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Preface

This book presents the research and development results of the “FIRST” Quantum
Information Processing Project, which has been conducted from 2010 to 2014 with
the support of the Council for Science, Technology and Innovation of the Cabinet
Office of the Government of Japan. The project supported 33 research groups
and explored five areas: quantum communication, quantum metrology and sensing,
coherent computing, quantum simulation, and quantum computing. Part I to Part V
of this book, which consist of twenty chapters, focus on the system and architecture
aspects of quantum information technologies, and Part VI and Part VII, which
consist of eight chapters, discuss the constituent device physics and technologies.

Part I: Quantum Communication is composed of four chapters. Chapter 1
presents the fundamental concepts of quantum information and introduces various
protocols of quantum communication. This chapter explains the most general ways
to describe quantum states, measurements, and state transformation. The distinction
between quantum communication and classical communication, the role of quantum
entanglement as a communication resource and the conversion of resources in
entanglement sharing, quantum dense coding, and quantum teleportation are then
discussed. Chapter 2 overviews advancements in quantum key distribution (QKD)
technology. This chapter presents the National Institute of Information and Com-
munications Technology (NICT) perspective on current limitations of the known
QKD protocols and future prospects toward merging QKD and modern crypto-
technologies. Chapter 3 describes the single photon-based and EPR-Bell photon-
pair-based quantum communication technologies developed at Nippon Telegraph
and Telephone Corporation (NTT). A particular protocol, called differential phase
shift (DPS) QKD, is introduced, and an experimental demonstration of a high-speed
and long-distance QKD system is presented. Finally, Chap. 4 reports the recent
progress toward solid state (quantum dot spin-based) quantum repeaters explored at
Stanford University. Two crucial technologies for this goal are described, which are
spin-photon entanglement and coherent single photon frequency down-conversion.

Part II: Quantum Metrology and Sensing is composed of four chapters. Chapter
5 introduces an optical lattice clock operated at the so-called magic wavelength,
in which an atomic ensemble trapped in an optical lattice provides a precisely
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vi Preface

controlled frequency reference and achieves extremely high accuracy and stability
at the level of 10�18. Chapter 6 discusses the cold atom magnetometry on the
basis of spinor Bose-Einstein condensates and spin echo techniques, which achieve
10�11 T=

p
Hz sensitivities at the micron scale. This technique may have various

applications for biological imaging, detection of MRI signals, and fundamental
science. Chapter 7 describes entanglement-based optical precision measurement
techniques with special focus on optical phase measurement beyond the standard
quantum limit and quantum optical coherent tomography. The former technique
can improve the sensitivity of microscopic imaging beyond the standard shot-
noise limit. The latter may cancel out the material dispersion effect and improve
the resolution of conventional optical tomography. Finally, Chap. 8 presents an
extremely sensitive current measurement apparatus on the basis of mesoscopic
quantum dot nanostructures. The apparatus can measure extremely small currents
of the order of attoamperes with single-electron resolution and enable bidirectional
(forward and backward) electron counting. Various statistical properties, such as
frequency spectrum, time-correlation, and full counting statistics, can be elucidated.

Part III: Coherent Computing is composed of four chapters. Chapter 9 reviews
the recent progress of approximation algorithms for combinatorial optimization
problems, which are most likely NP-hard so that there is no efficient (polynomial
time) algorithm to solve them, assuming the widely believed conjecture “P¤NP.”
Therefore, approximation and polynomial time algorithms have been main targets of
interest in applied mathematics and computer science research for the last 30 years.
The two main focuses in this article are the edge-disjoint paths problem and the
graph coloring problem. The three approaches of combinatorial (graph theoretical)
programming, linear programming, and semi-definite programming are discussed,
which are central to the recent breakthrough in approximation algorithms. Chapter
10 introduces a coherent Ising machine and XY machine on the basis of an
injection-locked laser network, which computes the approximate solutions for NP-
hard Ising problems and other combinatorial optimization problems in an extremely
short time. The two machines utilize the criticality of a laser phase transition as
a computing mechanism and depart from each other via presence or absence of
the external injection signal with a reference phase. The basic principle, proof-
of-concept experiment, and numerical benchmark study are presented. Chapter
11 describes another coherent Ising machine on the basis of a degenerate optical
parametric oscillator (DOPO) network. In contrast to the laser network, the inherent
preference of bistability for each DOPO phase makes this system extremely robust
against external perturbations and creates quantum entanglement in a transient
computational process. The chapter presents the basic principle of a DOPO-
based coherent Ising machine, computational experiments for NP-hard MAX-CUT
problems, and the idea of physical implementation with a multiple pulse DOPO in
a single ring cavity. Finally, Chap. 12 presents a scalable coherent Ising machine on
the basis of quantum measurement-feedback control. Instead of connecting DOPO
pulses or laser pulses optically, the complex amplitude of each pulse is measured at
every round trip by optical homodyne detection, and the mutual coupling among
the pulses, which implement the Ising model or XY model, and is realized by
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the coherent injection of feedback optical pulses back into the main cavity. The
numerical benchmark study for the NP-hard MAX-CUT problems in sparse G-
set graphs and dense complete graphs features substantial speedup against the
conventional approximation algorithms based on semi-definite programming (SDP)
and simulated annealing (SA).

Part IV: Quantum Simulation is composed of five chapters. Chapter 13 reviews
the basics of Bose-Einstein condensation (BEC) and introduces two different
experimental systems, which provide unique platforms for quantum simulation
experiments. A dilute atomic BEC is suitable for implementing an equilibrium
many-body system which is well isolated from reservoirs. A dense exciton-
polariton BEC is suitable for studying a nonequilibrium many-body system in
open-dissipative environments. The chapter covers such topics as the fundamental
concepts of BEC, the Bogoliubov theory of interacting particles, superfluidity,
and various lattice implementing techniques for atomic and polaritonic BEC.
Chapter 14 discusses the recent progress of quantum simulation experiments with
ultracold ytterbium (Yb) atoms in optical lattices at Kyoto University. They describe
experimental results pertaining to a strongly interacting Bose-Fermi Yb mixture, an
SU(N) Mott insulator, an artificial impurity system with Yb-Li (lithium) atomic
mixture, flat bands and Dirac cones in nonstandard optical lattices, and optical
Feshbach resonance. Chapter 15 reports the recent quantum simulation experiments
with trapped CaC ions at Osaka University. They implement the Jaynes-Cummings-
Hubbard (JCH) model, which describes an array of coupled cavities with a single
two-level atom and thus features strongly correlated phenomena such as quantum
phase transition from Mott insulator to superfluid. Chapter 16 discusses the quantum
simulation experiments with exciton-polaritons in various two-dimensional lattice
structures at Stanford University. In particular, they report the observation of the
spontaneously formed high-orbital (p-wave, d-wave, and f-wave) condensation due
to the open-dissipative nature of exciton-polaritons. Finally, Chap. 17 presents the
theoretical framework for describing the equilibrium BEC, a high-density BCS to
nonequilibrium lasing crossover in driven-dissipative semiconductor systems. The
gap equation in the BCS theory (GE-BCS) and the Maxwell semiconductor Bloch
equation (MSBE) are formulated for the coupled electron-hole-photon system, and
their mutual connection is established.

Part V: Quantum Computing consists of three chapters. Chapter 18 introduces
the layered architectures for quantum computers and quantum repeaters, where
five distinct (physical, virtual, quantum error correcting, logical, and application)
layers associated with specialized tasks are synchronously operated to achieve
fault tolerance. They report a numerical evaluation for quantum computers and
quantum repeaters on the basis of optically controlled quantum dot spins, where
a two-dimensional topological cluster state is prepared in a semiconductor quantum
dot-planar microcavity structure. This particular hardware technology is very
fast, scalable to large problem sizes, and compatible with single photon-based
quantum communication. Chapter 19 describes an alternative implementation of
fault-tolerant quantum computers on the basis of photon-photon interaction with
atom-cavity devices. A three-dimensional topological cluster state is a crucial
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part for universal fault-tolerant quantum computation. Chapter 20 discusses a
hybrid approach to universal and fault-tolerant quantum information processing.
In particular, they propose combined qubit and continuous variable protocols to
overcome the limitation of each system.

Part VI: Superconducting Qubits is composed of four chapters. Chapter 21
presents a brief overview of the recent progress in atomic physics and quantum
optics experiments using superconducting circuits with Josephson junctions. These
circuits provide an unprecedented level of control over quantum states and also
enjoy scalability of many qubits integrated on a single chip. Chapter 22 summarizes
the experimental efforts toward building a superconducting circuit-based quantum
computers. Such topics as various Josephson junction qubits, gate fidelity, deco-
herence time, integration, implementation of quantum algorithms, and the readout
of single qubits are described. Chapter 23 describes the two types of microwave
parametric amplifiers on the basis of Josephson junction circuits, which achieve
a standard quantum-limited amplification of microwave photons. One is a linear
parametric amplifier operated below the oscillation threshold, and the other is a
nonlinear parametric oscillator operated above the oscillation threshold. Finally,
Chap. 24 reports the recent experimental progress in superconducting flux qubit-
diamond NV center hybrid systems. The systems demonstrate the strong coupling
between a single superconducting flux qubit and ensemble of NV spins in diamond.

Part VII: Semiconductor and Molecular Spin Qubits is composed of four chap-
ters. Chapter 25 reports the recent progress in semiconductor quantum dot spin qubit
technologies. The chapter discusses the experimental schemes of initializing and
detecting single qubit gates on the basis of electric dipole-induced spin resonance
and implementing two qubit gates on the basis of the exchange coupling between
nearby quantum dots. Chapter 26 describes the quantum dynamics of nuclear spins
and electron spins associated with an impurity in silicon crystal. In particular, they
review the recent nuclear magnetic resonance (NMR)/electron spin resonance (ESR)
double resonance experiments using a phosphorus (31P) donor impurity in isotope-
purified silicon crystal. Chapter 27 introduces nuclear spins and electron spins in
molecules, which have relatively long decoherence time and can be controlled
by magnetic resonance techniques. The chapter reports on a newly developed
hyperpolarization technique, spin amplification, and an arbitrary waveform pulsed
ESR. Finally, Chap. 28 discusses the synthetic approaches to scalable molecular
spin-based quantum information processing. The chapter proposes using nuclear
spins in the topological network of molecular frames as client qubits and delocalized
electron spins as bus qubits, which are simultaneously controlled by RF and
microwave pulse techniques.

We hope the research results presented in this book will be a useful source
of ideas and knowledge for the future development of quantum information
technologies, which are actively being investigated in numerous countries around
the world.

Tokyo, Japan Yoshihisa Yamamoto
April 24, 2015 Kouichi Semba
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Part I

Quantum Communication



Chapter 1

Quantum Information Theory for Quantum

Communication

Masato Koashi

1.1 Basic Rules of Quantum Mechanics

We begin by listing a basic set of rules from which all statements in this section
should be derived. The choice of this set is by no means unique, and the selection
of the properties of quantum mechanics that are used as basic rules, leaving the rest
as derived rules, is actually a matter of preference. Our choice here comprises five
rules describing states, transformations, measurements, compositions, and causality.

The first of these rules covers the description of the states of a physical system.
We call a state pure when it is impossible to regard that state as a probabilistic
mixture of two or more different1 states.

Rule 1 A physical system is associated with a Hilbert space H . Every pure state
of this system is represented by a normalized vector j�i 2 H . For any
normalized vector j i 2 H , it is possible to prepare the system in the
state represented by j i.

To avoid complications, we assume in this section that the dimension d D
dim H of the Hilbert space is finite.2 A physical system with a Hilbert space of
dimension d is often called a d-level system. Rule 1 dictates that any appropriate

1The operational meaning of two states being different is that a measurement exists on the physical
system that can show the difference statistically.
2Rule 1 also implies that we exclude any cases where a physical law such as the superselection
rule imposes an additional restriction on the preparable states.
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4 M. Koashi

instruction for preparation of the physical system leads to either a pure state
represented by a single vector j�i or a mixed state represented by an ensemble

f.pj; j�ji/g, which designates the situation where the system is prepared in state j�ji
with probability pj. In either case, the representation is not unique: j�i and ei' j�i
represent the same pure physical state. The different descriptions f.pj; j�ji/g and
f.qi; j ii/g may both refer to the same mixed state. We will introduce an alternative
representation of the states, which is unique, in Sect. 1.2.

The next two rules cover the input-output relations of feasible operations on a
physical system prepared in state j�ini. A state transformation refers to the case
where the output is the quantum state j�outi of the system after the operation. Rule 2
dictates the feasibility of unitary transformations, which are, in a sense, a basic set
of transformations.

Rule 2 For any unitary operator OU on H , it is possible to implement a state
transformation where every input state j�ini 2 H evolves into state
j�outi D OUj�ini.

When the output is a classical variable, we are then referring to a measurement. Rule
3 covers a basic set of measurements called (complete) orthogonal measurements.

Rule 3 For any orthonormal basis fjujigjD1;:::;d of H , it is possible to implement a
measurement that produces the outcome j D 1; : : : d with probability pj D
jhujj�inij2 when the system is in state j�ini 2 H before the measurement
is performed.

In this rule, we are not interested in the state of the measured system after the
measurement is performed. The two rules above only refer to the feasibility of the
limited sets of transformations and measurements. In general, a much wider variety
of operations should be available on a physical system, and we will see the whole
landscape of these operations in Sect. 1.4.

The next rule is a very special rule that allows us to weave the threads of Rules
1, 2 and 3 into a texture of quantum information with dazzling patterns and colors.
This rule tells us how to apply the three rules above when dealing with multiple
physical systems. Consider two physical systems, A and B, which are independently

accessible. For example, the two systems are well separated in space, meaning that
one can freely operate on system A without affecting system B at all. We may call
this type of operation local. In this case, we can treat the whole of systems A and B

together as a single physical system (a composite system AB), or can focus on one
of the two systems (a subsystem) with no interest in the other. Rule 4 provides the
connection between these different viewpoints.

Rule 4 Suppose that the subsystems A and B are associated with the Hilbert spaces
HA and HB, respectively. The composite system AB is then associated
with a tensor-product space HAB D HA ˝ HB. Local operations (e.g.,
state preparations, state transformations, measurements) are represented
by the appropriate tensor products.

Specifically, preparation of system A in state j�iA 2 HA and system B in state
j iB 2 HB is equivalent to the preparation of a composite system AB in state
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j�iA ˝ j iB 2 HAB. The state that can be written in this form is called a
product state, and is often abbreviated as j�iAj iB or even j� iAB. The unitary
transformations OUA on system A and OVB on B result in the unitary transformation
OUA ˝ OVB on the composite system AB. Performing an orthogonal measurement with
basis fjuiiAgiD1;:::;d on system A and another with basis fjvjiBgjD1;:::;d0 on system B

can be regarded as the performance of a single orthogonal measurement, where the
outcome is represented by two numbers .i; j/, carried out on the composite system
AB with the orthonormal basis fjuiiA ˝ jvjiBgiD1;:::;d

jD1;:::;d0 of HAB.
According to Rule 1, we should be able to prepare a state represented by any

vector j� iAB 2 HAB, possibly by the tailoring of suitable interaction between
systems A and B. These vectors include, for example, .ju1iAjv1iB Cju2iAjv2iB/=

p
2,

which can never be written in the form j�iA ˝ j iB. This type of state is called
entangled. Similarly, a unitary operator OUAB acting on HAB is not necessarily a
product OUA ˝ OVB, and the corresponding global unitary transformation should be
feasible. There are also global orthogonal measurements, for which the orthonormal
basis is composed of entangled state vectors.

Since the state of a composite system is not necessarily written as a product form,
the definition of ‘the state of a subsystem’ is something of a moot point. Here, we
adopt a definition with a clear operational meaning, called the marginal state of a
subsystem, which is simply the state that the subsystem would be in if we discard
all the other constituent subsystems. With regard to the marginal states, we assume
the following.

Rule 5 The marginal state of a subsystem is not changed by operating on other
subsystems, as long as no information on the outcome of the operation is
referred.

This rule is expected to hold because there would otherwise be a test on system A

alone that would give clues on what operations were performed on a remote system
B without any communication between them. The rule sets a limitation on the
physically allowed state transformations and measurements, which complements
the fact that Rules 2 and 3 merely dictate what we can at least do.

1.2 Density Operators

In classical mechanics, a mixed state is simply regarded as a way to formulate
an observer’s lack of knowledge of the true state of a system. In principle, it is
always possible to assume that there is an omnipotent observer who knows the
exact state (the pure state) of every system. In quantum mechanics, however, this
simple picture does not hold. When a composite system is in a pure state j� iAB,
we cannot associate the state of the subsystem A with a single vector j�iA 2 HA

unless j� iAB is a product state. Therefore, it is not always possible to assume that
every system is in a pure state at the same time. In this subsection, we determine
how we can represent the state of a subsystem when it is a part of a composite
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system in a pure state j� iAB. We will see that the intuitive representation using
an ensemble f.pj; j�ji/g is redundant in the sense that different descriptions may
refer to the same physical state. This motivates us to introduce a density operator to
offer a better representation in this respect. By using a helpful property of bipartite
pure states called Schmidt decomposition, we will show that there is a one-to-one
correspondence between the density operators and the physical states.

1.2.1 Measurement on a Subsystem

Suppose that the composite system AB is initially prepared in a pure state j� iAB,
and an orthogonal measurement with a basis fjvjiBgjD1;:::;d0 is then conducted on
subsystem B, producing an outcome j with a probability pj. Let us derive a rule to
calculate pj and identify the state of the subsystem A that is conditioned on the value
of j.

Our strategy is to observe what happens if we perform a measurement with
arbitrary basis fjuiiAgiD1;:::;d on system A. Regardless of the temporal order of the
measurements on A and B, Rules 3 and 4 dictate that the joint probability of the
two outcomes .i; j/ is given by pi;j D j.Ahuij ˝ Bhvjj/j� iABj2. Let us introduce the
unnormalized vector j Q�jiA WD Bhvjjj� iAB 2 HA. We then have pi;j D jAhuij Q�jiAj2
and pj D

Pd
iD1 pi;j D

Pd
iD1 jAhuij Q�jiAj2 D jAh Q�jj Q�jiAj2. Using a normalized vector

j�jiA WD j Q�jiA=
p

pj, we obtain an expression for the conditional probability, pijj WD
pi;j=pj D jAhuij�jiAj2. Because the choice of the basis fjuiiAgiD1;:::;d was arbitrary,
comparison of this relationship to Rule 3 shows that the state of the subsystem A

conditioned on the outcome j must be a pure state, which is represented by the
vector j�jiA. Noting that the measurement on A can be performed immediately after
the preparation of j� iAB, we arrive at the following theorem.

Theorem 1. Suppose that a composite system AB is initially prepared in a pure

state j� iAB, and that an orthogonal measurement with a basis fjvjiBgjD1;:::;d0 is

performed on subsystem B. The outcome j then occurs with probability pj and,

conditioned on j, the subsystem A behaves as if it was initially prepared in the pure

state j�jiA, where

p
pjj�jiA D Bhvjjj� iAB (1.1)

holds.

1.2.2 Marginal State of a Subsystem

The argument in the previous subsection immediately provides a description of the
marginal state of the subsystem A when the composite system AB is prepared in the
pure state j� iAB. If the value of the outcome j of the measurement on subsystem B
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is unavailable, then the state of system A after the measurement can be described
by the ensemble f.pj; j�jiA/gjD1;:::;d0 , where the probabilities fpjg and the vectors
fj�jiAg are calculated from Eq. (1.1). From Rule 5, we see that the marginal state of
subsystem A before the measurement was performed is also f.pj; j�jiA/gjD1;:::;d0 .

On the one hand, this description is helpful because it is sufficient to allow
calculation of the statistics of the outcomes of further operations on system A

alone. On the other hand, the argument above also shows that the description of
a mixed state by the ensemble is by no means unique. If we change the basis
fjvjiBgjD1;:::;d0 of the measurement to another basis, then the description of the state
f.pj; j�jiA/gjD1;:::;d0 also changes through Eq. (1.1). This new ensemble should also
be a valid representation of the same state.

Lemma 1. Two ensembles, f.pj; j�jiA/gjD1;:::;d0 and f.p0
j; j�0

j iA/gjD1;:::;d0 , represent

the same mixed state if a bipartite pure state j� iAB and orthonormal bases

fjvjiBgjD1;:::;d0 and fjv0
jiBgjD1;:::;d0 exist that satisfy

p
pjj�jiA D Bhvjjj� iAB and

q
p0

jj�0
j iA D Bhv0

j jj� iAB: (1.2)

1.2.3 Density Operators

Consider a physical system that is associated with a Hilbert space H , and let us
call an operator O� W H ! H a density operator when it is positive . O� � 0/ and
of unit trace (Tr O� D 1). We associate a mixed state of a system represented by the
ensemble f.qi; j ii/giD1;:::;n with a density operator given by

O� WD
nX

iD1
qij iih ij: (1.3)

One immediate benefit of this representation by the density operator is that the
marginal state that was discussed in Sect. 1.2.2 is represented by a unique density
operator, i.e.,

O�A D
d0X

jD1
pjj�jiAAh�jj D

d0X

jD1
p0

jj�0
j iAAh�0

j j D TrBj� iABABh� j (1.4)

that holds under Eq. (1.2). This operator is called the marginal density operator of
system A for the whole state j� iAB.

Because any positive operator O� with a unit trace can be written in a diagonal

form O� D
P

i �ijuiihuij using nonnegative eigenvalues f�ig with
P

i �i D 1

and orthonormal eigenvectors fjuiig, O� is the density operator for an ensemble
f.�i; juii/gi. Therefore, any density operator is associated with at least one physical
state.
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When an orthogonal measurement with a basis fjujigj is performed on a mixed
state f.qi; j ii/gi, the probability of the outcome j is calculated using Rule 3 to be
pj D

P
i qijhujj iij2 D hujj O�juji. This shows that the statistics of the measurement

outcome depend only on the density operator. This also shows that each physical
state is associated with a single density operator. Consider two mixed states with
different density operators O� and O�0.¤ O�/. Because jui 2 H exists with huj. O� �
O�0/jui ¤ 0, a measurement leading to different statistics between the two states
also exists. The two states are therefore distinct. This fact implies that the density
operator can be determined using a map from the set of physical states. As shown
earlier, this map is surjective.

The remaining question is whether this map is bijective. At this point, it might
not be injective, i.e., different mixed states could be associated with the same density
operator. We will provide the answer to this question in Sect. 1.2.5, after we discuss
the important properties of bipartite pure states in Sect. 1.2.4.

1.2.4 Properties of Bipartite Pure States

First, we consider how a general bipartite pure state j� iAB can be written in terms
of the orthonormal bases fjuiiAgi and fjvjiBgj for the subsystems A and B. Because
fjuiiAjvjiBgi;j is a basis of HAB, it is always possible to decompose j� iAB as
j� iAB D

P
i;j ci;jjuiiAjvjiB. The special aspect of bipartite states is that a much

simpler form of decomposition, j� iAB D
P

i cijuiiAjviiB, is available if we select
fjuiiAgi and fjvjiBgj appropriately for the given vector j� iAB. This decomposition
is called Schmidt decomposition, and it will be convenient to describe Schmidt
decomposition in the form of the following theorem.

Theorem 2. Let j� iAB 2 HAB D HA ˝HB be a normalized vector that represents

a pure state of a bipartite system AB. Let O�A D TrBj� iABABh� j be the marginal

density operator of system A, and let s be the rank of O�A. For any orthonormal set

of vectors fjuiiAgiD1;:::;s � HA that diagonalizes O�A as O�A D
Ps

iD1 pijuiiAAhuij with

pi > 0.i D 1; : : : ; s/, there is an orthonormal set of vectors fjviiBgiD1;:::;s � HB,

such that

j� iAB D
sX

iD1

p
pijuiiAjviiB: (1.5)

Proof. Define the unnormalized vectors j QviiB WD Ahuijj� iAB. We then
have j� iAB D

Ps
iD1 juiiAj QviiB. We see that Bh Qvij QvjiB D Trj QvjiBBh Qvij D

AhujjTrB.j� iABABh� j/juiiA D Ahujj O�AjuiiA D piıi;j, where ıi;j D 1 if i D j, and
otherwise ıi;j D 0. Thus, if we define jviiB WD j QviiB=

p
pi, fjviiBgi is an orthonormal

set that satisfies Eq. (1.5). ut
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The number s is often called the Schmidt number of the state j� iAB. If s is
smaller than dim HA or dim HB, we can always augment the orthonormal sets to
form orthonormal bases.

Next, we introduce a concept that is opposite to the concept of the marginal
density operator for a bipartite pure state. For a given density operator O�A of
subsystem A, a purification of the density operator is defined to be a pure state j˚iAB

of the composite system AB that satisfies TrBj˚iABABh˚ j D O�A. In contrast to the
marginal density operator, which is unique to a given state j� iAB, the purification
of a given density operator O�A is not unique and there are many bipartite pure states
that can be regarded as purifications of O�A. However, they are connected by a simple
relation [1, 2] that is given as follows.

Theorem 3. For any two purifications j˚iAB, j˚ 0iAB 2 HAB D HA ˝ HB of the

same density operator O�A, there is a unitary operator OVB W HB ! HB such that

j˚ 0iAB D .O1A ˝ OVB/j˚iAB: (1.6)

Proof. When we write down a diagonal form O�A D
Ps

iD1 pijuiiAAhuij, Theorem 2
ensures that the purifications are decomposed as j˚iAB D

Ps
iD1

p
pijuiiAjviiB and

j˚ 0iAB D
Ps

iD1
p

pijuiiAjv0
iiB. Because fjviiBgi and fjv0

iiBgi are orthonormal sets, a
unitary operator OVB exists such that jv0

iiB D OVBjviiB for all i. ut
This theorem is quite simple but has deeper consequences. Suppose that Alice

holds system A and Bob holds system B, and assume that only Bob knows whether
the system AB is in state j˚iAB or in state j˚ 0iAB. There are then only two possible
situations: (i) The marginal density operators of subsystem A are different for j˚iAB

and j˚ 0iAB, and thus Alice can locally distinguish state j˚iAB from state j˚ 0iAB

to some extent. (ii) The marginal density operators of subsystem A are the same
and according to Theorem 3, Bob can switch locally between state j˚iAB and
state j˚ 0iAB. As a result, we see that there is no situation whatsoever in which
Alice is unable to distinguish between the two states locally and Bob is unable
to switch between the states locally. This property has led to the no-go theorem for
unconditionally secure bit commitment [3, 4].

1.2.5 Physical States and Density Operators

We are now in a position to prove that there is a one-to-one correspondence between
the physical states and the density operators. Consider two states represented by the
ensembles f.pj; j�jiA/gjD1;:::;d and f.p0

j; j�0
j iA/gjD1;:::;d0 , which are associated with the

same density operator O�A. We will show that these two states are in fact the same
state [1, 2].

Without loss of generality, we may assume that d � d0. If d < d0, we can augment
the ensemble f.pj; j�jiA/gjD1;:::;d in an equivalent manner to f.pj; j�jiA/gjD1;:::;d0
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by adding dummy states j�jiA with pj D 0. Consider another system B with a
Hilbert space HB with dimension d0, and take an orthonormal basis fjvjiBgjD1;:::;d0 .

We then define the bipartite states j� iAB WD
Pd0

jD1
p

pjj�jiAjvjiB and j� 0iAB WD
Pd0

jD1
q

p0
jj�0

j iAjvjiB, which both have O�A as their marginal density operator. From

Theorem 3, there is a unitary operator OVB with j� 0iAB D .O1A ˝ OVB/j� iAB. We define
another orthonormal basis fjv0

jiBgjD1;:::;d0 using jv0
ji WD OV�

Bjvji. It is then simple to
confirm that the requisite of Lemma 1, Eq. (1.2), holds, and thus the two states are
the same state. When combined with the previous observation in Sect. 1.2.3, we can
conclude that:

There is a one-to-one correspondence between the set of physical states and the
set of density operators.

Having established that the density operators are conceptually an ideal descrip-
tion of the physical states, it is natural to expect that the basic and derived rules
will be equally well stated when using the density operators in place of vectors to
represent the physical states. In fact, by carefully following the definition, we obtain
the following list of formulas.

Unitary transformation j�outi D OUj�ini O�out D OU O�in OU�

Orthogonal measurement pj D jhujj�inij2 pj D hujj O�injuji
Local preparation j�iA ˝ j iB O�A ˝ O�B

Measurement on subsystem
p

pjj�jiA D Bhvjjj� iAB pj O�.j/A D Bhvjj O�ABjvjiB

Preparation by mixing O� D
P

i qij�iih�ij O� D
P

i qi O�.i/
Marginal state O�A D TrBj� iABABh� j O�A D TrB O�AB

Distinction is made between the pure and mixed states based simply on the rank
of the density operator. The state is pure if and only if the rank of its density operator
O� is 1, in which case it can be written as O� D j�ih�j using the normalized vector
j�i. The opposite extreme may be the case of the operators with maximal rank,
which is equal to the dimension d of the Hilbert space. Among these operators,
the state where O� D O1=d has the unique property of invariance under all unitary
transformations, and is called the maximally mixed state.

Classification of the density operator can be related to the classification of
the bipartite pure states through purification. The Schmidt number of a specific
purification is equal to the rank of the density operator. The purification of a rank-
one density operator, O�A D juiAAhuj, is a product state in the form of juiAjviB, while
the purification of a nonpure density operator is an entangled state. The purification
of a maximally mixed state is called a maximally entangled state. Under Schmidt
decomposition of Eq. (1.5), a maximally entangled state j˚iAB is written as

j˚iAB D 1p
d

dX

iD1
juiiAjviiB; (1.7)

where d is the dimension of HA.
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1.3 Qubits

The simplest of the physical systems is a two-level system that is associated with a
Hilbert space of dimension 2, and is called a qubit. For a qubit, the general states,
the orthogonal measurements, and the unitary transformations can be conveniently
visualized using a three-dimensional image called the Bloch representation.

1.3.1 Pauli Operators

Consider a qubit and choose an orthonormal basis fj0i; j1ig of its Hilbert space H

as the standard basis. We define a set of three operators, called Pauli operators,
as O�x D O�1 WD j0ih1j C j1ih0j, O�y D O�2 WD �ij0ih1j C ij1ih0j, and O�z D O�3 WD
j0ih0j�j1ih1j. In the matrix representation under the standard basis, they are written
as

O�x D O�1 D
�
0 1

1 0

�
; O�y D O�2 D

�
0 �i

i 0

�
; O�z D O�3 D

�
1 0

0 �1

�
: (1.8)

They satisfy the following commutation and anti-commutation relations:

Œ O�i; O�j� D 2i�ijk O�k and f O�i; O�jg D 2ıi;j
O1; (1.9)

where Œ OA; OB� D OA OB � OB OA, f OA; OBg D OA OB C OB OA. The Levi-Civita symbol �ijk is zero,
except for �123 D �231 D �312 D 1 and �321 D �132 D �213 D �1, and the Einstein
notation is used to omit the summation.

Together with O�0 WD O1, we have four self-adjoint and unitary operators. These
satisfy the orthogonality relations,

Tr. O�� O��/ D 2ı�;� (1.10)

for �; � D 0; 1; 2; 3. Every linear operator OA acting on H is uniquely decomposed
as OA D .P0 O1 C Px O�x C Py O�y C Pz O�z/=2, where the four complex parameters
.P0;Px;Py;Pz/ can be determined using P0 D Tr. OA/, Px D Tr. O�x

OA/, Py D Tr. O�y
OA/,

and Pz D Tr. O�z
OA/. It is convenient to regard P WD .Px;Py;Pz/ as a three-dimensional

vector, and to define O� WD . O�x; O�y; O�z/ as well. We denote the inner product
between these vectors as P � O� WD Px O�x C Py O�y C Pz O�z, and the squared norm
as jPj2 WD P2x C P2y C P2z . Using the vector notation, we have

OA D .P0 O1C P � O� /=2 (1.11)

with P0 D Tr. OA/ and P D Tr. O� OA/.
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Because OA� D . NP0 O1C NP � O� /=2, OA is self-adjoint if and only if both P0 and P are
real. For a self-adjoint operator OA, it is simple to show that det. OA/ D .P20 � jPj2/=4,
and that the two eigenvalues of OA are .P0 ˙ jPj/=2. Therefore, OA is positive if and
only if P is real and P0 � jPj.

1.3.2 General States of a Qubit

Because a density operator O� is positive and has a unit trace, application of the
decomposition of Eq. (1.11) leads to

O� D .O1C P � O� /=2 (1.12)

where the real vector P D Tr. O� O�/ satisfies jPj � 1. We see that the density
operators, and thus the general states of a qubit, are uniquely represented by three-
dimensional real vectors P D .Px;Py;Pz/ with lengths no greater than unity. These
vectors are called the Bloch vectors, and representation of the qubit states using
these Bloch vectors is called Bloch representation. As shown in Fig. 1.1a, a Bloch
vector is visualized in an xyz-Cartesian coordinate system as an arrow stemming
from the origin and reaching a point .Px;Py;Pz/ on or inside of a sphere of unit
radius, which is called a Bloch sphere.

As shown in Sect. 1.2.5, the rank of O� is 1 when it is a pure state, and for a qubit
this implies that the smaller of the eigenvalues of O�, .1�jPj/=2, is zero. A pure state
is thus represented by a Bloch vector of length jPj D 1, with the vector tip reaching
the Bloch sphere. For a mixed (and nonpure) state, the length of the Bloch vector is
shorter (jPj < 1). The maximally mixed state with O� D O1=2 is represented by the
zero vector P D 0.

Fig. 1.1 (a) Bloch sphere and a Bloch vector. The six pure states on one of the three axes, where
j˙i WD .j0i ˙ j1i/=

p
2 and ji˙i WD .j0i ˙ ij1i/=

p
2, are also shown. (b) A pair of pure states

j�i and j i, with jh�j ij D cos.�=2/
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Bloch vectors should not be confused with the vectors of the Hilbert space. Bloch
vectors belong to a three-dimensional real vector space, while the Hilbert space
of a qubit is a complex two-dimensional vector space. Consider two pure states,
O�� D j�ih�j and O� D j ih j, with Bloch vectors P� and P , respectively. When
P� � P D cos � , then the angle between the two Bloch vectors is � (see Fig. 1.1b).
In contrast, based on Eq. (1.10), we have jh�j ij2 D Tr. O�� O� / D .1CP� �P /=2 D
cos2.�=2/, which implies that the angle between the two vectors of the Hilbert space
is �=2. For two orthogonal pure states, �=2 D �=2 implies that the corresponding
pair of Bloch vectors point in opposite directions.

1.3.3 Orthogonal Measurement on a Qubit

Let us interpret an orthogonal measurement using the basis fju0i; ju1ig in terms of
Bloch representation. We define the Bloch vectors P0 and P1 for the basis states
using O�j WD jujihujj D .O1 C Pj � O� /=2. Because the orthogonality hu0ju1i D 0

implies that P1 D �P0, the orthogonal measurement is completely characterized by
the unit vector P0, which is a direction in the three-dimensional space.

Suppose that the measured qubit is initially in the state given by O� D .O1CP� O� /=2.
The probabilities of outcome j D 0; 1 are then calculated to be pj D hujj O�juji D
Tr. O�j O�/ D .1C Pj � P/=2, leading to

p0 D .1C P0 � P/=2 and p1 D .1 � P0 � P/=2: (1.13)

This shows that the probabilities are essentially determined by projection of
the measured Bloch vector P along the direction P0 that was specified by the
measurement, with appropriate scaling (see Fig. 1.2a).

Fig. 1.2 (a) Orthogonal measurement with a basis fjujigjD0;1. The Bloch vector P of the input
state determines the probability pj of the outcome j. (b) The Bloch vector rotates in a unitary
transformation with OU.n; '/
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1.3.4 Unitary Transformation on a Qubit

We now discuss how the Bloch vector of a physical state changes under a unitary
transformation. We limit ourselves to the unitary operators OU that belong to a
set called SU.2/, and are characterized by the condition det OU D 1. This does
not lose generality because OU.�/ WD ei�=2 OU for real � transforms the state O� to
OU.�/ O� OU.�/� D OU O� OU�, which is independent of � . All OU.�/ physically represent
the same transformation, and we are thus allowed to choose one that satisfies
det OU.�/ D ei� det OU D 1 and thus OU.�/ 2 SU.2/. Note that the correspondence is
not one-to-one but in fact two-to-one, because � OU.�/ D OU.� C 2�/ also belongs
to SU.2/.

The elements of SU.2/ are conveniently parametrized as follows. Any OU 2
SU.2/ can be written in the diagonal form OU D e�i'=2ju0ihu0j C ei'=2ju1ihu1j with
hu0ju1i D 0. We may then write OU D exp.�i' OS=2/ with OS WD ju0ihu0j � ju1ihu1j,
which is self-adjoint, traceless, and has eigenvalues of ˙1. Using the decomposition
of Eq. (1.11), we find that OS is written as OS D P � O�=2with jPj D 2. By introducing a
unit vector n WD P=2, we conclude that the elements of SU.2/ can be parametrized
as

OU.n; '/ WD expŒ�i.'=2/n � O� �: (1.14)

We are interested in how the Bloch vector evolves when the density operator
evolves under a unitary transformation. Noting that OU.n; 'C' 0/ D OU.n; ' 0/ OU.n; '/
holds in general, we see that it is sufficient to focus on the transformations given
by OU.n; ı'/, where ı' is infinitesimally small. A general transformation OU.n; '/
is then understood as a result of sequential application of these infinitesimal
transformations.

Under the transformation OU.n; ı'/, a Bloch vector P WD Tr. O� O�/ evolves into PC
ıP D Tr. O� O�0/ with O�0 WD OU.n; ı'/ O� OU.n; ı'/�. Using OU.n; ı'/ Š O1� i.ı'=2/n � O�
and collecting the terms up to the first order in ı', we find that ıP D Tr. O� O�0/ �
Tr. O� O�/ D �i.ı'=2/Tr.Œ O� ;n � O� � O�/. From Eq. (1.9), we obtain Œ O�i; nj O�j� D 2i�ijknj O�k

under the Einstein notation, which implies that Œ O� ;n � O� � D 2in � O� . Therefore,
OU.n; ı'/ induces an infinitesimal change in the Bloch vector, which is given by

ıP D ı'n � P: (1.15)

This is equal to the infinitesimal change in rotation around axis n by the angle ı'.
We thus conclude that the Bloch vectors rotate around axis n by angle ' under the
general unitary transformation OU.n; '/ (see Fig. 1.2b). Notable examples include
the Z gate with OU..0; 0; 1/;˙�/ D �i O�z, the X gate with OU..1; 0; 0/;˙�/ D �i O�x,
and the Hadamard gate with OU..2�1=2; 0; 2�1=2/;˙�/ D �2�1=2i. O�z C O�x/.
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1.4 Generalized Measurements and Quantum Operations

The basic set of rules that we adopted in Sect. 1.1 dictated that we can carry out
unitary transformations and orthogonal measurements on a physical system (Rules
2 and 3). Here, we extend the repertoire of what we can do to a physical system
by using an auxiliary system as a workspace. We also clarify how far this extension
goes, and draw a clear line between what we can and cannot do.

1.4.1 Use of Auxiliary Systems

Suppose that we want to operate on a physical system A. Let O�in be the density
operator for the initial state of the system A. We first prepare an auxiliary system E,
which has a Hilbert space HE of dimension s, in a fixed pure state j�iniiE. We then
let the systems A and E interact with each other such that the unitary transformation
described by the unitary operator OUAE W HA ˝ HE ! HA ˝ HE occurs. Finally,
we perform an orthogonal measurement on system E with an orthonormal basis
fjjiEgjD1;:::;s of HE. The output of the operation is the classical variable j and the final

quantum state O�.j/out of system A, which may depend on the value of j. This can thus
be regarded as conducting a state transformation and performing a measurement at
the same time. Using the rules that were summarized in Sect. 1.2.5, we can easily
show how the final state O�.j/out and the probability pj of obtaining j are related to the
initial state:

pj O�.j/out D Ehjj OUAE. O�in ˝ j�iniiEEh�inij/ OU�
AEjjiE: (1.16)

We sometimes encounter a situation where the input and the output are different
physical systems. For example, in the photoelectric effect, light is incident on a
metal but an electron comes out of the metal. In such a case, we would regard
the light field as the input system A, and the metal, including the electron that is
eventually emitted, as the auxiliary system E. The whole system is the composite
of A and E. The output system, i.e., the electron, is a subsystem of the composite
system AE, and we call it system A0. The rest of system AE is then called system E0.
In short, we have introduced two different ways to decompose the entire system into
two subsystems, AE and A0E0. Mathematically, this corresponds to an equivalence
relation HA ˝ HE D HA0 ˝ HE0 .

We can now generalize the strategy for use of an auxiliary system to include
cases where the output system is not necessarily the same as the input system, as
shown in Fig. 1.3. It is convenient to regard the unitary operator OUAE as a linear map
OU W HA ˝ HE ! HA0 ˝ HE0 , where we dropped the subscript AE. Let s0 be the
dimension of HE0 . The orthogonal measurement is performed on system E0 with an
orthonormal basis fjjiE0gjD1;:::;s0 . Equation (1.16) is then generalized as
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Fig. 1.3 Use of an auxiliary system in operation on the physical system A. An auxiliary system E

is prepared in a fixed pure state j�iniiE, and the unitary transformation OU is applied to systems A

and E. System A0, which is part of the whole system AE, is released as an output. The remaining
system, E0, is measured to produce the outcome j

pj O�.j/out D E0hjj OU. O�in ˝ j�iniiEEh�inij/ OU�jjiE0 : (1.17)

It is convenient to introduce the operators OM.j/ W HA ! HA0 , which are defined
by

OM.j/ D E0hjj OUj�iniiE: (1.18)

Using the relation
Ps0

jD1 jjiE0 E0hjj D O1E0 , we see that the operators satisfy the
normalization condition

s0X

jD1

OM.j/� OM.j/ D O1A: (1.19)

The set of operators f OM.j/ W HA ! HA0g that satisfies the above relationship are
often called Kraus operators. Using these operators, Eq. (1.17) can be simplified as

pj O�.j/out D OM.j/ O�in OM.j/�; (1.20)

where the input-output relationship is stated without any reference to the auxiliary
systems E and E0.

In the above argument, we started with a given operator OU that represented a
unitary transformation of the composite system to determine the Kraus operators for
the simplified relationship of Eq. (1.20). As we will see, this process can be reversed,
i.e., for any given set of Kraus operators f OM.j/g that satisfies Eq. (1.19), there is3 a
unitary operator OU that satisfies Eq. (1.18). Let fjuiiAgiD1;:::;d be an orthonormal

3Given s0, we may choose the dimensions of HE and HE0 such that they satisfy dim HE0 � s0 and
dim HA dim HE D dim HA0 dim HE0 .



1 Quantum Information Theory for Quantum Communication 17

basis of HA. Then, fjuiiA ˝ j�iniiEgiD1;:::;d is an orthonormal set. We define jvii 2
HA0 ˝ HE0 by jvii WD

Ps0

jD1 OM.j/juii ˝ jjiE0 . From Eq. (1.19), it can be shown that

fjviigiD1;:::;d is an orthonormal set. There is thus a unitary operator OU W HA ˝HE !
HA0 ˝HE0 that connects the two orthonormal sets as jvii D OUjuiiA ˝j�iniiE, which
leads to Eq. (1.18). We thus conclude that any input-output relationship dictated
by the Kraus operators as shown in Eq. (1.20) can be physically implemented by
attaching an auxiliary system E, applying a suitable unitary transformation over the
composite system, and then measuring the subsystem E0.

1.4.2 Physically Allowed Operations

In Sect. 1.4.1, we extended our ability to operate on physical systems through the
rather heuristic use of an auxiliary system. It is natural to expect that the introduction
of more complex schemes using two or more auxiliary systems may allow us to
further extend the variety of possible operations. Additionally, if we look back on
the basic rules in Sect. 1.1, we see that none of the rules require a physical operation
to be built up from unitary transformations and orthogonal measurements alone.
Nonetheless, we will show here that the input-output relations written in the form
of Eq. (1.20) are essentially the only relations that are allowed physically.

Consider a black box that accepts a physical system A as an input, and produces
a classical outcome j D 1; 2; : : : ; s, while leaving the system A0 as an output. Let d

be the dimension of HA. We want to know the way in which the output state O�.j/out

and the probability pj of the outcome are related to a general pure input state j�iA.
For that purpose, it is convenient to introduce a reference system B with a Hilbert
space HB of the same dimension d. We take the orthonormal bases fjiiAgiD1;:::;d and
fjiiBgiD1;:::;d for HA and HB, respectively, and suppose that the system AB is initially
prepared in a maximally entangled state, j˚iAB D d�1=2Pd

iD1 jiiAjiiB.
We now explain a frequently used technique called the relative states. For any

given state j�iA, we define the relative state of system B, with reference to the
maximally entangled state j˚iAB, as

j��iB WD
dX

iD1
jiiBAh�jiiA: (1.21)

It is then easy to see that

d�1=2j�iA D Bh��jj˚iAB (1.22)

holds. The definition of the relative state is mutual, i.e., j���iA D j�iA, because
d�1=2j��iB D Ah�jj˚iAB also holds.

In light of Theorem 1, this relation has the following meaning. If we conduct an
orthogonal measurement on system B with a basis that includes state j��iB, then the
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Fig. 1.4 (a) Characterization of a physical operation (the black box) by feeding in half of a
maximally entangled state. Learning the statistics of the outcome j and the states O�.j/A0B then allows
us to fully specify the input-output relationship. (b) Looking inside the box. Any physical process
is implemented in an equivalent manner with an auxiliary system, a unitary transformation, and an
orthogonal measurement

corresponding outcome appears with probability 1=d, and system A then behaves as
if it were initially prepared in state j�iA. While this is probabilistic, it offers a type
of ex post facto method to prepare system A in the arbitrary state j�iA.

We now proceed to the analysis of the black box (see Fig. 1.4a). After preparation
of j˚iAB, suppose that system A is fed to the black box, while system B is left alone.
After the black box has produced the outcome j, the state of the composite system
A0B should be represented by a density operator, which we denote by O�.j/

A0B
. Let qj

be the probability of producing the outcome j. Now suppose that we perform an
orthogonal measurement with basis fjviiBg on system B, where jv1iB D j��iB. The
outcome i D 1 should then appear with probability r.j/ and this leaves system A0 in
state O�.j/

A0 , where

r.j/ O�.j/
A0 D Bh��j O�.j/

A0B
j��iB: (1.23)

However, according to Theorem 1, an event with outcomes j and i D 1 must be
interpreted as follows. With probability d�1, system A is initially prepared in j�iA,
and is then fed to the black box. This produces outcome j with probability pj, leaving

system A0 in state O�.j/out. Comparison of the two interpretations leads to qjr
.j/ D d�1pj

and O�.j/
A0 D O�.j/out. Using Eq. (1.23), we then have
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pj O�.j/out D dqjBh��j O�.j/
A0B

j��iB: (1.24)

Consider a decomposition of the density operator,

O�.j/
A0B

D
t.j/X

kD1
j Q� .j/

k iA0BA0Bh Q� .j/
k j; (1.25)

where j Q� .j/
k iA0B is unnormalized. Noting that Bh��j D

p
dABh˚ jj�iA, we see that,

for fixed values of j and k, the correspondence j�iA 7!
p

dqjBh��jj� .j/
k iA0B is a

linear map. Thus, an operator OM.j;k/ W HA ! HA0 exists such that

p
dqjBh��jj� .j/

k iA0B D OM.j;k/j�iA: (1.26)

Equation (1.24) is now written as

pj O�.j/out D
t.j/X

kD1

OM.j;k/j�iAAh�j OM.j;k/� (1.27)

for the input state j�iA. Then, for the general input state O�in of system A, the input-
output relationship of the black box is written as

pj O�.j/out D
t.j/X

kD1

OM.j;k/ O�in OM.j;k/�: (1.28)

Taking the trace of Eq. (1.27) and performing a sum over index j, we haveP
j;k Ah�j OM.j;k/� OM.j;k/j�iA D 1 for arbitrary j�iA. Therefore,

P
j;k

OM.j;k/� OM.j;k/ D O1A

and f OM.j;k/g is a set of Kraus operators.
Equation (1.28) is the most general form of what we can do to a physical

system. This equation is merely a trivial extension of Eq. (1.20) in Sect. 1.4.1.
Consider a scheme that produces the outcome .j; k/ and leaves system A0 in state
O�.j;k/out , with an input-output relation given by pj;k O�.j;k/out D OM.j;k/ O�in OM.j;k/�. As shown4

in Sect. 1.4.1, this scheme can be implemented by simply attaching an auxiliary
system E, applying a unitary transformation, and then performing an orthogonal
measurement on system E0. The original black box is then faithfully simulated using
this scheme as shown in Fig. 1.4b, by simply discarding the index k and yielding
only the index j as the final outcome.

4Regard .j; k/ as a single index with the values 1; : : : ; s0, where s0 D
P

j t.j/.
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1.4.3 Generalized Measurements

By discarding the output quantum state in system A0 in the black box that was
considered in Sect. 1.4.2, we can obtain the most general form of a physically
allowed measurement process, which is called a generalized measurement. By
taking the trace of Eq. (1.28), we have

pj D Tr. OF.j/ O�in/; (1.29)

where OF.j/ WD
P

k
OM.j;k/� OM.j;k/ is positive and satisfies

P
j

OF.j/ D O1A. Any
measurement must be written in this form.

A set of positive operators f OF.j/g acting on HA and satisfying
P

j
OF.j/ D O1A is

called the POVM (positive-operator-valued measure). For any given POVM f OF.j/g,
we may define OM.j/ WD . OF.j//1=2 and use the argument of Sect. 1.4.1 to construct
a generalized measurement that satisfies Eq. (1.29) through the use of an auxiliary
system as shown in Fig. 1.3, except that system A0 is discarded in this case.

An orthogonal measurement with basis fjujiAg is now regarded as a special case
of the generalized measurements, when the POVM is chosen to be OF.j/ D jujiAAhujj.
Note that orthogonal measurements are not necessarily the ideal measurement,
and some tasks favor other kinds of generalized measurement. We will provide an
example below.

Unambiguous state discrimination. Consider a nonorthogonal pair of qubit
states, fj�0iA; j�1iAg, with c WD jh�0j�1ij > 0. Suppose that qubit A has been
secretly prepared in j�0iA or in j�1iA with an equal probability of q WD 1=2.
Consider the strategy used to distinguish between the two states as follows.

Choose j�?
j iA .j D 0; 1/ such that Ah�jj�?

j iA D 0 and Ah�?
0 j�?

1 iA D c.

Consider a set f OF.j/gjD0;1;2 defined by OF.0/ WD .1 C c/�1j�?
1 iAAh�?

1 j, OF.1/ WD
.1 C c/�1j�?

0 iAAh�?
0 j, and OF.2/ WD O1A � OF.0/ � OF.1/. Because j�?

0 iA ˙ j�?
1 iA is

an eigenvector of OF.0/ C OF.1/ with eigenvalue .1 C c/�1.1 ˙ c/ � 1, we have
OF.0/ C OF.1/ � O1A. Therefore, f OF.j/gjD0;1;2 is a POVM, and the corresponding
generalized measurement is feasible.

When the outcome of this measurement was j D 0, we were certain that the
prepared state must be state j�0iA, because Tr. OF.0/j�1iAAh�1j/ D 0. Similarly, if
the outcome was j D 1, the prepared state must be state j�1iA. The overall success
probability, i.e., the probability of obtaining j D 0; 1 is calculated to be psuc WDP

jD0;1 qTr. OF.j/j�jiAAh�jj/ D 1 � c [5].
If we are to construct a strategy with a similar lack of ambiguity using orthogonal

measurements, we must choose either fj�0iA; j�?
0 iAg or fj�1iA; j�?

1 iAg as the
basis. Regardless of how the two orthogonal measurements are mixed, the success
probability is p?

suc WD qjAh�?
0 j�1iAj2 D qjAh�?

1 j�0iAj2 D .1 � c2/=2. Thus we see
that psuc > p?

suc for 0 < c < 1.
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1.4.4 Quantum Operations

If we discard the outcome j from the black box that was considered in Sect. 1.4.2,
then the output density operator of system A0 becomes O�out WD

P
j pj O�.j/out DP

j;k
OM.j;k/ O�in OM.j;k/�. Without loss of generality, we may replace the indices .j; k/

with a single index j, which results in the general form of the state transformation,

O�out D
X

j

OM.j/ O�in OM.j/� (1.30)

with
P

j
OM.j/� OM.j/ D O1A. Any physical process that takes system A as an input

and leaves the same system or another system A0 as an output must be written in
this form. This type of process is often called a quantum operation or a quantum

channel. Mathematically, the map � W O�in 7! O�out that is written as per Eq. (1.30) is
called a CPTP (completely-positive trace-preserving) map.

The argument in Sect. 1.4.1 ensures that the right-hand side of Eq. (1.30) can be
rewritten as that of Eq. (1.17) summed over j, i.e.,

O�out D TrE0 Œ OU. O�in ˝ j�iniiEEh�inij/ OU��: (1.31)

Operationally, this simply means that the measurement on system E0 shown in
Fig. 1.3 is unnecessary. Thus, any quantum channel can be equivalently simulated
using a simple three-step process, which consists of preparing the auxiliary system
(E) in a fixed pure state, applying the unitary transformation, and discarding the
subsystem (E0). This property is very helpful when it is necessary to prove that some
tasks are physically impossible. This type of argument is vital for establishment
of an operationally-defined measure of quantum properties, as indicated in the
following example.

Fidelity. In an experimental demonstration, the quality of the final result is often
evaluated in terms of the fidelity F D h�idealj O�expj�ideali, where j�ideali is the desired
state and O�exp is the state that was actually obtained in the experiment. The fidelity
F between two general states O�1 and O�2 of system A is defined5 as the maximum
overlap between the purifications of these states in a composite system composed
of A and an arbitrary system R, i.e.,

F. O�1; O�2/ WD maxfjARh�1j�2iARj2 W TrR.j�jiARARh�jj/ D O�j; j D 1; 2g: (1.32)

To justify the use of such a quantity in the evaluation of an experiment, we must
show that the fidelity F. O�1; O�2/ is a good measure of the closeness between the two

5There is an equivalent method to define the fidelity as F. O�1; O�2/ D .Tr
q

O�1=21 O�2 O�1=21 /2 [6, 7]. In

some of the literature, the quantity
p

F. O�1; O�2/ is referred to as the fidelity.
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states O�1 and O�2. To enable F to quantify the difficulty in distinguishing between
the two states in principle, F should not be reduced (and thus the distinguishability
should not improve) through the application of any quantum channel �, i.e.,

F.�. O�1/; �. O�2// � F. O�1; O�2/ (1.33)

should hold for any CPTP map �. This can be proved as follows.
Let j˚jiAR be the purifications that achieve the maximum of Eq. (1.32), i.e.,

F. O�1; O�2/ D jARh˚1j˚2iARj2. We consider three different cases separately, corre-
sponding to the three steps that are implied in Eq. (1.31).

(i) �. O�j/ D O�j ˝ j�iBBh�j. In this case, j�jiABR WD j˚jiARj�iB is a purification
of �. O�j/. Therefore, F.�. O�1/; �. O�2// � jABRh�1j�2iABRj2 D jARh˚1j˚2iARj2 D
F. O�1; O�2/.

(ii) �. O�j/ D OUA O�j
OU�

A. In this case, j�jiAR WD . OUA ˝ O1R/j˚jiAR is a purification
of �. O�j/. Therefore, F.�. O�1/; �. O�2// � jARh�1j�2iARj2 D jARh˚1j˚2iARj2 D
F. O�1; O�2/.

(iii) �. O�j/ D TrQA. O�j/, where QA is a constituent subsystem of system A. In this case,
j˚jiAR is also regarded as a purification of �. O�j/. Therefore, F.�. O�1/; �. O�2// �
jARh˚1j˚2iARj2 D F. O�1; O�2/.

For a general quantum channel �, we may decompose the process into the three
steps, and the above results demonstrate that F is nondecreasing in each of the three
steps. Therefore, Eq. (1.33) holds.

No-cloning theorem. An immediate consequence of the nondecreasing property
of the fidelity is the no-cloning theorem. Consider a cloning machine that would
transform an arbitrary input pure state O�in;� WD j�iAAh�j into a duplicated pure state
O�out;� WD j�iAAh�j ˝ j�iA0 A0h�j. For 0 < jAh�j iAj2 < 1, we would have

F. O�out;� ; O�out; / D F. O�in;� ; O�in; /
2 < F. O�in;� ; O�in; /; (1.34)

which violates Eq. (1.33). Therefore, this cloning machine could never exist.

1.5 Communication Resources

The task of sending quantum information is essentially different from that of
sending classical information, and is achieved using a dedicated quantum channel.
Interestingly, transmission of quantum information can also be achieved by supple-
menting a classical channel with another resource: entanglement. In this subsection,
we will see how the three communication resources are related to each other, while
focusing our discussion on the ideal cases.
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1.5.1 Quantum Channels and Classical Channels

An ideal classical channel will transmit a symbol chosen from a fixed set
f1; 2; : : : ; dg without any error from a sender to a receiver. The number of symbols
d stands for the usefulness of the channel as a resource. A channel with d D 2 is
normally regarded to have a unit of usefulness, called a bit. General ideal channels
with d symbols have log2 d bits. This makes sense because the combined use of
a .log2 d/-bit channel and a .log2 d0/-bit channel amounts to the single use of a
.log2 d C log2 d0/-bit channel.

In a similar vein, we consider an ideal quantum channel, which faithfully
transmits the arbitrary quantum states of a d-level physical system that is associated
with a Hilbert space of dimension d. Because we have already called the two-level
system a qubit, let us define the usefulness of such a channel as .log2 d/ qubits.
Because dim.H ˝ H 0/ D .dimH /.dimH 0/, this measure is additive for the
combined use of ideal channels.

We now consider how the two types of channels differ. First, a quantum channel
can never be simulated using any amount of classical channels. This is because of
the no-cloning theorem, as described in Sect. 1.4.4. Because the output of a classical
channel can be freely copied, if the receiver were able to reconstruct any input state
j�i, then they could repeat the same procedure to create another copy of state j�i,
which is forbidden by the no-cloning theorem.

In contrast, a .log2 d/-qubit quantum channel can be used to simulate a classical
channel. To simulate a .log2 d0/-bit channel, the sender can encode a symbol
i 2 f1; 2; : : : ; d0g on a quantum state, i.e., the sender transmits the quantum state
O�i via the quantum channel, according to the symbol i that is to be transmitted. The
receiver can then perform a measurement of the transmitted state to decode the index
i. Encoding on mutually orthogonal states certainly works if d0 D d, but the user
may want to exploit the fact that there are an infinite number of different quantum
states to transmit larger numbers of symbols. To deny any such possibility, we recall
that any measurement strategy must be described as in Eq. (1.29), using a POVM
f OFjg. To simulate an ideal channel, Tr. OFi O�i/ D 1 should hold for i D 1; : : : ; d0.

Because f OFjg are positive and
Pd0

iD1 OFi � O1, we have d0 D
Pd0

iD1 Tr. OFi O�i/ �Pd0

iD1 Tr. OFi/ � TrO1 D d, thus proving the following.

Theorem 4. Without use of another communication resource, a .log2 d/-qubit ideal

quantum channel can never simulate a .log2 d0/-bit ideal classical channel if d0 > d.

1.5.2 Entanglement as a Communication Resource

We have seen that a quantum channel is qualitatively different from a classical
channel. We may then ask what exactly is the difference between the channels, or
ask what kind of communication resources may be used to complement a classical
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channel to enable it to simulate a quantum channel. It turns out that the entanglement
is the answer to these questions.

As an ideal resource of entanglement, let us consider a maximally entangled state
with a Schmidt number of d,

j˚0;0iAB WD 1p
d

d�1X

jD0
jjiAjjiB (1.35)

where fjjiAg and fjjiBg are the orthonormal bases of HA and HB, respectively.
When each subsystem is held by the sender and by the receiver, we can quantify
the usefulness of this state as .log2 d/ ebits, which is additive when two or more
maximally entangled states are available. Any state that is written as . OUA ˝
OVB/j˚0;0iAB is also a maximally entangled state and is regarded as a resource of
the same number of ebits.

If a .log2 d/-qubit quantum channel is available, then the sender can create state
j˚0;0iAB locally and transmit system B to the receiver, which produces .log2 d/ ebits
of entanglement resource.

Theorem 5 (Entanglement sharing). A .log2 d/-qubit ideal quantum channel can

be converted into .log2 d/ ebits of ideal entanglement.

Next, let us compare entanglement with classical channels. First, entanglement
does not help in augmentation of a classical channel.

Theorem 6. Without use of another communication resource, no amount of entan-

glement can convert a .log2 d/-bit ideal classical channel into a .log2 d0/-bit ideal

classical channel with d0 > d.

Proof. Suppose that the sender chooses a symbol i 2 f1; 2; : : : ; d0g at random.
Assume that it is possible to transmit i faithfully by using a .log2 d/-bit ideal
classical channel and shared entanglement. Because the output of the channel can
be guessed correctly with a probability of 1=d by random guessing, the receiver can
form a strategy, which, without communication, allows the symbol i to be guessed
with a success probability of 1=d. Therefore, 1=d � 1=d0 must hold. ut
Entanglement is a static resource in the sense that it is simply a correlation and it
does not refer to any transfer of information. A classical channel is dynamic with
regard to its ability to move information around. In this respect, the theorem above
may be regarded as a natural example where a static resource cannot be converted
into a dynamic resource. However, there is a subtlety here that will be manifest when
we see the protocol for quantum dense coding in Sect. 1.5.4.

Finally, we consider the reverse question of how entanglement can be manip-
ulated with unlimited use of classical channels. Suppose that Alice and Bob can
freely use classical channels between them in both directions, and they can locally
perform any physically allowed measurement or state transformation. This type of
framework is called LOCC (local operations and classical communication).
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Suppose that Alice and Bob initially share a pure bipartite state j� iAB, and try
to transform this state into other states under the LOCC framework. Without loss of
generality, we may assume that only one party is conducting a local operation at any
one time. This means that Alice first conducts a local operation, reveals an outcome
to Bob through a classical communication, and Bob then conducts a local operation
in turn, and so on. For Alice’s turn, her operation is generally written as in Eq. (1.28),
with OM.j;k/ acting on Alice’s system alone. Although the general description includes
the index k, which is discarded, for the purposes of state transformation, Alice may
as well record this index. Therefore, we omit k and conclude that, after Alice’s first
turn, Alice and Bob share state j� .j/iA0B with probability pj, where

pjj� .j/iA0BA0Bh� .j/j D . OM.j/
A ˝ O1B/j� iABABh� j. OM.j/

A ˝ O1B/
� (1.36)

and OM.j/
A W HA ! HA0 satisfies

P
j

OM.j/�
A

OM.j/
A D O1A. Let O�B and O�.j/B be the marginal

density operators of system B for j� iAB and j� .j/iA0B, respectively. Taking a partial
trace and summation over j in Eq. (1.36), we have

X

j

pj O�.j/B D O�B: (1.37)

This equation shows that the rank of O�.j/B never exceeds that of O�B. The Schmidt num-
ber of state j� .j/iA0B therefore never exceeds that of the initial state j� iAB. A similar
argument is applicable to Bob’s turns, and we thus see that the Schmidt number
never increases under the LOCC framework, even probabilistically. Specifically, no
entanglement is generated under the LOCC framework when starting from a product
state with a Schmidt number of unity. This is often adopted as a defining property
of entanglement when discussing more general cases of mixed-state entanglement.

In view of the relationships between the communication resources, the above
argument means that the classical channels do not help to increase entanglement,
and this is summarized as follows.

Theorem 7. Without use of another communication resource, no amount of com-

munication over classical channels can convert a .log2 d/-ebit ideal entanglement

into a .log2 d0/-ebit ideal entanglement with d0 > d.

This theorem implies that entanglement has a nonclassical aspect that cannot be
replaced by classical channels. If we combine the two resources, we will obtain
a resource that is both dynamic and nonclassical, and we may perhaps simulate a
quantum channel. This is indeed true, and will be explained in Sect. 1.5.4 after we
summarize the properties of the maximally entangled states in Sect. 1.5.3.



26 M. Koashi

1.5.3 Properties of Maximally Entangled States

Let HA and HB be Hilbert spaces of dimension d for the systems A and B. Here, we
summarize the relevant properties of the maximally entangled states of system AB.

(E1) All maximally entangled states have a common marginal state d�1 O1A for
subsystem A, and a common marginal state d�1 O1B for subsystem B.

(E2) For any pair of maximally entangled states j˚iAB and j˚ 0iAB, unitary
operators OUA and OVB exist such that j˚ 0iAB D . OUA ˝ O1B/j˚iAB D .O1A ˝
OVB/j˚iAB.

(E3) A maximally entangled state j˚iAB specifies a one-to-one correspondence
j�iA $ j��iB between the pure states of subsystem A and those of sub-
system B, as characterized by d�1=2j�iA D Bh��jj˚iAB and d�1=2j��iB D
Ah�jj˚iAB.

(E4) A maximally entangled state j˚iAB specifies a one-to-one correspondence
OMA $ OMT

B between the operators that act on HA and those acting on HB, as
characterized by

. OMA ˝ O1B/j˚iAB D .O1A ˝ OMT
B/j˚iAB: (1.38)

Specifically, if OMA is unitary then OMT
B is also unitary, and vice versa.

(E5) There is an orthonormal basis fj˚l;miABgmD0;:::;d�1
lD0;:::;d�1 of HA ˝HB where every

basis state is a maximally entangled state. This type of basis is called a Bell

basis.

(E1) is the definition given in Sect. 1.2.5. (E2) is a combination of (E1) and
Theorem 3. (E3) refers to the relative states explained in Sect. 1.4.2.

For (E5), a Bell basis that includes state j˚0;0iAB of Eq. (1.35) is constructed as
follows. For each subsystem, we define unitary operators

OX WD
d�1X

jD0
jj C 1 .mod d/ihjj and OZ WD

d�1X

jD0
ˇjjjihjj (1.39)

with ˇ WD exp.2�i=d/. Using these operators, we define j˚l;miAB WD . OXl
A ˝

OZm
B /j˚0;0iAB. Using the relation OZ OX D ˇ OX OZ, it is simple to show that j˚l;miAB

is a simultaneous eigenvector of the commuting unitary operators OXA ˝ OXB and
OZA ˝ OZ�1

B with eigenvalues of ˇ�m and ˇl, respectively. Therefore, the d2 states
fj˚l;miABgmD0;:::;d�1

lD0;:::;d�1 are all orthogonal. For d D 2, the Bell basis consists of the
following states.

j˚Ci D j˚0;0i D 2�1=2.j0iAj0iB C j1iAj1iB/ (1.40)

j˚�i D j˚0;1i D 2�1=2.j0iAj0iB � j1iAj1iB/ (1.41)

j�Ci D j˚1;0i D 2�1=2.j1iAj0iB C j0iAj1iB/ (1.42)
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j��i D j˚1;1i D 2�1=2.j1iAj0iB � j0iAj1iB/ (1.43)

(E4) is confirmed as follows. Suppose that j˚iAB is decomposed as shown in
Eq. (1.7). By applying AhuijBhvjj to Eq. (1.38), we see that Eq. (1.38) is equivalent
to

Ahuij OMAjujiA D Bhvjj OMT
B jviiB (1.44)

for i; j D 1; : : : ; d. This means that the matrix representation of OMT
B in the basis

fjviiBg is the transpose of the matrix representation of OMA in the basis fjuiiAg.
As an example of Property (E4), the following relations are worth mentioning:

. OXA ˝ O1B/j˚0;0iAB D .O1A ˝ OX�1
B /j˚0;0iAB (1.45)

. OZA ˝ O1B/j˚0;0iAB D .O1A ˝ OZB/j˚0;0iAB; (1.46)

and can easily be confirmed.

1.5.4 Quantum Dense Coding and Quantum Teleportation

In this subsection, we explain two types of scheme in which shared entanglement
helps with the conversion between the quantum and classical channels. Every
subsystem X that appears in this subsection is a d-level system with Hilbert space
of dimension d, and with a standard orthonormal basis denoted by fjjiXg. The Bell
basis is defined for each pair of subsystems according to the standard bases.

In Theorem 4, we have seen that a one-qubit quantum channel alone can
only send one bit of classical information. If the sender and the receiver share
entanglement beforehand, then the quantum channel can send more via a protocol
called quantum dense coding [8].

Theorem 8 (Quantum dense coding). A .log2 d/-qubit ideal quantum channel

and a .log2 d/-ebit ideal entanglement can be converted into a .2 log2 d/-bit ideal

classical channel.

A protocol for quantum dense coding can be constructed simply by using the Bell
basis fj˚l;miABg of the two d-level subsystems, i.e., Property (E5) in Sect. 1.5.3. We
show that Alice can send Bob a symbol .l;m/ that was chosen from d2 candidates
f.l;m/gmD0;:::;d�1

lD0;:::;d�1 . Suppose that Alice and Bob shared the entangled state j˚0;0iAB

initially. Property (E2) ensures that Alice can locally transform6 the state j˚0;0i
into the state j˚l;mi that is specified by the chosen symbol .l;m/. She then sends

6An explicit form of Alice’s transformation is j˚l;miAB D . OXl
A

OZm
A ˝ O1B/j˚0;0iAB, which is obtained

from Eq. (1.46).
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subsystem A, which has a Hilbert space with dimension d, to Bob using the .log2 d/-
qubit quantum channel. Bob, who now holds both subsystems A and B, conducts an
orthogonal measurement with the Bell basis fj˚l;miABg to determine Alice’s choice
.l;m/.

This protocol is remarkable in the sense that the static resource of entanglement
enhances an ideal channel’s ability to achieve the dynamic task of information
transmission. This is in stark contrast with what we saw in Theorem 6, i.e., that the
static resource of entanglement cannot augment the dynamic resources of classical
channels.

Next, we explain the protocol of quantum teleportation [9], which combines
the nonclassical resource of entanglement and the dynamic resource of a classical
channel to achieve faithful transmission of quantum states.

Theorem 9 (Quantum teleportation). A .2 log2 d/-bit ideal classical channel and

a .log2 d/-ebit ideal entanglement can be converted into a .log2 d/-qubit ideal

quantum channel.

The protocol proceeds as follows. Suppose that Alice and Bob initially share the
entangled states j˚0;0iAB of two d-level systems. Alice also holds another d-level
subsystem A0, and she is supposed to transmit the state of this subsystem to Bob.
Alice first performs an orthogonal measurement with the Bell basis fj˚l;miAA0g on
subsystems A and A0, and transmits the outcome .l;m/ to Bob through the .2 log2 d/-
bit classical channel. Based on the received indices .l;m/, Bob then applies a unitary
transformation OU.l;m/

B to subsystem B.

We now consider how we can choose OU.l;m/
B such that the final state of system

B is always identical to the initial state of system A0 (see also Fig. 1.5). Consider
another d-level system R, and suppose that the system A0R is initially prepared

Fig. 1.5 Entanglement swapping and quantum teleportation
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in state j˚0;0iA0R. Later, at the end of this argument, we will use Property (E3) to
discuss the case where A0 is initially prepared in the general state j�iA0 .

We begin with the following relation, which can be easily confirmed from the
definition of Eq. (1.35):

d�1j˚0;0iBR D AA0h˚0;0jj˚0;0iABj˚0;0iA0R: (1.47)

According to Theorem 1, this shows that if the outcome is .l;m/ D .0; 0/, then the
state of the system BR is j˚0;0iBR. We want to generalize this relationship to the
case where AA0h˚0;0j is replaced by AA0h˚l;mj. From Eq. (1.46), we have j˚l;miAA0 D
. OXl

A
OZm

A ˝ O1A0/j˚0;0iAA0 and thus AA0h˚l;mj D AA0h˚0;0j. OZ�m
A

OX�l
A ˝ O1A0/. From

Eqs. (1.45) and (1.46), we have . OZ�m
A

OX�l
A ˝ O1B/j˚0;0iAB D .O1A ˝ OXl

B
OZ�m

B /j˚0;0iAB.
We therefore obtain

d�1. OXl
B

OZ�m
B ˝ O1R/j˚0;0iBR D AA0h˚l;mjj˚0;0iABj˚0;0iA0R; (1.48)

which identifies the state of the system BR after the Bell measurement in the
protocol. By setting OU.l;m/

B D OZm
B

OX�l
B , the protocol should leave the system BR in

the same state, j˚0;0iBR, regardless of the value of the outcome .l;m/. In summary,
if we begin with state j˚0;0iA0R, the protocol then transforms it into state j˚0;0iBR, in
which the system with which R is entangled changes from A0, possessed by Alice,
to B, which is held by Bob. This procedure is often called entanglement swapping

[10].
The case where system A0 is initially prepared in the arbitrary state j�iA0 DP
j cjjjiA0 can be analyzed using Property (E3) on the relative states, as in Sect. 1.4.2.

After entanglement swapping, the state of the system BR is j˚0;0iBR. Suppose that
we perform an orthogonal measurement on system R with a basis that includes a
state j��iR D

P
j NcjjjiR. If the corresponding outcome is obtained, then the state

of system B becomes its relative state, j�iB D
P

j cjjjiB. Because the entanglement
swapping protocol starts with state j˚0;0iA0R and does not operate on system R,
Theorem 1 then dictates that such an event must be consistent with the case where
system A0 was initially prepared in j�iA0 D

P
j cjjjiA0 . We thus conclude that if we

carry out the protocol with initial state j�iA0 D
P

j cjjjiA0 , the final state of system
B is j�iB D

P
j cjjjiB, which is regarded as a faithful transmission of the quantum

state.
The existence of this quantum teleportation protocol has profound consequences.

Because classical channels are much easier to implement in practice, let us assume
that these channels can be used freely in both directions between Alice and Bob.
The quantum teleportation protocol and the entanglement sharing of Theorem 5
then imply that one qubit of dynamic resource and one ebit of static resource are
freely interconvertible. Because the static resource of entanglement can be stored
in quantum memories, this effectively allows dynamic resource storage. If the
quantum channels are not ideal but noisy, we may convert these channels into noisy
entanglement, which is then distilled into close-to-ideal entanglement and can be
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used for faithful quantum transmission. When we wish to concatenate the quantum
channels, which will only work probabilistically, as in the case of transmission
of photons over an optical fiber, the combination of entanglement sharing and
entanglement swapping dramatically improves the process efficiency, as described
in Chap. 4. It should also be noted that entanglement has no preferred direction. We
can convert a quantum channel from Alice to Bob into a channel from Bob to Alice,
through the protocol of entanglement sharing followed by quantum teleportation
with backward classical communication.

1.5.5 Conversion Among the Resources

In the preceding subsections, we have described three protocols, entanglement
sharing, quantum dense coding, and quantum teleportation, that provide conversion
among the three types of communication resources: ebits, bits, and qubits. Because
these protocols were introduced in a rather heuristic way, we might expect that there
are many other protocols that can be used for resource conversion. Here, we argue
that this is not the case. The three protocols in a sense exhaust all possibilities as far
as conversion among the three ideal resource types is concerned.

Imagine that Alice and Bob have a right to use E ebits of a shared ideal
entanglement, C bits of an ideal classical channel, and Q qubits of an ideal quantum
channel, which we denote by the portfolio .E;C;Q/. According to Theorems 5, 8,
and 9, the three protocols change the portfolio in the following way.

Entanglement sharing (ES) .E;C;Q/ ! .E C 1;C;Q � 1/
Quantum dense coding (DC) .E;C;Q/ ! .E � 1;C C 2;Q � 1/

Quantum teleportation (QT) .E;C;Q/ ! .E � 1;C � 2;Q C 1/

Let us assume that we start from .E0;C0;Q0/. By repeating these protocols NES,
NDC, and NQT times,

.E0;C0;Q0/C NES.1; 0;�1/C NDC.�1; 2;�1/C NQT.�1;�2; 1/ (1.49)

is attainable. Therefore, if we ignore the fact that only a discrete set of points is
attainable, we may say that it is possible to reach anywhere within a triangular
pyramid with apex .E0;C0;Q0/ and with edges defined by the vectors .1; 0;�1/,
.�1; 2;�1/, and .�1;�2; 1/ (see Fig. 1.6).

We are now interested in whether we can reach a point outside this pyramid. We
have already derived various restrictions on resource conversion in Theorems 4, 6,
and 7, which are summarized as follows.

Theorem 4 .0; 0;Q/ ! .0;C0; 0/ only if C0 � Q.
Theorem 6 .E;C; 0/ ! .E0;C0; 0/ only if C0 � C

Theorem 7 .E;C; 0/ ! .E0;C0; 0/ only if E0 � E
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Fig. 1.6 Permitted resource
conversion region. ES:
entanglement sharing; DC:
quantum dense coding; QT:
quantum teleportation

Using these theorems, we derive a restriction on a general protocol P that performs
the conversion from .E0;C0;Q0/ ! .E;C;Q/. This is done by combining P

with the three protocols, such that the theorems above are applicable to the entire
conversion process. For example, we have

.0; 0;Q0 C Q C 2C0 C E0 C E/
ES�! .Q C C0 C E0; 0;Q0 C C0 C E/

DC�!

.Q C E0; 2C0;Q0 C E/
P�! .Q C E;C0 C C;Q C E/

DC�!
.0; 2Q C C0 C C C 2E; 0/;

which, from Theorem 4, requires that

.E � E0/C .C � C0/C .Q � Q0/ � 0: (1.50)

Similarly, from

.Q0 C Q C E0;C0 C 2Q0; 0/
QT�! .Q C E0;C0;Q0/

P�! .Q C E;C;Q/

DC�! .E;C C 2Q; 0/;

we use Theorem 6 to obtain

.C � C0/C 2.Q � Q0/ � 0: (1.51)

Finally, by applying Theorem 7 to

.Q0 C E0;C0 C 2Q0; 0/
QT�! .E0;C0;Q0/

P�! .E;C;Q/
ES�! .Q C E;C; 0/;
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we have

.E � E0/C .Q � Q0/ � 0: (1.52)

It is simple to confirm that Eqs. (1.50), (1.51), and (1.52) correspond to the three
faces of the pyramid in Fig. 1.6. It is thus impossible to reach any point outside the
pyramid. We see that the three protocols of entanglement sharing, quantum dense
coding, and quantum teleportation correspond to the three edges of the achievable
region, and form a unique triad that governs the conversions that are allowed among
the resources of quantum channels, classical channels, and entanglement.
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Chapter 2

Quantum Communication for the Ultimate

Capacity and Security

Masahide Sasaki, Mikio Fujiwara, and Masahiro Takeoka

2.1 Introduction

Communication theory was born around the same time, 1920s, when quantum
mechanics was formulated. It was telegraph transmission theory by H. Nyquist
(sampling theorem) and R. V. L. Hartley (transmission rate). Their works inspired
C. E. Shannon to formulate the theory of communications. He introduced the mutual
information I.XI Y/ and provided the formula of the capacity of a channel as [1]

C1 � max
P.x/

I.XI Y/ D W log

�
1C S

N

�
(2.1)

where P.x/ is a probability distribution of input alphabet x, W a bandwidth of the
channel, S an average signal power, N a noise power. Soon after this work, D. Gabor
considered how communication theory should be revised when particle nature of
electromagnetic field is taken into account [2]. Actually reception of photons causes
a new kind of noise in communication. He named it quantum noise. In 1960, T.
Maiman succeeded in producing the first beam of laser light. It was a crucial trigger
for quantum communication because an energy quanta of laser, photons, is much
larger than that of the thermal noise, and hence quantum effect becomes apparent.
In 1964, J. P. Gordon considered a photon channel and introduced the von Neumann
entropy to the Shannon theory to reformulate the expression of Eq. (2.1) in terms of
quantum sates O�x. He conjectured that the capacity can be greater than that of Shan-
non’s formula. But at that time it was not proven because quantum detection theory
was not well understood yet. Quantum detection theory was developed in 1970s [3].
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A. S. Holevo applied it to extend the Shannon theory, and gave a rigorous proof on
Gordon’s conjecture, showing that the quantity introduced by Gordon is the strict
upper bound of the mutual information maximized over detection operators Ŏ

y [4];

S
�X

x

px O�x

�
�
X

x

pxS. O�x/ � max
Ŏ y

I.X W Y/ � C1: (2.2)

It’s been called the Holevo bound.
In 1980s, the merger was made between quantum mechanics and cryptography

by C. H. Bennett and G. Brassard [5], and a notion of quantum key distribution
(QKD) was born. QKD provides a means to deliver information-theoretically secure
keys, i.e. secure keys against an eavesdropper who has unbounded ability. When the
keys are used in the one-time pad (OTP), the unconditional security can be ensured
in principle. QKD had attracted less attentions until the middle of 1990s, but has
cone into the bloom after 2000s.

In 1990s, on the other hand, it was shown that the Holevo bound is actually the
achievable transmission rate when maximized over all possible detection strategies
for a given set of quantum states, and hence is the true capacity [6–8]. This capacity
is greater than the Shannon limit. So there certainly exists the quantum gain which
was not considered explicitly in Shannon’s formula. The theories showed that the
quantum gain must be due to a collective measurement or a joint measurement
on a sequence of signal pulses. In fact, the quantum control of detection process
brings a new remarkable effect, when we consider the coding. It is the super-
additive coding gain. This can be summarized in the following way. When we
increases the transmission resources by n times, then the capacity can increase
even more than n times [9]. Classically, however, the capacity increases n times
at most, and never more than that (see Fig. 2.1). The very origin of this effect is
quantum computing, which is performed prior to the measurement. This kind of
new decoding is called quantum collective decoding or simply quantum decoder
[10]. The important principle of super-additive coding gain was demonstrated in
the laboratory in 2003 [11, 12]. In the experiments, single photon states in the
polarization-location coding were used.

In 2004, the general theorem of capacity for a lossy bosonic channel was proved,
optimizing not only the receiver structure but also the sender strategy [13]. Let the
channel transmittance be � and the frequency cutoff be fL and fU . The capacity is
given by

CQ D
Z fU

fL

dfg .� � Nn.f ; ˇ// ; (2.3)

where g.x/ D .xC1/ log2.xC1/�x log2 x and Nn.f ; ˇ/ is the optimal photon number
determined under the power constraint

P D
Z fU

fL

dfhf Nn.f ; ˇ/: (2.4)
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Fig. 2.1 Comparison of quantum and classical decoding schemes

This CQ was actually the quantity which Gordon derived 40 years ago [14].
Thus in the early 2000s we have known what is the ultimate limit of commu-

nications capacity, and how quantum control can be used to reach it. In these two
decades QKD has also progressing rapidly from field trials [15–17] to commercial
propositions [18]. In this article we present our results on these two topics and then
discuss future perspectives.

2.2 Increasing the Capacity of an Optical Channel

Using the formula of Eq. (2.3), we can predict performances of future technologies.
A typical example is deep space optical communications where the power feed is
very limited but there are no amplifiers. Figure 2.2 shows the transmission rates
versus distances in space [19]. The theory tells us that one will be able to extend a
Tbps link to Mars if all-band quantum decoder could be realized. Lower curves are
realistic simulation with practical technologies, including coherent communication
and PPM scheme with 1024 symbols, as well as the Holevo capacity. The bandwidth
of 100 GHz is assumed. Up to the moon, coherent communication is better than the
PPM scheme. But going beyond Mars, and reaching Jupiter and Saturn, one should
use PPM scheme to get closer to the Holevo capacity.

In general, if the power loss is not so severe, we had better to increase
spectral efficiency by multi-ary quadrature amplitude modulation with coherent
communication. If, on the other hand, the power budget is stringent, we should
optimize the energy efficiency by concentrating the energy into a very short time
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Fig. 2.2 Predictions on the capacities for deep space optical communications

slot with the PPM scheme. For both situations, the transmission rate can be further
improved if quantum decoder could be applied.

Unfortunately, however, implementing a quantum decoder for practical coherent-
state or PPM signals is still a formidable task. Although the super-additive coding
gain was experimentally demonstrated in [11, 12], the decoder used was for single
photon states in the polarization-location coding, which is not a practical format
for real communications. Current efforts are mainly paid for the very first step
for dealing with practical signals of coherent states, i.e. implementing quantum
receivers for bit-wise detection with a smaller bit error rate (BER) than current
homodyne/heterodyne and on-off detectors. Such quantum receivers would be
useful for reducing the decoding complexity when combined with classical coding.
It is also true that if a quantum decoder could be realized even in a small scale, it
can be used with classical coding to reduce a decoding error with smaller decoding
complexity [12].

Let us turn to the topic of practical implementations of quantum receivers. The
general theory of detecting (discriminating) quantum signals with minimum error
rate was developed by C. W. Helstrom and co-workers [3]. A simple yet practically
important example is a discrimination of binary signals fj�0i ; j�1ig. In optical
communication, j�0i and j�1i are for example, on-off keyed coherent states or
binary phase-shift keyed (BPSK) coherent states. When the two signals occur with
equal probabilities, the ultimate quantum limit of the minimum BER (the Helstrom
bound) is given by

Pmin
e D 1

2

�
1 �

p
1 � j h�0j�1i j2

�
: (2.5)
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In contrast, the BER limit in conventional communication theory, often called the
standard quantum limit (SQL), is defined by the BER attained by directly measuring
the modulation variable, e.g. the intensity and/or phase which is reachable via
conventional detectors such as homodyne/heterodyne or on-off photo detectors.

A quantum receiver structure to beat the SQL was first clarified for the BPSK
signals by R. S. Kennedy in 1973 [20] and was soon extended by S. Dolinar [21] to
reach the Helstrom bound. The operation of the Kennedy receiver is quite simple.
First it displaces the BPSK signal from fj˛i; j�˛ig to fj2˛i; j0ig and then detects
them by an on-off detector,

Ŏ off D j0ih0j; Ŏ on D OI � Ŏ off; (2.6)

which discriminates zero or non-zero photons. It is well known that the displacement
operation OD.˛/ can be realized by interfering the signal with coherent state local
oscillator (LO) j˛=

p
Ri via a beam splitter with reflectance R and set R ! 0.

The Kennedy receiver setup is extended to the Dolinar receiver, which exactly

achieves the Helstrom bound, by introducing a (infinitely) fast electrical feedback
to dynamically change the LO amplitude and phase conditioned on the time
resolved photo counting [21]. Though Dolinar’s original analysis was based on the
semiclassical theory, its fully quantum-mechanical description was later given in
[22, 23]. It was further shown that the Dolinar scheme can realize not only the
Helstrom receiver but also arbitrary binary projective measurements [24]. Another
scheme of achieving the Helstrom bound based on a nonlinear transformation and
conventional detection was also proposed [25].

Though these two receiver schemes enlightened the way to overcome the SQL in
optical communication, the optical technologies in 1970s were not enough matured
to implement them even in the laboratory. However, thanks to the progress of photon
detection and fast feedback electronics, these are nowadays possible to implement
in the laboratories. The first experimental demonstration was performed by R. L.
Cook et al. [26]. They implemented the Dolinar receiver with avalanche photodiode
(APD) and high-speed digital signal processing electronics and demonstrated a
discrimination of j˛i and j0i with the BER smaller than that of the direct photo
detection. Though this was a major experimental progress, its error performance was
severely limited by the total quantum efficiency (QE) of the receiver (approximately
0.35) and thus it was difficult to apply it to the BPSK signals.

On the other hand it is natural to ask why the Kennedy receiver for the BPSK
signals has not been investigated experimentally despite of its very simple setup and
a potential of nearly optimal performance. First, it requires a very high QE photon
detectors as is the case for the Dolinar receiver. This could have been overcome
these days, with, for example, high QE superconducting detectors. Second, in
contrast to the Dolinar or other feedback-based receivers, the Kennedy receiver is
not robust against dark counts (DC) (or thermal noises) [27, 28]. Roughly speaking,
the error probability is saturated at the DC rate of the receiver which means that the
performance of the receiver saturates for higher signal photon number (in fact, it
could happen even for few photons per pulse with realistic high QE detectors [28]).
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Fig. 2.3 (a) Average error probabilities of the SQL, Kennedy receiver, optimal displacement
receiver (ODR), and the ultimate quantum limit. Note that an installation of the squeezing operation
into the receiver slightly improve the error performance [28]. (b) Experimental setup of the ODR
receiver demonstrated in [30]. FBS, fiber beam splitter; AO, auxiliary oscillator; PRNG, pseudo-
random-number generator; TES, transition-edge sensor; PZT, piezoelectric transducer

Unfortunately, however, the performance of the Kennedy receiver is comparable or
even worse than the SQL if the signal photon number is very weak such as less than
one (Fig. 2.3a). These situations have prevented the experimental demonstration of
the sub-SQL operation of the Kennedy receiver.

The improved scheme to circumvent the problem at the weak signal regime
was proposed recently [28, 29]. It is achieved by simply optimizing the amount
of displacement instead of simply displacing j�˛i to j0i. The solid line for the
‘ODR’ in Fig. 2.3a corresponds to the performance of the receiver in which the
displacement is optimized to minimize the error rate (which we call the ‘optimal
displacement receiver’ (ODR)). Its error rate is clearly smaller than the SQL for all
˛. In particular, the performance at small ˛ is crucial for experimental demonstration
of beating the SQL.

A proof-of-principle experiment of the ODR has been performed in [29]. Though
the total QE of the receiver was low (55.0 %), the error rates demonstrated were
clearly lower than that of the homodyne receiver with higher QE (85.8 %). This
result strongly suggests it could be possible to overcome the SQL (i.e. the error
rate by a perfect homodyning) if the ODR is implemented with a high QE photon
detector. In fact, the first demonstration of the sub-SQL discrimination of the BPSK
coherent signals was performed [30] by using a titanium-based superconducting
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Fig. 2.4 Experimental result [30]. (a) The output pulse height distribution of the TES for the
signals j˙˛i. j˛j2 D 0:21˙ 0:01 and jˇj2 D 0:59˙ 0:01. (b) The measured BER (average error
probability) for various displacements. j˛j2 D 0:21˙ 0:01

transition-edge sensor (TES) which is a photon number resolving detector with QE
of 0:95˙ 0:01. The setup is shown in Fig. 2.3b where binary signals are randomly
generated and encoded into 20 ns coherent state laser pulses at 853 nm via the BPSK
modulation. Figure 2.4a shows the output electrical pulse height distribution from
the TES for the BPSK signals j˙˛i. Each peak corresponds to different photon
number observed at the TES. The signal decision is then made by thresholding the
pulse height between the vacuum and one photon and the outcome is verified with
the original data at the sender. The result of the average error probability is shown in
Fig. 2.4b for various displacement ˇ. It shows that by choosing ˇ appropriately, the
error probability clearly surpasses the SQL without compensating any experimental
imperfections. Note that the similar technology was applied to the discrimination of
the OOK signal and demonstrated the sub-shot-noise-limit performance [31].

Shortly after these works, many experimental studies of implementing quantum
receivers for more general purposes have been reported. One natural generalization
is to encode more than two signals in phase space. In theory, the Dolinar receiver
was extended by R. Bondurant [32] to the near-optimal receiver for the quaternary
phase-shift keyed (QPSK) signals. This idea was carefully examined in a more
realistic setting with finite number of feedback steps [33, 34] or even without
feedback but with the optimal displacement strategy [34]. The former idea was
also experimentally implemented with an avalanche photodiode (APD) and an
FPGA based feedback system [35] which demonstrated 6 dB gains from the SQL
(the theoretical limit of the heterodyne receiver). Furthermore, it was theoretically
shown that if the number of feedback step is relatively small, the photon number
resolving detector (PNRD) instead of the on-off detector further diminishes the error
probability [36]. Another approach hybridizing a homodyne and a displacement-
controlled detectors for discriminating the QPSK signals was also proposed and
experimentally examined [37].
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The receiver was also designed for M-ary PPM signals [38]. In this scheme, the
displacement parameter is fixed to make one of the signals into j0i within a whole
pulse duration at each time interval but between the time intervals, the nulled pulse
is conditioned on the previous measurement outcomes. Furthermore, it is shown that
the exact nulling is not optimal and thus further improved by optimizing the amount
of displacement.1 The idea was experimentally demonstrated with an APD and an
FPGA based feedback for the conditional nulling [39].

All of the above works are concerning how to minimize the error rate in the
coherent state discrimination where the receiver basically works as a projection

measurement, i.e. the measurement operators are orthogonal projectors. Another
direction is to implement a generalized measurement where the measurement
operators can be nonorthogonal to each other. One of its applications is unam-
biguous state discrimination (USD) [40] which achieves error-free discrimination
of nonorthogonal states by introducing an extra inconclusive result. In practice, it
is more appropriate to consider the intermediate discrimination (ID) between the
minimum error state discrimination (MESD) and the USD where by allowing a
small inconclusive probability one can achieve the average error probability smaller
than that of the MESD. For binary coherent states, a near-optimal scheme of the ID
by using displacement and a PNRD was proposed and demonstrated [41, 42]. The
similar approach is extended to more than binary signals [43]. It is worth to note that
the ID measurement is useful not only for usual optical communication, but also for
QKD or other quantum communication protocols [41–43]

Before closing this subsection, let us briefly discuss the performance gap
between the ‘quantum receiver’ (bit-wise measurement) and the ‘quantum decoder’
(collective measurement) by comparing their capacity trade-offs between spec-
tral efficiency (SE) [bits/sec/Hz] and the photon information efficiency (PIE)
[bis/(received) photon]. Figure 2.5 plots the Holevo bound for various modulation
formats and the achievable PIE for various encoding with (non-collective) receivers
including the ones we have discussed above (see [44] for the full explanation
about the figure). The figure implies that for extremely higher or lower spectral
efficiency, the gap between the Holevo limits and the non-collective (i.e. more
feasible) receivers is relatively small while the gap is substantial in the intermediate
region where the collective quantum decoder will play a crucial role as discussed in
Introduction.

1It should be noted that in [28, 36, 38] it is shown that the squeezing operation inside the receiver
also slightly improve the performance of the receivers. Technically this is quite challenging
but fundamentally an interesting observation since the squeezing is not useful for the carrier
preparation at the sender side but is useful for the carrier processing at the receiver side.
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Fig. 2.5 The trade-off between PIE and SE for various choices of modulation formats and
receivers [44]. All solid lines except the one on the top corresponds to structured optical receivers,
whereas the non-solid lines and plots correspond to the Holevo capacities constrained to different
modulation formats (i.e., with no restrictive assumption on the receiver). The thin line on the
top is the ultimate capacity limit–no constraint on modulation and receiver–the highest capacity
attainable over a pure-loss optical channel

2.3 QKD and Beyond

Current QKD speed and distance are mainly limited by the performance of photon
detectors. The maximum count rate is roughly a few hundred counts per sec (cps)
for both APD and superconducting nanowire single photon detector (SSPD). The
fastest clock rate for current QKD systems is about 1 GHz. Alice should attenuate
pulse intensity to be 0.1 photons per pulse, to suppress multi-photon probabilities.
Detector efficiency is typically 10 % for APDs. Then a number of signals decrease
by the transmission loss as the distance extends. The key distillation usually prunes
at least the two third of the received signals. So in a metropolitan scale, we have
totally four orders of magnitude reduction. Then the expected secure key rate
would be 100 kbps, which may be a kind of limit for a metropolitan scale distance.
Further improvement may not be easy, unless the performance of photon detector is
dramatically improved.

A straightforward way to increase the key generation rate is to use wavelength
division multiplexing (WDM). NEC and NICT developed a WDM-QKD system
with maximally 8 wavelength channels [45, 46]. A schematic is shown in Fig. 2.6.
The protocol is decoyed BB84. The clock rate is 1.244 GHz. At Alice, optical pulses
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Fig. 2.6 Schematic of WDM-QKD system

of 50-ps-width at this repetition rate pass through a 2�2 asymmetric Mach-Zehnder
interferometer of planar lightwave circuit (PLC), and are converted into the time-
bin pulses with a 400 ps separation. The time-bin pulses are de-multiplexed, and
each wavelength component is independently encoded with the signal and decoy
information. The signals are multiplexed again, together with the clock and frame
synchronization signal, and input into a single fiber. At Bob, the clock signal is first
separated, and the quantum signals pass through the PLC interferometer. They are
then de-multiplexed at each of the four ports, and finally detected by the photon
detectors.

In this WDM-QKD system, wavelength-dependent phase mismatches always
exist. In order to compensate them, phase shifters are added after the encoders. The
PLCs are tuned to be polarization-independent, and this enables stable operation
even under polarization drift in field fibers [47]. Various device components,
synchronization, optical, detector, control units and key distillation engine are
assembled into the boards, then mounted to Advanced Telecom and Computing
Architecture blades, and finally inserted into 19-inch lacks.

The key distillation process is summarized in Fig. 2.7. Raw key rate is about
1 Mbps per each wavelength channel. A fraction of 10 kbps is spent for frame
synchronization. Sifted key rate is roughly 400 kbps. We then make blocks of 1 Mbit
size, and the data are processed in this block size. Test bit length is 65kbit, from
which the BER is calculated. According to the BER, an appropriate LDPC code is
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Fig. 2.7 Key distillation flow of the WDM-QKD system and its specifications

chosen from a package of totally 11 code sets. We further estimate the phase error,
taking the finite size effect into account. We then determine a size of sacrifice bits,
which is typically 2/3 of the corrected key. Then the random numbers are generated
for a corresponding Toeplitz matrix, in a size 750k � 250k. The corrected key is
multiplied by this, and we distill the final secure key. The secure key rate is typically
100 kbps per channel over a 45 km field fiber.

Then a huge amount of the signals at a rate of 50 Gbps in total should be stored
and processed. This is made by a dedicated hardware, the key distillation engine.
Raw key rate is roughly 10 Mcps. The sifted key rate is 5 Mbps, and processed in
a unit of 1 Mbit block size. The total secure key rate would potentially be 1 Mbps
over a 10 dB loss channel.

This system was operated with two WDM quantum channels through a 22-
km field fiber. 90 % of the fiber is aerial over poles. The total loss is 12.6 dB.
Maintenance-free WDM-QKD operation for 30 days could be demonstrated [48].
Figure 2.8 shows quantum bit error rates (QBERs), sifted key rates and estimated
secure key rates for the two channels, at �1 D 1547:72nm and �1 D 1550:92 nm,
for 30 days respectively. In the receiver, two avalanche photodiode (APD) systems
were used. The secure key rates are calculated assuming low density parity check
code (LDPC) and the three-state decoy protocol for the privacy amplification. We
assume a LDPC code applicable up to the error rate of 3 % with coding rate of 0.77,
which we have already built separately.

As summarized in Table 2.1, we attained a quantum bit error rate as low as
1.70 % and an estimated secure key rate as high as 112.4 kbps for a record-breaking
291.3 Gbits of estimated secure keys accumulated over an uninterrupted operation
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Fig. 2.8 Key generation rate and QBER of WDM-QKD over 30 days at two wavelengths �1 D
1547:72 nm and �2 D 1550:92 nm

Table 2.1 Key generation performance over 30 days

Wavelength (nm) QBER (%) Sifted key rate (kbps) Estimated secure key rate (kbps)

�1 D 1547:72 1.61 315.3 72.6

�2 D 1550:92 1.86 168.0 39.8

Total 1.70 483.3 112.4

period. This was realized by the stabilization technique which adaptively optimize
detection timing of the photon detectors, bias voltage of the encoding modulator,
temperature of the PLC interferometer, and amplitude of the phase compensation
modulator. They were done by software in a period of about 3 minutes. This
procedure is executed in parallel with the key generation.

Networking of QKD can be made by key relay via trusted nodes. Namely at each
node, secure keys of the neighboring links are stored in the physically protected
server called key management agent (KMA). Secure key is encapsulated with the
other key, and is relayed securely to the terminal. Each KMA receives the key
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Fig. 2.9 QKD-enhanced Layer-2 and Layer-3 switches

material, resizes and saves them as well as to store quantum BER and key generation
rate. The KMAs also have application interfaces and supply secure key to variety of
applications in the upper layers. This kind of network with the KMAs can constitute
a QKD platform, which is once introduced to a network, then its security can be
greatly enhanced.

Actually we have developed QKD-enhanced Layer-2 and Layer-3 switches. A
secured network scheme is shown in Fig. 2.9. Layer-2 switches identify the media
access control address (MAC address) of both sending and receiving devices, and
switch packets in LANs. Secure key from the QKD platform can be used for
encrypting MAC address to prevent unauthorized accesses. It also supports key
refresh to Layer-2 cryptography which often includes AES (Advanced Encryption
Standard) as well as one-time pad (OTP) encryption in Layer 2. Layer-3 switches
perform routing based on IP addresses. The QKD-enhanced Layer-3 switch receives
two kinds of secure keys. One is used for encrypting payload and IP address by OTP,
creating an OTP-encrypted IP packet. The other is used together with universal
hash functions such as Wegman-Carter protocol, for generating an authentication
tag from that packet. The packet consisting of the encrypted IP packet and the
authentication tag is then routed to a terminal node. A key refresh option for
symmetric ciphers, such as AES, by QKD is also implemented in the Layer-3
switches. Thus both encryption of data transfer and information theoretically secure
authentication based on IPsec can be realized.
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A practically important concern is the implementation of countermeasures
against side channel attacks. Entanglement based QKD, such as E91, has a great
potential for self-testing the presence of side channels, thus offering a qualitatively
new insight into cryptography. This scheme is compatible with quantum repeater
paradigm. Unfortunately, however, entanglement based QKD is still limited in
distance and speed. Quantum repeater is yet to be practical. Quantum relay based
on teleportation can be an intermediate option.

In fact we proposed a quantum relay scheme based on teleportation with a gain,
called tele-amplification, which can be realized by using a superposition state of
coherent states, referred to as a Schrödinger cat state [49]. No quantum memory is
required in this tele-amplification scheme. The difficulty is, instead, imposed to the
state preparation. The basic scheme is depicted in Fig. 2.10. The receiver prepares a
cat state of two waves of 0 and 1, and splits it into beams B and C via a beam-splitter
(BS). Beam C is then sent to the sender, where beam C is combined with the input
state in beam A. The sender finally measures beams A and C by single-photon detec-
tors. Then, when the sender’s detectors register a single photon at beam A and noth-
ing at beam C, the receiver unambiguously restores the input state. Thus by condi-
tioning beam B on the sender measurement result, the receiver can restore the input
state with the amplified gain without noise. The tele-amplified gain can be tuned by
the reflectance of the two BSs. It can work even for a lossy channel when the input

Fig. 2.10 Schematic of quantum tele-amplification
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Fig. 2.11 Key generation
rates as a function of channel
transmittance for decoyed
BB84 and tele-amplified
BB84. In the tele-amplified
BB84, a cat state with
10�100 photons at 1 GHz
repetition rate is assumed

states are restricted to coherent states. This loss-tolerance is brought by the fact that
the coherent state is an eigen state of an annihilation operator, i.e. Oa j˛i D ˛ j˛i.

If the 4-component cat state jˇi C i jiˇi � jˇi � i j�iˇi could be prepared, our
scheme can be applied to BB84 protocol. Figure 2.11 shows key generation rates
as a function of channel transmittance for decoyed BB84 and tele-amplified BB84.
Decoyed BB84 hardly generates the secure key as the channel transmittance gets
below �40 dB, while tele-amplified BB84 can make a QKD link. As the amplitude
of coherent-state superposition could be larger, the relay distance can be extended
further in principle. The limit of this scheme is the tradeoff between the distance
and the key rate, that is, extending the distance sacrifices the key rate more or less.
Details are referred to [49].

2.4 Future Outlook

While QKD can provide the unconditional security, its distance and speed are still
limited. This aspect becomes apparent when one consider to apply it to space links in
which trusted nodes cannot be made. One may ask whether there are any other ways
to secure such links in an information-theoretic way. On occasions the requirement
of the unconditional security may be too much. It may be relaxed in a sensible
way, while instead pursuing higher rates and distances. Now consider a situation in
space optical communications. High speed optical data links between satellites and
between satellite and ground are progressing rapidly these days, and are expected
to be backbones for global networks. High level security is becoming an important
concern. If we insist on QKD for securing those links, no options can be found
currently. In Fig. 2.12 we plot the key rate in deep space as a function of the channel
transmittance in dB. The dotted line represents the secure key rate of decoyed BB84.
The key rate rapidly falls at around �40 dB loss. Total loss for the LEO (low earth
orbit)-ground link is typically �50 dB. So it is very difficult to make a QKD link
there. The top solid line is the maximum transmission rate for PPM scheme with
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Fig. 2.12 A numerical
example of the secrecy
capacities for a wiretap
channel with various tapping
ratio in red by an
eavesdropper. Pulse position
modulation is assumed in free
space laser link. In the left
corner of figure, typical key
rates in quantum key
distribution are also shown

transmission power of 1 W and repetition rate 1 GHz. There is no security at all,
but just to attain the maximum transmission rate within the available power. As
seen there is a huge gap between the performances of these two extreme cases.
One might naturally ask whether there are some intermediate schemes, which can
provide higher capacity as well as strong enough security. The gap will never be
filled merely by improving the currently known QKD schemes.

An option is to compromise the security requirement in a reasonable way. Free
space laser link is generally made in large transparent area. If Eve is in the channel,
then Alice and Bob can tell Eve is there. So what Eve should do is to hide from Alice
and Bob away from the channel, and try to collect scattered light to get information
from Alice. Then the transmittance for Eve, �z, can be smaller than that for Bob �y.
The wiretap ratio is smaller than the unity, �zy D �z=�y < 1. The degraded condition
for Eve can be met, and . this is called a wiretap channel. Then there exists a code
that can transmit the following amount of bits faithfully per time, making leaked
information to Eve arbitrarily small [50]

CS D max
P.x/

ŒI.XI Y/ � I.XI Z/� (2.7)

The messages transmitted through such a wiretap channel with an appropriate code
can never be broken by any future computers. This scheme is called physical layer
cryptography.

We then calculate the secrecy capacity under the cost constraint of transmission
power (1 W) and bandwidth (1 GHz). We vary the wiretap ratio from 1 % to 99.9 %.
As seen we can cover wide range of larger capacity at longer distances with the
information theoretic security.

Wiretap channel coding should include not only redundancy to correct errors
but also randomness to deceive Eve. In this way, both reliability and security can
simultaneously be realized. The finite length analysis was recently formulated in
[51], and was extended to a theory under cost constraint [52], where a dual set of
the reliability and security functions, those specify exponentially decreasing rates
of Bob’s decoding error and leaked information to Eve as n increases, is introduced
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to engineer the tradeoff between the reliability and the security. This formulation
includes not only the secrecy capacity in the asymptotic limit but also quantifying
appropriate reliability and security measures in finite lengths.

These theories on wiretap channel are still within a classical framework based
on classical symbols, for given channel matrices. In the quantum setting, given and
fixed is a quantum channel (a completely positive trace preserving map), and input
states, detection strategy, and coding can be the variables. Extending our theory into
the quantum domain remains open, as well as a question of whether the entangle-
ment could be useful for implementing degraded wiretap channel conditions.
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Chapter 3

Quantum Communication Experiments Over

Optical Fiber

Hiroki Takesue

3.1 Evolution of Quantum Key Distribution Systems

Quantum key distribution (QKD) is a method that enables two distant parties
to produce a shared random secret key known only to them, and the security
of the key is guaranteed by quantum mechanics [1]. Since the invention of the
Bennett-Brassard 1984 (BB84) [2] and Ekert 1991 (E91) [3] schemes, QKD has
been expected to be the first quantum information processing application to be
practically used, because of its simplicity. In fact, many QKD experiments have
been performed, ranging from the very first proof-of-principle experiment over 32-
cm free-space quantum channel [4] to large scale QKD network experiments over
installed fiber networks [5, 6].

As we approach the realization of global-scale secure communication networks,
QKD systems will be expected to evolve in the three phases shown in Fig. 3.1
[1]. The first phase is point-to-point systems, which are based on the simple
transmission of single photons from Alice, the sender, to Bob, the receiver. Most
current practical QKD systems are classified in this phase. In phase-1 systems,
the photon loss in the quantum channel limits the key distribution distance; in
general terms, when the single photon count rate at Bob is comparable to the
dark count rates of the single photon detectors, the error rate increases, and
eventually results in no secure key being generated. To increase the distance, we
use entanglement as shown in Fig. 3.1b (phase 2). Here, we place an entangled
photon pair source between Alice and Bob, and one photon from a pair is
sent to Alice and the other to Bob. With this scheme, we can roughly dou-
ble the key distribution distance of the phase-1 systems (the distance depends
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(a) Phase 1: Point-point QKD

(b) Phase 2: Entanglement-based QKD

(c) Phase 3: Quantum repeater
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Fig. 3.1 Evolution of quantum communication. BSM: Bell state measurement

on the protocol and devices used in the system). In phase 3, we implement
“quantum repeaters”, by which we can realize fully scalable quantum communi-
cation networks [7]. Figure 3.1c shows an example of a basic link in quantum
repeater implementation called a “Duan, Lukin, Cirac, and Zoller (DLCZ)” scheme
[8, 9]. Here, Alice and Bob are equipped with entangled photon pair sources
and quantum memories. By storing a photon from an entangled pair with the
memory, Alice and Bob can generate an entanglement between a photon and an
internal state of the quantum memory. By undertaking entanglement swapping
[10] between the two photon-memory entanglements, Alice and Bob can share an
entanglement between the internal states of their memories. A quantum repeater
is constructed by concatenating those basic links using the nested entanglement
swapping [7]. In the DLCZ scheme, the use of entanglement between quantum
memories enables us to avoid an exponential decrease in the rate of entanglement
distribution based on entanglement swapping, and thus leads to scalable quantum
communication.

In the remainder of this chapter, we will review our efforts to realize those
evolutions of QKD systems. In Sect. 3.2, we describe our point-to-point QKD
experiments based on the differential phase shift QKD (DPS-QKD) protocol
[11]. Section 3.3 focuses on entanglement-based schemes, where we discuss the
generation and distribution of telecom-band entangled photon pairs, entanglement-
based QKD, and entanglement swapping experiments over optical fiber. In the
final section, we briefly discuss the future direction of the research on quantum
communication in the telecom band.
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3.2 Differential Phase Shift Quantum Key Distribution

3.2.1 Protocol

Since the invention of the first protocols [2, 3], most QKD protocols have been based
on the transmission of two-level quantum states, namely qubits. In contrast, DPS-
QKD does not use qubits but employs a coherent state that is spanned by many
pulses [11, 12]. Figure 3.2 shows a schematic of a DPS-QKD system. Alice is
equipped with a light source that emits a coherent pulse train. The phase of each
pulse is modulated by 0 or � randomly, and attenuated so that the average photon
number per pulse is less than 1 (typically �0.2 in experiments). The pulse train is
sent to Bob through a quantum channel. Bob inputs the received attenuated pulse
train into a 1-bit delayed Mach-Zehnder interferometer. When the phase difference
between adjacent pulses is 0 (�), a photon is output from Port A (B) and the corre-
sponding detector clicks. Bob records the time instances at which he observed the
clicks and which detectors clicked. He then discloses the time instance information
to Alice through a classical communication line. From her original modulation data
at each time instance, she now knows which detector clicked on Bob’s side. By
converting the which-detector information into 0 and 1, Alice and Bob now share
an identical bit string that can be used as a key for one-time pad cryptography.

The security of the DPS-QKD protocol has been of great interest to the QKD
theory community. Since a detailed description of DPS-QKD security is beyond the
scope of this chapter, here we briefly consider security against two simple attacks,
namely intercept-and-resend (IR) and photon-number-splitting (PNS) attacks, to
obtain a rough idea of why this protocol works as a QKD.

The IR attack is the most basic attack against QKD. An eavesdropper (Eve)
intercepts photons just after Alice has launched them into the quantum channel,
and measures these photons using the same measurement apparatus as Bob. Eve
sometimes obtains the phase difference information �k.D f0; �g/, where subscript

Optical fiber

Coherent
pulse source

ATT

1-bit delayed
interferometer

Single photon detector

boBecilA

0 π π 0 π

Classical communication line

A

B

PM

Fig. 3.2 DPS-QKD system. PM: optical phase modulator, ATT: optical attenuator
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k denotes the number of time slots at which Eve’s detectors clicked. Then, Eve
prepares single photons whose states are given by .jk � 1i C ei�k jki/=

p
2 and

sends them to Bob. Here, jxi denotes a state where there is a photon in time slot x.
Bob inputs the received photons into a 1-bit delayed Mach-Zehnder interferometer,
which converts state jxi to 1

2
.jxi1� jxi2 C jx C 1i1 C jx C 1i2/, where the subscripts

denote the output ports of the interferometer. Thus, the state resent by Eve is
converted to

1p
2

�
jk � 1i1 � jk � 1i2 C .1C ei�k/jki1 C .1� ei�k/jki2

C ei�k jk C 1i1 C ei�k jk C 1i2
�
: (3.1)

This suggests that Bob observes clicks possibly at three time slots, and obtains
conclusive results only at the kth time slot. When Bob observes clicks at the k ˙ 1th
slots (with a probability of 1/2), his measurement result is random, leading to a 25 %
error rate. Thus, Alice and Bob can detect an IR attack by monitoring the error rate
of their quantum transmission.

Next, we consider a PNS attack, which severely limits the key distribution
distance of conventional QKD systems [13, 14]. Let us first consider the PNS attack
against BB84 QKD systems with attenuated laser sources. Eve performs a quantum
non-demolition (QND) measurement [15] on attenuated coherent pulses emitted
by Alice, by which she measures the number of photons contained in each pulse
(i.e. qubit). When she observes two or more photons in a pulse, Eve extracts one
photon and sends the rest directly to Bob so that Eve can force Bob’s detectors to
click at the pulse where she observed multiphotons. This means that Eve obtains
a complete “copy” of the information sent to Bob without causing any errors. The
probability of observing multi-photons in a coherent pulse with an average photon
number per pulse of � is approximately given by �2. On the other hand, when there
is no eavesdropping, Bob’s count rate per pulse is given by �˛ (˛: quantum channel
transmittance including the detection efficiency of the photon detector). This means
that when �2 is larger than �˛, all the clicks Bob observes can be caused by pulses
attacked by Eve. Therefore, � should be smaller than ˛ in order to obtain a secure
key, and thus the secure key rate is proportional to ˛2, resulting in a rapid decrease
in the key rate at a long transmission distance.

Then, what happens if Eve executes a PNS attack on DPS-QKD? As in the
case of BB84, she undertakes the PNS attack on coherent pulses from Alice. If she
performs a QND measurement on each pulse, it only disrupts the phase coherence
between pulses and she does not obtain any phase difference information. If Eve
measures the photon number in two consecutive pulses using QND, she can obtain
a “copy” of a quantum state spanned by two time slots as long as she observes
a multiphoton. However, such a QND measurement, which determines the photon
number in two specific pulses, changes the initial coherent state spanned by many
pulses into photon number states spanned by two pulses. This means that, after the
QND measurement, the state sent to Bob is the photon number state that is the same
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as the state resent by Eve in the IR attack described above, and thus results in a 25 %
error rate as shown in Eq. (3.1). Thus, a PNS attack against the DPS-QKD protocol
induces errors, and so the number of bits that can be obtained by this attack is always
limited. Eve can reduce the error probability by increasing the number of pulses for
the QND measurement, but the probability that Eve obtains the same information
as Bob decreases. Therefore, the PNS attack is not effective against the DPS-QKD
protocol, which is a significant advantage over practical BB84 QKD systems using
attenuated laser sources. We should note that BB84 QKD with attenuated laser
sources can be secure against a PNS attack if it is implemented with the decoy state
method [16–18], however, it incurs additional system overheads. On the other hand,
DPS-QKD is inherently secure against this powerful attack with a very simple setup.

Because of its uniqueness, the DPS-QKD protocol has attracted the interest of
many QKD theorists. Several attacks against DPS-QKD [19, 20] and countermea-
sures [21] have been studied. The DPS-QKD protocol using an attenuated laser
source has been proven secure against general individual attacks [22], and intensive
efforts to prove unconditional security are under way [23].

3.2.2 Experiments

The first DPS-QKD experiment was undertaken in the 0.8�m band in 2003 [12],
and the first experiment over fiber was reported in 2004 [24]. Since then, many
record-breaking QKD experiments have been demonstrated using the DPS-QKD
protocol. Here, we describe the most representative experiment that achieved the
long-distance record in 2007 [25].

Figure 3.3 shows the experimental setup. A continuous light from an external
cavity diode laser was modulated into a 20-ps, 10-GHz pulse train using the
nonlinear response of an electro-absorption modulator. The pulses were phase-
modulated by f0; �g using a lithium-niobate phase modulator, and attenuated so
that the average photon number per pulse was 0.2. Then, the attenuated pulse train
was transmitted over 200-km dispersion shifted fiber (DSF) spools, and received by
Bob. Bob was equipped with a 1-bit delayed Mach-Zehnder interferometer based
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Fig. 3.3 Experimental setup of DPS-QKD
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Fig. 3.4 Result of
long-distance QKD
experiment. Squares show the
results obtained with the
10-GHz clock DPS-QKD
system [25], while the
triangles shows the results
reported in [27]. The filled

and open symbols denote fiber
transmissions and optical
attenuation, respectively
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on a silica waveguide [24], and the interferometer output ports were connected to
superconducting single photon detectors (SSPD) [26]. The SSPD was composed of a
superconducting niobium nitride nanowire biased slightly below the critical current.
When a photon hits the nanowire, the superconducting state is temporarily destroyed
and the nanowire becomes resistive, leading to the generation of a voltage pulse. By
detecting this voltage pulse, we can detect the arrival of the photon with a very high
timing resolution (�60 ps) with a very low dark count rate. In this experiment, the
detection efficiency and dark count probability were 1.5 % and 25 cps for both detec-
tors. The detection signals from the SSPDs were input into a time interval analyzer,
which recorded the photon detection times and which detector information.

Figure 3.4 shows the experimental data, which includes the key generation rate
as a function of fiber length. Here, the generated key is secure against general
individual attacks [22] and the sequential attack considered in [19]. At a fiber
distance of 105 km, we achieved a secure key rate of 17 kbit/s, which is two orders
of magnitude larger than the previous bit rate record set in 2006 [27]. The maximum
secure key distribution distance was 200 km, with a secure key rate of 12 bit/s. Thus,
in this experiment we achieved both a significant speed increase and an extension
of the key distribution distance, thanks to the high-speed clock implementation and
low-noise characteristics of SSPD.

We have undertaken not only laboratory experiments but also the development of
QKD systems that can be used in installed fiber networks. In 2010, we participated
in a QKD demonstration over a fiber network in Tokyo (Tokyo QKD network)
[6]. We developed a DPS-QKD system in which we implemented not only sifted
key generation but also other signal processing parts such as error correction and
privacy amplification functions. With this system, the NTT team achieved secure
communication over a 90-km link between two cities in Tokyo, which was the
longest link in the network. We successfully achieved the first demonstration of
a QKD-protected TV conference in this demonstration.
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3.3 Telecom-Band Entanglement and Applications

3.3.1 Telecom-Band Entanglement Sources

The invention of polarization entangled photon pair sources based on type-II and
type-I spontaneous parametric downconversion (SPDC) in bulk crystals [28, 29]
triggered a series of important demonstrations of photonic quantum information
processing. However, those sources generate photons in short wavelength bands
(typically around 800 nm), and thus are not suitable for quantum communication
experiments over optical fiber. Starting in the early 2000s, several experiments on
telecom-band correlated/entangled photon pair sources were reported. In many of
these experiments, photon pairs were generated through spontaneous parametric
processes as in the short wavelength band experiments. The important difference
between this telecom-band entanglement generation and those in the short wave-
lengths bands is that we can use technologies such as the optical waveguide devices
and narrowband optical filters developed for optical communication systems.
Thanks to the optical waveguide devices, we can obtain a high optical power density,
which results in a significant enhancement of optical nonlinearity. Thus, highly
efficient photon pair generation was possible. The availability of narrowband filters
enabled us to use both SPDC and near-degenerate spontaneous four-wave mixing
(SFWM) process to generate telecom-band photon pairs, where the wavelengths of
the signal and idler photon pairs are closer to that of pump light than in SPDC.

When a pump light is strong and can be regarded as a classical oscillator,
the interaction Hamiltonian of the spontaneous parametric process for generating
correlated photon pairs is expressed as

Hint D i„�.a�s a
�
i � asai/; (3.2)

where ax .a
�
x/ denotes the annihilation (creation) operator for the mode x (D s:

signal, i: idler). The constant � for SPDC and SFWM is expressed as

�SPDC D c�.2/ap (3.3)

�SFWM D c0�.3/ap1ap2 (3.4)

where ap, ap1 and ap2 denote the pump field amplitudes. Using the interaction
Hamiltonian given by Eq. (3.2), we can obtain the following state after the time
evolution.

j�.t/i D 1

C

˚
j0; 0i C Tj1; 1i C T2j2; 2i C � � �

�
(3.5)

Here, C D cosh�t, T D tanh�t and t is the time of nonlinear interaction inside
the nonlinear medium. jj; ki is a state with j signal and k idler photons. When we
use a relatively small pump power, the higher order terms on the right hand side
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Fig. 3.5 Setup for generating and distributing time-bin entangled photon pairs

of Eq. (3.5) can be neglected, and thus we can selectively observe the photon pair
state (j1; 1i) by performing coincidence measurements between the signal and idler
photons.

We can generate entangled photon pair states based on various parameters
such as polarization modes and temporal modes. To date, polarization modes are
most widely used in photonic quantum information experiments. However, the
polarization of light is hard to stabilize and manipulate in optical fiber, because
of the fluctuation in the fiber birefringence caused by changes in the environment
such as temperature fluctuations. In contrast, a time-bin entangled state [30], which
is a coherent superposition of photon pair states at different temporal modes, is
suitable for quantum communication over optical fiber, since a time-bin qubit uses a
single polarization mode. The setup for generating time-bin entangled photon pairs
is shown in Fig. 3.5. A coherent double pulse is launched into a nonlinear medium.
Through SPDC or SFWM processes in the nonlinear medium, we can generate a
photon pair state jkisjkii at the temporal positions of the k(D f1; 2g)th pump pulse.
Since the pump pulses are mutually coherent, the relative phase of the photon pair
states is fixed. As a result, we can generate a time-bin entangled state given by the
following equation.

j� i D 1p
2
.j1isj1ii C j2isj2ii/ (3.6)

The photons generated from the nonlinear medium are launched into an optical filter
to suppress the pump light and separate the signal and idler photons by wavelength.
Then, each photon is input into a 1-bit delayed Mach-Zehnder interferometer, whose
output port is connected to a single photon detector. The interferometer converts the
input state jkix into .jki C ei�x jk C 1i/=2, where �x represents the phase difference
between two arms of the interferometer for mode x. This means that the total state
j� i is converted to
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Fig. 3.6 (a) Typical cross-section of the structure of a SWW, (b) two-photon interference fringes
obtained with a silicon-based entanglement source

j� i ! j1isj1ii C .1C ei.�sC�i//j2isj2ii C ei.�sC�i/j3isj3ii: (3.7)

Here, only the terms that contribute to the coincidence counts are shown and the
normalization term is discarded for simplicity. The above equation shows that we
possibly observe a photon in either of three time slots, and we observe two-photon
interference fringes in the coincidence counts at the 2nd time slot.

The NTT team reported several pioneering studies regarding the generation of
1.5-�m band entangled photon pairs. After demonstrating the first polarization-
entanglement generation using a DSF [31], we reported the generation of time-bin
entangled photon pairs using SFWM in a DSF [32] and SPDC in periodically-
poled lithium niobate (PPLN) waveguides [33]. More recently, we reported the first
study on entanglement generation using SFWM in a silicon wire waveguide (SWW)
[34, 35]. An SWW is a single-crystal, single-mode silicon waveguide whose core
size is as small as several hundreds of nanometers. Figure 3.6a shows a typical
cross-section of a SWW. Thanks to the tight confinement of light inside of this
small waveguide, we can obtain highly efficient SFWM gain and thus realize a
correlated/entangled photon pair source whose length can be as small as 1 cm. Two-
photon interference fringes obtained from a silicon-based time-bin entanglement
source are shown in Fig. 3.6b. The SWW used for the source was 460 nm wide,
200 nm thick, and 1.15 cm long. In the two-photon interference measurement, we
used silica-waveguide interferometers that were similar to that used in DPS-QKD
experiments. The interferometer phases were tuned by changing the waveguide
temperature. The idler interferometer temperature was set at 20.68 ıC (squares) and
20.88 ıC (circles), which correspond to two non-orthogonal measurement bases.
The fringe visibilities were 96.3 % (idler interferometer temperature: 20.68 ıC) and
95.2 % (20.88 ıC), which confirmed the generation of high-purity entangled photons
from the SWW.
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3.3.2 Long-Distance Entanglement Distribution and

Entanglement-Based QKD

The distribution of quantum entanglement is an essential part of quantum com-
munication. The biggest advantage of using telecom-band entanglement sources
is that we can distribute entanglement over long distances using optical fiber.
Here, we describe our record-setting long-distance entanglement distribution and
entanglement-based QKD experiments.

The setup for the entanglement distribution is very similar to that shown in
Fig. 3.5, except that a transmission fiber is inserted in each of the signal and idler
channels. With this setup, the NTT team set a record distance of 300 km in 2013
[36]. We used SPDC in a PPLN waveguide pumped by 2-GHz clock sequential
pulses to generate a high-dimensional time-bin entangled state given by

j� i D 1p
N

NX

kD1
jkisjkii; (3.8)

where N denotes the number of time slots within the coherence time of the pump.
The generated photons were separated into the signal (1547 nm) and idler (1555 nm)
photons by a wavelength filter. After transmission over 150 km of DSF, each photon
was input into a delayed Mach-Zehnder interferometer based on a silica waveguide
[24], which is followed by an SSPD. The detection efficiency and the dark count
probability per gate of both detectors were 20 % and 10 cps, respectively. We
obtained the two-photon interference fringes shown in Fig. 3.7a. Thus, we observed
clear sinusoidal modulations in the coincidence counts even after the signal and idler
photons were separated by 300 km of fiber. The visibilities of the fitted curves were
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Fig. 3.7 (a) Two-photon interference fringes after 300-km distribution over fiber, (b) secure key
rate as a function of fiber length between Alice and Bob. The fitted curve was calculated based on
the theory shown in [40]
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86:1˙ 6:8% (squares: idler interferometer temperature 15.35 ıC) and 83:7˙ 9:1%
(circles: 15.54 ıC). We also performed an S value measurement for the CHSH
inequality. We obtained S D 2:41˙0:14, leading to the violation of Bell’s inequality
by 2.9 standard deviations.

Our group also implemented QKD based on the Bennett-Brassard-Mermin
1992 (BBM92) protocol using the SWW-based entanglement source described
above [37].

In a QKD system based on the BBM92 protocol, the entanglement source is
placed between Alice and Bob, and one photon from the source is sent to Alice
and the other to Bob. Alice and Bob measure each received photon by using a
measurement that is randomly chosen from two non-orthogonal measurement bases.
After measuring many pairs, Alice and Bob disclose the measurement bases used
for each measurement via classical communication, while keeping the measurement
results confidential. According to the nature of maximally-entangled photon pairs,
the measurement results obtained by Alice and Bob for a pair of photons are always
correlated if their bases coincide. Therefore, they can obtain correlated measurement
results by extracting the events when their bases coincide, and the correlated results
can be converted into a secret key for one-time pad cryptography.

The experimental setup is similar to that for time-bin entanglement generation
shown in Fig. 3.5. In this experiment, the entanglement source generated a time-bin
entanglement whose state is shown by Eq. (3.6), and two single photon detectors
were connected to the two output ports of each 1-bit delayed interferometer. We
implemented two non-orthogonal measurements, namely, “energy basis” and “time
basis” measurements, in the following way [38]. As already stated, when a time-
bin qubit passes through a 1-bit delayed interferometer, we can possibly observe a
click in three time slots. A click in the second time slot is referred to as an “energy
basis” measurement, while a click either in the first or third slot is called a “time
basis” measurement. The 1-bit delayed interferometers convert a quantum state jkix

to 1
2
.jk; p1ix � jk; p2ix C jk C 1; p1ix C jk C 1; p2ix/, where p1 and p2 denote the

interferometer output ports. Then, Eq. (3.6) is converted to

j� i ! 1

4
p
2

fj1; p1isj1; p1ii � j1; p1isj1; p2ii � j1; p2isj1; p1ii C j1; p2isj1; p2ii

C2j2; p1isj2; p1ii C 2j2; p2isj2; p2ii C j3; p1isj3; p1iı C j3; p1isj3; p2ii

Cj3; p2isj3; p1ii C j3; p2isj3; p2iig ; (3.9)

where the terms that do not contribute to the coincidences in the matched bases are
not shown. The 5th and 6th terms on the right hand side of Eq. (3.9) correspond
to the coincidences in the energy basis, while other terms correspond to those in
the time basis. This equation shows that we observe a correlation in the “ports” in
energy basis measurements, and in the “time slots” in time basis measurements.

Using 100-MHz clock time-bin entangled photon pairs together with 500-MHz
sine-wave gated single photon detectors based on an InGaAs/InP APD [39], we
undertook a BBM92 QKD experiment [37]. We used a fiber-coupled SWW that
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was 460 nm wide, 220 nm thick, and 0.9 nm long. For long-distance key distribution
experiments, we inserted DSFs as transmission fibers with lengths of up to 50 km
in both arms of the signal and idler channels. The obtained secure key rate as a
function of the fiber length between Alice and Bob is shown in Fig. 3.7b. Thus, we
successfully distributed keys over 100 km of optical fiber with a secure key rate of
0.15 bit/s. Moreover, we obtained a secure key rate of 208 bit/s, which is larger than
the previous record for an entanglement-based QKD experiment using a 1.5-�m
entanglement source [41].

3.3.3 Entanglement Swapping

As stated in Sect. 3.1, entanglement swapping is an essential ingredient for scalable
quantum communication systems based on quantum repeaters. Since an entan-
glement swapping experiment requires four-photon coincidence counting, it is
extremely difficult in the 1.5�m band where single photon detectors have lower
detection efficiencies than the visible wavelength band detectors based on silicon
APD. As a result, only a few entanglement swapping experiments have been
reported in the 1.5�m band [42–44]. Here we introduce our experiment in which
we realized high-speed entanglement swapping [43].

Figure 3.8 shows our experimental setup. We used two independent high-
dimensional time-bin entanglement sources using DSFs pumped by a 500-MHz,
20-ps sequential pulse train. Here, the DSFs were cooled by liquid nitrogen to
suppress the noise photons generated by spontaneous Raman scattering [45]. The
total state of the photon pairs generated from the two sources is expressed as

jSi D 1

N

0
@

NX

jD1
jji1sjji1i

1
A˝

 
NX

kD1
jki2sjki2i

!
; (3.10)
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where subscripts 1 and 2 denote the source where the photons with respective
quantum state was generated. The signal photons from sources 1 and 2 were
sent to Alice and Bob, respectively. Alice and Bob were equipped with 1-bit
delayed Mach-Zehnder interferometers followed by single photon detectors based
on InGaAs/InP APD operated in a gated mode. On the other hand, idler photons
from both sources were sent to the intermediate node Charlie, who was equipped
with a fiber beamsplitter (BS) whose output ports were connected to an InGaAs/InP
APD operated in a sine-wave gated mode with a 500 MHz frequency [39]. With the
BS, the joint state formed by two idler photons was projected to one of the four Bell
states. Using the four Bell states j˚˙

k i D .jki1ijki2i ˙ jk C 1i1ijk C 1i2i/=
p
2 and

j�˙
k i D .jki1ijk C 1i2i ˙ jk C 1i1ijki2i/=

p
2, the whole state shown by Eq. (3.10)

can be rewritten as

jSi ! 1

N
p
2

(
NX

kD1
jki1sjki2s.j˚C

k i C j˚�
k i/

C
N�1X

kD1
.jki1sjk C 1i2s C jk C 1i1sjki2s/j�C

k i

C.jki1sjk C 1i2s � jk C 1i1sjki2s/j��
k i
)
: (3.11)

Here, the states that are not observed in our coincidence measurements using 1-bit
delayed interferometers are discarded for simplicity. At the BS owned by Charlie,
an idler state jki1i (jki2i) is converted to .jkix � jkiy/=

p
2 (.jkix C jkiy/=

p
2), where

the subscripts denote the output ports. Therefore, when a Bell state j��
k i is input

into the BS, the output state is given by .jkixjk C 1iy � jk C 1ixjkiy/=
p
2, implying

that only this state gives a coincidence count between detectors x and y, and thus
can be distinguished from the other three Bell states. Therefore, we adjusted the
temporal position of the detector gates for channels x and y to detect photons in
the .k C 1/th and the kth time slots, respectively, by which we can implement a
projection measurement on a portion of j��

k i (i.e. 1p
2
jk C 1ixjkiy). The detection

signals from the detectors x and y were used as a gate signal for Alice’s and Bob’s
detectors, respectively. This means that the coincidence events between Alice and
Bob’s detectors were conditioned by the projection measurement undertaken by
Charlie. Then, according to Eq. (3.11), the two signal photons detected by Alice
and Bob form an entangled state .jki1sjk C 1i2s � jk C 1i1sjki2s/=

p
2.

