.1) we use the fact that the odd functions Q,(6) and Q,(0)xe;>.
are orthogonal to constants. Thus

aoé%-g%J'll cm( )fw-¢)d¢

1
=5 0.(e)( f(0 — @) — f(0))do
lol<e
1
5. £<|¢|<n 137 L 0.@)PL) (6 — ¢) — £(6)) do,

and so by (1.3) and (1.4),

a@%—%fm<>ﬂw-)m‘

1
sﬁf'muw — ¢) — 1) do
1
o 1+ PAo)| £ — @) — £®)] do.

By Chapter I, Exercise 11, the last two integrals tend to zero on the Lebesgue
setof . [
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It is not difficult to prove the nontangential analog of (1.2),

1 0 —
i@ - 5 f,e_(,,,”“’t( . "’)f(<p) do

when ze T (0) and ¢ = 1 — |z|. The details are left to the reader.
The inequality

< C,Mf(9)

— — cot -

<2
0 217w

shows that the principal value in (1.1) has the same behavior as the Hilbert
transform,

1 .
(1.5) Hf (0) = lim — S@) de = lim H, f(6).

e—o U e<|p—0|<m 0 — (4 £~ 0
Although Hf(0) # f(6), the difference arises by convolving f with the
bounded function (2/6 — cot 6/2), so that Hf (0) exists almost everywhere and

(1.6) | f©6) = Hf ®)] < @/ f-

There exist continuous f(6) for which f(6) is not even bounded. For
example, let F = u + ifi be the conformal mapping of D onto {z:|x| <
1/(1 + y*)} with F(0) = 0, F'(0) > 0. Then Carathéodory’s theorem on the
continuity of conformal mappings implies that w(f) = lim,_,, u(re®) is
continous and that #(6) is unbounded. A more elementary example can be
given using (1.5). Let f(0) be an odd function, so that no cancellation can
occur in (1.5) at 6 = 0. Then lim,_,, (r) behaves like

lim%f @dﬁ,
e-0 T Je 6

and this integral can diverge even though fis continuous.
When f(0) is a continuous function on T, we write

() = w(8) = sup |f(6) - f(@)

[0-o|<é

for the modulus of continuity of f. The modulus of continuity is a nondecreasing
function satisfying

lim w(d) = 0 and (0, + 0,) < w(d,) + w(d,).

-0
A function is called Dini continuous if

Jm%t)dt<oo

0
for some g > 0.
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Theorem 1.3. Iff(0) is a Dini continuous function on T, then f exists at every
point of T, fis a continuous function, and

] n
L7 wy(0) < C(L @dt 4 L f‘-i@dt),

where C is a constant not depending on f or .

Observe that if §, is small and if 0 < 6 < J,, then

5 f o) f"" o) 2 L wgt)

so that when fis Dini continuous the continuity of ffollows from (1.7). For
0 <o <1, wesayfe A, if () = O(5%). Then (1.7) shows that conjugation
preserves the Lipschitz classes A,.

Proof. 1f b(0) is a bounded function, then the convolution

|
bef®) = - [bo)f© — 9) do
satisfies

D s(3) < |bllo2,(8) < Clb]l.5 f “0 4

It is therefore enough to show that Hf (0) exists almost everywhere and that
Hf has continuity (1.7).
Since
Hf(0) = lim

e—0

1 f flo)—f (9)

oo 0—9
lo—6]>¢

the Dini continuity ensures that Hf exists at every point.

Let |0, — 6,| = d and take 65 = (6, + 0,)/2. Because a constant function
has Hilbert transform zero we can assume f(0;) = 0. We assume 0, < 0,.
Then

0, +6 9

B @) - Hfo)| < [ O ZIO

T Jo,—s lo — 0,1

02+6 _
+1f |f () f(Hz)Id(p
n

00 lo — 6,]
lf" Af@l lf"”‘s | f()]
+ d — ——
T Jo, o|(P—92| ? T Jg, lp — 6] ¢
1

' do.

)
+_ —
T J352<|0-065)<n 0, —¢0 0,—0
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The first two integrals are dominated by C [3 («(t)/r) dt. Since f(83) = O
the second two integrals are each bounded by

35 20 o
w() 4 o) < c f o) 4y
2 t a2 ¢

4

Again using f(03) = 0, we can bound the fifth integral by
i (t) w(t)

352 i?

Clo, —6,] dt<C5f

Together, these estimates give us (1.7). [J

Corollary 1.4. Let I be an open arc on T. Let f (6) € L' and assume f is Dini
continuous on the arc 1. Then f(0) is continuous at each point of 1.

Proof. First note that if f(§) = 0 on I, then by (1.1), fis real analytic on I.
If J is any compact subarc of I, there is a function g(6) Dini continuous on
T such that g = f on a neighborhood of J. By Theorem 1.3 and the preceding
remark,

f=d+(-9)
is continuous on J. [J

There is a close connection between conjugate functions and partial sums
of Fourier series. Let () € L' have Fourier series

P(0) + iQ,0) = s=1+2 Z P oind

and since P, and Q, are real, we have

P6) = ) rlre®

Qr(e) = Z (— l) Sgn(n)rlnleino'
n#®0

Hence

u(reie) — P'_ *f(e) = ianrlnleino

= 00
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and
H(re) = Q,*f(0) = — i Y sgn(n)a,r"e™.

n® 0

In particular, if f(6) is a trigonometric polynomial Y~ y a,e™, then f(0) is a
trigonometric polynomial of the same degree

N
(1.8) f©) = Y m(n)a,e™,
-~
where
—i, n >0,
m(n) =40, n=0,
i, n <0,

is the Fourier multiplier associated with the conjugation operator. Parseval’s
theorem now gives

Theorem 1.5. Iffe L?, then fe L? and
1713 = 1115 — laol?,
where ay = (1/270) [ f(6) d6.
Now consider the operator
P(f) = 3(f + if) + 3a0,

which sends Y ® a,e™ into ) ¢ a,e™. The operator P discards the g, for
n < 0,and so Pis the orthogonal projection of L onto H2. In any norm under
which the linear functional f — a4( f) is continuous, the operator P is bounded
if and only if the conjugation operator is bounded.

The operator f — e~ " P(ef) discards the coefficients a, for k < —n and
leaves the other coefficients unchanged. The operator f — ! * D0p(e~in+ 1P)
similarly removes g, for k < n + 1. Consequently

e"MP() — & VP INY) = 8, ()

the nth partial sum Y ", a, ™’ of the Fourier series. Similar reasoning shows
that

P(f) = lim &™S,(e”"f)

n—a
for fe L2. This means that the famous Marcel Riesz theorem

1fl, < 4l fl,, 1<p<oo,
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is equivalent to either of the inequalities
I/, < Bpl fll,, 1<p<

or
sup([S, fll, < Cpll fl,, 1<p<oo

It is not hard to see that the last inequality holds if and only if
1Saf =fl, >0 (n—>o0), 1<p<oo

(For one implication use the uniform boundedness principle; for the other
use the L? density of the trigonometric polynomials.)

In the upper half plane let u(z) be the Poisson integral of f(t)e L?, 1 <
p < oo. The conjugate function #(z) is now defined by

. 1 x —t .
“(2)=;fmf(t)dt= Qu*f(x),  z=x+iy,
where

1 t
7zt2-i-y2

Qy(t) =

is the conjugate kernel for the upper half plane. The integral defining #(z)
converges because Q, € L7 for all ¢ > 1. Since

11
P(x —1t)+i —1)=— ,
= D)+ iQy(x =)= ——

the function u + ii is analytic in the upper half plane. This choice of # in-
volves a normalization different from the one used in the disc. Instead of
?‘(i) = 0 we require lim,_, , #x + iy) = 0, because only with this normal-
1zation is it possible for ii(z) to be the Poisson integral of an L? function,
P < . Because Q, ¢ L', for p = oo we revert to the normalization used on
the disc and write

1
(z) = f(Qy(X -t + po l-i—lz)f(t) dt.

Then (i) = 0 and the integral is absolutely convergent when fe L®,

The results obtained above for conjugate functions on the disc can be
Proved in a similar way for the upper half plane, and we shall not carry out
the detailed arguments. We shall, however, point out some minor differences
between the two cases.
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When p < oo, the limit of the conjugate kernels Q,(r), as y — 0, coincides
with the Hilbert transform kernel 1/nt. Thus

1J(x+iy)—71zJ;_| %dt

and as y — 0 both quantities in this expression converge almost everywhere
to the same function f(x) = Hf (x).
The Hilbert transform of fe L*® is defined almost everywhere by

< CMf(x),

1 1 t

Hf (x) = lim d(x + iy) = lim — ( +—) (1) dt.
yex) y=0 Y im0 T dxmgse \X =t 1412 4

The normalization (i) = 0 conveniently makes these integrals converge for

large t.

When y > 0 is fixed, the function K, = P, + iQ, = —1/mi(t + iy) is in
L2, and its Fourier transform
_ 1 N — 2mist
y(s) lim *J‘ ¢ dt

Noow T J_yt+iy

can be evaluated by Cauchy’s theorem,

. Qe 2y, s> 0,
K9 = {0, s <0,

Since P,(s) = e~ 2"k, this gives

—je T 2mlsly, s> 0,

It now follows from Plancherel’s theorem that Q,  f converges in L? norm
as y — 0. Since Q, *f — Hf almost everywhere, we see that Hfe L? and
10, *f— Hf |, = 0, and we have the identities

(1.9) H () = (1) (s) = —t—f(s)
(1.10) IHF |5 = 171, = 1]

2. The L’ Theorems

Fix a > 1. The maximal conjugate function of fe L(T) is

(/)*(6) = sup li(z)|,

Ta(6)
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where i is the conjugate Poisson integral of f(6), and where I',(0) is the cone

e — z|
- 1?.
{l—lzl <a,|z|] <

Theorem 2.1. There is a constant A, depending only on & such that
@) 1{0: (F)(0) > A}] < (4D f],
if fe L\(T).

Proof. 1f we can prove (2.1) for all positive f€ L' with a constant C,, then
(2.1) holds in general with 4, = 8C,. So we assume f > 0. Then F(z) =
(P, + iQ,) * (), z = re”, is an analytic function on D with

0
FO = [1®5 =111,

and Re F(z) > 0. With respect to the right half plane, the subset of the
imaginary axis {is:|s| > A} has harmonic measure

1 u .
h(W)—;J‘M”mdS, w=u+ i

Clearly h(w) > 0 and h(w) > % if Im w > A. On the positive real axis

2 (= 2
h(u)=;J‘ U <

y) 52 + u2 A

The composition g(z) = h(F(z)) is a positive harmonic function on D. It is
the Poisson integral of a positive measure with mass

o0 = ([ 10 5) = wis o

If [Im F(z)| > A, then g(z) > 4, so that
{0:())*O) > A} = {6:9%0) > 3}

By the weak-type estimate for the nontangential maximal function, valid for
Poisson integrals of positive measures (Theorem 1.5.1), we have

1{0: (/)*(0) > 43| < 2B,g(0) = 2B, (| f ) < 4Bo/zd)| f 1,

Where the constant B, depends only on a. Thus (2.1) holds for any fe L!
with 4, = 32B/n. O

_ The proof of (2.1) for the upper half plane differs from the above argument
In one detail.
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Lemma 2.2. If u is a finite measure on R with Poisson integral u(z), then

2
J' dy = lim f tzﬁ-iyz du() = lim myu(iy).

y— oo

The lemma is elementary.

To prove (2.1) for the upper half plane, let fe L'(R), f > 0. Then F(z) =
(u + it)(z) = (P, + iQ,) *f(x),z = x + iy,isanalyticon # and Re f(z) > 0.
Then g(z) = h(F(z)) is a positive harmonic function on . Moreover, since
0 < g(2) < 1, g(2) is the Poisson integral of its boundary values g(t). Again
we have

{t:(/y*0) > 2} = {t:g*(1) > 3},

where (f)*(1) = Supr,|#(z)| is the half-plane maximal conjugate function.
Consequently

Hﬁ(ﬁ%0>lﬂszBﬂ£ﬁom,

But by the lemma,

fg(t) dt = lim nyh(F(iy)) = lim y

y— y— o0

J‘ u(iy) ds
s1> 2 @@y)? + (@Giy) = 5)*

Since lim,_, ,, @(iy) = 0, another use of the lemma yields

fg(t)dt:;ff(t)dtj ds _ 2”7{,1”1'

2
s|>}.s

Therefore we have
[{t: (F)*(t) > A}| < 4Bo/nd)| f I,
when fe L}(R) and f > 0.

Theorem 2.1 shows that the conjugation operator is weak type 1-1 on
LY(T) or on L'(R). We saw in Section 1 that it is also a bounded operator
on L? and so the Marcinkiewicz theorem gives

(22) 1, < Alfl,, 1<ps<2

For 2 < p < o0, (2.2) now follows by a duality argument. From (1.8) or
(1.10) and polarization we have

[faar= - [rga
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when f, g€ LA(R) or L*(T). Let us consider L?(R) only. If p > 2 and if
fe LAR) N LP(R), then with g = p/(p — 1),

ufnp::sup{lj}bdr

whether || £, is finite or not. But then since g < 2,

:ge L3(R) n LYR), |gl, < 1},

1f1l, = Sup{Ufé dt |:ge L*(R) n L(R), g, < 1} < Al S

Since L2 N L? is dense in L?, (2.2) therefore holds for p > 2 with constant
A, = A,. We have proved the following theorem, due to Marcel Riesz.
Theorem 2.3. If1 < p < 0, there is a constant A, such that
1f1, < 4,011,
if fe LAR) or fe LP(T).
From the interpolation we see that
(2.3) A,~A/p-1), p-1,
2.4 A, ~ Ap, p— 0.

These estimates are sharp, except for the choice of the constant 4. By duality,
(2.3)is sharp if (2.4) is sharp. Let f(t) = (o, 1)(t)- Then || ||, = 1 for all p, and

N 1
J@) = E(logltl — log|t — 1),

S0 that

1/} LIS |
Hpr > - (J;|logt|t’dt) :n(

Stirling’s formula then shows

© 1/p 1
f xPe™* dx) =—(['(p + 1)'>.
n

0

1
lim » 171, > e/n.

p—®©

Together, Riesz’s theorem and the maximal theorem give

ICY*I, < Bl f 1, 1 <p< oo,
where

B,~Clp—1% p—L
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This estimate on B, can be improved to
B,~Bf(p—-1), p—-1

by interpolating directly between (2.1) and the L? estimate. At the other end
we have B, ~ Bp (p — o), because the constants in the maximal theorem
are bounded as p — 0.

Notice the fundamental difference between Theorem 2.3 and Theorem 1.3.
In Theorem 1.3 the essential ingredient is the smoothness of f(0); while
Theorem 2.3 depends on the cancellation of the kernel.

Theorem 2.4. Let F(z) be an analytic function on the disc D. If Re F(z) > 0,
then Fe H? for allp < 1, and |F|g» < C,|F(0)|.

This result can be proved from Theorem 2.1 because Re F is the Poisson
integral of a finite measure and because any weak L' function on T is in L?
for all p < 1. However, Theorem 2.4 also has a simple direct proof.

Proof. Write F = |F|e'® where |@| < /2. Then F? is analytic on D and
F? = |F|P(cos pp + isin p@).
Since p < 1, this means
|FIP < C, Re(FP),

where C, = (cos pn/2)~'. Hence
1 . 1 .
= jIF(re'o) Pdo < C, > fRe(FP(relO)) d0 = C, Re(F?(0)) < C,|F(0)]",

as desired. [

Corollary 2.5. If F(z) is analytic on D and if |arg F(z)| < A < 7, then
FeHP? for all p < nj2A.

Proof. Use Theorem 2.4 on F¥?*, [

Corollary 2.6. Iff(@)e L*(T) and if | f |, < 1, then for p < m/2

1 5
Eﬁf i do < C,.
If £ () is continuous on T, then

1 N
plf]
> f dl < oo

for all p < oo.
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Proof. IffeL®, |fl, <1, then
F = exp(+4mi(f + if))

maps the disc into the right half plane. Hence F € H? for all p < 1. If f(0) is
continuous, there is a trigonometric polynomial g such that || f— g[l, < e.
Then § is bounded because § is another trigonometric polynomial. Hence

exp pl f| < exp(p| f — §|) exp plg]|

and the last function is integrable if p < n/2e. [

Theorem 2.7. Let E = T be a measurable set with measure |E| and let
f = xg- Then the distribution function

1{6:17(0) > A}
depends only on |E|.

Proof. let F(z) = (P, +iQ,) «f(0), z=re®. Then 0 < ReF(z) <1,
Re F(e'®) = xx(0) almost everywhere, and F(0) = |E|/2n. Let h(w) be the
harmonic function on the strip 0 < Rew < 1 with boundary values
Xpw: Imw|> 13- Then the bounded harmonic function h(F(z)) has nontanger}tial
limit almost everywhere equal to the characteristic function of {0:| f(6)|
> A}. Hence

1{0:1£(0) > A}| = 2rh(F(0)) = 2rh(|E|/2m).
which proves Theorem 2.7. [

3. Conjugate Functions and Maximal Functions

The Riesz theorem fails when p = 1 and when p = c0. A counterexample
for the case p = oo was given in Section 1, and a duality argument then
shows that the theorem fails for p = 1.

However, there is a related inequality valid for all finite p that implies the
Riesz theorem for 1 < p < oo. Let u(z) be harmonic on the upper half plane
# . Using the cones

I'(t)={zeH:|x—t] <y} teR,
define the nontangential maximal function

u*(t) = sup|u(z)|.
re
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Theorem 3.1. If0 < p < o0 and if u(z) is a real-valued harmonic function on
H such that u* € L, then there is a harmonic conjugate function v(z) for u(z)
such that

3.1 sup flv(x + iy)lPdx < C, flu*(t)l” dt.
y>0
On the unit disc we have the same inequality:
(3.2) sup flﬁ(re“’)l" dd <c, flu*(@)l” d, 0<p< o,
r<l1

where # is the usual conjugate function normalized by #(0) = 0 and where

Ieio

(3.3) u*(0) = sup{lu(z)l: = —_|zZ|I < 2}.

Of course it is not crucial for Theorem 3.1 that the cones I'(¢t) have aperture
7/2. From Theorem 3.6 below it will follow that (3.1) remains true for cones
of any angle.

For p > 1, Theorem 3.1 follows from the Riesz theorem, so we are saying
something new only for p < 1. Aided by the Hardy-Littlewood maximal
theorem, Theorem 3.1 itself implies the Riesz theorem. This theorem was
first proved by Burkholder, Gundy, and Silverstein [1971] using Brownian
motion. The elementary proof given below was recently discovered by Paul
Koosis. We restrict ourselves to the case p < 2, and we first give the proof on
the line. After concluding the proof there we indicate how to adapt the argu-
ment to the circle.

Lemma 3.2. IfF(z) = u(z) + iv(z) is of class H?, if
m(4) = |{t:u*(t) > A}|,

and if
uA) = [{t:|oe)| > A}l,
then
2 A
(34 wA) < 2m(d) + = f sm(s) ds.
A% Jo
Proof. Let

U, = {t:u*@®t) > A},

$o that m(d) = |U,|, and let E; = R\U,. Form the region # = | J;cg, I'(t).
The boundary 0% consists of two subsets,

E,=R nNoA and I'={y>0}ndA.
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The set I' is the union of some tents whose bases are the component intervals
of the open set U, as shown in Figure IIIL.1.

Figure IIL.L1. On 2, |u(z)| < A

Since F(z) € H?, Cauchy’s theorem and the density of Uy in H! yields
F*(z)dz = 0.
oR
Expanding out the real part of the integral gives
f (> — v?)dx + f(uz — %) dx — f2uv dy = 0.
E; r r
OnT,|dy| = dx and —2uv < u® + v, so that
— f2uv dy < f(uz + v?) dx.
r r
Hence we have

OSJ (uz—vz)dx+2fu2dx
E; T

and
(3.5) j v?dx < J uzdx+2Jvu2 dx.
E; E, r
Along T, we have |u(z)| < 4, so that
Juz dx < A* fdx = A2|U,| = A®m(]).
r r

To estimate the other term on the right side of (3.5), write

f utdx < | (u*)*dx = ff 2s ds dx
E; E;

u*<A4
O<s<u*

A 2
= f .[ dx 2sds = f (m(s) — m(A))2s ds
0 {s<u*<i} 0

A
= f 2sm(s) ds — A*m(A).
(0]
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With Chebychev’s inequality, (3.5) now yields
A
[{teE,:|v(t)| > A}| < (1/4%) f 2sm(s) ds — m(d) + 2m(4).
0

Then since
A < Uzl + [{teE; o) > A},
(3.4) is proved. O

In equality (3.4) is the main step in the proof of Theorem 3.1. The rest of
the proof is more routine.

Lemma 3.3. If0 < p < 2, and if u* € L?, then
1/2 1/p
(flu(x + iy)|? dx) < 2y1/2*‘/"(f|14*|’J dt) , y>0.
Proof. Fix y > 0. Then

lu(x + iy)l” < inf [u*()F S(l/2y)f_ lu*(0)1? dt,

[t—xi<y x—y
and so

suplu(x + iy)| < 2y)~VPu*|,.

Since p < 2, this yields
1/2
(flu(x +iy)l? dX) < {(Zy)‘””z’“’llu*llﬁ_” flu(x + iyl dX}

1/p
< (2y>“2*”f'(f|u* i dr) ,

1/2

as asserted. [

To prove Theorem 3.1 for the line and for 0 < p < 2, assume u* € L? and
fix yo > 0. By Lemma 3.3 there is a conjugate function v(z) defined on
y > y, such that f = u + iv satisfies

sup flf(x + iy)|* dx < o0.

y>yo

Forevery yo > 0 there is only one such v, and hence v does not depend on y,.
Let

HA)y = [{x:]v(x + iyo)| > A}[.
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Since ug(z) = u(z + iyo) has u} < u*, Lemma 3.2 implies that
2 A
w(A) < 2m(A) + pE f sm(s) ds,
0

where m(A) = | {t: u*(t) > A}|. Integrating this inequality against pA?~! di
now gives

[106 + o ax = [paetu aa
(4]
<2 f pAP " Im(A) dA + 2 f psm(s) J AP=3d) ds
(o] 0 s

2 o0
= 2fu*p + —— f ps?m(s) ds
2—-pJoy

1
=2(1 + ——)llu2.
( +2_p)llu 4

The right side is independent of y, and we have (3.1) with constant

1
Cp=2<1+2—_;), p<2

It does not matter that this constant blows up as p — 2 because the Riesz
theorem gives another proof of 3.1)for p > 1. [

The case p > 2 of Theorem 3.1 can of course be proved without recourse to
the Riesz theorem. The case p > 2 follows from the case p < 2 by a duality,
and an interpolation then gives the remaining case p = 2.

On the unit disc the same reasoning can be used once we establish an
inequality like (3.4). Let f=u + itie H?, where @#(0)=0. Let U, =
{0:u%(0) > A}, where u* is defined by (3.3), let E, = T\U,, and let m(1) =
[U,|. Also let u(A) = [{0:]i(0)| > A}|. If m(4) is not small we automatically
have

1 A
(3.6) W) < Cm(d) + — f sm(s) ds,
A% Jo

}Nhich is the inequality we are after, and so we assume m(4) is small. As before,
orm

.Ie“’—z|

R = zi—— < 2.
og,\{ 1 —z| }
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Now 0# = E, uT, where I' is a union of tentlike curves, one over each
component of U;. By Cauchy’s theorem

1
u(0)? = T L@fZ(:) dz/z.

On E;,
1 dz_ds
2ni z 2%
while on T,

1 dz _db dr

oni z 27'5 = 2mir’

If m(1) = |U,| is small enough, then 1 — r is small on I', and a calculation
then shows that

i <1
rdf
almost everywhere on I'. Taking the real part of the integral above then gives
d
0<2~ (u - @7 do + 5 f(u —(u))d0+—f2uu7r
r

We have the estimate

JZIuvl

(@)* db < f

E,

f(u + (@)%) db,

so that we obtain

u*do + 2 Juz do
Ex r
when m(A) is small. This inequality implies (3.6) just as in the proof of Lemma
3.2 and consequently (3.6) is true for all values of m(A). The remainder of the
proof of Theorem 3.1 now shows that (3.2) holds for 0 < p < 2, and the
Riesz theorem gives (3.2) for 2 < p < o0.

Corollary 34. If0 < p < o and if u(z) is a real-valued harmonic function,
then u(z) = Re f(z), f€ H®, if and only if u* € L?. There are constants ¢, and
¢, , depending only on p, such that

cullu*ll, < IS, < callu*ll,

Proof. The inequality ¢, lu*|, < || /|, was proved in Chapter II. The other
inequality is immediate from the theorem. [l
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Corollary 3.4, which is of course equivalent to the theorem, is very im-
portant because it enables the HP spaces, p < o0, to be defined without any
reference to analytic functions. The H” spaces can further be characterized
without recourse to harmonic functions (see Fefferman and Stein [1972]).

Corollary 3.5. If 0 < p < o0 and if u(z) is a harmonic function such that
u* € LP, then there is a conjugate function v such that v* € L? and

[o*15 < Cpllu|l}.

Proof. By Corollary 34, f=u + iv is in H? with || f|? < c5|lu*||5. The
maximal theorem then shows that f* e L? with || f*||F < Ach|lu*||5. Since
trivially v* < f*, we conclude that [[o*||5 < C,[u*|5. O

There is another inequality even stronger than (3.1) in which the nontan-
gential maximal function is replaced by the vertical maximal function.
Still letting u(z) be a harmonic function on J#, we write

ut(t) = suplu(t + iy)|, teR.

y>0
Obviously u*(t) < u*(t). Conversely, we have

Theorem 3.6. If0 < p < oo and if u(z) is harmonic on 3, then

flu*l" dt <c, f|u+ P dt,
where c,, is a constant depending only on p.

As a corollary, we see that a harmonic function u(z) is the real part of an
H? function if and only if u* € L?, and consequently that (3.1) holds for
cones of any angle.

The proof of Theorem 3.6 rests on a remarkable inequality due to Hardy
and Littlewood.

Lemma 3.7. If u(z) is harmonic on the disc A(zy, R) and if 0 < p < oo, then

1/p

1
(3.7) u(e)| < Ky 3 j W@ dxdy)

A(zo, R)
where K, depends only on p.
When p > 1, this lemma is a trivial application of Holder’s inequality and

the mean value property. When p < 1 the inequality is rather surprising,
because |u(z)|” is not always subharmonic.
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Proof. We only have to treat the case p < 1. We may change variables and
assume z, = 0, R = 1. Write

1 2n . 1/q9
my(r) = (Z f |u(re'®)|? d()) .

0
We can assume that

! 1
2 J my(r)Prdr = — f u(z)|P dx dy = 1
0

T
A(0, 1)

and then that m_(r) = sup{|u(z)|:|z| =r} > 1 for 0 <r < 1, because
otherwise (3.7) is true with K, = 1.
Since p < 1 we have

my() < — [1uelr 20 m. 017 = mye¥mo .
2n

Also, estimating the supremum of the Poisson kernel gives

2
my(p) < ml(r), O<p<r<l.
1 —p/r

Set p = r*, where a > 1 will be determined later. Then

1 dr 1 2 dr 1 dr
lo mwr")—sf 10( )—+ f log m(r) —
L/z g ( r 1/2 £ L —p/r)r P 1/2 g p( ) r

1
+=p [ togmn?.
1/2 r

The first integral converges with value C,, and the second integral is bounded
by
1 dr 1
f mh(r)—< 4 f my(r)r dr < 2
1/2 r 0
by our assumption, and so we have

1 1
f log m(r*) @ <(Ce+2)+(1-p f log m(r) ﬂ
1 r 1/2 r

2

Since we have assumed log m(r) > 0, a change of variables gives

1 1 1
f log m(r) ﬂ < f log m(r) ﬂ = f log m(r*) @
1/2 r (1/2)= r 1/2 r
1 dr
<auC,+2)+ ol —p) log my(r) P

1/2



NOTES 123
Taking a(1 — p) < 1 now yields

. (C,+2) 1
inf  logm(r) < 2 =
it ") <5 = pyiog2

log K

p’
and (3.7) follows from the maximum principle. [

Lemma 3.7 provides an alternate proof of Lemma 3.3 but with a different
constant.

Proof of Theorem 3.6. Fix q,0 <g<p.Letz=x+iyel(t) = {|x — ¢
< y}. Then u is harmonic on A(z, y/2), and Lemma 3.7 gives

4K9 _ c, .
)l <t f Lw)m(é +in)f dé dy < < u* (@) de

|€-x|<y/2

<& W@ dé,
Y Jig-1<3y2

since | x — t| < y. The last integral is dominated by C;, Mg(r) where g = (u™)*
and where Mg is the Hardy-Littlewood maximal function of g. We have
proved that

[u*@®)1” < Ci(Mg(t)".
Since p/q > 1 and g € L”/%, the maximal theorem gives us

f]u*(t)l" dt<C flMg(t)I"“’ dt<C f|u+(t)|" dt,

and Theorem 3.6 is proved. [

Notes

For the classes A,, Theorem 1.3 dates back to Privalov [1916]. The weak-
type estimate

(N.1) [{0:1f O > 2} <A/MIfI,
and its corollary
(N.2) Ifl, < A4,lfl,  O0<p<i,

which of course follow from Theorem 2.1, are due to Kolmogoroff [1925].
The weak-type estimate for the Hilbert transform had been published earlier
by Besicovitch [1923]. M. Riesz announced his theorem in [1924], but he
delayed publishing the proof until [1927]. Corollary 2.6 is due to Zygmund
£1929] and Theorem 2.7 is from Stein and Weiss [19597.
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There are numerous proofs of the Riesz theorem. The one in the text was
chosen because it is short and because it stresses harmonic estimates. The
proof of Theorem 2.1 copies the Carleson proof of Kolmogoroft’s inequality
in Katznelson [1968]. I learned this proof of Theorem 2.7 from Brian Cole,
while driving in Los Angeles.

The real-variables proofs of the Riesz theorem, which are more amenable
to higher-dimensional generalizations, lead to the theory of singular integrals
(see Calder6én and Zygmund [1952], and Stein [1970]). The Calderén-
Zygmund approach to Theorem 2.1 is outlined in Exercise 11, and some of its
ideas will appear at the end of Chapter VI. Another real variables proof,
relying on a beautiful lemma due to Loomis [1946], is elegantly presented in
Garsia [1970].

Three other proofs deserve mention: the original proof in Riesz [1927] or
in Zygmund [ 1955]; Caldero6n’s refinement in Calderén [1950a] or Zygmund
[1968]; and the Green’s theorem proof, due to P. Stein [1933], which is given
in Duren [1970] and also in Zygmund [1968].

The best possible constants 4, in Theorem 2.3 were determined by
Pichorides [1972] and independently by B. Cole (unpublished). Using
Brownian motion, B. Davis [1974, 1976] found the sharp constants in
Kolmogoroff’s inequalities (N.1) and (N.2). Later Baernstein [1979] gave a
classical proof of the Davis results. The idea is to reduce norm inequalities
about conjugate functions to a problem about subharmonic functions on
the entire plane. By starting with nonnegative functions, we could work with
harmonic functions on a half plane instead. The cost is higher constants and
some loss in generality. Gamelin’s recent monograph [1979] gives a nice
exposition of Cole’s beautiful theory of conjugate functions in uniform
algebras and derives the sharp constants for several theorems.

The Burkholder-Gundy-Silverstein theorem, Theorem 3.1, is now a
fundamental result. On the one hand it explains why conjugate functions
obey the same inequalities that maximal functions do. On the other hand, the
case p < 1 of the theorem shows that the nontangential maximal function is
more powerful than the Hardy-Littlewood maximal function. It is not the
harmonicity but the smoothness of the Poisson kernel that is decisive here.
For example, let ¢(¢) be a positive, Dini continuous, compactly supported
function on R. Let fe L'(R) be real valued, and, in analogy with the Poisson
formula, define

Ux, y) = ; jq»("T") fod,  y>o0

Then forQ < p < 1,/ = Re F, Fe H?, if and only if
sup | U(x, y)| € L*(R).

y>0
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This theorem, and another proof of Theorem 3.1 for R", are in Fefferman and
Stein [1972]. Incidentally, the exact necessary and sufficient conditions for a
kernel @ to characterize H? remains an unsolved problem (see Weiss [ 1979]).

Another route to Theorem 3.1 is through the atomic theory of H? spaces.
See Coifman [1974] for the case of R!, Latter [1978] for the generalization
to R", and Garnett and Latter [1978] for the case of the ball of C". The theory
of atoms is briefly discussed in Exercise 11 of Chapter VI

The elementary proof of Theorem 3.1 given in the text is from Koosis
[1978]. It makes this book 10 pages shorter.

Exercises and Further Results

1 (Peak sets for the disc algebra). Let E = T be a compact set of
measure zero.
(a) (Fatou [1906]) There exists u € L'(T) such that u: T — [— o0, 0)
continuously, u~!(—o0) = E, and u is C! on T\E. Then

g=u+ii

is continuous on D\E and g has range in the left half plane. The function

is in the disc algebra A, = H* n C(T) and f,(z) = Oifand only ifz € E. Thus
any closed set of measure zero is a zero set for A, . Conversely, if E < T is the
zero set of some nonzero f€ A4, , then |E| = 0. ([ log| f|df > —o0))

(b) (F.and M. Riesz [1916]) Let g be the function from part (a) and let

fi=g/g—1.

Thenf,eA,,f; =1onE, and | f,(z)| < 1, ze D\E. This means E is a peak
set for A,. Conversely, any peak set for 4, has measure zero. (If E is a peak
setand iff= 1 on E, | f| < 1 on D\E, then 1 — fhas zero set E.)

(c) Use part (b) to prove the F. and M. Riesz theorem on the disc: If u
is a finite compiex Borel measure on T such that | ™ du(f) = O,n = 1,2,...,
then uis absolutely continuous. (If not, there is compact E, | E| = 0, such that
[ du # 0. But

lim Jj"{e“’ du = 0)

This is the original proof of the theorem.
(d) (Rudin [1956], Carleson [1957]) If E < T is a compact set of
measure zero, then E is a peak interpolation set for 4,: Given he C(E) there
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exists g € 4, such that the restriction to E is h and such that

191l = Al = sup|h(z)].
E

By Runge’s theorem there are g, € 4, such that g, — h uniformly on E. Take
n; so that |g, ., — g,,| <27/ on some open neighborhood V; of E, and take
k; so that

|gnj+1 - gnjl |f1;1| <27/
on T\V;, where f is the function from part (b). Then

g = gm + Z f’ij(gnj+1 - gnj)
j=1

isin A, and g = h on E. By being a little more careful, one can also obtain
gl = lIRll.

(e) The result in (d) can also be derived using a duality. The restriction
map S: A, — C(E) has adjoint $* : M(E) » M(T)/A., where M(E) = C(E)*
is the space of finite complex Borel measures on E and where A; = M(T) is
the subspace of measures orthogonal to 4,. The F. and M. Riesz theorem
from Chapter II shows that $* is an isometry. If I is the ideal {fe A, : S(f)
= 0}, then by a theorem in functional analysis the induced map §: 4,/I —
C(E) is also an isometry and § maps onto C(E). Thus if h € C(E) and if & > 0,
there exists g€ A, such that g = h on E and ||g|,, < (1 + ¢)|h|. With m,
chosen correctly,

gdo =2 27"yg
then satisfies |goll = ||h|| and S(g,) = h (see Bishop [1962] and Glicksberg
[1962]).
% (f) (Gamelin[1964]) Let p(z) be any positive continuous function on

D. If he C(E) and if |h(z)| < p(z), z € E, then there exists g€ A, such that
g = hon E and |g(z)| < p(z), ze D.

2. We shall later make use of the following application of 1(b) and 1(c)
above. Let y be a finite complex Borel measure on 7. Assume dy is singular to
d0. Then there are analytic polynomials p,(z) such that

@ Ipl <L)zl <1,

(i) | p.du— |ul, and
(iii) p, — 0 almost everywhere df.

Condition (iii) can also be replaced by p, —» —1 almost everywhere df.
(Hint: There are E, compact, E, < E, 1, | E,| = 0 such that u is supported
on | ) E,. Let h,e C(E,), lh,|l <1, [g, h,du— |ul; let g, € A, interpolate
h,, llg.ll < 1;and let p, be a polynomial approximation of g,,.)
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k3. Let A™ denote the algebra of functions f such that f and its first m
derivatives belong to 4,, and let A = nA™ Let 4,,0 < o < 1 be the space
of functions f'€ 4, such that

1@ —fW)] < K[z — w]

(a) Let E be a closed subset of the unit circle having measure zero, and
let {/;} be the lengths of the arcs complementary to E. Necessary and sufficient
for E to be the zero set of a function in A® or 4, is the condition ) ; I; log(1//)
< oo (see Carleson [1952]).

(b) On the other hand, there is fe A™ such that f(z) =1, z€E, and
| f(2)| < 1,ze D\E, if and only if E is a finite set (see Taylor and Williams
[1970]; the papers of Alexander, Taylor, and Williams [1971] and Taylor
and Williams [1971] have further information on related questions).

4. Theorem 1.3 is sharp in the following sense. Let w(d) be continuous
on [0, 2x], w(d, + J,) < a)(él) + w(d,), w(0) = 0. Suppose

(a) There exists fe C(T), freal, such that
0[8) < ()., 8 <.

but such that f is not continuous. (Let f(t) = (), 0 < t < §,, f(t) = 0,
-1<t<0)
(b) Thereis g € C(T), g real, such that

w,(8) > w(5)

but such that § is continuous. Here, in outline, is one approach. If K is the
Cantor ternary set, then {x — y, x€e K, ye K} = [—1, 1]. (Try drawing a
picture of K x K.) Let h € C(K) be real, w,(6) > w(d), and find g € H* with
continuous boundary values such that g = hon {¢?: 0 e K}.

S. If fe C(T) is Dini continuous, then S, f — f uniformly. There is a
sharper result: S, f — funiformly if w(8) log(1/8) — 0 (6 — 0) (see Zygmund
[19687).

6. If1 < p < oc,and iffe L?, then

ISnf = fll, =0

7. Letfe LY(T).If || f|log2 + | f1) d0 < oo, thenfe L'.Iff > O and
fe L' then

[171108 + 171 d6 < <o
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The first assertion is due to Zygmund [1929], the second is due to M. Riesz;
see Zygmund [ 1968].

8. Prove the two Kolmogoroff estimates
{If1 > <@MIfl, and  |fll,<4,0fl, O<p<l.
The first is valid on both the line and the circle, the second on the circle.

9, Let E be a subset of R of finite measure and define
o1 t
Hyp(x) = lim - 0
-0 Tt |x=t]>¢ x—t
Then the distribution of Hy; depends only on | E|. More precisely,

2|E|
sinh 7l

H{IHye(x)| > A} =

(see Stein and Weiss [1959]).

10 (More jump theorem). Let f € L'(T) and define

r L[ 1O

=, , lz| # 1L
271:1 Ig)=1 C_Z | |

From inside D, F(z) has nontangential limit called f,({) at almost every { € T,
and from |z| > 1, F(z) has nontangential limit f,({) at almost every (€ T.
Moreover

[ = £0 = ()
almost everywhere.

%1l. Letfe L(R), 1 < p < co. Write

mﬂ@=££ﬂ.fmdg £>0,

T X —1
and
H*f(x) = iglngef(x)l'
H*fis the maximal Hilbert transform.
(a) Show
H*f < ¢, M(Hf) + c, Mf,

where M is the maximal function, and Hf = lim,_,, H, f. Then conclude by
means of (1.10) that |[H*f ||, < c| f1l,.
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(b) Assuming that H* is weak-type 1-1, show by interpolation that
V1, < ¢yl fll, 1 < p<2.

(c) With ffixed, there is a measurable function &(x), 0 < &(x) < o, such
that

|How f(x) | = ZH*f (x).

(This process is called linearization.) Consequently

f(H*f(x»g(x) dx < 2 f (oo f(0)g00)] dx < 2 f | f O H*g(0) dx,

sothat [|[H*f||, < C,l fll,,2 < p < o0, now follows by duality from part (b).
(d) From (b) and (c) it is almost trivial that Hf = lim,_,, H, f satisfies

IHf 1, < Coll f1I,-
(e) We turn to the weak-type estimate
(E.1) [{x: H¥f (x) > 34} < (C/DI f ;.

Let Q = {x: Mf(x) > A} and let F = R\Q. Write Q = ( 2, I; where the
closed intervals I; satisfy

dist(F, I;) = |1,] (see Figure 111.2).

Figure I11.2. The decomposition Q = | I,.

Notice that

1
— | 1 f@®)dt <24
|Ij| I;

because I ; is contained in an interval twice as large that touches F. Let

1
g(x) = f(X)xe(x) + Z (ITI Lf 1)) dt)xz,.(X)

and

1
bx) = /(0 — gx) =X, (f(x) - s dr)x,,(x).

J
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Real analysts call g(x) the good function, b(x) the bad function. The reason
g(x) is good is that ||g||, is not too large,

1 2
lgll3 = f |f 12 dx + ) (— o dt) [ 1l
F 7\l
<i[if1as+ 2y [ 1r@la< 201,
F j vI,
Therefore the L? estimate from part (a) yields
C 2C
[{x:H*g(x) > 4] < 53 lgl3 < AL
and (E.1) will follow if we can show
H{x : H*b(x) > 24} < — || f ;-
By the maximal theorem, |Q| < (C/A)|| f ], so that we only have to prove
C
(E.2) [{x eF:H*b(x) > 21}| sIIIfIII.

Write the bad function b(x) as )_ b(x), where
1
;] Jy,

and note that b{x) has the good cancellation property | b{x) dx = 0. Fix
x € F and let ¢ > 0. Then

bix) = (f(x) LI dt)xz,(x),

b (1)
H. b(x) = — = dt
) ; I.x—t|>e-)c =1
bt b
= ) ﬁdt + Y ﬂdt.
dist(x, I;)>¢ Ijx -1 dist(x, I;)<e lx—r|>£x -t

= A(x) + B(x).

Let ¢; be the center of I;. When dist(x, I;) > ¢, we have

b(t) . 11
L p— tdt = Lbj(t)(x T o tj)dt

_ bi(t)t —t))
B (= Ox —t)
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since [ b(t)dt = 0. For xe Fand tel;, |x — t|/|x — ;| is bounded above
and below, so that

-(t) j lb(t)l
J J
= eyl | oo
Therefore
b t
sup [4,00] < Ax) = X i) [ 120 g
£>0 ; 1 1x =t

The trick here was to use the cancellation of b(t) to replace the first-order
singularity by a second-order singularity. Now we have

“d
fA(x) dx < CY c|l}| f 170] f _stt
F j I; 17, S
<CY bjlly <2C|f 1,

and
C
[{x€F:sup|4(x)| > A}| < — 1l
When dist(x, ;) < ¢, we have |I;| = dist(F, I;) < ¢, so that
[B(x)| < g f 1> bj)| dt < cMb(x).
e<|x—t] <2
Since ||b|l; < 2| f|, this yields
[{x e F:sup |B(x)| > 4}| < —Hf!h

e>0

Now (E.2) follows from the weak-type estimates we have established for
sup,|A,(x)| and sup,|B,(x)| (see Calderon and Zygmund [1952] and Stein
[19707).



IV

Some Extremal Problems

We begin with the basic duality relation,

(0.1) inf [[f—gll, = SUP{’ fFf* € H§, IF, = 1}-

geHP

This relation is derived from the Hahn-Banach theorem in Section 1. Then,
rather than continuing with a general theory, we use (0.1) to study three
important and nontrivial problems.

1. Determining when a continuous function on the circle T has contin-
uous best approximation in H*. This problem is discussed in Section 2.
2. Characterizing the positive measures y on T for which

flﬁl2 dp <K flpl2 du

for all trigonometric polynomials p(#). This topic will reappear in Chapter
VI, where the main result of Section 3 of this chapter will yield information
about the real parts of H® functions.

3. Solving the interpolation problem

(0.2) f(z) = w;, j=12...,

f€ H®, with the additional restriction that | f(e'®)| be constant or that | || ,
be as small as possible. This problem is treated in some detail, because
Theorem 4.1 below will have important and striking applications later and
because the rather precise results on this topic require ideas somewhat
deeper than the duality relation (0.1).

To compare the duality approach to a more classical method, we conclude
the chapter with Nevanlinna’s beautiful solution of (0.2).

132
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1. Dual Extremal Problems

Let X be a Banach space with dual space X* and let Y be a closed subspace
of X. Then

Yt={x*e X*:{y,x*> =0forall ye Y}

is a closed subspace of X*. The Hahn-Banach theorem gives us the isometric
isomorphisms

(1.1) Y* x X*/Y4,

(1.2) (X/Y)* =~ Y*

These isometries can be rewritten as two equalities.

Lemma 1.1. Ifx*e X*, then

(1L1)  sup{I<x*, pl:ye Y, iyl < 1} = inf{lx* — k| :ke Y*}.
Ifxe X, then

(1.2)  inf{lx — yl:ye Y} = sup{|<x, k>|: ke Y*, Ik| < 1}.

Proof. The left side of (1.1) is the norm of the restriction of x* to the sub-
space Y and the right-hand side of (1.1’) is the norm of the coset x* + Y*!
in X*/Y*. By (1.1) these quantities are equal. In the same way (1.2) implies
(1.2). O

On the circle T we have the Banach spaces C = L® < L? < L', where
C = C(T) is the space of continuous functions on T and where the L?
spaces are with respect to df/2n. We are interested in the subspaces 4, <
H® < HF < H!, where A, is the disc algebra 4, = C n H*. We then have
the accompanying table, in which ¢ = p/(p — 1). In the table H} denotes
{g€ H%: g(0) = 0}, M(T) is the space of complex Borel measures on T with
total variation norm, and H} is identified with the closed subspace of M(T)
consisting of those absolutely continuous measures F df/2n having density
Fin H{. The two blanks in the L® row will be filled in in Chapter V, but the
spaces filling the blanks will not be too useful for our purposes. To obtain
the last column of the table observe that if F € L% g > 1, and if | ¢"F(0) d6
=0forn=0,1,2,...,then F € H%. The characterization of A} as H} is the
disc version of the F. and M. Riesz theorem (Theorem I1.3.8).

X Y X* vt
C A, M) H}
L= H* - -
L p<x Hf L H3,

L HY L* H*
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Theorem 1.2. Let | < p < o0, and let fe L?, f¢ HF. Then the distance from
fto H? is

. . 0

(1.3) dist(f, H?) = inf |f—gl, = sup{) ffF—;l—n ):FEH‘('), |Fl, < 1}.
geHP

There exists unique g € H? such that dist(f, H?) = | f — gll, and there exists

unique F e H§, |F|, = 1 such that

0
(1.4) ffF ‘21—n = dist(f, H?).

Proof. The identity (1.3) follows from (1.2'). Let g,€ H” be such that
| f— gnll, = dist(f, H?). The Poisson integrals of f — g, are bounded on
any compact subset of the disc, so by normal families there is an analytic
function g on D such that g,(z) — ¢(z), z € D, if we replace {g,} by a subse-
quence. Taking means over circles of radius r < 1, we see that g € H? and that
If—gl, <lim| f— g,l,. Thus | f— gl, = dist(f, H?) and there exists at
least one best approximation g € H”.

Let F,e H3, |F,l, <1, be such that (fF,d6/2n — dist(f, H"). Since
1 < g < o0, the Banach-Alaoglu theorem can be used to obtain a weak-star
limit point F of {F,}. Then [|F||, < 1, F e H§, and ij d0/2n = dist( f, HF).
Since | gF df = 0, we have

(L5) dist(f, H”) = j(f— 9F a82r < || f = gl IFlly < ILf = gll,.

Equality must hold throughout this chain of inequalities. This means
[Fll, = 1, and there exists a dual extremal function F for which (1.4) holds.

Now let g € H? be any best approximation of f and let F € H} be any dual
extremal function. Because equality holds in (1.5), the conditions for equality
in Hélder’s inequality give us

fmg o, _yfgp?
— = = F|F| and F = —-g)—
Ty = =gz
when p > 1. When p = | we get
(= F =1f—gl

instead.

Let p > 1. Since | F| > 0 almost everywhere, the first equation shows that
g is unique. Since F € H} is determined by its values on any set of positive
measure, the second equation shows that F is unique.

Similarly, when p = 1, the third equation shows that F is unique. The third
equation then shows that Im(gF) is unique. Since gF € H§, this determines
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gF uniquely, and then g is determined almost everywhere because |F| > 0
almost everywhere. [

Note that the best approximation g € H? and the dual extremal function
Fe H§, |F|, = 1, are characterized by the relation

0
(16) [r=ar S =15=aliFl,= 15 a1,

which is (1.5) with equality. Sometimes it is possible to compute dist( f, H?) by
finding solutions F and g of (1.6) (see Exercise 3).

When p = oo some of the conclusions of the theorem can be rescued if we
use the bottom row of the table instead of the second row, and use (1.1)
instead of (1.2").

Theorem 1.3. If fe L™, then the distance from fto H® is

do
F
ff 2n
There exists g € H® such that || f — gll o, = dist(f, H®). If there exists FeH),
|F| < 1, such that

dist(f, H®) = inf [|f —g], = Sup{

geH®

‘FeHL, |F|, < 1}.

do
dist(f, H®) = ffF Py
then the best approximation g € H® is unique and
| f— gl = dist(f, H)
almost everywhere.

Proof. The dual expression for the distance follows from (1.1°). Just as in
the proof of Theorem 1.2, a normal families argument shows there is a best

approximating function g€ H®. If a dual extremal function F € H{ exists,
then

0
it B = [(7= 9F 3= 15 = gl FlL,
S0 that

dist(f, H*) [ f—gll. |F|

almost everywhere, and there is a unique best approximation g 0O

If a dual extremal function F exists, (1.7) does not imply that F is unique.
But it does, of course, imply that the argument of F is unique.
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Example 1.4. Let f(8) = ¢~ 2% Taking Fo(6) = ¢** we see that

1

— [fFodf = 1.

Hence dist(f, H®) = 1 and F, is a dual extremal function. However

z(z + a)1 + &z)

F(z) =
) 1+ |af?

, el <1,

is another dual extremal function. In this problem the best approximating
function is g = 0.

Example 1.5. Let

1, 0<6<mn2,
f6) =10, n/2 <0 < 3n/2,
-1, 3n/2 < 6 < 2n.

If there were g € H® such that || f —g¢| .. < 1, then Re g >4 > 0 on (0, 7/2)
and Re g < —6 < 0 on (—n/2, 0). Hence

limlf Re 9(6)
e=0 T Jig>¢ 0

df = + 0.

Except for bounded error terms, this integral represents —lim,_, Im g(r).
Thus there is no such bounded g, and so dist(f, H*) = 1 and g = 0 is one
best approximation. Now let g be the conformal mapping of D onto the half
disc D n {Im z > 0}. We can arrange that g(1) =0, g(i) = 1, and g(—1i)
= — 1. Then by checking the values of g along the three arcs on which fis
constant, we see that || f — g||, = 1. Hence there is not a unique best approxi-
mation to fe H®. By Theorem 1.3 there is no dual extremal function F € H}.

It is interesting to notice where the proof of Theorem 1.2 breaks down in
Example 1.5. By the bottom row of the table there are F,e H}, |F,||l, < 1,
such that | fF, d0/2n — 1. As linear functionals on L*, the F, have some
weak-star limit point o € (L®)*, and ¢ is orthogonal to H*. In Chapter V we
shall see that ¢ is a complex measure on a compact Hausdorff space, the
maximal ideal space of L*. However, ¢ is not weakly continuous on L*;
that is, ¢ cannot be represented as a(h) = th df with F € L'. Otherwise
we could conclude that | F| = 1 almost everywhere. In fact, in a sense to be
made precise in Chapter V, ¢ is singular to df, which means, in classical
language, that F,(z) » 0, ze D. The absence of a dual extremal function
Fe H{ is often the central difficulty with an H*® extremal problem. We
confront this difficulty again in Section 4.
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If the function f'e L* is continuous, there is a dual extremal function F and
the best approximation g is unique.

Lemma 1.6. IffeC, then
dist(f, H®) = dist(f, A,) = inf ||f— glle-

ged,

Proof. Thereexistsg € H® such that || ' — g| , = dist(f, H®). Let f, = f * P,
be the Poisson integral of fand let g, = g * P,. Since | P,||; = 1 we have

Butg, € 4, and || f — f,l, < eif 1 — ris small. Thus

dist(f, A,) < lim||f — g, < [f — gl = dist(f, H?).

The reverse inequality is clear since H® > A4,. [
We write H® + C for the set of functions g + h,ge H*, he C.
Theorem 1.7. Iffe H* + C, then there exists F € H}, |F|; = 1, such that

(1.8) % ffF do = dist(f, H),

and there exists unique g € H® such that || f — g|, = dist(f, H®).

Proof. Write f =g + h,ge H®, he C. Then dist(f, H®) = dist(h, H*) and
we can assume that f is continuous. By Theorem 1.3 there are F,€ H},
|F,.l, < 1, such that

1
7 ffF,, df — dist(f, H®).
Taking a subsequence we can assume F,(z) - F(z), ze D, where F € H},

[F|l; < 1. This gives convergence of the Fourier coefficients, so that for all
trigonometric polynomials p(6),

do do
J.anz—n - pr 3
Taking | f — p|l . small we see that
) do
dist(f, H®) = fFf P

Hence (1.8) holds and Theorem 1.3 now implies that f has a unique best
approximation in H®. [
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As an application we reprove some results from Chapter I, Section 2.

Corollary 1.8. Let zy, z,,. .., z, be distinct points in D, and let wy, w,, ..., w,
be complex numbers. Among all fe H® such that

(1.9) f(ZJ)= Wj, 1 San,

there is a unique function f of minimal norm. This function has the form cB(z)
where B(z) is a Blaschke product of degree at most n — 1.

Corollary 1.9. Let z,,., €D be distinct from zy, z,, ..., z,. Assume (1.9)
has a solution f € H® with || f |, < 1. Among such solutions let f, be one for
which | f(z,+ )| is largest. Then f is uniquely determined by its value f(z,+ 1)
and fy is a Blaschke product of degree at most n.

Corollary 1.9 is a simple consequence of Corollary 1.8. By normal families
there exists an extremal function fy, || follo < 1. Letw, 1 = fo(z,+ ). If f € H®
interpolates (1.9) and if also

f(zn+1) = Wpt1

then || f|, = 1, because otherwise for some A, |A| small,

g= f+/1l_[

l—zz

is a function satisfying (1.9) such that |g| < 1 and |g(z,+ )| > | fo(zn+ 1)|-
Hence f, has minimal norm among the functions interpolating wy, ..., W, 4+
atzy, ..., Zp4q-

Proof of Corollary 1.8. Let B, be the Blaschke product with zeros z,,. . ., z,,
and let f, be a polynomial that does the interpolation (1.9). The minimal norm
of the functions in H® satisfying (1.9) is

inf || fo — Bogll, = inf |Bo fo — gllw-

g e H® ge H®
Since B, f, € C, there is a unique interpolating function fe H* of minimal
norm and there is F € H}, | F||; = 1, such that

[1BoF . = 111
Hence | f| = | fBy| = || fl, almost everywhere, and
(1.10) fF/By =0

almost everywhere.

Lemma 1.10. If Ge H! is real almost everywhere on an arc I = T, then G
extends analytically across I.
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proof. On |z| > 1 define G(z) = G(1/z). This is an H' function on |z|> 1
with nontangential limits G(6) at almost every point of I. Let { € I and center
at{adiscAsosmall that AN Tc L Let V=AnD W=An{|z|] > 1}.
Since we are dealing with H! functions, we have for w e A\ T,

1 G(2) 1 J’ G(2) 1 J’ G(2)
— dz dz +
a 8

2 Joa z — W 2ni Jyy z — W 2ni Jow z — W

dz = G(w).

This shows that G can be continued across I. [

To complete the proof of Corollary 1.8, notice that G = fF/B, is an H!
function on the annulus r < |z| < 1 if » > |z;|. Using (1.10) and using the
lemma locally, we see that G is analytic across T, and that G is in fact a
rational function. Since B, G is analytic across T and since f/| f ||, is an inner
function, Theorem I1.6.3 shows that f is analytic across T. Consequently
f/1 £l is a Blaschke product of finite degree, and F is a rational function.
Now B has nzerosin D and F hasa zero at z = 0. By (1.10) and the argument
principle, it follows that f has at most n — 1 zeros. [

In Corollary 1.8 the extremal function f(z) = ¢B(z) can have fewer than
n — 1 zeros. For example, suppose g is the function of minimum norm
interpolating

g(z;) = w;, I1<j<n-1,

and take w, = g(z,). Then f = g has at most n — 2 zeros. Similarly, the ex-
tremal function in Corollary 1.9 can have fewer than n zeros. However, if the
interpolation (1.9) has two distinct solutions f;, f> With || fill < 1, || fallo < 1,
then the extremal function f; in Corollary 1.9 is a Blaschke product of degree
n. For the proof, notice that (1.9) then has a solution f with | ||, < 1, by the
uniqueness asserted in Corollary 1.8. Then by Rouché’s theorem, f, and
fo — f have the same number of zeros in |z| < 1. Since fy(z;) = f(z;), 1 <
J < n, it follows that f, has at least n zeros in |z| < 1.

Corollary 2.4, Chapter I, contains more information than we have ob-
tained here, but the duality methods of this section apply to a wider range of
problems.

2. The Carleson-Jacobs Theorem

Let f(0) e C. From Theorem 1.7 we know there is a unique function
9 € H® such that

IS = gl = dist(f, H®).
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We want to know when the best approximation g(f) is continuous on T.
Although necessary and sufficient conditions on f(0) are not known, there
is a sharp result parallel to Theorem 1.3 of Chapter III about the continuity
of conjugate functions. Recall that the modulus of continuity of f(6) is

w(d) = w () = sup{| f(0) — f(@)|: |0 — @| < d}.
Theorem 2.1. If f(0) is Dini continuous, that is, if, for some ¢ > 0
f &dt < 0,
o
then the best approximation g € H® to f'is continuous on T.

Theorem 2.2. Let w(t) be a continuous nondecreasing function such that
o(0) = 0 and w(t; + t;) < o(ty) + o(ty). If [o w(t)/t dt = oo, then there is
f(0) € C such that w(6) < w(6) but such that the best approximation to f in
H® is not continuous.

We prove Theorem 2.1 first. In doing so we can assume
If = gllo = dist(f, H®) = 1.
By Theorem 1.7, there is F € H}, |F||; = 1, such that
2.1) (f— g)F = |F| ae.

All information used in the proof will follow from (2.1) and the continuity
of f. We need two lemmas.

Lemma 2.3. Let G =u + ive H' and let I be an arc on T such that almost
everywhere on 1

u>0, |v| < au,

where a > 0. Let J be a relatively compact subarc of I and let V be the domain
{re®:ro <r<1,0eJ}, Then Ge HX(V) if

arctan a < m/2p.
The statement G € H?(V) means that |G|? has a harmonic majorant in V.

Proof. Recall from Corollary 2.5 in Chapter III that an H' function whose
boundary values lie in the sector § = {x > 0, |y| < ax} is in H? if arctan &
< n/2p. Enlarging J, we may assume G has a finite radial limit at the end-
points of J. Then M = sup{|G(z)|:z€dV, |z| < 1} is finite, and

g=M1+1/a)+ G

has, at almost every point of ¥, boundary value in the cone S (see Figure
1V.1). Because g € H'(V), the Poisson integral formula (applied after con-
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formally mapping V onto the unit disc) shows that g(V) < S. By Corollary
111.2.5 and the conformal invariance of the definition of H?(V), we see that
g€ H?(V) and hence that Ge H*(V). [J

M{|+l/a)

Figure IV.1. S = {|y| < 2x, x > 0}. On 8V, g has values in the union of the disc and the
shaded cone.

Lemma 24. Let f(0)€C, let g(0) € H® and let F() € H} be functions such
that (2.1) holds. Then

(a) FeH?” forall p < o0, and
(b) ifte[0,2n)and if
f=f-f@®, g.=g-f(0,
then there is 6 > 0 and ro > 0 such that |g(z)| > 4 on
W, = {re?:10 — 1| < 6/2,ro <r<1}.
Proof. Toprove(a)letp < oo andlete > Osatisfyarctan(e/(1 — €)) < n/2p.

Choose 6 so that | f(8) — f(r)] <& when |6 — 7| < 6. Then on I, = {6:
|0 — 7] < 6}, we have by (2.1)

—g.F =(f—g)F — f.F = |F| - f.F.

Consequently, Re(—g,F) > 0 and |Im g,F| < ¢/(1 — &) Re(—g.F) almost
€verywhere on I.. By Lemma 2.3 we have g.F € HYW,). If we replace W,
by the intersection of two discs whose boundaries cross inside I., a simple
conformal mapping can be used to show

f lg.F|? df < oo.
10-1)<d/2
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Since |g,| = I f — gllo — @(8) = 1 — & on I, this means [jg_q <42 |F|" dO
< o0, so that F € L?. Hence F € H? by Corollary 11.4.3.
To prove (b) first take ¢ so small that on I,

—g.F = exp(u + iv),
where ||v]|, < 7/4. Then
h = exp(—ivy;, + UX1.)

is in H? by Corollary I11.2.6. The H' function g, Fh is real on I.. By Lemma
1.10 and Theorem I1.6.3, the inner factor of g.Fh is analytic across I,.
Consequently, the inner factor of g, is analytic across I,. The representation
formula for outer functions then shows |g,(z)| > 2 in a region {ro(t) < r < 1,
|6 — t] < 6/2}. Since g,(z) = g{z) — (f(0) — f(1), we have |g,(z)| > 7 on
the same region if |6 — 7| < J. This means we may choose r,(7) independent
of 7, and thus (b) is proved. [

Proof of Theorem 2.1. By Lemma 2.4(b), g.(z) has a single-valued logarithm
on W,, and the logarithm is defined by

1 10 4z
(22 log g{z) = o log|g(0)| £ - d9 + R(2),

T Jio-1<é
where R(z) is the same integral over |6 — | > 0 plus the logarithm of the
inner factor of g(z). Since |g(z)| > 3 on W,, the inner factor is bounded below
on W, and it is analytic across {e"®: |0 — 7| < 6/2}. Hence thereisr, > Osuch
that R(z) is bounded and analytic on A, = {|z — €| < r,}. The radius r,
and the bound sup{|R.(z)|: z € A,} are independent of .

Because | f, — g.| = 1, we have

I —1g.? =1fI* — 2Re f.§. < Aw(|60 — |),

so that
[loglg(0)|| < cax(]6 — 7]).

Let I'(7) be the truncated cone

I'(z) = |Z_els2,r2<|z|<1,
1 —|z]
where r, > 0 is such that I'(t) c A,. For zeT,,
€+ z . C
el —z| 70 -1/

so that (2.2) yields

llog g:(z) — Ri2)| < C f 20 4, cera.
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By Schwarz’s lemma and the uniform bound on R(z), |R(z) — R(w)| <
c|z — wl, z, we I'(z). Therefore
19:(2) — gw)| < Clz — wl + n(5),

z, we Iy, where #(6) —» 0 (6 — 0).
Now let T and o be so close together that there is a point z € I'(t) N IT'(0).
Taking nontangential limits, we then obtain (when 1 — |z| is small)

l9(e™) — g()] < 19(e") — g(2)| + 19(2) — g(e”)|

< 1gde”) — g{2)] + 1g4(2) — go(e”)]
< 27(0) + | — z| + | — z|
< 25(d) + Clo — 1|.

Fixing 0 > 0 with 25(d) < &, we conclude that

lim|g(e””) — g(e")| < ¢,
which means that g is continuous. [
Now let w(t) satisfy the hypotheses of Theorem 2.2.
Lemma 2.5. Leté > 0. Let

o(t), 0<tr<o,

f(eu)={0, —6<t<0.

Extend f(e") to be smooth on & < |t| < m and continuous on [—m, 7] with
f(—7) = f(n). Let g€ H® be the best approximation of f. If g is continuous,
then

g(1) = £il f— gllw-

Proof. Since f is real, f¢ H® and |f — g|l, > 0. We may suppose
If — gllo = 1,s0 that | f — g| = 1 on T. We must prove Re g(1) = 0. Since
|f—g|=1,loglg(t)) =0 on —5 <t < 0. Suppose Re g(1) > 0. Then for
0<t <o,

< —10g<1 - flgfzg

Similarly, if Re g(1) <0, then on 0 < ¢ < 4, log|g| > Cw(t). Moreover, g
hgs a continuous logarithm on {|z — 1| <4, |z| < 1}, again because
I/~ gl = 1. However, if Re g(1) # 0, then by Lemma I11.1.2,

9-/f
g

log|lg| = —log ) < —Cw(t).

- 1
lim|arg g(r)| = | ¢ + lim — “L‘g(‘ldt‘
r=t e=0 T Jjg|>¢ t
1
serctimt [ Qa2 4o

e»0 T |t|>¢ !

This contradiction shows g(1) = +i. [J
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To prove Theorem 2.2 let 6, = 27", and let

5n 5n + 5n—1 _
o=l - [

on [4,,6,_,], w,(t) = 0 off [J,, J,_ 1] Let
f(e") = Z F0444(t) + iz 3044 3(0).
k=1 k=1

Then fis real, so that f¢ H®. It is not hard to verify that () < w(d). If g
is the best approximation of f, then Lemma 2.5 says that

g ) = £il f— glo-  g(e?**?) = £1f = gl

Thus g(e”) is not continuous at t = 0. [

3. The Helson-Szegé Theorem

Let p(0) be a trigonometric polynomial on the circle T and let p(68) be its
conjugate function. Then p is another trigonometric polynomial, normalized
to have mean zero. In this section we give the Helson-Szegd characterization
of those positive measures ¢ on T for which

fm(e)lz dud) < K flp(e)lz du(o)

for every trigonometric polynomial p(6). This of course means that conjuga-
tion extends to'a bounded operator on L*(x). In Chapter VI a completely
different characterization of such measures u will be given, and these two
results will be merged to provide a description of the uniform closure in L*®
of the space of real parts of H* functions.

First we need the famous and beautiful theorem of Szegd. Let & be the
set of polynomials in z vanishing at z = 0. Restricted to the circle, # coincides
with the set of trigonometric polynomials of the form Y . ; a,e™.

Theorem 3.1 (Szegd). Let du be a finite positive measure on the circle.
Write

du = wdb/2n + du,,
where du is singular to df. Then
. 1
@3.1) inf [|1 —f|>du=exp— flog w db.
feF 2n

Notice that if the infimum in (3.1) is zero, then % is dense in L2(u), because
by induction e™%, e~ 2%, ... also then lie in the closure of &.
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Proof. We first dispense with the singular part u,. By Exercise 2, Chapter

111, there are polynomials p,l in & such that |p,ll, <1, p,, — 1 ae. dug and
Pn = 0 a.e. df. For any f, € # we have f, + p,(1 ——fo) € &, so that

inf [11 =7 dutim [11 = (o + pall = )P d
= tim [I1 = P11 = poP? d

ﬁ L~ folw
Since du > w df/2m, the reverse inequality is trivial, so that
inffll —fPdu= inffll —f|2wﬁ
F F

and we can assume y is absolutely continuous.
Write ¢ = log w. Assume for the moment that | ¢ d6 > —oo. Let §y = ¢
be the conjugate function and let

G = exp (¢ + W)).
Then G is an outer function in H2, |G|*> = w almost everywhere, and

G2(0) = exp f<p ‘5—0
T

is the right side of (3.1). For fe # we have
_ _f? - 22
2 [1=rrwao = 5 fia - 6210

1
> (1 = fOPG*O)| = exp - [ db.
because (1 — £)*G? is in H>.
Now G is an outer function, and so by Beurling’s theorem there are poly-
nomials p,(z) such that p,G converges to the constant function G(0) in H>.

Then p,(0)G(0) — G(0) # 0, so that p,(0) — 1 and we can assume p,(0) = 1.
us we can take p, = 1 — f,, f, € #. But then

.1 R .1 2
11'1'112—nf|1 — fiIPwdl = ll:nﬁ flp,,GI do

) , 1
-5 fIG(O)l 40 = exp - fq, do.

Therefore (3.1) is proved when log we L.
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Now assume | log wdfl = — 0. For ¢ > 0, log(w + ¢) is integrable, and
so by the preceding

inf —fll —fIPPwdf < mf—fll — f1*(w + &) do

feF
=e l flo (w + ¢)do
= exp o g(w + ¢) do.
The last expression tends to zero with ¢ and we have
inf —fll —fI’Pwdf =0

if [logwdf = —c0. [
Turning to the work of Helson and Szegd, we again let
du = wdb/2n + du,

be a finite positive measure on T. Let % be the space of conjugate analytic
trigonometric polynomials

g=by+be® +bye 0 ...,

and let

p = sup

ffédu,

where f and g range over & and ¥ respectively but where f and g are con-
strained by

f|f|2dus L J|g|2dus L

It is clear that 0 < p < 1. The spaces & and ¥ are orthogonal in L2(y) if and
onlyif p = 0. If there is a nonzero vector in both the L?(u) closures # and %,
then p = 1. If p < 1 the closed subspaces # and % of L%(u) are said to be at
positive angle, and the angle between the subspaces is cos ™! p. When & and
& are at positive angle, # + % is closed in L?(u) and

IA12 + lgh® < (1 = )~ f + g%,

feF, ge9, so that F + F is the Banach space direct sum of # and %.
Examples exist of closed subspaces & and ¥ such that # % = {0} but
such that p = 1 and & + ¥ is not closed. (See Exercise 9.)
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Theorem 3.2 (Helson-Szegd). The subspaces ¥ and ¥ are at positive
angle if and only if

(32) Hs = 0,
and
3.3) logw = u + D,

where ue L*, ve L® and vl , < 7/2.

Proof. First let us show that (3.2) is necessary. Suppose du, > 0. By
Exercise 2, Chapter III, there are p,€ % such that |p,| < 1, p, = 1 almost
everywhere dug and p, — 0 almost everywhere df). Then g, = p,€ ¥, and

f Pl dit f du,,
fw dt = flgm du—*fdus-

Scaling p, and g, to have unit norm in L?(u), we see that p = 1.
We can now assume y is absolutely continuous, u = w d6/2n. We can also
assume that

while

J‘ do
logw— > —o0,
2n

because otherwise . is dense in L?(u) by Szegd’s theorem, so that ¥ = &
and p = 1, while on the other hand, (3.3) obviously fails.

Let ¢ = logw, let = @ and let G = exp 3(¢ + iy) be as in the proof of
3.1.Let H = G% Then Ge H?, He H', G and H are outer functions, and

|G> = |H| = w.
Then we have

p = sup

1 .
— a —iy
= [ 66 o,
Where the supremum is taken over all fe # and g € ¢ such that
1 5 1 (.,
i;ﬁfm de—%flgGl =1,
By Beurling’s theorem the set { fG:feF} is dense in H and the set

{9G:ge %} is dense in H2. Since every F € Hg can be factored as F = F,F,,
Where F, e H2, F, € H?, and

||F1”2 = ”Fz”z = ||F“1,
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p= sup{

By duality this means

we have

o 40
fFe"”% ‘iFGHé, IFly < 1}-

iy

p= inf [e”¥ — g|.

geH®

Lemma 3.3. If is a real measurable function, then

inf |le™™ —g|l < 1
geH®

if and only if there are ¢ > 0 and he H® such that
34 lh| > ¢ a.e.
(3.5) |y +arghl <n/2 —¢ (modulo 2n).

Proof. Notice thatif ge H® and |le™¥ — g|, < 1 then g satisfies (3.4) and
(3.5). On the other hand, if (3.4) and (3.5) hold for k, then for a small 1 > 0,
le”™¥ — Ah|, < 1. (The proof is illustrated in Figure 1V.2.) [

Figure IV.2. The proof of Lemma 3.3. The values of h lie in the cone [ + arg z| < n/2 — &,
and in |z| > & The shaded region includes all values Ah and is contained in |z — e™¥| < d < L.
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Now assume p < 1. Then there is he H* with (3.4) and (3.5). Since
arg H = ¥ we have

|arg(hH)| < g — g
and the H! function hH has a well-defined logarithm. Letting v = —arg(hH),
we have |[v], < m/2 — g and
log|hH| = o.
By (3.4) u = —log|h| is bounded. Hence
logw = log|H| = log|hH| — log|h| = u + 7,

and (3.3) holds.

Conversely, suppose that y is absolutely continuous and that log w has
the form (3.3). We can then assume u = 0, because the property p = 1 is not
changed by multiplying w by a positive bounded function bounded away
from zero. (See Exercise 10.) Then in the above discussion

y=0=—v
Since ||v]|, < 7/2, the constant function g = cos(||v| ) has
le™ —gll, < 1,
sothatp < |le™™¥ —g| < 1. O

Theorem 3.4. Let u be a positive finite measure on the circle. Then there is a
constant K such that

(36) (19 du < &2 [1pP an
Jor all trigonometric polynomials if and only if u is absolutely continuous,

dp = w db/2n, and
logw=u+ 7,

Where ue L®, ve L®, and |v| , < m/2.

Proof. We show the conjugation operator is bounded in L?(y) if and only
if the subspaces Z and & are at positive angle in L?(x). With Theorem 3.2
that will prove the result.

