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PREFACE 

After the book "Basic Operator Theory" by Gohberg-Goldberg was pub
lished, we, that is the present authors, intended to continue with another book which 
would show the readers the large variety of classes of operators and the important role 
they play in applications. The book was planned to be of modest size, but due to the 
profusion of results in this area of analysis, the number of topics grew larger than ex
pected. Consequently, we decided to divide the material into two volumes - the first 
volume being presented now. 

During the past years, courses and seminars were given at our respective in
stitutions based on parts of the texts. These were well received by the audience and 
enabled us to make appropriate choices for the topics and presentation for the two vol
umes. We would like to thank G.J. Groenewald, A.B. Kuijper and A.C.M. Ran of the 
Vrije Universiteit at Amsterdam, who provided us with lists of remarks and corrections. 

We are now aware that the Basic Operator Theory book should be revised so 
that it may suitably fit in with our present volumes. This revision is planned to be the 
last step of an induction and not the first. 

We gratefully acknowledge the support from the mathematics departments of 
Tel Aviv University, the University of Maryland at College Park, and the Vrije Univer
siteit at Amsterdam, which enabled us to visit and confer with each other. We also thank 
the Nathan and Lillian Silver Chair in Mathematical Analysis and Operator Theory for 
its financial assistance. 

March 15, 1990 The authors 
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INTRODUCTION 

These two volumes constitute texts for graduate courses in linear operator 
theory. The reader is assumed to have a knowledge of both complex analysis and the 
first elements of operator theory. The texts are intended to concisely present a variety 
of classes of linear operators, each with its own character, theory, techniques and tools. 
For each of the classes, various differential and integral operators motivate or illustrate 
the main results. Although each class is treated separately and the first impression may 
be that of many different theories, interconnections appear frequently and unexpectedly. 
The result is a beautiful, unified and powerful theory. 

The classes we have chosen are representatives of the principal important 
classes of operators, and we believe that these illustrate the richness of operator theory, 
both in its theoretical developments and in its applications. Because we wanted the 
books to be of reasonable size, we were selective in the classes we chose and restricted 
our attention to the main features of the corresponding theories. However, these theories 
have been updated and enhanced by new developments, many of which appear here for 

i the first time in an operator-theory text. 

The books present a wide panorama of modern operator theory. They are 
not encyclopedic in nature and do not delve too deeply into one particular area. In our 
opinion it is this combination that will make the books attractive to readers who know 
basic operator theory. 

The exposition is self-contained and has been simplified and polished in an 
effort to make advanced topics accessible to a wide audience of students and researchers 
in mathematics, science and engineering. 

The classes encompass compact operators, various subclasses of compact op
erators (such as trace class and Hilbert-Schmidt operators), Fredholm operators (bounded 
and unbounded), Wiener-Hopf and Toeplitz operators, selfadjoint operators (bounded 
and unbounded), and integral and differential operators on finite and infinite intervals. 
The two volumes also contain an introduction to the theory of Banach algebras with 
applications to algebras of Toeplitz operators, the first elements of the theory of op
erator semigroups with applications to initial value problems, the theory of triangular 
representation, the method of factorization for general operators and for matrix func
tions, an introduction to the theory of characteristic operator functions for contractions. 
Also included are recent developments concerning extension and completion problems for 
operator matrices and matrix functions. 

The first volume is divided into Parts I-IV. 

Part I discusses the elements of spectral theory that apply to arbitrary 
bounded operators. The topics discussed include spectral decomposition theorems, Riesz 
projections, functional calculus and eigenvalues of finite type. Analytic equivalence and 
an analysis of linear operator pencils are elements that appear here for the first time 



2 INTRODUCTION 

in a text book. Also included is the spectral theorem for bounded selfadjoint operators, 
which is presented in an unconventional form as a further refinement of the Riesz spectral 
projection theory. 

Part II presents different classes of compact operators including trace class 
operators and Hilbert-Schmidt operators. Trace and determinant are introduced as natu
ral generalizations of their matrix counter parts. This part also contains theorems about 
the growth of the resolvent and completeness of eigenvectors and generalized eigenvec
tors. Integral operators with semi-separable kernels, which arise in problems of networks 
and systems, are also treated here. 

Part III describes Wiener-Hopf integral operators and begins with an intro
duction to the theory of Fredholm operators. Here the main results are index and factor
ization theorems. As a novelty this part contains a complete treatment of Wiener-Hopf 
integral equations with a rational matrix symbol based on connections with mathemati
cal systems theory. In the latter framework a finite dimensional analogue of the transport 
equation is treated. 

Part IV treats unbounded linear operators. Several results about bounded 
operators are extended to this class. Many examples of unbounded operators arising 
from ordinary and partial differential equations are given. This part also contains an 
introduction to the theory of strongly continuous semigroups with applications to initial 
value problems and transport theory. 

The second volume is divided into Parts V-IX. The titles are as follows. 
Part V: Triangular Representations; Part VI: Contractive Operators; Part VII: Toeplitz 
Operators; Part VIII: Banach Algebras and Algebras of Operators; Part IX: Extension 
and Completion Problems. 



PART I 

GENERAL SPECTRAL THEORY 

This part is devoted to elements of spectral theory that can be applied to 
arbitrary bounded operators regardless of the class they belong to. Three main topics 
are discussed, namely separation of spectra and functional calculus (Chapters I and IV), 
isolated eigenvalues of finite type which behave like eigenvalues of matrices (Chapter 
II), and analytic equivalence of operators for the case when the spectral parameter is 
linear as well as for nonlinear dependence (Chapter III). The spectral theory for bounded 
selfadjoint operators, which is the main topic of Chapter V, is presented here as a further 
refinement of the spectral separation theorems of F. lliesz. 



CHAPTER I 

RIESZ PROJECTIONS AND FUNCTIONAL CALCULUS 

This chapter is concerned with the part of the spectral theory which is appli
cable to all bounded linear operators. It contains theorems on decomposition of operators 
corresponding to separated parts of the spectrum, the general version of the functional 
calculus and applications to operator and differential equations and to stability problems. 

To make clear the approach followed in this chapter let us first recall the case 
when the operator is a compact selfadjoint operator A acting on a Hilbert space H. In 
that case H decomposes into an orthogonal sum of eigenspaces, namely 

H =KerA$Ker(AI-A)$Ker(A2 -A)$··· 

where AI. A2, ... is the sequence of distinct non-zero eigenvalues of A. Without the 
selfadjointness condition such a decomposition of the space does not hold true. This is 
already clear in the finite dimensional case. For example, 

A= [~ ~] 
on H = C2 has only one eigenvalue, namely, A = 0, and the corresponding eigenspace is 
different from H. 

The finite dimensional case provides a hint for the type of decomposition one 
may be looking for in the non-selfadjoint case. Assume H is finite dimensional, and 
let AIo ... , Ar be the different eigenvalues of A. In H there exists a basis such that the 
matrix J A of A with respect to this basis has Jordan normal form, that is, J A appears 
as a block diagonal matrix such that the blocks on the diagonal are elementary Jordan 
blocks of the form 

1 

(1) 

Let Mv be the space spanned by the basis vectors that correspond to the elementary 
Jordan blocks in J A with Avon the main diagonal. Then 

(2) H = MI $ ... $ M r , 

each space Mv is invariant under A and the restriction of A to Mv has a single eigenvalue, 
namely Av. 

To:find the space Mv one does not have to know the Jordan basis. There is 
a direct way. In fact, 

(3) Mv = 1m [2~i J (A - A)-IdA], 

r" 



CHAPTER 1. RIESZ PROJECTIONS AND FUNCTIONAL CALCULUS 5 

where r" is a contour around A" separating A" from the other eigenvalues. To see this, 
note that for the k x k matrix T given by (1) 

(,\ _ Aj)-2 

(A - Aj)-l 

(,\ _ Aj )-2 
(A - Aj)-l 

and hence ~ J (,\ - T)-ld'\ is equal to the k x k identity matrix if j = v and equal to 
r" 

the zero matrix otherwise. It follows that 

if x EM", 
if x E Mj,j =f v. 

In particular (3) holds. 

In formula (3) the finite dimensionality of the space does not play a role 
anymore. In fact, as we shall see in this chapter, formula (3) can also be used in the 
infinite dimensional case to obtain spectral decompositions of the space similar to the one 
given in (2). To carry out this program requires the use of methods of contour integration 
and of complex analysis for vector and operator valued functions. The first section of 
this chapter is devoted to the latter topics. 

1.1 PRELIMINARIES ABOUT OPERATORS AND OPERATOR
VALUED FUNCTIONS 

We begin with a few words about terminology and notation. All linear spaces 
in this book are vector spaces over C (the field of complex numbers). Unless stated 
otherwise, an operator is a bounded linear operator acting between Banach or Hilbert 
spaces. The identity on a linear space X is denoted by Ix or just by I. In expressions 
like AI - A we shall often omit the symbol I and write A-A. The word subspace denotes 
a closed linear manifold in a Banach or Hilbert space. Given Banach spaces X and Y 
the symbol C(X, Y) stands for the Banach space of all bounded linear operators from X 
into Y (endowed with the operator norm). We shall write C(X) instead of C(X,X). 

Next, we recall (see [GGJ) some basic facts from the spectral theory of a 
bounded linear operator. Let A: X --+ X be a bounded linear operator acting on a 
Banach space X. By definition the resolvent set peA) of A is the set of all complex 
numbers ,\ such that for each y E X the equation AX - Ax = y has a unique solution 
x E X. Equivalently, A E peA) if and only if A - A is an invertible operator, that is, 
there is a bounded linear operator R( A) on X such that 

(1) R(A)(A - A) = (A - A)R('\) = I. 

The complement of peA) in C is called the spectrum of A and is denoted by a(A). It is 
well-known (see [GG], Theorem X.6.1) that a(A) is a bounded closed subset of C. The 
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operator R( >.) appearing in (1) will be denoted by (>. - A) -1 and the operator function 
(. - A)-l will be called the resolvent of A. 

In what follows some basic theorems of complex analysis are extended to 
vector and operator valued functions. We start with the definition of contour integrals 
of the form: 

(2) 2~i f g(>.)d>., 
r 

where the integrand is a function with values in some Banach space. 

First, let us make clear what kind of contours are used in (2). We call r a 
Cauchy contour if r is the oriented boundary of a bounded Cauchy domain in C. By 
definition, a Cauchy domain is a disjoint union in C of a finite number of non-empty 
open connected sets .6.1 , ... , .6.r , say, such that .6.i n .6.j = 0 (i =f j) and for each j the 
boundary of .6.j consists of a finite number of non-intersecting closed rectifiable Jordan 
curves which are oriented in such a way that .6.j belongs to the inner domains of the 
curves. If (J' is a compact subset of a (nonempty) open set n c C, then one can always 
find a Cauchy contour r in n such that (J' belongs to the inner domain of r. To see this, 
construct in the complex plane a grid of congruent hexagons of diameter less one third 
of the distance between (J' and C\n, and let .6. be the interior of the union of all closed 
hexagons of the grid which have a non-empty intersection with (J'. Then the boundary 
of .6. is a Cauchy contour of the desired type. 

Let r be a Cauchy contour, and let g: r -+ Z be a continuous function on r 
with values in the Banach space Z. Then (as in complex function theory) the integral 
(2) is defined as a Stieltjes integral, but now its convergence has to be understood in the 
norm of Z. Thus the value of (2) is a vector in Z which appears as the limit (in the norm 
of Z) of the corresponding Stieltjes sum. From this definition it is clear that 

(3) F ( 2~; ! 9('\)d'\) ~ 2~;! F(g('\)d'\ 

for any continuous linear functional F on Z. Note that the integrand of the second 
integral in (3) is just a scalar-valued function. Often the integral in (2) can be computed 
if g has additional analyticity properties. 

Let n be a non-empty open set in C, and let Z be a Banach space. The 
function g: n -+ Z is said to be analytic at >'0 E n if in some neighbourhood U of >'0 in 
n the function g can be represented as the sum of a power series in >. - >'0, i.e., 

00 

(4) g(>.) = 2)>' - >'otgn, >. E U. 
n=O 

Here go, gl, ... are vectors in Z (which do not depend on >.) and the series in (4) converges 
in the norm of Z. If g is analytic at each point of n, then g is called analytic on n. 
For such a function the Cauchy integral formula holds true. Indeed, assume g: n -+ Z is 
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analytic on n and let r be a Cauchy contour such that r and its inner domain are in n. 
Then 

(5) 1 J 1 g(AO) = 211'i A _ AO g(A)dA 
r 

for any point AO inside r. 
To prove (5), let y be the vector in Z defined by the right hand side of (5). 

Take an arbitrary continuous linear functional F on Z. Note that Fog is a scalar-valued 
analytic function. Hence, by the usual Cauchy integral formula, 

1 J 1 F(g{AO)) = 211'i A _ AO F(g{A))dA. 
r 

Now use (3) to conclude that F(g(AO)) = F(y). Since F is an arbitrary continuous linear 
functional on Z, the Hahn-Banach theorem implies that g(AO) = y, which proves (5). 

Let n be a non-empty open set in C, and let g: n -+ Z have values in the 
Banach space Z. The function g is called differentiable on n if for each AO in n the 
derivative 

g'{AO): = lim ~(g(A) - g(AO)) 
.\-+.\0 " - "0 

exists in the norm of Z. Obviously, analyticity of g implies that g is differentiable. 
The converse statement is also true. For scalar functions this is a well-known fact from 
complex function theory. To prove it for vector functions, assume that g is differentiable 
on n, and let AO be an arbitrary point of n. Choose a circle r with centre at AO and 
with radius r in such a way that r and its inner domain are in n. We shall show that 

(6) 1 J 1 g(,.,.) = -2. -\ -g(A)dA, 
1I'Z ,,-,.,. 

I,.,. - Aol < r. 

r 

Note that differentiability of g implies that g is continuous, and so the right hand side 
of (6) is well-defined. Let F be an arbitrary continuous linear functional on Z. Then 
the scalar function Fog is differentiable on n, and hence analytic on n. So (5) holds 
for Fog instead of g. Since F is an arbitrary continuous linear functional on Z, we can 
apply (3) and the Hahn-Banach theorem to conclude that (6) holds. From (6) and 

for I,.,. - Aol < r and A E r, it follows that 

(7) 
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which proves the analyticity of g. 

Let us specify some of the preceding results for the case when Z is the Banach 
space C(X, Y). Let X and Y be Banach spaces, and let g: r -+ C(X, Y) be a continuous 
function. Then the value of the integral (2) is a bounded linear operator from X into Y, 
and for each x E X we have 

(8) (2~i J g(A)dA)x = 2~i J g(A)xdA. 
r r 

Furthermore, if A: Xl -+ X and B: Y -+ YI are bounded linear operators acting between 
Banach spaces, then 

(9) B(2~i J g(A)dA)A = 2~i J Bg(A)AdA. 
r r 

Let g: n -+ C(X, Y) be analytic on n, and assume that for a point AO in n the operator 
g(AO) is invertible. Then there exists an open neighbourhood U of AO in n such that g(A) 
is invertible for A E U and g(.)-l is analytic on U. The last statement follows from the 
formula 

(10) A E U, 

and the fact that differentiability is the same as analyticity. 

Let A: X -+ X be a bounded linear operator on the Banach space X. The 
resolvent R(·) = (. - A)-l is one of the main operator functions which we have to study. 
From what we proved in the previous paragraph (see also [GG], Theorem X.8.1) it is 
clear that the resolvent R(·) is analytic on the open set peA). We also know (see [GG], 
Section X.6) that 

R(A) = (A - A)-l = f An~l An, 
n=O 

IAI> IIAII· 

From these facts it follows that a(A) is a non-empty set whenever X =F (0). Indeed, 
assume that a(A) = 0. Take a vector x in X and a continuous linear functional F on 
X. Then the function f(·) = F((· - A)-Ix) is a bounded entire function. Hence, by 
Liouville's theorem f(>..) is constant. Since (A - A)-l -+ 0 if A -+ 00, it follows that 
f(A) == 0 on C. This holds for any continuous linear functional F on X. So, by the 
Hahn-Banach theorem, (A - A)-Ix = 0 for all >... By the way, the above argument also 
shows that the Liouville theorem carries over to entire functions that have their values 
in a Banach space. 

1.2 SPECTRAL DECOMPOSITION AND RIESZ PROJECTION 

In this section A is a bounded linear operator on a Banach space X. If N is 
a subspace of X invariant under A, then AIN denotes the restriction of A to N, which 
has to be considered as an operator from N into N. 
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Assume that the spectrum of A is the disjoint union of two non-empty closed 
subsets u and T. We want to show that to this decomposition of the spectrum there 
corresponds a direct sum decomposition of the space, X = M El1 L, such that M and L 
are A-invariant subspaces of X, the spectrum of the restriction AIM is precisely equal 
to u and that of AIL to T. To prove that such a spectral decomposition exists we study 
(d. formula (3) in the introduction to this chapter) the operator 

(1) P = 2~i j(>. - A)-Id>'. 
r 

A set u is called an isolated part of u(A) if both u and T: = u(A)\u are closed 
subsets of u(A). Given an isolated part u of u(A) we define Pu to be the bounded linear 
operator on X given by the right hand side (1), where we assume that r is a Cauchy 
contour (in the resolvent set of A) around u separating u from T = u(A)\u. By the 
latter we mean that u belongs to the inner domain of r and T to the outer domain of r. 
The existence of such contours has been proved in the previous section, where one also 
finds the definition of the integral (1). Since (>. - A)-l is an analytic operator function 
(in >.) on the resolvent set of A, a standard argument of complex function theory shows 
that the definition of Pu does not depend on the particular choice of the contour r. The 
operator Puis called the Riesz projection of A corresponding to the isolated part u. The 
use of the word projection is justified by the next lemma. 

LEMMA 2.1. The operator PO' is a projection, i.e., P; = PO'. 

PROOF. Let rl and r2 be Cauchy contours around u separating u from 
T = u(A)\u. Assume that r l is in the inner domain of r2. Then 

P; = (2~i j(>. - A)-Id>.) (2~i j(p. - A)-ldP.) 
rl r2 

=(2~i)2 j j(>.-A)-I(p.-A)-ldP.d>.. 

rl r2 

Now use the so-called resolvent equ.ation, 

(2) >., p. E p(A), 

and write P; = Q - R, where 
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and 

R = (2~i) 2 I I J-l ~,\ (J-l - A)-ldJ-ld'\ 
r 1 r 2 

= (2~J 2 I I J-l ~,\ (J-l - A)-ld,\dJ-l 
r2 rl 

= 2~i I(J-l - A)-I (2~i I J-l ~,\ Id,\ )dJ-l = O. 
r2 r1 

Here we used 

and these identities hold true, because r l is in the inner domain of r2. Furthermore, 
the interchange of the integrals in the computation for R is justified by the fact that the 
integrand is a continuous operator function on rl x f2. 

THEOREM 2.2. Let a be an i.'Jolated part of a(A), and put M = 1m PO" and 
L = Ker PO". Then X = M EB L, the .'Jpace.'J M and L are A-invariant .'Jub.'Jpace.'J and 

(3) a(AIM) = a, a(AIL) = a(A)\a. 

PROOF. Since PO" is a projection, it is clear that M and L are closed sub
spaces and X = M EB L. From A('\ - A)-I = (,\ - A)-I A for A E peA), it follows that 
APO" = PO" A, which implies that M and L are invariant under A. It remains to prove 
(3). 

Let f be a Cauchy contour around a separating a from r: = a(A)\a. For 
J-l fJ; f put 

S(J-l) = ~ 1_1_(,\ - A)-Id,\. 
27rz J-l - ,\ 

r 

Since PO" commutes with A, we know that PO" commutes with the resolvent (,\ - A)-I, 
and hence PO" commutes with S(J-l). Thus the spaces M and L are invariant under S(J-l). 
One computes that 

S(J-l)(A - J-l) = (A - J-l)S(J-l) 

= ~ I _1_(A - J-l)(,\ - A)-Id'\ 
27rZ J-l - ,\ 

r 

= ~ I ~Id'\ - ~ 1('\ - A)-Id'\ 
27rz J-l - ,\ 27rZ 

r r 

{ I - PO" for J-l inside f, 

- -PO" I for J-l outside f. 
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Take p, ff. u. Without loss of generality we assume that r has been chosen such that p, is 
outside r. But then the above computation shows that 

xEM. 

Since S(p,)M C M, it follows that A - p, mapsM in a one-one way onto M and 
(p,- AIM)-l = S(p,)IM. Thus p, E p(AIM), and we may conclude that u(AIM) Cu. In 
a similar way one shows that u(AIL) C T. 

Finally, take>. ff. u(AIM) U u(AIL). Then>. - A maps M (resp., L) in a 
one-one way onto M (resp., L). It follows that>. E peA). So 

u(A) C u(AIM) U u(AIL) c u U T = u(A), 

and (3) is proved. 0 

When applied to u = u(A), Theorem 2.2 yields 

(4) PO'(A) = I. 

Indeed, put u = u(A), and let M and L be as in Theorem 2.2. Then u(AIL) = u(A)\u = 
0. This can happen only when L = (0). Thus M = X and (4) is proved. 

COROLLARY 2.3. Assume u(A) is a disjoint union of two closed subsets u 
and T. Then 

(5) PIT +P-r = I, PO" P-r = O. 

PROOF. Choose Cauchy contours r, rl and r2 as indicated by the following 
picture: 

__ --------------~r 

A standard argument from complex function theory shows that 

(6) 
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The left hand side of (6) is equal to Pu + Pr' By formula (4) the right hand side of (6) is 
I. Thus the first identity in (5) is proved. Using this, we have PuPr = Pu(i - Pu) = o. 
o 

The next proposition shows that the identities in (3) determine the spaces M 
and L uniquely. 

PROPOSITION 2.4. AJJume X iJ a direct Jum of A-invariant JubJpaceJ M 
and L. Then cr(A) = cr(AIM) U cr(AIL), and if cr(AIM) n cr(AIL) = 0, then 

(7) M = 1m Pu(AIM) ' L = Ker Pu(AIM)' 

PROOF. Since M and L are invariant under A, the operator ,\ - A has the 
following 2 x 2 operator matrix representation relative to the direct sum X = M EB L : 

,\ _ A = [ ,\ -oAI 0 ] 
,\ - A2 ' 

where Al = AIM and A2 = AIL. But this implies that ,\ E peA) if and only if ,\ E 
peAl) n p(A2), and in that case 

(8) (,\ _ A)-l = [ (,\ - Ao d-l 0 ] 
(,\ - A2)-1 . 

Thus peA) = peAl) n p(A2), and cr(A) = cr(AI) U cr(A2)' 

Next, assume cr(At) n cr(A2) = 0. Take a Cauchy contour f around cr(AI) 
which separates cr(At) from crA2), and integrate (8) over f. Because of (4) and (5), 

Thus 

which proves (7). 0 

2~i 1('\ -A2)-ld,\ = O. 

r 

Pu(Ad = 2~i 1('\ -A)-Id,\ = [It: ~], 
r 

PROPOSITION 2.5. AJJume X iJ a Hilbert Jpace, and let cr be an isolated 
part of cr(A). Then (f = 0: 1,\ E cr} is an isolated part of cr(A*) and 

(9) (Pu(A»)* = Pu(A*). 

PROOF. The first statement about cr is trivial. Let r be a Cauchy contour 
around cr with separates cr from cr(A)\cr. Let a: J -> C be a parametrization ofr. Denote 
by f the curve parametrized by the function a(t), t E J, and let -f be the same curve 
with the opposite orientation. Then -r is a Cauchy contour around (f which separates 
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a from a(A*)\a. Now 

(P<7(A»)* = (2~i j(>, - A)-IdA) * 
r 

= lim{~ 2.Ja(tj) - a(tj_I»)(a(Sj) - A)-I}* 
27l"l . 

J 

= lim -1. ~(a(tj) _ a(tj_I») (a(sj) _ A*)-I 
27l"l ~ 

J 

= -1. j(A _ A*)-IdA = Pu{A*). 0 
27l"l 

1.3 FUNCTIONAL CALCULUS 

13 

Let A: X -> X be a bounded linear operator acting on the Banach space X. 
Note that 

An(A - A)-I = An-I(A - A + A)(A - A)-I 

= AAn-I(A _ A)-I _ An-I. 

Proceeding in this way one finds that 

n-I 

(1) An(A - A)-I = >.n(>. - A)-I - L >.n-I-j Aj. 
j=O 

Now, let r be a Cauchy contour around the spectrum a(A). Note that the integral over 
r of the last term in (1) is the zero operator. It follows that 

An = An (2~i j(A - A)-IdA) 
r 

= ~ j An(>. - A)-IdA = ~ j An(A - A)-IdA. 
27l"l 27l"Z 

r r 

Let peA) = L~=O an>.n be a complex polynomial. The preceding calculations imply 

(2) 

The latter expression for peA) is the starting point of a new definition. 

An open set Sl in C is called an open neighbourhood of a set a if a C Sl. By 
F(A) we denote the family of all complex-valued functions f that are analytic on some 
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open neighbourhood (which may depend on f) of o-(A). All complex polynomials belong 
to F(A). Given f E F(A) we define 

f(A): = ~ 1 f(>..)(>.. - A)-Id>". 
21l"Z 

all. 

Here ~ is a bounded Cauchy domain in the open neighbourhood fl of o-(A) on which f is 
defined and o-(A) C ~ C ~ c fl. Note that f(A) is a bounded linear operator on X. A 
standard argument of complex function theory shows that its definition does not depend 
on the particular choice of the Cauchy domain~. In other words, if f and g belong to 
F(A) and f(>.) = g(>.) on some open neighbourhood of o-(A), then f(A) = g(A). 

In this setting the Riesz projections appear by using functions which take only 
the values 1 and O. More precisely, if 0- is an isolated part of o-(A), then the corresponding 
Riesz projection Pu is equal to h(A), where h is a function which takes the value 1 on an 
open neighbourhood of 0- and the value 0 on an open neighbourhood of the complement 
o-(A)\o-. In particular, f(A) = I (resp., f(A) = 0) whenever f is equal to 1 (resp., 0) on 
an open neighbourhood of o-(A). 

THEOREM 3.1. Given f, g in F(A), then 

(i) (f + g)(A) = f(A) + g(A), 

(ii) (af)(A) = af(A), a E C, 

(iii) (fg)(A) = f(A)g(A). 

PROOF. Let fl be the intersection of the domains of f and g. On fl the 
functions f + g, af and fg are defined by 

(f + g)(>.) = f(>.) + g(>.), 

(fg)(>.) = f(>..)g(>.), 

(af)(>.) = af(>.), 

>"Efl. 

Obviously, f + g, af and fg are in F(A). Since f(>.) appears linearly in the definition 
of f(A), the statements (i) and (ii) are easy to check. We prove (iii). 

Let ~I and ~2 be bounded Cauchy domains such that 

o-(A) C ~I c ~I C ~2 C ~2 C fl, 

and for l/ = 1,2 let r v be the boundary of ~v. Then 

f(A)g(A) = (2~i) 2 (1 f(>..)(>.. - A)-Id>..) (1 g(f.j)(f.j - A)-Idf.j) 
r 1 r 2 

= (2~i) 2 1 1 f(>.)g(f.j)(>' - A)-I(f.j - A)-ldf.jd>" 
r 1 r 2 

= (2~i) 2 1 1 f(>..)g(f.j)(f.j - >..)-I{(>.. - A)-l - (f.j - A)-1 }dl-'d)' 

rl r2 
= 11 -12, 
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where 

/1 = (2~J 2 j j f()..)g(/-L)(/-L - )..)-I().. - A)-Id/-Ld).. 

r1 f2 

= ~ j (~j(/-L - )..)-Ig(/-L)d/-L) f()..)().. - A)-Id)" 
27rz 27rz 

r1 r2 

= ~ j f()..)g()..)().. - A)-Id)" = (fg)(A), 
27rz 

r1 

and 

/2 = (2~J 2 j j f()..)g(/-L)(/-L - )..)-I(/-L - A)-ld/-Ld)" 
r1 r 2 

= (2~i) 2 j j f()..)g(/-L)(/-L - )..)-I(/-L - A)-ld)"d/-L 
r2 r1 

= ~ j (~j(/-L - )..)-1 f()")d)") g(/-L)(/-L - A)-ld/-L 
27rZ 27rZ 

f2 f1 

= o. 
To get the last equality we use the fact that all points /-L on r2 do not belong to ~1. 
Hence for /-L E r 2 the function (/-L - .)-1 f(·) is analytic on an open neighbourhood of 
~1, and thus, by Cauchy's theorem, J (/-L - )..)-1 f()")d)" = o. Note that in the above 

f1 
computations the change in the order of the integrals is allowed because of the continuity 
of the function 

on r1 X r2. 0 

THEOREM 3.2. Let f()..) = 2::7'=0 Ov)..V for).. in some open neighbourhood 
n of a(A). Then f E F(A) and 

00 

(3) f(A) = :L ovAv , 
v=o 

where the latter series converges in the operator norm. 

PROOF. Let r be the boundary of a bounded Cauchy domain ~ such that 
a(A) C ~ C ~ c n. Let p be the radius of convergence of the series l:~=o ovAv. Since 
the latter series converges for A E n, it follows that the open set n is a subset of the 
open disc P E ell)..1 < p}. This implies that f is analytic on n, and hence f E F(A). 
Furthermore, we see that the series l:~=o ov)..v converges uniformly on the compact set 
~ and hence also on r. For n 2:: 0 put sn()..) = l:~=o ovAv, and let £(r) denote the 
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length of the contour r. Then 

IIf(A) - ~ avAvll = 1!t(A) - sn(A)1I 

= 112~i f(f(A) - sn(A))(A - A)-IdAIl 
r 

:5 ~l(r)(max If(A) - Sn(A)1) max II(A - A)-III 
2~ ~Er ~Er 

- 0 (n ..... 00), 

which proves (3). 0 

(4) 

The next theorem is known as the spectral mapping theorem. 

THEOREM 3.3. If f E .r(A), then 

u(J(A)) = {I(A) I A E u(A)} = f[u(A)]. 

PROOF. Let f be analytic on the open neighbourhood n of u(A). Take 
Ao E u(A), and define a function 9 on n by 

g(z) = (z - Ao)-l(J(z) - f(Ao)), Ao =f:. zEn, 

and g(Ao) = f'(AO), where f' denotes the derivative of f. Obviously, 9 E .r(A) and 

(5) fez) - f(Ao) = (z - Ao)g(z) = g(z)(z - Ao), zEn. 

Now apply Theorem 3.1. It follows from (5) that 

f(A) - f(Ao)1 = (A - Aol)g(A) = g(A)(A - Aol). 

Since Ao E u(A), the operator A - Aol is not invertible. But then the same conclusion 
holds true for f(A) - f(Ao)l, which implies that f(Ao) E u(J(A)). We have proved that 
f[u(A)] C u(J(A)). 

To prove the reverse inclusion, take (3 E C\J[u(A)]. Then there exists an 
open neighbourhood no of u(A) such no c n and fez) - (3 =f:. 0 for z E no. Put 
h(z) = (f(z) - (3)-1 for z E no. Then h E .r(A) and 

h(z)(J(z) - (3) = 1 = (J(z) - (3)h(z), z E no, 

and we can apply Theorem 3.1 to show that 

h(A)(J(A) - (31) = 1= (J(A) - (31)h(A). 

Thus f(A)- (31 is invertible, and hence (3 E C\u(f(A)). We see that f[u(A)] ~ u(J(A)) , 
and the theorem is proved. 0 
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1.4 AN OPERATOR EQUATION 

Let X and Y be Banach spaces, and let A: Y -+ Y, B: X -+ X and C: X -+ Y 
be given operators. Consider the operator equation 

(1) AZ-ZB = C. 

In (1) the unknown is an operator Z from X into Y. Note that equation (1) is solvable 
if and only if there exists an operator Z: X -+ Y such that the following operator matrix 
identity holds true: 

(2) [ Iy Z] [A C] [Iy 
o Ix 0 B 0 

-Z] = [A 0 ] Ix 0 B . 

The various factors in (2) act as bounded linear operators on Y $ X. 

From (2) one sees that the problem to solve (1) has to do with similarity of 
operators. Indeed, the first and third factors in the left hand side of (2) are invertible 
and 

[ Iy Z] -1 _ [ Iy 
o Ix - 0 

-Z] Ix . 

Thus the operators 

(3) [~ ~], 
are similar whenever equation (1) is solvable. If the spaces X and Y are finite dimensional, 
then the converse statement also holds true (see Gohberg-Lancaster-Rodman [1], page 
342). In the infinite dimensional case it is unknown whether similarity of the operators 
in (3) implies that (1) is solvable. Another application connected with equation (1) will 
be given in Section 1.6. 

THEOREM 4.1. Assume that the spectra of the operators A: Y -+ Y and 
B: X -+ X are disjoint. Then the operator equation (1) has a unique solution Z: X -+ Y 
which is given by 

(4) 

Z = ~ j(oX - A)-IC(A - B)-IdA 
211"z 

r A 

= ~~ j (oX - A)-IC(oX - B)-IdA, 

r B 

where r A and r B are Cauchy contours around u(A) and u(B), respectively, which 
separate u(A) from u(B). 

PROOF. The fact that u(A) and u(B) are disjoint compact sets allows us 
to choose Cauchy contours r A and r B as indicated. First, let us assume that Z: X -+ Y 
is a solution of (1). Then 

Z(oX - B) - (oX - A)Z = C, A E C, 
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and hence 

(5) 

for each A E peA) n pCB). In particular, the identity (5) holds true for A ErA' Next, 
use that a(A) is inside r A and a(B) is outside r A, and integrate (5) over r A. We see 
that Z is given by the first identity in (4). IT we replace in the above argument r A by 
r B, then we obtain the second identity in (4). 

It remains to show that (1) is solvable. To do this, let Z be the bounded 
linear operator from X into Y defined by the first identity in (4). Then 

AZ = ~ I A(A - A)-IC(A - B)-IdA 
211"& 

r A 

= ~ I(A - A + A)(A - A)-IC(A - B)-IdA 
211"& 

r A 

= ~ I A(A - A)-IC(A - B)-IdA - ~ I C(A - B)-IdA. 
211"& 211"& 

r A r A 

Note that the second integral in the last identity is equal to the zero operator. Thus 

AZ = 2~i I (A - A)-IC(A - B)-I(A - B + B)dA 
r A 

= ~ I(A - A)-ICdA + ~ I(A - A)-IC(A - B)-l BdA 
211"& 211"&. 

rA rA 
=C+ZB. 

It follows that Z is a solution of (1). 0 

Consider the Banach space LeX, Y) of all bounded linear operators from X 
into Y, and define J: C(X, Y) -+ C(X, Y) by J(Z) = AZ - ZB, where A and B are as 
in the beginning of this section. Obviously, J is a bounded linear operator. Theorem 4.1 
tells us that J is invertible if a(A) n a(B) = 0. Note that 

(J - U)(Z) = (A - A)Z - ZB, 

It follows that J - AI is invertible, whenever a(A - A) n a(B) = 0, and hence 

(6) a(J) C {a -,81 a E a(A),,8 E a(B)}. 

D.C. Kleinecke (see Introduction of Lumer-Rosenblum [1]) has shown that the spectrum 
of J is equal to the right hand side of (6). 
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1.5 THE DIFFERENTIAL EQUATION y' = Ay 

Let A be a bounded linear operator on the Banach space X. Consider the 
equation 

(1) y'(t) = Ay(t), o ~ t < 00. 

