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Introduction: What is Galois Theory?

Much of early algebra centred around the search for explicit formulæ for roots of polynomial
equations in one or more unknowns. The solution of linear and quadratic equations in one
unknown was well understood in antiquity, while formulæ for the roots of general real cubics and
quartics was solved by the 16th century. These solutions involved complex numbers rather than
just real numbers. By the early 19th century no general solution of a general polynomial equation
‘by radicals’ (i.e., by repeatedly taking n-th roots for various n) was found despite considerable
effort by many outstanding mathematicians. Eventually, the work of Abel and Galois led to a
satisfactory framework for fully understanding this problem and the realization that the general
polynomial equation of degree at least 5 could not always be solved by radicals. At a more
profound level, the algebraic structure of Galois extensions is mirrored in the subgroups of their
Galois groups, which allows the application of group theoretic ideas to the study of fields. This
Galois Correspondence is a powerful idea which can be generalized to apply to such diverse
topics as ring theory, algebraic number theory, algebraic geometry, differential equations and
algebraic topology. Because of this, Galois theory in its many manifestations is a central topic
in modern mathematics.

In this course we will focus on the following topics.
• The solution of polynomial equations over a field, including relationships between roots,

methods of solutions and location of roots.
• The structure of finite and algebraic extensions of fields and their automorphisms.

We will study these in detail, building up a theory of algebraic extensions of fields and their
automorphism groups and applying it to questions about roots of polynomial equations. The
techniques we discuss can also be applied to the following topics some of which will be met by
students taking advanced degrees.

• Classical topics such as ‘squaring the circle’, ‘duplication of the cube’, constructible
numbers and constructible polygons.

• Applications of Galois theoretic ideas in Number Theory, the study of differential
equations and Algebraic Geometry.

There are many good introductory books on Galois Theory and we list some of them in the
bibliography at the end.

Suggestions on using these notes

These notes cover more than the content of the course and should be used in parallel with
the lectures. The problem sets contain samples of the kind of problems likely to occur in the
final examination and should be attempted as an important part of the learning process.

The symbol
♠

♥ ♦
♣

means the adjacent portion of the notes is not examinable.
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CHAPTER 1

Integral domains, fields and polynomial rings

In these notes, a ring will always be a ring with unity 1 which is assumed to be non-zero,
1 6= 0. In practice, most of the rings encountered will also be commutative. An ideal I / R
always means a 2-sided ideal. An ideal I / R in a ring R is proper if I 6= R, or equivalently if
I  R. For a ring homomorphism ϕ : R −→ S, the unity of R is sent to that of S, i.e., ϕ(1) = 1.

Definition 1.1. Let ϕ : R −→ S be a ring homomorphism.
• ϕ is a monomorphism if it is injective.
• ϕ is an epimorphism if it is surjective.
• ϕ is an isomorphism if it is both a monomorphism and an epimorphism.

Remark 1.2. The following are equivalent formulations of the notions in Definition 1.1.
• ϕ is a monomorphism if and only if for r1, r2 ∈ R, if ϕ(r1) = ϕ(r2) then r1 = r2, or

equivalently, if r ∈ R with ϕ(r) = 0 then r = 0.
• ϕ is an epimorphism if and only if for every s ∈ S there is an r ∈ R with ϕ(r) = s.
• ϕ is an isomorphism if and only if it is invertible (and whose inverse is also an isomor-

phism).

1.1. Recollections on integral domains and fields

The material in this section is standard and most of it should be familiar. For details
see [3, 4] or any other book containing introductory ring theory.

Definition 1.3. A commutative ring R in which there are no zero-divisors is called an
integral domain or an entire ring. This means that for u, v ∈ R,

uv = 0 =⇒ u = 0 or v = 0.

Example 1.4. The following rings are integral domains.
(i) The ring of integers, Z.
(ii) If p is a prime, the ring of integers modulo p, Fp = Z/p = Z/(p).
(iii) The rings of rational numbers, Q, real numbers, R, and complex numbers, C.
(iv) The polynomial rings Z[X], Q[X], R[X] and C[X].

Definition 1.5. Let I / R be a proper ideal in a commutative ring R.
• I is a prime ideal if for u, v ∈ R,

uv ∈ I =⇒ u ∈ I or v ∈ I.

Similarly, I is a maximal ideal R if whenever J / R is a proper ideal and I ⊆ J then
J = I.

• I / R is principal if
I = (p) = {rp : r ∈ R}

for some p ∈ R. Notice that if p, q ∈ R, then (q) = (p) if and only if q = up for some
unit u ∈ R. We also write p | x if x ∈ (p).

• p ∈ R is prime if (p) / R is a prime ideal; this is equivalent to the requirement that
whenever p | xy with x, y ∈ R then p | x or p | y.

• R is a principal ideal domain if it is an integral domain and every ideal I/R is principal.

The following fundamental example should be familiar.

1



2 1. INTEGRAL DOMAINS, FIELDS AND POLYNOMIAL RINGS

Example 1.6. Every ideal I /Z is principal, so I = (n) for some n ∈ Z which we can always
take to be non-negative, n > 0. Hence Z is a principal ideal domain.

Proposition 1.7. Let R be a commutative ring and I / R an ideal.
(i) The quotient ring R/I is an integral domain if and only if I is a prime ideal.
(ii) The quotient ring R/I is a field if and only if I is a maximal ideal.

Example 1.8. If n > 0, the quotient ring Z/n = Z/(n) is an integral domain if and only if
n is a prime.

For any (not necessarily commutative) ring with unit there is an important ring homomor-
phism η : Z −→ R called the unit or characteristic homomorphism which is defined by

η(n) = n1 =





1 + · · ·+ 1︸ ︷︷ ︸
n

if n > 0,

−(1 + · · ·+ 1︸ ︷︷ ︸
−n

) if n < 0,

0 if n = 0.

Since the unit 1 ∈ R is non-zero, ker η/Z is a non-zero ideal and using the Isomorphism Theorems
we see that there is a quotient monomorphism η : Z/ ker η −→ R which allows us to identify the
quotient ring Z/ ker η with the image ηZ ⊆ R as a subring of R. By Example 1.6, there is a
unique non-negative integer p > 0 such that ker η = (p); this p is called the characteristic of R
and denoted charR.

Lemma 1.9. If R is an integral domain, its characteristic charR is a prime.

Proof. Consider p = charR. If p = 0 we are done. So suppose that p > 0. The quotient
monomorphism η : Z/ ker η −→ R identifies Z/ ker η with the subring im η = im η of the integral
domain R. But every subring of an integral domain is itself an integral domain, hence Z/ ker η is
an integral domain. Now by Proposition 1.7(i), ker η = (p) is prime ideal and so by Example 1.8,
p is a prime. ¤

Remark 1.10. When discussing a ring with unit R, we can consider it as containing as a
subring of the form Z/(charR) since the quotient homomorphism η : Z/(charR) −→ R gives
an isomorphism Z/(charR) −→ im η, allowing us to identify these rings. In particular, every
integral domain contains as a subring either Z = Z/(0) (if charR = 0) or Z/(p) if p = charR > 0
is a non-zero prime. This subring is sometimes called the characteristic subring of R. The rings
Z and Z/n = Z/(n) for n > 0 are often called core rings. When considering integral domains,
the rings Z and Fp = Z/p = Z/(p) for p > 0 a prime are called prime rings.

Here is a useful and important fact about rings containing a finite prime ring.

Theorem 1.11 (Idiot’s Binomial Theorem). Let R be a commutative ring with unit con-
taining Fp for some prime p > 0. If u, v ∈ R, then

(u + v)p = up + vp.

Proof. We have p1 = 0 in R. Now the Binomial Theorem gives

(u + v)p = up +
(

p

1

)
up−1v +

(
p

2

)
up−2v2 + · · ·+

(
p

p− 1

)
uvp−1 + vp.

Suppose that 1 6 j 6 p− 1. Then we have(
p

j

)
=

p (p− 1)!
j! (p− j)!

.

There are no factors of p appearing in (p− 1)!, j! or (p− j)!, so since this number is an integer
it must be divisible by p, i.e.,

(1.1a) p |
(

p

j

)
,
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or equivalently

(1.1b)
(

p

j

)
≡ 0 (mod p).

Hence in R we have (
p

j

)
1 = 0.

Combining this fact with the above expansion, we obtain the required equation in R,

(u + v)p = up + vp. ¤
A commutative ring with unit k is a field if every non-zero element u ∈ k is a unit in k i.e.,

there is an element v ∈ k such that uv = vu = 1. We usually write u−1 for this element v which
is necessarily unique and called the multiplicative inverse of u in k.

Example 1.12. If n > 0, the quotient ring Z/n is a field if and only if n is a positive prime.

Proposition 1.13. If k is a field then it is an integral domain.

Proof. Suppose that u, v ∈ k and uv = 0. Then if u 6= 0 we can multiply this equation by
u−1 to obtain

v = u−1uv = 0,

hence v = 0. So at least one of u, v must be 0. ¤
A non-zero element p ∈ R is irreducible if whenever p = uv with u, v ∈ R, either u or v is a

unit.

Lemma 1.14. Let R be an integral domain. If p ∈ R is a non-zero prime then it is an
irreducible.

Proof. Suppose that p = uv for some u, v ∈ R. Then p | u or p | v, and we might as well
assume that u = tp for some t ∈ R. Then (1− tv)p = 0 and so tv = 1, showing that v is a unit
with inverse t. ¤

Now let D be an integral domain. A natural question to ask is whether D can be found as
a subring of a field. This is certainly true for the integers Z which are contained in the field of
rational numbers Q, and for a prime p > 0, the prime ring Fp is itself a field.

Definition 1.15. The fields Q and Fp where p > 0 is prime are the prime fields.

Of course, we can view Z as a subring of any subfield of the complex numbers so an answer
to this question may not be unique! However, there is always a ‘smallest’ such field which is
unique up to an isomorphism.

Theorem 1.16. Let D be an integral domain.
(i) There is a field of fractions of D, Fr(D), which contains D as a subring.
(ii) If ϕ : D −→ F is a ring monomorphism into a field F , there is a unique homomorphism

ϕ̃ : Fr(D) −→ F such that ϕ̃(t) = ϕ(t) for all t ∈ D ⊆ Fr(D).

D

inc
²²

ϕ // F

Fr(D)
∃! ϕ̃

<<

♠
♥ ♦
♣

Proof. (i) Consider the set

P(D) = {(a, b) : a, b ∈ D, b 6= 0}.
Now introduce an equivalence relation ∼ on P(D), namely

(a′, b′) ∼ (a, b) ⇐⇒ ab′ = a′b.
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Of course, it is necessary to check that this relation is an equivalence relation; this is left as an
exercise. We denote the equivalence class of (a, b) by [a, b] and the set of equivalence classes by
Fr(D).

We will define addition and multiplication on Fr(D) by

[a, b] + [c, d] = [ad + bc, bd], [a, b][c, d] = [ac, bd].

We need to verify that these operations are well defined. For example, if [a′, b′] = [a, b] and
[c′, d′] = [c, d], then

(a′d′ + b′c′)bd = a′d′bd + b′c′bd = ab′d′d + b′bcd′ = (ad + bc)b′d′,

and so (a′d′ + b′c′, b′d′) ∼ (ad + bc, bd), hence addition is well defined. A similar calculation
shows that (a′c′, b′d′) ∼ (ac, bd), so multiplication is also well defined. It is now straightforward
to show that Fr(D) is a commutative ring with zero 0 = [0, 1] and unit 1 = [1, 1]. In fact, as we
will soon see, Fr(D) is a field.

Let [a, b] ∈ Fr(D). Then [a, b] = [0, 1] if and only if (0, 1) ∼ (a, b) which is equivalent to
requiring that a = 0; notice that for any b 6= 0, [0, b] = [0, 1]. We also have [a, b] = [1, 1] if and
only if a = b.

Now let [a, b] ∈ Fr(D) be non-zero, i.e., a 6= 0. Then b 6= 0 and [a, b], [b, a] ∈ Fr(D) satisfy

[a, b][b, a] = [ab, ba] = [1, 1] = 1,

so [a, b] has [b, a] as an inverse. This shows that Fr(D) is a field.
We can view D as a subring of Fr(D) using the map

j : D −→ Fr(D); j(t) = [t, 1]

which is a ring homomorphism; it is easy to check that it is a monomorphism. Therefore we
may identify t ∈ D with j(t) = [t, 1] ∈ Fr(D) and D with the subring im j ⊆ Fr(D).
(ii) Consider the function

Φ: P(D) −→ F ; Φ(a, b) = ϕ(a)ϕ(b)−1.

If (a′, b′) ∼ (a, b) then

Φ(a′, b′) = ϕ(a′)ϕ(b′)−1 = ϕ(a′)ϕ(b)ϕ(b)−1ϕ(b′)−1

= ϕ(a′b)ϕ(b)−1ϕ(b′)−1

= ϕ(ab′)ϕ(b′)−1ϕ(b)−1

= ϕ(a)ϕ(b′)ϕ(b′)−1ϕ(b)−1

= ϕ(a)ϕ(b)−1 = Φ(a, b),

so Φ is constant on each equivalence class of ∼. Hence we can define the function

ϕ̃ : Fr(D) −→ F ; ϕ̃([a, b]) = Φ(a, b).

It is straightforward to verify that ϕ̃ is a ring homomorphism which agrees with ϕ on the subring
D ⊆ Fr(D). ¤

The next three corollaries are left as an exercise. Corollary 1.19 is sometimes said to imply
that the construction of Fr(D) is functorial in the integral domain D.

Corollary 1.17. If F is a field then F = Fr(F ).

Corollary 1.18. If D is a subring of a field F , then Fr(D) ⊆ Fr(F ) = F is the smallest
subfield of F containing D.

Corollary 1.19. If D1 and D2 are integral domains and ϕ : D1 −→ D2 a ring monomor-
phism, there is a unique induced ring homomorphism ϕ∗ : Fr(D1) −→ Fr(D2) for which ϕ∗(t) =
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ϕ(t) if t ∈ D1 ⊆ Fr(D1).

D1
ϕ //

inc
²²

D2

inc
²²

Fr(D1) ϕ∗
// Fr(D2)

Moreover, this construction has the properties
• if ϕ : D1 −→ D2 and θ : D2 −→ D3 are monomorphisms between integral domains then

θ∗ ◦ ϕ∗ = (θ ◦ ϕ)∗ as homomorphisms Fr(D1) −→ Fr(D3);
• for any integral domain D, the identity homomorphism id : D −→ D induces the iden-

tity homomorphism (id)∗ = id: Fr(D) −→ Fr(D).

D1
ϕ //

inc
²²

D2
θ //

inc
²²

D3

inc
²²

Fr(D1) ϕ∗
// Fr(D2)

θ∗
// Fr(D3)

D
id //

inc
²²

D

inc
²²

Fr(D)
id∗ = id

// Fr(D)

Remark 1.20. When working with a field of fractions it is usual to adopt the notation
a

b
= a/b = [a, b]

for the equivalence class of (a, b). The rules for algebraic manipulation of such symbols are the
usual ones for working with fractions, i.e.,

a1

b1
+

a2

b2
=

a1b2 + a2b1

b1b2
,

a1

b1
× a2

b2
=

a1

b1

a2

b2
=

a1a2

b1b2
.

The field of fractions of an integral domain is sometimes called its field of quotients, however as
the word quotient is also associated with quotient rings we prefer to avoid using that terminology.

1.2. Polynomial rings

Let R be a commutative ring. We will make frequent use of the ring R[X] of polynomials
over R in an indeterminate X. This consists of elements of form

p(X) = p0 + p1X + · · ·+ pmXm

where m > 0 and p0, p1, . . . , pm ∈ R; such p(X) are called polynomials. Addition and multipli-
cation in R[X] are defined by

(p0 + p1X + · · ·+ pmXm) + (q0 + q1X + · · ·+ qmXm) =

(p0 + q0) + (p1 + q1)X + · · ·+ (pm + qm)Xm),

and

(p0 + p1X + · · ·+ pmXm)(q0 + q1X + · · ·+ qmXm) =

(p0q0) + (p0q1 + p1q0)X + · · ·+ (p0qm + p1qm−1 + · · ·+ pm−1q1 + pmq0)X2m.

Then R[X] is a commutative ring with the constant polynomials 0 and 1 as its zero and unit.
We identify r ∈ R with the obvious constant polynomial; this allows us to view R as a subring
of R[X] and the inclusion function inc : R −→ R[X] is a monomorphism.

More generally, we inductively can define the ring of polynomials in n indeterminates
X1, . . . , Xn over R,

R[X1, . . . , Xn] = R[X1, . . . , Xn−1][Xn]
for n > 1. Again there is an inclusion monomorphism inc: R −→ R[X1, . . . , Xn] which sends
each element of R to the corresponding constant polynomial.

These polynomial rings have an important universal property.
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Theorem 1.21 (Homomorphism Extension Property). Let ϕ : R −→ S be a ring homomor-
phism.

(i) For each s ∈ S there is a unique ring homomorphism ϕs : R[X] −→ S for which
• ϕs(r) = ϕ(r) for all r ∈ R,
• ϕs(X) = s.

R

inc
²²

ϕ // S

R[X]
∃! ϕs

==

(ii) For n > 1 and s1, . . . , sn ∈ S, there is a unique ring homomorphism

ϕs1,...,sn : R[X1, . . . , Xn] −→ S

for which
• ϕs1,...,sn(r) = ϕ(r) for all r ∈ R,
• ϕs1,...,sn(Xi) = si for i = 1, . . . , n.

R

inc
²²

ϕ // S

R[X1, . . . , Xn]
∃! ϕs1,...,sn

88

♠
♥ ♦
♣

Proof. (Sketch)

(i) For a polynomial p(X) = p0 + p1X + · · ·+ pmXm ∈ R[X], we define

(1.2) ϕs(p(X)) = p0 + p1s + · · ·+ pmsm ∈ S.

It is then straightforward to check that ϕs is a ring homomorphism with the stated properties
and moreover is the unique such homomorphism.
(ii) is proved by induction on n using (i). ¤

We will refer to ϕs1,...,sn as the extension of ϕ by evaluation at s1, . . . , sn. It is standard to
write

p(s1, . . . , sn) = ϕs1,...,sn(p(X1, . . . , Xn)).
An extremely important special case occurs when we start with the identity homomorphism

id: R −→ R and r1, . . . , rn ∈ R; then we have the homomorphism

εr1,...,rn = idr1,...,rn : R[X1, . . . , Xn] −→ R.

Slightly more generally we may take the inclusion of a subring inc : R −→ S and s1, . . . , sn ∈ S;
then

εs1,...,sn = incs1,...,sn : R[X1, . . . , Xn] −→ S

is called evaluation at s1, . . . , sn and we denote its image by

R[s1, . . . , sn] = εs1,...,sn R[X1, . . . , Xn] ⊆ S.

Then R[s1, . . . , sn] is a subring of S, called the subring generated by s1, . . . , sn over R.
Here is an example illustrating how we will use such evaluation homomorphisms.

Example 1.22. Consider the inclusion homomorphism inc: Q −→ C. We have the evalua-
tion at i homomorphism εi, for which εi(X) = i. We easily find that εiQ[X] ⊆ C is a subring
Q[i] ⊆ C consisting of the complex numbers of form a + bi with a, b ∈ Q.

Notice that if we had used −i instead of i, evaluation at −i, ε−i, would also give ε−iQ[X] =
Q[i]. These evaluation homomorphisms are related by complex conjugation since

ε−i(p(X)) = εi(p(X)),
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which is equivalent to the functional equation

ε−i = ( ) ◦ εi .

Notice also that in these examples we have

ker ε−i = ker εi = (X2 + 1) /Q[X],

hence we also have
Q[i] ∼= Q[X]/(X2 + 1).

In fact (X2 + 1) is actually a maximal ideal and so Q[i] ⊆ C is a subfield; later we will write
Q(i) for this subfield.

Proposition 1.23. Let R be an integral domain.
(i) The ring R[X] of polynomials in an indeterminate X over R is an integral domain.
(ii) The ring R[X1, . . . , Xn] of polynomials in n indeterminates X1, . . . , Xn over R is an

integral domain.

Corollary 1.24. If k is a field and n > 1, the polynomial ring k[X1, . . . , Xn] in n indeter-
minates X1, . . . , Xn is an integral domain.

As we will make considerable use of such rings we describe in detail some of their important
properties. First we recall long division in a polynomial ring k[X] over a field k; full details can
be found in a basic course on commutative rings or any introductory book on this subject.

Theorem 1.25 (Long Division). Let k be a field and X an indeterminate. Let f(X), d(X) ∈
k[X] and assume that d(X) 6= 0 so that deg d(X) > 0. Then there are unique polynomials
q(X), r(X) ∈ k[X] for which f(X) = q(X)d(X) + r(X) with deg r(X) < deg d(X) or r(X) = 0.

In the situation discussed in this result, the following names are often used. We refer to the
process of finding q(X) and r(X) as long division of f(X) by d(X). Also,

f(X) = the dividend , d(X) = the divisor , q(X) = the quotient , r(X) = the remainder .

Example 1.26. If k = Q, find the quotient and remainder when the long division of f(X) =
6X4 − 6X3 + 3X2 − 3X + 1 by d(X) = 2X2 + 1 is performed.

Solution. In the usual notation we have the following calculation.

3X2 − 3X

2X2 + 1 | 6X4 − 6X3 + 3X2 − 3X + 1

6X4 + 0X3 + 3X2 + 0X + 0

− 6X3 + 0X2 − 3X + 1

− 6X3 + 0X2 − 3X + 0

1

Hence
6X4 − 6X3 + 3X2 − 3X + 1 = (3X2 − 3X)(2X2 + 1) + 1,

giving q(X) = 3X2 − 3X and r(X) = 1. ¤

Example 1.27. If k = F5, find the quotient and remainder when long division of f(X) =
10X5 + 6X4 − 6X3 + 3X2 − 3X + 1 by d(X) = 2X2 + 1 is performed.

Solution. First notice that working modulo 5 we have

f(X) = 10X5 + 6X4 − 6X3 + 3X2 − 3X + 1 ≡ X4 + 4X3 + 3X2 + 2X + 1 (mod 5).

Notice also that multiplicative inverses in F5 are given by

2−1 ≡ 3 (mod 5), 3−1 ≡ 2 (mod 5), 4−1 ≡ 4 (mod 5).
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We have the following calculation.

3X2 + 2X

2X2 + 1| 6X4 + 4X3 + 3X2 + 2X + 1

6X4 + 0X3 + 3X2 + 0X + 0

4X3 + 0X2 + 2X + 1

4X3 + 0X2 + 2X + 0

1

Hence
6X4 − 6X3 + 3X2 − 3X + 1 ≡ (3X2 + 2X)(2X2 + 1) + 1 (mod 5),

giving q(X) = 3X2 + 2X and r(X) = 1. ¤
An important consequence of Theorem 1.25 is the following which makes use of the Euclidean

Algorithm.

Corollary 1.28. Let k be a field and X an indeterminate. Let f(X), g(X) ∈ k[X] be
non-zero. Then there are a(X), b(X) ∈ k[X] such that

a(X)f(X) + b(X)g(X) = gcd(f(X), g(X)).

Here the greatest common divisor gcd(f(X), g(X)) of f(X), g(X) is the monic polynomial
of greatest degree which divides both of f(X), g(X).

Proposition 1.29. Let k be a field and X an indeterminate. Then a non-constant polyno-
mial p(X) ∈ k[X] is an irreducible if and only if it is a prime.

♠
♥ ♦
♣

Proof. By Lemma 1.14 we already know that p(X) is irreducible if it is prime. So

suppose that p(X) is irreducible and that p(X) | u(X)v(X) for u(X), v(X) ∈ k[X]. Then by
Corollary 1.28, there are a(X), b(X) ∈ k[X] such that

a(X)p(X) + b(X)u(X) = gcd(p(X), u(X)).

But since p(X) is irreducible, gcd(p(X), u(X)) = 1, hence

a(X)p(X) + b(X)u(X) = 1.

Multiplying through by v(X) gives

a(X)p(X)v(X) + b(X)u(X)v(X) = v(X)

and so p(X) | v(X). This shows that p(X) | u(X) or p(X) | v(X) and so p(X) is prime. ¤
Theorem 1.30. Let k be a field and X an indeterminate.

(i) Every ideal I / k[X] is principal, i.e., I = (h(X)) for some h(X) ∈ k[X].
(ii) The ideal (p(X))/k[X] is prime if and only if p(X) = 0 or p(X) is irreducible in k[X].
(iii) The quotient ring k[X]/(p(X)) is an integral domain if and only if p(X) = 0 or p(X)

is irreducible in k[X].
(iv) The quotient ring k[X]/(p(X)) is a field if and only if p(X) is an irreducible in k[X].

♠
♥ ♦
♣

Proof. (i) Let I / k[X] and assume that I 6= (0). Then there must be at least

one element of I with positive degree and so we can choose h(X) ∈ I of minimal degree, say
d = deg h(X).

Now let p(X) ∈ I. By Long Division, there are q(X), r(X) ∈ k[X] such that

p(X) = q(X)h(X) + r(X) and deg r(X) < d or r(X) = 0.

Since p(X) and h(X) are in the ideal I, we also have

r(X) = p(X)− q(X)h(X) ∈ I.
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If r(X) 6= 0 this would contradict the minimality of d, so we must have r(X) = 0, showing that
p(X) = q(X)h(X). Thus I ⊆ (p(X)) ⊆ I and therefore I = (p(X)).
(ii) This follows from Proposition 1.29.
(iii) This follows from Proposition 1.7(i).
(iv) Since k[X] is an integral domain and not a field, it is follows that if k[X]/(p(X)) is a field
then because it is an integral domain, p(X) is an irreducible by (iii).

Suppose that p(X) is irreducible (and hence is non-zero). Then for any q(X) ∈ k[X] with
q(X) /∈ (p(X)) we can use the Euclidean Algorithm of Corollary 1.28 to write

a(X)p(X) + b(X)q(X) = gcd(p(X), q(X)).

But gcd(p(X), q(X)) = 1 since p(X) is irreducible, so

a(X)p(X) + b(X)q(X) = 1.

This shows that in the quotient ring k[X]/(p(X)) the residue class of q(X) has the residue class
of b(X) as its inverse. ¤

Remark 1.31. In connection with Theorem 1.30(i), notice that if p(X) ∈ k[X], then pro-
vided d = deg p(X) > 0, we have for some pd 6= 0,

p(X) = p0 + p1X + · · ·+ pdX
d = pdq(X),

where
q(X) = p−1

d p0 + p−1
d p1X + · · ·+ p−1

d pd−1X
d−1 + Xd.

This easily implies that as ideals of k[X], (p(X)) = (q(X)). So we can always find a monic
polynomial as the generator of a given ideal, and this monic polynomial is unique.

Proposition 1.32 (Unique Factorization Property). Every non-constant polynomial f(x) ∈
k[X] has a factorization

f(x) = cp1(X) · · · pk(X),
where c ∈ k, and p1(X), . . . , pk(X) ∈ k[X] are irreducible monic polynomials. Moreover, c is
unique and the sequence of polynomials p1(X), . . . , pk(X) is unique apart from the order of the
terms.

♠
♥ ♦
♣

Proof. (Sketch)

Existence is proved by induction on the degree of f(X) and begins with the obvious case
deg f(X) = 1. If deg f(X) > 1, then either f(X) is already irreducible, or f(X) = f1(X)f2(X)
with both factors of positive degree, and therefore deg fj(X) < deg f(X). This gives the
inductive step.

To prove uniqueness, suppose that

p1(X) · · · pk(X) = q1(X) · · · q`(X)

where pi(X), qj(X) ∈ k[X] are irreducible monic polynomials. Then by Proposition 1.29, each
pi(X) is prime, hence divides one of the qj(X), hence must equal it. By reordering we can
assume that pi(X) = qi(X) and k 6 `. After cancelling common factors we obtain

qk+1(X) · · · q`(X) = 1,

and so we see that k = `. ¤

Corollary 1.33. Suppose that f(X) ∈ k[X] factors into linear factors

f(X) = c(X − u1) · · · (X − ud),

where u1, . . . , ud ∈ k. Then the sequence of roots u1, . . . , ud is unique apart from the order. In
particular, if v1, . . . , vr are the distinct roots, then

f(X) = c(X − v1)m1 · · · (X − vr)mr ,

where mi > 0 and this factorization is unique apart from the order of the pairs (vi,mi).
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Corollary 1.34. The number of distinct roots of the non-constant polynomial f(X) ∈ k[X]
is at most deg f(X).

Definition 1.35. If k is a field and X an indeterminate, then the ring of rational functions
k(X) is the fraction field of k[X]. The elements of k(X) are fractions

a0 + a1X + · · ·+ amXm

b0 + b1X + · · ·+ bnXn

with ai, bj ∈ k.
1.3. Identifying irreducible polynomials

We will need some effective methods for identifying when a polynomial is irreducible in a
polynomial ring k[X] where k is a field.