Let T be the operator defined on trigonometric polynomials by

T(p) = Hp — ao) + ip},
Where a, = ay(p) = | p d6/2n. Thus
T(Z a, eine) = z aneinﬂ.

n>0
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Since (p — ao(p)) = (—p)_, we see that T is bounded with respect to the
L*(u) norm whenever (3.6) holds. Conversely if

(3.7) [iror du < {1 du,
then (3.6) is true for real trigonometric polynomials, and therefore for all
trigonometric polynomials. Thus (3.7) is equivalent to (3.6).

Every trigonometric polynomial p(f) has the form p = f — g, where
feF,ge%, and

Tp)=T(f—9g) =/
Hence if T is bounded and if [ | f|* du = [ |g|* du = 1, then by (3.7) we have

C?*< flf—g|2 dp=2—2Re ffgdu.

Letting [ f§ du approach p, we calculate that p < 1 — 1/2C2.
On the other hand, if p < 1 and if fe &, g€ ¥, then

s v o »{fra) o)
> (1 - p)(flfl2 dp + f|g|2 du)

f|f|2 dt = flT(f— PP du<(l—p)t flf— gl du.

and

Hence T is bounded if p < 1. [

4. Interpolating Functions of Constant Modulus

Let {z;} be a sequence of distinct points in D, and let {w;} be a sequence of
complex numbers. Assume there is f, € H* solving the interpolation problem

4.1) fe)=w, j=12...

If there are finitely many points z; then by Pick’s theorem or by Corollary 1.8
the interpolation (4.1) can be solved with f = ¢B where B is a finite Blaschke
product and where ¢ is the minimum norm of all interpolating functions. In
this section we consider the case in which there are infinitely many z;. We
assume

2 (1 =lzl) < o,
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a condition necessary and sufficient for (4.1) to have more than one solution
in H*.
Theorem 4.1 (Nevanlinna). If there are two distinct functions of norm 1 in

H® that do the interpolation (4.1), then there is an inner function that also
satisfies (4.1).

If f, fulfills (4.1) and if || o < 1, then the two function hypothesis is trivi-
ally satisfied. Indeed, let B(z) be the Blaschke product with zeros {z;}. Then
for some s > 0 and for some t <0, f, + sB and f, + tB are two distinct
interpolating functions of norm 1. If there is exactly one function of unit norm
satisfying (4.1), then this reasoning (and the theorem) show that interpolation
is always possible with a function of constant modulus 1 + ¢, for any ¢ > 0.
Before proving the theorem, we mention an example indicating that there
may not be an inner function solving (4.1) wken it is merely assumed that
there exists one interpolating function of norm 1.

Example 4.2. Let lim z; = 1. Let I be an open arc on T containing z = 1.
Letfe(H*) ' have | f|| = 1,|f| = lonIbut|f| # 1.Letw; = f(z;). Then
every other interpolating function for this problem has the form f — By,
g€ H*®, where B is the Blaschke product with zeros z;. We claim g = 0 if
| f — Bgll < 1. This means there is only one interpolating function of unit
norm, namely f, and that function is not an inner function.

So assume g€ H® and || f — Bg| < 1. Then

I1—-Bg/fl<1

almost everywhere on I, so that
Re Bg/f >0

almost everywhere on I. By Exercise 14, Chapter 11, the inner factor of Bg/ f
is analytic across I. If g # 0, this inner factor is a multiple of B, which is not
analytic across I. So g = 0.

Theorem 4.1 is a consequence of the following theorem due to Adamyan,
Arov, and Krein [1968].

Theorem 4.3. Let hy€ L™. If the coset hy + H® of L*/H® contains two
functions of unit norm, then it contains a function he L® such that |h| = 1
almost everywhere.

To derive Nevanlinna’s theorem from Theorem 4.3, let h, = Bf,,, where B
is the Blaschke product with zeros {z;}. If h€ Bf, + H® and if |h| = 1, then
Bh is an inner function such that (Bh)(z;) = fo(z;),j = 1,2,....

The proof of Theorem 4.3 will be divided into two cases, although the first
case can be subsumed under the more difficult second case. The strategy for
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the proof has already been suggested by Corollary 1.9. To obtain a uni-
modular function we maximize a linear functional over

K ={hehy + H*:|h| = 1}.
Write
lho + H®|| = inf{|lhy — gl : g€ H*}
for the norm of our coset in L*/H®.

Case 1. ||hy + H®|| < 1. Consider the extremal problem

1
2_nfhd0 .heK}.

By a normal family argument there is an extremal function h € K such that
[(1/27) [ h d6| = a. We claim |h| = 1 almost everywhere.
Notice that

4.3) dist(h, HY) = inf{|h — gl :g€ H®, g(0) = 0} = 1,

4.2) a= sup{

since otherwise h — g + & [ h d6/2n, g€ HE, & > 0, would be a function in
K with a larger mean. On the other hand,

4.4) dist(h, H®) = ||hy + H®| < 1.
Since (H')* = H®, (4.3) gives

0

4.3) sup{’ th;—n :FeH!||F|, < 1} =1,
while (4.4) gives

’ de 1
4.4) sup hF2—7r :FeH, |F|, <1< 1.
By (4.3') there are F, € H', |F,||; < 1 such that
4.5) th,, 40 - 1.

2n

This means
(4.6) inf| F,(0)] > 0,

because otherwise we would have a subsequence for which

f F, — F,0) df
ho
IFy = Fu(O)], 27

and this contradicts (4.4').
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Now suppose there were a measurable set E of positive measure such that
|[h| < A <lonE.As|F,|; <1,(4.5) then yields

0
E 2n
Since the logarithm is concave, Jensen’s inequality now gives

0
jloganI d_—-) — 00,
E 2n

and as
do do
lo |F"0|sflo |F,.|—+f F 12
g|F.(0) Eg 7 LI

we obtain log|F,(0)] = — oo, in contradiction to (4.6).

Before turning to Case 2 we digress somewhat in order to obtain further
information when |hy + H®| < 1.

Theorem 4.4. If |hy + H®| < 1, there is he hy + H® and there is F € H',
F # 0 such that

4.7 h = F/|F|

almost everywhere.

Proof. Let hand {F,} be as in the above discussion. We claim the sequence
{F,} has a subsequence converging weakly in L. If F is any weak limit point,
then by (4.5) f hF d6/2n = 1. Since ||h| < 1, this implies (4.7).

If the sequence {F,} has no weakly convergent subsequence, then there are
measurable sets E; = T such that

IEkl -0
but such that

(4.8)

do
Lkaﬁ‘zbo,

where {F,} denotes a subsequence of the F, (see Dunford and Schwartz
[1958, p. 2927).

Lemma 4.5. If {E,} is a sequence of measurable subsets of T such that
|Ex| - O, then there is a sequence {g,} of functions in H® such that

(l) SupEklgk| - 0,
(i)  g(0) - 1, and
(i) gl + 11 — gl <1 + &,

Where lim, ¢, = 0.



154 SOME EXTREMAL PROBLEMS Chap. IV

Let us assume the lemma for the moment and finish proving Theorem 4.4.
Let
9iFi H _(1 _gk)Fk_

Gk=1+8k’ T 14 g
Then G,, H, € H'. Since ¢, — 0, (4.5) gives us
WGy do hH, do
49 1. f Hyl f
(49) N T A R ) A

Now for k sufficiently large, |H,|l, > f/2 by (4.8) and condition (i). By
condition (iii) [|G,|l; + ||H,l; £ 1, and (4.9) then yields

hH, dG

[Hylly 275

However, condition (ii) implies that lim H,(0) = 0, and we again have a
contradiction to (4.4). O

Proof of Lemma 4.5. Choose A, — o so slowly that A,|E,| — 0. Let f,
be the Poisson integral of
A Xg, + iA g, -

Then f, is an analytic function in D and f, takes values only in the right half
plane. Also f£(0) = |E,| and Ref, = A, almost everywhere on E,. Let
h = (1 + f,)~*. Then h, maps D into the disc

(4.10) lw—3l <%,
and h,(0) — 1 while supg, || — 0. The disc defined by (4.10) is compressed

into the ellipse defined by (iii) under the mapping w — w®, if 8 > 0 is small.
We can choose 6, — 0 so slowly that g, = h* then satisfies conditions

()-Gi). O
We return to the proof of Theorem 4.3.

Case 2. |hy + H®| = 1. By the hypothesis, there are two distinct func-
tions h, and h, in the coset h, + H® such that ||h,|| = ||h,|| = 1. Since
hy # h, there is a point z € D such that

do
[ 24 [ip
2n

Using a Mo6bius transformation, we can suppose z = 0, and rotating ho
we can assume

do do
(411) Re fhl 2? # Re fhz ﬁ.
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As in Case 1, the function he h, + H* with |h| = 1 almost everywhere will
be found by maximizing
de
R el
e fh >

over K={hehy + H®, ||h| < 1}. However, this time we must use the
proof of the Hahn-Banach theorem instead of that theorem itself.

Since L®/H® is the dual space of HJ, the elements hehy, + H® with
|k = 1 correspond naturally to the norm-preserving extensions to L' of
the linear functional

27

Now (4.11) says that this functional has two norm-preserving extensions
whose real parts disagree at the constant function 1 € L'\ H}. The proof of
the Hahn-Banach theorem therefore gives us

de
—I1 + F|| — ) QR
sup { I1 + F| — Re thF 2 } m,

FeH}
do
inf {Hl + F|| — Re fhoF—} =M,
FEH(l, 27[
and

m< M.

We may take he hy + H®, |h|| = 1, so that Re | h d0/2n = M. It will turn
out that |h| = 1 almost everywhere. The last two displayed identities can
now be rewritten

do
4.12) inf {I|1+F||+ReJ\h(1+F)~}=M—-m>0
FeH} 2n
and
. do
(4.13) inf <|l1 + F|| — Re jh(l + F)5-r=0.
FeH} 2n

The left sides of (4.12) and (4.13) differ only in a change of sign in one place.
By (4.13) there are F, € H} such that

1 (1 + F,)\| do
4.14 —_— —_ —_
(4.14) o fll + F"|{1 Re(h s F,.I)}Zn 0.
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Suppose there is a measurable set E = T of positive measure such that
|h] < A < 1onE. Then by (4.14)

1
(4.15) o Lll + F,[df— 0.

Lemma 4.6. If E c T is a set of positive measure, then there is g € H® such
that g(0) = 1 and such that g is real and negative on T\E.

Accepting the lemma temporarily, write 1 + G, = g(1 + F,). Then
G,€ H}, and by (4.15)

1 (1 + G)\) do
—In 1 LI B Gt
7 LI + G,,l{ + Re<h]1 " Gnl)} 27:_’0
On the other hand,
1+ G (1+F,)
Re(h = —Re|h
e( 1T+ G, \"IT+ F,|
on T\E, so by (4.14)

1 a+aG,)
— 1 1 +Relh—F 09— 0.
2n fT\EI +G,,|{ * e(h|1+Gn|)}d ”

Hence
de
f{ll + G,| + Re(h(1 + G))} 2—7;—> 0,

and this contradicts (4.12). O

Proof of Lemma 4.6. Let G be the outer function such that |G| = e on E,
|G| =1 on T\E. Then G(0) = exp|E| > 1 and G has values in the annulus
{1 < |w| < e}. The function

ow)=w+ (1/w) — 2

maps this annulus into the domain bounded by the slit [—4, 0] and an
ellipse, and the circle |w| = 1 is mapped onto the slit [ —4, 0]. Also ¢(G(0))
> 0. Therefore

_ 9°G
9= 9-G0O)

has g(0) = 1 and g is real and negative almost everywhere on T\E. [
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5. Parametrization of K

We continue our discussion of a coset hy + H* € L*/H*, under the as-
sumption that K = {hehy, + H®: | h|| < 1} contains at least two functions.
Our objective is a beautiful formula describing all functions in K, due to
Adamyan, Arov, and Krein [1968]. Before beginning we need two results of
deLeeuw and Rudin [1958] concerning the geometry of the unit ball of H®.

A point x in a convex set " is an extreme point of A" if x cannot be written
as a proper convex combination

x=tx; + (1 — t)x,, O0<t<,
with x;, x, € A and x; # x,.

Theorem 5.1. A function F is an extreme point of the closed unit ball of H' if
and only if F is an outer function and |F|l, = 1. If FeH", |F||, = 1 and if F
is not an outer function, then

F F
(5.1) F = g,
2
where F| and F, are outer functions, and |F,|, = ||F,||; = 1.

Proof. Suppose FEH', ||F||, < L.If |F|, < 1, then with t = |F|,,

F=u«F/|F[,)+ (1 —=1)0

and F is no extreme point of ball(H'). For the rest of this proof we take
||F”1 = 1.

Assume F is not outer and write F = uG, with u inner and G outer. Choose
A, |4] = 1, so that

1
(5.2) > JIFI Re(Au) df = 0,
and put u, = Au. Since u, is inner,
1 2
2Reug =ug + g =g +— = +u0.
Uo Ug

Consequently

(5.3) J(€) = F(e”) Re(ug(e”)) = {32G(e)uo(e®)}{2 Re uy(e™®)}
= 11G(®) 1 + ui(e"?)),

and J € H!. Almost everywhere we have

|F £ J| = |F|(1 & Reuy),
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so that (5.2) gives
I[F+Jll,=IF=Jl,=I|Fl,=1
Since F is not outer, u, is not constant, and J # 0. Then

F+J F-—-J

and F is not an extreme point. Furthermore,
J+ F=4G( + 2uy + ud) = 31G(1 + u,)?
is an outer function, because 1 + u, is outer, and hence (5.1) holds.
Now assume F is an outer function, |F|, = 1. If F =tF, + (1 — t)F,,
F,,F,eballHY), 0 <t < 1, then
F _ do F 46
1= =t |—F, — l—0t) |—F,—
Pl =t [ P+ (=0 [ RS
S HF Ly + (A = dIF,l, <1,

and equality must hold throughout these inequalities. Hence ||F,|, =
IF2ll; = 1, and

F o do _
fmeziz IFl, =12

Since |F| > 0 almost everywhere, that means F; = k;F, where k; > 0 and
tky + (1 — t)k, = 1. But then by the subharmonicity of log| F;],

[F{0)| < [F(0) exp(flog k; ;Li),

because F is outer. Since |F(0)| < t|F,(0)] + (1 — t)|F,(0)|, Jensen’s
inequality now yields

0 0
1< texp(flog k, %) +( -1 exp(flog ks, g—n)

do do

Because the exponential is strictly convex we conclude that k; is constant and
ki = |F;l,/IF|,; = 1. Hence F; = F, = F and F is an extreme point. []

It is unfortunately the case that an H' function F of unit norm is not deter-
mined by its argument (which is defined modulo 27 almost everywhere,
because | F| > 0 almost everywhere). For example, if F is not outer, then the
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two outer functions in (5.1) have the same argument as F (and as each other).
That follows from the construction of F, and F, or from the observation

that by (5.1),
F _ do
—F. — = = . j =
J‘lFl 127’[ 1 ”Fj”l’ J 1’ 2’

whichmeans (F/|F|)F; = | F;| almost everywhere. (See Example 1.4 above for
another counterexample.) When he L*® and |h| = 1 almost everywhere, we
define

Sy=1{FeH':|F||y=1,F/|F| = hae.l).
Geometrically, %, is the intersection of ball(H') and the hyperplane

(5.4) {F: JEF‘;—Z = 1},

and so &, is a convex set. Of course, sometimes ¥, is empty, but we are
interested in the case %, # &. When &, contains exactly one function F,
the hyperplane (5.4) touches ball(H') only at F, which means F is an exposed
point of ball(H"). There is no good characterization of the exposed points of
ball(H'), or equivalently of those Feball(H') such that &p = {F}.
However, if &, contains two functions, then &, is very large.

Theorem 5.2. Let he L™, |h| =1 almost everywhere, and assume &,
contains at least two distinct functions. Let zo€ D. Then {F(zy): F € %}
contains a disc centered at the origin.

Proof. When |z,| < 1,|z,] < 1,
(z = z)(1 —z42) — (z —zy)2(z — zy)
(z — 2ol — Zoz) (2 — 20)2(Z — Zo)

is real and nonnegative on T. If there exists F € &, having a zero of order k
at z,, then

(2 = 2)(1 — £,2)\*
(z = z0)(1 zoz)) F)

18 in ¥, and the values F, (z,) fill a disc about 0.

It remains to show there is F € &, with F(z,) = 0. If the convex set & ,,
Contains two functions, then by Theorem 5.1 it contains a function F = uG
With nonconstant inner factor u(z). Let J(z) be the function defined in (5.3).
Thenfor0 < < 1,

Fz,(z) = (

F +tJ = F(1 + t Re up)
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satisfies |F + tJ|, = 1, because of (5.2), and F + tJ € &,. By (5.3) we also
have

- 2
F+1tJ= %AtG(l + % + ué).

When 0 < ¢t < 1, the equation

e
CZ+7Q+1=0

has a root {(t), |{(¢)| < 1, and these roots fill the segment (—1,0). If F + ¢J
has no zero in D for each t € [0, 1), then the range of u, is disjoint from the
segment (— 1, 0]. But then by Corollary 4.8, Chapter II, u, is both an inner
function and an outer function, so that u, is constant. Thus there exists ¢ such
that F + tJ has a zero at some point z; € D. Then

(z — zo)(1 — Zp2)
(z =z )1 = z,2)
is a function in %}, having a zero at z,. [

(F + tJ)

Returning to the topic of the previous section, we fix a coset hy + H® of
L*®/H® and we assume

K=1{hehy+ H®:|h| <1}
contains more than one function. By Theorem 4.3, K then contains a function,

which we call h,, such that |hy| = 1 almost everywhere. We will need to
recall that after a change of coordinates h, is an extremal function:

do do
(5.5) Re fho = 225 Re fh -

(See the proof of Theorem 4.3.) The Adamyan, Arov, and Krein parametriza-
tion of K which we have been seeking is (5.7) below.

Theorem 5.3. There exists a unique outer function F € H', |F||, = 1, such
that

(5.6) ho = F/|F|.
Define x € H® by

1+ xz) 1 J‘ el +z 0
=_ |= )| db.
1 —y(z) 2mJ)e—z | Fe™)l

Then

57 K= {ho - fu{%ﬂ:w(z)em, Iwl < 1}
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As a consequence of the parametrization (5.7) we see that, for ze D,

{fhP — heK}

is a nondegenerate closed disc. Another corollary of (5.7) is the description
by Nevanlinna [1929] of all solutions f'e H*, || f| < I, of the interpolation
problem

f(zj)=wja j=1,2,.,.
(see Section 6 below).
Condition (5.6) may seem to contradict Theorem 4.4, because when

lhy + H*| < 1, we have claimed that the extremal function h, has the two
forms

h0=F1/|F1|, ho:F2/|F2|
with Fy, F, € HY, |[Fj|, = 1. However, if F, € H' and g € H®, and if

=a <1,

H Fil?
then |arg(gF;)| < sin™'(1 — «) < /2, and Corollary II1.2.5 shows that
(gF,) 'eH'. Hence F{! = g(gF,) '€ H' and (5.6) holds with F, =
FLYIFT

The proof of Theorem 5.3 requires three lemmas; the first uses an idea from
Koosis [1973].

o0

Lemma 5.4. There exists an outer function F € H', ||F||, = 1, such that
= F/|F|
almost everywhere.

Proof. We know |h,| = 1 almost everywhere and we know there is g € H®,
g # 0, such that |hy — gll, < 1. Then |1 — hyg| < 1 almost everywhere.
Let o = arg hyg. Then |a| < n/2 and

lg] = 1hog] < 2 cos a

as shown in Figure IV.3. Let ¢ = ¢~ Then ¢ € H?, p < 1, by Theorem
II1.2.4. However, we also have g € H*, because

(.8) | @(e™)g(e™®)] < 2| () cos (e = 2 Re p(e™),

and since Re ¢ > 0,

21_71 Re ¢ df < lim |Re <p(re"’) < Re ¢(0).

r—1
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Hence ¢ge HP n L' = H'. Then F, = ¢g/|@gl, is in ball(H') and
hoFo > 0, which means that
ho = Fo/|Fol.

Finally, by the remarks following Theorem 5.1 there is an outer function
F € ball(H!) such that (5.6) holds. [

cos a

Figure IV.3. Why |g| < 2 cos a.

Lemma 5.5. Suppose F(z) is any H' function, F # 0. Define y € H® by

1+ x(z) IJ‘e +z
1—y(:z) 2n

Ifw(z)e H®, [wll, < 1, then

(5.9) IF(e'”)I do.

F)(1 — x(2)(1 — w(2))

(5.10) 9(2) =

1 — x(2)w(2)
isin H® and
(5.11) ”m —g| <
Proof. Note that
1+ x(z)

e fp (0)|F(0)|—>0
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Let |[w(z)| < 1 and set

1+ x(2) L1+ wz) 201 — y(2)w(2)
L=y 1—wz) (=) —w@)

Then ¢ is holomorphic and since

(5.12) o(z) =

1 + w(z)
Re 1—7‘41(2) > 0,
we have
do
.13 Re o) = [POIFOIS = IFo)| =0

A simple calculation from (5.10) and (5.12) gives
9(z) = 2F(2)/0(2),

so that ge H®. When w = 1, g = 0, and when w # 1, ¢ has nontangential
limits almost everywhere satisfying

l@(e®)| = | Fe)l.

Notice that
F(ei()) .
Fen O] =
if and only if
1 G 1
(5.19) ‘ B AN |
|F)  F(e®) |~ [F(e)

The transformation { — 2/{ maps the half plane Re { > |F(¢")| onto the
disc ||F(e®)|~' — w| < |F(e®)|~". By (5.13), Re(2F/g) = Re ¢ > |F| al-
most everywhere, so that we have (5.14) and consequently (5.11). [

Lemma 5.6. The function Fe H, |F||, = 1, such that
ho = F/|F|
IS unique.

Proof. Lemma 5.4 shows there exists at least one such F. What we must
show is that &, does not contain two functions. But if &, contains two
functions, then by Theorem 5.2, there is F; € ¥,, with Re F,(0) < 0. Since
IFy], = 1, the function x associated with F; by (5.9) satisfies x(0) = 0.
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Taking w = —1 in (5.10), we obtain g € H® such that Re g(0) < 0, and by
(5.11), hy — g€ K. Then

do do
Re ~[(ho - g)2—7r > Re fho >’

contradicting (5.5). O

Conclusion of the proof of Theorem 5.3. By Lemmas 5.4 and 5.6, there is a
unique outer function F € H, |F||; = 1, such that (5.6) holds. By Lemma 5.5
every function of the form

F( — 01 —w)

(5.15) ho— =2

?

we H®, |w|, < 1, lies in K. Now let ge H®, g # 0, be such that ||k, — ¢|
< 1. We must show hy, — g has the form (5.15) for we ball(H°°) The idea is
in the proof of Lemma 5.4. Setting « = arg hyg, and @ = ¢~ we have
@g € H' and, by its uniqueness,
F=-%9_
loglly

Now Re ¢(z) > 0 and by (5.8)
Re 20(e”) _ |o(e)g(e”)]
logly — leglly

The positive harmonic function Re 2¢(z)/[ ¢g| , is the Poisson integral of a
positive measure with absolutely continuous part exceeding | F(e')|. Con-
sequently

= | F(e")].

20() 1+ x12)
legl, 1 - x2)
has Re k(z) > 0, so that

= k(z)

we H®, |w||, < 1. A calculation then gives

_ llogl F _ 2F( 2¢ )‘1 _ 2F
@ loglly (1+x+1+W>

l—y 1—w

_pU= 0w

1 — xw
and (5.15) holds. [
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6. Nevanlinna’s Proof

In the special case h = Bf, where fe # = ball(H*) and B is a Blaschke
product with distinct zeros {z;}, formula (5.7) describes all f€ # such that

©.1) fE)=w, j=12...,

(provided it is assumed that (6.1) has two distinct solutions in 4). Already in
[1929], Nevalinna had a similar formula for the solutions of (6.1), and his
original proof of Theorem 4.1 in the same paper came as an application of his
formula. Having used so much theory in the two preceding sections, we should
include Nevanlinna’s elementary approach to these results.

The idea is to carefully iterate the invariant form of Schwarz’s lemma.
Suppose # = ball(H*) contains two solutions f; and f, of (6.1). There is a
point zo € D such that fi(zo) # f(zo). After a Mdbius transformation, we
can take zo = 0. Write

En={feB:f(z) =w;,1 <j<n}
We are seeking a parameterization of

goo = ﬂgn’

and we want to use that parametrization to show & ., contains inner functions.
Fix ¢4, |c;| < 1, to be determined later. If fe &, then

6.2) f‘i"l _ fi +‘_C1 z __21
l—wf 1+7cfil—22

for some f, € . Conversely, whenever f, € 4, (6.2) defines a function f in
€. We rewrite (6.2):

_ A1(2) + By(2) f1(2)
Ci(z) + Dy(2) f1(2)

in which, by a calculation,

Ay(2) = wil — Zy2) + ¢4(z — zy),
By(z) = cywi(1 = 2y2) + (z — zy),
Ciz)=010 —Z2) + ¢,w(z — zy),
D,(z)=c¢,(1 —z;2) + w(z — zy).

Then (6.3) is the parametrization we seek for the simple interpolation problem
f(z) = w, fe ®.
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Now suppose further that fe &, for n > 2. Then (6.2) determines f(z;) for
2 < j < n. Solving (6.2), we obtain

(6.4) fiz)=wh,  2<j<n

Clearly |w{"| < 1, because f, € #. Moreover, the case [w{""| = 1 for some
Jj»2 < j < n, is not possible, because then f(z) = w{"), |z| < 1, and by (6.2)
&, contains exactly one function. Thus we have

Wi <1,  j=23....

Something has been gained, however, because (6.2) allows us to disregard the
value f;(z,), and &, is now described by the n — 1 equations (6.4), instead of
by the original n equations.

Repeating the above reasoning, we fix c,, |¢,| < 1, and write

fi = wy! — fate z—2
1-wf, 1+6f1-52

(6.5)

Now f(z) € &, if and only if f,(z,) = wY", and that happens if and only if (6.5)
holds for some f, € #. Furthermore, when n > 2, fe &, if and only if

fazp) = W§~2’, 3<j<n,

where w{?) is determined by (6.5). We also have |[w{?| < 1, for the same
reason that we had [w{"| < 1.

Continue by induction, always assuming &, contains more than one func-
tion. For k < n, fe &, if and only if there are

Jos fis s S
in 4 such that f, = f, such that
filzy) = wih, k+1<j<n,
where |[w{| < 1 and w{® = w;, and such that

foor — WD _ it z—z
1—w¢ Y, L+afil — 52

(6.6)

where |¢,| < 1, ¢, to be determined. (The explicit values of the w{ are not
important here.)

We now iterate (6.6) and obtain a one-to-one mapping of # onto &,
Rewrite (6.6)

ul(z) + Bd2) fil2)
7(2) + 02D fil(2)

(6.7) Si-1(2) =
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in which
4u(z) = w1 — 2,2) + ¢z — z),

B(z) = SwiF (1 — Z,2) + (z — z3),

@) =1 = Z2) + Wk Nz — z),

68)
0(z) = ol — Z,z) + W~ D(z — z).
By induction, (6.3) and (6.7) yield

_ Al2) + B,(2)/(2)

© J@ =6 + D)
in which

A, =y, Ap-1 + 4, B, 1,
(6.10) B, =0,4,-1 + B,Bs-1,

Cn = '}}ncn—l + anDn—l’
Dn = 5nCn—1 + ﬁnDn—l

are polynomials of degree at most n in z. Then we have proved

Lemma 6.1. Suppose the polynomials A,(z), B,(z), C,(z), D,(z) are defined by
(6.8)and (6.10). Thenf(z) € &, if and only if f (2) satisfies (6.9) for some f,(z) € B.

The polynomials A4, B,, C,,and D, depend on the parametersc,,c,,. .., c,-
Now fix ¢, = Z,w{ ~ V. This makes

9,(0) = D,(0) = 0

in (6.8) and (6.10), which will facilitate the convergence argument below.
- When|z| < 1,(6.9)showsthat { f(z): f€ &,} isaclosed disc A,(z) contained
In D and defined by

6.1 Ime) T Paslb
©1n {Cn(Z) + D,(z){° <l = 1}

When |z| = 1, this formula for A,(z) makes sense, although some fe &, are
Not defined at z. Take A,(z) = {f(z):f€ A, N &,}, A, the disc algebra. The
disc A,(z) degenerates into a point if and only if the determinant

A,,(Z)D,,(Z) - Bn(Z)C"(Z) = 0.
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By (6.10) and induction
(6.12)
AnDn - Bncn = (ynﬁn - tZnén)(An—an—l - Bn—lcn—l)

= [T = 1z PIwE PP — w1z — 2)(1 - Z.2),
k=1

where w{® = w,. Thus A,(z) reduces to a pointifand onlyifz = z;,1 < j < n.
An elementary computation with (6.11) shows that A,(z) has radius

|4,D, — B,C,|
PO =, E =D,
Lemma 6.2. If&, # &, then when |z| = 1,A(z) = D, p(z) = 1, and
|B.(2)| = |Cu(2)],
(6.13) | 44(2)| = | Dy(2)],
A(2)/C(2) = (Dy(2)/B(2)) = A4(2),
with |A,(z)| < 1.

Proof. The conditions (6.13) follow from the assertion that A (z) = D, by
the well-known characterization of the coefficients of the linear fractional
transformations

A+ B
N
C + D¢

that map D onto itself. That A,(z) = D, |z| = 1, is proved by induction. Fix
z = ¢ and { e D. For n = 1 there exists a constant f; € % such that

fl(eio) + ¢, B C_ wy ei9 -2z
(6.14) 1+ 2, f,(e%) = (1 _ W1C)/(1 — Eleio>

and (6.2) then produces f€ &, such that f(e'®) = {. For n > 1 the set
{(fieB:fi(z)=w", j=2,...,n}

is nonempty, because &, # &, and by induction this set contains a function
f, satisfying (6.14). As before, (6.2) then givesus f€ &,such that f(e®) = {. O

¢

Lemma 6.3. C,(z) has no zeros inz| < 1.

Proof. If C,(z) = 0, then by taking { = 0 in (6.11), we see that 4,(z) = 0.
Then

A(2)D,(z) — B,(2)Cil(z) = 0
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and by (6.12), z = z; for some j = 1, 2, ..., n. Because by (6.12) the deter-
minant A, D, — B, C, has only simple zeros, we also have
Anz)D(z)) — B(z)Cy(z;) # O,
when C,(z;) = A,(z;) = 0. Still taking { = 0in (6.11), we then obtain
w; = lim A,(2)/C,(z) = lim A,(z)/C(2).

=z z-z;

If Ci(z;) = O, this means that A)(z;) = 0, while if Ci(z;) # 0, it means that
Ai(z))/Ci(z;) = w;. Thus we have

On the other hand, taking { = 1in (6.11) gives
Therefore

AzpD,(z)) — B(z))Ci(z)) = 0,
a contradiction. [

It will be convenient to renormalize (6.9). Let

n

EA 20 (k-1)]2 (k—1)2 = 2 12
V2= [ 11 —‘fk(l — |z P DA = IwiEIHA = Z,2) .

k=1

Since ¥,(z) has no zeros in D,

A B C D
P, ==, Q,=-", R,=-—, and S, = —
v, 78 ¥, Y,
are rational functions analytic in |z| < 1. From (6.9) we obtain
P
615 = BOT DD

R + S(f2)

as our new parametrization of &,. The advantage of this normalization is that
by (6.12) the determinant is now

n

PA2)S\(z) — Q2R = T() = [ SR E "2

k=1 |zl 1 - 22

the Blaschke product having zeros {z,, z, ..., z,} and normalized by I1,(0)
> 0. We also have

| TL(2)1
IR(2)” — |S2)I*’

Pu(z) =
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so that by Lemma 6.2,
(6.16) IR(DI? = [S,2)I* =1,  |z] = 1.

Now by Lemma 6.3, R, has no zeros in |z] < 1, and (6.16) gives

1
—— <1, |zl<L
IR.(2)]

Then (6.13) and the maximum principle yield
| Py(2)| < [R,(2)],
(6.17) 10.(2)] < [R,(2)],
[Si(2)| < |R,(2)]
on|z| < 1.

Theorem 6.4. Assume &, = ()&, contains two functions with different
values at z = 0. Then there are n; — o0 such that the limits

P(z) = lim P, (2),
() = li:_n 0,,(2),
R(z) = li;n R,(2),
S(z) = li;n S, (2)

all exist. The limits do not all vanish identically; in fact,
P(2)S(z) — Q(2)R(2) = I(z),
the Blaschke product with zeros {z,}. If f(z) € 8, then f € &, if and only if

_P(2) + Q) ful2)
R@) + S@) ful2)’

lz] <1,

(6.18) f(@)

for some f, € .

Proof. The hypothesis that ()&, contains two functions with different values
at z = 0 implies that

lim p,(0) > 0.
(This limit exists because p,.; < p, since &,,,; = &,.) Since D,(0) = 0, by
the choice of the constants ¢, in (6.6), we have
| R,(0)|* = TT,(0)|/p,(0)
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and hence
(6.19) lim |R,(0)| < oo.

Choose n; so that the bounded sequence {1/R, ()} converges on D. Because
1/R,(z) has no zeros in |z| < 1, the limit function either vanishes identically
on D or it has no zeros on D. By (6.19) the limit does not vanish at z = 0, and
so the limit is zero free on D. Consequently R, (z) converges uniformly on
compact subsets of |z| < 1 to an analytic function R(z), which has no zeros
on |z| < 1. By (6.17) we can take a finer subsequence {n;} so that

lim P, (2) = P(2),

lim Q,(2) = Q(2),
and
lim S,(2) = S(2)
also all exist. Then
P(2)8(z) = Q(2)R(z) = lim 1, (z) = TI(2),

and so the limit functions are not all identically zero.
If fe()é&,, then by Lemma 6.1 there is f, € # such that

Py + Qnf
R,+ S,f,
Refine the subsequence {n;} so that f, (z) = f,(2), | 2| < 1, with f,, € 8. Then
(6.18) follows. Conversely, if 1., € %, then
f(n) — Pn + anoo
R,+ S.fs
isin &,, and £ has limit fe &,,. O
It turns out that P, Q, R, and S do not depend on the subsequence {n;}. They

are uniquely determined by the original interpolation problem (6.1) and by

the choice of the constants ¢, in (6.6). We shall not make use of this fact,
however.,

f=

Before turning to Nevanlinna’s proof that &, contains inner functions,
We mention a simple consequence of (6.18). Because &,.1 < &,, the discs
A(2), |z| < 1, decrease to a limit disc A (z) = {f(2):f€ &, }. By (6.18),

_ JP@) + Q@)
Ay(2) = {E(_z) T SQT Il < 1}
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Since the determinant of the coefficients for this mapping is P(z)S(z) —
Q(2)R(z) = Il(z), A (z) is nontrivial whenever z ¢ {z;}. The radius of A ,(z) is
. I1(z)
Po(2) = lim p(2) = 2.
)= IS = R - SGF

Returning to A,(z), |zo| < 1, and to its parametrization (6.11), we see
that f€ &, solves the extremal problem f(z,) € 0A,(z,) if and only if

_ A 2) + B(2)e" _ P,(2) + Q,(2)e"”
I& = )+ D(e® ~ R) + S,2)e®

for some unimodular constant e*. Thus f(z) is a rational function of degree
at most n. On two other occasions (Corollary 1.9 of this chapter and Corol-
lary 2.4, Chapter I), we have seen that the extremal function f(z) is a finite
Blaschke product. This fact also follows from the reasoning in this section,
because by Lemma 6.2, | f(z)| = 1, for |z| = 1. Further analysis of the
polynomials A4,(z), B,(z), C,(z), and D,(z) shows that the Blaschke product
f(z) has degree n. (See Exercise 20.)

The preceding discussion suggests that we might find an inner function
in &, by setting f,, = ¢ in (6.18). That is how Nevanlinna first proved
Theorem 4.1. The proof above of Theorem 4.4 was based on the same idea:
The unimodular function h, € K was obtained by maximizing the linear
functional Re | h d6/2n, he K.

We return to Theorem 4.1, which we restate as follows.

Theorem6.5. If& , contains two distinct functions, and if €' is any unimodular
constant, then

_ P(2) + Q(2)e™”

(6.20) f(@) = R@) + S@)e*

is an inner function in & .

Proof. By Theorem 6.4, f € &, and in particular || f||, < 1. We suppose
there exists E < T, |E| = | y:(0) d0/2r > 0, such that

(6.21) | f(e9)] <a<1, O€eE,
and we argue toward a contradiction.

Reindex so that R,(z) = R(z), P,(z) = P(z), Q.(z) - Q(z), and S,(z) —
S(z). Fix M > |R(0)|. Since by Lemma 6.3 R,(z) has no zeros on D, we have

1 .
log M > log|R,(0)| = > f10g|Rn(€lo)| do
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for large n, say n > no. By (6.16), log| R,(¢*’)| = 0, and hence
[{0:log| R,(e”)| > 2log M/|EI}| < |E|/2,
n > no. Therefore
E,= {0 E:|R,(e")| < M**}}
satisfies
|E,| = |E|/2, n > ng.
By (6.16) and (6.13), we also have

Pn(ei()) 2 B 1
R,(€") [R,(e")*’
which gives

< {1l - M"¥ER2 = g <,

(6.22) ‘ Pie)

R,(")

forOeE,, n> ng.
Because f€ &, there exists f, € # such that

_ Pi(2) + Qi(2) fi(2)

f@) = .

R,(2) + $,(2) fu(2)
Since the rational functions P,, Q,, R,, and S, are continuous on D and since
|P,S, — Q,R,| = 1on T,f,(z) has radial limit f,(¢’) whenever f(z) has radial
limit f(¢). Thus at € € E, f;(¢) exists and
Py(e”) + Q.(e”) fi(e")
Re™) + Sy /(e

f(e") =

By Lemma 6.2, the mapping
Py(e”) + Q")
R,(e") + S, ()

;V{hich is an automorphism of D, preserves the pseudohyperbolic distance.
ence

{—

| (€] = p(f:(e°).0) = p(f(€"), P.(e)/Q,(e™).
For n > ng and for e € E,, (6.21) and (6.22) then yield
| f(e)] + | Pn(e""_) /1 Ru(e")]
+ | (€)1 P(e)]/IR,(e)]

< a+ﬂ:
1+ af

| )] < 5

y < 1.



174 SOME EXTREMAL PROBLEMS Chap. 1Iv
Consequently

1 4
10 < z—nflf,.(e"’)ldﬁ < (IE | + (1 —|E,[)

<y|£|+1—@ =n<1
=12 2 =t

Take a subsequence { f, } so that f, (0) = {,|{| < n < 1. Then

P, 0) + 0,,(0)/,0) _ P(O) + 9(0)
R,(0) + S,,0)£,,(0)  R(0) + S(0){°

f(0) = lim

Jj

Since P(0)S(0) — Q(0)R(0) # 0, we conclude from (6.20) that { = ¢, a
contradiction. [

An interesting, apparently unsolved, problem is to determine whether, or
when, & ,, contains a Blaschke product.

Notes

The first systematic treatment of dual extremal problems is the paper of
Macintyre and Rogosinski [1950]. The functional analytic methods were
introduced by Havinson [1949, 1951] and by Rogosinski and Shapiro [1953].
Duren’s book [1970] contains a slightly different treatment and some
references to the older literature. See also Goluzin [1952] and Landau [1916].

Section 2 is from the paper of Carleson and Jacobs [1972]. Kahane [1974]
discusses a number of related questions. An interesting open problem is to
find intrinsic necessary and sufficient conditions for a function in L*® to have
unique best approximation in H*. Exercise 17 gives a partial answer.

The primary references for Section 3 are Szegd [1920] and Helson and
Szegd [1960]. Exercises 8 and 14 outline results similar to the Helson-Szego
theorem.

Most of the material in Sections 4 and S originates with Adamyan, Arov,
and Krein [1968], but the proofs in the text are considerably different from
their spectral theory approach. In [1971] Adamyan, Arov, and Krein extend
their results to the matrix valued case. Theorem 5.1 and Theorem 5.2 ar¢
from deLeeuw and Rudin [1958].

Section 6 is from Nevanlinna’s paper [1929], which includes a number of
other classical results, all derived ultimately from Schwarz’s lemma. It is 2
fundamental paper long overlooked. Schur’s [1917] treatment of the co-
efficient problem is very similar. It is outlined in Exercise 21.
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Exercises and Further Results

1. IffeL”(R),1 <p < oo, then

inf | f—gl,= sup ‘ fdex
geHP GeHa
I1Gllg=1
2. Let f(z) be meromorphic on |z| < 1, and suppose that on some
annulus R < |z| < 1,f(z)is analytic and of class H*' (ie., | f(2)] possesses a
harmonic majorant). Then f(e®®) exists almost everywhere. Prove f(¢") > 0
almost everywhere if and only if f(z) is a rational function of the form

cljl(? — o)1 — &jz)/li(z - ,Bj)(l - sz),

where o] < 1,|B;| < 1,¢ > 0.

3. Let ¢y, ¢y, ..., cy be given complex numbers and consider the
maximum problem
N
M = sup chaj ,
feH* | j=0
st

where f(z) = ) a;2’.
(a) The dual extremal problem is

M = inf [k — gl

geH}

where k(z) = ). ¢;z77. It is equivalent to the minimum problem
M = 1nf{||h”1 :hEHl,h =cyt+cey_z+ -0+ C02N + }

(b) The original extremal problem has unique extremal function f, and
the dual problem has unique minimizing function g,. Moreover

Jo(@)k(2) = go(2)) = |k(z) — go(@)|, |zl =1,

so that
Jo(2)k(z) = go(2)) = 2] (z - a1 — &jz)/ZN
i=1
With n +g=N, 0 < l2;| <1, ¢ > 0. Reindexing a4, ..., «,, there is s,

0 <s < nsuch that ;| < 1,j < s, and

Z—

folz) = 728 H <f)

l—ajZ
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and

ke = 0o = 710 - 52 [ (7 2) 2.

where |y| = L.
(c¢) For |z| small write

o0

ey +enoaz + -+ cozM)? = ) A7
i=o

and set
N .
P\(z) = Z A2
j=0

Assume Py(z) has no zeros in |z| < 1. Then there exist oy, ..., &, n < N,
such that 0 < |o;| < 1 and such that

Py(2) = 10]_[ (1 — a;2).
j=0
Then

n
z7VPy =cyz M[] (1 - &;2)°
ji=1

has the form (k — g)/z", ge H'. Setting

EN _ " zZ — O
fo@) == 27" ( -1)’
° lenl jl=_[1 1 —a;z

we obtain f, P3/z¥ > 0 on |z| = 1. Consequently f, is the extremal function,
k(z) — go(z) = Pi(2)/z", and

N
M= HPI%J”1 = z Mj|2-
j=0

(d) Landau [1913, 1916] determined the extremum M in the special case
¢; = 1 by a different method. In this case Py = ) § 4;z/, where

A= (—l)j( l) ik

-3 _ @)
J 43H»

and by Wallis’s formula
M ~ log N/n (N — o).

Thus M has the same order of magnitude as the Lebesgue constants | Dy,
where Dy = Y ¥y €' is Dirichlet’s kernel for partial sums.
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The dual problem in part (a) was first treated by F. Riesz [1920] using a
variational argument.

4. A function fe C(T) is called badly approximable if its nearest
function g in H* satisfies g = 0. Show f'is badly approximable if and only if
| ()] is a positive constant and f(e*®) has negative winding number (see
Poreda [1972] or Gamelin, Garnett, Rubel, and Shields [1976]).

5. Let g e H* be the best approximation to f'e C(T). It is conjectured
that g is continuous if the conjugate function fis continuous. However, the
converse of this conjecture is false. Use Exercise 4 above to find a badly
approximable function whose conjugate function is not continuous (D.
Sarason, unpublished).

6. Let fe C(T), f¢ H®, let g€ H® be the best approximation to f,
and let F € H} be a dual extremal function, so that
(f=@F =1 f— glolFl
almost everywhere.
(a) F can be chosen so that F(z)/z is outer.
(b) If F, € H} is another dual extremal function, then F/F, is a rational
function.
(c) Fisuniqueifand onlyifz/F € H. In that case z/F € H? for all p < oo.
(d) More generally, if fe L°\H>, if F exists, and if z/F € H', then F is
unique.
(See deLeeuw and Rudin [1958] and Carleson and Jacobs [1972].)

7. 1ffe H®, then
dist(f, 4,) < 2 dist(f, C(T)),

where A, = H® n C(T) is the disc algebra. The constant 2 is sharp. (See
Davie, Gamelin, and Garnett [1973].)

%8. Letdu = wdf/2n + du, be a positive measure on the circle. Then
o\ !
i 1 —Ref|*du= f =

where  is the set of trigonometric polynomials ) . o a,e™ (see Grenander
and Rosenblatt [1957]). The result is due to Kolmogoroff [1941].

9. Find two closed subspaces % and ¥ of a Hilbert space such that
F ng = {0}
but such that

1 =sup{|[<{f,g>l:feF, g% Ifll = lgl = 1}.
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10. If # and ¥ are subspaces of L*(u), then p = 1 if and only if

0= inf{flf— glrdu:fe#,ge%; 11 = 1,ligll = 1}-

Hence the property p = 1is unchanged if du is replaced by w du, w bounded
above and below.

11. If a weight function w satisfies the Helson-Szeg6 condition (3.3),
then for some e > O, we L***and w™le L'*®

12. Let w be a weight function. Assume ¥ = log w is continuous except
for jumps at a finite number of points. Then w satisfies (3.3) if and only if each
jump is less than n (Helson and Szegd [1960]).

13. Let a be real. There is a constant K, such that

f |ﬂ9nﬂerdes;Kaf Ip(6)1 161" db

for all trigonometric polynomials if and only if —1 < o < 1 (see Hardy and
Littlewood [1936]).

%%14. Let &, be the set of all trigonometric polynomials Y., a.e™*
and let ¢, = #, be the set of trigonometric polynomials of the form
Y kzn be” *¢ When p is a positive finite measure on T write

[raan
where fe #,,g€%,, [ | f|?du < 1,and [ |g|* du < 1. Write
du = wdf2r + du,

7}

P, = Sup

bl

with du, singular to df.
(a) Ifdu, # Ooriflogwé¢ L', then p, = 1 for all n.
(b) Now assume du = w df/2n with

@ =logwelL.
Let W be the set of weights w such that

lim p, =0,
where dit = w d/2n. Then we W if and only if e" e H* + C.
(c) H® + Cis aclosed subalgebra of L*.
(d) Let W, be the set of positive weights w such that, for every ¢ > 0,

g=logw=r+35+1t
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with 7], < &, [Is]l < & and r€ C. Then Wy, < W and we W if and only if
w = |p|*wo, where wy € W, and p is a trigonometric polynomial. (The set
log W, is the space VMO to be studied in Chapter VI.) (See Helson and
Sarason [1967].)

15. Let u be a unimodular function in L* and set
S, ={GeH":|Gl, =1, G/|G| = u}.

(a) There exist functions u for which &, = (J.

(b) fFe¥, andif 1/FeH!, then &, = {F}.

(c) If#,={F}, thenforalla,|a| =1,(z — ) 2F(z)¢ H.
(See deLeeuw and Rudin [1958].)

16. Let he L™, |h| = 1 almost everywhere.
(a) If dist(h, H®) < 1, then h = F/|F| for some F € H!. Moreover, the
outer factor of F is invertible in H'. (See Lemma 5.4.)
(b) If dist(h, H®) < 1 but dist(h, HY) = 1, then h = F/|F| for some
Fe H"'. (See Case 1 of the proof of Theorem 4.4.) It follows that dist(h, H®)
< L

17. (a) Let heL>. If the coset h + H® is an extreme point of

ball (L*/H®) then there is g € H® such that |h + g| = 1 almost everywhere.

(b) Now suppose|h| = 1 almost everywhere. Then h + H® is an extreme

point of ball(L*/H®) if and only if |h + g|| > 1 for all ge H®, g # 0. Thus

the extreme points of ball(L*/H*) are the cosets containing exactly one func-
tion of unit modulus (see Koosis [1971]).

(¢) If |h| =1 almost everywhere, then |h + g, > 1 for all ge H®,
g # 0, if and only if h cannot be written as F/|F|, F € H!. (See Lemmas 5.4
and 5.5.) This is a weak generalization of Exercise 5. If |h| = 1, then h is
badly approximable by H® (|h — g|l > 1 if ge H®, g # 0) if and only if h
is not the argument of an H* function. Example 4.2 shows there exist badly
approximable functions not having constant modulus.

(d) L*®/H® is a dual space. Hence ball(L*/H®) is the weak-star closed
convex hull of the set of cosets {h + H® :|h| = 1, h badly approximable}.

18. Let Fe H!, ||F|, = 1. Then every g € H® such that
IF/IF| —gllo <1
is of the form (5.10) if and only if ¢, r) = {F}.

19. Let fe H®, ||f|l, = 1. Then fis an extreme point of ball(H®) if
and only if

[os — 171y a0 = — o0
(see deLeeuw and Rudin [1958]).
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20. In the notation of Section 6, and with ¢, = Z,w¥* ™!, A4,(z) has

degree at most n — 1 and B,(z) has degree n. When €'? is a unimodular
constant, the polynomials A,(z) + B,(z)¢’* and C,(z) + D,(z)e’® have no
common zero. Thus

_ A 2) + B,(2)e”®
O e+ v

is a Blaschke product of degree n.
%21. Fix complex numbers ¢y, cy, ... and set
E,={feB:fZ)=co+cyz+ -+ 2" + -}

Write yo = ¢ and assume |y,| < 1.
(a) If |yo] =1 then &, contains exactly one function, f = y,. Suppose
[vol < 1, and write f€ &,

zfy + Yo
1+ Pozfy
with f; € 8. So &, is in one-to-one correspondence with #. Then fe &, if
and only if f;(0) = y, = ¢, /(1 — |co|*). In particular &, # & if and only if
[v.] < 1, and &, consists of exactly one function if and only if |y, | = L

(b) Continue by induction. We obtain yg, y4, ..., Py ---- If [70] < 1,
[yl <1, ..., |y.! < L, then &, is in one-to-one correspondence with %
through the formulas f, = f,

_ Zfi + Vi-1

1+ i qzf
€ B. 1|y | = Lbut|y;| < 1,j < k, then &, consists of exactly one function,
a Blaschke product of degree k.

(c) Supposed, # . Then the (n + 1)th coefficients ¢, ; of the functions
in &, fill a closed disc with radius

(E.2) @, = (1 = pol) -+ (1 = [94]).

(Use (E.1) and induction.)
(d) Suppose ()6, # . Then of course (&, = {f}.f = X.& c,z" Prove

(E.1) f=

1 <k<n,

Ji-1

1
lim w, = exp ’n flog(l - |f|2) do.

(Hint: By (E.1) and (E.2) we have, on |z| = 1,

I‘IVOIZ)(1—|f1|2)= wn(1—|fn+1|2) )
11T+ ozf,)? n7=0|1+7j2fj+1|2

e =t
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Because the denominator has no zeros on D, this gives
1 1
exp 5 [logl = 177 d0 = o, + exp o [log(l = 1,41} d0 < o,

For the reverse inequality use Szegd’s theorem. For ¢ > O there is P(z) =
1+ b,z+ - -+ b,z"such that

do 1
201 _ 2 — 2
[1pea =175, <o+ exp 5 [loatt = 177 o

Let f* € &, be obtained by setting f, ., = 0. Then by Szegd’s theorem

w—expflog(l—lf*l) f|P|(1 ek

By the Parseval relation,
do do
li 1—|1*? — = 200 — | £12) 2.
tim [1PP(— 1P 32 = 1P~ 17 )27[)

(e) Let A, be the matrix

Co € - Cp
0 Co Ch-1
0 0

and let I, be the (n + 1) x (n + 1) identity matrix. Then &, # J if and only
if I, — A*A, is nonnegative definite. If I, — A¥A, is positive definite, then
&, is infinite. More precisely,

det(I, — A¥A,) = wow, - - w,.
(See Schur [1917], except for part (d), which is due to Boyd [1979].)



v
Some Uniform Algebra

This chapter develops the background from uniform algebra theory which
will be needed for our analysis of H® below. Our treatment is quite brief. For
a complete picture of the general theory the reader is referred to the books of
Browder [1969], Gamelin [1969], and Stout [1971].

However, two topics special to H* will be covered in detail. In Section 2 we
prove Marshall’s theorem that the Blaschke products generate H®. In
Section 5, three theorems on the predual of H® are proved by representing
linear functions as measures on the Silov boundary of H®.

1. Maximal Ideal Spaces

A Banach algebra is a complex algebra A which is also a Banach space
under a norm satisfying

(1.1) Ifgll < I fllgll,  fgeA.

We always assume that A4 is commutative (fg = gf, f,g € A) and that thereisa
unit 1€ A (1-f=/, fe A). The correspondence A — -1 identifies the
complex field C as a subalgebra of 4. We say f€ A4 is invertible if thereisg € A
such that gf = 1. The unique inverse is denoted by g = f ~!. Write

A~ = {fe A:f ! exists}

for the set of invertible elements of 4. A complex homomorphism, or multi-
plicative linear functional, is a nonzero homomorphismm: A — Cfrom 4 into
the complex numbers. Trivially m(1) = 1.

Theorem 1.1. Every complex homomorphism of A is a continuous linear
functional with norm at most one,

Im| = sup |m(f)] < 1.
lIfil<1

182
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Proof. Because m is linear, we only have to prove that |m| < 1. If m is
unbounded, or if ||m| > 1, then there is fe A such that || f|| < 1 but such that
m(f) = 1. By (L.1) the series

is norm convergent. Its sum satisfies

(12) 1-NT =1,
so that 1 — fe 4~ 1. But then
L= m(1) = m((1 — /)~ Yom(1) — m(f) = 0,

a contradiction. [

Theorem 1.2. Suppose M is a maximal (proper) ideal in A. Then M is the
kernel of a complex homomorphism m: A — C.

Proof. There are two steps. First we show M is closed. Now, if the closure
M of M is proper, that is, if M # A, then M is also an ideal in 4. Therefore
M isclosed if M # A, because M is maximal. However,ifge M, theng ¢ A~ !
and (1.2), applied to f = 1 — g, shows that |1 — g| > 1. Hence 1¢ M and
M is closed.

The second step is to show the quotient algebra B = A/M satisfies

B=C-1,

where 1 = 1 + M now denotes the unit in B. The quotient mapping will then
define the complex homomorphism with kernel M. Since M is maximal,
B = A/M is a field, and since M is closed, B is complete in the quotient norm

I/ + Ml = inf| f+ gl,

geM

which also satisfies (1.1).
Suppose there exists fe B\C - 1. Then f — A€ B~! for all 1€ C, because B
is a field. On the disc |4 — 40| < 1/[(f — 4o) ||, the series

(1.3) L (= A0S = 207!

converges in norm to (f — A)~?, because of the identity

1 1 1
f=4 (=21~ (@~ )/f = )]




184 SOME UNIFORM ALGEBRA Chap. V

Clearly f ~* # 0, and by the Hahn-Banach theorem there is a bounded linear
functional L on B such that |L| = 1 and

(1.4) L(f~H#0.
Since (1.3) is norm convergent and since ||L| = 1, we have

F)y=L(f-H D= iOL(((f = A)™ A = Ao),

when |1 — Ao| < 1/||(f — A¢)~*|. Because A, is arbitrary, this means that
F(A) is an entire analytic function. Now for || large, (1.2) yields

] 7\
1= D7) _WH(I - 7)

Consequently,

|[F)I = |L(f = D™ HI < C/IAl, - |4 large,
and by Liouville’s theorem F = 0. Hence
L(f~ = F0) =0,
contradicting (1.4). [

The set M, of complex homomorphisms of A is called the spectrum or
maximal ideal space of A. By Theorem 1.1, M , is contained in the unit ball of
the dual Banach space A*. Give M, the weak-star topology of A*, in which
a basic neighborhood V of m, e M, is determined by ¢ > 0 and by f,

frse s fr€A:

V= {meM:Im(f) — mo(f)l <& 1 <j<nh
This topology on M, is called the Gelfand topology. With the Gelfand
topology M , is a weak-star closed subset of ball(A*), because

M,y = {meball(4*): m(fg) = m(f)m(g), /. g € A}.

By the Banach-Alaoglu theorem, which says ball(A*) is weak-star compact,
M, is a compact Hausdorff space. Writing

fm)y=m(f), fed, meM,,
we have a homomorphism f — ffrom A into C(9M ,), the algebra of continuous
complex functions on 9M,. This homomorphism is called the Gelfand
transform. By Theorem 1.1, the Gelfand transfrom is norm decreasing:

171 = sup |f(m)| < [ fI.

meM 4
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By Theorem 1.2, fe A~ ' if and only if f (m) is nowhere zero. Indeed, if f¢ 4~ 1,
then by Zorn’s lemma the ideal { fg : g € A} is contained in a (proper) maximal
ideal.

The Banach algebra A is called a uniform algebra if the Gelfand transform
is an isometry, that is, if

If=10fl,  feA
Theorem 1.3. The Gelfand transform is an isometry if and only if
(1.5) L2 =102

forallfe A.

Proof. Since || f| is a supremum, | /3| = ||f]|*> and (1.5) holds for any
uniform algebra.

Now assume (1.5). By Theorem 1.1, we have £l < | f1I. To complete the
proof we take fe A with I fI = 1, we fix ¢ > 0, and we show Ifl<1l+e
By Theorem 1.2, f — A€ A~! when |4] > 1 = | f|. By (1.3) the A-valued
function (f — 4)~! is analytic on |A| > 1. This means that whenever L € A*,
the scalar function F(1) = L((f — 4)~!) is analytic on |A| > 1. By compact-
ness,

sup [I(f =D~ =K

|Al=1+¢
is finite. By (1.2),
L1 Y e Ly
F(A)_L(T(I—I) )“‘Eo—i"“’ RS

This series must also represent F(4) on |A| > 1. Taking ||L|| = 1 we obtain
from Cauchy’s theorem,

L(f™ = ‘ 1 F(A)A" dA ‘ <(1+ e 'K.

200 Jjg=14e
Consequently, by the Hahn-Banach theorem,

If"l = sup IL(fM] <1+ o K.

IIL]| =1
Setting n = 2* and using (1.5), we conclude that

Il < lim(K(1 + g2 )12 =1 4 ¢,

k— o

as desired. [
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When A is a uniform algebra, the range 4 of the Gelfand transform is a
uniformly closed subalgebra of C(M ), and A is isometrically isomorphic to
A. In that case we identify f with f and write

fm)y=m(f)=f(m), feA, meM.

Thus we view A4 as a uniformly closed algebra of continuous functions on
M. Note that 4 separates the points of M, and that A contains the constant
functions on IM,,.

Example 1. Suppose 4 is any algebra of continuous complex functions on a
compact Hausdorff space Y. If 4 has the uniform norm, || f|| = sup,cy| f ()|
and if A is complete, then A is a uniform algebra. If A contains the constant
functions and separates the points of Y, then Y is homeomorphic to a
closed subset of M, and we say that A4 is a uniform algebra on Y. This is the
generic example, because any uniform algebra 4 is clearly a uniform algebra
on its spectrum Y = M. If A = C(Y), then M, = Y. (See Exercise 5.)

Example 2. Let I* denote the space of bounded complex sequences. With
the norm | x| = sup,|x,| and with the pointwise multiplication (xy), = x,¥,,
I* is a uniform algebra, by Theorem 1.3. The maximal ideal space of I* has
the special name N, the Stone-Cech compactification of the positive integers
N.

The Gelfand transform of [ is C(BN). To see this, note that if x € [* is
real, that is, if x, € R for all n, then X(m) is real on M. = BN, because then
(x — A)~ ! eI* whenever Im 4 # 0. It now follows from the Stone-Weier-
strass theorem that [® = C(fN).

Since the functional m,(x) = x,, is multiplicative on /®, N can be identified
with a subset of BN, and the Gelfand topology is defined in such a way that N
is homeomorphic to its image in SN. Moreover, N is dense in SN, because
every function in C(fN) = I is completely determined by its behavior on N.

The Stone-Cech compactification N can also be characterized func-
torially.

Theorem 1.4. Let Y be a compact Hausdorff space and let 1: N = Y be a
continuous mapping. Then the mapping t© has a unique continuous extension
T:pN - Y.

If ©(N) is dense in Y and if the images of disjoint subsets of N have disjoint
closures in Y, then the extension T is a homeomorphism of BN onto Y.

Proof. The mapping
T:C(Y) - 1%,

defined by Tf(n) = fo ©(n), is a homomorphism from C(Y) into [*. Because
T is continuous, the adjoint mapping T*: (I°)* — (C(Y))* is weak-star to
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weak-star continuous. If m € (I°)* is a multiplicative linear functional, that is,
if me BN, then since T(fg) = T(f)T(g), T*(m) is also a multiplicative linear
functional on C(Y), and by Exercise 5, T*(m) e Y = My,. Restricting T* to
BN, we have a mapping T(m) = T*(m) from BN into Y, and by the definition
of T, T(n) = ©(n), ne N. Since N has the weak-star topology of (I*)* and
Y = My, has the weak-star topology of (C(Y))*, the mapping 7 is continu-
ous. Because N is dense in N, 7 is the unique continuous extension of t
to AN.

Now suppose that ©(S;) N 1(S;) = &J wherever S; = N, S, = N and
S, NS, = . Then there is fe C(Y) such that f= 1 on 7(S;) and f = 0 on
?(_S;. We can assume that S, = N\S,, so that Tf = yg,. Because linear
combinations of characteristic functions are dense in [®, this means the range
of T is dense in [®. If we further assume that ©(N) is dense in Y, then we have
ITfI = I fI,fe C(Y), and the mapping T is an isometry. Consequently the
range of T is norm closed in [®. Hence the range of T is both dense and closed
and T maps C(Y) onto I*. Now because | Tf|| = || f|l, the homomorphism
T is one-to-one, and so T is an algebra isomorphism from C(Y) onto /®. The,
adjoint T* then defines a homeomorphism from fN onto Y. [

Theorem 1.4 determines the space SN up to a homeomorphism, because
if Z is another compact Hausdorff space and if Z contains a dense sequence
{z,} homeomorphic to N such that Theorem 1.4 holds with Z in place of SN,
then the correspondence

n ez,

extends to a homeomorphism between N and Z.
The space BN is extremely huge. It can be mapped onto any separable
compact Hausdorff space. No point of BN\N can be exhibited concretely.

Example 3. The space L*® of essentially bounded, measurable functions on
the unit circle is a uniform algebra when it is given the pointwise multi-
plication and the essential supremum norm

| £l = inf{a:|f| < o almost everywhere}.

We fix the notation X for the maximal ideal space of L®, because this space
will be reappearing from time to time. Under the Gelfand transform, L® is
isomorphic to C(X), the algebra of continuous complex functions on X.
This has the same proof as the corresponding result on /. If feL® is real,
then (f — 1)~ e L* whenever Im 4 # 0, so that fis real on X. The Stone-
Weierstrass theorem then shows that L® = C(X).

Like BN\N, the space X is large and intractable. We cannot construct a
single point of X. Nevertheless, the space X is quite useful in the theory of
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bounded analytic functions. Some of the intricacies of X are outlined in
Exercise 8. See Hoffman’s book [1962a] for further details.

Let A be a uniform algebra on M. A closed subset K of M, is called a
boundary for A if

I/l = sup| f(m)]

mekK

for all fe 4.

Theorem 1.5. There is a smallest closed boundary K, which is contained in
every boundary K.

This smallest boundary is called the Silov boundary of A. Note that 4 is a
uniform algebra on its Silov boundary.

Proof. Let K, be the intersection of all boundaries. We must show K is a
boundary for A.

Lemma 1.6. Letf,.f,,...,[,€ A and set
U={m:|f(ml<1,j=1...,n}

Then either U N K # J for every boundary K, or else K\U is a boundary for
every boundary K.

Accepting Lemma 1.6 for a moment, we prove Theorem 1.5. Suppose fe 4
and | f| < lon Kg. Set J = {m:|f(m)| > 1}. If we show J = ¢ for every
such f, then we will have proved that K, is a boundary. Since J n Ky = &,
each m € J has (by the definition of K,) a neighborhood U of the form in the
lemma such that U n K,, = & for some boundary K,,. Cover J by finitely
many such neighborhoods U;, 1 <i < N. Then by the lemma, K\U; is a
boundary whenever K is a boundary. Consequently, by induction

N
Ky = MA U Ui = (MAUDNU\ - \Un)

is a boundary. Since | f| < 1 on K, this means || f|| < 1 and J = (&, so that
K, is a boundary for 4. [

Proof of Lemma 1.6. We suppose that K is a boundary but that K\ U is not
a boundary, and we show that U intersects every boundary for 4. By hy-
pothesis there is fe A such that || f|| = 1 but such that supg,| f(m)| < L.
Replacing f by a power f", we can assume that supg,y| f(m)| < &, where
ellfill <1,j=1,..., n, and where f,, ..., f, are the functions defining U.
Then | ff;| < 1 on U by the definition of U, while | ff;| < 1 on K\U by the
choice of ¢. Since K is a boundary, that means || ff;ll < 1,j = 1,..., n. Hence

n

{m:|fm))| =1} = N {m:|fm)| <1} =U.

Jj=1
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Since {m:|f(m)| =1 = |f|} meets every boundary, this implies that U
also meets every boundary. [

Of course, if A = C(Y), then A has Silov boundary Y. A point xe M, is a
peak point for A if there is fe 4 such that

Jx) =1,
|f(,V)|<1, yegﬁm ,V?éx
Clearly, every peak point for A is in the Silov boundary of A.

Example 4. The disc algebra is the algebra of functions continuous on the
closed disc D and analytic on the open disc D. We reserve the notation A,
for this algebra. With the supremum norm | f| = sup,.pl f(2)], 4, is a
uniform algebra. Because analytic polynomials separate the points of D, 4,
is a uniform algebra on D. By the maximum principle, the unit circle T is a
boundary for 4,.If A€ T,thenf(z) = (1 + Az)/2satisfiesf (1) = 1,| f(2)| < 1,
z # A. Thus A is a peak point for 4, and T is the Silov boundary of 4,. The
maximal ideal space of 4, is D. (See Exercise 9.)

Example 5. H® is a uniform algebra with pointwise multiplication and with
the supremum norm

£l = sup| f(z)].

zeD

We shall always write 9t for the maximal ideal space of H®.
For each point { € D there exists m, € M such that my(z) = {, where z
denotes the coordinate function, because (z — {) ¢ (H®)~!. Now whenever

fe H®, we have (f — f({))/(z — {) e H®, and

F=fQ+ G —o(f / f))

But then

m(f) = FO) + myz — omc(f / (f)) — 1),

so that the point m; € M is uniquely determined by the condition m,(z) = (.
Hence

(- mye
defines an embedding of D into IR. By the definition of the topology of M, this

embedding is a homeomorphism. We now identify { with m, and regard D as
a subset of M. Then D is an open subset of M because

= {meM:|2(m)| < 1}.
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From now on we identify the uniform algebra H® with its Gelfand trans-
form and we think of H® as a subalgebra of C(9). There is no ambiguity in
doing this because by the discussion above

fm) =1, (eD.

Now suppose |{| = 1. Then (z — ()¢ (H®)™'! and there exist points
m e M such that £(m) = {. As we shall see in a moment, however, the fiber
M, = {m:2(m) = (} is very large when { € dD.

The Gelfand transform of the coordinate function z defines a map

2:9M - D.
Having identified the open disc D with £~ (D), we can write

M=Du () M,.
lI=1
Thus we can imagine 9 as the open disc D with the large compact space
M, = £7'({) lying above { € dD. The fibers M, over points { € dD are homeo-
morphic to one another because the rotation t(z) = {z, |{| = 1, induces an
automorphism f— fo v of H®, and the adjoint of this automorphism maps
I, onto IM,.

To see just how large M, is, take { = 1 and consider the singular function
S(z) = exp((z + 1)/(z — 1)). In Chapter II we showed that the cluster set of
S(z) at { = 1 is the closed unit disc. That is, whenever |w| < 1 there exists a
sequence {z,} in D such that z, — 1 and S(z,) — w. By the compactness of I
the sequence {z,} has a cluster point me M, and S(m) = w. Hence S maps
I, onto the closed unit disc.

Moreover, there exists a sequence {z,} in D such that lim z, = 1 and such
that every interpolation problem

f(Z")=(1n, n=1,2,...,

{a,} €1®, has solution fe H®. Such sequences, which are called interpolating
sequences, will be discussed in Chapter VII, and a simple example of an
interpolating sequence is given in Exercise 11. Here we only want to make this
observation: If {z,} is an interpolating sequence, then by Theorem 1.4 the
map n — z, extends to define a homeomorphism from SN onto the closure of
{z,} in M. Since lim, z, = 1 (as a sequence in the plane), we now see that M,
contains a homeomorphic copy of SN\N.

By Fatou’s theorem, H® is a closed subalgebra of L®. Now H* separates
the points of X = M, ., because every real L™ function has the form u =
log| f| with fe (H®)™! (see Theorem 4.5, Chapter II), and because u(m) =
log| f(m)| when u and f are viewed as elements of C(X). Hence by compact-
ness, the continuous map X — MM, which is defined by restricting each
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multiplicative linear functional on L® to H*, is a homeomorphism. Accord-
ingly, we think of X as a closed subset of M. Since the injection H® < L*® is
isometric, X is a boundary for H®. Moreover, if K is a proper closed subset
of X, then since C(X) = L* = log|(H®)™ |, there is f € H® such that

sup log| f| < sup log| f1,
K X

and so K is not a boundary for H*. We have proved the following theorem:
Theorem 1.7.  The Silov boundary of H® is X = M.

Every inner function has unit modulus on X, because it has unit modulus
when viewed as an element of L*. So the singular function S(z) =
exp((z + 1)/(z — 1)) satisfies |S| = 1 on X. Now S ¢ (H*)"!, but S has no
zeros on D. Therefore

M+~Dn X.

Carleson’s corona theorem states that D is dense in M. In other words, the
corona M\ D is empty. This famous result will be proved in Chapter VIII. For
the present we only translate its statement into classical language.

Theorem 1.8. The open disc D is dense in M if and only if the following
condition holds: if f1, ..., f,€ H® and if

(1.6) max | f(z)| = 6 >0
1<jsn

for all z € D, then there exist g, . . ., g, € H® such that

(1.7) figr + -+ fuga = L.

Proof. Suppose D is dense in IR. Then by continuity we have

max | f(m)| > o

1<j<n

for all me M, so that {f;, ..., f,} is contained in no proper ideal of H*.
Hence the ideal J generated by {fj, ..., f,} contains the constant 1. But

J={figi + -+ fugn:9;€ H*},

and so (1.7) holds.
Conversely, suppose D is not dense in 9. Then some point m, € M has a
neighborhood disjoint from D. This neighborhood has the form

V= () tm:1fom)] < 8



192 SOME UNIFORM ALGEBRA Chap. V

where § > 0, and where f}, ..., f, € H®, f{(my) = 0. The functions f;, ..., f,
satisfy (1.6) because V n D = ¢, but they do not satisfy (1.7) with g,, ...,
g, € H®, because they all lie in the ideal { f:f(my) = 0}. O

For the disc algebra A4, the “corona theorem,” that M, = D, is a very easy
consequence of the Gelfand theory (see Exercise 9). Therefore, whenever
(1.6) holds for f1, ..., f, € A, , there exist g4, .". . ; g, € A, such that (1.7) holds.
Now suppose we knew the “corona theorem with bounds” for A4,. In other
words, suppose that whenever fi, ..., f, € 4, satisfied (1.6), we could find
dgi, ..., 4, € A, that solved (1.7) and in addition satisfied

(1.8) lg;ll < C(n, 9, maXIlf,-H)-
i

Then the corona theorem for H* would follow by a simple normal families
argument: Given fi, ..., f, € H® having (1.6), and given r < 1, we could
take g¢, ..., g" in A, such that

Y flrg(z) =1, zeD,
and such that ||g®|| , < C(n, 6, max;]| f;|). For some sequence r, — 1,

9z) = lim g(2)
k— o0
would then provide H® solutions of (1.7). In other words, we would get the
corona theorem for H* if we had a proof of the easy “corona theorem” for
A, that was constructive enough to include the bounds (1.8).

2. Inner Functions

Recall that a function u € H® is an inner function if |u(e®)| = 1 almost
everywhere. Every Blaschke product is an inner function, and by Frostman’s
theorem, Theorem I1.6.4, every inner function is the uniform limit of a
sequence of Blaschke products. In this section we prove that the inner
functions, and therefore the Blaschke products, generate H® as a uniform
algebra.

Theorem 2.1 (Douglas-Rudin). Suppose U is a unimodular function in
L®,|U(e®)| = 1 almost everywhere. For any ¢ > O there exist inner functions
uy, Uy in H* such that

U = uyfuy| <e

Before proving Theorem 2.1 let us consider the corresponding result for
continuous functions on the circle T. It can be proved in a few lines. Suppose
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UeC(T), |U|=1. Write U = z"V2, where n is an integer (the winding
number of U) and V e C(T), |V| = 1. By Weierstrass’s approximation
theorem there is a rational function h(z), analytic on T, such that

[V(z) — h(2)] < &, zeT.
Since | V| = 1, we also have
V() — (1/h(1/2)| < e/l —¢), zeT.
The rational function
9() = "h(z)/h(1/2)

is then a quotient of finite Blaschke products, because |g| = 1 on T, and we
have

[U(z) — g(2)] < € + /(1 — ¢), zeT.