A function y: [0,00) -+ X is said to be a solution of (1) if y is continuous on [0,00) and 

l~IIAy(t) - ~(y(t + h) - y(t))11 = 0 

for each t > O. Of course one expects the solutions of (1) to be of the form yet) = etAx, 
where x is some vector in X. By definition 

(2) etA = 2~i J etA(A - A)-IdA, 

r 

where r is a Cauchy contour around u(A). Hence, according to Theorem 3.2, the operator 
etA is also given by 

(3) 

LEMMA 5.1. The function t 1-+ etA from R into £(X) is differentiable and 

d _(etA) = AetA . 
dt 

(4) 

PROOF. Take a fixed t E R, and choose h !- 0 in R such that IhlllAl1 ~ t. 
From the functional calculus it follows that e(t+h)A = ehAetA . Thus 

1I~{e(t+h)A _ etA} _ AetAIl ~ 1I~{ehA - I} _ AII'lIetAIl 

= II~ ~!hV-I AvlI'lIetAIl 

~ Ihl'lIetAIl (~lhlv-2I1AIIV) 
~ 2lhl'lIetAIl . IIAII2 -+ 0 (h -+ 0), 

and (4) is proved. 0 

(5) 

THEOREM 5.2. The initial value problem 

{ 
y'(t) = Ay(t), 

yeO) = x, 
o ~ t < 00, 
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has precisely one solution, namely yet) = etAx. 

PROOF. Put yet) = etAx. From the functional calculus it follows that 
eDA = I, and hence yeO) = x. But then we can apply Lemma 5.1 to show that y is a 
solution of (5). 

Assume w: [0,00) -+ X is a second solution of (5). Consider get) = e-tAw(t) 
for t ~ o. Then 

(6) !g(t) = e-tA( -A)w(t) + e-tAAw(t) = 0, t > o. 

Let F be an arbitrary continuous linear functional on X. Then h = Fog is a continuous 
scalar function on [0,00) and according to (6) the derivative h' (t) = 0 for t > o. It follows 
that h is constant on [0,00), and thus 

F(e-tAw(t)) = F(x), t ~ o. 

An application of the Hahn-Banach theorem yields that e-tAw(t) = x for t ~ o. By the 
functional calculus (ehA)-l = e-hA for any hER. Hence wet) = etAx, t ~ O. 0 

A solution y of (1) is called asymptotically stable if y( t) -+ 0 ift -+ 00. If every 
solution of (1) is asymptotically stable, then the equation (1) is said to be asymptotically 
stable. (Since yet) == 0 is a solution of (1), the vector x = 0 is an equilibrium point of 
the differential equation (1). In this terminology asymptotic stability of (1) is equivalent 
to the requirement that x = 0 is a so-called asymptotically stable equilibrium point for 
(1).) 

THEOREM 5.3. If £T(A) lies in the open half plane ?RA < 0, then equation 
(1) is asymptotically stable. Conversely, if (1) is asymptotically stable, then £T(A) lies in 
the closed half plane ?RA :S O. If, in addition, X is finite dimensional, then asymptotic 
stability of (1) is equivalent to the statement that £T(A) belongs to the open half plane 
?RA < O. 

To prove Theorem 5.3 we shall make use of the following lemma. 

LEMMA 5.4. If £T(A) belongs to the open half plane ?RA < " then there 
exists a constant C (depending on A and,) such that 

(7) t ~ o. 

Conversely, from (7) it follows that £T(A) belongs to the closed half plane ?RA :::; ,. 

PROOF. Assume £T(A) belongs to the open half plane ?RA < f. Then we 
may choose a Cauchy contour r around £T(A) such that r also belongs to ?RA < ,. Let 
fer) be the length of r. Note that letAI :S et-r for A E rand t ~ o. Thus 

II etA II = 2~ II! etA(A - A)-IdAII 
r 

:::; (2..f(r) max II(A - A)-l II) e'Yt, 
27r AEf 

t ~ 0, 
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which proves (7). 

To prove the converse statement, assume that (7) holds true. Then for t ;?: 0 
the spectrum of etA belongs to the closed disc with center at 0 and radius Ce-rt. According 
to the spectral mapping theorem (Theorem 3.3) this implies that 

,\ E u(A). 

This holds for each t ;?: O. Now take a fixed ,\ E u(A). Then exp{t()R'\ - 'Y)} $ C for 
t ;?: 0, which implies that )R,\ $ 'Y. Thus )Ru(A) $ 'Y. 0 

PROOF OF THEOREM 5.3. Assume )Ru(A) < O. Since u(A) is compact, 
there exists e > 0 such that u(A) belongs to the open half plane )R'\ < -e. By Lemma 
5.4 this implies that 

lIetA Il $ Ce-d , t;?: 0 

for some constant C. So for each x E X we may conclude that etAx -+ 0 if t -+ 00. 

Hence (1) is asymptotically stable. 

Next, assume that (1) is asymptotically stable. Take x E X. According to 
our assumption etAx -+ 0 if t -+ 00. In particular, there exists a constant Cz (depending 
on x) such that lIetAxll $ Cz < 00 for all t ;?: O. But then we can apply the principle of 
uniform boundedness to show that there exists a constant C such that lIetA Il $ C < 00 

for t ;?: O. This implies (Lemma 5.4) that )Ru(A) $ O. 

Finally, assume (1) is asymptotically stable. and dimX < 00. We want to 
show that )Ru(A) < O. We already know that )Ru(A) $ O. Suppose'\ = ib E u(A) 
with b E R. Since X is finite dimensional, ,\ is an eigenvalue of A. Let x =F 0 be a 
corresponding eigenvector. Then etAx = eitbx. It follows that 

t -+ 00. 

Thus x = 0, which is a contradiction. 0 

The next theorem is another useful application of Lemma 5.4. 

THEOREM 5.5. Let A:Y -+ Y, B:X -+ X and C:X -+ Y be operators 
acting between Banach spaces, and assume that the spectra of A and B are in the open 
half plane )R'\ < O. Then the operator equation 

(8) AZ+ZB=C 

has a unique solution Z in £(X, Y), namely 

(9) 

00 

Z = - J etACetBdt. 

o 

PROOF. From the condition on u(A) and u(B) it follows that u(A) n 
u( -B) = 0. According to Theorem 4.1 this implies that the equation 

AZ + ZB = AZ - Z( -B) = C 
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has a unique solution Z in C(X, Y). We have to prove that Z is given by (9). 

The integral in (9) is considered as an improper lliemann-Stieltjes integral. 
Note that the integrand is continuous. The fact that (T(A) and (T(B) are in the open half 
plane 3U < 0 implies (see the first part of the proof of Theorem 5.3) that there exist 
positive constants e and M such that 

(t ~ 0). 

It follows that the integral in (9) is well-defined. Next, observe that 

.!!..(etACetB ) = AetACetB + etACetB B. 
dt 

Hence 

-C = lim (eTACeTB - C) 
T-+oo 

T T 

= T~~ {A(J etACetBdt) + (J etAcetBdt)B} 
o 0 

= -(AZ +ZB), 

where Z is the right hand side of (9). 0 

1.6 LYAPUNOV'S THEOREM 

A bounded linear operator A on a Hilbert space H is said to be strictly positive 
if A is selfadjoint and there exists a constant 6 > 0 such that 

(1) (Ax, x) ~ 6(x, x), x EH. 

Here (.,.) is the inner product on H. If -A is strictly positive, then A is called strictly 
negative. The next theorem is known as Lyapunov's theorem. 

THEOREM 6.1. The spectrum of an operator A on a Hilbert space H belongs 
to the open half plane ~.A < 0 if and only if there exists a strictly positive operator Z on 
H such that ZA + A* Z is strictly negative. 

Here A * stands for the adjoint of A. The proof of Theorem 6.1 will be based 
on the following lemma. 

LEMMA 6.2. Let A be an operator on a Hilbert space. If A + A* is strictly 
negative, then (T(A) belongs to the open half plane ~.A < o. 

PROOF. Choose 6 > 0 such that «A+A*)x,x) ~ -6(x,x) for x E H. Take 
a fixed x E H and consider the function <pet) = lIetAxl12. Note that 

.!!..<p(t) = .!!..(etAx etAx} 
dt dt ' 

= .!!..(etA" etAx x) 
dt ' 

= (etA" (A* + A)etAx, x) 

= «A* + A)etAx, etAx) ~ -6c.p(t). 
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Thus, (e8t<p(t))' = oe8t<p(t) + e8t<p'(t) ~ 0, which implies that e8t <p(t) ~ <p(0) for t ~ o. 
Thus 

lIetAxl1 ~ exp ( -~8t)lIxll, t ~ o. 

We conclude that lIetAIl ~ exp( -lot) for t ~ o. According to Lemma 5.4 this shows that 
?RO"(A) < o. 0 

PROOF OF THEOREM 6.1. Assume there exists a strictly positive operator 
Z on H such that ZA + A* Z is strictly negative. Choose 0 > 0 in such a way that (1) 
holds with A replaced by Z. On H we introduce a new inner product [.,.] by setting 

[x, y] = (Zx, y) (x,y E H). 

Let 111·111 be the corresponding norm. Note that 

(2) 

Thus the original norm II . II and the new norm III . III are equivalent. In particular, H 
endowed with [., .J is again a Hilbert space. It follows that A is a bounded linear operator 
on H endowed with the new III· III. By A# we denote the adjoint of A with respect to 
the inner product [., .]. For x and yin H we have 

[Ax, y] = (ZAx, y) = (x, A* Zy) 

[x, A#y] = (Zx, A#Y) = (x, ZA#y). 

We conclude that ZA# = A* Z. Thus 

[(A + A#)x, x] = (ZAx, x) + (ZA#x, x) 
= ((ZA+A*Z)x,x). 

According to our hypotheses ZA + A* Z is strictly negative. Now use that 11·11 and 111·111 
are equivalent norms. It follows that A + A# is also strictly negative. But then we can 
apply Lemma 6.2 to show that ?RO"(A) < O. 

To prove the converse, assume that ?RO"(A) < o. Then O"(A) and O"(A*) 
are both in the open half plane ?RA < 0, and Theorem 5.5 tells us that the equation 
ZA + A* Z = -21 has a unique solution, namely 

(3) 

00 

Z: = 2 J etA" etAdt. 

o 

Since -21 is strictly negative, it suffices to show that Z (defined by (3)) is strictly 
positive. From (etA )* = etA" it is clear that etA" etA is selfadjoint, and hence 

00 00 

(4) (Zx, x) = 2 J (etA" etAx, x}dt = 2 J lIetA xll2dt. 

o 0 
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For t ::::: 0 we have 

and thus 

IIxll = Ile-tAetAxll ::; lIe-tAlilietAxll 

::; etilA/llietAxll, 

1.6 LYAPUNOV'S THEOREM 

(x E H, t ::::: 0). 

By inserting the latter inequality in (4) one sees that 

00 

(Zx, x) ::::: 2 J e-2t/lA/lllxll2 = (II~II) IIx1l 2 . 

o 

Thus Z is strictly positive. 0 

Let A be an operator on a Hilbert space H with spectrum in 1Jt>. < 0, and let 
y: [0,00) -+ H be a solution of the differential equation 

y'(t) = Ay(t), 0::; t < 00. 

Then we know (see the previous section) that 

t::::: 0, 

for some positive constants C and e. Lyapunov's theorem allows us to say a bit more 
about the behaviour of the function y, namely, there exists e > 0 and an equivalent norm 
III· III on H such that eetllly(t)1II is decreasing as a function of t. In fact, e > 0 and III . III 
may be taken as follows: 

III x III: = (Zx, x)1/2, ((ZA + A* Z)x, x) ::; -ellxl12 (x E H), 

where Z is a strictly positive operator with the property described in Theorem 6.1. The 
proof of Lemma 6.2 and the first part of the proof of Theorem 6.1 show that with this 
choice of e and III . III the function eet IlIy( t) III is decreasing indeed. 



CHAPTER II 

EIGENVALUES OF FINITE TYPE 

The results of the previous chapter are developed further for the case when 
the operator has isolated eigenvalues with properties of the same type as eigenvalues of 
finite matrices. The problem of completeness of eigenvectors and generalized eigenvectors 
appears in a natural way. The results are applied to compact operators. This chapter 
also contains limit theorems for spectra and the infinite dimensional version of Schur's 
lemma about triangular forms. 

ILl DEFINITION AND MAIN PROPERTIES 

In this section A is a bounded linear operator acting on a Banach space X. 
Let a be an isolated part of a(A). We are interested in conditions which guarantee that 
the corresponding Riesz projection Pu has finite rank. For this purpose we need the 
following definition. A point '>'0 E a(A) is called an eigenvalue of finite type if the space 
X admits a direct sum decomposition, X = M EB L, with the following properties: 

(E1) M and L are A-invariant subspaces, 

(E2) dimM < 00, 

(E3) a(AIM) = {Ao}, '>'0 fI. a(AIL). 

Since the spectrum of an operator acting on a finite dimensional space consists of eigen
values only, conditions (E2) and (E3) imply that '>'0 is an eigenvalue of AIM and hence 
also of A. 

An operator may have eigenvalues which are not of finite type. For example, 
let S:i!.2 -+ i!.2 be the backwards shift of i!.2, i.e., S(01,02,03,"') = (02,03,04, ... )' 
Then each'>' in the open unit disc is an eigenvalue of S. Indeed, 

S(1,.>.,.>.2, ... ) = '>'(1,.>.,.>.2, ... ), 1'>'1 < 1. 

But none of these eigenvalues are of finite type, because (as follows from the next theorem) 
eigenvalues of finite type are isolated points in the spectrum. 

THEOREM 1.1. A point '>'0 in a(A) is an eigenvalue of finite type if and 
onl? if '>'0 is an isolated point in a( A) and the corresponding Riesz projection p{.\o} has 
fimte rank. 

PROOF. Note that '>'0 is an isolated point of a(A) means that the set {Ao} is 
an isolated part of a(A). Now let '>'0 be such a point, and assume that the corresponding 
Riesz projection p{.\o} has finite rank. Put M = ImPpo } and L = Ker p{.\o}' Then 
Theorem 1.2.2 tells us that X = M EB L and the properties (Ed, (E2) and (E3) hold. 
Thus AO is an eigenvalue of finite type. 

Conversely, assume '>'0 is an eigenvalue of A of finite type. So X admits a 
direct sum decomposition, X = M EB L, with the properties (E1)' (E2) and (E3). Apply 
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Proposition 1.2.4. It follows that O'(A) = {Ao} UO'(AIL). Since'\o f/:. O'(AIL), we conclude 
that '\0 is an isolated point of O'(A) and M = ImP{,xo}' But dimM < 00. So ppo} has 
finite rank. 0 

Let '\0 be an eigenvalue of A of finite type, and let X = M EB L be a direct sum 
decomposition with the properties (El), (E2) and (E3). From Proposition 1.2.4 it follows 
that M and L are uniquely determined. In fact, M = ImP{,xo} and L = KerPpo}' The 
dimension of the space M will be called the algebraic multiplicity of the eigenvalue '\0 
and is denoted by m('\o; A). In other words, 

(1) 

The geometric multiplicity of '\0 as an eigenvalue of A is, by definition, equal 
to dimKer(,\o - A). 

COROLLARY 1.2. Let 0' be an isolated part of O'(A). Then the correspond
ing Riesz projection Pu has finite rank if and only if 0' consists of a finite number of 
eigenvalues of A of finite type. Furthermore, in that case 

(2) rankPu = L m(,\; A). 
,xEu 

PROOF. The space M: = ImPu is an A-invarian,t subspace of X and 
O'(AIM) = 0'. Assume rankPu is finite. Then we know from Linear Algebra that O'(AIM) 
consists of a finite number of eigenvalues, say '\1,' .. ,'\r, and M admits a direct sum de
composition M = Ml EB M2 EB ... EB Mr such that AMj C Mj and O'(AIMj) = {Aj} 
for j = 1, ... , r. Now put Lj = Ml EB ... EB Mj-l EB ... EB Mj+1 EB Mr EB Ker Pu. Then 
X = Mj EB Lj and the conditions (El), (E2) and (E3) are fulfilled. It follows that 0' 

consists of a finite number of eigenvalues of finite type. 

To prove the converse, assume 0' = {'\l, ... ,'\r}, where '\l"",'\r are (differ
ent) eigenvalues of A of finite type. Then (cf. Corollary 1.2.3) 

ImPu = ImP{,xd EB··· EB ImPpr}' 

Hence rank Pu = I:J=l rank Ppj} = I:J=l m(,\j; A) < 00. 0 

The next theorem describes the behaviour of the resolvent in a neighbourhood 
of an eigenvalue of finite type. 

THEOREM 1.3. Let'\o be an eigenvalue of A of finite type. Then the 
resolvent (,\ - A)-l admits at '\0 an expansion of the following type: 

00 

(3) (,\ - A)-l = L (,\ - '\ot Bv 
v=-q 

where B_1, ... , B_q are operators of finite rank. Here q s: m('\o; A) and the series in 
(3) converges in the operator norm for all ,\ in some punctured disc 0 < 1,\ - '\01 < E. 

PROOF. Put M = ImP{,xo} and L = Ker p{,xo}' Then X = M EB Land 
relative to this direct sum decomposition ,\ - A admits the following 2 x 2 operator matrix 
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representation: 

A _ A = [ A -OAI 0 ] 
A - A2 ' 

where Al = AIM and A2 = AIL. Since AO is an isolated point of O"(A), it follows that 
for some 8 > 0 

(4) (A-A)-I = [(A-Aol)-1 0 ] 
(A - A2)-1 ' o < IA - AO I < 8. 

Note that Al acts on a finite dimensional space and Al has precisely one point in its 
spectrum, namely AO' So M has a basis such that the matrix of Al relative to this basis 
has a Jordan normal form with AO on the main diagonal. Consider the following single 
m X m Jordan block: 

As is well-known 

1 
AO 1 

(A - AO)-2 
(A - Ao)-l 

1 l· 
AO 

(A-AO)-m 1 
(A - A~)-m+l . 

(A-Ao)-I 

But then we may conclude that 

q 

(5) (A - AI)-l = 2:)A - Ao)-j(Al - Aoi-I , 
j=l 

where q ~ dimM = m(Ao; A). Next, recall that AO ~ O"(AIL). Thus AO -A2 is invertible, 
and hence 

00 

(6) (A - A2)-1 = L -(A - Aot(A2 - Ao)-v-l 
v=o 

for IA - Aol < II(AO - A2)-11l-1. From (4), (5) and (6) it is now clear that (3) holds 
provided we define 

Bv = [~ -(A2 _ °AO)-V-l ] , v = 0,1,2, . ... 
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Note that the operators B_l. . .. , B_q are of finite rank. 0 

Let AO be an isolated point in u(A). Then (with arguments similar to the 
ones used in the proof of Theorem 1.3) it can be shown that the resolvent (A - A)-l 
admits the following expansion: 

00 
(7) (A - A)-l = L (A - AO}" B" 

"=-00 

in some punctured disc 0 < IA - Aol < e. Note that in this expansion the coefficient B-1 
is precisely the lliesz projection pP.o}' Thus if (7) holds and rank B-1 < 00, then AO is 
an eigenvalue of finite type. Furthermore, in that case B" = 0 for v < -m(Ao; A). 

11.2 JORDAN CHAINS 

Let A: X -+ X be an operator acting on the Banach space X, and let AO be 
an eigenvalue of A. An ordered set {Xo, xl, ... , Xr-l} in X is called a Jordan chain of 
A at AO if Xo f 0 and 

(1) Axo = AOXO, AXj = AOXj + Xj-l (j = 1, ... , r - 1). 

Note that the first vector in a Jordan chain is an eigenvector of A. The elements 
Xl. . .. , Xr-l in (1) are called generalized eigenvectors of A. 

Jordan chains may be characterized in the following way. Let xo, ... , Xr-l be 
vectors in X. Then {xo, ... , xr-d is a Jordan chain of A at AO if and only if the vectors 
xo,· .. , Xr-l are linearly independent, the space Mo = span{xo, ... , xr-d is invariant 
under A, and the matrix AIMo relative to the basis xo, . .. , Xr-l is a single Jordan block 
with AO on the main diagonal, i.e., with respect to xo, .. ·, Xr-l 

AO 1 
AO 1 

matrix(AIMo) = 
1 

AO 

PROPOSITION 2.1. If AO is an eigenvalue of finite type, then ImPp.o} has 
a basis of eigenvectors and generalized eigenvectors. 

PROOF. The space M = 1m pP.o} is finite dimensional and A-invariant. 
Thus M has a basis such that relative to this basis the matrix of AIM has a Jordan normal 
form. It follows that the basis elements are eigenvectors or generalized eigenvectors of 
A. 0 

PROPOSITION 2.2. The vectors xo, .. . , Xr-l form a Jordan chain of A at 
AO if and only if Xo f 0 and 

(2) 
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satisfies the differential equation y'(t) = Ay(t), -00 < t < 00. 

PROOF. Assume xo, ... , Xr-l form a Jordan chain for A at Ao. Then for A 
in the resolvent set of A 

(3) j = O, ... ,r-1. 

Take a Cauchy contour r around the spectrum of A. One computes that 

According to Lemma 1.5.1 this implies that y(.) is a solution of y'(t) = Ay(t), -00 < t 
< 00. 

Next, assume that the function y(.) given by (2) satisfies the differential 
equation y'(t) = Ay(t), -00 < t < 00. Then 

(A - Ao)y(t) = y'(t) - AOy(t) 
r-2 

~ t~ 1 . = e 0 L...J -;-;tJ x r_2_j. 
j=o J. 

It follows that (A - AO)XO = 0 and (A - AO)Xj = Xj-l for j = 1, ... , r - 1. Thus 
xo,··., Xr-l is a Jordan chain. 0 

Solutions of y'(t) = Ay(t), -00 < t < 00, of the form (2) are called ele
mentary solutions. Note that the elementary solutions are precisely those solutions for 
which the initial value at 0 is an eigenvector or generalized eigenvector. If the initial 
value is a linear combination of eigenvectors and generalized eigenvectors (corresponding 
to possibly different eigenvalues), then obviously the solution is a linear combination of 
elementary solutions. Thus, if the linear span of all eigenvectors and generalized eigen
vectors of A is dense in the space X, then any solution of y'(t) = Ay(t), -00 < t < 00, 

can be approximated uniformly on finite intervals by linear combinations of elementary 
solutions. From these observations the importance of the completeness of eigenvectors 
and generalized eigenvectors is apparent. Completeness is also important if one wants 
to calculate f( A) for functions f different from et . For compact operators the prob
lem of completeness (i.e., under what conditions is the linear span of eigenvectors and 
generalized eigenvectors dense) is one of the main topics of Part II of the present book. 

Let AO be an eigenvalue of A of finite type, and let {XO, Xl, ... , Xr-l} be a 
Jordan chain of A at AO. Then (3) holds. Take a Cauchy contour r around AO which 
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separates AO from u(A)\i"-o}. By integrating (3) over r one sees that pPo}Xj = Xj 
for j = 0, ... ,r - 1. It follows (cf. Proposition 2.1) that ImP{Ao} is precisely the space 
spanned by all eigenvectors and generalized eigenvectors of A corresponding to Ao. For 
this reason 1m ppo} is often called the generalized eigen8pace of A corresponding to the 
eigenvalue Ao. Note that the generalized eigenspace of A corresponding to AO is equal to 
Ker(Ao - Al for any r 2: m(AO; A). 

II.3 EIGENVALUES OF COMPACT OPERATORS 

THEOREM 3.1. Let A be a compact operator on a Banach 8pace, and let 
u· be an i80lated part of u(A). If 0 doe8 not belong to 17, then the corre8ponding Rie8z 
projection Pu has finite rank. 

PROOF. Let r be a Cauchy contour around 17 which separates 17 from 
u(A)\u. Since 0 rt 17, we may assume without loss of generality that 0 belongs to 
the outer domain of r. It follows that 

Thus Pu is compact. Since Pu is a projection, this implies that rankPu is finite. 0 

COROLLARY 3.2. Any non-zero point in the 8pectrum of a compact operator 
i8 an eigenvalue of finite type. 

PROOF. Let AO be a non-zero point in the spectrum of the compact operator 
A. From [GG], Section XI.6 we already know that AO is an isolated point in u(A). (Let us 
remark that in [GG] the latter statement is proved under a certain additional restriction 
on A; a general proof will be given in Section XI.8 of the chapter on Fredholm operators.) 
According to Theorem 3.1 the operator ppo} has finite rank. Thus by Theorem 1.1 the 
point AO is an eigenvalue of finite type. 0 

In the remaining part of this section A is a compact operator acting on a 
separable Hilbert space H. We know now that the non-zero part of the spectrum of A is 
a finite or countable set of eigenvalues of finite type. This set can only accumulate at O. 
In what follows 

(1) 

denotes the (finite or infinite) sequence of non-zero eigenvalues of A with the following 
convention: 
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(i) each non-zero eigenvalue of A appears in the sequence (1) as many times as the 
value of its algebraic multiplicity, 

(ii) the eigenvalues are ordered according to decreasing absolute value, i.e., 1)'I(A)1 ~ 
1)'2(A)1 ~ 1)'3(A)1 ~ .... 

The following lemma is known as the lemma of Schur. 

LEMMA 3.3. Let A be a compact operator on a Hilbert space H, and let 
EA denote the smallest closed linear manifold of H containing all the eigenvectors and 
generalized eigenvectors of A corresponding to non-zero eigenvalues. In EA there exists 
an orthonormal basis <PI, <P2, . •• such that for j = 1,2, ... 

(2) 

PROOF. Let ttl, tt2, ... be the different non-zero eigenvalues of A. Assume 
Ittll ~ Itt21 ~ ... , and let mj be the algebraic multiplicity of ttj. Obviously, 

EA = span{ImP{Pi} I j = 1,2, ... }. 

In 1m P{Pi} we choose a basis Wjl, .•. ,Wjmj such that the matrix of AI 1m P{Pi} relative 
to this basis has a Jordan normal form. This is done for each j. Consider the set 

Then V is linearly independent set of vectors and EA = spanV. Now apply the 
Gram-Schmidt orthonormalization procedure to V. The resulting orthonormal system 
<PI. <P2,· .• has the desired properties. 0 

In the special case that E A = H the lemma of Schur shows that H has an 
orthonormal basis <PI, <P2, •.. such that the matrix of A with respect to this basis is an 
upper triangular matrix with non-zero diagonal elements. 

In general we may write H = EA EB EX. Let us consider the 2 x 2 operator 
matrix of A relative to the decomposition H = EA EB EX. Since EA is invariant under 
A, the element in the left lower corner is the zero operator. Thus 

(3) A = [AOll A 12].E E.L E E.L A22 . A EB A ~ A EB A· 

LEMMA 3.4. The operator A22 in (3) is a compact operator and C7(A22) has 
no non-zero elements. 

PROOF. Let Q be the orthogonal projection of H onto EX. Then A22X = 
QAx for each x E EX. Since A is compact, it follows that the same is true for A22. 
Assume that tt is a non-zero element in C7(A22)' Then JI is a non-zero element in C7(Ah), 
and hence JI is an eigenvalue of A 22 . Let Xo =f. 0 in Ei be a corresponding eigenvector. 

From AEA C EA it follows that A*Ei C Ei, and hence Ah = A* I EX. But then 
A*xo = JIxo, and we conclude that 

(4) 
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On the other hand ImP{I'}(A) C EA. So we can apply Proposition 1.2.5 to show that 

EX C (ImP{I'}(A)).L = KerP{I'}(A)* 

= Ker Pn,} (A*), 

which contradicts (4). Thus U(A22) has no non-zero elements. 0 

A compact operator whose spectrum consists of the zero element only is called 
a Volterra operator. To study such operators one cannot use the functional calculus of 
Section 1.3, but one needs more advanced methods. In Part II we shall develop some 
of these more advanced methods. Note that the system of eigenvectors and generalized 
eigenvectors of A is complete if, for example, dimEi < 00 or the Volterra operator A22 
in (3) is the zero operator. 

11.4 CONTINUITY OF SPECTRA AND EIGENVALUES 

Let A: X -+ X be a bounded linear operator acting on the Banach space X. 
In this section we describe what happens to the spectrum or parts of the spectrum of A 
if the operator A is subjected to a small perturbation. 

THEOREM 4.1. Let n be an open neighbourhood of u(A). Then there exi3ts 
e > 0 such that u(B) en for any operator B on X with IIA - BII < e. 

PROOF. Choose a Cauchy contour r in n around u(A). Put 

(1) 'Y = min{II(A - A)-l 11-1 I A E r}. 

Assume that IIA - BII :5 h. Then 

(2) A E r. 

Since A - A is invertible for A E r, we can apply Corollary 11.8.2 in [GG] to show that 
u(B) n r = 0 and 

II(A - A)-l _ (A _ B)-III < II(A - A)-11l2I1A - BII 
- l-II(A - A)-IIlIlA - BII 

:5 211(A - A)-11l2I1A - BII, A E r. 

Let P be the Riesz projection corresponding to the part of u(B) inside r. Then 

III - PII = 112~i f[(A - A)-l - (A - B)-I]dAIl 
r 

:5 2~ f II(A - A)-l - (A - B)-llidA 
r 

:5 CIIA- BII, 
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where 

(3) C = ~ J 11(>' - A)-l II 2 d>' < 00. 

r 

Now, put e = min{ h, (C + I)-I} and take IIA - BII < e. Then III - PII < 1. But 1- P 
is a projection, and thus I -P = O. Note that I -P is the Riesz projection corresponding 
to the part of O"(B) outside r. Since 1- P = 0, it follows that O"(B) is inside r, and 
hence 0"( B) C n. 0 

The next theorem concerns the behaviour of the eigenvalues of finite type 
under small perturbations. 

THEOREM 4.2. Let 0" be a finite set of eigenvalues of A of finite type, and 
let r be a contour around 0" which separates 0" from O"(A)\O". Then there exists e > 0 such 
that for any operator B on X with IIA - BII < e the following holds true: O"(B) n r = 0, 
the part of O"(B) inside r is a finite set of eigenvalues of finite type and 

(4) 'E m(>.;B) = 'E m(>.;A). 
A inside r A inside r 

To prove Theorem 4.2 we use the following lemma (due to B. Sz-Nagy [1,2]). 

LEMMA 4.3. Let P and Q be projections of the Banach space X. If IIP
QII < 1, then 

(5) X = Ker P Ef) ImQ, X = ImP Ef) KerQ. 

Furthermore, P and Q have the same rank. 

PROOF. Our assumption implies that the operators S: = 1- P + Q and 
T: = 1- Q + P are invertible. Take x E X, and put y = S-lx. Then x = Sy = (1-
P)y+Qy E KerP+ImQ. Furthermore, if z E KerPnImQ, then Tz = z-Qz+Pz = 0, 
and hence z = O. This proves the first identity in (5). By interchanging the roles of P 
and Q one obtains the second identity in (5). 0 

PROOF OF THEOREM 4.2. Put e = minai, (C + I)-I}, where the con
stants I and C are defined as in (1) and (3), respectively. Since e ~ !/, one can use 
the same arguments as in the proof of Theorem 4.1 to show that O"(B) n r = 0. Let P 
(resp. Q) be the Riesz projection corresponding to the part of O"(A) (resp. O"(B» inside 
r. Then P = Pu has finite rank (Corollary 1.2) and (see the proof of Theorem 4.1) 

liP - QII ~ CIIA - BII < 1. 

Now apply Lemma 4.3. We obtain rank Q = rank P < 00. But then we can use Corollary 
1.2 to finish the proof. 0 

COROLLARY 4.4. The limit in the operator norm of a sequence of Volterra 
operators is again a Volterra operator. 

PROOF. Let AI, A2, ... be a sequence of Volterra operators on the Banach 
space X, and assume that the sequence converges in the operator norm to the bounded 
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linear operator A. Thus IIAn - All -+ 0 for n -+ 00. Then A is compact (cf. [GG], 
Theorem II.14.3). We want to show that <T(A) consists ofthe zero element only. Suppose 
not, and let 0 f:. A E <T(A). Then A is an eigenvalue of finite type for A. Choose a circle 
in the resolvent set of A with centre at A and radius r < IAI such that A is the only point 
of <T(A) inside r. Now apply Theorem 4.2. So for n sufficiently large the operator An 
must have an eigenvalue of finite type inside r. Since An is Volterra and 0 is not inside 
r, this is impossible. Thus A is Volterra. 0 

If we drop the compactness condition on the operators in Corollary 4.4, then 
the statement does not remain true. More precisely, one can construct (see Rickart [1], 
page 282) a sequence AI, A2 , ..• of bounded linear operators on a Hilbert space H, which 
converges in the operator norm to an operator A, such that <T(An) = {O} for n = 1,2, ... 
and <T(A) contains non-zero elements. 

COROLLARY 4.5. A Volterra operator on a Hilb~rt space is the limit in the 
operator norm of a sequence of finite rank Volterra operators. . 

PROOF. Let A be a Volterra operator on a Hilbert space H. Thus A is 
compact and A has no non-zero elements in the spectrum. Since A is compact and acts on 
a Hilbert space, there exists (see [GG], Theorem VIII.4.2) a sequence A1 ,A2, ... of finite 
rank operators such that IIAn - All -+ 0 (n -+ (0). Let En be the closed linear manifold 
in H containing all the eigenvectors and generalized eigenvectors of An corresponding 
to non-zero eigenvalues. Obviously, dim En < 00. Relative to the decomposition H = 
En EB E;- the operator An admits a 2 x 2 operator matrix representation, namely 

[ 
A(n) 

An = 11 
o 

A(n) ] 12 
A(n) . 

22 

From Lemma 3.3 we know that the space En has an orthonormal basis cpin), . .. ,cp~~) 
such that the matrix of Al~) relative to this basis has the following upper triangular 
form: 

A(n) 1 12 
A(n) . 

22 

Since dim En < 00, the operator An - Vn has finite rank, and hence Vn = An - (An - Vn) 

is a finite rank operator. According to Lemma 3.4 the operator A~~) has no non-zero 

eigenvalues. By construction the same is true for Al~) - Dn. Hence Vn has no non-zero 
eigenvalues, and thus Vn is a finite rank Volterra operator. It remains to show that 

(6) IIAn - Vnll = IIDnll = m~ IAj(A)1 -+ 0 
} 

(n -+ (0). 
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To prove (6), take n = fA E ell)'1 < 8}, where 8 is some positive number. 
Note that <Y(A) = {O} en. According to Theorem 4.1 this implies that there exists an 
integer N such that <Y(An) C n for n 2:: N. So for each j we have l),j(An)1 < 8 whenever 
n 2:: N. This proves (6). 0 



CHAPTER III 

ANALYTIC EQUIVALENCE 

In this chapter we study a concept of equivalence which allows one to com
pare spectra and spectral properties of different operators with the aim to find their 
similarities. Local and global aspects of the equivalence concept are studied separately. 
Equivalence is also used for the analysis of operators which depend analytically (and not 
necessarily linearly) on the spectral parameter. 

III.1 A FIRST EXAMPLE 

The type of equivalence studied in this chapter has its origins in the theory 
of differential equations. Consider the n-th order equation: 

(1) c,o(n)(t) + An_lc,o(n-l)(t) + ... + Aoc,o(t) = 0, 

where Ao, . .. ,An- 1 are operators acting on a Banach space X and c,o is an X -valued 
function on R. The usual way to deal with the equation (1) is to replace it by the 
following linear system: 

d 
dtc,on-l(t) - c,on(t) = 0, 

d 
dt c,on(t) + AOc,ol(t) + ... + An-1c,on(t) = 0, 

which can be written in the form 

(2) 

with 

(3) 

IX 
o 

! q;(t) = Cq;(t), 

° Ix 
o 1 o 

Ix ' 
-An - 1 

The operator C acts as a bounded linear operator on the space xn (the direct sum of 
n copies of X) and q; is an Xn-valued function. Equations (1) and (2) are equivalent in 
the following sense: If c,o is a solution of (1), then q; with c,oi = c,o(j-I), j = 1, ... ,n, is a 
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solution of (2), and, conversely, if c} is a solution of (2), then <P = <PI is a solution of (1). 
It follows (cf. Section 1.5) that the general solution of (1) is given by 

<pet) = QetC.", 

where." is an arbitrary vector in xn and Q assigns to a vector in xn its first X
component, i.e., 

Q=[I 0 O]:xn --+ x. 
The equivalence between (1) and its linearized version (2) can be made more 

explicit in the following way. Let L(A) be the monic operator polynomial 

L(A) = An 1+ An- l An-I + ... + Ao. 

