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“This is an excellent and very timely text, presenting the modern tools of high-dimensional
geometry and probability in a very accessible and applications-oriented manner, with plenty
of informative exercises. The book is infused with the author’s insights and intuition in
this field, and has extensive references to the latest developments in the area. It will be an
extremely useful resource both for newcomers to this subject and for expert researchers.”

– Terence Tao, University of California, Los Angeles

“Methods of high-dimensional probability have become indispensable in numerous prob-
lems of probability theory and its applications in mathematics, statistics, computer science,
and electrical engineering. Roman Vershynin’s wonderful text fills a major gap in the litera-
ture by providing a highly accessible introduction to this area. Starting with no prerequisites
beyond a first course in probability and linear algebra, Vershynin takes the reader on a guided
tour through the subject and consistently illustrates the utility of the material through modern
data science applications. This book should be essential reading for students and researchers
in probability theory, data science, and related fields.”

– Ramon van Handel, Princeton University

“This very welcome contribution to the literature gives a concise introduction to several
topics in ‘high-dimensional probability’ that are of key relevance in contemporary statistical
science and machine learning. The author achieves a fine balance between presenting deep
theory and maintaining readability for a non-specialist audience – this book is thus highly
recommended for graduate students and researchers alike who wish to learn more about this
by-now-indispensable field of modern mathematics.”

– Richard Nickl, University of Cambridge

“Vershynin is one of the world’s leading experts in the area of high-dimensional probability,
and his textbook provides a gentle yet thorough treatment of many of the key tools in the
area and their applications to the field of data science. The topics covered here are a must-
know for anyone looking to do mathematical work in the field, covering subjects important
in machine learning, algorithms and theoretical computer science, signal processing, and
applied mathematics.”

– Jelani Nelson, Harvard University

“High-Dimensional Probability is an excellent treatment of modern methods in probability
and data analysis. Vershynin’s perspective is unique and insightful, informed by his expertise
as both a probabilist and a functional analyst. His treatment of the subject is gentle, thorough,
and inviting, providing a great resource for both newcomers and those familiar with the
subject. I believe, as the author does, that the topics covered in this book are indeed essential
ingredients of the developing foundations of data science.”

– Santosh Vempala, Georgia Institute of Technology
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“Renowned for his deep contributions to high-dimensional probability, Roman Vershynin is
to be commended for the clarity of his progressive exposition of the important concepts,
tools, and techniques of the field. Advanced students and practitioners interested in the
mathematical foundations of data science will enjoy the many relevant worked examples
and lively use of exercises. This book is the reference I had been waiting for.”

– Rémi Gribonval, IEEE & EURASIP Fellow, Directeur de Recherche, Inria, France

“High-dimensional probability is a fascinating mathematical theory that has grown rapidly
in recent years. It is fundamental to high-dimensional statistics, machine learning, and data
science. In this book, Roman Vershynin, who is a leading researcher in high-dimensional
probability and a master of exposition, provides the basic tools and some of the main results
and applications of high-dimensional probability. This book is an excellent textbook for
a graduate course that will be appreciated by mathematics, statistics, computer science,
and engineering students. It will also serve as an excellent reference book for researchers
working in high-dimensional probability and statistics.”

– Elchanan Mossel, Massachusetts Institute of Technology

“This book on the theory and application of high-dimensional probability is a work of
exceptional clarity that will be valuable to students and researchers interested in the founda-
tions of data science. A working knowledge of high-dimensional probability is essential for
researchers at the intersection of applied mathematics, statistics, and computer science. The
widely accessible presentation will make this book a classic that everyone in foundational
data science will want to have on their bookshelf.”

– Alfred Hero, University of Michigan

“Vershynin’s book is a brilliant introduction to the mathematics which is at the core of
modern signal processing and data science. The focus is on concentration of measure and its
applications to random matrices, random graphs, dimensionality reduction, and suprema of
random process. The treatment is remarkably clean, and the reader will learn beautiful and
deep mathematics without unnecessary formalism.”

– Andrea Montanari, Stanford University
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High-Dimensional Probability

An Introduction with Applications in Data Science

High-Dimensional Probability offers insight into the behavior of random vectors,

random matrices, random subspaces, and objects used to quantify uncertainty in

high dimensions. Drawing on ideas from probability, analysis, and geometry, it lends

itself to applications in mathematics, statistics, theoretical computer science, signal

processing, optimization, and more. It is the first text to integrate theory, key tools,

and modern applications of high-dimensional probability. Concentration inequalities

form the core, and it covers both classical results such as Hoeffding’s and Cher-

noff’s inequalities and modern developments such as the matrix Bernstein inequality.

It then introduces powerful methods based on stochastic processes, including such

tools as Slepian’s, Sudakov’s, and Dudley’s inequalities, as well as generic chain-

ing and bounds based on VC dimension. A broad range of illustrations is embedded

throughout, including classical and modern results for covariance estimation, clus-

tering, networks, semidefinite programming, coding, dimension reduction, matrix

completion, machine learning, compressed sensing, and sparse regression. Hints for

many of the exercises are given at the back of the book.

R O M A N V E R S H Y N I N is Professor of Mathematics at the University of Califor-

nia, Irvine. He studies random geometric structures across mathematics and data

sciences, in particular in random matrix theory, geometric functional analysis, con-

vex and discrete geometry, geometric combinatorics, high-dimensional statistics,

information theory, machine learning, signal processing, and numerical analysis.

His honors include an Alfred Sloan Research Fellowship in 2005, an invited talk

at the International Congress of Mathematicians in Hyderabad in 2010, and a Bessel

Research Award from the Humboldt Foundation in 2013. His “Introduction to the

non-asymptotic analysis of random matrices” has become a popular educational

resource for many new researchers in probability and data science.
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Foreword

This book begins with an appetizer: the empirical method of B. Maurey for approximating
points in the convex hull of a set by averages. It is a beautiful and fascinating example where
probability theory can elegantly solve problems which at first sight have nothing to do with
probabilities. It is a very gratifying experience to learn from this book that probability theory
opens up a whole world of other mathematical areas (which may have been found very
difficult to access before).

After presenting the necessary background material, the book goes straight into the heart
of the matter in Chapter 3. Concentration in high dimensions is treated in an enlightening
way. For example, the formula√

n ± O(
√

n) = √
n ± O(1)

in Remark 3.1.2 says it all in all its simplicity. Likewise for Figure 3.6, where a Gaussian
point cloud is shown in high dimensions: it concentrates on a sphere with radius

√
n. This

shape has hardly anything in common with the bell shape in dimension 2 or 3 – our low-
dimensional intuition is useless! As another example where probability theory can make life
easier, the book provides an insightful proof of Grothendieck’s inequality. To understand any
of the other proofs of Grothendieck’s inequality (with “good” constants), I would probably
need several years.

Let me mention another theme that is extremely well explained in the book: the isoperi-
metric inequality and how it leads to blow up. If a subset of the sphere covers at least 50
percent, then its coverage is exponentially close to 100 percent. The book also presents sev-
eral extensions to other metric spaces, for example concentration on the Grassmannian. In
this way it provides a first entrance into this area, and one would like to learn more. The
supplied pointers allow one to do so.

The book is a joy to read. The author conveys the material as an exciting story and one
keeps on reading. Participation in the development of the storyline is encouraged by the
many exercises that are scattered throughout the text.

Other topics treated in this book are random matrices, empirical process theory, and sparse
recovery, to name a few. The results are important for research in data science but also simply
of beauty on their own. Many students and researchers may have heard the key words, and
this is the book to find out what they are really about.

Sara van de Geer, ETH Zürich

xi





Preface

Who is This Book For?

This is a textbook in probability in high dimensions with a view toward applications in data
sciences. It is intended for doctoral and advanced masters students and beginning researchers
in mathematics, statistics, electrical engineering, computational biology, and related areas
who are looking to expand their knowledge of theoretical methods used in modern research
in the data sciences.

Why This Book?

The data sciences are moving fast, and probabilistic methods often provide a foundation and
inspiration for such advances. Today, a typical graduate probability course is no longer suf-
ficient to acquire the level of mathematical sophistication that is expected from a beginning
researcher in data sciences. The book is intended to partially cover this gap. It presents some
key probabilistic methods and results that form an essential toolbox for a mathematical data
scientist. It can be used as a textbook for a basic second course in probability with a view
toward data science applications. It is also suitable for self-study.

What is This Book About?

High-dimensional probability is an area of probability theory that studies random objects in
R

n , where the dimension n can be very large. The book places particular emphasis on ran-
dom vectors, random matrices, and random projections. It teaches basic theoretical skills for
the analysis of these objects, which include concentration inequalities, covering and packing
arguments, decoupling and symmetrization tricks, chaining and comparison techniques for
stochastic processes, combinatorial reasoning based on the VC dimension, and a lot more.

The study of high-dimensional probability provides vital theoretical tools for applica-
tions in data science. The book integrates theory with applications for covariance estimation,
semidefinite programming, networks, elements of statistical learning, error correcting codes,
clustering, matrix completion, dimension reduction, sparse signal recovery, and sparse
regression.

Prerequisites

The essential prerequisites for reading this book are a rigorous course in probability theory
(of the Masters or Ph.D. level), an excellent command of undergraduate linear algebra, and

xiii
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general familiarity with basic notions about metrics, normed and Hilbert spaces, and linear
operators. A knowledge of measure theory is not essential but would be helpful.

A Word on the Exercises

The exercises are integrated into the text. The reader can do them immediately to check his or
her understanding of the material just presented, and to prepare better for later developments.
The difficulty of the exercises is indicated by the number of coffee cups; it ranges from easy
(�) to hard (����). A pointing hand (�) means that a hint is available at the end of the
book.

Related Reading

The book covers only a fraction of the theoretical apparatus of high-dimensional probability
and illustrates it with only a sample of data science applications. Each chapter in this book
concludes with a Notes section, which has pointers to other texts on the subject matter of
the chapter. A few particularly useful sources are noted here. The now classical book [8]
showcases the probabilistic method in applications to discrete mathematics and computer
science. The forthcoming book [19] will present a panorama of mathematical data science,
focusing on applications in computer science. Both these books will be accessible to grad-
uate and advanced undergraduate students. The lecture notes [206] are pitched at graduate
students and present more theoretical material in high-dimensional probability.

Acknowledgements

The feedback from my many colleagues was instrumental in preparing this book. My special
thanks go to Florent Benaych-Georges, Jennifer Bryson, Lukas Grätz, Rémi Gribonval, Ping
Hsu, Mike Izbicki, George Linderman Cong Ma, Galyna Livshyts, Jelani Nelson, Ekke-
hard Schnoor, Martin Spindler, Dominik Stöger, Tim Sullivan, Terence Tao, Joel Tropp,
Katarzyna Wyczesany, Yifei Shen, and Haoshu Xu, for many valuable suggestions and cor-
rections, and in particular to Sjoerd Dirksen, Larry Goldstein, Wu Han, Han Wu, and Mahdi
Soltanolkotabi for detailed proofreading of the book. I am grateful to Can Le, Jennifer
Bryson, and my son Ivan Vershynin for their help with many of the pictures.



Appetizer

Using Probability to Cover a Geometric Set

We begin our study of high-dimensional probability with an elegant argument that showcases
the usefulness of probabilistic reasoning in geometry.

Recall that a convex combination of points z1, . . . , zm ∈ R
n is a linear combination with

coefficients that are non-negative and sum to 1, i.e., it is a sum of the form

m∑
i=1

λi zi where λi ≥ 0 and
m∑

i=1

λi = 1. (0.1)

The convex hull of a set T ⊂ R
n is the set of all convex combinations of all finite collections

of points in T :

conv(T ) := {convex combinations of z1, . . . , zm ∈ T for m ∈ N} ;
see Figure 0.1 for illustration.

The number m of elements defining a convex combination in R
n is not restricted a priori.

However, the classical theorem of Caratheodory states that one can always take m ≤ n + 1.

Theorem 0.0.1 (Caratheodory’s theorem) Every point in the convex hull of a set T ⊂ R
n

can be expressed as a convex combination of at most n + 1 points from T .

The bound n + 1 cannot be improved, as it is clearly attained for a simplex T (a set of
n + 1 points in general positions). Suppose, however, that we want only to approximate a
point x ∈ conv(T ) rather than to represent it exactly as a convex combination. Can we do

Figure 0.1 The convex hull of a set of points representing major US cities.

1



2 Appetizer: Using Probability to Cover a Geometric Set

this with fewer than n + 1 points? We now show that it is possible, and actually the number
of required points does not need to depend on the dimension n at all!

Theorem 0.0.2 (Approximate form of Caratheodory’s theorem) Consider a set T ⊂ R
n

whose diameter1 is bounded by 1. Then, for every point x ∈ conv(T ) and every integer k,
one can find points x1, . . . , xk ∈ T such that∥∥∥∥x − 1

k

k∑
j=1

x j

∥∥∥∥
2

≤ 1√
k
.

There are two reasons why this result is surprising. First, the number of points k in con-
vex combinations does not depend on the dimension n. Second, the coefficients of convex
combinations can be made all equal. (Note, however, that repetitions among the points xi

are allowed.)

Proof Our argument is known as the empirical method of B. Maurey.
Translating T if necessary, we may assume that not only the diameter but also the radius

of T is bounded by 1, i.e.,

‖t‖2 ≤ 1 for all t ∈ T . (0.2)

Fix a point x ∈ conv(T ) and express it as a convex combination of some vectors
z1, . . . , zm ∈ T as in (0.1). Now, interpret the definition of the convex combination (0.1)
probabilistically, with the λi taking the roles of probabilities. Specifically, we can define a
random vector Z that takes the value zi with probability λi :

P
{

Z = zi
} = λi , i = 1, . . . ,m.

(This is possible by the fact that the weights λi are non-negative and sum to 1.) Then

E Z =
m∑

i=1

λi zi = x .

Consider independent copies Z1, Z2, . . . of Z . By the strong law of large numbers,

1

k

k∑
j=1

Z j → x almost surely as k → ∞.

To get a quantitative form of this result, let us compute the variance of 1
k

∑k
j=1 Z j . (Inci-

dentally, this computation is at the heart of the proof of the weak law of large numbers.) We
obtain

E

∥∥∥∥x − 1

k

k∑
j=1

Z j

∥∥∥∥2

2

= 1

k2
E

∥∥∥∥ k∑
j=1

(Z j − x)

∥∥∥∥2

2

(since E(Zi − x) = 0)

= 1

k2

k∑
j=1

E ‖Z j − x‖2
2.

1 The diameter of T is defined as diam(T ) = sup{‖s − t‖2 : s, t ∈ T }. We have assumed that diam(T ) = 1 for
simplicity. For a general set T , the bound in the theorem changes to diam(T )/

√
k. Check this!
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The last identity is just a higher-dimensional version of the basic fact that the variance of
a sum of independent random variables equals the sum of the variances; see Exercise 0.0.3
below.

It remains to bound the variances of the terms. We have

E ‖Z j − x‖2
2 = E ‖Z − E Z‖2

2

= E ‖Z‖2
2 − ‖E Z‖2

2 (another variance identity; see Exercise 0.0.3)

≤ E ‖Z‖2
2 ≤ 1 (since Z ∈ T and using (0.2)).

We have shown that

E

∥∥∥∥x − 1

k

k∑
j=1

Z j

∥∥∥∥2

2

≤ 1

k
.

Therefore, there exists a realization of the random variables Z1, . . . , Zk such that∥∥∥∥x − 1

k

k∑
j=1

Z j

∥∥∥∥2

2

≤ 1

k
.

Since by construction each Z j takes values in T , the proof is complete. �

Exercise 0.0.3�� Check the following variance identities, which we used in the proof of
Theorem 0.0.2.

(a) Let Z1, . . . , Zk be independent mean-zero random vectors in R
n . Show that

E

∥∥∥∥ k∑
j=1

Z j

∥∥∥∥2

2

=
k∑

j=1

E ‖Z j‖2
2.

(b) Let Z be a random vector in R
n . Show that

E ‖Z − E Z‖2
2 = E ‖Z‖2

2 − ‖E Z‖2
2.

Let us give one application of Theorem 0.0.2 in computational geometry. Suppose that we
are given a subset P ⊂ R

n and asked to cover it by balls of a given radius ε; see Figure 0.2.
What is the smallest number of balls needed, and how should we place them?

Xi

ε
P

Figure 0.2 The covering problem asks how many balls of radius ε are needed to
cover a given set P in R

n and where to place these balls.



4 Appetizer: Using Probability to Cover a Geometric Set

Corollary 0.0.4 (Covering polytopes by balls) Let P be a polytope in R
n with N vertices

and whose diameter is bounded by 1. Then P can be covered by at most N �1/ε2 Euclidean
balls of radii ε > 0.

Proof Let us define the centers of the balls as follows. Let k := �1/ε2 and consider the
set

N :=
{

1

k

k∑
j=1

x j : x j are vertices of P

}
.

We claim that the family of ε-balls centered at N satisfies the conclusion of the corollary.
To check this, note that the polytope P is the convex hull of the set of its vertices, which we
denote by T . Thus we can apply Theorem 0.0.2 to any point x ∈ P = conv(T ) and deduce
that x is within a distance 1/

√
k ≤ ε from some point in N . This shows that the ε-balls

centered at N do indeed cover P .
To bound the cardinality of N , note that there are N k ways to choose k out of N vertices

with repetition. Thus |N | ≤ N k = N �1/ε2. The proof is complete. �

In this book we will learn several other approaches to the covering problem in relation to
packing (Section 4.2), entropy and coding (Section 4.3), and random processes (Chapters 7
and 8).

To finish this section, let us show how to slightly improve Corollary 0.0.4.

Exercise 0.0.5 (The sum of binomial coefficients)�� Prove the inequalities( n

m

)m ≤
(

n

m

)
≤

m∑
k=0

(
n

k

)
≤
(en

m

)m

for all integers m ∈ [1, n]. �

Exercise 0.0.6 (Improved covering)�� Check that, in Corollary 0.0.4,

(C + Cε2 N )�1/ε2

Euclidean balls suffice. Here C is a suitable absolute constant. (Note that this bound is
slightly stronger than N �1/ε2 for small ε.) �

0.1 Notes

In this appetizer we gave an illustration of the probabilistic method, where one employs
randomness to construct a useful object. The book [8] presents many illustrations of the
probabilistic method, mainly in combinatorics.

The empirical method of B. Maurey presented in this section was originally proposed
in [162]. B. Carl used it to get bounds on covering numbers [48] including those stated in
Corollary 0.0.4 and Exercise 0.0.6. The bound in Exercise 0.0.6 is sharp [48, 49].
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Preliminaries on Random Variables

In this chapter we recall some basic concepts and results of probability theory. The
reader should already be familiar with most of this material, which is routinely taught in
introductory probability courses.

Expectation, variance, and moments of random variables are introduced in Section 1.1.
Some classical inequalities can be found in Section 1.2. The two fundamental limit theorems
of probability – the law of large numbers and the central limit theorem – are recalled in
Section 1.3.

1.1 Basic Quantities Associated with Random Variables

In basic courses in probability theory, one learns about the two most important quantities
associated with a random variable X , namely the expectation1 (also called the mean) and
variance. They will be denoted in this book by2

E X and Var(X) = E(X − E X)2.

Let us recall some other classical quantities and functions that describe probability
distributions. The moment generating function of X is defined as

MX (t) = E et X , t ∈ R.

For p > 0, the pth moment of X is defined as E X p, and the pth absolute moment is E |X |p.

It is useful to take the pth root of the moments, which leads to the notion of the L p norm
of a random variable:

‖X‖L p = (E |X |p)1/p, p ∈ (0,∞).

This definition can be extended to p = ∞ by the essential supremum of |X |:
‖X‖L∞ = ess sup |X |.

For fixed p and a given probability space (�,�,P), the classical vector space L p =
L p(�,�,P) consists of all random variables X on � with finite L p norm, that is,

1 If you have studied measure theory, you will recall that the expectation E X of a random variable X on a
probability space (�,�,P) is, by definition, the Lebesgue integral of the function X : �→ R. This makes all
theorems on Lebesgue integration applicable in probability theory for expectations of random variables.

2 Throughout this book, we omit brackets and simply write E f (X). Thus, nonlinear functions bind before an
expectation.

5
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L p = {
X : ‖X‖L p <∞}.

If p ∈ [1,∞], the quantity ‖X‖L p is a norm and L p is a Banach space. This fact follows
from Minkowski’s inequality, which we recall in (1.4). For p < 1, the triangle inequality
fails and ‖X‖L p is not a norm.

The exponent p = 2 is special in that L2 is not only a Banach space but also a Hilbert
space. The inner product and the corresponding norm on L2 are given by

〈X, Y 〉L2 = E XY, ‖X‖L2 = (E |X |2)1/2. (1.1)

Then the standard deviation of X can be expressed as

‖X − E X‖L2 = √
Var(X) = σ(X).

Similarly, we can express the covariance of random variables X and Y as

cov(X, Y ) = E((X − E X)(Y − E Y )) = 〈X − E X, Y − E Y 〉L2 . (1.2)

Remark 1.1.1 (Geometry of random variables) When we consider random variables as
vectors in the Hilbert space L2, the identity (1.2) gives a geometric interpretation of the
notion of covariance: the more the vectors X −E X and Y −E Y are aligned with each other,
the larger are their inner product and covariance.

1.2 Some Classical Inequalities

Jensen’s inequality states that for any random variable X and a convex3 function ϕ : R → R,
we have

ϕ(E X) ≤ Eϕ(X).

As a simple consequence of Jensen’s inequality, ‖X‖L p is an increasing function in p,
that is

‖X‖L p ≤ ‖X‖Lq for any 0 ≤ p ≤ q = ∞. (1.3)

This inequality follows since φ(x) = xq/p is a convex function if q/p ≥ 1.
Minkowski’s inequality states that for any p ∈ [1,∞] and any random variables

X, Y ∈ L p, we have

‖X + Y‖L p ≤ ‖X‖L p + ‖Y‖L p . (1.4)

This can be viewed as the triangle inequality, which implies that ‖ · ‖L p is a norm when
p ∈ [1,∞].

The Cauchy–Schwarz inequality states that, for any random variables X, Y ∈ L2, we have

|E XY | ≤ ‖X‖L2 ‖Y‖L2 .

The more general Hölder’s inequality states that if p, q ∈ (1,∞) are conjugate exponents,
that is, 1/p + 1/q = 1, then the random variables X ∈ L p and Y ∈ Lq satisfy

3 By definition, a function ϕ is convex if ϕ(λx + (1 − λ)y) ≤ λϕ(x)+ (1 − λ)ϕ(y) for all λ ∈ [0, 1] and all
vectors x, y in the domain of ϕ.
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|E XY | ≤ ‖X‖L p ‖Y‖Lq .

This inequality also holds for the pair p = 1, q = ∞.
As we recall from basic probability concepts, the distribution of a random variable X

is, intuitively, the information about what values X takes with what probabilities. More
rigorously, the distribution of X is determined by the cumulative distribution function (CDF)
of X , defined as

FX (t) = P
{

X ≤ t
}
, t ∈ R.

It is often more convenient to work with the tails of random variables, namely with

P
{

X > t
} = 1 − FX (t).

There is an important connection between the tails and the expectation (and more gener-
ally, the moments) of a random variable. The following identity is typically used to bound
the expectation by the tails.

Lemma 1.2.1 (Integral identity) Let X be a non-negative random variable X. Then

E X =
∫ ∞

0
P
{

X > t
}

dt.

The two sides of this identity are either finite or infinite simultaneously.

Proof We can represent any non-negative real number x via the identity4

x =
∫ x

0
1 dt =

∫ ∞

0
1{t<x} dt.

Substitute the random variable X for x and take expectation of both sides. This gives

E X = E

∫ ∞

0
1{t<X} dt =

∫ ∞

0
E 1{t<X} dt =

∫ ∞

0
P
{
t < X

}
dt.

To change the order of expectation and integration in the second equality, we used the
Fubini–Tonelli theorem. The proof is complete. �

Exercise 1.2.2 (Generalization of integral identity)� Prove the following extension of
Lemma 1.2.1, which is valid for any random variable X (not necessarily non-negative):

E X =
∫ ∞

0
P
{

X > t
}

dt −
∫ 0

−∞
P
{

X < t
}

dt.

Exercise 1.2.3 (pth moment via the tail)� Let X be a random variable and p ∈ (0,∞).
Show that

E |X |p =
∫ ∞

0
pt p−1

P
{|X | > t

}
dt

whenever the right-hand side is finite. �

4 Here and later in this book, 1E denotes the indicator of the event E ; it is the function that takes the value 1 if E
occurs and 0 otherwise.
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Another classical tool, Markov’s inequality, can be used to bound the tail in terms of the
expectation.

Proposition 1.2.4 (Markov’s inequality) For any non-negative random variable X and
t > 0, we have

P
{

X ≥ t
} ≤ E X

t
.

Proof Fix t > 0. We can represent any real number x via the identity

x = x1{x≥t} + x1{x<t}.

Substitute the random variable X for x and take the expectation of both sides. This gives

E X = E X1{X≥t} + E X1{X<t}
≥ E t1{X≥t} + 0 = t P

{
X ≥ t

}
.

Dividing both sides by t , we complete the proof. �

A well-known consequence of Markov’s inequality is Chebyshev’s inequality. It offers a
better, quadratic, dependence on t and, instead of controlling a one-side tail, it quantifies the
concentration of X about its mean.

Corollary 1.2.5 (Chebyshev’s inequality) Let X be a random variable with mean μ and
variance σ 2. Then, for any t > 0, we have

P
{|X − μ| ≥ t

} ≤ σ 2

t2
.

Exercise 1.2.6� Deduce Chebyshev’s inequality by squaring both sides of the bound |X−
μ| ≥ t and applying Markov’s inequality.

Remark 1.2.7 In Proposition 2.5.2 we will establish relations among the three basic quan-
tities associated with random variables – the moment generating functions, the L p norms,
and the tails.

1.3 Limit Theorems

The study of sums of independent random variables is a core part of classical probability
theory. Recall that the identity

Var(X1 + · · · + X N ) = Var(X1)+ · · · + Var(X N )

holds for any independent random variables X1, . . . , X N . If, furthermore, the Xi each have
the same distribution, with mean μ and variance σ 2, then dividing both sides by N we see
that

Var

(
1

N

N∑
i=1

Xi

)
= σ 2

N
. (1.5)
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Thus, the variance of the sample mean 1
N

∑N
i=1 Xi of the sample {X1, . . . , X N } shrinks to

zero as N → ∞. This indicates that, for large N , we should expect that the sample mean
concentrates tightly about its expectation μ. One of the most important results in probability
theory – the law of large numbers – states precisely this.

Theorem 1.3.1 (Strong law of large numbers) Let X1, X2, . . . be a sequence of i.i.d.
random variables with mean μ. Consider the sum

SN = X1 + · · · X N .

Then, as N → ∞,
SN

N
→ μ almost surely.

The next result, the central limit theorem, goes one step further. It identifies the limiting
distribution of the (properly scaled) sum of the Xi as the normal distribution, also called the
Gaussian distribution. Recall that the standard normal distribution, denoted N (0, 1), has
density

f (x) = 1√
2π

e−x2/2, x ∈ R. (1.6)

Theorem 1.3.2 (Lindeberg–Lévy central limit theorem) Let X1, X2, . . . be a sequence of
i.i.d. random variables with mean μ and variance σ 2. Consider the sum

SN = X1 + · · · + X N

and normalize it to obtain a random variable with zero mean and unit variance as follows:

Z N := SN − E SN√
Var(SN )

= 1

σ
√

N

N∑
i=1

(Xi − μ).

Then, as N → ∞,

Z N → N (0, 1) in distribution.

Convergence in distribution means that the CDF of the normalized sum converges point-
wise to the CDF of the standard normal distribution. We can express this in terms of tails as
follows. Thus, for every t ∈ R we have

P
{

Z N ≥ t
}→ P

{
g ≥ t

} = 1√
2π

∫ ∞

t
e−x2/2 dx

as N → ∞, where g ∼ N (0, 1) is a standard normal random variable.

Exercise 1.3.3� Let X1, X2, . . . be a sequence of i.i.d. random variables with mean μ and
finite variance. Show that

E

∣∣∣ 1

N

N∑
i=1

Xi − μ

∣∣∣ = O
( 1√

N

)
as N → ∞.
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One remarkable special case of the central limit theorem occurs when the Xi are Bernoulli
random variables with some fixed parameter p ∈ (0, 1), denoted

Xi ∼ Ber(p).

Recall that this means that the Xi take the values 1 and 0 with probabilities p and 1 − p
respectively; also recall that E Xi = p and Var(Xi ) = p(1 − p). The sum

SN := X1 + · · · + X N

is said to have the binomial distribution Binom(N , p). The central limit theorem (Theo-
rem 1.3.2) yields that, as N → ∞,

SN − N p√
N p(1 − p)

→ N (0, 1) in distribution. (1.7)

This special case of the central limit theorem is called the de Moivre–Laplace theorem.
Now suppose that Xi ∼ Ber(pi ), with parameters pi that decay to zero as N → ∞ so

fast that the sum SN has mean O(1) instead of being proportional to N . The central limit
theorem fails in this regime. A different result, which we are about to state, says that SN still
converges but to the Poisson instead of the normal distribution.

Recall that a random variable Z has a Poisson distribution with parameter λ, denoted

Z ∼ Pois(λ),

if it takes values in {0, 1, 2, . . .} with probabilities

P
{

Z = k
} = e−λ λ

k

k! , k = 0, 1, 2, . . . (1.8)

Theorem 1.3.4 (Poisson limit theorem) Let X N ,i , 1 ≤ i ≤ N, be independent random
variables X N ,i ∼ Ber(pN ,i ), and let SN =∑N

i=1 X N ,i . Assume that, as N → ∞,

max
i≤N

pN ,i → 0 and E SN =
N∑

i=1

pN ,i → λ <∞.

Then, as N → ∞,

SN → Pois(λ) in distribution.

1.4 Notes

The material presented in this chapter is included in most graduate probability textbooks. In
particular, proofs of the strong law of large numbers (Theorem 1.3.1) and the Lindeberg–
Lévy central limit theorem (Theorem 1.3.2) can be found e.g. in [70, Sections 1.7 and 2.4]
and [22, Sections 6 and 27].



2

Concentration of Sums of Independent Random
Variables

This chapter introduces the reader to the rich topic of concentration inequalities. After
motivating the subject in Section 2.1, we prove some basic concentration inequalities:
Hoeffding’s in Sections 2.2 and 2.6, Chernoff’s in Section 2.3, and Bernstein’s in Sec-
tion 2.8. Another goal of this chapter is to introduce two important classes of distributions:
sub-gaussian in Section 2.5 and sub-exponential in Section 2.7. These classes form a natural
“habitat” in which many results of high-dimensional probability and its applications will
be developed. We give two quick applications of concentration inequalities for randomized
algorithms in Section 2.2 and random graphs in Section 2.4. Many more applications are
given later in the book.

2.1 Why Concentration Inequalities?

Concentration inequalities quantify how a random variable X deviates around its mean μ.
They usually take the form of two-sided bounds for the tails of X − μ, such as

P
{|X − μ| > t

} ≤ something small.

The simplest concentration inequality is Chebyshev’s inequality (Corollary 1.2.5). It is
very general but often too weak. Let us illustrate this with the example of the binomial
distribution.

Question 2.1.1 Toss a fair coin N times. What is the probability that we get at least 3N/4
heads?

Let SN denote the number of heads. Then

E SN = N

2
, Var(SN ) = N

4
.

Chebyshev’s inequality bounds the probability of getting at least 3N/4 heads as follows:

P

{
SN ≥ 3

4
N

}
≤ P

{∣∣∣SN − N

2

∣∣∣ ≥ N

4

}
≤ 4

N
. (2.1)

So the probability converges to zero at least linearly in N .
Is this the right rate of decay, or we should expect something faster? Let us approach

the same question using the central limit theorem. To do this, we represent SN as a sum of
independent random variables:

11
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SN =
N∑

i=1

Xi

where the Xi are independent Bernoulli random variables with parameter 1/2, i.e.
P
{

Xi = 0
} = P

{
Xi = 1

} = 1/2. (These Xi are the indicators of heads.) The De Moivre–
Laplace central limit theorem (1.7) states that the distribution of the normalized number of
heads,

Z N = SN − N/2√
N/4

,

converges to the standard normal distribution N (0, 1). Thus we should anticipate that for
large N , we have

P
{

SN ≥ 3N/4
} = P

{
Z N ≥ √

N/4
}
≈ P

{
g ≥ √

N/4
}

(2.2)

where g ∼ N (0, 1). To understand how this quantity decays in N , we will now obtain a
good bound on the tails of the normal distribution.

Proposition 2.1.2 (Tails of the normal distribution) Let g ∼ N (0, 1). Then, for all t > 0,
we have (1

t
− 1

t3

) 1√
2π

e−t2/2 ≤ P
{
g ≥ t

} ≤ 1

t

1√
2π

e−t2/2.

In particular, for t ≥ 1 the tail is bounded by the density:

P
{
g ≥ t

} ≤ 1√
2π

e−t2/2. (2.3)

Proof To obtain an upper bound on the tail

P
{
g ≥ t

} = 1√
2π

∫ ∞

t
e−x2/2 dx,

let us make the change of variables x = t + y. This gives

P
{
g ≥ t

} = 1√
2π

∫ ∞

0
e−t2/2 e−t y e−y2/2 dy ≤ 1√

2π
e−t2/2

∫ ∞

0
e−t ydy,

where we have used that e−y2/2 ≤ 1. Since the last integral equals 1/t , the desired upper
bound on the tail follows.

The lower bound follows from the identity∫ ∞

t
(1 − 3x−4)e−x2/2 dx =

(1

t
− 1

t3

)
e−t2/2.

This completes the proof. �

Returning to (2.2), we see that we should expect the probability of having at least 3N/4
heads to be smaller than

1√
2π

e−N/8. (2.4)
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This quantity decays to zero exponentially fast in N , which is much better than the linear
decay in (2.1) that follows from Chebyshev’s inequality.

Unfortunately, (2.4) does not follow rigorously from the central limit theorem. Although
the approximation by the normal density in (2.2) is valid, the error of approximation cannot
be ignored. And, unfortunately, the error decays too slowly – even more slowly than linearly
in N . This can be seen from the following sharp quantitative version of the central limit
theorem.

Theorem 2.1.3 (Berry–Esseen central limit theorem) In the setting of Theorem 1.3.2, for
every N and every t ∈ R we have∣∣P {Z N ≥ t

}− P
{
g ≥ t

} ∣∣ ≤ ρ√
N
.

Here ρ = E |X1 − μ|3/σ 3 and g ∼ N (0, 1).

Thus the approximation error in (2.2) is of order 1/
√

N , which ruins the desired
exponential decay (2.4).

Can we improve the approximation error involved in using the central limit theorem? In
general, no. If N is even then the probability of getting exactly N/2 heads is

P
{

SN = N/2
} = 2−N

(
N

N/2

)
∼ 1√

N
;

the last estimate can be obtained using Stirling’s approximation. (Do it!) Hence,
P
{

Z N = 0
} ∼ 1/

√
N . On the other hand, since the normal distribution is continuous, we

have P
{
g = 0

} = 0. Thus the approximation error here has to be of order 1/
√

N .
Let us summarize our situation. The central limit theorem offers an approximation of a

sum of independent random variables SN = X1 + · · · + X N by the normal distribution. The
normal distribution is especially nice owing to its very light, exponentially decaying, tails.
At the same time, the error of approximation in the central limit theorem decays too slowly,
even more slowly than linear. This large error is a roadblock toward proving concentration
properties for random variables SN with light, exponentially decaying, tails.

In order to resolve this issue, we will develop alternative, direct, approaches to concentra-
tion which bypass the central limit theorem.

Exercise 2.1.4 (Truncated normal distribution)� Let g ∼ N (0, 1). Show that, for all
t ≥ 1, we have

E g21{g>t} = t
1√
2π

e−t2/2 + P
{
g > t

} ≤
(

t + 1

t

) 1√
2π

e−t2/2. �

2.2 Hoeffding’s Inequality

We start with a particularly simple concentration inequality, which holds for sums of i.i.d.
symmetric Bernoulli random variables.
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Definition 2.2.1 (Symmetric Bernoulli distribution) A random variable X has a symmetric
Bernoulli distribution (also called a Rademacher distribution) if it takes values −1 and 1
with probabilities 1/2 each, i.e.,

P
{

X = −1
} = P

{
X = 1

} = 1

2
.

Clearly, a random variable X has the (usual) Bernoulli distribution with parameter 1/2 if
and only if Z = 2X − 1 has a symmetric Bernoulli distribution.

Theorem 2.2.2 (Hoeffding’s inequality) Let X1, . . . , X N be independent symmetric
Bernoulli random variables, and let a = (a1, . . . , aN ) ∈ R

N . Then, for any t ≥ 0, we
have

P

{
N∑

i=1

ai Xi ≥ t

}
≤ exp

(
− t2

2‖a‖2
2

)
.

Proof We can assume without loss of generality that ‖a‖2 = 1. (Why?)
Let us recall how we deduced Chebyshev’s inequality (Corollary 1.2.5): we squared both

sides and applied Markov’s inequality. Let us do something similar here. But instead of
squaring both sides, let us multiply by a fixed parameter λ > 0 (to be chosen later) and
exponentiate. This gives

P

{
N∑

i=1

ai Xi ≥ t

}
= P

{
exp

(
λ

N∑
i=1

ai Xi

)
≥ exp(λt)

}

≤ e−λt
E exp

(
λ

N∑
i=1

ai Xi

)
. (2.5)

In the last step we applied Markov’s inequality (Proposition 1.2.4).
We have thus reduced the problem to bounding the moment generating function (MGF)

of the sum
∑N

i=1 ai Xi . Recall that the MGF of the sum is the product of the MGFs of the
terms; this follows immediately from the independence of the Xi . Thus

E exp

(
λ

N∑
i=1

ai Xi

)
=

N∏
i=1

E exp(λai Xi ). (2.6)

Let us fix i . Since Xi takes values −1 and 1 with probabilities 1/2 each, we have

E exp(λai Xi ) = exp(λai )+ exp(−λai )

2
= cosh(λai ).

Exercise 2.2.3 (Bounding the hyperbolic cosine)� Show that

cosh(x) ≤ exp(x2/2) for all x ∈ R. �

This bound shows that

E exp(λai Xi ) ≤ exp(λ2a2
i /2).
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Substituting into (2.6) and then into (2.5), we obtain

P

{
N∑

i=1

ai Xi ≥ t

}
≤ e−λt

N∏
i=1

exp(λ2a2
i /2) = exp

(
− λt + λ2

2

N∑
i=1

a2
i

)
= exp

(
− λt + λ2

2

)
.

In the last identity, we used the assumption that ‖a‖2 = 1.
This bound holds for arbitrary λ > 0. It remains to optimize in λ; the minimum is clearly

attained for λ = t . With this choice, we obtain

P

{
N∑

i=1

ai Xi ≥ t

}
≤ exp(−t2/2).

This completes the proof of Hoeffding’s inequality. �

We can view Hoeffding’s inequality as a concentration version of the central limit the-
orem. Indeed, the most that we may expect from a concentration inequality is that the tail
of
∑

ai Xi behaves similarly to the tail of the normal distribution. And, for all practical
purposes, Hoeffding’s tail bound does that. With the normalization ‖a‖2 = 1, Hoeffding’s
inequality provides the tail e−t2/2, which is exactly the same as the bound for the standard
normal tail in (2.3). This is good news. We have been able to obtain the same exponentially
light tails for sums as for the normal distribution, even though the difference of these two
distributions is not exponentially small.

Armed with Hoeffding’s inequality, we can now return to Question 2.1.1 regarding the
bounding of the probability of at least 3N/4 heads in N tosses of a fair coin. After rescaling
from Bernoulli to symmetric Bernoulli, we obtain that this probability is exponentially small
in N , namely

P
{
at least 3N/4 heads

} ≤ exp(−N/8).

(Check this.)

Remark 2.2.4 (Non-asymptotic results) It should be stressed that, unlike the classical limit
theorems of probability theory, Hoeffding’s inequality is non-asymptotic in that it holds for
all fixed N as opposed to N → ∞. The larger the value of N , the stronger the inequality
becomes. As we will see later, the non-asymptotic nature of concentration inequalities like
that of Hoeffding makes them attractive in applications in the data sciences, where N often
corresponds to the sample size.

We can easily derive a version of Hoeffding’s inequality for two-sided tails P
{|S| ≥ t

}
where S = ∑N

i=1 ai Xi . Indeed, applying Hoeffding’s inequality for −Xi instead of Xi , we
obtain a bound on P

{−S ≥ t
}
. Combining the two bounds, we obtain the bound

P
{|S| ≥ t

} = P
{

S ≥ t
}+ P

{−S ≥ t
}
.
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Thus the bound doubles, and we obtain:

Theorem 2.2.5 (Hoeffding’s inequality, two-sided) Let X1, . . . , X N be independent sym-
metric Bernoulli random variables, and let a = (a1, . . . , aN ) ∈ R

N . Then, for any t > 0,
we have

P

{∣∣∣ N∑
i=1

ai Xi

∣∣∣ ≥ t

}
≤ 2 exp

(
− t2

2‖a‖2
2

)
.

Our proof above of Hoeffding’s inequality, which is based on bounding the moment gener-
ating function, is quite flexible. It applies far beyond the canonical example of the symmetric
Bernoulli distribution. For example, the following extension of Hoeffding’s inequality is
valid for general bounded random variables.

Theorem 2.2.6 (Hoeffding’s inequality for general bounded random variables) Let
X1, . . . , X N be independent random variables. Assume that Xi ∈ [mi ,Mi ] for every i .
Then, for any t > 0, we have

P

{
N∑

i=1

(Xi − E Xi ) ≥ t

}
≤ exp

(
− 2t2∑N

i=1(Mi − mi )2

)
.

Exercise 2.2.7�� Prove Theorem 2.2.6, possibly with some absolute constant instead of
2 in the tail.

Exercise 2.2.8 (Boosting randomized algorithms)�� Imagine we have an algorithm for
solving some decision problem (e.g., is a given number p a prime?). Suppose that the algo-
rithm makes a decision at random and returns the correct answer with probability 1/2 + δ,
for some δ > 0, which is just a bit better than a random guess. To improve the performance,
we run the algorithm N times and take the majority vote. Show that, for any ε ∈ (0, 1), the
answer is correct with probability 1 − ε, as long as N ≥ (1/2)δ−2 ln(ε−1). �

Exercise 2.2.9 (Robust estimation of the mean)��� Suppose that we want to estimate
the mean μ of a random variable X from a sample X1, . . . , X N drawn independently from
the distribution of X . We want an ε-accurate estimate, i.e. one that falls in the interval (μ−
ε, μ+ ε).

(a) Show that a sample of size N = O(σ 2/ε2) is sufficient to compute an ε-accurate
estimate with probability at least 3/4, where σ 2 = Var X .1 �

(b) Show that a sample of size N = O(log(δ−1)σ 2/ε2) is sufficient to compute an
ε-accurate estimate with probability at least 1 − δ. �

Exercise 2.2.10 (Small ball probabilities)�� Let X1, . . . , X N be non-negative
independent random variables with continuous distributions. Assume that the densities of
Xi are uniformly bounded by 1.

1 More accurately, this claim means that there exists an absolute constant C such that if N ≥ Cσ 2/ε2 then

P

{
|μ̂− μ| ≤ ε

}
≥ 3/4. Here μ̂ is the sample mean; see the hint.
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(a) Show that the MGF of Xi satisfies

E exp(−t Xi ) ≤ 1

t
for all t > 0.

(b) Deduce that, for any ε > 0, we have

P

{
N∑

i=1

Xi ≤ εN

}
≤ (eε)N . �

2.3 Chernoff’s Inequality

As we have noted, Hoeffding’s inequality is quite sharp for symmetric Bernoulli random
variables. But the general form of Hoeffding’s inequality (Theorem 2.2.6) is sometimes
too conservative and does not give sharp results. This happens, for example, when the Xi

are Bernoulli random variables with parameters pi so small that we expect SN to have
an approximately Poisson distribution according to Theorem 1.3.4. However, Hoeffding’s
inequality is not sensitive to the magnitudes of the pi , and the Gaussian tail bound that it
gives is very far from the true, Poisson, tail. In this section we study Chernoff’s inequality,
which is sensitive to the magnitudes of the pi .

Theorem 2.3.1 (Chernoff’s inequality) Let Xi be independent Bernoulli random variables
with parameters pi . Consider their sum SN = ∑N

i=1 Xi and denote its mean by μ = E SN .
Then, for any t > μ, we have

P
{

SN ≥ t
} ≤ e−μ

(eμ

t

)t
.

Proof We will use the same method – based on the moment generating function – as we
did in the proof of Hoeffding’s inequality, Theorem 2.2.2. We repeat the first steps of that
argument, leading to (2.5) and (2.6): multiply both sides of the inequality SN ≥ t by a
parameter λ, exponentiate, and then use Markov’s inequality and independence. This gives

P
{

SN ≥ t
} ≤ e−λt

N∏
i=1

E exp(λXi ). (2.7)

It remains to bound the MGF of each Bernoulli random variable Xi separately. Since Xi

takes the value 1 with probability pi and the value 0 with probability 1 − pi , we have

E exp(λXi ) = eλ pi + (1 − pi ) = 1 + (eλ − 1)pi ≤ exp
(
(eλ − 1)pi

)
.

In the last step, we used the numeric inequality 1 + x ≤ ex . Consequently,

N∏
i=1

E exp(λXi ) ≤ exp

(
(eλ − 1)

N∑
i=1

pi

)
= exp

(
(eλ − 1)μ

)
.

Substituting this into (2.7), we obtain

P
{

SN ≥ t
} ≤ e−λt exp

(
(eλ − 1)μ

)
.

This bound holds for any λ > 0. Substituting the value λ = ln(t/μ), which is positive by
the assumption t > μ, and simplifying the expression, we complete the proof. �
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Exercise 2.3.2 (Chernoff’s inequality: lower tails)�� Modify the proof of Theorem 2.3.1
to obtain the following bound on the lower tail. For any t < μ, we have

P
{

SN ≤ t
} ≤ e−μ

(eμ

t

)t
.

Exercise 2.3.3 (Poisson tails)�� Let X ∼ Pois(λ). Show that, for any t > λ, we have

P
{

X ≥ t
} ≤ e−λ

(eλ

t

)t
. (2.8)

�

Remark 2.3.4 (Poisson tails) Note that the Poisson tail bound (2.8) is quite sharp. Indeed,
the probability mass function (1.8) of X ∼ Pois(λ) can be approximated via Stirling’s
formula k! ∼ √

2πk(k/e)k as follows:

P
{

X = k
} ∼ 1√

2πk
e−λ

(eλ

k

)k
. (2.9)

So our bound (2.8) on the entire tail of X has essentially the same form as the probability of
hitting one value k (the smallest value) in that tail. The difference between these two quan-
tities is the factor

√
2πk, which is negligible since both these quantities are exponentially

small in k.

Exercise 2.3.5 (Chernoff’s inequality: small deviations)��� Show that, in the setting of
Theorem 2.3.1, for δ ∈ (0, 1] we have

P
{|SN − μ| ≥ δμ

} ≤ 2e−cμδ2
,

where c > 0 is an absolute constant. �

Exercise 2.3.6 (Poisson distribution near the mean)� Let X ∼ Pois(λ). Show that for
t ∈ (0, λ], we have

P
{|X − λ| ≥ t

} ≤ 2 exp

(
−ct2

λ

)
. �

Remark 2.3.7 (Large and small deviations) Exercises 2.3.3 and 2.3.6 indicate two differ-
ent behaviors of the tail of the Poisson distribution Pois(λ). In the small-deviation regime,
near the mean λ, the tail of Pois(λ) is like that for the normal distribution N (λ, λ). In the
large-deviation regime, far to the right from the mean, the tail is heavier and decays like
(λ/t)t ; see Figure 2.1.

Exercise 2.3.8 (Normal approximation to Poisson)�� Let X ∼ Pois(λ). Show that, as
λ→ ∞, we have

X − λ√
λ

→ N (0, 1) in distribution. �
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Figure 2.1 The probability mass function of the Poisson distribution Pois(λ) with
λ = 10. The distribution is approximately normal near the mean λ, but to the right
of the mean the tail is heavier.

Figure 2.2 A random graph from the Erdös–Rényi model G(n, p) with n = 200
and p = 1/40.

2.4 Application: Degrees of Random Graphs

We now give an application of Chernoff’s inequality to a classical object in probability:
random graphs.

The most thoroughly studied model of random graphs is the classical Erdös–Rényi model
G(n, p), which is constructed on a set of n vertices by connecting every pair of dis-
tinct vertices independently with probability p. Figure 2.2 shows an example of a random
graph G ∼ G(n, p). In applications, the Erdös–Rényi model often appears as the simplest
stochastic model for large, real-world, networks.

The degree of a vertex in the graph is the number of edges incident to that vertex. The
expected degree of every vertex in G(n, p) clearly equals

(n − 1)p =: d.

(Check!) We will show that relatively dense graphs, those where d � log n, are almost
regular, with high probability, which means that the degrees of all vertices approximately
equal d.
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Proposition 2.4.1 (Dense graphs are almost regular) There is an absolute constant C such
that the following holds. Consider a random graph G ∼ G(n, p) with expected degree
satisfying d ≥ C log n. Then, with high probability (for example, 0.9), the following occurs:
all vertices of G have degrees between 0.9d and 1.1d.

Proof The argument uses a combination of Chernoff’s inequality and a union bound. Let
us fix a vertex i of the graph. The degree of i , which we denote di , is a sum of n − 1
independent Ber(p) random variables (the indicators of the edges incident to i). Thus we
can apply Chernoff’s inequality, which yields

P
{|di − d| ≥ 0.1d

} ≤ 2e−cd .

(Here, we have used the version of Chernoff’s inequality given in Exercise 2.3.5.)
This bound holds for each fixed vertex i . Next, we can “unfix” i by taking the union bound

over all n vertices. We obtain

P
{∃i ≤ n : |di − d| ≥ 0.1d

} ≤
n∑

i=1

P
{|di − d| ≥ 0.1d

} ≤ n 2e−cd .

If d ≥ C log n for a sufficiently large absolute constant C , the probability is bounded by 0.1.
This means that, with probability 0.9, the complementary event occurs and we have

P
{∀i ≤ n : |di − d| < 0.1d

} ≥ 0.9.

This completes the proof. �

Sparser graphs, those for which d = o(log n), are no longer almost regular, but there are
still useful bounds on their degrees. The following series of exercises makes these claims
clear. In all of them we shall assume that the graph size n grows to infinity but we will not
assume the connection probability p to be constant in n.

Exercise 2.4.2 (Bounding the degrees of sparse graphs)� Consider a random graph G ∼
G(n, p) with expected degrees d = O(log n). Show that with high probability (say, 0.9), all
the vertices of G have degree O(log n). �

Exercise 2.4.3 (Bounding the degrees of very sparse graphs)�� Consider a random graph
G ∼ G(n, p) with expected degrees d = O(1). Show that with high probability (say, 0.9),
all the vertices of G have degree

O
( log n

log log n

)
.

Now we pass to the lower bounds. The next exercise shows that Proposition 2.4.1 does
not hold for sparse graphs.

Exercise 2.4.4 (Sparse graphs are not almost regular)��� Consider a random graph
G ∼ G(n, p) with expected degrees d = o(log n). Show that, with high probability (say,
0.9), G has a vertex with degree 10d.2 �

2 We assume here that 10d is an integer. There is nothing particular about the factor 10; it could be replaced by
any other constant.
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Moreover, very sparse graphs, those for which d = O(1), are even farther from regular.
The next exercise gives a lower bound on the degrees that matches the upper bound we gave
in Exercise 2.4.3.

Exercise 2.4.5 (Very sparse graphs are far from being regular)�� Consider a random
graph G ∼ G(n, p) with expected degrees d = O(1). Show that, with high probability (say,
0.9), G has a vertex whose degree is at least of order

log n

log log n
.

2.5 Sub-Gaussian Distributions

So far, we have studied concentration inequalities that apply only for Bernoulli random
variables Xi . It would be useful to extend these results to a wider class of distributions. At
the very least we may expect that the normal distribution belongs to this class, since we think
of concentration results as quantitative versions of the central limit theorem.

So let us ask which random variables Xi must obey a concentration inequality like
Hoeffding’s in Theorem 2.2.5, namely

P

{∣∣∣ N∑
i=1

ai Xi

∣∣∣ ≥ t

}
≤ 2 exp

(
− ct2

‖a‖2
2

)
.

If the sum
∑N

i=1 ai Xi consists of a single term ai Xi , this inequality reads as

P
{|Xi | > t

} ≤ 2e−ct2
.

This gives us an automatic restriction: if we want Hoeffding’s inequality to hold, we must
assume that the random variables Xi have sub-gaussian tails.

This class of distributions, which we call sub-gaussian, deserves special attention. It is
sufficiently wide as it contains Gaussian, Bernoulli, and all bounded distributions. And,
as we will see shortly, concentration results like Hoeffding’s inequality can indeed be
proved for all sub-gaussian distributions. This makes the family of sub-gaussian distribu-
tions a natural, and in many cases canonical, class where one can develop various results in
high-dimensional probability theory and its applications.

We now explore several equivalent approaches to sub-gaussian distributions, examining
the behavior of their tails, moments, and moment generating functions. To pave our way, let
us recall how these quantities behave for the standard normal distribution.

Let X ∼ N (0, 1). Then using (2.3) and symmetry, we obtain the following tail bound:

P
{|X | ≥ t

} ≤ 2e−t2/2 for all t ≥ 0. (2.10)

(Deduce this formally!) In the next exercise we obtain a bound on the absolute moments and
L p norms of the normal distribution.

Exercise 2.5.1 (Moments of the normal distribution)�� Show that, for each p ≥ 1, the
random variable X ∼ N (0, 1) satisfies

‖X‖L p = (E |X |p)1/p = √
2
(�((1 + p)/2)

�(1/2)

)1/p
.
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Deduce that

‖X‖L p = O(
√

p) as p → ∞. (2.11)

Finally, a classical formula gives the moment generating function of X ∼ N (0, 1):

E exp(λX) = eλ
2/2 for all λ ∈ R. (2.12)

2.5.1 Sub-Gaussian Properties

Now let X be a general random variable. The following proposition states that the properties
we just considered are equivalent – a sub-gaussian tail decay as in (2.10), the growth of
moments as in (2.11), and the growth of the moment generating function as in (2.12). The
proof of this result is quite useful; it shows how to transform one type of information about
random variables into another.

Proposition 2.5.2 (Sub-gaussian properties) Let X be a random variable. Then the follow-
ing properties are equivalent; the parameters Ki > 0 appearing in these properties differ
from each other by at most an absolute constant factor.3

(i) The tails of X satisfy

P{|X | ≥ t} ≤ 2 exp(−t2/K 2
1 ) for all t ≥ 0.

(ii) The moments of X satisfy

‖X‖L p = (E |X |p)1/p ≤ K2
√

p for all p ≥ 1.

(iii) The MGF of X2 satisfies

E exp(λ2 X2) ≤ exp(K 2
3λ

2) for all λ such that |λ| ≤ 1

K3
.

(iv) The MGF of X2 is bounded at some point, namely

E exp(X2/K 2
4 ) ≤ 2.

Moreover, if E X = 0 then properties (i)–(iv) are also equivalent to the following property.

(v) The MGF of X satisfies

E exp(λX) ≤ exp(K 2
5λ

2) for all λ ∈ R.

Proof (i) ⇒ (ii) Assume that property (i) holds. By homogeneity and rescaling X to X/K1

we can assume that K1 = 1. Applying the integral identity (Lemma 1.2.1) for |X |p, we
obtain

E |X |p =
∫ ∞

0
P{|X |p ≥ u} du

=
∫ ∞

0
P{|X | ≥ t} pt p−1 dt (by change of variables u = t p)

3 The precise meaning of this equivalence is the following. There exists an absolute constant C such that
property i implies property j with parameter K j ≤ C Ki for any two properties i, j = 1, . . . , 5.
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≤
∫ ∞

0
2e−t2

pt p−1 dt (by property (i))

= p�(p/2) (set t2 = s and use definition of Gamma function)

≤ p(p/2)p/2 (since �(x) ≤ x x by Stirling’s approximation).

Taking the pth root yields property (ii) with K2 ≤ 2.
(ii) ⇒ (iii) Assume that property (ii) holds. As before, by homogeneity we may assume

that K2 = 1. Recalling the Taylor series expansion of the exponential function, we obtain

E exp(λ2 X2) = E

(
1 +

∞∑
p=1

(λ2 X2)p

p!
)

= 1 +
∞∑

p=1

λ2p
E(X2p)

p! .

Property (ii) guarantees that E[X2p] ≤ (2p)p, while Stirling’s approximation yields p! ≥
(p/e)p. Substituting these two bounds, we get

E exp(λ2 X2) ≤ 1 +
∞∑

p=1

(2λ2 p)p

(p/e)p
=

∞∑
p=0

(2eλ2)p = 1

1 − 2eλ2
,

provided that 2eλ2 < 1, in which case the geometric series above converges. To bound this
quantity further, we can use the numeric inequality 1/(1 − x) ≤ e2x , which is valid for
x ∈ [0, 1/2]. It follows that

E exp(λ2 X2) ≤ exp(4eλ2) for all λ satisfying |λ| ≤ 1

2
√

e
.

This yields property (iii) with K3 = 1/2
√

e.
(iii) ⇒ (iv) is trivial.
(iv) ⇒ (i) Assume that property (iv) holds. As before, we may assume that K4 = 1.

Then

P{|X | ≥ t} = P{eX2 ≥ et2}
≤ e−t2

E eX2
(by Markov’s inequality, Proposition 1.2.4)

≤ 2e−t2
(by property (iv)).

This proves property (i) with K1 = 1.
To prove the second part of the proposition, we show that (iii) ⇒ (v) and (v) ⇒ (i).
(iii) ⇒ (v) Assume that property (iii) holds; as before we can assume that K3 = 1. Let

us use the numeric inequality ex ≤ x + ex2
, which is valid for all x ∈ R. Then

E eλX ≤ E
(
λX + eλ

2 X2)
= E eλ

2 X2
(since E X = 0 by assumption)

≤ eλ
2

if |λ| ≤ 1,

where in the last line we used property (iii). Thus we have proved property (v) in the range
|λ| ≤ 1. Now assume that |λ| ≥ 1. Here we can use the numeric inequality 2λx ≤ λ2 + x2,
which is valid for all λ and x . It follows that
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E eλX ≤ eλ
2/2

E eX2/2 ≤ eλ
2/2 exp(1/2) (by property (iii))

≤ eλ
2

(since |λ| ≥ 1).

This proves property (v) with K5 = 1.
(v) ⇒ (i) Assume that property (v) holds; we can assume that K5 = 1. We will use some

ideas from the proof of Hoeffding’s inequality (Theorem 2.2.2). Let λ > 0 be a parameter
to be chosen later. Then

P{X ≥ t} = P{eλX ≥ eλt }
≤ e−λt

E eλX (by Markov’s inequality)

≤ e−λt eλ
2

(by property (v))

= e−λt+λ2
.

Optimizing in λ and thus choosing λ = t/2, we conclude that

P{X ≥ t} ≤ e−t2/4.

Repeating this argument for −X , we also obtain P{X ≤ −t} ≤ e−t2/4. Combining these
two bounds we conclude that

P{|X | ≥ t} ≤ 2e−t2/4.

Thus property (i) holds with K1 = 2. The proposition is proved. �

Remark 2.5.3 The constant 2 that appears in some properties in Proposition 2.5.2 does
not have any special meaning; it can be replaced by other absolute constants. (Check!)

Exercise 2.5.4�� Show that the condition E X = 0 is necessary for property (v) to hold.

Exercise 2.5.5 (On property (iii) in Proposition 2.5.2)��

(a) Show that if X ∼ N (0, 1), the function λ �→ E exp(λ2 X2) of X2 is finite only in some
bounded neighborhood of zero.

(b) Suppose that some random variable X satisfies E exp(λ2 X2) ≤ exp(Kλ2) for all λ ∈ R

and some constant K . Show that X is a bounded random variable, i.e. ‖X‖∞ <∞.

2.5.2 Definition and Examples of Sub-Gaussian Distributions

Definition 2.5.6 (Sub-gaussian random variables) A random variable X that satisfies one
of the equivalent properties (i)–(iv) in Proposition 2.5.2 is called a sub-gaussian random
variable. The sub-gaussian norm of X , denoted ‖X‖ψ2 , is defined to be the smallest K4 in
property (iv). In other words, we define

‖X‖ψ2 = inf
{

t > 0 : E exp(X2/t2) ≤ 2
}
. (2.13)

Exercise 2.5.7�� Check that ‖·‖ψ2 is indeed a norm on the space of sub-gaussian random
variables.
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Let us restate Proposition 2.5.2 in terms of the sub-gaussian norm. It states that every
sub-gaussian random variable X satisfies the following bounds:

P{|X | ≥ t} ≤ 2 exp(−ct2/‖X‖2
ψ2
) for all t ≥ 0; (2.14)

‖X‖L p ≤ C‖X‖ψ2

√
p for all p ≥ 1; (2.15)

E exp(X2/‖X‖2
ψ2
) ≤ 2;

if E X = 0 then E exp(λX) ≤ exp(Cλ2‖X‖2
ψ2
) for all λ ∈ R. (2.16)

Here C, c > 0 are absolute constants. Moreover, up to absolute constant factors, ‖X‖ψ2 is
the smallest possible number that makes each of these inequalities valid.

Example 2.5.8 Here are some classical examples of sub-gaussian distributions.

(i) (Gaussian) As we have already noted, X ∼ N (0, 1) is a sub-gaussian random
variable with ‖X‖ψ2 ≤ C , where C is an absolute constant. More generally, if
X ∼ N (0, σ 2) then X is sub-gaussian with

‖X‖ψ2 ≤ Cσ.

(Why?)
(ii) (Bernoulli) Let X be a random variable with symmetric Bernoulli distribution (recall

Definition 2.2.1). Since |X | = 1, it follows that X is a sub-gaussian random variable
with

‖X‖ψ2 = 1√
ln 2

.

(iii) (Bounded) More generally, any bounded random variable X is sub-gaussian with

‖X‖ψ2 ≤ C‖X‖∞, (2.17)

where C = 1/
√

ln 2.

Exercise 2.5.9� Check that the Poisson, exponential, Pareto, and Cauchy distributions
are not sub-gaussian.

Exercise 2.5.10 (Maximum of sub-gaussian)��� Let X1, X2, . . . , be an infinite
sequence of sub-gaussian random variables which are not necessarily independent. Show
that

E max
i

|Xi |√
1 + log i

≤ C K ,

where K = maxi ‖Xi‖ψ2 . Deduce that for every N ≥ 2 we have

E max
i≤N

|Xi | ≤ C K
√

log N .

Exercise 2.5.11 (Lower bound)�� Show that the bound in Exercise 2.5.10 is sharp. Let
X1, X2, . . . , X N be independent N (0, 1) random variables. Prove that

E max
i≤N

Xi ≥ c
√

log N .
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2.6 General Hoeffding and Khintchine Inequalities

After all the work we did in characterizing sub-gaussian distributions in the previous section,
we can now easily extend Hoeffding’s inequality (Theorem 2.2.2) to general sub-gaussian
distributions. But before we do this, let us deduce an important rotation invariance property
of sums of independent sub-gaussians.

Recall that a sum of independent normal random variables Xi is normal. Indeed, if the
Xi ∼ N (0, σ 2

i ) are independent then

N∑
i=1

Xi ∼ N

(
0,

N∑
i=1

σ 2
i

)
. (2.18)

This fact is a form of the rotation invariance property of the normal distribution, which we
will recall in Section 3.3.2 in more detail.

The rotation invariance property extends to general sub-gaussian distributions, albeit up
to an absolute constant.

Proposition 2.6.1 (Sums of independent sub-gaussians) Let X1, . . . , X N be independent
mean-zero sub-gaussian random variables. Then

∑N
i=1 Xi is also a sub-gaussian random

variable, and ∥∥∥∥ N∑
i=1

Xi

∥∥∥∥2

ψ2

≤ C
N∑

i=1

‖Xi‖2
ψ2
,

where C is an absolute constant.

Proof Let us analyze the moment generating function of the sum. For any λ ∈ R, we have

E exp

(
λ

N∑
i=1

Xi

)
=

N∏
i=1

E exp(λXi ) (by independence)

≤
N∏

i=1

exp(Cλ2‖Xi‖2
ψ2
) (by sub-gaussian property (2.16))

= exp(λ2K 2) where K 2 := C
N∑

i=1

‖Xi‖2
ψ2
.

To complete the proof, we just need to recall that the bound on the MGF that we have
just proved characterizes sub-gaussian distributions. Indeed, the equivalence of properties
(v) and (iv) in Proposition 2.5.2 and Definition 2.5.6 implies that the sum

∑N
i=1 Xi is sub-

gaussian and ∥∥∥∥ N∑
i=1

Xi

∥∥∥∥
ψ2

≤ C1K

where C1 is an absolute constant. The proposition is proved. �

The approximate rotation invariance property can be restated as a concentration inequality
via (2.14):
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Theorem 2.6.2 (General Hoeffding inequality) Let X1, . . . , X N be independent mean-zero
sub-gaussian random variables. Then, for every t ≥ 0, we have

P

{∣∣∣∣ N∑
i=1

Xi

∣∣∣∣ ≥ t

}
≤ 2 exp

(
− ct2∑N

i=1 ‖Xi‖2
ψ2

)
.

To compare this general result with the specific case for Bernoulli distributions (The-
orem 2.2.2), let us apply this result for ai Xi instead of Xi . We obtain a general form of
Theorem 2.2.2 for sub-gaussian random variables.

Theorem 2.6.3 (General Hoeffding inequality) Let X1, . . . , X N be independent mean-zero
sub-gaussian random variables, and let a = (a1, . . . , aN ) ∈ R

N . Then, for every t ≥ 0, we
have

P

{∣∣∣∣ N∑
i=1

ai Xi

∣∣∣∣ ≥ t

}
≤ 2 exp

(
− ct2

K 2‖a‖2
2

)
where K = maxi ‖Xi‖ψ2 .

Exercise 2.6.4� Deduce Hoeffding’s inequality for bounded random variables (Theo-
rem 2.2.6) from Theorem 2.6.3, possibly with some other absolute constant instead of 2
in the exponent.

As an application of the general Hoeffding inequality, we can quickly derive the classical
Khintchine inequality for the L p norms of sums of independent random variables.

Exercise 2.6.5 (Khintchine’s inequality)�� Let X1, . . . , X N be independent sub-
gaussian random variables with zero means and unit variances, and let a = (a1, . . . , aN ) ∈
R

N . Prove that for every p ∈ [2,∞) we have( N∑
i=1

a2
i

)1/2

≤
∥∥∥∥ N∑

i=1

ai Xi

∥∥∥∥
L p

≤ C K
√

p

( N∑
i=1

a2
i

)1/2

where K = maxi ‖Xi‖ψ2 and C is an absolute constant.

Exercise 2.6.6 (Khintchine’s inequality for p = 1)��� Show that, in the setting of
Exercise 2.6.5, we have

c(K )

( N∑
i=1

a2
i

)1/2

≤
∥∥∥∥ N∑

i=1

ai Xi

∥∥∥∥
L1

≤
( N∑

i=1

a2
i

)1/2

.

Here K = maxi ‖Xi‖ψ2 and c(K ) > 0 is a quantity which may depend only on K . �

Exercise 2.6.7 (Khintchine’s inequality for p ∈ (0, 2))�� State and prove a version of
Khintchine’s inequality for p ∈ (0, 2). �
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2.6.1 Centering

In results like Hoeffding’s inequality, and in many other results that we will encounter later,
we typically assume that the random variables Xi have zero means. If this is not the case, we
can always center a variable Xi by subtracting the mean. Let us check that centering does
not harm the sub-gaussian property.

First note the following simple centering inequality for the L2 norm:

‖X − E X‖L2 ≤ ‖X‖L2 . (2.19)

(Check this!) Now let us prove a similar centering inequality for the sub-gaussian norm.

Lemma 2.6.8 (Centering) If X is a sub-gaussian random variable then X − E X is sub-
gaussian too and

‖X − E X‖ψ2 ≤ C‖X‖ψ2,

where C is an absolute constant.

Proof Recall from Exercise 2.5.7 that ‖ · ‖ψ2 is a norm. Thus we can use the triangle
inequality and get

‖X − E X‖ψ2 ≤ ‖X‖ψ2 + ‖E X‖ψ2 . (2.20)

We only have to bound the second term. Note that, for any constant random variable a, we
trivially have ‖a‖ψ2 � |a| (recall 2.17).4 Using this for a = E X , we get

‖E X‖ψ2 � |E X |
≤ E |X | (by Jensen’s inequality)

= ‖X‖1

� ‖X‖ψ2 (using (2.15) with p = 1).

Substituting this into (2.20), we complete the proof. �

Exercise 2.6.9��� Show that, unlike (2.19), the centering inequality in Lemma 2.6.8
does not hold with C = 1.

2.7 Sub-Exponential Distributions

The class of sub-gaussian distributions is natural and quite large. Nevertheless, it leaves out
some important distributions whose tails are heavier than Gaussian. Here is one example.
Consider a standard normal random vector g = (g1, . . . , gN ) in R

N , whose coordinates
gi are independent N (0, 1) random variables. It is useful in many applications to have a
concentration inequality for the Euclidean norm of g, which is

‖g‖2 =
( N∑

i=1

g2
i

)1/2

.

4 In this proof and later, the notation a � b means that a ≤ Cb where C is some absolute constant.
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Here we find ourselves in a strange situation. On the one hand, ‖g‖2
2 is a sum of independent

random variables g2
i , so we should expect some concentration to hold. On the other hand,

although the gi are sub-gaussian random variables, the g2
i are not. Indeed, recalling the

behavior of Gaussian tails (Proposition 2.1.2) we have5

P

{
g2

i > t
}
= P

{
|g| > √

t
}
∼ exp

(
−(√t)2/2

)
= exp(−t/2).

The tails of g2
i are like those for the exponential distribution and are strictly heavier than sub-

gaussian. This prevents us from using Hoeffding’s inequality (Theorem 2.6.2) if we want to
study the concentration of ‖g‖2.

In this section we focus on the class of distributions that have at least an exponential tail
decay, and in Section 2.8 we prove an analog of Hoeffding’s inequality for them.

Our analysis here will be quite similar to what we did for sub-gaussian distributions in
Section 2.5. The following is a version of Proposition 2.5.2 for sub-exponential distributions.

Proposition 2.7.1 (Sub-exponential properties) Let X be a random variable. Then the fol-
lowing properties are equivalent; the parameters Ki > 0 appearing in these properties
differ from each other by at most an absolute constant factor.6

(i) The tails of X satisfy

P{|X | ≥ t} ≤ 2 exp(−t/K1) for all t ≥ 0.

(ii) The moments of X satisfy

‖X‖L p = (E |X |p)1/p ≤ K2 p for all p ≥ 1.

(iii) The MGF of |X | satisfies

E exp(λ|X |) ≤ exp(K3λ) for all λ such that 0 ≤ λ ≤ 1/K3.

(iv) The MGF of |X | is bounded at some point, namely

E exp(|X |/K4) ≤ 2.

Moreover, if E X = 0 then properties (i)–(iv) are also equivalent to the following property.

(v) The MGF of X satisfies

E exp(λX) ≤ exp(K 2
5λ

2) for all λ such that |λ| ≤ 1/K5.

Proof We will prove the equivalence of properties (ii) and (v) only; the reader can check
the other implications in Exercise 2.7.2.

5 Here we have ignored the pre-factor 1/t , which does not have much effect on the exponent.
6 The precise meaning of this equivalence is the following. There exists an absolute constant C such that

property i implies property j with parameter K j ≤ C Ki for any two properties i, j = 1, 2, 3, 4.
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(ii) ⇒ (v) Without loss of generality we may assume that K2 = 1. (Why?) Expanding
the exponential function in a Taylor series, we obtain

E exp(λX) = E

(
1 + λX +

∞∑
p=2

(λX)p

p!
)

= 1 +
∞∑

p=2

λp
E X p

p! ,

where we have used the assumption that E X = 0. Property (ii) guarantees that E X p ≤ p p,
while Stirling’s approximation yields p! ≥ (p/e)p. Substituting these two bounds, we obtain

E exp(λX) ≤ 1 +
∞∑

p=2

(λp)p

(p/e)p
= 1 +

∞∑
p=2

(eλ)p = 1 + (eλ)2

1 − eλ
,

provided that |eλ| < 1, in which case the geometric series above converges. Moreover, if
|eλ| ≤ 1/2 then we can further bound the above quantity by

1 + 2e2λ2 ≤ exp(2e2λ2).

Summarizing, we have shown that

E exp(λX) ≤ exp(2e2λ2) for all λ satisfying |λ| ≤ 1

2e
.

This yields property (v) with K5 = 1/(2e).
(v) ⇒ (ii) Without loss of generality, we can assume that K5 = 1. We will use the

numeric inequality

|x |p ≤ p p(ex + e−x ),

which is valid for all x ∈ R and p > 0. (Check it by dividing both sides by p p and taking
pth roots.) Substituting x = X and taking expectations, we get

E |X |p ≤ p p(
E eX + E e−X ).

Property (v) gives E eX ≤ 1 and E e−X ≤ 1. Thus

E |X |p ≤ 2p p.

This yields property (ii) with K2 = 2. �

Exercise 2.7.2�� Prove the equivalence of properties (i)–(iv) in Proposition 2.7.1 by
modifying the proof of Proposition 2.5.2.

Exercise 2.7.3��� More generally, consider the class of distributions whose tail decay
is of the type exp(−ctα) or faster. Here α = 2 corresponds to sub-gaussian distributions and
α = 1 to sub-exponential distributions. State and prove a version of Proposition 2.7.1 for
such distributions.

Exercise 2.7.4� Argue that the bound in property (iii) in Proposition 2.7.1 cannot be
extended to all λ such that |λ| ≤ 1/K3.
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Definition 2.7.5 (Sub-exponential random variables) A random variable X that satisfies
one of the equivalent properties (i)–(iv) in Proposition 2.7.1 is called a sub-exponential ran-
dom variable. The sub-exponential norm of X , denoted ‖X‖ψ1 , is defined to be the smallest
K3 in property (iii). In other words,

‖X‖ψ1 = inf {t > 0 : E exp(|X |/t) ≤ 2} . (2.21)

Sub-gaussian and sub-exponential distributions are closely related. First, any sub-
gaussian distribution is clearly sub-exponential. (Why?) Second, the square of a sub-
gaussian random variable is sub-exponential:

Lemma 2.7.6 (Sub-exponential is sub-gaussian squared) A random variable X is sub-
gaussian if and only if X2 is sub-exponential. Moreover,

‖X2‖ψ1 = ‖X‖2
ψ2
.