Proof of Theorem 2.1. Let E be a measurable subset of T with |[E| > 0. We
may assume

U=y + Brre»

where |a| = || = 1, a # B, because the finite products of functions of this
form are norm dense in the set of unimodular L functions.
Consider the circular arcs

A=1{e]e® —a| <e?2), B=/{e:|e% — B| <¢2}.

We may suppose |a — | > 2¢,sothat 4 n B = . Let Q be the complement
of A U B in the Riemann sphere. There exists r, 0 < r < 1, such that the
annulus

V={r<|w|<1/r}

can be mapped conformally onto Q. Moreover, the conformal mapping
¢ : V — Q extends continuously to ¥ and

o(lwl=ryc 4, o(wl=1/r=B

(we can replace ¢ by ¢(1/w) if necessary). See Ahlfors [1966, p. 247]. The
function ¢ is analytic on V except for a simple pole at some point p.

Now let h e (H®)™ ' be an outer function such that |h| = ryg + (1/r)xne
almost everywhere. Then A(D) < V and

IU—o-h| <e

We shall show that ¢ o h is a quotient of inner functions. Note that ¢ o h is
meromorphic on D with poles only on the set h~'(p). The function {(w) =
w 4+ 1/w maps V onto an ellipse W. Let G({) be a conformal mapping from
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W to the unit disc, with G({(p)) = 0. Then ¥(w) = G({(w)) is analytic on V
and continuous on V. Moreover, |¥/(w)] =1 on éV and y(p) = 0. Con-
sequently u; = (@¥) - hand u, = Y o hare inner functions for which we have

U —uy/uzlle <& O

Another proof of Theorem 2.1 is given in Exercise 13. Recall that the Silov
boundary of H® is X = M; ...
Theorem 2.2 (D.J. Newman). If me I, the maximal ideal space of H®,
then the following conditions are equivalent:

(a) me X, the Silov boundary,
(b) |u(m)| = 1 for every inner function u(z), and
(c) |B(@m)| > O for every Blaschke product B(z).

Proof. Since X = M; ., and since every inner function is a unimodular L*®
function, (a) implies (b).

Now suppose (b) holds. We show m can be extended to a multiplicative
linear functional on L*. By Theorem 2.1, the algebra

n
I = { Y Aju;p: 4;€ C, v, u; inner functions}

j=1

is norm dense in L®. On .# define
j=1 j=1

Then because of (b), #1 is well defined, linear, and multiplicative on .# and

}ﬁz(Zijujl—)) = }m(leuj) leujl_)
j=1 Jj=1 Jj=1

Hence #i is bounded and #i has a unique continuous extension to L®. So
there is x € X such that ri(g) = g(x), g € 4. We must show that m(f) = f(x),
feH®. Choose g = ) A;u;b € # such that |g — f|,, < & Then

li(g) — f)| = 1g(x) — f(x)| <&
Since vg € H®, vf € H®, and |m(v)| = 1, we have
Im(f) — mi(g)| = Im)m(f) — m()i(g)| = |m(vf) — m(vg)| < &,

by the definition of #i. Therefore |m(f) — f(x)| < 2¢ and so m € X.
Trivially, (b) implies (c). Now suppose (b) does not hold. Then |u(m)| < 1

for some inner function u(z), and by Frostman’s theorem, |B(m)| < 1 for

some Blaschke product B(z). We may assume that m is not the evaluation

<

n
Z Aju;
j=1
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functional for some point in D, so that |m(B,)| = 1 for every finite Blaschke
product B,. Thus B(z) is an infinite product

8

B(z) = [ —2 LI
j=1 Zj I_EJZ

Choose n; = oo such that ) nf(l —|z;|) < oo, and form the Blaschke
product

= (—Zjz—1z;\"
B,(z) = J _’) .
l() jl:[l (Izjl l—ZjZ

For N large we have
B, = B§"B{"BY",
where BY" is some finite Blaschke product, where

e 2] 2 nN
-z z—2Z.
N || J
B(l)_ ( !) ,

j=N IZjl I—EJZ

and where BY" is a third Blaschke product. Since m ¢ D, | B&"(m)| = 1, and
|BM(m)| = | B(m)|"~. Clearly | BY"'(m)| < 1, so that

|B;(m)| < |Bm)|"™, N=12,....
Therefore | B;(m)| = 0 and (c) implies (b). [

Let & be a subset of a uniform algebra A. We say that & generates A if
the linear combinations of products of functions in & are norm dense in A.
If & is closed under multiplication, then & generates A if and only if 4 is the
closed linear span of &.

Theorem 2.3 (A. Bernard). Let A be a uniform algebra on a compact
Hausdorff space Y and let

U={ueA:|lul=1o0nY}

be the set of unimodular functions in A. If U generates A, then the unit ball of A
is the norm closed convex hull of U.

Proof. Let fe A, ||f| < 1. We can suppose f = Y"_, Aju;, u;€, A;€C,
because functions of this form are dense in ball(4). Write u = H7=1 u;€u.
Then fu € A. Now

1 2n + it

fo L [T reu,

2n Jo 1+ e'fu
at every point of Y. For each fixed ¢” the integrand is a function in %. Since
£l < 1, there is a sequence of Riemann sums which converges to the integral
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uniformly in y € Y. These sums are convex combinations of elements of % and
they converge in norm to f. [

Corollary 2.4.  The unit ball of the disc algebra A, is the closed convex hull of
the set of finite Blaschke products.

Proof. The inner functions in A4, are the finite Blaschke products. They
generate A, because the polynomials are dense in 4,. O

Theorem 2.5 (Marshall). H® is generated by the Blaschke products.

Corollary 2.6. The unit ball of H® is the norm closed convex hull of the set of
Blaschke products.

The corollary follows immediately from Theorem 2.5, from Theorem 2.3,
and from Frostman’s theorem. Notice that the Carathéodory result for
pointwise convergence (Chapter I, Theorem 2.1) is much easier than Corol-
lary 2.6.

The proof of Theorem 2.5 is a clever combination of three ingredients: the
Douglas-Rudin theorem, Bernard’s trick from the proof of Theorem 2.3, and
the Nevanlinna theorem from Chapter I'V. The proof brings out a connection
between interpolation problems and approximation problems which is
recurrent throughout this theory.

Proof of Theorem 2.5. By Frostman’s theorem it is enough to prove that
the inner functions generate H®. Let J be the closed subalgebra of H®
generated by the inner functions and set

N = {fe H*: fu e H* for some inner function u}.
We must show J = H®. We need two preliminary observations:
() Iff =72 Aujis a linear combination of inner functions, then f € N;
() NcJ.
To prove (i) let u = [ ] u; and note that
fu= Y1 [Ju e H>.
j=1 k#j

The proof of (ii) uses Bernard’s idea from Theorem 2.3. Suppose fe N,
I £1 < 1. If u is. an inner function such that fu e H®, then for all real t,
(f+ €"w)/(1 + €"fu) is an inner function. Then the integral

1 J~2n f+ eitu
— — dt
2n Jo 1+ ée'fu

expresses f as a uniform limit of convex combinations of inner functions.

f=
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Now let fe H®. By the Douglas-Rudin theorem (Theorem 2.1) and by
Frostman’s theorem, there exist inner functions u, ..., u,, and complex
numbers 4,, ..., 4,, and there exists a Blaschke product B(z) such that

2.1 If—> Au;Bll <e
We next use Theorem 4.1, Chapter IV, to unwind the antiholomorphic
factor B. Let g = Y A;u;. Then by (2.1)

IBf — gl <e,
so that |g(z,)| < ¢ at the zeros {z,} of B(z). By Chapter IV, Theorem 4.1,
there exists an inner function v(z) such that

ev(z,) = g(z,), n=12....

Hence

g — ¢v = Bh
for some h € H®. Recalling that g = ) A;u;, we see that Bh € 9 because of
(i). Thus there is an inner function u(z) such that Bhu € H®. Consequently

BBhu = hu € H®, so that h € R, and from (ii) we conclude that h € J. But
then

I f—hl = |Bf — Bhll < |[Bf — gl + llg — Bhll
= [|Bf — gl + ellvll < 2,
and therefore fe J. O

3. Analytic Discs in Fibers

Let {z,} be a Blaschke sequence in D, ) (1 — |z,|) < 0. We assume
lim z, = 1. If B(z) is the Blaschke product with zeros {z,}, then

-z, 1 —Zk Zn — %
B(z,) = FR—— T
|z, 1 — |z,]? kk#n 12kl 1= 2z,
and
z,— 2z
(1 = 1z,/)|B(z,)| = !
k;lk_[¢n 1 - ZyZy
We replace {z,} by a subsequence such that
: Zp — 2y
inf — =0>0,
n k;lk—ln 1 - ZyzZy

which can easily be accomplished by a diagonalization process. Thus we
assume

(3.1) inf(1 — |z,|*)|B'(z,)| = ¢ > 0.
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This condition will be very important to us later because it characterizes
interpolating sequences. Here we are only going to use (3.1) to find non-
constant analytic maps from the open unit disc into the fiber I, of M over
z=1.Let

{+ 2,
1+2z,0
Then fo L, € H® whenever fe H® and fo L,(0) = f(z,). We regard L, as a
map from @ = {|{| < 1} into . (The notation £ = {|{| < 1} is used here
to distinguish the domain of L, from its range D = I.) Now the space M? of
mappings (continuous or not) from 2 into M is a compact Hausdorff space
in the product topology. From the sequence {L,} = MM? we take a convergent
subnet (L,,) with limit L € IM?. (Nets are needed because M? is not a metric
space.) We get a map

L0 = Il < 1.

L:2->M
such that for all fe H®

(3.2) fo L) =limf L, () = limf (f—:zz—)

Theorem 3.1. The mapping L : 2 — M has the following three properties:
(a) L(2) < M, the fiber of M over z = 1;
(b) L is an analytic mapping, that is, fo L({) is analytic on & whenever
fe H®,
(c) the mapping L is not constant.

Proof. Take f(z) = zin (3.2). Then

. [+ z,
2 =1 L) =
19) TG+%)1’
since lim z, = 1, and (a) holds. Property (b) follows from (3.2) and from the

fact that we limit of any bounded net of functions analytic on 2 is an analytic
function on 2. It also follows from (3.2) that (f> LY({) = lim{(f~ L,)'(0)
whenever fe H®. Hence

(B = LY(0) = lim(B = L, )(0) = lim B'z,)L; (0)

J

= lim(1 — |z,,[*)B(z,),

J

so that by (3.1) we have
(3.3) [(Bo LY(0)| =6 > 0.
Hence B - L is not constant and (c) holds. [J
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We will see in Chapter X that L is actually 1-1 from 2 into M, and that M,
contains uncountably many pairwise disjoint such analytic discs L(9).

By (3.3) and by Schwarz’s lemma (see Exercise 1, Chapter I), there exists
n = #(6) > 0 such that L({) is one-to-one on |{| < #. Thus we have para-
matrized the set L(|{| < 1) = M, as a disc on which all functions in H*® are
analytic. The set L(|{| < #) is called an analytic disc.

The following remarks may help to make the analytic disc L(|{| < n) a
little less mysterious. Consider the discs

zZ— 2z,
Anz{z:p(zazn)=‘1_zz

n

< '1} = L(I{I < ).

With respect to the Euclidean metric, the discs A, converge to the point
z = 1. But with respect to the hyperbolic metric, the discs A, are all congruent
to A = {|{| < n}. See Figure V.1. For fe H*, the functions

S8 = F(LAD))

form a normal family, and the behavior of fon A, is the same as the behavior
of f,on A. When ' = B,f(0) = B'(z,X(1 — |z,|*) and by (3.1) no limit of { f,}
is constant on |{| < 5. Because the maximal ideal space M = My is com-
pact, there is a net of indices (n;) such that f, = f(L, ({)) converges for every
fe H®. That is the same as saying that L, — L in the space M?. Conse-
quently, we can think of the net of discs (A, ) as converging in 9 to a limit set
L(|{| < n). Because of (3.1) and (3.3) the limit set is a disc on which B(z) is

one-to-one, and on which all functions in H*® are analytic.

Figure V.1. The hyperbolically congruent discs A,.
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4. Representing Measures and Orthogonal Measures

Theorem 4.1. Let A be a uniform algebra on a compact Hausdorff space Y
and let me M ,. Then

[ml = sup [m(f)|=1.
Irii<1

There exists a positive Borel measure pon Y such that (YY) = 1 and such that
@1 m(h)= [ sdu  rea
Y

A positive measure p on Y for which (4.1) holds is called a representing
measure for m. Any representing measure is a probability measure, that is,
u(Y) = 1, because [ 1 du = m(1) = 1.

Proof. We have |[m|| < 1 by Theorem 1.1. But since A4 is a uniform algebra
we also have |1]| = 1, so that |m| > |m(1)| = 1. Hence |m| = 1. By the
Hahn-Banach theorem, the linear functional m(f) has a norm-preserving
extension to C(Y), and by the Riesz representation theorem, this extension is
given by integration against a finite complex Borel measure on Y. Thus (4.1)
holds for some measure y, and

L= ful = sup{ ‘ [ ran ‘:fe ), 111 < 1}.

But then |ul| =1 = jdu, so that p is positive and w(Y) = 1. [

When using Theorem 4.1 one usually takes Y to be the Silov boundary of
A. For example, let A be the disc algebra A, and let Y = T, the unit circle.
The maximal ideal space is the closed disc D (Exercise 9). When |z| = 1, the
representing measure is the point mass J, at z. When | z| < 1, the representing
measure is given by the Poisson kernel

11—z
= _~7d9|
2n e — z|?

dp
Each point in D has a unique representing measure on T because
Ref(z) = fRefdu,
T

since u is real, and because the real trigonometric polynomials, that is the
real parts of analytic polynomials, are dense in the space Cr(T) of real
continuous functions on T.
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More generally, a uniform algebra A4 is called a Dirichlet algebra on Y if
Re A = {Ref:fe A} is uniformly dense in Cg(Y). Thus every complex
homomorphism of a Dirichlet algebra has a unique representing measure
on Y. We say A is a logmodular algebra on Y if

log|A™"| = {log| f|:fe 47"}

is dense in Cg(Y). Every Dirichlet algebra is a logmodular algebra, since
log|e’| = Re f. However, H® is not a Dirichlet algebra (see Exercise 15), but
H® is a logmodular algebra on its Silov boundary X. Indeed, as we have
observed earlier, if u € L, and if u(z) is its Poisson integral, then f(z) =
exp(u(z) + ia(z)) € (H*)™! and log| f| = u almost everywhere.

Note that if A is a logmodular algebra on Y, then Y is the Silov boundary
of A. The proof is the same as the proof of Theorem 1.7.

Theoremd.2. Suppose A is a logmodular algebra on Y. Then eachm € M, has
unique representing measure on Y.

Proof. Suppose u; and p, are representing measures on Y for m e M ,. Let
fe A™1. Then since yu, and u, are probability measures, we have

|m(f)lsf|f|du1, |m(f*>|sf|f|-1duz,

so that
U< [1f1du [1517" dus.
By the density of log| A" | in Cg(Y), this yields
1< fe“ du, fe‘“duz, u € Cr(Y).
Now fix u and define
k(1) = fe"‘ du, je'“‘ du,, teR.

Then h(0) = 1 and h(t) > 1. Differentiating h(t) at t = 0, we obtain

f“d#1 - f“dﬂz =0,

80 that H1 = Uz. EI



202 SOME UNIFORM ALGEBRA Chap. V

Since H* is a logmodular algebra, each m € M has a unique representing
measure Y, on X. When m € X the unique measure must be the point mass
0,,- What is the measure on X representing f— f(0)? We have f(0) =
(1/2m) [ f(e®) b, f e H™, but strictly speaking, d0/2x is not a measure on the
big compact space X. However, the linear functional

L*¥>g—> fg do/2m,
T

does, by the Riesz representation theorem, determine a Borel probability
measure Uy on X, and u, is the representing measure we are seeking. If
E < T is a measurable set of positive measure, then x is an idempotent (0
and 1 valued) function in L®. Thus ¥ assumes only the values 0 and 1, and
there is an open—closed subset E of X such that jz = xz. Then

@2) uo(E) = fx ditg = LxE d6/2r.

Because the simple functions are norm dense in L%, the open—closed sets are
a base for the topology of X and (4.2) uniquely determines the Borel measure
Uoon X,

Theorem 4.3. Let 0 < p < 0. Then the correspondence
AE = XE

extends to a unique positive isometric linear operator S from L*(T, df/2r) onto
LP(X’ #0)

Proof. For f=7) a;yz, a simple function, we define Sf =Y a;xz,. This is
the only possible definition of a linear extension of the mapping xz — x&-
By (4.2), ISfll, = I fll,,0 < p < o, and by density, S extends to a positive
isometric linear operator from LP(T, d6/2n) into L?(X, p,).

We must show that S maps onto L2(X, u,). It suffices to treat the case
p = oo, because ||Sf ||, = || fl,and because L®(u,) is dense in LP(p,), p < 0.
Let ge L*(uo). Take {g,} = C(X) such that ||g,ll, < lgl, and g, > ¢
almost everywhere with respect to u,. Because C(X) is the Gelfand transform
of L*, and because simple functions are dense in L®, we can suppose that
g, = S(f,), where f, € L® is a simple function and | ;o = lgallo. Then
because S is an isometry, | f, — fill2 = g, — gill2, and {f,} converges in
L?(d0/2n) to a limit f. Then S(f) = g. Moreover, f€ L™ because || f,| o <
lgll, and because some subsequence of {f,} converges to f almost every-
where. [

When p = o, Theorem 4.3 shows that L®(X, po) = C(X), reflecting the
fact that X is very big and disconnected.
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By Theorem 4.3 the representing measure on X for the point ze D is
S(P,) duy, where P, is the Poisson kernel for z. By Theorem 4.3 and the
Radon-Nikodym theorem, the space of measures on X absolutely continuous
to Ko can be identified with L'(d6/2n), and thus there is no real danger in
regarding P, d0/2n as a measure on X.

When A is a uniform algebra on a compact Hausdorff space Y, we write
A*for the space of finite complex Borel measures von Y which are orthogonal
to A,

ffdv=0, all feA.
Y

Similarly, if me M, and if A,, = {fe A:f(m) = 0} is the corresponding
maximal ideal, then 4, = {v:[ fdv =0, all f€ A,,}. In particular, if HY =
{f e H*: f(0) = 0}, then by Theorem 4.3 and the F. and M. Riesz theorem,
{ve (HP)" :v < uo} can be identified with the space H'.

Theorem 4.4. Let A be a uniform algebra on a compact Hausdorff space Y
and let me M . Assume m has a unique representing measure p on Y. If
ve AL and if v = v, + v, is the Lebesgue decomposition of v with respect to 1,
then v, € AL and v, € A*.

This is a generalization of the F. and M. Riesz theorem. However, even in
the case A = H® we cannot conclude that v, = 0 as we can with the classical
Riesz theorem. We can only obtain the weaker statement | dv, = 0. For the
proof we need the following lemma:

Lemma 4.5. Assume m € M, has unique representing measure p on Y. Let
E < Y be an F, set such that W(E) = 0. Then there are f, € A such that

@ Al <1,
) f,(y)—0,y€eE, and
(ii)) f, = 1, almost everywhere du.

Proof. We need a preliminary observation. If u € Cx(Y) then

(43) sup{Rem(f):fe A,Ref< u} = inf{Re m(f):fe A, Re f> u}

= fu du.

To establish (4.3), consider the positive linear functional on Re A4 defined by
Re f— Re m(f).

Each representing measure for m is a positive extension of this functional
1o Cr(Y). By the proof of the Hahn-Banach theorem, this functional has a
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positive extension whose value at u is any number between the supremum and
the infimum in (4.3). So when the representing measure is unique, we must
have equality in (4.3).

Write E = | ) E,, with E, compact and E, < E,, . Take u, € Cg(Y) such
that

u,(y) >0, uy)>n, yekE,

Ju,, du < 1/n%.
These are possible because u(E,) = 0. By (4.3) there are g, € A such that
Reg, >u,, Reg,m)<1/n*, Img,(m)=0.

Let f, = e %". Then (i) holds for f, because Re g, > u, > 0, and (ii) holds
because | f,(y)| < e " < e™" ye E,. To prove (iii), note that

Jit-prau=1+ flf,,lz dit — 2 Re f(m)

<2 —-2Ree o™
<201 — e ") < 2/n?,
because f,(m) = e~ 9™, Therefore f, —» 1 almost everywhere du. [

Proof of Theorem 4.4. Since v, is singular to u there is an F, set E = Y such
that u(E) = 0 but such that |v,|(Y\E) = 0. Let f, be as in the lemma and let
dv, = f, dv. Because A4,, is an ideal we have v, € 4;;. By the lemma and by
dominated convergence v, converges weak-star to v, = v — v,. Hence
v,€Ax and v, =v — v, € A%. Finally, by assertion (iii) of the lemma,
f.(m) = 1, and by assertion (ii),

fdvs = lim f(f,,(m) —f)dv,=0.

Therefore v, e 4. O

As an application of Theorem 4.4, we reprove a result from Section 4,
Chapter IV: Let hg € L°\H®. If |ho + H®| < 1, there exists F € H', F # 0,
such that

(4.4) F/|F|ehy, + H*.

Proof. As in the proof of Theorem 1V.4.4, we choose h € hy + H®, |[h|| = 1,
such that

1 1 .
‘z—nJ’th‘=supﬂ2nJ‘gd9‘.geho+H , gl sl},
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and we observe that dist(h, HY) = 1 while dist(h, H®) < 1. By duality there
are F,e H', |F,|l; < 1, such that

do

_— = 1
4.5) f hF, o
but such that
(4.6) inf|F,(0)| > 0.

Let dv, = S(F,) duy. Then v, € (HP)* and |v,| < 1. Let v be a weak-star
cluster point of {v,}. Then ve (Hg)*, and by Theorem 4.4, dv = S(F) du, +
dv, where F € H' and v, e (H*)*. By (4.6), F # 0, because | dv # 0, but
jdvs = 0. We also have ||v]| < 1 andj' hdv = 1,by (4.5),so that |v| = 1 and
[hdv=[ldv| = 1. Because v, is singular to p,, that means [ hdv, =

| |dva|. But then
do dae
- R
th 2n f’ | 2’

so that h = F/|F| and (4.4) holds. [

A word of caution. Because (H®)* contains measures singular to all
representing measures (see Exercise 17), there is a dangerous curve in the
above reasoning. Only because of (4.6) could we conclude that v, # 0. In
general, it can happen that every weak-star cluster point of a sequence
S(F,) duy, F, € H', is singular to p,. In that case F,(z) =0, |z] < 1 (see
Exercise 18 and Example 1.5, Chapter IV). However, there are some positive
results along these lines (see Gamelin [1973, 1974] and Bernard, Garnett,
and Marshall [1977]).

5. The Space L'/H}

H® is the dual space of L'/Hj, since H® = {fe L®:| fFdf = 0,F € Hy}.
The elements of L'/H} are the most useful linear functionals on H® because
they have the concrete representation as integrable functions on T. In this
section we prove three theorems about the predual L'/H{.

_ A closed subset P — X is a peak set for H® if there is f€ H® such that
f=1lonPand|f| < 1on X\P.Our starting point is an elegant lemma of
Amar and Lederer [1971].

Lemma5.1. Let v be afinite complex Borel measure on X. Assume v is singular
With respect to o . For any ¢ > Othere is a peak set P = X such that uy(P) = 0
but such that |v|(X\P) < .
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Proof. By hypothesis, the total variation |v| is singular to u, and there is a
compact set K < X such that

Ho(K) =0 and [VI(X\K) < e.

Because the open—closed sets form a base for the topology of X, we can
find open-closed subsets ¥, of X such that K < V,,; < ¥, and such that

(5.1 Y. npo(V,) < oo.

Let u, = nyy,. Since V, is open—closed there is a measurable set E, = T
such that ¥, = {}¥z, = 1}, and we can think of u, as an L® function, or better
yet, as the bounded harmonic function u,(z) = n jE" P,(0) d0/2m. Let

9u(2) = u,(2) + i,(2),  G(2) = Zlgn(Z)-

Then by (5.1), G(z) is a finite analytic function on D and Re G(z) > 0. Then

isin H®, || fllo < 1, and

i i
O ’ g G(z)‘g 1+ u@)

Consequently |1 — f(¢®)| < 1/(1 + n) almost everywhere on E,, so that
1= fel < — eV,
—f(x —, x eV,
“14n

The set P = {x:f(x) = 1} is a peak set, because g = (1 + f)/2 satisfies
g(x) =1, xe P, and |g(x)| < 1, x ¢ P. Moreover we have K — P because
() V, = P, and hence

IVI(X\P) < [V[(X\K) <& [

Theorem 5.2 (Mooney). Let {¢,} be a sequence of integrable functions
such that

0
iim [ f0,5, = L0

n—aw

exists for all f € H®. Then there exists ¢ € L' such that

(52) Lp=[res. fen
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A linear functional on H® is called weakly continuous if it has the repre-
sentation (5.2). If F € H}, then

[re+pE=[ro5.  sen=,

and so the set of weakly continuous linear functionals corresponds naturally
to L'/H}. Thus the theorem asserts that every weak Cauchy sequence in
L'/H} hasaweak limitin L'/H{. In other words, L'/H{ is weakly sequentially
complete. The weak completeness of L' has been established much earlier
(see Dunford and Schwartz [1958, p. 298]).

Proof. Write
do
LN = [fas,. sen
By the uniform boundedness principle, sup,||L,|| < oo, and the limit L is a

bounded linear functional on H®. By the Hahn-Banach theorem there is a
finite complex measure ¢ on X such that

L(f) = ffdo, fe H®

Write do = ® dp, + do,, with ® € L'(i,) and o, singular to u,. Then by
Theorem 4.3 there is ¢ € L' such that

do
1) = — .

[roaw=[roS.  rer
We are going to show that ¢, € (H®)*. This will mean that
do ©
L(f)= [ f®du, = f(pﬂ’ feH™,

which is the assertion of the theorem. Replacing ¢, by ¢, — ¢, we assume that
L(f)=ffdas, fe H®.
X

Suppose o, ¢ (H®)". Then there exists g€ H® such that [gdo, # 0.
Applying Lemma 5.1 with dv = g do,, we get a peak set P = X such that

Ho(P) =0
but such that

WP) = fg do, # 0.
P
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Let fe H* be a function peaking on P. Then

(5.3) lim | f¥dv = vw(P) #0,
k— o
and
do
54 li k —=20 =12 ...
(5.4) kln; fgw..zn ,  n=12,

(because p(P) = 0 and f*(x) — 0, x € X\ P). On the other hand, we have

. do
59) im [ 90,5, = U = [ 1*av

n— o
Inductively, we shall choose n; - o0 and m; — o0 in such a way that

(5.6) Wz = ¥ (~ ™) e H

J

but such that {L,(hg)} does not converge. That will give a contradiction,
thereby proving the theorem.
Fix ¢ > 0. Take n, = 1 and choose m, so that

my d@ my €
Uf grpmﬂq and Hf dv v(P)‘<2.

These are possible by (5.4) and (5.3). Assuming ny,...,n_and my,. .., m_,
have been chosen, and writing

d ; g : do do
L,.k(g (- 1)’f’""g) - %[00, o+ 18 [rmaen

=Ak + Bk’

we first pick n, > n,_; so that

(5.7)

<&

A jgll(_ y J;(fmJ @

This is possible because of (5.5). Having fixed n,, we then use (5.3) and (5.4)
to choose m, so that
|B,| <

and so that

(5.8) ’ jf"‘" dv — v(P) { <&
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Notice that (5.7) and (5.8) imply
(5.9) |Ay — Ayiq| = v(P) — 3e.

Since | f(z)| < 1, z € D, and since uy(P) = 0, we can make m, increase so fast
that (5.6) holds and so that by (5.4)

o ‘ 9
=] X (=Dimgo, -
satisfies |C,| < &, k= 1,2,.... But then
L, (hg) = A, + B, + Cy,
and by (5.9)
|L,(hg) — L, (hg)| = ((P) — 3¢) — (IBi| + |Bis1| + |Cil + [Cpsn])
> wW(P) — Te.
Taking ¢ < v(P)/7 now gives a contradiction. []

Theorem 5.3. Let L be a bounded linear functional on H®. Then the following
conditions are equivalent :

(a) L is weakly continuous, there is ¢ € L' such that
do ©
1= [ros  feH”,

(b) L is continuous under bounded pointwise convergence: If g,€ H®,
lgal < M and if g,(z) — g(2), z € D, then L(g,) - L(9),
(¢) Ifh,e H® and if

(5.10) Y Ih(e®) <M < oo
almost everywhere, then

(5.11) LY m) = . L(hy).
Note that by (5.10), )_ h, is a well-defined function in H®.

Proof. 1t is clear that (a) implies (b). If ||g,|| < M and if g,(z) = g(z), then
the only weak-star accumulation point of the sequence {g,} in L® = (L')*
18 g, because Poisson kernels are in L'. By the Banach-Alaoglu theorem, this
means g, — g weak-star, so that | g, d6 — [ go d6.

Trivially, (b) implies (c), because if (5.10) holds, the partial sums g, =
Y, h(z) converge pointwise and boundedly to Y by

Now suppose L satisfies (c). Represent L by a measure o on the space X
and write do = ® du, + do, with dog singular to du,. Subtracting ® du,,
we can assume ¢ = o,. Our task is to then use (c) to prove that o € (H®)*.
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Suppose there is g € H® such that [ g do # 0. Set dv = g do and choose a
peak set P < X such that py(P) = O but
fg do

by using Lemma 5.1. Let f€ H® be a function peaking on P. Replacing f by
1 — (1 — f)!?, also a peaking function, we can assume that f has range in a
cone with vertex at 1, so that almost everywhere

| f(e*) — 1]

S o < A < 0.

=11~
Define hy = g, h; = fig — f7~'g,j > 1. Then ) h; = 0, while

(5.12) [vI(X\P) <

Yl <lgl+1gl Y 1P 1]
j=0 j=1

<lol({) < At < =

almost everywhere. But since f = 1 on P, dominated convergence yields

Yi0)= [ Y -pgdo=| gao
ji=1 X\P j=1 X\P
so that by (5.12)
y L(h) | < [V|(X\P) < ‘ fg do |.
j=1
Hence
fL(hj) > \ Jg do | — |v|[(X\P) > 0,
=0

which contradicts (5.11). [

Theorem 5.4. Let E be a complex Banach space with dual space E*. If E* is
isometrically isomorphic to H®, then E is isometrically isomorphic to L*/Hj.

In other words, H® has a unique isometric predual. The Banach space '
does not have a unique isometric predual (see Bessaga and Pelczynski
[19607).

Proof. By hypothesis, there is a linear mapping T from H® into E* which is
isometric, || T()llgs = || f |l ». The adjoint T*: E¥* — (H®)* maps E < E**
isometrically onto the closed subspace T*(E) of (H®)*. We shall show
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T*(E) coincides with L'/H} by verifying condition (c) of Theorem 5.3 for
L=T*9),pcE.

Suppose {h,} = H® satisfies (5.10) and let h = ) =, h,. By (5.10) and by
the logmodular property there is h, € H* such that

@

(5.13) lhol + > Ihl =M + 1.

k=1

Let @* be any weak-star cluster point of bounded sequence {)} T(h,)} in
E*. We shall be done provided we can show ¢* = T(h), because we should
then have

L(h) = lim iL(hk)

n—-ow 1
whenever L = T*(¢@), ¢ € E.
For any choice of constants {g,}, |e| = 1,k =1,2,..., we have
N N N n
Z e T(h) + o* — Z T(h) | <ITim Z & T(h) + Z T(hy)
0 1 E n—w 0 N+1 E
- N n
=Tm || Y eh + ) Iy
n— o 0 N+1
<M+1,
because T is an isometry. Hence
N N
Yeah + T e*)— Y h| <M+1,
0 1

and if for each ¢ we choose ¢, adroitly, we obtain

N N
2 I he®)| + ‘ T~ (@*)e”) — L h(e®) <M + 1
0 1

almost everywhere. From (5.13) we conclude that
T o)=Y h=h
1

almost everywhere, so that o* = T(4). O

We have based the results in this section on Lemma 5.1 to illustrate the
power and beauty of the abstract techniques. These results can also be
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obtained by classical methods which are perhaps easier and more informative,
See Exercises 19 and 20, for example.

Notes

The books of Browder [1969], Gamelin [1969], and Stout [1971] provide
much more complete discussions of general uniform algebra theory, and
Hoffman [1962a] gives more details on the spectrum of L® and on the fibers
M, .
See Kelley [1955] for a different approach to Stone-Cech compactifica-
tions. The proof of Theorem 1.5 is from Hoérmander [1966]. Theorem 2.1 is
from Douglas and Rudin [1969]; the corresponding result for C(T) was
noted in Helson and Sarason [1967]. Newman proved Theorem 2.2 in
[1959b], where he rediscovered a slightly weaker form of Frostman’s
Theorem. Corollary 2.4 is due to Fisher [1968]. See also Phelps [1965],
Rudin [1969], and Fisher [1971]. Theorem 2.5 was first published by
Marshall in [1976a]. The paper of Bernard, Garnett, and Marshall [1977]
contains some generalizations and further references, as well as Bernard’s
proof of Theorem 2.3. In Marshall’s thesis [ 1976¢] some of the ideas of Section
2 are carried further. Analytic discs were first embedded in the fibers of IR in
the paper of Schark [1961].

In Section 4 we have only touched the surface of the general theory of
abstract Hardy spaces. See Hoffman [1962b], Gamelin [ 1969], Lumer [1969],
Stout [19717], and the references therein, for the complete picture. The idea of
using the proof of the Hahn-Banach theorem, as in Lemma 4.5 and as in
Chapter IV, Theorem 4.3, comes from Lumer [1965].

See Amar and Lederer [1971] for Lemma 5.1 Mooney [1973] gave the
first proof of Theorem 5.2. The proof in the text is from Amar [1973]; the
sliding hump idea was introduced into this context by Kahane [1967].
Havin [1973] published a more elementary proof outlined in Exercise 20.
The implication (¢) = (a)in Theorem 5.3 is from Barbey [1975], and Theorem
5.41is due to Ando [1977]. See Havin [1974], Chaumat [1978], and Pelczynski
[1977] for more information on L'/H}.

The Banach space structure of H® is not yet well understood. In particular,
it is not known if H* has the Banach approximation property. That is, does
there exist a net {T,} of bounded linear operators on H® such that T, has
finite dimensional range and such that |T,f— fll, — O uniformly on
compact subsets of H*? Cesaro means give the analogous result for weak-
star convergence and for norm convergence on the disc algebra. See Pelczyn-
ski [1977] for details and for related open questions. Theorem 2.5 might be
helpful for this problem.
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Exercises and Further Results

1. Theset A~ ! of invertible elements of a Banach algebra with unit is an
open set on which f — f ~! is continuous. In fact, f - f ~! is analytic, that is,
it has a norm convergent power series expansion in a ball about each fe 4™,

2. Let A be the algebra of absolutely convergent Fourier series
- * .
f(ez()) — Z a, emO

such that

e}

Il =3 lan| < oo.

With the pointwise multiplication of functions,
(fg)(e®) = f(e®)g(e?),

A is a commutative Banach algebra with unit.

(a) Provethat M, can be identified with the unit circle in the natural way.

(b) If f(e) has absolutely convergent Fourier series and if f(e") is
nowhere zero, then 1/ has absolutely convergent Fourier series. This result
is due to Wiener. Gelfand’s proof, using part (a) and Theorem 1.2, drew
considerable attention to Banach algebra theory.

(c) The range of the Gelfand map is not closed in C(T). In particular, 4
is not a uniform algebra under any equivalent norm.

(d) Obtain similar results for the algebra of absolutely convergent
Taylor series

f= S Ifl =14l
n=0 n=0

3. Let my, m,, ..., m, be distinct points in the spectrum of a Banach
algebra A and let o, a5, ..., o, be distinct complex numbers. Then there is
feAsuchthatf(mj) =a;,j=1,...,n

4. 1If A is a Banach algebra and f € A, then
A1 = Tim | £t
In particular, the limit exists. This is called the spectral radius formula.
5. The maximal ideal space of C(Y) is Y. More generally, let A be a

uniform algebra and say fe A is real if f — A€ A~ whenever Im A # 0. If
the real elements of A separate the points of M, then 4 = C(M).
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6. A sequence {p,} in the spectrum of a uniform algebra A is called an
interpolating sequence if

f(pn):ana n=1,2,...,

has solution fe A whenever {a,} € I°. If {p,} is an interpolating sequence,
then the mapping n — p, extends to define a homeomorphism from SN into
the closure of {p,} in M ,. (See the proof of Theorem 1.4.)

7. Let A be a uniform algebra with maximal ideal space 9 ,. Then A4 is
separable if and only if 9, is metrizable.

8. Let X be the maximal ideal space of L*.

(a) X is not metrizable. (Use Exercise 7 above.)

(b) X is extremely disconnected, that is, if U is an open subset of X, its
closure U is also open. This holds because every bounded subset of L% has
a least upper bound.

() For [{|=1, let X, = {me X :m(z) =} be the fiber of X over (.
Let fe L®. Then w € f(X) if and only if

[{0:1e” — (I <& | f(e”) —wl < &}[ >0

for all ¢ > O; A
%(d) Iffhasazeroon X,, then f = 0 on a relatively open subset of X,
(Hoffman [1962a]).

9. (a) LetmeIM, ,A,thediscalgebra, and let { = Z(m) = m(z). Then
[¢] < LIff () = 0, then fcan be uniformly approximated by function of the
form (z — {)g(z), g € A,, and hence m(f) = 0. Consequently M, = D.
(b) A, consists of those fe€ C(T) such that

1 i int it
— (e =0 =12....
3 | emEnd =0, n=12,

(c) (Wermer’s maximality theorem) Let B be a closed subalgebra of
C(T) containing A,. Then either B = A, or B = C(T). If ze B™?, then
ZeBand B = C(T). If z¢ B~! then there is m € My such that m(z) = 0.
Then

1 ( .
m(H =5 1o

because the restriction of m to 4, has a unique representing measure on 7.
This means B = A,, by part (b). (See Wermer [1953] and Hoffman and
Singer [1957].)
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(d) Cohen [1961] gave an elementary proof of Wermer’s theorem. If
B # A,, there is f€ B such that

1 i0 i0 —

Efef(e )df = 1.
Write

zf=1+zp+zq+h

with p, g polynomialsin A, and with ||| < 4. Then zq — Zgis pure imaginary,
so that for 6 > 0,

11+ d(zqg — 2g)| < (1 + *M*)12,
where M = |zq — zg|. But
0z4 = 6(zf — 1 — zp) — 6h = zg — 6 — Oh,
where g = f — p € B. Consequently,
(1 + 0) — z(g — g = 11 + d(zq — 2§) — Sh|| < (1 + 6*M*)'/? + /2.
If & > 0 is small, this means z(g — dq) € B~ !, sothat ze B~ ' and B = C(T).

%10. A closed subset K of the spectrum of a uniform algebra 4 is called a
peak set if there exists fe A such that f(x) =1, xe K, but |f(x)| < 1,
x e M ,\K.

(a) A countable intersection of peak sets is again a peak set.

(b) Suppose E is an intersection of (perhaps uncountably many) peak
sets. If g € A, then there exists G € A such that G = g on E and |G| =
sup{|g(x)|: x € E}.

(¢) Consequently,if |1] =1,

{x €E:g(x) =4 suplg(y)l}
yeE
is either another intersection of peak sets or the empty set.

(d) By Zorn’s lemma, M, contains sets which are minimal intersections
of peak sets. By part (c), such a set consists of a single point, called a strong
boundary point.

(¢) By part (c) the closure of the set of strong boundary points is the Silov
boundary of 4.

(See Bishop [1959].)

11. In the upper half plane let z, = i + 10n,n = 1,2,.... Then {z,} is an
interpolating sequence for H®. Suppose |a,| < 1. Let

o an
N
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Then || fi| < Aand | fi(z,) — a,| < A < 1,n=1,2,.... Repeat with
& (an_f(zn))
fi= -4y It

n=1 (Z - En)z
and continue. We obtain = Y=, f,, |l il < A4*~!, such that f(z,) = a,,
n=12,....

%12.  Let I, be the fiber of My at { € 6D, and let CI( £, {) be the cluster set
of fe H® at (. A

(@) Then CI(f; {) = f(My). .

(b) Iffis continuous on D U {{}, that is, if CI( £, {) = {4}, then f(IM,) = A.
(Approximate f(z) — A by (z — {)g(z), g € H*.)

© f (M) = CI(f, £). Suppose 0 ¢ CI(f, {). Then there is a disc A=
{lz = {] < 26}, 6 >0, such that |f(z)] >a >0 on DA Let peC®
satisfy

p=1 on A={|z-{]<d}

=0 off A,
O0<op<l|,
dp op . Op| 4
'6-2 Ea“‘l@ Sg.

By Green’s theorem,

(P(W) 1 0@ dxdy
GO = syt f @z —w

DnA

is in H®. Inspection of the integral shows that

gw) = Gw) = 1/f(w)

has an analytic extension to A. Thus g is continuous at {. Then by (b)

SWIGw) — g(0)) e H*
has no zeros on IM,, so that 0 ¢ f (M,). This proof works on arbitrary plane

domains. (See Gamelin [1970] and Garnett [1971a]; an easier proof for the
disc is in Chapter 10 of Hoffman [1962a].)

13. Here is another proof of Theorem 2.1. It was discovered by J. P.
Rosay, and independently by D. E. Marshall. Write [f, g] for the closed
subalgebra of L generated by fand g.

(@) Let EcT, |E| >0, and let h = exp(xg + ifg). Then there exist
inner functions u,, u, € H* such that

[ul’ u2] = [h’ l/h]
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For the proof, notice that h maps D onto the annulus {I < |w| < e}, so that
h, = e'?/h + h/e'!?

maps D onto an ellipse W,. Let G, be a conformal map from W, onto D.
Then u, = G, o h, is an inner function. On W,, G,(w) is a uniform limit of
polynomials, and hence u, € [h, 1/h]. On D, G{' is a uniform limit of poly-
nomials, and so h; € [u;]. Now
hy, = e'*/h — hje'/?

maps D onto another ellipse W,. If G, is a conformal map from W, to D,
then u, = G, ¢ h, is an inner function and u, € [h, 1/h], h, € [u,]. Conse-
quently [uy, u,] = [h, 1/h].

(b) It follows from (a) that L*® is the closed algebra generated by the
quotients of inner functions.

(¢) Let U be a unimodular function in L®. Write U = V2. By part (b)

there are inner functions v and u,, ..., u, and there are complex numbers
Ay, ..., A, such that

IV =5 Aujl, <e
Let u=[]u;, g=> Auje H*. Then gue H® and g = v,G, gu = v,G,
with G outer and vy, v, inner. Then
|V —tv,G| <&  and 11/V — ud/v, G|, < e/(1 — &)
so that
IU = uv, /v*v, |l < 2e/(1 — g).
14. Let
N = {fe H®: fu e H* for some inner function u}.

Then fe N if and only if fe H® and f(e') is the nontangential limit of a
meromorphic function from the Nevanlinna class (quotients of bounded
analytic functions) on {|z| > 1}. Indeed, if fu = g € H®, then
£ = lim g(1/2)/u(1/2), z=re"% r>1,
r—1
almost everywhere. For the converse note that {he H>:fhe H*} is a
nonvoid invariant subspace of H? and use Beurling’s theorem. The function

e* is not in N. (See Shapiro [1968] and Douglas, Shapiro, and Shields
[1970].)

15. H® is not a Dirichlet algebra on X. If g(¢®) = 6, —n < 6 < =, then
inf [g — Ref| =n

SeH=
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because if |lu — g| < =, then the Hilbert transform of u cannot be bounded
at @ = m. See Example 1.5, Chapter IV.

16. Becauseeach m € My, has a unique representing measure p,, on X, M
is homeomorphic to the weak-star compact set of probability measures on
X satisfying

ffg dp = ffdu fg dy,  f.geH=.

Consequently each u € L™ has a continuous extension to I defined by

u(m) = fu du,,.

On D this extension reduces to the Poisson integral representation.

% 17. (a) Let m be a multiplicative linear functional on a gniform algebra
A. Then m has a representing measure 4, supported on the Silov boundary,
for which the subharmonicity inequality

E.1) log| f(m)| < Lloglfl dine  fEA,

holds. (Proof: Let Q be the set of u € Cx(Y) for which there exists & > 0 and
f€ A, f(m) = 1, such that

u > alog|f].

Then Q is a convex cone in Cgr(Y) containing all strictly positive functions.
But 0 ¢ Q and the separation theorem for convex sets (Dunford and Schwartz
[1958 p. 417]) yields a probability measure x4 on Y such that f udyp > 0 for
all u € Q. It follows that p is a representing measure y,, for m and that (E.1)
holds (Bishop [1963]).)

(b) Let 4 be a logmodular algebra on its Silov boundary Y and let u,,
be the unique representing measure on Y for m € MM ,. Then (E.1) holds for
Um- Suppose G € L'(u,,) is real and orthogonal to A,

ffG din =0, fed.
Y
Then

flogu +Gldu, > 0.
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Indeed, if fe A~?, then by (E.1)

[1081 71 duy = 1081 7)1 = Tog [ra + 6 au,

< log f|f||1 + Gl du,

so that
fu du,, < log fe"ll + G| duy, u € Cg(Y).
Approximating
u= —log|l + G| + flogll + G|du,

by functions from Cg(Y) then yields the desired inequality.
(c) If uis a probability measure, if G € L() is real, and if

flog|1+tG|du=O, teR,
then G = 0 almost everywhere. On the upper half plane,
U(z) = flogll + zG| du

is harmonic and nonnegative. Show that lim_, , U(iy)/y = 0 and conclude
that U(z) = 0. Hence | log(1 + G*)du = 0 and G = 0 almost everywhere.

(Part (c) is due to R. Arens. See Hoffman [1962b] or Stout [1971] for more
details regarding parts (b) and (c).)

(d) From (b) and (c) we see that if u,, is a representing measure for a
logmodular algebra A and if v € A™ is real and absolutely continuous to g,
v = (. Since H® is not a Dirichlet algebra, there exists a real measure von X
orthogonal to H®. This orthogonal measure is singular to every representing
measure. [t can also be chosen to be an extreme point of the compact convex
set ball(H®)* (see Glicksberg [1967)).

18. If ve (H™)", then v is singular to y, if and only if
fz"dv=0, k=1,2,....
Let {F,} be a bounded sequence in Hy. Then every weak-star cluster point

of the sequence F, d6 in (L®)* is singular to u, if and only if F,(z) — 0 for all
z e D. By Example 1.5, Chapter 1V, such sequences do exist.
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19. In Theorem 5.3 the implication (b) = (a) has an easier proof. Let L
be a linear functional on H*®, and suppose L(g,) — L(g) whenever g, € H®,
llgall < M, and g,(z) — ¢(z), z € D. Let u be a measure on the unit circle such
that

L(f)=J.fdu, feA, =H* n C(T).

Let E = T by any closed set such that |E| = 0. Then E is a peak set for A4,.
If fe A, peaks on E then f"(z) — 0, z € D, so that

0=1lim | f"du, = WE).
Hence p is absolutely continuous, 4 = ¢ d6/2n, ¢ € L'. Now let g € H® and

take g,(z) = g(r,z), where r, increases to 1. Then L(g) = lim, L(g,) =
lim, | g, d6/2n = [ go d6/2m.

20. Havin proved Theorem 5.2 using the easy part of Theorem 5.3 (or
Exercise 19 above) and a variant of Lemma 4.5, Chapter IV. Give ball(H®)
the L' metric, d(f, g) = [ | f — g| d6/2x. In this metric ball(H*) is complete
and the functionals

1
L) = 5 [ roud0

are continuous. By the Baire category theorem, there exists b € ball(H®) at
which L(f) = lim, L,(f) is continuous with respect to this metric.

Suppose f; € ball(H*) satisfy f, — 0 almost everywhere. By Theorem 5.3,
part (b), it is enough to show L(f,) = 0. Fix ¢ > 0 and set

E, = {”:] file”)] > &}.

Then |E,| — 0. Let the functions g,(z) and the constants ¢, — 0 be as in
Lemma 4.5, Chapter IV. Then ||1 — g,|l; — 0, so that

B Ll Gl 7 3% W PR (L INR NS
1+ ¢ 1+ g

The limit functional L is linear and bounded. Consequently,

L(f) = L(g fi) + L(gud + (1 = g fi) — L(gib)

and

im |L(f)| = im L(gi £) < LI im ligx fulleo-
k— o0

k= © k— o
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But since supg, |g,| = 0 and ¢, — 0, we have

m g il < &

k— o0
so that lim, _, . | L(f)| < ¢||L| (see Havin [1973]).

%21. (a) A point x in the unit ball of a Banach space B is an exposed
point of ball(B) if there is x* € B* such that ||x*|| = x*(x) = 1 but such that
|x*(y)| < 1, for all y € ball(B), y # x. A function fe H® is an exposed point
of ball(H®) if and only if || f|| = 1 and

[{e”:1f(e") = 1}] > 0.

Thus not every extreme point is an exposed point. (See Fisher [1969b] and
Amar and Lederer [1971]. The case of the disc algebra is discussed in Phelps
[1965].)

(b) By part(a)and by the theorem of Bishop and Phelps [1961], { fe H* :
| /] = Il.f || onaset of positive measure} is normdense in H* (Fisher [1969b]).



VI

Bounded Mean Oscillation

The space BMO of functions of bounded mean oscillation is the real dual
space of the real Banach space H'. As a complex Banach space, H* has dual
L*®/HE, and so BMO has a close connection to H*.

Moreover, some of the ideas developed in this chapter will be important to
us later. Among these ideas we single out three.

(i) The “stopping time argument” introduced with the Calderén-
Zygmund lemma in Section 2 to prove the John-Nirenberg theorem. The
same stopping time procedure will play an incisive role in the corona con-
struction and its applications.

(ii)) The conformalinvariance of BMO. This is the real reason underlying
the frequent occurence of BMO in the function theory. Closely related to this
invariance is the invariant property of Carleson measures described in
Section 3.

(iii) The Littlewood-Paley integral formula, which permits us to replace
certain line integrals by area integrals that are easier to estimate. This method
is used in Section 4 to prove the duality theorem; it will be used again in
Chapters VIII and IX.

The chapter ends with a discussion of weighted norm inequalities for
conjugate functions. This result is then used to obtain a sharp estimate on the
distance from f'e L§ to Re H*®. This last section of the chapter is a little more
difficult than what we have done before, and its techniques, while very
important analysis, will not be used below. Thus less experienced readers
might prefer to read further into the book before digesting Section 6.

1. Preliminaries

A measurable function ¢(t) on R is locally integrable, ¢ € Ll if |@]| is
integrable over any compact set. If ¢ € L}, and if I is a bounded interval,

write
1
® =—f¢dt
g
222
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for the average of ¢ over I. If p € L1 ., and if

( sup - [ 10 = ol dt = o, < e

1]

where the supremum is over all bounded intervals, then we say ¢ is of
bounded mean oscillation, ¢ € BMO. The bound |||, in (1.1) is the BMO
norm of ¢. Because constant functions have BMO norm zero, we identify
¢ € BMO with ¢ + a, « constant, and we view BMO as a subset of
Ll /{constants}. It is then immediate from the definition that | |, is a norm
on BMO.

It is not important that we subtract exactly ¢, in (1.1). Suppose that for
each bounded interval I there is a constant «; such that

(1.2) |I|f|¢-alldt<M

Then trivially |@; — of| < M, so that |¢]/, < 2M.
It is clear that L® < BMO (or more precisely, that L*/C < BMO), and
that for ¢ € L*,

1/2 1/2
ol < Sup<m f!fp — o dx) < sup(“| fl(pl dX) < lell-

Since [¢ — af, = ||@l 4, « constant, this means

loll, <infle — af .
The function log|¢| is an unbounded function in BMO. If —b < a < b, then

1 b
——f |log|t| — log b| dt < C,
b—al,

and because log|t| is an even function we conclude that log|t| € BMO. In a
sense to be made more precise in Section 2, log|t| is typical of the unbounded
functions in BMO. Notice that log|¢| %, o,(¢) is not in BMO, because condi-
tion (1.1) fails for small intervals centered at 0.

If ¢ € BMO and if I and J are intervals such that I < J, |J| < 2|I|, then

(1.3) 01 — ¢y] <~ fw—¢ﬂm

1]

— <2
|ﬂfw o)l dt < 2ol

Lemma 1.1. Let ¢ € BMO and let I and J be bounded intervals.
@) IflI cJand|J| > 21|, then
lor — @1 < clog(1J /1D @]l -
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(b)y If|I| = |J|, then
lor — @41 < clog(2 + dist(Z, J)/ [T @l 4.
Proof. For part (a) let
I=I,cl,c---cl,=1,
where |1, ,| < 2|I;| and where n < ¢ log(|J|/|I]). Then (1.3) gives
lor — @, < 2nl ol = clog(|J1/ITD] ]l 4

Part (b) follows from part (a) by letting K be the smallest interval containing
I and J and by comparing each of ¢; and ¢, separately to ¢,. [

Theorem 1.2. Let ¢ € L}... Then ¢ € BMO if and only if

[o()]
(1.4) 1 dt < oo
and
(L5) sup fkp(t) — o@)IP)dt = A < w,
Imz>0

where ¢(z) = [ P,(t)(t) dt is the Poisson integral of ¢. There are constant c,
and ¢, such that

aillelly < 4 < calol,,

where A is the supremum in (1.5).

Condition (1.4) implies that [ |@(t)| P,(t) dt < oo, so that ¢(z) exists at
each point of #. Condition (1.5) is very similar to the definition (1.1) of BMO.
The only difference is that the Poisson kernel is used in (1.5) while the box

kernel (1/2y)xy; - x| < ,(t) appears in (1.1).
Proof. Suppose ¢ satisfies (1.4) and (1.5). Let I be a bounded interval, and
let z = x + iy, where x is the center of I and y = 3|I|. Then

1)
T < wPy(x — 1),

and by (1.5),
1
T flw(t) — o(2)| di < 7A.

By (1.2) this means | ¢, < 2nA4.
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Now assume ¢ € BMO and let z = x + iy € . Let I, be the interval
{|t — x| < y} and let I, be the interval {|t — x| < 2*y}, k = 1,2,.... Then
[I,] =2¢"'yand

P.(1) < Cly, tel,
P.(1) < C/2%%y, te I\l
Also, Lemma 1.1 gives

lon, — @r,| < cklol,.

Consequently,
c
[100) = olPayae < [ 1o = onlai+ 5 5 [ lo- gl
YJig L\ -4
+ Y s [ len - enla
k=122ky e Iy Io
2 2
k=1
and hence

fm» — | PA0) di < Clo,.

This clearly implies (1.4). Moreover, this shows |¢(z) — ¢;,| < Cllo|, and
hence

jm — (2)|P) dt < 2Clol,. O

There is also a BMO space of functions on the circle 7 We shall im-
mediately see that this space is the image of BMO(R) under a conformal
transformation. Let Yy € LY(T). We say € BMO(T) if

sup

T fw/ Uil d6j2m = Y], < <o,

Where I denotes any arc on T, |I| = [; d6/2n is the length of I, and
1
b= | v aoren
11 J;
is the average of ¥ over I. The proof of Theorem 1.2 shows that

(1.6) sup | [¥(8) — ¥(2)| P,(0) db/2n = B

zeD
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where Y(z) = [ WP, d0/2n, defines an equivalent norm on BMO(T). That is,
(1.7) cillylly, < B < el

for constants ¢, and ¢, (not necessarily the same as the constants in Theorem
1.2). Map D to the upper half plane by

1 —w

R we D,
1+ w

z(w) =i

Forw = €, 0 # n, write t(0) = z(w). Then as in Chapter I, Section 3,
P, (0)d02rn = P, (¢) dt

when zy, = z(wy), |wo| < 1. Consequently, if ¢ € Li,o(R) and if y(0) = ¢(1(0)),
then comparing (1.5) and (1.6) we see that ¢ € BMO(R) if and only if y €
BMO(T). We also see that

(1.8) clele < Wl < c2lol,
for some constants ¢, and c,.

Corollary 1.3. Under the conformal mapping
. 1—w
“Trw

BMO(R) and BMO(T) are transformed into each other. The norms of ¢ €
BMO(R) and its image Y € BMO(T) are related by (1.8).

z , Iw| <1,

Condition (1.6) also says that BMO(T) has an equivalent norm invariant
under Mébius transformations.

Corollary 1.4. Let y € LY(T) and let ©(z) be a Mobius transformation. Then
¥ € BMO(T) if and only if y - T € BMO(T). There is a constant C independent
of © such that

ozl < Clyll,.
Moreover, there are constants ¢, and c, such that
(1.9) cillylly < sup Jll// o T — Yo 1(0)| d0/2n < c,[|Y 4

where

Y o 17(0) = fl// o T df/2m.
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Proof. Let

Il = sup [ — ¥(z)|P(0) dO)2x.

zeD

By (1.6) and (1.7), ||l is an equivalent norm on BMO(T). Now the trans-
formation rule (3.1) from Chapter I shows that

1ozl = Il

for every Mobius transformation 7. That means ||y o 7|, < C||¢||,.. The same
transformation rule also shows that

11, = sup jlwor o 2(0)| dOj2m,

and hence (1.9) holds. [

It is useful to interpret BMO in the following way. By (1.9) ¥ € BMO if
and only if the distances

ing ot — aHLl(T)

have a bound not depending on the M&bius transformation z. In this way
| I} can be viewed as a conformal invariant version of the norm of the
quotient space L'(T)/C. The conformal invariance of this norm suggests that
BMO is more closely related to L® than it is to any other L? space, p < 0.
These observations also hold for BMO(R). Indeed, (1.5) shows that the norm
on BMO is not seriously increased by the mapping ¢ — ¢ o 7, when 1(t) =
(t — x)/y is a conformal self-map of # that fixes the point of co. The in-
variance of BMO(R) under the full group of conformal self-maps of #
follows from Corollaries 1.3 and 1.4. It can also be proved directly by
examining @o(— 1/t), € BMO(R).

Theorem 1.5. If ¢ € L™, then the conjugate function ¢ is in BMO, and
12l < Cllol .
Jor some universal constant C.

Proof. Because of Corollary 1.3 it makes no difference whether we prove the
theorem on the line or on the circle. On the circle the proof is quite transparent
if we use Corollary 1.4. Let 7 be any Mdbius transformation. The normaliza-
tion §/(0) = 0 in the definition of the conjugate function means that

o1y =det— PO).
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Parseval’s theorem and Hoélder’s inequality then give

9 1/2
j 1§ o (0) — PO o { f 1+ «(6) - w<r(0»|2d}

0 /
< UI!//OTI2 gn} Seotle = ¥y

By (1.9) we obtain ¥, < Cl¢],. O

The real-variables proof of Theorem 1.5 is also instructive. We give the

argument on the line. ~
Let ¢ € L*(R) and let I be a fixed bounded interval on R. Let J = I be the

interval concentric with I having length |J| = 3[I|. Write ¢ = ¢, + ¢,,
where

@y = Qx> Q=@ — Q).

Writing
.1 t
Ho(x) = lim ~ L0
e-0 T x—t]>e X — t
1 1 1
Hoy(x) = — f wz(t)(— - ) dt,
T IR\J X — t xO - t

when x € I and x, is the center of I, we have
¢=H¢I+H(p2+ca XEI,

where ¢ is some unimportant constant depending on I. By (1.10) of Chapter
IIT and Holder’s inequality,

1/2 1
2 <
e g L e

[J\'2 ,
< (m lo1llo < 320l »

When xeland té¢J,

Cl1|
T xe — ¥

so that for x € I,

ClI| [40]

dt < Cllolle-
R\J|t—xo|2 *

|[Hp,(x)| <
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Consequently,
1
|1

and by (1.2) we see that 9], < (3% + )¢l .

lewz(xn dx < Clol.,
I

Let o be a finite signed measure on the upper half plane. The balyage or
sweep of ¢ is the function

Sa(t) = sz(t) do(z).

Fubini’s theorem shows that Sa(t) exists almost everywhere and that

fISa(t)ldt < fd|a| ~ lol.

The balyage operator S is the adjoint of the operator f — f(z) = [ f(£)P,(t) dt,
since if f€ L*(R), Fubini’s theorem gives

j f(z)do(z) = ff(t)sc(z) d.

Now let ¢ be a finite signed measure whose total variation |g| is a Carleson
measure:

(1.10) |61(Q) < N(a)h,

where Q = {x, < x < xo + h, 0 < y < h}. Theorem II.3.9, on Carleson
measures, then shows that

‘ Jf(t)SO'(t) dt | < N f

whenever fe H', but this as yet does not tell us much about the function
Sa(t).

Theorem 1.6. If ¢ is a finite measure on the upper half plane and if |o| is a
Carleson measure, then So € BMO and

[Sell, < CN(o),
where N(o) is the constant in (1.10) and where C is some universal constant.

Proof. The argument is very similar to the real-variables proof of Theorem
L.5. Writing ¢ = 6* — 6™, where 6| = 0" + 67,07 >0,0” > 0, we can
suppose ¢ > 0. Let I, be a fixed interval and let I, be the concentric interval
with length |1,| = 2"|Io|,n = 1,2,.... Let Q, be the square with base I,:

On={z:x€el,,0 <y <|Ll}
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Then

f f P,(t) do(z) dt < o(Q,) < 2N(0)|1,].
Io 1
Forze Q\Q,_,n>2,andt€el,, t, € I,, we have

[P(t) — P.(to)| < _22n|1 i

Hence

)

Summing, we see that by (1.2),

f (PAt) — P.(tg))do(z) | dt < CJ(ZQ") < CN(O')“0|'
0n\Qn -1 22n o

156 — (So),| dt < CN(0)
| IO ’ Io

and ||Se|, < CN(o). O

In Theorem 1.6 we have assumed that | o] is finite only so that we can be
sure that So exists. The theorem is also true if || is infinite but if

[a|({y > yo}) =0

for some y,. However, some hypothesis is required if the balyage defining So
is to converge. If ¢ = ) 2"6,,;, then S = «©

The main theorem about BMO states that BMO is the dual space of the
real Banach space H'. This theorem implies that every ¢ € BMO has the
form

¢=f+Hg, fgeL”

and thus gives the converse of Theorem 1.5. This theorem will be proved in
Section 4 after we discuss the John—Nirenberg theorem and introduce some
important quadratic integrals. Theorem 1.6 also has a converse, which is
equivalent to the converse of Theorem 1.5 (see Exercise 7).

2. The John-Nirenberg Theorem

Theorem 2.1. Let ¢ € BMO(R) and let I be an interval. Then for any 4 > 0,

l{tel:1op@) — o > A} (—d)
< Cex .
1] \rp

Q.1)

The constants C and c do not depend on ¢ or A.
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Condition (2.1) says that the distribution of [¢ — ¢,|, relative to the
normalized Lebesgue measure on I, is not worse than the distribution of
log 1/t relative to [0, 1]. The converse of the John—Nirenberg theorem is
trivial, and we see that in terms of distribution functions log|¢| is typical of
the unbounded BMO functions.

The only reason a BMO function satisfies the very strong condition (2.1)
is that the BMO condition says something about the behavior of a function
on all subintervals of I. The key to the proofiis a basic lemma due to Calderén
and Zygmund.

Lemma 2.2. Let I be a bounded interval, let u € L'(I) and let

)
oo > — | |uldt.
1l J;

Then there is a finite or infinite sequence {I;} of pairwise disjoint open sub-
intervals of I such that

(2.2) lul < a almost everywhere on I\ ) I;,
(2.3) asifluldt<2a,

[1;] Ji;

1
2.4) lejlsfj‘luldt.

aJr

Proof. We may assume I = (0, 1). Partition I into two intervals wy =
(0,%) and w, = (&, 1). For each interval w there are two cases.

1
Case (i): mfluldt<oz;

1
Case (ii): mJluIdtZa.

Case (i) applies to the initial interval I by hypothesis. In Case (i) we par-
tition w into two disjoint (open) subintervals of length |w|/2. For each of
these two subintervals we apply Case (i) or Case (ii).

When we get a Case (i) interval we repeat the partition process. However,
Whenever we reach a Case (ii) interval  we stop and put w in the sequence
{I;}, and we do not partition . Since no interval in {I,} is partitioned, the
selected intervals 1; are pairwise disjoint.

If x e I\ ) I;, then every dyadic interval containing x is a Case (i) interval.
By the theorem of Lebesgue on differentiating the integral, this means
lu(x)| < o for almost every x € I\| J I;, and (2.2) holds.
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Each selected interval [; is contained in a unique dyadic interval I} such
that |I*| = 2|I;|. The larger interval If was not selected and hence was a
Case (i) interval. Therefore

|1*|f'“'d‘—z|1|f' i
and (2.3) holds.

Because the I; ars pairwise disjoint Case (ii) intervals, we have

1 1
2l < Z~f lul dt s—f|u|dt
& Ji xJr

and (2.4) holds. [

The intervals I; were selected according to the following rule: Among the
dyadic intervals w = (k27" (k + 1)27") contained in (0, 1), select the maximal

w for which
\
— f lul dt > o.
lo] Jo

This method of selecting intervals is the simplest example of what is called a
stopping time argument. This is something probabilists often use more gener-
ally with martingales. We shall be frequently using similar simple stopping
time arguments in the remaining chapters.

Proof of Theorem. The homogeneity in (2.1) is such that we can assume
lel, = 1. Fix an interval [ and apply Lemma 2.2 to u = |¢ — ¢,| with

= 3. We obtain intervals I{" such that |¢ — ¢,| < 3 almost everywhere on
INJ ISV, such that

(2.5) lorn — @] <3
by (2.3), and such that

(2.6) 20 < 3|
by (2.4).

On each I{" we again apply Lemma 2.2 to [¢ — ¢m| with o = 3. We
obtain mtervals I such that each I'? is contained in some I{". By (2.5) and
(2.2), we have I(p ol <3+3< 6 almost everywhere on I\( J I?. Also,
by (2.3) and (2.5) we have

l@r — @] <6
and by (2.4) and (2.6),

LHPI <33 110 < @I
J J
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Continue this process indefinitely. At stage n we get intervals I{” such that
|@ — @;| < 3n almost everywhere on I\| ] 1", and such that

2P < Gri.

j

If3n <A< 3n+ 3,n> 1, then
[{tel: o) — ol > A} <Y IV < G| < e |

for ¢ = L log 2. Thus (2.1) holds if 1 > 3.
If 0 < A < 3, then trivially

[{tel:|o(t) = @7l > 2}| < |I] < e¥e™|1],
and taking C = €3¢ we obtain (2.1) for all . [

The John-Nirenberg theorem has a number of interesting corollaries, the
first being a magical reverse of Hdlder’s inequality.

Corollary 2.3. Let o € L\, .(R). If

Sup flrp @1l dt = o, < oo,

|11
then for any finite p > 1,

1 1/p
sup( fl(p — o7 dt) < A,lel,,
r \Jy

where the constant A, depends only on p.

Proof. By hypothesis, ¢ e BMO and we have (2.1) at our disposal. Fix I
and write

[{tel:|o(t) — @/ > A}|
1]

for the distribution function of |¢ — ¢;|. Then

m(d) =

1 s o}
difle—era=p [ rmeya
1 0
and (2.1) yields

Il(PH"

- c pL(p) O

f|go ;P ait<CpJ~ AP~ 1 exp —
1] 1% H*
The constant in Corollary 2.3 has the form

A, ~ pA (p — 00).
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for some constant A. Indeed, with Stirling’s formula, the proof of the corollary
shows that 4, < pA when p is large, and the remarks following Theorem 2.3
of Chapter III show that this estimate on A4, is sharp as p — c0.

Corollary 2.4. Let ¢ € LL,(R). Then ¢ € BMO if and only if

[o()?
I+ 2 dt < o
and
@.7) sup f ¢ — @)PPLt)dt = B, < o,
Imz>0

where @(z) is the Poisson integral of ¢. There are constants ¢, and ¢, such that
allel, < By < cilloll,,
where B, is the supremum in (2.7).

Before giving the proof we note the trivial but useful identity

(28) in f|<o PP di = f lo — e()PP0) dt

- f 102P.(t) dt — | (),

which holds because, in the Hilbert space L*(P,(t) dt), the orthogonal pro-
jection of ¢ onto the constants is ¢(z).

Proof. 1f the Poisson integral of |¢|? converges, and if (2.7) holds, then
Hélder’s inequality and Theorem 1.2 show that ¢ € BMO with

ol < caBy2

~ The proof of the converse resembles the proof of Theorem 1.2. Suppose
@ € BMO and fix z = x + iy, y > 0. Let I, be the interval {|r — x| < 2%},
k=20,1,2,.... Then |I,| = 2y and

PZ(t)Si’ te[o,

c

Pz(t) < 22kya

telk\lk—l k=1,2,....

Also, by Lemma 1.1,
lo — 011> < 2|9 — 01,17 + 2], — 011> < 2|0 — @, 1> + 2%kl @l1}-
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Hence

2c
JI@ — @ PP dt < —— | 1@ — @ |* dt

|IOI Io
x 2

+ lo — @, |? dt
&1 290 D !
®© et

+ k*llollz] 1,
L 2L T

< Cilloll2

and (2.7) holds. [

Corollary 2.5. If ¢ € BMO, then the conjugate function € BMO, and
ailely < 12y < callolly

for some constants ¢, and c; not depending on @.

Proof. By Corollary 2.4 it is enough to prove

f 16— () 2P.0) dt = j 9 — o(z)PPt) dt

for any fixed z € #. This reduces to the identity

1 ~12 _ 1 2
- [1ai a0 = - [igr2 0,

ge LXT), [ gdf =0, by means of the conformal mapping from # to
D that sends z to the origin. [

3. Littlewood-Paley Integrals and Carleson Measures

We begin with a classical identity of Littlewood-Paley type. Let g(e) be
an integrable function on T = éD, and let ¢(z), z € D, denote the Poisson
integral of g. The gradient Vg(z) is the complex vector (dg/éx, 8g/dy) and its
squared length is
2

+

2

dg
oy

dg
2 _ | 2¥
|Vg(2)] ‘ I

In this notation we have

IVg(2)I* = 21g'(2)?
if g(z) is analytic.
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Let Q be a plane domain with smooth boundary and let u(z) and v(z) be
C? functions on Q. Then Green’s theorem states that

Ou ov
f (v Au — uAu)dxdy—Lﬂ(va—n— ugr—l) ds,

Q

where A is the Laplacian, 6/0n is differentiation in the outward normal
direction, and ds is arc length on 0Q.

Lemma 3.1. Ifg(e") € L'(T), and if g(0) = (1/27) [ g(6) d0 is its mean value,
then

1 1 1 ‘

3.1 = [ IVg(2)|* log — = 0y — 2

60 L [[IVer g axdy = 5 flge - gorr do
D

Proof. We may assume that g(0) = 0. Notice that

2|Vg()I* = A(lg() ).

For r < 1, Green’s theorem, with u(z) = |g(z)|* and v(z) = log(r/|z]), now
yields

ﬂ&mwm%Lw@=f|ww§
lz]=r r

|z]
. lg(2)|? r o )
—llmJ~ — log—-=——|g(2)|? | ds.
|z|=e( gga|z||g( )]

£=0 €

Izl <r

Since g(0) = 0 and since Vg(z) is bounded in |z| < 4, the above limit is zero,
and we have

r .
jﬂvmnvwgﬁrudy=%fmown%w
|lz|<r

By monotone convergence the left side of this equality tends to

1

fwwwwmu@

D

asr — 1, while the right side has limit 4 | |g(e'®)|? d6. That proves the lemmé

A slightly different form of (3.1) is sometimes easier to use.
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Lemma3.2. Ifg(e®) e LY(T), then

62 |[IVe@ra - zpyaxcay < - [lge® - g a0
D

<< HWg(z)lZ(l 2% dx dy,
D

where C is some absolute constant.

Proof. The leftmost inequality in (3.2) follows from (3.1) and the simple fact
that 1 — |z|*> < 2log(1/|z]), |z| < 1. To prove the other inequality, suppose
that the integral on the right is finite and normalize g(z) so that
1
= [[va@ra -1z acay =1
For |z| > 4, we have the reverse inequality log(1/|z|) < ¢,(1 — |z|?), which
yields
1 1
] 1ve@r g axay < [[Ive@ra - 12y ax .
1/4<|z|<1 D

For |z| < %, the subharmonicity of |Vg(z)|? gives ({ = & + in)

16
Vo < [ 1902 dc an

[{-z|<1/4

32
<> j IVa@P(1 — 1) dé dn < 32.
T

[ll<1/2
Hence
1

1 , 32 1

- ] - S = ¢,.