Then the following identity holds true 

(4) [ 

L(A) 
Ix ... 1 = F(A)(AIxn - C)E(A), 

Ix 

Here C is given by the first equality in (3) and 

[ Ix J' AIx Ix 
E(A) = : 

An-IIX An- 2IX 

[ Bn_.(A) B n-2(A) Bo~A) I -Ix 0 
F(A) = -Ix o , 

-Ix 0 

with BO(A) = Ix and B v+1(A) = ABv(A) + An-I-v for v = 0,1, ... , n - 2. From the 
lower triangular form of E(A) it is evident that E(A) is an invertible operator on xn. 
A cyclic permutation of the columns transforms F( A) into an upper triangular operator 
matrix with Ix or -Ix on the main diagonal. Hence also F(A) is an invertible operator 
on xn. Furthermore, E(A), F(A) and their inverses E(A)-I, F(A)-l are polynomials in 
A. In particular, all these operators depend analytically on the variable A. It is this type 
of analytic equivalence which forms the main topic of this chapter. 

111.2 GLOBAL EQUIVALENCE 

Let n be an open set in C, and for each A in n let T(A): Xl --+ YI and 
SeA): X2 --+ Y2 be bounded linear operators which act between (complex) Banach spaces. 
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The operator functions T(·) and SO are called (globally) equivalent on n if there exist 
operator functions E: n _ C(Xl,X2) and F: n - C(Y2, Yd, which are analytic on n, 
such that 

(La) T('\) = F('\)S('\)E('\), ,\ E n, 

and, in addition, E('\) and F('\) are invertible for each ,\ E n. In that case also 

(lob) '\En 

and the operator functions EO- I and F(·)-I are again analytic on n. Formula (4) in 
the previous section provides a first example of global equivalence. The next example 
describes another context in which this notion appears. 

Let A: X _ Y and B: Y _ X be operators acting between Banach spaces. 
Then the operator functions T('\) = ('\Iy - AB) EEl Ix and S(,\) = (Ux - BA) EEl Iy are 
globally equivalent on C\{O}. In fact, 

(2) [ Uy - AB 0] = F('\) [ Ux - BA 0] E('\), 
o IX 0 Iy 

where 

E('\) = [ _,\-IB ,\-IIX] , 
>..Iy-AB A 

From the equivalence in (2) it follows that ,\ -:f:. 0 belongs to u(AB) if and only if ,\ 
belongs to u(BA). In other words: 

(3) u(AB)\ {O} = u(BA)\ {O}. 

Later (e.g., in the next section and in Corollary VII.6.2) we shall see that the equivalence 
in (2) implies that several other spectral characteristics of AB and BA are the same. 

Given an operator function T: n - C(X, Y) and a Banach space Z, we call 
the operator function 

[ T(·) 0] o Iz: n - C(X EEl Z, Y EEl Z) 

the Z-extension of T(·). According to formula (4) in the previous section a suitable 
extension of a monic operator polynomial is equivalent on C to a linear function. The 
next theorem gives another example of linearization by extension and equivalence. 

THEOREM 2.1. Let r be a Cauchy contour around 0 in C, and let T(·) be 
an operator junction, which is analytic on the inner domain n of r, continuous on n u r 
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and wh03e value3 are operator3 on the Banach 3pace X. Denote by G(r,X) the Banach 
3pace of all X -valued continuOU3 function3 on r endowed with the 3upremum norm. Let 

Z = {f E C(r,x)11 ~f(C)d( = o}, 
r 

and define A on G(r,X) by 3etting 

(4) (AJ)(z) = zf(z) - ~ 1[1 -T(c)lf(C)d(, 
27rZ 

z E r. 
r 

Then the Z-exten3ion of T(A) i3 equivalent on n to A-A. 

PROOF. Let T:X _ G(r, X) be the canonical embedding, i.e., T(X)(Z) = x 
for each z E r and x EX. Furthermore, define w: G(r,X) - X by 

1 11 wf = 27ri ,f«()d(. 
r 

Obviously, WT = Ix and P:= TW is a projection of G(r,X) with KerP = Z. Let 
J:XffJZ - G(r,X) be given by J(x,g) = TX+g. Then J is invertible and J-lf = 
(wf, (I - P)f). 

Next, consider on G(r,X) the following two auxiliary operators: 

(VJ)(z) = zf(z), (MJ)(z) = T(z)J(z), z E r. 

The set n is in the resolvent set of V. In fact, for each A E n we have 

(A - V)-l f)(z) = (A - z)-l fez), z E r. 

Since M. commutes with V, the operator M also commutes with (A - V)-l for each 
A E n. For oX E n we define: 

B(oX) = 1+ PV(A - V)-l - PV(A - V)-l M, 

E(oX) = (oX - V)-l J, 

F(oX) = J-l(I - PB(A)(I - P»). 

Obviously, E(A): X ffJ Z - G(r, X) and F(A): G(r, X) - X ffJ Z are invertible operators 
which depend analytically on the variable A in n. Note that A = V - PV + PV M. It 
follows that for oX E n 

F(A)(oX - A)E(A) = F(A)[I + PV(A - V)-l - PVM(A - V)-l]J 

= J-l[I - PB(oX)(I - P)]B(oX)J 

= J-l[B(A) - PB(oX)(I - P)B(oX)]J 

= J-l[B(oX) - PB(A)(I - P)]J 

= J-1pB(oX)PJ + J-l(I - P)J. 
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Now, use the Cauchy integral formula to show that B(>.)r = rT(>.). We conclude that 

F(>.)(>. - A)E(>.) = [T~>') I~]' >. E n, 

and the theorem is proved. 0 

It can be shown (see Gohberg-Kaashoek-Lay [2]) that the spectrum of the 
operator A defined by (4) is given by 

O"(A) = r u {>. E n I T(>.) not invertible}. 

The next theorem shows that for an operator function of the form >. - A 
the procedure of linearization by extension and equivalence does not simplify further the 
operator A and leads to operators that are similar to A. 

THEOREM 2.2. Let Al and A2 be operators acting on the Banach spaces Xl 
and X2, respectively, and suppose that for some Banach spaces ZI and Z2 the extensions 
(>.-Ar}EElIz1 and (>.-A2)EElIz2 are equivalent on some open set n containing O"(Adu 
0"(A2). Then Al and A2 are similar. In fact, if the equivalence is given by 

(5) >. E n, 

then SAl = A2S, where S:XI ~ X2 is an invertible operator defined by 

(6) 

and its inverse is equal to 

(7) 

Here r is the boundary of some bounded Cauchy domain ~ such that (O"( AI) u 0"( A 2 )) c 
~ c ~ c n; for i = 1,2 the map lI"i: Xi EEl Zi ~ Xi is the projection of Xi EEl Zi onto Xi 
and ri: Xi ~ Xi EEl Zi is the natural embedding of Xi into Xi EEl Zi. 

PROOF. From the equivalence (5) it follows that the integrands in (6) and 
(7) satisfy the following identities: 

(8) >. En, 

(9) 

Let the contour r be as in the theorem. Since the integrals 
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are equal to the zero operator, one computes that 

A2S = ~ j(A2 - A + A)(A - A2)-11l"2F(A)-lTldA 
211"t 

r 

= ~ j A(A - A2)-11l"2F(A)-lTldA 
211"t 

r 

= ~ j A1I"2E(A)Tl(A - Al)-ldA 
211"t 

r 

= ~ j 1I"2E(A)Tl(A - Al + AI)(A - Al)-ldA 
211"t 

r 

= (2~i j 1I"2E(A)TI(A - A1)-ldA )AI = SAl. 
r 
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Let T be the operator defined by the right hand side of (7). It remains to show 
that TS and ST are identity operators. To do this we shall use the resolvent equation 
(cf. formula (2) in Section 1.2) and the fact that the operators 

(10) 

(11) 

depend analytically on A in O. To see that the function in (10) is analytic on 0 we 
employ the equivalence (5). First we take the inverses of the left hand side and the right 
hand side of (5). Next we multiply both sides from the left by T1 and from the right by 
11"1. This shows that 

(A - At}-I = 1I"1 E (A)-1 [ (A - ~2)-1 I~2] F(A)-lTb 

for A E O\{a(A1) U a(A2)}. It follows that for such A the expression in (10) is equal to 

1I"1E(A)-1 [~ I~2] F(A)-l T1 . 

Since EO-l and FO-I are analytic on 0, we see that (10) extends to a function which 
is analytic on O. Now, let r1 and r2 be contours with the same properties as r, and 
assume that rl is in the inner domain of r2. Then, by (8) and (9), 

ST= (2~i)2 j j 1I"2E(A)rl(A-Al)-1(JL-Al)-17r1F(JL)T2dJLdA 
r1 r2 

= (2~i) 2 j j 7r2E(A)Tl(JL - A)-l[(A - Al)-l - (I' - Al)-lj7rlF(JL)T2dJLdA 
r 1 r 2 

=A-B, 
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where 
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A= (2~i)2 I 17I"2E (A)TI(JL-A)-I(A-AI)-17l"IF(JL)T2 dJLdA 
r 1 r 2 

= ~ 17I"2E (A)TI(A - AI)-l (~/(JL - A)-17l"IF(JL)T2 dJL)dA 
271"1 271"1 

r 1 ra 

1 I -= 271"i 7I"2 E (A)TI(A - AI) 11rIF(A)T2dA 
r 1 

= 2~i ICA - A2)-ldA = [X2 i 

r 1 

B = (2~J 2 I I 7I"2 E (A)TI(JL - A)-I(JL - AI)-17l"IF(JL)T2dJLdA 
r1 r2 

= ~ I (~/(JL - A)-17l"2E (A)Tl dA)(JL - AI )-17l"IF(JL)T2dJL 
271"1 271"1 

r 2 r 1 

=0. 

The last equality follows from the fact that JL is not in the inner domain of rl and hence 
(JL - .)-17l"2E(')TI is analytic on r l and its inner domain. We have now proved that 
ST = [X2' In a similar way, using the analyticity of (10) instead of (11), one obtains 
TS= [Xl' 0 

For linear functions A - Al and A - A2 global equivalence on C means just 
that Al and A2 are similar. This follows from the next corollary. 

COROLLARY 2.3. Two operators Al and A2 are similar if and only if 
A - Al and A - A2 are equivalent on some open set containing U(AI) and U(A2). 

PROOF. If Al and A2 are similar, then, obviously, A - Al and A - A2 are 
equivalent on C. Theorem 2.2 gives the reverse implication. 0 

111.3 LOCAL EQUIVALENCE 

Let n be an open set in C, and let T(·) and SO be operator functions defined 
on n. Given AO in n we say that T(·) and S(·) are (locally) equivalent at AO if there 
exists an open neighbourhood U of AO in n such that 

T(A) = F(A)S(A)E(A), A EU, 

where E(A) and F(A) are invertible operators which depend analytically on A in U. In 
other words, using the terminology of the previous section, the operator functions T(·) 
and S(·) are equivalent at AO if they are globally equivalent on an open neighbourhood 
of Ao. In what follows we shall be concerned mainly with the case when T(A) = A - Al 
and SeA) = A - A2 with Al and A2 bounded linear operators on a Banach space x. 
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THEOREM 3.1. Let>. - Al and>' - Az be equivalent at the point >'0, and 
assume that >'0 is an eigenvalue of finite type for AI. Then >'0 is an eigenvalue of finite 
type for Az and the restrictions All ImP{Ao}(Ad and A21 ImPpo}(A2) are similar. 

PROOF. For some open neighbourhood U of >'0 we have 

(1) >. E U. 

Here E(>.) and F(>.) are invertible operators on the Banach space X and E(·) and F(·) 
are analytic on U. According to our hypothesis >'0 is an isolated point in O"(AI). From 
(1) it follows that >'0 is also an isolated point in O"(Az ). For 1/ = 1,2 let Pv be the Riesz 
projection of Av corresponding to the part Po}. Write Av as a 2 X 2 operator matrix 
relative to the decomposition X = 1m Pv EB Ker Pv: 

A _ [AVI 0] 
v - 0 Av2 ' 1/=1,2. 

It remains to show that All and A21 are similar. 

Note that >'0 - AIZ and >'0 - A22 are invertible. So without loss of generality 
(replace U by a smaller neighbourhood if necessary) we may assume that>. - AIZ and 
>. - An are invertible for each>' in U. Define 

Fo(>') = [IrmoP2 (>'-~22)-I ]F(>'), >'EU. 

Then Eo(>') and Fo(>') are invertible for each>' E U and as functions Eoe-) and Foe-) are 
analytic on U. Furthermore, 

I 0 ] Eo(>') 
Ker PI 

for>. E U. Now, recall that O"(All) = O"(AZI) = Po}. Thus (>. - All) ffi IKer PI and 
(>. - A2I) EB IKer P 2 are (globally) equivalent on the open set U containing 0"( All) and 
O"(A21). But then we can apply Theorem 2.2 to show that All and A21 are similar. 0 

THEOREM 3.2. Let Al and Az be compact operators, and assume that 
>. - Al and>' - A2 are equivalent at each point of C. Then Al and Az are similar. 

PROOF. For some open neighbourhood U of 0 we have 

(2) >. - Az = F(>.)(>. - AdE(>'), >. E U. 

Here E(>.) and F(>.) are invertible operators on the Banach space X and EO and Fe-) 
are analytic on U. Let 0" be the part of the spectrum of Al outside U. We know that 
0" consists of a finite number of eigenvalues of finite type (Section II.3). Since>. - Al 
and>' - Az are equivalent at each point of C, the operators Al and A2 have the same 
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spectrum. It follows that the part of 0'(A2) outside U coincides with 0'. For v = 1,2 
let Pv be the lliesz projection of Av corresponding to 0'. Write Av as a 2 x 2 operator 
matrix relative to the decomposition X = Ker Pv Ef) 1m Pv: 

Av = [AOI A~2]' v = 1,2. 

From Theorem 3.1 we know that A12 and A22 are similar. It remains to prove that All 
and A21 are similar. 

Note that 0'(AI2) = 0'(A22) = 0'. Thus>. - A12 and>' - A22 are invertible for 
each>' in U. From (2) it follows that 

o ] = Fo(>') [ >. - Au 
11m P2 0 

[, 0 ] Eo(>'), 
1m Pl 

>. E U, 

where 

Eo(>') = [ lKeO P1 >. _OAI 2 ] E(>'), >. E U, 

Fo(>') = [ lKeO P2 (>. -122 )-1 ] F(>.), >. E U. 

So (>. - A21) Ef) 11m P2 and (>. - Au) Ef) 11m Pl are globally equivalent on U, and hence we 
can apply Theorem 2.2 to show that Au and A21 are similar. 0 

Note that in Theorem 3.2 it is not necessary to assume that both Al and A2 
are compact. In fact it suffices to assume that one of the operators is compact, and then 
the similarity implies that the other is also compact. 

The question whether or not Theorem 3.2 holds for arbitrary (not necessarily 
compact) bounded linear operators is an unsolved problem. 

If two operator functions T(·) and S(·) are globally equivalent on an open 
set n, then, obviously, T(.) and SO are (locally) equivalent at each point of n. For 
certain special classes of operator functions the converse statement is also true, however, 
in general, local equivalence at each point of n does not imply global equivalence on n 
(see Gohberg-Kaashoek-Lay [2], Leiterer [1], and Apostol [1] for further information). 
Note that the problem mentioned in the preceding paragraph can be phrased as follows: 
If >. - Al and>' - A2 are locally equivalent at each point of C, does it follow that>. - Al 
and >. - A2 are globally equivalent on C? 

III.4 MATRICIAL COUPLING AND EQUIVALENCE 

In this section we present a general method to obtain equivalence. This 
method is based on the notion of matricial coupling of operators which is defined as 
follows. Two operators T: Xl -+ Zl and S: Z2 -+ X 2, acting between Banach spaces, are 
said to be matricially coupled if they are related in the following way: 

(1) 
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More precisely, this means that one can construct an invertible 2 x 2 operator matrix 

(2) 

with All = T, such that its inverse is given by 

(3) 

where B22 = S. The 2 x 2 operator matrices appearing in (2) and (3) are called the 
coupling matrices and we shall refer to (1) as the coupling relation. 

To give an example of matricially coupled operators, let A: X ~ Y and 
B: Y ~ X be operators acting between Banach spaces. Then the operators >.Iy - AB 
and >.Ix - BA are matricially coupled for each non-zero >.. In fact, 

(4) [ >.Iy - AB A ]-1 _ [.x-lIy 
-.x-IB .x-lIx - .x-IB -A ] 

>.Ix - BA ' 

The next theorem shows that a matricial coupling of T and S is of particular 
interest if one of the operators is more simple than the other. 

THEOREM 4.1. Assume T: Xl ~ Zl and S: Z2 ~ X 2 are matricially 
coupled operators, and let the coupling relation be given by 

(5) 

Then 

(6) 

A12 ] -1 = [ Bn 
A22 B2l 

B12 ] S . 

where E and F are invertible 2 x 2 operator matrices 

(7) E - [ A2l - T A22 ] 
A12 ' 

F = [ -A12 
IX2 

TBn] 
B2l ' 

(8) E-l _ [ B12 
- S Bll ] 

B21 ' 
p-l = [ -B2l 

IZr 
SA22 ] 
A12 . 

PROOF. By direct computation, using (5). 0 

Theorem 4.1 leads to a global equivalence theorem if the entries in (5) depend 
analytically on a parameter ).. Let n be an open set in C, and let 

(9) 



46 lIlA MATRICIAL COUPLING AND EQUIVALENCE 

be analytic operator-valued functions. We say that T(·) and S(-) are analytically matri
cially coupled on n if T(·) and S(·) are related in the following way: 

(10) >. E n, 

where the operators A12(>'), A21(>'), A22('>') (and hence also the operators Bn(>'), 
B12( >.), B21 (>.» depend analytically on the variable.>.. Formula (4) implies that the 
operator functions >.Iy - AB and >.Ix - BA are analytically matricially coupled on 
C\{O}. 

THEOREM 4.2. Assume that the analytic operator functions T(·) and S(·) 
in (9) are analytically matricially coupled. Then the X2 -extension of T(.) is globally 
equivalent on n to the ZI -extension of S(·). 

PROOF. Take>. E n. According to our hypothesis T(>.) and S(>') are 
matricially coupled. So we may apply Theorem 4.1. Since the entries of the coupling 
matrices in (10) depend analytically on the parameter .>., the same is true for the entries 
of the operator matrices E and F appearing in (7) and (8). Thus 

(11) [ T(>.) 0] = F('>') [ S(>') 
o IX2 0 

where E(·) and F(·) are analytic and for each>' En the operators E(.>.) and F(.>.) are 
invertible. This gives the desired result. 0 

The conditions of Theorem 4.2 are symmetric with respect to Aij and Bij 

appearing in the coupling relation (10), but the equivalence relation in (11) is not. In 
fact, under the conditions of Theorem 4.2 one can also prove another equivalence relation 
which shows that the Z2-extension of T(·) is globally equivalent on n to the Xl-extension 
of S(-). 

Note that the equivalence in formula (2) of Section III.2 may be obtained as 
a corollary of Theorem 4.1 and formula (4). 

Theorem 4.1 allows us to compare the invertibility properties of matricially 
coupled operators. The following corollary will be useful later (e.g., in Chapters IX and 
XIII). 

COROLLARY 4.3. Let T and S be matricially coupled operators, and let the 
coupling relation be given by 

(12) 

Then 

(13) 

(14) 

AI2 ] -1 = [ Bn 
A22 B21 

B12 ] S . 

KerT = {B1F I z E KerS}, KerS = {A21X I x E KerT}, 

ImT = {z E Zl I B2IZ ElmS}, ImS = {x E X21 A12X E ImT}, 
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(15) dim Ker T = dim Ker S, codim Im T = codim 1m S. 

Furthermore, the operator T is invertible if and only if S is invertible, and in that case 

(16) 

PROOF. Since T and S are matricially coupled, we may apply Theorem 4.l. 
The relation (6) implies 

[TO] -1 [S Ker 0 IX2 = E Ker 0 

which yields the first identity in (13). From (6) it also follows that Y E ImT if and only 
if 

[~] E FIm [~ I~l] = {[ -A~~Z: :::11Z1 ] IZI E ZI.Z2 E Z2}' 

The coupling relation (12) implies that A12B21 + T B11 = Iz1 • Thus Y E 1m T if and 
only if y = ZI with B21Z1 ElmS, which proves the first identity in (14). The second 
identities in (13) and (14) follow from the first by interchanging the roles of T and S. 
Formula (15) and the statement about invertibilityare direct consequences of formula 
(6). To get (16) note that 

(17) o ] = E-1 [S-1 
IX2 0 

Now compute the (1, I)-entry of the 2 x 2 operator matrix defined by the right hand side 
of (17). This gives the first identity in (16). The second is obtained by interchanging the 
roles of T and S. 0 

To illustrate the results of this section we show that the usual method of 
reducing the inversion of an operator I - K, with K finite rank, to that of a matrix (see 
[GG], Theorem lI.7.1) can be understood and made more precise in the present context. 
Assume that K:X -+ X is given by 

n 

Kx = L <Pj(x)Yj, x EX, 
j=1 

where Yl, ... , Yn are given vectors in the Banach space X and <PI, ... ,<Pn are continuous 
linear functionals on X. Define A: X -+ en and B: en -+ X by 

Ax = [ <Pl~X) 1 ' 
<pn( x) 

Note that G = AB acts on en and its matrix with respect to the standard basis of en 
is given by 
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Since K = BA, the operator functions )"Ix - K and )"In - G are analytically matricially 
coupled on C\{O} (cf. formula (4)). Here In is the identity on cn. It follows (Corollary 
4.3) that for)" i- 0 

( -1 1 1 )-1 )..Ix - K) = XIx + xB()..In - G A 

whenever det( )"In - G) i- o. Furthermore, the non-zero eigenvalues of K and G are the 
same, the corresponding multiplicities are equal and the relationship between the Jordan 
chains of K and G (which is not obvious) becomes transparent. 



CHAPTER IV 

LINEAR OPERATOR PENCILS 

In this chapter we study linear pencils >"G - A, where G and A are bounded 
linear operators acting between complex Banach spaces X and Y. The simplest example 
is the case when X = Y and G = I, the identity operator on X. This case was already 
considered in the previous chapters. H G is invertible, then spectral problems concerning 
the pencil >'G - A are easily reduced to those of >'1 - G-1 A. In this chapter we consider 
the more general case when G is not invertible, but we assume that the pencil is regular, 
i.e., for some >"0 E C the operator >'oG - A is invertible. The latter property allows us 
to write 

(1) >"G - A = (>. - >"o)(>'oG - A)[(>' - >'0)-1 1+ (>'oG - A)-1G]. 

From this expression it is already clear that the Riesz theory developed in Chapters I 
and II may be extended to regular pencils. In what follows we make this extension in a 
more preferable and direct way without using the identity (1). The results are applied 
to difference equations and parallel those of Chapter I. 

IV.1 SPECTRAL DECOMPOSITION 

By a linear operator pencil acting between X and Y (or on X if X = Y) 
we shall mean a linear operator polynomial >'G - A, where G: X -+ Y and A: X -+ Y 
are bounded linear operators acting between complex Banach spaces and >. is a complex 
variable. Often the words linear and operator will be omitted, and we shall just use the 
term pencil. 

The spectrum of the pencil >"G - A will be denoted by a( G, A) and is, by 
definition, the subset of the extended complex plane Coo = C U {oo} determined by 
the following properties. The point 00 E a(G, A) if and only if G is not invertible, and 
a( G, A) n C consists of all those >. E C for which >'G - A is not invertible. As for the 
case when X = Y and G = lone proves that a(G,A) is nonempty whenever X I- (0) 
or Y I- (0) (see the end of Section I.1). With respect to the usual topology on Coo (see 
[C], page 8) the spectrum a( G, A) is compact. Its complement (in Coo) is the resolvent 
set of >'G - A, which is denoted by p(G,A). Note that 00 E p(G, A) if and only if Gis 
invertible. It may happen that p(G, A) is empty. E.g., take X = Y = C2 and 

G=A= [~ ~]. 
The pencil >'G - A is said to be regular if p(G,A) I- 0. Given a nonempty 

subset ~ of Coo, we say that >'G - A is ~-regular if ~ C p(G, A). We shall study 
r-regular pencils, where r is a Cauchy contour (see Section I.1). Recall that the inner 
domain ~+ of a Cauchy contour r consists of all points inside r. By definition the outer 
domain ~_ of r is the set ~_ = Coo \(~+ U r). Note that 00 E ~_. The next theorem 
may be viewed as the analogue of Lemma I.2.1 and Theorem I.2.2. 
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THEOREM 1.1. Let r be a Cauchy contour with ~+ and ~_ as inner and 
outer domain, respectively, and let >'G - A be a r -regular linear operator pencil acting 
between X and Y. Put 

(1) 

(2) 

P = ~ j(>'G - A)-I Gd>.:X ~ X, 
2~z . 

r 

Q = ~ j G(>'G - A)-Id>': Y ~ Y. 
2~z 

r 

Then P and Q are projections on X and Y, respectively, and relative to the decom
positions X = Ker P EB 1m P and Y = Ker Q EB 1m Q the following partitioning holds 
true: 

[ >'GI - Al 0 ] (3) >'G - A = 0 >'G2 _ A2 :KerP EB ImP ~ KerQ EB ImQ, 

where >'GI - Al and >'G2 - A2 are r-regular pencils such that 

(4) 

PROOF. We have to modify the arguments which have been used to derive 
the properties of the Riesz projections (see the proofs of Lemma 1.2.1 and Theorem 1.2.2). 
Only the main differences will be explained. First, note that for a linear operator pencil 
a generalized resolvent equation holds true, namely 

where>. and J-! are in peG, A). Introduce the following auxiliary operator 

Obviously, 

(6) 

K = 2~i j (>.G - A)-Id>': Y ~ X. 
r 

P=KG, Q=GK. 

Using the resolvent identity (5), the usual contour integration arguments show that 
KGK = K (cf., the proof of Lemma 1.2.1), and hence the identities in (6) imply that P 
and Q are projections. We also have 

(7) GP=QG, AP=QA, K=KQ=PK. 

The first identity in (7) is obvious, the third follows from (6) and the fact that K = KGK, 
and the second identity in (7) is an easy consequence of the following formula: 

(8) A(>.G - A)-IG = G(>'G - A)-I A, >. E p(G,A). 
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Formula (7) allows us to partition the operators G, A and K in the following way: 

(9) G = [~I ~2]: Ker P EB 1m P -+ Ker Q EB 1m Q, 

(10) A= [~I 12]:KerPEBImp-+Ker Q EBImQ, 

(11) K = [~ 1]: Ker Q EB Im Q -+ Ker P EB Im P. 

From (9) and (10) we conclude that (3) holds. Since >"G - A is invertible for>.. E r, 
it follows that the same holds true for >"GI - Al and >"G2 - A2. Thus >"GI - Al and 
>"G2 - A2 are r-regular. The identities in (6) imply that G2 is invertible and Gil = L. 
In particular, 00 f!. a(G2,A2)' Next consider 

The operator T( >..) is well-defined and bounded for >.. f!. r. One checks that 

(12) 

(13) 

T(>")(AG - A) = { ~ - I 
for 
for 

(>..G _ A)T(>..) = { Q - I for 
Q for 

>"E~+, 
>"E~-\{oo}j 

>"E~+, 
>.. E ~- \{oo}. 

From the generalized resolvent equation (5) and contour integration arguments it follows 
that T(>..)Q = PT(>..), >.. E r, and hence T(>..) partitions as follows: 

[ TI(>") 0] T(>..) = 0 T2(>") :KerQEBImQ-+KerPEBImP, 

But then we can use (12) and (13) to conclude that 

(14) 

(15) 

We already know that r belongs to p(GI,AI) and p(G2,A2). Thus (14) implies that 
~+ Uris a subset of p(GI,AI ), and hence a(GI,AI ) C ~_. Since 00 E p(G2,A2), 
we also get that ~_ Uris contained in p(G2,A2)' Thus a(G2,A2 ) C ~+. Obviously, 
a(G,A) = a(GI,AI) U a(G2,A2), and hence (4) holds true. 0 
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IT in Theorem 1.1 the spectrum. u(G,A) lies inside r, then the projections 
P and Q are the identity operators on X and Y, respectively. To see this, note that 
according to (4) the inclusionu(G,A) C ~+ implies that U(Gt.AI) = 0. But if the 
latter holds, then Ker P and Ker Q must consist of the zero element only, and hence P 
and Q are identity operators. In a similar way one shows that u(G,A) C ~_ implies 
that P and Q are both zero. 

From the remarks made in the previous paragraph it also follows that the 
projections P and Q appearing in Theorem 1.1 are uniquely determined by the spectral 
properties of the pencils AGI - Al and AG2 - A2. We make this more explicit in the 
next corollary which concerns the case when 0 is inside r. 

COROLLARY 1.2. Let r be a Cauchy contour with ~+ and ~_ as inner and 
outer domain, respectively, and let AG - A be a r -regular linear operato"r pencil acting 
between the spaces X and Y. Assume that 0 is inside r. Then there exists a projection 
Q on Y and an invertible operator E: Y -+ X such that relative to the decomposition 
Y = Ker Q Ea 1m Q the following partitioning holds true: 

where h (resp. 12) denotes the identity operator on KerQ (resp. ImQ), the pencil 
AnI - II is (~+ u r)-regular and AI2 - n2 is (~_ U r)-regular. Furthermore, Q and E 
(and hence also the operators nI and n2) are uniquely determined. In fact 

(17) 

(18) 

(19) 

Q = 2~i / G«(G - A)-Id(, 
r 

E = 2~i /(1- CI)«(G - A)-Id(, 

r 

PROOF. Let P and Q be given by (1) and (2). Then the partitioning (3) 
holds true and the spectra of the pencils AGI - Al and AG2 - A2 are given by (4). Since 
o E ~+, the operator Al is invertible. We also know that G2 is invertible (because 
00 E ~-). Now, put 

(20) [ A-I 0] 
E = ~ G"2I : Ker Q Ef.) 1m Q -+ Ker P Ef.) 1m P, 

(21) 
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With Q, E, n i and n 2 defined in this way, (16) holds true and the pencils AnI - h and 
>'I2 - n2 have the desired regularity properties. 

Next we prove the uniqueness of Q and E. So let us assume that for some 
projection Q on Y and some invertible operator E: Y ~ X the identity (16) holds true, 
with >.nI - h, and >'l2 - n2 regular on ~+ U r and ~_ U r, respectively. Formula (16) 
implies that 

(22) 

Thus 

2~i J G«(G - A)-Id( = 2~i J GE[«(G - A)E)-Id( 

r r 

= ~ J [nI«(nI - lI)-I 
2?rt 0 

r 

= [0 0] = Q. 
o I2 

Here we used the regularity properties of the pencils >.nI - II and >'I2 - n 2 . It follows 
that Q is given by (17), and so Q is uniquely determined. From 

(23) 

and the properties of the pencils >.nI - II and >'l2 - n2 we may conclude that 

(24) 

(25) 2~i J -CI«(G - A)-Id( = E [~ ~] = E(l - Q). 
r 

To prove the last formula one uses that 0 E ~+ and 00 E ~_, and thus for some e > 0 

00 

-c1«(ni - h)-I = L (V-Ini', 0< 1(1 < e, 
1'=0 

00 

-C I «(I2 - n2)-1 = L -cv - 2n2, 
1'=0 

Since E = EQ+E(I - Q), we obtain that E is given by (18). In particular, E is uniquely 
determined. 
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To prove (19) we first use (23) and the regularity properties of ).nl - h and 
).h - n2 to show that 

(26) 

Formulas (25) and (26), together with the first identity in (22), yield 

2~iJ«(-Cl)G«(G-A)-ld(=GE[~ ri2]+GE[~ ~]=n. 0 

r 

Let )'G - A and r be as in Corollary 1.2. We shall call the 2 x 2 operator 
matrix in (16) the r-spectral decomposition of the pencil >"G - A, and we shall refer to 
the operator n in (19) as the associated operator corresponding to >"G - A and r. For 
the projection Q and the operator E in Corollary 1.2 we shall use the words separating 
projection and right equivalence operator, respectively. For later purposes we list the 
following identities (cf. (22»: 

(27) AE(I - Q) = 1- Q, AEQ = nQ, 

(28) GE(I - Q) = n(I - Q), GEQ = Q. 

Later we shall apply Corollary 1.2 for the case when r is equal to the unit 
circle T. Note that in that case the regularity properties of the pencils >..n l - II and 
>"12 - n2 are just equivalent to the requirement that the spectrum of n lies in the open 
unit circle. 

IV.2 A SECOND OPERATOR EQUATION 

In this section we consider the operator equation 

(1) 

Here A}, Gl: Xl -+ Yl and A2, G2: X2 -+ Y2 are given operators acting between Banach 
spaces. The problem is for a given C E £(X2, YI) to find Z E £(Y2,Xl ) such that (1) 
holds. The operator equation considered in Section I.4 is a special case of (1). In fact, 
to get equation (I.4.1) from (1) we have to take Xl = Yl, X2 = Y2 and Gl, G2 should 
be the identity operators on Xl and X2, respectively. The next theorem is the analogue 
of Theorem I.4.1. 

THEOREM 2.1. If the spectra of the pencils >"Gl - Al and >"G2 - A2 are 
disjoint, then for any right hand C E £(X2, YI) equation (1) has a unique solution 
Z E £(Y2,Xl ). More precisely, if r is a Cauchy contour such that u(G1,Al) is in the 
inner domain of r, and u(G2,A2) is in the outer domain of r, then 

(2) 
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PROOF. Since O'(GllAl) n 0'(G2,A2) = 0, the point 00 cannot be in both 
spectra. So without loss of generality we may assume that 00 ~ O'(Gt.Al)' Then 
O'(Gt.AJ) is a compact subset of C which lies in the open set V = C\0'(G2,A2). Choose 
a bounded Cauchy domain ~ such that O'(GllAl) C ~ C ~ C V, and let r be the 
oriented boundary of ~. Then r is a Cauchy contour, O'(Gt.Al) is in the inner domain 
of r and 0'( G2, A2) is in the outer domain of r. So it suffices to prove the second part 
of the theorem, i.e., we have to show that (2) gives the unique solution of (1). Recall 
(see the remark after the proof of Theorem 1.1) that from the location of the spectra it 
follows that 

(3) 2~i j(>"G2 - A2)-lG2d>" = 0, 

r 

where now I stands for the identity operator on Yl. 

Let Z be given by (2). Then Z E C(Y2,Xl) and because of (3) 

AI ZG2 = 2~i j Al (>..Gl - At}-l C(>"G2 - A2)-lG2d>" 

r 

= ~ j -C(>"G2 - A2)-lG2d>" 
21rz 

r 

+ 2~i j >"Gl(>"Gl - Al)-1C(>"G2 - A2)-lG2d>" 

r 

= 2~i j Gl(>"Gl - At}-l C(>"G2 - A2)-1(>"G2 - A2 + A2)d>" 
r 

= 2~i j Gl(>"Gl - Al)-lCd>" + G1ZA2 
r 

=C+GIZA2· 

Hence Z is a solution of (1). 