Let us consider factorisation of polynomials overQ. If f(X) ∈ Z[X] then we can also consider
f(X) as an element of Q[X]. If R = Z or Q, we say that f(X) has a proper factorisation over
R if f(X) = g(X)h(X) for some g(X), h(X) ∈ R[X] with deg g(X) > 0 and deg h(X) > 0.

Proposition 1.36 (Gauss’s Lemma). Let f(X) ∈ Z[X]. Then f(X) has a proper factori-
sation over Z if and only it has a proper factorisation over Q.

So to find factors of f(X) it is sufficient to look for factors in Z[X]. The next result is a
special case of the Eisenstein Irreducibility Test. Our version is slightly more general than the
usual one which corresponds to taking s = 0.

Proposition 1.37 (Eisenstein Test). Let f(X) ∈ Z[X] and s ∈ Z. Choose ai ∈ Z so that

f(X) = a0 + a1(X − s) + · · ·+ ad−1(X − s)d−1 + ad(X − s)d,

where d = deg f(X). Suppose that p > 0 is a prime in Z for which the following conditions
hold:

• ak ≡ 0 (mod p) for k = 0, . . . , d− 1;
• a0 6≡ 0 (mod p2);
• ad 6≡ 0 (mod p).

Then f(X) is irreducible in Q[X] and hence also in Z[X].

Example 1.38. Let p > 2 be a prime. Then the polynomial

Φp(X) = 1 + X + · · ·+ Xp−1 ∈ Z[X]

is irreducible in Q[X] and hence also in Z[X].

Proof. Working in Z[X],

Φp(X)(X − 1) = (1 + X + · · ·+ Xp−1)(X − 1)
= Xp − 1

= (1 + (X − 1))p − 1

=
p∑

k=1

(
p

k

)
(X − 1)k

≡ (X − 1)p (mod p),

since by (1.1a), p divides (
p

k

)
=

p!
k! (p− k)!

when k = 1, . . . , p− 1. Hence

Φp(X) ≡ (X − 1)p−1 (mod p)

Also, (
p

1

)
= p 6≡ 0 (mod p2),
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giving

(1.3) Φp(X) = (X − 1)p−1 + cp−2(X − 1)p−2 + · · ·+ c1(X − 1) + c0

with cr ≡ 0 (mod p) and c0 = p. So the Eisenstein Test can be applied here with s = 1 to show
that Φp(X) is irreducible in Z[X]. ¤

Example 1.39. As examples we have the irreducible polynomials

Φ2(X) = 1 + X,

Φ3(X) = 1 + X + X2,

Φ5(X) = 1 + X + X2 + X3 + X4,

Φ7(X) = 1 + X + X2 + X3 + X4 + X5 + X6,

Φ11(X) = 1 + X + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 + X10.

These are examples of the cyclotomic polynomials Φn(X) ∈ Z[X] which are defined for all
n > 1 by

(1.4a) Xn − 1 =
∏

d|n
Φd(X),

where the product is taken over all the positive divisors of n. For example,

X2 − 1 = (X − 1)(X + 1) = Φ1(X)Φ2(X),

X3 − 1 = (X − 1)(X2 + X + 1) = Φ1(X)Φ3(X),

X4 − 1 = (X − 1)(X + 1)(X2 + 1) = Φ1(X)Φ2(X)Φ4(X),

X5 − 1 = (X − 1)(X4 + X3 + X + 1) = Φ1(X)Φ5(X),

X6 − 1 = (X − 1)(X + 1)(X2 + X + 1)(X2 −X + 1) = Φ1(X)Φ2(X)Φ3(X)Φ6(X),

X12 − 1 = (X − 1)(X + 1)(X2 + X + 1)(X2 + 1)(X2 −X + 1)(X4 −X2 + 1)

= Φ1(X)Φ2(X)Φ3(X)Φ4(X)Φ6(X)Φ12(X).

Cyclotomic polynomials can be computed recursively using Equation (1.4a). If we know Φk(X)
for k < n, then

(1.4b) Φn(X) =
Xn − 1∏

d|n
d<n

Φd(X)
.

The degree of Φn(X) involves a function of n probably familiar from elementary Number Theory.

Definition 1.40. The Euler function ϕ : N −→ N is defined by

ϕ(n) = number of k = 1, . . . , n for which gcd(n, k) = 1

= |(Z/n)×| = number of units in Z/n

= number of generators of the cyclic group Z/n.

In particular, if p > 2 is a prime then ϕ(p) = p− 1. Of course, ϕ(1) = 1.

It can be shown that for each natural number n,

(1.5)
∑

d|n
ϕ(d) = n.

Notice that we can inductively determine ϕ(n) using this equation. For example, if p and q are
distinct primes, then

ϕ(pq) = pq − (ϕ(p) + ϕ(q) + ϕ(1)) = pq − (p− 1)− (q − 1)− 1 = (p− 1)(q − 1).

It is also true that whenever m, n are coprime, i.e., when gcd(m,n) = 1,

(1.6) ϕ(mn) = ϕ(m)ϕ(n).
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Thus if n = pr1
1 · · · prs

s where p1 < p2 < · · · < ps are the prime factors of n and rj > 0, then

(1.7) ϕ(n) = ϕ(pr1
1 ) · · ·ϕ(prs

s ).

Furthermore, if p is a prime and r > 0, then

(1.8) ϕ(pr) = (p− 1)pr−1.

Notice that as a result, ϕ(n) is even when n > 2.

Remark 1.41. For those who know about the Möbius function µ (which takes values 0,±1)
and Möbius inversion, the latter can be used to solve Equation (1.5) for ϕ, giving

(1.9) ϕ(n) =
∑

d|n
µ(d)

n

d
.

Similarly, the formulæ of (1.4) lead to

(1.10) Φn(X) =
∏

d|n
(Xn/d − 1)µ(d).

So for example, if p, q are distinct primes, then using standard properties of µ,

Φpq(X) = (Xpq − 1)µ(1)(Xpq/p − 1)µ(p)(Xpq/q − 1)µ(q)(Xpq/pq − 1)µ(pq)

= (Xpq − 1)(Xq − 1)−1(Xp − 1)−1(X − 1) =
(Xpq − 1)(X − 1)
(Xq − 1)(Xp − 1)

.

Recall that an element ζ of a field K is a primitive n-th root of unity if

min{k : 1 6 k and ζk = 1} = n.

We think of ζn = e2πi/n as the standard complex primitive n-th root of unity. Then every
complex n-th root of unity has the form ζk

n = e2πik/n for k = 0, 1, . . . , n− 1.

Theorem 1.42. For each n > 1, the cyclotomic polynomial Φn(X) is irreducible in Q[X]
and hence in Z[X]. The complex roots of Φn(X) are the primitive n-th roots of unity,

ζk
n = e2πik/n (0 6 k 6 n− 1, gcd(k, n) = 1).

and the number of these is deg Φn(X) = ϕ(n). Hence,

Φn(X) =
∏

t=1,...,n−1
gcd(t,n)=1

(X − ζt
n).

Proof. We will give a reformulation and proof of this in Theorem 6.2. ¤

Example 1.43. For n = 6 we have

ζ6 = e2πi/6 = eπi/3 =
1
2

+
√

3
2

i.

Then ϕ(6) = 2 and
Φ6(X) = X2 −X + 1 = (X − ζ6)(X − ζ5

6 ).

It is also worth recording a related general result on cyclic groups.

Proposition 1.44. Let n > 1 and C = 〈g〉 be a cyclic group of order n and a generator g.
Then an element gr ∈ C is a generator if and only if gcd(r, n) = 1; the number of such elements
of C is ϕ(n).

This leads to a useful group theoretic result.

Lemma 1.45. Let G be a finite group satisfying the following condition:
• For each n > 1, there are at most n solutions of xn = ι in G.

Then G is cyclic and in particular is abelian.
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♠
♥ ♦
♣

Proof. Let θG(d) denote the number of elements in G of order d. By Lagrange’s

Theorem, θG(d) = 0 unless d divides |G|. Since

G =
⋃

d||G|
{g ∈ G : |g| = d},

we have
|G| =

∑

d||G|
θG(d).

Recall the Euler ϕ-function satisfies Equation (1.5), hence

|G| =
∑

d||G|
ϕ(d).

Combining these we obtain

(1.11)
∑

d||G|
θG(d) =

∑

d||G|
ϕ(d).

Let d be a divisor of |G|. By Proposition 1.44, for each element g ∈ G of order d, the cyclic
subgroup 〈g〉 6 G has ϕ(d) generators, each of order d. As there are at most d such elements g
in G, this gives θG(d) 6 ϕ(d). So

∑

d||G|
θG(d) 6

∑

d||G|
ϕ(d).

Now if θG(d) < ϕ(d) for some d, we would have a strict inequality in place of Equation (1.11).
Hence θG(d) = ϕ(d) for all d. In particular, there are ϕ(|G|) elements of order |G|, hence there
must be an element of order |G|, so G is cyclic. ¤

The above results for polynomials over Q and Z have analogues over the field of fractions
k(T ) and polynomial ring k[T ], where k is a field.

A polynomial f(X) ∈ k[T ][X] is an element of k(T )[X]. If R = k[T ] or k(T ), we say that
f(X) has a proper factorisation over R if f(X) = g(X)h(X) for some g(X), h(X) ∈ R[X] with
deg g(X) > 0 and deg h(X) > 0.

Proposition 1.46 (Gauss’s Lemma). Let f(X) ∈ k[T ][X]. Then f(X) has a proper fac-
torisation over k[T ] if and only it has a proper factorisation over k(T ).

Proposition 1.47 (Eisenstein Test). Let f(X) ∈ k[T ][X] and s ∈ k. Choose ai ∈ k[T ] so
that

f(X) = a0 + a1(X − s) + · · ·+ ad−1(X − s)d−1 + ad(X − s)d,

where d = deg f(X). Suppose that p(T ) ∈ k[T ] is an irreducible for which the following condi-
tions hold:

• ak ≡ 0 (mod p(T )) for k = 0, . . . , d− 1;
• a0 6≡ 0 (mod p(T )2);
• ad 6≡ 0 (mod p(T )).

Then f(X) is irreducible in k(T )[X] and hence also in k[T ][X].

Example 1.48. Let k be a field. Then the polynomial Xn − T is irreducible in k(T )[X].

1.4. Finding roots of complex polynomials of small degree

♠
♥ ♦
♣

In this section we work within the complex numbers and take k ⊆ C; in practice we will
have k = R or k = C.

For monic linear (degree 1) or quadratic (degree 2) polynomials, methods of finding roots are
very familiar. Let us consider the cases of cubic (degree 3) and quartic (degree 4) polynomials.
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Cubic polynomials: Cardan’s method. The following 16th century method of finding
roots of cubics is due to Jerôme Cardan who seems to have obtained some preliminary versions
from Niccolà Tartaglia by somewhat disreputable means! For historical details see [2, 3].

A monic cubic
f(X) = X3 + a2X

2 + a1X + a0 ∈ C[X]
can be transformed into one with no quadratic term by a change of variables X 7−→ X − a2/3
giving

g(X) = f(X − a2/3) = X3 −
(

a1 − 1
3
a2

2

)
X −

(
a0 +

a1a2

3
+

2a3
2

27

)
∈ C[X].

Clearly finding the roots of f(X) is equivalent to finding those of g(X), so we may as well
assume that we want to find the complex roots of

f(X) = X3 + pX + q ∈ C[X].

Suppose that x ∈ C is a root of f(X), i.e.,

(1.12) x3 + px + q = 0.

Introduce u ∈ C for which
x = u− p

3u
Then (

u− p

3u

)3
+ p

(
u− p

3u

)
+ q = 0

and so

u3 − p3

27u3
+ q = 0,

hence

u6 + qu3 − p3

27
= 0.

Solving for u3 we obtain

u3 = −q

2
± q

2

√
q2 +

4p3

27
,

where

√
q2 +

4p3

27
denotes one of the complex square roots of the discriminant of the quadratic

equation

U2 + qU − p3

27
= 0.

Now if we take u to be a cube root of one of the complex numbers

−q

2
± q

2

√
q2 +

4p3

27
we obtain the desired root of f(X) as x = u − p/3u. Notice that we have a choice of 2 values
for u3 and for each of these a choice of 3 values for u, differing by factors of the form ωr for
r = 0, 1, 2 where ω = e2πi/3 is a primitive cube root of 1. However, since

1

−q +

√
q2 +

4p3

27

=
−q −

√
q2 +

4p3

27
q2 − (q2 + 4p3/27)

= −27

(
−q −

√
q2 +

4p3

27

)

4p3
,

it is easy to verify that there are in fact only 3 choices of the root x which we can write
symbolically as

x =
3

√
−q

2
+

1
2

√
q2 +

4p3

27
+

3

√
−q

2
− 1

2

√
q2 +

4p3

27
(1.13)
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or more precisely as

x =
3

√
−q

2
+

1
2

√
q2 +

4p3

27
− p

3
3

√
−q

2
+

1
2

√
q2 +

4p3

27

.(1.14)

Example 1.49. Find the complex roots of the polynomial

f(X) = X3 + 3X − 10 ∈ R[X].

Solution. Applying the method above, we reduce to the quadratic equation

U2 − 10U − 1 = 0

whose roots are 5±√26 ∈ R. Notice that 5 +
√

26 > 0 and 5−√26 < 0; we also have

5−
√

26 =
−1

5 +
√

26
.

Now 5 +
√

26 has the complex cube roots

3

√
5 +

√
26,

3

√
5 +

√
26 ω,

3

√
5 +

√
26 ω2.

Here we have x = u− 1/u, so the 3 complex roots of f(X) are
(

3

√
5 +

√
26− 1

3
√

5 +
√

26

)
ωr (r = 0, 1, 2).

Notice that one of these is real, namely

3

√
5 +

√
26− 1

3
√

5 +
√

26
=

(
3
√

5 +
√

26
)2
− 1

3
√

5 +
√

26
. ¤

Quartic polynomials: Ferrari’s method. The following method of finding roots of quar-
tics was publicised by Cardan who attributed it to his student Lodovicio Ferrari.

A general monic quartic polynomial

f(X) = X3 + a3X
3 + a2X

2 + a1X + a0 ∈ C[X]

can be transformed into one with no cubic term by a change of variables X 7−→ X−a2/3 giving

g(X) = f(X − a3/4) =

Y 4 +
(

a2 − 3
8
a2

3

)
Y 2 +

(
1
8
a3

3 −
1
2
a2a3 + a1

)
Y −

(
1
16

a2a
2
3 −

3
256

a4
3 +

1
4
a1a3 + a0

)
∈ C[X].

Clearly finding the roots of f(X) is equivalent to finding those of g(X), so we may as well
assume that we want to find the complex roots of

f(X) = X4 + pX2 + qX + r ∈ C[X].

Suppose that x is a root and introduce numbers y, z such that z = x2 + y (we will fix the
values of these later). Then

z2 = x4 + 2x2y + y2

= −px2 − qx− r + 2xy + y2

= (2y − p)x2 − qx + y2 − r.

Now choose y to make the last quadratic expression in x a square,

(1.15) (2y − p)x2 − qx + (y2 − r) = (Ax + B)2.

This can be done by requiring the vanishing of the discriminant

(1.16) q2 − 4(2y − p)(y2 − r) = 0.
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Notice that if y = p/2 then we would require q = 0 and then

f(X) = X4 + pX2 + r = (X2)2 + p(X2) + r = 0

can be solved by solving
Z2 + pZ + r = 0.

Since Equation (1.16) is a cubic in y, we can use the method of solution of cubics to find a root
y = t say. Then for Equation (1.15) we have

(x2 + t) = (Ax + B)2,

whence
x2 = −t± (Ax + B).

Thus taking the two square roots of the right hand side we obtain 4 values for x, which we
symbolically write as

x = ±
√
−t± (Ax + B).

Remark 1.50. In the case of cubic and quartic polynomials over C we can obtain all the
roots by repeatedly taking square or cube roots (or radicals). Consequently such polynomials are
said to be solvable by radicals. Later we will see that this is not true in general for polynomials
of degree at least 5; this is one of the great early successes of this theory.

1.5. Automorphisms of rings and fields

Definition 1.51. Let R be a ring and R0 ⊆ R a subring.
• An automorphism of R is a ring isomorphism α : R −→ R. The set of all such auto-

morphisms is denoted Aut(R).
• An automorphism of R over R0 is a ring isomorphism α : R −→ R for which α(r) = r

whenever r ∈ R0. The set of all automorphisms of R over R0 is denoted AutR0(R).

Proposition 1.52. For a ring R with a subring R0 ⊆ R, Aut(R) and AutR0(R) form groups
under composition of functions.

Proof. The composition α◦β of two automorphisms α, β : R −→ R is also an automorphism
of R as is the inverse of α. The identity function id = idR : R −→ R is an automorphism. Hence
Aut(R) forms a group under composition. The argument for AutR0(R) is similar. ¤

Proposition 1.53. Let R be one of the core rings Z or Z/n with n > 1. Then
(i) The only automorphism of R is the identity, i.e., Aut(R) = {id}.
(ii) If S is a ring containing a core ring R and α ∈ Aut(S), then α restricts to the identity

on R, i.e., α(r) = r for all r ∈ R. Hence, Aut(S) = AutR(S).

Proof. (i) For such a core ring R, every element has the form k1 for some k ∈ Z. For an
automorphism α of R,

α(k1) =





α(1) + · · ·+ α(1)︸ ︷︷ ︸
k

if k > 0,

−(α(1) + · · ·+ α(1)︸ ︷︷ ︸
−k

) if k < 0,

α(0) if k = 0

=





1 + · · ·+ 1︸ ︷︷ ︸
k

if k > 0,

−(1 + · · ·+ 1︸ ︷︷ ︸
−k

) if k < 0,

0 if k = 0

=k1.
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Thus α = id.
(ii) For α ∈ Aut(S), α(1) = 1 and a similar argument to that for (i) shows that α(r) = r for all
r ∈ R. ¤

Proposition 1.54. Let D be an integral domain and α : D −→ D be an automorphism.
Then the induced homomorphism gives an automorphism α∗ : Fr(D) −→ Fr(D).

Proof. Given α, the induced homomorphism α∗ : Fr(D) −→ Fr(D) exists and we need
to show it has an inverse. The inverse automorphism α−1 : D −→ D also gives rise to an
induced homomorphism (α−1)∗ : Fr(D) −→ Fr(D). Since α−1 ◦ α = id = α ◦ α−1, we can apply
Corollary 1.19 to show that

(α−1)∗ ◦ (α)∗ = id = (α)∗ ◦ (α−1)∗.

Hence (α)∗ is invertible with inverse (α−1)∗. ¤
Corollary 1.55. There is a monomorphism of groups

( )∗ : Aut(D) −→ Aut(Fr(D)); α 7−→ α∗.

Note that this monomorphism need not be an epimorphism since it is possible that an
automorphism of Fr(D) could map some elements of D ⊆ Fr(D) out of D.

Example 1.56. The field of fractions of the ring of integers Z is the field of rationals Q.
The homomorphism

( )∗ : Aut(Z) −→ Aut(Q); α 7−→ α∗
is an isomorphism and hence Aut(Q) = {id}.

Combining this example with Proposition 1.53(ii) we obtain a result which will prove useful
later.

Proposition 1.57. Let k be one of the prime fields Q or Fp with p > 0 prime. If R is a
ring containing k as a subring, then every automorphism of R restricts to the identity on k, i.e.,
Aut(R) = Aut|(R).

Let k be a field. The group of invertible 2 × 2 matrices over k is the 2 × 2 general linear
group over k,

GL2(k) =
{[

a11 a12

a21 a22

]
: aij ∈ k, a11a22 − a12a21 6= 0

}

The scalar matrices form a normal subgroup

Scal2(k) = {diag(t, t) : t ∈ k, t 6= 0} / GL2(k).
The quotient group is called the 2× 2 projective general linear group over k,

PGL2(k) = GL2(k)/Scal2(k).
Notice that GL2(k) has another interesting subgroup called the affine subgroup,

Aff1(k) =
{[

a b
0 1

]
: a, b ∈ k, a 6= 0

}
6 GL2(k).

Example 1.58. Let k be a field and X an indeterminate. Then Aut|(k[X]) and hence
Aut|(k(X)), contains a subgroup isomorphic to Aff1(k). In fact, Aut|(k[X]) ∼= Aff1(k).

Proof. We begin by showing that to each affine matrix

A =
[
a b
0 1

]
∈ Aff1(k)

there is an associated automorphism αA : k[X] −→ k[X].
For this we use the element aX + b ∈ k[X] together with the extension result of Theo-

rem 1.21(i) to obtain a homomorphism αA : k[X] −→ k[X] with αA(X) = aX + b. Using the
inverse matrix

A−1 =
[
a−1 −a−1b
0 1

]
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we similarly obtain a homomorphism αA−1 : k[X] −→ k[X] for which αA−1(X) = a−1X − a−1b.
Using the same line of argument as in the proof of Proposition 1.54 (or doing a direct calculation)
we see that αA−1 is the inverse of αA an so αA ∈ Aut|(k[X]). It is straightforward to check
that for A1, A2 ∈ Aff1(k),

αA2A1 = αA1 ◦ αA2 ,

(note the order!) hence there is a homomorphism of groups

Aff1(k) −→ Aut|(k[X]); A 7−→ αA−1 ,

which is easily seen to be a monomorphism. Composing with ( )∗ we see that there is a
monomorphism Aff1(k) −→ Aut|(k(X)). In fact, this is also an epimorphism and we leave the
proof of this as an exercise. ¤

Example 1.59. Let k be a field and X an indeterminate. Then
(i) Aut|(k(X)) contains a subgroup isomorphic to PGL2(k).
(ii) In fact, Aut|(k(X)) ∼= PGL2(k).

♠
♥ ♦
♣

Proof. (i) We begin by showing that to each invertible matrix

A =
[
a11 a12

a21 a22

]
∈ GL2(k)

there is an associated automorphism αA : k(X) −→ k(X).
We begin by choosing the element (a11X + a12)/(a21X + a22) ∈ k(X) and then using Theo-

rem 1.21(i) to obtain a homomorphism k[X] −→ k(X) that sends X to (a11X+a12)/(a21X+a22).
By applying ( )∗ to this we obtain a homomorphism (known as a fractional linear transforma-
tion) αA : k(X) −→ k(X) for which

αA(X) =
a11X + a12

a21X + a22
.

Again we find that
αA2A1 = αA1 ◦ αA2 .

There is an associated homomorphism of groups GL2(k) −→ Aut|(k(X)) sending A to αA−1
.

However, this is not an injection in general since for each scalar matrix diag(t, t),

αdiag(t,t)(X) =
tX

t
= X,

showing that αdiag(t,t) is the identity function.
In fact it is easy to see that Scal2(k)/GL2(k) is the kernel of this homomorphism. Therefore

passing to the quotient PGL2(k) = GL2(k)/Scal2(k) we obtain a monomorphism PGL2(k) −→
Aut|(k(X)). There is one case where Scal2(k) is the trivial group, namely k = F2.

(ii) To show that every automorphism of k(X) is a fractional linear transformation is less
elementary. We give a sketch proof for the case of k = C; actually this argument can be modified
to work for any algebraically closed field, but an easy argument then shows the general case.

Let α ∈ AutC(C(X)). There is an associated rational (hence meromorphic) function f given
by z 7−→ f(z), where α(X) = f(X), defined on C with the poles of f deleted. If we write

f(X) =
p(X)
q(X)

where p(X), q(X) ∈ C[X] have no common factors of positive degree, then the order of f(X) is

ord f = max{deg p(X),deg q(X)}.
Now let c ∈ C. Then the number of solutions counted with algebraic multiplicity of the equation
f(z) = c turns out to be ord f . Also, if deg p(X) 6 deg q(X) then the number of poles of f



1.5. AUTOMORPHISMS OF RINGS AND FIELDS 19

counted with algebraic multiplicity is also ord f . Finally, if deg p(X) > deg q(X) then we can
write

f(X) = p1(X) +
p0(X)
q(X)

,

where p0(X), p1(X) ∈ C[X] and deg p0(X) < deg q(X). Then the number of poles of f counted
with algebraic multiplicity is

deg p1(X) + ord
p0

q
.

Now it is easy to see that since α is invertible so is the function f . But this can only happen
if the function f is injective which means that all of these numbers must be 1, hence ord f = 1.
Thus

f(X) =
aX + b

cX + d
6= constant

and the matrix
[
a b
c d

]
must be invertible. ¤

Clearly not every fractional linear transformation αA : k(X) −→ k(X) maps polynomials to
polynomials so ( )∗ : Aut|(k[X]) −→ Aut|(k(X)) is not an epimorphism.

Now we turn to a more familiar field R, the real numbers.

Proposition 1.60. The only automorphism of the field R is the identity function, hence
Aut(R) = {id}.

♠
♥ ♦
♣

Proof. First we note that Q ⊆ R is a subring and if α ∈ Aut(R) then α(q) = q for

q ∈ Q by Example 1.56.
We recall from Analysis that the rational numbers are dense in the real numbers in the

sense that each r ∈ R can be expressed as a limit r = limn→∞ qn, where qn ∈ Q. Then for a
continuous function f : R −→ R, its value at r depends on its values on Q since

f(r) = f( lim
n→∞ qn) = lim

n→∞ f(qn).

We will show that an automorphism α ∈ Aut(R) is continuous.
First recall that for x, y ∈ R,

x < y ⇐⇒ 0 < y − x ⇐⇒ y − x = t2 for some non-zero t ∈ R.

Now for α ∈ Aut(R) and s ∈ R, we have α(s2) = α(s)2. Hence,

x < y =⇒ α(y)− α(x) = α(t)2 for some non-zero t ∈ R =⇒ α(x) < α(y).

So α preserves order and fixes rational numbers.
Now let x ∈ R and ε > 0. Then we can choose a rational number q such that 0 < q 6 ε.

Taking δ = q we find that for y ∈ R with |y − x| < δ (i.e., −δ < y − x < δ) we have

−δ = α(−δ) < α(y)− α(x) < α(δ) = δ,

hence
|α(y)− α(x)| < δ 6 ε.

This shows that α is continuous at x.
Thus every automorphism of R is continuous function which fixes all the rational numbers,

hence it must be the identity function. ¤
Remark 1.61. If we try to determine Aut(C) the answer turns out to be much more com-

plicated. It is easy to see that complex conjugation ( ) : C −→ C is an automorphism of C
and fixes every real number, i.e., ( ) ∈ AutR(C); in fact, AutR(C) = {id, ( )}. However, it is
not true that every α ∈ Aut(C) fixes every real number! The automorphism group Aut(C) is
actually enormous but it is hard to find an explicit element other than id and ( ). Note that
given an automorphism α ∈ Aut(C), the composition α ◦ ( ) ◦ α−1 is also self inverse, so there
are many elements of order 2 in the group Aut(C).
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Exercises on Chapter 1

1.1. Let R be a ring. Show that

{n ∈ Z : n > 0 and n1 = 0} = {n ∈ Z : n > 0 and nr = 0 for all r ∈ R}.
Deduce that if charR > 0 then these sets are non-empty and

charR = min{n ∈ Z : n > 0 and nr = 0 for all r ∈ R}.
1.2. Let R be an integral domain.

(a) Show that every subring S ⊆ R is also an integral domain. What is the relationship
between charS and charR ?

(b) If R is a field, give an example to show that a subring of R need not be a field.

1.3. For each of the following rings R, find the characteristic charR and the characteristic
subring of R. Determine which of these rings is an integral domain. In (b) and (c), A is a
commutative ring.

(a) Any subring R ⊆ C.
(b) The polynomial ring R = A[X].
(c) The ring of n× n matrices over A,

R = Matn(A) =








a11 . . . a1n
...

. . .
...

an1 . . . ann


 : aij ∈ A





.

1.4. If R is a commutative ring with unit containing the prime field Fp for some prime p > 0,
show that the function ϕ : R −→ R given by ϕ(t) = tp, defines a ring homomorphism. Give
examples to show that ϕ need not be surjective or injective.

1.5. Let R and S be rings with unity and Q / S a prime ideal.
(a) If ϕ : R −→ S is a ring homomorphism, show that

ϕ−1Q = {r ∈ R : ϕ(r) ∈ Q} ⊆ R

is a prime ideal of R.
(b) If R ⊆ S is a subring, show that Q ∩R is a prime ideal of R.
(c) If the word ‘prime’ is replaced by ‘maximal’ throughout, are the results in parts (a)

and (b) still true? [Hint: look for a counterexample.]
(d) If R ⊆ S is a subring and P /R is a maximal ideal, suppose that Q/S is a prime ideal

for which P ⊆ Q. Show that Q ∩R = P .

1.6. Let k be a field, R be a ring with unit and ϕ : k −→ R a ring homomorphism. Show that
ϕ is a monomorphism.

1.7. Consider the sets

Z(i) = {u + vi : u, v ∈ Z} ⊆ C, Q(i) = {u + vi : u, v ∈ Q} ⊆ C.