Proof This follows easily from the definition. Indeed, ‖X2‖ψ1 is the infimum of the num-
bers K > 0 satisfying E exp(X2/K ) ≤ 2, while ‖X‖ψ2 is the infimum of the numbers L > 0
satisfying E exp(X2/L2) ≤ 2. So these two become the same definition with K = L2. �

More generally, the product of two sub-gaussian random variables is sub-exponential:

Lemma 2.7.7 (The product of sub-gaussians is sub-exponential) Let X and Y be sub-
gaussian random variables. Then XY is sub-exponential. Moreover,

‖XY‖ψ1 ≤ ‖X‖ψ2 ‖Y‖ψ2 .

Proof Without loss of generality we may assume that ‖X‖ψ2 = ‖Y‖ψ2 = 1. (Why?) The
lemma claims that if

E exp(X2) ≤ 2 and E exp(Y 2) ≤ 2 (2.22)

then E exp(|XY |) ≤ 2. To prove this, let us use the elementary form of Young’s inequality,
which states that

ab ≤ a2

2
+ b2

2
for a, b ∈ R.

It yields

E exp(|XY |) ≤ E exp
( X2

2
+ Y 2

2

)
(by Young’s inequality)

= E

(
exp

( X2

2

)
exp

(Y 2

2

))
≤ 1

2
E
(

exp(X2)+ exp(Y 2)
)

(by Young’s inequality)

= 1

2
(2 + 2) = 2 (by assumption (2.22)).

The proof is complete. �
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Example 2.7.8 Let us mention a few examples of sub-exponential random variables.
As we have just learned, all sub-gaussian random variables and their squares are sub-
exponential; for example, g2 for g ∼ N (μ, σ ). Apart from that, sub-exponential distri-
butions include the exponential and Poisson distributions. Recall that X has an exponential
distribution with rate λ > 0, denoted X ∼ Exp(λ), if X is a non-negative random variable
with tails

P
{

X ≥ t
} = e−λt for t ≥ 0.

The mean, standard deviation, and sub-exponential norm of X are all of order 1/λ:

E X = 1

λ
, Var(X) = 1

λ2
, ‖X‖ψ1 = C

λ
.

(Check this!)

Remark 2.7.9 (MGF near the origin) You may be surprised to see the same bound on the
MGF near the origin for sub-gaussian and sub-exponential distributions. (Compare prop-
erty (v) in Propositions 2.5.2 and 2.7.1.) This should not be very surprising, though: this
kind of local bound is expected from a general random variable X with mean zero and
unit variance. To see this, assume for simplicity that X is bounded. The MGF of X can be
approximated using the first two terms of a Taylor expansion:

E exp(λX) ≈ E

(
1 + λX + λ2 X2

2
+ o(λ2 X2)

)
= 1 + λ2

2
≈ eλ

2/2

as λ → 0. For the standard normal distribution N (0, 1), this approximation becomes an
equality; see (2.12). For sub-gaussian distributions, Proposition 2.5.2 says that a bound
like this holds for all λ and that this characterizes sub-gaussian distributions. And, for sub-
exponential distributions, Proposition 2.7.1 says that this bound holds for small λ and that
this characterizes sub-exponential distributions. For larger λ, no general bound can exist for
sub-exponential distributions: indeed, for the exponential random variable X ∼ Exp(1), the
MGF is infinite for λ ≥ 1. (Check this!)

Exercise 2.7.10 (Centering)� Prove an analog of the centering lemma 2.6.8 for sub-
exponential random variables X :

‖X − E X‖ψ1 ≤ C‖X‖ψ1 .

2.7.1 A More General View: Orlicz Spaces

Sub-gaussian distributions can be introduced within the more general framework of Orlicz
spaces. A function ψ : [0,∞) → [0,∞) is called an Orlicz function if ψ is convex,
increasing, and satisfies

ψ(0) = 0, ψ(x)→ ∞ as x → ∞.

For a given Orlicz function ψ , the Orlicz norm of a random variable X is defined as

‖X‖ψ := inf {t > 0 : Eψ(|X |/t) ≤ 1} .
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The Orlicz space Lψ = Lψ(�,�,P) consists of all random variables X on the probability
space (�,�,P) with finite Orlicz norm, i.e.

Lψ := {
X : ‖X‖ψ <∞} .

Exercise 2.7.11�� Show that ‖X‖ψ is indeed a norm on the space Lψ .

It can also be shown that Lψ is complete and thus a Banach space.

Example 2.7.12 (L p space) Consider the function

ψ(x) = x p,

which is obviously an Orlicz function for p ≥ 1. The resulting Orlicz space Lψ is the
classical space L p.

Example 2.7.13 (Lψ2 space) Consider the function

ψ2(x) := ex2 − 1,

which is obviously an Orlicz function. The resulting Orlicz norm is exactly the sub-gaussian
norm ‖ · ‖ψ2 that we defined in (2.13). The corresponding Orlicz space Lψ2 consists of all
sub-gaussian random variables.

Remark 2.7.14 We can easily locate Lψ2 in the hierarchy of classical L p spaces:

L∞ ⊂ Lψ2 ⊂ L p for every p ∈ [1,∞).

The first inclusion follows from property (ii) of Proposition 2.5.2, and the second inclusion
from the bound (2.17). Thus the space of sub-gaussian random variables Lψ2 is smaller than
all the L p spaces, but it is still larger than the space of bounded random variables L∞.

2.8 Bernstein’s Inequality

We are ready to state and prove a concentration inequality for sums of independent sub-
exponential random variables.

Theorem 2.8.1 (Bernstein’s inequality) Let X1, . . . , X N be independent mean-zero sub-
exponential random variables. Then, for every t ≥ 0, we have

P

{∣∣∣∣ N∑
i=1

Xi

∣∣∣∣ ≥ t

}
≤ 2 exp

(
− c min

(
t2∑N

i=1 ‖Xi‖2
ψ1

,
t

maxi ‖Xi‖ψ1

))
,

where c > 0 is an absolute constant.

Proof We begin the proof in the same way as we argued about other concentration inequal-
ities for S = ∑N

i=1 Xi , e.g. Theorems 2.2.2 and 2.3.1. Multiply both sides of the inequality
S ≥ t by a parameter λ, exponentiate, and then use Markov’s inequality and independence.
This leads to the bound (2.7), which is
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P
{

S ≥ t
} ≤ e−λt

N∏
i=1

E exp(λXi ). (2.23)

To bound the MGF of each term Xi , we use property (v) in Proposition 2.7.1. It says that
if λ is small enough that

|λ| ≤ c

maxi ‖Xi‖ψ1

(2.24)

then E exp(λXi ) ≤ exp
(
Cλ2‖Xi‖2

ψ1

)
.7 Substituting this into (2.23), we obtain

P{S ≥ t} ≤ exp
(
−λt + Cλ2σ 2

)
, where σ 2 =

N∑
i=1

‖Xi‖2
ψ1
.

Now we minimize this expression in λ subject to the constraint (2.24). The optimal
choice is

λ = min
( t

2Cσ 2
,

c

maxi ‖Xi‖ψ1

)
,

for which we obtain

P{S ≥ t} ≤ exp
(
−min

( t2

4Cσ 2
,

ct

2 maxi ‖Xi‖ψ1

))
.

Repeating this argument for −Xi instead of Xi , we obtain the same bound for P{−S ≥ t}.
A combination of these two bounds completes the proof. �

To put Theorem 2.8.1 in a more convenient form, let us apply it for ai Xi instead of Xi .

Theorem 2.8.2 (Bernstein’s inequality) Let X1, . . . , X N be independent, mean-zero sub-
exponential random variables, and let a = (a1, . . . , aN ) ∈ R

N . Then, for every t ≥ 0, we
have

P

{∣∣∣∣ N∑
i=1

ai Xi

∣∣∣∣ ≥ t

}
≤ 2 exp

(
− c min

( t2

K 2‖a‖2
2

,
t

K‖a‖∞
))

where K = maxi ‖Xi‖ψ1 .

In the special case where ai = 1/N , we obtain a form of Bernstein’s inequality for
averages:

Corollary 2.8.3 (Bernstein’s inequality) Let X1, . . . , X N be independent mean-zero, sub-
exponential random variables. Then, for every t ≥ 0, we have

P

{∣∣∣∣ 1

N

N∑
i=1

Xi

∣∣∣∣ ≥ t

}
≤ 2 exp

(
− c min

( t2

K 2
,

t

K

)
N
)

where K = maxi ‖Xi‖ψ1 .

7 Recall that by Proposition 2.7.1 and the definition of the sub-exponential norm, property (v) holds for a value
of K5 that is within an absolute constant factor of ‖X‖ψ1 .
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This result can be considered as a quantitative form of the law of large numbers for the
averages 1

N

∑N
i=1 Xi .

Let us compare Bernstein’s inequality (Theorem 2.8.1) with Hoeffding’s inequality (The-
orem 2.6.2). The obvious difference is that Bernstein’s bound has two tails, as it would if
the sum SN = ∑

Xi were a mixture of sub-gaussian and sub-exponential distributions.
The sub-gaussian tail is of course expected from the central limit theorem. But the sub-
exponential tails of the terms Xi are too heavy to be able to produce a sub-gaussian tail
everywhere, so a sub-exponential tail should be expected, too. In fact, the sub-exponential
tail in Theorem 2.8.1 is produced by a single term Xi in the sum, the one with the maximal
sub-exponential norm. Indeed, this term alone has a tail of magnitude exp(−ct/‖Xi‖ψ1).

We have already seen a similar mixture of two tails, one for small deviations and the
other for large deviations, in our analysis of Chernoff’s inequality; see Remark 2.3.7. To
put Bernstein’s inequality in the same perspective, let us normalize the sum as in the central
limit theorem and apply Theorem 2.8.2. We obtain8

P

{∣∣∣∣ 1√
N

N∑
i=1

Xi

∣∣∣∣ ≥ t

}
≤
{

2 exp(−ct2), t ≤ C
√

N ,

2 exp(−t
√

N ), t ≥ C
√

N .

Thus, in the small-deviation regime, where t ≤ C
√

N , we have the same sub-gaussian tail
bound as if the sum had a normal distribution with constant variance. Note that this domain
widens as N increases and the central limit theorem becomes more powerful. For large
deviations, where t ≥ C

√
N , the sum has a heavier, sub-exponential, tail bound, which can

be due to the contribution of a single term Xi . We illustrate this in Figure 2.3.
Let us mention the following strengthening of Bernstein’s inequality under the stronger

assumption that the random variables Xi are bounded.

Theorem 2.8.4 (Bernstein’s inequality for bounded distributions) Let X1, . . . , X N be
independent mean-zero random variables such that |Xi | ≤ K all i . Then, for every t ≥ 0,
we have

P

{∣∣∣∣ N∑
i=1

Xi

∣∣∣∣ ≥ t

}
≤ 2 exp

(
− t2/2

σ 2 + K t/3

)
.

Here σ 2 =∑N
i=1 E X2

i is the variance of the sum.

We leave the proof of this theorem to the next two exercises.

Exercise 2.8.5 (A bound on MGF)�� Let X be a random variable such that |X | ≤ K .
Prove the following bound on the MGF of X :

E exp(λX) ≤ exp(g(λ)E X2) where g(λ) = λ2/2

1 − |λ|K/3 ,

provided that |λ| < 3/K . �

8 For simplicity, we have suppressed the dependence on K here by allowing the constants c,C to depend on K .
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Large deviations
exponential tails 

Small deviations
normal tails 

Large deviations
exponential tails 

0

Figure 2.3 Bernstein’s inequality for a sum of sub-exponential random variables
gives a mixture of two tails: sub-gaussian for small deviations and sub-exponential
for large deviations.

Exercise 2.8.6�� Deduce Theorem 2.8.4 from the bound in Exercise 2.8.5. �

2.9 Notes

The topic of concentration inequalities is very wide, and we will continue to examine it
in Chapter 5. We refer the reader to [8, Appendix A], [148, Chapter 4], [126], [29], [76,
Chapter 7], [11, Section 3.5.4], [170, Chapter 1], and [14, Chapter 4] for various versions of
Hoeffding’s, Chernoff’s, and Bernstein’s inequalities and related results.

Proposition 2.1.2 on the tails of the normal distribution is taken from [70, Theorem 1.4].
The proof of the Berry–Esseen central limit theorem (Theorem 2.1.3) with an extra factor
3 on the right-hand side can be found e.g. in [70, Section 2.4.d]; the best currently known
factor is ≈ 0.47 [116].

It is worthwhile mentioning two important concentration inequalities that were omitted in
this chapter. One is the bounded differences inequality, also called McDiarmid’s inequality,
which works not only for sums but for general functions of independent random variables.
It is a generalization of Hoeffding’s inequality (Theorem 2.2.6).

Theorem 2.9.1 (Bounded differences inequality) Let X1, . . . , X N be independent random
variables.9 Let f : R

n → R be a measurable function. Assume that the value of f (x) can
change by at most ci > 0 under an arbitrary change10 of a single coordinate of x ∈ R

n.
Then, for any t > 0, we have

P
{

f (X)− E f (X) ≥ t
} ≤ exp

(
− 2t2∑N

i=1 c2
i

)
where X = (X1, . . . , Xn).

Another result worth mentioning is Bennett’s inequality, which can be regarded as a
generalization of Chernoff’s inequality.

9 The theorem remains valid if the random variables Xi take values in an abstract set X and f : X → R.
10 This means that for any index i and any x1, . . . , xn, x ′

i , we have
| f (x1, . . . , xi−1, xi , xi+1, . . . , xn)− f (x1, . . . , xi−1, x ′

i , xi+1, . . . , xn)| ≤ ci .
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Theorem 2.9.2 (Bennett’s inequality) Let X1, . . . , X N be independent random variables.
Assume that |Xi − E Xi | ≤ K almost surely for every i . Then, for any t > 0, we have

P

{
N∑

i=1

(Xi − E Xi ) ≥ t

}
≤ exp

(
− σ 2

K 2
h
(K t

σ 2

))
where σ 2 =∑N

i=1 Var(Xi ) is the variance of the sum, and h(u) = (1 + u) log(1 + u)− u.

In the small-deviation regime, where u := K t/σ 2 � 1, we have asymptotically h(u) ≈
u2 and Bennett’s inequality gives approximately the Gaussian tail bound ≈ exp(−t2/σ 2).
In the large-deviation regime, say where u � K t/σ 2 ≥ 2, we have h(u) ≥ 1

2 u log u, and
Bennett’s inequality gives a Poisson-like tail (σ 2/K t)t/2K .

Both the bounded differences inequality and Bennett’s inequality can be proved by the
same general method as Hoeffding’s inequality (Theorem 2.2.2) and Chernoff’s inequality
(Theorem 2.3.1), namely by bounding the moment generating function of the sum. This
method was pioneered by Sergei Bernstein in the 1920s and 1930s. Our presentation of
Chernoff’s inequality in Section 2.3 mostly follows [148, Chapter 4].

Section 2.4 scratches the surface of the rich theory of random graphs. The books [25, 105]
offer a comprehensive introduction to the random graph theory.

The presentation in Sections 2.5–2.8 mostly follows [216]; see [76, Chapter 7] for some
more elaborate results. For sharp versions of Khintchine’s inequalities in Exercises 2.6.5–
2.6.7 and related results, see e.g. [189, 93, 114, 151].
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Random Vectors in High Dimensions

In this chapter we study the distributions of random vectors X = (X1, . . . , Xn) ∈ R
n ,

where the dimension n is typically very large. Examples of high-dimensional distributions
abound in data science. For instance, computational biologists study the expressions of
n ∼ 104 genes in the human genome, which can be modeled as a random vector X =
(X1, . . . , Xn) that encodes the gene expressions of a person randomly drawn from a given
population.

Life in high dimensions presents new challenges, which stem from the fact that there is
exponentially more room in higher dimensions than in lower dimensions. For example, in
R

n the volume of a cube of side 2 is 2n times larger than the volume of a unit cube, even
though the sides of the cubes are just a factor 2 apart (see Figure 3.1). The abundance of
room in higher dimensions makes many algorithmic tasks exponentially more difficult, a
phenomenon known as the curse of dimensionality.

Probability in high dimensions offers an array of tools to circumvent these difficulties;
some examples will be given in this chapter. We start by examining the Euclidean norm
‖X‖2 of a random vector X with independent coordinates, and we show in Section 3.1
that the norm concentrates tightly about its mean. Further basic results and examples of
high-dimensional distributions (multivariate normal, spherical, Bernoulli, frames, etc.) are
covered in Section 3.2, in which we also discuss principal component analysis, a powerful
data exploratory procedure.

In Section 3.5 we give a probabilistic proof of the classical inequality of Grothendieck
and an application to semidefinite optimization. We show that one can sometimes relax
hard optimization problems to tractable, semidefinite, programs and use Grothendieck’s
inequality to analyze the quality of such relaxations. In Section 3.6 we give a remarkable
example of a semidefinite relaxation of a hard optimization problem – finding the maxi-
mum cut of a given graph. We present there the classical Goemans–Williamson randomized

0 1 2

Figure 3.1 The abundance of room in high dimensions: the larger cube has volume
exponentially larger than the smaller cube.

38
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approximation algorithm for the maximum-cut problem. In Section 3.7 we give an alterna-
tive proof of Grothendieck’s inequality (that leads to almost the best constant) by introducing
the kernel trick, a method that has significant applications in machine learning.

3.1 Concentration of the Norm

Where in the space R
n is a random vector X = (X1, . . . , Xn) likely to be located?

Assume that the coordinates Xi are independent random variables with zero means and
unit variances. What length do we expect X to have? We have

E ‖X‖2
2 = E

n∑
i=1

X2
i =

n∑
i=1

E X2
i = n,

so we should expect the length of X to be

‖X‖2 ≈ √
n.

We will see now that X is indeed very close to
√

n with high probability.

Theorem 3.1.1 (Concentration of the norm) Let X = (X1, . . . , Xn) ∈ R
n be a random

vector with independent sub-gaussian coordinates Xi that satisfy E X2
i = 1. Then∥∥∥‖X‖2 −√

n
∥∥∥
ψ2

≤ C K 2,

where K = maxi ‖Xi‖ψ2 and C is an absolute constant.1

Proof For simplicity, we assume that K ≥ 1. (Argue that one can make this assump-
tion.) We shall apply Bernstein’s deviation inequality for the normalized sum of independent
mean-zero random variables

1

n
‖X‖2

2 − 1 = 1

n

n∑
i=1

(X2
i − 1).

Since the random variable Xi is sub-gaussian, X2
i −1 is sub-exponential, and, more precisely,

‖X2
i − 1‖ψ1 ≤ C‖X2

i ‖ψ1 (by centering, see Exercise 2.7.10)

= C‖Xi‖2
ψ2

(by Lemma 2.7.6)

≤ C K 2.

Applying Bernstein’s inequality (Corollary 2.8.3), we obtain for any u ≥ 0 that

P

{∣∣∣∣1n ‖X‖2
2 − 1

∣∣∣∣ ≥ u

}
≤ 2 exp

(
− cn

K 4
min(u2, u)

)
. (3.1)

(Here we have used K 4 ≥ K 2 since we assumed that K ≥ 1.)

1 From now on, we will always denote various positive absolute constants by C, c,C1, c1 without mentioning
this explicitly.
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This is a good concentration inequality for ‖X‖2
2, from which we are going to deduce a

concentration inequality for ‖X‖2. To make the link, we can use the following elementary
observation, which is valid for all numbers z ≥ 0:

|z − 1| ≥ δ implies |z2 − 1| ≥ max(δ, δ2). (3.2)

(Check it!) We obtain for any δ ≥ 0 that

P

{∣∣∣∣ 1√
n
‖X‖2 − 1

∣∣∣∣ ≥ δ

}
≤ P

{∣∣∣∣1n ‖X‖2
2 − 1

∣∣∣∣ ≥ max(δ, δ2)

}
(by (3.2))

≤ 2 exp
(
− cn

K 4
δ2
)

(by (3.1) for u = max(δ, δ2)).

Changing variables to t = δ
√

n, we obtain the desired sub-gaussian tail

P
{∣∣‖X‖2 −√

n
∣∣ ≥ t

} ≤ 2 exp
(
− ct2

K 4

)
for all t ≥ 0. (3.3)

From Section 2.5.2, this is equivalent to the conclusion of the theorem. �

Remark 3.1.2 (Deviation) Theorem 3.1.1 states that, with high probability, X takes values
very close to the sphere of radius

√
n. In particular, with high probability (say, 0.99), X

even stays within a constant distance from that sphere. Such small and constant deviations
could be surprising at first sight, so let us explain this intuitively. The square of the norm,
Sn := ‖X‖2

2 has mean n and standard deviation O(
√

n). (Why?) Thus ‖X‖2 = √
Sn ought

to deviate by O(1) around
√

n. This is so because√
n ± O(

√
n) = √

n ± O(1);
see Figure 3.2 for an illustration.

Remark 3.1.3 (Anisotropic distributions) After we develop more tools, we will prove a
generalization of Theorem 3.1.1 for anisotropic random vectors X ; see Theorem 6.3.2.

O(ön )

ön

y = öx 

O(1)

n

Figure 3.2 Concentration of the norm of a random vector X in R
n . While ‖X‖2

2
deviates by O(

√
n) around n, ‖X‖2 deviates by O(1) around

√
n.
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Exercise 3.1.4 (Expectation of the norm)���

(a) Deduce from Theorem 3.1.1 that
√

n − C K 2 ≤ E ‖X‖2 ≤ √
n + C K 2.

(b) Can C K 2 be replaced by o(1), a quantity that vanishes as n → ∞?

Exercise 3.1.5 (Variance of the norm)��� Deduce from Theorem 3.1.1 that

Var(‖X‖2) ≤ C K 4. �

The result of the last exercise actually holds not only for sub-gaussian distributions but
for all distributions with bounded fourth moment.

Exercise 3.1.6 (Variance of the norm under finite-moment assumptions)��� Let X =
(X1, . . . , Xn) ∈ R

n be a random vector with independent coordinates Xi that satisfy
E X2

i = 1 and E X4
i ≤ K 4. Show that

Var(‖X‖2) ≤ C K 4. �

Exercise 3.1.7 (Small ball probabilities)�� Let X = (X1, . . . , Xn) ∈ R
n be a random

vector with independent coordinates Xi having continuous distributions. Assume that the
densities of Xi are uniformly bounded by 1. Show that, for any ε > 0, we have

P
{‖X‖2 ≤ ε

√
n
} ≤ (Cε)n. �

3.2 Covariance Matrices and Principal Component Analysis

In the last section we considered a special class of random variables, those with independent
coordinates. Before we study more general situations, let us recall a few basic notions about
high-dimensional distributions which the reader may have already seen in basic courses.

The concept of the mean of a random variable generalizes in a straightforward way for a
random vector X taking values in R

n . The notion of variance is replaced in high dimensions
by the covariance matrix of a random vector X ∈ R

n , defined as follows:

cov(X) = E
(
(X − μ)(X − μ)T

) = E X XT − μμT where μ = E X.

Thus cov(X) is an n×n symmetric positive-semidefinite matrix. The formula for covariance
is a direct high-dimensional generalization of the definition of the variance of a random
variable Z , which is

Var(Z) = E(Z − μ)2 = E Z2 − μ2 where μ = E Z .

The entries of cov(X) are the covariances of the pairs of coordinates of X = (X1, . . . , Xn):

cov(X)i j = E
(
(Xi − E Xi )(X j − E X j )

)
.

It is sometimes useful to consider the second-moment matrix of a random vector X ,
defined as

� = �(X) = E X XT.
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The second moment matrix is a higher-dimensional generalization of the second moment
E Z2 of a random variable Z . By translation (replacing X with X − μ), we can assume
in many problems that X has zero mean and thus that the covariance and second moment
matrices are equal:

cov(X) = �(X).

This observation allows us in future to focus mostly on the second-moment matrix � =
�(X) rather than on the covariance cov(X).

Like the covariance matrix, the second-moment matrix � is also an n × n symmet-
ric and positive-semidefinite matrix. The spectral theorem for such matrices says that all
eigenvalues si of � are real and non-negative. Moreover, � can be expressed via spectral
decomposition as

� =
n∑

i=1

si ui u
T
i ,

where ui ∈ R
n are the eigenvectors of �. We usually arrange the terms in this sum so that

the eigenvalues si are decreasing.

3.2.1 Principal Component Analysis

The spectral decomposition of � is of utmost importance in applications where the dis-
tribution of a random vector X in R

n represents data, for example the genetic data we
mentioned at the start of the chapter. The eigenvector u1 corresponding to the largest
eigenvalue s1 defines the first principal direction. This is the direction in which the dis-
tribution is most extended, and it explains most of the variability in the data. The next
eigenvector u2 (corresponding to the next largest eigenvalue s2) defines the next principal
direction; it best explains the remaining variations in the data, and so on. This is illustrated in
Figure 3.3.

It often happens with real data that only a few eigenvalues si are large and can be con-
sidered as informative; the remaining eigenvalues are small and considered as noise. In such
situations, a few principal directions can explain most variability in the data. Even though
the data are presented in a high-dimensional space R

n , such data are essentially low dimen-
sional and cluster near the low-dimensional subspace E spanned by the first few principal
components.

The most basic data analysis algorithm, called principal component analysis (PCA), com-
putes the first few principal components and then projects the data in R

n onto the subspace

s2u2
s1u1

Figure 3.3 Illustration of principal component analysis. Two hundred sample
points are shown from a distribution in R

2. The covariance matrix � has
eigenvalues si and eigenvectors ui .
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E spanned by them. This considerably reduces the dimension of the data and simplifies data
analysis. For example, if E is two- or three-dimensional, PCA allows one to visualize the
data.

3.2.2 Isotropy

We might remember from a basic probability course how it is often convenient to assume that
random variables have zero means and unit variances. This is also true in higher dimensions,
where the notion of isotropy generalizes the assumption of unit variance.

Definition 3.2.1 (Isotropic random vectors) A random vector X in R
n is called isotropic if

�(X) = E X XT = In

where In denotes the identity matrix in R
n .

Recall that any random variable X with positive variance can be reduced by translation
and dilation to the standard score – a random variable Z with zero mean and unit variance,
namely

Z = X − μ√
Var(X)

.

The following exercise gives a high-dimensional version of the standard score.

Exercise 3.2.2 (Reduction to isotropy)�

(a) Let Z be an isotropic mean-zero random vector in R
n . Let μ ∈ R

n be a fixed vector and
� be a fixed n × n positive-semidefinite matrix. Check that the random vector

X := μ+�1/2 Z

has mean μ and covariance matrix cov(X) = �.
(b) Let X be a random vector with invertible covariance matrix � = cov(X). Check that

the random vector

Z := �−1/2(X − μ)

is an isotropic mean-zero random vector.

These observations will allow us, in many future results about random vectors, to assume
without loss of generality that they have zero means and are isotropic.

3.2.3 Properties of Isotropic Distributions

Lemma 3.2.3 (Characterization of isotropy) A random vector X in R
n is isotropic if and

only if

E 〈X, x〉2 = ‖x‖2
2 for all x ∈ R

n .



44 Random Vectors in High Dimensions

Proof Recall that two symmetric n × n matrices A and B are equal if and only if xT Ax =
xT Bx for all x ∈ R

n . (Check this!) Thus X is isotropic if and only if

xT
(
E X XT

)
x = xT Inx for all x ∈ R

n.

The left-hand side of this identity equals E 〈X, x〉2 and the right-hand side is ‖x‖2
2. This

completes the proof. �

If x is a unit vector in Lemma 3.2.3, we can view 〈X, x〉 as a one-dimensional marginal
of the distribution of X obtained by projecting X onto the direction of x . Then X is isotropic
if and only if all one-dimensional marginals of X have unit variance. Informally, this means
that an isotropic distribution is extended evenly in all directions.

Lemma 3.2.4 Let X be an isotropic random vector in R
n. Then

E ‖X‖2
2 = n.

Moreover, if X and Y are two independent isotropic random vectors in R
n, then

E 〈X, Y 〉2 = n.

Proof To prove the first part, we have

E ‖X‖2
2 = E XT X = E tr(XT X) (viewing XT X as a 1 × 1 matrix)

= E tr(X XT) (by the cyclic property of the trace)

= tr(E X XT) (by linearity)

= tr(In) (by isotropy)

= n.

To prove the second part, we use a conditioning argument. Fix a realization of Y and take
the conditional expectation (with respect to X ), which we denote EX . The law of total
expectation says that

E 〈X, Y 〉2 = EY EX
(〈X, Y 〉2

∣∣Y ),
where by EY we denote the expectation with respect to Y . To compute the inner expectation,
we apply Lemma 3.2.3 with x = Y and conclude that the inner expectation equals ‖Y‖2

2.
Thus

E 〈X, Y 〉2 = EY ‖Y‖2
2

= n (by the first part of the lemma).

The proof is complete. �

Remark 3.2.5 (Almost-orthogonality of independent vectors) Let us normalize the ran-
dom vectors X and Y in Lemma 3.2.4, setting

X := X

‖X‖2
and Y := Y

‖Y‖2
.
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X
Y

Y

X

π/4 π/2

Figure 3.4 Independent isotropic random vectors tend to be almost orthogonal in
high dimensions but not in low dimensions. On the plane, the average angle is π/4,
while in high dimensions it is close to π/2.

Lemma 3.2.4 basically tells us that2 ‖X‖2 ∼ √
n, ‖Y‖2 ∼ √

n, and 〈X, Y 〉 ∼ √
n, with high

probability, which implies that ∣∣〈X , Y
〉∣∣ ∼ 1√

n
.

Thus, in high-dimensional spaces independent and isotropic random vectors tend to be
almost orthogonal; see Figure 3.4.

This may sound surprising since this is not the case in low dimensions. For example, the
angle between two random independent and uniformly distributed directions on the plane
has mean π/4. (Check!) But in higher dimensions, there is much more room as we men-
tioned in the beginning of this chapter. This is an intuitive reason why random directions in
high-dimensional spaces tend to be very far from each other, i.e. almost orthogonal.

Exercise 3.2.6 (Distance between independent isotropic vectors)� Let X and Y be
independent mean-zero isotropic random vectors in R

n . Check that

E ‖X − Y‖2
2 = 2n.

3.3 Examples of High-Dimensional Distributions

In this section we give several basic examples of isotropic high-dimensional distributions.

3.3.1 Spherical and Bernoulli Distributions

The coordinates of an isotropic random vector are always uncorrelated (why?), but they are
not necessarily independent. An example of this situation is the spherical distribution, where
a random vector X is uniformly distributed3 on the Euclidean sphere in R

n with center at
the origin and radius

√
n:

X ∼ Unif
(√

n Sn−1).
Exercise 3.3.1� Show that the spherically distributed random vector X is isotropic. Argue
that the coordinates of X are not independent.

2 This argument is not entirely rigorous, since Lemma 3.2.4 is about expectation and not high probability. To
make it more rigorous, one can use Theorem 3.1.1 about concentration of the norm.

3 More rigorously, we say that X is uniformly distributed on
√

n Sn−1 if, for every (Borel) subset E ⊂ Sn−1, the
probability P{X ∈ E} equals the ratio of the (n − 1)-dimensional areas of E and Sn−1.
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A good example of a discrete isotropic distribution in R
n is the symmetric Bernoulli

distribution. We say that a random vector X = (X1, . . . , Xn) is symmetric Bernoulli if
the coordinates Xi are independent, symmetric, Bernoulli random variables. Equivalently,
we may say that X is uniformly distributed on the unit discrete cube in R

n:

X ∼ Unif
({−1, 1}n).

The symmetric Bernoulli distribution is isotropic. (Check!)
More generally, we may consider any random vector X = (X1, . . . , Xn) whose coordi-

nates Xi are independent random variables with zero mean and unit variance. Then X is an
isotropic vector in R

n . (Why?)

3.3.2 Multivariate Normal

One of the most important high-dimensional distributions is Gaussian, or multivariate nor-
mal. Recall that a random vector g = (g1, . . . , gn) has the standard normal distribution in
R

n , denoted

g ∼ N (0, In),

if the coordinates gi are independent standard normal random variables N (0, 1). The density
of Z is then the product of the n standard normal densities (1.6):

f (x) =
n∏

i=1

1√
2π

e−x2
i /2 = 1

(2π)n/2
e−‖x‖2

2/2, x ∈ R
n. (3.4)

The standard normal distribution is isotropic. (Why?)
Note that the standard normal density (3.4) is rotation invariant, since f (x) depends only

on the length, not the direction of x . We can equivalently express this observation as follows.

Proposition 3.3.2 (Rotation invariance) Consider a random vector g ∼ N (0, In) and a
fixed orthogonal matrix U. Then

Ug ∼ N (0, In).

Exercise 3.3.3 (Rotation invariance)�� Deduce the following properties from the rota-
tion invariance of the normal distribution.

(a) Consider a random vector g ∼ N (0, In) and a fixed vector u ∈ R
n . Then

〈g, u〉 ∼ N (0, ‖u‖2
2).

(b) Consider independent random variables Xi ∼ N (0, σ 2
i ). Then

n∑
i=1

Xi ∼ N (0, σ 2) where σ 2 =
n∑

i=1

σ 2
i .

(c) Let G be an m×n Gaussian random matrix, i.e., the entries of G are independent N (0, 1)
random variables. Let u ∈ R

n be a fixed unit vector. Then

Gu ∼ N (0, Im).
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Figure 3.5 The densities of the isotropic distribution N (0, I2) and a non-isotropic
distribution N (0, �).

Let us also recall the notion of the general normal distribution N (μ,�). Consider a vector
μ ∈ R

n and an invertible n ×n positive-semidefinite matrix�. According to Exercise 3.2.2,
the random vector X := μ+�1/2 Z has mean μ and covariance matrix cov(X) = �. Such
an X is said to have a general normal distribution in R

n , denoted

X ∼ N (μ,�).

Summarizing, we have X ∼ N (μ,�) if and only if

Z := �−1/2(X − μ) ∼ N (0, In).

The density of X ∼ N (μ,�) can be computed by the change of variables formula, and it
equals

fX (x) = 1

(2π)n/2 det(�)1/2
exp (−(x − μ)T�−1(x − μ)/2), x ∈ R

n. (3.5)

Figure 3.5 shows examples of two densities of multivariate normal distributions.
An important observation is that the coefficients of a random vector X ∼ N (μ,�) are

independent if and only if they are uncorrelated. (In this case � = In .)

Exercise 3.3.4 (Characterization of normal distribution)��� Let X be a random vec-
tor in R

n . Show that X has a multivariate normal distribution if and only if every
one-dimensional marginal 〈X, θ〉, θ ∈ R

n , has a (univariate) normal distribution. �

Exercise 3.3.5� Let X ∼ N (0, In).

(a) Show that, for any fixed vectors u, v ∈ R
n , we have

E(〈X, u〉 〈X, v〉) = 〈u, v〉 . (3.6)

(b) Given a vector u ∈ R
n , consider the random variable Xu := 〈X, u〉. From Exercise 3.3.3

we know that Xu ∼ N (0, ‖u‖2
2). Check that

‖Xu − Xv‖L2 = ‖u − v‖2

for any fixed vectors u, v ∈ R
n . (Here ‖ · ‖L2 denotes the norm in the Hilbert space L2

of random variables, which we introduced in (1.1).)
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Exercise 3.3.6� Let G be an m × n Gaussian random matrix, i.e., the entries of G are
independent N (0, 1) random variables. Let u, v ∈ R

n be unit orthogonal vectors. Prove that
Gu and Gv are independent N (0, Im) random vectors. �

3.3.3 Similarity of Normal and Spherical Distributions

Contradicting our low-dimensional intuition, the standard normal distribution N (0, In) in
high dimensions is not concentrated close to the origin, where the density is maximal.
Instead, it is concentrated in a thin spherical shell around the sphere of radius

√
n, a shell of

width O(1). Indeed, the concentration inequality (3.3) for the norm of g ∼ N (0, In) states
that

P
{∣∣‖g‖2 −√

n
∣∣ ≥ t

} ≤ 2 exp(−ct2) for all t ≥ 0. (3.7)

This observation suggests that the normal distribution should be quite similar to the
uniform distribution on the sphere. Let us clarify the relation.

Exercise 3.3.7 (Normal and spherical distributions)� Let us represent g ∼ N (0, In) in
polar form as

g = rθ,

where r = ‖g‖2 is the length and θ = g/‖g‖2 is the direction of g. Prove the following:

(a) The length r and direction θ are independent random variables.
(b) The direction θ is uniformly distributed on the unit sphere Sn−1.

The concentration inequality (3.7) says that r = ‖g‖2 ≈ √
n with high probability, so

g ≈ √
n θ ∼ Unif

(√
nSn−1).

In other words, the standard normal distribution in high dimensions is close to the uniform
distribution on the sphere of radius

√
n, i.e.

N (0, In) ≈ Unif
(√

nSn−1). (3.8)

Figure 3.6 illustrates this fact, which goes against our intuition, trained in low dimensions.

Figure 3.6 A Gaussian point cloud in two dimensions (left) and its intuitive
visualization in high dimensions (right). In high dimensions, the standard normal
distribution is very close to the uniform distribution on the sphere of radius

√
n.
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3.3.4 Frames

For an example of an extremely discrete distribution, consider a coordinate random vector
X uniformly distributed in the set {√n ei }n

i=1, where {ei }n
i=1 is the canonical basis of R

n:

X ∼ Unif
{√

n ei : i = 1, . . . , n
}
.

Then X is an isotropic random vector in R
n . (Check!)

Of all high-dimensional distributions, the Gaussian is often the most convenient for
obtaining results, so we may think of it as the “best” distribution. The coordinate distribution,
the most discrete of all distributions, is the “worst”.

A general class of discrete, isotropic, distributions arises in the area of signal processing
under the name of frames.

Definition 3.3.8 A frame is a set of vectors {ui }N
i=1 in R

n which obeys an approximate
Parseval’s identity, i.e. there exist numbers A, B > 0, called frame bounds, such that

A‖x‖2
2 ≤

N∑
i=1

〈ui , x〉2 ≤ B‖x‖2
2 for all x ∈ R

n.

If A = B then the set {ui }N
i=1 is called a tight frame.

Exercise 3.3.9�� Show that {ui }N
i=1 is a tight frame in R

n with bound A if

N∑
i=1

ui u
T
i = AIn . (3.9)

�

Multiplying both sides of (3.9) by a vector x , we see that

N∑
i=1

〈ui , x〉 ui = Ax for any x ∈ R
n. (3.10)

This is a frame expansion of a vector x , and it should look familiar. Indeed, if {ui } is an
orthonormal basis then (3.10) is just a classical basis expansion of x , and it holds with
A = 1.

We can think of tight frames as generalizations of orthogonal bases without the linear
independence requirement. Any orthonormal basis in R

n is clearly a tight frame. But so is
the “Mercedez–Benz frame”, a set of three equidistant points on a circle in R

2, shown in
Figure 3.7.

Now we are ready to connect the concept of frames to probability. We will show that tight
frames correspond to isotropic distributions, and vice versa.

Lemma 3.3.10 (Tight frames and isotropic distributions)

(i) Consider a tight frame {ui }N
i=1 in R

n with frame bounds A = B. Let X be a random
vector that is uniformly distributed in the set of frame elements, i.e.,

X ∼ Unif
{
ui : i = 1, . . . , N

}
.
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Figure 3.7 The Mercedes–Benz frame. A set of equidistant points on the circle
forms a tight frame in R

2.

Then (N/A)1/2 X is an isotropic random vector in R
n.

(ii) Consider an isotropic random vector X in R
n that takes a finite set of values xi with

probabilities pi each, i = 1, . . . , N. Then the vectors

ui := √
pi xi , i = 1, . . . , N ,

form a tight frame in R
N with bounds A = B = 1.

Proof (i) Without loss of generality, we can assume that A = N . (Why?) The assumptions
and (3.9) imply that

N∑
i=1

ui u
T
i = N In.

Dividing both sides by N and interpreting N−1∑N
i=1 as an expectation, we conclude

that X is isotropic.
(ii) The isotropy of X means that

E X XT =
N∑

i=1

pi xi x
T
i = In.

Denoting ui := √
pi xi , we obtain (3.9) with A = 1. �

3.3.5 Isotropic Convex Sets

Our last example of a high-dimensional distribution comes from convex geometry. Consider
a bounded convex set K in R

n with non-empty interior; such sets are called convex bodies.
Let X be a random vector uniformly distributed in K according to the probability measure
given by the normalized volume in K :

X ∼ Unif(K ).

Denote the covariance matrix of X by �. Then, by Exercise 3.2.2, the random vector Z :=
�−1/2 X is isotropic. Note that Z is uniformly distributed in the linearly transformed copy
of K :

Z ∼ Unif(�−1/2K ).
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Figure 3.8 The convex body K on the left is transformed into the isotropic convex
body T K on the right. The pre-conditioner T is computed from the covariance
matrix � of K as T = �−1/2.

(Why?) Summarizing, we have found a linear transformation T := �−1/2 which makes the
uniform distribution on T K isotropic. The body T K is sometimes called isotropic itself.

In algorithmic convex geometry, one can think of the isotropic convex body T K as a
well-conditioned version of K , with T playing the role of a pre-conditioner; see Figure 3.8.
Algorithms related to convex bodies K (such as an algorithm for computing the volume of
K ) tend to work better for well-conditioned bodies K .

3.4 Sub-Gaussian Distributions in Higher Dimensions

The concept of sub-gaussian distributions, which we introduced in Section 2.5, can be
extended to higher dimensions. To see how this is done, recall from Exercise 3.3.4 that the
multivariate normal distribution can be characterized through its one-dimensional marginals,
or projections onto lines: a random vector X has a normal distribution in R

n if and
only if the one-dimensional marginals 〈X, x〉 are normal for all x ∈ R

n . Guided by this
characterization, it is natural to define multivariate sub-gaussian distributions as follows.

Definition 3.4.1 (Sub-gaussian random vectors) A random vector X in R
n is called sub-

gaussian if the one-dimensional marginals 〈X, x〉 are sub-gaussian random variables for all
x ∈ R

n . The sub-gaussian norm of X is defined as

‖X‖ψ2 = sup
x∈Sn−1

‖ 〈X, x〉 ‖ψ2 .

A good example of a sub-gaussian random vector is a random vector with independent
sub-gaussian coordinates:

Lemma 3.4.2 (Sub-gaussian distributions with independent coordinates) Let X =
(X1, . . . , Xn) ∈ R

n be a random vector with independent mean-zero sub-gaussian
coordinates Xi . Then X is a sub-gaussian random vector, and

‖X‖ψ2 ≤ C max
i≤n

‖Xi‖ψ2 .

Proof This is an easy consequence of the fact that a sum of independent sub-gaussian
random variables is sub-gaussian, which we proved in Proposition 2.6.1. Indeed, for a fixed
unit vector x = (x1, . . . , xn) ∈ Sn−1 we have

‖ 〈X, x〉 ‖2
ψ2

=
∥∥∥∥ n∑

i=1

xi Xi

∥∥∥∥2

ψ2

≤ C
n∑

i=1

x2
i ‖Xi‖2

ψ2
(by Proposition 2.6.1)
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≤ C max
i≤n

‖Xi‖2
ψ2

(using that
∑n

i=1
x2

i = 1).

This completes the proof. �

Exercise 3.4.3�� This exercise clarifies the role of the independence of coordinates in
Lemma 3.4.2.

(a) Let X = (X1, . . . , Xn) ∈ R
n be a random vector with sub-gaussian coordinates Xi .

Show that X is a sub-gaussian random vector.
(b) Nevertheless, find an example of a random vector X with

‖X‖ψ2 � max
i≤n

‖Xi‖ψ2 .

Many important high-dimensional distributions are sub-gaussian, but some are not. We
now explore some basic distributions.

3.4.1 Gaussian and Bernoulli Distributions

As we have already noted, the multivariate normal distribution N (μ,�) is sub-gaussian.
Moreover, the standard normal random vector X ∼ N (0, In) has sub-gaussian norm of
order O(1):

‖X‖ψ2 ≤ C.

(Indeed, all one-dimensional marginals of X are N (0, 1).)
Next, consider the multivariate symmetric Bernoulli distribution, which we introduced

in Section 3.3.1. A random vector X with this distribution has independent, symmetric
Bernoulli coordinates, so Lemma 3.4.2 yields that

‖X‖ψ2 ≤ C.

3.4.2 Discrete Distributions

Let us now pass to discrete distributions. The extreme example, mentioned in Section 3.3.4,
is the coordinate distribution. Recall that a random vector X with the coordinate distribution
is uniformly distributed in the set {√nei : i = 1, . . . , n}, where ei denotes the n-element set
of the canonical basis vectors in R

n .
Is X sub-gaussian? Formally, yes. In fact, every distribution supported in a finite set is

sub-gaussian. (Why?) But, unlike the Gaussian and Bernoulli distributions, the coordinate
distribution has a very large sub-gaussian norm.

Exercise 3.4.4� Show that

‖X‖ψ2 �
√

n

log n
.

Such a large norm makes it useless to think of X as a sub-gaussian random vector.
More generally, discrete distributions do not make nice sub-gaussian distributions unless

they are supported on exponentially large sets:



3.4 Sub-Gaussian Distributions in Higher Dimensions 53

Exercise 3.4.5���� Let X be an isotropic random vector supported in a finite set T ⊂
R

n . Show that in order for X to be sub-gaussian with ‖X‖ψ2 = O(1), the cardinality of the
set must be exponentially large in n:

|T | ≥ ecn.

In particular, this observation rules out frames (see Section 3.3.4) as good sub-gaussian
distributions unless they have exponentially many terms (in which case they are mostly
useless in practice).

3.4.3 Uniform Distribution on the Sphere

In all our previous examples, sub-gaussian random vectors that were useful had independent
coordinates. This is not necessary, however. A good example is the uniform distribution
on the sphere of radius

√
n, which we discussed in Section 3.4.3. We will show that it is

sub-gaussian by reducing it to the Gaussian distribution N (0, In).

Theorem 3.4.6 (Uniform distribution on the sphere is sub-gaussian) Let X be a random
vector uniformly distributed on the Euclidean sphere in R

n with center at the origin and
radius

√
n:

X ∼ Unif
(√

n Sn−1).
Then X is sub-gaussian, and

‖X‖ψ2 ≤ C.

Proof Consider a standard normal random vector g ∼ N (0, In). As we noted in Exer-
cise 3.3.7, the direction g/‖g‖2 is uniformly distributed on the unit sphere Sn−1. Thus, by
rescaling we can represent a random vector X ∼ Unif

(√
n Sn−1

)
as

X = √
n

g

‖g‖2
.

We need to show that all one-dimensional marginals 〈X, x〉 are sub-gaussian. By rotation
invariance we may assume that x = (1, 0, . . . , 0), in which case 〈X, x〉 = X1, the first
coordinate of X . We want to bound the tail probability

p(t) := P
{|X1| ≥ t

} = P

{ |g1|
‖g‖2

≥ t√
n

}
.

The concentration of the norm (Theorem 3.1.1) implies that

‖g‖2 ≈ √
n with high probability.

This reduces the problem to bounding P
{|g1| ≥ t

}
but, as we know from (2.3), this tail is

sub-gaussian.
Let us do this argument more carefully. Theorem 3.1.1 implies that∥∥‖g‖2 −√

n
∥∥
ψ2

≤ C.
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Thus the event

E :=
{
‖g‖2 ≥

√
n

2

}
is likely: by (2.14) its complement Ec has probability

P(Ec) ≤ 2 exp(−cn). (3.11)

Then the tail probability can be bounded as follows:

p(t) ≤ P

{ |g1|
‖g‖2

≥ t√
n

and E
}
+ P(Ec)

≤ P

{
|g1| ≥ t

2
and E

}
+ 2 exp(−cn) (by definition of E and (3.11))

≤ 2 exp(−t2/8)+ 2 exp(−cn) (drop E and use (2.3)).

Consider two cases. If t ≤ √
n then 2 exp(−cn) ≤ 2 exp(−ct2/8), and we conclude that

p(t) ≤ 4 exp(−c′t2)

as desired. In the opposite case where t >
√

n, the tail probability p(t) = P
{|X1| ≥ t

}
trivially equals zero, since we always have |X1| ≤ ‖X‖2 = √

n. This completes the proof.
�

Exercise 3.4.7 (Uniform distribution on the Euclidean ball)�� Extend Theorem 3.4.6
for the uniform distribution on the Euclidean ball B(0,

√
n) in R

n centered at the origin and
with radius

√
n. Namely, show that a random vector

X ∼ Unif
(
B(0,

√
n)
)

is sub-gaussian, and

‖X‖ψ2 ≤ C.

Remark 3.4.8 (Projective limit theorem) Theorem 3.4.6 should be compared to the so-
called projective central limit theorem. It states that the marginals of the uniform distribution
on the sphere become asymptotically normal as n increases, see Figure 3.9. Precisely, if
X ∼ Unif

(√
n Sn−1

)
then for any fixed unit vector x we have

〈X, x〉 → N (0, 1) in distribution as n → ∞.

Figure 3.9 The projective central limit theorem: the projection of a uniform
distribution on the sphere of radius

√
n onto a line converges to the normal

distribution N (0, 1) as n → ∞.
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Thus we can view Theorem 3.4.6 as a concentration version of the projective limit theorem,
in the same sense as Hoeffding’s inequality in Section 2.2 is a concentration version of the
classical central limit theorem.

3.4.4 Uniform Distribution on Convex Sets

To conclude this section, let us return to the class of uniform distributions on convex sets,
which we discussed in Section 3.3.5. Let K be a convex body and

X ∼ Unif(K )

be an isotropic random vector. Is X always sub-gaussian?
For some bodies K , this is the case. Examples include the Euclidean ball of radius

√
n

(by Exercise 3.4.7) and the unit cube [−1, 1]n (according to Lemma 3.4.2). For some other
bodies, this is not true:

Exercise 3.4.9��� Consider a ball of the �1 norm in R
n:

K := {
x ∈ R

n : ‖x‖1 ≤ r
}
.

(a) Show that the uniform distribution on K is isotropic for r ∼ n.
(b) Show that this distribution is not sub-gaussian.

Nevertheless, it is possible to prove a weaker result for a general isotropic convex body K .
The random vector X ∼ Unif(K ) has all sub-exponential marginals, and

‖ 〈X, x〉 ‖ψ1 ≤ C

for all unit vectors x . This result follows from C. Borell’s lemma, which itself is a
consequence of the Brunn–Minkowski inequality; see [79, Section 2.2.b3].

Exercise 3.4.10�� Show that the concentration inequality in Theorem 3.1.1 may not
hold for a general isotropic sub-gaussian random vector X . Thus, independence of the
coordinates of X is an essential requirement in that result.

3.5 Application: Grothendieck’s Inequality and Semidefinite Programming

In this and the next section, we use high-dimensional Gaussian distributions to pursue some
problems that have seemingly nothing to do with probability. Here we give a probabilis-
tic proof of Grothendieck’s inequality, a remarkable result which we will use later in the
analysis of some computationally hard problems.

Theorem 3.5.1 (Grothendieck’s inequality) Consider an m × n matrix (ai j ) of real
numbers. Assume that, for any numbers xi , y j ∈ {−1, 1}, we have∣∣∣∣∑

i, j

ai j xi y j

∣∣∣∣ ≤ 1.
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Then, for any Hilbert space H and any vectors ui , v j ∈ H satisfying ‖ui‖ = ‖v j‖ = 1, we
have ∣∣∣∣∑

i, j

ai j
〈
ui , v j

〉 ∣∣∣∣ ≤ K ,

where K ≤ 1.783 is an absolute constant.

There is apparently nothing random in the statement of this theorem, but our proof will
be probabilistic. We will actually give two proofs. The proof given in this section will yield
a much worse bound on the constant K , namely K ≤ 288. In Section 3.7 we present an
alternative argument that yields the bound K ≤ 1.783, as stated in Theorem 3.5.1.

Before we pass to the argument, let us make one simple observation.

Exercise 3.5.2�

(a) Check that the assumption of Grothendieck’s inequality can be equivalently stated as
follows: ∣∣∣∣∑

i, j

ai j xi y j

∣∣∣∣ ≤ max
i

|xi | max
j

|y j | (3.12)

for any real numbers xi and y j .
(b) Show that the conclusion of Grothendieck’s inequality can be equivalently stated as

follows: ∣∣∣∣∑
i, j

ai j
〈
ui , v j

〉 ∣∣∣∣ ≤ K max
i

‖ui‖ max
j

‖v j‖ (3.13)

for any Hilbert space H and any vectors ui , v j ∈ H .

Proof of Theorem 3.5.1 with K ≤ 288 Step 1: Reductions. Note that Grothendieck’s
inequality becomes trivial if we allow the value of K to depend on the matrix A = (ai j ).
(For example, K = ∑

i j |ai j | would work – check!) Let us choose K = K (A) to be the
smallest number that makes the conclusion (3.13) valid for a given matrix A, any Hilbert
space H , and any vectors ui , v j ∈ H . Our goal is to show that K does not depend on the
matrix A or the dimensions m and n.

Without loss of generality,4 we may do this for a specific Hilbert space H , namely for R
N

equipped with the Euclidean norm ‖ · ‖2. Let us fix vectors ui , v j ∈ R
N which realize the

smallest K , that is

4 To see this, we can first trivially replace H with the subspace of H spanned by the vectors ui and v j (and with
the norm inherited from H ). This subspace has dimension at most N := m + n. Next, we recall the basic fact
that all N -dimensional Hilbert spaces are isometric with each other, and in particular they are isometric to R

N

with norm ‖ · ‖2. The isometry can be constructed by identifying orthogonal bases of those spaces.
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i, j

ai j
〈
ui , v j

〉 = K , ‖ui‖2 = ‖v j‖2 = 1.

Step 2: Introducing randomness. The main idea of the proof is to realize the vectors ui , v j

via Gaussian random variables

Ui := 〈g, ui 〉 and Vj := 〈
g, v j

〉
, where g ∼ N (0, IN ).

As we noted in Exercise 3.3.5, Ui and Vj are standard normal random variables whose
correlations follow exactly the inner products of the vectors ui and v j :

E Ui Vj = 〈
ui , v j

〉
.

Thus

K =
∑
i, j

ai j
〈
ui , v j

〉 = E

∑
i, j

ai jUi Vj . (3.14)

Assume for a moment that the random variables Ui and Vj are bounded almost surely by
some constant – say, by R. Then the assumption (3.12) of Grothendieck’s inequality would
yield

∣∣∑
i, j ai jUi Vj

∣∣ ≤ R2 almost surely, and (3.14) would then give K ≤ R2.
Step 3: Truncation. Of course, this reasoning is flawed: the random variables Ui , Vj ∼

N (0, 1) are not bounded almost surely. To fix this argument, we can employ a useful trun-
cation trick. Let us fix some truncation level R ≥ 1 and decompose the random variables as
follows:

Ui = U−
i + U+

i where U−
i = Ui 1{|Ui |≤R} and U+

i = Ui 1{|Ui |>R}.

We then decompose Vj = V −
j + V +

j similarly. Now U−
i and V −

j are bounded by R almost

surely, as we desired. The remainder terms U+
i and V +

j are small in the L2 norm: indeed,
the bound in Exercise 2.1.4 gives

‖U+
i ‖2

L2 ≤ 2
(

R + 1

R

) 1√
2π

e−R2/2 <
4

R2
, (3.15)

and similarly for V +
j .

Step 4: Breaking up the sum. The sum in (3.14) becomes

K = E

∑
i, j

ai j (U
−
i + U+

i )(V
−
j + V +

j ).

When we expand the product in each term we obtain four sums, which we proceed to bound
individually. The first sum,

S1 := E

∑
i, j

ai jU
−
i V −

j ,

is the easiest to control. By construction, the random variables U−
i and V −

j are bounded
almost surely by R. Thus, just as we explained above, we can use the assumption (3.12) of
Grothendieck’s inequality to get S1 ≤ R2.
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We are not able to use the same reasoning for the second sum,

S2 := E

∑
i, j

ai jU
+
i V −

j ,

since the random variable U+
i is unbounded. Instead, we will view the random variables

U+
i and V −

j as elements of the Hilbert space L2 with inner product 〈X, Y 〉L2 = E XY . The
second sum becomes

S2 =
∑
i, j

ai j
〈
U+

i , V −
j

〉
L2 . (3.16)

Recall from (3.15) that ‖U+
i ‖L2 < 2/R and ‖V −

j ‖L2 ≤ ‖Vj‖L2 = 1 by construction. Then,

applying the conclusion (3.13) of Grothendieck’s inequality for the Hilbert space H = L2,
we find that5

S2 ≤ K
2

R
.

The third and fourth sums, S3 := E
∑

i, j ai jU
−
i V +

j and S4 := E
∑

i, j ai jU
+
i V +

j , can be
both bounded in the same way as S2. (Check!)

Step 5: Putting everything together. Putting the four sums together, we conclude from
(3.14) that

K ≤ R2 + 6K

R
.

Choosing R = 12 (for example) and solve the resulting inequality, we obtain K ≤ 288. The
theorem is proved. �

Exercise 3.5.3 (Symmetric matrices, xi = yi )��� Deduce the following version of
Grothendieck’s inequality for symmetric n×n matrices A = (ai j ) with real entries. Assume
that, for any numbers xi ∈ {−1, 1}, we have∣∣∣∣∑

i, j

ai j xi x j

∣∣∣∣ ≤ 1.

Then, for any Hilbert space H and any vectors ui , v j ∈ H satisfying ‖ui‖ = ‖v j‖ = 1, we
have ∣∣∣∑

i, j

ai j
〈
ui , v j

〉 ∣∣∣ ≤ 2K , (3.17)

where K is the absolute constant from Grothendieck’s inequality. �

5 It might seem weird that we are able to apply the inequality that we are trying to prove. Remember, however,
that we chose K at the beginning of the proof as the best number that makes Grothendieck’s inequality valid.
This is the K we are using here.
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3.5.1 Semidefinite Programming

One application area where Grothendieck’s inequality can be particularly helpful is the
analysis of certain computationally hard problems. A powerful approach to such problems
is to try and relax them to computationally simpler and more tractable problems. This is
often done using semidefinite programming, with Grothendieck’s inequality guaranteeing
the quality of such relaxations.

Definition 3.5.4 A semidefinite program is an optimization problem of the following type:

maximize 〈A, X〉 : X � 0, 〈Bi , X〉 = bi for i = 1, . . . ,m. (3.18)

Here A and the Bi are given n × n matrices and the bi are given real numbers. The running
“variable” X is an n × n positive-semidefinite matrix, indicated by the notation X � 0. The
inner product

〈A, X〉 = tr(AT X) =
n∑

i, j=1

Ai j Xi j (3.19)

is the canonical inner product on the space of n × n matrices.

Note in passing that if we minimize instead of maximize in (3.18), we still get a
semidefinite program. (To see this, replace A with −A.)

Every semidefinite program is a convex program, which maximizes a linear function
〈A, X〉 over a convex set of matrices. Indeed, the set of positive-semidefinite matrices is
convex (why?), and so is its intersection with the linear subspace defined by the constraints
〈Bi , X〉 = bi .

This is good news since convex programs are generally algorithmically tractable. A vari-
ety of computationally efficient solvers, for example, interior point methods, are available
for general convex programs and for semidefinite programs (3.18) in particular.

Semidefinite Relaxations

Semidefinite programs can be designed to provide computationally efficient relaxations of
computationally hard problems, such as this one:

maximize
n∑

i, j=1

Ai j xi x j : xi = ±1 for i = 1, . . . , n, (3.20)

where A is a given n × n symmetric matrix. This is an integer optimization problem. The
feasible set consists of 2n vectors x = (xi ) ∈ {−1, 1}n , so finding the maximum by exhaus-
tive search would take exponential time. Is there a smarter way to solve the problem? This
is not likely: the problem (3.20) is known to be computationally hard in general (NP-hard).

Nonetheless, we can “relax” the problem (3.20) to a semidefinite program that can com-
pute the maximum approximately, up to a constant factor. To formulate such a relaxation, let
us replace in (3.20) the numbers xi = ±1 by their higher-dimensional analogs – unit vectors
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Xi in R
n . Thus we consider the following optimization problem:

maximize
n∑

i, j=1

Ai j
〈
Xi , X j

〉 : ‖Xi‖2 = 1 for i = 1, . . . , n. (3.21)

Exercise 3.5.5�� Show that the optimization (3.21) is equivalent to the following
semidefinite program:

maximize 〈A, X〉 : X � 0, Xii = 1 for i = 1, . . . , n. (3.22)

�

The Guarantee of Relaxation

We now see how Grothendieck’s inequality guarantees the accuracy of semidefinite relax-
ations: the semidefinite program (3.21) approximates the maximum value in the integer
optimization problem (3.20) up to an absolute constant factor.

Theorem 3.5.6 Let INT(A) denote the maximum in the integer optimization problem
(3.20) and SDP(A) denote the maximum in the semidefinite problem (3.21). Then

INT(A) ≤ SDP(A) ≤ 2K INT(A)

where K ≤ 1.783 is the constant in Grothendieck’s inequality.

Proof The first bound follows with Xi = (xi , 0, 0, . . . , 0)T. The second bound follows
from Grothendieck’s inequality for symmetric matrices in Exercise 3.5.3. (Argue that one
can drop absolute values in this exercise.) �

Although Theorem 3.5.6 allows us to approximate the maximum value in (3.20), it is
not obvious how to compute an xi that attains this approximate value. Can we translate the
vectors (Xi ) that give a solution of the semidefinite program (3.21) into labels xi = ±1 that
approximately solve (3.20)? In the next section, we illustrate this using the example of a
remarkable NP-hard problem on graphs – the maximum cut problem.

Exercise 3.5.7��� Let A be an m × n matrix. Consider the optimization problem

maximize
∑
i, j

Ai j
〈
Xi , Y j

〉 : ‖Xi‖2 = ‖Y j‖2 = 1 for all i, j

over Xi , Y j ∈ R
k . Formulate this problem as a semidefinite program. �

3.6 Application: Maximum Cut for Graphs

We now illustrate the utility of semidefinite relaxations for the problem of finding the max-
imum cut of a graph, which is a well-known NP-hard problem discussed in the computer
science literature.
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Figure 3.10 The dashed line illustrates the maximum cut of this graph, obtained by
partitioning the vertices into black and white ones. Here MAX-CUT(G) = 7.

3.6.1 Graphs and Cuts

An undirected graph G = (V, E) is defined as a set V of vertices together with a set E of
edges; each edge is an unordered pair of vertices. Here we consider finite simple graphs –
those with finitely many vertices and with no loops or multiple edges.

Definition 3.6.1 (Maximum cut) Suppose that we partition the set of vertices of a graph
G into two disjoint sets. The cut is the number of edges crossing between these two sets.
The maximum cut of G, denoted MAX-CUT(G), is obtained by maximizing the cut over all
partitions of vertices; see Figure 3.10 for an illustration.

Computing the maximum cut of a given graph is known to be a computationally hard
problem.

3.6.2 A Simple 0.5-Approximation Algorithm

We now try to relax the maximum-cut problem to a semidefinite program, following the
method introduced in Section 3.5.1. To do this, we need to translate the problem into the
language of linear algebra.

Definition 3.6.2 (Adjacency matrix) The adjacency matrix A of a graph G on n vertices
is a symmetric n × n matrix whose entries are defined as Ai j = 1 if vertices i and j are
connected by an edge and Ai j = 0 otherwise.

Let us label the vertices of G by the integers 1, . . . , n. A partition of the vertices into two
sets can be described using a vector of labels

x = (xi ) ∈ {−1, 1}n,

the sign of xi indicating to which subset the vertex i belongs. For example, the four black
vertices in Figure 3.10 could have labels xi = 1 and the seven white vertices labels xi = −1.
The cut of G corresponding to the partition given by x is simply the number of edges
between the vertices with labels of opposite signs, i.e.,
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CUT(G, x) = 1

2

∑
i, j : xi x j=−1

Ai j = 1

4

n∑
i, j=1

Ai j (1 − xi x j ). (3.23)

(The factor 1/2 prevents the double counting of edges (i, j) and ( j, i).) The maximum cut
is then obtained by maximizing CUT(G, x) over all x , that is

MAX-CUT(G) = 1

4
max

{ n∑
i, j=1

Ai j (1 − xi x j ) : xi = ±1 for all i

}
. (3.24)

Let us start with a simple 0.5-approximation algorithm for the maximum cut – one which
finds a cut through at least half the edges of G.

Proposition 3.6.3 (The 0.5-approximation algorithm for maximum cut) Partition the ver-
tices of G into two sets at random, uniformly over all 2n possible partitions. Then the
expectation of the resulting cut equals

0.5|E | ≥ 0.5 MAX-CUT(G),

where |E | denotes the total number of edges of G.

Proof The random cut is generated by a symmetric Bernoulli random vector x ∼
Unif

({−1, 1}n
)
, which has independent symmetric Bernoulli coordinates. Then, in (3.23)

we have E xi x j = 0 for i �= j and Ai j = 0 for i = j (since the graph has no loops). Thus,
using the linearity of expectations, we get

E CUT(G, x) = 1

4

n∑
i, j=1

Ai j = 1

2
|E |.

This completes the proof. �

Exercise 3.6.4�� For any ε > 0, give an (0.5 − ε)-approximation algorithm for maxi-
mum cut, which is always guaranteed to give a suitable cut but may have a random running
time. Give a bound on the expected running time. �

3.6.3 Semidefinite Relaxation

Now we will do much better and give a 0.878-approximation algorithm which is due to
Goemans and Williamson. It is based on a semidefinite relaxation of the NP-hard problem
(3.24). It should be easy to guess what such a relaxation could be: recalling (3.21), it is
natural to consider the semidefinite problem

SDP(G) := 1

4
max

{ n∑
i, j=1

Ai j (1 − 〈Xi X j 〉) : ‖Xi‖2 = 1 for all i

}
. (3.25)

(Again – why is this a semidefinite program?)
As we will see, not only does the value SDP(G) approximate MAX-CUT(G) to within

the 0.878 factor, but we can obtain an actual partition of G (i.e., the labels xi ) which attains
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X1

X2
X3

g

0

X4

X5

X6

Figure 3.11 Randomized rounding of vectors Xi ∈ R
n into labels xi = ±1. For

this configuration of points Xi and a random hyperplane with normal vector g, we
assign x1 = x2 = x3 = 1 and x4 = x5 = x6 = −1.

this value. To do this, we describe how to translate a solution (Xi ) of (3.25) into labels
xi = ±1.

This can be done by the following randomized rounding step. Choose a random hyper-
plane in R

n . It cuts the set of vectors Xi into two parts; let us assign labels xi = 1 to one
part and xi = −1 to the other part. Equivalently, we may choose a standard normal random
vector

g ∼ N (0, In)

and define

xi := sign 〈Xi , g〉 , i = 1, . . . , n. (3.26)

See Figure 3.11 for an illustration.6

Theorem 3.6.5 (The 0.878-approximation algorithm for maximum cut) Let G be a graph
with adjacency matrix A. Let x = (xi ) be the result of a randomized rounding of the solution
(Xi ) of the semidefinite program (3.25). Then

E CUT(G, x) ≥ 0.878 SDP(G) ≥ 0.878 MAX-CUT(G).

The proof of this theorem will be based on the following elementary identity. We can
think of it as a more advanced version of the identity (3.6), which we used in the proof of
Grothendieck’s inequality, Theorem 3.5.1.

Lemma 3.6.6 (Grothendieck’s identity) Consider a random vector g ∼ N (0, In). Then,
for any fixed vectors u, v ∈ Sn−1, we have

E
(
sign 〈g, u〉 sign 〈g, v〉) = 2

π
arcsin 〈u, v〉 .

Exercise 3.6.7�� Prove Grothendieck’s identity. �

6 In the rounding step, instead of the normal distribution we could use any other rotation invariant distribution in
R

n , for example, the uniform distribution on the sphere Sn−1.
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–1 0 1
0

1

2

0.878 (1− t)

2
p

arccos t

Figure 3.12 The inequality (2/π) arccos t ≥ 0.878(1 − t) holds for all t ∈ [−1, 1].

A weak point of Grothendieck’s identity is the nonlinear function arcsin, which would be
hard to work with. Let us replace it with a linear function using the numeric inequality

1 − 2

π
arcsin t = 2

π
arccos t ≥ 0.878(1 − t), t ∈ [−1, 1], (3.27)

which can be easily verified using software; see Figure 3.12.

Proof of Theorem 3.6.5 By (3.23) and the linearity of expectations, we have

E CUT(G, x) = 1

4

n∑
i, j=1

Ai j (1 − E xi x j ).

The definition of the labels xi in the rounding step (3.26) gives

1 − E xi x j = 1 − E
(
sign 〈Xi , g〉 sign

〈
X j , g

〉)
= 1 − 2

π
arcsin

〈
Xi , X j

〉
(by Grothendieck’s identity, Lemma 3.6.6)

≥ 0.878
(
1 − 〈Xi , X j

〉)
(by (3.27)).

Therefore

E CUT(G, x) ≥ 0.878 × 1

4

n∑
i, j=1

Ai j (1 − 〈Xi , X j 〉) = 0.878 SDP(G).

This proves the first inequality in the theorem. The second inequality is trivial since
SDP(G) ≥ MAX-CUT(G). (Why?) �

3.7 Kernel Trick, and Tightening of Grothendieck’s Inequality

Our proof of Grothendieck’s inequality given in Section 3.5 yields a very loose bound on the
absolute constant K . We now give an alternative proof that gives (almost) the best known
constant K ≤ 1.783.

Our new argument will be based on Grothendieck’s identity (Lemma (3.6.6)). The
main challenge in using this identity arises from the nonlinearity of the function
arcsin(x). Indeed, suppose that there were no such nonlinearity, and we hypothetically
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had E
(
sign 〈g, u〉 sign 〈g, v〉) = (2/π) 〈u, v〉. Then Grothendieck’s inequality would easily

follow:
2

π

∑
i, j

ai j
〈
ui , v j

〉 =∑
i, j

ai j E
(
sign 〈g, ui 〉 sign

〈
g, v j

〉) ≤ 1,

where in the last step we swapped the sum and expectation and used the assumption of
Grothendieck’s inequality for xi = sign 〈g, ui 〉 and y j = sign

〈
g, y j

〉
. This would give

Grothendieck’s inequality with K ≤ π/2 ≈ 1.57.
This argument is of course wrong. To address the nonlinear form (2/π) arcsin 〈u, v〉 that

appears in Grothendieck’s identity, we use the following remarkably powerful trick: repre-
sent (2/π) arcsin 〈u, v〉 as the (linear) inner product 〈u′, v′〉 of some other vectors u′, v′ in
some Hilbert space H . In the literature on machine learning, this method is called the kernel
trick.

We will explicitly construct nonlinear transformations u′ = �(u), v′ = �(v) that will do
the job. Our construction is conveniently described in the language of tensors, which form a
higher-dimensional generalization of the notion of matrices.

Definition 3.7.1 (Tensors) A tensor can be described as a multidimensional array. Thus, a
kth order tensor (ai1...ik ) is a k-dimensional array of real numbers ai1...ik . The canonical inner
product on R

n1×···×nk defines the inner product of tensors A = (ai1...ik ) and B = (bi1...ik ):

〈A, B〉 :=
∑

i1,...,ik

ai1...ik bi1...ik . (3.28)

Example 3.7.2 Scalars, vectors, and matrices are examples of tensors. As we noted in
(3.19), for m × n matrices the inner product of tensors (3.28) specializes to

〈A, B〉 = tr(AT B) =
m∑

i=1

n∑
j=1

Ai j Bi j .

Example 3.7.3 (Rank-1 tensors) Every vector u ∈ R
n defines a kth-order tensor product

u ⊗ · · · ⊗ u, which is the tensor whose entries are the products of all k-tuples of the entries
of u. In other words,

u ⊗ · · · ⊗ u = u⊗k := (ui1 · · · uik ) ∈ R
n×···×n.

In particular, for k = 2, the tensor product u ⊗ u is just the n × n matrix which is the outer
product of u with itself:

u ⊗ u = (ui u j )
n
i, j=1 = uuT.

One can similarly define the tensor products u ⊗v⊗· · ·⊗ z for different vectors u, v, . . . , z.

Exercise 3.7.4� Show that, for any vectors u, v ∈ R
n and k ∈ N, we have〈

u⊗k, v⊗k 〉 = 〈u, v〉k .



66 Random Vectors in High Dimensions

This exercise shows a remarkable fact: we can represent nonlinear forms like 〈u, v〉k as
the usual, linear, inner product in some other space. Formally, there exist a Hilbert space H
and a transformation � : R

n → H such that

〈�(u),�(v)〉 = 〈u, v〉k .

In this case, H is the space of kth-order tensors, and �(u) = u⊗k .
In the next two exercises, we extend this observation to more general nonlinearities.

Exercise 3.7.5��

(a) Show that there exist a Hilbert space H and a transformation � : R
n → H such that

〈�(u),�(v)〉 = 2 〈u, v〉2 + 5 〈u, v〉3 for all u, v ∈ R
n. �

(b) More generally, consider a polynomial f : R → R and construct H and � such that

〈�(u),�(v)〉 = f (〈u, v〉) for all u, v ∈ R
n.

(c) Show the same for any real analytic function f : R → R with non-negative coefficients,
i.e., for any function that can be represented as a convergent series,

f (x) =
∞∑

k=0

ak xk, x ∈ R, (3.29)

and such that ak ≥ 0 for all k.

Exercise 3.7.6� Let f : R → R be any real analytic function (with possibly nega-
tive coefficients in (3.29)). Show that there exist a Hilbert space H and transformations
�,� : R

n → H such that

〈�(u),�(v)〉 = f (〈u, v〉) for all u, v ∈ R
n.

Moreover, check that

‖�(u)‖2 = ‖�(u)‖2 =
∞∑

k=0

|ak |‖u‖2k
2 . �

Let us specialize the kernel trick to the nonlinearity (2/π) arcsin 〈u, v〉 that appears in
Grothendieck’s identity.

Lemma 3.7.7 There exists a Hilbert space H and transformations7 �,� : Sn−1 → S(H)
such that

2

π
arcsin 〈�(u),�(v)〉 = β 〈u, v〉 for all u, v ∈ Sn−1, (3.30)

where β = (2/π) ln(1 +√
2).