Conversely, if Z is a solution of (1). Then 

It follows that 

=Z. 

C = A1ZG2 - >..GIZG2 + >..GIZG2 - GIZA2 

= -(>..Gl - Al)ZG2 + GIZ(>"G2 - A2). 
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Here we used the analogue of (3) with the order of Gv and (..\Gv - A v )-l interchanged 
(v = 1,2). We have now proved that equation (1) is uniquely solvable and its unique 
solution is given by (2). 0 

COROLLARY 2.2. Let Tl: Xl --+ Xl and T2: X2 --+ X2 be bounded linear 
operators acting between Banach spaces and with spectra in the open unit disc. Then for 
any C E £(X2,X1) the equation 

(4) 

has a unique solution Z E £(X2,X1), namely 

00 

(5) Z= - LTfCT2'. 
v=o 

PROOF. We apply Theorem 2.1 with ..\Gl - Al = >.II - T1 and ..\G2 -
A2 = "\T2 - 12. Here Iv denotes the identity operator on Xv (v = 1,2). Obviously, 
a(Gl , AI) = a(Tl) and 

0'( G2, A2) = {,\ -1 I ..\ E a(T2)}' 

where we use the convention that 0-1 = 00. Since a(Tl) and a(T2) are in the open unit 
disc, the spectra a(GI, AI) and a(G2' A2) are disjoint, and Theorem 2.1 implies that (4) 
has a unique solution which is given by 

(6) 

Here T is the unit circle endowed with the counter clockwise orientation. But 

(>.I - T )-1 = ~ ~Tv-1 
1 1 ~..\v 1 ' 

v=l 

..\E T, 

00 

("\T2 - 12)-1 = - L ..\vT2', ..\ E T, 
v=o 

because <T(Tl ) and a(T2) are in the open unit disc. It follows that the right hand side of 
(6) is equal to the right hand side of (5). 0 

(1) 

IV.3 HOMOGENEOUS DIFFERENCE EQUATION 

In this section we consider the difference equation: 

{ GXn+l = AXn, 
Xo = y. 

n = 0,1,2, ... , 

Here G and A are bounded linear operators acting on a Banach space X and y is a given 
vector in X. We shall assume that the pencil ..\G - A is regular. If G = I, the identity 
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operator on X, or, more generally, if G is invertible, then (1) is always solvable and the 
general solution of (1) is given by 

(2) n = 0,1,2, .... 

H G is not invertible, the situation is different and in that case it may happen that (1) 
is never solvable for y =/:. O. For example, let G be the zero operator and A the identity 
operator on X. Then the pencil >"G - A is regular, but (1) is only solvable for y = 0, 
and in the latter case the solution is the trivial one, namely Xn = 0 (n = 0,1,2, ... ). The 
next theorem is an analogue of Theorem 1.5.3. 

THEOREM 3.1. Let >"G - A be a regular linear operator pencil acting on 
X. If the spectrum er( G, A) belongs to the open unit disc, then for each y in X equation 
(1) is solvable and the (unique) solution xo, x}, X2, ... converges to zero. Conversely, if 
for each y in X equation (1) is solvable and its solution xo, xl, x2, ... converges to zero, 
then er(G, A) belongs to the closed unit disc. If, in addition, dimX < 00, then er(G,A) 
belongs to the open unit disc. 

PROOF. Let D denote the open unit disc, and assume that er(G, A) C D. 
In particular, 00 ¢ er(G,A), and thus G is invertible. But then equation (1) is solvable 
for each y E X and given y the general solution of (1) is described by (2). Note that 
0-( G-I A) = er( G, A). Since er( G-I A) is compact and lies in D, there exists 0 < p < 1 
such that 

Let r be the circle with center 0 and radius p, and let the orientation on r be counter 
clockwise. Then, by the operational calculus, 

II(G- 1A)nll = II~ J>..n(>.. - G-1 A)-ld>"11 
27l"Z 

r 
:5 pn+1 (TeC!f II(>"G - A)-lGII) 

(n --+ 00). 

Thus (2) implies that for each y E X the solution of (1) tends to zero if n --+ 00. 

Next, assume that for each y E X equation (1) is solvable and that the 
solutions tend to zero if n --+ 00. We want to show that er(G,A) C O. Take y E X. 
Since (1) is solvable, there exists X E X such that Gx = Ay. This holds for each y. 
Hence ImA C ImG, and thus Im(>"G - A) C ImG. Now use that >"G - A is regular. 
So for some >"0 E 0 the operator >"oG - A is invertible, and hence ImG = X. Our 
hypotheses also imply that KerG = (0). Assume not, i.e., KerG =/:. (0). Then we can 
construct a solution XO,Xl,X2, ... of (1) such that IIxjll ~ j for j = 0,1,2, .... Indeed, 
assume we have constructed xo, ... , Xn-l such that GXj+l = AXj for j = 0, ... , n - 1 
and Ilxj II ~ j for j = 0, ... , n. Since ImG = X, there exists x E X such that Gx = AXn. 
Choose Z E Ker G such that IIx + zll ~ n + 1, and define xn+l = x + z. Proceeding in 
this way yields the desired solution. But the existence of such a solution contradicts our 
hypotheses. So Ker G = (0). We have now proved that G is invertible. 
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Since G is invertible, the solution of (1) is given by (2). So our hypotheses 
imply that for each y E X 

But then we can use the principle of uniform boundedness to show that 

(3) M: = sup II(G-1 A)nll < 00. 
n 

Now take ..\ E O"(G, A). Then..\ E O"(G-IA) and, by the spectral mapping theorem 
(Theorem 1.3.3), the point ..\n belongs to O"(G-IA)n). According to (3), this implies 
I..\nl :5 M for n = 0,1,2, ... , which is possible only if 1..\1 :5 1. This proves that O"(G, A) c 
D. 

Finally, assume additionally that dimX < 00. Take..\o E O"(G,A), and 
suppose that 1..\01 = 1. Then..\o is an eigenvalue of G-IA, i.e., there exists y f Osuch 
that G-l Ay = ..\Oy. But this implies that 

for each n, and hence (G-l A)ny does not tend to zero if n -+ 00. This is a contradiction, 
and it follows that O"(G, A) CO. 0 

Let A be a bounded linear operator on the Banach space X. The difference 
equation 

(4) n = 0,1,2, ... 

is said to be asymptotically stable if every solution xo, xl, ... of (4) converges to zero if 
n -+ 00. Since (4) is solvable for each initial value Xo = Y in X, Theorem 3.1 yields the 
following corollary. 

COROLLARY 3.2. If O"(A) lies in the open unit disc 0, then equation (4) 
is asymptotically stable. Conversely, if (4) is asymptotically stable, then 0"( A) lies in the 
closed unit disc. If, in addition, X is finite dimensional, then asymptotic stability of (4) 
is equivalent to O"(A) C D. 



CHAPTER V 

SPECTRAL THEORY FOR BOUNDED SELFADJOINT OPERATORS 

A compact selfadjoint operator A acting on a Hilbert space can be represented 
in the form 

(1) 
j 

where {>"j} is the set of non-zero eigenvalues of A, the operator 6.Ej is the orthogonal 
projection onto the eigenspace Ker(>"j -A) and the series converges in the operator norm. 
The aim of this chapter is to obtain an analogous representation for an arbitrary bounded 
selfadjoint operator. The first step is to rewrite the right hand side of (1) as a Stieltjes 
integral, 

(2) A = J >"dE(>"), 

with the operator-valued integrator given by E(>..) = 'EA'<A 6.Ej. We shall see that the 
1-

representation (2) also holds for a non-compact selfadjoint operator. In the latter case 
E( >..) is the orthogonal projection onto the maximal A-invariant subspace M such that the 
spectrum of AIM is contained in (-00, >..]. The construction of such spectral subspaces 
is given in Section 2 of this chapter. Their general properties are discussed in the first 
section. In the third section bounded resolutions of the identity are introduced and 
integrals of the type appearing in (2) are defined. The representation (2) is established 
in Section 4. In Section 5 spectrum and resolvent are described in terms of the resolution 
of the identity. In Section 6 the functional calculus is used to construct the square root 
of a non-negative operator and, as an application, the polar decomposition is obtained. 
The last section concerns the spectral theorem for unitary operators. 

V.I SPECTRAL SUBSPACES 

Let A be a bounded linear operator acting on a complex Banach space X, 
and let u be a closed subset of C. An A-invariant subspace M of X is called the spectral 
subspace of A associated with u if M has the following two properties: 

(i) u(AIM) C u, 

(ii) if N is any A-invariant subspace of X such that u(AIN) C u, then N C M. 

In other words, M is the spectral subspace of A associated with u if and only if M is the 
largest A-invariant subspace M such that u(AIM) Cu. Note that the properties (i) and 
(ii) determine M uniquely. If u is an isolated part of u(A), then the spectral theory of 
Section I.2 shows that the range of the lliesz projection P.,.(A) is the spectral subspace 
of A associated with u. Indeed, in that case u(AIImp.,.(A)) C u, because of Theorem 
I.2.2, and if N is an A-invariant subspace such that o-(AIN) Co-, then 

P.,.(A)x = P.,.(AIN)x = x, x E N, 
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which shows that N C ImPu(A). 

PROPOSITION 1.1. Let M be an A-invariant subspace of X, and let 0' be 
a closed subset of O'(A) such that C\O' is connected. Then M is the spectral subspace of 
A associated with 0' if and only if M is the largest A-invariant subspace of X such that 
(,\ - A)-Ix has an analytic continuation to C\O' for each x E M. 

PROOF. Let N be any A-invariant subspace such that (A - A)-Ix has an 
analytic continuation to C\O' for each x E N. We shall prove that O'(AIN) C 0'. 

Take x E N. By our hypotheses on N there exists an X-valued function u(·), 
defined and analytic on C\O', such that 

(1) A E peA). 

It follows that (A - A)u(A) = x for A E peA). Since C\O' is an open connected set which 
contains peA) as a subset, we conclude (by analytic continuation) that 

(2) (A - A)u(A) = x, A E C\O'. 

We claim that U(A) E N for each A E C\O'. Assume not, then U(AO) fI. N for some AO fI. 0'. 

The space N is closed. So, by the Hahn-Banach theorem, there exists a continuous linear 
functional 9 on X which annihilates N such that g(U(AO») =1= o. We have (A-A)-I x E N 
for IAI > IIAII, because N is A-invariant. Thus (1) implies that g(U(A») = 0 for IAI > IIAII. 
Since g(u(.» is analytic on C\O', we see that g(U(A» = 0 for each A E C\O', including 
A = AO, which is a contradiction. Thus U(A) E N for all A E C\O'. But then (2) shows 
that (A - A)N = N for A E C\O'. 

To prove that O'(AIN) C 0', it remains to show that Ker(A-(AIN») = {O} for 
each A E C\O'. Again take x EN, and let u(·) be as in the previous paragraph. Assume 
that Ax = AOX, where AO E C\O'. We want to show that x = o. If AO E peA), then this 
is automatically true. Therefore assume AO fI. peA). But then it follows that 

A E peA). 

Thus U(A) = (A - AO)-I x for A E peA). By analytic continuation, the latter identity also 
holds for A E C\O', A =1= AO. But u(·) is also analytic at AO. This can only happen when 
x = o. Thus Ker(Ao - (AIN» = {O}, and we have shown that O'(AIN) CO'. 

Now, assume that M is the spectral subspace of A associated with 0'. Ac
cording to our hypotheses on M, the resolvent set peA) is contained in p(AIM). Thus 
for A E peA) we have 

(3) xEM. 

Since O'(AIM) C 0', it follows that (A - A)-Ix has an analytic continuation to C\O' 
for each x E M. Let N be another A-invariant subspace with this property. Then, 
by the result of the first three paragraphs of the proof, O'(AIN) C 0'. But this implies 
that N C M, because of property (ii) in the definition of a spectral subspace. Thus M 
is the largest A-invariant subspace with the property that (A - A)-Ix has an analytic 
continuation to C\O' for each x E M. 
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To prove the converse implication, assume that M is as in the last sentence 
of the previous paragraph. Then, as we have seen above, oo(AIM) Cu. Let N be another 
A-invariant subspace such that oo(AIN) C oo. Then (3) holds with M replaced by N, 
and thus (A - A)-Ix has an analytic continuation to C\oo for each x EN. But M is the 
largest A-invariant subspace with this property. So N C M, and we have proved that 
M is the spectral subspace of A associated with oo. 0 

Let M be an A-invariant subspace, and assume that M is the spectral sub
space of A associated with the set oo. Of course, one would like to have 

(4) oo(AIM) = 00 n oo(A). 

If 00 is an isolated part of oo(A), then this equality holds true (see Theorem I.2.2). However, 
in general it fails. In Lyubich-Macaev [1] an example is given of an operator A such that 
oo(A) = [0,1] and oo(A) = oo(AIL) for any A-invariant subspace L ::/: {O}. Thus, if 00 is a 
proper closed subinterval of [0,1], then for the latter operator the spectral subspace M 
associated with 00 consists of the zero element only and (4) does not hold. This example 
shows that one has to be careful with the notion of a spectral subspace. In this context 
it should also be mentioned that it may happen that a bounded linear operator on a 
Banach space has no non-trivial (i.e., containing non-zero vectors but not equal to the 
whole space) invariant subspace at all (see Beauzamy [1], [2], Enfio [1], and Read [1], 
[2] for examples). For an arbitrary H;ilbert space operator the existence of a non-trivial 
invariant subspace is still an open problem. In the next section we shall construct spectral 
subspaces for selfadjoint operators, and we shall see (in Section 5) that they satisfy the 
identity (4) up to a natural modification. 

V.2 SPECTRAL SUBSPACES FOR SELFADJOINT 
OPERATORS 

In what follows H is a complex Hilbert space. The inner product on H will 
be denoted by (.,.). As usual, £( H) stands for the set of all (bounded linear) operators 
on H. Recall (see [GG], Section II.12) that an operator A E £(H) is called selfadjoint if 
A = A*, that is, (Ax,y) = (x,Ay) for each x and y in H. For a selfadjoint operator A 
the numbers (Ax, x) are real, and hence we may define 

(1) m(A):= inf (Ax,x), 
IIzll=1 

M(A):= sup (Ax,x). 
IIzll=1 

THEOREM 2.1. If A E £(H) is selfadjoint, then its spectrum oo(A) is real, 
oo(A) C [m(A),M(a)] and 

(2) II(A - A)-III ~ I~r.xl-I, ~r.x::/: O. 

Furthermore, [meA), M(A)] is the smallest closed interval containing oo(A). 

PROOF. Let A = a + ib with a, b real and b ::/: O. Since a - A is selfadjoint, 

(3) 

for each x E H. Therefore A - A is injective. From (3) it also follows that Im(A - A) is 
closed. Indeed, assume that (A - A)xn -t y for n -t 00. Then (3) implies that (xn) is 
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a Cauchy-sequence. Since H is a Hilbert space, it follows that Xo = limn-loco Xn exists, 
and, from the continuity of A, we may conclude that y = (A - A)xo E Im(A - A). Thus 
Im(A - A) is closed. But then 

Im(A - A) = Im(A - A) = Ker(A - A)l.. = {O}l.. = H, 

and A - A is bijective. This proves that A rf. u(A). Replacing x in formula (3) by 
(A - A)-ly, yields (2). 

We know now that u(A) is real. Take A E R and A > M(A). Then 

(4) II(A - A)xllllxll 2: (A - A)x, x) 2: (A - M(A» Ilxll 2 . 

Since A - M(A) > 0, formula (4) implies that A - A is injective and Im(A - A) is closed. 
It follows (as in the preceding paragraph) that A - A is bijective. Thus A rf. u(A). In 
a similar way one shows that A < meA) implies that A rf. u(A), and therefore u(A) C 
[meA), M(A)]. 

To prove the last part of the theorem, let u(A) C [m, M]. We have to show 
that m :5 meA) and M 2: M(A). Assume that meA) < m. Consider the operator 
T := A - meA)!. From our hypothesis it follows that T is invertible and (Tx, x) 2: o. 
By applying the Cauchy-Schwarz inequality to the (possibly nondefinite) inner product 
[x, y] := (Tx, y), one sees that 

I(Tx,y}1 2 :5 (Tx,x}(Ty,y), x,yEH. 

By taking y = Tx the following inequality is obtained: 

(5) x EH. 

From the definition ofm(A) we know that there exists a sequence Xl, X2, .•. in H, IIxnll = 
1 (n = 1,2, ... ), such that (Txn,xn) -+ 0 ifn -+ 00. But then the inequality (5) implies 
that IITxn11 -+ 0 if n -+ 00, which contradicts the invertibility of T. Indeed, 

n2:1. 

Hence we must have m :5 meA). In a similar way one shows that M(A) :5 M. 0 

Let A E £(H) be selfadjoint. From Theorem 2.1 we know that A - A is in
vertible for A rf. [meA), M(A)]. For later purposes we note the following two inequalities: 

(6a) )RA > M(A), 

(6b) )RA < meA). 

To prove (6a) write A = a + ib with a, b real and a > M(A). Take x E H. From (4) we 
know that 

lI(a - A)xll 2: (a - M(A») Ilxll· 
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Inserting this inequality in (3) yields 

11('\ - A)x112 ~ {Ia - M(A)12 + Ib1 2 }llxll2 

~ 1,\ - M(A)12I1x Il 2, 

which proves (6a). In a similar way one proves (6b). 
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THEOREM 2.2. Let A E £(H) be selfadjoint, and take 8 < t in R. Then 
the spectral subspace of A associated with [8, t] exists and is equal to the space 

(7) Ker( 8 - A) Ef) 1m ns,t Ef) Ker( t - A). 

Here 

(8) ns t = ~ J (t - ()(8 - ()«( - A)-Id( , 27rl 
r.,t 

and r s,t is the boundary of the rectangle with vertices 8 ± i and t ± i. 
To prove Theorem 2.2 we develop for operators of the type (8) a calculus 

which resembles the functional calculus developed in Sections 1.2 and 1.3. This will be 
done in the next two lemmas. 

LEMMA 2.3. For 8 < t in R the operator ns,t in (8) is a well-defined 
selfadjoint operator, ns,tB = Bns,t for any B E £(H) that commutes with A, and 

(i) ns,t = (t - A)(8 - A) if O"(A) C [8, t], 

(ii) ns,t = 0 if O"(A) n (8, t) = 0. 
PROOF. The contour rs,t appearing in formula (8) is assumed to be posi

tively oriented, i.e., the open rectangle with boundary rs,t belongs to the inner domain of 
r s,t. Note that r s,t intersects O"(A) in at most two points, namely 8 and t. If both 8 and 
t do not belong to O"(A), then rs,t has an empty intersection with O"(A) and, according 
to the functional calculus of Section 1.3, 

(9) ns,t = (8 - A)(t - A)Pu(A), 

where Pu(A) is the Riesz projection of A corresponding to 0" = O"(A) n [8, t]. From (9) it 
is natural to expect that the statements (i) and (ii) hold true. 

If 8 and/or t belong to O"(A), then (8) has to be understood as: 

(10) ns t := lim ~ J (t - ()(8 - 0«( - A)-Ide, 
, dO 27rl 

f!,t 

where r;,t is the part of ra,t outside the open discs 18 - (I < e and It - (I < e. By 
Theorem 2.1 the function 

(11) (~ lI(t - ()(8 - ()«( - ArIl1 
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is bounded on rs,t\{s,t}, and hence the limit in (10) exists in the norm of £(H). It 
follows that ns,t is a well-defined bounded linear operator. Since A is selfadjoint and r S,t 
is symmetric with respect to the real line, the arguments used in the proof of Proposition 
1.2.5 show that n:,t = ns,t. 

If BE £(H) commutes with A, then B commutes with the integrand in (8), 
and hence the convergence of the integral in the norm of £(H) implies that B commutes 
with na,t. 

To prove (i), assume that u(A) C [s, t]. Take 0 < e ::::; 1, and let A;,t be the 
closed contour which is the union of the curve r; t and the curves 

I 

{ s + eei~ I ~7r ::::; 4' ::::; ~7r }. 

The orientation on A; t is given so that [s, t] is in the inner domain of A;,t . Since 
u(A) C [s, t], we know from Section 1.3 that 

(12) ~ J (t - ()(s - ()«( - A)-Id( = (t - A)(s - A). 
27r~ 

A!,t 

From u(A) C [s, t] it also follows that s ::::; m(A) and t ?: M(A). But then we can use 
the inequalities (2), (6a) and (6b) to show that there exists a constant C, not depending 
on e, such that 

lI(t - ()(s - ()«( - A)-III ::::; c, 
Since the length of the curve A;,t \r B,t tends to zero if e ~ 0, we conclude that the left 
hand side of (12) tends to nB,t in the norm of £(H) if e ~ O. The right hand side of (12) 
is independent of e, and thus (i) holds true. 

Next, we prove (ii). Assume u(A) n (s, t) = 0. First we consider the case 
when u(A) C (-00, s]. Take e > 0, and let ~; t be the contour which consists of the part 
of rs,t outside the open disc Is - (I < e and the curve 

{s + eei~ 1-~7r ::::; 4' ::::; i4'}' 
For e > 0 sufficiently small ~; t is a well-defined closed contour and, by our assumption 
on u(A), I 

(13) 2~i J (t - ()(s - ()«( - A)-Id( = O. 

1.\:,t 

From u(A) C (-00, s] it also follows that s ::::; M(A), and hence we can use the inequalities 
(2) and (6a) to show that there exists a constant C, independent of e, such that 

lI(t - ()(s - ()«( - A)-III ::::; c, 
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As in the proof of (i), it follows that 

!'ls t = lim(~ J (t - O(s - 0«( - A)-ld(), 
, e!O 211" 

d!,t 

and hence !'ls,t = O. In a similar way one shows that !'ls,t = 0 if O'(A) C [t,oo). 

For the general case consider the set 0' = O'(A) n (-00, s]. By our assumption 
on O'(A), the set 0' is an isolated part of O'(A). Let P be the corresponding Riesz projec
tion. Put M = ImP and L = Ker P. The M and L are invariant under A. Furthermore, 
the operators AIM and AIL are selfadjoint. Now 

(14a) !'ls tX = ~ J (t - O(s - 0[( - (AIM)] -lxd(, , 211" XEM, 

r.,t 

(14b) !'ls tX = ~ J (t - O(s - 0[( - (AIL)] -lxd(, , 211" x E L. 

r.,t 

From Section I.2 we know that O'(AIM) C (-00, s] and O'(AIL) C [t, 00). Thus the 
integrals in (14a) and (14b) are zero by what has been proved so far. Since H = M E9 L, 
it follows that !'ls,t = O. 0 

For s < t in R let :Fs,t denote the set of all complex-valued functions that are 
continuous on the set 

(15) 3(s, t) = C\{( -oo,s) U (t, oo)} 

and analytic on the interior of 3(s, t). For 9 E :Fs,t we define 

(16) !'ls,t(g) = 2~i J g(O(t - ()(s - 0«( - A)-ld(. 

rs,t 

The integral in (16) has to be understood in the same way as the integral in (8). Note 
that 9 is continuous on fs,t. Since{t-()(s-O«( _A)-l is bounded in the operator norm 
on f s,t\{s, t}, it follows that the same holds true for the integrand in (16), and hence the 
(improper) integral in (16) converges in the norm of £(H). Obviously, !'ls,t = n s,t(l), 
where 1 stands for the function which is identically equal to one. As for !'ls,t (see Lemma 
2.3) one can prove that ns,t(g)B = Bns,t(g) for any operator B that commutes with A. 
Note that !'ls,t(g) is selfadjoint if 9 is symmetric with respect to the real line, i.e., if 

g(O = gee), ( E 3( s, t). 

(Here the bar denotes the operation of complex conjugation.) To prove the last statement 
one uses the symmetry in r s,t and arguments of the type used in the proof of Proposition 
I.2.5. 
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To derive properties of ns,t(g) it is sometimes convenient to replace r 8,t by 
other curves. Therefore we mention that in (16) (as well as in (8» the curve r 8 ,t may 
be replaced by any simple closed rectifiable oriented Jordan curve with the following 
properties. The curve r is symmetric with respect to the real line, the open interval 
(s, t) belongs to the inner domain of r and there exists p > 0 such that the part of r 
in the disc Is - (I < p (resp. It - (I < p) lies in the sector s + reicp (resp. t + eicp ) with 
o ~ r < p and 1~7r ± 'PI ~ t7r. By Theorem 2.1 this non-tangential behaviour of r 
guarantees that the integrand in (16) is again bounded on r\ {s, t} in the operator norm, 
and hence the integral in (16) is also well-defined for r instead of r 8,t. We shall refer to 
a curve r with the above properties as an (s,t)-admissible curve. The usual argument 
of complex function theory shows that the value of the integral in (16) does not change 
if r 8,t is replaced by an (s, t)-admissible curve. 

LEMMA 2.4. Let A E C(H) be selfadjoint, and let g E :Fs,t. Then 

(17) 

and for any complex polynomial p 

(18) 

PROOF. First we shall prove (18). To do this, it suffices to consider the case 
when p(O = (n. By formula (1) in Section 1.3, 

By analyticity the latter integral is zero, and so (18) holds true. 

The proof of (17) will be based on the following identity: 

(19) s < 0: < j3 < t. 

To prove (19) we apply the same type of arguments as in the proof of Theorem 1.3.1(iii). 
First we replace the curve rs,t by a curve r which is (s, t)-admissible and contains r a,/3 
in its inner domain. It follows that 

n 8,t(g)na ,/3(g) = (2~i)2 J J g(Og(>.)(t-O(s-O(j3->.)(o:->.) 

r ',f r CI,P 

. «( _ A)-l(>. _ A)-ld>'d( 

= (2~i)2 J J g(Og(>')(t-O(s-O(j3->.)(o:->.) 
r r a,p 

. (>. - O-l{«( - A)-l - (>. - A)-l }d>.d( 
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where 

TJl = (2~i) 2 / g(O(t - O(S - 0«( - A)-I 

r 

. (/ g(>')«(3; ~~a - >.) d>' )d(, 

r"',fJ 

=0, 

because the curve r is in the outer domain of r a,p, and 

TJ2 = (2~i) 2 / g(>.)«(3 - >.)(a - >.)(>. - A)-l 

r"',fJ 

. (/ g«()(t; ~)~s - 0 d( )d>. 

r 

= -1. / g(>.?(t - >.)(s - >.)«(3 - >.)(a - >.)(>. - A)-Id>' 
27rz -

ra,fJ 
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Here we used that r a,p is in the inner domain of r, and we applied formula (18) with 
p( 0 = (t - O( s - 0 and with g2 in place of g. The change in the order of integration is 
justified by the fact that the integrand is integrable on r x r a,p. We have now proved 
(19). 

To derive (17) from (19) it suffices to show that for 9 E :Fa,t 

(20) (3 i t, a! s, 
with convergence in the norm of C(H). Take s :5 a < (3 :5 t, and let e > 0 be given. For 
o < 0 :5 1 let r a,p( 0) be the oriented boundary of the rectangle with vertices a ± io and 
(3 ± io. The orientation is such that the interval (a, (3) belongs to the inner domain of 
r a,p( 0). We write Va,p( 0) .for the vertical parts of r a,p( 0) and Ha,p( 0) for the horizontal 
parts. Of course, r a,p(o) is an (a, (3)-admissible curve. By Theorem 2.1, 

IIg«()«(3 - O(a - 0«( - A)-III :5 (t -8 + l)sup{lg«()11 8 :5lR(:5 t, 1~(I:5 o}. 

Since the length of Va,p(o) is 40, it follows that we may choose 0 E (0,1] in such a way 
that 

(21) 112~i / g(0«(3-0(a- 0 «(-A)-Id(1I < ~e 
V"',fJ(c5) 

for each (a, (3) C (s, t). Fix D E (0,1] such that (21) holds. Since the set Hs,t(D) is 
compact, we can find a constant C 2::: 0 so that for each ( E Hs,t( D) 

(22) IIg(O(t - ()(s - ()«( - A)-III :5 C, 
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(23) 
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Ilg(O(}9 - O(a - 0«( - A)-I - g(O(t - O(S - 0«( - A)-III 

:::; C(la}9 - stl + la - Sl + 1}9 - tl). 

The length ofthe curve H o:,{3 (S) is less than or equal to 2( t - s). Thus, by using inequality 
(23), we see that there exists PO > 0 such that la - sl + 1}9 - tl < Po implies that 

ii2~i J g(O(}9 - O(a - ()«( - A)-Id( 

H"',(3(8) 

2~i J g«()(t - ()(s - ()«( - A)-Id(ii < ~e. 
(24) 

H",,(3(8) 

Write Ao:,{3(S) for Hs ,t(S)\Ho:,{3(S), Since the length of Ao:,{3(S) is equal to 2(la - sl + 
1}9 - tl), inequality (22) shows that there exists 0 < P < PO such that 

(25) ii2~i J g(O(t - ()(s - ()«( - A)-Id(ii < ~e, 
A"',(3(8) 

whenever la - sl + 1}9 - tl < p. From (21), (24) and (25), the statement (20) is clear. 0 

PROOF OF THEOREM 2.2. Assume Ax = tx. Then «( - A)-Ix 
«( - t)-Ix, and hence ns,tX = O. Since ns,t is selfadjoint, it follows that 

(26a) Ker(t - A) C Kerns,t = (Imns,t)..L. 

Here (as well as in (7)) the bar means that one has to take the closure of the corresponding 
set. In a similar way one proves that 

(26b) Ker(s - A) C Kerns,t = (Imns,t)..L. 

We also know that eigenvectors of A corresponding to different eigenvalues are orthogonal, 
because A is selfadjoint. Thus Ker( s - A) c Ker( t - A)..L and Ker( t - A) c Ker( s - A)..L. 
This together with (26a) and (26b) implies that the set given by (7) is a well-defined closed 
linear manifold of H. In what follows it will be denoted by L(s, t). Since Ans,t = ns,tA, 
by Lemma 2.3, we know that Imns,t is invariant under A. But then, by the continuity 
of A, the same is true for Imns,t. Also Ker(s - A) and Ker(t - A) are invariant under 
A. So we conclude that L(s, t) is an A-invariant subspace. 

We proceed by showing that 

(27) x E L(s, t). 

To achieve this, let gO be the analytic continuation of the function 

(28) -00 < A < t, 

to the region C\[t, (0). Put go(t) = O. Note that 

(29) ( E 3(s, t). 
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Here 3(s, t) is as in (15). We conclude that gO E :Fs,t, and, by Lemma 2.4, 

n s,t(gO)2 = (t - A)(s - A)ns,t(g5) 

= ~ J (t - ()3(s - ()2(( - A)-ld( 
27rZ 

r.,~ 

= (t - A)n; t. , 
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From the definition of gO it follows that go is symmetric with respect to the real line. 
Hence ns,t(go) is selfadjoint. Also ns,t is selfadjoint. Thus for each x E H we have 

((t - A)ns,tx, ns,tx) = ((t - A)n;,tx, x) 

= (n s,t(go)2x , x) = Ilns ,t(go)xII 2 ~ o. 

By continuity it follows that ((t - A)y, y) ~ 0 for each y E 1m ns,t. Now take x E L( s, t), 
and write x = Xl + y + X2, where Xl E Ker(s - A), y E Imns,t and X2 E Ker(t - A). 
Since the elements Xl, Y and X2 are mutually orthogonal, we see that 

((t - A)x, x) = ((t - A)xl, Xl) + ((t - A)y, y) + ((t - A)X2' X2) 

= (t - s)lIxl1l2 + ((t - A)y,y) ~ 0, 

and the second inequality in (27) is proved. To establish the first inequality in (27) one 
repeats the above arguments with the function (28) replaced by 

(30) s < .x < 00. 

Since AIL(s, t) is selfadjoint, the inequalities in (27) imply that O"(AIL(s, t)) 
is contained in [s,t) (cf. Theorem 2.1). We want to show that L(s,t) is the largest A
invariant subspace with this property. Thus, let N be another A-invariant subspace such 
that O"(AIN) C is, t). We have to prove that N C L(s, t). Take X E N. Note that Nl.. 
is also invariant under A, because A is selfadjoint. It follows (cf. formula (8) in Section 
1.2) that 

( E peA). 

Now apply Lemma 2.3(i) to AIN in place of A. Since AIN is selfadjoint, this yields 

ns,tX = 2~i J (t - ()(s - ()[( - (AIN)r lxd( 
r.,f 

= [t - (AIN)] [s - (A IN)] X 
= (t - A)(s - A)x, 

and we have proved that (t - A)(s - A)N C Imns,t. It follows that 

N = [N n Ker(t - A)) + [N n Ker(s - A)) + (t - A)(s - A)N 

C Ker(t - A) + Ker(s - A) + Imns,t 

= L(s,t), 
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which completes the proof of Theorem 2.2. 0 

COROLLARY 2.5. Let A E C(H) be selfadjoint and t E R. Then the spectral 
subspace of A associated with (-00, t] exists and is equal to the space 

(31) L := Ker(t - A) E8 Im(2~i J (t - ()(( - A)-Id(). 
f t 

Here rt is the boundary of the rectangle with vertices t ± i and t - 1 - It - m(A)1 ± i. 
Furthermore, 

(32a) ((A - t)x, x) ~ 0, x E L, 

(32b) ((A - t)x, x) ~ 0, x E L.l.. 

PROOF. Put r := t - 1 - It - m(A)I. By definition, r < min(t, m(A)), and 
hence r - A is invertible. Let L(r, t) be the spectral subspace of A associated with [r, t]. 
From Theorem 2.2 we know that L(r, t) exists. Obviously, a(AIL(r, t)) is contained in 
(-00, t]. Let N be another A-invariant subspace such that a(AIN) C (-00, t]. Since N.l. 
is also invariant under A, we have (see Proposition 1.2.4) 

a(AIN) C a(A) C [meA), M(A)]. 

It follows that a(AIN) C [r, t], because r < meA). But then N C L(r, t), and L(r, t) is 
also the spectral subspace of A associated with (-00, t]. 

Next, we show that L(r, t) = L, where L is given by (31). Let us assume that 
rt is oriented in such a way that the open rectangle with boundary rt belongs to the 
inner domain of rt, and put 

(33) 

The operator Dt is well-defined for the same reason as the operator Ds,t in (8) is well
defined. Note that for s = r the curve rt is equal to the curve rs,t appearing in Theorem 
2.2. It follows that 

Dt(r - A) = (r - A)Dt = Dr,t, 

where Dr,t is defined by (8) with s replaced by r. Since r - A is invertible, we see that 
ImDr,t and ImDt coincide, and hence 

L(r, t) = Ker(r - A) E8 ImDr,t E8 Ker(t - A) 

= ImDt E8 Ker(t - A) = L, 

which proves formula (31). 
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Since L = L(r, t), formula (32a) is just a corollary of the second inequality 
in (27) (applied to L(r, t) instead of L(8, t)). To prove (32b), choose u > max(t, M(A)). 
We shall prove that L.l.. = Imnt u' As soon as this identity has been established, we can 
apply to first inequality in (27) '(with (8, t) replaced by (t, u)) to show that (32b) holds 
true. 

We know that AIL is a selfadjoint operator which has its spectrum in (-00, t]. 
Thus Lemma 2.3(ii) applied to AIL shows that for each x E L 

nt,u x = 2~i J (u-O(t-O[(-(AIL)]-lxd(=O. 

f t , .. 

In particular, Imnt,r C Kernt,u, and hence 

We already know (see formula (26a)) that Imnt,u C Ker(t - A).l.., and so 

Imnt,u C {Ker(t - A) + Imnr,t}.l.. 