(a) Show that Z(i) and Q(i) are subrings of C. Also show that Z(i) is an integral domain,
Q(i) is a field and Z(i) is a subring of Q(i).

(b) Show that the inclusion homomorphism inc: Z(i) −→ Q(i) extends to a monomorphism
inc∗ : Fr(Z(i)) −→ Q(i).

(c) Show that inc∗ is an isomorphism, so Fr(Z(i)) = Q(i).

1.8. Let R be a commutative ring.
(a) If a, b ∈ R, show that there is a unique ring homomorphism ψa,b : R[X] −→ R[X] for

which ψa,b(r) = r if r ∈ R and ψa,b(X) = aX + b. If c, d ∈ R, determine ψa,b ◦ ψc,d. If
a is a unit, show that ψa,b is an isomorphism and find its inverse.

(b) Now suppose that R = k is a field and a, b ∈ k with a 6= 0. Prove the following.
(i) If f(X) ∈ k[X], the deg ψa,b(f(X)) = deg f(X).



21

(ii) If p(X) ∈ k[X] is a prime then so is ψa,b(p(X)).
(iii) If p(X) ∈ k[X] is an irreducible then so is ψa,b(p(X)).

1.9. Let k be a field and k[[X]] be the set consisting of all power series
∞∑

k=0

akX
k = a0 + a1X + · · ·+ akX

k + · · · ,

with ak ∈ k.
(a) Show that this can be made into an integral domain containing k[X] as a subring by

defining addition and multiplication in the obvious way.
(b) Show that

∑∞
k=0 akX

k ∈ k[[X]] is a unit if and only if a0 6= 0.
(c) Show that Fr(k[[X]]) consists of all finite tailed Laurent series

∞∑

k=`

akX
k = a`X

` + a`+1X
`+1 + · · ·+ akX

k + · · ·

for some ` ∈ Z and a| ∈ k.
1.10. Taking k = Q, find the quotient and remainder when performing long division of f(X) =
6X4 − 6X3 + 3X2 − 3X − 2 by d(X) = 2X3 + X + 3.

1.11. Taking k = F3, find the quotient and remainder when performing long division of
f(X) = 2X3 + 2X2 + X + 1 by d(X) = 2X3 + 2X.

1.12. Let p > 0 be a prime. Suppose that f(X) = a0 + a1X + · · · + anXn ∈ Z[X] with
p - an and that f(X) ∈ Fp[X] denotes the polynomial obtained by reducing the coefficients of
f(X) modulo p. If f(X) is irreducible, show that f(X) is irreducible. Which of the following
polynomials in Z[X] is irreducible?

X3−X +1, X3 +2X +1, X3 +X− 1, X5−X +1, X5 +X− 1, 5X3− 10X +X2− 2.

1.13. Find generators for each of the following ideals:

I1 = {f(X) ∈ Q[X] : f(i) = 0} /Q[X], I2 = {f(X) ∈ Q[X] : f(
√

2 i) = 0} /Q[X],

I3 = {f(X) ∈ Q[X] : f(
√

2) = 0} /Q[X], I4 = {f(X) ∈ R[X] : f(
√

2) = 0} / R[X],

I5 = {f(X) ∈ R[X] : f(
√

2 i) = 0} / R[X], I6 = {f(X) ∈ R[X] : f(ζ3) = 0} / R[X].

1.14. Consider the inclusion inc : Q −→ C and its extension to ε√2 : Q[X] −→ C. Determine
the image ε√2Q[X] ⊆ C. What is ε−√2Q[X] ⊆ C? Find ker ε√2 /Q[X] and ker ε−√2 /Q[X];
are these maximal ideals?

1.15. Let ω = (−1 +
√

3i)/2 ∈ C. Consider the inclusion inc : Q −→ C and its extension
to εω : Q[X] −→ C. Determine the image εω Q[X] ⊆ C. Determine ker εω /Q[X] and decide
whether it is maximal. Find another evaluation homomorphism with the same kernel and image.

1.16. Consider the inclusion inc : Q −→ C and its extension to εα : Q[X] −→ C where α is
one of the 4 complex roots of the polynomial f(X) = X4 − 2 ∈ Q[X]. Determine the image
εαQ[X] ⊆ C and the ideal ker εα /Q[X]; is the latter ideal maximal? What happens if α is
replaced by one of the other roots of f(X)?

Repeat this problem starting with the inclusion of the real numbers into the complex num-
bers inc : R −→ C and εα : R[X] −→ C.

1.17. Use Cardan’s method to find the complex roots of the polynomial

f(X) = X3 − 9X2 + 21X − 5.

1.18. Consider the real numbers

α =
3

√
10 +

√
108 +

3

√
10−

√
108, β =

3

√
1 +

2
3

√
7
3

+
3

√
1− 2

3

√
7
3
.
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Find rational cubic polynomials f(X) and g(X) for which f(α) = 0 = g(β). Hence determine
these real numbers.

1.19. Prove the final part of Example 1.58 by showing that there is an isomorphism of groups
Aff1(k) ∼= Aut|(k[X]).

1.20. Let k be any field. Consider the 6 automorphisms αj : k(X) −→ k(X) (j = 1, . . . , 6)
defined by

α1(f(X)) = f(X), α2(f(X)) = f(1−X), α3(f(X)) = f(1/X),

α4(f(X)) = f((X − 1)/X), α5(f(X)) = f(1/(1−X)), α6(f(X)) = f(X/(X − 1)).

Show that the set consisting of these elements is a subgroup Γ| 6 Aut|(k(X)) isomorphic to
the symmetric group S3. When k = F2, show that Γ| ∼= GL2(k).
1.21. Determine the cyclotomic polynomial Φ20(X).

1.22. Let p > 0 be a prime.
(a) Show that for k > 1, the cyclotomic polynomial Φpk(X) satisfies

Φpk(X) = Φp(Xpk−1
)

and has as its complex roots the primitive pk-th roots of 1.
(b) Show that Φpk(X) ∈ Q[X] is irreducible.
(c) Generalize part (a) to show that if n = pr1

1 · · · prk
k is the prime power factorization of n

with the pi being distinct primes and ri > 0, then

Φn(X) = Φp1···pk
(Xp

r1−1
1 ···prk−1

k ).

1.23. For n > 2, show that
Xϕ(n)Φn(X−1) = Φn(X).

1.24. Show that for n > 1, ζn + ζ−1
n = 2 cos(2π/n).

Find expressions for ζ5+ζ−1
5 and ζ2

5 +ζ−2
5 in terms of cos(2π/5). Hence find a rational polynomial

which has cos(2π/5) as a root.

1.25. Let p > 0 be a prime and K be a field with charK = p.
(a) Show that if ζ ∈ K is a p-th root of 1 then ζ = 1. Deduce that if m,n > 0 and p - n,

then every npm-th root of 1 in K is an n-th root of 1.
(b) If a ∈ K, show that the polynomial Xp − a ∈ K[X] has either no roots or exactly one

root in K.



CHAPTER 2

Fields and their extensions

2.1. Fields and subfields

Definition 2.1. Let K and L be fields and suppose that K ⊆ L is a subring. Then we say
that K is a subfield of L; L is also said to be an extension (field) of K. We write K 6 L to
indicate this and K < L if K is a proper subfield of L, i.e., if K 6= L. We will also sometimes
write L/K when discussing the extension of K to L.

An important fact about an extension of fields L/K is that L is a K-vector space whose
addition is the addition in the field L while scalar multiplication is defined by

u · x = ux (u ∈ K, x ∈ L).

Definition 2.2. We will call dimK L the degree or index of the extension L/K and use the
notation [L : K] = dimK L. An extension of fields L/K is finite if [L : K] < ∞, otherwise it is
infinite.

Example 2.3. Show that the extension C/R is finite, while R/Q and C/Q are infinite.

Solution. We have
C = {x + yi : x, y ∈ R},

so 1, i span C as a vector space over R. Since i /∈ R, these elements are also linearly independent
over R and therefore they form a basis, whence [C : R] = 2. The infiniteness of R/Q and C/Q are
consequences of the fact that any finite dimensional vector space over Q is countable, however
R and C are uncountable. A basis for the Q-vector space R is known as a Hamel basis. ¤

Example 2.4. Consider the extension Q(
√

2)/Q where

Q(
√

2) = {x + y
√

2 : x, y ∈ Q}.
Show that [Q(

√
2) : Q] = 2.

Solution. The elements 1,
√

2 clearly span the Q-vector space Q(
√

2). Now recall that√
2 /∈ Q. If the elements 1,

√
2 were linearly dependent we would have u + v

√
2 = 0 for some

u, v ∈ Q not both zero; in fact it is easy to see that we would then also have u, v both non-zero.
Thus we would have √

2 = −u

v
∈ Q,

which we know to be false. Hence 1,
√

2 are linearly independent and so form a basis for Q(
√

2)
over Q and [Q(

√
2) : Q] = 2. ¤

If we have two extensions L/K and M/L then it is a straightforward to verify that K 6 M
and so we have another extension M/K.

Definition 2.5. Given two extensions L/K and M/L, we say that L/K is a subextension
of M/K and sometimes write L/K 6 M/L.

Theorem 2.6. Let L/K be a subextension of M/K.
(i) If one or both of the dimensions [L : K] or [M : L] is infinite then so is [M : K].
(ii) If the dimensions [L : K] and [M : L] are both finite then so is [M : K] and

[M : K] = [M : L] [L : K].

23
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Proof. (i) If [M : K] is finite, choose a basis m1, . . . , mr of M over K. Now any element
u ∈ M can be expressed as

u = t1m1 + · · ·+ trmr,

where t1, . . . , tr ∈ K; but since K ⊆ L, this means that m1, . . . ,mr spans M over L and so
[M : L] < ∞. Also L is a K-vector subspace of the finite dimensional K-vector space M , hence
[L : K] < ∞.
(ii) Setting r = [L : K] and s = [M : L], choose a basis `1, . . . , `r of L over K and a basis
m1, . . . , ms of M over L.

Now let v ∈ M . Then there are elements y1, . . . , ys ∈ L for which

v = y1m1 + · · ·+ ysms.

But each yj can be expressed in the form

yj = x1j`1 + · · ·+ xrj`r

for suitable xij ∈ K. Hence,

v =
s∑

j=1

(
r∑

i=1

xij`i

)
mj =

s∑

j=1

r∑

i=1

xij(`imj),

where each coefficient xij is in K. Thus the elements `imj (i = 1, . . . , r, j = 1, . . . , s) span the
K-vector space M .

Now suppose that for some tij ∈ K we have

s∑

j=1

r∑

i=1

tij(`imj) = 0.

On collecting terms we obtain
s∑

j=1

(
r∑

i=1

tij`i

)
mj = 0,

where each coefficient
∑r

i=1 tij`i is in L. By the linear independence of the mj over L, this
means that for each j,

r∑

i=1

tij`i = 0.

By the linear independence of the `i over K, each tij = 0.
Hence the `imj form a basis of M over K and so

[M : K] = rs = [M : L] [L : K]. ¤

We will often indicate subextensions in diagrammatic form where larger fields always go
above smaller ones and the information on the lines indicates dimensions

M

[M :L]

[M :K]=[M :L] [L:K]

.
)
$
Â

½
¸

³

L

[L:K]

K

We often suppress ‘composite’ lines such as the dashed one. Such towers of extensions are our
main objects of study. We can build up sequences of extensions and form towers of arbitrary
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length. Thus, if L1/K, L2/L1, . . . , Lk/Lk−1 is a such a sequence of extensions, there is a
diagram

Lk

Lk−1

L1

K

2.2. Simple and finitely generated extensions

Definition 2.7. Let F be a field and K 6 F . Given elements u1, . . . , ur ∈ F we set

K(u1, . . . , ur) =
⋂

K6L6F
u1,...,ur∈L

L

which is the smallest subfield in F that contains K and the elements u1, . . . , ur. The ex-
tension K(u1, . . . , ur)/K is said to be generated by the elements u1, . . . , ur; we also say that
K(u1, . . . , ur)/K is a finitely generated extension of K. An extension of the form K(u)/K is
called a simple extension of K with generator u.

We can extend this to the case of an infinite sequence u1, . . . , ur, . . . in F and denote by
K(u1, . . . , ur, . . .) 6 F the smallest extension field of K containing all the elements ur.

It is not difficult to show that

(2.1) K(u1, . . . , ur) ={
f(u1, . . . , ur)
g(u1, . . . , ur)

∈ F : f(X1, . . . , Xr), g(X1, . . . , Xr) ∈ K[X1, . . . , Xr], g(u1, . . . , ur) 6= 0
}

.

Reordering the ui does not change K(u1, . . . , un).

Proposition 2.8. Let K(u)/K and K(u, v)/K(u) be simple extensions. Then

K(u, v) = K(u)(v) = K(v)(u).

More generally,
K(u1, . . . , un) = K(u1, . . . , un−1)(un)

and this is independent of the order of the sequence u1, . . . , un.

Theorem 2.9. For a simple extension K(u)/K exactly one of the following conditions holds.
(i) The evaluation at u homomorphism εu : K[X] −→ K(u) is a monomorphism and on

passing to the fraction field gives an isomorphism (εu)∗ : K(X) −→ K(u). In this case,
K(u)/K is infinite and u is said to be transcendental over K.

(ii) The evaluation at u homomorphism εu : K[X] −→ K(u) has a non-trivial kernel
ker εu = (p(X)) where p(X) ∈ K[X] is an irreducible monic polynomial of positive de-
gree and the quotient homomorphism ε̃u : K[X]/(p(X)) −→ K(u) is an isomorphism.
In this case K(u)/K is finite with [K(u) : K] = deg p(X) and u is said to be algebraic
over K.

Proof. (i) If ker εu = (0), all that needs checking is that (εu)∗ is an epimorphism; but as
u is in the image of (εu)∗ this is obvious.
(ii) When ker εu 6= (0), Theorem 1.30(iv) implies that the image of εu is a subfield of K(u) and
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since it contains u it must equal K(u). Hence ε̃u is an isomorphism. Using Long Division, we
find that every element of K[X]/(p(X)) can be uniquely expressed as a coset of the form

f(X) + (p(X)),

where deg f(X) < deg p(X). Hence every element of K[X]/(p(X)) can be uniquely expressed
as a linear combination over K of the d cosets

1 + (p(X)), X + (p(X)), X2 + (p(X)), . . . , Xd−1 + (p(X)),

where d = deg p(X). Via the isomorphism ε̃u under which ε̃u(Xk + (p(X))) = uk, we see that
the elements 1, u, . . . , ud−1 form a basis for K(u) over K. ¤

Example 2.10. For the extension Q(
√

2,
√

3)/Q we have [Q(
√

2,
√

3) : Q] = 4.

Proof. By Example 2.4 we know that [Q(
√

2) : Q] = 2. We have the following tower of
extensions.

Q(
√

2,
√

3)

[Q(
√

2,
√

3):Q(
√

2)]

[Q(
√

2,
√

3):Q]=2[Q(
√

2,
√

3):Q(
√

2)]Q(
√

2)

2

Q

We will show that [Q(
√

2,
√

3) : Q(
√

2)] = 2.
Notice that if u ∈ Q(

√
2,
√

3) = Q(
√

2)(
√

3) then u = a + b
√

3 for some a, b ∈ Q(
√

2),
so 1,

√
3 span Q(

√
2,
√

3) over Q(
√

2). But if these are linearly dependent then
√

3 ∈ Q(
√

2).
Writing √

3 = v + w
√

2

with v, w ∈ Q, we find that
v2 + 2w2 + 2vw

√
2 = 3 ∈ Q,

and hence 2vw
√

2 ∈ Q. The possibilities v = 0 or w = 0 are easily ruled out, while v, w 6= 0
would implies that

√
2 ∈ Q which is false. So 1,

√
3 are linearly independent over Q(

√
2)

and therefore form a basis of Q(
√

2,
√

3). This shows that [Q(
√

2,
√

3) : Q(
√

2)] = 2 and so
[Q(

√
2,
√

3) : Q] = 4. ¤

Remark 2.11. There are some other subfields ofQ(
√

2,
√

3) which are conveniently displayed
in the following diagram.

Q(
√

2,
√

3)
2

rrrrrrrrrr
2

2

LLLLLLLLLL

Q(
√

2)

2
MMMMMMMMMMM
Q(
√

3)

2

Q(
√

6)

2
rrrrrrrrrrrr

Q

One idea in the verification of Example 2.10 can be extended to provide a useful general
result whose proof is left as an exercise.

Proposition 2.12. Let p1, . . . , pn be a sequence of distinct primes pi > 0. Then
√

pn /∈ Q(
√

p1, . . . ,
√

pn−1).

Hence [Q(
√

p1, . . . ,
√

pn) : Q(
√

p1, . . . ,
√

pn−1)] = 2 and [Q(
√

p1, . . . ,
√

pn) : Q] = 2n.

Example 2.13. For the extension Q(
√

2, i)/Q we have [Q(
√

2, i) : Q] = 4.
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Proof. We know that [Q(
√

2) : Q] = 2. Also, i /∈ Q(
√

2) since i is not real and Q(
√

2) 6 R.
Since i2 + 1 = 0, we have Q(

√
2, i) = Q(

√
2)(i) and [Q(

√
2, i) : Q(

√
2)] = 2. Using the formula

[Q(
√

2, i) : Q] = [Q(
√

2, i) : Q(
√

2)] [Q(
√

2) : Q],

we obtain [Q(
√

2, i) : Q] = 4. ¤

This example also has several other subfields, with only Q(
√

2) = Q(
√

2, i) ∩ R being a
subfield of R.

C
2

∞R

∞ Q(
√

2, i)
2

ttttttttt
2

2

KKKKKKKKKK

Q(
√

2)

2 KKKKKKKKKKK
Q(i)

2

Q(
√

2 i)

2
rrrrrrrrrrr

Q

Example 2.14. For n > 1, let En = Q(21/n) 6 R, where 21/n ∈ R denotes the positive real
n-th root of 2.

(i) Show that [En : Q] = n.
(ii) If m > 1 with m | n, show that Em 6 En and determine [En : Em].
(iii) If m,n are coprime, show that Emn = Q(21/m, 21/n).

Solution. (i) Consider the evaluation homomorphism ε21/n : Q[X] −→ En. Applying the
Eisenstein Test 1.37 using the prime 2 to the polynomial Xn − 2 ∈ Z[X], we find that

ker ε21/n = (Xn − 2) /Q[X],

and the induced homomorphism ε̃21/n : Q[X]/(Xn − 2) −→ En is an isomorphism. Hence
[En : Q] = n.
(ii) Since n/m is an integer,

21/m = (21/n)n/m ∈ En,

so
Em = Q(21/m) ⊆ En.

By Theorem 2.6 we have

n = [En : Q] = [En : Em] [Em : Q] = m[En : Em],

whence [En : Em] = n/m.
(iii) By (ii) we have Em 6 Emn and En 6 Emn, hence Q(21/m, 21/n) 6 Emn. As gcd(m,n) = 1,
there are integers r, s for which rm + sn = 1 and so

1
mn

=
rm + sn

mn
=

r

n
+

s

m
.

This shows that
21/mn = (21/n)r(21/m)s ∈ Q(21/m, 21/n),

whence Emn 6 Q(21/m, 21/n). Combining these inclusions we obtain Emn = Q(21/m, 21/n). ¤
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Exercises on Chapter 2

2.1. Let p ∈ N be an prime. Show that the extension Q(
√

p)/Q has [Q(
√

p) : Q] = 2.

2.2. Let p, q > 0 be distinct primes. Show that [Q(
√

p,
√

q) : Q(
√

p)] = 2.

2.3. Prove Proposition 2.12 by induction on n.

2.4. Let K a field with charK 6= 2 and suppose that L/K is an extension. If a, b ∈ K are
distinct, suppose that u, v ∈ L satisfy u2 = a and v2 = b. Show that K(u, v) = K(u + v).
[Hint: first show that u±v 6= 0 and deduce that u−v ∈ K(u+v); then show that u, v ∈ K(u+v).]

2.5. Show that [Q(i) : Q] = 2.

2.6. Show that [Q(
√

3, i) : Q] = 4. Find the three subfields L 6 Q(
√

3, i) with [L : Q] = 2 and
display their relationship in a diagram, indicating which ones are subfields of R.

2.7. Let ζ5 = e2πi/5 ∈ C.
(a) Explain why [Q(ζ5) : Q] = 4.
(b) Show that cos(2π/5), sin(2π/5) i ∈ Q(ζ5).
(c) Show that for t ∈ R,

cos 5t = 16 cos5 t− 20 cos3 t + 5 cos t.

(d) Show that the numbers cos(2kπ/5) with k = 0, 1, 2, 3, 4 are roots of the polynomial

f(X) = 16X5 − 20X3 + 5X − 1 = (X − 1)(4X2 + 2X − 1)2

and deduce that [Q(cos(2π/5)) : Q] = 2.
(e) Display the relationship between the fields Q, Q(cos(2π/5)), and Q(ζ5) in a suitable

diagram.

2.8. This question is for those who like lots of calculation or using Maple. Let ζ7 = e2πi/7 ∈ C.
(a) Explain why [Q(ζ7) : Q] = 6.
(b) Show that cos(2π/7), sin(2π/7) i ∈ Q(ζ7).
(c) Show

cos 7t = 64 cos7 t− 112 cos5 t + 56 cos3 t− 7 cos t.

Show that the numbers cos(2kπ/7) with k = 0, 1, . . . , 6 are roots of the polynomial

f(X) = 64X7 − 112X5 + 56X3 − 7X − 1 = (X − 1)(8X3 + 4X2 − 4X − 1)2

and deduce that [Q(cos(2π/7)) : Q] = 3.
(d) Show that sin(2π/7) i is a root of

g(X) = 64X7 + 112X5 + 56X3 + 7X = X(64X6 + 112X4 + 56X2 + 7)

and that 64X6 +112X4 +56X2 +7 ∈ Q[X] is irreducible. What is [Q(sin(2π/7) i) : Q]?
(e) Display the relationship between the fields Q, Q(cos(2π/7)), Q(sin(2π/7) i) and Q(ζ7)

in a diagram.
(f) Is i ∈ Q(ζ7)?

2.9. In this question we continue to consider the situation described in Example 2.14.
(a) Show that

AutQ(En) =

{
{id} if n is odd,

{id, τn} ∼= Z/2 if n is even,

where τn has composition order 2.
(b) Let E =

⋃

n>1

En 6 R. Show that AutQ(E) = {id}.

(c) Display the 6 subfields of E12 in a diagram.
(d) Which of the subfields in part (c) contain the element 21/2 + 21/3 ?



CHAPTER 3

Algebraic extensions of fields

3.1. Algebraic extensions

Let L/K be an extension of fields. From Theorem 2.9(ii), recall the following notion.

Definition 3.1. An element t ∈ L is algebraic over K if there is a non-zero polynomial
p(X) ∈ K[X] for which p(t) = 0.

Notice in particular that for an element t ∈ K, the polynomial p(X) = X − t ∈ K[X]
satisfies p(t) = 0, so such a t is algebraic over K.

Theorem 2.9 allows us to characterize algebraic elements in other ways.

Proposition 3.2. Let t ∈ L. Then the following conditions are equivalent.
(i) t is algebraic over K.
(ii) The evaluation homomorphism εt : K[X] −→ L has non-trivial kernel.
(iii) The extension K(t)/K is finite dimensional.

Definition 3.3. If t ∈ L is algebraic over K then by Proposition 3.2,

ker εt = (minpolyK,t(X)) 6= (0),

where minpolyK,t(X) ∈ K[X] is an irreducible monic polynomial called the minimal polynomial
of t over K. The degree of minpolyK,t(X) is called the degree of t over K and denoted by
degK t.

Proposition 3.4. If t ∈ L is algebraic over K then

[K(t) : K] = deg minpolyK,t(X) = degK t.

Proof. This follows from Theorem 2.9(ii). ¤
Remark 3.5. Suppose that t ∈ L is algebraic over K and p(X) ∈ ker εt with deg p(X) =

deg minpolyK,t(X). Then minpolyK,t(X) | p(X) and so

p(X) = uminpolyK,t(X)

for some u ∈ K. In particular, when p(X) is monic,

p(X) = minpolyK,t(X).

We will often use this without further comment.

Example 3.6. Consider C/Q. The minimal polynomial of
√

2 ∈ C over Q is

minpolyQ,
√

2(X) = X2 − 2.

Proof. Clearly X2 − 2 ∈ ker ε√2 since (
√

2)2 − 2 = 0. By Example 2.4,

deg minpolyQ,
√

2(X) = [Q(
√

2) : Q] = 2,

hence
minpolyQ,

√
2(X) = X2 − 2. ¤

Example 3.7. Consider C/Q. The minimal polynomial of i ∈ C over Q is X2 + 1.

Proof. Clearly X2 + 1 ∈ ker εi since i2 + 1 = 0. As [Q(i) : Q] = 2, we have

minpolyQ,i(X) = X2 + 1. ¤

29
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Example 3.8. Consider C/Q. Find the minimal polynomial of the primitive 6-th root of
unity, ζ6 ∈ C over Q.

Solution. Recall from Example 1.43 that ζ6 is a root of the irreducible cyclotomic poly-
nomial

Φ6(X) = X2 −X + 1.

Then Φ6(X) ∈ ker εζ6 so minpolyQ,ζ6(X) | Φ6(X). Since Φ6(X) is irreducible and monic, we
must have

minpolyQ,ζ6(X) = Φ6(X)
and so degQ ζ6 = 2. ¤

Example 3.9. Consider C/Q. Find the minimal polynomial of
√

2 +
√

3 over Q.

Solution. Notice that
√

3−
√

2 =
(
√

3−√2)(
√

3 +
√

2)
(
√

3 +
√

2)
=

1√
2 +

√
3
∈ Q(

√
2 +

√
3).

So we have
√

2 =
1
2

(
(
√

2 +
√

3)− (
√

3−
√

2)
)
∈ Q(

√
2 +

√
3),

√
3 =

1
2

(
(
√

2 +
√

3) + (
√

3−
√

2)
)
∈ Q(

√
2 +

√
3),

hence Q(
√

2,
√

3) 6 Q(
√

2 +
√

3). Since Q(
√

2 +
√

3) 6 Q(
√

2,
√

3) we must have

Q(
√

2 +
√

3) = Q(
√

2,
√

3).

Referring to Example 2.10 we see that

degQ(
√

2 +
√

3) = 4.

Let us find a non-zero polynomial in ker ε√2+
√

3 /Q[X].
Referring to Example 2.10 or Proposition 2.12 we see that

√
2 +

√
3 /∈ Q(

√
2), hence

degQ(
√

2)(
√

2 +
√

3) = 2.

One polynomial in ker ε√2+
√

3 /Q(
√

2)[X] is

(X − (
√

2 +
√

3))(X − (
√

2−
√

3)) = X2 − 2
√

2X − 1.

Since this is monic and of degree 2,

minpolyQ(
√

2),
√

2+
√

3(X) = X2 − 2
√

2X − 1.

Similarly,
minpolyQ(

√
2),−√2+

√
3(X) = X2 + 2

√
2X − 1.

Consider

p(X) = minpolyQ(
√

2),
√

2+
√

3(X)minpolyQ(
√

2),−√2+
√

3(X)

= (X2 − 2
√

2X − 1)(X2 + 2
√

2X − 1)

= X4 − 10X2 + 1.

Then p(
√

2 +
√

3) = 0 so p(X) ∈ ker εt. Since deg p(X) = 4 and p(X) is monic, we have

minpolyQ,
√

2+
√

3(X) = X4 − 10X2 + 1. ¤

Definition 3.10. Let L/K be a finite extension. An element u ∈ L for which L = K(u) is
called a primitive element for the extension L/K.

Later we will see that if charK = 0 then all finite extensions L/K have primitive elements.

Lemma 3.11. Let L/K be a finite extension and u ∈ L. Then u is a primitive element for
L/K if and only if degK u = [L : K].
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Proof. K(u) ⊆ L is a finite dimensional K-vector subspace. Then K(u) = L if and only
dimK K(u) = dimK L. Since degK u = dimK K(u) and [L : K] = dimK L the result follows. ¤

Sometimes the minimal polynomial of an element in an extension is introduced in a different
but equivalent way.

Proposition 3.12. Let t ∈ L be algebraic over K. Then

I(t) = {f(X) ∈ K[X] : f(t) = 0} ⊆ K[X]

is an ideal which is principal and has an irreducible monic generator q(X) ∈ K[X]. In fact,
q(X) = minpolyK,t(X).

Proof. It is easy to see that I(t) / K[X] and therefore I(t) = (q(X)) for some monic
generator q(X). To see that q(X) is irreducible, suppose that q(X) = q1(X)q2(X) with
deg qi(X) < deg q(X). Now as q1(t)q2(t) = 0, we must have q1(t) = 0 or q2(t) = 0, hence
q1(X) ∈ I(t) or q2(X) ∈ I(t). These possibilities give q(X) | q1(X) or q(X) | q2(X) and
so deg q(X) 6 deg q1(X) or deg q(X) 6 deg q2(X), contradicting the above assumption that
deg qi(X) < deg q(X).

