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Introduction: What is Galois Theory?

Much of early algebra centred around the search for explicit formulee for roots of polynomial
equations in one or more unknowns. The solution of linear and quadratic equations in one
unknown was well understood in antiquity, while formulee for the roots of general real cubics and
quartics was solved by the 16th century. These solutions involved complex numbers rather than
just real numbers. By the early 19th century no general solution of a general polynomial equation
‘by radicals’ (i.e., by repeatedly taking n-th roots for various n) was found despite considerable
effort by many outstanding mathematicians. Eventually, the work of Abel and Galois led to a
satisfactory framework for fully understanding this problem and the realization that the general
polynomial equation of degree at least 5 could not always be solved by radicals. At a more
profound level, the algebraic structure of Galois extensions is mirrored in the subgroups of their
Galois groups, which allows the application of group theoretic ideas to the study of fields. This
Galois Correspondence is a powerful idea which can be generalized to apply to such diverse
topics as ring theory, algebraic number theory, algebraic geometry, differential equations and
algebraic topology. Because of this, Galois theory in its many manifestations is a central topic
in modern mathematics.

In this course we will focus on the following topics.

e The solution of polynomial equations over a field, including relationships between roots,
methods of solutions and location of roots.
e The structure of finite and algebraic extensions of fields and their automorphisms.

We will study these in detail, building up a theory of algebraic extensions of fields and their
automorphism groups and applying it to questions about roots of polynomial equations. The
techniques we discuss can also be applied to the following topics some of which will be met by
students taking advanced degrees.

e (lassical topics such as ‘squaring the circle’, ‘duplication of the cube’, constructible
numbers and constructible polygons.

e Applications of Galois theoretic ideas in Number Theory, the study of differential
equations and Algebraic Geometry.

There are many good introductory books on Galois Theory and we list some of them in the
bibliography at the end.

Suggestions on using these notes

These notes cover more than the content of the course and should be used in parallel with
the lectures. The problem sets contain samples of the kind of problems likely to occur in the
final examination and should be attempted as an important part of the learning process.

o
The symbol © & means the adjacent portion of the notes is not examinable.
&
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CHAPTER 1

Integral domains, fields and polynomial rings

In these notes, a ring will always be a ring with unity 1 which is assumed to be non-zero,
1 # 0. In practice, most of the rings encountered will also be commutative. An ideal I < R
always means a 2-sided ideal. An ideal I < R in a ring R is proper if I # R, or equivalently if
I ¢ R. For a ring homomorphism ¢: R — S, the unity of R is sent to that of S, i.e., ¢(1) = 1.

DEFINITION 1.1. Let ¢: R — S be a ring homomorphism.
e © is a monomorphism if it is injective.
e o is an epimorphism if it is surjective.
e o is an isomorphism if it is both a monomorphism and an epimorphism.
REMARK 1.2. The following are equivalent formulations of the notions in Definition 1.1.

e ¢ is a monomorphism if and only if for 71,72 € R, if ¢(r1) = ¢(r2) then r = 79, or
equivalently, if r € R with ¢(r) = 0 then r = 0.

e ¢ is an epimorphism if and only if for every s € S there is an r € R with ¢(r) = s.

e (o is an isomorphism if and only if it is invertible (and whose inverse is also an isomor-
phism).

1.1. Recollections on integral domains and fields

The material in this section is standard and most of it should be familiar. For details
see [3, 4] or any other book containing introductory ring theory.

DEFINITION 1.3. A commutative ring R in which there are no zero-divisors is called an
integral domain or an entire ring. This means that for u,v € R,

uw=0 =— wu=0orv=0.

ExXAMPLE 1.4. The following rings are integral domains.
(i) The ring of integers, Z.
(ii) If p is a prime, the ring of integers modulo p, F, = Z/p = Z/(p).
(iii) The rings of rational numbers, @Q, real numbers, R, and complex numbers, C.
(iv) The polynomial rings Z[X]|, Q[X], R[X] and C[X].
DEFINITION 1.5. Let I < R be a proper ideal in a commutative ring R.
e [ is a prime ideal if for u,v € R,
wel =— wuwelorvel.
Similarly, I is a maximal ideal R if whenever J < R is a proper ideal and I C J then
J=1.
e [ 4R is principal if
I=(p)={rp:r € R}
for some p € R. Notice that if p,q € R, then (¢) = (p) if and only if ¢ = up for some
unit u € R. We also write p | z if z € (p).
e p € R is prime if (p) < R is a prime ideal; this is equivalent to the requirement that

whenever p | xy with z,y € R then p | x or p | y.
e Risa principal ideal domain if it is an integral domain and every ideal I<R is principal.

The following fundamental example should be familiar.

1



2 1. INTEGRAL DOMAINS, FIELDS AND POLYNOMIAL RINGS

EXAMPLE 1.6. Every ideal I <Z is principal, so I = (n) for some n € Z which we can always
take to be non-negative, n > 0. Hence Z is a principal ideal domain.

ProposITION 1.7. Let R be a commutative ring and I < R an ideal.
(i) The quotient ring R/I is an integral domain if and only if I is a prime ideal.
(ii) The quotient ring R/ is a field if and only if I is a mazimal ideal.

EXAMPLE 1.8. If n > 0, the quotient ring Z/n = Z/(n) is an integral domain if and only if
n is a prime.

For any (not necessarily commutative) ring with unit there is an important ring homomor-
phism n: Z — R called the unit or characteristic homomorphism which is defined by

1441 ifn>0,
—
n
—pl = —(14--+1) ifn<o,
n(n) =n (14+---+1) ifn

—n

0 ifn=0.

Since the unit 1 € R is non-zero, ker n<Z is a non-zero ideal and using the Isomorphism Theorems
we see that there is a quotient monomorphism 7: Z/ ker n — R which allows us to identify the
quotient ring Z/ kern with the image nZ C R as a subring of R. By Example 1.6, there is a
unique non-negative integer p > 0 such that kern = (p); this p is called the characteristic of R
and denoted char R.

LEMMA 1.9. If R is an integral domain, its characteristic char R is a prime.

ProoF. Consider p = char R. If p = 0 we are done. So suppose that p > 0. The quotient
monomorphism 77: Z/ kern — R identifies Z/ ker n with the subring im7 = im n of the integral
domain R. But every subring of an integral domain is itself an integral domain, hence Z/ kern is
an integral domain. Now by Proposition 1.7(i), kern = (p) is prime ideal and so by Example 1.8,
p is a prime. O

REMARK 1.10. When discussing a ring with unit R, we can consider it as containing as a
subring of the form Z/(char R) since the quotient homomorphism 77: Z/(char R) — R gives
an isomorphism Z/(char R) — imn, allowing us to identify these rings. In particular, every
integral domain contains as a subring either Z = Z/(0) (if char R = 0) or Z/(p) if p = char R > 0
is a non-zero prime. This subring is sometimes called the characteristic subring of R. The rings
Z and Z/n = Z/(n) for n > 0 are often called core rings. When considering integral domains,
the rings Z and F, = Z/p = Z/(p) for p > 0 a prime are called prime rings.

Here is a useful and important fact about rings containing a finite prime ring.

THEOREM 1.11 (Idiot’s Binomial Theorem). Let R be a commutative ring with unit con-
taining F), for some prime p > 0. If u,v € R, then
(u+v)P = uP + P
ProoF. We have pl =0 in R. Now the Binomial Theorem gives
wtv)P =+ (Purto+ (Plur22 4o (P Juwr 4 or,
1 2 p—1
Suppose that 1 < j < p— 1. Then we have

There are no factors of p appearing in (p — 1)!, j! or (p — j)!, so since this number is an integer
it must be divisible by p, i.e.,

(1.1a) o (7).
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or equivalently

(1.1b) <’7> =0 (mod p).

J
(P) 1=0.
J
Combining this fact with the above expansion, we obtain the required equation in R,

(u+v)P = uP + P O

Hence in R we have

A commutative ring with unit k is a field if every non-zero element u € k is a unit in k i.e.,
there is an element v € k such that uv = vu = 1. We usually write u~! for this element v which
is necessarily unique and called the multiplicative inverse of u in k.

EXAMPLE 1.12. If n > 0, the quotient ring Z/n is a field if and only if n is a positive prime.
ProposiTiON 1.13. Ifk s a field then it is an integral domain.

PROOF. Suppose that u,v € k and uv = 0. Then if u # 0 we can multiply this equation by
u~! to obtain

1

v=u uv =0,

hence v = 0. So at least one of u, v must be 0. O

A non-zero element p € R is irreducible if whenever p = uv with u,v € R, either u or v is a
unit.

LEMMA 1.14. Let R be an integral domain. If p € R is a non-zero prime then it is an
irreducible.

PROOF. Suppose that p = uv for some u,v € R. Then p | u or p | v, and we might as well
assume that v = tp for some ¢t € R. Then (1 — tv)p = 0 and so tv = 1, showing that v is a unit
with inverse t. ]

Now let D be an integral domain. A natural question to ask is whether D can be found as
a subring of a field. This is certainly true for the integers Z which are contained in the field of
rational numbers Q, and for a prime p > 0, the prime ring [, is itself a field.

DEFINITION 1.15. The fields Q and ), where p > 0 is prime are the prime fields.

Of course, we can view Z as a subring of any subfield of the complex numbers so an answer
to this question may not be unique! However, there is always a ‘smallest’ such field which is
unique up to an isomorphism.

THEOREM 1.16. Let D be an integral domain.

(i) There is a field of fractions of D, Fr(D), which contains D as a subring.
(ii) If o: D — F is a ring monomorphism into a field F', there is a unique homomorphism
¢: Fr(D) — F such that o(t) = ¢(t) for allt € D C Fr(D).

D Ld F
7

inc 95

Fr(D)

[ )
QQ*<> PRrOOF. (i) Consider the set

P(D) ={(a,b) : a,b € D, b# 0}.
Now introduce an equivalence relation ~ on P(D), namely
(V) ~ (a,b) <= ab =db.
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Of course, it is necessary to check that this relation is an equivalence relation; this is left as an
exercise. We denote the equivalence class of (a,b) by [a,b] and the set of equivalence classes by
Fr(D).

We will define addition and multiplication on Fr(D) by

0,8 + [e,d) = [ad + be, b}, [a, ][e, ] = [ac, bd].
We need to verify that these operations are well defined. For example, if [a’,b] = [a,b] and
[,d'] = [c,d], then
(d'd +V)od = d'd'bd + b'c'bd = ab'd'd + b'bed = (ad + be)b'd,

and so (a'd +b'd,b'd") ~ (ad + bc,bd), hence addition is well defined. A similar calculation
shows that (a’c/,t/d") ~ (ac, bd), so multiplication is also well defined. It is now straightforward
to show that Fr(D) is a commutative ring with zero 0 = [0, 1] and unit 1 = [1, 1]. In fact, as we
will soon see, Fr(D) is a field.

Let [a,b] € Fr(D). Then [a,b] = [0,1] if and only if (0,1) ~ (a,b) which is equivalent to
requiring that a = 0; notice that for any b # 0, [0,b] = [0, 1]. We also have [a,b] = [1,1] if and

only if a = b.
Now let [a,b] € Fr(D) be non-zero, i.e., a # 0. Then b # 0 and [a, b], [b, a] € Fr(D) satisfy

[a, b][b, a] = [ab,ba] = [1,1] =1,

so [a, b] has [b, a] as an inverse. This shows that Fr(D) is a field.
We can view D as a subring of Fr(D) using the map

j: D —Fr(D); j(t) =1t 1]

which is a ring homomorphism; it is easy to check that it is a monomorphism. Therefore we
may identify ¢ € D with j(t) = [¢,1] € Fr(D) and D with the subring im j C Fr(D).
(ii) Consider the function

®: P(D) — F;  ®(a,b) = p(a)p(b) "

If (a/,V) ~ (a,b) then

/

p(b)p(0) " ()
(b)) (v) !
p(b) "Ho(b) ™
p(B)p(®) (b))
p(b) ™ = @(a,b),

so P is constant on each equivalence class of ~. Hence we can define the function

7: (D) — F;  3([a,b]) = (a, b).

®(d,b) = p(d) (V')

a

)
b

a

(
(
(ab’
(
(

\_/\_/

a

I
€ € € € €

)
)

a

It is straightforward to verify that ¢ is a ring homomorphism which agrees with ¢ on the subring
D C Fr(D). O

The next three corollaries are left as an exercise. Corollary 1.19 is sometimes said to imply
that the construction of Fr(D) is functorial in the integral domain D.

COROLLARY 1.17. If F' is a field then F' = Fr(F).

COROLLARY 1.18. If D is a subring of a field F, then Fr(D) C Fr(F) = F is the smallest
subfield of F' containing D.

COROLLARY 1.19. If D1 and D2 are integral domains and p: D1 — Do a ring monomor-
phism, there is a unique induced ring homomorphism ¢, : Fr(D1) — Fr(Ds) for which p.(t) =
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(p(t) ift € D, C FI'(Dl).
D1 Do

linc linc

Fl“(Dl) W FI“(DQ)

Moreover, this construction has the properties

e if o: D1 — Dy and 0: Do — D3 are monomorphisms between integral domains then
0. 0 @, = (0 0 @), as homomorphisms Fr(D1) — Fr(Ds3);

e for any integral domain D, the identity homomorphism id: D — D induces the iden-
tity homomorphism (id), = id: Fr(D) — Fr(D).

p—% -p,—Y% .p, p—4 . p
i inc i inc i inc l inc i inc
- — Fr(D) —— Fr(D
Fr(D1) 2 Fr(Ds) i Fr(Ds) r( gd* =4 r(D)
REMARK 1.20. When working with a field of fractions it is usual to adopt the notation
% = a/b = [a,b]

for the equivalence class of (a,b). The rules for algebraic manipulation of such symbols are the
usual ones for working with fractions, i.e.,

al az a1ba + agby al a2 a1 G2 (4102

by by biby EXE_EE_MQ'
The field of fractions of an integral domain is sometimes called its field of quotients, however as
the word quotient is also associated with quotient rings we prefer to avoid using that terminology.

1.2. Polynomial rings

Let R be a commutative ring. We will make frequent use of the ring R[X] of polynomials
over R in an indeterminate X. This consists of elements of form

p(X)=po+ X+ +pnX™

where m > 0 and po, p1,...,pm € R; such p(X) are called polynomials. Addition and multipli-
cation in R[X] are defined by

(po+m X+ 4+ X™)+ (o + X+ +qgnX™") =
(po+qo) +(P1+q)X + -+ (Pm + gm) X™),

and

po+1 X+ 4+ X))@+ X+ + ¢ X™) =
(poqo) + (Poqr + P190) X + - + (Pogm + P1Gm—1 + - + Pm—1q1 + Pmqo) X *™.

Then R[X] is a commutative ring with the constant polynomials 0 and 1 as its zero and unit.
We identify r € R with the obvious constant polynomial; this allows us to view R as a subring
of R[X] and the inclusion function inc: R — R[X] is a monomorphism.
More generally, we inductively can define the ring of polynomials in n indeterminates
Xi1,...,X, over R,
R[le cee aXn] = R[Xla ce 7XTL*1HXH]

for n > 1. Again there is an inclusion monomorphism inc: R — R[X},..., X,] which sends
each element of R to the corresponding constant polynomial.
These polynomial rings have an important universal property.
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THEOREM 1.21 (Homomorphism Extension Property). Let ¢: R — S be a ring homomor-
phism.
(i) For each s € S there is a unique ring homomorphism ps: R[X] — S for which
o os(r)=(r) for all T € R,

* ps(X) =s.
R—"—>5
T
mCl g o,
R[X]
(ii)) Forn > 1 and s1,...,8, € S, there is a unique ring homomorphism
Oor,oon: RIX1, ..., Xp] — S
for which

® s ..5.(r)=(r) for all r € R,
o Vo sn(Xi)=sifori=1,...,n.

[
Q?*<> PRrROOF. (Sketch)
(i) For a polynomial p(X) =po + p1 X + -+ + pmnX™ € R[X], we define

(1.2) os(p(X)) =po+pis+--+pms™ €S.

It is then straightforward to check that ¢, is a ring homomorphism with the stated properties
and moreover is the unique such homomorphism.
(ii) is proved by induction on n using (i). O

We will refer to ¢s, ... s, as the extension of ¢ by evaluation at si,...,s,. It is standard to

write

n

p(sh ) Sn) = Ps1,...,5n (p(Xl, . 7XTL>)
An extremely important special case occurs when we start with the identity homomorphism
id: R— R and ry,...,r, € R; then we have the homomorphism

Eryrn =1dp, ot R[X, ..., Xp] — R.

Slightly more generally we may take the inclusion of a subring inc: R — S and s1,...,s, € S;
then
E€s1,sn =10Cg, ot R[X1,..., Xy — S
is called evaluation at si,...,s, and we denote its image by
R[s1,...,8n) = €s1,...0n R[X1,..., X,] CS.
Then R][sq,...,sy] is a subring of S, called the subring generated by s, ..., s, over R.

Here is an example illustrating how we will use such evaluation homomorphisms.

ExaMpPLE 1.22. Consider the inclusion homomorphism inc: Q — C. We have the evalua-
tion at ¢ homomorphism ¢;, for which ¢;(X) = i. We easily find that ¢; Q[X] C C is a subring
Q[i] € C consisting of the complex numbers of form a + bi with a,b € Q.

Notice that if we had used —i instead of i, evaluation at —i, £_;, would also give e_; Q[ X] =
Q[i]. These evaluation homomorphisms are related by complex conjugation since

e-i(p(X)) = &i(p(X)),
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which is equivalent to the functional equation
e_i=( )og;.
Notice also that in these examples we have
kere ; =kere; = (X2 4 1) aQ[X],
hence we also have
Qli] = Q[X]/(X* +1).

In fact (X2 + 1) is actually a maximal ideal and so Q[i] C C is a subfield; later we will write
Q(i) for this subfield.

PROPOSITION 1.23. Let R be an integral domain.

(i) The ring R[X] of polynomials in an indeterminate X over R is an integral domain.
(ii) The ring R[X1,...,Xy] of polynomials in n indeterminates X1,..., X, over R is an
integral domain.

COROLLARY 1.24. Ifk is a field and n > 1, the polynomial ring k[ X1, ..., X,] in n indeter-
minates X1,...,X, is an integral domain.

As we will make considerable use of such rings we describe in detail some of their important
properties. First we recall long division in a polynomial ring k[X] over a field k; full details can
be found in a basic course on commutative rings or any introductory book on this subject.

THEOREM 1.25 (Long Division). Let k be a field and X an indeterminate. Let f(X),d(X) €
k[X] and assume that d(X) # 0 so that degd(X) > 0. Then there are unique polynomials
¢(X),r(X) € k[X] for which f(X) = q(X)d(X)+r(X) with degr(X) < degd(X) orr(X) =0.

In the situation discussed in this result, the following names are often used. We refer to the
process of finding ¢(X) and r(X) as long division of f(X) by d(X). Also,

f(X) = the dividend, d(X) = the divisor, q(X) = the quotient, r(X) = the remainder.

EXAMPLE 1.26. If k = Q, find the quotient and remainder when the long division of f(X) =
6X* —6X3+3X2 -3X +1byd(X)=2X?+1 is performed.

SOLUTION. In the usual notation we have the following calculation.
3X? - 3X
2X% 4+ 1]6X4T—6X3+3X2-3X +1
6X*+0X° +3X2+0X +0
—6X34+0X2-3X +1
—6X*+0X%-3X +0
1

Hence
6X1 —6X34+3X2-3X +1=(3X%-3X)2X%2+1)+1,
giving ¢(X) = 3X?% - 3X and r(X) = 1. O

EXAMPLE 1.27. If k = F5, find the quotient and remainder when long division of f(X) =
10X° 4+ 6X% —6X3 +3X2—-3X +1by d(X) =2X2 +1 is performed.

SOLUTION. First notice that working modulo 5 we have
F(X)=10X5 +6X* —6X3 +3X% -3X +1=X"+4X3+3X2+2X +1 (mod 5).
Notice also that multiplicative inverses in F5 are given by

27'=3 (mod5), 37'=2 (mod5), 4 '=4 (mod?5).
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We have the following calculation.
3X% 42X
2X2 +1] 6X4+4X3 +3X2 +2X +1
6X%+0X3+3X24+0X +0
4X34+0X2 42X +1
4X3 +0X%24+2X 40
1

Hence
6X1 —6X34+3X%2-3X+1=3X?+2X)2X?>+1)+1 (mod5),
giving ¢(X) = 3X2 +2X and r(X) = 1. O

An important consequence of Theorem 1.25 is the following which makes use of the Fuclidean
Algorithm.

COROLLARY 1.28. Let k be a field and X an indeterminate. Let f(X),g9(X) € k[X] be
non-zero. Then there are a(X),b(X) € k[X] such that

a(X) f(X) +b(X)g(X) = ged(f(X), 9(X))-

Here the greatest common divisor ged(f(X),g(X)) of f(X),g(X) is the monic polynomial
of greatest degree which divides both of f(X), g(X).

PROPOSITION 1.29. Let k be a field and X an indeterminate. Then a non-constant polyno-
mial p(X) € k[X] is an irreducible if and only if it is a prime.

[ )

C?‘.O PrOOF. By Lemma 1.14 we already know that p(X) is irreducible if it is prime. So
suppose that p(X) is irreducible and that p(X) | u(X)v(X) for u(X),v(X) € k[X]. Then by
Corollary 1.28, there are a(X),b(X) € k[X] such that

a(X)p(X) + b(X)u(X) = ged(p(X), u(X)).
But since p(X) is irreducible, ged(p(X),u(X)) = 1, hence
a(X)p(X) +b(X)u(X) = 1.
Multiplying through by v(X) gives
a(X)p(X)v(X) + b(X)u(X)v(X) = v(X)
and so p(X) | v(X). This shows that p(X) | u(X) or p(X) | v(X) and so p(X) is prime. O
THEOREM 1.30. Let k be a field and X an indeterminate.
(i) Every ideal I <k[X] is principal, i.e., I = (h(X)) for some h(X) € k[X].
(ii) The ideal (p(X))<k[X] is prime if and only if p(X) = 0 or p(X) is irreducible in k[ X].
(iii) The quotient ring k[X]/(p(X)) is an integral domain if and only if p(X) =0 or p(X)
is irreducible in k[ X].
(iv) The quotient ring k[ X]/(p(X)) is a field if and only if p(X) is an irreducible in k[ X].

[ )
C?*O ProOF. (i) Let I <k[X] and assume that I # (0). Then there must be at least

one element of I with positive degree and so we can choose h(X) € I of minimal degree, say
d = degh(X).
Now let p(X) € I. By Long Division, there are ¢(X),r(X) € k[X] such that

p(X) = q¢(X)h(X)+r(X) anddegr(X)<dorr(X)=0.
Since p(X) and h(X) are in the ideal I, we also have
r(X) = p(X) —q(X)h(X) € I.
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If 7(X) # 0 this would contradict the minimality of d, so we must have r(X) = 0, showing that
p(X) = q(X)h(X). Thus I C (p(X)) C I and therefore I = (p(X)).
(ii) This follows from Proposition 1.29.
(iii) This follows from Proposition 1.7(i).
(iv) Since k[X] is an integral domain and not a field, it is follows that if k[ X]/(p(X)) is a field
then because it is an integral domain, p(X) is an irreducible by (iii).

Suppose that p(X) is irreducible (and hence is non-zero). Then for any ¢(X) € k[X] with
¢(X) ¢ (p(X)) we can use the Euclidean Algorithm of Corollary 1.28 to write

a(X)p(X) + b(X)q(X) = ged(p(X), ¢(X)).
But ged(p(X), ¢(X)) = 1 since p(X) is irreducible, so
a(X)p(X) +b(X)q(X) = 1.

This shows that in the quotient ring k[X]/(p(X)) the residue class of ¢(X) has the residue class
of b(X) as its inverse. O

REMARK 1.31. In connection with Theorem 1.30(i), notice that if p(X) € k[X], then pro-

vided d = deg p(X) > 0, we have for some pg # 0,
p(X) =po+mX + -+ paX? = paa(X),
where
a(X) =pg'po+pg'p1X + -+ pg ' paa X+ X

This easily implies that as ideals of k[X], (p(X)) = (¢(X)). So we can always find a monic
polynomial as the generator of a given ideal, and this monic polynomial is unique.

PROPOSITION 1.32 (Unique Factorization Property). Fvery non-constant polynomial f(z) €
k[X] has a factorization

f(@) = ep1(X) - pe(X),

where ¢ € k, and p1(X),...,pr(X) € k[X] are irreducible monic polynomials. Moreover, c is

unique and the sequence of polynomials p1(X),...,pr(X) is unique apart from the order of the
terms.

a
C?*<> PRrROOF. (Sketch)

Existence is proved by induction on the degree of f(X) and begins with the obvious case
deg f(X) = 1. If deg f(X) > 1, then either f(X) is already irreducible, or f(X) = f1(X)f2(X)
with both factors of positive degree, and therefore deg f;(X) < deg f(X). This gives the
inductive step.

To prove uniqueness, suppose that

p1(X) - pr(X) = (X)) -+ qo(X)

where p;(X),q;(X) € k[X] are irreducible monic polynomials. Then by Proposition 1.29, each
pi(X) is prime, hence divides one of the ¢;(X), hence must equal it. By reordering we can
assume that p;(X) = ¢;(X) and k < ¢. After cancelling common factors we obtain

U1 (X) - qe(X) =1,
and so we see that k = £. O
COROLLARY 1.33. Suppose that f(X) € k[X] factors into linear factors
fFX) = e(X —u) - (X = wa),

where uy,...,uq € k. Then the sequence of roots uy,...,uq s unique apart from the order. In
particular, if vi,...,v,. are the distinct roots, then

fX)=c(X —v)™ - (X —v,)",

where m; > 0 and this factorization is unique apart from the order of the pairs (v, m;).
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COROLLARY 1.34. The number of distinct roots of the non-constant polynomial f(X) € k[X]
is at most deg f(X).