= {Ker(t - A) + Imnt}.l.. = L.l... 

To prove the reverse inclusion, note that (by formula (18)) 

nr,t(u - A) + nt,u(r - A) = (u - A)nr,t + (r - A)nt,u 

= ~ J (u - O(t - O(r - 0(( - A)-ld( 
27rt 

rr,c 

+ 2~i J (r - O(u - O(t - 0(( - A)-ld( 

rc,u 

= 2~i J (u - O(t - O(r - 0(( - A)-ld(. 

rr,u 

Since a(A) C [m(A),M(A)] C (r,u), the last integral can be computed by using the 
functional calculus of Section 1.3. It follows that 

(34) nr,t(U - A) + nt,u(r - A) = (u - A)(t - A)(r - A). 

Thus if x E L.l.. and x .1 1m nt,u, then x is orthogonal to the range of the left hand side 
of (34), which implies that x is orthogonal to the range of the right hand side of (34). 
But then x must be orthogonal to Im(t - A) (because u - A and r - A are invertible). 
However Ker(t - A) eLand x .1 L. So x = 0, and thus Imnt,u = L1.. 0 
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V.3 RESOLUTION OF THE IDENTITY 

A family {E(t)}tER of orthogonal projections on the Hilbert space H is called 
a (bounded) resolution of the identity supported by the compact interval [m, M] if 

(Cl ) ImE(s) C ImE(t) whenever s ~ t, 

(C2) ImE(s) = n{ImE(t) It> s}, 

(C3 ) E(t) = 0 ift < m, 

(C4) E(t)=Iift>M. 

Later, in Chapter XVI, we shall also need resolutions of the identity that are not bounded, 
but all resolutions in the present chapter will be bounded, and therefore in what follows 
we omit the word bounded. 

Note that condition (Cl) is equivalent to the requirement that 

E(s) = E(t)E(s) = E(s)E(t), s ~ t, 

and hence the projections in a resolution of the identity commute with one another. 
Condition (C2) means that the resolution is required to be continuous from the right. 
To be more precise, the following proposition holds. 

Then 
PROPOSITION 3.1. Let {E(t)}tER be a resolution of the identity on H. 

E(.>..)x = limE(t)x, 
t!A 

x EH. 

PROOF. Take a fixed x E H. Let.>.. < s < t. The operator 6.E := E(t)-E(s) 
is an orthogonal projection, because of condition (C l ). Furthermore, E(s)6.E = 0, and 
thus 

((6.E)x, E(s)x) = (E(s)(6.E)x, x) = 0, 

which shows that (6.E)x .1 E( s)x. So the Pythagorean equality gives: 

(1) IIE(t)x - E(s)xI12 = IIE(t)xIl 2 -IIE(s)xI12, s < t. 

It follows that the function IIE(·)xll is a monotonely increasing nonnegative function, and 
thus limt!A IIE(t)11 exists. Since H is a complete metric space, the inequality (1) and the 
Cauchy criterion for convergence imply that 

(2) z:= limE(t)x 
t!A 

exists. We have to show that z = E(.>..)x. 

Take p > A. Then, by condition (Cl), 

E(p)z = limE(p)E(t)x = lim E(p)E(t)x 
t!A t-), 

),<t:S1' 

= lim E(t)x = z. 
t_), 

)'<':SI' 
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This shows that z E ImE(J.l) for each J.l > ..\. But then we can apply condition (C2) to 
show that z E ImE("\). Thus (use again condition (Cl )) 

z = E("\)z = limE("\)E(t)x 
tp. 

= limE("\)x = E(..\)x. 0 
t!A 

Together with Theorem 2.2 the next theorem shows how one may construct 
resolutions of the identity. 

THEOREM 3.2. Let A E £(H) be selfadjoint, and for t E R let E(t) be 
the orthogonal projection of H onto the spectral subspace of A associated with (-00, t]. 
Then {E(t)}tER is a resolution of the identity supported by the interval [m(A),M(A)]. 
Furthermore, if BE £(H) commutes with A, then B commutes with each E(t). 

PROOF. Let L(t) be the spectral subspace of A associated with (-00, t]. 
From Corollary 2.5 we know that L(t) is well-defined and given by formula (31) in 
Section 2. Take s < t. We know that L(s) is A-invariant and O"(AIL(s)) is contained in 
(-00, s]. Hence, also O"(AIL(s)) C (-00, t]. But L(t) is the largest A-invariant subspace 
N with O"(AIN) C (-00, t]. Thus L(s) c L(t), and (Cl) is established. Since O"(A) C 
[meA), M(A)], the functional calculus of Section 1.3 shows that L(t) = 0 for t < meA) 
and 

L(t) = Ker(t - A) EB Im(t - A) = H, 

Thus conditions (C3) and (C4 ) are fulfilled. 

t > M(A). 

Next we check condition (C2). Write L(s + 0) for the space n{L(t) It> s}. 
Obviously, L( s) c L( s + 0). The subspace L( s + 0) is invariant under A, because L( t) is 
invariant under A for each t > s. Take t > s, and let N = L(t) n L(s + 0)1.. Then N is 
also invariant under A, and so (cf. Proposition 1.2.4) 

O"(AIL(s + 0)) C O"(AIL(t)) C (-00, t]. 

It follows that 

O"(AIL(s + 0)) C n (-00, t] = (-00, s]. 
t>s 

But L(s) is the largest A-invariant subspace L with O"(AIL) C (-00, s]. Hence L(s + 0) C 
L(s), and (C 2 ) is satisfied. 

To prove the last part of the theorem, assume that B E £(H) commutes with 
A. Let Ds,t be the operator defined by formula (8) in Section 2. By Lemma 2.3 the 
operator B commutes with Ds,t for any s < t in R. Now fix t E R. From the proof of 
Corollary 2.5 we know that 

L(t) = Ker(t - A) EB ImDr,t, L(t)1. = ImDt,u, 

provided that r < min(t, meA)) and u > max(t, M(A)). Since B commutes with A and 

with the operators Dr,t and Dt,u, the spaces L(t) and L(t).l.. are invariant under B. But 



74 V.3 RESOLUTION OF THE IDENTITY 

this is equivalent to the statement that B commutes with the orthogonal projection on 
L(t). 0 

We shall refer to the resolution defined in Theorem 3.2 as the resolution of the 
identity for the selfadjoint operator A. In the next section we shall see that a selfadjoint 
operator may be reconstructed from its resolution. As a first step in this direction we 
show here how a resolution of the identity can be used to build new operators using a 
Stieltjes type of integral. 

Let {E(t)}tER be a resolution of the identity supported by the interval [m, M]. 
Choose a < m and {3 > M, and let f be a complex-valued continuous function on [a, {3]. 
Let P be a partition, a = >'0 < >'1 < ... < >'n = {3, of the interval [a, {3], and let 
T = {tt, ... , tn} be a set of points such that )..j-1 $ tj $ )..j for j = 1, ... , n. As usual 
the width of the partition P (i.e., the maximal length of the subintervals [)..j-1,>'j]) is 
denoted by v(P). Consider the Stieltjes type sum: 

(3) 

and define 

(4) 

n 

ST(f; P) = L f(tj)(E()..j) - E(>'j-1)), 
j=l 

f3 

J f()..)dE()..):= lim ST(f; P). 
II(P)-+o 

Note that ST(f; P) is a bounded linear operator on H. A standard argument from the 
theory of Riemann-Stieltjes integration shows that the limit in the right hand side of 
(4) exists in the norm of £( H). Indeed, take e > 0, and let P and Q be partitions of 
[a,{3] with v(P) < 6 and v(Q) < 6, where 6 > 0 has been chosen in such a way that 
If(t) - f(s)1 < e/2 whenever It - sl < 6. Consider Stieltjes type sums for P and Q: 

n 

ST(f; P) = L f(tiHE()..i) - E()..i-t}}, 
;=1 

r 

Srr(f; Q) = L f(SjHE(f-Lj) - E(f-Lj-1)}. 
j=l 

First, assume that Q is finer than P, and put tj = ti if [f-Lj-I,f-Lj] C [Xi-I, Xi]. It follows 
that Itj - sjl < 6, and hence If(tj) - f(sj)1 < e/2 for j = 1, ... , r. Now use that for each 

x E H the vectors (E(f-Lj) - E(f-Lj-1))x, j = 1, ... , r, are mutually orthogonal. So 

II (ST(f; P) - Srr(f; Q))xII2 = IIt,u(tj) -f(sj ))(E(f-Lj) - E(f-Lj_d)xI1
2 

r 

= L If(tj) - f(sj)1211(E(f-Lj) - E(f-Lj_I))xI1 2 
j=l 
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::; (c/2)2 (t,II (E(jlj) - E(jlj_l»xll 2) 

= (c/2)2II (E(,8) - E(a»)xll2 

= (c/2)21IxIl 2, 
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and hence IISr(f; P) - Sr7(f; Q)II < c/2. But then, always (without the assumption that 
Q is finer than P), we have IISr(f; P) - Sr7(f; Q)II < c. Since £(H), endowed with the 
operator norm, is a Banach space, we may conclude that the limit in (4) exists in £(H). 

The value of the integral in (4) depends only on the values of f on [m,M]. 
To see this, choose the partition P = {a = AO < Al < ... < An = ,8} in such a way that 
m and M belong to P. So m = Ak and M = Ai for some k and f. It follows that 

l 

(5) Sr(f; P) = L f(tj){E(Aj) - E(Aj_l)} + Rr(f; P), 
j=k+1 

where 

Rr(f; P) = ct + t ) [f(tj){E(Aj) - E(Aj_I)}] 
j=1 j=i+1 

= f(tk)E(m) + f(tl+l)(I - E(M») 

--> f(m)E(m) + f(M) (I - E(M», v(P) --> 0, 

because of the continuity of f. Since the first term in the right hand side of (5) only 
involves values of f on [m,M], we conclude that indeed the integral in (4) is uniquely 
determined by the values of f on [m, M]. 

For a complex-valued continuous function f on [m, M] we define 

M+O f3 

(6) f f(A)dE(A):= f 1cA)dE(A), 
m-O a 

where [a,,8] is any interval with a < m and ,8 > M and 1 is an arbitrary continuous 
extension of f to [a, ,8]. The remark made in the previous paragraph shows that the 
integral in the left hand side of (6) is well-defined. 

THEOREM 3.3. Let {E(t)}tER be a resolution of the identity on H supported 
by the interval [m, MJ, and let G([m, M]) be the linear space of complex-valued continuous 
function on [m, M]. Then the map 

:J : G([m, M]) --> £(H), :J(f) = 7°f(A)dE(A) 

m-O 
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has the following properties: 

(i) .:T is linear, 

(ii) .:T(Jg) = .:T(J):T(g), 

(iii) .:T(J)* = :TCJ), 

(iv) .:T(e) = I, where e(t) = 1 for m :5 t :5 M, 

(v) II.:T fll :5 max{lf(A)11 m :5 A :5 M}. 

Furthermore, if T E C(H) commutes with E(t) for each t E R, then .:T(J) commutes 
with T. 

PROOF. Choose a < m and f3 > M, and let P be a partition of [a,f31. 
Each f E C([m,M]) is extended to a continuous function on [a,f31, also denoted by f, 
by setting 

Then 

(7) 

{ 
f(m) for a:5 t :5 m, 

f(t) = f(M) for M:5 t :5 f3. 

.:T(J) = lim ST(J; P), 
v(P)-O 

with convergence in the norm of C(H). Hence it suffices to prove the theorem for ST(J; P) 
instead of .:T (J). 

Obviously, ST(J; P) is linear in f, and so (i) is proved. Set P = {a = AO < 
Al < ... < An = f3}. Note that 

(E(Aj) - E(Aj_t}) (E(Ai) - E(Ai-l)) 

=oij(E(Aj)-E(Aj_l)), i,j=l, ... ,n, 

where Oij is the Kronecker delta. This implies that ST(Jg; P) = ST(J, P)ST(g; P), and 
hence (ii) is proved. Since 

for i = 1, ... , n, we have ST(J; P)* = STCJ, P), which proves (iii). Statement (iv) follows 
from 

n 

ST(e; P) = 2)E(Aj) - E(Aj_t}) = I. 
j=l 

To prove (v), recall that for each x in H the vectors (E(Aj) - E(Aj_l))X, j = 1, ... , n, 
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are mutually orthogonal, and hence 

where 

n 

II Sr(fjP)XIl2 = 2:: IIJ(tj){E(Aj) - E(Aj_1)}xII 2 
j=1 

n 

= 2:: IJ(tj)1211{E(Aj) - E(Aj_1)}xI12 
j=l 

n 

::;,22:: II {E(Aj) - E(Aj_d}xIl2 
j=l 

= ,2 II {E(,B) - E(a)}xI12 = ,21IxIl2, 

, = max IJ(t)1 = max IJ(t)l· 
Ci~t~f3 m9~M 

The above calculations show that IISr(fj P)II ::; " which proves (v). 

n 

Finally, assume that T E £(H) commutes with E(t) for each t E R. Then 
TSr(fj P) = Sr(f; P)T, and (7) implies that .:T(f) commutes with T. 0 

V.4 THE SPECTRAL THEOREM 

The first theorem of this section is called the spectral theorem for a bounded 
selfadjoint operator. 

THEOREM 4.1. Let A E £(H) be selfadjoint, and let {E(t)}tER be the 
resolution of the identity for A. Then 

(1) 

M(A)+O 

A = J AdE(A). 
m(A)-O 

PROOF. By definition (see the previous section) E(t) is the orthogonal 
projection of H onto the spectral subspace of A associated with (-00, t). Take s < t, and 
put Lo = Im{E(t) - E(s)}. Obviously, Lo = ImE(t) n Ker E(s). We know that ImE(t) 
and ImE(s) are invariant under A. Since A is selfadjoint, also Ker E(s) is invariant 
under A, and hence Lo is invariant under A. By formulas (32a) and (32b) in Section 2, 

(2) x E Lo. 

We are now ready to prove (1). Choose a < meA) and ,B > M(A). Let 
p = {a = AO < A1 < ... < An = ,8} be a partition of [a, ,8). From the result of the 
previous paragraph we know that 

0::; (A - Aj-l)Y, y) ::; (Aj - Aj_d11Y112 

for each Y E Im{E(Aj) - E(Aj_r)}, and hence 

(3) 
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Take x E H. Then 

IIAX - t, Aj-l {E(Aj) - E(Aj_dx I1
2 

= 11t,(A - Aj_l){E(Aj) - E(Aj-l)}Xlr 

n 

= L II(A - Aj_l){E(Aj) - E(Aj_l)}xII 2 

j=l 
n 

$ L(Aj - Aj_d2 11{E(Aj) - E(Aj_l)}xII 2 

j=l 

V.4 THE SPECTRAL THEOREM 

where v(P) is the width of the partition P. The first inequality in the above calculation 
follows from (3). Furthermore, we have used that Im{E(Aj )-E(Aj_l)} is invariant under 
A for j = 1, ... , n, and hence the vectors (A - Aj_l){E(Aj) - E(Aj_t}}X, j = 1, ... , n, 
are mutually orthogonal. We conclude that 

n 

L Aj-l {E(Aj) - E(Aj_l)} ~ A, v(P) ~ 0, 
j=l 

in the operator norm, and (1) is proved. 0 

The next theorem shows that the resolution of the identity for a selfadjoint 
operator A is uniquely determined by formula (1). 

THEOREM 4.2. Let {E(t)heR be a resolution of the identity on H supported 
by the interval [m, M]. Then the operator 

M+O 

(4) A:= J AdE(A) 
m-O 

is selfadjoint and {E(t)}teR is the resolution of the identity for A. 

PROOF. It is clear from Theorem 3.2 that A is selfadjoint. Let {F(t)heR 
be the resolution of the identity for A. Put n = min(m,m(A)) and N = max(M,M(A)). 
Then the two resolutions {E(t)}tER and {F(t)}tER are both supported by the interval 
[n,N]. Furthermore (cf. formula (4) in Section 3), we have 

N+O N+O J AdE(A) = A = J AdF(A). 

n-O n-O 
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So we can apply Theorem 3.3 (i), (ii) and (iv) to show that 

N+O N+O 

(5) J I(A)dE(A) = J I(A)dF(A) 
n-O n-O 

for each complex polynomial I(A). But then Theorem 3.3(v) and the Weierstrass approx
imation theorem imply that (5) holds for each I E C([n, N]). Take a < n and (3 > N. 
According to formula (4) in Section 3 and by what has been proved so far 

(6) 
f3 f3 J I(A)dE(A) = J I(A)dF(A) 

for each I E C([OI, (3]), the space of all complex valued continuous functions on [01, (3J. 
Take x E H, and put get) = (E(t)x, x) and h(t) = (F(t)x, x) for a S t S (3. From (6) it 
follows that 

f3 f3 

(7) J I(A)dg(A) = J I(A)dh(A), I E C([OI, (3]). 

Note that g(OI) = h(OI) = O. Furthermore, both 9 and h are monotonely increasing and 
right continuous (by Proposition 3.1). But then (7) and the Stieltjes integration theory 
imply that 9 = h. In other words, for each x E H 

(8) (E(t)x, x) = (F(t)x, x), aS t S (3. 

Now use that for T E C(H) and any x and y in H the following identity holds: 

(9) 
1 

(Tx,y) = 4{(T(x + y),x + y) - (T(x - y),x - y) 

+ i(T(x + iy), x + iy) - i(T(x - iy), x - iy)}. 

So (8) yields that for each x and y E H 

(E(t)x, y) = (F(t)x, y), aS t s (3, 

which implies that E(t) = F(t) for a S t S (3. For t rt. [01, (3J this equality is trivial. Thus 
E(t) = F(t) for all t E R. 0 

Let A E C(H) be selfadjoint, and let {E(t)}tER be the resolution of the 
identity for A. Theorems 4.1 and 3.3 imply that 

M(A)+O 

peA) = J p(A)dE(A) 

m(A)-O 
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for any complex polynomial p. We extend this formula to any complex-valued continuous 
function f on [meA), M(A)] by setting 

(10) 

M(A)+O 

f(A):= 1 f(>..)dE(>..). 
m(A)-O 

Note that the map f 1-+ f(A) from C([m(A), M(A)]) into £(H) has the same properties 
as the map J in Theorem 3.3. The functional calculus defined by (10) involves a richer 
family of functions than the one defined in Section 1.3. 

The resolution of the identity for a selfadjoint operator A can be extended to 
a spectral measure defined on the Borel subsets of the spectrum of A. This fact allows 
one to extend the functional calculus defined by (10) to bounded Borel functions on 
u(A). We shall derive these results later (in Volume II) for the (larger) class of normal 
operators. 

V.5 SPECTRUM AND RESOLVENT 

In this section we describe the spectrum and resolvent of a bounded selfadjoint 
operator in terms of its resolution of the identity {E(t)}tER' In what follows E(t - 0) 
denotes the orthogonal projection onto the smallest closed linear manifold containing 
ImE(>..) for each>" < t. 

THEOREM 5.1. Let A E £(H) be selfadjoint, and let {E(t)}tER be the 
resolution of the identity for A. Then for s ~ t the spectral subspace L of A associated 
with [s, t] is equal to the image of E(t) - E(s - 0) and 

(1) u(AIL) n (s, t) = u(A) n (s, t). 

PROOF. Put N = Im{E(t)-E(s-O)}. The space ImE(t) is invariant under 
A. Also ImE(>..) is invariant under A for each>" < s. This implies that ImE(s - 0) is 
invariant under A. Since A is selfadjoint, we conclude that also Ker E(s - 0) is A
invariant, and thus the same holds true for N. Take x E N. Choose a < meA) and 
(3 > M(A). Then 

Our choice of x yields 

(3 

(Ax,x) = ((1 >"dE(>"») x, x) 
a 

(3 

= 1 >..d(E(>..)x, x). 
a 

(E(>")x,x) = { IIx1l2 , 
0, 

>.. 2:: t, 

>.. < s. 
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Hence, by the theory of Stieltjes integration, 

t 

(Ax, x) = J >.d(E(>.)x, x), 

s 

which implies that 

(A - s)x, x) ~ 0, (t - A)x, x) ~ O. 

In other words, m(AIN) ~ s and M(AIN) ~ t, and we can apply Theorem 2.1 to show 
that <T(AIN) C [s, t]. Since L is the largest A-invariant subspace with this property, we 
have proved that N C L. 

We know that ImE(t) is the largest A-invariant subspace with the property 
that <T(AIImE(t)) C (-00, t]. This implies that L C ImE(t). Let us show that also 
L C Ker E(s - 0). Take>. < s. Recall (see Corollary 2.5) that 

ImE(>.) = Ker(>. - A) EI1 Imn~, 

where n~ is given by formula (33) in Section 2 (with>. instead oft). Since <T(AIL) C [s, t], 
the functional calculus of Section I.3 yields n~x = 0 for each x E L, and thus 

because n~ is selfadjoint. The inclusion <T(AIL) C [s, t], also implies that L = (>. - A)L, 
and therefore 

L C Im(>. - A) C Ker(>. - A).l. 

So L.l :J ImE(>.) for each>' < s. But then L.l :J ImE(s-O), and thus L C Ker E(s-O). 
We have now proved that L = Im{E(t) - E(s - O)}. 

It remains to prove (1). Since A is selfadjoint, L.l is also invariant under A, 
and thus 

<T(A) = <T(AIL) U <T(AIL.l), 

because of Proposition I.2.4. So to prove (1) it suffices to show that <T(AIL.l) n (s, t) = 0. 
Note that 

L.l = ImE(t).l ffi ImE(s - 0). 

Both Im E( t).l and Im E( s - 0) are invariant under A. From the definition of the resolu
tion {E(>')}~ER and Corollary 2.5 we know that (A-t)x,x) ~ 0 for each x E ImE(t).l. 

Hence, by Theorem 2.1, we have <T(AI ImE(t).l) C [t,oo). Similarly, for each>' < s 

x E ImE(>.), 

and thus (s - A)x,x) ~ 0 for each x E ImE(s - 0), which implies (by Theorem 2.1) 
that <T(AllmE(s - 0)) c (-oo,s]. Thus 

<T(AIL.l) = <T(AI 1m E(t).l) U <T(AI 1m E(s - 0)) C [t, 00) n (-00, s], 
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and hence O"(AILl.) n (8, t) = 0. 0 

In (1) the open interval (8, t) may not be replaced by the closed interval [8, t]. 
For example, take 

(Af)(t) = tf(t) (0::; t ::; 1). 

Consider the closed interval [1,2]. The spectral subspace L of A associated with [1,2] 
consists of the zero element only, and hence O"(AIL) = 0. But O"(A) n [1,2]) = {I}. 

COROLLARY 5.2. Let A E C(H) be selfadjoint, and let {E(tntER be the 
resolution of the identity for A. Then 

(2) Im{E(t) - E(t - On = Ker(t - A), t E R. 

In particular, t is an eigenvalue of A if and only if E(t) =I E(t - 0). 

PROOF. Note that Ker(t - A) is the largest A-invariant subspace N such 
that O"(AIN) C {t}. Indeed, if O"(AIN) C {t} and N =I {O}, then m(AIN) = M(AIN) = t, 
and thus (Ax,x) = t(x,x) for each x E N, which implies (cf. [GG], Corollary III.4.2) 
that A - t is zero on N. Now apply Theorem 5.1 with s = t. 0 

COROLLARY 5.3. Let A E C(H) be selfadjoint, and let {E(tntER be the 
resolution of the identity for A. Then I' ERn peT) if and only if E(J-L - e) = E(J-L + e) 
for some e > O. 

PROOF. We know (cf. Corollary 2.5) that 

(3) ImE(t) = Ker(t - A) ffi Imnt, 

where nt is given by formula (33) in Section 2. Now, assume that I' E peA). Choose 
e > 0 such that [I' - e, I' + e] C peA). Then the functional calculus of Section 1.3 implies 
that nt = nl-' for all t E [I' - e,J-L + e]. In particular, nl-'-e = nl-'+e' Furthermore, 
Ker(J-L + e - A) and Ker(J-L - e - A) both consist of the zero element only (because I' - e 
and I' + e are in peA»~. So (3) yields that ImE(J-L + e) = ImE(J-L - e). 

Conversely, assume that E(J-L - e) = E(J-L + e) for some e > O. Then, by 
Theorem 5.1, the spectral subspace L of A associated with [I' - te,J-L + te] consists of 
the zero element only, and thus (1) implies that 

In particular, I' E peA). 0 

V.6 SQUARE ROOT AND POLAR DECOMPOSITION 

An operator A E C(H) is called non-negative (notation: A 2: 0) if A is 
selfadjoint and (Ax,x) 2: 0 for each x E H. In that case meA) 2: 0 and M(A) = IIAII. 

THEOREM 6.1. If A is non-negative, then there exists a unique non-negative 
operator B such that B2 = A. Furthermore, B commutes with each operator that com
mutes with A. 
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The operator B in Theorem 6.1 is called the square root of A. To prove 
Theorem 6.1 we use the functional calculus introduced in the next to last paragraph of 
Section 4. Let A E C(H) be selfadjoint. Recall that for a complex-valued continuous 
function f on [meA), M(A)] 

(1) 

M(A)+O 

f(A):= J f(>..)dE(>..), 

m(A)-O 

where {E(t)heR is the resolution of the identity for A. From Theorem 3.3 we know that 

(2) (J + g)(A) = f(A) + g(A), (Jg)(A) = f(A)g(A), 

(3) f(A)* = I(A), 

(4) IIf(A)1I ~ max{lf(t)11 meA) ~ t ~ M(A)}, 

whenever f and 9 are continuous on [meA), M(A»). Formula (2) and Theorems 4.1 and 
3.3(iv) imply that formula (1) yields the usual expression for polynomials, i.e., 

n n 

(5) p(>..) = L aj>..j ::} peA) = L ajAj. 
j=O j=O 

LEMMA 6.2. The operator f(A) commutes with each operator that commutes 
with A. 

PROOF. By the Weierstrass approximation theorem there exists a sequence 
(Pn) of polynomials such that Pn -+ f uniformly on [meA), M(A»). The inequality (4) 
implies that Pn(A) -+ f(A) in the operator norm. Now, let S be an operator commuting 
with A. Then S commutes with Pn(A) for each n, and thus 

Sf(A) = lim Spn(A) = lim Pn(A)S = f(A)S. 0 
n~oo n-+oo 

PROOF OF THEOREM 6.1. Choose a < 0 and {3 > IIAII, put 

{ 
0 for a ~ t ~ 0, 

get) = t1/2 for 0 ~ t ~ {3, 

and let gO be the restriction of 9 to [meA), M(A)]. Then B = go(A) is a well-defined 
operator, which is selfadjoint by formula (3). According to the second identity in (2) we 
have B2 = g5(A) = A. From 

(J 

(Bx, x) = (go(A)x, x) = J g(t)d(E(t)x, x} 

a 
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we see that· B ~ O. Lemma 6.2 implies that B commutes with each operator that 
commutes with A. 

To prove the uniqueness, let 0 be a second non-negative operator such that 
02 = A. Without loss of generality we may assume that f3 > 11011. Choose a sequence 
of polynomials PI, P2, ... such that Pn -+ g (n -+ 00) uniformly on [Cl!, f3]. Then Pn -+ gO 
uniformly on [meA), M(A)], and thus Pn(A) -+ B in the operator norm (by the inequality 
(4)). Put qn(t) = Pn(t2) for n = 1,2, .... Then ql,q2,'" is a sequence of polynomials 
which converges uniformly on [0,11011] to q(t) = t. It follows (apply the inequality (4) to 
o instead of A) that qn(O) -+ 0 in the operator norm. From (5), applied to 0, we see 
that qn(O) = Pn(A). Thus 

B = lim Pn(A) = lim qn(O) = O. 0 
n-+oo n-+oo 

Square roots can be used to extend the familiar representation reicp of a 
complex number to operators on a Hilbert space. To do this, first a few preparations. 
An operator U E C(H) is called a partial uometry if 

(6) IIUxll = IIxll, x.lKerU. 

In that case Ker U 1. is called the initial space of U and 1m U is called the final space. 
Note that the range of a partial isometry is always closed. 

THEOREM 6.3. Let A E C(H). Then there exists a partial isometry U and 
a non-negative operator R such that 

(7) A=UR. 

Furthermore, U and R may be chosen such that ImR is the initial space of U, and in 
that case the decomposition (7) is unique. 

The decomposition (7) is called the polar decomposition of A if the additional 
condition 1m R = Ker U 1. is fulfilled. 

PROOF OF THEOREM 6.3. Let R be the square root of A* A. Since A* A 
is non-negative, R is well-defined by Theorem 6.1. Note that 

(8) 
IIAxll2 = (Ax, Ax) = (A* Ax, x) 

= (R2x, x) = (Rx, Rx) = IIRxIl 2, xEH, 

which implies that Ker R = Ker A. Now define an operator Uo : ImR -+ H by setting 
UOY = Ax, where x is any vector in H such that y = Rx. The particular choice of x is not 
important. Indeed, if Rxl = Rx2, then Xl - X2 E Ker R = Ker A, and thus AXI = AX2. 
From (8) we see that for y = Rx 

IlUoYIl = II Ax II = IIRxIl = lIylI· 
So, by continuity, we may extend Uo to a bounded linear operator from 1m R to H, which 
we shall also denote by Uo. This extension again preserves the norm, i.e., IlUoYll = lIyll 
for y E ImR. Next, put 

(9) Uy = UOPy, yEH, 
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where P is the orthogonal projection of H onto 1m R. Then U is a partial isometry, the 
initial space of U is Im R, and (7) holds. 

It remains to prove the uniqueness of the polar decomposition. Assume A = 
U1R1, where Rl is a non-negative operator and Ul is a partial isometry with initial space 
ImRl· The latter part of our assumptions implies that IlU1yl/ = I/yl/ for all y = RIX. 
Thus 

x EH. 

But then A* A = R~, by [GG], Corollary III.4.2. Since Rl ~ 0, the uniqueness statement 
in Theorem 6.1 implies that Rl is the square root of A* A. Let R and U be as in the 
first paragraph of the proof. Then Rl = R and U R = UIR. It follows that Ul and U 
coincide on the subspace M := ImRl = ImR. Since M is the initial space for both Ul 
and U, we also know that Ul and U coincide on M.!.. Hence U1 = U. 0 

Let A = U R be the polar decomposition of A. From the construction of U 
and R in the first paragraph of the proof of Theorem 6.3 it follows that 

ImA* = KerA'!' = KerR'!' = ImR, 

and hence ImA* is the initial space of the partial isometry U. One can also prove that 
ImA is the final space of U. Indeed, 

ImU = ImU:::> ImA = U(ImR):::> U(ImR) = ImU, 

and thus Im U = 1m A. 

V.7 UNITARY OPERATORS 

Let {E(t)}tER be a resolution of the identity supported by [-7r, 7r] and let U 
be defined by 

11"+0 

(1) U = J ei>'dE(>.). 

-11"-0 

Then U is unitary, i.e., the operator U is invertible and U-l = U* (see [GG], Section 
VIII.3 for the definition of a unitary operator). Indeed, the operator 

11"+0 

(2) V = J e-i>'dE(>.) 

-11"-0 

is well-defined, and by Theorem 3.3 we have U* = V and VU = UV = I, which shows 
that U is unitary. 

Conversely, any unitary operator admits a representation as in (1). This is 
the spectral theorem for unitary operators. 
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THEOREM 7.1. Let U E £(H) be unitary. Then there exist.~ a unique 
resolution of the identity {E( t)} teR supported by [-11',11'] such that 

11'+0 

(3) U = j eD·dE()..). 

-11'-0 

Furthermore, the resolution in (3) is obtained as follows. Put 

(4) At = 2~i j(ei1l' - O(eit - 0«( - U)-ld(, 

"YI 

where It is the boundary of the set consisting of all ).. = reis with 0 ::; r ::; 2 and 
-11' ::; S ::; t. Then E(t) is the orthogonal projection onto the subspace 

(5) Ker( ei1l' - U) E9 1m At E9 Ker( eit - U) 

for -11' ::; t < 11', the projection E(t) = 0 for t < -11' and E(t) = I for t ~ 11'. 

and 

(6) 

The operator At in (4) is well-defined because of the following lemma. 

LEMMA 7.2. The spectrum of a unitary operator U lies on the unit circle 

PROOF. Since U is an isometry (cf., Theorem VIII.3.1 in [GG]), IIUIl ::; 1 
and hence).. E p(U) for 1)..1 > 1. Also 0 E p(U), because U is invertible. Take 0 < 1)..1 < 1. 
Then).. - U = )"U(U* _)..-1). Now use that U* is an isometry. So U* -).. -1 is invertible 
and it follows that).. E p(U). This proves that t7(U) lies in the unit circle. 

Let ).. = rei", with r > 1. Then 

II().. - U)x112 = (,\ - U)x, (,\ - U)x) 

= {(X - U*)().. - U)x, x) 

= (r2 + 1)lIx 1l 2 - {(XU + )"U*)x,x) 

~ (r2 + 1)llxll2 -IIXU + )"U*lIlIxIl2 

~ (r2 + 1)lIx112 - 2rllxll2 

= (r - 1)211x1l2 

which proves (6) for 1,\1 > 1. For,\ = 0 the inequality (6) is trivial. Take 0 < 1)..1 < 1. 
Then 1)..-11 > 1, and thus 

II().. - U)-111 = 1I,\-I(U* _ )..-I)-IU*11 

::; 1,\-11(1,\-11_1)-1 = (1_1)..1)-1. 0 
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The proof of Theorem 7.1 can now be given using the same type of arguments 
as used in Sections 2-4. Again the subspace (5) may be identified with the largest U
invariant subspace N such that u(UIN) lies in the arc {eis I -7r ~ 8 ~ t}. We omit 
further details. We shall come back to the representation (3) in Volume II. 

The approach to the spectral theorem developed in the present chapter applies 
to larger classes of operators. For example, it may also be applied to operators A that 
are normal (i.e., AA* = A* A) and have spectrum on a Cl-curve. 

COMMENTS ON PART I 

Chapter I contains standard material. One can find more about the topics 
of the last three sections of this chapter in the book Daleckii-Krein [1]. The operator 
differential equation y' = Ay, discussed in Section 1.5, is of special interest when A is an 
unbounded operator. We shall return to this topic in Chapter XIX, where the connec
tions between differential equations and semigroups will be explained. The material in 
Chapter II is taken from the corresponding material in Gohberg-Krein [1], [3], however 
the exposition is different and based on analogies with the finite dimensional case. The 
notion of equivalence, which is the main topic of Chapter III, has its roots in the analysis 
of matrix polynomials (see, e.g., Gelfand [1], Gohberg-Lancaster-Rodman [1]). In opera
tor theory it was introduced in the seventies. The first three sections of Chapter III are 
based on the papers Gohberg-Kaashoek-Lay [1], [2] and Kaashoek-Van der Mee-Rodman 
[1]. Section 111.4 is taken from Bart-Gohberg-Kaashoek [4]. The first section of Chapter 
IV, which extends the Riesz theory to operator pencils, contains results from Stummel 
[1]. The exposition of the spectral theorem for bounded selfadjoint operators given in 
Chapter V uses the main idea from the paper Lorch [1] (see also the book Lorch [2]). The 
approach used in this chapter may be viewed as the starting point of a spectral theory 
for more general classes of operators (see, e.g., the papers Lyubich-Macaev [1], Wolf [1], 
and the books Dunford-Schwartz [2], Colojara-Foias [1]). 
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In the exercises below, A is a bounded linear operator acting on a complex 
Banach space X. The symbol I stands for the identity operator on X. 