- f |Vg(2)| oglzldxdys - ff loglzldxdy cy
lz|<1/4 |z| <1/4

Using (3.1), we conclude that

1 .
o [106% = g0 a0 < 2 [[1vgP0 — 127 ax ay

and (3.2) is proved. [

itis also possible to use Fourier series to prove (3.2), and the Fourier series
proof gives the sharp constant C = 4 in (3.2). For some problems (3.2) is
preferable to (3.1) because of the logarithmic singularity in (3.1), but the
€quality (3.1) has the advantage that it can be polarized, whereas (3.2) cannot.
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To study BMO we should use the conformally invariant forms of (3.1) and
(3.2). Let zy € D and let @ € LY(T). The identity

1

z —

dx dy

Zyz
29

1
63 5 [10 = oGP, @0 = [[1Vo)1 g
D

has the same proof as (3.1). It can also be derived from (3.1) using the change
of variable z — (z — z,)/(1 — Z,z), because the differential form

[Vo(z)|? dx dy

is a conformal invariant. Using the identity

| _ |2~ % 2=z = 1201%)
1 — 2,z [1 — Z,z|? ’
we similarly obtain
1 1=z = |z %)
(34) ~|[ivoe! 1= 1201 4 gy
T [1—Z,z|
D

1
< [10 - ptz0PP. (0) a0

L=z = |z
S%HIWp(z)IZ( |zI*X |z|)dxdy,
D

11— ZOZ|2

which is the invariant version of (3.2). Now by Corollary 2.4, ¢ € BMO(T)
if and only if

1
sup 5= [10 = 9(zo) *P.(0) d6 < o,

zpeD

and the supremum of these expressions is the square of an equivalent norm
on BMO. Thus the supremum, over z, € D, of the double integral in either
(3.3) or (3.4) also determines a norm on BMO.

A positive measure A on D is a Carleson measure if there is a constant N(4)
such that

3.5) AS) < N(Ah
for every sector
S={ré?: 1 —h<r<110—06, <h}.

We include the case h = 1, so that A(D) < 4N(A). From Chapters I and II we
know that 1 is a Carleson measure if and only if { | f(z)I? dA < C,| ||} for all
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feL? 1 <p < oo,orforall fe H?,0 < p < co. Here we want to notice the
conformally invariant character of Carleson measures.

Lemma 3.3. A positive measure A on the disc is a Carleson measure if and
only if

(3.6) sup f“_lzf"z di(z) = M < oo.

zoeD
The constant M in (3.6) satisfies
C,N(A) <M < C,N(%)
for absolute constants C; and C,.

Proof. Suppose (3.6) holds, and let S be any sector, S = {1l —h <r <1,
|6 — 85| < h}. Since (3.6) with z; = 0 shows that A(D) < M, we can suppose
h < 1. Take zo = (1 — $h)e’®. For z € S, we have

I—IMP C
1 —'EOZIZ__ 1 _'|Zo

1’
and hence

1 —zo?
AS) < C,(1 = |z]) jﬁ dA < CM(1 — |z4]) = 2C Mh.
<0

Conversely, suppose 4 is a Carleson measure and let z, € D. If |z,| < 3,
we have the trivial estimate

f“ d/l( ) < CAD) < C'N(J).

If|zg| > 2, we let
E,={zeD:|z — (zo/120])] < 2"(1 — |2,])}.
Then by (3.5), (E,) < CN(A2"(1 — |z} n = 1,2, .... We have

1—‘|Z()|2 C
11— Zoz|? 7 1 = |zl

zekE,,

and forn > 2,

1 —z0)? < C
11— Zoz[> = 22%(1 — |zol)’

Z€ En\En— 1-
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Consequently,

1 — lzolz f [ - |Zol IZol
- ——diA < ——— dMz) + —di
11— Zoz[? Bl —Zoz|? (2) Z Enkny |1 — 2o z|? @)
i 2CME,)

C'N(A 27" = C'N(Q),
= L3 gy = VDL @

and (3.6) is proved. [

In the upper half plane, Carleson measures are defined by requiring that

3.7) M{xog < x < x9+ h0<y<h}) <N,
which is (3.5) with squares instead of sectors. The analog of (3.6) is
(3.8) sup fl dl(z) =M< ©

zoe N

and the proof that (3.7) and (3.8) are equivalent, with bounds relating the
constants N(1) and M, is geometrically even simpler than the proof of
Lemma 3.3.

The next theorem, the main result of this section, is now virtually trivial.

Theorem 3.4. Let ¢ € L'(T), and let

1
= |Vo(2)|* log B dx dy,
where Vo is the gradient of the Poisson integral ¢(z). Then ¢ € BMO(T) if
and only if A, is a Carleson measure. There are universal constants C and C,
such that

Cillolx < N(4,) < Cilol-

Proof. By Corollary 2.4 and by the inequalities (3.4), we know that
@ € BMO(T) if and only if

2
(39)  sup J.J.IVw(z)l2 (L= 1201 = 1207 ) dy =M, <

zoeD Il - ZOZ|2

and that M, ~ |¢l||3. By Lemma 3.3, (3.9) holds if and only if
duy, = |Vo(2)1*(1 — |2]?) dx dy

is a Carleson measure, and N(u,) ~ ||¢|Z. What remains to be proved are
that y, is a Carleson measure if and only if 4, is a Carleson measure and that
N(4,) ~ N(u,). Half of this task is trivial because the inequality 1 — |z|* <
2log(1/|z|) shows that x, < 24,. For |z| > § we have the reverse inequality

log(1/]z]) < C(1 — [z[?),
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which shows that
4o(S) < Cuy(S)
for sectors S = {1 —h<r<1, |0 — 0, <h} provided h < 3. This will
give N(4,) < CN(y,,) if we can prove
(3.10) Azl <3} < Cuy({lz] < 3} < CN(w,).

However, we already touched on (3.10) in the proof of Lemma 3.2. Because
|V(z)|* is subharmonic, we have

32C
A1zl <) < C sup Vo < [ 1VpQPQ — 121y dé dn
Igl<1/2

|zl <1/4
< Cu (1L < 3.
That gives (3.10) and therefore N(4,) < CN(y,). U
The measure A, with the logarithm will be used when we polarize the
identity (3.1) in the next section. The most important ingredient of Theorem

3.4 is the John-Nirenberg theorem, which makes it possible to characterize
BMO using quadratic expressions.

4. Fefferman’s Duality Theorem

Let us first digress briefly to find the dual space of H?(dt), 1 < p < oc. This
was done for the disc in Chapter IV, Section 1, and the argument for the half
plane is formally the same.

Lemma 4.1. If 1 <p < o, if q=p/(p — 1), and if g € LA, then g € (H")*,
that is,

@.1) fﬁmzo

for all fe H? if and only if g € H.

Proof. 1f g € HY, then by Holder’s inequality fg € H!, and (4.1) follows from
Lemma I1.3.7.

On the other hand, if (4.1) holds then the Poisson integral of g is analytic
on #. Indeed, if z € # and if z, € A is fixed, then

1
A




242 BOUNDED MEAN OSCILLATION Chap. VI

is in HP and
1
T 2mi

P,— P, (h, — hy).

Hence, by (4.1),

4(2) — 9(z0) fg(t)(Pz(t) P (0) di

1 1 1
- - dt,
2mi Ig(t)(z -t Zo— t)

and g(z) is analytic. Theorem 1.3.5 now implies that g € H?. [

Il

With the Hahn-Banach theorem, the lemma yields
4.2) (H?)* = LY/H", 1 <p< oo

In (4.2), the pairing between fe H? and a coset g + H? e LY/HY is given by

jfg dt.

Our object in this section is to represent (H?)* as a space of functions
rather than as a quotient space. Two Banach spaces X and Y are said to be
isomorphic if there is a linear mapping T from X onto Y such that

clxl < ITx[ < cllxll,  xeX.

The isomorphism T from X onto Y is called an isometry if | Tx| = ||x| for
all x € X. When two spaces are isomorphic, one thinks of them as being the
same space with two different, but equivalent, norms.

What we are looking for is an isomorphism between (H?)* and some space
of functions. For 1 < p < oo, the M. Riesz theorem on conjugate functions
gives the isomorphism we want.

Theorem 4.2. For 1 < p < o, (H?)* is isomorphic to H",_the space of
complex conjugates of functions in H% The isomorphism T: H? — (H?)* is
defined by

.3) (TgXf) = ffg di, femr, gen

Proof. Since 1 < q < oo, the Hilbert transform H is bounded on L4 The
operator

S(g) =g — iHyg
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is then also bounded on L4 The kernel of S is H? and the range of S is H
By the open mapping theorem, the induced mapping

S:LYH*—> H*
is an isomorphism. By (4.2), T = S~! is an isomorphism of H? onto (H?)*

= LYH" When g € H% S(g + H% = g, and hence (4.3) holds. [

When p = 1, the above argument does not apply because the Riesz theorem
fails for L®. We shall see that the function space isomorphic to (H')* =
L®/H® is not H* but BMO.

It will be convenient to regard H' as a Banach space over the real numbers
only. Any complex Banach space X can of course be viewed as a real Banach
space. However, the complex linear functionals on X can be recovered from
the real linear functionals on X in a very simple way. If L is a real linear func-
tional on X, then

Le(x) = L(x) — iL(ix)
defines a complex linear functional on X, and
L(x) = Re Lg(x).

Because |Le|l = sup{Re Lg(x): x| = 1}, the functionals L and Lg have
the same norm. Hence, the correspondence L — L is a real linear isometry
between the space of continuous real linear functionals on X and the real
Banach space of complex linear functionals on X.

For example, when 1 < p < oo, H? is isomorphic, as a real Banach space,
to LE, the space of real L? functions. Again Riesz’s theorem provides the
isomorphism defined by

Lg3u— u+ iHu.

Any real linear functional on H” is therefore given by
L(u + iHu) = juv dt
for a unique v € L%. The corresponding complex linear functional is
Le(u + iHu) = fuv dt +i J.(Hu)v dt.
The identities

f(Hu)v dt = — quv dt, j(Hu)(Hv) dt = fuv dt,
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which follow from Lemma 4.1 or from (1.9) and (1.10) of Chapter III, show
that

Le(u + iHu) = f(u + iHu)g dt,

where g = (v — iHv)/2 € H% This brings us back to (4.3), and we have, in
fact, merely rephrased the proof of Theorem 4.2. It is for the case p = 1 that
real linear functionals simplify the duality problem.

Now suppose p = 1. As a real Banach space, H! is isomorphic to the space

Hi = {ueLy:Hue Lk}
provided that H is given the graph norm
lullgs = lluly + [[Hull;.
This norm is chosen so that
H'sf->Ref

is an isomorphism of H! onto Hy.
Recall from Chapter II, Corollary 3.3, that the subset

N={ueHy:(1 +t*)|u+ iHu|e L™}
is norm dense in H.

Lemma 4.3. Let L be a continuous real linear functional on Hg. Then there
are ¢ and @, in Lg such that

loille < ILIL @2l < LI
and such that
(4.4) L) = J(u(pl — (Hu)g,) dt, ue Hk.
IfueN, then
(4.5) L(u) = ju((pl + Ho,) dt.

Moreover, there is a unique real function ¢ € BMO such that
lel, < CIL]

for some universal constant C and such that

(4.6) L(u) = fu(p dt, ue
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By Theorems 1.2 and 1.5, the integrals in (4.5) and (4.6) are absolutely
convergent when u €.

Proof. The space Hjis a closed subspace of Ly @ Lg when this latter space
is given the norm |(u, v)I| = |ul, + |v],. Extend L to a bounded real linear
functional ® on L @ Lksuchthat |®| = ||L|. Now ® has the representation

O(u,0) = j(wpl — vy di,

where (¢, ¢,) € L§ ® Lg, and

@] = max([|@;le, ll¢2ll),

because of the choice of the norm on L @ Lg. Thus, {|¢,]l, < L, |92l 4
< |IL|l, and (4.4) holds. Since

f(Hu)qoz dt = — fu(H(pﬁ dt

when u € Wand ¢, € L*, (4.5) follows from (4.4). Also the function

®=¢, + Hop,

is in BMO, and [ ¢|/, < C|\L||, by Theorem 1.5. Now (4.6) is obvious, since it
is just a restatement of (4.5).

It remains to show that ¢ is uniquely determined by L. The pair (¢,, ¢,) €
L @ L§ corresponding to L is by no means unique. A pair (¢4, ¢,) induces
the zero functional on H if and only if

(47) f“(({)l + H(Pz) dt = 0, u e,

Since any difference P,(t) — P, (t) of Poisson kernels is in 2, this holds if
and only if ¢, + H, has constant Poisson integral. Thus (4.7) occurs if and
only if ¢, + He, is constant. Since constants have zero BMO norm, this
means that L gives rise to a unique BMO function ¢ such that (4.6) holds. [

Asan aside, we notethat ¢, + He, isconstantifand onlyifp, + i@, € H*.
Thus the proof of the lemma again shows that (H)* = L®/H®.

Theorem 4.4 (C. Fefferman). The dual space of HY is BMO. More pre-
cisely, if @ € BMO is real valued and if L is defined by

(4.8) L) = fu(p dt, uedl,

then | L(u)| < Cyll@|l llullgr. Conversely, if L € (Hg)*, then there is a unique
real @ € BMO with |@|l, < C|IL|| such that (4.8) holds.
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Although the integral in (4.8) makes sense only for u € 2, the density of U
in Hi and the inequality | L(u)| < C,ll@|l,llullg: enable us now to regard each
¢ € BMO as a continuous linear functional on Hg.

Proof. By Lemma 4.3, each L € (HR)* yields a unique ¢ € BMO with
loll < C|L] such that (4.8) holds. The important thing that remains to be
proved is that

4.9) } fu(p dt

whenever ¢ € BMO. The proof of the corresponding inequality on the unit
circle is a little less technical, and instead of (4.9) we prove

< Cillolllullg:,  ued,

(4.10) } fu(pg—g ’ < Cllollgllu + iall,

for u e L(T) and for ¢ € BMO(T) with | ¢ df = 0. Now, if u € A and if
¢ € BMO(R), then, with € = (t — i)/(t + i), d0 = 2 dt/(1 + t?),

fu(p dt = Ju((p — @) dt = f(l + tHu(r) —(<p(t)1—+<pt(2i)) dt

0
- [vowo?,

where ©(0) = o(t) — (p(z)eBMO(T) with mean value zero and where
U®) = (1 + tHu(t) is in LA(T). By Corollary 3.3 of Chapter II and by
Corollary 1.3, inequality (4.10) therefore implies inequality (4.9).

Now, let u € LA(T) and let ¢ € BMO(T). Notice that, by Corollary 2.4
and Corollary 1.3, the integral (4.10) converges absolutely. Let f = u + iHu.

Then fe H', and
do do
J‘uqoﬁ = Re ff(p;

The advantage of working with finstead of with  is that we may suppose that
f= g% g€ H* Indeed, write f = BF, where B is a Blaschke product, F € H'
hasno zerosin D,and ||Fl|; = || fl;. Writef; = (B — 1)Fandf, = (B + 1)F.
Then |filly <2/l I faly <201, and f= (f; + f,)/2. Moreover f;
and f, have no zeros in D, so that f; and f, are both of the form g2, g € H%. In
estimating [ f¢ df), we may replace f by f; or by f,. Thus, we assume f = g%
ge H?

We can also assume ¢(0) = 0. Polarization of the Littlewood-Paley
identity, Lemma 3.1, then yields

[r0% = [tr- 1000, j (V) (Vo) log . d dy.
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Since f'(z) is analytic, we have

VI Vo = fiox + f,0, = (D) @x + ip,) = 29(2)g (zX@x + ip,),
and so

IVf - Vol < 21g(2)[19' (D) IVe(2)].

The Cauchy-Schwarz inequality now gives us
de 2 1 172
— | <= "(2)|* log — dx d
Hf<p2n _(nﬂlg(Z)l o8 dx y)
D

2 1/2
x (;f 9P 000 log )

1
|z
D

By Lemma 3.1, the first factor is

1 . 12
(27[ flg(e"’) - g0 d9) =[£I

By Theorem 3.4 and by the disc version of the theorem on Carleson
measures, the second factor is bounded by C||¢]| .|| f |12 These give us (4.10),
and the theorem is proved. [J

To prove (4.9) without moving to the circle, see Exercise 6.
The complex linear functional on H! determined by ¢ € BMO by use of
(4.8) is

Le(u + iHu) = f(u + iHu)op dt
because Re(—i(u + iHu)) = Hu. We now have a real linear isomorphism
between the complex Banach space (H')* and the real space of real BMO

functions. In order to regard BMO as a complex space isomorphic to (H!)*,
observe that

iLc(u + lHu) = Lc(_Hu + Iu) = f(—Hu + lu)(p dt.
By (4.5) and (4.6), the last integral equals
f(u + iHwH o dt,

at least when u € . If we were to define multiplication by j on the space of
real BMO functions i¢ = He, then real BMO would become a complex
Banach space isomorphic to (H!)*, with the complex linear isomorphism
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from L*/H* to real BMO given by L*/H*> f— Re f+ H(Imf). This
unusual notion of complex scalar multiplication, which is brought about by
identifying HY with H', is one reason that real linear functionals on H' are
easier to discuss.

Corollary 4.5. IfoeLl_, then ¢ € BMO if and only if
(4.11) ¢ =0¢;+Hp, + 1,

where o is a constant and where @ and @, are L™ functions. When ¢ € BMO,
@, and @, can be chosen so that

(4.12) loille < Clely, @20 < Cllo]
for some constant C.

Proof. This corollary is equivalent to the theorem. Theorem 1.5 tells us
that every function of the form (4.11) is in BMO and that

(4.13) ol < Clelle + @2] ).
If ¢ € BMO, then by (4.9), the functional L(u) = | u¢ dt, u €9, is bounded
against |[u| 5. By Lemma 4.3, there are ¢,, ¢, € L such that

Lw = [u(e, + Hos)dt.
Asweobserved after the proof of Lemma 4.3, this means that ¢ — (¢, + H¢,)
has constant Poisson integral. Consequently (4.11) and (4.12) hold. [

A constructive proof of (4.11), and hence of the duality theorem itself, will
be given in Chapter VIIL
Because of (4.12) and (4.13), the expression

Inf{[[@[o + @2lw: ¢ =@ + Hp, + o}
defines a norm on BMO equivalent to |¢] .

Corollary 4.6. Let fe L™. Then the distance
dist(f, H*) = inf [| f — gl

geH™®
satisfies
(4.14) Cillf — iHf Il < dist(f, H*) < Call f — iHf | 4
for some absolute constants C, and C,.

Proof. By (4.2) and the Hahn-Banach theorem, we have

:FeH'|F|, < 1}

dist(f, H®) = sup{’ ffF dt
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By density, we may suppose F = u + iHu, where u € 2. Then,

fdet = ffudt + ffHudt = f(f— iHf Yu dt.
Taking the real and imaginary parts of the last integral, we see that (4.14)
follows directly from the theorem. [
Corollary 4.7. Let fe L*® be real valued. Then the distances
dist(f, Re H®) = inf | f— Re g|l»

geH™
and
dist (Hf, L*) = inf [[Hf — ¢l
Qe L>
satisfy

C, dist(f, Re H*) < dist (Hf, L™) < C, dist(f, Re H®)
for some absolute constants C; and C,.

Proof. 1If ge H®, then Im g € L* and Hf — Im g = H(f — Re g), so that
by Theorem 1.5,

[Hf = Im glly < C3l f — Regll.
Thus, we have
dist, (Hf, L*) < C, dist(f, Re H®).

The other inequality asserted in the corollary lies deeper and uses the
duality theorem. If ¢ € L™, then by Corollary 4.5,

Hf — ¢ = ¢, + Hp, + 2,

where
1011w + 102l < CIIHf — @]l .
Then
u=¢@+ @, +aelL”®
and

Hu=Ho + Hpy = ¢, — f,
sothatg = —Hu + iuisin H*. Also
I f—Reglew = If+ Hulow = @210 < CIHf — ¢ll,.
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Thus, we have

C, dist(f, Re H®) < dist (Hf, L),
and Corollary 4.7 is proved. [

A method of estimating dist,(¢, L®) in terms of the exponential in-
tegrability of |¢ — ¢, | will be given in Section 6.

5. Vanishing Mean Oscillation

Let ¢ € LL(R). For § > 0, write

1
5.1) My(o) = sup o flm ~olds
I

I|<é

where I denotes an interval. Then ¢ € BMO if and only if M «(¢) is bounded
and ||, = lims. , Ms(p). We say that ¢ has vanishing mean oscillation,
@ € VMO, if

(1) ¢ € BMOand
(i) My(e) = limso M) = 0.

It is easy to see that VMO is a closed subspace of BMO. The relation between
BMO and the subspace VMO is quite similar to the relation between L* and
its subspace of bounded uniformly continuous functions. Write UC for the
space of uniformly continuous functions on R and write BUC for L* n UC.

Theorem 5.1. For a function ¢ € BMO, the following conditions are
equivalent:

(a) ¢e VMO.

(d) Ifo,.(t) = ¢(t — x) is the translation of ¢ by x units, then

lim{lp, — ¢, =0.

x—=0
(c) Ifo(t,y) = P, * @ is the Poisson integral of ¢, then
lim [lo(t) — @(t, Yl = 0.

y—=0
(d) @is in the BMO closure of UC n BMO;

inf ¢ —gl. =0
geUC n BMO
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Proof. We verify the circle of implications (a) = (b) = (c) = (d) = (a).
Assume (a) holds. Let 6 > 0 and partition R into intervals

I;=(jo/2,(j + 1)6/2), —o0 <j< o0,
of length 6/2. By (5.1) we have
(52 lor, = @1,,11 < 2M (o).

Define

W= S or1,0.

j=—o
We first show that
(5.3) lo — hll, < SMx0).

If |I| < 6, then by (5.2) we have

T flh — byl dt < 4MA),

so that

11 [10 =B - @ = il di < smyo).

If [I| > 6 and if J is the union of those I; such that I; n I # (J, then
[J| < 2|I|. WritingJ = I, ul, U---u Iy, we have
L fl( h)y — ( )l dt < 2 Jl hldt < fl h|dt
;e M VT A 71,7

4 N f
< dt < 4M (o),
N, T o — @4l (@)

and (5.3) is proved. Now if | x| < §, then by (5.2), |k — h.|l, < 2M @), so
that |h — h,|, < 2M(@). Consequently, if | x| < &, then

o — @ulle < ll@ — hllye + b — bl + lo, — hell,
=2[l¢ — hll, + [h = hl, < 10M o).

This proves that (a) implies (b).
Now assume (b) holds. Then

o, y) = f(p(t — X)P,(x) dx



252 BOUNDED MEAN OSCILLATION Chap. VI

is an average of the translates ¢, of ¢. By (b), @ — ¢, is small if |x] is
small, say, if |x| < 6, while for any x, ¢ — ¢,], < 2|¢|,. But when y is
small, most of the weight of P (x) is given to |x| < 4, and this means that
llo(t) — o(t, y)|, is small. To be precise, by Fubini’s theorem we have

10 — ol P,(x) dx + 2lol, f P(x) dx,

|x|>é

llo(t) — o(t, Y4 < f

|x]<é

so that

lim|lo(t) — o, Y, < sup o — oxll4-

y=0 |x| <6
Hence (b) implies (c).
To prove that (c) implies (d), we use the estimate
(5.4) yIVolx, p| < cllelly,

which is easy to prove. When ¢ € L*, (5.4) can be derived from Harnack’s
inequality and a change of scale, and the extension to ¢ € BMO then follows
from Corollary 4.5. However, there is also an elementary proof of (5.4) using
Theorem 1.2 instead of the duality theorem. The simple inequality

VIVP(x — t)| < cPy(x — 1),

in which the derivatives are taken with respect to x and y, combines with
Theorem 1.2 to give

yIVo(x, y)l < y flqo(z) o DI IVP(x — D) di

<c f|<p(t) — o(x, )IPx — 0 di < clol,.

Now (5.4) shows that ¢(x, y) is a uniformly continuous function of x. Because
¢(x, y) € BMO, we see that (d) follows from (c).

It is trivial that (d) implies (a), because UC n BMO = VMO and because
VMO is closed in BMO. [

Theorem 5.2. If ¢ is a locally integrable function on R, then ¢ € VMO if and
only if
(3.3) ¢ = ¢, + Hp, + 0,

where ¢4, @, € BUC and where o is a constant. When ¢ € VMO, ¢, and ¢,
can be chosen in BUC so that (5.5) holds and so that

(5:6) leillo + @2l < Cll@ly,

where C is a constant not depending on @.
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Proof. Suppose that ¢ has the form (5.5), with ¢,, ¢, € BUC. Then
¢ € BMO, and for | x| small, [|[@; — ()]l <& j = 1, 2. Therefore

lo; — (@1)illy <&  and [(Hpy) — (Hpy)lly < €

when | x| is small, so that by Theorem 5.1(b) ¢ € VMO.
Conversely, if ¢ € VMO, then by Corollary 4.5,

¢ =u; + Hu, + o,

where |lu; |, < Cllol,, luzlo < Cllol,, and ais constant. By Theorem 5.1,
there is yo > 0 such that ||@(x) — @(x, yo)l, < l@ll,/2. Let ¢{f(x) =
ul(x’ yO)a QD(ZI)(X) = u2(x’ yO) Then (p(jl) € BUC’

loPlleo < llujlo < Cllolly,  j=1,2,
and @(x, yo) = ¢"'(x) + Hp(x) + «, so that
lo — (@ + Ho" + 0)ll, = lo(x) — o(x, yo)llx < lloll/2.
Hence
Ri=¢ — (¢ + HoY' + o) = (u; — o) + H(u, — %))

isin VMO and ||R, ||, < ll¢|,/2. Repeating the above argument with R, and
iterating, we obtain

Q= Zw‘l"’+H(Z¢‘z’") +o
k=1 k=1

with ¢ € BUC, ¢ € BUC, and
L 1oPl, + X 101, < 4Cloll.
k k

That proves Theorem 5.2. [

For the circle the proofs of Theorems 5.1 and 5.2 show that VMO is the
closure of C = C(T) in BMO and that VMO = C + C.

In Chapter IX we shall see that VMO is an important tool in the study
of the algebra H® + C.

6. Weighted Norm Inequalities for Maximal Functions and
Conjugate Functions

Let 1 < p < o0 and let i be a positive Borel measure on R, finite on com-
pact sets. We consider two problems.
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Problem 1. When is the Hardy-Littlewood maximal operator bounded on
LP(u)? That is, when is there a constant B, such that

[1mr b du < B, 11 an

Jor all measurable functions f(x), where

Mf() = sup - f|f| dt?

xel

Problem 2. When is the Hilbert transform a bounded operator on LP(y)?
That is, when is there a constant C, such that

J1mrran < c, [171e du
for all functions f € L*(dx), where

dt?

Hf (%) = lim + /O

e L |x—t|>£x —t

When du = dx we know that both operators are bounded for all p,
1 < p < . In the case p = 2, the Helson-Szeg6 theorem, Theorem 1V.3.4,
provides a necessary and sufficient condition that the Hilbert transform be
bounded on L?(y). The condition is that x4 must be absolutely continuous,
du = w(x) dx, and the density w(x) must have the form

logw =u + Hv

with u e L* and |v] , < 7/2.

The proof of this theorem was given in Chapter IV for the unit circle, but
by now the reader should have no difficulty transferring the theorem to the
line. For p # 2 the Helson-Szegd method has not produced very satisfying
answers to Problem 2.

On the other hand, the real-variables approach to these problems taken
by Muckenhoupt and others has been quite successful. Pleasantly, both
problems have the same answer : The measure must be absolutely continuous

du = w(x) dx, weLl.,

and the weight w(x) must satisfy the (4,) condition,

1 1 1\p—1) p—1
(6.1) sup(ll| fw dx)<|1| j( ) dx) < oo.
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Theorem 6.1. Let u be a positive measure finite on compact sets, and let
1 < p < 0. Then

[1MrPau <, [171e du

with B, independent of f if and only if u is absolutely continuous, du = w(x) dx,
and the density w(x) satisfies (6.1).

Theorem 6.2. Let p be a positive measure finite on compact sets and let
1 <p < . Then

[1mrrac<c, [1rra

with C, independent of f if and only if du = w(x) dx and the density w(x)
satisfies (6.1).

Before going further, let us try to understand how the (4,) condition (6.1)
comes about.

Lemma 6.3. If1 < p < o0 and if u is a positive measure on R such that

[imridn < c figreau

for all f, then u is absolutely continuous, du = w(x) dx, and w(x) satisfies the
(A,) condition (6.1).

Proof. Let E be a compact set with |E| = 0, let ¢ > 0, and let V be an open
neighborhood of E with u(V\E) < &. Then f= yy\g has | | f|? du < & On
the other hand, Mf(x) = 1 when x € E because | E| = 0. Hence by hypothesis,

WE) < [IMrle du < Clpig < C
so that u(E) = 0 and u is absolutely continuous.

Write du = w(x) dx, when w(x) € L. and w(x) > 0. Fix an interval I and
let £(x) = w(x)*1i(x), for some real . Then

flflpdu - fw(x)“'"dx,
I
andif x eI,

1 1,
Mf(x) szlfdt ZmJ;w dt.
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Approximating f(x) from below by bounded functions, we obtain

p
(fw dx)(fw“ dx) < I flelp du < C|IP fw“”“ dx,
I I I I

and takinga = —1/(p — 1) = 1 + pa, we conclude that

(f,w d") (J (&)w_” dX)p_l <clp,

which is the (4,) condition. []

Lemma 6.4. If1 < p < o0 and if u is a positive measure on R, finite on com-
pact sets, such that for all f

[1rrasc firra

then du = w(x) dx, where w(x) satisfies the (A,) condition (6.1).
Proof. Testing the hypothesis of the lemma with f = y,, ;;, we see that
J dpu(x)

(1 +Ixl)y

Let g € L%p), g = p/(p — 1), be real. Then by the hypothesis and by duality,
there is h € L% y) such that

(6.2)

[rga=[haw rern
If fe H* n LP(w), then Hf = —if and the above identity becomes
6.3) f f(g — ik)du = 0.
By (6.2) and Holder’s inequality,
dv(x) = w
X+ 1

is a finite measure, and by (6.3) j(x —2)"1dv(x) =0 on Im z < 0. The
F. and M. Riesz theorem now implies that v is absolutely continuous. Hence
g(x) du(x) = Re((x + i) dv(x)) is absolutely continuous. Since g € L4(y) is
arbitrary, we conclude that u is absolutely continuous.

Write dpu = w(x) dx. Let I be an interval, and split I into two equal pieces,
I=1,0l,,|I,| =|I,| =%|I|. Let f > O, f supported in I,. Then for x € I,
we have

(6.4) |Hf (x)] =%L Ixf(_t) |dt22n 1 Ifl(tl) f“
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Taking f = ¥;,, we get

fwdeCf w dx.
I, I,

By symmetry we also have

fwdst wdx.
I,

I

Taking f = w(x)*y;, in (6.4), we then get

1 p
(f wdx)<*J\ w* dx) <C f witeP gx.
I 1] Ji, I,

Setting o« = —1/(p — 1) now gives

1 1\ -1 4 1\/e-b
(i 6" <, )
I, |11| 1, \W I, \W

which is the (4,) condition. []

Thus (A,) is a necessary condition in both Theorem 6.1 and Theorem 6.2.
Now suppose w satisfies (4,) and write

1\V-1 —
@ = logw, ¥ = log((—) ) S—

w

Then ¢ and ¥ are locally integrable, because w and 1/w are. For any interval
I, we have

e“”(e“”)p_l =1

trivially, so that (4,) can be rewritten
1 1 p=1
(6.5) su (— fe"’““ dx) (— je‘”"‘" dx) < .
A\, [ J;
By Jensen’s inequality,
L fe"’“"’ dx>1 and Lfe""“” dx > 1.
1] J; h |1 J; -

Consequently (4,) holds if and only if each factor in (6.5) is bounded sepa-
rately, and we have the following lemma.
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Lemma 6.5. Letw >0, and let ¢ = logw. Thenw has (A,), 1 < p < o, if
and only if

1
sup — je“’““ dx < o
I 'II 1

and J

1
sup — ~[ér(rp—qn)/(pfl)dx < 0.
v 1

Thus if w has (4,), then ¢ = log we BMO. Conversely if log w € BMO,
then by the John-Nirenberg theorem, w® has (4,) for some § > 0.

Before turning to the more difficult proof that (4,) is sufficient, we mention
two corollaries. The case p = 2 of Theorem 6.2 can be merged with the
Helson-Szegd theorem to give concrete expressions for the BMO distance
of ¢ € BMO to L® and for the distance from f'e Lg to Re H*. The reason is
that the Helson-Szeg6 condition is, by Theorem 6.2, equivalent to

1 1 1
(A4,): 51: (m J;w dx)(mj;;dx) < 00.

If € BMO, then ¢ = f+ Hg + o with fe L®, g€ L®, and « constant,
and

loll" = inf{ll fllo + lglw: ¢ =f+ Hg + o}
defines a norm on BMO equivalent to | ]| ,. With respect to || ||’ the distance
from ¢ to L™ is

dist(p, L*) = inf {lo —f|" = inf{llgl,:@ — Hge L™}.
feL=

By the John-Nirenberg theorem there are ¢ > 0 and A(g) > O such that

xelig —@d > Bl _ e 55 y0.

6.6 su

Write
&(p) = inf{e > 0:(6.6) holds}.
Clearly ¢(¢) = 0if ¢ € L. The John-Nirenberg theorem shows that
&) < Clloll, < Cllell".
Corollary 6.6. If ¢ € BMO is real valued, then
dist (@, L*) = (n/2)e(e).
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Proof. Condition (6.6) implies that

(6.7) s111p|;—| J;explA(p — A, dx <

whenever A < 1/e(¢), whereas Chebychev’s inequality shows that 4 < 1/e(¢)

whenever (6.7) holds for 4. Thus

1/e(¢) = sup{A : ¢ has (6.7)}.
By (6.7) and Jensen’s inequality we have

(6.8) 1< |lT| feiAW_W) dx <M
1

for any interval I. Conversely, the inequality a + b < 2ab, valid for a > 1,
b > 1, yields

i [ etans i fe e
— | edle o1l dx <* A@=oD gy 4 Alw—on gy
1] J; |1] ||

Thus (6.8) is equivalent to (6.7). Hence by Lemma 6.5, (6.7) holds for 4 > 0
ifand only if the weight w = e“? satisfies the (4,) condition. We conclude that

1/e(p) = sup{A :e** has (4,)}.

Because the (4,) condition is equivalent to the Helson-Szeg6 condition,
we now have

1/e(@) = sup{A:Ap = f+ Hg,fe L, |gll, < n/2},
which is the same thing as
(/2)e(p) = inf{llgll,: ¢ = f+ Hg,fe L*}. O
Corollary 6.7. Iffe L® isreal valued, then
dist(f, Re H®) = inf ||f— Re F|,

FeH®
satisfies

dist(f, Re H®) = (n/2)e(Hf).

Proof. This is immediate from Corollary 6.6 and the proof of Corollary
47. O

The distances in Corollaries 6.5 and 6.6 can also be related to the growth
of the local L? oscillations of ¢(x) by means of the identity

1 1/p
“49) _ =1 sup 7y f|<p (p,l”dx) .
e pooo P [1]

Establishing this identity is a recreation left for the reader. See Exercise 17.
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To show that (4,) implies the boundedness of M and H on LP(w dx), we
need four consequences of

1 1 1\V/e-1 p—1
(4,): SuP(III fw dx)(”I f ( ) dx) < 0.

The first two consequences are quite trivial.
Lemma 6.8. If1 < p < 00 and if w(x) satisfies (4,), then

(a) w(x) satisfies (A,) for all r > p, and
(b) the weight (1/w)!/"~V satisfies (A,), where g = p/(p — 1).

Proof. For (a) note that 1/(r — 1) < 1/(p — 1), so that by Holder’s in-

equality
1= 1) 1 1\/e-1H  \@-Dir-1
) s )T
|1| 1] J; \w

For (b) note that 1/(p — 1) =gq — 1, so that if v= (1/w)"/®~ 1) then
(I/wreH=w O

The other two consequences of (4,) lie deeper, but they can be derived
from a delightful inequality due to Gehring.

Theorem 6.9. Let p > 1. If v(x) > 0, and if

9 ! d)/" L4
6. fv"x SKﬁj‘vx
3 (m 1),

for all subintervals of some interval I, then

1 . r 1
(6.10) <|T0| J;ov dx) < C(p, K, r)(llolf vdx)

forp <r <p+n,wheren = n(p, K) > 0.

The inequality reverse to (6.9), with constant 1, follows trivially from
Holder’s inequality. Therefore the constant K in (6.9) must obviously satisfy
K > 1. Theorem 6.9 is a close relative of the John-Nirenberg theorem and,
as with that theorem, it is crucial that (6.9) hold for many subintervals of I,.

Proof. We can suppose that I, = [0, 1] and that I,O vPdx =1.ForA>0

write
E,={xel,:v(x) > i}.

What we are going to prove is the estimate

6.11) J.v”dstl”"f vdx, A>1,
Ea

Ea
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with some constant 4 = A(p, K). But first let us observe how (6.11) easily
gives (6.10). For r > p we have

f vdx = f vV Pdx = (r — p) v”(l + f Ar-p-t di) dx
Ey E E, 1

1

=(r— p)f vPdx + (r — p)f Jr-p-1 f WP dx dA.
E; 1 Ex
By (6.11) the last term in the above expression does not exceed
A(r—p)f A"ZJ vdxdlSA(r_p)f UJ‘/V_Zdl
! Ea E, 0

_(r—p)
aCEn

A(r—p) , _ ’
(1 - ﬁ) le dx < (r—p) le dx.

Taking A > 1, we have Ar — p)/ir — D < 1lifr<p+(p—1))(4-1)=
p + n, 1 > 0. For such values of r we then have

v dx.

Hence

fv’dxsf vwdx + C, | vPdx.
Io fv<i} E,

Because of (6.9) and the normalizations |I,| = 1, |,, v dx = 1, this proves
(6.10) and the theorem.
To prove (6.11) we set f = 2KA > A > 1. Since trivially

(6.12) f rPdx < prt f vdx < QK 1ar-! f v dx,
E;\Eg E;\Eg

Ea

proving (6.11) really amounts to making an estimate of jEﬂ v? dx. By the
Calderon-Zygmund Lemma 2.2, there are pairwise disjoint subintervals {I;}
of I, such that

(6.13) g < 1 f vP dx < 2p°
|I_]| I;

and such that v < f almost everywhere on I,\J I;. So except for a set of
measure zero, we have E; — U I;. By (6.13) we have

(6.14) f vPdx <Y | vPdx <267 ) |1,
Eg i

i v
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By (6.9) and the other inequality in (6.13), we also have

B ( f d )UP K d
< vP dx s——j v dx.
[1;] Jy, ;1 Jy,

K KA
IIjlsEfvdx<— vdx + — 1],

I;nE, ﬂ

This means that

so that by our choice of j,

1
|I|</1 v dx.

I;nEa

Substituting this inequality into (6.14) gives

2[31’ +1 -1
vdx < — | vdx <2°P7'KP)P f vdx,

E), El
and with (6.12) this yields the desired inequality (6.11). [

Corollary 6.10. If 1 <p < oo and if the weight w(x) satisfies the (Ap)
condition, then

(a) there are d > 0 and C > 0 such that, for any interval I,

1 s 1/(1+9) £
(6.15) (|1| fw(x) dx) < 7| J;w(x) dx,

(b) there is ¢ > 0 such that w(x) also satisfies the (A,_.) condition.

Proof. To prove part (a) we can assume that p > 2, because of Lemma 6.8(a).
The Cauchy-Schwarz inequality shows that

1 1 1/(p—1) 1
| < — | wiem gy ).
(mf( ) "")(mflw )

With this inequality (4,) yields

1 1 p-1
—jwdxsK(— fw”“"”dx) .
1] J; [T Jy

Since p — 1 > 1, we can now use Theorem 6.9 on the function v = w

to obtain
1 /(p~1) 1r 1p—1)
— | w?P™ D dx <C fw dx)
(i [ ax) "<

1/(p—-1)
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for p—l<r<p—1+mnn n>0 Taking 1+ =r/(p — 1), we have
(6.15).

To prove part (b), we apply (6.15) to (1/w)"/?~ Y, which is a weight function
satisfying condition (4,), g = p/(p — 1). We get

1 J< 1)(1+6)/(p—1)dx (p—1)/(1+9) - C J~ 1 1/(p—1)d p-1
= — —_— — X .
[ Jr\w A\ Jr\w

Setting ¢ = (6/(1 + d))(p — 1) >0, so that (p —e) — 1 =(p — /(1 + 9),
and multiplying both sides of the above inequality by (1/|I]) j', w dx now

yields
1 1 1)1/(17—6—1))11—6—1
1 [ dx _f 1
(UILW )QI|,<w
1\Yr-1 rp-1
< C(lfwdx)(Lf (—) dx) ,
1] J; (1] Jp \w

and w has (4,_,). U

Another proof of (b), closer in spirit to the proof of the John-Nirenberg
theorem, is outlined in Exercise 15.

Proof of Theorem 6.1. We suppose w(x) has (A4,) and, writing du = w(x) dx,
we prove

(1M1 < 8, 15 du
The converse of this was proved in Lemma 6.3.

Applying Hélder’s inequality to fw'’”? and w™!/? and noting that g/p =
1/(p — 1), we have

1 1 p 1/p 1 1 1/(p*1)d (p—1/p
— dx < | — f Pw x) ( f (—) x) .
i Guﬂ” 1) \w

The second factor can be estimated using (4 ) to yield

1 1 —lr /1 1/p
|_I|.£|f|dXSK<mJ;de) (mj;lfl du>

1 1/p
= R — p d ;
KQmL”'Q

since du = w(x) dx. Writing

M, g(x) lfmd
X) = Sup——.
wg) =S ),
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and taking the supremum in the last inequality over all intervals I containing
x, we get

(6.16) Mf(x) < K(M, (] f P))''.

The covering lemma (Lemma 1.4.4) applies to the measure 4, and the proof
of the maximal theorem (Theorem 1.4.3) can then be adapted without
difficulty to yield

6.17) f(Mﬂ(g))' du < C, flgl’ du, Il<r<ow

(see Exercise 13, Chapter I). Now since w(x) also satisfies (4, _,), (6.16) can be
replaced by
Mf(x) < K'M, (| f|P~9)1®=2,

Using this inequality and (6.17) with r = p/(p — ¢), we obtain
[ du < & [ 7 pe-odu < ek [irpdn

which proves Theorem 6.1. [

To prove the remaining half of Theorem 6.2 we need one more lemma and
one additional theorem. A measure du = w(x) dx is said to satisfy condition
(Ay)if

(6.18) H(E)u) < C(EI/T])

whenever E is a Borel subset of an interval I. The constants C > Oand a > 0
in (6.18) are supposed to be independent of E and I.

Lemma 6.11. If w(x) satisfies (A,) for some p < oo, then du = w(x) dx
satisfies (A ).

Proof. For E c I, Holder’s inequality and Corollary 6.10(a) give

/1(E) J~ i J~ 1o g 1/(1+6) |_E| 3/(1 +6)
i 1] 1]
C J~ )(lEl)é/(l+¢S) ,u(I) (lEI)é/(1+6)
<|— |wdx]||— =C—|— s
(III 1 1] (1] \|1]

which is the (4,) condition (6.18) with a« = §/(1 + 6). O

Theorem 6.12. If a measure du = w(x) dx satisfies the (A,) condition, and
ifl <p < oo, then

lefI"wdx <C, fleI”wdx.
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Our objective, Theorem 6.2, follows directly from Lemma 6.11, Theorem
6.12, and Theorem 6.1. Our only unfinished business now is the proof of
Theorem 6.12.

Proof. The maximal Hilbert transform

f f(®) dl'
Ix—t]>e X — t

H¥f(x) = sup

€

satisfies the weak-type inequality

C
(619) v Y ) > 1< 5 1700l dx
by Theorem 2.1 of Chapter III.

Combining (6.19) with the (4,) condition, we shall show that when
O<y<l,

(620) u({x: H¥(x) > 24 and Mf(x) < yA}) < Ayu{H*f(x) > A},

where the constant 4 does not depend on y. Now (6.20) easily implies the
theorem, because

[1rtrp i = por j:»" () > 22)) d2
< Ap2my” f:,lp-lﬂ({x CHA(x) > A)) dA
+ p2° szl”_lu({x tMf(x) > yA}) dA
= a2y (1B dic+ 2077 1M1 e
Choosing y > 0 so small that 427y* < 1, we obtain

le*f Pdu<C, f \MFIP di

and since trivially | Hf | < H*f, this proves the theorem.

To prove (6.20), write the open set U, = {x: H*f(x) > A} as the union of
disjoint open intervals {J,}. Partition each J into closed intervals {I*} with
disjoint interiors such that

|1%| = dist(I%, R\J)).
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The family of intervals shown in Figure VL1,
k=1
is called the Whitney decomposition of U, because it has the three properties
UJ. - U IJ,
J
Hnl) =02, i #J,

2 A /.

v——

i
Figure VIL.1.

The main step in the proof of (6.20) is to establish the inequality
(6.21) [{x e I;: H¥*f(x) > 24 and Mf(x) < yA}| < By|[;|.
Indeed, (6.21) and the (A4,,) condition (6.18) then yield

u({x € I;: H*f(x) > 24 and Mf(x) < yA}) < CB**u(I;),

and (6.20) follows by summation over {I;}.

Thus the proof of Theorem 6.12 has been reduced by means of (4,) to
proving (6.21), a condition not involving weight functions. No further
relocations of the proof are necessary, and we conclude with the proof of
(6.21). Because {I,} is the Whitney decomposition of U, there is x; such that

dist(x;, I) = |I,/ and  H*(x) < A

We can suppose there is ¢; € I; with Mf(g“J) < y4, because otherwise (6.21)
is trivial for I;. We can also suppose that y is small, because (6.21) is obvious
if By > 1. LetI be that interyal concentric with I; having length |I | = 3|1;].
Then x; €T, Also let I¥ = I be that concentrlc interval with |I*| =9|I;l.
ertef jl + f3, wheref1 fx,; f2 = fxmups- Since ¢; € IF, we have

(FAR
15|

J

so that (6.19) gives

1
=|I—*|f | fldx < 2Mf(&) < 294,
jhin

(6.22) | {x: H¥,(x) > 4/2}] < 2C/D| filly < 4Cy|IF].
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When x € [; the integral Hf,(x) has no singularity at x, and for any ¢ > 0 we

have
L[| Lo,
dx Ji—xj>e X — 8 R\I‘Ix—tl

<C,

| /()]

2
lx—gi>airy IS = €l

ds |”Mf(f)

because the last integral can be viewed as a sum of averages over intervals
centered of £;. Consequently,

J fa(t) di — f f2(0) dt
|x—t|>e X — t |xj—t|>e Xj — t

Mf(f;)|x x;| + H*f(x;) < 3C,9A4 + H*f5(x;).

H*f,(x) < sup + H*f,(x;)

III

On the other hand, since dist(x;, R\IF) = 3|I;|, H*f,(x;) is not much
larger than H*f(x;). To be precise, we have

1) dt
H*fz(xj) = sup J &
e>315] | Ixj—t]>e Xj — 1
S } 1
< sup f dt [ f(2)] dt.
e> 31151 | Vxy—t]>e Xj — 311 Japnyi<1x,-ui <611y

The first of these integrals is bounded by H*f(x;) < 4, while the second
integral is bounded by C3 Mf(u;) < C57y4. Hence we conclude that

(6.23) H*f,(x) < 3C; + Capyd + 4, x€el;.

J

Since H*f < H*f, + H*f,, (6.22) and (6.23) yield the inequality
Hx e I;: H¥f(x) > (3C, + C3)ph + 34}| < |{x: H¥,(x) > 1A}| < 12Cy |1,
and this gives (6.21) when 3C, + C3)y <+ O

Notes

There is now a sizeable literature on BMO, with connections to univalent
function theory, quasiconformal mappings, partial differential equations,
and probability. To a large extent it is the duality theorem and the con-
formal invariance that make BMO important in so many areas. Some of this
literature is cited in the bibliography.
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The conformal invariance of BMO, which has been exploited by many
authors, seems first to have appeared in Garsia’s notes [1971]. Much of the
material in Sections 1-4 comes from the fundamental paper of Fefferman
and Stein [1972], where the duality theorem was first proved. Theorem 1.5
was first proved by Spanne [1966] and independently by Stein [1967].

Theorem 2.1 is from John and Nirenberg [1961]. Its simple proof has wide
applications. Campanato [1963] and Meyers [1964] have given similar
characterizations of Holder classes.

The proof of the duality theorem would have been considerably simpler
had it been the case that |Ve(x)| dx dy were a Carleson measure whenever
@ € BMO(T). As explained in Exercise 9, this is not the case, even when ¢ is a
Blaschke product. The Littlewood—Paley expression

[Vo(2)|? log(1/1z]) dx dy

is a useful device for overcoming this difficulty. A different device, due to
Varopoulos [1977], is outlined in Exercises 12 and 13. The proof of the
corona theorem provides yet another way around this difficulty (see Section 6
of Chapter VIII).

With the exception of the Fourier transform, the Hilbert transform is
perhaps the most important operator in real or complex analysis. Much of the
strength of the duality theorem lies in the fact that it characterizes BMO(R)
as the set of functions of the form ¢ = u + Hv,u,v € L®. A more constructive
proof of this decomposition will be given in Chapter VIII.

The results on VMO and their applications in Chapter IX below are from
Sarason’s paper [1975].

Theorem 6.1 is due to Muckenhoupt [1972] and Theorem 6.2 was first
proved by Hunt, Muckenhoupt, and Wheeden [1973]. The absolute con-
tinuity of 1 had been established earlier by Forelli [1963]. The proofs of
Theorem 6.1 and Theorem 6.2 in the text follow Coifman and Fefferman
[1974]. Gehring’s inequality in Theorem 6.9 is in essence a result about
maximal functions (see Gehring [1973]). Several other important inequalities
hold when a weight satisfies (4,) (see Gundy and Wheeden [1974], Mucken-
houpt and Wheeden [1974]).

Nobody has ever found a direct proof of the equivalence of (4,) with the
Helson-Szegd condition. The papers of Garnett and Jones [1978], Jones
[1980b], Uchiyama [1981], and Varopoulos [1980] shed some light on this
problem and study the higher dimensional form of Corollary 6.6. A very
interesting related problem has been posed by Baernstein: If ¢ € BMO
satisfies

sup(1/[1])[{x € I :|@(x) — @;] > A}| < Ce™%,
I
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can @(x) be written ¢ = u + Hywithu € L* and |v| , < n/2?(See Nikolski,
Havin, and Kruschev [1978, p. 230].) The converse of Baernstein’s conjecture
is quite easy (see Exercise 18). Together, Theorem 6.2 and the Helson-
Szegd theorem give another proof of the H'~-BMO duality on the line.

Inequality (6.21) explains why the Hilbert transform and the maximal
function are often bounded on the same spaces. See Burkholder [1973] and
Burkholder and Gundy [1972] for more about inequalities of this type,
which are called “good 4 inequalities.” The argument in the proof of (6.20) is
a powerful method that evolved from the real-variables proof that the
Hilbert transform is weak type 1-1 (see Calderon and Zygmund [1952],
Stein [1970]).

Most of the results in this chapter are really theorems about functions on
Euclidean space R" or even on the spaces of homogeneous type introduced
by Coifman and Weiss [1971]. In fact, that is how the results are presented
in many of the papers cited above. To keep matters as simple as possible
and to keep in touch with the applications to follow, we have limited our
discussion to R' and T.

There are some beautiful connections among analytic BMO functions,
univalent functions, and Bloch functions. Some of these results are outlined
in Exercises 22-25. Sarason’s notes [1979] and Baernstein’s lecture [1980]
provide good surveys of this topic.

Exercises and Further Results

1. 1If ¢ e BMO and if ¢ is real, then max(¢p, 0) is in BMO.
2. BMO is complete.
3. (a) IfpeBMO,if y;¢ € BMO, and if

lxrelly < Cloly,

for every interval I, then ¢ is bounded and ||, < C'[l@|l,-
(b) If h is measurable on T, then hp € BMO(T) for all ¢ € BMO(T) if
and only if h € L and

1 |
log — — ,
SLllp{m(ogl”)J;M h,|dx}<oo

(Stegenga [1976]).

() Formulate and prove a similar result on the line.

(d) Suppose ¢ e BMO and suppose I is an interval such that ¢; = 0.
Let T be the interval concentric with I having length |T| = 3|I|. Then there is
¥ € BMO such that ¢ = ¢ on I, y = 0on R\T,and |y|, < Clo],.
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(Hint: Write I = | )&, J, where dist(J,, 0I) = |J,|, as in Figure VL1,
Suppose |Jo| > |J,], n # 0, so that J, is the middle third of I. For n > 0,
let K, be the reflection of J, across the nearest endpoint of I and set ¥(x)

=¢,;,x€K,, ¥(x)=0,x¢TulJK,.)

4. Let f(x) be measurable on R. Suppose there exist & < 3 and 1 > 0
such that for each interval I there is some constant a; such that

H{xel:|f(x) —a;l > A} < alIl.

Then f€ BMO. The proof is like that of the John-Nirenberg theorem. The
result is no longer true when % is replaced by a larger number (Stromberg
[1976]).

5. On the circle, (H)* = BMO, with the pairing between u € H} and
@ € BMO(T) given by

1
2_7'E fu(p dg,

provided constant BMO functions are not identified to zero, that is, provided
BMO is normed by

1
‘Mfwde}Jr lol,.

With the same norm BMOA = H? n BMO is the dual of the classical space
H! under the pairing

do
ffrl’z—n, feH', ¢ecBMOA.

6. For ¢ € L(dt/(1 + t?)) write

Vo) - (a‘gf’, 5‘5;2)), e,

where ¢(z) is the Poisson integral of ¢(t).
(a) Show

[ 10w de =2 [[y1900 ax
H

using either Green’s theorem or Fourier transforms.
(b) Prove ¢ € BMO if and only if y|Ve|* dx dy is a Carleson measure
(not necessarily finite).
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(c) If ¢ € BMO and if fis a holomorphic function in H! having no zeros
in #, then

ffwa- Voldx dy < Cloly fla
H

Moreover, if f € 2, then

‘ ff(t)(p(t) dt lin(l) ff(x + iy)e(x + iy) dx

< cffyIVf~V<p1dxdy,
H

which proves the duality theorem on the line. Notice the last inequality does
not follow directly from part (a) by polarization because it is not assumed
that ¢ € L2 However, when ¢ and f are continuous, the identity A(¢(z) f(2))
= 2 Vf(2) - Vo(z) and Green’s theorem yield

R
lim f(O)p(t) dt = lim 2 Jf y Vf(2) - Vo(2) dx dy.

R—->o ¢ —-R R-©
X ~{|z| <R}

7. (a) Let T be the space of two tailed sequences
F={f,:—00 <n< oo}

of measurable functions on R such that

fsup|fn(x)|dx — |F| < co.

Under this norm T is a Banach space.
(b) Let T be the closure in T of the set of sequences F for which there
exists N = N(F) such that

fo=fvw n>=N; f,=0, n< —N.

When F € T, lim,_, , f, = f exists in L'. The dual space of T, consists of
sequences G = {g,: —o0 < n < oo} of L* functions with norm

IGIl = ‘ [go(x)] + _Zlg,,(X)l

[~

under the pairing

(F.6) = [ fuat e+ 3, [ .00 d.
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(c) Choose {y,: —o0 < n < oo} such that
Yn = 0(n — 00), y, = co(n — — ),
and
0 < Yn— Yas1 < min(yz, 1).
Let S: Hy — T be defined by

(S)n(x) = u(x, y,).
Then S maps H onto a closed subspace of Ty. (Use the vertical maximal
function

u™(x) = suplu(x, y)|.)

y>0

(d) By parts (b) and (c), every bounded linear functional on Hj has the
form

L) = fu(x)gw(x) det 3 [uts vg0 dx

n=— o

with

1 w
1] f, ('gw("” + Ig..(x)l)dx < CJIL],

and conversely. With the duality theorem this gives the converse of Theorem
1.6. If ¢ € BMO, then

00 = 9.0 + [ Px = 0.dot, ),
H
where || is a Carleson measure. Here

do = ) g,(x)ds,,

where ds, is dx on the line {y = y,}. Note that |g| is more than a Carleson
measure since

la|(I x (0, ©0)) < C|I|.

This reflects the fact H! is determined by the vertical maximal function as
well as by the nontangential maximal function. The proof sketched above is
due to Fefferman (unpublished).

Yk (e) Carleson [1976] constructively obtained the decomposition

00 = 9.0+ 3 [Pfx = Da.0 dr

where |g,| + > |gnl € L*, for each ¢ € BMO.
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(f) Assuming the result in (e), prove the maximal function characteriza-
tionof H: ffue L' n L2, then
[Hul; < Cllu™l;.

Hint: Let ge L2 n L®, ||g||, = 1, and let ¢ = Hg € BMO. Then
(

fuq) dt
The left side has supremum || Hu|,.)
(g) Derive the difficult half of the duality theorem from part (e).

= < Clu™|;.

‘ J(Hu)g dt

8. Supposef= Y ,.0 a,e™ isin H'. Use duality to prove
Ylax> < ClfII}  (Paley)

k>0

and

la,|
—1_<C Hardy).
T oarpsClfly (Hady
9. There exist BMO functions such that |Vu| dx dy is not a Carleson
measure. There is even a Blaschke product B(z) such that ([ |B'(z)| dx dy
= o0.

(@) Let f(e") = >, (1/n)e’*". Then f€ BMO. Let 4, be the annulus
1-2""< |zl <1 —=27""". Then |, {|f'(z)| dx dy > ¢/n. Writing Re f
= U, 4- U,, show there is a bounded harmonic function u(z) such that
L)f |Vu|dx dy = co. Then F = exp(u + ifi) is an H® function with

J |F'(z)| dx dy = 0.

(b) Ifge®) = a,e®™, then g € BMO if and only if } |a,|* < oo, but
iI1g'(z) dx dy < oo if and only if ¥ |a,| < 0.

(¢) If Y |a,l® < oo there is F € H® such that F(2") = a, (see Fournier
[1974]). If )’ |a,|* < oo but ) |a,| = o, then [[ |F'(z)| dx dy = co.

(d) There exists a Blaschke product B(z) such that

f |B'(z)| dx dy = 0.

D
The earliest example is due to Rudin [1955b].
10. There exist f,(z) and f,(z) in H* such that

[an@i+1ren =«
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for all smooth curves I" in D terminating on dD. Consequently the mapping

z— (Z’fl(z)sfz(z))

embeds the unit disc into C?. The embedded manifold is bounded and it is
complete in the metric of Euclidean arc length.
To construct f; and f;, first take

© 10"

ore®) = Y rT cos(106).

n=1
Then
IVo(2)] = 107100n  on A, ={9-107""" <1 —|z| <11-107"""},

so that
flwp(z)lds: o
r

for every curve I' in D which terminates on dD. On the other hand, ¢(z) is
the Poisson integral of ¢(e'®) € BMO. Write ¢ = u + # and set f; = %
f>» = e’ This example is due to Jones [1979a]. See Yang [1977] for
background on this problem.

11. An atom is a function a(x) supported on an interval I and satisfying
fa(x)dx=0, [a(x)| < 1/]1].

If {a;} is a sequence of atoms and if )’ |4;] < oo, then

f(x) =) Aja;e Hy
and [[fllg; < CY, |4;]. Conversely, by the duality theorem every function
in Hg has the above form with ) |4;] < C| f| g See Coifman [1974] or
Latter [1978] for direct proofs of the atomic decomposition, which in turn
implies the H'-BMO duality.

12 (Dyadic BMO). A dyadic interval is an interval of the form w =
(j27", (j + 1)27") with n and j integers. For ¢ € L}, define

1
= sup — — @, dx,
lolla Sl,f,plwlflq) Qo dx

the supremum taken only over dyadic intervals. The dyadic BMO space,
BMO,, consists of the functions ¢ with ||| 4 finite.

(a) BMO is a subset of BMQy, but there are functions in BMO, not in
BMO.
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(b) If ¢ e BMOy, then ¢ € BMO if and only if
|90, — @0, | < A
whenever w, and w, are adjacent dyadic intervals of the same length. Then
Cillolly < A4 + llola < Colloll,.

(c) Suppose ¢ € BMOy has support [0, 1]. Then there exists a family ¥
of dyadic intervals w such that
(E.1) Y. lol < ClollglI]

wcl

we¥
for every dyadic interval I, and there exist weights a,, @ € %, such that
|, | < Cllo|4 and such that

=Y+ ) %Wie

we¥
with Yy € L®, [¥|l, < Cloll4. Conversely, every function of this form is in
BMO,. To prove the decomposition, mimic the proof of the John-Nirenberg
theorem. Suppose |¢]q = 1. Take ¢ = {I{"} from that proof and take
%, = @ — @pp-n, Where [0 S I,
(d) The dyadic maximal function is

I—i)]fwfdt

where the supremum is taken over dyadic intervals. The space H} consists of
all fe L'([0, 1]) for which

fUx) = sup

XEW

s

174 = fo | £ dx < oo.

The norm in the dyadic H! space H} is | 9| ;. By part (c) the dual of H} is
BMO,.

The dyadic spaces Hi and BMO, are special cases of the martingale H*
and BMO spaces (see Garsia [1973]). Technically, BMO, is much easier to
work with than BMO. For example, part (c) above is quite easy, but the
direct proof of the analogous result for BMO, Exercise 7(e), is rather difficult.

13. (a) Suppose ¢ € BMO has support contained in [0, 1]. Then there
exists F(x, y) € C°(s#) such that |VF(x, y)| dx dy is a Carleson measure

(E2) f IVF(x, )] dx dy < Allg] 4h,
Qo
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Q = [a,a + h] x (0, k], such that
(E.3) sup|F(x, y)| e L

y>0

and such that
(E4) ¢(x) = lim F(x, y) + y(x)

y—=0

with [[]l, < Cllo],. By 12(c) we can suppose ¢ has the special form
P(x) = Y %y XulX),

we¥

where the family ¢ of dyadic intervals satisfies (E.1). Then (E.2) and (E.3)
hold for

FO(x’ )’) = Zgaw Xw(x)X(O, le)(y)'

Although F is not in C®, |[VFy(x, y)|, taken as a distribution, is a Carleson
measure. (To control |0F ,/0x|, use 12(b) above.)

The smooth function F(x, y) is a mollification of F,. Let he C*(C)
satisfy

h(z) > 0;

fh dxdy = 1;
h(z) = 0, lz] > &
Set h,(z) = 2*"h(2"z), F,(z) = Fo(2))X3-n<y<2-n+1(t), and write
F(z) = ). (hy* F,)2).
n=1

Then F € C*(#) satisfies (E.2)-(E.4) (Varopoulos [1977a]).
(b) Use the result in (a) to give another proof that (Hg)* = BMO.

14. (a) The dual of VMO is Hj.
(b) Letfe BMO. Then fe VMO if and only if

f“ f VIVu@)|? dx dy = ofh)
a 0

uniformly in a € R, where u(z) is the Poisson integral of f(t).

%15. (a) Suppose y € BMO, ||¥|, < B,. If

1
sup — fe"’"”’ dx = B; < o,
r
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then there are 6 = 6(B,, B;) > 0 and B, = B,(B,, B;) such that
sup 1 fe‘“"""’"”” dx < B,.
r |

The proof is a variation of the proof of the John-Nirenberg theorem. It is
enough to show there is @ > 1 such thatforn=1,2,...

(E.5) [{xel:Y(x) — Y, > na}| < e 0H20m |

for every interval 1.
Take A > 0 so that

(E.6) 1 — ¥l < 34

if I = J,|J| = 2|1, and so that

(E.7) Hx eI |Y(x) — ¥l = 34| < 31

for all I. Fix an interval I, and assume I, =[0, 1]. Forn =1, 2, ..., let

{I,, ;} be the maximal dyadic intervals inside I, for which y/;, , — ¥;; > nA.
Then by (E.6)

nA <, — Vi, <+ DA
and by (E.7) there exists E, ; < I, ;such that |E, ;| > 3|1, ;| and
'P(x) >(mn—-34 x€E,;

Hence for any chosen interval I,, , we have

Z e—(m—n+1)2 Z Z e—(m n+1)).|U En J

n>m In, Jclmkllm kI _n>m

< fe-'l{xezm,k:wx)‘w,,,,k>t}|dt
IIm,k| 0

1
= | J\ ew—d”"‘vk dx S Bl‘

Im,kl

In particular, whenever n > m

(E.8) y nsl < o etmn+ 03,

In, j<Im, IIm kl -

Let s be a positive integer, s > 2. For each I,, , we have ng,m < ny < m + s,
so that

—(m—-no+1)a |I'IOJ ZBI
e <—,
Ino,jclm,k |Im,k| N
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because otherwise (E.8) would fail. Using (E.8) to compare ), .  to Z,nw,
we therefore obtain

[T, < 4B} (-s+2)2
P A | Y B
Now choose s so that
4B3es <4,
set « = sA, and § = (log 2)/2a. Then

Z IIm+s,j| < e—(1+26)a,

Im+s,jSIm,k

and (E.5) follows upon iteration.
This argument is due to P. Jones. There are several interesting con-

sequences.
(b) Ify e BMO and if

1
(E.9) sup — fe/‘"”_"’" dx < o,
r 1y

then for some ¢ > 0

1 -
SUp e Aol vl gy < o0,
1

Thus the set {4 :(E.9) holds} does not contain its supremum.
(c) If w satisfies (4,), then w satisfies (4,_.) for some ¢ > 0. (Use part
(a) and Lemma 6.5 with y = log((1/w)}/®~1)))

16. Let H denote the Hilbert transform and let B denote the operator of
multiplication by a fixed function b(x), Bg(x) = b(x)g(x). The commutator
[B, H] is defined by

[B, Hlg = B(Hg) — H(Bg) = b(x)(Hg)(x) — H(bg)(x).
Then [B, H] is bounded on L? if and only if b(x) € BMO, and
Cilblly < I[B, H]|| < C;|b] -

(Hint: Use duality and Riesz factorization ; see Coifman, Rochberg, and Weiss
[1976].) The following proof that |[B, H]| < C||b|, is due to Rochberg.
By Section 6 there is > 0 such that whenever [|b[|, < J, e* has condition
(A,). Hence by Theorem 6.2,

(b(x) = b(»))

110 = [ 0)dy
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satisfies | Tf |, < CI| fl, when |[b], < J, since

ITAI2 = f 9 He ™ )x)|2 dx < C f £ 209 £(:)|2 dx.

For |z| = 1 the same holds for the operator T, defined with zb in place of b.
However

s dz J‘ b(x) — b(y)

. z
27i Jz|=1

f() dy = [B, H](f).

17. 1If u is a probability measure and if f > O is u-measurable, then
o 1 1n 1
— 1 "y -
o 1 (J S ) eA(f)

A(f) = sup{A:feAf du < oo}.

where

(Expand e/ into a power series and use the root test and Stirling’s formula.)

18. (a) Suppose ue L®(T), |ull, < m/2, and set f= e~ ®*® Then
| /(e)] is weak L', since Re f > 0. Hence

[{6:]i(e®)| > A}| < Ce™*
By conformal invariance, that means
w,({0: (") — d(z)| > A}) < Ce™*
for all z € D, where w,(E) = (1/2n) | P, df. Consequently,

[{0 € I:]ia(e”®) — a(I)| > A}| < Ce™*|I|

for every arc I.
(b) In a similar fashion, the Helson-Szegd condition implies the con-
dition (4,).

19. (a) Let u be a locally finite positive Borel measure on R for which
the maximal function

Mu(x) = supu(l)/|1]

xel

is finite Lebesgue almost everywhere. Then log My € BMO (Coifman and
Rochberg [1980]).
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(b) Let Ebeasubsetof [0,1]with|E| < 4~ !/% Then there exists ¢ € BMO
such that
0<op<l,
=1 onkE, =0 off(—1,2],
Il < ce,

where ¢ is an absolute constant. (Hint: Take ¢ = (a + flog M(xg)*. A
different proof is given by Garnett and Jones [1978].)

%20. (a) When fe L. (R), define

7760 =sup i 17—l

xel

Thus fe BMO if and only if f* € L®. By the maximal theorem, | f*|, <
Colfll,, 1 < p < co. Prove the converse:

Ifl, < Cllf*l,,  1<p<o0

(Fefferman and Stein [1972]).
(b) Suppose T is a mapping from L*(R) L®(R) into measurable
functions on R such that

ITA 2 < Aol fll2s ITf Iy < Al flls

feL?>nL®. Then ||Tfll, < 4,lfll,, 2<p < . (Use (Tf)* and the
Marcinkiewicz interpolation theorem.) Consequently the M. Riesz theorem
follows from Theorem 1.5.

21. A positive locally integrable weight function w(x) is said to satisfy

condition (A4,) if
{(IJ d)esss 1}<oo
su wdx up——
PN ver D w(x)

(a) w(x) satisfies (4,) if and only if
Mw(x) < Cw(x),

where M is the Hardy-Littlewood maximal function.

(b) If w(x) satisfies (4,), then w(x) satisfies (4,) for all p > 1.

(c) w(x) satisfies (A4,) if and only if the maximal function operator or the
Hilbert transform is weak-type 1-1 on L!(w dx) (Muckenhoupt [1972];
Hunt, Muckenhoupt, and Wheeden [1973]).
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(d) Let @ =logw. Then w has (4,) if and only if

sup L Je“"“” dx < oo and sup(<p, — ess inf (p(x)) < o0.
I III I 1 xel

The space of functions satisfying the latter condition is called BLO, for
bounded lower oscillation. If ¢ € BLO then ¢ € BMO and so ¢* has (4,)
for some ¢ > 0.
%K) Ifw; and w, have (4,), then by Holder’s inequality w = wyw} ~?
has (A4,)- The converse is also true but quite difficult. See Jones [1980c]. With
the Helson-Szego theorem, the converse implies that if |v]|, < 1, then

Hv =u — Huy + Hu,,
where u € L®, |ujll, < 1, and Hu; € BLO, j = 1, 2.

(f) If wsatisfies 4, then w! *° satisfies A, for some & > 0. (Use part (b)
and Corollary 6.10.)

(g) If pis a positive Borel measure finite on compact sets such that
M(dy) < oo almost everywhere and if 0 < a < 1, then (M(dw))* has A,
{Coifman and Rochberg [1980]).

Yk (h) For any function w(x) > 0 and for any s > 1, define

Aw) = M(Mw*)'5,
Thenfor 1 < p <

lefI”w dx < C, flfl"As(w) dx

(see Cordoba and Fefferman [1976]). It then follows easily from part (a) that

JIHf'Pw dx < C, J|f|Pw dx,

1 < p < oo if wsatisfies (4,).
22. On the unit circle let BMOA = H? ~n BMO. If fe BMOA then

inf | f = gl < Cinf | f— gl,.
geH® gelL=

%23. (a) Letf(z) be a univalent function on the unit disc. If f(z) has no
zeros then log f(e*®) e BMO. Moreover, if 0 < p < 1, then | f(e®)|? satisfies
(4,) (Baernstein [1976]; see also Cima and Petersen [1976], Cima and
Schober [1976]).

(b) Letf(z)beanalyticon D. Thenfe BMOA ifand onlyiff = « log ¢/(z),
where « is a constant and ¢ is a conformal mapping from D onto a region
bounded by a rectifiable Jordan curve I satisfying

Ilwy, wy) < clwy — wyl,
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wy, w, € I', where I(w,, w,) is the shorter arc on I joining w, to w, (Pom-
merenke [1977]). See also Pommerenke [1978] for a similar description of
VMOA.

%24. Let E be a closed set on the Riemann sphere, co € E. Then every
analytic function on D having values in C\ E is in BMOA if and only if there
is r > 0 and 6 > 0 such that

cap(En{lz —zol <r}) >4

for all z, € C\ E. Here cap(S) denotes the logarithmic capacity of S (Hayman
and Pommerenke [1978]; Stegenga [1979]; Baernstein [1980] has yet
another proof).

25. The Bloch class B is the set of analytic functions f(z) on D for which
sup(l — [z1)] f'(2)| < oo.

(a) Iff(z)is analytic on D, then f'€ B if and only if

U= mes)

is a normal family.
(b) BMOA < B.
(c) The function

22
n=1
1s in B but not in BMOA.

%(d) Let f(z) be analytic on D, and let F'(z) = f(z). Then fe B if and
only if F is in the Zygmund class A*:

F(®*™) + F(e'°~") — 2F(e") = O(h)

(see Duren [1970], Zygmund [1968]). Since A* contains singular functions
(Kahane [1969]; Piranian [1966]; Duren, Shapiro, and Shields [1966]), we
have another proof that B # BMOA.

(e) f(z)e Bif and only if f(z) = o log ¢'(z), where ¢ is constant and g(z)
is univalent on D. (See Duren, Shapiro, and Shields [1966]; Pommerenke
[1970]. Compare with 23(b).)

(f) On the other hand, B does coincide with the analytic functions in
BMO of the unit disc defined by

1
2
™ Jpaflz-zol <r)

|zo| < 1 (Coifman, Rochberg, and Weiss [1976]).

| f(2) = f(zo)l dx dy < C,
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%(g) When f(z) is analytic in D, let n(w) be the number of solutions of
f(z) = w, z € D. Suppose
sup fJ n(w) du dv < oo,

woeC
|lw—wg|<1

w=u + iv. Then fe BMOA if and only if fe B, and fe VMOA = H?
~ VMO if and only if f € B,, defined by
|li|m 1 =1zP)If@=0
z|—1
(see Pommerenke [1977]).
Anderson, Clunie, and Pommerenke [1974] give an excellent overview of
the theory of Bloch functions.