DEFINITION 1.35. If k is a field and X an indeterminate, then the ring of rational functions
k(X)) is the fraction field of k[X]. The elements of k(X)) are fractions
ap+ a1 X +---+apX™
b+ b1 X + -+ b X"

with a;, b; € k.
1.3. Identifying irreducible polynomials

We will need some effective methods for identifying when a polynomial is irreducible in a
polynomial ring k[X] where k is a field.

Let us consider factorisation of polynomials over Q. If f(X) € Z[X] then we can also consider
f(X) as an element of Q[X]. If R =Z or Q, we say that f(X) has a proper factorisation over
Rif f(X) = g(X)h(X) for some ¢g(X),h(X) € R[X] with degg(X) > 0 and deg h(X) > 0.

PROPOSITION 1.36 (Gauss’s Lemma). Let f(X) € Z[X]. Then f(X) has a proper factori-
sation over Z if and only it has a proper factorisation over Q.

So to find factors of f(X) it is sufficient to look for factors in Z[X]. The next result is a
special case of the Eisenstein Irreducibility Test. Our version is slightly more general than the
usual one which corresponds to taking s = 0.

PrOPOSITION 1.37 (Eisenstein Test). Let f(X) € Z[X] and s € Z. Choose a; € Z so that
f(X)=ao+a1(X =)+ +ag_1(X — ) +ag(X —5)%,

where d = deg f(X). Suppose that p > 0 is a prime in Z for which the following conditions
hold:

e a; =0 (mod p) fork=0,...,d—1;
e ap Z 0 (mod p?);
e ag 0 (mod p).
Then f(X) is irreducible in Q[X] and hence also in Z[X].
ExaMpPLE 1.38. Let p > 2 be a prime. Then the polynomial
Pp(X)=1+X+- -+ X' €Z[X]
is irreducible in Q[X] and hence also in Z[X].
Proor. Working in Z[X],

since by (1.1a), p divides

when k=1,...,p— 1. Hence

Also,
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giving

(1.3) By(X) = (X = 1P 4 epa(X — 1P 2 4 er(X — 1) + o

with ¢, =0 (mod p) and ¢y = p. So the Eisenstein Test can be applied here with s = 1 to show
that ®,(X) is irreducible in Z[X]. O

ExaMPLE 1.39. As examples we have the irreducible polynomials
Dy(X) =1+ X,
P3(X) =1+ X + X%
P5(X) =1+ X+ X34+ X3+ x4
Pr(X) =1+ X +X*+ X+ X+ X5+ X6,
P (X) =1+ X+ X2+ X3+ X+ X5+ X0+ X7+ X8+ X% 4+ X0,

These are examples of the cyclotomic polynomials ®,,(X) € Z[X] which are defined for all
n =1 by

(1.4a) X" —1=]]euXx

where the product is taken over all the positive divisors of n. For example,
X2 1= (X —1)(X +1) =31 (X)Do(X),
XP-1=(X-D)(X?*+ X +1) =3 (X)P3(X),
= (X —1)(X +1)(X2+1) = &1 (X) Do (X)Dy(X),
XP-1=X-DX*"+ X3+ X +1) = & (X)P5(X),
= (X D)X+ D)X+ X+ 1)(X? = X +1) = 3 (X)Do( X)D3(X)Dg(X),
X2 1=(X-DX+DX2+ X+ D)X 2+ D(X2 - X +1)(X* - X2 +1)
= P (X)Do(X)P3(X)Py(X)Pg(X)P12(X).

Cyclotomic polynomials can be computed recursively using Equation (1.4a). If we know @ (X)
for k < n, then

X"—1
1.4b (X)) = —
(1.4b) (X) [ %0

d<n

The degree of ®,,(X) involves a function of n probably familiar from elementary Number Theory.
DEFINITION 1.40. The Euler function ¢: N — N is defined by
©(n) = number of k =1,...,n for which ged(n, k) =1
= |(Z/n)*| = number of units in Z/n
= number of generators of the cyclic group Z/n.
In particular, if p > 2 is a prime then ¢(p) = p — 1. Of course, p(1) = 1.
It can be shown that for each natural number n,
(1.5) Y eld) =
dn

Notice that we can inductively determine ¢(n) using this equation. For example, if p and ¢ are
distinct primes, then

©(pq) = pg — (p(p) + (@) +¢(1)) =pg—(p—1)—(¢g—1)—1=(p—1)(¢g —1).

It is also true that whenever m,n are coprime, i.e., when ged(m,n) = 1,

(1.6) p(mn) = p(m)p(n).
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Thus if n = p}' - - - pl* where p; < ps < --- < p, are the prime factors of n and r; > 0, then

(1.7) p(n) = e(py') - e(ps)
Furthermore, if p is a prime and r > 0, then
(1.8) p(@) = (-1

Notice that as a result, ¢(n) is even when n > 2.

REMARK 1.41. For those who know about the Mébius function p (which takes values 0, £1)
and Mdbius inversion, the latter can be used to solve Equation (1.5) for ¢, giving

(L9) p(n) = ;mg.
Similarly, the formulee of (1.4) lead to
(1.10) O (X) = [J(x™/4 = 1)@
djn
So for example, if p, g are distinct primes, then using standard properties of u,

B, (X) = (XP1 — )P0 (xPa/p _ 1)) (xPa/a _ q)ul@)(xPa/pa _ 1)n(pa)
(XP4—-1)(X —1)
(X9—-1)(XP—1)
Recall that an element ¢ of a field K is a primitive n-th root of unity if

min{k: 1 <k and ¢¥ =1} = n.

= (XM -D)(X - xXP-1)TH(X -1) =

We think of ¢, = e*™/" as the standard complex primitive n-th root of unity. Then every
complex n-th root of unity has the form Q’f = e2mk/n for k=0,1,...,n— 1.

THEOREM 1.42. For each n > 1, the cyclotomic polynomial ®,(X) is irreducible in Q[X]
and hence in Z[X]. The complex roots of ®,,(X) are the primitive n-th roots of unity,
¢k =e2mk/n (0 <k <n—1, ged(k,n) =1).
and the number of these is deg ®,(X) = ¢(n). Hence,
en(X)= I x-¢).

t=1,....n—1
ged(t,n)=1

ProOF. We will give a reformulation and proof of this in Theorem 6.2. O

ExXAMPLE 1.43. For n = 6 we have

Co = 276 — omi/3 _ % n \fz
Then ¢(6) = 2 and
B(X) = X2~ X +1= (X~ ()(X — ).
It is also worth recording a related general result on cyclic groups.

PROPOSITION 1.44. Letn > 1 and C = (g) be a cyclic group of order n and a generator g.
Then an element g" € C is a generator if and only if ged(r,n) = 1; the number of such elements

of C is p(n).
This leads to a useful group theoretic result.

LEMMA 1.45. Let G be a finite group satisfying the following condition:
e For each n > 1, there are at most n solutions of " =1 in G.

Then G is cyclic and in particular is abelian.
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[ )
C?&O PROOF. Let 6;(d) denote the number of elements in G of order d. By Lagrange’s
Theorem, 0¢(d) = 0 unless d divides |G|. Since
G=|J{geG:lgl=d}
d||G]|
we have
Gl = ba(d).
d||G|
Recall the Euler ¢-function satisfies Equation (1.5), hence
Gl = w(d).
d||G]|
Combining these we obtain
(1.11) S ) = 3 p(d).
d||G| d||G|

Let d be a divisor of |G|. By Proposition 1.44, for each element g € G of order d, the cyclic
subgroup (g) < G has ¢(d) generators, each of order d. As there are at most d such elements g

in G, this gives 0g(d) < ¢(d). So
Y 06(d) <Y e(d).
dl|G| d||G|
Now if 8¢ (d) < ¢(d) for some d, we would have a strict inequality in place of Equation (1.11).

Hence 0;(d) = ¢(d) for all d. In particular, there are ¢(|G|) elements of order |G|, hence there
must be an element of order |G|, so G is cyclic. O

The above results for polynomials over Q and Z have analogues over the field of fractions
k(T) and polynomial ring k[T], where k is a field.

A polynomial f(X) € k[T][X] is an element of k(T")[X]. If R = k[T] or k(T'), we say that
f(X) has a proper factorisation over R if f(X) = g(X)h(X) for some g(X), h(X) € R[X] with
degg(X) > 0 and degh(X) > 0.

PROPOSITION 1.46 (Gauss’s Lemma). Let f(X) € K[T|[X]. Then f(X) has a proper fac-
torisation over K[T] if and only it has a proper factorisation over k(T).

PRrROPOSITION 1.47 (Eisenstein Test). Let f(X) € k[T]|[X] and s € k. Choose a; € k[T] so
that
F(X)=ap+a1(X —8)+ - +ag_1(X — )T +ag(X — s)4,

where d = deg f(X). Suppose that p(T') € K[T] is an irreducible for which the following condi-
tions hold:

e a; =0 (mod p(7))

e ap Z0 (mod p(T)?);

e ag #0 (mod p(T)).
Then f(X) is irreducible in k(T)[X] and hence also in k[T][X].

EXAMPLE 1.48. Let k be a field. Then the polynomial X™ — T is irreducible in k(7")[X].

fork=0,...,d—1;

1.4. Finding roots of complex polynomials of small degree
[
R,
&
In this section we work within the complex numbers and take k C C; in practice we will
have k =R or k = C.

For monic linear (degree 1) or quadratic (degree 2) polynomials, methods of finding roots are
very familiar. Let us consider the cases of cubic (degree 3) and quartic (degree 4) polynomials.
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Cubic polynomials: Cardan’s method. The following 16th century method of finding
roots of cubics is due to Jerdme Cardan who seems to have obtained some preliminary versions
from Niccola Tartaglia by somewhat disreputable means! For historical details see [2, 3].

A monic cubic

f(X)=X?+asX? + a1 X + ap € C[X]
can be transformed into one with no quadratic term by a change of variables X —— X — ag/3
giving
1

3
9(X) = F(X —as/3) = X* — <a1 - 3a3> X - <a0 L. 2;;) e C[X].

Clearly finding the roots of f(X) is equivalent to finding those of g(X), so we may as well
assume that we want to find the complex roots of

f(X)=X?+pX +qe€C[X].
Suppose that z € C is a root of f(X), i.e.,
(1.12) 2® +pr+q=0.
Introduce u € C for which

o p
r=u— —
3u
Then
(1= g5) +r (- g) ra=o0
30) TP\"T3,) Te=
and so
3 P’
- =0
ST B
hence
6 3 P’ 0
Solving for u? we obtain
3
3 q.,.49 /45 4
— 141 =
“ 2 TV T o

4 3
where \/q2 + 2—p7 denotes one of the complex square roots of the discriminant of the quadratic

equation
3

2 _pr _
U+ qU o7 0.

Now if we take u to be a cube root of one of the complex numbers
q 4
242 24
SR

we obtain the desired root of f(X) as x = u — p/3u. Notice that we have a choice of 2 values
for u? and for each of these a choice of 3 values for u, differing by factors of the form w” for

r =0,1,2 where w = ¢2™/3 is a primitive cube root of 1. However, since
4 3
4p? P Y S 2
1 —q—\/¢*+ 27197 ( 9 ¢+ 27 )
= = =27 ’
, AP (¢ 4p?/2T) 4p?
AR Ts

it is easy to verify that there are in fact only 3 choices of the root & which we can write
symbolically as

sl g 1 ap* sl q 1 4p?
1.1 S STy 7 N M| . S e i
(1.13) v \/2+2Q+27Jr 2 VT Ty
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or more precisely as

1 4p?
(1.14) e=1\-24 \/qurip_ p '
2" 2 27 =
STV (R
2 2 27
ExaMPLE 1.49. Find the complex roots of the polynomial
f(X)=X%+3X — 10 € R[X].

SOLUTION. Applying the method above, we reduce to the quadratic equation
U?-10U-1=0
whose roots are 5 + /26 € R. Notice that 5 + /26 > 0 and 5 — v/26 < 0; we also have

5—v26=

Now 5 4+ 4/26 has the complex cube roots

§/5 + /26, {’/5 +v26w, \/5+ V26w

Here we have x = u — 1/u, so the 3 complex roots of f(X) are

(3 5+x/%—1> W' (r=0,1,2).

1
5426

v/5 + /26

Notice that one of these is real, namely

) 1 (Vs+vas) -1
o e S e .

Quartic polynomials: Ferrari’s method. The following method of finding roots of quar-
tics was publicised by Cardan who attributed it to his student Lodovicio Ferrari.
A general monic quartic polynomial

F(X) = X3+ a3X3 + asX? + a1 X + ag € C[X]

can be transformed into one with no cubic term by a change of variables X — X —ay/3 giving

9(X) = f(X —a3/4) =
1 1 3

3 1 1
Y44 <a2 — 8(1%) Y? 4 <8a§ — 50203 + a1> Y — <16a2a§ — %ag +aas + ao> e ClX].

Clearly finding the roots of f(X) is equivalent to finding those of g(X), so we may as well
assume that we want to find the complex roots of

f(X)=X*+pX? +¢X +r€C[X].

Suppose that z is a root and introduce numbers %, z such that z = 2% + y (we will fix the
values of these later). Then

z :x4+2$2y+y2
= —pa? — qx —r + 22Y + ¢
=Qy-pa®—q+y —r
Now choose y to make the last quadratic expression in = a square,
(1.15) (2y —p)2* — gz + (y* —r) = (Az + B)*.
This can be done by requiring the vanishing of the discriminant
(1.16) ¢* =42y —p)(y° —r) = 0.
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Notice that if y = p/2 then we would require ¢ = 0 and then
FUX) = X"+ pX2 41 = (X2 4 p(X) 47 = 0
can be solved by solving
Z2+pZ+r=0.

Since Equation (1.16) is a cubic in y, we can use the method of solution of cubics to find a root
y =t say. Then for Equation (1.15) we have

(@ +t) = (Az + B)?,
whence
2? = —t+ (Az + B).
Thus taking the two square roots of the right hand side we obtain 4 values for x, which we
symbolically write as
x ==+ —t+ (Az + B).
REMARK 1.50. In the case of cubic and quartic polynomials over C we can obtain all the
roots by repeatedly taking square or cube roots (or radicals). Consequently such polynomials are

said to be solvable by radicals. Later we will see that this is not true in general for polynomials
of degree at least 5; this is one of the great early successes of this theory.

1.5. Automorphisms of rings and fields

DEFINITION 1.51. Let R be a ring and Ry C R a subring.
e An automorphism of R is a ring isomorphism a: R — R. The set of all such auto-
morphisms is denoted Aut(R).
e An automorphism of R over Ry is a ring isomorphism «: R — R for which a(r) =r
whenever r € Ry. The set of all automorphisms of R over Ry is denoted Autg,(R).

PROPOSITION 1.52. For a ring R with a subring Ry C R, Aut(R) and Autg,(R) form groups
under composition of functions.

PROOF. The composition o of two automorphisms «, 3: R — R is also an automorphism
of R as is the inverse of c. The identity function id = idg: R — R is an automorphism. Hence
Aut(R) forms a group under composition. The argument for Autg,(R) is similar. O

PROPOSITION 1.53. Let R be one of the core rings Z or Z/n with n > 1. Then
(i) The only automorphism of R is the identity, i.e., Aut(R) = {id}.

(ii) If S is a ring containing a core ring R and o € Aut(S), then « restricts to the identity
on R, i.e., a(r) =7 for all € R. Hence, Aut(S) = Autg(9).

PROOF. (i) For such a core ring R, every element has the form k1 for some k € Z. For an
automorphism « of R,

a(l)+ - +a(l) ifk>0,

&
a(kl) ={ —(a(1) +--- + (1)) if k<0,
—k
a(0) if k=0
1+--+1 ifk>0,
k
= —(1+---+1) ifk<0,
k
0 if k=0
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Thus o = id.
(ii) For v € Aut(S), a(1) =1 and a similar argument to that for (i) shows that a(r) = r for all
r € R. O

PROPOSITION 1.54. Let D be an integral domain and oo: D — D be an automorphism.
Then the induced homomorphism gives an automorphism a,: Fr(D) — Fr(D).

PROOF. Given «, the induced homomorphism . : Fr(D) — Fr(D) exists and we need
to show it has an inverse. The inverse automorphism a~!': D — D also gives rise to an
induced homomorphism (a~!),: Fr(D) — Fr(D). Since a ! oa =id = aoa™!, we can apply
Corollary 1.19 to show that

(@™Hwo(a) =id = (a). o (a™ ).
Hence (a), is invertible with inverse (a™!),. O

COROLLARY 1.55. There is a monomorphism of groups

()s: Aut(D) — Aut(Fr(D)); ar— ..

Note that this monomorphism need not be an epimorphism since it is possible that an
automorphism of Fr(D) could map some elements of D C Fr(D) out of D.

EXAMPLE 1.56. The field of fractions of the ring of integers Z is the field of rationals Q.
The homomorphism

()s: Aut(Z) — Aut(Q); ar— .
is an isomorphism and hence Aut(Q) = {id}.
Combining this example with Proposition 1.53(ii) we obtain a result which will prove useful
later.

PROPOSITION 1.57. Let k be one of the prime fields Q or F,, with p > 0 prime. If R is a
ring containing K as a subring, then every automorphism of R restricts to the identity on k, i.e.,

Aut(R) = Auti(R).

Let k be a field. The group of invertible 2 x 2 matrices over k is the 2 x 2 general linear
group over k,

GLQ(k) = { |:a11 a12] D Qg S ]k7 a11a92 — 12021 75 0}

az1 022
The scalar matrices form a normal subgroup
Scala (k) = {diag(t,t) : t € k, t # 0} <« GLa(k).
The quotient group is called the 2 x 2 projective general linear group over Kk,
Notice that GLa(k) has another interesting subgroup called the affine subgroup,
Affy (k) = {[g ﬂ ca,b ek, a# o} < GLoy(K).
ExXAMPLE 1.58. Let k be a field and X an indeterminate. Then Auty(k[X]) and hence
Auty (k(X)), contains a subgroup isomorphic to Aff;(k). In fact, Auty(k[X]) = Aff; (k).

PROOF. We begin by showing that to each affine matrix

A= [g ﬂ € Aff1(K)

there is an associated automorphism a4 : k[X] — k[X].

For this we use the element aX + b € k[X] together with the extension result of Theo-
rem 1.21(i) to obtain a homomorphism a4: k[X] — k[X] with a4(X) = aX + b. Using the
inverse matrix . .

1 _|la7" —a™'b
el
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we similarly obtain a homomorphism a4-1: k[X] — k[X] for which ay-1(X) =a !X —a~'b.
Using the same line of argument as in the proof of Proposition 1.54 (or doing a direct calculation)
we see that aq—1 is the inverse of vy an so a4 € Auty(k[X]). It is straightforward to check
that for Al, Ay € Affy (k),

QAsA; = Ay O A,

(note the order!) hence there is a homomorphism of groups
Affy (k) — Autg(k[X]); Ar— ay-1,

which is easily seen to be a monomorphism. Composing with ( ). we see that there is a
monomorphism Aff; (k) — Autg(k(X)). In fact, this is also an epimorphism and we leave the
proof of this as an exercise. O

EXAMPLE 1.59. Let k be a field and X an indeterminate. Then

(i) Autg(k(X)) contains a subgroup isomorphic to PGLy(k).
(ii) In fact, Auty(k(X)) = PGLa(k).

®
Q?*<> PROOF. (i) We begin by showing that to each invertible matrix

A= [‘“1 ‘“2] € GLy(k)
as; a2

there is an associated automorphism a?: k(X) — k(X).

We begin by choosing the element (a11X + a12)/(a21X + az2) € k(X) and then using Theo-
rem 1.21(i) to obtain a homomorphism k[ X | — k(X)) that sends X to (a11 X +a12)/(a21 X +ag2).
By applying ( ). to this we obtain a homomorphism (known as a fractional linear transforma-
tion) a?: k(X) — k(X) for which

A(X _ a1 X + ai

a )
a21 X + a2

Again we find that
a2 — A1 6 A2

There is an associated homomorphism of groups GLa(k) — Auty(k(X)) sending A to o .
However, this is not an injection in general since for each scalar matrix diag(t,t),

adiag(t,t) (X) — % — X,

showing that o428t ig the identity function.

In fact it is easy to see that Scals(k)<GLa(k) is the kernel of this homomorphism. Therefore
passing to the quotient PGLa(k) = GLa(k)/ Scala(k) we obtain a monomorphism PGLa (k) —
Auty(k(X)). There is one case where Scala(k) is the trivial group, namely k = Fs.

(ii) To show that every automorphism of k(X) is a fractional linear transformation is less
elementary. We give a sketch proof for the case of k = C; actually this argument can be modified
to work for any algebraically closed field, but an easy argument then shows the general case.

Let a € Autc(C(X)). There is an associated rational (hence meromorphic) function f given
by z — f(z), where a(X) = f(X), defined on C with the poles of f deleted. If we write

p(X)

0 =5

where p(X), ¢(X) € C[X] have no common factors of positive degree, then the order of f(X) is
ord f = max{degp(X),degq(X)}.

Now let ¢ € C. Then the number of solutions counted with algebraic multiplicity of the equation
f(2) = c turns out to be ord f. Also, if degp(X) < degq(X) then the number of poles of f
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counted with algebraic multiplicity is also ord f. Finally, if degp(X) > degq(X) then we can
write

1) = pi(X) +

where po(X),p1(X) € C[X] and degpo(X) < degq(X). Then the number of poles of f counted
with algebraic multiplicity is
deg p1(X) + ord %.

Now it is easy to see that since « is invertible so is the function f. But this can only happen
if the function f is injective which means that all of these numbers must be 1, hence ord f = 1.

Thus X+b
a
f(X)= X+ d # constant

and the matrix [Z b} must be invertible. O

d
Clearly not every fractional linear transformation a: k(X) — k(X) maps polynomials to
polynomials so ( ).«: Autg(k[X]) — Autk(k(X)) is not an epimorphism.
Now we turn to a more familiar field R, the real numbers.

ProproSITION 1.60. The only automorphism of the field R is the identity function, hence
Aut(R) = {id}.

[ )
C?*O PRrROOF. First we note that Q C R is a subring and if & € Aut(R) then a(gq) = ¢ for

q € Q by Example 1.56.

We recall from Analysis that the rational numbers are dense in the real numbers in the
sense that each r € R can be expressed as a limit r = lim,_ .~ ¢, Where ¢, € Q. Then for a
continuous function f: R — R, its value at r depends on its values on Q since

f(T‘) = f(nh—{%o Qn) = nh—{go f(Qn)

We will show that an automorphism « € Aut(R) is continuous.
First recall that for xz,y € R,

r<y <= 0<y—ax <= y—ax=1tfor some non-zerot € R.
Now for a € Aut(R) and s € R, we have a(s?) = a(s)?. Hence,
z <y= aly) — a(z) = a(t)? for some non-zero t € R = a(z) < a(y).

So « preserves order and fixes rational numbers.
Now let z € R and € > 0. Then we can choose a rational number ¢ such that 0 < ¢ < ¢.
Taking 6 = g we find that for y € R with |y — x| < (i.e., =0 <y —x < §) we have

—0 =a(—9) < a(y) — a(z) < a(d) =4,
hence
la(y) — a(z)| < d < e.
This shows that « is continuous at x.

Thus every automorphism of R is continuous function which fixes all the rational numbers,
hence it must be the identity function. O

REMARK 1.61. If we try to determine Aut(C) the answer turns out to be much more com-

plicated. It is easy to see that complex conjugation ( ): C — C is an automorphism of C

and fixes every real number, i.e., () € Autg(C); in fact, Autp(C) = {id, ( )}. However, it is
not true that every o € Aut(C) fixes every real number! The automorphism group Aut(C) is
actually enormous but it is hard to find an explicit element other than id and (). Note that
given an automorphism o € Aut(C), the composition awo () o a™! is also self inverse, so there

are many elements of order 2 in the group Aut(C).
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Exercises on Chapter 1

1.1. Let R be a ring. Show that
{n€eZ:n>0andnl =0} ={n€Z:n>0and nr=0 for all r € R}.
Deduce that if char R > 0 then these sets are non-empty and
char R = min{n € Z:n > 0 and nr = 0 for all r € R}.

1.2. Let R be an integral domain.

(a) Show that every subring S C R is also an integral domain. What is the relationship
between char S and char R?
(b) If R is a field, give an example to show that a subring of R need not be a field.

1.3.  For each of the following rings R, find the characteristic char R and the characteristic
subring of R. Determine which of these rings is an integral domain. In (b) and (c), A is a
commutative ring.

(a) Any subring R C C.

(b) The polynomial ring R = A[X].

(¢) The ring of n x n matrices over A,

a1 ... Qin
R = Mat,(A) = S, e €A

apl ... Qpnp

1.4. If R is a commutative ring with unit containing the prime field IF,, for some prime p > 0,
show that the function ¢: R — R given by ¢(t) = tP, defines a ring homomorphism. Give
examples to show that ¢ need not be surjective or injective.

1.5. Let R and S be rings with unity and @) <.S a prime ideal.
(a) If ¢: R — S is a ring homomorphism, show that

e lQ={rcR:p(r)cQ}CR
is a prime ideal of R.
(b) If R C S is a subring, show that @ N R is a prime ideal of R.
(c) If the word ‘prime’ is replaced by ‘maximal’ throughout, are the results in parts (a)
and (b) still true? [Hint: look for a counterexample.]