We first removed the interferometers at Alice and Bob to observe the quantum
interference between two photons generated from the independent fiber sources.
The result is shown in Fig. 3.9a, where we observed a clear Hong-Ou-Mandel dip
whose visibility was 64˙8%, which is larger than the classical limit of 50 %. Thus,
we could successfully generate near-indistinguishable photons in the 1.5-�m band
using two independent fiber sources.
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Fig. 3.9 Results of entanglement swapping experiments

We finally inserted the interferometers into the setup, and performed two-
photon interference measurements. The result is shown in Fig. 3.9b. Clear sinusoidal
modulations were observed in the coincidence counts, implying that the two signal
photons coming from independent sources were now correlated. The visibilities of
the fringes were 47˙7 (Alice’s interferometer temperature: 32.25 ıC) and 41˙9%
(32.35 ıC). If we assume the generated state was in a Werner state, a visibility larger
than 1/3 implies the existence of entanglement between two photons [46]. Therefore,
the present result suggests the formation of entanglement.

We believe this experiment is important because it showed the possibility
of developing high-speed quantum communication systems based on multi-
coincidences using telecom technologies. The indistinguishable photon generation
with externally-modulated pump pulses reported here is expected to become
an essential technology. Unfortunately, the fidelity of the entanglement in this
experiment was not very good. The biggest reason is the limited detection
efficiencies of the detectors in the 1.5-�m band compared with that in the near-
visible wavelength bands. Because of this, we needed to increase the average
photon number from each source so that we could observe a sufficient number
of coincidences. However, there have been several studies that realized telecom-
band single photon detectors with near-unity detection efficiencies [47]. With our
high-speed indistinguishable photon sources combined with such cutting edge
detector technologies, we expect to be able to construct sophisticated quantum
communication systems based on multi-photon interferometry in the near future.
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3.4 Summary and Future Outlook

This chapter described the progress of technologies related to quantum commu-
nication over optical fiber. The development of phase 1 quantum communication
systems based on the DPS-QKD protocol is summarized Sect. 3.2. We have
achieved QKD over 200 km of fiber, and demonstrated a QKD-protected TV
conference using an installed fiber network in Tokyo. With those successful results
as well as the development of practical QKD systems by other institutions, we can
now say that QKD is the first quantum information technology that can be put to
practical use.

The key technology for future quantum communication, namely the generation
of 1.5-�m band entangled photon pairs and applications were reviewed in Sect. 3.3.
Entanglement sources based on DSFs, PPLN waveguides, and SWWs are now
promising candidates for phase-2 quantum communication. It was also shown that
quantum entanglement was distributed over long fibers and quantum keys were
generated using distributed entanglement. These results indicate that we can extend
the quantum communication distance using entanglement. Finally, entanglement
swapping was successfully demonstrated using 1.5-�m entangled photon pairs,
which will be an important building block of phase 3 quantum communication
systems based on the quantum repeater protocol.

An important missing element in terms of realizing quantum repeaters is
quantum memory. Many schemes have already been examined, including the use of
optical delay lines, electromagnetically induced transparency, and photon echo [48].
Unfortunately, most current quantum memories are for non-telecom wavelength
bands, and thus it is difficult to use them directly in quantum communication
systems over optical fiber. There have been several reports on 1.5-�m band
quantum memories, but characteristics such as efficiency and coherence time are
not yet suitable for practical use [49, 50]. An interesting approach is to use quan-
tum frequency conversion (QFC) [51] for connecting short-wavelength photonic
quantum systems such as quantum memories and 1.5-�m photons. Several QFC
experiments have been reported, including high-efficiency single photon detection
[52], phase-sensitive QFC [53], erasure of frequency distinguishability [54], and
the frequency downconversion of a single photon [55]. By integrating all these
components (entanglement sources, detectors, memories, QFCs), in theory we can
realize a quantum repeater. However, further improvements are needed for all
these components if we are to realize scalable quantum communication, since the
requirements for the components are very demanding.

An interesting research area spun out from telecom-band quantum communica-
tion technologies is integrated quantum photonics [56]. The concept is to realize
photonic quantum information processing circuits using optical waveguide devices,
so that we can increase the integration level with better circuit stability. The NTT
team is the first group to use silica waveguide technologies for quantum information
experiments, namely QKD [24] and time-bin entanglement measurements [32].
Since these experiments, silica waveguides are now being used in many quantum
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information processing studies [56, 57]. As stated in Sect. 3.3, silicon waveguides
are also attractive platforms for photonic quantum information processing, since we
can realize active components such as entanglement sources on a chip, as described
in this chapter [34]. In addition, other functions such as single photon detectors [58,
59] and a buffer [60] integrated on silicon chips have been demonstrated recently.
Furthermore, technologies for connecting different waveguides, including silica, sil-
icon and lithium niobate waveguides, are now being developed for optical commu-
nication systems [61]. Using these technologies, we may be able to realize advanced
quantum information processing based on hybrid photonic quantum circuits.
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Chapter 4

Spin-Photon Entanglement in Semiconductor

Quantum Dots: Towards Solid-State-Based
Quantum Repeaters

Kristiaan De Greve and Yoshihisa Yamamoto

4.1 Introduction: Quantum Repeaters

4.1.1 Quantum Key Distribution

Quantum key distribution (QKD), as conceived by Bennett and Brassard in their
seminal BB84 proposal [5], provided an elegant, inherently quantum mechanical
answer to a canonical problem in cryptography: how can two parties, A(lice) and
B(ob), share a secure key without an eavesdropper (Eve) being able to intercept
this key? This key sharing is at the very heart of cryptography: when two parties
share a secret key that is both truly random, of sufficient length (as compared to the
messages they want to share) and used only once, then any message can be safely
encrypted and decrypted – the so-called one-time pad protocol [52].

While key sharing can, in principle, be performed in a variety of different
ways, many situations require the keys to be shared over publicly accessible
channels, which are in principle prone to eavesdropping. Bootstrapping methods
(e.g. privacy amplification) do exist, but still require there to be some form of shared,
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BB84

Alice Bob

Eve

No
cloning! measure

resend

Fig. 4.1 Schematic of the BB84 QKD protocol. Alice and Bob attempt to share a secret key, which
Eve tries to intercept. As she cannot clone the qubits used, she attempts to measure and resend
them, which leads to detectable errors upon comparing Alice and Bob’s code tables (Adapted with
permission from [13])

reasonably secure key to start with. Bennett and Brassard’s elegant answer to this
paradox consisted in exploiting several inherent properties of quantum mechanics:
the no-cloning theorem [60], and the Heisenberg uncertainty relationship for non-
commuting variables.

The essence of the BB84 protocol is illustrated in Fig. 4.1. Alice and Bob each
decide, randomly and independently, to encode and decode every single quantum
bit they send each other in one of multiple incompatible (non-commuting) bases,
e.g. polarization-encoded photonic qubits along the H/V or A/D ((anti-)diagonal)
directions. In view of the no-cloning theorem, Eve is unable to simply copy the
quantum bits, and has to therefore resort to an intercept-resend attack. As she has no
prior knowledge of which basis Alice or Bob chose individually, she will inevitably
make errors in the chosen basis, and, by virtue of the Heisenberg uncertainty
principle, will be unable to avoid the back action noise resulting from choosing
the wrong measurement basis (reflected in a bit error rate on Bob’s side). When
Alice and Bob now compare their chosen bases, and compare the values of the
shared bits for those cases where the key basis coincides, then the presence of Eve’s
eavesdropping will reveal itself via the measured error rate.

As the BB84 scheme relies on measured error rates, it is also quite sensitive to the
combined effects of photon loss and the system’s inherent error rate: in particular,
bit errors induced by detector dark counts. There is generally no way to distinguish
between the bit error rate due to detector dark counts, and Eve’s eavesdropping.
Even when using improved protocols, operating at the lowest-loss fiber wavelengths
and using the best, state-of-the-art detectors, practical implementations [29, 30] are
limited to communication over several 100 km in fiber [55], with free-space schemes
(more challenging experimentally, but in principle able to achieve lower system loss)
at the time of writing still lagging behind the fiber-based schemes [40, 63].
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4.1.2 Divide and Conquer: Quantum Repeaters

The obvious solution to the loss-based distance limitation – a divide-and-conquer
scheme that divides the link-to-be-established into many shorter links that are
established in parallel – suffers from the same no-cloning theorem. A different QKD
protocol does lend itself to a repeater-like scheme: the Ekert91 [19] or BBM92 [6]
scheme, which relies on the presence of a shared entangled qubit pair on which
to perform the random basis choices by Alice and Bob. As an entangled pair has
correlations in each basis, the bit error rate for the same choice of basis will again
reveal the presence of an eavesdropper.

Such an entanglement based scheme does lend itself to a divide-and-conquer
approach by virtue of entanglement-swapping [66], where a joint Bell measurement
on the inner two qubits of two sequential entangled pairs results in the estab-
lishment of entanglement between the outer nodes. That, in combination with an
entanglement purification protocol [4, 7, 8, 41] to correct for practical errors via
quantum error correction, is the basis of the quantum repeater [12, 18] as illustrated
in Fig. 4.2.

Purify

Purify

Swap

Swap

a)

b)

c)

d)

e)

Entangle

f)

Fig. 4.2 Outline of the quantum repeater, as proposed by [12, 18]. An extended version of the
Ekert91/BBM92 QKD scheme is implemented via repeated nested purification (b, d) and swapping
(c, e) of remotely entangled quantum bits (a), resulting in the creation of high-purity, longer-
distance entangled qubit pair (Adapted with permission from [13])



74 K. De Greve and Y. Yamamoto

First, a series of entangled pairs is created between each of the nodes in the
repeater, with multiple links between each set of neighboring nodes used to distill
higher-fidelity pairs (Fig. 4.2a, b). Then, entanglement swapping is used to generate
entangled links between further remote nodes, which are then subsequently purified
further (Fig. 4.2c, d), until finally a high-fidelity, entangled link is established
between the outer nodes in the network (Fig. 4.2e, f). The exact order of distillation
and swapping, and the overhead needed to perform the distillation, is highly depen-
dent on the details of the implementation, with the overhead scaling dramatically
with both the losses between the nodes and the errors in the quantum control used
during the swapping/purification [32].

For such a repeater scheme to work, one would require a physical system that
would allow the generation of medium-to-long distance entanglement (10s–100s
of km) in the first place, which could then be extended by virtue of the nested
swapping/purification protocols, provided that such a system is scalable enough to
account for the significant overhead required for these operations. For the generation
of medium-distance entanglement, a probabilistic version of the entanglement swap-
ping protocol can be used, where two entangled memory-qubit/photon-qubit pairs
are used. By virtue of Hong-Ou-Mandel (HOM) interference [27] on a beamsplitter,
a probabilistic version of a Bell-state measurement can be performed, which results
in the creation of an entangled memory qubit pair (a deterministic version would
require number-resolving photon detectors or photonic non-linearities that are, at
the time of writing, outside the scope of experimental feasibility). This situation
is summarized in Fig. 4.3, which illustrates the essential ingredients for such an
elementary network: the robust generation of memory-photon entanglement, low-
loss photonic transport (since the same loss mechanisms that limit the QKD distance

1,2
7

3

4

5

6

3

Fig. 4.3 Basic ingredients for a quantum repeater. Green circles: memory (spin) qubits; orange

circles: single photonic qubits; black-and-white rectangles: beamsplitters for HOM-measurement;
green boxes: single-photon detectors; black-and-white circles: entanglement operations (Adapted
with permission from [13])
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also bound the distance over which a single link in the repeater scheme could
be established), a fast system (fast repetition rate, operation speed) with sufficient
quantum mechanical fidelity to keep the overhead under control, and scalable – the
latter in order to perform entanglement purification.

In the remainder, we shall focus on a particular system that, in principle, allows
all of the above requirements to be fulfilled: single spins in optically active quantum
dots.

4.2 On Quantum Dots and Spins

The spin states of individual electrons or holes in self-assembled, InAs quantum
dots (QDs) can be used to encode quantum bits [9, 14, 28, 47]. Such quantum
dots are grown via the Stranski-Krastanov growth method, where the strain induced
by lattice mismatch between GaAs and InAs induces the formation of small, nm-
sized InAs islands on top of a wetting layer, which is subsequently capped by
an overgrown layer of GaAs [64]. Figure 4.4a displays an SEM micrograph of
uncapped InAs quantum dots. Because of the combined effects of strain and band-
structure line-up between InAs and GaAs in both the conduction band (CB) and
valence band (VB), these quantum dots offer a new potential well for both electrons
and holes – a 3D, nm-scale version of a particle in a box (Fig. 4.4b).

As InAs is a direct bandgap semiconductor, the confinement of both electron and
holes results in narrow, well-defined yet fast optical transitions, with the lifetimes of
an individual exciton (bound electron-hole pair) on the order of 100 ps–1 ns. For this
reason, InAs quantum dots have been extensively studied in the context of single-
photon sources [37, 45, 48, 49]. The spin states of an individual electron or hole,

CB

VB

a b

InGaAsGaAs GaAs

ep
es
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hp

Fig. 4.4 Self-assembled quantum dots: SEM-micrograph of uncapped dots (a) and schematic
outline of the band- and level structure (b). CB: conduction band; VB: valence band; esIp: s- and
p-shell electron states; hsIp: s- and p-shell hole states (Adapted with permission from [13])
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however, can also be used to encode a quantum bit [3, 28], and the bright optical
transitions can be exploited for fast, all-optical manipulation [9, 47].

A magnetic field will lift the degeneracy of the spin states, while the quantum
dot confinement helps isolate the quantum bit from the environment [25, 34]. Two
distinct magnetic field orientations are generally used: either parallel to the growth
direction (Faraday geometry), or perpendicular to it (Voigt geometry). While the
former is of particular use for spin-readout [1, 57], it is the latter that allows for all-
optical spin manipulation, as well as spin-photon entanglement, which are the focus
of the remainder of this chapter.

Figure 4.5a–c displays the level structure of a singly charged InAs quantum
dot in the Voigt geometry (the case of a single electron is shown, although the
situation for a single hole is equivalent). By ı-doping or tunneling from a nearby
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Fig. 4.5 Schematic overview of the level structure of a single-electron-charged quantum dot. (a)
a single electron is resonantly excited into a trion state: one electron singlet (blue arrows) and one
unpaired hole (orange). (b) outline of the Voigt geometry used in this work: the magnetic field
is aligned along the x-direction, perpendicular to the growth axis (z); H and V are in the growth
plane, respectively parallel and perpendicular to the magnetic field orientation. (c) level structure
upon application of a Voigt geometry magnetic field; twoƒ-systems emerge, which can be used to
manipulate the spin state (Adapted with permission from [13])
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Fermi-sea [59], a single electron is introduced into the quantum dot, which forms the
ground state of the system. The excitation of a single exciton results in the formation
of a trion, a three-particle complex consisting of two electrons and one hole. Due to
the confinement and interaction effects, the electrons line up as a singlet (the triplets
are separated by some 10 meV), and the heavy holes are similarly split from the
light holes (also meV scale). With a Voigt-geometry magnetic field (Fig. 4.5b), the
simplified level structure of Fig. 4.5c emerges, where each spin state is connected
via optical transitions to each of the trion states in a double ƒ-configuration. Such
a ƒ-configuration lends itself to coherent optical manipulation, e.g. via coherent
population trapping (CPT) [23], or in the context of electromagnetically induced
transparency (EIT) [22].

4.3 All-Optical, Ultrafast Spin Manipulation in Quantum

Dots

The strength of the optical transitions in InAs quantum dots, in combination
with the good spectral separation, allows for optical manipulation of the spin
states of the quantum dot in Voigt geometry with a single, broadband optical
pulse [9, 47]. The pulse width must exceed the energy difference between the spin
states, and the effects of dephasing via the fast decay of the excited states can be
minimized by detuning the pulse energy from the optical transition. By choosing
the polarization of the pulse appropriately (circularly polarized light results in
constructive interference of both ƒ-systems), the spin can be coherently rotated
around an axis that, in the lab-frame, corresponds to the propagation direction of
the laser pulse, with an angle that depends on the energy of the light pulse. In some
sense, the different frequency components of the broadband pulse conspire to jointly
execute a stimulated Raman transition.

Figure 4.6 illustrates the coherent spin manipulation of a single quantum dot
spin qubit, where optical pumping is used in addition for spin initialization [62],
and Larmor precession in the external magnetic field provides rotation around a
second, perpendicular rotation axis (Fig. 4.6c). Using these techniques, Press and
coworkers [47] were able to generate any coherent single qubit rotation within 20 ps
or less, essentially limited by the Larmor precession. Figure 4.7 illustrates the Rabi
oscillations, obtained by varying the strength of a single, 3-ps laser pulse. In addition
to the speed, their all-optical control also allows for selective manipulation of a
single qubit within the diffraction limit of their laser, which would in principle
allow for a quantum bit density well beyond 1/�m2. Using similar techniques,
exchange-coupled electron spins in quantum dot molecules could be coherently
manipulated, both individually and jointly, resulting in both single-qubit and two-
qubit coherent control [33], and the same techniques were also readily applied to
hole-doped quantum dots [14].



78 K. De Greve and Y. Yamamoto

Fig. 4.6 Schematic overview of the coherent manipulation of a single quantum dot spin. (a) a
narrowband CW laser (�P) is used for optical pumping/initialization of the qubit, as well as readout
(detection of a single photon on the Zeeman-energy-split, opposite polarization transition (blue

shaded region)). A detuned, broadband, circularly polarized pulse provides coherent rotation of the
spin. (b) Voigt geometry. (c) Bloch sphere representation of the spin and the respective rotation axes
provided by the fast laserpulse (red) and the Larmor precession (green) (Adapted with permission
from [13])

Fig. 4.7 Rabi-oscillations of a single electron spin qubit in an InAs quantum dot. By varying
the power (energy) of single circularly polarized rotation pulse, the spin can be rotated over an
arbitrary angle. In combination with control over the arrival time of the pulse (rotation axis), full
SU(2) control was demonstrated in [47] (Adapted with permission from [46])
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Using the same coherent control techniques, Press and coworkers also studied the
coherence properties of quantum dot spin-based qubits [46]. A spin-echo coherence
time T2 of around 3�s was obtained, with a shot-to-shot dephasing time, T�

2 , of less
than 2 ns. For the latter, the strong contact hyperfine interaction with the nuclear
spins in the quantum dot (some 104–105, as both In, Ga and As only have non-spin-0
isotopes) is the dominant effect, which also gives rise to a rich and complicated, non-
Markovian dynamics due to feedback in the electron-nuclear joint dynamics [26, 35,
36, 58, 61].

For a single hole spin, the p-type wavefunction does not have a contact term in the
hyperfine Hamiltonian, which led to predictions of significantly suppressed hyper-
fine interactions and, consequently, longer coherence times for hole spin qubits [21].
While the weaker hyperfine interaction (essentially dipolar in nature [20]) does
indeed lead to a strong suppression of the non-linear, non-Markovian dynamics that
are typical for electron spin qubits [14], the coherence times are only comparable
or even shorter than those measured for electron spis (T2 of 1:1 �s, T�

2 of 2 ns as
measured in [14]), due to a stronger susceptibility of hole spin qubits to charge
noise.

For both electrons and holes, the measured coherence times allow for some 105

operations to be performed before decoherence occurs, provided that the fidelity
of individual control operations can be increased to the 0.99999 level (currently
experimentally limited to 0.95–0.98 as reported in [14, 46]).

4.4 Spin-Photon Entanglement in Quantum Dots

The ƒ-systems of Voigt-geometry, charged quantum dots also form a natural
interface for the generation of spin-photon entanglement. Upon excitation of one
of the trion states (say, j"#+i, see Fig. 4.8), coherent interference between the
two spontaneous emission decay pathways automatically results in a state that is
entangled in the spin degree of freedom and both the polarization and frequency
(color) degree of freedom of the spontaneously emitted photon [11, 17, 56]:

j‰i D 1p
2
.j"i ˝ jiHI! C ı!i C j#i ˝ jVI!i/ (4.1)

While such entanglement in multiple degrees of freedom does not pose an inher-
ent limitation to the HOM-interference-based entanglement generation schemes
described before (provided each photon is jointly indistinguishable in both degrees
of freedom [38]), it does provide a serious impediment to the measurement of the
degree of spin-photon entanglement.

In order to prevent which-path information to leak to the environment, obscuring
entanglement and resulting in the measurement of a perfectly mixed state, some
form of quantum erasure [51] needs to be applied. Measurement of the photonic
arrival time with timing resolution,�t � 1=ı!, can result in such quantum erasure,
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Fig. 4.8 Level-structure of a single-electron-charged quantum dot (the case of a single hole
is similar). Upon excitation of one of the excited states, the ƒ-level structure ensure that the
spontaneously emitted photon is entangled with the spin state. However, this entanglement is
both in polarization and the frequency, making it challenging to verify unless quantum erasure
techniques are applied (Adapted with permission from [17])

as the bandwidth of such a detection scheme is much wider than the frequency
separation of the photons, and is therefore fundamentally unable to distinguish
between the different frequencies of the emitted light [17, 24, 50, 56]. For the
magnetic fields that are typically used to separate the optical transitions and allow
proper spin-polarization via optical pumping, the Larmor precession frequency
ı!=2� is at several 10s of GHz, corresponding to required detector speeds of 10s of
ps; at the time of writing, superconducting nanowire detectors were the only single-
photon detectors capable of such timing resolution [24, 50].

Alternatively, a non-linear process can be used to perform an effective mea-
surement of the arrival time of the photon, as was performed in [17]. There, a
few-ps optical pulse is mixed with the single photon in a non-linear crystal (PPLN
waveguide, in order to increase the interaction strength and work at the single-
photon-level [44]). By appropriate choice and filtering of the input- and output
frequencies of the converted light, a single 1550 nm photon could be detected,
conditional on exact overlap of the spontaneously emitted, QD-photon with the
short conversion pulse, thereby providing an accurate measurement of the exact
arrival time of the photon. We refer to Fig. 4.9 for a system diagram used in [17]
in order to verify spin-photon entanglement using such a time-resolved frequency
conversion technique. By combining coherent spin manipulation (in order to change
the effective measurement basis of the spin qubit) with the time-resolved, photonic
polarization measurement, entanglement between the spin and the photon could be
verified with a timing resolution of less than 8 ps [17].

Using tomographic methods, the full density matrix of the spin-photon entangled
pair was reconstructed in [15], the results of which are shown in Fig. 4.10. To
account for the effect of measurement statistics, an MLE method was used, as
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Fig. 4.9 Spin photon entanglement verification: full system diagram. See text for details. EOM:
electro-optic-modulator; (N)PBS: non-polarizing beamsplitter. The grey shaded box indicates the
frequency quantum erasure setup (Adapted with permission from [17])

described in [31], that enforces positivity of the density matrix (and, therefore,
prevents unphysical density matrices that could occur via measurement errors).
A spin-photon entanglement fidelity of 0.92 was extracted, still primarily limited
by the timing resolution (for the 8 ps used, the theoretical limitation due to timing
resolution only would be 0.95, resulting in a bound of the remaining errors – readout,
manipulation, dephasing, imperfect generation – of 0.05 or less). This value is
comparable, at the time of writing, to the best results obtained in atomic systems,
and exceeded only by the trapped ion system [54], and allows for a significant
reduction in the amount of overhead required for entanglement purification [15]
when compared to lower fidelity systems [24, 50, 56].

4.5 Coherent Frequency/Wavelength Conversion in

Quantum Dots

In order to increase the distance over which spin-photon entanglement can be used,
which in turn limits the distance between successive nodes in a quantum repeater
system, both the decoherence rate of the spin qubit and the loss rate of the photonic
qubit need to be addressed. The former can, in principle, be tackled by dynamical
decoupling techniques that can increase the the T2-decoherence time by a series
of successive, nested, spin-echo sequences that exploit any slow dynamics of the
decohering environment [10]; however, at the time of writing, such dynamical
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Fig. 4.10 Reconstructed (MLE analysis – see text) density matrices (a,b) of the quantum dot spin-
photon entangled states. (c) Histogram of the obtained fidelity of the entangled state, after analysis
(Monte-Carlo simulation) of the propagation of measurement errors (Adapted with permission
from [15])

decoupling of quantum dot spin qubits was still an active field of research, and yet
to be demonstrated [16].

Reducing the loss of the photonic qubit, however, can be tackled by coherently
converting the emission wavelength of the quantum dots (around 900 nm) to the
lowest-loss fiber-transmission wavelengths around 1320 and 1550 nm. Coherent
frequency conversion at the single-photon level was recently demonstrated by
several groups [2, 17, 44, 65], all of whom relied on the enhancement of a non-linear
optical process (typically, a �.2/-type non-linearity in periodically poled lithium
niobate, PPLN [43]) in a waveguide that confines the energy and increases the field
strength.

The PPLN waveguides used for verification of spin-photon entanglement [17, 44]
can be used for transfering the 900-nm spin-photon entanglement to telecom
(1550 nm) wavelength, and the frequencies used were chosen accordingly. How-
ever, the non-polarization-degeneracy of PPLN waveguides needs to be properly
accounted for, and limited the generation of full 1550-nm entanglement in that
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Fig. 4.11 Proposed setup for generation of a full, rail-encoded, 1550-nm photon-spin entangled
pair (Adapted with permission from [17])

experiment. Figure 4.11 demonstrates a possible extension of those frequency
converters into a dual-rail encoded, full 1550 nm spin-photon entanglement setup.
Alternatively, a 1550 nm, polarization-entangled pair setup is illustrated in Fig. 4.12.

As the frequency quantum erasure used in [17] is technically only required for
the verification of entanglement [38], CW versions of the pulsed converters could
be used as well. That way, frequency-entangled spin-photon pairs [24] could be
obtained at 1550 nm, where the polarization degree of freedom could be removed
by means of recombining both branches of the downconversion setup. Commercial,
non-polarization maintaining optical fiber is highly sensitive to polarization fluctu-
ations, whereas the frequency/phase degrees of freedom are rather robust, making
such a frequency-encoded qubit attractive from a systems point of view – this is also
the basis of DPS-QKD schemes [29].

Another interesting aspect of the demonstrated frequency conversion techniques
is that they are in principle capable of overcoming one of the major downsides
of self-assembled quantum dots: the inhomogeneous broadening of their emission
spectra. As the growth process is stochastic, with essentially different sizes and
amounts of strain for each single quantum dot, their quantization energies and
emission wavelengths vary drastically from dot to dot. This severely limits their
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Fig. 4.12 Proposed setup for generation of a polarization qubit at 1550 nm, entangled with the
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(frequency quantum erasure as indicated, with variable timing on the 8 ps pulse; removal of
the PBS), or 1550-nm frequency encoded qubit (quantum erasure of the polarization degree of
freedom, CW frequency conversion) (Adapted with permission from [17])

photonic indistinguishibility, and the first demonstrations of HOM-interference
of indistinguishible photons from InAs quantum dots were either performed on
successive photons emitted by the same quantum dot [48], or required signifi-
cant amounts of postselection and in-situ tuning via DC-Stark effects [42]. By
appropriately tuning the wavelengths used in the conversion process, nominally
frequency-distinguishible quantum dots can be made to emit at the same (converted)
wavelength, as shown in [2] for different emission lines from the same quantum
dot. This aspect should give a significant boost to the scalability of self-assembled
quantum dots in the context of large-scale quantum networks.

4.6 A High-Speed Link to Entangle Quantum Dot Spins

The considerations of both speed, intrinsic scalability, high-fidelity spin-photon
entanglement, high-fidelity spin control and coherent frequency conversion all make
the charged quantum dot system an interesting candidate for use in large-scale
quantum networks and repeaters. While the high intrinsic speed of the quantum dot
system would in principle allow an operation frequency (repetition rate) exceeding
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1 GHz, the naive implementation illustrated in Fig. 4.3 would drastically lower the
operational speed. That is because for every link, the quantum memory (spin) needs
to be preserved for the full round trip of (half) the link-length between adjacent
nodes: only then is it known whether its photon and that of the neighboring link
yielded a proper interference signal and resulted in an entangled link.

In practice, one would want the distance between neighboring links to be as large
as possible, to avoid the large overhead associated with a full repeater station as
much as possible. Consequently, in realistic scenarios, repeater stations would be
positioned 10s–100s of km from each other, which would drastically reduce the
clock speed of the system. However, even at the lowest-loss fiber wavelengths, the
photon losses are still at 0.2 dB/km, resulting in 20 dB loss over 100 km – in other
words, the emitted photons will, most of the time, not interfere at all! Hence, in
most cases, the repeater link remains idle for no good reason. Several architectural
patches to this problem have been proposed, including using many parallel links and
multi-mode quantum memories [39, 53].

Jones and coworkers [32] proposed an interesting variant, that does not require
the establishment of many links in parallel, and instead uses a single link between
two single-mode memories. The layout of their proposal is illustrated in Fig. 4.13.
Instead of having a probabilistic Bell-state analyzer in the middle between the two
links (an HOM-analyzer), an entangled-photon-pair source placed in the middle
between the two nodes emits entangled photon pairs, one photon each to each node.
The repeater nodes, in turn, emit their spin-entangled photons, at the highest rate
possible (synchronized to the entangled photon pairs, potentially up to GHz rate).
If and only if one photon from the entangled pair arrives at the Bell-state analyzer
near the node, the node stops emitting, sends a signal to the other node, and stores
the spin state (memory function). Otherwise, the repeater fires again and overwrites
the previous memory. This way, the repeater node effectively postselects for those
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Fig. 4.13 Proposed setup for increasing the probability of success of generating remote entangled
pairs in neighboring nodes of a quantum repeater. The use of an entangled photon source in
the middle dramatically reduced the down-time of each available photonic link by effectively
postselecting for those cases where one half of the photonic entangled pair reaches the repeater
node – otherwise, the repeater simply fires with its a priori fast repetition rate. See text for details
about this proposed pipelining scheme (Adapted with permission from [32])
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events where already half the distance of the link was crossed by the entangled
photon before temporarily halting emission. At that time, all depends on what
happens to the other half of the entangled pair: if it reaches the other node (now
dependent on the other photon only traversing half of the link distance), then that
node waits as well, sends its signal to the opposite side, and after a round trip, each
node is aware of whether entanglement was generated successfully. While a round
trip of waiting is still needed to establish entanglement, the repeater now does not
need to operate at an a priori low emission rate, and the postselection on arrival of the
first photon allows for a scaling improvement as a function of repeater link length,
L: / exp.�L=2/ i.o. / exp.�L/. The only overhead involved in the scheme is the
realization of an entangled photon pair source, indistinguishible from the emitted
quantum dot photons, and the addition of a second Bell-state analyzer (one HOM-
analyzer at each node, rather than a single analyzer in the middle).

4.7 Conclusion

As an inherently scalable, solid-state system, self-assembled quantum dots are
expected to be a prime candidate-technology for future quantum repeaters. Their
high intrinsic speed, when properly accounted for at the architectural level, and
natural photonic interface were exploited in proof-of-principle experiments of
all-optical, coherent spin manipulation [9, 47], and high-fidelity spin-photon entan-
glement [15, 17, 24, 50]. Coherent frequency conversion [17, 44] allows for low-loss
photonic transport along commercial optical fiber systems, and helps overcome
the inhomogeneous distribution of emission wavelengths among different quantum
dots [42, 48]. In this sense, individual building blocks have been demonstrated, with
operational fidelities that are, in principle, sufficient for large-scale systems. What
remains, is the combination of these building blocks into a working, small-scale and
system-level demonstrator – undoubtedly a tremendous engineering challenge, yet
likely within reach.
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Chapter 5

Optical Lattice Clocks for Precision Time

and Frequency Metrology

Masao Takamoto and Hidetoshi Katori

5.1 Introduction

The precision measurement of time and frequency is the foundation of science such
as precision spectroscopy [18, 20], determination of fundamental constants [17],
precision test of relativity [50] and astronomy [32, 52]. An atomic clock not only
gives us an access for studying fundamental science, but also forms the core part
of the infrastructure such as the global navigation satellite system (GNSS) and the
synchronization of data transfer in broadband networks. The definition of time, the
“second”, has been given by atomic clocks referencing a microwave transition of
cesium (Cs) atoms at �9.2 GHz since 1967. With the improvement of accuracies by
one order of magnitude every decade, Cs-clocks’ accuracies have reached �10�15

and some fountain-type clocks have achieved � 4 � 10�16 [6, 21]. The invention of
the laser and the subsequent development of technologies, such as laser cooling and
trapping of atoms [11, 12, 43], optical frequency synthesis with optical frequency
combs [15, 56] and stable laser sources with narrow linewidth [61], have opened
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up a new area of research in atomic clocks. Optical clocks, which reference optical
transitions instead of microwave transitions, are expected to improve the fractional
accuracy and stability by 5 orders of magnitude, corresponding to the increase in the
transition frequencies. The most promising candidate for optical clocks had been
considered to be a singly trapped ion clock that references an optical transition of
an ion confined in a Paul trap [13], in which a single ion is trapped near the zero
of the quadrupole field, and therefore is ideally isolated from electric perturbations
of the trap. AlC ion clocks with quantum logic spectroscopy have presented the
uncertainty at 8.6 � 10�18 [9]. However, the quantum projection noise (QPN)
[25] in observing a single ion requires days of averaging time to achieve their
anticipated accuracy. In contrast, optical lattice clocks proposed in 2001 [26, 28]
exploit the magic wavelength protocol to facilitate the observation of many atoms N

simultaneously, thus reducing the averaging time by a factor of N.
In this review, we outline the principles of optical lattice clocks in Sect. 5.2,

and describe the operation of optical lattice clocks, such as the Lamb-Dicke
spectroscopy in Sect. 5.3 and the absolute frequency measurements in Sect. 5.4.
Section 5.5 describes the frequency comparison of two optical lattice clocks near
the quantum projection noise limit. In Sect. 5.6, we present the development of
cryogenic Sr optical lattice clocks to reduce the blackbody radiation (BBR) shift
to achieve the fractional uncertainty of 10�18. Finally, we discuss the frequency
comparison of two remote clocks using an optical fiber link as a tool for relativistic
geodesy in Sect. 5.7.

5.2 Operating Principles of an Optical Lattice Clock

An atomic clock provides a reference for frequency, relying on the constancy of
atomic transition frequency. The performance of an atomic clock can be expressed
by its accuracy and stability. The accuracy is given by a fractional frequency
excursion of ı�/�0, where ı� is the deviation of clock’s frequency from the
unperturbed atomic transition frequency �0. The frequency deviation is caused by
the perturbations such as ambient electro-magnetic fields including BBR, Doppler
shifts due to the thermal motions of atoms and atomic collisions. The stability
indicates how quickly the clock’s frequency settles to the final uncertainty and
can be evaluated by the Allan standard deviation. The stability of atomic clocks
is limited by the QPN as

�y .�/ D 1

K

��

�0

1p
N�=Tc

; (5.1)

where � is the averaging time, K (�1) is a slope coefficient dependent on the
excitation sequence (i.e., Rabi or Ramsey), �� the linewidth of the spectrum, N

the number of atoms observed in a cycle time of clock operation Tc. In terms of
accuracy, a single ion isolated near the zero of the quadrupole field is an ideal



5 Optical Lattice Clocks for Precision Time and Frequency Metrology 95

Fig. 5.1 (a) Schematic of the optical lattice potentials. The interference pattern of lattice lasers
confines a large number of atoms in the Lamb-Dicke regime. (b) Calculated lattice light shifts for
the 1S0 (blue line) and 3P0 (red line) states of the clock transition of Sr atoms for the lattice laser
intensity IL D 10 kW/cm2. The magic wavelength �m where the light shifts of both states cancel is
calculated to be �m � 800 nm

reference, however the QPN of observing the ion (N D 1) severely limits the stability
of such ion clocks. Assuming �0/�� D1015, in order to achieve the instability of
�y � 10�18, ion clocks would require an averaging time of � �106 s (�10 days).
In contrast, optical lattice clocks probe a large number of atoms trapped in an
interference pattern of lasers as illustrated in Fig. 5.1a. Such an optical lattice clock
would dramatically improve the QPN limit by 1/

p
N, which requires only � D 1 s

by interrogating N � 106 atoms simultaneously.
When the atoms are exposed to the light field with an electric field E(�L, eL, r),

atoms are subjected to the light shift potential

Ui .�L; eL; r/ D �1
2
˛i .�L; eL/ jE .�L; eL; r/j 2; (5.2)

where ˛i(�L, eL) is the polarizability of atoms in the state i (Dg, e), �L and eL the
wavelength and the polarization of the light field respectively, and r the position of
the atoms. By introducing a spatial interference pattern of laser fields as shown
in Fig. 5.1a, the atoms can be confined in a region �x much smaller than the
wavelength �L in periodic potential wells [22], which is referred to as an optical
lattice. Since the confinement �x is smaller than the wavelength �p of a probe
laser wavelength, the Lamb-Dicke condition, where the first order Doppler shift
is suppressed [14], holds for spectroscopy in an optical lattice.

The electronic states of atoms trapped in an optical lattice are energy-shifted by
light shifts. The clock transition frequency �(�L, eL) of atoms in the lattice light field

� .�L; eL/ D �0 C 1

h

	
Ue � Ug



D �0 � 1

2h
�˛ .�L; eL/E2 C O

	
E4


; (5.3)
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deviates from the unperturbed transition frequency �0 by a differential light
shift of the trapping potential (Ue � Ug)/h, where �˛(�L, eL) is a difference of
polarizabilities between the ground (g) and excited (e) states of the clock transition.
However, if the polarizabilities for the ground and excited states become equal
(�˛(�L, eL) D 0) by tuning the lattice laser wavelength, the differential light shift
of the trapping potential can be cancelled out regardless of the lattice laser intensity.
Figure 5.1b shows the light shifts of the ground (1S0) and excited (3P0) states
of the clock transition for strontium (Sr) atoms for the lattice laser intensity of
IL D 10 kW/cm2. The wavelength where the light shifts get canceled out can be
found at �L � 800 nm. This particular wavelength is referred to as the magic
wavelength �m. The light shift dependence on the lattice laser frequency �L is
calculated to be d�/d�L � 1 Hz/GHz for IL D 10 kW/cm2 near the magic frequency
�m D c/�m, allowing to share the clock’s uncertainty of 10�18 by sharing the lattice
laser frequency with the fractional uncertainty of 10�9 [27].

For the choice of atomic species, taking into account the sensitivity to the
polarization of lattice lasers eL, the electronic states of total angular momentum
J D 0 are attractive to minimize the polarization dependent light shifts and thus to
define the magic condition solely by the wavelength [26]. As the transition between
the J D 0 states is highly forbidden, we rely on the hyperfine mixing by a non-zero
nuclear spin I of relevant isotope to obtain a finite transition dipole moment. These
conditions are satisfied for the Alkaline-earth (like) atoms in group 2 and 2B, such
as Be, Mg, Ca, Sr, Zn, Cd, Hg and Yb, which have two valence electrons. The
optimal choice of atomic species might be finally determined by insensitivities to
the parameters such as collisions, BBR and hyper polarizability. The optical lattice
clocks have been developed with Sr, Yb and Hg atoms thus far.

5.3 Lamb-Dicke Spectroscopy in a

Magic-Wavelength Lattice

The first demonstration of optical lattice clocks was performed with 87Sr isotope
confined in a one-dimensional (1D) optical lattice (Fig. 5.2a) [55]. The hyperfine
mixing induced by the nuclear spin I D 9/2 weakly allows the clock transition
1S0 (F D 9/2) � 3P0 (F D 9/2) with a natural linewidth of 1 mHz (Fig. 5.2b).
For the preparation of ultracold atomic samples in an optical lattice, the 87Sr are
cooled down to �1 mK by the dipole-allowed transition (1S0 � 1P1) and the
intercombination transition between singlet and triplet states (1S0 � 3P1) allows
cooling atoms further down to a few �K [37].

The optical lattice potential is created by a pair of counter-propagating lasers at
the magic wavelength, which forms a 1D standing-wave potential with the depth of
U0 � 10 �K for the typical laser intensity of IL � 15 kW/cm2 and the typical beam
diameter of �100 �m. The clock laser, which is superimposed onto the lattice laser,
excites the atoms confined in the lattice. Along the direction of the clock laser (the
x-axis), the amplitude of the atomic motion �x � 40 nm is less than the clock laser
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Fig. 5.2 (a) Lamb-Dicke spectroscopy in a 1D optical lattice. Atoms trapped in the bound levels of
1D optical lattice with the potential depth U0 are probed by the clock laser, which is superimposed
onto the lattice lasers. Optical pumping laser is irradiated to spin-polarize atoms. (b) Energy
diagram for 87Sr (I D 9/2) atoms. Hyperfine mixing between 3P0 and 3P1 weakly allows the clock
transition 1S0 (F D 9/2) � 3P0 (F D 9/2) with a natural linewidth of 1 mHz. Following the spin-
polarization of atoms to the stretched state 1S0 (mF D C9/2 or �9/2), the clock transition is probed
by the clock laser

Fig. 5.3 (a) Vibrational spectrum of the clock transition. A narrow carrier spectrum with motional
sidebands is observed. The inset illustrates the vibrational structure of a lattice on the clock
transition. (b) Determination of the magic wavelength. The differential light shift for two laser
intensity is plotted as a function of the lattice laser wavelength �L. The magic wavelength where
the differential light shift becomes zero is found at �m D 813.420(7) nm. The inset shows the
measurement of differential light shift as a function of the lattice laser frequency �L (Dc/�L) near
the magic frequency �m

wavelength �c D 698 nm, which guarantees the Lamb-Dicke condition. Figure 5.3a
shows the laser-induced fluorescence of atoms on the 1S0 � 1P1 transition as a
function of the clock laser detuning. The excitation on the clock transition induces
the reduction of the fluorescence, which is referred to as a shelving technique [38].
The spectrum features the vibrational structures due to a quantized atomic motion
in a harmonic potential of a lattice. A sideband at higher frequency corresponds
to the heating sideband which excites higher vibrational state �n D C1, while the
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Fig. 5.4 (a) Zeeman components of the clock transition with a bias magnetic field of jB0j � 50
�T. (b) Rabi spectrum of the clock transition with a Fourier-limited linewidth of 2 Hz

lower one is referred to as the cooling sideband, which excites lower vibrational
state �n D �1. The central narrow spectrum, which is free from the Doppler shift
and photon-recoil shift, allows the high precision spectroscopy in an optical lattice.

In order to determine the magic wavelength, the intensity dependence of the light
shifts (d�/dIL) is measured as a function of the lattice laser wavelength �L as shown
in Fig. 5.3b. The magic wavelength, where the intensity dependence of light shifts
disappears, was determined to be �m D 813.420(7) nm [54]. Recently, more precise
evaluation of the lattice light shifts enabled us to determine the magic wavelength
at MHz -level precision (the inset of Fig. 5.3b).

By applying a bias magnetic field B0, the carrier spectrum splits into ten
(D2I C 1) Zeeman components for I D 9/2 as shown in Fig. 5.4a. The electronic
state for clock spectroscopy is prepared by spin-polarizing atoms to the stretched
states of either mF D C9/2 or �9/2 with optical pumping. By probing the clock
transition with a clock laser stabilized to a high finesse cavity, a Fourier-limited
linewidth of 2 Hz is observed for a Rabi- -pulse with a duration of 400 ms
(Fig. 5.4b).

5.4 Absolute Frequency Measurement of Optical Lattice

Clocks With 87Sr

The absolute frequencies of the 87Sr clock transition were measured by referencing
the Cs clocks. At the University of Tokyo, the Sr clock was frequency-linked to
the TAI (International Atomic Time) via the National Metrology Institute in Japan
(NMIJ) using a GPS carrier phase link [53]. The absolute frequency measurements
were performed by three groups, Tokyo-NMIJ [53], JILA [33] and SYRTE [29].
Their measurements were consistent with each other within the fractional uncer-
tainty of 7.5 � 10�15, which triggered the adoption of the Sr optical lattice clocks
as a “secondary representation of the second” in 2006.
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Fig. 5.5 Recent measurements of the absolute frequency of 87Sr clock transition ([3, 7, 16, 24, 29,
58]). The dashed line and the shaded area represent the recommended frequency and its uncertainty
assigned by the BIPM in 2013

Figure 5.5 summarizes the recent measurements of the absolute frequencies
of 87Sr by five groups [3, 7, 16, 24, 29, 58]. The dashed line and shaded area
represent the recommended frequency �Sr D 429 228 004 229 873.4 Hz and its
fractional uncertainty of 1 � 10�15 assigned by the BIPM in 2013 [4]. Recently,
the SYRTE group improved the absolute frequency measurement by comparing
the Sr clocks with three primary Cs fountain clocks [30]. This measurement gives
the fractional uncertainty of 3.1 � 10�16, where the measurement uncertainty is
limited by Cs clocks. For Yb optical lattice clocks, the NIST group measured the
transition frequency of 171Yb to be �Yb D 518 295 836 590 865.2(7) Hz [31], which
is consistent with the measurements reported by the NMIJ [60] and the KRISS
groups [8]. For Hg optical lattice clocks, the SYRTE group measured the transition
frequency to be �Hg D 1 128 575 290 808 162.0(6.4) Hz [35].

5.5 Frequency Comparison of Optical Lattice Clocks Near

the Quantum Projection Noise Limit

To evaluate clocks’ performance at an uncertainty smaller than that of Cs or any
other state-of-the-art clocks, direct comparison between two clocks with similar
performance is necessary. We developed two optical lattice clocks with 1D and
3D lattice configurations, which are designed to minimize atomic collisions and
lattice polarization effects, and compared them directly [2]. However, the achieved
frequency stability of �y(�) � 10�14 � -1/2 did not exceed the typical stabilities of
ion clocks [9]. This is because the stability is degraded by the Dick effect induced
by the frequency instability of the clock laser, which masks the QPN limit of optical
lattice clocks.

The Dick effect is attributed to the down-conversion of high frequency noise
of a clock laser by the sampling process [48]. The stability of a clock laser is
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limited by the thermal noise of the reference cavity (e.g. �y � 1 � 10�15 at 1 s
for the typical cavity length of 10 cm with ULE mirrors) [41] operated at room
temperature. The Dick effect limits the stability to �y(�) � 10�14 � -1/2, which is
two orders of magnitude worse than the QPN limited stability of �y(�) � 10�16 �
-1/2 for �� D 6 Hz and N D 103.

We demonstrate frequency comparison between two optical lattice clocks by
sharing the clock laser. The response of the atoms to the laser frequency fluctuations
ı! (t) can be expressed by the sensitivity function g(t). The population fluctuation
ıpn of the n-th cycle due to the laser frequency noise ı! (t) can be expressed as

ıpn D 1

2

Z .nC1/Tc

nTc

g.t/ı!.t/ dt: (5.4)

The servo loop converts this population fluctuation ıpn into the frequency fluctua-
tion and degrades the stability of an atomic clock. However, if we interrogate two
atomic ensembles synchronously by sharing the clock laser, both atomic ensembles
observe the common frequency noise ı! (t) and the population fluctuations ıpn

correlate for both clocks. Therefore, if we take the beat note of the frequencies of
two clocks, the frequency fluctuation, which originates from laser frequency noise
ı! (t) can be rejected. In this condition, the relative stability of two clocks is solely
limited by the QPN of interrogated atoms.

An experimental setup is shown in Fig. 5.6a. A single clock laser with a  -pulse
duration of Ti D 100�400 ms interrogates the two clock transitions synchronously.
The cycle time of Tc D 1.4 s includes the time for cooling, trapping and detection.
The clock laser’s frequency is independently stabilized to the atomic resonance of
87Sr and 88Sr in the 1D and 3D lattice respectively by tuning f87 and f88 of frequency
shifters with digital servo loops. The beat note f88 � f87 corresponds to the isotope
shift �62 MHz and is used for the evaluation of the clock stabilities.

Figure 5.6b shows the relative stabilities of the 1D and 3D optical lattice clocks.
The open circles represent the relative stability for asynchronous interrogations.
The short-term stability (� < 10 s) corresponds to the stability of the clock laser
which is limited by the thermal noise of the ULE cavity. After averaging a few tens
of seconds, the Allan deviation starts to decrease due to the feedback control to each
atomic resonance with the Nyquist frequency of fN D 1/(4 � 1.4 s). For an averaging
time � > 50 s, the Allan deviation decreases with �y(�) � 6.0 � 10�15 � -1/2. The
closed circles show the relative stability for synchronous interrogations. The Allan
standard deviation decreased by �y(�) � 3.7 � 10�16 � -1/2 and reached 3 � 10�17

for an averaging time of � D3 500 s. This relative stability is clearly below the Dick
effect limit (dashed line) owing to cancellation of the clock laser’s noise and is
approaching the QPN limit for N D 1 � 103 and �� D 6 Hz (solid line, Fig. 5.6b).

Such a stable comparison of clocks is useful to evaluate the systematic uncer-
tainties of optical lattice clocks in a short averaging time as discussed in Sect. 5.6.
This scheme is also applicable to the frequency comparison of two remote clocks
by sharing the local oscillator with the help of the coherent optical frequency links
as discussed in Sect. 5.7.
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Fig. 5.6 (a) Experimental setup for frequency comparison of two optical lattice clocks with 1D
and 3D lattice configurations. (b) The Allan standard deviation of the frequency difference between
two clocks. Open circles represent the Allan deviation for asynchronous interrogation. Closed

symbols represent the Allan deviations for synchronous interrogation with the interrogation time Ti

of 100 ms (closed circles), 200 ms (closed triangles) and 400 ms (closed rectangles), respectively.
The Allan deviation with Ti D 400 ms reaches 1 � 10�17 with the averaging time of 2000 s. The
dashed line shows the Dick limit for asynchronous interrogations and the solid line the QPN limit
with Ti D 100 ms
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5.6 Cryogenic Strontium Optical Lattice Clocks

Nearly QPN limited stabilities for �103 atoms of �y � 10�16 at 1 s have been
demonstrated by employing synchronous interrogation scheme as described in
Sect. 5.5 or by using clock lasers referencing long cavities [24, 40]. Such high stabil-
ities enable accessing 10�18 uncertainty in a few hours of averaging time, allowing
extensive studies to unravel systematic uncertainties due to collisions between spin-
polarized fermions, hyper-polarizability effects and multipolar interactions of atoms
with optical lattices [42, 58]. After careful evaluations of these effects, the frequency
shift due to the BBR remains as a dominant source of uncertainty in optical lattice
clocks with Sr and Yb.

The BBR shift is given by the Stark shift h�BBR � � 1
2�˛

˝
E2
˛
T
, which is

induced by the ambient thermal field
p

hE2iT � 8.3 V cm�1 at T D 300 K, where
�˛D˛e�˛g is a difference of polarizabilities between the excited and the ground
states of the clock transition. The BBR shifts for Sr and Yb atoms are orders of
magnitude larger than that of AlC ions [46]. Optical lattice clocks based on mercury
atoms have been proposed [20] and demonstrated [35], owing to their less sensitivity
to the BBR.

The BBR shift for the 1S0 � 3P0 clock transition of Sr was calculated [27, 44],
and was recently evaluated to be �2.2778(23) Hz at T D 300 K based on the
measurement of static polarizability difference between the two clock states and a
modeling of the dynamic contribution [36]. For Yb atoms, a static polarizability [51]
and the dynamic contribution [5] were evaluated experimentally. Such investigations
allow correcting the BBR shift at room temperature within an uncertainty of 5 �
10�18 for Sr and 1 � 10�18 for Yb. In order to realize an uncertainty of 1 �
10�18, the fluctuation and inhomogeneity �T of the ambient temperature T has
to be controlled to within �T D14 mK for Sr and �T D30 mK for Yb, which
remains an experimental challenge. As the BBR energy density hE2iT varies as T4

following the Stefan-Boltzmann law, the BBR shift and its temperature dependence
(d�BBR=dT / T3) rapidly decreases with the surrounding temperature T. For Sr
atoms, at the temperature of T D 95 K, the BBR shift reduces to �22 mHz. By
controlling the temperature of such a cryogenic environment with �T D0.5 K, the
fractional uncertainty due to the BBR shift can be reduced to 1 � 10�18.

Two cryo-clock setups (Fig. 5.7) are developed, namely Sr-1 and Sr-2, with
temperature-controlled chambers maintained at T1 and T2, respectively. The cryo-
genic environment is realized by surrounding the region for clock spectroscopy with
a cold chamber of volume �6 cm3. The chamber is cooled down to 95 K by a Stirling
refrigerator, which is actively controlled to stabilize the cryo-chamber temperature
within a few mK. The measurement uncertainty of the temperature sensors is �22
mK, which corresponds to a fractional frequency uncertainty of 5 � 10�20 at 95 K
and is well below the targeted uncertainty of the clock.

Ultracold Sr atoms are transported over 23 mm into the middle of the cryogenic
chamber by a moving lattice (Fig. 5.8). In order to introduce the atoms and lasers, the
chamber has two apertures with diameters of �1 D 0.5 mm and �2 D 1 mm. Inside
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Fig. 5.7 Picture of cryogenic Sr optical lattice clocks. Two setups (Sr-1, Sr-2) are developed to
evaluate the BBR shift and the performance of cryogenic clocks from the frequency comparison of
the two. Each clock setup is constructed inside a volume of (60 cm)3

Fig. 5.8 Experimental setup of cryogenic Sr optical lattice clocks. A moving lattice transports
atoms from the lattice-loading position (0 mm) to the middle of the cryogenic chamber (20 mm),
where the clock transition is probed by a clock laser. After exciting the clock transition, atoms are
transported back to the initial position (0 mm) and the excitation fraction is measured from the
fluorescence observed by a photomultiplier tube (PMT)

the chamber, the atoms are spin-polarized and then excited by a Rabi   -pulse on
the clock transition. After exciting the clock transition, atoms are transported back
to their initial position with a moving lattice. The fluorescence of atoms on the
1S0 � 1P1 transition is detected to measure the excitation probability on the clock
transition.
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Fig. 5.9 Clock transition
spectra for two Sr optical
lattice clocks operated at
T1 D 95 K and T2 D 296 K. A
spectrum with 2 Hz linewidth
resolves the frequency shift
induced by room-temperature
BBR

Figure 5.9 shows the spectra of the clock transitions obtained by scanning the
clock laser frequencies simultaneously for Sr-1 and Sr-2. The filled circles show the
spectrum of Sr-1 at T1 D 95 K and the empty ones show that for Sr-2 at T2 D 296 K.
A Fourier-limited linewidth of 2 Hz clearly resolves the room-temperature BBR
shift of about 2 Hz.

To evaluate the uncertainties of cryogenic clocks, both clocks were operated at
the cryogenic temperature of T1 D T2 D 95 K and then compared directly. The Allan
deviation reduces with the integration time � as �y(�) D 1.8 � 10�16 � �1/2 and
reaches 2 � 10�18 for � D6 � 103 s. The obtained Allan deviation is close to the
QPN limit for Ti D 300 ms and N D 103 atoms, which is estimated from the atomic
fluorescence. After averaging 11 separate measurements, each of duration � D4 �
103 � 1 � 104 s, the frequency difference is measured to be �0.5 ˙ 0.9 mHz, which
corresponds to the fractional frequency difference of (1.1 ˙ 2.0) � 10�18. The total
systematic correction and uncertainty for the clocks’ comparison are evaluated to
be 73.9 mHz and 1.9 mHz, respectively. Finally, the agreement between the two
cryo-clocks is evaluated to be �0.5 mHz ˙ 0.9 mHz (stat) ˙ 1.9 mHz (sys) [57].

5.7 Frequency Comparison Between Distant Optical Lattice

Clocks Towards Relativistic Geodesy

At the fractional uncertainty of ı�/�0 � 1 � 10�18, the gravitational red shift
ı�/�0 D g�h/c2 due to the relativistic time dilation becomes measurable even for
a height difference �h D 1 cm, where g � 9.8 m s�2 is the acceleration due to
gravity and c is the speed of light. The height difference of �h � 30 cm was
observed in the frequency comparison of two AlC ion clocks [10]. Recently, optical
frequency transfer using an optical fiber has been developed extensively for the
fiber length up to 920 km [45] and featured a few orders of magnitude better
accuracy and stability than the microwave frequency transfer using a satellite link.
Such technologies will allow establishing the network of optical clocks to map the
earth’s gravitational potential. As a step towards the relativistic geodesy, we have
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established a 30-km-long optical fiber link between RIKEN and the University of
Tokyo (UT) to compare two distant cryogenic Sr clocks at the fractional uncertainty
of ı�/�0 � 10�18 [1]. The straight-line distance and the estimated height difference
between the two clocks are �15 km and �16 m, respectively.

For frequency link using a telecom fiber, a transfer laser at the wavelength around
1.55�m (C-band) is generally used to take advantage of the low loss of silica-fibers.
A frequency comb is then used to bridge the frequency gap between the clock and
transfer lasers. However, in this configuration, frequency combs with the typical
stability of �y � 10�16 at 1 s [39, 49] may degrade the potential link stability. In our
transfer setup, we use a transfer laser at 1.397 �m, which is twice the wavelength of
the Sr clock transition, to replace a frequency comb by a frequency doubling crystal.
For fiber transfer at 1.397 �m, the water-peak attenuation due to the OH radicals
in fibers introduces relatively larger absorption loss. In our 30-km-long fiber, the
transmission loss of 30.4 dB at 1.397 �m is 7 dB larger than the loss at 1.55 �m,
but the loss is small enough for the fiber noise canceller [34] to work.

The experimental setup for the phase-coherent link including a fiber noise
canceller is shown in Fig. 5.10a. At the local site (RIKEN), a transfer laser at
1.397 �m is frequency-doubled by a periodically-poled lithium niobate (PPLN)
waveguide and is phase-locked to a clock laser at 698 nm. The transfer laser is sent
to the remote site (UT) through a 30-km-long fiber. At the remote site, a repeater
laser is phase-locked to the transfer laser to boost the received signal intensity. The
repeater laser is sent back to the local site through the fiber and a feedback signal
for a fiber noise canceller is generated by measuring the beat note between the
repeater laser and the transfer laser at the local site. A clock laser at the remote
site is phase-locked to the repeater laser. The clock lasers at both sites, therefore,
are phase-locked for the servo bandwidth less than �800 Hz, which is determined
by the bandwidth of the fiber noise canceller.

Figure 5.10b shows the stability of fiber transfer evaluated by the modified Allan
deviation (MDEV) [47]. Open circles represent the MDEVs for the free-running
fiber, while the closed ones represent those for the noise-cancelled fiber. Although
the stability of the noise-cancelled fiber follows the calculation (dashed curve) for
short averaging time � < 0.1 s, it deviates from the calculation due to the clock lasers’
instabilities. To evaluate the transfer stability for long averaging time � > 0.1 s, we
connected two fibers at UT to establish a 60-km-long fiber link (closed triangles).
The stability of the 60-km-long fiber link is measured to be 4 � 10�17 � �3/2, which
corresponds to the stability of 1 � 10�17 � �3/2 for the 30-km-long fiber link. For
averaging time � >2 s, the MDEVs have ���1/2 slopes, which probably result from
the white frequency noise caused by the mechanical instability of the interferometer
for the beat note measurement.

The clock lasers are stabilized to the Sr clock transitions by applying the offset
frequencies ıfLO and ıfRE to the frequency shifters at local and remote sites,
respectively (Fig. 5.10a) . The frequency difference ıf D ıfRE � ıfLO gives that of
the gravitational shift between the two sites. The timing of the clock sequence is
synchronized with a time delay �d D nL/c � 160 �s, where L � 30 km is the length
of the fiber and n � 1.5 is the refractive index. We anticipate that the two Sr clocks
at RIKEN and UT, 15-km-apart, may be compared with a stability of 1 � 10�17 for
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Fig. 5.10 (a) Experimental setup for frequency comparison of two distant optical lattice clocks via
a phase-stabilized optical fiber link. (b) The modified Allan deviation for the fiber transfer. Open

circles show stabilities of the one-way beat frequency measured with the 30-km-long free-running
fiber. Closed symbols show those for the stabilized fiber. Closed triangles show the stability of the
60-km-long fiber link. A 60-km-link shows the stability of 1 � 10�17 with a few seconds averaging
time

1 s averaging time by synchronously operating the two clocks. This clock stability
allows detecting gravitational potential difference of 10 cm for a measurement time
of 1 s, which will provide clocks with new application as a probe for the geodesy.

5.8 Future Prospects

Optical lattice clocks raised the possibility of ultra-stable and accurate timekeeping
by applying the “magic wavelength” protocol on optical lattices. Since the proposal
of the scheme in 2001, the optical lattice clocks are being developed by more than
20 groups around the world, and the clocks are surpassing the uncertainty of the
current SI second, becoming one of the most promising candidates for the future
redefinition of the second. We have demonstrated clock uncertainties approaching
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10�18 by reducing the BBR shifts and by improving the relative stability of two
clocks close to the QPN limit by employing synchronous interrogation scheme.

The accurate clocks and an optical frequency link between the clocks are the
essential building blocks for the relativistic geodesy. Armed with these devel-
opments, we have started the geodetic demonstrations between RIKEN and the
University of Tokyo. The precision of the clock comparison targets 1 � 10�18

that is far beyond the accuracy of the Cs clocks defining the SI second. For a
practical use in monitoring the temporal variation of the gravitational potential,
long-term continuous operation of the clocks is required, which demands new levels
of technical development for stabilized lasers.

In parallel, we are developing technologies to miniaturize optical lattice clocks,
aiming at transportable clocks to demonstrate “relativistic” car navigation. Such an
endeavor will allow investigating resource mapping, cavities and magma chambers
underneath the earth crust by utilizing the measured gravitational red shift caused
by the local change of gravitational potential. As a possible direction for the
clock miniaturization, we assume the use of a “hollow-core photonic crystal fiber”
in which atoms are confined by the magic wavelength lattice. The preliminary
experiments are in progress for the “fiber clock”. Such transportable ultraprecise
atomic clocks will function as a gravitational potential meter.
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Chapter 6

Cold Atom Magnetometers

Yujiro Eto, Mark Sadrove, and Takuya Hirano

6.1 Introduction

Because the magnetic field is a ubiquitous quantity, the improvement in sensitivity
and spatial resolution of magnetometers has an impact on various fields rang-
ing from fundamental physics to biomedical engineering. Examples include the
search for permanent electric dipole moments [11] to biomagnetic measurements
[15]. Recent progress in superconducting quantum interference device (SQUID)
magnetometers has opened up novel applications like clinical usage of a magnetoen-
cephalograph system in general hospitals for diagnosis of central nervous system
illnesses such as epilepsy or brain tumors [26]. Further progress will enable more
detailed identification of electrical activity in the brain and revolutionize medical
and neurological research.

Atomic magnetometers offer an alternative to SQUID magnetometers [4]; the
advantage of the former is that the optical method doesn’t require cryogenic instru-
ments, so small low-cost implementation may be possible. In 2003, Kominis et al.
demonstrated magnetic field sensitivity of 5:4 � 10�16 T/

p
Hz with a measurement

volume of 0.3 cm3 by a spin-exchange relaxation-free atomic magnetometer [16].
They used K atoms heated to 180 ıC with a spatial resolution limited by the
diffusion of the K atoms. The effect of diffusion can be suppressed by laser cooling
techniques and the spatial resolution can be improved by using laser-cooled atoms.
Ultimate control over the motion and the position of atoms has been attained for
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quantum degenerate atoms; the atoms are cooled into the smallest phase space
volume allowed by Heisenberg’s uncertainty relation [13]. Therefore, Bose-Einstein
condensates (BECs) offer an ideal testing ground to experimentally study the
fundamental performance of optical magnetometers [27].

There are several schemes for BEC magnetometry. One method is to convert
the density profile of atoms into the potential energy variations that are created by
the magnetic field. Demonstration of 3�m spatial resolution with 3� 10�10 T/

p
Hz

sensitivity was reported in 2005 by Wildermuth et al. [33]. As they discussed in [33],
the sensitivity would be improved by two orders of magnitude by utilizing Feshbach
resonance [32].The phenomenon of Feshbach resonance itself may be used as a
magnetometer by taking advantage of its sensitivity to the magnetic field [29].

The most straightforward scheme for BEC magnetometry may be the mea-
surement of the Larmor precession in a spinor BEC where the spin degrees of
freedom are liberated by optically trapping the BEC. One measurement method
is the nondestructive phase-contrast imaging of magnetization using off-resonant
circularly polarized light. Using this method, Vengalattore et al. reported a field
sensitivity of 8:3 � 10�12 T/

p
Hz over a measurement area of 120�m2 [31].

Another method is based on the spin-echo technique. A very attractive feature of
this method is robustness against ambient field fluctuations. By designing the spin-
echo sequence, the response function of the magnetometer can be controlled; similar
to magnetic resonance techniques, it is possible to cancel the unwanted evolution of
atomic spins due to ambient fields fluctuating randomly on timescales longer than
the length of the sequence, whereas oscillating magnetic fields matching the echo
period constructively affect the spin dynamics [22].

We have demonstrated a magnetic field sensitivity of 12 � 10�12 T/
p

Hz over
a measurement area of 100�m2 using spin-echo BEC magnetometery [5]. In this
chapter, we explain the fundamentals of BEC magnetometry using the spin-echo
technique. In the following section, the experimental setup and the principle and
practice of spin rotations are reviewed. Next, experimental results of Ramsey
interferometry [24] and Larmor precession [6] are explained. In the third section,
BEC magnetometry is discussed, followed by a summary.

6.2 Control of Spinor Condensates

6.2.1 Experimental Setup

First we briefly introduce our experimental setup and procedure for creation and
manipulation of the spinor BEC. Figure 6.1a shows an illustration of the vacuum
chamber system to capture and cool the 87Rb atoms [21]. We employed a double
magneto-optical trap (MOT) to accumulate the ultracold 87Rb atoms. In order to
efficiently load the atoms into the 2nd MOT, the 1st MOT is continuously pushed
out by irradiating it with a weak near resonant cw beam (push beam). Using this
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Fig. 6.1 (a) Overall experimental setup. (b) The BEC is confined in the crossed FORT. After
the atoms are released from the FORT, the spin components are separated by the SG method. (c)
Picture of the experimental setup inside the magnetic shield room

setup, more than 109 atoms are collected in the 2nd MOT. The spin state of atoms
in the 2nd MOT is converted to the F D 2, mF D 2 hyperfine state by optical
pumping. After the 2nd MOT is turned off, the spin-polarized atoms are captured in
a Ioffe-Pritchard (clover-leaf) type magnetic trap.

A BEC consisting of 106 atoms is created using radio frequency (RF) evaporative
cooling in the magnetic trap. The BEC is then loaded into a crossed far-off-
resonant optical trap (FORT) (Fig. 6.1b), and thereby the spin degrees of freedom
are liberated. The axial and radial frequencies of the FORT are 30 and 100 Hz,
respectively. After 200 � 300ms hold time in the crossed FORT, typically 3 �
4 � 105 atoms remain in the F D 2;mF D �2 state. The whole experimental
setup is installed inside a magnetic shield room whose walls consist of permalloy
plates (Fig. 6.1c), and a laser diode source with a low ripple noise of less than 2�A
(Newport 505) is used as the current source for our z-axis Helmholtz coils in order to
control the external magnetic field. The magnetic field along the x- and y-direction
is carefully compensated by using two Helmholtz coils with similar laser current
sources. As shown in Fig. 6.1b, the RF pulses are applied along the y-direction to
manipulate the spin state of the BECs. The details of manipulation of spin using
the RF pulses are described in Sects. 6.2.2, 6.2.3, and 6.2.4. The techniques of
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the Stern-Gerlach (SG) separation and time-of-flight (TOF) absorption imaging are
used to measure the atomic density distributions of each mF component. After a
time of flight of 15 ms, the probe beam is incident from the x-direction.

6.2.2 Rabi Oscillations and Ramsey Interferometry

We now begin our discussion of interferometry using an F D 2 spinor condensate.
For magnetometry applications, the basic phenomenon of interest is Larmor pre-
cession of the spin which takes place when the spin is displaced from the magnetic
field axis. A classical picture of the precessing spin can provide a good heuristic
understanding of the interferometer behaviour and can be shown rigourously to give
the same qualitative precession as a full quantum treatment. In particular, the rate of
change of angular momentum S for a magnetic dipole � in an external field B0 is
given by

dS

dt
D � � B0; (6.1)

where � is the vector cross product. For the study of spin precession it is permissable
to ignore components of the angular momentum other than spin and so we associate
the angular momentum S with the spin of the atoms in the condensate. The Larmor
frequency of the precession is given by

f0 D gF�BB0=h; (6.2)

where gF is the g factor, and �B is the Bohr magneton. Assuming that only the linear
Zeeman effect is present, this frequency also corresponds to the energy spacing
between adjacent magnetic sublevels in the atoms of the condensate.

At the beginning of the experiment, atoms in the condensate have their spin
anti-aligned to the magnetic field and precession is thus inhibited. Interferometric
interrogation of the magnetic field strength, i.e. magnetometry, can be achieved if
the spin can be misaligned to the field direction or “tipped” to use the term common
in NMR literature. The tipped spin is allowed to precess for a given time before
it is rotated back into alignment with the field. The interferometric phase acquired
during this sequence depends on the Larmor precession rate and thus, by Eq. 6.2 on
the ambient magnetic field B0. Indeed, if there is a way to read out the spin direction
periodically, there is no need to perform the second rotation. This fact was used
in the first spinor atom interferometer demonstrated which utilized non-destructive
imaging to interrogate the spin direction of a spin-1 condensate[31]. Nonetheless,
in general at least two rotations are required: one to begin the phase accumulation
by tipping the spin and another to read out the phase accumulation.
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a b c

Fig. 6.2 Schematic diagram of the effect of an RF pulse applied by a coil. (a) and (b) are in the
laboratory frame. In (c) the system is rotating about the z axis at the Larmor frequency

6.2.2.1 Rotation by Radio Frequency Pulses

We will first consider how a single RF pulse affects the spin of the condensate.
We make the following assumptions: (1) The magnetic bias field is small enough
that second-order Zeeman effects can be ignored, i.e., the energy spacing between
adjacent mF levels is assumed to be constant and (2) changes to the spin of
individual atoms, e.g. through spin-changing collisions can be ignored. Finally (3)
the magnetic field is constant across the condensate. As we shall see later, these
assumptions are too simple for real experiments and also leave out the possibility
of some interesting physics. However, by making the three assumptions above, it
becomes possible to construct a simple analytical model for the interferometer.

A resonant magnetic RF pulse (i.e. one whose frequency matches the Larmor
frequency) applied by a coil wound about the y axis as shown in Fig. 6.2 rotates the
spin in the z-x0 plane. The reason that the field due to the pulse, which may be weak
relative to the bias field, can effect such a rotation is at the heart of nuclear magnetic
resonance (NMR) applications and is explained in various textbooks on the subject
using a simple classical model of the spin (see, for example, [7, 12]). We briefly
repeat the argument here for completeness.

We identify the unit vectors x, y, and z with the directions of the x, y and z

axes respectively. As shown in Fig. 6.2a, an alternating current of frequency f0 is
applied to the coil producing an alternating magnetic field B1.t/ D B1y sin.!0t/
along the y axis. (Note that if the coil is far from the origin, so that the RF field
propagates in free space before reaching the condensate, a magnetic field along the y

direction is not present. In that case, the argument can be made using magnetization
instead of the magnetic field itself. See Ref. [7] for details). Figure 6.2b shows
a situation equivalent to (a) where the oscillating magnetic field B1 is replaced
by counter-rotating fields BC

1 .t/ D .B1=2/Œy sin.!0t/ C x cos.!0t/� and B�
1 .t/ D

B1=2Œy sin.!0t/ � x cos.!0t/�. Since the components aligned along x cancel, the
total field is identical to B1.t/. Finally, we transform to a frame rotating clockwise
at frequency!0. In this frame, the precession due to the field B0 is exactly cancelled.
This is equivalent to the bias field itself being cancelled and so it is not shown in



116 Y. Eto et al.

Fig. 6.2c. On the other hand, in the rotating frame, BC
1 is always aligned with the

y0 axis while the B�
1 component now rotates anti-clockwise at 2!0. Noting that the

effect of the fast rotating B�
1 component in this frame will average to zero, it is

clear that the important field, with respect to its influence on the spin, is the now
constant BC

1 component. Due to this field, the spin will precess about the y0 axis in
the x0-z plane and thus in the x-z plane in the laboratory frame, with additional free
precession about the z axis. Although all of the situations shown in Fig. 6.2a–c are
equivalent, only the (c) makes clear the rotational effect of the RF pulse.

6.2.2.2 Mathematical Formalism of Spinor Rotation

Having established that the effect of an RF pulse is to tip the spin in the x-z plane,
we can make use of the mathematical formalisms used to describe the rotation of
spinors in 3-dimensions. In particular, we note that by decomposing the spin state
of the condensate into its magnetic sublevels mF , we can make use of the Wigner D

matrix operators to perform any three dimensional rotation of the spin state. Here,
we will focus on the spin-2 case explored in our experiments, but the formalism is
valid for any spin. We note that Ref. [30] provides detailed calculations including
the form of the D matrices for up to spin F D 5. Additionally, we give the form of
the Wigner D2 matrix explicitly in Ref. [24].

In the Euler angle notation, the Wigner matrix for spin-2 is D2 � D2.˛; ˇ; 
/.
It is a function of three angles ˛, ˇ and 
 but only rotations involving ˇ produce
couplings between mF levels [25]. Rotations about the z-axis are parameterized by
˛ and 
 and merely change the phase of the spin state.

We also introduce another measure of the spin rotation – the projection of the
spin on the z axis which is given by

hSzi D
X

mF

j mF
j2mF: (6.3)

This is nothing other than the expectation value of the Sz operator over the mF

sublevels. This quantity has the advantage that it undergoes simple sinusoidal
variation at the Larmor frequency, rather than the more complicated oscillations
of the mF components themselves.

6.2.2.3 Experimental Verification of Rotation by RF Pulses (Rabi

Oscillation)

Having considered theoretically the effect of an RF pulse on the condensate spin
and the formalism for spinor rotation, we now consider the experimental verification
of the rotation effect of an RF pulse. Practically, the exact rotation effected by an
RF pulse of a certain frequency, amplitude and duration is empirically determined
by performing experiments while varying the same parameters. Typically, the most
convenient parameter to vary is the pulse length t. We can therefore represent the
rotation about the y axis as ˇ D !ˇt, where!ˇ is a function of the RF power and the
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Fig. 6.3 Experimentally measured Rabi oscillation (points) of the spinor BEC subject to an RF
pulse for time t for mF levels as indicated to the left of each plot. Solid lines show the behaviour
predicted by the spin-2 rotation matrix (see text) (This figure is adapted from Ref. [24])

RF frequency. We will explicitly evaluate the frequency dependence later, but the RF
power is assumed to be fixed. In the rotating frame, for a given initial wavefunction
�i in the mF basis, the spin state wavefunction �f after application of an RF pulse
is given by

�f D d2.!ˇt/�i: (6.4)

Figure 6.3 shows the population of each mF sublevel after an RF pulse of length t

is applied to the condensate. The population of each component is seen to follow
the variation predicted by the Wigner rotation matrix with a fitted value of !ˇ D
2��8:8 kHz. This behaviour may be considered to be a multi-level Rabi-oscillation.

We note two types of pulses which are of particular importance to interferometry.
Firstly, the �=2 pulse whereˇ D �=2 rotates the spin by 90ı about the y axis leading
to precession of maximal amplitude. The �=2 pulse can also rotate the spin back into
alignment with the z axis for readout using the Stern-Gerlach method. Secondly, the
� pulse where ˇ D � is also of importance as we will see in Sect. 6.2.4. Typically,
a �-pulse is applied after the spin has already been tipped and it causes the spin
to rotate 180ı about the y axis. Heuristically, the spin-evolution can be pictured as
“reversing” itself after the application of a �-pulse leading to a refocussing of spins
precessing at different rates and thus increasing the effective coherence time of the
interferometer sequence (see in Sect. 6.2.4). A more rigourous treatment of this so
called spin-echo effect may be found in Hahn’s seminal publication Ref. [8].
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show the prediction of Eq. 6.5 (This figure is adapted from Ref. [24])

Finally, before moving on to interferometry, we consider the frequency depen-
dence of the rotation effected by the RF pulse. Due to the resonant nature of
the rotation effect, i.e., the need for the RF pulse frequency to match the Larmor
frequency of the spin in the magnetic field B0, we expect that the rotational effect
of the pulse will fall off as a smooth function of jıj D jf � f0j over some frequency
range �. By analogy with the standard Ramsey interferometer [23], we model this
frequency dependence by a sinc function:

ˇ.f / D ˇ0�.f / D ˇ0sincŒ.f � f0/=��; (6.5)

where ˇ0 is the rotation caused by the pulse at exact Larmor resonance and
sinc.x/ � sin.�x/=.�x/. The frequency dependent effect of the pulses can now
be modeled by the operator d2Œˇ0�.f /� applied to the initial wavefunction �i
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Figure 6.4 shows the experimentally measured population of each spin state
(circles) as a function of the frequency of an applied RF pulse whose pulse
duration was empirically set to achieve an approximate �=2 pulse at resonance. The
solid lines in Fig. 6.4 show the fitted frequency response using Eq. 6.5. The fitted
parameters were found to be f0 D 198 kHz, � D 37 kHz and ˇ0 D 0:95 � �=2.

6.2.3 Ramsey Interferometry

In typical Ramsey interferometry [23], two �=2 pulses separated by a constant
interrogation time T are applied to a sample and interference fringes are produced by
sweeping the frequency of the pulses. To model such an interferometer, we also need
to model the phase accumulation due to free precession between pulses and that due
to the phase difference between the RF pulses after the interrogation time T has
elapsed. In Ref. [24] it was found that these effects could be modeled by rotations
about the z axis. Formally, we apply the rotation matrix D2.ˆ.f ;T/; ˇ � 0; 
 � 0/,
where ˆ.f ;T/ D 2�.f � f0/T is the combined phase accumulation due to Larmor
precession and the time between pulses. Since ˇ D 0, the rotation matrix is
diagonal with matrix elements D2

mF ;mF
D exp.�imFˆ/. Finally, the rotation operator

d2Œ.�=2/�.f /� is applied again to give the output state. The interference fringe is
given by the absolute value of the complex amplitudes for each mF component, i.e.,
the relative population:

j�f j2 D jd2Œ.�=2/�.f /�D2.ˆ; 0; 0/d2Œ.�=2/�.f /��ij2: (6.6)

The result of this matrix multiplication is explicitly evaluated in Ref. [24], but we
omit the slightly unwieldy expression here since Eq. 6.6 is sufficient for evaluating
the fringe profile. To justify Eq. 6.6, we used an argument considered from the point
of view of the laboratory frame and ignored the (constant) amount of precession
that occurs during the �=2 pulses. It is, of course, possible to achieve the same
expression for the interferometer in the rotating frame introduced earlier. However,
the point of view of the laboratory frame makes clear the dependence of the
accumulated phase on the detuning of f from the Larmor frequency f0.

In order to see the effect of a Ramsey interferometer sequence on a spin-2
condensate, it is informative to first inspect the raw data in the form of normalized
column densities taken from SG measurements of the BEC at various frequencies.
Figure 6.5 shows such data taken for an ambient field strength B0 estimated at
300 mG with T D 290�s. The applied �=2 pulses were 29�s in duration. At the
estimated value of B0, the calculated Larmor frequency is 210 kHz. Figure 6.5 shows
that the final spin state rotates from the mF D C2 to the mF D �2 state and back
again as the frequency is varied and that it does so with an amplitude that decays as
a function of the detuning from the Larmor frequency f0.

In Fig. 6.6 we show the actual interferometer fringes derived by calculating the
population in each mF state for the data shown in Fig. 6.5. The upper five panels of
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Fig. 6.5 Raw column densities � from absorption images of the BEC. The population is seen
to oscillate between the mF D ˙2 states as a function of frequency with the amplitude flowing
through the mF D C1; 0, and �1 states (This figure is adapted from Ref. [24])
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Fig. 6.6 Measured interference fringes. The top five panels show relative population measure-
ments P for each mF component as labelled to the right. Discrete points showing the experimentally
measured mF populations and solid lines show the fitted theory from Eq. 6.6 in each case. The
bottom panel shows hSzi calculated from the data in the upper five panels using Eq. 6.3 (This
figure is adapted from Ref. [24])



6 Cold Atom Magnetometers 121

Fig. 6.6 show the relative populations for each mF state as a function of frequency
while the bottom panel shows hSzi. We have also checked the dependence on the
interrogation time T and found that the fringe period displayed the expected 1=T

dependence of a Ramsey interferometer [24].
The experimentally measured fringe pattern for each mF state shows good

qualitative agreement with the predictions of Eq. (6.3). The mF D C1, 0 and �1
component fringes contain oscillations with a smaller period than the fundamental
seen for mF D ˙2. In particular, the mF D 0 fringe oscillates with essentially twice
the repetition rate of the principle oscillation. We note that oscillations with shorter
period than the fundamental rotation period are also found in multi-beam optical
interferometers [9]. Although the individual mF components show non-sinusoidal
variation [24], the expectation value of Sz shows sinusoidal variations at the Larmor
frequency as expected.

The sensitivity of the interferometer was estimated by finding the smallest
distinguishable phase difference within the experimental error of each point. We
calculated the average phase sensitivity to be about 0.6 radians or 10% of a fringe.
We will see in the following Sections that the key to making a magnetometer with
better sensitivity is removing sources of dephasing such as magnetic gradient fields
inside the vacuum chamber along with using more sophisticated pulse sequences to
reduce the effect of dephasing.

6.2.4 Observation of Larmor Precession in an Inhomogeneous

Magnetic Field

In Sect. 6.2.2, we assumed that the magnetic field across the BEC was constant.
This simplified our treatment of the interferometer and allowed us to arrive at a
simple closed form expression for the interferometer fringes. However, in reality,
the field experienced by the BEC is never uniform across the entire condensate.
This is because inhomogeneities in both the spatial and temporal dependence of
the magnetic field are difficult to remove entirely. In this section we review the
influence of inhomogeneity of the external magnetic field on the Larmor precession
of the BEC spin. The experiments were performed under an external magnetic field
of 30�T with a gradient of 3�T/cm along the axis of the trap (z direction) [6].

Figure 6.7a shows hSzi measured while changing the interrogation time between
two �=2 pulses, T C�T. Here, T D 130�s and�T is a small variation in the range
of one or two Larmor periods. The clear oscillation indicates that spin precession is
successfully observed.

Next we measured hSzi values for various T C �T. As shown in Fig. 6.7b,
the contrast of the Larmor precession signal, which corresponds to the peak-to-
peak values of hSzi, was found to decrease with increasing T. This effect can
be explained by the increase in spatial variations in the distribution for each mF

component which were experimentally observed to increase with T. This is because
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ΔT

T+ΔT

a

b

Fig. 6.7 Observation of Larmor precession. (a) hSzi as a function of � at T D 130�s. (b) T

dependences of hSzi (filled squares) and h NSzi (empty circles) for various values of � . The curves
are fitted exponential decay envelopes to guide the eye (Copyright 2013 The Japan Society of
Applied Physics)

the observed spatial structure in the density distributions indicates different rates
of Larmor precession depending on the position within the BEC. Because hSzi is
calculated using the total atom number for each mF component, and not using the
atom number at local position, any variation in the precession rate will eventually
lead to dephasing and reduction of the fringe contrast.

In Fig. 6.8a–c typical density distributions for each mF component are shown by
solid curves. The results were obtained for a precession time of T D 13:03ms. The
appearance of double peaked distributions in some components (Fig. 6.8a, c) along
with a shift in the position of the mF D ˙2 peaks (Fig. 6.8b) are signatures of the
spatial variation of the spin orientation discussed above.

More quantitatively, we can calculate the z-position dependence of hSzi as shown
in Fig. 6.8d–f. From these results, we find that the spin orientation clearly depends
on the z-position, showing a helical pattern which has also been observed by other
groups [2, 10].
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Fig. 6.8 Observation of helical spin texture using the Ramsey interferometer. (a)–(c) Typical
density distributions of each mF component at T D 13:03ms. (d)–(f) Spatial profiles of hSzi.
(d)–(f) are calculated from (a) to (c), respectively. The spatial variation of hSzi implies that the
spin orientation along the z-axis is twisted. The solid and broken curves in each figure indicate
experimental data and numerical simulation results (from coupled Gross-Pitaevskii equations),
respectively (Copyright 2013 The Japan Society of Applied Physics)
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For a magnetic field gradient of dBz=dz D 30mG/cm, the distance �z along
which the spin helix is twisted by � for T D 13:03ms is estimated to be
�„=ŒgF�B.dBz=dz/T� ' 18�m [6] with gF and �B being the g-factor and the Bohr
magneton, respectively, which is comparable to the Thomas-Fermi radius in the z

direction ' 21�m.
Inhomogeneity of the magnetic field is not the only cause of fringe contrast

decay. We also investigated the effect of temporal fluctuations by considering
measurements of hSzi made over different interferometer runs. The empty circles
in Fig. 6.7b indicate the average of three hSzi measurements, h NSzi, for the same
T C�T [6]. In the absence of time dependent magnetic field fluctuations, hNSzi would
be the same as hSzi. However, comparison of hSzi with h NSzi in Fig. 6.7b shows that
the peak-to-peak value of h NSzi decreases faster than that of hSzi, which is halved
at T � 4ms. This difference between hNSzi and hSzi originates from the temporally
fluctuating magnetic field along the z-direction as discussed in Ref. [6]. Under the
assumption of Gaussian fluctuation, this behavior of h NSzi corresponds to a standard
deviation of �z D 7 nT.

6.2.5 Effect of Spin Echo for Inhomogeneous Spin Precession

As shown in the previous section, field inhomogeneities create spin helicity and
reduce the repeatability of the precession signal. In this Section we show that these
effects induced by the field inhomogeneity can be greatly suppressed by using the
technique of spin echo in which a single � pulse is applied in the middle of the
interrogation period of length T. These results were first reported in Ref. [6].

Figure 6.9a, b show the � dependence of h NSzi, where the spin echo technique is
applied only for the case of (b). The error bars for each data point show the standard
deviation over three measured hSzi values. The error bars in Fig. 6.9b (with spin
echo) are smaller than those in Fig. 6.9a (without spin echo). This indicates that
the influence of different precession frequencies in each measurement due to the
fluctuating magnetic field is reduced by spin echo. Applying the spin echo technique
thus improves the repeatability of the experiment [6] and improves the performance
of the interferometer.

In order to quantitatively evaluate the effect of spin echo, we estimated the
coherence time from the fringe amplitude of h NSzi measured as a function of � . We
obtained a fringe amplitude of 1:68˙0:05 from a sinusoidal fit to the data as shown
in Fig. 6.9b. In contrast, the fringe amplitude was 1:14 ˙ 0:14 when the sequence
without spin echo was applied (Fig. 6.9a). Figure 6.9c shows the T dependence of
the fringe amplitude. The coherence time, T2, is estimated by fitting an exponential
decay curve to the data, giving T�

2 D 3:0˙ 0:4ms and T2 D 12˙ 1ms in the cases
without and with spin echo, respectively. Note that the spin echo can only remove
the effect of magnetic field fluctuations which are slower than the time scale set
by the interval T between the two �=2 pulses [28]. Thus, in this experiment, T2 is
limited due to unavoidable rapid temporal fluctuations of the Bz field.
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ΔT

a

b

c

Fig. 6.9 Comparison of spin precession with and without spin echo. (a) and (b) show the �
dependence of h NSzi at T D 1:5ms. The spin echo technique is applied only for (b). (c) T

dependence of the fringe amplitude obtained from the sinusoidal fitting seen in (a) and (b). The
curves are exponential functions fitting to the data (Copyright 2013 The Japan Society of Applied
Physics)

In Refs. [35, 36], it was theoretically predicted that spin echo can refocus
inhomogeneous spin precession due to a gradient magnetic field. We confirmed this
effect of spin echo as reported in Ref. [6] by calculating the variance of Sz defined by

h�2Szi D
C2X

mFD�2
m2

FNmF
=Ntotal � hSzi2:
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Fig. 6.10 T dependence of
h�2Szi. The squares and
circles are the experimental
data without and with spin
echo respectively. The solid

and broken curves indicate
the corresponding numerical
simulations (Copyright 2013
The Japan Society of Applied
Physics)
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The variance, h�2Szi, takes a value between 0 and 1 for spatially homogeneous
spin precession, and the average for one Larmor period, h�2Szi, is 0.5. A helical
pattern such as that shown in Fig. 6.8a–c increases the value of h�2Szi. Figure 6.10
shows the experimental values and numerically calculated values of h�2Szi as a
function of T. When spin echo is applied, the experimental values of h�2Szi are
relatively reduced at all T. This indicates that the spin echo refocuses the spatially
inhomogeneous precession by the gradient magnetic field.

6.3 Ultracold Atom AC Magnetometry

For the characterization of non-static magnetic fields, magnetometers that have
high sensitivity to alternate-current (AC) magnetic fields are necessary. Specialized
magnetometers for AC magnetic fields can be constructed using the spin-echo
[3, 22, 28] and dynamical decoupling techniques [1, 18, 19], which reduce the effect
of slow magnetic field fluctuations, magnetic field gradients and other undesirable
inhomogeneous field characteristics.

In this section, we review our study of spin-echo AC magnetometry using a
87Rb F D 2 BEC [5]. Using some of the techniques described in the previous
sections along with a particular time sequence (described below), we were able to
perform magnetometry with a sensitivity of 12 pT/

p
Hz at a spatial resolution of

about 100�m2. As a test of our magnetometer, we detected magnetic field noise
synchronous with the power supply line at frequencies of 50 and 100 Hz. It is
interesting to note that in the case of this supply line noise, application of a phase
reversed magnetic field can suppress the noise down to the order of 1 nT, a fact
which should be useful for generating clean magnetic field environments in future
studies using BECs.
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Fig. 6.11 The upper panel depicts the evolution of spin direction in x0-y0 plane. The lower panel

shows the RF Hahn-echo pulse sequence used for sensing a weak AC magnetic field (This figure
is adapted from Ref. [5])

The specific time sequence used for AC magnetometry has been discussed in
Ref. [5] and is depicted in the bottom panel of Fig. 6.11. For completeness, we
review the sequence below. The RF Hahn-echo pulse sequence (�=2-�-�=2) was
applied to an initial jF D 2, mF D �2i state in the crossed FORT. The first �=2
pulse rotates the spin vector from the z-direction to the x0-direction and induces
Larmor precession in the x0-y0 plane as shown in Fig. 6.11. The RF source used to
generate our interferometer pulses was synchronized with the 50 Hz AC power line.
The upper panel in Fig. 6.11 depicts the evolution of the spin vector in the x0-y0 plane
between two �/2 pulses, where the frame is rotating at the Larmor frequency of f0 D
gF�BBz=h. When we apply a time-varying magnetic field b.t/ along the z-direction,
the spin direction in the x0-y0 plane is changed by � D gF�B

„ Œ
R �=2
0

b.t/dt �
R �
�=2

b.t/dt�

relative to the �x0-direction due to the presence of the AC magnetic field b.t/ (shown
by solid arrows in the top panel of Fig. 6.11). The maximum � variation for a single
frequency field, b.t/ D bAC sin .2�t=�AC/, is reached when the total precession time
between two �=2 pulses, � , is equal to �AC. The angle � yielded by b.t/ is converted
to Sz, by the application of a second �=2 pulse, and the relationship between the
expectation value of Sz, hSzi, and b.t/ can be expressed by

hSzi D �2 cos

(
gF�B

„ Œ

Z �=2

0

b.t/dt �
Z �

�=2

b.t/dt�

)
: (6.7)

In the case that bAC D 0 (shown by dotted arrows in the top panel of Fig. 6.11.),
the spin direction returns to the F D 2, mF D �2 state (hSzi D �2). Therefore
measurement of hSzi in principle allows sensitive detection of weak AC magnetic
fields.

Our initial tests of the AC magnetometer used a purposely introduced AC
magnetic field of adjustable amplitude. Figure 6.12 shows the measured value
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Fig. 6.12 Operation of the AC magnetometer using the Hahn echo sequence. The hSzi values
were measured as a function of bAC, where a single frequency AC magnetic field b.t/ is applied.
Each plotted point represents an average over multiple BEC measurements. The points at hSzi � 0

and other points are obtained from 60 and 30 times measurement, respectively. The error bars are
sample standard deviation calculated from 60 hSzi values (This figure is adapted from Ref. [5])

of hSzi versus bAC for Hahn echo sequences with � D 5ms (filled circles) and
15ms (empty circles), where b.t/ D bAC sin .2�t=�/, and bAC is the amplitude of
the introduced magnetic field. Cosine fits to the data are shown as solid curves.
Figure 6.12 shows that the phase variation in the x0-y0 plane is consistent with the
influence of the AC magnetic field as evidenced by the good agreement of the data
with the fitted cosine curves.

We will now discuss the sensitivity of the magnetometer. Firstly, we consider
the single measurement sensitivity ıbmin D ıhSzi=.dhSzi=dbAC/, where ıhSzi is the
uncertainty of hSzi in a single measurement. We will assume that ıhSzi is equal
to sample standard deviation calculated from the results of multiple experimental
runs. We found that ıhSzi at hSzi � 0 was 0.28 and 0.48 at � D 5 and 15ms,
respectively. From these values, the sensitivity was calculated to be ıbmin D 0:97

and 0:66 nT. As remarked in Sect. 6.2.5, it is important to note that the spin echo
technique can only remove the effect of slowly fluctuating ambient magnetic fields
whose period is longer than � . Faster fluctuations that vary for each measurement,
cannot be corrected for.

For this reason, we also evaluated the intrinsic sensitivity of the magnetome-
ter. This quantity is unaffected by temporal fluctuations which change between
measurements. To evaluate the intrinsic sensitivity, we divided the optical density
distribution of each mF component for a single measurement into the three regions
as shown in Fig. 6.13a. The value of ıhSzi is considered as the sample standard
deviation calculated from three data points hSzii, where the subscript i D 1 � 3

indicates the three regions obtained from a single BEC absorption image. To
avoid the effect of temporal magnetic field fluctuations we evaluate ıhSzi from
a single BEC absorption image. As discussed in Ref. [5], we theoretically and
experimentally confirmed that the shape of the atomic distribution of each mF

component in the optical trap is almost unchanged after a time-of-flight of 15 ms,
although the distributions become more spread out. Therefore, each value of hSzii
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Fig. 6.13 (a) The upper panel shows a typical optical density distribution measured at hSzi �
0. The lower panel shows the column density, where the optical density along y-direction is
integrated. The optical density distribution of each mF component is divided into three regions.
Taking into account the finite resolution of our imaging system (�7.5�m) [6], each region is
separated by 9.4�m. (b) ıhSzi calculated from single BEC image as a function of the total atom
number averaged over three regions, Natom, where the Natom is changed by increasing the region
along the y-direction, dy. The points and error bars indicate the ıhSzi averaged over the multiple
BEC measurements and standard error, respectively (This figure is adapted from Ref. [5])

reflects the value of hSzi in a different spatial region of the trapped BEC. Using
this method, we evaluated the intrinsic field sensitivity of the magnetometer to
be 94 ˙ 9 pT for � D 15ms with a corresponding ıhSzi of 0:069 ˙ 0:006. This
sensitivity corresponded to a region size of dy �dz D 15:7 �m �6:3 �m D 99�m2,
where dy and dz represent the length along the y- and z-direction of each region.
Finally, the intrinsic field sensitivity for N measurements per second was found to
be ıbN

min D ıbmin=
p

N D 12˙ 1 pT/
p

Hz, where N D 1=.15 � 10�3/.
To assess the performance of our magnetometer, it is valuable to compare the

observed experimental fluctuations with the standard quantum limited noise floor
or shot noise. Figure 6.13b shows ıhSzi calculated from a single BEC image
versus atom number averaged over three regions, Natom D †3iD1†

C2
mFD�2Ni;mF

=3,
where Natom is changed by increasing dy. The solid curve represents the atom shot
noise limited ıhSzi. Fluctuations in excess of atom shot noise limited values have
multiple origins including spatial distortion of the atomic distributions and their
corresponding optical images, limitations of the spin-echo method in correcting
for magnetic-gradient induced dephasing [35], and spontaneous pattern formation
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Fig. 6.14 � dependence of hSzi values after the Hahn echo sequence. Each point represents
the average over ten measurements with the error bars giving the standard deviation over those
measurements. (a) hSzi values measured without the artificial application of the AC magnetic field.
(b) hSzi values measured with application of an inverse phase magnetic field at 50 Hz (parameters
given in main text). (c) hSzi values measured with application of an inverse phase magnetic field at
50 and 100 Hz (This figure is adapted from Ref. [5])

[20], along with thermal atoms, whose Gaussian tails reduce the accuracy of
discrimination between the mF components in the Stern-Gerlach separation [5].

Our first practical test of the magnetometer was to use it in the production of
a cleaner magnetic field environment which may be useful for future experiments.
As shown in Fig. 6.14a, we measured hSzi as a function of � , this time without an
artificially introduced AC magnetic field. If the stray AC magnetic field in the region
occupied by the BEC fluctuates in a random manner with respect to amplitude,
frequency and phase, then we would expect that the observed values of hSzi would
also exhibit a random distribution [5]. However, hSzi was found to exhibit oscillatory
behavior indicating a stable AC stray magnetic field in our apparatus. We therefore
surmised that the stray AC magnetic field is mainly induced by the magnetic
field arising from the electronic devices surrounding the BEC apparatus. The field
produced by these devices is expected to be synchronous with the 50 Hz supply line.

Formally, the effect of a stray AC magnetic field is treated by introducing
the 50 Hz field b.t/ D b20 sin Œ2�t=.20 � 10�3/C �20�, into Eq. 6.7. By fitting
the resulting expression to our data (solid curve in Fig. 6.14a), we were able to
estimate the parameters of the stray AC field. We then applied an AC magnetic field
with the same parameters but opposite phase while repeating the experiment. The
results, shown in Fig. 6.14b, demonstrate that the variation of hSzi values is clearly
suppressed compared with Fig. 6.14a, suggesting that 50 Hz magnetic field noise
was reduced.

Further suppression of noise was achieved by fitting Eq. 6.7 to the data shown
in Fig. 6.14b, this time assuming the existence of a 100 Hz magnetic field, b10.t/ D
b10 sin Œ2�t=.10 � 10�3/C �10�. Based on the parameter values obtained, we further
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applied an inverse phase magnetic field at 100 Hz in addition to the application of
that at 50 Hz (Fig. 6.14c). As shown in Fig. 6.14c, hSzi is close to �2 for most values
of � , particularly when � � 10ms. As we note in Ref. [5], this result indicates that
magnetic field noise which is synchronous with the power supply line is strongly
suppressed by the application of an inverse phase field with frequency components
at 50 and 100 Hz. In particular, at � D 20ms, the value of hSzi is �1:7 ˙ 0:2,
consistent with an AC magnetic field b.t/ D b20 sinŒ2�t=.20 � 10�3/� with b20 D
1:1C0:2

�0:4 nT, implying that the magnetic field has been suppressed by almost one order
of magnitude when compared with the uncompensated case shown in Fig. 6.14a.

6.4 Summary and Future Prospects

We have explained the basics along with the applications of a spin-echo based
magnetometer. This magnetometer is sensitive to a specific AC magnetic field,
and its response function is adjustable by designing the parameters of the pulse
sequence. Because the effect of ambient magnetic fields fluctuating on time scales
longer than the length of the sequence is canceled, the magnetometer can operate
in realistic environmental conditions. We demonstrated the observation of weak
field noise that is synchronous with the power supply line, and by fitting the
measured data, we could suppress the synchronous noise down to the order of
1 nT by artificial application of an inverse phase AC magnetic field. We believe
this technique will facilitate various research and applications which require a
weak magnetic field regime. The sensitivity of the magnetometer is evaluated to
be 12 � 10�12 T/

p
Hz over a measurement area of 100�m2. This sensitivity is

comparable to the atom shot-noise limited value. We may approach closer to the shot
noise limit by improving our imaging system and lowering the field gradient [5].

It is possible to go beyond the standard quantum limit by atomic and optical
quantum-state control: Quantum noise is present in the atomic system and also
in the optical measurement system. The quantum fluctuations of a collective spin
system can be reduced below the standard quantum limit for spin squeezed states
[14]. Koschorreck et al. reported 1.6 dB enhancement over the projection-noise in
broadband atomic magnetometry using laser-cooled thermal 87Rb atoms [17]. In
their experiment, atomic spin was read out by quantum nondemolition measurement
via Faraday rotation of linearly-polarized incident light in the atomic gas. The shot-
noise limit in optical measurement can be overcome with optical squeezing. 3.2 dB
improvement in the sensitivity of an optical magnetometer based on the Faraday
effect in room temperature Rb atoms was reported by Wolfgramm et al. in 2010 [34].
Simultaneous squeezing of both the atomic spin state and the optical state together
with the ultimate control over motion and position of atoms in a BEC will give us a
final answer regarding the fundamental sensitivity limit of optical magnetometry.
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Chapter 7

Photonic Quantum Metrologies Using Photons:

Phase Super-sensitivity and
Entanglement-Enhanced Imaging

Shigeki Takeuchi

7.1 Introduction

Quantum information technology has been attracting a remarkable amount of
attention recently. The intrinsic features of quantum particles, like quantum super-
position, the uncertainty principle, and quantum entanglement, can be fully utilized
to realize novel functions in information processing and communications. Quantum
computers can solve some specific problems, such as factoring, much faster than
conventional computers. Quantum cryptography utilizes the uncertainty principle to
generate secure secret keys which can be shared by distant parties. Since the 1990s,
there has been tremendous technological progress towards the realization of these
applications.

Recently, “metrology” is emerging as a new target for quantum information
science. Some readers may wonder what the connection is between information
science and metrology. Suppose you are asked to accurately measure the thickness
d of a glass plate. The problem may be interpreted as how one can estimate the
parameter d with a variance as small as possible for a given number of physical
resources. In other words, the problem is how one can extract the information on
d as precise as possible with given experimental data. This example shows that
metrology and information science have a close connection. Quantum metrology
aims to realize novel functions which are impossible using only classical resources.

In this chapter, we will try to give a brief overview of this emerging field
mainly focusing on two topics: Optical phase measurements beyond the standard
quantum limit (SQL) and quantum optical coherence tomography (QOCT). The
sensitivity of an optical phase measurement for a given photon number N is usually
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limited by
p

N, which is called the SQL or shot noise limit. However, the SQL
can be overcome when non-classical light is used. QOCT harnesses the quantum
entanglement of photons in frequency to cancel out the dispersion effect, which
degrades the resolution of conventional optical coherence tomography(OCT).

First, the basic concepts of quantum optics will be briefly introduced. Second,
we explain why the sensitivity of phase measurements can be improved by utilizing
quantum resources. Third, recent experimental results that exceed the SQL [1] as
well as an application of this technology for microscopy [2] will be introduced.
Fourth, QOCT using frequency-entangled photons is introduced with the latest
experimental results [3]. Finally, we summarize this chapter and discuss the future
of this field.

7.2 Two Photon Interference

In this section, we briefly explain the basic concepts of quantum optics required to
understand the contents of this chapter. First, we introduce the concept of photon
number states in spatio-temporal modes, and the so-called “NOON state”. Then, we
explain the quantum interference of these photon number states at a beam splitter.

7.2.1 Photons in Spatio-Temporal Modes

A k photon state (k photon Fock state) jki is a state where k photons are in one
spatio-temporal mode [4].

jki D 1p
nŠ
.a�/kj0i (7.1)

Here a� (a) is a photon creation (annihilation) operator and j0i denotes the vacuum
state. An arbitrary state of light in one spatio-temporal mode can be written as
follows:

j i D
1X

kD0
Ckjki; (7.2)

where Ck is a complex amplitude. For example, a coherent state of light (e.g. laser
light) j˛i with an amplitude of ˛ can be expressed using Eq. 7.2 with

Ck D exp

��j˛j2
2

�
˛k

p
kŠ
: (7.3)
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Suppose we have a superposition of two states: one is the state where N photons
are in mode A and 0 photons are in mode B; the other is the state where 0 photons
are in mode A and N photons are in mode B. Such a superposition can be written as

j i D 1p
2
.jN; 0iA;B C j0;NiA;B/ ; (7.4)

where jN; 0iA;B is short hand for jNiAj0iB. This state is called the “NOON” state
due to the form of its equation [5]. Note that the NOON state given in Eq. 7.4 is an
“entangled” state since the state cannot be described as a simple direct product of
the arbitrary states in the two modes A and B.

7.2.2 Two-Photon Quantum Interference at a Beam Splitter

Here we introduce the concept of two-photon quantum interference at a beam
splitter. Suppose two ‘indistinguishable’ photons are incident on a beam splitter with
a reflectivity of 50 % (50:50 BS) (Fig. 7.1). If the photons behaved like classical
particles, there would be four cases: (1) the left photon is reflected and the right
one is transmitted. (2) The opposite case (the right photon is transmitted and the left
photon is reflected). (3) Both photons are reflected. (4) Both photons are transmitted.
Since a 50:50 BS reflects a photon with a probability of 50 %, it is logical to assume
that there is a probability of 50 % that a photon is emitted from both output ports
simultaneously. However, this probability is actually 0 due to quantum interference;
the probability amplitude of case (3) and case (4) have the same amplitude but
opposite sign, and thus completely destructively interfere.

Two-photon quantum interference is not only a typical example of the quantum
characteristics of photons, but also a process widely used in quantum information
science. This phenomenon is also called Hong-Ou-Mandel (HOM) interference [6].

Fig. 7.1 Hong-Ou-Mandel
two-photon interference.
When two indistinguishable
photons enter a half mirror,
the two cases shown on the
far right do not occur due to
quantum interference

BS

Destructive

interference
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7.2.3 Single-Photon and Multi-photon Interferometers

Next, let us consider the effect of phase on multi-photon interference using the
multiphoton interferometer depicted in Fig. 7.2. Now we assume a single photon
is put into each of the modes, A and B, so that they arrive at the beam splitter at
the same time. The two photons are then detected by two photon detectors C and
D, which can discriminate the incident photon numbers. A phase plate is used to
control the phase difference between mode A and B by altering the optical path
length of mode B. Because the total number of photons input to this interferometer
is two, there are three cases:

1. Photons are detected by detectors C and D one by one.
2. Both of the photons are detected by detector C.
3. Both of the photons are detected by detector D.

The probability of the first case P1;1 is given as follows.

P1;1 D jh0; 0jcda�b�ei� j0; 0iA;Bj2 D 0 (7.5)

Here we assume c D .a C ib/=
p
2; d D .ia C b/=

p
2 at the beam splitter. The

probability of the second case P2;0 is

P2;0 D jh0; 0j 1p
2

c2a�b�ei� j0; 0iA;Bj2 D 1

2
: (7.6)

A

B

C

D

Detector 

Detector 

BS Coincidence

Counter

f

Fig. 7.2 A schematic of a multi-photon interferometer. BS is a beam splitter with 50 % reflectivity,
and A, B, C and D denote optical modes. Photons are put into modes A and B, interfere at the BS,
and are then detected by photon number discriminating detectors C and D. The coincidence events
of specific outcomes are counted by a coincidence counter. The phase of the photons is shifted by
� in mode B
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Fig. 7.3 Coincidence probabilities of the multi-photon interferometer in Fig. 7.2. (a) Coincidence
probabilities with a pair of single-photon states input into modes A and B. (b) Normalized
coincidence probabilities with weak coherent light input to modes A and B. In both panels, Pn;m

are the probabilities that n and m photons are detected by detectors C and D respectively

Similarly, it is deduced that P0;2 D 1=2. This result means that regardless of
the phase, both of the photons are output to either mode C or D with a probability
of 1/2 (Fig. 7.3a). Note that these results are the mathematical proof of the HOM
interference we explained in Sect. 7.2.2.

We can calculate these probabilities when weak coherent light is incident to
modes A and B. In this case, the probability P1;1 is given as follows.

P1;1 D jh0; 0jcdj˛; ei�˛ >A;B j2

D j˛j4 exp.�2j˛j2/ cos2 � (7.7)

Similarly, P2;0 and P0;2 are as follows.

P2;0 D j˛j4 exp.�2j˛j2/1 � sin2 �

2
(7.8)

P0;2 D j˛j4 exp.�2j˛j2/1C sin2 �

2
(7.9)

Figure 7.3b is the plot of these probabilities after normalization. The probabilities
strongly depend on the phase �, which is completely different from the case for
single-photon inputs (Fig. 7.3a). This result can be fully understood in terms of the
classical interference of light. Note that the graphs of P0;2 and P2;0 are the squares of
sinusoidal curves because these probabilities are given by the squares of the output
intensities.

Next, let us look at the interference patterns caused by NOON states. For a
NOON state with an input N = 1, .j1; 0iA;BCj0; 1iA;B/=

p
2, the probability P1;0.P0;1/

of detector C(D) detecting a single photon is shown in Fig. 7.4a. Figure 7.4b
is the plot of P1;1 and P0;2 C P2;0 for a NOON state with an input N D 2,



140 S. Takeuchi

Phase (rad./π)

P1,1

0,2        2,0P       P+

P
ro

b
a
b
il
it
y

b
P
ro

b
a
b
il
it
y

P0,1
P1,0

Phase (rad./π)

a
1

0

0 1 2

1

0

0 1 2

Fig. 7.4 Coincidence probabilities of the multi-photon interferometer in Fig. 7.2. (a) Coincidence
probabilities with one-photon NOON state input. (b) Coincidence probabilities with two-photon
NOON state input. Pn;m are the probabilities that n and m photons are detected by detectors C and
D respectively

.j2; 0iA;B C j0; 2iA;B/=
p
2. Interestingly, the interference fringe periods are both � ,

a half of the period of N D 1 in Fig. 7.4a. When N is increased, the fringe period
becomes 1=N [7].

7.3 Optical Phase Measurement Exceeding the Standard

Quantum Limit

In this section, we will discuss the applications of such multi-photon quantum
interference for quantum metrology [1, 8, 9].

Phase measurements using optical interferometry are applicable to many fields,
for example, astronomy (gravitational wave detection), engineering (optical fiber
gyroscopes) and life sciences (differential interference contrast microscopy). There
are two important concepts for such measurements: precision and sensitivity. In
principle, precision can be improved by increasing the probe light intensity or the
number of measurements made. However, the sensitivity is fundamentally limited
by the precision per unit power or the number of photons provided by the probe
light.

Suppose we are trying to detect a small phase shift using an optical interferometer
as shown in Fig. 7.2. With classical light or single-photon inputs, we observe the
typical interference fringe shown in Fig. 7.4a. When we set the bias phase to that
where the slope of the interference fringe is maximized, so the change in output due
to a slight phase shift is also maximized; thus, the highest sensitivity is achieved.
For a classical light source, the sensitivity limit is given by 1=

p
N where N is the

number of photons in a given state. This limit is called the standard quantum limit
(SQL), or shot-noise limit.
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In more detail [1, 10, 11], the precision of the phase measurement �� can be
written as

�� D �n

j@n=@�j ; (7.10)

where n is the number of output photons and �n is the deviation of n. For coherent
light, �n=n D 1=

p
n due to the shot-noise. The slope normalized by the amplitude

is

j@n=@�j
n

; (7.11)

of which the maximum is 1. Thus, the precision of a phase measurement using
coherent light can be written as follows.

��SQL D 1=
p

n (7.12)

This is the SQL.
However, as we saw in the previous section (Fig. 7.4b), for an N-photon NOON

state input the fringe period becomes 1=N of that for the single-photon input case.
For the same total photon number N, the number of measurements m becomes m D
n=N because we use N photons for one measurement. Thus, the fluctuation �m Dp

n=N. The maximum of the normalized slope of the fringe for N-photon NOON
state interference is

j@m=@�j
m

D N; (7.13)

since the fringe period is 1=N of the coherent light inputs as seen in Fig. 7.4. As
a result, the precision of a phase measurement using an N-photon NOON state
interferometer is as follows.

��NOON D ��SQLp
N

(7.14)

This means that the sensitivity is improved by a factor of
p

N.
Recently, we demonstrated four-photon interference exceeding the SQL [1].

Using parametric fluorescence and a stable displaced Sagnac interferometer
(Fig. 7.5), we observed one-photon, two-photon and four-photon interference
fringes with high visibilities (Fig. 7.6). The visibility V is a parameter describing
the quality of the interference as follows:

V D Imax � Imin

Imax C Imin
; (7.15)
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Fig. 7.5 Experimental setup
for a four-photon NOON state
interferometer [1]. BBO is
ˇ-Barium Borate, PMF is a
polarization maintaining
fiber, SPCM is a
single-photon counting
module, and PP is a phase
plate. Inset: a Mach-Zender
interferometer which
corresponds to the displaced
Sagnac interferometer in the
main panel. BS denotes beam
splitter and PS denotes phase
shifter

where Imax and Imin are the maximum and minimum photon counts. The sensitivity
degrades when the visibility is lower because the maximum of the normalized slope
(Eq. 7.13) is reduced. The sensitivity also depends on the method used to observe
the correlation of the photons at the output.

Figure 7.6 shows the results of the multi-photon interference experiments [1].
Figure 7.6a is a simple single-photon interference fringe, and Fig. 7.6b, c are the
multi-photon interference fringes using the N D 2 and N D 4 NOON states,
respectively. The interference fringe period of Fig. 7.6b is half of that in Fig. 7.6a,
for the reasons described in the previous section (Fig. 7.4). It should also be noted
that the fringe period of the four-photon NOON state interference (Fig. 7.6c) is a
quarter of that of the single-photon interference.

Let us explain in more detail how we obtained these multi-photon interference
fringes. In order to obtain the results shown in Fig. 7.6b, we input j11iab into
the interferometer, which is then converted to .j20icd C j02icd/=

p
2 by the first

beam splitter. Then, we measured the coincidence counts using two single photon
detectors in the output modes (e and f).

For the four-photon interference fringe (Fig. 7.6c), the input state j22iab is
converted to the following state by the beam splitter.

p
6

4
.j4; 0ic;d C j0; 4ic;d/C 1

2
j2; 2ic;d (7.16)

This is a superposition of a four-photon NOON state and the j2; 2ic;d state.
Interestingly, the interference can be ‘extracted’ solely from the four-photon NOON
state by selecting certain coincidence events as follows.

After the second beam splitter, the four-photon NOON state .j4; 0ic;d C j0; 4ic;d/

is converted to a state which contains j3; 1ie;f. On the other hand, j2; 2ic;d is
converted to a similar state shown in Eq. 7.16 and consequently j3; 1ie;f will never
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Fig. 7.6 Experimental
results of the multi-photon
interference fringes [1]. (a)
Single-photon count rate in
mode e as a function of phase
plate (PP) angle with a
single-photon input j10iab.
(b) Two photon count rate in
modes e and f for the input
state j11iab. (c) Four photon
count rate of three photons in
mode e and one photon in
mode f for the input state
j22iab. Accumulation times
for one data point were (A) 1,
(B) 300, and (C) 300 s

appear after the conversion by the second beam splitter. Thus, by detecting the
events where three photons and one photon are in modes e and f, respectively,
the four-photon NOON interference fringe can be observed. The efficiency of
this event post-selection � is 3=8. For this scheme with � D 3=8, the threshold
visibility required to surpass the SQL is 82 % [10]. The visibility of the four-photon
interference fringe shown in Fig. 7.6c was 91 ˙ 6% [1], clearly exceeding the
threshold of 82 %.

7.4 An Entanglement-Enhanced Microscope: Application of

the Phase Super-sensitivity to Microscopy

Optical phase measurements are playing an important role in microscopy. Differen-
tial interference microscopes (DIM), which detect the optical path-length difference
between two adjacent optical paths at the sample, are widely used for the evaluation
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Fig. 7.7 LCM-DIM and the entanglement-enhanced microscope [2]. (a) Illustration of LCM-
DIM (b) Illustration of the entanglement-enhanced microscope. The red and blue lines indicate
horizontally and vertically polarized light

of opaque materials or the label-free sensing of biological tissues. A laser confocal
microscope (LCM) combined with a DIM (LCM-DIM, Fig. 7.7a) has recently been
used to observe the growth of ice crystals with a single molecular step resolution
[12]. The depth resolution of such measurements is determined by the signal-to-
noise ratio (SNR) of the measurement, which is in principle restricted by the SQL.

Recently, we proposed and demonstrated an entanglement-enhanced microscope
which is based on a LCM-DIM (Fig. 7.7b) [2]. Instead of laser light and an
intensity measurement, entangled photons (in the NOON state) and a coincidence
measurement were used. The SNR of an entanglement microscope is

p
N times

better than the conventional LCM-DIM restricted to the SQL.
In the experiment, we used a two-photon NOON state (N D 2) source as the

probe (Fig. 7.8). The sample was a glass plate with a Q shape on its surface, carved
in relief with an ultra-thin step of �17 nm using optical lithography (Fig. 7.8a,
b). Figure 7.8c, d show the two-dimensional scan images of the sample using
entangled photons and single photons, respectively. The step of the Q-shaped relief
is clearly seen in Fig. 7.8c, whereas it is unclear in Fig. 7.8d. The average total
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Fig. 7.8 Experimental results for the entanglement-enhanced microscope [2]. (a) Atomic force
microscope (AFM) image of a glass plate sample (BK7), the surface of which has a Q shape
carved in relief with an ultra-thin step using optical lithography. (b) The section of the AFM image
of the sample, which is the area outlined in red in (a). The height of the step is estimated to be
17.3 nm from this data. (c) An image of the sample using an entanglement-enhanced microscope
where a two-photon entangled state is used to illuminate the sample. (d) An image of the sample
using single photons (a classical light source)

number of photons contributing to these data is set to 920 per position assuming a
detection efficiency of unity. A detailed analysis revealed that the SNR of Fig. 7.8c
is 1.35˙0:12 times better than Fig. 7.8d, which agrees well with the theoretical
prediction of 1.35, taking the visibility of the single and two-photon interferences
into account.

7.5 Quantum Optical Coherence Tomography

In this subsection, we introduce another application of novel quantum states for
optical metrology: QOCT, where the time-frequency entangled states of photons
can exceed the depth resolution of their classical counterpart and provide tolerance
of the phase dispersion in optical paths.

Figure 7.9a, b temporally depict the two-photon wave function. For the state
shown in Fig. 7.9a, the signal photon and idler photon are independent and have no
specific correlation in time. In other words, the distribution of the detection time for
the signal photon ts has no correlation to the detection time for the idler photon ti.
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Fig. 7.9 Two photon wave
functions. (a) Non-entangled
two-photon states. (b) Two
photon states strongly
correlated in time. (c)
Non-entangled two-photon
states in frequency space. (d)
The two-photon wave
function of the state in (b) in
frequency space

a

c d

Δ

b

Δ

On the other hand, for the state shown in Fig. 7.9b, the distribution of ts strongly
correlates with ti; the signal photon and idler photons are detected at almost the
same time ts � ti with a short correlation time �t.

Figure 7.9c, d are the wave functions shown in (a) and (b), respectively,
in frequency space, which can be obtained through a two-dimensional Fourier
transformation. The non-correlated photon pair does not show any correlation
(Fig. 7.9c). On the other hand, the state correlated in time shows strong correlation
in frequency space also (Fig. 7.9d). It can also be seen that to shorten the correlation
time �t, the frequency correlation�! has to be broader.

Recently, the generation and application of photons entangled in time and
frequency has been attracting attention. One of these applications is QOCT.

First, let us look at (classical) OCT (Fig. 7.10a) [13]. A classical light field
generated from a source is divided by a beam splitter. One light beam is radiated
onto the sample, and the other is radiated onto a reference mirror. The reflected
beams then interfere as they pass through the beam splitter for a second time and
the result is measured by a detector. When the coherent length of the light is short
enough, the interference signal is obtained only when the optical path lengths of the
sample-path and reference-path are the same. Thus, by scanning the position of the
reference mirror, one can obtain an image of the structure inside the sample. This
technology is now widely used to observe the eyeground in ophthalmology.

In general, the probe light pass through an optical medium (ex. water in eyeball).
In order to improve the resolution along the optical axis (depth resolution), the
bandwidth of the low-coherence light has to be broadened in order to make the
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Fig. 7.10 Schematic of LCI (a) and TPI (b) [3]. BS stands for beam splitter

interference width of the interference fringe smaller. However, due to the group
velocity dispersion in the optical medium, the width of the interference fringe
becomes even broader. Due to this trade-off relation, the depth resolution of the
OCT is limited to around 5 � 10�m.

QOCT, which was first proposed [14] and demonstrated [15] by Teich and his
collaborators, is a method whose resolution is tolerant of the dispersion in the
medium (Fig. 7.10b). Time-frequency entangled states, which are usually generated
via spontaneous parametric down conversion (SPDC), are used. The frequency
!s; !i of such photon pairs (signal photon and idler photon) has the following
relation with the frequency of the pump laser !p used for SPDC as follows:

!p D !s C !i; (7.17)

which can be seen in Fig. 7.9d.
Similarly to OCT, the signal and idler photons are radiated to a sample and a

reference mirror, respectively, and the two-photon interference between the reflected
components, which interfered at the beam splitter, is detected by a pair of detectors
at the output. As we have observed in Fig. 7.3a, the coincidence probability becomes
0 when the optical path lengths of the two arms are the same. On the other hand,
the coincidence probability is 1/2 when the lengths are different. For this reason, a
dip in the coincidence count rate is observed when the two optical path lengths are
the same (Fig. 7.11b). This is known as the Hong-Ou-Mandel dip, or the HOM dip.
QOCT uses this HOM dip in place of the low-coherence interference fringe in OCT.

The depth-resolution of QOCT is determined by the width of the HOM-dip. It is
known that the dip-width is not affected by the even-order phase dispersion of the
medium in the optical path. Recently, we verified the perfect dispersion tolerance of
the HOM-dip width in a high-resolution regime (3 � 4�m) [3]. A low-coherence
interference (LCI) fringe (Fig. 7.11a) and a two-photon interference (TPI) fringe
(Fig. 7.11b) are obtained using the single-photon/entangled photon sources with
a Gaussian-shaped spectrum of 75 nm in bandwidth with a center wavelength of
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Fig. 7.11 Experimental LCI and TPI interferograms for a Gaussian shaped spectrum [3]: The
4.2�m LCI (a) and 3.0�m TPI (b) widths with no medium, the broadened 37�m LCI (c) and
unchanged 3.0�m TPI (d) widths using 25 mm of water as a dispersive medium

808 nm. We found that for a light source with a Gaussian shaped spectrum, the
width of the TPI is 1=

p
2 that of the LCI, resulting in a

p
2 times better resolution.

Figure 7.11c, d show the LCI and TPI fringes with 25 mm of water in the optical
path. The width of the LCI fringe becomes much broader (37�m), while the width
of the TPI fringe is 3:0 �m, exactly the same as the case where no water is present
(Fig. 7.11b). These experimental results clearly show the advantage of using QOCT
for high-resolution tomography.

In order to improve the resolution further, the bandwidth of the entangled-photon
pairs has to be broadened. Harris proposed an interesting idea to use chirped quasi-
phase-matched (QPM) crystal to realize time-frequency entangled photons with
ultra-broad bandwidth [16]. Following on from this idea, we recently succeeded
in the generation of ultra-broad parametric fluorescence, the wavelength of which
spanned from 790 to 1610 nm [17].

7.6 Summary

In this chapter, we introduced quantum metrologies that utilize entangled photons.
We have shown that the sensitivity of phase measurements using an N-photon
NOON state interference can exceed that achieved using a classical light source
by a factor of

p
N. We also introduced our recent experiments in which the

SQL was surpassed using a four-photon interferometer. We demonstrated the
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application of this technology to microscopy with experimental verification. Finally,
we explained the concept of quantum optical coherence tomography using time-
frequency entangled photons and presented recent experimental results showing that
a high-resolution (3�m) HOM-dip is achieved even when 25 mm of water lies in
the optical path.

Currently, increasing the number of photons is of the utmost importance. When
we are able to use a ten-photon NOON state (N D 10) the SNR will be more than
three times higher than the SQL. In other words, the same SNR can be achieved with
just 10 % of the photon flux. To this end, the development of efficient single-photon
sources [18], efficient photon number detectors, and integrated photonic quantum
circuits is important. Note that the sensitivity beyond SQL requires quantum
resources for input, and thus can be seen as a signature of quantumness of the input
state [9]. For QOCT, it is expected that novel technologies like the fabrication of
QPM devices using nano-size electrodes will dramatically improve the bandwidth
and flux of time-frequency entangled photons. There are some other recent works
using non-classical light for quantum metrologies [19–21].
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Chapter 8

Counting Statistics of Single-Electron Transport

Toshimasa Fujisawa

8.1 Introduction to Counting Statistics

Intriguing quantum dynamics can be studied by determining the electron transport
characteristics in nanostructures [1, 2]. In contrast to the averaged electrical current,
a statistical analysis of current fluctuation or noise provides rich information on the
electrical transport [3, 4]. Frequency spectrum is the standard way of characterizing
the noise. Low-frequency (1/f ) noise often arises from thermally activated impu-
rities [5, 6]. Fundamental white noise, albeit its featureless spectrum, comprises a
Johnson Nyquist thermal noise that arises from the Brownian motion of electrons
and a shot noise associated with the tunneling of elementary charge. Shot noise
measurements have successfully characterized correlated transport, such as the sub-
Poissonian statistics in single-electron tunneling [7] and fractional-charge tunneling
in the fractional quantum Hall regime [8, 9]. In addition to the frequency spectrum,
various statistical methods developed in the field of quantum optics are expected
to highlight the correlations [10]. For example, intensity correlation can identify
bunching or anti-bunching of indistinguishable particles. The statistical distributions
of transporting particles (electrons) in a given time period can exhibit a Poisson or
Gaussian function depending on the origin of the fluctuations. The distribution can
be characterized by its variance, skewness for asymmetric distribution, sharpness
for fourth order term, and so on. Since the thermal noise has a symmetric Gaussian
distribution, odd-order noise can be used to exclusively probe the shot noise
component. While second-order shot noise measurements are restricted to strongly
non-equilibrium conditions, where transport can be considered unidirectional, third-
order noise measurements show advantages when evaluating the shot noise, even at
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a small bias voltage close to the equilibrium conditions. Such statistical analyses are
useful in studying correlated electron transport in nanostructures.

Several experimental techniques have been developed to evaluate current fluc-
tuations. The distribution function around the averaged current can be directly
investigated using a current voltage converter and an analog digital converter with
a high precision [11, 12]. However, non-linearity in the amplifiers and converters
has to be carefully corrected to remove artifacts from the measurement system. The
resolution of the noise is not always sufficient to study intriguing correlation effects.
In a frequency domain experiment, third-order noise can be obtained by multiplying
three frequency components [13, 14]. The finite bandwidth in the measurement
system has to be considered in the analysis. More importantly, a higher-order
moment may arise from the connection of the measurement circuit to the finite
impedance [15]. All extrinsic effects have to be excluded from the analysis.

In this section, we emphasize on an alternative approach, which counts the
passage of single electrons through a quantum dot (QD). Single-electron transport
through a QD can be investigated in real time using an integrated charge detector
[16–20]. Since all the electron-tunneling events can be stored in a fast and sensitive
electrometer attached to the QD, the technique is capable of performing various
statistical analyses. For example, a double quantum dot (DQD) can be used
with a charge sensor to determine the direction of the electron transport, which
will be useful in acquiring all tunneling events and determining the transport
characteristics [21].

8.2 Single-Electron Counting with a Quantum Dot

8.2.1 Charge Detection of a Quantum Dot

Single-electron tunneling through a small conductive island has been studied
using the Coulomb blockade effect with a significant on-site Coulomb energy [2].
Conductance exhibit oscillatory changes with the electrochemical potential of the
QD. The number of electrons in the QD takes a well-defined integer value in
the Coulomb blockade region, where the current is well suppressed. Transport
is allowed when the electrochemical potential is adjusted between the chemical
potentials of the adjacent leads (the transport window). An electron that has entered
a QD has to go out before another electron is allowed to enter. This correlated
electron transport can be well characterized by the counting scheme, as shown
in the following sections. The charge state can be read by using a charge sensor
coupled to the QD. A single-electron transistor (SET) or QPC can be used as a
charge sensor [22]. Time-resolved counting measurements must be performed with
sufficient bandwidth. A wide bandwidth beyond 100 MHz can be obtained with a
RF carrier signal and an impedance transformer, known as RF-SET or RF-QPC
[23]. However, the practical bandwidth for real-time detection required for counting
purposes is limited by the noise floor of the amplifier or current meter. When a cold
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Fig. 8.1 (a) Schematic circuit for charge sensing of a single QD. The double boxes represent
tunneling barriers. Current through a QD, IQD, is dominated by single-electron transport. Current
through a QPC, IPC , is sensitive to the charge or number of electrons in the QD. (b) Scanning
electron micrograph of a device comprising a QD coupled with a QPC

amplifier is used for low-noise operation, the bandwidth can reach 1 MHz, which
allows us to count all the tunneling events with currents of the order of 100 fA [24].

Figure 8.1a shows a schematic circuit for detecting charge in a QD by using
a QPC. A unidirectional current flow from the left lead, through the QD, and to
the right lead is established with a finite bias voltage, eVQD, greater than thermal
energy, kBT. The presence of an excess electron in the QD raises the tunneling
barrier of the QPC, and thus lowers the conductance and detector current, IPC.
Therefore, the charge state of the QD can be detected by monitoring IPC. This
kind of device can be fabricated in a standard AlGaAs/GaAs heterostructure using
electron-beam lithography, as shown in Fig. 8.1b [16, 25]. In this device, the two-
dimensional electron system (2DES) with a density of 3� 1011 cm�2 and a mobility
of 1:9 � 106 cm2/Vs is located 95 nm below the surface. The horizontal metal gate
isolates the channels for QD and QPC, but a significant electrostatic coupling is
obtained between them. The QD is defined by the three upper vertical gates, where
tunneling barriers are formed between the outer gates and the horizontal isolation
gate with the small gaps (�50 nm). By adjusting the voltages applied to the fine
surface gates, we define a conductive channel through a QD with electron number
N (D 0 � 10). A QPC is known to show a quantized conductance, ne2=h, with
integer n (even numbers for the spin-degenerated case at zero magnetic field) [26].
For charge detection, the QPC has to be adjusted to the tunneling regime, where the
current through the QPC, IPC, is sensitive to the charge state of the QD. Maximum
charge sensitivity is obtained at the maximum slope dIPC=dVg. Charge detection
is exclusively efficient, especially when the direct current (IQD) is too small to be
investigated.

Nonlinear unidirectional transport through the QD can be induced by a finite bias
VQD D 0:5mV. Figure 8.2a shows that the QPC current (IPC) traces as a function of
VC at several VQD values. IPC changes stepwise from the high level corresponding
to N D 0 to the low level corresponding to N D 1. The value of N must be
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fluctuating between 0 and 1 in the transport region between these Coulomb blockade
regions, but the averaged current level in this figure measures the average electron
number hNi D �i= .�i C �o/ given by the incoming/outgoing rate �i=o. Multiple
current levels are associated with the inclusion of the ground and excited states
in the incoming/outgoing process. In the example measured at B D 8T, a Zeeman
splitting of the lowest and first orbital states for N D 1QD is clearly seen. Transport
characteristics can be investigated using the charge detection scheme [16]. More
detailed information can be obtained by time-resolved charge detection.

Time-resolved charge detection measurements can be performed with a sufficient
bandwidth for acquiring single-electron tunneling events. The time trace of IPC,
shown in Fig. 8.3a, was taken with an I-V converter with 50 kHz bandwidth operated
at room temperature. An additional low-pass filter with a cutoff frequency of 3 kHz
is used to obtain a reasonable signal-to-noise ratio [27]. A clear two-level fluctuation
between the empty (high current level) and occupied (low current level) states
is seen [16]. The dwell times, TH and TL, for the empty and occupied states,
respectively, are randomly distributed, as seen in Fig. 8.3b, c. The distribution is
well described by an exponential profile � exp.�� 0

i=oTH=L/, which originates from
a random Poisson process with tunneling rates �i and �o. The slope � 0

i=o is obtained
from the mean and standard deviations of TH and TL. The total transport rate
�cur D �i�o= .�i C �o/ for the current IQD D e�cur can also be obtained from
the number of switching events per unit time.