The irreducible monic polynomial minpolyK,t(X) is in I(t) so q(X) | minpolyK,t(X) and
therefore q(X) = minpolyK,t(X). ¤

The next Lemma will often be useful.

Lemma 3.13. Let L/K be an extension and suppose that u1, . . . , un ∈ L are algebraic. Then
K(u1, . . . , un)/K is a finite extension.

Proof. Use induction on n together with Proposition 2.8 and Theorem 2.6(ii). ¤
We now come to an important notion for extensions.

Definition 3.14. The extension L/K is algebraic or L is algebraic over K if every element
t ∈ L is algebraic over K.

Proposition 3.15. Let L/K be a finite extension. Then L/K is algebraic.

Proof. Let t ∈ L. Since the K-vector space L is finite dimensional the powers 1, t, . . . , tn, . . .
must be linearly dependent over K, hence for suitable coefficients cj ∈ K not all zero and some
m > 1 we have

c0 + c1t + · · ·+ cmtm = 0.

But this means that t is algebraic over K. ¤
Proposition 3.16. Let M/L and L/K be algebraic extensions. Then the extension M/K

is algebraic.

Proof. Let u ∈ M . Then u is algebraic over L, so there is a polynomial

p(X) = p0 + p1X + · · ·+ pmXm ∈ L[X]

of positive degree with p(u) = 0. By Lemma 3.13, the extension K(p0, . . . , pm)/K is finite and
so is K(p0, . . . , pm, u)/K(p0, . . . , pm). By Theorem 2.6(ii), K(p0, . . . , pm, u)/K is finite, so by
Proposition 3.15, u is algebraic over K. ¤

Definition 3.17. For an extension L/K, let

Lalg = {t ∈ L : t is algebraic over K} ⊆ L.

Proposition 3.18. For an extension L/K, Lalg is a subfield containing K and Lalg/K is
algebraic.

Proof. Clearly K ⊆ Lalg. We must show that Lalg 6 L.
Let u, v ∈ Lalg. Then by Lemma 3.13, K(u, v)/K is a finite dimensional extension, hence

every element of K(u, v) is algebraic over K. In particular, u + v and uv are in K(u, v) and if
u 6= 0, u−1 is also in K(u, v). Therefore u + v, uv and u−1 are all algebraic over K. ¤
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Example 3.19. In the extension C/Q we can consider Calg 6 C which is called the subfield
of algebraic numbers. Similarly, in the extension R/Q the subfield

Ralg = Calg ∩ R 6 C
consists of all the real algebraic numbers. Elements of C−Calg are called transcendental complex
numbers; examples are e and π. The sets Calg and Ralg are both countable, whereas C and R
are uncountable, so there are in fact many more transcendental numbers but it can be hard to
determine whether a given number is transcendental or not. A more usual notation for Calg

is Q since this is the algebraic closure of Q which will be discussed later. When dealing with
algebraic extensions of Q we will usually work with subfields of Q = Calg.

We end this section with a technical result.

Proposition 3.20. Let K(u)/K be a finite simple extension. Then there are only finitely
many subextensions F/K 6 K(u)/K.

Proof. Consider the minimal polynomial minpolyK,u(X) ∈ K[X]. Now for any subexten-
sion F/K 6 K(u)/K we can also consider

minpolyF,u(X) = c0 + c1X + · · ·+ ck−1X
k−1 + Xk ∈ F [X],

which divides minpolyK,u(X) in F [X]. The Unique Factorization Property 1.32 implies that
minpolyK,u(X) has only finitely many monic divisors in K(u)[X], so there are only a finite
number of possibilities for minpolyF,u(X). Now consider F0 = K(c0, c1, . . . , ck−1), the extension
field of K generated by the coefficients of minpolyF,u(X). Then F0 6 F and so minpolyF,u(X) ∈
F0[X] is irreducible since it is irreducible in F [X]; hence minpolyF,u(X) = minpolyF0,u(X). We
have

[K(u) : F ] = deg minpolyF,u(X) = deg minpolyF0,u(X) = [K(u) : F0],
hence F = F0.

This shows that there are only finitely many subextensions F/K 6 K(u)/K, each of which
has the form K(a0, a1, . . . , a`−1), where

a0 + a1X + · · ·+ a`−1X
`−1 + X` ∈ K(u)[X]

is a factor of minpolyK,u(X) in K(u)[X]. ¤

3.2. Splitting fields and Kronecker’s Theorem

We can now answer a basic question. Let K be a field and p(X) ∈ K[X] be a polynomial
of positive degree.

Question 3.21. Is there an extension field L/K for which p(X) has a root in L?

A stronger version of this question is the following.

Question 3.22. Is there an extension field E/K for which p(X) factorizes into linear factors
in E[X]?

Definition 3.23. p(X) ∈ K[X] splits in E/K or over E if it factorizes into linear factors
in E[X].

Of course, if we have such a field E then the distinct roots u1, . . . , uk of p(X) in E generate
a subfield K(u1, . . . , uk) 6 E which is the smallest subfield of E that answers Question 3.22.

Definition 3.24. Such a minimal extension of K is called a splitting field of p(X) over K
and we will sometimes denote it by K(p(X)) or Kp.

We already know how to answer Question 3.21.

Theorem 3.25 (Kronecker’s Theorem: first version). Let K be a field and p(X) ∈ K[X] be
a polynomial of positive degree. Then there is a finite extension L/K for which p(X) has a root
in L.
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Proof. We begin by factorizing p(X) ∈ K[X] into irreducible monic factors qj(X) together
with a constant factor c:

p(X) = cq1(X) · · · qr(X).

Now for any j we can form the quotient field K[x]/(qj(X)) which is a finite dimensional (simple)
extension of K and in which the coset X + (qj(X)) satisfies the equation

qj(X + (qj(X))) = 0 + (qj(X)).

Hence p(X) has a root in K[x]/(qj(X)).
Of course, this construction is only interesting if qj(X) to has degree bigger than 1 since a

linear polynomial already has a root in K. ¤

To answer Question 3.22 we iterate this construction. Namely, having found one root u1 in
an extension L1/K we discard the linear factor X − u1 and consider the polynomial

p1(X) =
p(X)

X − u1
∈ L1[X].

We can repeat the argument to form a finite extension of L1 (and hence of K) containing a
root of p1(X) and so on. At each stage we either already have another root in L1 or we need to
enlarge the field to obtain one.

Theorem 3.26 (Kronecker’s Theorem: second version). Let K be a field and p(X) ∈ K[X]
be a polynomial of positive degree. Then there is a finite extension E/K which is a splitting
field of p(X) over K.

In practise we often have extension fields ‘lying around in nature’ containing roots and we
can work inside of these. When working over Q (or any other subfield of C) we can always find
roots in C by the Fundamental Theorem of Algebra. We then refer to a subfield of C which is
a splitting field as the splitting subfield.

Example 3.27. Find a splitting field E/Q for p(X) = X4−4 over Q and determine [E : Q].

Solution. Notice that

p(X) = (X2 − 2)(X2 + 2),

so first we adjoin the roots ±√2 of (X2 − 2) to form Q(
√

2,−√2) = Q(
√

2) which gives an
extension Q(

√
2)/Q of degree 2.

Next consider the polynomial X2 + 2 ∈ Q(
√

2)[X]. The complex roots of X2 + 2 are ±√2i
and these are not real, so this polynomial is irreducible in Q(

√
2)[X]. Hence we need to consider

Q(
√

2,
√

2i) = Q(
√

2, i) and the extension Q(
√

2, i)/Q(
√

2) which has degree 2.

C
∞

Q(
√

2, i)

adjoin roots of X2 + 2 2

Q(
√

2)

adjoin roots of X2 − 2 2

Q

Thus the splitting subfield of p(X) over Q in C is Q(
√

2, i) and [Q(
√

2, i) : Q] = 4. ¤



34 3. ALGEBRAIC EXTENSIONS OF FIELDS

Of course we could have started by adjoining roots of X2 + 2 and then of X2 − 2, giving a
tower

C
∞

Q(
√

2, i)

adjoin roots of X2 − 2 2

Q(
√

2i)

adjoin roots of X2 + 2 2

Q

An important point is that if a splitting field exists inside of a given extension field F/K, it is
unique.

Proposition 3.28. Let F/K be an extension field and p(X) ∈ K[X]. If E1, E2 6 F are
splitting subfields for p(X) over K then E1 = E2.

Proof. Let u1, . . . , uk ∈ F be the distinct roots of p(X) in F . By definition, K(u1, . . . , uk)
is the smallest subfield containing K and all the uj . But K(u1, . . . , uk) must be contained in
any splitting subfield, so E1 = K(u1, . . . , uk) = E2. ¤

Since we will frequently encounter quadratic polynomials we record a useful result on roots
of such polynomials. Recall that p(X) = aX2 + bX + c ∈ K[X] is quadratic if a 6= 0 and its
discriminant is

∆ = b2 − 4ac ∈ K.

The proof of the next result is the standard one which works provided 2 has an inverse in K,
i.e., when charK 6= 2.

Proposition 3.29. Let K be a field of characteristic different from 2. Then the quadratic
polynomial p(X) = aX2 + bX + c ∈ K[X] has

• no roots in K if ∆ is not a square in K;
• one root −b/(2a) = −(2a)−1b if ∆ = 0;
• two distinct roots

−b + δ

2a
= (2a)−1(−b + δ),

−b− δ

2a
= (2a)−1(−b− δ),

if ∆ = δ2 for some non-zero δ ∈ K.

In particular, the splitting field of p(X) over K is K if ∆ is a square in K and K(δ) otherwise,
where δ is one of the two square roots of ∆ in some extension of K such as the algebraic closure
K which we will introduce in Section 3.4.

Example 3.30. Find a splitting field E/Q for p(X) = X3−2 over Q and determine [E : Q].

Solution. By the Eisenstein Test 1.37, p(X) is irreducible over Q. One root of p(X) is
3
√

2 ∈ R so we adjoin this to Q to form an extension Q( 3
√

2)/Q of degree 3. Now

p(X) = (X − 3
√

2)(X2 + 3
√

2X + ( 3
√

2)2)

and the second factor has the non-real complex roots 3
√

2 ζ3 and 3
√

2 ζ2
3 which lie in the extension

Q( 3
√

2, ζ3)/Q( 3
√

2) of degree 2. So the splitting subfield of X3 − 2 in C over Q is Q( 3
√

2, ζ3) for
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which [Q( 3
√

2, ζ3) : Q] = 6.

C

∞

2

R

∞ Q( 3
√

2, ζ3)

Q( 3
√

2)

2
iiiiiiiiiiiiiiiiiiiii

3
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Q( 3
√

2 ζ3)

2
qqqqqqqqqq

3

<<
<<

<<
<<

<<
<<

<<
<<

<<
Q( 3
√

2 ζ2
3 )

2

3 Q(ζ3)

3

888888888888888888

2

rrrrrrrrrrr

Q

An alternative strategy would have been to adjoin one of the other roots 3
√

2 ζ3 or 3
√

2 ζ2
3

first. We could also have begun by adjoining ζ3 to form the extension Q(ζ3)/Q, but none of
the roots of p(X) lie in this field so the extension Q( 3

√
2, ζ3)/Q(ζ3) of degree 3 is obtained by

adjoining one and hence all of the roots. ¤

3.3. Monomorphisms between extensions

Definition 3.31. For extensions F/K and L/K, let MonoK(L,F ) denote the set of all
monomorphisms L −→ F which fix the elements of K.

Remark 3.32. We always have AutK(F ) ⊆ MonoK(F, F ) and MonoK(F, F ) is closed under
composition but is not always a group since elements are not necessarily invertible. Of course,
if F/K is finite, then MonoK(F, F ) = AutK(F ) since every injective K-linear transformation is
surjective and so invertible.

We will also use the following notation.

Definition 3.33. Let F/K be an extension and p(X) ∈ K[X]. Set

Roots(p, F ) = {u ∈ F : p(u) = 0},
the set of roots of p(X) in F . This is always a finite set which may of course be empty.

Suppose that p(X) ∈ K[X] is an irreducible polynomial which we might as well assume is
monic, and F/K an extension. Then if t ∈ F is a root of p(X), the evaluation homomorphism
εt : K[X] −→ F factors through the quotient monomorphism ε̃t : K[X]/(p(X)) −→ F whose
image is K(t) 6 F . Of course, there is one such monomorphism for each root of p(X) in F . If
we fix one such root t0 and identify K[X]/(p(X)) with K(t0) via ε̃t0 , then each root of p(X) in
F gives rise to a monomorphism ϕt = ε̃t ◦ ε̃−1

t0 : K(t0) −→ F for which ϕt(t0) = t.

K(t0)

ϕt=eεt◦eε−1
t0

**K[X]/(p(X))
eεt0

∼=
oo eεt // F

Notice that if ϕ : K[X]/(p(X)) −→ F is any homomorphism extending the identity function
on K, then the coset X + (p(X)) must be sent by ϕ to a root of p(X) in F , hence every such
homomorphism arises this way. This discussion is summarized in the following result.
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Proposition 3.34. Let F/K be a field extension. Let p(X) ∈ K[X] be an irreducible
polynomial with t0 ∈ F be a root of p(X). Then there is a bijection

Roots(p, F ) ←→ MonoK(K(t0), F )

given by t ←→ ϕt, where ϕt : K(t0) −→ F has the effect ϕt(t0) = t.

Example 3.35. Show that MonoQ(Q(
√

2),C) has two elements.

Solution. We have Q(
√

2) ∼= Q[X]/(X2−2) where X2−2 is irreducible over Q. Hence the
Q-monomorphisms send

√
2 to ±√2. In fact both possibilities occur, giving monomorphisms

id, α : Q(
√

2) −→ C, where

α(a + b
√

2) = a− b
√

2.

We can replace C by Q(
√

2) to obtain

MonoQ(Q(
√

2),C) = MonoQ(Q(
√

2),Q(
√

2)) = AutQ(Q(
√

2)).

We will see that this is not always true. ¤

Example 3.36. Show that MonoQ(Q( 3
√

2),C) has 3 elements but MonoQ(Q( 3
√

2),Q( 3
√

2))
only contains the identity function.

Solution. Here minpolyQ, 3√2(X) = X3 − 2 and there are 3 complex roots 3
√

2, 3
√

2 ζ3,
3
√

2 ζ2
3 . As two of these roots are not real, MonoQ(Q( 3

√
2),Q( 3

√
2)) contains only the identity

since Q( 3
√

2) 6 R.
Each of the above roots corresponds to one of the subfields Q( 3

√
2), Q( 3

√
2 ζ3) or Q( 3

√
2 ζ2

3 )
of C and there are 3 monomorphisms α0, α1, α2 : Q( 3

√
2) −→ C given by

α0(a + b
3
√

2 + c( 3
√

2)2) = a + b
3
√

2 + c( 3
√

2)2,

α1(a + b
3
√

2 + c( 3
√

2)2) = a + b
3
√

2 ζ3 + c( 3
√

2)2 ζ2
3 ,

α2(a + b
3
√

2 + c( 3
√

2)2) = a + b
3
√

2 ζ2
3 + c( 3

√
2)2 ζ3.

The images of these mappings are

α0Q( 3
√

2) = Q( 3
√

2), α1Q( 3
√

2) = Q( 3
√

2 ζ3), α2Q( 3
√

2) = Q( 3
√

2 ζ2
3 ). ¤

Proposition 3.37. Let F/K and L/K be extensions.

(i) For p(X) ∈ K[X], each monomorphism α ∈ MonoK(L,F ) restricts to a function
αp : Roots(p, L) −→ Roots(p, F ) which is an injection.

(ii) If α ∈ MonoK(L,L), then αp : Roots(p, L) −→ Roots(p, L) is a bijection.

Proof. (i) For u ∈ Roots(p, L) we have

p(α(u)) = α(p(u)) = α(0) = 0,

so α maps Roots(p, L) into Roots(p, F ). Since α is an injection its restriction to Roots(p, L) ⊆ L
is also an injection.
(ii) From (i), αp : Roots(p, L) −→ Roots(p, L) is an injective function from a finite set to itself,
hence it is also surjective by the Pigeon Hole Principle. Thus αp : Roots(p, L) −→ Roots(p, L)
is a bijection. ¤

Part (ii) says that any automorphism of L/K permutes the set of roots in L of a polynomial
p(X) ∈ K[X]. This gives us a strong hold on the possible automorphisms. In the case of finite,
or more generally algebraic, extensions it is the key to understanding the automorphism group
and this is a fundamental insight of Galois Theory.

Example 3.38. Determine MonoQ(Q( 3
√

2, ζ3),C).
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Solution. We have already met the extension Q( 3
√

2, ζ3)/Q in Example 3.30 and we will
make use of information from there. We build up the list of monomorphisms in stages.

First consider monomorphisms that fix 3
√

2 and hence fix the subfield Q( 3
√

2). These form
the subset

MonoQ( 3√2)(Q( 3
√

2, ζ3),C) ⊆ MonoQ(Q( 3
√

2, ζ3),C).

We know that Q( 3
√

2, ζ3) = Q( 3
√

2)(ζ3) and that ζ3 is a root of the irreducible cyclotomic
polynomial Φ3(X) = X2 + X + 1 ∈ Q( 3

√
2)[X]. So there are two monomorphisms id, α0 fixing

Q( 3
√

2), where α0 has the effect

α0 :
(

3
√

2 7−→ 3
√

2
ζ3 7−→ ζ2

3

)
.

Next we consider monomorphisms that send 3
√

2 to 3
√

2 ζ3. This time we have 2 distinct ways to
extend to elements of MonoQ(Q( 3

√
2, ζ3),Q( 3

√
2, ζ3)) since again we can send ζ3 to either ζ3 or

ζ2
3 . The possibilities are

α1 :
(

3
√

2 7−→ 3
√

2 ζ3

ζ3 7−→ ζ3

)
, α′1 :

(
3
√

2 7−→ 3
√

2 ζ3

ζ3 7−→ ζ2
3

)
.

Finally we consider monomorphisms that send 3
√

2 to 3
√

2 ζ2
3 . There are again two possibilities

α2 :
(

3
√

2 7−→ 3
√

2 ζ2
3

ζ3 7−→ ζ3

)
, α′2 :

(
3
√

2 7−→ 3
√

2 ζ2
3

ζ3 7−→ ζ2
3

)
.

These are all 6 of the required monomorphisms. It is also the case here that

MonoQ(Q( 3
√

2, ζ3),C) = MonoQ(Q( 3
√

2, ζ3),Q( 3
√

2, ζ3)) = AutQ(Q( 3
√

2, ζ3)),

so these form a group. It is a nice exercise to show that AutQ(Q( 3
√

2, ζ3)) ∼= S3, the symmetric
group on 3 objects. It is also worth remarking that |AutQ(Q( 3

√
2, ζ3))| = [Q( 3

√
2, ζ3) : Q]. ¤

We end this section with another useful result.

Proposition 3.39. Let L/K be an extension and α ∈ MonoK(L,L). Then α restricts to
an automorphism αalg : Lalg −→ Lalg.

Proof. Suppose that u ∈ Lalg, say p(u) = 0 for some p(X) ∈ K[X] of positive degree.
Then

p(α(u)) = α(p(u)) = α(0) = 0,
so α maps Lalg ⊆ L into itself and therefore gives rise to a restriction αalg : Lalg −→ Lalg which
is also a monomorphism. We must show that αalg is a bijection by showing it is surjective.

Let v ∈ Lalg and suppose that q(v) = 0 for some q(X) ∈ K[X] of positive degree. Now
Roots(q, L) 6= ∅ since it contains v, and it is also finite. Then αq : Roots(q, L) −→ Roots(q, L)
is a bijection by Proposition 3.37(ii), hence v = αq(w) = α(w) for some w ∈ Roots(q, L) ⊆ Lalg.
This shows that v ∈ im α and so αalg is surjective. ¤

3.4. Algebraic closures

An important property of the complex numbers is that C is algebraically closed.

Theorem 3.40 (Fundamental Theorem of Algebra for C). Every non-constant polynomial
p(X) ∈ C[X] has a root in C.

Corollary 3.41. Every non-constant polynomial p(X) ∈ C[X] has a factorization

p(X) = c(X − u1) · · · (X − ud),

where c, u1, . . . , ud ∈ C and this is unique apart from the order of the roots uj.

It is natural to pose the following question.

Question 3.42. Let K be a field. Is there an algebraically closed field F containing K?

By taking F alg we might as well ask that such a field be algebraic over K.
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Definition 3.43. Let K be a field. An extension F/K is called an algebraic closure of K
if F is algebraic over K and algebraically closed.

Theorem 3.44. Let K be a field.

(i) There is an algebraic closure of K.
(ii) Let F1 and F2 be algebraical closures of K. Then there is an isomorphism ϕ : F1 −→ F2

which fixes the elements of K.

K

~~}}
}}

}}
}}

ÃÃA
AA

AA
AA

A

F1
ϕ // F2

Hence algebraic closures are essentially unique.

♠
♥ ♦
♣

Proof. See [3] for a proof using Zorn’s Lemma (see Axiom 3.48) which is logically

equivalent to the Axiom of Choice. ¤

Because of the uniqueness we usually fix some choice of algebraic closure of K and write K
or Kalg cl, referring to it as the algebraic closure of K. We are already familiar with the example
C = C. There are some immediate consequences of Theorem 3.44. We will temporarily write
E1

.= E2 to indicate that for extensions E1/K and E2/K there is an isomorphism E1 −→ E2

fixing the elements of K.

Proposition 3.45. Let K be a field.

(i) If L/K is an algebraic extension, then L
.= K.

(ii) If L/K is an extension, then so is L/K and (L)alg .= K.

Proof. (i) By Proposition 3.16, every element of L is algebraic over K. Since L is alge-
braically closed it is an algebraic closure of K.
(ii) Every non-constant polynomial in (L)alg[X] has a root in (L) and by Proposition 3.16, all
of its roots are in fact algebraic over K since (L)alg is. Hence these roots lie in (L)alg, which
shows that it is algebraically closed. ¤

For example, we have Q = Calg and R = C.
There is a stronger result than Theorem 3.44(ii), the Monomorphism Extension Theorem,

which we will find useful. Again the proof uses Zorn’s Lemma which we will state. First we
need some definitions.

Definition 3.46. A partially ordered set (X,4) consists of a set X and a binary relation
4 such that whenever x, y, z ∈ X,

• x 4 x;
• if x 4 y and y 4 z then x 4 z;
• if x 4 y and y 4 x then x = y.

(X,4) is totally ordered if for every pair x, y ∈ X, at least one of x 4 y or y 4 x is true.

Definition 3.47. Let (X, 4) be a partially ordered set and Y ⊆ X. An element y ∈ X
is an upper bound for Y if for every y ∈ Y , y 4 y. An upper bound for X itself is a maximal
element of X.

Axiom 3.48 (Zorn’s Lemma). Let (X, 4) be a partially ordered set in which every totally
ordered subset has an upper bound. Then X has a maximal element.

Theorem 3.49 (Monomorphism Extension Theorem). Let M/K be an algebraic extension
and L/K 6 M/K. Suppose that ϕ0 : L −→ K is a monomorphism fixing the elements of K.
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Then there is an extension of ϕ0 to a monomorphism ϕ : M −→ K.

K

M

ϕ

88

L

ϕ0

@@¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢

K
= // K

♠
♥ ♦
♣

Proof. We consider the set X consisting of all pairs (F, θ), where F/L 6 M/L and

θ : F −→ K extends ϕ0. We order X using the relation 4 for which (F1, θ1) 4 (F2, θ2) whenever
F1 6 F2 and θ2 extends θ1. Then (X, 4) is a partially ordered set.

Suppose that Y ⊆ X is a totally ordered subset. Let

F̃ =
⋃

(F,θ)∈Y

F.

Then F̃ /L 6 M/L. Also there is a function θ̃ : F̃ −→ K defined by

θ̃(u) = θ(u)

whenever u ∈ F for (F, θ) ∈ Y . It is routine to check that if u ∈ F ′ for (F ′, θ′) ∈ Y then

θ′(u) = θ(u),

so θ̃ is well-defined. Then for every (F, θ) ∈ Y we have (F, θ) 4 (F̃ , θ̃), so (F̃ , θ̃) is an upper
bound for Y . By Zorn’s Lemma there must be a maximal element of X, (M0, θ0).

Suppose that M0 6= M , so there is an element u ∈ M for which u /∈ M0. Since M is algebraic
over K it is also algebraic over M0, hence u is algebraic over M0. If

minpolyM0,u(X) = a0 + · · ·+ an−1X
n−1 + Xn,

then the polynomial

f(X) = θ0(a0) + · · ·+ θ0(an−1)Xn−1 + Xn ∈ (θ0M0)[X]

is also irreducible and so it has a root v in K (which is also an algebraic closure of θ0M0 6
K). The Homomorphism Extension Property 1.21 of the polynomial ring M0[X] applied to
the monomorphism θ0 : M0 −→ K yields a homomorphism θ′0 : M0[X] −→ K extending θ0

and for which θ′0(u) = v. This factors through the quotient ring M0[X]/(minpolyM0,u(X)) to
give a monomorphism θ′′0 : M0(u) −→ K extending θ0. But then (M0, θ0) 4 (M0(u), θ′′0) and
(M0, θ0) 6= (M0(u), θ′′0), contradicting the maximality of (M0, θ0). Hence M0 = M and so we
can take ϕ = θ0. ¤

Example 3.50. Let u ∈ K and suppose that p(X) = minpolyK,u(X) ∈ K[X]. Then for any
other root of p(X), v ∈ K say, there is a monomorphism ϕv : K(u) −→ K with ϕv(u) = v. This
extends to a monomorphism ϕ : K −→ K.

Definition 3.51. Let u, v ∈ K. Then v is conjugate to u over K or is a conjugate of u over
K if there is a monomorphism ϕ : K −→ K for which v = ϕ(u).

Lemma 3.52. If u, v ∈ K, then v is conjugate to u over K if and only if minpolyK,u(v) = 0.

Proof. Suppose that v = ϕ(u) for some ϕ ∈ MonoK(K, K). If

minpolyK,u(X) = a0 + a1X + · · ·+ ad−1X
d−1 + Xd,
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then
a0 + a1u + · · ·+ ad−1u

d−1 + ud = 0
and so

a0 + a1v + · · ·+ ad−1v
d−1 + vd = ϕ(a0 + a1u + · · ·+ ad−1u

d−1 + ud) = 0.

The converse follows from Example 3.50. ¤

3.5. Multiplicity of roots and separability

Let K be a field. Suppose that f(X) ∈ K[X] and u ∈ K is a root of f(X), i.e., f(u) = 0.
Then we can factor f(X) as f(X) = (X − u)f1(X) for some f1(X) ∈ K[X].

Definition 3.53. If f1(u) = 0 then u is a multiple or repeated root of f(X). If f1(u) 6= 0
then u is a simple root of f(X).

We need to understand more clearly when an irreducible polynomial has a multiple root
since this turns out to be important in what follows. Consider the formal derivative on K[X],
i.e., the function ∂ : K[X] −→ K[X] given by

∂(f(X)) = f ′(X) = a1 + 2a2X + · · ·+ dadX
d−1,

where f(X) = a0 + a1X + a2X
2 + · · ·+ adX

d with aj ∈ K.

Proposition 3.54. The formal derivative ∂ : K[X] −→ K[X] has the following properties.
(i) ∂ is K-linear.
(ii) ∂ is a derivation, i.e., for f(X), g(X) ∈ K[X],

∂(f(X)g(X)) = ∂(f(X))g(X) + f(X)∂(g(X)).

(iii) If charK = 0, then ker ∂ = K and ∂ is surjective.
(iv) If charK = p > 0, then

ker ∂ = {h(Xp) : h(X) ∈ K[X]}
and im ∂ is spanned by the monomials Xk with p - (k + 1).

Proof. (i) This is routine.
(ii) By K-linearity, it suffices to verify this for the case where f(X) = Xr and g(X) = Xs with
r, s > 0. But then

∂(Xr+s) = (r + s)Xr+s−1 = rXr−1Xs + sXrXs−1 = ∂(Xr)Xs + Xr∂(Xs).

(iii) If f(X) = a0 + a1X + a2X
2 + · · ·+ adX

d then

∂(f(X)) = 0 ⇐⇒ a1 = 2a2 = · · · = dad = 0.

So ∂(f(X)) = 0 if and only if f(X) = a0 ∈ K. It is also clear that every polynomial g(X) ∈ K[X]
has the form g(X) = ∂(f(X) where f(X) is an anti-derivative of g(X).
(iv) For a monomial Xm, ∂(Xm) = mXm−1 and this is zero if and only if p | m. Using this we
see that

∂(a0 + a1X + a2X
2 + · · ·+ adX

d) = 0 ⇐⇒ am = 0 whenever p - m.

Also, im ∂ is spanned by the monomials Xk for which ∂(Xk+1) 6= 0, which are the ones with
p - (k + 1). ¤

We now apply the formal derivative to detect multiple roots.