(d) If R C Sis a subring and P < R is a maximal ideal, suppose that Q<.S is a prime ideal
for which P C ). Show that Q " R = P.

1.6. Let k be a field, R be a ring with unit and ¢: k — R a ring homomorphism. Show that
 is a monomorphism.

1.7. Consider the sets
Z2()={u+vi:u,veZ} CC, Q»i)={u+vi:uveQ} CC.
(a) Show that Z(i) and Q(7) are subrings of C. Also show that Z(7) is an integral domain,
Q(i) is a field and Z(i) is a subring of Q(7).
(b) Show that the inclusion homomorphism inc: Z(i) — Q() extends to a monomorphism
inc,: Fr(Z(i)) — Q).
(c) Show that inc, is an isomorphism, so Fr(Z(7)) = Q(7).
1.8. Let R be a commutative ring.

(a) If a,b € R, show that there is a unique ring homomorphism v, ,: R[X] — R[X] for
which g (1) =7 if r € R and 9(X) = aX + 0. If ¢,d € R, determine 1,3 0 ¢ q. If
a is a unit, show that 1), is an isomorphism and find its inverse.

(b) Now suppose that R =k is a field and a,b € k with a # 0. Prove the following.

(i) If f(X) € k[X], the degbap(f(X)) = deg f(X).



21

(ii) If p(X) € K|
(iii) If p(X) € K|

1.9. Let k be a field and k[[X]] be the set consisting of all power series

] is a prime then so is 145(p(X)).

X
X] is an irreducible then so is 145(p(X)).

o0
Y aXt=agtaX 4o tap X
k=0
with a; € k.

(a) Show that this can be made into an integral domain containing k[X| as a subring by

defining addition and multiplication in the obvious way.
(b) Show that >3 ar X" € k[X]] is a unit if and only if ag # 0.
(c) Show that Fr(k[[X]]) consists of all finite tailed Laurent series

(o]
> 4 XF = a X ap X 4 X
k=¢

for some ¢ € Z and ay € k.

1.10. Taking k = Q, find the quotient and remainder when performing long division of f(X) =
6X*—6X3+3X2-3X —2byd(X)=2X3+X +3.

1.11. Taking k = 3, find the quotient and remainder when performing long division of
f(X)=2X3+2X%+ X +1 by d(X) =2X3+2X.

1.12. Let p > 0 be a prime. Suppose that f(X) = ap + a1 X + -+ + a, X" € Z[X] with
p 1 a, and that f(X) € F,[X] denotes the polynomial obtained by reducing the coefficients of

f(X) modulo p. If f(X) is irreducible, show that f(X) is irreducible. Which of the following
polynomials in Z[X] is irreducible?

X3-X+1, X342X+1, X’+X-1, X°—X+1, X°+X-1, 5X°—10X+X2%2-2.

1.13. Find generators for each of the following ideals:
L ={f(X) €QX]: f(i) =0}aQIX], L ={f(X)eQX]:f(v2i) =0} <Q[X],
Is = {f(X) € QIX]: f(vV2) =0} 2QIX], L= {f(X)€R[X]: f(V2) =0} <R[X],
I = {f(X) e RIX]: f(V2i) = 0} <R[X],  Is={f(X) € R[X]: f(Gs) = 0} <R[X].

1.14.  Consider the inclusion inc: Q — C and its extension to ¢ 5: Q[X] — C. Determine
the image € 5 Q[X] C C. What is ¢_ 5 Q[X] C C? Find kere ;5<Q[X] and kere_ 5 <Q[X];
are these maximal ideals?

1.15. Let w = (=1 ++/3i)/2 € C. Consider the inclusion inc: Q — C and its extension
to g, Q[X] — C. Determine the image ¢, Q[X] C C. Determine kere,, <Q[X] and decide
whether it is maximal. Find another evaluation homomorphism with the same kernel and image.

1.16. Consider the inclusion inc: Q — C and its extension to g4: Q[X] — C where « is
one of the 4 complex roots of the polynomial f(X) = X% —2 € Q[X]. Determine the image
£q Q[X] C C and the ideal kere, <Q[X]; is the latter ideal maximal? What happens if « is
replaced by one of the other roots of f(X)?

Repeat this problem starting with the inclusion of the real numbers into the complex num-
bers inc: R — C and ¢,: R[X] — C.

1.17. Use Cardan’s method to find the complex roots of the polynomial
f(X)=X%-9X2 421X —5.

1.18. Consider the real numbers

3 3 3 2 /7 3 2 /7
=1/1 V1 10 —v1 = A1+ =4/= 1— —4/=.
leY \/0+ 08+\/0 08, p \/ +3\/;+\/ 3\/;
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Find rational cubic polynomials f(X) and ¢g(X) for which f(«a) = 0 = g(83). Hence determine
these real numbers.

1.19. Prove the final part of Example 1.58 by showing that there is an isomorphism of groups
Affl (k) = Autk(]k[X])

1.20. Let k be any field. Consider the 6 automorphisms a;: k(X) — k(X) (j = 1,...,6)
defined by

ar(f(X)) = f(X), ax(f(X)) = f(1-X), az(f(X)) = f(1/X),
a(f(X)) = (X =1)/X),  as(f(X))=f1/01-X)), as(f(X))=f(X/(X-1)).

Show that the set consisting of these elements is a subgroup I'y < Auty(k(X)) isomorphic to
the symmetric group S3. When k = Fy, show that I'y = GLa(k).

o~ o~

1.21. Determine the cyclotomic polynomial ®20(X).

1.22. Let p > 0 be a prime.
(a) Show that for k£ > 1, the cyclotomic polynomial ®,.(X) satisfies

1

B (X) = @p(XP" )

and has as its complex roots the primitive p*-th roots of 1.

(b) Show that ®,x(X) € Q[X] is irreducible.

(c) Generalize part (a) to show that if n = pi* ---p;* is the prime power factorization of n
with the p; being distinct primes and r; > 0, then

T —1

D (X) = Pp, .y (Xp;rlmp’“ )-

1.23. For n > 2, show that
XM, (X = d,(X).

1.24. Show that for n > 1, ¢, + ¢, ! = 2cos(27/n).

Find expressions for (5 —|—C§1 and C52—|—C52 in terms of cos(27/5). Hence find a rational polynomial
which has cos(27/5) as a root.

1.25. Let p > 0 be a prime and K be a field with char K = p.

(a) Show that if ( € K is a p-th root of 1 then ¢ = 1. Deduce that if m,n > 0 and p 1 n,
then every np™-th root of 1 in K is an n-th root of 1.

(b) If a € K, show that the polynomial X? — a € K[X] has either no roots or exactly one
root in K.



CHAPTER 2

Fields and their extensions

2.1. Fields and subfields

DEFINITION 2.1. Let K and L be fields and suppose that K C L is a subring. Then we say
that K is a subfield of L; L is also said to be an extension (field) of K. We write K < L to
indicate this and K < L if K is a proper subfield of L, i.e., if K # L. We will also sometimes
write L/K when discussing the extension of K to L.

An important fact about an extension of fields L/K is that L is a K-vector space whose
addition is the addition in the field L while scalar multiplication is defined by

u-r=ur (uekK,xel).

DEFINITION 2.2. We will call dimg L the degree or index of the extension L/K and use the
notation [L : K| = dimg L. An extension of fields L/K is finite if [L : K] < oo, otherwise it is
infinite.

EXAMPLE 2.3. Show that the extension C/R is finite, while R/Q and C/Q are infinite.

SOLUTION. We have
C={x+vyi:z,yeR}
so 1,4 span C as a vector space over R. Since i ¢ R, these elements are also linearly independent
over R and therefore they form a basis, whence [C : R] = 2. The infiniteness of R/Q and C/Q are
consequences of the fact that any finite dimensional vector space over Q is countable, however
R and C are uncountable. A basis for the Q-vector space R is known as a Hamel basis. O

EXAMPLE 2.4. Consider the extension Q(v/2)/Q where
QV2) = {r+yv2:2,y €Q}.
Show that [Q(v/2) : Q] = 2.

SOLUTION. The elements 1,/2 clearly span the Q-vector space Q(y/2). Now recall that
V2 ¢ Q. If the elements 1, V2 were linearly dependent we would have u + vv/2 = 0 for some
u,v € Q not both zero; in fact it is easy to see that we would then also have u, v both non-zero.
Thus we would have

V2 = —% €Q,

which we know to be false. Hence 1, /2 are linearly independent and so form a basis for Q(v/2)
over Q and [Q(v/2) : Q] = 2. O

If we have two extensions L/K and M/L then it is a straightforward to verify that K < M
and so we have another extension M/K.

DEFINITION 2.5. Given two extensions L/K and M/L, we say that L/K is a subextension
of M/K and sometimes write L/K < M/L.

THEOREM 2.6. Let L/K be a subextension of M/K.
(i) If one or both of the dimensions [L : K| or [M : L] is infinite then so is [M : K].
(ii) If the dimensions [L : K] and [M : L] are both finite then so is [M : K] and

[M:K|]=[M:L][L:K].

23
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ProOF. (i) If [M : K] is finite, choose a basis mq,...,m, of M over K. Now any element
u € M can be expressed as

u=1timy+---+t,my,

where t1,...,t, € K; but since K C L, this means that my,...,m, spans M over L and so
[M : L] < co. Also L is a K-vector subspace of the finite dimensional K-vector space M, hence
[L: K] < oo.
(ii) Setting » = [L : K] and s = [M : L], choose a basis ¢1,...,¢, of L over K and a basis
mi,...,mg of M over L.

Now let v € M. Then there are elements 1, ...,ys € L for which

v=y1mi+ -+ Ysms.
But each y; can be expressed in the form
yj = x1j€1 + -+ a:rjﬁr

for suitable z;; € K. Hence,

v= Z (Z a:ij&) mj =y Y wij(limy),

j=1 \i=1 j=1i=1

where each coefficient z;; is in K. Thus the elements {;m; (i =1,...,r,j =1,...,s) span the
K-vector space M.
Now suppose that for some t;; € K we have

Z Z tij (&m]) =0.

j=1 i=1

On collecting terms we obtain

i (i tij&) m; = 0,
j=1 \i=1

where each coefficient Y ;_, ¢;;¢; is in L. By the linear independence of the m; over L, this
means that for each j,

r
Z L‘ijgi = 0.
=1

By the linear independence of the ¢; over K, each t;; = 0.
Hence the ¢;m; form a basis of M over K and so

[M:K]=rs=[M:L][L:K]. O

We will often indicate subextensions in diagrammatic form where larger fields always go
above smaller ones and the information on the lines indicates dimensions

M

\

\
\

L | [M:K|=[M:L] [L:K]
|

/

/

K

[M:L]

[L:K]

We often suppress ‘composite’ lines such as the dashed one. Such towers of extensions are our
main objects of study. We can build up sequences of extensions and form towers of arbitrary
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length. Thus, if L1/K, Lo/Ly,..., Lx/Lig_1 is a such a sequence of extensions, there is a
diagram
Ly,

Lk:_l
|
|
/

/

K

2.2. Simple and finitely generated extensions

DEFINITION 2.7. Let F' be a field and K < F. Given elements uq,...,u, € F we set
K(uy,...,uy) = ﬂ L
K<LEF
UL yeesUp EL
which is the smallest subfield in F' that contains K and the elements wq,...,u,. The ex-
tension K(ui,...,u,)/K is said to be generated by the elements u,...,u,; we also say that

K(uy,...,u,)/K is a finitely generated extension of K. An extension of the form K(u)/K is
called a simple extension of K with generator u.

We can extend this to the case of an infinite sequence uq,...,u.,... in F' and denote by
K(uy,...,uy,...) < F the smallest extension field of K containing all the elements wu,-.

It is not difficult to show that
(2.1) K(ui,...,up) =
{f(ul, cey Up)

g(ut, ... up)

Reordering the u; does not change K (u1,...,uy).

S F:f(Xl,...,XT),g(Xl,...,XT) EK[Xl,...,XT], g(ul,...,uw) 7&0}

PROPOSITION 2.8. Let K(u)/K and K(u,v)/K(u) be simple extensions. Then
K(u,v) = K(u)(v) = K(v)(u).
More generally,
K(U1, cee 7un) = K(ulv .- 7un*1)(un)
and this is independent of the order of the sequence u1,. .., Uy,.

THEOREM 2.9. For a simple extension K(u)/K ezactly one of the following conditions holds.

(i) The evaluation at u homomorphism €,: K[X| — K(u) is a monomorphism and on
passing to the fraction field gives an isomorphism (gy).: K(X) — K(u). In this case,
K(u)/K is infinite and u is said to be transcendental over K.

(ii) The evaluation at w homomorphism e,: K[X] — K(u) has a non-trivial kernel
kere, = (p(X)) where p(X) € K[X] is an irreducible monic polynomial of positive de-
gree and the quotient homomorphism ,: K[X]/(p(X)) — K(u) is an isomorphism.
In this case K(u)/K is finite with [K(u) : K] = degp(X) and u is said to be algebraic
over K.

Proor. (i) If kere,, = (0), all that needs checking is that (¢,)« is an epimorphism; but as
u is in the image of (e,)« this is obvious.
(ii) When ker e, # (0), Theorem 1.30(iv) implies that the image of ¢, is a subfield of K (u) and
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since it contains u it must equal K (u). Hence €, is an isomorphism. Using Long Division, we
find that every element of K[X]/(p(X)) can be uniquely expressed as a coset of the form

f(X) + (p(X)),

where deg f(X) < degp(X). Hence every element of K[X]/(p(X)) can be uniquely expressed
as a linear combination over K of the d cosets

L+ (p(X)), X+ (p(X)), X2+ (p(X)),-.., X+ (p(X)),

where d = degp(X). Via the isomorphism &, under which &,(X* + (p(X))) = u¥, we see that
the elements 1,u,...,u"" form a basis for K (u) over K. O

EXAMPLE 2.10. For the extension Q(v/2,+/3)/Q we have [Q(v/2,v/3) : Q] =
PRrOOF. By Example 2.4 we know that [Q(v/2) : Q] = 2. We have the following tower of

extensions.
Q(v2,v3)
[Q@(V2,V3):Q(V2 \
Q(?2) /;[@(\/5,«/5):@]=2[@(\/§,x/§):@(\/i)]
2 /
Q
We will show that [Q(v/2,v/3) : Q(v/2)] = 2.
Notice that if u € Q(v/2,v3) = Q(v/2)(v/3) then u = a + b\/3 for some a,b € Q(+/2),
so 1,v/3 span Q(v/2,/3) over Q(v/2). But if these are linearly dependent then v/3 € Q(v/2).

Writing
\6 =v+ w\@

with v, w € Q, we find that

v+ 20 + 200V2 =3 € Q,
and hence 2vwyv/2 € Q. The possibilities v = 0 or w = 0 are easily ruled out, while v,w # 0
would implies that v/2 € Q which is false. So 1,v/3 are linearly independent over Q(v/2)
and therefore form a basis of Q(v/2,v/3). This shows that [Q(v/2,v3) : Q(v/2)] = 2 and so
[Q(V2,V3): Q] = 4. O

REMARK 2.11. There are some other subfields of Q(ﬂ , \/5) which are conveniently displayed
in the following diagram.

Q(v2,V3)

One idea in the verification of Example 2.10 can be extended to provide a useful general
result whose proof is left as an exercise.

PROPOSITION 2.12. Let p1,...,pn be a sequence of distinct primes p; > 0. Then
Von & QP15 V/Pr-1):
Hence [Q(\/P1, - /Pn) : Q(\/PLs -+ -, /Pa1)] = 2 and [Q(\/P1, - .., /Pn) : Q] =27,
EXAMPLE 2.13. For the extension Q(v/2,)/Q we have [Q(v/2,4) : Q] = 4.
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PrOOF. We know that [Q(v/2) : Q] = 2. Also, i ¢ Q(v/2) since i is not real and Q(v/2) < R.
Since i2 + 1 = 0, we have Q(v/2,4) = Q(v/2)(i) and [Q(v/2,4) : Q(+/2)] = 2. Using the formula

[Q(V2,1) : Q) = [Q(V2,4) : Q(V2)] [Q(V2) : ],
we obtain [Q(v/2,1) : Q] = 4. O
This example also has several other subfields, with only Q(v/2) = Q(+/2,4) N R being a

subfield of R.
. C

0o Q(V2,1)
/ ’ X
Q(V2) Q(i) Q(V21)

A

Q

EXAMPLE 2.14. For n > 1, let E, = Q(2"/") < R, where 2'/" € R denotes the positive real
n-th root of 2.
(i) Show that [E, : Q] = n.
(ii) If m > 1 with m | n, show that E,, < E,, and determine [E,, : E,,].
(iii) If m, n are coprime, show that E,,, = Q(21/™,2/7).

SOLUTION. (i) Consider the evaluation homomorphism eq1/»: Q[X] — E,. Applying the
Eisenstein Test 1.37 using the prime 2 to the polynomial X™ — 2 € Z[X], we find that

ker€21/n - (Xn - 2) QQ[XL

and the induced homomorphism &51/.: Q[X]|/(X"™ — 2) — E, is an isomorphism. Hence
[En : Q] = n.
(ii) Since n/m is an integer,
21/m _ (21/n)n/m € E,,

So)
By Theorem 2.6 we have

n=I[E,: Q| =[E,: Ey|[En:Q =m[E, : E,],
whence [E,, : Ep,] = n/m.
(iii) By (ii) we have E,, < Ep,, and E,, < Ep,, hence Q(Ql/m, 27 < Epn. As ged(m,n) =1,
there are integers r, s for which rm + sn =1 and so

1 _rm4+sn T

s
This shows that

2t/ — (V/myr (21 € Q! 21/,
whence E,,, < Q(2'/™,2/™). Combining these inclusions we obtain E,,, = Q(2'/™,2Y/™). O
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Exercises on Chapter 2

2.1. Let p € N be an prime. Show that the extension Q(,/p)/Q has [Q(,/p) : Q] = 2.
2.2. Let p,q > 0 be distinct primes. Show that [Q(\/p, /q) : Q(\/p)] = 2.

2.3. Prove Proposition 2.12 by induction on n.

2.4. Let K a field with char K # 2 and suppose that L/K is an extension. If a,b € K are
distinct, suppose that u,v € L satisfy u? = a and v? = b. Show that K(u,v) = K(u + v).
[Hint: first show that uxv # 0 and deduce that u—v € K(u+wv); then show that u,v € K(u+v).]

2.5. Show that [Q(7) : Q] = 2.

2.6. Show that [Q(v/3,4) : Q] = 4. Find the three subfields L < Q(v/3,4) with [L : Q] = 2 and
display their relationship in a diagram, indicating which ones are subfields of R.
2.7. Let (5 = €2™/5 € C.

(a) Explain why [Q(¢s) : Q] = 4.

(b) Show that cos(27/5), sin(27/5)i € Q((5).

(c) Show that for t € R,

cos 5t = 16 cos® t — 20 cos® t 4 5 cost.
(d) Show that the numbers cos(2kn/5) with k = 0,1, 2, 3,4 are roots of the polynomial
F(X)=16X° —20X3 +5X — 1= (X —1)(4X%2 4+ 2X —1)?

and deduce that [Q(cos(27/5)) : Q] = 2.
(e) Display the relationship between the fields Q, Q(cos(27/5)), and Q({5) in a suitable
diagram.

2.8. This question is for those who like lots of calculation or using Maple. Let (7 = ¢2™/7 ¢ C.
(a) Explain why [Q(¢r) : Q] = 6.
(b) Show that cos(27/7), sin(27/7) i € Q((r).
(c) Show
cos 7t = 64 cos’ t — 112 cos’ t + 56 cos> t — 7 cost.
Show that the numbers cos(2kn/7) with £ =0,1,...,6 are roots of the polynomial

F(X)=64X7 —112X° 4 56X3 —7X — 1= (X — 1)(8X3 +4X% —4X —1)2
and deduce that [Q(cos(27/7)) : Q] = 3.
(d) Show that sin(27/7) i is a root of
g(X) =64X7 4+ 112X° + 56 X% + 7X = X(64X°® 4+ 112X* 4+ 56X% 4+ 7)

and that 64X%+112X*+56X2+7 € Q[X] is irreducible. What is [Q(sin(27/7) ) : Q]?
(e) Display the relationship between the fields Q, Q(cos(27/7)), Q(sin(27/7) i) and Q(¢r)
in a diagram.
(f) Is i € Q(¢r)?
2.9. In this question we continue to consider the situation described in Example 2.14.
(a) Show that
Autg(Ey) = {1d} ?f n ?s odd,
{id,7,} = Z/2 if n is even,
where 7, has composition order 2.
(b) Let E = | J B, <R. Show that Autg(E) = {id}.
n>1
(c) Display the 6 subfields of Fy in a diagram.
(d) Which of the subfields in part (¢) contain the element 21/2 4 21/3?



CHAPTER 3

Algebraic extensions of fields

3.1. Algebraic extensions
Let L/K be an extension of fields. From Theorem 2.9(ii), recall the following notion.

DEFINITION 3.1. An element t € L is algebraic over K if there is a non-zero polynomial
p(X) € K[X] for which p(t) = 0.

Notice in particular that for an element ¢ € K, the polynomial p(X) = X — ¢ € K[X]
satisfies p(t) = 0, so such a t is algebraic over K.
Theorem 2.9 allows us to characterize algebraic elements in other ways.

PROPOSITION 3.2. Lett € L. Then the following conditions are equivalent.

(i) t is algebraic over K.
(ii) The evaluation homomorphism e;: K[X| — L has non-trivial kernel.
(iii) The extension K(t)/K is finite dimensional.

DEerINITION 3.3. If t € L is algebraic over K then by Proposition 3.2,
kere; = (minpolth(X)) # (0),
where minpoly ;- ,(X) € K[X] is an irreducible monic polynomial called the minimal polynomial

of t over K. The degree of minpolyy ,(X) is called the degree of t over K and denoted by
degp t.

ProproSITION 3.4. Ift € L is algebraic over K then
[K(t) : K] = degminpolyx ,(X) = degy t.
PRrOOF. This follows from Theorem 2.9(ii). O

REMARK 3.5. Suppose that t € L is algebraic over K and p(X) € kere; with degp(X) =
deg minpoly - ;(X). Then minpoly x +(X) | p(X) and so

p(X) = uminpoly . ,(X)
for some u € K. In particular, when p(X) is monic,
p(X) = minpolyg ,(X).
We will often use this without further comment.
EXAMPLE 3.6. Consider C/Q. The minimal polynomial of v/2 € C over Q is
minpolyq,  5(X) = X2 -2
PROOF. Clearly X? — 2 € kere s since (v2)? — 2 = 0. By Example 2.4,

deg minpoly,, 5(X) = [Q(v2) : Q] =2,

hence
minpolyg,  5(X) = X% -2 O

EXAMPLE 3.7. Consider C/Q. The minimal polynomial of i € C over Q is X2 + 1.

PROOF. Clearly X2 + 1 € kere; since i +1 = 0. As [Q(i) : Q] = 2, we have
minpolyg ,(X) = X241 O

29
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EXAMPLE 3.8. Consider C/Q. Find the minimal polynomial of the primitive 6-th root of
unity, (g € C over Q.

SOLUTION. Recall from Example 1.43 that (g is a root of the irreducible cyclotomic poly-
nomial
Og(X) = - X+1.
Then ®6(X) € kereg, so minpolyg ¢, (X) | ® (X) Since ®g(X) is irreducible and monic, we
must have
minpolyg ¢, (X) = ®6(X)
and so degg (6 = 2. O

EXAMPLE 3.9. Consider C/Q. Find the minimal polynomial of v/2 4 /3 over Q.

SOLUTION. Notice that

C(VB-V2(WBHV2)
L V; S TR v A G

So we have

Va= ((V2+V3) - (V3 VD) e Qi+ V3)
Vi= 2 ((V2+8)+ (V3- VD)) € QVE+ V),

hence Q(\/ﬁ, \/3) < Q(ﬂ+ \/3) Since @(ﬂ+ \/3) < Q(ﬁ, \/5) we must have
QV2+v3) =Q(v2,V3).
Referring to Example 2.10 we see that
dego (V2 +V3) = 4.

Let us find a non-zero polynomial in kere 5, 5 <Q[X].
Referring to Example 2.10 or Proposition 2.12 we see that v/2 + /3 ¢ Q(v/2), hence

degg/z (\[—i- V3) =2.
One polynomial in kere 5, = AQ(V2)[X] is
(X — (V2+V3)(X — (V2-V3)) = X? —2V2X — 1.
Since this is monic and of degree 2,

minpolyQ(ﬁ)yﬁJﬂ/g(X) = X2 _2V2X — 1.

Similarly,

minpolyg g 4 y5(X) = X +2V2X — 1.
Consider

p(X) = minpOI}’@(ﬂ)ﬂ/@r\/g(X) minpolyQ(ﬂ)’_ﬂﬁ/g(X)

= (X% —2V2X - 1)(X? +2V2X — 1)

=X*-10X? +1.
Then p(v/2 4+ v/3) = 0 so p(X) € kere;. Since degp(X) = 4 and p(X) is monic, we have

minpolyQﬂJﬂ/g(X):X4710X2+1‘ 0

DEFINITION 3.10. Let L/K be a finite extension. An element u € L for which L = K(u) is
called a primitive element for the extension L/K.

Later we will see that if char K = 0 then all finite extensions L/K have primitive elements.

LEMMA 3.11. Let L/K be a finite extension and w € L. Then w is a primitive element for
L/K if and only if degiu = [L : K].
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PrROOF. K(u) C L is a finite dimensional K-vector subspace. Then K(u) = L if and only
dimg K(u) = dimg L. Since degy u = dimg K(u) and [L : K] = dimg L the result follows. O

Sometimes the minimal polynomial of an element in an extension is introduced in a different
but equivalent way.