7 Here Sn−1 denotes the unit Euclidean sphere in R
n and S(H) denotes the unit sphere of the Hilbert space H .
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Proof Rewrite the desired identity (3.30) as

〈�(u),�(v)〉 = sin
(βπ

2
〈u, v〉

)
. (3.31)

The result of Exercise 3.7.6 gives us the Hilbert space H and the maps �,� : R
n → H

that satisfy (3.31). It remains only to determine the value of β for which � and � map unit
vectors to unit vectors. To do this, we recall the Taylor series

sin t = t − t3

3! +
t5

5! − · · · and sinh t = t + t3

3! +
t5

5! + · · ·

Exercise 3.7.6 then guarantees that, for every u ∈ Sn−1, we have

‖�(u)‖2 = ‖�(u)‖2 = sinh
(βπ

2

)
.

This quantity equals 1 if we set

β := 2

π
arcsinh(1) = 2

π
ln(1 +√

2).

The lemma is proved. �

Now we are ready to prove Grothendieck’s inequality (Theorem 3.5.1) with constant

K ≤ 1

β
= π

2 ln(1 +√
2)

≈ 1.783.

Proof of Theorem 3.5.1 We can assume without loss of generality that ui , v j ∈ SN−1 (this
is the same reduction as we made in the proof in Section 3.5). Lemma 3.7.7 gives us unit
vectors u′

i = �(ui ) and v′j = �(v j ), in some Hilbert space H , which satisfy

2

π
arcsin

〈
u′

i , v
′
j

〉 = β
〈
ui , v j

〉
for all i, j.

We can again assume without loss of generality that H = R
M for some M . (Why?) Then

β
∑
i, j

ai j
〈
ui , v j

〉 =∑
i, j

ai j
2

π
arcsin

〈
u′

i , v
′
j

〉
=
∑
i, j

ai j E
(
sign

〈
g, u′

i

〉
sign

〈
g, v′j

〉)
(by Lemma 3.6.6),

≤ 1,

where in the last step we swapped the sum and expectation and used the assumption
of Grothendieck’s inequality with xi = sign

〈
g, u′

i

〉
and y j = sign

〈
g, y′

j

〉
. This yields

Grothendieck’s inequality for K ≤ 1/β. �



68 Random Vectors in High Dimensions

3.7.1 Kernels and Feature Maps

Since the kernel trick was so successful in the proof of Grothendieck’s inequality, we may
ask – what other nonlinearities can be handled with the kernel trick? Let

K : X ×X → R

be a function of two variables on a set X . Under what conditions on K can we find a Hilbert
space H and a transformation

� : X → H

such that

〈�(u),�(v)〉 = K (u, v) for all u, v ∈ X ? (3.32)

The answer to this question is provided by Mercer’s theorem and, more precisely, the
Moore–Aronszajn theorem. The necessary and sufficient condition is that K be a positive-
semidefinite kernel, which means that, for any finite collection of points u1, . . . , uN ∈ X ,
the matrix (

K (ui , u j )
)N

i, j=1

is positive-semidefinite. The map � is called a feature map, and the Hilbert space H can be
constructed from the kernel K as a (unique) reproducing kernel Hilbert space.

Examples of positive-semidefinite kernels on R
n that are common in machine learning

include the Gaussian kernel (also called the radial basis function kernel)

K (u, v) = exp
(
−‖u − v‖2

2

2σ 2

)
, u, v ∈ R

n, σ > 0,

and the polynomial kernel

K (u, v) = ( 〈u, v〉 + r
)k
, u, v ∈ R

n, r > 0, k ∈ N.

The kernel trick (3.32), which represents a general kernel K (u, v) as an inner product, is
very popular in machine learning. It allows one to handle nonlinear models (determined by
kernels K ) using methods developed for linear models. In contrast with what we did in this
section, in machine learning applications an explicit description of the Hilbert space H and
the feature map � : X → H is typically not needed. Indeed, to compute the inner product
〈�(u),�(v)〉 in H , one does not need to know�: the identity (3.32) allows one to compute
K (u, v) instead.

3.8 Notes

Theorem 3.1.1 about the concentration of the norm of random vectors is known but difficult
to locate in the existing literature. We will later prove a more general result, Theorem 6.3.2,
which is valid for anisotropic random vectors. It is unknown whether the quadratic depen-
dence on K in Theorem 3.1.1 is optimal. One may also wonder about concentration of
the norm ‖X‖2 of random vectors X whose coordinates are not necessarily independent. In
particular, for a random vector X that is uniformly distributed in a convex set K , the concen-
tration of the norm is a central problem in geometric functional analysis; see [91, Section 2]
and [35, Chapter 12].
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Exercise 3.3.4 mentions the Cramér–Wold theorem. It a straightforward consequence of
the uniqueness theorem for characteristic functions: see [22, Section 29].

The concept of frames introduced in Section 3.3.4 is an important extension of the
notion of orthogonal bases. One can read more about frames and their applications in signal
processing and data compression in, e.g., [50, 117].

Sections 3.3.5 and 3.4.4 discuss random vectors uniformly distributed in convex sets. The
books [11, 35] study this topic in detail, and the surveys [180, 212] discuss the algorithmic
aspects of computing the volume of convex sets in high dimensions.

Our discussion of sub-gaussian random vectors in Section 3.4 mostly follows [216]. An
alternative geometric proof of Theorem 3.4.6 can be found in [13, Lemma 2.2].

Grothendieck’s inequality (Theorem 3.5.1) was originally proved by A. Grothendieck in
1953 [88] with the bound on the constant K ≤ sinh(π/2) ≈ 2.30; a version of this origi-
nal argument is presented [129, Section 2]. There are alternative proofs of Grothendieck’s
inequality with better and worse bounds on K ; see [34] for the history. The surveys
[111, 164] discuss ramifications and applications of Grothendieck’s inequality in various
areas of mathematics and computer science. Our first proof of Grothendieck’s inequality,
the proof given in Section 3.5, is similar to that in [5, Section 8.1]; it was kindly brought
to the author’s attention by Mark Rudelson. Our second proof, the one from Section 3.7, is
due to J.-L. Krivine [118]; versions of this argument can be found e.g. in [7] and [122]. The
bound on the constant

K ≤ π

2 ln(1 +√
2)

≈ 1.783

that follows from Krivine’s argument is currently the best known explicit bound on K . It has
been proved, however, that the best possible bound must be strictly smaller than Krivine’s
bound, but no explicit number is known [34].

Part of this chapter was about semidefinite relaxations of hard optimization problems. For
an introduction to the area of convex optimization, including semidefinite programming, we
refer to the books [33, 38, 122, 28]. For the use of Grothendieck’s inequality in analyzing
semidefinite relaxations, see [111, 7]. Our presentation of the maximum cut problem in
Section 3.6 follows [38, Section 6.6] and [122, Chapter 7]. The semidefinite approach to
maximum cut, which we discussed in Section 3.6.3, was pioneered in 1995 by M. Goemans
and D. Williamson [81]. The approximation ratio

2

π
min

0≤θ≤π
θ

1 − cos(θ)
≈ 0.878

guaranteed by the Goemans–Williamson algorithm remains the best known constant for the
max-cut problem. If the unique games conjecture is true, this ratio cannot be improved, i.e.,
any better approximation would be NP-hard to compute [110].

In Section 3.7 we gave Krivine’s proof of Grothendieck’s inequality [118]. We also briefly
discussed kernel methods there. To learn more about kernels, reproducing kernel Hilbert
spaces, and their applications in machine learning, see e.g. the survey [100].
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Random Matrices

We now begin the study of the non-asymptotic theory of random matrices, a study that will
be continued in further chapters. Section 4.1 gives a quick reminder about singular val-
ues and matrix norms and their relationships. Section 4.2 introduces important geometric
concepts – nets, covering and packing numbers, metric entropy, and discusses relations of
these quantities with volume and coding. In Sections 4.4 and 4.6, we develop a basic ε-net
argument and use it for random matrices. We first give a bound on the operator norm (The-
orem 4.4.5) and then a stronger, two-sided bound on all singular values (Theorem 4.6.1) of
random matrices. Three applications of random matrix theory are discussed in this chapter: a
spectral clustering algorithm for recovering clusters, or communities, in complex networks
(Section 4.5), covariance estimation (Section 4.7), and a spectral clustering algorithm for
data presented as geometric point sets (Section 4.7.1).

4.1 Preliminaries on Matrices

You should be familiar with the notion of singular value decomposition from a basic course
in linear algebra; we will recall it nevertheless. We will then introduce two matrix norms –
operator and Frobenius – and discuss their relationships.

4.1.1 Singular Value Decomposition

The main object of our study will be an m × n matrix A with real entries. Recall that A can
be represented using the singular value decomposition (SVD), which we can write as

A =
r∑

i=1

si uiv
T
i , where r = rank(A). (4.1)

Here the non-negative numbers si = si (A) are the singular values of A, the vectors ui ∈ R
m

are the left singular vectors of A, and the vectors vi ∈ R
n are the right singular vectors of A.

For convenience, we often extend the sequence of singular values by setting si = 0 for
r < i ≤ n, and we arrange them in a non-increasing order:

s1 ≥ s2 ≥ · · · ≥ sn ≥ 0.

The left singular vectors ui are the orthonormal eigenvectors of AAT and the right singular
vectors vi are the orthonormal eigenvectors of AT A. The singular values si are the square
roots of the eigenvalues λi of both AAT and AT A:

70



4.1 Preliminaries on Matrices 71

si (A) =
√
λi (AAT) =

√
λi (AT A).

In particular, if A is a symmetric matrix then the singular values of A are the absolute values
of the eigenvalues λi of A:

si (A) = |λi (A)|,
and both the left and right singular vectors of A are eigenvectors of A.

The Courant–Fisher min–max theorem offers the following variational characterization
of the eigenvalues λi (A) of a symmetric matrix A, assuming they are arranged in a non-
increasing order:

λi (A) = max
dim E=i

min
x∈S(E)

〈Ax, x〉 . (4.2)

Here the maximum is over all i-dimensional subspaces E of R
n , the minimum is over all

unit vectors x ∈ E , and S(E) denotes the unit Euclidean sphere in the subspace E . For the
singular values, the min–max theorem immediately implies that

si (A) = max
dim E=i

min
x∈S(E)

‖Ax‖2.

Exercise 4.1.1� Suppose that A is an invertible matrix with singular value decomposition

A =
n∑

i=1

si uiv
T
i .

Check that

A−1 =
n∑

i=1

1

si
vi u

T
i .

4.1.2 Operator Norm and the Extreme Singular Values

The space of m × n matrices can be equipped with several classical norms. We mention
two of them – the operator and Frobenius norms – and emphasize their connection with the
spectrum of A.

When we are thinking of the space R
m along with the Euclidean norm ‖ · ‖2 on it, we

denote this Hilbert space by �m
2 . The matrix A acts as a linear operator from �n

2 to �m
2 . Its

operator norm, also called the spectral norm, is defined as

‖A‖ := ‖A : �n
2 → �m

2 ‖ = max
x∈Rn\{0}

‖Ax‖2

‖x‖2
= max

x∈Sn−1
‖Ax‖2.

Equivalently, the operator norm of A can be computed by maximizing the quadratic form
〈Ax, y〉 over all unit vectors x, y:

‖A‖ = max
x∈Sn−1, y∈Sm−1

〈Ax, y〉 .

In terms of its spectrum, the operator norm of A equals the largest singular value of A:

s1(A) = ‖A‖.
(Check!)
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The smallest singular value sn(A) also has a special meaning. By definition, it can only
be nonzero for tall matrices, where m ≥ n. In this case, A has full rank n if and only if
sn(A) > 0. Moreover, sn(A) is a quantitative measure of the non-degeneracy of A. Indeed,

sn(A) = 1

‖A+‖
where A+ is the Moore–Penrose pseudoinverse of A. Its norm ‖A+‖ is the norm of the
operator A−1 restricted to the image of A.

4.1.3 Frobenius Norm

The Frobenius norm, also called Hilbert–Schmidt norm, of a matrix A with entries Ai j is
defined as

‖A‖F =
( m∑

i=1

n∑
j=1

|Ai j |2
)1/2

.

Thus the Frobenius norm is the Euclidean norm on the space of matrices R
m×n . In terms of

singular values, the Frobenius norm can be computed as

‖A‖F =
( r∑

i=1

si (A)
2
)1/2

.

The canonical inner product on R
m×n can be represented in terms of matrices as

〈A, B〉 = tr(AT B) =
m∑

i=1

n∑
j=1

Ai j Bi j . (4.3)

Obviously, the canonical inner product generates the canonical Euclidean norm, i.e.

‖A‖2
F = 〈A, A〉 .

Let us now compare the operator and the Frobenius norm. If we look at the vector s =
(s1, . . . , sr ) of singular values of A, these norms become the �∞ and �2 norms, respectively:

‖A‖ = ‖s‖∞, ‖A‖F = ‖s‖2.

Using the inequality ‖s‖∞ ≤ ‖s‖2 ≤ √
r ‖s‖∞ for s ∈ R

n (check it!), we obtain the best
possible relation between the operator and Frobenius norms:

‖A‖ ≤ ‖A‖F ≤ √
r ‖A‖. (4.4)

Exercise 4.1.2�� Prove the following bound on the singular values si of any matrix A:

si ≤ 1√
i
‖A‖F .
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4.1.4 Low-Rank Approximation

Suppose we want to approximate a given matrix A of rank r by a matrix Ak that has a given
lower rank k < r . What is the best choice for Ak? In other words, what matrix Ak of rank k
minimizes the distance to A? This distance can be measured by the operator norm or by the
Frobenius norm.

In either case, the Eckart–Young–Mirsky theorem gives the answer to this low-rank
approximation problem. It states that the minimizer Ak is obtained by truncating the singular
value decomposition of A at the kth term:

Ak =
k∑

i=1

si uiv
T
i .

In other words, the Eckart–Young–Mirsky theorem states that

‖A − Ak‖ = min
rank(A′)≤k

‖A − A′‖.
A similar statement holds for the Frobenius norm (and, in fact, for any unitarily invariant
norm). The matrix Ak is often called the best rank-k approximation of A.

Exercise 4.1.3 (Best rank-k approximation)�� Let Ak be the best rank-k approximation
of a matrix A. Express ‖A − Ak‖2 and ‖A − Ak‖2

F in terms of the singular values si of A.

4.1.5 Approximate Isometries

The extreme singular values s1(A) and sr n(A) have an important geometric meaning. They
are respectively the smallest number M and the largest number m that make the following
inequality true:

m‖x‖2 ≤ ‖Ax‖2 ≤ M‖x‖2 for all x ∈ R
n. (4.5)

(Check!) Applying this inequality for x − y instead of x and with the best bounds, we can
rewrite it as

sn(A)‖x − y‖2 ≤ ‖Ax − Ay‖2 ≤ s1(A)‖x − y‖2 for all x ∈ R
n .

This means that the matrix A, acting as an operator from R
n to R

m , can only change the
distance between any points by a factor that lies between sn(A) and s1(A). Thus the extreme
singular values control the distortion of the geometry of R

n under the action of A.
The best possible matrices in this sense, which preserve distances exactly, are called

isometries. Let us recall their characterization, which can be proved using elementary linear
algebra.

Exercise 4.1.4 (Isometries)� Let A be an m × n matrix with m ≥ n. Prove that the
following statements are equivalent.

(a) AT A = In .
(b) P := AAT is an orthogonal projection1 in R

m onto a subspace of dimension n.

1 Recall that P is a projection if P2 = P , and P is called orthogonal if the image and kernel of P are orthogonal
subspaces.
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(c) A is an isometry, or isometric embedding of R
n into R

m , which means that

‖Ax‖2 = ‖x‖2 for all x ∈ R
n.

(d) All singular values of A equal 1; equivalently

sn(A) = s1(A) = 1.

Quite often the conditions of Exercise 4.1.4 hold only approximately, in which case we
regard A as an approximate isometry.

Lemma 4.1.5 (Approximate isometries) Let A be an m × n matrix and δ > 0. Suppose
that

‖AT A − In‖ ≤ max(δ, δ2).

Then

(1 − δ)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ)‖x‖2 for all x ∈ R
n. (4.6)

Consequently, all singular values of A lie between 1 − δ and 1 + δ:

1 − δ ≤ sn(A) ≤ s1(A) ≤ 1 + δ. (4.7)

Proof To prove (4.6), we may assume without loss of generality that ‖x‖2 = 1. (Why?)
Then, using the assumption, we get

max(δ, δ2) ≥ ∣∣〈(AT A − In)x, x
〉∣∣ = ∣∣‖Ax‖2

2 − 1
∣∣.

Applying the elementary inequality

max(|z − 1|, |z − 1|2) ≤ |z2 − 1|, z ≥ 0, (4.8)

for z = ‖Ax‖2, we conclude that

|‖Ax‖2 − 1| ≤ δ.

This proves (4.6), which in turn implies (4.7), as we saw at the beginning of this section. �

Exercise 4.1.6 (Approximate isometries)�� Prove the following converse to Lemma 4.1.5:
if (4.7) holds, then

‖AT A − In‖ ≤ 3 max(δ, δ2).

Remark 4.1.7 (Projections vs. isometries) Consider an n × m matrix Q. Then

Q QT = In

if and only if

P := QT Q

is an orthogonal projection in R
m onto a subspace of dimension n. (This can be checked

directly or deduced from Exercise 4.1.4 by taking A = QT.) When this is the case, the
matrix Q itself is often called a projection from R

m onto R
n .
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Note that A is an isometric embedding of R
n into R

m if and only if AT is a projection
from R

m onto R
n . These remarks can be also made for an approximate isometry A; the

transpose AT in this case is an approximate projection.

Exercise 4.1.8 (Isometries and projections from unitary matrices)� Canonical examples
of isometries and projections can be constructed from a fixed unitary matrix U . Check that
any sub-matrix of U obtained by selecting a subset of columns is an isometry and any sub-
matrix obtained by selecting a subset of rows is a projection.

4.2 Nets, Covering Numbers, and Packing Numbers

We are going to develop a simple but powerful method – an ε-net argument – and illustrate
its usefulness for the analysis of random matrices. In this section, we recall the concept of
an ε-net, which you may have met in a course on real analysis, and we relate it to some other
basic notions – covering, packing, entropy, volume, and coding.

Definition 4.2.1 (ε-Net) Let (T, d) be a metric space. Consider a subset K ⊂ T and let
ε > 0. A subset N ⊆ K is called an ε-net of K if every point in K is within a distance ε of
some point of N , i.e.

∀x ∈ K ∃x0 ∈ N : d(x, x0) ≤ ε.

Equivalently, N is an ε-net of K if and only if K can be covered by balls with centers in N
and radii ε; see Figure 4.1(a).

If you ever feel confused by too much generality, it might be helpful to keep in mind an
important example. Let T = R

n with d the Euclidean distance, i.e.,

d(x, y) = ‖x − y‖2, x, y ∈ R
n. (4.9)

In this case, we can cover a subset K ⊂ R
n by round balls, as shown in Figure 4.1a. We have

already seen an example of such a covering in Corollary 0.0.4, where K was a polytope.

Xi

Xi

ε

ε

(a) This covering of a pentagon K by seven

ε-balls shows that N (K,ε) ≤ 7.

(b) This packing of a pentagon K by ten

ε-balls shows that P (K,ε) ≤ 10.

Figure 4.1 Packing and covering.
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Definition 4.2.2 (Covering numbers) The smallest possible cardinality of an ε-net of K is
called the covering number of K and is denoted N (K , d, ε). Equivalently, N (K , d, ε) is
the smallest number of closed balls with centers in K and radii ε whose union covers K .

Remark 4.2.3 (Compactness) An important result in real analysis states that a subset K
of a metric space (T, d) is precompact (i.e., the closure of K is compact) if and only if

N (K , d, ε) <∞ for every ε > 0.

Thus we can think of the magnitude N (K , d, ε) as a quantitative measure of the compact-
ness of K .

Closely related to covering is the notion of packing.

Definition 4.2.4 (Packing numbers) A subset N of a metric space (T, d, ε) is ε-separated
if d(x, y) > ε for all distinct points x, y ∈ N . The largest possible cardinality of an ε-
separated subset of a given set K ⊂ T is called the packing number of K and is denoted
P(K , d, ε).

Exercise 4.2.5 (Packing the balls into K )��

(a) Suppose that T is a normed space. Prove that P(K , d, ε) is the largest number of closed
disjoint balls with centers in K and radii ε/2. See Figure 4.1b for an illustration.

(b) Show by example that the previous statement may be false for a general metric space T .

Lemma 4.2.6 (Nets from separated sets) Let N be a maximal2 ε-separated subset of K .
Then N is an ε-net of K .

Proof Let x ∈ K ; we want to show that there exists x0 ∈ N such that d(x, x0) ≤ ε.
If x ∈ N , the conclusion is trivial on choosing x0 = x . Suppose now that x �∈ N . The
maximality assumption implies that N ∪ {x0} is not ε-separated. But this means precisely
that d(x, x0) ≤ ε for some x0 ∈ N . �

Remark 4.2.7 (Constructing a net) Lemma 4.2.6 leads to the following simple algorithm
for constructing an ε-net of a given set K . Choose a point x1 ∈ K arbitrarily, choose a point
x2 ∈ K which is farther than ε from x1, choose x3 so that it is farther than ε from both x1

and x2, and so on. If K is compact, the algorithm terminates in finite time (why?) and gives
an ε-net of K .

The covering and packing numbers are essentially equivalent:

Lemma 4.2.8 (Equivalence of covering and packing numbers) For any set K ⊂ T and
any ε > 0, we have

P(K , d, 2ε) ≤ N (K , d, ε) ≤ P(K , d, ε).

2 Here by “maximal” we mean that adding any new point to N destroys the separation property.
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Proof The upper bound follows from Lemma 4.2.6. (How?)
To prove the lower bound, choose a 2ε-separated subset P = {xi } in K and an ε-net

N = {y j } of K . By the definition of a net, each point xi belongs a closed ε-ball centered
at some point y j . Moreover, since any closed ε-ball cannot contain a pair of 2ε-separated
points, each ε-ball centered at y j may contain at most one point xi . The pigeonhole principle
then yields |P| ≤ |N |. Since this happens for arbitrary packing number P and covering
number N , the upper bound in the lemma is proved. �

Exercise 4.2.9 (Allowing the centers to be outside K )��� In our definition of the cover-
ing numbers of K , we required that the centers xi of the balls B(xi , ε) that form a covering lie
in K . Relaxing this condition, define the exterior covering number N ext(K , d, ε) similarly
but without requiring that xi ∈ K . Prove that

N ext(K , d, ε) ≤ N (K , d, ε) ≤ N ext(K , d, ε/2).

Exercise 4.2.10 (Monotonicity)��� Give a counterexample to the following mono-
tonicity property:

L ⊂ K implies N (L , d, ε) ≤ N (K , d, ε).

Prove an approximate version of monotonicity:

L ⊂ K implies N (L , d, ε) ≤ N (K , d, ε/2).

4.2.1 Covering Numbers and Volume

Let us now specialize our study of covering numbers to the most important example, where
T = R

n with Euclidean metric

d(x, y) = ‖x − y‖2,

as in (4.9). To ease the notation, we often omit the metric when it is understood from the
context, thus writing

N (K , ε) = N (K , d, ε).

If the covering numbers measure the size of K , how are they related to the most clas-
sical measure of size, the volume of K in R

n? There could not be a full equivalence
between these two quantities, since “flat” sets have zero volume but nonzero covering
numbers.

Still, there is a useful partial equivalence, which is often quite sharp. It is based on the
notion of the Minkowski sum of sets in R

n .

Definition 4.2.11 (Minkowski sum) Let A and B be subsets of R
n . The Minkowski sum

A + B is defined as

A + B := {a + b : a ∈ A, b ∈ B} .

Figure 4.2 shows an example of the Minkowski sum of two sets on the plane.
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A B+ = A+B

Figure 4.2 The Minkowski sum of a square and a circle is a square with rounded
corners.

Proposition 4.2.12 (Covering numbers and volume) Let K be a subset of R
n and ε > 0.

Then

|K |
|εBn

2 |
≤ N (K , ε) ≤ P(K , ε) ≤ |(K + (ε/2)Bn

2 )|
|(ε/2)Bn

2 |
.

Here | · | denotes the volume in R
n, Bn

2 denotes the unit Euclidean ball in R
n;3 so εBn

2 is a
Euclidean ball with radius ε.

Proof The middle inequality follows from Lemma 4.2.8, so all we need to prove are the
left and right bounds.

Lower bound. Let N := N (K , ε). Then K can be covered by N balls with radii ε.
Comparing the volumes, we obtain

|K | ≤ N |εBn
2 |.

Dividing both sides by |εBn
2 | yields the lower bound.

Upper bound. Let N := P(K , ε). Then one can construct N closed disjoint balls
B(xi , ε/2) with centers xi ∈ K and radii ε/2 (see Exercise 4.2.5). While these balls may not
need to fit entirely into K (see Figure 4.1b), they do fit into a slightly inflated set, namely
K + (ε/2)Bn

2 . (Why?) Comparing the volumes, we obtain

N |(ε/2)Bn
2 | ≤ |K + (ε/2)Bn

2 |,
which leads to the upper bound in the proposition. �

An important consequence of the volumetric bound (4.10) is that the covering (and thus
packing) numbers of the Euclidean ball, as well as many other sets, are exponential in the
dimension n. Let us check this.

Corollary 4.2.13 (Covering numbers of the Euclidean ball) The covering numbers of the
unit Euclidean ball Bn

2 satisfy the following for any ε > 0:(1

ε

)n ≤ N (Bn
2 , ε) ≤

(2

ε
+ 1

)n
.

The same upper bound is true for the unit Euclidean sphere Sn−1.

3 Thus Bn
2 = {x ∈ R

n : ‖x‖2 ≤ 1}.
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Proof The lower bound follows immediately from Proposition 4.2.12, since the volume in
R

n scales as follows:

|εBn
2 | = εn |Bn

2 |.
The upper bound follows from Proposition 4.2.12, too:

N (Bn
2 , ε) ≤

|(1 + ε/2)Bn
2 |

|(ε/2)Bn
2 |

= (1 + ε/2)n

(ε/2)n
=
(2

ε
+ 1

)n
.

The upper bound for the sphere can be proved in the same way. �

To simplify the bound, note that in the nontrivial range ε ∈ (0, 1] we have(1

ε

)n ≤ N (Bn
2 , ε) ≤

(3

ε

)n
. (4.10)

In the trivial range, where ε > 1, the unit ball can be covered by just one ε-ball, so
N (Bn

2 , ε) = 1.
The volumetric argument we just gave works well in many other situations. Let us give

an important example.

Definition 4.2.14 (Hamming cube) The Hamming cube {0, 1}n consists of all binary
strings of length n. The Hamming distance dH (x, y) between two binary strings is defined
as the number of bits where x and y disagree, i.e.

dH (x, y) := #
{
i : x(i) �= y(i)

}
, x, y ∈ {0, 1}n.

Endowed with this metric, the Hamming cube is a metric space ({0, 1}n, dH ), which is
sometimes called the Hamming space.

Exercise 4.2.15� Check that dH is indeed a metric.

Exercise 4.2.16 (Covering and packing numbers of the Hamming cube)��� Let K =
{0, 1}n . Prove that, for every integer m ∈ [0, n], we have

2n∑m
k=0

(n
k

) ≤ N (K , dH ,m) ≤ P(K , dH ,m) ≤ 2n∑ m/2"
k=0

(n
k

) �

To make these bounds easier to compute, one can use the bounds for binomial sums from
Exercise 0.0.5.

4.3 Application: Error Correcting Codes

Covering and packing arguments frequently appear in applications to coding theory. Here
we give two examples that relate the covering and packing numbers to complexity and error
correction.
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4.3.1 Metric Entropy and Complexity

Intuitively, the covering and packing numbers measure the complexity of a set K . The loga-
rithm of the covering number log2 N (K , ε) is often called the metric entropy of K . As we
will see now, the metric entropy is equivalent to the number of bits needed to encode the
points in K .

Proposition 4.3.1 (Metric entropy and coding) Let (T, d) be a metric space, and consider
a subset K ⊂ T . Let C(K , d, ε) denote the smallest number of bits sufficient to specify every
point x ∈ K with accuracy ε in the metric d. Then

log2 N (K , d, ε) ≤ C(K , d, ε) ≤ log2 N (K , d, ε/2).

Proof Lower bound. Assume C(K , d, ε) ≤ N . This means that there exists a transfor-
mation (an “encoding”) of the points x ∈ K into bit string of length N which specifies
every point with accuracy ε. Such a transformation induces a partition of K into at most 2N

subsets, which are obtained by grouping the points represented by the same bit string; see
Figure 4.3 for an illustration. Each subset must have diameter4 at most ε, and thus it can be
covered by a ball centered in K and with radius ε. (Why?) Thus K can be covered by at
most 2N balls with radii ε. This implies that N (K , d, ε) ≤ 2N . Taking logarithms on both
sides, we obtain the lower bound in the proposition.

Upper bound. Assume that log2 N (K , d, ε/2) ≤ N ; this means that there exists an (ε/2)-
net N of K with cardinality |N | ≤ 2N . To every point x ∈ K , let us assign a point
x0 ∈ N that is closest to x . Since there are at most 2N such points, N bits are sufficient
to specify the point x0. It remains to note that the encoding x �→ x0 represents points in K
with accuracy ε. Indeed, if both x and y are encoded by the same x0 then, by the triangle
inequality,

d(x, y) ≤ d(x, x0)+ d(y, y0) ≤ ε

2
+ ε

2
= ε.

This shows that C(K , d, ε) ≤ N . This completes the proof. �
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011 100

110

001101
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Figure 4.3 Encoding points in K as N -bit strings induces a partition of K into at
most 2N subsets.

4 If (T, d) is a metric space and K ⊂ T , the diameter of the set K is defined as
diam(K ) := sup{d(x, y) : x, y ∈ K }.
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4.3.2 Error Correcting Codes

Suppose Alice wants to send Bob a message that consists of k letters, such as

x := “fill the glass”.

Suppose further that an adversary may corrupt Alice’s message by changing at most r letters
in it. For example, Bob may receive

y := “bill the class”

if r = 2. Is there a way to protect the communication channel between Alice and Bob, a
method that can correct adversarial errors?

A common approach relies on using redundancy. Alice would encode her k-letter message
into a longer, n-letter, message for some n > k, hoping that the extra information would help
Bob get her message right despite any r errors.

Example 4.3.2 (Repetition code) Alice may just repeat her message several times, thus
sending to Bob

E(x) := “fill the glass fill the glass fill the glass fill the glass fill the glass”.

Bill could then use the majority decoding: to determine the value of any particular letter,
he would look at the received copies of it in E(x) and choose the value that occurs most
frequently. If the original message x is repeated 2r + 1 times, then the majority decoding
recovers x exactly even when r letters of E(x) are corrupted. (Why?)

The problem with majority decoding is that it is very inefficient: it uses

n = (2r + 1)k (4.11)

letters to encode a k-letter message. As we will see shortly, there exist error correcting codes
with much smaller n values.

But first let us formalize the notion of an error correcting code – an encoding of k-letter
strings into n-letter strings that can correct r errors. For convenience, instead of using the
English alphabet we shall work with the binary alphabet consisting of two letters 0 and 1.

Definition 4.3.3 (Error correcting code) Fix integers k, n, and r . The two maps

E : {0, 1}k → {0, 1}n and D : {0, 1}n → {0, 1}k

are called encoding and decoding maps and can correct r errors if we have

D(y) = x

for every word x ∈ {0, 1}n and every string y ∈ {0, 1}k that differs from E(x) in at most r
bits. The encoding map E is called an error correcting code; its image E({0, 1}k) is called a
codebook (and very often the image itself is called the error correcting code); the elements
E(x) of the image are called codewords.

We now relate error correction to the packing numbers of the Hamming cube
({0, 1}n, dH ), where dH is the Hamming metric introduced in Definition 4.2.14.
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Lemma 4.3.4 (Error correction and packing) Assume that positive integers k, n, and r are
such that

log2 P({0, 1}n, dH , 2r) ≥ k.

Then there exists an error correcting code that encodes k-bit strings into n-bit strings and
can correct r errors.

Proof By assumption, there exists a subset N ⊂ {0, 1}n with cardinality |N | = 2k and
such that the closed balls centered at the points in N and with radii r are disjoint. (Why?)
We then define the encoding and decoding maps as follows: choose E : {0, 1}k → N
to be an arbitrary one-to-one map and D : {0, 1}n → {0, 1}k to be a nearest-neighbor
decoder.5

Now, if y ∈ {0, 1}n differs from E(x) in at most r bits, y lies in the closed ball centered
at E(x) and with radius r . Since such balls are disjoint by construction, y must be strictly
closer to E(x) than to any other codeword E(x ′) in N . Thus the nearest-neighbor decoding
decodes y correctly, i.e. D(y) = x . This completes the proof. �

Let us substitute into Lemma 4.3.4 the bounds on the packing numbers of the Hamming
cube from Exercise 4.2.16.

Theorem 4.3.5 (Guarantees for an error correcting code) Assume that positive integers k,
n, and r are such that

n ≥ k + 2r log2

(en

2r

)
.

Then there exists an error correcting code that encodes k-bit strings into n-bit strings and
can correct r errors.

Proof Passing from packing to covering numbers, using Lemma 4.2.8, and then using
the bounds on the covering numbers from Exercise 4.2.16 (and simplifying using Exer-
cise 0.0.5), we get

P({0, 1}n, dH , 2r) ≥ N ({0, 1}n, dH , 2r) ≥ 2n
(2r

en

)2r
.

By assumption, this quantity is further bounded below by 2k . An application of Lemma 4.3.4
completes the proof. �

Informally, Theorem 4.3.5 shows that we can correct r errors if we make the information
overhead n − k almost linear in r :

n − k ∼ r log
(n

r

)
.

This overhead is much smaller than for the repetition code (4.11). For example, to correct
two errors in Alice’s 12-letter message “fill the glass”, encoding it into a 30-letter codeword
would suffice.

5 Formally, we set D(y) = x0, where E(x0) is the closest codeword in N to y.
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Remark 4.3.6 (Rate) The guarantees of a given error correcting code are traditionally
expressed in terms of the tradeoff between the rate and the fraction of errors, defined
respectively as

R := k

n
and δ := r

n
.

Theorem 4.3.5 states that there exist error correcting codes with rate as high as

R ≥ 1 − f (2δ)

where f (t) = t log2(e/t).

Exercise 4.3.7 (Optimality)���

(a) Prove the converse to the statement of Lemma 4.3.4.
(b) Deduce a converse to Theorem 4.3.5. Conclude that for any error correcting code that

encodes k-bit strings into n-bit strings and can correct r errors, the rate must be

R ≤ 1 − f (δ)

where f (t) = t log2(e/t) as before.

4.4 Upper Bounds on Random Sub-Gaussian Matrices

We are now ready to begin to study the non-asymptotic theory of random matrices. Random
matrix theory is concerned with m × n matrices A with random entries. The central ques-
tions of this theory are about the distributions of the singular values, eigenvalues (if A is
symmetric), and eigenvectors of A.

Theorem 4.4.5 will give a first bound on the operator norm (equivalently, on the largest
singular value) of a random matrix with independent sub-gaussian entries. It is neither the
sharpest nor the most general result; it will be sharpened and extended in Sections 4.6 and
6.5.

But before we do this, let us pause to learn how ε-nets can help us compute the operator
norm of a matrix.

4.4.1 Computing the Norm on a Net

The notion of ε-nets can help us to simplify various problems involving high-dimensional
sets. One such problem is the computation of the operator norm of an m × n matrix A. The
operator norm was defined in Section 4.1.2 as

‖A‖ = max
x∈Sn−1

‖Ax‖2.

Thus, to evaluate ‖A‖ one needs to bound ‖Ax‖2, uniformly over the sphere Sn−1. We will
show that, instead of the entire sphere, it is enough to gain control just over an ε-net of the
sphere (in the Euclidean metric).

Lemma 4.4.1 (Computing the operator norm on a net) Let A be an m × n matrix and
ε ∈ [0, 1). Then, for any ε-net N of the sphere Sn−1, we have

sup
x∈N

‖Ax‖2 ≤ ‖A‖ ≤ 1

1 − ε
sup
x∈N

‖Ax‖2
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Proof The lower bound in the conclusion is trivial since N ⊂ Sn−1. To prove the upper
bound, fix a vector x ∈ Sn−1 for which

‖A‖ = ‖Ax‖2

and choose an x0 ∈ N that approximates x , so that

‖x − x0‖2 ≤ ε.

By the definition of the operator norm, this implies that

‖Ax − Ax0‖2 = ‖A(x − x0)‖2 ≤ ‖A‖‖x − x0‖2 ≤ ε‖A‖.
Using the triangle inequality, we find that

‖Ax0‖2 ≥ ‖Ax‖2 − ‖Ax − Ax0‖2 ≥ ‖A‖ − ε‖A‖ = (1 − ε)‖A‖.
Dividing both sides of this inequality by 1 − ε, we complete the proof. �

Exercise 4.4.2� Let x ∈ R
n and let N be an ε-net of the sphere Sn−1. Show that

sup
y∈N

〈x, y〉 ≤ ‖x‖2 ≤ 1

1 − ε
sup
y∈N

〈x, y〉 .

Recall from Section 4.1.2 that the operator norm of A can be computed by maximizing a
quadratic form:

‖A‖ = max
x∈Sn−1, y∈Sm−1

〈Ax, y〉 .

Moreover, for symmetric matrices one can take x = y in this formula. The following exer-
cise shows that instead of controlling the quadratic form on the spheres, it suffices to have
control just over the ε-nets.

Exercise 4.4.3 (Quadratic form on a net)�� Let A be an m × n matrix and ε ∈ [0, 1/2).

(a) Show that, for any ε-net N of the sphere Sn−1 and any ε-net M of the sphere Sm−1, we
have

sup
x∈N , y∈M

〈Ax, y〉 ≤ ‖A‖ ≤ 1

1 − 2ε
sup

x∈N , y∈M
〈Ax, y〉 .

(b) Moreover, if m = n and A is symmetric, show that

sup
x∈N

| 〈Ax, x〉 | ≤ ‖A‖ ≤ 1

1 − 2ε
sup
x∈N

| 〈Ax, x〉 |. �

Exercise 4.4.4 (Deviation of the norm on a net)��� Let A be an m × n matrix, μ ∈ R

and ε ∈ [0, 1/2). Show that, for any ε-net N of the sphere Sn−1, we have

sup
x∈Sn−1

|‖Ax‖2 − μ| ≤ C

1 − 2ε
sup
x∈N

|‖Ax‖2 − μ| . �
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4.4.2 The Norms of Sub-Gaussian Random Matrices

We are ready for the first result on random matrices. The following theorem states that the
norm of an m × n random matrix A with independent sub-gaussian entries satisfies

‖A‖ �
√

m +√
n

with high probability.

Theorem 4.4.5 (Norm of matrices with sub-gaussian entries) Let A be an m × n random
matrix whose entries Ai j are independent mean-zero sub-gaussian random variables. Then,
for any t > 0 we have6

‖A‖ ≤ C K
(√

m +√
n + t

)
with probability at least 1 − 2 exp(−t2). Here K = maxi, j ‖Ai j‖ψ2 .

Proof This proof is an example of an ε-net argument. We need to bound 〈Ax, y〉 for all
vectors x and y on the unit sphere. To this end, we will discretize the sphere using a net (this
is the approximation step), establish a tight control of 〈Ax, y〉 for fixed vectors x and y from
the net (the concentration step), and finish by taking a union bound over all x and y in the
net.

Step 1: Approximation. Choose ε = 1/4. Using Corollary 4.2.13, we can find an ε-net N
of the sphere Sn−1 and ε-net M of the sphere Sm−1 with cardinalities

|N | ≤ 9n and |M| ≤ 9m . (4.12)

By Exercise 4.4.3, the operator norm of A can be bounded using these nets as follows:

‖A‖ ≤ 2 max
x∈N , y∈M

〈Ax, y〉 . (4.13)

Step 2: Concentration. Fix x ∈ N and y ∈ M. Then the quadratic form

〈Ax, y〉 =
n∑

i=1

m∑
j=1

Ai j xi y j

is a sum of independent sub-gaussian random variables. Proposition 2.6.1 states that the sum
is sub-gaussian and

‖〈Ax, y〉‖2
ψ2

≤ C
n∑

i=1

m∑
j=1

‖Ai j xi y j‖2
ψ2

≤ C K 2
n∑

i=1

m∑
j=1

x2
i y2

j

= C K 2
( n∑

i=1

x2
i

)( m∑
j=1

y2
i

)
= C K 2.

Recalling (2.14), we can restate this as the tail bound

P
{〈Ax, y〉 ≥ u

} ≤ 2 exp(−cu2/K 2), u ≥ 0. (4.14)

6 In results like this, C and c will always denote positive absolute constants.
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Step 3: Union bound. Next, we unfix x and y using a union bound. Suppose that the
event maxx∈N , y∈M 〈Ax, y〉 ≥ u occurs. Then there exist x ∈ N and y ∈ M such that
〈Ax, y〉 ≥ u. Thus the union bound yields

P

{
max

x∈N , y∈M
〈Ax, y〉 ≥ u

}
≤

∑
x∈N , y∈M

P
{〈Ax, y〉 ≥ u

}
.

Using the tail bound (4.14) and the estimate (4.12) on the sizes of N and M, we bound the
probability above by

9n+m 2 exp(−cu2/K 2). (4.15)

Choose

u = C K (
√

n +√
m + t). (4.16)

Then u2 ≥ C2K 2(n+m+t2) and, if the constant C is chosen sufficiently large, the exponent
in (4.15) will also be sufficiently large, say cu2/K 2 ≥ 3(n + m)+ t2. Thus

P

{
max

x∈N , y∈M
〈Ax, y〉 ≥ u

}
≤ 9n+m 2 exp

(
−3(n + m)− t2

)
≤ 2 exp(−t2).

Finally, combining this with (4.13), we conclude that

P
{‖A‖ ≥ 2u

} ≤ 2 exp(−t2).

Recalling our choice of u in (4.16), we complete the proof. �

Exercise 4.4.6 (Expected norm)� Deduce from Theorem 4.4.5 that

E ‖A‖ ≤ C K
(√

m +√
n
)
.

Exercise 4.4.7 (Optimality)�� Suppose that in Theorem 4.4.5 the entries Ai j have unit
variances. Prove that

E ‖A‖ ≥ C
(√

m +√
n
)
. �

Theorem 4.4.5 can be easily extended for symmetric matrices, and the bound for them is

‖A‖ �
√

n

with high probability.

Corollary 4.4.8 (Norm of symmetric matrices with sub-gaussian entries) Let A be an n×n
symmetric random matrix whose entries Ai j on and above the diagonal are independent
mean-zero sub-gaussian random variables. Then, for any t > 0, we have

‖A‖ ≤ C K
(√

n + t
)

with probability at least 1 − 4 exp(−t2). Here K = maxi, j ‖Ai j‖ψ2 .
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Proof Decompose A into an upper-triangular part A+ and a lower-triangular part A−. It
does not matter where the diagonal goes; let us include it into A+ to be specific. Then

A = A+ + A−.

Theorem 4.4.5 applies for each part, A+ or A−, separately. By a union bound, we have
simultaneously

‖A+‖ ≤ C K
(√

n + t
)

and ‖A−‖ ≤ C K
(√

n + t
)

with probability at least 1 − 4 exp(−t2). Since by the triangle inequality ‖A‖ ≤ ‖A+‖ +
‖A−‖, the proof is complete. �

4.5 Application: Community Detection in Networks

The results of random matrix theory are useful in many applications. Here we give an
illustration in the analysis of networks.

Real-world networks tend to have communities – clusters of tightly connected vertices.
Finding the communities accurately and efficiently is one of the main problems in network
analysis, known as the community detection problem.

4.5.1 Stochastic Block Model

We will try to solve the community detection problem for a basic probabilistic model, that
of a network with two communities. It is a simple extension of the Erdös–Rényi model of
random graphs, which we described in Section 2.4.

Definition 4.5.1 (Stochastic block model) Divide n vertices into two sets (“communities”)
of sizes n/2 each. Construct a random graph G by connecting every pair of vertices inde-
pendently with probability p if they belong to the same community and q if they belong to
different communities. This distribution on graphs is called the stochastic block model and
is denoted G(n, p, q).7

In the partial case where p = q we obtain the Erdös–Rényi model G(n, p). But we
assume that p > q here. In this case, edges are more likely to occur within than across
communities. This gives the network a community structure; see Figure 4.4.

4.5.2 Expected Adjacency Matrix

It is convenient to identify a graph G with its adjacency matrix A, which we introduced in
Definition 3.6.2. For a random graph G ∼ G(n, p, q), the adjacency matrix A is a random
matrix, and we will examine A using the tools developed earlier in this chapter.

It is enlightening to split A into deterministic and random parts,

A = D + R,

7 The term stochastic block model can also refer to a more general model of random graphs with multiple
communities of variable sizes.
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Figure 4.4 A random graph generated according to the stochastic block model
G(n, p, q) with n = 200, p = 1/20, and q = 1/200.

where D is the expectation of A. We may think of D as an informative part (the “signal”)
and R as “noise”.

To see why D is informative, let us compute its eigenstructure. The entries Ai j have
a Bernoulli distribution; they are either Ber(p) or Ber(q) depending on the community
membership of vertices i and j . Thus the entries of D are either p or q, depending on the
membership. For illustration, if we group the vertices that belong to the same community
together, then for n = 4 the matrix D will look like this:

D = E A =

⎡⎢⎢⎣
p p q q
p p q q
q q p p
q q p p

⎤⎥⎥⎦ .

Exercise 4.5.2�� Check that the matrix D has rank 2 and that the nonzero eigenvalues
λi and the corresponding eigenvectors ui are

λ1 =
( p + q

2

)
n, u1 =

⎡⎢⎢⎣
1
1
1
1

⎤⎥⎥⎦ ; λ2 =
( p − q

2

)
n, u2 =

⎡⎢⎢⎣
1
1

−1
−1

⎤⎥⎥⎦ . (4.17)

The important object here is the second eigenvector, u2. It contains all the information
about the community structure. If we knew u2, we could identify the communities precisely
from the sizes of the coefficients of u2.

But we do not know D = E A and so we do not have access to u2. Instead, we know
A = D + R, a noisy version of D. The level (magnitude) of the signal D is

‖D‖ = λ1 ∼ n,
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while the level of the noise R can be estimated using Corollary 4.4.8:

‖R‖ ≤ C
√

n with probability at least 1 − 4e−n. (4.18)

Thus, for large n, the noise R is much smaller than the signal D. In other words, A is close
to D, and thus we should be able to use A instead of D to extract community information.
This can be justified using the classical perturbation theory for matrices.

4.5.3 Perturbation Theory

Perturbation theory describes how the eigenvalues and eigenvectors of a matrix change under
perturbations of the matrix. For the eigenvalues, we have

Theorem 4.5.3 (Weyl’s inequality) For any symmetric matrices S and T with the same
dimensions, we have

max
i

|λi (S)− λi (T )| ≤ ‖S − T ‖.

Thus, the operator norm determines the stability of the spectrum.

Exercise 4.5.4�� Deduce Weyl’s inequality from the Courant–Fisher min–max charac-
terization of eigenvalues (4.2).

A similar result holds for eigenvectors, but we need to be careful to track the same eigen-
vector before and after the perturbation. If the eigenvalues λi (S) and λi+1(S) are too close to
each other, the perturbation can swap their order and force us to compare the wrong eigen-
vectors. To prevent this from happening, we will assume that the eigenvalues of S are well
separated.

Theorem 4.5.5 (Davis–Kahan) Let S and T be symmetric matrices with the same dimen-
sions. Fix i and assume that the i th largest eigenvalue of S is well separated from the rest of
the spectrum:

min
j : j �=i

|λi (S)− λ j (S)| = δ > 0.

Then the angle between the eigenvectors of S and T corresponding to the i th largest
eigenvalues (as a number between 0 and π/2) satisfies

sin � (vi (S), vi (T )) ≤ 2‖S − T ‖
δ

.

We do not prove the Davis–Kahan theorem here.
The conclusion of the Davis–Kahan theorem implies that the unit eigenvectors vi (S) and

vi (T ) are close to each other up to a sign, namely

∃θ ∈ {−1, 1} : ‖vi (S)− θvi (T )‖2 ≤ 23/2‖S − T ‖
δ

. (4.19)

(Check!)
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4.5.4 Spectral Clustering

Returning to the community detection problem, let us apply the Davis–Kahan theorem for
S = D and T = A = D+ R and for the second largest eigenvalue. We need to check that λ2

is well separated from the rest of the spectrum of D, that is, from 0 and λ1. The distance is

δ = min(λ2, λ1 − λ2) = min

(
p − q

2
, q

)
n =: μn.

Recalling the bound (4.18) on R = T − S and applying (4.19), we can bound the distance
between the unit eigenvectors of D and A. It follows that there exists a sign θ ∈ {−1, 1}
such that

‖v2(D)− θv2(A)‖2 ≤ C
√

n

μn
= C

μ
√

n

with probability at least 1 − 4e−n . We have already computed the eigenvectors ui (D) of D
in (4.17), but there they had norm

√
n. So, multiplying both sides by

√
n, we obtain in this

normalization that

‖u2(D)− θu2(A)‖2 ≤ C

μ
.

It follows that the signs of most coefficients of θv2(A) and v2(D) must agree. Indeed, we
know that

n∑
j=1

|u2(D) j − θu2(A) j |2 ≤ C

μ2
. (4.20)

and we also know from (4.17) that the coefficients u2(D) j are all ±1. So, every coefficient
j for which the signs of θv2(A) j and v2(D) j disagree contributes at least 1 to the sum in
(4.20). Thus the number of disagreeing signs must be bounded by

C

μ2
.

Summarizing, we can use the vector v2(A) to accurately estimate the vector v2 = v2(D)
in (4.17) whose signs identify the two communities. This method for community detection
is usually called spectral clustering. Let us explicitly state this method and the guarantees
that we have just obtained.

Spectral Clustering Algorithm

Input: graph G
Output: a partition of the vertices of G into two communities
1: Compute the adjacency matrix A of the graph.
2: Compute the eigenvector v2(A) corresponding to the second largest eigenvalue of A.
3: Partition the vertices into two communities on the basis of the signs of the coefficients

of v2(A). (To be specific, if v2(A) j > 0 then put vertex j into the first community,
otherwise into the second.)
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Theorem 4.5.6 (Spectral clustering for the stochastic block model) Let G ∼ G(n, p, q)
with p > q, and min(q, p −q) = μ > 0. Then, with probability at least 1− 4e−n, the spec-
tral clustering algorithm identifies the communities of G correctly up to C/μ2 misclassified
vertices.

Summarizing, the spectral clustering algorithm correctly classifies all except a constant
number of vertices, provided that the random graph is dense enough (q ≥ const) and that
the probabilities of within- and across-community edges are well separated (p−q ≥ const).

4.6 Two-Sided Bounds on Sub-Gaussian Matrices

Let us return to Theorem 4.4.5, which gives an upper bound on the spectrum of an m × n
matrix A with independent sub-gaussian entries. It essentially states that

s1(A) ≤ C(
√

m +√
n)

with high probability. We will now improve this result in two important ways.
First, we are going to prove sharper and two-sided bounds on the entire spectrum of A:

√
m − C

√
n ≤ si (A) ≤ √

m + C
√

n.

In other words, we will show that a tall random matrix (with m � n) is an approximate
isometry in the sense of Section 4.1.5.

Second, the independence of entries is going to be relaxed to just the independence of
rows. Thus we assume that the rows of A are sub-gaussian random vectors. (We studied such
vectors in Section 3.4.) This relaxation of independence is important in some applications
to data science, where the rows of A could be samples from a high-dimensional distribution.
The samples are usually independent, and so are the rows of A. But there is no reason to
assume independence of the columns of A, since the coordinates of the distribution (the
“parameters”) are usually not independent.

Theorem 4.6.1 (Two-sided bound on sub-gaussian matrices) Let A be an m × n matrix
whose rows Ai are independent mean-zero sub-gaussian isotropic random vectors in R

n.
Then, for any t ≥ 0 we have

√
m − C K 2(

√
n + t) ≤ sn(A) ≤ s1(A) ≤ √

m + C K 2(
√

n + t), (4.21)

with probability at least 1 − 2 exp(−t2). Here K = maxi ‖Ai‖ψ2 .

We will prove a slightly stronger conclusion than (4.21), namely that∥∥∥ 1

m
AT A − In

∥∥∥ ≤ K 2 max(δ, δ2) where δ = C
(√ n

m
+ t√

m

)
. (4.22)

Using Lemma 4.1.5, one can quickly check that (4.22) indeed implies (4.21). (Do this!)

Proof We will prove (4.22) using an ε-net argument. This will be similar to the proof of
Theorem 4.4.5, but we now use Bernstein’s concentration inequality instead of Hoeffding’s.
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Step 1: Approximation. Using Corollary 4.2.13, we can find a 1/4-net N of the unit
sphere Sn−1 with cardinality

|N | ≤ 9n.

Using Lemma 4.4.1, we can evaluate the operator norm in (4.22) on N :∥∥∥ 1

m
AT A − In

∥∥∥ ≤ 2 max
x∈N

∣∣∣〈( 1

m
AT A − In

)
x
〉
x
∣∣∣ = 2 max

x∈N

∣∣∣ 1

m
‖Ax‖2

2 − 1
∣∣∣.

To complete the proof of (4.22) it suffices to show that, with the required probability,

max
x∈N

∣∣∣ 1

m
‖Ax‖2

2 − 1
∣∣∣ ≤ ε

2
where ε := K 2 max(δ, δ2).

Step 2: Concentration. Fix x ∈ Sn−1 and express ‖Ax‖2
2 as a sum of independent random

variables:

‖Ax‖2
2 =

m∑
i=1

〈Ai , x〉2 =:
m∑

i=1

X2
i (4.23)

where the Ai denote the rows of A. By assumption, the Ai are independent, isotropic, and
sub-gaussian random vectors with ‖Ai‖ψ2 ≤ K . Thus the Xi = 〈Ai , x〉 are independent
sub-gaussian random variables with E X2

i = 1 and ‖Xi‖ψ2 ≤ K . Therefore the X2
i − 1 are

independent, mean-zero, and sub-exponential random variables, with

‖X2
i − 1‖ψ1 ≤ C K 2.

(Check this; we did a similar computation in the proof of Theorem 3.1.1.) Thus we can use
Bernstein’s inequality (Corollary 2.8.3) and obtain

P

{∣∣∣ 1

m
‖Ax‖2

2 − 1
∣∣∣ ≥ ε

2

}
= P

{∣∣∣∣ 1

m

m∑
i=1

X2
i − 1

∣∣∣∣ ≥ ε

2

}

≤ 2 exp
(
− c1 min

( ε2

K 4
,
ε

K 2

)
m
)

= 2 exp
(− c1δ

2m
)

(since
ε

K 2
= max(δ, δ2))

≤ 2 exp
(− c1C2(n + t2)

)
.

The last bound follows from the definition of δ in (4.22) and using the inequality (a + b)2 ≥
a2 + b2 for a, b ≥ 0.

Step 3: Union bound. Now we can unfix x ∈ N using a union bound. Recalling that N
has cardinality bounded by 9n , we obtain

P

{
max
x∈N

∣∣ 1

m
‖Ax‖2

2 − 1
∣∣ ≥ ε

2

}
≤ 9n 2 exp

(− c1C2(n + t2)
) ≤ 2 exp(−t2),

if we choose the absolute constant C in (4.22) large enough. As we noted in step 1, this
completes the proof of the theorem. �
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Exercise 4.6.2�� Deduce from (4.22) that

E

∥∥∥ 1

m
AT A − In

∥∥∥ ≤ C K 2
(√ n

m
+ n

m

)
. �

Exercise 4.6.3�� Deduce from Theorem 4.6.1 the following bounds on the expectation:
√

m − C K 2√n ≤ E sn(A) ≤ E s1(A) ≤ √
m + C K 2√n.

Exercise 4.6.4��� Give a simpler proof of Theorem 4.6.1, using Theorem 3.1.1 to
obtain a concentration bound for ‖Ax‖2 and Exercise 4.4.4 to reduce to a union bound
over a net.

4.7 Application: Covariance Estimation and Clustering

Suppose that we are analyzing some high-dimensional data which are represented as points
X1, . . . , Xm sampled from an unknown distribution in R

n . One of the most basic data
exploration tools is principal component analysis (PCA), which we discussed briefly in
Section 3.2.1.

Since we do not have access to the full distribution but only to the finite sample
{X1, . . . , Xm}, we can only expect to compute the covariance matrix of the underlying dis-
tribution approximately. If we can do so, the Davis–Kahan theorem 4.5.5 would allow us to
estimate the principal components of the underlying distribution, which are the eigenvectors
of the covariance matrix.

So, how can we estimate the covariance matrix from the data? Let X denote the random
vector drawn from the (unknown) distribution. Assume for simplicity that X has zero mean,
and let us denote its covariance matrix by

� = E X XT.

(Actually, our analysis will not require a zero mean, in which case � is simply the second
moment matrix of X , as we explained in Section 3.2.)

To estimate � we can use the sample covariance matrix �m , which is computed from the
sample X1, . . . , Xm as follows:

�m = 1

m

m∑
i=1

Xi XT
i .

In other words, to compute � we replace the expectation over the entire distribution (the
“population expectation”) by the average over the sample (the “sample expectation”).

Since Xi and X are identically distributed, our estimate is unbiased, that is,

E�m = �.

Then the law of large numbers (Theorem 1.3.1) applied to each entry of � yields

�m → � almost surely
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as the sample size m increases to infinity. This leads to the quantitative question: how large
must the sample size m be to guarantee that

�m ≈ �

with high probability? For dimensional reasons, we need at least m � n sample points.
(Why?) And we now show that m ∼ n sample points suffice.

Theorem 4.7.1 (Covariance estimation) Let X be a sub-gaussian random vector in R
n.

More precisely, assume that there exists K ≥ 1 such that 8

‖ 〈X, x〉 ‖ψ2 ≤ K‖ 〈X, x〉 ‖L2 for any x ∈ R
n. (4.24)

Then, for every positive integer m, we have

E ‖�m −�‖ ≤ C K 2
(√ n

m
+ n

m

)
‖�‖.

Proof Let us first bring the random vectors X, X1, . . . , Xm to the isotropic position. There
exist independent isotropic random vectors Z , Z1, . . . , Zm such that

X = �1/2 Z and Xi = �1/2 Zi .

(We checked this in Exercise 3.2.2.) The sub-gaussian assumption (4.24) then implies that

‖Z‖ψ2 ≤ K and ‖Zi‖ψ2 ≤ K .

(Check!) Then

‖�m −�‖ = ‖�1/2 Rm�
1/2‖ ≤ ‖Rm‖ ‖�‖ where Rm := 1

m

m∑
i=1

Zi ZT
i − In. (4.25)

Consider the m × n random matrix A whose rows are ZT
i . Then

1

m
AT A − In = 1

m

m∑
i=1

Zi ZT
i − In = Rm .

We can apply Theorem 4.6.1 for A and get

E ‖Rm‖ ≤ C K 2
(√ n

m
+ n

m

)
.

(See Exercise 4.6.2.) Substituting this into (4.25), we complete the proof. �

Remark 4.7.2 (Sample complexity) Theorem 4.7.1 implies that for any ε ∈ (0, 1), we are
guaranteed to have covariance estimation with a good relative error,

E ‖�m −�‖ ≤ ε‖�‖,

8 Here we use the notation for the L2 norm of random variables from Section 1.1, namely
‖ 〈X, x〉 ‖2

L2 = E 〈X, x〉2 = 〈�x, x〉.
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if we take a sample of size

m ∼ ε−2n.

In other words, the covariance matrix can be estimated accurately by the sample covariance
matrix if the sample size m is proportional to the dimension n.

Exercise 4.7.3 (Tail bound)� Our argument also implies the following high-probability
guarantee. Check that for any u ≥ 0, we have

‖�m −�‖ ≤ C K 2
(√n + u

m
+ n + u

m

)
‖�‖

with probability at least 1 − 2e−u .

4.7.1 Application: Clustering of Point Sets

We are going to illustrate Theorem 4.7.1 with an application to clustering. As in Section 4.5,
we try to identify clusters in the data. But the nature of the data will be different – instead
of networks, we will now be working with point sets in R

n . The general goal is to partition
a given set of points into few clusters. What exactly constitutes a cluster is not well defined
in data science. But common sense suggests that the points in the same cluster should tend
to be closer to each other than the points taken from different clusters.

Just as we did for networks, we will design a basic probabilistic model of point sets in R
n

with two communities and study the clustering problem for that model.

Definition 4.7.4 (Gaussian mixture model) Generate m random points in R
n as follows.

Flip a fair coin; if we get heads, draw a point from N (μ, In) and if we get tails, from
N (−μ, In). This distribution of points is called the Gaussian mixture model with means
μ and −μ.

Equivalently, we may consider a random vector

X = θμ+ g

where θ is a symmetric Bernoulli random variable, g ∈ N (0, In), and θ and g are inde-
pendent. Draw a sample X1, . . . , Xm of independent random vectors that are distributed
identically to X . Then the sample will be distributed according to the Gaussian mixture
model; see Figure 4.5 for an illustration.

Suppose we are given a sample of m points drawn according to the Gaussian mixture
model. Our goal is to identify which points belong to which cluster. To this end, we can use a
variant of the spectral clustering algorithm that we introduced for networks in Section 3.2.1.

To see why a spectral method has a chance of working here, note that the distribution of
X is not isotropic but rather stretched in the direction of μ. (This is the horizontal direction
in Figure 4.5.) Thus, we can approximately compute μ by computing the first principal
component of the data. Next, we can project the data points onto the line spanned by μ, and
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Figure 4.5 A simulation of points generated according to the Gaussian mixture
model, which has two clusters with different means.

thus classify them – by just looking at on which side of the origin the projections lie. This
leads to the following algorithm.

Spectral Clustering Algorithm

Input: points X1, . . . , Xm in R
n

Output: a partition of the points into two clusters
1: Compute the sample covariance matrix �m = m−1∑m

i=1 Xi XT
i .

2: Compute the eigenvector v = v1(�m) corresponding to the largest eigenvalue of �m .
3: Partition the vertices into two communities on the basis of the signs of the inner product

of v with the data points. (To be specific, if 〈v, Xi 〉 > 0 put point Xi into the first
community, otherwise in the second.)

Theorem 4.7.5 (Guarantees of spectral clustering of the Gaussian mixture model) Let
X1, . . . , Xm be points in R

n drawn from the Gaussian mixture model as above, i.e. there
are two communities with means μ and −μ.

Let ε > 0 be such that ‖μ‖2 ≥ C
√

log(1/ε). Suppose the sample size satisfies

m ≥
(

n

‖μ‖2

)c

where c > 0 is an appropriate absolute constant.
Then, with probability at least 1−4e−n, the above spectral clustering algorithm identifies

the communities correctly up to εm misclassified vertices.

Exercise 4.7.6 (Spectral clustering of the Gaussian mixture model)��� Prove The-
orem 4.7.5 for the spectral clustering algorithm applied to the Gaussian mixture model.
Proceed as follows.

(a) Compute the covariance matrix � of X ; note that the eigenvector corresponding to the
largest eigenvalue is parallel to μ.

(b) Use results about covariance estimation to show that the sample covariance matrix �m

is close to � if the sample size m is relatively large.
(c) Use the Davis–Kahan theorem 4.5.5 to deduce that the first eigenvector v = v1(�m) is

close to the direction of μ.
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(d) Conclude that the signs of the 〈μ, Xi 〉 predict well to which community Xi belongs.
(e) Since v ≈ μ, conclude the same for v.

4.8 Notes

The notions of covering and packing numbers and metric entropy introduced in Section 4.2
are studied thoroughly in asymptotic geometric analysis. Most of the material covered in
that section can be found in standard sources such as [11, Chapter 4] and [164].

In Section 4.3.2 we gave some basic results about error correcting codes. The book [210]
offers a more systematic introduction to coding theory. Theorem 4.3.5 is a simplified ver-
sion of the landmark Gilbert–Varshamov bound on the rates of error correcting codes. Our
proof of this result relies on a bound on the binomial sum from Exercise 0.0.5. A slight
tightening of the binomial sum bound leads to the following improved bound on the rate in
Remark 4.3.6: there exist codes with rate

R ≥ 1 − h(2δ)− o(1),

where

h(x) = −x log2(x)+ (1 − x) log2(1 − x)

is the binary entropy function. This result is known as the Gilbert–Varshamov bound. One
can tighten up the result of Exercise 4.3.7 similarly and prove that, for any error correcting
code, the rate is bounded as

R ≤ 1 − h(δ).

This result is known as the Hamming bound.
Our introduction to non-asymptotic random matrix theory in Sections 4.4 and 4.6 mostly

follows [216].
In Section 4.5 we gave an application of random matrix theory to networks. For a com-

prehensive introduction to the interdisciplinary area of network analysis, see e.g. the book
[154]. Stochastic block models (Definition 4.5.1) were introduced in [101]. The community
detection problem in stochastic block models has attracted a lot of attention: see the book
[154], the survey [75], papers including [137, 221, 153, 94, 1, 26, 54, 124, 92, 106] and the
references therein.

In Section 4.7 we discussed covariance estimation following [216]; more general results
will appear in Section 9.2.3. The covariance estimation problem has been studied exten-
sively in high-dimensional statistics; see e.g. [216, 170, 115, 42, 127, 52] and the references
therein.

In Section 4.7.1 we gave an application to the clustering of Gaussian mixture models.
This problem has been well studied in statistics and computer science communities; see e.g.
[149, Chapter 6] and [109, 150, 18, 102, 10, 87].
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Concentration Without Independence

The approach to concentration inequalities that we have developed so far relies crucially on
the independence of the random variables. We now pursue some alternative approaches to
concentration which are not based on independence. In Section 5.1, we demonstrate how to
derive the concentration from isoperimetric inequalities. We first do this for the example of
the Euclidean sphere and then discuss other natural settings in Section 5.2.

In Section 5.3 we use concentration on the sphere to derive the classical Johnson–
Lindenstrauss lemma, a basic result about dimension reduction for high-dimensional data.

Section 5.4 introduces matrix concentration inequalities. We prove the matrix Bern-
stein inequality, a remarkably general extension of the classical Bernstein inequality from
Section 2.8 for random matrices. We then give two applications in Sections 5.5 and 5.6,
extending our analysis for community detection and covariance estimation problems to
sparse networks and fairly general distributions in R

n .

5.1 Concentration of Lipschitz Functions for the Sphere

Consider a Gaussian random vector X ∼ N (0, In) and a function f : R
n → R. When does

the random vector f (X) concentrate about its mean, i.e.,

f (X) ≈ E f (X) with high probability?

This question is easy for linear functions f . Indeed, in this case f (X) has a nor-
mal distribution, and it concentrates around its mean well (recall Exercise 3.3.3 and
Proposition 2.1.2).

We now study the concentration of nonlinear functions f (X) of random vectors X . We
cannot expect to have good concentration for completely arbitrary f (why?). But if f does
not oscillate too wildly, we might expect concentration. The concept of Lipschitz func-
tions, which we introduce now, will help us to rule out rigorously functions that have wild
oscillations.

5.1.1 Lipschitz Functions

Definition 5.1.1 (Lipschitz functions) Let (X, dX ) and (Y, dY ) be metric spaces. A
function f : X → Y is called Lipschitz if there exists L ∈ R such that

dY ( f (u), f (v)) ≤ LdX (u, v) for every u, v ∈ X.

The infimum of all L in this definition is called the Lipschitz norm of f and is denoted
‖ f ‖Lip.

98
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In other words, Lipschitz functions may not blow up distances between points too much.
Lipschitz functions with ‖ f ‖Lip ≤ 1 are usually called contractions, since they may only
shrink distances.

Lipschitz functions form an intermediate class between uniformly continuous and
differentiable functions:

Exercise 5.1.2 (Continuity, differentiability, and Lipschitz functions)�� Prove the fol-
lowing statements.

(a) Every Lipschitz function is uniformly continuous.
(b) Every differentiable function f : R

n → R is Lipschitz, and

‖ f ‖Lip ≤ ‖∇ f ‖∞.
(c) Give an example of a non-Lipschitz but uniformly continuous function f : [−1, 1] → R.
(d) Give an example of a non-differentiable but Lipschitz function f : [−1, 1] → R.

Here are a few useful examples of Lipschitz functions on R
n .

Exercise 5.1.3 (Linear functionals and norms as Lipschitz functions)�� Prove the
following statements.

(a) For a fixed θ ∈ R
n , the linear functional

f (x) = 〈x, θ〉
is a Lipschitz function on R

n , and ‖ f ‖Lip = ‖θ‖2.
(b) More generally, an m × n matrix A acting as a linear operator

A : (Rn, ‖ · ‖2)→ (Rm, ‖ · ‖2)

is Lipschitz, and ‖A‖Lip = ‖A‖.
(c) Any norm f (x) = ‖x‖ on (Rn, ‖ · ‖2) is a Lipschitz function. The Lipschitz norm of f

is the smallest L that satisfies

‖x‖ ≤ L‖x‖2 for all x ∈ R
n .

5.1.2 Concentration via Isoperimetric Inequalities

The main result of this section is that any Lipschitz function on the Euclidean sphere Sn−1 =
{x ∈ R

n: ‖x‖2 = 1} concentrates well.

Theorem 5.1.4 (Concentration of Lipschitz functions on the sphere) Consider a random
vector X ∼ Unif(

√
nSn−1), i.e., X is uniformly distributed on the Euclidean sphere of radius√

n. Consider a Lipschitz function1 f : √nSn−1 → R. Then

1 This theorem is valid for both the geodesic metric on the sphere (where d(x, y) is the length of the shortest arc
connecting x and y) and the Euclidean metric d(x, y) = ‖x − y‖2. We will prove the theorem for the
Euclidean metric; Exercise 5.1.11 extends it to the geodesic metric.
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‖ f (X)− E f (X)‖ψ2
≤ C‖ f ‖Lip.

Using the definition of the sub-gaussian norm, the conclusion of Theorem 5.1.4 can be
stated as follows: for every t ≥ 0, we have

P
{| f (X)− E f (X)| ≥ t

} ≤ 2 exp
(
− ct2

‖ f ‖2
Lip

)
.

Let us set out a strategy to prove Theorem 5.1.4. We already proved it for linear functions.
Indeed, Theorem 3.4.6 states that X ∼ Unif(

√
nSn−1) is a sub-gaussian random vector, and

this by definition means that any linear function of X is a sub-gaussian random variable.
To prove Theorem 5.1.4 in full generality, we will argue that any nonlinear Lipschitz

function must concentrate at least as strongly as a linear function. To show this, instead
of comparing nonlinear with linear functions directly, we will compare the areas of their
sub-level sets – the subsets of the sphere of the form {x : f (x) ≤ a}. The sub-level sets of
linear functions are obviously spherical caps. We can compare the areas of general sets and
spherical caps using a remarkable geometric principle – an isoperimetric inequality.

The most familiar form of an isoperimetric inequality applies to subsets of R
3 (and also

in R
n):

Theorem 5.1.5 (Isoperimetric inequality on R
n) Among all subsets A ⊂ R

n with given
volume, Euclidean balls have minimal area. Moreover, for any ε > 0, Euclidean balls
minimize the volume of the ε-neighborhood of A, defined as2

Aε := {
x ∈ R

n: ∃y ∈ A such that ‖x − y‖2 ≤ ε
} = A + εBn

2 .

Figure 5.1 illustrates the isoperimetric inequality. Note that the “moreover” part of
Theorem 5.1.5 implies the first part: to see this, let ε → 0.

A similar isoperimetric inequality holds for subsets of the sphere Sn−1, and in this case the
minimizers are spherical caps – the neighborhoods of a single point.3 To state this principle,
we denote by σn−1 the normalized area on the sphere Sn−1 (i.e. the (n − 1)-dimensional
Lebesgue measure).

Theorem 5.1.6 (Isoperimetric inequality on the sphere) Let ε > 0. Then, among all
sets A ⊂ Sn−1 with given area σn−1(A), the spherical caps minimize the area of the
neighborhood σn−1(Aε), where

A A
Aε Aε

Figure 5.1 The isoperimetric inequality in R
n states that among all sets A of given

volume, the Euclidean balls minimize the volume of the ε-neighborhood Aε.

2 Here we use the notation for the Minkowski sum introduced in Definition 4.2.11.
3 More formally, a closed spherical cap centered at a point a ∈ Sn−1 and with radius ε can be defined as

C(a, ε) = {x ∈ Sn−1 : ‖x − a‖2 ≤ ε}.
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Aε :=
{

x ∈ Sn−1 : ∃y ∈ A such that ‖x − y‖2 ≤ ε
}
.

We do not prove isoperimetric inequalities (Theorems 5.1.5 and 5.1.6) in this book; the
bibliography notes for this chapter refer to several proofs of these results.

5.1.3 Blow-Up of Sets on the Sphere

The isoperimetric inequality implies a remarkable phenomenon that may sound counterin-
tuitive: if a set A makes up at least half the sphere (in terms of area) then the neighborhood
Aε will make up most of the sphere. We now state and prove this “blow-up” phenomenon,
and then try to explain it heuristically. In view of Theorem 5.1.4, it will be convenient for us
to work with a sphere of radius

√
n rather the unit sphere.

Lemma 5.1.7 (Blow-up) Let A be a subset of the sphere
√

nSn−1, and let σ denote the
normalized area on that sphere. If σ(A) ≥ 1/2 then,4 for every t ≥ 0,

σ(At ) ≥ 1 − 2 exp(−ct2).

Proof Consider the hemisphere defined by the first coordinate:

H :=
{

x ∈ √
nSn−1 : x1 ≤ 0

}
.

By assumption, σ(A) ≥ 1/2 = σ(H), so the isoperimetric inequality (Theorem 5.1.6)
implies that

σ(At ) ≥ σ(Ht ). (5.1)

The neighborhood Ht of the hemisphere H is a spherical cap, and we could compute its
area by a direct calculation. It is, however, easier to use Theorem 3.4.6 instead, which states
that a random vector

X ∼ Unif(
√

nSn−1)

is sub-gaussian, and ‖X‖ψ2 ≤ C . Since σ is the uniform probability measure on the sphere,
it follows that

σ(Ht ) = P
{

X ∈ Ht
}
.

Now, the definition of the neighborhood implies that

Ht ⊃
{

x ∈ √
nSn−1 : x1 ≤ t/

√
2
}
. (5.2)

(Check this – see Exercise 5.1.8.) Thus

σ(Ht ) ≥ P

{
X1 ≤ t/

√
2
}
≥ 1 − 2 exp(−ct2).