8.2.2 Data Correction for Finite Bandwidth

Noted that some fast tunneling events with short dwell time have been removed
using low-pass filters in the measurement system. The effect of the finite frequency
bandwidth has to be corrected. Error correction is addressed by Naaman and
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Aumentado, who have developed a correction scheme for a stochastic detector
characterized by a Poisson process with a transition rate �det [28, 29]. In this
model, the detector responds to the charge with a random delay time with a mean
�det � 1=�det, which allows us to use the rate equation on the dynamics. However,
the detection error is not always given by a stochastic response. Here, we describe an
deterministic response when the distortion arises from a first-order frequency filter
[27].

As shown in Fig. 8.4a, the true detector current, ID.t/, fluctuates between the
high and low levels. This current is converted into a voltage VD.t/ using an I-V
converter and appropriate filters, which are necessary to remove unwanted high-
frequency noise and obtain a sufficiently high signal-to-noise ratio. Here we assume
that the overall response function is expressed as a standard first-order low-pass
filter characterized by a time constant �f. The VD.t/ waveform would be somewhat
distorted like in Fig. 8.4b. The waveform is digitized into two values with hysteretic
thresholds, Vth;H and Vth;L, set between the two voltages, VD;H and VD;L, respectively,
for the high and low levels [30]. A typical response time, �th, between a tunneling
event and the reaching of their threshold values is given by �th D ��f ln � with a
threshold factor � D .Vth;L � VD;L/ =.VD;H � VD;L/ (0 < � < 1=2). The digitized
data, as shown in Fig. 8.4c, is often regarded as real-time variation of the dot charge
Qd.t/ in an experiment.

However, the obtained dwell times T 0
H and T 0

L, shown in Fig. 8.4c, are not
identical to the true dwell times TH and TL presented in Fig. 8.4a. The first dwell time
in the figure T 0

H;1 is slightly different from the true one (TH;1), but this error is usually
acceptable as it is less than �f ln 2 for � D 1=2 and can be reduced for hysteretic
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tunneling barriers (�H D �L D 10) and a filter time constant �f D 5 in the time-step unit used
in the simulation (Adapted from Ref. [27])

thresholds. Serious errors come from undetected events like the second dwell time
TH;2 in Fig. 8.4a, which has been removed in Fig. 8.4c. Thus, the original two low-
level dwell times TL;1 and TL;2 are misinterpreted as a long single dwell time T 0

L;1.
Such errors alter the statistics of the dwell time, and give incorrect tunneling rate
values.

A correction scheme has been developed by considering a Poissonian tunneling
process in which the true dwell time TH=L is distributed with the probability
distribution function

PH=L.TH=L/ D 1

�H=L
e�TH=L=�H=L ; (8.1)

where the mean, mH=L, and the standard deviation, �H=L, are identical to the
tunneling time constant �H=L, which is the inverse of the tunneling rate �H=L;
mH=L D �H=L D �H=L D � �1

H=L [31]. The low-pass filter removes all the events with
short dwell times below �th. The corresponding error probability can be expressed
as
	
1 � ˇH=L



with ˇH=L D e��th=�H=L for the high/low level. First, we consider the

case where undetected events only exist for the high level, that is, ˇH > 0 and
ˇL D 0, corresponding to �L � �H � �f. If the measurement shows a dwell
time T 0

L, there might be n hidden undetected events with short dwell time TH;i

(i D 1 : : : n) in the period. Thus, there should be actual low-level dwell times TL;i

(i D 0 : : : n) constituting the fake dwell time (T 0
L D

Pn
iD0 TL;i C

Pn
iD1 TH;i 'Pn

iD0 TL;i). Here, the high-level dwell times, TH;i, are much shorter (< �f ln 2) and
are ignored for simplicity. The number of hidden events, n, is randomly distributed,
and the probability of having n hidden events in a measured single dwell time is
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p.n/ D .1 � ˇH/
nˇH. The corresponding distribution function of T 0

L comprising
.n C 1/ low-level dwell times can be constituted from each distribution function of
hidden events, TL;i, and is given as follows:

P
.n/
L .T 0

L/ D
Z 1

0

dTL;0 : : :

Z 1

0

dTL;n

nQ
iD0
ŒPL .TL;i/� ı.T

0
L �

nP
iD0

TL;i/; (8.2)

where ı .x/ is the Dirac delta function. The overall distribution function of T 0
L is

found to be as follows:

P0
L.T

0
L/ D

1X

n

p.n/P
.n/
L .T

0
L/ D ˇH

�L
e�ˇHT0

L=�L (8.3)

This is the distribution function measured with a low-pass filter. It has the same form
as the original PL.TL/ function represented by Eq. 8.1, but a different time constant,
� 0

L D �L=ˇH, longer by the factor ˇH (< 1). The above formula can be used to obtain
the true tunneling rate, �out D ��1

L D .� 0
L=ˇH/

�1, from the measured � 0
L value.

In practice, such errors can occur in both high and low levels, which makes the
microscopic analysis difficult. We assume that the above formula can be applied
even in such cases. Considering the dead time of �th, the distribution function of the
measurable dwell time T 0

H=L is given by

P0
H=L.T

0
H=L/ D 0 .T 0

H=L < �th/ (8.4)

/ 1

� 0
H=L

e
�T0

H=L=�
0
H=L .T 0

H=L > �th/; (8.5)

where the measured time constants, � 0
H and � 0

L, are related to the true values, �H and
�L, by the following relations:

�L D � 0
Le��th=�H ; �H D � 0

He��th=�L : (8.6)

These relations can be used to obtain the true tunneling rates, �in D ��1
H and �out D

��1
L , from the measurement outcomes � 0

H and � 0
L. This is the correction scheme we

propose for practical experiments.
The validity of the correction scheme can be verified by numerical simulations.

A random telegraph signal is generated with time constants �H and �L and processed
using a first-order filter with the time constant �f. The resultant distorted VD.t/

waveform is digitized into two values with a hysteretic threshold (� D 1=4). The
distributions of the dwell times T 0

H and T 0
L are evaluated by plotting their histograms.

Figure 8.4d, e show the typical results for the symmetric tunneling time constants
�H D �L D 10 in the time-step unit used in the random number generator. As seen in
Fig. 8.4d, the VD.t/ trace is significantly distorted. Corresponding histogram for T 0

H,
shown in Fig. 8.4e, deviates from the true distribution function (solid lines labeled
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�H) and has missing events with dwell time less than �th. The resulting profile can
be well reproduced by solving Eq. 8.4. This ensures that Eq. 8.6 can be used even
if both �H and �L are close to �f. The correction introduced by Eq. 8.6 is effective
for extracting the true time constants (tunneling rates) even in such a situation. Such
a sharp dead time is seen in the experimental data shown in the inset of Fig. 8.3b,
which is different from what the stochastic detector model predicts [28].

We examined the influence of the finite bandwidth on the experimental data taken
from a GaAs QD-QPC device [27, 32]. A large in-plane magnetic field (B D 8T) is
applied to induce a significant Zeeman splitting and realize single-electron transport
through the ground state (the spin-up Zeeman sublevel of the lowest orbital) [33–
35]. This is the simplest case to study the counting effect. We also performed
post-measurement digital data processing by applying a first-order low-pass filter,
which allowed us to examine the effects of varying time constants for the same
data. Figure 8.5a shows typical waveforms without post-measurement filter (i) and
with digital filtering (ii). Although the filtering reduces the noise, it also results in
a strong distortion of the telegraph signal. As a result, when the data is digitized
with a hysteretic threshold as in (ii), some switching events with short dwell times
are filtered out, as shown in (iii). The dwell-time histogram shows exponential
characteristics [� exp.�T 0=� 0/].

We need to determine the response time �th to apply the correction scheme to the
data. Although �th (D ��f ln �) can be determined from the filtering characteristics,
one can conveniently estimate �th from the dead time of the statistics, where short-
period events are missing in the histogram. A clear dead time is seen in the inset of
Fig. 8.3b. Here, we note that �th can approximately be estimated by subtracting the
standard deviation from the mean value of the dwell time (� 0

th D m0 � � 0). From the
numerical simulations, we confirmed that � 0

th obtained in this way is close to ��f ln �
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with good accuracy (less than 10 %). In the experiments, � 0
th changes with the time

constant of the digital filter, but not with the tunneling time constant � 0.
We applied the above correction scheme using Eq. 8.6 to the measured values

� 0
H and � 0

L to extract the corrected time constants � .c/H and � .c/L . Figure 8.5c shows

the uncorrected rate � 0
in D

	
� 0

H


�1
as well as the corrected tunneling rate � .c/

in D�
�
.c/
H

��1
obtained from the same data, and plotted as a function of the response time

�th. In contrast to � 0
in, which decreases with increasing �th, the corrected value � .c/

in

remains almost constant when �th is less than 120�s. The parameters � 0
in and � .c/

in
extrapolate to the same value at �th � 0, which is consistent with the model. In this
way, the correction scheme is shown to be effective for analyzing the experimental
data.

8.2.3 Counting Multiple Tunneling Processes

In the above sections, we focused on analyzing unidirectional tunneling events
through a single level. If more tunneling processes are involved, one has to consider
the total incoming and outgoing rates in the charge detection measurement.

First, we show the case in which a reverse tunneling process is involved. The
electrochemical potential of the dot, �d, is brought closer to the chemical potential
of one lead, �L, as shown in the insets of Fig. 8.6. In the unidirectional transport
region at �L � �d � kBT (right inset), the incoming and outgoing rates measure
the tunneling rate across the left and right barriers, respectively (�in D �L and
�out D �R). In contrast, if the dot is prepared in the Coulomb blockade region at
�d � �L � kBT, the incoming rate significantly decreases because the thermal-
excitation process (denoted by a dashed arrow) is less probable. Even in such a case
with a finite excitation probability, the counting scheme can measure the outgoing
rate, which should be the total rate across the left and right barriers (�out D �LC�R).

Fig. 8.6 Gate voltage, VC,
dependence of the incoming
and outgoing tunnel rates.
�
.c/

L and � .c/
R were corrected

with the filter response time,
� 0

th D 86�s. The dashed lines

are guides to the eyes. The
insets show energy diagrams
for the unidirectional
transport (right inset) and
thermally activated (left inset)
regimes (Adapted from
Ref. [27])
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A smooth transition between the two conditions can be seen in the data plots in
Fig. 8.6, where the uncorrected tunneling rates [� 0

in D
	
� 0

H


�1
, � 0

out D
	
� 0

L


�1

(open symbols)] and corrected rates [� .c/
in D

�
�
.c/
H

��1
, � .c/

out D
�
�
.c/
L

��1
(solid

symbols)] at various gate voltages VC are shown. One can check the accuracy of
the measurement by comparing the individual rates [� 0

L, � .c/
L , � 0

R, and � .c/
R ] on the

high-VC side, and the total rate [� 0
tot ' �

.c/
tot ] on the low-VC side [27]. The sum of

the individual rates changes from the uncorrected value, � 0
L C � 0

R D 4:2 kHz, to the

corrected one, � .c/
L C �

.c/
R D 5:5 kHz, and as a result, it gets closer to the measured

total rate � 0
tot ' �

.c/
tot D 6 kHz. This demonstrates that the correction scheme is

effective. The small residual difference might come from the energy dependence of
the rate or higher-order error neglected in the model.

Next, we consider the case where two energy states with spin-up and -down
are involved in the transport. The spin-dependent tunneling rate can be studied by
considering the transport through the Zeeman sublevels of the lowest orbital for the
first electron (N D 1) in the QD. As shown in the simplified energy diagram of
Fig. 8.7a, only spin-up electrons can tunnel through the QD when a spin-up sublevel
is located in the transport window. Under these spin-filtering (SF) conditions, the
charge-detection measurement determines the spin-up tunneling rates, �i=o D �i=o;"
from incoming/outgoing events. In contrast, both spin-up and -down electrons can
participate in the transport when both spin sublevels are in the transport window, as
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Fig. 8.7 (a) and (b) Schematic energy diagrams for (a) spin-filtering transport and (b) non spin-
filtering transport. (c)–(e) Gate voltage dependence of tunneling rates �cur, �i and �o (Adapted
from Ref. [32])
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shown in Fig. 8.7b. Under these non-filtering (NF) conditions, the measurement is
also sensitive to the spin-down rates �i;# and �o;#. The incoming rate is simply
additive, i.e., �i D �i;" C �i;#, as both tunneling events are always allowed.
Therefore,�i;" and �i;# can be determined from the two measurements under the SF
and NF conditions. However, the outgoing rate is not additive (�o ¤ �o;" C �o;#),
and is given by the statistical average (denoted by �o;mix) of �o;" and �o;# weighted
by the occupation probabilities of the Zeeman sublevels. Thus, �o;mix is also
influenced by the spin relaxation rate W in the QD. �o;mix, can approximately be
denoted as follows:

�o;mix '
	
�i;" C �i;#



�o;"

	
�o;# C W




�i;"
	
�o;# C W



C �i;#

	
�o;" C W


 : (8.7)

Therefore, �o;# can be determined by solving the above equation if W is known
[36].

Figure 8.7c–e show the VC dependences of �cur, �i, and �o, where the SF and
NF regions are identified. The data in Fig. 8.7d shows that the first step entering the
SF region is larger than the second step entering the NF region, indicating a spin-
dependent rate, �i;" > �i;#. A similar spin dependency is found for the outgoing
rate. As described above, �o;mix is a measure of the average values of �o;" and �o;#.
The data in Fig. 8.7e shows that �o;" > �o;mix, indicating that the spin-up tunneling
rate is greater than the spin-down one; �o;" > �o;# [32, 37, 38].

The observed spin-dependent rate could be attributed to the exchange-enhanced
spin splitting in the low-density regions near the tunneling barrier. The electron
spins can be spontaneously polarized when only a few one-dimensional channels
are occupied [39–42]. The exchange interaction raises the effective potential for
minority spins but lowers it for majority spins, giving rise to different tunneling
probabilities. Although more detailed experiments are required to identify the origin
of this behavior, spin-dependent single-electron counting experiments provide a
deep insight into the spin correlations [43, 44].

8.3 Bidirectional Counting with a Double Quantum Dot

8.3.1 Charge Detection of a Double Quantum Dot

DQDs have been extensively studied in various fields such as artificial two-level
systems for realizing quantum bits, single-electron pumps for carrying one electron
per cycle of potential modulation, and correlated charge and spin transport [45–49].
Here, we utilize charge-detection scheme on DQD to demonstrate a bidirectional
single-electron counting (B-SEC) device, in which forward and reverse tunneling
processes can be identified through all three junctions [21]. A statistical analysis
of the forward and reverse tunneling events allows us to obtain information on the
transport characteristics.
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Fig. 8.8 (a) Schematic of the B-SEC device, consisting of a double dot (L and R) and a charge
detector (PC). The double boxes represent tunneling barriers, and the wavy lines illustrate Coulomb
interaction. (b) Schematic of the fluctuations in the detector current, IPC, corresponding to the
charge states .n;m/ with n and m excess electrons in dots L and R, respectively. Pulsed currents
IL, IC, and IR across the left, central, and right barriers, respectively, are shown. Each current pulse
can be considered to have a height e=t0 for duration t0, being a time step of the measurement, and
constitutes a transport of elementary charge e

Operation of the B-SEC device is based on charge detection in a DQD in the
Coulomb blockade regime, where higher-order tunneling processes can be neglected
[2]. As shown schematically in Fig. 8.8a, the device consists of a DQD (dots L and
R) and a QPC for charge detection. The QPC is asymmetrically coupled to the dots
(i.e., more strongly coupled to dot L than to dot R), so that the detector current IPC

varies with respect to the electron numbers .n;m/ in dots L and R [47]. Current flow
through the DQD results in temporal changes in the electron numbers .n;m/, which
appear as fluctuations in the PC current, as shown in the top panel of Fig. 8.8b. One
can translate the multiple-level fluctuations into current through the left, central, and
right barriers, as shown in the lower panel of Fig. 8.8b.

Figure 8.9a shows a scanning electron micrograph of a B-SEC device fabricated
in an AlGaAs/GaAs heterostructure. The application of appropriate negative volt-
ages on the metal gates depletes the nearby conductive electrons and forms the
B-SEC device [16]. The QPC is adjusted in the tunneling regime, where IPC is
sensitive to the charge state .n;m/ of the DQD. The charge stability diagram of
the DQD can be obtained by plotting dhIPCi=dVR as a function of the voltages
VL and VR respectively applied to gates GL and GR, as shown in Fig. 8.9b. The
honeycomb pattern is associated with the inter-dot Coulomb energy in the DQD.
The clear separation of the .n;m/ and .n C 1;m C 1/ charge domains indicates an
electrostatic coupling energy of �200�eV for this DQD.

Time-resolved measurements are performed under specific condition, where all
the tunneling rates of the DQD are within the bandwidth (�10 kHz) of the current
amplifier. The average current hIPCi shown in Fig. 8.10a indicates four discrete
current levels depending on .n;m/. Individual tunneling events can be seen in the
time domain, as shown in Fig. 8.10b. The three-level fluctuation observed near the
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Fig. 8.10 (a) Color plot of the averaged QPC current, hIPCi, in the VL � VR plane measured at
VQD D 0 and VPC D 0:8mV, with a stability diagram .n;m/ of the DQD. (b) Fluctuation of
IPC measured at points, B, H, M, and E, shown in (a). Typically hIPCi � 12 nA (Adapted from
Ref. [21])

charge triple points E and H, the two-level fluctuation between .1; 0/ and .0; 1/
at M, and the absence of fluctuation in blockade region B, are consistent with the
expectations [49].

We record IPC traces over a period Tp D 1:3 s with a time resolution of t0 D
20�s and digitize the current into four values, corresponding to the .n;m/ states
of interest, with appropriate filtering and threshold. From the measured statistics,
we can obtain all the information needed to characterize the electron transport. The
dwell time T.n;m/, which indicates how long a QD stays in a particular charge state



164 T. Fujisawa

Fig. 8.11 (a) Distribution of
dwell times for the .0; 1/,
.1; 0/ and .1; 1/ states. (b)
Example of the number of
transition events Nnm!ij. (c)
Example of tunneling rates
�nm!kl. The same data set
measured at VQD D 300�V
was used for (a), (b), and (c)
(Adapted from Ref. [21])
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(n,m) =

.n;m/ before changing to another one, is randomly distributed with an exponential
function, as shown in Fig. 8.11a, indicating a random Poisson process characterized
by a single lifetime �nm D hT.n;m/i [16, 31], that is related to the sum of all possible
tunneling rates �nm!kl from .n;m/ to .k; l/:

��1
nm D

X

k;l

�nm!kl: (8.8)

One can also count the number of transition events Nnm!kl from .n;m/ to .k; l/,
which should be proportional to the rates according the following relation

Nnm!kl D p0nm�nm!klTp; (8.9)

where p0nm is the occupation probability for .n;m/ under steady conditions. By
solving these relations, all the relevant rates �nm!kl and populations p0nm can be
determined.

Figure 8.11b shows Nnm!kl results obtained using the same data set. The trans-
port is dominated by a cyclic transition (thick arrows) from .1; 1/, through .1; 0/,
to .0; 1/, and back to .1; 1/, which carries an electron from the left to the right, at
a positive bias voltage. Note that non-negligible reverse processes (thin arrows) are
also observed in the present measurements. The very low counting rate (< 30 cps)
is attributed to noise in the PC current (dark counting) and should be disregarded;
transitions between .0; 0/ and .1; 1/ are unphysical in the sequential tunneling
regime. We should note that, because of the finite bandwidth, our measurement fails
to count very fast successive transitions within 100�s. This error can be corrected
by using a scheme similar to that described earlier, but it is neglected in this analysis.
The obtained rates �nm!kl are summarized in Fig. 8.11c. In this way, all tunneling
rates can be determined from multi-level charge fluctuations.
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Fig. 8.12 Gate voltage
dependence of the tunneling
rates, �01!11 and �11!01.
The horizontal axis is
converted into
electrochemical potential
��01�11 D E01 � E11
(Adapted from Ref. [21])
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A similar analysis can be made at various points in the VL � VR plane, and
we investigate how the forward and reverse tunneling rates change. We examine
dot-lead tunneling processes across the left barrier by comparing �01!11 and
�11!01, which are plotted in Fig. 8.12 as a function of the electrochemical potential,
��01�11 D E01 � E11, where Enm is the total energy of the .n;m/ state [49]. The
dependence can be well fitted to the Fermi distribution in the electrode with an
electron temperature Te D 130mK in the lead [50]. The behaviors of the forward
and reverse rates are almost symmetric with respect to E10 D E11 (dashed line).
The small difference of a factor �1.5 between the maximum saturated rates for
the forward and reverse tunneling may be related to spin degeneracy; a factor-2
difference is expected for transitions between different charge states having total
spins of 0 and 1=2 [51]. The tunneling rate shows detailed balance, in which the
ratio between the forward and reverse rates is determined by the electrochemical
potential, �01!11=�11!01 D expŒ��01�11=kTe�, up to degeneracy. Provided that
the detailed balance conditions are met for all the junctions, the electrochemical
potentials ��nm�kl D kTe log .�nm!kl=�kl!nm/ can be estimated in the unit of
thermal energy just from the statistics. This is an example of how informative the
counting statistics is.

8.3.2 Correlated Tunneling Current Through a DQD

Although each tunneling process characterized by �nm!kl is Poisson random,
Coulomb interaction prohibits double occupancy in a small island and correlates the
overall electron transport. Such a correlated transport can be described by statistical
quantities. Charge transport in the sequential tunneling regime can be described by
the following rate equation:
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d

dt
p.t/ D Mp.t/; (8.10)

where p.t/ is an array of time-dependent occupation probabilities fpnm.t/g [52]. The
matrix M describes the transition rates consisting of the diagonal and off-diagonal
terms, ���1

nm and �nm!kl, respectively. Since we have already obtained M, as shown
in Fig. 8.11c, we can calculate the expected average current, noise spectrum, and
higher-order moments of noise [53], which are more suitable for describing the
correlated transport. These quantities can be obtained from the statistical analysis in
the following way, if the available information for M is incomplete.

Here, we define three pulsed currents, IL, IC, and IR, which exhibit B-SECs at the
left, central, and right barriers, respectively. They are obtained by considering the
corresponding tunneling processes, as discussed for Fig. 8.8b. The average currents
obtained for a long period always agree with each other, i.e., hILi D hICi D hIRi, as
a result of current conservation. Figure 8.13a shows the average current hIi in the
VL � VR plane. The triangular conductive regions around E and H, with a resonant
tunneling peak on one side of the triangles, are consistent with conventional current
measurements through a DQD [49].

The noise power spectra, SL, SC and SR, shown in the top panel of Fig. 8.13b, are
obtained from numerical Fourier transforms of the corresponding pulsed currents.
The spectra are qualitatively the same as those calculated from M (bottom panel
of Fig. 8.13b) [52], indicating the validity of our statistical analysis. The enhanced
spectrum in the high-frequency part (> 1 kHz, the characteristic frequency set by
non-zero eigenvalues of M) is related to how frequently an electron experiences
back-scattering across the barrier. The low-frequency part, identical for the three
spectra, is almost flat except for the excess dark-counting noise below 10 Hz.
Background charge fluctuation (1/f noise), which often dominates the low-frequency
noise, is significantly suppressed in our scheme. The noise level in the 10–100 Hz
range is suppressed below the full shot noise 2ehIi (dashed line), indicating a
correlated transport [7].
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Fig. 8.13 (a) Average current hIi in the VL � VR plane at VQD D 300�V. The triangles E and
H define conductive regions. (b) Noise power spectra of the current, SL, SC and SR. The upper
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the correlation function derived by solving the rate equations. The dashed line shows the full shot
noise 2ehIi (Adapted from Ref. [21])
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Fig. 8.14 (a) Distribution of the time interval between successive forward tunneling events in IC.
(b) Distribution of the time interval, tC�, between forward and reverse current pulses. The solid

lines show the calculated occurrence of the conditional event derived from the corresponding rate
equations. The insets illustrate the time intervals, tCC or tC� (Adapted from Ref. [21])

More importantly, we find that the B-SEC device provides better statistics that
allow us to directly identify the anti-bunching correlation. Figure 8.14a shows
the distribution of the time interval, tCC, between two successive forward current
pulses. The distribution is no longer a simple exponential, and the suppression of
consecutive forward pulses at tCC � 0 (anti-bunching) is directly identified and is
consistent with a rate-equation calculation (solid line). Note that the broad peak in
the distribution indicates that a quasi-periodic current is the precursor of the single-
electron tunneling oscillations [18]. The back scattering can directly be investigated
in the distribution of the time interval, tC�, between forward and reverse current
pulses. As shown in Fig. 8.14b, reverse tunneling is enhanced near the zero interval.

We can also extract other statistical data that is often used in quantum optics, such
as the electron (photon) number distribution [10, 54, 55]. The third-order moment
of the distribution, which is called skewness, is of particular interest because of its
insensitivity to thermal distribution [11, 13, 56] and is considered to be a new tool for
investigating correlated transport, valid even under nearly-equilibrium conditions.
Gustavsson et al. performed charge-detection measurements on a single dot to
identify the correlated transport from the second- and third-order noise [19]. Taking
advantage of the bidirectional counting in our device, we have demonstrated that the
third-order noise is insensitive to the thermal noise.

Note that the B-SEC with single-electron resolution is too precise to see the
overall correlated transport. The electron number distribution of interest should be
obtained in the zero-frequency limit, where the current is conserved at all points in
the circuit (<100 Hz in Fig. 8.13b). A sort of coarse graining can be performed by
averaging the pulsed current for a moderate period Tavr , which should be chosen to
be longer than the correlation time of the transport. Then the net electron number N

transferred during the averaging time can fluctuate more than one, as shown in the
distribution plot of Fig. 8.15a. The mean and variance of the distribution correspond
to the average current, hIi D ehNi=Tavr, and second-order noise, S D e2hıN2i=Tavr,
respectively, where ıN D N � hNi. The small asymmetric distribution indicates the
presence of skewness and a corresponding third-order noise, C D e3hıN3i=Tavr,
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Fig. 8.15 (a) Electron
number distribution for IC. N

is the net electron number
transferred across the central
barrier during the averaging
time, Tavr D 4ms. (b) and (c)
Bias voltage dependences of
second- (b) and third-order
(c) noises in the linear
conductance regime (Adapted
from Ref. [21])
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whose relative value to the full shot noise, C=.e2hIi/, is a measure of the correlation
of the transport [56, 57]. The ratio of 0.17 for Fig. 8.15a indicates an anti-bunching
correlation (< 1) that is consistent with the calculation (�0.2) based on Ref. [53]. To
test how closely the measurement can be performed under equilibrium conditions
at zero bias, the second- and third-order noise are plotted as a function of the bias
voltage in Fig. 8.15b, c. Here, we have chosen the linear conductance region around
the triple point H, where the current is restricted by one of the barriers (equivalent
to the single barrier case for the noise). In this case, the second- and third-order
noises should coincide with the full shot noise ehIi and e2hIi, respectively, if no
other noises contribute to the signal. The second-order noise is significantly higher
than ehIi at small voltages VQD < 100�V, where the thermal noise is dominant
(kBTe D 15�eV). In contrast, the third-order noise agrees with e2hIi in the whole
range, and no additional noise is observed. Insensitivity to thermal noise is desirable
for measuring any meaningful non-Gaussian noise even at high temperatures.

One can use this B-SEC device to identify unknown currents and their correlation
in many cases. The top part of Fig. 8.16a illustrates a circuit for counting electrons
from a test device. Although it is impossible to obtain all the information about
the device, one can obtain useful information by means of time, frequency, and
momentum analyses with a B-SEC device. For this purpose, the impedance of the
B-SEC device should be smaller and its correlation time shorter than that of the
test device [15]. Our B-SEC device can be applied to investigate extremely small
currents from a high-impedance test device, and this is precisely what conventional
electronics cannot achieve. We demonstrate the performance of our device as a
current meter using another single QD as a test device as shown in Fig. 8.16a. The
average current hIi obtained from the B-SEC device reasonably depends on two gate
voltages (VA and VB) of the test device as shown in Fig. 8.16b, indicating that the
observed Coulomb blockade peaks are associated with the test device. The peak-to-
peak noise level in the blockade region is 3 aA for a 1.3 s averaging time, which is
about three orders of magnitude smaller than that in conventional current meters.

The demonstrated B-SEC device enables various statistical analyses for charac-
terizing the correlation, and is also useful for investigating extremely small currents.
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Fig. 8.16 (a) Experimental setup for evaluating a test device using a B-SEC device. The test
device involves a QD (d) with tunable tunneling barriers via voltages VA and VB. (b) Average
current obtained from the B-SEC device. Current ranging from �10 to 50 aA can be measured
with a voltage drop of about 200�V across the present B-SEC device. The observed Coulomb
blockade peaks changes with VB. Each trace is offset for clarity (Adapted from Ref. [21])

Integration with other mesoscopic electron devices, such as beam splitters or
interferometers, could lead to various techniques for exploring non-trivial intensity
correlation and entanglement processes in mesoscopic electron systems [58].

8.4 Summary

Counting statistics of single-electron transport provide a very sensitive tool for
measuring electrical currents with single-electron resolution. Various statistical
analyses, such as frequency spectrum, time correlation functions, or higher-order
moments of the current noise, can be applied to highlight the correlated electron
transport. Although we focused on measurements for single and double quantum
dots, the technique is not limited to these cases but can be applied to other correlated
electron sources, too.
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Chapter 9

Some Recent Progress for Approximation

Algorithms

Ken-ichi Kawarabayashi

9.1 Introduction

Many optimization problems that need to take inputs globally into account are,
most likely, NP-hard. So one cannot hope that there is a polynomial time algorithm
to solve these problems, assuming the widely believed conjecture “P 6D NP”.
Therefore approximation (polynomial time) algorithms for these problems are
the main focus in the theoretical computer science research community in these
30 years.

Following the development of basic combinatorial (and graph theoretical) tech-
niques in 1970s and 1980s, in the 1990s, parallel developments in techniques for
designing approximation algorithms as well as methods for showing hardness of
approximation algorithms result in a beautiful theory. This survey focuses on very
recent developments in the former. More specifically, we only survey the following
problems that have some recent breakthroughs:

1. The edge disjoint paths problem.
2. Graph coloring problem.

The edge disjoint paths problem has attracted attention in the contexts of
networking; for example, VLSI layout, transportation networks, virtual circuit
routing in high-speed networks (cf. Internet). It is certainly a central problem in
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algorithmic graph theory and combinatorial optimization, and there are a lot of work
on this topic. See the next paragraph and the surveys [16, 36].

Graph coloring is arguably the most popular subject in graph theory. Also, it
is one of the central problems in combinatorial optimization, since it is one of the
hardest problems to approximate. In general, the optimal coloring is inapproximable
in polynomial time within factor n1�� for any � > 0, unless coRP D NP, cf. Feige
and Kilian [14] and Håstad [22].

The main reason why we focus on these two problems is that the recent
development involves the following three ingredients that are quite central in
approximation algorithms:

• Combinatorial (graph theoretical) approach.
• LP based approach.
• Semi-definite programming approach.

The development of the edge disjoint paths problem involves the first and the
second ingredients, while that of the graph coloring problem involves the first and
the third ones.

Let us first look at the edge-disjoint paths problem.

9.2 The Edge-Disjoint Paths Problem

In the edge-disjoint paths problem, we are given a graph G D .V;E/ with n vertices
and m edges and a set of k pairs of vertices (called terminals) in G. The objective
is to decide whether or not G has k edge-disjoint paths connecting given pairs of
terminals. Let us mention some previously known results.

Known results: If k is a part of the input of the problem, this is a classical NP-
complete problem [13], and it remains NP-complete even if an input graph G is
constrained to be planar [33]. Early work on this problem focused on characterizing
classes of graphs for which the edge-disjoint paths problem can be solved in
polynomial time. For example, the seminal work of Robertson and Seymour [34]
says that there is a polynomial-time algorithm for the edge-disjoint paths problem
when the number of terminals, k, is fixed. Actually, this algorithm is one of the
spin-offs of their groundbreaking work on graph minor project, spanning 23 papers
and taking more than 20 years, and giving several deep and profound results and
techniques in discrete mathematics. The time complexity is improved to O.n2/ in
[30]. Also, the half-integral (edge-)disjoint paths problem for the fixed number of
terminals has been studied in [25, 27, 32].

Approximation algorithms The focus has recently shifted to the maximum edge-

disjoint paths problem (MEDP), in which we find a maximum number of edge-
disjoint paths connecting terminal pairs. This is because, in the real world under
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the situation where there is a limited network capacity but with many requests, we
need to optimize over the choice of which requests to satisfy. A c-approximation

algorithm for this problem is a polynomial-time algorithm that connects at least
OPT�=c terminal pairs using the edge-disjoint paths, where OPT� is the maximum
possible.

Despite significant research in the recent years, there is wide gap in understand-
ing the approximability of the maximum edge-disjoint paths problem. For directed

graphs, no polynomial-time algorithm can achieve an approximation guarantee of
O.m1=2��/ for any � > 0, unless P D NP [21]. But this result is based on the fact
that the directed two edge-disjoint paths problem is NP-hard, which apparently does
not hold for the undirected case. Currently, the strongest hardness result is due to
[1], which shows a lower bound of �..log m/1=2��/ for any � > 0. This may be the
right upper bound, but then we would certainly need a far reaching approximation
that there may be a corresponding poly-logarithmic upper bound. In fact, the recent
breakthrough by Chuzhoy and Li [11] says the following:

Theorem 1. If we allow each edge to be in at most two of paths, then there is a

poly-logarithmic approximation algorithm for this problem.

However the best known upper bound for the integral case is O.
p

n/ [8].

All or nothing problem In order to tackle the maximum edge-disjoint paths
problem, one has the following natural Linear programming relaxation, which can
be solved in polynomial time.

Multicommodity Flow Problem (MFP)

maximize
kX

iD1
xi

subject to
X

P2Pi

f .P/ D xi 1 � i � k

X

PWe2P
f .P/ � w.e/ 8e 2 E

xi; f .P/ 2 Œ0; 1� 1 � i � k;8P 2 P

Note that Pi is the set of all paths connecting si and ti, and P D
S

i Pi. Note
also that if we require the integrality of xi and f .P/, then it is certainly equivalent
to MEDP. Let OPT be the optimal value of this Linear programming (LP). Since
OPT is an upper bound of the optimal bound of MEDP, we want to find a feasible
integral solution that guarantees a large fraction of OPT. Unfortunately it has been
well-known that the integrality gap (i.e., the gap between the integral solution and
the fractional solution of LP) for this LP is �.

p
n/, even for planar graphs.

The difficulty of MEDP perhaps comes from two types of integrality: one is
the integrality of xi (i.e. the selection of which subset of demands to try to route).
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The other is the integrality of f .P/ (i.e. finding an integral flow). To understand the
difficulty of the selection of the subset (i.e., the former), it is natural to consider
the problem of finding a maximum fractionally routable subset of the demand pairs,
which is stated as follows.

All-or-Nothing Multicommodity Flow Problem (ANF)

Input. A graph G D .V;E/ with integral capacity w.e/ for each e 2 E, and k

pairs of vertices .s1; t1/; .s2; t2/; : : : ; .sk; tk/ in G.
Find. A largest subset W of f1; : : : ; kg such that for every i in W, we can send

one unit of flow between si and ti.
In other words, ANF is obtained from MFP by replacing xi 2 Œ0; 1� with xi 2

f0; 1g, which implies that MFP is also a natural LP-relaxation of ANF.

Known results for ANF: Chekuri et al. [7] obtain a poly-logarithmic factor
approximation algorithm for ANF and prove that the integrality gap between ANF
and MFP is poly-logarithmic. Notice that this is in a big contrast with the �.

p
n/

integrality gap for MEDP.
In trees, ANF coincides with the maximum integer multicommodity flow

problem, which is known to be APX-hard [18]. A 2-approximation algorithm for
trees is also provided in [18]. We also note that there are no simple or obvious
algorithms that can take advantage of the fractional routing, because of the APX-
hardness on trees demonstrates.

Planar graphs The inapproximability bounds for MEDP [1] mentioned before also
apply to ANF, and hence the upper and lower bounds are separated by only a poly-
logarithmic factor. However, for planar graphs (which are paid much attention in the
algorithmic graph theory research community), no super-constant integrality gap is
known for ANF and MEDP with congestion 2 (i.e. each edge is allowed to be in
two paths). Motivated by this fact, Chekuri et al. [9] showed that if G is planar and
every edge capacity is at least 4, then the LP-relaxation of MEDP, which is MFP,
has a constant integrality gap. Moreover, there is a polynomial-time algorithm that
converts a fractional solution of MFP with total flow F into an integral congestion
4 solution with total flow �.F/. This result is improved by [37] that shows that the
congestion 4 is replaced by 2.

Thus what is left is ANF for planar graphs (note that [37] does not imply the
corresponding result for the all-or-nothing multicommodity flow problem). The
following result by Kawarabayashi and Kobayashi [26] considerably strengthens
the above mentioned poly-logarithmic integrality gap by [7].

Theorem 2. There exists a constant factor approximation algorithm for the all-or-

nothing multicommodity flow problem in planar graphs. In particular, in polynomial

time, we can find an index set W with jWj D �.OPT/ and eight si-ti paths for each

i 2 W such that each edge is used at most eight times in these paths, where OPT is

the optimal value of the LP-relaxation MFP.
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9.3 Semi-definite Programming and Coloring

In this section, we shall look at the graph coloring problem. The key is semi-definite

programming.
Semi-definite programming (SDP) is probably the most exciting development

in mathematical programming in the last 20 years. SDP has applications in such
diverse fields as traditional convex constrained optimization, control theory, and
combinatorial optimization. Because SDP is solvable via interior-point methods
(and usually requires about the same amount of computational resources as linear
optimization), most of these applications can usually be solved fairly efficiently in
practice as well as in theory.

Semi-definite programming, as a generalization of linear programming, allows
us to specify in addition to a set of linear constraints a “semi-definite” constraint, a
special form of nonlinear constraints. We now introduce the basic concept of semi-
definite programming.

First let us define a positive semi-definite n � n matrix A. It is positive semi-
definite if and only if (1) A is symmetric, and (2) for all x 2 Rn, xTAx DPn

iD1
Pn

jD1 Aijxixj � 0. Then we can define a semi-definite program (SDP) as
follows. An SDP is a mathematical program with four components:

• a set of variables xij;
• linear objective function to minimize/maximize;
• a set of linear constraints over xij;
• a semi-definite constraint of the matrix X with element xij.

The semi-definite constraint is what exactly differentiates SDPs from LPs. This
can be interpreted as an infinite class of linear constraints. This is because by the
definition of SDP, if a matrix A is semi-definite, then for all v 2 Rn, vTAv � 0. Each
possible real vector v clearly gives us one linear constraint. Altogether, we have an
infinite number of linear constraints.

Coloring via semi-definite programming A k-coloring of an undirected graph
assigns k colors to the vertices. The coloring is only valid if no two adjacent vertices
get the same color. This validity of coloring is trivially checked in linear time so the
deciding if a graph is k-colorable is clearly in NP.

The semidefinite programming relaxation for graph coloring assigns a unit vector
to each vertex of a graph G such that certain separation properties are satisfied for
vectors corresponding to each pair of adjacent vertices. More precisely, we have the
following constraints:

• for any integer k � n C 1 there exist k unit vectors in Rn such that their pairwise
inner products are �1

k�1 .
• Given a k-coloring of the graph G, we can assign one of these k vectors to each

color class such that < vi; vi >D �1
k�1 for all edges ij 2 E.G/ where vi is the

vector assigned to the vertex i 2 V .
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SDP coloring

minimize t

subject to < vi; vi >� t 8ij 2 E.G/

< vi; vi >D 1 8i 2 V.G/

vi 2 Rn; 8i 2 V:

Lemma 3. If t� is the optimal of the above SDP and G is k-colorable, then

t� � �1
k�1 .

If t� D �1
k�1 , then the function �.G/ D 1 � 1

t�
D k�. In this case, G has a vector

k-colorable and the corresponding optimal solution is called a vector k-coloring for
G. k� is exactly �1=2.G/ where G is the complement of G and �1=2 is the variant of
the Lovász �-function introduced by Schrijver [35] (see more details there). The gap
between the vector k-coloring and the chromatic number (i.e., the optimal coloring
number) is demonstrated in Karger et al. [15] by constructing Kneser graphs with
vector chromatic number 3 and chromatic number n�.

We now look at some results about approximating graph coloring using semi-
definite programming.

Coloring 3-colorable graphs It is well-known that a graph is 2-colorable if and
only if it is bipartite. However, it is also well-known that deciding 3-colorability is a
classic NP-hard problem. It was proved hard by Garey et al. [17], and was the prime
example of NP-hardness mentioned by Karp in 1975 [24].

The most fundamental problem in approximating graph coloring is therefore
coloring 3-colorable graphs. So here is a problem; given a 3-colorable graph, that
has some (unknown) 3-coloring (it is important to emphasis that any 3-coloring is
unknown when we obtain the input graph G. Otherwise the problem is trivial), we
try to color it in polynomial time using as few colors as possible. The algorithm
is allowed to fail or give up if the input graph was not 3-colorable. If a coloring is
produced, we can always check if it is valid even if the input graph is not 3-colorable.
This challenge has emerged many researchers. Wigderson [39] was the first to tackle
this problem and give a polynomial time algorithm for O.n1=2/ colors for a graph
with n vertices. Berger and Rompel [4] improved this to O..n=.log n//1=2/. Blum [5]
came with the first polynomial improvements to QO.n3=8/ colors. These algorithms
mentioned so far are based on combinatorial approach.

The next big improvement was given by Karger et al. [23] using SDP. This came
in the wake of Goemans and Williamson’s use of SDP for the max-cut problem [19].
For a graph with maximum degree�max, Karger et al. got down to O.�

1=3
max/ colors.

Combining this with Wigderson’s algorithm, they got down to O.n1=4/ colors.
Blum and Karger [6], later, combined the SDP from [23] with Blum’s [5]

algorithm, which yields an improved bound of QO.n3=14/ D QO.n0:2142/, where QO hides
poly-logarithmic factor. Recent improvements on SDP have also been combined
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with Blum’s algorithm. Indeed, Arora et al. [2] got down to QO.n0:2111/ colors. The
proof in [2] is based on the breakthrough by Arora et al. [3] who gave an O.

p
log n/

algorithm for the sparsest cut problem. Chlamtac [10] finally got down to O.n0:2072/

colors.
Very recently, Kawarabayashi and Thorup [28] presented a purely combinatorial

approach (for the first time since Blum [5]), which results in getting down to
QO.n4=11/ colors. Combining it with Chlamtac’s SDP [10], they got down to
O.n0:2049/ colors. Finally Kawarabayashi and Thorup[29] showed the following.
This result is also combining combinatorial approach with SDP.

Theorem 4. O.n0:19996/ colors suffices to color 3-colorable graphs in polynomial

time.

This is the biggest single improvement in the exponent since 1997 [6], and in
particular, they pass the n1=5 milestone.

How good the above theorem is? It is perhaps far from best possible. Indeed only
a few lower bounds are known for coloring of 3-colorable graphs. We know that it
is NP-hard to get down to 5 colors [20, 31]. Recently, Dinur et al. [12] showed that
it’s hard to color with any constant number of colors (i.e., O.1/ colors) based on a
variant of the Unique Games Conjecture.

Integrality gap results [23, 38] show that understanding of SDP coloring [3, 10,
23] is almost optimal, and it is therefore natural to go back and see if we can improve
combinatorially.

How to combine SDP with combinatorial approach? As mentioned above, the
current best known result follows from a combination of SDP with combinatorial
approach. We now show the interplay between combinatorial and semi-definite
methods in the above mentioned papers. A parameter� is first chosen. By standard
reductions, it suffices to work with graphs that either have minimum degree � or
maximum degree�. A high minimum degree is good for combinatorial approaches
while a low maximum degree is good for semi-definite approaches. Therefore, the
best bounds are obtained choosing� to balance between the best semi-definite and
combinatorial approaches.

On the combinatorial side, the coloring bounds have followed the sequence
QO..n=�/i=.2i�1// for i D 1; 2; 3; 4. Indeed i D 1 is from Wigderson [39], i D 2; 3

from Blum [5], and i D 4 is from Kawarabayashi and Thorup[28], respectively. For
i ! 1, the sequence approaches its limit QO..n=�/1=2/. Each of the above steps is
based on a new combinatorial coloring idea.

For a purely combinatorial algorithm, we balance the above bounds with the
trivial�-coloring; this takes any vertex v with< � neighbors, and then we color the
rest of the graph inductively, and give v the first color not used in its neighborhood.

The first semi-definite solution of Karger et al. [23], implies O.�1=3/ colors.
Balancing this with yet not to be found an QO..n=�/1=2/ coloring, would yield
QO.n1=5/ colors, which should be thus a natural milestone. Later semi-definite
approaches of Arora et al. [2] and Chlamtac [10], have pin down to O.�1=3�".n;�//
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colors where ".n; �/ > 0 is a small bound that decreases as very complicated
function of �. The above mentioned integrality gap implies that ".n; �/ D o.1/

for� D no.1/.

9.4 Conclusion

In this survey, we focus the following two problems that have some recent
breakthroughs for approximation algorithms; the edge-disjoint paths problem and
the graph coloring problem. These breakthroughs involve the following three ingre-
dients that are quite central in approximation algorithms: (1) Combinatorial (graph
theoretical) approach, (2) LP based approach and (3) Semi-definite programming
approach.

There are a few other problems that have some recent development. These
include TSP, the Steiner tree problem, and the sparsest cut problem. The first
one involves (1), the second one is mainly based on (2), and the third one is
connected to (3). Therefore, we expect that these three ingredients would lead to
more breakthroughs in the next decade.
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Chapter 10

Coherent Computing with Injection-Locked

Laser Network

S. Utsunomiya, K. Wen, K. Takata, S. Tamate, and Yoshihisa Yamamoto

10.1 Introduction

Combinatorial optimization problems are ubiquitous in our modern life. The classic
examples include the protein folding in biology and medicine, the frequency
assignment in wireless communications, traffic control and routing in air and on
surface, microprocessor circuit design, computer vision and graph cut in machine
learning, and social network control. They often belong to NP, NP-complete and
NP-hard classes, for which modern digital computers and future quantum computers
cannot find solutions efficiently, i.e. in polynomial time [1].
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A Ising model described by the Hamiltonian

H D �
X

i<j

Jij�iz�jz �
X

i

hi�iz (10.1)

is a mathematical abstraction for spin glasses [2]. Here �iz is a z-projection of
Pauli spin operator and takes either C1 or �1 eigenvalue. The Ising coupling
Jij represents either a ferromagnetic coupling

	
Jij > 0



or an anti-ferromagnetic

coupling
	
Jij < 0



. The Zeeman term hi corresponds to a local field. While the one-

dimensional and two-dimensional Ising models belong to the class P [3, 4], the
three-dimensional Ising model is NP-hard [5]. Many combinatorial optimization
problems can be mapped onto the Ising model with polynomial resource. This
is the basic motivation for searching a physical machine which solves the Ising
model.

A standard quantum computer utilizes unitary rotation of state vectors of
localized spin-1=2 particles (qubits) in closed Hilbert space [6], while a quantum
annealing machine employs adiabatic evolution of a system Hamiltonian in closed
Hilbert space [7, 8]. On the other hand, a novel coherent computer which is the
subject of this chapter uses a laser phase transition for non-local electromagnetic
fields in open-dissipative setting [9].

An unstructured data search is one of the most difficult problems from the
energy landscape viewpoint, in which there is one and only one target state with
a lowest energy and all the other states of 2N � 1 have degenerate higher energies.
A celebrated Grover algorithm can find the target file with a reasonable success

probability by � O
�p

2n

�
oracle operations [10]. This is the square-root speedup

over the classical brute force search which requires � O .2n/ calculations in the
worst case. Bad news is that this Grover algorithm is the optimum solution by
quantum computers based on blackbody (oracle) inquiry routine [11]. A quantum
annealing machine (or rather adiabatic quantum computer) can achieve this square-
root speedup if the Hamiltonian sweep is optimized at each time by somehow
consulting with the energy gap between the ground state and first excited states
[12, 13]. It is conjectured that these two quantum machines cannot overcome
the exponential scaling of computational time for NP, NP-complete and NP-hard
problems.

In this chapter we will describe the recent effort to elucidate the computational
power of coherent computers against NP-hard Ising problems. In Sect. 10.2, we will
review the laser phase transition from the viewpoint of Gottesman-Knill theorem
and introduce the operational principle of a laser network coherent Ising machine.
Section 10.3 will present the theory of injection-locked laser network and obtain
the mapping protocol. Section 10.4 will discuss the numerical benchmark study
against NP-hard problems. The proof-of-concept experiment using semiconductor
lasers will be presented in Sect. 10.5 and finally the scalable system based on
higher harmonic mode-locked fiber lasers will be proposed as a XY machine in
Sect. 10.6.
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10.2 Concept and Basic Principle

10.2.1 Gottesman-Knill Theorem

What is the ultimate origin for quantum speedup over classical computing is an
intriguing question not only from a fundamental viewpoint but also from a practical
viewpoint of devising a new computing machine. The Gottesman-Knill theorem
provides an insightful clue to address this question [14]. The statement of the
theorem is summarized as follows:

If a quantum algorithm starts with

1. computational basis states such as j0i1; j0i2; : : : ; j0iN ,
2. employs a limited set of unitary gates such as Hadamard gate, controlled-NOT

gate and phase gate which belong to a so-called Clifford group,
3. and ends with projection measurements along computational basis states,

such an algorithm can be simulated efficiently by classical computers. This means
that many important quantum operations, including entanglement generation and
purification, quantum error correction and quantum teleportation, are not considered
as the origin of quantum speed-up. In fact, the Shor’s factoring algorithm cannot be
implemented by the Clifford group only. It is known that addition of fractional phase
rotations for state vectors would make a universal gate set for quantum algorithm.

The equivalent to Gottesman-Knill theorem for a continuous variable (harmonic
oscillator) quantum algorithm also gives a useful insight for this point [15]. The
statement of the theorem is summarized as follows:

If a harmonic oscillator quantum algorithm starts with

1. gaussian states such as coherent states j˛i1; j˛i2; : : : ; j˛iN ,
2. employs a limited set of unitary gates such as squeezing operation and displace-

ment operation,
3. and ends with projective measurements of quadrature amplitudes, Oa C Oa�or

i.Oa � Oa�/,
such an algorithm can be simulated efficiently by classical computers. This means
that many important quantum operations for continuous variables, such as squeez-
ing, entanglement generation and quantum teleportation, are not considered as
the origin of quantum speed-up, either. It is known that addition of photon
counting detections or third order (Kerr) nonlinear process to the above gaussian
processes would make a universal gate set for continuous variable quantum
algorithm.

10.2.2 Laser Phase Transition

A laser is an open dissipative system consisting of the two coupled systems, cavity
photon fields and inverted atoms, and the reservoirs, i.e. external vacuum fields with
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c
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Fig. 10.1 Laser phase transition. (a) A laser accepts a vacuum field as an input and reflects it
as a signal output. (b) A thermal state with a maximum entropy is produced at below oscillation
threshold. (c) A coherent state with zero entropy is produced at above oscillation threshold

continuous spectra for the photon fields and the invented atoms, and an external
pump source for the inverted atoms. If we neglect the details of quantum dynamics
of a laser and consider it as a black box, this system accepts vacuum fields as inputs
and reflect them as signal outputs as shown in Fig. 10.1a. If the pump rate is just
below its oscillation threshold, the reflected signal is in a multimode thermal state,

� D
MY

iD1
�i

�i D
X

n

�
1

1C nth

��
nth

1C nth

�n

jnihnj ; (10.2)

where the index i denotes a cavity mode within the gain bandwidth and nth is the
average photon number per mode. It is known that (2) is a blackbody radiation
at an effective temperature of Teff D „w=kBT ln 2 � 104 K for ! � 1015(rad/s)
and T � 300K, as shown in Fig. 10.1b. This multimode thermal state realizes a
maximum randomness (entropy),

S � Tr .� ln �/

D M

�
ln .1C nth/C 1

1C nth

ln

�
1C 1

nth

��
; (10.3)

under the constraint of constant average photon number hnthi, where M is the total
number of cavity modes within the gain bandwidth.

At a pump rate above its oscillation threshold, however, such randomness
disappears. The reflected signal is a single mode coherent state,

�i D j˛ih˛j; (10.4)

while all the other modes stay in a thermal state. The absolute amplitude j˛j of
the complex eigenvalue is equal to the square-root of the mean photon number,
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j˛j D p
n, which is uniquely determined by the balance between external pumping

and out-coupling loss. The phase � of the complex eigenvalue is randomly chosen
by the internal and external quantum noise, as shown in Fig. 10.1c. The selection of
a particular phase is called “spontaneous breaking of gauge symmetry” associated
with laser phase transition. A chosen coherent state has a zero entropy (pure state).
It is known that this nonlinear quantum dynamics cannot be simulated efficiently by
classical computers and we hope such a laser phase transition is powerful enough
to find a right answer from numerous candidates in notorious NP problems. From
the viewpoint of harmonic oscillator Gottesman-Knill theorem, the nonlinear gain
saturation of a laser distinguishes this system from the above mentioned simple
gaussian processes.

10.2.3 Downward Search, Laternal Search and Upward Search

The injection-locked laser network implements the energy landscape, i.e. eigen-
energy vs. spin configuration, of the Ising Hamiltonian (1) in terms of the effective
loss of the whole network. We will show this one-to-one correspondence between
the (original) Ising energy landscape and the (mapped) loss landscape in the next
section. The cartoon of Fig. 10.2 illustrates such an energy/loss landscape.

A proposed computational concept is in sharp contrast to the classical (simulated)
annealing and quantum annealing. Classical annealing employs a downward search,
in which the thermal equilibrium state is searched during the temperature is
gradually decreased. For a hard instance of NP problems, there are numerous local

Fig. 10.2 Comparison of the search mechanism between the laser network, classical (simulated)
annealing, and quantum annealing
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minima that may trap a system in a deep potential barrier so that a thermal excitation
cannot allow the system to escape from a metastable state. In order to overcome
this problem, the repeated cooling and heating are introduced. Quantum annealing
exerts a horizontal search with quantum tunneling. When such quantum tunneling
is introduced by a transverse field, simultaneous multi-spin flip and resulting global
search are possible. However, even with these methods, the computational time of
finding the ground state increases with the number of metastable excited states (local
minima), which increases exponentially for a hard instance of NP problems.

In contrast, the injection-locked laser network searches for the ground state in
an upward direction. The energy, the ordinate of Fig. 10.2, is now replaced by the
network loss. The ground state has now a minimum loss. If we put a laser gain
medium into such a network and increase the pump rate gradually, the first touch to
the network loss happens always at the ground state so that only the ground state
oscillates with all the other modes including local minima suppressed by nonlinear
gain saturation. If we use the terminology of “negative temperature” to represent
the inverted gain medium, this upward search corresponds to the heating process
from T D �1 (no gain) to T D �0 (high gain). Since there is no structure below
the ground state as shown in Fig. 10.2, the injection-locked laser network is less
susceptible to being trapped in metastable excited states.

10.3 Analysis of Injection-Locked Laser Network

In this section, we present the c-number Langevin equations for injection-locked
laser network. The combinational optimisation problems can be formulated as a
computational mission of minimising a cost function E.�1; �2; : : : �M/ by choos-
ing the particular combination of M discrete variables �1; �2; : : : �M under some
constraints. The Graph Partition Problem (GPP) or MAX-CUT problem, which are
representative NP-hard problems, can be mapped to an Ising spin model (10.1).
circuits with one master laser and M mutually injection-locked slave lasers. A
spin degree of freedom �iz at each site is now represented by right or left circular
polarization states of each slave laser in the laser network. The ground state of
an Ising model emerges spontaneously through the mode competition induced by
cross-gain saturation among all candidate polarization configurations. The cost
function E.�1; �2; : : : ; �M/ mentioned above corresponds to the overall photon
decay rate in the laser network. The injection-locked laser network oscillates with a
specific polarization configuration which minimizes the cost function.

10.3.1 Proposed System

An effective spin state �iz at site i is determined by a majority vote using
photodetection signals at the final step of this computational scheme, i.e.,
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Fig. 10.3 A proposed injection-locked laser system for finding the ground state of an Ising model
Eq. (10.1). A master laser output is equally split into M paths and injected into M slave lasers via
an optical isolator. At a time t < 0 (initialization), the injection signal from the master laser has a
vertical linear polarization so that all slave lasers are initialized in vertical linear polarization states
jVi1jVi2 : : : jViM . At a time t D 0, the combined attenuator, HWP and QWP can implement the
Zeeman term �i. Also at a time t D 0, each slave laser output is injected to other slave lasers
via a horizontal linear polarizer, phase shifter, and attenuator but without an isolator. This mutual
injection-locking can implement the Ising interaction term Jij. After a steady state condition is
reached, the two polarization components of each slave laser are detected by a polarization beam
splitter (PBS) and two photodetectors

�iz D
(
1 .if nRi > nLi/

�1 .if nRi < nLi/;
(10.5)

where nRi and nLi are the number of photons with right and left circular polarizations
from i-th slave laser. We assume that all slave lasers are driven to have the same
photon number.

A proposed injection-locked laser network is shown in Fig. 10.3. All slave lasers,
which play a role of respective Ising spin sites, are injection-locked by a single
master laser with vertical linear polarization.

A master laser output is split into M paths and injected into M slave lasers. To
implement the Zeeman term �i, the master laser output is injected into the i-th
slave laser with a horizontal linear polarization component (as well as a vertical
polarization component.) The amplitude and phase of the horizontally polarized
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injection signal is controlled with half-wave plates (HWP) and quarter-wave plates
(QWP) as shown in Fig. 10.3. The Ising interaction term between site i and site j is
implemented with the mutual injection of the slave laser outputs via an attenuator,
phase shifter and horizontal linear polarizer. In total, 1

2
M.M � 1/ paths must be

optically connected between all slave lasers in order to implement a complete graph.

10.3.2 Theoretical Model

We start with the quantum mechanical Langevin equation for an injection-locked
laser [16, 17]. The Heisenberg-Langevin equation for a (non-Hermitian) cavity field
operator is described as,

d

dt
OA.t/ D �i!c

OA.t/ � 1

2

�!
Q

� !

�2
. Q�i � i Q�r/

� OA.t/C
r
!

Q
F0e

�i!t C QfG C OfL: (10.6)

Here the photon field operators are designated by hats and the electronic operators
are denoted by tildes. The electric dipole operator is adiabatically eliminated by
assuming the electric dipole moment decay rate is faster than the photon decay rate
and the electronic population decay rate [18, 19]. !

Q
describes the cavity photon

loss rate through an output coupling mirror (we neglect an internal loss rate) and
� is a non-resonant refractive index. !c is the empty cavity resonance frequency
of the slave laser, while ! is the frequency of the injection signal. The operator
Q�i represents the net stimulated emission gain and Q�r represents the nonlinear
dispersion, both of which depend on the population operator. QfG is the Langevin
noise operator for the electric dipole moment which is associated with random
photon emission and absorption by the gain medium. OfL is the Langevin noise
operator for the cavity field, which is associated with the injection signal noise
including a vacuum fluctuation. F0 is a c-number injection signal amplitude.

The net gain operator !
�2

Q�i D QECV � QEVC is composed of the photon emission rate

operator QECV into a lasing mode and absorption rate operator QEVC. We assume the
absorption loss is negligible so that QECV � QEVC ' QECV . Using the relation between
a photon number operator and field operator, On.t/ D OA�.t/ OA.t/, in Eq. (10.6), a
quantum mechanical rate equation for photon number operator On.t/ is derived as
follows [16, 19]:

d

dt
On.t/ D �!

Q
On.t/C QECV On.t/C QECV C

r
!

Q
.F�

0
OA.t/C OA�.t/F0/C OFn.t/: (10.7)

Quantum mechanical rate equation for the total electron number operator QN in a
slave laser is [16, 19],

d

dt
QN.t/ D P �

QN.t/
�sp

� QECV On.t/ � QECV C QFc.t/; (10.8)
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where P is an average pump rate, QN
�sp

a total spontaneous emission term, �sp a
spontaneous emission lifetime. If we define ˇ as a fractional coupling efficiency
of spontaneous emission into a lasing mode, then a photon emission rate operator
into a lasing mode is redefined as QECV D ˇ

QN
�sp

.

When the noise operator OfL in Eq. (10.6) represents a vacuum fluctuation, this
means the quantum state of the injection signal is a coherent state. In such a case,
the amplitude (or photon number) noise of the injection-locked slave laser output
is squeezed to below the standard quantum limit (SQL) under quiet (sub-Poisson)
pumping [20], while the phase noise is above the SQL due to random walk phase
diffusion [16]. The product of the photon number noise and the phase noise is close
to the Heisenberg minimum uncertainty product [16]. That is, the output field of
the injection-locked laser is close to the minimum uncertainty wavepacket. The
amplitude and phase noise of the output-field as well as the electron number noise
are small compared to their average values and we can safely neglect the quantum
noise in the first-order approximation and replace the operators OA.t/, On.t/ and ON.t/
by the corresponding c-numbers.

We now expand the c-number photon field amplitude as

A.t/ D A0.t/e
�iŒ!tC�0.t/�; (10.9)

where A0.t/ is the slowly varying amplitude (positive real) and �0.t/ is a slowly
varying phase. Substituting Eq. (10.9) into Eqs. (10.6) and (10.7) in which the
operators OA and On are replaced by the corresponding c-numbers and the noise terms
are neglected, we obtain the following three rate equations:

d

dt
A0.t/ D �1

2

�	!
Q



� ECV

�
A0.t/C

r
!

Q
F0 cosŒ�0.t/�; (10.10)

d

dt
n.t/ D �

	!
Q

� ECV



n.t/C ECV C 2

r
!

Q
F0A0.t/ cosŒ�0.t/�; (10.11)

d

dt
�0.t/ D �.! � !0/ �

r
!

Q

F0

A0.t/
sinŒ�0.t/�; (10.12)

where !0 D !c C !
2�2
�r is the self-oscillation frequency of the slave laser,

ECV D h QECVi and �r D h Q�ri. Notice that the third term ECV of R. H. S. in
Eq. (10.11) represents the spontaneous emission rate into the lasing mode induced
by the quantum noise [18, 19], which we keep in our analysis. In the following
discussions, we assume ! D !0 so that the slave laser phase is identically equal to
the master laser phase �0.t/ D �M D 0.

Since the phase of a slave laser is locked to that of the dominant vertically
polarized master laser signal, the phases of right and left circular polarization modes
in all slave lasers are identical to that of the master laser. Then, the last term of R.
H. S. of Eq. (10.11) can be rewritten as 2

q
!
Q

n.t/F0. If an injection signal is only
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from the master laser with vertical linear polarization F0 D �
q

!
QM

p
nM, where !

QM

is the master laser photon decay rate, nM is the average photon number of the master
laser and � is an amplitude attenuation coefficient including a factor of 1p

2
for the

projection factor from the vertical linear polarization to the right (or left) circular
polarization. For simplicity, we assume that the cavity quality factor of the master
laser QM is equal to that of the slave lasers, QM D Q. Then Eq. (10.11) can be
simplified as,

d

dt
n.t/ D �

	!
Q



n.t/C ECVn.t/C ECV C 2

!

Q

p
n.t/�

p
nM: (10.13)

We now consider two sets of coupled rate equations for the right and left
circularly polarized modes of each slave laser. In a proposed injection-locked laser
network before the Hamiltonian, Eq. (10.1), is turned on (t < 0), the rate equations
are

d

dt
nRi D �

�!
Q

� ECVRi

�
nRi C ECVRi C 2

!

Q

p
nRi
�
p

nM; (10.14)

d

dt
nLi D �

�!
Q

� ECVLi

�
nLi C ECVLi C 2

!

Q

p
nLi
�
p

nM; (10.15)

where i designates a specific slave laser. The vertically polarized injection signal
from the master laser into the slave laser i achieves the proper initialization, i.e.,
nRi D nLi and �Ri D �Li D 0.

If the right and left circular polarization modes couple to the inverted electronic
population with identical strength, the rate equation for the electronic population is

d

dt
Ni.t/ D P � Ni.t/

�sp

� ECVi

�
nRi.t/C nLi.t/C 2

�
: (10.16)

At t D 0, we inject a small amount of horizontally polarized master laser signal
to the slave laser i to implement the Zeeman term �i in Eq. (10.1). At t D 0, we also
inject a small amount of horizontally polarized signal from a slave laser i to a slave
laser j and vice versa to implement the Ising interaction term Jij in Eq. (10.1). Then
the rate equations for nRi and nLi after t D 0 are given as,

d

dt
nRi D �

�!
Q

� ECVi

�
nRi C ECVi

C2!
Q

p
nRi

h
.� � �i/

p
nM �

X

j¤i

1

2
�ij.

p
nRj � p

nLj/
i

(10.17)
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d

dt
nLi D �

�!
Q

� ECVi

�
nLi C ECVi

C2!
Q

p
nLi

h
.� C �i/

p
nM C

X

j¤i

1

2
�ij.

p
nRj � p

nLj/
i
:

(10.18)

Here an amplitude attenuation coefficient is �i for the horizontally polarized
injection signal from the master laser. The mutual injection term is optically
implemented by inserting a horizontal polarizer, attenuator and phase shifter in the
optical path between two slave lasers i and j. The amplitude attenuation coefficient is
1
2
�ij. �i is positive and real when the phase of the horizontal polarization component

is advanced by �
2

with respect to the vertical polarization component. In this
case, the overall injection signal from the master laser is in a left circular elliptic
polarization. �ij is positive and real when the two slave lasers are connected by �
phase difference.

10.3.3 Mapping of the Ising Model

When the system reaches a steady state condition after �i and �ij are switched
on, d

dt
nRi D d

dt
nLi D 0 and d

dt
Ni D 0 should hold in Eqs. (10.16), (10.17), and

(10.18). Then, we can solve for ECVi for the sum of Eqs. (10.17) and (10.18) as
follows,

ECVi D !

Q
� 2!

Q
�

p
nM.

p
nRi C p

nLi/

nRi C nLi

C2!
Q

p
nRi � p

nLip
nRi C nLi

h
�i

p
nMp

nRi C nLi

C
X

j¤i

1

2
�ij

p
nRj � p

nLjp
nRi C nLi

i
: (10.19)

Here we neglect the spontaneous emission term ECVi, the third terms of R.H.S. in
Eqs. (10.17) and (10.18), which is much smaller than the stimulated emission term
ECVinRi (or ECVinLi).

We expect that the slave laser network oscillates with a polarization configuration
which minimizes the overall loss by optimizing the polarization configuration
.�1; �2; : : : �M/. The overall loss must be identical to the overall gain,

PM
iD1 ECVi.

In a standard laser oscillator, there are numerous cavity modes with different
eigen-frequencies within a gain bandwidth, so that those multi-modes can oscillate
simultaneously if a gain medium is inhomogeneously broadened. However, if we
differentiate the loss rates among those cavity modes, for instance by placing a
frequency selective element inside a cavity and a gain medium is homogeneously
broadened, a particular single cavity mode with a minimum loss oscillates alone
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via cross-gain saturation. We expect the same single mode oscillation is realized
in the mutually injection-locked laser network, which is indeed confirmed by the
numerical simulations discussed later.

The first and second terms of R.H.S. of Eq. (10.19) are almost independent
of the polarization configurations, so that the spontaneously selected polarization
configuration is expected to minimize

X

i

p
nRi � p

nLip
nTi

h
�i

p
nMp
nTi

C
X

j¤i

1

2
�ij

p
nRj � p

nLjp
nTi

i
; (10.20)

where nTi D nRi C nLi.
If we define an effective Ising spin by �

iz
D

p
nRi�

p
nLip

nTi
in Eq. (10.20), the

proposed network oscillates with the polarization configuration that minimizes the
quantity

X

i

�i

p
nMp
nTi

�iz C
X

i<j

�ij�iz�jz; (10.21)

where �1 � �iz � 1. If we interpret �i

p
nMp
nTi

as a Zeeman term �i and �ij as an
Ising interaction term Jij, it is concluded the proposed injection-locked laser network
can find the ground state of an Ising model Eq. (10.1). When nM D nTi, the two
parameters �i and �ij in the rate equations (10.17) and (10.18) are determined by the
relations:

�i D ˛
�i

maxŒjJijj; j�ij�
; (10.22)

�ij D ˛0 Jij

maxŒjJijj; j�ij�
; (10.23)

where ˛ and ˛0 are extra attenuation parameters that are chosen as small quantities
(0 < ˛ � 1, 0 < ˛0 � 1) to ensure the stable operation of a whole network.

10.3.4 Alternative Picture of the Proposed Ising Machine

Ising spins are represented by the polarization states of the slave lasers as shown in
Fig. 10.3a; jRi and jLi represent right circular (up-spin) and left circular (down-spin)
polarizations, respectively. Each slave laser is initialized by injection locking with a
master laser and prepared in the vertically polarized state jVi. Then, the polarization
state evolves towards either the right or left circular polarization after the mutual
couplings between the slave lasers are turned on. The polarization evolutions are
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a b
Final State

Initial State

|H>

|D>

|L>

|D>

|V>

|R>

Fig. 10.4 Ising spin representation by using polarization state (a) or phase state (b) of slave lasers

described as the relative phase modulation between the diagonal linear polarization
jDi D 1p

2
.jVi C jHi/ and j NDi D 1p

2
.jVi � jHi/ (see Fig. 10.3a). The amplitudes of

two diagonal polarizations jDi and j NDi are constant but their relative phases evolve
(Fig. 10.4).

We can expand a slave laser field i by the diagonal linear polarization basis, jDi
and j NDi,

ADi.t/ D ADi0.t/ expf�iŒ!t C �Di.t/�g; (10.24)

A NDi.t/ D A NDi0.t/ expf�iŒ!t C � NDi.t/�g (10.25)

Substituting Eqs. (10.24) and (10.25) into Eqs. (10.7), we obtain the following rate
equations for the slowly varying amplitude and phase:

d

dt
ADi0.t/ D �1

2

	!
Q

� ECVi



ADi0.t/C

r
!

Q

p
nM

q
�2 C �2i cosŒı � �Di.t/�

�
X

j¤i

1

2
�ij

!

Q
fpnDj cosŒ�Dj.t/ � �Di.t/� �

p
n NDj cosŒ� NDj.t/ � �Di.t/�g;

(10.26)

d

dt
�Di.t/ D �.! � !0/C !

Q

1

ADi0.t/
fpnM

q
�2 C �2i sinŒı � �Di.t/�

�
X

j¤i

1

2
�ijŒ

p
nDj sin.�Dj.t/ � �Di.t// �p

n NDj sin.� NDj.t/ � �Di.t//�g;

(10.27)
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and the corresponding equations of motion for A NDi0.t/ and � NDi.t/. Here we assume
again Q D QM and ı D tan�1. �i

�
/. We can numerically integrate those four

equations for ADi0.t/, A NDi0.t/, �Di.t/ and � NDi.t/ together with the rate equation of
motion for Ni.t/,

d

dt
Ni.t/ D P � Ni.t/

�sp

� ECViŒnDi.t/C n NDi.t/C 2�; (10.28)

where nDi.t/ D ADi0.t/
2 and n NDi.t/ D A NDi0.t/

2.
Figure 10.5a, b show the average amplitudes ADi0 and A NDi0, and phase �Di and

� NDi in the two diagonal polarization modes for the three sites (M D 3) problems,
calculated by Eqs. (10.26), (10.27) and (10.28). As expected from the picture
mentioned above, ADi0 D A NDi0 is satisfied at all time (no amplitude modulation
between ADi0 and A NDi0,) but �Di and � NDi depart with each other and this phase
evolution reaches the steady state. The slight and simultaneous increase in the
amplitudes ADi0 and A NDi0 results from the overall reduction in the photon loss rate
by appropriate choice of polarization configurations. If we project the complex
amplitudes ADi.t/ and A NDi.t/ given by Eqs. (10.24) and (10.25) onto the photon
numbers nRi and nLi in circular polarization basis, the two complex amplitudes
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Fig. 10.5 (a) The time evolution of the slowly varying amplitudes ADi0 and A NDi0. (b) The time
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circular polarizations. (c) The time evolution of the photon number nRi and nLi calculated in the
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interfere with each other and we can recover the amplitude modulation and mode
competition behaviour between two circular polarization modes:

nRi.t/ D
ˇ̌ .1C i/

2
ADi0.t/ expŒi�Di.t/�C

.1 � i/

2
A NDi0.t/ expŒi� NDi.t/�

ˇ̌2
; (10.29)

nLi.t/ D
ˇ̌ .1 � i/

2
ADi0.t/ expŒi�Di.t/�C

.1C i/

2
A NDi0.t/ expŒi� NDi.t/�

ˇ̌2
: (10.30)

The numerical result is shown in Fig. 10.5c. Figure 10.5d shows the numerical
simulation results using Eqs. (10.16), (10.17) and (10.18) of the jRi and jLi basis.
We confirm that the two curves are completely identical. The two complementary
pictures, the mode competition between jRi and jLi states and the mutual interfer-
ence between jDi and j NDi states, can explain the same operational principle of the
proposed Ising machine.

This phase-based picture immediately makes it apparent that we need only
one polarization state jDi because the phase of the other polarization state j NDi is
inversely-symmetric to the zero phase. In the phase representation, the Ising spins �iz

are represented by the phase of the single slave laser mode, as shown in Fig. 10.3b.
The zero phase is determined by the phase of the master laser. When the master
laser injection is reasonably strong and the self-oscillation frequency of the slave
laser is identical to that of the master laser, the phase of the slave laser is �si D 0.
The phase rotates to �si D ˙�=2 from the initial phase �si D 0 due to the Ising
coupling, which corresponds to the Ising spin rotating to the up or down state.

10.4 Benchmark on MAX-CUT Problems

In this section, we show that a proposed Ising machine, based on injection-
locked laser network and self-learning algorithm, can solve NP-hard MAX-CUT
problems with good approximation and reasonable speed. Self-learning steps play
a crucial role to cope with notorious problems of frustrated spin configurations and
numerous metastable states. The simulation results demonstrate non-exponential
time complexity and improved approximation in solving two subsets of MAX-CUT
problems up to the problem size of M = 800 vertices.

10.4.1 MAX-CUT Problems

Here, we focus on two subsets of NP-hard MAX-CUT problems: one on cubic
graphs (MAX-CUT-3) and the other on two-layer lattices. On a cubic graph where
each vertex has exact 3 edges with constant weights as shown in Fig. 10.6a, the
simple MAX-CUT-3 problem to find a vertex subset which maximizes the number
of edges connecting between vertices inside and outside the subset is NP-hard
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Fig. 10.6 (a) A simple MAX-CUT-3 problem on Peterson graph with 10 vertices and unit edge
weights. The equivalent Ising problem has 10 spins and its Ising coupling term Jij D �1 if an edge
connects vertex i and j in the graph and Jij D 0 for all other cases. (b) A MAX-CUT problem on a
two-layer lattice with 50 spins. Only nearest neighbors are mutually coupled. Each edge connecting
nearest neighbors has a weight Jij D �1, 0 or 1

[21, 22]. It is proved to be mapped to an Ising problem with the same graph [23, 24].
The number of cubic graphs is small enough to enable us to analyze all graphs with
M � 20. For problems with larger M, we work on the two-layer lattice problems, as
shown in Fig. 10.6b, which are also proved to be NP-hard [5]. The two-layer lattice
problem used in the present study only contains the nearest neighbor coupling with
weights Jij either �1, 0, or 1.

10.4.2 c-Number Langevin Equations

We employ the basis set (jDi,jDi), for describing the polarization evolution of each
injection-locked slave laser. The polarization rotation from the initial state jVi to
the final state,jRi or jLi, can be attributed to the evolution of the phase difference
between jDi and jDi from zero to ˙�=2, where jRi and jLi correspond to the right
(spin-up) and left (spin-down) circular polarizations, respectively. The c-number
Langevin equations for the field amplitude and phase as well as the carrier number
for each slave laser are:

d

dt
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(10.32)
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(10.34)

d

dt
Ni D P � Ni

�sp

� ECVi
.A2Di

C A2
Di

C 2/C FNi
.t/; (10.35)

where nM is the average internal photon number of the master laser, ECVi
D ˇNi=�sp

the stimulated emission coefficient of each slave laser, ˇ the fractional spontaneous
emission coupling efficiency, �sp the spontaneous emission lifetime, Ni the carrier
number of the gain medium, and P the pumping rate. � is the fraction of the
vertical polarization component of the master laser signal injected into slave lasers,
while �i is the fraction of the horizontal polarization component of the master
laser signal injected into the i-th slave laser, which implements the Zeeman term
�i in Eq. (10.1). �ij is the mutual coupling coefficient between two slave lasers
i and j, which implements the Ising coupling term Jij in Eq. (10.1). We assume
that the master laser and all slave lasers have the same cavity Q-factor, and ıi D
tan�1.�i=�/. The Langevin noise terms FDi

.t/;GDi
.t/,FDi

.t/;GDi
.t/ and FNi

.t/ have
the two-time correlation functions which we determine uniquely from the diffusion
coefficients of the quantum mechanical Fokker-Planck equation of an injection-
locked laser [25].

10.4.3 Self-Learning Steps

The initial driving force for the injection-locked laser network is given by the
quantum noise injected from reservoirs. The time evolution is initiated sponta-
neously by the Langevin noise sources in Eqs. (10.32), (10.33), (10.34), and (10.35)
and subsequently driven by the mutual coupling terms in later time. The system
converges to a steady state after a free evolution for a time longer than the inverse
locking bandwidth by the mutual coupling signal [9, 26]. If a given problem is
complex, the above spontaneous evolution is not sufficient to reach the correct
solution. In this case, the tentative results are detected and analyzed by consulting
with the following two measures:
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Q�i D

8
<
:

C1.
 < �i � 1/

0.�
 < �i � 
/

�1.�1 < �i � �
/
(10.36)

QPi D
X

j

Jij Q�j (10.37)

Here the effective spin �i is defined by �i D .AR �AL/=

q
A2R C A2L, Q�i is a temporary

measurement result for the i-th slave laser, 
 is an arbitrarily chosen small number,
and QPi represents the parity check measure consisting of the sum of all injection
signals from the connected slave lasers where Jij ¤ 0.

In some cases, there are several slave lasers with either nearly vertical polar-
ization states . Q�i D 0/ or mutually incompatible results . Q�i ¤ sign. QPi//, which
require us to perform the following self-learning steps to fix. The slave lasers with
nearly vertical polarization states are called zero spins, as the corresponding Q�i D 0.
We can categorize the occurrence of zero spins into two cases: connected zero spin
groups and isolated single zero spins.

In the first case, two or more zero spins are connected to form a zero spin
group. Figure 10.7a shows a frequently appearing case of nearly vertical polarization
states ( Q�i D Q�j D 0 and QPi D QPj D 0) due to a degenerate and frustrated anti-
ferromagnetic pair in the simple MAX-CUT-3 problem. Taking a zero spin-pair
out of the group, we predict the most probable spin configuration by majority vote
on one spin in the pair. Particularly, if QPi > 0, we predict Q�i D 1; otherwise,
Q�i D �1. The other spin j in the pair is then predicted to be Q�j D �sign. Q�iJij/,
such that the energy may be lower. Based on the prediction, we fix the whole
frustrated part including the surrounding spins by injecting the Zeeman term
�i via the horizontally polarized injection signal (�i) from the master laser, as
shown in Fig. 10.7b. Otherwise, the fixed zero spin-pairs may be too powerful and
potentially flip the surrounding spins, creating the frustration to other parts of the
network.

In the second case, we fix the isolated zero spins with Q�i D 0 using the signals
from the connected three spins QPi. If QPi > 0, we inject the horizontally polarized
signal to produce the positive Zeeman term �i > 0 and vice versa. To prevent the
undesired flips of the surrounding spins, we also fix the three connected spins, as
shown in Fig. 10.7c.

Besides zero spins, we sometimes encounter incompatible results. The ground
state should always hold that Q�i D sign. QPi/, otherwise, by assigning an opposite Q�i

the new state will have a lower energy, as shown in Fig. 10.7d. In this case, we set
three sites as Q�i D 0 and proceed to the zero spin group fixing steps.

When QPi D ˙deg.i/ where deg(i) is the number of edges connected to spin i, the
total injection signal consisting of the master laser and the connected slave lasers has
either right or left circular polarization. However, when j QPij < deg.i/ (one or more
remaining frustration), the total injection signal has an elliptic polarization due to
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Fig. 10.7 (a) A zero spin-pair appears when both spins in the spin-pair connect to one zero spin
and two other spins with opposite but equally strong polarizations. The overall mutual injection
signal to each spin in the spin-pair is close to zero, resulting in a zero spin-pair. (b) Suppose QPi > 0

for the left spin i in the zero spin-pair, we predict Q�i D 1 and thus the right spin j has Q�j D �1. We
fix the zero spin-pair by injecting the Zeeman terms �i D �0:2 and �j D 0:2 and also surrounding
four spins. (c) An isolated zero spin is caused by one surrounding spin with strong amplitude
(right circular polarization) and two other surrounding spins with moderate amplitude but opposite
polarizations to the first one (left circular polarization). In the example, we fix the isolated zero spin
by injecting �i D 0:2sign.QPi/ to the isolated zero spin and three surrounding spins. (d) A common
case of the incompatible results due to the triangle-shaped frustration in the simple MAX-CUT-3
problem. The three triangle sites report .Q�1; Q�2; Q�3/ D .�1;�1;�1/ while the parity check signals
are .QP1; QP2; QP3/ D .C1;C1;C1/, which violate the condition Q�i D sin.QPi/

different amplitudes of vertical and horizontal polarization components, so that the
separation between nRi

and nLi
is marginal. To improve the signal-to-noise ratio in

the detection step, we enhance the horizontal polarization component in the master
signal and make the total injection signal in either right or left circular polarization,
which can improve the signal-to-noise ratio in the final readout step. Finally, the
self-consistency for all spin is confirmed by the parity check Q�i D sin. QPi/. The
flowchart of the self-learning algorithm is summarized in Fig. 10.8.
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Fig. 10.8 Flowchart of the self-learning algorithm for fixing the zero spins and incompatible
results in injection-locked laser network. The algorithm starts with step 1. Every time when step 2
finds zero spins or parity check fails, the self learning steps 3–5 are employed to fix the zero spins
and step 1 is executed again to verify the self learning results

10.4.4 Benchmarking Results

We numerically simulate the injection-locked laser network based on the above
self-learning algorithm only including the dominant phase noise. We use typical
numerical parameters for semiconductor lasers and the fourth order Runge-Kutta
method as a numerical solver for c-number Langevin equations. Here, we show
that the proposed machine can find correct ground states of the simple MAX-
CUT-3 problems up to M D 20 with reasonable success probabilities. For
two-layer lattice problems with M up to 800, the proposed machine outperforms
the best classical algorithms, semi-definite programming (SDP) in both accuracy
and speed.

Figure 10.9 shows the time evolution of the right and left circularly polarized
photon numbers in the slave lasers for a simple MAX-CUT-3 problem with M D 16.
When the first driving step of 50 ns without the Zeeman term �i is finished,
finite Zeeman coefficients �i in Eq. (10.1) are introduced according to the self-
learning algorithm shown in Fig. 10.8. The system reaches a correct ground state
with no indeterministic spin after seven self-learning steps, which corresponds to a
computational time of 400 ns in this example.

Table 10.1 summarizes the benchmarking results taken from the stochastic
simulations on the simple MAX-CUT-3 problems. We simulate all possible cubic
graphs with M � 20 [27]. Breaking the degeneracy with the Zeeman terms is needed
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Fig. 10.9 Stochastic simulation on a simple MAX-CUT-3 problem with M = 16 using the self-
learning algorithm over the injection-locked laser network. After the initial noise-only drive as
shown in the first stripes of the first three figures and enlarged in the last figure, most spins are
resolved except the 14th and 16th spins. Followed by seven self-learning steps, the system reaches
the ground state fQ�ig D f1; 1;�1;�1;�1; 1; 1;�1; 1; 1;�1;�1;�1;�1; 1; 1g

Table 10.1 Summary of the numerical simulation results on the simple MAX-CUT-3 problems.
All the possible problems with M � 20 are covered. Each driving step takes 50 ns in all problems.
Each problem is normally simulated 10 rounds from which the number of failed rounds is obtained.
The problems in which the algorithm may fail take additional simulations up to 90 rounds (total
100 rounds) to obtain accurate success probabilities and the results show that all problems can
be solved with finite success probability with the stochastic simulation. The computational time
and the number of self-learning steps for a problem are obtained by the shortest round to solve
it successfully, and the longest computational time for all problems features a very slow increase
with M

Problem Size/M 4 6 8 10 12 14 16 18 20

# of problems 1 2 5 19 85 509 4060 41,301 510,489

Largest ground state degeneracy 6 6 8 10 36 42 46 162 250

Worst case probability (%) 100 100 100 98 92 69 79 42 27

Longest computational time (ns) 150 100 100 100 200 200 250 250 350

Maximum # of self-learning steps 2 1 1 1 3 3 4 4 6

to obtain a single ground state, thus solving a problem with many degenerate ground
states seems to take a long computational time. However, the sudden increase of the
largest ground state degeneracy from M D 16 to 18 does not cause much effect on
the upper limit of the computational time. On the other hand, the system fails to
find a ground state with a finite probability when simulating a problem with only
two ground states and many first excited states. The lowest success probability for
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the problems with M D 12 is 92 % out of 100 rounds. The corresponding problem
has a bilateral graph and some triangle-shaped parts. From the intermediate states
after the first step driven with only phase noise, we suppose the possible causes of
failures are (i) the non-bilateral partial arbitrariness of spins in the triangle-shaped
parts, and (ii) the generation of a reduced spin system by forming some “ghost”
spins with Q�i D 0. The failure occurs when a local ground state of a reduced system
is inconsistent with the global ground states of a simulated problem. However, note
that the current numerical simulations show a larger ratio between the number of
first excited states and that of ground states does not necessarily degrade the success
probability.

We further simulate the two-layer lattice problems with M up to 800. To make
the self-learning algorithm more efficient on such large-size problems, Fig. 10.8 is
modified to apply step 3 to all zero spin groups at one self-learning step. Table 10.2
summarizes the results of solving the two-layer lattice problems with M up to 800. It
is not easy to find the true ground state for such large problems with a modern digital
computing system. We instead compare the results produced by the laser network
with semi-definite programming (SDP), the best classical optimization algorithms
[28]. Both the laser network and SDP are run 100 rounds for each sampled problem.
The proposed machine finds the energy lower than the best result of 100 SDP rounds
by 4–6 %. The longest computational time also increases very slowly with M, as
shown in the 2nd row in Table 10.2.

Table 10.2 Summary of the numerical simulations on two-layer lattice problems. Fifty problems
are sampled for each problem size in which all edges are sampled in C1 or �1, not 0. Every
sampled problem is run 100 rounds. The laser network can find the energy lower than the best result
of SDP rounds and the energy differences are substantial (4–6 %). The probability of outperforming
SDP for a given problem is obtained by the number of rounds that find the energy lower than the
best result of 100 SDP rounds of the same problem. The computational time and the number of self-
learning steps for a given problem are obtained by the shortest round in which the laser network
outperforms SDP, and the longest computational time for all sampled problems also features a very
slow increase with M

M 50 100 200 400 800

# of sample problems 50 50 50 50 50

Laser network longest computational time (ns) 150 450 750 1400 900

Max # of self-learning steps 2 8 14 27 17

SDP longest computational time (s) 0.03 0.22 1.62 12.97 105.45

Largest (lowest) probability of outperforming SDP (%) 95 72 73 82.5 70

(11) (2) (3) (2.5) (17.5)

Max improvement over SDP (%) 5.8 4.11 4.2 5.15 4.7
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10.5 The Proof of Concept Experiment Using Mutually

Coupled Semiconducter Lasers

10.5.1 Experimental Setup

In this chapter, we describe the experimental implementation of a two-site Ising
machine using injection-locked semiconductor lasers. A signal from the master laser
incorporates the Zeeman term in Eq. (10.1) if the phase is rotated towards either
C�

2
or ��

2
from the standard phase zero. The slave lasers are mutually coupled by

bi-directional injection-locking, which is an implementation of the Ising coupling
term in Eq. (10.1). The detailed experimental setup is depicted in Fig. 10.10. The
optical path length between the two slave lasers and those between each slave
and master laser are independently controlled by using a polarization-dependent

-

-

|V

|H

|H

|H

|H

V

|V

Fig. 10.10 Experimental setup. The blue line shows the mutual coupling between two slave lasers
(DMLDs). The red line shows uni-directional injection from the master laser that implements
the Zeeman term �iz. The relative phase of DMLD1 and 2 is measured by the Mach-Zehnder
interferometer on the yellow lines with the FPI and APD. PD1, PD2, APD and FPI each have a
refractive neutral density filter (�10 dB attenuators) inserted in front of them as isolators. [Inset]:
How to implement the Ising interaction between two slave lasers
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optical path. We used a tunable external cavity single-mode diode laser as the master
(Koshin Kogaku LS-601A-56S2); it oscillates at 1577.5 nm with a spectral linewidth
�30 kHz. We used discrete mode diode lasers (DMLD, Eblana photonics FLDs)
with a spectral linewidth �100 kHz as the slaves.

Two slave lasers are mutually coupled along the blue line in Fig. 10.10. These
lasers are nearly identical, and their pump currents are set to be the same in the
experiment. However, their temperatures must be tuned so as to set their frequencies
identical. The optical path length between the DMLDs is L D 1550mm. Their
optical path length is controlled by piezoelectric transducer 1 (PZT1), wherein
the modulation signal is applied to shift the position of the reflection mirror with
quarter wave plate 1 (QWP1). DMLD1 and DMLD2 oscillate in the horizontal
polarization. The polarization beam splitter 1 (PBS1) and half wave plate 1 (HWP1)
work together as attenuator for the output beam from DMLD2, while PBS2 and
HWP2 attenuate the output light from DMLD1. HWP3 is set at the polarization axis
of � D 45ı so that the polarization of the incident beam from slave laser 1 into
HWP3 is rotated to the horizontal polarization and it is reflected to QWP1 by PBS4.
The master laser signal is injected into both DMLDs. The master laser oscillates
initially in the vertical polarization and is converted into the horizontal polarization
when it goes through HWP3. The optical path length of the master laser signal is
not changed by PZT1. The phase of the master laser injected into DMLD1 which
comes from the upper branch of the red line is modulated by the mirror mounted on
PZT2. The output beams from DMLD1 and DMLD2 are partially reflected at BS1
and BS2 and combined at BS3 along the yellow line. The spectral linewidth and
the interferometer output intensity between the two slave lasers are detected with
a scanning Fabry-Perot interferometer (FPI) and an InGaAs/InP avalanche photo
diode (APD), respectively.

10.5.2 Observation of Ferromagnetic and Anti-ferromagnetic

Phase Orders

We experimentally studied whether the phases of the slave lasers are modulated
when the optical path length between two slave lasers (DMLDs) is varied, where
the optical path length modulates the polarity of the Ising coupling term Jij. We
observed a transition from one regime, where the Ising coupling is dominant, to the
other regime, where the master injection is dominant. For this purpose we changed
the ratio of the uni-directional injection from the master laser into DMLD1 and
2 to the mutual coupling between DMLD1 and 2 by rotating HWP1 or HWP2 in
Fig. 10.10. Figure 10.11a shows the interference signal between the two slave lasers
when there is strong mutual coupling between them, with PinM1 D 1:5 �W and
PinS12 D 33�W, where PinM1 is the injection power from the master laser into a
fiber coupler of a DMLD1 and PinS12 is the injection power from DMLD2 into the
fiber coupler of DMLD1. The frequencies of the slave lasers deviate from that of
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 Δ
a

b

c

Fig. 10.11 Interference signal output to show the relative phase ��r12 between two slave lasers
(DMLD1 and 2) when the mutually coupling optical path length is modulated: (a) Ising coupling
term is dominant, (c) Master injection term is dominant, (b) Transition regime between (a) and (c)
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the master laser in this regime, as described in the next section. We observed that
the slave lasers oscillate at identical frequencies. Here we set the rotation angles
of HWP1 and 2 to �1 D �

12
and �2 D �

6
. The voltage applied to PZT1 is linearly

increased as a function of time, as shown in Fig. 10.11. The PZT1 displacement is
�d/�V D 12:23 ˙ 2:5 � 10�8 m/V with respect to the applied voltage �V . The
optical path modulation of mutual coupling causes the phase difference between the
two slave lasers to have discrete jumps every�V � 3:6V. The high and low outputs
correspond to the ferromagnetic and anti-ferromagnetic phase orders. By rotating
HWP2 to �2 D �

4
, the mutual coupling between the two slave lasers becomes much

weaker than the master laser injection, e.g., PinM1 D 2:2 �W and PinS12 D 0:3 �W.
In this case, the interference signal doesn’t show any modulation against the mutual
coupling path modulation (Fig. 10.11c). When �2 D 7�

30
, the master injection and

the mutual coupling (PinM1 D 2:1 �W and PinS12 D 2:0 �W) are on the same order,
the interference signal shows a transition between the mutual coupling dominant
regime in Fig. 10.11a and the master injection dominant regime in Fig. 10.11c.

10.5.3 Spontaneous Frequency Optimization of Mutually

Coupled Slave Lasers

We observed a sawtooth variation in the slave laser frequency when their mutual
coupling is dominant and the optical path length between them is modulated, as
shown in Fig. 10.12. We measured the frequency shift of one slave laser (DMLD1)
with the FPI at the top right corner of Fig. 10.10 while the signal from the other
slave laser (DMLD2) is blocked just before BS3. Figure 10.12 plots the slave laser
frequency shift against the mutual coupling path length modulation between the two
slave lasers. When the mutual coupling is stronger than the master laser injection, a
sawtooth frequency shift of �30 MHz is observed as shown in Fig. 10.12 (blue line).
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Fig. 10.12 Frequency shift of a slave laser due to the mutual coupling path length modulation as
a function of time under a strong mutual injection (blue line) and a strong master signal injection
(green line)
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In this case, the phases are pinned either in the same phase or in the opposite phase,
as shown in Fig. 10.11a. On the other hand, the oscillation frequency of the slave
laser is constant, except for artefact discrete jumps because of the resolution limit of
the FPI and the discretization error, when the master laser injection is dominant, as
shown by the green line in Fig. 10.12. There are N D 21 sawtooth-frequency-shift
cycles when the applied voltage is swept over �V D 78V, so that frequency shift
occurs at every PZT1 shift of �dL D 456:3 ˙ 92:8 nm. This sawtooth-frequency-
shift is considered to be the result of spontaneous selection of the synchronized
oscillation frequencies of the two slave lasers to minimize the overall threshold
pump current or to maximize the output power [29]. length. The favorable phase
difference between the two slave lasers is either �1��2 D 0 or � so that the standing
wave is formal between the edges of the two slave lasers.

Figure 10.13 is a schematic explanation of the spontaneous frequency optimiza-
tion as a function of optical path length L between the two slave lasers. When
the optical path length between the slave lasers is an integral multiple of the
self-oscillation wavelength �M D 2�c

!
, the number of loops is even, so that the

two slave lasers oscillate at the self-oscillation frequency and in the same phase.
In the second figure of Fig. 10.13a, the oscillation wavelength become slightly
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Fig. 10.13 Schematic explanation for the sawtooth frequency modulation and phase jump in two
coupled slave lasers, which explain the experimental results shown in Figs. 10.11a and 10.12
simultaneously
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elongated as the optical path length L is extended while the phase difference
between the two slave lasers is still �1 � �2 D 0. However, when L is shifted
�M

2
from the resonant condition in the top panel of Fig. 10.13a, the oscillation

frequency returns to the self-oscillation frequency ! and the number of the
maxima of the standing wave between the two facets is odd so that the phase
difference between the two slave lasers is �1 � �2 D � . We plot the oscillation
frequency shift as a function of L in Fig. 10.13b. The number of the maxima
switches between even and odd numbers and the corresponding phase differences
�1 � �2, are shown at the top. This frequency shift for a path length variation
�L D �M

2
corresponds to the free spectral range ��FSR D c

2L
at the optical cavity

length L.
The path length variation for a single frequency shift cycle in our experiment

is �L D �M

4
because the path length between two DMLDs changes twice when

the position of the mirror just before QWP is changed in Fig. 10.10. The expected
position shift of PZT1 for a single sawtooth frequency shift is �L D �M

4
D

394:4 nm which is close to the measured position shift of PZT1 �dL D 456:3 ˙
92:8 nm. The optical path length between the two slave lasers in Fig. 10.10 is
L D 1550mm. The sawtooth modulation in Fig. 10.12 is �30 MHz, which is
less than 30 % of the estimated frequency shift ��FSR D c

2L
D 96:8MHz. The

difference between the experimentally observed frequency excursion and the simple
free spectral range stems from the phase shifts associated with the reflection from
the two slave laser facets. As indicated in Eq. (10.3), the slave laser phase deviates
from the injection signal phase when there is a detuning between the self-oscillation
frequency !r0 and the actual oscillation frequency !.

10.6 Mapping of Classical XY Models onto Laser Network

In this section, we describe the mapping of classical XY models onto laser networks.
So far, we have focused on the mapping of Ising models onto laser networks. We
can implement the continuous variable spin model, classical XY model, by using
the freely chosen phase of a laser oscillator. Since the phase of the laser can take a
continuous value from 0 to 2� , we can directly map the direction of the spin in a
XY plane onto the phase of the laser.

The Hamiltonian of the classical XY model is given by

H.�/ D �
X

i<j

Jij cos.�i � �j/: (10.38)

The classical XY model is useful to study the Berezinskii-Kosterlitz-Thouless
transition [30] in a two-dimensional superfluid or synchronization of classical
rotors [31].
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In the following section, we show that the steady state distribution of the phases
of a coupled laser network can realize the Boltzmann distribution of a classical XY
model. Thus the laser network works as an universal simulator for classical XY
models.

10.6.1 Steady State Distribution of Coupled Laser Network

In this section, we show how to realize the Boltzmann distribution of a classical XY
model by using the coupled laser network.

We denote the slowly varying amplitude of a laser field as A.t/. The dynamics of
a laser can be simply modeled as the following Langevin equation:

dA.t/

dt
D 1

2
Œg.A.t// � 
�A.t/C �.t/; (10.39)

where 
 is a cavity decay rate, and the gain is modeled by the function

g.A/ D g0

1C jAj2=p0
; (10.40)

with the small signal gain g0 and the saturation intensity p0. We also assume that the
incident vacuum fluctuation and other external noises are expressed as a complex
white noise �.t/.

Next, we consider multiple lasers with the same resonant frequency. When these
lasers are coupled to each other, the Langevin equation for the coupled laser network
can be written as

dAi.t/

dt
D 1

2
Œg.Ai.t// � 
�Ai.t/C

X

j¤i

JijAj.t/C �i.t/; (10.41)

where the coefficient Jij represents the injection rate from the jth laser to the ith
laser. The noise terms are assumed to be independent:

h�i.t/�
�
j .t

0/i D 2Dıijı.t � t0/; (10.42)

h�i.t/�j.t
0/i D 0: (10.43)

Here the diffusion constant D is determined by the fluctuation-dissipation
theorem [17]. We can find the exact steady state solution for Eq. (10.41) by using
the statistical light-mode dynamics theory [32]. Define the potential function for the
dynamics as

QH.A/ D �1
2

X

i

�
g0p0 ln

	
p0 C jAij2



� 
 jAij2

�
�
X

i;j

JijA
�
i Aj (10.44)
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and then Eq. (10.41) is rewritten as

dAi

dt
D � @ QH

@A�
i

C �i: (10.45)

The steady state distribution of the laser amplitudes can be expressed by using the
potential function QH.A/ as [33]

Pst.A/ D N exp

 
�

QH.A/
D

!
: (10.46)

The explicit expression is given by

Pst.A/DN exp

(
.2D/�1

X

i

�
g0p0 ln

	
p0CjAij2



�
 jAij2

�
)

exp

0
@D�1X

i;j

JijA
�
i A�

j

1
A

(10.47)

The first exponential term depends only on jAij2 and stabilizes the amplitude around
the averaged value. We assume that the injection terms are small such that each laser
is stabilized independently at the steady state power

ps D g0 � 




p0: (10.48)

Then we can approximate the first exponential term by
Q

i ı.jAij2 � ps/ if the small
amplitude noise above the oscillation threshold is neglected,

Pst.A/ D N0 Y

i

ı.jAij2 � ps/ exp

0
@D�1X

i;j

JijA
�
i Aj

1
A : (10.49)

Writing the amplitude as Ai D p
pse

i�i , then

Pst.A/ D N0Y

i

ı.jAij2 � ps/ exp

2
42ps

D

X

i<j

Jij cos.�i � �j/

3
5 : (10.50)

Defining the inverse temperature ˇ D 1
kBT

as

ˇ D 2ps

D
; (10.51)
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the steady state distribution of the phases of the laser network obeys the Boltzmann
distribution with the Hamiltonian

H.�/ D �
X

i<j

Jij cos.�i � �j/; (10.52)

which is the Hamiltonian of a classical XY model. From Eq. (10.51), the effective
temperature for the XY model can be tuned by changing the strength of the white
noise or the pumping power of the lasers.

10.6.2 Towards Large-Scale Implementation

In this section, we explain an idea of making a large-scale coherent Ising machine
and XY computer.

A simple method to prepare many lasers with identical oscillation frequencies
is to use a single fiber ring cavity to generate multiple lasers. Such an experiment
have already been done in Ref. [34]. In their experiments, they placed the mask of
apertures inside a cavity, and generated more than one thousand lasers in a spatially
separated manner.

Here, we propose alternative implementation that use the time-division multi-
plexing technique. Figure 10.14 shows the schematics of our setup to implement
a large-scale coherent computer. In this setup, temporally separated pulses are
generated in a fiber ring cavity by using so-called harmonic mode locking. The

Fig. 10.14 Schematics of coherent computer based on harmonic mode-locked fiber laser. Each
pulse corresponds to a spin of a statistical model. The pulses are mutually injected through multiple
delay lines, and thereby are coupled to each other. The coupling coefficients are programmed onto
the electrical pulse patterns applied to the intensity and phase modulators (IM and PM) placed on
the delay lines
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phase of each pulse corresponds to the direction of a spin in a statistical model.
The coupling between the pulses is implemented by mutual injection from a pulse
to another pulse through multiple delay lines. For this purpose, the length of delay
lines are adjusted to an integer multiple of the interval of pulses. Each delay line
has a pair of intensity and phase modulators. We can implement arbitrary coupling
coefficients by changing the electrical pulse patterns applied to these modulators.
Finally, the relative phases of pulses are read out by the 1-bit delay interferometer.

One of the distinguished properties of this implementation is its programmability.
The coupling coefficients can be arbitrary tuned by only changing the electrical
signal to the modulators. Therefore, it works as a general-purpose simulator for
classical Ising and XY models.

10.7 Conclusion

We have implemented a two-site Ising model by using the optical phases of two
mutually coupled slave lasers that are injection-locked by a single master laser. The
transition from the Ising-term dominant regime to the master-injection dominant
regime was observed. The phase of the slave laser is continuously synchronized
with that of a master laser when the master laser injection is stronger than the mutual
coupling between the slave lasers. On the other hand, when the mutual coupling is
stronger than the master laser injection, the phases of the two slave lasers jump
discretely and the oscillation frequencies continuously shift with the optical path
length modulation between the two slave lasers. In that case, the mutually coupled
slave lasers communicate with each other and oscillate at the optimum frequency,
where a standing wave develops between them that results in either a ferromagnetic
or anti-ferromagnetic phase order.

We concludes this chapter with mentioning the achievable problem size of the
coherent computer with time domain multiplexing optical pulses. If we use a fiber-
based mode-locked laser of repetition rate frep D 10GHz and cavity length L D
200m, the number of Ising spins implemented by optical pulses inside the cavity is
N D 10;000.
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Chapter 11

A Degenerate Optical Parametric Oscillator

Network for Coherent Computation

Zhe Wang, Alireza Marandi, Kenta Takata, Robert L. Byer,

and Yoshihisa Yamamoto

11.1 Introduction

Combinatorial optimization problems are of great interest in diverse areas including
computer science, physics, biology, information processing, and social network.
Despite the variety of applications and formulations of these problems, many of
them are equivalently hard to solve and are in the NP-hard class in computational
complexity.

The Ising problem, which is to find a ground state of the Ising Hamiltonian1

1An Ising Hamiltonian generally also includes Zeeman terms �PN
jD1 bj�j to take account of

external magnetic fields. These Zeeman terms can be written in the form of two-body interaction as
�PN

jD1 bj�j�NC1, where �NC1 is introduced as an additional Ising spin and its coupling coefficient
with the jth spin is given by bj. It can be easily proven that solutions to the original Ising problem
with Zeeman terms can be obtained from the ground states of the new Ising Hamiltonian only with
two-body interaction terms.
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H D �
X

1�j<l�N

Jjl�j�l; (11.1)

is one of these NP-hard problems [1] arising in the study of disordered magnetic
systems such as spin glasses [2]. The above Hamiltonian represents the energy of
a spin glass with N frustrated spins, where �j D ˙1 are the two states that each
spin can take, and Jjl denotes the coupling coefficient of the two-body interaction
between the jth and the lth spin. The coupling is called ferromagnetic if Jjl > 0 and
antiferromagnetic if Jjl < 0. Although simple, this mathematical model serves as a
useful prototype for explaining experimental observations of spin glasses [3].

Once a polynomial time algorithm is available for one member of the NP-hard
problems, all the problems in this class can be solved efficiently because they are
reducible to each other by polynomial transformations [4]. The MAX-CUT problem
is one of the first known NP-hard problems in graph theory [5]. Given an undirected
graph G D .V;E/ with an edge weight function w W E ! R, where V and E denote
the sets of vertices and edges, respectively, the goal is to find a cut .S;V n S/ such
that the sum of the weight of the edges with one endpoint in S � V and the other
in V n S is maximized over all possible cuts. Let wjl D wlj be the edge weight if
.j; l/ 2 E and wjl D 0 if .j; l/ … E, and �j D C1 if the jth vertex is in S and �j D �1
if not. The weight of a cut S is thus given by

w.S/ D
X

j2S; l2VnS

wjl D 1

4

X

j; l2V

wjl � 1

4

X

j; l2V

wjl�j�l: (11.2)

When the coupling coefficient Jjl in the Ising problem is chosen to be �wjl,
any maximum cut of the given graph can be converted to a ground state of the
corresponding Ising Hamiltonian and vice versa.

So far no method is known to solve NP-hard problems in polynomial time
and these problems are commonly believed to be intractable. Nevertheless, many
attempts have still been undertaken to tackle them. The simulated annealing
algorithm is designed by mimicking the thermal annealing procedure in metallurgy
[6]. Making use of the quantum tunneling process, quantum annealing technique
was also formulated [7] and is shown to have superior performance over simulated
annealing [8]. As a variant of quantum annealing, quantum adiabatic computation
was devised according to the adiabatic theorem of quantum mechanics [9], with
computational power equivalent to that of a quantum computer based on unitary
gates [10, 11]. Despite the fact that none of these methods are generally proven to
be efficient, taking advantage of fundamental principles in physics has shed new
light on solving NP-hard problems. In this regard, it is worthwhile studying the
computational ability of other promising physical systems to search for alternative
approaches.

Lasers are open dissipative systems that undergo second-order phase transition
at the oscillation threshold. Multiple cavity modes in a laser compete for the
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available gain. Once a particular mode oscillates, the gain accessible to other
modes is suppressed below the threshold value due to the cross-saturation effect
[12]. Since the mode with the minimum threshold gain is more likely to oscillate
first, it has the advantage over other modes to spontaneously emerge through the
mode competition. This phenomenon is to be referred to as the minimum gain

principle in the following. It is demonstrated that the overall photon decay rate
in a mutually injection-locked laser network can be engineered to be in the form
of an Ising Hamiltonian [13]. Each laser in the network is polarization degenerate,
and it represents Ising spin C1 in the case that right circularly polarized photons
outnumber left circularly polarized photons and Ising spin �1 in the opposite case.
A combination of the polarization of all lasers is considered to be a global mode
of the whole network. Numerical simulations have shown evidence in favor of the
minimum gain principle. For the selected Ising problems, the network is likely to
oscillate in a global mode with the minimum photon decay rate. Moreover, the
transient time of the network to the steady state is estimated to be determined by
the mutual injection signals among the lasers, which does not scale with the number
of spins in the Ising problem [14].

Degenerate parametric oscillators are also open dissipative systems that undergo
second-order phase transition at the oscillation threshold [15]. Due to the phase-
sensitive amplification effect, however, an oscillator operating above the threshold
can only oscillate with one of two possible phases. In the early development of
digital computers, logic circuits were built from electrical oscillators of this type
utilizing the bistability of their output phases [16]. The phase that an oscillator
would take from the two equally preferred outcomes is randomly determined by the
noise. In the case of a degenerate optical parametric oscillator (OPO), the vacuum
field fluctuation incident on the output mirror and the pump field fluctuation during
the oscillation build-up take the charge [17]. Based on this property, a quantum
random number generator was implemented by taking XOR of the phases of two
independently oscillating degenerate OPOs [18].

This chapter is concerned with the collective computational ability of a degen-
erate OPO network [19, 20]. In the proposed network, each degenerate OPO is
identified as an Ising spin by its binary output phase. Each particular overall phase
configuration of the network becomes a global mode and represents an eigenstate
of the Ising Hamiltonian. In order to solve an Ising problem, the output fields of the
degenerate OPOs are coherently injected to others with the amplitudes and phases
governed by the coupling coefficients in the given problem. Under appropriate
implementation, the overall photon decay rate of the global mode is proportional to
the energy of the corresponding Ising eigenstate. Since the minimum gain principle
is also applicable to the OPO mode selection, the network is expected to give a
solution to the NP-hard Ising problem.

Section 11.2 prepares the theoretical groundwork for examination of the pro-
posed network through the study of a single degenerate OPO. Section 11.3 presents
the dynamical equations of the network and analyzes steady-state properties which
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are essential for its computational ability. To illustrate the situations that the
network solves the Ising problem, the case of two coupled degenerate OPOs are
discussed in Sect. 11.4. Performance of the network is numerically evaluated in
Sect. 11.5 by conducting computational experiments against the NP-hard MAX-
CUT problem. Section 11.6 describes the experimental implementation of the
network and demonstrates the results of solving a small instance of the MAX-CUT
problem. Possible quantum features in the two coupled oscillators are discussed in
Sect. 11.7. Finally, Sect. 11.8 concludes the chapter.

11.2 A Single Degenerate OPO

A degenerate OPO consists of a second-order nonlinear crystal placed in an optical
cavity. Under the drive of a coherent external pump Fp at frequency!p, a pump field
is excited inside the cavity. Due to the second-order susceptibility of the nonlinear
crystal, a signal field at frequency !s is generated from the pump field such that
!p D 2!s. Assume that Fp is classical and its phase is the reference phase of the
oscillator. The Hamiltonian of a degenerate OPO is hence given by

H D H0 C Hint C Hirr;

H0 D „!s Oa�s Oas C „!p Oa�p Oap;

Hint D i„�
2

	
Oa�2s Oap � Oa2s Oa�p



C i„p


p

	
Oa�pFpe�i!pt � OapFpei!pt



;

Hirr D i„p

s

�
Oa�s OBs � Oas

OB�s
�

C i„p

p

�
Oa�p OBp � Oap

OB�p
�
:

(11.3)

Here, H0 represents the energies of the signal and the pump fields inside the cavity,
where Oa�s ; Oas are the creation and annihilation operators for the signal field and Oa�p; Oap

are the counterparts for the pump field. Also, the first term in Hint describes the
nonlinear coupling between the signal and the pump fields, where � is the parametric
gain due to the second-order susceptibility of the nonlinear crystal; the second term
shows the excitation of the internal pump field by the external pump. Finally, Hirr

denotes the irreversible interaction between cavity fields and the reservoir, where
OBs; OBp are reservoir operators with continuous spectra in the frequency domain, and

s; 
p are the signal and the pump photon decay rates from the cavity [21].

From the Hamiltonian in Eq. (11.3), the Heisenberg-Langevin equations of a
degenerate OPO can be derived as

d

d�
OAs D �
s

2
OAs C � OA�s OAp C p


s
Ofs;

d

d�
OAp D �
p

2
OAp � �

2
OA2s C p


p

�
Fp C Ofp

�
;

(11.4)
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where OAs D Oasei!s� , OAp D Oapei!p� denote the slowly varying signal and pump
operators in the rotating frame and Ofs; Ofp are the time-dependent noise operators to
the signal and the pump fields, respectively [22].

The c-number Langevin equations subsequently follow from converting each
operator in the above equations to a complex number. Moreover, under the condition

s � 
p, the pump field can be adiabatically eliminated since it immediately follows
the change of the signal field. With this slaving principle, the c-number Langevin
equations reduce to a single stochastic differential equation

d

d�
QAs D �
s

2
QAs C �.

2
p

p

Fp � �


p

QAs
2
/ QAs

� C 2�
p

p

QAs
� Qfp C p


s
Qfs; (11.5)

which describes the dynamics of the complex amplitude QAs of the signal field. Here,
the superscript � denotes the operation of complex conjugate and Qfs D fs;1 C ifs;2,
Qfp D fp;1Cifp;2 are quantum noises to the signal and pump fields, respectively, whose
real and imaginary components fk;j; k 2 fs; pg; j 2 f1; 2g are independent white
Gaussian noises with the ensemble averaged means and correlations satisfying

hfk;j.�/i D 0;

hfk;j.�/fk0 ;j0.�
0/i D 1

4
ıkk0ıjj0ı.� � � 0/:

(11.6)

The real and imaginary parts of the complex amplitude are called the in-phase and
quadrature components of the signal field, respectively. Dynamical equations for the
in-phase and the quadrature components can be easily derived from Eq. (11.5).

Despite the classical nature of the c-number Langevin equation, it produces a
prediction on statistical quantities of the signal field identical to that of a quantum
mechanical approach. Figure 11.1 displays the second central moments of the in-
phase and the quadrature components at the steady state. The normalized pump rate
is defined as p D Fp=Fth, where Fth D 
s

p

p=4� is the threshold external pump

Fig. 11.1 Variances of the
in-phase and the quadrature
components of the signal field
at the steady state at different
pump levels when 
s D 1,

p D 100, and � D 0:1. The
numerical values are
calculated from two
theoretical models: the
quantum mechanical
Fokker-Planck approach and
the classical c-number
Langevin approach
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flux. It can be easily seen that the c-number Langevin approach successfully predicts
the generation of squeezed states around the threshold [23]. Meanwhile, the numer-
ical values are in good agreement with the results calculated from the quantum
mechanical Fokker-Planck equation obtained from the generalized P-representation
[21]. Therefore, this classical approach is adopted for the investigation of the
proposed degenerate OPO network.

11.3 A Degenerate OPO Network

In order to solve an Ising problem with N spins, a network composed of N

degenerate OPOs needs to be constructed. Each degenerate OPO in the network
corresponds to an Ising spin, and its signal output is coherently injected to another
according to the coupling coefficient between the spins involved. Let �jl=2 denote
the scaling factor for the complex signal field QAj of the jth degenerate OPO when
it is coupled to the lth degenerate OPO. Since the coupling coefficients in the Ising
problem are always symmetric, it follows that �jl D �lj. By further adding terms
representing the mutual coupling of the signal fields to Eq. (11.5), the c-number
Langevin equations of the network are obtained as

d

d�
QAj D �
s

2
QAj C �.

2
p

p

Fp � �


p

QAj
2
/ QAj

�

C1

2

NX

lD1; l¤j

�jl
s
QAl C 2�

p

p

QAj
�Qfp;j C p


s
Qfs;j;

(11.7)

where Qfs;j and Qfp;j are the associated quantum noises to the j-th degenerate OPO.
For a single degenerate OPO pumped above the threshold, Eq. (11.5) implies

that the mean of its quadrature component at the steady state is zero. Therefore,
the phase of the oscillating field on average is either zero or � determined by the
sign of its in-phase component. It is favorable if all degenerate OPOs in the coupled
network operating above the threshold still possess the bistability of their output
phases. This is because the phase configuration of the network can be naturally
converted to an Ising state by assigning �j D C1 to the jth degenerate OPO if
its in-phase component is positive or �j D �1 if it is negative. Due to the mutual
coupling, however, it is not self-evident that this feature is available to the network.
In the following, required conditions are explored through analyzing steady-state
properties of the network.

Dynamical equations for the in-phase components Cj and the quadrature compo-
nents Sj of the complex signal amplitudes QAj provide a description of the network
equivalent to Eq. (11.7). Since the theoretical investigation is mainly interested
in the mean signal fields at the steady state, noise terms are neglected in the
dynamical equations. For ease of analysis, normalized equations for the in-phase
and quadrature components
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d

dt
cj D .�1C p � .c2j C s2j //cj C

NX

lD1; l¤j

�jlcl;

d

dt
sj D .�1 � p � .c2j C s2j //sj C

NX

lD1; l¤j

�jlsl;

(11.8)

are utilized, where t D 
s�=2 is the unitless time normalized to twice of the signal
photon cavity lifetime, and cj D Cj=As, sj D Sj=As are normalized in-phase and
quadrature components where As D

p

s
p=2�2 is the signal amplitude of a single

degenerate OPO when p D 2. The above equations indicate that the dynamics of the
network are influenced by the values of p and �jl.

11.3.1 Oscillation Threshold

The in-phase and the quadrature components of the N coupled degenerate OPOs
satisfy

c3j C .1 � p C s2j /cj �
NX

lD1; l¤j

�jlcl D 0;

s3j C .1C p C c2j /sj �
NX

lD1; l¤j

�jlsl D 0

(11.9)

at the steady state. The oscillation threshold of the network is defined as the
normalized pump rate pth above which the network cannot arrive at the trivial steady
state cj D sj D 0, 8j 2 f1; 2; : : : ;Ng. For any hermitian matrix A, let �min.A/ and
�max.A/ be the smallest and the largest eigenvalues, respectively. Since the largest
eigenvalue of the corresponding Jacobian matrix

J0 D
�

�.1 � p/IN � G 0

0 �.1C p/IN � G

�
(11.10)

has to be positive above the threshold, the threshold of the network is obtained as

pth D 1C �min.G/ < 1; (11.11)

where IN is the N � N identity matrix and

G D

0
BBB@

0 ��12 : : : ��1N

��21 0 : : : ��2N

:::
:::

: : :
:::

��N1 ��N2 : : : 0

1
CCCA (11.12)
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is the hermitian matrix showing the coupling relation of the network. Since Tr.G/ D
0, it follows that �min.G/ < 0 and the threshold of the network is lower than that
of an individual degenerate OPO. This phenomenon is similar to the so-called self-
ignition effect well known in the study of neural networks [24].

11.3.2 Quadrature Components

It follows from the quadrature component equations in Eq. (11.9) that

NX

jD1
s4j C

NX

jD1
ajs

2
j �

NX

jD1

NX

lD1; l¤j

�jlsjsl D 0; (11.13)

where aj D 1C p C c2j ; j 2 f1; 2; : : : ;Ng. The last two terms of the above equation
is in the quadratic form of the matrix

Q D

0
BBB@

a1 ��12 : : : ��1N

��21 a2 : : : ��2N

:::
:::

: : :
:::

��N1 ��N2 : : : aN

1
CCCA : (11.14)

If Q is positive definite, the only possible solution to the quadrature components
in Eq. (11.9) will be sj D 0, 8j 2 f1; 2; : : : ;Ng. Since dynamics of the in-
phase components are affected by the square of the quadrature components, local
behaviors of the in-phase and the quadrature components around this solution can
be separated. The corresponding Jacobian matrix for the quadrature components is
Js D �Q. Thus, a steady state with all quadrature components being 0 is stable if
its corresponding Jacobian matrix for the in-phase components is negative definite.

The smallest eigenvalue of Q is still unknown without solving Eq. (11.9) to obtain
the steady-state values of the in-phase components. However, a lower bound can be
easily evaluated. The hermitian matrix Q can be written as the sum of the hermitian
matrix G and a diagonal matrix whose diagonal components are a1; a2; : : : ; aN .
From Weyl’s theorem [25], the eigenvalues �.Q/ are bounded as

min.G/C min
j

aj � �.Q/ � max
j

aj C �max.G/: (11.15)

Since �min.G/ < 0, a sufficient condition for Q to be positive definite is

j�min.G/j < 1C p � min
j

aj: (11.16)

The above requirement together with the oscillation threshold in Eq. (11.11) estab-
lish guidelines for choosing appropriate combinations of the normalized pump rate p
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and the coupling strength �jl to identify the degenerate OPOs in the network as Ising
spins. Yet it is noteworthy that combinations of p and �jl not satisfying Eq. (11.16)
may also be preferred in some cases because of its sufficient nature.

11.3.3 Overall Photon Decay Rate

The term p�.c2j Cs2j / in Eq. (11.8) represents the saturated gain for the jth degenerate
OPO. At the steady state, the total saturated gain of the network equals the overall
photon decay rate� . In the case that all the quadrature components of the degenerate
OPOs are 0, � D

PN
jD1.p � c2j /.

When mutual coupling of the degenerate OPOs is weak enough and p > 1, the
in-phase component cj in Eq. (11.9) can be expressed in the formal expansion

cj D c
.0/
j C �c

.1/
j C �2c

.2/
j C : : : ; (11.17)

where � D max1�j; l�N j�jlj, according to the perturbation theory. Each term c
.n/
j , n �

0 can be analytically obtained by substituting the above expansion to Eq. (11.9) and
setting the coefficient of the �n term to be 0. The zeroth-order term c

.0/
j D ˙p

p � 1
is the signal amplitude of the jth degenerate OPO operating above the threshold
when there is no mutual coupling. Since the formal expansion for cj can be viewed

as a local modification to c
.0/
j , the Ising spin value �j that the jth degenerate OPO

represents equals sgn.c.0/j /. The overall photon decay rate is thus given by

� D N �
X

1�j¤l�N

�jl�j�l C O

�
�3N4

.p � 1/3

�
; (11.18)

where the higher-order correction term is evaluated in the case when coupling of
the same strength exists between any two of the degenerate OPOs. For a particular
phase configuration of the degenerate OPOs, the difference of the overall photon
decay rates between cases with and without mutual coupling is exactly the energy
of its corresponding spin configuration in an Ising problem where the coupling
coefficients between spins are 2�jl. Therefore, a global mode that achieves the
minimum � provides a ground state of the Ising problem.

Given any Ising problem, scaling all the coupling coefficients by the same
positive factor does not change its solutions. In this regard, some degree of flexibility
is available in choosing the coupling strength of the network. For a fixed pump rate,
the gaps among the overall photon decay rates of different modes decrease with
weaker coupling strength. As a consequence, the possibility that the network evolves
into steady states corresponding to excited states of the Ising Hamiltonian may be
increased. On the other hand, the mapping from the overall photon decay rate to
the Ising Hamiltonian becomes more inaccurate when the coupling strength gets
stronger, which may also cause probable errors in solving the Ising problem. This
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intuitive observation indicates that the choice of p and �jl can significantly influence
the performance of the network as a computing machine. As an example, the system
of two coupled degenerate OPOs is examined in the next section.

11.4 Two Coupled Degenerate OPOs

Dynamical behaviors of two coupled degenerate OPOs offer meaningful insight
into how the system finds candidate solutions to an Ising problem. Due to the
relative simplicity of the system, many steady-state properties can be expressed as
functions of the normalized pump rate p and coupling coefficient �, which enables
the examination of the dependence of solutions on these parameters.

The threshold of the system is pth D 1�j�j by Eq. (11.11). When j�j � 1Cp, all
the quadrature components of the system are zero at the steady state according to the
sufficient condition in Eq. (11.16). Expressions of the in-phase components c1 and c2
at the steady state can also be easily obtained, which further allows the investigation
of their linear stability. As shown in Table 11.1, the possible steady states that the
system can evolve into depends considerably on the values of p and �. Indeed, it is
the phase diagram of the in-phase components being modified. Figure 11.2 displays
the variation of the phase diagram with p when � is fixed:

(a) When the system is pumped below or at the threshold, the only possible steady
state is the trivial one c1 D c2 D 0.

(b) As the pump rate is slightly increased, the trivial steady state becomes unstable
while two additional stable steady states are developed. For the case being
displayed, the two degenerate OPOs have the same amplitude but opposite
phases at both the two newly developed stable steady states. Therefore, they

Table 11.1 Linear stability of steady states with all quadrature components being zero of two
coupled degenerate OPOs

.c1; c2/

p � .0; 0/ .cg; cg/
a .cu;�cu/

b .cs; ca/
c

p � 1 .1� p; 1C p/ Unstable Stable NAd NA
.p � 1; 1� p/ Stable NA NA NA
.�1� p; p � 1/ Unstable NA Stable NA

p > 1 .p � 1; p C 1/ Unstable Stable NA NA
.

p�1

2
; p � 1/ Unstable Stable Unstable NA

.� p�1

2
;

p�1

2
/ Unstable Stable Stable Unstable

.1� p;� p�1

2
/ Unstable Unstable Stable NA

.�1� p; 1� p/ Unstable NA Stable NA
a c2g D p � 1C �
b c2u D p � 1� �

c c2s D p�1˙
p
.p�1/2�4�2

2
, cacs D ��

d NA not available
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Fig. 11.2 Phase diagrams for the in-phase components of two coupled degenerate OPOs when
� D �0:1. The normalized pump rate for each diagram is (a) p D pth D 0:9; (b) p D 1:1; (c)
p D 1:2; (d) p D 2:0. The dots and circles mean stable and unstable steady states, while the colors
green and red denote correct and incorrect solutions, respectively

correspond to the correct solutions to the Ising problem of two spins with an
antiferromagnetic coupling. Since these two steady states are the only stable
ones available, the system can always arrive at the correct answers irrespective
of its initial state.

(c) As the pump rate is further increased, two more steady states begin to exist in
the system. Since the two degenerate OPOs have the same amplitude and phase
at these two steady states, they correspond to the wrong solutions to the Ising
problem. However, at this pump level these two steady states are unstable ones
so that the system can still solve the Ising problem with certainty.

(d) When the pump rate is raised up over the critical point 1 C 2j�j according to
Table 11.1, the steady states corresponding to the wrong answers also become
stable. Since the system can evolve into these steady states as well, errors may
occur for the system in solving the Ising problem.

As a result, the choice of p and � affects, to a large extent, the efficiency of
the system as a computing machine. Figure 11.3 displays the � dependence of its
success probability when p is fixed in solving the Ising problem of two spins with
a ferromagnetic coupling. A candidate answer can be obtained from the system by
numerically solving its dynamical equations under a random noise input. The details
of the numerical method are described in Sect. 11.5.1. For each coupling coefficient,
100 groups of 100 random trials are conducted to estimate the success probability
and the standard deviation. The success probability asymptotically approaches 0.5
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Fig. 11.3 The success
probability of two coupled
degenerate OPOs in solving
the Ising problem of two
spins with a ferromagnetic
coupling when p D 2:0. The
error bars are standard
deviations
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as the coupling strength decreases. This is because in the limit of no coupling each
degenerate OPO can choose its phase independently so that correct and incorrect
solutions are equally likely. On the other hand, when � is above the critical point
.p � 1/=2, the system outputs a correct solution for every trial.

11.5 Computational Experiments

Performance of the degenerate OPO network as a computing machine is evaluated
using two sets of instances of the NP-hard MAX-CUT problem. The first set consists
of all cubic graphs of order up to 20. These small instances are chosen because the
correctness of the network’s output solution can be verified by checking all possible
cuts by brute force. In addition, the MAX-CUT problem remains NP-hard when
restricted to cubic graphs [26]. The factor that limits the maximum input size under
consideration is the total number of instances in each graph order, which is irrelevant
to the properties of the network. As shown in Table 11.2, it grows even faster than
an exponential function with respect to the input size [27]. Thus, the time it takes
to exhaust all cubic graphs of the same order climbs commensurately. The second
set contains 71 benchmark instances of the so-called G-set graphs. These instances
are randomly constructed by a machine-independent graph generator written by G.
Rinaldi with the number of vertices ranging from 800 to 20 000, edge density from
0.02 % to 6 %, edge weight being ˙1, and geometry from random, almost planar to
toroidal.

11.5.1 Numerical Method

Solution outputs from the network can be obtained by solving the c-number
Langevin equations in Eq. (11.7) with the signal field of each degenerate OPO
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Table 11.2 Number of cubic graphs

Order
4 6 8 10 12 14 16 18 20 22 24 26

Cubic graphs 1 2 5 19 85 509 4060 41301 510489 7319447 117940535 2094480864

Fig. 11.4 The success
probability of the network in
solving the MAX-CUT
problem on the worst-case
instances listed in Table 11.3
when p D 1:1 and � D �0:1.
The parameters used in the
calculation are 
s D 1,

p D 100 and � D 10�4 for
the c-number Langevin
approach, and Aini D 10�5

for the random initial
condition approach

0

0.2

0.4

0.6

0.8

1

1.2

5 10 15 20

S
u
c
c
e
s
s
 P

ro
b
a
b
ili

ty

Graph Order

Random Initial
Condition

c-number
Langevin

starting from the vacuum state. However, the existence of quantum noise inputs
in these equations makes the computation relatively expensive. To avoid this issue,
the following alternative method is used, which ignores the quantum noise terms
and replaces them with a random initial condition.

For a graph with N vertices, the 2N classical dynamical equations of the in-phase
and quadrature components in Eq. (11.8) are solved instead to obtain candidate
cuts. The Dormand-Prince algorithm is chosen as the differential equation solver,
which allows adaptive integration step length by evaluating the local truncation
error [28]. In order to simulate the quantum noise, initial conditions to Eq. (11.8)
are randomly generated in the neighborhood of the trivial steady state cj D sj D 0,
8j 2 f1; 2; : : : ;Ng. In the current simulation, the degenerate OPOs initially have
the same normalized amplitude Aini D 10�5 but different random phases. The
simulation continues until the network approaches a stable steady state.

In this way, the differential equations to be dealt with switch from stochastic ones
to deterministic ones, which considerably improves the efficiency of the numerical
simulation. More importantly, as shown in Fig. 11.4, these two methods provide
approximately identical results in terms of the success probability of the network
in finding a correct answer when the random initial amplitude of the degenerate
OPOs is selected to be the same order of magnitude as the quantum noise strength
of the network. Since the number of equations required to be solved only increases
linearly with the number of vertices, this method can also be applied to large-scale
instances.
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11.5.2 Results

As a first attempt to solve the MAX-CUT problem using the degenerate OPO
network, the normalized pump rate and the coupling coefficient are fixed at p D 1:1,
� D �0:1 for all the instances. This choice of p and � reflects the realistically
achievable experimental condition. In addition, it guarantees for all instances that
the network is operating above its threshold defined by Eq. (11.11) and the steady-
state phases of the degenerate OPOs are either 0 or � according to the sufficient
condition in Eq. (11.16).

11.5.2.1 Solution Quality

For the small cubic graphs, success probability of the network in finding a maximum
cut is estimated by examining its approached steady states under 100 random initial
conditions. For instances where the success probability is below 0.25 or in the 10
lowest instances among the cubic graphs of the same order, additional 10000 trials
are conducted to refine the estimation. As shown in Fig. 11.5, the network is able
to output a maximum cut with a high success rate for most of the instances. The
average success probability for cubic graphs of order 20 is about 0.682. Even in
the worst cases where the minimum success probability is attained, the network
still substantially outperforms a random guess. For the worst-case instance with 20
vertices listed in Table 11.3, the network amplifies the success rate of picking one
of the only 2 correct answers out of 220 � 106 candidates by about 60 000 times.