ProrosITION 3.12. Let t € L be algebraic over K. Then
I(t) = {f(X) € K[X] : f(t) = 0} € K[X]
is an ideal which is principal and has an irreducible monic generator q(X) € K[X]. In fact,
q(X) = minpoly  ,(X).

PROOF. It is easy to see that I(t) < K[X] and therefore I(t) = (¢(X)) for some monic
generator ¢(X). To see that ¢(X) is irreducible, suppose that ¢(X) = ¢1(X)g(X) with
degq;(X) < degq(X). Now as qi1(t)g2(t) = 0, we must have ¢1(t) = 0 or ga2(t) = 0, hence
q1(X) € I(t) or g2(X) € I(t). These possibilities give ¢(X) | ¢i(X) or ¢(X) | ¢2(X) and
so degq(X) < degqi(X) or degq(X) < degqa(X), contradicting the above assumption that

deg ¢;(X) < deg q(X).
The irreducible monic polynomial minpolyx ,(X) is in I(t) so ¢(X) | minpolyx ,(X) and

therefore ¢(X) = minpoly . ,(X). O
The next Lemma will often be useful.
LEMMA 3.13. Let L/K be an extension and suppose that uy, ..., u, € L are algebraic. Then
K(uy,...,uy)/K is a finite extension.
PrOOF. Use induction on n together with Proposition 2.8 and Theorem 2.6(ii). O

We now come to an important notion for extensions.

DEFINITION 3.14. The extension L/K is algebraic or L is algebraic over K if every element
t € L is algebraic over K.

PROPOSITION 3.15. Let L/K be a finite extension. Then L/K is algebraic.

PROOF. Lett € L. Since the K-vector space L is finite dimensional the powers 1,¢,...,t", ...
must be linearly dependent over K, hence for suitable coefficients ¢; € K not all zero and some
m > 1 we have

co+et+--+ent™=0.
But this means that ¢ is algebraic over K. O

PROPOSITION 3.16. Let M/L and L/K be algebraic extensions. Then the extension M /K
1s algebraic.

PROOF. Let u € M. Then u is algebraic over L, so there is a polynomial
p(X) =po+p1 X+ +pnX™ € L[X]

of positive degree with p(u) = 0. By Lemma 3.13, the extension K(po,...,pmn)/K is finite and
so is K(po, .-, pm,u)/K(po,...,pm). By Theorem 2.6(ii), K(po,...,pm,u)/K is finite, so by
Proposition 3.15, u is algebraic over K. O

DEFINITION 3.17. For an extension L/K, let
L8 = {t € L : t is algebraic over K} C L.

PROPOSITION 3.18. For an extension L/K, L8 is a subfield containing K and L8 /K is
algebraic.

PROOF. Clearly K C L*8. We must show that L& < L.

Let u,v € L¥8. Then by Lemma 3.13, K(u,v)/K is a finite dimensional extension, hence
every element of K (u,v) is algebraic over K. In particular, u + v and wv are in K(u,v) and if
u# 0, v~ is also in K (u,v). Therefore u + v, uv and u~! are all algebraic over K. U
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EXAMPLE 3.19. In the extension C/Q we can consider C*& < C which is called the subfield
of algebraic numbers. Similarly, in the extension R/Q the subfield

R¥e = CcrlenR < C

consists of all the real algebraic numbers. Elements of C—C?# are called transcendental complex
numbers; examples are e and w. The sets C?'2 and R?!# are both countable, whereas C and R
are uncountable, so there are in fact many more transcendental numbers but it can be hard to
determine whether a given number is transcendental or not. A more usual notation for C*
is Q since this is the algebraic closure of Q which will be discussed later. When dealing with
algebraic extensions of Q we will usually work with subfields of Q = C?¢,

We end this section with a technical result.

PROPOSITION 3.20. Let K(u)/K be a finite simple extension. Then there are only finitely
many subextensions F/K < K(u)/K.

PRrOOF. Consider the minimal polynomial minpoly ,(X) € K[X]. Now for any subexten-
sion F/K < K(u)/K we can also consider

minpoly ., (X) = co+ a1 X + -+ + 1 X'+ XF € FlX],

which divides minpoly ,(X) in F[X]. The Unique Factorization Property 1.32 implies that
minpoly  ,,(X) has only finitely many monic divisors in K(u)[X], so there are only a finite
number of possibilities for minpoly s, (X). Now consider Fy = K(co,c1,. .., c,1), the extension
field of K generated by the coefficients of minpoly ., (X). Then Fy < F and so minpoly ,,(X) €
Fyp[X] is irreducible since it is irreducible in F'[X]; hence minpoly ., (X) = minpoly g, ,,(X). We
have
[K(u): F| = deg minpoly ., (X) = deg minpoly s, ,,(X) = [K(u) : Fy),

hence F' = Fy.

This shows that there are only finitely many subextensions F//K < K (u)/K, each of which
has the form K(ag,a1,...,as—1), where

ap+ a1 X 4+ -+ a1 X7+ X e K(u)[X]
is a factor of minpoly  ,,(X) in K (u)[X]. O

3.2. Splitting fields and Kronecker’s Theorem

We can now answer a basic question. Let K be a field and p(X) € K[X] be a polynomial
of positive degree.

QUESTION 3.21. Is there an extension field L/K for which p(X) has a root in L?
A stronger version of this question is the following.

QUESTION 3.22. Is there an extension field E/K for which p(X) factorizes into linear factors
in E[X]?

DEFINITION 3.23. p(X) € K[X] splits in E/K or over E if it factorizes into linear factors
in E[X].

Of course, if we have such a field E then the distinct roots ui, ..., u; of p(X) in E generate
a subfield K (u1,...,u;) < E which is the smallest subfield of E that answers Question 3.22.

DEFINITION 3.24. Such a minimal extension of K is called a splitting field of p(X) over K
and we will sometimes denote it by K(p(X)) or K.

We already know how to answer Question 3.21.

THEOREM 3.25 (Kronecker’s Theorem: first version). Let K be a field and p(X) € K[X] be
a polynomial of positive degree. Then there is a finite extension L/K for which p(X) has a root
in L.
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PRrOOF. We begin by factorizing p(X) € K[X] into irreducible monic factors ¢;(X) together
with a constant factor c:

p(X) = cq1(X) - g (X).

)
Now for any j we can form the quotient field K[x]/(¢;(X)) which is a finite dimensional (simple)
extension of K and in which the coset X + (¢;(X)) satisfies the equation

¢ (X + (¢j(X))) = 0+ (¢;(X)).

Hence p(X) has a root in K|z]/(q;(X)).
Of course, this construction is only interesting if ¢;(X) to has degree bigger than 1 since a
linear polynomial already has a root in K. O

To answer Question 3.22 we iterate this construction. Namely, having found one root u; in
an extension L;/K we discard the linear factor X — u; and consider the polynomial

p(X)

X) =
pl( ) X—’LLl

€ [1[X].

We can repeat the argument to form a finite extension of L; (and hence of K) containing a
root of p;(X) and so on. At each stage we either already have another root in L; or we need to
enlarge the field to obtain one.

THEOREM 3.26 (Kronecker’s Theorem: second version). Let K be a field and p(X) € K[X]
be a polynomial of positive degree. Then there is a finite extension E/K which is a splitting
field of p(X) over K.

In practise we often have extension fields ‘lying around in nature’ containing roots and we
can work inside of these. When working over Q (or any other subfield of C) we can always find
roots in C by the Fundamental Theorem of Algebra. We then refer to a subfield of C which is
a splitting field as the splitting subfield.

ExAMPLE 3.27. Find a splitting field E/Q for p(X) = X*—4 over Q and determine [E : Q).

SOLUTION. Notice that
p(X) = (X* —2)(X* +2),

so first we adjoin the roots /2 of (X? — 2) to form Q(v/2, —v2) = Q(v/2) which gives an
extension Q(v/2)/Q of degree 2.

Next consider the polynomial X2 + 2 € Q(v/2)[X]. The complex roots of X2 + 2 are ++/2i
and these are not real, so this polynomial is irreducible in Q(v/2)[X]. Hence we need to consider

Q(v2,v/2i) = Q(+/2,4) and the extension Q(v/2,4)/Q(+/2) which has degree 2.
C

QWVE, i)

adjoin roots of X2 +2| 2

Q(v2)

2

adjoin roots of X2 — 2

Q

Thus the splitting subfield of p(X) over Q in C is Q(v/2,4) and [Q(v/2,i) : Q] = 4. O
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Of course we could have started by adjoining roots of X2 + 2 and then of X? — 2, giving a
tower

C

QWVZ,i)

adjoin roots of X2 — 2|2

Q(v2i)

2

adjoin roots of X2 + 2

Q

An important point is that if a splitting field exists inside of a given extension field F/K, it is
unique.

PROPOSITION 3.28. Let F/K be an extension field and p(X) € K[X]. If E1,FE> < F are
splitting subfields for p(X) over K then E; = Es.

PROOF. Let uq,...,ur € F be the distinct roots of p(X) in F. By definition, K (uq, ..., ux)
is the smallest subfield containing K and all the u;. But K(u1,...,u;) must be contained in
any splitting subfield, so E; = K(uq,...,u;) = Es. O

Since we will frequently encounter quadratic polynomials we record a useful result on roots
of such polynomials. Recall that p(X) = aX? + bX + ¢ € K[X] is quadratic if a # 0 and its
discriminant is

A=b —dace K.

The proof of the next result is the standard one which works provided 2 has an inverse in K,
i.e., when char K # 2.

PROPOSITION 3.29. Let K be a field of characteristic different from 2. Then the quadratic
polynomial p(X) = aX? +bX + c € K[X] has

e no roots in K if A is not a square in K;
e one root —b/(2a) = —(2a)'b if A =0;
e two distinct roots
—b+0
2a

(2a) " (=b+9), _62; 0 _ (2a) Y (=b—0),

if A = 62 for some non-zero § € K.

In particular, the splitting field of p(X) over K is K if A is a square in K and K () otherwise,
where 4 is one of the two square roots of A in some extension of K such as the algebraic closure
K which we will introduce in Section 3.4.

ExAMPLE 3.30. Find a splitting field £/Q for p(X) = X3 —2 over Q and determine [E : Q).

SOLUTION. By the Eisenstein Test 1.37, p(X) is irreducible over Q. One root of p(X) is
V2 € R so we adjoin this to Q to form an extension Q(+/2)/Q of degree 3. Now

p(X) = (X — V2)(X2 + V2X + (V2)?)

and the second factor has the non-real complex roots v/2 (3 and /2 C?? which lie in the extension
Q(V/2,¢3)/Q(3/2) of degree 2. So the splitting subfield of X® — 2 in C over Q is Q(+/2,(3) for
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which [Q(V/2,(3) : Q] = 6.

An alternative strategy would have been to adjoin one of the other roots v/2(3 or \3@{3?
first. We could also have begun by adjoining (3 to form the extension Q((3)/Q, but none of
the roots of p(X) lie in this field so the extension Q(+/2,(3)/Q((3) of degree 3 is obtained by
adjoining one and hence all of the roots. 0

3.3. Monomorphisms between extensions

DEFINITION 3.31. For extensions F//K and L/K, let Monog (L, F) denote the set of all
monomorphisms I — F which fix the elements of K.

REMARK 3.32. We always have Autg (F') C Monog (F, F') and Monog (F, F') is closed under
composition but is not always a group since elements are not necessarily invertible. Of course,
if /K is finite, then Monog (F, F') = Autx (F) since every injective K-linear transformation is
surjective and so invertible.

We will also use the following notation.
DEFINITION 3.33. Let F'/K be an extension and p(X) € K[X]. Set
Roots(p, F) = {u € F : p(u) = 0},
the set of roots of p(X) in F. This is always a finite set which may of course be empty.

Suppose that p(X) € K[X] is an irreducible polynomial which we might as well assume is
monic, and F//K an extension. Then if ¢t € F' is a root of p(X), the evaluation homomorphism
et K[X] — F factors through the quotient monomorphism &;: K[X]/(p(X)) — F whose
image is K (t) < F. Of course, there is one such monomorphism for each root of p(X) in F. If
we fix one such root to and identify K[X]/(p(X)) with K (t9) via g, then each root of p(X) in
F gives rise to a monomorphism ¢; = & oE;)l: K (typ) — F for which ¢(tg) = t.

~ =1
Sﬁt:&fogto

€tg

K(to) =——=— K[X]/(p(X))

F

Notice that if ¢: K[X]/(p(X)) — F is any homomorphism extending the identity function
on K, then the coset X + (p(X)) must be sent by ¢ to a root of p(X) in F, hence every such
homomorphism arises this way. This discussion is summarized in the following result.
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PROPOSITION 3.34. Let F/K be a field extension. Let p(X) € K[X] be an irreducible
polynomial with ty € F be a root of p(X). Then there is a bijection

Roots(p, F') «— Monog (K (o), F)
given by t «—— @y, where @y : K(tg) — F has the effect pi(to) = t.
ExXAMPLE 3.35. Show that Monog(Q(v/2), C) has two elements.

SOLUTION. We have Q(v/2) & Q[X]/(X?—2) where X2 —2 is irreducible over Q. Hence the
Q-monomorphisms send v/2 to +v/2. In fact both possibilities occur, giving monomorphisms
id, a: Q(v/2) — C, where

ala+bvV2) = a—bV2.
We can replace C by Q(v/2) to obtain

Monog(Q(v2),C) = Monog(Q(v'2), Q(v2)) = Autg(Q(v2)).

We will see that this is not always true. O

EXAMPLE 3.36. Show that Monog(Q(+/2),C) has 3 elements but Monog(Q(+/2), Q(+/2))
only contains the identity function.

SOLUTION. Here minpoly, %(X) = X% — 2 and there are 3 complex roots v/2, v/2(s,
V22, As two of these roots are not real, Monog(Q(+v/2), Q(+/2)) contains only the identity

since Q(v/2) < R.
Each of the above roots corresponds to one of the subfields Q(v/2), Q(v/2(3) or Q(v/2¢3)
of C and there are 3 monomorphisms g, a1, as: Q(3/2) — C given by
ao(a+bV2 + ¢(V2)?) = a+bV2 + ¢(V2)%,
a1(a+bV2 + ¢(V2)?) = a+bV2 ¢ + c(V2)% ¢,
az(a+bV2 + ¢(V2)?) = a+bV2¢E + c(V2)? G.
The images of these mappings are
2Q(V2) = Q(V2), aiQ(V2) =Q(V2¢), 2Q(V2) =Q(V2). 0
PROPOSITION 3.37. Let F/K and L/K be extensions.

(i) For p(X) € K[X], each monomorphism o € Monog (L, F') restricts to a function
ap: Roots(p, L) — Roots(p, F') which is an injection.
(ii) If « € Monog (L, L), then cy: Roots(p, L) — Roots(p, L) is a bijection.

ProOF. (i) For u € Roots(p, L) we have

pla(u)) = a(p(u)) = a(0) =0,

so o maps Roots(p, L) into Roots(p, F'). Since « is an injection its restriction to Roots(p, L) C L
is also an injection.

(ii) From (i), oyp: Roots(p, L) — Roots(p, L) is an injective function from a finite set to itself,
hence it is also surjective by the Pigeon Hole Principle. Thus cy,: Roots(p, L) — Roots(p, L)
is a bijection. O

Part (ii) says that any automorphism of L/K permutes the set of roots in L of a polynomial
p(X) € K[X]. This gives us a strong hold on the possible automorphisms. In the case of finite,
or more generally algebraic, extensions it is the key to understanding the automorphism group
and this is a fundamental insight of Galois Theory.

EXAMPLE 3.38. Determine Monog(Q(v/2, (3),C).
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SOLUTION. We have already met the extension Q(+/2, (3)/Q in Example 3.30 and we will
make use of information from there. We build up the list of monomorphisms in stages.

First consider monomorphisms that fix /2 and hence fix the subfield Q(4/2). These form
the subset
3 3
Mono@(%)((@(\/i, (3),C) € Monog(Q(V/2, ¢3),C).

We know that Q(+/2, (3) = Q(¥/2)(¢3) and that (3 is a root of the irreducible cyclotomic
polynomial ®3(X) = X2+ X + 1 € Q(+/2)[X]. So there are two monomorphisms id, aq fixing
Q(¥/2), where ag has the effect
(& = &)
Oéo . 2 .
G — (3
Next we consider monomorphisms that send /2 to /2 (3. This time we have 2 distinct ways to

extend to elements of Monog(Q(V/2, ¢3), Q(V/2, (3)) since again we can send (3 to either (3 or
(3?. The possibilities are

e (V2 926) o (2 V0,
G — G ) U\ — G
Finally we consider monomorphisms that send /2 to /2 §§. There are again two possibilities
. <¢é — mg) " (ﬂ — %g}%).
G — @) P\ — G
These are all 6 of the required monomorphisms. It is also the case here that

Monog(Q(V2, ¢3),C) = Monog(Q(V2, (3), Q(V2, (3)) = Autg(Q(V2, G)),

so these form a group. It is a nice exercise to show that Aut@((@(\‘q/i (3)) = S3, the symmetric
group on 3 objects. It is also worth remarking that | Autg(Q(V/2, G3))| = [Q(V/2, ¢3) : Q. O

We end this section with another useful result.

PROPOSITION 3.39. Let L/K be an extension and o € Monog (L, L). Then « restricts to
an automorphism a8 : L& — 1218

PROOF. Suppose that u € L8, say p(u) = 0 for some p(X) € K[X] of positive degree.

Then
p(a(u)) = afp(u)) = a(0) =0,

SO v maps L8 C [ into itself and therefore gives rise to a restriction a?ls: 128 ., 1218 which
is also a monomorphism. We must show that a8 is a bijection by showing it is surjective.

Let v € L¥# and suppose that q(v) = 0 for some ¢(X) € K[X] of positive degree. Now
Roots(gq, L) # 0 since it contains v, and it is also finite. Then «,: Roots(q, L) — Roots(g, L)
is a bijection by Proposition 3.37(ii), hence v = ay(w) = a(w) for some w € Roots(q, L) C L¥8.
This shows that v € im « and so o' is surjective. O

3.4. Algebraic closures
An important property of the complex numbers is that C is algebraically closed.

THEOREM 3.40 (Fundamental Theorem of Algebra for C). Fvery non-constant polynomial
p(X) € C[X] has a root in C.

COROLLARY 3.41. Every non-constant polynomial p(X) € C[X] has a factorization
pX) = (X —ur) - (X —ua),
where c,uq,...,uq € C and this is unique apart from the order of the roots u;.
It is natural to pose the following question.
QUESTION 3.42. Let K be a field. Is there an algebraically closed field F' containing K7
By taking F!8 we might as well ask that such a field be algebraic over K.
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DEFINITION 3.43. Let K be a field. An extension F//K is called an algebraic closure of K
if F' is algebraic over K and algebraically closed.

THEOREM 3.44. Let K be a field.

(i) There is an algebraic closure of K.
(ii) Let Fy and Fy be algebraical closures of K. Then there is an isomorphism ¢: Fy — F

which fizes the elements of K.

——————————————————— >F2

Hence algebraic closures are essentially unique.

[ )
Q?*<> PROOF. See [3] for a proof using Zorn’s Lemma (see Axiom 3.48) which is logically

equivalent to the Aziom of Choice. U

Because of the uniqueness we usually fix some choice of algebraic closure of K and write K
or K& ¢l referring to it as the algebraic closure of K. We are already familiar with the example
C = C. There are some immediate consequences of Theorem 3.44. We will temporarily write
E, = E5 to indicate that for extensions F;/K and Fy/K there is an isomorphism F; — FE»
fixing the elements of K.

PROPOSITION 3.45. Let K be a field.

(i) If L/K is an algebraic extension, then L = K.
(i) If L/K is an extension, then so is L/K and (L) = K.

ProOF. (i) By Proposition 3.16, every element of L is algebraic over K. Since L is alge-
braically closed it is an algebraic closure of K.
(ii) Every non-constant polynomial in (L)*2[X] has a root in (L) and by Proposition 3.16, all
of its roots are in fact algebraic over K since (L)*® is. Hence these roots lie in (L)*®, which
shows that it is algebraically closed. O

For example, we have Q = C?# and R = C.

There is a stronger result than Theorem 3.44(ii), the Monomorphism Extension Theorem,
which we will find useful. Again the proof uses Zorn’s Lemma which we will state. First we
need some definitions.

DEFINITION 3.46. A partially ordered set (X, <) consists of a set X and a binary relation
=< such that whenever z,y,z € X,

LI A o
o if r X yandy< zthen z X z;
o ifr xyandy=<axthenz=y.

(X, X) is totally ordered if for every pair z,y € X, at least one of x < y or y < x is true.
DEFINITION 3.47. Let (X, <) be a partially ordered set and Y C X. An element § € X

is an upper bound for Y if for every y € Y, y < . An upper bound for X itself is a mazimal
element of X.

Axi0M 3.48 (Zorn’s Lemma). Let (X, <) be a partially ordered set in which every totally
ordered subset has an upper bound. Then X has a mazximal element.

THEOREM 3.49 (Monomorphism Extension Theorem). Let M /K be an algebraic extension
and L/K < M/K. Suppose that po: L — K is a monomorphism firing the elements of K.
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Then there is an extension of g to a monomorphism ¢: M — K.

¥o

M
L
K

K

A
© ¢ PROOF. We consider the set X consisting of all pairs (F,8), where F'//L < M/L and
&

§: F — K extends ¢g. We order X using the relation < for which (F1,6;) < (F», 62) whenever
Fy < F5 and 05 extends 6. Then (X, <) is a partially ordered set.
Suppose that Y C X is a totally ordered subset. Let

Then F/L < M/L. Also there is a function §: F — K defined by

0(u) = 0(u)
whenever u € F for (F,0) € Y. It is routine to check that if u € F’ for (F',0") € Y then
0" (u) = 0(u),

so 0 is well-defined. Then for every (F,0) € Y we have (F,0) < (F,0), so (F,f) is an upper
bound for Y. By Zorn’s Lemma there must be a maximal element of X, (Mo, 6p).

Suppose that My # M, so there is an element v € M for which u ¢ Mj. Since M is algebraic
over K it is also algebraic over My, hence u is algebraic over My. If

minpolyMO’u(X) =ag+ -+ apn 1 X"+ X",
then the polynomial
F(X) = 0o(ag) + -+ Op(an—1) X"+ X" € (6o Mp)[X]

is also irreducible and so it has a root v in K (which is also an algebraic closure of 6yMy <
K). The Homomorphism Extension Property 1.21 of the polynomial ring My[X] applied to
the monomorphism 6y: My — K yields a homomorphism 0: Mo[X] — K extending 6
and for which 0y(u) = v. This factors through the quotient ring Mo[X]/(minpoly,, ,(X)) to
give a monomorphism ) : My(u) — K extending 6y. But then (My,6) < (Mo(u),6) and
(Mo, 00) # (Mo(u), (), contradicting the maximality of (Mo, 6p). Hence My = M and so we
can take ¢ = 6. g

EXAMPLE 3.50. Let v € K and suppose that p(X) = minpoly ,(X) € K[X]. Then for any
other root of p(X), v € K say, there is a monomorphism ¢y : K (u) — K with ¢, (u) = v. This
extends to a monomorphism ¢: K — K.

DEFINITION 3.51. Let u,v € F;Theniv is conjugate to u over K or is a conjugate of u over
K if there is a monomorphism ¢: K — K for which v = ¢(u).

LEMMA 3.52. Ifu,v € K, then v is conjugate to u over K if and only if minpoly ¢ ,,(v) = 0.
PROOF. Suppose that v = p(u) for some ¢ € Monog (K, K). If
minpoly s ., (X) = ap + a1 X + -+ + ag_1 X+ x4,
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then
a0+a1u+---+ad,1ud*1 —|—ud =0
and so
ag+ a1v+ -+ ag_ 1wt + o = plag + aru + - - - + ag_1u? Tt +u) = 0.
The converse follows from Example 3.50. ([l

3.5. Multiplicity of roots and separability

Let K be a field. Suppose that f(X) € K[X] and u € K is a root of f(X), i.e., f(u) =0.
Then we can factor f(X) as f(X) = (X — u) f1(X) for some f1(X) € K[X].

DEFINITION 3.53. If fi(u) = 0 then u is a multiple or repeated root of f(X). If fi(u) #0
then w is a simple root of f(X).

We need to understand more clearly when an irreducible polynomial has a multiple root
since this turns out to be important in what follows. Consider the formal derivative on K[X],
i.e., the function 0: K[X] — K[X] given by

O(f(X)) = f'(X) = a1+ 202X + -+ + dag X",
where f(X) =ag + a1 X + as X? + - + a4 X? with aj € K.
PROPOSITION 3.54. The formal derivative 0: K[X| — K[X] has the following properties.
(i) 0 is K-linear.
(ii) 9 is a derivation, i.e., for f(X),g(X) € K[X],
A(f(X)g(X)) = 9(f(X))g(X) + f(X)(9(X)).
(iii) If char K =0, then ker 0 = K and 0 is surjective.
(iv) If char K =p > 0, then

ker & = {h(XP) : h(X) € K[X]}
and im O is spanned by the monomials X* with p{ (k + 1).