The last inequality holds because ‖X1‖ψ2 ≤ ‖X‖ψ2 ≤ C . In view of (5.1), the lemma is
proved. �

4 Here the neighborhood At of a set A is defined in the same way as before, that is,
At := {

x ∈ √
nSn−1 : ∃y ∈ A such that ‖x − y‖2 ≤ ε

}
.
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Exercise 5.1.8�� Prove inclusion (5.2).

The number 1/2 for the area bound in Lemma 5.1.7 was rather arbitrary. As the next
exercise shows, it can be changed to any constant and even to an exponentially small
quantity.

Exercise 5.1.9 (Blow-up of exponentially small sets)��� Let A be a subset of the sphere√
nSn−1 such that

σ(A) > 2 exp(−cs2) for some s > 0.

(a) Prove that σ(As) > 1/2.
(b) Deduce from this that, for any t ≥ s,

σ(A2t ) ≥ 1 − exp(ct2).

Here c > 0 is the absolute constant from Lemma 5.1.7. �

Remark 5.1.10 (Zero–one law) The blow-up phenomenon we just saw may be quite coun-
terintuitive at first sight. How can the exponentially small set A in Exercise 5.1.9 undergo
such a dramatic transition to an exponentially large set A2t under such a small perturbation
2t? (Remember that t can be much smaller than the radius

√
n of the sphere.) However per-

plexing this may seem, this is a typical phenomenon in high dimensions. It is reminiscent of
zero–one laws in probability theory, which basically state that events that are determined by
many random variables tend to have probabilities either zero or one.

5.1.4 Proof of Theorem 5.1.4

Without loss of generality, we can assume that ‖ f ‖Lip = 1. (Why?) Let M denote a median
of f (X), which by definition is a number satisfying5

P
{

f (X) ≤ M
} ≥ 1

2
and P

{
f (X) ≥ M

} ≥ 1

2
.

Consider the sub-level set

A :=
{

x ∈ √
nSn−1 : f (x) ≤ M

}
.

Since P
{

X ∈ A
} ≥ 1/2, Lemma 5.1.7 implies that on the one hand

P
{

X ∈ At
} ≥ 1 − 2 exp(−ct2). (5.3)

On the other hand, we claim that

P
{

X ∈ At
} ≤ P

{
f (X) ≤ M + t

}
. (5.4)

5 The median may not be unique. However, for continuous and one-to-one functions f , the median is unique.
(Check!)
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Indeed, if X ∈ At then ‖X − y‖2 ≤ t for some point y ∈ A. By definition, f (y) ≤ M . Since
f is Lipschitz with ‖ f ‖Lip = 1, it follows that

f (X) ≤ f (y)+ ‖X − y‖2 ≤ M + t.

This proves our claim (5.4).
Combining (5.3) and (5.4), we conclude that

P
{

f (X) ≤ M + t
} ≥ 1 − 2 exp(−ct2).

Repeating the argument for − f , we obtain a similar bound for the probability that f (X) ≥
M − t . (Do this!) Combining the two, we obtain a similar bound for the probability that
| f (X)− M | ≤ t , and conclude that

‖ f (X)− M‖ψ2 ≤ C.

It remains to replace the median M by the expectation E f . This can be done eas-
ily by applying the centering lemma 2.6.8. (How?) The proof of Theorem 5.1.4 is now
complete. �

Exercise 5.1.11 (Geodesic metric)��� We proved Theorem 5.1.4 for functions f that
are Lipschitz with respect to the Euclidean metric ‖x − y‖2 on the sphere. Argue that the
same result holds for the geodesic metric, which is the length of the shortest arc connecting
x and y.

Exercise 5.1.12 (Concentration for the unit sphere)� We stated Theorem 5.1.4 for the
scaled sphere

√
nSn−1. Deduce that a Lipschitz function f on the unit sphere Sn−1 satisfies

‖ f (X)− E f (X)‖ψ2
≤ C‖ f ‖Lip√

n
, (5.5)

where X ∼ Unif(Sn−1). Equivalently, for every t ≥ 0, we have

P
{| f (X)− E f (X)| ≥ t

} ≤ 2 exp
(
− cnt2

‖ f ‖2
Lip

)
. (5.6)

In the geometric approach to concentration that we have just presented, we first (a) proved
a blow-up inequality (Lemma 5.1.7), then (b) deduced the concentration about the median,
and (c) replaced the median by the expectation. The next exercise shows that these steps can
be reversed.

Exercise 5.1.13 (Concentration about the expectation and concentration about the median

are equivalent)�� Consider a random variable Z with median M . Show that

c‖Z − E Z‖ψ2 ≤ ‖Z − M‖ψ2 ≤ C‖Z − E Z‖ψ2,

where c,C > 0 are some absolute constants. �
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Exercise 5.1.14 (Concentration and blow-up are equivalent)��� Consider a random
vector X taking values in some metric space (T, d). Assume that there exists a K > 0
such that

‖ f (X)− E f (X)‖ψ2
≤ K‖ f ‖Lip

for every Lipschitz function f : T → R. For a subset A ⊂ T , define σ(A) := P(X ∈ A).
(Then σ is a probability measure on T .) Show that if σ(A) ≥ 1/2 then,6 for every t ≥ 0,

σ(At ) ≥ 1 − 2 exp(−ct2/K 2),

where c > 0 is an absolute constant. �

Exercise 5.1.15 (Exponential set of mutually almost orthogonal points)��� From linear
algebra, we know that any set of orthonormal vectors in R

n must contain at most n vectors.
However, if we allow the vectors to be almost orthogonal, there can be exponentially many
of them! Prove this counterintuitive fact as follows. Fix ε ∈ (0, 1). Show that there exists a
set {x1, . . . , xN } of unit vectors in R

n which are mutually almost orthogonal,

| 〈xi , x j
〉 | ≤ ε for all i �= j,

and that the set is exponentially large in n:

N ≥ exp (c(ε)n). �

5.2 Concentration for Other Metric Measure Spaces

In this section, we extend the concentration for the sphere to other spaces. To do this, note
that our proof of Theorem 5.1.4 was based on two main ingredients:

(i) an isoperimetric inequality;
(ii) a blow-up of the minimizers for the isoperimetric inequality.

These two ingredients are not special to the sphere. Many other metric measure spaces
satisfy (i) and (ii) as well, and thus concentration can be proved in such spaces as well.
We will discuss two such examples, which lead to Gaussian concentration in R

n and con-
centration on the Hamming cube, and then we will mention a few other situations where
concentration can be shown.

5.2.1 Gaussian Concentration

The classical isoperimetric inequality in R
n , Theorem 5.1.5, holds not only with respect to

the volume but also with respect to the Gaussian measure on R
n . The Gaussian measure of

a (Borel) set A ⊂ R
n is defined as7

γn(A) := P
{

X ∈ A
} = 1

(2π)n/2

∫
A

e−‖x‖2
2/2 dx

where X ∼ N (0, In) is the standard normal random vector in R
n .

6 Here the neighborhood At of a set A is defined in the same way as before, that is,
At := {x ∈ T : ∃y ∈ A such that d(x, y) ≤ ε} .

7 Recall the definition of the standard normal distribution in R
n from Section 3.3.2.
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Theorem 5.2.1 (Gaussian isoperimetric inequality) Let ε > 0. Then, among all sets
A ⊂ R

n with fixed Gaussian measure γn(A), the half-spaces minimize the Gaussian
measure of the neighborhood γn(Aε).

Using the method we developed for the sphere, we can deduce from Theorem 5.2.1 the
following Gaussian concentration inequality.

Theorem 5.2.2 (Gaussian concentration) Consider a random vector X ∼ N (0, In) and a
Lipschitz function f : R

n → R (with respect to the Euclidean metric). Then

‖ f (X)− E f (X)‖ψ2
≤ C‖ f ‖Lip. (5.7)

Exercise 5.2.3��� Deduce the Gaussian concentration inequality (Theorem 5.2.2) from
the Gaussian isoperimetric inequality (Theorem 5.2.1). �

Two partial cases of Theorem 5.2.2 should already be familiar:

(i) For linear functions f , Theorem 5.2.2 follows easily since the normal distribution
N (0, In) is sub-gaussian.

(ii) For the Euclidean norm f (x) = ‖x‖2, Theorem 5.2.2 follows from Theorem 3.1.1.

Exercise 5.2.4 (Replacing expectation by L p norm)��� Prove that in the concentration
results for the sphere and for Gaussian space (Theorems 5.1.4 and 5.2.2), the expectation
E f (X) can be replaced by the L p norm (E f p)1/p for any p > 0 and for any non-negative
function f . The constants may depend on p.

5.2.2 Hamming Cube

We saw how isoperimetry leads to concentration in two metric measure spaces, namely (a)
the sphere Sn−1 equipped with the Euclidean (or geodesic) metric and the uniform measure,
and (b) R

n equipped with the Euclidean metric and the Gaussian measure. A similar method
yields the concentration for many other metric measure spaces. One of them is the Hamming
cube ({0, 1}n, d,P

)
,

which we introduced in Definition 4.2.14. It will be convenient here to assume that d(x, y)
is the normalized Hamming distance, which is the fraction of the digits on which the binary
strings x and y disagree, thus

d(x, y) = 1

n
|{i: xi �= yi }| .

The measure P is the uniform probability measure on the Hamming cube, i.e.,

P(A) = |A|
2n

for any A ⊂ {0, 1}n.
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Theorem 5.2.5 (Concentration for the Hamming cube) Consider a random vector X ∼
Unif{0, 1}n. (Thus, the coordinates of X are independent Ber(1/2) random variables.)
Consider a function f : {0, 1}n → R. Then

‖ f (X)− E f (X)‖ψ2 ≤ C‖ f ‖Lip√
n

. (5.8)

This result can be deduced from the isoperimetric inequality on the Hamming cube, whose
minimizers are known to be the Hamming balls – the neighborhoods of single points with
respect to the Hamming distance.

5.2.3 Symmetric Group

The symmetric group Sn consists of all n! permutations of n symbols, which we choose to
be {1, . . . , n} to be specific. We can view the symmetric group as a metric measure space

(Sn, d,P).

Here d(π, ρ) is the normalized Hamming distance – the fraction of the symbols on which
the permutations π and ρ disagree:

d(π, ρ) = 1

n
|{i : π(i) �= ρ(i)}| .

The measure P is the uniform probability measure on Sn , i.e.,

P(A) = |A|
n! for any A ⊂ Sn.

Theorem 5.2.6 (Concentration for the symmetric group) Consider a random permutation
X ∼ Unif(Sn) and a function f : Sn → R. Then the concentration inequality (5.8) holds.

5.2.4 Riemannian Manifolds with Strictly Positive Curvature

A wide general class of examples with nice concentration properties is covered by the notion
of a Riemannian manifold. Since we do not assume that the reader has necessary background
in differential geometry, the rest of this section is optional.

Let (M, g) be a compact connected smooth Riemannian manifold. The canonical distance
d(x, y) on M is defined as the arclength (with respect to the Riemannian tensor g) of a
minimizing geodesic connecting x and y. The Riemannian manifold can be viewed as a
metric measure space

(M, d,P)

where P = dv/V is the probability measure on M obtained from the Riemann volume
element dv by dividing by V , the total volume of M .

Let c(M) denote the infimum of the Ricci curvature tensor over all tangent vectors.
Assuming that c(M) > 0, it can be proved using semigroup tools that

‖ f (X)− E f (X)‖ψ2 ≤ C‖ f ‖Lip√
c(M)

(5.9)

for any Lipschitz function f : M → R.
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To give an example, it is known that c(Sn−1) = n − 1. Thus (5.9) gives an alterna-
tive approach to concentration inequality (5.5) for the sphere Sn−1. We give several other
examples next.

5.2.5 Special Orthogonal Group

The special orthogonal group SO(n) consists of all distance-preserving linear transforma-
tions on R

n . Equivalently, the elements of SO(n) are n × n orthogonal matrices whose
determinant equals 1. We can view the special orthogonal group as a metric measure space

(SO(n), ‖ · ‖F ,P) ,

where the distance is the Frobenius norm8 ‖A − B‖F and P is the uniform probability
measure on SO(n).

Theorem 5.2.7 (Concentration for the special orthogonal group) Consider a random
orthogonal matrix X ∼ Unif(SO(n)) and a function f : SO(n) → R. Then the
concentration inequality (5.8) holds.

This result can be deduced from the result for concentration on general Riemannian
manifolds which we discussed in Section 5.2.4.

Remark 5.2.8 (Haar measure) Here we do not go into detail about the formal definition
of the uniform probability measure P on SO(n). Let us just mention for an interested reader
that P is the Haar measure on SO(n) – the unique probability measure that is invariant under
the actions of the group.9

One can explicitly construct a random orthogonal matrix X ∼ Unif(SO(n)) in several
ways. For example, we can consider the singular value decomposition

G = U�V T.

Then the matrix of the left singular vectors X := U is uniformly distributed in SO(n). One
can then define the Haar measure μ on SO(n) by setting

μ(A) := P{X ∈ A} for A ⊂ SO(n).

(The rotation invariance should be straightforward – check it!)

5.2.6 Grassmannian

The Grassmannian, or Grassmann manifold Gn,m , consists of all m-dimensional subspaces
of R

n . In the special case where m = 1, the Grassmann manifold can be identified with the
sphere Sn−1 (how?), so the concentration result that we are about to state will include the
concentration for the sphere as a special case.

8 The definition of the Frobenius norm was given in Section 4.1.3.
9 A measure μ on SO(n) is rotation invariant if, for any measurable set E ⊂ SO(n) and any T ∈ SO(n), one has
μ(E) = μ(T (E)).
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We can view the Grassmann manifold as a metric measure space

(Gn,m, d,P).

The distance between subspaces E and F can be defined as the operator norm10

d(E, F) = ‖PE − PF‖,
where PE and PF are the orthogonal projections onto E and F , respectively.

The probability P is, as before, the uniform (Haar) probability measure on Gn,m . This
measure allows us to talk about a random m-dimensional subspace of R

n

E ∼ Unif(Gn,m).

Alternatively, a random subspace E (and thus the Haar measure on the Grassmannian) can
be constructed by computing the column span (i.e., the image) of a random n × m Gaus-
sian random matrix G with i.i.d. N (0, 1) entries. (Again the rotation invariance should be
straightforward – check it!)

Theorem 5.2.9 (Concentration for the Grassmannian) Consider a random subspace X ∼
Unif(Gn,m) and a function f : Gn,m → R. Then the concentration inequality (5.8) holds.

This result can be deduced from that for concentration on the special orthogonal group
from Section 5.2.5. (For the interested reader let us mention how this is done: one can express
that Grassmannian as the quotient Gn,k = SO(n)/(SOm × SOn−m) and use the fact that
concentration is passed on to quotients.)

5.2.7 Continuous Cube and Euclidean Ball

Similar concentration inequalities can be proved for the unit Euclidean cube [0, 1]n and
the Euclidean ball11 √

nBn
2 , both equipped with Euclidean distance and uniform probability

measures. They can be deduced from Gaussian concentration by pushing forward the Gaus-
sian measure to uniform measures on the ball and the cube, respectively. We state these two
theorems and prove them in a few exercises.

Theorem 5.2.10 (Concentration for the continuous cube) Consider a random vector
X ∼ Unif([0, 1]n). (Thus, the coordinates of X are independent random variables uni-
formly distributed on [0, 1].) Consider a Lipschitz function f : [0, 1]n → R. (The Lipschitz
norm is with respect to the Euclidean distance.) Then the concentration inequality (5.7)
holds.

10 The operator norm was introduced in Section 4.1.2.
11 Recall that Bn

2 denotes the unit Euclidean ball, i.e. Bn
2 = {x ∈ R

n : ‖x‖2 ≤ 1}, and
√

nBn
2 is the Euclidean

ball of radius
√

n.
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Exercise 5.2.11 (Pushing forward the Gaussian to the uniform distribution)�� Let �(x)
denote the cumulative distribution function of the standard normal distribution N (0, 1).
Consider a random vector Z = (Z1, . . . , Zn) ∼ N (0, In). Check that

φ(Z) := (
�(Z1), . . . , �(Zn)

) ∼ Unif([0, 1]n).

Exercise 5.2.12 (Proving concentration for the continuous cube)�� Expressing X =
φ(Z) by means of the previous exercise, use the Gaussian concentration to control the devi-
ation of f ◦ φ(Z) = f (φ(Z)) in terms of ‖ f ◦ φ‖Lip ≤ ‖ f ‖Lip ‖φ‖Lip. Show that ‖φ‖Lip is
bounded by an absolute constant and complete the proof of Theorem 5.2.10.

Theorem 5.2.13 (Concentration for the Euclidean ball) Consider a random vector X ∼
Unif(

√
nBn

2 ). Consider a Lipschitz function f : √nBn
2 → R. (The Lipschitz norm is with

respect to the Euclidean distance.) Then the concentration inequality (5.7) holds.

Exercise 5.2.14 (Proving concentration for the Euclidean ball)��� Use a similar
method as in the previous exercise to prove Theorem 5.2.13. Define a function φ : R

n →√
nBn

2 that pushes forward the Gaussian measure on R
n into the uniform measure on

√
nBn

2 ,
and check that φ has bounded Lipschitz norm.

5.2.8 Densities e−U (x)

The push-forward approach from last section can be used to obtain the concentration for
many other distributions in R

n . In particular, suppose that a random vector X has density of
the form

f (x) = e−U (x)

for some function U : R
n → R. As an example, if X ∼ N (0, In) then the normal density

(3.4) gives U (x) = ‖x‖2
2 + c, where c is a constant (that depends on n but not x), and

Gaussian concentration holds for X .
Now, if U is a general function whose curvature goes at least as ‖x‖2

2 then we should
expect at least Gaussian concentration. This is exactly what the next theorem states. The
curvature of U is measured with the help of the Hessian Hess U (x), which by definition is
the n × n symmetric matrix whose (i, j)th entry equals ∂2U/∂xi∂x j .

Theorem 5.2.15 Consider a random vector X in R
n whose density has the form f (x) =

e−U (x) for some function U: R
n → R. Assume there exists κ > 0 such that12

Hess U (x) � κ In for all x ∈ R
n.

Then any Lipschitz function f : R
n → R satisfies

‖ f (X)− E f (X)‖ψ2 ≤ C‖ f ‖Lip√
κ

.

12 The matrix inequality here means that Hess U (x)− κ In is a positive-semidefinite matrix.
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Note the similarity of this theorem to the concentration inequality (5.9) for Riemannian
manifolds. Both can be proved using semigroup tools, which we do not present in this book.

5.2.9 Random Vectors with Independent Bounded Coordinates

There is a remarkable partial generalization of Theorem 5.2.10 for random vectors X =
(X1, . . . , Xn) whose coordinates are independent and have arbitrary bounded distributions.
By scaling, there is no loss of generality in assuming that |Xi | ≤ 1, but we no longer require
that the Xi be uniformly distributed.

Theorem 5.2.16 (Talagrand’s concentration inequality) Consider a random vector X =
(X1, . . . , Xn) whose coordinates are independent and satisfy

|Xi | ≤ 1 almost surely.

Then concentration inequality (5.7) holds for any convex Lipschitz function f : [0, 1]n → R.

In particular, Talagrand’s concentration ineqiuality holds for any norm on R
n . We do not

prove this result here.

5.3 Application: Johnson–Lindenstrauss Lemma

Suppose that we have N data points in R
n , where n is very large. We would like to reduce

the dimension of the data without sacrificing too much of its geometry. The simplest form
of dimension reduction is to project the data points onto a low-dimensional subspace

E ⊂ R
n, dim(E) := m � n;

see Figure 5.2 for an illustration. How shall we choose the subspace E , and how small can
its dimension m be?

The Johnson–Lindenstrauss lemma, given below, states that the geometry of the data is
well preserved if we choose E to be a random subspace of dimension

m ∼ log N .

P

E

Figure 5.2 In the Johnson–Lindenstrauss lemma, the dimension of the data is
reduced by projection P onto a random low-dimensional subspace E .
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We have already come across the notion of a random subspace in Section 5.2.6; let us recall
it here. We say that E is a random m-dimensional subspace in R

n uniformly distributed in
the Grassmannian Gn,m , i.e.,

E ∼ Unif(Gn,m),

if E is a random m-dimensional subspace of R
n whose distribution is rotation invariant, i.e.,

P
{

E ∈ E} = P
{
U (E) ∈ E}

for any fixed subset E ⊂ Gn,m and n × n orthogonal matrix U .

Theorem 5.3.1 (Johnson–Lindenstrauss lemma) Let X be a set of N points in R
n and

ε > 0. Assume that

m ≥ (C/ε2) log N .

Consider a random m-dimensional subspace E in R
n uniformly distributed in Gn,m. Denote

the orthogonal projection onto E by P. Then, with probability at least 1 − 2 exp(−cε2m),
the scaled projection

Q :=
√

n

m
P

is an approximate isometry on X :

(1 − ε)‖x − y‖2 ≤ ‖Qx − Qy‖2 ≤ (1 + ε)‖x − y‖2 for all x, y ∈ X . (5.10)

The proof of the Johnson–Lindenstrauss lemma will be based on the concentration of
Lipschitz functions for the sphere, which we studied in Section 5.1. We use this to first
examine how the random projection P acts on a fixed vector x − y, and then we take the
union bound over all N 2 differences x − y.

Lemma 5.3.2 (Random projection) Let P be a projection from R
n onto a random m-

dimensional subspace uniformly distributed in Gn,m. Let z ∈ R
n be a (fixed) point and

ε > 0. Then:

(i)
(
E ‖Pz‖2

2

)1/2 =
√

m

n
‖z‖2.

(ii) With probability at least 1 − 2 exp(−cε2m), we have

(1 − ε)

√
m

n
‖z‖2 ≤ ‖Pz‖2 ≤ (1 + ε)

√
m

n
‖z‖2.

Proof Without loss of generality, we may assume that ‖z‖2 = 1. (Why?) Next, we consider
an equivalent model: instead of a random projection P acting on a fixed vector z, we consider
a fixed projection P acting on a random vector z. Specifically, the distribution of ‖Pz‖2 will
not change if we let P be fixed and let

z ∼ Unif(Sn−1).

(Check this using rotation invariance!)
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Using rotation invariance again, we may assume without loss of generality that P is the
coordinate projection onto the first m coordinates in R

n . Thus

E ‖Pz‖2
2 = E

m∑
i=1

z2
i =

m∑
i=1

E z2
i = m E z2

1, (5.11)

since the coordinates zi of the random vector z ∼ Unif(Sn−1) are identically distributed. To
compute E z2

1, note that

1 = ‖z‖2
2 =

n∑
i=1

z2
i .

Taking expectations of both sides, we obtain

1 =
n∑

i=1

E z2
i = n E z2

1,

which yields

E z2
1 = 1

n
.

Putting this into (5.11), we get

E ‖Pz‖2
2 = m

n
.

This proves the first part of the lemma.
The second part follows from the concentration of Lipschitz functions for the sphere.

Indeed,

f (x) := ‖Px‖2

is a Lipschitz function on Sn−1, and ‖ f ‖Lip = 1. (Check!) Then the concentration inequality
(5.6) yields

P

{∣∣∣‖Px‖2 −
√

m

n

∣∣∣ ≥ t

}
≤ 2 exp(−cnt2).

(Here we have also used Exercise 5.2.4 to replace E ‖x‖2 by the quantity (E ‖x‖2
2)

1/2 in the
concentration inequality.) Choosing t := ε

√
m/n completes the proof of the lemma. �

Proof of Johnson–Lindenstrauss lemma Consider the difference set

X −X := {x − y : x, y ∈ X }.
We would like to show that, with the required probability, the inequality

(1 − ε)‖z‖2 ≤ ‖Qz‖2 ≤ (1 + ε)‖z‖2

holds for all z ∈ X −X . Since Q = √
n/m P , this inequality is equivalent to

(1 − ε)

√
m

n
‖z‖2 ≤ ‖Pz‖2 ≤ (1 + ε)

√
m

n
‖z‖2. (5.12)
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For any fixed z, Lemma 5.3.2 states that (5.12) holds with probability at least 1 −
2 exp(−cε2m). It remains to take a union bound over z ∈ X − X . It follows that inequality
(5.12) holds simultaneously for all z ∈ X −X , with probability at least

1 − |X −X | 2 exp(−cε2m) ≥ 1 − N 2 2 exp(−cε2m).

If m ≥ (C/ε2) log N then this probability is at least 1 − 3 exp(−cε2m/2), as claimed. The
Johnson–Lindenstrauss lemma is proved. �

A remarkable feature of the Johnson–Lindenstrauss lemma is that the dimension reduc-
tion map A is non-adaptive: it does not depend on the data. Note also that the ambient
dimension n of the data plays no role in this result.

Exercise 5.3.3 (Johnson–Lindenstrauss with sub-gaussian matrices)��� Let A be an
m×n random matrix whose rows are independent mean-zero sub-gaussian isotropic random
vectors in R

n . Show that the conclusion of the Johnson–Lindenstrauss lemma holds for
Q = (1/

√
m) A.

Exercise 5.3.4 (Optimality of Johnson–Lindenstrauss)��� Give an example of a set X
of N points for which no scaled projection onto a subspace of dimension m � log N is an
approximate isometry. �

5.4 Matrix Bernstein Inequality

In this section, we show how to generalize concentration inequalities for sums of indepen-
dent random variables

∑
Xi to sums of independent random matrices.

We will prove a matrix version of Bernstein’s inequality (Theorem 2.8.4), where the ran-
dom variables Xi are replaced by random matrices, and the absolute value | · | is replaced by
the operator norm ‖ · ‖. Remarkably, we will not require independence of the entries, rows,
or columns within each random matrix Xi .

Theorem 5.4.1 (Matrix Bernstein inequality) Let X1, . . . , X N be independent mean-zero
n × n symmetric random matrices, such that ‖Xi‖ ≤ K almost surely for all i . Then, for
every t ≥ 0, we have

P

{∥∥∥∥ N∑
i=1

Xi

∥∥∥∥ ≥ t

}
≤ 2n exp

(
− t2/2

σ 2 + K t/3

)
.

Here σ 2 =
∥∥∥∑N

i=1 E X2
i

∥∥∥ is the norm of the matrix variance of the sum.

In particular, we can express this bound as a mixture of sub-gaussian and sub-exponential
tails, just as for the scalar Bernstein inequality:

P

{∥∥∥∥ N∑
i=1

Xi

∥∥∥∥ ≥ t

}
≤ 2n exp

(
− c min

( t2

σ 2
,

t

K

))
.
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The proof of the matrix Bernstein inequality is based on the following naïve idea. We
will try to repeat the classical argument based on moment generating functions (see Sec-
tion 2.8), replacing scalars by matrices at each occurrence. In most of our argument this
idea will work, except for one step that is nontrivial to generalize. Before we dive into
this argument, let us develop some matrix calculus which will allow us to treat matrices as
scalars.

5.4.1 Matrix Calculus

Throughout this section, we work with symmetric n×n matrices. As we know, the operation
of addition, A + B, generalizes painlessly from scalars to matrices. We need to be more
careful with multiplication, since it is not commutative for matrices: in general, AB �= B A.
For this reason, the matrix Bernstein inequality is sometimes called the non-commutative
Bernstein inequality. Functions of matrices are defined as follows.

Definition 5.4.2 (Functions of matrices) Consider a function f : R → R and an n × n
symmetric matrix X with eigenvalues λi and corresponding eigenvectors ui . Recall that X
can be represented as a spectral decomposition:

X =
n∑

i=1

λi ui u
T
i .

Then define

f (X) :=
n∑

i=1

f (λi )ui u
T
i .

In other words, to obtain the matrix f (X) from X , we do not change the eigenvectors but
we apply f to the eigenvalues.

In the following exercise, we will check that the definition of a function of matrices agrees
with the basic rules of matrix addition and multiplication.

Exercise 5.4.3 (Matrix polynomials and power series)��

(a) Consider a polynomial

f (x) = a0 + a1x + · · · + apx p.

Check that for a matrix X , we have

f (X) = a0 I + a1 X + · · · + ap X p.

On the right-hand side we use the standard rules for matrix addition and multiplication,
so in particular X p = X · · · X (p times) there.

(b) Consider a convergent power series expansion of f about x0:

f (x) =
∞∑

k=1

ak(x − x0)
k .
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Check that the series of matrix terms converges and that

f (X) =
∞∑

k=1

ak(X − X0)
k .

As an example, for each n × n symmetric matrix X we have

eX = I + X + X2

2! + X3

3! + · · ·
Just like scalars, matrices can be compared with each other. To do this, we define a partial

order on the set of n × n symmetric matrices, as follows.

Definition 5.4.4 (positive-semidefinite order) We say that

X � 0

if X is a positive-semidefinite matrix. Equivalently, X � 0 if all eigenvalues of X satisfy
λi (X) ≥ 0. Next, we set

X � Y and Y & X

if X − Y � 0.

Note that � is a partial, as opposed to total, order, since there are matrices for which
neither X � Y nor Y � X hold. (Give an example!)

Exercise 5.4.5��� Prove the following properties.

(a) ‖X‖ ≤ t if and only if −t I & X & t I .
(b) Let f : R → R be an increasing function and X, Y be commuting matrices. Then X & Y

implies f (X) & f (Y ).
(c) Let f, g : R → R be two functions. If f (x) ≤ g(x) for all x ∈ R satisfying |x | ≤ K

then f (X) & g(X) for all X satisfying ‖X‖ ≤ K .
(d) If X & Y then tr(X) ≤ tr(Y ).

5.4.2 Trace Inequalities

So far, our attempts to extend scalar concepts for matrices have not met any resistance.
But this does not always go so smoothly. The non-commutativity of the matrix product
(AB �= B A) causes some important scalar identities to fail for matrices. One such identity
is ex+y = ex ey , which holds for scalars but fails for matrices:

Exercise 5.4.6��� Let X and Y be n × n symmetric matrices.

(a) Show that if the matrices commute, i.e. XY = Y X , then

eX+Y = eX eY .
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(b) Find an example of matrices X and Y such that

eX+Y �= eX eY .

This is unfortunate for us, because we used the identity ex+y = ex ey in a crucial way
in our approach to the concentration of sums of random variables. Indeed, this identity
allowed us to break the moment generating function E exp(λS) of the sum into the product
of exponentials: see (2.6).

Nevertheless, there exist useful substitutes for the missing identity eX+Y = eX eY . We
state two of them here without proof; they belong to the rich family of trace inequalities.

Theorem 5.4.7 (Golden–Thompson inequality) For any n × n symmetric matrices A and
B, we have

tr(eA+B) ≤ tr(eAeB).

Theorem 5.4.8 (Lieb’s inequality) Let H be an n×n symmetric matrix. Define the function
on matrices

f (X) := tr exp(H + log X).

Then f is concave on the space of positive-definite n × n symmetric matrices.13

Note that in the scalar case, where n = 1, the function f is linear and Lieb’s inequality
holds trivially.

A proof of the matrix Bernstein inequality can be based on either the Golden–Thompson
inequality or Lieb’s inequality. We will use Lieb’s inequality, which we will now restate for
random matrices. If X is a random matrix then Lieb’s and Jensen’s inequalities imply that

E f (X) ≤ f (E X).

(Why does Jensen’s inequality hold for random matrices?) Applying this with X = eZ , we
obtain the following.

Lemma 5.4.9 (Lieb’s inequality for random matrices) Let H be a fixed n × n symmetric
matrix and Z be a random n × n symmetric matrix. Then

E tr exp(H + Z) ≤ tr exp(H + log E eZ ).

5.4.3 Proof of Matrix Bernstein Inequality

We are now ready to prove the matrix Bernstein inequality, Theorem 5.4.1, using Lieb’s
inequality.

13 Concavity means that the inequality f (λX + (1 − λ)Y ) ≥ λ f (X)+ (1 − λ) f (Y ) holds for matrices X and Y ,
and for λ ∈ [0, 1].
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Step 1: Reduction to MGF. To bound the norm of the sum

S :=
N∑

i=1

Xi ,

we need to control the largest and smallest eigenvalues of S. We can do this separately. To
put it formally, consider the largest eigenvalue,

λmax(S) := max
i
λi (S),

and note that

‖S‖ = max
i

|λi (S)| = max (λmax(S), λmax(−S)) . (5.13)

To bound λmax(S), we proceed with the method based on computing the moment generat-
ing function that we used in the scalar case, e.g. in Section 2.2. To this end, fix λ ≥ 0 and
use Markov’s inequality to obtain

P
{
λmax(S) ≥ t

} = P

{
eλ·λmax(S) ≥ eλt

}
≤ e−λt

E eλλmax(S). (5.14)

Since by Definition 5.4.2 the eigenvalues of eλS are eλλi (S), we have

E := E eλλmax(S) = E λmax(e
λS).

Since the eigenvalues of eλS are all positive, the maximal eigenvalue of eλS is bounded by
the sum of all the eigenvalues, the trace of eλS , which leads to

E ≤ E tr eλS.

Step 2: Application of Lieb’s inequality. To prepare for an application of Lieb’s inequality
(Lemma 5.4.9), let us separate the last term from the sum S:

E ≤ E tr exp

( N−1∑
i=1

λXi + λX N

)
.

Condition on (Xi )
N−1
i=1 and apply Lemma 5.4.9 for the fixed matrix H := ∑N−1

i=1 λXi and
the random matrix Z := λX N . We obtain

E ≤ E tr exp

( N−1∑
i=1

λXi + log E eλX N

)
.

(To be more specific here, we first apply Lemma 5.4.9 for the conditional expectation, and
then take the expectation of both sides using the law of total expectation.)

We continue in a similar way: separate the next term λX N−1 from the sum
∑N−1

i=1 λXi

and apply Lemma 5.4.9 again for Z = λX N−1. Repeating N times, we obtain

E ≤ tr exp

( N∑
i=1

log E eλXi

)
. (5.15)

Step 3: MGF of the individual terms. It remains to bound the matrix-valued moment
generating function E eλXi for each term Xi . This is a standard task, and the argument will
be similar to the scalar case.
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Lemma 5.4.10 (Moment generating function) Let X be an n × n symmetric mean-zero
random matrix such that ‖X‖ ≤ K almost surely. Then

E exp(λX) & exp
(
g(λ)E X2) where g(λ) = λ2/2

1 − |λ|K/3 ,
provided that |λ| < 3/K .

Proof First, note that we can bound the (scalar) exponential function by the first few terms
of its Taylor’s expansion as follows:

ez ≤ 1 + z + 1

1 − |z|/3
z2

2
, if |z| < 3.

(To obtain this inequality, write ez = 1 + z + z2∑∞
p=2 z p−2/p! and use the bound p! ≥

2 × 3p−2.) Next, apply this inequality for z = λx . If |x | ≤ K and |λ| < 3/K then we obtain

eλx ≤ 1 + λx + g(λ)x2,

where g(λ) is the function in the statement of the lemma.
Finally, we can transfer this inequality from scalars to matrices using part (c) of

Exercise 5.4.5. We obtain that if ‖X‖ ≤ K and |λ| < 3/K then

eλX & I + λX + g(λ)X2.

Take expectations of both sides and use the assumption that E X = 0 to obtain

E eλX & I + g(λ)E X2.

To bound the right-hand side, we can use the inequality 1 + z ≤ ez , which holds for all
scalars z. Thus the inequality I + Z & eZ holds for all matrices Z , and in particular for
Z = g(λ)E X2. (Here we again refer to part (c) of Exercise 5.4.5.) This yields the conclusion
of the lemma. �

Step 4: Completion of the proof. Let us return to bounding the quantity in (5.15). Using
Lemma 5.4.10, we obtain

E ≤ tr exp

( N∑
i=1

log E eλXi

)
≤ tr exp (g(λ)Z) , where Z :=

N∑
i=1

E X2
i .

(Here we have used Exercise 5.4.5 again: part (b) for the logarithmic and exponential
functions, and part (d) to take the traces of both sides.)

Since the trace of exp (g(λ)Z) is a sum of n positive eigenvalues, it is bounded by n times
the maximum eigenvalue, so

E ≤ nλmax (exp(g(λ)Z)) = n exp
[
g(λ)λmax(Z)

]
(why?)

= n exp (g(λ)‖Z‖) (since Z � 0)

= n exp(g(λ)σ 2) (by definition of σ in the theorem).

Substituting this bound for E = E eλλmax(S) into (5.14), we obtain

P
{
λmax(S) ≥ t

} ≤ n exp
(− λt + g(λ)σ 2).
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We have obtained a bound that holds for any λ > 0 such that |λ| < 3/K ′, so we can
minimize it in λ. The minimum is attained for λ = t/(σ 2 + K t/3) (check!), which gives

P
{
λmax(S) ≥ t

} ≤ n exp
(
− t2/2

σ 2 + K t/3

)
.

Repeating the argument for −S and combining the two bounds via (5.13), we complete
the proof of Theorem 5.4.1. (Do this!) �

5.4.4 Matrix Khintchine Inequality

The matrix Bernstein inequality gives a good tail bound on ‖∑N
i=1 Xi‖, and this in particular

implies a nontrivial bound on the expectation.

Exercise 5.4.11 (Matrix Bernstein inequality: expectation)��� Let X1, . . . , X N be
independent mean-zero n × n symmetric random matrices such that ‖Xi‖ ≤ K almost
surely for all i . Deduce from Bernstein’s inequality that

E

∥∥∥∥ N∑
i=1

Xi

∥∥∥∥ �
∥∥∥∥ N∑

i=1

E X2
i

∥∥∥∥1/2√
log n + K log n. �

Note that in the scalar case, where n = 1, a bound on the expectation is trivial. Indeed, in
this case we have

E

∣∣∣∣ N∑
i=1

Xi

∣∣∣∣ ≤ (
E

∣∣∣∣ N∑
i=1

Xi

∣∣∣∣2)1/2

=
( N∑

i=1

E X2
i

)1/2

,

where we have used that the variance of a sum of independent random variables equals the
sum of the variances.

The techniques developed in the proof of the matrix Bernstein inequality can be used
to give matrix versions of other classical concentration inequalities. In the next two exer-
cises, the reader can prove matrix versions of Hoeffding’s inequality (Theorem 2.2.2) and
Khintchine’s inequality (Exercise 2.6.6).

Exercise 5.4.12 (Matrix Hoeffding inequality)��� Let ε1, . . . , εn be independent sym-
metric Bernoulli random variables and let A1, . . . , AN be symmetric n × n matrices
(deterministic). Prove that, for any t ≥ 0, we have

P

{∥∥∥∥ N∑
i=1

εi Ai

∥∥∥∥ ≥ t

}
≤ 2n exp(−t2/2σ 2),

where σ 2 = ∥∥∑N
i=1 A2

i

∥∥. �
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From this, one can deduce a matrix version of Khintchine’s inequality:

Exercise 5.4.13 (Matrix Khintchine inequality)��� Let ε1, . . . , εN be independent
symmetric Bernoulli random variables and let A1, . . . , AN be symmetric n × n matrices
(deterministic).

(a) Prove that

E

∥∥∥∥ N∑
i=1

εi Ai

∥∥∥∥ ≤ C
√

log n

∥∥∥∥ N∑
i=1

A2
i

∥∥∥∥1/2

.

(b) More generally, prove that for every p ∈ [1,∞) we have(
E

∥∥∥∥ N∑
i=1

εi Ai

∥∥∥∥p)1/p

≤ C
√

p + log n

∥∥∥∥ N∑
i=1

A2
i

∥∥∥∥1/2

.

The price of going from scalars to matrices is the pre-factor n in the probability bound in
Theorem 5.4.1. This is a small price, considering that this factor becomes logarithmic in the
dimension n in the expectation bounds of Exercises 5.4.11–5.4.13. The following example
demonstrates that the logarithmic factor is needed in general.

Exercise 5.4.14 (Sharpness of matrix Bernstein inequality)��� Let X be an n × n ran-
dom matrix that takes values ekeT

k , k = 1, . . . , n, with probability 1/n each. (Here (ek)

denotes the standard basis in R
n .) Let X1, . . . , X N be independent copies of X . Consider

the sum

S :=
N∑

i=1

Xi ,

which is a diagonal matrix.

(a) Show that the entry Sii has the same distribution as the number of balls in the i th bin
when N balls are thrown into n bins independently.

(b) Relating this to the classical coupon collector’s problem, show that if N � n then14

E ‖S‖ � log n

log log n
.

Deduce that the bound in Exercise 5.4.11 would fail if the logarithmic factors were
removed from it.

The following exercise extends the matrix Bernstein inequality by dropping both the
symmetry and square assumptions on the matrices Xi .

14 Here we write an � bn if there exist constants c,C > 0 such that can < bn ≤ Can for all n.
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Exercise 5.4.15 (Matrix Bernstein inequality for rectangular matrices)��� Let X1, . . . , X N

be independent mean-zero m × n random matrices, such that ‖Xi‖ ≤ K almost surely for
all i . Prove that, for t ≥ 0, we have

P

{∥∥∥∥ N∑
i=1

Xi

∥∥∥∥ ≥ t

}
≤ 2(m + n) exp

(
− t2/2

σ 2 + K t/3

)
,

where

σ 2 = max

(∥∥∥∥ N∑
i=1

E XT
i Xi

∥∥∥∥, ∥∥∥∥ N∑
i=1

E Xi XT
i

∥∥∥∥). �

5.5 Application: Community Detection in Sparse Networks

In Section 4.5 we analyzed a basic method for community detection in networks – the
spectral clustering algorithm. We examined the performance of spectral clustering for
the stochastic block model G(n, p, q) with two communities, and we found how the
communities can be identified with high accuracy and high probability (Theorem 4.5.6).

We now re-examine the performance of spectral clustering using the matrix Bernstein’s
inequality. In the following two exercises, we find that spectral clustering actually works for
much sparser networks than are implied by Theorem 4.5.6.

Just as in Section 4.5, we denote by A the adjacency matrix of a random graph from
G(n, p, q), and we express A as

A = D + R,

where D = E A is a deterministic matrix (the “signal”) and R is random (the “noise”). As
we know, the success of spectral clustering method hinges on the fact that the noise ‖R‖ is
small with high probability (recall (4.18)). In the following exercise, the matrix Bernstein
inequality is used to derive a better bound on ‖R‖.

Exercise 5.5.1 (Controlling the noise)���

(a) Represent the adjacency matrix A as a sum of independent random matrices,

A =
n∑

1≤i< j≤n

Zi j ,

in such a way that each Zi j encodes the contribution of the edge between vertices i and
j . Thus, the only nonzero entries of Zi j should be (i j) and ( j i), and they should be the
same as in A.

(b) Apply the matrix Bernstein inequality to find that

E ‖R‖ �
√

d log n + log n,

where d = 1
2 (p + q)n is the expected average degree of the graph.

Exercise 5.5.2 (Spectral clustering for sparse networks)��� Use the bound from Exer-
cise 5.5.1 to give better guarantees for the performance of spectral clustering than we had in
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Section 4.5. In particular, argue that spectral clustering works for sparse networks as long as
the average expected degrees satisfy

d � log n.

5.6 Application: Covariance Estimation for General Distributions

In Section 3.2, we saw how the covariance matrix of a sub-gaussian distribution in R
n can

be estimated accurately using a sample of size O(n). In this section, we remove the sub-
gaussian requirement, and thus make covariance estimation possible for very general, in
particular, discrete, distributions. The price we pay is very small – just a logarithmic over-
sampling factor. Indeed, the following theorem shows that O(n log n) samples suffice for
the covariance estimation of general distributions in R

n .
As in Section 4.7, we estimate the second-moment matrix � = E X XT by its sample

version

�m = 1

m

m∑
i=1

Xi XT
i .

If we assume that X has zero mean (which we often do for simplicity), � is the covariance
matrix of X and �m is the sample covariance matrix of X .

Theorem 5.6.1 (General covariance estimation) Let X be a random vector in R
n. Assume

that, for some K ≥ 1,

‖X‖2 ≤ K (E ‖X‖2
2)

1/2 almost surely. (5.16)

Then, for every positive integer m, we have

E ‖�m −�‖ ≤ C
(√K 2n log n

m
+ K 2n log n

m

)
‖�‖.

Proof Before we start proving the bound, let us pause to note that E ‖X‖2
2 = tr�. (Check

this in the same way as in the proof of Lemma 3.2.4.) So, the assumption (5.16) becomes

‖X‖2
2 ≤ K 2 tr� almost surely. (5.17)

Apply the expectation version of the matrix Bernstein inequality (Exercise 5.4.11) for the
sum of i.i.d. mean-zero random matrices Xi XT

i −� and get15

E ‖�m −�‖ = 1

m

∥∥∥∥ m∑
i=1

(Xi XT
i −�)

∥∥∥∥ � 1

m

(
σ
√

log n + M log n
)
, (5.18)

where

σ 2 =
∥∥∥∥ m∑

i=1

E(Xi XT
i −�)2

∥∥∥∥ = m
∥∥E(X XT −�)2

∥∥
15 As usual, the notation a � b hides absolute constant factors, i.e., it means that a ≤ Cb where C is an absolute

constant.
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and M is any number chosen so that

‖X XT −�‖ ≤ M almost surely.

To complete the proof, it remains to bound σ 2 and M .
Let us start with σ 2. Expanding the square, we find that16

E(X XT −�)2 = E(X XT)2 −�2 & E(X XT)2. (5.19)

Further, the assumption (5.17) gives

(X XT)2 & ‖X‖2 X XT & K 2 tr � X XT.

Taking expectations and recalling that E X XT = �, we obtain

E(X XT)2 & K 2 tr ��.

Substituting this bound into (5.19), we obtain a good bound on σ , namely

σ 2 ≤ K 2m tr � ‖�‖.
Bounding M is simple: indeed,

‖X XT −�‖ ≤ ‖X‖2
2 + ‖�‖ (by the triangle inequality)

≤ K 2 tr� + ‖�‖ (by assumption (5.17))

≤ 2K 2 tr� =: M (since ‖�‖ ≤ tr� and K ≥ 1).

Substituting our bounds for σ and M into (5.18), we get

E ‖�m −�‖ ≤ 1

m

(√
K 2m tr � ‖�‖√log n + 2K 2 tr � log n

)
.

To complete the proof, we use the inequality tr � ≤ n‖�‖ and simplify the bound. �

Remark 5.6.2 (Sample complexity) Theorem 5.6.1 implies that, for any ε ∈ (0, 1), we are
guaranteed to have covariance estimation with a good relative error,

E ‖�m −�‖ ≤ ε‖�‖, (5.20)

if we take a sample of size

m ∼ ε−2n log n.

Compare this with the sample complexity m ∼ ε−2n for sub-gaussian distributions (recall
Remark 4.7.2). We see that the price of dropping the sub-gaussian requirement turns out to
be very small – it is just a logarithmic oversampling factor.

Remark 5.6.3 (Lower-dimensional distributions) At the end of the proof of Theorem 5.6.1
we used the crude bound tr � ≤ n‖�‖. But we may choose not to do that, and instead get
a bound in terms of the intrinsic dimension

r = tr �

‖�‖ ,

16 Recall Definition 5.4.4 for the positive-semidefinite order & used here.
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namely

E ‖�m −�‖ ≤ C

(√
K 2r log n

m
+ K 2r log n

m

)
‖�‖.

In particular, this stronger bound implies that a sample of size

m ∼ ε−2r log n

is sufficient to estimate the covariance matrix as in (5.20). Note that we always have r ≤ n
(why?), so the new bound is always as good as the bound in Theorem 5.6.1. But for approx-
imately low-dimensional distributions – those that tend to concentrate near low-dimensional
subspaces – we may have r � n, and in this case estimate covariance using a much smaller
sample. We will return to this discussion in Section 7.6, where we introduce the notions of
stable dimension and stable rank.

Exercise 5.6.4 (Tail bound)�� Our argument also implies the following high-probability
guarantee. Check that, for any u ≥ 0, we have

‖�m −�‖ ≤ C
(√K 2r(log n + u)

m
+ K 2r(log n + u)

m

)
‖�‖

with probability at least 1 − 2e−u . Here r = tr �/‖�‖ ≤ n as before.

Exercise 5.6.5 (Necessity of boundedness assumption)��� Show that if the bounded-
ness assumption (5.16) is removed from Theorem 5.6.1, the conclusion may fail in general.

Exercise 5.6.6 (Sampling from frames)�� Consider an equal-norm tight frame17 (ui )
N
i=1

in R
n . State and prove a result that shows that a random sample of

m � n log n

elements of (ui ) forms a frame with good frame bounds (i.e., as close to tight as one wants).
The quality of the result should not depend on the frame size N .

Exercise 5.6.7 (Necessity of logarithmic oversampling)�� Show that, in general, log-
arithmic oversampling is necessary for covariance estimation. More precisely, give an
example of a distribution in R

n for which the bound (5.20) must fail for every ε < 1 unless
m � n log n. �

Exercise 5.6.8 (Random matrices with general independent rows)��� Prove a ver-
sion of Theorem 4.6.1 which holds for random matrices with arbitrary, not necessarily
sub-gaussian, distributions of rows.

17 The concept of frames was introduced in Section 3.3.4. By equal-norm frame we mean that ‖ui‖2 = ‖u j‖ for
all i and j .
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Let A be an m ×n matrix whose rows Ai are independent isotropic random vectors in R
n .

Assume that, for some L ≥ 0,

‖Ai‖2 ≤ K
√

n almost surely for every i. (5.21)

Prove that, for every t ≥ 1, one has
√

m − K t
√

n log n ≤ sn(A) ≤ s1(A) ≤ √
m + K t

√
n log n, (5.22)

with probability at least 1 − 2n−ct2
. �

5.7 Notes

There are several introductory texts about concentration, such as [11, Chapter 3], [146, 126,
125, 29], and an elementary tutorial [13].

The approach to concentration via isoperimetric inequalities that we presented in Sec-
tion 5.1 was first discovered by P. Lévy, to whom Theorems 5.1.5 and 5.1.4 are due (see
[89]).

When V. Milman realized the power and generality of Lévy’s approach in the 1970s,
this led to far-reaching extensions of the concentration of measure principle, some of
which we surveyed in Section 5.2. To keep this book concise, we have left out some
important approaches to concentration, including the bounded differences inequality, mar-
tingale, semigroup, and transportation methods, the Poincaré inequality, the log-Sobolev
inequality, hypercontractivity, Stein’s method, and Talagrand’s concentration inequalities;
see [206, 125, 29]. Most of the material we covered in Sections 5.1 and 5.2 can be found in
[11, Chapter 3], [146, 125].

The Gaussian isoperimetric inequality (Theorem 5.2.1) was first proved by V. N. Sudakov
and B. S. Cirelson (Tsirelson) and independently by C. Borell [27]. There are several other
proofs of the Gaussian isoperimetric inequality; see [23, 12, 15]. There is also an elementary
derivation of Gaussian concentration (Theorem 5.2.2) from Gaussian interpolation instead
of from isoperimetry; see [163].

The concentration result for the Hamming cube (Theorem 5.2.5) is a consequence of
Harper’s theorem, which is an isoperimetric inequality for the Hamming cube [96]; see
[24]. Concentration for the symmetric group (Theorem 5.2.6) is due to B. Maurey [135].
Both Theorems 5.2.5 and 5.2.6 can be also proved using martingale methods; see [146,
Chapter 7].

The proof of concentration for Riemannian manifolds with positive curvature can be
found e.g. in [125, Proposition 2.17]. Many interesting special cases follow from this general
result, including Theorem 5.2.7 for the special orthogonal group [146, Section 6.5.1] and,
consequently, Theorem 5.2.9 for the Grassmannian [146, Section 6.7.2]. The construction of
the Haar measure that we mentioned in Remark 5.2.8 can be found e.g. in [146, Chapter 1]
and [74, Chapter 2]; the survey [143] discusses numerically stable ways to generate random
unitary matrices.

Concentration for the continuous cube (Theorem 5.2.10) can be found in [125, Propo-
sition 2.8], and concentration for the Euclidean ball (Theorem 5.2.13) in [125, Proposi-
tion 2.9]. Theorem 5.2.15 on concentration for exponential densities is borrowed from
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[125, Proposition 2.18]. The original proof of Talagrand’s concentration inequality (The-
orem 5.2.16) can be found in [192, Theorem 6.6] and [125, Corollary 4.10].

The original formulation of the Johnson–Lindenstrauss lemma is from [107]. For vari-
ous versions of this lemma, related results, applications, and bibliographic notes, see [134,
Section 15.2]. The condition m � ε−2 log N is known to be optimal [120].

The approach to matrix concentration inequalities followed in Section 5.4 originates in the
work of R. Ahlswede and A. Winter [4]. A short proof of the Golden–Thompson inequality
(Theorem 5.4.7), a result on which the Ahlswede–Winter approach rests, can be found in
e.g. [20, Theorem 9.3.7] and [215]. While the work of R. Ahlswede and A. Winter was
motivated by problems of quantum information theory, the usefulness of their approach was
gradually understood in other areas as well; the early work includes [219, 214, 90, 155].

The original argument of Ahlswede and Winter yields a version of the matrix Bern-
stein inequality that is somewhat weaker than Theorem 5.4.1, namely with

∑N
i=1 ‖E X2

i ‖
instead of σ . This quantity was later tightened by R. Oliveira [156] by a modification of
the Ahlswede–Winter method and independently by J. Tropp [200] using Lieb’s inequality
(Theorem 5.4.8) instead of that of Golden and Thompson. In this book, we mainly follow
Tropp’s proof of Theorem 5.4.1. The book [201] presents a self-contained proof of Lieb’s
inequality (Theorem 5.4.8), the matrix Hoeffding inequality from Exercise 5.4.12, the matrix
Chernoff inequality, and much more. Owing to Tropp’s contributions, there now exist matrix
analogs of almost all the classical scalar concentration results [201]. The survey [161] dis-
cusses several other useful trace inequalities and outlines proofs of the Golden–Thompson
inequality (in Section 3) and Lieb’s inequality (embedded in the proof of Proposition 7). The
book [76] also contains a detailed exposition of the matrix Bernstein inequality and some of
its variants (Section 8.5) and a proof of Lieb’s inequality (Appendix B.6).

Instead of using the matrix Bernstein inequality one can deduce the result of Exer-
cise 5.4.11 from Gaussian integration by parts and a trace inequality [203]. The matrix
Khintchine inequality from Exercise 5.4.13 can be deduced alternatively from the non-
commutative Khintchine inequality, which is due to F. Lust-Piquard [130]; see also
[131, 39, 40, 168]. This derivation was first observed and used by M. Rudelson [171], who
proved a version of Exercise 5.4.13.

For the problem of community detection in networks discussed in Section 5.5, see the
notes at the end of Chapter 4. The approach to concentration in random graphs using the
matrix Bernstein inequality outlined in Section 5.5 was first proposed by R. Oliveira [156].

In Section 5.6 we discussed covariance estimation for general high-dimensional distribu-
tions, following [216]. An alternative and earlier approach to covariance estimation, which
gives similar results, relies on the matrix Khintchine inequalities (also known as the non-
commutative Khintchine inequalities); it was developed earlier by M. Rudelson [171]. For
more references on covariance estimation problem, see the notes at the end of Chapter 4.
The result of Exercise 5.6.8 is from [216, Section 5.4.2].
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Quadratic Forms, Symmetrization, and
Contraction

In this chapter we introduce a number of basic tools of high-dimensional probability: decou-
pling in Section 6.1, the concentration of quadratic forms (the Hanson–Wright inequality)
in Section 6.2, symmetrization in Section 6.4, and contraction in Section 6.7.

We illustrate these tools in a number of applications. In Section 6.3, we use the Hanson–
Wright inequality to establish concentration for anisotropic random vectors (thus extending
Theorem 3.1.1) and for the distances between random vectors and subspaces. In Section 6.5
we combine the matrix Bernstein inequality with symmetrization arguments to analyze
the operator norm of a random matrix; we show that it is almost equivalent to the largest
Euclidean norm of the rows and columns. This result is used in Section 6.6 for the problem
of matrix completion, where one is shown a few randomly chosen entries of a given matrix
and is asked to fill in the missing entries.

6.1 Decoupling

At the beginning of this book, we made a thorough study of independent random variables
of the type

n∑
i=1

ai Xi , (6.1)

where X1, . . . , Xn are independent random variables and the ai are fixed coefficients. In this
section we study quadratic forms of the type

n∑
i, j=1

ai j Xi X j = XT AX = 〈X, AX〉 , (6.2)

where A = (ai j ) is an n×n matrix of coefficients and X = (X1, . . . , Xn) is a random vector
with independent coordinates. Such a quadratic form is called a chaos in probability theory.

Computing the expectation of a chaos is easy. For simplicity, let us assume that the Xi

have zero means and unit variances. Then

E XT AX =
n∑

i, j=1

ai j E Xi X j =
n∑

i=1

aii = tr A.

It is harder to establish the concentration of a chaos. The main difficulty is that the terms
of the sum in (6.2) are not independent. This difficulty can be overcome by the decoupling
technique, which we will study now.

127
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The purpose of decoupling is to replace the quadratic form (6.2) with the bilinear form
n∑

i, j=1

ai j Xi X ′
j = XT AX ′ = 〈

AX, X ′〉 ,
where X ′ = (X ′

1, . . . , X ′
n) is a random vector which is independent of X yet has the same

distribution as X . Such an X ′ is called an independent copy of X . The point here is that
the bilinear form is easier to analyze than the quadratic form, since it is linear rather than
quadratic in X . Indeed, if we condition on X ′ we may treat the bilinear form as a sum of
independent random variables

n∑
i=1

( n∑
j=1

ai j X ′
j

)
Xi =

n∑
i=1

ci Xi

with fixed coefficients ci , much as we have treated the sums (6.1).

Theorem 6.1.1 (Decoupling) Let A be an n × n diagonal-free matrix (i.e., the diagonal
entries of A equal zero). Let X = (X1, . . . , Xn) be a random vector with independent
mean-zero coordinates Xi . Then, for every convex function F : R → R, one has

E F(XT AX) ≤ E F(4XT AX ′) (6.3)

where X ′ is an independent copy of X.

The proof will be based on the following observation.

Lemma 6.1.2 Let Y and Z be independent random variables such that E Z = 0. Then, for
every convex function F, one has

E F(Y ) ≤ E F(Y + Z).

Proof This is a simple consequence of Jensen’s inequality. First let us fix an arbitrary y ∈ R

and use E Z = 0 to get

F(y) = F(y + E Z) = F(E(y + Z)) ≤ E F(y + Z).

Now choose y = Y and take expectations of both sides to complete the proof. (To check
whether you have understood this argument, find where the independence of Y and Z was
used!) �
Proof of Theorem 6.1.1 Here is what our proof will look like in a nutshell. First, we replace
the chaos XT AX =∑

i, j ai j Xi X j by the “partial chaos”∑
(i, j)∈I×I c

ai j Xi X j ,

where the subset of indices I ⊂ {1, . . . , n} is chosen by random sampling. The advantage
of partial chaos is that the summation is done over disjoint sets for i and j . Thus one can
automatically replace Xj by X ′

j without changing the distribution. Finally, we complete the

partial chaos to the full sum XT AX ′ =∑
i, j ai j Xi X ′

j using Lemma 6.1.2.
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Now we pass to a detailed proof. To randomly select a subset of indices I , let us consider
selectors δ1, . . . , δn ∈ {0, 1}, which are independent Bernoulli random variables with P{δi =
0} = P{δi = 1} = 1/2. Define

I := {i : δi = 1}.
Next we condition on X . Since by assumption aii = 0 and

E δi (1 − δ j ) = 1

2
× 1

2
= 1

4
for all i �= j,

we may express the chaos as

XT AX =
∑
i �= j

ai j Xi X j = 4 Eδ

∑
i �= j

δi (1 − δ j )ai j Xi X j = 4 EI

∑
(i, j)∈I×I c

ai j Xi X j .

(The subscripts δ and I are intended to remind us about the sources of randomness used in
taking these conditional expectations. Since we have fixed X , the conditional expectations
are over the random selectors δ = (δ1, . . . , δn) or, equivalently, over the random set of
indices I . We will continue to use similar notation later.)

Apply the function F to both sides and take expectations over X . Using Jensen’s and
Fubini’s inequalities, we obtain

EX F(XT AX) ≤ EI EX F

(
4

∑
(i, j)∈I×I c

ai j Xi X j

)
.

It follows that there exists a realization of a random subset I such that

EX F(XT AX) ≤ EX F

(
4

∑
(i, j)∈I×I c

ai j Xi X j

)
.

Fix such a realization of I until the end of the proof (and drop the subscript X on the expec-
tation for convenience). Since the random variables (Xi )i∈I are independent of (X j ) j∈I c ,
the distribution of the sum on the right-hand side will not change if we replace X j by X ′

j .
So we get

E F(XT AX) ≤ E F

(
4

∑
(i, j)∈I×I c

ai j Xi X ′
j

)
.

It remains to complete the sum on the right-hand side to a sum over all pairs of indices.
In other words, we want to show that

E F

(
4

∑
(i, j)∈I×I c

ai j Xi X ′
j

)
≤ E F

(
4

∑
(i, j)∈[n]×[n]

ai j Xi X ′
j

)
, (6.4)

where we use the notation [n] = {1, . . . , n}. To do this, we decompose the sum on the
right-hand side as follows: ∑

(i, j)∈[n]×[n]
ai j Xi X ′

j = Y + Z1 + Z2,
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where

Y =
∑

(i, j)∈I×I c

ai j Xi X ′
j , Z1 =

∑
(i, j)∈I×I

ai j Xi X ′
j , Z2 =

∑
(i, j)∈I c×[n]

ai j Xi X ′
j .

Now condition on all random variables except (X ′
j ) j∈I and (Xi )i∈I c . This fixes Y , while Z1

and Z2 are random variables with zero conditional expectations (check!). Use Lemma 6.1.2
to conclude that the conditional expectation, which we denote E

′, satisfies

F(4Y ) ≤ E
′ F(4Y + 4Z1 + 4Z2).

Finally, taking the expectation of both sides over all other random variables, we conclude
that

E F(4Y ) ≤ E F(4Y + 4Z1 + 4Z2).

This proves (6.4) and finishes the argument. �

Remark 6.1.3 We have actually proved a slightly stronger version of the decoupling
inequality, in which A need not be diagonal-free. Thus, for any square matrix A = (ai j )

we showed that

E F

( ∑
i, j : i �= j

ai j Xi X j

)
≤ E F

(
4
∑
i, j

ai j Xi X ′
j

)
.

Exercise 6.1.4 (Decoupling in Hilbert spaces)� Prove the following generalization of
Theorem 6.1.1. Let A = (ai j ) be an n×n matrix. Let X1, . . . , Xn be independent mean-zero
random vectors in some Hilbert space. Show that, for every convex function F : R → R,
one has

E F

( ∑
i, j : i �= j

ai j
〈
Xi , X j

〉 ) ≤ E F

(
4
∑
i, j

ai j
〈
Xi , X ′

j

〉)
,

where (X ′
i ) is an independent copy of (Xi ).

Exercise 6.1.5 (Decoupling in normed spaces)�� Prove the following alternative gen-
eralization of Theorem 6.1.1. Let (ui j )

n
i, j=1 be fixed vectors in some normed space. Let

X1, . . . , Xn be independent mean-zero random variables. Show that, for every convex
function F , one has

E F

(∥∥∥∥ ∑
i, j : i �= j

Xi X j ui j

∥∥∥∥) ≤ E F

(
4

∥∥∥∥∑
i, j

Xi X ′
j ui j

∥∥∥∥).
where (X ′

i ) is an independent copy of (Xi ).

6.2 Hanson–Wright Inequality

We now prove a general concentration inequality for a chaos. It can be viewed as a chaos
version of Berstein’s inequality.
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Theorem 6.2.1 (Hanson–Wright inequality) Let X = (X1, . . . , Xn) ∈ R
n be a random

vector with independent mean zero sub-gaussian coordinates. Let A be an n × n matrix.
Then, for every t ≥ 0, we have

P

{
|XT AX − E XT AX | ≥ t

}
≤ 2 exp

(
− c min

( t2

K 4‖A‖2
F

,
t

K 2‖A‖
))
,

where K = maxi ‖Xi‖ψ2 .

As many times before, our proof of the Hanson–Wright inequality will be based on bound-
ing the moment generating function of XT AX . We use decoupling to replace this chaos by
XT AX ′. Next, we bound the MGF of the decoupled chaos in the easier, Gaussian, case where
X ∼ N (0, In). Finally, we extend the bound to general distributions using a replacement
trick.

Lemma 6.2.2 (MGF of Gaussian chaos) Let X, X ′ ∼ N (0, In) be independent and let
A = (ai j ) be an n × n matrix. Then

E exp(λXT AX ′) ≤ exp(Cλ2‖A‖2
F )

for all λ satisfying |λ| ≤ c/‖A‖.

Proof First let us use rotation invariance to reduce to the case where the matrix A is
diagonal. Expressing A through its singular value decomposition

A =
∑

i

si uiv
T
i ,

we can write

XT AX ′ =
∑

i

si 〈ui , X〉 〈vi , X ′〉 .
By the rotation invariance of the normal distribution, g := (〈ui , X〉)ni=1 and g′ :=
(
〈
vi , X ′〉)ni=1 are independent standard normal random vectors in R

n (recall Exercise 3.3.3).
In other words, we represented the chaos as

XT AX ′ =
∑

i

si gi g
′
i ,

where g, g′ ∼ N (0, In) are independent and the si are the singular values of A. This is a
sum of independent random variables, which is easy to handle. Indeed, independence gives

E exp(λXT AX ′) =
∏

i

E exp(λsi gi g
′
i ). (6.5)

Now, for each i , we have

E exp(4λsi gi g
′
i ) = E exp(λ2s2

i g2
i /2) ≤ exp(Cλ2s2

i ) provided that λ2s2
i ≤ c.

To get the first identity here, condition on gi and use the formula (2.12) for the MGF of the
normal random variable g′

i . At the second step, we used part (iii) of Proposition 2.7.1 for the
sub-exponential random variable g2

i .
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Substituting this bound into (6.5), we obtain

E exp(λXT AX ′) ≤ exp
(

Cλ2
∑

i

s2
i

)
provided that λ2 ≤ c

maxi s2
i

.

It remains to recall that the si are the singular values of A, so
∑

i s2
i = ‖A‖2

F and maxi si =
‖A‖. The lemma is proved. �

To extend Lemma 6.2.2 to general distributions, we use a replacement trick to compare
the MGFs of general and Gaussian types of chaos.

Lemma 6.2.3 (Comparison) Consider independent mean-zero sub-gaussian random vec-
tors X, X ′ in R

n with ‖X‖ψ2 ≤ K and ‖X ′‖ψ2 ≤ K . Consider also independent random
vectors g, g′ ∼ N (0, In). Let A be an n × n matrix. Then

E exp(λXT AX ′) ≤ E exp(C K 2λgT Ag′)

for any λ ∈ R.

Proof Condition on X ′ and take the expectation over X , which we denote EX . Then the
random variable XT AX ′ = 〈

X, AX ′〉 is (conditionally) sub-gaussian, and its sub-gaussian
norm1 is bounded by K‖AX ′‖2. Then the bound (2.16) on the MGF of sub-gaussian random
variables gives

EX exp(λXT AX ′) ≤ exp(Cλ2K 2‖AX ′‖2
2), λ ∈ R. (6.6)

Compare this with the formula (2.12) for the MGF of the normal distribution. Applied to the
normal random variable gT AX ′ = 〈

g, AX ′〉 (still conditioning on X ′), it gives

Eg exp(μgT AX ′) = exp(μ2K 2‖AX ′‖2
2/2), μ ∈ R. (6.7)

Choosing μ = √
2Cλ, we can match the right-hand sides of (6.6) and (6.7) and thus get

EX exp(λXT AX ′) ≤ Eg exp(
√

2CλgT AX ′).

Taking the expectation over X ′ of both sides, we see that we have successfully replaced X
by g in the chaos, and we have paid a factor

√
2C . Going through a similar argument again,

this time for X ′, we can now replace X ′ with g′ and pay an extra factor
√

2C . (Exercise 6.2.4
below asks you to carefully write down the details of this step.) The proof of the lemma is
complete. �

Exercise 6.2.4 (Comparison)�� Complete the proof of Lemma 6.2.3. Replace X ′ by g′;
write down all the details carefully.

Proof of Theorem 6.2.1 Without loss of generality, we may assume that K = 1. (Why?)
As usual, it is enough to bound the one-sided tail:

p := P

{
XT AX − E XT AX ≥ t

}
.

1 Recall Definition 3.4.1.
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Indeed, once we have a bound on this upper tail, a similar bound will hold for the lower
tail as well (since one can replace A with −A). By combining the two tails, we can then
complete the proof.

In terms of the entries of A = (ai j )
n
i, j=1, we have

XT AX =
∑
i, j

ai j Xi X j and E XT AX =
∑

i

aii E X2
i ,

where we have used the mean-zero assumption and independence. So we can express the
deviation as

XT AX − E XT AX =
∑

i

aii (X
2
i − E X2

i )+
∑

i, j : i �= j

ai j Xi X j .

The problem reduces to estimating the diagonal and off-diagonal sums:

p ≤ P

{∑
i

aii (X
2
i − E X2

i ) ≥ t/2

}
+ P

{ ∑
i, j : i �= j

ai j Xi X j ≥ t/2

}
=: p1 + p2.

Step 1: diagonal sum. Since the Xi are independent sub-gaussian random variables, the
random variables X2

i − E X2
i are independent, mean-zero, and sub-exponential. Thus

‖X2
i − E X2

i ‖ψ1 � ‖X2
i ‖ψ1 � ‖Xi‖2

ψ2
� 1.

(This follows from the centering exercise 2.7.10 and Lemma 2.7.6.) Then Bernstein’s
inequality (Theorem 2.8.2) gives

p1 ≤ exp
(
− c min

( t2∑
i a2

i i

,
t

maxi |aii |
))

≤ exp
(
− c min

( t2

‖A‖2
F

,
t

‖A‖
))
.

Step 2: off-diagonal sum. It remains to bound the off-diagonal sum

S :=
∑

i, j : i �= j

ai j Xi X j .

Let λ > 0 be a parameter whose value we will determine later. By Chebyshev’s inequality,
we have

p2 = P
{

S ≥ t/2
} = P

{
λS ≥ λt/2

} ≤ exp(−λt/2)E exp(λS). (6.8)

Now,

E exp(λS) ≤ E exp(4λXT AX ′) (by decoupling – see Remark 6.1.3)

≤ E exp(C1λgT Ag′) (by the comparison lemma 6.2.3)

≤ exp(Cλ2‖A‖2
F ) (by Lemma 6.2.2 for Gaussian chaos),

provided that |λ| ≤ c/‖A‖. Substituting this bound into (6.8), we obtain

p2 ≤ exp
(− λt/2 + Cλ2‖A‖2

F

)
.

Optimizing over 0 ≤ λ ≤ c/‖A‖, we conclude that

p2 ≤ exp
(
− c min

( t2

‖A‖2
F

,
t

‖A‖
))
.

(Check!)
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Summarizing, we have obtained the desired bounds for the probabilities of diagonal devi-
ation p1 and off-diagonal deviation p2. Putting them together, we complete the proof of
Theorem 6.2.1. �

Exercise 6.2.5��� Give an alternative proof of the Hanson–Wright inequality for
normal distributions, without separating the diagonal part or decoupling. �

Exercise 6.2.6��� Consider a mean-zero sub-gaussian random vector X in R
n with

‖X‖ψ2 ≤ K . Let B be an m × n matrix. Show that

E exp(λ2‖B X‖2
2) ≤ exp(C K 2λ2‖B‖2

F ) provided that |λ| ≤ c

‖B‖ .
To prove this bound, replace X with a Gaussian random vector g ∼ N (0, In) along the
following lines:

(a) Prove the comparison inequality

E exp(λ2‖B X‖2
2) ≤ E exp(C K 2λ2‖BTg‖2

2)

for every λ ∈ R. �
(b) Check that

E exp(λ2‖BTg‖2
2) ≤ exp(Cλ2‖B‖2

F ),

provided that |λ| ≤ c/‖B‖. �

Exercise 6.2.7 (Higher-dimensional Hanson–Wright inequality)��� Let X1, . . . , Xn be
independent mean-zero sub-gaussian random vectors in R

d . Let A = (ai j ) be an n × n
matrix. Prove that, for every t ≥ 0, we have

P

{∣∣∣∣ n∑
i, j : i �= j

ai j
〈
Xi , X j

〉∣∣∣∣ ≥ t

}
≤ 2 exp

(
− c min

( t2

K 4d‖A‖2
F

,
t

K 2‖A‖
))

where K = maxi ‖Xi‖ψ2 . �

6.3 Concentration for Anisotropic Random Vectors

As a consequence of the Hanson–Wright inequality, we can now obtain the concentration
for anisotropic random vectors, which have the form B X where B is a fixed matrix and X
is an isotropic random vector.

Exercise 6.3.1� Let B be an m × n matrix and X be an isotropic random vector in R
n .

Check that

E ‖B X‖2
2 = ‖B‖2

F .

Theorem 6.3.2 (Concentration for random vectors) Let B be an m × n matrix, and let
X = (X1, . . . , Xn) ∈ R

n be a random vector with independent mean-zero unit-variance
sub-gaussian coordinates. Then
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∥∥∥
ψ2

≤ C K 2‖B‖,
where K = maxi ‖Xi‖ψ2 .

There is an important partial case of this theorem when B = In . In this case, the inequality
we obtain is ∥∥∥‖X‖2 −√

n
∥∥∥
ψ2

≤ C K 2,

which we proved in Theorem 3.1.1.

Proof of Theorem 6.3.2. For simplicity we assume that K ≥ 1. (Argue that we can make
this assumption.) We apply the Hanson–Wright inequality (Theorem 6.2.1) for the matrix
A := BT B. Let us express the main terms appearing in the Hanson–Wright inequality in
terms of B. We have

XT AX = ‖B X‖2
2, E XT AX = ‖B‖2

F ,

and

‖A‖ = ‖B‖2, ‖BT B‖F ≤ ‖BT‖‖B‖F = ‖B‖‖B‖F .

(You will be asked to check the inequality in Exercise 6.3.3.) Thus, we have for every u ≥ 0
that

P

{∣∣‖B X‖2
2 − ‖B‖2

F

∣∣ ≥ u
}
≤ 2 exp

(
− c

K 4
min

( u2

‖B‖2‖B‖2
F

,
u

‖B‖2

))
.

(Here we have used K 4 ≥ K 2 since we assume that K ≥ 1.)
Substitute the value u = ε‖B‖2

F for ε ≥ 0 and obtain

P

{∣∣‖B X‖2
2 − ‖B‖2

F

∣∣ ≥ ε‖B‖2
F

}
≤ 2 exp

(
− c min(ε2, ε)

‖B‖2
F

K 4‖B‖2

)
.