For the large G-set graphs, since optimal solutions are unknown, performance
of the network are evaluated by making comparisons with the well-celebrated
Goemans-Williamson (GW) algorithm based on semidefinite programming (SDP)
[29]. The outcomes of running the network 100 times for sample G-set graphs
and the GW algorithm implemented by the dual-scaling interior-point method

Fig. 11.5 The success
probability of the network in
solving the MAX-CUT
problem on cubic graphs
when p D 1:1 and � D �0:1.
The maximum, minimum and
average success probabilities
are evaluated over instances
of the same order. The
success probability of a
random guess for the
worst-case instances is also
included for comparison

10-6

10-5

10-4

10-3

10-2

10-1

100

5 10 15 20

S
u
c
c
e
s
s
 P

ro
b
a
b
ili

ty

Graph Order

Maximum

Minimum

Average

Random



11 A Degenerate Optical Parametric Oscillator Network . . . 233

Table 11.3 Worst-case performance of the network in solving the MAX-CUT problem on cubic
graphs. Here, qmin denotes the worst-case success probability for each graph order when p D 1:1

and � D �0:1, and q� is the achieved success probability at the optimal pump rate p� when
� D �0:1 for each worst-case instance

Order
4 6 8 10 12 14 16 18 20

qmin 0:932 1:000 0:413 0:538 0:522 0:378 0:330 0:145 0:111

q� 1:000 1:000 0:699 0:739 1:000 1:000 1:000 0:158 0:741

p� 1:05 1:30 1:30 1:30 1:00 0:85 0:85 1:15 0:82

[30] are summarized in Table 11.4. To facilitate the comparison, each cut value
O generated from the network and the GW algorithm is normalized according
to .O C Eneg/=.USDP C Eneg/, where USDP denotes the SDP upper bound of the
optimal solution and Eneg the number of negative edges. It can be easily seen that
both the network’s best and average outputs are about 2–6 % better than the 0.878-
performance guarantee of the SDP algorithm. Meanwhile, on 49 out of 71 instances
the best output from the network gives a larger cut value than the GW algorithm.
Since the average difference between the best and the average values is within 0.7 %,
reasonable performance is expected for the network even in a single run, which
makes the network favorable for applications when computation time is the utmost
priority.

11.5.2.2 Computation Time

Given the randomness of the initial conditions, the computation time is estimated
to be the average oscillation build-up time of the network. Figure 11.6 displays the
worst-case results of solving the MAX-CUT problem on the cubic and G-set graphs.
In addition, the computational complexities of best-known implementations for the
GW algorithm are also plotted for reference. If a graph with n vertices and m edges
is regular, the SDP in the GW algorithm can be approximately solved in almost
linear time as QO.m/ D O.m log2.n/��4/ using the matrix multiplicative weights
method [31], where � represents the accuracy of the obtained solution. However,
slower algorithms are required for general graphs. If a graph is not regular but
with all edges positive-weighted, the fastest algorithm available runs in QO.nm/ D
O.nm log2.n/��3/ time based on a Lagrangian relaxation-based method [32]. For
graphs with both positive- and negative-weighted edges, the SDP is commonly
solved using the interior-point method which scales as QO.n3:5/ D O.n3:5 log.1=�//
[33]. As can be seen in Fig. 11.6, the GW algorithm is generally not scalable
due to the superlinear time scaling. On the other hand, the network’s worst-case
computation time fits well to a sublinear function O.n0:2/. Since the degenerate
OPO network can deal with all types of graphs, it has unparalleled advantage over
the GW algorithm in solving large-scale instances.
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Table 11.4 Performance of the network in solving the MAX-CUT problem on sample G-set
graphs compared to the GW algorithm. Here, V denotes the number of vertices in the graph, E

the number of edges, Omax and Oavg the network’s best and average normalized cut values in 100
runs, respectively, and VSDP the GW algorithm’s outputs given by the dual-scaling interior-point
implementation

Graph V E Eneg Omax Oavg USDP VSDP

G1 800 19176 0 0:9591 0:9516 12083 0:9457

G6 800 19176 9511 0:9559 0:9506 2656 0:9448

G11 800 1600 783 0:9384 0:9254 629 0:9327

G14 800 4694 0 0:9367 0:9274 3191 0:9336

G18 800 4694 2315 0:9308 0:9223 1166 0:9282

G22 2000 19990 0 0:9349 0:9277 14136 0:9191

G27 2000 19990 10016 0:9321 0:9270 4141 0:9174

G32 2000 4000 1989 0:9328 0:9260 1567 0:9272

G35 2000 11778 0 0:9264 0:9202 8014 0:9292

G39 2000 11778 5875 0:9214 0:9152 2877 0:9226

G43 1000 9990 0 0:9373 0:9309 7032 0:9292

G48 3000 6000 0 0:9463 0:9292 6000 1:0000

G51 1000 5909 0 0:9333 0:9242 4006 0:9333

G55 5000 12498 0 0:9070 0:9009 11039 0:9006

G57 5000 10000 5019 0:9305 0:9259 3885 0:9237

G59 5000 29570 14737 0:9114 0:9074 7312 0:9148

G60 7000 17148 0 0:9037 0:8995 15222 0:8989

G62 7000 14000 7040 0:9295 0:9256 5431 0:9228

G64 7000 41459 20466 0:9129 0:9092 10466 0:9143

G65 8000 16000 8041 0:9284 0:9252 6206 0:9217

G66 9000 18000 8960 0:9285 0:9251 7077 0:9220

G67 10000 20000 10071 0:9285 0:9260 7744 0:9215

G70 10000 9999 0 0:9433 0:9379 9863 0:9633

G72 10000 20000 10003 0:9284 0:9256 7809 0:9215

G77 14000 28000 13896 0:9281 0:9256 11046 0:9205

G81 20000 40000 19983 0:9268 0:9250 15656 0:9195

11.5.3 Performance Improvement

The above results obtained with the normalized pump rate and coupling coefficient
fixed at p D 1:1, � D �0:1 are by no means the optimum performance of
the network. Another proper choice of p and � can boost the solution quality
significantly. As an example, the improvement in the success probability for
the worst-case instance among cubic graphs with 20 vertices is demonstrated in
Fig. 11.7. It can be easily seen that the success rate is raised above 0.7 when the
network is operated at the optimal pump rate p� for the chosen coupling coefficient.
The results for worst-case instances of other graph orders are listed in Table 11.3.
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Fig. 11.6 The worst-case
computation time of the
network in solving the
MAX-CUT problem on the
cubic and G-set graphs when
p D 1:1 and � D �0:1. Here,
the time unit is the degenerate
OPO cavity photon lifetime
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Fig. 11.7 The dependence of
the success probability and
the reachable steady states of
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Except for the case with 18 vertices, simply adjusting the normalized pump rate has
been effective in improving the solution quality.

The variation of the success probability with the normalized pump rate is closely
related to the reachable steady states of the network. This relation is demonstrated
in Fig. 11.7 as well. The approached steady states of the network are classified
according to the weight of the cuts they represent. Since the Ising problem and
the MAX-CUT problem are mutually reducible, the maximum cut classification is
labeled “ground”, and the second-largest cut classification is labeled “first excited”
and so on. Each classification is then associated with a function F D � � N.
Physically, F means the increased amount of the overall photon decay rate of
a global mode due to the mutual coupling. If the approximation in Eq. (11.18)
holds, F=2j�j is exactly the Ising Hamiltonian corresponding to the MAX-CUT
problem. For the shown instance, when the network is pumped just above its
threshold, the first appearing steady states represent incorrect solutions. The success
probability therefore vanishes because of the large discrepancy between F=2j�j and
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the energy of the corresponding Ising spin states. The normalized pump rate p has
to rise to a certain level before steady states corresponding to the correct solutions
can be developed. The success probability increases until p reaches p� but drops
again when the network is further pumped. This is because more and more newly
reachable steady states are mapped to the incorrect solutions.

11.6 Experimental Implementation

Mismatch and phase decoherence noise are two main technical difficulties in
building a network of coupled degenerate OPOs. In order to resolve these issues,
a time division multiplexing (TDM) technique is exploited. In this scheme, spatially
separated oscillators in the theoretical description are replaced by temporally
separated oscillators in a single ring cavity. Degenerate OPOs are distinguished by
the time slots that their signal fields are amplified, and mutual couplings among
them are implemented by coherently feeding back the output signals through optical
delay lines.

11.6.1 A Network of Four Degenerate OPOs

Figure 11.8 displays the system that implements a 4-OPO network using the TDM
technique. The system is pumped with a mode-locked pulse laser with a repetition
period TR. To accommodate four independent temporally separated degenerate
OPOs in the ring resonator, the round-trip time is designed to be TRT D 4TR. The
couplings among these degenerate OPOs are realized by three delay lines. As shown
in Fig. 11.8, delay line i 2 f1; 2; 3g introduces lag iTR to the cavity so that delay 1
implements the couplings �12, �23, �34, �41, delay 2 the couplings �13, �24, �31, �42,
and delay 3 the couplings �14, �21, �32, �43 for the network. The output from the
resonator is sent to a Michelson interferometer with time delay Td D TR between
the two arms. From the differential phases between adjacent signal pulses measured
by the interferometer, phase states of the degenerate OPO network are recovered.

When all the delay lines are blocked, one of the four possible pulse patterns
shown in Fig. 11.9a is detected by a fast detector at the interferometer output after
the system is turned on. The pulses in these patterns are separated by 4 ns, which
is exactly the pump repetition period TR, and each pulse has either a low or a high
intensity corresponding to destructive or constructive interference of the consecutive
OPO signal fields, respectively. The low-level pulses are non-zero because of the
diffraction mismatch of the interferometer arms. Figure 11.9b shows the histogram
of the eight phase states obtained from the pulse patterns after running the system
1000 times. The result indicates uniform distribution of the phase states confirming
that four temporally separated OPOs are operating independently in the same
resonator.
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Fig. 11.8 (a) Experimental setup for a network of four degenerate OPOs. The nonlinear crystal
inside the ring resonator is periodically poled lithium niobate (PPLN). The femtosecond pump
laser has a wavelength of 1045 nm and repetition period TR D 4 ns. A chopper (CP) restarts the
system every 1 ms and gradually increases the pump field from below to about two times above the
oscillation threshold in about 180�s. Each of the output couplers (OCs) and input couplers (ICs)
provides 4 ˙ 2% of power reflection. The cavity photon lifetime is about 60 ns. (b) Illustration
of the time slot assignment to the output pulse train to represent four degenerate OPOs and the
couplings provided by the delay lines

When all the delay lines are open and introduce � phase shifts to the injection
signals, the system becomes a setup to solve the MAX-CUT problem on the cubic
graph with 4 vertices. All the coupling coefficients among the degenerate OPOs
are the same with the value � � �0:08. The correct solutions to this instance
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corresponds to phase states of the network with two degenerate OPOs with zero
phases and the remaining two with � phases. Figure 11.9c shows the histogram of
the obtained phase states for 1 000 trials. It can be easily seen that no incorrect
solution is detected, and the distribution of correct solutions is close to uniform.
Therefore, the error rate of computation for this instance is expected to be less than
10�3, and the current estimation is limited by the length of measurements.

11.6.2 Towards the Implementation of Large-Scale Network

An arbitrary large-scale network may also be implemented by extending the idea
of using the TDM technique. Meanwhile, exploiting optical fiber technologies and
planar light wave circuits can enable compact implementation. A schematic diagram
of such fiber-based implementation is illustrated in Fig. 11.10. The single ring
resonator whose round-trip time TRT is N times the pump repetition period TR is
utilized to represent N degenerate OPOs. The N � 1 delay lines with delay time
TR, 2TR, : : : .N � 1/TR are to introduce mutual couplings among the degenerate
OPOs. In order to implement all the N2 � N number of possible couplings using
the N � 1 delay lines, electrooptic phase and amplitude modulators (EOM) are used
to synchronously control the delay lines depending on the phases and the strength
of the desired couplings. In this way, the physical size of the implementation scales
linearly with N. To avoid effects of nonlinearities and dispersion in optical fibers,
picosecond pump pulses can be used in a long resonator and long delay lines
comprising optical fiber components.

As an example, for a pump with a repetition period TR D 100 ps, a resonator with
200 m of optical fiber results in 10 000 temporally separated degenerated OPOs.
The expected photon lifetime of such a fiber-based network is about 6 � 10�6s.
From the result shown in Fig. 11.6, it will take less than 1 ms for the network
to find a reasonably good solution to MAX-CUT instances with 10 000 vertices.
The main challenge is to stabilize the phases of all these fiber links. Advancement
of extremely low-noise phase-stabilized long optical fibers [34] is promising in
terms of overcoming this challenge using the existing technologies. Moreover, the

J

Fig. 11.9 (a) Pulse patterns at the interferometer output with a fast detector. Since no phase and
time references are used in the measurement, each pattern corresponds to multiple phase states.
Because complimentary phase states such as j0�0�i and j�0�0i correspond to the same solution
and phase pattern, one representative is selected on behalf of the pair. Then, the [0000] pulse pattern
represents the state j0�0�i; the [1100] pattern the states j0�00i, j00�0i, j000�i and j�000i; the
[1010] pattern the states j0��0i and j00��i; the [1111] pattern the state j0000i. (b) Histogram of
the phase states when all the delay lines are blocked for 1000 runs. (c) Histogram of the phase states
when all the delay lines are on and their phases are locked to � for 1 000 runs. The count of each
phase state is estimated by assuming that phase states corresponding to the same interferometer
pulse pattern appear equiprobably
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Fig. 11.10 A schematic diagram of a fiber-based large-scale degenerate OPO network

regenerative behavior of a degenerate OPO suggests that the network can tolerate
relatively large phase noise in the couplings.

11.7 Quantum Mechanical Simulation

Given the promising results demonstrated in both numerical and experimental
examinations, an ensuing question to ask is whether any quantum feature intrinsic
to the degenerate OPO network has contributed to its computational ability. In
quantum computing, superposition and entanglement are two typical quantum
features that make speed-up of computation possible. As to the degenerate OPO
network, the macroscopic quantum mechanical superposition of and quantum non-
local correlation between field states can be considered as the counterparts. It
has been theoretically reported that transient superposition state exists in a single
degenerate OPO [35] and entanglement occurs in two oscillators with evanescent
coupling [36, 37]. In the following, these properties are studied for the system of
two degenerate OPOs with mutual injection.

11.7.1 Theoretical Model

The theoretical formulation is based on the positive P-representation [38]. This
representation results from non-diagonal expansion of the density operator. For a
single degenerate OPO, it gives positive semidefinite diffusion terms in the Fokker-
Planck equation [21], which enables quantum mechanical simulation by solving
corresponding stochastic differential equations (SDEs).
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The positive P-representation for a single degenerate OPO is defined as

O� D
Z

P.˛;ˇ/
j˛ihˇj
hˇj˛i d4˛d4ˇ; (11.19)

where ˛ D .˛p; ˛s/, ˇ D .ˇp; ˇs/, and ˛p; ˛s represent the c-number eigenvalues of
the annihilation operators on the pump and signal fields of the OPO, respectively,
and ˇp; ˇs are the counterparts for the creation operators. It can be easily observed
from Eq. (11.19) that the ensemble averages of ˛ and ˇ under this representation
are equal to those of corresponding annihilation and creation operators. Although
it follows that h˛i� D hˇi, ˛ and ˇ are distinct variables so that off-diagonal
components of � can be treated. Equation (11.19) is substituted into the master
equation under the Hamiltonian (11.3) and the Born-Markov approximation to get
the corresponding Fokker-Planck equation for P.˛;ˇ/. Eventually, the SDEs for ˛

and ˇ obeying the distribution P.˛;ˇ/ are derived via the Ito rules [21].
To obtain the positive P-representation for two coupled degenerate OPOs,

phenomenological mutual injection terms �
s˛sj=2 for ˛si and �
sˇsj=2 for ˇsi

are introduced into the SDEs according to Eq. (11.7). Here, fi; jg D f1; 2g; f2; 1g
are the indices of the oscillators, � is the coupling coefficient including the loss
and coupling phase of the injection, and 
s=2 is the cavity decay rate for the
signal field. These terms result from somewhat lengthy derivation based on a
quantum-mechanical model and the details will be reported elsewhere. The resulting
normalized Ito SDEs [39] for the c-number signal variables �i and �i are

d�i D
�
��i C �i

	
p � �2i



C ��j

�
dt C 1

As

q
p � �2i dW�i;

d�i D
�
��i C �i

	
p � �2i



C ��j

�
dt C 1

As

q
p � �2i dW�i: (11.20)

Here, �i � ˛i=As, �i � ˇi=As and As D
p

s
p=2�2 is the normalization amplitude

serving as a noise parameter. � expresses the nonlinear gain, and 
p=2 is the cavity
decay rate for the pump. p D Fp=Fth is the normalized pumping rate, where Fp

is the real amplitude of the external pump flux and Fth D 
s
p

p=4�. The time is

scaled with the signal cavity lifetime, i.e. t D 
s�=2. dW�i and dW�i are independent
real Wiener increments. Assuming the condition 
p � 
s, we have adiabatically
eliminated the pump variables with the steady state values, i.e. ˛pi.ss/ D .2Fp=

p

p�

�˛2i /=
p, ˇpi.ss/ D .2Fp=
p

p � �ˇ2i /=
p. Since the positive P-representation can

treat any quantum states even when the eigenvalues ˛ and ˇ are small [38], these
c-number variables are expected to appropriately represent the quantum states of the
cavity OPO fields in a single-shot stochastic simulation.

We consider the quadrature amplitudes OXi � .Oai C Oa�i /=2 and OPi � .Oai � Oa�i /=2i

which can be measured experimentally, and simulate the probability distributions
of them. It has been shown that the fringe in P distribution indicates a macroscopic



242 Z. Wang et al.

quantum superposition of two out-of-phase coherent states [40]. The distribution
functions can be obtained by unrestricted random sampling for ˛i and ˇi obeying
Eq. (11.20) with [35]

P.Zi/ D TrjhZij�jZii D
Z

P.˛;ˇ/
hZij˛iihˇijZii

hˇij˛ii
d4˛d4ˇ; Z D X;P; (11.21)

where hXij˛ii D ��1=4 exp.�X2i =2 C
p
2Xi˛i � ˛2i =2 � j˛ij2=2/, hPij˛ii D

��1=4 exp.�P2i =2 � i
p
2Pi˛i C ˛2i =2 � j˛ij2=2/ and hˇij˛ii D expf�.j˛ij2 C

jˇij2/=2 C ˇ�
i ˛ig. Here, the trace Trj is on the signal variables for OPOj (¤ i).

The pump variables have been omitted due to the adiabatic elimination.
In the positive P-representation, the normally ordered moments can also be

obtained by Monte Carlo integration with [38]

hOa�n

i Oam
i i D

Z
P .f˛ig; fˇig/ ˇn

i ˛
m
i d2˛1d

2˛2d
2ˇ1d

2ˇ2: (11.22)

Also, we consider the pair of Einstein-Podolsky-Rosen (EPR) [41] type operators
Ou � OX1 C OX2 and Ov � OP1 � OP2 for the two OPO fields and the total variance of
them to estimate the quantum correlation in the system. The quadrature amplitudes
defined here satisfies the commutation relation Œ OXi; OPj� D iıi;j=2, thus the condition
for the entanglement (inseparability) between the two cavity modes [42] is

h�Ou2i C h� Ov2i < 1; (11.23)

where �Ou � Ou � hOui and � Ov � Ov � h Ovi. The ensemble averages and variances
of the EPR type operators including the vacuum fluctuation can be obtained
with Eq. (11.22), though their detailed expressions are omitted because of space
limitations.

11.7.2 Simulation Result

We show the result of the numerical simulation on the system with the out-of-phase
mutual injection, i.e. � < 0. Here, the system is initialized with the vacuum state and
is gradually pumped [43], that is, the pump parameter p is slowly increased so that
the OPO field states are continuously driven from below to above the threshold to
hold the state with the minimum photonic loss. We set the linear schedule as p.t/ D
pf t=tf , where pf and tf are the pump and time parameters for the final state. The
state of the system is always transient because the pump parameter is continuously
changed. However, the sweeping is sufficiently slow so that the system keeps itself
near to the stablest steady state. pf D 1:1 and tf D 100 is used in the simulation
below. We adopt a second-order weak scheme [44] with a time step �t D 2 � 10�3

for the stochastic simulation.
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Fig. 11.11 Second-order
moments (a)

h OX1 OX2i=
q

h� OX21ih� OX22i and

(b) h OP1 OP2i=
q

h� OP21ih� OP22i
dependent on the normalized
time t for different mutual
injection magnitudes �. Here,
the pump parameter is swept
linearly with the time, i.e.
p.t/ D pf t=tf , where
pf D 1:1 and tf D 100. The
normalization amplitude is
As D 5. In (a), X1 and X2
shows the negative
correlation soon after the
beginning of the pumping. (b)
shows the mutual injection
holds the positive correlation
between P1 and P2 induced
by the quantum noise below
the threshold and the mutual
injection. Note that the
threshold depends on �
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Figure 11.11 shows the second-order moments for the quadrature amplitudes.
Here, they are normalized with the products of the standard deviations of the relevant
amplitudes. X1 and X2 are negatively correlated from the beginning of the pumping
as shown in Fig. 11.11a. It means that the coherent Ising machine can find a ground
state for the minimal anti-ferromagnet model. Note that the signal photon numbers
in the OPOs hOa�1 Oa1i � hOa�2 Oa2i vary from 12 to 27 dependent on the mutual injection
strength j�j. The semiclassical oscillation threshold also depends on j�j, as pth D
1�j�j: In Fig. 11.11b, P1 and P2 have some positive correlation, because the mutual
injection stimulates the damping of the fluctuation in P1 C P2 while restricts that in
P1 � P2. This can be seen by the drift matrix for them.

Figure 11.12 presents the distribution functions of the quadrature amplitudes
for the two different time: t D 24:72 then p D 0:27192 for Fig. 11.12a and
t D 25:54, p D 0:28094 for Fig. 11.12b. Here, As D 100 and � D �1. The
distributions P.Xi/ are broadened compared to that of the initial vacuum state
with the variance of 1=2 as seen in both Fig. 11.12a, b. They can be fitted with
Gaussian functions, while have some roughness mostly coming from the large
fluctuation around the critical point. P.P2/ in Fig. 11.12a and P.P1/ in Fig. 11.12b
show the deviation from the Gaussian fitting curves on their sides, not as in the
momentum distributions of the other OPOs. This indicates individual formation
of the macroscopic superposition components in the OPOs. However, these states
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Fig. 11.12 Distribution functions for the quadrature amplitudes for different times near to the
oscillation threshold. (a) t D 24:72 and (b) t D 25:54. As D 100 and � D �1. The dashed lines

are the Gaussian fitting curves. P.X1/ and P.X2/ can be fitted with the Gaussian functions with the
standard deviations of 14.5 for (a) and 18.0 for (b). The roughness of them comes from the critical
fluctuation. P.P2/ in (a) and P.P1/ in (b) show deviation and humps off the Gaussian curves, not as
the Gaussian momentum distributions of the other OPOs. This indicates the existence of transient
macroscopic quantum superposition components in the OPOs. Note that the slightly negative
region of P.P1/ in (b) is attributed to numerical errors due to the strong oscillation components
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are transient and shortly vanish with about or less than one tenth of the cavity
lifetime. Also, it is difficult to refer to the possibility of the synchronized formation
of these states, because the simulation is highly probabilistic due to the critical
fluctuation. The superposition comes from the quantum noise around the critical
point erasing the which-path information and inducing the tunneling among the
states with finite Xi. This is possibly contributed to also by the mutual injection
and the third order effect of �i and �i in Eq. (11.20), physically involving a pump
photon and two signal photons. Note that Eq. (11.21) indicates the fringe in P.Pi/

comes from the integration of expf�i
p
2Pi Re.˛i�ˇi/g, thus the Glauber-Sudarshan

P.˛/ representation cannot treat states with such quantum interference in principle
because of its restriction ˇ D ˛�. A larger As and � tend to give a clearer fringe
in P.Pi/. However, the lossless mutual injection can lead to an unphysical data for
the system very near to the threshold due to numerical errors, such as a slightly
negative variance in a quadrature amplitude, which is not the case for the time points
in Fig. 11.12.

Figure 11.13 displays the time dependence of the fluctuation on the sum and
difference of the quadrature amplitudes: (a) for h�u2i, (b) for h�v2i and (c) for
h�u2i C h�v2i. As shown in Fig. 11.13a, a large mutual injection can suppress the
fluctuation on u D X1C X2 up nearly to the vacuum level (1/2) around the threshold
in spite of the critical fluctuation on each Xi. We see in Fig. 11.13b that the noise in
v D P1 � P2 gets less than 1/2 there, indicating the quantum correlation between
the two OPOs. The curves for the total noise h�u2i C h�v2i in Fig. 11.13c have
the portions which satisfy the condition Eq. (11.23), i.e. the noise level lower than
the value of 1 for the vacuum state. This clearly indicates the inseparability between
the cavity OPO field states with large mutual injections and means that the mutual
injection can be a quantum communication channel. Note that the entanglement is
totally attributed to Pi, and the correlation in Xi does not fall below the vacuum
level. Thus, this does not mean the EPR paradox [41] and in this sense the quantum
correlation in this system is not complete. A smaller mutual injection gives a larger
variance in u, leading to destruction of the entanglement. The result here shows that
an amplitude coupling coefficient larger than � � 0:5, i.e. 25 % in the feedback
power is needed for the single-mode OPO network to hold the entanglement before
the macroscopic bifurcation in Xi due to the oscillation.

We simulated the system of two OPOs with the out-of-phase mutual injection
in the framework of the positive P-representation. As a result, we have found that
the simplest coherent computing system based on OPOs can exhibit the transient
macroscopic superposition components and the entanglement of a quadrature ampli-
tude between the separate OPO cavity fields, which are expected to be resources for
quantum computing. We can extend this approach based on the quantum expectation
values to investigate the quantumness in larger systems. To expect the result of
each experimental trial with the large machine exhibiting probabilistic behavior in
quantum mechanics, another scheme like the Monte Carlo wave-function method
[45] will need to be explored. Also, the theory covering quantum and chaotic
systems might lead to findings about the performance of the system.
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Fig. 11.13 Fluctuation of the sum and difference of the quadrature amplitudes (a) h�u2i, (b)
h�v2i and (c) h�u2i C h�v2i dependent on the time for different �. As D 5. (a) shows that the
mutual injection decreases h�u2i nearly to the vacuum level (1/2) around the critical point. In (b),
h�v2i falls below the vacuum level and shows the quantum mechanical correlation. The dashed

line in (c) is the vacuum fluctuation level and means the bound for the entanglement. The curves
of h�u2i C h�v2i in (c) have the parts which are clearly below the bound, thus indicates the
entanglement there, i.e. the quantum communication channel between the two OPO fields

11.8 Conclusion

The computational ability of a degenerate OPO network to solve NP-hard problems
has been investigated. When the network is pumped well above its threshold as
defined by Eq. (11.11) and the condition given by Eq. (11.16) is also satisfied, phase
configurations of the network are in one-to-one correspondence with eigenstates
of the Ising Hamiltonian. If the mutual coupling among the constituent degenerate
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OPOs is sufficiently weak, the overall photon decay rate from the network is
proportional to the eigenenergy of the corresponding eigenstate, as demonstrated
in Eq. (11.18).

Performance of the network has been numerically studied against the NP-hard
MAX-CUT problem on small cubic graphs and large random graphs in the G-set.
Reasonable success probability has been achieved for cubic graphs with number of
vertices up to 20. At the time of writing, whether the worst-case success probability
starts to decrease exponentially for larger graphs is not known. On the other hand,
the results for the G-set graphs demonstrate promising evidence for the degenerate
OPO network as an approximate solver. The network can most of the time find
better solutions with a much faster speed than the celebrated GW algorithm based
on semidefinite programming as shown in Table 11.4 and Fig. 11.6.

The proof-of-concept experiment has been conducted with a TDM scheme using
a multi-pulse optical cavity and coherent optical feedback. A network is realized to
solve the MAX-CUT problem on the cubic graph with four vertices, and it finds a
correct solution in all 1000 runs. It is anticipated that a medium-size network with
5000–10000 degenerate OPOs can be practically implemented using a pulse pump
laser with a clock frequency of 1 GHz and a fiber ring cavity of 1–2 km. Such a
medium-size network will find a practical application already in searching for an
optimum solution in dynamically varying graphs.
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Chapter 12

A Coherent Ising Machine for MAX-CUT

Problems: Performance Evaluation against
Semidefinite Programming and Simulated

Annealing

Yoshitaka Haribara, Shoko Utsunomiya, and Yoshihisa Yamamoto

12.1 Introduction

The Ising model is a mathematical abstraction of spin glasses composed of frustrated
spins, which feature various peculiar properties [1, 2]. The Hamiltonian of the
Ising model with N spins is given by H D �

P
i<j Jij�i�j, with Jij being the

coupling between the i-th and j-th spins. �i and �j represent the z-components of
the spins, which take the eigenvalues of C1 or �1. The Ising model is also used as
a cost function for many combinatorial optimization problems in life-science, drug
discovery, wireless communications, machine learning, artificial intelligence and
social network. The three-dimensional Ising model and many important combina-
torial optimization problems are intractable in modern digital computers, since they
belong to the NP-hard class [3]. So far no efficient classical nor quantum algorithm
has been discovered for them. Thus, simulated annealing [4] and various heuristic or
semi-definite programming algorithms for approximate solutions [5–7] are widely
used. Recently, quantum annealing [8–10] and adiabatic quantum computation [11]
have been proposed as an alternative, but their comprehensive study on the potentials
are yet to be explored [12, 13].

The previous two sections introduce the novel computing systems based on the
laser network [14, 15] and the degenerate optical parametric oscillator (DOPO)
network [16, 17]. Such coherent Ising machines (CIM) need to employ multiple
optical coupling paths for implementing the Ising coupling terms and thus have an
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inherent problem for scalability. The number of optical coupling paths increases
in proportion to a problem size for a sparse graph and quadratically to a problem
size for a dense graph, even though the multiple Ising spins are implemented as a
time-division-multiplexing pulse train in a simple ring cavity [17].

In this section we will describe a novel scheme to implement the Ising coupling
terms using a quantum feedback control circuit. The new scheme has two additional
advantages that a three-body or higher-order Ising coupling terms can be easily
implemented without any modification of the feedback circuit and that a strong
coupling coefficient (�ij > 1) can be implemented without additional optical
amplifiers. As a demonstration of this new capability, we show some numerical
results for the MAX-CUT problems and higher-order Ising problems.

12.2 A Multiple-pulse DOPO with Quantum

Measurement-Feedback Control

12.2.1 Outline

A proposed computing system is shown in Fig. 12.1. A fiber ring resonator installs
the three components: a PPLN waveguide optical parametric amplifier and two
directional couplers I and II, which are used as an out-coupling port to the homodyne

Signal pulses 
#2      #1 

Ring cavity 

feedback pulse 

Directional 
coupler I 

Homodyne 
detection 

AD 
converter 

FPGA 
DA 

converter 

Directional  
coupler II 

IM/PM 

PPLN  
waveguide 

OPA 

SHG 
pulse LO 

pulse 
SHG 

Pump 
pulse 

fi

Fig. 12.1 A multiple-pulse DOPO with quantum feedback control. A small portion of each signal
pulse is picked off by a directional coupler I and its in-phase component is measured by optical
homodyne detectors, where a LO pulse is directly taken from a master laser. The two detector
outputs are converted to the digital signals and input into a FPGA circuit, where the feedback
signal

P
j �ij Qcj for the i-th signal pulse is computed. An independently taken IL pulse from the

master laser is modulated in its intensity and phase to realise such an optical pulse and coupled
into the i-th signal pulse by the directional coupler II. The flows of optical fields and electrical
signals are shown by solid lines and dashed lines, respectively
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detectors and as a mutual coupling port between the DOPO pulses, respectively. A
second harmonic generation (SHG) pulse train at a wavelength of 0:78 �m generates
multiple DOPO pulses at a wavelength of 1.56�m inside a fiber ring cavity. The
local oscillator (LO) pulse for the homodyne detection and the injection locking
(IL) pulse for the mutual coupling are directly taken from the master laser at a
wavelength of 1:56 �m.

If the fiber length (or round trip time) inside a ring resonator is properly adjusted
to the multiple integer (N) times the pump pulse interval, we can simultaneously
generate N independent DOPO pulses inside a cavity [17]. Instead of connecting
those pulses with optical delay lines, we can measure the in-phase amplitude Qcj of
the j-th pulse and compute the proper coupling field amplitude for the i-th pulse,P

j �ij Qcj by the FPGA circuit, where the coupling coefficient �ij is proportional to the
Ising coupling Jij. This electrical signal drives the intensity and phase modulators to
generate an IL pulse for the i-th pulse. Such a hybrid optoelectric coupling scheme
is equivalent to the purely optical coupling scheme except for the subtle difference
in the noise penalty, which we will discuss in the next section.

A clear advantage of the new scheme is that all the Ising coupling Jij of the
order of N2 can be implemented by a single quantum measurement-feedback control
circuit. If N approaches �106, which corresponds to the realistic clock frequency
of 10 GHz and fiber length of 20 km, the above advantage is substantial in practical
implementation.

12.3 c-Number Langevin Equations for the Multiple-pulse

DOPO with Quantum Feedback Control

The in-phase and quadrature-phase amplitudes of a single isolated DOPO obey the
following c-number Langevin equations [17]:

dc D .�1C p � c2 � s2/c dt C 1

As

r
c2 C s2 C 1

2
dW1; (12.1)

ds D .�1 � p � c2 � s2/s dt C 1

As

r
c2 C s2 C 1

2
dW2; (12.2)

Equations (12.1) and (12.2) are derived by expanding the field density matrix
with the truncated Wigner function. The two quadrature components c and s
correspond to 1

2As
.˛s C ˇs/ and 1

2Asi
.˛s � ˇs/ where ˛s and ˇs are the eigenvalues

of two coherent states in the generalized (off-diagonal) P.˛s; ˇs/-representation for
the field density matrix [18]. The two approaches based on the truncated Wigner
function and the generalized P-representation are equivalent and produce identical
results. The pump field is adiabatically eliminated already in (12.1) and (12.2)
by assuming the pump decay rate 
p is much larger than the signal decay rate

s. As D .
s
p=2�

2/1=2 is the DOPO field amplitude at a normalised pump rate
p D Fp=Fth D 2, 
s and 
p are the signal and pump intensity decay rates and � is
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the second order nonlinear coefficient associated with the PPLN waveguide DOPA.
As shown in Eq. (12.1) and (12.2), As is an important parameter to determine the
effective strength of quantum noise. t D 
s

2
� is a normalized time, while � is a real

time in sec. Fp is the pump field amplitude and Fth D 
s
p=4� is the threshold
pump field amplitude. Finally, dW1 and dW2 are two independent Gaussian noise
processes which represent the incident vacuum fluctuations at signal channel and at
pump channel, respectively. The former contributes to 1/2 and the latter contributes
to c2 C s2 in the square-root bracket in (12.1) and (12.2). The c-number Langevin
equations (12.1) and (12.2) are fully equivalent to the master equation for the
signal field density matrix and the corresponding Fokker-Planck equation for the
truncated Wigner function [17, 18], so that the following discussions based on the c-
number Langevin equations (12.1) and (12.2) are compatible with rigorous quantum
mechanical treatment.

When the i-th signal pulse is incident upon the directional coupler I, the output-
coupled field and remaining cavity field are written as

ci;out D
p

Tci �
p
1 � T

fi

As

; (12.3)

ci;re D
p
1 � Tci C

p
T

fi

As

; (12.4)

where T is the power transmission coefficient of the directional coupler I and fi
is the incident vacuum fluctuation from the open port of the directional coupler I.
The optical balanced homodyne detection for the out-coupled-field “measures” an
inferred signal amplitude

Qci D ci �
r
1 � T

T

fi

As

: (12.5)

Note there is no additional noise in Eq. (12.5) except for the intrinsic vacuum
field fluctuation fi. A balanced homodyne detector with a 3 dB coupler (50–50 %
beam splitter) and two photodetectors followed by a subtraction circuit can suppress
the intensity noise of the LO pulse. Starting with the part of the master laser
output, the intensity and phase modulators driven by the FPGA output with those
measurement results produces the mutual coupling field

P
i �ij Qcj, which is actually

added to the i-th signal pulse by the directional coupler II. Here �ij is the effective
coupling coefficient from the j-th pulse to the i-th pulse, including the transmission
coefficient

p
T 0 of the directional coupler II.

Since the transmission coefficient
p

T 0 of the directional coupler II should be
much smaller than one in order to keep the ring cavity Q-value high enough, we
don’t need to consider any additional noise in the combined signal and IL pulses.
The c-number Langevin equation (12.1) can now be rewritten to include the mutual
coupling terms:
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dci D
�
.�1C p � c2i � s2i /ci

�
dt C

X

j

�ij Qcj

C 1

As

r
c2i C s2i C 1

2
dWi: (12.6)

Here the summation in Eq. (12.6) represents the quantum feedback term
consisting of the signal part (proportion to cj) and the noise part (proportion to
fj). The vacuum fluctuation coupled to the i-th pulse in the directional coupler I is
already taken into account in the last term of R. H. S. together with the pump noise.

Note that the coupling coefficient j�ijj can be greater than one since we start with
a high-intensity IL pulse directly from the master laser. If we do not use a quantum
feedback control scheme, we must introduce a laser amplifier with a power gain of
G in the optical coupling path in order to realize j�ijj > 1. In this case, the quantum
feedback term of Eq. (12.6) is replaced by

X

j

�ij.cj �
r
1 � T

T

fj

As

C
r
1

T 0
fa

As

/; (12.7)

where �ij D
p

GT 0, T 0 is the transmission coefficient of the two directional couplers
which pick off a part of the j-th signal pulse and add the amplified optical pulse to
the i-th signal pulse, and fa is the internal noise of the amplifier. When T 0 � 1,
the added noise power is at least doubled because a laser amplifier needs to add the
internal noise which is equal to or greater than the vacuum noise level.

In the following section, the numerical simulation of the coupled c-number
Langevin equations (12.6) is employed to study the performance of a new coherent
Ising machine with quantum feedback control.

12.4 Numerical Studies for a Simple MAX-CUT-3 Problem

If the Ising coupling coefficient Jij is �1 (anti-ferromagnetic coupling) and each
vertex has exactly three edges, such a simple Ising model is equivalent to the graph
of a NP-hard simple MAX-CUT problem in a cubic graph (MAX-CUT-3). In this
case we are asked to find the way to divide all vertices into two subgroups in order
to maximize the edge weights cut between the two subgroups. The solution to the
simple MAX-CUT-3 problem is identical to the ground state search problem of the
Ising Hamiltonian [16].

min.HIsing/ D
X

i<j

Jij � 2max.G/: (12.8)

The smallest simple MAX-CUT-3 problem has four vertices and six edges, as shown
in Fig. 12.2a The solution to this problem is to divide the four vertices into the two
subgroups with two vertices, which correspond to the six degenerate ground states
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Fig. 12.2 (a) A simple MAX-CUT-3 problem with the number of vertices N D 4. (b) Normalized
DOPO signal amplitudes as a function of cavity round trip numbers against N D 4 MAX-CUT-3.
Small window is enlarged to indicate effects of three components; A: OPA gain, B: out-coupling
loss, and C: injection of feedback pulse

Fig. 12.3 Distribution of
output spin configurations in
1000 trials of numerical
simulations against simple
MAX-CUT-3 problem of
graph order N D 4. All trials
were successful
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of the Ising Hamiltonian, i.e. j ""##i, j "#"#i, j "##"i, j #"#"i, j ##""i and
j #""#i.

Figure 12.2b shows the time evolution of ci .i D 1; :::; 4/ when the pump power
is linearly increased from a below-threshold to above-threshold values. A correct
solution spontaneously emerges after several tens of round trips. The histogram
of obtaining different states against 1000 sessions of such numerical simulation
is shown in Fig. 12.3, in which six correct solutions appear with almost equal
probabilities and no error was detected.

12.5 Computational Experiments Against G-Set Graphs

and Complete Graphs

A computational power of a coherent Ising machine (CIM), the DOPO network with
quantum measurement-feedback control, is evaluated against two sets of instances
of the NP-hard MAX-CUT problem. The first set includes 81 benchmark instances
of the G-set graphs, which are randomly created by a machine-independent graph
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generator written by G. Rinaldi. Those graphs have the vertices ranging from 800 to
20,000, the edge density from 0.02 % to 6 % and the edge weight of ˙1. There are
three topology of the graphs, i.e. random, nearly planar and toroidal. While the G-
set graphs are rather sparse, the second set consists of 5 complete graphs, in which
all vertices are fully connected with edge weight of ˙1.

12.5.1 G-Set Graphs

The celebrated Goemans-Williamson algorithm based on semidefinite programming
(SDP) has the performance guarantee of 0.87856 to the optional solution of the
MAX-CUT problems. Table 12.1 compares the maximum and average numbers of
cut, i.e. the sum of edge weights between two sub-groups of vertices normalized by
the upper bound of cut by SDP and CIM. The average approximation rate of CIM
is 0.93124 to SDP upper bound, whereas the performance of Goemans-Williamson
SDP is 0.93025. The worst performance by CIM is 0.90442 while that for SDP
is 0.8989. A computational time of SDP scales in � O.N3:5/ if the given graph
has both positive and negative-weighted edges. Table 12.1 shows the computational
time normalized by the round trip time for CIM, which features a sublinear scaling
in � O.N0:4/.

12.5.2 Complete Graphs

Next, we study the computational times for complete graphs by SDP, simulated
annealing (SA) and CIM. Figure 12.4 shows the Ising energy vs. evolution time
for CIM, SA and SDP for the complete graph with N D 800 and N D 4000. The
codes were running on the Linux machine with two 6 core Intel Xeon(2.67 GHz)
processor and 94 GB memory. We assumed the CIM has a clock frequency of
2 GHz, fiber length of 2 km and total number of intra-cavity pulses of 20,000. The
computational times for N D 4000 are �104 s, �10 s and �10�3 s for SDP, SA
and CIM, respectively. Figure 12.5 compares the computational time T(sec) vs. the
problem size N for SDP, SA and CIM. The computational time is defined as a time
required to reach the same accuracy achieved by SDP. The computational time for
complete graphs scales � O.N3:5/ and � O.N2/ for SDP and SA. On the other
hand, CIM realizes a problem-size independent computational time of the order of
�1 ms.

12.6 Numerical Studies for Higher-Order Ising Problems

If the Ising interaction is not a standard two-body interaction but rather a four-body
interaction such as

H D �J�1�2�3�4; (12.9)
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Table 12.1 Performance of the coherent Ising machine and the Goemans-Williamson SDP
algorithm in solving the MAX-CUT problems on sample G-set graphs. #V is the number N of
vertices in the graph, #E is the number m of edges, USDP is the optimal solution to the semidefinite
relaxation of the MAX-CUT problem, CGW is the best solution obtained by N.D #V/ projections
after SDP. Cmax and Cavg are the best and average values in CIM 100 runs, respectively, and T is
the average computational time of the CIM normalized to the DOPO cavity round trip time, i.e.,
10�s. To make comparisons with each other, every cut value C generated from the CIM or GW
algorithm is normalized according to .C C Eneg/=.USDP C Eneg/, where Eneg � 0 is the number of
negative edges

Graph #V #E USDP CGW Cmax Cavg T

g1 800 19,176 12,083 0.94571 0.95506 0.94902 133.9

g2 800 19,176 12,089 0.94367 0.95417 0.94838 138.1

g3 800 19,176 12,084 0.94505 0.95357 0.94819 131.4

g4 800 19,176 12,111 0.94509 0.95583 0.94819 134.0

g5 800 19,176 12,099 0.94578 0.95644 0.94886 137.9

g6 800 19,176 2656 0.94477 0.95628 0.94828 131.4

g7 800 19,176 2489 0.94462 0.95622 0.94772 128.0

g8 800 19,176 2506 0.94433 0.95435 0.94750 126.4

g9 800 19,176 2528 0.94518 0.95489 0.94885 128.1

g10 800 19,176 2485 0.94438 0.95400 0.94814 126.1

g11 800 1600 629 0.93272 0.93130 0.91576 128.3

g12 800 1600 623 0.93333 0.93193 0.91830 130.1

g13 800 1600 647 0.93357 0.93636 0.91877 129.9

g14 800 4694 3191 0.93356 0.94798 0.93930 121.7

g15 800 4661 3171 0.93977 0.94923 0.93953 124.9

g16 800 4672 3175 0.93638 0.94583 0.93926 125.2

g17 800 4667 3171 0.93756 0.94607 0.93904 129.8

g18 800 4694 1166 0.92818 0.94140 0.93099 116.7

g19 800 4661 1082 0.92793 0.93918 0.92919 119.2

g20 800 4672 1111 0.93545 0.94121 0.92974 120.6

g21 800 4667 1104 0.92855 0.94238 0.92987 118.0

g22 2000 19,990 14,136 0.91914 0.93350 0.92661 204.9

g23 2000 19,990 14,145 0.91877 0.93079 0.92628 198.4

g24 2000 19,990 14,140 0.91860 0.93317 0.92622 189.7

g25 2000 19,990 14,144 0.91827 0.93142 0.92584 197.9

g26 2000 19,990 14,132 0.91735 0.93242 0.92610 196.4

g27 2000 19,990 4141 0.91743 0.93247 0.92659 192.8

g28 2000 19,990 4100 0.91822 0.93158 0.92662 195.5

g29 2000 19,990 4208 0.91668 0.93186 0.92631 188.8

g30 2000 19,990 4215 0.91893 0.93376 0.92664 204.9

g31 2000 19,990 4116 0.91810 0.93174 0.92693 196.7

g32 2000 4000 1567 0.92717 0.93335 0.92557 178.0

g33 2000 4000 1544 0.92751 0.93369 0.92495 174.0

g34 2000 4000 1546 0.92773 0.93725 0.92644 177.0

(continued)



12 A Coherent Ising Machine for MAX-CUT Problems: Performance. . . 259

Table 12.1 (continued)

Graph #V #E USDP CGW Cmax Cavg T

g35 2000 11,778 8014 0.92925 0.94285 0.93780 173.6

g36 2000 11,766 8005 0.92817 0.94166 0.93794 174.3

g37 2000 11,785 8018 0.93103 0.94188 0.93719 170.9

g38 2000 11,779 8014 0.92912 0.94223 0.93805 181.9

g39 2000 11,778 2877 0.92265 0.93407 0.92747 157.6

g40 2000 11,766 2864 0.92246 0.93156 0.92700 159.9

g41 2000 11,785 2867 0.92302 0.93328 0.92679 167.6

g42 2000 11,779 2946 0.92296 0.93345 0.92545 174.4

g43 1000 9990 7032 0.92918 0.93444 0.92758 143.9

g44 1000 9990 7027 0.92515 0.93710 0.92854 147.4

g45 1000 9990 7024 0.92454 0.93764 0.92883 146.2

g46 1000 9990 7029 0.92232 0.93626 0.92868 148.0

g47 1000 9990 7036 0.92609 0.93576 0.92838 144.1

g48 3000 6000 6000 1.00000 0.96000 0.93181 228.4

g49 3000 6000 6000 1.00000 0.95333 0.93267 231.4

g50 3000 6000 5988 0.98196 0.95157 0.93281 228.8

g51 1000 5909 4006 0.93335 0.94658 0.93907 136.1

g52 1000 5916 4009 0.93265 0.94537 0.93958 130.8

g53 1000 5914 4009 0.93465 0.94338 0.93824 138.3

g54 1000 5916 4006 0.93809 0.94508 0.93935 137.8

g55 5000 12,498 11,039 0.90063 0.91023 0.90499 272.1

g56 5000 12,498 4760 0.90078 0.91274 0.90509 272.8

g57 5000 10,000 3885 0.92374 0.93295 0.92808 225.8

g58 5000 29,570 20,136 0.92387 0.93956 0.93711 244.7

g59 5000 29,570 7312 0.91483 0.93006 0.92432 219.0

g60 7000 17,148 15,222 0.89890 0.90908 0.90470 285.1

g61 7000 17,148 6828 0.89909 0.90868 0.90442 279.2

g62 7000 14,000 5431 0.92278 0.93208 0.92842 243.5

g63 7000 41,459 28,244 0.92299 0.93942 0.93725 262.5

g64 7000 41,459 10,466 0.91426 0.93010 0.91580 213.0

g65 8000 16,000 6206 0.92167 0.93220 0.92880 259.7

g66 9000 18,000 7077 0.92199 0.93322 0.92881 266.6

g67 10,000 20,000 7744 0.92153 0.93298 0.92991 269.2

g70 10,000 9999 9863 0.96330 0.94860 0.94391 290.7

g72 10,000 20,000 7809 0.92146 0.93358 0.92957 271.5

g77 14,000 28,000 11,046 0.92046 0.93280 0.92990 285.0

g81 20,000 40,000 15,656 0.91947 0.93165 0.92984 298.3
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Fig. 12.4 Performance comparison of CIM, SA, and GW in solving complete graphs (a) K800 and
(b) K4000, where each edge was randomly weighted ˙1. Each time, bundle of curves depicted
average energy (solid line) ˙ and standard deviations (dashed line) in 100 runs. Dotted line was
obtained using GW algorithm, which is shown with dot. The number of flips in SA algorithm were
105 for K800 and 106 for K4000, respectively, to optimize computational time
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Fig. 12.5 Computational time of coherent Ising machine, simulated annealing algorithm, and
Goemans-Williamson SDP algorithm fitted to lines indicating O.1/, O.N2/, and O.N3:5/, respec-
tively. Data points of CIM and SA were calculated by averaging 100 samples, except for N D 40.
(Since the optimal energy of graph obtained using GW is regarded as ground state, half of the 100
samples of stochastic algorithms were post-selected to reach that value)

the coupled field into the i-th pulse is not given by
P

j �ij Qcj any more but is given by
� Qcj Qck Qcl, where .j; k; l/ ¤ i. In this case the c-number Langevin equation (12.1) can
be rewritten to include four body coupling term:

dci D .�1C p � c2i � s2i /cidt

C 1

As

r
c2i C s2i C 1

2
dWi C �Œcjckcl C

r
1 � T

T

c2

As

.fj C fk C fl/�: (12.10)

Here we assume jcij D jcjj D jckj D jclj D c.
If the four-body Ising coupling coefficient J is �1 (multi-body anti-ferromagnetic

coupling), there are eight degenerate ground state, i.e. j """#i, j ""#"i, j "#""i,
j #"""i and their inverse spin configurations. Figure 12.6 shows the time evolution
of ci .i D 1 � 4/ when the pump power is linearly increased from a below-
threshold to above threshold values. One of the eight degenerate ground states
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Fig. 12.6 Normalized DOPO pulse amplitudes ci .i D 1; : : : ; 4/ in Eq. (12.10) describe
interaction between four-body Ising coupling expressed by Eq. (12.9)

Fig. 12.7 Distribution of
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1000 trials of numerical
simulation against four-body
Ising model of N D 4. All
trials were successful
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emerges spontaneously after several ten round trips. The statistics of observing
different states in 1000 independent sessions of numerical simulation of Eq. (12.9)
is shown in Fig. 12.7, in which eight correct solutions are obtained with almost equal
probabilities and no error was detected.

12.7 Conclusion

A scalable coherent Ising machine with quantum feedback control is proposed and
studied for the MAX-CUT problems. The scalability stems from replacing � O.N/

optical coupling paths by a single quantum measurement-feedback circuit. The
potential for solving NP-hard Ising problems using a CIM was numerically studied
by conducting computational experiments using the MAX-CUT problems on sparse
graphs (G-set) and fully connected complete graphs of order up to 2� 104. With the
normalized pump rate and coupling coefficient p D 0:2 and � D �0:06, the CIM
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achieved a good approximation rate of 0.93124 on average and found better cut
compared to the GW for 65 out of 71 graphs in G-set. The computation time for
this sparse graph set was �1ms. The time scaling was also tested against complete
graphs of number of vertices up to 2 � 104 and number of edges up to 108. The
results imply that CIM achieves almost constant time scaling, while SA scales as
O.N2/. The new scheme has two additional advantages: (1) a very large coupling
coefficient �ij > 1 can be implemental without excess amplifier noise and (2) a
higher-order Ising coupling can be easily implemented. The second advantage may
find new applications of the proposed machine to other types of hard problems such
as factoring problems and 3-SAT problems.
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Quantum Simulation



Chapter 13

Bose-Einstein Condensation: A Platform

for Quantum Simulation Experiments

Yoshihisa Yamamoto and Yoshiro Takahashi

13.1 Introduction

Since the Bose-Einstein (BEC) condensation of dilute atomic gases was realized in
1995 [1, 2], the study of highly degenerate quantum gases has attracted considerable
interest from theoretical and experimental researchers from various fields.

The quantum statistical properties of massless Bose particles were first studied
by Bose in 1924, and these properties are known today as photon statistics [3].
Einstein extended this work to a system of non-interacting massive Bose particles
and proposed the basic concept of BEC in 1925 [4]. The BEC phase transition is
achieved by condensation of a macroscopic number of particles into a ground state
with the lowest energy when the temperature is low enough. However, for more
than ten years, Einstein’s prediction was considered to be a purely mathematical
conclusion for a theoretical system composed of a noninteracting (ideal) gas with
little relevance to the real physics of interacting Bose particles.

In 1938, Kapitza and, independently, Allen and Misener discovered the phe-
nomenon of superfluidity, i.e., the frictionless flow of fluids, in liquid 4He [5, 6].
In the same year, London published the intuitive idea that superfluidity could be
an experimental manifestation of BEC [7]. However, superfluid 4He is a strongly
interacting system that is far from the ideal gas studied by Einstein, so it was not
at all straightforward to connect the concepts of BEC and superfluidity. The first
microscopic theory of interacting Bose gases in the context of BEC was formulated
by Bogoliubov [8] in 1947. Independently, Landau developed the phenomenological
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theory of superfluidity in terms of the excitation spectrum [9], and this theory was
later supported by experimental confirmation. Despite successes in the theoretical
understanding of superfluidity in the early years, e.g., the work of Feynman [10], it
was only after the realization of atomic BEC in 1995 that the theoretical concepts of
BEC proposed by Einstein [4] and Bogoliubov [8] could be experimentally tested.

One of the most significant features of BEC, and a key factor in understanding
the connection between BEC and superfluidity, is the off-diagonal long-range order.
This subject has been extensively studied by many theorists, including Landau and
Lifshitz [11], Penrose [12], and Penrose and Onsager [13]. Another important aspect
for the understanding of BEC and superfluidity is the quantized vortices that were
predicted by Onsager [14] and Feynman [15]; these vortices were first observed
in superfluid 4He, and were observed more recently in atomic BEC and exciton-
polariton condensates.

The BEC phase is unstable because the true thermal equilibrium state under BEC
pressure and temperature conditions is the solid phase. At such low temperatures,
the BEC gas phase decays to form a stable crystal phase by the three-body scattering
process. This seems to rule out the possibility of experimental realization of the
BEC phase. However, the BEC phase can indeed exist as a “metastable” state if the
following conditions are satisfied:

1. The density of the gas is so low that three-body collisions are rare and thus the
time taken for the system to enter a stable solid state is much longer than the
escape time of these particles.

2. Internal thermal equilibrium of the gas can nevertheless be established efficiently
and quickly by sizable two-body collisions, and the established gas temperature
is low enough for quantum statistics to play a role in the formation of the
metastable gaseous BEC state.

3. The time required to reach the BEC phase and the time required for the Bose
particles to escape from the trap are very different, which means that we
can experimentally probe the various properties of the BEC phase. This third
condition is satisfied in atomic BEC but is not necessarily satisfied in exciton-
polariton BEC.

Before experimental studies of atomic BEC began, the semiconductor physics
community had already investigated the possibility of BEC of excitons in the
1960s [16, 17]. Excitons are elementary excitations in semiconductors but can
also be considered as compound bosonic particles consisting of two fermions: an
electron in the conduction band and a hole in the valence band.

Despite both experimental and theoretical efforts lasting for more than four
decades, the evidence for exciton BEC remains elusive. The main obstacles to
exciton BEC experiments are two-fold:

1. Excitons either dissociate into an electron and hole plasma or decay nonradia-
tively by the Auger recombination process at the high density limit, which means
that it is very difficult to accumulate exciton densities up to the critical BEC
density at experimentally accessible temperatures.
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2. Excitons are easily localized by crystal defects or impurities and suffer from
relatively large inhomogeneous broadening. Thus, an ensemble of excitons in
a real crystal cannot be considered as delocalized bosonic waves, even at low
temperatures, but this is an indispensable prerequisite for BEC.

In 1996, a proposal was made with regard to BEC of exciton-polaritons, which
are hybrid quasi-particles consisting of quantum well (QW) excitons and microcav-
ity (MC) photons in semiconductor planar structures [18]. Dressing the QW excitons
with the MC photons produces a new quasi-particle with an extremely light effective
mass. These exciton-polaritons can overcome both localization and inhomogeneous
broadening through their spatially-extended photonic wavefunctions. Insertion of
multiple QWs inside a MC means that the exciton density per QW can be reduced
while a sufficiently high two-dimensional polariton density is maintained. The
exciton-polariton BEC has been demonstrated in several laboratories around the
world [19–22].

There are three distinct regimes for the degenerate Bose gas system, which are
determined by the ratio of the thermalization time to the escape time of the ground
state particles.

1. If the internal thermalization time �th is much longer than the particle escape time
�0, thermal equilibrium is not reached. Nevertheless, some of the BEC signatures,
such as the off-diagonal long-range order and the macroscopic population of the
ground state, can still exist. This non-equilibrium regime is known as the “matter-
wave laser”.

2. If the internal thermalization time is comparable to or shorter than the particle
escape time, then the thermal equilibrium BEC phase is formed, but only as a
transient effect. Many of the BEC signatures can be probed experimentally using
various stroboscopic measurement techniques. This transient regime is called the
“dynamic condensation”.

3. If the internal thermalization time is much shorter than the particle escape time,
then the BEC phase exists as a steady state from an experimental viewpoint. We
refer to this steady state regime as “thermal equilibrium BEC” [23].

Section 13.2 introduces several fundamental concepts of BEC, including the
order parameter, spontaneous symmetry breaking, Nambu-Goldstone modes, the
off-diagonal long range order and higher-order coherence. A simple model of a
non-interacting Bose gas is presented in Sect. 13.3. Despite its simplicity, the model
still captures the basic properties of BEC, including the critical temperature/density
and the condensate fraction. Section 13.4 describes the Bogoliubov theory of a
weakly interacting Bose gas. We then derive the Gross-Pitaevskii equation, the
Bogoliubov excitation spectrum, the sound velocity and the first-order coherence
function. Superfluidity is discussed in Sect. 13.5. We present the Landau criterion
for superfluidity, quantized vortices, and bound vortex-antivortex pairs, and finally
present the Berezinskii-Kosterlitz-Thouless (BKT) theory of superfluidity in a uni-
form two-dimensional system. Finally, in Sect. 13.6, several important experimental
systems for the quantum simulation experiments are reviewed.
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13.2 Fundamental Concepts of Bose-Einstein Condensation

13.2.1 Order Parameter, Spontaneous Symmetry Breaking and

Coherent State

The field operator O .r/, which annihilates a particle at position r, can be written in
the form

O .r/ D
X

i

'i.r/Oai; (13.1)

where Oai

	
OaC

i



are the annihilation (creation) operators of a particle in the single

particle state 'i.r/, and they obey the standard bosonic commutation relations

h
Oai; OaC

j

i
D ıij;

�
Oai; Oaj

�
D
h
OaC

i ; OaC
j

i
D 0: (13.2)

The c�number Schrödinger wavefunction 'i.r/ satisfies the following orthonormal
condition:

Z
'�

i .r/'j.r/dr D ıij: (13.3)

It is then straightforward to show that the field operator follows the communication
relation

h
O .r/; O C.r0/

i
D ı.r � r0/ (13.4)

If the lowest energy single particle state, which is called the ground state in this
chapter, has macroscopic occupation, then we can separate the field operator (13.1)
into the condensate term (i D 0: ground state) and the noncondensate components
(i ¤ 0: excited states):

O .r/ D '0.r/a0 C
X

i¤0
'i.r/Oai: (13.5)

This expression of the field operator has already been introduced in the Bogoliubov
approximation [8], in which the operator Oa0 is replaced by the c-number amplitude
a0 D

p
N0, where N0 D hOaC

0 Oa0i. By defining  0 D
p

N0'0 and ı O D
P

i¤0 'i Oai,
we obtain the Bogoliubov ansatz:

O .r/ D  0.r/C ı O .r/: (13.6)

The separation (13.6) is justified if the ground state is occupied by a macroscopic
number of particles .N0 � 1/ and is useful for description of the ensemble averaged
nonlinear dynamics of the condensate using the classical field  0.r/ and the small
fluctuations ı O .r/ around the averaged value.
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The classical field  0.r/ is called an order parameter, and is characterized by a
modulus and a phase:

 0.r/ D j 0.r/jeiS.r/ (13.7)

The modulus j 0.r/j determines the particle density n.r/ D j 0.r/j2 of the
condensate, while the phase S.r/ characterizes the coherence and the superfluid
phenomena. The order parameter can take a particular phase factor. In a real BEC
phase transition, a condensate system spontaneously selects a particular phase S.r/.
An explicit selection of the phase S.r/ despite the lack of a preferred phase value is
referred to as spontaneous breaking of the gauge symmetry.

The Bogoliubov ansatz (13.6) of the field operator suggests that the expectation
value h O .r/i is not zero. This would not be possible if the condensate was in a
particle number eigenstate jN0i. From a quantum field theoretical viewpoint, the
condensate state is close to the coherent state defined by [24]

Oaj˛i D ˛j˛i (13.8)

where j˛j2 D N0 is the average particle number of the condensate. The coherent
state j˛i defined by (13.8) can be expanded using the particle number eigen-
states [24]:

j˛i D
X

n

e�j˛j2=2
p

nŠ
˛njni (13.9)

If we recall that the time dependence of the particle number eigenstate is
e�iE.n/t=„jni, where E.n/ is the total energy of n particles, then we can show
that the time dependence of the order parameter is given by [24]

 0.r; t/ � h˛j'0.r/Oa0j˛i D  0.r/e
�i�t; (13.10)

Here, „� D E.n/ � E.n � 1/ � @E.n/

@n
is the chemical potential of the system. It

is important to note that the time evolution of the order parameter is not governed
by the total energy E.n/ but is in fact governed by the chemical potential �. This
is strongly connected to the spontaneous symmetry breaking mentioned earlier. The
difference between the time evolution of a particle number eigenstate jni and that of
a coherent state is explained schematically in Fig. 13.1. A coherent state localizes its
phase to a particular value through destructive and constructive interference between
the different particle number eigenstates, as shown in Fig. 13.1. Above the BEC
phase transition temperature, the ground state is occupied by a statistical mixture
of the different particle number eigenstates, in which the entropy is maximum
under the constraint of a fixed average particle number [25]. Below the BEC phase
transition temperature, the ground state approaches a pure coherent state with zero
entropy.
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Fig. 13.1 Time evolution of particle number eigenstates jni and a coherent state j˛i in the ˛1�˛2
phase space. ˛1 and ˛2 are the two quadrature amplitudes of the eigenvalue of ˛. A coherent
state is a pure state that consists of linear superposition of particle number eigenstates. The
phase is localized by destructive and constructive interference among the different particle number
eigenstates in the phase space

13.2.2 Nambu-Goldstone Modes

The Bose particles in the condensate interact with each other via the repulsive
potential. This interaction induces low-energy and long-wavelength fluctuations in
the condensate. To show this, we begin with the Gross-Pitaevskii equation for the
order parameter:

i
d

dt
 .r; t/ D

�
�„r2

2m
C gj .r; t/j2

�
 .r; t/; (13.11)

where g.>0/ is the repulsive interaction potential. The solution of (13.11) is
expanded as

 .r; t/ D  0.r/e
�i�t C

X

k

˚
ukei.kr�.�C!/t/ C vke�i.krC.��!/t/� ; (13.12)

where uk.r/ and vk.r/ are the excitation amplitudes of the forward-propagating and
backward-propagating excitation waves with wavenumbers of ˙k. The chemical
potential is now written as „� D „gj 0.r/j2. If we substitute (13.12) into (13.11),
we obtain the following eigenvalue equations for the two excitation amplitudes:

 
„k2

2m
C � �

�� � „k2

2m
� �

!�
uk

vk

�
D !

�
uk

vk

�
: (13.13)
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Fig. 13.2 Dispersion
relations !=� vs k� for a free
particle and a Bogoliubov
quasi-particle
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To give a nontrivial solution for uk and vk, the eigenvalue ! must satisfy

!2 �
�
�C „k2

2m

�2
! C �2 D 0 (13.14)

The solution of (13.14) is easily obtained as

! D ˙
p
!k .!k C 2�/; (13.15)

where „!k D .„k/2

2m
is the kinetic energy of a noninteracting free particle. Figure 13.2

shows the normalized excitation energy !=� vs. the normalized wavenumber k�,

where � D
q

„
m�

is the healing length. At the low-energy and small-wavenumber

(or long-wavelength) limit, k� < 1, the excitation modes follow a linear dispersion
similar to a sound wave:

! D ˙ck; (13.16)

where c D
q

„�
m

is the effective sound velocity. The important consequence of this
linear dispersion (13.16) will be discussed in Sect. 13.5.

Equation (13.15) is the celebrated Bogoliubov dispersion law [8]. In general,
long-wavelength phase fluctuation modes appear universally in spontaneous
symmetry breaking processes in both particle and condensed matter physics, and
are called the Nambu-Goldstone modes [26–28]. The Bogoliubov dispersion law
represents a special case of the Nambu-Goldstone modes for weakly interacting
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Bose particles. The repulsive interaction represented by the parameter g.>0/ forces
the condensate to accumulate in a single state rather than fragment into several
degenerate or nearly degenerate states, and also to acquire a specific phase as a
coherent state rather than have a random phase. In this way, the Nambu-Goldstone
modes play a crucial role at the heart of the BEC phase transition with spontaneous
symmetry breaking.

13.2.3 Off-Diagonal Long Range Order

The first-order coherence function for the field operator is defined by [24]

G.1/.r; tI r0; t0/ D h O C.r; t/ O .r0; t0/i (13.17)

Equation (13.17) provides a very general definition of coherence that applies to any
system, independent of the statistics, both in equilibrium and out of equilibrium. In
an equilibrium system, any time dependence is suppressed so that only the concept
of spatial coherence exists. In this case, the first-order spatial coherence function is
expressed in terms of the single particle wavefunctions:

G.1/.r; r0/ D
X

i

ni'
�
i .r/'i.r

0/; (13.18)

where hOaC
i Oaji D ıijni is used. The normalized coherence function is defined as

g.1/.r; tI r0; t0/ D G.1/.r; tI r0; t0/
�
G.1/.r; tI r; t/G.1/.r0; t0I r0; t0/

�1=2 : (13.19)

In a three-dimensional system, the scalar product of the momentum jpi and
position jri eigenstates is written as [29]

hpjri D .2�„/� 3
2 exp

�
�i

p � r

„
�

(13.20)

D hrjpi�

Using the completeness relation
R

jrihrjdr D OI, the field operator O .p/ in the
momentum space can thus be written as

O .p/ D .2�„/� 3
2

Z
dr O .r/ exp

�
i
p � r

„
�
: (13.21)

The inverse relation to (13.21) is obtained by using another completeness relation,R
jpihpjdp D OI, to give
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O .r/ D .2�„/� 3
2

Z
dp O .p/ exp

�
� ip � r

„

�
: (13.22)

Using (13.21) and (13.22), we can calculate the first-order coherence function as
follows:

G.1/.r; r0/ D 1

V

Z
dpn.p/ exp

�
i

„p.r � r0/

�
: (13.23)

Here, n.p/ is the particle density in the momentum space, and satisfies the
normalization condition

R
dpn.p/ D N.

Consider the case of a uniform and isotropic system of N identical bosons
occupying a volume V . In the limit where N;V ! 1, while the density n D N

V

remains constant, (13.23) is not dependent on specific positions r; r0 but does depend
on the modulus of the relative position s D jr � r0j, so we can write

G.1/.r; r0/ D G.1/.s/ D 1

V

Z
dpn.p/e�ip�s=„; (13.24)

For a thermal state above the BEC critical temperature, the momentum distribution
is smooth at small momenta, and the first-order coherence function G.1/.r; r0/
consequently vanishes when s ! 1. The situation differs if instead the momentum
distribution features the macroscopic occupation N0 at the single particle ground
state with the momentum p D 0

n.p/ D N0ı.p/C Qn.p/: (13.25)

This macroscopic occupation of the single particle state at p D 0 is a general feature
of BEC, and the quantity N0=N < 1 is called the condensate fraction. Using (13.25)
in the integral of (13.24), we find that the first-order coherence function does not
vanish when s ! 1 but instead approaches a finite value:

g.1/.s/js!1 �! N0

N
: (13.26)

This asymptotic behavior of the first-order coherence function was discovered by
Landau and Lifshitz [30], Penrose [12], and Penrose and Onsager [13], and is often
referred to as the off-diagonal long-range order (ODLRO), because it involves the
off-diagonal elements .r ¤ r0/ of the first-order coherence function. The first-
order coherence function g.1/.s/ has been measured using various single particle
interferometers [31]. The initial reduction of g.1/.s/ for a small s value is governed
by Qn.p/ in (13.25). The low-s expansion of (13.24) results in the following quadratic
reduction in g.1/.s/ in the limit where s ! 0:

g.1/.s/js!0 D 1 � 1

2
hOp2i s2

„2 C � � � ; (13.27)
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where hOp2i D 1
N

R
dpn.p/p2 is the second order moment of the momentum

distribution and is equal to the variance of the momentum distribution h�Op2i D
hOp2i � hOpi2, because hOpi D 0.

If all particles condense into the ground state, i.e., N0
N

! 1, the first-order
coherence function g.1/.s/ is independent of s and is equal to one. The first-order
coherence function g.1/.s/ is thus a measure of the degree of condensation in
momentum space. If only the ground state is occupied and there are negligible
populations in the excited states, then we always obtain g.1/.s/ ' 1.

Thus, the g.1/.s/ measurements do not provide any information about the
quantum statistical properties of the condensate particles. To distinguish the various
possible candidate quantum states [32], we must study the higher-order coherence
functions, which are defined by [24]

g.n/.s/ D h O C.r1; t1/ � � � O C.rn; tn/ O .rn; tn/ � � � O .r1; t1/ih
h O C.r1; t1/ O .r1; t1/i � � � � � � h O C.rn; tn/ O .rn; tn/i

i1=n
(13.28)

The higher-order coherence function is the joint probability of detection of n

particles at .r1; t1/; .r2; t2/ � � � and .rn; tn/ time-space points, and can be measured
using the Hanbury-Brown and Twiss interferometer [33] or its variants. For instance,
if the Bose particles in a single spatial mode are in the coherent state j˛i, the particle
number eigenstate jNi or the thermal state O�mix, then the n-th order coherence
function takes the following values [34–36]:

g.n/.� D 0/ D

8
<
:

1 W coherent state
1 � n�1

N
W particle number eigenstate;

nŠ W thermal state
(13.29)

where � D 0 indicates the simultaneous detection of n particles, i.e., t1 D t2 D
� � � D tn.

13.3 Bose-Einstein Condensation of an Ideal Gas

13.3.1 The Physical Picture Behind BEC

In a Bose gas at thermal equilibrium, the chemical potential must satisfy � < "0,
where "0 is the lowest energy eigenvalue of the single particle states. Violation of
this inequality would result in negative occupation number values for states with
energies lower than �. When � approaches "0 from lower values, the occupation
number n0 D 1

eˇ."0��/�1
of the ground state becomes increasingly large. Here, ˇ D

1=kBT is a temperature parameter. We can split the total number of particles into

N D N0 C Nth; (13.30)



13 Bose-Einstein Condensation: A Platform for Quantum Simulation Experiments 275
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chemical potential m
m1 m2

e0

N2

Nc

N1Nth

N0

Fig. 13.3 Occupation number N0 in the ground state and Nth in all excited states vs. chemical
potential �. If N > Nc, then the system forms a Bose-Einstein condensate

where

Nth D
X

i¤0
ni.T; �/; (13.31)

is the number of particles in all excited states. For a finite temperature T and
large volume V , Nth shows smooth behavior as a function of � and reaches a
maximum Nc D Nth .T ¤ 0; � D "0/ asymptotically, as shown in Fig. 13.3. In
contrast, N0 diverges when � approaches "0. Because the ground state population is
given by N0 D

�
eˇ."0��/ � 1

��1
, the difference between the ground state energy

and the chemical potential is substantially smaller than kBT when N0 � 1:

"0 � � D kBTln

�
1C 1

N0

�
' kBT

N0
: (13.32)

The critical temperature Tc for BEC is operationally defined by the relation

Nth .Tc; � D "0/ D N: (13.33)

13.3.2 BEC Threshold in a Uniform System

For a system with finite volume V , the total number of single particle states in the
energy range of kBT measured from the ground state energy "0 is finite, and thus
Nth .Tc; � D "0/ remains a finite value. This means that (13.33) is always satisfied
at finite temperatures, and that the BEC critical temperature exists irrespective of
the dimensionality. This is in sharp contrast to the opposite conclusions that were
previously drawn for uniform 2D or 1D systems [37].
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13.3.2.1 Energy Density of States

The energy density of states for a free particle with mass m in a d�dimensional
system with system size L is

�.d/."/ D �d

�
L

2�

�d
1

2

�
2m

„2
� d

2

"
d
2�1; (13.34)

where

�d D

8
<
:

4� .d D 3/

2� .d D 2/

1 .d D 1/

(13.35)

�.3/."/ vanishes when " ! 0, while �.2/."/ remains constant and �.1/."/ diverges in
the same limits. This difference in the asymptotic behaviors of �.d/." ! 0/ results
in the important consequence that the finite BEC critical temperature Tc only exists
in a three-dimensional system [37].

13.3.2.2 BEC Critical Temperature and Density

The BEC critical temperature for a uniform 3D system is given by the condition
where the number of particles that are accommodated in single particle excited states
at � D "0 D 0 is equal to the total number of particles in the system:

N D V

4�2

�
2m

„2
� 3

2
Z 1

0

p
"

d"

eˇ" � 1
: (13.36)

We can then evaluate the energy integral to obtain the BEC critical density for a
uniform 3D system:

nc � N

V
' 2:612

1

�3Tc

: (13.37)

Here, �Tc
D
q

2�„2
mkBTc

is the thermal deBroglie wavelength. Because n
�1=3
c is the

average distance between the particles, the BEC condition (13.37) means that
BEC occurs when the inter-particle distance becomes comparable to the thermal
deBroglie wavelength of the particle at a specific temperature. When the temperature
is lower than Tc (or, equivalently, the density is higher than nc), a mixture of the
condensate at "0 D 0 and the thermal population at " > 0 is formed:

n D 2:612

�3T
C n0: (13.38)
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13.3.2.3 Condensate Fraction

The BEC condition is often expressed in terms of the Bose function gp.Z/, which is
defined by

gp.Z/ D 1

�.p/

Z 1

0

dxxp�1 1

Z�1ex � 1
(13.39)

where Z D eˇ� is a fugacity, and �.p/ D .p � 1/Š. The energy integrals for uniform
3D, 2D and 1D systems are then reduced to the Bose functions of Z D 1 and p D
3
2
; p D 1 and p D 1=2, respectively. Among these functions, only g 3

2
.1/ converges,

while g1.1/ and g1=2.1/ diverge, which means that a finite critical temperature Tc ¤
0 only exists for a 3D system as long as the system is uniform and infinite [37].

At the critical temperature Tc in a uniform 3D system, all particles are in the
thermal population, i.e. the particles are distributed over the single particle excited
states at " > 0:

V

�3Tc

g 3
2
.1/ D N; (13.40)

while at lower temperatures, the thermal population is lower than (13.40)

V

�3T
g 3
2
.1/ D NT < N: (13.41)

From the ratio of (13.40) to (13.41), we obtain �3T
�3Tc

D N
NT

. From this relationship,

the number of particles in the condensate can be expressed as

N0 D N � NT D N

"
1�

�
T

Tc

� 3
2

#
: (13.42)

If an ideal gas is trapped in a 3D harmonic potential, the argument above must
be modified to take the new boundary condition into account. The condensate
fraction in this case is given by N0=N D 1 � .T=Tc/

3, which has been confirmed
experimentally [38].

13.3.2.4 Volume Requirement for BEC

In a relatively small system, the energy difference between the first excited state and
the ground state, "1 � "0 D „2=2mV2=3, becomes appreciable. If the thermal energy
kBT becomes much smaller than "1 � "0, almost all particles occupy the ground
state, i.e. NT � N. This should not be considered to be BEC. For a system with a
sufficiently large volume, a temperature range that satisfies

„2=2mV2=3 � kBT � kBTc; (13.43)
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can be found, where NT � N is realized because of the quantum statistical prop-
erties of Bose particles. From (13.43), we obtain the following volume requirement
for BEC:

V � Vc D
�
2mkBTc

„2
� 3

2

� �3Tc
: (13.44)

This means that the system volume must be much larger than the cube of the
thermal de Broglie wavelength at the critical temperature. The use of the inequality
„2=2mV2=3 � kBT is actually crucial to the above theory of BEC, which is based
on a continuous energy integral rather than a discrete sum over the single particle
excited states.

13.4 Bogoliubov Theory of a Weakly Interacting Bose Gas

A noninteracting Bose gas has a constant pressure against volume variation, so
that the system features infinite compressibility. This pathological feature originates
from the absence of particle-particle interactions. It is unsurprising that the inter-
actions between particles affect the properties of the Bose gas dramatically, even
for very dilute samples. This problem was first addressed by Bogoliubov [8]. The
Bogoliubov theory has provided the theoretical framework for modern approaches
to BEC in dilute gases.

13.4.1 Hamiltonian of a Weakly Interacting Bose Gas and the

Lowest-Order Approximation

The Hamiltonian of the system is expressed in terms of the field operators O :

OH D
Z � „2

2m
r O C.r/r O .r/

�
dr C 1

2

Z
O C.r/ O C.r0/V.r0 � r/ O .r/ O .r0/dr0dr;

(13.45)
where V.r0 � r/ is the two-body scattering potential. For a uniform gas that occupies
a volume L3, the field operator O can be expanded by the plane waves:

O .r/ D 1p
L3

X

p

Oapeip�r=„; (13.46)

where Oap is the annihilation operator for a single particle plane wave with momen-
tum p. By substituting (13.46) into (13.45), we obtain
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OH D
X

p

p2

2m
OaC

p Oap C 1

2L3

X

p1 ;p2;q

Vq OaC
p1Cq OaC

p2�q Oap1 Oap2 : (13.47)

Here, Vq D
R

V.r/ exp .�iq � r=„/ dr is the Fourier transform of the two-body
scattering potential. The macroscopic properties of a dilute gas can be explained
by the small momentum exchange that occurs between the particles, which means
that we can replace Vq with V0 [23] to give

OH D
X

p

p2

2m
OaC

p Oap C V0

2L3

X

p1 ;p2;q

OaC
p1Cq OaC

p2�q Oap1 Oap2 : (13.48)

Because the lowest energy state is occupied by a macroscopic number of particles
in BEC, we can neglect the quantum fluctuation and replace the operator Oa0 with a
c-number: a0 D

p
N.

In the lowest-order approximation, we can neglect all terms with p ¤ 0

in (13.48), and the ground state energy thus takes the form

E0 D V0

2L3
N2
0 ; (13.49)

where V0 can be expressed in terms of the s�wave scattering length a using the
Born approximation [23] as

V0 D 4�„2a
m

D g: (13.50)

13.4.2 Bogoliubov Quasi-particles

If we split the operators Oa0 for the ground state and Oap for the excited states
in (13.48), the Hamiltonian can be decomposed to:

OH D V0

2L3
OaC
0 OaC

0 Oa0 Oa0 C
X

p

p2

2m
OaC

p Oap

C V0

2L3

X

p¤0

	
4OaC

0 OaC
p Oa0 Oap C OaC

p OaC
�p Oa0 Oa0 C OaC

0 OaC
0 Oap Oa�p



: (13.51)

The momentum conservation retains only the quadratic terms in Oap when p ¤ 0.
Specifically, a factor of 4 in front of the third term on the right-hand side of (13.51)
corresponds to the cases where (i) p1 D 0; p2 D p; q D 0, (ii) p1 D 0; p2 D p; q D
p, (iii) p1 D p; p2 D 0; q D 0, and (iv) p1 D p; p2 D 0; q D �p in (13.48). Cases (i)
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and (iii) do not involve the transfer of momentum between two particles, so these
two terms are called “direct terms”. The other two cases, (ii) and (iv), do involve the
transfer of momentum between two particles, so these terms are called “exchange
terms”.

We can replace OaC
0 and Oa0 with

p
N in the third term of (13.51), but in the

first term, we must work with greater accuracy by using the normalization relation,
OaC
0 Oa0 C

P
p¤0 OaC

p Oap D N, or

OaC
0 OaC

0 Oa0 Oa0 ' N2 � 2N
X

p¤0
OaC

p Oap: (13.52)

The substitution of (13.50) and (13.52) into (13.51) yields the following Hamilto-
nian:

OH D 1

2
gnN C

X

p

p2

2m
OaC

p Oap C 1

2
gn
X

p¤0

	
2OaC

p Oap C OaC
p OaC

�p C Oap Oa�p



: (13.53)

The third term of this Hamiltonian represents the self-energy of the excited states
due to the interaction, simultaneous creation and annihilation of excited states at the
momenta p and �p.

Equation (13.53) can be diagonalized using the linear transformation

Oap D up
Obp C v�p

ObC
�p: (13.54)

This is known as the Bogoliubov transformation. The two parameters, up and v�p,
are uniquely determined based on the following requirements. The new quasi-
particle operators, Obp and ObC

p , are assumed to obey the bosonic commutation relation
as real particle operators, Oap and OaC

p :

h
Obp; ObC

p0

i
D ıpp0 : (13.55)

This commutation relation imposes the following constraint for the two parameters,
up and v�p:

u2p � v2�p D 1; (13.56)

and thus we can write

up D cosh.˛p/; v�p D sinh.˛p/: (13.57)

The value of ˛p must be chosen to ensure that the coefficients of the nondiagonal
terms ObC

p
ObC

�p and Obp
Ob�p in (13.53) disappear. This condition can be rewritten as
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coth
	
2˛p



D �p2=2m C gn

gn
; (13.58)

from which the two coefficients can be determined uniquely as

up; v�p D ˙
�

p2=2m C gn

2".p/
˙ 1

2

�1=2
; (13.59)

where

".p/ D
"

gn

m
p2 C

�
p2

2m

�2#1=2
(13.60)

is the well-known dispersion law of the Bogoliubov excitation spectrum. By
substitution for the Bogoliubov transformation (13.54) with the expressions (13.59)
for the two coefficients up and v�p, the Hamiltonian (13.53) is finally diagonalized:

H D E0 C
X

p¤0
".p/ObC

p
Obp: (13.61)

The results of (13.60)–(13.61) have the following physical meaning. The original
system of interacting particles can be mapped onto the Hamiltonian for noninteract-
ing quasi-particles with the dispersion law ".p/. In this case, a real particle Oap can be
described as a superposition of the forward-propagating many-body quasi-particles
up

Obp and the backward-propagating many-body quasi-particles v�p
ObC

�p. When the

momentum is small, p � p
mgn; jupj ' jv�pj � 1 and Oap � up

�
Obp � ObC

�p

�
.

However, when the momentum has a larger value, p � p
mgn; jupj ' 1 and

jv�pj ' 0, and the quasi-particle Obp becomes indistinguishable from the real particle
Oap, i.e., Oap � Obp.

The ground state of the interacting Bose gas at T D 0 can now be defined as the
vacuum state for the Bogoliubov quasi-particle annihilation operator:

Obpj0i D 0 8p ¤ 0: (13.62)

13.4.3 Excitation Spectrum

13.4.3.1 Phase and Amplitude Modulation Modes

The excitation spectrum at each wavenumber k is split into positive and negative
branches. The eigenstate in the positive branch with positive eigen-frequency!C D
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r�
„k2

2m

� h�
„k2

2m
C �

�i
consists of the two plane waves  .C/k and  .C/�k , and satisfies

 
.C/
k D ��

„k2

2m
C � � !C

 
.C/
�k D ��

�
 
.C/
�k : (13.63)

Here, � D „k2

2m
C � � !C is a positive quantity. When combined with the

normalization condition,  .C/2k C  
.C/2
�k D 1;  

.C/
k and  .C/�k are expressed as

 
.C/
k D �p

�2 C�2
; (13.64)

 
.C/
�k D ��p

�2 C�2
: (13.65)

For small wavenumbers, � ' � holds, meaning that the eigenstate in the positive
branch is reduced to

 
.C/
r;t D i

p
2 sin.k � r/e�i.�C!C/t: (13.66)

Because  0.r/ is a real-number order parameter, the purely imaginary term
in (13.66) indicates that the positive branch of the excitation spectrum represents
spatial phase modulation of the condensate order parameter.

The eigenstate in the negative branch with negative eigen-frequency ! D

�
r�

„k2

2m

� h�
„k2

2m

�
C 2�

i
consists of two plane waves,  .�/k and  

.�/
�k , which

satisfies

 
.�/
k D �

�
 
.�/
�k : (13.67)

When combined with the normalization condition,  .�/2k C  
.�/2
�k D 1;  

.�/
k and

 
.�/
�k are expressed as

 
.�/
k D �p

�2 C�2
; (13.68)

 
.�/
�k D �p

�2 C�2
: (13.69)

At small wavenumbers, � ' � holds, meaning that the eigenstate in the negative
branch is reduced to

 .�/.r; t/ D
p
2 cos.k � r/e�i.�C!�/t: (13.70)
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The negative branch of the excitation spectrum corresponds to spatial amplitude
modulation of the condensate order parameter.

13.4.3.2 Healing Length and Mean-Field Energy Shift

For small momenta p � mc D p
mgn, the Bogoliubov dispersion law (13.15) can

be approximated well by the phonon-like linear dispersion (13.16). According to
the Bogoliubov theory, the long wavelength (small momentum) excitations of an
interacting Bose gas are sound waves. These excitations can also be regarded as the
Nambu-Goldstone modes associated with the spontaneous breaking of the gauge
symmetry [39]. In this small momentum regime, a real particle can be represented
by coherent superposition of the forward- and backward-propagating many-body
quasi-particles: Oap D up

Obp C v�p
ObC

�p, where jupj � jv�pj �
p

mc=2p � 1.
For the opposite limit p � mc, the Bogoliubov dispersion law (13.15) can be

reduced to the free-particle form:

".p/ D p2

2m
C gn: (13.71)

The (additional) interaction energy gn in (13.71) can be traced back to the third
term of the Hamiltonian (13.53). The interaction energy between the two particles
in the condensate is calculated using the first term of (13.53). In contrast, the
interaction energy between a particle in the condensate and another particle in
the excitation spectrum, which is given by the third term of (13.53), is twice
as large. The factor of 2 comes from the equal contributions of the direct and
exchange terms for the identical bosons. In this large momentum regime, a forward-
propagating real particle is almost identical to a forward-propagating quasi-particle:
Oap � Obp

	
up ' 1; v�p ' 0



.

The transition from the phonon regime to the free particle regime occurs when
p2

2m
D gn is satisfied. If we use p D „=� in this equation, the healing length � can

then be obtained as

� D
s

„2
2mgn

D 1p
2

„
mc
; (13.72)

This is the length scale at which the density and phase fluctuations in the condensate
are removed by the interactions between the condensed particles.

13.4.3.3 Observation of the Bogoliubov Excitation Spectrum

The Bogoliubov excitation spectrum was first observed in 1998, using the two-
photon Bragg scattering spectroscopy technique in an atomic BEC [40], and was
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Fig. 13.4 (a) Observed energy vs. emission angle for the leakage photons from an exciton-
polariton condensate in a logarithmic plot of intensity. The white, black and pink solid lines

represent the dispersion laws, p2

2m
� �;

p2

2m
and ".p/, which were given by (13.15). (b) Normalized

energy ".p/=� vs. normalized wavenumber k� for four exciton-polariton condensates with different
detuning parameters (particle masses) [41]

observed later in polariton condensates [41]. Figure 13.4a shows the observed exci-
tation energy vs. (in-plane) momentum for an exciton-polariton condensate [41].
Angle-resolved energy spectroscopy for the leakage photons from a semiconductor
microcavity provided the dispersion law of the excitation spectrum directly. The
white solid line represents the quadratic dispersion law for a single exciton-polariton
far below the BEC critical density, while the black solid line indicates the quadratic
dispersion law displaced by the interaction energy � (chemical potential). The
Bogoliubov excitation spectrum is indicated by the pink solid line in Fig. 13.4a,
and shows remarkably good agreement with the experimental results.

The Bogoliubov dispersion law (13.16) can be rewritten in a normalized form:

".p/=� D
p
.k�/2 Œ.k�/2 C 2�; (13.73)

The relationship between ".p/=� and k� is independent of the interaction strength,
the particle mass and the particle density. This universal scaling law was confirmed
experimentally for four exciton-polariton condensates with different masses, as
shown in Fig. 13.4b [41].

13.4.4 Condensate Fragmentation

The standard argument for BEC leaves one central question unanswered: Why do
the condensate particles accumulate in a single state, rather than be shared between
several states that are degenerate or nearly degenerate, even when it makes no
difference to the kinetic energy at thermal equilibrium? The answer is nontrivial:
it is the exchange interaction energy (i.e., the Fock term) that makes the condensate
fragmentation costly [42].
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Consider the interaction Hamiltonian (the second term on the right-hand side
of (13.48)) for two cases:

Case 1: Single state condensation
If all N particles are condensed into the single state

j 0i D 1p
NŠ

	
OaC
0


N j0i D jNi; (13.74)

the corresponding interaction energy is

E0 �
D
 0j OHI j 0

E
D' V0

2L3
N2: (13.75)

Case 2: Two-state condensation

If the condensate is fragmented into two states, 1 and 2, with populations N1 and N2
(N1 C N2 D N), respectively, then

j 12i D 1p
N1ŠN2Š

	
OaC
1


N1 	OaC
2


N2 j0i D jN1i1jN2i2: (13.76)

The interaction energy involves all possible contractions of the operators, and
consists of the Hartree (direct) terms with (i) p D p0 D p1; q D 0, (ii) p D
p0 D p2; q D 0, (iii) p D p1; p

0 D p2; q D 0, and (iv) p D p2; p
0 D p1; q D 0,

and the Fock (exchange) terms with (v) p D p1; p
0 D p2; q D p2 � p1, and (vi)

p D p2; p
0 D p1; q D p1 � p2. Therefore

E12 �
D
 12j OHI j 12

E
D

0
BB@
1

2
V0N

2
1 C 1

2
V0N

2
2 C V0N1N2

„ ƒ‚ …
Hartree term

C VqN1N2„ ƒ‚ …
Fock term

1
CCA =L3

' 1

2L3
V0N

2 C 1

L3
VqN1N2: (13.77)

Because V0 ' Vq > 0 (repulsive interaction), the condensate fragmentation costs
the macroscopic exchange energy. Genuine Bose-Einstein condensation is not an
ideal gas effect, but is in fact a unique property of an interacting gas.

It may be debated that the use of the particle number state as the ground state
is not justified in this case. Indeed, the repulsive interaction leads to quantum
depletion, i.e., N0 < N even at T D 0, and the ground state is complicated.
The argument above against condensate fragmentation nevertheless remains true,
because it relies on a comparison of two situations with the same amount of quantum
depletion. The exchange interaction energy is reduced slightly by the quantum
depletion, but it remains substantial.
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However, if a Bose system is dynamic because of a finite particle lifetime, the
thermodynamic argument above does not apply. Instead, condensate fragmentation
is often unavoidable. This is indeed the case for exciton-polariton condensates.

13.4.5 Population Fluctuations and Phase Locking

We gain exchange interaction energy by avoiding the condensate fragmentation. We
can actually further reduce the exchange interaction energy by allowing population
fluctuations and, in return, introducing a stabilized phase into the condensate [42].
Let us introduce a Glauber coherent state [24] for the ground state:

j�i D e� OaC
0 j0i; (13.78)

where � is a c-number excitation amplitude with a phase, � D arg.�/, that is
stabilized to a specific value. The population and phase of the coherent state have
finite variances:

D
� ON2

E
D
D
ON
E

D j�j2; (13.79)

D
� O�2

E
D 1

4
D
ON
E D 1

4j�j2 : (13.80)

ON and O� are canonically conjugate observables, and the phase is thus stabilized,

i.e.,
D
� O�2

E
� 1, at the cost of increased population fluctuation,

D
� ON2

E
� 1. We

compare this coherent state with the particle number eigenstate:

jNi D
Z 2�

0

d�e�iN� j�i: (13.81)

Equation (13.81) shows that the particle number state jNi is constructed as a linear
superposition of the coherent states with the different eigenvalues, as shown in
Fig. 13.5. The constructive and destructive interferences result in a fixed particle
number, but the phase is completely spread out. Similarly, the coherent state is
expanded by coherent superposition of the particle number eigenstates, as shown
in Fig. 13.1. The interaction energy in the condensate is the same for the two states,

because both states have identical average particle numbers, i.e.,
D
ON
E

D N. There

seems to be no preference for the quantum state of the ground state.
However, the story changes dramatically when we consider the quantum deple-

tion into the Bogoliubov excitation spectrum, which allows virtual excitation of two
particles out of the condensate, and vice versa. To take this quantum depletion into
account, we consider a variational state:
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Fig. 13.5 Particle number
eigenstate jNi0 constructed
by coherent superposition of
the coherent states

constructive
interference

destructive
interference

φi

φr

j 0i D e� OaC
0 C

P
q �q OaC

q OaC
�q j0i

D j�i0 ˝
X

q

�
j0iqj0i�q C �qj1iqj1i�q C � � �

�
; (13.82)

where the variational parameter �q is determined such that the interaction energy is
minimized. The modulus j�qj is determined from

j�qj2 ' Nq D q2=2m C V0

2".q/
� 1

2

D 1

2
p
2k�

(13.83)

The Bogoliubov interaction energy is given by

EB �
D
 0j OHIj 0

E
D
X

q

Vq

2L3

	
��2
0 �q C c:c:



; (13.84)

If we express the complex excitation amplitudes as � D j�jei�0 and �q D j�qjei�q ,
then (13.84) becomes

EB D
X

q

Vq

L3
j�j2j�qj cos

	
2�0 � �q



: (13.85)

The Bogoliubov interaction energy is at a minimum when 2�0 � �q D � .
It is energetically favorable that the condensate has a well-defined phase (e.g.,
�0 D 0;) and the excitations are phase-locked to the condensate phase with a
180ı phase difference. The reduced energy is macroscopic, since Vq

L3
j�j2j�qj �

gn0
p

Nq, where n0 D j�j2=L3 and Nq is the average population of the excitation
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modes. From (13.83), Nq is of the order of 1 if k� . 1. In fact, quantum
depletion is bound to occur because of the interaction Hamiltonian. Then, phase
stabilization of the condensate is preferred, and the phase locking 2�0 � �q D � is
implemented simultaneously. However, this argument does not answer the following
question: if (13.85) is negative and is proportional to j�qj, does the system prefer
continuous growth of the excitations at a cost of substantial quantum depletion of
the condensate? Actually, the �-phase difference between the condensate and the
excitations guarantees that this does not occur, and the quantum depletion is kept to
a minimum.

Condensate population fluctuations and phase stabilization, which are caused by
phase locking between the condensate and the excitations , are genuine signatures of
spontaneous symmetry breaking [26], and this is distinct from the standard picture
of Bose-Einstein condensation of a noninteracting ideal gas.

13.5 Superfluidity

Superfluidity is closely related to BEC. On a phenomenological level, a superfluid
can flow through narrow capillaries or slits without friction. The superfluid 4He
was discovered independently by Kapitza [5] and by Allen and Misener [6]. Soon
after this discovery, Landau explained that if the excitation spectrum satisfies certain
specific criteria, the motion of the fluid does not cause energy dissipation [9].
These Landau criteria are met by the Bogoliubov excitation spectrum associated
with Bose-Einstein condensates, which consists of an interacting Bose gas and thus
establishes the first connection between superfluidity and BEC. The connection
between the two phenomena is strengthened through the relationship between the
irrotationality of the superfluid and the global phase of the BEC order parameter.
After we discuss these aspects of superfluidity, we will conclude this section with a
study of superfluidity in a uniform 2D system, which is known as the Berezinskii-
Kosterlitz-Thouless phase transition.

13.5.1 Landau’s Criteria of Superfluidity

Let E and P be the energy and the momentum of a fluid in a laboratory frame K.
If we describe the energy and momentum of the same fluid in a moving frame K0,
which has a relative velocity V with respect to the laboratory frame K, we derive the
following relations:

P0 � P � MV; (13.86)

E0 D E � P � V C 1

2
MjVj2; (13.87)

where E D jPj2
2M

and M is the total mass of the fluid.
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Consider a fluid at zero temperature, at which all particles are in the ground state
and are flowing along a capillary at a constant velocity v. If the fluid is viscous,
then the motion will produce energy dissipation via friction with the capillary wall
and will thus reduce the kinetic energy. We assume that these dissipative processes
occur through the creation of elementary excitation. Let us first describe this process
in the laboratory frame K, which, rather confusingly, moves with the same velocity
v as the fluid. In this laboratory frame, the fluid is at rest. If a single elementary
excitation with momentum p appears in the fluid, then the total energy of the fluid in
the laboratory frame K is E0 C ".p/, where E0 and ".p/ are the ground state energy
and the elementary excitation energy, respectively. We now consider the moving
frame K0, in which the fluid moves with velocity v, but the capillary is at rest. In this
moving frame K0, which moves with velocity �v relative to the fluid, the energy and
momentum of the fluid can be expressed as

p0 D p C Mv: (13.88)

E0 D E0 C ".p/C p � v C 1

2
Mjvj2; (13.89)

The results above indicate that the changes in the energy and momentum caused by
the appearance of a single elementary excitation are ".p/C p � v and p, respectively.

Spontaneous creation of elementary excitations, i.e. energy dissipation, can occur
if and only if the required process is energetically favorable. This means that if the
energy of an elementary excitation in the moving frame K0, where the capillary is at
rest, is negative, i.e.,

".p/C p � v < 0; (13.90)

then energy dissipation occurs. The above condition is satisfied when jvj > ".p/

jpj and
p � v < 0, i.e., when the elementary excitation has momentum p opposite to the fluid
velocity v and the fluid velocity jvj exceeds a critical value,

vc D min
p

".p/

jpj ; (13.91)

where the minimum is calculated over all values of p. If, instead, the fluid velocity
v is smaller than (13.91), no elementary excitation will spontaneously form.

By studying the Bogoliubov excitation spectrum, we can easily conclude that
the weakly interacting Bose gas at zero temperature satisfies Landau’s criteria
of superfluidity, and that the critical velocity is provided by the sound velocity.
It is easily understood that the critical velocity decreases with reduction of the
particle-particle interaction and disappears at the limit of an ideal gas because

vc D minp
".p/

jpj D 0 for ".p/ D p2

2m
. Particle-particle interaction is a crucial

requirement for the appearance of superfluidity.
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13.5.2 Superfluid Velocity and Phase of the BEC Order

Parameter

In the case of BEC, the local density of the particles is related to the squared order
parameter by

n.r; t/ D j 0.r; t/j2; (13.92)

and thus the total number of particles is equal to N D
R

j 0.r/j2dr. If we
multiply (13.11) by  �

0 .r; t/ and subtract the complex conjugate of the resulting
equation, we then obtain the following continuity equation:

d

dt
n.r; t/C div Œj.r; t/� D 0 (13.93)

where the particle current density is

j.r; t/ D � i„
2m

	
 �
0 r 0 �  0r �

0



: (13.94)

From (13.93), we can conclude that the Gross-Pitaevskii equation guarantees
conservation of the total particle number N D

R
n.r/dr. If we express the c�number

order parameter  0.r; t/ in terms of its amplitude and phase,

 0.r; t/ D
p

n.r; t/eiS.r;t/; (13.95)

then the particle current density (13.94) can be rewritten as j.r; t/ D
n.r; t/ „

m
rS.r; t/. This result shows that the superfluid velocity vs of the condensate

particles is related to the gradient of the phase S of the order parameter:

vs.r; t/ D „
m

rS.r; t/: (13.96)

The phase of the order parameter plays the role of the velocity potential, and vs is
referred to as a velocity field.

13.5.3 Quantized Vortices in Superfluids

The history of quantized vortices provides an important insight into the problems of
rotations in superfluids. Quantized vortices were first predicted by Onsager [14] and
Feynman [15]. It is well known that a superfluid cannot rotate. In conventional rigid
systems, the tangential velocity that corresponds to a rotation is given by v D ��r,
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where � is the angular velocity vector and r is the distance vector from the origin of
the rotation. Such a rigid rotator has curl.v/ D r � .� � r/ D � ¤ 0. In contrast,
the superfluid velocity given by (13.96) satisfies

curl.vs/ D „
m

r � rS D 0: (13.97)

This means that a superfluid must be irrotational and is thus expected to rotate in a
completely different manner to a rigid rotator.

Consider a superfluid confined in a macroscopic cylinder of radius R and length
L. The solution to the Gross-Pitaevskii equation for rotation around the z�axis of
this cylinder is

 0.r/ D
p

n.r/eis' ; (13.98)

where we have used the cylindrical coordinates (r; ' and z), and j 0.r/j D
p

n.r/.
Because of the symmetry of the problem, the modulus of the order parameter j 0.r/j
depends solely on the radial variable r. The parameter s should be an integer to
ensure that the order parameter  0.r/ has a single value. From (13.96) and (13.98),
the tangential velocity is

vs D „
m

jrSj D „
m

@

r@'
S D „

m

s

r
: (13.99)

This result is completely different to the tangential velocity v D � � r of the
rigid rotator, which has a modulus that increases linearly with r. At large distances
from the z�axis, the tangential velocity vs of the superfluid approaches zero and the
irrotationality of the superfluid (13.97) is satisfied. The circulation of the tangential
velocity over a closed contour around the z�axis is given by

I
vsdl D h

m
s; (13.100)

which is quantized in units of h=m, and is independent of the radius of the contour.
This is called the “Onsager-Feynman quantization condition”.

By substituting (13.98) into the time-independent Gross-Pitaveskii equation, we
obtain the following equation for the modulus of the order parameter:

� „2
2m

1

r

d

dr

�
r

d

dr
j 0j

�
C „2s2
2mr2

j 0j C gj 0j3 � „�j 0j D 0: (13.101)

The normalized modulus f D j 0j=
p

n as a function of the normalized position
� D r=� tends to obey f � �jsj, which means that the superfluid density n.r/ D
j 0.r/j2 tends to zero on the vortex axis. Perturbation of the density occurs in a
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Fig. 13.6 Interference pattern of a quantized vortex with s = 1. The lower folk pattern is a mirror
image of the upper folk pattern

spatial region of the order of the healing length � from the vortex line (z�axis). If the
order parameter  0.r/ for s D 1 is superposed to the ground state order parameter
for s D 0, then a characteristic fork pattern emerges, as shown in Fig. 13.6, which
manifests a 2� phase rotation along the vortex axis. This unique interference pattern
can be used to identify the existence of a quantized vortex experimentally.

13.5.4 Berezinskii-Kosterlitz-Thouless (BKT) Phase Transition

13.5.4.1 Bound Vortex-Pairs

In uniform 2D systems, an off-diagonal long range order is destroyed at any
finite temperature, in contrast to the uniform 3D systems [37, 43]. In a 3D
superfluid, the energy cost associated with a quantized vortex is macroscopic,
which means that the thermal creation of vortices is prohibited at low tem-
peratures. However, in a 2D system, the creation of vortices is energetically
favorable because the free energy is reduced by the appearance of entropy. This
is the Hohenberg-Mermin-Wagner theorem [37, 43]. However, the 2D system can
form a quasi-long-range order and become a superfluid below a finite critical
temperature. This is referred to as the BKT phase transition [44, 45]. When the
temperature decreases below a certain point TMF, the macroscopic occupation
of the ground state occurs, but with free vortices as fundamental excitations.
With a further reduction in temperature below the BKT transition point TBKT, a
quasi-long-range order is formed through the pairing of vortices with opposite cir-
culations. Formation of such bound vortex-pairs allows the global phase order to be
recovered.

Proliferation of free vortices above the transition temperature TBKT has been
observed in a two-dimensional atomic Bose gas [46]. The onset of free vortex
proliferation with increasing temperature coincides with a loss of quasi-long-range
coherence [46].
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Fig. 13.7 Theoretical phase distribution (a) and interference pattern (b) of a vortex-pair, compared
with the observed phase distribution (c) and interference pattern (d) [47]

A bound pair of vortices with opposite circulations has been observed directly in
an exciton-polariton condensate, which is intrinsically 2D [47]. Figure 13.7 shows
the observed phase distribution and the interference pattern of the vortex-pair in
comparison to their theoretically predicted counterparts. The phase disturbance
is indeed localized by formation of a bound pair and the global phase is recov-
ered.

13.5.4.2 BKT Phase Transition Temperature

The creation of a quantized vortex is thermodynamically profitable if the total free
energy of the system would be reduced by the appearance of a quantized vortex.
The free energy is expressed as

F D Ev � TS; (13.102)

where the 2D vortex energy cost and the entropy are given by

Ev D ��2s

 
„
m

2
!

ln

�
R

rc

�
; (13.103)



294 Y. Yamamoto and Y. Takahashi

S D kBln

�
R2

r2c

�
: (13.104)

Here, rc ' � is the vortex core size, �2s is the 2D superfluid mass density, and R2=r2c
is the number of possible states for the creation of a single vortex in a 2D condensate
with a size of R.

The condition where F < 0 produces the BKT phase transition temperature:

T � �

2kB

�2s

� „
m

�2
D TBKT ; (13.105)

or

ns�
2
T;BKT < 4: (13.106)

When T < TBKT or ns�
2
T;BKT > 4, the creation of free vortices is thermodynamically

unfavorable, which means that pairs of vortices form and a quasi-long-range order
is restored.

13.5.4.3 Algebraic Decay of the First-Order Coherence Function

If the order parameter of the BKT phase is expressed as  .r/ D
p

n.r/eiS.r/, then
the phase correlation function is given by [48]

�.s/ D hS.s/S.0/i

D mc2

�2s

Z
Np � eip�s=„

p

d2p

.2�„/2 ; (13.107)

where

Np ' 1

ecp=kBT � 1
' kBT

cp
(13.108)

is the equilibrium particle distribution at temperature T for the Nambu-Goldstone
phase mode. By introducing a lower cut-off momentum „=s and a higher cut-off
momentum kBT=c, we can evaluate the integral (13.107) as [48]

�.s/ D kBTm2

�2s

Z kBT=c

„=s

eips=„

p2
� d2p

.2�„/2 ; (13.109)

and

�.0/� �.s/ D kBTm2

2�„2�2s

ln

�
s

sT

�
: (13.110)
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Here, ST is a characteristic length that is defined by

sT D „c

kBT
D �2T
2��

: (13.111)

The first-order spatial correlation function is obtained as:

g.1/.s/ ' e�Œ�.0/��.s/�

'
� sT

s

�ap

; (13.112)

where the exponent is

ap D kBTm

2�„2�2s

D 1

ns�
2
T

: (13.113)

This algebraic decay of the first-order correlation function is an unmistakable
evidence for the BKT phase and is indeed observed in a 2D exciton-polariton
condensate, as shown in Fig. 13.8a, b [49]. The exponent ap is plotted against the
inverse phase space density 1=ns�

2
T in Fig. 13.9 [50]. These experimental results

fully confirms the theoretical BKT prediction.

13.6 Useful Techniques for Quantum Simulation

Experiments

To finish up this chapter, we will review several experimental techniques that are
useful when performing quantum simulation with BEC.

13.6.1 Production of Atomic BEC

13.6.1.1 Cooling and Trapping

There are two kinds of mechanical forces on neutral atoms produced by laser
light [51]. The first is a dissipative force called the radiation pressure or scattering
force, which originates from the momentum transfer of photons during the photon
absorption process. While the amount of momentum carried by a single photon
is very small, we can exert a sizable mechanical force on atoms by repetition of
absorption and subsequent emission cycles, which, for example, resulted in the
stopping of a sodium atom with an initial velocity of 1 km/s in about 1ms over a
distance of approximately 0:5m.
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Fig. 13.8 The decay of a first-order coherence function for exciton-polariton condensates. (a)
The fitting functions used are a power-law of the form fp.x/ D cpjx=�mj�ap , an exponential
decay function fe.x/ D ce exp .�aejx=�mj/, and a Gaussian fg.x/ D cg exp

�
�ae.x=�m/2

�
.

Fitting has been performed by minimization of the root-mean-square (RMS) deviation Di DqP
n Œfi.xn/� Vn�

2
=N between the fitted functions fi (with i 2 fp; e; gg) and the N measured

data points .xnI Vn/ for both position and visibility with xmin < jxnj < xmax , where the intermediate
range limits xmin and xmax (indicated by the black vertical lines) have been chosen manually. Here,
we use the same fitting for both the x < 0 and the x > 0 regions. The visibility shown here has
been measured at ı � �1meV and ppump D 18mW. (b) The relative RMS deviations Ri D Di

Dp
,

measured at ı � �1meV. Above the condensation threshold, we always observed Dp < De < Dg,
which shows that the power-law fit provides the best match, and that the Gaussian fit provides the
worst match

The second mechanical force is called a dipole force, which originates from the
momentum transfer of photons in the photon scattering process, or in the virtual
photon absorption and emission process [51, 52]. This is a conservative force, and
is also understood as a force caused by the potential gradient of the AC Stark shift
VACS D �.1=2/˛.!/E.r/2, where ˛.!/ is the polarizability at the laser frequency!,
and E.r/ is the applied electric field amplitude at the atom position r. When atoms
are confined by a periodic potential produced by a standing wave of laser light, then
the system is called an optical lattice.

Various cooling techniques based on these two types of forces have been
developed, and atoms at very low temperatures have been produced [51]. As a
typical example, atoms from an atomic oven with high initial velocity have been
decelerated with a Zeeman slower and cooled and trapped by magneto-optical
trapping, and, in some cases, by polarization-gradient cooling. This process can
produce up to 1010 atoms at microkelvin temperatures.
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Fig. 13.9 Measured
exponents ap as a function of
the estimated inverse
superfluid
phase-space-density
1=
	
ns�

2
T



. The black line

shows the predicted
acalculated

p D 1=
	
ns�

2
T



, and

the region above the expected
threshold of 0.25 is shaded in
gray. Although we did not
vary the temperature during
the measurement, the abscissa
can be interpreted as the
dimensionless temperature (in
units of 2�meffkBn�1

s h�2/,
and the BKT phase transition
occurs at a dimensionless
temperature of 0.25 in these
units

The temperature of an atomic gas can be accurately measured using a time-of-
flight (TOF) technique, in which the velocity distribution of the atoms, after ballistic
expansion during a specific time period caused by the sudden turning off of a trap,
is measured by an absorption imaging method.

Figure 13.10 illustrates some cooling and trapping methods for neutral atoms.
Figure 13.10a shows the setup of the laser beams used for cooling and the magnetic
field gradient coils used for the magneto-optical trapping of, for instance, ytterbium
(Yb) atoms. A typical fluorescence image of the laser cooled and trapped Yb atoms
is also shown. Figure 13.10b shows a setup used for optical trapping of rubidium
(Rb) atoms based on optical dipole-force trapping. A typical absorption image of
the trapped Rb atoms is also shown. Figure 13.10c shows a setup used for magnetic
trapping, in which a combination of coils produces the necessary magnetic field
gradients.

13.6.1.2 Evaporative Cooling to Quantum Degeneracy

Cold atoms in the microkelvin regime are easily trapped using conservative traps
such as an optical dipole-force trap or a magnetic trap, which realize a well isolated
atomic ensemble within a vacuum chamber. By selectively removing the energetic
atoms from the trap, it is possible to obtain a lower temperature for the remaining
atoms; this is called evaporative cooling [53]. This relies solely on the elastic
collisions of the atoms, and is not limited by single-photon recoil. To reach the
quantum degenerate regime, this method must always be used as a final step. The
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Fig. 13.10 Cooling and trapping of neutral atoms by (a) magneto-optical trapping, (b) optical
dipole-force trapping, and (c) magnetic trapping

most important point for successful evaporative cooling is a large ratio of the elastic
collision rate, which promotes evaporation and thermalization in a trap, to the
inelastic collision rate, which removes the cold and high density atoms from a trap
and thus results in heating.

13.6.1.3 Quantum Gases

Various quantum gases have been successfully produced since the initial
realization using 87Rb atoms [1]. Almost all of the alkali-metal atoms have
been successfully cooled into the quantum degenerate regime, along with atomic
hydrogen and metastable helium atoms. Additionally, many two-electron atoms
such as alkali-earth-metal-atoms and Yb atoms have been successfully cooled
to quantum degeneracy by all-optical means. Quantum degenerate gases of
magnetic atoms such as chromium, dysprosium, and erbium have also been
produced.

13.6.2 Production of Exciton-Polariton Condensates

An exciton-polariton is a hybridized mode that consists of two bosonic particles:
excitons (bound electron-hole pairs) trapped in a quantum well (QW) potential
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and photons confined in a planar microcavity. Therefore, the exciton-polaritons are
trapped in the vertical direction but can propagate freely in the horizontal directions,
i.e., they are two-dimensional systems.

13.6.2.1 Cooling and Trapping

Exciton-polaritons can be cooled efficiently by phonons emitted into the host crystal
lattices, where the vertical confinement of the excitons by the QW potential removes
the momentum conservation requirement along the vertical direction. However, at
the transition in-plane momentum value, where the energy-momentum dispersion
relationship changes dramatically from exciton-like to polariton-like behavior,
the phonon emission rate drops rapidly, and the so-called bottleneck effect, i.e.,
the accumulation of polaritons at a finite in-plane momentum, is observed. The
bottleneck effect is usually suppressed by increasing the particle density, because
the two-body scattering process creates a new cooling channel for the bottleneck
polaritons [54].

To trap exciton-polaritons in the lateral directions, some forms of photon or
exciton confinement mechanisms can be introduced into the planar microcavity
structures. Figure 13.11 shows several representative schemes, including a metallic
thin film evaporated on the top layer of a microcavity [55], a modulated optical
cavity layer thickness scheme [56], an etched post structure scheme [57], a
mechanical strain scheme [22] and a laser pump interference pattern scheme [58].
Various lattice structures can be formed using these techniques.

13.6.2.2 Polariton Fluids

Exciton-polariton condensates have been produced in various materials, including
GaAs [59], CdTe [21], GaN [60], ZnO [61], and organic materials [62]. The last
three materials allow the production of exciton-polariton condensates even at room
temperature, because of their small dielectric constants and large binding energies,
while GaAs offers the highest material quality, which means that most of the
fundamental physics have been explored using this system.

13.6.3 Inter-atomic Interaction

13.6.3.1 Quantum Collision Regime

Because the typical temperature range is in the sub-microkelvin regime for atomic
quantum degenerate gases and the centrifugal barriers for higher partial waves are
much higher than such a temperature or energy scale, the collision is in a quantum
regime, in which only a few of the lowest orders (typically one) of the partial
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Fig. 13.11 Methods of trapping potential generation for microcavity exciton-polaritons. (a)
Applied mechanical strain using a pin near the sample to change the exciton energy, as depicted
in [22]. (b) A honeycomb lattice of exciton-polaritons induced by a three-spot laser pump profile
[58]. (c) Partial (left, [56]) and complete etching (right, [57]) to form a photonic trap. (d) A weakly
modulated in-plane one-dimensional photon lattice with a thin metal film technique on the grown
wafer fabricated in [55]

waves contribute to the collision [53]. For bosons in a BEC, s-wave scattering is
thus usually dominant, and the s-wave scattering length as is the most important
parameter in characterization of the collision in the atomic BECs.

13.6.3.2 Scattering Length

While the s-wave scattering length as is crucially important, it is usually very
difficult to theoretically predict the scattering length, because we need an accurate
potential curve for all inter-atomic distance ranges. We need to determine the
information on the inter-atomic potential from experimental measurements, such
as photoassociation. In the mean-field approximation, the inter-atomic interaction
V.x/ can be written using the scattering length as V.x/ D 4�n„2ası.x/=m, where n

is the atomic density, m is the mass of an atom, and „ is the Planck constant divided
by 2� . Note that a positive (negative) scattering length as represents a repulsive
(attractive) interaction.
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Fig. 13.12 Example of
Feshbach resonance in the Yb
atom case, in which Feshbach
resonance is induced by
anisotropic inter-atomic
interaction between the
ground and metastable states

13.6.3.3 Feshbach Resonance

Usually, if we select an atom with a specific state, the scattering length as is
determined. However, in certain cases, we can vary the scattering length as with
a magnetic field; this phenomenon is known as Feshbach resonance [63, 64]. This
resonance is induced by coupling between an open or entrance channel of a two-
atom scattering state and a closed channel of a molecular bound state, which has a
different magnetic moment to that of the entrance channel. By tuning the magnetic
field, the energy levels of the open and closed channels can be tuned to coincide,
which results in resonant control of the scattering length with a dispersive curve as
a function of the magnetic field, and is given as follows:

a.B/ D abg.1 ��B=.B � B0// (13.114)

Here, abg is the scattering length at a magnetic field far from the resonant value
B0, and is called the background scattering length. An example of Feshbach
resonance is shown in Fig. 13.12 for the case of Yb atoms, in which the Feshbach
resonance is induced by an anisotropic inter-atomic interaction between the ground
and metastable states [65]. This novel ability to tune the interaction is quite
powerful, and is only possible when using an atomic quantum gas system. When
the Feshbach resonance technique is applied to a bosonic system, we can study the
novel Bosenova phenomenon, in which a stable BEC with a repulsive interaction is
suddenly subjected to a collapse with an attractive interaction, e.g., [66]. Another
interesting example is the case for fermions, with which we can create a Bardeen-
Cooper-Schrieffer (BCS) state [67] and molecular BEC, and study BEC-BCS
crossover and unitary gases [68].
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13.6.4 Quantum Gases in an Optical Lattice

13.6.4.1 Optical Lattice

When atoms are subjected to a periodic potential produced, for example, by a
standing laser light wave like sin2.kLx/, then the system is called an optical lattice
[52]. Here, kL D 2�=� is the wavenumber of the laser for an optical lattice. A
typical example is shown in Fig. 13.13 for a 3D cubic optical lattice produced by
three orthogonal standing wave light beams with retro-reflecting mirrors and lattice
constants of �=2. Note that we can use various lattice geometries. For example,
by superimposing several laser beams and/or by using the interference of the laser
beams, we can successfully produce not only a simple super-lattice, but also more
exotic nonstandard triangular, honeycomb, Kagome, and Lieb lattices. It should
also be noted that one particular optical lattice configuration can be continuously
changed into another by varying the optical lattice laser parameters. Additionally, a
quantum gas of various dimensions can easily be produced, including the formation
of a 2D gas by loading into an optical lattice in one direction, and formation of a 1D
gas using two orthogonal optical lattices.

13.6.4.2 Hubbard Model

A Hubbard model is considered to describe the essence of a system of interacting
electrons in condensed matter. A system of ultracold atoms in an optical lattice and
exciton-polaritons under a periodic potential are described well by a Bose-Hubbard
model [69, 70]:

H D �J
X

i;j

a
�
i aj C U=2

X

i

ni.ni � 1/C
X

i

�ini: (13.115)

Fig. 13.13 Three-dimensional optical lattice produced by three orthogonal standing wave light
beams, with a lattice constant of �=2
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Here, ai and a
�
i describe the annihilation and creation operators of a particle,

respectively. The first term, which is proportional to J, represents the hopping
between the adjacent lattice sites, and the second term, which is proportional to
U, represents the on-site interaction when more than two particles occupy the same
lattice site. In addition to these two terms for hopping, and on-site interaction there
is a third term that represents an inhomogeneous energy shift caused by a weak
harmonic confinement or crystal imperfection. The important parameters J and U

can be described approximately using the parameters of the atoms and the optical
lattice as follows:

J D �ER.2=
p
�/s3=4 exp.�2

p
s/; (13.116)

and

U D ERaskL

p
8=�s3=4: (13.117)

Here, s D V=ER is the nondimensional parameter that represents the optical lattice
depth V normalized with respect to the recoil energy ER D .„kL/

2=.2m/, which is a
typical energy scale for an optical lattice system with a typical 100 nK range. The
corresponding expressions for the exciton-polaritons can be found in [71].

In particular, the ratio of U=J, which determines the system behavior, is precisely
and continuously tuned by changing the intensity of the laser light used for the
optical lattice. Independent control of the on-site interaction U can also be possible
when using the Feshbach resonance technique described in the preceding section.

In the case of ultracold fermions in an optical lattice, we can consider the Fermi-
Hubbard model:

H D �J
X

i;j

c
�
i cj C U

X

i

ni;"ni;# C
X

i

�ini: (13.118)

Here, ci and c
�
i describe the annihilation and creation operators of a Fermi atom,

respectively. ni;" and ni;# describe the number operators of a Fermi atom at the i�th
site with up and down spins, respectively.

13.6.4.3 Two Ultimate Bose-Hubbard Model Regimes: Superfluid and

Mott Insulator States

When the hopping J is dominant over the on-site interaction U, as realized in the
case of relatively shallow lattice depths, the system is called a superfluid state, which
is described as follows:

j‰SFi / .
1p
M

MX

i

a
�
i /

N j0i (13.119)
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Here, M is the number of the optical lattice sites, N is the number of atoms, and
j0i D

QM
iD1 j0ii is the product of the vacuum states of each site j0ii. If N and M are

large enough, with a ratio n D N=M, we can express the state approximately as a
product of a coherent state in each optical lattice site:

j‰Cohi /
MY

iD1
exp.

p
na

�
i / j0ii : (13.120)

In contrast, when U is dominant over J, which is realized in the case where the
lattice depths are relatively deep, the system is called a Mott insulating state and is
described as the product of the number states in the optical lattice sites:

j‰MIi /
MY

iD1
.a
�
i /

n j0i : (13.121)

It is important that this state is a strongly-correlated state and it should be
distinguished from a simple band insulating state in which the atoms occupy all
the lower energy bands and do not occupy a higher band separated by the band gap
energy. Repulsive interaction plays a crucial role in formation of a Mott insulating
state. Even if the hopping energy J is finite, the formation of multiply-occupied
sites caused by hopping is energetically unfavorable because of the large onsite
interaction U, and thus the hopping is suppressed and the atoms are localized, or the
insulating state is formed.
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Chapter 14

Quantum Simulation Using Ultracold

Ytterbium Atoms in an Optical Lattice

Yoshiro Takahashi

14.1 Quantum Simulation Using Ultracold Atoms

in an Optical Lattice: Background

Since the development of the laser cooling technique in 1980, laser-cooled atoms
have been actively used in many scientific fields. In particular, the research field
of quantum degenerate gases has been developing rapidly. The physics of weakly-
interacting Bose gases has been clarified since the Bose-Einstein condensation
(BEC) of alkali atoms was realized in 1995. Significant progress has also been made
in the physics of ultracold fermions, including realization of the Bardeen-Cooper-
Schrieffer (BCS) state and crossover between the BCS state and molecular BEC.

Among the many interesting research areas that use quantum gases, the quantum
simulation of quantum many-body systems described by the so-called Hubbard
model using ultracold atoms in an optical lattice, which is a periodic potential for
atoms, is especially interesting. Here, we use the term “quantum simulation” in the
same sense that Richard Feynman first used the term to represent the simulation
of one quantum many-body system using another quantum many-body system
with high controllability. The quantum simulation of the Hubbard model is very
important because the Hubbard model is the basis on which we explain the novel
magnetism and unconventional superconductivity that is observed in condensed
matter systems, and it is also difficult to solve this model numerically without any
approximations. The extremely high controllability that is available for systems of
ultracold atoms in optical lattices has already allowed very impressive work to
have been done using alkali atoms in optical lattices, such as a superfluid-Mott
insulator transition for bosons (the Bose-Hubbard model), a metal-Mott insulator
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transition for fermions (the Fermi-Hubbard model), and also the effect of fermions
on the superfluidity of bosons in a Bose-Fermi mixture (the Bose-Fermi-Hubbard
model).

In these situations, rather than use popular alkaline atoms, we have studied
quantum degenerate gases using the two-electron atoms of ytterbium (Yb), because
Yb atoms have many unique features that are advantageous in quantum simulation
studies. In this chapter, we will describe the basic properties of the two-electron Yb
atoms. It is noted that some of these properties are common to all two-electron atoms
of alkaline earth metal atoms. Detailed information on how to generate ultracold Yb
atoms and molecules can be found, for example, in Refs. [1] and [2].

14.2 Basic Properties of Two-Electron Atoms of Yb

14.2.1 Rich Variety of Isotopes

One of the unique features of Yb atoms is the existence of a rich variety of
isotopes: two fermions (171Yb and 173Yb) and five bosons (168Yb, 170Yb, 172Yb,
174Yb, and 176Yb). Because the natural abundances of these isotopes are fairly
equally distributed, we can in principle create and study various interesting quantum
degenerate gases using Yb atoms, such as a gas of a BEC and a Fermi degeneracy,
and also quantum degenerate mixtures of Bose-Bose, Fermi-Fermi, and Bose-Fermi
combinations, by simply changing the laser frequency for laser cooling by only a
few GHz. To date, we have successfully created BECs of 168Yb, 170Yb, 174Yb, and
176Yb, Fermi degenerate gases of 171Yb and 173Yb, Bose-Bose mixtures of 168Yb–
174Yb, and 174Yb–176Yb, a Fermi-Fermi mixture of 171Yb–173Yb, and Bose-Fermi
mixtures of 170Yb–173Yb, 174Yb–173Yb, and 174Yb–171Yb [1, 2].

One of the important advantages of working with Yb isotope mixtures is that
the gravitational sag in a trapping potential, which often introduces the problem
of undesirable spatial separation in a trap for different species, is negligibly small,
because the masses of the isotopes are almost the same. For the same reason, when
the Yb atoms are loaded into an optical lattice, the hopping energy has almost the
same value for each of the different isotopes, which significantly simplifies the
experimental and theoretical conditions. This contrasts favorably with the case of
alkaline atoms, in which special care is generally required when performing mixture
experiments.

14.2.2 Novel Energy Structure

Another unique feature of Yb atoms is related to the novel energy structure that
is associated with two valence electrons. The two valence electrons result in both
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Fig. 14.1 Energy level
diagram with the ground state
and the metastable states,
which are connected by
ultra-narrow optical
transitions

singlet and triplet states. In addition to the ground state 1S0, there are two metastable
states 3P0 and 3P2, as shown in Fig. 14.1. The lifetimes of these metastable states
are of the order of 10 s, and thus are long enough to perform most cold atom
experiments. Therefore, these metastable states can be considered as being useful
orbital states in the Hubbard model, similar to the hyperfine state in the case of
alkali metal atoms.

Additionally, between the ground state 1S0 and these long-lived metastable
states, only weakly-allowed intercombination transitions exist. The linewidths are
of the order of 10 mHz, and have sufficiently high resolution for most cold
atom experiments to be performed. In fact, we have successfully performed high-
resolution laser spectroscopy of quantum many-body states in an optical lattice,
including superfluids and Mott insulator states; the details of these measurements
are described in a later section.

14.2.3 Interatomic Interaction

In Sect. 14.2.1, we mentioned that the rich variety of Yb isotopes was a major
advantage. However, the existence of multiple isotopes is not important by itself,
and what is truly important is the rich variety of interatomic interactions. Previously,
information on the interatomic interactions of Yb atoms was scarcely known, even
theoretically, which caused great difficulty when working with Yb atoms. However,
a combination of our two-color photoassociation experiments and theoretical works
has resulted in accurate determination of the interatomic interactions of all pairs of
Yb isotopes [3].

The most important parameter that is used to describe a quantum degenerate
gas is the s-wave scattering length, which characterizes an interatomic interaction
at an ultracold temperature. Figure 14.2 shows the scattering lengths obtained.
From these values, we can see that the scattering length actually has a variety of
values, ranging from a large negative value, which represents a strong attractive
interaction, to a large positive value, which represents a strong repulsive interaction,
along with values that are almost zero, which represents almost no interaction. The
scattering length value obeys the mass-scaling law, and the isotope-related variation
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Fig. 14.2 Scattering lengths of Yb isotopes

of the scattering length comes solely from the reduced mass. Therefore, using the
system of Yb atoms, we can enjoy the interesting possibility of isotopic tuning of
the scattering length, in which a specific scattering length value can be chosen by
selecting the appropriate Yb isotope. This isotope tuning concept was used in the
experiments with Bose-Fermi mixtures in an optical lattice, which are described in
detail in a later section.

14.2.4 SU(N) Symmetry

Among the seven stable Yb isotopes, the 173Yb isotope is especially unique. This
isotope has a nuclear spin of 5/2, and thus the interatomic interaction is independent
of the spin. This system is known to have a high spin symmetry of SU(6) [4]. Here
we can define nuclear spin permutation operators that satisfy SU(6) algebra and that
are commutable with the Hamiltonian of the system. This property implies that the
spin population should be conserved, even in the presence of interatomic collisions.
Experimentally, we have confirmed that the spin population is actually conserved in
a harmonic trap [5].

Notably, strontium (Sr), which is an alkali earth metal atom, also has a fermionic
isotope of 87Sr with a nuclear spin of 9/2, and offers another example of the high
spin symmetry of SU(10).

Before the cold atom realization, the theoretical aspects of the physics of SU(N)
with N of more than two had already been investigated several times in the literature,
basically from purely theoretical interest, and various novel quantum magnetic
states have been predicted. However, it is very difficult to realize an ideal SU(N)
system in physical systems other than the cold alkali earth metal-like atom system.
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14.3 Yb Atoms in an Optical Lattice

Using these novel possibilities, we have conducted several works using Yb atoms
in an optical lattice [1, 6]. In the following sub-sections, we discuss the details of
some of these experiments.

14.3.1 Strongly Interacting Bose-Fermi Mixtures in an Optical

Lattice

Because of the rich variety of available isotopes, we prepare and study two different
types of Bose-Fermi mixture [1, 2]. The first is an attractively interacting pair of
170Yb–173Yb, and the other is a repulsively interacting pair of 174Yb–173Yb. After
creation of the quantum degenerate mixture in an optical trap with sympathetic
evaporative cooling, we adiabatically load the mixture into a 3D optical lattice.
When the optical lattice depth is sufficient, the boson system superfluidity is lost,
and both the bosons and the fermions enter the Mott insulating state [7]. Note that
the relative strength of the onsite interactions is given as UFF > jUBFj > UBB for both
mixtures. The temperature is higher than the hopping energy, but is lower than these
onsite interactions, and thus the bosons and the fermions enter the Mott insulating
regime.

14.3.1.1 Photoassociation Method for Probing of Pair Occupancies

To investigate the behavior of these atoms, we use the photoassociation technique.
If there are two atoms in the same optical lattice site, then irradiation using the
resonant photoassociation beam results in the creation of excited state molecules,
which eventually escape from the optical lattice. Thus, the loss associated with
photoassociation is the signature of two atoms in the same optical lattice site, or
pair occupancy.

In general, we can consider many possible pair occupancies in the optical lattice
for this system, including boson-boson (boson double occupancy), fermion-fermion
(fermion double occupancy), and boson-fermion pair occupancies. Because we
can already find the corresponding photoassociation resonances using different
laser frequencies, we can thus selectively measure each pair occupancy using this
technique.

As an illustrative example of the strong interaction property of this system,
which can be revealed by photoassociation measurements, we demonstrate its novel
behavior in Fig. 14.3. When we prepare a pure sample of 170Yb bosons in a
sufficiently deep optical lattice, the system enters the Mott insulating state with one
boson in each lattice site, in which we do not observe bosonic double occupancy.
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Fig. 14.3 Bosonic double occupancy for pure bosons (squares) and bosons with fermions (circles)

When we add a small fraction of 173Yb fermions, which interact attractively with
170Yb bosons, to this bosonic Mott insulator, then the admixture induces a dramatic
increase in bosonic double occupancy, which indicates the dramatic change in the
system.

14.3.1.2 Formation of Novel Quantum States

After changing the relative filling of the fermions, we perform systematic measure-
ments of the double occupancies of both bosons and fermions, as well as the boson
and fermion pair occupancies for both attractively and repulsively interacting Bose-
Fermi mixtures.

From the results of these experiments and theoretical calculations based on the
Bose-Fermi-Hubbard model, we confirm that various interesting quantum states
are created in these strongly interacting Bose-Fermi mixtures. For example, in an
attractively interacting Bose-Fermi mixture, various combinations of composite
particles such as BF, BBF, BBFF, and BFF are created in an optical lattice,
depending on the relative filling of the fermions, where B represents the boson
(170Yb) and F represents the fermion (173Yb). In contrast, in the repulsively
interacting Bose-Fermi mixture, a phase separation is formed between the bosons
and the fermions where the doubly-occupied bosonic Mott insulator around the
center of the trap is surrounded by a spherical shell of fermions with a relatively high
fermion filling level. In the relatively low filling case, a novel mixed Mott insulator
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system of bosons and fermions is formed. In this state, neither the bosons nor the
fermions alone form a Mott insulator state, but the bosons and fermions together can
form a Mott insulator state with unit filling, or one particle in each site. This can be
also regarded as a system of composite particles of fermions and holes of bosons in
the vacuum of the bosonic Mott insulator with unit filling, and has triggered further
theoretical studies.