PROOF. (i) This is routine.
(ii) By K-linearity, it suffices to verify this for the case where f(X) = X" and g(X) = X* with
r,s > 0. But then
AX™) = (r+s)X T =r XX 4 sX" X571 = 0(X") X5 + XTO(X?).
(iii) If f(X) = ap + a1 X + apX? + -+ + agX? then
I(f(X)=0 <= a1=2a3=---=dag=0.
Sod(f(X)) =0ifand only if f(X) = ap € K. It is also clear that every polynomial g(X) € K[X]
has the form ¢g(X) = 9(f(X) where f(X) is an anti-derivative of g(X).
(iv) For a monomial X™, 9(X™) = mX™ ! and this is zero if and only if p | m. Using this we
see that
dao+ a1 X +asX?+ - +agX¥) =0 <=  a, =0 whenever p{m.
Also, im 9 is spanned by the monomials X* for which d(X**1) # 0, which are the ones with
pt(k+1). O

We now apply the formal derivative to detect multiple roots.

PROPOSITION 3.55. Let f(X) € K[X] have a root u € L where L/K is an extension. Then
u 18 a multiple root of f(X) if and only if f(X) and f'(X) have a common factor of positive
degree in K[X] which vanishes at u.

Proor. Working in L[X], let f(X) = (X —u)fi(X). Then
f1(X) = AX) + (X —u) f1(X),

so f'(u) = f1(u). Hence u is a multiple root if and only if f(X) and f’(X) have a common
factor in L[X] and hence in K[X] which vanishes at u. O
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COROLLARY 3.56. If f(X) is irreducible in K[X] then a root u is a multiple oot if and only
if f/(X) =0. In particular, this can only happen if char K > 0.

COROLLARY 3.57. If char K = 0 and f(X) is irreducible in K[X], then every root of f(X)
is stmple.

EXAMPLE 3.58. For n > 1, show that each of the roots of f(X)= X" —1 in C is simple.
SoLUTION. We have f/(X) = 9(X™ — 1) = nX""!, so for any root ¢ of f(X),

Q) =n¢m 0. O
EXAMPLE 3.59. Show that 2i is a multiple root of f(X) = X*+ 8X? + 16.
SoLUTION. We have f/(X) = 4X3+16X. Using Long Division and the Euclidean Algorithm

we find that ged(f(X), /(X)) = X2+4, where 2i is also a root of X?+4. Hence 2i is a multiple
root of f(X). In fact, X* + 8X?2 + 16 = (X2 + 4)?, so this is obvious. O

EXAMPLE 3.60. Let p > 0 be a prime and suppose that L/F, is an extension. Show each of
that the roots of f(X)= XP — 1 in L is multiple.

SOLUTION. We have f/(X) = 9(XP — 1) = pXP~! = 0, so if ¢ is any root of f(X) then
1'(¢) = 0. Later we will see that 1 is the only root of X? — 1. O

DEFINITION 3.61. An irreducible polynomial p(X) € K[X] is separable over K if every root
of p(X) in an extension L/K is simple. By Corollary 3.56, this is equivalent to requiring that
P (X) # 0. If u € L is a multiple root of p(X), then the multiplicity of u in p(X) is the maximum
m such that p(X) = (X —u)™q(X) for some ¢(X) € L[X].

PROPOSITION 3.62. Let K be a field and let K be an algebraic closure. If the irreducible
polynomial p(X) € K[X] has distinct roots uy, ..., u, € K, then the multiplicities of the uj; are
equal. Hence in K[X],

p(X) = e(X —ug)™ - (X —up)™,
where c € K and m > 1.

PRrROOF. Let u € K be a root of p(X) and suppose that it has multiplicity m, so we can
write p(X) = (X — u)"p1(X) where p1(X) € K(u)[X] and p1(u) # 0.

Now let v € K be any other root of p(X). By Proposition 3.34, there is a monomorphism

¢yt K(u) — K for which ¢p,(u) = v. When p(X) is viewed as an element of K(u)[X], the
coefficients of p(X) are fixed by ¢,. Then

@o (X —u)"p1(X)) = (X —u)"p1(X),
and so
(X = 0)"p1(X) = (X —u)"p1(X),

where p (X) € K[X] is obtained applying ¢, to the coefficients of p1 (X). Now by Corollary 1.33,
(X — )™ must divide p1(X) in K[X], and therefore the multiplicity of v must be at least m.
Interchanging the roles of v and v we find that the multiplicities of v and v are in fact equal. [

COROLLARY 3.63. Let K be a field and let K be an algebraic closure. If the irreducible
polynomial p(X) € K[X] has distinct roots uy, . ..,ur € K which are all simple then in K[X],
pX) = (X —up) - (X —up),

where ¢ € K and k = degp(X).
COROLLARY 3.64. Let K be a field and let u € K. Then the number of distinct conjugates

of u is
deg minpoly x ,, (X)

)
m

where m is the multiplicity of u in minpoly . ,(X).
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DEFINITION 3.65. An algebraic element u € L in an extension L/K is separable if its minimal
polynomial minpoly ,(X) € K[X] is separable.

DEFINITION 3.66. An algebraic extension L/K is called separable if every element of L is
separable over K.

EXAMPLE 3.67. An algebraic extension L/K of a field of characteristic 0 is separable by
Corollary 3.57.

DEFINITION 3.68. Let L/K be a finite extension. The separable degree of L over K is
(L : K) =|Monog (L, K)|.
LEMMA 3.69. For a finite simple extension K(u)/K,

(K(u) : K) = | Roots(minpoly  ,,, K)|.
If K(u)/K is separable, then [K(u) : K| = (K(u) : K).
PRrROOF. This follows from Proposition 3.34 applied to the case L = K. ]

Any finite extension L/K can be built up from a succession of simple extensions
(3.1) K(uw)/K, K(ui,u2)/K(u1), -, L =K(ui,...,u)/K(u1,...,ux_1)-
So we can use the following to compute (L : K) = (K (u1,...,u) : K).

PROPOSITION 3.70. Let L/K and M/L be finite extensions. Then

(M:K)=(M:L)(L:K).

PROOF. For o € Monog (M, K) let aj, € Monog (L, K) be its restriction to L. By the
Monomorphism Extension Theorem 3.49, each element of Monog (L, K) extends to a monomor-
phism M — K, so every element 3 € Monok (L, K) has the form 8 = aj for some a €
Monog (M, K); since (L : K) = | Monog (L, K)|, we need to show that the number of such « is
always (M : L) = | Monog (M, K)|.

So given 3 € Monog (L, K), choose any extension to a monomorphism 3: K — K; by
Proposition 3.39, B is an automorphism. Of course, restricting to M < K we obtain a monomor-
phism M — K. Now for any extension 3': M — K of 3 we can form the composition
B 1oB: M — K; notice that if u € L, then

B o f'(u) = 871 (B(u) = u,
hence B_l o3 € Monoy (M, K). Conversely, each v € Monoy (M, K) gives rise to a monomor-
phism 5 ov: M — K which extends 3. In effect, this shows that there is a bijection

{extensions of 3 to monomorphism a M — K} «— Mono (M, K),

so (M : L) = |Monor (M, K)| agrees with the number of extensions of § to a monomorphism
M — K. Therefore we have the desired formula (M : K) = (M : L)(L : K). O

COROLLARY 3.71. Let L/K be a finite extension. Then (L: K) | [L : K].

ProoF. If L/K is a simple extension then by Propositions 3.62 and 3.34 we know that this
is true. The general result follows by building up L/K as a sequence of simple extensions as
in (3.1) and then using Theorem 2.6(ii) which gives

[L . K] = [K(ul) . K] [K(ul,ug) . K(ul)] ce [K(ul, . e ,uk) . K(ul, . e ,uk,l)].
For each k, (K (u1,...,ux) : K(u1,...,ug_1)) divides [K(u1,...,ug) : K(ui,...,ux_1)], so the
desired result follows. O

PROPOSITION 3.72. Let L/K be a finite extension. Then L/K is separable if and only if
(L:K)=[L:K].
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PROOF. Suppose that L/K is separable. If K < E < L, then for any v € L, u is alge-
braic over E, and in the polynomial ring F[X] we have minpolyp ,(X) | minpolyy ,(X). As
minpoly  ,,(X) is separable, so is minpoly ,(X), and therefore L/ E is separable. Clearly £/K
is also separable. We have (L : K) = (L : E)(F : K) and [L : K] = [L : E][E : K], so to
verify that (L : K) = [L : K] it suffices to show that (L : E) =[L: E] and (E: K) = [E : K].
Expressing L/K in terms of a sequence of simple extensions as in (3.1), we have

(L:K)=(K(u1):K)---(L: K(u1,...,up-1)),
[L:K]=[K(u):K|---[L:K(u,...,up-1)]
Now we can apply Lemma 3.69 to each of these intermediate separable simple extensions to
obtain (L : K) = [L: K].

For the converse, suppose that (L : K) = [L : K]. We must show that for each v € L, u is
separable. For the extensions K(u)/K and L/K(u) we have (L : K) = (L : K(u)) (K(u) : K)
and [L: K] =[L: K(u)] [K(u) : K]|. By Corollary 3.71, there are some positive integers r, s for
which [L: K(u)] =r(L: K(u)) and [K(u) : K] = s(K(u) : K). Hence

(L: K(u)(K(u): K)=rs(L: K(u))(K(u) : K),
which can only happen if r = s = 1. Thus (K (u) : K) = [K(u) : K] and so u is separable. [

PROPOSITION 3.73. Let L/K and M/L be finite extensions. Then M/K is separable if and
only if L/K and M /L are separable.

Proor. If M/K is separable then [M : K| = (M : K) and so by Proposition 3.70,
[M:L|[L:K|]=(M:L)(L:K).

This can only happen if [M : L] = (M : L) and [L: K| = (L : K), since (M : L) < [M : L] and
(L: K) < [L: K]. By Proposition 3.72 this implies that L/K and M/L are separable.

Conversely, if L/K and M/L are separable then [M : L] = (M : L) and [L: K| = (L : K),
hence

[M:K|=[M:L|[L:K|=(M:L)(L:K)=(M:K).

Therefore M /K is separable. O

3.6. The Primitive Element Theorem

DEFINITION 3.74. For a finite simple extension L/K, an element u € L is called a primitive
element for the extension if L = K (u).

THEOREM 3.75 (Primitive Element Theorem). Let L/K be a finite separable extension.
Then L has a primitive element.

PROOF. The case where K is a finite field will be dealt with in Proposition 5.16. So we will
assume that K is infinite.

Since L is built up from a sequence of simple extensions it suffices to consider the case
L = K(u,v). Let p(X),q(X) € K[X] be the minimal polynomials of u and v over K. Suppose
that the distinct roots of p(X) in K are u = uq,...,u,, while the distinct roots of ¢(X) are
v =71,...,0s. By the separability assumption, » = degp(X) and s = deg ¢(X).

Since K is infinite, we can choose an element ¢ € K for which

L4
j
whenever j # 1. Then taking w = u+tv € L, we find that w # u; +tv; whenever j # 1. Define
the polynomial (of degree r)
h(X)=plw—-tX) € K(w)[X] C L[X].
Then h(v) = p(u) = 0, but h(vj) # p(u;) = 0 for any j # 1 by construction of ¢, so none of the
other v; is a zero of h(X).

Now since the polynomials h(X),q(X) € K(w)[X] have exactly one common root in K,
namely v, by separability their greatest common divisor in K (w)[X] is a linear polynomial which

U — Uj
Vi —
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must be X — v, hence v € K(w) and so v = w — tv € K(w). This shows that K (u,v) < K(w)
and therefore K(w) = K (u,v). O

COROLLARY 3.76. Let L/K be a finite separable extension of a field of characteristic 0.
Then L has a primitive element.

PROOF. Since Q < K, K is infinite and by Example 3.67 L/K is separable. O

To find a primitive element we can always use the menu provided in the proof of Theo-
rem 3.75, however a ‘try it and see’ approach will usually suffice.

EXAMPLE 3.77. Find a primitive element for the extension Q(v/3,7)/Q.
SoLUTION. Consider v/3+1i. Then working over the subfield Q(v/3) < Q(v/3,4) we find that
i ¢ Q(v3) <R and
(X — (V3+0)(X — (V3—1)) = X? — 23X +4 € Q(V3)[X],
hence
X? — 23X +4 = minpoly 5 5,,(X):
Now taking
(X2 —2V3X +4)(X? +2V3X +4) = X* —4X? + 16 € Q[X],
we see that minpolyq /g,,(X) | (X* —4X? 4+ 16) in Q[X]. Notice that

since (v/3 +14)7! € Q(v/3 + ). Hence
VB= (VB4 + (VB—i), i= (VB +i) - (VB 1),

are both in Q(v/3 4 1), showing that Q(v/3,i) < Q(v/3 + i) and so Q(v/3,4) = Q(v/3 +4). Thus
we must have deg minpoly, V34i(X) =4, and so minpoly, V34 (X) = X4 —4X? 4 16. O

There is a general phenomenon illustrated by Example 3.77.
PROPOSITION 3.78. Let u € K be separable over K. Then
minpoly g, (X) = (X — a1 (u)) -+ (X — aq(u)),
where vy, . .., aq are the elements of Monog (K (u), K). In particular, the polynomial
(X —on(u) - (X — ag(u)) € K[X]

is in K[X] and is irreducible therein.

PROOF. Since K (u) is separable then by Lemma 3.52,

d = degminpolyg ,(X) = [K(u) : K] = (K(u) : K). O
In Example 3.77 we have
[Q(v3,9) : Q] = [Q(V3,1) : Q(V3)[Q(V3) : Q] =2-2 = 4.
There are four monomorphisms ay: Q(v/3,i) — Q(v/3,1) given by
w72 Y)W (V) e (V2 ),
Then
a(V3+i) = (V3—1i), as(V3+i)=(—V3+i), ai(V3+i)=(—V3—1i),

" (X —V3—i)(X —V3+) (X +V3—i)(X +V3+i)=X*—4X? +16 € Q[X].
Hence this polynomial is irreducible. So we have [Q(v/3+1) : Q] = 4 and Q(v/3+1) = Q(v/3, ).
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3.7. Normal extensions and splitting fields
DEFINITION 3.79. A finite extension E/K is normal if o = E for every ¢ € Monog (E, K).

REMARK 3.80. If E/K is a normal extension then whenever an irreducible polynomial
p(X) € K[X] has a root in E then it splits in E since by Lemma 3.52 each pair of roots of p(X)
is conjugate over K and one can be mapped to the other by a monomorphism K — K which
must send F into itself.

PROPOSITION 3.81. A finite extension E/K is normal if and only if it is a splitting field
over K for some polynomial f(X) € K[X].

PROOF. Suppose that F/K is normal. Then there is a sequence of extensions
K < K(Ul) < K(Ul,'lj,g) <0 < K(ula”'vun) =FK
Construct a polynomial by taking

f(X) = minpoly g, (X) minpoly g ,,, (X) - - - minpoly . ,,,, (X).
Then by Remark 3.80, f(X) splits in E. Also E is generated by some of the roots of f(X).
Hence F is a splitting field for f(X) over K.

Now suppose that E is a splitting field for g(X) € K[X], so that E = K(v1,...,vx), where
v1,. ..,V are the distinct roots of g(X) in E. Now any monomorphism 6 € Monog (E, K) must
map these roots to 6(v1),...,0(vg) which are also roots of g(X) and therefore lie in E (see
Proposition 3.34). Since § permutes the roots v;, we have

OFE = 0K (v1,...,v) = K(O(v1),...,0(v)) = K(v1,...,v;) = E. O

This result makes it easy to recognize a normal extension since it is sufficient to describe it
as a splitting field for some polynomial over K. In Chapter 4 we will see that separable normal
extensions play a central role in Galois Theory, indeed these are known as Galois extensions.

Exercises on Chapter 3

3.1. Prove Proposition 3.2.
3.2. Finding splitting subfields E < C over Q and determine [E : Q] for each of the following

polynomials.

p(X)=X*X%4+1, pa(X) = X-2, ps(X) = X2, pa(X) = XH5X3+10X2+10X +5.
[Hint: for py(X), consider py(Y —1) € Q[Y].]

3.3. Prove that Aut@((@(\g/i, (3)) = S3, the symmetric group on 3 elements, as claimed in the

solution of Example 3.38. [Hint: work out the effect of each automorphism on the three roots of
the polynomial X3 — 2.]

3.4. Let k be a field of characteristic chark = p > 0 and k(T") be the field of rational functions
in T over k. Show that the polynomial g(X) = X? — T € k(T)[X] is irreducible and has a

multiple root in k(7"). How does g(X) factor in k(7)[X]?

3.5. Find primitive elements for the extensions Q(v/5,v/10)/Q, Q(v/2,4)/Q, Q(V/3,i)/Q,
Q(v/3,4)/Q, in each case finding it minimal polynomial over Q. [Hint: look for elements of
high degree over Q, or use the method of proof of Theorem 3.75.]

3.6. Prove the following converse of Proposition 3.20:

Let L/K be a finite extension. If there are only finitely many subextensions F//K < L/K, then
L/K is simple, i.e., L = K(w) for some w € L.

[Hint: First deal with the case where L = K (u,v), then use induction on n to prove the general
case L = K(uy,...,up).]

3.7. Let K be a field. Show that every quadratic (i.e., of degree 2) extension E/K is normal.
Is such an extension always separable?
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3.8. Let f(X) € Q[X] be an irreducible polynomial of odd degree greater than 1 and having
only one real root u € R. Show that Q(u)/Q is not a normal extension.



CHAPTER 4

Galois extensions and the Galois Correspondence

In this Chapter we will study the structure of Galois extensions and their associated Galots
groups, in particular we will explain how these are related through the Galois Correspondence.
Throughout the chapter, let K be a field.

4.1. Galois extensions

DEFINITION 4.1. A finite extension E/K is a (finite) Galois extension if it is normal and
separable.

From Section 3.5 we know that for such a Galois extension E/K, [E : K] = (E : K) and also
every monomorphism ¢ € Monog (E, K) maps F into itself, hence restricts to an automorphism
of E which will be denoted ¢, .

Also, by the Monomorphism Extension Theorem 3.49, every automorphism o € Autg(E) ex-
tends to a monomorphism F — K fixing elements of K. So there is a bijection

Monog (E, K) «+— Autg(F)
and we have
(4.1) |Autg (E)| = (F: K) =[F: K].

DEFINITION 4.2. For a finite Galois extension E/K, the group Gal(E/K) = Autg(E) is
called the Galois group of the extension or the Galois group of E over K.

Notice that Equation (4.1) implies
(4.2) |Gal(E/K)|=(FE: K)=[E: K].
We can also reformulate the notion of conjugacy introduced in Definition 3.51.

DEFINITION 4.3. Let E/K a finite Galois extension and u,v € E. Then v is conjugate to u
if there is a ¢ € Gal(E/K) for which v = p(u); we also say that v is a conjugate of u.

It is easy to see that for u,v € K, there is a finite Galois extension E/K in which v is a
conjugate of u if and only v is a conjugate of u over K in the old sense.

4.2. Working with Galois groups

Let E/K be a finite Galois extension. Then we know that E is a splitting field for some
polynomial over K. We also know that F is a simple extension of K and so it is a splitting
field for the minimal polynomial of a generating element which has degree equal to [E : K]. It
is often convenient to use these facts to interpret elements of the Galois group as permutations
of the roots of some polynomial which splits over E.

EXAMPLE 4.4. Describe the Galois group Gal(Q(v/2,v/3)/Q) as a subgroup of the group of
permutations of the roots of (X2 — 2)(X? — 3) € Q[X].

47
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SOLUTION. We have
[Q(V2,V3): Q] = [Q(v2,v3) : Q(V2)] [Q(v2) : Q] =4,

and the following non-trivial elements of the Galois group together with the element identity
a1 = id:

V2 — =2 V2 — V2 V2 — =2
=2 e — v v — e
=13 — | BT B — B YT V3 — -3
V3 — 3 V3 V3 V3 — 3
Writing the roots in the list ﬂ, —\@, \/?;, —/3 and numbering them 1 to 4 accordingly, we see

that these automorphisms correspond to the following permutations in S expressed in cycle
notation:

I

g — (12), ag— (34), ag— (12)(34). O

ExXaAMPLE 4.5. Using a primitive element u for the extension, describe the Galois group
Gal(Q(v2,V/3)/Q) as a subgroup of the group of permutations of the roots of minpolyg ,(X) €
Q[x].

SOLUTION. We have Q(\/?, \/§) = @(\@ + \/3) and the conjugates of u = V2 + /3 are
+v/2 4+ /3. Listing these as

V24 V3, VI VB, V2B V2V,

and after numbering them accordingly, we find the correspondences
az > (13)(24), oz« (12)(34), a4+ (14)(23). O

Next we summarize the properties of Galois groups that can be deduced from what we have
established so far.

RECOLLECTION 4.6. Recall that an action of a group G on a set X is transitive if for every
pair of elements x,y € X, there is an element g € G such that y = gz (so there is only one
orbit); the action is faithful or effective if for every non-identity element h € G, there is a
element z € X such that hz # z.

For an extension F//K and a polynomial f(X) € K[X], recall that Roots(f, F') denotes the
set of roots of f(X) in F.

THEOREM 4.7. Let E/K be a finite Galois extension. Suppose that E is the splitting field
of a separable irreducible polynomial f(X) € K[X] of degree n. Then the following are true.
(i) Gal(E/K) acts transitively and faithfully on Roots(f, E).
(ii) Gal(E/K) can be identified with a subgroup of the group of permutations of Roots(f, E).
If we order the roots uy, ..., u, then Gal(E/K) can be identified with a subgroup of Sy,.
(iii) | Gal(E/K)| divides n! and is divisible by n.

As we have seen in Examples 4.4 and 4.5, in practise it is often easier to use a not necessarily
irreducible polynomial to determine and work with a Galois group.

ExaMPLE 4.8. The Galois extension Q((s)/Q has degree [Q((s) : Q] = 4 and it has the
following automorphisms apart from the identity:

a: g— G, Bl (@, v .
If we list the roots of the minimal polynomial
minpolyq ((X) = ®(X) = Xty

in the order (g, (g’ €8, Cg , we find that these automorphisms correspond to the following permu-
tations in Sy:

—— (12)(34), B (13)(24), ~—— (14)(23).
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So the Galois group Gal(Q((g)/Q) corresponds to
[id, (12)(3 4), (13)(2 4), (1 9)(23)} < Su.
Noticing that
1 1.
G = 2 + ﬁz,
we easily find that v/2,i € Q(Cg); hence Q(v/2,i) < Q((g). Since [Q(v/2,1) : Q] = 4, we have

Q(v2,4) = Q(Cg). Notice that Q(+/2,1) is the splitting field of f(X) = (X2 — 2)(X2 + 1) over
Q. Now list the roots of f(X) in the order v/2, —v/2,i, —i, and observe that

V2 — V2 V2 — =2
w |70 D N amea s | TR 0
—1 — 7 —1 — —1
V2 — V2
v: _7;2 — __2.2 — (34).
- {

In this description, the Galois group Gal(Q((s)/Q) = Gal(Q(v/2,i)/Q) corresponds to the
subgroup

While it can be hard to determine Galois groups in general, special arguments can sometimes
be exploited.

EXAMPLE 4.9. Suppose that f(X) = X3+ aX? +bX +c € Q[X] is an irreducible cubic and
that f(X) has only one real root. Then Gal(Q(f(X))/Q) = Ss.

PROOF. Let u; € R be the real root of f(X) and let ug,us be the remaining complex
roots. Then Q(f(X)) = Q(u1,u2,u3) and in fact [Q(f(X)) : Q] = 6 since [Q(f(X)) : Q] | 6
and us ¢ Q(u;) < R. Hence Gal(Q(f(X))/Q) is isomorphic to a subgroup of S3 and so
Gal(Q(f(X))/Q) = Ss since the orders agree. We also have Q(f(X)) NR = Q(uq).

The Galois group Gal(Q(f(X))/Q) contains an element of order 3 which corresponds to a
3-cycle when viewed as a permutation of the roots uq, us, u3; we can assume that this is (1 2 3).
It also contains an element of order 2 obtained by restricting complex conjugation to Q(f(X));
this fixes u; and interchanges ug, us, so it corresponds to the transposition (2 3). O

REMARK 4.10. Such examples occur when the cubic polynomial f(X) has local maximum
and minimum at real values c4 and c_ with f(cy), f(c—) > 0 or f(c4), f(c—) < 0. This happens
for example with f(X) = X3 —3X + 3 which has local extrema at +1 and f(1) = 1, f(—1) = 5.

Given a Galois extension E/K, we will next study subextensions L/K < E/K and sub-
groups I' < Gal(F/K), focusing on the relationship between objects of these types.

4.3. Subgroups of Galois groups and their fixed fields

Let E/K a Galois extension and suppose that I' < Gal(E/K). Consider the subset of
elements of F fixed by T,
E'={ucE:Vyerl, y(u) =u}.

LEMMA 4.11. EY < E is a subfield of E containing K .
PrOOF. For u,v € E and v €T,

Y+ ) = y(w) +(0) = ut v, 3(w) = () (o) = w.

Also, if u # 0,
() =9 =
r

-1
ol .
Finally, if t € K then v(t) =t,s0 K < F
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DEFINITION 4.12. EU < F is the fized subfield of T

By Proposition 3.73, the extensions E/E" and E' /K are separable. E/E" is also normal,
so this is itself a Galois extension. We will identify its Galois group. Notice that

[E: EY] = (F:EY) =|Gal(E/EY)|.

Now each element of Gal(E/E") is also an element of Gal(E/K) and Gal(E/E") < Gal(E/K).
Notice that by definition T' < Gal(E/E"), so Lagrange’s Theorem implies that |I'| divides
| Gal(E/EY)|. In fact we have

PROPOSITION 4.13. ForI' < Gal(E/K), we have Gal(E/E") =T and the equations

B BT = | Gal(E/E")| = ||, [E": K] = |Gl|<f|/K>

PROOF. We know that E/E" is separable, so by the Primitive Element Theorem 3.75 it is
simple, say £ = E'(u). Now let the distinct elements of I be 1 = id, ya, ..., 4, where h = |T|.
Consider the polynomial of degree h

f(X) = (X = u)(X =2(u)) -+ (X —yn(u)) € E[X].