This is a good concentration inequality for ‖B X‖2
2, from which we are going to deduce

a concentration inequality for ‖X‖2. Denote δ2 = min(ε2, ε), or equivalently set ε =
max(δ, δ2). Observe that the following implication holds:

If
∣∣‖B X‖2 − ‖B‖F

∣∣ ≥ δ‖B‖F then
∣∣‖B X‖2

2 − ‖B‖2
F

∣∣ ≥ ε‖B‖2
F .

(Check it! This is the same elementary inequality as (3.2), once we divide through by ‖B‖2
F .)

Thus we get

P
{∣∣‖B X‖2 − ‖B‖F

∣∣ ≥ δ‖B‖F
} ≤ 2 exp

(
− cδ2 ‖B‖2

F

K 4‖B‖2

)
.

Changing variables to t = δ‖B‖F , we obtain

P
{∣∣‖B X‖2 − ‖B‖F

∣∣ > t
} ≤ 2 exp

(
− ct2

K 4‖B‖2

)
.

Since this inequality holds for all t ≥ 0, the conclusion of the theorem follows from the
definition of sub-gaussian distributions. �
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Exercise 6.3.3�� Let D be a k × m matrix and B be an m × n matrix. Prove that

‖DB‖F ≤ ‖D‖‖B‖F .

Exercise 6.3.4 (Distance to a subspace)�� Let E be a subspace of R
n of dimension

d. Consider a random vector X = (X1, . . . , Xn) ∈ R
n with independent mean-zero unit-

variance sub-gaussian coordinates.

(a) Check that (
E dist(X, E)2

)1/2 = √
n − d.

(b) Prove that, for any t ≥ 0, the distance concentrates nicely:

P

{∣∣d(X, E)−√
n − d

∣∣ > t
}
≤ 2 exp(−ct2/K 4),

where K = maxi ‖Xi‖ψ2 .

Let us prove a weaker version of Theorem 6.3.2 without assuming independence of the
coordinates of X :

Exercise 6.3.5 (Tails of sub-gaussian random vectors)�� Let B be an m × n matrix, and
let X be a mean-zero sub-gaussian random vector in R

n with ‖X‖ψ2 ≤ K . Prove that, for
any t ≥ 0, we have

P
{‖B X‖2 ≥ C K‖B‖F + t

} ≤ exp
(
− ct2

K 2‖B‖2

)
. �

The following exercise explains why the concentration inequality must be weaker than in
Theorem 3.1.1 if we do not assume independence of the coordinates of X .

Exercise 6.3.6�� Show that there exists a mean-zero isotropic sub-gaussian random
vector X in R

n such that

P
{‖X‖2 = 0

} = P
{‖X‖2 ≥ 1.4

√
n
} = 1

2
.

In other words, ‖X‖2 does not concentrate near
√

n.

6.4 Symmetrization

A random variable X is symmetric if X and −X have the same distribution. A simple exam-
ple of a symmetric random variable is the symmetric Bernoulli, which takes values −1 and
1 with probabilities 1/2 each:

P
{
ξ = 1

} = P
{
ξ = −1

} = 1

2
.

A normal mean-zero random variable X ∼ N (0, σ 2) is also symmetric, while Poisson or
exponential random variables are not.

In this section we develop the simple and useful technique of symmetrization. It allows
one to reduce arbitrary distributions to symmetric distributions and in some cases even to
the symmetric Bernoulli distribution.
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Exercise 6.4.1 (Constructing symmetric distributions)�� Let X be a random variable
and ξ be an independent symmetric Bernoulli random variable.

(a) Check that ξ X and ξ |X | are symmetric random variables and that they have the same
distribution.

(b) If X is symmetric, show that the distributions of ξ X and ξ |X | are the same as that of X .
(c) Let X ′ be an independent copy of X . Check that X − X ′ is symmetric.

Throughout this section, we denote by

ε1, ε2, ε3, . . .

a sequence of independent symmetric Bernoulli random variables. We assume that they
are (jointly) independent not only of each other but also of any other random variables in
question.

Lemma 6.4.2 (Symmetrization) Let X1, . . . , X N be independent mean-zero random
vectors in a normed space. Then

1

2
E

∥∥∥∥ N∑
i=1

εi Xi

∥∥∥∥ ≤ E

∥∥∥∥ N∑
i=1

Xi

∥∥∥∥ ≤ 2 E

∥∥∥∥ N∑
i=1

εi Xi

∥∥∥∥.
The purpose of this lemma is to let us replace general random variables Xi by the

symmetric random variables εi Xi .

Proof Upper bound. Let (X ′
i ) be an independent copy of the random vectors (Xi ). Since∑

i X ′
i has zero mean, we have

p := E

∥∥∥∥∑
i

Xi

∥∥∥∥ ≤ E

∥∥∥∥∑
i

Xi −
∑

i

X ′
i

∥∥∥∥ = E

∥∥∥∥∑
i

(Xi − X ′
i )

∥∥∥∥.
The inequality here is an application of the following version of Lemma 6.1.2 for
independent random vectors Y and Z :

if E Z = 0 then E ‖Y‖ ≤ E ‖Y + Z‖. (6.9)

(Check it!)
Next, since Xi − X ′

i are symmetric random vectors, they have the same distribution as
εi (Xi − X ′

i ) (see Exercise 6.4.1). Then

p ≤ E

∥∥∥∥∑
i

εi (Xi − X ′
i )

∥∥∥∥
≤ E

∥∥∥∥∑
i

εi Xi

∥∥∥∥+ E

∥∥∥∥∑
i

εi X ′
i

∥∥∥∥ (by the triangle inequality)

= 2 E

∥∥∥∥∑
i

εi Xi

∥∥∥∥ (since the two terms are identically distributed).
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Lower bound. The argument here is similar:

E

∥∥∥∥∑
i

εi Xi

∥∥∥∥ ≤ E

∥∥∥∥∑
i

εi (Xi − X ′
i )

∥∥∥∥ (condition on εi and use (6.9))

= E

∥∥∥∥∑
i

(Xi − X ′
i )

∥∥∥∥ (the distribution is the same)

≤ E

∥∥∥∥∑
i

Xi

∥∥∥∥+ E

∥∥∥∥∑
i

X ′
i

∥∥∥∥ (by the triangle inequality)

≤ 2 E

∥∥∥∥∑
i

Xi

∥∥∥∥ (the distributions are identical).

This completes the proof of the symmetrization lemma. �

Exercise 6.4.3�� Where in this argument did we use the independence of the random
variables Xi ? Is the mean-zero assumption needed for both the upper and lower bounds?

Exercise 6.4.4 (Removing the mean-zero assumption)��

(a) Prove the following generalization of the symmetrization lemma 6.4.2 for random
vectors Xi that do not necessarily have zero means:

E

∥∥∥∥ N∑
i=1

Xi −
N∑

i=1

E Xi

∥∥∥∥ ≤ 2 E

∥∥∥∥ N∑
i=1

εi Xi

∥∥∥∥.
(b) Argue that there cannot be any nontrivial reverse inequality.

Exercise 6.4.5� Prove the following generalization of the symmetrization lemma 6.4.2.
Let F : R+ → R be an increasing, convex, function. Show that the same inequalities as in
Lemma 6.4.2 hold if the norm ‖ · ‖ is replaced with F(‖ · ‖), namely

E F

(
1

2

∥∥∥∥ N∑
i=1

εi Xi

∥∥∥∥) ≤ E F

(∥∥∥∥ N∑
i=1

Xi

∥∥∥∥) ≤ E F

(
2

∥∥∥∥ N∑
i=1

εi Xi

∥∥∥∥).
Exercise 6.4.6�� Let X1, . . . , X N be independent random variables. Show that their
sum

∑
i Xi is sub-gaussian if and only if

∑
i εi Xi is sub-gaussian, and

c

∥∥∥∥ N∑
i=1

εi Xi

∥∥∥∥
ψ2

≤
∥∥∥∥ N∑

i=1

Xi

∥∥∥∥
ψ2

≤ C

∥∥∥∥ N∑
i=1

εi Xi

∥∥∥∥
ψ2

. �

6.5 Random Matrices With Non-I.I.D. Entries

A typical use of symmetrization technique consists of two steps. First, general random vari-
ables Xi are replaced by symmetric random variables εi Xi . Next, we condition on Xi , which
leaves the entire randomness with εi . This reduces the problem to one involving symmetric
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Bernoulli random variables εi , which are often simpler to deal with. We illustrate this tech-
nique by proving a general bound on the norms of random matrices with independent but
not identically distributed entries.

Theorem 6.5.1 (Norms of random matrices with non-i.i.d. entries) Let A be an n × n
symmetric random matrix whose entries on and above the diagonal are independent mean-
zero random variables. Then

E ‖A‖ ≤ C
√

log n E max
i

‖Ai‖2,

where the Ai denote the rows of A.

Before we pass to the proof of this theorem, let us note that it is sharp up to the logarithmic
factor. Indeed, since the operator norm of any matrix is bounded below by the Euclidean
norms of the rows (why?), we have trivially

E ‖A‖ ≥ E max
i

‖Ai‖2.

Note also that, unlike the results we have seen before, Theorem 6.5.1 does not require any
moment assumptions on the entries of A.

Proof of Theorem 6.5.1 Our argument will be based on a combination of symmetrization
with the matrix Khintchine inequality (Exercise 5.4.13).

First decompose A into a sum of independent mean-zero symmetric random matrices Zi j ,
each of which contains a pair of symmetric entries of A (or one diagonal entry). Precisely,
we have

A =
∑
i≤ j

Zi j , where Zi j :=
{

Ai j (ei eT
j + e j eT

i ), i < j,

Aii ei eT
i , i = j,

and where (ei ) denotes the canonical basis of R
n .

Apply the symmetrization lemma 6.4.2, which gives

E ‖A‖ = E

∥∥∥∑
i≤ j

Zi j

∥∥∥ ≤ 2 E

∥∥∥∑
i≤ j

εi j Zi j

∥∥∥, (6.10)

where (εi j ) are independent symmetric Bernoulli random variables.
Condition on (Zi j ), apply the matrix Khintchine inequality (Exercise 5.4.13), and then

take the expectation with respect to (Zi j ). This gives

E

∥∥∥∑
i≤ j

εi j Zi j

∥∥∥ ≤ C
√

log n E

(∥∥∥∑
i≤ j

Z2
i j

∥∥∥)1/2
. (6.11)

Now, a quick check verifies that each Z2
i j is a diagonal matrix; more precisely,

Z2
i j =

{
A2

i j (ei eT
i + e j eT

j ), i < j

A2
i i ei eT

i , i = j.

Summing up, we get ∑
i≤ j

Z2
i j =

n∑
i=1

( n∑
j=1

A2
i j

)
ei e

T
i =

n∑
i=1

‖Ai‖2
2ei e

T
i .
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(Check the matrix inequality carefully!) In other words,
∑

i≤ j Z2
i j is a diagonal matrix, and

its diagonal entries are non-negative numbers bounded by 2‖Ai‖2
2. The operator norm of a

diagonal matrix is the maximal absolute value of its entries (why?); thus∥∥∥∑
i≤ j

Z2
i j

∥∥∥ = 2 max
i

‖Ai‖2
2.

Substitute this into (6.11) and then into (6.10) and so complete the proof. �

In the following exercise we derive a version of Theorem 6.5.1 for non-symmetric
rectangular matrices using the so-called “Hermitization trick”.

Exercise 6.5.2 (Rectangular matrices)��� Let A be an m × n random matrix whose
entries are independent mean-zero random variables. Show that

E ‖A‖ ≤ C
√

log(m + n)
(

E max
i

‖Ai‖2 + E max
j

‖A j‖2

)
where Ai and A j denote the rows and columns of A, respectively. �

Exercise 6.5.3 (Sharpness)� Show that the result of Exercise 6.5.2 is sharp up to the
logarithmic factor, i.e., one always has

E ‖A‖ ≥ c
(
E max

i
‖Ai‖2 + E max

j
‖A j‖2

)
.

Exercise 6.5.4 (Sharpness)�� Show that the logarithmic factor in Theorem 6.5.1 is
needed: construct a random matrix A satisfying the assumptions of the theorem and for
which

E ‖A‖ ≥ c
√

log n E max
i

‖Ai‖2.

6.6 Application: Matrix Completion

A remarkable application of the methods we have studied is to the problem of matrix com-
pletion. Suppose we are shown a few entries of a matrix; can we guess the other entries? We
obviously cannot unless we know something else about the matrix. In this section we show
that if the matrix has low rank then matrix completion is possible.

To describe the problem mathematically, consider a fixed n × n matrix X with

rank(X) = r

where r � n. Suppose we are shown a few randomly chosen entries of X . Each entry Xi j

is revealed to us independently with some probability p ∈ (0, 1) or is hidden from us with
probability 1 − p. In other words, assume that we are shown the n × n matrix Y whose
entries are

Yi j := δi j Xi j where the δi j ∼ Ber(p) are independent.

These δi j are selectors – Bernoulli random variables that indicate whether an entry is
revealed to us or not (in the latter case the entry is replaced with zero). If
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p = m

n2
(6.12)

then we are shown m entries of X on average.
How can we infer X from Y ? Although X has small rank r by assumption, Y may not

have small rank. (Why?) It is thus natural to enforce small rank by choosing a best rank-r
approximation to Y . (Recall the notion of the best rank-k approximation in Section 4.1.4.)
The result, properly scaled, will be a good approximation to X .

Theorem 6.6.1 (Matrix completion) Let X̂ be a best rank-r approximation to p−1Y . Then

E
1

n
‖X̂ − X‖F ≤ C

√
rn log n

m
‖X‖∞,

as long as m ≥ n log n. Here ‖X‖∞ = maxi, j |Xi j | is the maximum magnitude of the entries
of X.

Before we pass to the proof, let us pause quickly to note that Theorem 6.6.1 bounds the
recovery error

1

n
‖X̂ − X‖F =

( 1

n2

n∑
i, j=1

|X̂i j − Xi j |2
)1/2

.

This is simply the average error per entry (in the L2 sense). If we choose the average number
of observed entries m so that

m ≥ C ′rn log n

with a large constant C ′ then Theorem 6.6.1 guarantees that the average error is much smaller
than ‖X‖∞.

To summarize, matrix completion is possible if the number of observed entries exceeds rn
by a logarithmic margin. In this case, the expected average error per entry is much smaller
than the maximal magnitude of an entry. Thus, for low-rank matrices, matrix completion is
possible with few observed entries.

Proof We first bound the recovery error in the operator norm and then pass to the Frobenius
norm using the low-rank assumption.

Step 1: Bounding the error in the operator norm. Using the triangle inequality, let us split
the error as follows:

‖X̂ − X‖ ≤ ‖X̂ − p−1Y‖ + ‖p−1Y − X‖.
Since we have chosen X̂ as a best rank-r approximation to p−1Y , the second summand
dominates, i.e., ‖X̂ − p−1Y‖ ≤ ‖p−1Y − X‖, so we have

‖X̂ − X‖ ≤ 2‖p−1Y − X‖ = 2

p
‖Y − pX‖. (6.13)

Note that the matrix X̂ , which would be hard to handle, has now disappeared from the bound.
Instead, Y − pX is a matrix that is easy to understand. Its entries

(Y − pX)i j = (δi j − p)Xi j
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are independent mean-zero random variables. So we can apply the result of Exercise 6.5.2,
which gives

E ‖Y − pX‖ ≤ C
√

log n
(

E max
i∈[n] ‖(Y − pX)i‖2 + E max

j∈[n] ‖(Y − pX) j‖2

)
. (6.14)

To bound the norms of the rows of Y − pX , we can express them as

‖(Y − pX)i‖2
2 =

n∑
j=1

(δi j − p)2 X2
i j ≤

n∑
j=1

(δi j − p)2 ‖X‖2∞,

and similarly for the columns. These sums of independent random variables can be easily
bounded using Bernstein’s (or Chernoff’s) inequality, which yields

E max
i∈[n]

n∑
j=1

(δi j − p)2 ≤ Cpn.

(We do this calculation in Exercise 6.6.2.) Combining with a similar bound for the columns
and substituting into (6.14), we obtain

E ‖Y − pX‖ �
√

pn log n ‖X‖∞.
Then, by (6.13), we get

E ‖X̂ − X‖ �
√

n log n

p
‖X‖∞. (6.15)

Step 2: Passing to the Frobenius norm. We have not used the low-rank assumption yet,
and will do this now. Since rank(X) ≤ r by assumption and rank(X̂) ≤ r by construction,
we have rank(X̂ − X) ≤ 2r . The relationship (4.4) between the operator and Frobenius
norms thus gives

‖X̂ − X‖F ≤ √
2r‖X̂ − X‖.

Taking expectations and using the bound on the error in the operator norm (6.15), we get

E ‖X̂ − X‖F ≤ √
2r E ‖X̂ − X‖ �

√
rn log n

p
‖X‖∞.

Dividing both sides by n, we can rewrite this bound as

E
1

n
‖X̂ − X‖F �

√
rn log n

pn2
‖X‖∞.

To finish the proof, recall that pn2 = m by the definition (6.12) of p. �

Exercise 6.6.2 (Bounding rows of random matrices)��� Consider i.i.d. random vari-
ables δi j ∼ Ber(p), where i, j = 1, . . . , n. Assuming that pn ≥ log n, show that

E max
i∈[n]

n∑
j=1

(δi j − p)2 ≤ Cpn. �
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Exercise 6.6.3 (Rectangular matrices)� State and prove a version of the matrix comple-
tion theorem 6.6.1 for general rectangular n1 × n2 matrices X .

Exercise 6.6.4 (Noisy observations)�� Extend the matrix completion theorem 6.6.1 to
noisy observations, where we are shown noisy versions Xi j +νi j of some entries of X . Here
the νi j are independent mean-zero sub-gaussian random variables representing noise.

Remark 6.6.5 (Improvements) The logarithmic factor can be removed from the bound of
Theorem 6.6.1, and in some cases matrix completion can be exact, i.e. with zero error. See
the notes at the end of this chapter for details.

6.7 Contraction Principle

We conclude the main part of this chapter with one more useful inequality. We still denote
by ε1, ε2, ε3, . . . a sequence of independent symmetric Bernoulli random variables (which
are also independent of any other random variables in question).

Theorem 6.7.1 (Contraction principle) Let x1, . . . , xN be (deterministic) vectors in some
normed space, and let a = (a1, . . . , an) ∈ R

n. Then

E

∥∥∥∑N

i=1
aiεi xi

∥∥∥ ≤ ‖a‖∞ E

∥∥∥∑N

i=1
εi xi

∥∥∥.
Proof Without loss of generality, we may assume that ‖a‖∞ ≤ 1. (Why?) Define the
function

f (a) := E

∥∥∥∑N

i=1
aiεi xi

∥∥∥. (6.16)

Then f : R
N → R is a convex function. (See Exercise 6.7.2.)

Our goal is to find a bound for f on the set of points a satisfying ‖a‖∞ ≤ 1, i.e., on
the unit cube [−1, 1]n . By the elementary maximum principle for convex functions, the
maximum of a convex function on a compact set in R

n is attained at an extreme point of the
set. Thus f attains its maximum at one of the vertices of the cube, i.e. at a point a whose
coefficients are all ai = ±1.

For this point a, the random variables (εi ai ) have the same distribution as (εi ) owing to
symmetry. Thus

E

∥∥∥∑N

i=1
aiεi xi

∥∥∥ = E

∥∥∥∑N

i=1
εi xi

∥∥∥.
Summarizing, we have shown that f (a) ≤ E

∥∥∑N
i=1 εi xi

∥∥ whenever ‖a‖∞ ≤ 1. This
completes the proof. �

Exercise 6.7.2�� Check that the function f defined in (6.16) is convex.

Exercise 6.7.3 (Contraction principle for general distributions)�� Prove the following
generalization of Theorem 6.7.1. Let X1, . . . , X N be independent mean-zero random vectors
in a normed space, and let a = (a1, . . . , an) ∈ R

n . Then
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E

∥∥∥∑N

i=1
ai Xi

∥∥∥ ≤ 4‖a‖∞ E

∥∥∥∑N

i=1
Xi

∥∥∥. �

As an application, let us show how symmetrization can be done using Gaussian random
variables gi ∼ N (0, 1) instead of symmetric Bernoulli random variables εi .

Lemma 6.7.4 (Symmetrization with Gaussians) Let X1, . . . , X N be independent mean-
zero random vectors in a normed space. Let g1, . . . , gN ∼ N (0, 1) be independent Gaussian
random variables which are also independent of Xi . Then

c√
log N

E

∥∥∥∑N

i=1
gi Xi

∥∥∥ ≤ E

∥∥∥∑N

i=1
Xi

∥∥∥ ≤ 3 E

∥∥∥∑N

i=1
gi Xi

∥∥∥.
Proof Upper bound. By symmetrization (Lemma 6.4.2), we have

E := E

∥∥∥∑N

i=1
Xi

∥∥∥ ≤ 2 E

∥∥∥∑N

i=1
εi Xi

∥∥∥.
To interject Gaussian random variables, recall that E |gi | = √

2/π . Thus we can continue
our bound as follows:2

E ≤ 2

√
π

2
EX

∥∥∥∑N

i=1
εi Eg |gi |Xi

∥∥∥
≤ 2

√
π

2
E

∥∥∥∑N

i=1
εi |gi |Xi

∥∥∥ (by Jensen’s inequality)

= 2

√
π

2
E

∥∥∥∑N

i=1
gi Xi

∥∥∥.
The last equality follows by the symmetry of the Gaussian distribution, which implies that
the random variables εi |gi | have the same distribution as the gi (recall Exercise 6.4.1).

Lower bound. This can be proved by using the contraction principle (Theorem 6.7.1) and
symmetrization (Lemma 6.4.2). We have

E

∥∥∥∥ N∑
i=1

gi Xi

∥∥∥∥ = E

∥∥∥∥ N∑
i=1

εi gi Xi

∥∥∥∥ (by the symmetry of the gi )

= Eg EX

(
‖g‖∞ Eε

∥∥∥∥ N∑
i=1

εi Xi

∥∥∥∥) (by Theorem 6.7.1)

= Eg

(
‖g‖∞ Eε EX

∥∥∥∥ N∑
i=1

εi Xi

∥∥∥∥) (by independence)

≤ 2 Eg

(
‖g‖∞ EX

∥∥∥∥ N∑
i=1

Xi

∥∥∥∥) (by Lemma 6.4.2)

= 2
(

E ‖g‖∞
)(

E

∥∥∥∥ N∑
i=1

Xi

∥∥∥∥) (by independence).

2 Here we use the index g in Eg to indicate that this is an expectation “over (gi )”, i.e., conditional on (Xi ).
Similarly, EX denotes the expectation over (Xi ).
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It remains to recall from Exercise 2.5.10 of the variables that

E ‖g‖∞ ≤ C
√

log N .

The proof is complete. �

Exercise 6.7.5�� Show that the factor
√

log N in Lemma 6.7.4 is needed in general and
is optimal. Thus, symmetrization with Gaussian random variables is generally weaker than
symmetrization with symmetric Bernoullis.

Exercise 6.7.6 (Symmetrization and contraction for functions of norms)�� Let
F : R+ → R be a convex increasing function. Generalize the symmetrization and con-
traction results of this and the previous section by replacing the norm ‖ · ‖ with F(‖ · ‖)
throughout.

In the following exercise we set foot in the study of random processes, on which we focus
fully in the next chapter.

Exercise 6.7.7 (Talagrand’s contraction principle)��� Consider a bounded subset
T ⊂ R

n , and let ε1, . . . , εn be independent symmetric Bernoulli random variables. Let
φi : R → R be contractions, i.e., Lipschitz functions with ‖φi‖Lip ≤ 1. Then

E sup
t∈T

n∑
i=1

εiφi (ti ) ≤ E sup
t∈T

n∑
i=1

εi ti . (6.17)

To prove this result, do the following steps:

(a) First let n = 2. Consider a subset T ⊂ R
2 and contraction φ : R → R, and check that

sup
t∈T
(t1 + φ(t2))+ sup

t∈T
(t1 − φ(t2)) ≤ sup

t∈T
(t1 + t2)+ sup

t∈T
(t1 − t2).

(b) Use induction on n to complete the proof. �

Exercise 6.7.8� Generalize Talagrand’s contraction principle for arbitrary Lipschitz
functions φi : R → R without restriction on their Lipschitz norms. �

6.8 Notes

The version of the decoupling inequality that we stated in Theorem 6.1.1 and Exercise 6.1.5
was originally proved by J. Bourgain and L. Tzafriri [31]. We refer the reader to the papers
[60] and the books [59] and [76, Section 8.4] for related results and extensions.

The original form of the Hanson–Wright inequality, which is somewhat weaker than The-
orem 6.2.1, goes back to [95, 220]. The version of Theorem 6.2.1 and its proof that we
gave in Section 6.2 are from [175]. Several special cases of the Hanson–Wright inequal-
ity appeared earlier in [76, Proposition 8.13] for Bernoulli random variables, in [193,
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Lemma 2.5.1] for Gaussian random variables, and in [16] for diagonal-free matrices. Con-
centration for anisotropic random vectors (Theorem 6.3.2) and the bound on the distance
between a random vector and a subspace (Exercise 6.3.4) were taken from [175].

The symmetrization lemma 6.4.2 and its proof can be found in, e.g., [126, Lemma 6.3]
and [76, Section 8.2].

Although a precise statement of Theorem 6.5.1 is difficult to locate in the existing liter-
ature, the result is essentially known. It can be deduced, for example, from the inequalities
in [200, 201]. We refer the reader to [207, Section 4] and [121] for more elaborate results,
which attempt to describe the operator norm of the random matrix A in terms of the variances
of its entries.

Theorem 6.6.1 on matrix completion and its proof are from [166, Section 2.5]. Earlier,
E. Candes and B. Recht [44] had demonstrated that, under some additional incoherence
assumptions, exact matrix completion is possible with m ∼ rn log2(n) randomly sampled
entries. We refer the reader to the papers [46, 169, 90, 56] for many further developments
on matrix completion.

The contraction principle (Theorem 6.7.1) is taken from [126, Section 4.2]; see also [126,
Corollary 3.17 and Theorem 4.12] for different versions of this principle for random pro-
cesses. Lemma 6.7.4 can be found in [126, inequality (4.9)]. While the logarithmic factor
is in general needed there, it can be removed if the normed space has a nontrivial cotype;
see [126, Proposition 9.14]. Talagrand’s contraction principle (Exercise 6.7.7) can be found
in [126, Corollary 3.17], where one can also find a more general result (with a convex and
increasing function of the supremum). Exercise 6.7.7 was adapted from [206, Exercise 7.4].
A Gaussian version of Talagrand’s contraction principle will be given in Exercise 7.2.13.
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Random Processes

In this chapter we begin to study random processes – collections of random variables
(Xt )t∈T that are not necessarily independent. In many classical examples in probability
theory such as Brownian motion, t stands for time and thus T is a subset of R. But in high-
dimensional probability it is important to go beyond this case and allow T to be a general
abstract set. An important example is the so-called canonical Gaussian process

Xt = 〈g, t〉 , t ∈ T,

where T is an arbitrary subset of R
n and g is a standard normal random vector in R

n . We
discuss this in Section 7.1.

In Section 7.2 we prove remarkably sharp comparison inequalities for Gaussian processes
– Slepian’s inequality, the Sudakov–Fernique inequality, and Gordon’s inequality. Our argu-
ment introduces the useful technique of Gaussian interpolation. In Section 7.3 we illustrate
the comparison inequalities by proving a sharp bound E ‖A‖ ≤ √

m + √
n on the operator

norm of an m × n Gaussian random matrix A.
It is important to understand how the probabilistic properties of random processes, and in

particular canonical Gaussian process, are related to the geometry of the underlying set T .
In Section 7.4 we prove Sudakov’s minoration inequality, which gives a lower bound on the
magnitude of the canonical Gaussian process

w(T ) = E sup
t∈T

〈g, t〉

in terms of the covering numbers of T ; the upper bound will be studied in Chapter 8. The
quantity w(T ) is called the Gaussian width of the set T ⊂ R

n . We study this key geometric
parameter in detail in Section 7.5, where we relate it to other notions including those of
stable dimension, stable rank, and Gaussian complexity.

In Section 7.7 we give an example that highlights the importance of the Gaussian width in
high-dimensional geometric problems. We examine how random projections affect a given
set T ⊂ R

n , and we find that the Gaussian width of T plays a key role in determining the
sizes of random projections of T .

7.1 Basic Concepts and Examples

Definition 7.1.1 (Random process) A random process is a collection of random variables
(Xt )t∈T on the same probability space, which are indexed by the elements t of some set T .

147
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In some classical examples, t stands for time, in which case T is a subset of R. But we
primarily study processes in high-dimensional settings, where T is a subset of R

n and where
the analogy with time will be lost.

Example 7.1.2 (Discrete time) If T = {1, . . . , n} then the random process

(X1, . . . , Xn)

can be identified with a random vector in R
n .

Example 7.1.3 (Random walks) If T = N, a discrete-time random process (Xn)n∈N is
simply a sequence of random variables. An important example is a random walk, defined as

Xn :=
n∑

i=1

Zi ,

where the increments Zi are independent mean-zero random variables. See Figure 7.1 for
an illustration.

Example 7.1.4 (Brownian motion) The most classical continuous-time random pro-
cess is the standard Brownian motion (Xt )t≥0, also called the Wiener process. It can be
characterized as follows:

(i) The process has continuous sample paths, i.e., the random function f (t) := Xt is
continuous almost surely;

(ii) The increments are independent and satisfy Xt − Xs ∼ N (0, t − s) for all t ≥ s.

Figure 7.1 (right) illustrates a few trials of the standard Brownian motion.

Example 7.1.5 (Random fields) When the index set T is a subset of R
n , a random process

(Xt )t∈T is sometimes called a spatial random process, or a random field. For example, the
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Figure 7.1 A few trials of a random walk with symmetric Bernoulli steps Zi (left)
and a few trials of the standard Brownian motion in R (right).
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water temperature Xt at a location on Earth that is parametrized by t can be modeled as a
spatial random process.

7.1.1 Covariance and Increments

In Section 3.2 we introduced the notion of the covariance matrix of a random vector. We
now define the covariance function of a random process (Xt )t∈T in a similar manner. For
simplicity, let us assume in this section that the random process has zero mean, i.e.

E Xt = 0 for all t ∈ T .

(The adjustments for the general case will be obvious.) The covariance function of the
process is defined as

�(t, s) := cov(Xt , Xs) = E Xt Xs, t, s ∈ T .

Similarly, the increments of the random process are defined as

d(t, s) := ‖Xt − Xs‖2 = (
E(Xt − Xs)

2)1/2, t, s ∈ T .

Example 7.1.6 The increments of the standard Brownian motion satisfy

d(t, s) = √
t − s, t ≥ s,

by definition. The increments of the random walk of Example 7.1.3 with E Z2
i = 1 behave

similarly:

d(n,m) = √
n − m, n ≥ m.

(Check!)

Remark 7.1.7 (Canonical metric) As we emphasized at the beginning of the chapter, the
index set T of a general random process may be an abstract set without any geometric
structure. But even in this case, the increments d(t, s) always define a metric on T , thus
automatically turning T into a metric space.1 However, Example 7.1.6 shows that this metric
may not agree with the standard metric on R, where the distance between t and s is |t − s|.

Exercise 7.1.8 (Covariance vs. increments)�� Consider a random process (Xt )t∈T .

(a) Express the increments ‖Xt − Xs‖2 in terms of the covariance function �(t, s).
(b) Assuming that the zero random variable 0 belongs to the process, express the covariance

function �(t, s) in terms of the increments ‖Xt − Xs‖2.

Exercise 7.1.9 (Symmetrization for random processes)��� Let X1(t), . . . , X N (t) be
N independent mean-zero random processes indexed by points t ∈ T . Let ε1, . . . , εN be
independent symmetric Bernoulli random variables. Prove that

1

2
E sup

t∈T

N∑
i=1

εi Xi (t) ≤ E sup
t∈T

N∑
i=1

Xi (t) ≤ 2 E sup
t∈T

N∑
i=1

εi Xi (t). �

1 More precisely, d(t, s) is a pseudometric on T since the distance between two distinct points can be zero, i.e.,
d(t, s) = 0 does not necessarily imply t = s.
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7.1.2 Gaussian Processes

Definition 7.1.10 (Gaussian process) A random process (Xt )t∈T is called a Gaussian pro-
cess if, for any finite subset T0 ⊂ T , the random vector (Xt )t∈T0 has a normal distribution.
Equivalently, (Xt )t∈T is Gaussian if every finite linear combination

∑
t∈T0

at Xt is a normal
random variable. (This equivalence is due to the characterization of the normal distribution
in Exercise 3.3.4.)

The notion of Gaussian processes generalizes that of Gaussian random vectors in R
n . A

classical example of a Gaussian process is the standard Brownian motion.

Remark 7.1.11 (Distribution is determined by covariance or increments) From the for-
mula (3.5) for the multivariate normal density we may recall that the distribution of a
mean-zero Gaussian random vector X in R

n is completely determined by its covariance
matrix. Then, by definition, the distribution of a mean-zero Gaussian process (Xt )t∈T is
also completely determined2 by its covariance function �(t, s). Equivalently (owing to
Exercise 7.1.8), the distribution of the process is determined by the increments d(t, s).

We now consider a wide class of examples of a Gaussian processes indexed by higher-
dimensional sets T ⊂ R

n . Consider the standard normal random vector g ∼ N (0, In) and
define the random process

Xt := 〈g, t〉 , t ∈ T . (7.1)

Then (Xt )t∈T is clearly a Gaussian process, and we call it a canonical Gaussian process.
The increments of this process define the Euclidean distance

‖Xt − Xs‖2 = ‖t − s‖2, t, s ∈ T .

(Check!)
Actually, one can realize any Gaussian process as the canonical process (7.1). This follows

from a simple observation about Gaussian vectors.

Lemma 7.1.12 (Gaussian random vectors) Let Y be a mean-zero Gaussian random vector
in R

n. Then there exist points t1, . . . , tn ∈ R
n such that

Y ≡ (〈g, ti 〉)ni=1 , where g ∼ N (0, In).

Here the equivalence symbol means that the distributions of the two random vectors are the
same.

Proof Let � denote the covariance matrix of Y . Then we may realize

Y ≡ �1/2g where g ∼ N (0, In)

(recall Section 3.3.2). Next, the coordinates of the vector �1/2g are 〈ti , g〉, where the ti
denote the rows of the matrix �1/2. This completes the proof. �

2 To avoid measurability issues, we do not formally define the distribution of a random process here. So, the
statement above should be understood as the fact that the covariance function determines the distribution of all
marginals (Xt )t∈T0 with finite T0 ⊂ T .
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It follows that, for any Gaussian process (Ys)s∈S , all finite-dimensional marginals
(Ys)s∈S0 , |S0| = n, can be represented as the canonical Gaussian process (7.1) indexed
in a certain subset T0 ⊂ R

n .

Exercise 7.1.13�� Realize an N -step random walk of Example 7.1.3 with Zi ∼ N (0, 1)
as a canonical Gaussian process (7.1) with T ⊂ R

N . �

7.2 Slepian’s Inequality

In many applications, it is useful to have a uniform control on a random process (Xt )t∈T ,
i.e., to have a bound on3

E sup
t∈T

Xt .

For some processes, this quantity can be computed exactly. For example, if (Xt ) is a
standard Brownian motion, the so-called reflection principle yields

E sup
t≤t0

Xt =
√

2t0
π

for every t0 ≥ 0.

For general random processes, even if they are Gaussian, the problem is emphatically
nontrivial.

The first general bound we will prove is Slepian’s comparison inequality for Gaussian
processes. It basically states that the faster the process grows (in terms of the magnitude of
the increments), the farther it gets.

Theorem 7.2.1 (Slepian’s inequality) Let (Xt )t∈T and (Yt )t∈T be two mean-zero Gaussian
processes. Assume that, for all t, s ∈ T , we have

E X2
t = E Y 2

t and E(Xt − Xs)
2 ≤ E(Yt − Ys)

2. (7.2)

Then for every τ ∈ R we have

P

{
sup
t∈T

Xt ≥ τ

}
≤ P

{
sup
t∈T

Yt ≥ τ

}
. (7.3)

Consequently,

E sup
t∈T

Xt ≤ E sup
t∈T

Yt . (7.4)

Whenever the tail comparison inequality (7.3) holds, we say that the random variable X
is stochastically dominated by the random variable Y .

We now prepare for the proof of Slepian’s inequality.

3 To avoid measurability issues, we study random processes through their finite-dimensional marginals as before.
Thus we interpret E supt∈T Xt more formally as supT0⊂T E maxt∈T0 Xt , where the supremum is over all finite
subsets T0 ⊂ T .
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7.2.1 Gaussian Interpolation

The proof of Slepian’s inequality that we are about to give will be based on the technique of
Gaussian interpolation. Let us describe it briefly. Assume that T is finite; then X = (Xt )t∈T

and Y = (Yt )t∈T are Gaussian random vectors in R
n where n = |T |. We may also assume

that X and Y are independent. (Why?)
Define a Gaussian random vector Z(u) in R

n that continuously interpolates between
Z(0) = Y and Z(1) = X :

Z(u) := √
u X +√

1 − u Y, u ∈ [0, 1].

Exercise 7.2.2� Check that the covariance matrix of Z(u) interpolates linearly between
the covariance matrices of Y and X :

�(Z(u)) = u�(X)+ (1 − u)�(Y ).

For a given function f : R
n → R, we now study how the quantity E f (Z(u)) changes as

u increases from 0 to 1. Of specific interest to us is the function

f (x) = 1{maxi xi<u}.

We will be able to show that, in this case, E f (Z(u)) increases in u. This would imply the
conclusion of Slepian’s inequality at once, since then

E f (Z(1)) ≥ E f (Z(0)), thus P

{
max

i
Xi < τ

}
≥ P

{
max

i
Yi < τ

}
,

as claimed.
Now let us pass to a detailed argument. To develop Gaussian interpolation, let us start

with the following useful identity.

Lemma 7.2.3 (Gaussian integration by parts) Let X ∼ N (0, 1). Then for any differentiable
function f : R → R we have

E f ′(X) = E X f (X).

Proof Assume first that f has bounded support. Denoting the Gaussian density of X by

p(x) = 1√
2π

e−x2/2,

we can express the expectation as an integral, and integrate it by parts:

E f ′(X) =
∫

R

f ′(x)p(x) dx = −
∫

R

f (x)p′(x) dx . (7.5)

Now, a direct check gives

p′(x) = −xp(x),

so the integral in (7.5) equals ∫
R

f (x)p(x)x dx = E X f (X),
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as claimed. The identity can be extended to general functions by an approximation argument.
The lemma is proved. �

Exercise 7.2.4� If X ∼ N (0, σ 2), show that

E X f (X) = σ 2
E f ′(X). �

Gaussian integration by parts generalizes nicely to high dimenions.

Lemma 7.2.5 (Multivariate Gaussian integration by parts) Let X ∼ N (0, �). Then for any
differentiable function f : R

n → R we have

E X f (X) = � E∇ f (X).

Exercise 7.2.6��� Prove Lemma 7.2.5. According to matrix-by-vector multiplication,
note that the conclusion of the lemma is equivalent to

E Xi f (X) =
n∑

j=1

�i j E
∂ f

∂x j
(X), i = 1, . . . , n. (7.6)

�

Lemma 7.2.7 (Gaussian interpolation) Consider two independent Gaussian random
vectors X ∼ N (0, �X ) and Y ∼ N (0, �Y ). Define the interpolation Gaussian vector

Z(u) := √
u X +√

1 − u Y, u ∈ [0, 1]. (7.7)

Then for any twice-differentiable function f : R
n → R, we have

d

du
E f (Z(u)) = 1

2

n∑
i, j=1

(�X
i j −�Y

i j )E
( ∂2 f

∂xi ∂x j
(Z(u))

)
. (7.8)

Proof Using the chain rule,4 we have

d

du
E f (Z(u)) =

n∑
i=1

E
∂ f

∂xi
(Z(u))

d Zi

du

= 1

2

n∑
i=1

E
∂ f

∂xi
(Z(u))

( Xi√
u

− Yi√
1 − u

)
(by (7.7)). (7.9)

Let us break this sum into two, and first compute the contribution of the terms containing
Xi . To this end, we condition on Y and express

n∑
i=1

1√
u

E Xi
∂ f

∂xi
(Z(u)) =

n∑
i=1

1√
u

E Xi gi (X), (7.10)

4 Here we use the multivariate chain rule to differentiate a function f (g1(u), . . . , gn(u)), where gi : R → R
n

and f : R
n → R, as follows: d f /du =∑n

i=1(∂ f /∂xi )(dgi/du).
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where

gi (X) = ∂ f

∂xi
(
√

u X +√
1 − u Y ).

Apply the multivariate Gaussian integration by parts (Lemma 7.2.5). According to (7.6), we
have

E Xi gi (X) =
n∑

j=1

�X
i j E

∂gi

∂x j
(X)

=
n∑

j=1

�X
i j E

∂2 f

∂xi ∂x j
(
√

u X +√
1 − u Y )

√
u.

Substitute this into (7.10) to get
n∑

i=1

1√
u

E Xi
∂ f

∂xi
(Z(u)) =

n∑
i, j=1

�X
i j E

∂2 f

∂xi ∂x j
(Z(u)).

Taking expectation of both sides with respect to Y , we lift the conditioning on Y .
We can simiarly evaluate the other sum in (7.9), the one containing the terms Yi .

Combining the two sums we complete the proof. �

7.2.2 Proof of Slepian’s Inequality

We are ready to establish a preliminary functional form of Slepian’s inequality.

Lemma 7.2.8 (Slepian’s inequality, functional form) Consider two mean-zero Gaussian
random vectors X and Y in R

n. Assume that for all i, j = 1, . . . , n, we have

E X2
i = E Y 2

i and E(Xi − X j )
2 ≤ E(Yi − Y j )

2.

Consider a twice-differentiable function f : R
n → R such that

∂2 f

∂xi ∂x j
≥ 0 for all i �= j.

Then

E f (X) ≥ E f (Y ).

Proof The assumptions imply that the entries of the covariance matrices �X and �Y of X
and Y satisfy

�X
ii = �Y

ii and �X
i j ≥ �Y

i j .

for all i, j = 1, . . . , n. We can assume that X and Y are independent. (Why?) Applying
Lemma 7.2.7 and using our assumptions, we conclude that

d

du
E f (Z(u)) ≥ 0,

so that E f (Z(u)) increases in u. Then E f (Z(1)) = E f (X) is at least as large as
E f (Z(0)) = E f (Y ). This completes the proof. �
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Now we are ready to prove Slepian’s inequality, Theorem 7.2.1. Let us state and prove it
in the equivalent form for Gaussian random vectors.

Theorem 7.2.9 (Slepian’s inequality) Let X and Y be Gaussian random vectors as in
Lemma 7.2.8. Then for every τ ∈ R we have

P

{
max
i≤ n

Xi ≥ τ
}
≤ P

{
max
i≤ n

Yi ≥ τ
}
.

Consequently,

E max
i≤n

Xi ≤ E max
i≤n

Yi .

Proof Let h : R → [0, 1] be a twice-differentiable non-increasing approximation to the
indicator function of the interval (−∞, τ ):

h(x) ≈ 1(−∞,τ );
see Figure 7.2. Define the function f : R

n → R by f (x) = h(x1) · · · h(xn).

Then f (x) is an approximation to the indicator function

f (x) ≈ 1{maxi xi<τ }.

We are aiming to apply the functional form of Slepian’s inequality, Lemma 7.2.8, for f (x).
To check the assumptions of this result, note that for i �= j we have

∂2 f

∂xi ∂x j
= h′(xi )h

′(x j )
∏

k �∈{i, j}
h(xk).

The first two factors are non-positive and the others are non-negative by assumption. Thus
the second derivative is non-negative, as required.

It follows that

E f (X) ≥ E f (Y ).

By approximation, this implies that

P

{
max
i≤n

Xi < τ
}
≥ P

{
max
i≤n

Yi < τ
}
.

This proves the first part of the conclusion. The second part follows using the integral
identity in Lemma 1.2.1; see the following exercise. �

τ

1

Figure 7.2 The function h(x) is a smooth non-increasing approximation to the
indicator function 1(−∞,τ ).
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Exercise 7.2.10� Using the integral identity in Exercise 1.2.2, deduce the second part of
Slepian’s inequality (the comparison of expectations).

7.2.3 The Sudakov–Fernique Inequality and Gordon’s Inequality

Slepian’s inequality has two assumptions on the processes (Xt ) and (Yt ) in (7.2): the equality
of variances and the dominance of increments. If we now remove the assumption on the
equality of variances then we will still be able to obtain (7.4). This more practically useful
result is due to Sudakov and Fernique.

Theorem 7.2.11 (Sudakov–Fernique inequality) Let (Xt )t∈T and (Yt )t∈T be two mean-
zero Gaussian processes. Assume that, for all t, s ∈ T , we have

E(Xt − Xs)
2 ≤ E(Yt − Ys)

2.

Then

E sup
t∈T

Xt ≤ E sup
t∈T

Yt .

Proof It is enough to prove this theorem for Gaussian random vectors X and Y in R
n ,

just as we did for Slepian’s inequality in Theorem 7.2.9. We again deduce the result from
the Gaussian interpolation lemma 7.2.7. But this time, instead of choosing a function f (x)
that approximates the indicator function of {maxi xi < τ }, we want f (x) to approximate
maxi xi .

To this end, let β > 0 be a parameter and define the function5

f (x) := 1

β
log

n∑
i=1

eβxi . (7.11)

A quick check shows that

f (x)→ max
i≤n

xi as β → ∞.

(Do this!) Substituting f (x) into the Gaussian interpolation formula (7.8) and simplifying
the expression shows that (d/du)E f (Z(u)) ≤ 0 for all u (see Exercise 7.2.12 below). The
proof can then be completed in just the same way as the proof of Slepian’s inequality. �

Exercise 7.2.12��� Show that (d/du)E f (Z(u)) ≤ 0 in the Sudakov–Fernique
theorem 7.2.11. �

Exercise 7.2.13 (Gaussian contraction inequality)�� The following is a Gaussian ver-
sion of Talagrand’s contraction principle, which we proved in Exercise 6.7.7. Consider a

5 The motivation for considering this form of f (x) comes from statistical mechanics, where the right-hand side
of (7.11) can be interpreted as the log of a partition function and β as the inverse temperature.
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bounded subset T ⊂ R
n , and let g1, . . . , gn be independent N (0, 1) random variables. Let

φi : R → R be contractions, i.e., Lipschitz functions with ‖φi‖Lip ≤ 1. Prove that

E sup
t∈T

n∑
i=1

giφi (ti ) ≤ E sup
t∈T

n∑
i=1

gi ti . �

Exercise 7.2.14 (Gordon’s inequality)��� Prove the following extension of Slepian’s
inequality due to Y. Gordon. Let (Xut )u∈U, t∈T and Y = (Yut )u∈U, t∈T be two mean-zero
Gaussian processes indexed by pairs of points (u, t) in a product set U ×T . Assume that we
have

E X2
ut = E Y 2

ut , E(Xut − Xus)
2 ≤ E(Yut − Yus)

2 for all u, t, s;
E(Xut − Xvs)

2 ≥ E(Yut − Yvs)
2 for all u �= v and all t, s.

Then for every τ ≥ 0 we have

P

{
inf

u∈U
sup
t∈T

Xut ≥ τ

}
≤ P

{
inf

u∈U
sup
t∈T

Yut ≥ τ

}
.

Consequently,

E inf
u∈U

sup
t∈T

Xut ≤ E inf
u∈U

sup
t∈T

Yut . (7.12)

�

As for the Sudakov–Fernique inequality, it is possible to remove the assumption of equal
variances from Gordon’s theorem and still be able to derive (7.12). We do not prove this
result.

7.3 Sharp Bounds on Gaussian Matrices

We now illustrate the Gaussian comparison inequalities that we have just proved with an
application to random matrices. In Section 4.6 we studied m × n random matrices A with
independent sub-gaussian rows. We used the ε-net argument to control the norm of A as
follows:

E ‖A‖ ≤ √
m + C

√
n,

where C is a constant. (See Exercise 4.6.3.) We now use the Sudakov–Fernique inequality to
improve upon this bound for Gaussian random matrices, showing that it holds with a sharp
constant C = 1.

Theorem 7.3.1 (Norms of Gaussian random matrices) Let A be an m × n matrix with
independent N (0, 1) entries. Then

E ‖A‖ ≤ √
m +√

n.

Proof We can realize the norm of A as a supremum of a Gaussian process. Indeed,

‖A‖ = max
u∈Sn−1, v∈Sm−1

〈Au, v〉 = max
(u,v)∈T

Xuv,
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where T denotes the product set Sn−1 × Sm−1 and

Xuv := 〈Au, v〉 ∼ N (0, 1).

(Check!)
To apply the Sudakov–Fernique comparison inequality (Theorem 7.2.11), let us compute

the increments of the process (Xuv). For any (u, v), (w, z) ∈ T , we have

E(Xuv − Xwz)
2 = E (〈Au, v〉 − 〈Aw, z〉)2 = E

(∑
i, j

Ai j (u jvi − w j zi )

)2

=
∑
i, j

(u jvi − w j zi )
2 (by independence, mean 0, variance 1)

= ‖uvT − wzT‖2
F

≤ ‖u − w‖2
2 + ‖v − z‖2

2 (see Exercise 7.3.2 below).

Let us define a simpler Gaussian process (Yuv) with similar increments, as follows:

Yuv := 〈g, u〉 + 〈h, v〉 , (u, v) ∈ T,

where

g ∼ N (0, In), h ∼ N (0, Im)

are independent Gaussian vectors. The increments of this process are

E(Yuv − Ywz)
2 = E (〈g, u − w〉 + 〈h, v − z〉)2
= E 〈g, u − w〉2 + E 〈h, v − z〉2 (by independence, mean 0)

= ‖u − w‖2
2 + ‖v − z‖2

2 (since g, h are standard normal).

Comparing the increments of the two processes, we see that

E(Xuv − Xwz)
2 ≤ E(Yuv − Ywz)

2 for all (u, v), (w, z) ∈ T,

as required in the Sudakov–Fernique inequality. Applying Theorem 7.2.11, we obtain

E ‖A‖ = E sup
(u,v)∈T

Xuv ≤ E sup
(u,v)∈T

Yuv

= E sup
u∈Sn−1

〈g, u〉 + E sup
v∈Sm−1

〈h, v〉

= E ‖g‖2 + E ‖h‖2

≤ (E ‖g‖2
2)

1/2 + (E ‖h‖2
2)

1/2 (by inequality (1.3) for L p norms)

= √
n +√

m (recall Lemma 3.2.4).

This completes the proof. �

Exercise 7.3.2��� Prove the following bound, used in the proof of Theorem 7.3.1. For
any vectors u, w ∈ Sn−1 and v, z ∈ Sm−1, we have

‖uvT − wzT‖2
F ≤ ‖u − w‖2

2 + ‖v − z‖2
2.
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While Theorem 7.3.1 does not give any tail bound for ‖A‖, we can automatically deduce
a tail bound using the concentration inequalities that we studied in Section 5.2.

Corollary 7.3.3 (Norms of Gaussian random matrices: tails) Let A be an m × n matrix
with independent N (0, 1) entries. Then, for every t ≥ 0, we have

P
{‖A‖ ≥ √

m +√
n + t

} ≤ 2 exp(−ct2).

Proof This result follows by combining Theorem 7.3.1 with the concentration inequality
in Gaussian space, Theorem 5.2.2.

To use concentration, let us view A as a long random vector in R
m×n by concatenating

the rows. This makes A a standard normal random vector, i.e. A ∼ N (0, Inm). Consider the
function f (A) := ‖A‖ that assigns to the vector A the operator norm of the matrix A. We
have

f (A) ≤ ‖A‖2,

where ‖A‖2 is the Euclidean norm in R
m×n . (This is the same as the Frobenius norm of

A, which dominates the operator norm of A.) This shows that A �→ ‖A‖ is a Lipschitz
function on R

m×n and that its Lipschitz norm is bounded by 1. (Why?) Then Theorem 5.2.2
yields

P
{‖A‖ ≥ E ‖A‖ + t

} ≤ 2 exp(−ct2).

The bound on E ‖A‖ from Theorem 7.3.1 completes the proof. �

Exercise 7.3.4 (Smallest singular values)��� Use Gordon’s inequality, stated in Exer-
cise 7.2.14, to obtain a sharp bound on the smallest singular value of an m×n random matrix
A with independent N (0, 1) entries:

E sn(A) ≥ √
m −√

n.

Combine this result with concentration to show the tail bound

P
{‖A‖ ≤ √

m −√
n − t

} ≤ 2 exp(−ct2). �

Exercise 7.3.5 (Symmetric random matrices)��� Modify the arguments above to bound
the norm of a symmetric n × n Gaussian random matrix A whose entries above the
diagonal are independent N (0, 1) random variables and whose diagonal entries are indepen-
dent N (0, 2) random variables. This distribution of random matrices is called a Gaussian
orthogonal ensemble (GOE). Show that

E ‖A‖ ≤ 2
√

n.

Next, deduce the tail bound

P
{‖A‖ ≥ 2

√
n + t

} ≤ 2 exp(−ct2).
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7.4 Sudakov’s Minoration Inequality

Let us return to studying general mean-zero Gaussian processes (Xt )t∈T . As we observed in
Remark 7.1.7, the increments

d(t, s) := ‖Xt − Xs‖2 = (
E(Xt − Xs)

2)1/2 (7.13)

define a metric on the (otherwise abstract) index set T , which we called the canonical metric.
The canonical metric d(t, s) determines the covariance function �(t, s), which in turn

determines the distribution of the process (Xt )t∈T (recall Exercise 7.1.8 and Remark 7.1.11).
So, in principle, we should be able to answer any question about the distribution of a Gaus-
sian process (Xt )t∈T by looking at the geometry of the metric space (T, d). Put plainly, we
should be able to study probability via geometry.

Let us then ask an important specific question. How can we evaluate the overall magnitude
of the process, namely

E sup
t∈T

Xt , (7.14)

to the geometry of (T, d)? This turns out to be a difficult problem, which we start to study
here and continue in Chapter 8.

In this section we prove a useful lower bound on (7.14) in terms of the metric entropy of
the metric space (T, d). Recall from Section 4.2 that, for ε > 0, the covering number

N (T, d, ε)

is defined to be the smallest cardinality of an ε-net of T in the metric d. Equivalently,
N (T, d, ε) is the smallest number6 of closed balls of radius ε whose union covers T . Recall
also that the logarithm of the covering number,

log2 N (T, d, ε),

is called the metric entropy of T .

Theorem 7.4.1 (Sudakov’s minoration inequality) Let (Xt )t∈T be a mean-zero Gaussian
process. Then, for any ε ≥ 0, we have

E sup
t∈T

Xt ≥ cε
√

logN (T, d, ε),

where d is the canonical metric defined in (7.13).

Proof Let us deduce this result from the Sudakov–Fernique comparison inequality (Theo-
rem 7.2.11). Assume that

N (T, d, ε) =: N

is finite; the infinite case will be considered in Exercise 7.4.2. Let N be a maximal
ε-separated subset of T . Then N is an ε-net of T (recall Lemma 4.2.6), and thus

|N | ≥ N .

6 If T does not admit a finite ε-net, we set N (t, d, ε) = ∞.
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Restricting the process to N , we see that it suffices to show that

E sup
t∈N

Xt ≥ cε
√

log N .

We can do this by comparing (Xt )t∈N with a simpler Gaussian process (Yt )t∈N , which
we define as follows:

Yt := ε√
2

gt where gt are independent N (0, 1) random variables.

To use the Sudakov–Fernique comparison inequality (Theorem 7.2.11), we need to compare
the increments of the two processes. Fix two different points t, s ∈ N . By definition, we
have

E(Xt − Xs)
2 = d(t, s)2 ≥ ε2

while

E(Yt − Ys)
2 = ε2

2
E(gt − gs)

2 = ε2.

(In the last line, we used the fact that gt − gs ∼ N (0, 2).) This implies that

E(Xt − Xs)
2 ≥ E(Yt − Ys)

2 for all t, s ∈ N .
Applying Theorem 7.2.11, we obtain

E sup
t∈N

Xt ≥ E sup
t∈N

Yt = ε√
2

E max
t∈N

gt ≥ cε
√

log N .

In the last inequality we used that the expected maximum of N standard normal random
variables is at least c

√
log N ; see Exercise 2.5.11. The proof is complete. �

Exercise 7.4.2 (Sudakov’s minoration for non-compact sets)�� Show that if (T, d) is
not compact, that is, if N (T, d, ε) = ∞ for some ε > 0, then

E sup
t∈T

Xt = ∞.

7.4.1 Application for Covering Numbers in R
n

Sudakov’s minoration inequality can be used to estimate the covering numbers of geometric
sets T ⊂ R

n . To see how to do this, consider a canonical Gaussian process on T , namely

Xt := 〈g, t〉 , t ∈ T where g ∼ N (0, In).

As we observed in Section 7.1.2, the canonical distance for this process is the Euclidean
distance in R

n , i.e.,

d(t, s) = ‖Xt − Xs‖2 = ‖t − s‖2.

Thus Sudakov’s inequality can be stated as follows.
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Corollary 7.4.3 (Sudakov’s minoration inequality in R
n) Let T ⊂ R

n. Then, for any ε >
0, we have

E sup
t∈T

〈g, t〉 ≥ cε
√

logN (T, ε).

Here N (T, ε) is the covering number of T for covering by Euclidean balls; it is the
smallest number of Euclidean balls with radii ε and centers in T that cover T , just as in
Section 4.2.1.

To give an illustration of Sudakov’s minoration, note that it yields (up to an absolute
constant) the same bound on the covering numbers of polytopes in R

n as that given in
Corollary 0.0.4:

Corollary 7.4.4 (Covering numbers of polytopes) Let P be a polytope in R
n with N

vertices and whose diameter is bounded by 1. Then, for every ε > 0, we have

N (P, ε) ≤ N C/ε2
.

Proof As before, by translation, we may assume that the radius of P is bounded by 1.
Denote by x1, . . . , xN the vertices of P . Then

E sup
t∈P

〈g, t〉 = E sup
i≤N

〈g, xi 〉 ≤ C
√

log N .

The above equality follows since the maximum of a linear function on the convex set P is
attained at an extreme point, i.e., at a vertex of P . The bound is due to Exercise 2.5.10, since
〈g, x〉 ∼ N (0, ‖x‖2

2) and ‖x‖2 ≤ 1. Substituting this into Sudakov’s minoration inequality
of Corollary 7.4.3 and simplifying, we complete the proof. �

Exercise 7.4.5 (Volume of polytopes)��� Let P be a polytope in R
n which has N

vertices and is contained in the unit Euclidean ball Bn
2 . Show that

Vol(P)

Vol(Bn
2 )

≤
( log N

n

)Cn
. �

7.5 Gaussian Width

In the previous section, we encountered an important quantity associated with a general set
T ⊂ R

n . This was the magnitude of the canonical Gaussian process on T , i.e.,

E sup
t∈T

〈g, t〉

where the expectation is taken with respect to the Gaussian random vector g ∼ N (0, In).
This quantity plays a central role in high-dimensional probability and its applications. Let
us give it a name and study its basic properties.

Definition 7.5.1 The Gaussian width of a subset T ⊂ R
n is defined as

w(T ) := E sup
x∈T

〈g, x〉 where g ∼ N (0, In).
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One can think about the Gaussian width w(T ) as one of the basic geometric quantities
associated with subsets of T ⊂ R

n , such as volume and surface area. Several variants of the
definition of the Gaussian width such as

E sup
x∈T

| 〈g, x〉 |, (
E sup

x∈T
〈g, x〉2 )1/2, E sup

x,y∈T
〈g, x − y〉 , etc.,

can be found in the literature. These versions are equivalent, or almost equivalent, to w(T ),
as we will see in Section 7.6.

7.5.1 Basic Properties

Proposition 7.5.2 (Gaussian width)

(i) The Gaussian width w(T ) is finite if and only if T is bounded.
(ii) The Gaussian width is invariant under affine unitary transformations. Thus, for every

orthogonal matrix U and any vector y, we have

w(U T + y) = w(T ).

(iii) The Gaussian width is invariant under the taking of convex hulls. Thus,

w(conv(T )) = w(T ).

(iv) The Gaussian width respects the Minkowski addition of sets and scaling. Thus, for
T, S ⊂ R

n and a ∈ R, we have

w(T + S) = w(T )+ w(S), w(aT ) = |a|w(T ).
(v) We have

w(T ) = 1
2w(T − T ) = 1

2 E sup
x,y∈T

〈g, x − y〉 .

(vi) (Gaussian width and diameter). We have7

1√
2π

diam(T ) ≤ w(T ) ≤
√

n

2
diam(T ).

Proof Properties (i)–(iv) are simple and will be checked in Exercise 7.5.3 below.
To prove property (v), we use property (iv) twice and get

w(T ) = 1
2 (w(T )+ w(T )) = 1

2 (w(T )+ w(−T )) = 1
2w(T − T ),

as claimed.
To prove the lower bound in property (vi), fix a pair of points x, y ∈ T . Then both x − y

and y − x lie in T − T , so by property (v) we have

w(T ) ≥ 1
2 E max (〈x − y, g〉 , 〈y − x, g〉)

= 1
2 E | 〈x − y, g〉 | = 1

2

√
2/π‖x − y‖2.

7 Recall that the diameter of a set T ⊂ R
n is defined as diam(T ) := sup{‖x − y‖2 : x, y ∈ T }.
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The last identity follows since 〈x − y, g〉 ∼ N (0, ‖x − y‖2) and since E |X | = √
2/π for

X ∼ N (0, 1). (Check!) It remains to take the supremum over all x, y ∈ T , and the lower
bound in property (vi) follows.

To prove the upper bound in property (vi), we again use property (v) to get

w(T ) = 1
2 E sup

x,y∈T
〈g, x − y〉

≤ 1
2 E sup

x,y∈T
‖g‖2‖x − y‖2 ≤ 1

2 E ‖g‖2 diam(T ).

It remains to recall that E ‖g‖2 ≤ (E ‖g‖2
2)

1/2 = √
n. �

Exercise 7.5.3�� Prove Properties (i)–(iv) in Proposition 7.5.2. �

Exercise 7.5.4 (Gaussian width under linear transformations)��� Show that, for any
m × n matrix A, we have

w(AT ) ≤ ‖A‖w(T ). �

7.5.2 Geometric Meaning of Width

The notion of the Gaussian width of a set T ⊂ R
n has a nice geometric meaning. The width

of T in the direction of a vector θ ∈ Sn−1 is the smallest width of the slab that is formed by
parallel hyperplanes orthogonal to θ and that contains T ; see Figure 7.3. Analytically, the
width in the direction of θ can be expressed as

sup
x,y∈T

〈θ, x − y〉 .

(Check!) If we average the width over all unit directions θ , we obtain the quantity

E sup
x,y∈T

〈θ, x − y〉 . (7.15)

Definition 7.5.5 (Spherical width) The spherical width8 of a subset T ⊂ Rn is defined as

ws(T ) := E sup
x∈T

〈θ, x〉 where θ ∼ Unif(Sn−1).

The quantity in (7.15) clearly equals ws(T − T ).

x x,y∈T
sup 〈θ, x – y〉

y
T

θ

Figure 7.3 The width of a set T ⊂ R
n in the direction of a unit vector θ .

8 The spherical width is also called the mean width in the literature.
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How different are the Gaussian and spherical widths of T ? The difference is in the random
vectors we use to do the averaging; they are g ∼ N (0, In) for the Gaussian width and
θ ∼ Unif(Sn−1) for the spherical width. Both g and θ are rotation invariant, and, as we
know, g is approximately

√
n longer than θ . This makes the Gaussian width just a scaling of

the spherical width by approximately
√

n. Let us make this relation more precise.

Lemma 7.5.6 (Gaussian vs. spherical width) We have

(
√

n − C) ws(T ) ≤ w(T ) ≤ (
√

n + C) ws(T ).

Proof Let us express the Gaussian vector g through its length and direction:

g = ‖g‖2
g

‖g‖2
=: rθ.

As we observed in Section 3.3.3, r and θ are independent and θ ∼ Unif(Sn−1). Thus

w(T ) = E sup
x∈T

〈rθ, x〉 = (E r) E sup
x∈T

〈θ, x〉 = E ‖g‖2ws(T ).

It remains to recall that the concentration of the norm implies that∣∣E ‖g‖2 −√
n
∣∣ ≤ C;

see Exercise 3.1.4. �

7.5.3 Examples

Example 7.5.7 (Euclidean ball and sphere) The Gaussian width of the Euclidean unit
sphere and ball is

w(Sn−1) = w(Bn
2 ) = E ‖g‖2 = √

n ± C, (7.16)

where we have used the result of Exercise 3.1.4. The spherical widths of these sets equal 2,
of course.

Example 7.5.8 (Cube) The unit ball of the �∞ norm in R
n is Bn∞ = [−1, 1]n . We have

w(Bn∞) = E ‖g‖1 (check!)

= E |g1| n =
√

2

π
n. (7.17)

Comparing with (7.16), we see that the Gaussian widths of the cube Bn∞ and of its
circumscribed ball

√
nBn

2 have the same order n; see Figure 7.4a.

Example 7.5.9 (�1 ball) The unit ball of the �1 norm in R
n is the set

Bn
1 = {x ∈ R

n : ‖x‖1 ≤ 1},
which is sometimes called a cross-polytope; see Figure 7.5 for an illustration. The Gaussian
width of the �1 ball can be bounded as follows:

c
√

log n ≤ w(Bn
1 ) ≤ C

√
log n. (7.18)
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B∞
n

B1
n

1

√n 
B2

n

√n B2
n

(a) The Gaussian widths of the cube
and its circumscribed ball are of the
same order n.

(b) The Gaussian widths of B1
n and its

inscribed ball are almost of the same
order.

Figure 7.4 Gaussian widths of some classical sets in R
n .

Figure 7.5 The unit ball of the �1 norm in R
n , denoted Bn

1 , is a diamond in
dimension n = 2 (left) and a regular octahedron in dimension n = 3 (right).

To see this, check that

w(Bn
1 ) = E ‖g‖∞ = E max

i≤n
|gi |.

Then the bounds (7.18) follow from Exercises 2.5.10 and 2.5.11. Note that the Gaussian
widths of the �1 ball Bn

1 and its inscribed ball (1/
√

n)Bn
2 have almost the same order (up to

a logarithmic factor); see Figure 7.4b.

Exercise 7.5.10 (Finite point sets)� Let T be a finite set of points in R
n . Check that

w(T ) ≤ C
√

log |T | diam(T ). �

Exercise 7.5.11 (�p balls)��� Let 1 ≤ p < ∞. Consider the unit ball of the �p norm
in R

n:

Bn
p := {

x ∈ R
n : ‖x‖p ≤ 1

}
.

Check that

w(Bn
p) ≤ C

√
p′ n1/p′

.

Here p′ denotes the conjugate exponent for p, which is defined by the equation 1/p +
1/p′ = 1.
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7.5.4 Surprising Behavior of the Width in High Dimensions

According to our computation in Example 7.5.9, the spherical width of Bn
1 is

ws(B
n
1 ) ∼

√
log n

n
.

Surprisingly, it is much smaller than the diameter of Bn
1 , which equals 2! Furthermore, as

we have already noted, the Gaussian width of Bn
1 is roughly the same (up to a logarithmic

factor) as the Gaussian width of its inscribed Euclidean ball (1/
√

n) Bn
2 . This again might

look strange. Indeed, the cross-polytope Bn
1 looks much larger than its inscribed ball whose

diameter is 2/
√

n! Why does the Gaussian width behave in this way?
Let us try to give an intuitive explanation. In high dimensions, the cube has so many

vertices (2n) that most of the volume is concentrated near them. In fact, the volumes of the
cube and its circumscribed ball are both of order Cn , so these sets are not far from each
other from the volumetric point of view. Thus it should not be very surprising to see that the
Gaussian widths of the cube and its circumscribed ball are also of the same order.

The octahedron Bn
1 has many fewer vertices (2n) than the cube. A random direction θ in

R
n is likely to be almost orthogonal to all of them. So, the width of Bn

1 in the direction of
θ is not significantly influenced by the presence of the vertices. What really determines the
width of Bn

1 is its “bulk”, which is the inscribed Euclidean ball.
A similar picture can be seen from the volumetric viewpoint. There are so few vertices

in Bn
1 that the regions near them contain very little volume. The bulk of the volume of Bn

1
lies much closer to the origin, not far from the inscribed Euclidean ball. Indeed, one can
check that the volumes of Bn

1 and its inscribed ball are both of order (C/n)n . So, from the
volumetric point of view, the octahedron Bn

1 is similar to its inscribed ball; the Gaussian
width gives the same result.

We illustrate this phenomenon in Figure 7.6b, which shows a “hyperbolic” picture of
the Bn

1 that is due to V. Milman. Such pictures capture the bulk and outliers very well, but
unfortunately they may not accurately show the convexity.

(a) General convex set (b) The octahedron B1
n

Figure 7.6 Intuitive hyperbolic pictures of convex sets in R
n . The bulk is a round

ball that contains most of the volume.

7.6 Stable Dimension, Stable Rank, and Gaussian Complexity

The notion of the Gaussian width helps us to introduce a more robust version of the classical
notion of dimension. The usual linear-algebraic dimension dim T of a subset T ⊂ R

n is
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the smallest dimension of a linear subspace E ⊂ R
n that contains T . The linear-algebraic

dimension is unstable: it can significantly change (usually upwards) under a small perturba-
tion of T . A more stable version of the dimension can be defined on the basis of the Gaussian
width.

In this section it will be more convenient to work with a closely related squared version
of the Gaussian width:

h(T )2 := E sup
t∈T

〈g, t〉2 where g ∼ N (0, In). (7.19)

It is not difficult to see that the squared and usual versions of the Gaussian width are
equivalent up to a constant factor.

Exercise 7.6.1 (Equivalence)��� Check that

w(T − T ) ≤ h(T − T ) ≤ w(T − T )+ C1 diam(T ) ≤ Cw(T − T ).

In particular, we have

2w(T ) ≤ h(T − T ) ≤ 2Cw(T ). (7.20)

�

Definition 7.6.2 (Stable dimension) For a bounded set T ⊂ R
n , the stable dimension of T

is defined as

d(T ) := h(T − T )2

diam(T )2
∼ w(T )2

diam(T )2
.

The stable dimension is always bounded by the algebraic dimension:

Lemma 7.6.3 For any set T ⊂ R
n, we have

d(T ) ≤ dim(T ).

Proof Let dim T = k; this means that T lies in some subspace E ⊂ R
n of dimension k. By

rotation invariance we can assume that E is the coordinate subspace, i.e., E = R
k . (Why?)

By definition, we have

h(T − T )2 = E sup
x,y∈T

〈g, x − y〉2 .

Since x − y ∈ R
k and ‖x − y‖2 ≤ diam(T ), we have x − y = diam(T ) z for some z ∈ Bk

2 .
Thus the quantity above is bounded by

diam(T )2 E sup
z∈Bk

2

〈g, z〉2 = diam(T )2 E ‖g′‖2
2 = diam(T )2 k,

where g′ ∼ N (0, Ik) is a standard Gaussian random vector in R
k . The proof is complete. �

The inequality d(T ) ≤ dim(T ) is in general sharp:

Exercise 7.6.4� Show that if T is a Euclidean ball in any subspace of R
n then

d(T ) = dim(T ).
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However, in many cases the stable dimension can be much smaller than the algebraic
dimension:

Example 7.6.5 Let T be a finite set of points in R
n . Then

d(T ) ≤ C log |T |.
This follows from the bound on the Gaussian width of T in Exercise 7.5.10.

7.6.1 Stable Rank

The stable dimension is more robust than the algebraic dimension. Indeed, a small perturba-
tion of a set T leads to a small perturbation of the Gaussian width and the diameter of T and
thus of the stable dimension d(T ).

To give an example, consider the unit Euclidean ball Bn
2 , for which both the algebraic

and stable dimensions equal n. Let us decrease one axis of Bn
2 gradually from 1 to 0. The

algebraic dimension will stay at n through this process and then instantly jump to n − 1.
The stable dimension instead decreases gradually from n to n − 1. To see how exactly it
decreases, do the following computation.

Exercise 7.6.6 (Ellipsoids)�� Let A be an m × n matrix, and let Bn
2 denote the unit

Euclidean ball. Check that the squared mean width of the ellipsoid ABn
2 is the Frobenius

norm of A, i.e.,

h(ABn
2 ) = ‖A‖F .

Deduce that the stable dimension of the ellipsoid ABn
2 equals

d(ABn
2 ) =

‖A‖2
F

‖A‖2
. (7.21)

This example relates the stable dimension to the notion of the stable rank of a matrix,
which is a robust version of the classical, linear, algebraic rank.

Definition 7.6.7 (Stable rank) The stable rank of an m × n matrix A is defined as

r(A) := ‖A‖2
F

‖A‖2
.

The robustness of the stable rank makes it a useful quantity in numerical linear algebra.
The usual, algebraic, rank is the algebraic dimension of the image of A; in particular

rank(A) = dim(ABn
2 ).

Similarly, (7.21) shows that the stable rank is the statistical dimension of the image:

r(A) = d(ABn
2 ).

Finally, note that the stable rank is always bounded by the usual rank:

r(A) ≤ rank(A).

(Check this!)
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7.6.2 Gaussian Complexity

Let us mention one more cousin of the Gaussian width where, instead of squaring 〈g, x〉 as
in (7.19), we take the absolute value.

Definition 7.6.8 The Gaussian complexity of a subset T ⊂ R
n is defined as

γ (T ) := E sup
x∈T

| 〈g, x〉 | where g ∼ N (0, In).

Obviously, we have

w(T ) ≤ γ (T ),

and equality holds if T is origin-symmetric, i.e., if T = −T . Since T − T is origin-
symmetric, property (v) of Proposition 7.5.2 implies that

w(T ) = 1
2w(T − T ) = 1

2γ (T − T ). (7.22)

In general, the Gaussian width and the Gaussian complexity may be quite different. For
example, if T consists of a single point, w(T ) = 0 but γ (T ) > 0. Nevertheless, these two
quantities are very closely related:

Exercise 7.6.9 (Gaussian width vs. Gaussian complexity)��� Consider a set T ⊂ R
n

and a point y ∈ T . Show that

1
3

[
w(T )+ ‖y‖2

] ≤ γ (T ) ≤ 2
(
w(T )+ ‖y‖2

)
This implies in particular that the Gaussian width and the Gaussian complexity are
equivalent for any set T that contains the origin:

w(T ) ≤ γ (T ) ≤ 2w(T ).