14.3.2 SU(6) Mott Insulator and Enhanced Atomic

Pomeranchuk Cooling

14.3.2.1 Optical Stern-Gerlach Spin Separation

As described in the previous section, the fermionic isotope of 173Yb has a novel
high spin symmetry of SU(6). We have successfully created a deeply Fermi-
degenerate gas of 173Yb with temperature T that is approximately 14 % of the
Fermi temperature TF for each spin component, which was confirmed by time-
of-flight measurements [4]. It is quite important to measure each spin component
separately to explore the behavior of this system with its high SU(6) spin symmetry.
However, it is also true that the conventional method of the Stern-Gerlach spin
separation technique, which uses a magnetic field gradient with a typical value
of several 10�1 T/m, is not applicable to 173Yb, because the origin of the spin
degrees of freedom is a nuclear spin, which has a magnetic moment that is about
a 1000 times smaller than that of an electron spin, and therefore we need a
magnetic field gradient that is a 1000 times greater. For this purpose, we recently
developed a powerful optical Stern-Gerlach spin separation technique using off-
resonant circularly-polarized light that produces a nuclear spin-dependent light shift
[4]. Using this technique, we successfully performed separate imaging of each of the
nuclear spin components, and can obtain accurate information on the nuclear spin
population of an atomic sample, as shown in Fig. 14.4.

14.3.2.2 Formation of the SU(6) Mott Insulator

By adiabatically loading a deeply Fermi-degenerate gas of 173Yb with spin compo-
nents into an optical lattice, we successfully created a strongly correlated system of
a Mott insulator state with SU(6) symmetry [5]. To investigate the behavior of the
atoms in this optical lattice, we performed several measurements.

The first was the measurement of the number of double occupancies as a function
of the characteristic density. One important parameter used to characterize the Mott
insulator is the incompressibility of the system. We find that the system that we
created actually shows suppression of double occupancies, even with increased
characteristic density, which is the signature of incompressibility.
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Fig. 14.4 Optical Stern-Gerlach technique for separate imaging of spin components, which clearly
shows the existence of (a) six, (b) one, and (c) two spin components

The second was the measurement of the Mott gap. By modulating the optical
lattice depth at a specific frequency, we can produce a doublon, which is detected as
a loss due to photoassociation. The spectrum obtained, i.e., the number of doublons
created as a function of the modulation frequency, shows a region of no doublon
creation, which is the signature of the Mott gap.

The third was the doublon production rate measurement, which provides a
sensitive probe of the temperature of the atoms in an optical lattice. In this
measurement, we also modulate the optical lattice depth slightly at a specific
frequency and measure the number of doublons produced; however, what is of
interest is not the number of doublons produced but the production rate, which is
proportional to the nearest-neighbor correlator of the atoms in the optical lattice.
This can be understood as follows. At low lattice temperatures, high-density atoms
are concentrated around the center of the trap with almost no holes, and thus each
atom can easily find neighbors to produce doublons, which results in a high doublon
production rate. In contrast, at high temperatures, the atom cloud expands in the
trap, and the resulting atomic density is low, with many holes and doublons; it is
thus more difficult for each atom to find neighbors and produce doublons, which
results in a low doublon production rate. Using the highest production rate obtained
for the lowest initial temperature in a harmonic trap before loading into the optical
lattice, we can reproduce the Mott plateau in the atom density distribution using
numerical calculations based on high-temperature second-order perturbation theory.
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Fig. 14.5 Enhanced
Pomeranchuk cooling, which
shows a more powerful
cooling effect for a larger spin
system

We also find that the lowest entropy for a single site almost reaches a value of kB

log(6) (where kB is the Boltzmann constant), which is the value expected for an
uncorrelated spin, and this indicates that this temperature regime brings us close to
observation of the onset of the quantum magnetism of the SU(6) system.

14.3.2.3 Enhanced Pomeranchuk Cooling for an Atomic Gas

With the adiabatic loading of the SU(6) fermionic atoms into an optical lattice, we
find an interesting effect that is associated with the spin degrees of freedom [5].
We compare the temperature of the SU(6) atoms in the optical lattice with that of an
SU(2) atom, which was created by an optical pumping technique and was confirmed
by the optical Stern-Gerlach technique mentioned earlier.

Lower temperatures are obtained for the SU(6) system than for SU(2) when
starting with the same initial entropy in a harmonic trap, as shown in Fig. 14.5.
This effect can be explained as the atomic analogue of Pomeranchuk cooling, which
is known as an important cooling method for liquid 3He. In Pomeranchuk cooling
of 3He, the initial state, which is a spin-depolarized and quantum degenerate liquid
state of 3He, is adiabatically compressed and, as a final state, solid 3He, in which
the spin is depolarized with atom localization, is created. Because the atoms are
localized in the solid 3He, the spin degrees of freedom of solid 3He become free,
carrying entropy of kB log(2). During adiabatic compression, the entropy flows from
the motional degrees of freedom into those of the spin, which results in cooling of
the system. In this situation, the temperature is not actually determined by the spin,
but by the motional degrees of freedom.

In our atomic system, the initial state is a spin-depolarized and quantum
degenerate gas of 173Yb with six spin components in a harmonic trap, and the
final state is a spin-depolarized atomic Mott insulator state, in which each atom is
localized with full spin degrees of freedom. The liquid and solid 3He in the original
Pomeranchuk cooling concept therefore correspond to a Fermi degenerate gas in a
harmonic trap and an atomic Mott insulator, respectively.
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14.3.3 High-Resolution Laser Spectroscopy

14.3.3.1 Spectroscopy for the Mott Insulating State

The ultranarrow optical transition of the Yb atoms is used to provide a high-
resolution probe of the behavior of these atoms [8, 9]. An illustrative example
of such high-resolution laser spectroscopy in an optical lattice is the occupancy-
resolving spectroscopy of a Mott insulating state of 174Yb atoms [10, 11]. Under
our experimental conditions for the harmonic trap and the atom numbers, there are
many sites with various occupancies that range from single to triple. Because the
on-site interaction is different for different numbers of atom occupancies, we can
successfully resolve the resonances that originate from the different occupancies
with typical frequency separations of several tens of kHz. It is noted that only
single atoms are excited, even in multiply-occupied sites with double and triple
occupancies, because of the collision blockade, in which excitation of the second
atom becomes off-resonant with respect to that of the first atom because of a
collision frequency shift.

Additionally, we can separately induce Rabi oscillation for different occupancies.
We clearly observed that the Rabi frequency is enhanced for higher occupancies
because of bosonic enhancement.

14.3.3.2 Spectroscopy for the Superfluid-Mott Insulator Transition

Both the Mott insulating state and the transition from a superfluid to the Mott
insulating state can be investigated with this high-resolution spectroscopy method.
Previously, high-resolution microwave spectroscopy was applied only to a Mott
insulating state or a Bose condensate, and no systematic study across the two
quantum states has been reported. At a shallow lattice depth, the spectrum shows
a broad peak, reflecting the phase coherence of the superfluidity. In contrast, at
deeper lattice depths, the spectrum shows multiple narrow peaks, reflecting the
existence of multiple number states, as described in the previous sub-section. In
the intermediate regime, we observe the co-existence of both features. Because this
system is inhomogeneous, it is natural for several quantum states to co-exist in the
trap.

14.3.4 Yb-Li Atomic Mixture

14.3.4.1 Controlled Impurity System

We studied a quantum degenerate mixture of Yb atoms and fermionic isotopes of
lithium (6Li) atoms in an optical lattice. One of the most important properties of this
mixture is its large mass ratio of approximately 29. Because Yb is well localized



14 Quantum Simulation Using Ultracold Ytterbium Atoms in an Optical Lattice 319

in the optical lattice, it can be considered to be a localized impurity. In contrast,
6Li is highly delocalized in the optical lattice, and can be considered to be an
itinerant carrier. If we consider the example of an optical lattice with a wavelength
of 1064 nm, the effective mass ratio exceeds 103 at a lattice depth of 20 recoil
energy units of the optical lattice potential. Therefore, this offers an ideal controlled
impurity system for a Fermi system.

Additionally, as explained in the previous section, the internal states of Yb atoms
in an optical lattice can be precisely controlled using a resonant laser beam, which
offers great possibilities for use of the dynamical aspects of the impurity response.
Therefore, using this system, we can study the nonequilibrium behavior of the Fermi
sea, which is known as an Anderson orthogonality catastrophe problem. In addition,
if we can prepare a sufficiently deep optical lattice for the 6Li atoms such that the
tight-binding treatment with the Hubbard model is valid, we can perform a quantum
simulation of the Anderson Hubbard model using random potentials offered by the
localized impurities of the Yb atoms.

14.3.4.2 Quantum Degenerate Mixture of Yb and Li in an Optical Lattice

In our experiments, we successfully created a quantum degenerate mixture of 174Yb
atoms and 6Li atoms in a harmonic trap using the sympathetic evaporative cooling
technique [12, 13], and then loaded this mixture into an optical lattice with a
wavelength of 1064 nm [14].

We have observed matter-wave interference of 174Yb atoms that is suddenly
released from the optical lattice, as shown in Fig. 14.6. The coherence properties
were compared for the cases of 174Yb atoms with and without the 6Li atoms, and
no significant differences were found. Thermalization measurements between the
174Yb and 6Li atoms in an optical trap showed minimal interaction between the
ground states of the 174Yb atoms and the 6Li atoms, which could be one reason
why only small differences were observed. Spatial separation due to gravitational
sag would also make a contribution. It is possible to compensate for this sag, e.g.,
by irradiation with an inhomogeneous optical dipole-force beam at 532 nm, which
produces an attractive force for Yb and a repulsive force for Li.

Fig. 14.6 Matter-wave interference pattern of 174Yb atoms in an optical lattice with a 6Li Fermi
sea
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We have also performed high-resolution laser spectroscopy of Yb atoms using the
ultranarrow 1S0–3P2 transition for both cases, i.e., with and without the 6Li Fermi
sea [14]. While we have observed the resonant peak of the spectrum, the observed
spectrum does not show any significant difference between the two cases, and can
be explained by neglecting the Yb-Li interaction.

14.3.4.3 Molecules with Spin Degrees of Freedom

This atomic mixture can provide a good starting point to produce an interesting type
of molecule with electron-spin degrees of freedom in the electronic ground state
[12]. This is in favorable contrast with the case of the molecules produced from the
two alkali metal atoms. Using these molecules with their spin degrees of freedom
loaded in an optical lattice, we can then perform a quantum simulation of the lattice
spin model.

14.4 Realization of Nonstandard Optical Lattices

All experiments that were reported in the previous parts of this section were
conducted using the standard cubic optical lattice. Using several lasers, we can
create various nonstandard optical lattices, including triangular, honeycomb, and
kagome lattices, which have been successfully demonstrated for alkali metal atoms.

14.4.1 Superlattice

By combining an optical lattice with a laser wavelength of 532 nm and another
lattice with a wavelength of 1064 nm, we can successfully create two-dimensional
optical superlattices for Yb atoms. By appropriate detuning of the relative laser
frequencies, we can control the phases of the superlattice. The matter-wave inter-
ference pattern of a Bose condensate released from the superlattice acts as a good
measure of the superlattice pattern that has been realized.

14.4.2 Lieb Lattice

In particular, by additional combination of the optical lattice produced by the
interference of two laser beams with wavelengths of 532 nm, we have successfully
realized an optical Lieb lattice, in which there are three sites per unit cell, as shown
in Fig. 14.7. The Lieb lattice is unique in that it has a flat band and a Dirac cone in
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Fig. 14.7 Optical Lieb
Lattice, consisting of three
sites, A, B, and C, in a unit
cell

the band structure, and it is thus especially important to explore the physics of the
flat-band ferromagnetism. The Lieb lattice configuration is basically the same as that
of the CuO2 two-dimensional plane of high-Tc cuprate superconductors. Therefore,
we can perform a good quantum simulation of the d–p model of high-Tc cuprates.

Successful formation of the Lieb lattice is confirmed by the characteristic
matter-wave interference pattern. Successful loading of the 173Yb fermions is also
confirmed by measuring the band populations using an adiabatic band-mapping
technique.

14.5 Development of Methods for Manipulation of Yb

Interatomic Interaction

While the proposed system of an optical lattice of Yb atoms can provide unique
possibilities for quantum simulation of the Hubbard model, there is one important
missing ingredient: independent control of the on-site interactions. In the alkali
metal atoms case, this is easily done using a magnetic Feshbach resonance between
the hyperfine levels in the ground state. Unfortunately, in the case of the Yb atoms,
there are no hyperfine states in the ground state 1S0, and therefore we cannot expect
a magnetic Feshbach resonance.

14.5.1 Optical Feshbach Resonance

However, we can produce an optical Feshbach resonance, in which a laser beam with
a photoassociation resonance frequency enables us to couple the ground scattering
states of two atoms to a molecular bound state in an electronic excited state. In this
optical Feshbach resonance, we can tune the scattering length by changing the laser
frequency, rather than the magnetic field in the magnetic Feshbach resonance case.
The coupling strength can be varied by varying the laser intensity. In particular, the
use of a narrow optical line, which is characteristic of two-electron atoms, provides
the advantage of suppressed atom loss.
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To date, we have demonstrated an efficient optical Feshbach resonance technique
for thermal gases using the 1S0–3P1 narrow optical transition with a 3P1 lifetime
of approximately 875 ns [15]. This technique has been successfully applied to a
Bose condensate [16]. The novel advantages of the optical Feshbach resonance
method of sub-micron spatial modulation ability and high-speed modulation of the
interatomic interaction have been successfully demonstrated using a pulsed lattice
diffraction method. More recently, we have extended this technique to control the
p-wave interatomic interaction of the ultracold 171Yb fermionic isotope [17].

We also have recently observed a photoassociation resonance associated with
the ultranarrow 1S0–3P2 transition, which will provide a powerful optical Feshbach
resonance effect with low losses because of its very long radiative lifetime of more
than 10 s.

14.5.2 Magnetic Feshbach Resonance

While no magnetic Feshbach resonance exists in the ground state of the Yb atoms,
the existence of long-lived metastable states offers another interesting possibility
for magnetic Feshbach resonance between the ground 1S0 state and the metastable
3P2 states. In fact, we have successfully observed magnetic Feshbach resonances
for 170Yb and 174Yb atoms under low magnetic fields, which were revealed by high-
resolution laser spectroscopy of these atoms in an optical lattice [11].

In addition, we have recently observed magnetic Feshbach resonances for the
171Yb and 173Yb fermionic isotopes by atom loss spectroscopy in a harmonic trap
and by high-resolution laser spectroscopy of these atoms in an optical lattice.
These magnetic Feshbach resonances for fermionic isotopes will be useful for
exploration of the novel superfluidity of Cooper pairs of atoms with different
electronic orbitals. Another interesting possibility is the creation of topological
superfluids by combination with a spin-orbit interaction [18, 19].

14.6 Conclusion

In this chapter, we describe several important results related to quantum simulations
of the Hubbard model using ultracold Yb atoms in an optical lattice. We describe in
detail the formation of strongly interacting Bose-Fermi mixtures and a novel SU(N)
Mott insulator, a high-resolution laser spectroscopic method for the superfluid-Mott
insulator transition, and a quantum simulator for the impurity system with a Yb-Li
atomic mixture.

Additionally, recent work on the realization of a nonstandard optical lattice and
the development of methods to manipulate Yb interatomic interactions are also
described in detail; these methods would provide a basis for further exploration
of strongly-correlated quantum many-body states.



14 Quantum Simulation Using Ultracold Ytterbium Atoms in an Optical Lattice 323

It is also shown that the cold Yb atoms are useful for the studies of spin-
squeezing and quantum feedback that have been described in the literature [20–22].
By working with the ultracold atoms in an optical lattice, we could also enjoy the
advantages of this system.
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Chapter 15

Quantum Simulation with Trapped

Ions—Experimental Realization
of the Jaynes-Cummings-Hubbard Model—

Shinji Urabe, Kenji Toyoda, and Atsushi Noguchi

15.1 Introduction

One purpose of quantum simulation is to elucidate the fundamental process of
a strong correlated many-body system in solid state physics and to predict new
phenomena by replacing it with a system that can be manipulated easily and has
well-known fundamental process in quantum optics and atomic physics [1]. The
quantum simulation of the Ising model with trapped ions [2–4] and of the Bose-
Hubbard (BH) model with ultra cold atoms in an optical lattice [5] are successful
examples. Phase transitions have been demonstrated from the paramagnetic to fer-
romagnetic order in the former experiments and from Mott-insulator into superfluid
states in the latter. As a new model for a strongly correlated many-body system,
an array of optical cavities containing two-level atoms or multilevel atoms (QED-
cavity arrays) has been proposed [6, 7]. Since neighbor sites are separated by several
tens of micrometers and each site can be accurately accessed by optical methods,
measurements of local properties and simulations of inhomogeneous systems are
possible in this system. Thus, it is expected to complement the optical lattice
system, and many theoretical analyses have already been performed [8–14]. If
the cavities contain four-level atoms, the model can be mapped onto the Bose-
Hubbard Hamiltonian [8]. If the cavities contain two-level atoms, the system is
called the Jaynes-Cummings-Hubbard (JCH) model [9, 10]. This is a combination
of two well-known systems, namely, the Jaynes-Cummings (JC) model, which
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describes coupling a single two-level system to a bosonic mode, and the Bose
Hubbard model, which describes the interaction of bosons on a lattice. In the
JCH model, the anharmonicity of the energy levels of the dressed states of a JC
Hamiltonian induces a photon blockade and acts as an effective on-site interaction
[15, 16]. Furthermore the dressed atoms or polaritons transform into various kinds
of excitations depending on externally controllable parameters. As a result, the JCH
model has a richer phase structure than the BH model. Although many methods
have been proposed to demonstrate the JCH model [6], including photonic band-gap
structures, coupled-cavity waveguides, arrays of superconducting strip-line cavities
and an ion chain in a linear trap, an experimental demonstration had not been done
until recently.

A trapped-ion system is one of the most promising systems for quantum
simulation since it offers high controllability and individual access [17, 18]. This
system enables us to manipulate and measure internal electronic or vibrational
quantum states at a single particle level [19, 20]. To demonstrate the JCH model
in a linear trap, it is necessary to generate local phonons at each site in an ion
chain. In an ion chain, there are phonons in axial modes that oscillate along the
chain direction and phonons in radial modes that oscillate perpendicular to the
chain direction. When the radial confinement is strong and its potential is much
larger than the Coulomb potential, radial phonons are localized to an ion at each
site and they hop between sites due to the Coulomb interaction [21]. These phonons
can play a role of the photons in the cavity-array system. If an on-site phonon-
phonon interaction is added to this system, it can simulate the Bose-Hubbard model
[22]. However, it is not easy to generate a direct interaction of this sort in an
actual experiment. By contrast, the JC interaction can be generated more easily.
Irradiating ion qubits with a laser, which induces red sideband transitions, generate
a JC coupling between internal states (qubit states) and phonon states, and the JCH
model can be demonstrated [14].

We have recently demonstrated the JCH model experimentally using two trapped
ions in a linear trap [23]. The present article describes the theoretical and experi-
mental aspects of this demonstration. In Sect. 15.2, the local phonons in a linear
trap and observation of phonon hopping are discussed, while Sect. 15.3 presents
the JCH interaction, phase diagram of the JCH model and observation of quantum
phase transitions.

15.2 Local Phonons in a Linear Trap and Phonon Hopping

The motion of ions in a linear Paul trap is governed by a harmonic potential due to
trap electrodes and by the Coulomb interaction between ions. The Hamiltonian is
given by [21, 24]

H0 D
NX

iD1

�!
P
2

i

2m
C 1

2
m

NX

iD1

X

˛Dx;y;z

!2˛R2i;˛ C
NX

i; j D 1

i > j

e2

4�"0

ˇ̌
ˇ�!R i � �!

R j

ˇ̌
ˇ
: (15.1)
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where N is the number of ions and m is their mass.
�!
P j and

�!
R j are the momenta

and absolute positions of ions, respectively. !˛ is the trapping frequency in each
spatial direction. We assume that the ions are cooled sufficiently so that they form
a crystalline structure. We choose the condition, !z � !x; !y, so that the ion chain
is along the z axis. The positions of ions are given in terms of small displacements,
xi, yi, zi, from the equilibrium position (0, 0, z0

i ) as Ri;x D xi; Ri;y D yi; Ri;z D z0i Czi.
z0

i are given by the minima of the trapping potential and the Coulomb repulsion. In
the harmonic approximation, H0 is expanded up to second order in the displacement
of the ions around the equilibrium positions and divided into three independent
Hamiltonians that represent independent vibration modes corresponding to each
spatial direction.

The Hamiltonian that governs motion in one of the radial directions (which we
take to be the x direction in this case) can be given by [24]

Hx0 D
NX

iD1

P2i;x

2m
C 1

2
m!2x
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iD1
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i; j D 1

i > j

e2
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ˇ̌
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ˇ
3
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2
: (15.2)

where Pi,x are the momenta corresponding to the displacement xi. The second
quantized form of this Hamiltonian is

Hx0 D
NX

iD1
¯!x;ia

�
i ai C

NX

i; j D 1

i > j

¯�i;j

2

�
a
�
i C ai

� �
a
�
j C aj

�
: (15.3)

a
�
i (ai) are creation (annihilation) operators for local phonons in the radial direction.

The effective trapping frequency !x,i contains the corrections induced by the
Coulomb interaction,

!x;i D !x � 1

2

NX

jD1;j¤i

�i;j; (15.4)

where � i,j are hopping rates expressible as follows:

�i;j D e2

4�"0m!2x

ˇ̌
ˇz0i � z0j

ˇ̌
ˇ
3
!x : (15.5)

The characteristics of the vibrational modes are governed by the following
parameters, which quantify the relative values of the Coulomb interaction and
trapping potentials [21].



328 S. Urabe et al.

ˇ˛ D jc˛j e2=4�"0m!
2
˛d30 � �i;j

!˛
; (15.6)

where cx;y D 1; cz D �2, and d0 is the mean distance between ions. If ˇ˛ � 1,
the second term in Eq. (15.3) becomes a small perturbation. The phonons are close
to being localized at each ion (stiff limit) and can be considered local phonons.
When the ion chain is along the z axis, radial phonons in the x and y directions can
easily satisfy this condition. These local phonons are used for quantum simulation
experiments of the Ising model [25] and Hubbard model [22]. By contrast, if ˇ˛ & 1,
phonons have a strong collective character that has the ability to mediate interactions
within the whole trap region. In this limit phonons are well described as collective
modes. The axial mode in the z direction usually satisfies this condition and is used
as a bus bit in quantum gate experiments to communicate between ion qubits. When
the stiff limit is satisfied, ˇx � 1, the phonon non-conserving terms, a

�
i a
�
j C aiaj,

in the second term of Eq.(15.3) can be neglected in a rotating wave approximation
[24]. Since the second term of Eq.(15.3) is considered to be an excitation exchange
term, phonons are mainly localized at each ion site and hop between sites at a low
rate of � i,j.

The Hamiltonian of two trapped ions in the stiff limit can be written as,
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; (15.7)

where � D e2

4�"0md30!x

: (15.8)

Phonon hopping can be explained easily by using collective modes which are eigen
modes of the above Hamiltonian. We introduce the creation operators of these
modes,
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which correspond to the center-of-mass (c.m.) mode and the rocking mode,
respectively. The above Hamiltonian becomes

Hx0 D ¯!xa�cac C ¯ .!x � �/ a�r ar: (15.10)

The two eigenstates of the center-of-mass mode and the rocking mode
for one phonon excitation are j�ci D .j1i1j0i2 C j0i1j1i2/ =

p
2, j�ri D

.j11i j02i � j01i j12i/ =
p
2, respectively, where jnii are the Fock states of the local

phonon at the i th ion and n is the phonon mumber. When one phonon is excited
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Fig. 15.1 Observed phonon
hopping dynamics. The
horizontal and vertical axes

represent the hopping time
and the mean phonon number
of each ion, respectively. The
trap frequency is
!x D 2 � 3:23 MHz and the
ion separation is 18.9 �m
which correspond to
!z D 2  � 161 kHz. By
fitting the data the hopping
rate is estimated to be
� D 2  � 4:0 KHz [26]

in one of the local modes, the non-stationary state, j01i j12i D .j�ci � j�ri/ =
p
2,

evolves into the state,

j .t/i D e�i!xt j�ci � e�i.!x��/t j�ri
D e�i.!x��=2/t Œ�i sin .�t=2/ j1i1j0i2 C cos .�t=2/ j0i1j1i2� :

(15.11)

The probability finding a phonon at site1 and site2 are sin2(�t/2) and cos2(�t/2),
respectively. This means that the phonon hops at a rate of �, moving from one site to
the other. This phenomenon resembles the well-known oscillation transfer between
two weakly coupled mechanical oscillators in classical mechanics.

Figure 15.1 shows hopping of a radial phonon observed experimentally [26].
Two ions are trapped in a linear trap. All six vibrational modes of the two ions are
cooled to near the ground state by sideband cooling at ion distance of 6.4 �m where
the Lamb-Dicke criterion is satisfied for all modes. Then the distance between ions
is adiabatically increased to 18.9 �m to satisfy the stiff limit condition for local
phonons. The initial phonon state of j0i1j1i2 is prepared by applying a blue sideband
  pulse to one of the ions with a different ac-Stark-shift method for individual
addressing [27]. After pumping the ion back to the ground state, a delay time with no
laser interaction is inserted in order for the phonon to undergo hopping. Then a laser
pulse for exciting the sideband transition is applied to the ions to estimate the mean
phonon number of each ion by comparing the excitation probabilities of the red
and blue sideband transitions. The internal state of the individual ions is detected
with an intensified CCD camera. The horizontal and vertical axes of Fig. 15.1
represent the hopping time and the mean phonon number at each ion, respectively.
The results show sinusoidal oscillations in the mean phonon number of each ion.
The oscillations of ion 1 and 2 are out of phase, indicating an exchange of phonon
energy between the two ions as expected from Eq. (15.11). By fitting the data with
a sinusoidal function, the hopping rate is estimated to be � D 2  � 4:0.2/ kHz
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which is in good agreement with the value calculated from Eq. (15.8). The offset in
the residual phonon number in Fig. 15.1 is mainly due to ion heating induced, during
the dynamical change in the ion distance. Details of the experiment are described in
reference [26]. A similar phenomenon has been observed by using individual traps
[28, 29].

15.3 Simulation of a JCH Model with Two Trapped Ions

15.3.1 JCH Model

To demonstrate the JCH model with a chain of trapped ions, we add the Jaynes-
Cummings interaction to the system by using a laser [14]. Each ion in the chain has
a qubit with a transition frequency !0. We irradiate the whole chain equally along
the x-direction with a common traveling laser having as frequency !L. After the
optical rotating-wave approximation, the Hamiltonian of the system in the Lamb-
Dicke limit is given by
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(15.12)

�C
i D jeii hgij ; ��

i D jgii heij are spin flip operators, jeii, jgii are the qubit state of
the i-th ion, �0 is the Rabi frequency, and � D kxx0 is the Lamb-Dicke parameter,
where kx is the x component of the laser wave vector and x0 D

p
¯=2m!x is the

spread of the ground state wave function. After transforming into the rotating frame

by the unitary transformation U D e�iH0et=¯, with H0e D ¯!L

NX

iD1
jeii heij, and tuning

the laser frequency near the red motional sideband, we can get the following JCH
Hamiltonian,
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where g D ��0=2. This Hamiltonian is valid for �i;j; g � !x;i, which ensures
higher terms can be neglected. The first three terms in (15.13) describe the Jaynes-
Cummings (JC) interaction. The first two terms are the energies of local phonons
and ions, which correspond to the photons and atoms in the cavity in the coupled
cavity-array model, respectively. In the above Hamiltonian, since it is represented in
the rotating frame, the energy of the qubit is transformed into� D !0�!L. The third
term describes the phonon-ion interaction mediated by the laser-ion interaction.
The fourth term describes the non-local hopping of phonons between ions which
corresponds to the hopping between cavities in the coupled cavity-array model.
In the system described by the above Hamiltonian, the total number of excitations
is conserved since the total excitation operator, bN D

PN
iD1bNi , commutes with the

Hamiltonian, where bNi D a
�
i ai C jei >< eij is the total excitation operator at each

site.
In the coupled cavity array model, the JCH model can be demonstrated under

the strong coupling condition that the JC coupling coefficient g is much larger
than the atomic decay rate 
 and the leakage rate of photons from the cavity �,
g � 
; �. In the trapped-ion system, this condition can be easily satisfied since
g � 104 s�1; 
 � 1 s�1; � � 10 s�1 under the typical experimental conditions
where we use electric quadrupole transitions for qubit transitions.

15.3.2 JCH Model Using Two Trapped Ions with Two

Excitations

The JCH Hamiltonian of two trapped ions is given by
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(15.14)

where !0
x D !x � �=2. The externally controllable parameters are the laser

detuning �, the JC coupling coefficient g and the hopping rate �. The hopping
rate and coupling coefficient can be varied with the distance between ions and the
laser amplitude, respectively. When the ground state of the above Hamiltonian is
discussed, the detuning between the “atomic resonance frequency” � and phonon
frequency !’

x, �0 D � � !0
x D

	
!0 � !0

x



� !L, is used as an external parameter,

rather than the detuning � itself. Depending on these parameters, the ground state
of the system changes and several quantum phases appear. For an order parameter
characterizing these quantum phases, the variance of the total excitation number per

site, �bN2

i D
D
bN2

i

E
�
D
bNi

E2
, is used [10]. The atomic excitation number variance,

�bN2

a;i D
D
bN2

a;i

E
�
D
bNa;i

E2
, where bNa;i D jeii heij, is also used, as an additional order

parameter [12]. The expectation value of the annihilation operator which is usually
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Table 15.1 Eigen states and
corresponding eigen energies
of the unperturbed
Hamiltonian for the condition
g � �

Eigen state Eigen energyˇ̌
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p
�02 C 4g

used in the mean-field limit cannot be used here as the order parameter, since it is
always zero for a closed system with no particle exchange with the outside.

The quantum phases that appear in a two-site and two-excitation system were
analyzed extensively in reference [12]. What follows is based on reference [12]. We
consider the following two extreme cases:

1. The hopping rate is much smaller than the JC coupling coefficient, g � �.

In this case, the forth term describing hopping in Eq. (15.14) can be regarded as a
small perturbation. We can discuss the ground state of the system on the basis of the
dressed states that appear in the JC model. The eight eigen states and corresponding
eigen energies of the unperturbed Hamiltonian are listed in Table 15.1. jn˙

i i in the
Table 15.1 are dressed states defined as follows:

j0ii D jgii j0ii ;ˇ̌
n�

i

˛
D sin .�n=2/ jeii jn � 1ii � cos .�n=2/ jgii jnii ;ˇ̌

nC
i

˛
D cos .�n=2/ jeii jn � 1ii C sin .�n=2/ jgii jnii ;

where i D 1; 2 and tan �n D 2g
p

n=�. The corresponding eigen energies are given
by

E0i D 0;

En˙
i D n!0

x C�0=2˙ .1=2/
p
�02 C 4ng2:

When the detuning takes on large negative values (��0=g � 1), the internal energy
of each atom becomes smaller than the phonon energy, so that the excitations
localize to each atom and the lowest state

ˇ̌
1�
1

˛ ˇ̌
1�
2

˛
approaches je1ij01ije2ij02i.

This ground state is an “atomic insulator” state: j aIi D je1i j01i je2i j02i. The

order parameters for this state become �bN2

i D 0; �bN2

a;i D 0. Near the resonance,
�0=g � 0, the interaction between atoms and phonons is strong. Owing to the
anharmonicity of the dressed-state energy, a phonon-blockade effect occurs. Each
phonon localizes at each site and couples with an atom strongly to generate a
“polaritonic insulator” state. The ground state can be approximated by

ˇ̌
 pol

˛
D

.je1i j01i � jg1i j11i/ .je2i j02i � jg2i j12i/ =2. This state is analogous to the Mott
insulator state in the Bose-Hubbard model. The order parameters for this state
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become �bN2

i D 0; �bN2

a;i > 0. When the detuning takes on large positive values
(�0=g � 1), the phonon energy becomes smaller than that of atoms and the
excitations transfer to phonons. The three eigen states

ˇ̌
1�
1

˛ ˇ̌
1�
2

˛
;
ˇ̌
2�
1

˛
j02i ; j01i

ˇ̌
2�
2

˛

become degenerate, furthermore, owing to the hopping term, these states are
coupled together to generate a nonlocal “phonon superfluid” state. In the limit
�0=g ! 1, the ground state, which can be obtained by diagonalizing the hopping
term within the above degenerate subspace, becomes

ˇ̌
 phSF

˛
D jg1i jg2i a�r

2j0i1j0i2 D jg1i jg2i
� j1i1j1i2p

2
� j2i1j0i2 C j0i1j0i2

2

�
:

The order parameters for this state become�bN2

i > 0; �
bN2

a;i D 0.

2. The hopping rate is much larger than the JC coupling coefficient, g � �.

In this case, the third term describing the JC interaction in Eq. (15.14) can be
regarded as a small perturbation. We can discuss the ground state of the system
on the basis of the direct product of collective phonon states and bare states of
atoms. The eight eigen states and corresponding eigen energies of the unperturbed
Hamiltonian are listed in Table 15.2. a

�
c and a

�
r in Table 15.2 are the creation

operators of the c.m. mode and rocking mode, respectively, as defined in Eq. (15.9).

When the detuning is smaller than ��=2, (�0 < ��=2), the ground state can be
approximated by the “atomic insulator” state j aIi D je1i j01i je2i j02i : The order

parameters for this state become�bN2

i D 0; �bN2

a;i D 0:. The ground state becomes
complex when �0 � ��=2. The four unperturbed eigen states,

ˇ̌
 phSF

˛
DD jg1i jg2ia

�2
r j01i j02i ; j aIi D je1i je2i j01i j02iˇ̌

 0
i1

˛
D jg1i je2ia

�
r j01i j02i ;

ˇ̌
 0

i2

˛
D je1i jg2ia

�
r j01i j02i ;

become degenerate. The ground state, which can be obtained by diagonalizing the
JC interaction term within the above degenerate subspace, is given by

ˇ̌
 poSF

˛
D
ˇ̌
 phSF

˛
=
p
3C j aIi =

p
6C

	ˇ̌
 0

i1

˛
C
ˇ̌
 0

i2

˛
=2

Table 15.2 Eigen states and
corresponding eigen energies
of the unperturbed
Hamiltonian for the condition
g � �

Eigen state Eigen energy

jg1ijg2ia
� 2
r j01ij02i 2!0x � �

jg1ijg2ia
�
ca
�
r j01ij02i 2! 0

x

jg1ijg2ia
� 2
c j01ij02i 2!0x C �

je1ije2ij01ij02i 2!0x C 2�0

je1ijg2ia
�
r j01ij02i, jg1ije2ia

�
r j01ij02i 2!0x � �=2C�0

je1ijg2ia
�
c j01ij02i, jg1ije2ia

�
c j01ij02i 2!0x C �=2C�0
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This is a “polaritonic superfluid” state where the atomic and phonon components are

mixed by hopping. The order parameters for this state become�bN2

i > 0; �
bN2

a;i >

0. When the detuning is larger than ��=2, .�0 > ��=2/, the ground state can be
approximated by the “phonon superfluid” state j phSFi and the order parameters for

this state become�bN2

i > 0; �
bN2

a;i D 0:

This analysis of the ground state in the two extreme limits suggests that there

exist four quantum phases, viz., “atomic insulator”
�
�bN2

i D 0; �bN2

a;i D 0
�

,

“polaritonic insulator”
�
�bN2

i D 0; �bN2

a;i > 0
�

, “polaritonic superfluid”
�
�bN2

i > 0; �
bN2

a;i > 0
�

and “phonon superfluid”
�
�bN2

i > 0; �
bN2

a;i D 0
�

. In

the intermediate region between the two limits, the ground state must be calculated

numerically and the order parameters �bN2

i and �bN2

a;i must be obtained. The

order parameters, �bN2

i and �bN2

a;i; obtained from the above analysis are shown in
Fig. 15.2a, b, respectively. The horizontal and vertical axes represent �0/g and �/g,
respectively. The color red (blue) indicates a large (small) variance. Figure 15.2c
shows the four regions of quantum phases, as estimated from Fig. 15.2a, b. There are
the “polaritonic insulator” and “polaritonic superfluid” phases around the boundary
between the “atomic insulator” and “phonon superfluid” phases where�0C�=2 � 0

is satisfied.

15.3.3 Experimental

15.3.3.1 Experimental Setup

The experimental setup is shown in Fig. 15.3a. Details are described in reference
[30]. Two CaC ions are used in this experiment. The linear trap is composed of
four stainless blades. An rf field (frequency: 24 MHz) is applied to a diagonal
pair of blades. The other diagonal pair is divided into three segments and a dc
electric field is applied to the two end pairs. To lift the degeneracy between two
radial frequencies, a small dc field is applied to the diagonal pair of the center
dc electrodes. The distance between the ions and the surface of the electrodes is
0.6 mm. The secular frequencies are

	
!x; !y; !z



=2� D .2:1; 1:7; 0:17/ MHz

and the distance between ions in the axial direction is 18–20 �m, which cor-
responds to the hopping rate �/2� of 5–7 KHz. The relevant energy levels of
the CaC ions are shown in Fig. 15.3b. All vibrational modes are cooled by
Doppler cooling using the S1=2 � P1=2 .397 nm/ and D3=2 � P1=2 .866 nm/
transitions, and then the radial modes are cooled by sideband cooling using the
S1=2 � D5=2 .729 nm/ and D5=2 � P3=2 .854 nm/ transitions. The excitation
beam at 729 nm, which is used for sideband cooling, generating the JC coupling
and other operations, is illuminated from the radial direction. This direction
is chosen to couple the beam only to the radial directions and to ignore the
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Fig. 15.2 (a) Calculated total excitation number variance� ON2
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parameters� 0/g and (�/2)/g. High values of this quantity indicate the existence of superfluid states.
These values are calculated by obtaining the ground states of JCH Hamiltonian. (b) Calculated
atomic excitation number variance � ON2

a;1. High values of this quantity indicate the existence of
polaritonic excitations. (c) The four phase regions estimated from Fig. 15.2a, b

axial direction whose frequency is relatively small for effective sideband cooling.
The average quantum numbers of the radial motion after sideband cooling are	
hnx;c:m:i ; hnx;rocki ;

˝
ny;c:m:

˛
;
˝
ny;rock

˛

D .0:04; 0:03; 0:57; 0:08/. Intermittently,

ions are optically pumped to S1=2 .mJ D �1=2/ by using a 397-nm beam with the
¢C polarization during and after sideband cooling. Ions are equally illuminated with
the 729-nm laser within an error of less than 5 %. The internal state of ions is
determined by irradiating them with lasers at 397 nm and 866 nm and by detecting
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Fig. 15.3 (a) Experimental setup used to demonstrate the JCH model with two trapped ions. (b)
Energy levels of 40CaC relevant to laser cooling and induction of JC coupling

fluorescence photons with a photomultiplier and an intensified charge-coupled-
device (ICCD).

15.3.3.2 Results

As a demonstration of a quantum phase transition, the system is transferred
adiabatically from the ground state of an “atomic-insulator” region to the ground
state of a “phonon superfluid” region and the excited-state population of two ions
is observed. The trajectory of this process on the phase diagram is shown in
Fig. 15.4a. It starts from a point where ��0=g is large, where the ground state
is approximately the “atomic insulator” state j aIi. Then, �0/g increases, exceeds
zero, and becomes a large positive value, where the ground state is approximately
the “phonon superfluid” state j phSFi. In the intermediate region around�0=g � 0,
the system is in the “polaritonic superfluid” state j poSFi. The measured variation
of the average internal-state population during the adiabatic transfer is shown in
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Fig. 15.4b. The initial state j aIi is prepared by cooling, optical pumping and
applying a carrier  pulse. The adiabatic transfer is realized by shining the excitation
laser and sweeping its detuning �0 over the red-sideband resonance from negative
to positive values. The amplitude is also modulated in a Gaussian shape to ensure
that j�0j/g is large at the beginning and end of the pulse so that the overlap of
the initial (final) state and j aIi (j phSFi) is optimized. The explicit values of the
parameters are as follows. �0/2  is swept linearly from �41 to 59 kHz in 960 �s,
and the JC coupling coefficient 2g/2  is varied from 0.29 � 14 to 14 kHz and back
to 0.29 � 14 kHz in a Gaussian shape over the same period. The hopping rate �/2�
is 7.0 kHz. The imperfect preparation in the initial population in Fig. 15.4b is the
result of infidelity in the carrier   pulse for preparation. The 10 % offset in the final
population is due to infidelity in the adiabatic transfer process caused by the laser
frequency fluctuation in addition to the imperfect initialization. The red curve in
Fig. 15.4b is a numerically simulated result. These results show that the excitations
in the internal state of atoms transfer to phonons in this process.

The realization of the “phonon superfluid” state at the end of this transfer is
confirmed by measuring the phonon numbers of the radial c.m. mode and rocking
mode at the beginning and end of the process. To this end, the spectra of the radial
red- and blue-sideband transitions are observed at each time. From these results,
the average phonon numbers for the c.m. and rocking modes at the beginning and
end are estimated to be .hnc:m:i ; hnrocki/ D .0:09; 0:04/, and .hnc:m:i ; hnrocki D
.0:15; 1:58/, respectively. At the beginning, both of the phonon modes are almost
in the ground state, while at the end, a state that has rocking-mode quanta close
to 2 is realized and the c.m. mode is almost intact. These results support the
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Instead of estimating the experimental values for this quantity directly, the upper and lower bounds
are estimated along with the error, and shown by the circles and triangles [23]

occurrence of a quantum phase transition from the “atomic-insulator” state j aIi D
je1i j01i je2i j02i to the “phonon-superfluid” state

ˇ̌
 phSF

˛
D jg1i jg2ia

�2
r j01i j02i :

The transfer process is further analyzed by estimating the excitation number
variances (atomic, phonon, and total). The red circles in Fig. 15.5a show the atomic

excitation number variances �bN2

a;1 estimated from atomic populations measured
with the photomultiplier tube. Individual detection is possible with the photomulti-
plier owing to the unequal illumination intensity of the two ions with the 397-nm
laser. The peak at the center indicates the presence of polaritonic excitations. The red
solid curve is the numerically simulated result. The blue triangles in Fig. 15.5a show

the phonon-number variances �bN2

p;1 with bNp;i D a
�
i ai. These values are obtained
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from the average phonon numbers of the rocking mode and atomic variances
measured during the process. The result also supports the realization of phonon
superfluid state at the end of the adiabatic transfer. Figure 15.5b shows the upper and

lower bounds of the total excitation number variance�bN2

1. Details of the derivation
of the phonon-number variances and inequalities for estimating these bounds are
given in reference [23]. The expected qualitative behavior of the phase transition is
reproduced in these results.

15.4 Conclusion

The JCH model has been demonstrated with two trapped ions. In the above exper-
iment, the “polaritonic superfluid” phase is only confirmed during the adiabatic
transfer from the “atomic insulator” phase to the “phonon superfluid” phase. By
increasing the distance between ions and hence decreasing the hopping rate, it is
expected that the “polaritonic insulator” (Mott insulator) phase can be observed
clearly.

Scaling up this model to include large numbers of sites is the next problem.
For this purpose, certain points must be considered. When we use an ion chain
in a linear trap for this model, the trap anisotropy must satisfy the condition,
!x;y=!z > 0:77Nions=

p
log Nions, where Nions is the number of ions, to prevent the

linear chain from transitioning to a zigzag configuration [31]. Under the above
condition, as increasing number of ions in the chain, the spacing at the center
separation dmin decreases in proportion to .Nions/

�0:559 and thus the hopping rate
� increases in proportion to (Nions)1.677. To explore the phase diagram of the JCH
model widely, it is desirable to change the value of �/g as widely as possible.
Although a large trap anisotropy !x,y/!z is advantageous for this purpose, it is not
a sufficient condition. It is advantageous to be able to control dmin without being
restricted by the dependence on the number of ions via the term .Nions/

�0:559. This
problem can be overcome by using an anharmonic linear trap that contains a quartic
potential term in the axial direction [32]. A nearly uniform spacing between ions is
achieved, and a large linear structure can be stabilized in this trap. Another approach
is to use an array of independent traps [33–35]. In this case the spacing between
ions and the magnitude of confinement can be chosen independently and also two-
dimensional arrays can be realized.

In the above experiment, the phonon and total variances are not measured
directly but rather estimated from measured values. It is possible to measure these
values directly by using individual addressing of the exciting laser beams. For a
large number of ions the use of micro-mirrors for individual addressing has been
proposed [36].
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Chapter 16

Equilibrium to Nonequilibrium Condensation

in Driven-Dissipative Semiconductor Systems

Makoto Yamaguchi and Tetsuo Ogawa

16.1 Introduction

In a semiconductor system, it is known that electron-hole (e-h) bound pairs can
be formed by their Coulomb attraction when the conduction and valence band
effectively reach an equilibrium state after the carriers are generated e.g. by laser
excitation (Fig. 16.1). An exciton polariton is a quasi-bosonic particle composed
of such a Coulomb-bound e-h pair (exciton) and a photon [1, 2], the behaviors of
which have attracted much attention due to their potential apprications through the
Bose-Einstein condensation (BEC) [3–5], i.e. a macroscopic occupation of a single
exciton-polariton state by a thermodynamic phase transition.

A typical exciton-polariton system is shown in Fig. 16.2. The system basically
consists of semiconductor quantum wells (QWs) and a microcavity, the same
structure as a vertical cavity surface emitting laser (VCSEL). In this context, a
conventional lasing phase1 is involved in this system as well as the exciton-polariton
BEC [9]. At high densities, moreover, the Bardeen-Cooper-Schrieffer (BCS) – like

1In this contribution, the terms ‘lasing’ and ‘laser’ are used only when the condensation is
inherently governed by non-equilibrium kinetics, according to [6, 7]. In other words, thermo-
dynamic variables of the system, such as temperatures, cannot be defined for lasing phases.
However, we note that these terms are occasionally used even for a condensation dominated by the
thermodynamics of the electron-hole-photon system [8] if the interest is in fabricating a device.
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Fig. 16.1 Excitation and
thermalization process in a
semiconductor. Electrons and
holes generated by laser
excitation subsequently
undergo immediate intraband
relaxations and redistributions
in the conduction band (C.B.)
and valence band (V.B.) to
effectively reach an
equilibrium state.
Coulomb-bound e-h pairs
(excitons) are formd when the
equilibrium state is at
sufficiently low temperature
and low carrier density

Fig. 16.2 Schematic
illustration of a typical
exciton-polariton system.
Exciton-polaritons are formed
by the electrons and holes in
the QWs and the photons
confined between the two
mirrors (microcavity)

Fig. 16.3 Schematic illustration of several ordered phases involved in the exciton-polariton system

ordered phase can potentially be caused where electrons and holes form the “Cooper
pairs” [10, 11], as is discussed in the BCS-BEC crossover in cold atom systems
with Feshbach resonances [12, 13]. These ordered phases are schematically shown
in Fig. 16.3.

However, the BEC and BCS phases are in equilibrium, the situation of which
is quite different from the semiconducotor laser in nonequilibrium. As a result,
approaches for describing the BEC and BCS phases based on equilibrium statistical
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mechanics, e.g. the BCS theory [14, 15], are not applicable to the semiconductor
laser because any nonequilibrium effects cannot be taken into account, such as
pumping and loss. Conversely, past theories for describing the lasing operation,
e.g. the Maxwell-Semiconductor-Bloch equations (MSBEs) [16, 17], cannot recover
such equilibrium statistical approaches.2 The difficulty shown here has been one of
problems to understand the underlying physics in exciton-polariton systems.

In such a situation, we have recently proposed a framework which can treat the
phases of the BEC, BCS and laser in a unified way [19, 20]. This framework is an
extention of a nonequilibrium Green’s function approach developed in Refs. [21–
23] in which excitons are simply modeled by localized noninteracting two-level
systems without internal e-h structures. Our formalism results in the BCS theory
when the system can be regarded as in equilibrium, while it recovers the MSBE
when nonequilibrium features become important. The internal e-h structures as well
as the Coulomb interactions can also be taken into account within the mean-field
approximation. In this contribution, we would like to give an introduction to such a
“BEC-BCS-LASER crossover theory”.

16.2 BCS Theory and MSBE for Exciton-Polariton Systems

In exciton-polariton systems, the equilibrium phases (the BEC and BCS phases) can
be described by the BCS theory while the nonequilibrium phase (the lasing phase)
can be described by the MSBE. In this section, we give an overview of the BCS
theory and the MSBE to highlight their similarities and differences. For simplicity,
we set „ D kB D 1 in the followings.

16.2.1 Model

We first describe the Hamiltonian for the exciton-polariton system where electrons
and holes in the QWs and photons in the microcavity are taken into account. The
system Hamiltonian OHS is then given by OHS D OH0 C OHCoul C OHdip. Here, OH0 is the
Hamiltonian for free particles without interactions and written as

OH0 D
X

k

�
�e;k Oe�k Oek C �h;k Oh�k Ohk C �ph;k Oa�k Oak

�
; (16.1)

2We note that theories for describing dynamics of equilibrium phases, e.g. the Gross-Pitaevskii
equation, can asymptotically be derived from Maxwell-Bloch equations [18] even though these
theories still do not recover equilibrium statistical approaches.
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where Oek, Ohk, and Oak are annihilation operators for electrons, holes, and photons
with in-plane wave number k, respectively. �e.h/;k D k2=2me.h/ C Eg=2 is the
energy dispersion of electrons (holes) with an effective mass me.h/, while �ph;k D
k2=2mcav C Ecav is that of photons with an effective mass mcav. Eg is the bandgap
and Ecav is the energy of the cavity mode for k D 0 [24].

In contrast, OHCoul and OHdip denote the Coulomb interaction and the light-matter
interaction within the dipole approximation, respectively written as

OHCoul D 1

2

X

k;k0;q

U0
q

�
Oe�kCqOe�

k0�q
Oek0 Oek C .Oe $ Oh/� 2Oe�kCq

Oh�
k0�q

Ohk0 Oek

�
; (16.2)

OHdip D �
X

k;q

�
gOa�q Oh�k OekCq C g� Oaq Oe�kCq

Oh��k

�
; (16.3)

where U0
q D U0

�q and U0
qD0 � 0. Note that Œ OHS; ONS� D 0 is satisfied when an

excitation number of the system ONS is defined as ONS �
P

kŒOe
�
k Oek=2C Oh�k Ohk=2C Oa�k Oak�.

For later convenience, therefore, we redefine OHS � � ONS as OHS. This means that
a grand canonical ensemble is assumed with a chemical potential � if we are
interested in equilibrium phases. In contrast, for time-dependent problems, this
means that dynamics of physical quantities is captured on a rotating frame with
the frequency�. Thus, � is a given parameter identical to the chemical potential for
the BEC and BCS phases (Sect. 16.2.3), whereas it becomes a unknown variable
equivalent to the lasing frequency for the semiconductor laser in a steady state
(Sect. 16.2.4).

16.2.2 Mean-Field Approximation

The Hamiltonians shown in Sect. 16.2.1 give a starting point for theories of the
exciton-polariton system. However, in practice, it is difficult to exactly treat OHCoul

and OHdip because these Hamiltonians cause many-body problems. In this subsection,
therefore, we discuss the mean-field (MF) approximation in order to reduce the
problems to single-particle problems.

In general, the MF approximation is performed by writing a specific operator
OO as OO D h OOi C ı OO and by neglecting quadratic terms with respect to ı OO in the
Hamiltonians.3 Here, h OOi � TrŒ OO O�� denotes the expectation value for the density
operator O� and the operator ı OO corresponds to a fluctuation around the expectation
value. In our case, the interaction Hamiltonians of OHCoul and OHdip can easily be

reduced to a single-particle problem by employing OO 2 fOak; Oh�k Oek0 ; Oe�k Oek0 ; Oh�k Ohk0g. As

3We note, however, that physical guesses are required for the determination of what operator(s)
should be chosen as OO, e.g. from experiments.
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a result, with definitions of the photon field hOaki � ık;0a0, the polarization function
hOh�k Oek0i � ık;k0pk, and the distribution functions of electrons hOe�k Oek0i � ık;k0ne;k and

holes hOh�k Ohk0i � ık;k0 nh;k, the mean-field Hamiltonian OHMF
S is obtained as

OHMF
S D

X

k

�
Q�e;k Oe�k Oek C Q�h;k Oh�k Ohk � Œ�k Oe�k Oh��k C H:c:�

�

C
X

k

�
�ph;k Oa�k Oak � Œgpk Oa�0 C g�p�

k Oa0�
�
: (16.4)

Here, constants are ignored because the following discussion is not affected. Q�e.h/;k

and �ph;k are respectively defined as Q�e.h/;k � Q�e.h/;k��=2 and �ph;k � �ph;k��, where
Q�e.h/;k � �e.h/;k �

P
k0 U0

k�k0ne.h/;k0 denotes the energy dispersion of electrons (holes)
renormalized by the repulsive electron-electron (hole-hole) Coulomb interaction,
the first (second) term in Eq. (16.2). The well-known bandgap renormalization
(BGR) in semiconductor physics is included in Q�e.h/;k. In contrast, �k � g�a0 CP

k0 U0
k�k0 pk0 results from the attractive electron-hole Coulomb interaction, the third

term in Eq. (16.2), and is called the generalized Rabi frequency [25]. �k has a role
in forming e-h pairs as can be seen in Eq. (16.4).

The mean-field Hamiltonian is thus obtained. However, note that the expectation
values of h OOi (i.e. a0, pk, ne;k, and nh;k) are included in OHMF

S . For self-consistensy,
therefore, the following relation should be satisfied :

h OOi D TrŒ OO O�MF.h OOi/�: (16.5)

Here, O�MF is the density operator determiend by using OHMF
S . The BCS theory and

the MSBE shown below are obtained from this self-consistent equation.

16.2.3 BCS Theory for Exciton-Polariton Condensation

First, we assume that the exciton-polariton system is in equilibrium. According to
the equilibrium statistical mechanics, the density operator O�MF at temperature T can
be described as

O�MF D O�MF
eq � 1

Z
exp.�ˇ OHMF

S /; (16.6)

where Z � TrŒexp.�ˇ OHMF
S /� and ˇ � 1=T. In this case, � is a given parameter

equivalent to the chemical potential, as mentioned above. With �e;k D �h;k for
simplicity, the self-consistent equations obtained from Eq. (16.4) to (16.6) are

a0 D
X

k0

g

�ph;0
pk0 ; pk D �k

2Ek

tanh

�
ˇEk

2

�
; (16.7)
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ne;k D nh;k D 1

2

(
1 �

Q�C
eh;k

Ek

tanh

�
ˇEk

2

�)
; (16.8)

where Q�˙
eh;k � . Q�e;k ˙ Q�h;k/=2 and Ek � Œ. Q�C

eh;k/
2 C j�kj2�1=2. In the derivation,

Bogoliubov transformations of Oek and Ohk can be applied to the first line in Eq. (16.4)
for diagonalization, while a displacement of Oa0 to the second line, because the
Hilbert space of the first (second) line of Eq. (16.4) is spanned only by the electron
and hole (photon) degrees of freedom.

The gap equation, which is formally equivalent to the BCS theory for supercon-
ductors, can then be obtained by substituting Eq. (16.7) into the definition of �k:

�k D
X

k0

Ueff
k0;k

�k0

2Ek0
tanh

�
ˇEk0

2

�
: (16.9)

In this context, �k is an order parameter in the exciton-polariton system as well as
in the superconducting system. Ueff

k0;k
� jgj2=�ph;0 C U0

k0�k
represents an effective

attractive e-h interaction, from which one can find that photon-mediated process
also contributes the attractive interaction. Notice that Eqs. (16.8) and (16.9) are
simultaneous equations with the unknown variables ne;k.D nh;k/ and�k. Especially
for T D 0, this treatment is known to cover the equilibrium phases from the BEC to
the BCS states [14, 15, 26].

16.2.4 MSBE for Semiconductor Lasers

Next, a treatment based on the MSBE is explained for the discussion of the
semiconductor laser, which is characterized by nonequilibrium. In contrast to the
BCS theory, therefore, the effects of environments (Fig. 16.4) cannot be neglected
for lasing; the excitation and thermalization of the e-h system and the loss of photons
from the microcavity. For this reason, the dynamics of the total density operator O�MF

is discussed by writing the total mean-field Hamiltonian OHMF � OHMF
S C OE with the

couplings to the environments OE. Since i@t O�MF D Œ OHMF; O�MF� in the Schrödinger
picture, a time drivative of Eq. (16.5) yields

i@th OOi D TrŒŒ OO; OHMF
S � O�MF�C TrŒŒ OO; OE� O�MF�; (16.10)

where TrŒ OA OB� D TrŒ OB OA� is used. The MSBE is then obtained when the first term
is derived from Eq. (16.4) and the second term is replaced by phenomenological
relaxation terms:
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Fig. 16.4 A schematic
picture of the model
including environments. The
e-h system is excited and
thermalized by the pumping
baths by exchanging carriers.
Photons in the system are lost
into the vacuum

@ta0 D �i�ph;0a0 C ig
P

kpk � �a0; (16.11)

@tpk D �2i Q�C
eh;kpk � i�kNk � 2
.pk � p0k/; (16.12)

@tne.h/;k D �2ImŒ�kp�
k �� 2
.ne.h/;k � n0e.h/;k/; (16.13)

where the last term in each equation is the relaxation term and Nk � ne;k C nh;k � 1
denotes the degree of the population inversion.4 p0k and n0e.h/;k are defined as

p0k � 0; n0e.h/;k � fe.h/;k (16.14)

where fe.h/;k � Œ1 C expfˇ.Q�e.h/;k � �B
e.h//g��1 is the Fermi distribution with the

chemical potential�B
e.h/ of the electron (hole) pumping bath. The phenomenological

approximation shown here is called the relaxation approximation [27]. Each relax-
ation term suggests that the photon field a0 decays with a rate of �, the distribution
function ne.h/;k is driven to approach the Fermi distribution fe.h/;k (Fig. 16.5), i.e.
thermalization (Fig. 16.1), and pk decays due to thermalization-induced dephasing.

Solutions for the laser action can then be obtained by determining the unknown
variables a0, pk, ne;k, nh;k, and � in Eqs. (16.11), (16.12) and (16.13) under a steady-
state condition @th OOi D 0. Again, we emphasize that � is a unknown variable
corresponding to the laser frequency in the steady-state MSBE, in contrast to the
BCS theory. This is equivalent to find an appropriate frequency with which the
lasing oscillation of a0 and pk seems to remain stationary on the rotating frame.

4Here, �1 � Nk � C1 because 0 � ne.h/;k � 1. Population inversion is formed in k-resions with
Nk > 0.
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Fig. 16.5 Energy dispersions
of electrons and holes. The
distribution functions ne;k and
nh;k are driven to approach the
Fermi distributions by the
respective pumping baths

16.3 BEC-BCS-LASER Crossover Theory

In the exciton-polariton system, as shown in Sect. 16.2, the BCS theory and the
MSBE are theoretical frameworks starting from the common Hamiltonians with the
same mean-field approximation. However, the difference is the way of deriving the
self-consistent equations. In the case of the BCS theory, O�MF is directly described
by OHMF

S (Eq. (16.6)). In contrast, in the case of the MSBE, Eq. (16.10) is used
to introduce the phenomenological relaxation terms. We note, however, that any
assumption is not used for O�MF in Eq. (16.10), which indicates that the MSBE may
incorporate the BCS theory at least in principle.

In this context, an approach to derive the BCS theory from the MSBE should be
discussed briefly. We first consider a situation where the effects of the environments
are completely neglected, which is equivalent to set � D 
 D 0 in the MSBE.
However, in this case, the BCS theory cannnot be derived because there is no
term to drive the system into equilibrium in the MSBE.5 A natural condition to
consider is physically a limit of 
 ! 0C after � ! 0 because the system should be
thermalized even though the effects of environments are decreased. Unfortunately,
however, the MSBE does not recover the BCS theory even by taking this limit. The
relationship between the BCS theory and the MSBE is thus discontinuous in spite of

5For � D 
 D 0, the steady state of the MSBE becomes identical to the BCS theory if the solution
of the BCS theory is chosen as an initial condition in the MSBE because Œ O�MF

eq ; OHMF
S � D 0. However,

this is a special case.
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the similarities of the two frameworks. Obviously, the phenomenological relaxation
approximation causes such a problem.

In regard to this problem, we have recently constructed a unified framework [19]
by using a nonequilibrium Green’s function approach [21–23]. The framework, at
first, takes an integral form of simultaneous equations and seems quite different
from the MSBE (see also Appendix 2). However, by rearranging the equations with
particular attention to the problem mentioned above, all of important changes can
successfully be incorporated in the relaxation terms in the MSBE [20]. The result
simply replaces Eq. (16.14) by

p0k � i
Z

d�

2�

�
GR

12;k.�/f1� f B
h .��/g � GR�

21;k.�/f
B
e .�/

�
;

n0e.h/;k �
Z

d�

2�
f B
e.h/.�/A11.22/.˙�I k/; (16.140)

where f B
e.h/.�/ � Œexpfˇ.� � �B

e.h/ C �=2/g C 1��1 is the Fermi distribution of the

electron (hole) pumping bath. GR
’’0;k.�/ is called the retarded Green’s function and

described by elements of a matrix

GR
k .�/ D

�
� � Q�e;k C i
 �k

��
k � C Q�h;k C i


��1
: (16.15)

On the other hand, A11.22/.�I k/ is called the single-particle spectral function and
defined as

A˛˛0.�I k/ � i.GR
˛˛0 ;k.�/� GR�

˛0˛;k.�//: (16.16)

Here, A11.22/.�I k/ means the density of states for electron-like (hole-like) quasi-
particles with the energy � and wave number k.

Some readers might feel difficult to understand the formalism because the above
definitions are unique to the Green’s function approach. However, all we have to
do is the replacement of Eq. (16.14) by Eq. (16.140). The unknown variables are
still a0, pk, ne;k, nh;k, and �, that is, the same as the MSBE. In this sense, the
obtained equations are quite simple, which is one of strong points of this formalism.
From the viewpoint of the Green’s funciton, it is relatively easy to understand
the physical meaning of Eq. (16.140) due to the clear form; the energy integral of
(distribution)�(density of states).6 We refer to such a formalism as the BEC-BCS-
LASER crossover theory.

Now, this formalism enables us to cleary understand the standpoint of the BCS
theory. For this purpose, let us discuss the limit of equilibrium, based on the idea
described above. In the followings, however, �e;k D �h;k and a charge neutrality

6The retarded Green’s funcition is also seen as a kind of density of states.
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�B
e D �B

h are assumed for simplicity. First, in the limit of � ! 0, one can prove
� D �B.� �B

e C �B
h /. This is the same as treating � as a given parameter, and

physically, means that the system reaches in chemical equilibrium with the pumping
baths because there is no photon loss. The BCS theory is then derived after taking the
limit of 
 ! 0C, where the integrals in Eq. (16.140) can be performed analytically.
In this derivation, 
 ¤ 0 is required to be canceled down even though 
 does not
appear in the final expression. This means that thermalization is essential to recover
the equilibrium theory.

Thus, the BCS theory can be derived from the presented theory in the equilibrium
limit. However, in some sense, this situation is physically trivial; the situation is
not limited to such a trivial one for the system to be in equilibrium. Even under a
condition where photons are continuously lost, it may be still possible to identify
the system as being in equilibrium (quasi-equilibrium) as long as the e-h system
is excited and thermalized. A true advantage of the above-presented framework
becomes obvious in such a situation rather than in the trivial one. In this case,
� is still equivalent to the chemical potential but �B > � because the system
is influenced by the photon loss. As a result, � becomes a unknown variable
again. Furthermore, such a quasi-equilibrium condition can easily be obtained from
Eqs. (16.140) to (16.16) as7

.I/ minŒ2Ek� & �B � �C 2
 C 2T:

Here, minŒ2Ek� is the minimum energy required for breaking e-h bound pairs and
�B � � > 0 suggests that there is continuous particle flow from the pumping baths
into the system.8 We can then interpret the condition (I); this is a condition that the
particle flux, thermalization-induced dephasing (= 2
 ), and temperature effect (=
2T), do not contribute to the dissociations of the e-h pairs.

However, the system can no longer be in quasi-equilibrium when nonequilibrium
effect becomes significant. Let us therefore consider a situation where the MSBE,
i.e. the physics of the semiconductor laser, becomes important. Such a condition can
be found from Eqs. (16.140) to (16.16) as

.II/ �B � � & minŒ2Ek�C 2
 C 2T;

because f B
e.h/.˙�/ ' f B

e.h/.
Q�C
eh;k/ turns out to be a good approximation in Eq. (16.140)

for k-resions satisfying

.II0/ �B � � & 2Ek C 2
 C 2T:

7 Under the condition (I), f B
e.h/.�/ in Eq. (16.140) can be approximated by the values at � D ˙Ek

because A˛˛0 .�I k/ and GR
˛˛0 ;k.�/ have peaks around � D ˙Ek, as seen in Eqs. (16.17) and (16.33).

8This means that the system is chemically non-equilibrium with the pumping baths even if the
system is in quasi-equilibrium.
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Note that there are such k-resions whenever the condition (II) is fulfilled. As a result,
we can obtain p0k Š 0 and n0e.h/;k Š fe.h/;k which recovers the MSBE. However, we
stress that the condition (II0) depends on the wave number k; there remain k-regions
still described by the BCS theory. The MSBE and the BCS theory are, thus, coupled
with each other in a strict sense. In this context, the lasing can be referred to as
the BCS-coupled lasing when this viewpoint is emphasized. At the same time, the
physical meaning of � changes into the oscillating frequency of the laser action.

16.4 Second Thresholds, Band Renormalization, and Gain

Spectra

Figure 16.6 shows the number of coherent photons in the cavity ja0j2 and the
frequancy � as a function of �B calculated by our formalism.9 Plots are colour
coded by red (blue) when the quasi-equilibrium condition (I) (the lasing condition
(II)) is satisfied, while by green when neither of the conditions is satisfied. In
Fig. 16.6a, ja0j2 arises with increasing �B, the point of which is called the first
threshold. In this situation, the system is in quasi-equilibrium regime (red) and �
is around the lower polariton level10 ELP in Fig. 16.6b. The first threshold therefore
means that the exciton-polariton BEC is caused because the chemical potential of
the system reaches the lowest energy of the exciton polariton, ELP.

With further increase of �B, the system changes from the quasi-equilibrium
regime (red) into the lasing regime (blue) through a crossover regime (green).
Around the crossover regime in Fig. 16.6a, a second threshold can be seen where the
number of coherent photons grows rapidly again. � is then blue-shifted from ELP

into the bare cavity level Ecav. Furthermore, the kinetic hole burning can be seen in
the distribution function of electrons ne;k (the blue arrow in the inset to Fig. 16.6a).
These resuls demonstrate that the exciton-polariton BEC has smoothly changed into
the semiconductor laser with the second threshold.

In experiments [28–34], the second threshold and the blue shift has been reported
since more than 10 years ago, the mechanism of which has been attributed to a

9 In the numerical calculations, the k-dependence of �k is eliminated by using a contact potential
U0

q¤0
D U D 2:66 � 10�10 eV with cut-off wave number kc D 1:36 � 109 m�1. The other

parameters are me D mh D 0:068m0 (m0 is the free electron mass), �B
e D �B

h , T D 10K,
g D 6:29 � 10�7 eV, 
 D 4meV, and � D 100�eV. In this context, our calculations are not
quantitative but qualitative even though the parameters are taken as realistic as possible. In this
situation, the exciton level (� Eex) is formed at 10 meV below Eg (Eex D Eg � 10meV) and the
lower polariton level ELP is created at 20 meV below Eg (ELP D Eg � 20meV) under the resonant
condition Ecav D Eex [20].
10For ELP and Eex, see also Appendix 1. Excitonic effects are discussed in the low density limit.
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Fig. 16.6 Numerical results of (a) the coherent photon number in the cavity ja0j2 and (b) the
frequency � as a function of �B. Plots are colour coded by red and blue when satisfying the quasi-
equilibrium condition (I) and the lasing condition (II), respectively. Green colours are used when
neither of them are satisfied. � represents the chemical potential in the quasi-equilibrium regime
(red) but the laser frequency in the lasing regime (blue). Inset: the distribution function of electrons
ne;k (black) and the polarization pk (red). In the lasing regime (B), a characteristic dip can be seen
in the distribution (the bule arrow), which is known as one of the signatures of lasing and called
the kinetic hole burning

shift into the weak coupling regime due to dissociations of Coulomb-bound e-h
pairs (excitons); the lasing phase is then achieved as a result. However, there is no
convincing discussion why such dissociations lead to nonequilibration essential for
lasing.

According to our formalism, this empirical picture can be investigated and shown
to be incorrect. This is because, even in the lasing regime, there are gaps around
˙�=2 in the renormalized band structure as shown in the left of Fig. 16.7. An
analytical form of A11.22/.�I k/, obtained by Eqs. (16.15) and (16.16), enables us
to conveniently study the renormalized band:

A11.22/.�I k/ D 2jukj2



.� � Q��
eh;k � Ek/2 C 
2

C 2jvkj2



.� � Q��
eh;k ˙ Ek/2 C 
2

:

(16.17)
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Fig. 16.7 Left; A renormalized band structure in a lasing phase (the point B in Fig. 16.6). The
gaps are opened around ˙�=2 with the magnitude of minŒ2Ek�. Right; Optical gain spectra for the
exciton-polariton BEC (A) and for the lasing phase (B). Panels (A) and (B) correspond to the point
A and B in Fig. 16.6, respectively. Aqua (pink) represents the gain (absorption) (Panels (A) and (B)
are reproduced with permission from [20])

Here, uk and vk are the Bogoliubov coefficients defined as

uk �

s
1

2
C

Q�C
eh;k

2Ek

; vk � ei�k

s
1

2
�

Q�C
eh;k

2Ek

; (16.18)

with �k � arg.�k/. These equations have remarkable similarities to the BCS theory
in superconductors [20, 35]. Therefore, it is clear that the gaps are opened around
˙�=2with the magnitude of minŒ2Ek�when Q��

eh;k D 0 i.e. �e;k D �h;k with �B
e D �B

h .
Note, however, that the unknown variables contained in Eqs. (16.17) and (16.18) are
determined by the BEC-BCS-LASER crossover theory (Eqs. (16.11), (16.12) and
(16.13) with Eqs. (16.140), (16.15) and (16.16)) rather than the BCS theory. In the
BCS phase, the existence of the gap around ˙�=2 means the formation of Cooper
pairs around the Fermi level because ˙�=2 is equivalent to the Fermi level. In
contrast, in the lasing phase, ˙�=2 corresponds to the laser frequency.11 Thus, the
gap indicates the formation of bound e-h pairs by mediating photons around the
laser frequency. The semiconductor laser in Fig. 16.3 is drawn along this picture,
where the e-h pairs are explicitly depicted.

Such a “lasing gap” is, at least in principle, measureable in the optical gain
spectrum G.!/ by irradiating probe light with frequency ! because G.!/ is

11The origin of the gap is analogous to the Rabi splitting in resonance fluorescence [20, 27, 36, 37].
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strongly affected by the renormalized band structure in general. As a result, in the
gain spectrum of the lasing phase (Fig. 16.7B), there appears a transparent region
originating from the gap. The optical gain spectrum is thus one of important ways
for the verification of the lasing gap.

In addition, we note that behaviors of the gain spectra vary drastically when the
exciton-polariton BEC is changed to the laser phase. By comparing Fig. 16.7A, B,
for example, one can find only absorption but no gain in Fig. 16.7A. This is mainly
because there is no k-region with inverted population Nk > 0 ., nh;k D ne;k > 0:5/

in Fig. 16.6A. In contrast, optical gain is caused in Fig. 16.7B because there are k-
regions with Nk > 0 in Fig. 16.6B. Thus, the existence of the gain after the second
threshold gives us important information to identify the phases in the system.12

16.5 Conclusions and Perspectives

In this contribution, we have presented a brief explanation of the BCS theory
and the MSBE in the exciton-polariton system, to highlight their similarities and
differences. We have then shown a framework of describing the BCS theory (the
BEC and BCS phases) and the MSBE (the semiconductor laser) in a unified way.
As a result, the existence of bound e-h pairs in the lasing phase as well as the lasing
gap have been pointed out. The results presented here are the physics elucidated
for the first time by considering the BEC, BCS, and Laser phases in a unified way.
However, for example, effects of spontaneous emission [36] and pure dephasing [38]
are still unclear. In this respect, further studies are needed for a full understanding of
this system. Experimantal studies are also important, in particular, in a high density
regime [28–34, 39].

Although we have focused on the exciton-polariton system in this contribution,
we finally would like to emphasize that this system has a close relationship
with superconductors and the Feshbach resonance in cold atom systems because
interacting Fermi and Bose particles play important roles in the formation of ordered
phases. In this sense, it would be interesting to study the lasing gap by terahertz
pulses in a manner similar to superconductors [40, 41]. Inclusions of the e-h center-
of-mass fluctuations with mass imbalance are also important, as discussed in the
cold atom systems [42], because these effects cannot be taken into account within
the mean-field approximation. We further note that fundamental problems of the
nonequilibrium statistical physics are also included in this system in the sense of
providing a bridge between the equilibrium and the nonequilibrium phases. We hope
that our approach also stimulates new studies in a wide range of such fields.

12In fact, the second threshold and the blue-shift can also be caused by a different mechanism even
if the system remains in quasi-equilibrium. In this situation, however, the gain spectrum shows
only absorption [19].
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Appendix 1: Excitonic Effects in the Low Density Limit

In semiconductor exciton-polariton systems, the excitonic effects play quite impor-
tant roles in the formation of Coulomb-bound e-h pairs (excitons) and exciton-
polaritons. In this Appendix, we, therefore, confirm the excitonic effects in our
formalism.13

For this purpose, we now assume that the density of electrons and holes are
sufficiently low (ne;k; nh;k � 1 or Nk Š �1) with no pumping and loss (
 D 0

and � D 0). Under this condition, 2 Q�C
eh;k in Eq. (16.12) can be written as

2 Q�C
eh;k D �e;k C �h;k � � D k2

2mr
C Eg � �; (16.19)

where 1=mr D 1=me C 1=mh. Then, Eqs. (16.11) and (16.12) can be described as

0 D �.�ph;0 � �/a0 C g
X

k

pk; (16.20)

0 D �
�

k2

2mr
C Eg � �

�
pk C g�a0 C

X

k0

U0
k0�k

pk0 ; (16.21)

where the definition of �k � g�a0 C
P

k0 U0
k�k0pk0 is used. Especially, for g D 0 in

Eq. (16.21), we obtain

k2

2mr
pk �

X

k0

U0
k0�k

pk0 D �.Eg � �/pk; (16.22)

which is nothing but the SchrRodinger equation in k-space for the single exciton
bound state [19, 25, 26]. This means that the Coulomb-bound e-h pairs (excitons)
can be formed in the low density limit in the presented formalism. In such a case,
pk can be described by the bound state e-h pair wave-function �k (pk D ��k withP

k j�kj2 D 1) with � D Eex, where Eex is the energy level of the exciton and
the binding energy corresponds to Eg � Eex. The formation of the exciton is, thus,
includeed in the theory.

13Discussion in Appendix 1 is reproduced from the supplemental material in Ref. [20].
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Although pk is changed from the exciton wave-function �k by the photon-
mediated attraction in the case of g ¤ 0, it is instructive to consider the case where
such an effect is not so large. In this limit, by substituting pk Š ��k into Eqs. (16.20)
and (16.21), we obtain

0 D .� � Ecav/a0 C gex�; (16.23)

0 D .� � Eex/�C g�
exa0; (16.24)

where gex � g
P

k �k D g�ex.r D 0/ is the coupling constant renormalized by
the exciton wave-function. Then, � is given by one of the eigenvalues of these two
coupled equations, which are the eigen-energies of the upper and lower polaritons:

EUP=LP D Ecav C Eex ˙
p
.Ecav � Eex/2 C 4jgexj2
2

: (16.25)

Here, EUP and ELP in Eq. (16.25) are the well-known expressions obtained when
the excitons are treated as simple bosons [25]. This means that the formation of
exciton-polaritons are also included in the theory. The excitonic effects are, thus,
taken into account in our formalism within the mean-field approximation. We note
that the procedure shown here is basically the same as Section 2.1.2 in Ref. [19].

Appendix 2: Proof of Equivalence

In the main text, we have mentioned that the formalism in Ref. [19] seems quite
different from the MSBE. This formalism can be described by the follwoing
simultaneous equations with the unknown variables of �k, ne;k, nh;k, and �:

�k D
X

k0

U
eff;�
k0;k

�k0

Z 1

�1

d�

2�
Lk0.�/

�
n
.FB

e .�/C FB
h .�//.� � Q��

eh;k0/C .FB
e .�/� FB

h .�//.
Q�C
eh;k0 C i
/

o
; (16.26)

ne.h/;k D 1

2
�
Z 1

�1

d�

2�
Lk.�/

n
FB

e.h/.�/Œ.� ˙ Q�h.e/;k/
2 C 
2�C FB

h.e/.�/j�kj2
o
;

(16.27)
where U

eff;�
k0;k

� jgj2=.�ph;0 � i�/C U0
k0�k

and

Lk.�/ � 


Œ.� � Q��
eh;k � Ek/2 C 
2�Œ.� � Q��

eh;k C Ek/2 C 
2�
: (16.28)
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FB
e .�/ and FB

h .�/ are respectively defined as

FB
e .�/ � tanh

�
ˇŒ� � �B

e C �=2�

2

�
D 1 � 2f B

e .�/; (16.29)

FB
h .�/ � tanh

�
ˇŒ� C �B

h � �=2�

2

�
D 2f B

h .��/ � 1: (16.30)

In this Appendix 2, therefore, we prove that Eqs. (16.26), (16.27), (16.28), (16.29)
and (16.30) are equivalent to Eqs. (16.11), (16.12) and (16.13) with Eqs. (16.140),
(16.15) and (16.16) under the steady-state condition @th OOi D 0.

For this purpose, we here note that the following sum rule is satisfied for the
single-partice spectral function:

Z 1

�1

d�

2�
A˛˛0 .�I k/ D ı˛;˛0 : (16.31)

This relation can be confirmed by the direct integration of A˛˛0 .�I k/ described by
elements of a matrix

A.�I k/ D �2
jDk.�/j2

�
ImŒD�

k .�/.� C Q�h;k C i
/� ImŒDk.�/��k

ImŒDk.�/��
�
k ImŒD�

k .�/.� � Q�e;k C i
/�

�

D �2

jDk.�/j2

 
�Œ.� C Q�h;k/

2 C 
2 C j�kj2� 2�k.� � Q��
eh;k/

2��
k .� � Q��

eh;k/ �Œ.� � Q�e;k/
2 C 
2 C j�kj2�

!
;

(16.32)

which is obtained from the definition of Eq. (16.16) with Eq. (16.15):

GR
k .�/ D 1

jDk.�/j2
�

D�
k .�/.� C Q�h;k C i
/ �D�

k .�/�k

�D�
k .�/�

�
k D�

k .�/.� � Q�e;k C i
/

�
; (16.33)

where

Dk.�/ � .� � Q��
eh;k C Ek C i
/.� � Q��

eh;k � Ek C i
/: (16.34)

The diagonal element A11.22/.�I k/ can then be described as Eq. (16.17). In the
following, by using thse expressions, Eqs. (16.26) and (16.27) are derived from
Eqs. (16.11), (16.12) and (16.13) with Eqs. (16.140), (16.15) and (16.16).

ā-integral forms of Nk and pk: First, we discuss �-integral forms of the population
inversion Nk � ne;k C nh;k � 1 and the polarization function pk because Eqs. (16.26)
and (16.27) are described by the integration with respect to �. From Eqs. (16.13)
and (16.140) with @tne.h/;k D 0, we obtain
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Nk D � 2



ImŒ�kp�
k �C

Z 1

�1

d�

2�

˚
f B
e .�/A11.�I k/ � .1 � f B

h .��//A22.�I k/
�
:

(16.35)
where Eq. (16.31) is used. In a similar manner, from Eqs. (16.12) and (16.140) with
@tpk D 0,

pk D � �k

2. Q�C
eh;k � i
/

Nk

C 


Q�C
eh;k � i


Z 1

�1

d�

2�

˚
Œ1 � f B

h .��/�GR
12.�I k/ � f B

e .�/G
R�
21 .�I k/

�
: (16.36)

Therefore, with Eqs. (16.32) and (16.33), substitution of Eq. (16.36) into Eq. (16.35)
yields

Nk D
Z 1

�1

d�

2�

2


jDk.�/j2
n
f B
e .�/Œ.� C Q�h;k/

2 � j�kj2 C 
2�

CŒf B
h .��/ � 1�Œ.� � Q�e;k/

2 � j�kj2 C 
2�
o
: (16.37)

By substituting Eq. (16.37) into Eq. (16.36), we also find

pk D �k

Z 1

�1

d�

2�

2


jDk.�/j2
n
Œf B

h .��/ � 1�.� � Q�e;k � i
/ � f B
e .�/.� C Q�h;k C i
/

o
:

(16.38)
Although the derivation of Eqs. (16.37) and (16.38) is straightforward, the following
equations would be useful in the derivation:

˙j�kj2 ImŒDk.�/. Q�C
eh;k � i
/�C.Œ Q�C

eh;k�
2 C 
2/ ImŒD�

k .�/.� � Q�e.h/;k C i
/�

D �
.E2k C 
2/..� � Q�e.h/;k/
2 � j�kj2 C 
2/;

(16.39)

.� C Q�h/
2 � j�kj2 C 
2 � Dk.�/ D 2. Q�C

eh;k � i
/.� C Q�h C i
/; (16.40)

.� � Q�e/
2 � j�kj2 C 
2 � D�

k .�/ D �2. Q�C
eh;k � i
/.� � Q�e � i
/: (16.41)

The �-integral forms of Nk and pk are thus obtained as Eqs. (16.37) and (16.38),
respectively. These expressions are helpful to find the �-integral forms of �k, ne;k,
and nh;k, which turn out to be the same as Eqs. (16.26), (16.27), (16.28), (16.29),
and (16.30), as shown below.

Derivation of �k: From the definition of �k � g�a0 C
P

k0 U0
k�k0pk0 and

Eq. (16.11) with @ta0 D 0, �k can be described as
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�k D
X

k0

� jgj2
�ph;0 � i�

C U0
k0�k

�
pk0 D

X

k0

U
eff;�
k0;k

pk0 : (16.42)

Therefore, after the substitution of Eq. (16.38) into Eq. (16.42), we obtain

�k D
X

k0

U
eff;�
k0;k

�k0

Z 1

�1

d�

2�
Lk0.�/

n
ŒFB

h .�/� 1�Œ� � Q�e;k0 � i
�

CŒFB
e .�/ � 1�Œ� C Q�h;k0 C i
�

o
; (16.43)

where the definitions of Eqs. (16.28), (16.29) and (16.30) are used with Lk.�/ D

=jDk.�/j2. This equation can be rewritten as

�k D
X

k0

U
eff;�
k0;k

�k0

Z 1

�1

d�

2�
Lk0.�/

n
.FB

e .�/C FB
h .�/� 2/.� � Q��

eh;k0/

C .FB
e .�/� FB

h .�//.
Q�C
eh;k0 C i
/

o
: (16.44)

By noting
R

d�
2�

Lk0.�/.� � Q��
eh;k0/ D 0, we thus find that Eq. (16.44) is equivalent to

Eq. (16.26).

Derivation of ne;k and nh;k: Our remaining task is now to derive the �-integral
forms of ne;k and nh;k. By multiplying�k by the complex conjugate of Eq. (16.38),

1



ImŒ�kp�

k � D j�kj2
Z 1

�1

d�

2�

2


jDk.�/j2
ff B

e .�/C f B
h .��/ � 1g; (16.45)

can be obtained. The substitution of Eq. (16.45) into Eq. (16.13) with @tne.h/;k D 0,
then, yields

ne.h/;k D
Z 1

�1

d�

2�

2


jDk.�/j2
n
Œ.� ˙ Q�h.e/;k/

2 C 
2�f B
e.h/.˙�/

�j�kj2Œf B
h.e/.��/ � 1�

o
; (16.46)

which can be rewritten as

ne.h/;k D
Z 1

�1

d�

2�
Lk.�/

n
Œ.� ˙ Q�h.e/;k/

2 C 
2 C j�kj2�

�Œ.� ˙ Q�h.e/;k/
2 C 
2�FB

e.h/.�/� j�kj2FB
h.e/.�/

o
: (16.47)
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We then find that Eq. (16.47) is identical to Eq. (16.27) because, from Eqs. (16.31)
and (16.32),

Z 1

�1

d�

2�
Lk.�/Œ.� ˙ Q�h.e/;k/

2 C 
2 C j�kj2� D 1

2
: (16.48)

Thus, we have shown that Eqs. (16.26) and (16.27) are derived from Eqs. (16.11),
(16.12) and (16.13) with Eqs. (16.14), (16.140), (16.15) and (16.16). This means
that the formalism in Ref. [19] is equivalent to Eqs. (16.11), (16.12) and (16.13)
with Eqs. (16.140), (16.15) and (16.16).
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Chapter 17

High-Orbital Exciton-Polariton Condensation:

Towards Quantum-Simulator Applications

Na Young Kim, Kenichiro Kusudo, Tim Byrnes, Naoyuki Masumoto,

and Yoshihisa Yamamoto

17.1 Introduction

Indistinguishable quantum particles are divided into two groups according to spin
statistics: fermions and bosons [1]. As known as the Pauli exclusion principle,
two fermions, spin-half-integer particles, can not occupy the same quantum state
simultaneously according to Fermi-Dirac statistics. In contrast, spin-integer parti-
cles, bosons can, under suitable circumstances, accumulate in one quantum state
predominantly, a phenomenon generally called “condensation” governed by Bose-
Einstein statistics.

In atomic physics, electronic orbital and spin configurations are explained by
the fermionic statistics and exclusion principle. Physical and chemical properties
of electronic material systems are closely linked to the orbital and spin nature of
valence electrons, and thus many theories, ranging from a simple to a sophisticated
level, have been developed to capture key features of various material systems [2].
Despite the success of these theories, some materials still elude complete under-
standing, for example, high temperature superconductors, transitional metal oxides,
magnetic materials and topological materials. The difficulty of these materials is
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thought to originate from the coupling among orbital, spin degrees of freedom as
well as many-body interactions [2, 3]. Understanding these effect is one of the core
problems in condensed matter physics at present.

The study of many-body bosonic systems have an equally varied and interesting
history. In the early 1920s, Einstein predicted using a quantum statistical approach,
noninteracting identical bosons would occupy a unique quantum state of the
system, a phenomenon referred to as Bose-Einstein condensation (BEC) [1, 4–
6]. The physics of BEC is deep and rich. It has been anticipated that it would
be fundamentally related to fascinating effects such as superfluidity in Helium-4
liquid [7, 8] and superconductivity [9]. Since its prediction, 70 years passed before
it was actually observed in a laboratory setting for a weakly interacting dilute gas
of bosonic atoms [10, 11] by harnessing laser cooling and magnetic evaporative
cooling techniques [12–14]. Experimental evidence of the atomic BEC is found
from the velocity distribution of particles. Below the transition critical temperature,
the population of atoms with the close-to-zero velocity values surges, whereas
the velocity distribution of atoms above the transition temperature is thermally
populated [10, 11]. The atoms in the lowest state share the same macroscopic
quantum phase to exhibit quantum interference [10, 11]. This collective quantum
state obeys Bose-Einstein statistics with a chemical potential much smaller than
thermal energy. The BEC state is described by a macroscopic order parameter with
an average density and a fixed phase as a consequence of spontaneous symmetry
breaking.

Besides dilute cold atom gases, BEC also appears in elementary excitations
(or quasiparticles) in solids. Superconductivity can be understood as a BEC of
Cooper pairs, composite quasi-bosonic particles consisting of two electrons [9].
Magnons, quanta of magnetic excitations, also exhibit BEC resulting in magnetic
ordering [15, 16]. Photon BEC has been recently observed in dye-filled cavities [17].
In solid state systems, there has been a long history of realizing BEC with
quasiparticles. In this regard, excitons and exciton-polaritons in semiconductors
are the most studied systems [4, 18]. This chapter focuses on the exciton-polariton
condensation in GaAs-based semiconductors, reviewing its fundamental properties
as well as unique dynamic nature of condensation. In particular, we give an overview
of recent efforts to demonstrate coherent exciton-polaritons with different orbital
symmetries by placing them to various two-dimensional lattice potentials. We
envision that the polariton-lattice system would be a promising solid-state platform
for quantum simulation applications [19, 20], which would address unresolved
quantum phenomena in various fields including condensed matter physics, high
energy physics and chemistry [21, 22].

The chapter is constructed as follows: Sect. 17.2 introduces the basics of exciton-
polaritons and their fundamental condensation properties without any external
lattices, followed by the technical probes to identify condensation properties. In
Sect. 17.3, we explain our methods to engineer exciton-polariton condensation
with various lattice potential geometries, and the experimental signatures of the
exciton-polartions in artificial band structures are shown. Our current understanding
on the physics of the polariton-lattice system is presented. Finally, we remark
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on perspectives of this newly established solid-state particle-lattice system in
the context of quantum simulation and the insights of unknown phenomena in
Sect. 17.4.

17.2 Microcavity Exciton-Polaritons

In semiconductors, the crystal ground state in thermal equilibrium, namely the
vacuum state, has all electrons in the valence band and none in the conduction band
with an energy gap (Eg) separating two bands. Electrically it is insulating due to the
lack of free electrons, and optically it is dark. Suppose that the system is disturbed
by an external energy source either electrically or optically, and the energy of the
external stimulation is equal to or bigger than Eg. The system then departs from
equilibrium and responds to the disturbance such that electrons in the valence band
are promoted to the conduction band, leaving positively-charged holes behind in
the valence band. An electron (e) and a hole (h), which are oppositely charged
particles, experience a Coulomb attraction to form a bound state. Its bound state
is the elementary electronic excitation in semiconductors. This excitation behaves
a quasiparticle, that may freely move within the semiconductor and is called an
exciton.

Exciton As a bound e-h pair, the relative coordinate wavefunction is hydrogen (H)-
like, whereas the center-of-mass wavefunction is a plane wave. In semiconductors,
we should consider the effect of many electrons, which forms bands. A mean-field
treatment is successful to handle many-body problems in terms of a single particle
description by averaging the effect of all individual particles. In this approximation,
two physical quantities to describe excitons, the Bohr radius (aB) and the binding
energy (EB), have the same forms of those in the hydrogen atom except for the
effective mass (m�) of the particle and the relative permittivity (�r) of the medium:
aB D �r�0„2=e2m� � 0:53�r=.m

�=m0/ in unit of Å, and EB D m�e4=h2�2r �
2
0 D

„2=2m�.aB/
2 � 13:6.m�=m0/=�

2
r in unit of eV, where �0 is the vacuum permittivity,

and „ is the planck constant h divided by 2� . For example, the effective mass of
a heavy-hole exction in bulk GaAs is around 0.06me, much lighter than the bare
electron mass me and �r is 12.9, yielding that EB is around 5 meV and aB is around
11.4 nm. Excitons are composite bosons consisting of two fermions, and in the dilute
density limit where excitons do not overlap, they are predicted to undergo BEC
phase transition [4, 18]. Excitonic condensation has been intensely studied both in
theory and experiments [18, 23, 24].

The excitonic effect is significantly magnified in confined structures. Thanks
to recent semiconductor growth techniques such as molecular beam epitaxy and
MOCVD, low-dimensional structures (a quantum-well (QW), a quantum wire and
a quantum dot) are readily made, where quantum confinement effects are essential.
A QW is a thin layer of a small bandgap semiconductor surrounded by a large
bandgap semiconductors such that charge carriers are free in a transverse plane but
confined in the growth direction. The enhanced excitonic effect in the QW can be
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qualitatively understood as follows: in contrast to the bulk, the exciton Bohr radius
is often smaller than the QW thickness so that excitons are squeezed inside the
QW, reducing the average distance of electrons and holes. The stronger Coulomb
interaction between electrons and holes binds the excitons more tightly, leading to
a bigger binding energy of QW excitons and a reduced Bohr radius. The GaAs QW
exciton has a binding energy EB � 10meV and a Bohr aB around 6 nm.

Cavity photon Using the same growth techniques, a cavity (or a resonator) to
confine photons can be prepared monolithically in the same semiconductors. By
alternating �=4-thick semiconductors with different refractive indices multiple
times (� is the wavelength of light in semiconductors), a dielectric mirror can be
constructed. It is called a distributed Bragg reflector (DBR), where optical fields
with wavelengths close to � are reflected owing to the constructive interference
of the partial refections at the interfaces of two semiconductors. A stop band is
the wavelength range where the reflectance is close to 1. While there are many
shapes and sizes of microcavities [25], a pair of the DBRs form a simple 2D Fabry-
Perot resonator, where the light can bounce back and forth for a characteristic
time determined by the quality factor of the resonator. This planar resonator has
advantages in semiconductor photonic devices since it can be monolithically grown
with aforementioned quantum confined structures, quantum wires, quantum dots
and QWs. The microcavity size is on the order of the wavelength �, where only
one longitudinal mode is allowed. The quality factor Q of the microcavity is a
dimensionless quantity, defined as the ratio between the full-width at half maximum
of a cavity mode and the mode center frequency. A high Q value means the narrow
linewidth, equivalently a long photon lifetime. A typical Q � 1000 in GaAs-based
semiconductor corresponds to a photon lifetime, roughly a few ps. The record Q

value in the Fabry-Perot is on the order of 1 million, confining photons close to
1�s.

The 2D microcavity modifies the character of confined photons: first, the photon
density of states is quantized similar to the quantization of the electron density of
states in nanostructures; second, the ordinarily massless photons gain an effective
mass. The effective mass of a cavity photon can be understood in a following way.
The confined photon energy Ec satisfies Ec D „vjkj, which is the same relation as a
photon in vacuum except the light velocity v in the medium of a refractive index nc

is v D c=nc in terms of the speed of light in vacuum c. In the 2D microcavity, the
longitudinal component of the wave vector, kc, is given by kc D nc2�=�. Typically,
for a sub-micrometer �, kc is on the order of 107 1/m, bigger than typical values of
the transverse component kk near the zero momentum value. In the region kk << kc

the cavity photon energy can be approximated as:

Ec D „vjkj D „v
q

k2c C k2k D „vkc

r
1C

�
kk

kc

�2
;

� „vkc

�
1C k2k

2k2c

�
� Ec0 C „2k2k

2mc
;
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where the effective photon mass mc is set to mc D „v=c2, and Ec0 is the cavity
photon energy at k D 0. Graphically, the cavity photon dispersion becomes
parabolic as shown in Fig. 17.1b, whose curvature is related to the effective mass.

Now consider a microcavity, where a QW is placed at the maximum of the cavity
photon mode amplitude(Fig. 17.1a). If the QW exciton energy is on resonance with
the cavity photon energy, a reversible energy exchange between the two can occur.
When the conversion rate is much faster than the decay rates of photon and QW
exciton, the system enters in a so-called strong coupling regime. One manifestation
of the strong coupling is an anti-crossing feature in energy-momentum dispersion,
where two hybridized modes appear. These hybridized modes in the microcavity
with the embedded QW are called microcavity exciton-polaritons, cavity polaritons

or exciton-polaritons in the literature since the first observation of the strongly
coupled exciton-photon modes [26]. In this chapter, either exciton-polaritons or

Fig. 17.1 (a) Schematic microcavity structure with embedded quantum-well (QW) layers sur-
rounded by two top and bottom distributed Bragg reflectors (DBRs). (b) The energy dispersion
relations of cavity photon (blue), QW exciton (blue), upper polariton (UP, red) and lower polariton
(LP, red) in a microcavity with a QW. (c) Reflectance spectrum of an empty cavity. A center sharp
dip is a longitudinal cavity mode and the region between two reflectance minima is called a stop
band. (d) Reflectance spectrum of the strongly-coupled exciton-polariton. The energy difference
between two dips is a photon-QW exciton coupling strength denoted as ˝
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polaritons are used for 2D quasi-particles as an admixture of the cavity photon
and QW-exciton. Section 17.2 begins with the basics of exciton-polaritons and their
properties arising from their bosonic nature followed by the experimental techniques
to identify the polariton properties.

17.2.1 Exciton-Polaritons: Fundamentals

An exciton-polariton is a quasiparticle resulting from the strong coupling between
the cavity photon and the QW exciton [27–29]. The basic physics of exciton-
polariton in the low-density regime is captured by a simple 2-by-2 matrix Hamil-
tonian, where the bases are the constituent particles, jXkk

i with an QW exciton
energy EX

kk
D „!X

kk
and jCkk

i with a cavity energy Ec
kk

where kk is the in-plane
momentum. By momentum conservation, excitons with momentum kk only couple
to photons with the same momentum. Parameterizing the interaction energy between
two modes by „�, the system Hamiltonian matrix at momentum kk is

OH D
 

EX
kk

„�
„�� Ec

kk

!
:

The Hamiltonian can be diagonalized by a new basis, jUPkk
>D �vkk

jXkk
>

Cukk
jCkk

> and jLPkk
>D ukk

jXkk
> Cvkk

jCkk
> with coefficients ukk

and
vkk

giving the photon and exciton amplitudes respectively. We call these new
eigenmodes the upper polariton (UP) and lower polariton (LP) with energies

E
UP;LP
kk

D
EX

kk
C Ec

kk

2
˙

q
.EX

kk
� Ec

kk
/2 C .2„�/2

2
:

The energy and in-plane momentum dispersion relations of four modes are drawn
in Fig. 17.1b: cavity photon and QW excitons in blue, UP and LP in red. Two normal
modes anti-cross near kk D 0, and the doublet is separated by the strength of the
interaction energy „�. The curvature of the dispersions relates to the effective mass
of the particles and the density of states. For small values of kk, the LP is more like
a photon, but the LP is more a exciton for large kk.

Experimentally, we characterize the system parameters by reflection and lumi-
nescence spectroscopy. Figure 17.1c shows the reflectance of an empty microcavity,
where the dip inside the stop band corresponds to the longitudinal cavity mode. An
exciton energy state is readily identified in photoluminescence as a recombination
process. The loaded cavity with the QW has a distinctive reflectance spectrum taken
along the kk D 0, featuring double dips in Fig. 17.1d. The separation between two
dips is the direct measure of the interaction energy, referred to be vacuum Rabi
splitting analogous to an atom-cavity system.
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Figure 17.1b illustrates the particular case of zero detuning (� D 0), where
EX

kk
and Ec

kk
are on resonance at kk D 0, resulting in the LP and UP with equal

exciton and photon fractions of jCkk
j2 D jXkk

j2 D 1=2. The detuning parameter
� D Ec

kkD0 � EX
kkD0 quantifies the energy difference between two individual modes.

By shifting the cavity photon energy branch with respect to the exciton energy, the
LP can be more photon-like (red detuning) or more exciton-like (blue detuning).

17.2.2 Experimental Techniques

This subsection briefly summarizes the experimental setup and the standard experi-
mental procedure to characterize a microcavity-QW wafer. Exciton-polaritons have
a finite lifetime, leaking as photons through the microcavity. According to energy
and momentum conservations in 2D, the energy and momentum of leaked photons
have a direct relation to those of the exciton-polaritons inside the cavity. Thus,
capturing the leaked photons and analyzing the information allow us to study the
state of exciton-polaritons.

We build a free-space Fourier optics setup [30]. Each lens performs a Fourier
transform, converting the real space coordinate into the momentum space coordinate
and vice versa, depending on the lens location. Figure 17.2a, b illustrate the
schematic of the setup to access the information in the real space and the momentum
space, respectively. The signals are analyzed by a spectrometer, which provides
the energy-resolved information in the real and momentum spaces. Furthermore,
the temporal dynamics of exciton-polaritons is characterized by a streak camera.
Figure 17.2c is a Mach-Zehnder interferometer for the first-order correlation
measurement.

The following is a typical protocol to characterize a grown microcavity-QW
wafer. Making a wedged cavity, whose cavity length is spatially varying, we are
able to access exciton-polaritons at different detuning values. First, we measure the
detuning parameters in space via reflectance spectroscopy as a broadband white
light scans the wafer. By tracing the doublet dips like Fig. 17.1d, we construct the
spatial map of the UP and LP energy values as well as the detuning values. Next,
the photoluminescence imaging and spectroscopy provide the polariton density
distribution as well as the energy values in the real and momentum spaces.

The GaAs- and CdTe-based samples are studied at low temperatures around
4–10 K in a cryostat for protecting excitons from thermal energy. Resorting to
large bandgap semiconductors such as GaN [31–33], ZnO [34, 35], and organic
material [36–38], measurements are done at room temperatures.

17.2.3 Exciton-Polariton Condensation

As composite bosons, the dynamics of exciton-polaritons are governed by Bose-
Einstein statistics, and are expected to be condensed at sufficiently low tem-



370 N.Y. Kim et al.

Fig. 17.2 Sketches of photoluminescence setup for a near-field (a) and a far-field (b) measure-
ments. (c) A Mach-Zehnder interferometer used for mapping a phase information in space

peratures [27–29]. Whereas the BEC is a thermodynamic phase transition at
equilibrium [1, 39], it is crucial to understand the non-equilibrium nature of exciton-
polariton condensation due to their finite lifetime. Since exciton-polaritons decay
as photons out of the cavity, the system has to be continuously replenished if
a constant condensate population is desired. This highly open-dissipative setting
makes exciton-polariton condensation in the non-equilibrium regime.

In the microcavity-QW structure, we vary the particle density, which is an
alternative route towards condensation as lowering the temperature. The polariton
density as a function of in-plane momentum values is measured by examining the
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Fig. 17.3 Properties of exciton-polariton condensations. (a) A lower polariton (LP) population
distribution (top) and LP energy spectra (bottom) in the momentum space as a function of pump
power values. (b) (Left) Characteristics of the LP ground state as a function of pump power: the
intensity (black), spectral linewidth (red), energy shift (green). (Right) A LP occupancy in energy
as a function of pump power, exhibiting quantum degeneracy threshold. Figures (a) and (b) are
taken from Ref. [44] and permission is granted. (c) Interference of LP condensates to exhibit spatial
coherence from Young’s double slit measurements reported in Ref. [40]. (d) Quantum degeneracy
behavior of LPs in the LP momentum distribution at various detuning and pump power values,
computing normalized chemical potential (left) and LP temperature with respect to the lattice
temperature (right) captured from in Ref. [41]

captured photon intensity (Fig. 17.3a). In a typical experiment where condensation
is realized, the polariton density at the lowest energy state shows a threshold
behavior as shown in Fig. 17.3b. The off-diagonal long range order, one of the
important concepts in BEC and superfluidity, is directly related to spatial coherence.
Figure 17.3c collects Young’s double-slit interferograms at different slit distances
when condensates are created by a laser whose energy is much higher (a non-
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resonant excitation) [40]. The coherence among exciton-polaritons above threshold
is spontaneously built in this case. Furthermore, the statistical analysis from
Bose-Einstein distribution fitting to the LP momentum distribution provides the
information of a chemical potential and an effective gas temperature at various
detuning and pump power values, exhibiting quantum degeneracy in thermal
equilibrium in Fig. 17.3d [41].

Since the first discovery of exciton-polariton in 1992 [26], coherent matter waves
based on exciton-polaritons were predicted [42], and a huge amount of research
efforts have been put both in theories and experiments using different materials.
The dynamical nature of exciton-polariton condensation was first reported in GaAs
semiconductors by Deng et al. [43]. Subsequently, polariton condensation was
reported in CdTe semiconductors with a series of evidence by Dang and Deveaud
and their colleagues [44], and a trap by strain in GaAs system facilitates polariton
condensation [45].

This nature of the exciton-polariton condensation becomes much richer when
they are subjected to artificial lattices and the next section we will describe the
dynamics of coherent exciton-polaritons in a variety of two-dimensional geometries.

17.3 Exciton-Polaritons in Two-Dimensional Lattices

Section 17.3 reviews our progress on band engineering, meta-stable condensates
above band gap, and their dynamical formation of exciton-polariton condensates
in two-dimensional (2D) lattices. In the presence of an energy gap in lattice band
structures, polariton relaxation is highly suppressed for states above the band gap so
that polaritons condense in the meta-stable states. The states are further populated
by bosonic final state stimulation. When the relaxation rate exceeds the loss rate
mainly due to the radiative decay, the polariton population can reach quantum
degeneracy threshold. Such a state is prone to meta-stable condensation, exhibiting
distinct spatial profiles due to high-orbital states. The system also shows multi-mode
condensates at several orbital states.

17.3.1 Lattice Formation

First, we describe how 2D lattice potentials are implemented in our polariton
system. We deposit a thin metal film (Au/Ti � 23/5 nm) on the top of the
sample surface. Lattice geometries and dimensions are designed and patterned by
electron beam lithography followed by a metal liftoff. A basic principle of spatially
modulated potentials can be understood as follows. A thin metal imposes a zero
photon field amplitude at the metal-semiconductor interface, while a semiconductor-
air interface supports a non-zero photon field amplitude. Therefore, the wavelength
of the cavity resonance under the metal is slightly shorter than that in bare (no metal)
region. It only affects photon modes, and this photon potential modulation is about
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400�eV in our GaAs-based microcavity with 16(20) top (bottom) DBRs. The actual
potential for LPs would vary around 100–200�eV, taking into account of photon
fractions. Using this method, we made four different lattice types: square [46],
honeycomb [47], triangular [48, 49], and kagome [50] geometries with the center-
to-center distances between 2 and 20�m.

17.3.2 Band Structure Calculation

When a particle is in a crystalline structure, a first thing is to construct a band
structure of periodic potentials. In this subsection, we briefly explain the band
structure calculation of the polariton-lattice systems. Let us take an example of
a simplest square lattice, whose unit vectors are orthogonal a1 D .a; 0/ and
a2 D .0; a/ and corresponding reciprocal lattice vectors are b1 D .2�=a; 0/ and
b2 D .0; 2�=a/, where a is the lattice constant equal to the center-to-center distance
between nearest neighbor sites. In reciprocal space, Brillouin zones are defined as
shown in Fig. 17.4b and high-symmetry points are denoted as � , X and M according
to rotational symmetry.

Near zero-detuning area, the effective mass of exciton-polaritons is extremely
light, mp � 10�5me in unit of bare electron mass me. The characteristic kinetic
energy E0 at the first Brillouin zone boundaries ˙�=a is given E0 D „2.�=a/2=2mp.
For the devices of a D 2, 4�m, E0 ranges 0.3–1 meV, much larger than the potential
energy depth V � 200 �eV. Hence, we can use the single-particle plane wave
expansion method for the band calculation. Figure 17.4c shows the calculated band
structure for a weak potential V D 0:2E0. Four-fold degeneracies at M-points
are lifted by the lattices, and band gaps open between the fourth band and the
lower bands. We also calculate corresponding real space wavefunctions at high
symmetry points, and we label them analogous to atomic orbital wavefunctions. At

Fig. 17.4 (a) A picture of a square lattice device. Dark area corresponds to trap region (no metal),
and bright area is the potential wall (with metal film). (b) Brillouin Zones and high symmetry
points of the square lattice. (c) Calibrated band structures of square lattice (All figures are adapted
from Ref. [46])
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M-points, they are 3dxy; 2px; 2py and, 1s-orbital nature. We apply this band structure
calculation to all four lattices, and we are able to understand characteristics of meta-
stable high-orbital condensates in the following subsections.

17.3.3 Experimental Setup

Before explaining our experimental observation, we here recapitulate our experi-
mental conditions. A focused pump laser beam is shined from 60 degree (�7:4 �
104 cm�1) onto the sample, which is kept in a cryostat at a temperature around 4.2 K.
We use a tunable Ti:sapphire laser in a pulsed operation, sending a 3-ps pulse at a
76 MHz repetition rate. The laser wavelength is tuned at exciton resonance, roughly
6 meV higher than the energy of the LP ground state. This incoherent non-resonant
pumping scheme is particularly chosen in order to make sure that coherence in
exciton-polaritons is not from excitation laser coherence.

Photoluminescence signals are collected by an object lens with 0.55 numerical
aperture and converted to near- and far-field images by the following lenses as
described in Sect. 17.2.2. We place a CCD camera for energy-integrated imaging
in both real and momentum spaces. Position-resolved and angle-resolved spec-
tra are taken by a 750 mm-long spectrometer with a resolution of 20�eV. For
complex-valued order parameters with high-orbital symmetries, Michelson and
Mach-Zehnder interferometers are built to extract the relative phase map and
coherence functions.

17.3.4 High-Orbital Condensates

17.3.4.1 d-Wave Condensation in the Square Lattice

Figure 17.5a displays the evolution of LP population distributions in momentum
space from far-field (FF) imaging as a function of the pump power values in the
square lattice device with a = 4�m. Below the threshold pump power (P=Pth < 1),
broad ring shaped distribution is observed in momentum space which results from
the so-called bottleneck effect. Just above the threshold, distinct diffraction peaks
are developed at M-points, which clearly indicate M-point condensation. We also
observed nonlinear intensity increase and the spectral linewidth shrink across the
threshold, which are the standard characteristics of polariton condensation. With
further increase of the pump power, polariton distribution moves to X-points and
finally to � – point, a global ground state.

The dynamics can be understood from the band structure. As we discussed earlier
in the previous subsection, the fourth band at M-points is separated by a band gap
from the lower bands. It becomes meta-stable momentum valley, where coherent
polaritons are accumulated to form a condensate. The M-point state in the fourth
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Fig. 17.5 (a) Lower polariton (LP) distributions in momentum space from far-field imaging
as normalized pump power values with threshold Pth � 7mW. (b) Near-field LP polariton
distribution of s- and d-orbital states across lattices. Intensities of s- and d-orbital wavefunctions
are clearly anti-correlated in space as expected since d-wavefunctions have node at the trap
center, where s-wavefunctions are at maximum. (c) Michelson interferometry in momentum space
showing macroscopic coherence between the M-points. For clarity, the square lattice is rotated
by 45 degrees from the vertical line (All figures are adapted from Ref. [46], whose permission is
granted by Nature Physics)

band j� i can be described by a superposition of four plane wave components of
the M-points and it is arranged as anti-phased dxy configurations at sites. The spatial
profile of the d-wave condensate is directly measured through the energy-resolved
near-field (NF) imaging and their cross-sectional cuts are plotted in Fig. 17.5b. The
data tell us that the d-wave condensate has its intensity peaks outside the trap
centers, while the � -point condensate with s-wave symmetry has its intensity peaks
in the traps. It is clear to observe the anti-correlated intensity distribution in space
between two orbital symmetries. Theoretical calculation of wavefunctions for the
strongly trapped case clearly elucidate these NF orbital symmetry, and our plane-
wave basis calculations also confirm it.

The coherence between four plane wave components is confirmed through the
Michelson interferometry in momentum space, as shown in Fig. 17.5c. Although
the coherence between four M-points already exists in the single particle state, the
observed mutual coherence is a direct manifestation of condensation. Finally, we
discuss the formation dynamics of multi-condensates, d-wave (at M-points), p-wave
(at X-points), and the s-wave (at the � -points) condensates in terms of evolution
time. Since polaritons have short lifetime (a few ps), there always exist a radiative
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loss from each state and gain from the upper energy excited states,which also works
as a loss mechanism for the excited states. Such gain-loss dynamics explains the
observed multi-condensates dynamics through the rate equations analysis [46].

17.3.4.2 Vortex-Antivortex Order in the Honeycomb Lattice

We next describe two degenerate p-wave condensates with vortex-antivortex phase
order and their population correlation in the honeycomb lattice. The calculated band
structure exhibits a band gap between the third band and the lower bands at K-
and K0points. Note that the first Brillouin zone of the honeycomb lattice has two
inequivalent K and K0-points depicted in Fig. 17.6b, which are related to inversion
symmetry. K and K0-points have three-fold rotational symmetry. We denote j� 3

Ki
and j� 3

K0i as corresponding two degenerate states in the third band (Fig. 17.6c).
These wavefunctions exhibit vortex-antivortex order as a linear combination of three
K or K0-point plane waves (Fig. 17.7e, f). A modified Mach-Zehnder interferometer
enables us to directly measure the phase order of the K-point condensates. In one

Fig. 17.6 (a) A photograph of the honeycomb lattice sample. (b) Corresponding Brillouin Zones
(up to the 3rd) with high symmetry points �;M;K and K0. (c) Calculated band structures with the
potential amplitude V D 0:10E0 , where E0 D „2

2mp
. 4�
3a
/2 (All figures are taken from Ref. [47].

Copyright, 2013 American Institute of Physics)
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Fig. 17.7 Time-integrated interferogram for the K- and K0–points condensate at P/Pth � 2. The
theoretical near-field intensity and phase map of j�K

3 i (a,c) and j�K0

3 i (b,d). (e,f) The experimental
interferogram between the signal from all the K and K0-points in the one arm of the Mach-Zehnder
interferometer, and the signal from only one K-point or one K0-point in the other arm. (g,h) The
reconstructed phase order of j�K

3 i (g) and j�K0

3 i (h) condensates from the off-axis components
(All figures are rearranged from Ref. [47])

arm, one plane wave component is excluded by a filtering mask in FF plane, and
in the other arm all signals are contained. By selecting a plane wave component
from K or K0-points, we can map out the phase order of the condensates at K- or
K0-points from the off-axis analysis of interferograms. Experimental interferograms
are displayed in Fig. 17.7 at K and K0-points together with theoretical results, which
confirm alternative vortex-antivortex order.

In contrast to the square lattice, two K and K0-points condensates are formed
in two degenerate K- and K0-points states. We have carried out the second order
correlation measurement to study the formation dynamics of these degenerate
condensates. Figure 17.8 compiles experimental results of K and K0-auto- and cross-
correlations at different pump powers. Interestingly we observe two distinct behav-
iors in the second-order auto-correlation functions g.2/.K;K; 0/ and g.2/.K0;K0; 0/
and cross-correlation functions between K- and K0-point condensates g.2/.K;K0; 0/.
The former ones exhibit a bunching behavior, which is well-known in polariton
condensates, originating from the polariton-polariton interaction and excess inten-
sity noise due to their open-dissipative nature. We interpret the observed bunching in
high-orbital condensates in the same way. However, the cross-correlation functions
have an opposite feature of anti-correlation above threshold.

We assume such anti-correlation is brought from the competition between the
one reservoir and two condensates, and simulate the following complex-number
Langevin equations for the system,

d

dt
�� D 1

2

�
�� � 
c

	
j�Gj2 C 1



C 
NR

�
�� C �� .t/;
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Fig. 17.8 Multi-mode condensates dynamics through the polariton population and second order
correlation measurement. (a) Experimental and (b) theoretical results for the normalized second
order auto correlation, g.2/.K;K0; � D 0/, g.2/.K;K0; � D 0/ and the cross correlation
g.2/.K;K0; � D 0/. Simulation also shows g.2/.All;All; � D 0/. (c) Experimental and (d)
simulation results of the pump power dependence of the polariton population at � -point and the
K-point condensate. (c) The peak intensity values at the � -point and one K-point are plotted. (d)
The � -point intensity (j�Gj2) and the K-point total intensity (j�K j2 C j�K0 j2) are plotted (All
figures are taken from Ref. [47])

d

dt
�G D 1

2

�
��G C 
GNR C 
c

	
j�K j2 C j�K0 j2


�
C �GR.t/C �GK.t/C �GK0.t/;

d

dt
NR D P � �RNR � 
NR

	
j�Kj2 C 1



� 
NR

	
j�K0 j2 C 1



� 
GNR

	
j�Gj2 C 1



:

We also include the ground state �G at � -point in the calculation, into which LPs
in K and K0 points are relaxed. Here �� is either �K or �K0 , and �K , �K0 and �G

are order parameters of j�K
3 i, j�K0

3 i and j�Gi, respectively. � is the radiative decay
rate of LPs in j�K

3 i and j�K0

3 i states, �G is the ground state decay rate and �R for
the reservoir decay rate. A stimulated scattering rate for each relaxation process
is characterized by 
 (from reservoir to j�K

3 i and j�K0

3 i), 
G (from reservoir to
the ground state) and 
c (from j�K

3 i and j�K0

3 i to the ground state) respectively.
Langevin noise terms are responsible for the spontaneous scattering process, and
characterized as < ��.t/��0.t0/ >D 0 and < ��.t/�

�
�0.t

0/ >D A.�/ı��0ı.t � t0/,

where � D K;K0;GR;GK and GK0 and A.K/ D A.K0/ D 1
2

NR, A.GR/ D 1

2

GNR,
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A.GK/ D 1
2

cj�K j2 and A.GK0/ D 1

2

cj�K0 j2. Because the pump field is a short

pulse, we put NR.0/ D
R

dtP.t/ and set P D 0 for all times for t > 0. The
parameters which we use are � D 0:2 ps�1, �G D 0:2 ps�1, �R D 1=200ps�1,

 D 5 � 10�4ps�1, 
c D 10
 and 
G D 0:6
 . Simulation results are summarized
in Fig. 17.8b, d, which explain experimental results qualitatively. Although the
total particle number injected into the system is fixed at a certain pump power,
the relaxation into each condensate from the reservoir is initiated by spontaneous
polariton scattering and that the relaxation dynamics may change from pulse-to-
pulse.

17.3.5 Band Engineering

In addition to the observation of high-orbital condensations reviewed in previous
two subsections, we engineer Dirac cones in lattices with triangular-symmetry [48].
In the triangular and honeycomb lattices, linear dispersions appear near high
symmetry points. Figure 17.9a is a band structure of the triangular lattice in a
reduced zone scheme, indicating a Dirac point at K. This linear dispersion with the
gapless crossing point is called as a Dirac cone as an analog of the Dirac dispersion
in the relativistic field theory.

We prepare for the triangular lattice potentials in exciton-polariton systems, and
probe the dispersion relation directly near K- and K0-points. The spectral linewidth
of emitted signals (�250�eV) limits our capability to resolve all three individual
bands with a gap at low pump power (Fig. 17.9b). We have compared the Dirac
velocity estimated from the linear regression analysis on the measured band from K-
M section (Fig. 17.9c) with the theoretical value v = h=3mpa. The extracted velocity
is 1.0 �108 cm s�1 for P=Pth � 1.3, and 2.1 �108 cm s�1 for P=Pth � 2. Both values
are in the same order with theoretical velocity values, 1.5 �108 cm s�1.

Fig. 17.9 (a) A band structure calculated for triangular lattices. E0 is the characteristic kinetic
energy „2

2mp
. 2�

a
/2 � 4:5meV, a = 2�m and the potential energy V D 200�eV. (b) Experimentally

constructed band structures well below threshold pump power P=Pth � 0:2 in the triangular lattice.
(c) The extracted energy values at the maximum LP emission intensity at the several pump powers.
We have estimated the Dirac velocity from the linear regression analysis from the K-M section.
Each pump power is normalized by the threshold pump power where condensation effect has been
observed around the M-points (All figures are reproduced from Ref. [48])
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In the kagome lattice, we attempt to engineer the flat bands in order to study
lattice frustration and localization effect. Flat bands mean a quenching of kinetic
energy and it would have a signature of localized distributions in real space. It
turned out that exciton-polaritons are rather spread over many sites in our weak
potential modulation, which keeps us from reaching a complete flatness of the
bands [50]. The combination of long-lived polaritons (around 100 ps) and deeper
potential modulation (a few meV) would allow us to have clear band engineering in
lattices. Recently, linear dispersion and flat bands in the honeycomb geometries of
micro-pillar arrays by etching are indeed observed [51].

17.4 Exciton-Polariton Quantum Simulation

A remark on the applications of the exciton-polariton-lattice systems is given in the
context of quantum simulation. A quantum simulator (QS) is a specially designed
quantum device, which may simulate a certain class of quantum problems efficiently
in a controllable environment [19–21]. Establishing a quantum simulator in various
platforms is one of the major research activities in quantum information science
since the seminal paper in 2002, which reported the superfluid- Mott insulator phase
transition in ultracold Bose atoms in an optical lattice [52]. For the last decade, QSs
have been built in various systems from the ultracold atoms in optical lattice [53],
trapped ions [54], superconducting qubits in a microwave cavity array [55], and 2D
electron gases in artificial lattices [56].

One of the early targets of the QS is to study a mathematical toy model, which
is pertinent to capture the key features in condensed matter systems. One famous
prototypical Hamiltonian is the Hubbard model with the nearest-neighbor hopping
kinetic energy and an on-site interaction energy [57]. Despite the simplicity of
the model, analytical solutions for 2D and 3D systems are unavailable, and the
numerical solutions of a relatively small number of sites require extremely large
computing resources. The key idea of a QS is to use a simple quantum device to
simulate such quantum many-body problems. Our discussions in previous sections
suggest that the polariton-lattice system will provide a solid-state QS platform in
the optical domain to address condensed matter physics problems. We recapitulate
the present status of our polariton-lattice system as a QS platform followed by a
discussion how to extract many-body physics, as would appear in real materials.

17.4.1 Present Status

We have successfully implemented various 2D lattice potentials to trap exciton-
polaritons using the thin-metal film technique. The band structures of a given lattice
geometry are created, and we are able to directly map out the band structures of
exciton-polaritons in the 2D lattices. The experimental results are well described
by a single particle picture. Due to the interplay of the finite lifetime and the
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relaxation time to the lower energy states, coherent exciton-polaritons can be made
to temporarily reside at finite-momentum values of the Brillouin zone boundaries.
This enables us to select the high orbital symmetry of exciton-polariton condensates.

The study of high-orbital condensation is interesting from the perspective
that they give a complementary view to high-orbital fermion physics in strongly
correlated systems like high temperature superconductors (copper d-orbital and
oxygen p-orbital) or transition metal oxides with d and f -orbital electrons. The
interferometry techniques allow us to access the phase information of the system
order parameter in real space. In the end, it enables us to observe the orbital
symmetry of the meta-stable condensate states at finite momentum values. High-
orbital states have degeneracies, for examples, px and py-orbital states are degenerate
in 2D. These orbital states are not distributed isotropically in space, which is
distinct from the non-degenerate s-orbital state. The degeneracy and anisotropy
of high-orbital condensates would be compliment to the nature of high-orbital
electrons [58]. In this aspect, the inherent non-equilibrium nature of exciton-
polariton condensation grants us to readily select the orbital symmetry of the band
structures as shown in previous section. However, the major limitation of the present
polariton-lattice system is the controllability of the lattice potentials. Since the thin-
metal-film technique creates a shallow lattice potential, which is much smaller or
comparable to the kinetic energy of exciton-polaritons, the physics explored by this
system is limited to the single-particle physics.

17.4.2 Beyond the Single-Particle Physics

In order for the exciton-polariton-lattice QS system to study the many-body physics
problems, we first seek a different method to produce the artificial lattice potential.
Etching a pillar as a single trap [59] or pillar-arrays [60] has shown stronger trapping
potentials. However, a micron-sized site is still not strong enough to induce a
noticeable two-particle interaction energy at the level of one or a few particles at the
site. Therefore, it is a great demand to find right material and methods for stronger
interaction energy.

Another physics we can study in the polariton-lattice QS is spin and its dynamics.
The polariton spin degrees of freedom can be controlled by the light polarization,
and they are regarded as a pseudo-spin 1/2 [61]. When the spin physics is combined
with to high-orbital states in lattice geometries, we expect to simulate the spin-
orbital interaction and topological states in condensed matter systems.

17.5 Conclusion

We have made progress in the preparation of dynamically condensed polaritons
with high-orbital symmetries in 2D artificial lattices. The powerful experimental
advantages in optical spectroscopy and correlation measurements allow us to
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directly measure the band structures, macroscopic condensate wavefunctions in real
space with both amplitude and phase information as well as dynamical formation of
completely degenerate condensates. This exciton-polariton-lattice system would be
an interesting QS candidate, with which we search for an 2D exotic quantum order
associated with orbital and spin degrees of freedom.
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Chapter 18

Layered Architectures for Quantum Computers

and Quantum Repeaters

Nathan C. Jones

18.1 Introduction to Quantum Architectures

A computer architecture defines and organizes the components of a system, their
roles, and the interfaces between them. In computer systems, the architecture of
a system determines its performance, the difficulty of implementation, and its
flexibility. A good architecture exposes the strengths of its underlying technologies
while avoiding unnecessary dependence on a specific technology, allowing indepen-
dent evolution over time, and occasionally wholesale replacement of components
or subsystems. Developing a flexible framework is particularly important for the
nascent field of quantum computing, where relatively little work on architecture has
been performed. This problem is important since an architecture provides structure,
not only for the quantum computer itself but also for the designers—organizing the
system design can also serve to organize the conceptual and logistical problems of
engineering a computer.

Here, we propose layered architectures for quantum computing and quantum
communication which strive to be modular and fault-tolerant. The objective is
to develop a framework for building up a quantum computer from individual
components, while also providing a means to compare different approaches to
quantum computing, such as nitrogen-vacancy centers in diamond, quantum dots,
trapped ions, or atoms in optical lattices [1]. The layered framework can be adapted
to different forms of quantum hardware, but to make this discussion concrete, we
analyze specific instances of the architectures that are based on optical quantum
dots [2–4]. The organizing principles of the architecture are explained as these
specific implementations are developed step-by-step.
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18.1.1 Prior Work on Quantum Computer Architecture

Many prospective quantum computing technologies have been demonstrated in
experiment [1]. These technologies are guided by fundamental theory results,
such as DiVincenzo’s criteria for a viable quantum computing technology [5] and
Steane’s analysis of the complex systems need to run quantum error correction
(QEC) adequately [6, 7]. More recently, architectural requirements for operating
large-scale systems have been examined [8, 9]. For many technologies, small-scale
interconnects have been proposed, but the problems of organizing subsystems using
these techniques into a complete architecture for a large-scale system have been
addressed by only a few researchers.

Some problems of quantum architecture have been examined for specific
hardware, such as ion-trap proposals that uses separate memory and computing
areas [10], or system designs tailored for particular error correction schemes
[11, 12]. Oskin et al. consider the issues of classical control and movement of
quantum data in scalable systems [13]. Duan and Monroe proposed long-range
interconnects in the form of “flying” photonic qubits to distribute entanglement
between ions located in distant traps [14], and such photonic channels could be
utilized to realize quantum repeaters or distributed quantum computers [15]. Fowler
et al. [16] investigated a Josephson junction flux qubit architecture considering
the extreme difficulties of routing both the quantum couplers and large numbers
of classical control lines, producing a structure with support for quantum codes
and logical qubits organized in a line. Whitney et al. [17, 18] have investigated
automated layout and optimization of circuit designs specifically for ion trap
architectures, and Isailovic et al. [19, 20] have studied interconnection and data
throughput issues in similar ion trap systems.

Recent advances in the operation of the topological quantum codes have yielded
schemes for fault tolerance that require only nearest-neighbor connectivity in two
dimensions, yet are still functional with error rates as high as 1 % per physical
operation [21, 22]. The fact that these codes are readily adapted to solid-state
quantum devices was the subject of several recent architecture analyses [23, 24].
As quantum hardware steadily improves in both accuracy and number of qubits,
early forms of experimental quantum error correction are now being demonstrated
[25–27]

18.1.2 Layered Framework

The layered architecture consists of five layers, where each layer is devoted to
a closely related group of tasks. Two layers interact through defined functional
behavior. To execute an operation, the upper layer issues commands to the layer
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Fig. 18.1 Example of layered control stack quantum computer based on quantum dots [23].
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margin indicate communication protocols for quantum repeaters or distributed quantum computing

below, then later processes the results. This modular design allows one layer to
be changed (such as adopting a new error correction scheme) without significant
change to the rest of the system.

The layered framework is represented with a control stack, as in Fig. 18.1,
that shows the functions of each layer and the relationships between layers. This
example is based on the quantum-dot architecture considered here, so the specific
behavior of each layer could be different in another system. The top layer is the
Application layer, which implements a quantum algorithm and returns output to
the user. The bottom Physical layer contains the quantum hardware. The middle
layers (Virtualization, Quantum Error Correction, and Logical) are used to suppress
errors, converting the faulty hardware of the Physical layer into fault-tolerant qubits
and quantum gates used by the Application layer.

Just as modern digital computers are frequently networked together, quantum
computers may need to share a quantum information connection. To communicate
quantum information between two devices, as in quantum repeaters [28] or in a
distributed architecture [29], an appropriate communication protocol for Layer 1
(Physical) must be devised. These two quantum computers could be of wholly
different technologies (say ion trap vs. quantum dot) if a practicable protocol
exists. Moreover, a distributed surface code architecture [29] would also require
a communication control protocol [30] in Layer 3. The location of these protocols
in the layered framework is indicated in Fig. 18.1.
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18.2 Physical Layer

The physical layer is the foundation of the quantum computer. All truly quantum
effects happen here, with higher layers building complicated operations from
sequences of processes performed at the physical layer. As a result, the physical
layer exists solely to provide services to layers above, and no decision- or branching-
based controls run here, as they occur in the upper layers. Implementing a quantum
computer architecture begins at Layer 1, where basic hardware for storing and
manipulating quantum information is constructed. We illustrate this process with
a quantum computer based on the optical control of charged quantum dots known
as QuDOS [23].

18.2.1 Spin Qubits in Quantum Dots

A quantum computer stores information in quantum bits, or qubits. The physical
qubit in QuDOS is the spin state of an electron-charged InGaAs self-assembled
quantum dot (QD) [31–36]. A QD can be excited to a “trion” state, consisting of
an electron and an exciton, using light of wavelength around 900 nm. A transverse
magnetic field separates the spin energy levels into two distinguishable ground states
for use as a qubit [37]. The energy separation serves two purposes for quantum
gates: (1) the energy splitting facilitates control with optical pulses as explained in
Sect. 18.2.2; and (2) Larmor precession of the electron spin is continuous Z-axis
rotation around the Bloch sphere, which together with selective timing of optical
pulses provides complete single-qubit control of the electron spin state.

Accessing the quantum properties of a single electron spin system requires an
enhanced interaction with light, and so an optical microcavity is necessary. To
provide the two-dimensional geometry of gates required for error correction, this
microcavity is planar and consists of two distributed Bragg reflector (DBR) mirrors
grown vertically on a semiconductor wafer, which can be fabricated using molecular
beam epitaxy (MBE). The QDs are positioned vertically at the center of this cavity
to maximize interaction with the optical mode of the cavity. Figure 18.2 illustrates
quantum dots arranged at the center of a planar cavity.

18.2.2 Optical Spin Control

The ability to perform fast manipulations of the quantum states stored in a quantum
computer is essential for performing operations faster than decoherence processes
can corrupt them, as well as for ensuring a fast overall algorithm execution time [9].
In QuDOS, ultrafast optical pulses centered 900–950 nm rotate the spin vector of
an electron within a QD [3, 4]. By virtue of being short in duration, these pulses
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are broad in frequency, facilitating stimulated Raman transitions between the spin
levels through excited-state trion levels. Therefore, the complete dynamics of the
state rotation depends on a four-level system (consisting of the two metastable spin
ground states and two excited trion states).

Other control pulses in QuDOS described below require a high-Q microcavity
which has a narrow transmission window at the cavity resonance. The cavity can be
problematic if the bandwidth of the broadband pulses is significantly larger than
the transmission bandwidth of the cavity resonance. As a result, the broadband
pulse cannot be sent directly into the microcavity. This problem is circumvented by
sending the broadband pulses at angled (rather than normal) incidence. The cavity
response is shifted to higher frequencies, so that a red-detuned pulse can enter the
cavity at the first minimum in the cavity reflectivity as a function of frequency.
Alternatively, one could send red-detuned pulses at normal incidence, sacrificing the
majority of each pulse which is reflected; this approach is only viable if significantly
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more optical power is available. Figure 18.2 shows the three laser pulses used in
QuDOS, as well as their power spectrums.

A two-qubit gate that couples spins in two separate quantum dots is essential for
both quantum computers and quantum repeaters, but challenging to implement. In
quantum dots with transverse confinement provided by electrostatic gates, electronic
manipulation of the electron wavefunction allows control over the exchange interac-
tion, providing fast (�100 ps) quantum gates, as proposed some time ago [41] and
demonstrated in numerous experiments [42]. Employing such gates for a hybrid
system with both optical and electrical control is certainly possible, but requires
further development of the optical control of electrically defined quantum dots [43].
Entanglement of directly tunnel-coupled vertically stacked InAs quantum dots has
also been demonstrated [44], but the scalability of this coupling mechanism is
uncertain. An exotic but promising possibility includes optically inducing longer-
range, exciton-mediated exchange interactions [45, 46].