Notice that f(X) is unchanged by applying any -, to its coefficients since the roots v;(u) are
permuted by ;. Hence, f(X) € E'[X]. This shows that

[E:E")=[E"(uv): E']<h=]T|.
Since I' < Gal(E/E"), we also have
h= T < | Gal(B/E")| = [E : E").
Combining these two inequalities we obtain
[E: B'] = |Gal(E/E")| = |T| = h
and therefore I' = Gal(E/E"). O

4.4. Subfields of Galois extensions and relative Galois groups

Let E/K a Galois extension and suppose that K < L < E. Then E/L is also a Galois
extension whose Galois group Gal(E/L) is sometimes called the relative Galois group of the
pair of extensions E/K and L/K. The following is immediate.

LEMMA 4.14. The relative Galois group of the pair of extensions E/K and L/ K is a subgroup
of Gal(E/K), i.e., Gal(E/L) < Gal(E/K), and its order is | Gal(E/L)| = [E : L].

PROPOSITION 4.15. Let K < L < E. Then L = ECGE/L)

PrOOF. Clearly L < EG(E/L)  Suppose that u € E — L. Then there is an automorphism
§ € Gal(E/L) such that 6(u) # u, hence u ¢ EGE/L) " This shows that EG2(E/L) < [, and
therefore FGaE/L) — [, O

We want to understand when Gal(E/L) < Gal(E/K) is actually a normal subgroup. The
next result explains the connection between the two uses of the word normal which both derive
from the Galois theoretic usage.

PROPOSITION 4.16. Let E/K be a finite Galois extension and L/K < E/K a subextension.

(i) The relative Galois group Gal(E/L) of the pair of extensions E/K and L/K is normal
in Gal(E/K) if and only if L/K is normal.

(ii) If L/K is normal and hence a Galois extension, then there is a group isomorphism

Gal(E/K)/ Gal(E/L) = Gal(L/K); aGal(E/L) — ay,.
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PROOF. (i) Suppose that Gal(E/L)<Gal(E/K). Then if a € Gal(E/L) and 8 € Gal(E/K),
we have fa3~! € Gal(E/L). Now if u € L, then for any v € Gal(E/K) and o € Gal(E/L),
v(u) € E satisfies

ay(u) = (v~ ay(u)) = y(u),
since v~ lay € Gal(E/L). So L/K is normal.

Conversely, if L/K is normal, then for every ¢ € Gal(E/K) and v € L, ¢(v) € L, so for
every 6 € Gal(E/L), 6(¢(v)) = ¢(v) and therefore

¢ 0p(v) = v.
This shows that ¢~ 10p € Gal(E/L). Hence for every ¢ € Gal(E/K),
¢ Gal(E/L)p~! = Gal(E/L),

which shows that Gal(E/L) < Gal(E/K).
(ii) If @ € Gal(E/K), then L = L since L/K is normal. Hence we can restrict a to an
automorphism of L,
o L—L; o (u) =a(u).

Then «, is the identity function on L if and only if o € Gal(E/L). It is easy to see that the
function

Gal(F/K) — Gal(L/K); ar— q,
is a group homomorphism whose kernel is Gal(E/L). Thus we obtain an injective homomor-
phism

Gal(E/K)/Gal(E/L) — Gal(L/K)

for which I
|Gal(E/K)/Gal(E/L)| = [[EL}] =[L: K] =|Gal(L/K)]|.
Hence this must be an isomorphism of groups. O

4.5. The Galois Correspondence

We are now almost ready to state our central result which describes the Galois Correspon-
dence associated with a finite Galois extension. We will use the following notation. For a finite
Galois extension E/K, let

S8(E/K) = the set of all subgroups of Gal(E/K);
F(E/K) = the set of all subextensions L/K of E/K.

These sets are ordered by inclusion. Notice that since every subgroup of a finite group is
equivalent to its underlying set, S(F/K) is a finite set. Define two functions by

bp/i: F(E/K) — 8(E/K); ®pk(L) = Gal(E/L),
Op/k: $(E/K) — F(E/K); Op/k()=E".

THEOREM 4.17 (Main Theorem of Galois Theory). Let E/K be a finite Galois extension.
Then the functions ®p/x and O i are mutually inverse bijections which are order-reversing.

F(B/K) Z’% S(E/K)
E/K

Under this correspondence, normal subextensions of E/K correspond to normal subgroups of
Gal(E/K) and vice versa.

PrROOF. We know from Proposition 4.15 that for an extension L/K in F(E/K),
Op/k(Pp/k(L)) = Op/k(Gal(E/L)) = EOIE/L) = [,
Also, by Proposition 4.13 for H € §(E/K) we have
p/(Op/k() = Pp/x(E") = Gal(E/E") =T.
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This shows that @/ and Op,; are mutually inverse and so are inverse bijections.

Let L1/K, Ly/K € F(E/K) satisty L1 /K < La/K. Then Gal(E/Ls) < Gal(E/L) since
L; C Lyandsoif a € Gal(E/Lg) then « fixes every element of L;. Hence (I)E/K(L2> < CI)E/K(L1>
and so P/ reverses order.

Similarly, if T'y,Ts € 8(E/K) with T'y < I'y, then E' < E' since if w € E' then it is
fixed by every element of I'y which is a subset of I'y. Hence Ok reverses order. O

There is an immediate consequence of the Main Theorem 4.17 which is closely related to
Proposition 3.20.

COROLLARY 4.18. Let E/K be a finite Galois extension. Then there are only finitely many
subextensions L/ K < E/K.

PROOF. Since the set §(E/K) is finite, so is F(E/K). O

When dealing with a finite Galois extension /K, we indicate the subextensions in a diagram
with a line going upwards indicating an inclusion. We can also do this with the subgroups of
the Galois group Gal(E/K) with labels indicating the index of the subgroups. In effect, the
Galois Correspondence inverts these diagrams.

ExaMPLE 4.19. Figure 4.1 displays the Galois Correspondence for the extension of Exam-
ple 3.30.

Q(V2,¢3)

Gal( E/@(C3))

v

v F
Gal(E/Q(Y2))  Gal(B/Q(V2¢s)  Gal(E/Q(V2¢2)) >

e

{id}

FIGURE 4.1. The Galois Correspondence for E = Q(+/2,(3)/Q

As noted at the end of Example 3.38, the Galois group here is Gal(Q(V/2,¢3)/Q) = S3. It
is useful to make this isomorphism explicit. First take the 3 roots of the polynomial X3 — 2 for
which E is the splitting field over Q; these are v/2, ¥/2 (3, v/2 <§ which we number in the order
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they are listed. Then the monomorphisms id, ag, a1, o, a2, o, extend to automorphisms of F,
each of which permutes these 3 roots in the following ways given by cycle notation:

ap=1(23), a1 =(123), af=(12), ar=(132), oh=(13).
We find that
Gal(E/Q(C3)) = {id, a1, a2} ={id, (123),(132)},  Gal(E/Q(V2)) = {id, ao} ={id, (2 3)},
Gal(E/Q(V2¢3)) = {id, a5} ={id, (1 3)}, Gal(E/Q(V2¢3)) = {id, a1} ={id, (1 2)}.

Notice that {id, (12 3),(1 3 2)}<S3 and so Q(¢3)/Q is a normal extension. Of course Q((3)
is the splitting field of X3 — 1 over Q.

4.6. Galois extensions inside the complex numbers and complex conjugation

When working with Galois extensions contained in the complex numbers it is often useful
to make use of complex conjugation as an element of a Galois group. Let E/Q be a finite Galois
extension with £/Q < C/Q. Setting Fr = RN E, we have Q < Eg < E.

PROPOSITION 4.20. Complex conjugation ( ): C — C restricts to an automorphism of E

over Q, ( )gjp: E— E.

(i) ( )e/q which agrees with the identity function if and only if Eg = E.
(ii) If Eg # E then B B
(e ={id, ( )t =Z/2,
hence Ex = E{O)er@) gnd [E : Eg] = 2.

PROOF. Let u € E. As E/Q is normal, minpolyg ,(X) € Q[X] splits over £, hence all of

its complex roots lie in £. But () permutes the roots of this polynomial. Hence () maps F
into itself.
(i) For z € C, Z = z if and only if z € R.

(ii) Here | (( )g/q) | =2, and

E\O)e) = {u e B =u} = Eg. e
,
B E
Ex
Q

We will usually write () rather than ()g/g when no confusion seems likely to result.

EXAMPLE 4.21. Consider the cyclotomic extension Q((s)/Q where
; 1 1
_emno L1,
(8 RN

From Example 4.8 we know that

Q) = Q(V2,4), [Q(és): Q] =4,
and we easily see that

Qés)r = Q(V2).
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4.7. Kaplansky’s Theorem

In this section we give a detailed account of the Galois theory of irreducible rational poly-
nomials f(X) = X* + aX? +b € Q[X]. The following result describes the Galois groups that
occur and the proof introduces some useful computational techniques.

THEOREM 4.22 (Kaplansky’s Theorem). Let f(X) = X* +aX? + b € Q[X] be irreducible.

(i) If b is a square in Q then Gal(Q(f(X))/Q) =Z/2 x Z/2.
(ii) If b(a® — 4b) is a square in Q then Gal(Q(f(X))/Q) = Z/4.
(iii) If neither b nor b(a? — 4b) is a square in Q then Gal(Q(f(X))/Q) = Ds.

[ )
Q?*O PROOF. Let g(X) = X2+aX+b € Q[X]. Notice that g(X) must be irreducible since

otherwise f(X) would factorize, hence (a? — 4b) is not a square in Q. Setting d = (a? — 4b) € Q
and J to be a square root of d, we see that the roots of g(X) are (—a+7)/2, where 6 ¢ Q. Then
the roots of f(X) are +u, +v, where

o _ (-a+9) 02:(—a—6)
2 ’ 2 ’
so the splitting field of f(X) over Q is E = Q(u,v) which contains the quadratic extension
Q(9)/Q. Since deg f(X) = 4, we must also have 4 | [E : Q]. In fact, since E is obtained by at
most 3 successive quadratic extensions we also have [E : Q] | 8.

(i) We have

2
= pu— :7:b
(uv)® = u v 1 1 ,

hence uv is a square root of b which is in Q. Setting ¢ = uv € Q, we find that v = c/u € Q(u).
This shows that £ = Q(u) and we have the following Galois tower.

E=Q(u)

2

Q(9)

2

Q

In particular [E : Q] = 4 = | Gal(E/Q)|. Notice that for the Galois extension Q(4)/Q there
must be a normal subgroup N < Gal(E/Q) with

Q(9) = EY, Gal(Q(9)/Q) = Gal(E/Q)/N.

Hence there is an element o € Gal(E/Q) for which o(§) = —d. This element must also have
the effects o(u) = +v and o(v) = +u. Given u we might as well choose v so that o(u) = v.
There is also an element 7 € N for which 7(u) = —u and we also have 7(v) = —v. Notice that
if 0(v) = —u then easy calculation shows that

To(v) =o01(v) =u, 70(d)=07(d) = -9,

hence we might as assume that o(v) = u since if necessary we can replace our original choice
by 70o.
We now have

ou)=—, 7(u)=-u, 70(u)=o07(u)=—

c c
u u’
These satisfy

0? = 7% = (07)? = id = the identity, o7 = 70.

This shows that
Gal(Q(f(X))/Q) = Gal(E/Q) = {id, o, 1,07} 2 Z/2 x Z/2 = the Klein 4-group.
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(ii) If bd is a square in Q, then
(uvd)? = uv?d = bd,

which is a square in Q, so we can write uvd = ¢ € Q or equivalently v = ¢/(ud) € Q(u) since
Q(9) < Q(u). This shows that £ = Q(u,v) = Q(u) and again we have a Galois tower

E =Q(u)
2

Q(9)

2

Q

with [F: Q] =4 = | Gal(E/Q)|.
Since Q(6)/Q is Galois there is an element o € Gal(E/Q with ¢(d) = —6 and this has the
effect o(u) = £v; given u we might as well choose v so that o(u) = v. Notice that
c c

o) = o(ud) T

_u7

so 02(u) = —u. This shows that
Gal(Q(f(X))/Q) = Gal(E/Q) = {id, 0, 0%03} = Z/4 = a cyclic group of order 4.

iii) Suppose that d, b an are not squares in Q. By an easy calculation we fin a
iii) S that d, b and bd t in Q. B lculati find that
(uww)? = b, so uv € E is a square root of b in E. Suppose that uv € Q(4); then uv = p + ¢é for
some p, q € Q. By squaring we obtain

b= (p* + ¢*d) + 2pgd,

and so pg = 0. We cannot have ¢ = 0 since this would imply that b was a square in Q; if
p = 0 then b = ¢?d and so bd = (qd)?, implying that bd was a square in Q. Thus we have
Q(uwv) NQ(d) = Q. A similar discussion shows that

Q(uvd) NQ(0) = Q = Q(uwwd) N Q(uwv).

So we have a Galois tower which includes the following subfields.

E =Q(u,v)
Q(uv, 9)
Q(9) Q(uv) Q(uwd)
\ 2 /
2 2
Q
Choose
a € Gal(E/Q(uwv)) < Gal(E/Q)

so that «(d) = —6. By renaming —v to v if necessary, we may assume that v = «a(u) and so
u = a(v). Notice that o? = id.

Choose

B € Gal(E/Q(0)) < Gal(E/Q)
with f(uv) = —uv. We must have either f(u) = —u or f(v) = —v, so by interchanging +§ if
necessary we can assume that 3(u) = —u and 8(v) = v. Notice that 4% = id.
Choose
v € Gal(E/Q(d,uv)) < Gal(E/Q)
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so that y(u) = —u. Then we must have v(v) = —v since y(uv) = uv. Notice that 2 = id.
Setting o = a3 we find o(u) = —v and o(v) = u. Then 02 = 7 and o has order 4. Also,

aoca = fBoff =0 L.

The eight elements

id, o, 7,071, o, 0, ay, o

form a group isomorphic to the dihedral group of order 8, Dg. Therefore we have
Gal(Q(f(X))/Q) = Gal(E/Q) = Ds,
and [E : Q] = 8. The corresponding Galois tower is

E =Q(u,v)

ExaMPLE 4.23. We have the following Galois groups:
Gal(Q(X*+1)/Q) = Z/2 x Z/2; Gal(Q(X*+4X?% +2)/Q) = Z/4;
Gal(Q(X* +2X% 4 2)/Q) = Dg.

Exercises on Chapter 4

4.1. If f(X) € K[X] is a separable polynomial, prove that the splitting field of f(X) over K is
a finite Galois extension of K.

4.2. Let K be a field for which char K # 2,3 and suppose that f(X) € K[z] is a cubic
polynomial.

(a) Show that there u,v € K with u # 0 such that f(uX +v) = X3+ aX + b for some
a,be K. If f(X) is monic, deduce that a,b € K; under what conditions is this always
true?

(b) If g(X) = X3 +aX + b € K|x] is irreducible and E = K(g(X)) is its splitting field
over K, explain why Gal(E/K) is isomorphic to one of the groups S3 or As.

(c) Continuing with the notation and assumptions of (b), suppose that w;, ws, w3 are the
distinct roots of g(X) in E and let

A= (w1 — w2)2(w2 — wg)z(wl — w3)2 e FE.
Show that
A = —4b® — 2742,
and hence A € K. If § = (w1 — wa) (w3 — w3) (w1 — ws), show that

A; ifdeK,
Gal(B/K) = {833 if6¢ K

[Hint: Consider K () < E and the effect of even and odd permutations in Gal(E/K) <
S3 on the element §.]

4.3. This is a revision exercise on finite groups of small order.
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(a) Show that every non-abelian finite group has order at least 6.
(b) Let Dg be the dihedral group with the eight elements

2 3 2 3
L7a?a 7a ’B?ﬁa7/8a 7ﬁa
satisfying
o=, BE=1, Baf=a"'=a

Find all the normal subgroups of Dg.

4.4. Use Kaplansky’s Theorem 4.22 to find the Galois group of the splitting field £ of the
polynomial X% + 3 € Q[X] over Q. Determine all the subextensions F' < E for which F/Q is
Galois.

4.5. Find the Galois groups for each of the following extensions:

QX* - 10)/Q;  QW2)(X*—10)/Q(v2);  Q(31)(X? — 10)/Q(V3i);

QVEB)(X? - X —1)/Q(VBi);  K(X*— X —1)/K for K = Q, Q(v/5), Q(V51), Q(i).
4.6. Let p > 0 be a prime. Let K be a field with char K # p. Suppose that 0 # ¢ € K and
f(X)=XP—ae K[X]. Let L/K where L is a splitting field for f(X) over K.

(a) Show that f(X) has p distinct roots in L. If uw € L is one such root, describe the
remaining roots and show that L contains p distinct p-th roots of 1.

(b) Suppose that K contains p distinct p-th roots of 1. Show that either f(X) is irreducible
over K or it factors into p distinct linear factors over K.

(¢) Suppose that the only p-th root of 1 in K is 1. Show that either f(X)is irreducible
over K or it has a root in K.

4.7. Let K be a field of characteristic char K = p where p > 0 is a prime. Suppose that
0#a€ K and f(X) = XP —a € K[X]. Show that if f(X) has no root in K then it is
irreducible over K.






CHAPTER 5

Galois extensions for fields of positive characteristic

In this chapter we will investigate extensions of fields of positive characteristic, especially
finite fields. A thorough account of finite fields and their applications can be found in [5]. We
will assume that p > 0 is a prime and K is a field of characteristic char K = p; we will also
assume that K contains the prime subfield F,, i.e., F, < K.

5.1. Finite fields

If K is a finite field, then K is an [F)-vector space. Our first goal is to count the elements of
K. Here is a more general result.

LEMMA 5.1. Let F be a finite field with q elements and let V' be an F-vector space. Then

dimp V < oo if and only if V is finite in which case |V| = ¢HmF V.,
ProoOF. If d = dimpr V < oo, then for a basis vy, ...,vq we can express each element v € V
uniquely in the form v = t;v; + - - - + tqug, where ti,...,tqy € F. Clearly there are exactly ¢%

such expressions, so |V| = ¢%.
Conversely, if V is finite then any basis has finitely many elements and so dimp V < co. O

COROLLARY 5.2. Let F' be a finite field and E/F an extension. Then E is finite if and only
if E/F is finite and then |E| = |F|F:F),

COROLLARY 5.3. Let K be a finite field. Then K/F), is finite and |K| = plETp],

Our next task is to show that for each power p? there is a finite field with p? elements. We
start with the algebraic closure F, of F, and consider the polynomial 0,4(X) = X" - X e
[F,[X]. Notice that @;d(X) = —1, hence by Proposition 3.55 every root of ©,4(X) iE F, is
simple. Therefore by Corollary 1.34 ©,.(X) must have exactly p? distinct roots in F,, say
0,u1,...,Uya_q. Then in F,[X] we have

XP' - X = X(X — 1) (X — upa_y),
and each root is separable over F,. Let
Foao={ueF,:0,(u) =0} CFp, ]ng ={u€Fpa:u#0}
Notice that u € ng if and only if 'l = 1.

PROPOSITION 5.4. For each d > 1, F,a is a finite subfield of F, with p? elements and
IF‘gd = ]F;d. Furthermore, the extension IF‘pd/Fp 1s separable.

PROOF. If u,v € Fpa then by the Idiot’s Binomial Theorem 1.11,
(u+v)pd —(u+v) = (upd+vpd) —(u+v) = (upd —u)—i—(vpd —v) =0,
(uv)pd — v = 0P — ww = uv — v = 0.

Furthermore, if u # 0 then wP"~1 =1 and so u has multiplicative inverse uP'~2. Hence Fpa < Fp.

Notice that F, < IE‘pd, SO ]de /IFp is a finite extension. In any field the non-zero elements are

always invertible, hence ]ng = F;d. O
DEFINITION 5.5. The finite subfield F. < F, is called the Galois field of order p?.

59
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F,a is often denoted GF(p?). Of course, F,i = GF(p') = F,. Notice also that [F,q : Fp] = d.

PROPOSITION 5.6. Letd > 1.

(i) Fpa < F, is the splitting subfield for each of the polynomials X?" — X and XP""1 — 1
over IFy,.
(ii) Fpa <y is the unique subfield with p? elements.

(iii) If K is any field with p® elements then there is an monomorphism K — Fp with image
Fpa, hence K = F .

PrOOF. (i) As [F,a consists of exactly the roots of ©, (X) in Fp, it is the splitting subfield.
The non-zero elements of Fa are the roots of xri-1 1, so [ is also the splitting subfield for
this polynomial.

(ii) Let K < F, have p? elements. Notice that the non-zero elements of F' form a group K*
under multiplication. This group is abelian and has p? — 1 elements, so by Lagrange’s Theorem,
each element u € K* has order dividing p? — 1, therefore w1 =1 and so u?" = u. But this
means every element of K is a root of ©,4(X) and so K < F,q; equality follows since these

subfields both have p? elements.
(iii) Apply the Monomorphism Extension Theorem 3.49 for K = E =, and L = K. O

It is worth noting the following consequence of this result and the construction of Fa.
COROLLARY 5.7. Let K be a finite field of characteristic p. Then K/F, is separable.

ExaMPLE 5.8. Consider the polynomial X* — X € Fo[X]. By inspection, in the ring Fa[X]

we find that
X X=X"+X=XX*+1)= XX+ D)X+ X +1).

Now X2 + X + 1 has no root in Fy so it must be irreducible in Fo[X]. Its splitting field is a
quadratic extension Fo(w)/Fo where w is one of the roots of X2 + X + 1, the other being w + 1
since the sum of the roots is the coefficient of X. This tells us that every element of Fy = Fy(w)
can be uniquely expressed in the form a 4+ bw with a,b € Fy. To calculate products we use the
fact that w? = w + 1, so for a,b, ¢, d € Fy we have

(a +bw)(c+ dw) = ac + (ad + be)w + bdw? = (ac + bd) + (ad + be + bd)w.

EXAMPLE 5.9. Consider the polynomial XY — X € F3[X]. Let us find an irreducible poly-
nomial of degree 2 in F3[X]. Notice that X2 + 1 has no root in F3, hence X2 4+ 1 € F3[X] is
irreducible; so if u € F3 is a root of X2 + 1 then F3(u)/F3 has degree 2 and F3(u) = Fo. Every
element of Fg can be uniquely expressed in the form a + bu with a,b € F3. Multiplication is
carried out using the relation u? = —1 = 2.

By inspection, in the ring F3[X] we find that

X0 X=X(X*-1)=(X}-X)(X?+1)(X*+ X - )(X* =X -1).

So X2+ X —1 and X2 — X —1 are also quadratic irreducibles in F3[X]. We can find their roots
in Fg using the quadratic formula since in F3 we have 27! = (—1)~! = —1. The discriminant of
X2+ X —1is

1—4(-1)=5=2=1u?
so its roots are (—1)(—1 4 u) = 1 £ u. Similarly, the discriminant of X2 — X — 1 is

1-4(-1)=5=2=1u?
and its roots are (—1)(1 £ u) = —1 + u. Then we have

Fg = Fg(u) = F3(1 + u) = Fg(—l + u)

There are two issues we can now clarify.

PROPOSITION 5.10. Let Fym and Fpn be two Galois fields of characteristic p. Then Fpm <
Fpn if and only if m | n.
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Proor. If Fpym < Fyn, then by Corollary 5.2,

pn — (p )[Fpninm],
som | n.
If m | n, erten—k:mvvlthk>1 Then for u € Fym we have uP” = u, so
up _ up (upm) m(k 1) _ up'm(k 1) . _ upm —u
Hence u € Fp» and therefore Fym < Fpn. O

This means that we can think of the Galois fields F,» as ordered by divisibility. Here is the
diagram of subfields for 24 showing extensions with no intermediate subextensions.

(5.1) Fp24

N
\/

THEOREM 5.11. The algebraic closure of IFp is the union of all the Galois fields of charac-
teristic p,
Fp . U Fpn
n>1

Furthermore, each element u € F,, is separable over F,,.

PROOF. Let u € F,,. Then u is algebraic over F,, and the extension F,(u)/F,, is finite. Hence
by Corollary 5.2, F,(u) < F,, is a finite subfield. Proposition 5.10 now implies that F,(u) = Fyn
for some n. The separability statement follows from Corollary 5.7. 0

We will require a useful fact about Galois fields.

PROPOSITION 5.12. The group of units F;d in Fpa is cyclic.

This is a special case of a more general result about arbitrary fields.

PROPOSITION 5.13. Let K be a field. Then every finite subgroup U < K* is cyclic.

Proor. Use Corollary 1.34 and Lemma 1.45. O

DEFINITION 5.14. w € F;d is called a primitive root if it is a primitive (p? — 1)-th root of
unity, 7.e., its order in the group F;d is (p? — 1), hence (w) = F;d.

REMARK 5.15. Unfortunately the word primitive has two confusingly similar uses in the
context of finite fields. Indeed, some authors use the term primitive element for what we have
called a primitive root, but that conflicts with our usage, although as we will in the next result,
every primitive root is indeed a primitive element in our sense!

PROPOSITION 5.16. The extension of Galois fields Fjna/F,a is simple, i.e., Fyna = Fa(u)
for some u € F jna.

PRrROOF. By Proposition 5.12, Fna has a primitive root w say. Then every element of F .
is a polynomial in w, so Fna <, ( ) < Fyna, hence Fna = Fa(w). D
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REMARK 5.17. This completes the proof of the Primitive Element Theorem 3.75 which we
had previously only established for infinite fields.