VIl

Interpolating Sequences

A sequence {z;} in the disc or upper half plane is an interpolating sequence

if every interpolation problem

fiz)=a;, j=12,...,

with {a;} bounded, has solution f(z) € H®. Interpolating sequences are very
interesting in their own right and they will play crucial roles in the analyses
of H® in the succeeding chapters. For example, they will be used in Chapter
IX to characterize the closed algebras between H* and L* and they will be
surprisingly important in the discussion of the maximal ideal space in
Chapter X.

The notion of generations is introduced in this chapter. Similar to the
stopping times in the proof of the John-Nirenberg theorem, generations
arise naturally in several of the deeper proofs in this subject. They will be
used frequently in the next chapter. Some other important techniques are
also introduced. These include

(1) solving an extremal problem by a variational argument (this is done
in Section 2) and

(i) using certain ideas borrowed from harmonic analysis, such as the
averaging process in the proof of Theorem 2.2 and the use of Khinchin’s
inequality in Section 4.

Two proofs of the interpolation theorem are given. Carleson’s original
proof by duality is in Section 1, because it sheds light on the geometry of
interpolating sequences. Earl’s elementary proof, reminiscent of the Pick-
Nevanlinna theorem, is in Section 5.

1. Carleson’s Interpolation Theorem

Let {z;} be a sequence in the upper half plane. We want to determine when
every interpolation problem

(1.1) fep=a;, j=12...,
284
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with {a;} bounded, has a solution f(z) € H®. The sequence {z;} is called an
interpolating sequence if (1.1) has solution in H* for every {a;} € I*. If {z;}
is an interpolating sequence, then the linear operator T: H® — |* defined
by Tf(j) = f(z;)is a bounded linear mapping of H* onto [*. The open map-
ping theorem then gives a constant M such that (1.1) has a solution f(z) with

Iflle < M supla;| = Mliall -
i

The smallest such constant M is called the constant of interpolation

M= sup inf{|fl,:feH" f(z)=a;j=12,..}

flajllo=1

Let z; and z, be distinct points in the interpolating sequence. Then there
exists f € H® such that

fE)=0, flzo=1 and |fl, <M.

By Schwarz’s lemma this means

Zy — fj — Pz z) = |f(Zj)/_M—_f(2k)/M| _ i’
% — % 11 -fGIfeyM?| M
and so
(12) %705 > a0, jAk
Zy — Zj

with a = 1/M. A sequence is said to be separated if (1.2) holds with constant
a > 0 not depending on j and k. We have just proved that an interpolating
sequence is separated.

The above reasoning can be carried further to yield a necessary condition
for interpolation that will also be a sufficient condition. Fix z, let fe H®,
[ flle < M, interpolate the values

f@)=1, f(z)=0, j#k

Let B® be the Blaschke product with zeros {z;, j # k}. Since f# 0 this
product exists. Then f = B®g, where g € H®, and | g||, < M, so that

1 =|f@)| = |B®@)19(z)| < M|BY(z,)|

and |B¥(z,)| > 1/M. Since z,.is arbitrary, we conclude that

E&;:;ﬁ >06>0

(1.3) inf ]

k j.j*k

Zk—Zj

holds for an interpolating sequence {z;} with constant 6 = 1/M. Carleson’s
theorem asserts that the necessary condition (1.3) conversely implies that
{z,} is an interpolating sequence.
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Before stating the theorem in full, let us interpret (1.3) geometrically. In
the unit disc (1.3) becomes

LI B )

(1.4) inf T]

k j,j#k

Let B(z) be the full Blaschke product
d Z

j=1 IZJI 1 bl ZjZ '

— Ejzk

Bz) = []

If we view z as the origin by takingw = (z — z,)/(1 — Z, z) as the coordinate
function on the disc, then the zeros of B are

Zj — Zy .
=1 =12,...
W] 1 — z.kzja J » & s

and (1.4) holds if and only if
IT Iw;l = 6.
i i*k
Since 1 — |w]| < log 1/|w|, this gives

(1.5 Z(l — |w;]) < 1 + log 1/6,

and (1.4) holds if and only if the Blaschke sum (1.5) has a bound that does
not depend on which point z, is regarded as the origin. This fact, of course,
reflects the conformal invariance of the interpolation problem (1.1). With
the identity

1 — Zj T % 2=(1 _|2k|2)(1 —lzj|2)
1 —1zz; 1 — Z,z;]? ’
from Section 1 of Chapter I, (1.5) gives
Iz §
sup Z k |2 (1 = 1z;1*) < C().

If this supremum were taken over all points in the disc instead of only over
sequence points, we should have

IZoI)

11— o,l2

(1.6) sup z — lz;|*) < C'(9).

zoeD j

By the conformally invariant description of Carleson measures (Chapter VI,
Lemma 3.3), (1.6) holds if and only if the measure

2 (1 —1z;Dé.,
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is a Carleson measure on the disc. Now it is not very hard to see that (1.4)
does imply (1.6), and that conversely, if the sequence is separated, (1.6)
implies (1.4). (The complete arguments are given below during the proof of
the theorem.) This discussion does not prove the theorem, but it should
clarify the connection between Carleson measures and interpolation.
Historically it was with the interpolation theorem that Carleson measures
first arose.
To state the theorem we return to the half plane.

Theorem 1.1.  If {z;} is a sequence in the upper half plane, then the following
conditions are equivalent:

(a) The sequence is an interpolating sequence: Every interpolation problem
f(z) = aj, j=12...,

with {a;} € I has solution fe H®.
(b) There is 6 > 0 such that

(1.3) BT S k=1,2,....
Ji#k | 2k — Zj
(c) The points z; are separated,
pez) = |2 >a>0, j#k
JT K

and there is a constant A such that for every square Q = {xy < x < x¢ + £(Q),
0<y<4Q),
(1.7) 2 ¥ < AQ).
ZjEQ
The constant 6 in (1.3) and the constant of interpolation
M= sup inf{|flleo:f(z)) =a;,j=12,....,fe H®}

llajllo<1
are related by the inequalities

1 c 1
1.8 - < <-11 -
(18) 5_M_5<+log5),
in which c is some absolute constant.

Except for the value of the numerical constant ¢, the upper bound given for
M in (1.8) is sharp. An example illustrating this will be given after the proof.
Of course, (1.7) says that ) y;, is a Carleson measure. Condition (c),
being more geometric, is in some ways more useful than (b). Before turning to
the proof we consider two examples. First, suppose the points z; lie on a
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horizontal line {y; = y > 0}. Then (1.7) holds as soon as the points are
separated. So a horizontal sequence is an interpolating sequence if and only
if it is separated. This fact can also be derived from (1.3) without much
difficulty. For the second example, suppose the points z; lie on the vertical
line x = 0. Then (1.7) holds if and only if

Yy, <Ay, k=1,2,...,
Visyk
This condition is satisfied if the points are separated. If the y; are bounded
above and if the points are indexed so that y;,; < y;, then this condition
holds if and only if the points tend to the boundary exponentially:

Vir/yj < a <1

Thus a vertical sequence is an interpolating sequence if and only if it is
separated. Of course, not every separated sequence satisfies (1.7). A sequence
having only (1.2) need not be a Blaschke sequence; it could have subsequences
converging nontangentially to each point on the line.

Proof of Theorem 1.1. We have already seen that (a) implies (b), along
with the estimate M > 1/6.

There are two remaining steps in the proof. First we show that (b) and (c)
are equivalent. This is really only a matter of comparing infinite products to
infinite sums. Second, we must show that (b) and (c) together imply (a). This
will be done with a dual extremal problem.

To show that (b) and (c) are equivalent we need an elementary lemma.

Lemma 1.2. Let B(z) be the Blaschke product in the upper half plane with
zeros {z;}. Then

4yy.
(1.9) “log|B@)|? > Z%, =X+ iy.
i1z =4z
Conversely, if
inf p(z, z)) = inf| — =4 | = a > 0,
j il ==
then
1 4yy;
— 2 il 0
(1.10) log|B(z)|* < (1 + 210ga)zlz—fj|2'
Proof. The inequality —logt > 1 —t,t > 0, gives
— 7. |? —z.|? 4yy;
—logz z_’ >1- z f’ yy_,z.
z—Z z—7Z; |z — Zj]
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Summing now gives (1.9). The reverse inequality,

—2loga

1
—logt<—F-(1 -1 <|{1+2log-)(1—1),
1—a a

is valid for a*> < t < 1, and in a similar fashion it gives (1.10). [J
Now suppose (c) holds. Then (1.7) and (3.8) of Chapter VI give

4y, Vi 4y, Y

|zk_zj|2 j |Zj_2k|2

<C, k=12 ....

(1.11) Y

J
For convenience we directly derive (1.11) from (1.7), essentially repeating
the proof of (3.8) of Chapter VI. Fix z, = x, + iy, and let S, = {z € #:
lz— X <2%},n=0,1,2....By(1.7), Y5, y; < 2" 'y,. When z; € S,
we have |z; — 5,|* > y7, and when z;€ S,\S,_, n > 1, we have |z; — 7, |?
> 2277232 Consequently,

P cay Vit (T )
k

= 12
j IZj_ Zi | zjeSo Yk n=1 \zjeSn\Sn-1

<84 +324)2"=4"
1

Since inf; .« |(zx — z;)/zx — Z))| = a, we can now use (1.10) on the Blaschke
product B® with zeros {z;:j # k} to obtain

L fj > 0 = &a, A).
Joi#k | 2k = Zj
Hence (¢) implies (b).
Now suppose (b) holds; that is, suppose

inf [T |*—Z|>o.
k jj*k|Zk — Zj

Then trivially
4> j#k
Zy — :_I

and the points are separated. Using (1.9) with the Blaschke product B¥)(z)
formed by deleting one zero z,, we obtain

. 1
—ﬂlyf—z < 2log-—.
j,j¢k|zk— Zj| o
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Consider a square
0 =1{xo<x<xy+20),0<y< Q)
We first treat the special case in which the top half
T(Q) = {zeQ:y> /(Q)/2}

contains a sequence point z,. Then we have |z, — Z;|* < 5(£(Q)), z; € Q,
so that

< S(4Q) 4y 5/(Q) 4y; yi
T 4y, |zk—z|2— 2 |z —z|2

Hence

Z ,Vj < 5/(Q)Z 4yjyk SZ(Q) (1 + 2 log é>,

z,€Q 2 IZk—ZIZ = 2

and (1.7) holds with 4 = ¢(1 + log(1/3)) for squares Q such that T(Q) N
{zi} # &

To obtain (1.7) for all squares Q we use a stopping time argument. Let
0=00={x0 <x < x4+ £(0Q),0 <y < Z(Q)}. Partition g\ T(Q) into two
squares Q,, of side /(Q)/2. Partition each Q,\T(Q,) into two squares Q,
of side /(Q,)/2 and continue. At stage n we have 2" squares Q, of side 27"/(Q)
whose top halves T(Q,) are all congruent to T(Q) in the hyperbolic metric.
These squares Q, have pairwise disjoint interiors and they cover {z € Q:
0 <y <27"(Q)}. Let Q, @2, ... be those squares @, such that

(i) T(Qn) N {z;} # & and

(i) Q, is contained in no larger square satisfying (i)

Then Q n {z;} = Q' U Q? U ---, and the projections of the selected squares
QF onto the axis {y = 0} have pairwise disjoint interiors, so that

210" < 4(Q).

See Figure VIL1. We have already seen that (1.7) holds for each of the
selected squares Q*, with constant 4 = ¢(1 + log 1/5). Summing over the
QF, we obtain

Yy < c(l + log )/(Q)

zjeQ

which proves (1.7) in general. Hence (b) implies ().
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Q=0
7(@) °
TQ) 7(@)
2 7 7(Q,)

o' ot @ o°
Figure VIL1. The shaded squares Q*, Q% ... are maximal Q, for which T(Q,) N {z;} # 0.

In order to get the sharp inequality (1.8) we must make use of the fact that
the constant A in (1.7) has the form

0

Now we must show that (b) and (c) imply (a). Let {a;} € [*, |a;| < 1, and
consider the finite problem

(1.13) fe)=a, 1<j<n

Since the points are distinct it is trivial that the finite problem (1.13) has a
solution f(z) € H®. For example, take f(z) = p(z)/(z + i)", where p(z) is a
polynomial of degree n. Let

M,({a;}) = inf{||fl|o:f€ H,f(z)) = a;, 1 <j < n},

1
(1.12) A< c<1 + log —).

and let

M, = ” S|UP M,({a;}).
ajllo<1
By normal families the theorem will be proved and inequality (1.8) will be
established if we show that

1
lim M, < ¢ (1 + log 5).

Let

"nz—1z

B,(z) =[] —Z

j=1Z 75

For fixed {a;} let f, € H® be a solution of (1.13). Then
Mn({aj}) = mf{”fo + Bng“co :geHw} = lnf{“fOBn + gHoo :gEHGo}-
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H* = {QG L>*: ng dx = Oforall G eHl},
duality now gives

:GeHY G|, < 1}.

M,({a;}) = Sup{‘ ffanG dx
Now by Cauchy’s theorem we have, for G € H!,
oG Jo(z))G(zp)
B,G dx = 2mi .
f fO J n( ) }Zl (Z )

(In the contour integral the large semicircles tending to infinity are dis-
regarded because we can take G(z) in the H! norm dense set of functions
G,(z) with |G,(2)| = O(|z|”?)). Since fo(z;) = a;,j = 1, 2,..., n, this gives

i a]G(Zj) .
j=1 B.(z j)
For fixed G(2), the {a;} can be chosen so that |a;| = 1 and so that

M, = sup sup{Zn GeH! |G), < 1}.

lla;llwc<1

We therefore have

1G(z)]
L 1 By(zp]

(1.14) M, = sup{2 Z GeH' |G|, < 1}

Now

B;,(Zj) _ 2; ﬁ (Z — Zk)

“k

PF?
-

-1
and so (b) implies that

|B,(z;)| = 5/2)’j-
Hence

4n "
M, < gsup{z vilG(z)|:Ge HY, |G|, < 1}
i=1

By condition (c), the measure ) y;0,, is a Carleson measure, and so by
Theorem 11.3.9

SUP{Z J’le(Zj)|3GEH1, IGlly < 1} < CA4,
j=1
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where A is the constant from (1.7). Consequently
lim M, < 4nCA/o

and (a) is proved.
We have now shown that (a)-(c) are equivalent. Moreover, using the
estimate (1.12) of the constant A in (1.7), we get

" 0

n

1
M =lim M <E(1+log~)

and (1.8) is proved. [

Here is an example to show that (1.8) is sharp. Let = ¢*™/" be a primitive
Nth root of unity. In the disc take the finite sequence

Zj:rwj, j=1,2,...,N.

The two parameters N and r < 1 will be fixed later. The Blaschke product
with zeros z; is

N N
B(z) = P
From (1.4) we have
. 2 R N
6 = inf(1 — [z;|*)|B'(z;)| = Nr 1= 2%

Consider the interpolation problem
f(Zj) = aj = w_j.

By Theorem 1.2.4 or by IV.1.8 this finite problem has a unique interpolating
function f(z) of minimal norm and

f(2) = mBy(2),
where B, is a Blaschke product with at most N — 1 zeros. Since
Zjvy = 0z, A =0 laj,
the uniqueness implies that
f(2) = of (w2).

Hence the zero set of B,(z) is invariant under multiplication by w. As there
are at most N — 1 zeros, all the zeros are at z = 0, and

f(z) = mz?P
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with p < N — 1. A simple calculation then gives
f(Z) — rl—NZN— 1‘
Let r - 1 and N — oo in such a way that m = r! =¥ is fixed. Then

1_ 2
d=Nm——— and lim N(1 — r?) = 2logm,
m —r N—= oo

so that for large N
0 > (log m)/m.

Consequently there exist finite interpolating sequences such that

1 1
M ~log—.
Zmz(slog5

2. The Linear Operator of Interpolation

Let {z;} be an interpolating sequence in the upper half plane. In this section
we prove that there exist interpolating functions that depend linearly on the
interpolated values {a;}. This useful result is obtained through a nonlinear
extremal problem.

Theorem 2.1. Let {z;} be an interpolating sequence in the upper half plane,
and let

M= sup lnf{”f”oofe Hw?f(zj) = aj’j = 13 25}

llajll <1

be the constant of interpolation. Then there are functions f(z) € H® such that

(2.1) fAz)=1, flz)=0, k#]j
and
22 Z | fi{z)| < M.

Before proving this theorem let us give two applications. Suppose {a;} € [*-
By (2.2) the function

(2.3) f@) =Y a;f{2)

is in H®, and by (2.1) this function interpolates
f(z;) = aj, j=12,....
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Thus (2.3) produces interpolating functions that depend linearly on {a;}.
With (2.3) we have defined a linear operator S : I — H* by S({a;}) = Zajfj,
and S is a linear operator of interpolation, which simply means that S is
linear and that

2.4) S{a;j})(z) = ay, k=1,23,....

By (2.2) the operator S is bounded and ||S|| < M. Since the constant M in
(2.2) is the constant of interpolation, we actually have ||S|| = M. Now any
operator, linear or not, that satisfies (2.4) must have
P ISGallo = M
a,llo<1

because M is the constant of interpolation. Thus (2.3) solves all interpolation
problems (1.1) simultaneously with a linear operator whose norm is as small
as possible. The inequalities

lajlle < IS(HaiDle < Mllajll

show that the range S(I®) is a closed subspace of H* and that, as a Banach
space, S(I*) is isomorphic to [®. The linear operator P: H* — S(I°) defined
by

Pg =Y 9z)f;

is a bounded operator from H® onto S(I®) such that P? = P. By definition,
this means that P is a projection and that P(H*) = S(I*) is a complemented
subspace of H®. (The complement is the kernel of P.) Hence Theorem 2.1
shows that H* contains a closed complemented subspace isomorphic to .

The second application concerns interpolation by bounded analytic
functions having values in a Banach space. A function f(z) from an open
setin the plane to a Banach space Y isanalytic if f(z) can be locally represented
as a sum of a power series that has coefficients in Y and that is absolutely
convergent. Equivalently, for each y* € Y*, the complex valued function
z = {y*,f(z)) is analytic. To quote Hoffman [1962a], “ Any two reasonable-
sounding definitions of an analytic function with values in a Banach space
are equivalent.”

Let {z;} be an interpolating sequence in the upper half plane. Let Y be a
Banach space and let {a ;1 be a bounded sequence in Y,

suplla;lly < oc.
j

If { fj} is the sequence of scalar-valued functions given by Theorem 2.1, then

@) =} f(2)a
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is an analytic function on the upper half plane with values in Y. By (2.1), f(z)
solves the interpolation problem

f(zj):aj’ j=1’23°-'9
and by (2.2), f(z) is bounded:

(2.5) 1A = supll f@)lly < sup 3. | fi(Dlla;ly < M supla;lly.

We conclude that {z;} is also an interpolating sequence for the Y-valued
bounded analytic functions. Conversely, it is trivial that an interpolating
sequence for Y-valued H*® functions is an interpolating sequence for scalar
functions. Just interpolate scalar multiples of a fixed vector in Y. Inequality
(2.5) shows that the constant of interpolation is the same in the Banach
space case as it is in the scalar case.

Proof of Theorem 2.1. For A, A,,..., A, > 0, define the functional
o(G) = Z)«le(Zj)l’ GeH',
j=1

and consider the extremal problem
(2.6) m, = m,({A;}) = sup{(G): Ge H', |G|, < 1}.

This is a nonlinear problem to which the method of Chapter IV does not
apply. But we can use an older method, usually referred to as a variational
argument. There clearly exists an extremal function G, for (2.6), and G,
must be an outer function,

Go = eVotile,
Let u(x) be a real compactly supported continuous function. Then for t € R
G, = Goe"‘”m
is another H! function and
mllG.ll; > @(Gy),
with equality at ¢t = 0. Write this inequality as m,|G,|; — ¢(G,) = 0 and

differentiate with respect to ¢t at t = 0. We obtain

me [1Go)utx) dx = 3 41Gofz) lucz)

leGO(Zj)I Y
- JZ - &, = T u(x) dx.
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Because u(x) is arbitrary, this means

Lo 416Gy,
m,|Go(x)| = — ¥ LS

0 7r;(xj—x)2+ylg
and we have almost everywhere

¢ IGO(Zj)I ljy,'

2.7 m, = — .
@7 7 5 1G] (x = x)* + 972
Now let
oz —z;
B,(z) = —
) jl=_[1 273

297

and put A; = 2n|B,(z;)|"' in (2.6). Then (2.6) is the same as the extremal

problem (1.14) and

m, =M, = sup inf{||fl.:fe H® f(z) = a;, 1 <j < n}.

lajl<1

From (2.7) we now have

o« [Go(zp)] 1 2y;
28 Mn = . 4 ;
28) 1G] 1Bl x — o7

almost everywhere. Now set

GO(Zj) B,(2) 2in

) = G Buz) G~ ) — '

Then by (2.8),
2P =M,

j=12,...,n

almost everywhere. The functions f{" are in N7, because G, is outer, and so

RO flf&"’(r)lpz(r) dt < M,

Clearly f%(z,) = 0, k # j, 1 < k < n. Calculating B,(z;) explicitly shows
that f%)(z;) = 1. Taking a limit as n — oo, we obtain functions fiin H®,

J=1,2, ... that satisfy (2.1) and (2.2). O

Generally, it is not always the case that a linear operator of extension
exists. However, there is an elegant result from uniform algebra theory that
implies Theorem 2.1 with a poorer bound on }_ | fi(z)|. The idea comes from

harmonic analysis.
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Theorem 2.2. Let A be a uniform algebra on a compact space X. Let {p,,
D2, .., Dnt be a finite set of points in X and let

M = sup inf{llgll:g€e A, g(p)=a;,j=1,2,...,n}

llajllo=<1
For any € > O there are functions fi, f5, ..., f, in A such that

and such that

sup ilfj(x)l < M? +e

xeX j=1

By normal families, Theorem 2.2 implies Theorem 2.1 except that the sharp
inequality (2.2) is replaced by the weaker

00

2 1@ < M2,

j=1
For a general uniform algebra it is not possible to extend Theorem 2.2 to
infinite interpolating sequences.

Proof. Let w = ¢*™" be a primitive nth root of unity. Let g(x)€ 4,
lg;l <M + 6, where § > 0, interpolate

gj(Pk)=wjk, k=1,2,...,n
Set

159 = 5 £ 074a)

Then fje A and f{p;) = 1. Since Yj_, w® =0 for 1 #j, fip)=0
if | # j. Moreover

S IR AUN n
=3z & (Loraiof i)
1
=2 L 2 a99(x) z w0
=n—12 inlgk(x)l2 <SM+8*<M*+¢

ifdissmall. [
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3. Generations

Let {z;} be a sequence in the upper half plane. We assume that {z;} is
separated:

(3.1 le—ZkIZija k # j,

with b > 0. This condition (3.1) is clearly equivalent to (1.2), but (3.1) is
slightly more convenient for our present purpose. Then the condition

(3.2) L Vi< ANQ)

holds for every square Q = {xq < x < xo + £(Q), 0 < y < £(Q)}, with
constant 4 independent of Q, if and only if {z;} is an interpolating sequence.
Conditions like (3.2) will arise quite often in the rest of this book, and so we
pause here to analyze (3.2) carefully. Understanding the geometry of (3.2)
enables one to construct interpolating sequences very easily.

Let Q be any square with base on {y =0} and let T(Q) = {z€ Q:4(Q)/2 <
y < £(Q)} be the top half of Q. Partition Q\ T(Q) into two squares Q, of side
£(Q)/2. Continue, just as in the proof of Theorem 1.1. At stage n there are 2"
squares Q, of side 27" (see Fig. VIL.1).

In the hyperbolic geometry each top half T(Q,) is congruent to T(Q). When
the sequence is separated, each top half T(Q) or T(Q,) can contain at most
C(b) points z;, where b is the constant in (3.1). Indeed, if T(Q,,) is partitioned
into C(b) squares of side 2~ ?*"/(Q) with 277 < b/2\/§, then by (3.1) each
of these little squares can contain at most one point z;, because y; > £(Q,)/2.
(See Figure VII.2.)

N

Figure VIL.2. Each little square in T(Q,) contains at most one point z;.

The first generation G,(Q) consists of those Q, = Q such that

() 0, # 0,
(i) T(Q.) N {z;} # O,

(iii) Q, is contained in no larger square satisfying (i) and (ii).
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The squares Q', 02, ... in G,(Q) have pairwise disjoint interiors that have
pairwise disjoint projections onto {y = 0}. Hence

2. {0 < /(Q)
G1(Q)

Moreover

{z;:2;€ 0} = T(Q) v L o~

G1(Q)

The squares in G'(Q) are shaded in Figure VIL1. Now for each Q* € G,(Q)
we define the first generation G,(Q¥) in the same way. G,(Q*) consists of those
0, properly contained in Q* such that T(Q,) N {z;} # & and such that Q,
is maximal. The second generation is

G(Q) = | G,(@".

G1(Q)

The later generations G3(Q), G4(Q), ... are defined recursively:
Gp+1 = U Gl(Qk)'

Gp(Q)

If z; € Q, then either z;€ T(Q), or z;€ T(Q") for some square Q* .in some
generation G,(Q). In the second case y; is comparable to £(Q%). Write

t,= Y /(QY.

Gp(Q)
From the definitions it is clear that

tpr1 < 1, < Q)

Theorem 3.1. Assume {z;} is a sequence of points in the upper half plane
satisfying the separation condition (3.1). Then {z;} is an interpolating sequence
if and only if, for any ¢ > 0, there is q such that for any square Q

(3.3) b= Y /(0" < &/(Q).

Gq4(Q)

The smallest constant q such that (3.3) holds is related to the constant A in
(3.2) by

g<1+424/c and A <C(b,¢q),
where b is the constant in (3.1).
Proof. For z;€ T(Q,), we have
y; < 4(Q,) < 2y;.
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Each T(Q,) or T(Q) contains at most C(b) points z; and if Qe G,(Q), then
T(Q*) contains at least one point z;. Hence

Zt <2Zy1<2C(b)(/(Q)+ Zt)

z;€Q

If interpolation holds, then we have (3.2), and so

< Zq t, < 2A44(Q).
r=1

This gives (3.3) if ¢ > 2A4/e. Conversely, if (3.3) holds for all squares, then the
recursive definition of the generations gives

tprq < €Ly, r=12...,
so that
Ng+gq
2 tp< e Zt < ¢s"/(Q).
Ng+1
Therefore

2V < C(b)(/(Q) + Z an(Q))

zjeQ

< C(b)(l + 1—) Q).

and we have (3.2). [

4. Harmonic Interpolation

The proof we shall give of the next theorem requires a randomization
technique that has been very useful in many other areas of analysis. Thus we
pause briefly to discuss Khinchin’s inequality before turning to the theorem
on harmonic interpolating sequences.

Given finitely many complex numbers «,, «,, ..., a,, consider the 2"
possible sums

1=

iaj

j=1

obtained as the plus-minus signs vary in the 2" possible ways. Let p > 0.
Khinchin’s inequality is an estimate on the expectation

p
aj .
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The expectation is the average value of | Y +a;|? over the 2" choices of sign.
To be precise, let Q be the set of 2" points

w = (wl, wz, ey (1)"),

where w; = + 1. Define the probability u on Q so that each point w has
probability 27". Also define

j=1

Then X(w) is a more rigorous expression for ) +a;, and by definition

—_— J’
|

The following lemma is called Khinchin’s inequality.

’ 1 p p
)=§ > 1X@P = [ 1X@P da

weQ

> ta;
ji=1

Lemma 4.1. If0 < p < o0, then

w

n
Yt
j=1

pP\\1/p N2
< G lay1HY?,

where C, is a constant that does not depend on n.

The important thing in (4.1) is that C, does not increase as n increases. We
prove Lemma 4.1 only in the easy case p < 2 because we need only use that
case here. (See Zygmund [1968] for the complete proof and for other
applications.)

Proof for p < 2. The case p < 2 is easier because it is only Holder’s in-
equality in disguise. Let X (w) = w;,j = 1,2,...,n. Then | Xj(w)| = 1, and
for j # k, £(X;X;) = 0 because X; X, takes each value + 1 with probability
1. This means that {X,, X,, ..., X,} are orthonormal in L?(u). Since X =
0 Xy + 0, X, + -+ + a,X, and since p < 2, Holder’s inequality gives

p\1/p 1/p
(«s’ ) =(fIX(w)|”du)
12 n 12
s(le(w)Pdu) :<Z|aj|2) .
i=1

This proves (4.1) with C, = 1 when p < 2. [J

> o
j=1

Now let {z;} be a sequence in the upper half plane. We say that {z;} is a
harmonic interpolating sequence if every interpolation problem

(4.2) u(z;) = aj, i=12..., {ajel,
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can be solved with a bounded harmonic function u(z). Obviously every H®
interpolating sequence is a harmonic interpolating sequence. Our theorem
is the converse.

Theorem 4.2. If {z;} is a harmonic interpolating sequence, then {z;} is an
interpolating sequence for H®.

Proof. Since every bounded harmonic function is the Poisson integral of an
L* function, (4.2) holds if and only if there is an L* solution to every moment
problem

4.3) fu(t)Pj(t) dt = a;, i=12..., {a}el

where

1 1
PO = o T =y
is the Poisson kernel for z;. We show that the geometric conditions (1.2) and
(1.7) hold if every moment problem (4.3) can be solved with u € L*. By
Theorem 1.1 this will mean that {z;} is an H® interpolating sequence.
To get started we need an inequality. Consider the linear operator
T :L* — [® defined by

Tu(j) = u(z;) = fu(t)P A1) dt.

Since [|Pjll; = 1, this operator is bounded. We are assuming T maps L%
onto [®. By the open mapping theorem, there is a constant M such that every
problem (4.3) has solution u such that

(4.4) lullo < M suplay].
J

The inequality we need is
4.5) Z [4;] < M”Z AiP;lly,

which is the dual formulation of (4.4). The equivalence of (4.4) and (4.5)
follows from the fact that a linear operator has closed range if and only if
its adjoint has closed range (Dunford and Schwartz [1958]). (T is the adjoint
of an operator from [* to L'.) But (4.5) is also easily derived directly from (4.4).
Given A, 45, ..., 4, pick u € L®, |ul, < M, solving

Ju(t)Pj(t) dt = Aj/14], j=12,....n
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Then

< Jullw

2140 =
j=1

and (4.5) is proved.
If j # k, then (4.5) gives |P; — P,|l; > 2/M. By Harnack’s inequality, for
example, this means that

lzj_zkl/yjsb(M)>0’ ]#ks

and (1.2) holds for the sequence {z;}.

The proof of (1.7) uses Khinchin’s inequality. Let Q be a square {x € I,
0 < y < |I|}. Reindexing, let zy, z,, ..., z, be finitely many points in the
sequence and in the square Q. Set 4; = +yj,j = 1,2,...,n Then by (4.5)

pRIE
Taking the expectation for each t € R, we get from (4.1)
n n 1/2
(4.6) YVi<M f (Z y,?P,?(t)) dt.
j=1 j=1

Let I be that interval concentric with I but having length |T| = 3|I]. The
right side of (4.6) is

1/2
f ( ZPZ) dt+ M (Z szZ) dt.
IR\I

For the first integral the Cauchy-Schwarz inequality gives the bound

- 1/2 n
M|1|”2( 2 ViP} dt) < cM|I|”2(ZIy,~)

uy A;P;dt
=1

2 4P
ji=1

1/2

because
1
fPf(t) dt = — sz(z) dt,
Vi
where P(t) = 1/r(1 + t2). For the outside integral we have the inequality
PXt) < B Y

where x,, is the center of I, because z; € Q. Then for t ¢ I,

QyiPIO)? < (X yHY? (—t—_—lm

1
3/2 y1/2 .
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Hence the second integral is bounded by

n 1/2
cM|I|3/2(ZyJ-)”2f L<CM|I|”2(Zyj) .
=1

ri(t — x)? =

From (4.6) we now have

n 1/2
(Z y,) < 2cM|I|'?,
j=1

and this gives (1.7). [

In the proof of Theorem 4.2, we were able to conclude that there was
interpolation by bounded analytic functions only because the sequence
satisfied the geometric conditions (1.2) and (1.7). Harmonic functions were
only used to get the inequality (4.5). There is a generalization of Theorem
4.2, having essentially the same proof, which makes no mention of harmonic-
ity. Suppose 2(t) € L'(R). We treat 2(t) as a kernel by writing

X —1

1
?z(t)=;,@< ), z=x+1iy, y>0.

Since |2,|l; = 2|, the operator

Tu(z) = fu(t)?/’z(t) dt

is a bounded linear mapping from L* into the space of bounded (and contin-
uous, in fact) functions on the upper half plane. In the special case 2(t) =
1/n(1 + t?), 2, is of course the Poisson kernel and the operator T solves the
Dirichlet problem.

Theorem 4.3. Let (1) € L'. Let {z;} be a sequence in the upper half plane. If
every interpolation problem

@7 Tu(z;) = -[u(t)g’zj(t) dt=a;, j=12..,

Jor{a;} € I has solution u(t) € L%, then {z;} is an interpolating sequence for H®.

Proof. We shall use (4.7) to show that the distribution of the points {z;}
satisfies (1.2) and (1.7). Theorem 1.1 then permits us to conclude that {z;}
is an H® interpolating sequence.

By the open mapping theorem, every moment problem (4.7) has solution
u(t) with |lul, < M sup;|a;|, where the constant M does not depend on {a;}.

Then a duality argument, as in the proof of Theorem 4.2, gives us

Z ’11"@21
i=1

J

(4.8) 14l <M
=1
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forany A, 4,,..., 4,. To simplify the estimates that need be made at the end
of the proof, choose a compactly supported continuous function K(t) such
that

2 — K|, < 1/2M.

Writing
1 i—t
K. (1) = — K("’ )
Vi Yi
we have |2, — K, |; < 1/2M by a change of scale. Hence (4.8) gives
4.9) YAl <2M| Y 4K,
j=1 j=1 1

For j#k, (49) yields |K,, — K.l =12M. Let xo = (x; — x)/y;,
Yo = yi/y;. Then a change of variables gives

Ks) 1 K(s + xo)
y

0 Yo

ds

1K, — K, s = f

< |IK(s) — K(s + xo)ll; + H K(s + x,) _iK(S + xo)
Yo Yo

1

1

= IK(s) — K(s + xo)l; + H K@) -~ K(i)
Yo Yo

Since K is continuous with compact support, there is § > 0 such that
[K(s) — K(s + xo)ll; < 1/4M if |xy| < d and such that

IK(s) — (1/yo)K(s/yo)ll, < 1/4M
if |1 — yo| < 6. We conclude that
max('xj — xkl’ |yj - ykl) > 5,
yj Vj
so that |z; — z,| > Jy; and the points {z;} are separated.
The proof that the points {z ;1 satisfy (1.7) is now simpler than the argument

in Theorem 4.2 because the kernel K(t) has compact support. Khinchin’s
inequality and (4.9) give

n n 1/2
(4.10) >y < 2mf ( » ny,{(z)) i
j=1 j=1
whenever z,, z,, ..., z, are points from the sequence lying in a square

Q=1{xel,0<y<]|I|}. Let A > 0 be such that K(t) = 0, |¢] > A. Since
z; € Q, this means that K, (t) = 0if t ¢ J, where

— {t:dist(t, I) < A]1|}.
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The Cauchy-Schwarz inequality now yields

n 1/2 1/2
f (Z nyfj(t)) dt < |J|”2(fz viKZ (1) dt)

< |J|1/2(Z ,Vj)I/ZHan
because [ K2 (1) dt = (1/y;) [ K*(¢) dt. From (4.10) we now obtain

n 1/2
(Z yj) < (24 + DV2M|K||, [ 1]'2,
j=1

and this gives (1.7). O

In the proof just completed, condition (4.9) means that every interpolation
(4.7), with 2, replaced by K, has solution in L®. This trick of replacing one
kernel, even the Poisson kernel, by another simpler kernel is often helpful.

The converse of Theorem 4.3 is not true generally. If 2(t) = y_; 1)),
then interpolation is not possible on the finite set {i, (1 + i)/2, (—1 + i)/2}
because the kernels for these points are linearly dependent.

The proof above of Theorem 4.2 is due to Varopoulos [1972], who has also
found another elegant proof of the same theorem. His second proof is based
on the roots of unity argument used in Theorem 2.2. We give the proof for the
more general Theorem 4.3 but with the extra hypothesis 2 € L%. We know
that every bounded interpolation problem

u(Zj)=aj, j=1,2,...,
has solution with

lull o < M suplayl,
j

where M is a constant. From this it is trivial to verify (1.2) and our real task is
to establish (1.7). Fixasquare Q = {xe ,0 < y < |I|}and let z,, z,, ..., z,
be finitely many sequence points in the square Q. Let u; e L®, |u;ll < M,
interpolate

ufz;) = 0k, k=12 ...,n,

where w = ¢2™". The functions
1 & .
Ufz) ==Y o lu(z)
ny=1
satisfy U(z;) = 1,j = 1,2,..., n. The proof of Theorem 2.2 shows that

(4.11) YU < M* +¢
j=1
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almost everywhere on R. Let J be the interval
J = {t:dist(t, I) < cM|I|},

where c is chosen so that

P(t)dt < 1/2M
R\J
for all z € Q. Then we have
< (1120,
while by (4.11),
f U2, (1) dt < M/2M = 3.
R\J

Consequently, we have

1/2
1< f U012, (1) de < (flU,(r)P dr) 12,1

e (flU(r)P dz)m,

yi < (4c)? flUj(t)lz dt.

and

Summing, we obtain by (4.11),

Y y; < (4cyM2|J| < (4 Me|I),
j=1

Chap. VI1

and (1.7) is proved. The same reasoning also yields a proof of Theorem 4.3.
A refinement of Theorem 4.2 will be proved by a different method in

Chapter X.

5. Earl’s Elementary Proof

There is another proof of the main theorem (Theorem 1.1) that does not
use duality. This constructive proof, due to J. P. Earl, shows that when {z i}
is an interpolating sequence there are interpolating functions of the form
CB(z), where B(z) is a Blaschke product and C is a constant. The Blaschke
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product B(z) has simple zeros {{;} which are hyperbolically very close to the
{z;}. It follows that {{;} is also an interpolating sequence.

Theorem S5.1.  Let {z;} be a sequence in the upper half plane such that

Zk_Zj
Zk—fj

(5.1)

>0>0, k=1,2,....

i j*k
Then there is a constant K such that whenever {a;} € [, there exists f(z) € H®
such that

(52) f(zj)zajb .]: 1523“'3
and such that
(5.3) f@)= K(Sl%plajl)B(Z),
J

where B(z) is a Blaschke product. The zeros {{;} of B(z) satisfy

4=z é

p(;,z) = {—z|°3

and

G—Ci| 9
54 2>,
CH ot G673

so that {{;} is also an interpolating sequence.

The constant K obtained in the proof of Theorem 5.1 will not be the
minimal constant of interpolation. We get K = O(5~ %), while the constant
of interpolation has the bound M = 0(6~ ! log(6™1)).

Lemma 5.2. IfO0<a < f, <1, then

< Bp—a _ (IIB,) — «
5. .
) =g, > 17—,

Proof. 1f B(z) is the Blaschke product with zeros §,, then the left side of (5.5)
is B(x). By Schwarz’s lemma

P(B(2), B(0)) < «,

and the euclidean description of the disc {p(w, B(0)) < a} from Chapter I,
Section 1, then gives

|B(O)| — o

B(x) > I—TB(O)I’

which is the right side of (5.5). [



310 INTERPOLATING SEQUENCES Chap. VII
Lemma 5.3. Let

0<i< <<l

24
1+ A%
and let {z;} be a sequence in the upper half plane such that (5.1) holds. If {{;}
satisfies

pz) <A j=12..,
then
G-l -2+ A
ek Ge= Gl T 1 =220/(1 + A%
In particular, if p({;, z) < 8/3,j =1,2,..., then

G- 9
l__[ k

>_
INED (:k C

(5.6)

3
Proof. Forj # k, Lemma 1.4 of Chapter I gives

P(C,, zi) — p(2k, i) P(Cj, z) — A
P ) = T e ez o 1 = ap(Gn z0)

and

p(z s ZK) — A
1 — p(z;, z)’
Writing « = 24/(1 + 4%), we now have

oL 5)>(M_A)/(l _ P(Zj’zk)—l)z p(z, zi) —
Js 5k) = 1 —

p(Cj’ Zk) =

Ap(z;, z) 1 — Ap(z), z,) 1 — ap(z;, z)
when j # k. Lemma 5.2 then yields
G-4
P &) =
le=g|= HLetb 1 I—a6

which is (5.6). When A = §/3 a calculation shows (6 — a)/(1 — ad) > /3,
so that the final assertion of the lemma is true. O

Fix A = §/3, and let A; be the closed disc defined by
= {CjZP(st Zj) < 6/3}.
For{;eA;,j=1,2,...,n, write

2=\
5.7 By tsynt(?) = ,Bl (j - Zj) i
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Then By, ... ., is a finite Blaschke product normalized sothat B, . ;,(0) = 1
and so that

Bg,....o® = (Bg,,...0.o@) "
Consequently (Cls CZ) ceey Cn) = (Cls CZa sy C;l) lf
Beito i) = Bepgy (z), J=12...,n,

because the difference of these two Blaschke products is a rational function
of degree at most 2n which vanishes at the 2n + 1 points {0, z;, z,, ..
1y 22y - e s Zne

The main step of the proof is the following lemma, in which it is shown that
if |a;| is small, every finite interpolation problem (5.2) can be solved with a
Blaschke product of the form (5.7).

o5 Zp,

Lemma 5.4. Suppose that forj=1,2,...,n,

(5.8) lajl < inf I_[

3 {keAr k=1
k#j

Z—Ck

Then there are {j€ A;,j = 1,2, ..., n such that
B(;l,.“,gn)(zj') = aj, ] = 1, 2, P (]

Proof. We use induction on n. For n = 1 we have the mapping

z; — 0\ G
w = w(z,) = Bg,(z1) = (zl——él) i
from A, into |w| < 6/3. This mapping is one-to-one and 6A; = {{, : p({;,z,)
= 6/3} is mapped into the circle |[w| = §/3. Even though w is not analytic in
{1, the argument principle can be used to show w(A,) covers the disc |w| < /3.
Since w(z,) = 0, the curve w(0A,) has nonzero winding number relative to
w = 0.If |a,| < §/3, then the same curve also has nonzero winding number
about a;. If a; ¢ w(A,), then each curve w({p({,, z;) = r}),0 < r < J/3 has
the same nonzero index relative to a,. This is impossible for r small. Hence
the lemma is true for n = 1.
Suppose the lemma is true for n — 1. For each {, € A,, we can, by the in-
duction hypothesis, find

Cl = Cl(Cn)’ CZ = CZ(Cn)’ st Cn—l = Cn—l(Cn)’
with {; € A; such that

Zj — Zn Cn
B, tntn-Z) = aj(Zj——C:) &
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because these values satisfy (5.8). The points {,, ..., {,- are unique and they
depend continuously on {,. Now consider the mapping
z— G\ {
W=WCn= - _" _"Brg... n-1 Zn)s
( ) (Zn—Cn) Cn Gt )( )
which is continuous in {,. The right side is the value at z, of a Blaschke
product of the form (5.7) which interpolates a; of z;, j < n — 1, no matter
which (, € A, is chosen. We want to find {, € A, for which w(z,) = a,. By
(5.8) we have |q,| < inf{|w({,)|: {, € 0A,}. Since w(z,) = 0, the curve w(dA,)
has nonzero index relative to w = 0, and hence it also has nonzero index
relative to w = a,. As in the case n = 1, this means there is {, € A, for which
w({,) = a,. The lemma is proved. [
Proof of Theorem 5.1. 1t is enough to show that, if
06—9/3 262
la;l <3 23 = 7y’
31—-06%3 33-949

then there are {;€ A;, j = 1, 2, ..., such that if B is the Blaschke product
with zeros (;, then

¢®B(z) = a,, k=123,...,

for some constant . By (5.7) and (5.8), and by Lemma 5.4, there are {{",
C(Z"), ey CS,") such that CS-") € Aj and

B(g(in),g(zn),,_.,;(:))(Zk) = 4y, k= 1, 2, I (X
By a change of scale we can assume i = \/ —1¢ U A;. Write
0,
B, ...ty (2) = €7B,(2),
where B,(i) > 0. Take a subsequence n, so that
i0n i0 (nk)
ek > e, (W - (€A,

forallj = 1,2,.... Let B(z) be the Blaschke product with zeros { ;, normalized
so that every subproduct is positive at z = i. We claim that

(59) eioB(Zj) = aj, ] = 1, 2,....
The proof of Lemma 5.3 shows that

Z_C.l

lim inf J] =1

N-w {jeA; jz2N |2 — Cj

uniformly on compact sets. Since the products are normalized to be positive
at z = i, this means that

B,(2) > B(z)  (k— ),
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and so (5.9) holds. This gives (5.3) with K = 3(3 — §2)/26%. By Lemma 5.3,
the zeros {{;} satisfy (5.4). O

Notes

The proof in Section 1 follows Carleson’s original paper [1958] except
that the Carleson measure is treated differently. Héormander’s paper [1967b]
clarifies the geometry of the problem. Shapiro and Shields [1961] and later
Amar [1977a] have approached interpolating sequences using Hilbert
space. The argument in Section 1 yields results when {z;} is not an inter-
polating sequence (see Exercise 9 and Garnett [1977]). Interpolating se-
quences can also be characterized in terms of H? (see Duren [1970] and
Exercise 11). The example showing M > (1/0) log(1/5) is due to A. M.
Gleason. Other recent expositions of interpolation can be found in Havin
and Vinogradov [1974] and Sarason [1979].

Theorem 2.1 is due to Pehr Beurling (see Carleson [1962b]). A general
discussion of linear operators of interpolation is given by Davie [1972]. For
Theorem 2.2, see Varopoulos [1971a] and Bernard [1971]. The source of
the idea is in harmonic analysis (see Drury [1970] and Varopoulos [1970]).

Another proof of Theorem 4.2 is in Garnett [1971b]. See Garnett [1978]
and Exercise 12 for extensions of Theorem 4.2 to L?, p > 1, and to BMO.

Theorem 5.1 is due to Earl [1970], who has also found an elementary ap-
proach to Theorem 2.1 (Earl [1976]). P. Jones has sharpened Earl’s method
to obtain interpolating functions whose norms have the minimal order of
magnitude (see Exercise 10).

There is an interesting open problem on harmonic interpolation in higher
dimensions. Consider the upper half plane R%*! = {(x, y):x e R", y > 0}.
Each bounded harmonic function on R%* ! is the Poisson integral of a function
in L=(R"). If a sequence {p;} = {(x}, y;)} in R%" ! is an interpolating sequence
for the bounded harmonic functions, then the analog of condition (c),
Theorem 1.1, holds for {p;},

@) Ip; — pel/y;=a>0, j#k,
(i) Y Y < CLQY
pjeQ

for every cube

Q0 ={(x,y:lx; = x2 <(Q)2,i=1,2,...,n0<y< Q)

This follows from the proof of Theorem 4.2. The unsolved problem is the
converse. Do (i) and (ii) characterize bounded harmonic interpolating
sequences in R"*1? (See Carleson and Garnett [1975].)
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Exercises and Further Results

1. Let B(z) be the Blaschke product with zeros {z;} in #. Then {z,} is an
interpolating sequence if and only if

inf y;|B'(z;)| > 0.
j

2. If S and T are disjoint interpolating sequences, then SU T is an
interpolating sequence if and only if

p(S, T) = inf{p(z,w):zeS,we T} > 0.

3. Let {z;} be an interpolating sequence in . Let {a}, n =0, I,
2, ..., N, be finitely many sequences such that y7|a{”| < 1. Then there is
f€ H® such that

fPCz)=4" j=12,..., n=0,1,2...,N,
where ™ denotes the nth derivative.

4. Let B(z) be a Blaschke product with distinct zeros {z;} on an inter-
polating sequence. If m € My, « is such that B(m) = 0, then m is in the closure
of the zeros {z;} in the topology of M.

5 (Naftalevitch). If |z;| < 1 and if ) (1 — |z;|) < oo, then there is an
interpolating sequence {w;} with |w;| = |z;].

6. If {z;} is a sequence in the upper half plane and if Yy ;02 1s a Carleson
measure, then {z;} is the union of finitely many interpolating sequences.

7. If{z;} isaninterpolating sequence and if {w;} is a separated sequence—
that is, if {w;} satisfies (1.2)—and if

p(zj,w;)) <A <1,

then {w;} is an interpolating sequence.

8. Let X beaBanachspaceand let {z;} be a sequence of linear functionals
on X, |z;| = 1. Suppose that for every {a;} € [* there is x € X such that

lz(x) — a;] < Flajll
and |x|| < Kl|a;|,. Prove that {z;} is an interpolating sequence: That is,
prove that whenever {a;} € I there is x € X such that
Zl(x)=al, j=1,2,.'..

Now suppose that interpolation is possible whenever {a;} is an idem-
potent sequence: For each j either a; = 0 or a; = 1. Then {z;} is again an
interpolating sequence. (Use Baire category to show all idempotents can be
interpolated by a uniformly bounded set in X.)
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9. Let {z;} be a sequence in the upper half plane, and let

Zk_zj

=11

JJj#k

, k=1,2,....

Zk_Zj

Suppose 6, > 0 but inf, 5, = 0. If |a;| < 51 + log 1/6,)” 2, then there is
f€ H* such that

f(zj)=ajs j=1,2,....

More generally, if h(t) is a positive decreasing function on [0, o0), if

f h(t) dt < o0,
0
and if
la;| < 6;h(1 + log 1/5)),

then the interpolation f(z;) = a;, j =1, 2, ..., has solution fe H*. To
prove this show that Z (lajly;/6,)é,, is a Carleson measure.

The result cited above is sharp. If h(z) is positive and decreasing on [0, c0)
and if {§ h(r) dt = oo, then there is a separated sequence {z;} and values a;
such that

la;| = 6;h(1 + log 1/5))
but such that interpolation is impossible. (See Garnett [1977] for details.)
10. If {z;} is an interpolating sequence with

. Zy — Z;
inf k. Sil=6>0,
k j,j*k

Zk'—zj

then {z;} can be partitioned into K log 1/d subsequences such that for each
subsequence {w;},

1
2-7
2

J
W, — W;

. W — W;
inf [] | =22
k j.j*k

where K is an absolute constant. If Y;, ..., Yy are these subsequences, if B,
is the Blaschke product with zeros | };., Y;, and if f; interpolates a i/Bil(z))
on Y,, then ) B, f, is an interpolating function with norm less than

Cé~ (log 1/9) suplaq;].
j
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11.  Let {z;} be a sequence in the upper half plane. For 0 < p < o0, let
T, be the linear operator defined on H? by

T, /() = v ().

Then [T, fllo < Clif 5, /€ HP.

(a) If T, is bounded from H” to [, then ) y;0., is a Carleson measure.
Using the closed graph theorem, obtain the same conclusion if T,(H?) [P

(b) If T,(H?) = I’, then {z;} is an H* interpolating sequence.

c) If{z;} isan H® interpolating sequence, then T(H?) = I*,0 < p < 0.
Forp > 1,useaduality argument. For p < 1let B,(z) be the Blaschke product
with zeros {z;, j # k}. Then since ) y,|a;|” < oo,

o Bu2) ( 21y, )2/p
(z) = = a
/ kgl Bi(z) \(z — Z)) ’
isin H? and f(z,) = a;, k= 1,2,....

(See Shapiro and Shields [1961].)

12. If p > 1, the operator T, of Exercise 11 has a natural extension to L?
defined using the Poisson kernel.

(a) If T,(L?) = I’, then T, is bounded from L” to [” and {z;} is an H*
interpolating sequence.

(b) If 1 <p < oo and if T(LP) > I, then {z;} is an H® interpolating
sequence. If T, ,(BMO) o [®, then {z;} is an interpolating sequence. This
result for p > 2 or for BMO follows from a modification of the proof of
Theorem 4.2. Another argument is needed for p < 2. (See Garnett [1978] for
details and extensions.)

(¢) IfTy(L') > I',itneed not follow that {z;} is an interpolating sequence.

13. (a) Prove Khinchin’s inequality for p = 4:

4\\ 1/4
(cg’( )) < Gy loylH'?

where C, does not depend on n.
(b) Prove Khinchin’s inequality for all finite p > 2 by first considering
the case when p is an even integer.

Yt
=1

14. A sequence {z;} in the disc in nontangentially dense if almost every
¢ € T is the nontangential limit of a subsequence of {z;}. For a discrete
sequence {z;} in the disc, the following are equivalent:

(i) {z;} is nontangentially dense.
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(i) For each point z € D there are positive weights 4; such that
u(z) = Z Aju(z;)
J

for each bounded harmonic function u(z).
(iii) For some point z, ¢ {z;} there are complex weights f; such that
Y 1B;] < o and

f(zo) = Z ﬁj f(Zj)

for all fe H®.
(See Brown, Shields, and Zeller [1960] and Hoffman and Rossi [1967].)

15. Let {z;} be an interpolating sequence in the disc and let {a;} € /. Let
f€ H* interpolate

f(Zj)=aj, j=1,2,...,
with || f ||, minimal.

(a) Iflim a; = O, then f is the unique interpolating function of minimal
norm. If also lim z; = 1 nontangentially, then fis a constant times a Blaschke
product.

(b) For some choices of {z;} and {a;}, there is no unique minimal norm
interpolating function.

(See @yma [1977].)



VIII

The Corona Construction

This chapter is an extensive discussion of Carleson’s corona theorem.
Several proofs of the theorem will be presented, because the ideas behind
each proof have proved useful for other problems. We first give T. Wolff’s
recent, very elegant proof, which is based on Littlewood-Paley integrals
and which employs analyticity in a decisive way. Then we take up Carleson’s
original proof. It consists of a geometric construction that has led to many
of the deeper results in this theory and that applies to harmonic functions
and to more general situations.

We begin with two theorems bounding solutions of certain inhomogene-
ous Cauchy-Riemann equations. One of these theorems is then used in
Section 2 to prove the corona theorem and a generalization.

Section 3 contains two theorems on minimum modulus. A simplified
version of the main construction is then used to establish a separation
theorem about Blaschke products. That theorem will have an important
application in the next chapter.

Carleson’s original proof is discussed in Section 5 and a less function-
theoretic alternate approach to the construction is given in Section 6. In
Section 7 we circumvent the duality argument used in the original proof,
thereby making the corona proof quite constructive. At that point inter-
polating sequences reappear to play a decisive role.

1. Inhomogeneous Cauchy-Riemann Equations

o_1(o 0
9z 2 \ox ay/)

Thus a function h(z) is analytic if and only if dh/0z = 0. Let G({) be C! and
318

Define
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bounded on the open disc D. We want to solve the inhomogeneous Cauchy-
Riemann equation

(L.1) F_ 6@, 1zl<1,
0z

with a good bound on | F|, = sup;—;|F(z)|. For { = ¢ + in, write
d{ = dé +idy,dl = d& — idn. If ¢ € C* has compact support contained
in D, then by Green’s theorem

s [ et = o [ (P n

i lf o(0) dt

e_,027tl L-z|=¢ C—Z

= ¢(2).

So if (1.1) has solutions F(z) on |z| < 1, then one solution should be given by

1 1 5
(1.2) F(z) = i f G(C)Edl A de.

[gl<1

It is easy to see that the convolution F(z) defined by (1.2) is continuous on
the complex plane and that F(z) is C* on the open disc. Moreover, F(z) is a
solution of (1.1). Indeed, if ¢ € C* has compact support contained in the unit
disc, then

J]F—dzx\dz+ J](p——dzl\dz— ffm:—wdzAdz

=—J. Fpdz =0,
lz|=1

and hence

ffF——dZ/\dZ" —f qo%—lzj—dzAdE.

If we also show that

fng—(EdeAd2= —ff(deztde,
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then we can obtain (1.1) by letting ¢ run through the translates of an ap-
proximate identity. But by (1.2) and Fubini’s theorem,

J.J.F——dzAdz— f G(c)(sz ‘2‘5 iCdZAdZ)dCAdC

lgl<1

- f GO dl A df,

lgl<1

and so (1.1) holds when F(z) is defined by (1.2).
Now (1.2) does not give a unique solution of (1.1) on D = {|z| < 1}. But

any function b(z) continuous on D and C* on D that solves

ob
(1.3) = = G(2), lz| < 1,

0z
does have the form b(z) = F(z) + h(z), where h(z) is in the disc algebra
A, = H* n C(D), because oh/0z = 0 on D. We want an estimate on the
minimal norm of such solutions b(z) of (1.3). Because we shall ultimately
study functions analytic on D, the norm of interest here is the supremum
on 0D,

Iblle = sup [b(z)|.

|z|=1
We use duality and the theorem on Carleson measures to make two different
estimates on the minimal norm of solutions of (1.3).

Theorem 1.1.  Assume that G(z) is bounded on the disc D and that |G| dx dy
is a Carleson measure on D,

(1.4) f |G| dx dy < A/(S)

for every sector
S={re®:1 —£(S) <r<1,]0 — 0, < £(S)).
Then there is b(z) continuous on D and C® on D such that
0bjoz = G(z2), lz| < 1,
and such that
Iblle = sup |b(z)| < CA,

1z| =1
with C an absolute constant.

In this theorem (and in the next theorem) it is not important that G be
bounded on D and the upper bound for | G(z)| does not occur in the estimate
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of ||b]l, - We have assumed G is bounded only to ensure that (1.1) has at least
one bounded solution (see Exercise 1).

Proof. Let F(z) be the solution of (1.3) defined by (1.2). Then every solution
of (1.3) has the form

b(z) = F(2) + h(z), heAd,,
The minimal norm of such solutions is

inf |[F + hll .,

he A,

the norm being the essential supremum ¢D. By duality,

. 1 2n
inf |[F + hl|, = SUPHEJ deﬂ':keH(’), lkll, < 1}

heA,

supﬂ — F(2k(z)dz |: ke HY, |k|; < 1}.
|z =1

(See Chapter 1V, Theorem 1.3 and Lemma 1.6.)
By Green’s theorem and by continuity,

F(2)k(z) dz = lim 2L7u fm:’F(z)k(z) dz

2nl |z|=1 r—1

T 2mi J.J. 5z k(z) dz A dz,

lzl<1

since 0k/0z = 0. Consequently,

1
inf |F + hll, < sup{; ﬂ 16(2)| [k(z)] dx dy:k € H', k|, < 1}.
he A,

lz]<1

By the disc version of the theorem on Carleson measures, Theorem 3.8 of
Chapter II, there is a constant C, so that

711 ﬂ|c(z)| k()] dx dy < C,Alkl,

whenever k € H'. Taking C > C, wesee (1.3) has solution b(z) = F(z) + h(z),
he A,, such that ||b|, < CA. [

The second estimate involves ideas from the proof of the H!-BMO

duality. Write
o _1fo 0
oz 2\ax o)
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Theorem 1.2 (Wolff). Assume that G(z) is bounded and C* on the disc D and
assume that the two measures
|G|* log(1/|z|)dxdy  and |0G/dz| log(1/|z]) dx dy
are Carleson measures,
1
(1.5) f |G|? log—ldx dy < B,/(S)

|z
S

and

w [
N

for every sector

S={re?:1 —£S)<r<1,10 -6, <)}

log 1171 dx dy < B,/(S)

Then there is b(z) continuous on D and C* on D such that
/07 = Gz), |z < 1,
and such that
6lle = sup |b(z)| < C1y/By + C; By;

lz1=1

with C, and C, absolute constants.

Proof. As before, we have
) ab 1 2n .
inf<|b||l,:== = Gy =sup —f Fkdb |:keH}, |kl <1,

aZ 27[ 0

where F(z) is defined by (1.2). Since G € C?, F is twice differentiable on D, and
since G is bounded, F is continuous on D. We may suppose k(z) € Hp is
smooth across dD. Then by Green’s theorem

| 1
o J'O F(e")k(e®) db = 5~ UA(F(z)k(z)) log - dx dy
D

2 oG |
D

+ % J. f k'(z)G(z) log L dx dy
T |z|
D

=11+12,
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because Ak =0, AF = 4(0/0z) 0F/0Z = 4 0G/0z, and VF -Vk = F .k, +
F, k, = 4(0F /0Z) 0k/0z = 4G(z)k'(z). By (1.6) and the theorem on Carleson
measures,

[1,| < CyB,llkl; < C,B,.

To estimate I, we write k = (k, + k,)/2 where k;€ H' is zero free and
Ikjll; < 2. (See the proof of Theorem VI.4.4.) Then kj(z) = gi(z), g,€ H?,
lg;lI3 < 2,and

4 (ot tog 112
sG”M@I%Hh@)
D

4 1 112
xGﬂMwmmm%mw@.
D

By (1.5) the second factor has bound (CB,|g;l3)""* < C./Bllg;l,, and by
the Littlewood-Paley identity (Chapter VI, Lemma 3.1), the first factor is

2 1 1/2 1 ] 1/2
wamm%mww)=6ﬁwﬂ—mww)
D

< \/5”91'”2-

Consequently I, < C;/B, and Theorem 1.2 is proved. [J

Eﬂwmmmia@
s zZ
D

4 1
=FﬂwmﬁMM%7M®
D

Although Theorem 1.2 is less straightforward than Theorem 1.1, we shall
see that hypothesis (1.5) and (1.6) are sometimes easier to verify than (1.4).
On the other hand Theorem 1.1 is more powerful because (1.4) depends only
on |G| whereas (1.6) may hold for G(z) and not G(z).

2. The Corona Theorem

The unit disc D is homeomorphically embedded in the maximal ideal
space M of H*. Carleson’s famous corona theorem asserts that D is dense in
M. In other words, the “corona” M\D is the empty set. Because of the
topology of I, the theorem can be formulated in this way: If f, f, ..., f,
are functions in H® such that

2.1) Iille <1
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and
2.2) max| fi(z)| > 6 >0, zeD,
i
then fy, fo, ..., f, lie in no maximal ideal of H*. This means that the ideal
generated by {f},f5,...,f,} contains the constant function 1, and there exist
d1>925 -+ gn in H® such that
(2.3) fHgr+ -+ fagn =1
Something formally stronger is true. There exist solutions g, g,, ..., g, of

(2.3) that have bounds depending only on the number n of functions and on
the constant ¢ in (2.2). This ostensibly stronger statement is actually equiva-
lent to the corona theorem itself (see Exercise 2 below).

Theorem 2.1. There is a constant C(n, ) such that if fy, f5, ..., f, are H®
Sunctions satisfying (2.1) and (2.2), then there are H® functions ¢y, g2, - ., g,
such that (2.3) holds and such that

(24) “gj”ao < C(ns 5)3 1 SJ <n

We refer to gy, g5, - - - » gu a8 Corona solutions and to fy, f,, ..., f, as corona
data. By normal families it is enough to find solutions satisfying (2.4) when
f1>fas - -, f, are analytic on a neighborhood of the closed disc.

Let us now reduce the corona theorem to the problem of solving certain
inhomogeneous Cauchy-Riemann equations. Assume f;, f>, ..., f, are
corona data; that is, assume (2.1) and (2.2). Furthermore, assume that each
f{(2) is analytic on some neighborhood of D,j = 1,2,...,n. Choose functions
©1, @2, .-, @, of class C* on D such that

fier + -+ fro, =1,  zeD,
and such that
(2.5) lo2)| < Ci(n,6), j=12,...,n
These can be easily accomplished using (2.1) and (2.2). For example, take
(2.6) o) =LA@ j=12..,n

The difficulty, of course, is that ¢(z) may not be analytic on D. To rectify
that, we write

@7 642) = 0,) + éla,-, (DA,
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with the functions a; ;(z) to be determined. We require that

(2.8) a;i(z) = —a (2),
which implies

f191 +fag2 + o+ frgn =1 on D.
The alternating condition (2.8) will hold if
a;,(2) = b; W(2) — by, [2).

If we also require that

ob;x 0, _

(2.9) oz (Pjg = G;(2), lz] < 1,

then we get
dg; 0(0, 09 0<p,~
Fi Z f\ 0 — P

_ 0o, Jd & 0p; &
=% + (Pj£k§1ﬁ¢(pk - gkglfk(l’k

=0, lz] < 1,

because df,/0z = 0, Y fio, = 1, and (3/02) ). fi @, = 0. Therefore the
functions g(z) defined by (2.6) and (2.8) are analytic solutions of (2.3). (See
the appendix to this chapter for a more systematic explanation of the passage
from ¢; to g;.)

But we also need the bounds ||g;|, < C(n, 6) (not just to obtain Theorem
2.1 but also to be able to invoke normal families in proving the corona
theorem itself). Since each ¢; is bounded, a look at (2.7) shows we only have
to estimate |a; |, or better yet, |b; ,|. Thus the proof of Theorem 2.1 has been
reduced to the problem of finding solutions b; ,(z) of (2.9) that obey the esti-
mate

(2.10) |b; (2)| < Cy(n, d), |z] < 1.

We are going to solve this problem four different ways. In each case it is
crucial that the smooth solutions ¢; be chosen adroitly. The first solution
will be given momentarily, the others occur in Sections 5-7.

Proof of Theorem 2.1 (Wolff). Set

042) = J2) /’_ilm(z)v, i=12...n
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By (2.2) the denominator is bounded below, so that ¢; is C* on D, |@fz)|
<67 Y and fio, + /0, + - + f,0, = 1 on D. By the above discussion,
Theorem 2.1 will be proved when we show the equations

ob; o,

=@, —F = G, (2), <1, 1<jk<
3z — % G;.u(2) |z] J n,

have solutions satisfying (2.10).
We use Theorem 1.2. It is clear that G, is bounded and C* on D. Since
lo;l < 671, we have

9

2
1

1
oz

1
|G | log — < 672 oglzl,

lz] —

while since 8f,/0z = f}, 8f,/6z = O,
0o _ _Ji KX NS _ X STk~ hSD

oz YIAP QLD QAP
Thus by (2.2),

2 AT DS et o
S D e L

9%
0z

and
1G> <2067¢ Y | fil%

By Theorem 3.4 of Chapter VI, d, = | f}|* log(1/|z|) dx dy is a Carleson
measure with bounded constant N(4,) < C| f;|%. Hence

|G, |* log de dy
|z
is a Carleson measure and (1.5) holds with B, < Cndé~S.
Also, because 9f,/0z = (9f,/0Z) = 0, we have
% _ 09, 0, %,
oz oz oz " Pidzoz
_ ( —J; Zﬁfi) (Z ST —fkf;))
QLA Q1AP?
fi (Z fihf=RT) 20 fif) Y ATk —ﬁfi))
XA Q1AH? QAP '
All terms look roughly the same and we have
an,k
0z

+

<C Z?fj'lff:lz'){ql < Cné™* L1 fil
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Again using Theorem 3.4 of Chapter VI, we obtain (1.6) with B, < Cnd 4.
By Theorem 1.2, we have (2.10) with C,(n, §) < Cn*'26~% + Cndé~*. That
gives (2.4) with

C(n,0) < C(n**6~3+n?"%. O

Repeating the proof, but with Theorem 3.4 of Chapter VI replaced by the
following lemma, we can get the sharper estimate

C(n, 6) < C(n*?672 + n?673)
for the constant in (2.4). The lemma will also be used for Theorem 2.3 below.

Lemma 2.2. Iffe H? and if f(e®) e BMO, then

SR, 1
@ 8]

is a Carleson measure on D with Carleson norm at most K|| f|,., where K is
some absolute constant.

dx dy

Proof. By an approximation we can suppose f(z) is analytic on D. Then f(z)
has finitely many nonzero zeros z,, z,, ..., zy in D. When f(z) # 0, a calcu-
lation yields

A(Lf@D =1 @/ f()].
For small ¢ > 0 let Q, be the domain
N
Q. =D\ A,
j=0

where Ay = {|z| < e&},A; = {|z — z;] < &},j =1,2,..., N.Then by Green’s
theorem (see Section 3 of Chapter VI),

[[ADF 10g L axay = [1s1 a0

I Tran 8T
1 0 1
ﬂ(( 1) 108 5 = 111 5o ) s

where 0/0n is the normal derivative outward from A;. Let ¢ tend to zero. For
J > 0 the boundary integrand remains bounded and the arc length tends to
zero. For j = 0 we get

tim | fee®) db = —21] fO),
0

=0
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because the other integral over dA, has limit zero. At z;, | f "@1%*/] f(2)| has
singularity at worst O(|z — z;|™'), which is area integrable. Therefore we
obtain

f@F, 1 o)
(2.11) flf(z), logmdxdysﬁf(e ) d§ — 221 )]

D
< f (&) — £(0)] dob.

Now the lemma is nothing but the conformally invariant formulation of
(2.11). Let

S={reé®:1—h<r<l1,]0— 0, <Hh}.

By (2.11) we can suppose h < i Take z, = (1 — h)e’® and write w =
(z — z0)/(1 — Z,2). For z € § we have

|1_202|2

< ch,
1 — |z

and by (1.5) of Chapter I

(1 —wP)Il ~ Zpz|?

<c(l —|z») =
ol =z =c¢ PN

log

1
< ch(1 — |w|?) < chlog o

Since | f'(2)|> dx dy = |g(W)|? du dv, g(w) = f(z), w = u + iv, we obtain
2 ’ 2
f /@) log — dxdySchf Ig(w)l Ld dv
D

I f@I "zl Ig(W)I %l

< 2nch j|g — () d6 < Cllf Il A

and the lemma is proved. [

Now letf1,f3,...,f, be H® functions, and suppose g € H*® satisfies
(212) gD < 1A@]+ - + 1 L]

In light of the corona theorem it is natural to ask if (2.12) implies that
g€ J(fi, fs, ..., f,), the ideal generated by {fi, f5, ..., f,}- In other words,
does it follow that

g=ag1f1+ -+ gk
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with g; € H*? Unfortunately, the answer is no (see Exercise 3). However,
T. Wolff has proved that

g3 6J(f19f2’ ’f;l)

At this writing the question for g2 remains unresolved (see Exercise 4).

Theorem 2.3. Suppose fy, f5, ..., f and g are H* functions for which (2.12)
holds. Then there are g1, g, - .., g, in H® such that

(2.13) P =ag.fi + -+ gnfy

Proof. Asin the proof of Theorem 2.1, we convert smooth solutions of (2.13)
into H® solutions, using Theorem 1.2 to control the norms of the correcting
functions. We assume | f;| < 1, [lg| < 1, and, by normal families, we can
suppose g and f1, f5, . . ., f, are analytic on D, because we shall obtain a priori
bounds on the solutions g;. Set

wjzgf;/ZIﬁP:g(pp j=152a"-an

Then ¥ is bounded, | ;| < 1,and C* on D (at acommon zero of f1, f5, .. -, >
examine the power series expansions) and

Suppose we can solve

ob; 0 .
(2.14) 6’2"‘=g ,~%§'5=g36,-‘k, 1<jk<n
with
(2.15) [bj il <M.
Then

gj = gz%‘ + Z (bj,k - bk.j)ﬁ:
k=1
satisfies
Zgij:.‘JZZ‘//J'fJZQ3

and

9, _ e w,+ Z fk(%aw_k_wkaw)

0z
, 0 0
oy WA AL FP S Sy A

Moreover, |g;| < 1 4+ 2Mn, so that g; € H*.
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Looking back at the proof of Theorem 2.1, we see that

o AGITE IS ST~ R TP »
TGl < S S cRMil

and so |gG; ,|* log(1/|z]) dx dy is a Carleson measure. Also,

0
—(g3GJk)—3gzg/G,k+g g
and
2 NSNS AT — 7D
TG < T T S
_CUg P+ X111
= QIAHY?
Igl2 Lfil?
RIRTR
while
3 0G; <C|g|3zp,q|f;||f;|
oz |~ Q1 AP?
2
< Cn z"fﬁ'

by the calculations in the proof of Theorem 2.1. Hence by Lemma 2.2,
9/0z (¢*G;,,) is a Carleson measure with constant depending only on n, and
by Theorem 1.2, (2.14) has solutions satisfying (2.15). [

Recently Gamelin [1981], and independently A. M. Davie, refined Wolff’s
proof still more, even removing the notion of Carleson measure (see Exercise
5).

There is a close connection between the corona theorem and the H'-BMO
duality. The theorem was reduced to the question of finding functions b; &
such that
ob;, K _ a(pk

az = J a— - Gj,k’ |Z| < 15

(2.16)

and such that
16),klls = sup 1b; x(2)] < Ca(n, 9).

lz1=1
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Let

1 1 >
1) Fu@ =5 [[ 60 —and

[gl<1

be the solution of (2.16) given by the integral formula (1.2). Any solution of
(2.16) has the form b;, = F;, — h;, h; , € H°, and Corollary 4.6 of
Chapter VI gives

e IFj . — iF; i lly < inf{llb; |l o : bj , satisfies (2.16)}

< Cz“Fj,k - iFj,k"*,

where F ;. denotes the conjugate function and where ¢, and ¢, are constants.
By (2.17), F; (z) is analytic on | z| > 1,so that F; , € H®, when F; , is viewed
as a function only on the circle {|z| = 1}. Also, | F; , d6 = 0 by (2.17). Hence
F;, = iF; and the minimal norm of solutions of (2.16) is comparable to
2|F; ill4- When ¢; is defined by (2.5), the proofs of Theorems 2.1 and 1.2
show by duality that |F; | is bounded. We will show later that ¢, can be
chosen so that |G; ;| dx dy is a Carleson measure, and in that case one can
directly verify that |F; [l, < C(n, d).