The QuDOS architecture would implement an all-optical entangling gate
employing the optical nonlinearities provided by the planar microcavity. One
proposal suggests using two lasers for both single-qubit and two-qubit gates [47].
However, recent experiments in single-qubit gates [2, 3] and theoretical proposals
for two-qubit gates [40] suggest that complete spin control can be achieved with one
laser for each type of operation. However, the demands on the optical microcavity
system are challenging. The figure of merit for nonlinear optics using cavity QED
is the cooperativity factor C, which is proportional to the cavity quality factor Q

divided by the cavity volume V . Large values of this can be achieved via cavities
with strong transverse confinement, such as the microdisk cavities proposed in
Ref. [47]. This arrangement poses challenges for scalability. An obvious modifi-
cation is to couple these cavities with waveguides; an architecture employing this
approach was discussed in Ref. [29], and in this case substantial additional physical
resources are needed to mitigate optical losses at the cavity-waveguide interfaces.

For the present architecture, we propose to confine light vertically using the
planar microcavity and in transverse directions through angle-dependence of the
cavity response, which is enhanced with high refractive-index contrast between
alternating DBR mirrors [31]. Whether a microplanar microcavity arrangement
will offer sufficient nonlinearity for an all-optically controlled dot architecture or
whether electronically controlled gates will be employed will depend on forth-
coming experimental developments. However, for the purposes of the present
architecture, both gates are short range, a constraint handled by the surface code
quantum error correction we employ (see Sect. 18.4), which demands only nearest-
neighbor interactions. For comparison, short range gates can severely limit the
efficacy of other quantum error correction schemes [48]. Long range couplings,
for example to form bridges over optically inactive regions of a single chip or for
chip-to-chip connections, will likely employ a variety of different quantum optical
techniques which sacrifice speed for tolerance to optical loss; for a discussion, see
Refs. [29, 49]. Incorporating such long-distance links into the present architecture
must occur at both the Physical and QEC layers; the inclusion of such interconnec-
tions into QuDOS is the subject of future work.
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18.2.3 Dispersive Non-demolition Measurement

The essential measurement operation in QuDOS consists of an optical pulse which
uses dispersive quantum non-demolition (QND) readout based on Faraday/Kerr
rotation. An optical probe pulse is reflected off of the cavity containing the quantum
dot, and reflected pulse receives a phase shift that depends on the spin state of the
quantum dot. Measuring the phase shift, such as by homodyne detection, performs
projective measurement on the quantum-dot spin.

The physics of such a QND measurement has favorable properties for system
integration. The fact that the probe pulse is off-resonant means that inhomogeneity
among various quantum dots can be tolerated to a higher degree than is true in
schemes involving resonant pulses. Moreover, the probe pulse can have a relatively
high photon count, resulting in less stringent detector requirements. Experiments
building toward such a measurement technique have recently been demonstrated,
such as multi-shot readout of the spin state of a charged quantum dot [50, 51] and
observation of a large phase shift induced by a neutral quantum dot in a photonic
crystal cavity [52].

There are however several challenges related to this scheme. First, the mea-
surement needs to be “single shot”—after just one probe pulse is applied, the
measurement result via photodetection is correct with high probability. For a
sufficiently large detuning, the ability to complete a single-shot QND measurement
depends on the cooperativity factor C of the cavity. The phase shift in the probe
pulse, � , scales as the detuning, as well as with C. However, the probability for
a photon to create a trion state, which decays by spontaneous emission, scales as
C=�2 [53]. For an input probe pulse that is in a coherent state, the number of
photons required to resolve a phase shift � scales as 1=�2 / �2=C2, indicating that
the probability of spontaneous emission during a single-shot measurement (which
would spoil its QND character by introducing measurement error) scales as 1=C,
independent of �. Consequently, a large cooperativity factor of the cavity (e.g.
C � 103) may allow single-shot dispersive QND measurements to be carried out
with low measurement error.

18.3 Virtualization Layer

Quantum information systems are very sensitive to imperfections in their environ-
ment and control, which manifest as errors in the stored information. These errors
can be systematic or random. Layer 2 sharply reduces systematic errors since this
can be accomplished without measuring the system state, which is inherently faster
and simpler than error-correcting methods which extract information about errors.
Quantum error correction is implemented in Layer 3 to correct general errors, but
doing so requires syndrome extraction circuits which operate at longer timescales.
The purpose of Layer 2 is to reduce the error rate in virtual qubits and gates to the
levels sufficient for Layer 3 to function.
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18.3.1 Virtual Qubit

The virtual qubit is an abstraction of the underlying physical system. It approximates
an ideal qubit as a two-level system whose state is constant until purposefully
manipulated. However, the virtual qubit is modeled with physically relevant deco-
herence. In QuDOS, the virtual qubit is defined by the two spin states of an
electron bound to a quantum dot. Without refocusing techniques, the electron spin
has dephasing time T2

� � 1 ns [54] caused by an inhomogeneous distribution
of nuclear spins in the environment of the electron. This dephasing time is too
short for error correction, but the coherence time can be extended to microseconds
using dynamical decoupling (DD) techniques [54–56]. The electron spin resides
in a magnetic field to facilitate optical control (see Sect. 18.2.2), so it precesses
continuously at the Larmor frequency about the Z-axis on the Bloch sphere.
Conversely, the idealized virtual qubit is unchanging when gates are not applied.
This abstraction is achieved by appropriately timing measurement and control
optical pulses in a frame rotating with the Larmor frequency. Measurement of the
virtual qubit is achieved by the QND measurement of the spin state from Layer 1. In
principle, multiple measurements could be performed in Layer 1 in order to increase
measurement fidelity, but this architecture uses single-shot readout for the sake of
speed.

18.3.2 Virtual Gates

Quantum operations must be implemented by physical hardware which is ultimately
faulty to some extent. Many errors are systematic, so that they are repeatable, even
if they are unknown to the quantum computer designer. In Layer 2, virtual gates
manipulate the state of the virtual qubit using control operations in the Physical
layer. When systematic errors are present, they can be suppressed using advanced
control techniques in order to satisfy the demands of the error correction system,
such as around 0.1 % error per gate [23, 24, 57]. For example, in QuDOS, the
ultrafast pulses in the Physical layer may cause coherent over-rotation in the spin
basis. Such errors may be correctable if action is taken faster than the relevant
decoherence timescales.

The QuDOS architecture uses compensation sequences to correct systematic
errors in the state rotation operations [58, 59]. Examples of systematic errors
relevant to this system include laser intensity fluctuations over long timescales or
the coupling strength of the electron to the optical field (caused by variations in
the fabrication process). Since these errors are systematic over the timescales of
operations in this architecture, a compensation sequence is effective for generating
a virtual gate with lower net error than each of the constituent gates in the sequence.
Moreover, many compensation sequences are capable of suppressing error for a
range of error magnitudes, meaning the error does not have to be characterized
exactly [58, 59].
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18.4 Quantum Error Correction Layer

Error correction schemes remove entropy, which manifests as errors, from an
information system. In contrast to Layer 2, quantum error correction schemes
[60–65] such as the surface code [24, 57, 66, 67] can correct arbitrary errors in the
underlying quantum information, assuming the probability of such errors is bounded
below a certain threshold [68]. This process of information protection is achieved
by continually consuming fresh ancilla states prepared to extract entropy from
the quantum computer (via syndrome measurement). Layer 3 of this architecture
framework is devoted to quantum error correction (QEC), which is vitally important
to the successful operation of the quantum computer.

Like many quantum hardware proposals, optical quantum dots have faulty
control, so the surface code is needed to provide logical qubits and gates with
the exceptionally low error demanded of a large-scale quantum algorithm such
as simulating quantum chemistry [69]. We will not review the entirety of the
surface code here, but instead refer the interested reader to several key works in the
field [24, 57, 67, 70]. This section is devoted to the important architecture-related
matters of surface code QEC, such as estimating the resource overhead.

18.4.1 Surface Code in the Layered Architecture

The QEC layer uses error correction to provide fault-tolerant logical qubits, logical
gates, and logical measurement to Layer 4. We explain the salient aspects of
the surface code, the error correction scheme in QuDOS, but in general the
processes in Layer 3 can vary significantly between different forms of QEC. The
surface code provides the ability to correct arbitrary errors with quantum error
correction [24, 57, 67, 70]. Virtual qubits in a broad 2-dimensional array are encoded
into a single surface code via single-qubit operations and nearest-neighbor (CNOT)
gates. Logical qubits are produced by forming “defects” in the surface code. A
defect is a rectangular connected region of virtual qubits in the lattice which have
been measured, so that the resulting surface code lattice has an SU(2) subspace
of freedom, equivalent to a qubit. References [24, 67] gives an overview of the
steps needed to construct the surface code. For practical matters (explained in Ref.
[57]), a logical qubit is constructed from two defects. In contrast to Layer 2, the
surface code gathers information on the system state by periodically measuring
an error syndrome and using this knowledge to correct errors in post-processing.
The probability of an undetected error decreases exponentially as a function of the
“distance” [71] of the code, so that logical qubits and gates with arbitrarily low error
are possible with a sufficiently large code. However, the virtual qubits and gates
must have error rates below the threshold of the surface code (around 1% [24, 72]),
so that often error-reduction techniques in Layer 2 are necessary for Layer 3 to
function. The error rate in virtual qubits and gates needs to be about an order of
magnitude below the threshold, or approximately 0.1 %, for the surface code to be
manageable in size.
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In contrast to some other QEC schemes, the surface code has some key advan-
tages for a quantum-dot architecture. In particular, the surface code requires only
nearest-neighbor gates between qubits in a square lattice. Within this architecture
framework, the necessary Layer 2 components for the surface code to function are
the injection of single-qubit states needed for non-Clifford gates, a two-dimensional
array of qubits with nearest-neighbor coupling (CNOT), and measurement in the
X and Z bases [67, 73]. The two-dimensional arrangement with nearest-neighbor
CNOT gates is most readily achieved in QuDOS with a physical 2D array of quantum
dots, each supporting a virtual qubit. Although the single-qubit Pauli rotations are
needed to form a complete set for universal quantum computation, we may neglect
these in the present context by simply maintaining a continually-changing Pauli
frame in a classical computer and modifying the final measurement results of the
quantum computation [74].

18.4.2 Pauli Frames

A Pauli frame [74, 75] is a technique for tracking classically any Pauli gates needed
during quantum computation without having to implement them explicitly, which is
implied by the Gottesman-Knill theorem [76]. Quantum codes, such as the surface
code, use projective measurement to identify Pauli errors on physical qubits within
a code block. The syndrome reveals what these Pauli errors are, and error correction
is achieved by applying those same Pauli gates to the appropriate qubits (Pauli gates
are self-inverse). With the Pauli frame, one can avoid the unnecessary errors which
could result from applying these Pauli gates in the quantum computation.

The Pauli frame works as follows. Classical hardware keeps a record of each
Pauli gate instead of implementing this gate in quantum hardware. When a
measurement is made, the binary outcome might be changed depending on which
Pauli gates were associated with this qubit. This stored Pauli gate is called the
Pauli frame [74, 75], because the reference frame for this qubit is changed. The
way this works is that one implicitly relabels the axes on the Bloch sphere, rather
than changing the state of the qubit. The computation proceeds normally, and the
modified measurement results are equivalent to what would have been observed if
the Pauli gates were explicitly implemented.

18.4.3 Resource Overhead for Error Correction

Estimates for the resource overhead in quantum error correction are critically
important to architecture design. This overhead factor exists because QEC schemes
embed “logical qubits” within a larger Hilbert space formed by many virtual qubits.
The cost for protecting information through redundancy is the number of qubits
is multiplied by an overhead factor. This overhead is an important quantity to
understand and optimize, and it depends on several parameters of the quantum



18 Layered Architectures for Quantum Computers and Quantum Repeaters 397

Table 18.1 Parameters determining the size of the surface code in QuDOS

Parameter Symbol Value

Threshold error per virtual gate "thresh 1:4� 10�2

Error per virtual gate "V 1� 10�3

Logical circuit depth (in lattice refresh cycles) K 6:8� 1012

Number of logical qubits Q 600

Error per lattice refresh cycle "L 2:7� 10�18

Surface code distance d 27

Virtual qubits per logical qubit VQ/LQ 4830

computer, such as error per virtual gate ("V), threshold error rate for the quantum
code ("thresh), distance (d) of the code, and error per logical gate ("L), which depends
on the algorithm being implemented.

We use the “KQ product” approximation [77] to determine "L. For a quantum
algorithm with K gates in depth (allowing parallelism) and Q logical qubits, then
the probability of logical error is given by

Pfail D 1 � .1 � "L/
KQ � KQ"L; (18.1)

where approximation applies for small "L. To ensure high probability of compu-
tation succeeding, we set "L � 1=KQ. The average error per logical gate in the
surface code can be approximated [24, 71] with

"L � C

�
"V

"thresh

�b dC1
2 c
; (18.2)

where C is a constant determined by the implementation of the surface code.
The data in Ref. [71] suggests C � 3 � 10�2. Therefore, given a known "V,
"thresh D 1:4�10�2, and C � 0:03, one can determine the necessary distance d such
that the probability of failure of an entire quantum algorithm is sufficiently small.
Table 18.1 provides an example of these calculations for the QuDOS architecture.
Error per virtual qubit ("V) is also assumed to be 10�3, and the K and Q values are
for problems typical of quantum chemistry [69, 78]. To have a probability of logical
error below 1 %, we set "L � 10�2=KQ.

Solving Eq. (18.2) for the required code distance also indicates the number of
virtual qubits needed to produce one logical qubit, which consists of two defects
separated from each other and any other defects or boundaries by the distance of
the code. Table 18.1 calculates this number for QuDOS, but we emphasize that
a complete surface code quantum computer will need additional virtual qubits to
facilitate movement of defects (braiding) and the distillation of magic states needed
for non-Clifford logical gates [23, 24, 57, 79]. As a result, the total number of virtual
qubits from Layer 2 is larger than simply the product of [virtual qubits per logical

qubit] � [logical qubits]. Accounting for these additional virtual qubits is crucial
to accurately estimating the resource requirements for QuDOS. More generally, the
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quantity of these additional qubits depends significantly on the algorithm executed
by the computation, since the number of magic states is related to the types of logical
gates one must implement [78].

18.5 Logical Layer

The Logical layer bridges the gap between error correction and the algorithm at
the top Application layer. The QEC layer provides logical qubits and a limited set
of logical gates; however, the Application layer may request any arbitrary quantum
gate, and it is the task of Layer 4 to create this gate. A specific implementation of
the Logical layer depends on what services Layer 3 provides. We develop Layer 4
in the context of using the surface code in Layer 3, which provides logical qubits,
logical CNOT, and injected magic states. In another quantum computer where the
QEC layer provides different outputs, a different set of processes in the Logical
layer may be needed.

18.5.1 Functions of the Logical Layer

The function of the logical layer is to provide the logical qubits and gates needed for
the quantum algorithm in the Application layer. The surface code produces logical
qubits and gates with arbitrarily high accuracy. However, the only fault-tolerant
gates provided by the surface code are the Pauli 1-qubit gates (trivially performed
by updating the logical Pauli frame), initialization and measurement in the X and Z

bases, the CNOT gate and the identity gate (i.e. memory). Rotations about the X and
Z Bloch sphere axes are produced using ancilla states of the form 1p

2

	
j0i C ei� j1i



.

These so-called magic states come from faulty qubits that are injected into the
code, then subsequently distilled using specialized circuits [24, 57, 67, 79]. Specific
cases of importance to the surface code are � D �=2; �=4. By the Solovay-Kitaev
theorem [80], these gates are sufficient to efficiently approximate arbitrary single-
qubit logical unitary gates.

Just as in Layer 3, it is unnecessary to implement logical Pauli gates. Instead, a
logical Pauli frame exists in Layer 4 which functions exactly like its counterpart
in Layer 3 (see Sect. 18.4.2). Whenever a logical Pauli gate would be applied,
the corresponding entry in the Layer 4 Pauli frame is modified. However, the
performance requirements of this Pauli frame are not as strict as the one in Layer 3,
because logical gates operate on slower timescales than virtual gates.

18.5.2 Magic State Distillation

Magic states are special ancillas that are used to produce a universal set of logical
gates in the surface code. Faulty copies of the desired state are injected into the
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surface code, then purified to high fidelity using distillation circuits [24, 57, 67, 79].
This process consumes a great deal of resources in the quantum computer since
many logical qubits are required for distillation. If states are injected with an
approximate error of 0:1%, then distilling an jAi state (� D �=4) requires at least
two levels of distillation, or at least 225 injected jAi states, to produce one logical jAi
qubit with error probability low enough for the algorithm considered in Table 18.1.
Consequently, distillation must be performed continuously in parallel with other
logical operations to ensure that these purified states are available on demand.
References [23, 24, 57, 67] discuss the resource cost and error scaling of this process
in more detail. Importantly, distillation is probabilistic, but the probability of success
is high for high-fidelity injected states.

18.6 Application Layer

The Application layer is responsible for executing the quantum algorithm, such
as simulating chemistry [69], using fault-tolerant qubits and gates provided by
the Logical layer. Logical gates constructed in Layer 4 are performed on the
logical qubits provided by the QEC layer, and the end result is communicated to
the classical user. The Application layer is completely unaware of the underlying
hardware, since it interfaces only with Layer 4. Since the lower layers have provided
all the resources for quantum computing, the figures of merit in Layer 5 are the
number of available qubits and the speed of logical operations, which implies the
time required to implement a certain quantum algorithm.

Timing of control operations at all layers is critically important to running an
algorithm. In order to successfully correct errors faster than they occur, many
operations must be executed in parallel [6]. Realizing this parallelism requires
understanding the interdependence of the different layers in the architecture, which
is depicted in Fig. 18.3. The plot depicts the timescales on which operations occur,
and arrows are used to indicate where a lower-level process dictates the speed of an
upper-level process. Because operations are performed on timescales that vary by
orders of magnitude, the horizontal axis is a logarithmic scale. The large variation in
timescales is a consequence of the overhead required for fault tolerance, including
dynamical decoupling, error correction, and magic-state distillation.

18.7 Quantum Repeaters

Quantum repeaters are distinct from quantum computers, as repeaters are used for
communication instead of computation. Nevertheless, the two machines may be
constructed from many of the same components, including physical qubits and
gates, error correction to accommodate faulty components, and control protocols
for parallel operation. The systems are so similar that the layered architecture
developed for computation can be adapted to communication by adding the



400 N.C. Jones

μs msns
(10-9) (10-6) (10-3)

Larmor period
T  = 40 psL

Spin State
RotationRotation

Measurement
Pulse

Entangling
Operation

Micromirror
Deflection

Virtual
1-qubit
Gate

Virtual 2-qubit
Gate

Virtual

T  
(Dephasing)

2

Lattice
Refresh

Defect
Braiding

Logical
CNOT

EOM/AOM
Switching

Logical
 Toffoli Gate

} Optical Pulses

} Optical Control Hardware

Measurement

Layer 1: Physical

Layer 2: Virtualization

Layer 3: Surface Code

Layer 4: Logical

Fig. 18.3 Execution time for operations in QuDOS, according to layer in the architecture [23].
The arrows show how lower-level operations affect the speed of higher-level operations. The red

arrow is a crucial relationship for error correction, and it signifies that the surface code lattice
refresh must be much faster than the dephasing time. For generality, the Application layer is not
shown since quantum algorithms can vary widely in complexity

appropriate communication interfaces, as shown in Fig. 18.1. A defining feature
of a repeater is the ability to transmit quantum information over long distances,
which almost surely requires coupling into photons. Quantum dots are naturally
suited to photonic interfaces at the physical layer [81], and a modified version of
surface code error correction is specifically designed for repeaters [30]. There are
some notable differences between computer and repeater. Magic-state distillation is
not necessary for communication, but a similar technique known as entanglement
purification might be needed [82]. Additionally, a repeater could be smaller in size
and complexity than a computer, because a repeater may only require ten or fewer
logical qubits for temporary storage, instead of thousands that may be required for
a large-scale algorithm.

18.8 Conclusion

This chapter examined how to organize quantum computers and repeaters in a
systematic way that is modular and facilitates fault tolerance. Importantly, the
layers are chosen in a way that encapsulates important subroutines for fault-tolerant
quantum information. By separating important tasks like hardware control or error
correction into distinct layers, this approach to architecture readily adapts to changes
from new technologies or different design requirements.
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The layered architecture is purposefully designed to implement fault-tolerant
information processing, and the order of the layers in Fig. 18.1 reflects this. Layer
2 implements “open-loop control” to mitigate systematic errors, meaning there is
no feedback from the hardware. The lack of feedback means operations in Layer
2 can be fast because there are no decisions to be made, and Fig. 18.3 shows that
speed in Layer 2 is important. By contrast, Layer 3 implements error correction,
which does require feedback in the form of syndrome measurement. Putting error
correction in a layer above the open-loop control of the Virtualization layer is
prudent because the processing of many rounds of measurement can be slow [22].
Layer 4 distills specialized magic states that are required for universal, fault-tolerant
quantum computing. The distillation circuits themselves require error corrected
gates, so this layer must be positioned above QEC in Layer 3. The Logical layer
provides any arbitrary gate that might be required by the Application layer.

To demonstrate a layered architecture, we considered the QuDOS hardware
platform. The physical quantum information consists of quantum-dot spin qubits
that can be controlled and measured using optical pulses. These quantum dots can
be arranged in a two-dimensional array inside a microplanar cavity, all of which
is consistent with solid-state fabrication technology. Importantly, control operations
in this technology can be very fast. Figure 18.3 shows that each logical operation
requires many physical qubits and gates, so technologies like QuDOS that support
large arrays of qubits and fast operations are a promising development path for
quantum-information technology.
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Chapter 19

Analysis of an Atom-Optical Architecture

for Quantum Computation

Simon J. Devitt, Ashley M. Stephens, William J. Munro, and Kae Nemoto

19.1 Introduction

The last century saw the discovery and development of a set of principles that
describes physical reality at the atomic level of matter. These principles known as
quantum mechanics has been extensively tested and is now being used to develop
todays advantaged technologies. Quantum mechanics has played a vital support role
for modern conventional information technology, improving the building blocks,
through, for example, providing better understanding of material properties and of
the functioning of components such as transistors, memory elements and GPS based
location devices. Such technologies need to take into account the effects of quantum
physics to operate correctly. However quantum mechanics allows much much more,
it allows a new paradigm for the processing of information known as quantum
information processing [5, 40, 54, 63, 76]. Since 1995, there has been a large
worldwide effort to explore and develop quantum-based devices and technologies
[23, 75]. Quantum key distribution (QKD) [26, 40], the technology by which one
can create unconditionally secure (according to the laws of quantum mechanics)
keys for classical cryptography is already commercially available. QKD is in a sense
a communication tasks yet it has been long known that these quantum principles of
superposition and entanglement can be used for computation tasks [14, 27, 41, 74].
One of the most famous examples is Shor’s algorithm [74], which allows one to
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factor large number of polynomial time (of order O .log N/3 for an N bit number)
and will require a large quantum computer. This however is not an easy task to
accomplish.

The problem of designing large scalable quantum computer architectures has
been a major focus since the first introduction of physical architectures for QIP
in the mid to late 1990s [1, 11, 12, 38, 47, 52, 56, 59, 60]. The development of
a quantum computer not only capable of achieving a universal set of gates, but
also incorporating the necessary flexibility to implement extensive quantum error
correction is somewhat summarised in David DiVincenzo’s famous criterion for a
scalable quantum architecture [21, 22]. The five criterion (later amended to seven
[22] to include QC Networkability) can be briefly summarised as,

1. System is comprised of well characterized qubits and allows for scalability.

2. Ability to initialize the state of the qubits.

3. System provides long coherence times, much longer than a gate operation time.

4. A universal set of gates is experimentally feasible.

5. Qubit specific measurement capability.

6. Ability to interconvert stationary and flying qubits.

7. Faithful transmission of flying qubits between specified locations.

This list of properties, unarguably necessary for any system proposed as a large
scale quantum computer, does not encapsulate the subtleties required when one is
attempting to design and operate a large-scale quantum architecture.

Since 2007 there has been rapid development of architectural designs that allows
us to specify the structure and operation of a fully error-corrected quantum computer
containing millions if not billions of components. These new designs generally have
one common feature in that they all utilise new forms of error correction based on
topological quantum codes [7–9, 13, 35, 48, 70]. While many other error correction
codes exist, these topologically based ones have several important properties that
make them applicable to many physical systems. These properties are

• They are geometrically local, i.e. interactions can be restricted to physically 2-
or 3-dimensional nearest neighbour systems.

• They exhibit high fault-tolerant thresholds, up to 2 % per gate depending on
underlying assumptions [3, 32, 68, 70, 78, 80, 86]. A number of physical systems
including ion-traps [4, 42], superconducting systems [2], liquid-state nuclear
magnetic resonance [72], and several solid state systems have demonstrated
operational error rate well below this.

• Implementation of algorithms can be detached from the operation of the physical
hardware and resource optimisation can be performed at a more abstract level,
applicable to all system based on these codes.

The elegance of such coding models allows us, with great specificity, to design an
arbitrarily large quantum computer. Comparatively simple modular elements can be
designed to implement fully error corrected, topological computation. This method
of architecture design is not necessarily always the choice for all major hardware
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systems [17, 33, 46, 57, 58, 61, 81, 88], but it does suit our purpose here for the design
of a module based atom-optical system. The basic module is composed of an atom
(or artificial atom) embedded in an optical cavity. Photons that have never directly
interacted with one another can be routed through the cavity to deterministically
entangle one another [81].

In this chapter we will present a detailed summary of one such design, ranging
from the fundamental physical building blocks all the way to optimisation and
implementation of Shor’s factoring algorithm [74] within the topological model.
Such a detailed formulation will allow us to provide an accurate resource estimate
of the number of quantum devices (modules) and the computational time required
for very large factoring problems. We begin this discussion in Sect. 19.2 with
a description of a photonic module, a device used to deterministically create
entanglement between individual photonic qubits. Such a device forms the building
block for the topological architecture. We will then in Sect. 19.3 describe the
design of a photonic module architecture, how it prepares an appropriate cluster
state for topological computation and how this cluster is used to correct errors.
Section 19.4 then summarises how quantum logic is achieved in the topological
model, ranging from how encoded gates are realised and how the size of the
algorithm relates to the size of the topological cluster prepared by our hardware.
Using this designs we will then conclude by providing resource estimates for Shor’s
factoring algorithm with respect to the total number of photonic modules and real
computational time. The contents of this chapter are derived from the work in Refs.
[15–18, 20, 29, 34, 79] and readers are encouraged to examine these papers for
further details.

19.2 The Photonic Module

As was mentioned in the introduction, the photonic module is a simple device
that allows us to deterministically entangle photons together mediated via an
atomic system [16]. This device forms the building block of the entire com-
putational architecture and no other quantum components are necessary. The
design of this device is such that expanding the size of the computer only
requires fabricating and then connecting additional photonic modules in a well
defined way.

Let us now consider its operation in detail. The basis of the scheme, depicted
in Fig. 19.1 is a mechanism to deterministically entangle the atomic system and a
single photon. The atomic system considered is an L level systems with basis states
j1i, j2i and j3i where the j2i $ j3i is (or near) resonant with the cavity (Fig. 19.1).
We will assume the j1i $ j3i transition is forbidden (or far off resonance). Now
there are a number of techniques that can be used to entangle the photon and atom
[6, 16, 37, 66, 77, 82, 87, 90], but here we will focus based on a state-dependent
reflectivity technique [44, 45, 73, 83, 89]. This is where our photon picks up a phase
shift dependent on which of the two lower level basis states the atomic system is in.
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Fig. 19.1 Schematic representation of photonic module composed of a three level atoms embed-
ded in an optical cavity. The three level system is in an L level configuration with the j2i $ j3i
resonant or near resonant with the cavity. We assume the j1i $ j3i is forbidden

We can describe our combined system by the Hamiltonian

H D„!ca�aCE1j1ih1jCE2j2ih2jCE3j3ih3jC„g
	
a�j2ih3j C aj3ih2j



(19.1)

which includes free energy terms for both the optical field and three level atoms
as well as an interaction terms coupling the two together. In Eq. 19.1, !c is the
cavity frequency, E1, E2, E3 are the energy eigenvalues of the levels j1i, j2i and
j3i respectively, while g is the coupling strength between the cavity mode and the
j2i ! j3i transition („�1 D E3 � E2). For such a system [84], we can write the
Langevin equations of motion for a and �� D j2ih3j as,

Pa D �
n
i�C �

2

o
a � ig�� C

p
�ain (19.2)
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o
�� C ig�za C Noise.t/ (19.3)

where � D !c � ! is the detuning between the optical field and cavity while ı D
�1 �! is the detuning between the atom center and cavity. � is the damping rate of
the cavity while 
 the spontaneous emission rate of the atom (from j3i ! j2i). ain

is the signal incident field on the cavity, while Noise.t/ is a noise operator related
to the reservoirs of the atom. We also assume that the excited state j3i is never
significantly populated, so h�zi � �1 [44]. Using input-output theory [36, 84] we
can straightforwardly show that the output field aout is given by,
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We immediately see that our output field aout depends heavily on the state of the
atom. If the atom was in the j1i state then g � 0 and so we effectively have an
empty cavity giving aout D .� � 2i�/ ain= .� C 2i�/ � ain if � � �. Alternatively
for the atom in the j2i state we can have aout D� �ain if C D 4g2=.�
/ � 1. This
means we have a differential phase shift of � on the photon dependent on the state of
the atom. For instance with a photon field in a superposition state
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and the atom in a superposition of .j1ia C j2ia/ =
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2, then our interaction gives
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This CZ operation thus creates a maximally entangled state between the photon and
atom. While we considered the photon state as a superposition of no photon and a
single photon, the gate also works for the polarisation state .jHip C jVip/=

p
2, that

is we can straight forwardly achieve

1

2

	
jHip C jVip



.j1ia C j2ia/ ! 1

2

	
jHip C jVip



j1ia C 1

2

	
jHip � jVip



j2ia

D 1

2

�
j1ia C OZpj2ia

� 	
jHip C jVip



(19.6)

by either having the j3i ! j2i polarisation sensitive or transforming the polarisation
encoded photons to path encoded photons. Here OZp D jHiphHj � jViphVj. In such a
case, our effective unitary operation is U D exp

�
i�j2iah2j ˝ jViphVj

�
. By perform-

ing a Hadamard operation on the atom state before and after U, we can generate an
interaction of the form Ueff D exp

�
i�
2
�x;a ˝ jViphVj

�
exp

�
�i�

2
jViphVj

�
, that is a

conditional bit-flip instead of the CZ gate plus a linear phase shift on the photon
(such a phase shift can simply be undone with a phase shifter – either before the
interaction is applied or after). Both interactions U and Ueff are very useful for
generating large cluster states [67], however before we turn to look at this, let us
first consider creating entanglement (Bell states) between photons that have never
directly interacted [16].

The entangling gate U can be used simply to mediate the generation of entangled
Bell states between temporally separated photons (in such a case the first photon
interacts with the atom in the cavity initially and then the second photon). This is
important because it means the photons do not have to be identical in the Hong-Ou-
Mandel [43] sense as there is no direct interaction. Non identical photons can be
used as long as the cavity interactions are the same. To illustrate the generation of
this Bell state, consider two photons prepared individually in the

	
jHip C jVip



=
p
2

state sequentially interacting with the atom in the cavity (again the atom is prepared
in the state .j1ia C j2ia/ =

p
2). After such interactions we have
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˝
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j2ia (19.7)

Performing a Hadmard operation on the j1ia ! j1ia Cj2ia; j2ia ! j1ia �j2ia gives

1

4

	
jHip1jHip2 C jVip1jVip2



j1ia C 1

4

	
jHip1jVip2 C jVip1jHip2



j2ia; (19.8)

and so by measuring the atom, we get either
	
jHip1jHip2 C jVip1jVip2



=
p
2 or	

jHip1jVip2 C jVip1jHip2



=
p
2 depending on the measurement result (we label

the j1ia outcome an even parity (+1) result, while the j2ia outcome an odd
parity (-1) result). This shows we can sequentially entangle two photons that
have never interfered directly with one another. Additionally unlike other schemes,
the measurement result of the atom-cavity system never collapses the photons to
unentangled states. Now since the even and odd parity Bell states differ only through
local bit flips, either result is acceptable and an even parity state can be prepared by
applying a local, classically controlled bit flip on any photon once the atomic system
is measured. The preparation of the Bell state is therefore completely deterministic,
with the classical result only giving parity information of the entangled state. As the
even and odd parity states are interchangeable through local Clifford gates, correc-
tion can be fed forward to the end of subsequent operations on the photonic state.

The same technique used to create Bell state can be generalised to entanglement
of multiple photons (as is illustrated in Fig. 19.2). For an initial N separable photon
state of the form j i˝N D

�
jHip C jVip

�˝N
=
p
2N we can show

Optical Input
Optical Output

+1

-1

Fig. 19.2 Photonic module used to entangle a series of polarisation encoded photons. The atom-
photon interaction based on the L level system in a cavity is polarisation sensitive to only the
vertical component of each single photon. The measurement of the atom projects the photonic
state into one of two locally equivalent states. For a measurement result C1 (associated with the

detection result from the j1ia state) we have the photonic state
�
j Ni C OZ˝ N

p j Ni
�
=
p
2 while

for the �1 result (associated with the detection result from the j2ia state) we have the photonic

state
�
j Ni � OZ˝ N

p j Ni
�
=
p
2
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2
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Performing a Hadamard operation on the atom, we have

1

2

h
j i˝N C OZ˝ N

p j i˝N
i

j1ia C 1

2

h
j i˝N � OZ˝ N

p j i˝N
i

j2ia (19.9)

We can thus see that the natural operation of the module is to project the train
of photons into a ˙1 eigenstate of the OZ˝ N

p operator. Further we do not need to
send into the module a separable state of the form j i˝N , instead we can consider
a general N photon state j Ni (such a state could already be entangled). In the
case we can show that after the operation of the module (including the Hadamard
operations)

1p
2

j Ni .j1ia C j2ia/ ! 1
2

h
j Ni C OZ˝ N

p j Ni
i

j1ia (19.10)

C 1
2

h
j Ni � OZ˝ N

p j Ni
i

j2ia

The measurement outcome from the atomic system (˙1) will determine which

eigenstate (either
�
j Ni C OZ˝ N

p j Ni
�
=
p
2 or

�
j Ni � OZ˝ N

p j Ni
�
=
p
2) one is

projected into, with local operations applied to switch between eigenstates. We
are also not restricted to Z based operations, instead for instance by applying
a Hadamard operation on the atomic system before and after the photon-atom
interaction, we can instead do X based operations [16]. Thus we could perform an
overall operation like

1p
2

j Ni .j1ia C j2ia/ ! 1
2

h
j Ni C OX˝ N

p j Ni
i

j1ia (19.11)

C 1
2

h
j Ni � OX˝ N

p j Ni
i

j2ia

or another general interaction where some photons are associated with Z oper-
ations, others with X or Y or any of the single qubit clifford operators. A
remarkable property of the module is that the number of entangled photons that
are prepared depends only on the number sent through the module, we do not
need to alter any internal structure of the module to entangle more photons
[16].

We can immediately see the potential of these modules to create interesting
photonic states. By adding appropriate single-photon routing and local operations
to the module (as illustrated in Fig. 19.3) we can prepare any entangled photon state
that can be expressed in terms of stabilisers [41].
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Fig. 19.3 Schematic design of a photonic chip. The chip is a 3-in 3-out integrated circuit
containing one photonic module, classical single photon routing and two optical wave-plates
allowing for the optional application of single photon Hadamard gates (or other Pauli gates) to
specific photons

Stabilized states are a class of multi-qubit states that are eigenstates of a group of
multi-qubit Pauli operators. Stabiliziers are a very simple framework for describing
multi-qubit states and provide an efficient description of entangled states commonly
used in cluster state quantum computing [67, 70] and quantum error correction [19].
Cluster states (an more generally quantum graph states) have a particularly elegant
stabiliser description.

Ka D Xa

O

b

Zb2m.a/ a 2 Œ1; 2; : : : ;N�: (19.12)

For each of the N-qubits in the graph, a, a stabiliser operator Ka is formed as the
tensor product of X on qubit a and Z on any qubit that is connected to a, b 2
m.a/. The graph state is then defined as the quantum state that is a simultaneous
eigenstate of all N of these operators. For a general N-photon graph, N parity checks
need to be performed. This can either be done by using N separate modules, or
sequentially using only one. If multiple modules are available, many parity checks
can be done in parallel without waiting for atomic readout, potentially speeding up
state preparation.
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An N-qubit stabiliser state is fully characterised by N Pauli operators and include
states such as Bell states, higher order GHZ states and cluster states [67]. To
prepare such states using the module, we perform a parity check of the N stabilisers
describing the state. As each of the stabilisers for an N-photon stabilised state are
described via an N-fold tensor product of the operators fI;X;Y;Zg, the ability to
perform a parity check of the operator ZN0

for N0 � N and then apply local
operations is sufficient to perform a parity check on an arbitrary state with respect to
any operator of that form. Given this, if we can selectively route photons within the
train and apply local operations to any photon, the parity measurement performed
by the module is sufficient to prepare any stabiliser state.

As the stabiliser structure of the desired state dictates the number of photons
passed through the module for each atomic measurement, the coherence time of
the atom-cavity system does not depend on the total number of photons in the
entangled state. Instead, the atomic system must only maintain coherence until the
parity of a specific stabilizer operator is measured, The number of non identity
operators in any given stabiliser operator dictates the number of photons passed
through the module in any one step and therefore the coherence time required
for the atom-cavity system. For instance, an N-photon cluster state appropriate
for quantum computation has a well-known stabiliser structure, with a maximum
of five photons passing through the module before measurement. Regardless of
the total size of the cluster, the atomic system only needs to maintain coherence
long enough for five photons to pass through the module between initialisation and
measurement.

Now making use of our module we can deterministically prepare large photonics
states, the next section examines how an array of these devices can be used to make
states appropriate for large-scale quantum computation [62, 69, 70].

19.3 Towards Fault-Tolerant Quantum Computation

So far, we have introduced a device to prepare arbitrary stabilizer states from unen-
tangled photons. Combined with adaptive single-qubit rotations and single-photon
detectors, this is sufficient for universal quantum computation [62]. However,
without error correction, errors due to decoherence and various imperfections will
accumulate and may compromise the scalability of the architecture. To overcome
these errors, our architecture is designed to implement topological error correction
[13, 49]. In particular, we use a network of photonic modules to prepare a
topological cluster state, which is a resource for universal fault-tolerant quantum
computation [69, 70].

The three-dimensional topological cluster state is a cluster state on the lattice
with an elementary unit cell shown in Fig. 19.4a. Qubits are located at the centre
of faces and edges of the unit cell. The stabilizer group is generated by weight-five
operators, as described in the previous section.
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Fig. 19.4 (a) Unit cell of the three-dimensional topological cluster state. Each vertex represents
a qubit and edges represent entanglement specified by the stabilizer group. The stabilizer
generators can be divided into three distinct types according to their orientation x � y, x � z,
and y � z, as illustrated in red, green, and blue respectively. (b) Extending the lattice, we see the
pattern of stabiliser measurements required to prepare the topological cluster state. The order of
measurements is fixed by the association of the z axis with time

The significance of the topological cluster state is revealed by associating one
of its spatial dimensions with simulated time [69, 70]. Then, the topological cluster
state simulates the evolution of a two-dimensional array of qubits encoded in the
surface code [9, 35]. As we will see, this property allows the state to be used a
resource to encode logical information, perform a universal set of gates on the
logical information, and detect and correct errors affecting the physical qubits.
Moreover, this encoding inherits the remarkable features of the surface code –
namely, a high tolerance to errors (around one percent per physical qubit) and the
ability to manipulate the logical information using local measurements [32, 68]. We
will return to describe this encoding in detail, but for now we focus on how the
architecture is designed to prepare and then measure the topological cluster state.

19.3.1 A Modular Quantum Computer Architecture

The architecture is designed to prepare the topological cluster state from unentan-
gled photons by measuring each of the stabilizer generators. These measurements
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Adaptive rotations

Optical lines (b) State preparation network

x-y stage

z(t)

x

(a) Photon source / recycling

Fig. 19.5 Cross-sectional schematic of the architecture. The architecture consists of a reliable
source of unentangled single photons, a network of photonic modules to prepare the topological
cluster state, and additional modules to measure the photons to enact the computation. These
elements are connected by optical lines and classical switches, and photons flow through the
network along the z axis. (a) An array of photonic modules (not shown) provides single photons
distilled from a weak coherent-light source. These photons combine with photons recycled from
the output of the network to provide the input state. (b) An array of waveplates adjusts the input
state as required and two arrays of photonic modules measure stabilizer generators to prepare
the topological cluster state, where the coloration corresponds to Fig. 19.4b. (c) A final array
of photonic modules non-destructively measures the output state, where waveplates adjust the
measurement basis as required. The measurements are repeated to detect photon loss

are performed using a network of photonic modules. Motivated by the natural
2+1-dimensional interpretation of the topological cluster state, the concept of
simulated time dictates the order of the measurements. Furthermore, photons
leaving a photonic module can proceed to subsequent modules before the outcome
of the measurement is known. These concepts are combined, leading to a flowing

architecture in which photons that are initially unentangled cascade through a series
of photonic modules and emerge as the successive two-dimensional planes of the
topological cluster state [17, 79].

Figure 19.5 gives an overview of the architecture. In greater detail, the architec-
ture consists of a two-dimensional array of common optical waveguides carrying
photons along the z axis. To reflect the structure of the lattice on which the
topological cluster state is defined, there are two groups of waveguides distinguished
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by the repetition rate of the photons, which we denote as half-rate and full-rate
lines. The temporal spacing of the photons is parametrized by an interval T, which
is bounded below by the minimum interaction time required for the operation of
the photonic module and bounded above by the coherence time of the atomic
system [79].

Photonic modules are arranged along the x � y plane to perform the stabilizer
measurements required to prepared the topological cluster state [17]. Each module
is connected to three adjacent waveguides, oriented according to the different
orientations of the stabilizer generators, illustrated in Fig. 19.4b. The photonic
module also enables the non-destructive measurement of photons, and thus an
array of modules performs the single-qubit measurements required to enact the
computation after the topological cluster state is prepared. Adaptive waveplates
perform single-qubit rotations, adjusting the initial state of the photons and the
final measurement basis as required. Lastly, to eliminate the need for high-
frequency single-photon sources, the outgoing photons are recycled to be used
as incoming photons at a later time [18]. As the photonic module also enables
the heralded distillation of single photons from a weak coherent-light source
(with low probability), an array of photonic modules provides the photons that
initialize the network [18]. These modules (and appropriate classical routing)
also serve to replace photons that are lost due to fiber attenuation or coupling
inefficiency.

The primary task in preparing the topological cluster state is imposing
the stabilizer conditions that specify the topological cluster state. Reflecting
the three distinct types of stabilizer generators, illustrated in Fig. 19.4b, these
conditions are satisfied by three distinct stages of the architecture, outlined
below:

• x � y stabilizer stage: For an arbitrary input state, measurements are required to
the impose the stabilizer conditions in the x � y plane. However, we are free to
specify an input (product) state that already satisfies these conditions. Thus, the
x � y stabilizer stage consists of an array of waveplates to rotate the incoming
photons are required. Only this stage of the three can be done by adaptive
rotations, whereas the rest two stages serves as the entanglement sequence for
the cluster state. Photons in the half-rate lines are prepared in the C1 eigenstate
of X, and photons in the full-rate lines are prepared in the C1 eigenstate of Z.
This ensures that the input state satisfies the stabilizer conditions in the x � y

plane as it enters the next stage of the network.
• x � z stabilizer stage: The x � z stabilizer stage consists of an array of

photonic modules oriented along the x axis, each connected to three adjacent
waveguides. Each photonic module periodically measures stabilizer generators
centered at a particular x � y coordinate, as illustrated in Fig. 19.6. To perform
these measurements whilst maintaining synchronicity and avoiding collisions
between photons, photonic modules are required to have several settings to
control incident photons. At different times, incident photon will interact with
the atomic system, be delayed by the atomic system, or bypass the atomic system
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Fig. 19.6 Action of the x � z stabilizer stage. Photons flow from left to right through the network
with the temporal spacing parameterized by the atom-photon interaction time T. The photonic
modules perform stabilizer measurements, imposing the stabilizer conditions in the x � z plane

entirely with no delay. Additionally, in some cases, a Hadamard operation will be
applied before and after a photon interacts with the atomic system. These various
requirements are satisfied by the classical routing illustrated in Fig. 19.3. Photon
delay is achieved by preparing the atomic system in the j1i state, preventing
it from entangling with the photon during the interaction time [17]. Lastly, the
atomic system will be periodically measured and re-prepared. The switching
sequence to control these various settings during the x � z stabilizer state is
detailed in Ref. [17]. Following this stage the stabilizer conditions in the x � z

plane are satisfied.
• y � z stabilizer stage: The y � z stabilizer stage is identical to the x � z stage,

but now the photonic modules oriented along the y axis. This reflects the 90ı-
rotational symmetry of the topological cluster state.

Following these three stages, the state of the photons emerging from the network
satisfies all of the stabilizer conditions of the topological cluster state. As incoming
photons are continually entangled with the state, outgoing photons are immediately
measured to enact the computation. This limits the propagation time of each photon
to a constant time independent of the extent of the topological cluster state. To
increase the extent of the topological cluster state, we simply extend the x � y

dimension of the architecture in a modular fashion, allowing us to continuously
prepare an abitrarily large topological cluster state. In general, 4N2 C 4N photonic
modules are required to continuously prepare a topological cluster state with an
N � N cross section of unit cells [17].
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a b c

Fig. 19.7 Error correction. (a) An example of a distribution of errors affecting a set of physical
qubits in the bulk of the topological cluster state. (b) The state after a set of corrections has
been applied. Some of the initial errors were corrected, others combined with corrections to form
closed cycles. As these are homological trivial operators equivalent to the identity operator, error
correction has succeeded in restoring the system to its initial state. (c) The state after a different set
of corrections has been applied. In this case, the errors and corrections combined to form an open
cycle. As this is a homological non-trivial operator equivalent to a logical operator, error correction
has failed

19.3.2 Topological Error Correction

With a sufficiently large topological cluster state, logical qubits can be introduced
and then manipulated to execute an arbitrary quantum algorithm. However, for the
output of the algorithm to be reliable, we require an effective procedure to detect
and correct the various errors that are likely to arise as the topological cluster state
is prepared from unentangled single photons. This is the role of topological error
correction [13, 49]. In principle, the task is to ensure that any errors affecting the
states of the physical qubits are unlikely to lead to errors affecting the states of
the logical qubits. In effect, we are required to suppress the probability that non-
trivial homological cycles of errors are established in the topological cluster state
[30, 70]. Figure 19.7 gives an overview of the task at hand. To illustrate, we will
assume a uncorrelated single-qubit noise model in which each physical qubit in the
topological cluster state is affected by a discrete Z error with probability p.

Error correction is based on the well-defined stabilizer group of the topological
cluster state. Consider the stabilizer operator that is the bitwise tensor product of
the six stabilizer generators associated with the six centre qubits on each face of a
unit cell. To determine its eigenvalue, it is sufficient to independently measure each
qubit in the X basis and then classically compute the parity of the six measurement
results. If there are no errors affecting the qubits, then the eigenvalue will equal C1.
However, due to the commutation relation XZ D �ZX, if there are an odd number
of Z errors affecting the six qubits, then the eigenvalue will equal �1. Identical
stabilizer operators are associated with every unit cell of the topological cluster state,
so by measuring the eigenvalue of each of these operators we are able to detect Z

errors affecting the physical qubits [30, 70].
An isolated Z error will result in two adjacent cells having eigenvalue equal

to �1. Connected chains of errors will result in the cells at the endpoints having
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Fig. 19.8 Examples of how chains of errors (indicated by red circles connected by solid black

lines) are revealed by stablilizers with eigenvalue equal to �1 at the endpoints (indicated by the
associated unit cells, outlined in red)

eigenvalue equal to �1, illustrated in Fig. 19.8. It is these the locations of these cells
that make up the error syndrome, from which we must infer the location of the errors
[13, 24]. If errors occur independently with probability p � 1, then the most likely
set of errors consistent with the syndrome is a set of chains that connects the cells in
pairs in the shortest length. To find this set, we express the syndrome as a weighted
graph and find the minimum-weight set of edges using Edmonds’ perfect matching
algorithm [25, 53]. This is not an optimal strategy, but it leads to a computationally
efficient algorithm for decoding the error syndrome [13, 86]. An identical procedure
occurs on the primal lattice, either independently or in conjunction to account for
correlations between the noise on the two lattices.

If the error rate is sufficiently low, then errors will typically be well isolated and
easily identified. In this case, enlarging the topological cluster state will make it
less likely that long cycles of errors will arise. On the other hand, if the error rate
is too high, then enlarging the topological cluster state will make this more likely.
The threshold error rate that separates these two regimes is critical, as the effective
physical error rate in the architecture must be below this value for error correction
to be effective.

To determine the threshold error rate, we undertake a series of Monte Carlo
simulations of topological cluster states of various sizes, parameterized by the linear
dimension of the topological cluster state in unit cells d. We estimate the logical
error rate (the probability that a homologically non-trivial cycle of errors remains
after error correction) as a function of the single-qubit physical error rate p. Our
numerical results are shown in Fig. 19.9, indicating that the threshold error rate is
0.0290(1) per qubit. This value is consistent with other studies of topological error
correction and the associated random-plaquette gauge model [64, 70, 85]. We also
probe the performance of the scheme for error rates well below the threshold. These
results are shown in Fig. 19.10. In this regime, we confirm that increasing the extent
of the topological cluster state results in an exponential suppression of the logical
error rate as required.

The threshold error rate sets an error budget which must account for a variety of
noise sources during the preparation and measurement of the topological cluster
state. For example, if the topological cluster state is prepared using a standard
quantum circuit based on controlled-phase gates, then the threshold error rate is



422 S.J. Devitt et al.

0.027 0.028 0.029 0.030 0.031

Physical error rate

0.05

0.10

0.15

0.20

0.25

L
o
g
ic

a
l 
e
rr

o
r 

ra
te

9
11
13
15
17
19
21

Fig. 19.9 Numerical simulations of topological cluster-state error correction for lattices of various
size d under a phenomenological noise model where each qubit is affected by a Z error with
probability p. For given values of p and d, the logical error rate is estimated from an average of
at least 106 independent trials. Error bars indicate ˙2� statistical error due to finite sample size.
Curves are derived from a universal scaling function fit to the data. From this fitting, the value of
the threshold error rate is found to be 0.0290(1) and is indicated by the dashed vertical line
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Fig. 19.10 Numerical simulations of topological cluster-state error correction for lattices of
various size d. Error bars indicate ˙2� statistical error due to finite sample size. Curves are
leading-order approximations of the form Rdp.dC1/=2 , which are valid for low physical error rates.
Values of Rd are estimated by sampling from all possible combinations of .d C 1/=2 errors
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0.0063 per gate [3, 70, 78]. Topological error correction is robust against more
general correlated errors and qubit loss, with a corresponding reduction in the
threshold error rate [3, 55]. Importantly, no modification of the architecture is
required provided that the cumulative noise satisfies the threshold condition. The
architecture can be efficiently scaled in the x � y dimension to prepare a sufficiently
large topological cluster state to achieve the desired logical error rate.

19.4 Topological Computation and Performance

The previous sections have detailed the structure and operation of the quantum
hardware that is needed to create a large 3-dimensional lattice of entangled qubits.
This section details how this lattice is used in order to perform fault-tolerant, error
corrected quantum computation and how we ultimately calculate resource costs
(in terms of physical devices and computational time) for a large-scale quantum
algorithm.

The topological cluster state model of quantum computation is a measurement
based model and therefore operations are realised via the consumption of the entan-
gled state [67]. The quantum hardware does not care what the final computational
application is [15]. The only condition on the quantum hardware is that it produces
a large enough lattice for the given application and that all physical error rates lie
below the fault-tolerant threshold of the code.

In this section we summarise the important operations necessary for utilising
the cluster to perform computation and what quantum algorithms look like in this
model. We conclude this section with a brief discussion about how resources are
estimated (in terms of the number of photonics modules and the total computational
time) for a large scale quantum algorithm run on the architecture we have detailed.
This section will only contain a brief review, for more details please see Refs. [15,
20, 30, 70]

19.4.1 Defining Qubits and Gates

Previously we had examined how to perform error correction on a perfect lattice
(i.e. one that does not contain any encoded information). However, this is useless for
computation. We need a method of introducing degrees of freedom (which will be
used to store encoded information) into the lattice. This is done by creating a hole (or
defect) in the lattice by removing, or disentangling, specific qubits at specific points
in time (Fig. 19.11). As noted in the previous section. The lattice is produced by the
hardware one cross-section at a time. The flow of the topological computation takes
place as each cross-sectional sheet of the cluster is measured. Each time a cross-
section of the lattice is measured, information is teleported to the next successive
cross-sectional sheet and the information processing can be performed by changing
how each cross-sectional sheet is measured.
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Fig. 19.11 A Logical
Volume. This element is a
scale independent way to
measure the size of a
topological quantum circuit.
The size of the cell and the
size of the defect are
determined by the error
correction strength, d.
Constructing cells in this
manner ensures that proper
defect separation occur to
maintain error correction
properties

5d

4
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If every qubit in the cluster is simply measured in the X-basis, we do not perform
any computation at all, and the only thing we can do is detect (and correct) physical
errors that have occurred on qubits (Sect. 19.3). However, if certain physical qubits
are measured in the Z-basis. They are effectively removed from the lattice and
introduce a degree of freedom that can be used to encode information. A Z-basis
measurement of a given physical qubit essentially removes it from the cluster [67].
We omit the details here, but if you examine the lattice carefully, the removal of a
single qubit will reduce the total number of qubits in the lattice by one, but reduce
the total number of independent stabilisers describing the lattice by two [19, 30, 70].
This reduction of the number of constraints (stabilisers) introduces a single-qubit
degree of freedom, and hence two unique quantum states can satisfy the remaining
constraints of the N � 2 stabilisers. These two quantum states can now be used as
the logical j0i and j1i states. On the cluster state, we can define two types of logical
qubits: primal and dual qubits. In a cell in Fig. 19.4a, the eight qubits between two
faces coloured red locate on a dual lattice, while the qubits on the red dagger are
on primal face. The dual face and the primal face are the exactly same shape with a
half lattice shifted in all three directions. Performing Z-basis measurements on the
centre qubits on primal face creates a primal logical qubit, and the same on the dual
face generates a dual logical qubit. Note that primal and dual logical qubits cannot
coexist at the same location in the lattice and they can never touch each other. The
distinction between primal and dual qubits becomes important when we consider
quantum logic.

We now extend the idea of a unit cell of the cluster to the idea of a logical volume.
This unit of measure, represented as d in Fig. 19.11, is used to define the minimum
volume of cluster necessary to perform error correction on one of these encoded
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qubits. As error chains can move in all three dimension (the spatial cross section
plus the temporal axis of the cluster), this volume is a cuboid of fixed edge length
related to the strength of error correction needed for computation. Situated in the
centre of this volume is a defect. Outside the boundary of the defect, all qubits are
measured in the X-basis for error correction, while all qubits inside the boundary
of the defect are measured in the Z-basis and removed from the cluster. The defect
itself is not a fixed size and it’s perimeter increases with the strength of the error
correction code.

Before explaining how the logical volume relates to the error correction strength
of the cluster, we need to explain some details regarding the properties of the defects.
We define a logical qubit with a pair of defects (of the same type), and there are
three sets of physical qubits that are relevant to the logical qubit. These qubits can
be divided into defect sets, correlation sets and logic sets, which are marked in three
different colours in Fig. 19.12. In this figure we illustrate two defects that are a single
unit cell in cross section and are defined for two cells in the temporal direction.
Qubits not directly relevant to these sets have been omitted. The first set are the
centre qubit of each face of a unit cell, indicated in green, which are measured in the
Z-basis. These defects define the defect geometry (in this case two straight pieces
that are each two unit cells long). The second set of qubits marked in orange is the
logic set. In Fig. 19.14a, the logic sets define rings around each of the two defects. If
these qubits were measured in the Z-basis, the parity of these measurements would
determine the locally encoded state. If the defect is of primal type, we would be
performing a projective measurement on the logical j0; 1i states, while if the defect
is of dual type, we would be measuring in the logical jC;�i state. In Fig. 19.12b
the conjugate operator is defined with a chain of Z measurements connecting the
two defects. For primal type this parity determines the measurement result in the
X-basis and for dual type the parity determines the measurement in the Z-basis.
These ring or chain operators determine the encoded logic state at each point in
time. The purpose of each cross-sectional measurement of the cluster is to teleport
the information encoded with these operators to the next layer in the cluster and to
perturb them in accordance with an algorithm. The final set of qubits relevant to
defects are illustrated in blue and are known as the correlation sets. The correlation
sets relate how the logic operators at time step t are related to identical operators are
time-step t0. They in effect connect the logic state of a defect from input to output
along the temporal axis of the cluster. In the upper cluster of Fig. 19.12, measuring
the blue qubits in the X-basis and the input logical ring operator in the X-basis, you
will teleport the parity of the ring operator from the input side to the output side
of the defect. There is a byproduct correction to the logical state that depends on
the total parity of all these X measurements. Similar is true for the chain operator,
but instead the relevant correlation set is a sheet of X-basis measurements between
the two defects that connect a chain operator at the input to a chain operator at
the output. In Fig. 19.12 we are essentially describing the identity operation. As the
cluster is measured, certain qubits are measured in the Z-basis to define the geometry
of a defect and the other qubits measured in the X-basis are used for error correction
and correctly propagating the logical state of the qubit from the input side of the
cluster to the output.
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Fig. 19.12 Relavant sets of physical qubits to define the structure and propagation of a defect.
Illustrated here is a defect for d D 4 for a simple identity operation. Three sets of qubits are defined.
The first, illustrated in green are measured in the Z-basis and define the geometric structure of the
defect. The second, illustrated in orange, are the logic sets that define the X and Z eigenstates of a
particular encoded qubits. The third, illustrated in blue are correlation sets that connect the input
and output logic operators as the cluster is measured. Two types of logic operators and correlation
sets are defined, consisting of rings and tubes (upper) or chains and sheets (lower). For a primal
type defect, the ring operators define the Z logic state while the chain operators define the X logic
state. For a dual type defect these definitions are reversed. physical qubits

Given these definitions we can now go back to the logical volume. As the logic
sets consists of the parity of either a ring of physical qubits encircling a defect or a
chain that connects two defects together, the strength of error correction is related
to the weight of these operators. If either the ring or the chain consists of many
more physical qubits, it takes more errors to potentially corrupt the encoded state.
The distance of the error correction code specifies the minimum number of errors
to create a logical error. Therefore, the distance d of the underlying quantum code
is related to the perimeter of a defect and the distance they are separated from each
other. The logical volume illustrated in Fig. 19.11 is defined with respect to d. A
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defect is defined with a total perimeter of d unit cells in the lattice and the defect
is d=2 unit cells away from the edge of the unit cell (ensuring that two logical cells
placed next to each other have a total separation between defects of d). By defining
the logical volume with respect to d now gives us a way to define topological circuits
independently of the underlying error correction strength. A circuit can be specified
in terms of the number of logical volumes and then simply converted to an actual
lattice volume once the error correction strength has been specified.

19.4.1.1 Gates

As with any other model of error corrected computation, the topological model does
not have a universal set of gates that can be directly implemented in a fault-tolerant
manner. In fact only a small number of operations are directly allowed. This set
includes state preparation and measurement in the X and Z bases and the CNOT
operation. To complete a universal set we generally append to further protocols to
fault-tolerantly enact P D Rz.�=4/ and T D Rz.�=8/ gates which will be described
in a moment.

Initialisation and measurement in the cluster can be described using simple
geometric structures illustrated in Fig. 19.13. In Fig. 19.13a initialises an encoded
qubit into the Z (X)-basis for the primal (dual) qubit, while Fig. 19.13b initialises
an encoded qubit into the X (Z)-basis for the primal (dual) qubit. The temporal axis
runs from left to right in the image. Measurement in the Z or X basis is achieved by
inverting these geometric structures with respect to the temporal axis.

The final intrinsic gate that can be implemented in the model is the two qubit
CNOT, which occurs by altering the trajectory of defects and performing a braid.
A CNOT operation can only be performed between primal and dual logical qubits
(where the dual qubit always acts as control). How this braid achieves the CNOT
can be seen when examining how the correlation sets (the physical qubits that

a b c

Fig. 19.13 Geometric structures for initialisation. For primal (dual) type defects, (a) initialises
into the j0i (jCi) state, (b) initialises into the jCi (j0i) state and (c) initialises a defect into the
jAi or jYi state depending on the measurement of the physical quit at the apex of the pyramid. The
way in which these structures are created within the cluster is by measuring any quit inside the
defect structures in the Z-basis as the cluster is consumed along the temporal axis (i.e. quits are
measured in cross sectional layers from left to right). The parity of the X-basis measurements on
the surface of these structures will dictate the actual (e.g. j0i or j1i when initialised in the Z-basis).
Measurement in the topological model occurs by mirroring these structures along the temporal axis
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a bDual Type Defect acts as the control

Primal Type Defect acts as Target

Temporal Direction of the Circuit

Circuit Input Circuit Output

Fig. 19.14 Defect and correlation surface propagation for a braided CNOT. (a) illustrates the
actual braid, where the dual qubit (grey) interacts with the primal (white) to perform the gate.
The dual qubit always acts as the control qubit for the gate. (b) illustrates the perturbation of one
of the four relevant correlation surfaces. In this case we illustrate the mapping of the stabiliser
XI ! XX which occurs during a CNOT. The correlation surface of the control qubit (the sheet) is
perturbed by the braid to form a ring around the target qubit, therefore the output is stabilised by
the XX operator if the input is stabilised by XI

connect the inputs and outputs of a topological circuit are perturbed), as illustrated
in Fig. 19.14. In this figure, we examine what happens during the CNOT for a pair
of qubits stabilised by the operator XI (i.e. when the control qubit is in the jCi
state). If the control qubit is in the jCi state there is a correlation surface that
connects the logical chain operator (the X operator for the dual defects) from input
to output. A correlation surface that starts on a dual type defect cannot terminate
on a primal defect and visa versa, hence when the primal defect intersects with this
correlation surface it is perturbed into a ring around the primal defect. A ring around
a primal defect corresponds to the X logic operator and consequently a system
initially stabilised by the XI operator at input will be stabilised by the XX operator at
output. This is exactly the behaviour of the CNOT (three other basis operators need
to be checked to fully specify the gate and this is discussed in Ref. [30]).

The final gates to be described are the P and T gates. These are rotations about
the Z axis by the angles �=4 and �=8 respectively and combined with the native
gates in the topological model constitutes a universal set. The way we achieve these
gates is through a process known as injection, distillation and teleportation. The
first step is injection, where we introduce the states jYi D j0i C ij1i and jAi D
j0i C ei�=4j1i into the cluster. This is done via the structure shown in Fig. 19.13c. In
this figure a single physical qubit is measured in the desired rotated basis and then
expanded into two encoded defects. The problem with injection is that the error
rate associated with that physical measurement is propagated to the encoded state.
Given that the physical measurement has a much higher error rate (compared with
the other encoded qubits), the encoded state by the expansion inherits the same high
error rate, these injected states therefore need to be cleaned. Reducing the error
rates of these injected qubits can be done via state distillation protocols [10]. This
is where either 7 (for the jYi state) or 15 (for the jAi state) copies of the injected
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state with an error rate of p are used to distill one higher fidelity state of error O.p3/.
This can be done recursively in order to achieve the desired encoded error rate.
Once this purification is complete, these states can be used to enact teleported gates
on encoded information. The resource requirements for state distillation protocols
mean that the single qubit P and T gates are the most resource hungry gates in
quantum algorithms and minimising especially T gates is of great importance when
designing effective quantum algorithms.

19.4.2 Resource Optimisation and Estimation

The topological nature of error corrected quantum circuits allows for interesting
avenues in algorithmic optimisation, and given the detailed computational architec-
ture and circuits, we are able to make very accurate resource estimates of large-scale
quantum algorithms. For these circuits, provided the topology of the braiding is
maintained we can change the geometric structure of the circuit in order to minimise
its physical volume and hence the resources needed to implement them. There are
a number of techniques to achieve this [28, 29, 65, 70], and though we omit the
specific discussions of these techniques, Fig. 19.15 shows a specific example of
the minimisation for a state distillation circuit. Illustrated in Fig. 19.15a is a direct,
canonical, implementation of the quantum circuit in the insert diagram at the top
right corner, which is the circuit to perform state distillation of the jYi state. This
circuit has a volume of 192 logical cells and via several optimisation protocols
can be reduced to the structure shown in Fig. 19.15b which has a volume of 18,
achieving a reduction of over 90 %. This type of classical optimisation has a drastic
effect in the final resources required, as the cross section of this cluster determines
the number of physical photonic chips required, while the reduction along the third
dimension will shorten the computational depth.

To give an explicit example, we consider the resources required for Shor’s
algorithm. For Shor’s algorithm we use a linearised version of the algorithm [31].
For the algorithm, we need to decompose each gate into the universal set compatible
for the code using techniques developed in Refs. [39, 51, 71]. Essentially the
decomposed algorithm consists of T gates interspersed with CNOTS and Hadamard
gates (which are constructed using three P gates). As the T gate is the most resource
intensive, we assume that all gates are T gates. Therefore, given an L-bit number
and a physical error rate of each component, p, the strength of error correction is
given by [20],

d �
�
2 log.640C1L

4�V/

log.pth/ � log.C2p/
� 1

�
(19.13)

where C1 � 0:13, C2 � 0:61, � D 6:42 log2.640L4/ � 13:86, pth � 0:62% is
the threshold for the topological code and V is the volume of topological cluster



430 S.J. Devitt et al.

Fig. 19.15 Optimisation of a topological circuit. The structure in (a) is a un-optimal canonical
topological construction of the circuit shown in the insert to distill jYi states. Through various
optimisation techniques this structure can be compressed in size by over 90 %, decreasing physical
resources while maintaining the same functionality and error correction properties

(in terms of logical cells) needed to implement a T gate [20], where the volume is
related to its cross section, A, and depth, D. In Fig. 19.16 we illustrate the T gate
and all it’s ancillary distillation protocols for one and two levels of state distillation.
The data qubits, which are ones used for the actual algorithm, are shown in the
green defect structure in Fig. 19.16, linearly lining on the close-section of the cluster
between the jYi state distillation region above and the jAi state distillation region
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Algorithmic Input

Probabilistic

Temporal Axis
Temporal Axis

SWAP space

Output

State Distillation

State Distillation

Gate

Teleported

GateRz(π/8)

Rz(π/4)

a b

|A

|Y c

Fig. 19.16 Topological circuits to Implement a logical T D Rz.�=8/ rotation. In (a) and (b)
we illustrate the circuit and individual components for one level of jAi state distillation. In (b)
we illustrate the much larger structure needed for two recursive levels of jAi state distillation. The
logical volumes can be calculated and used to estimate resources for an algorithm. (c) Illustrates the
entire gate, over four algorithmic qubits and utilising two concatenated layers of state distillation

below [20]. These structures have a cross section and depth given by A1 D 21 � 2,
A2 D 77 � 2, D1 D 5 and D2 D 9. We can use this information to now calculate
the total size of the cluster needed to implement the algorithm for various error
rates, p, and problem sizes, L. The cross sectional size, A, is related to the total
number of photonic chips, ƒ, as ƒ D 25Ld2A C 30d

p
LA C 8 and the depth of

the cluster is related to the total computation time as, Tcomp D 160L3�Dtd, where
t is the operational time of the photonic module. Figure 19.17 illustrates the total
computational time (assuming t D 10 ns) and the number of devices needed to factor
an L-bit number at an error rate of p. The results shown in Fig. 19.17 suggest that we
can factor a L � 810-bit number in approximately 1 year with a physical error rate
of p � 0:07%. This is only slightly better than the current record of L D 768-bits
using classical techniques [50]. The discontinues in the plot is where the number of
recursive layers of state distillation increases from one to three. These results lead
us to an important conclusion. The resource saving that can be achieved by reducing
the error associated with quantum components is minimal compared to the savings
that can be achieved using classical optimisation techniques. We could potentially
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Fig. 19.17 Resource estimates for Shor’s algorithm for the atom-optics architecture. (a) illustrates
the number of photonic chips needed as a function of problem size, L, and physical error rate, p.
(b) illustrates the total computational time assuming the photonic module operates on a timescale
of t D 10 ns. On both plots we illustrate where the number of devices reaches one billion and the
computational time reaches one year
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speed up Shor’s algorithm by either reducing the volume of circuit components
by a further 40 % or by decreasing error rates by a factor of 10. As topological
optimisation is purely a classical problem, this appears to be much more preferable.

Resource estimates for Shor’s algorithm for the atom-optics architecture are
summarised in Fig. 19.17a plotting the number of photonic chips needed as a
function of problem size, L, and physical error rate, p and Fig. 19.17b indicating
the total computational time assuming the photonic module operates on a timescale
of t D 10 ns. On both plots we illustrate where the number of devices reaches one
billion and the computational time reaches one year.

19.5 Summary

In this chapter we have presented an example of a complete architecture for topo-
logically error corrected quantum computation. We have constructed an arbitrarily
large array of photonic modules that produce a specific type of cluster state that
can be utilised for error corrected quantum computation. We examined how this
state can be used for both error correction and encoded logic and what fault-tolerant
quantum circuits look like in this model. Finally we discussed how an accurate
resource analysis for large-scale algorithms must be performed. Accurate system
benchmarking must take into account the way in which a quantum algorithm is
implemented in an error corrected system and what the fundamental building blocks
are for the hardware itself. Many quantum architectures now follow a similar method
of construction and further work on algorithmic optimisation will help reduce
resource costs for all hardware models based on topological codes.
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Chapter 20

Optical Hybrid Quantum Information

Processing

Shuntaro Takeda and Akira Furusawa

20.1 Introduction

Optical quantum systems are one of the most promising candidates for quantum
information processing (QIP) since their decoherence is almost negligible under
ambient conditions at room temperatures. This advantage, together with mature
optical technologies such as beam splitters and nonlinear optical crystals, enabled
significant progress in the field of optical quantum communication and quantum
computing. This progress was made by two complementary approaches, each
exploiting only one aspect of the wave-particle duality of light (Fig. 20.1). One
utilizes the particle-like discrete nature of light to encode quantum information
based on quantum bits (qubits) [1, 2]. The other, which harnesses wave-like con-
tinuous nature of light, is based on continuous variables (CVs) [3]. The conceptual
difference between these two approaches is analogous to classical digital (discrete)
and analog (continuous) signal processing.

Both approaches have advantages and disadvantages in terms of the practical
realization of optical QIP. Qubit QIP enables high fidelity of operations, but
experimental realizations have been probabilistic and mostly required post-selection
of successful events. This is due to the low creation and detection efficiencies of

S. Takeda (�)
Department of Applied Physics, School of Engineering, The University of Tokyo, 7-3-1 Hongo,
Bunkyo-ku, Tokyo 113-8656, Japan

Department of Photo-Molecular Science, Institute for Molecular Science, National Institutes of
Natural Sciences, Myodaiji, Okazaki 444-8585, Japan
e-mail: takeda@alice.t.u-tokyo.ac.jp; takeda@ims.ac.jp

A. Furusawa
Department of Applied Physics, School of Engineering, The University of Tokyo, 7-3-1 Hongo,
Bunkyo-ku, Tokyo 113-8656, Japan
e-mail: akiraf@ap.t.u-tokyo.ac.jp

© Springer Japan 2016
Y. Yamamoto, K. Semba (eds.), Principles and Methods of Quantum Information

Technologies, Lecture Notes in Physics 911, DOI 10.1007/978-4-431-55756-2_20

439

mailto:takeda@alice.t.u-tokyo.ac.jp
mailto:takeda@ims.ac.jp
mailto:akiraf@ap.t.u-tokyo.ac.jp


440 S. Takeda and A. Furusawa

Fig. 20.1 Discrete and
continuous degrees of
freedoms of light
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Table 20.1 Comparison between qubit and CV QIP

Qubit QIP Continuous-variable QIP

Carrier Degrees of freedom of a photon Quadratures of a light field

Basis Photon number basis: fjnig Quadrature basis: fjxig or fjpig
Encoding j i D ˛ j0; 1i C ˇ j1; 0i j i D

R1
�1  .x/ jxi dx

Source Photons by PDC (weak pump) Squeezed light by PDC (strong pump)

Detector Photon detector (measures On) Homodyne detector (measures Ox or Op)

Difficulty Two-qubit gate (e.g. CNOT gate) Non-Gaussian gate (e.g. cubic phase gate)

photonic qubits. On the other hand, CV QIP is deterministic, thanks to on-demand
entanglement resources and efficient homodyne measurement; however, the fidelity
of operations is limited by the imperfection of the entanglement. In recent years,
there has been significant progress in combining both technologies with a view to
realizing hybrid protocols that overcome the current limitations of optical QIP [4, 5].
This hybrid approach is analogous to the digital and analog hybrid signal processing
in classical information processing: we set thresholds to digitize the originally
continuous voltage signals. In optical QIP, this threshold was given by nature as
the wave-particle duality of light. Therefore it naturally follows to take advantage
of both features in optical QIP as well.

In this chapter, we start by reviewing the basic concepts of qubit and CV QIP
in Sect. 20.2. We then focus on quantum teleportation as an elementary protocol in
qubit and CV QIP, and explain its applications to quantum computing in Sect. 20.3.
Finally in Sect. 20.4, we summarize our recent accomplishment of combining both
technologies to realize “hybrid” quantum teleportation, and describe its application
to hybrid QIP that potentially overcomes the current limitations in optical QIP.

20.2 Qubits and Continuous Variables

Here we briefly review the encoding method, basic technologies, and difficulties in
qubit and CV QIP. The comparison between these two approaches are summarized
in Table 20.1.

20.2.1 Qubits

The basic unit of information in the classical digital information processing is a
bit, which can have only one of two values, ‘0’ or ‘1’. The quantum analogue of
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the classical bit is called a qubit, which is a superposition of the two values. Qubit
operations in optics, which exploits the particle-like discrete nature of light, can
be represented by photon number basis fjnig. This is the eigenstate of the number
operator On D Oa� Oa (On jni D n jni for n D 0; 1; 2; : : :), where Oa and Oa� are annihilation
and creation operators of a quantized electromagnetic field (ŒOa; Oa�� D 1). Usually a
qubit is encoded in the degrees of freedom of a single photon (such as polarization,
time of arrival or spatial modes); it can be described using two optical modes as

j i D ˛ j0i j1i C ˇ j1i j0i D ˛ jN0i C ˇ jN1i : (20.1)

Here j0i and j1i are vacuum (zero photon) and single photon states, while jN0i and jN1i
denote logical ‘0’ and ‘1’, respectively. The information is encoded in the complex
amplitudes ˛ and ˇ (j˛j2Cjˇj2 D 1); this is processed by sequential quantum logic
gates to realize quantum computation. A quantum logic gate can be described by
the transformation j i ! OU j i, where OU is an unitary transformation (Fig. 20.2a).

Let us now move on to the physical implementation of qubit QIP. Generation
and measurement techniques of photonic qubits are well developed [2]. The most
standard source for single photons is parametric down conversion (PDC), where
a pump photon is probabilistically converted into two photons via a nonlinear
crystal. Measurements in the logical basis can be readily implemented with photon
detectors. The next question to follow is how to implement quantum logic gates.
In order to realize universal qubit QIP, arbitrary single-qubit gates and at least one
two-qubit gate are required [6]. The former is easily implemented with simple linear
optics, such as beam splitters and phase shifters (Fig. 20.2b). One example of the
latter is the controlled-NOT (CNOT) gate, which flips the state of a target qubit only
if the control qubit is in the state ‘1’. This is equivalent to the state of a single photon
being controlled by another single photon via optical Kerr interaction (third-order
nonlinear optical effect [4]); very large nonlinearity is required to induce this effect
on a single photon. This makes the implementation of such two-qubit gates a major
difficulty in qubit QIP.

a
b

Fig. 20.2 Quantum logic gate for qubits. (a) Circuit of a single-qubit gate j i ! OU j i. (b)
Implementation of a single-qubit gate for a photonic qubit encoded in two paths (spatial modes).
Appropriate choice of the phase shift and beam splitter transmissivity enables arbitrary single-qubit
gates OU
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20.2.2 Continuous Variables

The alternative way to encode quantum information is to use continuous basis. This
idea is similar to classical analog information processing, such as AM/FM radios,
where continuous values are encoded in amplitude and phase modulations of radio
waves. In CV QIP, quadratures Ox and Op of optical waves [3]

Ox D .Oa� C Oa/=
p
2; Op D i.Oa� � Oa/=

p
2 .„ D 1/ (20.2)

are used to encode the superposition of continuous values. An intuitive definition of
quadrature values would be the sine and cosine components of an oscillating wave
(Fig. 20.3a):

E sin.!t C �/ D E cos � sin!t C E sin � cos!t / x sin!t C p cos!t: (20.3)

The commutation relation ŒOx; Op� D i can be derived from ŒOa; Oa�� D 1. Therefore all
quantum states satisfy the uncertainty relation�x�p � 1=2. Even the vacuum state
has a so-called zero-point fluctuation of �x D �p D 1=

p
2, though its quadratures

are zero on average hOxi D hOpi D 0 (Fig. 20.3b). The eigenstates of Ox and Op form
continuous bases fjxig and fjpig (Ox jxi D x jxi, Op jpi D p jpi for x; p 2 R). An
example of CV quantum information described in the Ox-quadrature basis reads

j i D
Z 1

�1
 .x/ jxi dx: (20.4)

Here the information is represented by the wave function  .x/ D hxj i; which is
to be processed by CV quantum logic gates j i ! OU j i. Note that the state in
Eq. (20.4) can also be expanded in the photon number basis as j i D

P1
nD0 cn jni

a b c

Fig. 20.3 Phase space description. (a) Quadratures Ox and Op correspond to E cos � and E sin �
(Eq. (20.3)), and these relations can be illustrated in the phase space spanned by Ox and Op. (b)
Quadrature distribution of a vacuum state. (c) Quadrature distribution of a squeezed state. The
degree of squeezing is often characterized by the squeezing parameter r
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with cn D hnj i. Therefore, CV QIP includes qubit QIP as a special case when the
infinite dimensional Hilbert space is limited to a smaller subspace.

The key resource in implementing CV QIP is squeezed light. The quantum
noise level of one of the quadratures (�x or �p) of squeezed light is below
the vacuum noise level, with infinitely squeezed light �x ! 0 (�p ! 0)
corresponding to the quadrature eigenstate jx D 0i (jp D 0i) (Fig. 20.3c). The
squeezed light can be deterministically generated using the same mechanism as
PDC but with a strong pump beam. Furthermore, measurement of Ox and Op values
can be carried out with high efficiency by homodyne detectors. Now let us move
on to how to implement universal CV QIP. In order to construct an arbitrary
unitary transformation OU D exp.�i OHt/, Hamiltonians OH of arbitrary polynomials
of Ox and Op are required [7]. Unitary transformations which involves Hamiltonians
of linear or quadratic in Ox and Op are called “Gaussian” gates, which can be
readily implemented by standard techniques such as beam splitters, phase shifters,
squeezing and modulation. However, CV universality requires at least one “non-
Gaussian” gate which involves a higher order Hamiltonian, such as the cubic phage
gate OU D exp.i�Ox3/ ( OH / Ox3) [7]. Implementation of non-Gaussian gates is a major
problem in CV QIP as they require at least third-order optical nonlinearity; this is
hard to implement for arbitrary quantum states of light. In this sense, non-Gaussian
gates share the same difficulty as the CNOT gate in DV QIP.

20.3 Quantum Teleportation and Quantum Computing

In optical QIP, “quantum teleportation”, the transfer protocol of quantum informa-
tion, plays the central role in building quantum logic gates. This section discusses
the basics and applications of quantum teleportation.

20.3.1 Quantum Teleportation

Quantum teleportation [8] is the act of transferring quantum information to distant
places without direct transmission of the physical entity itself. Its basic concepts and
implementations are as follows.

20.3.1.1 Basic Concept

It is impossible to transfer unknown quantum superposition states from a sender
to a spatially distant receiver only via classical communications (e.g. phone
and e-mail) [8]. However, this can be accomplished by following the quantum
teleportation protocol which utilizes quantum entanglement shared between the two
parties. This idea was first proposed for qubits in 1993 by Bennett et al. [8], and later
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321 21
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Sender
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Receiver

3

(2) Joint measurement
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(4) operation

(1) EPR state

(3) Measurement

outcome

y

Fig. 20.4 Procedure of quantum teleportation. An unknown quantum state j i, originally pos-
sessed by mode 1, is teleported to mode 3 after the four steps (1–4) illustrated in the figure. (a) The
first two steps. (b) The latter two steps

extended to CVs by Vaidman [9]. The basic procedure of quantum teleportation is
the same for both schemes. Here we define the mode of the quantum state j i to be
teleported as mode 1. As shown in Fig. 20.4, quantum teleportation consists of the
following four steps:

(1) The sender and receiver share an ancillary entangled state in modes 2 and 3
(Einstein-Podolsky-Rosen state, EPR state).

(2) The sender performs a joint measurement on modes 1 and 2 (Bell-state
measurement).

(3) The sender sends the measurement outcome to the receiver via classical
communications.

(4) The receiver performs an unitary operation on mode 3 based on the measure-
ment outcome; as a result j i appears in mode 3.

In this way, the quantum state j i is transferred from mode 1 to 3 by means
of the shared entanglement and classical communications. The nomenclature of
“teleportation” comes from the fact that the initial quantum state in mode 1
inevitably vanishes, and the same quantum state reappears in mode 3. In this way,
quantum teleportation evades violating the no-cloning theorem, which prohibits
making an exact copy of a quantum state.

20.3.1.2 Qubit Teleportation

After the original proposal, Bouwmeester et al. reported the first experimental
realization of quantum teleportation using photonic qubits in 1997 [10]. This
experiment used the polarization modes of photon 1 in Fig. 20.5 to encode the qubit:

j i1 D ˛ j1i1H j0i1V C ˇ j0i1H j1i1V D ˛ jHi1 C ˇ jVi1 ; (20.5)

where jHi1 and jVi1 denote the horizontal and vertical polarization of the photon
respectively. In this case, the ancillary EPR state in step (1) is polarization-entangled
photons 2 and 3, written as

jEPRi23 D .jHi2 jVi3 � jVi2 jHi3/=
p
2: (20.6)
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Fig. 20.5 Schematic of
quantum teleportation of
photonic qubits demonstrated
in Ref. [10]. A polarization
qubit j i in mode 1 is
prepared when T detects a
photon, and then teleported to
mode 3 on condition that all
of D1, D2 and D3 each detect
a photon

These two photons have the following correlation: when one photon has horizontal
(vertical) polarization, the other photon has vertical (horizontal) polarization. Both
the input qubit j i1 and the EPR state jEPRi23 are probabilistically created by PDC
with a weak pump pulse, as shown in Fig. 20.5. The photon detector T is used to
verify whether the input qubit had been prepared properly. Bell-state measurement
in step (2) is then performed using a 50:50 beam splitter and two photon detectors
D1 and D2. When the two detectors simultaneously detect photons, photons 1 and
2 are projected onto the state j‰i12 D .jHi1 jVi2 � jVi1 jHi2/=

p
2. In this case the

final state of photon 3 would read

12 h‰j i1 jEPRi23 D � .˛ jHi3 C ˇ jVi3/ ; (20.7)

which turns out to be the same polarization qubit as in Eq. (20.5), and the
teleportation is completed without the operation step (4).

However, this scheme withholds two important drawbacks in terms of applica-
tions. One is its low transfer efficiency due to the probabilistic nature of the PDC and
Bell-state measurement. The success probability is estimated to be far below 1 %,
which does not meet the requirements for practical applications. Another is that this
scheme requires post-selection of successful events by confirming the existence of
the output qubit with detector D3 [11]. This removes the unwanted events when
there is no output photon (this event corresponds to the case when two photon pairs
are created in the left nonlinear crystal of Fig. 20.5 and no photons in the right). The
transferred qubits are destroyed in this process, and thus cannot be used for further
information processing. Despite these inefficiencies, the transfer fidelity of the post-
selected successful events are high with the potential to reach 100 % in principle.

20.3.1.3 CV Teleportation

In 1998, Furusawa et al. demonstrated teleportation of the quadratures of a light
beam [12], following the proposal by Braunstein and Kimble [13]. Here the input
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Fig. 20.6 Schematic of quantum teleportation of CVs demonstrated in Ref. [12]. A quantum state
j i of a light beam is deterministically teleported from mode 1 to 3 by on-demand EPR beams
and complete Bell-state measurement followed by modulation. CW continuous wave, OPO optical
parametric oscillator, LO local oscillator, g classical channel gain. In the standard protocol as in
Ref. [12], the gain is set to unity. However, it is shown that gain tuning is quite effective for the
hybrid approaches (see Sect. 20.4.1)

quantum state to be teleported is encoded in beam 1 as j i1 D
R1

�1  .x/ jxi1 dx

(Fig. 20.6). Teleportation of such states require the following ancillary EPR beam 2
and 3, entangled in quadrature basis:

jEPRi23 /
Z 1

�1
jxi2 jxi3 dx D

Z 1

�1
jpi2 j�pi3 dp: (20.8)

The quadratures of each of the EPR beam are quite noisy, but these two beams
behave in a correlated way: when beam 2 has a Ox-quadrature value of x (Op-quadrature
value of p), beam 3 has the value of x (�p). The strength of CV teleportation is that
approximated EPR beams can be prepared on-demand by mixing two orthogonally
squeezed beams (approximated states of jx D 0i and jp D 0i) on a 50:50 beam
splitter. These squeezed beams are deterministically generated using an optical
parametric oscillator (OPO), a cavity-enhanced version of the PDC pumped by
a strong continuous-wave beam. Furthermore, CV Bell-state measurement can be
performed completely by two homodyne detectors that each measure either Ox or Op.
These measurements are followed by amplitude and phase modulations for step (4)
to displace (shift) the quadratures of beam 3 in the phase space according to the
measured values of Ox and Op. Intuitively, this measurement-and-modulation process
cancels out the correlated quadrature noise between beams 2 and 3 in Eq. (20.8).
If the quadratures are perfectly correlated, the noise is completely canceled out,
and beam 3 becomes the same quantum state as the input state j i1. Since all
these steps can be performed in a deterministic fashion, a CV teleportation device
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can always teleport the input state, and outputs the corresponding state in beam 3.
This deterministic nature is a clear advantage over the probabilistic scheme of qubit
teleportation (see Refs. [3, 13] for more detailed mathematical description of CV
teleportation).

The major drawback of CV teleportation is that the transfer fidelity is limited
due to the imperfect EPR beams generated from finitely-squeezed light. More
specifically, the output state is always degraded by excess noise contamination
due to the imperfect quadrature correlation between beams 2 and 3. The fidelity
approaches unity in the limit of infinite squeezing, which would require infinite
energy. Though efforts were made to circumvent this drawback using higher
squeezing levels, transfer errors were not eradicated.

20.3.2 Quantum Computing Based on Quantum Teleportation

Quantum teleportation was originally proposed for transferring quantum informa-
tion as it is (j i ! j i), but later works have revealed a more auspicious potential:
quantum teleportation can work a quantum logic gates (j i ! OU j i) only with
slight modification. Below we deal with two main schemes to realize logic gates
based on the CV teleportation circuit. A similar discussion can be made for the
qubit teleportation circuit.

20.3.2.1 Cluster-State Quantum Computation

Let us first consider an elementary CV teleportation circuit shown in Fig. 20.7a [14].
The original CV teleportation in Fig. 20.6 is equivalent to the case when this
elementary circuit is cascaded twice. In this circuit, an arbitrary input state j i is
first coupled with an ancillary state jp D 0i via a controlled-phase gate OCZ , and then
its Op quadrature is measured by a homodyne detector. The measurement outcome s

decides the amount of the Ox-displacement operation OX.�s/ on the other mode. After
this operation, the Fourier transformed input state OF j i appears.

Suppose an unitary operation OU D exp Œif .Ox/� is applied to the input state before
teleportation as shown in Fig. 20.7b. In this case, the input of the teleportation
circuit is replaced by OU j i, and therefore the output should be OF OU j i. Since
OU and OCZ commute, OU may be performed after the OCZ gate. Furthermore, OU
can be incorporated into the measurement part by changing the measurement
from Op to OU� Op OU. In this way, Fig. 20.7b can be transformed into Fig. 20.7c. This
shows that an arbitrary unitary operation OU can be applied to an input state only
by appropriately changing the measurement basis of the elementary teleportation
circuit. By cascading this circuit as in Fig. 20.7d, we can perform unitary operations
sequentially to obtain the desired output state OF OU3

OF OU2
OF OU1 j i. This process can

be understood as follows. A three-mode entangled state is prepared in advance
(surrounded by a gray dashed line), and coupled to the input state j i by OCZ
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a

b

c

d

Fig. 20.7 Cluster-state quantum computation. OCZ D exp.iOx1Ox2/, controlled-phase gate; OF D
exp

�
i�.Ox2 C Op2/=4

�
, Fourier transform; OU D exp Œif .Ox/�, a desired unitary transformation; OX.s/ D

exp.�isOp/, Ox-displacement operation; and OZ.s/ D exp.isOx/, Op-displacement operation. (a) An
elementary CV teleportation circuit. (b) OU is applied to the input state to obtain the output OF OU j i.
(c) Measured variable is changed from Op to OU� Op OU to obtain the output OF OU j i. (d) Quantum
computation using a three-mode cluster state

gate. Then quantum computation is performed only by appropriate choice of the
measurement. The initial multi-mode entangled state is called a cluster state. This
cluster-state quantum computation is totally different from the conventional model
for quantum computation. The conventional model requires preparation of each
quantum circuit for every unitary operation, and therefore requires different optical
circuits (hardware) for different quantum computations. In contrast, in the cluster
model, the required circuit for preparing cluster states (hardware) is always the
same, but different computations can be realized by simply choosing a different
measurement basis (different software). This software-based quantum computer is
the quantum analogue of the current general-purpose computer.

Cluster-state quantum computation was originally proposed for qubit QIP by
Raussendorf and Briegel in 2001 [15]. To date, preparation of few-qubit cluster
states and cluster-based quantum logic gates for qubits have been reported in
several experiments [16–18]. However, due to the probabilistic nature of PDC,
preparation of large-scale cluster states are too demanding. In contrast, CV cluster
states can be generated deterministically by a scheme proposed by van Loock
et al. in 2007 [19], which requires only mixing squeezed beams (approximated
states of jp D 0i) at beam splitters with appropriate transmissivities and phases.
Figure 20.8a shows the schematic of generating a four-mode CV cluster state
in four optical beams, demonstrated by Yukawa et al. in 2008 [20]. This cluster
state was later used for demonstrating cluster-based one- and two-mode Gaussian
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Fig. 20.8 Generation scheme of CV cluster states. (a) A four-mode cluster state in four optical
beams generated from four squeezed beams [20]. (b) An ultra-large-scale cluster state multiplexed
in the time domain generated from two squeezed beams [23]

gates by Ukai et al. in 2011 [21, 22]. Though CV cluster-state computation is
deterministic, the configuration of Fig. 20.8a still lacks scalability as each additional
mode to the cluster state requires more OPOs and beam splitters. In 2013, Yokoyama
et al. took a different approach to generate an ultra-large-scale CV cluster state
containing more than 10,000 modes [23]. Here, the modes entangled are wave
packets of light in two beams, multiplexed in the time domain (Fig. 20.8b). These
experimental achievements show that the CV cluster state is a promising platform
for CV QIP. However, it should be noted that errors accumulate during CV cluster-
state computation, because experimentally generated cluster states are generated
from finitely-squeezed states. In addition, non-Gaussian gates required for universal
CV QIP, cannot be achieved using only homodyne measurement (solutions to this
problem will be mentioned in Sect. 20.4.2).

20.3.2.2 Quantum Gate Based on Off-Line Scheme

Another important application of the elementary teleportation circuit are quantum
gates based on off-line prepared ancillary states. In this scheme, quantum telepor-
tation allows fault-tolerant implementation of difficult quantum gates that would
otherwise corrupt fragile quantum information [6, 24, 25]. This idea dates back to
the proposal of so-called “gate teleportation”, which was originally introduced for
qubits by Gottesman and Chuang in 1999 [24], and then extended to CVs by Bartlett
and Munro in 2003 [25]. Let us explain the basic idea by starting from the circuit
of Fig. 20.7a again. This circuit is first extended to Fig. 20.9a, where the unitary
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operation OU D exp Œif .Ox/� is added to the final step. The output state in this case is
OU OF j i. By replacing OX.�s/ by OU OX.�s/ OU� and using the commutation of OU and
OCZ , we can move OU prior to the OCZ gate, as in Fig. 20.9b.

Importantly, when OU involves a Hamiltonian of a n-th order polynomial of Ox,
OU OX.�s/ OU� is shown to involve a Hamiltonian of .n � 1/-th order [25]. In the
case of n � 3, OU OX.�s/ OU� is a Gaussian gate which is within reach of current
technology. Therefore, Fig. 20.9b implies the following; once an ancillary state
OU jp D 0i is prepared, gate OU can be deterministically applied to an arbitrary input
state j i with homodyne measurement followed by a Gaussian gate, as long as OU
involves a third- or lower-order Hamiltonian. Here, the task of directly applying
OU to arbitrary states on-line is replaced by another task of preparing a specific
ancillary state OU jp D 0i off-line prior to the actual gate, which is much easier in
experimental implementation. In this case, gate OU for jp D 0i may be implemented
in a probabilistic fashion for multiple trials until it succeeds. Then, only the
successfully prepared ancillary states OU jp D 0i are stored in optical memories and
consumed on demand as a resource for the logic gate (see Sect. 20.4.2 for a scheme
to prepare ancillary states on demand). Note that, in contrast to the cluster-state
computation where only Gaussian displacement gates are required for arbitrary OU
(Fig. 20.7c), the off-line scheme requires the gate OU OX.�s/ OU� and the difficulty of
implementing such gate depends on OU.

One important example of the CV off-line scheme is the universal squeezer,
a Gaussian gate which deterministically performs a squeezing gate to arbitrary
input states j i by means of an off-line prepared squeezed state (Fig. 20.9c).
The universal squeezer and quantum non-demolition (QND) sum gate based on

Fig. 20.9 Quantum gates
based on off-line scheme. (a)
OU is applied to the output
state to obtain OU OF j i. (b)
Ancillary state OU jp D 0i is
used to realize the desired
gate j i ! OU OF j i. (c)
Schematic of the universal
squeezer demonstrated in
Ref. [26]. Beam splitter
transmissivity T and gain g

are chosen to perform desired
degree of squeezing operation
OS.T/ to the input state j i

a

b

c
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the squeezers were already demonstrated by Yoshikawa et al. in 2007 and 2008,
respectively [26, 27]. Importantly, the cubic phase gate OU D exp.i�Ox3/ (third
order, non-Gaussian) can be implemented only with Gaussian gates if a nonlinear
cubic phase state exp.i�Ox3/ jp D 0i can be prepared off-line [28, 29]. However, the
experimental realization of the cubic phase gate has not yet been reported (progress
towards its realization will be mentioned in Sect. 20.4.2). In the case of qubit QIP,
Gottesman and Chuang showed that the CNOT gate can also be implemented using
the qubit teleportation circuit and off-line prepared ancillary states [24]. Linear
optics quantum computing proposed by Knill, Laflamme and Milburn (KLM) in
2001 [30] also uses the teleportation circuit and special ancillary states to perform
two-qubit gates with near-unit success probability. A probabilistic CNOT gate based
on the KLM scheme was demonstrated by Okamoto et al. in 2011 [31]. Despite these
proposals and demonstrations, the requirement for scalable qubit QIP will continue
to be demanding, as long as it is based on the probabilistic generation and detection
of photonic qubits.

20.4 Towards Hybrid Quantum Information Processing

As mentioned above, both qubit and CV QIP come with technical problems. The
problem of qubit QIP is the low success rate, while CV QIP has limited fidelity
due to finite squeezing. Here we introduce the recent research progress and future
possibilities of “hybrid” QIP [5], which has the potential to overcome current
limitations.

20.4.1 Hybrid Quantum Teleportation

Considering the fact that quantum teleportation now plays a central role in qubit and
CV QIP, quantum teleportation using a hybrid technique should be an important first
step towards more advanced hybrid protocols.

20.4.1.1 Proposal and Difficulties

One promising solution to the inefficiency of the conventional qubit teleportation
scheme is to teleport photonic qubits via a CV teleportation device. This hybrid
setting enables deterministic teleportation of qubits by exploiting the on-demand
squeezing resources and complete Bell-state measurements in the quadrature bases.
In principle, CV teleportation can be straightforwardly applied to any optical
quantum state, let alone photonic qubits. However, experimental realization of the
hybrid teleportation was too demanding when the proposal was made in around
2000 [32, 33].
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There were three main obstacles to the experimental realization. First was the
high squeezing level requirements for the resource EPR states; these highly non-
classical states were beyond the technology of that time. Squeezing is typically
quantified by the reduction in noise level of the squeezed quadrature below the
shot noise level. The world record for squeezing had been 6 dB [34], which was
not enough for such teleportation. Takeno et al. overcame this limitation by turning
to a new nonlinear crystal, periodically poled KTiOPO4; this produced 9 dB of
squeezing in 2007 [35]. The current world record for high-level-squeezing is 13 dB,
reported with the same nonlinear medium by Eberle et al. [36].

Second was the bandwidth incompatibility. The typical photonic qubit has a
broad bandwidth in frequency domain because it is a wave packet, i.e., a pulse.
In contrast, the conventional CV teleportation device only worked for narrow
frequency sidebands [12] (Fig. 20.10a). Therefore it was impossible to teleport a
wave packet by using the conventional setup of CV teleportation. In order to break
through such difficulty, the bandwidth of CV teleporter had to be broadened. Takei
et al. first broadened the bandwidth of the EPR resource in 2006 [37], and then
Lee et al. used the broadband and highly entangled EPR resource to teleport highly
non-classical wave packets of light in 2011 [38] (Fig. 20.10b).

Third, a narrow-band qubit compatible with the CV teleporter was needed.
Although the original proposals for CV teleportation of qubits were for polarization
qubits [32, 33], time-bin qubits were later found to be more technically compatible.
This qubit consists of two optical pulses separated temporally, and described as a
superposition of a photon in either pulse j i D ˛ j0; 1iCˇ j1; 0i (Fig. 20.10d). The
advantage of time-bin qubits is that they can be teleported using one CV teleporter,
since the two pulses have the same polarization; polarization qubit teleportation
requires two CV teleporters (one for each polarization) as in Fig. 20.10c. In 2013,

a c

db

Fig. 20.10 Technologies towards hybrid quantum teleportation. (a) Conventional CV teleportation
device works on only narrow frequency sidebands around laser carrier frequency !. (b) Broadband
CV teleportation device works on frequency band with up to around 10 MHz of half-width at half
maximum. (c) CV teleportation of polarization qubits requires two teleportation devices. (d) CV
teleportation of time-bin qubits requires only one teleportation device
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Takeda et al. developed a generation and characterization technique for time-bin
qubits with a compatible frequency spectrum, thereby completing the last piece of
the hybrid teleportation system [39]. Now it is time for the hybrid teleportation.

20.4.1.2 Demonstration of Hybrid Teleportation

The combination of all these state-of-the-art technologies enabled CV quantum tele-
portation of time-bin qubits. Using this hybrid setup, Takeda et al. demonstrated, for
the first time, deterministic quantum teleportation of photonic qubits in 2013 [40].
This experiment demonstrated that, even with finite squeezing resources, qubit
information can be teleported faithfully by adjusting the classical channel gain in
CV teleportation (g in Fig. 20.6). The mechanism is as follows. For finite squeezing
parameter r (defined in Fig. 20.3c), the standard CV teleportation protocol with
g D 1 yields a largely distorted output qubit with additional photons in general.
In contrast, a CV teleporter with g D tanh r becomes equivalent to a pure loss
channel, which only adds extra loss of .1�tanh2 r/ to the input state [32]. Moreover,
the single-photon-based qubit j i D ˛ j0; 1i C ˇ j1; 0i represents a quantum error
detection code against photon loss, where either a photon-loss error occurs, erasing
the qubit, or a symmetric amplitude damping leaves the input qubit state completely
intact [6]. These two facts together mean that the CV teleporter transforms the initial
qubit state as

j ih j �! tanh2 r j ih j C .1 � tanh2 r/ j0; 0ih0; 0j : (20.9)

Importantly, no additional photons are created, and the qubit information j i
remains undisturbed regardless of the squeezing level. The teleporter only adds an
extra two-mode vacuum term. Thus the weakness of CV teleportation due to the
finite squeezing can be circumvented to a great extent by gain tuning.

One of the experimental results are shown in Fig. 20.11. The qubit components
in the subspace spanned by fj0; 1i ; j1; 0ig decrease from 69% at the input state
to 42% at the output, due to the extra loss added by the teleporter. However,
the output qubit components still retain the original phase information of the
superposition of j0; 1i and j1; 0i at input, demonstrating that the qubit information is
faithfully teleported. The overall transfer fidelity ranged from 79 % to 82 % for four
different qubits, all of which exceed the classical limit of teleportation. It was later
shown that these experimental results are in good agreement with its corresponding
theoretical model [41]. By extension of this setup, Takeda et al. also performed CV
quantum teleportation of discrete-variable entanglement in the form of a photon
split by a beam splitter; this demonstrated the genuine quantum nature of the hybrid
teleportation system [42].
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a

b

Fig. 20.11 Experimental results of hybrid quantum teleportation in Ref. [40]. CV quantum
teleportation is performed for qubit j i D .j0; 1i � i j1; 0i/ =

p
2 at squeezing parameter r D 1:01

and gain g � tanh r. The two-mode density matrices are reconstructed both for the input and
the output qubit states in the photon-number basis: O� D

P1
k;l;m;nD0 �klmn jk; li hm; nj. (a) Density

matrix of the input state. (b) Density matrix of the output state

20.4.2 Hybrid Quantum Computing

The CV teleportation circuit has now become compatible with the basic technolo-
gies of qubit QIP, such as pulsed single photons and photon counting measurements.
The combination of deterministic gates based on CV teleportation and nonlinear
optical resources in qubit QIP potentially gives us great benefit for implementing
universal quantum computers in both CV and qubit regimes.
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20.4.2.1 Hybrid Approach to CV Universality

One challenging task towards universal CV QIP is the implementation of non-
Gaussian gates, such as the cubic phase gate OU D exp.i�Ox3/. One non-Gaussian
gate, together with already well-developed Gaussian gates, is sufficient for realizing
universal CV QIP, in principle [7]. In order to generate the ancilla for the cubic
phase gate, Gottesman, Kitaev and Preskill (GKP) proposed an approximate version
of the cubic phase state, generated by squeezed states and photon counting
measurements as in Fig. 20.12a [28]. The generated cubic phase state can be used
to perform the cubic phase gate to an arbitrary input state j i through the circuit
of Fig. 20.12b. These two circuits together can be interpreted as a CV cluster-state
computation using homodyne measurement and photon counting measurement as
in Fig. 20.12c [43]. Therefore the hybrid technology developed thus far may be
beneficial for realizing universal CV cluster-state computation.

a

b

c

d

Fig. 20.12 Implementation of a cubic phase gate. (a) Displacement operation OX.t/ with suffi-
ciently large t and photon number measurement produces an approximate version of a cubic phase
state [28]. The cubic phase state depends on the measurement outcome n, and for the desired cubic
phase gate, additional squeezing operations are needed. (b) The prepared cubic phase state is used
to perform the cubic phase gate to an arbitrary input state j i. Gaussian operations can undo the
operator OC.s1; s2/ depending on the homodyne results s1 and s2. (c) The cubic phase gate can be
implemented based on a CV cluster state, homodyne measurement and a nonlinear measurement
onto the displaced number basis f OX�.t/ jnig [43]. (b) Cubic phase gate can be performed on the
input state j i by the off-line scheme with an ancillary cubic phase state and a Gaussian gate
OY.s/ [28]



456 S. Takeda and A. Furusawa

Another approach to the cubic phase gate is based on the off-line scheme using an
ancillary cubic phase state exp.i�Ox3/ jp D 0i, as already mentioned in Sect. 20.3.2.2.
Figure 20.12d shows one possible implementation proposed by GKP [28]. In this
implementation, all the components except for the cubic phase state are already
technologically available. When the desired gate is weak (� � 1), a certain
superposition state of up-to three photons becomes enough for the ancillary state, as
proposed by Marek et al. in 2011[29]. This type of ancillary state has already been
generated experimentally by Yukawa et al. in 2013, albeit probabilistically [44, 45].
For a deterministic cubic phase gate, this ancillary state needs to be prepared
on demand. The on-demand generation technique of non-classical optical states
has been reported by Yoshikawa et al. in 2013 [46]. In this experiment, single
photons are created and stored inside an OPO, and finally released on demand
through a dynamical tuning of the output coupling. This scheme can be potentially
used to prepare cubic phase states on demand. All the ingredients essential for a
deterministic cubic phase gate have become available in principle, awaiting for their
future ingratiation.

20.4.2.2 Hybrid Approach to Qubit Universality

Once the deterministic cubic phase gate is realized, in combination with other
Gaussian gates, the CNOT gate for qubits may be implemented deterministically.
This is because the unitary transformation of optical Kerr interaction OU D
exp.i�Oa�1 Oa1 Oa�2 Oa2/, which is the essence of the CNOT gate, can be decomposed into
the sequence of several cubic phase gates and other Gaussian gates [47]. Therefore,
hybrid technologies ultimately lead to universal qubit QIP, where photonic qubits
are processed by CV cluster-state computation or CV off-line scheme. Such a
hybrid implementation should be much more efficient and faster than the previous
counterpart of qubit QIP, which is solely based on probabilistic and post-selective
resources and measurements. Furthermore, the limitation of gate fidelity, which
had been the weak point inherent in CV QIP, may be circumvented by effective
gain tuning used in the hybrid teleportation experiment. As an example of hybrid
quantum computing, the squeezing operation (Gaussian) on single photons was
demonstrated by Miwa et al. in 2012 [48] using the CV universal squeezer in
Fig. 20.9c. Future technical developments would enable deterministic logic gates
for photonic qubits by a CV scheme.

In order to perform universal QIP fault-tolerantly, GKP proposed to encode a log-
ical qubit into the superposition of Ox-eigenstates as jNji /

P1
sD�1 jx D .2s C j/

p
�i

(j D 0; 1) [28]. This hybrid encoding is intended to protect a logical qubit against
small errors such as random shift in the quadrature variables Ox and Op. A later work
by Menicucci showed that fault-tolerant quantum computation based on the GKP
encoding is possible by using finitely-squeezed resources above a threshold value
of 20.5 dB and performing CV cluster-state computation with error correction [49].
Though the GKP encoding may still be far from implementable, it offers unique
and interesting concepts to optical QIP and reveals a high potential of the hybrid
approach.
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20.5 Conclusion

Until recent years, qubit and CV QIP had developed separately each utilizing the
quantum teleportation circuit as a key building block. The gap between these two
approaches had been wide due to the incompatibilities in experimental technologies.
However, these recent advances in combining both technologies have changed the
situation. Especially, the realization of hybrid quantum teleportation in 2013 [40]
must be a significant turning point in the development of optical QIP. This work
presents a prototype technology for hybrid QIP systems, and will stimulate the
further development of hybrid protocols to overcome the current limitations in
optical QIP.

In our opinion, the hybrid approach to optical QIP will be the most promising
one in the near future. In principle, universal and fault-tolerant quantum computing
can be attained by using CV cluster-state computation and off-line schemes,
while introducing nonlinearity through photon-counting measurement and nonlinear
optical resources such as photon number states. For scalable implementations
of hybrid QIP, multiplexing quantum modes in the time domain may be a key
technology. This idea has already been used for generating ultra-large-scale CV
cluster states [23], as well as for implementing hybrid quantum teleportation using
time-bin encoding of a qubit [40]. In addition, hybrid QIP using on-chip integrated
photonic circuits [50] would be desirable. Such an integrated architecture will
decrease the size and complexity of the experimental setup, leading to a low-loss,
robust and scalable hybrid QIP.

References

1. P. Kok, W.J. Munro, K. Nemoto, T.C. Ralph, J.P. Dowling, G.J. Milburn, Rev. Mod. Phys. 79,
135 (2007)

2. J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, M. Żukowski, Rev. Mod. Phys.
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Part VI

Superconducting Qubits



Chapter 21

Microwave Photonics on a Chip:

Superconducting Circuits as Artificial Atoms
for Quantum Information Processing

Franco Nori and J.Q. You

21.1 Introduction

Superconducting circuits with Josephson junctions, behaving as nonlinear inductors,
can act like artificial atoms [1–114]. This nonlinearity in quantum circuits is impor-
tant because it produces an unequal separation between energy levels, allowing
external fields to address the lowest energy states. These circuits are made in the
laboratory on a micrometer scale and work at 10–50 mK temperatures. In order
for these circuits to be quantum mechanical, it is important to greatly reduce the
noise acting on them, and this can be achieved due to various factors, such as:
the superconducting gap, the circuit reduced dimensionality, and by operating these
circuits at very low temperatures, while isolating these from electromagnetic noise
sources.

Superconducting circuits using Josephson junctions are being studied intensely
because these can be utilized as qubits for quantum information processing (see,
e.g., Refs. [1–4] for earlier reviews and [101–113] for more recent reviews). These
circuits can be thought of as superconducting artificial atoms [103]. There are
insightful analogies [103] between natural atoms and the artificial atoms produced
with superconducting circuits. These show discrete energy levels and coherent
quantum oscillations. Natural atoms are driven using visible or microwave photons,
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while the artificial atoms in the circuits are controlled by voltages, currents, and
microwave photons, exciting the qubit from one macroscopic quantum state to
another.

There are obvious differences [103] between natural atoms and superconducting
circuits. These include the different energy scales in these systems, and how strongly
each system couples to its environment (atoms have a weak coupling, whereas
circuits have a strong coupling). Artificial atoms can be manufactured with designed
characteristics and lithographically made on a chip. This flexibility is not available
with natural atoms and it provides an important advantage over natural atoms
[103]. Therefore, superconducting circuits can be used to test fundamental quantum
mechanics at a macroscopic scale, and to study atomic physics and quantum optics
in a circuit. Furthermore, these artificial atoms can be produced to display novel
properties which do not appear in natural atoms [103]. These circuits provide an
unprecedented level of control over quantum states, and this can be useful for future
quantum information processors.

In this review we discuss the atomic-physics and quantum-optics aspects of
superconducting circuits. New physics, not occurring in natural atoms, in these
artificial atoms will also be presented. This chapter is a much shorter version of our
review in Ref. [101]. To simplify the presentation, no equations will be displayed
here. Additional references, mostly to recent reviews, have been added. Of course,
this chapter does not present original research. This is just a brief overview of the
research work done by very many groups in this exciting interdisciplinary field,
which is currently attracting considerable attention. For further information, we
refer the reader to several much longer reviews, listed at the end of this chapter.

21.2 Basic Types of Superconducting Qubit Circuits

The energy scales which influence the quantum mechanics of a Josephson-
junction circuit are: The Josephson coupling energy EJ and the electrostatic
energy EC D (2e)2/2C. There are three basic kinds of superconducting circuits
corresponding to different values of EJ /EC. These are: (i) the Cooper-pair box for
a charge qubit [5], (ii) the flux qubit [6], and (iii) the current-driven junction for a
phase qubit [7, 8]. Furthermore, several hybrid superconducting qubits have been
studied, based on variations of these three basic designs. These hybrid circuits can
involve various aspects of the three basic types of qubits. For instance, a charge
qubit can act like a charge-flux qubit [9] when EJ /EC � 1. For the flux-driven
three-junction loop, by making the ratio EJ /EC smaller, the charge noise increases
above the level of the flux noise [10], acting more like a charge qubit instead of the
original three-juntion loop. For a flux qubit, when ’< 0.5, the double-well potential
collapses to a single-well potential and the circuit acts like a phase qubit [10, 11].
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Note that here ’ refers to the pre-factor of one of the three values of EJ in a flux
qubit loop. If a large capacitance shunts the small junction [10, 11] this reduces
the charge noise in the flux qubit. Moreover, when this large capacitance shunts the
junction, then this can suppress the charge noise in a charge qubit [12], effectively
transforming this shunted charge qubit into a phase one. Experiments have also
studied flux qubits with a different number of Josephson junctions, e.g., one [89] or
four junctions [90]. Moreover, a single current-driven junction by itself conveniently
provides a phase qubit, with energy levels in a tilted potential well [91].

Hereafter, we briefly describe various aspects of the atomic-physics and
quantum-optics phenomena of superconducting circuits. These circuits are expected
to be important building blocks for quantum information processors.

21.3 Cavity Quantum Electrodynamics

A two-level system inside a tiny cavity can exchange energy coherently with
a quantized electromagnetic field. This exchange of energy is known as Rabi
oscillations, in which the field and the qubit exchange a quantum of energy at each
Rabi cycle. The simplest example refers to the coupling between a qubit and one
photon inside the cavity. This type of coupling between atoms and photons has been
achieved experimentally, and this area of study is referred to as cavity quantum
electrodynamics, abbreviated as cavity QED. Cavity quantum electrodynamics with
superconducting circuits has been proposed [13, 14] and experimentally realized
[15, 16], with superconducting qubits as two-level fabricated atoms. A single-mode
LC resonator [15] and a multi-mode coplanar waveguide resonator [16] have been
employed for the cavity. It is important to stress that the atom-photon coupling is
much stronger (about a million times larger) for a superconducting qubit inside a
cavity than for a natural atom inside a cavity [4, 14]. This very strong coupling
permits to observe interesting phenomena like the Lamb shift for a superconducting
qubit in the cavity [17]. Furthermore, both the cavity and the superconducting qubit
can be made on the same integrated circuit. Reference [4] presents a review on
cavity quantum electrodynamics with superconducting qubits.

Superconducting quantum circuits can also reach the so-called ultrastrong-
coupling regime, in which the strength of the photon-qubit coupling is comparable
to the energies of the photon and the qubit [18]. Various theoretical studies of this
ultra-strong regime have explored some of its remarkable properties (see, e.g., Refs.
[19–22]). Moreover, experiments have realized the ultrastrong coupling between a
flux qubit and a coplanar waveguide [23] or an LC resonator [24]. This ultrastrong-
coupling regime is very difficult to achieve using natural atoms, and exhibits new
physics which is not available in the more usual weak- and medium-coupling
regimes.
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21.4 Selecting Quantum Transitions

The electronic state at each orbital level of natural atoms has a well-defined
parity symmetry, either being odd or even. The Hamiltonian operator between the
atom and the time-dependent electric field has an odd parity, in the usual dipole
approximation. A non-zero dipole transition matrix element requires a change of
parity between the initial and final states, beyond the usual constraints on the
azimuthal and magnetic quantum numbers of the electron states. This optical
selection rule implies that there are only three kinds of three-level systems, denoted
as ƒ-, V-, and „-type atoms. This applies for natural atoms, in which no dipole
transitions are allowed between electronic states with the same parity. Nevertheless,
different selection rules can hold for superconducting artificial atoms. For example,
the interaction Hamiltonian between a flux qubit and a time-dependent magnetic
field does not have a well-defined parity, besides when the normalized (or reduced)
magnetic flux f �ˆ/ˆ0 D 1/2. For this value of the applied field, the Hamiltonian
has an odd parity. Considering the parity symmetries of the artificial-atom states
at f D 1/2, the three lowest-energy levels of the circuit act like a „-type or
ladder-type artificial atom [25]. When this holds, the dipole transition between
the ground state jgi and the auxiliary state jai is forbidden, while the other two
transitions (between the states jgi and jei, and also between jei and jai) are allowed.
The situation changes when f ¤ 1/2, which breaks the parity symmetry for the
interaction Hamiltonian. Thus, in this case, all the three dipole transitions (among
jgi, jei, and jai) are possible, and the circuit acts like a �-type atom because of
the triangle-shaped transitions between these three energy levels. Therefore, when
f ¤ 1/2 the superconducting circuit acts like a cyclic�-type artificial atom, on which
one- and two-photon processes coexist [25].

This novel �-type artificial atom is suitable for the upconversion and down-
conversion of photon frequencies. Furthermore, when performing these frequency
conversions, all transitions only require linear processes. This is quite different from
the conventional frequency conversion in nonlinear optics, in which a nonlinear
medium is used and the nonlinear effect converts the photon frequencies. Using a
flux-biased three-junction loop [26], an experiment has demonstrated the frequency
upconversion of a microwave photon. This experimental circuit observed the
coexistence of one- and two-photon processes because of the symmetry-breaking
of the Hamiltonian, when the applied magnetic flux was shifted away from
f D 1/2.

Two microwave fields were applied at the same time to a superconducting circuit
[27] with two coupled flux qubits. A given electronic transition can be activated or
suppressed due to the interference between processes corresponding to an excitation
selected by the applied microwave fields. Thus, artificial electronic selection rules
can be effectively created with superconducting circuits.
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21.5 Electromagnetically Induced Transparency

Quantum interference can control the light propagation through three-level atoms.
For ƒ-type three-level atoms, the goal here is to control the propagation of a probe
light field in resonance with the dipole transition between the ground state, jgi,
and an auxiliary state, jai. To achieve this, theƒ-type three-level atom must also be
driven by another field, called control field, which is in resonance with the transition
between the excited state, jei, and the auxiliary state, jai. Driving the atom with
these two fields directs the atom to a so-called dark state, which is a coherent
superposition of the ground and excited states. When these conditions are met, the
two applied fields cancel each other, due to destructive quantum interference. In this
case, the auxiliary state is not occupied, and the absorption becomes zero, even when
these two fields pump the atom. This electromagnetically induced transparency,
or EIT, is well-known in quantum optics [28, 29] and it is also applicable to „-
and V-type atoms, both natural and artificial. This effect is quite remarkable, and
has interesting consequences, including slowing down and sometimes trapping or
stopping light.

When the applied reduced magnetic flux f D 1/2, then the flux qubit can be
considered as a „-type artificial atom [25, 30]. With appropriate parameters,
the circuit can also turn into a ƒ-type artificial atom when f ¤ 1/2, when the
dipole transition rate between the ground state jgi and the excited state jei is
considerably smaller than the rates for the other two transitions [30]. As mentioned
in the previous section, on selecting quantum transitions, these selection rules are
determined by the parity symmetries of the artificial-atom states. In stark contrast to
natural atoms, the controllability of a superconducting qubit circuit can prepare the
artificial atom in an initial state which is close to the dark state of the system, for
arbitrary driving strengths of the pump and control fields. Thus, electromagnetically
induced transparency in a superconducting atom can be produced for either weak
or strong control and probe fields. This is a remarkable benefit of superconducting
circuits compared to the usual natural atoms. Superconducting circuits displaying
electromagnetically induced transparency have been explored both theoretically
(e.g., Refs. [31–33]) and experimentally [34, 35].

21.6 State Population Inversion and Lasing

A common laser requires an amplifying medium inside a resonant optical cavity.
With a suitable pumping or drive, a state population inversion (SPI) can be obtained
for the molecules or atoms in the amplifying medium. Furthermore, there is a
positive feedback between the amplifying medium and the emitted light. Several
works studied lasing using one single artificial atom, both theoretically [30, 36–38]
and experimentally [39, 40].
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To build up a lasing field, two conditions, described in Refs. [30] and [36–40],
are needed for quickly establishing state population inversion and then achieving a
strong circuit-cavity coupling. Moreover, the cavity must have a high Q, meaning
that it has a small decay or leak rate. Experimentally this can be achieved with a
coplanar waveguide resonator [16].

Using a charge qubit in an on-chip cavity [39], lasing was experimentally
observed. In contrast with the proposal [30] employing a flux qubit, this experiment
[39] used a different three-level system: the two lowest superconducting states
and a quasi-particle state which acts as an auxiliary state. Lasing was achieved
continuously [39] and escaped out of the cavity from one of its ends.

21.7 Cooling

Natural atoms can be cooled by various means, including Sisyphus cooling, Doppler
cooling, subrecoil cooling, side-band cooling, and evaporative cooling [41]. These
approaches must be greatly modified in order to cool a solid-state artificial atom. For
example, the so-called Sisyphus cooling technique has been experimentally used to
cool a flux qubit [40]. Side-band cooling has also been reported experimentally
[40]. Doppler, sub-recoil, and evaporative cooling do not seem suitable for artificial
atoms, because these are fixed and cannot move.

The experimental cooling of a flux qubit has been made using side-band cooling,
i.e., using the inverse process of state population inversion. The temperature of a
superconducting flux qubit [42] was lowered by up to two orders of magnitude when
its environment reached a temperature of tens of mK. This flux qubit was cooled
when the applied flux was moved away from f D 1/2, which is the special point
where the dipole transition rates for the lowest three levels of the flux qubit satisfy
certain relations. The noise sources surrounding the qubit were not cooled when the
superconducting qubit in Ref. [42] was cooled experimentally, quickly heating the
qubit. To avoid this problem, it would be desirable to increase the controllability
of the superconducting qubit by replacing the small Josephson junction in the flux-
driven loop with a tunable SQUID [43]. This allows the cooling of both the qubit
and also nearby two-level systems.

21.8 Nanomechanical Resonators

Several experimental groups have recently fabricated nano-mechanical resonators
(NAMRs) with a high quality factor Q and also high frequencies, near the usual fre-
quencies of superconducting circuits [44]. These developments motivated research
on various superconducting circuits in order to reach the ground-state cooling of
coupled nano-mechanical resonators [37, 43, 45–48]. Furthermore, by coupling it
to a superconductor single-electron transistor [49] or to a microwave-frequency
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superconducting resonator [50], the experimental cooling of nano-mechanical
resonators has also been achieved. A nano-mechanical resonator cooled to the
ground state [51] allows the direct study of various quantum phenomena and also
the classical-to-quantum transition of macroscopic objects. These developments are
creating the new subject of quantum acoustics.

21.9 Photon Generation

The quantum states of superconducting qubits can be controlled. Various fixed
qubits, which are spatially separated, can communicate with each other using single
photons in an extended cavity, behaving as a quantum bus. This type of quantum
communication process can be achieved on a chip which has a cavity in it. A single-
photon source can be produced experimentally via a superconducting qubit plus an
on-chip cavity [52–55].

Going beyond single-photon generation, it is also possible to produce, as
proposed in Refs. [56] and [57], many-photon Fock states jni (where n is the number
states of photons) and also arbitrary superposition states

P
ncn jni. A remarkable

experiment [58] achieved the controlled generation of pure Fock states with up
to 15 photons, via a superconducting phase qubit coupled to a microwave cavity.
Furthermore, complex superpositions of states with various numbers of photons
were also produced in a deterministic way [55], in a remarkable experimental
realization of the proposal described in Ref. [56]. These exciting experiments further
showed the quantum nature of the cavity and opened the way for future on-demand
multi-photon sources for quantum-technology applications.

21.10 Quantum State Tomography

Quantum information processing requires the measurement of the final quantum
states. On the other hand, a general quantum state cannot be fully characterized by
one quantum measurement, due to the uncertainty relations. Nevertheless, all the
complementary aspects of a general state can be obtained by several measurements
on many identically-prepared copies of the quantum system. From this complete set
of measurements of the system observables it is possible to reconstruct an unknown
quantum state. This approach of reconstructing quantum states is known as quantum
state tomography (QST). Using this state tomography, it is possible to characterize
the noisy channel of the quantum system. This way of obtaining information on the
dynamics of an open quantum system is known as quantum process tomography
(QPT).

It has been proposed [60] how to perform tomographic measurements on
the quantum states of superconducting qubits. Several experiments have been
performed on the quantum state tomography of single superconducting phase qubits
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[61, 62] and two coupled superconducting phase [63] and charge [64] qubits.
Moreover, experimental realizations of quantum process tomography have been
performed on single [65] and two [66] phase qubits. Quantum state tomography
is important for qubit-state measurements, and quantum process tomography can be
useful to monitor the noise properties and the temporal dynamics of qubit systems.

21.11 Dynamical Casimir Effect

Moving mirrors create vacuum modes which do not match well at various times. It
has been predicted that real photons could be produced from vacuum fluctuations.
This effect is known as the dynamical Casimir effect and it can also apply for one
accelerated mirror in a vacuum. Prior to 2011 there was no experimental verification
of the dynamical Casimir effect. The main reason for the difficultly in observing this
effect is because the mirror velocity must be exceedingly high. Of course, this task
becomes problematic when employing mirrors that have a mass. A proposal [67]
considered using a coplanar waveguide terminated by a SQUID, and this method
was used to observe this effect experimentally [114]. A key idea [67] is to modify the
magnetic field through the SQUID circuit, and this changes the boundary condition
of the waveguide, which determines its effective length. In this set-up [67, 114] there
are no moving massive mirrors, so the speed of the effective magnetic boundary can
approach the speed of light. This experiment [114] produced enough photons from
the vacuum and these can be detected. This experiment [114] and various related
phenomena are reviewed in Ref. [107].

21.12 Coherent Population Transfer

Very many precise resonant pulses are needed to produce elementary logic gates in
quantum computing networks. This is a very challenging task because imperfections
and fluctuations, which are unavoidable in experiments, make it very difficult to
produce many precise resonant pulses. Moreover, it is very difficult to turn on
and off the interbit couplings. Therefore, this makes it exceeding challenging to
generate the very-precise pulse sequences needed for two-qubit gates. Using Stark-
chirped rapid adiabatic passages, Ref. [68] puts forward a method to transfer
coherently the populations of qubit states. If made adiabatically, the transfers of
populations produced are not sensitive to the dynamics of the qubits. The required
Stark effect could be generated via, for instance, two-photon excitations of the qubit
[69]. This approach, called rapid adiabatic passage, provides an enticing way to
make high-fidelity single-qubit and two-qubit gates. This proposal based on rapid
adiabatic passage has been experimentally implemented via the passage of one
photon in a superconducting qubit [70].
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21.13 Tunable Mirrors and Interferometers

Landau-Zener-Stuekelberg interferometry [71, 106] can be studied using super-
conducting circuits. There are also other kinds of interferometry, like Fano and
Fabry-Perot interferometry [72, 73]. These explorations can be performed by linking
a coplanar waveguide to superconducting qubits. The photons inside the waveguide
couple with the qubits, which can be tuned by the applied magnetic and electric
fields. These qubits can behave like tunable mirrors, modifying the transmission
and reflection coefficients of the photons inside the waveguide.

An array of coupled cavities linked to a superconducting qubit exhibit a nonlinear
photonic dispersion relation. Thus, the photon transmission shows a more versatile
line shape [72], more general and complex than the Fano and Breit-Wigner line
shapes. When the lattice constant is commensurate with the photon wavelength [72],
the photon transmission can exhibit a Breit-Wigner line shape, similarly to an open
transmission line [74], because the photonic dispersion relation can then become
linear. This effect was recently seen experimentally using a flux qubit linked to a
resonator [75].

21.14 Quantum Nondemolition Measurements

Measurements perturb quantum states, which are known to be delicate. A so-called
quantum non-demolition measurement does not disturb much a given quantum
system. This can be realized via a special system-detector interaction that does
not change the eigenstates of the quantum system. Quantum non-demolition
measurements had been done earlier in quantum optics (see, e.g., Ref. [29]).

An early quantum non-demolition measurement on a superconducting qubit was
performed via a dispersive (atom-field coupling) technique [16, 76]. Other experi-
ments [77, 78] have demonstrated that quantum non-demolition measurements can
also be performed for one qubit via a nonlinear resonator acting like a detector.
A detector made of capacitance-shunted-SQUID was studied in Ref. [77], while
Ref. [78] used a bifurcation amplifier [79]. Moreover, using a hysteretic dc SQUID
detector [80], a quick fast quantum non-demolition measurement of a flux qubit was
performed in the weakly projective region. How to best perform weakly-perturbing
measurements is a very active area of research, due to its basic-science interest and
also for its potential applications.

21.15 Generating Squeezed States

Squeezed states are well known in quantum optics and are currently being explored
in solid state systems. LC oscillators in superconducting circuits can be used
for quantum control and readout together with qubits. Superconducting resonant
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tank circuits (parametric transducers acting as radio-frequency auto-oscillators)
have been used to measure the quantum state of flux qubits [81]. Squeezed states
would allow the reduction of the noise of detectors below the standard quantum
limit. Theoretically [82], a superconducting parametric transducer can be used to
generate squeezed states which would reduce quantum fluctuations. This would
allow reducing the effective noise temperature of the amplifier appearing on the
next stage, at least to the nominal temperature of the cooling container.

21.16 Topological Phases

Any local perturbation [83] cannot lift the degeneracy of a topologically-protected
quantum state. Therefore topological phases are suitable for applications requiring a
large degree of quantum coherence. Many artificial lattices, using superconducting
circuits, can be designed to have interesting topological phases. For example, a
proposal predicts that a triangular array of Josephson junctions may have a twofold
degenerate ground state, and this could be employed for constructing qubits which
are topologically-protected [84]. A recent prototype device [85] of this type was
fabricated, and it is made of twelve Josephson junction qubits. After some tuning,
this circuit appeared not to be affected by magnetic flux variations, even beyond the
linear order. This preliminary test suggests that larger-scale topologically-protected
superconducting qubits could be realized in the future. Furthermore, a proposal [86],
based on superconducting circuits, implement the Kitaev honeycomb model, which
involves three different types of interactions [87] at each node of a honeycomb
lattice; the spins (natural or artificial) interact with their three nearest neighbors.
For different bond parameters, this anisotropic spin model exhibits both Abelian
and non-Abelian anyons. If this were to be experimentally studied, this could
experimentally demonstrate anyons, which can exhibit fractional quantum statistics.

21.17 Bell Inequality

If one looks at correlations between spatially-separated measurements, then the Bell
inequality implies that the predictions of quantum mechanics can contradict those
of local hidden variable theories (see, for instance, Ref. [92]). Theoretical proposals
for Bell inequality tests have been put forward using charge [93] and phase qubits
[94]. The experimental violation of the Bell inequality has been verified [95] using
phase qubits. This experiment gives strong evidence that these macroscopic circuits
behave quantum mechanically, because Bell’s inequality was violated by a quantum
mechanical prediction. Other experimental results [96, 97] of Greenberger-Horne-
Zeilinger states do not require statistical arguments to observe a violation of this
theorem.
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21.18 Leggett-Garg Inequality

An inequality [111] was derived by Leggett and Garg which can be considered as a
temporal version of Bell’s inequality and it should be violated by a quantum two-
level system. This inequality applies for a degree of freedom exhibiting coherent
oscillations and being measured at consecutive times [98]. This inequality has been
tested experimentally [99] using a charge qubit, suggesting that the time correlations
at the output of the detector violate the inequality.

21.19 Kochen-Specker Theorem

The conflict between quantum mechanics and noncontextual hidden-variable the-
ories [92] was studied by Kochen and Specker. To study this non intuitive
phenomenon macroscopically, a proposal [100] was made to use two charge qubits,
controllably coupled by phase qubit acting as a two-level data-bus. The proposal
[100] showed that joint nondestructive quantum measurements of two distinct qubits
could prove quantum contextuality for a macroscopic circuit.

21.20 Nonlinear Optics

Superconducting circuits contain Josephson junctions and these can behave as
nonlinear inductors. Thus, these could act as field-controlled nonlinear resonators to
produce the Kerr effect, either the quadratic electro-optic or the quadratic magneto-
optic versions of this effect. Employing these circuits as a Kerr medium, one could
explore different nonlinear optics experiments, including: implementing quantum
gates for photon qubits, coupling microwave photons, and performing quantum non-
demolition experiments.

21.21 Final Summary

Superconducting circuits can have numerous additional applications. For example,
a proposal to simulate Hawking radiation [88, 107] considers using a coplanar
waveguide, with the center conductor replaced by an array of SQUIDs. In fact,
superconducting circuits provide a very versatile platform for exploring complex
controllable quantum dynamics [102, 107, 113]. These studies would enable
exciting on-chip both quantum simulations and also studying many-body physics
[102, 113]. Superconducting circuits allow the finding of many novel physical
effects, and these will have potential applications in future quantum technologies.
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In particular, these circuits provide an unprecedented level of control over quantum
states, and this can be useful for future quantum information processors.
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Chapter 22

Achievements and Outlook of Research

on Quantum Information Systems Using
Superconducting Quantum Circuits

Jaw-Shen Tsai

22.1 Introduction

Research of quantum information processing currently underway is expected to lead
to the new paradigm of information processing of the future. Among the possible
technologies, the development of quantum computers using superconducting cir-
cuits is a particularly intensively investigated field of research, and many notable
progresses have been made.