(It is fine if you prove the inequalities above with other absolute constants instead of 2
and 1

3 .)

7.7 Random Projections of Sets

This section will illustrate the importance of the notion of the Gaussian (and spherical)
width in dimension reduction problems. Consider a set T ⊂ R

n and project it onto a random
m-dimensional subspace in R

n (chosen uniformly from the Grassmannian Gn,m); see Fig-
ure 5.2 for an illustration. In applications, we might think of T as a data set and P as a means
of dimension reduction. What can we say about the size (diameter) of the projected set PT ?

For a finite set T , the Johnson–Lindenstrauss lemma (Theorem 5.3.1) states that, as
long as

m � log |T |, (7.23)

the random projection P acts essentially as a scaling of T . Namely, P shrinks all distances
between points in T by a factor ≈ √

m/n. In particular,

diam(PT ) ≈
√

m

n
diam(T ). (7.24)
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If the cardinality of T is too large or infinite then (7.24) may fail. For example, if T = Bn
2

is a Euclidean ball then no projection can shrink the size of T , and we have

diam(PT ) = diam(T ). (7.25)

What happens for a general set T ? The following result states that a random projection
shrinks T as in (7.24), but it cannot shrink it beyond the spherical width of T .

Theorem 7.7.1 (Sizes of random projections of sets) Consider a bounded set T ⊂ R
n. Let

P be a projection in R
n onto a random m-dimensional subspace E ∼ Unif(Gn,m). Then,

with probability at least 1 − 2e−m, we have

diam(PT ) ≤ C
(
ws(T )+

√
m

n
diam(T )

)
.

To prove this result, we pass to an equivalent probabilistic model, just as we did in the
proof of the Johnson–Lindenstrauss lemma (see the proof of Proposition 5.3.2). First, a
random subspace E ⊂ R

n can be realized by a random rotation of some fixed subspace,
such as R

m . Next, instead of fixing T and randomly rotating the subspace, we can fix the
subspace and randomly rotate T . The following exercise makes this reasoning more formal.

Exercise 7.7.2 (Equivalent models for random projections)�� Let P be a projection in
R

n onto a random m-dimensional subspace E ∼ Unif(Gn,m). Let Q be an m × n matrix
obtained by choosing the first m rows of a random n × n matrix U ∼ Unif(O(n)) drawn
uniformly from the orthogonal group.

(a) Show that, for any fixed point x ∈ R
n ,

‖Px‖2 and ‖Qx‖2 have the same distribution. �

(b) Show that, for any fixed point z ∈ Sm−1,

QTz ∼ Unif(Sn−1).

In other words, the map QT acts as a random isometric embedding of R
m into R

n . �

Proof of Theorem 7.7.1 Our argument here is another example of an ε-net argument.
Without loss of generality, we may assume that diam(T ) ≤ 1. (Why?)

Step 1: Approximation. By Exercise 7.7.2, it suffices to prove the theorem for Q instead
of P . So we are going to bound

diam(QT ) = sup
x∈T−T

‖Qx‖2 = sup
x∈T−T

max
z∈Sm−1

〈Qx, z〉 .

In a similar way to our previous arguments (for example, in the proof of Theorem 4.4.5 on
random matrices), we discretize the sphere Sn−1. Choose a 1/2-net N of Sn−1 such that

|N | ≤ 5m;
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it is possible to do this by Corollary 4.2.13. We can replace the supremum over the sphere
Sn−1 by a supremum over the net N , paying a factor 2:

diam(QT ) ≤ 2 sup
x∈T−T

max
z∈N

〈Qx, z〉 = 2 max
z∈N

sup
x∈T−T

〈
QTz, x

〉
. (7.26)

(Recall Exercise 4.4.2.) We first control the quantity

sup
x∈T−T

〈
QTz, x

〉
(7.27)

for a fixed z ∈ N and with high probability, and then take the union bound over all z.
Step 2: Concentration. So, let us fix z ∈ N . By Exercise 7.7.2, QTz ∼ Unif(Sn−1). The

expectation of (7.27) can be realized as the spherical width:

E sup
x∈T−T

〈
QTz, x

〉 = ws(T − T ) = 2ws(T ).

(The last identity is the spherical version of a similar property of the Gaussian width; see
part (v) of Proposition 7.5.2.)

Next, let us check that (7.27) concentrates nicely around its mean 2ws(T ). For this, we
can use the concentration inequality (5.6) for Lipschitz functions on the sphere. Since we
assumed that diam(T ) ≤ 1 at the beginning, we can quickly check that the function

θ �→ sup
x∈T−T

〈θ, x〉

is a Lipschitz function on the sphere Sn−1 and that its Lipschitz norm is at most 1. (Do this!)
Therefore, applying the concentration inequality (5.6), we obtain

P

{
sup

x∈T−T

〈
QTz, x

〉 ≥ 2ws(T )+ t

}
≤ 2 exp(−cnt2).

Step 3: Union bound. Now we unfix z ∈ N by taking the union bound over N . We get

P

{
max
z∈N

sup
x∈T−T

〈
QTz, x

〉 ≥ 2ws(T )+ t

}
≤ |N | 2 exp(−cnt2) (7.28)

Recall that |N | ≤ 5m . Then, if we choose

t = C

√
m

n

with C large enough, the probability in (7.28) can be bounded by 2e−m . Then (7.28) and
(7.26) yield

P

{
1

2
diam(QT ) ≥ 2w(T )+ C

√
m

n

}
≤ e−m .

This proves Theorem 7.7.1. �

Exercise 7.7.3 (Gaussian projection)��� Prove a version of Theorem 7.7.1 for an m×n
Gaussian random matrix G with independent N (0, 1) entries. Specifically, show that, for any
bounded set T ⊂ R

n , we have
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diam(GT ) ≤ C
(
w(T )+√

m diam(T )
)

with probability at least 1 − 2e−m . Here w(T ) is the Gaussian width of T .

Exercise 7.7.4 (The reverse bound)��� Show that the bound in Theorem 7.7.1 is
optimal: prove the reverse bound

E diam(PT ) ≥ c
(
ws(T )+

√
m

n
diam(T )

)
for all bounded sets T ⊂ R

n . �

Exercise 7.7.5 (Random projections of matrices)�� Let A be an n × k matrix.

(a) Let P be a projection in R
n onto a random m-dimensional subspace chosen uniformly

in Gn,m . Show that, with probability at least 1 − 2e−m , we have

‖P A‖ ≤ C
( 1√

n
‖A‖F +

√
m

n
‖A‖

)
.

(b) Let G be an m × n Gaussian random matrix with independent N (0, 1) entries. Show
that, with probability at least 1 − 2e−m , we have

‖G A‖ ≤ C
(‖A‖F +√

m ‖A‖) . �

7.7.1 The Phase Transition

Let us pause to take a closer look at the bound given by Theorem 7.7.1. We can write it
equivalently as

diam(PT ) ≤ C max
(
ws(T ),

√
m

n
diam(T )

)
.

Let us compute the dimension m for which a “phase transition” occurs between the two
terms ws(T ) and

√
m/n diam(T ). Setting them equal to each other and solving for m, we

find that the phase transition happens when

m = (
√

nws(T ))2

diam(T )2

∼ w(T )2

diam(T )2
(pass to the Gaussian width using Lemma 7.5.6)

∼ d(T ) (by Definition 7.6.2 of the stable dimension).

So, we can express the conclusion of Theorem 7.7.1 as follows:

diam(PT ) ≤
⎧⎨⎩C

√
m

n
diam(T ), if m ≥ d(T ),

Cws(T ), if m ≤ d(T ).

Figure 7.7 shows a graph of diam(PT ) as a function of the dimension m.



174 Random Processes

diam (PT )

diam (T )

ωs (T )

d(T ) n

m

Figure 7.7 The diameter of a random m-dimensional projection of a set T as a
function of m.

For large m, the random m-dimensional projection shrinks T by a factor ∼ √
m/n, just

as we saw in (7.24) in the context of the Johnson–Lindenstrauss lemma. However, when the
dimension m drops below the stable dimension d(T ), the shrinking stops – it levels off at the
spherical width ws(T ). We saw an example of this in (7.25), where a Euclidean ball cannot
be shrunk by a projection.

7.8 Notes

There are several introductory books on random processes (also called stochastic processes)
and in particular on Brownian motion, for example [37, 123, 178, 152].

Slepian’s inequality (Theorem 7.2.1) was originally due to D. Slepian [181, 182]; modern
proofs can be found in e.g. [126, Corollary 3.12], [3, Section 2.2], [206, Section 6.1], [103],
and [108]. The Sudakov–Fernique inequality (Theorem 7.2.11) is attributed to V. N. Sudakov
[187, 188] and X. Fernique [73]. Our presentation of the proofs of Slepian’s and the
Sudakov–Fernique inequalities in Section 7.2 is based on the approach of J.-P. Kahane [108]
and a smoothing argument of S. Chatterjee (see [3, Section 2.2]), and it follows [206, Sec-
tion 6.1]. A more general version of the Gaussian contraction inequality in Exercise 7.2.13
can be found in [126, Corollary 3.17].

Gordon’s inequality, stated in Exercise 7.2.14, and its extensions can be found in [82, 83,
86, 108]. Applications of Gordon’s inequality for convex optimization can be found in e.g.
[197, 194, 196].

The relevance of comparison inequalities to random matrix theory was noticed by
S. Szarek. The applications we presented in Section 7.3 can be derived from the work of
Gordon [82]. Our presentation there follows the argument in [58, Section II.c], which is also
reproduced in [216, Section 5.3.1].

Sudakov’s minoration inequality (Theorem 7.4.1) was originally proved by V. N. Sudakov.
Our presentation follows [126, Theorem 3.18]; see [11, Section 4.2] for an alternative proof
via duality. The volume bound in Exercise 7.4.5 is almost best possible, but not quite. A
slightly stronger bound

Vol(P)

Vol(Bn
2 )

≤
(C log(1 + N/n)

n

)n/2
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can be deduced in exactly the same way if we use the stronger bound on the covering
numbers given in Exercise 0.0.6. This result is known and is best possible up to a constant
C [49, Section 3].

The Gaussian width and its cousins, which we discussed in Section 7.5, was originally
introduced in geometric functional analysis and asymptotic convex geometry [11, 146].
More recently, starting from [174], the role of the Gaussian width has been recognized in
applications to signal processing and high-dimensional statistics [183, 157, 184, 51, 165, 9,
195, 159]; see also [217, Section 3.5] and [128]. In Section 7.5.4 we noted some surprising
geometric phenomena in high dimensions; to learn more about them see the preface of [11]
and see also [13].

The notion of the stable dimension d(T ) of a set T ⊂ R
n , introduced in Section 7.6,

seems to be new. In the special case where T is a closed convex cone, the squared version
of the Gaussian width h(T ) defined in (7.19) is often called the statistical dimension of T in
the literature on signal recovery [136, 9, 159].

The notion of the stable rank r(A) = ‖A‖2
F/‖A‖2 of a matrix A (also called the effective,

or numerical rank) seems to have appeared for the first time in [173]. In some literature (e.g.
[216, 115]) the quantity

k(�) = tr �

‖�‖
is also called the stable rank of a positive-semidefinite matrix �; we call k(�) the intrin-
sic dimension following [201, Definition 7.1.1]. Note that we used the quantity k(�) in
covariance estimation (see Remark 5.6.3). Clearly, if � = AT A or � = AAT then

k(�) = r(A).

Theorem 7.7.1 and its improvement, which we will give in Section 9.2.2, is due to
V. Milman [145]; see also [11, Proposition 5.7.1].
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Chaining

This chapter presents some central concepts and methods for bounding random processes.
Chaining is a powerful and general technique that can be used to prove uniform bounds on a
random process (Xt )t∈T . We present a basic version of the chaining method in Section 8.1.
There we prove Dudley’s bound on random processes in terms of the covering numbers
of the set T . In Section 8.2, we give applications of Dudley’s inequality to Monte-Carlo
integration and a uniform law of large numbers.

In Section 8.3 we show how to find bounds for random processes in terms of the VC
dimension of T . Unlike covering numbers, the VC dimension is a combinatorial rather
than geometric quantity. It plays an important role in problems of statistical learning theory,
which we discuss in Section 8.4.

As we will see in Section 8.1.2, the bounds on empirical processes in terms of covering
numbers – Sudakov’s inequality from Section 7.4 and Dudley’s inequality – are sharp up to a
logarithmic factor. The logarithmic gap is insignificant in many applications but it cannot be
removed in general. A sharper bound on random processes, without any logarithmic gap, can
be given in terms of the so-called Talagrand functional γ2(T ), which captures the geometry
of T better than the covering numbers. We prove a sharp upper bound in Section 8.5 by a
refined chaining argument, often called “generic chaining”.

The matching lower bound, due to M. Talagrand, is more difficult to obtain; we will state
it without proof in Section 8.6. The resulting sharp two-sided bound on random processes
is known as the majorizing measure theorem (Theorem 8.6.1). A very useful consequence
of this result is Talagrand’s comparison inequality (Corollary 8.6.2), which generalizes the
Sudakov–Fernique inequality for all sub-gaussian random processes.

Talagrand’s comparison inequality has many applications. One of them, Chevet’s inequal-
ity, will be discussed in Section 8.7; others will appear later.

8.1 Dudley’s Inequality

Sudakov’s minoration inequality, which we studied in Section 7.4, gives a lower bound on
the magnitude

E sup
t∈T

Xt

of a Gaussian random process (Xt )t∈T in terms of the metric entropy of T . In this section,
we obtain a similar upper bound.

This time, we are able to work not just with Gaussian processes but with more general
processes having sub-gaussian increments.

176



8.1 Dudley’s Inequality 177

Definition 8.1.1 (Sub-gaussian increments) Consider a random process (Xt )t∈T on a met-
ric space (T, d). We say that the process has sub-gaussian increments if there exists K ≥ 0
such that

‖Xt − Xs‖ψ2 ≤ K d(t, s) for all t, s ∈ T . (8.1)

Example 8.1.2 Let (Xt )t∈T be a mean-zero Gaussian process on an abstract set T . Define
a metric on T by

d(t, s) := ‖Xt − Xs‖2, t, s ∈ T .

Then (Xt )t∈T is obviously a process with sub-gaussian increments, and K is an absolute
constant.

We now state Dudley’s inequality, which gives a bound on a general sub-gaussian random
process (Xt )t∈T in terms of the metric entropy logN (T, d, ε) of T .

Theorem 8.1.3 (Dudley’s integral inequality) Let (Xt )t∈T be a mean-zero random process
on a metric space (T, d) with sub-gaussian increments as in (8.1). Then

E sup
t∈T

Xt ≤ C K
∫ ∞

0

√
logN (T, d, ε) dε.

Before we prove Dudley’s inequality, it is helpful to compare it with Sudakov’s inequality
(Theorem 7.4.1), which, for Gaussian processes, states that

E sup
t∈T

Xt ≥ c sup
ε>0

ε
√

logN (T, d, ε).

Figure 8.1 illustrates Dudley’s and Sudakov’s bounds. There is an obvious gap between these
two bounds. It cannot be closed in terms of the entropy numbers alone; we will explore this
point later.

The right-hand side of Dudley’s inequality might suggest to us that E supt∈T Xt is a multi-
scale quantity, in that we have to examine T at all possible scales ε in order to bound the
process. This is indeed so, and our proof will indeed be multi-scale. We now state and prove
a discrete version of Dudley’s inequality in which the integral over all positive ε is replaced

√log N (T, d, ε)

ε

Dudley

Sudakov

Figure 8.1 Dudley’s inequality bounds E supt∈T Xt by the area under the curve.
Sudakov’s inequality bounds it below by the largest area of a rectangle under the
curve, up to constants.
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by a sum over dyadic values ε = 2−k , which somewhat resembles a Riemann sum. Later we
will quickly pass to the original form of Dudley’s inequality.

Theorem 8.1.4 (Discrete version of Dudley’s inequality) Let (Xt )t∈T be a mean-zero
random process on a metric space (T, d) with sub-gaussian increments as in (8.1). Then

E sup
t∈T

Xt ≤ C K
∑
k∈Z

2−k
√

logN (T, d, 2−k). (8.2)

Our proof of this theorem will be based on the important technique of chaining, which can
be useful in many other problems. Chaining is a multi-scale version of the ε-net argument
that we have previously used successfully, for example, in the proofs of Theorems 4.4.5 and
7.7.1.

In the familiar, single-scale, ε-net argument we discretize T by choosing an ε-net N of
T . Then every point t ∈ T can be approximated by a closest point from the net π(t) ∈ N
with accuracy ε, so that d(t, π(t)) ≤ ε. The increment condition (8.1) yields

‖Xt − Xπ(t)‖ψ2 ≤ K ε. (8.3)

This gives

E sup
t∈T

Xt ≤ E sup
t∈T

Xπ(t) + E sup
t∈T
(Xt − Xπ(t)).

The first term can be controlled by a union bound over |N | = N (T, d, ε) points π(t).
To bound the second term, we would like to use (8.3). But it only holds for fixed t ∈ T ,

and it is not clear how to control the supremum over t ∈ T . To overcome this difficulty,
we do not stop here but continue to run the ε-net argument further, building progressively
finer approximations π1(t), π2(t), . . . to t with finer nets. Let us now develop formally this
technique of chaining.

Proof of Theorem 8.1.4 Step 1: Chaining set-up. Without loss of generality, we may
assume that K = 1 and that T is finite. (Why?) Let us set the dyadic scale

εk = 2−k, k ∈ Z, (8.4)

and choose εk-nets Tk of T such that

|Tk | = N (T, d, εk). (8.5)

Only a part of the dyadic scale will be needed. Indeed, since T is finite, there exists a small
enough number κ ∈ Z (defining the coarsest net) and a large enough number K (defining
the finest net) such that

Tκ = {t0} for some t0 ∈ T, TK = T . (8.6)

For a point t ∈ T , let πk(t) denote a closest point in Tk , so we have

d(t, πk(t)) ≤ εk . (8.7)

Since E Xt0 = 0, we have

E sup
t∈T

Xt = E sup
t∈T
(Xt − Xt0).
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π k (t)

πk(t)

πk+1(t)

πk+2(t)

t

t0

Figure 8.2 Chaining: a walk from a fixed point t0 to an arbitrary point t in T along
elements πk(T ) of progressively finer nets of T

We can express Xt − Xt0 as a telescoping sum; think about walking from t0 to t along a
chain of points πk(t) that mark progressively finer approximations to t :

Xt − Xt0 = (Xπκ(t) − Xt0)+ (Xπκ+1(t) − Xπκ(t))+ · · · + (Xt − XπK (t)), (8.8)

see Figure 8.2 for an illustration. The first and last terms of this sum are zero by (8.6), so we
have

Xt − Xt0 =
K∑

k=κ+1

(Xπk(t) − Xπk−1(t)). (8.9)

Since the supremum of the sum is bounded by the sum of the suprema, this yields

E sup
t∈T
(Xt − Xt0) ≤

K∑
k=κ+1

E sup
t∈T
(Xπk(t) − Xπk−1(t)). (8.10)

Step 2: Controlling the increments. Although each term in the bound (8.10) still has a
supremum over the entire set T , a closer look reveals that it is actually a maximum over a
much smaller set, namely the set all possible pairs (πk(t), πk−1(t)). The number of such
pairs is

|Tk | |Tk−1| ≤ |Tk |2,
a number that we can control through (8.5).

Next, for a fixed t , the increments in (8.10) can be bounded as follows:

‖Xπk(t) − Xπk−1(t)‖ψ2 ≤ d(πk(t), πk−1(t)) (by (8.1) and since K = 1)

≤ d(πk(t), t)+ d(t, πk−1(t)) (by triangle inequality)

≤ εk + εk−1 (by (8.7))

≤ 2εk−1.

Recall from Exercise 2.5.10 that the expected maximum of N sub-gaussian random vari-
ables is at most C L

√
log N , where L is the maximal ψ2 norm. Thus we can bound each

term in (8.10) as follows:

E sup
t∈T
(Xπk(t) − Xπk−1(t)) ≤ Cεk−1

√
log |Tk |. (8.11)
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Step 3: Summing up the increments. We have shown that

E sup
t∈T
(Xt − Xt0) ≤ C

K∑
k=κ+1

εk−1
√

log |Tk |. (8.12)

It remains to substitute the values εk = 2−k from (8.4) and the bounds (8.5) on |Tk |, and
conclude that

E sup
t∈T
(Xt − Xt0) ≤ C1

K∑
k=κ+1

2−k
√

logN (T, d, 2−k).

Theorem 8.1.4 is proved. �

Let us now deduce the integral form of Dudley’s inequality.

Proof of Dudley’s integral inequality, Theorem 8.1.3 To convert the sum (8.2) into an inte-

gral, we express 2−k as 2
∫ 2−k

2−k−1 dε. Then

∑
k∈Z

2−k
√

logN (T, d, 2−k) = 2
∑
k∈Z

∫ 2−k

2−k−1

√
logN (T, d, 2−k) dε.

Within the limits of the integral 2−k ≥ ε, so logN (T, d, 2−k) ≤ logN (T, d, ε) and the
sum is bounded by

2
∑
k∈Z

∫ 2−k

2−k−1

√
logN (T, d, ε) dε = 2

∫ ∞

0

√
logN (T, d, ε) dε.

The proof is complete. �

Remark 8.1.5 (Supremum of increments) A quick glance at the proof reveals that the
chaining method actually yields the bound

E sup
t∈T

|Xt − Xt0 | ≤ C K
∫ ∞

0

√
logN (T, d, ε) dε

for any fixed t0 ∈ T . Combining it with a similar bound for Xs − Xt0 and using the triangle
inequality, we deduce that

E sup
t,s∈T

|Xt − Xs | ≤ C K
∫ ∞

0

√
logN (T, d, ε) dε.

Note that in either of these two bounds, we need not require the mean-zero assumption
E Xt = 0. It is required, however, in Dudley’s theorem 8.1.3; otherwise the theorem may
fail. (Why?)

Dudley’s inequality gives a bound on the expectation only, but adapting the argument
yields a nice tail bound as well.
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Theorem 8.1.6 (Dudley’s integral inequality: tail bound) Let (Xt )t∈T be a random process
on a metric space (T, d) with sub-gaussian increments as in (8.1). Then, for every u ≥ 0,
the event

sup
t,s∈T

|Xt − Xs | ≤ C K
( ∫ ∞

0

√
logN (T, d, ε) dε + u diam(T )

)
holds with probability at least 1 − 2 exp(−u2).

Exercise 8.1.7��� Prove Theorem 8.1.6. To this end, first obtain a high-probability
version of (8.11):

sup
t∈T
(Xπk(t) − Xπk−1(t)) ≤ Cεk−1

(√
log |Tk | + z

)
with probability at least 1 − 2 exp(−z2).

Use this inequality with z = zk to control all such terms simultaneously. Summing them
up, deduce a bound on supt∈T |Xt −Xt0 | with probability at least 1−2

∑
k exp(−z2

k). Finally,
choose values for zk that give you a good bound; one can set zk = u +√

k − κ for example.

Exercise 8.1.8 (Equivalence of Dudley’s integral and sum)�� In the proof of Theo-
rem 8.1.3 we bounded Dudley’s sum by an integral. Show the reverse bound:∫ ∞

0

√
logN (T, d, ε) dε ≤ C

∑
k∈Z

2−k
√

logN (T, d, 2−k).

8.1.1 Remarks and Examples

Remark 8.1.9 (Limits of Dudley’s integral) Although Dudley’s integral is formally over
[0,∞], we can clearly make the upper bound equal the diameter of T in the metric d; thus

E sup
t∈T

Xt ≤ C K
∫ diam(T )

0

√
logN (T, d, ε) dε. (8.13)

Indeed, if ε > diam(T ) then a single point (any point in T ) is an ε-net of T , which shows
that logN (T, d, ε) = 0 for such ε.

Let us apply Dudley’s inequality for the canonical Gaussian process, just as we did with
Sudakov’s inequality in Section 7.4.1. We immediately obtain the following bound.

Theorem 8.1.10 (Dudley’s inequality for sets in R
n) For any set T ⊂ Rn, we have

w(T ) ≤ C
∫ ∞

0

√
log N (T, ε) dε.

Example 8.1.11 Let us test Dudley’s inequality for the unit Euclidean ball T = Bn
2 . Recall

from (4.10) that

N (Bn
2 , ε) ≤

(3

ε

)n
for ε ∈ (0, 1]

and N (Bn
2 , ε) = 1 for ε > 1. Then Dudley’s inequality yields a converging integral
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w(Bn
2 ) ≤ C

∫ 1

0

√
n log

3

ε
dε ≤ C1

√
n.

This is optimal: indeed, as we know from (7.16), the Gaussian width of Bn
2 is equivalent to√

n up to a constant factor.

Exercise 8.1.12 (Dudley’s inequality can be loose)��� Let e1, . . . , en denote the
canonical basis vectors in R

n . Consider the set

T :=
{ ek√

1 + log k
, k = 1, . . . , n

}
.

(a) Show that

w(T ) ≤ C,

where as usual C denotes an absolute constant. �
(b) Show that ∫ ∞

0

√
logN (T, d, ε) dε → ∞

as n → ∞. �

8.1.2* Two-Sided Sudakov Inequality

This subsection is optional; further material is not based on it.
As we have just seen in Exercise 8.1.12, in general there is a gap between Sudakov’s

and Dudley’s inequalities. Fortunately, this gap is only logarithmically large. Let us make
this statement more precise and show that Sudakov’s inequality in R

n (Corollary 7.4.3) is
optimal up to a factor log n.

Theorem 8.1.13 (Two-sided Sudakov inequality) Let T ⊂ R
n and set

s(T ) := sup
ε≥0

ε
√

logN (T, ε).

Then

c s(T ) ≤ w(T ) ≤ C log(n) s(T ).

Proof The lower bound is a form of Sudakov’s inequality (Corollary 7.4.3). To prove the
upper bound, the main idea is that the chaining process converges exponentially fast, and
thus O(log n) steps should suffice to walk from t0 to somewhere very near t .

As we already noted in (8.13), the coarsest scale in the chaining sum (8.9) can be chosen
as the diameter of T . In other words, we can start the chaining at κ , the smallest integer such
that

2−κ < diam(T ).

This is not different from what we did before. What will be different is the finest scale.
Instead of going all the way down, let us stop chaining at K , which is the largest integer for
which



8.2 Application: Empirical Processes 183

2−K ≥ w(T )

4
√

n
.

(It will soon be clear why we have made this choice.)
Then the last term in (8.8) may not be zero as before, and instead of (8.9) we need the

bound

w(T ) ≤
K∑

k=κ+1

E sup
t∈T
(Xπk(t) − Xπk−1(t))+ E sup

t∈T
(Xt − XπK (t)). (8.14)

To control the last term, recall that Xt = 〈g, t〉 is the canonical process, so

E sup
t∈T
(Xt − XπK (t)) = E sup

t∈T
〈g, t − πK (t)〉

≤ 2−K
E ‖g‖2 (since ‖t − πK (t)‖2 ≤ 2−K )

≤ 2−K√
n

≤ w(T )

2
√

n

√
n (by definition of K )

≤ 1

2
w(T ).

Putting this into (8.14) and subtracting 1
2w(T ) from both sides, we conclude that

w(T ) ≤ 2
K∑

k=κ+1

E sup
t∈T
(Xπk(t) − Xπk−1(t)). (8.15)

Thus, we have removed the last term from (8.14). Each remaining term can be bounded
as before. The number of terms in this sum is

K − κ ≤ log2
diam(T )

w(T )/4
√

n
(by the definitions of K and κ)

≤ log2

(
4
√

n
√

2π
)

(by property (vi) of Proposition 7.5.2)

≤ C log n.

Thus we can replace the sum by the maximum in (8.15) by paying a factor C log n. This
completes the argument as in the proof of Theorem 8.1.4. �

Exercise 8.1.14 (Limits in Dudley’s integral)��� Prove the following improvement of
Dudley’s inequality (Theorem 8.1.10). For any set T ⊂ Rn , we have

w(T ) ≤ C
∫ b

a

√
log N (T, ε) dε where a = cw(T )√

n
, b = diam(T ).

8.2 Application: Empirical Processes

We now give an application of Dudley’s inequality to empirical processes, which are certain
random processes indexed by functions. The theory of empirical processes comprises a large
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branch of probability theory, and we will only scratch its surface here. Let us consider a
motivating example.

8.2.1 Monte-Carlo Method

Suppose that we want to evaluate the integral of a function f : �→ R with respect to some
probability measure μ on some domain � ⊂ R

d , i.e.,∫
�

f dμ;

see Figure 8.3a. For example, we might be interested in computing
∫ 1

0 f (x) dx for a function
f : [0, 1] → R.

We will use a probability method to evaluate this integral. Consider a random point X that
takes values in � according to the law μ, i.e.,

P
{

X ∈ A
} = μ(A) for any measurable set A ⊂ �.

(For example, to evaluate
∫ 1

0 f (x) dx , we take X ∼ Unif[0, 1].) Then we may interpret the
integral as an expectation: ∫

�

f dμ = E f (X).

Let X1, X2, . . . be i.i.d. copies of X . The law of large numbers (Theorem 1.3.1) yields
that

1

n

n∑
1

f (Xi )→ E f (X) almost surely (8.16)

as n → ∞. This means that we can approximate the integral by a sum:∫
�

f dμ ≈ 1

n

n∑
1

f (Xi ), (8.17)

where the points Xi are drawn at random from the domain �; see Figure 8.3b for an
illustration. This way of numerically computing integrals is called the Monte-Carlo method.

Ω

Ω
ƒ dμ

X2 X3...XnX1

(a) The problem is to compute
the integral of f on a domain Ω.

(b) The integral is approximated by
the sum n–1 ∑   f (Xi) with randomly
sampled points Xi.

n
1

∫

Figure 8.3 Monte-Carlo method for randomized numerical integration.
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Remark 8.2.1 (Error rate) Note that the average error in (8.17) is O(1/
√

n). Indeed, as
we noted in (1.5), the rate of convergence in the law of large numbers is

E

∣∣∣1
n

n∑
1

f (Xi )− E f (X)
∣∣∣ ≤ (

Var
(1

n

n∑
i=1

f (Xi )
))1/2 = O

( 1√
n

)
. (8.18)

Remark 8.2.2 Note that we do not even need to know the measure μ in order to evaluate
the integral

∫
�

f dμ; it suffices to be able to draw random samples Xi according to μ.
Similarly, we do not even need to know f at all points in the domain; a few random points
suffice.

8.2.2 A Uniform Law of Large Numbers

Can we use the same sample X1, . . . , Xn to evaluate the integral of any function f : �→ R?
Of course not. For a given sample, we could choose a function that oscillates in the wrong
way between the sample points, and then the approximation (8.17) would fail.

Will it help if we consider only those functions f that do not oscillate wildly – for exam-
ple, Lipschitz functions? It will. Our next theorem states that the Monte-Carlo method (8.17)
does work well over the whole class of Lipschitz functions

F := {
f : [0, 1] → R, ‖ f ‖Lip ≤ L

}
, (8.19)

where L is any fixed number.

Theorem 8.2.3 (Uniform law of large numbers) Let X, X1, X2, . . . , Xn be i.i.d. random
variables taking values in [0, 1]. Then

E sup
f ∈F

∣∣∣∣1n
n∑

i=1

f (Xi )− E f (X)

∣∣∣∣ ≤ C L√
n
. (8.20)

Remark 8.2.4 Before we prove this result, let us pause to emphasize its key point: the
supremum over f ∈ F appears inside the expectation. By Markov’s inequality, this means
that, with high probability, a random sample X1, . . . , Xn is good; here “good” means
that using this sample, we can approximate the integral of any function f ∈ F with
error bounded by the same quantity, C L/

√
n. This is the same rate of convergence that

the classical law of large numbers (8.18) guarantees for a single function f . So we have

X3. . . XnX1 X2

Figure 8.4 One cannot use the same sample X1, . . . , Xn to approximate the
integral of any function f .
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paid essentially nothing for making the law of large numbers uniform over the class of
functions F .

To prepare for the proof of Theorem 8.2.3, it will be useful to view the left-hand side of
(8.20) as the magnitude of a random process indexed by functions f ∈ F . Such random
processes are called empirical processes.

Definition 8.2.5 Let F be a class of real-valued functions f : �→ R, where (�,�,μ) is
a probability space. Let X be a random point in � distributed according to the law μ, and
let X1, X2, . . . , Xn be independent copies of X . The random process (X f ) f ∈F defined by

X f := 1

n

n∑
i=1

f (Xi )− E f (X) (8.21)

is called an empirical process indexed by F .

Proof of Theorem 8.2.3 Without loss of generality, it is enough to prove the theorem for
the class

F := {
f : [0, 1] → [0, 1], ‖ f ‖Lip ≤ 1

}
. (8.22)

(Why?) We would like to bound the magnitude

E sup
f ∈F

|X f |

of the empirical process (X f ) f ∈F defined in (8.21).
Step 1: Checking for sub-gaussian increments. We can do this using Dudley’s inequality,

Theorem 8.1.3. To apply this result, we just need to check that the empirical process has
sub-gaussian increments. So, fix a pair of functions f, g ∈ F and consider

‖X f − Xg‖ψ2 = 1

n

∥∥∥∥ n∑
i=1

Zi

∥∥∥∥
ψ2

where Zi := ( f − g)(Xi )− E( f − g)(X).

The random variables Zi are independent and have zero mean. So, by Proposition 2.6.1, we
have

‖X f − Xg‖ψ2 � 1

n

( n∑
i=1

‖Zi‖2
ψ2

)1/2

.

Now, using centering (Lemma 2.6.8) we have

‖Zi‖ψ2 � ‖( f − g)(Xi )‖ψ2 � ‖ f − g‖∞.
It follows that

‖X f − Xg‖ψ2 � 1

n
n1/2‖ f − g‖∞ = 1√

n
‖ f − g‖∞.

Step 2: Applying Dudley’s inequality. We found that the empirical process (X f ) f ∈F has
sub-gaussian increments with respect to the L∞ norm. This allows us to apply Dudley’s
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inequality. Note that (8.22) implies that the diameter of F in L∞ metric is bounded by 1.
Thus

E sup
f ∈F

|X f | = E sup
f ∈F

|X f − X0| � 1√
n

∫ 1

0

√
logN (F , ‖ · ‖∞, ε) dε.

(Here we have used the fact that the zero function belongs to F and have also used the
version of Dudley’s inequality from Remark 8.1.5; see also (8.13).)

Since all functions in f ∈ F are Lipschitz with ‖ f ‖Lip ≤ 1, it is not difficult to bound
the covering numbers of F as follows:

N (F , ‖ · ‖∞, ε) ≤
(C

ε

)C/ε;
we will show this in Exercise 8.2.6 below. This bound makes Dudley’s integral converge,
and we conclude that

E sup
f ∈F

|X f | � 1√
n

∫ 1

0

√
C

ε
log

C

ε
dε � 1√

n
.

Theorem 8.2.3 is proved. �

Exercise 8.2.6 (Metric entropy of the class of Lipschitz functions)��� Consider the
class of functions

F := {
f : [0, 1] → [0, 1], ‖ f ‖Lip ≤ 1

}
.

Show that

N (F , ‖ · ‖∞, ε) ≤
(2

ε

)2/ε
for any ε > 0. �

Exercise 8.2.7 (An improved bound on the metric entropy)��� Improve the bound in
Exercise 8.2.6 to

N (F , ‖ · ‖∞, ε) ≤ eC/ε for any ε > 0. �

Exercise 8.2.8 (Higher dimensions) Consider the class of functions

F :=
{

f : [0, 1]d → R, f (0) = 0, ‖ f ‖Lip ≤ 1
}

ƒ0

ƒ

Figure 8.5 Bounding the metric entropy of the class of Lipschitz functions in
Exercise 8.2.6. A Lipschitz function f is approximated by a function f0 on a mesh.
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for some dimension d ≥ 1. Show that

N (F , ‖ · ‖∞, ε) ≤ eC/εd
for any ε > 0.

8.2.3 Empirical Measure

Let us take one more look at Definition 8.2.5 concerning empirical processes. Consider a
probability measure μn that is uniformly distributed on the sample X1, . . . , X N , that is,

μn({Xi }) = 1

n
for every i = 1, . . . , n. (8.23)

Note that μn is a random measure. It is called the empirical measure.
While the integral of f with respect to the original measureμ is E f (X) (the “population”

average of f ), the integral of f with respect to the empirical measure is 1
n

∑n
i=1 f (Xi ) (the

“sample”, or empirical, average of f ). In the literature on empirical processes, the population
expectation of f is denoted by μ f and the empirical expectation by μn f :

μ f =
∫

f dμ = E f (X), μn f =
∫

f dμn = 1

n

n∑
i=1

f (Xi ).

The empirical process X f in (8.21) thus measures the deviation of the sample expectation
from the empirical expectation:

X f = μ f − μn f.

The uniform law of large numbers (8.20) gives a uniform bound on the deviation

E sup
f ∈F

|μn f − μ f | (8.24)

over the class of Lipschitz functions F defined in (8.19).
The quantity (8.24) can be thought of as the distance between the measures μn and μ.

It is called the Wasserstein distance W1(μ,μn). The Wasserstein distance has an equivalent
formulation as the transportation cost of measure μ into measure μn , where the cost of
moving a mass (probability) p > 0 is proportional to p and to the distance moved. The
equivalence between the transportation cost and (8.24) is provided by the Kantorovich–
Rubinstein duality theorem.

8.3 VC Dimension

In this section, we introduce the notion of the VC dimension, which plays a major role
in statistical learning theory. We relate the VC dimension to covering numbers and then,
through Dudley’s inequality, to random processes and the uniform law of large numbers.
Applications to statistical learning theory will be given in the next section.

8.3.1 Definition and Examples

The Vapnik–Chervonenkis (VC) dimension is a measure of the complexity of classes of
Boolean functions. By a class of Boolean functions we mean any collection F of functions
f : �→ {0, 1} defined on a common domain �.
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Definition 8.3.1 (VC dimension) Consider a class F of Boolean functions on some
domain �. We say that a subset � ⊆ � is shattered by F if any function g : � → {0, 1}
can be obtained by restricting some function f ∈ F to �. The VC dimension of F , denoted
vc(F), is the largest cardinality1 of a subset � ⊆ � shattered by F .

The definition of the VC dimension may take some time to fully comprehend. We work
out a few examples to illustrate this notion.

Example 8.3.2 (Intervals) Let F be the class of indicators of all closed intervals in R,
that is,

F :=
{

1[a,b] : a, b ∈ R, a ≤ b
}
.

We claim that there exists a two-point set � ⊂ R that is shattered by F , and thus

vc(F) ≥ 2.

Take, for example, � := {3, 5}. It is not too difficult to see that each of the four possible
functions g : � → {0, 1} is a restriction of some indicator function f = 1[a,b] onto �. For
example, the function g defined by g(3) = 1, g(5) = 0 is a restriction of f = 1[2,4] onto �,
since f (3) = g(3) = 1 and f (5) = g(5) = 0. The three other possible functions g can be
treated similarly; see Figure 8.6. Thus � = {3, 5} is indeed shattered by F , as claimed.

Next, we claim that no three-point set � = {p, q, r} can be shattered by F , and thus

vc(F) = 2.

To see this, assume that p < q < r and define the function g : � → {0, 1} by g(p) = 1,
g(q) = 0, g(r) = 1. Then g cannot be a restriction of any indicator 1[a,b] onto �, for
otherwise [a, b] would contain two points p and r but not the point q that lies between
them, which is impossible.

Example 8.3.3 (Half-planes) Let F be the class of indicators of all closed half-planes in
R

2. We claim that there is a three-point set � ⊂ R
2 that is shattered by F , and thus

vc(F) ≥ 3.

To see this, let � be a set of three points in general position, such as in Figure 8.7. Then
each of the 23 = 8 functions g : �→ {0, 1} is a restriction of the indicator function of some
half-plane. To see this, arrange the half-plane to contain exactly those points of � where g
takes the value 1, which can always be done – see Figure 8.7.

3

0 0 0 0

1 1 1 1

5 3 5 3 5 3 5

Figure 8.6 The function g(3) = g(5) = 0 is a restriction of 1[6,7] onto � = {3, 5}
(far left). The function g(3) = 0, g(5) = 1 is a restriction of 1[4,6] onto � (middle
left). The function g(3) = 1, g(5) = 0 is a restriction of 1[2,4] onto � (middle
right). The function g(3) = g(5) = 1 is a restriction of 1[2,6] onto � (right).

1 If the largest cardinality does not exist, we set vc(F) = ∞.
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0

0
0

0

0

0 0

1

1

1
1

Figure 8.7 Left: a three-point set � and function g : �→ {0, 1}. Such a g is a
restriction of the indicator function of the shaded half-plane. Middle and right: two
kinds of four-point sets � in general position, and functions g : �→ {0, 1}. In each
case, no half-plane can contain exactly the points with value 1. Thus, g is not a
restriction of the indicator function of any half-plane.

Next, we claim that no four-point set can be shattered by F , and thus

vc(F) = 3.

There are two possible arrangements of the four-point sets � in general position, shown in
Figure 8.7. (What if� is not in general position? Analyze this case.) In each of the two cases,
there exists a 0/1 labeling of the points such that no half-plane can contain exactly the points
labeled 1; see Figure 8.7. This means that in each case there exists a function g : �→ {0, 1}
that is not a restriction of any function f ∈ F onto �, and thus the four-point sets � are not
shattered by F as claimed.

Example 8.3.4 Let � = {1, 2, 3}. We can conveniently represent Boolean functions on �
as binary strings of length three. Consider the class

F := {001, 010, 100, 111}.
The set � = {1, 3} is shattered by F . Indeed, restricting the functions in F onto � amounts
to dropping the second digit, thus producing strings 00, 01, 10, 11. Thus, the restriction
produces all possible binary strings of length two or, equivalently, all possible functions
g : �→ {0, 1}. Hence� is shattered by F , and thus vc(F) ≥ |�| = 2. However, the (only)
three-point set {1, 2, 3} is not shattered by F , as this would require all eight binary digits of
length three to appear in F , which is not the case.

Exercise 8.3.5 (Pairs of intervals)�� Let F be the class of indicators of sets of the form
[a, b] ∪ [c, d] in R. Show that

vc(F) = 4.

Exercise 8.3.6 (Circles)��� Let F be the class of indicators of all circles in R
2. Show

that

vc(F) = 3.

Exercise 8.3.7 (Rectangles)��� Let F be the class of indicators of all closed axis-
aligned rectangles, i.e., product sets [a, b] × [c, d], in R

2. Show that

vc(F) = 4.
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Exercise 8.3.8 (Squares)��� Let F be the class of indicators of all closed axis-aligned
squares, i.e. product sets [a, b] × [a, b], in R

2. Show that

vc(F) = 3.

Exercise 8.3.9 (Polygons)��� Let F be the class of indicators of all convex polygons
in R

2, without any restriction on the number of vertices. Show that

vc(F) = ∞.

Remark 8.3.10 (VC dimension of classes of sets) We can talk about the VC dimension
of classes of sets instead of functions. This is due to the natural correspondence between
the two: a Boolean function f on � determines the subset {x ∈ � : f (x) = 1} and, vice
versa, a subset �0 ⊂ � determines the Boolean function f = 1�0 . In this language, the VC
dimension of the set of intervals in R equals 2, the VC dimension of the set of half-planes
in R

2 equals 3, and so on.

Exercise 8.3.11� Give the definition of the VC dimension of a class of subsets of �
without mentioning any functions.

Remark 8.3.12 (More examples) It can be shown that the VC dimension of the class of all
rectangles on the plane (not necessarily axis-aligned) equals 7. For the class of all polygons
with k vertices on the plane, the VC dimension is 2k + 1. For the class of half-spaces in R

n ,
the VC dimension is n + 1.

8.3.2 Pajor’s Lemma

Consider a class of Boolean functions F on a finite set �. We will study a remarkable con-
nection between the cardinality |F | and the VC dimension of F . Somewhat oversimplifying,
we can say that |F | is exponential in vc(F). A lower bound is trivial:

|F | ≥ 2vc(F).

(Check!) We now pass to upper bounds; they are less trivial. The following lemma states
that there are as many shattered subsets of � as the functions in F .

Lemma 8.3.13 (Pajor’s lemma) Let F be a class of Boolean functions on a finite set �.
Then

|F | ≤ ∣∣{� ⊆ � : � is shattered by F}∣∣ .
We include the empty set � = ∅ in the counting on the right-hand side.

Before we prove Pajor’s lemma, let us pause to give a quick illustration using Exam-
ple 8.3.4. In that example, |F | = 4 and there are six subsets � that are shattered by F ,
namely {1}, {2}, {3}, {1, 2}, {1, 3}, and {2, 3}. (Check!) Thus the inequality in Pajor’s lemma
reads 4 ≤ 6 in this case.
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Proof of Lemma 8.3.13 We proceed by induction on the cardinality of�. The case |�| = 1
is trivial, since we include the empty set in the counting. Now assume that the lemma holds
for any n-point set �, and let us prove it for � with |�| = n + 1.

Chopping out one (arbitrary) point from the set �, we can express this as

� = �0 ∪ {x0}, where |�0| = n.

The class F then naturally breaks into two sub-classes,

F0 := { f ∈ F : f (x0) = 0} and F1 := { f ∈ F : f (x0) = 1}.
By the induction hypothesis, the counting function

S(F) = ∣∣{� ⊆ � : � is shattered by F}∣∣
satisfies2

S(F0) ≥ |F0| and S(F1) ≥ |F1|. (8.25)

To complete the proof, all we need to check is

S(F) ≥ S(F0)+ S(F1), (8.26)

for then (8.25) would give S(F) ≥ |F0| + |F1| = |F |, as needed.
Inequality (8.26) may seem trivial. Any set � that is shattered by F0 or F1 is automat-

ically shattered by the larger class F , and thus each set � counted by S(F0) or S(F1) is
automatically counted by S(F). The problem, however, lies in the double counting. Assume
that the same set � is shattered by both F0 and F1. The counting function S(F) will not
count � twice. However, a different set will be counted by S(F), which was not counted
by either S(F0) or S(F1), namely, � ∪ {x0}. A moment’s thought reveals that this set is
indeed shattered by F . (Check!) This establishes inequality (8.26) and completes the proof
of Pajor’s lemma. �

It may be helpful to illustrate the key point in the proof of Pajor’s lemma with a specific
example.

Example 8.3.14 Let us again go back to Example 8.3.4. Following the proof of Pajor’s
lemma, we chop out x0 = 3 from � = {1, 2, 3}, making �0 = {1, 2}. The class F =
{001, 010, 100, 111} then breaks into two sub-classes

F0 = {010, 100} and F1 = {001, 111}.
There are exactly two subsets � shattered by F0, namely {1} and {2}, and the same subsets
are shattered by F1, making S(F0) = S(F1) = 2. Of course, the same two subsets are
also shattered by F , but we need two more shattered subsets to make S(F) ≥ 4 for the key
inequality (8.26). Here is how we construct them: append x0 = 3 to the already counted
subsets �. The resulting sets {1, 3} and {2, 3} are also shattered by F , and we have not
counted them yet. Now have at least four subsets shattered by F , making the key inequality
(8.26) in the proof of Pajor’s lemma true.

2 Here, to use the induction hypothesis properly, restrict the functions in F0 and F1 onto the n-point set �0.



8.3 VC Dimension 193

Exercise 8.3.15 (Sharpness of Pajor’s lemma)�� Show that Pajor’s lemma 8.3.13 is
sharp. �

8.3.3 Sauer–Shelah Lemma

We now deduce a remarkable upper bound on the cardinality of a function class in terms of
the VC dimension.

Theorem 8.3.16 (Sauer–Shelah lemma) Let F be a class of Boolean functions on an n-
point set �. Then

|F | ≤
d∑

k=0

(
n

k

)
≤
(en

d

)d
,

where d = vc(F).

Proof Pajor’s lemma states that |F | is bounded by the number of subsets � ⊆ � that are
shattered by F . The cardinality of each such set � is bounded by d = vc(F), according to
the definition of the VC dimension. Thus

|F | ≤ ∣∣{� ⊆ � : |�| ≤ d
}∣∣ = d∑

k=0

(
n

k

)
,

since the sum on the right-hand side gives the total number of subsets of an n-element set
with cardinalities at most k. This proves the first inequality of the Sauer–Shelah lemma. The
second inequality follows from the bound on the binomial sum proved in Exercise 0.0.5. �

Exercise 8.3.17 (Sharpness of Sauer–Shelah lemma)�� Show that the Sauer–Shelah
lemma is sharp for all n and d. �

8.3.4 Covering Numbers via the VC Dimension

The Sauer–Shelah lemma is sharp, but it can be used only for finite function classes F .
What about infinite function classes F , for example, the indicator functions of half-planes
in Example 8.3.3? It turns out that we can always bound the covering numbers of F in terms
of the VC dimension.

Let F be a class of Boolean functions on a set � as before, and let μ be any probability
measure on �. Then F can be considered as a metric space under the L2(μ) norm, with the
metric on F given by

d( f, g) = ‖ f − g‖L2(μ) =
( ∫

�

| f − g|2 dμ
)1/2

, f, g ∈ F .

Then we can talk about the covering numbers of the class F in the L2(μ) norm, which we
denote3 N (F , L2(μ), ε).

3 If you are not completely comfortable with measure theory, it may be helpful to consider a discrete case, which
is all we need for applications in the next section. Let � be an N -point set, say � = {1, . . . , N }, and μ be the
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Theorem 8.3.18 (Covering numbers via VC dimension) Let F be a class of Boolean
functions on a probability space (�,�,μ). Then, for every ε ∈ (0, 1), we have

N (F , L2(μ), ε) ≤
(2

ε

)Cd

where d = vc(F).

This result should be compared with the volumetric bound (4.10), which also states that
the covering numbers scale exponentially with the dimension. The important difference is
that the VC dimension captures a combinatorial rather than a linear algebraic complexity of
sets.

For a first attempt at proving Theorem 8.3.18, let us assume for a moment that � is finite,
say |�| = n. Then the Sauer–Shelah lemma (Theorem 8.3.16) yields

N (F , L2(μ), ε) ≤ |F | ≤
(en

d

)d
.

This is not quite what Theorem 8.3.18 claims, but it comes close. To improve the bound, we
need to remove the dependence on the size n of �. Can we reduce the domain � to a much
smaller subset without harming the covering numbers? It turns out that we can; this will be
based on the following lemma.

Lemma 8.3.19 (Dimension reduction) Let F be a class of N Boolean functions on a
probability space (�,�,μ). Assume that all functions in F are ε-separated, that is,

‖ f − g‖L2(μ) > ε for all distinct f, g ∈ F .
Then there exist a number n ≤ Cε−4 log N and an n-point subset �n ⊂ � such that the
uniform probability measure μn on �n satisfies4

‖ f − g‖L2(μn)
>
ε

2
for all distinct f, g ∈ F .

Proof Our argument will be based on the probabilistic method. We choose the subset �n

at random and show that it satisfies the conclusion of the theorem with positive probability.
This will automatically imply the existence of at least one suitable choice of �n .

Let X, X1, . . . , Xn be independent random points in � distributed5 according to the law
μ. Fix a pair of distinct functions f, g ∈ F and denote h := ( f − g)2 for convenience. We
would like to bound the deviation

‖ f − g‖2
L2(μn)

− ‖ f − g‖2
L2(μ)

= 1

n

n∑
i=1

h(Xi )− E h(X).

uniform measure on �; thus μ(i) = 1/N for every i = 1, . . . , N . In this case, the L2(μ) norm of a function
f : �→ R is simply ‖ f ‖L2(μ) = ((1/N )

∑N
i=1 f (i)2)1/2. Equivalently, one can think of f as a vector in R

N .

The L2(μ) norm is just the scaled Euclidean norm ‖ · ‖2 on R
n , i.e., ‖ f ‖L2(μ) = (1/

√
N )‖ f ‖2.

4 To express the conclusion more conveniently, let �n = {x1, . . . , xn}. Then
‖ f − g‖2

L2(μn )
= (1/n)

∑n
i=1( f − g)(xi )

2.
5 For example, if � = {1, . . . , N } then X is a random variable which takes the values 1, . . . , N with probability

1/N each.
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We have a sum of independent random variables on the right, and we use the general
Hoeffding’s inequality to bound it. To do this, we first check that these random variables
are sub-gaussian. Indeed,6

‖h(Xi )− E h(X)‖ψ2 � ‖h(X)‖ψ2 (by the centering lemma 2.6.8)

� ‖h(X)‖∞ (by (2.17))

≤ 1 (since h = f − g with f, g Boolean).

Then the general Hoeffding inequality (Theorem 2.6.2) gives

P

{∣∣∣‖ f − g‖2
L2(μn)

− ‖ f − g‖2
L2(μ)

∣∣∣ > ε2

4

}
≤ 2 exp(−cnε4).

(Check!) Therefore, with probability at least 1 − 2 exp(−cnε4), we have

‖ f − g‖2
L2(μn)

≥ ‖ f − g‖2
L2(μ)

− ε2

4
≥ ε2 − ε2

4
= 3ε2

4
, (8.27)

where we have used the triangle inequality and the assumption of the lemma.
This is a good bound, and even stronger than we need, but we have proved it only for a

fixed pair f, g ∈ F so far. Let us take a union bound over all such pairs; there are at most
N 2 of them. Then, with probability at least

1 − N 2 2 exp(−cnε4), (8.28)

the lower bound (8.27) holds simultaneously for all pairs of distinct functions f, g ∈ F . We
can make (8.28) positive by choosing n := �Cε−4 log N with a sufficiently large absolute
constant C . Thus the random set �n satisfies the conclusion of the lemma with positive
probability. �

Proof of Theorem 8.3.18 Let us choose

N ≥ N (F , L2(μ), ε)

ε-separated functions in F . (To see why they exist, recall the covering–packing relationship
in Lemma 4.2.8.) Apply Lemma 8.3.19 to those functions. We obtain a subset�n ⊂ �, with

|�n| = n ≤ Cε−4 log N ,

such that the restrictions of those functions onto �n are still ε/2-separated in L2(μn). We
use a much weaker fact – that these restrictions are just distinct. Summarizing, we have a
class Fn of distinct Boolean functions on �n , obtained as restrictions of certain functions
from F .

Apply the Sauer–Shelah lemma (Theorem 8.3.16) for Fn . It gives

N ≤
(en

dn

)dn ≤
(Cε−4 log N

dn

)dn
,

6 The inequalities “�” given below hide absolute constant factors.
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where dn = vc(Fn). Simplifying this bound,7 we conclude that

N ≤ (Cε−4)2dn .

To complete the proof, replace dn = vc(Fn) in the above bound by the larger quantity
d = vc(F). �

Remark 8.3.20 (Johnson–Lindenstrauss lemma for coordinate projections) You may spot
a similarity between the dimension reduction lemma 8.3.19 and another dimension reduction
result, the Johnson–Lindenstrauss lemma (Theorem 5.3.1). Both results state that a random
projection of a set of N points onto a subspace of dimension log N preserves the geometry
of the set. The difference is in the distribution of the random subspace. In the Johnson–
Lindenstrauss lemma it is uniformly distributed in the Grassmannian, and in Lemma 8.3.19
it is a coordinate subspace.

Exercise 8.3.21 (Dimension reduction for covering numbers)�� Let F be a class of
functions, on a probability space (�,�,μ), which are all bounded by 1 in absolute value.
Let ε ∈ (0, 1). Show that there exists a number n ≤ Cε−4 logN (F , L2(μ), ε) and an
n-point subset �n ⊂ � such that

N (F , L2(μ), ε) ≤ N (F , L2(μn), ε/4)

where μn denotes the uniform probability measure on �n . �

Exercise 8.3.22�� Theorem 8.3.18 is stated for ε ∈ (0, 1). What bound holds for
larger ε?

8.3.5 Empirical Processes via the VC Dimension

Let us turn again to the concept of empirical processes that we first introduced in Sec-
tion 8.2.2. There we showed how to control one specific example of an empirical process,
namely a process on the class of Lipschitz functions. In this section we develop a general
bound for an arbitrary class of Boolean functions.

Theorem 8.3.23 (Empirical processes via VC dimension) Let F be a class of Boolean
functions on a probability space (�,�,μ) with finite VC dimension vc(F) ≥ 1. Let
X, X1, X2, . . . , Xn be independent random points in � distributed according to the law
μ. Then

E sup
f ∈F

∣∣∣∣1n
n∑

i=1

f (Xi )− E f (X)

∣∣∣∣ ≤ C

√
vc(F)

n
. (8.29)

We can quickly derive this result from Dudley’s inequality combined with the bound on
the covering numbers that we have just proved in Section 8.3.4. To carry out this argument,
it is helpful to preprocess the empirical process using symmetrization.

7 To do this, note that log N/(2dn) = log(N 1/2dn ) ≤ N 1/2dn .
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Exercise 8.3.24 (Symmetrization for empirical processes)�� Let F be a class of func-
tions on a probability space (�,�,μ). Let X, X1, X2, . . . , Xn be random points in �
distributed according to the law μ. Prove that

E sup
f ∈F

∣∣∣∣1n
n∑

i=1

f (Xi )− E f (X)

∣∣∣∣ ≤ 2 E sup
f ∈F

∣∣∣∣1n
n∑

i=1

εi f (Xi )

∣∣∣∣
where ε1, ε2, . . . are independent symmetric Bernoulli random variables (which are also
independent of X1, X2, . . .). �

Proof of Theorem 8.3.23 First we use symmetrization and bound the left-hand side of
(8.29) by

2√
n

E sup
f ∈F

|Z f | where Z f := 1√
n

n∑
i=1

εi f (Xi ).

Next we condition on (Xi ), leaving all randomness in the random signs (εi ). We are going
to use Dudley’s inequality to bound the process (Z f ) f ∈F . For simplicity, let us drop the
absolute values for Z f for a moment; we will deal with this minor issue in Exercise 8.3.25.

To apply Dudley’s inequality, we need to check that the increments of the process
(Z f ) f ∈F are sub-gaussian. These are

‖Z f − Zg‖ψ2 = 1√
n

∥∥∥∥ n∑
i=1

εi ( f − g)(Xi )

∥∥∥∥
ψ2

�
(

1

n

n∑
i=1

( f − g)(Xi )
2
)1/2

.

Here we have used Proposition 2.6.1 and the obvious fact that ‖εi‖ψ2 � 1.8 We can interpret
the last expression as the L2(μn) norm of the function f − g, where μn is the uniform prob-
ability measure supported on the subset {X1, . . . , Xn} ⊂ �.9 In other words, the increments
satisfy

‖Z f − Zg‖ψ2 � ‖ f − g‖L2(μn)
.

Now we can use Dudley’s inequality (Theorem 8.1.3) conditionally on (Xi ) and get10

2√
n

E sup
f ∈F

Z f � 1√
n

E

∫ 1

0

√
logN (F , L2(μn), ε) dε. (8.30)

The expectation on the right-hand side is obviously with respect to (Xi ).
Finally, we use Theorem 8.3.18 to bound the covering numbers:

logN (F , L2(μn), ε) � vc(F) log
2

ε
.

8 Keep in mind that here Xi and thus ( f − g)(Xi ) are fixed numbers owing to conditioning.
9 Recall that we have already encountered the empirical measure μn and the L2(μn) norm a few times before,

in particular in Lemma 8.3.19 and its proof as well as in (8.23).
10 The diameter of F gives the upper limit according to (8.13); check that the diameter is indeed bounded by 1.
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When we substitute this into (8.30), we get the integral of
√

log(2/ε), which is bounded by
an absolute constant. This gives

2√
n

E sup
f ∈F

Z f �
√

vc(F)
n

,

as required. �

Exercise 8.3.25 (Reinstating absolute value)��� In the proof above, we bounded
E sup f ∈F Z f instead of E sup f ∈F |Z f |. Give a bound for the latter quantity. �

Let us examine an important application of Theorem 8.3.23, which is called the Glivenko–
Cantelli theorem. It addresses one of the most basic problems in statistics: how can we
estimate the distribution of a random variable by sampling? Let X be a random variable
with unknown cumulative distribution function (CDF)

F(x) = P
{

X ≤ x
}
, x ∈ R.

Suppose we have a sample X1, . . . , Xn of i.i.d. random variables drawn from the same
distribution as X . Then we can hope that F(x) could be estimated by computing the fraction
of the sample points satisfying Xi ≤ x , i.e. by the empirical distribution function

Fn(x) :=
∣∣{i ∈ [n] : Xi ≤ x}∣∣

n
, x ∈ R.

Note that Fn(x) is a random function.
The quantitative law of large numbers gives

E |Fn(x)− F(x)| ≤ C√
n

for every x ∈ R.

(Check this! Recall the variance computation in Section 1.3, but do it for the indicator
random variables 1{Xi≤x} instead of Xi .)

The Glivenko–Cantelli theorem is a stronger statement, which says that Fn approximates
F uniformly over x ∈ R.

Theorem 8.3.26 (Glivenko–Cantelli theorem11) Let X1, . . . , Xn be independent random
variables with common cumulative distribution function F. Then

E ‖Fn − F‖∞ = E sup
x∈R

|Fn(x)− F(x)| ≤ C√
n
.

Proof This result is a particular case of Theorem 8.3.23. Indeed, let � = R, let F consist
of the indicators of all half-bounded intervals, i.e.

F := {
1(−∞,x] : x ∈ R

}
,

11 The classical statement of the Glivenko–Cantelli theorem is about sure convergence, and we do not give it
here. However, it can be obtained from a high-probability version of the same argument using the
Borel–Cantelli lemma.
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and let the measure μ be the distribution12 of Xi . As we know from Example 8.3.2,
vc(F) ≤ 2. Thus Theorem 8.3.23 immediately implies the conclusion. �

Example 8.3.27 (Discrepancy) The Glivenko–Cantelli theorem can be easily generalized
to random vectors. (Do this!) Let us give an illustration for R

2. Draw a sample of i.i.d.
points X1, . . . , Xn from the uniform distribution on the unit square [0, 1]2 on the plane;
see Figure 8.8. Consider the class F of indicators of all circles in that square. From Exer-
cise 8.3.6 we know that vc(F) = 3. (Why does intersection with the square not affect the
VC dimension?)

Apply Theorem 8.3.23. The sum
∑n

i=1 f (Xi ) is just the number of points in the cir-
cle with indicator function f , and the expectation E f (X) is the area of that circle. Then
we can interpret the conclusion of Theorem 8.3.23 as follows. With high probability, a
random sample of points X1, . . . , Xn satisfies the following: for every circle C in the
square [0, 1]2,

number of points in C = Area(C) n + O(
√

n).

This is an example of a result in geometric discrepancy theory. The same result holds
not only for circles but for half-planes, rectangles, squares, triangles, polygons with O(1)
vertices, and any other class with bounded VC dimension.

Remark 8.3.28 (Uniform Glivenko–Cantelli classes) A class of real-valued functions F
on a set � is called a uniform Glivenko–Cantelli class if, for any ε > 0,

lim
n→∞ sup

μ
P

{
sup
f ∈F

∣∣∣∣1n
n∑

i=1

f (Xi )− E f (X)

∣∣∣∣ > ε

}
= 0,

Figure 8.8 According to the uniform deviation inequality from Theorem 8.3.23, all
circles have a fair share of the random sample of points. The number of points in
each circle is proportional to its area, with O(

√
n) error.

12 Precisely, we define μ(A) := P{X ∈ A} for every (Borel) subset A ⊂ R.
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where the supremum is taken over all probability measures μ on � and the points
X, X1, . . . , Xn are sampled from � according to the law μ. Theorem 8.3.23 followed by
Markov’s inequality yields the conclusion that any class of Boolean functions with finite
VC dimension is uniform Glivenko–Cantelli.

Exercise 8.3.29 (Sharpness)��� Prove that any class of Boolean functions with infinite
VC dimension is not uniform Glivenko–Cantelli. �

Exercise 8.3.30 (A simpler, weaker, bound)��� Use the Sauer–Shelah lemma directly,
instead of Pajor’s lemma, to prove a weaker version of the uniform deviation inequality
(8.29) with

C

√
d

n
log

en

d

on the right-hand side, where d = vc(F). �

8.4 Application: Statistical Learning Theory

Statistical learning theory, or machine learning, allows one to make predictions based on
data. A typical problem of statistical learning can be stated mathematically as follows. Con-
sider a function T : � → R on some set �, which we call a target function. Suppose
that T is unknown. We would like to learn T from its values on a finite sample of points
X1, . . . , Xn ∈ �. We assume that these points are independently sampled according to
some common probability distribution P on �. Thus, our training data is

(Xi , T (Xi )), i = 1, . . . , n. (8.31)

Our ultimate goal is to use the training data to make a good prediction of T (X) for a new
random point X ∈ �, which was not in the training sample but is sampled from the same
distribution; see Figure 8.9 for illustration.

You may notice some similarity between learning problems and Monte-Carlo integration,
which we studied in Section 8.2.1. In both problems, we are trying to infer something about
a function from its values on a random sample of points. But now our task is more difficult,
as we are trying to learn the function itself and not just its integral, or average value, on �.

X1

T (X1)

T (X2)
T (X3)

T (X) =?

T (X)n

X2 X3 X1 Xn

Figure 8.9 In a general learning problem, we are trying to learn an unknown
function T : �→ R (a “target function”) from its values on a training sample
X1, . . . , Xn of i.i.d. points. The goal is to predict T (X) for a new random point X .
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8.4.1 Classification Problems

An important class of learning problems comprises classification problems, where the
function T is Boolean (takes values 0 or 1); thus T classifies points in � into two classes.

Example 8.4.1 Consider a health study on a sample of n patients. We record d various
health parameters of each patient, such as blood pressure, body temperature, etc., arranging
them as a vector Xi ∈ R

d . Suppose we also know whether each patient has diabetes, and
we encode this information as a binary number T (Xi ) ∈ {0, 1} (0 = healthy, 1 = sick). Our
goal is to learn from this training sample how to diagnose diabetes. We want to learn the
target function T : R

d → {0, 1} which would output a diagnosis for any person based on his
or her d health parameters.

To extend the example, the vector Xi could contain the d gene expressions of the i th
patient. Our goal is to learn to diagnose a certain disease based on the patient’s genetic
information.

Figure 8.10c illustrates a classification problem where X is a random vector on the plane
and the label Y can take the value 0 or 1 as in Example 8.4.1. A solution of this classification
problem can be described as a partition of the plane into two regions, one where f (X) = 0
(healthy) and another where f (X) = 1 (sick). On the basis of this solution, one can diagnose
new patients by determining the region into which their parameter vectors X fall.

8.4.2 Risk, Fit, and Complexity

A solution to the learning problem can be expressed as a function f : � → R. We would
naturally want f to be as close to the target T as possible, so we would like to choose f that
minimizes the risk

R( f ) := E ( f (X)− T (X))2 . (8.32)

Example 8.4.2 In classification problems, T and f are Boolean functions and thus

R( f ) = P{ f (X) �= T (X)}. (8.33)

(Check!) So the risk is just the probability of misclassification, e.g., the misdiagnosis for a
patient.

Chaining
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Figure 8.10 Tradeoff between fit and complexity
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How much data do we need to learn, i.e how large does the sample size n need to be?
This depends on the complexity of the problem. We need more data if we believe that the
target function T (X) may depend on X in an intricate way; otherwise we need less. Usually
we do not know the complexity a priori. So we may restrict the complexity of the candidate
functions f , insisting that our solution f must belong to some given class of functions F
called the hypothesis space.

But how do we choose the hypothesis space F for a learning problem at hand? Although
there is no general rule, the choice of F should be based on a tradeoff between fit and com-
plexity. Suppose that we choose F to be too small; for example, we insist that the interface
between healthy ( f (x) = 0) and sick diagnoses ( f (x) = 1) be a line, as in Figure 8.10a.
Although we can learn such a simple function f with less data, we have probably oversim-
plified the problem. The linear functions do not capture the essential trends in this data, and
this will lead to a big risk R( f ).

If, however, we choose F too large then this may result in overfitting, where we are
essentially fitting f to the noise, as in Figure 8.10b. Furthermore, in this case we need a lot
of data to learn such complicated functions.

A good choice of F is one that avoids either underfitting or overfitting, and captures the
essential trends in the data, just as in Figure 8.10c.

8.4.3 Empirical Risk

What would be an optimal solution to the learning problem on the basis of the training
data? Ideally, we would like to find a function f ∗ from the hypothesis space F which would
minimize the risk13 R( f ) = E ( f (X)− T (X))2, that is,

f ∗ := arg min
f ∈F R( f ).

If we are lucky and choose the hypothesis space F so that it contains the target function T ,
then the risk is zero. Unfortunately, we cannot compute the risk R( f ) and thus f ∗ from the
training data. But we can try to estimate R( f ) and f ∗.

Definition 8.4.3 The empirical risk for a function f : �→ R is defined as

Rn( f ) := 1

n

n∑
i=1

( f (Xi )− T (Xi ))
2 . (8.34)

Denote by f ∗
n a function in the hypothesis space F which minimizes the empirical risk:

f ∗
n := arg min

f ∈F Rn( f ).

Note that both Rn( f ) and f ∗
n can be computed from the data. The outcome of learning

from the data is thus f ∗
n . The main question is: how large is the excess risk

R( f ∗
n )− R( f ∗)

13 We assume for simplicity that the minimum is attained; an approximate minimizer could be used as well.
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produced by our having to learn from a finite sample of size n? We give an answer in the
next section.

8.4.4 Bounding the Excess Risk by the VC Dimension

Let us specialize to classification problems where the target T is a Boolean function.

Theorem 8.4.4 (Excess risk via VC dimension) Assume that the target T is a Boolean
function and that the hypothesis space F is a class of Boolean functions with finite VC
dimension vc(F) ≥ 1. Then

E R( f ∗
n ) ≤ R( f ∗)+ C

√
vc(F)

n
.

We can deduce this theorem from a uniform deviation inequality that we proved in
Theorem 8.3.23. The following elementary observation will help us connect these two
results.

Lemma 8.4.5 (Excess risk via uniform deviations) We have

R( f ∗
n )− R( f ∗) ≤ 2 sup

f ∈F
|Rn( f )− R( f )|

pointwise.

Proof Denote ε := sup f ∈F |Rn( f )− R( f )|. Then

R( f ∗
n ) ≤ Rn( f ∗

n )+ ε (since f ∗
n ∈ F by construction)

≤ Rn( f ∗)+ ε (since f ∗
n minimizes Rn in the class F )

≤ R( f ∗)+ 2ε (since f ∗ ∈ F by construction).

Subtracting R( f ∗) from both sides, we get the desired inequality. �
Proof of Theorem 8.4.4 By Lemma 8.4.5, it will be enough to show that

E sup
f ∈F

|Rn( f )− R( f )| �
√

vc(F)
n

.

Recalling the definitions (8.34) and (8.32) of the empirical and true (population) risk, we
express the left-hand side as

E sup
�∈L

∣∣∣∣1n
n∑

i=1

�(Xi )− E �(X)

∣∣∣∣ (8.35)

where L is the class of Boolean functions defined as

L = {( f − T )2 : f ∈ F}.
The uniform deviation bound from Theorem 8.3.23 could be used at this point, but it

would only give a bound in terms of the VC dimension of L, and it is not clear how to relate
that back to the VC dimension of F . Instead, let us recall that in the proof of Theorem 8.3.23,
we first bounded (8.35) by
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1√
n

E

∫ 1

0

√
logN (L, L2(μn), ε) dε, (8.36)

up to an absolute constant factor. It is not hard to see that the covering numbers of L and F
are related by the inequality

N (L, L2(μn), ε) ≤ N (F , L2(μn), ε/4) for any ε ∈ (0, 1). (8.37)

(We will check this inequality accurately in Exercise 8.4.6.) So we may replace L by F in
(8.36), paying the price of an absolute constant factor (check!). We then follow the rest of
the proof of Theorem 8.3.23 and conclude that (8.36) is bounded by√

vc(F)
n

,

as required. �

Exercise 8.4.6�� Check the inequality (8.37). �

8.4.5 Interpretation and Examples

What does Theorem 8.4.4 really say about learning? It quantifies the risk of having to learn
from limited data, which we called the excess risk. Theorem 8.4.4 states that on average,
the excess risk of learning from a finite sample of size n is proportional to

√
vc(F)/n.

Equivalently, if we want to bound the expected excess risk by ε, all we need to do is to take
a sample of size

n ∼ ε−2 vc(F).
This result answers the question of how much training data we need for learning. And the
answer is: it is enough if the sample size n exceeds the VC dimension of the hypothesis class
F (up to some constant factor).

Let us illustrate this principle by thoroughly working out the specific learning problem
from Figure 8.10. We are trying to learn an unknown function T : R

2 → {0, 1}. This is a
classification problem where the function T assigns labels 0 or 1 to the points on the plane,
and we are trying to learn those labels.

First, we collect the training data, consisting of n points X1, . . . , Xn on the plane whose
labels T (Xi ) we know. We assume that the points Xi are sampled at random according to
some probability distribution P on the plane.

Next, we need to choose a hypothesis space F . This is a class of Boolean functions on the
plane where we will be looking for a solution to our learning problem. We need to make sure
that F is neither too large (to prevent overfitting) nor too small (to prevent underfitting). We
may expect that the interface between the two classes of Boolean functions is a nontrivial
but not too intricate curve, such as the arc in Figure 8.10c. For example, it may be reasonable
to include in F the indicator functions of all circles on the plane.14 So let us choose

F := {1C: circles C ⊂ R
2}. (8.38)

Recall from Exercise 8.3.6 that vc(F) = 3.

14 We can also include all half-spaces, which we can think of as circles with infinite radii centered at infinity.
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Next, we set up the empirical risk

Rn( f ) := 1

n

n∑
i=1

( f (Xi )− T (Xi ))
2 .

We can compute the empirical risk from data for any given function f on the plane. Finally,
we minimize the empirical risk over our hypothesis class F , and thus compute

f ∗
n := arg min

f ∈F Rn( f ).

Exercise 8.4.7�� Check that f ∗
n is a function in F that minimizes the number of data

points Xi where the function disagrees with the labels T (Xi ).

We output the function f ∗
n as the solution of the learning problem. By computing f ∗

n (x),
we can make a prediction for the labels of the points x that were not in the training set.

How reliable is this prediction? We quantified the predicting power of a Boolean function
f with the concept of the risk R( f ). It gives the probability that f assigns the wrong label
to a random point X sampled from the same distribution on the plane as the data points:

R( f ) = P{ f (X) �= T (X)}.
Using Theorem 8.4.4 and recalling that vc(F) = 3, we get a bound on the risk for our
solution f ∗

n :

E R( f ∗
n ) ≤ R( f ∗)+ C√

n
.