The corona problem is equivalent to the problem of finding bounds on
solutions of equations like (2.16). To prove this, consider the problem of two
functions f; and f,, analytic on a neighborhood of D, that satisfy

max(| f1(D)], [ f2(2)]) > >0, |z <1,
IAl<1, lfill <L
Let ¢, and ¢, be C* solutions of
P fi+ o fr=1

with ||, < C1(2,0),j =1, 2. If g, and g, are analytic solutions, then
since g, f; + g, f» = 1, we have

g1 = ¢, ‘}’fz((pzf_1 gz)’ g> = @, _f1<g1f_2(pl>-

The function

_$2—92 91 — P4
fi 12
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has the bound |R]|,, < C,(2, 6) if and only if [|g;|| < C(2,9),j = 1, 2. Now
0R _ i do, _ (f194 +f2§92)%

0z f, 0z 1 0z
_ 0p; ¢, 0
=015 + Z£(1 - f191)
_ o 002, 00
b oz ? oz
Thus bounded analytic solutions g,, g, exist if and only if
oR _ 00y 09
oz ez e

can be solved with |R||, < C,(2, ) whenever ¢, and @, are smooth bounded
corona solutions.

3. Two Theorems on Minimum Modulus

Let u(z) be a bounded, complex-valued, harmonic function on the upper
half plane. Assume ||, < 1. Let Q be a square with base on {y = 0}. For
0<a<1,set

E,={z€Q:|u@@)| < a}
and let
E¥ = {x:x + iy € E, for some y > 0}

be the orthogonal projection of E, onto {y = 0}. Denote by T(Q) the top
half of Q. Fix f > 0 and suppose there is z, € T(Q) such that |u(z,)| > f. See
Figure VIIL1. Since |lu|, < L, the Poisson integral representation shows that
fort e Q* = {x:x + iy € Q for some y > 0}, |u(t) — u(z,)| can be large only
when ¢ is in a set of small measure, provided of course that 1 — f is suf-
ficiently small. This in turn implies that | E¥|/|Q*| is small. This reasoning is
made precise in the proof of the following theorem.

Theorem 3.1.  Let u(z) be harmonic in the upper half plane. Assume ||lul , < 1.
If0 < o < land if 0 < & < 1, then thereis § = p(a,¢),0 < B < 1, such that if
Q is any square with base on {y = 0}, then

sup|u(zo)| = B

T(Q
implies
(3.1) [EX] < ¢/(Q).
where £(Q) = |Q*| is the edge length of Q.
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lulzg)| 2 8

Figure VIIL.1. The situation in Theorem 3.1.

Proof. The appropriate tool for this proof is the vertical maximal function
f7(x) = sup| f(x + iy)l,
y>0

where f(z) is a harmonic function on the upper half plane.
We may assume Q = {0 < x <1, 0 < y < 1}. Suppose z, € T(Q) has
|u(zo)| = B. Then

(3.2) ( f [u(®) — u(zo)| P, (1) dt) < f |u(t) — u(zo) I*P.(t) dt

[0 PP. @) de = 1utzo) P
<1-p%
Let I = [—1, 2] be the triple of the base of Q and let
f@) = (u(t) — u(zo))x(t).

Since |P,,| > ¢, on I, we have ||f]l; < c;'(1 — p*)"? by (3.2). Also, for
zeQbutfort¢l, P(t)/P,(t) < c,,s0that whenze E, = Q,

1fG)| = ’ ff(t)Pz(t) dt

>

f W(t) — u(zo))P(0) dt

- f |u(t) — u(zo) | P1) di
R\I

> (- o) — c; fwlu(r) — u(zo) | Poo(t) dt
> (B = o) — cx(1 — B2 =,
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again by (3.2). Since « is fixed, we can make y > 0 by taking f sufficiently
close to one. Then E}¥ < {t: f*(¢) > y} and the weak-type estimate for f*
gives

|E¥| < Cer '(1 = B*)'2/y.
We conclude that |E}| < ¢if 1 — B is sufficiently small. [

In Theorem 3.1 it is necessary that § be large. For example, if u(t) =
1 — x,(t), with I = [0, 1], then E¥ = I for every a > 0, while suprg,|u(z,)|
> 4 when Q is the unit square. Thus we must have § > 4 no matter how small
we take a. However, if the harmonic function is replaced by a bounded
analytic function f(z), then by exploiting the subharmonicity of log| f(z)|,
we can fix any § > 0 and find a = a(f) > 0 so that (3.1) still holds.

Theorem 3.2. Let f(z) be a bounded analytic function on the upper half plane.
Assume || fllo < 1.For0 < B < 1andfor0 < ¢ < 1, there exists a = a(p, €),
0 < a < 1, such that for any square Q with base on {y = 0}

sup| f(2)| = B

Q)
implies

|E¥| < e(Q),
where EY is the vertical projection onto {y = 0} of

E,={zeQ:|f(@)| < a}.

Proof. We again suppose that Q is the unit square {0 < x < 1,0 < y < 1}.
Write f = Bg, where B is a Blaschke product with zeros {z;}, and where g(z)
has no zeros, || g|l, < 1. Then

E,cF,uG,,
where
F,={zeQ:|B@)| < /a} and G,={zea:|g)| < /a}.

Clearly, Ef = F¥ U G¥. We estimate | F¥| and | G¥| separately.

To bound |G¥| we use Theorem 3.1 on the function u(z) = g(z)?, where
p > 0 will be determined in a moment. Fix «; > 0 and take 8, = B;(x,, ¢/3)
so that Theorem 3.1 holds. Let p > 0 satisfy f? = f,. Applying Theorem 3.1
to g”, we obtain |G| < ¢/3, provided that «”'* < .

The estimate of |F¥| is based on the fact that | B(z,)| > B for some z, =
Xo + iy € T(Q). By Lemma 1.2 of Chapter VII, this means

(3.3) ZM < 2log

~— <
|z — Z;l

!
5
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Let S = {z;:dist(z;, Q) < 1}. Then |zy — Z;|*/4yo < 7when z; € §,and hence
(3.4) Z Vi < < l4log 1/8.
z;eS

We excise the discs

= {z:1z — z;| < (¢/6)(14 log 1/B) "1y},

z; € S. Taking ¢ small enough, we can assume A; N F, = (J when z; ¢ S, so
that FA\|J A; = F\Js A;. By (3.4) we have

2 1AF < ¢/3,

zj€S
and so we only have to estimate the size of the projection of F,\ [ Js A;. But
when z € F,\|J A;, Lemma 1.2 of Chapter VIII also gives

1 4yy1
logaglong()P_c( B)Z ¥

In this sum the main contribution comes from the z; € S. Indeed, when
zo € T(Q) and z; ¢ S (so that dist(z;, Q) > 1),

YYy; YoV;
sup L=<y L,
zteZ_zjl IZO_Zj|

and hence by (3.3)
4.Vyj 4)’0)’1 1
su — - < ) ——25<2,lo
zegzj~z¢5|z_2j|2 12[ 20 — |2 ! gﬁ
Taking a < aq(f, ¢), we conclude that
2 1 4yy;

—log- < m——1
e, p) " z,-ZeS |z -z
holds when z e F\|  A;.
Using (3.5) we can estimate | (F a\U A)*| in terms of a maximal function
in the same way as before. Consider the positive discrete measure

(3.5)

ll = Z 4yjaz,
z;€S
Then (3.5) gives
y . 2 1
3. — hl
(3.6) [t o= e,

for z e F,\J A;, while on the other hand, (3.4) gives

fdu < 56 log %
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Project the mass u vertically onto {y = 0}. This increases the integral in
(3.6). We obtain a positive measure o on R such that { do < 56 log 1/8 and
such that

2 1
sz([) do(t) > m IOg &
when z € F,\J A;. Consequently,
(F\U A)* < {x: M(do) > (2/nc(e, B)) log 1/a},

where M(do) denotes the Hardy-Littlewood maximal function of o. The
weak-type estimate for M(do) now yields

« _ Cmc(e, B)log 1/B ¢
(FAU 4% < 2 loglja <3

provided « is sufficiently small.
We conclude that

|EX| < |GH + L IAH + I(FAU A)*] < 3§ =
J

if o is small enough. [

4. Interpolating Blaschke Products

A Blaschke product is called an interpolating Blaschke product if it has
distinct zeros and if these zeros form an interpolating sequence. We do not
know if the set of interpolating Blaschke products span a dense subspace
of H®, as does the set of all Blaschke products. However, the interpolating
Blaschke products do separate the points of the upper half plane in a very
strong way. The precise result is this.

Theorem 4.1. Let u(z) be a bounded harmonic function on the upper half
plane such that

lu(t)] = 1 almost everywhere on  R.

Let 6 > 0 and let 0 < o < 1. Then there exist f = (o), 0 < p < 1, and an
interpolating Blaschke product B(z) such that

4.1) [Bz)| <o if |u(@)| <«
and

(4.2) lu(z)| < B if B(z) = 0.
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Moreover if B(z) has zeros {z,}, then
(4.3) 8(B) = inf L

B(z,)=0 k., k#n
> do(, B, 9) > 0.

The reader may find Theorem 4.1 acutely specialized. We have put the
theorem here for two reasons. First it will be an essential step in the descrip-
tion of the closed subalgebras of L™ containing H® given in the next chapter.
The second reason is pedagogical. Its proof using Theorem 3.1 above and
generations like those introduced in the last chapter is an easier version of
the construction originally used to prove the corona theorem.

Before proving Theorem 4.1 we use it to derive Ziskind’s refinement of
Newman'’s characterization of the Silov boundary of H®. (See Theorem 2.2
of Chapter V.)

Theorem 4.2. Let m be a complex homomorphism of H®. Then m is in the
Silov boundary of H® if and only if |m(B)| = 1 for every interpolating Blaschke
product B(z).

Zn—zk

Proof. Ifmisin the Silov boundary, then by Newman’s theorem |m(B)| = 1
for every Blaschke product B(z). What requires proof is the reverse implica-
tion.

If m is not in the Silov boundary, then by Newman’s theorem there is a
Blaschke product By(z) such that m(B,) = 0. Using Theorem 4.1 with
u(z) = By(z) and with o = 6 = 1, we obtain an interpolating Blaschke
product B(z) such that | B(z)| < 1if | By(z)| < . By the corona theorem there
exists a net (z;) in the upper half plane that converges to m in the topology of
m

lim /(z) = m(f).  feH™

Because m(B,) = 0, we have | By(z;)| < § when the index j is sufficiently large.
Hence | B(z;)| < § for large j and [m(B)| = lim;|B(z))| < 3. O

For some points m € M not in the Silov boundary it is not possible to find
an interpolating Blaschke product B(z) such that m(B) = 0. This is one of the
mysterious things about the maximal ideal space we shall take up later (see
Exercise 2(c) of Chapter X).

Proof of Theorem 4.1. Let Q be any closed square with base on {y = 0} and,
as before, let T(Q) denote the top half of Q. A simple comparison of Poisson
kernels shows that thereisa’ = «'(«) < 1such that whenever u(z) is harmonic
on the upper half plane and |u(z)| < 1,

4.4) influ(z)| <a = suplu(z)| <o
T(Q) T(©Q)
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This constant a'(«) does not depend on the function u(z), or on the square Q,
because (4.4) is conformally invariant. Set

B = B, 2),
so that the conclusion of Theorem 3.1 holds with ' and with ¢ = 4.
Forn=1,2,..., we form the 2" closed squares Q, contained in Q that

have side 7(Q,) = 27"/(Q) and base on {y = 0}. The projections Q* are
chosen to be a partition of Q*. For special squares Q we have to single out
certain of the subsquares Q, using a stopping time argument. There are two
cases.

Case I: sup|u(z)| = B.
T(Q)

Define the first generation G,(Q) as the set of those Q; = Q such that

sup |lu(z)| < o
T(Q))

and Q; is maximal. Call these red squares. See Figure VIIL2. The squares in
G,(Q) have pairwise disjoint interiors. By Theorem 3.1 and our choice of §,

(4.5) Y. Q) < 34Q).
61(Q)
By (4.4),
{zeQ:lu@@)| <a} = |JQ;.
61(Q)
7(Q)
lu] > B
7(@) 7(@)

Figure VIIL.2. Case I: The six shaded squares form G(Q). They are red squares.
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Case 11: sup|u(z)| < B.
T(Q)
In this case the first generation G(Q) consists of those Q; = Q such that

suplu(z)| = B
T(Qj)

and Q; is maximal. Call these blue squares. See Figure VIIL3. The squares in
G,(Q) have pairwise disjoint interiors. Let

A(Q) = (int O\ | ;.

G1(Q)
Then %(Q) has rectifiable boundary and

(4.6) length(02(Q)) < 6/(Q)

On Z(Q) we have |u(z)| < p. Since u(z) has nontangential limits of absolute
value 1 almost everywhere, and since < 1, we also have

4.7 |0#(Q) ~ {y = 0}| = 0.

sup |ulz)|< B
T(@

2(Q)

| b
Figure VIIL.3. Case II: The shaded squares form G,(Q). They are blue squares. In the
region Z(Q) above the blue squares, |u(z)| < f.

Begin with the unit square Q°. Apply Case I or II to Q°, obtaining the first
generation G, = {Q], 0}, ...}. To each Q} € G, we apply Case I or II and
get a new family G,(Q]) of generation squares. Define the second generation
tobe G, = | {G,(Q}): 0} € G,} = {Q},03,...}. Repeating the process with
G, and continuing inductively, we obtain later generations G, = {Q%,
0%, ...}. Since o' < B, we alternate between Case I and Case II as we move
from one generation to the next, and we apply the same case to all squares in a
given generation. In other words, each generation consists entirely of red
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squares or blue squares, and the next generation consists only of squares of
the other color. By the construction,

48) {zeQ”:|u@)| <o} = | RO = {z€Q%: |u(@)| < B}

Case Il

Set
r=0°n U OR(Q?Y).

Case Il
The important results of this construction are

(a) the arc length measure on I is a Carleson measure, and
(b) if B(z) is a bounded harmonic function on {y > 0} and if | B(z)| < d on
I, then |B(z)| < 6 on UCase n Z(09).

To prove (a) it is enough to check that length (I' n Q) < C/(Q) when
Q = Q,is a square from the decomposition of Q°, because any Q = Q° can be
covered by two such Q, with Z(Q,) < 2/(Q). So consider a square Q = Q,.
There is a smallest index p such that Q contains squares from G,. By (4.5)
and (4.6), squares from G, U G,,; U - contribute no more than

= 6/
5 (Y]

k
K=o 2

= 124(Q)

to length(I" N Q). The rest of I' n Q comes from squares in G,_; or G,_,,
but not both. Their contribution does not exceed 6£(Q). Although we have

length(I' n Q) < 184(Q)

and (a) holds.

To prove (b) it is enough to consider one set #(Q) and to show that
|B(z)| < 6 on Z(Q)if |B(z)| < don {y > 0} N 6%(Q). This follows from (4.7)
and a Phragmén-Lindel6f argument which we now outline. Because of (4.7),
there are positive harmonic functions V,(z) on the upper half plane such that

lim V(z) = +00, t€RNIAQ)
z—ot

and such that
lim V,(z) =0, zeH

(see Exercise 9 of Chapter I). When { € 0(Q) we then have

im |Biz)+ V(2)| <d+ lim V2).
A(Q)>32-¢ R(Q)>2z¢
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Indeed, if Im { > 0, thisinequality follows from the continuity of B(z) + V,(z),
whereas if Im { = 0 the inequality is obvious since lim,., V,(z) = + c0.
The maximum principle for subharmonic functions now gives

|B(z) + V()| <0 + V(2), zeZRQ).

Sending n — oo, we obtain (b).

It is now quite easy to find the interpolating Blaschke product B(z). Let
us first construct an interpolating Blaschke product B,(z) that has (4.2) and
that satisfies (4.1) only for points in the unit square Q°. Choose points {z;}
in | ) 0T(Q,), where Q, ranges through all squares in the decomposition of
Q°, including Q° itself, so that

4.9) inf p(z;, z) < 6, Z€E U aT(Q,)
i

and so that

(4.10) p(zjz) =n >0, j#k

That can be done as follows. Along each 0T(Q,), mark off equally spaced
points, 27V7(Q,) units apart, including the corners of T(Q,). Let {z;} be the
union, over {Q,}, of the sets of marked points. Then (4.10) holds, and if
N = N(0) is large enough, (4.9) also holds. We let B,(z) be that Blaschke
product with zeros {z;: z; € I'} (see Figure VIIL4).

By (4.10) and condition (a), the zeros of B,(z) satisfy the geometric condi-
tion (c) of Theorem 1.1 of Chapter VII. Hence these zeros form an inter-
polating sequence, and because the estimates depend only on «, 8, and 6,
(4.3) holds for B,. By (4.8), (4.9), and condition (b), we have | B,(z)| < 6 when
z € Q° and when |u(z)| < «. By (4.8) the zeros of B,(z) lie in {|u(z)| < B}.

% 3% v}
a3 ta XK

X
X
X

[VERVIRV] X M—I¢-
KK KA

X X X X

Figure VIIL.4. The zeros of B,(z) when N = 2. Three regions #(Q) are shown.
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We have found an interpolating Blaschke product B, that satisfies (4.2)
and that satisfies (4.1) for points in Q°. To obtain (4.1) for all points in the
upper half plane, choose a second interpolating Blaschke product B,(z)
with zeros {w,} such that B, satisfies (4.2) and such that B,(z) satisfies (4.1),
with 8/2 instead of 4, for points z ¢ Q° After a conformal mapping, the
construction of B, is the same as the construction of B;. The product
B = BB, then satisfies (4.1) and (4.2). The zeros of B = B, B, form an inter-
polating sequence if

inf p(wy, z;) > 0,

k,j
where {z;} denotes the zeros of B;. Let ¢ > 0. Remove from B, any zero w,
for which

inf p(w,, z;) < e.

j

The remaining product B = B, B, is then an interpolating Blaschke product
satisfying (4.2) and (4.3). Since the original product B, satisfied (4.1) for
z ¢ Q° with §/2 in place of J, the new product B = B,B, will still have (4.1)
if ¢ is sufficiently small. [

5. Carleson’s Construction

TheoremS5.1. Let § > 0.1Iff(z) is analyticon D and if | f(z)| < 1, then there is
Y(z) € C*(D) such that

(A 0<vy(z) <1,

(b) ¥(2)=1if|f(2)| =4,

(© ¥(2)=0if|f(2)| < &= &), and

(d) [fs|oy/oz| dx dy < A(S), for every sector

S={z=re":0,<0<0y+¢,1—¢<r<l1}.
The constants &(0) > 0 and A(8) depend only on 6.

Notice that Theorem 2.1 follows easily from this result. Suppose fi,
Sar oo, fu€ H® satisfy || fill, < 1 and

max|f(z)| > >0, zeD.
i
For this ¢ and for each f;, Theorem 5.1 gives us a function ;. Set

Q=¥ X ¥
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Then |p[2)| < 1/e, z€ D, and
it e fu=1
To replace the ¢; by H* functions we boundedly solve the equations

Ob;w  dg,

G- iz Pz

1 <jk<n

However, since

% = Z (Wl awk - '//k )/fk(z lpl)z

condition (d) and Theorem 1.1 ensure that (5.1) has bounded solutions.

Proof of Theorem 5.1. We do the construction in the upper half plane. In
fact, we construct only ¥ in the unit square Q° = {0 < x < 1,0 < y < 1}.
Simple conformal mappings and a partition of unity on D can then be used
to produce ¥ on the disc.

For each dyadic square @ = {27 * < x < (j+ 1)27%0 < y < 27%} con-
tained in Q°, we again let T(Q) denote the top half of Q, and we form the 2"
dyadic squares Q, contained in Q, having base on {y = 0}, and having side
£(Q,) =2"""*=27"(Q). Thus Q\ T(Q) is the union of the two squares Q.

Let N = N(J) be a positive integer. For each dyadic square Q of side £(Q)
with base on {y = 0}, partition T(Q) into 2?¥~! dyadic squares S; of side
£(S;) =2""/(Q). We call the S; small squares. With respect to the hyperbohc
metric small squares S; from dlfferent T(Q) are roughly the same size. Let S
be the open square concentrlc with S; having side /(S ) = 3/(S;). By Schwarz’s
lemma we can choose N = N(J) such that

(5.2) sup | f(2) — f(w)| <6-27V < 4/10

z,weSs;

for each §;. Taking N larger, we can also require that whenever Q is a square
with

sup| f(2)| > 9/2,
Q)

the vertical projection E* of

E={zeQ:|f(»)| <27V*?}
has

(5.3) |E*| < £(0)/2.

This can be done using Theorem 3.2.
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In Q° we will define a region £ as the union of certain small squares. This
region # will have the following two properties:

@1 If
inf| f(z)] <27V
Sk

and if S, = Q° then S, = Z.
(i) If, on the other hand, S, = £, then

Slglplf(Z)I <.

By (5.2) conditions (i) and (ii) are consistent. Setting ¢ = &(6) = 2™V, we see
that 02 separates {z€Q:|f(z)| =} from {ze€Q:|f(z)| <27V =¢}.
Condition (5.3) will show that arc length on 02 is a Carleson measure with
constant A4,(5). This means that except for smoothness, the function
Yo = Yoo\ has the desired properties (a)-(d) on Q,. The final function y is a
mollification of ¥, with respect to the hyperbolic metric.t To define # we
consider two cases. Let Q be any square in the decomposition of the unit
square Q°.

Case I: sup| f(z)| = /2.
T(Q)

Consider all §; = Q for which
inf| f(z)] <277
Sj

and such that S; lies below no other small square with the same property.
We let A(Q) be the family of such S;. By (5.2) and (5.3), we have

(54) 2. £(S) < 3(Q),
4@

because the projections S} of the squares S; have pairwise disjoint interiors.
For each S; € A(Q) let Q4" be the square with base S¥. Each Q" is a dyadic
square with base on {y = 0},and the interiors of the squares Q" are pairwise
disjoint. Define the first generation

G(Q) = {0{":5;€ AQ)}.
Then by (5.4), we have

(5.5) Y 4OV < 3(Q).

G1(Q)

+ The smoothness of ¥ is of no real importance. It is the price paid for avoiding distribution
derivatives. One can work directly with /, using Cauchy’s theorem instead of Green’s theorem
in Theorem 1.1.
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Also let B(S;) be the set of S, such that
= and {(S;) <infy < infy.
Sk Sy
Thus B(S;) consists of S; and all S, below S; except those S, contained in
Q4. (If we think of S; as an elevator car on the top floor, then Q") is the ele-
vator car on the bottom floor, and B(S)) is a partition of the elevator shaft
with the bottom floor excluded. See Figure VIIL.5.) Notice that
(5.6) Y (S < 22M(S)
SkeB(Sj)
because the very small S, contained in Q4" have been excluded. For z € Q we
have | f(z)] > 27" unless ze | ] Q{" or z €S, € B(S)), for some S; € A(Q).
Define

20= U U {sk € B(S,):inf| f(2)] < 2—N}.
SjeA(Q) Sk

If S, = Q\lJ @\, and if infg, | f(z)| < 27" then S, = #(Q). On the other

hand, by (5.2) sups, | f(z)| <o if S; = #(Q). Thus (i) and (ii) hold for

S, = O\UJ Q. By (5.4) and (5.6), 02(Q) satisfies

(5.7) length(3(Q)) < 22¥ *14(Q).
[F(2)| 28
S, R (@) S3
IFl<2™ 1764100
S2 R0
Sk R(@)
| [
] TTITTTITT1T
Q(II) Q(ZI)

Figure VIILS. A case I square Q when N = 2. The first generation G,(Q) consists of the
darkly shaded squares. The squares S, on which inf| f(z)] <27V, in #(Q) are lighlty shaded.
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Case 11: supl f(2)] < d/2.
T(Q)

In this case the first generation G,(Q) consists of those @, = Q such that
Sélplf(Z)l > 0/2
and Q, is maximal. The squares Q" in G,(Q) have pairwise disjoint interiors.
Let
AQ) =\ | 0"

GuQ)

In this case the picture is like Fig. VIIL.3. On #(Q) we have | f(z)| < /2, and
if S, = Z(Q), then by (5.2), sups, | f(2)| < é. Also, we have

(5.8) L(0R(Q)) < 6£(Q) < 22V+14(Q).

Starting with the unit square Q°, we apply either Case I or 11, and form the
region Z(Q°). Then apply either Case I or II to each square Q4" in the first
generation G, = G(Q°). We obtain new regions #(Q'") and a second genera-
tion

G, =) G.(@P),
Gy

which consists of all first generation descendants of squares from G,. Con-
tinue this process indefinitely, obtaining succeeding generations Gj, Gy, . .. .
Define

e o)

Z=20%uU | u{2QP): Q0P edq,).

p=1
By the construction, (i) and (ii) hold for S, = Q°.
The same case need not apply to all the squares in a given generation G,
but each first generation descendant of a Case II square is a Case I square.
This means that we never use Case I1 two times in succession. By (5.7), (5.8),

and especially (5.5), we see that arc length on 02 is a Carleson measure. We
have

QM oR) < 22VTH(Q) + 22V Y {AQP): 0 = 0},
and, because generation squares are nested, (5.5) gives
2O QP = Q) <2 3 27(Q) = 24(Q).
q=1

Consequently we obtain

(5.9) HQ N OR) < 3-22N*14(Q).
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which shows that arc length on 6%(Q) is a Carleson measure with constant
A = 3.2?""! depending only on 6. Because we want a smooth function
Y(z) we need a slightly different formulation of (5.9). For any Q let

8Q) = {S:85in Qi+ I}
If S, € #(Q) and if §k is concentric with S, but nine times as large, then
(S < et (8N Q N o),

because the only contribution to 0 within §k comes from squares S; with
edge length 7(S;) > #(S,)/2. No point lies in more than nine squares S, so
that (5.9) yields

(5.10) 2 1(S) < 2°NT(Q).
Q)

For each small square S, let /; € C*({y > O}) satisfy
;=0 on §;,
;=1 on {y> 0}\§j,
0<y; <1, V| < c/4(S)).
Since no point lies in more than nine squares §, the function

Vi) =[] ¥f2)

S;cR
is C* on the upper half plane, and
(5.11) V()| < ¢/£(Sy),  z€S,.

Moreover Vi(z) = O except on those squares S, with S, N 0% # &. By
{(5.10) and (5.11) this means that

Jl[th//l dxdy < C2V*1£(Q)
Q

for any square Q on {y = 0}. Hence |V{/| dx dy is a Carleson measure with
constant A(d). Clearly 0 < ¢ < 1, and (a) holds. By (i) and (ii), conditions
(b) and (c) hold for points in Q°. O

6. Gradients of Bounded Harmonic Functions

Much of the difficulty with the corona theorem rests in the fact that when
feH®, | f'(z)| dx dy need not be a Carleson measure. See Chapter VI,
Exercise 9, for an example. The theorem in this section provides a detour
around that obstruction.
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Theorem 6.1.  Let u(z) be a bounded harmonic function on the upper half plane
H and let ¢ > 0. There exists a C* function ¢(z) on H# such that

(6.1) lo(z) — u(z)| <&

and such that |Vo|dx dy is a Carleson measure,

62) fleldx@zs(k‘ﬂWH;dQl
Q

whenever Q = {a < x < a + 7(Q), 0 < y < £(Q)}. The constant C in (6.2) is
independent of & and u(z).

This theorem is a compromise between something true, that y|Vu|* dx dy
is a Carleson measure, and something more desirable but false, that | Vu|dx dy
should be a Carleson measure. Theorem 5.1 is an immediate corollary. Let
feH®, | fls <1, and let § > 0. Take h € C*(R) with h(x) = 1, x > 36/4,
h(x) = 0, x < /2 and with 0 < h(x) < 1. If ¢ is the C* function given by
Theorem 6.1 with ¢ = §/4, then Y = ho ¢ has the properties asserted in
Theorem 5.1, with &(0) = /4.

The theorem holds more generally when u(z) is the Poisson integral of a
BMO function, and the BMO result, even with ¢ large, gives yet another
proof of the H'-BMO duality (see Exercise 11). The proof of duality in
Chapter VI used the disc analog of the inequality

63) ﬂMWmescwW@x
Q

which is much more accessible than (6.2). (See Chapter VI, Theorem 3.4,
and Exercise 5 of that chapter.)

Examples exist for which the function ¢(z) in Theorem 6.1 cannot be a
harmonic function (see Exercise 12).

Theorem 6.1 includes a quantative formulation of Fatou’s theorem. Let
u(z) be a bounded harmonic function on {y > 0} and let ¢ > 0. For x € R, let
N (x) denote the number of times u(x + iy) oscillates by ¢ units in the
segment 0 < y < 1. To be precise, say N,(x) > n if there are

O<yo<yr<ya<--<y=l1

such that |u(x + iy;) — u(x + iy;+,)| > & Fatou’s theorem asserts that for
each ¢ > 0, N(x) < oo almost everywhere.

Corollary 6.2. Ife > 0, if u(z) is harmonic on {y > 0}, and if |lu , < 1, then
fNe(x) dx < Ce™”
I

whenever I is an interval of unit length.
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Proof. Let ¢ € C® satisfy (6.1) and (6.2) with ¢/2 in place of &. If N(x) > n,
then there are yo <y; <y, <---<y,<1 such that |o(x +iy;) —
o(x + iy;+1)| = /3. Hence

1 (3(/) ‘ n—1 y,+1aq)
— (x +iy)|dy > f — (x +iy)dy|,
fo 6)’( Y Y J;O i dy
> ne/3,

and so j}) |0p/dy| dy = N (x)e/3. Then if [I| = 1, (6.2) gives

1
fNe(x) dx < 3/sf j Vol dy dx < e,
I Iv0

as desired. [

This corollary is suggestive of the theorem on harmonic interpolation
sequences, Theorem 4.2 of Chapter VII, because both resuits restrict the
oscillations of a bounded harmonic function, and one can easily derive the
harmonic interpolation theorem from Corollary 6.2. The connection
between Theorem 6.1 and harmonic interpolations will be discussed more
fully in Chapter X. Corollary 6.2 does not obviously follow from inequality
(6.3). However, the analogous result for averages over dyadic intervals,
Lemma 6.4, is an easy consequence of the martingale version of (6.3). See the
remarks after the proof of Lemma 6.4.

The constants ¢~ 7 in Corollary 6.2 and ¢~ © in (6.2) are not sharp. Dahlberg
[1980] recently obtained ¢~ ! in (6.2). His local theorem contains Theorem
6.1 and a similar result for Poisson integrals of L? functions, p > 2. Dahlberg
uses the Lusin area integral for Lipschitz domains where we shall compare
u(z) to a simpler martingale.

Here is the strategy of the proof of Theorem 6.1. We know that y|Vu|?*dxdy
is a Carleson measure. So at points where u(z) has large oscillation, that is,
where y|Vu| > d(¢), we have |Vu(z)| < 6~ }(¢)y|Vu|?. Thus the restriction of
|Vu(z)| dx dy to {z: y|Vu(z)| = d(¢)} is already a Carleson measure, and we
can take ¢(z) = u(z) on that set. We are left with the set where u(z) has small
oscillation. Temporarily relaxing the requirement that ¢ € C*, we choose a
piecewise constant function ¢(z) such that |p(z) — u(z)| < ¢ at almost every
point where the oscillation is small, and such that ¢(z) jumps by about & units
when z crosses the edges of certain dyadic squares. These squares are deter-
mined by a stopping time argument and they satisfy the nesting condition

Y AQ) < CEY(Q).
Q,;<cQ

As a distribution, |V¢| resembles arc length on the boundaries of the Q;,
and hence |V¢| is a Carleson measure. Thus the idea is simply to flatten out
the small oscillations as much as possible.
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It will be convenient to replace Poisson integrals by the averages of u(t)

over dyadic intervals,

Lemma 6.3. Let u(z) = P, * u(x) be a bounded harmonic function on the

upper half plane and let I be an interval on R. Then for 0 < & < 4,

(6.4) < ¢d log 4] o

1
i fu(t)dt i Ju(x + i0|I)dx

where the constant ¢ does not depend on u(z), on 9, or on L.

Proof. By a change of scale we can take I = [0, 1]. We can also assume
|ull, = 1. Then the left side of (6.4) has supremum || F||,, where

F() = 21(t) — f Pa(x — ) dx.

If dist(¢, I) > 0, then

1 1
HOIE= J( (dlst(t D1+ dist, 1))'

20 [~ (1 1 26 1
|F(t dts—f ( ):—lo <1+).
List(r,1)>é ) T Js \S s+ 1 T & )

Since |F||,, < 1 we also have

Hence

f |F(t)| dt + J |F(t)| dt < 46.
|t]<é

|1—t]<é

What remains is the interval J = (6,1 — J). Fort € J,
0 ©
F(i) = J Psx — t)dx + f Ps(x — t)dx = G(t) + G,(¢)
— 0 1

and

LlGl(t)Idt - £|c;2(t)| dt < g f - Jow (?d_x—t)zdt

5[1 "dt 5. 1
< — ,1
nlts ot g5

That establishes (6.4). [

Now fix a dyadic interval I and fix a positive integer N. Fork = 1,2,...,
partition I into 2™ closed dyadic intervals I, of length |I,| = 27 ™|I].
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Fix ¢ > O and let u(t) be an L* function defined on I. Define the first genera-
tion G, = G,(I) to be the set of maximal I, < I for which

|u1k —_ u1| > E&.

The intervals in G,(I) have pairwise disjoint interiors. For I, € G,(I) define
G,(1,) in the same way and set

G, =Gy)(I) = U {G(I): 1, € G}

Later generations G3, G, ... are defined inductively, so each I, € G, is
contained in a unique I; € G, and |u;, — u;,| > & Lebesgue’s theorem asserts
that almost every point lies in a finite number of generation intervals. We
need a quantative formulation of that theorem.

Lemma 6.4. For every ¢ > 0 and for every positive integer N,

3 l[ull %

X2 Ihl<

p=11;eGp

I|.
il

Proof. Set G, = {I}andset E, = I\ Jg, I;,p =0, 1,2,.... Define
Y, (6) = u(®)xe,(t) + 3 ug, 11,(0).
Go

Then | Y, — Y,_;| > e on | Jg, I;, and hence
a0 1 0
5 z|1,.|s—f S Y, - ¥, 2 de
I p=1

2
p=1Gp &

When Ik € Gp—l we haVe

f Y, dt = J. utydt + Y | uy,dt
Ix IxnEp

Ijicly Y1,
IjeGp

= [ w0 de = 11,
I
and, since Y,_, = u;, on I,
J‘ Ypr—l dt = 'Iklu%k = f Yg—l dt
I I

Similarly, because E, > E,_; we have

f Y,,Y,,_ldt=f uz(t)dt=j Y2_,dt
E Ep -1 Ep -1

p -1
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Consequently,
f}’p}’l,_1 dr = JYﬁ_l dt
I I
and

lep— Y|P dt = fYﬁdt— ZJYpr_ldt + JYﬁ_ldt
1 I I I

I I
Hence

f Y |Y, - Y, [dt = lim (|Yp|2—|Y0|2)dz=fu2dt—u,2|1|
I p= I

=1 p—roo vI
< [lullZ 111,
and the lemma is proved. [l

Lemma 6.4 is really a theorem about martingales. One can view {Y,} as a
martingale restricted to a sequence of stopping times. In the proof above, the
dominant expression Y |Y, — Y,_,|* is the square of the martingale S-
function. Curiously, the S-function is the analog for martingales of the
Littlewood-Paley expression y|Vu|? dx dy.

Proof of Theorem 6.1. We first find a discontinuous function ¢,(z) satisfy-
ing (6.1) almost everywhere such that the distribution |V, | is a Carleson
measure. This function will only be constructed in the unit square Qq =
{0 < x £ 1,0 < y < 1}. A partition of unity can be used to obtain a similar
function on the upper half plane. At tlie end we mollify the latter function
into a C* function satisfying (6.1) and (6.2).
Choose § = 27" so that we have

€

3 < ¢d log% < 2
in (64). For k =1, 2, ..., consider the 2"* dyadic squares Q, of the form
Q={27™<x<(+ D27 0<y <2 Set S(Q) = @\ Qes1
=0, {y > 27V/(Qy)}, and let I, = Qf be the vertical projection of Q-
Write

1
ag,(u) = — j ulx + 27 NI, dx
L] i,
for the average of u(z) over the bottom edge of S(Q,). By Lemma 6.3 and by
the choice of N,
(6.5) lag, () — up,| < (&/8)lull

holds for every harmonic function u(z).
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We say S(Q,) is a blue rectangle if

(6.6) sup u(z) — u(w)| < ¢/4.
S(Qu)
A rectangle S(Q,) on which (6.6) fails is called a red rectangle. There are two
steps in the proof. In step I we approximate u(z) on the blue rectangles by a
piecewise constant function. In step II we correct the approximation on the
red rectangles.
We assume that |lul|, = 1 and that ¢ < 1.

Step I: The zero generation G, consists of the unit square Q,. The first
generation G, = G,(Q,) consists of the maximal Q, = @, for which

6.7) luy, — up,| = ¢/4.

When Q; is in the first generation, G(Q;) is defined in the same manner. The
second generation G, = G,(Q,)is () {G,(Q,): Q; € G,},and the later genera-
tions Gj, Gy, ... are defined inductively. Except in that we are using ¢/4
instead of ¢, the generations of squares here correspond naturally to the
generations of intervals I, defined before Lemma 6.4. For each generation
square Q; we form the region
@(Qj) = Qj\ U (%
G1(Q))

Then by (6.7), Z(Q;) is a union of rectangles S(Q,) = Q; such that |u;, — u;,
< &/4. By (6.5) this means that

(6.8) lag,(u) — ag,(u)| < 3¢/4,

when S(Q,) = Z(Q;). Each S(Q,) is contained in a unique #(Q;). When two
generation squares Q; and Q, are distinct, their regions 2(Q;) and Z2(Q,) have
disjoint interiors. Relative to the open upper half plane, 02(Q;) consists of
horizontal and vertical segments. The intersections of these segments from one
0R(Q;) with any square Q have lengths summing to no more than 6/(Q). See
Figure VIIL6.

@0

2-11/
2-2/V

Figure VIIL.6. The squares Q, if N = 3. The rectangle S(Q,) is blue. On the left a red
rectangle S(Q, ) has been lightly shaded to indicate that supsg,)|u(z) — u(w)| > ¢/4. The squares
in the first generation G,(Q,) are darkly shaded. For a point in the unshaded region,
lu(z) — ag,(u)| < & The region #(Q,) is the union of the unshaded region and the red rectangle.
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For each generation square Q;, including the unit square Q,, define
¢1(z) = ag(u) on the interior 2°(Q;) of #(Q). Thus

(pl(Z)Z i Z an(u)X@o(Qj)(Z).

p=0 QjeGp

The set | ] d%(Q;), on which ¢, has not been defined, has area zero and can
be ignored because for now we are only trying to find ¢(z) with | — u| < ¢
almost everywhere.

Suppose S(Q,,) is a blue rectangle. Then by (6.6),

sup |u(z) — ag, (W) < &/4.

S(Qn)
There is a unique generation square Q; such that S(Q,) = #(Q;), and by
(6.8), |ag,(u) — ag (u)| < 3e/4, so that
(6.9) l@1(z) —u(z)| < e

on S(Q,) N 2°(Q)). Therefore (6.9) holds almost everywhere on each blue
rectangle.
We are interested in |V, | only as a distribution on the upper half plane,

where
dp; 0,
Vo, = |——,—/—
(pl (ax ’ ay

Oxangy aX@WQn)
pzo Q,gcpaQ’( )( ox 7 oy

As a distribution on {y > 0}, 0y40(g,)/0y is the measure —dx along the top
edge of Q;, plus the sum of the measures dx along the other horizontal
segments in {y > 0} N d(Q)). Similarly, 070 ,/0x is a signed sum of the
measures dy on the vertical segments in d2(Q;). Hence [Vygo(,| is the arc
length measure on I'; = {y > 0} n 02(Q)). Since |ap ()| < |lull, = 1,

IVo,| < Z Z |VXQ(Q,-)|

p=0 QjeGp
and

(6.10) [1¥011 < X tengin(@ ),
(9]

the sum being taken over all generation squares Q;.
We claim that

(6.11) Y length(Q N T}) < Ce™%4(Q)
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for every square Q resting on y = 0. With (6.10), that proves |Vo,| is a
Carleson measure. In proving (6.11) we can assume that Q is a dyadic square
Q={27"<x<(+ 127" 0<y< 27"} Consider first those Q; such
thatQ NnT'; =T ;noR(Q;) n {y > 0} # J, but such that Q; ¢ Q. I, in this
case, 7(Q;) < /(Q), then Q N T'; is a segment along one vertical edge of Q.
These segments are pairwise disjoint, so that these Q; contribute at most
2/(Q) to the sum (6.11). There can be at most two squares Q; such that
£(Q;) > £(Q) and such that Q nT’; # . For each of these Q; we have
length(Q nT}) < 6/(Q), so these squares contribute no more than 12£(Q) in
(6.11). Now consider the generation squares Q; such that 0; = Q. By Lemma
6.4,

Y length(Q nT) <6 ) £(Q)) <6/(Q) + Eg £(0).

Q;=Q Q;<Q
Since ¢ < 1, we have inequality (6.11) and |V, | is a Carleson measure.

Step II:  We have found a function ¢,(z) such that |V, | is a Carleson
measure, such that ¢,(z) is constant on the interior of each rectangle S(Q,)
and such that |@, — u| < ¢ almost everywhere on the blue rectangles S(Q,).
Now we approximate u(z) on the red rectangles, which are the S(Q,) =
{xel,2""|I,| <y <|I} such that

sup |u(z) — u(w)| > ¢/4.
S(Qx)

Write
# = {500}

red

for the union of the red rectangles.
Let S(Q,) be a red rectangle and take z,, z, € S(Q,) such that |u(z;) —
u(z,)| > ¢/4. At some point z, on the segment joining z, to z, we have

|z, — z5] | Vu(zy)| > &/4.
Since |z, — z,| < /24(Qy) < 2V Im z, = 2V* 1y, this gives
2V 36 [ Vu(zo)| > e,
so that by the subharmonicity of |Vu|?,

ff y|Vul? dx dy = 3y, Jf |Vu|? dx dy

|z—zo| <yo/2 1z—zo| <yo/2

> ce?27 2 Ny,.
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Letting S5(Q)) = Uoesi00 12112 — 2ol < Im z0/2}, we obtain

(6.12) ffyquIz dx dy > ce?273N(Qy).

5(0w)

No point lies in more than four regions S(Q,). Because y|Vu|? is a Carleson
measure, (6.12) then yields

(6.13) 2 A(Q): O = Q, S(Qu) red} < ce™?2°V/(Q)

for every square Q. In particular, the arc length 0% is a Carleson measure
with constant ce™ 223V,
On the other hand, the inequality y|Vu}| < ¢ yields

(6.14) ffquI dxdy < ¢ ff @ = c¢N/(Q,)

S(Qu) S(Qk)
for any rectangle S(Q,). When S(Q,) is red, (6.12) and (6.14) give

(6.15) ffIVuI dx dy < cNe™ 223¥ ffyIVulz dx dy,

5(Qx) 50w
so that | Vu(z)| ya(z) dx dy is a Carleson measure with constant cNe~ 223",
Now define

sy = {01z
2 u(z), ZEXR.

Then | ¢,(z) — u(z)| < ¢ almost everywhere on #. As a distribution
Vo, = xgoa Vo1 + 1a Vu + J,

where the remainder term J accounts for the jumps in ¢,(z) as z crosses 0%.
Since |@,| < 1 + ¢, J is a measure and |J| is dominated by 1 + ¢ times arc
length on 0%. Thus by (6.13), |J| is a Carleson measure with constant
C23%¢™2. By (6.15), x2|Vu| dx dy'is also a Carleson measure, with constant
CN23N¢™ 2 In the discussion of step I we showed |V, | is a Carleson measure
with constant Ce™ 2. The integer N was chosen so that N2~V ~ ¢ and the
worst constant in the three estimates comes from y,|Vu| dx dy. We obtain

(6.16) f [Vp,| dx dy < Ce™°/(Q)
Q
for every square Q.

We have built a function ¢, on the unit square Q, such that [V, | satisﬁes
(6.16) and such that | @, — u| < ealmost everywhere on Q,. Using a partition
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of unity, it is now easy to get a function ¢, on # such that |[¢; — u| < ¢
almost everywhere on # and such that | V5| satisfies (6.16). A C* function
satisfying (6.1) and (6.2) can now be obtained by mollifying ¢,. Let h(z) €
C*(R?) be such that h(z) > O, fh(z) dxdy =1 and h(z) =0 if |z] = 1.
Assume also that h(z) is radial, h(z) = h(|z|). For § > 0, set hyz) =
(1/6%)h(z/3). Then @5 * hs is C®. If § < Im z, then | @5 * hy(z) — u(z)| < &,
because u * hy(z) = u(z)sinceu is harmonicand h;is radial. Tokeepd < Im z,
partition {y > 0} into strips T, = {27" <y <27"*!} and set T=Tu
T,., U T,_,. Choose g, = g,(v) € C® such that g, is supported on T,, such
that 0 < g, < 1 and |Vg,| = |9g,/dy| < c2", and such that ) ©®, g, =1 on
{y > 0}.

o(z) = _Z 9u(YN@3 * ha-n-2)(2)

is C* and |@(z) — u(z)| < &. Forze T, 3 * hy-n-2(2) = @3(2) if
dist(z, 02 L | ;) = 272

because then ¢; is harmonic on |w — z| < 27"72, Thus we only have to
estimate |Vo| dx dy on

V =

s

T.n{z:distz,oz 0 |JT) <272}

8

FixadyadicsquareQ = {j277 < x < (j + 1)277,0 < y < 277}, paninteger.
Then because

Vo) = 3 (03 % by (IVG2) + 3 0,Vpa * hy-n-sXa),

we have

f|Vq)(z)|dxdysc Y 2MQnvVAT

n=p-—-1
QnvV

+ Z IVos| * hy-n-2(2) dx dy.

n=p-1

Since |0 NV T <c2 "length(Q N T, N (0% U U I'})), the first sum is
bounded by ce~°/(Q). The second sum does not exceed

)3 Vosl,

n=p—1vW,
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where W, = {z:dist(z, @ n T)) < 27"~ 2}. These sets W, are locally finite, no
point lies in more than five W,. The union | J,»,-; W, is contained in a
square 16 times as large as Q. Hence

y IVo| < Ce~627.
n=p—1 vW,

Since £(Q) = 27 %, we see that ¢(z) satisfies (6.2). That completes the proof of
the theorem. [

7. A Constructive Solution of 6b/07 = p

To prove the corona theorem we used a duality argument to get the crucial
estimate

1
7.1 bl, <Cs —ded
(7.1) Ibll < € sup 7o | 161 dx dy

for some solution of the equation
0b/0z = G(z2), |z] < 1.

Recently Peter Jones found a direct way to obtain (7.1). His method simul-
taneously yields a constructive proof of the basic decomposition

(7.2) ¢ = u + Hv, u,ve L™,

of a BMO function. The construction is quite explicit and it should have
further applications.

Let u be a Carleson measure on the upper half plane. Assume y is positive
and normalized, so that

N(p) = szp wQ)/4(Q) < 1.

Jones solved
(7.3) objoz = p, Imz >0,

with |b(t)| < C almost everywhere on R, by exploiting the relation between
Carleson measures and interpolating sequences. First consider a very special
case.

Casel: p=Y a;y ;0.,, where {z;} is a finite sequence of points such that

LI BN BN

(14

Jsi#k | Tk =



Sect. 7 A CONSTRUCTIVE SOLUTION OF 0b/0Z = 359

with § a fixed constant, and where 0 < «; < 1. Let B,(z) be the Blaschke
product with zeros {z;}. By Green’s theorem the distribution (9/0z)(1/B,(z))
equals

T
=3, =Y B0,
D TR LR

where 1 < |B;| < 1/6. By Earl’s proof of the interpolation theorem (Theorem
5.1 of Chapter VII) there is a second Blaschke product B,(z) with zeros {;
satisfying

p(z;, ;) < 0/3
such that
Ké_sBz(Zj) = “j/ﬁj,
where K is an absolute constant. The rational function
b(z) = K67 *(B,(2)/B1(2))
solves (7.3) and |b(t)| < K62 on R.

Case II: Again u is a positive discrete measure with finite support,
p=y, %;y;6,,, but N(u) <1 and the coefficients «; are rational, a; = k;/N.
The main difference between Cases II and I is that here the constant J in (7.4)
may be very small. Since N(u) < 1, we have 1 < k; < N. Relabeling the
points so that z; occurs with multiplicity k;, we have

1
#=NZ%%-

The top half of any square Q resting on {y = 0} contains at most 2N points
z;, counting multiplicities, because N(u) < 1. We are going to partition {z;}
into 4N interpolating sequences having uniformly bounded constants.
Write

Sp={z;:27" ' <y; <27

and order the z; € S, according to increasing real parts S, = {x; , + Vi, n}
with
Xg—1,n S Xpow < Xy, -

Split {z;} into 2N subsequences Y;, Y,, ..., Y,y, evenly distributing the
points in each §,. That is, put z; = x; , + iy, in Y, if and only if k =
p mod(2N). Fix a dyadic square Q and let M,(Q) be the number of points z ;in
S, 0 Q. The subsequences have been chosen so that each set Y, S, n Q
contains at most

1 + M, (Q)/2N
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points z;. Consequently

M..(Q)) _
y; < 1 + 27"
szn:Q ! 2-"<4(Q) ( 2N

1
< > 27+ — 2y;
2°7<2(Q) 2N ZJZG:Q !

< 24(Q) + w(Q) < 34(Q).

Also, the points in Y, N | J,even S, are very well separated. Two points from
one of these subsequences satisfy

lzj — zi| = y,/2.

Thus each Y, is the union of two interpolating sequences having large con-
stants ¢ in (7.4). By the very special case treated above, we have a rational
function b ,(z) such that

ob

6_; = Yzyjézj
and |b,(t)| < C',te R. Then

1 2N
b(z) =— ) bz

@) =5 L

is a solution of (7.3) and
b))l < C, teR,

with C independent of N.

Case I1I: Now let u be any positive measure on J# such that N(u) < 1.
There is a sequence {u,} of measures of the type treated in Case II such that

f«p dity — f odun,  0eCIA),

and such that
f|f|duﬁf|f|du, feH

(First restrict u to a compact subset of #. Then partition J# into hyper-
bolically small squares and concentrate the mass of each square at its center.)
Let b,(z) be the solution of db,/dZ = u, obtained in Case IL. Then {b,(t)}
converges weak-star to b(t) € L* and |b||,, < C. Moreover, {b,(z)} con-
verges to a distribution solution of (7.3) on the upper half plane. For ap-
plications this distribution must be reconciled with its boundary function
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b(t), but that is not a serious difficulty. To avoid unimportant technicalities,
let us move to the unit disc. Then b,(z) is a rational function with no poles
on 0D, and by residues,

I fow) dz = fo(z) (), feH"

2mi lz]=1

Consequently we have

1

9 | o= | fowe,  ren.
T Jiz|=1 D

Now (7.5) is an interpretation of db/0z = u sufficient for our applications.

g

In the corona problem we had du = (1/n)G dx dy, with G € C*(D), and
by (1.2) we had a function F € C(D) n C®(D), with 0F/0z = G(z). Then by
Green’s theorem

1
L reF@d= - f f 1(2)G() dx dy.

2mi Jyz)=4

By (7.5) this means h(e’®) = F(e®®) — b(e'®) € H®, and so
b(z) = F(z) — h(z)

is a smooth solution bounded on the disc that satisfies |b(e?)| < C almost
everywhere. If we put such functions b(z) into (2.7) we obtain a proof of the
corona theorem without recourse to duality.

Jones’s approach is even more transparent in the notation of distribution
derivatives. Then our differential equation is

0bjoz = p,

where u can be taken absolutely continuous to arc length on a contour I' of
the type constructed in Section 4 or 5. On I' arc length is a Carleson measure
and the density defining u is bounded above and below. In this case the
interpolating Blaschke products are easy to visualize; they resemble the
Blaschke product constructed in Section 4. The solution b(z) can be recog-
nized as an average of interpolating Blaschke products. (See the example at
the end of this section.)

To prove the decomposition (7.2) let ¢ be a real function in BMO(T),
el < 1. By Exercise 13 of Chapter VI, there exist Yy € L™, ||{/||, < A4, and
F(z) e C*(D) and g € L' such that

|F(re)| < g(e),
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such that
@(0) = Y(0) + lim F(re”) = y(6) + F(9),

r—1

and such that |[VF|dx dy is a Carleson measure with N(|VF|dx dy) < A.
Let b(z) be the solution of

ob _10F
0z m 0z

given by Jones’s procedure. Then |b(0)| < CA and
o=y +b+(F-b

almost everywhere on T. Arguing formally for a moment, we have (F — b)~
= —i(F — b), because F — b is analytic, and so

o=y +b+iF—ib.
Taking real parts, we obtain
¢ =\ + Reb) + (Imb)~,

which is (7.2). To make this reasoning precise, notice that by (7.5)

1 1 oF
i fz b(z) dz = - J:[z ¥ dx dy.
D

On the other hand, since | F(re')| < g(0) € L, dominated convergence gives

1 n 1 . OF
I fz F(z)dz = - JJZ de dy.
D

Consequently F(e’) — b(e®) € H', so that we really do have
(F — b)™ = —i(F — b).

An attractive aspect of this approach to (7.2) is that the Varopoulos con-
struction of F(z) is very explicit. The method in this section also gives a
constructive way of finding g € H® such that

I f— gle < Cdist(f, H®)

when fe L.
For an example, write x € [0, 1] in base 5, x = ) o, 57, and let o(x) =
Y 16.(x), Ex = {x:0; = 1 or o, = 3}. Then ¢ € BMO (see Figure VIIL7). If
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Figure VIIL.7. The function ¢(x).

F(x, y) is constructed with pentadic squares instead of dyadic squares, then

F(x,y) = ; 150, 5-19V)-

Then ¢(x) = lim,_, F(x, y) and | VF|is bounded by arc length on the curves
in # pictured in Figure VIIL8. Cut these curves into segments of bounded
hyperbolic length, uniformly parametrized by ¢, 0 < t < 1. For each ¢, let
B (t, z) be the Blaschke product with one zero on each segment at position ¢.
The zeros of B,(t, z) form an interpolating sequence, with constant J in-
dependent of ¢. They are marked by crosses in Figure VIILS, for t = 0.8, say.
The bounded solution of 0b/0Z = 0F/0zZ is

B,(t, x)
blx) = o Bi(t, x)

where B,(t, x) is another interpolating Blaschke product. Its zeros are
marked with dots in the figure. The decomposition (7.2) is

¢o(x) = Re b(x) + (Im b(x))".

X
X

3¢

T P

% S

u] a0

Figure VIIL.8. The zeros of B,(z, z) are marked by crosses; the zeros of B,(t, z) are marked
by dots.
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Appendix : The Koszul Complex

The Koszul complex is a general algebraic mechanism that, in the case of
the corona problem, leads from smooth corona solutions ¢y, ..., @, to the
appropriate differential equations (2.9). In our setting the complex works as
follows. Let U be the ring of all analytic functions on D and let & be the ring
of all C* functions on D. Then U is a subring of &. Also let &, ,, be the &
module of (0, 1) forms g dz, g € . For the case we are considering &, 1, is
isomorphic to &, but it will be convenient to distinguish between functions
h(z) and differential forms g dZ of type (0, 1). Define

0:6 - Eo,1y

by 0h = (0h/0zZ) dz. Then A = & is the kernel of 4.
Let # denote either U, or &, or &y, 1,. Let A%(%#) = # and let A'(#) be the
module of all expressions of the form

Y hjej,  hjeR,
ji=1

where the e; are place markers. Thus A'(£) is the direct sum of n copies of %.
Also let A*(%) be the module of all expressions of the form

n
Y hjejAe,  hieR,
jk=1
where we require that
(A.1) ejAe= —e Nej

a familiar condition in alternating linear algebra. Thus A%(#) has dimension
n(n — 1)/2 over Z. We define

5 : Ap(g) - Ap(g(o, 1))5 D= 09 1’ 2’
by differentiating the coefficients of the place markers e; or e; A ¢,. That is,
0Q hje) =Y (Gh)e; and O hj.e; A e) =1 0Ohj.e; A e

Then AP(A) = AP(£) is the kernel of 0. Using (1.2), and a partition of unity if
our functions are not bounded, we see that for each p = 0, 1, 2 the  mapping
is surjective. This means the sequence

0 — AP(A) > A &) S AP(E . 1) = O
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is exact; at each step the kernel of the outgoing map is the range of the
incoming map. Let 1 € AP(&), p = 0, 1 and let w € AYXR), q = 0, 1, where #
is either of the & modules & or & o, 1,- The wedge product © A w € AP*4(R) is
defined by setting

frag=j,
f A ge;=fe; n g = fge;,
fei N ge, = fge; A e,
and by requiring that T A ® be &-bilinear; that is, T A ® is to be &-linear in
each variable.
Now letf,, f,, ..., f, be corona data. For p = 1, 2, define
J:AP(R) - AP N (R)

by
14

J(he;, nejy Ao ne)= D (=1 hey As AEL A A e
k=1

where the circumflex over a marker e;, indicates that e, is deleted. The
mapping J is then defined on the full module AP(#) by requiring that J be
R-linear. The factors (—1)** ! make the definition of J consistent with the
alternating condition (A.1). In particular

J( > gjej) = Y fi9;-

j=1 j=1

A simple calculation shows that J? = 0, and we have another sequence
AA(R) D AR D % - 0.

Now let ¢, @5, ..., @, be any set of C® corona solutions. Then ¢ =
z p;e;e AN(&) and J(op) = Y fio; = 1.1f Ae AP(#R) and if J(4) = 0, then

Jon)y=J@)ALt—0 A JA) =4

Consequently the J-sequence is exact when # = & or Z = &y, ). Finally,
since the f; are analytic,

Jo =4aJ,
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and we have the commutative diagram

0 0 0

d
Ay —— AU LS A —— 0

AE) —L A L5 & — 0

J

AXEo.1) —— A1) —— o, — O

3

~ v

0 0 0

In the diagram each column is exact and, except for the W-row, each row is
exact. We are seeking g = ) gje; € A'(Y) such that J(g) = Y. fig; = 1. We
do have ¢ = ). @;e; € A (&) with J(¢) = 1, and a diagram chase will now
yield g and the differential equations (2.9). Since J dp = dJo = 0,0¢p = Jw
for =@ A 0p € A* (&, ). There is b =) b; e; A e, € A*(&) such that
0b = w. This is precisely the system (2.9). Then 0Jb = J 0b = Jw = 0¢, s0
that d(¢p — Jb) = Oand g = ¢ — Jb € A*(N). Since J = 0, we also have

J(g)=J(p —Jb) =1

The components of this vector g € A*() are exactly the corona solutions
given by (2.7) and (2.8).

For the corona problem on a domain in C", n > 1, the Koszul complex
has longer rows and columns, but it does reduce the problem to a system of
differential equations.

Notes

Theorem 1.1 is in Carleson [1962a], while Theorem 1.2 is a recent idea
of Wolff’s [1980]. Theorem 2.1 is due to Carleson [1962a], but the line of
reasoning in Section 2 comes from Wolff [1980].

The connection between the corona theorem and differential equations
and the Koszul complex was noticed by Hérmander [1967a] (see also
Carleson [1970]), but the basic difficulties have remained the same as they
were in Carleson [1962a].
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Theorem 3.2 is from Carleson’s exposition [1970]. The theorems in
Section 3 can also be derived from a theorem on harmonic measures known
as Hall's lemma. Let E be a compact subset of the upper half plane such that
Q = #\E is connected, and let w(z), z € Q, be the harmonic measure of
E. Hall’s lemma is the estimate

1 y
oz =2 ————
(Z)_37zL~(|x|+t)2+y2

where E = {|z|: z € E} is the angular projection of E onto the positive real
axis and where the Poisson kernel represents the image —|x| + iy of
z = x + iy under a folding. For the proof see Duren [1970] or Hall [1937].
By means of elementary conformal mappings this inequality gives bounds on
the lengths of vertical projections. Hall’s lemma has certain advantages
because it gives simple relations between the numbers « and f of Theorems
3.1 and 3.2 (see Exercise 7). On the other hand, the proof in the text illustrates
the power of maximal functions. Incidentally, the best constant to replace %
in Hall’s lemma is not known (Hayman [1974]).

Theorem 4.1 is due to Marshall [1976b]. Ziskind [1976] had obtained a
slightly weaker result in the course of proving Theorem 2.2. The construction
of the contour I' originates in Carleson’s [1962a] fundamental paper. If
I' is taken to be a level set, |u(z)| = v will not work and it is necessary to
approximate the level sets by shorter curves (see Exercise 8 below).

Theorem 6.1 is motivated by the work of Varopoulos [1977a, b]. The
philosophy that harmonic functions mimic very simple martingales is
delightfully expressed in Fefferman’s lecture [1974]. Dahlberg [1980] has
improved upon Theorem 6.1 substantially.

The results in Section 7 come from Jones [1980b]. The extension F(z),
so effective in the proof of (7.2), is due to Varopoulos [1977a]. Finding a
constructive proof of the euclidean space analog of (7.2) is an important open
problem in real analysis. As is often the case with higher-dimensional
generalizations, the real question here is how to eliminate Blaschke products
from the construction.

dt,

Exercises and Further Results
1. Let G(z) be continuous on the open unit disc. Suppose that on
|z] < 1 — 1/n there is b,(z) € C! such that
0b,/07 = G

and |b,| < K, with K independent of n. Then by a normal families argument
there is b(z) of class C! such that 6b/0Z = G on |z| < 1.
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2. (a) If Gisabounded function of compact support in the plane and if

:_ﬂao

then F is bounded and continuous and 0F/0Z = G in the distribution sense.

(b) Let f(z) be a bounded analytic function on an open set W in the
complex plane and let A € 0W. Declare f = 0 on C\W. Let x(z) € Cg have
support {|z — A| < &}. Suppose 0 < y <1,y =1 on {|z — A| < &2}, and
|0y/0Z| < cfe. Then

1O-1@u .,
FU—TJ' e LA

has the following properties:

(i) OF/0z = y df /0z, as distributions,
(ii) F(z)is anaiyticon W u {|z — 4| > ¢},
(iii) [F(z)| < Csup{| f(D]:1{ — 4] < ¢ and
(iv) F(z) — f(z) is continuous on {|z — 4| < &/2}.

(c) Let Q be an open set in the plane and let f3, f5, ..., f, € H*(Q), the
bounded analytic functions on Q. If there is a finite open cover {U,},_,of Q
and if there are g% € H*(Q n U,) such that ) ; ;g% =1 on Q n U,, then
there are gy, g,, ..., g, € H*(Q) such that ) fig; = 1. Let y, € C§(U)),
Y x =1 on Q. Perturb the C* solutions ¢; =), x.g¥ to get analytic
solutions g;. Use part (a) to solve the Cauchy-Riemann equations (2.9).

(d) From the assumption that the disc is dense in M it follows that there
exists a constant C(n, §) such that every corona problem (2.1), (2.2) in the
disc has solutions satisfying |lg;|| < C(n, 9). For the proof it is enough to
establish the corona theorem for the open set W = | J&, {—-1 <x <1,
27k"1 <y < 278, which is conformally equivalent to an infinite disjoint
union of discs. So letf}, f3,. . ., f, € H®(W)satisfy || f ||, < 1, max;| f{z)| =6,
z € W. By the localization theorem in part (c) we only have to find solutions
on W {|z— | < n},forsomen > 0,for —1 < A < 1. By part (b) there is
a bounded simply connected domain Q; containing W n {|z — 1| < ¢} and
there are Fy, F,, ..., F, € H®(Q,) such that lim,_,; F{z) — f{(z) = 0. On
Q,, F(z)=z—Aand F,, ..., F, are corona data. From the solutions
Go,Gy,...,G,of Y. F;G; = 1, one can obtain solutions to the original prob-
lemon Wn {|z — 4] < #}.

%(e) There are constants C(n, §, m) such that every corona problem
(2.1), (2.2) on every plane domain of connectivity m has solutions with
lg;ll < Cn, 8, m).
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Parts (c)-(e) are from Gamelin [1970], who also observed that the corona
theorem will hold for all plane domains if and only if the constants in (e)
have bounds not depending on m; see Behrens [1971] as well. Part (¢) above
is not true for general uniform algebras (see Rosay [1968]).

3. Letfy,fo.....u € H, |l fjll <1, and let g € H* satisfy
19(2)| < max| f(z)].
J

It does not follow that g is in the ideal generated by f}, /5, . .., f,. If B, and B,
are two Blaschke products with distinct zeros such that inf (| B,(z)| + |B,(2)])
= 0, then |B,B,| < max(|B,|? |B,|?), but B,B, is not of the form g,B? +
g, BZ. This example is due to Rao [1967].

4. Suppose g, f;, and f, are H” functions, ||g|, < 1, || fjl, < 1, and
suppose

l9(2) < max(| f1(2)[, | f2(2)]).
Then g = g, f; + g, f> with g; € H® if and only if

a_b:gz(flf-/z _f/lfz)
oz (AP +141P?

has a solution bounded on ¢D.

5. Letf,,fs,...,f, be corona data. Then from (2.5),
P

0,50 < L5 KA T~ R T
l#]
where ¥ = )| ;|%, and the analyticity of ; can be exploited to solve
b _ 5 0%
az - %5z

boundedly without recourse to Carleson measures. By duality and Green’s
theorem, as in the proof of Theorem 1.2, it is enough to bound

k' (z)(pJ(z) log ﬁ dx dy

and

d 1
K2+ ( “"") log - dx dy|,
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where k € Hg, ||k|l, = 1. Writing k = (k, + k;)/2 with k; zero free, we can
replace k(z) by g%(z) where g € H?, ||g|l3 < 2. Then J, is dominated by a sum
of 2(n — 1) terms of the form

¥l 1
. flggf,l log —

1/2
| |dx dy < 2(5_3(.[~ lg' | log#dxdy)
z

1 1/2
x (j 01 log s dx dy) .

gfi=@n —gh,

the second factor is bounded by

, 1 12 - 1 1/2
(Hl(gmlogmdxdy) +(jj|g| logmdxdy) :

and J, <267 °gll,(llg fil2 + lgll2) < 857> The form of (6/9z)(¢;0¢,/02)
computed in the proof of Theorem 2.1 shows that J, is dominated by a sum
of cn? terms of the form

By analyticity,

l 1/2
dx dy < 5_4<J lgf;lzlogmdx dy)

1 1/2
x (ngf;lz 1ogmdxdy) .

Twice repeating the trick from above therefore yields J, < cn?6~* (see
Gamelin [1981]).

1
j 63 log

6. (a) In Theorem 3.1 the vertical projection can be replaced by a
nontangential projection. Let E® = {t:T,(t) N E, # &}, where T'(t) is
the cone {z:|x —t| < ay}, a > 0. If lul, < 1 and if suprglu(z)| = B =
B(a, &, a), then |[E?| < e.

(b) For nontangential projections the situation with Theorem 3.2 is a
little more delicate. Let N be a fixed positive integer and let § > 0. Let B(z)
be the Blaschke product with zeros

{jo/N + i6, —o0 < j < oo}

Then B(z) has a zero in each cone I'y y(t) = {z:|x — t| < y/N}, te R So
whatever a > 0 we choose, E, = {|B(z)| < a} meets every cone I'y(t)-
However, when N is fixed

lim|B@)| = e~ 2N,
50
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Thus if B < e 2™V, the conclusion of Theorem 3.2 does not hold for cones
with angle 2 tan~ !(1/N).

(c) However,if f > Ois fixed, there exist N = N(f,¢)and a = a(f, ¢) such
thatif fe H®, | fll, < 1 and supy,| f(z)| = B, then

[{t:Tymt) NE, # J}| <e.

7. Derive the following variant of Theorem 3.2 from Hall's lemma. Let
R be therectangle {0 < x < 4,0 <y < 1},andlet0 < f < 1. Iff(z) e H™,
| £l <1, and if | f(zo)| = B at some point z, in the top half of R, then,
provided A4 is sufficiently large, the vertical projection of

{zeR:| /()| < "}

has measure not exceeding 0.94. Obtain a similar result when log| f(z)| is
replaced by any negative subharmonic function.

8. Let u(z) be the bounded harmonic function on # with boundary
values

) = +1, 2n<t<2n+1,
OS2 m—t1<r<om,

n an integer. Arc length on the set {u = 0} is not a Carleson measure because
this set contains each vertical line {x = n}. So there is an outer function
whose modulus has a large level set. Let B(z) be the Blaschke product with
zeros {n + i: —o00 < n < oo}. On the level set |B(z)| = e~ 2" arc length is
not a Carleson measure. Moving these functions to the disc, one obtains
level sets of infinite length. (See Piranian and Weitsman [1978] and Belna
and Piranian [1981] for similar examples.) Finding a function whose every
level set has infinite length is considerably more difficult. (See the paper of
Jones [1980a].)

9. Use Corollary 6.2 to prove that a harmonic interpolating sequence
is an H® interpolating sequence.

10. Let 1/ be a positive integer and let
1/e2
u(e®) = []( + i(10¢ cos 4*"9)).
n=1
Then |u(e®®)| < C,, with C, independent of ¢. Let N ,(0) denote the number of
times the harmonic extension of u(e®) oscillates by ¢ units on the radius

re® 0 < r < 1. Then
2n

N(6) df > cy/e?,
(o]

with ¢, independent of ¢.
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1. (a) If u(z) = P, * u(x) with u(x) e BMO and if 0 < § < 3, then for
every interval I,

1
< Cé logg el

1
u,——fu(x-&—iélll)dx
I Jr

where C is independent of u(z) and 1.
(b) Ifflull, < 1andif0 < ¢ < 1, then thereis ¢(z) € C*(y > 0) such that

o) —u@l <e and  [[1Volaxdy < COV(Q)
Q

The proof of Theorem 6.1 can be followed except that the BMO condition
must be used to control the jumps of ¢, and ¢@,.
() Use (b) with ¢ = 1 to show BMO is the dual of H.

12, Let 0 < & < 1. Suppose that whenever u(z) is a bounded harmonic
function in the disc, |u|, < 1, there exists a second harmonic function ¢(z)
such that

lo(z) — u(z)| < ¢ and ffquoI dx dy < C(e).

Then if f€ L' has mean value zero,
I/, < C sup (1l = [zD|Vf(2),

|z] <1

where Vf(z) denotes the gradient of the harmonic extension of f. The latter
inequality fails when f(z) = D ;< z?*. This means the function ¢(z) in
Theorem 6.1 cannot always be a harmonic function.

13. If G(z) is continuous on the closed upper half plane and if G(z) has
compact support, then the methods of Section 7 yield a continuous function
b(z) such that db/0z = G and |b|, < CN(|G|dx dy), where N(u) is the
Carleson norm of a measure p.

14. Given f€ L™ use the methods of Section 7 to construct g € H* such that
If— gl < Cdist(f, H®),
with the constant C not dependent on f.

15. Let B be the smallest closed subalgebra of H* containing the functions
z and (1 — z). Then D is an open subset of My, and |(1 — z)| is bounded
below on D but (1 — z)~* ¢ B. Thus D is not dense in M (Dawson [1975)).



IX
Douglas Algebras

We come to the beautiful theory, due to D. Sarason, S.-Y. Chang, and
D. E. Marshall, of the uniform algebras between H® and L®. The results
themselves are very pleasing esthetically, and the proofs present an interesting
blend of the concrete and the abstract. The corona construction and the BMO
duality proof from Chapter VI provide the hard techniques, but the theory
of maximal ideals holds the proof together.

The local Fatou theorem, a fundamental result on harmonic functions, is
discussed in Section 5. This theorem could actually have been treated in the
first chapter. It occurs here, somewhat misplaced, for reasons of logistics.

1. The Douglas Problem

Let A be a uniformly closed subalgebra of L* containing H®. For an
example, let Z be any set of inner functions in H* and take A = [H®, ), the
closed algebra generated by H® U #. Because fib, + f,b, = (fib; +
f2b))bb, for f;€ H®, b; € A, A is simply the norm closure of

A = {fbyby---bf*: fe H®, by, ..., b, € B}.

Algebras of the form [H®, #] are called Douglas algebras. The simplest
example [H®, Z] will be analyzed in Section 2. It is a beautiful theorem that
every closed algebra between H* and L™ actually is a Douglas algebra. This
was conjectured by R. G. Douglas and proved by S.-Y. Chang and D. E.
Marshall, following influential earlier work of D. Sarason.

Given a closed algebra A with H® < 4 < L*®, write

Bs=1{b:beH® binner,b™ ! € A}.