Proposition 3.55. Let f(X) ∈ K[X] have a root u ∈ L where L/K is an extension. Then
u is a multiple root of f(X) if and only if f(X) and f ′(X) have a common factor of positive
degree in K[X] which vanishes at u.

Proof. Working in L[X], let f(X) = (X − u)f1(X). Then

f ′(X) = f1(X) + (X − u)f ′1(X),

so f ′(u) = f1(u). Hence u is a multiple root if and only if f(X) and f ′(X) have a common
factor in L[X] and hence in K[X] which vanishes at u. ¤
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Corollary 3.56. If f(X) is irreducible in K[X] then a root u is a multiple root if and only
if f ′(X) = 0. In particular, this can only happen if charK > 0.

Corollary 3.57. If charK = 0 and f(X) is irreducible in K[X], then every root of f(X)
is simple.

Example 3.58. For n > 1, show that each of the roots of f(X) = Xn − 1 in C is simple.

Solution. We have f ′(X) = ∂(Xn − 1) = nXn−1, so for any root ζ of f(X),

f ′(ζ) = nζn−1 6= 0. ¤
Example 3.59. Show that 2i is a multiple root of f(X) = X4 + 8X2 + 16.

Solution. We have f ′(X) = 4X3+16X. Using Long Division and the Euclidean Algorithm
we find that gcd(f(X), f ′(X)) = X2 +4, where 2i is also a root of X2 +4. Hence 2i is a multiple
root of f(X). In fact, X4 + 8X2 + 16 = (X2 + 4)2, so this is obvious. ¤

Example 3.60. Let p > 0 be a prime and suppose that L/Fp is an extension. Show each of
that the roots of f(X) = Xp − 1 in L is multiple.

Solution. We have f ′(X) = ∂(Xp − 1) = pXp−1 = 0, so if ζ is any root of f(X) then
f ′(ζ) = 0. Later we will see that 1 is the only root of Xp − 1. ¤

Definition 3.61. An irreducible polynomial p(X) ∈ K[X] is separable over K if every root
of p(X) in an extension L/K is simple. By Corollary 3.56, this is equivalent to requiring that
p′(X) 6= 0. If u ∈ L is a multiple root of p(X), then the multiplicity of u in p(X) is the maximum
m such that p(X) = (X − u)mq(X) for some q(X) ∈ L[X].

Proposition 3.62. Let K be a field and let K be an algebraic closure. If the irreducible
polynomial p(X) ∈ K[X] has distinct roots u1, . . . , uk ∈ K, then the multiplicities of the uj are
equal. Hence in K[X],

p(X) = c(X − u1)m · · · (X − uk)m,

where c ∈ K and m > 1.

Proof. Let u ∈ K be a root of p(X) and suppose that it has multiplicity m, so we can
write p(X) = (X − u)mp1(X) where p1(X) ∈ K(u)[X] and p1(u) 6= 0.

Now let v ∈ K be any other root of p(X). By Proposition 3.34, there is a monomorphism
ϕv : K(u) −→ K for which ϕv(u) = v. When p(X) is viewed as an element of K(u)[X], the
coefficients of p(X) are fixed by ϕv. Then

ϕv((X − u)mp1(X)) = (X − u)mp1(X),

and so

(X − v)mp̃1(X) = (X − u)mp1(X),

where p̃1(X) ∈ K[X] is obtained applying ϕv to the coefficients of p1(X). Now by Corollary 1.33,
(X − v)m must divide p1(X) in K[X], and therefore the multiplicity of v must be at least m.
Interchanging the rôles of u and v we find that the multiplicities of u and v are in fact equal. ¤

Corollary 3.63. Let K be a field and let K be an algebraic closure. If the irreducible
polynomial p(X) ∈ K[X] has distinct roots u1, . . . , uk ∈ K which are all simple then in K[X],

p(X) = c(X − u1) · · · (X − uk),

where c ∈ K and k = deg p(X).

Corollary 3.64. Let K be a field and let u ∈ K. Then the number of distinct conjugates
of u is

deg minpolyK,u(X)
m

,

where m is the multiplicity of u in minpolyK,u(X).
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Definition 3.65. An algebraic element u ∈ L in an extension L/K is separable if its minimal
polynomial minpolyK,u(X) ∈ K[X] is separable.

Definition 3.66. An algebraic extension L/K is called separable if every element of L is
separable over K.

Example 3.67. An algebraic extension L/K of a field of characteristic 0 is separable by
Corollary 3.57.

Definition 3.68. Let L/K be a finite extension. The separable degree of L over K is

(L : K) = |MonoK(L,K)|.
Lemma 3.69. For a finite simple extension K(u)/K,

(K(u) : K) = |Roots(minpolyK,u, K)|.
If K(u)/K is separable, then [K(u) : K] = (K(u) : K).

Proof. This follows from Proposition 3.34 applied to the case L = K. ¤

Any finite extension L/K can be built up from a succession of simple extensions

(3.1) K(u1)/K, K(u1, u2)/K(u1), · · · , L = K(u1, . . . , uk)/K(u1, . . . , uk−1).

So we can use the following to compute (L : K) = (K(u1, . . . , uk) : K).

Proposition 3.70. Let L/K and M/L be finite extensions. Then

(M : K) = (M : L)(L : K).

Proof. For α ∈ MonoK(M, K) let αL ∈ MonoK(L,K) be its restriction to L. By the
Monomorphism Extension Theorem 3.49, each element of MonoK(L,K) extends to a monomor-
phism M −→ K, so every element β ∈ MonoK(L,K) has the form β = αL for some α ∈
MonoK(M, K); since (L : K) = |MonoK(L,K)|, we need to show that the number of such α is
always (M : L) = |MonoK(M, K)|.

So given β ∈ MonoK(L,K), choose any extension to a monomorphism β̃ : K −→ K; by
Proposition 3.39, β̃ is an automorphism. Of course, restricting to M 6 K we obtain a monomor-
phism M −→ K. Now for any extension β′ : M −→ K of β we can form the composition
β̃−1 ◦ β′ : M −→ K; notice that if u ∈ L, then

β̃−1 ◦ β′(u) = β̃−1(β(u)) = u,

hence β̃−1 ◦ β′ ∈ MonoL(M, K). Conversely, each γ ∈ MonoL(M, K) gives rise to a monomor-
phism β̃ ◦ γ : M −→ K which extends β. In effect, this shows that there is a bijection

{
extensions of β to monomorphism a M −→ K

} ←→ MonoL(M, K),

so (M : L) = |MonoL(M, K)| agrees with the number of extensions of β to a monomorphism
M −→ K. Therefore we have the desired formula (M : K) = (M : L)(L : K). ¤

Corollary 3.71. Let L/K be a finite extension. Then (L : K) | [L : K].

Proof. If L/K is a simple extension then by Propositions 3.62 and 3.34 we know that this
is true. The general result follows by building up L/K as a sequence of simple extensions as
in (3.1) and then using Theorem 2.6(ii) which gives

[L : K] = [K(u1) : K] [K(u1, u2) : K(u1)] · · · [K(u1, . . . , uk) : K(u1, . . . , uk−1)].

For each k, (K(u1, . . . , uk) : K(u1, . . . , uk−1)) divides [K(u1, . . . , uk) : K(u1, . . . , uk−1)], so the
desired result follows. ¤

Proposition 3.72. Let L/K be a finite extension. Then L/K is separable if and only if
(L : K) = [L : K].
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Proof. Suppose that L/K is separable. If K 6 E 6 L, then for any u ∈ L, u is alge-
braic over E, and in the polynomial ring E[X] we have minpolyE,u(X) | minpolyK,u(X). As
minpolyK,u(X) is separable, so is minpolyE,u(X), and therefore L/E is separable. Clearly E/K
is also separable. We have (L : K) = (L : E) (E : K) and [L : K] = [L : E] [E : K], so to
verify that (L : K) = [L : K] it suffices to show that (L : E) = [L : E] and (E : K) = [E : K].
Expressing L/K in terms of a sequence of simple extensions as in (3.1), we have

(L : K) = (K(u1) : K) · · · (L : K(u1, . . . , uk−1)),

[L : K] = [K(u1) : K] · · · [L : K(u1, . . . , uk−1)].

Now we can apply Lemma 3.69 to each of these intermediate separable simple extensions to
obtain (L : K) = [L : K].

For the converse, suppose that (L : K) = [L : K]. We must show that for each u ∈ L, u is
separable. For the extensions K(u)/K and L/K(u) we have (L : K) = (L : K(u)) (K(u) : K)
and [L : K] = [L : K(u)] [K(u) : K]. By Corollary 3.71, there are some positive integers r, s for
which [L : K(u)] = r(L : K(u)) and [K(u) : K] = s(K(u) : K). Hence

(L : K(u))(K(u) : K) = rs(L : K(u))(K(u) : K),

which can only happen if r = s = 1. Thus (K(u) : K) = [K(u) : K] and so u is separable. ¤
Proposition 3.73. Let L/K and M/L be finite extensions. Then M/K is separable if and

only if L/K and M/L are separable.

Proof. If M/K is separable then [M : K] = (M : K) and so by Proposition 3.70,

[M : L][L : K] = (M : L)(L : K).

This can only happen if [M : L] = (M : L) and [L : K] = (L : K), since (M : L) 6 [M : L] and
(L : K) 6 [L : K]. By Proposition 3.72 this implies that L/K and M/L are separable.

Conversely, if L/K and M/L are separable then [M : L] = (M : L) and [L : K] = (L : K),
hence

[M : K] = [M : L][L : K] = (M : L)(L : K) = (M : K).
Therefore M/K is separable. ¤

3.6. The Primitive Element Theorem

Definition 3.74. For a finite simple extension L/K, an element u ∈ L is called a primitive
element for the extension if L = K(u).

Theorem 3.75 (Primitive Element Theorem). Let L/K be a finite separable extension.
Then L has a primitive element.

Proof. The case where K is a finite field will be dealt with in Proposition 5.16. So we will
assume that K is infinite.

Since L is built up from a sequence of simple extensions it suffices to consider the case
L = K(u, v). Let p(X), q(X) ∈ K[X] be the minimal polynomials of u and v over K. Suppose
that the distinct roots of p(X) in K are u = u1, . . . , ur, while the distinct roots of q(X) are
v = v1, . . . , vs. By the separability assumption, r = deg p(X) and s = deg q(X).

Since K is infinite, we can choose an element t ∈ K for which

t 6= u− ui

vj − v

whenever j 6= 1. Then taking w = u+ tv ∈ L, we find that w 6= ui + tvj whenever j 6= 1. Define
the polynomial (of degree r)

h(X) = p(w − tX) ∈ K(w)[X] ⊆ L[X].

Then h(v) = p(u) = 0, but h(vj) 6= p(ui) = 0 for any j 6= 1 by construction of t, so none of the
other vj is a zero of h(X).

Now since the polynomials h(X), q(X) ∈ K(w)[X] have exactly one common root in K,
namely v, by separability their greatest common divisor in K(w)[X] is a linear polynomial which
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must be X − v, hence v ∈ K(w) and so u = w − tv ∈ K(w). This shows that K(u, v) 6 K(w)
and therefore K(w) = K(u, v). ¤

Corollary 3.76. Let L/K be a finite separable extension of a field of characteristic 0.
Then L has a primitive element.

Proof. Since Q 6 K, K is infinite and by Example 3.67 L/K is separable. ¤
To find a primitive element we can always use the menu provided in the proof of Theo-

rem 3.75, however a ‘try it and see’ approach will usually suffice.

Example 3.77. Find a primitive element for the extension Q(
√

3, i)/Q.

Solution. Consider
√

3+ i. Then working over the subfield Q(
√

3) 6 Q(
√

3, i) we find that
i /∈ Q(

√
3) 6 R and

(X − (
√

3 + i))(X − (
√

3− i)) = X2 − 2
√

3X + 4 ∈ Q(
√

3)[X],

hence
X2 − 2

√
3X + 4 = minpolyQ(

√
3),
√

3+i(X).

Now taking
(X2 − 2

√
3X + 4)(X2 + 2

√
3X + 4) = X4 − 4X2 + 16 ∈ Q[X],

we see that minpolyQ,
√

3+i(X) | (X4 − 4X2 + 16) in Q[X]. Notice that

(
√

3 + i)−1 =
(
√

3− i)
(
√

3 + i)(
√

3− i)
=

(
√

3− i)
3 + 1

=
1
4
(
√

3− i) ∈ Q(
√

3 + i),

since (
√

3 + i)−1 ∈ Q(
√

3 + i). Hence
√

3 =
1
2
((
√

3 + i) + (
√

3− i)), i =
1
2
((
√

3 + i)− (
√

3− i)),

are both in Q(
√

3 + i), showing that Q(
√

3, i) 6 Q(
√

3 + i) and so Q(
√

3, i) = Q(
√

3 + i). Thus
we must have deg minpolyQ,

√
3+i(X) = 4, and so minpolyQ,

√
3+i(X) = X4 − 4X2 + 16. ¤

There is a general phenomenon illustrated by Example 3.77.

Proposition 3.78. Let u ∈ K be separable over K. Then

minpolyK,u(X) = (X − α1(u)) · · · (X − αd(u)),

where α1, . . . , αd are the elements of MonoK(K(u), K). In particular, the polynomial

(X − α1(u)) · · · (X − αd(u)) ∈ K[X]

is in K[X] and is irreducible therein.

Proof. Since K(u) is separable then by Lemma 3.52,

d = deg minpolyK,u(X) = [K(u) : K] = (K(u) : K). ¤
In Example 3.77 we have

[Q(
√

3, i) : Q] = [Q(
√

3, i) : Q(
√

3)][Q(
√

3) : Q] = 2 · 2 = 4.

There are four monomorphisms αk : Q(
√

3, i) −→ Q(
√

3, i) given by

α1 = id, α2 =
(√

3 7−→ √
3

i 7−→ −i

)
, α3 =

(√
3 7−→ −√3

i 7−→ i

)
, α4 =

(√
3 7−→ −√3

i 7−→ −i

)
.

Then

α2(
√

3 + i) = (
√

3− i), α3(
√

3 + i) = (−
√

3 + i), α4(
√

3 + i) = (−
√

3− i),

so
(X −

√
3− i)(X −

√
3 + i)(X +

√
3− i)(X +

√
3 + i) = X4 − 4X2 + 16 ∈ Q[X].

Hence this polynomial is irreducible. So we have [Q(
√

3+ i) : Q] = 4 and Q(
√

3+ i) = Q(
√

3, i).
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3.7. Normal extensions and splitting fields

Definition 3.79. A finite extension E/K is normal if ϕE = E for every ϕ ∈ MonoK(E,K).

Remark 3.80. If E/K is a normal extension then whenever an irreducible polynomial
p(X) ∈ K[X] has a root in E then it splits in E since by Lemma 3.52 each pair of roots of p(X)
is conjugate over K and one can be mapped to the other by a monomorphism K −→ K which
must send E into itself.

Proposition 3.81. A finite extension E/K is normal if and only if it is a splitting field
over K for some polynomial f(X) ∈ K[X].

Proof. Suppose that E/K is normal. Then there is a sequence of extensions

K 6 K(u1) 6 K(u1, u2) 6 · · · 6 K(u1, . . . , un) = E

Construct a polynomial by taking

f(X) = minpolyK,u1
(X)minpolyK,u2

(X) · · ·minpolyK,un
(X).

Then by Remark 3.80, f(X) splits in E. Also E is generated by some of the roots of f(X).
Hence E is a splitting field for f(X) over K.

Now suppose that E is a splitting field for g(X) ∈ K[X], so that E = K(v1, . . . , vk), where
v1, . . . , vk are the distinct roots of g(X) in E. Now any monomorphism θ ∈ MonoK(E, K) must
map these roots to θ(v1), . . . , θ(vk) which are also roots of g(X) and therefore lie in E (see
Proposition 3.34). Since θ permutes the roots vj , we have

θE = θK(v1, . . . , vk) = K(θ(v1), . . . , θ(vk)) = K(v1, . . . , vk) = E. ¤
This result makes it easy to recognize a normal extension since it is sufficient to describe it

as a splitting field for some polynomial over K. In Chapter 4 we will see that separable normal
extensions play a central rôle in Galois Theory, indeed these are known as Galois extensions.

Exercises on Chapter 3

3.1. Prove Proposition 3.2.

3.2. Finding splitting subfields E 6 C over Q and determine [E : Q] for each of the following
polynomials.

p1(X) = X4−X2+1, p2(X) = X6−2, p3(X) = X4+2, p4(X) = X4+5X3+10X2+10X+5.

[Hint: for p4(X), consider p4(Y − 1) ∈ Q[Y ].]

3.3. Prove that AutQ(Q( 3
√

2, ζ3)) ∼= S3, the symmetric group on 3 elements, as claimed in the
solution of Example 3.38. [Hint: work out the effect of each automorphism on the three roots of
the polynomial X3 − 2.]

3.4. Let k be a field of characteristic chark = p > 0 and k(T ) be the field of rational functions
in T over k. Show that the polynomial g(X) = Xp − T ∈ k(T )[X] is irreducible and has a
multiple root in k(T ). How does g(X) factor in k(T )[X]?

3.5. Find primitive elements for the extensions Q(
√

5,
√

10)/Q, Q(
√

2, i)/Q, Q(
√

3, i)/Q,
Q( 4
√

3, i)/Q, in each case finding it minimal polynomial over Q. [Hint: look for elements of
high degree over Q, or use the method of proof of Theorem 3.75.]

3.6. Prove the following converse of Proposition 3.20:
Let L/K be a finite extension. If there are only finitely many subextensions F/K 6 L/K, then
L/K is simple, i.e., L = K(w) for some w ∈ L.
[Hint: First deal with the case where L = K(u, v), then use induction on n to prove the general
case L = K(u1, . . . , un).]

3.7. Let K be a field. Show that every quadratic (i.e., of degree 2) extension E/K is normal.
Is such an extension always separable?
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3.8. Let f(X) ∈ Q[X] be an irreducible polynomial of odd degree greater than 1 and having
only one real root u ∈ R. Show that Q(u)/Q is not a normal extension.



CHAPTER 4

Galois extensions and the Galois Correspondence

In this Chapter we will study the structure of Galois extensions and their associated Galois
groups, in particular we will explain how these are related through the Galois Correspondence.
Throughout the chapter, let K be a field.

4.1. Galois extensions

Definition 4.1. A finite extension E/K is a (finite) Galois extension if it is normal and
separable.

From Section 3.5 we know that for such a Galois extension E/K, [E : K] = (E : K) and also
every monomorphism ϕ ∈ MonoK(E,K) maps E into itself, hence restricts to an automorphism
of E which will be denoted ϕ|E .

K

E

ϕ
>>~~~~~~~

ϕ|E

∼= //___ E

K
= // K

Also, by the Monomorphism Extension Theorem 3.49, every automorphism α ∈ AutK(E) ex-
tends to a monomorphism E −→ K fixing elements of K. So there is a bijection

MonoK(E, K) ←→ AutK(E)

and we have

(4.1) |AutK(E)| = (E : K) = [E : K].

Definition 4.2. For a finite Galois extension E/K, the group Gal(E/K) = AutK(E) is
called the Galois group of the extension or the Galois group of E over K.

Notice that Equation (4.1) implies

(4.2) |Gal(E/K)| = (E : K) = [E : K].

We can also reformulate the notion of conjugacy introduced in Definition 3.51.

Definition 4.3. Let E/K a finite Galois extension and u, v ∈ E. Then v is conjugate to u
if there is a ϕ ∈ Gal(E/K) for which v = ϕ(u); we also say that v is a conjugate of u.

It is easy to see that for u, v ∈ K, there is a finite Galois extension E/K in which v is a
conjugate of u if and only v is a conjugate of u over K in the old sense.

4.2. Working with Galois groups

Let E/K be a finite Galois extension. Then we know that E is a splitting field for some
polynomial over K. We also know that E is a simple extension of K and so it is a splitting
field for the minimal polynomial of a generating element which has degree equal to [E : K]. It
is often convenient to use these facts to interpret elements of the Galois group as permutations
of the roots of some polynomial which splits over E.

Example 4.4. Describe the Galois group Gal(Q(
√

2,
√

3)/Q) as a subgroup of the group of
permutations of the roots of (X2 − 2)(X2 − 3) ∈ Q[X].

47
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Solution. We have

[Q(
√

2,
√

3) : Q] = [Q(
√

2,
√

3) : Q(
√

2)] [Q(
√

2) : Q] = 4,

and the following non-trivial elements of the Galois group together with the element identity
α1 = id:

α2 =




√
2 7−→ −√2

−√2 7−→ √
2√

3 7−→ √
3

−√3 7−→ −√3


 , α3 =




√
2 7−→ √

2
−√2 7−→ −√2√

3 7−→ −√3
−√3 7−→ √

3


 , α4 =




√
2 7−→ −√2

−√2 7−→ √
2√

3 7−→ −√3
−√3 7−→ √

3


 .

Writing the roots in the list
√

2,−√2,
√

3,−√3 and numbering them 1 to 4 accordingly, we see
that these automorphisms correspond to the following permutations in S4 expressed in cycle
notation:

α2 ←→ (1 2), α3 ←→ (3 4), α4 ←→ (1 2)(3 4). ¤

Example 4.5. Using a primitive element u for the extension, describe the Galois group
Gal(Q(

√
2,
√

3)/Q) as a subgroup of the group of permutations of the roots of minpolyQ,u(X) ∈
Q[X].

Solution. We have Q(
√

2,
√

3) = Q(
√

2 +
√

3) and the conjugates of u =
√

2 +
√

3 are
±√2±√3. Listing these as

√
2 +

√
3,
√

2−
√

3, −
√

2 +
√

3, −
√

2−
√

3,

and after numbering them accordingly, we find the correspondences

α2 ←→ (1 3)(2 4), α3 ←→ (1 2)(3 4), α4 ←→ (1 4)(2 3). ¤

Next we summarize the properties of Galois groups that can be deduced from what we have
established so far.

Recollection 4.6. Recall that an action of a group G on a set X is transitive if for every
pair of elements x, y ∈ X, there is an element g ∈ G such that y = gx (so there is only one
orbit); the action is faithful or effective if for every non-identity element h ∈ G, there is a
element z ∈ X such that hz 6= z.

For an extension F/K and a polynomial f(X) ∈ K[X], recall that Roots(f, F ) denotes the
set of roots of f(X) in F .

Theorem 4.7. Let E/K be a finite Galois extension. Suppose that E is the splitting field
of a separable irreducible polynomial f(X) ∈ K[X] of degree n. Then the following are true.

(i) Gal(E/K) acts transitively and faithfully on Roots(f,E).
(ii) Gal(E/K) can be identified with a subgroup of the group of permutations of Roots(f, E).

If we order the roots u1, . . . , un then Gal(E/K) can be identified with a subgroup of Sn.
(iii) |Gal(E/K)| divides n! and is divisible by n.

As we have seen in Examples 4.4 and 4.5, in practise it is often easier to use a not necessarily
irreducible polynomial to determine and work with a Galois group.

Example 4.8. The Galois extension Q(ζ8)/Q has degree [Q(ζ8) : Q] = 4 and it has the
following automorphisms apart from the identity:

α : ζ8 7−→ ζ3
8 , β : ζ8 7−→ ζ5

8 , γ : ζ8 7−→ ζ7
8 .

If we list the roots of the minimal polynomial

minpolyQ,ζ(X) = Φ8(X) = X4 + 1

in the order ζ8, ζ
3
8 , ζ5

8 , ζ7
8 , we find that these automorphisms correspond to the following permu-

tations in S4:
α ←→ (1 2)(3 4), β ←→ (1 3)(2 4), γ ←→ (1 4)(2 3).



4.3. SUBGROUPS OF GALOIS GROUPS AND THEIR FIXED FIELDS 49

So the Galois group Gal(Q(ζ8)/Q) corresponds to

{id, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} 6 S4.

Noticing that

ζ8 =
1√
2

+
1√
2
i,

we easily find that
√

2, i ∈ Q(ζ8); hence Q(
√

2, i) 6 Q(ζ8). Since [Q(
√

2, i) : Q] = 4, we have
Q(
√

2, i) = Q(ζ8). Notice that Q(
√

2, i) is the splitting field of f(X) = (X2 − 2)(X2 + 1) over
Q. Now list the roots of f(X) in the order

√
2,−√2, i,−i, and observe that

α :




√
2 7−→ −√2

−√2 7−→ √
2

i 7−→ −i
−i 7−→ i


 ←→ (1 2)(3 4), β :




√
2 7−→ −√2

−√2 7−→ √
2

i 7−→ i
−i 7−→ −i


 ←→ (1 2),

γ :




√
2 7−→ √

2
−√2 7−→ −√2

i 7−→ −i
−i 7−→ i


 ←→ (3 4).

In this description, the Galois group Gal(Q(ζ8)/Q) = Gal(Q(
√

2, i)/Q) corresponds to the
subgroup

{id, (1 2), (3 4), (1 2)(3 4)} 6 S4.

While it can be hard to determine Galois groups in general, special arguments can sometimes
be exploited.

Example 4.9. Suppose that f(X) = X3 +aX2 + bX + c ∈ Q[X] is an irreducible cubic and
that f(X) has only one real root. Then Gal(Q(f(X))/Q) ∼= S3.

Proof. Let u1 ∈ R be the real root of f(X) and let u2, u3 be the remaining complex
roots. Then Q(f(X)) = Q(u1, u2, u3) and in fact [Q(f(X)) : Q] = 6 since [Q(f(X)) : Q] | 6
and u2 /∈ Q(u1) 6 R. Hence Gal(Q(f(X))/Q) is isomorphic to a subgroup of S3 and so
Gal(Q(f(X))/Q) ∼= S3 since the orders agree. We also have Q(f(X)) ∩ R = Q(u1).

The Galois group Gal(Q(f(X))/Q) contains an element of order 3 which corresponds to a
3-cycle when viewed as a permutation of the roots u1, u2, u3; we can assume that this is (1 2 3).
It also contains an element of order 2 obtained by restricting complex conjugation to Q(f(X));
this fixes u1 and interchanges u2, u3, so it corresponds to the transposition (2 3). ¤

Remark 4.10. Such examples occur when the cubic polynomial f(X) has local maximum
and minimum at real values c+ and c− with f(c+), f(c−) > 0 or f(c+), f(c−) < 0. This happens
for example with f(X) = X3− 3X +3 which has local extrema at ±1 and f(1) = 1, f(−1) = 5.

Given a Galois extension E/K, we will next study subextensions L/K 6 E/K and sub-
groups Γ 6 Gal(E/K), focusing on the relationship between objects of these types.

4.3. Subgroups of Galois groups and their fixed fields

Let E/K a Galois extension and suppose that Γ 6 Gal(E/K). Consider the subset of
elements of E fixed by Γ,

EΓ = {u ∈ E : ∀γ ∈ Γ, γ(u) = u}.
Lemma 4.11. EΓ 6 E is a subfield of E containing K.

Proof. For u, v ∈ EΓ and γ ∈ Γ,

γ(u + v) = γ(u) + γ(v) = u + v, γ(uv) = γ(u)γ(v) = uv.

Also, if u 6= 0,
γ(u−1) = γ(u)−1 = u−1.

Finally, if t ∈ K then γ(t) = t, so K 6 EΓ. ¤
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Definition 4.12. EΓ 6 E is the fixed subfield of Γ.

By Proposition 3.73, the extensions E/EΓ and EΓ/K are separable. E/EΓ is also normal,
so this is itself a Galois extension. We will identify its Galois group. Notice that

[E : EΓ] = (E : EΓ) = |Gal(E/EΓ)|.
Now each element of Gal(E/EΓ) is also an element of Gal(E/K) and Gal(E/EΓ) 6 Gal(E/K).
Notice that by definition Γ 6 Gal(E/EΓ), so Lagrange’s Theorem implies that |Γ| divides
|Gal(E/EΓ)|. In fact we have

Proposition 4.13. For Γ 6 Gal(E/K), we have Gal(E/EΓ) = Γ and the equations

[E : EΓ] = |Gal(E/EΓ)| = |Γ|, [EΓ : K] =
|Gal(E/K)|

|Γ| .

Proof. We know that E/EΓ is separable, so by the Primitive Element Theorem 3.75 it is
simple, say E = EΓ(u). Now let the distinct elements of Γ be γ1 = id, γ2, . . . , γh, where h = |Γ|.
Consider the polynomial of degree h

f(X) = (X − u)(X − γ2(u)) · · · (X − γh(u)) ∈ E[X].

Notice that f(X) is unchanged by applying any γk to its coefficients since the roots γj(u) are
permuted by γk. Hence, f(X) ∈ EΓ[X]. This shows that

[E : EΓ] = [EΓ(u) : EΓ] 6 h = |Γ|.
Since Γ 6 Gal(E/EΓ), we also have

h = |Γ| 6 |Gal(E/EΓ)| = [E : EΓ].