1. Let N be a positive integer, and assume that AN = I. Prove the following statements: 

(a) u(A) is a finite set; 

(b) each point of u(A) is an eigenvalue; 

(c) the resolvent of A has a simple pole at each p. E u(A), i.e., for>. near p. 

(d) the operator B-1 in (c) is a projection with 1m B-1 = Ker(p. - A) and 
Ker B-1 is the direct sum of Ker(>. - A) with>' # p.. 

2. Let N be a positive integer. Prove that AN = I if and only if 

wh~re ~1' >.2, .... , >'N are the N-th roo~s ofu~:lity and~, P2, ... , PN are mutually disjoint 
proJectlOns (l.e., PiPj = DijPj for all t and J) and 2:j=l Pj = I. 

3. Let A be an operator such that peA) = 0, where p is a polynomial of degree N with N 
different roots. Generalize for this operator the statements in Exercises 1 and 2, which 
concern the polynomial p( >.) = >. N - 1. 

4. Let A be an operator such that peA) = 0, where p is some non-zero polynomial. Prove 
the following statements: 

(a) u(A) is a finite set; 

(b) each point of u( A) is an eigenvalue; 

(c) the resolvent of A has a pole at each p. E u(A) of order less than or equal 
to the multiplicity of p. as a zero of p(>.). 

Is the representation (*) in Exercise 2 again valid? If not, replace it by another repre
sentation. 

5. Let N ~ 2 be an integer. Give an example of an operator A on £2 such that AN = 0, 
AN -1 # ° and dimXjKerAN-1 < 00. 

6. Consider a direct sum decomposition X = Xo E9 Xl E9 ... E9 XN-1, where Xo is 
a subspace of X and Xl. ... ,XN-l are finite dimensional. Let Aj : Xj -t Xj-l be 
an operator (j = 1, ... , N - 1), and assume that relative to the decomposition X = 
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Xo Ee Xl Ee··· Ee XN-I the operator A admits the following representation: 

[ 

0 Al 0 

A= ~ ~ ~2 
o 0 0 
o 0 0 

Prove that AN = 0 and dim Ker Ai+! / Ker Ai is finite for j = 1, ... ,N - 1. 

7. Let N ~ 2 be an integer. Assume that AN = 0 and dimKer A2/ Ker A is finite. 
Prove that A can be represented in the form (**) of Exercise 6. Are the numbers dimXj 
(j = 1, ... ,N - 1) uniquely determined by A? If yes, prove this statement; if no, give 
additional conditions on AI. ... , AN-I that guarantee their uniqueness. 

8. Assume that A has no spectrum on the unit circle IAI = 1. Let P be the Rlesz 
projection associated with the part of O'(A) inside the unit circle. Prove that 

(a) I - An is invertible; 

(b) (I - An)-l = ~ Ek~~(I - c:(n)k A) -l, where c:(n) = exp( -27ri/n)j 

(c) P = limn->oo ~(2~~-1 Ek~J(1 - c:(n)k A)-\ 
(d) P = limn->oo(1 - An)-l. 

9. Let 0' be an isolated part of O'(A) and N an A-invariant subspace. Show that O'(AIN) C 
0' implies that N C 1m Pu(A). 

10. Let M be an A-invariant subspace of X. Prove that O'(AIM) C O'(A) whenever A is 
compact. Is O'(AIM) always a subset of O'(A)? If yes, prove this statement; if no, give an 
additional condition on O'(A) that guarantees the inclusion. 

11. Let f E .r(A) and 9 E .r(J(A»). Show that the composition product go f is well
defined on a suitable open neighbourhood of O'(A) and prove that g(J(A)) = (g 0 f)(A). 

12. Assume that the spectrum of A lies in the open left half plane. Prove that 

00 

(A - A)-l = J e-AtetAdt, ~A ~ 0, 

o 

ia 

etA = }i.~ J eAt(A - A)-IdA, t> O. 
aeR -ia 

13. Assume that iR n O'(A) = 0. Prove that 

ia 

}i.~ J (A - A)-IdA 
aeR -ia 
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exists in the operator norm. Let Q be the operator defined by this limit, and let P be 
the Riesz projection associated with the part of a(A) in the open left half plane. Which 
of the following statements is true? 

(i) Q = P, 

(ii) Q = 1- P, 

(iii) Q = P - I, 

(iv) Q = P - !I. 
14. Consider the non-homogeneous differential equation: 

(t) { x/(t) = Ax(t) + J(t), 
x(O) = xo, 

t ~ 0, 

where J : [0,00) --+ X is continuous. Prove that its solution is given by 

t 

x(t) = etAxo + J e(t-s)A J(s)ds, t ~ O. 

° 
15. Assume that iR n a(A) = 0. Show that for each bounded continuous X-valued 
function on R the equation 

x/(t) = Ax(t) + J(t), -00 < t < 00, 

has a unique bounded solution. 

16. Consider the equation 

{ 
x/let) = Ax(t) + J(t), t ~ 0, 

x(O) = XO, x/CO) = XI, 

where J : [0,00) --+ X is continuous. Extend the result of Exercise 14 for this equation. 
Hint: use linearization. 

17. Compute the general solution of the equation 

n = 0,1,2, ... 

18. By definition the 8pectraZ radiu8 is the number given by 

rCA) = max{IAII A E a(A)}. 

Prove that 

(a) r(A)::; IIAnlll/n for n = 1,2, ... ; 

(b) limn ..... CXl IIAn II l/n exists (use that for any sequence (D:n) of non-negative 
numbers limn-tCXl ~ exists if D:n+m ::; D:nD:m for all n and m; see Problem 98 in Part 
I of P6lya-Szego [1]); 
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(c) rCA) = limn-+co IIAnIl 1/ n . 

19. Show that 

lim .!.log IleAtl1 = max{)RA I A E a-(A)}. 
t-+oo t 

20. Assume that a-(A) belongs to the open unit circle. Put 

91 

Show that 111·111 is an equivalent norm on X, and relative to this norm A is a contraction. 
Redefine the norm III· III so that A becomes a strict contraction, i.e., 

IIIAxll1 
IIIAIIi = !io TxIiI < 1. 

If the underlying space is a Hilbert space, then one can choose a norm III . III, defined via 
an inner product, such that A is a strict contraction relative to this Hilbert space norm. 

21. Assume that in the operator norm An -+ P if n -+ 00. Prove that 

(a) AP = PA = P and p2 = Pj 

(b) 1 is an isolated point of a-(A) if P =1= o. 
Determine the principal part of the series expansion of (A - A)-l at the point 1. 

22. Consider the equation 
n 

L 
j,k=O 

where A : X -+ X, B : Y -+ Y and C : Y -+ X are given operators acting between 
Banach spaces and Cjk (j, k = 0, ... , n) are constants. Assume that 

n 

'" . k peA, J-L) = L Cjk AJ J-L =1= 0, (A,J-L) E a-(A) x a-(B). 
j,k=O 

Show that the equation has a unique solution which has the form: 

z= ~; J J p(:'J-L)(A-A)-lC(J-L-B)-ldAdJ-L. 
r A rB 

Here r A and rB are Cauchy contours around a-(A) and a-(B), respectively, such that 
p(A,J-L) =1= 0 for (A,J-L) E 6.A x 6.B, where 6.A (resp. 6.B) is the closure of the inner 
domain of r A (resp. rB). 

23. Let A = L.f=l AjPj, where AI, ... , AN are different complex numbers and PI,· .. , PN 
are mutually disjoint projections such that L.f=l Pj = I. Consider the operator :f 
C(X) -+ C(X) defined by 

:f(S) = AS - SA, S E C(X). 
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Prove that 

EXERCISES TO PART I 

Ker(J) = {S E L(X) I PjSPk = 0 (j =I k)}, 

Im(J) = {S E L(X) I PjSPj = 0, j = 1, ... ,N}. 

Determine the spectrum of J and show that J can be written in the form J = 
2:j=1 tt/Rj, where 'R.I, ... , 'R.r are mutually disjoint projections and ttl, ... , ttr are com
plex numbers. 

24. Let T : X --+ Y and S : Y --+ X be operators acting between Banach spaces, and 
assume that tt =I 0 is an eigenvalue of finite type of ST. Prove that tt is also an eigenvalue 
of finite type ofTS. Show that the operators STI 1m p{p}(ST) and TSI 1m p{p}(TS) are 
similar. Are the above results also true if one allows tt to be zero? 

25. Assume that for some polynomial p the operator peA) is compact. Show that 
>. E peA) or >. is an eigenvalue of finite type whenever p(>.) =I o. If p(>.) = 0, does it 
follow that>. is not an eigenvalue of finite type? If yes, prove this statement; if no, give 
an example. 

26. Prove that in the infinite dimensional case A always has spectral points that are not 
eigenvalues of finite type. 

27. Let A and B be operators acting on the Banach space X, and assume that a(A) n 
a(B) = 0. Prove that the operator functions 

[ (>. - A)O(>' - B) 0] 
I ' 

[ >.-A 0 ] 
o >. - B 

are globally equivalent on C. 

28. Let Ao, AI, A2, ... be a bounded sequence in L(X), and consider the entire operator 
function 

00 1 . 
A(>') = L -:"f>'} Aj. 

j=O J. 

The aim of this exercise is to construct a "linearization" of A(·). Let £1 {X} be the 
Banach space of all sequences x = (XO, xl, x2, ... ) with elements x j in X such that 

IlIxlIl = 2:i=o IIxjll < 00. Define T and S on £1 {X} by setting 

T(XO,X},X2,' .. ) = (fAjXj,X1,X2,"')' 
}=o 

S(XO,Xl,X2,"') = (0'XO'~Xl'~X2''''). 
Prove that T and S are bounded linear operators, a(S) = {O} and for a suitable Banach 
space Z the Z-extension of A(·) is equivalent on C to the linear function T - >.S. 

In the remaining exercises the underlying space X is assumed to be a Hilbert 
space and is denoted by H. 



EXERCISES TO PART I 

29. Assume that A is selfadjoint, and let >'0 be an isolated point in O"(A). Prove that 

(a) >'0 is an eigenvalue of A, 

(b) the resolvent of A has a simple pole at >'0, 
(c) the Riesz projection Ppo}(A) is an orthogonal projection. 
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30. Assume that A is selfadjoint, and let 0" be an isolated part of O"(A). Show that the 
Riesz projection Pu(A) is selfadjoint. 

31. Assume that A is selfadjoint, and let {E(t)}tER be the resolution of the identity for 
A. If N is an A-invariant subspace, then N is also invariant under E(t) for each t E R. 
Prove this statement. 

32. Assume that A is selfadjoint, and let {E(t)}tER be the resolution of the identity for 
A. For s < t let ns,t be the operator defined by formula (8) in Section V.2. Show that 

ns,t = (t - A)(s - A){E(t) - E(s)}. 

33. Assume that A is selfadjoint, and let {E(t)}tER be the resolution of the identity for 
A. Prove the following statements: 

(a) If the sequence (Anx) converges for each x E H, then [m(A),M(A)] C 
[-1,1] and -1 is not an eigenvalue of A. 

(b) If 0 < a ~ 1, then 

lim IIAn{E(l - a) - E( -1 + a)} II = o. 
n ..... oo 

(c) For each x E H 

An{E(l- 0) - E( -l)}x ..... 0 (n ..... 00). 

(d) The sequence (Anx) is convergent for x E Im{E(l) - E(l- O)}. 

(e) If [m(A),M(A)] C [-1,1] and -1 is not an eigenvalue of A, then the 
sequence (An x) is convergent for each x E H. In this case the map P, defined by 

(x E H), 

is the orthogonal projection of H onto Ker(I + A). 



PART II 

CLASSES OF COMPACT OPERATORS 

This part contains the basic elements of the theory of non-selfadjoint com
pact operators. The topics are singular values (Chapter VI), trace and determinant 
(Chapter VII), Hilbert-Schmidt operators (Chapter VIII), evaluation of the resolvent 
and completeness theorems (Chapters VII, VIII and X). Some of the results are illus
trated for integral operators with semi-separable kernel functions (Chapter IX). One of 
the main aims is to obtain the results (whenever possible) by a limit procedure from the 
corresponding results for matrices. 



CHAPTER VI 

SINGULAR VALUES OF COMPACT OPERATORS 

The singular values of a compact operator A are by definition the eigenvalues 
of (A* A)I/2. These numbers are important characteristics for compact operators. In 
this chapter the main properties of the singular values are studied. In the last sectionthe 
trace class operators are introduced. For the latter operators the trace and determinant 
will be defined in the next chapter. 

VI.1 THE SINGULAR VALUES 

In the study of compact operators one of the difficulties is that there are non
trivial compact operators which do not have any eigenvalue (see the example in Section 
IlI.4 of [GG]). To analyze such operators one cannot use the methods of the previous 
chapters. The singular values, which form the main topic of the present section, provide 
alternative tools. 

Let A: HI ~ H2 be a compact operator acting between Hilbert spaces. Note 
that A* A is a compact (positive) selfadjoint operator on HI. Let 

(1) 

be the sequence of non-zero eigenvalues of A* A where each eigenvalue is repeated as 
many times as the value of its multiplicity. The number of non-zero eigenvalues of A * A 
is finite if and only if A has finite rank and in that case the sequence (1) is extended by 
zero elements so that in all cases (1) is an infinite sequence. By definition, for j = 1,2, ... 

the j-th singular value or j-th s-number is the number sj(A) := (Aj(A* A)) 1/2. By using 
the min-max theorem ([GG], Theorem IlI.9.1), one sees that 

(2) s ·(A) = min max IIAxl1 
J dimM=j-IO:j:xJ...M IIxil ' 

In (2) the symbol M stands for a finite dimensional subspace of HI. 

In what follows we shall assume that A is a compact operator on a Hilbert 
space H. Thus we take HI = H2 = H. However all results can easily be extended to the 
case when the operators act between different spaces. 

THEOREM 1.1. A compact operator A on a Hilbert space H admits a rep
resentation of the form 

v(A) 

(3) A = 2:: sj(A)(-,'-Pj)1/;j, 
j=I 

where v(A) is the number of non-zero s-numbers of A (counted according to multi

plicities), ('-Pj )ji~) and (1/;j )ji~) are orthonormal systems in H and the series in (3) 
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converges in the operator norm if yeA) = 00. Furthermore, if B = 2:.i=IO'.j(·,'Pj}'ljJj, 
where ('Pj )7=1 and ('ljJj )~=1 are orthonormal systems and (O'.j )'1=1 is a non-increasing 
sequence oJ positive nurribers which converges to zero if v = 00, then B is a compact 
operator and sj(B) = O'.j, 1 $ j < v + 1, are the non-zero s-numbers of B. 

PROOF. Write Sj = sj(A) for j 2:: 1. From the spectral theorem for self
adjoint compact operators we know that there exists an orthonormal system 'PI, 'P2, ... 

such that A* A = 2:ji~) sJ(" 'Pj}'Pj' Put 'ljJj = sjl A'Pj for each j. Then 

('ljJj,'ljJk) = sj1s;;1(A'Pj,A'Pk} 

-1 -l(A*A } = Sj sk 'Pj,'Pk 

= SjS;;l('Pj,'Pk} = Djk, 

and thus 'ljJ1, 'ljJ2, ... is also an orthonormal system. Any x E H can be written in the 
form 

(4) 
v(A) 

x = L (x, 'Pj }'Pj + u, 
j=l 

where u E Ker A* A. From (A* Au, u) = IIAul1 2 it follows that Ker A* A = Ker A. Fur

thermore, A'Pj = Sj'ljJj. Applying A to (4) now yields Ax = 2:ji~) Sj (x, 'Pj}'ljJj. To prove 
the first part of the theorem it remains to show that the series in (3) converges in the 
operator norm if yeA) = 00. Assume yeA) = 00, and let An = 2:j=l Sj(-,'Pj}'ljJj. Then 
for each x E H 

and thus An -+ A in the operator norm. 

To prove the converse statement, let B be as in the theorem. If v is finite, then 
B is of finite rank, and hence compact. If v = 00, put Bn = 2:j=l O'.j(-,'Pj}'ljJj. As in the 
previous paragraph one shows that Bn -+ B in the operator norm. Since Bn is of finite 
rank, it follows that B is compact. Next, one computes that B* = 2:j=lO'.j(-''ljJj}'Pj, 

and so B* B = 2:.i=1 O'.J(','Pj}'Pj. Thus sj(B) = (>"jCB* B))1/2 = O'.j. 0 

We call (3) a Schmidt-representation of A. Since sj(A) = 0 for j > yeA), 
we can represent A also in the form A = 2:.i=1 sj(A)(-' 'Pj }'ljJj, where v = dim H (which 
is finite or equal to 00) and ('-Pj )'1=1 and ('ljJj )'1=1 are orthonormal systems (which are 
extensions of the orthonormal systems in (3)). For the finite dimensional case the latter 
representation of A means that an n X n matrix A can be factored as 

[ 

Sl 

A=U 0 o 1 v, 

Sn 
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where U and V are n x n unitary matrices and Sl 2: S2 2: ... 2: Sn are non-negative 
numbers which are precisely the first n singular values of the operator induced by the 
canonical action of the matrix A on en. The above matrix factorization is called a 
singular value decomposition of the matrix A. 

The infinite dimensional version of the singular value decomposition is the 
representation A = U DV. Here A is a compact operator on an infinite dimensional 
Hilbert space H, the middle term D is a diagonal operator on £2 with diagonal elements 
sl(A),S2(A), ... and V:H -+ £2 and U:£2 -+ H are bounded linear operators such that 
U*U and VV* are the identity operators on £2. 

By taking adjoints in (3), we get 

v(A) 

(5) A* = L sj(A)(·,V;j)<pj, 
j=l 

and, by the second part of Theorem 1.1, formula (5) is a Schmidt-representation of A*. 
This yields the following corollary. 

COROLLARY 1.2. The operator A and its adjoint A* have the same singular 
values. 

PROPOSITION 1.3. If A: H -+ H is a compact operator and B, C: H -+ H 
are bounded linear operators, then 

(6) Sj(BAC) :5 IIBII . IICII . sj(A), j 2: 1. 

PROOF. By duality, using Corollary 1.2, it suffices to show that sj(BA) :5 
IIBlIsj(A). But the latter inequality is an immediate consequence of the min-max de
scription of the s-numbers in (2). 0 

COROLLARY 1.4. For any orthogonal projection P on H 

(7) j 2: 1. 

PROOF. It is easy to check that the operators PAl 1m P: 1m P -+ 1m P and 
PAP: H -+ H have the same singular values. Since IIPII :5 1, formula (6) implies that 
Sj(P AP) :5 sj(A). Thus (7) holds. 0 

The following theorem gives another interpretation of the singular values, 
namely as approximation numbers. 

THEOREM 1.5. Let A be a compact operator on the Hilbert space H. Then 
for n = 1,2, ... 

Sn(A) = min{IIA - KIIIK E £(H), rank K :5 n -I}. 

PROOF. Assume rankK = m:5 n - 1. Then dim(Ker K)..l = m, and so by 
the min-max formula for the s-numbers 

II Ax li 
sn(A) :5 sm+1(A) :5 max -11-1-1 

O;txE Ker J( x 

max II(A - K)xll < IIA - KII. 
O;txE Ker J( Ilxll -
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So Sn (A) ~ II A - K II for any K with rank K ~ n -1. It remains to prove that the infimum 

is attained and is equal to sn(A). To do this, let A = 2:ji~) sj(A)(-, 'Pj )'!f;j be a Schmidt

representation of A. Take n < v(A) + 1, and consider Kn = 2:j;;i sj(A){-,'Pj)'!f;j (the 
operator Kl = 0). Then rankKn = n -1 and 

IIA - Knll ~ sup sj(A) = sn(A). 
j?n 

Thus the minimum is attained in K = Kn and is equal to sn(A). If n > v(A), then 
rank A must be ~ n - 1 and sn(A) = 0, and thus in this case the minimum is attained 
at K = A. 0 

COROLLARY 1.6. For compact operators A, B on H 

(8) ISn(A) - sn(B)1 ~ IIA - BII, 

PROOF. TakerankK ~ n-1. Thensn(A) ~ IIA-KII ~ IIA-BII+IIB-KII. 
It follows that sn(A) - IIA - BII is a lower bound for liB - KII when K runs over all 
operators of rank ~ n-1. According to Theorem 1.5 this implies that sn(A)-IIA-BIl ~ 
sn(B), and thus sn(A) - sn(B) ~ IIA - BII. Interchanging in the latter inequality the 
roles of A and B yields (8). 0 

We compute the s-numbers for the operator of integration. Consider 

1 

(Vf)(t) = 2i 1 f(s)ds. 
t 

To find the s-numbers of V we have to determine the non-zero eigenvalues of V*V. Note 
t 

that (V* f)(t) = -2i J f(s)ds, and thus 
o 

t 1 

(V*Vf)(t) = 41 (1 f(U)dU)dS. 
o 8 

Take>. > o. We want to find a non-zero solution of the equation V*V f = >.f. By 
putting 9 = V*V f one checks that the equation V*V f = >.f is equivalent to the following 
boundary value problem: 

(9) >.g" + 4g = 0, g(O) = 0, g'(l) = O. 

The general solution of the differential equation in (9) is equal to 

get) = ,1 exp(2itrl/2) +,2 exp( -2it>. -1/2). 

The boundary condition at 0 implies that ,1 = -,2 (= ,), and thus g( t) = 
2irsin(2t>.-1/2). Now recall that we want 9 =1= 0 (which implies, =1= 0) and g'(l) = o. 
Such a solution exists if and only if cos 2>' -1/2 = o. It follows that the non-zero eigen
values of V*V are precisely the numbers Cl(2k + 1)71")-2, k = 0,1,2, ... , and hence 

(10) 
4 

Sj(V) = (2j _ 1)71"' j = 1,2, .... 
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VI.2 EIGENVALUES AND s-NUMBERS 

This section concerns various connections between eigenvalues and s-numbers 
of compact operators. As in Section 11.3 we let .A1(A1), .A2(A), . .. denote the sequence of 
non-zero eigenvalues of the compact operator A. The eigenvalues are ordered according to 
decreasing absolute values and multiplicities are taken into account. We shall extend the 
sequence .A1(A), .A2(A), ... to an infinite sequence by adding zero elements if necessary. 
In particular, if A is a Volterra operator, then .Aj(A) = 0 for j = 1,2, .... If A acts on 
H = em, then 

m m 

(1) II l.Aj(A)1 = II sj(A). 
j=1 j=1 

To see this recall that det A = TIj=1 .Aj(A), and thus 

m m 

II Sj(A)2 = detA*A = (detA*)detA = I det AI2 = II l.Aj(A)12. 
j=1 j=1 

Besides (1) what other connections exist between eigenvalues and s-numbers in the finite 
dimensional case? We shall prove (see Theorem 2.1 below) that 

n n 

(2) II l.Aj(A)1 ~ II sj(A), n = 1, ... ,m - 1. 
j=1 j=1 

It turns out that (1) and (2) give a complete description of all possible connections 
between eigenvalues and s-numbers of operators on em. That is, if a1 ;::: ... ;::: am ;::: 0 
and f31 ;::: ... ;::: f3m ;::: 0 are two sets of non-negative numbers which are related in the 
following way: 

n n m m 

II aj ~ II f3j (n=I, ... ,m-l), II aj = II f3j, 
j=1 j=1 j=1 j=1 

then there exists A on em such that l.Aj(A)1 = O'.j and sj(A) = f3j (see A. Horn [1]). 

THEOREM 2.1. For a compact operator A on a Hilbert 8pace 
n n 

(3) II l.Aj(A)1 ~ II sj(A), 
j=1 j=1 

PROOF. We use Schur's lemma (Lemma 11.3.3). Let EA be the smallest 
closed linear subspace of H spanned by all eigenvectors and generalized eigenvectors of 
A corresponding to non-zero eigenvalues of A. We know that EA has an orthonormal 
basis (tPj )'1=1 such that AtPk = .EJ=1 ajktPj with akk = .Ak(A). If n > 1/ ( and hence 
dimEA is finite), then .An(A) = 0 and in that case the inequality (3) holds true trivially. 
Next, take n < 1/+ 1, and let M be the subspace spanned by tPl, ... ,tPn. Since dim M = n 
is finite and AM C M, formula (1) implies that 

n n n 

II l.Aj(A)1 = II l.Aj(AIM)1 = II Sj(AIM). 
j=1 j=1 j=1 
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Next, use Corollary 1.4, to show that sj(AIM) :5 sj(A) and the proof is finished. 0 

By using the next lemma, Theorem 2.1 serves as a source for many other 
useful inequalities between eigenvalues and s-numbers. 

LEMMA 2.2. Let <p = <p(t!> ... , tn) be a real-valued differentiable function 
on an open set 1J of Rn, and let n be a convex subset of 1J such that 

(4) 
8<p 8<p 8<p 
-(t) > -(t) > ... > -(t) > 0 8tl - 8t2 - - atn -, 

If a = (al, . .. , an) and b = (bl , . .. , bn ) are points in n such that ~j=l aj :5 ~j=l bj 
for k = 1,2, ... , n, then <pea) :5 <pCb). 

PROOF. Define E: Rn -+ Rn by setting Et = (tl, tl + t2,· .. , tl + t2 + ... tn). 
Then E is invertible and relative to the standard basis of Rn the operators E and E-I 
are given by the matrices 

E = [~~ 0 1 ' E- I = [!1 1 . 0 ]. 
iiI 0 -1 1 

Since n is convex, >'b + (1 - >.)a E n for 0 :5 >. :5 1. Define 'lj;: [0, 1] -+ R by 'lj;(>.) = 
<p(>.b + (1 - >.)a). Then 'lj; is differentiable and 

'lj;'(>') = f Z. (>.b + (1- >.)a)(bj - aj) = (y).,b - a) 
j=l J 

where y). = (-3t(t).), ... , 3l;;(t).)) with t). = >'b + (1 - >.)a and h .. ) is the inner product 
on Rn. Using the operators E and E-l we may write 'lj;'(>') = ((E-I)*y).,E(b - a)}. 
Because of our conditions on a and b the coordinates of the vector E(b - a) are all 
non-negative. Formula (4) implies that the same is true for (E-I )*y).. It follows that 
'lj;'(>') ~ 0 for 0 :5 >. :5 1, and thus <pea) = 'lj;(0) :5 'lj;(1) = <pCb). 0 

COROLLARY 2.3. Let f: R -+ R be twice differentiable, and assume that 
f'(t) ~ 0 and J"(t) ~ 0 for each t E R. Let al ~ a2 ~ ... ~ an and bl ~ b2 ~ ... ~ bn 
be two systems of real numbers such that ~j=l aj :5 ~j=l bj for k = 1, ... , n. Then 

k k 

Lf(aj):5 Lf(bj), k = 1, ... ,n. 
j=l j=l 

PROOF. Apply Lemma 2.2 with <P(tl, ... , t n ) = ~j=l f(tj), the set 1J = Rn 
and n = {t E Rn I tl ~ t2 ~ ... ~ tn}. 0 

(5) 

We return to the connections between eigenvalues and s-numbers. 

COROLLARY 2.4. For a compact operator A on Hand p > () 
n n 

L l>'j(A)IP :5 L sj(A)P, n~1. 

j=l j=l 
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PROOF. Choose II such that Aj(A) =I- 0 for j < II + 1 and Aj(A) = 0 for 
j ~ II + 1. (Note that II may be finite or infinite and II ::; II(A).) It suffices to prove (5) 
for 1::; n < 11+ 1. Put aj = log JAj(A)J and bj = logsj(A). Then al ~ a2 ~ ... ~ an and 

b1 ~ b2 ~ •.. ~ bn , and Theorem 2.1 yields that LJ=l aj ::; LJ=l bj for k = 1,2, ... ,n. 
Now apply Corollary 2.3 with J(t) = ept , and (5) follows. 0 

COROLLARY 2.5. For a compact operator A on Hand r > 0 

n n 

(6) II (1 + rJAj(A)1) ::; II (1 + rSj(A)) , n~l. 

j=l j=l 

PROOF. As in the proof of Corollary 2.4, put aj = log JAj(A)J, bj = 
log sj(A), and apply Corollary 2.3 with J(t) = log(l + ret). 0 

COROLLARY 2.6. Let A be a compact operator on H, and let n be a positive 
integer. Then 

(7) S· (A)··· s· (A) }1 }n' r ~ n. 

PROOF. Choose II as in the proof of Corollary 2.4. It suffices to prove (7) 
for r < 11+ 1. Take 1) = Wand n = {t E W J tl ~ ... ~ t r }. Consider on 1) the function 

exp(t· + ... + t· ) }1 }n • 

Then n is a convex subset of 1) and for tEn the inequalities (4) hold true. Theorem 
2.1 allows us to apply Lemma 2.2 with aj = log JAj(A)J and bj = log sj(A), j = 1, ... , n. 
This yields the desired inequality. 0 

VI.3 FURTHER PROPERTIES OF SINGULAR VALUES 

THEOREM 3.1. For a compact operator A on a Hilbert space Hand n = 
1,2, ... (::; dimH) 

(1) 

where the maximum is taken over all unitary operators U on H and all orthonormal 
systems <PI, ... , <Pn in H. 

PROOF. Let U be a unitary operator on H, and let <PI,"" <Pn be an or
thonormal system in H. Define P to be the orthogonal projection onto span { <PI, ... , <Pn}. 
Put F = PU AP J 1m P: 1m P -+ 1m P. Since 1m P is finite dimensional, we know that 

n n 

trF = L(PUAP<pj,<pj) = L(UA<pj,<pj). 
j=l j=l 
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But tr F = "£J=l )..j(F), and so, using Corollaries 2.4, 1.4 and Proposition 1.3, we see 
that 

n 

::; L sj(A). 
j=l 

So "£J=l sj(A) is an upper bound for the numbers I "£J=l (U ACf'j, Cf'j}l. It remains to 
show that this upper bound is attained. 

To do this, write A = "£7=1 Sj(A){.,[pj};jj, where (;:Pj)'j=l and (;jj)'j=l are 

<E"~honormal systems and n ::; v. Choose a unitary operator U: H -+ H such that 
U'Ij;j = ;:Pj, j = 1, ... , n. Then 

and it is clear that in (1) the maximum is attained for U = U and Cf'j = ;:Pj (j = 1, ... ,n). 
o 

The absolute value in the right hand side of (1) can also be put after the 
summation sign, that is, 

(2) 

where as in (1) the maximum is taken over all unitary operators U on H and all or
thonormal systems Cf'1, ... , Cf'n. To see this, fix U and Cf'1, ... ,Cf'n. For j = 1, ... n let (} j 
be the argument of {UACf'j,Cf'j}. Introduce a new unitary operator Uo on H by setting 
UOCf'j = eiBi U*Cf'j, j = 1, ... ,n, and Uox = U*x for x 1- span{ Cf'1, . .. ,Cf'n}. Then 

n 

= L e-iBi (U ACf'j, Cf'j) 
j=l 

n n 

= L(UoACf'j,Cf'j}::; LSj(A), 
j=l j=l 

and hence (2) follows from (1). 

COROLLARY 3.2. If A and B are compact operators on the Hilbert space 
H, then 

n n n 

(3) L sj(A + B) ::; L sj(A) + L sj(B), n2::l. 
j=l j=l j=l 
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PROOF. Choose a unitary operator U on H and an orthonormal system 
'PI,··· ,'Pn in H such that 

Such a choice can be made by Theorem 3.1. It follows (again using Theorem 3.1) that 

n Inn I j;Sj(A+B) = j;(UA'Pj,'Pj) + j;(UB'Pj,'Pj) 

:s It (U A'Pj, 'Pj)1 + It (U B'Pj, 'Pj)1 
)=1 )=1 

n n 

:S L sj(A) + L sj(B). 0 

j=l j=l 

By taking U in (2) to be the identity operator on H one obtains the following 
corollary. 

COROLLARY 3.3. Let A be a compact operator on H, and let 'PI,···, 'Pn 
be an orthonormal system in H. Then 

n n 

(4) L I(A'Pj,'Pj)l:S LSj(A), n~1. 

j=l j=l 

Inequality (4) is an interesting inequality, even in the finite dimensional case. 
In the finite dimensional case (4) describes all the connections between the diagonal 
elements relative to an orthonormal basis and the s-numbers (see Mirsky [1]). 

VI.4 TRACE CLASS OPERATORS 

We want a reasonable class of operators for which a trace and a determinant 
can be defined. For an operator A acting on a finite dimensional Hilbert space H there 
is no problem: 

n 

trA:= L(A'Pj,'Pj), 
j=l 

det(I + A): = det( 8ij + (A'Pj, 'Pi) )r,j=l' 

where 'PI, . .. ,'Pn is an arbitrary orthonormal basis in H. Choose now 'PI, ... ,'Pn such 
that the matrix of A with respect to 'PI, ... ,'Pn has an upper triangular form. Then the 
diagonal elements of the matrix are preciesly the eigenvalues (multiplicities taken into 
account) of A, and thus 

(1) det(I + A) = II (1 + Aj(A)). 
j 
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In the infinite dimensional case the number of eigenvalues may be infinite, and hence in 
that case one has to worry about convergence in (1). 

For a Hilbert space H we define 

SI: = {A: H -+ H I A compact, t sj(A) < oo}. 
J=1 

The elements of SI are called the trace class operators on H. Note that because of 
Corollaries 2.4 and 2.5 for any trace class operator the series and infinite product in (1) 
converge. It turns out (as we shall see in the next chapter) that one can define tr A and 
det(I + A) for A E SI and that for such an operator (1) holds true. In this section we 
give the first properties of the class SI. 

THEOREM 4.1. The space Sl endowed with the norm 

00 

(2) IIAlll = L sj(A) 
j=1 

is a complex Banach space. The finite rank operators are dense in Sl relative to the 
norm (2). Furthermore, IIAlll 2: IIAII and equality holds if and only if A has rank ~ 1. 

PROOF. From sl(A) = IIAII it follows that IIAliI 2: II All , and hence II All 1 = 0 
implies A = O. Conversely, if A = 0, then all s-numbers of A are zero, and hence 
IIAliI = o. So IIAliI = 0 if and only if A = o. 

From sj(aA) = lalsj(A) for each j 2: 1 and Corollary 3.2 it is clear that SI 
is a linear space over C and (using the result of the previous paragraph) we also see that 
II· IiI is a norm on SI. Let us prove the completeness. Let (An)n be a Cauchy sequence in 
(Sl, 11·111)· From IIAIiI 2: IIAII we conclude that (An)n is a Cauchy sequence in the usual 
operator norm. But C(H) with the operator norm is complete, and so in the operator 
norm the sequence (An)n converges to some operator A. Since all An are compact, the 
same is true for A. Given c > 0 there exists a positive integer N = N( c) such that 

k 

(3) L Sj(An - Am) ~ IIAn - Am IiI < c (n, m 2: N). 
j=l 

Here k is an arbitrary positive integer. Next use that the s-numbers are continuous in 
the operator norm (Corollary 1.6), and take the limit for m -+ 00 in the left hand side 
of (3). It follows that for each k 2: 1 

k 

L S j (An - A) ~ c (n 2: N), 
j=l 

and hence IIAn - AliI ~ c for n 2: N. This shows that the sequence (An)n converges to 
A in II· IiI and (Sl, II· IiI) is complete. 



106 VI.4 TRACE CLASS OPERATORS 

Obviously, the finite rank operators are in Sl. To see that they are dense 
in (Sl, 11·111), let A E Sl have infinite rank. Consider its Schmidt-representation A = 
2:J=1 sj(A)(.,r.pj)'Ij;j, and put An = 2:7=1 sj(A)(·,r.pj)'Ij;j. Then 

00 

A - An = L sj(A)(-' r.pj )'Ij;j, 
j=n+1 

and thus IIA - Anll1 = 2:J=n+l sj(A) -+ 0 if n -+ 00. 