ExXAMPLE 5.18. In Example 5.8 we find that Fy = Fo(w) has the two primitive roots w and
w + 1.

EXAMPLE 5.19. In Example 5.9 we have Fg = F3(u) and Fg is cyclic of order 8. Since

©(8) = 4, there are four primitive roots and these are the roots of the polynomials X2 4+ X — 1
and X2 — X — 1 which we found to be 1 4 u.

We record a fact that is very important in Number Theory.

PROPOSITION 5.20. Let p > 0 be an odd prime.

(i) If p=1 (mod 4), the polynomial X% + 1 € F,[X] has two roots in F,,.

(ii) Ifp = 3 (mod 4) the polynomial X24+1€ F,[X] is irreducible, so Fp = IE‘p[X]/(X2+1).
ProOOF. (i) We have 4 | (p — 1) = [F[, so if u € F)’ is a generator of this cyclic group, the

order of ulf71/4 i 4, hence this is a root of X2 4 1 (the other root is —u‘F;‘/4).
(ii) If v € Fp is a root of X2 + 1 then v has order 4 in F. But then 4 | (p — 1) = [F,’|, which is
impossible since p — 1 =2 (mod 4). O

Here is a generalization of Proposition 5.20.
PROPOSITION 5.21. Fpa contains a primitive n-th root of unity if and only ifp? =1 (mod n)
and ptn.
5.2. Galois groups of finite fields and Frobenius mappings

Consider an extension of Galois fields F,na/F,a. By Proposition 5.6(i), Corollary 5.7 and
Proposition 3.73, this extension is Galois and

| Gal(Fpnd/]de)| - I:]Fpnd . ]de] = n.
We next introduce an important element of the Galois group Gal(F jna /Fa).
DEFINITION 5.22. The (relative) Frobenius mapping for the extension I na/F,q is the func-
tion Fg: Fyna — Fpna given by Fy(t) = "

PROPOSITION 5.23. The relative Frobenius mapping Fq: Fpna — Fyna is an automor-
phism of B na that fizes the elements of Fpa, so Fg € Gal(Fyna/Fpa). The order of Fy is n,
50 Gal(Fyna/Fa) = (Fg), the cyclic group generated by Fg.

PROOF. For u,v € Fna, we have the identities
Filu+v)=(u+ v)pd =" o, Fa(uv) = (uv)pd = u?" ",
so Fy is a ring homomorphism. Also, for u € F s we have
Fa(u) = w" = u,

so Fy fixes the elements of F,.. To see that F is an automorphism, notice that the composition
power Fl; = Fjo0--- o Fy (with n factors) satisfies

Fo(t) =" =+t

for all ¢ € Fpna, hence Fj =id. Then Fg is invertible with inverse F;l =F ;‘_1. This also shows
that the order of Fy; in the group AutFp 4 (Fpnd) is at most n. Suppose the order is k with k£ < n;

then every element u € Fna satisfies the equation F’j(u) = u which expands to WP u, hence
u € Fra. But this can only be true if k = n. O

Frobenius mappings exist on the algebraic closure F,. For d > 1, consider the function

Fo:F, — F,; Fut) = "
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PROPOSITION 5.24. Letd > 1.
(i) Fgq: F, — F, is an automorphism of F, which fizes the elements of Fpa. In fact for
u € Fp, Fy(u) = u if and only if u € Fa.
(ii) The restriction of Fq to the Galois subfield F,an agrees with the relative Frobenius
mapping Fq: Fpna — Fpyna.
(ii) Ifk > 1, then Flj = Fiq, so Fyq has infinite order in the automorphism group Allt]]?pd (E)),
hence this group is infinite.

Proor. This is left as an exercise. O

The Frobenius mapping F' = F is often called the absolute Frobenius mapping since it exists

as an element of each of the groups Auty, (F,) and Auty, (Fyr) = Gal(IFpn /Fp) for every n > 1.
In Gal(Fyna/F,a) = (Fq), for each k with & | n there is the cyclic subgroup (F) of order

| <F§> | =n/k.

k
PROPOSITION 5.25. For k | n, the fized subfield of <F§> in Fyna is Fél,jj) =T ax.

P
Fpnd
n/k
Fk
F§n5> = Fpar
k
F
PROOF. For u € Fna we have FE(u) = uP™ | hence F¥(u) = u if and only if u € Fpax . O

Here is the subgroup diagram corresponding to the lattice of subfields of 24 shown in (5.1).
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Gal(F 21 /F) ~ 7,/24 F s

\
T m/ F

(F%) (F12) o

AN
T NS
() = fay

5.3. The trace and norm mappings

For an extension of Galois fields Fna / Fpa, consider the function Tern N Fpna — Fpna
defined by

Ternd/de (u) =u-+ upd + up2d 4+t up(
Notice that
¢ 2d 3d nd
Fd(Ternd/de () =u? +u? +uP +---+uP

n—1)d

=u+Fg(u) + Faq(u) + - + F_pya(u).

p(n—l)d

=+ +u="Trg ,m,(u).

So by Proposition 5.24(i), Trg /¢ ,(u) € Fpa. Therefore we can redefine this mapping to have
P P
codomain F,4, giving the relative trace Tern W Fpna — Fpa

PROPOSITION 5.26. The relative trace Ternd/de is a surjective Fa-linear mapping and
whose kernel is an Fa-vector subspace of dimension n — 1.

PRroOF. Clearly Trp  /r , is additive. For ¢ € F 4 we have ! = t, so linearity follows from
p p
the formula

tu+ (tw)? + ()™ + -+ ()P
To see that Trp /¢ , is surjective, notice that Try  /r ,(u) = 0 if and only if u is a root of
p P P P

—1)d — tut tupd n tupzd N tup(nq)d'

the polynomial

X 4+ Xpd " szd I Xp(n—l)d

(n—1)d

S de [X]

which has degree p and so has at most p < p™ roots in Fpna. This means that
ker Trp . , cannot be the whole of Fyna. Trp . w , is surjective since its codomain has
p D p P

(n—1)d

dimension 1. 0
A multiplicative version of this construction can also be defined. Consider the function

d (n—1)d
Fond/Fpa* IF; o — IF;d : NFpnd/de(“) = uul uP -uP =uF4(u)Fog(u) - -~F(n,1)d(u).

n

Then we have
d 2d 3d nd
Fd(NF nd/de (u)) = up up up PR up

d .2d ,3d (n—1)d
— PP P

d .2d ,3d (n—1)d
— P P P _
= uu? u’ w U = NFpnd/de(u).
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So by Proposition 5.24(i), Ny . /p ,(u) € Fpa. By redefining the codomain we obtain the relative
norm i ' d .2d (n—1)d
Normen afF i F;nd — IF;d; Normen a/F 4 (u) = vwu? uP™ - uP )

PROPOSITION 5.27. The relative norm Normy . w . is a surjective group homomorphism.
P P

PROOF. Multiplicativity is obvious. The kernel of Normy ./ , consists of the roots in Fna
p p

of the polynomial
X1y e L),

SO )
d g P -1
|kerN0rmend/de|<1+p ++p(n ) _pdi—l
Hence p
ne—1
|imNormg _/p | = : >p? -1
P/ Tp | ker NOI'men a/F 4 |
Since imNormy | r , <TF,;, we also have
pnd/ = pd P
3 d
|1mNormend/de | <p*—1,
therefore
o _ X
im Normen a/Fa = Ide. O

Exercises on Chapter 5

5.1. Show that Proposition 5.13 also applies to an integral domain in place of a field.
5.2.  What happens to Theorem 5.20 if we try to take p = 2.

5.3. Let f(X) € F,[X] be an irreducible polynomial with deg f(X) = n. Find the splitting field
of f(X). Deduce that for any other irreducible polynomial g(X) € F,.[X] with deg g(X) = n,
the splitting fields of f(X) and g(X) over F, agree.
5.4. Find the smallest Galois fields containing all the roots of the following polynomials:
(a) X881 S F41[X]; (b) X8 -1 S IF5[X], (C) X8 -1 S FH[X}; (d) X8 -1 € FQ[X]
In each case find a primitive root of this Galois field.
5.5. Let w € IF;d be a primitive root. If £ < d, show that w ¢ IF';E. Deduce that degy, w = d
and d | p(p? — 1).
5.6. Let p > 0 be a prime. Suppose that d > 1, and K/de is an extension. For a € K, let
ga(X) = X?" — X —a € K[X].
(a) If the polynomial g,(X) is irreducible over K, show that the splitting field E of g,(X)
over K is separable and Gal(E/K) = F 4. [Hint: show that if u € E is a root of ga(X)
in an extension E/K, then so is u+t for every t € F.]
(b) If d = 1, show that g,(X) is irreducible over K if and only if it has no root in K.
(c) If K is a finite field and d > 1, explain why ¢,(X) can never be irreducible over K.






CHAPTER 6

A Galois Miscellany

In this chapter we will explore some miscellaneous topics in Galois Theory. Historically,
Galois Theory has always been an important tool in Number Theory and Algebra, stimulating
the development of subjects such as Group Theory, Ring Theory and such diverse areas as
Differential Equations, Complex Analysis and Algebraic Geometry. Many of the ideas we will
meet in this chapter are of great importance in these mathematical areas.

6.1. A proof of the Fundamental Theorem of Algebra

We will prove the Fundamental Theorem of Algebra for the complex numbers C. This proof
is essentially due to Gauss but he did not use the historically more recent Sylow theory. It is
interesting to compare the proof below with others which use the topology of the plane and circle
or Complex Analysis; our proof only uses the connectivity of the real line (via the Intermediate
Value Theorem) together with explicit calculations in C involving square roots.

THEOREM 6.1 (The Fundamental Theorem of Algebra). The field of complex numbers C is
algebraically closed and R = C.

PrROOF. We know that [C : R] = 2, so C/R is algebraic. Let p(X) € C[X] be irreducible.
Then any root u of p(X) in the algebraic closure C is algebraic over R, so in C[X] we have
p(X) | minpolyy ,,(X). The splitting field of p(X) over C is contained in the splitting field £ of
minpolyg ,(X)(X? 4 1) over R. Since C < E, we have 2 | [E : R] and so 2 | | Gal(E/R)|.

Now consider a 2-Sylow subgroup P < Gal(E/R) and recall that | Gal(E/R)|/|P| is odd.
For the fixed subfield of P, we have

_ | Gal(E/R)|
Bl

which shows that E¥/R has odd degree. The Primitive Element Theorem 3.75 allows us to
write E¥ = R(v) for some v whose minimal polynomial over R must also have odd degree.
But by the Intermediate Value Theorem, every real polynomial of odd degree has a real root,
so irreducibility implies that v has degree 1 over R and therefore E¥’ = R. This shows that
Gal(E/R) = P, hence Gal(E/R) is a 2-group.

As C/R is a Galois extension, we can consider the normal subgroup Gal(E/C)<Gal(E/R) for
which | Gal(E/R)| = 2| Gal(E/C)|. We must show that | Gal(E/C)| = 1, so suppose not. From
the theory of 2-groups, there is a normal subgroup N <Gal(E/C) of index 2, so we can consider
the Galois extension E” /C of degree 2. But from known properties of C (see Proposition 3.29),
every quadratic aX? + bX + ¢ € C[X] has complex roots (because we can find square roots
of every complex number). So we cannot have an irreducible quadratic polynomial in C[X].
Therefore | Gal(E/C)| =1 and E = C. O

[EP . R]

6.2. Cyclotomic extensions

We begin by discussing the situation for cyclotomic extensions over QQ using material dis-
cussed in Section 1.3. Let ¢, = e*™/" the standard primitive n-th root of 1 in C. In Theo-
rem 1.42, it was claimed that the irreducible polynomial over Q which has (, as a root was the
n-th cyclotomic polynomial

o,(X)= J[ x-¢.



68 6. A GALOIS MISCELLANY

THEOREM 6.2. Let n > 2. Then
e Q(¢n) = QIX]/(Pn(X));
¢ Q) -0 = ol

e Gal(Q(¢n)/Q) /n)*, where the element t,, € (Z/n)™ acts on Q((n) by tn-Cn = .

[ )
© ¢ PROOF. Since the complex roots of ®,(X) are the powers ¢}, with t =1,...,n—1
&

and ged(t,n) = 1, Q(¢,) is the splitting field of ®,(X) over Q and indeed Q(¢,) = Q(¢!)
whenever ¢ has the above properties and so (! is a primitive n-th root of unity. The main step
in the proof is to show that ®,(X) € Z[X] is irreducible. To do this we will show that every
power (! as above is actually a Galois conjugate of ¢, over Q, hence

®,,(X) = minpolyg,, (X) = minpolyg - (X)

and so is irreducible.
Consider

Z(Cn) ={ao + a1Gn + -+ arG i 7 20, aj € Z} € Q(G)-
Then Z((,,) is a subring of Q({,) and so is an integral domain. Its group of units contains the
cyclic subgroup () of order n.

Let p > 0 be a prime which does not divide n. Let P <Z((,) be a maximal ideal which
contains p; then the quotient ring Z((,)/P is a field of characteristic p. In fact, it is a finite
field, say F,a for some d. Let m: Z((,) — F,a be the quotient homomorphism.

Inside the group of units of Z((,) is the subgroup of powers of (,, ((,) < Z((,)™; this
is a cyclic subgroup of order n. We claim that when restricted to ((,), 7 gives an injective
group homomorphism, 7: (¢,) — IF;d. To see this, suppose that 7/({])) = 1 for some r =
1,2,...,n—1; then ¢, — 1 € P. By elementary Group Theory we can assume that r | n and so
p 1 r. Factoring, we have

(G = DG+ 4G+ 1) = (G —r (mod P),
80 ¢, —1 € P or r € P since maximal ideals are prime. But Z N P = (p) and so r ¢ P, hence
(n — 1 € P. Recalling that
Gl G 1=0,
we see that n € P and hence p | n, thus contradicting our original assumption on n. So 7’ is
injective.
Writing @ = 7'(u), we can consider the effect of the absolute Frobenius map F: Fj,a — Fpq
7t J—
on ¢, =,
—t —t ~ip
F(Cn) = ()" = G-
This shows that in the Galois extension F /Fp, @S conjugate to Qtf ; by iterating this we find

that Zfl is conjugate to every power of the form Cflpk.
Now let t =1,...,n — 1 and ged(t,n) = 1. Suppose there is a factorization

®,,(X) = f(X) minpolyg ., (X)

for some monic polynomial f(X) € Z[X] and f(¢}) = 0. Consider the prime power factorization
t = pi*---pr, where the p; are primes with 2 < p; < --- < pp, and r; > 1 with. Notice that
p; 1 n since ged(t,n) = 1.
Now consider a maximal ideal P; <Z[(,] containing p;. Reducing modulo P; and working
— "1
in the resulting extension del /Fp,, we find that (,, is conjugate to {ZI . By separability and

the fact that the reduction map m: Z[(,] — de1 is injective on the powers of (,, we find that
1

f( 511) # 0 and so f( 511) # 0 in Z[(,]. This shows that minpolyg ., ( ,1;11) = 0 and so Cﬁll is
conjugate to (.
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1
Repeating this argument starting with ¢4* and using the prime py we find that

Tl T‘2
minpolyg, ¢, ( Py —
71,72
and so ¢h* 2 is conjugate to ¢,. Continuing in this fashion, for each j = 1,...,m we have
r1,72, .07 "1
minpolyg e, ( PrP2TPY — 0, and thus ¢, 77 is conjugate to (,. When j = m, this shows
that minpolyg ¢, (¢},) = 0. Hence (), is conjugate to ¢, in the extension Q(¢,)/Q. O

THEOREM 6.3. For n > 2, consider the cyclotomic extension Q((,)/Q where ¢, = e*™/™.
Then Q(Cn)r # Q(¢n). Furthermore,

Q¢n)r = Q(Cn)«i» =Q(¢n + Zn) = Q(cos(27/n)),

and

(Q(cos(2n/n)) : @) = £,

PROOF. Recall that
Gal(Q(Cn)/Q) = Z/n”,
where the residue class of r acts by sending (, to (). Complex conjugation corresponds to the
residue class of —1 =n — 1 (mod n). Making use of the elementary identities

, 1, ,
e = cosf +sinfi, cosf= §(€9Z +e7%),

we obtain 1 1
cos(2m/n) = 2 (Gn + (o) = 5(Gn+ 1),

Complex conjugation fixes each of the real numbers cos(2nk/n) for k = 1,2,...,n — 1. The
residue class of r acts by sending cos(2w/n) to cos(2nr/n); it is elementary to show that
cos(2mr/n) # cos(2m/n) unless r =1 (mod n). Hence

() ={id, ()} = Gal(Q(cos(27/n))/Q).
Thus we have
Q) = Q(eos(2n/n)),
and so [Q(cos(27/n)) : Q] = ¢(n)/2. Notice that ¢, is a root of the polynomial
X2 —2cos(2m/n)X + 1 € Q(cos(27/n))[X],
so we also have
(6.1) minpolyg(cos(2r /n)),c, (X) = X% —2cos(2m/n)X + 1. O
EXAMPLE 6.4. We have
[Q(C24) : Q] = p(24) = 8
and
Gal(Q(G21)/Q) £ Z/2 x /2 x 22,
PrOOF. By Theorem 1.42 we have [Q(C24) : Q] = 8. Also,

1 V3 1 V3
6 . 3 < : 8 - ;
Coa = 1, C24—2+72 i, Coy = 2+ D) 2,

and all of these numbers are in Q((24), hence Q(\@, V3, i) < Q(C24). It is easy to check that
[Q(v2,V3,i) : Q] =8,
which implies that
Q(C24) = Q(V2, V3,4).
Using this we find that
Gal(Q(C21)/Q) 2 Z/2 X /2 X Z/2.
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We also have cos(27/24) = cos(m/12) € Q((24). Since

cos(2m/12) = cos(7/6) = \237

we have
2cos?(m/12) — 1 = \f
and so
4cost(m/12) — dcos?(m/12) + 1 = 2,
giving
16 cos*(7/12) — 16 cos®(n/12) +1 = 0.
Then

16X4 — 16X2 +1=16 minp()ly@,cos(w/IQ) (X)
Note that case (i) of Kaplansky’s Theorem 4.22 applies to the polynomial MInpolyg cos(r/12) (X).

For this example, Gal(Q((24)/Q) has 23 — 1 = 7 subgroups of each of the orders 2 and 4; it
is an interesting exercise to find them together with their fixed subfields. O

REMARK 6.5. The minimal polynomial for cos(7/12) can also be found as follows. We have
D94 (C24) = 0, hence since
Poy(X) = X8 — X4 41,
we obtain
(i —Cu+1=0
Then after multiplying by C2_44 we have

(o — 1+ (ot =0,

giving
(Ga+ o) —1=0.

Now

(Coa+ Goa)* = (Gha + o) + 4(Ga + G) + 6,
hence

G+ Goat = (Coa + G5 — 4Gy + GF) — 6.
Similarly,

(Cu+ G )P =G+ Gl +2,

SO

Gat G = (Gaa +G4')? — 2.
Combining these we have
(Coa+ o) = 4(Ca + ¢3)* +1=0,
and so
16 cos?(7/12) — 16 cos?(7/12) +1 = 0.
This method will work for any n where ¢(n) is even, i.e., when n > 2.
REMARK 6.6. The polynomial that expresses cosnf as a polynomial in cosf is the n-th

Chebsyhev polynomial of the first kind T, (X) € Z[X]. Here are the first few of these polynomi-
als:

Ty(X) =2X? — 1, T3(X) = 4X° - 3X,
T4(X) =8X1 —8X2 +1, Ts5(X) = 16X° — 20X3 + 5X,
Te(X) = 32X5 — 48X* + 18X2% — 1, T7(X) = 64X7 — 112X5° + 56 X3 — 7X.

These form a system of orthogonal polynomials which can be computed in Maple using the
command orthopoly[T] (n,X).
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Now let K be a field with characteristic char K { n. The polynomial ®,,(X) has integer
coefficients, so we can view it as an element of K[X] since either Q < K or F, < K and we
can reduce the coefficients modulo p. In either case it can happen that @, (X) factors in K[X].
However, we can still describe the splitting field of X™ — 1 over K and its Galois group.

THEOREM 6.7. If char K { n, then the splitting field of X™ —1 over K is K((), where ( € K
is a primitive n-th root of unity and Gal(K(¢)/K) is abelian with order dividing ©(n).

PRrOOF. Working in K, we know that ®,(¢) = 0, hence the roots of minpoly -(X) € K[X]
are primitive roots of 1. So X™ — 1 splits over K ({) and each element o € Gal(K(¢)/K) has
the action a(¢) = (", where ged(rq,n) = 1. Hence Gal(K(¢)/K) is isomorphic to a subgroup
of Gal(Q(¢n)/Q) = (Z/n)*, in particular it is abelian. O

REMARK 6.8. When p = char K > 0, this Galois group only depends on the largest subfield
of K which is algebraic over . For example, if K = F,qa(T") then the value of d is the crucial
factor. The precise outcome can be determined with the aid of Proposition 5.21.

EXAMPLE 6.9. We have the following splitting fields and Galois groups.
(i) The splitting field of X* — 1 over F3(7T) is Fo(T') and
Gal(Fo(T)/F5(T)) = (Z/4)* = 7Z)2.
(ii) By Proposition 5.20, X* — 1 splits over F5(7T) and the Galois group Gal(F5(T)/F5(T))
is trivial.

PROOF. (i) By Proposition 5.20, X* — 1 is separable over F3(7T') and has irreducible factors
(X —1), (X +1) and (X2 +1). The splitting field of (X2 + 1) over F3 is Fg = F3((), where
(?+1=0,s0 (X?+ 1) splits over Fo(T). Also,

Gal(Fo/F3) = (Z/4) = L2,

with generator o satisfying o(¢) = (7! = —(. This generator clearly extends to an automor-
phism of Fg(7") which fixes 7.
(ii) By Proposition 5.20, X4 — 1 splits over Fs. O

6.3. Artin’s Theorem on linear independence of characters
Let G be a group and K a field.

DEFINITION 6.10. A group homomorphism x: G — K> is called a character of G with
values in K.

EXAMPLE 6.11. Given any ring homomorphism ¢: R — K we obtain a character of R*
in K by restricting ¢ to a map y,: R* — K*.

EXAMPLE 6.12. Given an automorphism a: K — K, xo: K* — K* is a character of
K*in K.
EXAMPLE 6.13. Let E/K be a Galois extension and o € Gal(E/K). Then x,: EX — E*

is a character.

DEFINITION 6.14. Let x1,...,Xn be characters of a group G in a field K. Then x1,...,xn
are linearly independent if for t1,...,t, € K,

tixi+ - -+toxn=0 — t1=---=1t,=0.
If x1,...,Xxn are not linearly independent they are linearly dependent.
In this definition, the functional equation means that for all g € G,
tixi(g) + -+ taxn(g) = 0.

THEOREM 6.15 (Artin’s Theorem). Let x1,...,Xn be distinct characters of a group G in a
field K. Then x1,...,Xxn are linearly independent.
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PROOF. We proceed by induction on n. For n = 1 the result is easily verified. For the
inductive assumption, suppose that it holds for any n < k.

Let x1,...,Xk+1 be a set of k 4+ 1 distinct characters for which there are t1,...,tx11 € K
not all zero and such that
(6.2) tixi+ -+ teraxe+1 = 0.

If one of the t; is zero, say t, = 0, then x1,...,Xr—1, Xr+1,---, Xk+1 is linearly dependent,
contradicting the inductive assumption. Hence all of the ¢; must be non-zero. As x1 # X2, there
must be an element gy € G for which x1(go) # x2(g0). So for all g € G, Equation (6.2) applied
to gog yields

t1x1(g09) + -+ + ter1Xk+1(909) = 0,
and therefore since x;(g0g) = x;(90)x;(9), we see that
tix1(go)x1 + -+ + ter1xe+1(90) Xk+1 = 0.
Multiplying Equation (6.2) by x1(go) and subtracting gives

t2(x2(90) — x1(90))x2 + t3(x3(90) — x1(90))Xx3 + - + tpy1 X1 = 0,

in which the coefficient t2(x2(g0) — x1(g0)) is not zero. Hence x2,. .., k11 is linearly dependent,
again contradicting the inductive assumption. So x1,...,Xk+1 is linearly independent, which
demonstrates the inductive step. O

Suppose that E/K is a finite Galois extension with cyclic Galois group Gal(E/K) = (o) of
order n. For each u € E*, the element uo(u)---0" (u) € E satisfies

oluo(u)--- 0" Hu) =o(u)---o" N u)o"(u) = o(u) - " H(u)u,
hence in uo(u)--- 6" Y(u) € E{? = K. Using this we can define a group homomorphism
Ng/k: E* — K*; Ng/g(u) = uo(u)- 0" Hw).

Ng/ is called the norm mapping for E/K and generalizes the norm mapping for finite fields
of Section 5.3.
There is another homomorphism
op/k: B — E™; dp/i(u) = uo(u) L.
Notice that for u € E*,
N/ (0p/k(u) = (uo(u) ™) (o(u)o? (@)™t - Hu)o™(u) ™) =1,
since 0™(u) = u. So imdp/x < kerNp . Our next result is an important generalization of
Proposition 5.27.

THEOREM 6.16 (Hilbert’s Theorem 90). Let E/K be a finite Galois extension with cyclic
Galois group Gal(E/K) = (o) of order n. Then imdp i = ker Ng /. Explicitly, if u € E* and
wo(u)---0" 1(u) =1, then there is a v € E* such that u = vo(v)~!.

PRrROOF. Let u € ker N /.