Combining these two inequalities we obtain

[E : EΓ] = |Gal(E/EΓ)| = |Γ| = h

and therefore Γ = Gal(E/EΓ). ¤

4.4. Subfields of Galois extensions and relative Galois groups

Let E/K a Galois extension and suppose that K 6 L 6 E. Then E/L is also a Galois
extension whose Galois group Gal(E/L) is sometimes called the relative Galois group of the
pair of extensions E/K and L/K. The following is immediate.

Lemma 4.14. The relative Galois group of the pair of extensions E/K and L/K is a subgroup
of Gal(E/K), i.e., Gal(E/L) 6 Gal(E/K), and its order is |Gal(E/L)| = [E : L].

Proposition 4.15. Let K 6 L 6 E. Then L = EGal(E/L).

Proof. Clearly L 6 EGal(E/L). Suppose that u ∈ E − L. Then there is an automorphism
θ ∈ Gal(E/L) such that θ(u) 6= u, hence u /∈ EGal(E/L). This shows that EGal(E/L) 6 L and
therefore EGal(E/L) = L. ¤

We want to understand when Gal(E/L) 6 Gal(E/K) is actually a normal subgroup. The
next result explains the connection between the two uses of the word normal which both derive
from the Galois theoretic usage.

Proposition 4.16. Let E/K be a finite Galois extension and L/K 6 E/K a subextension.
(i) The relative Galois group Gal(E/L) of the pair of extensions E/K and L/K is normal

in Gal(E/K) if and only if L/K is normal.
(ii) If L/K is normal and hence a Galois extension, then there is a group isomorphism

Gal(E/K)/Gal(E/L)
∼=−→ Gal(L/K); α Gal(E/L) 7−→ α|L .
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Proof. (i) Suppose that Gal(E/L)/Gal(E/K). Then if α ∈ Gal(E/L) and β ∈ Gal(E/K),
we have βαβ−1 ∈ Gal(E/L). Now if u ∈ L, then for any γ ∈ Gal(E/K) and α ∈ Gal(E/L),
γ(u) ∈ E satisfies

αγ(u) = γ(γ−1αγ(u)) = γ(u),
since γ−1αγ ∈ Gal(E/L). So L/K is normal.

Conversely, if L/K is normal, then for every ϕ ∈ Gal(E/K) and v ∈ L, ϕ(v) ∈ L, so for
every θ ∈ Gal(E/L), θ(ϕ(v)) = ϕ(v) and therefore

ϕ−1θϕ(v) = v.

This shows that ϕ−1θϕ ∈ Gal(E/L). Hence for every ϕ ∈ Gal(E/K),

ϕGal(E/L)ϕ−1 = Gal(E/L),

which shows that Gal(E/L) / Gal(E/K).
(ii) If α ∈ Gal(E/K), then αL = L since L/K is normal. Hence we can restrict α to an

automorphism of L,
α|L : L −→ L; α|L(u) = α(u).

Then α|L is the identity function on L if and only if α ∈ Gal(E/L). It is easy to see that the
function

Gal(E/K) −→ Gal(L/K); α 7−→ α|L
is a group homomorphism whose kernel is Gal(E/L). Thus we obtain an injective homomor-
phism

Gal(E/K)/Gal(E/L) −→ Gal(L/K)
for which

|Gal(E/K)/Gal(E/L)| = [E : K]
[E : L]

= [L : K] = |Gal(L/K)|.
Hence this must be an isomorphism of groups. ¤

4.5. The Galois Correspondence

We are now almost ready to state our central result which describes the Galois Correspon-
dence associated with a finite Galois extension. We will use the following notation. For a finite
Galois extension E/K, let

S(E/K) = the set of all subgroups of Gal(E/K);

F(E/K) = the set of all subextensions L/K of E/K.

These sets are ordered by inclusion. Notice that since every subgroup of a finite group is
equivalent to its underlying set, S(E/K) is a finite set. Define two functions by

ΦE/K : F(E/K) −→ S(E/K); ΦE/K(L) = Gal(E/L),

ΘE/K : S(E/K) −→ F(E/K); ΘE/K(Γ) = EΓ.

Theorem 4.17 (Main Theorem of Galois Theory). Let E/K be a finite Galois extension.
Then the functions ΦE/K and ΘE/K are mutually inverse bijections which are order-reversing.

F(E/K)
ΦE/K //

S(E/K)
ΘE/K

oo

Under this correspondence, normal subextensions of E/K correspond to normal subgroups of
Gal(E/K) and vice versa.

Proof. We know from Proposition 4.15 that for an extension L/K in F(E/K),

ΘE/K(ΦE/K(L)) = ΘE/K(Gal(E/L)) = EGal(E/L) = L.

Also, by Proposition 4.13 for H ∈ S(E/K) we have

ΦE/K(ΘE/K(Γ)) = ΦE/K(EΓ) = Gal(E/EΓ) = Γ.
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This shows that ΦE/K and ΘE/K are mutually inverse and so are inverse bijections.
Let L1/K, L2/K ∈ F(E/K) satisfy L1/K 6 L2/K. Then Gal(E/L2) 6 Gal(E/L1) since

L1 ⊆ L2 and so if α ∈ Gal(E/L2) then α fixes every element of L1. Hence ΦE/K(L2) 6 ΦE/K(L1)
and so ΦE/K reverses order.

Similarly, if Γ1,Γ2 ∈ S(E/K) with Γ1 6 Γ2, then EΓ2 6 EΓ1 since if w ∈ EΓ2 then it is
fixed by every element of Γ1 which is a subset of Γ2. Hence ΘE/K reverses order. ¤

There is an immediate consequence of the Main Theorem 4.17 which is closely related to
Proposition 3.20.

Corollary 4.18. Let E/K be a finite Galois extension. Then there are only finitely many
subextensions L/K 6 E/K.

Proof. Since the set S(E/K) is finite, so is F(E/K). ¤
When dealing with a finite Galois extension E/K, we indicate the subextensions in a diagram

with a line going upwards indicating an inclusion. We can also do this with the subgroups of
the Galois group Gal(E/K) with labels indicating the index of the subgroups. In effect, the
Galois Correspondence inverts these diagrams.

Example 4.19. Figure 4.1 displays the Galois Correspondence for the extension of Exam-
ple 3.30.

E = Q( 3
√

2, ζ3)HH

¹¹

Q( 3
√

2)
NN

³³

2

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

3
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√

2 ζ3)NN

³³

2

kkkkkkkkkkkkkk

3
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Q( 3
√

2 ζ2
3 )

II

¸¸

2

3 Q(ζ3)QQ

°°
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Gal(E/Q)
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√
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Gal(E/Q( 3
√
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3
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Gal(E/Q( 3
√

2 ζ2
3 ))

2

3

{id}

Figure 4.1. The Galois Correspondence for E = Q( 3
√

2, ζ3)/Q

As noted at the end of Example 3.38, the Galois group here is Gal(Q( 3
√

2, ζ3)/Q) ∼= S3. It
is useful to make this isomorphism explicit. First take the 3 roots of the polynomial X3 − 2 for
which E is the splitting field over Q; these are 3

√
2, 3
√

2 ζ3,
3
√

2 ζ2
3 which we number in the order
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they are listed. Then the monomorphisms id, α0, α1, α
′
1, α2, α

′
2 extend to automorphisms of E,

each of which permutes these 3 roots in the following ways given by cycle notation:

α0 = (2 3), α1 = (1 2 3), α′1 = (1 2), α2 = (1 3 2), α′2 = (1 3).

We find that

Gal(E/Q(ζ3)) = {id, α1, α2} ∼={id, (1 2 3), (1 3 2)}, Gal(E/Q( 3
√

2)) = {id, α0} ∼={id, (2 3)},
Gal(E/Q( 3

√
2 ζ3)) = {id, α′2} ∼={id, (1 3)}, Gal(E/Q( 3

√
2 ζ2

3 )) = {id, α′1} ∼={id, (1 2)}.
Notice that {id, (1 2 3), (1 3 2)} / S3 and so Q(ζ3)/Q is a normal extension. Of course Q(ζ3)

is the splitting field of X3 − 1 over Q.

4.6. Galois extensions inside the complex numbers and complex conjugation

When working with Galois extensions contained in the complex numbers it is often useful
to make use of complex conjugation as an element of a Galois group. Let E/Q be a finite Galois
extension with E/Q 6 C/Q. Setting ER = R ∩ E, we have Q 6 ER 6 E.

Proposition 4.20. Complex conjugation ( ) : C −→ C restricts to an automorphism of E
over Q, ( )E/Q : E −→ E.

(i) ( )E/Q which agrees with the identity function if and only if ER = E.
(ii) If ER 6= E then 〈

( )E/Q
〉

= {id, ( )E/Q} ∼= Z/2,

hence ER = E〈( )E/Q〉 and [E : ER] = 2.

Proof. Let u ∈ E. As E/Q is normal, minpolyQ,u(X) ∈ Q[X] splits over E, hence all of
its complex roots lie in E. But ( ) permutes the roots of this polynomial. Hence ( ) maps E
into itself.
(i) For z ∈ C, z = z if and only if z ∈ R.
(ii) Here | 〈( )E/Q

〉 | = 2, and

E〈( )E/Q〉 = {u ∈ E : u = u} = ER. C
2

∞R

∞ E

2
nnnnnnnnnnnnnn

²²
²²
²²
²²
²²
²²
²²
²

ER

AA
AA

AA
AA

Q
¤

We will usually write ( ) rather than ( )E/Q when no confusion seems likely to result.

Example 4.21. Consider the cyclotomic extension Q(ζ8)/Q where

ζ8 = eπi/4 =
1√
2

+
1√
2
i.

From Example 4.8 we know that

Q(ζ8) = Q(
√

2, i), [Q(ζ8) : Q] = 4,

and we easily see that
Q(ζ8)R = Q(

√
2).
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4.7. Kaplansky’s Theorem

In this section we give a detailed account of the Galois theory of irreducible rational poly-
nomials f(X) = X4 + aX2 + b ∈ Q[X]. The following result describes the Galois groups that
occur and the proof introduces some useful computational techniques.

Theorem 4.22 (Kaplansky’s Theorem). Let f(X) = X4 + aX2 + b ∈ Q[X] be irreducible.
(i) If b is a square in Q then Gal(Q(f(X))/Q) ∼= Z/2× Z/2.
(ii) If b(a2 − 4b) is a square in Q then Gal(Q(f(X))/Q) ∼= Z/4.
(iii) If neither b nor b(a2 − 4b) is a square in Q then Gal(Q(f(X))/Q) ∼= D8.

♠
♥ ♦
♣

Proof. Let g(X) = X2+aX+b ∈ Q[X]. Notice that g(X) must be irreducible since

otherwise f(X) would factorize, hence (a2− 4b) is not a square in Q. Setting d = (a2− 4b) ∈ Q
and δ to be a square root of d, we see that the roots of g(X) are (−a± δ)/2, where δ /∈ Q. Then
the roots of f(X) are ±u,±v, where

u2 =
(−a + δ)

2
, v2 =

(−a− δ)
2

,

so the splitting field of f(X) over Q is E = Q(u, v) which contains the quadratic extension
Q(δ)/Q. Since deg f(X) = 4, we must also have 4 | [E : Q]. In fact, since E is obtained by at
most 3 successive quadratic extensions we also have [E : Q] | 8.

(i) We have

(uv)2 = u2v2 =
a2 − d

4
=

4b

4
= b,

hence uv is a square root of b which is in Q. Setting c = uv ∈ Q, we find that v = c/u ∈ Q(u).
This shows that E = Q(u) and we have the following Galois tower.

E = Q(u)

2

Q(δ)

2

Q

In particular [E : Q] = 4 = |Gal(E/Q)|. Notice that for the Galois extension Q(δ)/Q there
must be a normal subgroup N / Gal(E/Q) with

Q(δ) = EN , Gal(Q(δ)/Q) = Gal(E/Q)/N.

Hence there is an element σ ∈ Gal(E/Q) for which σ(δ) = −δ. This element must also have
the effects σ(u) = ±v and σ(v) = ±u. Given u we might as well choose v so that σ(u) = v.
There is also an element τ ∈ N for which τ(u) = −u and we also have τ(v) = −v. Notice that
if σ(v) = −u then easy calculation shows that

τσ(v) = στ(v) = u, τσ(δ) = στ(δ) = −δ,

hence we might as assume that σ(v) = u since if necessary we can replace our original choice
by τσ.

We now have
σ(u) =

c

u
, τ(u) = −u, τσ(u) = στ(u) = − c

u
.

These satisfy
σ2 = τ2 = (στ)2 = id = the identity, στ = τσ.

This shows that

Gal(Q(f(X))/Q) = Gal(E/Q) = {id, σ, τ, στ} ∼= Z/2× Z/2 = the Klein 4-group.
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(ii) If bd is a square in Q, then

(uvδ)2 = u2v2d = bd,

which is a square in Q, so we can write uvδ = c ∈ Q or equivalently v = c/(uδ) ∈ Q(u) since
Q(δ) 6 Q(u). This shows that E = Q(u, v) = Q(u) and again we have a Galois tower

E = Q(u)

2

Q(δ)

2

Q

with [E : Q] = 4 = |Gal(E/Q)|.
Since Q(δ)/Q is Galois there is an element σ ∈ Gal(E/Q with σ(δ) = −δ and this has the

effect σ(u) = ±v; given u we might as well choose v so that σ(u) = v. Notice that

σ(v) =
c

σ(uδ)
= − c

vδ
= −u,

so σ2(u) = −u. This shows that

Gal(Q(f(X))/Q) = Gal(E/Q) = {id, σ, σ2σ3} ∼= Z/4 = a cyclic group of order 4.

(iii) Suppose that d, b and bd are not squares in Q. By an easy calculation we find that
(uv)2 = b, so uv ∈ E is a square root of b in E. Suppose that uv ∈ Q(δ); then uv = p + qδ for
some p, q ∈ Q. By squaring we obtain

b = (p2 + q2d) + 2pqδ,

and so pq = 0. We cannot have q = 0 since this would imply that b was a square in Q; if
p = 0 then b = q2d and so bd = (qd)2, implying that bd was a square in Q. Thus we have
Q(uv) ∩Q(δ) = Q. A similar discussion shows that

Q(uvδ) ∩Q(δ) = Q = Q(uvδ) ∩Q(uv).

So we have a Galois tower which includes the following subfields.

E = Q(u, v)

Q(uv, δ)

rrrrrrrrrr

NNNNNNNNNNN

Q(δ)

2 LLLLLLLLLLLL
Q(uv)

2

Q(uvδ)

2
pppppppppppp

Q

Choose
α ∈ Gal(E/Q(uv)) 6 Gal(E/Q)

so that α(δ) = −δ. By renaming −v to v if necessary, we may assume that v = α(u) and so
u = α(v). Notice that α2 = id.

Choose
β ∈ Gal(E/Q(δ)) 6 Gal(E/Q)

with β(uv) = −uv. We must have either β(u) = −u or β(v) = −v, so by interchanging ±δ if
necessary we can assume that β(u) = −u and β(v) = v. Notice that β2 = id.

Choose
γ ∈ Gal(E/Q(δ, uv)) 6 Gal(E/Q)
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so that γ(u) = −u. Then we must have γ(v) = −v since γ(uv) = uv. Notice that γ2 = id.
Setting σ = αβ we find σ(u) = −v and σ(v) = u. Then σ2 = γ and σ has order 4. Also,

ασα = βσβ = σ−1.

The eight elements
id, σ, γ, σ−1, α, ασ, αγ, ασ−1

form a group isomorphic to the dihedral group of order 8, D8. Therefore we have

Gal(Q(f(X))/Q) = Gal(E/Q) ∼= D8,

and [E : Q] = 8. The corresponding Galois tower is

E = Q(u, v)

2

Q(uv, δ)
2

rrrrrrrrrr
2

2

NNNNNNNNNNN

Q(δ)

2 LLLLLLLLLLLL
Q(uv)

2

Q(uvδ)

2
pppppppppppp

Q
¤

Example 4.23. We have the following Galois groups:

Gal(Q(X4 + 1)/Q) ∼= Z/2× Z/2; Gal(Q(X4 + 4X2 + 2)/Q) ∼= Z/4;

Gal(Q(X4 + 2X2 + 2)/Q) ∼= D8 .

Exercises on Chapter 4

4.1. If f(X) ∈ K[X] is a separable polynomial, prove that the splitting field of f(X) over K is
a finite Galois extension of K.

4.2. Let K be a field for which charK 6= 2, 3 and suppose that f(X) ∈ K[x] is a cubic
polynomial.

(a) Show that there u, v ∈ K with u 6= 0 such that f(uX + v) = X3 + aX + b for some
a, b ∈ K. If f(X) is monic, deduce that a, b ∈ K; under what conditions is this always
true?

(b) If g(X) = X3 + aX + b ∈ K[x] is irreducible and E = K(g(X)) is its splitting field
over K, explain why Gal(E/K) is isomorphic to one of the groups S3 or A3.

(c) Continuing with the notation and assumptions of (b), suppose that w1, w2, w3 are the
distinct roots of g(X) in E and let

∆ = (w1 − w2)2(w2 − w3)2(w1 − w3)2 ∈ E.

Show that
∆ = −4b3 − 27a2,

and hence ∆ ∈ K. If δ = (w1 − w2)(w3 − w3)(w1 − w3), show that

Gal(E/K) ∼=
{

A3 if δ ∈ K,

S3 if δ /∈ K.

[Hint: Consider K(δ) 6 E and the effect of even and odd permutations in Gal(E/K) 6
S3 on the element δ.]

4.3. This is a revision exercise on finite groups of small order.
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(a) Show that every non-abelian finite group has order at least 6.
(b) Let D8 be the dihedral group with the eight elements

ι, α, α2, α3, β, βα, βα2, βα3

satisfying
α4 = ι, β2 = ι, βαβ = α−1 = α3.

Find all the normal subgroups of D8.

4.4. Use Kaplansky’s Theorem 4.22 to find the Galois group of the splitting field E of the
polynomial X4 + 3 ∈ Q[X] over Q. Determine all the subextensions F 6 E for which F/Q is
Galois.

4.5. Find the Galois groups for each of the following extensions:
Q(X3 − 10)/Q; Q(

√
2)(X3 − 10)/Q(

√
2); Q(

√
3 i)(X3 − 10)/Q(

√
3 i);

Q(
√

23 i)(X3 −X − 1)/Q(
√

23 i); K(X3 −X − 1)/K for K = Q, Q(
√

5), Q(
√

5 i), Q(i).

4.6. Let p > 0 be a prime. Let K be a field with charK 6= p. Suppose that 0 6= a ∈ K and
f(X) = Xp − a ∈ K[X]. Let L/K where L is a splitting field for f(X) over K.

(a) Show that f(X) has p distinct roots in L. If u ∈ L is one such root, describe the
remaining roots and show that L contains p distinct p-th roots of 1.

(b) Suppose that K contains p distinct p-th roots of 1. Show that either f(X) is irreducible
over K or it factors into p distinct linear factors over K.

(c) Suppose that the only p-th root of 1 in K is 1. Show that either f(X)is irreducible
over K or it has a root in K.

4.7. Let K be a field of characteristic charK = p where p > 0 is a prime. Suppose that
0 6= a ∈ K and f(X) = Xp − a ∈ K[X]. Show that if f(X) has no root in K then it is
irreducible over K.





CHAPTER 5

Galois extensions for fields of positive characteristic

In this chapter we will investigate extensions of fields of positive characteristic, especially
finite fields. A thorough account of finite fields and their applications can be found in [5]. We
will assume that p > 0 is a prime and K is a field of characteristic charK = p ; we will also
assume that K contains the prime subfield Fp, i.e., Fp 6 K.

5.1. Finite fields

If K is a finite field, then K is an Fp-vector space. Our first goal is to count the elements of
K. Here is a more general result.

Lemma 5.1. Let F be a finite field with q elements and let V be an F -vector space. Then
dimF V < ∞ if and only if V is finite in which case |V | = qdimF V .

Proof. If d = dimF V < ∞, then for a basis v1, . . . , vd we can express each element v ∈ V
uniquely in the form v = t1v1 + · · · + tdvd, where t1, . . . , td ∈ F . Clearly there are exactly qd

such expressions, so |V | = qd.
Conversely, if V is finite then any basis has finitely many elements and so dimF V < ∞. ¤
Corollary 5.2. Let F be a finite field and E/F an extension. Then E is finite if and only

if E/F is finite and then |E| = |F |[E:F ].

Corollary 5.3. Let K be a finite field. Then K/Fp is finite and |K| = p[K:Fp].

Our next task is to show that for each power pd there is a finite field with pd elements. We
start with the algebraic closure Fp of Fp and consider the polynomial Θpd(X) = Xpd − X ∈
Fp[X]. Notice that Θ′

pd(X) = −1, hence by Proposition 3.55 every root of Θpd(X) in Fp is
simple. Therefore by Corollary 1.34 Θpd(X) must have exactly pd distinct roots in Fp, say
0, u1, . . . , upd−1. Then in Fp[X] we have

Xpd −X = X(X − u1) · · · (X − upd−1),

and each root is separable over Fp. Let

Fpd = {u ∈ Fp : Θpd(u) = 0} ⊆ Fp, F0
pd = {u ∈ Fpd : u 6= 0}.

Notice that u ∈ F0
pd if and only if upd−1 = 1.

Proposition 5.4. For each d > 1, Fpd is a finite subfield of Fp with pd elements and
F0

pd = F×
pd. Furthermore, the extension Fpd/Fp is separable.

Proof. If u, v ∈ Fpd then by the Idiot’s Binomial Theorem 1.11,

(u + v)pd − (u + v) = (upd
+ vpd

)− (u + v) = (upd − u) + (vpd − v) = 0,

(uv)pd − uv = upd
vpd − uv = uv − uv = 0.

Furthermore, if u 6= 0 then upd−1 = 1 and so u has multiplicative inverse upd−2. Hence Fpd 6 Fp.
Notice that Fp 6 Fpd , so Fpd/Fp is a finite extension. In any field the non-zero elements are
always invertible, hence F0

pd = F×
pd . ¤

Definition 5.5. The finite subfield Fpd 6 Fp is called the Galois field of order pd.

59
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Fpd is often denoted GF(pd). Of course, Fp1 = GF(p1) = Fp. Notice also that [Fpd : Fp] = d.

Proposition 5.6. Let d > 1.
(i) Fpd 6 Fp is the splitting subfield for each of the polynomials Xpd −X and Xpd−1 − 1

over Fp.
(ii) Fpd 6 Fp is the unique subfield with pd elements.
(iii) If K is any field with pd elements then there is an monomorphism K −→ Fp with image

Fpd, hence K ∼= Fpd.

Proof. (i) As Fpd consists of exactly the roots of Θpd(X) in Fp, it is the splitting subfield.
The non-zero elements of Fpd are the roots of Xpd−1− 1, so Fpd is also the splitting subfield for
this polynomial.
(ii) Let K 6 Fp have pd elements. Notice that the non-zero elements of F form a group K×

under multiplication. This group is abelian and has pd−1 elements, so by Lagrange’s Theorem,
each element u ∈ K× has order dividing pd − 1, therefore upd−1 = 1 and so upd

= u. But this
means every element of K is a root of Θpd(X) and so K 6 Fpd ; equality follows since these
subfields both have pd elements.
(iii) Apply the Monomorphism Extension Theorem 3.49 for K = E = Fp and L = K. ¤

It is worth noting the following consequence of this result and the construction of Fpd .

Corollary 5.7. Let K be a finite field of characteristic p. Then K/Fp is separable.

Example 5.8. Consider the polynomial X4 −X ∈ F2[X]. By inspection, in the ring F2[X]
we find that

X4 −X = X4 + X = X(X3 + 1) = X(X + 1)(X2 + X + 1).
Now X2 + X + 1 has no root in F2 so it must be irreducible in F2[X]. Its splitting field is a
quadratic extension F2(w)/F2 where w is one of the roots of X2 + X + 1, the other being w + 1
since the sum of the roots is the coefficient of X. This tells us that every element of F4 = F2(w)
can be uniquely expressed in the form a + bw with a, b ∈ F2. To calculate products we use the
fact that w2 = w + 1, so for a, b, c, d ∈ F2 we have

(a + bw)(c + dw) = ac + (ad + bc)w + bdw2 = (ac + bd) + (ad + bc + bd)w.

Example 5.9. Consider the polynomial X9 −X ∈ F3[X]. Let us find an irreducible poly-
nomial of degree 2 in F3[X]. Notice that X2 + 1 has no root in F3, hence X2 + 1 ∈ F3[X] is
irreducible; so if u ∈ F3 is a root of X2 + 1 then F3(u)/F3 has degree 2 and F3(u) = F9. Every
element of F9 can be uniquely expressed in the form a + bu with a, b ∈ F3. Multiplication is
carried out using the relation u2 = −1 = 2.

By inspection, in the ring F3[X] we find that

X9 −X = X(X8 − 1) = (X3 −X)(X2 + 1)(X2 + X − 1)(X2 −X − 1).

So X2 +X− 1 and X2−X− 1 are also quadratic irreducibles in F3[X]. We can find their roots
in F9 using the quadratic formula since in F3 we have 2−1 = (−1)−1 = −1. The discriminant of
X2 + X − 1 is

1− 4(−1) = 5 = 2 = u2,

so its roots are (−1)(−1± u) = 1± u. Similarly, the discriminant of X2 −X − 1 is

1− 4(−1) = 5 = 2 = u2

and its roots are (−1)(1± u) = −1± u. Then we have

F9 = F3(u) = F3(1± u) = F3(−1± u).

There are two issues we can now clarify.

Proposition 5.10. Let Fpm and Fpn be two Galois fields of characteristic p. Then Fpm 6
Fpn if and only if m | n.
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Proof. If Fpm 6 Fpn , then by Corollary 5.2,

pn = (pm)[Fpn :Fpm ],

so m | n.
If m | n, write n = km with k > 1. Then for u ∈ Fpm we have upm

= u, so

upn
= upmk

= (upm
)pm(k−1)

= upm(k−1)
= · · · = upm

= u.

Hence u ∈ Fpn and therefore Fpm 6 Fpn . ¤
This means that we can think of the Galois fields Fpn as ordered by divisibility. Here is the

diagram of subfields for Fp24 showing extensions with no intermediate subextensions.

(5.1) Fp24

{{
{{

{{
{{

Fp8 Fp12

{{
{{

{{
{{

Fp4 Fp6

{{
{{

{{
{{

CC
CC

CC
CC

Fp2

CC
CC

CC
CC

Fp3

{{
{{

{{
{{

Fp

Theorem 5.11. The algebraic closure of Fp is the union of all the Galois fields of charac-
teristic p,

Fp =
⋃

n>1

Fpn .

Furthermore, each element u ∈ Fp is separable over Fp.

Proof. Let u ∈ Fp. Then u is algebraic over Fp and the extension Fp(u)/Fp is finite. Hence
by Corollary 5.2, Fp(u) 6 Fp is a finite subfield. Proposition 5.10 now implies that Fp(u) = Fpn

for some n. The separability statement follows from Corollary 5.7. ¤
We will require a useful fact about Galois fields.

Proposition 5.12. The group of units F×
pd in Fpd is cyclic.

This is a special case of a more general result about arbitrary fields.

Proposition 5.13. Let K be a field. Then every finite subgroup U 6 K× is cyclic.

Proof. Use Corollary 1.34 and Lemma 1.45. ¤
Definition 5.14. w ∈ F×

pd is called a primitive root if it is a primitive (pd − 1)-th root of
unity, i.e., its order in the group F×

pd is (pd − 1), hence 〈w〉 = F×
pd .

Remark 5.15. Unfortunately the word primitive has two confusingly similar uses in the
context of finite fields. Indeed, some authors use the term primitive element for what we have
called a primitive root, but that conflicts with our usage, although as we will in the next result,
every primitive root is indeed a primitive element in our sense!

Proposition 5.16. The extension of Galois fields Fpnd/Fpd is simple, i.e., Fpnd = Fpd(u)
for some u ∈ Fpnd.

Proof. By Proposition 5.12, Fpnd has a primitive root w say. Then every element of Fpnd

is a polynomial in w, so Fpnd 6 Fpd(w) 6 Fpnd , hence Fpnd = Fpd(w). ¤
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Remark 5.17. This completes the proof of the Primitive Element Theorem 3.75 which we
had previously only established for infinite fields.

Example 5.18. In Example 5.8 we find that F4 = F2(w) has the two primitive roots w and
w + 1.

Example 5.19. In Example 5.9 we have F9 = F3(u) and F×9 is cyclic of order 8. Since
ϕ(8) = 4, there are four primitive roots and these are the roots of the polynomials X2 + X − 1
and X2 −X − 1 which we found to be ±1± u.

We record a fact that is very important in Number Theory.

Proposition 5.20. Let p > 0 be an odd prime.
(i) If p ≡ 1 (mod 4), the polynomial X2 + 1 ∈ Fp[X] has two roots in Fp.
(ii) If p ≡ 3 (mod 4) the polynomial X2+1 ∈ Fp[X] is irreducible, so Fp2

∼= Fp[X]/(X2+1).