We already know that IIAIlI ~ IIAII. If IIAIlI = IIAII, then sj(A) = 0 for 
j ~ 2, and from the Schmidt-representation of A it is clear that rank A :::; 1. Conversely, 
if rank A :::; 1, then we can use Theorem 1.5 to show that sj(A) = 0 for j ~ 2, and hence 

IIAIiI = IIAII· 0 

The norm 1I·11t is called the trace class norm. If the underlying Hilbert space 
H is separable, then the same is true for (SI, II· lit). To see this, we first note that for 
each x, yin H 

(4) 11(', x)YIlI = IIxIIIIYII, 
because the trace class norm and the operator norm coincide for rank one operators. 
Thus for two finite rank operators F = 2:7=1 (., Xj)Yj and F = 2:7=1 (., xj)f}j we have 

n 

IIF - Fill:::; L 1I(·,xj)Yj - (., Xj)Yj lit 
j=1 

n n 

:::; L 1I(·,Xj)(Yj - Yj)lIl + L 1I(·,Xj - xj)Yjlll 
j=l j=1 

n n 

= L II xjll'IIYj - Yjll + L II Xj - xjllllYjll 
j=1 j=1 

n 

:::; L(lIxjll·IIYj - Yjll + IIxj - Xj II IIYj - Yjll + Ilxj - xjllllYjll) 
j=1 

Now assume H = £2, and consider the set FQ of all finite rank operators F = 
2:7=1(·,Xj)Yj, where n is arbitrary and the vectors Xl, ... ,Xn and Yl ... ,Yn are £2-
sequences of the form (av + ibv ):7'=l with av and bv rational for all v. From what we 
proved so far it is clear that in the trace class norm the set FQ is dense in the set of all 
finite rank operators, and hence in the trace class norm FQ is dense in Sl. Since FQ 
is countable, this proves that SI is separable when H = £2. But any separable Hilbert 
space is isometrically isomorphic to £2, and and thus Sl is separable if H is separable. 

The next proposition shows that SI is an ideal in the ring of all bounded 
linear operators on H. 

PROPOSITION 4.2. Let A E SI! and let Band G be bounded linear opera
tors on H. Then BAG E SI and 

(5) 
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PROOF. Apply Proposition 1.3. 0 

To give a non-trivial example of a trace class operator, consider, on L2([a, b]), 
the integral operator 

b 

Kf = J k(.,s)f(s)ds. 
a 

If k(·, .) is continuous and the operator K is non-negative, then K is a trace class operator. 
Indeed, since K is non-negative, sj(K) = Aj(K) for j ;::: 1. But then it follows from 
Theorem IV.4.1 in [GG] (which is a corollary of Mercer's theorem) that 

00 00 Jb 
~sj(K) = ~Aj(K) = k(s,s)ds < 00. 

)=1 )=1 a 

Proposition 4.2 allows us to produce many other examples of trace class operators. Con
sider on L2([a, b]) the integral operator 

b 

Af = J k(·,S)OI(S)f(s)ds, 
a 

b b 
where 01(.) and k(·,·) are continuous functions and J Jk(t,s)f(s)f(t)dsdt;::: 0 for each 

a a 
f E L2([a, b]). Then A is a trace class operator. Indeed, A = KM, where M is the 
operator of multiplication by 01(·) on L2([a, b]) and K is the non-negative trace class 
operator considered in the previous paragraph. Hence A = KM E SI. 

1 
The operator of integration, (V f)(t) = 2i J f(s )ds, on L2([0, 1]) is not a trace 

t 
class operator, since formula (10) in Section 1 gives 

00 00 4 

~Sj(V) = ~ (2j -1)71" = 00. 
)=1 )=1 

The next theorem will turn out to be useful later. 

THEOREM 4.3. Let A E Sl, and let (Tn) and (Sn) be sequences of bounded 
linear operators on H which converge pointwise to T and S, respectively (i. e., Tnx -+ Tx 
and Snx -+ Sx for each x E H). Then TnAS~ -+ T AS* in the trace class norm. 

PROOF. First, assume that A = (., 'P)'Ij;. Then TnAS~ = (., Sn'P)Tn'lj;, and 
thus 

Because of the pointwise convergence we see that TnAS~ -+ T AS*. By taking finite 
linear combinations we may conclude that the theorem is proved for the case when A is 
a finite rank operator. The general case will be proved by approximation. 
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Take A E Sl. Let e: > 0 be given. Since Tnx -+ Tx and Snx -+ Sx for each 
x E H, the uniform boundedness principle shows that there exists a positive constant 
'Y < 00 such that IITnll ~ 'Y and IISnll ~ 'Y for all n ~ 1. It follows that also IITII :5 'Y 
and IISII ~ 'Y. Choose a finite rank operator F such that IIA - Flh < e/3'Y2. Using the 
triangle inequality, Proposition 4.2 and IIB*II = IIBII, one sees that 

IITnAS~ - TAS*1I1 :5 IITnllllA - FIl1I1S~1I + IITnFS~ - TFS* II 1 + IITIlIiA - Fill II S* II 

:5 ~e + IITnFS~ - TFS*1I1. 

Next, apply the result of the first paragraph of the proof. So there exists a positive integer 
N such that IITnFS~ - TFS*lh < ie for n ~ N. But then IITnAS~ - TAS*1I1 < e for 
n~N. 0 



CHAPTER VII 

TRACE AND DETERMINANT 

The first section of this chapter has an introductory character; it explains 
the principles we use to define the trace and determinant. The precise definitions are 
given in the next two sections where we also derive the first properties of the trace and 
determinant. In Section 4 the analyticity of det(I - AA) as a function of A is proved. The 
main theorem is given in the sixth section and expresses trace and determinant in terms 
of the eigenvalues. Some technical results from complex function theory, which are used 
in the proof of the main theorem, are derived in Section 5. The connections with the 
classical Fredholm determinant are described in Section 7. The last section contains as a 
first application two completeness theorems for eigenvectors and generalized eigenvectors. 

VII.! INTRODUCTION 

Throughout this chapter we assume, for simplicity, that the underlying Hilbert 
.space.s are .separable. To introduce trace and determinant for trace class operators we 
follow two principles, namely that of permanency and of continuity. The principle of 
permanency means that trace and determinant will be introduced in such a way that 
for operators on finite dimensional spaces the new definitions agree with what is already 
known from matrix theory. This leads in a natural way to definitions of trace and 
determinant for operators of finite rank. Next we use continuity to extend the definitions 
of trace and determinant to all trace class operators. 

Let us start with a finite rank operator F: H -+ H acting on the Hilbert space 
H. Given F there exists a finite dimensional subspace HI of H such that 

(1) FHl CHI, Ht C KerF. 

Indeed, if F = "L-J=l(-,'Pj)1/;j, then HI = span{'Pl,···,'Pn,1/;l, ... ,1/;n} has the desired 

properties. It follows that with respect to the decomposition H = HI ffiHt the operators 
F and I + F can be written as 2 x 2 operator matrices of the following form: 

(2) 

Here Fl is the restriction of F to the finite dimensional subspace HI and for i = 1,2 
the symbol Ii stands for the identity operator Hi, where H2 = Ht. Since HI is a finite 
dimensional space, tr Fl and det(h + FI) are well-defined. We use this and define 

(3) trF:= trFl, det(I + F): = det(h + Fl). 

Note that the definitions do not depend on the particular choice of the space HI. To see 
this first of all recall that 

(4) 
n 

tr Fl - '" A· -~ J, 

j=l 

n 

det(h + FI) = II (1 + Aj), 
j=l 
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where n = dim HI and AI. ... ,An are the eigenvalues of FI counted according to their 
algebraic multiplicities. In the two identities in (4) the zero eigenvalues do not give 
a contribution. Furthermore, it is clear from (2) that the non-zero eigenvalues of FI 
coincide with the non-zero eigenvalues of F (multiplicities taken into account). Thus 

(5) tr F = L Aj(F), 
j 

det(I + F) = II (1 + Aj(F)), 
j 

VII.2 DEFINITION OF THE TRACE 

On the operators of finite rank the trace acts as a linear functional which is 
continuous in the trace class norm. Indeed, let F and G be operators of finite rank acting 
on the Hilbert space H. Then 

(la) 
(lb) 

(Ie) 

tr(F + G) = trF + trG, 

tr(aF) = atr F (a E C), 

\trF-trG\ ~ IIF-GIII. 

To prove (la) and (lb) we use the corresponding properties of the trace on matrices. 
Choose finite dimensional subspaces HI and H2 such that FHI C HI. Hr- C Ker F, 
GH2 C H2 and H.j- C Ker G. Put Ho = HI + H2. Then Ho is finite dimensional and 

(2) (F + G)Ho C Ho, H6- C (Ker F) n (Ker G) C Ker(F + G). 

Thus 

tr(F + G) = tr(F + G)\Ho) = trF\Ho + trG\Ho = tr F + trG. 

This proves (la). Further 

tr(aF) = tr(aF)\Hl = tra(F\HI) = atrF\HI = atrF. 

To prove (lc) we use the linearity of the trace and Corollary V1.2.4 to obtain 

(3) \ tr F\ ~ L \Aj(F)\ ~ L sj(F) = \IFlIl. 
j j 

The continuity of the trace on operators of finite rank allows us to extend the 
definition of the trace to all trace class operators. In fact, given a trace class operator A 
we define 

(4) tr A: = lim tr Fn, 
n-oo 

where Fl, F2, F3, ___ is an arbitrary sequence of finite rank operators converging in trace 
class norm to A. Such a sequence always exists because the finite rank operators are 
dense in Sl- Note that formula (lc) guarantees that the limit exists and does not depend 
on the particular choice of the sequence FI, F2, ... _ From definition (4) it is clear that 
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formulas (la), (lb), (lc) and (3) also hold for arbitrary trace class operators. So we have 
the following theorem. 

THEOREM 2.1. On the trace operators the trace is a linear functional which 
is continuous in the trace class norm and 

ItrAI ~ IIAIII 
The trace of a square matrix is equal to the sum of its diagonal elements. 

The next theorem is the infinite dimensional analogue of this result. 

THEOREM 2.2. Let A be a trace class operator on H. Then 

00 

(5) trA = :E{A<pj,<pj) 
j=l 

for any orthonormal basis <PI, <P2, ... of H. 

PROOF. Let Pn be the orthogonal projection on the space spanned by 
<PI, ... ,<Pn. Then Pnx -+ x for each x. It follows (cf. Theorem VI.4.3) that PnAPn -+ A 
in trace class norm, and thus, by the definition of the trace, 

(6) tr A = lim tr PnAPn . 
n-+oo 

From matrix theorem we know that trPnAPn = 'L.rJ=I(A<pj,<pj). Inserting this in (6) 
yields the desired formula (5). 0 

For a finite rank operator F we know that tr F = Lj >"j(F). This identity 
also holds for an arbitrary trace class operator, but at this stage it cannot be obtained 
by a simple continuity argument. We shall prove the equality in Section 6 (see Theorem 
6.1). 

According to Theorem 2.2, the trace of A is precisely the sum of the diagonal 
elements in the matrix A relative to an orthonormal basis. The next theorem may be 
viewed as a continuous analogue of this result. 

THEOREM 2.3. Let A be the integral operator on L 2 ([a, b]) defined by 

b 

(7) (Af)(t) = J k(t,s)f(s)ds, a ~ t ~ b, 

a 

and assume that kernel function k is continuous on [a, b] x [a, b]. If, in addition, A is a 
trace class operator, then 

b 

(8) tr A = J k(t, t)dt. 
a 

PROOF. If the operator A is non-negative, then the theorem follows im
mediately from Mercer's theorem, see [GGJ, Theorem IV.4.1. The proof of the general 
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case also uses Mercer's theorem; in fact, it is reduced to Mercer's theorem by using the 
averaging operator Mh (h > 0), which on L2([a, b]) is defined by 

(9) 

where 

b 

(Mhf)(t) = I t1h(t - s)f(s), a ~ t ~ b, 
a 

t1h(t) = {(2hO)-1 for It I ~ h, 
for It I > h. 

Obviously, Mh is a selfadjoint integral operator on L2([a, b]) and its range consists of 
continuous functions only. Furthermore 

(10) lim IIMhf - fll2 = 0, 
hlO 

Here 11·112 denotes the usual norm on L2([a, b]). 

To prove (10), take f E L2([a, b]). It will be convenient to consider f on R 
by setting f(t) = 0 for t rt. [a, b]. Put fOt(t) = f(t - a). Now let e > 0 be given. Then 
(see [R], Theorem 9.5) there exists C > 0 such that IIfOt - fll2 < e for lal < c. Choose 
Ihl < c. Then, for each 9 E L2([a, b]), we have 

b 

I I(Mhf)(t) - f(t)IIg(t)ldt 
a 

b b 

= III t1h(a)(J(t - a) - f(t») dal Ig(t)ldt 
a a 

b b 

~ I I t1h(a)lfOt(t) - f(t)IIg(t)ldadt 
a a 

b b 

= I t1h(a)(I IfOt(t) - f(t)IIg(t)ldt)da 
a a 

h 

~ 2~ I IIfOt - fll211gl12da < ellgll2· 
-h 

It follows that IIMhf - fll2 < e for Ihl < c, which proves (10). 

For any 9 E L2([a, b] x [a, b]) we define 

t+h s+h 

(11) 9h(t,S) = 4~2 J J g(a,{3)dad{3. 
t-h s-h 



CHAPTER VII. TRACE AND DETERMINANT 113 

In (11) the function g is assumed to be zero outside [a, b] X [a, b]. Note that gh is 
continuous on (a, b] X [a, b]. Let G and Gh be the integral operators on L2([a, b]) with 
kernel functions g and gh, respectively. Since 

b b 

gh(t,S) = J J ~(t - a)g(a,(3)~«(3 - s)dadp, 
a a 

we see that Gh = MhGMh. We shall prove that for any h > 0 the operator Gh is a trace 
class operator and 

b 

(12) trGh = J gh(t, t)dt. 
a 

First we show that G can be written as a sum G[l] - G[2] + iG[3]- iG[4], where G[l], G[2] , 
G[3] and G[4] are non-negative integral operators with kernel functions in L2([a, b] X [a, b]). 
Indeed, G = G~ + iG$;}, where G~ (resp., G$;}) is the integral operator whose kernel 
function is equal to 2-1(g + g.) (resp., (2i)-1(g - g.», where g.(t, s) = g(s, t). Since G~ 
and G$;} are selfadjoint, we may write 

G~I = Laj(f,cpj}CPj, 
j 

G$;}I = Lbj(f,tPj}tPj, 
j 

where {(cpj), (aj)} and {(tPj), (bj)} are basic systems of eigenvectors and eigenvalues for 
G~ and G$;}, respectively. Now put 

G[l]1 = Lma.x(aj,O)(f,CPj)CPj, 
j 

G[2]1 = Lmin(-aj,O)(f,CPj}CPj, 
j 

G[3]1 = Lma.x(bj,O)(f,tPj}tPj, 
j 

G[4]1 = L ma.x( -bj, O)(f, tPj}tPj. 
j 

Since (aj) and (bj) are sequences in £2, the operators G[l]' G[2], G[3] and G[4] are again 
integral operators with kernel functions from L2([a, b] X [a, b]) and they are non-negative. 
Obviously, G = G[l] - G[2] + iG[3] - iG[4], which is the desired decomposition. Since 
Gh = MhGMh and Mh is selfadjoint, the map G I-t Gh preserves the non-negativity of 
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the operator G. Thus for v = 1,2,3,4 the operator (G[v)h is a non-negative integral 
operator with a continuous kernel function. Hence we can apply [GG], Theorem IV.4.1 
to show that G[v) is a trace class operator and that (12) holds for G[v) instead of G 
(v = 1,2,3,4). But then, by linearity, Gh is a trace class operator and (12) is proved. 

Next, we apply the result of the previous paragraph to k. Since k is continu-
ous, 

(h -+ 0) 

uniformly on any square [a', b'] x [a', b'] with a < a' < b' < b and 

for any h > O. Now use that A is a trace class operator. So according to Theorem VL4.3, 
formula (10) implies that MhAMh -+ A in the trace class norm if h -+ O. It follows (cf. 
Theorem 2.1) that 

tr A = lim tr MhAMh = lim tr Ah 
h-O h-O 

b b 

= lim J kh(t, t)dt = J k(t, t)dt, 
h-O 

a a 

which proves (8). 0 

VII.3 DEFINITION OF THE DETERMINANT 

We return to the determinant. To define the determinant for I + A, where A 
is an arbitrary trace class operator on a Hilbert space H, we follow the same procedure 
as for the trace. However, we shall see that for the determinant the continuity argument 
is more involved. 

First note that for finite rank operators F and G on H the following equality 
holds: 

(1) det(1 + F)(1 + G) = det(1 + F) . det(I + G). 

Observe that (I + F)(I + G) = 1+ C, where C = F + G + FG is an operator of finite 
rank. Thus the left-hand side of (1) is well-defined. To prove (1) we use that this product 
formula holds for matrices and for operators on a finite dimensional space. Take Ho as 
in formula (2.2). Then 

(F+G+FG)HO CHo, H6- c Ker(F + G + FG). 

Let 10 be the identity on Ho. According to the definition of the determinant for 1+ F, 
where F is of finite rank, we have 

det(1 + F)(I + G) = det[(1 + F)(1 + G)IHo] 
= det[(Io + FIHo)(Io + GIHo)] 
= det(1o + FIHo) . det(1o + GIHo) 
= det(1 + F) . det(1 + G). 
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This proves (1). 

We shall also need that for a finite rank operator F the following inequalities 
hold true: 

(2) 

(3) 
I det(I + F)I ~ exp IIFlIl· 

I det(I + F) - 11 ~ (exp IIFIIl)-l. 

To prove these inequalities we use that 1 + t ~ exp t for t ~ 0 and we apply the second 
equality in (1.5) and Corollaries VI.2.5 and VI.2.6. Indeed, 

I det(I + F)I ~ II (1 + IAj(F)1) 
j 

~n(l+sj(F)) ~exp(~Sj(F)) 
3 3 

= eXPIIFIIl, 

which proves (2), and 

I det(I + F) -11 = In (1 + Aj(F)) -11 
3 

which proves (3). 0 

~ L L I Ail (F)Ah (F) ... Aj;(F)1 
n il <h<···<jn 

Sil (F)sh (F) .. . Sjn (F) 
n il<h< ... <jn 

= II(l + Sj(F)) -1 
j 

~ -1 +exp(~Sj(F)) = -1 +exp IIFlIl, 
3 

LEMMA 3.1. Let A be a trace class operator, and let FlF2, ... be a sequence 
of finite rank operators converging to A in trace class norm. Then 

(4) lim det(I + Fn) 
n ...... oo 

exists and does not depend on the particular choice of the sequence F l , F2, .... 

PROOF. First assume that I + A is invertible. Then 1+ Fn is iI).vertible for 
n sufficiently large. So without loss of generality we may assume that 1+ Fn is invertible 
for all n. We have 
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From the multiplicativity property (1) and the inequalities (2) and (3) we conclude that 

I det(1 + Fm) - det(1 + Fn)1 = I det(1 + Fn)I·1 det[1 + (I + Fn)-I(Fm - Fn)]-ll 

(m,n _ 00). 

Here we used that (1IFnllI)n is a bounded sequence and 

(m,n _ 00). 

So we see that (det(I + Fn)) n is a Cauchy sequence. Furthermore, if FL F2, ... is a 
second sequence of finite rank operators converging to A in trace class norm, then by the 
same arguments 

det(1 + Fn) - det(1 + F~) - 0 (n _ 00). 

So the limit (4) exists and does not depend on the particular choice of the sequence 
FI,F2,··· . 

Next we consider the case when I + A is not invertible. We shall prove that 
in this case 

(5) det(1 + Fn) - 0 (n _ 00). 

Since I + A is not invertible, the point -1 is an isolated eigenvalue of finite type for A. 
Let P be the corresponding Riesz projection, and put HI = ImP, H2 = Ker P. With 
respect to the decomposition H = HI EI3 H2 we write FI, F2, ... and the operator A as 
2 X 2 operator matrices: 

[ 
K(n) K(n) 1 F. - U 12 n - K(n) K(n) , 

21 22 

Since Fn - A in trace class norm, we have 

IIK~~) - Anlll - 0, 

IIK~~)lh - 0, 

A _ [Au 0 ] 
- 0 A22 . 

IIK~;)1I1 - 0, 

IIK~~) - A221h - 0 

for n - 00. For i = 1,2 let Ii be the identity operator on Hi. Note that h + A22 
is invertible. So for n sufficiently large the operator 12 + K~~) will be invertible too. 

Without loss of generality we may assume that 12 + K~~) is invertible for all n. This 
allows us to factor 1+ Fn in the following way: 

(6) 1+ Fn = (I + Cn)(I + Dn)(I + En), 

where 
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[ 
K (n) K(n)(J. + K(n)-IK(n) n - 12 2 22 21 

° 
[ ° 0°]· En = (12 + K~;)-1 K~~) 

For each n the operators en, Dn and En are operators of finite rank. From the structure 
of en and En it is clear that en and En have no non-zero eigenvalues. It follows that 
det(1 + en) = det(1 + En) = 1. So, using formula (1), we see from (6) that 

(7) det(1 + Fn) = det(1 + Dn). 

Now 

By the first part of the proof, det(12 + K~;) -+ det(1 + A22)' Since HI is finite dimen
sional and 

K (n) K(n)(J. + K(n)-IK(n) A n - 12 2 22 21 -+ n 
in HI, we know from the continuity of the determinant on matrices that 

det[Jt + Ki~) - Ki~)(12 + K~~)-1 K~~)l -+ det(Jt + An)· 

But det(1l +Au) = 0. So (7) and (8) together show that det(1 +Fn) -+ ° if n -+ 00. 0 

Lemma 3.1 and the fact that the finite rank operators are dense in 51 allow 
us to extend the definition of the determinant to operators I + A, where A is an arbitrary 
trace class operator. Indeed, given a trace class operator A we define 

(9) det(1 + A): = lim det(1 + Fn), 
n-oo 

where Fl, F2, ... is a sequence of finite rank operators which converges to A in the trace 
class norm. Lemma 3.1 tells us that det(1 + A) is well-defined. 

THEOREM 3.2. Let A be a trace cl~ss operator on H, and let <PI. <P2, ... be 
an orthonormal basis of H. Then 

det(1+A) = lim det(S,'k+(A<pk,<Pj)tk_l' 
n--+oo J, -

PROOF. Let Pn be the orthogonal projection onto the space spanned by 
<PI"", <Pn· Then (PnAPn) is a sequence of finite rank operators which converges in the 
trace class norm to A. Thus 

det(1 + A) = lim det(1 + PnAPn) 
n-oo 

= lim det(1 + PnAPn)/ ImPn). 
n-oo 
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With respect to the basis 'PI, ... ,'Pn the operator (I + PnAPn)1 ImPn has the following 
matrix representation: 

which proves the theorem. 0 

hold true: 

(10) 

(11) 

(12) 

THEOREM 3.3. For trace class operators A and B the following formulas 

det(1 + A)(1 + B) = det(1 + A) det(1 + B), 

I det(1 + A)I $ II (1 + sj(A») $ exp IIAIII, 
j 

I det(1 + A) - 11 $ (exp IIAIII) - 1. 

PROOF. To prove (10) and (12) we use the definition of the determinant 
and the fact that these formulas hold true for operators of finite rank (cf. (1) and (3». 
To prove the first inequality in (11), let 'PI, 'P2, ... be an orthonormal basis in H, and 
let Pn be the orthogonal.projection onto the space spanned by 'PI, ... ,'Pn. According to 
the second identity in formula (1.5) we have 

I det(1 + PnAPn)1 = In: (1 + .Aj(PnAPn )) I 
J 

$ II (1 + sj(PnAPn ») 
j 

$ II (1 + Sj(A)) , 
j 

where Proposition VI.1.3 has been used to obtain the last inequality. Note that the last 
term in the preceding formula does not depend on n. Since 

det(! + A) = lim det(I + PnAPn ), 
n-+oo 

the first inequality in (11) is proved. The second inequality in (11) follows from 1 + x $ 
exp x for x ~ 0 and the definition of the trace class norm. 0 

From the second part of the proof of Lemma 3.1 (cf. formula (5» it follows 
that det(! + A) = 0 whenever! + A is not invertible. The converse statement is also 
true. To see this assume that! + A is invertible. Then (! + A)-I = ! + C, where 
C = -A(! + A)-l is a trace class operator. So, according to formula (10), we have 

det(! + A) . det(! + C) = det(! + A)(I + C) = 1. 

It follows that det(! = A) =f O. So we proved that 

(13) det(I + A) =0 {:} ! + A not invertible. 
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We shall come back to this statement with more details in Section 6. 

The map A f-+ det(1 + A) is continuous in the trace class norm, i.e., 

(14) lim det{1 + An) = det(1 + A) 
n-+oo 

for any sequence AI. A2, ... of trace class operators which converges in the trace class 
norm to A. To see this, we choose for each n a finite rank operator Fn such that 

1 
II An - Fnlii < -, n 

1 I det(1 + An) - det(1 + Fn)1 < -. n 

Then IlFn - AliI - 0 if n - 00 and thus 

det(1 + A) = lim det(1 + Fn) = lim det(1 + An), 
n-+oo n--+oo 

which proves (14). 

VII.4 ANALYTICITY OF THE DETERMINANT 

For a trace class operator A the determinant det(1 - AA) is well-defined for 
each A E C. In this section we describe the properties of det(1:"" AA) as a function of A. 
If F is an operator of finite rank, then 

r 

(1) det(1 - AF) = II (1- AAj(F)), 
j=1 

where Al(F), ... , Ar(F) are the non-zero eigenvalues of F counted according to their 
algebraic multiplicity. In particular, det(1 - AF) is a polynomial in A when F is of finite 
rank. 

LEMMA 4.1. Let A be a trace class operator, and let FI. F2, ... be a sequence 
of operators of finite rank which converges to A in trace class norm. Then 

(2) det(1 - AF2) - det(1 - AA) (n - 00) 

and the convergence in (2) is uniform on compact subsets of C. 

PROOF. Formula (2) is clear from the definition of the determinant. The 
main point is to prove that in (2) the convergence is uniform on compact subsets of C. 
Let nee be compact. Take R > 0 such that n is contained in the open disc IAI < R. 
Further we choose R in such a way that A has no spectrum on the circle 1(1 = R-l 
(i.e., 1- AA is invertible for IAI = R). From our hypotheses it follows that Fn - A in 
the operator norm. Hence for n sufficiently large the operator Fn has no spectrum on 
1(1 = R-l and for IAI = R 

(3) (I - AFn)-l _ (I - AA)-l (n - 00). 

Furthermore, in (3) the convergence is uniform on IAI = R. For n sufficiently large we 
have (see the first paragraph of the proof of Lemma 3.1) 

Imlax I det(1 - AFm) - det(1 - AFn)1 ::5 eRIIFnih {eRII(I--XFn)-l(Fm-Fn)lh -I}. 
-X =R 
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Now observe that (IIFnlll)n is a bounded sequence. Furthermore, since, in (3), the 
convergence is uniform on 1)'1 = R, there exists a constant CR such that 

But then it is clear that the sequence (det(I - AFn)) converges uniformly on IAI = R. 
As Fn has finite rank, det(I - ),Fn) is a polynomial in A. So, by the maximum modulus 
principle, the sequence (det(I - AFn))n converges uniformly on IAI ~ R and hence also 
onn. 0 

THEOREM 4.2. Let A be a trace class operator, and let Al(A), A2(A), ... be 
the sequence of non-zero eigenvalues of A. Then the function L\(A) = det(I - AA) is an 
entire function which satisfies the identity 

(4) L\'(A) = -L\(A) tr A(I - AA)-l, 

(5) l 0"1 

(_l)k 0"2 
L\k =--det : k! . 

O"k 

2 

k::::: 1, 

where O"j = tr Aj (j = 1,2, ... ). 

PROOF. Choose a sequence Fl, F2, ... of operators of finite rank which 
converges to A in trace class norm. Put dn(A) = det(I - AFn). We know that dn(A) is a 
polynomial in A and dn(A) -+ L\(A) uniformly on IAI < R for each R > o. It follows that 
L\(A) is analytic on IAI < R. Since R is arbitrary it follows that L\ is an entire function. 

Choose 0 < R < IAl(A)I-l. Then I - AA is invertible for IAI ~ R. Hence for 
n sufficiently large the operator I - AFn is invertible for each IAI ~ R and 

(6) (n -+ 00) 

on IAI ~ R. Without loss of generality we may assume that for each n and IAI ~ R the 
operator I - AFn is invertible. This implies that dn(A) 1= 0 for IAI ~ R. From (1) we see 
that 

IAI ~R. 

Now, Aj(Fn)(l- AAj(Fn))-\ j = l, ... ,rn, are precisely the non-zero eigenvalues 
(counted according to their algebraic multiplicity) of the finite rank operator 
Fn(I - AFn)-l. It follows that 

(7) 1)'1 ~ R. 
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Note that Fn(I - )'Fn)-1 -+ A(I - )'A)-1 in trace class norm. Furthermore, dn()') -+ 

~(A,), and the fact that the latter convergence is uniform on compact subsets of C implies 
that also d~()') -+ ~'().). So in (7) we may take the limit for n -+ 00, and hence we see 
that the identity in (4) holds for 1).1 ~ R. 

Next we observe that tr A(I - )'A)-1 is analytic on the open set n = {). E 
C I). -:f:. ).i(A)-1 ,j = 1,2, ... }. Indeed, for ).0 En and I). - ).01 sufficiently small we have 

00 

A(I - )'A)-1 = ~)). - ).o)n An+1(I - ).oA)-n-1, 
n=O 

and the series converges in the trace class norm. But the trace is a continuous linear 
functional on S1. So 

00 

tr A(I - )'A)-l = L(). - ).o)nan , 
n=O 

where an = tr[An+1(I - )'oA)-n-lJ, n = 0,1,2, .... This proves the analyticity of 
tr A(I - )'A)-l on n. We already know that ~ and its derivative ~, are analytic on n. 
So, by analytic continuation, the identity in (4) holds for all ). -:f:. ).i(A)-1, j = 1,2, .... 

To prove (5) we compare the coefficients of the Taylor expansions at zero of 
the functions appearing in (4). By taking).o = 0 in the previous paragraph one sees that 

00 

tr A(I .:.. )'A)-1 = L).i tr Ai+1 
;=1 

for 1).1 sufficiently small. Furthermore, ~().) = E~o ~i).i with ~o = 1 and ~'().) = 
E~o(j + 1)~i+1).;' So, according to (4), 

k-1 
(8) '" k . k~k = - L...J Ai tr A -}, k = 1,2, .... 

i=O 

Put (ji = tr Ai, j = 1,2, ... , and recall that Ao = 1. This allows us to rewrite (8) in the 
form: 

(9) 1
-0"1 = 1~1. 

:- 0"2 = 0"1~1 + 2~2, 

- O"k = O"k-l~1 + O"k-2~2 + ... + 0"1 Ak-l + k~k' 

Now consider (9) as a system of k linear equations with k unknowns ~1, •.• , Ak. Note 
that the determinant of the coefficient matrix is equal to kL So, by applying Cramer's 
rule, we see that ~[( is given by (5). 0 

The next theorem describes the behaviour of det(I - )'A) for)' near infinity. 
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THEOREM 4.3. Let A be a trace cla88 operator. Given e > 0 there e:z:iat8 a 
positive con8tant C~ 8uch that 

>. E C. 

PROOF. Since A is a trace class operator, there exists N such that 
E~N+1 sj(A) > ~. Moreover, there exists a positive constant Ce such that 

N n (1 + 1>'lsj(A» ~ C~exp(~I>'I), 
1=1 

because t exp( -TIt) is bounded on 0 ~ t < 00 for each TI > O. Next we use the first 
inequality in (3.11), which yields 

00 

I det(I - >'A)I ~ II (1 + 1>'ISj(A» 
j=l 

:$ til (1+ 1-'lsj(A») } exp (1-'1 j=t, s;(A») 
~ Ceeel).l. 0 

In the terminology of the next section the property described in Theorem 
4.3 means that as a function of >. the determinant det(I - >.A) is an entire function of 
exponential type zero. 

VII.5 INTERMEZZO ABOUT ENTIRE FUNCTIONS OF 
EXPONENTIAL TYPE 

This section may be omitted in the first reading; it plays a role in the second 
proof of the fundamental theorem for the trace given in the next section. 

Let I be an entire complex-valued function. We say that I is of e:z:ponential 
type zero if given e > 0 there exists a positive constant Ce such that 

(1) A E C. 

The function I(A) = det(I - AA), where A is a trace class operator, is an example of 
such a function. The condition that I is of exponential type zero is equivalent to the 
requirement that 

(2) lim logM(R) = 0, 
R-oo R 

where M(R) = max{I/(A)ilIAI = R}. We shall prove the following theorem. 

THEOREM 5.1. Let aI, a2, ... be the zer03 01 the entire lunction I ordered 
according to increa3ing absolute value3 and multiplicitie3 taken into account. A33ume 
that 

(3) 
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If f is of exponential type zero and f(O) = 1, then f admits the representation 

(4) f(A) = IT (1 - :.). 
j=l J 

We begin with a lemma. 

LEMMA 5.2. Let g(A) = L:~o CkAk for IAI < R, and take 0 < 1" < R. Then 

(5) 
2 ICkl ~ k(-r(r) -?Rg(O)), 

1" 
k 2: 1, 

where ,(1") = max{?Rg(,\) I 1,\1 = r}. 

PROOF. From the definition of 9 it follows that 

Therefore 

(6a) 

(6b) 

211" 

?Rco = ~ /?Rg(reit)dt, 
27f 

o 
211" 

ck = ~ / ?Rg(reit)e-itkdt, 
7fr 

o 

211" 
Take k 2: 1. Recall that J e-itkdt = O. So we have 

o 

211" 

-ck = ~ /lI(r) - ?Rg(reit)]e-itkdt. 
7fr 

o 

Next we use that ,(1") 2: ?Rg(reit ). It follows that 

211" 

ickl ~ ~ /[[(1") - ?Rg(reit)]dt 
7fr 

o 

o ~ t ~ 27f. 

1 2 
= -k (27f,(r) - 27f?Rco) = k(,(r) - ?Rg(O)). 0 

7fr 1" 

The above lemma already allows us to prove Theorem 5.1 for the case when 
the entire function f has no zeros. We have the following corollary. 

COROLLARY 5.3. An entire function of exponential type zeTO which has no 
zeros is a constant function. 
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PROOF. Let J be an entire function of exponential type zero. We may 
assume that J(O) = 1. Our hypotheses imply that J(>.) = exp(g(>.») for an entire 
function g. Indeed, put 

.\ J J'(t) 
g(>.) = J(t) dt, 

o 
where the integration is along any rectifiable curve joining the points 0 and >.. Then 
9 is well-defined, and one checks easily that the derivative of J(>.) exp (-g(,\» vanishes 
identically. Since g(O) = 0 and J(O) = 1, this implies that J(>.) = exp(g(>.»). 

From IJ(>')I ::; M(R) for 1>'1 ::; R we conclude that 

~g(>')::; 10gM(R), 1>'1::; R. 

So we apply Lemma 5.2 to show that for k 2: 1 the k-th coefficient in the Taylor expansion 
of 9 at 0 satisfies the following inequality: 

(7) ~I (k)(O)1 < 2logM(R) - ~g(O) 
k! 9 - Rk . 