The characters o¥: EX — E* with k =0,1,...,n—1 are distinct and linearly independent
by Artin’s Theorem 6.15. Consider the function

id +uo + uo(u)o? + - +uo(u)--- 0" 2(u)o" ! EX — E.
This cannot be identically zero, so for some w € F, the element
v =w+uo(w) +uo(u)o?(w) + -+ uo(u) - o™ *(u)o™ ! (w)
is non-zero. Notice that
uo(v) = uo(w) + uo(u)o?(w) + uo(u)o?(w)o®(w) + - - + uo(w)o?(u) - - " (u)o™(w) = v,
since

uo(u)o?(u) - -- o™ (u)o" (w) = w.

-1

Thus we have u = vo(v)™" as required. O
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6.4. Simple radical extensions

In this section we will investigate splitting fields of polynomials of the form X" — a, where
char K t n. We call these simple radical extensions and later in Definition 6.31 we introduce a
more general notion of radical extension.

PROPOSITION 6.17. Let f(X) = X" —a € K[X] be irreducible and separable over K. Then
the splitting field of f(X) over K has the form E = K (u,(), where u is a root of f(X) and ¢
is a primitive n-th root of 1.

COROLLARY 6.18. If K contains a primitive n-th root of unity ¢ then the splitting field of
f(X)=X"—a over K has the form E = K(u), where u is a root of f(X). The Galois group
Gal(K(f(X))/K) is cyclic of order n with a generator o for which o(u) = Cu.

In the more general situation of Proposition 6.17,
{id} < Gal(K(¢)/K) < Gal(K(f(X))/K(C)),

where Gal(K(¢)/K) and Gal(K(¢)/K))/ Gal(K((,u)/K(() are abelian and in fact cyclic. The
Galois Correspondence identifies the following towers of subfields and subgroups.

K(¢.w Gal(K(¢.u)/K)
KO GalK(Q/K)
Kﬁ RN {id}

DEFINITION 6.19. Let K be a field of characteristic not dividing n and which contains a
primitive n-th root of 1, ¢ say. Then L/K is a simple n-Kummer extension if L = K(u) where
u" = a for some a € K. L/K is an (iterated) n-Kummer extension if L = K(uq,...,u) where
ut = ai, ..., uy = ay for some elements aq,...,a; € K.

Note that we do not require the polynomials X™ — a; € K[X] to be irreducible in this
definition.

PROPOSITION 6.20. Let K(u)/K be a simple n-Kummer extension. Then K(u)/K is a
Galois extension and Gal(K (u)/K) is cyclic with order dividing n.

PROOF. Suppose that u" = a € K. Then in K[X] we have
X" —a=(X—u)(X —Cu)--- (X =" tu).

Clearly the roots of X™ — a are distinct and so K (u)/K is separable over K; in fact, K(u) is a
splitting field of X™ — a over K. This means that K(u)/K is Galois.

For each o € Gal(K (u)/K) we have a(u) = ("u for some 7o, = 0,1...,n — 1. Notice that
for § € Gal(K (u)/K),

Ba(u) = B(¢"u) = (" Blu) = (*(Pu = Ty,
and so rg, = rq +13. Hence the function
p: Gal(K(u)/K) — <<>, p(a) = (",

is a group homomorphism. As (() is cyclic of order n, Lagrange’s Theorem implies that the
image of p has order dividing n. Since every element of Gal(K (u)/K) is determined by its effect
on u, p is injective, hence | Gal(K (u)/K)| divides n. In fact, Gal(K(u)/K) is cyclic since every
subgroup of a cyclic group is cyclic. O

EXAMPLE 6.21. Let n > 1 and ¢ € Q. Then Q(¢,, 1/9)/Q(¢,) is a simple n-Kummer
extension.

EXAMPLE 6.22. Q(i,/2)/Q(i) is a simple 4-Kummer extension for which Gal(Q(i, v/2)/Q(3))
is cyclic of order 2.
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ProoOF. We have (v/2)* —4 =0, but
X' —4=(X?-2)(X%+2),
and

X2 2= minpoly@(i%ﬁ(X).
The corresponding group homomorphism p: Gal(Q(i)(v/2)/Q(i)) — (i) has image
imp={1,-1} < (7). O
Here is a converse to Proposition 6.20.

PROPOSITION 6.23. Suppose that char K t n and there is an element ( € K which is a
primitive n-th root of unity. If E/K is a finite Galois extensions with cyclic Galois group of
order n, then there is an element a € E such that E = K(a) and a is a root of a polynomial of
the form X™ — b with b € K. Hence E/K is a simple n-Kummer extension.

ProOF. We have
Ng/k(Q) =" =1,
so by Hilbert’s Theorem 6.16, there is an element a € E for which ¢ = ac(a)~!. Then o(a) =

¢~'a and the elements o (a) = ("*a for k = 0,1,...,n — 1 are distinct, so they must be the n
conjugates of a. Also note that

X"~ a" = (X — a)(X — Ca) -+ (X — ¢"La) = (X — a)(X — 0(a)) -+ (X — " (a),
so a™ € K since it is fixed by o. This shows that K (a) < E and
n=[K(a): K]<[E:K|]=n,
therefore [K(a) : K] < [F: K] =n and K(a) = E. O
6.5. Solvability and radical extensions

We begin by recalling some ideas about groups, see [3, 4] for further details.

DEFINITION 6.24. A group G is solvable, soluble or soluable if there is a chain of subgroups
(called a subnormal series)
{1} =G/ <Gr1<---<G1 <Gy =G
in which G411 < Gy, and each composition factor Gy/Gp41 is abelian; we usually write
{1} =Gy<aGp_1<---<G1<1Gy =G.
If each composition factor is a cyclic group of prime order the subnormal series is called a

composition series. A group which is not solvable is called insolvable.

REMARK 6.25. For a solvable group, it is a standard result that we can always refine a
subnormal series (i.e., add extra terms) to obtain a composition series. The primes as well as
the number of times each occurs are all determined by |G|, only the order of these varying for
different composition series.

EXAMPLE 6.26. Let G be a finite abelian group. Then G is solvable.
EXAMPLE 6.27. Let G be a finite p-group, where p is a prime. Then G is solvable.

In fact, for a finite p-group G, there is always a normal subgroup of a p-group with index p,
so in this case we can assume each quotient G /Gy1 is cyclic of order p.
PROPOSITION 6.28. Let G be a group.
(i) If G is solvable then every subgroup H < G and every quotient group G /N s solvable.
(ii) If N <G and G/N are solvable then so is G.

In the opposite direction we can sometimes see that a group is insolvable. Recall that a
group is stmple if it has no non-trivial proper normal subgroups.
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PROPOSITION 6.29. Let G be a finite group. Then G is insolvable if any of the following
conditions holds:

(i) G contains a subgroup which is a non-abelian simple group (or has a quotient group
which is a non-abelian simple group).
(ii) G has a quotient group which is a non-abelian simple group.
(iii) G has a composition series in which one of the terms is a non-abelian simple group.

EXAMPLE 6.30. For n > 5, the alternating and symmetric groups A,, and S,, are insolvable.

Proovr. This follows from the fact that if n > 5, A,, is a simple group and A, < S,, with
quotient group S, /A, = 7Z/2. O

Now we explain how this relates to fields and their extensions. Let K be a field and L/K a
finite extension. For simplicity, we assume also that char K = 0.

DEFINITION 6.31. L/K is a radical extension of K if it has the form L = K(aq,aq,...,ay)
with

azk € K(ay,ag,...,a5_1)

for some dj > 1. Thus every element of L is expressible in terms of iterated roots of elements
of K.

DEFINITION 6.32. If L is the splitting field of a polynomial f(X) € K[X], then f(X) is
solvable by radicals over K if L is contained in a radical extension of K.

DEFINITION 6.33. L/K is solvable if L < L' where L'/K is a finite radical Galois extension
of K.

THEOREM 6.34. Let E/K be a finite Galois extension. Then E/K is solvable if and only if
the group Gal(E/K) is solvable.

[ )
QQ*<> PROOF. Suppose that £ < E’ where E'/K is a radical Galois extension. Then

Gal(E/K) is a quotient group of Gal(E’/K), so it is solvable by Proposition 6.28.

Now suppose that Gal(E/K) is solvable and let n = | Gal(E/K)|. Let E’ be the splitting
field of X™ — 1 over E, so E’ contains a primitive n-th root of unity ¢ and therefore it contains
a primitive d-th root of unity for every divisor d of n. Now Gal(E'/FE) < Gal(E'/K) and
by Theorem 6.7, Gal(E'/E) is abelian. Also, Gal(E'/K)/Gal(E'/E) = Gal(E/K) which is
solvable, so Gal(E’/K) is solvable by Proposition 6.28. We will now show that E'/K is a
radical extension.

Clearly K(¢)/K is radical. Then Gal(E'/K({)) <Gal(E'/K) is solvable. Let
{1} =Gr<aGy_14---<1G1<9Gy = Gal(E' /K (Q))

be a composition series. The extension (E')%1/K(() is radical by Proposition 6.23. Similarly,
each extension (E')“%+1 /(E")%* is radical. Hence E'/K(¢) is radical, as is E' /K. O

EXAMPLE 6.35. The Galois group of the extension Q((3, v/2)/Q is solvable.

PROOF. We have already studied this extension in Example 3.30 and 4.19. Clearly Q(C3, V/2)
is a radical extension of QQ and

Q(¢3, V2) = Q(G)(V2).

We know that Gal(Q((3, v/2)/Q) = S3, where we identify each element of the Galois group with
a permutation of the three roots of X3 — 2 in Q((3, ¥/2) which we list in the order

\?ﬁ, %Cg, \3@@}3
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We have the following towers of subfields and subgroups related under the Galois Correspon-
dence.

Q(C3a \3/5) _,783
3 N 2

Q) = QG VDN Ay = GallQUG, ¥2)/Q(G))
Q” " {id}

Here Q(¢3)/Q is itself a Galois extension and Ag<Ss. Notice that As =2 Z/3 and S3/As 2 Z/2,
so we have the following composition series for Ss:

{ld} < Ag < Sg. ]

It is also interesting to reverse the question and ask whether there are extensions which are
not solvable. This was a famous problem pursued for several hundred years. To find examples,
we first recall that the smallest non-abelian simple group is A5 which has order 60. We should
therefore expect to look for a polynomial of degree at least 5 to find a Galois group for a splitting
field to be simple or occur as a composition factor of such a Galois group. Here is an explicit
example over Q.

EXAMPLE 6.36. The splitting field of the polynomial f(X) = X5 — 35X% 4+ 7 € Q[X] is not
solvable by radicals.

PRrROOF. Let E = Q(f(X)) be the splitting field of f(X) over Q. Using the Eisenstein
Criterion 1.37 with p = 7, we find that f(X) is irreducible over Q. By Theorem 4.7(iii),
5 divides the order of Gal(E/Q), so this group contains an element of order 5 by Cauchy’s
Lemma.

Now observe that

(X)) =5X" - 140X3 = 5X3(X —28), f"(X)=20X"—420X? = 20X%(X — 21).
There are two turning points, namely a maximum at £ = 0 and a minimum at x = 28. Then
f(0)=7>0> f(28) = —4302585,

hence there are three real roots of f(X) and two non-real complex ones. Then complex conju-
gation restricts to an element of order 2 in Gal(£/Q) which interchanges the non-real roots and
fixes the others. If we list the roots of f(X) as ui,ug,us, us, us with uy, us being the non-real
roots, then the transposition (1 2) € S5 corresponds to this element. Furthermore, the only
elements of S; of order 5 are 5-cycles; by taking an appropriate power we can assume that there
is a 5-cycle of the form (1 2 3 4 5) corresponding to an element of Gal(E/Q) which we can view
as a subgroup of Ss. The next lemma shows that Gal(E/Q) = Ss.

LEMMA 6.37. Let n > 1. Suppose that H < S,, and H contains the elements (1 2) and
(12 ---n). Then H =S,

The proof is left as an exercise. This completes the verification of the Example. O

It is worth remarking that the most extreme version of this occurs when we ask for a Galois
group which is simple. There has been a great deal of research activity on this question in the
past few decades, but apparently not all simple groups are known to occur as Galois groups of
extensions of Q or other finite subextensions of C/Q. Here is an example whose Galois group
is Ajs; this is verified using Proposition 6.42.

EXAMPLE 6.38. The Galois group of f(X) = X°+20X+16 over Q is Gal(Q(f(X))/Q) = As.
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6.6. Galois groups of even and odd permutations

We have seen that for a monic separable polynomial f(X) € K[X] of degree n, the Galois
group of its splitting field £y = K(f(X)) can naturally be thought of as a subgroup of the
symmetric group S,,, where we view the latter as permuting the roots of f(X). It is reasonable
to ask when Gal(E;/K) < A, rather than just Gal(Ey/K) < S,.

We first recall an interpretation of the sign of a permutation o € S,,, sgno = £1. For each
pair 4,j with 1 < ¢ < j < n, exactly one of the inequalities o(i) < o(j) or o(j) < o(i) must
hold and the ratio (o(j) — o(4))/(j — i) is either positive or negative. It is easily verified that
the right-hand side of the following equation must have value £1 and we have

(6.3) sgno = H M.
I<icj<n )T

Note that this is sometimes used as the definition of sgno.
Suppose that f(X) factorizes over E¢ as

n

FX) = (X =) (X —un) = [J(X —w).

i=1
Here u1,...,u, € Ey are the roots of f(X); as we have assumed that f(X) is separable, the u;
are distinct.

DEFINITION 6.39. The discriminant of f(X) is

Discr(f(X)) = H (uj —u;)? € By

Notice that Discr(f(X)) # 0 since u; # uj if i # j.

REMARK 6.40. There is an explicit formula for computing Discr(f(X)) is terms of its coef-
ficients. For polynomials

p(X)=ay+a X+ +an,X", ¢X)=a+a X+ +a, X",

their resultant is the (m 4+ n) x (m + n) determinant (with n rows of a;’s and m rows of b;’s)

ag a1 ... am 0 0
0 ay a1 ....... am 0 0
0 0 ay a1 ....... Am
(6.4) Res(p(X), q(X)) = bo b1 ....... bn 0 0
0 by by ....... bn 0 0
O 0 by b1 ..ol bn
Then if f(X) is monic with d = deg f(X),
(6.5) Diser(f(X)) = (=1)"“~ /2 Res(f(X), f'(X)).

So for example,

Discr(X? 4+ pX +¢) = (—=1)*Res(X? + pX + ¢,3X? + p)

g p 0 10
0 g p 01
=(-1)p 0 3 0 0
0 p 030
0 0 p 0 3

= —4p® — 27¢%.
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Here are some low degree examples of discriminants obtained using Maple.
n=2: Discr(ag + a1 X + X?) = —4ag + a3.
n=3: Discr(ag + a1 X + agX? + X3) = —27a3 + 18agaraz + aa3 — 4adag — 4a3.

n=4: Discr(ag + a1 X + aeX? + a3X? + X*) = 18aza’as — 6a3a?ag — 192a3a1a3 — 27a]
+ 144asa3a? + 144apa’as + 256a3 — 4a3a’ — 128a3a3 + 16a3a0 — 4a3a?

+ 18a3a1a2a0 — 80a3a1a2a0 — 27a3a0 + a2a3a1 4a2a3a0

n =>5: Discr(ag + a1 X + as X%+ asX? + as X* + X5) = 2250a4a3a0 36a0a4a1 128a3a1
+ QOOanagal - 900a1a3a0 - 2500a0a4a1 50a0a4a1 900a4a2a0 27ata] — 3750a3a2a8
+ 356&32a22a4a1a0 + 560a3a%aiag — 2050a3a2a0a4a1 — 80a3a2a4a13 — 630a33a2a4a02
+ 825a3a2a0 + 16a3a2a0 + 2000a2a4a0 6a2a4a1 128@2(14(10 + 16a2a4a0 4agaia%
+ 108a3a0 + 108a5ag — T46asazapas’ar? — 27a3a3 + 256a4a0 4a3a2a1 + 144azaa’
+ 144aia%a3 + 3125a0 + 256@1 — 72a3a2a1a0 + 18a3a2a4a1 + 560a3a2a0a1 + 16a3a1

+ 18&3&230,4&12 — 72a3a24a4a0 + 144@32a2a43a02 — 192&440,1613@02 — 630@3(123a1a0

+ 24@230,42@10,0 + a32a22a42a12 - 6@430,12@320,0 — 80@3@220,436110,0 — 40,32&230,42&0

+ 2250a1a3a3 — 1600a3a4a0 192a4a1a2 — 1600agaiay — 4a3a1a4 27a3a4a(2)
+1020a4> as ao ai + 18a3 asay’ apa] + 160asay® ao a1 + 144a2a4 a0a1
+ 24aqai?as®ag + 1020agasas®ar? + 160a0asaias.
So for example,
Discr(X® + as X* + ag) = a3(3125a0 + 256a3), Discr(X® + a1 X + ag) = 256a] + 312544,

PROPOSITION 6.41. For every o € Gal(E/K), o(Discr(f(X))) = Discr(f(X)). Hence
Discr(f(X)) € K.

ProoF. For 0 € Gal(E;/K) < S,, we have

oDiser(F(X)) = [ oy =)= ] @)~ tew)

1<i<jgn 1<i<j<n
Now for each pair 4, j with ¢ < j,
o(uj — i) = Ug(j) = Uo(i),

and by Equation (6.3)

(6.6) [T o) = o) =seno [[ (w—w)=E1) [ (w—w).
1<i<j<n 1<i<j<n 1<i<j<n
. ) Gal(Ef/K) .
Hence o(Discr(f(X))) = Discr(f(X)). Since E = K, we have Discr(f(X)) e K. O

Now let

6(f(X)) = H (uj —u;) € Ey.

1<i<j<n
Then §(f(X))? = Discr(f), so the square roots of Discr(f(X)) are +5(f(X)). Now consider the
effect of o € Gal(E¢/K) on 6(f(X)) € E¢. By Equation (6.6),
o(8(f)) = sgnod(f) = +4(f).
If 0(f(X)) € K, this means that sgno = 1. On the other hand, if §(f) ¢ K then

K(5(f(X))) = By E/E0



6.7. SYMMETRIC FUNCTIONS 79

Of course |Gal(Ef/K)/ Gal(Ef/K) N A,| =2.

PROPOSITION 6.42. The Galois group Gal(Ey/K) < S, is contained in A,, if and only if
Discr(f(X)) is a square in K.

EXAMPLE 6.43. For the polynomials of Examples 6.36 and 6.38 we obtain
Discr(X5 — 35X% 4 7) = —4611833296875 = —3% - 56 . 74 . 29 . 157,
S(XP —35X%+7)=45%-3-72./3-29.157i = £18375v/136591 ¢ Q;
Discr(X® 4 20X + 16) = 1024000000 = 26 . 55,
§(X? +20X +16) = 4285 € Q.

6.7. Symmetric functions

Let k be a field. Consider the polynomial ring on n indeterminates k[X7, ..., X,]| and its
field of fractions K = k(X1,...,X,). Each permutation o € S,, acts on k[X1,..., X,] by

U'f(X17--'aXn) :fa(Xlw"aXn) :f(Xa(l)v"->XU(n))'

Viewed as a function o-: k[ X7, ..., X,]| — k[X1, ..., X,,] is a ring isomorphism; this extends to
a ring isomorphism o-: k(X1,..., X,) — k(Xy,...,X,). Varying ¢ we obtain actions of the
group S, on k[Xy,...,X,] and k(X3,...,X,) by ring isomorphisms fixing k and in the latter
case it is by field automorphisms fixing k.

DEFINITION 6.44. The field of symmetric functions on n indeterminates is
Sym,, (k) = k(X1,...,Xn)%" <k(X1,...,X,).
Soif f(X1,...,Xn) € k(Xy,...,X,), then
f(X1,...,Xp,) € Sym, (k) <= VoeS, f(X1,....,Xn) = f(Xo)s > Xom)-

THEOREM 6.45. The extension k(X1,...,Xy)/Sym, (k) is a finite Galois extension for
which Gal(k(Xq,...,Xy)/Sym, (k) = S,.

PROOF. There are elements of k[X1,..., X,] Ck(Xq,...,X,) called elementary symmetric
functions,

er = Z Xiy Xiy - Xy,
11 <ip<-<ip
where 1 < k < n. It is easy to see that for every o € S,,, €] = ey, so e, € Sym,, (k). Working in
the ring k(X, ..., X,)[Y] we have

) =Y"—e Y o (=) e, 1Y + (1), =0,

hence the roots of this polynomial are the X;. So k(Xi,...,X,) is the splitting field of f,,(Y)
over Sym,, (k). Now S,, < Gal(k(X1,...,X,)/Sym,(k)), hence

k(X1,...,X,) : Sym, (k)] = | Gal(k(X1,...,X,)/Sym, (k)| = [S,| = nl.

But as every element of Gal(k(Xy,...,Xy)/Sym,,(k)) permutes the roots of f,(Y) and is de-
termined by this permutation, we also have

nl > | Gal(k(X1,..., X,)/ Sym, (i)
Combining these inequalities we obtain |Gal(k(X1,...,X,)/Sym,(k))] = n! and therefore

Gal(k(X1, ..., X,)/ Sym, (k) = Sp. O
REMARK 6.46. In fact, this proof shows that the extension k(X1,..., X, )/k(e1,...,ey,) is
Galois of degree n!. Since k(ey,...,e,) < Sym, (k) we can also deduce that k(ey,...,e,) =

Sym,, (k). Hence every element of Sym,, (k) is a rational function in the e;. Analogous results
are true for polynomials, i.e.,

k[X1,..., X% =K[er,..., en]
COROLLARY 6.47. If n > 5, the extension k(X1,...,X,)/Sym, (k) is not solvable.
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Exercises on Chapter 6

6.1. Let p > 0 be a prime and G a group of order |G| = p™ for some n > 1. Show by induction
on n that there is a normal subgroup N <G with |N| = p"~!. [Hint: what do you know about
the centre of G? Use this information to produce a quotient group of smaller order than G.]

6.2. Let K be a field for which char K # 2 and n > 1 be odd. If K contains a primitive n-th
root of unity, show that then K contains a primitive 2n-th root of unity.

6.3. Find all values of n > 1 for which ¢(n) | 4. Using this, determine which roots of unity lie
in the following fields:

Q(i), Q(V2i), Q(V3i), Q(V51i).

6.4. (a) Describe the elements of (Z/24)* explicitly and verify that this group is isomorphic
to Z/2 x /2 x 7 /2. Describe the effect of each element on Q(¢24) and Q(cos(w/12)) under the
action described in Theorem 6.2.

(b) Determine the group (Z/20)* and describe the effect of each of its elements on Q({20) and
Q(cos(m/10)) under the action described in Theorem 6.2.

6.5. Letn > 1.
(a) What can you say about sin(27/n) and Gal(Q(sin(27/n))/Q))?
(b) Determine sin(7/12) and Gal(Q(sin(7/12))/Q)).

6.6. In this question, work in the cyclotomic field Q((s) where (5 = €2/,

(a) Describe the Galois group Gal(Q(¢5)/Q) and its action on Q((5).
(b) Determine the minimal polynomial of cos(27/5) over Q. Hence show that

—1++5
Y

For which other angles 6 is cos 8 a root of this minimal polynomial? What is the value
of sin(27/5) 7

(c) Find the tower of subfields of Q((5) and express them as fixed fields of subgroups of
Gal(Q(¢5)/Q)-

6.7. In this question, let p be an odd prime and let ¢, = e2mi/p ¢ Q(¢) < C.

cos(2m/b) =

(a) Consider the product

(r—1)/2
&= I -6 Q).

1
=1

T

Show that
p—1
&= (nr V2 la-g).
r=1

(b) Deduce that

52_ p ifp=1 (mod4),
l-p ifp=3 (mod4).

(c) Conclude that

¢ = +/p ifp=1 (mod4),
|l £ypi ifp=3 (mod 4).

and also \/p € Q(¢p) if p=1 (mod 4) and \/pi € Q((p) if p =3 (mod 4).
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6.8. Prove Lemma 6.37. [Hint: show that every 2-cycle of the form (i i + 1) is in H by
considering elements of the form (12 --- n)"(12)(12 --- n)"" ]

6.9. This question is about an additive version of Hilbert’s Theorem 90, see Theorem 6.16.
Let E/K be a Galois extension with cyclic Galois group Gal(E/K) = (o) of order n.
(a) Show that the function

T:E—E; T(u) =u+o(u)+o*(u)+--+0"(u),

takes values in K and use this to define a K-linear mapping Trg/r: F — K.
(b) If v € E has Trg/k (v) = 0, show that there is a w € E such that v = w — o(w).
[Hint: Show that there is an element t € E' for which Trg it # 0, then consider

1
W= e (00(t) + (04 ()W) -+ (04 W) + e+ 2" (D))
(Trg/k t)
and adapt the proof of Hilbert’s Theorem 90 in Theorem 6.16, using Trg g in place of Ng /]
6.10. Show that f(X) = X3 —3X + 1 € Q[X] is irreducible over Q, and show that its
discriminant is a square in Q. Prove that the Galois group of f(X) over Q is cyclic.
6.11. For n > 1 and 1 < k < n, the k-th power sum s, € k[X1, ..., X,]> is defined to be
Sk = Z Xf.
1<ign
Prove the formula
Sp=e15_1 — €asp_o + -+ (=1 ep_151 + (—1)Fkey.

6.12. For n > 1 and 1 < k < n, the total symmetric function hy € k[X1, ... ,Xn]S” is defined

to be
hy, = Z X1 Xy - Xy
J1<I2< <k
i.e., the sum of all the monomials in the X; of degree k.
(a) For large values of n, express hi, ha, hs in terms of the elementary symmetric functions
e1, €2, €3.
(b) Show that the power sum functions sy of the previous question satisfy

s = —(h1Sg—1 + hasp_o + -+ hkflsl) + khy,.
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