Thus, on average, our solution f ∗
n gives correct predictions with almost the same probability

– within 1/
√

n error – as the best available function f ∗ in the hypothesis class F , i.e., the
best chosen circle.

Exercise 8.4.8 (Random outputs)��� Our learning problem model (8.31) postulates
that the output T (X) must be completely determined by the input X . This is rarely the case
in practice. For example, it is not realistic to assume that the diagnosis T (X) ∈ {0, 1} of
a disease is completely determined by the available genetic information X . What is more
often true is that the output Y is a random variable, which is correlated with the input X ; the
goal of learning is still to predict Y from X as well as possible.

Extend the theory of learning leading up to Theorem 8.4.4 for training data of the form

(Xi , Yi ), i = 1, . . . , n,

where (Xi , Yi ) are independent copies of a pair (X, Y ) consisting of an input random point
X ∈ � and an output random variable Y .

Exercise 8.4.9 (Learning in the class of Lipschitz functions)��� Consider the hypothe-
sis class of Lipschitz functions

F := {
f : [0, 1] → R, ‖ f ‖Lip ≤ L

}
and a target function T : [0, 1] → [0, 1].
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(a) Show that the random process X f := Rn( f )− R( f ) has sub-gaussian increments:

‖X f − Xg‖ψ2 ≤ C L√
n
‖ f − g‖∞ for all f, g ∈ F .

(b) Use Dudley’s inequality to deduce that

E sup
f ∈F

|Rn( f )− R( f )| ≤ C(L + 1)√
n

. �

(c) Conclude that the excess risk satisfies

R( f ∗
n )− R( f ∗) ≤ C(L + 1)√

n
.

8.5 Generic Chaining

Dudley’s inequality is a simple and useful tool for bounding a general random process.
Unfortunately, as we saw in Exercise 8.1.12, Dudley’s inequality can be loose. The reason
behind this is that the covering numbers N (T, d, ε) do not contain enough information to
control the magnitude of E supt∈T Xt .

8.5.1 A Makeover of Dudley’s Inequality

Fortunately, there is a way to obtain accurate two-sided bounds on E supt∈T Xt for sub-
gaussian processes (Xt )t∈T in terms of the geometry of T . This method is called generic
chaining, and it is essentially a sharpening of the chaining method developed in the proof
of Dudley’s inequality (Theorem 8.1.4). Recall that the outcome of chaining was the bound
(8.12):

E sup
t∈T

Xt �
∞∑

k=κ+1

εk−1
√

log |Tk |. (8.39)

Here the εk are decreasing positive numbers and the Tk are εk-nets of T such that |Tκ | = 1.
To be specific, in the proof of Theorem 8.1.4 we chose

εk = 2−k and |Tk | = N (T, d, εk),

so the Tk ⊂ T were the smallest εk-nets of T .
In preparation for generic chaining, let us now turn around our choice of εk and Tk . Instead

of fixing εk and operating with the smallest possible cardinality of Tk , let us fix the cardinal-
ity of Tk and operate with the smallest possible εk . Namely, let us fix some subsets Tk ⊂ T
such that

|T0| = 1, |Tk | ≤ 22k
, k = 1, 2, . . . (8.40)

Such a sequence of sets (Tk)
∞
k=0 is called an admissible sequence. Put

εk = sup
t∈T

d(t, Tk),
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where d(t, Tk) denotes the distance15 from the point t to the set Tk . Then each Tk is an εk-net
of T . With this choice of εk and Tk , the chaining bound (8.39) becomes

E sup
t∈T

Xt �
∞∑

k=1

2k/2 sup
t∈T

d(t, Tk−1).

After re-indexing we conclude that

E sup
t∈T

Xt �
∞∑

k=0

2k/2 sup
t∈T

d(t, Tk). (8.41)

8.5.2 Talagrand’s γ2-Functional and Generic Chaining

So far, nothing has really happened. The bound (8.41) is just an equivalent way to state
Dudley’s inequality. The important step will come now. Generic chaining will allow us to
pull the supremum outside the sum in (8.41). The resulting important quantity has a name:

Definition 8.5.1 (Talagrand’s γ2-functional) Let (T, d) be a metric space. A sequence of
subsets (Tk)

∞
k=0 of T is called an admissible sequence if the cardinalities of Tk satisfy (8.40).

The γ2-functional of T is defined as

γ2(T, d) = inf
(Tk)

sup
t∈T

∞∑
k=0

2k/2d(t, Tk),

where the infimum is taken with respect to all admissible sequences.

Since the supremum in the γ2-functional is outside the sum, it is smaller than the Dudley’s
inequality sum in (8.41). The difference between the γ2-functional and Dudley’s sum can
look minor, but sometimes it is real:

Exercise 8.5.2 (γ2-functional and Dudley’s sum)��� Consider the same set T ⊂ R
n as

in Exercise 8.1.12, i.e.,

T :=
{ ek√

1 + log n
, k = 1, . . . , n

}
.

(a) Show that the γ2-functional of T (with respect to the Euclidean metric) is bounded, i.e.,

γ2(T, d) = inf
(Tk)

sup
t∈T

∞∑
k=0

2k/2d(t, Tk) ≤ C. �

(b) Check that Dudley’s sum is unbounded, i.e.,

inf
(Tk)

∞∑
k=0

2k/2 sup
t∈T

d(t, Tk)→ ∞

as n → ∞.

15 Formally, the distance from a point t ∈ T to a subset A ⊂ T in a metric space T is defined as
d(t, A) := inf{d(t, a): a ∈ A}.
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We now state an improvement of Dudley’s inequality, in which Dudley’s sum (or integral)
is replaced by a tighter quantity, the γ2-functional.

Theorem 8.5.3 (Generic chaining bound) Let (Xt )t∈T be a mean-zero random process on
a metric space (T, d) with sub-gaussian increments as in (8.1). Then

E sup
t∈T

Xt ≤ C Kγ2(T, d).

Proof We proceed with the same chaining method as was introduced in the proof of
Dudley’s inequality (Theorem 8.1.4), but we will do the chaining more accurately.

Step 1: Chaining set-up. As before, we may assume that K = 1 and that T is finite. Let
(Tk) be an admissible sequence of subsets of T , and denote T0 = {t0}. We now walk from t0
to a general point t ∈ T along the chain

t0 = π0(t)→ π1(t)→ · · · → πK (t) = t

of points πk(t) ∈ Tk that are chosen as best approximations to t in Tk , i.e.

d(t, πk(t)) = d(t, Tk).

The displacement Xt − Xt0 can be expressed as a telescoping sum similar to (8.9):

Xt − Xt0 =
K∑

k=1

(Xπk(t) − Xπk−1(t)). (8.42)

Step 2: Controlling the increments. This is where we need to be more accurate than in
Dudley’s inequality. We would like to have a uniform bound on the increments, a bound that
would state with high probability that∣∣Xπk(t) − Xπk−1(t)

∣∣ ≤ 2k/2d(t, Tk) ∀k ∈ N , ∀t ∈ T . (8.43)

Summing these inequalities over all k would lead to a desired bound in terms of γ2(T, d).
To prove (8.43), let us fix k and t first. The sub-gaussian assumption tells us that∥∥Xπk(t) − Xπk−1(t)

∥∥
ψ2

≤ d(πk(t), πk−1(t)).

This means that, for every u ≥ 0, the event∣∣Xπk(t) − Xπk−1(t)
∣∣ ≤ Cu2k/2d(πk(t), πk−1(t)) (8.44)

holds with probability at least

1 − 2 exp(−8u22k).

(To obtain the constant 8, choose the absolute constant C large enough.) �

We can now unfix t ∈ T by taking a union bound over

|Tk | |Tk−1| ≤ |Tk |2 = 22k+1
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possible pairs (πk(t), πk−1(t)). Similarly, we can unfix k by a union bound over all k ∈ N.
Then the probability that the bound (8.44) holds simultaneously for all t ∈ T and k ∈ N is
at least

1 −
∞∑

k=1

22k+1 × 2 exp(−8u22k) ≥ 1 − 2 exp(−u2).

if u > c. (Check the last inequality!)
Step 3: Summing up the increments. In the event that the bound (8.44) does hold for all

t ∈ T and k ∈ N, we can sum the inequalities over k ∈ N and substitute the result into the
chaining sum (8.42). This yields

|Xt − Xt0 | ≤ Cu
∞∑

k=1

2k/2d(πk(t), πk−1(t)). (8.45)

By the triangle inequality we have

d(πk(t), πk−1(t)) ≤ d(t, πk(t))+ d(t, πk−1(t)).

Using this bound and re-indexing, we find that the right-hand side of (8.45) can be bounded
by γ2(T, d), that is,

|Xt − Xt0 | ≤ C1uγ2(T, d).

(Check!) Taking the supremum over T yields

sup
t∈T

|Xt − Xt0 | ≤ C2uγ2(T, d).

Recall that this inequality holds with probability at least 1− 2 exp(−u2) for any u > c. This
means that the magnitude in question is a sub-gaussian random variable:∥∥∥ sup

t∈T
|Xt − Xt0 |

∥∥∥
ψ2

≤ C3γ2(T, d).

This quickly implies the conclusion of Theorem 8.5.3. (Check!) �

Remark 8.5.4 (Supremum of increments) Like Dudley’s inequality (Remark 8.1.5),
generic chaining gives the uniform bound

E sup
t,s∈T

|Xt − Xs | ≤ C Kγ2(T, d).

which is valid even without the mean-zero assumption E Xt = 0.

The argument above gives not only a bound on the expectation but also a tail bound for
supt∈T Xt . Let us now give a better tail bound, similar to that in Theorem 8.1.6 for Dudley’s
inequality.

Theorem 8.5.5 (Generic chaining: tail bound) Let (Xt )t∈T be a random process on a
metric space (T, d) with sub-gaussian increments as in (8.1). Then, for every u ≥ 0, the
event
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sup
t,s∈T

|Xt − Xs | ≤ C K
(
γ2(T, d)+ u diam(T )

)
holds with probability at least 1 − 2 exp(−u2).

Exercise 8.5.6���� Prove Theorem 8.5.5. To this end, state and use a variant of the
increment bound (8.44) with u + 2k instead of u2k/2. At the end of the argument you will
need a bound on the sum of steps

∑∞
k=1 d(πk(t), πk−1(t)). For this, modify the chain {πk(t)}

by doing a “lazy walk” on it. Stay at the current point πk(t) for a few steps (say, q − 1) until
the distance to t improves by a factor 2, that is, until

d(t, πk+q(t)) ≤ 1
2 d(t, πk(t)),

then jump to πk+q(t). This will make the sum of the steps geometrically convergent.

Exercise 8.5.7 (Dudley’s integral vs. γ2-functional)��� Show that the γ2-functional is
bounded by Dudley’s integral. Namely, show that, for any metric space (T, d), one has

γ2(T, d) ≤ C
∫ ∞

0

√
logN (T, d, ε) dε.

8.6 Talagrand’s Majorizing Measure and Comparison Theorems

Talagrand’s γ2-functional introduced in Definition 8.5.1 has some advantages and disadvan-
tages over Dudley’s integral. A disadvantage is that γ2(T, d) is usually harder to compute
than the metric entropy that defines Dudley’s integral. Indeed, it could take a real effort to
construct a good admissible sequence of sets. However, unlike Dudley’s integral, the γ2-
functional gives a bound on Gaussian processes that is optimal up to an absolute constant.
This is the content of the following theorem.

Theorem 8.6.1 (Talagrand’s majorizing measure theorem) Let (Xt )t∈T be a mean-zero
Gaussian process on a set T . Consider the canonical metric defined on T by (7.13), i.e.,
d(t, s) = ‖Xt − Xs‖2. Then

c γ2(T, d) ≤ E sup
t∈T

Xt ≤ C γ2(T, d).

The upper bound in Theorem 8.6.1 follows directly from generic chaining (Theo-
rem 8.5.3). The lower bound is harder to obtain. Its proof, which we do not present in this
book, can be thought of as a far-reaching multi-scale strengthening of Sudakov’s inequality
(Theorem 7.4.1).

Note that the upper bound, as we know from Theorem 8.5.3, holds for any sub-gaussian
process. Therefore, by combining the upper and lower bounds, we can deduce that any sub-
gaussian process is bounded (via a γ2-functional) by a Gaussian process. Let us state this
important comparison result.

Corollary 8.6.2 (Talagrand’s comparison inequality) Let (Xt )t∈T be a mean-zero random
process on a set T and let (Yt )t∈T be a Gaussian process. Assume that, for all t, s ∈ T , we
have
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‖Xt − Xs‖ψ2 ≤ K‖Yt − Ys‖2.

Then

E sup
t∈T

Xt ≤ C K E sup
t∈T

Yt .

Proof Consider the canonical metric on T given by d(t, s) = ‖Yt −Ys‖2. Apply the generic
chaining bound (Theorem 8.5.3) followed by the lower bound in the majorizing measure
Theorem 8.6.1. Thus we get

E sup
t∈T

Xt ≤ C Kγ2(T, d) ≤ C K E sup
t∈T

Yt .

The proof is complete. �
Corollary 8.6.2 extends the Sudakov–Fernique inequality (Theorem 7.2.11) to sub-

gaussian processes. All we pay for such an extension is an absolute constant factor.
Let us apply Corollary 8.6.2 for a canonical Gaussian process

Yx = 〈g, x〉 , x ∈ T,

defined on a subset T ⊂ R
n . Recall from Section 7.5 that the magnitude of this process,

w(T ) = E sup
x∈T

〈g, x〉 ,

is the Gaussian width of T . We immediately obtain the following corollary.

Corollary 8.6.3 (Talagrand’s comparison inequality: geometric form) Let (Xx )x∈T be a
mean-zero random process on a subset T ⊂ R

n. Assume that, for all x, y ∈ T , we have

‖Xx − X y‖ψ2 ≤ K‖x − y‖2.

Then

E sup
x∈T

Xx ≤ C Kw(T ).

Exercise 8.6.4 (Bound on absolute values)��� Let (Xx )x∈T be a random process (not
necessarily mean-zero) on a subset T ⊂ R

n . Assume that, for all x, y ∈ R
n , we have

‖Xx − X y‖ψ2 ≤ K‖x − y‖2.

Prove that16

E sup
x∈T

|Xx | ≤ C Kγ (T ). �

Exercise 8.6.5 (Tail bound)�� Show that, in the setting of Corollary 8.6.3, for every
u ≥ 0 we have17

sup
x∈T

|Xx | ≤ C K
(
w(T )+ u rad(T )

)
with probability at least 1 − 2 exp(−u2). �

16 Recall from Section 7.6.2 that γ (T ) is the Gaussian complexity of T .
17 Here as usual rad(T ) denotes the radius of T .
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Exercise 8.6.6 (Higher moments of the deviation)� Check that, in the setting of Corol-
lary 8.6.3, (

E sup
x∈T

|Xx |p
)1/p ≤ C

√
p Kγ (T ).

8.7 Chevet’s Inequality

Talagrand’s comparison inequality (Corollary 8.6.2) has several important consequences.
We cover one application now; others will appear later in this book.

In this section we look for a uniform bound for a random quadratic form, i.e., a bound on
the quantity

sup
x∈T, y∈S

〈Ax, y〉 , (8.46)

where A is a random matrix and T and S are general sets.
We have already encountered problems of this type when we analyzed the norms of ran-

dom matrices, namely in the proofs of Theorems 4.4.5 and 7.3.1. In those situations the sets
T and S were Euclidean balls. This time, we let T and S be arbitrary geometric sets. Our
bound on (6.2) will depend on just two geometric parameters of T and S: the Gaussian width
and the radius, which we define as

rad(T ) := sup
x∈T

‖x‖2. (8.47)

Theorem 8.7.1 (Sub-gaussian Chevet inequality) Let A be an m×n random matrix whose
entries Ai j are independent mean-zero sub-gaussian random variables. Let T ⊂ R

n and
S ⊂ R

m be arbitrary bounded sets. Then

E sup
x∈T, y∈S

〈Ax, y〉 ≤ C K (w(T ) rad(S)+ w(S) rad(T ))

where K = maxi j ‖Ai j‖ψ2 .

Before we prove this theorem, let us make one simple illustration of its use. Setting T =
Sn−1 and S = Sm−1, we recover a bound on the operator norm of A,

E ‖A‖ ≤ C K (
√

n +√
m),

which we obtained in Section 4.4.2 using a different method.

Proof of Theorem 8.7.1 We use the same method as in our proof of the sharp bound on
Gaussian random matrices (Theorem 7.3.1). That argument was based on the Sudakov–
Fernique comparison inequality; this time, we use the more general Talagrand’s comparison
inequality.

Without loss of generality, set K = 1. We would like to bound the random process

Xuv := 〈Au, v〉 , u ∈ T, v ∈ S.

First we show that this process has sub-gaussian increments. For any (u, v), (w, z) ∈ T × S,
we have
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‖Xuv − Xwz‖ψ2 =
∥∥∥∑

i, j

Ai j (uiv j − wi z j )

∥∥∥
ψ2

≤
(∑

i, j

‖Ai j (uiv j − wi z j )‖2
ψ2

)1/2
(by Proposition 2.6.1)

≤
(∑

i, j

‖uiv j − wi z j‖2
2

)1/2
(since ‖Ai j‖ψ2 ≤ K = 1)

= ‖uvT − wzT‖F

= ‖(uvT − wvT)+ (wvT − wzT)‖F (adding, subtracting)

≤ ‖(u − w)vT‖F + ‖w(v − z)T‖F (by the triangle inequality)

= ‖u − w‖‖v‖2 + ‖v − z‖2‖w‖2

≤ ‖u − w‖2 rad(S)+ ‖v − z‖2 rad(T ).

To apply Talagrand’s comparison inequality we need to choose a Gaussian process (Yuv)

to which to compare the process (Xuv). The outcome of our calculation of the increments of
(Xuv) suggests the following definition for (Yuv):

Yuv := 〈g, u〉 rad(S)+ 〈h, v〉 rad(T ),

where

g ∼ N (0, In), h ∼ N (0, Im)

are independent Gaussian vectors. The increments of this process are

‖Yuv − Ywz‖2
2 = ‖u − w‖2

2 rad(T )2 + ‖v − z‖2
2 rad(S)2.

(Check this as in the proof of Theorem 7.3.1.)
Comparing the increments of the two processes, we find that

‖Xuv − Xwz‖ψ2 � ‖Yuv − Ywz‖2.

(Check!) Applying Talagrand’s comparison inequality (Corollary 8.6.3), we conclude that

E sup
u∈T, v∈S

Xuv � E sup
u∈T, v∈S

Yuv

= E sup
u∈T

〈g, u〉 rad(S)+ E sup
v∈S

〈h, v〉 rad(T )

= w(T ) rad(S)+ w(S) rad(T ),

as claimed. �

Chevet’s inequality is optimal, up to an absolute constant factor.

Exercise 8.7.2 (Sharpness of Chevet’s inequality)�� Let A be an m × n random matrix
whose entries Ai j are independent N (0, 1) random variables. Let T ⊂ R

n and S ⊂ R
m be

arbitrary bounded sets. Show that the reverse of Chevet’s inequality holds:

E sup
x∈T, y∈S

〈Ax, y〉 ≥ c (w(T ) rad(S)+ w(S) rad(T )) . �
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Exercise 8.7.3 (High-probability version of Chevet)�� Under the assumptions of Theo-
rem 8.7.1, prove a tail bound for supx∈T, y∈S 〈Ax, y〉. �

Exercise 8.7.4 (Gaussian Chevet inequality)�� Suppose that the entries of A are N (0, 1).
Show that Theorem 8.7.1 holds with the sharp constant 1, that is,

E sup
x∈T, y∈S

〈Ax, y〉 ≤ w(T ) rad(S)+ w(S) rad(T ). �

8.8 Notes

The idea of chaining appeared in Kolmogorov’s proof of his continuity theorem for Brow-
nian motion; see e.g. [152, Chapter 1]. Dudley’s integral inequality (Theorem 8.1.3) can
indeed be traced to the work of R. Dudley. Our exposition in Section 8.1 mostly follows [126,
Chapter 11], [193, Section 1.2], and [206, Section 5.3]. The upper bound in Theorem 8.1.13
(a reverse Sudakov’s inequality) seems to be a folklore result.

The Monte-Carlo methods mentioned in Section 8.2 are extremely popular in scientific
computing, especially when combined with the power of Markov chains; see e.g. [36]. In the
same section we introduced the concept of empirical processes. A rich theory of empirical
processes has applications to statistics and machine learning; see [205, 204, 167, 139]. In the
terminology of empirical processes, Theorem 8.2.3 yields that the class of Lipschitz func-
tions F is uniform Glivenko–Cantelli. Our presentation of this result (as well as the relation
to Wasserstein’s distance and transportation) is loosely based on [206, Example 5.15]. For a
deep introduction to the transportation of measures, see [218].

The concept of the VC dimension studied in Section 8.3 goes back to the foundational
work of V. Vapnik and A. Chervonenkis [211]; modern treatments can be found in e.g. [205,
Section 2.6.1], [126, Section 14.3], [206, Section 7.2], [134, Sections 10.2 and 10.3], [139,
Section 2.2], and [205, Section 2.6]. Pajor’s lemma 8.3.13 was originally due to A. Pajor
[160]; see [77], [126, Proposition 14.11], [206, Theorem 7.19], and [205, Lemma 2.6.2].

What we now call the Sauer–Shelah lemma (Theorem 8.3.16) was proved independently
by V. Vapnik and A. Chervonenkis [211], N. Sauer [176], and M. Perles and S. Shelah (see
Shelah [179]). Various proofs of the Sauer–Shelah lemma can be found in the literature, e.g.
in [24, Chapter 17], [134, Sections 10.2 and 10.3], and [126, Section 14.3]. A number of
variants of the Sauer–Shelah lemma are known; see e.g. [99, 190, 191, 6, 213].

Theorem 8.3.18 is due to R. Dudley [68]; see [126, Section 14.3] and [205, Theo-
rem 2.6.4]. The dimension reduction lemma 8.3.19 is implicit in Dudley’s proof; it was
stated explicitly in [142] and reproduced in [206, Lemma 7.17]. For the generalization of
VC theory from {0, 1} to general real-valued function classes, see [142, 172] and [206,
Sections 7.3 and 7.4].

Since the foundational work of V. Vapnik and A. Chervonenkis [211], bounds on empiri-
cal processes via the VC dimension such as in Theorem 8.3.23 have been in the spotlight of
statistical learning theory; see e.g. [139, 17, 205, 172] and [206, Chapter 7]. Our presentation
of Theorem 8.3.23 was based on [206, Corollary 7.18]. Although an explicit statement of
this result is difficult to find in the earlier literature, it can be derived from [17, Theorem 6]
and [32, Section 5].

The Glivenko–Cantelli theorem (Theorem 8.3.26) is a result from 1933 [80, 47] which
predated and partly motivated the later development of VC theory; see [126, Section 14.2]
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and [205, 69] for more on Glivenko–Cantelli theorems and other uniform results in proba-
bility theory. Example 8.3.27 discusses a basic problem in discrepancy theory; see [133] for
a comprehensive treatment of discrepancy theory.

In Section 8.4 we scratched the surface of statistical learning theory, which is a large area
at the intersection of probability, statistics, and theoretical computer science. For a deeper
introduction to this subject, see e.g. the tutorials [29, 139] and the books [104, 97, 119].

Generic chaining, which we presented in Section 8.5, has been put forward by M. Tala-
grand since 1985 (after an earlier work of X. Fernique [73]) as a sharp method for obtaining
bounds on Gaussian processes. Our presentation was based on the book [193], which dis-
cusses ramifications, applications, and history of generic chaining in great detail. The upper
bound on sub-gaussian processes (Theorem 8.5.3) can be found in [193, Theorem 2.2.22];
the lower bound (the majorizing measure Theorem 8.6.1) can be found in [193, Theo-
rem 2.4.1]. Talagrand’s comparison inequality (Corollary 8.6.2) was borrowed from [193,
Theorem 2.4.12]. Another presentation of generic chaining can be found in [206, Chapter 6].
A different proof of the majorizing measure theorem was recently given by R. van Handel
in [208, 209]. A high-probability version of the generic chaining bound (Theorem 8.5.5) is
from [193, Theorem 2.2.27]; it was also proved by a different method by S. Dirksen [61].

In Section 8.7 we presented Chevet’s inequality for sub-gaussian processes. In the existing
literature, this inequality is stated only for Gaussian processes. It goes back to S. Chevet
[53]; the constants were then improved by Y. Gordon [82], leading to the result we stated in
Exercise 8.7.4. An exposition of this result can be found in [11, Section 9.4]. For variants
and applications of Chevet’s inequality, see [199, 2].
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Deviations of Random Matrices and Geometric
Consequences

This chapter is devoted to a remarkably useful uniform deviation inequality for random
matrices. Given an m × n random matrix A, our goal is to show that, with high probability,
the approximate equality

‖Ax‖2 ≈ E ‖Ax‖2 (9.1)

holds simultaneously for many vectors x ∈ R
n . To quantify how many, we may choose an

arbitrary subset T ⊂ R
n and ask whether (9.1) holds simultaneously for all x ∈ T . The

answer turns out to be remarkably simple: with high probability, we have

‖Ax‖2 = E ‖Ax‖2 + O
(
γ (T )

)
for all x ∈ T . (9.2)

Recall that γ (T ) is the Gaussian complexity of T , which is a cousin of the Gaussian width
we introduced in Section 7.6.2. In Section 9.1 we will deduce the uniform matrix deviation
inequality (9.2) from Talagrand’s comparison inequality.

The uniform matrix deviation inequality has many consequences. Some are results that
we proved earlier by different methods: in Sections 9.2 and 9.3 we will quickly deduce
two-sided bounds on random matrices, bounds on random projections of geometric sets,
guarantees for covariance estimation for lower-dimensional distributions, and the Johnson–
Lindenstrauss lemma and its generalization for infinite sets. New consequences will be
proved starting from Section 9.4, where we deduce two classical results about geometric
sets in high dimensions: the M∗ bound and the escape theorem. Applications to sparse signal
recovery will follow in Chapter 10.

9.1 Matrix Deviation Inequality

The following theorem is the main result of this chapter.

Theorem 9.1.1 (Matrix deviation inequality) Let A be an m × n matrix whose rows Ai

are independent, isotropic, and sub-gaussian random vectors in R
n. Then, for any subset

T ⊂ R
n, we have

E sup
x∈T

∣∣∣‖Ax‖2 −√
m‖x‖2

∣∣∣ ≤ C K 2γ (T ).

Here γ (T ) is the Gaussian complexity introduced in Section 7.6.2, and K = maxi ‖Ai‖ψ2 .

Before we proceed to the proof of this theorem, let us pause to check that E ‖Ax‖2 ≈√
m‖x‖2, so that Theorem 9.1.1 does indeed yield (9.2).

216
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Exercise 9.1.2 (Deviation around expectation)�� Deduce from Theorem 9.1.1 that

E sup
x∈T

∣∣∣‖Ax‖2 − E ‖Ax‖2

∣∣∣ ≤ C K 2γ (T ). �

We will deduce Theorem 9.1.1 from Talagrand’s comparison inequality (Corollary 8.6.3).
To apply the comparison inequality, all we have to check is that the random process

Xx := ‖Ax‖2 − √
m‖x‖2

indexed by x ∈ R
n has sub-gaussian increments. Let us state this.

Theorem 9.1.3 (Sub-gaussian increments) Let A be an m × n matrix whose rows Ai are
independent, isotropic, and sub-gaussian random vectors in R

n. Then the random process

Xx := ‖Ax‖2 − √
m‖x‖2

has sub-gaussian increments, namely,

‖Xx − X y‖ψ2 ≤ C K 2‖x − y‖2 for all x, y ∈ R
n. (9.3)

Here K = maxi ‖Ai‖ψ2 .

Proof of matrix deviation inequality (Theorem 9.1.1) By Theorem 9.1.3 and Talagrand’s
comparison inequality in the form of Exercise 8.6.4, we get

E sup
x∈T

|Xx | ≤ C K 2γ (T ),

as announced. �

It remains to prove Theorem 9.1.3. Although the proof is a bit longer than most of the
arguments in this book, we will make it easier by working out simpler, partial, cases first
and gradually moving toward full generality. We develop this argument in the next few
subsections.

9.1.1 Theorem 9.1.3 for Unit Vector x and Zero Vector y

Assume that

‖x‖2 = 1 and y = 0.

In this case, the inequality in (9.3) that we want to prove becomes∥∥∥‖Ax‖2 −√
m
∥∥∥
ψ2

≤ C K 2. (9.4)

Note that Ax is a random vector in R
m with independent sub-gaussian coordinates 〈Ai , x〉,

which satisfy E 〈Ai , x〉2 = 1 by isotropy. Then the concentration of the norm theorem 3.1.1
yields (9.4).
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9.1.2 Theorem 9.1.3 for Unit Vectors x, y and for a Squared Process

Assume now that

‖x‖2 = ‖y‖2 = 1.

In this case, the inequality in (9.3) that we want to prove becomes∥∥∥‖Ax‖2 − ‖Ay‖2

∥∥∥
ψ2

≤ C K 2‖x − y‖2. (9.5)

We first prove a version of this inequality for squared Euclidean norms, which are more
convenient to handle. Let us guess what form such an inequality should take. We have

‖Ax‖2
2 − ‖Ay‖2

2 =
(
‖Ax‖2 + ‖Ay‖2

)(
‖Ax‖2 − ‖Ay‖2

)
�

√
m ‖x − y‖2. (9.6)

The last bound should hold with high probability because the typical magnitude of ‖Ax‖2

and ‖Ay‖2 is
√

m, by (9.4), and because we expect (9.5) to hold.
Now that we have guessed the inequality (9.6) for the squared process, let us prove it. We

are looking to bound the random variable

Z := ‖Ax‖2
2 − ‖Ay‖2

2

‖x − y‖2
= 〈A(x − y), A(x + y)〉

‖x − y‖2
= 〈Au, Av〉 , (9.7)

where

u := x − y

‖x − y‖2
and v := x + y.

The desired bound is

|Z | �
√

m with high probability.

The coordinates of the vectors Au and Av are 〈Ai , u〉 and 〈Ai , v〉. So we can represent Z
as a sum of independent random variables:

Z =
m∑

i=1

〈Ai , u〉〈Ai , v〉 .

Lemma 9.1.4 The random variables 〈Ai , u〉〈Ai , v〉 are independent, mean zero, and sub-
exponential; more precisely, ∥∥ 〈Ai , u〉〈Ai , v〉

∥∥
ψ1

≤ 2K 2.

Proof Independence follows from the construction, but the mean-zero property is less
obvious. Although both 〈Ai , u〉 and 〈Ai , v〉 do have zero means, these variables are not
necessarily independent of each other. Still, we can check that they are uncorrelated. Indeed,

E 〈Ai , x − y〉〈Ai , x + y〉 = E
( 〈Ai , x〉2 − 〈Ai , y〉2 ) = 1 − 1 = 0,

by isotropy. By the definitions of u and v, this implies that E 〈Ai , u〉〈Ai , v〉 = 0.
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To finish the proof, recall from Lemma 2.7.7 that the product of two sub-gaussian random
variables is sub-exponential. So, we get∥∥ 〈Ai , u〉〈Ai , v〉

∥∥
ψ1

≤ ∥∥ 〈Ai , u〉 ∥∥
ψ2

∥∥ 〈Ai , v〉
∥∥
ψ2

≤ K‖u‖2 K‖v‖2 (by the sub-gaussian assumption)

≤ 2K 2,

where in the last step we used that ‖u‖2 = 1 and ‖v‖2 ≤ ‖x‖2 + ‖y‖2 ≤ 2. �

To bound Z , we can use Bernstein’s inequality (Corollary 2.8.3); recall that it applies for
a sum of independent mean-zero sub-exponential random variables.

Exercise 9.1.5�� Apply Bernstein’s inequality (Corollary 2.8.3) and simplify the bound.
You should get

P
{|Z | ≥ s

√
m
} ≤ 2 exp

(
−cs2

K 4

)
for any 0 ≤ s ≤ √

m. �

Recalling the definition of Z , we can see that we have obtained the desired bound (9.6).

9.1.3 Theorem 9.1.3 for Unit Vectors x, y and for the Original Process

Next, we would like to remove the squares from ‖Ax‖2
2 and ‖Ay‖2

2 and deduce inequality
(9.5) for unit vectors x and y. Let us state this goal again.

Lemma 9.1.6 (Unit y, original process) Let x, y ∈ Sn−1. Then∥∥∥‖Ax‖2 − ‖Ay‖2

∥∥∥
ψ2

≤ C K 2‖x − y‖2.

Proof Fix s ≥ 0. The conclusion we want to prove is that

p(s) := P

{∣∣‖Ax‖2 − ‖Ay‖2
∣∣

‖x − y‖2
≥ s

}
≤ 4 exp

(
− cs2

K 4

)
. (9.8)

We proceed differently for small and large s.
Case 1: s ≤ 2

√
m. In this range we can use our results from the previous subsection. They

are stated for the squared process, though. So, to be able to apply those results, we multiply
both sides of the inequality defining p(s) by ‖Ax‖2+‖Ay‖2. With the same Z as we defined
in (9.7), this gives

p(s) = P
{|Z | ≥ s

(‖Ax‖2 + ‖Ay‖2
)} ≤ P

{|Z | ≥ s‖Ax‖2
}
.

From (9.4) we know that ‖Ax‖2 ≈ √
m with high probability. So it makes sense to break

the probability that |Z | ≥ s‖Ax‖2 into two cases: one where ‖Ax‖2 ≥ √
m/2 and thus

|Z | ≥ s
√

m/2, and the other where ‖Ax‖2 <
√

m/2 (and then we do not care about Z ).
This leads to
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p(s) ≤ P

{
|Z | ≥ s

√
m

2

}
+ P

{
‖Ax‖2 <

√
m

2

}
=: p1(s)+ p2(s).

The result of Exercise 9.1.5 gives

p1(s) ≤ 2 exp
(
− cs2

K 4

)
.

Further, the bound (9.4) and the triangle inequality give

p2(s) ≤ P

{∣∣‖Ax‖2 −√
m
∣∣ > √

m

2

}
≤ 2 exp

(
− cs2

K 4

)
.

Summing the two probabilities, we conclude that the desired bound is

p(s) ≤ 4 exp
(
− cs2

K 4

)
.

Case 2: s > 2
√

m. Let us look again at the inequality (9.8) that defines p(s) and slightly
simplify it. By the triangle inequality, we have∣∣‖Ax‖2 − ‖Ay‖2

∣∣ ≤ ‖A(x − y)‖2.

Thus

p(s) ≤ P
{‖Au‖2 ≥ s

}
(where u := x − y

‖x − y‖2
as before)

≤ P
{‖Au‖2 −√

m ≥ s/2
}

(since s > 2
√

m)

≤ 2 exp
(
− cs2

K 4

)
(using (9.4) again).

Therefore, in both cases we have obtained the desired estimate (9.8). This completes the
proof of the lemma. �

9.1.4 Theorem 9.1.3 in Full Generality

Finally, we are ready to prove (9.3) for arbitrary x, y ∈ R
n . By scaling, we can assume

without loss of generality that

‖x‖2 = 1 and ‖y‖2 ≥ 1. (9.9)

(Why?) Consider the contraction of y onto the unit sphere, see Figure 9.1,

ȳ := y

‖y‖2
. (9.10)

Use the triangle inequality to break the increment into two parts:

‖Xx − X y‖ψ2 ≤ ‖Xx − X ȳ‖ψ2 + ‖X ȳ − X y‖ψ2 .

Since x and ȳ are unit vectors, Lemma 9.1.6 may be used to bound the first part. It gives

‖Xx − X ȳ‖ψ2 ≤ C K 2‖x − ȳ‖2.

To bound the second part, note that ȳ and y are collinear vectors, so that

‖X ȳ − X y‖ψ2 = ‖ȳ − y‖2 ‖X ȳ‖ψ2 .
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x

0
y

y

Figure 9.1 Exercise 9.1.7 shows that the triangle inequality can be approximately
reversed from these three vectors, and so we have
‖x − ȳ‖2 + ‖ȳ − y‖2 ≤ √

2‖x − y‖2.

(Check this identity!) Now, since ȳ is a unit vector, (9.4) gives

‖X ȳ‖ψ2 ≤ C K 2.

Combining the two parts, we conclude that

‖Xx − X y‖ψ2 ≤ C K 2(‖x − ȳ‖2 + ‖ȳ − y‖2
)
. (9.11)

At this point we might get nervous: we need to bound the right-hand side by ‖x − y‖2,
but the triangle inequality would give the reverse bound! Nevertheless, looking at Figure 9.1
we may suspect that in our case the triangle inequality can be approximately reversed. The
next exercise confirms this rigorously.

Exercise 9.1.7 (Reverse triangle inequality)�� Consider vectors x, y, ȳ ∈ R
n satisfying

(9.9) and (9.10). Show that

‖x − ȳ‖2 + ‖ȳ − y‖2 ≤ √
2‖x − y‖2.

Using the result of this exercise, deduce from (9.11) the desired bound

‖Xx − X y‖ψ2 ≤ C K 2‖x − y‖2.

Theorem 9.1.3 is completely proved. �
Now that we have proved the matrix deviation inequality (Theorem 9.1.1), we can

complement it with a high-probability version.

Exercise 9.1.8 (Matrix deviation inequality: tail bounds)� Show that, under the condi-
tions of Theorem 9.1.1, we have the following. For any u ≥ 0, the event

sup
x∈T

∣∣∣‖Ax‖2 −√
m‖x‖2

∣∣∣ ≤ C K 2 (w(T )+ u rad(T )) (9.12)

holds with probability at least 1 − 2 exp(−u2). Here rad(T ) is the radius of T introduced in
(8.47). �

Exercise 9.1.9� Argue that the right-hand side of (9.12) can be further bounded by
C K 2uγ (T ) for u ≥ 1. Conclude that the bound in Exercise 9.1.8 implies Theorem 9.1.1.
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Exercise 9.1.10 (Deviation of squares)�� Show that, under the conditions of Theo-
rem 9.1.1, we have

E sup
x∈T

∣∣∣‖Ax‖2
2 − m‖x‖2

2

∣∣∣ ≤ C K 4γ (T )2 + C K 2√m rad(T )γ (T ). �

Exercise 9.1.11 (Deviation of random projections)���� Prove a version of the matrix
deviation inequality (Theorem 9.1.1) for random projections. Let P be an orthogonal pro-
jection in R

n onto an m-dimensional subspace uniformly distributed in the Grassmannian
Gn,m . Show that, for any subset T ⊂ R

n , we have

E sup
x∈T

∣∣∣‖Px‖2 −
√

m

n
‖x‖2

∣∣∣ ≤ C K 2γ (T )√
n

.

9.2 Random Matrices, Random Projections, and Covariance Estimation

The matrix deviation inequality has a number of important consequences, some of which we
present in this and the next section.

9.2.1 Two-Sided Bounds on Random Matrices

First let us apply the matrix deviation inequality to the unit Euclidean sphere T = Sn−1. In
this case, we can recover the bounds on random matrices that we proved in Section 4.6.

Indeed, the radius and Gaussian width of T = Sn−1 satisfy

rad(T ) = 1, w(T ) ≤ √
n.

(Recall (7.16).) The matrix deviation inequality in the form of Exercise 9.1.8 together with
the triangle inequality imply that the event

√
m − C K 2(

√
n + u) ≤ ‖Ax‖2 ≤ √

m + C K 2(
√

n + u) ∀x ∈ Sn−1

holds with probability at least 1 − 2 exp(−u2).
We can interpret this event as a two-sided bound on the extreme singular values of A

(recall (4.5)):
√

m − C K 2(
√

n + u) ≤ sn(A) ≤ s1(A) ≤
√

m + C K 2(
√

n + u).

Thus we recover the result in Theorem 4.6.1.

9.2.2 Sizes of Random Projections of Geometric Sets

Another immediate application of the matrix deviation inequality is the bound on random
projections of geometric sets that we gave in Section 7.7. In fact, the matrix deviation
inequality yields a sharper bound:

Proposition 9.2.1 (Sizes of random projections of sets) Consider a bounded set T ⊂ R
n.

Let A be an m × n matrix whose rows Ai are independent, isotropic, and sub-gaussian
random vectors in R

n. Then the scaled matrix
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P := 1√
n

A

(which is a “sub-gaussian projection”) satisfies

E diam(PT ) ≤
√

m

n
diam(T )+ C K 2ws(T ).

Here ws(T ) is the spherical width of T (recall Section 7.5.2) and K = maxi ‖Ai‖ψ2 .

Proof Theorem 9.1.1 implies via the triangle inequality that

E sup
x∈T

‖Ax‖2 ≤ √
m sup

x∈T
‖x‖2 + C K 2γ (T ).

We can state this inequality in terms of the radii of the sets AT and T as

E rad(AT ) ≤ √
m rad(T )+ C K 2γ (T ).

Applying this bound for the difference set T − T instead of T , we can write it as

E diam(AT ) ≤ √
m diam(T )+ C K 2w(T ).

(Here we have used (7.22) to pass from the Gaussian complexity to the Gaussian width.)
Dividing both sides by

√
n completes the proof. �

Proposition 9.2.1 is more general and sharper than our previous bounds on random pro-
jections (Exercise 7.7.3). Indeed, it states that the diameter scales by the exact factor

√
m/n

without an absolute constant in front of it.

Exercise 9.2.2 (Sizes of projections: high-probability bounds)�� Use the high-
probability version of the matrix deviation inequality (Exercise 9.1.8) to obtain a high-
probability version of Proposition 9.2.1. Namely, show that, for ε > 0, the bound

diam(PT ) ≤ (1 + ε)

√
m

n
diam(T )+ C K 2ws(T )

holds with probability at least 1 − exp(−cε2m/K 4).

Exercise 9.2.3��� Deduce a version of Proposition 9.2.1 for the original model of P
considered in Section 7.7, i.e., for a random projection P onto a random m-dimensional
subspace E ∼ Unif(Gn,m). �

9.2.3 Covariance Estimation for Lower-Dimensional Distributions

Let us revisit the covariance estimation problem, which we studied in Section 4.7 for sub-
gaussian distributions and in Section 5.6 in full generality. We found that the covariance
matrix � of an n-dimensional distribution can be estimated from m = O(n) sample points
for sub-gaussian distributions, and from m = O(n log n) sample points in full generality.

An even smaller sample can be sufficient for covariance estimation when the distribution
is approximately low dimensional, i.e., when �1/2 has low stable rank,1 which means that

1 We introduced the notion of stable rank in Section 7.6.1.
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the distribution tends to concentrate near a small subspace in R
n . We should expect to do

well with m = O(r), where r is the stable rank of �1/2. We noted this only for the general
case in Remark 5.6.3, up to a logarithmic oversampling. Now let us address the sub-gaussian
case, where no logarithmic oversampling is needed.

The following result extends Theorem 4.7.1 for approximately lower-dimensional distri-
butions.

Theorem 9.2.4 (Covariance estimation for lower-dimensional distributions) Let X be a
sub-gaussian random vector in R

n. More precisely, assume that there exists K ≥ 1 such
that

‖ 〈X, x〉 ‖ψ2 ≤ K‖ 〈X, x〉 ‖L2 for any x ∈ R
n.

Then, for every positive integer m, we have

E ‖�m −�‖ ≤ C K 4
(√

r

m
+ r

m

)
‖�‖,

where r = tr �/‖�‖ is the stable rank of �1/2.

Proof We begin the proof exactly as in Theorem 4.7.1 by bringing the distribution to an
isotropic position. Thus,

‖�m −�‖ = ‖�1/2 Rm�
1/2‖

(
where Rm = 1

m

m∑
i=1

Zi ZT
i − In

)
= max

x∈Sn−1

〈
�1/2 Rm�

1/2x, x
〉

(the matrix is positive-semidefinite)

= max
x∈T

〈Rm x, x〉 (if we define the ellipsoid T := �1/2Sn−1)

= max
x∈T

∣∣∣ 1

m

m∑
i=1

〈Zi , x〉2 − ‖x‖2
2

∣∣∣ (by the definition of Rm)

= 1

m
max
x∈T

∣∣‖Ax‖2
2 − m‖x‖2

2

∣∣,
where in the last step A denotes the m × n matrix with rows Zi . As in the proof of Theo-
rem 4.7.1, the Zi are mean-zero isotropic sub-gaussian random vectors with ‖Zi‖ψ2 � 1.
(For simplicity, let us hide the dependence on K within this argument.) This allows us to
apply the matrix deviation inequality for A (in the form given in Exercise 9.1.10), which
gives

E ‖�m −�‖ � 1

m

(
γ (T )2 +√

m rad(T )γ (T )
)
.

The radius and Gaussian complexity of the ellipsoid T = �1/2Sn−1 are easy to compute:

rad(T ) = ‖�‖1/2 and γ (T ) ≤ (tr�)1/2.

(Check!) This gives

E ‖�N −�‖ � 1

m

(
tr� +√m‖�‖ tr�

)
.

Substitute tr � = r‖�‖ and simplify the bound to complete the proof. �
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Exercise 9.2.5 (Tail bound)��� Prove a high-probability guarantee for Theorem 9.2.4
that is similar to the results of Exercises 4.7.3 and 5.6.4. Namely, check that, for any u ≥ 0,
we have

‖�m −�‖ ≤ C K 4
(√r + u

m
+ r + u

m

)
‖�‖

with probability at least 1 − 2e−u .

9.3 The Johnson–Lindenstrauss Lemma for Infinite Sets

Let us now apply the matrix deviation inequality for a finite set T . In this case, we recover
the Johnson–Lindenstrauss lemma from Section 5.3, and more.

9.3.1 Recovering the Classical Johnson–Lindenstrauss Lemma

Let us check that the matrix deviation inequality contains the classical Johnson–
Lindenstrauss lemma (Theorem 5.3.1). Let X be a set of N points in R

n and define T to
be the set of normalized differences of X , i.e.,

T :=
{ x − y

‖x − y‖2
: x, y ∈ X are distinct points

}
.

The Gaussian complexity of T satisfies

γ (T ) ≤ C
√

log N (9.13)

(recall Exercise 7.5.10). The matrix deviation inequality (Theorem 9.1.1) now implies that
the bound

sup
x,y∈X

∣∣∣‖Ax − Ay‖2

‖x − y‖2
−√

m
∣∣∣ �

√
log N (9.14)

holds with high probability. To keep the calculation simple, we will be satisfied here with
a probability 0.99, which can be obtained using Markov’s inequality; Exercise 9.1.8 gives
a better probability. Also, for simplicity we have suppressed the dependence on the sub-
gaussian norm K .

Multiply both sides of (9.14) by (1/
√

m)‖x − y‖2 and rearrange the terms. We obtain
that, with high probability, the scaled random matrix

Q := 1√
m

A

is an approximate isometry on X , i.e.,

(1 − ε)‖x − y‖2 ≤ ‖Qx − Qy‖2 ≤ (1 + ε)‖x − y‖2 for all x, y ∈ X ,
where

ε �
√

log N

m
.

Equivalently, if we fix ε > 0 and choose the dimension m such that

m � ε−2 log N ,

then, with high probability, Q is an ε-isometry on X . Thus we recover the classical Johnson–
Lindenstrauss lemma (Theorem 5.3.1).
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Exercise 9.3.1�� In the argument above, quantify the probability of success and depen-
dence on K . In other words, use the matrix deviation inequality to give an alternative solution
of Exercise 5.3.3.

9.3.2 Johnson–Lindenstrauss Lemma for Infinite Sets

The argument above does not really depend on X being a finite set. We used the fact that
X is finite only to bound the Gaussian complexity in (9.13). This means that we can give a
version of the Johnson–Lindenstrauss lemma for general, not necessarily finite, sets. Let us
state such a version.

Proposition 9.3.2 (Additive Johnson–Lindenstrauss lemma) Consider a set X ⊂ R
n. Let

A be an m × n matrix whose rows Ai are independent, isotropic, and sub-gaussian random
vectors in R

n. Then, with high probability (say, 0.99), the scaled matrix

Q := 1√
m

A

satisfies

‖x − y‖2 − δ ≤ ‖Qx − Qy‖2 ≤ ‖x − y‖2 + δ for all x, y ∈ X ,
where

δ = C K 2w(X )√
m

and K = maxi ‖Ai‖ψ2 .

Proof Choose T to be the difference set, i.e., T = X − X , and apply the matrix deviation
inequality (Theorem 9.1.1). It follows that, with high probability,

sup
x,y∈X

∣∣‖Ax − Ay‖2 −√
m‖x − y‖2

∣∣ ≤ C K 2γ (X −X ) = 2C K 2w(X ).

(In the last step we used (7.22).) Dividing both sides by
√

m, we complete the proof. �
Note that the error δ in Proposition 9.3.2 is additive, while the classical Johnson–

Lindenstrauss lemma for finite sets (Theorem 5.3.1) has a multiplicative form of error. This
may be a small difference, but in general it is necessary:

Exercise 9.3.3 (Additive error)� Suppose that a set X has a non-empty interior. Check
that, in order for the conclusion (5.10) of the classical Johnson-Lindenstrauss lemma to hold,
one must have m ≥ n, i.e., no dimension reduction is possible.

Remark 9.3.4 (Stable dimension) The additive version of the Johnson–Lindenstrauss
lemma can be stated naturally in terms of the stable dimension of X ,

d(X ) ∼ w(X )2
diam(X )2 ,

which we introduced in Section 7.6. To see this, let us fix ε > 0 and choose the dimension
m so that it exceeds an appropriate multiple of the stable dimension, namely
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E

Figure 9.2 Illustration of an M∗ bound: the intersection of a set T with a random
subspace E .

m ≥ (C K 4/ε2)d(T ).

Then, in Proposition 9.3.2 we have δ ≤ ε diam(X ). This means that Q preserves the
distances in X to within a small fraction of the maximal distance, which is the diameter
of X .

9.4 Random Sections: M∗ Bound and Escape Theorem

Consider a set T ⊂ R
n and a random subspace E with given dimension. How large is the

typical intersection of T and E? See Figure 9.2 for an illustration. There are two types of
answer to this question. In Section 9.4.1 we give a general bound for the expected diameter of
T ∩E ; it is called the M∗ bound. The intersection T ∩E can even be empty; this is the content
of the escape theorem, which we prove in Section 9.4.2. Both results are consequences of
the matrix deviation inequality.

9.4.1 M∗ Bound

First, it is convenient to realize the random subspace E as the kernel of a random matrix,
i.e., to set

E := ker A,

where A is a random m × n matrix. We always have

dim(E) ≥ n − m,

and for continuous distributions we have dim(E) = n − m almost surely.

Example 9.4.1 Suppose that A is a Gaussian matrix, i.e., it has independent N (0, 1)
entries. Rotation invariance implies that E = ker(A) is uniformly distributed in the
Grassmannian:

E ∼ Unif(Gn,n−m).

Our main result is the following general bound on the diameters of random sections of
geometric sets. For historic reasons, this result is called the M∗ bound.

Theorem 9.4.2 (M∗ bound) Consider a set T ⊂ R
n. Let A be an m×n matrix whose rows

Ai are independent, isotropic, and sub-gaussian random vectors in R
n. Then the random

subspace E = ker A satisfies
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E diam(T ∩ E) ≤ C K 2w(T )√
m

,

where K = maxi ‖Ai‖ψ2 .

Proof Apply Theorem 9.1.1 for T − T and obtain

E sup
x,y∈T

∣∣∣‖Ax − Ay‖2 −√
m‖x − y‖2

∣∣∣ ≤ C K 2γ (T − T ) = 2C K 2w(T ).

If we restrict the supremum to points x, y in the kernel of A then ‖Ax − Ay‖2 disappears,
since A(x − y) = 0, and we have

E sup
x,y∈T∩ker A

√
m‖x − y‖2 ≤ 2C K 2w(T ).

Dividing by
√

m yields

E diam(T ∩ ker A) ≤ C K 2w(T )√
m

,

which is the bound we claimed. �

Exercise 9.4.3 (Affine sections)�� Check that the M∗ bound holds not only for sections
through the origin but for all affine sections as well:

E max
z∈Rn

diam(T ∩ Ez) ≤ C K 2w(T )√
m

,

where Ez = z + ker A.

Surprisingly, the random subspace E in the M∗ bound is not low dimensional. On the
contrary, dim(E) ≥ n − m and we would typically choose m � n, so E has almost full
dimension. This makes the M∗ bound a strong and perhaps surprising statement.

Remark 9.4.4 (Stable dimension) It can be enlightening to look at the M∗ bound through
the lens of the notion of the stable dimension d(T ) ∼ w(T )2/ diam(T )2, which we
introduced in Section 7.6. Fix ε > 0. Then the M∗ bound can be stated as

E diam(T ∩ E) ≤ ε diam(T )

as long as

m ≥ C(K 4/ε2)d(T ). (9.15)

In words, the M∗ bound becomes nontrivial – the diameter shrinks – as long as the
codimension of E exceeds a multiple of the stable dimension of T .

Equivalently, the dimension condition states that the sum of the dimension of E and a
multiple of the stable dimension of T should be bounded by n. This condition should now
make sense from the linear algebraic point of view. For example, if T is a centered Euclidean
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ball in some subspace F ⊂ R
n then a nontrivial bound diam(T ∩ E) < diam(T ) is possible

only if

dim E + dim F ≤ n.

(Why?)
Let us look at one remarkable application of the M∗ bound.

Example 9.4.5 (The �1 ball) Let T = Bn
1 , the unit ball of the �1 norm in R

n . Since we
proved in (7.18) that w(T ) ∼ √

log n, the M∗ bound (Theorem 9.4.2) gives

E diam(T ∩ E) �
√

log n

m
.

For example, if m = 0.1n then

E diam(T ∩ E) �
√

log n

n
. (9.16)

Comparing this with diam(T ) = 2, we see that the diameter shrinks by almost
√

n as a result
of intersecting T with a random subspace E that has almost full dimension (namely, 0.9n).

For an intuitive explanation of this surprising fact, recall from Section 7.5.4 that the “bulk”
of the octahedron T = Bn

1 is formed by the inscribed ball (1/
√

n)Bn
2 . Then it should not

be surprising if a random subspace E tends to pass through the bulk and miss the “outliers”
that lie closer to the vertices of T . This makes the diameter of T ∩ E essentially the same as
the size of the bulk, which is 1/

√
n.

This example indicates what makes a surprisingly strong and general result such as the M∗
bound possible. Intuitively, the random subspace E tends to pass entirely through the bulk
of T , which is usually a Euclidean ball with much smaller diameter than T , see Figure 9.2.

Exercise 9.4.6 (M∗ bound with high probability)�� Use the high-probability version of
the matrix deviation inequality (Exercise 9.1.8) to obtain a high-probability version of the
M∗ bound.

9.4.2 Escape Theorem

In some circumstances, a random subspace E may completely miss a given set T in R
n .

This might happen, for example, if T is a subset of the sphere; see Figure 9.3. In this case,
the intersection T ∩ E is typically empty under essentially the same conditions as in the M∗
bound.

T E

Figure 9.3 Illustration of the escape theorem: the set T has empty intersection with
a random subspace E .
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Theorem 9.4.7 (Escape theorem) Consider a set T ⊂ Sn−1. Let A be an m × n matrix
whose rows Ai are independent, isotropic, and sub-gaussian random vectors in R

n. If

m ≥ C K 4w(T )2 (9.17)

then the random subspace E = ker A satisfies

T ∩ E = ∅
with probability at least 1 − 2 exp(−cm/K 4). Here K = maxi ‖Ai‖ψ2 .

Proof Let us use the high-probability version of the matrix deviation inequality from
Exercise 9.1.8. It states that the bound

sup
x∈T

∣∣∣‖Ax‖2 −√
m
∣∣∣ ≤ C1K 2(w(T )+ u) (9.18)

holds with probability at least 1 − 2 exp(−u2). Suppose that this event indeed holds and
T ∩ E �= ∅. Then for any x ∈ T ∩ E we have ‖Ax‖2 = 0, so our bound becomes

√
m ≤ C1K 2(w(T )+ u).

Choosing u := √
m/(2C1K 2), we simplify the bound to

√
m ≤ C1K 2w(T )+

√
m

2
,

which yields
√

m ≤ 2C1K 2w(T ).

But this contradicts the assumption of the escape theorem, as long as we choose the absolute
constant C large enough. This means that the event (9.18) with u chosen as above implies
that T ∩ E = ∅. The proof is complete. �

Exercise 9.4.8 (Sharpness of escape theorem)� Discuss the sharpness of the escape
theorem for the example where T is the unit sphere of some subspace of R

n .

Exercise 9.4.9 (Escape from a point set)�� Prove the following version of the escape
theorem, with a rotation of a point set instead of a random subspace.

Consider a set T ⊂ Sn−1 and let X be a set of N points in R
n . Show that if

σn−1(T ) <
1

N

then there exists a rotation U ∈ O(n) such that

T ∩ UX = ∅.
Here σn−1 denotes the normalized Lebesgue measure (of area) on Sn−1. �
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9.5 Notes

The matrix deviation inequality (Theorem 9.1.1) and its proof were borrowed from [128].
Several important related results had been known before. In the partial case where A is
Gaussian and T is a subset of the unit sphere, Theorem 9.1.1 can be deduced from Gaussian
comparison inequalities. The upper bound on ‖Gx‖2 can be derived from the Sudakov–
Fernique inequality (Theorem 7.2.11), while the lower bound can be obtained from Gordon’s
inequality (Exercise 7.2.14). G. Schechtman [177] proved a version of the matrix deviation
inequality in the partial case of Gaussian random matrices A and for general norms (not
necessarily Euclidean); we present this result in Section 11.1. For sub-gaussian matrices
A, some earlier versions of the matrix deviation inequality can be found in [113, 141, 61];
see [128, Section 3] for a comparison with these results. Finally, a variant of the matrix
deviation inequality for sparse matrices A (more precisely, for an A that is a sparse Johnson–
Lindenstrauss transform) was obtained in [30].

A version of Proposition 9.2.1 is due to V. Milman [145]; see [11, Proposition 5.7.1].
Theorem 9.2.4 on covariance estimation for lower-dimensional distributions is due to
V. Koltchinskii and K. Lounici [115]; they used a different approach that was also based
on the majorizing measure theorem. R. van Handel showed in [207] how to derive Theo-
rem 9.2.4 for Gaussian distributions from decoupling, conditioning, and the Slepian lemma.
The bound in Theorem 9.2.4 can be reversed [115, 207].

A version of the Johnson–Lindenstrauss lemma for infinite sets that is similar to
Proposition 9.3.2 can be found in [128].

The M∗ bound, a version of which we proved in Section 9.4.1, is a useful result in
geometric functional analysis; see [11, Sections 7.3, 7.4, and 9.3] and [85, 140, 217] for
many known variants, proofs, and consequences of M∗ bounds. The version we gave here,
Theorem 9.4.2, is from [128].

The escape theorem from Section 9.4.2 is also called “escape from the mesh” in the
literature. It was originally proved by Y. Gordon [85] for a Gaussian random matrix A and
with a sharp constant factor in (9.17). The argument was based on Gordon’s inequality from
Exercise 7.2.14. Matching lower bounds for this sharp theorem are known for spherically
convex sets [184, 9]. In fact, for a spherically convex set, the exact value of the hitting
probability can be obtained by the methods of integral geometry [9]. Oymak and Tropp [159]
proved that this sharp result is universal, i.e., it can be extended to non-Gaussian matrices.
Our version of the escape theorem (Theorem 9.4.7), which is valid for even more general
classes of random matrices but does not feature sharp absolute constants, is borrowed from
[128]. As we will see in Section 10.5.1, the escape theorem is an important tool for signal
recovery problems.
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Sparse Recovery

In this chapter we focus entirely on applications of high-dimensional probability to data
science. We will study basic signal recovery problems in compressed sensing and structured
regression problems in high-dimensional statistics and develop algorithmic methods to solve
them using convex optimization.

We introduce these problems in Section 10.1. Our first approach to them, which is very
simple and general, is developed in Section 10.2 on the basis of the M∗ bound. We then
specialize this approach to two important problems. In Section 10.3 we study the sparse
recovery problem, in which the unknown signal is sparse (i.e., has few nonzero coordinates).
In Section 10.4 we study the low-rank matrix recovery problem, in which the unknown sig-
nal is a low-rank matrix. If instead of M∗ bounds we use the escape theorem, it is possible
to recover sparse signals exactly (without any error)! We prove this basic result in com-
pressed sensing in Section 10.5. We first deduce it from the escape theorem and then study
an important deterministic condition that guarantees sparse recovery: the restricted isometry
property. Finally, in Section 10.6 we use the matrix deviation inequality to analyze Lasso,
the most popular optimization method for sparse regression in statistics.

10.1 High-Dimensional Signal Recovery Problems

Mathematically, we model a signal as a vector x ∈ R
n . Suppose that a priori we do not know

x , but we have m random, linear, possibly noisy measurements of x . Such measurements can
be represented as a vector y ∈ R

m with the following form:

y = Ax + w. (10.1)

Here A is an m × n known random measurement matrix, and w ∈ R
m is an unknown noise

vector; see Figure 10.1. Our goal is to recover x from A and y as accurately as possible.
Note that the measurements y = (y1, . . . , ym) can be equivalently represented as

yi = 〈Ai , x〉 + wi , i = 1, . . . ,m, (10.2)

where Ai ∈ R
n denotes a row of the matrix A. It is natural to assume that the Ai are

independent, which makes the observations yi independent too.

Example 10.1.1 (Audio sampling) In signal processing applications, x can be a digitized
audio signal. The measurement vector y can be obtained by sampling x at m randomly
chosen time points; see Figure 10.2.

232
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m =

n

Ay

x

ω

+

Figure 10.1 Signal recovery problem: recover a signal x from random linear
measurements y.

Figure 10.2 Signal recovery problem in audio sampling: recover an audio signal x
from a sample of x taken at m random time points.

Example 10.1.2 (Linear regression) Linear regression is one of the major inference prob-
lems in statistics. Here we would like to model the relationship between n predictor
variables and a response variable, using a sample of m observations. The regression problem
is usually written as

Y = Xβ + w.

Here X is an m × n matrix that contains a sample of predictor variables, Y ∈ R
m is a vector

that contains a sample of response variables, β ∈ R
n is a coefficient vector that specifies the

relationship that we try to recover, and w is a noise vector.
For example, in genetics one could be interested in predicting a certain disease on the basis

of genetic information. One thus performs a study on m patients, collecting the expressions
of their n genes. The matrix X is defined by letting Xi j be the expression of gene j in
patient i , and the coefficients Yi of the vector Y can be set to quantify whether patient i has
the disease (and to what extent). The goal is to recover the coefficients of β, which quantify
how each gene affects the disease.

10.1.1 Incorporating Prior Information About the Signal

Many modern signal recovery problems operate in the regime where

m � n,

i.e., we have far fewer measurements than unknowns. For instance, in a typical genetic study
like that described in Example 10.1.2, the number of patients is ∼ 100 while the number of
genes is ∼ 10 000.



234 Sparse Recovery

In this regime the recovery problem (10.1) is ill posed even in the noiseless case where
w = 0. It cannot be solved even approximately: the solutions form a linear subspace of
dimension at least n−m. To overcome this difficulty, we can leverage some prior information
about the signal x – something that we know, believe, or want to enforce about x . Such
information can be mathematically expressed by assuming that

x ∈ T, (10.3)

where T ⊂ R
n is a known set.

The smaller the set T , the fewer measurements m needed to recover x . For small T we
can hope that signal recovery can be solved even in the ill-posed regime where m � n. We
will see how this idea works in the following sections.

10.2 Signal Recovery Based on M∗ Bound

Let us return to the recovery problem (10.1). For simplicity, we first consider the noiseless
version of the problem, that is,

y = Ax, x ∈ T .

To recap, here x ∈ R
n is the unknown signal, T ⊂ R

n is a known set that encodes our prior
information about x , and A is a known m × n random measurement matrix. Our goal is to
recover x from y.

Perhaps the simplest candidate for the solution would be any vector x ′ that is consistent
both with the measurements and the prior, so we find

x ′ : y = Ax ′, x ∈ T . (10.4)

If the set T is convex, this is a convex program (in the feasibility form), and many effective
algorithms exist to solve it numerically.

This naïve approach actually works well. We now quickly deduce this from the M∗ bound
from Section 9.4.1.

Theorem 10.2.1 Suppose that the rows Ai of A are independent, isotropic, and sub-
gaussian random vectors. Then a solution x̂ of the program (10.4) satisfies

E ‖x̂ − x‖2 ≤ C K 2w(T )√
m

,

where K = maxi ‖Ai‖ψ2 .

Proof Since x, x̂ ∈ T and Ax = Ax̂ = y, we have

x, x̂ ∈ T ∩ Ex ,

where Ex := x +ker A. (Figure 10.3 illustrates this situation.) Then the affine version of the
M∗ bound (Exercise 9.4.3) yields

E ‖x̂ − x‖2 ≤ E diam(T ∩ Ex ) ≤ C K 2w(T )√
m

.

This completes the proof. �
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x

x

T

Ex = x + ker A

ˆ

Figure 10.3 Signal recovery: the signal x and the solution x̂ lie in the prior set T
and in the affine subspace Ex .

Remark 10.2.2 (Stable dimension) Arguing as in Remark 9.4.4, we obtain a nontrivial
error bound

E ‖x̂ − x‖2 ≤ ε diam(T ),

provided that the number of measurements m is such that

m ≥ C(K 4/ε2)d(T ).

In words, the signal can be approximately recovered as long as the number of measurements
m exceeds a multiple of the stable dimension d(T ) of the prior set T .

Since the stable dimension can be much smaller than the ambient dimension n, the
recovery problem may often be solved even in the high-dimensional, ill-posed, regime where

m � n.

We will see some concrete examples of this situation shortly.

Remark 10.2.3 (Convexity) If the prior set T is not convex, we can convexify it by
replacing T with its convex hull conv(T ). This makes (10.4) a convex program and thus
computationally tractable. At the same time, the recovery guarantees of Theorem 10.2.1 do
not change since

w(conv(T )) = w(T ),

by Proposition 7.5.2.

Exercise 10.2.4 (Noisy measurements)�� Extend the recovery result (Theorem 10.2.1)
for the noisy model y = Ax + w we considered in (10.1). Namely, show that

E ‖x̂ − x‖2 ≤ C K 2w(T )+ ‖w‖2√
m

. �

Exercise 10.2.5 (Mean squared error)��� Prove that the error bound in Theorem 10.2.1
can be extended to the mean squared error

E ‖x̂ − x‖2
2. �

Exercise 10.2.6 (Recovery by optimization)�� Suppose that T is the unit ball of some
norm ‖ · ‖T in R

n . Show that the conclusion of Theorem 10.2.1 holds also for the solution
of the following optimization program:

minimize ‖x ′‖T s.t. y = Ax ′.
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10.3 Recovery of Sparse Signals

10.3.1 Sparsity

Let us give a concrete example of a prior set T . Very often we believe that x should be
sparse, i.e., that most coefficients of x are zero, either exactly or approximately. For instance,
in genetic studies like that described in Example 10.1.2, it is natural to expect that very few
genes (∼ 10) have a significant impact on a given disease, and we would like to find out
which they are.

In some applications one needs to change basis so that the signals of interest are sparse.
For instance, in the audio recovery problem considered in Example 10.1.1, we are typically
dealing with band-limited signals x . Those are signals whose frequencies (the values of the
Fourier transform) are constrained to some small set, such as a bounded interval. While the
audio signal x itself is not sparse, as is apparent from Figure 10.2 the Fourier transform of x
may be sparse. In other words, x may be sparse in the frequency but not the time domain.

To quantify the (exact) sparsity of a vector x ∈ R
n , we consider the size of the support of

x , which we denote

‖x‖0 := | supp(x)| = |{i : xi �= 0}| .
Assume that

‖x‖0 = s � n. (10.5)

This can be viewed as a special case of a general assumption (10.3) by putting

T = {
x ∈ R

n : ‖x‖0 ≤ s
}
.

Then a simple dimension count shows the recovery problem (10.1) could become well
posed:

Exercise 10.3.1 (Sparse recovery problem is well posed)��� Argue that if m ≥ ‖x‖0,
the solution to the sparse recovery problem (10.1) is unique if it exists.

Even when the problem (10.1) is well posed, it could be computationally hard. It is easy
if one knows the support of x (why?) but usually the support is unknown. An exhaustive
search over all possible supports (subsets of a given size s) is impossible since the number
of possibilities is exponentially large:

(n
s

) ≥ 2s .
Fortunately, there exist computationally effective approaches to high-dimensional recov-

ery problems with general constraints (10.3), and to sparse recovery problems in particular.
We cover these approaches next.

Exercise 10.3.2 (The “�p norms” for 0 ≤ p < 1)���

(a) Check that ‖ · ‖0 is not a norm on R
n .

(b) Check that ‖ · ‖p is not a norm on R
n if 0 < p < 1. Figure 10.4 illustrates the unit balls

for various �p “norms”.
(c) Show that, for every x ∈ R

n ,

‖x‖0 = lim
p→0+

‖x‖p.
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p = 0.25 p = 0.5 p = 1 p = 1.5 p = 2 p = 2.8 p = ∞

Figure 10.4 The unit balls of �p for various p in R
2.

10.3.2 Convexifying the Sparsity by the �1 Norm, and Recovery Guarantees

Let us specialize the general recovery guarantees developed in Section 10.2 to the sparse
recovery problem. To do this, we should choose the prior set T so that it promotes sparsity.
In the previous section, we saw that the choice

T := {
x ∈ R

n : ‖x‖0 ≤ s
}

does not allow for computationally tractable algorithms.
To make T convex, we may replace the “�0 norm” by the �p norm with the smallest

exponent p > 0 that makes this a true norm. The exponent p is obviously 1, as we can
see from Figure 10.4. So let us repeat this important heuristic: we propose to replace the �0

“norm” by the �1 norm.
Thus it makes sense to choose T to be a scaled �1 ball:

T := √
s Bn

1 .

The scaling factor
√

s was chosen so that T can accommodate all s-sparse unit vectors:

Exercise 10.3.3� Check that{
x ∈ R

n : ‖x‖0 ≤ s, ‖x‖2 ≤ 1
} ⊂ √

s Bn
1 .

For this T , the general recovery program (10.4) becomes

Find x ′ : y = Ax ′, ‖x ′‖1 ≤ √
s. (10.6)

Note that this is a convex program and therefore is computationally tractable. And the
general recovery guarantee, Theorem 10.2.1, specialized to our case, implies the following.

Corollary 10.3.4 (Sparse recovery: guarantees) Assume that the unknown s-sparse sig-
nal x ∈ R

n satisfies ‖x‖2 ≤ 1. Then x can be approximately recovered from the random
measurement vector y = Ax by a solution x̂ of the program (10.6). The recovery error
satisfies

E ‖x̂ − x‖2 ≤ C K 2

√
s log n

m
.

Proof Set T = √
s Bn

1 . The result follows from Theorem 10.2.1 and the bound (7.18) on
the Gaussian width of the �1 ball:

w(T ) = √
sw(Bn

1 ) ≤ C
√

s log n. �
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Remark 10.3.5 The recovery error guaranteed by Corollary 10.3.4 is small if

m ∼ s log n

(and if the hidden constant here is appropriately large). In words, recovery is possible if
the number of measurements m is almost linear in the sparsity s, while its dependence on
the ambient dimension n is mild (logarithmic). This is good news. It means that, for sparse
signals, one can solve recovery problems in the high-dimensional regime where

m � n,

i.e., with many fewer measurements than the dimension.

Exercise 10.3.6 (Sparse recovery by convex optimization)���

(a) Show that an unknown s-sparse signal x (without restriction on the norm) can be
approximately recovered by solving the convex optimization problem

minimize ‖x ′‖1 s.t. y = Ax ′. (10.7)

The recovery error satisfies

E ‖x̂ − x‖2 ≤ C

√
s log n

m
‖x‖2.

(b) Argue that a similar result holds for approximately sparse signals. State and prove such
a guarantee.

10.3.3 The Convex Hull of Sparse Vectors, and the Logarithmic Improvement

The replacement of s-sparse vectors by the octahedron
√

s Bn
1 that we made in Exer-

cise 10.3.3 is almost sharp. In the following exercise, we show that the convex hull of the
set of sparse vectors

Sn,s := {
x ∈ R

n : ‖x‖0 ≤ s, ‖x‖2 ≤ 1
}

is approximately the truncated �1 ball

Tn,s := √
s Bn

1 ∩ Bn
2 = {

x ∈ R
n : ‖x‖1 ≤ √

s, ‖x‖2 ≤ 1
}
.

Exercise 10.3.7 (The convex hull of sparse vectors)���

(a) Check that

conv(Sn,s) ⊂ Tn,s .

(b) To help prove a reverse inclusion, fix x ∈ Tn,s and partition the support of x into dis-
joint subsets I1, I2, . . . so that I1 indexes the s largest coefficients of x in magnitude, I2

indexes the next s largest coefficients, and so on. Show that∑
i≥1

‖xIi ‖2 ≤ 2,

where xI ∈ R
T denotes the restriction of x onto a set I . �

(c) Deduce from part (b) that

Tn,s ⊂ 2 conv(Sn,s).
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Exercise 10.3.8 (Gaussian width of a set of sparse vectors) Use Exercise 10.3.7 to show
that

w(Tn,s) ≤ 2w(Sn,s) ≤ C
√

s log(en/s).

Improve the logarithmic factor in the error bound for sparse recovery (Corollary 10.3.4) to

E ‖x̂ − x‖2 ≤ C

√
s log(en/s)

m
.

This shows that

m ∼ s log(en/s)

measurements suffice for sparse recovery.

Exercise 10.3.9 (Sharpness)���� Show that

w(Tn,s) ≥ w(Sn,s) ≥ c
√

s log(2n/s). �

Exercise 10.3.10 (Garnaev–Gluskin theorem)��� Improve the logarithmic factor in the
bound (9.4.5) on the sections of the �1 ball. Namely, show that

E diam(Bn
1 ∩ E) �

√
log(en/m)

m
.

In particular, this shows that the logarithmic factor in (9.16) is not needed. �

10.4 Low-Rank Matrix Recovery

In the following series of exercises, we establish a matrix version of the sparse recovery
problem studied in Section 10.3. The unknown signal will now be a d × d matrix X instead
of the signal x ∈ R

n considered previously.
There are two natural notions of sparsity for matrices. One is where most of the

entries of X are zero, and it is quantified by the �0 “norm” ‖X‖0, which counts nonzero
entries. For this notion, we can directly apply the analysis of sparse recovery from Sec-
tion 10.3. Indeed, it is enough to vectorize the matrix X and think of it as a long vector
in R

d2
.