The heart of the fundamental physics of this superconducting technology is
the coherent control of superconducting macroscopic quantum states. This break-
through in science and technology was originated in our laboratory 15 years ago
[1]. The puzzle of whether a macroscopically extended complex object can have
quantum coherence, such as quantum wave superposition, has implications, which
include the possible identification of boundary between classical world and quantum
world. Our experimental result provided a definite and positive solution to this
longstanding challenging research topic in physics.

On the other hand, in an engineering context, a qubit (quantum bit) consists of a
superconducting circuit. It is a solid-state device, and is a technology that is expected
to lead to quantum computers, which require the integration of a huge number of
bits. The degrees of freedom intrinsic to solid-state devices, such as design flexibility
and ease of control using gates, are expected to offer a promising avenue for research
and development in this area.

A superconducting qubit circuit with quantized multiple energy levels can be
considered an artificial atom. This “atom” is a massive solid-state device that allows
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control of the quantum state of the circuit by performing amplitude and phase
control as desired on an eigenstate at each energy level with quantum coherence
preserved.

Our laboratory has developed several key technologies for quantum information
processing, including creation of entanglement using a macroscopic quantum state
[2], a quantum logic operation [3], a single-shot readout [4], a universal quantum
gate [5], extended life of qubits with echo pulses [6], and high-precision control
with microwave pulses [7].

The above work marked the birth of artificial atom quantum optics, which is a
field of research related to the interaction between superconducting artificial atoms
and microwave photons. Artificial atom quantum optics, which can easily create
strong coupling conditions, has many advantages over naturally occurring atoms,
including ease of design, ease of integration and strong coupling with light, and has
the potential for many other new applications. We have developed a lasing process
with a single artificial atom [8], resonance fluorescence [9], electromagnetically
induced transparency [10], and a single atom quantum amplifier [11]. This paper
describes the background to the development of this technology and the progress
made on key research activities, as well as innovative achievements, particularly in
research focusing on quantum computers and their prospects. Our research activities
on quantum optics with a superconducting artificial atom are described by Yasunobu
Nakamura in this issue.

22.2 Superconducting State and Josephson Junction

A macroscopic superconducting quantum state has outstanding characteristics. In a
normal-state metal, a large number of conduction electrons move around in clusters
with very high degrees of freedom. Once a superconducting transition occurs in
the metal, most of the conduction electrons form Cooper pairs (electron pairs) and
condense into a single macroscopic quantum state. This state is described by the
macroscopic wave function (order parameter)  (x) D 0(x)ei�(x). Consequently, all
the degrees of freedom of the conduction electrons are frozen, except the phase ®
of the macroscopic quantum state and the charge number, which remain effective
degrees of freedom.

In nature, a completely new hierarchy of order is occasionally created by a
relatively simple mechanism. This phenomenon, which is sometimes called an
emergent order, very often exhibits remarkable and unexpected capabilities. The
superconducting state is a typical emergent order that occurs in a solid.

A Josephson junction is useful for the observation and control of a macroscopic
phase in a superconductor. A supercurrent can flow through the Josephson junction
and is given by I D I0sin� , where � D�1 ��2 is the macroscopic phase difference
between the ends of the junction, and I0 is a constant called the maximum Josephson
current. This is called the direct current Josephson Effect.
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When a voltage V is applied to the junction, the phase difference causes a
Josephson oscillation, and the correlation V D h

2e
d�
dt

holds, where h is Planck’s
constant and e is the elementary charge. This is called the alternating current Joseph-
son correlation. More precisely, the voltage V is a gauge-invariant electrochemical
potential detected by the Cooper pair.

The phase and charge degrees of freedom of a superconductor can be observed
and controlled only when a Josephson junction is present. This device is a key
component of both a superconducting classical bit and a superconducting qubit.

22.3 Eve of Josephson Qubit Realization

There is very little dissipation in a macroscopic superconducting state, and this
is considered a suitable environment for creating a coherent state in quantum
mechanics (there is dissipation at a finite temperature due to excited quasiparticles).

In the 1980s, a novel proposal of macroscopic quantum tunneling in a Josephson
junction, in particular, in experiment uses a superconducting quantum interference
device (SQUID) [12]. A subsequent verification experiment confirmed that the
superconducting macroscopic quantum state tunneled through the Josephson con-
finement potential (see below) [13].

Subsequently, a quantized excited state other than the ground state was confirmed
to exist in the macroscopic quantum state of the Josephson junction. Discrete
energy levels were confirmed in a photon-assisted macroscopic quantum tunnel
experiment [14]. In a Josephson junction where IB < I0, the macroscopic quantum
phase � is trapped in a certain phase space by the confinement potential U .�/ D
EJ

�
1 � cos � � IB

I0
�
�

(EJ D Josephson energy, IB D bias current) created by the

junction.
The spatial degrees of freedom of the electrons confined in the atomic potential

are constrained, resulting in discrete energy levels. Similarly, the phase degrees
of freedom of the macroscopic quantum state confined in the potential U (�)
of the Josephson junction are constrained, resulting in discrete energy levels.
A superconducting ground state is usually formed in a superconductor. In the
Josephson junction, due to its nonlinearity, several anharmonic macroscopic energy
levels can be generated. Quantized multiple energy levels can be generated by
enhancing the quantum characteristics of quantum quantities � and N and this is
called the secondary macroscopic quantum effect [15].

Of the two degrees of freedom of the superconducting macroscopic state, the
phase degree of freedom is primarily involved in the Josephson Effect. The single
Cooper-pair tunneling effect was also investigated, which primarily involves the
other degree of freedom, namely the charge degree of freedom. As the capacitance
C of a tunneling junction is minimized, the charge energy EC D 2e2

C
of the junction

increases. As a result, this effect becomes more pronounced for Ec > EJ than for the
Josephson energy EJ D I0ˆ0.
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A single-Cooper-pair box is a circuit in which small superconducting islands
are connected to an external circuit through a small Josephson junction. This
is a circuit dual to an RF-SQUID circuit consisting of a superconducting loop
containing a Josephson junction. When a gate field is applied to the Cooper-
pair box, each electron pair can be moved into and out of an island through the
junction. This is equivalent to the ability to move a quantum flux into and out
of a superconducting loop by applying an external magnetic field to the SQUID
circuit. It was theoretically predicted that in a single-Cooper-pair box, an energy
gap would open up near a bias point with a gate charge of e/2 in a state with n
electron pairs in an island and in a state with (n ˙ 1) electron pairs [15]. This gap is
caused by the presence of a coherent macroscopic quantum superposition between
charge quantum states jni and jv C 1i.

In 1997 we were studying a series of superconducting single electron-pair
circuits. As part of the study, we conducted a microwave spectroscopy experiment
on a single-Cooper-pair box and confirmed the existence of the energy gap [16].
For the first time, we showed the presence of quantum coherence in a macroscopic
superconducting circuit experimentally. The discrete energy levels generated by the
energy gap are required if a qubit is to be used for quantum information processing.

Subsequently, in an experiment where the excess charge was controlled by the
gate of a single-Cooper-pair box, a gradual change in the average charge reflecting
the opening of the energy gap was observed [17], indicating the presence of a
macroscopic quantum superposition of the charge states. Similarly, in a SQUID
circuit, an energy gap that was opened by the macroscopic quantum superposition
of flux states was observed spectroscopically [18, 19].

At the end of the last century, successive pieces of evidence were found that
confirmed the presence of quantum coherence in a superconducting circuit. In a
Josephson circuit, the superconducting state was shown to exist in the BCS ground
state as well as in its excited state, and expectations for the development of a
superconducting qubit were gradually mounting.

22.4 Development of Josephson Qubit

Quantum information cannot be processed by the above-mentioned static super-
position of eigenstates. To process quantum information, a qubit must be realized
that allows a quantum state to be dynamically changed, two quantum states to be
superposed, and their phase and amplitude to be freely controlled. In 1999, in an
experiment using a superconducting Cooper-pair box, Yasunobu Nakamura, Yuri
Pashkin and the author successfully controlled the phase and amplitude at will
through the quantum oscillation of the charge states of the system. This inspired
research on a solid-state device qubit [1]. In this experiment, quantum oscillation
was induced by non-adiabatically changing the external electric field of the circuit.
Figure 22.1 shows a photograph of the circuit used in the experiment and the



22 Achievements and Outlook of Research on Quantum Information Systems. . . 481

Fig. 22.1 Photograph of a charge qubit (a); observed quantum oscillation (b); and its simulation
(c). The device is made of aluminum thin film. In the quantum oscillation graphs, the z-axis
represent the probability of the state in j1i state, x-axis is the external bias charge, and y-axis
is the time

observed quantum oscillation. A thin aluminum film, which allows a Josephson
junction tunnel barrier to be easily made, was used for the superconductor.

When the gate field of the superconducting Cooper-pair box is changed non-
adiabatically, the charge-number state of the box (island) oscillates between jvi and
jv C 1i. These two states correspond to the j0i and j1i states of the quantum
bit. This is the quantum oscillation with a period h

�E
(h D Planck’s constant,

�E D energy difference between the j0i and j1i states) observed in the experiment.
The qubit state of any phase was generated by controlling the bias electric field in
this way, and single-qubit control was achieved.

Subsequently, instead of a non-adiabatic bias operation, we developed a tech-
nique for controlling qubit state oscillation, which is called Rabi oscillation in an
atomic system, in a superconducting qubit [20]. This is a phenomenon where the
state changes between j0i and j1i and the transition probability oscillates in time
when microwaves with a wavelength equivalent to qubit energy �E are directed at
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Fig. 22.2 Photograph of a flux qubit. It was made of aluminum thin film. A readout SQUID is
attached to the side which latches to a voltage state when reading out j1i state

a qubit. The oscillation frequency is given by !Rabi D J .VAC/
�E
¯ . This is a general

correlation. J(VAC) is a Bessel function that depends on the microwave intensity.
Subsequently, qubit-control-based Rabi oscillation has been used in a number

of experiments on different types of superconducting qubits. The results of exper-
iments on quantronium charge qubits [21] (a qubit with the same structure as the
charge qubit in Fig. 22.1 but with a lower charge energy), flux qubits [22, 23], and
phase qubits [26, 27] have been reported successively. They all used this microwave.
This method has advantages over the non-adiabatic control method as regards the
precision of state control and the reduction in the decoherence effects of ambient
noise described in the following.

In an experiment on a charge qubit called a transmon, the gradient of the energy
band was successfully flattened by reducing the charge energy to an extremely
low level from the normal level of EC � EJ to EC � EJ [24]. A charge qubit
that can preserve quantum coherence for a relatively long time was realized by
reducing various effects of the fluctuation of the operating point as a result of these
improvements.

Figure 22.2 is a photograph of a typical flux qubit that is using the degrees of
freedom of the flux quantum state (the number of flux qubits) in a superconducting
loop. Aluminum is used for the superconducting film. This flux qubit has four
Josephson junctions. A flux qubit with more than three junctions provides larger
qubit energy (the energy difference between the j0i and j1i states) [25]. This type
has been used in almost all the experiments performed on flux qubits, including the
first ever flux qubit [22].

In addition to charge and flux qubits, there is a device called a phase qubit. As
a qubit, this device employs a quantized state that does not use charge and flux
degrees of freedom, and appears in a single Josephson junction [26, 27]. The most
prominent characteristic of this qubit is that it has a simple structure and can be
realized with a relatively large Josephson junction without the need to rely on a
submicron fabrication technique.
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As described above, various types of superconducting qubits have been realized.
The diversity of qubits is due to their being solid-state devices, which will be
very advantageous when fabricating complex computer circuits. The macroscopic
quantum state of a Josephson junction can be accurately described by relatively
simple physics, and a desired energy band can be created by adjusting circuit
parameters. This is another factor that contributes significantly to the design of a
superconducting qubit.

22.5 Progress on Gate Operation Accuracy and Decoherence

The quantum computation process is performed while quantum errors are being
corrected. Qubit operation with reasonable fidelity is required in order to correct
quantum errors. The operation has a maximum allowable limit as regards the error
rate. The surface code quantum error correction method [28] has an upper limit of
about 0.1 % for the error rate of the quantum gate operation (the threshold gate
fidelity F D about 0.999). Therefore, in an environment where the accuracy of a
qubit is constantly compromised by decoherence, the gate operation time must be
as short as 0.1 % of the decoherence time.

As mentioned above, a superconducting qubit uses only two macroscopic degrees
of freedom, phase (flux) and charge number. However, in actual experimental
environments, there are a number of microscopic degrees of freedom in the qubit
environment in addition to these two macroscopic degrees of freedom. These
microscopic degrees of freedom interact with the qubit, resulting in a gradual loss
of the qubit’s coherence (decoherence). This is intrinsic to quantum computers but
not to classical computers, and is one of the biggest impediments to the realization
of a quantum computer.

Decoherence has two types of time constants: the energy relaxation time T1,
during which a transition occurs from a higher energy state j1i to a lower energy
state j0i, and the dephasing time T2, during which the phase becomes unclear. They
are related as follows, 1

T2
D 1

2T1
C 1

T'
, where T® is called the pure dephasing time.

The gate time is mainly controlled by the qubit energy. Its maximum value
is of the order of nanoseconds. Therefore, the decoherence time must at least
exceed a microsecond for surface code quantum error correction. An even longer
decoherence time is advantageous when various factors are considered. This
requirement in decoherence time has been established for superconducting qubits.

Figure 22.3 shows the progress made on the decoherence time of a supercon-
ducting qubit. In the figure, the green circles represent the energy relaxation time,
the yellow circles represent T2 from a Ramsey interference experiment, and the red
circles represent T2 obtained by the echo technique (a technique for eliminating slow
noise fluctuations) [6].

The decoherence time of a superconducting qubit has been improved by more
than six orders of magnitude since the first experiment in 1999. The qubits within the
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Fig. 22.3 The progress in the decoherence time. Green circles are energy relaxation time T1,
yellow circles are dephasing time T2 from Ramsey interference experiments, red circules are T2
from echo experiments. In the past 15 years, improvement of about six orders of magnitudes has
been achieved. Quantum gate operations achieved with high fidelity were also marked. Reference
numbers are given

light blue dashed line in Fig. 22.3 represent operations at an operating point in the
flat energy band. Since the effect of external microscopic low-frequency oscillations
is sufficiently reduced, the decoherence time can be effectively improved. This
operating point is called the optimal operating point. [21] However, the decoherence
time decreases rapidly when the operating point is slightly displaced. Therefore,
the allowable operation range is limited for this type of qubit. There is no
optimal operating point for transmon and phase qubits. Figure 22.3 shows that the
decoherence time of the transmon qubit has improved significantly, particularly in
recent years, due to the improvements made on resonators [29–32]. In contrast, there
has been little improvement in the decoherence time of the phase qubit [33].

In an experiment where the fidelity of long-lived flux qubits [34] was evaluated
by performing a gate operation at a high speed, a fidelity F of 0.998 was achieved
[35]. This value is close to the threshold gate fidelity required with the above-
mentioned surface code quantum error correction method. The flux qubits used in
the experiment are indicated in Fig. 22.3. A fidelity F of 0.95 (actually F > 0.98) has
also been achieved for a more complex two-bit logic gate operation [36], which is
described later.

It is important to identify the factors limiting the decoherence time of qubits
to make it possible to increase it further. We have shown that the low-frequency
oscillations causing phase relaxation are predominantly charge fluctuations [38] for
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a charge qubit and flux fluctuations [37] for a flux qubit. It has been indicated that
the fluctuations of the degrees of freedom are involved in the energy relaxation of
a charge qubit [38]. In recent years, charge qubit experiments with a resonator and
their analysis [39] have indicated that a dielectric loss on the surface of a substrate
or on the surface of a superconducting film is the cause of the energy relaxation of
this type of qubit.

In conclusion, the obstacle of achieving a “high gate fidelity” for quantum
computers is being overcome as the result of significant improvements in the
decoherence time of a superconducting qubit.

22.6 Quantum Logic Gates and Integration

To perform a manipulated quantum operation, it is necessary to realize a universal
quantum gate operation by combining a one-qubit operation and a two-qubit
quantum logic operation gate. A two-qubit system is a physical system of great
interest where quantum entanglement occurs during a quantum logic operation.

Being a solid-state device, a superconducting quantum qubit offers significant
flexibility in design the coupling of the qubits, compared to a microscopic qubit. The
first coupled solid-state qubit was realized in a two-qubit system that we demon-
strated where the coupling was achieved via a capacitance. In this experiment,
quantum entanglement had been achieved in a macroscopic system for the first time
[2]. Subsequently, using the two coupled phase qubits, the state of each of the qubit
was read out and quantum entanglement in a macroscopic system was clearly shown
by quantum state tomography [40].

We also achieved the operation of the first two-bit quantum logic operation gate
with a fixed-coupled charge qubit circuit similar to the one mentioned above [3].
We achieved a controlled-NOT (CNOT) operation with this circuit. A CNOT circuit
is a typical two-qubit operation circuit, consisting of a control qubit and a target
qubit. When a CNOT operation is performed, the target qubit flips if the control
qubit is j0i but does not flip if it is j1i. If the control qubit is a superposition of j0i
and j1i, the CNOT operation results in entanglement. A CNOT operation based on
fixed-coupled flux qubits was subsequently reported [41].

Both the accurate state control of one qubit and a two-qubit operation must be
achieved in quantum computation. A means of controlling the ON/OFF of qubit
coupling is the easiest way to achieve this. Controlling the coupling of qubits makes
it possible to realize a universal quantum gate, which is a fundamental component
of a quantum computer. This means placing a switch between qubits in such a way
that it is possible to control the coupling. It is physically impossible to make such
switches with microscopic atom- or molecule-based qubits. Since a superconducting
qubit is a solid-state device, we can make such coupling switches and simplify
information processing operations. We proposed a method for the operation of a
two-qubit quantum gate with a variable coupling switch [42] and succeeded in an
experiment using the method [5, 43] (Fig. 22.4).
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Fig. 22.4 Photograph of 2-qubit system couple with a similar qubit-based coupler (Ref 44)

In the experiment, we used two flux qubits and demonstrated that a third flux
qubit could be used as a variable coupler with each of the two qubits being biased
at its optimal operating point. In the photograph in Fig. 22.4, the two qubits are
at either end and the coupling qubit is in the middle. The coupling qubit has a
qubit energy sufficiently higher than the energies �1 and �2 of the two qubits and
therefore will not be excited during a normal gate operation. Inductive coupling
can be approximated as zero when the qubit is biased at the optimal operating
point. Therefore, a one-qubit operation can be easily performed. Two qubits can
be coupled and a logic operation can be performed by applying microwaves with an
energy �1 C�2 or �1 ��2 at the coupling qubit. A state transition of j00i ()
j11i or j01i () j10i was observed during this operation. This is a logic operation
called iSWAP (exchange with a phase). A 3-step quantum state protocol consisting
of two one-qubit operations and one two-qubit operation was performed using this
two-qubit system. The expected results were obtained, showing that the coupling
switch worked properly and effectively [5].

Since then, we have continued research on this nonlinear coupling switch. As
a result, circuit design has advanced to a level that makes it theoretically possible
to realize the large two-dimensional qubit array required for surface code quantum
error correction. This new design allows one- and two-qubit control to be easily
performed with adequate fidelity [44]. This coupling method has a significant
advantage in that sufficiently high crosstalk immunity can be obtained if attention is
paid to frequency detuning between qubits. A coupler has been reported that turns
on/off DC coupling with high precision through the high-speed control of quantum
inductance [45].

Variable coupling methods using a linear superconducting microwave resonator
are being researched, in addition to those using a nonlinear coupling circuit. This
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method is sometimes called circuit quantum electrodynamics (Circuit QED). The
electromagnetic resonator is usually a superconducting coplanar waveguide-type
transmission line circuit and is used as a qubit coupling bus. Among operations
that use this type of resonator, a qubit operation using non-adiabatic DC pulses
has produced good results. The first successful experiments consisted of one [46]
where two phase qubits were coupled via a resonator, and one [47] where two
transmon qubits (charge qubits with extremely low charge energy) were coupled
via a resonator.

Coupling methods using microwave pulses, such as the one mentioned above,
which uses a nonlinear coupler [5], are advantageous for integration. Among cou-
pling methods using a linear resonator, one has been realized that uses microwave
pulses. With this approach, qubit states were coupled via the photon state in the
resonator using sideband transitions [48]. A CNOT gate has been realized that
selectively controls quantum state transitions based on the microwave intensity and
the phase difference [49]. A universal quantum gate that performs a CNOT gate
operation with high fidelity F D 0.95 has been realized by a microwave coupling
method called cross coupling [36].

Experiments for implementing several quantum algorithms based on quantum
logic operation using the various coupling methods mentioned above were per-
formed as described below.

22.7 Implementation of Quantum Algorithm

Experimental studies of the implementation of a practical quantum algorithm
using superconducting qubits have been conducted. The Grover and Deutsch-Jozsa
algorithms were successfully implemented in an experiment using two transmon
qubits and a linear coupling bus [50]. The operation of a two-qubit information
processing circuit with an independent readout circuit has been reported [51]. Using
the DC pulse method, entanglement was achieved in a three-qubit quantum circuit
[52, 53]; three-qubit quantum error correction was performed recently [54]; and a
Toffoli gate was realized [55] Bell’s inequality violation was successfully observed
in a system with two phase qubits coupled via a resonator [56] showing that the
classical realism does not hold in such macroscopic systems.

In some experiments, a quantum algorithm was implemented using a microwave
resonator coupled to a qubit as a quantum memory device. An experiment to perform
a quantum Fourier transform using two phase qubits and three resonators (two for
storage and one for coupling) has been reported [57]. Here, the resonators were used
as quantum memories, to compensate for the relatively short coherence lifetime of a
phase qubit. A larger-scale experiment was conducted where four phase qubits were
coupled via four resonator memories and one resonator bus [58]. In the experiment,
the prime factoring of 15 was successfully computed by a three-qubit compiled
version of Shor’s algorithm.
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A quick overview shows that multi-qubit quantum operation has already been
realized, reflecting the diverse array of the coupling method of this solid state
device, and simple quantum algorithms can be implemented. The coupling methods
are largely divided into those that use a nonlinear coupler and those that use a
linear resonator. It is worth noting that a number of results have been achieved
by the latter method (in combination with non-adiabatic DC pulses), which has a
relatively simple structure. However, a small nonlinear coupling switch, three orders
of magnitude (one dimension) smaller than the resonator, is expected to play an
important role in large-scale two-dimensional integration in the future. This will be
further discussed later.

22.8 Qubit Readout

A readout technique for determining, at any desired moment, whether the quantum
state is j0i or j1i is very important in qubit experiments. Quantum error correction
requires that an accurate readout be performed. The readout fidelity is considered
to be in the order of 99.9 %, which is the same as for gate operations. A single-
shot readout is important. A fast readout in less than 10 ns is needed to increase
the fidelity (three orders of magnitude faster than T1). A quantum nondemolition
qubit readout is desirable that can preserve the projected quantum state. Significant
progress has been reported on this technology.

When quantum states are observed, an average is often taken over several
experimental sessions because the observed signals are weak. Over the years,
various improvements have been made to a single-shot readout technique that does
not need to take an average. For example, in the early stages of our research, we
achieved a single-shot readout via a charge trap when reading out a charge qubit
[4]. The readout fidelity was F D 0.93 for the j0i state and F D 0.87 for the j1i state.

A high-fidelity single-shot readout technique called dispersive readout was later
developed. This is a quantum nondemolition qubit readout. With this technique,
a qubit is coupled to a resonator and the qubit state is determined based on the
change in the resonance frequency of the whole system. To express this simply, the
change in the resonance frequency can be understood as a reflection of the change
in the quantum capacitance or inductance of the qubit. Normally, a change in the
resonance frequency can be observed as a change in the phase of the AC signal used
to drive the resonant circuit. A charge qubit has been read out with high fidelity
using a linear resonator [59].

However, this is insufficient for a single-shot readout. Only a weak signal is
input into the resonator (for example, an average of one photon) to prevent any
excitation of the qubit. Therefore, an averaged observation is required to observe
the phase change. A low-noise amplifier with low dissipation needs to be developed
to improve this situation. Experiments have been successfully conducted using
a Josephson bifurcation amplifier and a Josephson parametric amplifier for this
purpose.
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The Josephson bifurcation amplifier uses dynamical bifurcation, a phenomenon
associated with the nonlinearity of the Josephson junction, as a dissipationless
amplifying switch [60]. In an experiment where bifurcation amplifier was used to
read out a flux qubit, non-destructive single-event readout fidelity F > 0.854 was
achieved [61]. A single-shot readout with readout fidelity F > 0.94 has been reported
in a similar experiment where a transmon qubit was read out [62].

Parametric amplification can be realized using the nonlinear inductance of a
Josephson junction. Fidelity F D 0.7 was observed in a single-shot readout of a
transmon qubit with a Josephson parametric amplifier [63]. In this experiment,
the relaxation of the qubit was detected as a quantum jump under continuous
observation, showing that this readout technique is highly quantum nondemolition
in nature. We conducted a readout experiment in a system where a flux qubit was
capacitively coupled to a resonator, using a flux-driven Josephson parametric ampli-
fier of our own design [64]. Characteristically, this system produced a surprisingly
large dispersive shift in the resonant frequency [65]. A single-shot readout with
fidelity F D 0.74 was achieved and a quantum jump was successfully observed
[66]. The fidelity limit in these experiments can be explained by the relatively
short relaxation time of the qubit used. A readout with F D 1 will be achieved by
extending the qubit lifetime.

Quantum feedback experiments using a single-shot readout with a Josephson
parametric amplifier have been reported [67, 68]. An experiment was successfully
performed that allowed the highly efficient active initialization of a qubit using a
similar readout [69] and a change in the readout intensity [70]. In both of the last
two experiments, fidelity F as high as 0.98 was achieved.

Thus, the readout efficiency of a superconducting qubit is gradually approaching
the level required for quantum error correction. The major issue that must be
addressed if we are to realize a quantum computer is how to achieve large-scale
integration of the microwave resonators used for a high-efficiency single-shot
readout or, as a separate issue, whether a small high-efficiency readout circuit can
be developed.

22.9 Outlook

Ever since we realized the first solid-state qubit with a superconducting circuit about
14 years ago [1], we had been wondering about the possibility of realizing a quantum
computer. At first, we had no clear idea how to get started. As we continued our
research, we developed a two-bit logic circuit [2, 3] and began to feel that we were
actually starting to climb a mountain. As a result of the subsequent tremendous
efforts of many researchers throughout the world, as described in this paper, the
summit of the faraway mountain of quantum information processing is becoming
visible, and the research path leading towards it has begun to take shape (although
the possibility of a shortcut cannot be denied).
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The aim is to realize a machine that performs quantum operations while
continuously repeating the quantum error correction (a surface code [28] is the most
promising). We still have a very long way to go before we can reach our goal.
Quantum computing involves a hierarchy of computation resources. As solid-state
physicists, we have been looking for a way to realize a large two-dimensional array
of qubits which corresponds to the physical resources at the bottom of the hierarchy.

A major issue is which of the many qubit coupling methods we should use. One
relatively successful method uses a linear resonator, which has a simple structure
but a size of centimeters. In theory, methods that use a nonlinear coupler can realize
a compact two-dimensional qubit array, although the coupler will have a complex
structure. The surface code quantum error correction architecture requires only that
adjacent qubits be coupled. A nonlinear coupler meets this requirement. Similarly,
there is the issue of the integration of a single-shot, high-precision qubit readout
circuit that requires a resonator.

Existing silicon large-scale integrated (LSI) circuit technology can be used to
produce a large two-dimensional qubit array. A Josephson qubit circuit is made of a
thin aluminum film. This is the wiring material used for the present semiconductor
LSI circuits, therefore it has good material compatibility. The minimum line width
is about 100 nm and this is much larger than the limit for the current silicon LSC
process. The number of qubits in a two-dimensional array is expected to be 108–109.
Therefore, the circuit size is within the range of the current largest LSI production
technology. However, the above discussion does not exactly apply to circuit that
involving large resonators.

The integration of peripheral circuits and packaging of a qubit array pose signif-
icant technical problems, in addition. All of the 108–109 qubits in the array must be
individually coupled by microwaves and DC wire and manipulated externally. This
requires 108–109 microwave pulse sources and DC/pulse sources and an interface
module to connect them to the qubit chip.

A conventional LSI circuit requires only that external wires be connected to
the periphery of the chip. A quantum LSI circuit will require external wires to
be connected to the entire chip. New components, such as the three-dimensional
interface module shown in Fig. 22.5, will be needed. The figure is a schematic of a
qubit chip using a small nonlinear qubit coupler. Three-dimensional integration will
be necessary for coupling with a microwave resonator as well as for the large-scale
integration of readout circuits.

An error correction architecture that allows the use of multiplexing to reduce
the number of wires is needed if we are to reduce the resources employed for such
peripheral circuits, packaging and cooling. It is quite possible to place a classical
superconducting digital circuit in the interface module as a part of the peripheral
circuit. The interface with the peripheral circuit has been little studied. However,
abundant resources are available.

The realization of a quantum computer will take information processing technol-
ogy to another dimension. In this paper, we have presented research achievements
that are moving us towards the realization of a superconducting quantum computer
and the outlook of large-scale qubit LSI chips, peripheral circuits and packaging
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Fig. 22.5 Image of qubit chip and interface module to connect control and readout lines to outside

technology. Several solutions have been developed for some difficult problems, but
there are still many areas that require research. We hope that further research will be
conducted and, in the near future, more concrete plans for quantum computers will
be produced.
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Chapter 23

Parametric Amplifier and Oscillator Based

on Josephson Junction Circuitry

T. Yamamoto, K. Koshino, and Y. Nakamura

23.1 Introduction

The parametric amplifier has a unique noise property. When the amplifier operates in
the degenerate mode, the gain depends on the relative phase between the pump and
the signal. Because of this phase sensitivity, the amplifier can, in principle, amplify
one quadrature of the signal without adding any noise, which is called noiseless
amplification [1, 2]. This is in sharp contrast to the phase-insensitive amplifier
case, where the amplifier must add at least half a photon of noise (the standard
quantum limit, or SQL). Superconducting circuits are suitable for the realization
of these low-noise amplifiers, because the Josephson junction serves as a lossless
nonlinear inductor. There have been numerous studies of parametric amplifiers
using superconductors since the 1950s [3]. In the late 1980s, pioneering works were
published by Yurke et al. that demonstrated the squeezing of thermal [4, 5] and
vacuum [6] noise.
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Despite the successful demonstrations of these amplifiers, they were not often
used in practice, because there were only a limited number of applications that
needed such good noise performance. However, this situation has changed because
of the emergence of the field of quantum information processing using super-
conducting circuits [7]. More specifically, in one qubit-readout scheme called a
dispersive readout, where the qubit is dispersively coupled to an inductor-capacitor
(LC) resonator, it is necessary to detect a small microwave signal leaking from the
resonator with content of the order of a single photon to minimize back-action on the
qubit [8]. Additionally, this detection process must be performed within a time that
is much shorter than the lifetime of the qubit. This is so challenging that even with
the state-of-the-art cryogenic high-electron-mobility transistor (HEMT) amplifiers,
the signal-to-noise ratio typically remains less than unity, which hampers our efforts
to achieve single-shot (i.e., without ensemble averaging) readout of the qubit. This
has strongly motivated the development of amplifiers with better noise performance.

In the mid-2000s, several groups independently started studies of parametric
amplifiers [9–12], and vacuum noise squeezing and noise temperatures below
the SQL were demonstrated [13]. Shortly thereafter, a parametric amplifier was
applied to position measurements for a nanomechanical resonator, and achieved an
imprecision that was below the SQL [14]. A few years later, a parametric amplifier
was applied for the first time to the dispersive readout of a qubit by Vijay et al., and
the quantum jump of the qubit was subsequently observed [15].

Another interesting aspect of the use of the parametric amplifier in the context
of quantum optics using electrical circuits (which is known as circuit quantum
electrodynamics [16]) is that it can generate squeezed microwaves. Reconstruction
of the state of the squeezed vacuum that is generated by the parametric amplifier has
been reported by Mallet et al. in [17]. This research was extended further to the study
of two-mode correlation [18, 19], and the path entanglement of continuous-variable
microwaves [20].

When a parametric amplifier is pumped strongly (above a specific threshold)
it generates an output field even without the presence of an input field. This
phenomenon is classically well-known as parametric oscillation [21]. Using a
superconducting device, Wilson et al. first demonstrated parametric oscillation in
this context [22, 23]. Using a similar device, they also reported observation of the
dynamical Casimir effect [24]. While the parametric oscillator generates an output
field without any input field, it is the external signal injection that actually controls
the state of the output field. The device called the parametron [25], which is also
known as the parametric phase-locked oscillator [26] is based on this property, and
was used as a basic element of digital computers in the 1950s and 1960s. Recently,
we have implemented a superconducting circuit version of the parametron, and have
demonstrated high-fidelity single-shot readout of a flux qubit using this device as a
sensitive phase detector [27].

In this chapter, we present the quantum-optical theory of the two devices that
we implemented: the flux-driven Josephson parametric amplifier (JPA) [11] and the
Josephson parametric phase-locked oscillator (PPLO) [27], which are both modeled
using a parametrically-modulated nonlinear oscillator. We derive several formulae
that characterize our devices, including the gain and the noise temperature of the
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JPA, and the locking properties of the PPLO. The rest of this chapter is organized
as follows. We first review the device structure and the operating principle of the
flux-driven JPA. Then, we model the device using the parametrically-modulated
Duffing oscillator. Using the input-output formalism [28], we derive the Heisenberg
equation for the resonator photon operator. From this, we derive formulae for both
the gain and the noise temperature of the JPA. We also derive the master equation
for the resonator field, and calculate its Q function. From this, we can calculate the
probability of obtaining one of the two dynamical states of the PPLO.

23.2 Quantum Description of the Parametrically-Modulated

Duffing Oscillator

23.2.1 Review of the Flux-Driven Josephson Parametric

Amplifier

Here, we explain how the flux-driven JPA works [11]. Figure 23.1a shows a
schematic diagram of the flux-driven JPA. The primary component of the device
is a coplanar waveguide (CPW) resonator with a direct current superconducting
quantum interference device (dc-SQUID) termination [29]. The dc-SQUID works
as a variable inductor that sets the boundary condition of the transmission-line
resonator. The inductance is controlled by a magnetic flux threading the loop of
the dc-SQUID, and changes from the minimal value of ˆ0

4�Ic
to infinity, where ˆ0 is

the flux quantum, and Ic is the critical current for each of the two junctions, which
are assumed to be identical. The resonant frequency of the lowest resonator mode
depends on the magnetic flux, as shown schematically in Fig. 23.1c.

We apply a static dc flux bias of ˆdc=ˆ0 to set the static resonant frequency of
the resonator at �0 (Fig. 23.1c). Then, we apply a pump field at a frequency of ˛�0

(˛ � 2). Because the pump line is inductively coupled to the loop of the dc-SQUID,
the pump field modulates the flux, and thus the resonant frequency is also modulated
at the frequency of ˛�0, where we assume that the resonant frequency depends
linearly on the flux as shown in Fig. 23.1c. This temporal modulation performs
parametric work for the signal that comes into the resonator and is then reflected
back along the same line (Fig. 23.1a).

This scheme has several advantages. First, the band center can be controlled
by a static magnetic field. Second, it is a straightforward process to separate the
signal from the pump, because their frequencies differ by a factor of 2. Additionally,
because the resonator is of the �=4 type and there is no resonance around 2�0, any
pump leakage into the signal line is also suppressed.

We can also consider the flux-driven JPA using a lumped element circuit, as
shown in Fig. 23.1b [30]. The operating scheme is essentially the same as that using
a distributed element circuit, but this device is advantageous because it is free from
the higher resonant modes, and the participation ratio of the Josephson inductance
to the total inductance is also easy to control while maintaining a constant resonant
frequency. Lumped element JPAs with slightly different designs (i.e., without the
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a

b c

Fig. 23.1 Schematic diagram of the flux-driven Josephson parametric amplifier. (a) Distributed
element version. (b) Lumped element version. (c) Schematic diagram representing the resonant
frequency of the resonator as a function of the magnetic flux through the SQUID loop. Cc

represents the coupling capacitor between the resonator and the feedline.ˆ represents the magnetic
flux that penetrates the loop of the SQUID

coupling capacitor) have been developed by groups at University of California,
Berkeley (UCB) and University of California, Santa Barbara (UCSB) [31, 32] and
were operated successfully to provide qubit readout [33].

When operated with a pump power below a specific threshold, the device
shown in Fig. 23.1a works as a JPA. We have reported the single-shot readout
of a superconducting flux qubit and the observation of quantum jumps [34]. The
noise temperature below the SQL has been confirmed using a calibrated noise
source [35]. The generation of squeezed states and the path entanglement have also
been demonstrated [20, 35]. However, when operated with a pump power above the
given threshold, the device works as a PPLO. We have demonstrated that we can
use this device as a sensitive phase detector. We applied this device to the dispersive
readout of a qubit, and achieved high-fidelity single-shot readout [27].

23.2.2 Hamiltonian and Equations of Motion

We start from an equation of motion for a harmonic oscillator,

d2q

dt2
C�2

0q D 0; (23.1)
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and then introduce a modulation of the resonant frequency �0 at a frequency ˛�0

with an amplitude of �=2, i.e., �0 ! �0Œ1C �=2 cos.˛�0t/�. Then,

d2q

dt2
C�2

0Œ1C � cos.˛�0t/�q D 0; (23.2)

where we neglected the term that is proportional to �2. The Hamiltonian that gives
this equation of motion is

H .t/ D p2

2m
C m

2
�2
0

�
1C � cos.˛�0t/

�
q2: (23.3)

By introducing the creation and annihilation operators for the modulated oscillator
defined by

q D a C a�

2

s
2„

m�0

; (23.4)

p D a � a�

2i

p
2„m�0; (23.5)

�
a; a�

�
D 1; (23.6)

we arrive at the Hamiltonian of the parametrically-modulated harmonic oscillator,

H .t/ D „�0

�
a�a C � cos.˛�0t/.a C a�/2

�
: (23.7)

Now, we consider a signal and a fictitious loss port connected to the oscillator. We
also include the nonlinearity of the oscillator. The Hamiltonian of the system is
given by

H .t/ D Hsys.t/C Hsig C Hloss; (23.8)

Hsys.t/=„ D �0

�
a�a C � cos.˛�0t/.a C a�/2

�
C 
.a C a�/4; (23.9)

Hsig=„ D
Z

dk
h
vbkb

�
kbk C i

r
vb�1

2�

�
a�bk � b

�
ka
�i
; (23.10)

Hloss=„ D
Z

dk
h
vckc

�
kck C i

r
vc�2

2�

�
a�ck � c

�
ka
�i
; (23.11)

where 
 is the nonlinearity parameter, and bk (ck) is the annihilation operator for
a photon in the signal (loss) port with wave number k and velocity vb (vc). �1 (�2)
represents the coupling strength between the resonator and the signal (loss) port,
which are related to the external and internal quality factors of the resonator as
follows: �1 D �0=Qe and �2 D �0=Qi. The operators bk and ck satisfy the following
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commutation rules:
�
bk; b

�

k0

�
D ı.k � k0/, and

�
ck; c

�

k0

�
D ı.k � k0/. Hereafter, we

assume that vb D vc for simplicity and denote both by v.
Below, we consider the case of ˛ � 2. From the Heisenberg equations of motion

for bk, we obtain

dbk.t/

dt
D �ivkbk.t/ �

r
v�1

2�
a.t/: (23.12)

By formally solving this differential equation, we have

bk.t/ D e�ivktbk.0/ �
r
v�1

2�

Z t

0

e�ivk.t�t0/a.t0/dt0: (23.13)

We introduce the real-space representation of the waveguide field as Qbr D
.2�/�1=2

R
dkeikrbk. In this representation, the waveguide field interacts with the

resonator at r D 0, and the r < 0 (r > 0) region corresponds to the incoming
(outgoing) field. From Eq. 23.13, we have

Qbr.t/ D Qbr�vt.0/�
r
�1

v
�.r/�.t � r=v/a.t � r=v/; (23.14)

where �.r/ is the Heaviside step function. We define the input and output operators
as

bin.t/ � Qb�0.t/ D Qb�vt.0/; (23.15)

bout.t/ � QbC0.t/ D bin.t/ �
r
�1

v
a.t/: (23.16)

Using Eqs. 23.14 and 23.15, the field operator Qbr.t/ at the resonator position (r D 0)
is given by

Qb0.t/ D 1p
2�

Z
bk.t/dk D bin.t/ � 1

2

r
�1

v
a.t/: (23.17)

From the Heisenberg equations of motion for a, we then obtain

da

dt
D �iŒHsys.t/; a�C

p
v�1 Qb0 C p

v�2 Qc0: (23.18)

Using Eq. 23.17 and its counterpart for Qc0, Eq. 23.18 is rewritten as

da

dt
D �iŒHsys.t/; a� �

�

2
a C p

v�1bin.t/C p
v�2cin.t/ (23.19)
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D �
�

i�0 C �

2

�
a � i�0�e

�i˛�0 ta� � 12i
a�aa

Cp
v�1bin.t/C p

v�2cin.t/; (23.20)

where � D �1 C �2, and we dropped the term �12i
a because it can be regarded as
a renormalization to �0.

23.2.3 JPA Characteristics

By solving Eq. 23.20, we can then calculate the properties of the amplifier, including
its gain, bandwidth, and noise temperature. For simplicity here, we neglect the
nonlinearity (
 D 0), although it does determine practically important parameters
such as the 1-dB-compression point [36]. First, we switch to a frame rotating at
˛�0=2, and define the following operators:

A D ei ˛2�0ta; (23.21)

Bin D ei ˛2�0tbin; (23.22)

Cin D ei ˛2�0tcin: (23.23)

By substituting this into Eq. 23.20, we obtain

dA

dt
C
h�
1 � ˛

2

�
i�0 C �

2

i
A C i��0A

� D ei ˛2�0tF.t/; (23.24)

where

F.t/ D p
v�1Bin.t/C p

v�2Cin.t/: (23.25)

The Hermitian conjugate of this equation is

dA�

dt
C
h
�i
�
1 � ˛

2

�
�0 C �

2

i
A� � i��0A D F�.t/: (23.26)

The Fourier transform of Eqs. 23.24 and 23.26 leads to

�
�i! � i

	
˛
2

� 1


�0 C �

2
i��0

�i��0 �i! C i
	
˛
2

� 1


�0 C �

2

��
A.!/

A�.�!/

�
D
�

F.!/

F�.�!/

�
;

(23.27)
where we defined the Fourier transform of A.t/ as

A.!/ D 1p
2�

Z 1

�1
dtA.t/ei!t: (23.28)
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From this equation, we obtain

A.!/ D
�i! C i

	
˛
2

� 1


�0 C �

2

�
	
! C i �

2


2 C
	
˛
2

� 1

2
�2
0 � �2�2

0

F.!/

C �i��0

�
	
! C i �

2


2 C
	
˛
2

� 1

2
�2
0 � �2�2

0

F�.�!/: (23.29)

From Eq. 23.16,

Bout.!/ D Bin.!/ �
r
�1

v
A.!/: (23.30)

By substituting Eq. 23.29 into Eq. 23.30, we finally arrive at

Bout.!/ D Jb.!/Bin.!/CKb.!/B
�
in.�!/CJc.!/Cin.!/CKc.!/C

�
in.�!/; (23.31)

where

Jb.!/ D 1C �1
�i! C i

	
˛
2

� 1


�0 C �

2	
! C i �

2


2 �
	
˛
2

� 1

2
�2
0 C �2�2

0

; (23.32)

Kb.!/ D � i��1�0	
! C i �

2


2 �
	
˛
2

� 1

2
�2
0 C �2�2

0

; (23.33)

Jc.!/ D p
�1�2

�i! C i
	
˛
2

� 1


�0 C �

2	
! C i �

2


2 �
	
˛
2

� 1

2
�2
0 C �2�2

0

; (23.34)

Kc.!/ D � i�
p
�1�2�0	

! C i �
2


2 �
	
˛
2

� 1

2
�2
0 C �2�2

0

: (23.35)

Note that Eq. 23.29 corresponds to a special solution of Eqs. 23.24 and 23.26. We
neglected the general solution of the corresponding homogeneous equation [F.t/ D
F�.t/ D 0], which takes the form of C1e

�1t C C2e
�2t. Here, C1 and C2 are time-

independent operators, and �1 and �2 are given by

�1 D ��
2

C�0

r
�2 �

�˛
2

� 1
�2
; (23.36)

�2 D ��
2

��0

r
�2 �

�˛
2

� 1
�2
: (23.37)

This solution vanishes in the steady state (i.e., Re�1;Re�2 < 0), provided that

� �
s� �

2�0

�2
C
�˛
2

� 1
�2

� �c: (23.38)
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If � > �c, then the output signal with frequency �1 exists even without an input.
This is called parametric oscillation, which will be discussed later in the chapter.

23.2.3.1 Parametric Gain

Equation 23.31 implies that the output field at a frequency of!C˛�0=2 is generated
from the input field at the same frequency and from the conjugate of the input field
at �! C ˛�0=2 (which are the first and second terms on the right-hand side of
Eq. 23.31, respectively). These terms are the signal and the idler of the parametric
amplifier, and their coefficients Jb.!/ and Kb.!/ are related to the signal gain (Gs)
and the intermodulation gain (Gi), respectively:

Gs D
ˇ̌
ˇJb.!/

ˇ̌
ˇ
2

; (23.39)

Gi D
ˇ̌
ˇKb.!/

ˇ̌
ˇ
2

: (23.40)

Note that in the lossless case (�2 D 0),

ˇ̌
ˇJb.!/

ˇ̌
ˇ
2

�
ˇ̌
ˇKb.!/

ˇ̌
ˇ
2

D 1: (23.41)

Figure 23.2 shows the signal and intermodulation gains, where both are given
as a function of the signal frequency ˇ and the modulation amplitude �. Here, ˇ
is the normalized signal frequency measured from half of the pump frequency, i.e.,
ˇ�0 D ! C ˛

2
�0.

When we operate the amplifier in the degenerate mode, i.e., when the signal
frequency is half of the pump frequency (! D 0), then the signal and idler
frequencies become identical. The signal and the idler components of the output
field should then be superposed, and thus the output field amplitude becomes
sensitive to the phase �s of the input signal field. The phase-dependent degenerate
gain Gd is given by

Gd D
ˇ̌
ˇJb.0/e

i�s C Kb.0/e
�i�s

ˇ̌
ˇ
2

: (23.42)

When half of the pump frequency is exactly equal to the resonator frequency (˛ D
2), Eq. 23.42 reads,

Gd D

�
�21��22
4

C �2�2
0

�2
C �2�21�

2
0 � 2��1�0

�
�21��22
4

C �2�2
0

�
sin 2�s

�
�2

4
� �2�2

0

�2 : (23.43)

From this formula, Gd for � D 0 (i.e., pump-off level) is given by
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Fig. 23.2 Signal and intermodulation gains, where both are given as a function of the signal
frequency and the modulation amplitude. The parameters used for the calculations were Qext D
240, Qint D 2200, and ˛ D 2

G0
d D

� �1 � �2

�1 C �2

�2
: (23.44)

Assuming that .�21 � �22/=4C �2�2
0 > 0, the minimum gain is achieved when �s D

�=4C n� , and is given by

Gmin
d D

 
��0 � �1��2

2

��0 C �1C�2
2

!2
: (23.45)

The maximum gain is achieved when �s D 3�=4C n� , and is given by

Gmax
d D

 
��0 C �1��2

2

��0 � �1C�2
2

!2
: (23.46)

Figure 23.3 shows a numerical example of the degenerate gain. Figure 23.3a
represents the phase-dependent gain, which is a hallmark of the degenerate para-
metric amplifier. The gain can be larger (amplification) or smaller (deamplification)
than unity, depending on the relative phase between the pump and the signal. In
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Fig. 23.3 (a) The gain of the amplifier when operating in the resonant degenerate mode (˛ D
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minimum of the phase-dependent gain as a function of modulation amplitude. The pump-off level
is also shown. The parameters that were used for the calculation are the same as those in (a)

Fig. 23.3b, we plot the maximum and minimum values of the phase-dependent gain
as a function of �. While the maximum gain increases monotonically as � increases
and diverges at � D �c, the minimum gain becomes zero at �=�c D .�1 � �2/=�

because of the perfectly destructive interference. If �1 D �2, this occurs at � D 0,
which represents the critical coupling condition (a zero reflection coefficient).

23.2.3.2 Noise Temperature

In this section, we consider the case where the inputs to the signal and loss ports
consist of the Nyquist noise, i.e.,

D
Bin.!/

E
D
D
Cin.!/

E
D 0; (23.47)

D
B
�
in.!/Bin.!

0/
E

� e�„˛�0=2kBTb

1 � e�„˛�0=2kBTb
ı.! � !0/; (23.48)

D
C
�
in.!/Cin.!

0/
E

� e�„˛�0=2kBTc

1 � e�„˛�0=2kBTc
ı.! � !0/; (23.49)

where Tb and Tc are the temperatures of the bath for the input and loss ports,
respectively. Assuming that ! � ˛�0=2, we used the approximation „.˛�0=2C
!/ ' „˛�0=2 in Eqs. 23.48 and 23.49. If the output of the parametric amplifier is
delivered to the mixer, the mixer output is then given by [37, 38]

ID.!/ D B
�
out.�!/e�i�LO C Bout.!/e

i�LO ; (23.50)
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where �LO is the local oscillator phase. The noise power spectral density of the
mixer output is given by

P.!/ D
ˇ̌
e�i�LOJ�

b .!/C ei�LOKb.�!/
ˇ̌2 e�„˛�0=2kBTb

1 � e�„˛�0=2kBTb

C
ˇ̌
ei�LOJb.�!/C e�i�LOK�

b .!/
ˇ̌2 1

1 � e�„˛�0=2kBTb

C
ˇ̌
e�i�LOJ�

c .!/C ei�LOKc.�!/
ˇ̌2 e�„˛�0=2kBTc

1 � e�„˛�0=2kBTc

C
ˇ̌
ei�LOJc.�!/C e�i�LOK�

c .!/
ˇ̌2 1

1 � e�„˛�0=2kBTc
: (23.51)

The first two terms on the right-hand side represent the input noise amplified (or
deamplified) by the parametric amplifier, and the last two terms represent the extra
noise that was added by the parametric amplifier. This formula allows us to calculate
the noise temperature of the amplifier, or the achievable degree of squeezing. As an
example, we consider the special case where ˛ D 2 and ! D 0. In this case,

P.0/ D
ˇ̌
ˇJb.0/C jKb.0/jei.2�LO� �

2 /
ˇ̌
ˇ
2

coth
� „�0

2kBTb

�

C
ˇ̌
ˇJc.0/C jKc.0/jei.2�LO� �

2 /
ˇ̌
ˇ
2

coth
� „�0

2kBTc

�
; (23.52)

where

Jb.0/ D
�2�2

0 C �21��22
4

�2�2
0 � �2

4

; (23.53)

Kb.0/ D �i��1�0

�2�2
0 � �2

4

; (23.54)

Jc.0/ D
�
2

p
�1�2

�2�2
0 � �2

4

; (23.55)

Kc.0/ D �i�
p
�1�2�0

�2�2
0 � �2

4

: (23.56)

Thus, the minimum of P.0/ (i.e., the maximum squeezing) is achieved when �LO is
chosen such that 2�LO � �

2
D �� , and is given by

P.0/min D
	
Jb.0/� jKb.0/j


2
coth

� „�0

2kBTb

�
C
	
Jc.0/ � jKc.0/j


2
coth

� „�0

2kBTc

�
:

(23.57)



23 Parametric Amplifier and Oscillator Based on Josephson Junction Circuitry 507

The noise temperature Tn referred to the input is given by

Tn D „�0

kB

ˇ̌
Jc.0/C jKc.0/jei.2�LO� �

2 /
ˇ̌2

ˇ̌
Jb.0/C jKb.0/jei.2�LO� �

2 /
ˇ̌2 coth

� „�0

2kBTc

�
; (23.58)

D „�0

kB

�1�2
ˇ̌
�
2

C ��0e
i.2�LO� �

2 /
ˇ̌2

ˇ̌
ˇ�2�2

0 C �21��22
4

C ��1�0e
i.2�LO� �

2 /
ˇ̌
ˇ
2

coth
� „�0

2kBTc

�
: (23.59)

When 2�LO � �
2

D 0 is satisfied (i.e., the maximum gain), this leads to

Tn D „�0

kB

�1�2

�
�
2

C ��0

�2

�
�2�2

0 C �21��22
4

C ��1�0

�2 coth
� „�0

2kBTc

�
: (23.60)

Alternatively, the noise number Nn is given by

Nn � kBTn

„�0

D
�1�2

�
�
2

C ��0

�2

�
�2�2

0 C �21��22
4

C ��1�0

�2 coth
� „�0

2kBTc

�
: (23.61)

In Fig. 23.4, we show the calculation of Nn as a function of both � and Qint

for a fixed Qext of 240. If we assume a Qint of 2200, for example, a Gd of 20 dB
(see Fig. 23.3) with a noise temperature below the SQL for the phase-insensitive
amplifier is expected at �=�c � 0:8.
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23.2.4 Parametric Oscillator

For a more comprehensive quantum-mechanical description of the resonator field,
we introduce the resonator transition operator given by smn D jmihnj, where jmi
and jni are the resonator Fock states. In this section, we consider the case where the
parametric modulation frequency is exactly double the resonant frequency of the
resonator (i.e., ˛ D 2). The Heisenberg equation for smn in a frame rotating at �0

[smn.t/e
i�0.n�m/t ! Smn.t/] is given by

d

dt
Smn D i

„ ŒH
0

sys; Smn�C
�

2
.2A�SmnA � SmnA�A � A�ASmn/

Cp
v�1ŒSmn;A

��Bin.t/ � p
v�1B

�
in.t/ŒSmn;A�

Cp
v�2ŒSmn;A

��Cin.t/ � p
v�2C

�
in.t/ŒSmn;A�: (23.62)

where the static system Hamiltonian H 0
sys is

H
0

sys=„ D ��0

2
.A2 C A�2/C 6
A�A�AA: (23.63)

Note that H 0
sys can be derived from Hsys (Eq. 23.9) in the rotating frame. We

consider the application of an external signal field, Es.r; t/ D E�
s ei�0.r=v�t/, from the

signal port. Then, we can rigorously claim the following equations: hBin.t/i D E�
s

and hCin.t/i D 0. Using these relations, hSmni evolves as

d

dt
hSmni D i�0�

2

�p
m.m � 1/hSm�2;ni C

p
.m C 1/.m C 2/hSmC2;ni

�
p

n.n � 1/hSm;n�2i �
p
.n C 1/.n C 2/hSm;nC2i

�

C6i
Œm.m � 1/� n.n � 1/�hSmni

C�

2

h
2
p
.m C 1/.n C 1/hSmC1;nC1i � .m C n/hSmni

i

Cp
�1Es

�p
nhSm;n�1i �

p
m C 1hSmC1;ni

�

�p
�1E

�
s

�p
n C 1hSm;nC1i �

p
mhSm�1;ni

�
; (23.64)

where we have used A�SmnA D
p
.m C 1/.n C 1/SmC1;nC1 and similar equalities.

Because hSmni D TrŒ�Smn� D �nm, Eq. 23.64 is equivalent to the following master
equation:

d�

dt
D � i

„ ŒHint; ��C
�

2
.2A�A� � A�A� � �A�A/; (23.65)
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where

Hint=„ D ��0

2
.A2 C A�2/C 6
A�A�AA C i

p
�1jEsj.ei�s A� � e�i�s A/; (23.66)

and Es D jEsje�i�s . By introducing the dimensionless time � D t�=2, Eq. 23.65
becomes

d�

d�
D �iŒH 0

int; ��C .2A�A� � A�A� � �A�A/: (23.67)

Here, the dimensionless Hamiltonian H 0
int is given by

H
0

int D Hint=.„�=2/ D 
 0A�A�AAC �

2�c
.A2CA�2/Ci

p
N.ei�s A��e�i�s A/; (23.68)

where 
 0 D 12
=�, �c D �=.2�0/, and
p

N D p
�1jEsj=.�=2/. Here, �c repre-

sents the modulation amplitude threshold required to induce parametric oscillation
(Eq. 23.38 with ˛ D 2), and N represents the mean photon number in the resonator.

Equation 23.67 can be solved numerically by expanding � on a number state
basis, i.e., � D

PN
m;nD0 �mnjmihnj. Using �, we can then calculate the time evolution

of, e.g., the resonator field hA C A�i D TrŒ�.A C A�/� or the Q function Q.z/ D
hzj�jzi=� , where jzi is a coherent state [28].

Figure 23.5 shows an example of the calculated Q function [39]. We assumed that
the resonator was in the ground state at � D 0. In the figure, two distribution peaks
can be seen. These peaks correspond to the two dynamical states of the parametric
oscillation, which were used in the parametron as a classical bit [25]. As shown
in the figure, the peaks have equal amplitudes, but are phase shifted by � , and are
called the 0�-state and the 1�-state. The figure thus shows that the probabilities of
these states depend on the phase of the external signal.
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Fig. 23.5 Q function at � D 20. The parameters used for the calculation were �0=2� D
10:5GHz, 
 D �2:3 � 105 Hz, Qext D 336, Qint D 5300, N D 0:10, �=�c D 1:29, and the
number of basis states was 80. �s is fixed at �=2 in (a), �=4 in (b), and ��=2 in (c)
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In Fig. 23.6a, the probability of obtaining the 0�-state is calculated as a function
of the signal phase �s for different magnitudes of N. As N increases, the modulation
amplitude also increases. When N D 1, the probability of the 0�-state is fully
modulated from zero to unity. Figure 23.6b shows the probability of the 0�-state
as a function of N at �s D 0:75� . The probability of the 0�-state decreases
monotonically as N increases, and vanishes when N & 1. This property indicates the
parametric oscillator’s capability to act as a sensitive phase detector. For example,
a signal that has been digitally modulated by binary phase-shift keying (BPSK) can
be reliably demodulated using this device as long as the signal is sufficiently intense
to satisfy N & 1.

Finally, Fig. 23.7 shows the calculated evolution of the resonator field with time.
The expectation value of ACA� is plotted as a function of the dimensionless time � .
The resonator field builds up because of parametric modulation above the threshold
�=�c > 1, and saturates after a certain time. As shown in the figure, the build-up
time depends on both � and N. The time becomes shorter as � and/or N increase, and
becomes comparable to the lifetime of a resonator photon (� D 1). This behavior is
consistent with that reported in the literature on the parametron [40]. This build-up
time, combined with the integration time required to extract the phase, determines
the bandwidth of the PPLO when it is acting as a phase detector [27].

23.3 Conclusions

We presented a quantum description of a parametrically-modulated nonlinear
resonator that is coupled to external ports. This is a model for both the flux-driven
Josephson parametric amplifier (JPA) and the Josephson parametric phase-locked
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oscillator (PPLO). Numerical calculations using practical device parameters show
that a flux-driven JPA with a noise temperature that is below the SQL is readily
achievable. Also, the Josephson PPLO will work as a sensitive binary phase detector
that can discriminate the phase of a weak microwave field, and can be used to
perform a high-fidelity single-shot readout of a superconducting qubit.

Superconducting parametric amplifiers have already been shown to be useful
tools for quantum information processing experiments in the microwave frequency
range. These amplifiers could also be indispensable for the realization of practical
quantum computers. One crucial issue in that respect is scalability, i.e., the number
of qubits that can be read out with a single parametric amplifier. Although the
multiplexed readout of five qubits has recently been demonstrated [41], further
improvements in terms of both bandwidth and dynamic range are needed. Traveling
wave parametric amplifiers using transmission lines with high nonlinear induc-
tances [42, 43] could be useful in this respect. Another important issue is the
integration of the parametric amplifier into the qubit chip to eliminate signal losses
during propagation between separate chips. The reflection-type parametric amplifier
necessitates the use of microwave components with directivity, such as a directional
coupler and a circulator to separate the incoming and outgoing signals, and this has
prevented on-chip integration of the parametric amplifier to date. Traveling wave
parametric amplifiers or coupled Josephson parametric converters [44] could, in
principle, solve this problem.
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Chapter 24

Superconductor-Diamond Hybrid Quantum

System

Kouichi Semba, Fumiki Yoshihara, Jan E.S. Johansson, Xiaobo Zhu,

Norikazu Mizuochi, William J. Munro, Shiro Saito, Kosuke Kakuyanagi,

and Yuichiro Matsuzaki

24.1 Introduction

The recent emergence of the superconducting artificial atom (a macroscopic quan-
tum system), has made research on light and matter at the single-photon interaction
level possible using only superconducting circuits [1]. The interaction between a
single microwave photon and a macroscopic superconducting artificial atom is huge,
and more than several orders of magnitude stronger than the interaction between a
natural atom and a photon. So, the high-Q cavity, which is an indispensable ingre-
dients of strong coupling experiments in cavity quantum electrodynamics (QED),
is not really necessary to achieve strong coupling [2]. Nevertheless, the strong
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non-linearity and low dissipative nature of a Josephson circuit makes quantum
non-demolition (QND) measurement possible [3–5]. Moreover, relevant physical
parameters, such as the energy level spacing of a single quantum system, can be
controlled in-situ by the combination of synchronized dc-pulses [6, 7]. Relevant
coherence properties, such as the power spectrum density of the electromagnetic
noise environment of a superconducting artificial atom, can also be studied over a
wide frequency range [8]. In addition to describing the strong coupling dynamics
of a superconducting artificial atom LC harmonic oscillator system [2], we have
also successfully performed a quantum memory type experiment in a hybrid
quantum system composed of a superconducting artificial atom and the electron
spin ensemble of nitrogen-vacancy color centers in diamond [9–11].

24.2 Superconducting Flux Qubit

Quantum bits (qubits) based on superconducting Josephson junctions are attracting
increasing attention because of their potential for use in quantum information
processing. In addition, they offer an ideal testing ground for studying fundamental
interactions between matter and light. A superconducting flux qubit is a supercon-
ductor loop that incorporates sub micrometer scale multiple (typically three or four)
Josephson junctions [12, 13]. According to the strict requirement that the order
parameter of the superconducting state is single valued, the fluxoid associated with
each hole in a multiply connected superconductor should be quantized so that it
is an integer multiple of the flux quantum (�0 D h

2e
� 2:07 � 10�15 Wb). Using

this property, we intentionally tune the magnetic field strength so that number of
magnetic fluxes through the loop is approximately half an odd integer multiple
of the flux quantum for example, 0:5�0. Then, a clockwise (counterclockwise)
supercurrent flows over the surface of the loop, that forms total fluxoid 0 (�0).
In general, a linear combination of these states will be the energy eigenstates of
the system, so we can use these energy eigenstates as a quantum two-level system
(qubit).

24.2.1 Superconducting Flux Qubit with Tunable Quantum

Level Spacing

A flux qubit is decoupled from low frequency flux noise at degeneracy point. It
achieves maximum coherence times exceeding 10�s compared with nanoseconds
at the off-degeneracy point, which is why this is the optimal operation point.
Implementing a quantum processor based on flux qubits requires operation at this
optimal point, especially when coupling to other quantum systems is required. We
aim to overcome these limitations by replacing the smallest junction of the flux
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Fig. 24.1 (a) A conventional flux qubit with three Josephson junctions. (b) A flux qubit with
tunable in-situ quantum level spacing

qubit with a low inductance direct current superconducting quantum interference
device (dc-SQUID) loop. Varying the magnetic flux through this loop is equivalent
to changing the critical current of the smallest junction, thus we succeeded in
making a flux qubit with in-situ tunability of the quantum level spacing during the
experiment [6, 7]. Using this tuning parameter we can control the coupling to an
arbitrary quantum system by tuning to or away from the resonant frequency while
operating at the optimal point.

Figure 24.1a shows a conventional flux qubit. In contrast, Fig. 24.1b shows a
flux qubit with a tunable quantum energy level spacing. Two identical junctions
with Josephson energy EJ in series with a symmetric dc-SQUID (shown as the ˛-
control loop in Fig. 24.1b) in which each junction has a Josephson energy of ˛0EJ

are enclosed in a superconducting loop. The effective Josephson energy of the dc-
SQUID is ˛EJ D 2˛0 cos.��˛

�0
/EJ, where �˛ is the flux through the dc-SQUID and

�0 is the flux quantum. The main loop is threaded by a flux �ex. The phase drop
caused by �˛ constitutes an effective magnetic flux �t D �ex C �˛

2
threading the

qubit. We operate the qubit at fluxes close to �t D �0.n C 1=2/, where n is an
integer. Near these flux bias points, the system can be regarded as a quantum two-
level system (qubit) with the Hamiltonian:

H D h

2
Œ".�t/�z C�.�˛/�x�; (24.1)

where " D 2Ip.�t ��0.n C 1=2// is the energy difference between the two different
classical persistent current states jLi and jRi induced by the external magnetic field,
Ip is the persistent current circulating in the qubit loop,�.�˛/ � 2� cos.��˛

�0
/ is the

transition energy between these two states, and �x and �z are the Pauli matrices. In
our design, we place two control lines adjacent to the qubit structure. The fluxes
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in the qubit loops are related to the control currents by the mutual inductances
between the respective lines. The mutual inductances of control line 1 to the dc-
SQUID loop and main loop are 85 fH and 64 fH, and those of control line 2 are
1 fH and 84 fH, respectively. In the experiment, first we pre-bias the effective qubit
flux �t close to the operating point .n C 1=2/�0 by using the external magnetic
coil. Applying current to the control lines tunes �t and �˛ in situ away from their
prebiased values. The coupling to the effective qubit loop induced by control line
1 can be compensated for by applying the corresponding current to control line 2,
thus giving full control over the two-dimensional parameter space. By combining
the synchronized dc current pulses, it is possible to control the qubit level spacing
without changing the qubit flux bias on a sub-ns time scale.

24.2.2 Coherence Property

A superconducting flux qubit is realized in superconducting electric circuits, and
is positioned in the middle of the surrounding circuit and on top of the substrate.
The qubit interacts with various degrees of freedom which decohere the qubit.
The transition frequency is described as !01 D

p
�2 C "2, where � is the tunnel

splitting between two states with opposite persistent current directions along the
qubit loop Ip, and „" D 2Ip�0n� is the energy bias between the two states.
Here, the flux bias is normalized by the superconducting flux quantum �0 as
n� D �ex=�0 � 0:5. We find @!01=@n� D 0 at n� = 0; this is the optimal flux
bias condition where dephasing due to n� fluctuations is minimal. The decoherence
time measured with the spin-echo method is T2echo D 23�s, which is about twice
as long as the energy relaxation time T1 D 12�s [14]. This result indicates that
pure dephasing measured with the spin-echo method is largely suppressed. On the
other hand, at n� ¤ 0, @!01=@n� ¤ 0 and n� fluctuations causes dephasing. To
understand and suppress the flux fluctuations mechanisms, it is important to identify
and characterize the dominant noise sources among the many possibilities.

The power spectral density (PSD) of flux fluctuations typically follows 1/f
frequency dependence with a spectral density of 1–10��0=

p
Hz at 1 Hz. The

accessible frequency range of the PSD was limited to approximately 10 MHz
in the spin-echo measurements and was extended to a few tens of megahertz
using Carr-Purcell-Meiboom-Gill pulse sequences [14]. The spectrum in a higher-
frequency range would provide further information for a better understanding of the
microscopic origin of the flux fluctuations.

The high-frequency flux noise spectrum in a superconducting flux qubit can be
inferred by studying the decay of Rabi oscillations under strong driving condi-
tions [8]. The Rabi frequency is proportional to the amplitude of the driving field for
weak to moderate driving at the qubit transition frequency, and Rabi frequencies in
the gigahertz range are also achieved. The fluctuations at the Rabi frequency cause
the Rabi oscillation to decay. We measured Rabi oscillations over a wide range of
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Fig. 24.2 Power spectrum density (PSD) of flux fluctuations, Sn� .!/, extracted from the Rabi
oscillation measurements. The PSDs obtained from the spin-echo and energy relaxation mea-
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2
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2 C !2w/, and the orange solid line is the sum

of the Lorentzian and the Johnson noise. Here the parameters are Sh D 3:6 � 10�19 rad�1 s and
!w=2� D 2:7 � 107 Hz (Reprinted with permission from Yoshihara et al. (2014). ©American

Physical Society)

Rabi frequencies (�R=2�) from 2:7MHz to 1:7GHz, and evaluated the PSD of the
flux fluctuations at each Rabi frequency.

The PSD of the flux fluctuations, Sn� .!/, evaluated from the Rabi oscillation
measurements is plotted in Fig. 24.2. PSDs from the spin-echo and energy relaxation
measurements, and the 1/f spectrum extrapolated from the free induction decay
(FID) measurements, Sn� .!/ D .3:2�10�6/2=!, are also plotted. Several points are
worth mentioning. (i) Sn� .!/ obtained from the spin-echo measurements is consis-
tent with that obtained from the Rabi-oscillation measurements. (ii) Sn� .!/ obtained
from the energy relaxation measurements is 2.5 times larger than expected for the
decay into a 50� microwave line coupled to the qubit by a mutual inductance of
1.2 pH and nominally cooled to 35 mK. (iii) There can be an additional decoherence
induced by strong driving. Therefore, it is not surprising to see the increased and
scattered Sn� .!/ from the Rabi oscillation measurements above 300 MHz. These
data points should be considered the upper limit of the noise. (iv) Sn� .!/ from the
Rabi oscillation measurements is roughly parallel to the 1=f spectrum extrapolated
from the FID measurements, but it is generally larger and has more structures. The
deviation is largest at 25 MHz, and the slope at approximately 100 MHz is steeper
than 1=f . (v) Sn� .!/ around 300 MHz is approximately 10�20 rad�1s, demonstrating
that the noise level is not very far from the extrapolation of the 1=f spectrum, even
at such high frequencies.
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24.2.3 Strong Coupling to a Quantum Harmonic Oscillator

As an example of strong coupling between superconducting quantum circuits, in
this section, we report the observation of vacuum Rabi oscillations in a macroscopic
superconducting solid-state system. In our strongly coupled system, the qubit state
and the qubit interaction time with the oscillator are controlled by a combination
of microwave and dc-shift pulses, resulting in a measuring sequence analogous to
atomic cavity quantum electrodynamics (QED). In our experiment, a superconduct-
ing qubit plays the role of the atom. A superconducting qubit is characterized with a
huge magnetic dipole moment produced by a circulating superconducting persistent
current (Ip � 0:35 �A), which is several orders of magnitude larger than that of
the natural atom. So, in order to achieve a strong coupling condition, and unlike
with atomic cavity QED, we do not have to use a high-Q microwave cavity. This is
noteworthy feature of a macroscopic superconducting artificial atom (qubit).

As shown in Fig. 24.3a–c, the qubit is spatially separated from the rest of the
circuitry. The qubit is enclosed by a superconducting quantum interference device
(SQUID) that is inductively coupled to the qubit (Fig. 24.3b). The switching current
of the SQUID is sensitive to the flux produced by the current in the qubit. The
qubit is also enclosed by a larger loop containing on-chip capacitors that provide
a well-defined electromagnetic environment for the SQUID and filtering of the
measurement leads. The lead inductance L and capacitance C in the outer loop
constitute an LC oscillator (see Fig. 24.3c) with resonance frequency !r D 1p

LC
.

We observed the LC resonance at �r D 4:35GHz. The LC oscillator is described
by a simple harmonic oscillator Hamiltonian: Hosc D „!r.a

�a C 1
2
/, where a�

(a) is the creation (annihilation) operator of the LC-mode (plasmon). The qubit is
coupled to the LC oscillator via the mutual inductance M, giving an interaction

Hamiltonian HI D h��z.a
� C a/, where the coupling constant is h� D MIp

q
„!r

2L
.

The total system is thus described by a Jaynes-Cummings type Hamiltonian H D
h
2
."�z C��x/C „!r.a

�a C 1
2
/C h��z.a

� C a/. We denote the state of the system
by jQ; ii with the qubit either in the ground (Q D g) or excited (Q D e) state, and
the oscillator in the Fock state (i D 0; 1; 2; : : : : ). The parameters of the system can
readily be engineered during fabrication; � is determined by ˛ and the junction !r

by L and C, and � can be tuned by M.
We investigated the dynamics of the coupled system in the time domain. We

performed a measurement cycle. We first excited the qubit and then brought the
qubit and the LC oscillator into resonance where the exchange of a single energy
quantum between the qubit and LC oscillator manifests itself as a vacuum Rabi
oscillation je; 0i • jg; 1i (see Fig. 24.3). Figure 24.3f is a schematic of the pulse
sequence. We start by fixing the qubit operating point far from the resonance point
(point 3 in Fig. 24.3f) and prepare the qubit in the excited state by employing
a � pulse. The � pulse is followed by a shift pulse, which brings the qubit
into resonance with the LC oscillator. After the shift pulse the qubit and the LC
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Fig. 24.3 (a) scanning electron micrograph of the sample. The square plates at the top of the
picture are the top plates of the onchip capacitors separated by an insulator from the large bottom
plate. (b) A close up of the qubit and the SQUID. (c) Equivalent circuit of the sample. The
Josephson junctions are indicated by crosses: three in the inner qubit loop and two in the SQUID.
The LC mode is indicated by the dashed line. The inductance and capacitances are calculated from
the geometry to be L D 140 pH and C D 10 pF, and the qubit LC oscillator mutual inductance to
be M D 5:7 pH. (d) Vacuum Rabi oscillations (symbols) and a numerical fit (solid line). (e) The
few lowest unperturbed and dressed energy levels when the system is in resonance. (f) The qubit
energy level diagram and pulse sequence for the vacuum Rabi measurements. The � pulse (4.6 ns
long) on the qubit brings the system from state 1 to 2 and the shift pulse changes the flux in the
qubit by �shift, which, in turn, changes the operating point from 2 to 3 where the system undergoes
free evolution between je; 0i and jg; 1i at the vacuum Rabi frequency �R, until the shift pulse ends
and the system returns to the initial operating point where the state is measured to be either in 2 or
4 (Reprinted with permission from Johansson et al. (2006). ©American Physical Society.)

oscillator are returned to off-resonance and the measurement pulse is employed
to detect the state of the qubit. The rise time of our shift pulse, �rise D 0:8 ns, is
adiabatic with respect to both the qubit and the oscillator, �rise > 1=E, 2�=!r, but
nonadiabatic with respect to the coupling of the two systems, �rise < 1=�. Hence,
when the system reaches the resonant point, it is in the state je; 0i, which is not an
eigenstate of the total Hamiltonian and therefore free evolution between the states
je; 0i and jg; 1i begins. The physics behind the vacuum Rabi oscillations is thus
different from that of normal Rabi oscillations where the system is driven by an
external classical field and oscillates between two energy eigenstates. Also, with
normal Rabi oscillations the Rabi frequency is determined by the drive amplitude,
whereas the vacuum Rabi oscillation frequency is determined solely by the intrinsic
parameters of the system. The vacuum Rabi frequency obtained from the fits varies
between 137 and 147 MHz, which is within the accuracy of the fitting (solid line in
Fig. 24.3d).
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24.2.4 Readout and Measurement Based Control via

Josephson Bifurcation Amplifier

To realize quantum computation using superconducting qubits, we have to avoid
quantum information loss caused by decoherence. A quantum error correction
technique is a method we can employ to avoid quantum information loss. As regards
quantum error collections, we should measure an ancillary qubit, and perform gate
operations depending on the measurement result. So a qubit for quantum computing
needs good controllability and a fast accurate readout method. The Hamiltonian of
a superconducting qubit can be approximately described as a quantum two-level
system: H D h

2
."�z C��x/. We can control the " value by applying an external

magnetic field. By establishing magnetic coupling between a resonant microwave
and a qubit, we can control the transition of the qubit. The jLi and jRi states
are eigenstates of �z. These states correspond to the clockwise and anticlockwise
supercurrent states on a superconducting loop. The supercurrent generates a small
magnetic field, and we can measure the qubit state by detecting this magnetic field.
In our experiments, we usually use a superconducting quantum interference device
(SQUID) as a small magnetic field detector. The critical current of a SQUID depends
on the magnetic field. A voltage will be induced, if the bias current exceeds the
critical current. So by applying the optimum bias current, we can obtain information
about the magnetic field by detecting the switching voltage of a SQUID. This
method allows us to read a qubit state easily, but the measurement destroys the
qubit state because the voltage state of a Josephson junction generates many quasi-
particles. We cannot detect the qubit state until the quasi-particles disappear, so it is
difficult to perform the fast readout needed for quantum error correction.

However, we can solve these problems by using another readout method,
which employs the non-linearity of the superconducting circuit. A Josephson
junction works as a non-linear inductor, and so the resonator, which includes a
Josephson junction, also exhibits non-linearity. The resonance frequency of this
non-linear resonator depends on the driving current. Specifically, when we apply
a characteristic driving current to a non-linear resonator, a bistable state appears.
The realization of coupling between a superconducting qubit and a superconducting
non-linear resonator, allow us to choose the optimum driving condition where
the convergent resonator states reflect the coupled qubit state. When we apply an
optimum driving microwave, the resonance state bifurcates to one of the bistable
states depending on the coupled qubit state. With this readout method we can
measure a qubit state without quasi-particles appearing. This method is called
Josephson bifurcation amplifier (JBA) readout, and known to be capable of quantum
non-demolition (QND) measurement [3]. In principle this JBA readout method can
perform QND measurements not only on superconducting qubits but also on spin
ensemble systems. It is therefore a promising readout method for various types of
quantum information processing.

We fabricated a co-planar waveguide resonator including a SQUID structure
that exhibits non-linearity (Fig. 24.4). A measured superconducting flux qubit is
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magnetically coupled to the SQUID. We input two pulses into a readout line, and
then succeeded in reading out the qubit state, which was projected by the first
pulse [4]. QND measurement has also been performed in superconducting qubit
JBA readout systems [5]. This fast and low backaction readout method makes it
possible to realize qubit state control depending on the readout result (measurement
based control). This measurement-based control is the first step towards quantum
error correction. The system has the characteristics required for a physical quantum
computation system.

24.3 Single Spin, Photon and Charge Manipulation of NV

Center in Diamond

24.3.1 NV Center in Diamond

Recently, nitrogen-vacancy (NV) defect centers in diamond (Fig. 24.5a) have
attracted significant attention [15]. The NV center is a joint defect in the carbon
lattice of diamond, which consists of a substitutional nitrogen atom and an adjacent
vacancy. Its spin triplet (S D 1) ground state can be polarized and read out
optically (Fig. 24.5b), so that electron-spin resonance experiments can be performed
on a single spin under ambient conditions. A lot of important research has been
carried out on the manipulation of single electron and nuclear spin. NV centers
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Fig. 24.5 (a) Atomic structure of NV center. (b) Energy levels of ground and excited states of the
NV center

are thus promising candidates as solid-state room-temperature quantum bits and as
quantum sensors with various applications in quantum information, magnetometry
and biosensing.

The properties of the NV center make it an excellent candidate to play the role
of a quantum interface. One important example of such a property is the quantum
coupling between the flux qubit and the spin of the NV center [9]. Another example
is the generation of entanglement between the spin and a photon [16]. In these
studies, spin is expected to be used for quantum memory and processing. In the
next section, we introduce the spin property of the NV center. In addition to those,
we expect a role of quantum interface by using charge, which is very important from
a viewpoint of electrical control of qubit. In Sect. 24.3.3, we will show the recent
research about it.

24.3.2 Spin Coherence Time of NV Center

In the last decade, the coherence time T2 of NV centers has been significantly
increased [15]. In 2009, T2 for a single NV center was reported to be 0.65 ms, which
is, to the best of our knowledge, the longest room-temperature T2 for a diamond
with a natural abundance of 13C (1.1 %) [17]. This extension of T2 is attributed
to the removal of nitrogen, and other impurities and defects by development of
chemical vapour deposition (CVD). Given that T2 D 0:65ms is the longest
coherence time available for high-quality diamond in which the impurities and
defects have been removed, the next question becomes: what is the dominant
mechanism that determines T2 in this diamond. We will see how T2 depends on
the 13C concentration [17, 18].

We analyzed T2 for a diamond made by CVD and for a diamond with a 13C
concentration of 0.3 %. The T2 of the electron spin was measured using two-pulse
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Fig. 24.6 Echo decays of electron spin in (a) 20.7 %, (b) 8.4 %, and (c) 1.1 % 13C diamond. The
microwave pulse sequence is �=2-� -�-� -�=2 where � is the interpulse delay. Red lines are fits
to exp(-(t/T2)3). (d) T2 as a function of 13C concentration n. The solid line is fitted with a 1/n
dependence. (e) Inhomogeneous linewidth as a function of 13C concentration

Hahn echo decay curves (see Fig. 24.6). The diamond with a 13C concentration of
0.3 % was found to have an even longer T2 of 1.8 ms [17, 18]. This is the longest
T2 at room temperature measured using a two-pulse Hahn echo technique. It is
noteworthy that extension of T2 to more than 2 ms (T2 > 2ms) has been reported in
cases where measurement was instead performed using the dynamical decoupling
technique [19]. T2 is found to be inversely proportional to 13C concentration, as
shown in Fig. 24.6a–d. This benchmark may allow the observation of coherent
coupling between spins separated by a few tens of nanometres. Single electron spins
in the same isotopically engineered CVD diamond have been used to detect external
magnetic fields with a sensitivity reaching 4 nT/

p
Hz and with sub-nanometer

spatial resolution [18]. It should be noted that the longest T2 at room temperature is
limited by T1 of electron spin (�6 ms) [20]. By decreasing temperature, T1 can be
extended, so T2 D 0:6 s at 77 K for electron spin is reported [21].

The T2 for nuclear spin is potentially much longer than that for electron spin.
However, T2 for nuclear spin states is measured to be approximately 6 ms because
it is limited by T1 for electron spin (�6 ms) [22]. Recently, T2 for nuclear spin was
significantly extended to over 1 s by decoupling the single nuclear spin from its
local environment [23]. In the experiments, the decoupling was performed using
irradiation by a high-powered laser (532 nm, >10 mW). The report shows that the
decoupling is caused by rapid ionization and deionization, the rate of which is
proportional to the laser’s intensity.

In addition to T2, it is also important to elucidate upon T�
2 as a spin coherence

property of the NV center. We measured T�
2 , the inhomogeneous electron spin

resonance linewidth, and investigated a static interaction between the single NV
electron spin and the environment for different 13C concentrations. It was observed
that with decreasing 13C concentration, T�

2 increased, the linewidth narrowed as
shown in Fig. 24.2e. In diamond with 0.03 % 13C, an extremely long T�

2 of 30�s
was found. In the region of high 13C concentration (>1.1 %), the linewidth of
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electron spin appeared to be dominated by the hyperfine coupling of Fermi-contact
interaction in 13C. At low 13C concentration, the linewidth appeared to be dominated
by dipole-dipole interactions. Recently, T�

2 of more than 30�s was reported in
diamond with a natural abundance of 13C [24], and one of more than 470�s was
reported in 12C-enriched diamond [23]. Both measurements were taken under �-
metal shielded environments. The 12C concentration of the latter sample is reported
to be 99.99 % [23]. In Ref. [24], it was reported that T�

2 of NV centers depends upon
the axial component of the magnetic field. T�

2 clearly attained a maximum when the
applied axial magnetic field was reduced to zero.

24.3.3 Electrical Control of Single Photon Emission

and Charge State in Single NV Center

Recently, significant progress in realizing highly efficient nonclassical light sources
has been seen in semiconductor quantum dots. However, a major obstacle in semi-
conductor structures so far has been the cryogenic temperatures due to necessary to
confine the carriers within the dots. Recently, we realized a stable room temperature
electrically driven single-photon source based on the single NV center in diamond.

Diamonds were doped with large amounts of boron (B) and phosphorous (P) to
create semiconducting properties. However, these implantations also caused color
centers. Therefore, an extremely high quality undoped region (i-layer), in which
the concentration of color centers was reduced to substantially less than 0.1 ppb
(1013/cm3), was introduced into the structure, resulting in a p-i-n diamond diode, as
shown in Fig. 24.7a. The NV centers were measured in the i-layer close to the edge
of mesa structures. A homebuilt confocal microscope was used to address single
defect centers. All experiments were conducted under ambient conditions. After
the injection of current, electroluminescence (EL) was observed. The value of auto-
correlation function at � D 0 .g.2/.0//was estimated to be 0.45, which confirms that
the photon originated from single NV centers. From the EL spectrum, the charge
was indicated to be in the neutral state (NV0) [20].

Remarkably, the generation of EL follows fundamentally different kinetics than
photoluminescence (PL) with intra-bandgap excitation. This fact, our analysis of
dynamics, and the theoretical calculation suggest that EL is generated by electron-
hole recombination at the defect [20]. Our results indicate that defects in diamond
semiconductors can be used as stable room temperature electrically driven single-
photon sources that are crucial for large-scale applications in quantum information
technology.

In this research [20], we observed changes of charge state in PL spectra by inject-
ing current in the p-i-n diode. Recently, it was reported that stochastic transitions
between negatively charged NV (NV�) and NV0 are induced by laser illumina-
tion, surface termination, and combined optical and electrical operation. Fast and
deterministic charge state control of single NV centers is essential for quantum
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Fig. 24.7 Device structure and single-shot readout measurement of the charge states. (a)
Schematic diagram of the single-photon-emitting diamond diode. (b) Time trace of the fluores-
cence of a single NV under continuous illumination with 593 nm, 1�W laser light, showing the
abrupt jumps between the two distinct states: high (NV�) and low count rates (NV0). (c) Histogram
of photon counts during the 593 nm measurement pulse after illuminating the NV with 532 nm,
100�W laser light for 20 ms. Two solid black carves are obtained by curve fitting of the Poisson
distribution. The red solid curve is their sum. (d) Histogram of photon counts for the 593 nm
measurement pulse, after illuminating the NV with a 532 nm laser and injecting a 0.1 mA current.
The waiting time between the injected current and detection laser pulse (593 nm) is set at 10 ms

applications: for example, charge state stabilization improves qubit initialization and
readout. Furthermore, stochastic charge state changes lead to spectral diffusion of
the NV� zero-phonon line, which is detrimental to the efficiency of two-photon
quantum interference and related quantum communication applications. Stochastic,
optically induced charge state switching using a high laser power (�5 MW/cm2)
can be exploited to decouple nuclear spins from the NV electron spin, yielding very
long nuclear spin coherence times (T2 > 1 s) in diamond at room temperature [23].
Potentially, the T2 of the nuclear spin could be longer than 1 h; however, high-power
laser illumination heats the diamond surface, which reduces T2 [23]. In contrast,
the electrical change in the charge state occurs in a single step, such as the capture
or release of a carrier, which is important for control efficiency, heat suppression,
and fast operation speeds (tens of MHz–GHz). Furthermore, electrical controls of
carriers and charge of qubit are important for scalable and integrated devices, which
are well investigated in quantum dot systems.
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Recently, progress on the combined optical and electrical manipulation of charge
states between NV0 and possibly NVC of a single NV center and between NV�

and NV0 of an NV ensemble has been reported. Grotz et al. reported the use of
a diamond solution-gated field-effect transistor with a hydrogen-terminated p-type
surface for the electrical manipulation of single NV centers [25]. Simultaneously, a
532 nm laser irradiation was applied, which causes fluorescence and prevents charge
state identification. However, it was obvious that the laser application actually
induced severe stochastic and ongoing charge state switching between NV� and
NV0. Furthermore, this switching can lead to NV0 fluorescence when NV� is the
stable charge state in the dark or vice versa. Consequently, extrapolating about
the action of a purely electrical control is hardly possible because the displayed
fluorescence spectra and concluded charge states are properties of a dynamic steady
state under illumination and electrical control.

The charge state dynamics of the single NV center were investigated using
time-resolved measurements and nondestructive single-shot readouts of the charge
state [26]. In this measurement, illumination by a low-power 593 nm laser (�1�W)
allows the direct and nondestructive observation of the NV charge state. The
fluorescence time trace of the single NV under such continuous illumination
is shown in Fig. 24.7b. Abrupt varies between high and low count rates (NV�

and NV0, respectively) are observed. By appropriately choosing both the power
and the duration of the single laser pulse (593 nm), the number of fluorescence
photons in this pulse allows the single-shot determination of the charge state. The
histogram of the measurements shows two Poisson distributions corresponding
to the fluorescence of NV0 and NV�. We repeated the single-shot charge state
measurements 2,000 times to obtain each histogram shown in Fig. 24.7c–d.

After the laser was switched off, the charge state was measured using the 593 nm
laser pulse. The obtained population ratio was peqNV� W peqNV0 D 0:514 W 0:486 as
shown in Fig. 24.7c. We investigated the NV charge state after the application of the
bare current injection (i.e., in the dark without simultaneous 532 nm illumination).
The Poisson distribution peak of NV� completely disappeared after the 0.1 mA
current was injected (Fig. 24.7d), showings the deterministic electrical charge state
control in the dark. We obtained the same results in the current range from
0.1 to 0.4 mA. Figures 24.7d shows nearly 100 % fidelity for the charge state
initialization [26].

Furthermore, fast charge state switching rates (from negative to neutrally charged
defects), greater than 0.72 ˙ 0.10�s�1, were realized. In the non-operative mode,
the realized charge states were stable for presumably much more than 0.45 s [26].
We believe that the results obtained are useful not only for ultrafast electrical control
of qubits, long T2 quantum memory, and quantum sensors associated with single
NV centers but also for classical memory devices based on single atomic storage
bits working under ambient conditions.
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24.4 Superconducting Flux Qubit NV Center in a Diamond

Hybrid Quantum System

During the past decade, research into superconducting quantum bits (qubits) based
on Josephson junctions has made rapid progress. Many foundational experiments
have been performed, and superconducting qubits are now considered one of
the most promising systems for quantum information processing. However, the
experimentally reported coherence times are likely to be insufficient for future
large-scale quantum computation. A natural solution to this problem is a dedicated
engineered quantum memory based on atomic and molecular systems. The question
of whether coherent quantum coupling is possible between such natural systems
and a single macroscopic artificial atom has attracted considerable attention since
the first demonstration of macroscopic quantum coherence in Josephson junction
circuits. In this subsection, we report evidence of coherent strong coupling between
a single macroscopic superconducting artificial atom (a flux qubit) and an ensemble
of electron spins in the form of nitrogen-vacancy color centers in diamond[9].
Furthermore, we have observed the coherent exchange of a single quantum of energy
between a flux qubit and a macroscopic ensemble consisting of about 3�107 such
color centers.

With the early successes of single-atom quantum state manipulation, research
in quantum information processing with atomic systems has largely progressed
independently from that using solid-state systems. In recent years, considerable
effort has been devoted to coupling atomic and molecular systems to solid-state
qubits to form hybrid quantum devices. Hybrid devices involving the integration of
an ensemble of atomic spin systems with a transmission line resonator have been
realized. Such schemes have the potential to couple superconducting solid-state
qubits to optical fields via atomic systems, thus allowing quantum media conversion.
The coupling strength, g, of an individual atomic system to one electromagnetic
mode in a resonator circuit is usually too small for the coherent exchange of
quantum information. However, the coupling strength of an ensemble of N such
atomic systems will be enhanced by a factor of

p
N, making it possible to reach

the strong-coupling regime (g
p

N � � and g
p

N � 
 , where � and 
 are
the respective damping rates of the resonator circuit and the atomic system). Of
the many possible hybrid systems, coupling a flux qubit to a nitrogen-vacancy
color center (NV� center) in diamond is particularly appealing. First, the magnetic
coupling strength between a flux qubit and a single NV� center can be three orders
of magnitude larger than that between a superconducting transmission line resonator
and an NV� center [27]. Second, the ground state of a NV� center is a triplet (S D 1)
owing to its C3V symmetry (Fig. 24.5a). The S D 1 statejms D 0i is separated by
2.88 GHz from the excited states jms D ˙1i under zero magnetic field (Fig. 24.5b).
This energy separation is ideal in terms of allowing a quantum-level-tunable flux
qubit to be brought into and out of resonance with it.
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24.4.1 Preparation of NV Center in Diamond

A sample of diamond containing NV� centers was prepared by the ion implantation
of 12C2C at 700 keV in a high vacuum into single-crystal, type-1b diamond synthe-
sized under high pressure and at high temperature (HPHT) and with a (001) surface
orientation. The 12C2C ions, implanted with a surface density of 3�1013 cm�2, were
stopped at a depth of about 600 nm. This generated vacancies with a concentration
of about 5 � 1018 cm�3 over a depth of �0.7�m. After implantation, the crystals
were annealed at 900 ıC in a vacuum for 3 � 10 h. This high-dose carbon
implantation method enhances the NV� center yield. Photoluminescence optical
spectroscopy established that NV� centers were generated with a concentration of
� 1:1 � 1018 cm�3 over a depth of 1�m [9].

24.4.2 Coherent Coupling Between Flux Qubit and NV Spin

Ensemble

The total Hamiltonian of the coupled system is

H D h

2
.��x C ��z/C h

X

i

.DS2z;i C E.S2x;i � S2y;i//C h

2

X

i

gi�zSx;i; (24.2)

where i runs over the NV� centers that couple to the flux qubit. The corresponding
coupling constant can be estimated using the Biot-Savart law as gi � 8:8 kHz [9].
In this set-up, the jms D ˙1i states of the electronic spin are nearly degenerate so
our flux qubit couples to the j0i $ 1p

2
Œj � 1i C j C 1i� transition.

From the spectroscopic measurements, a clear anticrossing was observed
(Fig. 24.8b) near the degeneracy point of the flux qubit, whereas no such gap
was observed in the same flux qubit before mounting the NV-diamond crystal
(Fig. 24.3a, inset). We also note a narrow resonance, with a width of less than
1 MHz, at 2.878 GHz near this anticrossing. This resonance is evidence of a
collective dark state in the NV�-ensemble [11]. In Sect. 24.4.4, we will focus
on this dark state in detail. From the high-resolution spectrum, a vacuum Rabi
splitting near 2gens ' 70 MHz was clearly observed, confirming strong coupling
(two broad resonance peaks are present in the cross-sectional view) between the flux
qubit and the NV�-ensemble. The ensemble can be seen as an effective harmonic
oscillator strongly coupled to the flux qubit. Next, from the measured vacuum
Rabi splitting and our calculated gi, we estimate the number of NV� centers in the
coupled ensemble to be N � g2ens=2g2 � 3:2 � 107, where the factor of 2 in the
denominator is due to the twofold degeneracy of the excited states j ˙ 1 >i of an
NV� center. This estimate gives reasonable agreement with the density of NV�

centers measured by using photoluminescence spectroscopy for the whole sample
(1:1 � 1018 cm�3) multiplied by the volume of centers coupling to the flux qubit
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Fig. 24.8 Experimental set-up of an NV diamond sample attached to a flux qubit system. (a)
Diamond crystal glued on top of a flux qubit (red box). (b) Energy spectrum of a flux qubit coupled
to an NV-ensemble. Resonant frequencies indicated by the SQUID detector switching probability
(when a 500-ns microwave pulse excites the system before the read-out pulse) versus the external
magnetic flux, �ex D �m C �˛=2, where �m and �˛ are the fluxes through the qubit main loop and
the qubit a-loop, respectively. Inset, spectrum over the same region before the diamond crystal was
mounted
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Fig. 24.9 (a) Vacuum Rabi oscillations of the flux qubit/NV� ensemble coupled system. (b)
measurement sequence

(40�m2 (area) � 0.7�m (effective thickness)). This spectroscopy approach gives
the number of coupled centers as � 3 � 107.

Next we investigated the dynamics of our system in the time domain, using
a measurement cycle similar to that used in systems of qubits coupled with LC
(inductor-capacitor) resonators (Fig. 24.9b). We first excited the flux qubit and then
brought it into resonance with the NV�-ensemble. Single-energy quantum exchange
between the flux qubit and the NV�-ensemble at resonance manifests itself as
the vacuum Rabi oscillations j1iqbj0iens • j0iqbj1iens where j0iqb and j1iqb are
respectively the ground and excited states of the qubit; j0iens D j00� � �0i is the
ground state of the ensemble, with each individual NV� center in the state jms D 0i;
and j1iens is the Dicke state of the spin ensemble with one excitation, written as
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j1iens D . 1p
N
/
P

i SC;ij00 � � �0i:Here the operator SC;i D . 1p
2
/.j1iih0jiCj�1iih0ji/

excites the ith NV� spin into a superposition of states j1i and j � 1i. Figure 24.9a
shows vacuum Rabi oscillations between the flux qubit and the ensemble of
electronic spins at the 2.878-GHz resonance. However, the decay time of the
oscillations is approximately 20 ns. This is much shorter than the relaxation times
of both the flux qubit (T1;qb < 150 ns) and the NV�-ensemble (T1;NV � 10�s). We
cannot improve the vacuum Rabi decay time even by tuning the qubit degeneracy
point closer to the NV� resonance frequency. As we tune the flux qubit away from
the 2.878-GHz resonance, by changing �m, the coherence time associated with this
measurement scheme becomes considerably longer. From these results, we conclude
that there is a strong source of dephasing of unknown origin in the system near
resonance.

24.4.3 Quantum Memory Operations in the Hybrid Quantum

System

In the previous section we showed how vacuum Rabi oscillations could be exper-
imentally realized in a hybrid quantum system [9]. However, we could not store
quantum information in the NV center ensemble at that stage as its coherence time
was too short. The origin of this decoherence was primarily the inhomogeneous
broadening of the centers stemming from internal magnetic field fluctuation and
strain distribution in the diamond crystal. To reduce the former effect, we prepared
a diamond with a lower NV center concentration of 4:7 � 1017 cm�3, which
reduces the dipole interaction between electron spins, NV centers and P1 centers
(substitutional nitrogen defect atoms). To further reduce the latter effect, we then
applied an in-plane magnetic field of 2.6 mT along the [100] crystal axis of the
diamond. This magnetic field lifts the degeneracy between the jms D ˙1i energy
levels, causing a Zeeman splitting of approximately 80 MHz. Under this condition,
the Zeeman term of the NV spin becomes dominant and the strain effect is greatly
reduced.

Given that our flux qubit can only couple to one transition at a time (j0i $
j C 1i C j � 1i for instance when there is no applied magnetic field), the splitting
of the NV spin ensemble into two by the magnetic field therefore reduces the
collective coupling strength by a factor of 1=

p
2, but a longer coherence time would

be expected. To utilize one of the two new ensemble transitions (j0i $ j C 1i or
j0i $ j�1i) for our quantum memory operations we tuned our qubit gap frequency
�=2� to 2.92 GHz corresponding to the NV center transition between j0i and jC1i.
We have observed a clear vacuum Rabi splitting of 18 MHz in the spectrum of the
hybrid system (not shown) confirming strong coupling between the flux qubit and
the NV ensemble. The possibility now exists of storing quantum information in the
ensemble.
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Fig. 24.10 Quantum memory operations for (a) a single excitation and (b) an equal superposition
state. The upper panels represent the pulse sequences for the memory operations

The first step in demonstrating the memory capabilities of NV centers is the
storage of a single quantum excitation in a spin ensemble (memory). The pulse
sequence, depicted in the upper panel of Fig. 24.10a, shows how to transfer the
qubit excited state j1iqbj0iens to the memory j0iqbj1iens, store it there for a time �
and then retrieve it. Here j0iens is the ground state of the ensemble while j1iens is
a single excitation spread collectively over all the electron spins in the ensemble.
This is a very similar pulse sequence to the one we used to observe the vacuum
Rabi oscillations in the previous section. The main difference is that we replace
the shift pulse inducing the oscillation with two iSWAP pulses separated by time
� . The length of the iSWAP pulse is half that of the vacuum Rabi period. We can
thus use this pulse sequence to transfer a single excitation from the qubit to the
ensemble memory, store it for a time and later retrieve it. Figure 24.10a shows the
switching probability (proportional to the population in the qubit excited state) as
a function of the storage time � [10]. We observed the expected monotonic decay
curve, which means that the information was successfully stored in the memory
independently of the qubit. The memory time of this excitation was estimated to be
T�

1ens D 20:8˙ 0:7 ns by fitting a simple exponential to this curve.
The next essential step is to demonstrate the storage of phase information for a

quantum state. For this purpose, first we prepare our flux qubit in the superposition
state .1=

p
2/.j0iqb C j1iqb/j0iens by applying a �/2 pulse to the qubit (the upper

panel in the Fig. 24.10b). Then we perform the memory operation as described
above. We next employ a �/2 pulse to transfer the phase information of the qubit
superposition state to the population information. Finally, the qubit excited state
population is read out. Such a sequence corresponds to a Ramsey fringe experiment
for the spin ensemble and enables us to estimate the memory time of the phase
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information T�
2ens. The fitting of an exponential decaying sinusoid to the data in

Fig. 24.10b yields T�
2ens D 33:6˙ 2:3 ns [10] (similar to [28]).

Although the memory times are shorter than the flux qubit coherence time of
150 ns, these results demonstrate convincingly that we can store population and
phase information, namely an arbitrary quantum state, in the spin ensemble. This
is a significant step towards the realization of a long-lived quantum memory for
superconducting flux qubits.

24.4.4 Observation of a Dark State with a Hybrid System

Consisting of a Superconducting Flux Qubit

and an Electron Spin Ensemble in Diamond

Although we have demonstrated quantum memory operations in our superconductor
diamond hybrid system, the quantum memory lifetime was very short, at around
20 ns [10]. This is shorter than that of a flux qubit at 150 ns. For practical quantum
information processing applications, the lifetime of the quantum memory must
be increased by at least several orders of magnitude. Our previously reported
experiments were limited by randomized magnetic fields from the spin bath of the
substituted nitrogen atom (P1 center). This can of course be further suppressed if
we use single crystal diamond with a lower P1 center density [9, 10, 29]. However,
reducing the P1 center density has a significant drawback since it also reduces
the number of NV centers in the diamond and so reduces the collective coupling
strength between the flux qubit and the ensemble. The coupling strength could be
maintained in two ways, either by reducing the distance between the flux qubit
and the ensemble or by increasing the persistent current of the flux qubit. Both
approaches are challenging and so it is natural to look for alternative ways of
improving the lifetime of the NV center ensemble.

Interestingly, a narrow resonance of unknown origin was observed in the first
spectroscopy experiments with a superconductor diamond hybrid system under zero
external magnetic field [9, 29]. The line-width of this peak was much smaller than
that of the states that we used for quantum memory operation [10]. Given that a
narrow resonance implies a long lifetime, the state associated with this resonance
could be an attractive candidate for a quantum memory. However, the origin of such
a peak was not investigated during the first experiments. If it is to be a candidate
for a longer-lived quantum memory, it is essential to understand the origin of such
a state.

We have investigated this sharp resonance both experimentally and theoretically
[11] to understand its nature. A theoretical model [11] was developed to reproduce
the experimental spectroscopy results of coupling the flux qubit to an ensemble
containing �107 NV centers including the effects of the inhomogeneous broadening
of the NV centers caused by randomized magnetic fields, strain distributions in the
diamond crystal, and fluctuations of the zero-field splitting (models for the earlier
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in the middle of the vacuum Rabi splitting

experiments did not include all these effects [27, 29–33]). In Fig. 24.11, we show
the experimentally obtained spectroscopy results and the results obtained with our
theoretical model. The results were in excellent agreement.

We have shown how the sharp resonance observed in the middle of the vacuum
Rabi splitting is strong evidence of a collective dark state [11]. Since the NV centers
have a spin 1 structure, both a bright state and dark state naturally exist. As there is
significant hybridization between the flux qubit and the bright state via the collective
enhancement, the flux qubit cannot be directly coupled with the dark state of the NV
center due to the destructive interference of the phase of the dark state. However,
owing to the perturbations caused by the environmental magnetic field and the
diamond strain, the destructive interference of the dark state is weakened and a non-
negligible coupling with the flux qubit can occur. Such a coupling provides us with
a detectable resonance from the dark state in the spectroscopy results. The lifetime
of this dark state is estimated from the width of the peak at around 150 ns, which is
much larger than that of the bright state (20 ns). This clearly shows the robustness
of the dark states against inhomogeneous broadening. Therefore, our results have
opened a possible new way of realizing a long-lived quantum memory for hybrid
system based quantum information processing.

24.5 Conclusions

The twentieth century saw the discovery of quantum mechanics, a set of principles
describing physical reality at the atomic level of matter. These principles have been
used to develop much of today’s advanced technology, including, for example,
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microprocessors. Quantum physics also allows a new paradigm for the processing of
information known as quantum information processing. Over the last decade there
has been a huge worldwide effort to develop and explore quantum information based
devices and technologies. Devices for quantum key distribution (1-bit devices) are
already commercially available. The challenge is now to design and build larger
scale devices. No single approach seems to be able to address all the problems.
The development of electronic technologies based on the principles of quantum
mechanics, such as quantum computing, requires the coupling and integration of
quantum objects of various kinds on the same electronic chip, namely a hybrid
approach[34]. For such integration to succeed, each object needs to be among the
best in its class.

The hybrid system approach is very powerful, as shown by our previous
demonstration of coherent coupling between a superconducting qubit and NV
centers in diamond [9–11]. Superconducting flux (or persistent current) qubits are
an excellent choice among superconducting qubits. This is because their magnetic
flux produced by the current circulating in the loop, couples directly to quantum
magnets (atomic spins) that either exist in crystals or are artificially induced in them.
Superconducting qubits are excellent devices for the fast processing of information
but they have short coherences times. NV centers on the other hand have long
coherence times but it is difficult to make them interact with one another [17, 22, 23].
This hybrid combination thus has the potential to provide a device, that can process
information rapidly but also store it for a long time.

Furthermore, NV centers have an optical transition that could allow us to
bridge the microwave and optical worlds. This opens up new fields of science and
technology. We could use optical fields to indirectly control our flux qubits and even
read them out. Alternatively, we could take information stored in the microwave
regime, convert it to optical information, and transmit it to remote locations (some
that would be totally impossible if one stays in the microwave regime). The potential
here is enormous and ground breaking.
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Chapter 25

Spin Qubits with Semiconductor Quantum Dots

Seigo Tarucha, Michihisa Yamamoto, Akira Oiwa, Byung-Soo Choi,

and Yasuhiro Tokura

25.1 Spin Qubit Made of Quantum Dots

The research aiming the manipulation of the individual electrons in semiconductor
quantum dots (QDs) starts about 25 years ago when the single electron tunneling
phenomena had been discovered. Initial QDs had contained many and uncertain
numbers of electrons. Various improvements of fabrication technologies and elec-
trical manipulation have enabled the first report of the precise control of the electron
numbers starting from zero to one, two, and so on in 1996 [43]. In addition to the
control of numbers, the electronic states of quantum mechanical confinement and
spin states were steered with the precision as if for real atoms (artificial atom) [20].
In 1998, a new architecture of quantum computing was proposed using the electron
spins in such QDs by purely electrical means [23]. Subsequent findings of very long
spin relaxation time [8], control of the exchange coupling of pairs of neighboring
spins in adjacent QDs [12], and the discovery of Pauli spin blockade, which is now
used to initialize and read-out spins [31] have triggered the active field of electron
spin qubits [24, 42]. First demonstration of electrically controlled single spin qubit
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was reported in 2005 [32] and after a while, two spin qubits and the control of their
entanglement were realized [4, 39]. Coherent control of single qubit and entangling
two qubits are fundamental elements of quantum algorithm, and now the research
of quantum computing with spins is shifting to the proof of various algorithms with
error corrections and fault tolerant large scale quantum computing.

In parallel, rapid developments of various quantum technologies other than
quantum computing have been witnessed. For example, quantum interface between
single photons and single spins, which will be an indispensable ingredient of
quantum repeaters, solid state quantum optics experiments including single electron
generation and beam splitters, and the coupling of microwave photons in a
superconducting cavity circuit and electron spins.

This section summarizes the progress of electrical manipulation of electron spins
in quantum dots, based on our recent researches. Section 25.2 briefly summarizes
the initialization and detection of spin states. Coherent manipulation of individual
electron spins is discussed in Sect. 25.3 and two spin operations are in Sect.25.4.
Section 25.5 is on the architecture for spin-qubit quantum computers considering
the scalability and other techniques for manipulating single electrons are discussed
in Sect. 25.6. Finally, Sect. 25.7 is the conclusion.

25.2 Electron Spin Initialization and Detection

The electron spins in quantum dots are protected from various environmental
disturbances and can be assumed an ideal carrier of useful information, especially,
a quantum bit of information, or qubit for short. The two basis states of a spin 1=2
electron are j"i and j#i , which can be decoded into a classical bit “0” and “1” –
e.g. magnetic moments in hard drives. In contrast to classical bits, an electron can be
brought to a state, j i D ˛ j"i C ˇ j#i with two complex numbers ˛; ˇ satisfying
j˛j2Cjˇj2 D 1, where its spin points in two opposite directions simultaneously. This
section discusses the important ingredients of quantum computation, initialization
and reading of individual spins.

The basic strategy for the detection of single spins is spin-charge-convergence,
where we utilize high sensitive charge or current measurements combined with
spin dependent tunneling mechanisms. Under a large magnetic field where Zeeman
energy is much larger than thermal energy, the tunneling probability is spin
dependent when the chemical potential of the reservoir locates in-between the
Zeeman splitted levels. When the higher energy spin sub-level, say the spin down
state in a negative g-factor material, is occupied, tunneling-out processes to the
reservoir are allowed. In contrast, if the spin up state, the ground state, is occupied,
the tunneling-out process is energetically unfavored. This change of charge states
can be detected using high-speed high-sensitivity charge detector using quantum
point contact (QPC) or near-by QD [7]. Another method utilizes series QD system,
where one to two electron charge states are available under finite bias condition.
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Fig. 25.1 Example of charge stability diagrams of coupled QDs near .1; 1/ charge states, where
.NL;NR/ represents the number of the charge in the left and right QD respectively. Top two panels

show the spin flip signal by ESR (EDSR) mechanism. Lower panels show the principle of the spin
detection with Pauli-spin blockade mechanism

Because of Pauli spin blockade, once spin triplet states are realized, further charge
fluctuation is strongly suppressed (Pauli-spin blockade (PSB)) [31], see Fig. 25.1.
This mechanism is now widely used as a handy initialization and detection scheme
of two electron states. Series QDs with different Zeeman energies realized by
controlling g-factors or/and local magnetic fields are also proposed to resolve spins
[2, 14, 38].

25.3 Electrical Manipulation of Single Electron Spins

The coherent manipulation, or unitary operation, should be completed within a
characteristic time, T2, so that the superposition states are maintained. The long
T2 time of the spin in quantum dots combined with the ease with which electron
charges can be localized and transported in scalable solid-state devices make
electron spin qubits one of the most promising systems for quantum information
processing applications.
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25.3.1 Single Spin Manipulation

25.3.1.1 One-Qubit Gates

Single-spin manipulations implement the basic one-qubit gates needed for universal
quantum computation in combination with two-qubit gates, known as controlled-
NOT (CNOT), for example. Single-spin states and their dynamics are easily under-
stood using the Bloch representation of quantum mechanical two-level systems,
j i D cos � j"i C ei� sin � j#i where two polar-coordinate angles �; � assign
a point on the Bloch sphere of unit radius (Fig. 25.2). For example, a rotation of
180 degrees along the x-axis will take the spin from the north pole (corresponding
to state j"i ) to the south pole (corresponding to state j#i ). For quantum information
processing, the spin must however reach any specified point on the Bloch sphere by
a unitary operation U [28]. In general, for any single-qubit U, there are real numbers
˛; ˇ; 
 and ı such that U D ei˛Rz.ˇ/Ry.
/Rz.ı/:Here R�.�/ represents a rotation of
angle � around the � D x; y; z axis defined by R�.�/ � expŒ� i���

2
�; where �� is the

� element of Pauli spin matrices. The Pauli spin matrices themselves are quantum
logic gates, for example, �x D iRx.�/ is analogous to the classical NOT gate, which
flips j"i to j#i and vice versa. Other useful quantum gates are the Hadamard gate,

H D e
i�
2 Rz.�/Ry.��

2
/, and the phase gate, Z� D e

i�
2 Rz.�/. An electron spin under

a static magnetic field B0 pointing in the z direction is subject to the Hamiltonian
H D „!Z

2
�z; where „!Z D g�BB0 is the Zeeman energy with the Bohr magneton

�B and electron g-factor g. The unitary time-evolution of the spin is defined by the
operator U.t/ � Rz.!Z t/: Therefore, a static field drives an electron spin rotating
around the z axis (spin precession) and !Z=2� is called the Larmor frequency.

In principle, any one-qubit operation is achieved by successive applications of
magnetic field pulses pointing in the z or y direction. However, when we want
to control the spin using electrical methods, we find that the vectorial control of
magnetic fields is difficult in practice. Instead, electron spin resonance (ESR) is the
tool of choice for rotating spins [40].

Fig. 25.2 Bloch sphere
representation of an electron
spin qubit. State j0i
corresponds to j "i and j1i to
j #i (From [48])



25 Spin Qubits with Semiconductor Quantum Dots 545

25.3.1.2 Principle of Electron Spin Resonance

The ESR technique consists of applying an oscillating magnetic field BAC, of
angular frequency !, pointing in a direction (say along Ox) perpendicular to the
static field OB0 pointing to Oz. The motion of the spin subject to both static and
a.c. magnetic fields is rather complex when described using the usual laboratory
coordinate system (the lab frame). However, it is greatly simplified by describing
the motion in a coordinate system rotating about Oz at ! (the rotating frame) and the
spin state becomes j i rot D expŒ i!t

2
�z� j i . In the rotating frame, the Hamiltonian

reduces to

Hrot D „.!Z � !/

2
�z C „!1

2
Œ�x cos' � �y sin'�; (25.1)

where we assume BAC D OxBAC cos.!t C '/ and define !1 � g�BBAC=2 while
neglecting fast oscillating terms such as e˙2i!t (rotating wave approximation).
Naturally, the a.c. field lies along a fixed axis in the rotating frame. Furthermore, if
the frequency of the a.c. field fAC D !=2� matches the Larmor frequency, the first
term in Eq. (25.1) vanishes. In this case, an observer in the rotating frame will see
the spin precessing around the vector .cos'; sin'; 0/ on the x�y plane. If we adjust
the phase of the oscillations ' to zero, a rotation occurs along the x-axis. Shifting the
phase by �=2 changes the rotation axis to the y-axis. As can be seen in Eq. (25.1),
we can flip a spin from j"i to j#i by applying an a.c. field burst for T� D �=!1
(� pulse). Moreover, the probability of the spin j"i oscillates between 0 and 1 with
a frequency of fRabi D !1=2� (Rabi oscillation). In general, a one-qubit gate will
consist of a sequence of a.c. magnetic field pulses of various durations (to control
the amount of rotation) as well a sequence of phases (to select the rotation axis).
The duration, phase and even frequency are relatively easy to control using signal
modulation techniques.

If the a.c. field is off-resonance with respect to the Larmor precession frequency
by �! � !Z � !, the spin precesses in the rotating frame about an axis tilted
from the x � y plane by an angle � D arctan.�!=!1/ and with frequency !0 �q
�!2 C !21 . It follows that the a.c. field has virtually no effect on spins that are far

off resonance j�!j � !1, since � � ˙�=2. If all spins have well separated Larmor
frequencies, we can in principle selectively rotate any given qubit without rotating
the other spins. This feature can be used to manipulate several spins selectively
as discussed below. The first demonstration of the ESR of individual spins used a
micro-coil with a.c. electric current [17].

25.3.2 Electric Dipole Spin Resonance

In comparison to the local a.c. magnetic field generated by a micro-coil, strong
and local a.c. electric fields can be generated by exciting a tiny gate electrode near
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Fig. 25.3 Schematics of the ESR (left) and EDSR (right)

the target spin with a low voltage. For scalability purposes, it is therefore highly
desirable to manipulate electron spins with electric fields instead of magnetic fields.
To benefit from the advantages of electrical excitation, a mediating mechanism
must be in place to couple the electric field to the electron spin, which usually
responds only to magnetic fields. Electric dipole spin resonance (EDSR) is the
above mentioned process, which has been investigated for bulk systems of strong
spin-orbit interaction since the 1960s [3, 25, 36] (Fig. 25.3). The application of
EDSR to the coherent manipulation of single spins in a quantum dot was first
argued theoretically with and an inhomogeneous magnetic field [45] and spin-orbit
coupling [10] as the mediating mechanisms. Moreover, a hyperfine interaction and
g-factor tensor modulation also work as the mediating mechanism.

To manipulate spin coherently, we introduce a driving electric field and the
Hamiltonian is

Hel D eE.t/ � r; (25.2)

where E.t/ D EAC cos!t. To simplify the following arguments, we consider a two-
dimensional quantum dot confined by a parabolic potential such that V.x; y/ D
m!20r2=2 where !0 is the confinement frequency and the electric field is in-plane.
Using a time-dependent canonical transformation [35],

‰0.r; t/ D e�ik�R.t/‰osc
0 .r; t/;

with k � �i@, the electric field Hamiltonian Hel can be eliminated by choosing
R.t/ D �eE.t/=m!20 and neglecting the correction proportional to !=!0 � 1. This
canonical transformation changes the position operator r as follows

eik�R.t/re�ik�R.t/ D r C R.t/: (25.3)
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Now we assume that uniform magnetic field B0 is applied in the x direction, and
(inhomogeneous) slanting field directing

Bsl.x/ D bslx Oz; (25.4)

where Oz is the unit vector normal to the plane and bsl � @Bz=@x characterizes the
steepness of the field gradient in the x-direction. Hence the periodical displacement
of the electron center-of-mass by the a.c. electric field around its equilibrium
position in the slanting field induces an oscillating effective transverse magnetic
field, as shown in Fig. 25.3,

BAC.t/ D bslRx.t/Oz

D �bsl`0
eEAC.t/`0

„!0
Oz; (25.5)

where `0 �
p

„=.m!0/. As discussed in the previous section, this allows transitions
between the electron spin states when the driving frequency, fAC, matches the
Larmor frequency.

How can the slanting magnetic field in semiconductor QDs as shown in Eq. (25.4)
be realized? In the following, we discuss three approaches, (1) using spin orbit
interaction (SOI), (2) on-chip micro-magnet, and (3) g-tensor modulation.

Spin-orbit interaction: We argue that a 2D quantum dot with SOI with in-plane
magnetic field can be subjected to an effective Hamiltonian of a quantum dot with
a uniform magnetic field and an inhomogeneous transversal field [10, 21, 22]. The
original Hamiltonian is H D HDOT CHZ CHSOI , with HDOT D .p2x C p2y/=.2m/C
V.x; y/, HZ D 1

2
g�BB0 � � where V.x; y/ is the 2D confinement potential and the

magnetic field is applied in-plane (x �y) with � D .�x; �y; 0/. The SOI Hamiltonian
for a 2D electron system without spatial- and bulk-inversion symmetry is HSOI D
˛.px�y � py�x/ C ˇ.�px�x C py�y/, where ˛ and ˇ are the coupling constants for
Rashba and Dresselhaus SOI, respectively. We took the 2D plane to be (001) and
the [100] ([010]) crystal axis to be in the x (y) direction. Applying unitary operation
U D expŒ�i m

„ f.˛x Cˇy/�y � .ˇx C˛y/�xg�; to the total Hamiltonian, QH D U
�
HU ,

we obtain an effective Hamiltonian to the lowest order of the spin-orbit interaction

QH D HDOT C HZ C 1

2
g�B

QBz.x; y/�z; (25.6)

It is convenient to rotate the x-axis, which is parallel to the external magnetic field
along [110] or [1N10] direction, and we found the effective field QBz is given by

QBz.x/ D 2jB0j
x

`SO

: (25.7)

where we defined spin-orbit length `�1
SO D m.˛ ˙ ˇ/=„. Therefore, the spin

experiences an effective transverse magnetic field, which depends linearly on its
position and is proportional to the external magnetic field B0.
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On-chip micro-magnet Inhomogeneous field is realized when we place a
micrometer-size ferromagnet near the quantum dot. The magnetic field with a
uniform in-plane (Ox) field is [34]

B D ŒB0 C ıB0 C bslz�Ox C bslxOz; (25.8)

where bsl characterizes the gradient of the transverse magnetic field and ıB0 is an
offset field provided by the ferromagnet. The counter-term field bslz parallel to the
external field is needed if B is to obey Maxwell’s equation but is not effective for a
strongly confined electron in the x � y plane, z D 0.

g-tensor modulation Electrical control of the spin Larmor frequency in a g-
factor modulated parabolic quantum well has been demonstrated [37]. However,
the modulation of a scalar g-factor cannot flip spins, and it only provides Larmor
frequency modulation. Fortunately, the electron g-factor in a quantum well is known
to be anisotropic and must be treated as a tensor, Og. Therefore, the Hamiltonian reads

HZ D 1

2
�B� � Og � B D S � �; (25.9)

where � and S D „
2
� are the precession axis vector and the spin operator,

respectively. The g-tensor is designed as a function of position z in the growth
direction and to be uniform in the x � y plane. By applying a magnetic field B0
with an angle � from the z axis, the precession axis vector is

�.z/ D �B

„

0
@

g�.z/ 0

0 g�.z/ 0

0 0 g0.z/

1
A �

0
@

B0 sin �
0

B0 cos �

1
A ; (25.10)

where g� and g0 are the in-plane and out-of-plane components of the g-tensor,
respectively. Then we expand the axis vector in a power series in z,

�.z/ D �0 C !kz C !?z;

where !k and !? are the parallel and perpendicular components of the first Taylor
series of the precession axis vector around z D 0, which is set at the electron’s stable
position. The perpendicular component, explicitly

!? D �B

„ B0
@.g� � g0/

@z
sin � cos �

0
@

cos �
0

� sin �

1
A ; (25.11)

flips the spin.
First single spin EDSR was demonstrated by the Delft group [29] using spin-orbit

interaction in a GaAs quantum dot system, (Eq. (25.7)). Microwaves of �10GHz
are applied to one of the side gates and a resonant dot current peak with a width of
a few mT is observed at the resonant condition g�BB0 D hfAC where jgj D 0:39.
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Fig. 25.4 Scanning electron
microscopy image of the
device fabricated on top of an
AlGaAs/GaAs
heterostructure showing the
Ti/Au gates (light gray) and
the split cobalt (Co) magnet
(upper/lower) separated from
the gate contacts by a
calixarene layer. Gates R

(right) and L (left) control
number of electrons; C

(center) controls the inter dot
tunnel coupling t. A
microwave voltage Vac is
applied to the upper part of
the magnet (From [4])

As with the on-chip stripline experiment, Rabi oscillations of the dot current as a
function of microwave burst time are observed. The linear dependence of the Rabi
frequency on the applied microwave amplitude is also confirmed.

The use of an inhomogeneous magnetic field allows greater flexibility, because
the method is applicable to any semiconductor material. The scheme has recently
been demonstrated using on-chip micro-magnets [4, 30, 34]. Two electrons are
confined and spatially separated from each other in a gate-defined double quantum
dot (Fig. 25.4). The a.c. electric field, EAC.t/, is generated by exciting a nearby
gate that couples to both spins. The magnetic-field gradient is obtained by using
a ferromagnetic strip integrated on top of the double-dot structure. The strip is
magnetized uniformly along its hard axis by applying an in-plane magnetic field,
B0, that is stronger than the micro-magnet’s saturation field (�2 T). In this condition,
the resulting stray magnetic field has an out-of-plane component that varies linearly
with position. The expected field gradient is as large as bsl � 1T/�m. The effective
a.c. transverse magnetic field defined in Eq. (25.8) drives one of the two electron
spins flip in a resonant condition and allows a finite dot current Idot or a signal in the
nearby QPC, GQPC. In addition, the inhomogeneity of the in-plane component yields
two different quantum-dot Zeeman fields, B0L and B0R. This feature is used to probe
each spin separately as shown in Fig. 25.5. Two independent Rabi oscillations, from
the two quantum dots, 1 and 2, were observed for different resonant magnetic fields
as a function of the microwave burst time as shown in Fig. 25.6 [4, 30]. The linear
dependence of each resonance on the external magnetic field shown in Fig. 25.6
(right) is a key signature of ESR because the Larmor frequency is proportional to
B0, which determines jgj D 0:39.

Electron spin manipulation by modulating the g-tensor electrically has been
reported for optically generated electron spins in a specially designed quantum well
[16]. By applying a DC voltage of several volts to the surface gate, g-factor can be
controlled for a wide range and even its sign can be changed [37]. The short T�

2

time (�300 ps) of extended electron spins limited the tipping angle to �2 degrees.
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Fig. 25.5 cw EDSR for the
left and right spin. PSB is
lifted on resonance for the left
(red) and right (blue) QD
spin. EDSR peak separation:
�B0 � 5mT (From [4])

Fig. 25.6 (Left) Rabi oscillations for the left QD (red) and right QD (blue) (B0L D 2T and B0R D
1:985T, fAC D 11GHz). ıGQPC is the difference in GQPC between the on-resonance and off-
resonance conditions. (Right) Rabi oscillation frequency fRabi as a function of the square root of
MW power, for the left (closed) and right (open) QD spin (From [4])

There has been no report of single spin coherent manipulation using a g-tensor
modulation mechanism, however its feasibility was confirmed recently in a self-
assembled QDs [6].

25.3.3 Strongly Driven EDSR

The Rabi frequency fRabi shown in Fig. 25.6 (right) was limited to several MHz.
The amplitude dumps with time which is approximated as an exponential form
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/ exp ��EDSR=T�
2 . It is also pointed out that the phase of the oscillation shows �=4

shift [18]. The primary source of this “decoherence” is the quasi-static modulation
of nuclear spin polarization, which is hyperfine-coupled to the electron spins. Since
T�
2 is limited to be less than 100 ns, the fidelity of �- or �=2 operation cannot

be high. As can be seen in Eq. (25.5), larger Rabi frequency can be achieved
by increasing the magnetic field gradient bsl and microwave amplitude, EAC.
In addition, increasing `0 (or equivalently decreasing „!0, smaller confinement
potential strength) is effective. Recently, by improving the macro-magnet design and
increasing the microwave amplitude, Rabi frequency more than 100 MHz has been
achieved and Rabi oscillation does not show �=4 shift and clear Chevron pattern
had been observed with spin flip gate fidelity more than 96 % [50].

Since Rabi frequency is linearly proportional to BAC, from Eq. (25.5), we expect
linear dependence of fRabi on EAC. However, for very large microwave amplitude
condition, clear sub-linear behavior of fRabi on EAC was observed [50]. Possible
origins of this behavior are the non-paraboliticy of the confinement potential V.x; y/

[46] or the deviation from the linear behavior of the field gradient assumed in
Eq. (25.8).

Other type of fast single operation was proposed and demonstrated by Yoneda,
[50], where rapid change of the combination of gate voltages shifts the center
position of QD, and then modifies the Larmor frequency. This realizes z-rotation
operation up to 100 MHz range.

25.4 Two Spin Operations

25.4.1 Reduced Spin Dynamics Made of Two Spins

To realize the necessary unitary operations for the quantum computation algorithm,
CNOT or a SWAP operation is essential for the two qubits. Following the original
proposal [23], we rely on the exchange interaction that is allowed by the finite tunnel
coupling between two quantum dots. The low energy spin dynamics is described by
an isotropic Heisenberg interaction

HS D JS1 � S2 C g�BB0 � .S1 C S2/; (25.12)

where S� (� D 1=2) represents a localized electron spin in the dot 1 and 2.
Therefore, an estimation of the exchange coupling J is vital to the two spin
qubit operation. The estimation of J in symmetric double dots with a Gaussian
confinement potential and a magnetic field has already been reported in Refs. [5, 15].
In a two-qubit gate in combination with the EDSR mechanism, the effect of spin-
orbit coupling [41] and inhomogeneous field [45] deviate the exchange coupling
from a simple Heisenberg form.
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25.4.1.1 Exchange Qubits

Petta et al. [32] used this knob to coherently control an ‘effectively single qubit’
made of two spins. The effective random hyperfine magnetic field Bn (Overhauser
field) induced by the interaction with nuclear spins is of the order of 1–5 mT. When
the external field B0 pointing in the z direction is much larger than jBnj, two of the
triplet states, T˙, are well separated from the S0 and T0 states, that are energetically
different in J."/. The difference between the random hyperfine fields along B0 of
the two dots,�Bz

n induces coupling between T0 and S0 states [44]. This can be seen
by rewriting the second term of Eq. (25.12) as g�B.B1 �S1CB2 �S2/ D g�B

NB � .S1C
S2/C 1

2
g�B�Bn � .S1 � S2/ where NB D B0 C .Bn1 C Bn2/=2 and�Bn D Bn1 � Bn2.

At low magnetic fields of �10mT and with very weak inter-dot tunnel coupling t,
this difference in the nuclear field�Bn induces strong mixing of the spin singlet and
triplet states and results in a leakage current from the Pauli spin blockade condition
[17]. Using the relation hT0jfSLz � SRzgjS.1; 1/i D 1 and the general expression for
the singlet ground state jS0i � a jS.1; 1/i C b jS.0; 2/i C c jS.2; 0/i , with jaj2 C
jbj2 C jcj2 D 1, we have a nonzero matrix element hT0jHSjS0i D 1

2
g�B�Bz

na. By
reading S0 and T0 as effective spin up and down, respectively, the exchange energy
can be assumed to be Zeeman energy and �Bz

na is the transverse magnetic field.
It is convenient to consider a Bloch sphere with S0 and T0 at the north and south
poles and j"#i and j#"i as the poles along the x axis. A small but finite �Bz

n

makes either of the states in the x axis poles, say j"#i , the ground state for largely
negative detuning where J � 0. Starting from the well-defined ground state S.0; 2/

at positive detuning ", an adiabatic negative shift of " drives the system to j"#i .
Then a sudden shift of " to a more positive value realizes a large J and then the state
starts rotating around the z axis. The reading stage is again the adiabatic ramping of "
to project the state j"#i to S.0; 2/ and j#"i to T0, which can easily be distinguished
by the QPC charge detector. Because of the random distribution of the nuclear spin
field, and possibly because of electrical noise in the detuning control signal, the
inhomogeneous decoherence time estimated from the damping of the two-electron
Rabi oscillation is about 10 ns. Spin-echo experiments have also been successfully
demonstrated using a detuning pulse sequence. The estimated lower bound of T2
time is 1.2�s. Recently, two-qubit operation using two exchange only qubits had
been demonstrated [39].

25.4.1.2 SWAP Operation

Here, we present the realisation of an electron spin based two-qubit gate suitable
to prepare a partially entangled state with the degree of entanglement depending on
the exchange operation time as well as the micro-magnet induced inhomogeneous
Zeeman field. This gate operation allows an entangled singlet included in the output
state and provides a novel basis for quantum information processing which can be
applied to materials with promising long coherence times.
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To demonstrate the modulation and detection of an entangled state as a fraction
of the output we use two-qubit gate comprising universal single-qubit control and
controlled SWAP operation. Using the exchange energy J0, the time for SWAP
operation is �SWAP � �=J0. The SWAP operation is based on the manipulation of the
exchange interaction in the double quantum dot according to Ref. [23], where the
inter-dot potential barrier is tuned thus changing the exchange interaction between
the electrons. Coming from stage A, where spins are initialized to spin triplet using
Pauli-spin blockade, we rotate the electron spin in the left dot in stage B with " � 0

and control the inter-dot exchange coupling in stage C (Fig. 25.13c). We switch the
exchange coupling on by pulsing " from stage B (" � 0) to C (" > 0) and switch it
off by returning to B (Fig. 25.7 (lower-left)). The sequence of the quantum operation
in the experiment at B0 D 2:00T starting with the spin state evolves in detail by

j"i ˝ j"i ! j"i � i j#ip
2

˝ j"i ! j 1i ! j 2i ; (25.13)

Fig. 25.7 (Top) The schematics of the combination of single- and two-qubit operations. The
conditions (A), (B) and (C) correspond to the detuning condition shown in the panel in the (Lower

left). (Lower right) Result of two-qubit measurement for four different energy detuning ". Contour
plot showing J0 vs �ex indicating PS . We use the ratio ıEZ=J0 as a fitting parameter to reproduce
the experimental data and find that all data (A) to (D) measured for various detuning values are
consistent with the calculation by taking ıEZ=J0 � 0:74 (SWAPnD1;3;5;:::: red; NOP: black).
ıEZ � jg�B�B0j is the difference of the Zeeman energies of two spins (From [4])
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where in the first step, 3�=2 rotation around the x axis for the left qubit, in the
second step, two-bit exchange operation for the exchange time �ex, and in the third
step, �=2 rotation around the x axis for the left qubit again. j 2i is the final two
spin wave function, which is for �ex D 2n�SWAP, j 2i D j"i ˝ j"i and is for �ex D
.2n C 1/�SWAP, j 2i D 1

2
Œj"i ˝ j"i C j#i ˝ j#i �

p
2iS.1; 1/� where S.1; 1/ is

the spin singlet state. Since the non-entangled spin triplet states j�i ˝ j�i are both
spin blocked, they induce no detectable change in the charge state from the initial
state. In contrast, the singlet component of the wavefunction j 2i is measured by
the projection hSj 2i resulting in the charge transfer between the two quantum dots,
which is detected by the nearby QPC. In Fig. 25.7 (lower-right), we plot the change
of the charge state measured by the QPC as a function of �ex and detuning " or J0.
The measurement exhibits periodic oscillations as a function of both parameters.
The experimental data agree well with a model calculation shown as solid lines.