(In this chapter we use the lowercase b to denote an inner function. The more
usual symbol B will be reserved for an algebra between H* and L*.) Then
2B 4 is the largest set # for which we can have 4 = [H*, #],and 4 is a Douglas

373
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algebra if and only if A = [H*, #,]. When A = H®, 4, is the set of uni-
modular constants and Douglas’ question is trivial. When 4 = L*, 4, is
the set of all inner functions and L® = [H®, #,] by the Douglas-Rudin
theorem (Theorem V.2.1). Define A~ = {fe A:f "' € A} and

U, = {ueA " :|ul = 1almost everywhere}.

Theorem1.1. If A is a closed subalgebra of L* containing H®, then A is
generated by H* and U 4. That is, A = [H*, U ,].

Proof. Let fe A~'. Then log| f|€ L> and there is g € (H®)™ ' such that
lgl = | f| almost everywhere. Then u = g~ !f is a unimodular function
invertiblein 4 such that f = gu € [H®, % ,]. Since every function A is the sum
of a constant and an invertible function, the theorem is proved. [J

Since A< L® b '=b when be #,, and so 8, = %,. Solving the
Douglas problem therefore amounts to showing that when % , is cut down to
A 4, the algebra 4 will still be generated as an H* module.

Maximal ideal spaces will play a pivotal role in the proof of the Douglas
conjecture. Recall our notations M = My for the spectrum, or maximal
ideal space, of H* and X = I, for the spectrum of L®, which is also the
Silov boundary of H®.

Theorem 1.2. If A is a closed subalgebra of L® containing H®, then its
maximal ideal space MM 4 _can be identified with a closed subset of M which
contains X, and X is the Silov boundary of A.

Proof. We can identify X with a closed subset of 9t , because 4 is a closed
subalgebra of L* = C(X) and, since 4 o H*®, A separates the points of X.
This means X is a closed boundary for A. But since 4 is a logmodular sub-
algebra of C(X) (Chapter V, Section 4), X is its Silov boundary.

The natural restriction mapping 7: 9, — M is the identity mapping on X.
What we need to show is that 7 is one-to-one. The reason for this is that
each m € My has a unique representing measure on X, by Theorem V.4.2.
Consider m,,m, € M, and let u,, u, be their representing measures on X with
respect to the larger algebra A. If n(m,) = n(m,), then

[raw = [rdws, ren
So by the uniqueness of H* representing measures, 4; = fi, and

fgdm = fgduz, g€ A
X X

Hence m; = m, and n is 1-1. Because 7 is continuous and IR, is compact, 7
is a homeomorphism of M, onto a subset of M. [
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For m e 9, we write y,, for its unique representing measure on X. If
me M,, then of course y, is also its unique representing measure with
respect to A. By a compactness argument, the mapping m — u,, is a homeo-
morphism between 9t and a weak-star compact set of probability measures
on X. When x € X is naturally identified with the point mass J,, this homeo-
morphism is the identity on X. By duality there is an isometry from
L® = C(X) into C(M), and we can identify L® with its image in C(IN)
through the definition

(L1) fm) = f fdim  feEL®

When me D, (1.1) is only the Poisson integral formula in disguise. The
mapping (1.1) is not surjective and it is not multiplicative. In fact, Theorem
1.2 says that

(1.2) M, = {meM: f(m)g(m) = (fg)(m), all f, g € A}

whenever A is an algebra between H® and L*®. Consequently, if 4 and B
are algebras such that H* € Bc A < L*®, then M, < M.

Theorem 1.3. Let A be a closed subalgebra of L* containing H* and let
U < U 4 be aset of functions in A~ *, unimodular on X, suchthat A = [H®, U].
Then
m, = ﬂ/{meimzlu(m)l = 1}.
uell

Proof. Because A = L®, we have u~! = & when ue%,. We also have

#(m) = u(m) whenever u € L* and m € M, because p,, is real. Therefore, if
meM and ue¥,, then 1 = u(m)i(m) = |u(m)|>. Conversely, if |u(m)| =
lu| = 1, then u = u(m) on the closed support of y,,, because u,, is a prob-
ability measure. Thus if m satisfies ju(m)| = 1for all u € %, then the restriction
of A = [H*,4%] to the closed support of u,, coincides with the same restriction
of H*, That means m is multiplicative on A. [

By Theorem 1.3, distinct Douglas algebras have distinct maximal ideal
spaces, because the spectrum IR, determines which inner functions are in
A7, Thus a corollary of the Chang-Marshall theorem is that every closed
algebra between H® and L® is uniquely determined by its spectrum. A
similar situation exists with Wermer’s maximality theorem: An algebra
between the disc algebra A, and C(T) is either the disc algebra itself or C(T).
The choice there depends on whether or not the inner function z is invertible
in the given algebra; that is, on whether or not the maximal ideal space
contains zero. Hoffman and Singer based a proof of Wermer’s theorem on
just that distinction. In our setting their argument yields the following
result.
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Theorem 1.4. If A is a closed subalgebra of L* containing H*®, then either
A=H®or A>[H*® Z].

Proof. If ze A™! thenZze A and [H®, z] = A. If = ¢ A~ !, then z lies in
some maximal ideal of A, and there is m € 9, with z(m) = 0. Since M, < M,
the only possible such m is evaluation at the origin. Then by the uniqueness
of representing measures, d6/2x is multiplicative on A and

1 in _ —
2_nfe f(6) do = 0, n=12...,

for all fe A. Hence A =« H®. [

Now there are many algebras between H* and L*®, but each such algebra
is determined by its invertible inner functions (by the Chang-Marshall
theorem) or equivalently, by its maximal ideal space. The Chang-Marshall
proof consists of two steps.

(1) If Aisa Douglas algebra, and if B is another algebra having the same
spectrum, then B = A.
(i) Givenanalgebra B,H® < B — L*,thereisa Douglas algebra having
the same spectrum as B.

The proof of Theorem 1.4 consists of two similar steps and, in hindsight,
it can be said that the strategy underlying the Chang-Marshall proof
originates in the Hoffman-Singer argument about maximal ideals.

There are two C*-algebras associated with an algebra A such that H® <
A < L®. The first is

Q4=ANA4,

the largest self-adjoint subalgebra of A. The second is
Ci=[4%4, «@A],

the self-adjoint algebra (or C*-algebra) generated by 4, those inner func-
tions invertible in 4. For 4 = H®, Q, = C, = C, the space of complex
numbers. For 4 = L®, Q, = L*®, and by the Douglas-Rudin theorem,
C, = L> also. However, in general Q, and C, do not coincide. Along with
solving the Douglas problem, we want to understand the C*-algebras Q , and
C,4. Let us first turn to the simplest special case, so that we may know what to
expect in the general case.

2.H* + C

Let C = C(T) denote the continuous functions on the unit circle and let
H® + C={f+g:fe H®, g € C}, which is a linear subspace of L*.

Lemma 2.1. H® + C is uniformly closed.
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Proof. Recall from Theorem IV.1.6 that when g € C
dist(g, H*) = dist(g, A4,),

where A, is the disc algebra. If h € L™ lies in the closure of H® + C, there are
f,€ H® and g, € C such that |h—(f, +g,)ll <27" Then dist((g, — gp+ 1),
H®) < 27"*! and there are k,€ A, such that [(g, — gn+1) — kullx <
27"*1 Write K, =0 and K, =k, + -3 + k,_, for n> 1. Then G, =
gn + K,€Cand |G, — G,.+1]» <27 ""'. Hence {G,} has a uniform limit
ge C.Butthen F, =f, — K, = (f, + g,) — G,isin H® and {F,} converges
innormto h — g. Since H® isclosed, h —ge H®* and he H® + C. 0O

Theorem 2.2. H* + C is a closed subalgebra of L*. In fact,
H® + C=[H*,z].

The maximal ideal space of H® + C is MM\D, the complement of the unit
disc in M.

Proof. The set of functions
N
f(z)-i—Zakfk, fGHw,
1

is, by definition, dense in [H®, Z]. By the Weierstrass theorem, this set is also
densein H® + C.Because H*® + Cisclosed, that means H® + C = [H®, Z].
Theorem 1.3 then implies that MM\ D is the spectrum of H*® + C. [J

Consequently H® + C is a Douglas algebra. An inner function b(z) is
invertible in H* + C if and only if |b(m)| > 0 on IR\ D, which happens if
and only if b(z) is a finite Blaschke product. Hence # g« . ¢ is the set of finite
Blaschke products, and the corresponding self-adjoint algebra Cye, ¢ coin-
cides with C.

Now let us determine Q- ¢, Which is called QC, the space of quasi-
continuous functions. The conformal mapping f(z) of D onto {0 < x < 1,
—2 < y < sin(1/x)} is an H* function with continuous real part but dis-
continuous imaginary part. Then Im fe H® + C, and because it is real
valued, Im f€ QC. Thus OC # C.

Theorem 2.3. QC = L* n VMO.

Proof. If fe L* n VMO, then by Chapter VI, Theorem 5.2 there are
¢, € Csuchthatf = ¢ + Hy. Butthen HY € L* and y + iHy € H®. Thus

f=—i(y + iHY) + (¢ + Yy)e H* + C.

The same holds for f, so that fe (H* + C) n(H® + C) = QC.
Conversely suppose fe H® + C is real valued. Then

f=(u+ iHu) + (v + iw),
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with u + iHu € H® and v + iw € C. Since fisreal, Hu = —we Cand u = Hw.
Therefore f = v + Hw, v e C, w € C, and f€ VMO. Because QC is spanned
by the real functions in H® + C we conclude that QC =« L* n YMO. [

Corollary 2.4. Let fe L™ and let f(z) be its Poisson integral. If | f(z)|
extends continuously to D, then f€ QC.

Proof. If 1 — |z| is small enough, and if ¢” is close to z/|z|, then by hy-
pothesis | (") is close to | f(z)|. Thus

> [17 —rarr@ a0 = o [17@0rP0) 20 - 17)P <

because P,(#) d0/2n has most of its mass near z/|z|. This means f€ VMO,
and so fe QC by Theorem 2.3. [J

Corollary 2.5. Let A be a closed subalgebra of L™ containing H®. If M, =
P\D, then A = H® + C.

Proof. 1t is clear that H® + C = A because z€ A~!. Now if f, g € A, then
d(m) = (fg)m) — f(m)g(m)

is continuous on M and d(m) = 0 on M, = WA\ D. By continuity there is
0 > 0 such that

21 1(f9)2) — f(D9(2) <&, 1 |z[ <0

Letting f=u, g = 4, ue %4, we obtain |1 — |u(z)|*| < e for 1 — |z| < 4.
Then by Corollary 24, %, ¢ H® + C, and by Theorem 1.1, 4 =« H® + C.
]

Notice how the abstract condition M, = M\ D was brought into the last
proof. It was converted into the more manageable condition (2.1) that the
Poisson integral is “asymptotically multiplicative” on A. Since by the corona
theorem, (2.1) is equivalent to the hypothesis M, = M\ D, we see that if
H*® c A = L* and if the Poisson integral is asymptotically multiplicative on
A, then either A = H* or A = H* + C.

Much of the proof of the Chang-Marshall theorem will amount to general-
izing Theorem 2.3 and Corollary 2.5 to arbitrary Douglas algebras.

3. The Chang-Marshall Theorem

Theorem 3.1. If B is a closed subalgebra of L* containing H®, then there is a
set B of inner functions in H® such that

B = [H*, &)
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In other words, every uniform algebra between H® and L* is a Douglas
algebra. The proof of this theorem breaks up into two pieces. We reverse the
historical order, giving Marshall’s part first.

Theorem 3.2. If B is a uniform algebra with H® < B < L®, then there is a
set & of interpolating Blaschke products such that

mtB = g‘R[Hw,é]'

The theorem says there is a Douglas algebra having the same spectrum
as B.

Lemma 3.3. If b(z) is an interpolating Blaschke product having zeros {z,} in
D and if m € M is such that b(m) = 0, then m lies in the closure of {z,} with
respect to the topology of M.

Proof. Assuming the contrary, we have f, f,, ..., fy € H®, with fi(m) = 0,
such that {z,} is disjoint from

k
Ol{zzlfj(z)l <1}

Then max;| f(z,)| > 1, n =1, 2, ..., and because {z,} is an interpolating
sequence, there are ¢y, g,, ..., g € H® such that G = fig, + - + fig
satisfies G(z,) = 1, n=1,2,.... Hence 1 = G + bh for some h € H*. But
since G(m) = 0, this is a contradiction. [

Proof of Theorem 3.2, We have already done the hard work back in the
proof of Theorem VIIL4.1. For each u e %g and for each o, 0 <a < 1,
Theorem VIIIL.4.1 gives us an interpolating Blaschke product b, , such that
whenze D

(3.1 b2 <3 if |u@)| <«
and
(3.2) lu(z)| < B(x) < 1 if b, ,(z)=0.

Set B = {b, ,;u€U, 0 <o < 1}. We claim that [H*®, %] has the same
spectrum as B.

If b, (m) = 0, then by (3.2) and Lemma 3.3 |u(m)| < f(a) < 1. This means
m ¢ My by Theorem 1.3. Hence each b, , is invertible in B, so that [H*, #]
< Band My © My, 7, by (1.2).

Now suppose m € My z). By Theorem 1.3, |b, ,(m)| = 1forall b, , € A.
By the corona theorem there is a net (z;) in D that converges to m. Con-
sequently lim;|b, ,(z;)| = 1 for each b, , € 4, and (3.1) yields |u(m)| = 1 for
all u € Ug. Thus m € Mg, again by Theorem 1.3, and My 7 < M. O
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We now turn to Chang’s half of Theorem 3.1.

Theorem 3.4. Let A and B be two subalgebras of L* containing H*. Assume
that M, = My and that A is a Douglas algebra. Then A = B.

Clearly, Theorems 3.2 and 3.4 prove the main result, Theorem 3.1. In fact,
something stronger is true, because Theorem 3.2 gives a family of interpolating
Blaschke products: Every uniform algebra A such that H® < A < L*® is
generated by H® and the complex conjugates of a set of interpolating Blaschke
products.

The proof of Theorem 3.4 depends on a characterization of a Douglas
algebra A = [H®, 2] in terms of Poisson integrals. For b(z) an inner function
and for 0 < é < 1, we define the region

Gs(b) = {z:|b(z)| > 1 — ¢}.

For example, G4(z) is the annulus 1 — 6 < |z| < 1, while if b = exp((z + 1)/
(z — 1)), G4(b) is the region between T and a disc in D tangent to T at z = 1.
When fe L(T), let

dv, = log

6

A related measure, with |0f/0Z|* replaced by |Vf | was denoted by A, in
Chapter VI, Section 3. Since

IVFI* = 2(10f/0z1* + |af/0z 1)

and since df/0z = 9f/0z, we have Ap = 2(v; + vj). In particular, when f is
real-valued, A, and v, are equivalent. From Chapter VI, Exercise 14, we know
that fe VMO if and only if to each & > 0 there corresponds §, 0 < § < 1,
such that when0 < h < 6

dx dy.

A,(8(0y, h)) < eh,

where S(0,, h) is the sector {re'®:|0 — 0, < h, 1 — h < r < 1}. Therefore,

by Theorem 2.3, QC = (H® + C) n (H® + C) consists of those f€ L® such
that

1,(S(0o, h)) < &h

when h < J = (e, f). An arbitrary Douglas algebra is characterized by a
similar condition with {I — < |z| < 1} replaced by some region G4(b),
be #,. So that we may characterize A instead of the self-adjoint algebra
Q4 = A n A, we must also replace 4, by v,.
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Theorem 3.5. Let A = [H®, #,] be a Douglas algebra. When f€ L*® the
following conditions are equivalent.

(1) feA.
(ii) For any € > 0, there are be %, and 6,0 < 6 < 1, such that for all
z € G4b)

(3.3) inf — flf gl*P.(0) df < e.
gen? 2T
(iii) For any e > 0O, there are be B, and 6,0 < 6 < 1, such that
3.4) v (Gs(b) N S0y, h)) < ¢h
for every sector
S0y, h) = {re?:10 — 0, <h,1 —h<r<1}.
Before proving this theorem we use it to derive Theorem 3.4.

Proof of Theorem 3.4. Let A be a Douglas algebra and let B be another
algebra, H® < B < L%, such that M, = IM;. By Theorem 1.3, we have
A,< B,sothat A = [H*, #,] < B.

To prove that B = A recall that B is generated by H* and %, the uni-
modular functions in B~!. We show u €% satisfies (3.3) for every ¢ > 0.
Since M, = Mg, Theorem 1.3 implies |u(m)| = 1 on

() {m:1bm)| = 1}.
beBa
By compactness, this means |u| > 1 — &/2 on some finite intersection of sets
{|b(m)| = 1}, b € # 4. Taking a product, we obtain a single b € # 4 such that
|u(m)| > 1 — &/2 when |b(m)| = 1. Consequently, there is 6 > 0 such that
|u(z)| > 1 — &/2 when z € G4(b). But then

3z [140) — @PP0) a0 = - 11O P.0) d0 - 1

=1-|u2)|* <s,

when z € G4(b). Thus (3.3) holds with g the constant function u(z). By
Theorem 3.5, B = A and Theorem 3.4 is proved. [

Proof of Theorem 3.5. We show (i) = (ii) = (iii) = (i).
Assume (i) holds. Then there are b € #, and h € H* such that || f — bh| o
< & Fix zo € G4(b) and let g = b(zo)h. Then g € H? and
1 — h 2
o flbh —gI’P,(0)df < ——= Al flb(()) — b(z9)|*P,,(0) d6

= Ilhlloo(1 — |b(z0)1?) < 28|k,
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Consequently,

1
- [17- aPp@do <20 + a1z,

which gives (3.3) for ¢ < 1 if 6 is small enough.

Now assume (ii) and choose b e 4, and 6,0 < ¢ < 1, so that (3.3) holds.
For the moment suppose that G4b) N S(0,, h) = {|z| > 1}. By a stopping
time argument, which should by now be quite familiar, it is enough to prove
(3.4) for a sector whose inside half {|0—0,| <h, 1 —h<r<1—h/2}
contains a point z; € G4b). (Otherwise partition the outside half of S(6,, k)
into two sectors S(6,, h/2) and continue, stopping at maximal sectors whose
inside halves meet Gs(b).) Let k(z) = f(z) — g(z), where g € H? is chosen to
attain the infimum (3.3) with respect to P, () df. Then k(z) is conjugate
analytic and k(z,) = 0, because in the Hilbert space L*(P,, df),g is the orthog-
onal projection of f onto H2. Consequently,

|Vk(2)|* = 2|0k/0z|* = 2|of oz %,
and the Littlewood—Paley identity (3.3) of Chapter VI gives

69 5 [1r-errow-2 [[|Z]

On Gy(b) N S(6,, h) = {|z]| > %} we have the familiar inequalities

(1 =1z — Iz, %)

12 dx dy.

zZ — Zy

log— < C(1 — |z]*) < Ch

II_ 1 —Zzz]?
PN PR k11 il WP R
B 1= 2,2 2=z )
so that by (3.5)
P 1
V(GA(b)  S(6o, b)) = J]’%I%mww

Gs(b)nS(0, h)
< Ch J|f— gI*P, (0) do < Céeh

by (3.3). That is (3.4), the inequality we wanted to prove.

There remains the rather uninteresting case Ggb) N S(6, h) N {|z| < o3
# 5. If b(z) is not constant, it can be replaced by b¥(z), and G4«b") =
{|z] > 1} if N is large. If b(z) is constant, then 0 € G4(b) and (3.3) at z =0
gives (3.4) for sectors meeting {|z| < 4}. Thus (iii) follows from (ii).
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We come to the main step, (ili) = (i). Let ¢ > 0, and fix be 4, and 6,
0 < 0 < 1, so that we have (3.4). We estimate

dist(f, 4) < dist(f, B"H®) = dist(b"f, H®) = sup zln f FHF do,
FeH}
[IFll =1

as we did in the proof of the H'~-BMO duality in Chapter VI, Section 4. Note
that when F € H!

o\ o
(V) (VBF) = fyb"F), + ("F), = 2(%) 5 G'F)
V4

Since F(0) = 0, the polarized Littlewood-Paley identity now yields

(3.6) Zl—nffb"FdB—AJ‘ Z{b"ﬁlogl—’dxdy

dx dy.

)
+ = f 0{ nb"~ l—F()log

Writing F = by H, where by, is a Blaschke product and H is zero free, we have
F = ((bo — DH + (bo + DH)/2 = (G} + G3)/2, where G;e€ H?, |G;|} <
2||F| ;. Thus we can make the additional assumption F = G?, G € H?, when
we bound the right side of (3.6), which then becomes

4 of oG 1 4 o
_  pn 1 L hd b G 1
- jf@ib G(z) % Oglzldxdy+n f % G() log| ldxdy

Gs(b) D\Gs(b)

Jf of 3" GZ( ) log ﬁ dx dy

Gs(b)

Jf nb"~ X Gz(z) log |LZ| dx dy

D\G&(b)
=11+12+13+14.

Use the Cauchy-Schwarz inequality on each of I, I,, I, and I,. We obtain

e[ o o) (01 2

Gs(b)

1/2

1
log dx dy)

< CElb"GI3)' 211G, = CeV?|Fl
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by (3.4), the theorem on Carleson measures, and the Littlewood-Paley
identity. Similarly, we get

I, < c(l _5)"({,”%
(2

< 1 =01 f1IGIXUNGI2)

< C( =)'l fllolIFIl

by using Theorem 3.4 of Chapter VI instead of condition (3.4).

To estimate I; and I, let |G|* log(1/|z|) dx dy be the measure in the
Cauchy-Schwarz inequality. Then we have

o . 1 12 J‘J‘ ob"
I3SC(_U 7 |G| logmdxdy) 2
Gs(b)
< CE|GIDHV*(b"IGID?
< Ce'?||F||,,

using both (3.4) and Theorem 3.4 of Chapter VI. As with I,, we have

1, < Cn(l —5)n~1(j”g_f;
Wi

< Cn(L = oy M f I IGIIbIIGI 2)
< Cn(1 = oy fllolFlls,
this time twice using Chapter VI, Theorem 3.4.

Taken together, the estimates yield

dist(f; A) < im(Ce'’? + C(1 = )" Y| fllo + Cn(l = &) | fll,) = Ce

n—oc

and fe 4. O

It is worth reflecting on the role played by the maximal ideal space in the
proof of Theorem 3.1. It is possible to merge the two parts of the proof and
to write down a proof that is almost free of Banach algebra theory (S?C
Exercise 13). At present the only place where maximal ideal spaces are still

2 1 12
|G|? log o dx dy)

2 1 1/2
log — dx dy
||

2

1 1/2
|G| logl—z—| dx dy)

2 1 1/2
|G| logﬁ dx dy)
z

2 1 1/2
|G|* log = dx dy)
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needed is when Lemma 3.3 is applied, and it is quite possible that there will
be a future proof containing no reference to Banach algebras. Such a con-
structive proof is certainly worth finding, if only for the new ideas it should
yield. However, it is difficult to imagine a first proof of this theorem not
using maximal ideals. Banach algebra theory sets the framework on which
the proof can be built, it points out which inequalities one should aim for,
and it provides the economy of thought necessary for a long and difficult
proof.

4. The Structure of Douglas Algebras

Many of Sarason’s results in Section 2 have generalizations to an arbitrary
Douglas algebra 4. Because it is so close at hand, we begin with the analog
of Theorem 2.3. Recall that Q, = A N 4 is the largest C*-subalgebra of A4,
and that #, = {b€ H®:b inner, b € A}. Define VMO, to be the set of
f€ BMO such that to each ¢ > 0, there correspond d, 0 <6 < 1, and
b € 4 4 such that

1
4.1)  A(Gsb) n S8, b)) = fj |Vf|? log 0 dx dy < ¢h
V4
Gs(b)nS(0, k)
for every sector S(0,, h). When A = H® + C, VMO, is just our old friend
VMO.

Theorem 4.1. If A is a closed subalgebra of L* containing H®, then

QA = Lw M VMOA
Proof. The theorem follows directly from Theorem 3.5. Since
and v, and vy are positive, (4.1) means that both fand fsatisfy condition (3.4),
and so fe AN A = Q4. Conversely, if fe Q, and if ¢ > 0, then there are
bye#,and 4,,0 < 6; < 1, for which f'satisfies (3.4). There are also b, € B4

and d,, 0 < 0, < 1, for which f satisfies (3.4). Therefore (4.1) holds with
b = b1b2 and 5 = mln(él, 52). D

The space VMO, can also be described in terms of Hilbert space pro-
jections. If fe BMO, then fe VMO, if and only if for each ¢ > 0 there exist
be#,and 6,0 < é < 1, such that

4.2) o f = (PO d < ¢

for all z € G4b). The derivation of (4.2) is left as an exercise.
Recall the notation C, = [4,4, 8 4] for the C*-algebra generated by %,,.
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Theorem 4.2. If A is a closed subalgebra of L® containing H®, then
A=H*+ Cy.

We need a lemma, whose proof we postpone for a moment.

Lemma 4.3. Let u € L™ with |u| = | almost everywhere. If

4.3) dist(u, H*®) < 1

but

(4.4) dist(u, HY) = 1,

where HY = {fe H® :f(0) = 0}, then
ue[H®, u].

Proof of Theorem 4.2. When fe C, we claim
4.5) dist (f, H®) = dist(f, H® n C),

generalizing Lemma 1.6 of Chapter IV. Clearly dist(f, H®) < dist(f,
H® n C,). Because (4.5) is trivial when dist(f, H*) = 0, we can assume
dist(f, H°) = 1 — ¢ for some small ¢ > 0. Since fe C,, there is g =
Y31 A;bj, bje B4, and there is by € %4 such that || f — bogl, < & Then
dist(byg, H*) < 1. Looking back at the theory of dual extremal problems,
in particular at Case I in Theorem 4.3 of Chapter IV, we see there exists
ue L*, |u| = 1 almost everywhere, such that

(4.6) u—byge H®,
which means that dist(u, H®) < 1, and such that
4.7) dist(u, HY) = 1.

By (4.6), bou € H®—in fact bou is an inner function—and u € [H*, b,] < 4,
so that by (4.7) and Lemma 4.3, @ € 4. Therefore botie A and bou € B 4.
Hence u = by(bou) € C4and u — byg € C 4. That gives
dist(, H* N Cy) < If — (bog — o < &+ llully
< dist(f, H®) + 2e,
and (4.5) is established.
Now (4.5) implies that H*® + C, is uniformly closed. This has the same

proof as Lemma 2.1, but for reasons of pedagogy we phrase the argument
differently. The natural injection

n:CA_’A/HOD
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has kernel H* n C, and (4.5) shows that n(C,) is closed in A/H®. Under
the quotient mapping A - A/H*, n(C ,) has inverse image H* + C,. Thus
H>® + C,isclosed in A4.

To conclude the proof of Theorem 4.2 it now suffices to show that H* + C,,
is dense in A, and because A4 is a Douglas algebra it is enough to show
f=bge H® + C, whenever be #, and ge H®. We suppose | f| < 1.
Again using Case [ of Theorem 4.3 of Chapter IV, we have ue L™, |u| = 1
almost everywhere, such that

(4.8) u—f=u—bge H® and  dist(u, H®) = I.

Then buis aninner functionin H®,andu € A. By Lemma4.3,i e [H®,u] < 4
so that bu e #,. But then u = b(bu)e C, = [#,, #.], and by (4.8) [ =
Eg € HOO + CA' D

Proof of Lemma 4.3. Let fe H® with |u — f|l, = o < 1. We first show
inf,| f(z)] = 1 — &, which means that fis invertible in H®. Now if z, € D and
if | f(zg)] <1 — a, then

lu = (f = fzo)l < 1.
Writing f(2) — f(zo) = (z — 20)9(2), g € H®, we then have, on |z| = 1,

For (1 — 2o /(1 + |zo])* <t < 1, it follows easily that

1=z, 22
l—uzﬂ

- g“ = u—(z— zogl < 1.
1 —z,z

1 — tuz =
1 —z,z

1 —z,Z|?
_ ZolgH<1’

because discs are convex. Setting t = (1 — |zo|)?/|1 — z,Z|?, we obtain

1 — 1?2 1 —z,z)?
}u——_ I_ZO') g H = “ 1 — tﬁz—| Z_OZI g ” <1,
1 —2z,z 1 —2z,z

which contradicts (4.4). Hence inf,| f(z)| > 1 — o, and fe (H*)™ 1.
Since |1 — #f | < aand since the disc {|1 — w| < a} is invariant under the
mapping

we have
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Consequently, u/fis invertible in [H®, u], so that
i=f"Yu/f)"" € [H* ul,

which is what we wanted to show. [

Notice that the above proof gives more: If |u| = 1, if dist(u, H®) = a < 1,
and if dist(u, Hy) = 1, then

dist(u, H®) = o.

Theorem 4.4. Let A be a closed subalgebra of L* containing H® and let
fe BMO. Then the following conditions are equivalent:

(i) fe VMO,
(i) f=u+du,veQ,,
(i) f=u+ b, u,veCy,

where U denotes the Hilbert transform or conjugate function of v.

Proof. Clearly (iii) = (ii), and because VMO 4 is self-conjugate, Theorem
4.1 shows that (ii) = (i). To complete the proof we show (i) = (iii).

Lemma 4.5. If fe BMO and if f satisfies (4.1) with respect to some b € % 4,
then when n is large

4.9) sup < Ce'/2.

FeH}
[IFlli=1

1 n
> f f(OB"(O)F () db

The proof of this lemma is exactly the same as the proof of Theorem 3.5. The
details are left as an exercise.

Let fe VMO,. We may assume f is real valued. Write f = u + #, with
u,ve L®. Then g = u + ive L™ and, for any F € H} n L?,

do . ...d0
[o-oFs = [6-wF] =0

because § — iv € H?. By the definition of VMO, for every ¢ > 0 there cor-
responds b € 4, and 6,0 < § < 1, such that (4.1) holds. So by (4.9) and by
the density of H§ n L? in H§, we have

do
su b"F — | < Ce'/?,
Felli)(‘) fg 2n

[[Fll1=<1

when n is large. This means

dist(g, [H*®, b]) < Ce'/?,
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and as ¢ is arbitrary, g € A. But then by Theorem 4.2, g = h + k, he C,
ke H®, and

f—if=(u—id) + @ +iv)=g—if =h— ih,
because k — ik = 0. Therefore
f= Re(h — ih),
and (iii) holds. [J

5. The Local Fatou Theorem and an Application

Let us leave Douglas algebras briefly to take up a basic but elementary
result, the local Fatou theorem. It was first proved by Privalov. See Exercise
10 of Chapter II for a sketch of Privalov’s proof. The more general real
variables argument below is due to A. P. Calderon.

Let G be an open set in the upper half plane 5#. We say G is nontangentially
dense at a point ¢t € R if there exist « = a(r) > 0 and h = h(t) > 0 such that
G contains the truncated cone

Moy ={x+iy:|x—t|<ay,0<y<h}

A function u(z) is nontangentially bounded at t if u(z) is defined and bounded
in some truncated cone I'%(t). On the other hand, u(z) has a nontangential
limit at t if to every f > O thereis h = h(f, t) > 0 such that u(z) is defined on
I'j(t) and

lim u(z) exists.
r%(t)az—'t
Thus the notion of nontangential boundedness involves only one cone while
nontangential convergence refers to arbitrarily wide cones.

Theorem S5.1. Let E be a measurable subset of R and let G be a region in #,
nontangentially dense at each point of E. Let u(z) be a harmonic function on G,
nontangentially bounded at each point of E. Then u(z) has a nontangential
limit at almost every point of E.

It is implicit in the conclusion of the theorem that G contains truncated
cones I'j(¢) with arbitrarily large f at almost every point ¢ of E, whereas the
hypotheses only assert that G contains some cone of positive angle at each
t € E. However, a simple geometric argument about points of density will
enable us to pass from narrow cones to wide cones. The real impact of the
theorem lies in the improvement to nontangential convergence over non-
tangential boundedness. Only because of the application to follow has the
open set G been included in the theorem’s statement.
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Proof. We may assume that E is bounded, E < [— A4, A]. Let h, | 0 and
o, | 0. Then

Ec |J{te[—A4,A]:T'(t) = G and |u(z)| < non I'i(t)}.
n=1

Since these sets increase with n, we can, after discarding a subset of small

measure, assume there exist « > 0, h > 0, and M > O such that for allt € E

<G and lu(z)| < M, zeTlQ).

Discarding another set of small measure, we can replace E by a compact
subset F.
Now let
2 = | Tio).
teF

If ty is a point of density of F (i.e., if ¢, is in the Lebesgue set of yr) and if
B > 0, then there is hy = ho(p, t,) such that T'j(z) = . Indeed, let (x, y) e
[o(to). If (x, y) ¢ 2 then the interval J = {t:|t — x| < ay} is disjoint from F
(see Figure IX.1). Since J is contained in I = {t:|t — to| < (o + B)y}, this
means

InFl_, _1_ 8
= T e p

which is a contradiction when y < h, and h, is small. Hence # contains
cones of arbitrarily wide aperture at each Lebesgue point of F.

(%, ) (7o)

o

N ~ _

7
Figure IX.1. (x,y)e ZifandonlyifJ n F # .

On 2 the harmonic function u(z) is defined and bounded, |u(z)| < M. By
the preceding argument, we shall be done when we show

(5.1 lim u(z) exists
zZE€ 9;:;‘,;0)

for any B and for almost every ¢ € F. Define

_Ju(t + i/n), t + i/ne R,
o) =90, t+iné R
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Then ¢, € L, | ¢l < M, and {¢,} has a weak-star accumulation point
peL® |o|l, < M. Replace {¢,} by a convergent subsequence and write

sz(t)(p(t) dt = lim sz(t)q),,(z) dt

n—oo

®(2)

lim ¢,(z),

n— o0
and

Y(z) = u(z) — @(2) = lim(u(z + i/n) — @,(2))

= lim ¥ ,(2).

Then Y(z) is harmonic on £ and || < 2M. By a simple majorization we will
show
(5.2) lim yY(z)=0

zt
ze ATy (1)

almost everywhere on F. Since ¢(z) has nontangential limit ¢(t) almost
everywhere, (5.2) implies (5.1) with limit ¢(t). Let

(5.3) k(z) = c(y + fP,(t)XR\ ) dt)a

where ¢ > 0 will be determined in a moment. Then k(z) has zero non-
tangential limit almost everywhere on F. Hence (5.2) and the theorem will
follow from the estimate

(54) V() < k@), ze.
Finally, (5.4) will hold if for all large n we have
(5.5) [V(2)| = k(z)

on &, = R N {y < h — 1/n}, which is that part of Z on which y,, is defined.
To ensure (5.5) we must choose the constant ¢ in (5.3) so large that

(5.6) k(z) = 2M, ze{y >0} N oR,.

Taking ¢ > 3M/h gives k(z) > 2M when y > h — 1/n, n large. At any other
ze{y >0} n0Z#,, we have 0 < y < h, and the interval J = {¢:|t — x|
< ay} falls in R\F. Then

¢ y 2c
> — PR = —
k(z) = - L(X s dt - arctan o,

and (5.6) holds if c is sufficiently large.
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Now if (5.5) were to fail, there would be points z; € £, such that
[Wu(z)| = a + k(z;)

for some constant a > 0. By the maximum principle, {z;} has an accumulation
point { € 04, It is impossible that Im { > 0 because

[Wn(z))| < 2M < a + k(0)

by (5.6). Hence Im{ =0 and (€ Rn 0% = F. But then, since ¢,(f) =
u(t + i/n) on {|t — {| < a/n}, our function

V() = ul(z + ifn) — f POont) dt

is continuous at { and ,({) = 0. Therefore lim,_, ,(z) = 0. This con-
tradiction establishes (5.5) and the theorem is proved. [

Now let b(z) be an inner function on the disc and let 0 < é < 1. The
region Gy(b) is nontangentially dense at almost every point of T, because
|b(e®)| = 1 almost everywhere. If F(z) is a bounded analytic function on
G4b), we write F € H*(G,(b)). By Theorem 5.1, F € H®(G4(b)) has a non-
tangential limit F(e'®) almost everywhere on T.

Theorem 5.2. Let A be a closed subalgebra of L* containing H* and let
fe L®. Then fe A if and only if for each ¢ > 0, there are be B, and 6,0 <
0 < 1, and F € H*(G4b)) such that almost everywhere

| f(e”) — F(e)] <.

Proof. Let us do the easy half first. If f€ A4 then there areb e #,and g € H®
such that | f— bgll,, <& Let F(z) = g(z)/b(z). For any 6, 0 < < 1,
F € H*(G4(b)) and | F(e"®) — f(e®)| < & almost everywhere.

For the converse we use the corona construction. When b(z) is an inner
function and 0 < & < 1 there is a region U = D with boundary I' such that

(5.7) {l1bz)l <1 =96} c U,

(58) Uc{lb@l<nt, O0<n<l1, n=n),
5.9 I is a countable union of rectifiable Jordan curves,
(5.10) arc length on I n D is a Carleson measure.

See Section 4, Chapter VIIL By (5.8), T n 0U has zero length. We can suppose
that every component of U contained in {|z| <r}, 0 <r < 1, is simply
connected. Indeed by the maximum principle filling in the holes in such a
component does not hurt (5.7)~(5.10). For any r < 1 there are finitely many
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components of U contained in {|z| < r}. Let V= D\U. Then by (5.7),

V < Ggb) and F(z) e H*(V). We want to use Cauchy’s theorem on dV. To

avoid cumbersome technicalities we work instead with V, = V n {|z] < r}.
By duality,

dist(f, 4) < lim dist( f, B"H*)

1
~lim sup — f 7(OO(O) db,
n  keH} 2n
lklli=1

and by hypotbhesis,
1 " 1 .
‘ o ff (OWD"(O)K(0) dO ‘ <e+ ‘ 5 f F(0)b"(0)k(0) db ‘

Fix k € H}, |kl|; = 1. By dominated convergence and the maximal theorem,

i fF(B)b"(G)k(G) df = lim L f F(Z)b"(z)k(z) Ciz’
o {lz|=r}\U z

r1 27CI
because by (5.8), |[Un{|z|=r}|>0 (r > 1). The domain V,=V n

{|z| < r} is finitely connected, and oV, = (I' n {|z| < r}) U ({|z| = r}\U)
= I', U J,. With suitable orientations, Cauchy’s theorem now gives

1 " dz L . dj
i LrF(z)b (z)k(z)7 =5 J;rF(z)b (2)k(z) S

However, k(z)/z € H! and |[k(z)/z]|; = 1, so that (5.8) and (5.10) yield

1 . k(2) n k(z) | ds
o [ Fore Dz | <irrr [ |K2| 2

z r

< ClFllon" <

when nis large, and fe A. [

With Theorems 5.2 and 3.5 we have three necessary and sufficient condi-
tions for a function f'€ L* to belong to a Douglas algebra 4. Each condition
says that, in some sense, f'is almost an analytic function. It is clear what we
mean by that remark in the case of Theorem 5.2. In Theorem 3.5, condition (ii)
stipulates that fis close to H? in all the Hilbert spaces L(P, df), z € G4(b).
Condition (iii) of Theorem 3.5 says that df/0z is small on a region G(b),
b e #,. Thus we have three different descriptions of a Douglas algebra in
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terms of analyticity. Each of these conditions can be reformulated to give an
upper and lower bound for dist( f, 4) (see Exercise 11).

Notes

Motivated by operator theory, Douglas formulated his conjecture in
[1969]. With the corona theorem and Hoffman’s theorem (Chapter X), the
solution of Douglas’s problem is one of the major accomplishments of this
theory. There is so much structure to H* that very general conjectures, at
first blush rather suspect, turn out pleasantly to be true. It is difficult to over-
estimate Sarason’s influence on Douglas’s problem, and we have followed
his expositions ([1973, 1976, 1979]) closely.

Hoffman and Singer discuss their proof of Wermer’s theorem in [1957,
1960], and its relation to the Douglas problem was noted by Sarason in
[1976]. Using Chang’s theorem, but anticipating Marshall’s theorem,
S. Axler showed that any algebra between H* and L* is determined by its
spectrum.

The primary references for H® + C are by Sarason [1975, 1973]. It is
noteworthy how the careful analysis of an example like H* + C canlead to a
rich general theory.

The sources for Section 3 are Chang [1976] and Marshall [1976b].
Theorems 4.2 and 4.4 are due to Chang [1977a], and Theorem 5.2 and our
proof of Theorem 4.2 are from Chang and Garnett [1978].

Further developments related to the local Fatou theorem can be found in
the books of Stein [1970] and Stein and Weiss [1971].

The algebras H* n C 4 have been studied by Chang and Marshall [1977].
When A = H® + C, H® n C, is the disc algebra A4,, and when 4 = L%,

I° N C, reduces to H®. Thus their theorems generalize results in this
chapter and the corresponding classical results for 4,. Chang and Marshall
show that the disc is dense in My« ¢, and that H® n C, is generated by its
inner functions. The second result generalizes the theorems of Fisher [1968]
and Marshall [1976a]. They also prove that any algebra between C, and
H* N C, is a Douglas algebra over H® n C4, which by definition is an
algebra obtained by inverting certain inner functions in H* N C . Wermer’s
maximality theorem and Theorem 3.1 are special cases of this theorem.
Chang and Marshall also obtain the analog of Theorem 4.2 for algebras
between C, and H® n C,,.

We have ignored the operator theoretic aspects of the Douglas problem.
We refer the reader to Sarason’s recent survey [1979] and to its extensive
bibliography.
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Exercises and Further Results

1. (a) Let Bbe aclosed subalgebra of L® containing the disc algebra
A, . Assume the linear functional ¢o( ) = £(0) has a unique norm-preserving
extension from A4, to B. Then either B > C or B <« H*. (Hint: If Z¢ B, then
J = {zf :f € B} has distance 1 from the constant 1. There is ¢ € B* such that
©(J) =0,¢(1) = 1,and ||| = 1. From this conclude that B =« H*.)
Y(b) IfBisaclosed subalgebra of L™ containing 4, such that B contains
at least one Riemann integrable function not in H®, then B = C. (Hint: ¢,
has unique norm preserving extension to B if and only if

sup{Re ¢o(g):g € 4,, Re g < Ref} = inf{Re ¢o(g9): g€ 4,, Re g < Ref}

for all fe B.
(¢c) Let K be a closed nowhere dense subset of T of positive measure, and
let B be the closed subalgebra of L® generated by z and yg. Then z ¢ B.
(See Lumer [1965] and Sarason [1973].) Part (a) generalizes Theorem 1.4,
while part (c) shows H® cannot be replaced by A4, in that theorem.

2. (a) Let E and F be closed subspaces of a Banach space X. Then
E + Fisclosed in X if and only if there is ¢ > 0 such that

dist(x, F) < cdist(x, E " F)

for all x e E.

(b) If E is a closed subspace of L*® containing the constants and closed
under complex conjugation, then E + H(E) is closed in BMO if and only if
H® + E is closed in L®. Here H(E) = {Hu:u € E}, H being the Hilbert
transform or conjugate function. (See Chang [1977a].)

3. For|a| =1, let M, = {meM:m(z) = a} be the fiber of M over a
and let H* M, be the restriction of H® to IM,. Then H*|IM, is a closed
subalgebra of C(M,) with Silov boundary X, = X nM,. If fe L™, then
feH® + Cifand only if | X, € H®|IM, for every o. More generally

dist(f, H® + C) = sup dist(f|X,, H®|9M,).

la| =1
(Hint: An extreme point of the unit ball of (H* + C)*, a space of measures
on X, has support a single X,.)

4. Let fe H® 4+ C. Then f is invertible on H® + C if and only if
|f(z)] =6 >0 on some annulus r <|z| < 1. Consequently each fe
(H® + C)~! has a well-defined winding number over T. Then

feH®+ O)7!
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if and only if

f: anel(u+llu)’
where n is the winding number of f, g € (H*) ™', and u, v € C (see Sarason
[1973]).

5. (a) Everyfe L®hastheformf = bg, where b is a Blaschke product
andg € H*® + C. Every measurable subset of T is almost everywhere the zero
set of some function in H* + C (Axler [1977]).

(b) If {I;} is a sequence of arcs on T such that Y |1;| < o0, then there is
@ € VMO, ¢ > 0, such that ¢, > 0.

(¢) If feL™, there is he QA = QCn H* such that hf" e QC for all
n=1,2,.... Consequently every measurable subset of T is almost every-
where the zero set of some QC function, and every Blaschke sequence is the
zeros of some QA function.

(d) Every unimodular function in H® + C is the product of an inner
function and a QC function, and every inner function is a Blaschke product
times a QC function. Consequently, if ue L* is unimodular, then u =
(by/b)e'V *?, where b, and b, are Blaschke products and f, g € C.

Parts (b)-(d) are from T. Wolff [1979].

k6. If fe L=, there is a best approximation g € H® + C; that is, there
exists g€ H® + C such that

I f = gll = dist(f, H* + O).

Unless f€ H® + C, the best approximation is not unique. As a consequence,
for any o € T there is h € H® such that

sup| f — h| = dist(f | X,, H®|I,)
Xo

(see Axler, Berg, Jewell, and Shields [19797). Luecking [1980] has a proof
using the theory of M-ideals. When H® + C is replaced by an arbitrary
Douglas algebra the existence of best approximations is an interesting
presently unsolved problem.

7. This exercise outlines Sarason’s work on the algebra B,. His
arguments anticipated the solution of the Douglas problem, and we suggest
the reader work out the details below without relying on Section 3.

Let C, denote the space of complex functions on the unit circle which are
continuous except possibly at z = 1 but which have one-sided limits at
z=1.Let

B, = [H*, (4]
be the closed algebra generated by H® and C;.
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(a) Let a(e”) = ¢?/2. Then B, = [H*, o].

(b) For ¢ > 0 let G, be the region bounded by the unit circle, and the
curve consisting of the circular arc {¢” cose:e < |0]| < n} and the two
segments [1, e* cos £] (see Figure IX.2). If £, g € B,, then

lim(suplf (2)9(z) — (fg)(Z)I) =0.

=0\ G

Figure IX.2. The region G,.

(c) There is a constant K such that when he H®

dist(ho, H*) < K sup |h(x)].
O0<x<1
(Hint: Use duality and Cauchy’s theorem on D\ {0 < x < 1}. Actually one
can take K = 1.)
(d) If b(z) is an inner function such that sup,...;|b(x)| < 1, then
B, = [H*®, b].
(e) The Blaschke product b(z) with zeros 1 — 27" n > 1,isin C,. Hence
be By 'and B, = [H*, b]. Thus B, is a Douglas algebra.
(f) 1If g(z) e H*(G,) for some & > 0, then g(¢'®) € B,. (Hint: Use duality
and Cauchy’s theorem on G,.)
(g) The maximal ideal space of B, is
Xfuxrou U m,
xeT\{1}
where M, is the fiber z7 }(x) of M at «, X, is the fiber of X = M, at 1, and
¥ =X, n {6 = =1}, withé € C(X) the Gelfand transform of ¢ € L*.
(h) H® + C, is closed, but it is not an algebra.
Part (h) is due to Chang [1977b]. The other parts, and more things about
B,, can be found in Sarason [1972].

8. On the real line let 4, be the closed algebra generated by H* and
the bounded uniformly continuous functions. Then 4, = [H®, e~ ™*]. If
f€ Ay, then f'is invertible in A, if and only if | f(z)| is bounded away from
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zero in some strip {0 < y < a}. If b(z) is a Blaschke product whose zeros
tend to o0, then the following are equivalent:

(i) be(4p)™,
(i) b(x) is uniformly continuous on R, and
(iii) b'(x) is bounded on R.
Assuming the Blaschke product b(z) is in (4;)”?, prove the following are
equivalent:

(1) Al = [HOO’ B]’
(2) |b(z)]is bounded away from one in every half plane {y > a > 0}, and
(3) b'(x) is bounded away from zero on R.

(See Sarason [1973].)

9. If fe L™ is a nonconstant simple function, then there is an inter-
polating Blaschke product b(z) such that
[H®,f]=[H*",b]
(see Marshall [1976c]). It is not known which algebras have the form
[H>, b] for a single interpolating Blaschke product.

10. Let A4 be a closed subalgebra of L® containing H* and let f € BMO.
Show f'e VMO, if and only if for each ¢ > O there are be #, and 5,0 < ¢
< 1, such that

- [ir-rorre <

for all z € Gy4(b).

11. Let A be a closed subalgebra of L™ containing H® and let f'e L*.
(a) Let ¢, be the infimum of the set of ¢ > 0 for which there are b € 8,
and 6,0 < & < 1, such that

int o= {17 gFP@0 @0 <
for all z € G4(b). Then

dist(f, A) ~ &}/2,

(b) Let ¢, be the infimum of the set of ¢ > 0 for which there are b € £ 4
and 4,0 < 6 < 1, such that
v(Gy(b) N (B, h)) < ¢h.

Then

dist(f, A) ~ &}/2
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(c) Let ¢, be the infimum of the set of ¢ > 0 for which thereare b€ 4, 6,
0 < 0 < 1,and F € H®(G4b)) such that

| f(e*) — F(e") < &
almost everywhere. Then
dist(f, A) = ¢;.
12. Prove Lemma 4.5.

13. The two steps of the proof of the Chang-Marshall theorem can be
intertwined to yield a proof less dependent on Banach algebras. In particular,
the corona theorem is not needed. The argument outlined below is due to
Jewell [1976]. Let B be a closed subalgebra of L* containing H®.

(a) For each ue %y and each o, 0 < o < 1, there is an interpolating
Blaschke product b, , satisfying (3.1) and (3.2).

(b) By Lemma33,b,,€ B

(¢) LetG,, = {z:]b, [2)| > 3}. If | — ois small, then

lim dist(u, b} ,H®) < &.

n— oo

Consequently %y < [H*®, {b,,}], which proves the Chang-Marshall
theorem.

14. If A is a Douglas algebra, then ball (4) is the norm closed convex hull
of {b,b,: b, is a Blaschke product and b, € 8, is an interpolating Blaschke
product} (see D. Marshall [1976c]).

%15. (a) Let A be a Douglas algebra, let ue %,, and let ¢ > 0. Then
there are by, b, € # 4 such that

lu? — bibyll <e

(see Marshall [1976¢]). The generalization of the Douglas-Rudin theorem
that should be true here, stating that |u — b;b,|, < ¢ remains an open
problem.

(b) However, the conjecture above is true in an interesting special case.
Let E be an arbitrary subset of the circle T. Say fe Lg if fe L* and if, for
each o € E, f can be redefined on a set of measure zero so as to become
continuous at «. Any function in L§ can be approximated in the L® norm by
functions continuous on open neighborhoods of E. Now if u € L? is uni-
modular and if ¢ > 0, then there are Blaschke products b, b, analytic across
E such that |u — b,b, |, < & (see Davie, Gamelin, and Garnett [1973]).

(¢) H® + Lg is a closed algebra, and part (b) shows that H* + L¥ is
a Douglas algebra. Also, Cigw+1g) = LE-
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Interpolating Sequences

and Maximal Ideals

We return to interpolating sequences and their Blaschke products, and in
particular to the surprising part they play in unraveling the maximal ideal
space. In this chapter three topics are discussed.

1. Analytic structure in MM\ D, and its relation to interpolating sequences.
This theory, due to Kenneth Hoffman, occupies Sections 1 and 2. The theory
rests on two factorization theorems for Blaschke products.

2. Two generalizations of the theorem that a harmonic interpolating
sequence is an H® interpolating sequence. One of these generalizations is
the theorem that a sequence is an interpolating sequence if its closure in M is
homeomorphic to the Stone-Cech compactification of the integers. The key
to these generalizations is a real-variables argument determining when one
Poissson kernel can be approximated by convex combinations of other
Poisson kernels. This idea is developed in Sections 3 and 4.

3. A more recent theorem, due to Peter Jones, that refines the Douglas-
Rudin theorem. Here the analysis is not done on the upper half plane, but on
the boundary.

The three topics have little interdependence, and they can be studied
separately.

1. Analytic Discs in M

It will be convenient to think of two copies of the unit disc. First there is
D = {z:|z| < 1}, the natural domain of H*® functions and an open dense
subset of M = M. The second disc 2 = {{:|{| < 1} will be the coordinate

400
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space for many abstract discs in 9, including D itself. Points of 2 will always
be denoted {. When z € D, the mapping L, : % — D defined by
w_ Ctz
Lz(s) = ﬁ
coordinatizes D so that z becomes the origin.

A continuous mapping F: 2 — M is analytic if f< F is analytic on &
whenever fe H*. An analytic disc in M is a one-to-one analytic map L:
& — M. With an analytic disc we do not distinguish between the map L and
its image L(2). It is not required that L be a homeomorphism, and there are
natural examples where it cannot be one (see Exercise 8). The mappings L,
above are examples of analytic discs. In this and the next section, we describe
all the analytic maps into 9 and we present Hoffman’s fascinating theory
connecting analytic discs to interpolating sequences. But first we need some
general facts about possible analytic structure in 9.

The pseudohyperbolic distance between m; € M and m, € M is

pmy, my) = sup{| f(my)|:fe H®, | fll, < 1, f(m;) = O}

On D this definition of p(m,, m,) coincides with the earlier one for p(z,, z,)
introduced in Chapter I, because if m; = z; € D, then by Schwarz’s lemma

2y T 2y
p(my, my) =

1 -2,z

Moreover, the distance p(m;, m,) on M retains many of the properties of
p(z4,2,). Iffe H®, | f]l, < 1, then

p(f(my), f(my)) < p(my, my),
because g(z) = (f(z) — f(m)/(1 — f(m,) f(2)) satisfies g, <1, g(m,)

=0, and [g(m,)| = p(f(m,), f(m,)). Choosing {f,} such that | f,|, <1,
Ju(my) = 0, and | f,(m,)| = p(m, m,), we see that

plmy, my) = sup{p(f(my), f(my)):fe H*, | f|l < 1}.
By Lemma 1.4 of Chapter I, we have

p(my, my) — p(m,, my) < p(my, m;) < p(mg, my) + p(my, my)
1 — p(mg, my)p(m,, my) 1 + p(mg, my)p(m,, m;)

(1.1)

m; € M, j = 0, 1, 2. Indeed, the lefi-hand inequality follows from that lemma
by taking p(f(my), f(m,)) close to p(mq, m,) and noting that (s — )/(1 — st)
is decreasing in t when O <'s, t < 1; while the right-hand inequality follows

by taking p(f(my), f(m,)) close to p(mq, m;) and noting that (s + 1)/(1 + s1)
increases in both sand t when 0 < 5,¢ < 1.



402 INTERPOLATING SEQUENCES AND MAXIMAL IDEALS Chap. X

Clearly p(m,, m,) < 1, and by (1.1) the relation
my; ~ m, iff p(m,, my) < 1

is an equivalence relation on M. The corresponding equivalence classes are
called the Gleason parts of M. Write

P(m) = {m e M: p(m, m") < 1}

for the Gleason part containing m. If m e X, the Silov boundary, then
P(m) = {m}. Indeed, if m" # m, then its representing measure g, clearly
satisfies p, ({m}) # 1, and by the logmodular property there is f € H®,
| fII = 1, such that | f(m)| = 1 but

If(m’)lsflfldum/< L

which means that p(m, m") = 1. The open disc D is a nontrivial Gleason part,
because |z(m)| = 1 if m € M\ D.

Lemma 1.1. IfF:% — M is an analytic mapping, then F(2) is contained in a
single Gleason part.

Proof. This is just Schwarz’s lemma. If F: 2 — M is analytic and if m; =
F((), (e 2,j=1,2, then

p(my, my) = supi| fo F(()I:fe H?, || fllo < 1,f° F({y) = 0}
< sup{lg({y)|: g€ H*(2), gl < 1, g({1) = 0}
=p, ) < 1,

and m, and m, are in the same Gleason part. [

Thus an analytic disc cannot pass through a one-point Gleason part. As
we have seen, each point of the Silov boundary X comprises a single part, and
the disc D is a nondegenerate Gleason part and an analytic disc. So we are
searching for analytic structure in the remaining subset MM\ (X v D), which
is a union of Gleason parts. Now, this set is not empty. Any accumulation
point m of the zeros of an infinite Blaschke product is a point in MM\ (X v D).
If the zeros form an interpolating sequence, then this set of accumulation
points is homeomorphic to SN\N. Hence M\ (X v D) is very, very big.

A theorem from the general theory of logmodular algebras implies that
each Gleason part of MM is either a one-point part or an analytic disc (se€
Hoffman [1962b]). Because we shall ultimately obtain a more complete
result in the case of H*, we shall not prove that general theorem. However,
let us use it to find some one-point parts in JM\(X U D). Suppose S(z) is a
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nonconstant singular inner function. Then S(z) has roots §%(z) for all « > 0
and ||S*| = L. This implies that

K = {m:S(m) = 0}
is a union of Gleason parts. Indeed if S(m) = 0, then

p(m, m’) > lim|S%(m’)|,
2—0

so that either p(m, m') = 1 or S(m’) = 0. Because S™'¢ H®, K # ¢, and
because |[S| = 1 on X, K < M\(X v D). The closure in C(K) of H®|K is a
uniform algebra 4 with maximal ideal space K. Then K contains a strong
boundary point for the algebra A (Chapter V, Exercise 10), and by the
maximum principle such a point cannot lie in an analytic disc for H* | K. By
the general theorem quoted above, this means that 9\ (X U D) contains
one-point Gleason parts. Another route to this fact is given in Exercise 2.

One step in the argument above will be needed later. Recall that P(m)
denotes the Gleason part containing m € 9.

Lemma 1.2. Let me M and let g€ H® satisfy (gl < 1 and g(m) = 0.
Suppose that for n = 2,3, ... there is a factorization

— () ,(n) (n)
g=2919% " Gn

with g € H®, ¢, < 1, and g{"(m) = 0. Then g = 0 on P(m).

Proof. For m' € M, we have

lgim)| < lim []1g{"m)| < lim (p(m, m)Y",

n—-o j=1 n— oo
so that g(m') = 0if p(m, m) < 1. [

The set M? of all mappings (continuous or not) from 2 into M is a compact
Hausdorff space in the product topology. In this topology a net (F;) has limit
F if and only if F({) = F({) for each { € 2, that is, if and only if fo F({) —
fo F({)forallfe H® and all { € 2. Nets are forced upon us here because M
is not a metric space. The notations (z;) or (F ) for anet and {z,} for a sequence
will be used to distinguish nets from sequences. Our principal object of study
here is the set & < IMM? of maximal analytic discs in 9. Maximal means that
the range L(2) is contained in no larger analytic disc. It will turn out that
{aL,:z€ D,|a| = 1} is dense in .Z. This fact can be regarded as a refinement
of the corona theorem.

Nontrivial analytic maps into MM\ (X U D) were exhibited in Chapter V
by the following reasoning. Let B(z) be an interpolating Blaschke product
with zeros S = {z,}. Then

inf(1 — |z,1?)|B'(z,)| = 6 > O.



404 INTERPOLATING SEQUENCES AND MAXIMAL IDEALS Chap. X

Let m € MM\ D be in the closure of S and let (z;) be a subnet of S converging to
m. Taking a finer subnet, we can by compactness suppose that (L. ) converges
to a map L, €M’ Then L,O)=Ilim;L,(0)=m, and when fe H
fo Ly(0) = lim F o L, ({) is analytic on 2. Moreover, L,, is not a constant
mapping, because

|(B > L,Y(0)] = lim[(B > L.)(0)| = lim(1 — |z;|*)| B(z))| > 6.

That is as far as we went in Chapter V. Now let us study the mapping L,, more
carefully.

Because S is an interpolating sequence, its closure S in M is homeomorphic
to BN, the Stone-Cech compactification of the positive integers. Consequent-
ly any map from S into a compact Hausdorff space like M? can be uniquely
extended to a continuous map from S to the same compact Hausdorff space
(see Chapter V, Theorem 1.4). For the map z, —» L, this means L, does not
depend on the choice of the subnet of {z,} converging to m. We have proved
the following:

Lemma 1.3. If S is an interpolating sequence and if m € S, then there is a
unique nonconstant analytic map L,, € M? such that whenever (zj)isanetin$S
converging to m,

limL,, = L,.
j

To get more precise information about L,, we need two lemmas about
Blaschke products. The first lemma continues the theme of Chapter VII,
Section 5.

Lemma 1.4. Suppose B(z) is an interpolating Blaschke product with zeros
S = {z,}, and suppose

inf(1 — |2,1?)|B(z,)| = & > 0.

There-exist A= A(0),0 < A < L,and r = r(3), 0 < r < 1, satisfying

(1.2) lim A(3) = 1,
o-1

(1.3) lim r(8) = 1,
o—1

and having the following properties: The set B~ '(A(0, r)) = {z:|B(z)| < r}
is the union of pairwise disjoint domains V,, z, € V,, and

(1.4) V, = {z:p(z z,) < A}.
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B(z) maps each domain V, univalently onto A0, r) = {w:|w| < r}. If|w| <,
then

_ B(zm)—w
B.G) = %80

is (a unimodular constant multiple of ) an interpolating Blaschke product having
one zero in each V,.

Proof. Let h () = B({ + z,)/(1 + 2,0)) = Bo L, ({). Then |[h,|, =1,
h(0) = 0, and |h,(0)| > 4. By Schwarz’s lemma,

h

p( "f),h;«))) <12,
so that when |{| = A = A(J) < 9,

O] _ 1RO = 18] _ 5 A

o 21— (o) T =48

On |{| = A this gives
)

l_wlzr:r(é),

(1.5) 1O =

and the argument principle shows that h,({) = w, [w| < r, has exactly one
solution in |[{| < A. Hence B(z) maps

V. = L., (hy '(AO, 1))

univalently onto A0, r), z, € V,, and (1.4) holds.
If there exists z € V, N V,, n # k, then by (1.4),
Zk) < p(znv Z) + p(Z, zk) < 22 5
1 + p(zn’ Z),D(Z, Zk) 1 + A
Choosing 4 = A(d) so that

p(z,,

< 2 <
1 4+ A2

thus ensures that V, n V, = &, n # k. Also choosing A so that A = A(6) — 1
(6 — 1) and so that

(1.6) A P

o0— A
= 0D
we obtain
lim r(8) = 1
61

in (1.5). Thus we have (1.2) and (1.3).
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If |[w| <r, then B,(z) = (B(z) — w)/(1 — WB(z)) has one zero z,(w) in
each V, and z,(w) is a holomorphic function of w. Let A4,(z) be the Blaschke
product having zeros z,(w). Then B,, = A,.g,, 9w/l < 1.To prove B,, = cA,,
|c] = 1, we show |g,(0)| = 1. Now

|B.O)] = 1guO) [T 12,01

Write
[co]

Hw) = []

n=1 Iznl

Zn

z,(w), [w| < r.

This product converges on |w| < r because its partial products are bounded
and because it converges at w = 0. Also, since | g,,| < 1,

e | B(O) — w|
1.7 [Hw)| = []lz,W)| = |BJO)] = ——==—.
(LD nl:[1 [1 — B(O)w|
Both sides of this inequality are moduli of functions analytic in w, and equality
holds at w = 0:

[H©O)| = [T lz,| = |BO)I.

We can assume B(0) # 0. Then equality holds in (1.7) for all |w| < r, and
[g.,(0)| = 1except possibly when H(w) = 0, that is, when B(0) = w. However,

[1 — BO)w|

TB0) — w [H(w)|

19.,(0)| =
is the modulus of a function meromorphic on |w| < r. Thus |g,,(0)| = 1 for
all w and B,(z) is a unimodular constant times the Blaschke product A4,(z).
Since B,,(z) has the same zeros as A,(z), B,, has no zeros outside U V,,and
so B '(lwl<r) =1V
The zeros of B,(z) are an interpolating sequence because, by Lemma 5.3 of
Chapter VII, any sequence {{,} with p({,, z,) < A(d) is an interpolating
sequence. []

The second lemma employs a clever combinatorial argument due to
W. Mills.

Lemma 1.5. Let B(z) be a Blaschke product with distinct zeros {z,}. Then B
admits a factorization B = BB, such that

(1.8) if By(z) =0, then (1~ |z,]*)IB1(z,)] = |Bazn)l;
(1'9) lf BZ(zn) = O’ then (1 - Iznlz)lB’Z(Zn)l > IBl(zn)I'
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Corollary 1.6. If B(z) is an interpolating Blaschke product with zeros {z,}
and if

8(B) = inf (1 — |z,|*)|B(z,)],

then B has a factorization B = BB, such that
5(B) = (BB, j=1,2.

Proof. The corollary is immediate from the lemma. If By(z,) = 0, then
by (1.8),

(1 = 12,)IB(z)] = (1 = |2,/)]By(z)] | Bo(z)| < {(1 = 12,19 By(z,)|}?
and §(B,) > (8(B))'/?. By symmetry, we also have (B,) > (6(B))'/2. I
Proof of Lemma 1.5. Write

Zn — Zy
I—EkZ

a, , = log , k#n; Ay, = 0.

n

Then [q, ,]is a symmetric real matrix, q, , = a, ,, with zeros on the diagonal
and with absolutely summable rows. We claim there is a subset E of the
positive integers such that

(a) ifneE,then

}:akm = E:ahn;

keE k¢E

(b) ifn¢E,then

z:ahﬂ = z:akn'

k¢E keE

This will prove Lemma 1.5. If B, has zeros {z,,: n € E}, then by (a)

Z, — 2 Z,— zZ

1 —|z,1?)|By(z,)| = Sl B B S " = |B,(z,)l,

(1 = 12,1 By(z)| kDE e R Y ey | B1(z,)]
k#n

and (1.8) holds. Similarly, (1.9) follows from (b).
To establish (a) and (b), first suppose q; , = 0if k > N orn > N. Then we

have a finite problem and there is E < {1, 2, ..., N} that maximizes the
function
h(E): Zak,""" Zak'n.
keE k¢E
neE n¢ E

Suppose n € E and let F be the subset obtained by removing n from E. Then
hWF)=hE) =2 a o+ 2) a,.
keE

k¢E
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Since h(F) < h(E), (a) holds; and since h(E) = h(E’), where E' is the comple-
ment of E, (b) holds for the same reason.

For each N we have a subset Ey < {1,2,..., N} such that (a) and (b) hold
under the constraint k, n < N. The space of subsets of N = {1, 2, ...} is
compact in the product topology, in which a sequence {E;} has limit E if
and only if

neE < nekE; forall j > jo(n).

(The correspondence E — yg, the characteristic function of E, makes the
space of subsets homeomorphic to the compact product space {0, 1}™)
Choose a subsequence {Ey } of {Ey} which tends to a limit set E. Because
Y4 lay. | < oo, we then have

Zak,,, - Zak,,, = llm( Z ak,,, - Z ak,,,).
keE k¢ E jooo| keEN, k¢EN,

k<N,

If ne E, the limit is nonnegative, while if n ¢ E, the limit is nonpositive.
Therefore (a) and (b) hold for the subset E. [

We return to the analytic mapping L,, = lim L, , where (z;) is a subnet of
the interpolating sequence S = {z,}, and lim z; = m.

Theorem 1.7. The mapping L,, is a one-to-one analytic mapping from & onto
P(m), the Gleason part containing m. For any r < 1 there is a Blaschke product
B, such that B,(m) = 0 and B, o L,, is one-to-one on |{| < r. If (w;) is any net in
D converging to m, then

lim L,, = L,,.
Proof. Let B(z) be the Blaschke product with zeros {z,}, and let

§ = &(B) = inf(1 — |z,]?)|B(z,)| > 0.

Then |(B o L,)(0)| = limj|(B © L,,)(0)| > é. By Schwarz’s lemma, as in the
start of the proof of Lemma 1.4, B o L,, is univalenton (B o L,,) " *(|w| < r(9))-
Since |B o L, ()| < |{|, this means B o L, and L,, are one-to-one on |{| <
H9).

Let r < 1. By (1.3) and Corollary 1.6, B(z) has a factorization B =
BB, --- By with H6(B,)) > r, k=1, 2, ..., N. We can replace (z;) by a
subnet so that B,(z;) = 0 for some factor B, not depending on z;. The above
argument then shows B, o L, and L,, are one-to-one on |{| < r. This means
L,, is one-to-one on 2.
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By Lemma 1.1, L,(2) = P(m). We must show L,, maps & onto P(m). Let
m’ € P(m), so that p(m, m") < 1. By (1.2) and by Corollary 1.6, we can assume
that

p(m, m') < A = Ad(B)),
and by (1.3) we can assume that | B(m')| < r(6(B)). Hence by Lemma 1.4
B — B(m')
1 — B(m)B
is (a constant times) an interpolating Blaschke product with zeros z,, where

z, € V,. Then m' is in the closure of {z;} by Chapter IX, Lemma 3.3, and there
is a subnet (z,;) of {z,} converging to m". We claim

(1.10) lim z,; = m,

where z,; is the subnet of S determined by the rule z,,;, € V,,. Let m” be any
cluster point of z,;. Then

p(m", m’) < lim p(zn(i)9 Z;r(i)) < A(6),
and by (1.6)

. MS) + p(m, m') 24
AT TR T <
pim, ') < Sy = 1 + A2

(1.11) < &(B).

On the other hand, distinct cluster points m and m” of S = {z,} must satisfy
(1.12) p(m, m") > &(B).

This holds because there is a subset T < S whose closure contains m and not
m". If By is the Blaschke product with zeros T, then

p(m, m") = ll_m |BT(Zn)| 2 5(B)
Zn¢T

Since (1.11) and (1.12) show m" = m, (1.10) holds.
To summarize, we have

7 14
Zopy = M, Zyiy = W, and Zuiy € Vo -

There is {;, |{;| < A(6), such that L, ({,) = z,;. We may suppose {; - ¢,
[{] < A(8). Then p({;, () — 0, while by Lemma 1.3, L;,. — Ln. Consequently,

Ln() = lim L., (0) = lim L, ({) = lim zj, = mt,

and L,(2) = P(m).
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If {w;} is any net in D converging to m, then lim B(w;) = 0 and | B(w))|
< 1(&(B)) for large i. By Lemma 1.4 there is n(i) such that w; e V,,, for i
large. Since B is univalent on V,;,

p(w;, Zuiy) < ¢|B(wy)| = 0.
Hence
(1.13) p(Ly (), L., () -0, (e

In particular z  — m, and by Lemma 1.3, L, — L,. Then (1.13) shows
that L, - L,. O

Zn(r)

Incidentally, Theorem 1.7 leads to an interesting observation about the
size of M. If the Blaschke product corresponding to the interpolating sequence
{z,} satisfies

lim(1 - |z,1))|B(z,)] = 1,

n— oo

and if m € M\ D is in the closure of {z,}, then the map L,, is a homeomorphism
of Z onto P(m) (see Exercise 8). Moreover, the mapping
f=fo Lu(O)

is then an algebra isomorphism from H* | P(m) onto H*. This means that the

nowhere dense set P(m) is homeomorphic to M. Furthermore, P(m)\ P(m)
also contains homeomorphic copies of M, and so on.

2. Hoffman’s Theorem

Hoffman proved that all analytic structure in M comes about in the
manner described in Section 1. In other words, every analytic disc in M\D
has the form L, = lim L, , where (z;) is a subnet of some interpolating
sequence. In view of the size and intractibility of 9\ D, this is a remarkable
accomplishment. Write

G = {m e M : mis in the closure of some interpolating sequence}.

Exercise 2(d) provides a geometric glimpse of G. We know each m € G lies
in an analytic disc. The key observation we must make is this: When m € M\ G,
the Gleason part P(m) is a singleton, P(m) = {m}. It follows by Lemma 1.1
that no nonconstant analytic mapping F : 2 — 9 can include m in its range-
Consequently, m lies in an analytic disc if and only if m € G.
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Our basic tool will be another factorization theorem for Blaschke products.
Let B(z) be a Blaschke product with zeros {z,}. For § > 0, set

KrS(B) = ﬂ {Z : p(Z’ Zn) = 5}
n=1

Theorem 2.1. For 0 < é < 1 there are constants a = a(d) and b = b(d) such
that the Blaschke product B(z) has a nontrivial factorization B = BB, such that

(2.1) alBi(2)['"* < |By(2)| < - |B1(z)lb

on K(B). The factors By and B, do not depend on 9.
Proof. We work in the upper half plane 5. For z € K4B), we have

2yY, z-z,

—|Z"—2|2_

—Zn

>

c(d) log j

z— 2z,

n

by the proof of Lemma VIIL.1.2. We show there are constants C; and C, such
that every Blaschke sequence {z,} can be partitioned into two subsets S, and
S, such that for z € A,

2yy, 2yy,

(a) Z 2 < Cl + CZ Z ~ 122
S |z, — z| s> |z, — Z|
2yYn 2yy,

(b) Y SO+ G Y s
S I Zy | S 'Zn - Zl

Taking B, with zeros S, and B, with zeros §S,, we obtain (2.1) with a =
exp C,/C, and b = ¢(8)/C,, when z € Ks(B).

Choose 4, 0 < A < 1, and form strips T, = {z: **! <y < A*}, k an
integer. Write the z, in T, as the (possibly two-sided) sequence z, ;, j an
integer, so that x; < x; if j < [ (The Blaschke condition ensures that only
finitely many z,’s from T, cantie.) Put z, ;€ S, if jisodd, z, ;€ S, if jis even.