Proof. (i) We have 4 | (p− 1) = |F×p |, so if u ∈ F×p is a generator of this cyclic group, the
order of u|F

×
p |/4 is 4, hence this is a root of X2 + 1 (the other root is −u|F

×
p |/4).

(ii) If v ∈ Fp is a root of X2 + 1 then v has order 4 in F×p . But then 4 | (p− 1) = |F×p |, which is
impossible since p− 1 ≡ 2 (mod 4). ¤

Here is a generalization of Proposition 5.20.

Proposition 5.21. Fpd contains a primitive n-th root of unity if and only if pd ≡ 1 (mod n)
and p - n.

5.2. Galois groups of finite fields and Frobenius mappings

Consider an extension of Galois fields Fpnd/Fpd . By Proposition 5.6(i), Corollary 5.7 and
Proposition 3.73, this extension is Galois and

|Gal(Fpnd/Fpd)| = [Fpnd : Fpd ] = n.

We next introduce an important element of the Galois group Gal(Fpnd/Fpd).

Definition 5.22. The (relative) Frobenius mapping for the extension Fpnd/Fpd is the func-
tion Fd : Fpnd −→ Fpnd given by Fd(t) = tp

d
.

Proposition 5.23. The relative Frobenius mapping Fd : Fpnd −→ Fpnd is an automor-
phism of Fpnd that fixes the elements of Fpd, so Fd ∈ Gal(Fpnd/Fpd). The order of Fd is n,
so Gal(Fpnd/Fpd) = 〈Fd〉, the cyclic group generated by Fd.

Proof. For u, v ∈ Fpnd , we have the identities

Fd(u + v) = (u + v)pd
= upd

+ vpd
, Fd(uv) = (uv)pd

= upd
vpd

,

so Fd is a ring homomorphism. Also, for u ∈ Fpd we have

Fd(u) = upd
= u,

so Fd fixes the elements of Fpd . To see that Fd is an automorphism, notice that the composition
power Fn

d = Fd ◦ · · · ◦ Fd (with n factors) satisfies

Fn
d(t) = tp

nd
= t

for all t ∈ Fpnd , hence Fn
d = id. Then Fd is invertible with inverse F−1

d = Fn−1
d . This also shows

that the order of Fd in the group AutF
pd

(Fpnd) is at most n. Suppose the order is k with k 6 n;

then every element u ∈ Fpnd satisfies the equation Fk
d(u) = u which expands to upkd

= u, hence
u ∈ Fpkd . But this can only be true if k = n. ¤

Frobenius mappings exist on the algebraic closure Fp. For d > 1, consider the function

Fd : Fp −→ Fp ; Fd(t) = tp
d
.
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Proposition 5.24. Let d > 1.
(i) Fd : Fp −→ Fp is an automorphism of Fp which fixes the elements of Fpd. In fact for

u ∈ Fp, Fd(u) = u if and only if u ∈ Fpd.
(ii) The restriction of Fd to the Galois subfield Fpdn agrees with the relative Frobenius

mapping Fd : Fpnd −→ Fpnd.
(ii) If k > 1, then Fk

d = Fkd, so Fd has infinite order in the automorphism group AutF
pd

(Fp),
hence this group is infinite.

Proof. This is left as an exercise. ¤
The Frobenius mapping F = F1 is often called the absolute Frobenius mapping since it exists

as an element of each of the groups AutFp(Fp) and AutFp(Fpn) = Gal(Fpn/Fp) for every n > 1.
In Gal(Fpnd/Fpd) = 〈Fd〉, for each k with k | n there is the cyclic subgroup

〈
Fk

d

〉
of order

| 〈Fk
d

〉 | = n/k.

Proposition 5.25. For k | n, the fixed subfield of
〈
Fk

d

〉
in Fpnd is F〈F

k
d〉

pnd = Fpdk .

Fpnd

n/k

F〈F
k
d〉

pnd = Fpdk

k

Fpd

Proof. For u ∈ Fpnd we have Fk
d(u) = updk

, hence Fk
d(u) = u if and only if u ∈ Fpdk . ¤

Here is the subgroup diagram corresponding to the lattice of subfields of Fp24 shown in (5.1).
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(5.2)
Gal(Fp24/Fp) = 〈F〉 ∼= Z/24
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5.3. The trace and norm mappings

For an extension of Galois fields Fpnd/Fpd , consider the function TrF
pnd/F

pd
: Fpnd −→ Fpnd

defined by

TrF
pnd/F

pd
(u) = u + upd

+ up2d
+ · · ·+ up(n−1)d

= u + Fd(u) + F2d(u) + · · ·+ F(n−1)d(u).

Notice that

Fd(TrF
pnd/F

pd
(u)) = upd

+ up2d
+ up3d

+ · · ·+ upnd

= upd
+ up2d

+ up3d
+ · · ·+ up(n−1)d

+ u = TrF
pnd/F

pd
(u).

So by Proposition 5.24(i), TrF
pnd/F

pd
(u) ∈ Fpd . Therefore we can redefine this mapping to have

codomain Fpd , giving the relative trace TrF
pnd/F

pd
: Fpnd −→ Fpd .

Proposition 5.26. The relative trace TrF
pnd/F

pd
is a surjective Fpd-linear mapping and

whose kernel is an Fpd-vector subspace of dimension n− 1.

Proof. Clearly TrF
pnd/F

pd
is additive. For t ∈ Fpd we have tp

d
= t, so linearity follows from

the formula

tu + (tu)pd
+ (tu)p2d

+ · · ·+ (tu)p(n−1)d
= tu + tupd

+ tup2d
+ · · ·+ tup(n−1)d

.

To see that TrF
pnd/F

pd
is surjective, notice that TrF

pnd/F
pd

(u) = 0 if and only if u is a root of
the polynomial

X + Xpd
+ Xp2d

+ · · ·+ Xp(n−1)d ∈ Fpd [X]

which has degree p(n−1)d and so has at most p(n−1)d < pnd roots in Fpnd . This means that
kerTrF

pnd/F
pd

cannot be the whole of Fpnd . TrF
pnd/F

pd
is surjective since its codomain has

dimension 1. ¤
A multiplicative version of this construction can also be defined. Consider the function

NF
pnd/F

pd
: F×

pnd −→ F×
pd ; NF

pnd/F
pd

(u) = uupd
up2d · · ·up(n−1)d

= uFd(u) F2d(u) · · ·F(n−1)d(u).

Then we have

Fd(NF
pnd/F

pd
(u)) = upd

up2d
up3d · · ·upnd

= upd
up2d

up3d · · ·up(n−1)d
u

= uupd
up2d

up3d · · ·up(n−1)d
= NF

pnd/F
pd

(u).



65

So by Proposition 5.24(i), NF
pnd/F

pd
(u) ∈ Fpd . By redefining the codomain we obtain the relative

norm
NormF

pnd/F
pd

: F×
pnd −→ F×

pd ; NormF
pnd/F

pd
(u) = uupd

up2d · · ·up(n−1)d
.

Proposition 5.27. The relative norm NormF
pnd/F

pd
is a surjective group homomorphism.

Proof. Multiplicativity is obvious. The kernel of NormF
pnd/F

pd
consists of the roots in Fpnd

of the polynomial
X1+pd+···+p(n−1)d − 1 ∈ Fpd [X],

so

| kerNormF
pnd/F

pd
| 6 1 + pd + · · ·+ p(n−1)d =

pnd − 1
pd − 1

.

Hence

| imNormF
pnd/F

pd
| = pnd − 1

| kerNormF
pnd/F

pd
| > pd − 1.

Since imNormF
pnd/F

pd
6 F×

pd , we also have

| imNormF
pnd/F

pd
| 6 pd − 1,

therefore
im NormF

pnd/F
pd

= F×
pd . ¤

Exercises on Chapter 5

5.1. Show that Proposition 5.13 also applies to an integral domain in place of a field.

5.2. What happens to Theorem 5.20 if we try to take p = 2.

5.3. Let f(X) ∈ Fpd [X] be an irreducible polynomial with deg f(X) = n. Find the splitting field
of f(X). Deduce that for any other irreducible polynomial g(X) ∈ Fpd [X] with deg g(X) = n,
the splitting fields of f(X) and g(X) over Fpd agree.

5.4. Find the smallest Galois fields containing all the roots of the following polynomials:
(a) X8 − 1 ∈ F41[X]; (b) X8 − 1 ∈ F5[X]; (c) X8 − 1 ∈ F11[X]; (d) X8 − 1 ∈ F2[X].
In each case find a primitive root of this Galois field.

5.5. Let w ∈ F×
pd be a primitive root. If ` < d, show that w /∈ F×

p` . Deduce that degFp
w = d

and d | ϕ(pd − 1).

5.6. Let p > 0 be a prime. Suppose that d > 1, and K/Fpd is an extension. For a ∈ K, let
ga(X) = Xpd −X − a ∈ K[X].

(a) If the polynomial ga(X) is irreducible over K, show that the splitting field E of ga(X)
over K is separable and Gal(E/K) ∼= Fpd . [Hint: show that if u ∈ E is a root of ga(X)
in an extension E/K, then so is u + t for every t ∈ Fp.]

(b) If d = 1, show that ga(X) is irreducible over K if and only if it has no root in K.
(c) If K is a finite field and d > 1, explain why ga(X) can never be irreducible over K.





CHAPTER 6

A Galois Miscellany

In this chapter we will explore some miscellaneous topics in Galois Theory. Historically,
Galois Theory has always been an important tool in Number Theory and Algebra, stimulating
the development of subjects such as Group Theory, Ring Theory and such diverse areas as
Differential Equations, Complex Analysis and Algebraic Geometry. Many of the ideas we will
meet in this chapter are of great importance in these mathematical areas.

6.1. A proof of the Fundamental Theorem of Algebra

We will prove the Fundamental Theorem of Algebra for the complex numbers C. This proof
is essentially due to Gauss but he did not use the historically more recent Sylow theory. It is
interesting to compare the proof below with others which use the topology of the plane and circle
or Complex Analysis; our proof only uses the connectivity of the real line (via the Intermediate
Value Theorem) together with explicit calculations in C involving square roots.

Theorem 6.1 (The Fundamental Theorem of Algebra). The field of complex numbers C is
algebraically closed and R = C.

Proof. We know that [C : R] = 2, so C/R is algebraic. Let p(X) ∈ C[X] be irreducible.
Then any root u of p(X) in the algebraic closure C is algebraic over R, so in C[X] we have
p(X) | minpolyR,u(X). The splitting field of p(X) over C is contained in the splitting field E of
minpolyR,u(X)(X2 + 1) over R. Since C 6 E, we have 2 | [E : R] and so 2 | |Gal(E/R)|.

Now consider a 2-Sylow subgroup P 6 Gal(E/R) and recall that |Gal(E/R)|/|P | is odd.
For the fixed subfield of P , we have

[EP : R] =
|Gal(E/R)|

|P | ,

which shows that EP /R has odd degree. The Primitive Element Theorem 3.75 allows us to
write EP = R(v) for some v whose minimal polynomial over R must also have odd degree.
But by the Intermediate Value Theorem, every real polynomial of odd degree has a real root,
so irreducibility implies that v has degree 1 over R and therefore EP = R. This shows that
Gal(E/R) = P , hence Gal(E/R) is a 2-group.

As C/R is a Galois extension, we can consider the normal subgroup Gal(E/C)/Gal(E/R) for
which |Gal(E/R)| = 2 |Gal(E/C)|. We must show that |Gal(E/C)| = 1, so suppose not. From
the theory of 2-groups, there is a normal subgroup N /Gal(E/C) of index 2, so we can consider
the Galois extension EN/C of degree 2. But from known properties of C (see Proposition 3.29),
every quadratic aX2 + bX + c ∈ C[X] has complex roots (because we can find square roots
of every complex number). So we cannot have an irreducible quadratic polynomial in C[X].
Therefore |Gal(E/C)| = 1 and E = C. ¤

6.2. Cyclotomic extensions

We begin by discussing the situation for cyclotomic extensions over Q using material dis-
cussed in Section 1.3. Let ζn = e2πi/n, the standard primitive n-th root of 1 in C. In Theo-
rem 1.42, it was claimed that the irreducible polynomial over Q which has ζn as a root was the
n-th cyclotomic polynomial

Φn(X) =
∏

t=1,...,n−1
gcd(t,n)=1

(X − ζt
n).

67
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Theorem 6.2. Let n > 2. Then
• Q(ζn) = Q[X]/(Φn(X));
• [Q(ζn) : Q] = ϕ(n);
• Gal(Q(ζn)/Q) ∼= (Z/n)×, where the element tn ∈ (Z/n)× acts on Q(ζn) by tn · ζn = ζt

n.

♠
♥ ♦
♣

Proof. Since the complex roots of Φn(X) are the powers ζt
n with t = 1, . . . , n − 1

and gcd(t, n) = 1, Q(ζn) is the splitting field of Φn(X) over Q and indeed Q(ζn) = Q(ζt
n)

whenever t has the above properties and so ζt
n is a primitive n-th root of unity. The main step

in the proof is to show that Φn(X) ∈ Z[X] is irreducible. To do this we will show that every
power ζt

n as above is actually a Galois conjugate of ζn over Q, hence

Φn(X) = minpolyQ,ζn
(X) = minpolyQ,ζt

n
(X)

and so is irreducible.
Consider

Z(ζn) = {a0 + a1ζn + · · ·+ arζ
r
n : r > 0, aj ∈ Z} ⊆ Q(ζn).

Then Z(ζn) is a subring of Q(ζn) and so is an integral domain. Its group of units contains the
cyclic subgroup 〈ζn〉 of order n.

Let p > 0 be a prime which does not divide n. Let P / Z(ζn) be a maximal ideal which
contains p; then the quotient ring Z(ζn)/P is a field of characteristic p. In fact, it is a finite
field, say Fpd for some d. Let π : Z(ζn) −→ Fpd be the quotient homomorphism.

Inside the group of units of Z(ζn) is the subgroup of powers of ζn, 〈ζn〉 6 Z(ζn)×; this
is a cyclic subgroup of order n. We claim that when restricted to 〈ζn〉, π gives an injective
group homomorphism, π′ : 〈ζn〉 −→ F×

pd . To see this, suppose that π′(ζr
n) = 1 for some r =

1, 2, . . . , n− 1; then ζr
n − 1 ∈ P . By elementary Group Theory we can assume that r | n and so

p - r. Factoring, we have

(ζn − 1)(ζr−1
n + · · ·+ ζn + 1) ≡ (ζn − 1)r (mod P ),

so ζn − 1 ∈ P or r ∈ P since maximal ideals are prime. But Z ∩ P = (p) and so r /∈ P , hence
ζn − 1 ∈ P . Recalling that

ζn−1
n + · · ·+ ζn + 1 = 0,

we see that n ∈ P and hence p | n, thus contradicting our original assumption on n. So π′ is
injective.

Writing u = π′(u), we can consider the effect of the absolute Frobenius map F: Fpd −→ Fpd

on ζ
t
n = ζt

n,

F(ζt
n) = (ζt

n)p = ζtp
n .

This shows that in the Galois extension Fpd/Fp, ζ
t
n is conjugate to ζtp

n ; by iterating this we find

that ζ
t
n is conjugate to every power of the form ζtpk

n .
Now let t = 1, . . . , n− 1 and gcd(t, n) = 1. Suppose there is a factorization

Φn(X) = f(X)minpolyQ,ζn
(X)

for some monic polynomial f(X) ∈ Z[X] and f(ζt
n) = 0. Consider the prime power factorization

t = pr1
1 · · · prm

m , where the pj are primes with 2 6 p1 < · · · < pm and rj > 1 with. Notice that
pj - n since gcd(t, n) = 1.

Now consider a maximal ideal P1 / Z[ζn] containing p1. Reducing modulo P1 and working

in the resulting extension F
p

d1
1

/Fp1 , we find that ζn is conjugate to ζ
p

r1
1

n . By separability and

the fact that the reduction map π1 : Z[ζn] −→ F
p

d1
1

is injective on the powers of ζn, we find that

f(ζp
r1
1

n ) 6= 0 and so f(ζp
r1
1

n ) 6= 0 in Z[ζn]. This shows that minpolyQ,ζn
(ζp

r1
1

n ) = 0 and so ζ
p

r1
1

n is
conjugate to ζn.
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Repeating this argument starting with ζ
p

r1
1

n and using the prime p2 we find that

minpolyQ,ζn
(ζp

r1
1 p

r2
2

n ) = 0

and so ζ
p

r1
1 p

r2
2

n is conjugate to ζn. Continuing in this fashion, for each j = 1, . . . , m we have

minpolyQ,ζn
(ζ

p
r1
1 p

r2
2 ···prj

j
n ) = 0, and thus ζ

p
r1
1 ···prj

j
n is conjugate to ζn. When j = m, this shows

that minpolyQ,ζn
(ζt

n) = 0. Hence ζt
n is conjugate to ζn in the extension Q(ζn)/Q. ¤

Theorem 6.3. For n > 2, consider the cyclotomic extension Q(ζn)/Q where ζn = e2πi/n.
Then Q(ζn)R 6= Q(ζn). Furthermore,

Q(ζn)R = Q(ζn)〈( )〉 = Q(ζn + ζn) = Q(cos(2π/n)),

and

[Q(cos(2π/n)) : Q] =
ϕ(n)

2
.

Proof. Recall that
Gal(Q(ζn)/Q) ∼= Z/n×,

where the residue class of r acts by sending ζn to ζr
n. Complex conjugation corresponds to the

residue class of −1 ≡ n− 1 (mod n). Making use of the elementary identities

eθi = cos θ + sin θ i, cos θ =
1
2
(eθi + e−θi),

we obtain
cos(2π/n) =

1
2
(ζn + ζn) =

1
2
(ζn + ζ−1

n ).

Complex conjugation fixes each of the real numbers cos(2πk/n) for k = 1, 2, . . . , n − 1. The
residue class of r acts by sending cos(2π/n) to cos(2πr/n); it is elementary to show that
cos(2πr/n) 6= cos(2π/n) unless r ≡ 1 (mod n). Hence

〈
( )

〉
= {id, ( )} = Gal(Q(cos(2π/n))/Q).

Thus we have
Q(ζn)〈( )〉 = Q(cos(2π/n)),

and so [Q(cos(2π/n)) : Q] = ϕ(n)/2. Notice that ζn is a root of the polynomial

X2 − 2 cos(2π/n)X + 1 ∈ Q(cos(2π/n))[X],

so we also have

¤(6.1) minpolyQ(cos(2π/n)),ζn
(X) = X2 − 2 cos(2π/n)X + 1.

Example 6.4. We have
[Q(ζ24) : Q] = ϕ(24) = 8

and
Gal(Q(ζ24)/Q) ∼= Z/2× Z/2× Z/2.

Proof. By Theorem 1.42 we have [Q(ζ24) : Q] = 8. Also,

ζ6
24 = i, ζ3

24 =
1
2

+
√

3
2

i, ζ8
24 = −1

2
+
√

3
2

i,

and all of these numbers are in Q(ζ24), hence Q(
√

2,
√

3, i) 6 Q(ζ24). It is easy to check that

[Q(
√

2,
√

3, i) : Q] = 8,

which implies that
Q(ζ24) = Q(

√
2,
√

3, i).
Using this we find that

Gal(Q(ζ24)/Q) ∼= Z/2× Z/2× Z/2.
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We also have cos(2π/24) = cos(π/12) ∈ Q(ζ24). Since

cos(2π/12) = cos(π/6) =
√

3
2

,

we have

2 cos2(π/12)− 1 =
√

3
2

and so
4 cos4(π/12)− 4 cos2(π/12) + 1 =

3
4
,

giving
16 cos4(π/12)− 16 cos2(π/12) + 1 = 0.

Then
16X4 − 16X2 + 1 = 16minpolyQ,cos(π/12)(X).

Note that case (i) of Kaplansky’s Theorem 4.22 applies to the polynomial minpolyQ,cos(π/12)(X).
For this example, Gal(Q(ζ24)/Q) has 23 − 1 = 7 subgroups of each of the orders 2 and 4; it

is an interesting exercise to find them together with their fixed subfields. ¤
Remark 6.5. The minimal polynomial for cos(π/12) can also be found as follows. We have

Φ24(ζ24) = 0, hence since
Φ24(X) = X8 −X4 + 1,

we obtain
ζ8
24 − ζ4

24 + 1 = 0.
Then after multiplying by ζ−4

24 we have

ζ4
24 − 1 + ζ−4

24 = 0,

giving
(ζ4

24 + ζ−4
24 )− 1 = 0.

Now
(ζ24 + ζ−1

24 )4 = (ζ4
24 + ζ−4

24 ) + 4(ζ2
24 + ζ−2

24 ) + 6,

hence
ζ4
24 + ζ−4

24 = (ζ24 + ζ−1
24 )4 − 4(ζ2

24 + ζ−2
24 )− 6.

Similarly,
(ζ24 + ζ−1

24 )2 = ζ2
24 + ζ−2

24 + 2,

so
ζ2
24 + ζ−2

24 = (ζ24 + ζ−1
24 )2 − 2.

Combining these we have

(ζ24 + ζ−1
24 )4 − 4(ζ24 + ζ−1

24 )2 + 1 = 0,

and so
16 cos4(π/12)− 16 cos2(π/12) + 1 = 0.

This method will work for any n where ϕ(n) is even, i.e., when n > 2.

Remark 6.6. The polynomial that expresses cosnθ as a polynomial in cos θ is the n-th
Chebsyhev polynomial of the first kind Tn(X) ∈ Z[X]. Here are the first few of these polynomi-
als:

T2(X) = 2X2 − 1, T3(X) = 4X3 − 3X,

T4(X) = 8X4 − 8X2 + 1, T5(X) = 16X5 − 20X3 + 5X,

T6(X) = 32X6 − 48X4 + 18X2 − 1, T7(X) = 64X7 − 112X5 + 56X3 − 7X.

These form a system of orthogonal polynomials which can be computed in Maple using the
command orthopoly[T](n,X).
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Now let K be a field with characteristic charK - n. The polynomial Φn(X) has integer
coefficients, so we can view it as an element of K[X] since either Q 6 K or Fp 6 K and we
can reduce the coefficients modulo p. In either case it can happen that Φn(X) factors in K[X].
However, we can still describe the splitting field of Xn − 1 over K and its Galois group.

Theorem 6.7. If charK - n, then the splitting field of Xn−1 over K is K(ζ), where ζ ∈ K
is a primitive n-th root of unity and Gal(K(ζ)/K) is abelian with order dividing ϕ(n).

Proof. Working in K, we know that Φn(ζ) = 0, hence the roots of minpolyK,ζ(X) ∈ K[X]
are primitive roots of 1. So Xn − 1 splits over K(ζ) and each element α ∈ Gal(K(ζ)/K) has
the action α(ζ) = ζrα , where gcd(rα, n) = 1. Hence Gal(K(ζ)/K) is isomorphic to a subgroup
of Gal(Q(ζn)/Q) ∼= (Z/n)×, in particular it is abelian. ¤

Remark 6.8. When p = charK > 0, this Galois group only depends on the largest subfield
of K which is algebraic over Fp. For example, if K = Fpd(T ) then the value of d is the crucial
factor. The precise outcome can be determined with the aid of Proposition 5.21.

Example 6.9. We have the following splitting fields and Galois groups.
(i) The splitting field of X4 − 1 over F3(T ) is F9(T ) and

Gal(F9(T )/F3(T )) ∼= (Z/4)× ∼= Z/2.

(ii) By Proposition 5.20, X4− 1 splits over F5(T ) and the Galois group Gal(F5(T )/F5(T ))
is trivial.

Proof. (i) By Proposition 5.20, X4− 1 is separable over F3(T ) and has irreducible factors
(X − 1), (X + 1) and (X2 + 1). The splitting field of (X2 + 1) over F3 is F9 = F3(ζ), where
ζ2 + 1 = 0, so (X2 + 1) splits over F9(T ). Also,

Gal(F9/F3) ∼= (Z/4)× ∼= Z/2,

with generator σ satisfying σ(ζ) = ζ−1 = −ζ. This generator clearly extends to an automor-
phism of F9(T ) which fixes T .

(ii) By Proposition 5.20, X4 − 1 splits over F5. ¤

6.3. Artin’s Theorem on linear independence of characters

Let G be a group and K a field.

Definition 6.10. A group homomorphism χ : G −→ K× is called a character of G with
values in K.

Example 6.11. Given any ring homomorphism ϕ : R −→ K we obtain a character of R×
in K by restricting ϕ to a map χϕ : R× −→ K×.

Example 6.12. Given an automorphism α : K −→ K, χα : K× −→ K× is a character of
K× in K.

Example 6.13. Let E/K be a Galois extension and σ ∈ Gal(E/K). Then χσ : E× −→ E×
is a character.

Definition 6.14. Let χ1, . . . , χn be characters of a group G in a field K. Then χ1, . . . , χn

are linearly independent if for t1, . . . , tn ∈ K,

t1χ1 + · · ·+ tnχn = 0 =⇒ t1 = · · · = tn = 0.

If χ1, . . . , χn are not linearly independent they are linearly dependent.

In this definition, the functional equation means that for all g ∈ G,

t1χ1(g) + · · ·+ tnχn(g) = 0.

Theorem 6.15 (Artin’s Theorem). Let χ1, . . . , χn be distinct characters of a group G in a
field K. Then χ1, . . . , χn are linearly independent.
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Proof. We proceed by induction on n. For n = 1 the result is easily verified. For the
inductive assumption, suppose that it holds for any n 6 k.

Let χ1, . . . , χk+1 be a set of k + 1 distinct characters for which there are t1, . . . , tk+1 ∈ K
not all zero and such that

(6.2) t1χ1 + · · ·+ tk+1χk+1 = 0.

If one of the ti is zero, say tr = 0, then χ1, . . . , χr−1, χr+1, . . . , χk+1 is linearly dependent,
contradicting the inductive assumption. Hence all of the ti must be non-zero. As χ1 6= χ2, there
must be an element g0 ∈ G for which χ1(g0) 6= χ2(g0). So for all g ∈ G, Equation (6.2) applied
to g0g yields

t1χ1(g0g) + · · ·+ tk+1χk+1(g0g) = 0,

and therefore since χj(g0g) = χj(g0)χj(g), we see that

t1χ1(g0)χ1 + · · ·+ tk+1χk+1(g0)χk+1 = 0.

Multiplying Equation (6.2) by χ1(g0) and subtracting gives

t2(χ2(g0)− χ1(g0))χ2 + t3(χ3(g0)− χ1(g0))χ3 + · · ·+ tk+1χk+1 = 0,

in which the coefficient t2(χ2(g0)−χ1(g0)) is not zero. Hence χ2, . . . , χk+1 is linearly dependent,
again contradicting the inductive assumption. So χ1, . . . , χk+1 is linearly independent, which
demonstrates the inductive step. ¤

Suppose that E/K is a finite Galois extension with cyclic Galois group Gal(E/K) = 〈σ〉 of
order n. For each u ∈ E×, the element uσ(u) · · ·σn−1(u) ∈ E satisfies

σ(uσ(u) · · ·σn−1(u)) = σ(u) · · ·σn−1(u)σn(u) = σ(u) · · ·σn−1(u)u,

hence in uσ(u) · · ·σn−1(u) ∈ E〈σ〉 = K. Using this we can define a group homomorphism

NE/K : E× −→ K×; NE/K(u) = uσ(u) · · ·σn−1(u).

NE/K is called the norm mapping for E/K and generalizes the norm mapping for finite fields
of Section 5.3.

There is another homomorphism

δE/K : E× −→ E×; δE/K(u) = uσ(u)−1.

Notice that for u ∈ E×,

NE/K(δE/K(u)) = (uσ(u)−1)(σ(u)σ2(u)−1 · · ·σn−1(u)σn(u)−1) = 1,

since σn(u) = u. So im δE/K 6 kerNE/K . Our next result is an important generalization of
Proposition 5.27.

Theorem 6.16 (Hilbert’s Theorem 90). Let E/K be a finite Galois extension with cyclic
Galois group Gal(E/K) = 〈σ〉 of order n. Then im δE/K = kerNE/K . Explicitly, if u ∈ E× and
uσ(u) · · ·σn−1(u) = 1, then there is a v ∈ E× such that u = vσ(v)−1.

Proof. Let u ∈ kerNE/K .
The characters σk : E× −→ E× with k = 0, 1, . . . , n−1 are distinct and linearly independent

by Artin’s Theorem 6.15. Consider the function

id +uσ + uσ(u)σ2 + · · ·+ uσ(u) · · ·σn−2(u)σn−1 : E× −→ E.

This cannot be identically zero, so for some w ∈ E, the element

v = w + uσ(w) + uσ(u)σ2(w) + · · ·+ uσ(u) · · ·σn−2(u)σn−1(w)

is non-zero. Notice that

uσ(v) = uσ(w) + uσ(u)σ2(w) + uσ(u)σ2(u)σ3(w) + · · ·+ uσ(u)σ2(u) · · ·σn−1(u)σn(w) = v,

since
uσ(u)σ2(u) · · ·σn−1(u)σn(w) = w.