But, in this section, we consider an alternative and equally useful notion of sparsity for
matrices: low rank. It is quantified by the rank of X , which we may think of as the �0 norm
of the vector of the singular values of X , i.e.,

s(X) := (si (X))
d
i=1. (10.8)

Our analysis of the low-rank matrix recovery problem will roughly go along the same lines
as the analysis of sparse recovery, but will not be identical to it.

Let us set up a low-rank matrix recovery problem. We would like to recover an unknown
d × d matrix from m random measurements of the form

yi = 〈Ai , X〉 , i = 1, . . . ,m. (10.9)
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Here the Ai are independent d × d matrices, and 〈Ai , X〉 = tr(AT
i X) is the canonical inner

product of matrices (recall Section 4.1.3). In dimension d = 1, the matrix recovery problem
(10.9) reduces to the vector recovery problem (10.2).

Since we have m linear equations in d × d variables, the matrix recovery problem is ill
posed if

m < d2.

To be able to solve it in this range, we make an additional assumption that X has low rank,
i.e.,

rank(X) ≤ r � d.

10.4.1 The Nuclear Norm

Like sparsity, the rank is not a convex function. To fix this, in Section 10.3 we replaced the
sparsity (i.e. the �0 “norm”) by the �1 norm. Let us try to do the same for the notion of rank.
The rank of X is the �0 “norm” of the vector s(X) of the singular values in (10.8). Replacing
the �0 norm by the �1 norm, we obtain the quantity

‖X‖∗ := ‖s(X)‖1 =
d∑

i=1

si (X) = tr
√

XT X

which is called the nuclear norm, or trace norm, of X . (We omit the absolute values since
the singular values are non-negative.)

Exercise 10.4.1��� Prove that ‖ ·‖∗ is indeed a norm on the space of d ×d matrices.�

Exercise 10.4.2 (Nuclear, Frobenius, and operator norms)�� Check that

〈X, Y 〉 ≤ ‖X‖∗ ‖Y‖. (10.10)

Conclude that

‖X‖2
F ≤ ‖X‖∗ ‖X‖. �

Now denote the unit ball of the nuclear norm by

B∗ :=
{

X ∈ R
d×d: ‖X‖∗ ≤ 1

}
.

Exercise 10.4.3 (Gaussian width of the unit ball of the nuclear norm)� Show that

w(B∗) ≤ 2
√

d. �

The following is a matrix version of Exercise 10.3.3.

Exercise 10.4.4� Check that{
X ∈ R

d×d: rank(X) ≤ r, ‖X‖F ≤ 1
}
⊂ √

r B∗.
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10.4.2 Guarantees for Low-Rank Matrix Recovery

It makes sense to try to solve the low-rank matrix recovery problem (10.9) using the matrix
version of the convex program (10.6), i.e.,

find X ′ : yi = 〈
Ai , X ′〉 ∀i = 1, . . . ,m, ‖X ′‖∗ ≤ √

r . (10.11)

Exercise 10.4.5 (Low-rank matrix recovery: guarantees)�� Suppose that the random
matrices Ai are independent and have all independent sub-gaussian entries.1 Assume the
unknown d × d matrix X with rank r satisfies ‖X‖F ≤ 1. Show that X can be approxi-
mately recovered from the random measurements yi by a solution X̂ of the program (10.11).
Show that the recovery error satisfies

E ‖X̂ − X‖F ≤ C K 2

√
rd

m
.

Remark 10.4.6 The recovery error becomes small if

m ∼ rd,

if the hidden constant here is appropriately large. This allows us to recover low-rank matrices
even when the number of measurements m is too small, i.e., when

m � d2

and the matrix recovery problem (without rank assumption) is ill posed.

Exercise 10.4.7�� Extend the matrix recovery result for approximately low-rank matri-
ces.

The following is a matrix version of Exercise 10.3.6.

Exercise 10.4.8 (Low-rank matrix recovery by convex optimization)�� Show that an
unknown matrix X of rank r can be approximately recovered by solving the convex
optimization problem

minimize ‖X ′‖∗ s.t. yi = 〈
Ai , X ′〉 ∀i = 1, . . . ,m.

Exercise 10.4.9 (Rectangular matrices)�� Extend the matrix recovery result from
quadratic to rectangular, d1 × d2, matrices.

10.5 Exact Recovery and the Restricted Isometry Property

It turns out that the guarantees for sparse recovery that we have just developed can be dra-
matically improved: the recovery error for sparse signals x can actually be zero! We discuss
two approaches to this remarkable phenomenon. First we deduce exact recovery from the
escape theorem 9.4.7. Next we present a general deterministic condition on a matrix A which

1 The independence of entries can be relaxed. How?
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x = x

Ex = x + ker A

sB1
n√

Ex

x

T(x)

S(x)

(a) Exact sparse recovery happens
when the random subspace Ex is tangent
to the �1 ball at the point x.

(b) The tangency occurs if and only if Ex is
disjoint from the spherical part S(x) of the
tangent cone T(x) of the �1 ball at point x.

Figure 10.5 Exact sparse recovery.

guarantees exact recovery; it is known as the restricted isometry property (RIP). We check
that random matrices A satisfy RIP, which gives another approach to exact recovery.

10.5.1 Exact Recovery Based on the Escape Theorem

To see why exact recovery should be possible, let us look at the recovery problem from a
geometric viewpoint, as illustrated by Figure 10.3. A solution x̂ of the program (10.6) must
lie in the intersection of the prior set T , which in our case is the �1 ball

√
s Bn

1 , and the affine
subspace Ex = x + ker A.

The �1 ball is a polytope, and the s-sparse unit vector x lies on the (s − 1)-dimensional
edge of that polytope; see Figure 10.5a.

It could happen with nonzero probability that the random subspace Ex is tangent to the
polytope at the point x . If this does happen, x is the only point of intersection between
the �1 ball and Ex . In this case, it follows that the solution x̂ to the program (10.6) is
exact:

x̂ = x .

To justify this argument, all we need to check is that the random subspace Ex is tangent
to the �1 ball with high probability. We can do this using the escape theorem 9.4.7. To see
a connection, look at what happens in a small neighborhood around the tangent point; see
Figure 10.5b. The subspace Ex is tangent if and only if the tangent cone T (x) (formed
by all rays emanating from x toward the points in the �1 ball) intersects Ex at a single
point x . Equivalently, this happens if and only if the spherical part S(x) of the cone (the
intersection of T (x)with a small sphere centered at x) is disjoint from Ex . But this is exactly
the conclusion of escape theorem 9.4.7!

Let us now formally state the exact recovery result. We shall consider the noiseless sparse
recovery problem

y = Ax

and try to solve it using the optimization program (10.7), i.e.

minimize ‖x ′‖1 s.t. y = Ax ′. (10.12)
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Theorem 10.5.1 (Exact sparse recovery) Suppose that the rows Ai of A are independent,
isotropic, and sub-gaussian random vectors, and let K := maxi ‖Ai‖ψ2 . Then the event
below happens with probability at least 1 − 2 exp(−cm/K 4).

Assume that an unknown signal x ∈ R
n is s-sparse and the number of measurements m

satisfies

m ≥ C K 4s log n.

Then a solution x̂ of the program (10.12) is exact, i.e.,

x̂ = x .

To prove the theorem, we would like to show that the recovery error

h := x̂ − x

is zero. Let us examine the vector h more closely. First we show that h has more “energy”
on the support of x than outside it.

Lemma 10.5.2 Let S := supp(x). Then

‖hSc‖1 ≤ ‖hS‖1.

Here hS ∈ R
S denotes the restriction of the vector h ∈ R

n to a subset of coordinates
S ⊂ {1, . . . , n}.

Proof Since x̂ is the minimizer in the program (10.12), we have

‖x̂‖1 ≤ ‖x‖1. (10.13)

But there is also a lower bound, as

‖x̂‖1 = ‖x + h‖1 = ‖xS + hS‖1 + ‖xSc + hSc‖1

≥ ‖x‖1 − ‖hS‖1 + ‖hSc‖1,

where the last line follows by the triangle inequality and we use xS = x and xSc = 0.
Substitute this bound into (10.13) and cancel ‖x‖1 on both sides to complete the proof. �

Lemma 10.5.3 The error vector satisfies

‖h‖1 ≤ 2
√

s‖h‖2.

Proof Using Lemma 10.5.2 and then Hölder’s inequality, we obtain

‖h‖1 = ‖hS‖1 + ‖hSc‖1 ≤ 2‖hS‖1 ≤ 2
√

s‖hS‖2.

Since trivially ‖hS‖2 ≤ ‖h‖2, the proof is complete. �

Proof of Theorem 10.5.1 Assume that the recovery is not exact, i.e.,

h = x̂ − x �= 0.
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By Lemma 10.5.3, the normalized error h/‖h‖2 lies in the set

Ts :=
{

z ∈ Sn−1 : ‖z‖1 ≤ 2
√

s
}
.

Since also

Ah = Ax̂ − Ax = y − y = 0,

we have

h

‖h‖2
∈ Ts ∩ ker A. (10.14)

The escape theorem 9.4.7 states that this intersection is empty with high probability, as
long as

m ≥ C K 4w(Ts)
2.

Now,

w(Ts) ≤ 2
√

sw(Bn
1 ) ≤ C

√
s log n, (10.15)

where we have used the bound (7.18) on the Gaussian width of the �1 ball. Thus, if m ≥
C K 4s log n, the intersection in (10.14) is empty with high probability, which means that the
inclusion in (10.14) cannot hold. This contradiction implies that our assumption that h �= 0
is false with high probability. The proof is complete. �

Exercise 10.5.4 (Improving the logarithmic factor)� Show that the conclusion of Theo-
rem 10.5.1 holds under a weaker assumption on the number of measurements, i.e.,

m ≥ C K 4s log(en/s). �

Exercise 10.5.5�� Give a geometric interpretation of the proof of Theorem 10.5.1, using
Figure 10.5b. What does the proof say about the tangent cone T (x), and about its spherical
part S(x)?

Exercise 10.5.6 (Noisy measurements)��� Extend the result on sparse recovery (The-
orem 10.5.1) to noisy measurements, where

y = Ax + w.

You may need to modify the recovery program by making the constraint y = Ax ′
approximate.

Remark 10.5.7 Theorem 10.5.1 shows that one can effectively solve under-determined
systems of linear equations y = Ax with m � n equations in n variables, if the solution is
sparse.
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10.5.2 Restricted Isometries

This subsection is optional; further material is not based on it.
All the recovery results proved so far are probabilistic: they are valid for a random

measurement matrix A and with high probability. We may wonder whether there exists a
deterministic condition which can guarantee that a given matrix A can be used for sparse
recovery. Such a condition is the restricted isometry property.

Definition 10.5.8 (RIP) An m ×n matrix A satisfies the restricted isometry property (RIP)
with parameters α, β, and s if the inequality

α‖v‖2 ≤ ‖Av‖2 ≤ β‖v‖2

holds for all vectors v ∈ R
n such that2 ‖v‖0 ≤ s.

In other words, a matrix A satisfies the RIP if the restriction of A to any s-dimensional
coordinate subspace of R

n is an approximate isometry in the sense of (4.5).

Exercise 10.5.9 (RIP via singular values)� Check that the RIP holds if and only if the
singular values satisfy the inequality

α ≤ sn(AI ) ≤ s1(AI ) ≤ β

for all subsets I ⊂ [n] of size |I | = s. Here AI denotes the m × s sub-matrix of A formed
by selecting the columns indexed by I .

Now we will prove that RIP is indeed a sufficient condition for sparse recovery.

Theorem 10.5.10 (RIP implies exact recovery) Suppose that an m × n matrix A satisfies
the RIP with some parameters α, β, and (1 + λ)s, where λ > (β/α)2. Then every s-sparse
vector x ∈ R

n can be recovered exactly by solving the program (10.12), i.e., the solution
satisfies

x̂ = x .

Proof As in the proof of Theorem 10.5.1, we would like to show that the recovery error

h = x̂ − x

is zero. To do this, we decompose h in a way similar to Exercise 10.3.7.
Step 1: Decomposing the support. Let I0 be the support of x ; let I1 index the λs largest

coefficients of hI c
0

in magnitude; let I2 index the next λs largest coefficients of hI c
0

in
magnitude, and so on. Finally, denote I0,1 = I0 ∪ I1.

Since

Ah = Ax̂ − Ax = y − y = 0,

2 Recall from Section 10.3.1 that by ‖v‖0 we denote the number of nonzero coordinates of v.
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the triangle inequality yields

0 = ‖Ah‖2 ≥ ‖AI0,1 hI0,1‖2 − ‖AI c
0,1

hI c
0,1

‖2. (10.16)

Next, we examine the two terms on the right-hand side.
Step 2: Applying RIP. Since |I0,1| ≤ s + λs, RIP yields

‖AI0,1 hI0,1‖2 ≥ α‖hI0,1‖2,

and the triangle inequality, followed by the RIP, also gives

‖AI c
0,1

hI c
0,1

‖2 ≤
∑
i≥2

‖AIi h Ii ‖2 ≤ β
∑
i≥2

‖hIi ‖2.

Substituting into (10.16) gives

β
∑
i≥2

‖hIi ‖2 ≥ α‖hI0,1‖2. (10.17)

Step 3: Summing up. Next, we bound the sum on the left in the same way as we did in
Exercise 10.3.7. By the definition of Ii , each coefficient of hIi is bounded in magnitude by
the average of the coefficients of hIi−1 , i.e., by ‖hIi−1‖1/(λs) for i ≥ 2. Thus

‖hIi ‖2 ≤ 1√
λs

‖hIi−1‖1.

Summing up, we get ∑
i≥2

‖hIi ‖2 ≤ 1√
λs

∑
i≥1

‖hIi ‖1 = 1√
λs

‖hI c
0
‖1

≤ 1√
λs

‖hI0‖1 (by Lemma 10.5.2)

≤ 1√
λ
‖hI0‖2 ≤ 1√

λ
‖hI0,1‖2.

Putting this into (10.17) we conclude that

β√
λ
‖hI0,1‖2 ≥ α‖hI0,1‖2.

This implies that hI0,1 = 0, since β/
√
λ > α by assumption. By construction I0,1 contains

the largest coefficient of h. It follows that h = 0 as claimed. The proof is complete. �

Unfortunately, it is unknown how to construct deterministic matrices A that satisfy the
RIP with good parameters (i.e., with β = O(α) and with s as large as m, up to logarithmic
factors). However, it is quite easy to show that random matrices A do satisfy the RIP with
high probability:

Theorem 10.5.11 (Random matrices satisfy RIP) Consider an m × n matrix A whose
rows Ai of A are independent, isotropic, and sub-gaussian random vectors, and let K :=
maxi ‖Ai‖ψ2 . Assume that

m ≥ C K 4s log(en/s).
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Then, with probability at least 1 − 2 exp(−cm/K 4), the random matrix A satisfies the RIP
with parameters α = 0.9

√
m, β = 1.1

√
m, and s.

Proof By Exercise 10.5.9 it is enough to control the singular values of all m × s sub-
matrices AI . We will do this by using the two-sided bound from Theorem 4.6.1 and then
taking the union bound over all sub-matrices.

Let us fix I . Theorem 4.6.1 yields
√

m − r ≤ sn(AI ) ≤ s1(AI ) ≤ √
m + r

with probability at least 1 − 2 exp(−t2), where r = C0K 2(
√

s + t). If we set t =√
m/(20C0K 2) and use the assumption on m with appropriately large constant C , we can

ensure that r ≤ 0.1
√

m. This yields

0.9
√

m ≤ sn(AI ) ≤ s1(AI ) ≤ 1.1
√

m (10.18)

with probability at least 1 − 2 exp(−2cm2/K 4), where c > 0 is an absolute constant.
It remains to take a union bound over all s-element subsets I ⊂ [n]; there are

(n
s

)
of them.

We conclude that (10.18) holds with probability at least

1 − 2 exp(−2cm2/K 4)

(
n

s

)
> 1 − 2 exp(−cm2/K 4).

For the last inequality, recall that
(n

s

) ≤ exp(s log(en/s)) by (0.0.5) and use the assumption
on m. The proof is complete. �

The results we have just proved give us another approach to exact recovery with a random
matrix A, Theorem 10.5.1.

Second proof of Theorem 10.5.1 By Theorem 10.5.11, A satisfies the RIP with α =
0.9

√
m, β = 1.1

√
m, and 3s. Thus, Theorem 10.5.10 for λ = 2 guarantees exact recov-

ery. We conclude that Theorem 10.5.1 holds, and we even get the logarithmic improvement
noted in Exercise 10.5.4. �

An advantage of the RIP is it is often simpler to verify this property than to prove exact
recovery directly. Let us give one example.

Exercise 10.5.12 (RIP for random projections)��� Let P be the orthogonal projection
in R

n onto an m-dimensional random subspace uniformly distributed in the Grassmannian
Gn,m .

(a) Prove that P satisfies the RIP with parameters that are similar to Theorem 10.5.11, up
to a normalization.

(b) Conclude a version of Theorem 10.5.1 for exact recovery from random projections.

10.6 Lasso Algorithm for Sparse Regression

In this section we analyze an alternative method for sparse recovery. The operator in this
method was originally developed in statistics for the equivalent problem of sparse linear
regression, and it is called the Lasso (“least absolute shrinkage and selection operator”).
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10.6.1 Statistical Formulation

Let us recall the classical linear regression problem which we described in Example 10.1.2.
It is

Y = Xβ + w, (10.19)

where X is a known m × n matrix that contains a sample of predictor variables, Y ∈ R
m

is a known vector that contains a sample of the values of the response variable, β ∈ R
n is

an unknown coefficient vector that specifies the relationship between predictor and response
variables, and w is a noise vector. We would like to recover β.

If we do not assume anything else, the regression problem can be solved by the method
of ordinary least squares, which minimizes the �2 norm of the error over all candidates
for β:

minimize ‖Y − Xβ ′‖2 s.t. β ′ ∈ R
n. (10.20)

Now let us make the extra assumption that β ′ is sparse, so that the response variable
depends on only a few of the n predictor variables (e.g., the cancer depends on only a few
genes). So, as in (10.5), we assume that

‖β‖0 ≤ s

for some s � n. As we argued in Section 10.3, the �0 norm is not convex, and its convex
proxy is the �1 norm. This prompts us to modify the ordinary least squares program (10.20)
by including a restriction on the �1 norm which promotes sparsity in the solution:

minimize ‖Y − Xβ ′‖2 s.t. ‖β ′‖1 ≤ R, (10.21)

where R is a parameter which specifies the desired sparsity level of the solution. The pro-
gram (10.21) is one formulation of Lasso, the most popular statistical method for sparse
linear regression. It is a convex program, and therefore is computationally tractable.

10.6.2 Mathematical Formulation and Guarantees

It would be convenient to return to the notation we used for sparse recovery instead of using
the statistical notation of the previous section. So let us restate the linear regression problem
(10.19) as

y = Ax + w

where A is a known m × n matrix, y ∈ R
m is a known vector, x ∈ R

n is an unknown vector
that we are trying to recover, and w ∈ R

m is the noise, which is either fixed or random and
is independent of A. Then the Lasso program (10.21) becomes

minimize ‖y − Ax ′‖2 s.t. ‖x ′‖1 ≤ R. (10.22)

We prove the following guarantee of the performance of Lasso.

Theorem 10.6.1 (Performance of Lasso) Suppose that the rows Ai of A are independent,
isotropic, and sub-gaussian random vectors, and let K := maxi ‖Ai‖ψ2 . Then the event
below happens with probability at least 1 − 2 exp(−s log n).
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Assume that an unknown signal x ∈ R
n is s-sparse and the number of measurements m

satisfies

m ≥ C K 4s log n. (10.23)

Then a solution x̂ of the program (10.22) with R := ‖x‖1 is accurate, namely

‖x̂ − x‖2 ≤ Cσ

√
s log n

m
,

where σ = ‖w‖2/
√

m.

Remark 10.6.2 (Noise) The quantity σ 2 is the average squared noise per measurement,
since

σ 2 = ‖w‖2
2

m
= 1

m

m∑
i=1

w2
i .

Then, if the number of measurements is

m ∼ s log n,

Theorem 10.6.1 bounds the recovery error by the average noise per measurement σ . And if
m is larger then the recovery error gets smaller.

Remark 10.6.3 (Exact recovery) In the noiseless model y = Ax we have w = 0 and thus
Lasso recovers x exactly, i.e.

x̂ = x .

The proof of Theorem 10.6.1 will be similar to our proof of Theorem 10.5.1 on exact
recovery, although instead of the escape theorem we use the matrix deviation inequality
(Theorem 9.1.1) directly this time.

We would like to bound the norm of the error vector

h := x̂ − x .

Exercise 10.6.4�� Check that h satisfies the conclusions of Lemmas 10.5.2 and 10.5.3,
so that we have

‖h‖1 ≤ 2
√

s‖h‖2. (10.24)

�

In the case where the noise w is nonzero, we cannot expect to have Ah = 0 as in
Theorem 10.5.1. (Why?) Instead, we can give upper and lower bounds for ‖Ah‖2.

Lemma 10.6.5 (Upper bound on ‖Ah‖2) We have

‖Ah‖2
2 ≤ 2

〈
h, ATw

〉
. (10.25)
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Proof Since x̂ is the minimizer of the Lasso program (10.22), we have

‖y − Ax̂‖2 ≤ ‖y − Ax‖2.

Let us express both sides of this inequality in terms of h and w, using y = Ax + w and
h = x̂ − x :

y − Ax̂ = Ax + w − Ax̂ = w − Ah,

y − Ax = w.

So, we have

‖w − Ah‖2 ≤ ‖w‖2.

Square both sides:

‖w‖2
2 − 2 〈w, Ah〉 + ‖Ah‖2

2 ≤ ‖w‖2
2.

Simplifying this bound completes the proof. �

Lemma 10.6.6 (Lower bound on ‖Ah‖2) With probability that is at least
1 − 2 exp(−4s log n), we have

‖Ah‖2
2 ≥ m

4
‖h‖2

2.

Proof By (10.24), the normalized error h/‖h‖2 lies in the set

Ts :=
{

z ∈ Sn−1 : ‖z‖1 ≤ 2
√

s
}
.

Use the matrix deviation inequality in its high-probability form (Exercise 9.1.8) with u =
2
√

s log n. It yields that, with probability at least 1 − 2 exp(−4s log n),

sup
z∈Ts

∣∣∣‖Az‖2 −√
m
∣∣∣ ≤ C1K 2

(
w(Ts)+ 2

√
s log n

)
≤ C2K 2

√
s log n (recalling (10.15))

≤
√

m

2
(by the assumption on m).

To obtain the last line, choose the absolute constant C in (10.23) large enough. By the
triangle inequality this implies that

‖Az‖2 ≥
√

m

2
for all z ∈ Ts .

Substituting z := h/‖h‖2, we complete the proof. �

The last piece of information that we need to prove Theorem 10.6.1 is an upper bound on
the right-hand side of (10.25).

Lemma 10.6.7 With probability at least 1 − 2 exp(−4s log n), we have〈
h, ATw

〉 ≤ C K‖h‖2‖w‖2
√

s log n. (10.26)
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Proof As in the proof of Lemma 10.6.6, the normalized error satisfies

z = h

‖h‖2
∈ Ts .

So, dividing both sides of (10.26) by ‖h‖2, we see that it is enough to bound the supremum
random process

sup
z∈Ts

〈
z, ATw

〉
with high probability. We will use Talagrand’s comparison inequality (Corollary 8.6.3). This
result applies for random processes that have sub-gaussian increments, so let us check this
latter condition first.

Exercise 10.6.8�� Show that the random process

Xt := 〈
t, ATw

〉
, t ∈ R

n,

has sub-gaussian increments and that

‖Xt − Xs‖ψ2 ≤ C K‖w‖2 ‖t − s‖2. �

Now we can use Talagrand’s comparison inequality in its high-probability form (Exer-
cise 8.6.5) for u = 2

√
s log n. We obtain that, with probability at least 1− 2 exp(−4s log n),

sup
z∈Ts

〈
z, ATw

〉 ≤ C1K‖w‖2

(
w(Ts)+ 2

√
s log n

)
≤ C2K‖w‖2

√
s log n (recalling (10.15)).

This completes the proof of Lemma 10.26. �

Proof of Theorem 10.6.1 Put together the bounds in Lemmas 10.6.5 and 10.6.6 and in
(10.26). By the union bound, we have that, with probability at least 1 − 4 exp(−4s log n),

m

4
‖h‖2

2 ≤ C K‖h‖2‖w‖2
√

s log n.

Solving for ‖h‖2, we obtain

‖h‖2 ≤ C K
‖w‖2√

m

√
s log n

m
.

This completes the proof of Theorem 10.6.1. �

Exercise 10.6.9 (Improving the logarithmic factor)� Show that Theorem 10.6.1 holds if
log n is replaced by log(en/s), thus giving a stronger guarantee. �

Exercise 10.6.10�� Deduce the exact recovery guarantee (Theorem 10.5.1) directly
from the Lasso guarantee (Theorem 10.6.1). The resulting probability could be a bit weaker.

Another popular form of the Lasso program (10.22) is the following unconstrained
version:

minimize ‖y − Ax ′‖2 + λ‖x ′‖1. (10.27)
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This is a convex optimization problem too. Here λ is a parameter which can be adjusted
depending on the desired level of sparsity. The method of Lagrange multipliers shows that
the constrained and unconstrained versions of Lasso are equivalent for appropriate R and λ.
This, however, does not immediately tell us how to choose λ. The following exercise settles
this question.

Exercise 10.6.11 (Unconstrained Lasso)���� Assume that the number of measure-
ments satisfies

m � s log n.

Choose the parameter λ such that λ �
√

log n ‖w‖2. Then, with high probability, show that
the solution x̂ of the unconstrained Lasso (10.27) satisfies

‖x̂ − x‖2 � λ
√

s

m
.

10.7 Notes

The applications discussed in this chapter are drawn from two fields: signal processing
(specifically, compressed sensing) and high-dimensional statistics (more precisely, high-
dimensional structured regression). The tutorial [217] offers a unified treatment of these
two kinds of problem, which we followed in this chapter. The survey [55] and the book [76]
offer a deeper introduction to compressed sensing. The books [98, 41] discuss statistical
aspects of sparse recovery.

Signal recovery using the M∗ bound discussed in Section 10.2 is based on [217], which
has various versions of Theorem 10.2.1 and Corollary 10.3.4. The Garnaev–Gluskin bound
from Exercise 10.3.10 was first proved in [78]; see also [132] and [76, Chapter 10].

The survey [57] offers a comprehensive overview of the low-rank matrix recovery
problem, which we discussed in Section 10.4. Our presentation was based on [217,
Section 10].

The phenomenon of exact sparse recovery discussed in Section 10.5 goes back to the
origins of compressed sensing; see [55] and the book [76] for its history and recent devel-
opments. Our presentation of exact recovery via the escape theorem in Section 10.5.1
partly follows [217, Section 9]; see also [51, 183] and especially [202] for applications
of the escape theorem to sparse recovery. One can obtain very precise guarantees that give
asymptotically sharp formulas (so-called phase transitions) for the number of measurements
needed for signal recovery. The first such phase transitions were identified in [66] for sparse
signals and uniform random projection matrices A; see also [65, 62–64]. More recent work
has clarified phase transitions for general feasible sets T and more general measurement
matrices [9, 158, 159].

The approach to exact sparse recovery based on the RIP presented in Section 10.5.2
was pioneered by E. Candes and T. Tao [45]; see [76, Chapter 6] for a comprehensive
introduction. An early form of Theorem 10.5.10 appeared in [45]. The proof that we gave
here was communicated to the author by Y. Plan; it is similar to the argument of [43]. The
fact that random matrices satisfy the RIP (exemplified by Theorem 10.5.11) is a backbone
of compressed sensing; see [76, Sections 9.1, 12.5] and [216, Section 5.6].
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The Lasso algorithm for sparse regression that we studied in Section 10.6 was pioneered
by R. Tibshirani [198]. The books [98, 41] offer a comprehensive introduction into statistical
problems with sparsity constraints; these books discuss Lasso and its many variants. A ver-
sion of Theorem 10.6.1 and some elements of its proof can be traced to the work of P. Bickel,
Y. Ritov, and A. Tsybakov [21], although their argument was not based on the matrix devia-
tion inequality. A theoretical analysis of Lasso is also presented in [98, Chapter 11] and [41,
Chapter 6].
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Dvoretzky–Milman Theorem

Here we extend the matrix deviation inequality from Chapter 9 to general norms on R
n ,

and even to general sub-additive functions on R
n . We use this result to prove the funda-

mental Dvoretzky–Milman theorem in high-dimensional geometry. It helps us to describe
the shape of an m-dimensional random projection of an arbitrary set T ⊂ R

n . The answer
depends on whether k is larger or smaller than the critical dimension, which is the sta-
ble dimension d(T ). In the high-dimensional regime (where m � d(T )), the additive
Johnson–Lindenstrauss lemma, which we studied in Section 9.3.2, shows that such a ran-
dom projection approximately preserves the geometry of T . In the low-dimensional regime
(where m � d(T )), the geometry can no longer be preserved owing to “saturation”. Instead,
the Dvoretzky–Milman theorem shows that in this regime the projected set is approximately
a round ball.

11.1 Deviations of Random Matrices with respect to General Norms

In this section we generalize the matrix deviation inequality from Section 9.1. We replace
the Euclidean norm by any positive-homogeneous subadditive function.

Definition 11.1.1 Let V be a vector space. A function f : V → R is called positive-
homogeneous if

f (αx) = α f (x) for all α ≥ 0 and x ∈ V .

The function f is called subadditive if

f (x + y) ≤ f (x)+ f (y) for all x, y ∈ V .

Note that despite being called positive-homogeneous, f is allowed to take negative values.
(“Positive” here applies to the multiplier α in the definition.)

Example 11.1.2

(i) Any norm on a vector space is positive-homogeneous and subadditive. The subadditiv-
ity is nothing other than the triangle inequality in this case.

(ii) Clearly, any linear functional on a vector space is positive-homogeneous and subad-
ditive. In particular, for any fixed vector y ∈ R

m , the function f (x) = 〈x, y〉 is
positive-homogeneous and subadditive on R

m .

254
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(iii) Consider a bounded set S ⊂ R
m and define the function

f (x) := sup
y∈S

〈x, y〉 , x ∈ R
m . (11.1)

Then f is positive-homogeneous and subadditive on R
m . This function is sometimes

called the support function of S.

Exercise 11.1.3� Check that the function f (x) in part (iii) of Example 11.1.2 is positive-
homogeneous and subadditive.

Exercise 11.1.4� Let f : V → R be a subadditive function on a vector space V . Show
that

f (x)− f (y) ≤ f (x − y) for all x, y ∈ V . (11.2)

We are ready to state the main result of this section.

Theorem 11.1.5 (General matrix deviation inequality) Let A be an m × n Gaussian ran-
dom matrix with i.i.d. N (0, 1) entries. Let f : R

m → R be a positive-homogeneous and
subadditive function, and let b ∈ R be such that

f (x) ≤ b‖x‖2 for all x ∈ R
n. (11.3)

Then, for any subset T ⊂ R
n, we have

E sup
x∈T

∣∣∣ f (Ax)− E f (Ax)
∣∣∣ ≤ Cbγ (T ).

Here γ (T ) is the Gaussian complexity introduced in Section 7.6.2.

This theorem generalizes the form of the matrix deviation inequality given in Exer-
cise 9.1.2.

Exactly as in Section 9.1, Theorem 11.1.5 would follow from Talagrand’s comparison
inequality once we show that the random process Xx := f (Ax)−E f (Ax) has sub-gaussian
increments. Let us do this now.

Theorem 11.1.6 (Sub-gaussian increments) Let A be an m × n Gaussian random matrix
with i.i.d. N (0, 1) entries, and let f : R

m → R be a positive-homogeneous and subadditive
function satisfying (11.3). Then the random process

Xx := f (Ax)− E f (Ax)

has sub-gaussian increments with respect to the Euclidean norm, namely

‖Xx − X y‖ψ2 ≤ Cb‖x − y‖2 for all x, y ∈ R
n. (11.4)

Exercise 11.1.7� Deduce the general matrix deviation inequality (Theorem 11.1.5) from
Talagrand’s comparison inequality (in the form of Exercise 8.6.4) and Theorem 11.1.6.
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Figure 11.1 Creating a pair of orthogonal vectors u, v out of x, y.

Proof of Theorem 11.1.6 Without loss of generality we may assume that b = 1. (Why?)
Just as in the proof of Theorem 9.1.3, let us first assume that

‖x‖2 = ‖y‖2 = 1.

In this case, the inequality in (11.4) that we want to prove becomes

‖ f (Ax)− f (Ay)‖ψ2 ≤ C‖x − y‖2. (11.5)

Step 1. Creating independence. Consider the vectors

u := x + y

2
, v := x − y

2
(11.6)

Then

x = u + v, y = u − v

and thus

Ax = Au + Av, Ay = Au − Av.

(See Figure 11.1.)
Since the vectors u and v are orthogonal (check!), the Gaussian random vectors Au and

Av are independent. (Recall Exercise 3.3.6.)
Step 2. Using Gaussian concentration. Let us condition on a := Au and study the

conditional distribution of

f (Ax) = f (a + Av).

By rotation invariance a + Av is a Gaussian random vector, which we can express as

a + Av = a + ‖v‖2 g where g ∼ N (0, Im).

(Recall Exercise 3.3.3.) We claim that f (a + ‖v‖2 g) as a function of g is Lipschitz with
respect to the Euclidean norm on R

m , and so

‖ f ‖Lip ≤ ‖v‖2. (11.7)

To check this, fix t, s ∈ R
m and note that

f (t)− f (s) = f (a + ‖v‖2 t)− f (a + ‖v‖2 s)

≤ f (‖v‖2 t − ‖v‖2 s) (by (11.2))

= ‖v‖2 f (t − s) (by positive-homogeneity)

≤ ‖v‖2 ‖t − s‖2 (using (11.3) with b = 1);
then (11.7) follows.
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Concentration in the Gauss space (Theorem 5.2.2) then yields

‖ f (g)− E f (g)‖ψ2(a) ≤ C‖v‖2

or ∥∥ f (a + Av)− Ea f (a + Av)
∥∥
ψ2(a)

≤ C‖v‖2, (11.8)

where the index “a” reminds us that these bounds are valid for a conditional distribution
with a = Au fixed.

Step 3. Removing the conditioning. Since the random vector a − Av has the same
distribution as a + Av (why?), it satisfies the same bound.∥∥ f (a − Av)− Ea f (a − Av)

∥∥
ψ2(a)

≤ C‖v‖2. (11.9)

Subtract (11.9) from (11.8) and use the triangle inequality and the fact that the expectations
are the same; this gives∥∥ f (a + Av)− f (a − Av)

∥∥
ψ2(a)

≤ 2C‖v‖2.

This bound is for the conditional distribution, and it holds for any fixed realization of a
random variable a = Au. Therefore, it holds for the original distribution, too:∥∥ f (Au + Av)− f (Au − Av)

∥∥
ψ2

≤ 2C‖v‖2.

(Why?) Passing back to the x, y notation by means of (11.6), we obtain the desired inequality
(11.5).

The proof is complete for the unit vectors x , y; Exercise 11.1.8 below extends it to the
general case. �

Exercise 11.1.8 (Non-unit x , y)� Extend the proof above to general (not necessarily unit)
vectors x , y. �

Remark 11.1.9 It is an open question whether Theorem 11.1.5 holds for general sub-
gaussian matrices A.

Exercise 11.1.10 (Anisotropic distributions)�� Extend Theorem 11.1.5 to m×n matrices
A whose columns are independent N (0, �) random vectors, where� is a general covariance
matrix. Show that

E sup
x∈T

∣∣∣ f (Ax)− E f (Ax)
∣∣∣ ≤ Cbγ (�1/2T ).

Exercise 11.1.11 (Tail bounds)�� Prove a high-probability version of Theo-
rem 11.1.5. �

11.2 Johnson–Lindenstrauss Embeddings and Sharper Chevet Inequality

Like the original matrix deviation inequality from Chapter 9, the general theorem 9.1.1 has
many consequences, which we now discuss.
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11.2.1 Johnson–Lindenstrauss Lemma for General Norms

Using the general matrix deviation inequality as in Section 9.3, it should be quite
straightforward to do the following exercises.

Exercise 11.2.1�� State and prove a version of the Johnson–Lindenstrauss lemma for a
general norm (as opposed to the Euclidean norm) on R

m .

Exercise 11.2.2 (Johnson–Lindenstrauss lemma for �1 norm)�� Specialize the previous
exercise to the �1 and �∞ norms. Thus, let X be a set of N points in R

n , let A be an m × n
Gaussian matrix with i.i.d. N (0, 1) entries, and let ε ∈ (0, 1).

Suppose that

m ≥ C(ε) log N .

Show that with high probability the matrix Q := √
π/2 m−1 A satisfies

(1 − ε)‖x − y‖2 ≤ ‖Qx − Qy‖1 ≤ (1 + ε)‖x − y‖2 for all x, y ∈ X .
This conclusion is very similar to that of the original Johnson–Lindenstrauss lemma (The-
orem 5.3.1), except that the distance between the projected points is measured in the �1

norm.

Exercise 11.2.3 (Johnson–Lindenstrauss embedding into �∞)�� Use the same notation
as in the previous exercise, but assume this time that

m ≥ N C(ε).

Show that with high probability the matrix Q := (log m)−1/2 A satisfies

(1 − ε)‖x − y‖2 ≤ ‖Qx − Qy‖∞ ≤ (1 + ε)‖x − y‖2 for all x, y ∈ X .
Note that in this case m ≥ N , so Q gives an almost isometric embedding (rather than a
projection) of the set X into �∞.

11.2.2 Two-Sided Chevet Inequality

The general matrix deviation inequality will help us to sharpen Chevet’s inequality, which
we originally proved in Section 8.7.

Theorem 11.2.4 (General Chevet inequality) Let A be an m × n Gaussian random matrix
with i.i.d. N (0, 1) entries. Let T ⊂ R

n and S ⊂ R
m be arbitrary bounded sets. Then

E sup
x∈T

∣∣∣ sup
y∈S

〈Ax, y〉 − w(S)‖x‖2

∣∣∣ ≤ Cγ (T ) rad(S).

Using the triangle inequality we can see that Theorem 11.2.4 is a sharper, two-sided, form
of Chevet’s inequality (Theorem 8.7.1).

Proof Let us apply the general matrix deviation inequality (Theorem 11.1.5) for the
function f defined in (11.1), i.e., for
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f (x) := sup
y∈S

〈x, y〉 .

To do this, we need to compute the b value for which (11.3) holds. Fix x ∈ R
m and use the

Cauchy–Schwarz inequality to get

f (x) ≤ sup
y∈S

‖x‖2‖y‖2 = rad(S)‖x‖2.

Thus (11.3) holds with b = rad(S).
It remains to compute the expectation E f (Ax) appearing in the conclusion of Theo-

rem 11.1.5. By the rotation invariance of the Gaussian distribution (see Exercise 3.3.3), the
random vector Ax has the same distribution as g‖x‖2, where g ∈ N (0, Im). Then

E f (Ax) = E f (g) ‖x‖2 (by positive-homogeneity)

= E sup
y∈S

〈g, y〉 ‖x‖2 (by the definition of f )

= w(S)‖x‖2 (by the definition of the Gaussian width).

Substituting this into the conclusion of Theorem 11.1.5, we complete the proof. �

11.3 Dvoretzky–Milman Theorem

The Dvoretzky–Milman theorem is a remarkable result about the random projections of
general bounded sets in R

n . If the projection is onto a suitably low dimension, the convex
hull of the projected set turns out to be approximately a round ball with high probability;
see Figures 11.2 and 11.3.

11.3.1 Gaussian Images of Sets

It will be more convenient for us to work with Gaussian random projections than with ordi-
nary projections. Here is a very general result that compares the Gaussian projection of a
general set to a Euclidean ball.

Theorem 11.3.1 (Random projections of sets) Let A be an m×n Gaussian random matrix
with i.i.d. N (0, 1) entries, and let T ⊂ R

n be a bounded set. Then the following holds with
probability at least 0.99:

r−Bm
2 ⊂ conv(AT ) ⊂ r+Bm

2

where1

r± := w(T )± C
√

m rad(T ).

The left-hand inclusion holds only if r− is non-negative; the right-hand inclusion holds
always.

We will shortly deduce this theorem from the two-sided Chevet inequality. The following
exercise will provide the link between the two results. It asks you to show that the support

1 As before, rad(T ) denotes the radius of T , which we defined in (8.47).
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function (11.1) of a general set S is the �2 norm if and only if S is the Euclidean ball; there
is also a stability version of this equivalence.

Exercise 11.3.2 (Almost Euclidean balls and support functions)���

(a) Let V ⊂ R
m be a bounded set. Show that V = Bm

2 if and only if

sup
x∈V

〈x, y〉 = ‖y‖2 for all y ∈ R
m .

(b) Let V ⊂ R
m be a bounded set and r−, r+ ≥ 0. Show that the inclusion

r−Bm
2 ⊂ conv(V ) ⊂ r+Bm

2

holds if and only if

r−‖y‖2 ≤ sup
x∈V

〈x, y〉 ≤ r+‖y‖2 for all y ∈ R
m .

Proof of Theorem 11.3.1 Let us write the two-sided Chevet inequality in the following
form:

E sup
y∈S

∣∣∣ sup
x∈T

〈Ax, y〉 − w(T )‖y‖2

∣∣∣ ≤ Cγ (S) rad(T ),

where T ⊂ R
n and S ⊂ R

m . (To obtain this form use Theorem 11.2.4 with T and S swapped
and for AT instead of A – do this!)

Choose S to be the sphere Sm−1 and recall that its Gaussian complexity γ (S) ≤ √
m.

Then, by Markov’s inequality, the following holds with probability at least 0.99:∣∣∣ sup
x∈T

〈Ax, y〉 − w(T )‖y‖2

∣∣∣ ≤ C
√

m rad(T ) for every y ∈ Sm−1.

Use the triangle inequality and recall the definition of r± to get

r− ≤ sup
x∈T

〈Ax, y〉 ≤ r+ for every y ∈ Sm−1.

By homogeneity, this is equivalent to

r−‖y‖2 ≤ sup
x∈T

〈Ax, y〉 ≤ r+‖y‖2 for every y ∈ R
m .

(Why?) Finally, note that

sup
x∈T

〈Ax, y〉 = sup
x∈AT

〈x, y〉

and apply Exercise 11.3.2 for V = AT to complete the proof. �

11.3.2 Dvoretzky–Milman Theorem

Theorem 11.3.3 (Dvoretzky–Milman theorem: Gaussian form) Let A be an m × n Gaus-
sian random matrix with i.i.d. N (0, 1) entries, let T ⊂ R

n be a bounded set, and let
ε ∈ (0, 1). Suppose that

m ≤ cε2d(T ),
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where d(T ) is the stable dimension of T introduced in Section 7.6. Then, with probability at
least 0.99, we have

(1 − ε)B ⊂ conv(AT ) ⊂ (1 + ε)B,

where B is a Euclidean ball with radius w(T ).

Proof Translating T as necessary, we can assume that T contains the origin. Apply The-
orem 11.3.1. All that remains to check is that r− ≥ (1 − ε)w(T ) and r+ ≤ (1 + ε)w(T ),
which by definition would follow if

C
√

m rad(T ) ≤ εw(T ). (11.10)

To check this inequality, recall that by assumption and by Definition 7.6.2 we have

m ≤ cε2d(T ) ≤ ε2w(T )2

diam(T )2
,

provided that the absolute constant c > 0 is chosen sufficiently small. Next, since T contains
the origin, rad(T ) ≤ diam(T ). (Why?) This implies (11.10) and completes the proof. �

Remark 11.3.4 As is obvious from the above proof, if T contains the origin then the
Euclidean ball B can be centered at the origin too. Otherwise the center of B could be
chosen as T x0, where x0 ∈ T is any fixed point.

Exercise 11.3.5�� State and prove a high-probability version of the Dvoretzky–Milman
theorem.

Example 11.3.6 (Projections of the cube) Consider the cube

T = [−1, 1]n = Bn∞.

Recall that

w(T ) =
√

2

π
n

and recall (7.17). Since diam(T ) = 2
√

n, the stable dimension of the cube is

d(T ) ∼ w(T )2

diam(T )2
∼ n.

Apply Theorem 11.3.3. If m ≤ cε2n then with high probability we have

(1 − ε)B ⊂ conv(AT ) ⊂ (1 + ε)B,

where B is a Euclidean ball with radius
√

2/π n.
In words, a random Gaussian projection of the cube onto a subspace of dimension m ∼ n

is close to a round ball. Figure 11.2 illustrates this remarkable fact.
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Figure 11.2 A random projection of a seven-dimensional cube onto the plane.

Figure 11.3 A Gaussian cloud of 107 points on the plane, and its convex hull.

Exercise 11.3.7 (Gaussian cloud)�� Consider a Gaussian cloud of n points in R
m , which

is formed by i.i.d. random vectors g1, . . . , gn ∼ N (0, Im). Suppose that

n ≥ exp(Cm)

with a large enough absolute constant C . Show that, with high probability, the convex hull of
the Gaussian cloud is approximately a Euclidean ball with radius ∼ log n. See Figure 11.3
for illustration. �

Exercise 11.3.8 (Projections of ellipsoids)��� Consider the ellipsoid E in R
n given as

a linear image of the unit Euclidean ball, i.e.,

E = S(Bn
2 ),
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where S is an n × n matrix. Let A be the m × n Gaussian matrix with i.i.d. N (0, 1) entries.
Suppose that

m � r(S),

where r(S) is the stable rank of S (recall Definition 7.6.7). Show that with high probability
the Gaussian projection A(E) of the ellipsoid is almost a round ball with radius ‖S‖F :

A(E) ≈ ‖S‖F Bn
2 . �

Exercise 11.3.9 (Random projection in the Grassmannian)��� Prove a version of the
Dvoretzky–Milman theorem for a projection P onto a random m-dimensional subspace in
R

n . Under the same assumptions, the conclusion should be that

(1 − ε)B ⊂ conv(AT ) ⊂ (1 + ε)B

where B is a Euclidean ball with radius ws(T ). (Recall that ws(T ) is the spherical width of
T , which we introduced in Section 7.5.2.)

Summary of Random Projections of Geometric Sets

It is useful to compare the Dvoretzky–Milman theorem with our earlier estimates on the
diameter of random projections of geometric sets, which we developed in Sections 7.7 and
9.2.2. We found that a random projection P of a set T onto an m-dimensional subspace
in R

n satisfies a phase transition. In the high-dimensional regime (where m � d(T )), the
projection shrinks the diameter of T by a factor of order

√
m/n, i.e.,

diam(PT ) �
√

m

n
if m ≥ d(T ).

Moreover, the additive Johnson–Lindenstrauss lemma from Section 9.3.2 shows that, in this
regime, the random projection P approximately preserves the geometry of T (the distances
between all points in T shrink roughly by the same scaling factor).

In the low-dimensional regime (where m � d(T )), surprisingly, the size of the projected
set stops shrinking. All we can say is that

diam(PT ) � ws(T ) ∼ w(T )√
n

if m ≤ d(T );

see Section 7.7.1.
The Dvoretzky–Milman theorem explains why the size of T stops shrinking for m �

d(T ). Indeed, in this regime the projection PT is approximately a round ball of radius of
order ws(T ) (see Exercise 11.3.9), regardless of how small m is.

Let us summarize our findings. A random projection of a set T in R
n onto an m-

dimensional subspace approximately preserves the geometry of T if m � d(T ). For smaller
m, the projected set PT becomes approximately a round ball of diameter ∼ ws(T ) and its
size does not shrink with m.
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11.4 Notes

The general matrix deviation inequality (Theorem 11.1.5) and its proof is due to G. Schecht-
man [177].

The original version of Chevet’s inequality was proved by S. Chevet [53] and the constant
factors there were improved by Y. Gordon [82]; see also [11, Section 9.4], [126, Theo-
rem 3.20], and [199, 2]. The version of Chevet’s inequality that we stated in Theorem 11.2.4
can be reconstructed from the work of Y. Gordon [82, 84]; see [126, Corollary 3.21].

The Dvoretzky–Milman theorem is a result with a long history in functional analy-
sis. In proving a conjecture of A. Grothendieck, A. Dvoretzky [71, 72] also proved that
any n-dimensional normed space has an m-dimensional almost Euclidean subspace, where
m = m(n) grows to infinity with n. V. Milman gave a probabilistic proof of this theorem and
pioneered the study of the best possible dependence m(n). Theorem 11.3.3 is due to V. Mil-
man [144]. The stable dimension d(T ) is the critical dimension in the Dvoretzky–Milman
theorem, i.e., its conclusion always fails for m � d(T ) owing to a result of V. Milman and
G. Schechtman [147]; see [11, Theorem 5.3.3]. The tutorial [13] contains a light introduction
to the Dvoretzky–Milman theorem. For a full exposition of the Dvoretzky–Milman theorem
and many of its ramifications, see e.g. [11, Chapter 5 and Section 9.2], [126, Section 9.1],
and the references therein.

An important question related to the Dvoretzky–Milman and central limit theorems
regards the m-dimensional random projections (marginals) of a given probability distribu-
tion in R

n; we may wonder whether such marginals are approximately normal. This question
may be important in data science applications, where the “wrong” lower-dimensional ran-
dom projections of data sets in R

n form a “Gaussian cloud”. For log-concave probability
distributions, a type of central limit theorem was first proved by B. Klartag [112]; see the
history and more recent results in [11, Section 10.7]. For discrete sets, see E. Meckes [138]
and the references there.

The phenomenon discussed in the summary at the end of Section 7.7 is due to V. Milman
[145]; see [11, Proposition 5.7.1].



Hints for Exercises

Appetizer

0.0.5 To prove the upper bound, multiply both sides by the quantity (m/n)m , replace this
quantity by (m/n)k on the left-hand side, and use the binomial theorem.

0.0.6 The number of ways to choose k elements from an N -element set with repetitions
is
(N+k−1

k

)
. Simplify using Exercise 0.0.5.

Chapter 1

1.2.3 Use the integral identity for |X |p and change variables.

Chapter 2

2.4.1 Integrate by parts.
2.2.3 Compare the Taylor expansions of the two sides.
2.2.8 Apply Hoeffding’s inequality for the case when the Xi are the indicators of the

wrong answers.
2.2.9(a) Use the sample mean μ̂ := 1

N

∑N
i=1 Xi .

2.2.9(b) Use the median of the O(log(δ−1)) weak estimates from part (a).
2.2.10 Rewrite the inequality

∑
Xi ≤ εN as

∑
(−Xi/ε) ≥ −N and proceed as in the

proof of Hoeffding’s inequality. Use part (a) to bound the MGF.
2.3.3 Combine Chernoff’s inequality with the Poisson limit theorem (Theorem 1.3.4).
2.3.5 Apply Theorem 2.3.1 and Exercise 2.3.2 for t = (1 ± δ)μ and analyze the bounds

for small δ.
2.3.6 Combine Exercise 2.3.5 with the Poisson limit theorem (Theorem 1.3.4).
2.3.8 Derive this from the central limit theorem. Use the fact that the sum of independent

Poisson distributions is a Poisson distribution.
2.4.2 Modify the proof of Proposition 2.4.1.
2.4.4 The principal difficulty is that the degrees di are not independent. To fix this, try to

replace di by some d ′
i that are independent. (Try to include not all the vertices in

the counting.) Then use the Poisson approximation (2.9).
2.6.6 Use the following extrapolation trick. Prove the inequality ‖Z‖2 ≤ ‖Z‖1/4

1 ‖Z‖3/4
3

and use it for Z =∑
ai Xi . Get a bound on ‖Z‖3 from Khintchine’s inequality for

p = 3.
2.6.7 Modify the extrapolation trick in Exercise 2.6.6.

265
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2.8.5 Check that the numeric inequality

ez ≤ 1 + z + z2/2

1 − |z|/3
is valid provided that |z| < 3, apply it for z = λX , and take expectations on both
sides.

2.8.6 Follow the proof of Theorem 2.8.1.

Chapter 3

3.1.5 Use Exercise 3.1.4.
3.1.6 First check that E(‖X‖2

2−n)2 ≤ K 4n by expansion. This yields in a simple way that
E(‖X‖2−√

n)2 ≤ K 4. Finally, replace
√

n by E ‖X‖2 arguing as in Exercise 3.1.4.
3.1.7 While this inequality does not follow from the result of Exercise 2.2.10 (why?),

you can prove it by a similar argument.
3.3.4 Utilize a version of the Cramér–Wold theorem, which states that the totality of

the distributions of one-dimensional marginals determines the distribution in R
n

uniquely. More precisely, if X and Y are random vectors in R
n such that 〈X, θ〉

and 〈Y, θ〉 have the same distribution for each θ ∈ R
n then X and Y have the same

distribution.
3.3.6 Reduce the problem to the case where u and v are collinear with canonical basis

vectors of R
n .

3.3.9 Proceed similarly to the proof of Lemma 3.2.3.
3.5.3 Check and use the polarization identity 〈Ax, y〉 = 〈Au, u〉 − 〈Av, v〉 where u =

(x + y)/2 and v = (x − y)/2.
3.5.5 Consider the Gram matrix of the vectors Xi , which is the n × n matrix with entries〈

Xi , X j
〉
. Do not forget to describe how to translate a solution of (3.22) into a

solution of (3.21).
3.5.7 First, express the objective function as 1

2 tr( ÃZ ZT), where Ã = [ 0 A
AT 0

]
, Z = [

X
Y

]
,

and X and Y are the matrices with rows XT
i and Y T

j , respectively. Then express the

set of matrices of the type Z ZT with unit rows as the set of positive-semidefinite
matrices whose diagonal entries equal 1.

3.6.4 Consider cutting G repeatedly. Give a bound on the expected number of experi-
ments.

3.6.7 It will quickly follow once you show that the probability that 〈g, u〉 and 〈g, v〉 have
opposite signs equals α/π , where α ∈ [0, π] is the angle between the vectors u and
v. To check this, use rotation invariance to reduce the problem to R

2. Once on the
plane, a second use of rotation invariance will give the result.

3.7.5(a) Consider the direct sum H = R
n×n ⊕ R

n×n×n .
3.7.6 Construct � as in Exercise 3.7.5 but include the signs of ak in the definition of �.

Chapter 4

4.2.16 Adapt the volumetric argument by replacing volume by cardinality.
4.4.3(b) Proceed similarly to the proof of Lemma 4.4.1 and use the identity 〈Ax, y〉 −

〈Ax0, y0〉 = 〈Ax, y − y0〉 + 〈A(x − x0), y0〉.



Hints for Exercises 267

4.4.4 Assume without loss of generality that μ = 1. Represent ‖Ax‖2
2 − 1 as a quadratic

form 〈Rx, x〉 where R = AT A − In . Use Exercise 4.4.3 to compute the maximum
of this quadratic form on a net.

4.4.7 Bound the operator norm of A below by the Euclidean norm of the first column and
first row; use the concentration of the norm to complete the proof.

4.6.2 Use the integral identity from Lemma 1.2.1.

Chapter 5

5.1.9 If the conclusion in part (a) fails, the complement B := (As)
c satisfies σ(B) ≥ 1/2.

Apply the blow-up lemma 5.1.7 for B.
5.1.13 To prove the upper bound, assume that ‖Z − E Z‖ψ2 ≤ K and use the definition of

the median to show that |M − E Z | ≤ C K .
5.1.14 First replace the expectation by the median. Then apply the assumption for the

function f (x) := dist(x, A) = inf{d(x, y) : y ∈ A}, whose median is zero.
5.1.5 Construct the points xi ∈ Sn−1 one at a time. Note that the set of points on the sphere

that are almost orthogonal to a given point x0 form a spherical cap. Show that the
normalized area of that cap is exponentially small.

5.2.3 The ε-neighborhood of a half-space is still a half-space, and its Gaussian measure
should be easy to compute.

5.3.4 Let X be an orthogonal basis and show that the projected set defines a packing.
5.4.11 Check that the matrix form of Bernstein’s inequality implies that

∥∥∑N
i=1 Xi

∥∥ �∥∥∑N
i=1 E X2

i

∥∥1/2√log n + u+K (log n+u) with probability at least 1−2e−u . Then
use the integral identity from Lemma 1.2.1.

5.4.12 Proceed as in the proof of Theorem 5.4.1. Instead of Lemma 5.4.10, check that
E exp(λεi Ai ) ≤ exp(λ2 A2

i /2) just as in the proof of Hoeffding’s inequality,
Theorem 2.2.2.

5.4.15 Apply the matrix Bernstein inequality (Theorem 5.4.1) for the sum of (m + n) ×
(m + n) symmetric matrices

[
0 XT

i
Xi 0

]
.

5.6.7 Think about the coordinate distribution from Section 3.3.4; argue as in Exer-
cise 5.4.14.

5.6.8 Just as in the proof of Theorem 4.6.1, derive the conclusion from a bound on
m−1 AT A − In = m−1∑m

i=1 Ai AT
i − In . Use Theorem 5.6.1.

Chapter 6

6.2.5 Use the singular value decomposition for A and the rotation invariance of X ∼
N (0, In) to simplify and control the quadratic form XT AX .

6.2.6(a) Argue as in the proof of the comparison lemma 6.2.3.
6.2.6(b) Argue as in the proof of Lemma 6.2.2.
6.2.7 The quadratic form in question can be represented as XT AX , as before, but now

X is a d × n random matrix with columns Xi . Redo the computation for the MGF
when X is Gaussian (Lemma 6.2.2), using the comparison lemma 6.2.3.

6.3.5 Use the bound on the MGF proved in Exercise 6.2.6.
6.4.6 Use the result of Exercise 6.4.5 with F(x) = exp(λx) to bound the moment

generating function or with F(x) = exp(cx2).
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6.5.2 Apply Theorem 6.5.1 for the (m +n)× (m +n) symmetric random matrix
[

0 A
AT 0

]
.

6.6.2 Fix i and use Bernstein’s inequality (Corollary 2.8.3) to get a tail bound for∑n
j=1(δi j − p)2. Conclude by taking a union bound over i ∈ [n].

6.7.3 Use symmetrization, then the contraction principle (Theorem 6.7.1) conditioned on
(Xi ), and finish by applying symmetrization again.

6.7.7(b) To prove (6.17), condition on ε1, . . . , εn−1 and apply part (a).
6.7.8 Theorem 6.7.1 may help.

Chapter 7

7.1.9 Argue as in the proof of Lemma 6.4.2.
7.1.13 It might be simpler to think about increments ‖Xt − Xs‖2 instead of the covariance

matrix.
7.2.4 Represent X = σ Z for Z ∼ N (0, 1), and apply Gaussian integration by parts.
7.2.6 Represent X as �1/2 Z for Z ∼ N (0, In). Then

Xi =
n∑

k=1

(�1/2)ik Zk and E Xi f (X) =
n∑

k=1

(�1/2)ik E Zk f (�1/2 Z).

Apply univariate Gaussian integration by parts (Lemma 7.2.3) for E Zk f (�1/2 Z)
conditionally on all random variables except Zk ∼ N (0, 1), and simplify.

7.2.12 Differentiate f and check that

∂ f

∂xi
= eβxi∑

k eβxk
=: pi (x) and

∂2 f

∂xi∂x j
= β

(
δi j pi (x)− pi (x)p j (x)

)
,

where δi j is the Kronecker delta, which equals 1 if i = j and 0 otherwise. Next,
check the following numeric identity:

if
n∑

i=1

pi = 1 then
n∑

i, j=1

σi j (δi j pi − pi p j ) = 1

2

∑
i �= j

(σi i + σ j j − 2σi j )pi p j .

Use the Gaussian interpolation formula 7.2.7. Simplify the expression using the
identity above with σi j = �X

i j −�Y
i j and pi = pi (Z(u)). Deduce that

d

du
E f (Z(u)) = β

4

∑
i �= j

(
E(Xi − X j )

2 − E(Yi − Y j )
2
)

E pi (Z(u)) p j (Z(u)).

By the assumptions, this expression is non-positive.
7.2.13 Use the Sudakov–Fernique inequality.
7.2.14 Use the Gaussian interpolation lemma 7.2.7 for f (x) = ∏

i

(
1 − ∏

j h(xi j )
)
,

where h(x) is an approximation to the indicator function 1{x≤τ }, as in the proof
of Slepian’s inequality.

7.3.4 Relate the smallest singular value to the min–max of a Gaussian process:

sn(A) = min
u∈Sn−1

max
v∈Sm−1

〈Au, v〉 .

Apply Gordon’s inequality (without the requirement of equal variances, as noted
below Exercise 7.2.14) to show that
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E sn(A) ≥ E ‖h‖2 − E ‖g‖2 where g ∼ N (0, In), h ∼ N (0, Im).

Combine this with the fact that f (n) := E ‖g‖2 − √
n is increasing in dimension

n. (Take this fact for granted; it can be proved by a tedious calculation.)
7.4.5 Use Proposition 4.2.12 and Corollary 7.4.4 and optimize in ε.
7.5.3 Use the rotation invariance of the Gaussian distribution.
7.5.4 Use the Sudakov–Fernique comparison inequality.
7.5.10 Argue as in the proof of Corollary 7.4.4.
7.6.1 Use Gaussian concentration to prove the upper bound.
7.7.2(a) Use the singular value decomposition of P .
7.7.2(b) It is enough to check the rotation invariance of the distribution of QTz.
7.7.4 To obtain the bound E diam(PT ) � ws(T ), reduce P to a one-dimensional pro-

jection by dropping terms from the singular value decomposition of P . To obtain
the bound E diam(PT ) ≥ √

m/n diam(T ), base your argument on a pair of points
in T .

7.7.5 Express the operator norm of P A in terms of the diameter of the ellipsoid P(ABk
2 ),

and use Theorem 7.7.1 in part (a) and Exercise 7.7.3 in part (b).

Chapter 8

8.1.12(a) This should be straightforward from Exercise 2.5.10.
8.1.12(b) The first m vectors in T form a (1/

√
log m)-separated set.

8.2.6 Put a mesh on the square [0, 1]2 with step ε. Given f ∈ F , show that ‖ f −
f0‖∞ ≤ ε for some function f0 whose graph follows the mesh; see Figure 8.5.
The number of all mesh-following functions f0 is bounded by (1/ε)1/ε. Next, use
the result of Exercise 4.2.9

8.2.7 Use that f is Lipschitz to find a better bound on the number of possible functions
f0.

8.3.15 Consider the set F of binary strings of length n with at most d ones. This set is
called the Hamming cube.

8.3.17 Consider the Hamming cube from Exercise 8.3.15.
8.3.21 Argue as in Lemma 8.3.19 and then use the covering–packing relationship from

Lemma 4.2.8.
8.3.24 Modify the proof of the symmetrization lemma 6.4.2.
8.3.25 Add the zero function to the class F and use Remark 8.1.5 to bound |Z f | =

|Z f − Z0|. Can the addition of one (zero) function significantly increase the VC
dimension of F?

8.3.29 Choose a subset � ⊂ � of arbitrarily large cardinality d that is shattered by F ,
and let μ be the uniform measure on �, assigning probability 1/d to each point.

8.3.30 Proceed as in the proof of Theorem 8.3.23. Combine a concentration inequality
with a union bound over the entire class F . Control the cardinality of F using the
Sauer–Shelah lemma.

8.4.6 Choose an ε/4-net { f j }N
j=1 of F and check that {( f j − T )2}N

j=1 is an ε-net of L.
8.4.9(b) Proceed as in the proof of Theorem 8.2.3.
8.5.2(a) Use the first 22k

vectors in T to define Tk .
8.6.4 Fix x0 ∈ T and break the process into two parts: |Xx | ≤ |Xx − Xx0 | + |Xx0 |. Use

Remark 8.5.4 to control the first part and the sub-gaussian-increments condition
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with y = 0 for the second part. Use Exercise 7.6.9 to pass from the Gaussian
width to the Gaussian complexity.

8.6.5 Use Theorem 8.5.5 and Exercise 7.6.9.
8.7.2 Note that E supx∈T, y∈S 〈Ax, y〉 ≥ supx∈T E supy∈S 〈Ax, y〉.
8.7.3 Use the result of Exercise 8.6.5.
8.7.4 Use the Sudakov–Fernique inequality (Theorem 7.2.11) instead of Talagrand’s

comparison inequality.

Chapter 9

9.1.2 Bound the difference between E ‖Ax‖2 and
√

m‖x‖2 using the concentration of the
norm theorem 3.1.1.

9.1.5 In this range of s, the sub-gaussian tail will dominate in Bernstein’s inequality. Do
not forget to apply the inequality for 2K 2 instead of K because of Lemma 9.1.4.

9.1.8 Use the high-probability version of Talagrand’s comparison inequality from Exer-
cise 8.6.5.

9.1.10 Reduce it to the original deviation inequality using the identity a2 − b2 = (a − b)×
(a + b).

9.2.3 If m � n, the random matrix A in the matrix deviation inequality is an approximate
projection: this follows from Section 4.6.

9.4.9 Consider a random rotation U ∈ Unif(SO(n)) as in Section 5.2.5. Applying a union
bound, show that the probability that there exists x ∈ X such that U x ∈ T is smaller
than 1.

Chapter 10

10.2.4 Modify the argument that led to the M∗ bound.
10.2.5 Modify the M∗ bound accordingly.
10.3.7(b) Note that ‖xI1‖2 ≤ 1. Next, for i ≥ 2, note that each coordinate of xIi is

smaller in magnitude than the average coordinate of xIi−1 ; conclude that ‖xIi ‖2 ≤
(1/

√
s)‖xIi−1‖1. Then sum up the bounds.

10.3.9 Construct a large separated ε-net in Sn,s and thus deduce a lower bound
on the covering numbers of Sn,s . Then use Sudakov’s minoration inequality
(Theorem 7.4.1).

10.3.10 Fix ρ > 0 and apply the M∗ bound for the truncated octahedron Tρ := Bn
1 ∩ρBn

2 .
Use Exercise 10.3.8 to bound the Gaussian width of Tρ . Furthermore, note that if
rad(Tρ ∩ E) ≤ δ for some δ ≤ ρ then rad(T ∩ E) ≤ δ. Finally, optimize in ρ.

10.4.1 This will follow upon checking the identity ‖X‖∗ = max
{| 〈X,U 〉 | : U ∈ O(d)

}
,

where O(d) denotes the set of d ×d orthogonal matrices. Prove the identity using
the singular value decomposition of X .

10.4.2 Think of the nuclear norm ‖ · ‖∗, the Frobenius norm ‖ · ‖F , and the operator
norm ‖ · ‖ as matrix analogs of the �1 norm, �2 norm, and �∞ norms for vectors,
respectively.

10.4.3 Use (10.10) followed by Theorem 7.3.1.
10.5.4 Use the result of Exercise 10.3.8.
10.6.4 The proofs of these lemmas are based on the fact that ‖x̂‖1 ≤ ‖x‖1, which holds

for the present situation as well.
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10.6.8 Recall the proof of the sub-gaussian Chevet inequality (Theorem 8.7.1).
10.6.9 Use the result of Exercise 10.3.8.

Chapter 11

11.1.8 Follow the argument in Section 9.1.4.
11.1.11 Follow Exercise 9.1.8.
11.3.7 Set T to be the canonical basis {e1, . . . , en} in R

n , represent the points as gi = T ei ,
and apply Theorem 11.3.3.

11.3.8 First replace in Theorem 11.3.3 the Gaussian width w(T ) with the quantity h(T ) =
(E supt∈T 〈g, t〉2)1/2, which we discussed in (7.19) and which is easier to compute
for ellipsoids.
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Bennett’s inequality, 36
Bernoulli distribution, 10, 12
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Bernstein’s inequality, 33, 34, 130
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distribution, 11
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Cauchy–Schwarz inequality, 6
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central limit theorem
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de Moivre–Laplace, 10
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Chebyshev’s inequality, 8
Chernoff’s inequality, 17, 18, 36
Chevet’s inequality, 212, 258
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for anisotropic random vectors, 134
Gaussian, 104
of the norm, 39, 134
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on the symmetric group, 106
Talagrand’s inequality, 110

contraction principle, 143, 156
Talagrand’s, 145

convex
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hull, 1, 163
program, 59

coordinate distribution, 49, 52
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Courant–Fisher’s min–max theorem, see min–max

theorem
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estimation, 94, 122, 223
of a random process, 149
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Davis–Kahan theorem, 89, 96
de Moivre–Laplace theorem, 10
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dimension reduction, 110
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distance to a subspace, 136
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Dvoretzky–Milman theorem, 259, 260
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distribution function, 198
measure, 188
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ε-separated set, 76
Erdös–Rényi model, 19, 87
error correcting code, 81
escape theorem, 229, 230, 241, 242, 244
exact recovery, 241
excess risk, 202
expectation, 5
exponential distribution, 32

feature map, 68
frame, 49, 53
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Frobenius norm, 72, 169
functions of matrices, see matrix calculus

γ2-functional, 207
Garnaev–Gluskin theorem, 239
Gaussian

complexity, 170, 216, 255
distribution, 9
integration by parts, 152, 153
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measure, 104
mixture model, 95, 96
orthogonal ensemble, 159
process, 150

canonical, 161, 162
width, 162, 211

generic chaining, 206, 208, 209
Gilbert–Varshamov bound, 97
Glivenko–Cantelli

class, 199
theorem, 198

Golden–Thompson inequality, 116
Gordon’s inequality, 157, 159
gram matrix, 266
graph, 61

simple, 61
Grassmannian, 107
Grothendieck’s identity, 63
Grothendieck’s inequality, 55, 67

Haar measure, 107, 108
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bound, 97
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Hanson–Wright inequality, 130, 131, 134, 135
Hermitization trick, 140
Hessian, 109
Hilbert–Schmidt norm, see Frobenius norm
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for matrices, 119
general, 27

Hölder’s inequality, 6
hypothesis space, 202, 204

increments of a random process, 149, 177, 217, 255
independent copy of a random variable, 128
indicator random variables, 12
integer optimization problem, 59
integral identity, 7
intrinsic dimension, 123, 175
isoperimetric inequality, 100, 105
isotropic random vectors, 43

Jensen’s inequality, 6, 116
Johnson–Lindenstrauss lemma, 110, 111, 170, 225,

226, 258

Kantorovich–Rubinstein duality theorem, 188
kernel, 65, 68

Gaussian, 68
polynomial, 68

Khintchine’s inequality, 27
for matrices, 120

Lasso, 247, 248, 251, 252
law of large numbers, 2, 9, 35, 93, 184

uniform, 185, 188
Lieb’s inequality, 116
linear regression, see regression
Lipschitz

function, 98
norm, 98

low-rank approximation, 73
L p norm, 5
Lψ1 norm, 31
Lψ2 norm, 24

M∗ bound, 227, 229, 234, 239
majority decoding, 81
majorizing measure theorem, 210
Markov’s inequality, 8
matrix

Bernstein inequality, see Bernstein’s inequality
for matrices

deviation inequality, 216, 255
Khintchine’s inequality, 119, 126

matrix calculus, 114
matrix completion, 140
matrix recovery, 239, 241
maximum cut, 61
McDiarmid’s inequality, see bounded differences

inequality
mean width, see spherical width, 165
measurements, 232
median, 102
metric entropy, 79, 80, 160, 176, 177, 187, 194
min–max theorem, 71
Minkowski’s inequality, 6
Minskowski sum, 77
moment, 5, 21
moment generating function, 5, 14, 22, 25
Monte-Carlo method, 184
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network, 19, 87
non-commutative Bernstein inequality, see

Bernstein’s inequality for matrices
non-commutative Khintchine inequalities, see

matrix Khintchine inequalities
normal distribution, 9, 12, 21, 46, 47, 51
nuclear norm, 240

operator norm, 71, 83, 84
ordinary least squares, 248
Orlicz

norm, 33
space, 32, 33

packing number, 76
Pajor’s lemma, 191
perturbation theory, 89
Poisson

distribution, 10, 18, 32
limit theorem, 10

polarization identity, 266
positive-homogeneous function, 254
principal component analysis, 42, 93, 95
probabilistic method, 4, 194
push-forward measure, 108

Rademacher distribution, 14
radius, 2, 212
random

field, 148
graph, 19, 37
matrix

norm, 85, 139, 157, 159, 212
singular values, 91, 159, 222

process, 147
projection, 110, 111, 170, 171, 222, 247, 259
sections, 227
walk, 148

randomized rounding, 63
rate of an error correcting code, 83
regression, 233
regular graph, 19
reproducing kernel Hilbert space, 68
restricted isometry, 245, 246
Riemannian manifold, 106
RIP, see restricted isometry
risk, 201, 205
rotation invariance, 26, 46, 111

sample
covariance, 93
mean, 9

Sauer–Shelah lemma, 193
second moment matrix, 41, 93, 122
selectors, 129, 140
semidefinite

program, 59
relaxation, 59, 62

shatter, 189
signal, 232
singular

value decomposition, 70, 131
values, 70

of random matrices, 91, 222
vectors, 70

Slepian’s inequality, 151, 154–157
small ball probabilities, 16, 41
sparse recovery, 232, 237, 242
special orthogonal group, 107
spectral

clustering, 90, 91, 95, 96, 121
decomposition, 42, 114
norm, see operator norm

spherical
distribution, 45, 48, 53, 164
width, 164, 165, 171

stable
dimension, 167, 168, 173, 174, 226, 228, 261
rank, 124, 169, 224, 263

standard
deviation, 6
score, 43

statistical learning theory, 200
stochastic

block model, 87, 91
domination, 151
process, see random process

sub-exponential
distribution, 28, 29, 31
norm, 31

sub-gaussian
distribution, 22, 24, 26, 33, 51
increments, 177
norm, 24
projection, 223

subadditive function, 254
Sudakov’s minoration inequality, 160, 182
Sudakov–Fernique inequality, 156–158, 161, 211,

269
support function, 255, 260
symmetric

Bernoulli distribution, see Bernoulli distribution,
symmetric

distributions, 136
group, 106

symmetrization, 136–138, 144, 149
for empirical processes, 197

tails, 7
normal, 12
Poisson, 18

Talagrand’s
comparison inequality, 210, 211
concentration inequality, 110



284 Index

contraction principle, 145, 156
tangent cone, 242
target function, 200
tensor, 65
trace

inequalities, 115, 116
norm, see nuclear norm

training data, 200
transportation cost, 188
truncation, 13, 57

union bound, 20

variance, 5
VC dimension, 189, 194, 196

Wasserstein’s
distance, 188
law of large numbers, 185

Weyl’s inequality, 89
Wiener process, 148

Young’s inequality, 31

zero–one law, 102
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