To prove (a) and (b) first consider the special case

y, = AT all z,eT,.
Then we have

2(1+i)
—1(1 )

for all z € #. Indeed, when z is ﬁxed, the terms from T, have alternating signs
and moduli

2.2)

S1

2yik+1
(x — X, )" + (v + AFHY




412 INTERPOLATING SEQUENCES AND MAXIMAL IDEALS Chap. X

These moduli are monotone in |x — X, ;| and tend to zero at infinity. Thus
the contribution from T, to the left side of (2.2) consists of a two-sided alter-
nating series, which is dominated by the largest modulus of its terms. Hence

2pAkt1
(y + 1k+1)2
Summation over k now gives (2.2), because if "*! < y < 1", then
Akt - % Jkn
(y + ik+1)2 - 1(1 + j'k—n)z

Si1nTy S Ty

and
® A 1 ,1
— =) + <
J_Z_w(l+ﬂd)2 J=Z jz_w 1—1 1-2
_1+A
=4

Turning to the general case, we write z;, ; = x, ; + iA**! and compare the
sums to those for the adjusted sequences S and S,. When y > Oand z, € T,,
2yYn 1 2pAFT!

(X=X + 4y T A= x) + (y+ AT

1 )
<L 2yYn

A2 (x = x) + (y+ y)”

so thatforp = 1,2

é”M
M

1
With (2.2), this yields

2(1+/1) 200 +4 1
LEu 0" h 122 and gsﬁa—z)*xzz’

Sl Sl
which are (a) and (b). O
Theorem 2.2. Suppose m€ M\G. Let fe H®, | f|l, < 1. If f(m) = O then
=0/, fieH" with| fill, < 1and fj(m) = 0.

Proof. First let us reduce the problem to the critical case where f(z) is a
Blaschke product with simple zeros. Write f = Bg where g€ H® has no
zeros and B(z) is a Blaschke product. If g(m) = 0, then f = (Bg'/*)(g''?) g:ves
the desired factorization. So we can assume f(z) = B(z). Write B = B (Bz)
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where B, and B, are Blaschke products and B, has simple zeros. If B,(m) = 0,
then B = (B, B,)(B,) and we are done. Thus we can assume f(z) = B(z) is a
Blaschke product with simple zeros.

Factor B = BB, in accordance with Theorem 2.1. We may suppose
B;(m) = 0 but B,(m) # 0. Then by (2.1) m is not in the closure of the set
K 4B), for any é > 0. This means m is in the closure of

S = {z},

the zero sequence of B. Indeed, if (z;) is a net in D converging to m, then by
Theorem 2.1 there are z,;, B(z,;) = 0, such that p(z;, z,;) = 0, and this
implies that z,; also converges to m. The factorization B = B, B, splits S
into §; U S,, where §; is the zero sequence for B;. Since B,(m) # 0, m is not
in the closure of S,. Therefore m lies in the closure of S,.

Now factor B, = B, B, , using Lemma 1.5. As before we can suppose
B, 1(m) =0, By ,(m) # 0. Fix e < |B, ,(m)|. Then m is not in the closure of
{z:|By, »(2)| < ¢}, but m is in the closure of S;. Hence

T = {Zn€S1:|B1,2(Zn)| = 8}

captures m in its closure. But Lemma 1.5 shows that T is an interpolating
sequence, because

(1 - ,ZnIZ)IBl,l(Zn)I =&, Z"E T.

Therefore m lies in the closure of an interpolating sequence, contrary to the
hypothesis m e M\G. 0

Corollary 2.3. If me M\G, then the Gleason part P(m) reduces to the
singleton {m}.

Proof. Suppose m’ # m. We show m’ ¢ P(m). There is ge H®, |g|, = 1,
with g(m) = 0 but g(m’) # 0. For each n = 2, 3, ..., Theorem 2.2 gives a
factorization

()} )
g =979y - g\,

where g € H®, |lg{"||, = 1, and g{”(m) = 0. Hence m’ ¢ P(m), by Lemma
12. O

To summarize, we now have several characterizations of points in MM\ G.
Theorem 2.4. Let m € . The following are equivalent:

(1) The Gleason part P(m) is trivial.
(ii) If (z)) is a net in D converging to m, then lim L, is a constant map
L) = m.
(i) méG.
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(v) IffeH® |flo < 1, and f(m) = O, then
f=hr

withf;€ H®, || fil », < 1, and f(m) = 0.
(v) The ideal J,, = {f€ H® :f(m) = 0} is the closure of its own square

Ji = {Z}'=1 195 fi» 95 € I}

Conditions (iv) and (v) are the strongest and weakest ways, respectively, of
saying that J,, is equal to its own square.

Proof. Clearly (i) implies (ii), because any limit point of L,, in M? is an
analytic map whose range must be contained in P(m) by Lemma 1.1. Lemma
1.3 shows that (ii) imples (iii). By Theorem 2.2, (iv) follows from (iii), and by
the proof of Corollary 2.3, (iv) implies (i). So except for (v), we have a logical
circle.

Trivially, (v) follows from (iv). To complete the proof, we show (v) implies
(iii). If (iii) fails then there is an analytic disc L,, with L, (0) = m, and thereisa
Blaschke product B(z) € J,, such that (B - L,,)(0) # 0. But then the contin-
uous linear functional

J= (fo Ln)(0)

annihilates J72, so that JZ cannot be dense in J,,. [J

We can now determine all the analytic structure in 9R. Recall that when
m € G, there is an analytic disc L,,: 2 — P(m), L,(0) = m. By Theorem 1.7
the map L,, is uniquely determined by m in the sense that whenever (w;) is a
net in D converging to m,

L,=1lmL,.

Theorem 2.5. Suppose F:% — M is a nonconstant analytic map. Let
m = F(0). Then m € G and there is an analytic function t: 2 — 2, ©1(0) = 0,
such that

(2.3) F() = L, - t({), (e 2.

In particular, if L is an analytic disc with range P(m), m = 1(0), then there is a
constant o, |o| = 1, such that

L = L), (€2

Proof. By Lemma 1.1, P(m) is nontrivial, because F is analytic but not
constant. Hence m € G by Theorem 2.4, and we have the one-to-one analytic
mapping L,,. Now use (2.3) to define the function 1: 2 — 2, 1(0) = 0. Our
task is to show that 7 is analytic. For any r < 1 there is, by Theorem 1.7, 2
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Blaschke product B,(z) such that h,({) = B, - L,({) is univalent on |{]| < r.
But then by (2.3)

(O)=h""B.oFQO, [l<m

so that tis analytic on h,(|{| < r). Since h,(0) = O and | h,|| , < 1, this means
7 is analytic on |{| < r. Letting r — 1, we see that 7 is analytic on 2.

If F maps 2 one-to-one onto P(m), then 7 is a univalent mapping from 2
onto 2 with 7(0) = 0, so that by Schwarz’s lemma, 7({) = a{, « constant,
e =1. O

Corollary 2.6. In the topology of M2, the set of analytic maps from 2 into 2
is dense in the set of analytic maps from & into M. The set of maps

{+z
Oth(C)=f11+§£-

zeD,|a| = 1}

is dense in the set £ of maximal analytic discs in M.

Proof. Let F € M? be an analytic map. If F is constant, the corona theorem
yields a net of constants in D converging to F. If F is not constant, then F has
the form (2.3) with L, =lim L,,. Then F({) = L,, o ©({) defines a net
converging to F.

If L is a maximal analytic disc in M, then L(Z) = P(m), m = L(0), and
there is «, || = 1, and a net (z;) converging to m such that

L) = Lp(@) = lim L, (a) = a lim L, (). [T
i i

An equivalent formulation of Theorem 2.5, without the language of maxi-
mal ideals, is given in Exercise 7.

3. Approximate Dependence between Kernels

Let {z;} be a sequence in the upper half plane. Assume {z;} is separated,
which means there is @ > 0 such that

|z; — 2| = ay;, k #j.

Then {z;} is an H® interpolating sequence if and only if

y.
3. sup —1_ < 4 < o0,
Q ZjZEQ /(Q)
where Q ranges through all squares of the form Q = {a < x < a + £(Q),
0 < y < 4(Q)}. In this section and in Section 4 we prove that (3.1) holds if the
points {z;} can be separated, in either of two ways, by bounded harmonic
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functions. These results generalize the theorem from Chapter VII, Section 4,
that a harmonic interpolating sequence is an H* interpolating sequence. The
proofs of these results are of independent interest, because each proof gives
a quantative formulation of Fatou’s theorem. The key idea, in Lemma 3.3, is
that when (3.1) fails the Poisson kernel for some point z; can be approximated
by a convex combination of the kernels representing the other points z,.
To begin we observe that if (3.1) fails for a separated sequence {z;} then (3.1)
also fails for a subsequence having a particularly convenient distribution.

Lemma 3.1. Let N be a positive integer, N = 1 (mod 3). Let {z;} be a sepa-
rated sequence

(3.2) lzj — zil > oy, k#J,

with o > 0. Then {z;} can be partitioned into ny = ny(a, N) disjoint subse-
quences Yy, Y, ..., Y, having the following properties: To each z; there
corresponds an interval I; with |1;| = 3N™, m an integer, such that

(3.3) 3Ny; < |I;| < 3N?y;

and

3.4) dist(x;, 0I;) > 1,1, x;=Rezjel;.

If z; and z; belong to the same subsequence Y, and if I; ' I, # (J, then

(3.5) I,c I, or I, < 1,

and if I; < I, then

(3.6) 11l < N72 L

and 1; is a member of the unique partition of I, into |I,|/|1;| subintervals of
length |1;].

Two intervals I; and I, from the same Y; are illustrated in Figure X.1.

[/ .

—~
Iy
Figure X.1. Two intervals from the same Y,.

Admittedly, this lemma is technical, and some readers may want to post-
pone studying its proof until after seeing its applications. Conditions (3.3)
and (3.4) ensure that, for N large, R\ ; has small harmonic measure at z;-.
Condition (3.5) enables us to fit the points z; neatly into generations, while
condition (3.6) implies that when I; < I, the Poisson kernel for z, is almost
constant on /;.
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Proof. Consider all intervals of the form
Jk,m = (kNm’ (k + 3)Nm),

with k and m integers. For fixed m the middle thirds of the J, ,, form a paving
of R. To each z; we let I; be that unique Jy ,, such that x; e [(k + 1)N™,
(k + 2)N™), the middle third of J, ,,, and such that N"~? < y; < N™~'. Then
(3.3) and (3.4) hold.

Divide the family {J, ,} of intervals into three subfamilies according to
whether k is congruent to 0, 1, or 2 (mod 3). Within each subfamily the inter-
vals of each given length form a partition of R. Moreover, if J, , and J, ,,
are any two intervals from the same subfamily, and if |J, ,,| < [/, |, then
either

J, < J

q,.m

p.n or Jq,mm‘]p,n:@‘

This holds because N = 1 (mod 3). Write pN" = kN™, k = pN"™™. Since
n > m(because |J, ,| > |J, |), kis an integer. And since N"~™ = 1 (mod 3),
we have k = p(mod 3). Hence pN" is an endpoint of an interval J, , from the
same subfamily. The same thing happens at the other endpoint (p + 3)N"
of J, ,and so J, ,, cannot cross either end of J, ,.

Divide the points {z;} into three subsequences according to whether
I; = Ji, . with k congruent to 0, 1, or 2(mod 3). For z; and z; in the same sub-
sequence we now have

I, c I, I,c 1, or Iy I = &,

and if I; < I, then I occurs in the partition of I, into subintervals of length
[1,].

JTo get (3.6) we use the separation (3.2) to further partition {z;}. In the
hyperbolic metric, all rectangles of the form R, , = {kN" < x < (k + 3)N",
3N""% < y < 3N"" '} are congruent. By (3.2) each such rectangle contains at
most n; = ny(a, N) sequence points z;. Partition each of our three sub-
sequences into n; subsequences so that every rectangle R, , contains at most
one point from each subsequence. We then obtain n, = 3n, subsequences
Yy, ..., Y, for which (3.5) and (3.6) hold. [

By (3.5) the points z; in each subsequence Y;, and their corresponding
intervals I, fit naturally into generations. When z;, z, € Y;, we say z, € G,(z;),
and I, e G,(I)), if I, & I; and I, is maximal. Successive generations, as
always, are defined inductively:

Gp(Ij) = U G1(Ik)~
Gp-1(ly)
Lemma 3.2. Suppose {z;} is a sequence of points satisfying (3.2). Let N be
given and let Yy, Y,, ..., Y, , ng = no(®, N), be the subsequences given by
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Lemma 3.1. Let 0 <y < 1 and let r be a positive integer. Then there exists
A = Ao, N, v, r) such that if (3.1) fails with constant A, that is, if

7

Q e 0 /(Q)

then there is a subsequence Y, and a point z; € Y; such that

I
G%j) | I J'l

In a quantative way, this lemma says that to establish (3.1) it is enough to
work with the special sequences Y.

Proof. If the contrary holds, then for every Y; and for every z; € Y, induc-
tion gives
1|

<
Z o "

Gl ;)
when nr < g < (n + Dr. Consequently,

Y Ms .
Ikcljlljl 1 —y
zeY;

Summing over the Y, then yields

el _ nor
Ixcl III -1 ‘_'}7,

and since y,/|I,| is bounded above and below, this proves that (3.1) holds
with some constant 4 = A(x, N, y,r). O

Let N be large. Then by (3.3) and (3.4) I contains most of the mass of the
Poisson kernel P; corresponding to z;,

2 Y
P(t)dt < — j 5 dt < ey
fR\Ij J T l>N}J/3 [ + yj N

Partition I ;into N subintervals I; oflength{l;,| = NIl <N~ i and
form the step function

KA = Nz (inf Pj)x,j,,(t).

I=1 \lj
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Then K(t) < P{t) and K; constant on each I, €| ) G,(I). If N is large,

N3
1P, — Kl < f P(tydt + ¥ (Pj(z) — inf P,.) dt
R\I; I=1 vI;,

I

) L (Pj(z) - P,(t + NJ)) dt < NZ

Fix ¢ > 0 and choose N = N(e) so that
(3.7 IP; — Kjll, <¢/8
for each z;. See Figure X.2.

/ 10 1t B

Figure X.2. The kernels P, and K ;.

Lemma 3.3.  Suppose {z;} is a sequence of points satisfying (3.2). For ¢ > 0
and for N = N(e),let Y\, Y, ..., Y., no = no(a, N) be the subsequences given
by Lemma 3.1. There exist f = f(¢),0 < B < 1, and a positive integer p = p(e)
such that if

1l

(38) 3 | = =y

Gp(lj) | I

for some point z; € Y;, then there exist convex weights 4,,0 < A, < 1,Y A, =1
such that

(3.9) ”Pj - Z APl <
(3.10) A=0 if z ¢ Gi(z)w--- UGz,
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and

(3.11) A < bILI/NL,

where b = b(N) is a constant.

Proof. We are going to find weights A, satisfying (3.10) and (3.11) such that
0<> LK, <K;

and such that

(3.12) IK; = Y &Kl < ¢/8.

Replacing 4, by 4,/ A, and using (3.7), we then obtain convex weights for
which we have (3.9)-(3.11).

Set fo(t) = K(t). Then f, has constant value fo(I},) on each first generation
interval I, € G,(I;). These intervals are disjoint and K, is supported on I,.
Set 4y = fo(1)/IKillw, 2 € Gi(z), and f, = fo — Yo, 4K, Then 0 <1,
< fo,and f; has constant valuef,(I,) on each I, € G,(I;). Repeat the construc-
tion using f; in place of f, and continue through p generations. At stage g,
fy—1 has constant value f,_;(I,) on each I, € G,(I;), and we set

Ak =f¢r1(1k)/”Kk||m’ 7 € G(z))

q
fo=foor— 2 AKe=K;— Y Y AK,.
Gal;) r=1 GuI,)
Then 0 <f, <f,-, <fo. See Figure X.3. By (3.4) we have f,_,(I}) <
I follw < ¢y/I1;], while by (3.3) and (3.4), |Kllo > ca/|I;|. Hence 4, <
b|I|/11;|and (3.11) holds. We have (3.10) because the process is stopped when
f» has been constructed.

%

T T T

1 A I3 ¢ 6,

Figure X.3. Foreach I, € G,, 4, K, < f,_(1}). but [, A K,dt > 3, fo,dt.

It remains to estimate |K; — Y, 4 Kll; = [ f, dt. Since [ Kyl > co/ 1 Ll
(3.7) yields

K, dt>(1 _£)|Ik|=

1Kl ¢ ( *
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with 0 < é < 1. Consequently, when I, € G, we have

K
| = 1n1a — s [t a

<O A st =3 [ gy
I

LetEo=1;, E,=J¢,Ix»g=1,2,...,p. Then E, > E; © -+ 2 E,, and
induction yields

prdtséJ. fp_ldtséf fp-1dt
Ep E, E,-1

<0 | fodt <
Eo
Choose p so that 6” < ¢/16. Recall that | f,], < || foll o, < ¢,/|1;], where ¢,
depends only on &. Our hypothesis is that [E,|/|I;| > B, for some f = f(e)
yet to be determined. Now choose f = f(¢) so that (1 — B)c, < ¢/16. Then
we obtain || foll o |1;\E,| < &16 and

jf,,dzgau fdt <8 + | foll o INE, | < /3,

I\Ep

so that (3.12) holds. [

Theorem 3.4. Let {z;} be a sequence in the upper half plane. Assume there are
real valued harmonic functions {uy(z)} such that

1) Nujlle <1,
(i) ufz;)=29>0,
(i) ufz) < 0,k # .

where 0 > 0 is independent of j. Then {z;} is an H* interpolating sequence.

The hypothesis of the theorem is reminiscent of the condition

inf []

J o kk#j

Z_Zk

J
Zj_zk

=6>0

characterizing interpolating sequences, but there seems to be no direct
derivation of this condition from the theorem’s hypothesis. Note that the
theorem generalizes Theorem 4.2 of Chapter VIL

Proof. Clearly, the points are separated. The bounded function exp(u; + ii;)
separates z; from each other z,. We claim (3.1) holds. That will prove the
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theorem. If (3.1) fails, then by Lemmas 3.2 and 3.3 there is a point z; and there
are weights 4, > 0, 4; = 0, such that ||[P; — ) 4 P;ll, < 4. But then

O <ufz) — ). Auizy) = fuj(Pj =Y AP dt

< llugll oI Py — Z’lkPkHI <9,
a contradiction. [

Lemma 3.3 and Theorem 3.4 are also true with approximate identities
more general than the Poisson kernel (see Exercise 12).

4. Interpolating Sequences and Harmonic Separation

We continue the discussion of the preceding section. Our objective is
another characterization of interpolating sequences.

Theorem 4.1.  Let {z;} be a sequence in the upper half plane. Then {z;} is an
interpolating sequence if disjoint subsets of {z;} have disjoint closures in the
maximal ideal space M of H®.

Before getting into its proof, let us see what this theorem means. Notice
that the converse of the theorem is trivial. Is S and T are disjoint subsets of an
interpolating sequence, then there is f'€ H* such that f(z;) = O when z;€ S
and f(z;) = 1 when z; € T. With respect to I, the closures of S and T lie in
the disjoint closed sets {f= 0} and {f = 1}, respectively. If we make the
additional assumption that the closure K of {z,} in Wiis a hull (i.e.,if m € M\ K,
there is f € H*® such that f(m) # 0 but f = 0 on K), then the theorem follows
from a general result of Silov and Exercise 8 of Chapter VII (see Hoffman
[1962a]).

As we saw in Chapter V, M is homeomorphic to a weak-star compact
subset of the dual space (L*)*, and under that homeomorphism z; corre-
sponds to its Poisson kernel P;. Hence the hypothesis of the theorem is that
disjoint subsets of {P;} have disjoint weak-star closures in (L*)*. This
hypothesis can be reformulated two ways. First, it means that the weak-star
closure of {P;} in (L*)* is homeomorphic to SN, the Stone-Cech compacti-
fication of the integers. Equivalently, the closure of {z;} in 9 is homeo-
morphic to N. Thus {z;} is an interpolating sequence if and only if its
closure in 9 is homeomorphic to AN.

Secondly, every basic weak-star open subset V of (L®)* is defined by a real
number « and by finitely many functions u,, u,, . .., uy € L™ in the following
way:

V="V, ={pe)* o) <al<m< M}
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Let S and T be subsets of {P;} having disjoint weak-star closures in (L*)*.
Each point ¢ € S, the weak-star closure of S, has a neighborhood ¥, such that
V,n T = . Since T is compact there is f > a such that V; n T = (. Since
(1) = 1 when o € SU T, we can take« = — 1 and § > 1 by replacing each
u,, by au,, + b, a and b constants. Covering S by finitely many such neighbor-
hoods V®,,1 < n < K, we arrive at the following equivalent formulation of
the hypothesis:

Whenever S and T are disjoint subsets of {z;}, there are {uy} € L*, 1 <
n<K,1 <m< M such that

inf sup ui(z;) < —1 if z;€8,
(1) T

sup inf ul)(z;) > +1 if zjeT.
Taking K =M =1 in (4.1), we see that Theorem 4.1 also generalizes
Theorem 4.2 of Chapter VII. Roughly speaking, Theorem 4.1 says that a
sequence satisfies (3.1) and (3.2) if any reasonable form of separation is
possible with bounded harmonic functions.

The proof of the theorem will focus on the concrete condition (4.1). It will

be crucial that the numbers K, M, and

B = supllu| o,

n,m

can be chosen not to depend on the subsets S and T of {z}.

Lemma 4.2. If disjoint subsets of {z;} have disjoint closures in M, then (4.1)
holds with K, M, and B = sup,, ,|lul’| ., not depending on the subsets S and T
of {z;}.

Proof. We can suppose T = {z;}\S. The set & of all subsets S of {z;} is a
compact space in the product topology, in which a neighborhood V of a
subset S, is determined by finitely many indices j,, j,, ..., j, by the rule

V = V(Soijisjzr--rjs) = (SES 2, €S>z, €80, 1 <1 <5}

For K, M, and B positive integers, let &g ». 5 = {S € ¥ :(4.1) holds with
bounds K, M, and B}. Then ¥ = U 6. . B, and by normal families each set
&g, m. pis closed in the product topology of #. By the Baire category theorem,
some &',y pcontains an open set V(Sg;jy,j2,- - ., Jjs). By the definition of the
product topology this means that except for the finitely many points z;,,
Zj,, ..., 2, we have (4.1) with bounds on K, M, and B that do not depend on
the subsets S and T. Adjoining finitely many additional functions u® to

separate z;,, zj,, - . - , Z;,, we then obtain (4.1) with uniform bounds. [
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We prove Theorem 4.1 using Lemma 3.3 and an iteration. Afterward we
shall indicate how an alternate proof can be based on Theorem 6.1 of Chapter
VIIL

Proof of Theorem 4.1. By Lemma 4.2 the points z; are separated, and (3.2)
holds with o = a(B). The problem now is to derive the Carleson condition
(3.1) from (4.1). Lete = (4BK)~ ', and take N = N(e), p = p(¢), and § = B(e)
in accordance with Lemma 3.3. Here is the strategy. If (3.1) fails, then a
subsequence Y; contains a point z, such that

| Ii|

— >

ng:o) 1o

with r = 2(BK + 1)p and with 1 — vy very small. This will mean that we have
(3.9) for z; in a large portion of G, for a large number of indices g. When the

subsets S and T are chosen properly, this will contradict Lemma 4.2,
If there were p < 1 and ¢ < 2BKp such that for all Y;and all z, € Y;

I; |1
(42) ) {' by "|<B}
oxo (ol aagten 1]

then

) Il gy 1= p)

Gg+2p(20) |IO|

for all z, in all ¥,. By Lemma 3.2 we should then have (3.1).

Assume (4.2) fails for a fixed point z, € Y;, for all ¢ < 2BKp and for p < 1
to be determined. Choose subsets S and T of {z;} so that z, € T and so that
forsp <q<(s+ 1p,s=20,G,z0) = G, = Sifsisevenand G, = T if s is
odd. Thus we alternate between S and T after every p generations.

Note that (4.1) is unchanged if we permute the indices {1, 2, ..., K} or
if, for any fixed n, we permute the set of functions {u‘{", ud, ..., ulP}. So we
can assume u{(zo) > 1for1 <n < K.Letv = Y X, u{". Then |v|, < BK,
but v(zy) = K. By Lemma 3.3 there are convex we1ghts A; = 0 such that

14
1 Ggql(zo)

Since |1(z;)| < BK, Chebychev’s inequality (for the measure ) 4;6,) then
yields

4

1
Lt . > —
O
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Then by (3.11) there is ¢4, 1 < ¢g; < p, and there is E, < G,, such that
u(z;) = K — 3 on E; and such that

Il 11
727—: 1s
& 11,1 = bp 4BK

where b is the constant in (3.11). Assume (4.2) fails with 1 — p < §,/2. Then
there is F, < E, such that
|Ij | 1
g, =
and for each z; € Fy, Y 6, o | Ii1/11;] = B.

For z;e F, < S, we have (3.9) with weights 4, attached only to points in
Gps1 V- U Gy, © T, because if g; < p we still have (3.8) when we delete
Gi(z;) V-V G,_, (z). (It is for this reason that 2p occurs inside (4.2).)

Fix z;€ F,. Then z; € § and we can permute the indices {1, 2, ..., K} so
that u{"(z;) < — 1. This permutation depends on the point z; € F, but that
does not harm what we are going to do, because distinct z; € F have disjoint
generations | ] G(z)). Set v = v —u{" = Y5 u. Then |v'|, < BK but
v'(z;) > K + 5. We have convex weights 4, such that

2p-qy

Z Z Av'(z) > K + 3,

P~q1+1 Gg(z))
and Chebychev’s inequality now yields

2p—q1

Y Y (A > K) zﬁ.

p—ait1 Ggl(zj)
Arguing as before using (3.11), we have ¢,(z;), p < ¢,(z;) < 2p, and E,(z))
< Gy, such that v'(z,) > K on E,(z;) and such that

1
Y LI, dy.
Eq(z)) |I]|

Summing over F,, we find there is an index ¢,, p < g, < 2p, and a set

E, c G,, such that
L oIl ot
£ ol p & ol — 2p
and such that for each z, € E,, v'(z,) > K (after a suitable permutation of
{1, 2, ..., K}). We assume (4.2) fails with 1 — p < §,/2. Then we have

F, < E, such that

2

| I| _ 0,
Z\TO\27

F2
and such that for each z, € F;, ) 6,z |11/ 1| = B.
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Moreover, since F, < T, for each z, € F, we can permute the set {u{",
u), ..., ull} so that u(z,) > 1. Then v(z,) = Y X, uP(z,) > K + L. If
(4.2) fails with 1 — p small enough, we can repeat the above argument re-
placing z, by each z, € F, and obtain a set F, < G,, < T such that

Ll
27, = ¥
for some 5, = ,(0,, p) and such that (after suitable permutations of 1™,
v(z;) > K+ 2,z;€e Fy.
Now if (4.2) fails with 1 — p extremely small, we can do the above argument
(B — 1)K times. We then reach a point z, for which, after the appropriate
permutations of {u{™}, v(z,) > BK. This contradiction proves Theorem 4.1.

a

To derive Theorem 4.1 from Theorem 6.1 of Chapter VIII, partition the
top half of each dyadic square Q = (k27" < x < (k+ 1)27" 0 <y <2™"
into 22V~ ! small squares S; of side 27" ¥, If B = sup,, ,[ul’ll ,, is the bound
guaranteed by Lemma 4.2, choose N so that

(4.3) sup |u(z) — u(w)| < %

z,weSs,;

whenever u(z) is harmonic and |u|l, < B.

Fix a dyadic square Q. The first generation G, = {S{"'} consists of those
small squares S; = Q such that S{"’ contains a sequence point z{!’ but such
that S lies below no other small square in Q having the same property.
Choose one sequence point z{" in each SV and let F; = {z{"}. Let Q" be
the dyadic square having base the projection of S onto {y = 0}. Then the
dyadic squares Q' have pairwise disjoint interiors.

Inside each Q4" select small squares S’ in the same way. Write G,(S")
= {§{V} and

G2 = U {GI(S(}-I)):S(J-I) € Gl}

Choose one sequence point z{*' € S and set F, = {z{*': S{*’ € G,}. Form

new dyadic squares {Q{*'} by dropping the S{* onto the axis. Continue the
process, obtaining the generations G;, G,, ..., and the corresponding sub-
sets F3, F,, ..., of the original sequence {z;}.

By Lemma 4.2, the points {z;} are separated. If R{ is the rectangle, with
sides parallel to the axes, joining the top edge of Q) to the top edge of S,
then because the points are separated,

Y v < LS.

zje REP
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Consequently, {z;} is an interpolating sequence if and only if

(4.4) 2 LASP) < CHQ)
p=1Gp
for each dyadic square Q lying on {y = 0}. Because ) ; #(S\") < £(Q), we
only need to estimate ) 3 in (4.4).
Replace {z;} by the subsequence F; U F, U - --. This does not change the
sum (4.4). Partition {z;} by setting

S =) {F,:podd}, T = |J {F,:peven}.

Then by (4.1) and (4.3) there exist finitely many bounded harmonic functions
u! such that whenever S € G,(S¥~ "),

inf{max] ul(z) — uP(w)|:ze SP, we S&”‘”} > 1.

m,n

By Theorem 6.1 of Chapter VIII, there exist smooth functions @(z) such
that

4.5 inf {max l@™(z) — @®(W)|:z€ SP, we S¥~ 1’} >34

m,n

and such that

46) [[Z1vomiarty < ;0@

Q

for each square Q resting on {y = 0}.

Let SP e G,, p>2. Then S € G(S¥") for some S¥ e G,_, and
SiP lies below S¥~ 1. Let T{” be the rectangle, with sides parallel to the axes,
joining the top edge of S’ to the same dyadic interval on the bottom edge of
S~ 1. The rectangles {T}”’} have pairwise disjoint interiors. See Figure X.4.
By (4.5),

o™
Pm | ax dy
Oy

Y |Vo®| dx dy > max ff‘
mn mn T}J’)

T;(p)
> 3/(S{"),

and since the rectangles T are disjoint, (4.4) now follows from (4.6). [
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Zik
7 1 le=l)
7

7

(p-1)
S

7-I(p) 7-2(p)

‘Sl(p)

o
[N

Figure X.4. Theorem VIIL6.1 implies Theorem 4.1.

Of the two proofs of Theorem 4.1, the second one looks more transparent,
but it is not perfectly clear which argument is stronger. For example, Theorem
3.4 does not seem to follow from Theorem VIIL6.1.

5. A Constructive Douglas-Rudin Theorem
Theorem 5.1. Suppose u € L®, |u| = 1 almost everywhere. Let ¢ > 0. Then
there exist interpolating Blaschke products B,(z) and B,(z) such that
lu — By/Byllo < e

This result refines the Douglas—Rudin theorem, Chapter V, Section 2.
Before proving the theorem, we mention one corollary and two related open
problems.

Corollary 5.2. The interpolating Blaschke products separate the points of the
maximal ideal space M of H*.

Proof. Let m; and m, be distinct points of M. There are three cases.

Case I: m, € X, and m, € X, where X = M, . is the Silov boundary of
H*. By Theorem 5.1, L* is the self-adjoint closed algebra generated by the
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interpolating Blaschke products. Consequently the interpolating Blaschke
products separate the points of X = M, ..

In the remaining two cases we have m; € M\ X or m, € M\ X. By sym-
metry we can suppose m; € I\ X. Recall the notation

G = {m e M. mis in the closure of an interpolating sequence}.

Case 2: m; € G. Then there is an interpolating Blaschke product B(z)
such that B(m,) = 0. If also B(m,) = 0, then m, and m, are in the closure of
the zeros S of B(z), and there are disjoint subsets T, and T, of S such that
m, € Ty, m, € T,. The Blaschke product with zeros T; then separates m, and
m,. (See, for instance, the conclusion of the proof of Theorem 1.7.)

Case 3: m; ¢ X U G. Then m, and m, are in different Gleason parts. For
every ¢ > 0 there is f, € H® such that f(m;) =0, | fi(my)| > | — ¢, and
| £.I = 1. By Corollary 2.6 of Chapter V, there is an inner function u, € H®
such that u,(m;) = 0 and |u,(m;)| > 1 — & By Theorem 4.1 of Chapter VIII,
there is an interpolating Blaschke product B,(z) such that

(5.1) B <i if |u()|<i
(5.2) lu()l < B if Bl(z) =0,
where = B(%) is some constant. Moreover,
(5.3) d(B,) = 0,

where 6, > 0 is a constant independent of e. Now we claim there is (¢) - 0
(¢ = 0) such that

(5.4) |B,(2)| = 1 — n(e) if lu@|=1-e

Accepting (5.4) for the moment, we choose ¢ so small that 1 — 5(e) > 1.
Then by (5.1) and the corona theorem, B,(m,) < 1, while by (5.4) and the
corona theorem, | B,(m,)| > 1. Thus the interpolating Blaschke product B,
separates m, and m,.

To prove (5.4), we use some ideas from Section 3, Chapter VIII. Suppose
|u,(z)] > 1 — e. Using a Mobius transformation, we can assume z = 0. Let

Eg = {9: influ,(z)| < ﬁ},

r'6)

where I'(6) denotes the cone

|z — e
') = {z: 1=z < 2}.
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Write () = [u(e”) — u(0)|*. Then [ v(0) d0/2n = 1 — |u,(0)|* < 2¢, where-
as if |u(z)| < B, then

1
2= [HOP® a0 2 10— wOF 2 0~ o~ pr.

The weak-type estimate for the nontangential maximal function therefore
yields

2ce

(5.5) |Ey| < ﬁ
Write E; = (] I;, where the I; are pairwise disjoint arcs on 8D and set

Si={ré®:0el;,1 —|I;| <r <1}
By (5.2) the zeros {z,} of B,(z) lie inside | ] S;. Hence by (5.3) and (5.5)

2ce

L= 12D < COo)
Because f = fi(}) is fixed we conclude that |B,(0)] > 1 — y(¢), where
n(e) = 0 (¢ = 0). That establishes (5.4). O

Problem 5.3. Do the interpolating Blaschke products generate H* as a
uniform algebra?

Problem 5.4. Can every Blaschke product be uniformly approximated by
interpolating Blaschke products?

Since the Blaschke products do generate H®, an affirmative answer to
Problem 5.4 would imply an affirmative answer to Problem 5.3.
The proof of Theorem 5.1 is different from the constructions we have

discussed above.

Lemma5.5. Lete > 0,6 > 0,andn > 0. Suppose I, 1,,..., I are pairwise
disjoint closed bounded intervals on R, and suppose oy, &, ..., ag are real
numbers, 0 < a; < 2n. Then there exist finite Blaschke products By(z) and
B,(2), having simple zeros, such that

(5.6) 2 {xel;:a; — Arg By(x)/By(x)| = &/2}] < n,

and such that

(5.7) 0 < Arg B,(x)/By(x) <9, x¢lJI,.
The zeros {z,} of By(z) or of B,(z) satisfy

(5.8) (2, Zm) > ct, n# m,
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with ¢ some absolute constant, and
(5.9) x,=Rez, eI,
J

Moreover, if 0 < y < yo(e, 0, n, K), then the zeros z, may be chosen on the
horizontal line

Yo =1Imz, =y.
Here Arg w denotes the principal branch of the argument, 0 < Argw < 2m.

Proof. Because the intervals are pairwise disjoint, it is enough to prove this
lemma for one interval I (with n replaced by n/K, with ¢ replaced by ¢/2, and
with ¢ replaced by min(d/K, ¢/2K)). Fix a closed interval I. After a translation
we can suppose

I=[—n/4, A+ njd]

Also fix o, 0 < o < 27
Let N be a positive integer, to be determined later, and consider the points

X, =k/N, 0<k<k,=[NA] -1,
[¢] denoting the greatest integer in t. Let
A =a/2nN
and fix y > 0, also to be determined later. The zeros of B,(z) are
Zr = X + iy, O0<k<k,
and the zeros of B,(z) are
F=x+A+iy, O0<k<k,
See Figure X.5. Because k,/N + A < A, we have (5.9). We set

ko ko

B =112 Be - [ 5

k=02 k k=02 — Zk

so that, modulo 2,
B ) ke -z, x — zf
Arg — A .
g‘ < ( k) rg(x —z¥

Xeo Xe X Xeo Xe Xeo X X X+ Xo Xe Xe Xe X X+ X+ X

o N J n
a 0 Y X, A A+l

Figure X.5. Here a = 2n/3. The zeros of B,(z) are slightly to the right of the zeros of B,(z).
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Note that

x—z X — X ® y
A *) = 2 arct kl=2 e e —
rg(x — Zk) T+ Zarc an( ) ) e P

Consequently,

B _, % [t

Bz(x) K=o Ju  (x — * +y°

Because the intervals of integration are pairwise disjoint, the right side of
(5.10) has value in (0, 2m) and it is the principal branch of the argument.
Setting E = ( Jiz ¢ [xx, X, + A], we see that

Bi(x)
B,(x)
Since dist(E, R\I) > n/4, (5.10) yields
B,(x) @ ds c
Arg B,() <2 L/4 s2y+ V7 < %, x¢l
Therefore (5.7) will hold if
(5.11) y < ¢, 0m.

NowletJ = [n/4,4 — n/4]. ThenJ < Iand |I\J| = #. We shall have (5.6)
if we can get

(5.12) o — Arg B;(x)/B,(x)| < &/2, xeld.

dt.

(5.10) Arg

Arg =2n ij(x — Dyg(t) dt.

As a preliminary approximation set F = [0, x,, + 1/N] and write

V(x) = dr.

i J _r

nJp (s — 1) + y?

Taking

(5.13) N > 8/n,

Evefhave X, +1/N > A —1/N > A — /8, and dist(J, R\ F) > #/8. Thus as
efore

o (® yds
IWﬂ—Ms—f
T Jys 2+ 2

< ﬂ, x€J,
n
and
[V(x) — a] < ¢/4, x€eld,
provided that
(5.14) y < chen.
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But now for any x € R,

(5.15)
Vix) — Arg 219 | _ ff S A 2f S A
B;(x) nJp(x —0)* + )? e(x—0)?+)?

ko Z ka+| ydt B 2J~xk+}t ydt

k=0T (x—0*+) w (x=074)?
k X

. et ai(t)y

= — |,

kgo ka (x—0*+)°

where |g,(t)| < 2 and [3**' g,(t) dt = 0. Consequently,
et gy 2 y )
TR dt|<- max |[—5—
ka (x_t)z +y2 NXkSlSXk+l (x_t)z +y2
2 . y )
—— min |[———),
N Xk StT<XK+1 ((X - t)2 + yZ

and the right side of (5.15) is bounded by a two-sided telescoping sum.
Therefore

|V(x) — Arg By(x)/B,(x)| < 4/Ny,
and we have (5.12) and also (5.6) if we take
(5.16) Ny = cs/e.

Our restrictions (5.11), (5.13), and (5.14) on the parameters y and N are
consistent with (5.16) and we can obtain (5.6) and (5.7) with arbitrarily small
y. Finally, by (5.16)

p(z,, 2p) = ColX, — Xpl/y = e,  n#m,

and so (5.8) holds. [

Proof of Theorem 5.1. First consider the critical special case in which
vo = Argu
has support (—1, 1).

Step 1: Set ny =1, n; = 1. Choose pairwise disjoint closed intervals
IV TS, .. I¥) and choose real numbers of"), . . ., a§),0 < ofV < 27, such that

€ N1
: > — —.
5 =4f[ <3

K,
vo(x) = X o yrgn(x)
1




434 INTERPOLATING SEQUENCES AND MAXIMAL IDEALS Chap. X

That can be done because simple functions are dense in L* and because any
bounded measurable set can be approximated in measure by a finite union
of intervals. By Lemma 5.5 there are finite Blaschke products B{!(z) and
B4Y(z) such that

{x: > oA xrn(x) — Arg% > %} %
Hence

E; = {x:]vo(x) — Arg B{"(x)/B{"(x)| > 3¢/4}
satisfies

|EL| <1y
Moreover, the zeros z{! = x{! + iy of B! satisfy
pzV, z0) > ce, n#m, and xPel)I"
Fixing 1, < n,/4 sufficiently small, we can take
yW=mn,, n=12....

The zeros of B have the same three properties.

Step 2. Let
(1)
i) = e "G00 o,
Choose pairwise disjoint closed intervals I, ..., I) and choose real
numbers of?), o, ..., o) such that
2P| < 4|E (| < 4ny,
such that

(5.17) |Ey A I = [EANU I + | IPNE; | < n,/2,
and such that

(5.18) ‘ {x: lo(x) = Y P rrex)| > g} ‘ < ’12—2

By Lemma 5.5 there are finite Blaschke products B?)(z) and B$(z) such that
. B(12)(x) € P

(519) {x . ; agz)xlgz)(x) - Arg m > 5 < ?,

and such that
(5.20) 0 < Arg B?(x)/BP(x) < /8, x ¢ U 13-2’.
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Consider the set
E, = {x:

E,=[E;nE N (U 15'2))] U [E;\(E; N U 15'2))]
U [E; N (E; A IP))].
On E; n (| J I?), (5.18) and (5.19) give us, modulo 2,

BO(x)BP(x)\ | _ 7e

Then

(1)) B2) (2)
vo(x) — Arg(?él—)gz%) =|v, — Arg(;:T)g—;) !
N
8 8
except on a set of measure at most #,/2. Hence,
|E; M Ey n (I IP)] < n,/2.
By (5.20), we have
EN\( I?) € Ey,
so that
ENE v IP)=3a.
And by (5.17), we have
|E, N (E, A(U I§2)))| < n,/2.
We conclude that
|Es| < 13-
The zeros z{2) = x2 + iy!? of B{? satisfy
Pz, zP) = ce,  n#m,
xPel)JI?  and D =3,

where 0 < 15 < 11,/4 and 75 is as small as we like. The zeros of B’ have the
same three properties.

Step p: By induction we obtain finite Blaschke products B{!)(z), ...,
B{P(z) and BY)(z), ..., BY)(z) such that

B ... B®P
E,= {x: v(x) — Arg(%) } > (1 — 2""1)8}
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satisfies

(5.21) |E,| <n, <47P.

The induction step is the same as step 2 except that €277~ ! is used in the
analogs of (5.18) and (5.20) but &/2 is always used in the analog of (5.19). Thus
Lemma 5.5 is applied at step p with = ¢2777 %, and with # = #,/2, but with

the same e.
Because we use the same ¢ at each stage, the zeros z%’ = x® + iy® of BY

satisfy

(5.22) p(zP, 2) = ce,  m#n,

with ¢ not depending on p. These zeros also satisfy

(5.23) xPel)IP,

where

(524) U IP] < 41E,- ] < 41,

and

(5.25) YW= tper < 1p/4
Now set

B2 = [[BPG), By = [[BYG)

Because the zeros remain in a bounded set, convergence factors are un-
necessary and the products converge if their assigned zeros satisfy Y y, < 0.
We show more: The zeros given to By(z) (and to B,(z)) are an interpolating
sequence. We consider B,(z) only. It has zeros | &, {zP}. By (5.22) and
(5.25) these zeros are separated. Let Q be a square {a <x<a+ h, 0<
y < h}. Since y{P < n,, we can assume h < #,. Take g so that
’7q+1 < h < nq'

Then by (5.25),

Z (17) Z ﬂp+ le(Q)5

ZL”’GQ p=

where N ,(Q) is the number of z% inside Q. By (5.22) and (5.25),

|xP — xP| = 18y,
so that by (5.23) and (5.24),
min(|| ] I”’|, h) L& min(4n,_ 4, h)

C18Mp+1 EMp+1

N, Q) <
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Therefore, as 7, < 477,
a0 2 o0 a0
T <2 Y min@n,_,H<-2h+2 Y 4n,_, <ShY 4k
zPleQ p=q+2 € p=q+2 & K=o

and | J {z{P} is an interpolating sequence. Thus B,(z) and B,(z) are inter-
polating Blaschke products.

In L*(dx/(1 + x?)), the partial products (B --- B)/(B" --- BY) con-
verge to B;/B,. So a subsequence of the partial products converges to B;/B,
almost everywhere. Hence by (5.21),

|vg(x) — Arg B(x)/B,(x)| < &

almost everywhere.
For the general case write u = u,u,, where

ux)=1, |x[>1,
u(x) =1, |x] < 1.

By the special case treated above we have interpolating Blaschke products
B, 1(z) and B, ((z) such that

_ B, 1(x)
“ BZ,I(x)

almost everywhere. Using the inversion z — — 1/z, we also get interpolating
Blaschke products B, ,(z) and B,_ ,(z) such that

By, 2(x)
Bz,z(x)

almost everywhere. The theorem will be proved if it can be arranged that
B, = B, 1B, ,and B, = B, B, , are interpolating Blaschke products. For
that it is enough to bound below the pseudohyperbolic distance from the
zeros of B; ; to the zeros of B; ,,j = 1, 2. The zeros of B, ; and B, , lie in
|x| < 1 and on horizontal lines y = n,,p = 2,3,..., with n,,, < n,/4. The
zerosof B; , and B, , liein |x| > 1 and in large circles tangent to Rat z = 0.
In {y < #,} these circles cut the lines {x = *+ 1} at heights y =y, g =1,
2,....By Lemma 5.5, we can take y; and y, . /v, as small as we please. Thus
we can ensure that

£

2

£

2

uy(x) —

inf|yq - rlp'

> ce, q=12,...,
p yq

which implies that the zeros of B;(z) and of B,(z) are interpolating sequences.
|
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Notes

Sections 1 and 2 are taken from Hoffman [1967]. Further results from his
paper are given in Exercises 1-8. Lemma 3.3 is due to Carleson [1972].
Theorem 4.1 is from Carleson and Garnett [1975], who also study harmonic
interpolation in R%*'. Theorem 5.1 is in Jones [1981]. The idea behind
Lemma 5.2 is due to A. M. Davie (see Davie, Gamelin, and Garnett [1973]).

Exercises and Further Results

1. LetmeIN.

(a) We say m is a nontangential point if m is in the closure of some cone
|z — &

i _ ) .12
I' (e )—{z.l_lz|

<a,|z] < 1},

o > 1. Every nontangential point m is in the closure of an interpolating
sequence. Consequently, m lies in an analytic disc. (Hint: There are finitely
many interpolating Blaschke products B, ..., By and there is r > 0, r <
r(0(B;)) (see Lemma 1.4), such that

N
I < ,Ul{z p(z, 2;) <1},
j=
where {z; ;} denotes the zeros of B;.)

(b) We say m is an orocycular point if m lies in the closure of the region
between two circles tangent to the unit circle at the same point. Every oro-
cycular point lies in the closure of an interpolating sequence.

(c) Let r(6) be continuous and decreasing on 0 < 8 < 1, r(0) = 1, and
let y be the curve {r(0)e®:0 < 6 < 1}, terminating at z = 1. f me M is in
the closure of y, then m lies in an analytic disc.

2. Let V be adisc in D tangent to the unit circle at one point e, and
let V be the closure of ¥ in M.

(a) Vis disjoint from the Silov boundary X.

(b) There exist points m € V not in the closure of any interpolating se-
quence. (Otherwise, for any ¢ > 0 we could, by compactness, cover V by
pseudohyperbolic discs {p(z, z;) < &} with {z;} a finite union of interpolating
sequences, thereby violating the geometric characterization of interpolating
sequences.)

(c) Thus there are one-point Gleason parts disjoint from the Silov
boundary.
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(d) Part (b) and Exercise 1 can be generalized. Let S be any subset of D,
and let {z,;} be any separated sequence in § such that U {z:p(z, z)) < 3}
covers S. Then every point in the closure of S lies in an analytic disc if and
only if Y (1 — |z;])d., is a Carleson measure.

In the upper half plane, let Q, ;= {27"<x<(+ 127" 27" ! <
y<2™", —oo <n< o, —0 <j< oo Thus {Q, ;} is a paving of # by
hyperbolically congruent rectangles. Let S be a subset of 5# and consider the
sequence {z,} consisting of the centers of those Q, ;such that @, ;NS # &.
Every point in the closure of S lies in an analytic disc if and only if {z,} is an
interpolating sequence.

3. The mapping z — L, from D into M? has a unique continuous
extension to a mapping L from M into M. If m € G, the extension has value
L, Ifmé¢G,then L, () =m, (2.

4. Let %y denote the complex algebra of bounded continuous func-
tions on D which admit continuous extensions to .

(a) %y is the smallest uniformly closed algebra containing H® and H®.

(b) % is the smallest uniformly closed algebra containg the bounded
harmonic functions.

(¢) Iffe H® and if « € D, then

g(z) =f<

o+ z
1 + Za

) € Cm,
andforn=12,...,
h(z) = (1 = [z)f"(z) € Em.
5. Let S « D and suppose that for some ¢, 0 < ¢ < 1, the ¢ pseudo-
hyperbolic neighborhood of S, {z : infg p(z, w) < ¢} covers D. Then the closure

if S in M contains every point not in the closure of any interpolating sequence.
(Use the fact that P(m) = {m} for such a point.)

6. Let me M. A necessary and sufficient condition for m to be in the
closure of some interpolating sequence is the following. If E and F are
subsets of D and if m € E N F, then p(E, F) = inf{p(z, w):z€e E,we F} = 0.

7. Let T be an endomorphism from H® into H®; that is, T is a
(bounded) linear operator from H* into H® satisfying

T(fg) = T(/)T(g).

Then there exists an analytic mapping 7: D — D, ©(0) = 0, and there exists a
net (z;) in D such that

(E.1) Tf(2) = lim f(%)
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Tfis not constant for some f€ H® if and only if either

(i) (z;) can be chosen a constant, z; = {, { € D, or
(i1) (z;) can be chosen from some interpolating sequence.

Alternative (i) holds if and only if T is weak-star continuous.

Let H®(V) be the ring of bounded analytic functions on a Riemann surface
(or analytic space) V. If T : H*(D) - H*(V) is a homomorphism, then there
is an analytic mapping 7: V — D and there is a net (z;) in D such that (E.1)
holds.

8. (a) Let B(z) be a Blaschke product with zeros {z,} satisfying
lim(1 — |z,)|B'(z,)| = 1.

If m is in the closure of {z,} then the map L,, is a homeomorphism from &
onto P(m) (which has the usual Gelfand topology of M), and L, ! is a constant
multiple of B.

(b) Turning to the upper half plane, let S be the two-sided sequence
{zx, =k + i:ke Z}. Then § is an interpolating sequence. Thus each point
me S\S lies in an analytic disc. Call a subsequence {z, } of S thin if
|k,.1 — k,| = oo. If m is in the closure of a thin subsequence of S then L,
is a homeomorphism.

(¢) For z;, =k + i€ #, the coordinate map (to the upper half plane) is

1+
1=

L.(0)=k+ i( ) Le.

If F(z) = e*™, then

Fo sz(C) = exp(—Zn(i t g))

is independent of k. Thus

FolL, ()= exp(—Zn(ll ti))

for allm € S. Let m, m' € S\S. Then m and m’ are in the same Gleason part if
and only if

L,(0) = Lu({)

for some ¢, ' € 2. This means

-9

for some integer n, which is independent of { and {'.
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_Let 0:5-> 8, o(z,) = z; 4+, Then o extends to a homeomorphism of
S\S onto S\S, and we have m' = ¢"(m). Conversely, if m" = ¢"(m), then

n
/=L A
" m<n+2i)

and m’ € P(m). Thus points m and m’ of S\S lie in the same Gleason part if
and only if m and m’ have the same orbit under the group ¥ = {o": — 0 <
n< oo}

(d) Now let K be a closed subset of S\S that is invariant under % and
minimal among the closed invariant sets. K exists by Zorn’s lemma. If
m € K, then m is in the closure of {¢"(m)}:2 ;. Thus some subnet of

{Ln(n/(n + 20)}% s

converges to L,(0) and L,, is not a homeomorphism. In light of part (b) we
see that if m is in the closure of a thin subsequence, then the closure of
{¢"(m)}3~ |, contains proper closed subsets invariant under %.

See Hoffman [1967].

% %9. Let 7 bean analytic map from D into D. Then 7 extends to a contin-
uous map from M into M defined by (t(m)(f) = m(f < 7).

(a) If ©1(m) = m for some point m € G, then inf, ., p(1(z), z) = 0. For the
proof, suppose {z,} is an interpolating sequence such that m € {z,}. For
& > 0 small, the discs K, = K(z,, €¢) = {p(z, z,) < &} are pairwise disjoint,
and m is not in the closure of D\| JX, K,. Consequently the relation
f(z,) € K; holds for infinitely many n, say for ne S. Write T(n) = j when
ne Sandf(z,) € K;. The problem is to show that T has a fixed point. Define
an equivalence relation in S by setting n; ~ n, if T?(n,) = T%n,) for some
nonnegative integers p and q. Note that n ~ T(n)if n € S and if T(n) € S. Let
n* denote the least element of the equivalence class containing n. Let E be
the set of n € § such that p + ¢ is even, where p + ¢ is the smallest such
integer such that T?(n) = T9n*). If T has no fixed point in S, then when
ne S and T(n) € S, exactly one of n and T(n) lies in E.

Let B(z) be the Blaschke product with zeros on S. Then B(m) = 0. Factor
B = B,B,, where B has zeros {z,:n€ E} and B, has zeros {z,:n € S\E}.
When ¢ is small, the assumption that T has no fixed point now leads to a
contradiction.

(b) Ifrhastwo fixed pointsin G lyingin different fibers, then 7(z) = z.(Use
part (b) and Exercise 2 of Chapter L.)

(¢c) LetI,; be the fiber of P at 4, |A] = 1. Then 7 fixed a point in G N I,
if and only if the angular derivative of 7 exists at A and equals 1 there. (See
Exercise 7 of Chapter I for a discussion of angular derivatives.)
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(d) 1 maps the Silov boundary into itself if and only if 7(z) is an inner
function.
(These results are due to Michael Behrens.)

10. Let meMand let fe H®, f(m) = 0. Then
lim| f'(z)|(1 = |z)) =0

if and only if f = f; f, with f;€ H®, f(m) = 0. (The only interesting case is
that in which f(z) is a Blaschke product, because both conditions hold
trivially if £1/2 € H*. When m ¢ G, both conditions follow from Theorem
2.4. When m € G, each condition means that (f - L,,)'(0) = 0.)

11. Let B be the class of analytic functions on D satisfying

|li|m(1 — 1z f' ()| =0,

z[—1

and let VMOA be the analytic functions of the form u + 8, u, v harmonic on
D and continuous on D. Here B stands for Bloch.

(a) VMOA c B,.

(b) f(z)e H® n Byifand only if f(m) is constant on each Gleason part in
P\D. For this reason Behrens called this class COP, for constant on parts.

(c) Suppose g(z) is in the disc algebra. Then g(e®) is in the Zygmund class
A, defined by

196 + h) — g(6 — h) — 2g(6)| = O(h)
if and only if
sup(l — [z1%)]g"(2)| < 0.

(see Zygmund [1968, Vol. I]). Similarly, g'(z) € B, if and only if g(e') € 4,
which is defined by

196 + h) + g(6 — h) — 29(6)| = o(h).

(d) There exists a continuous increasing function F(#) on [0, 27] such
that F is singular, F'(6) = 0 almost everywhere, but such that F € 4, (see
Kahane [1969], Piranian [1966]). Thus F(#) = u([0, 8]) for some singular
measure g, and the inner function determined by p lies in H* n B, . It follows
that H® N B, contains an infinite Blaschke product and that VMOA # By.

Sarason has proposed the problem of characterizing the Blaschke products
in By in terms of the distribution of their zeros (see Nikolski, Havin, and
Kruschev [1978]).
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12. Let 2(t) e L'(R) be nonnegative, | 2(t) dt = 1. Let {z;} be a se-
quence in the upper half plane and set

20 = — 9(‘ x").
Vi Vi
(a) Suppose there are real functions ugt) € L* such that [lul, <1,
fu2(0)dt > 98, [ u(P (1) dt <0, k # j, with § independent of j. Then
{z,} is an interpolating sequence.
(b) If the weak-star closure of {#;} in (L*)* is homeomorphic N, the
Stone-Cech compactification of the integers, then {z ;1 is an interpolating
sequence.
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A

A,, see Lipschitz class
Ay, see Disc algebra
(A4,) condition, 254
(A,) condition, 280
(A,) condition, 258
(4,,) condition, 264
Adamyan, Arov, and Krein theorem,
151, 160
Amar-Lederer lemma, 205
Analytic discs, 199, 401, 438
and Carleson measures, 439
and interpolating sequences, 408, 413
Analytic map, 198, 401, 414, 415, 441
Ando’s theorem, 210, 212
Angle between subspaces, 146, 178
Angular derivative, 43, 441
Approximate identity, 20
Atom, 274

B

B, see Bloch functions
Bad function, 130
Badly approximable function, 177, 179
Balyage, 229
Banach-Alaoglu theorem, 19
Banach algebra, 182
Banach approximation property, 212
4 = ball H*, 1-10, 41, 43, 50, 165
# = set of inner functions, 373
Bernard’s theorem, 195
Best approximation, 135

continuity of, 140, 177

in Douglas algebra, 396

461

in H*, 135, 140, 174, 177
in H® + C, 396

Beurling, P., theorem of, 294, 313
Beurling’s theorem, 82

Blaschke condition, 53

Blaschke products. 54, 55, 79, 80

boundary continuity, 75

characterization, 56

density in inner functions, 79

factorizations, 406, 411

finite, 6, 9, 138, 150, 180, 311, 430

interpolating, see Interpolating Blaschke
product

as interpolating functions, 9, 174, 309

logarithms of moduli of, 288

and Silov boundary, 194

Bloch functions, 282, 283, 442
BMO, 223-235, 244-250, 269-283

and (4,) weights, 258

and Carleson measure, 229, 240, 272,
273, 275, 327

and conformal mappings, 281

and conjugate functions, 235, 248, 358,
361

distance to L~ in, 258, 281

as dual of H, 245, 276, 372

dyadic, 274

and interpolating sequences, 316

and Littlewood-Paley integrals, 240, 270

BMOA, 270, 281-283
Boundary, 188

Silov, see Silov boundary,

Bounded lower oscillation, 281
Bounded mean oscillation, see BMO
Box kernel, 23, 224

Burkholder, Gundy, and Silverstein

theorem, 116
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C

C,, 376, 386, 388
Calder6on-Zygmund lemma, 231
Canonical Factorization theorem, 74
Capacity, 78, 282
Carathéodory theorem, 6, 93
Carleson, theorems of, 33, 63, 125, 127,
191, 287, 324
Carleson-Jacobs theorem, 140
Carleson measures, 31, 63, 238
and analytic disc, 439
and arc length, 340
and BMO, 229, 240, 268, 273, 275, 327
and Cauchy-Rieman equations, 320,
322, 358
and conformal invariance, 239
and gradients, 240, 268, 273, 275, 346
and interpolating sequences, 287, 358
and Littlewood-Paley integrals, 240, 268
Carleson norm, 31
Cauchy-Riemann equations, inhomogeneous,
319
Chang-Marshall theorem, 373, 378, 399
Chebychev inequality, 21
Cluster set, 80
and fiber, 216
Commutator, 278
Complemented subspace, 295
Complex homomorphism, 182
Cone T,(e'?), 24
Cone I' (1), 22
Conformal mappings
and Bloch functions, 282
and BMO, 281
boundary behavior, 93
Conjugate functions, 66, 102, 388
and BMO, 227, 235, 248
continuity of, 106, 127
and L*, 113
and L', 111, 115
and L*, 105, 114, 147, 227
in L7(p), 255
in L2(u), 149
maximal, 110
and maximal functions, 116
and VMO, 252, 388
see also Hilbert transform 66, 102, 388
Conjugate Poisson kernel, 103, 109
Conjugation operator, 103
Constant of interpolation, 285, 293

Convolution, 12, 13

Corona, 323

Corona data, 324

Corona problem on plane domains, 368
Corona solutions, 324

Corona theorem, 191, 324

Cosets of L°/H*®, 151, 157

Covering lemma, 25

D

Degree of finite Blaschke product, 6
de Leeuw-Rudin theorem, 157, 159
Derivatives of H? functions, 89, 273,
see also Gradients of harmonic functions
Dilation, 13
Dini continuity, 105, 127, 140
Dirichlet algebra, 201, 217
Disc
euclidean, 3
noneuclidean, 2
Disc algebra, 125, 133, 137, 177, 189, 192,
196, 214, 221, 375, 394, 395
Distance
to 4,, 137
in BMO to L*®, 249, 258
to H?, 135, 175
to H®, 135, 137, 148, 248, 372, 386
to H® + C, 395, 396
in L*(u), 144, 177
to Re H®, 249, 259
Distribution function, 20
Douglas algebras, 373, 379
characterizations, 381, 392
maximal ideal spaces, 374, 375
structure of, 385-389
and VMO, 385
Douglas problem, 373
Douglas-Rudin theorem, 192, 217, 374,
399
constructive, 428
Dual extremal function, 134, 136
Dual extremal problem, 133, 175, 292
Dual space of
H?, 90, 242
H! 245
VMO, 276
Dyadic BMO, 275
Dyadic H', 275
Dyadic maximal function, 275



E

Earl’s construction, 308
Endomorphism of H*, 439
Expectation, 302
Exposed point, 159, 221
Extremal function, 139, 152, 160, 172, 175
see also Best approximation; Interpolat-
ing function
Extremal problem
dual, 133, 175, 292
nonlinear, 296
Extremely disconnected space, 214
Extreme point
of ball(H"), 157
of ball(H®), 179

F

Fatou theorem, 29, 125, 348
local, 94, 389
Fefferman-Stein theorems, 125, 280
Fefferman’s theorem, 245
constructively, 358
Fiber, 190, 214, 395
and cluster set, 216
Fiber algebra, 395
Fourier multiplier, 108
Fourier series, 107, 273
of HP function, 59
Fourier transform, 62, 110
Frostman theorem, 79

G

Gehring’s inequality, 260

Gelfand topology, 184

Gelfand transform, 184

Generates, 195

Generations, 299, 426
and corona construction, 344
and dependencies of kernals, 417
and gradients of functions, 351

and interpolating Blaschke products, 338

see also Stopping time argument
Geodesic, hyperbolic, 5, 41
Gleason distance, 42
Gleason parts, 402
and analytic discs, 402. 408
homeomorphic to unit disc, 440
one point, 402, 413, 438
Good function, 130
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Good 1 inequality, 266, 269
Gradients of harmonic functions, 235, 240,
347, 372
and BMO, 270, 273
see also Derivatives of H? functions;
Littlewood-Paley integrals
Greatest common divisor (of family of
inner functions), 84
Greatest lower bound (of family of
measures), 84
Green’s potential, 78, 98
Green’s theorem, 236

H

HP, 50-53, 133
boundary behavior, 57-66, 88
derivatives from, 89
distance to, 134
dual spaces, 90, 242, 245
and extremal problems, 132-139
factorizations in, 56, 74, 87
Fourier series of, 59
Fourier transform of, 62
and harmonic majorants, 60
and interpolating sequences, 316
and maximal functions, 57, 120
real or positive functions in, 95, 138
as sums of outer functions, 87
H, 274
H', 50
and absolute continuity, 61
arguments of functions in, 159, 179
atomic decomposition, 274
and bounded variation, 93
and cosets of L*/H®, 153, 160, 204
dual space of, 245, 372
extreme points of ball, 157
as real Banach space, 243
see also HP
H?, 50, 82
see also H?
H*®, 50, 66, 373
analytic structure in maximal ideal
space, 197-199, 400-415
and Banach approximation property, 212
best approximation in, 135, 140, 174, 177
cosets of in L®/H*, 151, 160
distance to, 135, 137, 148, 248, 372, 386
exposed points of, 221
extreme points of, 179
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H® (cont.)
ideals of, 85, 86, 189, 323, 329, 369
interpolations by, see Interpolating
functions; Interpolating sequences;
Interpolation problem
as logmodular algebra, 66, 201
maximal ideal space, 189, 323, 400-404,
428
measures orthogonal to, 136, 203, 205,
219
peak sets of, 205
predual of, 205-212, 220
representing measures for, 202-205, 218,
374
Silov boundary of, 191
weakly continuous functionals on,
205-212, 220
weak-star closed ideals, 85
weak-star density of polynomials, 89
as uniform algebra, 189-197
H® + C, 137, 178, 376-378, 394, 396
invertible functions in, 395
maximal ideals of, 377
Hall’s lemma, 367
Hardy-Littlewood inequality, 121
Hardy- Littlewood maximal functions, 22,
24,254, 336
Hardy-Littlewood maximal theorem, 24
Hardy’s inequality, 93, 273
Hardy space, see H?,
Harmonic conjugate, 66
see also Conjugate function
Harmonic function, 11
Harmonic interpolating sequence, 302, 313,
371, 421
Harmonic majorant, 38
Harmonic measure, 13, 41, 367
Helson-Szego theorem, 147, 254, 258
Hilbert transform, 105, 128, 147, 149, 254,
265, 388, 395
see also Conjugate function
Hoffman’s theorem, 410, 413
Homogeneity of kernels, 13
Homomorphism, complex, 182
Hunt, Muckenhoupt, and Wheeden
theorem, 255, 268

|

Ideal
generated by {fy, ..., f,}, 328, 369
maximal, 183

INDEX

square of, 414
weak-star closed, 85
Inhomogeneous Cauchy-Riemann
equations, 319
and interpolating Blaschke products, 358
Inner factor, 78
Inner functions, 75, 79, 80
approximation by Blaschke product, 80
behavior of singularities, 81
and Douglas algebras, 378
generating H®, 192
and ideals in H®, 85
as interpolating functions, 151, 172
and invariant subspaces, 82
and L*, 192
and Silov boundary, 194
Integrable, locally, 222
Interpolating Blaschke products, 336, 404
and approximation problem, 430
and Douglas algebras, 379, 380, 398
factorization of, 404
and inhomogeneous Cauchy-Riemann
equations, 358
as interpolating functions, 309
maximal ideals containing, 379
and maximal ideal space, 428
and nontangential points, 438
perturbations of, 310, 404
and Silov boundary, 337
Interpolating functions, 9, 138, 150, 165,
293,317
parametrizations of, 161, 170
Interpolating sequences, 190, 215, 284
and analytic discs, 404, 413, 439
and N, 214, 422, 443
closures of, 379, 442
and general kernels, 443
harmonic, 302
and harmonic functions, 302, 421,
422-428
and L? or BMO, 316
perturbations of, 310, 404
Interpolation, linear operator of, 294
Interpolation problem 150, 165, 284
finite, 7, 138, 293
Invariant subspace
of H?, 82
of H? and L?, 98
Invertibility, 182
Invertible function, 66
in H* + C, 395



INDEX 465

Isometry, 242 M

Isomorphic Banach space, 242 . .
Marcinkiewicz interpolation theorem, 26

J Marshall’s theorem, 196
Martingale S-function, 352
Jensen formula, 54 Maximal conjugate function, 110
Jensen’s inequality, 34 see also Maximal Hilbert transform
John-Nirenberg theorem, 230 Maximal function
Jones's construction, 358 dyadic, 275
Julia’s lemma, 43 Hardy-Littlewood, 22, 24, 254, 336
Jump theorem, 89, 128 logarithm of, 279
of measure, 29
K nontangental, see Nontangental maximal
. . function
Khinchin’s inequality, 302, 316 vertical, 121, 333
Kolmogoroff, theorems of, 123, 128, 177 Maximal Hilbert transform, 128, 265
Koszul complex, 364 Maximal ideal, 86. 183
Maximal ideal space, 184
L of disc algebra, 214
LP, 12,15, 33, 46, 58, 127, 133 of a Douglas algebra, 374, 375
and conjugate functions, 108, 111-113 of H*, 189, 323, 400-404, 428
and interpolating sequences, 316 of I*, 186
and representing measures, 202 of L%, 187
1<, 186 Mean value property, 11
complemented in H®, 295 Minimum3modulus, theorems on, 332, 367,
370, 371

interpolation in, 285 .. . .
L®. 187, 192, 373 Minkowski inequality for integrals, 14

and conjugate functions, 105, 114, 147, Moduli of H” fUHCIiIOHS. 66

227 Modulus of continuity, 105, 140
distance to, 249, 258 Mobius transformation, 1
Mooney’s theorem, 206

Laplacian, weak, 48
Morera’s theorem, 95

Least harmonic majorant, 38

and Nevanlinna class, 69 Muckenhoupt’s theorem, 255, 268
Lebesgue set, 46 Multiplicative linear functional, 182
Lebesgue’s theorem, 21
Level curves, 371 N
Lindel6f’s theorem, 92
Linearization, 129 N, see Nevanlinna class
Linear operator of interpolation, 294 N*,71,74,98
Lipschitz classes, 106, 127 Net, 198
Lipschitz condition, 90 Nevanlinna class, 69-75, 97, 98
Littlewood-Paley identity, 236, 246, 270, Nevanlinna’s theorem, 151

323, 382, 383 Newman’s theorem, 194
Littlewood-Paley integrals, 235, 240, 268, Nontangential limits, 29, 94, 95, 389
276, 352, 381 of conjugate functions, 103
Littlewood’s theorem on subharmonic and Douglas algebras, 392
functions, 98 of H? functions, 57
Locally integrable function, 222 characterizations of, 58, 88
Logarithmic capacity, 78, 282 moduli of, 64, 66
Logarithmic potential, 78 of inner functions, 81

Logmodular algebra, 66, 201, 218 on Lebesgue set, 46
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Nontangential limits (cont.) Potential
of Poisson integrals of measures, 30, 31 Green’s, 78, 98
77 logarithmic, 78
of singular functions, 76 Predual of H®, 205-212, 220
of subharmonic functions, 98 uniqueness of, 210
Nontangentially bounded, 94, 389 Privalov’s theorem, 94, 389
Nontangentially dense, 316, 389 Pseudohyperbolic distance, 2, 401

Nontangential maximal function, 28, 430
characterizes Re H?, 115
and H?, 57,115 Q
and N, 97
Nontangential oscillation, 30 g'&’ :;7767’ 33358, 3;;2
Nontangential point, 438 ? > ’
Quadratic form, 7

0 Quasi-continuous function, 377
Orocycle, 43, 76
Orocycular point, 438 R
Orthogonal measure, 136, 203, 205, 219
real, 219 Range set, 80
Outer factor, 74, 78, 179 Representing measure, 200
Outer functions, 67, 68, 87, 98, 145, 147, and Douglas algebras, 374
156, 160, 161 and subharmonicity inequality, 218
and dual extremal functions, 177 uniqueness on H®, 202
and extreme points, 157 Riemann surface, 51, 440
and invariant subspaces, 84 Riesz decomposition theorem for
subharmonic functions, 49, 100
P Riesz factorization theorem, 56
Riesz, F. and M., theorem, 61, 65, 94, 125,

Paley’s inequality, 273
Paley-Wiener theorem, 88
Parametrizations

of cosets, 160

of interpolation functions, 161, 170
Partial sums of Fourier series, 108, 127

133
generalized, 203
Riesz, M., theorem, 108, 113, 128
Rudin, theorem of, 125

Peak interpolation set, 125 S

Peak point, 189

Peak set, 125, 127, 205, 215 Schur’s theorem, 40, 180

Phragmén-Lindelof argument, 340 Schwarz’s lemma, 1

Pick’s theorem, 2, 7, 40 Semigroup property, 14

Plessner point, 95 Separated sequence, 285, 415, 439

Plessner’s theorem, 95 Shift operator, 82

Poincaré metric, 5 Silov boundary, 188, 191, 215

Point of density, 94 and Blaschke products, 194

Poisson integral, 11-20 and Douglas algebras, 374
characterization, 18 and Gleason parts, 402, 438
mean convergence of, 15 of H*, 191

Poisson integral formula, 11 and interpolating Blaschke products, 337

Poisson kernels, 11, 12 Singular function, 73
approximate relations between, 419 boundary behavior, 76
Fourier transform of, 62 Smirnov’s theorem, 74, 87

Pommerenke’s theorem, 282 Spectral radius formula, 213
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Spectrum, 184 \%
Stein-Weiss theorem, 115, 123, 128
Stone-Cech compactification, SN, 186, 404 VMO, 179, 250-253, 377, 396
and interpolating sequences, 422, 443 and Carleson measures, 276
Stopping time arguments, 232, 338, 382 and conjugate functions, 252
see also Generations dual Space of, 276 .
Strong boundary point, 215, 403 and Littlewood—-Paley integrals, 276
VMO, 385, 398, 442

Strongly logmodular algebra, 66 ’ )
and conjugate functions, 388

Subharmonic function, 33-39, 47, 48, e
98-101 Vanishing mean oscillation, see VMO

Variational argument, 296
Varopoulos extension, 276, 362
Vertical maximal function, 121, 333

Subharmonicity inequality, 33, 64
for representing measures, 218

Sweep, 229

Szegd’s theorem, 144

w
T Weak convergence in L!/H*, 206
Weak Laplacian, 48
Tent, 32 Weak L? function, 21
Top half of Q, T(Q), 290 Weakly continuous functional, 207
Translate, 16 Weak-star convergence, 15
Triangle inequality for pseudohyperbolic Weak-star topology on H*, 85
distance, 4 Weak-type 1-1, 24
Weight function, 178, 254-267
Wermer’s maximality theorem, 214, 375
U Whitney decomposition, 266
Wiener’s theorem, 213
Uniform algebra, 185 Wolff, theorem of, 322, 324, 366
onY, 186
Unimodular function, 151, 159, 179, 192, z
195, 217, 374, 375, 386
Univalent function, 281, 282 Zero set, 125,127
see also Conformal mapping Ziskind’s theorem, 337, 367
Upper half plane, 5 Zygmund class A*, 282, 442

Upper semicontinuous function, 33 Zygmund’s theorem, 114, 123, 128
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