25.5 Architecture for Spin-Qubit Quantum Computer

Considering the scalability, we should choose a good architecture with a suitable
fault-tolerance scheme. Since the architecture and the scheme are very closely
related, the analysis of their combination is important. In this section, hence we
investigate the two typical architectures with one typical quantum error-correction
code.

To make a scalable and universal quantum simulator or computer, the long-
time memory should be prepared first. Unfortunately the physical memory time
of physical qubit is not so long, it is not sufficient for arbitrary computation. By
encoding a logical qubit with multiple qubits and gates with a quantum error-
correction code, we can increase the logical memory time arbitrarily long. Note that
to make it work, the error rate of qubits and gates should be lower than a predefined
value, which is defined by a chosen quantum error-correction code. Meanwhile
such value, which is called accuracy threshold value, also depends on the physical
architecture. Since the lower accuracy threshold value means that it is getting more
difficult, it would be better to find a good combination of an error-correction code
and the target qubit architecture.

Since we already have many quantum error-correction codes and it is focused
on the architectural issues, we choose a typical error-correction code such as 9-
qubit Shor code. Also considering the difficulty of measurement, we focus on the
use of measurement-free Shor code as shown in Fig. 25.8. In the circuit, a data
qubit j i can be encoded by using nine qubits. After encoding, this state will be
used for processing. In this figure, the encoded qubit is used only for memory with
potential errors during error period. After that the encoded state is checked by the
reverse process of encoding, and finally corrected by using Toffoli gate. If there is
any single error during error period, this circuit can correct such error. More than
two errors cannot be corrected. For holding for long time, such encoding, checking,
and correction period should repeat. Note that since the circuit has a time slot for
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Fig. 25.8 Measurement-free Shor code

Fig. 25.9 Physical architecture

decoded qubit between error-correction cycles, it is not fully fault-tolerant memory.
However, this error-correction code can be used for showing the feasibility of long-
time memory, and hence it has been widely used for many experimental results.

Based on the physical capability, we can put the spin qubits in an arbitrary way.
For systematic control, however, we usually consider two types of architectures such
as the one-dimensional and two-dimensional architectures as shown in Fig. 25.9.
For representing arbitrary implementation we assume the node as the qubit and the
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edge as the interaction between two qubits. For the one-dimensional architecture,
the typical implementation would be the linear structure. Hence a qubit can interact
with only two neighbors. On the other hand, we may have several implementations
for the two-dimensional architecture as the lattice or the triangle structures as
shown in the figure. In general, the lattice structure is chosen for the two-
dimensional architecture. In this case, a qubit can interact with four neighbor
qubits.

Since we should map the chosen quantum error-correction code, in this case the
Shor code, into the target architecture, we need to consider how to map the qubits
and to schedule the quantum operations of the circuit. Since the physical architecture
has a limitation of interaction distance and the number of qubits which can interact
with the chosen qubit, the target circuit cannot be directly mapped into the physical
architecture without modification. More specifically we should add multiple SWAP
operations to make the non-local two-qubit operations depends on the location of
source and target qubits. Therefore, we first need to find a good layout of qubits
to minimize the physical distance, and then add additional SWAP operations to
relocate the qubits to the neighbor positions. Because of that the quality of the
mapping affects the overall performance. Since our main concern is the physical
architecture, we assume to use the best layout and scheduling in this analysis. Since
the goal of the layout of qubits is to minimize the physical distance of qubits for
two-qubit operations, it is usually very hard if the circuit is big. Fortunately since
the circuit of the Shor code is very small and has a regular structure it is relatively
easy. Figure 25.10 shows the best layout of qubits. Although it is optimal, it still
requires 24 SWAP operations to relocate the qubits as shown in Fig. 25.11. On the
other hand, as shown in Fig. 25.12, the layout of qubits for the two-dimensional
lattice does not require additional SWAP operations. Therefore, the scheduling of
quantum gates is the same with the target circuit.

To compare the performance of two architectures, we consider two performance
metric: time and error rate. Since the time of SWAP gate of the spin-qubit system

Fig. 25.10 Layout of the Shor code on the one-dimensional architecture
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Fig. 25.11 Scheduling of the Shor code on the one-dimensional architecture

Fig. 25.12 Layout of the Shor code on the two-dimensional architecture

is shorter than single-qubit gate, the additional time caused by 24 additional SWAP
gates on the one-dimensional structure is negligible. Therefore, two architectures
have almost the same time performance. To compare the error performance, we
analyze the number of error instances to make error on the output data qubit. For
this analysis, the fault-path counting method is used [47]. Based on the analysis,
the number of error instances for the two-dimensional architecture is (36, 40) for
X and Z type errors. On the other hand, the number of error instances for the one-
dimensional architecture is (64, 62), which is 50 counts more. This analysis implies
two issues as follows.

• First, the accuracy threshold value of the one-dimensional architecture is lower
than that of two-dimensional. If we assume that the accuracy threshold value is
one over the number of error instances, the accuracy threshold values are 1

126

and 1
76

for the one- and two-dimensional architectures, respectively. Therefore,
the one-dimensional architecture requires two times lower accuracy threshold
value.
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• Second, if the error rate of SWAP is relatively lower than other gates, the error
performance would be same. Since the number of additional SWAP gates for the
one-dimensional architecture is 24, if the error rate of the SWAP gate is 1

24
times

lower than that of other gates, the overall error rate of the output qubit would be
the same. In addition to that, since the additional time caused by the SWAP gate
is negligible, the time performance degradation is also negligible.

In summary, since the one-dimensional architecture supports the lower inter-
action degree, it causes to use additional SWAP gates over the two-dimensional
architecture. However, since the time of SWAP gate is very short, the time
performance of the one-dimensional architecture is almost the same with the two-
dimensional. On the other hand, the error performance depends on the error rate of
the SWAP gate. If the error rate of the SWAP gate is the same with other gates, then
the accuracy threshold value of the one-dimensional architecture should be lower
than that of the two-dimensional architecture. Or if the error rate of the SWAP gate
is relatively lower than that of other gates, the overall error rate still can be the
same.

Although the one-dimensional architecture shows comparable performance than
the two-dimensional architecture for the chosen quantum error-correction code, the
two-dimensional architecture has much practical advantage as follows.

• Many high performance quantum error-correction codes are based on the use
of higher degree of interaction with local gates. For example, the Surface code,
which shows the highest accuracy threshold value, is based on the use of two-
dimensional array of qubits and the local two-qubit operations.

• Universal quantum simulator or computer requires the logical two-qubit oper-
ations between encoded blocks. Beyond the quantum memory, we should also
consider the implementation of logical gates, specially logical CNOT gate. For
making such CNOT gate, the physical location of qubits affects the performance
very much. The better layout should support the easier and systematic control of
qubits. Unfortunately, the one-dimensional architecture is generally not suitable
for such logical CNOT operation.

• The physical size of building block should be minimized. If we consider to use
the one-dimensional architecture for universal quantum simulator or computer,
the size increases only one direction. Hence the physical size will reach the limit
very quickly. On the other hand, the two-dimensional architecture can integrate
many more qubits in a smaller area.

25.6 Other Techniques for Manipulating Single Electrons

In this chapter we describe novel techniques of transferring a quantum state between
different quantum systems: transfer of single photons to single electrons in a
QD in Sect. 25.6.1 and single electron transfer between two quantum dots (QDs)
in Sect. 25.6.2.
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25.6.1 Photon to Electron Spin Interface

Electron spin in semiconductor QDs has the advantage of having a good match
with photons which can be used for optical communication, and therefore it may be
a good candidate as a qubit combined with a photon qubit to construct quantum
interface which enables long-distance quantum information communication and
distributed quantum computing systems. Angular momentum is a good quantum
number for both photons and electrons. Consequently conducting electrons are
generated in QDs after band to band excitation by circularly polarized photons
preserving the angular momentum [27]. Based on this concept quantum media
conversion from the photon polarization state to electron spin state was previously
proposed [49], and indeed an experiment following this concept was performed
using GaAs quantum wells but for a large ensemble of photons and electron spins
[19]. However, for applications to quantum information quantum state transfer from
single photons to single electron spins is necessary but yet been demonstrated. We
have recently used GaAs QDs to experimentally study the quantum state transfer
from single photons to single electron spins. Here we describe the experiments on
single photoelectron detection and angular momentum transfer from single photons
to single electrons.

25.6.1.1 Single Photoelectron Detection with a Single QD

We first used a single GaAs QD equipped with a QPC charge sensor to detect the
single photon trapping by the QD. The dot is electrically defined in a 2DEG of n-
AlGaAs/GaAs. A 200 nm Au mask with an aperture is placed on top of the dot.
A ps-laser pulse is irradiated onto the mask to optically excite the dot through the
aperture. The photo-excitation predominantly occurs to generate electron-hole pairs
in the GaAs buffer layer. The electron is only collected to the 2DEG interface of
n-AlGaAs/GaA or trapped by the dot because of the built-in potential (Fig. 25.13a).
The addition of the photo-electron in the dot can be detected by the charge sensor.
The pulsed laser light with wavelength of 780 nm is introduced into a 1.5 K cryostat
through an optical fiber to irradiate the dot. An estimate of the photon flux onto
the aperture is 0.4 photons/pulse so that at most one electron-hole pair is optically
generated.

Figure 25.13b is a typical data of charge sensor current IQPC upon the optical
excitation. The IQPC instantly decreases after the optical excitation and abruptly
increases in 3 ms. This IQPC increase is 0.8 nA consistent with the change of IQPC

due to the change in the electron occupation of the dot just by one (measured in a
separate experiment), and therefore assigned to the escape of the photo-generated
electron to the lead [33]. The initial IQPC decrease is larger than 0.8 nA probably
because the gate potential of the sensor QPC is modified by photo-excitation outside
the metal mask. (Note the laser beam diameter incident onto the metal mask is larger
than the mask size.) From measurement of linear dependence of the photo-electron
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Fig. 25.13 (a) Band profile
of an n-AlGaAs/GaAs
heterostructure. The
excitation laser energy is
tuned just above the GaAs
resonant energy. The excited
electron hole pair is separated
due to the intrinsic electric
field. (b) Typical charge
sensor current IQPC due to
single photoelectron trapping
by a single QD. The
measurement temperature is
1.5 K. The upper panel

illustrates trapping of a
photoelectron by a dot and
escape of the photoelectron to
the lead. The photo-excitation
is performed with a light
pulse of 0.4 photons/pulse

detection probability on the irradiated photon flux we derive the photo-electron
detection efficiency of 15 % [33]. This value is consistent with that calculated from
the optical absorption in the GaAs buffer layer.

In Fig. 25.14b the photoelectron detection can be complete within 0.3 ms whose
time scale is shorter than the spin relaxation time T1 and therefore the present
detection technique can apply for the spin readout. Indeed we used a difference
of tunneling rate of electrons from the dot to the spin-resolved edge states in the
2DEG leads to distinguish the spin orientation of single photoelectrons [33].

25.6.1.2 Non-destructive Single Photoelectron Detection

The spin readout using the electron escape to the leads as describe before is
performed in a destructive manner. However, a nondestructive spin readout may
be more useful in the context of quantum information processing. We have newly
developed a technique for nondestructive and robust photo-electron detection using
a DQD.



25 Spin Qubits with Semiconductor Quantum Dots 561

Fig. 25.14 (a) Charge
stability diagram of the DQD
as a function of two plunger
gate voltages for the
respective dots. The black dot

indicates the initial bias point
before the photo-excitation.
(b) Charge sensor current
IQPC due to single
photo-electron trapping by
the double QD. The
measurement temperature is
0.3 K. The excitation light
pulse intensity is 1.0
photon/pulse

The wafer of the DQD used in the experiment is the same as for the dot in
Fig. 25.13a but having an aperture in the metal mask only on top of one of the
two dots. In this experiment a pulsed laser beam is directly focused onto the DQD
placed in a 0.4 K cryostat through an optical window. The beam spot size is 200�m.
The optical polarization is controlled by rotating a quarter wavelength plate placed
outside the cryostat.

The DQD charge state is initialized in the Coulomb blockade condition of
the (0,4) state before irradiating a linearly polarized beam onto the DQD (See
Fig. 25.14a). In addition the excited states of (1,4) and (0,5) are energetically
aligned. Figure 25.14b shows a typical charge sensing data of IQPC indicating the
single photoelectron detection [9]. Soon after an electron is photo-generated in the
dot, it starts resonantly tunneling between the (1,4) and (0,5) states. This gives rise
to oscillations of IQPC between two levels corresponding to the two charge states.
The oscillation frequency is given by the inter-dot tunneling rate. Finally in about
200 ms the excess electron goes out to the lead and then the (0,4) state is restored.
This way of photoelectron detection is more reliable than that using single QD in
Fig. 25.13 and in addition nondestructive because the photoelectron does not escape
from the DQD. The photoelectron detection efficiency is 15–20 % same as in the
single QD experiment [9].
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Fig. 25.15 (a) Schematic of
Pauli spin blockade predicted
for a photo-generated electron
in a double QD having an
up-spin residing electron in
the right dot. Left: For the
photo-excitation of an
anti-parallel electron spin to
the residing electron the
charge state undergoes a (1,1)
to (0,2) transition by inter-dot
tunneling. Right: For the
photo-excitation of a parallel
spin the (1,1) to (0,2)
transition is blocked by Pauli
effect. (b) Detection
probability of blocked
photoelectron for parallel
spins in the left right panel of
(a) for various incident
photon polarization. The
residing electron spin in the
dot is polarized by the
magnetic field of ˙1 T. The
excitation light pulse intensity
is 0.2 photons/pulse

25.6.1.3 Angular Momentum Transfer from Single Photons to Single

Electrons

Pauli-spin blockade (PSB) for DQDs having two electrons has often been used to
detect the spin orientation [11]. We apply this method for the photoelectron detec-
tion experiment described in Sect. 25.6.1.2 to demonstrate the angular momentum
transfer from single photons to single electrons.

The way to judge the spin orientation of photoelectrons is schematically shown in
Fig. 25.15a. Suppose an electron is initially trapped by the right dot. A photoelectron
spin trapped by the left dot can tunnel to the left dot if it is antiparallel to the
electron spin of the right dot. This is not the case if it is parallel to the electron
spin of the right dot because the inter-dot tunneling is blocked by Pauli exclusion.
The inter-dot tunneling only starts in a time scale (>ms) of spin relaxation after the
photo-excitation (blocked inter-dot tunneling). The different processes due to the
spin orientation of the photoelectron can be detected by the charge sensor. In the
real experiment the inter-dot tunneling time and tunneling time from the right dot to
the right lead are both set to the value much shorter than the time resolution of the
measurement (0.1 ms). Then the blocked inter-dot tunneling can only be detected
by the charge sensor. The non-blocked tunneling cannot be detected because the
photoelectron instantly escapes to the right lead.
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In the experiment the DQD is initialized to the (0,1) state under a magnetic
field of B=˙1 T to polarize the residing electron spin along the magnetic field.
A quarter wavelength plate is used to change the polarization of incident photons
between clockwise (�C polarization for the wavelength plate angle � D 0ı) and
anti-clockwise (�� polarization for � D 90ı) via the linear polarization states.
The detection probability of the blocked inter-dot tunneling of single photoelectrons
is plotted for various incident photon polarizations in Fig. 25.15b. We see that the
photoelectron spin orientation changes depending on the incident photon polariza-
tion [1]. The same result is obtained when the magnetic field direction is reversed
with B = �1T to initialize the residing electron spin in the opposite direction. The
photon polarization dependence of the blocked photoelectron detection probability
is reversed as expected. These results indicate that the angular momentum is
projected from the single photon to the single electron.

In the experiment of Fig. 25.15 photoelectrons are predominantly generated in
the GaAs buffer layer. The heavy hole (HH) band with mj D ˙3=2 and light hole
(LH) band with mj D ˙1=2 are degenerate in the bulk GaAs, therefor �C photons
can generate down-spin electrons with sz D �1=2 through the mj D �3=2HH
excitation and up-spin electrons with sz D 1=2 through the mj D �1=2LH
excitation. On the other hand �� photons can generate up-spin electrons through
the mj D 3=2HH excitation and down-spin electrons through the mj D 1=2 LH
excitation. Because the HH band has the density of states three times larger than the
LH band, down-spin (up-spin) electrons are predominantly generated by the �C.��/
photon. However, for the quantum state transfer beyond the angular momentum
transfer selective excitation of either HH or LH is necessary. For this purpose we
use a double heterostructure quantum well of n-AlGaAs/GaAs/AlGaAs instead of a
single heterostructure n-AlGaAs/GaAs in which the HH and LH band degeneracy
is lifted.

25.6.2 Transfer of Single Electrons Between Distant QDs

To coherently manipulate traveling electrons or paired electrons in solids can
provide solid-state quantum information with a new degree of freedom analogous
to quantum optics for generating flying qubits and their entanglement. However,
the technique has long remained challenging because of strong influence from
the environment to collapse the coherence. In this section we describe a newly
developed technique for transferring single electrons between distant quantum dots
[13, 26].

25.6.2.1 Electron Transfer Using Surface Acoustic Wave

Conducting electrons in Fermi sea become readily admixed with or indistinguish-
able from other electrons while propagating. This indicates that the electrons as
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quantum information carriers easily lose their information. This can only be avoided
by transferring single electrons being isolated from the environment just like
photons. There may be two possible approaches for it: shuttling electrons through a
series of QDs and trapping electrons in a confining potential induced by a surface
acoustic wave (SAW). We take the second approach. Then in addition to the SAW a
single electron source, an electron propagation waveguide and a single electron trap
should be prepared.

Here we use a single QD as the electron source and as the electron trap, a
fully depleted one-dimensional (1D) channel as the waveguide, and a SWA burst
as the propagation medium. SAW is a crystal strain wave travelling near the surface,
and can be generated by applying a microwave to an inter-digital transducer (IDT)
placed on the crystal surface in piezo-electric materials like GaAs.

SAW propagates as a periodic potential wave for conducting electrons in a
specific crystallographic direction with no substantial dumping. Confined by the
SAW induced potential and the 1D waveguide potential in a 2D plane a three-
dimensionally confining potential moving at the SAW velocity, i.e. “Moving QD” is
established. We use this moving QD to transfer an electron between two distant
QDs, while being isolated from the environment. The change of the electron
occupation in each dot is precisely detected using a nearby QPC as a charge sensor.

Figure 25.16a is an electron micrograph of the device used for the experiment.
Two QDs, source QD and trap QD, and a 3-�m long channel connecting the two
dots are defined in a 2DEG by surface Schottky gates. The 1D channel is depleted
by applying large negative voltages to the side gates. Just one electron is initially
loaded to the source QD while keeping the trap QD empty. Note before sending the
SAW burst to the source QD, the junction potentials to the outside are appropriately
adjusted so that the residing electron is ejected from the source QD by the SAW and
the electron being carried by the SAW is captured by the trap QD.

Fig. 25.16 (a) Electron micrograph picture of the device used for the experiment of single electron
transfer. Two QDs (electron source and trap) are separated by a 3-�m long one-dimensional
channel defined by Schottky gates. The electron occupation of each dot is detected by a nearby
QPC as a charge sensor. A SAW is generated by applying a microwave to an IDT placed 2 mm
to the left of the left dot. (b) Temporal change of the charge sensor current showing transfer of a
single electron from the source QD to the trap QD by SAW. A 200 ns burst of SAW is irradiated to
the IDT at time 50 ms
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Figure 25.16b shows the changes of the charge sensors to the source and trap
QDs when a burst of SAW is turned on. Upon irradiation of the SAW the source QD
becomes empty and the trap QD becomes occupied by one electron. This indicates
one electron transfer. The transfer time calculated from the sound velocity in the
crystal is about 1 ns for 3�m, which is much shorter than the spin dephasing time.
We find that the probability of success exceeds 90 % after a number of experiments
of the single electron transfer. The same SAW technique can apply for picking up
one electron out of two electrons residing in the source QD and transferring to the
trap QD (not shown) [13]. The success probability is about 90 %. Because the two-
electron state is assumed to be a spin single state, this experiment implies formation
of a spatially separated singlet state.

The first experiment of Fig. 25.16a demonstrates preparation of a single electron
emitter, a 1D waveguide and a single electron detector. When combined with a
beam splitter and interferometer, basic elements of quantum electron optics will
be established.

25.7 Conclusions and Prospects

We have discussed coherent control of electron spins in quantum dots for possible
application as qubits and quantum information processing. Various signatures of
spins in single and coupled quantum dots had been revealed because the electron
spin is a state quantum number in quantum dot system. Key ingredients for the
quantum information are spin Rabi oscillation by electric dipole spin resonance
and SWAP gate using exchange interactions. From the viewpoint of scalability,
our proposed micro-magnet technology is promising. Recently, multiple qubit
systems had been realized in various systems, which had boosted the research
and technology in the related fields. Further breakthroughs are definitely still
to be explored like controlling quantum entanglement, quantum error correction,
suppression of decopherence, and key idea for the scalability.

Acknowledgements Part of this work was supported financially by JSPS MEXT Grant-in-Aid for
Scientific Research on Innovative Areas (Grant No. 21102003) and Funding Program for World-
Leading Innovative R&D Science and Technology (FIRST).

References

1. T. Asayama, T. Fujita, H. Kiyama, G. Allison, A.D. Wieck, A. Oiwa, S. Tarucha (unpublished)
2. S.D. Barrett, T.M. Stace, Continuous measurement of a microwave-driven solid state qubit.

Phys. Rev. Lett. 96, 017405 (2006)
3. R.L. Bell, Electric dipole spin transition in InSb. Phys. Rev. Lett. 9, 52–54 (1962)
4. R. Brunner, Y.-S. Shin, T. Obata, Y. Tokura, M. Pioro-Ladrière, T. Kubo, T. Taniyama, S.

Tarucha, Realization of a spin two-qubit gate with semiconductor quantum dots using an
inhomogeneous Zeeman field. Phys. Rev. Lett. 107, 146801 (2011)



566 S. Tarucha et al.

5. G. Burkard, D. Loss, D.P. DiVincenzo, Coupled quantum dots as quantum gates. Phys. Rev.
B 59, 2070–2078 (1999); G. Burkard, G. Seelig, D. Loss, Spin interactions and switching in
vertically tunnel-coupled quantum dots. Phys. Rev. B 62, 2581–2592 (2000)

6. R.S. Deacon, Y. Kanai, S. Takahashi, A. Oiwa, K. Yoshida, K. Shibata, K. Hirakawa, Y. Tokura,
S. Tarucha, Electrically tuned g-tensor in an InAs self-assembled quantum dot. Phys. Rev. B
84, 041302(R) (2011)

7. J.M. Elzerman, R. Hanson, L.H. Willems van Beveren, B. Witkamp, L.M.K. Vandersypen, L.P.
Kouwenhoven, Single-shot read-out of an individual electron spin in a quantum dot. Nature
(London) 430, 431 (2004)

8. T. Fujisawa, D.G. Austing, Y. Tokura, Y. Hirayama, S. Tarucha, Allowed and forbidden
transitions in artificial hydrogen and helium atoms. Nature 419, 278 (2002)

9. T. Fujita, H. Kiyama, K. Morimoto, S. Teraoka, G. Allison, A. Ludwig, A.D. Wieck, A.
Oiwa, S. Tarucha, Nondestructive real-time measurement of charge and spin dynamics of
photoelectrons in a double quantum dot. Phys. Rev. Lett. 110, 266803–266807 (2013)

10. V.N. Golovach, M. Borhani, D. Loss, Electric-dipoleinduced spin resonance in quantum dots.
Phys. Rev. B 74, 165319–165322 (2006)

11. R. Hanson, L.P. Kouwenhoven, J.R. Petta, S. Tarucha, L.M.K. Vandersypen, Spins in few-
electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007)

12. T. Hatano, M. Stopa, S. Tarucha, Single-electron delocalization in hybrid vertical-lateral double
quantum dots. Science 309, 268 (2005)

13. S. Hermelin, S. Takada, M. Yamamoto, S. Tarucha, A.D. Wieck, L. Saminadayar, C. Bauerle,
T. Meunier, Electrons surfing on a sound wave as a platform for quantum optics with flying
electrons. Nature 477, 435–438 (2011)

14. S.M. Huang, Y. Tokura, H. Akimoto, K. Kono, J.J. Lin, S. Tarucha, K. Ono, Spin bottleneck in
resonant tunneling through double quantum dots with different Zeeman splittings. Phys. Rev.
Lett. 104, 136801 (2010)

15. X. Hu, S. Das Sarma, Hilbert-space structure of a solid-state quantum computer: two-electron
states of a double-quantum-dot artificial molecule. Phys. Rev. A 61, 062301–062319 (2000)

16. Y. Kato, R.C. Myers, D.C. Driscoll, A.C. Gossard, J. Levy, D.D. Awschalom, Gigahertz
electron spin manipulation using voltage-controlled g-tensor modulation. Science 299, 1201–
1204 (2003)

17. F.H.L. Koppens, C. Buizert, K.J. Tielrooij, I.T. Vink, K.C. Nowack, T. Meunier, L.P. Kouwen-
hoven, L.M.K. Vandersypen, Driven coherent oscillations of a single electron spin in a quantum
dot. Nature 442, 766–771 (2006)

18. F.H.L. Koppens, D. Klauser, W.A. Coish, K.C. Nowack, L.P. Kouwenhoven, D. Loss,
L.M.K. Vandersypen, Universal phase shift and nonexponential decay of driven single-spin
oscillations. Phys. Rev. Lett. 99, 106803 (2007)

19. H. Kosaka, H. Shigyou, Y. Mitsumori, Y. Rikitake, H. Imamura, T. Kutsuwa, K. Arai, E.
Edamatsu, Coherent transfer of light polarization to electron spins in a semiconductor. Phys.
Rev. Lett. 100, 096602–096605 (2008)

20. K.P. Kouwenhoven, D.G. Austing, S. Tarucha, Few-electron quantum dots. Rep. Prog. Phys.
64, 701 (2001)

21. L.S. Levitov, E.I. Rashba, Dynamical spin-electric coupling in a quantum dot. Phys. Rev. B 67,
115324 (2003)

22. R. Li, J.Q. You, C.P. Sun, F. Nori, Controlling a nanowire spin-orbit qubit via electric-dipole
spin resonance. Phys. Rev. Lett. 111, 086805 (2013)

23. D. Loss, D. DiVincenzo, Quantum computation with quantum dots. Phys. Rev. A 57, 120
(1998)

24. S. Maekawa, Concept of Spin Electronics (Oxford University Press, Oxford/New York, 2006)
25. B.D. McCombe, S.G. Bishop, R. Kaplan, Combined resonance and electron g values in insb.

Phys. Rev. Lett. 18, 748–750 (1967)
26. R.P.G. McNeil, M. Kataoka, C.J.B. Ford, C.H.W. Barnes, D. Anderson, G.A.C. Jones, I. Farrer,

D.A. Ritchie, On-demand single-electron transfer between distant quantum dots. Nature 477,
439–442 (2011)

27. F. Meier, B.P. Zakharchenya (eds.), Optical Orientation (Elsevier, Amsterdam, 1984)



25 Spin Qubits with Semiconductor Quantum Dots 567

28. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge
University Press, Cambridge, 2000)

29. K.C. Nowack, F.H.L. Koppens, Y.V. Nazarov, L.M.K. Vandersypen, Coherent control of a
single electron spin with electric fields. Science 318, 1430–1433 (2007)

30. T. Obata, M. Pioro-Ladriere, Y. Tokura, T. Kubo, K. Yoshida, T. Taniyama, S. Tarucha,
Coherent manipulation of individual electron spin in a double quantum dot integrated with
a micromagnet. Phys. Rev. B 81, 085317 (2010)

31. K. Ono, D.G. Austing, Y. Tokura, S. Tarucha, Current rectification by Pauli exclusion in a
weakly coupled double quantum dot system. Science 297, 1313 (2002)

32. J.R. Petta, A.C. Johnson, J.M. Taylor, E.A. Laird, A. Yacoby, M.D. Lukin, C.M. Marcus, M.P.
Hanson, A.C. Gossard, Coherent manipulation of coupled electron spins in semiconductor
quantum dots. Science 309, 2180 (2005)

33. A. Pioda, E. Totoki, H. Kiyama, T. Fujita, G. Allison, T. Asayama, A. Oiwa, S. Tarucha, Single-
shot detection of trapping and resetting single electrons generated by single photons in a lateral
quantum dot. Phys. Rev. Lett. 106, 146804–146807 (2011)

34. M. Pioro-Ladrière, T. Obata, Y. Tokura, Y.-S. Shin, T. Kubo, K. Yoshida, T. Taniyama, S.
Tarucha, Electrically driven single-electron spin resonance in a slanting Zeeman field. Nat.
Phys. 4, 776–779 (2008)

35. E.I. Rashba, Theory of electric dipole spin resonance in quantum dots: mean field theory with
gaussian fluctuations and beyond. Phys. Rev. B 78, 195302 (2008)

36. E.I. Rashba, V.I. Sheka, Electron-dipole spin resonance, in Landau Level Spectroscopy, chapter
4, ed. by G. Landwehr, E.I. Rashba (Amsterdam, North-Holland, 1991), pp. 131–206

37. G. Salis, Y. Kato, K. Ensslin, D.C. Driscoll, A.C. Gossard, D.D. Awschalom, Electrical control
of spin coherence in semiconductor nanostructures. Nature 414, 619–622 (2001)

38. Y.-S. Shin, T. Obata, M. Pioro-Ladriere, Y. Tokura, R. Brunner, T. Kubo, K. Yoshida, S.
Tarucha, Single-spin readout in a double quantum dot integrated with a micromagnet. Phys.
Rev. Lett. 104, 046802 (2010)

39. M.D. Shulman, O.E. Dial, S.P. Narvey, H. Bluhm, V. Umansky, A. Yacoby, Demonstration of
entanglement of electrostatically coupled singlet-triplet qubits. Science 336, 202 (2012)

40. C.P. Slichter, Principles of Magnetic Resonance. Springer Series in Solid-State Sciences, 3rd
edn. (Cambridge University Press, Cambridge, 1996)

41. D. Stepanenko, N.E. Bonesteel, D.P. DiVincenzo, G. Burkard, D. Loss, Spin-orbit coupling
and time-reversal symmetry in quantum gates. Phys. Rev. B 68, 115306–115314 (2003)

42. S. Tarucha, Y. Tokura, Control over single electron spins in quantum-dots, in Comprehensive

Semiconductor Science and Technology, ed. by P. Bhattacharya, R. Fornari, H. Kamimura.
Physics and Fundamental Theory, vol. 2 (Elsevier, Amsterdam, 2011), pp. 23–67

43. S. Tarucha, D.G. Austing, T. Honda, R.J. van der Hage, L.P. Kouwenhoven, Shell filling and
spin effects in a few electron quantum dot. Phys. Rev. Lett. 77, 3613 (1996)

44. J.M. Taylor, J.R. Petta, A.C. Johnson, A. Yacoby, C.M. Marcus, M.D. Lukin, Relaxation,
dephasing, and quantum control of electron spins in double quantum dots. Phys. Rev. B 76,
035315 (2007)

45. Y. Tokura, W.G. van der Wiel, T. Obata, S. Tarucha, Coherent single electron spin control in a
slanting Zeeman field. Phys. Rev. Lett. 96, 047202–047205 (2006)

46. Y. Tokura, T. Kubo, W.J. Munro, Power dependence of electric dipole spin resonance. JPS
Conf. Proc. 1, 012022 (2014)

47. Y. Tomita, M. Gutiérrez, C. Kabytayev, K.R. Brown, M.R. Hutsel, A.P. Morris, K.E. Stevens,
G. Mohler, Comparison of ancilla preparation and measurement procedures for the steane
[[7,1,3]] code on a model ion-trap quantum computer. Phys. Rev. A 88, 042336 (2013)

48. L.M.K. VanderSypen, I.L. Chuang, NMR techniques for quantum control and computation.
Rev. Mod. Phys. 76, 1037–1069 (2004)

49. R. Vrijen, E. Yablonovitch, A spin-coherent semiconductor photo-detector for quantum
communication. Physica E 10, 569–575 (2001)

50. J. Yoneda, T. Otsuka, T. Nakajima, T. Takakura, T. Obata, M. Pioro-Ladriere, H. Lu, C.J.
Palmstrom, A.C. Gossard, S. Tarucha, Fast electrical control of single electron spins in
quantum dots with vanishing influence from nuclear spins. Phys. Rev. Lett. 113, 267601 (2014)



Chapter 26

Silicon Quantum Information Processing

Takeharu Sekiguchi and Kohei M. Itoh

26.1 Introduction

As the modern computer is built on the silicon technology, it would be favorable
if quantum computation is realized on the same material. Is it possible to build a
silicon-based quantum computer? One of the candidates was proposed by Kane in
1998 [1]: The nuclear spin 1/2 of the phosphorus (31P) donor impurity in silicon
crystal. In 2002, the present authors’ group has proposed an alternative way: all
silicon quantum computer employing the nuclear spin 1/2 of 29Si isotope as a
qubit [2]. Generally speaking, a spin qubit among many different kinds of qubits is
relatively robust to environmental fluctuations so that its quantum state stays intact
for a long time. Compared to an electron spin, a nuclear spin has three orders of
magnitude smaller magnetic dipole moment and thus much weaker interaction with
external perturbations. Accordingly, a nuclear spin has a much longer coherence
time than an electron spin, while an electron spin can be manipulated (rotated) in
shorter time than a nuclear spin. Hybrid quantum computer architectures are studied
very actively. They employ different kinds of qubits with advantages as different
components, e.g., quantum memory and quantum processor in a quantum computer.
In practice, a quantum error correction (QEC) algorithm needs to be applied in
order to store quantum information in qubits. If a minimum set of the QEC can
be performed within the coherence time T2 of the qubits, they serve as a quantum
memory by repeated application of the QEC. In this regard, the long-coherence
nuclear spins are suited for quantum memory.

One of challenges is the smallness of the magnetic dipole moment of a nuclear
spin making it difficult to be polarized (initialized) and measured (readout). In
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the solid-state NMR, the thermal equilibrium polarization is less than 0.1 % even
at a low temperature 4.2 K and under a high field 10 T for 1H nuclide, whose
dipole moment is relatively large among nuclides, and also the magnetic energy
is very small so that it is necessary to prepare an ensemble of more than 1018

equivalent nuclear spins for measuring a polarized part of spins in the ensemble.
However, recent studies have reported that these difficulties can be overcome.
Initialization, control, and readout of a single nuclear spin in a silicon wafer have
been demonstrated, as shown later. It should be noted that there are defects in other
solid-state systems, e.g., nitrogen-vacancy (NV) centers in diamond, whose single
nuclear spin state can be optically initialized, optically readout, and manipulated by
microwave at room temperature.

In parallel, the scalability is regarded to be one of the crucial challenges for
realization of a practical quantum computer architecture. Here a quantum system
demonstrated already to serve as one or a few qubits needs to be scaled to a large
number of qubits and integrated into a small volume with a limited amount of
resources. For example, factoring a 600-digit integer by Shor’s algorithm requires
4000 logical qubits [3], and QEC demands a far more number of ancillary qubits.
In total, more than 108 qubits are necessary to build a quantum computer [3]. In
this regard, silicon has an advantage of established large-scale integrated-circuit
technology.

26.2 Single Spin Versus Spin Ensemble

A qubit composed of a single spin would be favorable for quantum computation or
quantum memory. It was experimentally demonstrated very recently that a single
individual spin in silicon can serve as a qubit [4–6]. A decade ago when we initiated
solid-state spin-based quantum computing research, it was necessary to start our
research from an ensemble of spins in silicon. Therefore, let us first discuss how one
can treat an ensemble of spins as a collection of single qubits whose expectation
values indeed represent that of a single qubit and what condition is required to
perform a truly quantum-mechanical computation.

The first condition for quantum computation, i.e., a computation that cannot
be accomplished by a classical computer, is that the qubits need to be initialized
to pure states. In other words, while early NMR quantum computation studies
employed only a small, polarized part in an ensemble of nuclear spins for what
they called quantum computation, the initial state created by such a pseudo-pure
state approach is not sufficiently pure and a quantum algorithm executed on such
a pseudo-pure initial state cannot produce true quantum computation. Figure 26.1
shows representative spin qubits in silicon. Focusing on the 31P nuclear spins,
Fig. 26.1a, b correspond to single-spin qubit and spin-ensemble qubit. To treat this
spin ensemble in an equivalent manner as the single spin, all the 31P nuclear spins
in the ensemble need to be indistinguishably equivalent. Even if a perfect silicon
crystal that does not contain chemical impurities or structural defects except for
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Fig. 26.1 Spin qubits in silicon crystal. (a) A qubit of single 31P nuclear spin at a single P atom.
(b) A qubit composed of 31P nuclear spin ensemble of many P atoms (two shown here). The green,
orange, and violet arrows represent the spins of 31P nucleus, donor electron, and 29Si isotope,
respectively; The red and pink spheres represent the no-spin 28Si and 30Si isotopes, respectively

the P donors is employed, the existence of the three kinds of stable Si isotopes
(28Si, 29Si, 30Si) causes crucial imperfectness around the P donors, i.e., the spatial
inhomogeneity of the isotope mass of the surrounding Si atoms, and the spatial and
temporal fluctuations of local magnetic field due to non-zero nuclear spin of 29Si.
Such isotopic fluctuations can be removed by employing a Si single-crystal enriched
in 28Si. Such enriched silicon results in remarkable enhancement of coherence times
of electron and nuclear spins of the P donor. Furthermore, the initialization of the
spin-ensemble qubit requires polarization of not only the 31P nuclear spins but also
the associated electron spins. (In Fig. 26.1, all the 31P nuclear spins and electron
spins are aligned up and down, respectively.) In the following, we review first the
nuclear spin polarization, followed by the spin coherence times, and finally the most
recent developments.
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26.3 Initialization of Nuclear Spins

The straightforward way to obtain higher polarization of spins is to put them at lower
temperature and in higher magnetic field. At 2.9 K and 3.4 T, the P donor electron
spins have a polarization of 66 % in thermal equilibrium. However, its nuclear spin
(31P) has only 0.04 % polarization in the same condition. Therefore, the nuclear spin
polarization needs to be greatly enhanced by some nonequilibrium manner. One of
such methods is depicted in Fig. 26.4a, b, i.e., When the electron spin is polarized
at low temperature and high field, a microwave pulse and a radio-frequency pulse
that are resonant to specific ESR and NMR transition, respectively, can transfer the
electron spin polarization to the nuclear spin. In the same temperature and field as
above, 64 % nuclear spin polarization was achieved [7] Furthermore, nonresonant
infrared (IR) laser excitation led to a nuclear spin polarization (for 209Bi donor)
essentially equal to the electron spin polarization (more than 99 %) at 1.5 K and 6 T
[8]; A visible light excitation yielded 68 % 31P nuclear spin polarization at 1.4 K
and 8.5 T [9].

Furthermore, even when the electron spin polarization is very weak, the 31P
polarization as high as 90 % was reported by using an infrared laser resonant to the
P donor bound exciton (BE) transition [10]. Figure 26.2a shows photoluminescence
excitation (PLE) spectra of the P donor bound exciton transition [11]. The upper
broad spectrum is from isotopically natural Si crystal (natSi), and the lower spectrum
exhibiting 12 hyperfine-split lines is from 28Si-enriched Si crystal ([29Si] D 50 ppm).
Thus, suppression of the spatial inhomogeneity of the Si isotope mass by 28Si
enrichment resulted in drastic reduction of the BE linewidth and clear resolution
of hyperfine doublets due to 31P nuclear spin (I D 1/2). As indicated by red and
blue arrows, the two lines in each doublet correspond to up and down nuclear
spins (mI D C1/2 and �1/2), respectively, and wider six lines are due to different
combinations of the ground electron spin and bound-exciton hole spin states. By
using this 28Si-enriched silicon, both the electron and nuclear spins can be initialized
to a particular state by illuminating a pumping IR resonant to a relevant electron-
nuclear spin state, as shown in Fig. 26.2b [12]. The bottom (black) spectrum like

J

Fig. 26.2 Bound exciton spectra of P donors in silicon crystals. (a) Spectra from P donors in natSi
and 28Si crystals measured by PLE spectroscopy [11]. The 28Si enrichment reduces the linewidth
and thus makes the six doublets clearly resolved. The blue and red arrows represent the orientations
of the electron and nuclear spins, respectively, in the donor ground state. (b) PLE spectra from an
n-type 28Si crystal [12]. The bottom one was measured without pumping laser illumination. The
upper green and blue spectra resulted from the pumping laser at the line 8 and 6, respectively. The
selective pumping makes only the three of twelve lines appear, indicating that both the electron
and nuclear spins are initialized to a particular state depending on the pumping laser frequency. (c)
High sensitivity spectra from a p-type 28Si crystal measured by Auger electron detection [10]. The
SNR was improved from (b) despite the three orders of magnitude lower concentration of P donors.
The lower spectrum shows the unpolarized state without pumping, and the upper one exhibits the
polarization higher than (b) when pumped at the line 6 along with selective RF excitation
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Fig. 26.2a is obtained without pumping IR, indicating negligible polarization of both
the electron and nuclear spins. (The six doublets have different intensities due to
different optical transition probabilities.) The top (blue) and middle (green) spectra
are observed with a resonant pumping laser at 6 and 8, respectively, while sweeping
the probe laser. In both the spectra, only three lines out of twelve are visible.
This demonstrates that the resonant pumping polarizes the electron and nuclear
spins in the donor ground state. The Auger relaxation process after the resonant
pumping resulted in the initialized state, where only the electron spin is reversed
from the ground state. Indeed, this polarizing method yielded polarizations of 90 %
for the donor electron and 76 % for 31P nuclear spin [12]. The spin polarizations
are improved to 97 % (electron) and 90 % (31P) by further enrichment of 28Si
and reduction of P donor concentration combined with RF radiation resonant to
particular NMR transitions (See Fig. 26.2c [10]).

On the other hand, a different method is required to hyperpolarize the 29Si nuclear
spins as they cannot bind paramagnetic electrons in contrast to 31P. For this purpose,
the effects of optical and dynamical nuclear polarizations (ONP and DNP) have been
studied utilizing electron and nuclear spin polarizations of paramagnetic centers.
Using the P donor ground state and the spin triplet state (SL1 center) of oxygen-
vacancy center, the 29Si nuclear polarization was enhanced to 1.5 % [13] and 6.4 %
[14], respectively, which are more than three orders of magnitude higher than the
thermal polarization. However, these values are not sufficient for quantum memory
application. We have investigated the SL1 center in more details and obtained more
than 80 % polarization of 29Si nuclear spins (at a specific site) [15], as explained in
Sect. 26.5.2.

26.4 Coherence Times

26.4.1 Electron Spin Coherence Times T2e

As mentioned in Sect. 26.2, the 29Si concentration in silicon needs to be minimized
to extend the spin coherence times of the donor electron and nucleus to a sufficient
level. In 2003, T2e > 60 ms (donor concentration of 1015 cm�3, temperature of 7 K)
was reported for P donors in 28Si-enriched crystal [16]. In 2012, T2e was extended to
c.a. 1 s by reducing the 29Si concentration and the P donor concentration to 50 ppm
and 1 � 1014 cm�3, respectively, and measuring at 1.8 K [17]. However, this value
is still 3 orders of magnitude shorter than the electron spin-lattice relaxation time
T1e D 2000 s, indicating far below the ideal electron spin coherence. Apart from the
magnetic field fluctuation due to surrounding 29Si nuclear spins [18, 19], one of
the dominant decoherence sources should be the magnetic dipole-dipole interaction
between the donor electrons themselves. Indeed, T2e depends strongly on the donor
concentration below 7 K, as shown in Fig. 26.3a [17]. By applying a spatial gradient
on the static magnetic field to suppress the effective concentration of the donors that
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Fig. 26.3 Spin coherence times of P atom ensembles. (a) The electron spin coherence time
T2e measured by the conventional ESR spectroscopy depends on the temperature and the P
concentration. The spin-lattice relaxation time T1e is also plotted as a function of temperature
[17]. (b) The 31P nuclear spin coherence time T2n measured by the AEDMR also depends on the
temperature. The RF pulse sequence (XY16) as given at the upper-right corner is composed of �
pulses of four different phases (X, Y, �X, �Y) to decouple from external field fluctuations while
keeping arbitrary initial states [10]
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are resonant to the microwave pulses, T2e was extended up to 10 s [17]. To extend T2e

further, the donor concentration needs to be lowered further. However, the detection
in the conventional ESR experiment is very difficult because the electron spin echo
intensity would be decreased in proportion to the donor concentration. To overcome
this difficulty, the bound exciton transition was combined into the spin coherence
experiment, as described in Sect. 26.4.2.

26.4.2 Nuclear Spin Coherence Time T2n

As mentioned in the introduction, the nuclear spin coherence time is expected to
be orders of magnitude longer than the electron spin coherence time. While direct
detection of the 31P nuclear spins of dilute donors is difficult by the conventional
NMR, they can be detected through the donor electron spin signal. The most
popular method is the electron nuclear double resonance (ENDOR). The nuclear
spin coherence time T2n can be measured as the electron spin echo intensity by
transferring the nuclear spin coherence (decaying with a time constant T2n) into
the electron spin. In 2008, T2n D 1.8 s of 31P was reported at 5.5 K by ENDOR
of a 28Si crystal (29Si concentration of 800 ppm and P donor concentration around
1014 cm�3) [20]. As for T2e, the concentrations of both 29Si isotopes and P donors
need to be lowered to extend T2n further. However, the reduction of the donor
concentration makes difficult the nuclear spin echo detection by the conventional
ENDOR. An optically detected magnetic resonance (ODMR) method that combines
the PLE spectroscopy and NMR spectroscopy (Sect. 26.3) allows for the detection
of the donor nuclear spin states. However, since silicon is an indirect band-
gap semiconductor, the light emission intensity is much weaker than direct gap
semiconductors like GaAs, and thus the nuclear spin detection of low concentration
donors is still difficult even by ODMR. In the relaxation from the donor bound
exciton state to its ground state, the nonradiative Auger process is four orders
of magnitude dominant over the radiative process. By measuring the conduction
electron (Auger electron) emitted in the nonradiative relaxation instead of photons
in the radiative relaxation, detection sensitivity can be remarkably enhanced. The
bound exciton spectrum by this electrical detection method is shown in Fig. 26.2c
[10]. In spite of that low donor concentration 5 � 1011 cm�3, the SNR is better
than the optically detected PLE spectrum of three orders of magnitude higher
concentration donors (7 � 1014 cm�3). Here, since the 28Si enrichment is improved
to 99.995 %, the linewidth is even more narrowed to resolve the nuclear spin
states more clearly, resulting in the enhancement of the 31P nuclear polarization.
By the Auger electron detected magnetic resonance (AEDMR) experiment, which
combined the Auger electron detection with the NMR spectroscopy, T2n D 44 s
was obtained at 1.7 K even with the simplest Hahn echo sequence [10]. This
T2n was extended to 3 min by applying a dynamical decoupling pulse sequence
that cancelled out the external field fluctuation adaptable to arbitrary initial states
(Fig. 26.3b [10]).
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26.5 Quantum Memory and Quantum Calculation

by Nuclear Spin Ensemble Qubits

26.5.1 Entanglement of the Electron and Nuclear Spins

of the 31P Donors

It has been shown that for 31P nuclear spins in silicon crystal, nearly 100 %
polarization is achieved, the coherence time is very long (minutes) even in the
ensemble, and that their states can be read out by transferring to the electron spin or
by detecting the Auger electrons. In order to employ such an ensemble of nuclear
spins to a practical quantum computation, one of important issues is the fidelity of
the quantum information transfer between the electron spins and the nuclear spins
in the ensemble. The fidelity of 97 % was obtained in the ENDOR experiments that
determined the T2n of the 31P nuclear spin ensemble [20]. Moreover, an entangled
state was created between the electron and nuclear spins in an ensemble of the
P donors by ENDOR [7]. Creation of such entanglement requires the electron
and nuclear spins to be initialized into a pure state with a high fidelity, i.e., it is
required to prepare both spins with high enough polarizations. Conversely, if the
initial state has only weak polarization, it could give only a separable pseudo-
entangled state. Simmons et al. [7] prepared more than 60 % polarizations of both
the electron and nuclear spins, and then applied an RF pulse rotating the nuclear
spin by an angle of �/2 and a microwave pulse rotating the electron spin by � , and
finally obtained an entangled state. These processes (initialization and entanglement
creation) are depicted in Fig. 26.4a–c. Figure 26.4d shows the density matrix
elements of this entangled state measured by quantum tomography. The observation
that only the diagonal elements (1,1), (4,4) and the off-diagonal elements (1,4),
(4,1) have significant values indicates a superposition state between the states 1
and 4, i.e., an entanglement between the electron and nuclear spins. Quantitatively
speaking, the PPT (positive partial transpose) test1 gave the minimum eigenvalue
of �0.19, and the concurrence value as a measure of quantum entanglement2 was
0.43. Both values prove a finite entanglement in the created state. The fidelity of
the entanglement creation process was better than 98 %, and the fidelity of the
entangled state obtained with respect to the ideal Bell state was 68 %. To improve
the entanglement fidelity, a purer initial state is required, i.e., even more highly
polarized electron and nuclear spins need to be prepared. Such a high polarization
will be obtained in a straightforward manner (low temperature and high field) or by
combination with other experimental techniques as described in Sect. 26.3.

1If the partial transpose of the density matrix for a given quantum state is positive definite, this
state is separable and non-entangled (and vice versa). Conversely, if the minimum eigenvalue of
the partial transpose is negative, that state is entangled.
2The higher the concurrent value is (between 0 and 1), the higher the degree of entanglement is.
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Fig. 26.4 Entanglement between electron spins and nuclear spins of P donor ensemble [7]. (a)
Energy level diagram for the P donor electron and nuclear spins. The blue and red arrows indicate
the electron and nuclear spin states, respectively, at each level. The green bar on each level
represents the occupation probability. In the thermal equilibrium at given temperature and field,
the electron spin polarization is more than 60 %, but the nuclear spin polarization is negligible. (b)
Initialization process to polarize the nuclear spins too. The microwave � pulse resonant with the
1$3 transition (�1,3) followed by the RF � pulse resonant with the 3$4 transition (�3,4) polarizes
the nuclear spins upwards, and then waiting longer than the electron spin-lattice relaxation time T1e

results in the exclusive occupation in the state 3. (c) The pulse sequence applied to the initialized
state to create entanglement between the electron spins and the nuclear spins. After the microwave
� /2 pulse resonant with the transition 1$3 (� /21,3) creates the electron spin coherence, the RF
�3,4 pulse creates entanglement. (d) The density matrix elements of the entangled states measured
by quantum tomography. Entanglement is indicated by the observation that only the (1,1), (4,4),
(1,4), and (4,1) elements have significant values
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26.5.2 29Si Nuclear Spin Quantum Memory with a Spin Triplet

Center

The oxygen-vacancy (OV) center in silicon has an electron spin triplet state like
the negatively charged NV center in diamond. While the NV center has a spin
triplet ground state, the spin triple state (SL1 center) of the OV center is optically
excited from the spin singlet ground state (named A center). Therefore, to measure
the electro spin resonance (ESR) spectrum, one needs to excite the OV center into
the triplet state by continuous illumination or to excite by a light pulse followed
by detecting the electron spin echo before the relaxation into the ground state.
On the other hand, due to different relaxation times (0.2–2 ms) for different spin
sublevels in the triplet [15], a simple illumination gives more than 80 % electron
spin polarization at 0.3 T and 12 K [15]. The 29Si located at the nearest neighbor
site of the vacancy of OV in natSi has strong enough hyperfine interaction with the
triplet electron spin to be resolved as satellite peaks by ESR spectroscopy [21]. At
these satellite peaks (resonance fields), the coherence can be transferred between
the triplet electron spin of SL1 and this nearest-neighbor 29Si nuclear spin by a
process illustrated with the energy level diagram in Fig. 26.5a [15]. The SL1 is
initialized into the TC state (the electron spin projection of mS D C1) by optical
excitation and partial relaxation, and then a microwave�/2 pulse creates the electron
spin coherence (EC). A pair of RF � pulse and a microwave � pulse transfers
this coherence into the nuclear spin (SWAP), to create the nuclear spin coherence
(NC). The NC can be swapped back to the EC by the reversed pair of the RF and
microwave� pulses, to detect the 29Si nuclear spin coherence time T2n. The electron
spin echo decay curves measured by this method is shown in Fig. 26.5b [15]. The
apparent decay time constant 0.9 ms is limited by the triplet state lifetime 1.0 ms.
Figure 26.5c shows the experimental result with improved pulse sequence to remove
the effect of the triplet state lifetime [15]. The echo intensity reduction due to the
triplet state lifetime is canceled by fixing the microwave pulse interval in which the
RF pulse interval is swept, and the lower bound of the coherence time T2n > 5 ms was
obtained. This value is close to T2n D 5.6 ms [22] that was reported for the 29Si in the
absence of the SL1 centers by NMR. While the dominant decoherence source for the
latter system is the dipole-dipole interaction between the nuclear spins of equivalent
29Si, which occupies randomly 4.7 % of the total lattice sites due to its natural
abundance [22], the decoherence due to this interaction should be suppressed for the
29Si hyperfine-coupled to the SL1 (low concentration) as this 29Si is magnetically
inequivalent to other uncoupled 29Si. Therefore, another decoherence mechanism
associated with the SL1 electron spins should be dominant for the 29Si coupled with
the SL1.
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Fig. 26.5 Photoexcited triplet states called SL1 center [15]. (a) A partial energy level diagram of
the electron spin triplet excited states and singlet ground state. The electron spin is initialized due
to the different relaxation times (green wavy lines) of the different triplet sublevels. By a SWAP
operation, the electron spin coherence (EC) is transferred to the nuclear spin coherence (NC). (b)
Apparent 29Si nuclear spin coherence time observed by the Davies ENDOR pulse sequence. This
is limited by the lifetime 0.99 ms of the TC state. (c) The improved ENDOR pulse sequence to
remove the effect of the triplet state lifetime, and the true T2n obtained by this method

26.6 Single-Spin Qubit

So far we reviewed the spin-ensemble qubits. Below we focus on recent studies
of the electron spin and nuclear spin qubits of a single P donor atom performed in
University of New South Wales in Australia. Figure 26.6a shows the device structure
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for the electron spin qubit and the 31P nuclear spin qubit at a single phosphorus
atom in silicon [4]. A single electron transistor (SET) structure tunnel-coupled to
a P atom in silicon substrate was fabricated for initialization and readout of the
single-atom electron spin state. Phosphorus was doped by a special ion implantation
method to put a single P atom at a desired position, which guarantees that the
tunneling electron derives from the single P atom instead of an ensemble of P
atoms. A broad-band transmission line is also fabricated on the same substrate
for oscillating field application to manipulate the spin state. A tunnel current flows
depending on the spin state of the electron bound to the P atom, by combination of
the electron Zeeman splitting at high field and the electric potential control by gate
voltages. This spin blockade mechanism was used to demonstrate the initialization
and readout of the electron spin state of the single P atom [4]. Figure 26.6b shows the
electron spin Rabi oscillation [4], demonstrating the control of the single electron
spin by microwave pulses (30–50 GHz) using the broadband transmission line.
Moreover, the coherence time T2e of the single electron spin was measured to be
200 �s with the simplest Hahn echo pulse sequence and extended to 400 �s by
the XYXY dynamical decoupling sequences [4]. Like the electron spin ensemble
of the P donors in natSi, whose T2e is 300 �s measured by the conventional ESR
spectroscopy, the decoherence source for this single electron spin should be 29Si
nuclear spin fluctuation. The fidelities of the initialization, control (manipulation),
readout in this single-spin device were 90 % up, 57 %, 77 %, respectively [4].

Because the 31P nuclear spin is hyperfine-coupled to the donor electron spin,
the ESR frequency has two values depending on the nuclear spin state, whose
difference was measured to be 114 MHz for this single-spin device [5]. Therefore,
when a selective microwave � pulse is applied to excite either ESR transition, the
electron spin is flipped only if the nuclear spin occupies a particular state of the two.
Combining with the spin blockade used for the single electron-spin state detection,
the nuclear spin state can be also read out. Indeed, the nuclear spin readout fidelity
reached better than 99.8 % [5]. Moreover, by applying the RF field (20–90 MHz)
through the broadband transmission line used for the microwave application, the
single nuclear spin control, i.e., NMR spectroscopy is allowed. Apart from NMR
spectra, Rabi oscillation [Fig. 26.6c], Ramsey fringe (effective phase relaxation time
T2n*), and the Hahn echo (coherence time T2n) experiments were performed [5].
Furthermore, the visibility of the Rabi oscillation, T2n*, and T2n were all improved
in the ionized state (DC) compared to the neutral state (D0): visibility from about
60 % to almost 100 %, T2n* D 0.84 ms to 3.3 ms, T2n D 3.5 ms to 60 ms. In particular,
T2n in DC is limited by the 29Si nuclear spin fluctuation as in the case of T2e of the
single electron spin [23].

The advancement of the single-spin experiments using SET has enhanced the
prospect for realization of quantum memory employing the individual nuclear spins
in silicon. So far, the coherence times T2 of both the single donor electron spin and
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the single 31P nuclear spin were limited by the magnetic dipole fluctuation of the
29Si isotopes, whose concentration is 4.7 % in natSi substrates. According to the
spin ensemble experiments of the same donors, employment of the 28Si-enriched
substrate should improve drastically the coherence times of the single spins. In this
way, 28Si-enriched wafers will be used to build MOS quantum circuits on them, and
thus there will be a growing need for the silicon isotope engineering.

26.7 Summary

We reviewed recent development to utilize electron and nuclear spins in silicon
as qubits for quantum computation. In the investigations of electron and nuclear
spin properties based on an ensemble, it has been experimentally demonstrated
that a sufficiently high polarization can be achieved even for the nuclear spins in
the solid state, that 28Si enrichment of the host material can extend the coherence
times of both the electron spins and the nuclear spins, and that the quantum
information transfer and entanglement are possible between the electron spins and
the nuclear spins. While ensemble experiments with low spin concentrations have
been conducted to improve the detection sensitivity and the coherence times as
an extension of the conventional magnetic resonance experiments, the combination
with the SET micro-device has allowed the initialization, manipulation, and readout
of not only the single electron spin but also the single nuclear spin. In the coming
years, we expect that the single electron and nuclear spin qubit device will be
extended to multiple qubits on an isotopically enriched substrates to extend the
coherence and demonstrate the entanglement and multi-bit operations. Along with
this direction, the scalability in perspective of hybridization with other kinds of
quantum systems must be extensively studied to demonstrate it.

J

Fig. 26.6 Electron-spin and nuclear-spin qubits of single P atom in silicon. (a) SEM image of
the microdevice for initialization, manipulation, readout of spins of a single P atom in silicon [4].
On the silicon substrate in which a single P atom is embedded at a desired location, the SET
structure composed of gate electrodes and the transmission line for the oscillating field application
was fabricated. (b) Rabi oscillations of the single electron spin [4]. The electron spin polarization
calculated from the SET current is plotted as a function of the microwave pulse width. The Rabi
frequency is proportional to the square root of the applied microwave power, i.e., the microwave
field amplitude. (c) Rabi oscillations of the single nuclear spin [5]. The nuclear spin flipping
probability is plotted as a function of the RF pulse width. The upper and lower curves correspond
to the neutral donor (D0) and the ionized donor (D�), respectively. The visibility of Rabi oscillation
is enhanced from the electron spin to the nuclear spin, and further enhanced for the nuclear spin by
ionizing the donor, which removes the effect of the electron spin (Note the different scales of the
vertical axes)
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Chapter 27

Quantum Information Processing Experiments

Using Nuclear and Electron Spins in Molecules

Masahiro Kitagawa, Yasushi Morita, Akinori Kagawa, and Makoto Negoro

27.1 Introduction

Quantum information processing (QIP) using nuclear spins in molecules was
proposed in 1996 by Chuang et al. [1] and Cory et al. [2]. Under a static magnetic
field, spin-1=2 particles have two energy levels, corresponding to the states that are
parallel (j"i) and anti-parallel (j#i) to the magnetic field. These quantum states can
be used as the j0i and the j1i of a qubit, respectively. Many nuclei with spin exist in
the organic molecules that form many qubit systems. Since the original proposals,
various small-scale QIP experiments have been demonstrated. In particular, a
demonstration of Shor’s factoring algorithm with 7 qubits (Fig. 27.1a) attracted
major attention [3]. At present, up to 12 qubits (Fig. 27.1b) can be controlled with
sufficient precision to form the Schrödinger’s cat state [4].

Nuclear spin energy is very low and a single nuclear spin qubit can be controlled
by applying magnetic fields at radio frequencies. Gate operations between nuclear
spin qubits can be implemented using J or dipolar interactions. Over the 60-year
history of nuclear magnetic resonance (NMR) spectroscopy, vast knowledge of the
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Fig. 27.1 Nuclear spin systems in molecules. (a) Perfluorobutadienyl iron complex. (b) L-
histidine. (c) Poly-DL-alanine

control of nuclear spins has been accumulated [5]. Additionally, the nuclear spin
qubit has a long decoherence time [6]. The successes of these small-scale QIP
experiments can be attributed in part to these advantages.

QIP experiments using the electron spins in organic molecules have also been
carried out [7, 8]. The electron spin energy is higher than the nuclear spin energy
and the oscillating magnetic field used to control the electron spin is typically in
the microwave region, which is more difficult to handle than its radio-frequency
counterpart. However, microwave technology has advanced greatly in recent years.
It has been found that electron spins also have long decoherence times if they are
isolated from any unwanted nuclear spins [9]. These advances have motivated us to
apply electron spins as qubits.

The main advantage in the use of a molecular spin system lies in its scalability.
In a macromolecular system where n sets of three spin species, A, B, and C,
are aligned on a chain, as shown in Fig. 27.1c, it is possible, in principle, to
implement arbitrary n qubit unitary operations [10]. It is anticipated that future
progress in both macromolecular technology and supramolecular technology [11]
will make it possible to array Avogadro numbers of spins periodically in two or
three dimensions, let alone the 109 spins that are required for fault-tolerant quantum
computation to outperform classical computation [12].

However, low energy spin qubits have two disadvantages. The first is the
difficulty in detection of the tiny signal from a spin, because it is buried under the
thermal noise of the detection apparatus. The other is the difficulty in increasing
the polarization of the spin state, because the thermal energy mixes the spin states,
which causes difficulty in initialization of the qubit state. Two spins with polariza-
tion of less than 41.4 % cannot be entangled with any unitary operations [13, 14].
However, entanglement is a necessary condition for QIP. Most QIP experiments
that use spins in molecules have used pseudo-entanglement, which is generated
by pseudo-initialization techniques in which resources such as the number of
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accumulations or molecules increase exponentially with respect to the number
of qubits. Therefore, the QIP performance based on the entanglement power is
canceled out in these experiments. An entangled cat state involving more than 13
qubits in a molecular spin system has not yet been reported and its implementation
would require a physical initialization technique to increase the spin polarization.

We have been working on the realization of large-scale QIP using the spins
in molecules. We have previously proposed a new method for numerical synthe-
sis of pulse sequences to dynamically decouple unwanted interactions [15, 16].
While the computational cost of the conventional numerical synthesis method
grows exponentially with respect to the size of a qubit system, our proposal can
dramatically reduce the computational cost. We have developed instrumentation for
the irradiation of broadband microwave pulses with arbitrary waveforms, including
optimized decoupling pulses [16–19], which enables us to control the electron spins
as precisely as the nuclear spins. Broadband radio-frequency (RF) or microwave
pulses are deformed by a resonator transient phenomenon. We have developed
techniques to compensate for this deformation [16, 20, 21]. These studies have
further improved the spin qubit controllability. We have studied enhancements
of both polarization and sensitivity to enable us to overcome the disadvantages
of the spin qubit. For electron spins, the polarization can be increased to 99 %
at 150 mK and 0.6 T. For nuclear spins, it is difficult to obtain such hyperpo-
larization by simply lowering the temperature. However, we have succeeded in
producing room-temperature hyperpolarization with dynamic nuclear polarization
using photo-excited triplet electrons [22]. We have also studied spin amplification,
which enhances the sensitivity of spin detection [23]. In this paper, we summarize
our research efforts and discuss the potential use of molecular spin qubits for QIP
in particular, analog quantum simulations and digital quantum computation.

27.2 Spin Qubit Control Techniques

In this chapter, we briefly review the conventional techniques used for the control
of spin qubits, which are detailed in Ref. [24]. Then, we introduce our research with
the aim of controlling spin qubits more precisely.

27.2.1 Conventional Techniques

First, we explain the control of a spin with a gyromagnetic ratio of 
 under a static
magnetic field of B0. By irradiation with an oscillating transverse magnetic field of
2B1 cos 
B0t, we can rotate the spin at an angular frequency 
B1 about the x-axis in
the rotating frame at the oscillating field angular frequency, 
B0. Next, we consider
two spins with a resonant angular frequency difference of �!, which is a result of
the differences in their gyromagnetic ratios, chemical shifts, or g-factors. One of the
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two spins can be selectively rotated with an oscillating field, for which the strength

B1 is much smaller than �!. In many spins, single spins can be also selectively
controlled if each spin has a different resonant frequency. Two-qubit gate operation
can be implemented with spin-spin interactions such as dipolar interaction, J
coupling, or Fermi contact interaction. For many spin systems, an interaction
between a pair of spins can be decoupled by selectively rotating either of the spins.

A universal set of quantum gates can therefore, in principle, be implemented
with the aforementioned techniques. In practice, the fidelity of a quantum gate
can be degraded by, e.g. inhomogeneities of B0 and B1, dephasing, and unwanted
off-resonance effects during selective rotation. To combat the inhomogeneities, a
composite rotation technique using phase modulated pulses has been found to be
effective [25]. Numerical approaches to find an optimally modulated waveform
to reduce the effects of inevitable errors have been studied [26, 27], and will be
explained in the next section. These techniques for modulation of an oscillating
field have been used in small-scale QIP experiments with spin qubit systems and
with other qubit systems.

27.2.2 Numerical Synthesis

For dynamical decoupling (DD) of the interactions between qubit and bath systems
to suppress phase decoherence, the CPMG (Carr-Purcell-Meiboom-Gill) pulse
sequence, which was developed in NMR spectroscopy [28], and the UDD (Uhrig
DD) [29] and QDD (quadratic DD) [30] pulse sequences are used. Most DD
sequences provide ideal performances when the pulse shape is a delta function.
In practice, the oscillating field pulse has both finite amplitude and bandwidth.
Therefore, the decoupling efficiency tends to be degraded from the ideal perfor-
mance level. If the Hamiltonian of the entire system is fully known, then numerical
approaches, e.g. GRAPE (gradient ascent pulse engineering) [27], are useful for
DD under practical resource limitation conditions. This approach optimizes the
waveform to increase the decoupling efficiency, based on numerical calculations
of the unitary evolution of the entire system. In this approach, we can synthesize
a modulated waveform that is robust against the inevitable errors under the
physical resource limitation by incorporating the errors and the limitations into
the calculation of the unitary evolution in the optimization process. However, the
computational cost of calculation of the full unitary evolution grows exponentially
with increasing system size.

We have previously proposed a new method to numerically synthesize a mod-
ulated waveform that can dynamically decouple unwanted interactions [15]. Our
method can fully exploit the symmetry of the system to reduce the computational
costs. We consider a system of an electron spin and nuclear spins with an internal
Hamiltonian HQ�B. Here, we consider the phase decoherence of the electron spin
qubit influenced by the nuclear spin bath under physical resource limitations, e.g.
the limitations of the oscillating field strength and the inevitable oscillating field
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amplitude and phase errors. Under an oscillating field with a periodically modulated
waveform, HRF.t/, the time evolution of the whole system, U.t/, can be easily
described using the Hamiltonian in the so-called toggling frame, QH. The toggling
frame is a type of interaction representation in which time evolution due to the
applied oscillating field is canceled out. The Hamiltonian that includes the errors,
HE, of the oscillating field, H0 D HE C HQ�B, is rewritten in the toggling frame:

QH.t/ D URF.t/
�1.t/H0URF.t/; (27.1)

URF.t/ D exp.�iHRF.t/t/: (27.2)

If URF.t/ becomes the identity operator at a specific cycle time tc, the time
evolution of the whole system is described by:

U.tc/ D OT exp

�
�i

Z tc

0

dt1 QH.t1/
�
; (27.3)

where OT is the Dyson time ordering operator. Using the Magnus expansion, this can
be rewritten as:

U.tc/ D expf�i NHtcg; NH D NH.0/ C NH.1/ C � � � ; (27.4)

NH.0/ D 1

tc

Z tc

0

dt1 QH.t1/; (27.5)

NH.1/ D �i

2tc

Z tc

0

dt2

Z t2

0

dt1Œ QH.t2/; QH.t1/�: (27.6)

NH is called the average Hamiltonian. If 1=tc � jjH0jj, the higher order terms
converge to zero, and the time evolution can thus be described using only a few
low order terms. For more details of average Hamiltonian theory, see e.g. Slichter’s
textbook [5].

Using an orthonormal set of operators f‚˛g, H0 and HRF.t/ can be expressed by

H0 D
X

˛

h˛‚˛; (27.7)

HRF.t/ D
X

˛

!˛.t/‚˛ : (27.8)

The toggling frame Hamiltonian is expressed by

QH.t/ D
X

˛

h˛
X

ˇ

cˇ˛.t/‚ˇ; (27.9)

cˇ˛.t/ D TrŒURF.t/‚˛U�1
RF .t/‚ˇ�=TrŒ‚2

ˇ�: (27.10)



592 M. Kitagawa et al.

Therefore, the average Hamiltonian is expressed as

NH.0/ D 1

tc

X

˛;ˇ

h˛

n Z tc

0

dt1cˇ˛.t1/
o
‚ˇ; (27.11)

NH.1/ D �i

2tc

X

˛;˛0

h˛h˛0

X

ˇ<ˇ0

n Z tc

0

dt2

Z t2

0

dt1

�.cˇ0˛0.t2/cˇ˛.t1/� cˇ0˛.t1/cˇ˛0 .t2//
o
Œ‚ˇ0 ; ‚ˇ�: (27.12)

In our method, we define the cost functions as the terms of Eqs. (27.11)
and (27.12) above that are surrounded by curly brackets. We optimize f!˛.t/g to
minimize these cost functions. By solving a nonlinear programming problem, we
can find the optimal DD waveform numerically. The cost functions used in the
conventional numerical approaches do not correspond to the terms in the curly
brackets described above but do include the coupling coefficients h˛ or h˛h˛0 .
Because our cost functions do not include detailed information about the spin
system, our method can dramatically reduce the computational costs.

An example waveform synthesized using our method is shown in Fig. 27.2. We
used a genetic algorithm in addition to the gradient ascent algorithm for the numeri-
cal optimization process. By taking the amplitude and phase errors of the oscillating
field into consideration, the performance of the synthesized waveform is higher than
the performances of both UDD [29] and QDD [30]. We have also synthesized a
waveform to dynamically decouple the dipolar interactions between qubits. If the
oscillating field strength is limited to a finite value, then the performance of the
synthesized waveform is higher than that of the MREV16 sequence [6]. We have
previously studied the dependence of the decoupling efficiency on the frequency
bandwidth and on the maximum strength of the oscillating field, and detailed results
can be found in Ref. [15].

Our numerical synthesis method, which can dramatically reduce the computa-
tional cost, will also contribute to improvement of the quantum gate fidelity for spin
qubit systems and for other qubit systems.

Fig. 27.2 Numerically synthesized DD pulse sequence, UDD pulse sequence, and QDD pulse
sequence
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27.2.3 Control of the Electron Spins

Typically, the energy of the nuclear spins used as qubits is of the order of 100 MHz,
and the interaction energy between these nuclear spins in solids is of the order of
10 kHz or less. For the precise control of nuclear spin systems with such interaction
strengths, the maximum amplitudes (in terms of 
B1 frequency) and bandwidths of
the RF pulses must be of the order of 100 kHz, in our experience. However, the
energy of the electron spins used as qubits is typically of the order of 10 GHz,
and the interaction energy between the electron spins in the molecules that we
have synthesized is of the order of 10 MHz [8]. Therefore, for precise control of
electron spin systems with such interaction strengths, the maximum amplitudes and
bandwidths of the microwave pulses are required to be of the order of 100 MHz.

We have developed the 17 GHz stripline resonator shown in Fig. 27.3a to obtain
strong pulse irradiation with the required strength and frequency bandwidth [18]. In
this design, the current concentrates on the U-shaped part at the center of the half
wavelength stripline, and a strong magnetic field is induced inside the U-shaped part.
The field-conversion efficiency of this resonator is quite high. In pulsed electron
spin resonance (ESR) experiments, we have demonstrated that strong irradiation
that drives 210 MHz Rabi oscillation can be obtained with an input power of 1 W.
Because the Q factor of the resonator is 85, we can perform the irradiation with a
bandwidth of 200 MHz, which meets the requirement mentioned above. Therefore,
using this resonator and the modulated pulses, we can control electron spins as
precisely as nuclear spins.

To generate the broadband pulses, we have also developed the 17 GHz pulsed
ESR spectrometer shown in Fig. 27.3b [17, 19]. In this spectrometer, the arbitrary
waveform generator outputs a signal with a center frequency of 2.5 GHz and a
bandwidth of 1 GHz. The signal is fed into the mixer with a local oscillator signal
at 14.5 GHz, and is then upconverted to the 17 GHz band. The pulses generated can
be amplified up to 1 W with low distortion. Using this arbitrary waveform pulsed
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ESR spectrometer, we can generate arbitrary modulated pulses that enable us to
fully exploit the broadband stripline resonator and the sophisticated Hamiltonian
engineering.

27.2.4 Transient Compensation

If a pulse with a bandwidth of 200 MHz is fed to a resonator with a bandwidth
of 200 MHz, the amplitude and phase profiles of the irradiated magnetic field
inside the resonator are distorted compared with those of the input pulse waveform
because of the resonator transient phenomenon. The distortion of one such rectan-
gular pulse is shown in Fig. 27.4. The phase distortion causes degradation in the
fidelity of the quantum gate operation. The amplitude distortion destroys the time-
reversal symmetry of the pulse shape and the time-reversal anti-symmetry of the
conventional DD pulse sequences [6, 28]. Because time-reversal antisymmetry is a
sufficient condition for elimination of odd order terms in the average Hamiltonian,
the amplitude distortion thus degrades the efficiency of the DD sequences. The
distortions of both the amplitude and phase profiles should be suppressed even for
numerically synthesized pulses.

The relationship between the magnetic field B1.t/ inside the resonators, which is
irradiated to the spins, and the input waveform v.t/ is described using the response
function h.t/ as

B1.t/ D
Z t

�1
d�h.�/v.t � �/: (27.13)
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The response function can be determined experimentally by monitoring the irradi-
ated field inside the resonator with respect to the broadband step function input. If
the response function is known, we can then calculate the input pulse waveform
required to generate the intended magnetic field inside the resonator. Using the
Laplace transformations QB1.s/; QV.s/; QH.s/ of B1.t/; v.t/; h.t/, respectively, the above
equation can be rewritten as

QV.s/ D
QB.s/
QH.s/

: (27.14)

We can then obtain the input waveform using the inverse-Laplace transformation of
the above. Both the Laplace and the inverse-Laplace transformations are calculated
numerically. We have therefore succeeded in compensating the resonator transient.
The irradiated magnetic field with leading and trailing edges in raised cosine shapes
is shown in Fig. 27.4 [21]. This transient compensation technique makes it possible
to precisely irradiate the spins inside the resonator with a magnetic field with the
intended waveform.

The combination of the numerical synthesis method, the arbitrary waveform
pulsed ESR spectrometer, and the transient compensation technique, which have
been introduced in this chapter, makes it possible to precisely control both nuclear
spin qubits and electron spin qubits. The studies described in this chapter are
detailed in the PhD theses of Tabuchi [16] and Yap [19].

27.3 Hyperpolarization of Spins

27.3.1 Hyperpolarization by Cooling

The polarization of spin-1/2 particles is defined by

� D Nj"i � Nj#i
Nj"i C Nj#i

; (27.15)

where Nj"i and Nj#i are the populations of j"i and j#i, respectively. In thermal
equilibrium under a static magnetic field of B0 at temperature T, the polarization �th

obeys the Maxwell-Boltzmann distribution law as follows:

�th D tanh

�

„B0

2kBT

�
; (27.16)

where 
 is the gyromagnetic ratio, „ is the Planck constant, and kB is the Boltzmann
constant. For example, the polarization of 1H spins at 11.7 T (where the resonant
frequency is 500 MHz) and 300 K is 0.004 %, and the polarization of electron spins
at 0.6 T (where the resonant frequency is 17 GHz) and 300 K is 0.1 %.
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At 150 mK and 0.6 T, the electron spin polarization reaches 99 %. Such a tem-
perature can be obtained using a dilution refrigerator. In this refrigerator, we must
also realize strong and broadband pulse irradiation for precise control, as mentioned
in the previous chapter. However strong irradiation using high microwave power
generates more Joule heat. This Joule heat must not exceed the cooling power of the
refrigerator. To avoid this heating problem, a resonator with a high microwave power
to magnetic field conversion efficiency is required. We have developed the U-shaped
stripline resonator for this purpose. Although the electron spin polarization also
reaches 99 % under higher magnetic fields at higher temperatures, spin control at
the higher frequencies becomes more difficult. To obtain a nuclear spin polarization
of 99 % under a static field of 11.7 T, the sample must be cooled to below 5 mK. At
such a low temperature, the nuclear spin lattice relaxation time is extremely long.
The long relaxation time is discouraging for exploratory experiments that require
repetitive measurements.

27.3.2 Dynamic Nuclear Polarization Using Photo-Excited

Triplet Electrons

Because the sensitivities of NMR spectroscopy and magnetic resonance imaging
(MRI) are proportional to the nuclear spin polarization, various methods to obtain
hyperpolarization have previously been studied. In particular, dynamic nuclear
polarization (DNP) has drawn considerable attention [5, 31, 32]. DNP offers a
means of transferring the spin polarization from the electrons to the nuclei. As
mentioned in the previous section, it is easier to increase the polarization of
electron spins in thermal equilibrium than that of nuclear spins, because the Zeeman
energy of the electron spin is 660 times higher than that of the nuclear spin.
The polarization and the sensitivity can, in principle, be enhanced by at most this
factor through DNP. DNP has been applied not only to sensitivity enhancement in
NMR spectroscopy [33] but also to medical science [34] and fundamental physics
applications including elementary particle physics [35], nuclear physics [36], and
studies of magnetism [32], which will be explained later in the paper. Nuclear spin
polarization of 98 % has already been achieved using DNP at 2.5 T and 0.4 K [37].

To obtain nuclear spin polarization of >10 %, conventional DNP, which uses
electron spins at thermal equilibrium as the polarizing source, requires cryogenic
temperatures (e.g., <17 K under a static magnetic field of 2.5 T). To realize such
hyperpolarization at room temperatures, we have studied DNP using the photo-
excited triplet states of electron spins, known as triplet-DNP [38–42], rather than the
thermal states of electron spins. Some �-conjugated molecules have photo-excited
triplet states, where the population distribution is highly biased, as shown in
Fig. 27.5a. The electron spin polarization is then determined by the selection
rule in the intersystem crossing from the excited singlet state to the triplet state.
In the case of pentacene, the electron spin polarization is 73 %, even at room
temperature. Thus, the triplet-DNP can achieve nuclear spin hyperpolarization at
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room temperature [43, 44]. Owing to the finite lifetime of the triplet electron
spins, the nuclear-spin system becomes free from disturbance by the electron
paramagnetism causing nuclear spin decohrence.

The triplet-DNP procedure, which was developed by Henstra et al. [43], is shown
in Fig. 27.5b. The procedure begins by using a pulsed laser at a wavelength of
597 nm to excite the pentacene in the sample. The hyperpolarization in the photo-
excited triplet state is then transferred to the nuclear spins in the vicinity during the
triplet lifetime by a pulsed DNP process, the integrated solid effect (ISE) [43]. In this
process, the field sweep and the microwave irradiation near the transition frequency
between the triplet sublevels are applied simultaneously. The inhomogeneously-
broadened electron spin packets are swept over adiabatically, and the effective
nutation frequency of the electron spins in the rotating frame is matched with the
1H spin Larmor frequency at some point in the adiabatic process. The photo-excited
triplet state decays non-radiatively to a ground singlet state. The hyperpolarized
spin state then diffuses from the nuclear spins in the vicinity of the polarizing
agent to the entire sample. By repeating this sequence, we can accumulate nuclear
spin polarization until the buildup and the nuclear spin-lattice relaxation reach a
steady state.

In Ref. [43], at room temperature under a field of 0.35 T, the polarization of 1H
spins was increased to 0.66 %, which equated to an enhancement factor of 5,500 in
a single crystal of naphthalene doped with 0.01 mol % pentacene. In Ref. [45], the
enhancement factor at room temperature was 13,000 under a field of 0.3 T with a 1H
spin polarization of 1.3 %, where p-terphenyl was used as host material. By carefully
optimizing the ISE parameters and avoiding heating of the sample, we attained a 1H
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spin polarization of 12 %, as shown in Fig. 27.5c. Recently, we have also achieved
a 1H spin polarization of 34 % in a single crystal of regioselectively deuterated p-
terphenyl-20,30,50,60-d4 doped with fully deuterated pentacene- d14 [46].

Using triplet-DNP, we can now achieve hyperpolarization at room temperatures.
QIP experiments with precise control of the hyperpolarized nuclear spins are
showing promise, and will be discussed later in the paper.

27.4 Sensitivity Enhancement by Spin Amplification

The quantum nondemolition (QND) measurement of the Z component of a spin is
realized in the following manner. We consider a two spin system, incorporating a
spin of interest and an ancilla spin. We can copy the Z component of the spin of
interest to the ancilla spin using a controlled-NOT (CNOT) gate, although a copy of
an arbitrary unknown state itself is prohibited by the no-cloning theorem [47]. By
measuring the Z component of the ancilla spin, we can nondestructively determine
the Z component of the spin of interest. If the thermal noise in the detection
apparatus is larger than the signal that is obtained from the ancilla spin, then
the result may be incorrect. With N repetitions of the CNOT process and the
measurement, as shown in Fig. 27.6a, the signal-to-noise ratio (SNR) is improved
by a factor of

p
N. In inductive detection, which is the most popular method used

for spin detection, the thermal noise is much higher than the induction signal from a
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Fig. 27.6 (a) Conventional quantum circuit for QND measurement with ancilla spin. (b) Quantum
circuit for spin amplification with selective control. (c) Quantum circuit for spin amplification with
spin diffusion. (d) Partial circuit section of circuit (c)
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single spin. The QND measurement of a single spin qubit with inductive detection
requires a tremendous number of repetitions, and is therefore practically impossible.
In this chapter, we introduce a method to measure a spin component using low
sensitivity detection apparatus on the basis of spin amplification.

We consider a system where the spin of interest (S) is surrounded by a buffer
spin Ib and m abundant spins I. In this system, using the quantum circuit in shown
Fig. 27.6b, we can copy the Z spin component of the S spin to all surrounding spins.
By measuring the surrounding spins after the copying process, we can determine
the Z component of the S spin from the amplified signal. Using this method, the
signal is amplified with a gain of N, corresponding to the number of copies, while
it is contaminated by thermal noise only once, in the detection apparatus. Thus, the
SNR is improved by a factor of N. This method is called spin amplification and
was proposed by DiVincenzo [48]. In the circuit, the Z component of S is copied to
the buffer spin Ib by the CNOT gate and then the Z component of Ib is selectively
swapped with one of the surrounding spins I. This requirement for a selective swap
operation for all surrounding spins makes the realization of a high gain very difficult.

The homonuclear spins (the i-th spin Ii and the j-th spin Ij) in bulk solids
composed of organic molecules are coupled with dipolar interactions, H / IiZIjZ �
1
2
.Ii�IjC C IiCIj�/. The flip-flop term .Ii�IjC C IiCIj�/ causes an exchange of

the Z components between the homonuclear spins. Among multiple homonuclear
spins, the Z components of the I spins are shuffled by the flip-flop terms, and
this behavior is known as spin diffusion [49]. We use this spin diffusion behavior
for spin amplification [23]. However, between the heteronuclear spins in a high
magnetic field, the flip-flop term is averaged out because of the large Zeeman energy
difference. Under a low field, where the dipolar interactions between Ib and some
nearby I spins are larger than or comparable to the I-Ib Zeeman energy difference,
the flip-flop terms of the I-Ib coupling are not averaged out. If the I-S couplings are
much smaller than the I-S Zeeman energy difference under the low field, only the
Ib spin attends the I spin diffusion, as shown in the quantum circuit in Fig. 27.6c. In
this circuit, we apply a CNOT operation to the control spin S and the target spin Ib

under a high field, where the flip-flop terms of the I-Ib couplings are averaged out.
After that, we move the sample to a low field to diffuse the Z component of Ib spin
to the I spins. By repeating the CNOT operation and spin diffusion process, we can
accumulate the excited states j1i on the I spins if the S spin state is j1i; otherwise,
the I spins are not excited at all. In this way, the spin component is amplified. In
this circuit, the S spin component is copied to randomly-selected I spins. An I spin
that has already been selected may then be selected again, which leads to errors.
The amplification gain can be scaled up linearly by simultaneously increasing the
number of copies N and the number of I spins m while maintaining N D m=2.

We have also demonstrated that the excited state of the Ib spins can be
accumulated in the I spins using the quantum circuit in Fig. 27.6d. We used a
sample of a single crystal of naphthalene that was doubly-doped with 0.005 mol %
pentacene and 1 mol % 2-fluoronaphthalene, in which a 19F spin (Ib) is surrounded
by 799 1H spins (I) on average. The experimental procedure is as follows. The
procedure began with triplet-DNP to increase the polarizations of the 1H and 19F
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spins to 12 % at 233 K and 0.4 T. We then applied a unitary gate operation, which
was NOT rather than CNOT in this case, to the 19F spin in 0.4 T. Then, we performed
field cycling (0.4 T ! 0.01 T ! 0.4 T) to transfer the excited state of the 19F spin to
the 1H spins by spin diffusion. After repeating the unitary gate and the field-cycling
processes, we observed 1H spin magnetization. We successfully demonstrated a gain
as large as 140 with 200 repetitions, as detailed in Ref. [23]. Spin amplification that
is scalable to produce a higher gain opens the door to single spin measurements and
a readout process for spin-based quantum computers.

27.5 Summary: Toward Spin QIP Experiments

In this paper, we have introduced the results of our research on spin control,
spin hyperpolarization, and sensitivity enhancement. By these advances, scalable
molecular spin qubit systems are more suitable for QIP experiments. In this section,
we discuss the kinds of QIP experiments that will be possible with the scalable
molecular spin qubit system.

First, we discuss the potential for analog quantum simulations. We begin by
briefly describing the notable experiments of Abragam et al. during the 1960s [32].
They attempted to simulate the magnetic phase transitions induced by electron
spin interactions, and used nuclear spin systems to investigate these transitions
under various conditions. To induce a magnetic phase transition in a nuclear spin
system, the temperature should be lower than 1�K, because nuclear spin interac-
tion energies are typically lower than 30 kHz. They achieved such an extremely
low temperature as follows, using paramagnetic-impurity-doped crystal samples
containing many nuclear spins, such as calcium fluoride doped with Tm2C ions.
First, the environmental temperature was reduced to 0.7 K under a static magnetic
field of 2.7 T. Then, submillimeter wave irradiation was performed at the ESR
frequency for DNP. The nuclear spin polarization obtained was comparable to the
electron spin polarization. The temperature that provides the obtained polarization
at thermal equilibrium is defined as the spin temperature. DNP lowers the spin
temperature to the millikelvin regime. After DNP, an oscillating field far off-
resonant with nuclear spins was applied and the frequency was adiabatically swept
to on-resonance. Finally, the oscillating field strength was adiabatically decreased
to 0. Because the system entropy is conserved in adiabatic processes, the spin state
transits to the ground state of the nuclear spin interactions. The spin temperature
is in the sub-microkelvin regime after these processes, which are called adiabatic
demagnetization in the rotating frame. A nuclear ordered state, either ferromagnetic
or antiferromagnetic, was manifested if the spin temperature was below a specific
transition temperature. These researchers also investigated the dependences of
the emergent magnetic phases on the spin temperature and the dipolar coupling
network, using various samples and changing the sample orientations with respect
to the static magnetic field.
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After several decades, a vast knowledge of quantum many-body physics and
quantum information has been accumulated, and various spin control techniques
have been devised, as explained in the preceding sections. Thus, these types of
experiments have considerable significance. Roumpos et al. proposed quantum
simulation of the so-called XXZ model using multiple pulse sequences based on
Abragam’s experiment [50]. While they intended to use a nuclear spin system, the
electron spin system can also be used for the quantum simulation. The spin control
techniques and molecular engineering that we have described here will enable more
complicated types of quantum simulations. Some quantum simulation experiments
were also demonstrated using pseudo-initialization with small numbers of nuclear
spins in molecules [51]. Our aim is to realize true analog quantum simulation using
a scalable many-body spin system and our hyperpolarization technique.

Next, we discuss the potential for digital quantum computation. To outperform
classical computation, quantum computers must be fault-tolerant, with the help of
quantum error correction. Quantum error correction can lower the increased entropy
caused by inevitable decoherence without any loss of quantum information. This
means that, by repeating the process, we can stop the qubit system accumulating
errors caused by decoherence. The implementations proposed to date require
feedback operations with measurements of the qubit states and the quantum gate
controls. Most fault-tolerant quantum computer architectures are constructed with
measurement-based quantum error correction. To outperform classical computation,
the number of qubits must be more than 109, and each of these 109 qubits
must be measured simultaneously every 100 ns [12]. The implementation of this
architecture using a molecular spin qubit system may seem to be hopeless in
practice. Fortunately, two facts encourage the possible realization of a large-scale
quantum computer based on the molecular spin qubit system. The first is that
quantum error correction can be implemented via feedback operations with quantum
gate operation and cooling [52]. If the system entropy that has been increased by
errors can be lowered using only translationally-invariant operations and cooling,
a large-scale quantum memory can be implemented with a scalable molecular spin
qubit system [53]. The other fact is that the arbitrary quantum algorithm can be
implemented by slightly breaking the translation symmetry in a way similar to that
of the macromolecular system mentioned earlier, where n sets of three spin species,
A, B, and C, are aligned on a chain [10]. Based on these two facts, we believe that
it will be possible to construct a fault-tolerant quantum computer architecture with
the molecular spin qubit system.

We have developed technologies for Hamiltonian engineering, hyperpolarization,
and spin amplification. Using state-of-the-art molecular engineering technology, we
can array more than 109 spin qubits with translational invariance. Using hyperpo-
larization and precise control, we can implement analog quantum simulation on
a scalable molecular spin system with translational invariance. This method uses
a top-down approach, whereas artificial atomic qubit systems such as quantum
dots and superconducting qubits use a bottom-up approach. In the bottom-up
approach, individually addressable and controllable qubits must be integrated bit-
by-bit without loss of controllability to eventually reach 109 qubits. In the top-down



602 M. Kitagawa et al.

approach, we begin with a highly-symmetrical quantum many-body system with
109 or more spin qubits without individual addressability and measurability. By
introducing a microstructure and breaking the symmetry step-by-step, we can
increase both controllability and addressability. By progressing in this way, we will
soon encounter interesting quantum many-body physics problems. We will then
exploit the most promising routes towards the realization of quantum simulation,
topological protection of quantum information, and quantum computation.
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Chapter 28

Molecular Spin Qubits: Molecular Optimization

of Synthetic Spin Qubits, Molecular Spin AQC
and Ensemble Spin Manipulation Technology

Shigeaki Nakazawa, Shinsuke Nishida, Kazunobu Sato, Kazuo Toyota,

Daisuke Shiomi, Yasushi Morita, Kenji Sugisaki, Elham Hosseini,

Koji Maruyama, Satoru Yamamoto, Masahiro Kitagawa, and Takeji Takui

28.1 Introduction

Molecular spin qubits based on extremely stable open shell compounds [1, 2] are
the latest arrival among physically realized matter qubits [2, 3]. Such molecular spin
qubits – composed of unpaired spins and nuclei with non-zero nuclear spin quantum
numbers in the electronic spin network of molecular frames – are intrinsically
synthetic matter spins [4], because the need for molecular optimization to make
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functioning matter spin qubits requires testing with actual, open shell chemical enti-
ties. We emphasize that the molecular optimization has to fulfill all of DiVincenzo’s
five criteria [5] and additionally to provide material uniformity and stability under
strong microwave and RF irradiation. An additional requirement is to establish
appropriate crystal engineering for quantum computing and quantum information
processing (QC/QIP) [2, 3]. This is important for controlling decoherence of the
spin qubits in ensemble, which is partly governed by intermolecular spin-spin
interactions and symmetry of the crystal lattice.

Molecular optimization by synthetic chemistry is advantageous to generate
scalable spin qubits such as electron spin versions of a Lloyd model system [6,
7], in which three non-equivalent g-tensors, A, B, and C are arranged in a 1D
periodic (ABC)n backbone. A synthetic approach to the Lloyd model has been a
materials challenge, but now molecular units for a prototypical Lloyd model have
been isolated and chemically identified by X-ray structural analysis and electron
magnetic resonance spectroscopy, as described below. Alternative approaches to
Lloyd model systems are also briefly described. Molecular spins as qubits resources
are composed of both electron spins as bus qubits and nuclear spins as client qubits.
This is due to the intrinsic nature of unpaired electron spins, whose molecular
wavefunctions are extended and delocalized in such a manner that the electronic
structures are governed by both group-theoretical and topological symmetry of the
electron network [1, 4]. Thus, gate operations with electron spin qubits only can
be achieved by utilizing anisotropic electron spin dipolar interactions between the
spin qubits, as shown below. The electron spin qubits connect the client spin qubits
via hyperfine (A) interactions, and we emphasize that molecular information about
the principal axes of hyperfine qubit A-tensors is important to implement quantum
computing in anisotropic media such as solid-state materials, as shown in a later
section herein.

28.2 Synthetic Approaches to Lloyd Model Electron Spin

Scalable Qubit Systems

We have extended the original Lloyd model – in which qubits resources are
nuclear spin-1/2 systems, later extended to high spin systems with nuclear-nuclear
interactions assumed to be usable for gate operations – to the corresponding
electron spin versions. Our idea has been underlain by the feasibility of molecular
optimization in terms of synthetic strategy for scalability and facile initialization
processes compared with the nuclear spin qubit based versions. A remarkable
advantage relevant to the Lloyd model is that one needs to prepare only three
kinds of addressable spin qubits, say A, B and C, as a one-dimensional array in an
(ABC)n periodic manner. The periodic boundary conditions are strict and relevant
to the materials uniformity required for the accuracy of any gate operations in the
frequency domain during QC/QIP processes. Materials control of periodicity with
uniformity is important in crystal engineering for ensemble solid-state QC/QIP.
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The issues can be met by molecular optimization with specific chemical bonding
schemes like a DNA-based approach described below.

In an electron spin version of the Lloyd model, the g-tensors of molecular spins
play an essential role in building up the (ABC)n periodic spin chain, in which A,
B and C have different g-tensors that are addressable in the frequency domain
of current microwave technology. We emphasize that for an electron spin Lloyd
model system in isotropic media, the use of significantly non-equivalent isotropic
g-values (termed genuine g-tensor approach-2) or a pseudo g-tensor (hyperfine
A-tensor) approach is essential to differentiate between the three molecular spin
qubits. The genuine g-tensor approach-2 requires particular molecular optimization
in which the g-tensor of each molecular spin is tuned by introducing hetero-atoms
at a radical site. This is termed electronic tuning of the g-tensor. In molecular spin
based solid-state QC/QIP, the spatial orientation of each g-tensor provides non-
equivalence of the resonance frequency with respect to an applied static magnetic
field, with differentiation of the three molecular spins if the molecular optimization
is properly achieved, as described below (genuine g-tensor approach-1). The pseudo
g-tensor (hyperfine A-tensor) approach utilizes nuclear spins with sizable hyperfine
couplings to a particular electron spin site (e.g., a radical moiety). The hyperfine
coupling gives rise to significant additional splitting of the resonance line, which
differentiates between two g-tensors having the same principal values and axes.
Such A-tensor engineering is a workable method to lift inversion symmetry induced
degeneracy of two g-tensors. Isotopic labeling at one radical site in biradical systems
having inversion symmetry is one of the applications of this method.

The electronic tuning approach above is also applicable to solid-state QC/QIP.
A promising application of this approach is to utilize DNA-like double-stranded
structures capable of incorporating non-equivalent open-shell metal ligands at
complementary hydrogen bonding sites. This is termed DNA based supramolecular
crystal engineering. In the electron spin version of the Lloyd model, anisotropic
electron dipolar interactions between neighboring molecular spins are utilized to
execute quantum gate operations. This contrasts with the use of small exchange
interactions in the case of nuclear spin Lloyd model qubits with closed shell
molecular frames, for two main reasons: (1) precise control of exchange interactions
to order of MHz is a still-intractable problem in open shell chemical entities
[1, 2]; (2) experimental limitations of current microwave spin technology mean
that presently available excitation bandwidth cannot cope with sizable exchange
couplings. The latter will be sorted out by emerging microwave technology, if the
corresponding frequency is not very high (less than 100 GHz).

In this section, we describe the g-tensor-orientation approach to the electron spin
version of the Lloyd model, from the viewpoint of materials challenges (genuine g-
tensor approach-1) [8], focusing on molecular optimization for a prototypical Lloyd
model of the electron spin version. Figure 28.1 shows a prototypical spin chain of
electron spin version Lloyd model, in which supramolecular ligands play dual roles
in building up 1D spin chains of the proposed periodicity. One is that the ligands are
able to incorporate either open or closed shell transition metal cations, and the other
is that the ligands can yield triple-stranded 1D structures of metal-ligation to give
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g-Tensor Orientation Approach-1

Metal cation with
an open shell con-
figuration

Supramolecular ligands 
capable of building a tri-
ple-stranded structure and
incorporating metal cati-
ons with an open shell 
configuration

Fig. 28.1 A prototypical model of the electron spin version of the Lloyd model (supramolecular
approach). Molecular optimization is based on the g-tensor orientation approach-1. The strength of
ligand-metal self-association should be strong enough to keep the triple-stranded helical structure
unfolded even in solution at ambient temperature [8]. The supramolecular ligands bind transition
metal cations in a pseudo octahedral symmetry with a robust global structure to suppress deco-
herency of ensemble electron spin qubits when incorporated into crystal lattices with diamagnetic
host molecules. Use of various metal cations also allows preparation of magnetically-diluted,
mixed single crystals with desired concentration ratios of guest/host molecules. Supramolecular
functionality also allows triple-stranded structures, in which the orientations of electron spin qubit
g-tensors and other magnetic tensors are governed by the global molecular symmetry

triple-stranded helical symmetry (see the caption of Fig. 28.1 for the dual roles).
The metals are located in a pseudo-octahedral symmetry of the local structures. The
departure from octahedral symmetry matters in terms of establishing the g-tensor
orientation approach. This is because octahedral symmetry cannot generate a non-
equivalency of magnetic tensors in the triple-stranded helical environment, so the
three molecular spins units would not be distinguishable. One of the crucial points
in the supramolecular approach, where the ligands play dual roles, is how to control
the magnitude of the deviation from strict octahedral symmetry and to increase
the axial nature of the relevant magnetic tensors at the transition metal cation
sites. Another crucial, practical point is the synthetic feasibility of length extension
of the periodicity while strictly keeping the other structural boundary conditions.
The present supramolecular approach is subject to two apparent weaknesses that
should be improved from the viewpoint of molecular optimization. One is the
fact that the method is not applicable for materials syntheses using the genuine
g-tensor approach-2 with electronic tuning of the g-tensors in a straight forward
manner. To our knowledge, current supramolecular chemistry cannot afford subtle
synthetic differentiation between metal cations having non-equivalence of their g-
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tensors. In this context, a novel molecular optimization strategy requires functioning
modification of ligands combined with control of their metal binding selectivity in
terms of theoretical considerations of the contribution to their g-tensors from spin-
orbit interactions. The other is the broadened linewidth of electron spin resonance
(ESR) transitions compared with those from organic-only open-shell spin qubits.
This arises from nuclear electric quadrupolar interactions of transition metal ions.
This issue is not intrinsic but relevant to the excitation strength of pulsed microwave
irradiation at resonance.

In this context, g-tensor engineering approaches based on the DNA double-
stranded (ABC)n architecture have the advantage of utilizing electronic tuning of
the g-tensor, in which the complementary hydrogen bonding scheme can afford
1D periodic chains of non-equivalent g-tensors for molecular spin qubits [9]. The
DNA-based approach to g-tensor engineering was tested by introducing molecular
spins at mismatched sites of the complementary hydrogen bonds in the DNA
oligonucleotides. Both the global and local molecular structures were probed by Q-
band pulsed ELectron-electron-DOuble-Resonance (pulsed ELDOR) spectroscopy
and by computational molecular mechanics modeling. In DNA-based g-tensor
engineering, the molecular rigidity of molecular spin qubits introduced at desired
sites of the hydrogen bonding is crucial, and this approach utilizing organic
molecular spins is not subject to the two weaknesses for the metal cation approach
described above.

28.3 Controlled-NOT Gate Operations by Molecular Spin

Qubits

Molecular spins for qubits usage are composed of both electron spins as bus qubits
and nuclear spins as client qubits. The client qubits are useful in many aspects
of qubits usage (particularly as quantum spin memory), but nuclear spin qubits
giving cross-talk in g-tensor engineered molecular spin qubits are an obstacle in
executing gate operations composed of electron spin qubits, because they give so
many unwanted nuclear sublevels. Toward avoiding this problem, the biradical 1

depicted in Fig. 28.2a is the first synthetic electron spin qubit system which allows
Controlled-NOT (CNOT) gate operations by the use of molecular electron spins
[10].

In the biradical 1, orientation g-tensor engineering is achieved using the two
radical sites with non-equivalent g-tensors denoted by molecular fragments in blue
and red in Fig. 28.2. The two radical sites are not related by inversion symmetry, so
hyperfine A-tensor engineering is not necessary in the molecular optimization. The
two nitrogen nuclei and thirty-four hydrogen atoms in the fragments are 15 N- and
fully deuterium-labeled, respectively. The isotope labeling enormously enhances the
spectral resolution. Particularly, the nitrogen labeling is crucial to identify the mag-
netic field orientation suitable for QC/QIP experiments. The biradical 1 is diluted
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Fig. 28.2 Biradical 1 as a spin qubit that makes Controlled-NOT gate operations implemented in
molecular systems. (a) Molecular structure: The two nitrogen nuclei are 15N-labeled and all the
protons of the two radical fragments deuterium-labeled. There is no inversion symmetry between
the two radical sites, so orientation g-tensor engineering is achieved. (b) The exchange interaction
between the radical sites is <0.2 MHz owing to molecular optimization, in which the two central
benzene rings bridging the two radicals govern the relative orientation of the g-tensors. The
Controlled-NOT gate operations by electron spin qubits in molecular systems were implemented
by utilizing anisotropic spin-dipolar interactions (�9.5 MHz for the zero-field splitting parameter)
[10]

to a desired concentration in a diamagnetic host lattice of the related bisketone
molecule whose molecular structure is approximately the same as that of 1. The
central benzene rings play an important role to allow a large angle between the
two radical fragments, allowing effective orientation g-tensor engineering. After the
measurements of angular dependence of fine-structure hypefine-split ESR spectra
with respect to crystal coordinate or molecular principal axis orientation, we can
identify orientations of the static magnetic field with respect to the crystal and fully
determine the magnetic tensors in the spin Hamiltonian. This identification provides
conditions for QC/QIP experiments such as initialization, CNOT gate operation, or
quantum teleportation between molecular spin qubits, so long as appropriate rf and
microwave frequency pulse energies and sequences can be achieved. Obviously, two
microwave frequencies with their phases controlled in currently available coherent-
dual pulsed ELDOR [3b] are not enough, so Nuclear Magnetic Resonance (NMR)
paradigm, pulsed-ESR spin technology using conventional microwave frequencies
has been implemented in our laboratory (Osaka City University). This emerging spin
technology can afford realistic QC/QIP experiments in which both electron spin bus
and nuclear client qubits can be manipulated/controlled in the Bloch sphere in an
equal manner. This new spin technology is not subject to limitations of the number
of irradiation pulses, their relative phase and amplitudes. This was demonstrated
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by first CNOT gate operation in the molecular spin qubits of 1, which were been
implemented in the magnetic field direction in which the eigenstates of the nuclear
spins are not affected during the electron spin transitions on resonance. Thus, only
the four electron spin sublevels are involved in the QC experiments, and the gate
operations are achieved by utilizing anisotropic electron spin dipolar interactions
(�9.5 MHz for the zero-field splitting parameter). In biradical 1, the molecular
structure optimization gave effective suppression of the exchange interaction (less
than 0.2 MHz). The molecular optimization for shortening the distance between
two molecular spin qubits also gives faster gate operations than those for the longer
distance, as expected.

28.4 Adiabatic Quantum Computation on a Molecular

Spin QC

A molecular spin quantum computer utilizes electron spins as bus qubits which are
manipulated by electron spin resonance (ESR) based magnetic resonance techniques
in open shell molecules, in which nuclear spins topologically connected play the role
of client qubits. In this section, we focus on adiabatic quantum (AQ) computation
[11] by utilizing both electron spin bus qubits and nuclear client qubits in as fully
controlled a manner as possible using current levels of spin resonance technology.
The molecular spin AQ computation is underlain by the recent implementation of
NMR-paradigm pulsed ESR technology from the experimental side. A factorization
of 21 was chosen for the adiabatic algorithm in order to illustrate the essence
of the approach, for comparison with NMR molecular systems. We present for
the first time pulse sequences required for ESR QC experiments using molecular
spin systems, and possible problems to be encountered in molecular spin AQ
computation are pointed out for further development.

Since Shor’s algorithm appeared, attempts at realistic QC/QIP have been made
from the experimental side [12, 13], with the first experiment performed by
utilizing pulsed NMR techniques [14] without invoking quantum entanglement.
An experiment proposed by Peng and coworkers factorizes 21 by an Adiabatic
Quantum Computer (AQC) with rather small numbers of qubit resources such as
three qubits. They performed this QC experiment using solution NMR conditions
in which C, H and F nuclear spin states in a dimethylfluoromalonate molecule
were manipulated [15]. AQC is one of the computation models of QCs, which
processes information in the ground states of a quantum system with variation of
the corresponding Hamiltonian [11]. Although AQC has been defined as different
from standard QC, it is important that: (1) AQC has the same computational ability
as standard QC [16]; (2) AQC can allow performance of error correction [17].

From the viewpoint of spin resonance, it is interesting to identify the difference
between NMR and ESR qubit systems in terms of AQC. As already described in
the preceding section, in the ESR system molecular spins with open shell electronic
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structures are utilized in QC/QIP, and electron spins play the role of bus qubits while
nuclear spins are client qubits. Particular magnetic interactions involving electron
spins are utilized for computational operations, and thus generally shorter overall
computational time is anticipated [18]. Here, we describe the theoretical study of an
adiabatic factorization problem, illustrating how a molecular spin AQC works when
AQC is implemented in real molecular spin qubits. This gives a foundation to build
the implementation of molecular spin based AQC.

AQC requires definition of an adiabatic Hamiltonian path in an algorithm. The
initial Hamiltonian, Ĥi and the final Hamiltonian, Ĥf are adopted as Eqs. (28.1) and
(28.2) in this study, respectively.

bHi D a

nX

iD1
� i

x (28.1)

bHf D .N � xy/2 (28.2)

where, a D 30, N D 21, n D 3, x D
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C
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C I

in the factorization of 21 [15]. In this algorithm, there are unsolvable problems
when the solution of (x, y) has the same bit size because the two ground states have
the same energy. Nevertheless, there are two advantages to this algorithm: (1) the
algorithm easily compares ESR systems (i.e., molecular spins) to NMR systems;
(2) this approach requires only a small number of qubits for execution. Applied
to molecular spins using pulsed ESR techniques, the time evolution operator of
the adiabatic process is approximated in finite time steps and defines the needed,
adiabatic path as Eq. (28.3).
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The time evolution operator U is a non-commutative operator in Eq. (28.3).
Therefore, U was transformed by the Trotter expansion to commutable operators
in the pulse sequences of calculations (see Appendices at the end of this chapter):
the theoretical fidelity of this approach is 0.91 [15].

Generally the spin Hamiltonian in a molecular spin QC with the static magnetic
field along the z-direction can be written by Eq. (28.4) in the Schrödinger picture.

bHMSQC D
NX

iD1
SigiˇiB �

MX

jD1
IjgjˇjB C

N;NX

i<j

Si.J C D/ijSj

C
N;MX

iDjD1
SiAijIj C

M;MX

i<j

Ii.J C D/ijIj

(28.4)
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The first and second terms are Zeeman interactions for electron and nuclear spins,
and gi is a second rank tensor which is related to the Larmor frequency !i

0 of
an ith spin (!i

0 D gi
zzˇ

iBz=¯ where Bz is the static magnetic field in the ESR
system). The interactions between spins are written by second rank tensors of J, D

and A which correspond to electron exchange interaction, anisotropic fine-structure
(mainly spin-dipolar interaction in organic molecular high spins) and hyperfine
interaction, respectively.

The effective Hamiltonian in the time evolution operator is calculated by
transforming to an interaction picture of the spin Hamiltonian. Following the
common procedure, the unperturbed Hamiltonian is selected for Zeeman terms by
assuming the secular approximation with small anisotropy in the g-tensor. This
approach is equivalent to adopting the rotational frame in quantum mechanics. Since
most experiments of a molecular spin QC have been carried out in single crystal
systems incorporating open shell molecules such as radicals or multi-radicals, in this
study for designing pulse sequences, either a three-electron system (3e system) or
one-electron plus two-nuclear system (1e C 2n system) is adopted, as exemplified
in Fig. 28.3. In transforming to the interaction picture, the principal axes of the
hyperfine tensors are assumed to be parallel to the static magnetic field, to simplify
by eliminating effects from anisotropic terms. We have known that this assumption
is special for most of real molecular spin qubits, and that non-linearity of the
quantization axes is crucial to acquire better fidelity to the model. Overall, Eqs.
(28.5) and (28.6) are obtained as perturbation Hamiltonians in the time evolution
operator of the 3e system and 1e C 2n system, respectively,

bH3e
int D S1z .J C D/12S2z C S2z .J C D/23S3z C S3z .J C D/31S1z (28.5)

bH1eC2n
int D S1z A12I2z C I2z .J C D/23I3z C I3z A31S1z (28.6)

Fig. 28.3 Molecular structures of a phthalocyanine system (four electron (4e) system, left) and an
isotope-labeled diphenylnitroxide (DPNO) (one-electron and two nuclear-spin (1e C 2n) system
without counting 15N nucleus, right). In the calculation described in the text, only three electron
qubits of the phalocyanine system are treated, so one of the four radical sites should be closed shell.
Any nuclear effects mainly arising from the nitrogen nuclei are neglected in the present treatment,
for simplicity
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where (J C D)ij and Aij are the zz-components of the corresponding tensor. In
solution, only the D tensor will vanish on the basis of its traceless character.

Pulse sequences were calculated using two pulse operations (arbitrary angle
operations of the x- and y-directions) for each qubit with time evolution (arbitrary
time). A phthalocyanine derivative for the 3e system and a diphenyl nitroxide
(DPNO) for the 1e C 2n system were adopted as real molecular examples of these
(see Fig. 28.3 for the molecules). There are four electron spins in the phtalocyanine
system, so we assumed a three-qubit system in which one radical site is chemically
reduced. These systems have strong enough isotropic interactions that are needed for
establishing constant time in any orientation, and they are workable molecular spin
QCs from the previous study [19, 20]. Considering the experimental restrictions, e.g.
selecting the axis for the g-tensor while keeping co-linearity of the hyperfine tensors,
the average time for an adiabatic calculation can approximately equal the isotropic
coupling case (J12 D J23 D �22.8 MHz, J31 D �40.8 MHz, A12 D �5.56 MHz and
A31 D �37.9 MHz) [19, 20]. By this assumption, the obtained pulse sequences are
the same as those in the solution state of these systems. The 3-qubit interaction
on the adiabatic time evolution is replaced by reducing 2-qubit interactions [21].
In the case of the 1e C 2n system, the interactions between nuclei are too weak to
manipulate, therefore the interactions are replaced by 3-qubits interactions and the
other 2-qubits interactions. We replaced the pulses only when we need to connect
two pulses. The pulse sequences were lined up in the 3-qubit interaction, 2-qubit
interactions and 1-qubit operations as shown in Fig. 28.4.

The estimated, calculated time and the total operation angles for each spin are
shown in Table 28.1. For comparison to a three-nuclear system, we have calculated
the time for the NMR system to be approximately 50 ms and for the ESR system to
be about 0.23 �s. Thus, using a three-electron (3e) system can be about 105 faster.
This is because the nuclear spin system has exchange couplings of the magnitude
of 50–200 Hz. On the other hand, in the 3e system couplings are on the order of
20–40 MHz. As expected, an important result is that the calculation speed is not
simply proportional to the gyromagnetic ratio between the two systems, but to the
interaction strength. From the experimental point of view, if one tries to perform
the same adiabatic algorithms in molecular electron spin systems as for the NMR
systems, the short time operations (e.g., 0.2 ns) for 2-qubit interactions could be a
problem. Even under this condition, we can perform the adiabatic calculation by
scaling up the problem Hamiltonian, but the required time proportionally increases
for the Hamiltonian. Alternatively, one can treat the electron spin systems using
accurate and short time operations (below 0.2 ns), which is a technical issue for
current microwave technology. We emphasize that this problem appears only in
AQC not in a standard QC.

In the 1e C 2n system the required time when ignoring the pulse manipulation
time is about 1.57 �s, therefore this system also is faster than for NMR system
methodology. In this molecular spin system, the same problem for the short
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Fig. 28.4 The pulse sequences for the factorization problem of 21. (a) The sequence of the 3e-
system. The time, ti and the green character indicate the pulse time interval and the operation of
the adiabatic Hamiltonian, respectively. The pulse in blue including the number is for an arbitrary
operation of the x- or y-direction. In the adiabatic process, the pulse sequences need to loop five
times (n D 1 to 5). (b) The sequences of the 1e C 2n system. In this case, the pulse sequence
basically similar to (a) but replace A-block of (a) to nuclear cases for (b). (c) Denotes the types
of pulse for easier identifications. Black and red blocks indicate the x- and y-direction, and narrow
and wide blocks indicate  /2 and   pulses, respectively. The numbered pulses are the x- or y-
operations in a certain angle. The details of the operation time and angle are calculated

Table 28.1 Operation angles and required times in the 3e system and 1e C 2n system are shown

3e system 1e C 2n system
e1 e2 e3 e1 n2 n3

Operation angle/radian 28  38  27  38  68  52 
Required time/�s 0.229 1.57

operation time occurs. Another problem with the 1e C 2n system is the manipulation
of nuclear spins. Because of the absolute value of the g factor, the Rabi operation
for nuclei (e.g.,   pulse) in the molecular spin system takes much more time than
for electrons (about few �s for nuclear spins) [20], so the time required for this
algorithm would depend on the operation time of the nuclear spins. In this case, the
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hyperfine interactions which are larger than or as the same order of magnitude as
the Rabi frequency need to be taken into account in the pulse formulation.

In terms of operation angles, our pulse sequence requires a larger number of
pulses than in the NMR method [15]. The operation angles in the 1e C 2n system
need approximately twice the number of pulse operations than the 3e system, due to
the replacements of the 2-qubit operation. This difficulty of this adiabatic algorithm
mostly arises from the three qubit interaction (Fig. 28.4).

In this section, we have illustrated the factorization problem of 21 treated by
AQC by utilizing molecular spin qubits and presented the difference between the
NMR and ESR systems. In the 3e system, increased speed depending on the
interaction strength has been proven and shorter time operations in the molecular
spin systems are suggested. Also, the 1e C 2n system has the possibility for
increased speed, although appropriate treatment of the nuclear spin operations is
needed. The difficulties in applying the present adiabatic algorithm to molecular
spin qubits are identified, and mostly arise from three-qubit interactions. Overall,
we have introduced experiments for AQC that utilize molecular spin qubits in which
appropriate molecular optimization has been made to solve the problems for correct
adiabatic operations in ESR systems.

28.5 Multi-Spin Quantum Control Through Single Spin

Manipulation

28.5.1 Theoretical Background

Toward the realization of quantum computing, it suffices if we could fully control a
given many-body quantum system. By full control, we mean the implementation of
any unitary operation on the system, maintaining its quantum coherence throughout
the operation. The system that is the subject of our control typically comprises a
number of qubits, and high-fidelity applications of single- and two-qubit operations
to arbitrary qubits have been a much-coveted goal for physicists.

Aiming at the implementation of a small number of elementary qubit operations
appears to be convenient, since any unitary transformations on many-qubit systems
can be decomposed into a sequence of simple operations, or quantum logic gates.
Yet, performing a multi-qubit operation usually requires control of inter-qubit
interactions. In order to switch interactions between qubits, we would need an
extra control probe for every qubit pair; it may be a physical electrode to control
voltage, or additional electromagnetic waves to induce interactions between degrees
of freedom, or even a measurement on auxiliary qubits to cause an effective state
change.

Here we primarily focus on the systems of spin-1/2 particles, as they are a
naturally very good two-state system, i.e., qubit, and, in many cases they have
advantages in terms of scalability and longer coherence times. Although spin-spin
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interactions, such as the Heisenberg-type exchange interactions, are capable of
realizing useful two-qubit operations, it is hard to switch such inter-spin interactions
at will, as described in the earlier sections.

Luckily, the difficulty in performing two-qubit operations in the presence of
constant coupling between qubits is not a crucial problem for quantum computing,
since the decomposition of a unitary transformation into elementary gates is just
for descriptive convenience. All we need to do is to seek the right modulation of
external field parameters, where time evolution becomes equal to the desired unitary
transformation. We employ this approach here to find a feasible field modulation
(pulse sequence) for nontrivial quantum operations using multi-spin systems.

The most generic form of the system Hamiltonian is described as

H.t/ D H0 C
X

m

fm.t/Hm; (28.7)

where H0 represents an unmodulable interaction and Hm represents external fields
that can be controlled experimentally by a modulation function fm(t). For example,
if the system is a one-dimensional chain of spins-1/2: H0 describes the inter-
spin couplings, such as H0 D

P
nJn¢n � ¢nC1; Hm represents the Zeeman interaction

between the m-th spin and the local magnetic field bm, i.e., Hm D bm ¢m; and fm(t)
denotes the field intensity at time t. Here, bm is the unit vector in the direction of
the field at the m-th site. As we want to control the entire system by modulating a
small number of parameters, we would consider that the number m of controllable
Hamiltonians Hm is small, e.g., two or three.

The Schrödinger equation for the time evolution operator under the Hamiltonian
Eq. (28.8) is

i d
dt

U.t/ D H Œf.t/�U.t/; U.0/ D I; (28.8)

where f(t) stands for the set ffm(t)g. This equation can formally be integrated as

U.t/ D T exp

�
�i

Z t

0

H Œf .�/� d�

�
; (28.9)

where T is the time-ordering operator.
We are interested in the set fU(t)g with a finite t, each element of which is

obtainable by varying the pulse sequence f(t). Let us define the reachable set R
to be the unitaries that can be arbitrarily close to the unitary transform U(T) in Eq.
(28.9) with a finite T and a right pulse sequence f(t)(t " [0,T]). That is,

8ƒ 2 R; 8" 2 0; 9f.t/ 2; 9T < 0; such that jj V � U.t/ jj < ": (28.10)

If R is equal to U(2N) or SU(2N) for an N spin system, then any unitary operation
for this system can be realized within a finite time by designing the pulse sequence
appropriately, and hence is fully controllable.
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Then, how can we characterize R, given a set of Hamiltonians fHmg(m "

f0,1, : : : ,Mg). A famous theorem of quantum control gives a concise answer to this
question [22].

Theorem 28.1 The reachable set R is the connected Lie group associated with

the Lie algebra L that is generated by taking commutators of elements in fHmg
repeatedly, i.e.,

R D eL: (28.11)

In the Lie algebra U(n) (or SU(n)), each element in the algebra is skew-
Hermitian. Thus, precisely speaking, L contains fiHmg and their repeated commuta-
tors.

The algebra L is often called dynamical Lie algebra, and its elements take
the form [A1,[A2,[ : : : ,[Ak � 1, Ak] : : : ]]], where A1,A2, : : : ,Ak " fHmg. The linearly
independent ones form the basis of the dynamical Lie algebra. Because we
are considering a finite dimensional system, this process of taking commutators
eventually stops generating a new basis that is linearly independent with respect to
those generated before. The maximum number of the independent bases, i.e., the
rank, is n2 or n2 � 1, when Hm are n � n matrices in U(n) or SU(n), respectively.

Therefore, in the context of quantum control, where we disregard the effect of
the global phase, if the rank of the dynamical Lie algebra L is equal to n2 � 1, R is
equal to SU(n), and hence the system is fully controllable through fHmg. Even if R
does not coincide with SU(n), any unitary in R can be implemented, thus partially
controllable. The simplest case of this theorem is the control of a single spin-1/2.
If the magnetic field can be controlled in two (orthogonal) directions, say x and y,
the modulable Hamiltonians are �x and �y (through the Zeeman interaction). The
commutator of these, [�x,�y], gives � z (apart from the i factor). This means that we
can effectively control � z as well, so the rank of L is three. Since SU(2) is three
dimensional, the single spin is fully controllable by field control in two directions.
This particular simplistic case corresponds to the Euler decomposition of arbitrary
rotations, such that any rotation in three dimensions can be expressed as a product
of rotations around the two fixed directions.

While Theorem 28.1 is very powerful in judging the controllability of the system,
it does not tell anything about how we should design the control pulse sequences,
let alone the necessary time duration for a pulse sequence to implement a specific
unitary operation. Although some partial results have been obtained to reduce the
complexity of this problem [23], finding optimal control pulses is a computationally
hard task in general. Thus we still need to rely on some algorithms of numerical
calculations that have been developed for these purposes, such as the one developed
by Macnes and coworkers [24].

Knowing that all parameters (including the inter-qubit interactions) do not

necessarily have to be controlled, one can implement some nontrivial quantum
operations on a real system in the lab. Molecular spins in molecules, which are the
subject of our study, are a good basis for which Theorem 28.1 can be applied nicely;
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they are constantly interacting with each other, and in electron-spin-only mediated
systems each spin typically has a different g-factor from others if appropriate
molecular optimization is made as described in the previous sections, and thus
it is not very hard to control a few electron spins or nuclear ones selectively. In
the following section, we describe attempts to achieve indirect quantum control
practically, using a three-spin system consisting of one electron spin and two nuclear
spins, which is termed a bus spin qubit system. Here the electron spin and nuclear
spins act as a bus qubit and client qubits, respectively, in the molecular frame.

28.5.2 Indirect Application of a Quantum Gate

on a Three-Spin System

Typically, in a hybrid molecular system of an electron spin plus nuclear spins, a
single electron spin has been used for state preparation, readout and control while
the nuclear spins act as qubits for storing and processing information. It has been
shown that in such systems, the nuclear spins can be indirectly fully controllable
through an electron spin as a spin actuator via hyperfine interactions [25, 26]. In
this study, we designed a control pulse sequence numerically to implement a high
fidelity gate operating on nuclear spins. Using the pulse sequence, we are currently
attempting to implement multi-qubit operations with systems of three and more
spins, and we will verify the result of quantum operations (under limited access)
using well-established electron nuclear multiple resonance methods. We emphasize
that pulse techniques composed of only microwave frequencies to manipulate
nuclear spins under certain conditions are novel spin technology that is still under
development. This spin technology enables us to rotate nuclear spins faster than
pulsed ENDOR based techniques.

We consider a three-spin system composed of an electron spin and two nuclear
ones in the presence of an external static magnetic field. For simplicity, the spin
Hamiltonian of the system in frequency units is given by Eq. (28.12),

H0 D gzzˇeB0

h
Sz � 
n1

2�
B0I

1
z � 
n2

2�
B0I

2
z

C A1zxSzI
1
x C A1zySzI

1
y C A1zzSzI

1
z C A2zxSzI

2
x C A2zySzI

2
y C A2zzSzI

2
z ;

(28.12)

where ˇe is the Bohr magneton, ”ni/2 D 42.576 MHz /T as the gyromagnetic
ratio of a hydrogen atom, and B0 is the external static magnetic field which is
applied along the z-direction of the g-tensor, respectively. Azz is the zz component of
the hyperfine coupling tensor, while Azx and Azy denote the anisotropic hyperfine
coupling coefficients. S and I are the electron spin and nuclear spin operators,
respectively. The nuclear spin-dipolar interactions between two nuclear spins is
neglected since its strength is almost 1000 times smaller than the hyperfine
interactions between electron and nucleus.
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If all transitions between the eight states of a 1e C 2n system are accessible,
universal control in the system is possible. For different values of the hyperfine
coupling coefficients, the probabilities of transitions between all the states can be
varied, depending on the direction of the static magnetic field with respect to the
molecular principal-axis system in the solid state. In order to control the system
efficiently and to realize high fidelity quantum gate behavior, the hyperfine coeffi-
cients must carefully be designed to ensure that all the transitions can be accessed
with significant transition probabilities. We emphasize that in terms of conventional
electron magnetic resonance spectroscopy complex experimental conditions are
required in addition to appropriate molecular optimization for molecular spins.
Microwave irradiation on the single electron makes it work as an actuator to perform
an entangling gate between the two nuclear spins. The Hamiltonian of control can
then simply be described by Eq. (28.13), as

Hcontrol D gzzˇeBe.t/

h
Sx (28.13)

where Be is the amplitude of the oscillating microwave magnetic field which is
applied on the electron on the x-direction. Thus gzzˇ"B"(t)/h corresponds to the
strength of the microwave magnetic field.

The actual spin system employed here is a diphenylaminoxyl (DPNO D diphenyl-
nitroxide) derivative, whose molecular structure is given in Fig. 28.5. We emphasize
that spin manipulation technology should be based on pulsed electron-nuclear
multiple resonance technique with controlled phase of each spin by coherence
microwave frequency.

Fig. 28.5 Experimental qubit spin system, diphenylaminoxyl (DPNO). The nitrogen labeling
simplifies hyperfine ESR spectra with significantly enhanced spectral resolution. Red, blue, gray
and white balls denote oxygen, nitrogen-15, carbon, and proton and deutron atoms, respectively.
The principle-axis alignments are shown with corresponding arrows in the figure. The molecular
structure is assumed if it is incorporated in a diamagnetic host lattice having a similar molecular
structure to diphenylaminoxyl
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The hyperfine and g-tensors of DPNO are given by Yoshino [27]. The principal
values of the proton hyperfine tensors and g-factor in their principal-axis coordinate
system of Fig. 28.5, are summarized in Eqs. (28.14) to (28.15) as follows:

g D

0
@
2:0097 0 0

0 2:0053 0

0 0 2:0024

1
A (28.14)

e�1H W

0
@

�8:63 0 0

0 �5:56 0

0 0 �2:22

1
A e�2H W

0
@

�8:82 0 0

0 �5:76 0

0 0 �2:34

1
A (28.15)

The hyperfine couplings can be adjusted by varying the orientation of the static
magnetic field with respect to a single crystal doped with DPNO. Transforming the
tensors from the principal-axis system to the laboratory-axis reference, the orienta-
tion that can differentiate between transitions with suitable transition probabilities
between all the states can be chosen for QC experiments. Any rotation of the frame
can generally be described by Eq. (28.16) and (28.17), where

Tlab D RTdiagRt (28.16)

with

R D

0
@

cos �ax cos �ay cos �az

cos �bx cos �by cos �bz

cos �cx cos �cy cos �cz

1
A (28.17)

where (x,y,z) and (a,b,c) denote the laboratory-axis and principal-axis references,
respectively. The g-factor terms of the electron spin and the hyperfine couplings of
the hydrogen atoms for the chosen orientation are typically as given below in Eq.
(28.18):

gzz D 2:00253I
A1zx D �0:12158 MHzI A1zy D 1:15564 MHzI A1zz D �8:37156 MHzI
A2zx D �0:91001 MHzI A2zy D 1:33327 MHzI A2zz D �7:25018 MHz:

(28.18)

We have designed numerically a pulse sequence which can performs a C-NOT gate
on two nuclei with 1H’ being the control qubit and 2H being the target qubit of
the gate. Choosing the values B D 0.35 T and gzzˇeBe/h D 10 MHz for the intensity
of the static magnetic field and the energy of the microwave to be employed, the
gate can be performed in 5�s with fidelity 0.81. Since in our experimental setup,
the excitation bandwidth is on the order of 100 MHz, we fixed 4t D 0.005 ns in
our numerical calculation, which yields the excitation bandwidth D 200 MHz. In
order to get higher fidelity, we need a longer time duration: in the present molecular
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Fig. 28.6 Pulse sequences which perform a C-NOT gate with fidelity 0.99 as a function of time. In
the left/right panels, the magnetic field is chosen as B D0.35 T/B D0.1 T. The former corresponds
to QC experiments at X-band and the latter at L-band

spin t D11�s leads to a fidelity of 0.99. However, we emphasize that shorter pulse
durations are better from the viewpoint of quantum information processing, so QC
experiments may be better performed at L-band frequencies. By setting B0 D 0.1 T,
the fidelity can be as high as 0.94 for t D 5�s, and 0.99 for t D 6�s. The numerically
computed pulse sequences are shown in Fig. 28.6. One can extend this method to

any number of nuclear spins that have resolvable anisotropic hyperfine interactions.

28.6 Conclusions

In order to manipulate or control both bus and client qubits in an equivalent manner,
the implementation of sophisticated microwave pulse technology is essential. Novel
microwave pulse technology that enables full control of both the amplitudes and
phases of multiple microwave frequencies has already been emerging, indicat-
ing that new spin technology based on arbitrary wave generators (AWGs) can
be powerful in manipulating ensemble molecular spin systems. The problems
described in Sect. 28.5 are relevant to enable appropriate molecular optimizations
of spin behavior. We also emphasize that the three-electron spin system under study
imposes limitations in terms of its molecular optimization but sophisticated quantum
chemical calculations of D tensors are available, which will enable us to design
more appropriate three- or multi-electron spin molecular systems. In this quest
of achieving practical molecular spin QCs or QIP systems, pulse-based advanced
microwave spin technology combined with molecular optimization is essential.
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Appendices

Appendix 28.1

The details of the rotation angle are shown in (a) where an and b are (n/5)2 and
0.028, respectively. The operation times are shown in (b).

(a) Rotation angles

Direction Angle

1 x- 30(1 � an)b/2
2 y- 84anb

3 y- 88anb

4 y- 44anb

5 x- 30(1 � an)b/2 C /2

(b) Operation times

3e system 1e C 2n system

t1 �� /j31 �� /A31

t2 �64sn� /j12 �64sn� /A12

t3 �80sn� /j12 �80sn� /A12

t4 �40sn� /j31 �40sn� /A31

t5 �80sn� /j23 –
t6 – � /A12

Appendix 28.2

The Trotter’s formula of the Eq. (28.3) where b is 0.028.

U D
5Y

mD1
exp

n
�i
�
1 � .m=5/2

�
bHi .b=2/

o

� exp
n
�i.m=5/2bHf b

o
� exp

n
�i
�
1 � .m=5/2

�
bHi .b=2/

o
(28.19)
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