Thus we have u = vσ(v)−1 as required. ¤
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6.4. Simple radical extensions

In this section we will investigate splitting fields of polynomials of the form Xn − a, where
charK - n. We call these simple radical extensions and later in Definition 6.31 we introduce a
more general notion of radical extension.

Proposition 6.17. Let f(X) = Xn − a ∈ K[X] be irreducible and separable over K. Then
the splitting field of f(X) over K has the form E = K(u, ζ), where u is a root of f(X) and ζ
is a primitive n-th root of 1.

Corollary 6.18. If K contains a primitive n-th root of unity ζ then the splitting field of
f(X) = Xn − a over K has the form E = K(u), where u is a root of f(X). The Galois group
Gal(K(f(X))/K) is cyclic of order n with a generator σ for which σ(u) = ζu.

In the more general situation of Proposition 6.17,

{id} / Gal(K(ζ)/K) / Gal(K(f(X))/K(ζ)),

where Gal(K(ζ)/K) and Gal(K(ζ)/K))/ Gal(K(ζ, u)/K(ζ) are abelian and in fact cyclic. The
Galois Correspondence identifies the following towers of subfields and subgroups.

K(ζ, u)
``

''

Gal(K(ζ, u)/K)

/

88

~~

K(ζ)
ee 99

Gal(K(ζ)/K)

K {id}
Definition 6.19. Let K be a field of characteristic not dividing n and which contains a

primitive n-th root of 1, ζ say. Then L/K is a simple n-Kummer extension if L = K(u) where
un = a for some a ∈ K. L/K is an (iterated) n-Kummer extension if L = K(u1, . . . , uk) where
un

1 = a1, ..., un
k = ak for some elements a1, . . . , ak ∈ K.

Note that we do not require the polynomials Xn − aj ∈ K[X] to be irreducible in this
definition.

Proposition 6.20. Let K(u)/K be a simple n-Kummer extension. Then K(u)/K is a
Galois extension and Gal(K(u)/K) is cyclic with order dividing n.

Proof. Suppose that un = a ∈ K. Then in K[X] we have

Xn − a = (X − u)(X − ζu) · · · (X − ζn−1u).

Clearly the roots of Xn − a are distinct and so K(u)/K is separable over K; in fact, K(u) is a
splitting field of Xn − a over K. This means that K(u)/K is Galois.

For each α ∈ Gal(K(u)/K) we have α(u) = ζrαu for some rα = 0, 1 . . . , n− 1. Notice that
for β ∈ Gal(K(u)/K),

βα(u) = β(ζrαu) = ζrαβ(u) = ζrαζrβu = ζrα+rβu,

and so rβα = rα + rβ. Hence the function

ρ : Gal(K(u)/K) −→ 〈ζ〉 ; ρ(α) = ζrα ,

is a group homomorphism. As 〈ζ〉 is cyclic of order n, Lagrange’s Theorem implies that the
image of ρ has order dividing n. Since every element of Gal(K(u)/K) is determined by its effect
on u, ρ is injective, hence |Gal(K(u)/K)| divides n. In fact, Gal(K(u)/K) is cyclic since every
subgroup of a cyclic group is cyclic. ¤

Example 6.21. Let n > 1 and q ∈ Q. Then Q(ζn, n
√

q)/Q(ζn) is a simple n-Kummer
extension.

Example 6.22. Q(i,
√

2)/Q(i) is a simple 4-Kummer extension for which Gal(Q(i,
√

2)/Q(i))
is cyclic of order 2.
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Proof. We have (
√

2)4 − 4 = 0, but

X4 − 4 = (X2 − 2)(X2 + 2),

and

X2 − 2 = minpolyQ(i),
√

2(X).

The corresponding group homomorphism ρ : Gal(Q(i)(
√

2)/Q(i)) −→ 〈i〉 has image

im ρ = {1,−1} 6 〈i〉 . ¤
Here is a converse to Proposition 6.20.

Proposition 6.23. Suppose that charK - n and there is an element ζ ∈ K which is a
primitive n-th root of unity. If E/K is a finite Galois extensions with cyclic Galois group of
order n, then there is an element a ∈ E such that E = K(a) and a is a root of a polynomial of
the form Xn − b with b ∈ K. Hence E/K is a simple n-Kummer extension.

Proof. We have
NE/K(ζ) = ζn = 1,

so by Hilbert’s Theorem 6.16, there is an element a ∈ E for which ζ = aσ(a)−1. Then σ(a) =
ζ−1a and the elements σk(a) = ζ−ka for k = 0, 1, . . . , n− 1 are distinct, so they must be the n
conjugates of a. Also note that

Xn − an = (X − a)(X − ζa) · · · (X − ζn−1a) = (X − a)(X − σ(a)) · · · (X − σn−1(a)),

so an ∈ K since it is fixed by σ. This shows that K(a) 6 E and

n = [K(a) : K] 6 [E : K] = n,

therefore [K(a) : K] 6 [E : K] = n and K(a) = E. ¤

6.5. Solvability and radical extensions

We begin by recalling some ideas about groups, see [3, 4] for further details.

Definition 6.24. A group G is solvable, soluble or soluable if there is a chain of subgroups
(called a subnormal series)

{1} = G` 6 G`−1 6 · · · 6 G1 6 G0 = G

in which Gk+1 / Gk and each composition factor Gk/Gk+1 is abelian; we usually write

{1} = G` / G`−1 / · · · / G1 / G0 = G.

If each composition factor is a cyclic group of prime order the subnormal series is called a
composition series. A group which is not solvable is called insolvable.

Remark 6.25. For a solvable group, it is a standard result that we can always refine a
subnormal series (i.e., add extra terms) to obtain a composition series. The primes as well as
the number of times each occurs are all determined by |G|, only the order of these varying for
different composition series.

Example 6.26. Let G be a finite abelian group. Then G is solvable.

Example 6.27. Let G be a finite p-group, where p is a prime. Then G is solvable.

In fact, for a finite p-group G, there is always a normal subgroup of a p-group with index p,
so in this case we can assume each quotient Gk/Gk+1 is cyclic of order p.

Proposition 6.28. Let G be a group.
(i) If G is solvable then every subgroup H 6 G and every quotient group G/N is solvable.
(ii) If N / G and G/N are solvable then so is G.

In the opposite direction we can sometimes see that a group is insolvable. Recall that a
group is simple if it has no non-trivial proper normal subgroups.
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Proposition 6.29. Let G be a finite group. Then G is insolvable if any of the following
conditions holds:

(i) G contains a subgroup which is a non-abelian simple group (or has a quotient group
which is a non-abelian simple group).

(ii) G has a quotient group which is a non-abelian simple group.
(iii) G has a composition series in which one of the terms is a non-abelian simple group.

Example 6.30. For n > 5, the alternating and symmetric groups An and Sn are insolvable.

Proof. This follows from the fact that if n > 5, An is a simple group and An / Sn with
quotient group Sn/An

∼= Z/2. ¤

Now we explain how this relates to fields and their extensions. Let K be a field and L/K a
finite extension. For simplicity, we assume also that charK = 0.

Definition 6.31. L/K is a radical extension of K if it has the form L = K(a1, a2, . . . , an)
with

adk
k ∈ K(a1, a2, . . . , ak−1)

for some dk > 1. Thus every element of L is expressible in terms of iterated roots of elements
of K.

Definition 6.32. If L is the splitting field of a polynomial f(X) ∈ K[X], then f(X) is
solvable by radicals over K if L is contained in a radical extension of K.

Definition 6.33. L/K is solvable if L 6 L′ where L′/K is a finite radical Galois extension
of K.

Theorem 6.34. Let E/K be a finite Galois extension. Then E/K is solvable if and only if
the group Gal(E/K) is solvable.

♠
♥ ♦
♣

Proof. Suppose that E 6 E′ where E′/K is a radical Galois extension. Then

Gal(E/K) is a quotient group of Gal(E′/K), so it is solvable by Proposition 6.28.
Now suppose that Gal(E/K) is solvable and let n = |Gal(E/K)|. Let E′ be the splitting

field of Xn − 1 over E, so E′ contains a primitive n-th root of unity ζ and therefore it contains
a primitive d-th root of unity for every divisor d of n. Now Gal(E′/E) / Gal(E′/K) and
by Theorem 6.7, Gal(E′/E) is abelian. Also, Gal(E′/K)/Gal(E′/E) ∼= Gal(E/K) which is
solvable, so Gal(E′/K) is solvable by Proposition 6.28. We will now show that E′/K is a
radical extension.

Clearly K(ζ)/K is radical. Then Gal(E′/K(ζ)) / Gal(E′/K) is solvable. Let

{1} = G` / G`−1 / · · · / G1 / G0 = Gal(E′/K(ζ))

be a composition series. The extension (E′)G1/K(ζ) is radical by Proposition 6.23. Similarly,
each extension (E′)Gk+1/(E′)Gk is radical. Hence E′/K(ζ) is radical, as is E′/K. ¤

Example 6.35. The Galois group of the extension Q(ζ3,
3
√

2)/Q is solvable.

Proof. We have already studied this extension in Example 3.30 and 4.19. ClearlyQ(ζ3,
3
√

2)
is a radical extension of Q and

Q(ζ3,
3
√

2) = Q(ζ3)(
3
√

2).

We know that Gal(Q(ζ3,
3
√

2)/Q) ∼= S3, where we identify each element of the Galois group with
a permutation of the three roots of X3 − 2 in Q(ζ3,

3
√

2) which we list in the order

3
√

2,
3
√

2 ζ3,
3
√

2 ζ2
3 .
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We have the following towers of subfields and subgroups related under the Galois Correspon-
dence.

Q(ζ3,
3
√

2)
ee

))

S355

yy

Q(ζ3) = Q(ζ3,
3
√

2)A3

3

ii 55
A3 = Gal(Q(ζ3,

3
√

2)/Q(ζ3))

2

Q

2

{id}
3

Here Q(ζ3)/Q is itself a Galois extension and A3 / S3. Notice that A3
∼= Z/3 and S3/A3

∼= Z/2,
so we have the following composition series for S3:

{id} / A3 / S3. ¤

It is also interesting to reverse the question and ask whether there are extensions which are
not solvable. This was a famous problem pursued for several hundred years. To find examples,
we first recall that the smallest non-abelian simple group is A5 which has order 60. We should
therefore expect to look for a polynomial of degree at least 5 to find a Galois group for a splitting
field to be simple or occur as a composition factor of such a Galois group. Here is an explicit
example over Q.

Example 6.36. The splitting field of the polynomial f(X) = X5 − 35X4 + 7 ∈ Q[X] is not
solvable by radicals.

Proof. Let E = Q(f(X)) be the splitting field of f(X) over Q. Using the Eisenstein
Criterion 1.37 with p = 7, we find that f(X) is irreducible over Q. By Theorem 4.7(iii),
5 divides the order of Gal(E/Q), so this group contains an element of order 5 by Cauchy’s
Lemma.

Now observe that

f ′(X) = 5X4 − 140X3 = 5X3(X − 28), f ′′(X) = 20X4 − 420X2 = 20X2(X − 21).

There are two turning points, namely a maximum at x = 0 and a minimum at x = 28. Then

f(0) = 7 > 0 > f(28) = −4302585,

hence there are three real roots of f(X) and two non-real complex ones. Then complex conju-
gation restricts to an element of order 2 in Gal(E/Q) which interchanges the non-real roots and
fixes the others. If we list the roots of f(X) as u1, u2, u3, u4, u5 with u1, u2 being the non-real
roots, then the transposition (1 2) ∈ S5 corresponds to this element. Furthermore, the only
elements of S5 of order 5 are 5-cycles; by taking an appropriate power we can assume that there
is a 5-cycle of the form (1 2 3 4 5) corresponding to an element of Gal(E/Q) which we can view
as a subgroup of S5. The next lemma shows that Gal(E/Q) ∼= S5.

Lemma 6.37. Let n > 1. Suppose that H 6 Sn and H contains the elements (1 2) and
(1 2 · · · n). Then H = Sn.

The proof is left as an exercise. This completes the verification of the Example. ¤

It is worth remarking that the most extreme version of this occurs when we ask for a Galois
group which is simple. There has been a great deal of research activity on this question in the
past few decades, but apparently not all simple groups are known to occur as Galois groups of
extensions of Q or other finite subextensions of C/Q. Here is an example whose Galois group
is A5; this is verified using Proposition 6.42.

Example 6.38. The Galois group of f(X) = X5+20X+16 over Q is Gal(Q(f(X))/Q) ∼= A5.
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6.6. Galois groups of even and odd permutations

We have seen that for a monic separable polynomial f(X) ∈ K[X] of degree n, the Galois
group of its splitting field Ef = K(f(X)) can naturally be thought of as a subgroup of the
symmetric group Sn, where we view the latter as permuting the roots of f(X). It is reasonable
to ask when Gal(Ef/K) 6 An rather than just Gal(Ef/K) 6 Sn.

We first recall an interpretation of the sign of a permutation σ ∈ Sn, sgnσ = ±1. For each
pair i, j with 1 6 i < j 6 n, exactly one of the inequalities σ(i) < σ(j) or σ(j) < σ(i) must
hold and the ratio (σ(j) − σ(i))/(j − i) is either positive or negative. It is easily verified that
the right-hand side of the following equation must have value ±1 and we have

(6.3) sgnσ =
∏

16i<j6n

σ(j)− σ(i)
j − i

.

Note that this is sometimes used as the definition of sgnσ.
Suppose that f(X) factorizes over Ef as

f(X) = (X − u1) · · · (X − un) =
n∏

i=1

(X − ui).

Here u1, . . . , un ∈ Ef are the roots of f(X); as we have assumed that f(X) is separable, the ui

are distinct.

Definition 6.39. The discriminant of f(X) is

Discr(f(X)) =
∏

16i<j6n

(uj − ui)2 ∈ Ef .

Notice that Discr(f(X)) 6= 0 since ui 6= uj if i 6= j.

Remark 6.40. There is an explicit formula for computing Discr(f(X)) is terms of its coef-
ficients. For polynomials

p(X) = a0 + a1X + · · ·+ amXm, q(X) = a0 + a1X + · · ·+ amXm,

their resultant is the (m + n)× (m + n) determinant (with n rows of ai’s and m rows of bi’s)

(6.4) Res(p(X), q(X)) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 . . . . . . . am 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
0 a0 a1 . . . . . . . am 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 a0 a1 . . . . . . . am

b0 b1 . . . . . . . bn 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
0 b0 b1 . . . . . . . bn 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . . . . . . . . . . . . . . . . . . . . . . . . 0 b0 b1 . . . . . . . . . . . . bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Then if f(X) is monic with d = deg f(X),

(6.5) Discr(f(X)) = (−1)d(d−1)/2 Res(f(X), f ′(X)).

So for example,

Discr(X3 + pX + q) = (−1)3 Res(X3 + pX + q, 3X2 + p)

= (−1)

∣∣∣∣∣∣∣∣∣∣

q p 0 1 0
0 q p 0 1
p 0 3 0 0
0 p 0 3 0
0 0 p 0 3

∣∣∣∣∣∣∣∣∣∣
= −4p3 − 27q2.
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Here are some low degree examples of discriminants obtained using Maple.

Discr(a0 + a1X + X2) = −4a0 + a2
1.n = 2:

Discr(a0 + a1X + a2X
2 + X3) = −27a2

0 + 18a0a1a2 + a2
1a

2
2 − 4a3

2a0 − 4a3
1.n = 3:

n = 4: Discr(a0 + a1X + a2X
2 + a3X

3 + X4) = 18a3a
3
1a2 − 6a2

3a
2
1a0 − 192a3a1a

2
0 − 27a4

1

+ 144a2a
2
3a

2
0 + 144a0a

2
1a2 + 256a3

0 − 4a3
3a

3
1 − 128a2

2a
2
0 + 16a4

2a0 − 4a3
2a

2
1

+ 18a3
3a1a2a0 − 80a3a1a

2
2a0 − 27a4

3a
2
0 + a2

2a
2
3a

2
1 − 4a3

2a
2
3a0.

n = 5: Discr(a0 + a1X + a2X
2 + a3X

3 + a4X
4 + X5) = 2250a4a

2
3a

3
0 − 36a0a

3
4a

3
1 − 128a2

3a
4
1

+ 2000a2
0a3a

2
1 − 900a1a

3
3a

2
0 − 2500a3

0a4a1 − 50a2
0a

2
4a

2
1 − 900a4a

3
2a

2
0 − 27a4

4a
4
1 − 3750a3a2a

3
0

+ 356a3
2a2

2a4a1a0 + 560a3a
2
2a

2
4a

2
0 − 2050a3a2a

2
0a4a1 − 80a2

3a2a4a1
3 − 630a3

3a2a4a0
2

+ 825a2
3a

2
2a

2
0 + 16a3

3a
3
2a0 + 2000a2a

2
4a

3
0 − 6a2

2a
2
4a

3
1 − 128a2

2a
4
4a

2
0 + 16a4

2a
3
4a0 − 4a3

2a
3
4a

2
1

+ 108a5
3a

2
0 + 108a5

2a0 − 746a3a2a0a4
2a1

2 − 27a4
2a

2
1 + 256a5

4a
3
0 − 4a3

3a
2
2a

2
1 + 144a3a

2
2a

3
1

+ 144a2
4a

4
1a3 + 3125a4

0 + 256a5
1 − 72a4

3a2a1a0 + 18a3a2a
3
4a

3
1 + 560a2

3a2a0a
2
1 + 16a4

3a
3
1

+ 18a3a2
3a4a1

2 − 72a3a2
4a4a0 + 144a3

2a2a4
3a0

2 − 192a4
4a1a3a0

2 − 630a3a2
3a1a0

+ 24a2
3a4

2a1a0 + a3
2a2

2a4
2a1

2 − 6a4
3a1

2a3
2a0 − 80a3a2

2a4
3a1a0 − 4a3

2a2
3a4

2a0

+ 2250a1a
2
2a

2
0 − 1600a3a

3
4a

3
0 − 192a4a

4
1a2 − 1600a0a

3
1a2 − 4a3

3a
3
1a

2
4 − 27a4

3a
2
4a

2
0

+ 1020a4
2a3

2a0
2a1 + 18a3

3a2a4
2a0a1 + 160a2a4

3a0
2a1 + 144a2a4

4a0a1
2

+ 24a4a1
2a3

3a0 + 1020a0a4a2
2a1

2 + 160a0a4a1
3a3.

So for example,

Discr(X5 + a4X
4 + a0) = a3

0(3125a0 + 256a5
4), Discr(X5 + a1X + a0) = 256a5

1 + 3125a4
0.

Proposition 6.41. For every σ ∈ Gal(Ef/K), σ(Discr(f(X))) = Discr(f(X)). Hence
Discr(f(X)) ∈ K.

Proof. For σ ∈ Gal(Ef/K) 6 Sn, we have

σ(Discr(f(X))) =
∏

16i<j6n

(uσ(j) − uσ(i))
2 =


 ∏

16i<j6n

(uσ(j) − uσ(i))




2

.

Now for each pair i, j with i < j,

σ(uj − ui) = uσ(j) − uσ(i),

and by Equation (6.3)

(6.6)
∏

16i<j6n

(uσ(j) − uσ(i)) = sgnσ
∏

16i<j6n

(uj − ui) = (±1)
∏

16i<j6n

(uj − ui).

Hence σ(Discr(f(X))) = Discr(f(X)). Since E
Gal(Ef /K)
f = K, we have Discr(f(X)) ∈ K. ¤

Now let
δ(f(X)) =

∏

16i<j6n

(uj − ui) ∈ Ef .

Then δ(f(X))2 = Discr(f), so the square roots of Discr(f(X)) are ±δ(f(X)). Now consider the
effect of σ ∈ Gal(Ef/K) on δ(f(X)) ∈ Ef . By Equation (6.6),

σ(δ(f)) = sgnσ δ(f) = ±δ(f).

If δ(f(X)) ∈ K, this means that sgnσ = 1. On the other hand, if δ(f) /∈ K then

K(δ(f(X))) = E
Gal(Ef /K)∩An

f .
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Of course |Gal(Ef/K)/Gal(Ef/K) ∩An| = 2.

Proposition 6.42. The Galois group Gal(Ef/K) 6 Sn is contained in An if and only if
Discr(f(X)) is a square in K.

Example 6.43. For the polynomials of Examples 6.36 and 6.38 we obtain

Discr(X5 − 35X4 + 7) = −4611833296875 = −33 · 56 · 74 · 29 · 157,

δ(X5 − 35X4 + 7) = ±53 · 3 · 72 ·
√

3 · 29 · 157 i = ±18375
√

13659 i /∈ Q;

Discr(X5 + 20X + 16) = 1024000000 = 216 · 56,

δ(X5 + 20X + 16) = ±2853 ∈ Q.

6.7. Symmetric functions

Let k be a field. Consider the polynomial ring on n indeterminates k[X1, . . . , Xn] and its
field of fractions K = k(X1, . . . , Xn). Each permutation σ ∈ Sn acts on k[X1, . . . , Xn] by

σ · f(X1, . . . , Xn) = fσ(X1, . . . , Xn) = f(Xσ(1), . . . , Xσ(n)).

Viewed as a function σ· : k[X1, . . . , Xn] −→ k[X1, . . . , Xn] is a ring isomorphism; this extends to
a ring isomorphism σ· : k(X1, . . . , Xn) −→ k(X1, . . . , Xn). Varying σ we obtain actions of the
group Sn on k[X1, . . . , Xn] and k(X1, . . . , Xn) by ring isomorphisms fixing k and in the latter
case it is by field automorphisms fixing k.

Definition 6.44. The field of symmetric functions on n indeterminates is

Symn(k) = k(X1, . . . , Xn)Sn 6 k(X1, . . . , Xn).

So if f(X1, . . . , Xn) ∈ k(X1, . . . , Xn), then

f(X1, . . . , Xn) ∈ Symn(k) ⇐⇒ ∀σ ∈ Sn f(X1, . . . , Xn) = f(Xσ(1), . . . , Xσ(n)).

Theorem 6.45. The extension k(X1, . . . , Xn)/Symn(k) is a finite Galois extension for
which Gal(k(X1, . . . , Xn)/Symn(k)) ∼= Sn.

Proof. There are elements of k[X1, . . . , Xn] ⊆ k(X1, . . . , Xn) called elementary symmetric
functions,

ek =
∑

i1<i2<···<ik

Xi1Xi2 · · ·Xik ,

where 1 6 k 6 n. It is easy to see that for every σ ∈ Sn, eσ
k = ek, so ek ∈ Symn(k). Working in

the ring k(X1, . . . , Xn)[Y ] we have

fn(Y ) = Y n − e1Y
n−1 + · · ·+ (−1)n−1en−1Y + (−1)nen = 0,

hence the roots of this polynomial are the Xi. So k(X1, . . . , Xn) is the splitting field of fn(Y )
over Symn(k). Now Sn 6 Gal(k(X1, . . . , Xn)/Symn(k)), hence

[k(X1, . . . , Xn) : Symn(k)] = |Gal(k(X1, . . . , Xn)/ Symn(k))| > |Sn| = n!.

But as every element of Gal(k(X1, . . . , Xn)/Symn(k)) permutes the roots of fn(Y ) and is de-
termined by this permutation, we also have

n! > |Gal(k(X1, . . . , Xn)/Symn(k))|.
Combining these inequalities we obtain |Gal(k(X1, . . . , Xn)/Symn(k))| = n! and therefore
Gal(k(X1, . . . , Xn)/Symn(k)) = Sn. ¤

Remark 6.46. In fact, this proof shows that the extension k(X1, . . . , Xn)/k(e1, . . . , en) is
Galois of degree n!. Since k(e1, . . . , en) 6 Symn(k) we can also deduce that k(e1, . . . , en) =
Symn(k). Hence every element of Symn(k) is a rational function in the ei. Analogous results
are true for polynomials, i.e.,

k[X1, . . . , Xn]Sn = k[e1, . . . , en].

Corollary 6.47. If n > 5, the extension k(X1, . . . , Xn)/Symn(k) is not solvable.
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Exercises on Chapter 6

6.1. Let p > 0 be a prime and G a group of order |G| = pn for some n > 1. Show by induction
on n that there is a normal subgroup N / G with |N | = pn−1. [Hint: what do you know about
the centre of G? Use this information to produce a quotient group of smaller order than G.]

6.2. Let K be a field for which charK 6= 2 and n > 1 be odd. If K contains a primitive n-th
root of unity, show that then K contains a primitive 2n-th root of unity.

6.3. Find all values of n > 1 for which ϕ(n) | 4. Using this, determine which roots of unity lie
in the following fields:

Q(i), Q(
√

2 i), Q(
√

3 i), Q(
√

5 i).

6.4. (a) Describe the elements of (Z/24)× explicitly and verify that this group is isomorphic
to Z/2×Z/2×Z/2. Describe the effect of each element on Q(ζ24) and Q(cos(π/12)) under the
action described in Theorem 6.2.
(b) Determine the group (Z/20)× and describe the effect of each of its elements on Q(ζ20) and
Q(cos(π/10)) under the action described in Theorem 6.2.

6.5. Let n > 1.

(a) What can you say about sin(2π/n) and Gal(Q(sin(2π/n))/Q))?
(b) Determine sin(π/12) and Gal(Q(sin(π/12))/Q)).

6.6. In this question, work in the cyclotomic field Q(ζ5) where ζ5 = e2πi/5.

(a) Describe the Galois group Gal(Q(ζ5)/Q) and its action on Q(ζ5).
(b) Determine the minimal polynomial of cos(2π/5) over Q. Hence show that

cos(2π/5) =
−1 +

√
5

4
.

For which other angles θ is cos θ a root of this minimal polynomial? What is the value
of sin(2π/5) ?

(c) Find the tower of subfields of Q(ζ5) and express them as fixed fields of subgroups of
Gal(Q(ζ5)/Q).

6.7. In this question, let p be an odd prime and let ζp = e2πi/p ∈ Q(ζp) 6 C.

(a) Consider the product

ξ =
(p−1)/2∏

r=1

(ζr
p − ζ−r

p ) ∈ Q(ζp).

Show that

ξ2 = (−1)(p−1)/2
p−1∏

r=1

(1− ζr
p).

(b) Deduce that

ξ2 =

{
p if p ≡ 1 (mod 4),

−p if p ≡ 3 (mod 4).

(c) Conclude that

ξ =

{
±√p if p ≡ 1 (mod 4),
±√p i if p ≡ 3 (mod 4).

and also
√

p ∈ Q(ζp) if p ≡ 1 (mod 4) and
√

p i ∈ Q(ζp) if p ≡ 3 (mod 4).
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6.8. Prove Lemma 6.37. [Hint: show that every 2-cycle of the form (i i + 1) is in H by
considering elements of the form (1 2 · · · n)r(1 2)(1 2 · · · n)n−r.]

6.9. This question is about an additive version of Hilbert’s Theorem 90, see Theorem 6.16.
Let E/K be a Galois extension with cyclic Galois group Gal(E/K) = 〈σ〉 of order n.
(a) Show that the function

T : E −→ E; T (u) = u + σ(u) + σ2(u) + · · ·+ σn−1(u),

takes values in K and use this to define a K-linear mapping TrE/K : E −→ K.
(b) If v ∈ E has TrE/K(v) = 0, show that there is a w ∈ E such that v = w − σ(w).
[Hint: Show that there is an element t ∈ E for which TrE/K t 6= 0, then consider

w =
1

(TrE/K t)
(
vσ(t) + (v + σ(v))σ2(t) + · · ·+ (v + σ(v)σ2(t) + · · ·+ σn−2(v))σn−1(t)

)

and adapt the proof of Hilbert’s Theorem 90 in Theorem 6.16, using TrE/K in place of NE/K .]

6.10. Show that f(X) = X3 − 3X + 1 ∈ Q[X] is irreducible over Q, and show that its
discriminant is a square in Q. Prove that the Galois group of f(X) over Q is cyclic.

6.11. For n > 1 and 1 6 k 6 n, the k-th power sum sk ∈ k[X1, . . . , Xn]Sn is defined to be

sk =
∑

16i6n

Xk
i .

Prove the formula

sk = e1sk−1 − e2sk−2 + · · ·+ (−1)k−1ek−1s1 + (−1)kkek.

6.12. For n > 1 and 1 6 k 6 n, the total symmetric function hk ∈ k[X1, . . . , Xn]Sn is defined
to be

hk =
∑

j16j26···6jk

Xj1Xj2 · · ·Xjk
,

i.e., the sum of all the monomials in the Xi of degree k.
(a) For large values of n, express h1, h2, h3 in terms of the elementary symmetric functions

e1, e2, e3.
(b) Show that the power sum functions sk of the previous question satisfy

sk = −(h1sk−1 + h2sk−2 + · · ·+ hk−1s1) + khk.
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