Next we use that J is of exponential type O. So, according to formula (2), the right hand 
side of (7) converges to 0 if R ~ 00. Hence 9 is a constant function and thus so is J. 0 

PROOF OF THEOREM 5.1. Because of the condition (3) the infinite product 
in (4) is well-defined and converges uniformly on compact subsets of C. Put 

J(>.) = h(>') fr (1 - :.). 
j=l J 

Then h is an entire function which has no zeros, and thus (cf. the first part of the proof 
of Corollary 5.3) h(>') = exp(g(>.») for some entire function g. Note that g(O) = O. Take 
R> 1 and put 

JR(>') = eg(.\) II (1 - :.). 
lajl>R J 

(8) 

Obviously JR(>') has no zeros in 1>'1 < R, and we may write 

(9) 1>'1 <R, 
where 

9R(>') = g(>.) + L log ( 1 - :.). 
lajl>R J 

(10) 

Note that the series in (10) converges uniformly on 1>'1 < R. This allows us to compare 
in a simple way the coefficients of the Taylor expansions at zero of the various functions 
appearing in (10). For k 2: 1 we have 

~ (k)(O) = ~ (k)(O) _ '" _1_ 
k!9R k!g ~ ka~' 

laj I>R J 
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It follows that 

(11) (k ~ 1). 

Because of (3) the second term in the right hand side of (11) converges to zero if R --+ 00. 

We shall prove that the same is true for the first term. 

According to (8), 

Note that 11- aA.1 ~ 1 whenever IAI = 2R and lajl ::5 R. It follows that If(A)1 ~ IfR(A)1 
J 

for IAI = 2R. In particular, IfR(A)1 ::5 M(2R) if IAI = 2R, which by the maximum 
modulus principle implies that 

IfR(A)1 ::5 M(2R), IAI ::5R. 

It follows that 

(12) ~9R(A) ::5 log M(2R), IAI::5 R. 

By Lemma 5.2, this implies that 

k ~ 1. 

But f is of exponential type zero. So formula (2) holds true, and we may conclude that 

for each k ~ 1 the number .,hg):)(O) --+ 0 if R --+ 00. Hence, returning to (11), we see 

that g(k)(O) = 0 for each k ~ 0, and thus 9 == o. The theorem is proved. 0 

Theorem 5.1 is a special case of the Hadamard factorization theorem (see, 
e.g., [C], Section XI.3.1). The converse of Theorem 5.1 also holds true, i.e., if (3) holds 
and f is given by (4), then f is of exponential type zero, f(O) = 1 and aI, a2, . .. are the 
zeros of f. 

VII.6 THE FUNDAMENTAL THEOREM FOR TRACE AND 
DETERMINANT 

The main theorem of this section identifies trace and determinant in terms 
of eigenvalues and their multiplicities. The result for the trace is due to V.B. Lidskii 
[2]. Two proofs are given. The first follows the main idea of the proof of Gohberg-Krein 
[3]. It is based on Theorems 4.2 and 4.3 and does not require the result of the preceding 
section. The second proof focusses on the connection with complex analysis and is based 
on the representation theorem for entire functions of exponential type zero which has 
been proved in the previous section. 
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THEOREM 6.1. Let A be a trace class operator, and let >'1 (A), .A2(A), ... be 
the sequence of non-zero eigenvalues of A (multiplicities taken into account). Then 

(i) tr A = L".:j .Aj(A), 

(ii) det(I - A) = TIj(l- .Aj(A»). 

FIRST PROOF OF THEOREM 6.1. Let EA be the closed linear hull of the 
eigenvectors and generalized eigenvectors corresponding to the non-zero eigenvalues of 
A. We consider three cases. 

(I) The case EA = {a}. Thus A has no non-zero eigenvalues. We have to 
prove that tr A = 0 and det(I - A) = 1. First we shall prove that tr Ak = 0 for k ~ 2. 
To do this, choose an orthonormal basis rpl, rp2, ... in H. Let Pn be the orthogonal 
projection onto span{rpt, ... ,rpn}. Put An = PnAPn , and fix k ~ 2. Since PnAPn has 
finite rank, 

tr A~ = L .Aj(An)k, 
j 

n = 1,2, .... 

By Corollary VI.2.6 and Proposition VI.1.3, 

j 

and hence 

j j 

j 

:5 l.Al(An)l k - l L l.Aj(An)1 
j 

:51.Al(An)l k - l IiAllt· 

From Theorem VI.4.3 we know that An -+ A in the trace class norm, and hence An -+ A 
in the operator norm (because IITII :'5 IITl!l)' Since u(A) = {O}, we can apply Theorem 
11.4.1 to show that .AI (An) -+ 0 if n -+ 00. But then we may conclude that tr A~ -+ 0 
if n -+ 00. On the other hand (by Theorem VL4.3) A~ -+ Ak in the trace class norm if 
n -+ 00, and thus the continuity of the trace on Sl yields 

(1) trAk = lim trA~ = 0, 
n-oo 

k ~ 2. 

From (1) and Theorem 4.2 we see that 

(2) det(I - .AA) = f (-k?k (tr A)k Ak = e-·Hr A. 

k=O 

This, together with Theorem 4.3, implies that tr A = O. Indeed, assume tr A =f O. Take 
c: = !I tr AI. Then, by Theorem 4.3, there exists a constant C ~ 0 such that 
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for all A E C, which is impossible. Thus tr A = 0, and, by formula (2), also det( I-A) = l. 

(II) The case EA = H. By Schur's lemma in Section 11.3, the space H has 
an orthonormal basis <Pl,<P2, ... such that 

Let Qn be the orthogonal projection on the space spanned by <PI, ... ,<Pn. Obviously, 
1m Qn is invariant under A. The matrix of AI 1m Qn is upper triangular with respect to 
the basis <PI, ... ,<pn and has Al (A), . .. ,An(A) on the main diagonal. Thus 

n n 

tr(AI 1m Qn) = L Aj(A), det(IImQn - AI 1m Qn) = IT (1 - Aj(A)). 
j=l j=l 

Since QnAQn ---+ A in the trace class norm, the definitions of trace and determinant yield 

and 

tr A = lim tr(QnAQn) 
n->oo 

= lim tr(AI 1m Qn) = "" Aj(A), 
n-+oo L.-; 

j 

det(I - A) = lim det(I - QnAQn) 
n->oo 

= n~~ det(IImQn - AI 1m Qn) = IT (1 - Aj(A)) , 
j 

which proves the theorem for the case when EA = H. 

(III) The general case. Put HI = EA and H2 = EX, and let II and 12 be 
the identity operators on HI and H2, respectively. Since EA is invariant under A, the 
operator A has a 2 x 2 operator matrix representation of the following type: 

(3) 

The entries Au, A12 and A22 are trace class operators, by Proposition V1.4.2. For the 
operator Au the system of eigenvectors and generalized eigenvectors corresponding to 
the non-zero eigenvalues is dense in HI. Furthermore, Aj(Au) = Aj(A), because of the 
definition of EA. So, by what has been proved under (II), 

(4) tr Au = L Aj(A), 
j 

det(Il - Au) = IT(l- Aj(A)). 
j 

According to Lemma I1.3.4, the operator A22 has no non-zero eigenvalues. So we may 
use the result proved under (I) to conclude that 

(5) tr A22 = 0, 
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Finally, by Theorems 2.2 and 3.2, 

trA=trAll +trA22, 

det(I - A) = det(Il - All) det(I2 -,A22), 

which together with (4) and (5), proves the theorem. 0 

SECOND PROOF OF THEOREM 6.1. We know that the determinant 
D.(A) = det(I - AA) is an entire function. First we shall show that 

(6) Al(A)-l, A2(A)-1, ... 

is the sequence of zeros of D. ordered according to increasing absolute values and multi
plicities taken into account. 

Take z #- Aj(A)-l, j = 1,2, .... Then 1- zA is invertible. Hence, by (3.13), 
det(I - zA) #- O. So z is not a zero of D.. 

Next, assume that z = AOl, where AO is a non-zero eigenvalue of A. Let P be 
the Riesz projection of A corresponding to AO. Since AO is an eigenvalue of finite type, 
we know that P has finite rank. Moreover, ImP has a basis such that, with respect to 
this basis, the matrix of AI Im P is a Jordan matrix which has AO on the main diagonal. 
It follows that 

det( I - AP AP) = det( lImP - AAI Im P) 
= (1 - AAO)m, 

where m = dim Im P . Note that by definition m is the algebraic multiplicity of Aoas an 
eigenvalue of A. Since AO is not an eigenvalue of (I - P)A(I - P), the result proved in 
the previous paragraph implies that z = AOI is not a zero of det(I - A(I - P)A(I - P». 
Now observe that 

1- AA = (I - APAP)(I - A(I - P)A(I - P)). 

So, using the multiplicativity of the determinant, we see that 

det(I - AA) = (1 - .A.AOr det[I - A(I - P)A(I - P)], 

which shows that z = AOI is a zero of D. whose multiplicity is equal to the algebraic 
multiplicity of AO as an eigenvalue of A. Hence we know the zeros of D.(A) = det(I - AA) 
and their multiplicities. 

Next we prove (ii). From Theorems 4.2 and 4.3 we know that D. is an entire 
function of exponential type zero. Obviously D.(O) = 1. Since 

j j 

the sequence of zeros of D. satisfies the inequality (5.3). So we can apply Theorem 5.1 to 
show that 

(7) det(I - AA) = II (1- .A.Aj(A»). 
j 
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By taking A = 1 in (7) we obtain (ii). 

From (7) it also follows that the coefficient .6.1 of A in the Taylor expansion 
of .6.(A) at zero is equal to - L:j Aj(A). On the other hand, according to Theorem 4.2, 
we have.6.1 = - tr A. This proves (i). 0 

COROLLARY 6.2. Let A be a trace class operator and B be an arbitrary 
bounded linear operator, both acting on the Hilbert space H. Then 

(i) tr AB = tr BA 

(ii) det(I - AB) = det(I - BA). 

PROOF. From Proposition VL4.2 we know that AB and BA are both trace 
class operators. Now use (see Section I1L2) that the operator functions 

[ A-AB 0] 
o I' 

are globally equivalent on C\{O}. It follows (see Theorem I1L3.1) that AB and BA have 
the same non-zero eigenvalues multiplicities taken into account. But then (i) and (ii) are 
clear from Theorem 6.1. 0 

VII.7 CRAMER'S RULE AND FREDHOLM FORMULAS 
FOR THE RESOLVENT 

From matrix theory we know that for an n x n matrix A the matrix I - AA 
is invertible if and only if .6.(A) = det(I - AA) :f. 0, and in that case Cramer's rule gives 
a formula for the inverse matrix, namely: 

(1) -1 1 
(I-AA) = .6.(A)M('\), 

where M(A) is an n X n matrix whose (i,j)-th entry is the cofactor of the (j,i)-th entry 
in the matrix I - '\A. In particular, the entries of M(A) are polynomials in A. Since 
(I - AA)-1 = I + '\A(I - '\A)-1, we can rewrite (1) in the form 

(2) -1 A 
(I - '\A) = I + .6.(,\) D('\), 

where D( A) is an n x n matrix whose entries are polynomials in ,\. 

THEOREM 7.1. Let A E S1. Then I - ,\A is invertible if and only if 
.6.(A) = det(I - '\A):f. 0, and in that case 

(3) -1 A 
(I-oXA) =I+ .6.(oX)D(oX), 

where D( oX) = L:.i=o,\j D j is an entire operator function whose coefficients are trace 
class operators which are uniquely determined by the recurrence relation: 

(4) Do =A, (m ~ 1). 
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The sequence E~o >..j Dj converges in the trace class norm and 

0"1 1 0 0 0 

0"2 0"1 2 0 0 

(5) 
(_l)m 

Dm = ---det m-1 0 m! O"m-l O"m-2 O"m-3 

O"m O"m-l O"m-2 0"1 m 

Am+l Am Am-l A2 A 

where O"j = tr Aj (j ~ 1) and in (5) the determinant has to be understood as the operator 
which is obtained by formal expansion according to the last row. 

PROOF. From Theorem 6.1 we know that ~(>..) = det(1 - >".6.) = 0 if and 
only if >.. = >"j(A)-1 for some j. It follows that 1 ->"A is invertible if and only if ~(>..) # o. 

To prove (3) we first assume that A is an operator of finite rank. Then there 
exists a finite dimensional subspace HI of H such that AHI c HI and Hr- c Ker A. 
With respect to the decomposition H = HI ffiHr- the operator (1 - >"A)-1 can be written 
in the form: 

(6) 

Since HI is finite dimensional, we know from matrix theory (see the first paragraph of 
this section) that 

(7) 

where ~1(>") = det(11 - >..Al) and Dl(>") is a polynomial in >... By definition, ~(>..) = 
~1(>"). Put 

D(>") = [DIJ>") ~]. 
It is clear from (6) and (7) that formula (3) holds true. Note that in this case D(>..) is a 
polynomial in >.. whose coefficients are operators of finite rank. 

To prove (3) for an arbitrary A E SI we take a sequence Fl, F2, . .. of operators 
of finite rank which converges in the trace class norm to A. Put ~n(>") = det(1 - >..Fn), 
and write 

(1 - >"Fn)-1 = 1 + ~n~>") Sn(>"). 

We know that Sn(>") is a polynomial in >... Furthermore, by Lemma 4, .6.n(>..) -+ ~(>..) 
(n -+ 00) uniformly on compact subsets of C. 

Choose a large circle r around 0 such that 1 - oXA is invertible for each oX E r. 
Since Fn -+ A in SI-norm and hence also in the ordinary operator norm, it follows that 
for n sufficiently large the operator 1 - >..Fn is invertible for each oX E r, 
(8) (n-+oo), 
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and in (8) the convergence is uniform on r. Next consider 

From what has been proved so far, it is clear that for each A E r, 

(9) (n-+oo) 

and in (9) the convergence is uniform on r. 
Since Sn(A) is a polynomial in A, we may conclude that (Sn(A»)n converges 

uniformly on IAI :::; R, where R is the radius of the circle r. Note that R can be taken 
arbitrary large. Thus 

(10) D(A) = lim Sn(A) 
n-oo 

exists for each A and D(A) is an entire operator function. By combining (9) and (10) 
we see that (3) holds for A E r. But then, using analytic continuation, it is clear that 
formula (3) holds for each A with ~(A) f. o. 

Since D(A) = ~(A)A(I - AA)-l, we have 

(11) 

where ~o, ~1, ... are the Taylor coefficients of ~(A) = det(I - AA) at zero. It follows 
that 

Hence Do = A and 

(12) 

m 

Dm = L ~iAm+1-i 
i=o 

(m? 0). 

(m? 1). 

From formula (4) in Section 4 we know that ~'( A) = -~( A) tr A(I - AA) -1. Thus 

(13) tr D(A) = -~'(A). 

Since L~=o An Dn converges in the operator norm, we may conclude (cf. Theorem VI.4.3) 
that L~=o An DnA converges in the trace class norm, and hence, by (12), the series in 
(11) converges in the trace class norm. This implies that tr D m - 1 = -m~m for m ? l. 
Inserting this in (12) yields the desired recurrence relation (4). 

It remains to prove (5). Put Eo = A, and for m ? l1et Em be the operator 
defined by the right hand side of (5). Note that 

( _l)n 
tr En = --,- det Mn+l 

n. 
(n ? 0), 
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where Mk is the k x k matrix defined by 

0'1 1 0 0 

1 

0'2 0'1 2 0 

Mk= (k ~ 1). 

O'k-l O'k-2 O'k-3 k-1 
O'k O'k-l O'k-2 0'1 

From the definition of En it is clear that 

(n ~ 1). 

It follows that the sequence Eo, Ell E2, . .. satisfies the same recurrence relation as the 
sequence Do, D1 , D2, . .. . As Eo = Do, we may conclude that Dn = En for n ~ 1, and 
the theorem is proved. 0 

If a trace class operator A admits a particular representation (e.g., as an 
integral operator), then the recurrence relation (4) can often be used to give explicit 
formulas for the resolvent (I - 'xA)-1 in terms of the particular representation of A. We 
shall illustrate this with two examples. 

First consider the case when A = (aij )t=l. Consider the sub determinants: 

(14) ( rl··· rp ) p a = det(ar ·s ·)· ·-1. 
sl ... sp • J ',}-

Here 1 :5 ri :5 k, 1 :5 Sj :5 k for i,j = 1, ... ,po Note that the numbers defined by (14) 
are equal to zero for p ~ k + 1. We claim that the (i,j)-th entry of (I - 'xA)-1 is given 
by 

(15) 

where .6.(>.) = det(I - 'xA). To see this, put Eo = A and let En be the k x k matrix 
whose (i,j)-th entry is equal to 

ij _ (_I)n ~ ( i 
En - --, - L.J a . n. J 

Tl,···,Tn =l 

). 
Note that 

(16) n ~ o. 

By expanding 
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in terms of its first column, one sees that 

(n ~ 1). 

It follows that 

(n ~ 1), 

and hence the operators Eo, E1, E2,' .. satisfy the recurrence relation (4). Thus 

Since En = 0 for n ~ k, this proves (15). Next, recall that the m-th Taylor coefficients 
of ~(.x) at zero is given by 

1 
~m = --trEm-t, 

m 
m~l. 

Together with (16), this yields the following formula for the determinant: 

Our second example concerns an integral operator on L2([a, b]) of the form 

b 

(Af)(t) = J k(t,s)f(s)ds, a:::; t :::; b. 

a 

We assume that the kernel k is a continuous function on [a, b] x [a, b]. Such an operator 
A does not have to be a trace class operator. Therefore we require, in addition, that A 
is a trace class operator. 

Consider the following continuous function of 2n variables: 

We claim that 

(17) 

where ~(.\) 
function 

(18) 

( t1'" tn ) ( )n K = det k(ti,Sj) " "-I' sl ... sn ',J-

(1 - .xA)-1 = 1 + ~~) ~.xn H n , 

det(I - '\A) and Hn is the integral operator on L2 ([a, b]) with kernel 

tl ... tn ) dt1 ... dtn . 
tl .. "tn 
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To see this we use Theorem 2.3. 

First we expand the integrand in (18) in terms of its first column. This gives 

b 

(19) hn(t,s) = enk(t,S) + J hn_l(t,u)k(u',s)du, 
a 

where 

b b 

(20) en = (_I)n J ... J K ( tl ... tn ) dtl ... dtn. 
n! tl ... tn 

a a 

From (19) we see that the operators Ho, HI, H2, ... satisfy the following recurrence re
lation: 

(21) Ho =A, (n;::: 1). 

It follows that all operators Hn are trace class operators. Since hn is a continuous kernel 
we can apply Theorem 2.3 to show that 

tr Hn = -en + l)en+l (n;::: 0), 

and thus en = -~trHn_l. Inserting this in (21) shows that the operators Ho,Hl, ... 
satisfy the recurrence relation (4). Hence Hn = Dn and (17) is proved. Since the m-th 
Taylor coefficient of bo(A) at zero is given by bom = _m-1 tr Hm-l = em, we see that 

(22) 
00 b b 

L (_A)n J J (tl ... tn ) det(I - AA) = 1 + -- ... K dtl· ··dtn. n! tl ... tn 
n=1 a a 

Formula (17) suggests to write the resolvent (1 - AA)-I in the form of an 
integral operator: 

b 

- A J ((I-AA) If)(t)=f(t)+ bo(A) R(t,s;A)f(s)ds, 
a 

where 

(23) 
00 b b 

L (_A)n J J (t tl· .. tn ) R(t,s;A) = -- ... K dtl···dtn. 
n! s Sl·· ·Sn 

n=O a a 

It turns out that the series in (23) is convergent for each A. The representation of the 
resolvent kernel R(t, s; A) given above holds for an arbitrary continuous kernel. This goes 
back to the work of 1. Fredholm [1]. With some modifications the representation is also 
true for non-continuous L2-kernels (see D. Hilbert [1], T. Carleman [1]). 
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VII.S COMPLETENESS OF EIGENVECTORS AND 
GENERALIZED EIGENVECTORS 
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Recall (see Section II.2) that a compact operator A on a Hilbert space H is 
said to have a complete system of eigenvectors and generalized eigenvectors if the smallest 
linear manifold in H containing all eigenvectors and generalized eigenvectors of A is dense 
in H. 

THEOREM 8.1. Let A be a trace class operator, and assume that A~ = 
~(A-A*) is non-negative. Then A has a complete system of eigenvectors and generalized 
eigenvectors. 

Theorem 8.1 is sharp in the following sense. If, in Theorem 8.1, the condition 
A E 81 is replaced by the weaker condition that 

(1) 
00 

2: sj(A)1+e: < 00 

j=l 

for each e > 0, then the theorem is no longer true. To see this, consider the operator of 
integration: 

1 

(Vf)(t) = 2i f f(s)ds. 

t 

We know (see formula (10) in Section VLl) that Sj(V) = 4/(2j - 1)11" for j = 1,2, .... 
It follows that (1) is satisfied by A = V, but V fI. 81. Note that the imaginary part of V 
is non-negative; in fact, 

and thus 

1 

(V~f)(t) = f f(s)ds, 

o 

1 2 

(v~f,f) = If f(S)dSI ~ o. 
o 

Obviously, since V has no non-zero eigenvalues, the operator V does not have a complete 
system of eigenvectors and generalized eigenvectors. 

We shall prove Theorem 8.1 as a corollary of the following more general 
theorem. 

THEOREM 8.2. Let A be a compact operator, and assume that A~ = 
~(A - A*) is a non-negative trace class operator. Then 

(2) L SAj(A) :5 tr A~, 
j 

and we have equality in (2) if and only if A has a complete system of eigenvectors and 
generalized eigenvectors. 
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PROOF. Let H be the space on which A acts, and let EA be the smallest 
subspace of H containing all eigenvectors and generalized eigenvectors corresponding to 
non-zero eigenvalues of A. We first show (under the condition A<;} :::: 0) the operator A has 
a complete system of eigenvectors and generalized eigenvectors if and only if Ei C Ker A. 

Take x E KerA. Then (Ax,x) = 0 and (A*x,x) = (x,Ax) = O. It follows 
that (A<;}x, x) = o. The fact that A<;} :::: 0 implies that exists a unique non-negative 
operator S such that S2 = A<;} ([GG], Corollary VI.1.2). Note that 

IISxll2 = (Sx, Sx) = (S2x, x) = (A<;}x, x) = 0, 

and thus Sx = O. But then A<;}x = S(Sx) = 0, and hence A*x = o. We may conclude 
that Ker ACKer A *. Repeating the above argument for A * instead of A shows that 
KerA = KerA*, and thus 

(3) H = KerA EB ImA. 

The latter identity implies that A has no generalized eigenvectors corresponding to the 
eigenvalue A = o. Indeed, assume xo, xl, ... , Xr-l is a Jordan chain of A corresponding 
to A = o. Then AXl = Xo and Axo = o. Thus 0 =I- Xo E Ker AnImA, which contradicts 
(3). Note that EA C ImA. It follows that A has a complete system of eigenvectors 
and generalized eigenvectors if and only if EA = ImA, which happens if and only if 
Ei C KerA. 

Next, we take a Schur basis in EA, i.e., an orthonormal basis CPl, CP2, ... of 
EA such that 

(4) 

Let 'ljJl, 'ljJ2,.·. be an orthonormal basis of Ei. By Theorem 2.2, 

00 00 

(5) trA<;} = L(A<;}cpj,cpj} + L(A<;}'ljJj,'ljJj}. 
j=l j=l 

Note that (A<;}cp, cp) = 8'(Acp, cp} for each cP E H. In particular, (A<;}cpj, cPj) = 8'(Acpj, cPj} 
for each j. According to (4), we have (Acpj, cPj} = Aj(A). We conclude that 

00 

L(A<;}cpj,cpj} = L8'Aj(A). 
j=l j 

Since A<;} :::: 0, all terms in the right hand side of (5) are non-negative. It follows that 
(2) holds and we have equality in(2) if and only if 

(6) (j = 1,2, ... ). 

Let S be the unique non-negative operator such that S2 = A<;}. Then 
(A<;}'ljJj, 'ljJj) = 0 implies that S'ljJj = 0, and hence also A<;}'ljJj = S2'IjJj = o. So (6) is 
equivalent to the requirement that A<;}cp = 0 for each cP E Ei. 
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Assume A~ is zero on E;t. Since A * E;t C E;t, we conclude that A leaves E;t 
invariant and the operators A and A* c6incide on E;t, Then B: = AIE;t is a compact 
selfadjoint operator which has no non-zero eigenvalues (cf. Lemma 11.3.4). Hence B = 0, 
and we see that E;t C Ker A. 

Conversely, if E;t C Ker A, then A~ is zero on E;t. Thus we have equality in 
(2) if and only if E;t C Ker A, which, as we pointed out, occurs if and only if EA = 1m A. 
o 

(7) 

PROOF OF THEOREM 8.1. According to the first part of Theorem 6.1, 

tr A = :E Aj(A). 
j 

Since A is a trace class operator, the same is true for A *. Hence A~ = ~ (A - A *) is a 
trace class operator and 

tr A~ = ~ tr A - 21. tr A* = :E ~Aj(A). 
2t t . 

3 

But then we can apply Theorem 8.2 to show that A has a complete system of eigenvectors 
and generalized eigenvectors. 0 

Note that the proof of Theorem 8.1 requires the fundamental theorem for the 
trace (i.e., formula (7)), but to apply Theorem 8.1 no information about the eigenvalues 
of A is needed. 



CHAPTER VIII 

HILBERT-SCHMIDT OPERATORS 

This chapter concerns another important set of compact operators, namely 
the Hilbert-Schmidt operators. The class of Hilbert-Schmidt operators has a natural 
Hilbert space structure and it contains the trace class operators. In the first section 
some additional properties of s-numbers are derived. In the second section the Hilbert
Schmidt operators are introduced and their main properties are established. The last 
section contains a completeness theorem for eigenvectors and generalized eigenvectors of 
Hilbert-Schmidt operators. 

VIII.1 FURTHER INEQUALITIES ABOUT s-NUMBERS 

Throughout the chapter we assume that the underlying spaces are separable 
Hilbert spaces. In this section we shall prove the following basic inequality for s-numbers 
of a compact operator A: 

k k 

(1) L Sj(Aqr/q ~ L sj(Ar, k = 1,2, .... 
j=1 j=1 

Here r > 0 is an arbitrary positive number and q is an arbitrary positive integer. The 
proof of this inequality is based on the following theorem. 

THEOREM 1.1. Let A be a compact operator on the Hilbert space H, and 
let c,ol, . .. , c,o k be vectors in H. Then 

k 

det((Ac,oi,Ac,oj})L=1 ~ (n Sj(A)2) det((c,oi,c,oj})L=l· 
)=1 

(2) 

Furthermore, if c,ol, ... ,c,ok are the first k eigenvectors of A* A in the Schmidt form of 
A, then equality holds in (2). 

PROOF. If c,ol, ... , c,ok are linearly dependent, then the same is true of 
Ac,ol, . .. ,Ac,ok, and hence in that case the left and right hand sides of (2) are both 
equal to zero. So, we may assume that c,ol, . .. , c,o k are linearly independent. 

Let P be the orthogonal projection onto the space M spanned by c,ol, ... , c,o k. 
Choose an orthonormal basis "pI, ... ,,,pk in M = Im P. There exist an invertible linear 
operator E: M -+ M such that E"pi = c,oi for i = 1, ... , k. Note that 

(Ac,oi' Ac,oj} = (E*PA*APE"pi,,,pj). 

Define D: M -+ M by setting Dc,o = P A * APc,o for c,o E NI. As "pI, ... ,,,pk is an orthonor
mal basis, we have 

(3) 
det((Ac,oi, Ac,oj}) = det(E* PA* APE) 

= det(E* DE) = (det D)( det E* E). 
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Again, using the fact that 'l/Jl, ... ,'l/Jk is an orthonormal basis for M, we have 

(4) 

Furthermore, 

k k k 
(5) det D = II Aj(D) = II Sj(P A* AP) S; II Sj(A)2. 

j=l j=l j=l 

By inserting (4) and (5) in (3) one obtains the desired inequality (2). 

If c.pl, ... , c.p k are the first k eigenvectors of A * A in a Schmidt representation' 
of A, then sj(PA* AP) = sj(A* A) = sj(A? for j = 1, ... , k. So in that case we have 
equality in formula (5), and thus in (2) also. 0 

Formula (2) has an interesting geometric interpretation. Recall that 
det((c.pi,c.pj) is just equal to the Gram determinant of the vectors c.pl, ... ,c.pk. Hence, 
if c.pl, ... , c.p k are linearly independent, then det( (c.pi, c.p j) is equal to the square of the 
volume of the parallelopiped spanned by c.pl, ... , c.pk. Now assume that A is an invertible 
linear transformation. Then formula (2) says that after applying the linear transforma
tion A the volume of the parallelopiped is at most equal to the volume of the original 
parallelopiped multiplied by the product of the first k singular values of A. 

Then 

(6) 

As a consequence of Theorem 1.1 we derive the following inequality. 

COROLLARY 1.2. Let A and B be compact operators on a Hilbert space H. 

k k 

II sj(AB) S; II sj(A)sj(B), k = 1,2, .... 
j=l j=l 

PROOF. Let c.pl, ... ,c.pk be the first k eigenvectors of B* A* AB in the Schmidt 
form of AB. According to Theorem 1.1, we have 

(7) 
k 

det((ABc.pi,ABc.pj)L=l = (p Sj(AB)2) det((c.pi,c.pj))f,j=l. 
3=1 

Now apply the inequality (2), first for A with respect to the vectors Bc.pl, . .. ,Bc.pk and 
next for B with respect to c.pI, ... ,c.pk. One obtains 

(8) 

k 

det((ABc.pi,ABc.pj))f,j=l S; (p Sj(A)2) det((Bc.pi,Bc.pj))tj=l 
3=1 

k 

S; (p Sj(A)2Sj(B)2) det((c.pi,c.pj))tj=l. 
3=1 

As c.pl, ... , c.p k is an orthonormal system, the determinant det( (c.pi, c.p j)) = 1. So (7) and 
(8) together give the desired inequality (6). 0 
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We are now able to prove the inequality (1). Let q be an arbitrary positive 
integer. By repeatedly applying (6) it is clear that-

k k 
(9) II sj(Aq) ::; II sj(A)q, k = 1,2, .... 

j=l j=l 

Put aj = log sj(Aq) and bj = log sj(A)q. Obviously a1 ~ a2 ~ a3 ~ '" and b1 ~ b2 ~ 
b3 ~ ., •. Furthermore, from (9) we have 

k k 

:L>j::; l)j, k = 1,2, .... 
j=l j=l 

Take r > 0, and put f( t) = e it. The first and second derivative of f are positive functions 
on the real line. So by Corollary VI.2.3, 

k k 

L: f( aj) ::; L: f(bj ). 
j=l j=l 

But f(aj) = sj(Aq)r/q and f(bj) = sj(At, and thus inequality (1) is satisfied. 

COROLLARY 1.3. Let A and B be compact operatorJ on a Hilbert Jpace H. 
Then 

k k 

L: sj(AB) ::; L: sj(A)sj(B), k = 1,2, .... 
j=l j=l 

PROOF. One uses the same arguments as in the paragraph preceding the 
present corollary. Put aj = 10gsj(AB) and bj = 10g(sj(A)sj(B»), and apply Corollary 
VI.2.3 for the case when f(t) = et. 0 

VIII.2 HILBERT-SCHMIDT OPERATORS 

A compact linear operator A on a Hilbert space is said to be a Hilbert-Schmidt 
operator if A * A is a trace class operator. 

THEOREM 2.1. For a compact linear operator A the following JtatementJ 
are equivalent: 

(i) A iJ a Hilbert-Schmidt operator; 

(ii) L:~1I1A<pjI12 < 00 for Jome (for any) orthonormal baJiJ <PI, <P2, <P3, ... ; 

(iii) Erk=11(A<pj,<Pk)12 < 00 for Jome (for any) orthonormal baJiJ 

<PI, <P2, <P3,··· ; 

(iv) E~l Sj(A)2 < 00. 

PROOF. Let A,l(A* A), A,2(A* A), ... be the sequence of nonzero eigenvalues 
of A * A. We extend this sequence to an infinite sequence by adding zero elements if 
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necessary. For any orthonormal basis CP1, CP2, ... one has 

00 00 

L Aj(A* A) = L(A* Acpj,cpj) 

(1) 
j=1 j=l 

00 00 

= L IIAcpjll2 = L I(Acpj,CPk)12. 
j==1 j,k=1 

In formula (1) we allow the sums to be infinite. Note that the last equality in (1) is a 
direct consequence of the identity of Parseval. The second equality in (1) is obvious from 
(A* Acp,cp) = IIAcp112. To prove the first equality in (1) we use the spectral theorem for 
A*A. Write 

00 

A* A = L AI/(A* A)(-,'l/JI/)'l/JI/, 
1/=1 

where 'l/J1, 'l/J2, ... is an orthonormal system of eigenvectors of A * A. Note that 

00 

(A* Acpj,cpj) = L AI/(A* A)I(cpj,'l/J1/)12. 
1/=1 

As all terms are nonnegative we have 

00 

= L AI/(A* A). 
1/=1 

This proves formula (1). 

From formula (1) the equivalence of the statements (i), (ii) and (iii) is evident. 
Moreover, as Aj(A* A) = sj(A?, the implications (i) {:} (iv) are trivial. 0 

Examples of Hilbert-Schmidt operators are easy to find. Let (aij )0=1 be an 
infinite matrix with complex entries, and assume that A: £2 -+ £2 is defined by 

(2) 
00 

(AX)i = L aijXj, 
j=1 

i = 1,2, ... 

Then A is a Hilbert-Schmidt operator if and only if 

00 

(3) L laijl2 < 00. 

i,j=l 

To see this, let ell e2, . .. be the standard orthonormal basis of £2. Note that 

(4) (Ae · e·) - (Ae .). - a·· 3' % - 3 % - '3· 
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Thus, if A is Hilbert-Schmidt, then (3) holds true because of Theorem 2.1(iii). Conversely, 
if (3) is true, then A is a compact operator, and applying Theorem 2.1, again, one sees 
that A is Hilbert-Schmidt. 

(5) 

The second example concerns the integral operator 

1 

(Kcp)(t) = J k(t,s)cp(s)ds, 0:5 t:5 1, a.e., 

o 

on L2([O, 1]). If the kernelfunction k is square integrable, then the operator K is Hilbert
Schmidt. To prove this, we choose an orthonormal basis (CPj)~l of L2([O, 1]). Define 

tPij(t,S) = cp;(t)cpj(s). We know that (tPij)?,j=l is an orthonormal basis of L2([O,1] x 
[0,1]). We have 

1 1 

(Kcpo"cpp) = J J k(t,s)cp",(s)cpp(t)dsdt 
o 0 

1 1 

= J J k(t,s)tPp",(t,s)dsdt 
o 0 

= (k, tPp",) , 

where the latter inner product denotes the inner product on L2([O,1] x [0,1]). As k E 
L2([O,1] x [0,1]), it follows that 

(6) L /(Kcp""cpp)/2 = IIkll2 < 00. 

"',p 

Since K is compact, Theorem 2.1 implies that K is Hilbert-Schmidt. 

The preceding example is, in a certain sense, a universal model for a Hilbert
Schmidt operator. More precisely, given a Hilbert-Schmidt operator A: H -+ H, there 
exists a unitary operator U: H -+ L2([O, 1]) such that the operator U AU-l is an integral 
operator on L2([O, 1]) with a square integrable kernel function. Take an orthonormal 
basis (Wj) in H and an orthonormal basis (cpj) in L2([O, 1]). Define U: H -+ L2([O, 1]) by 

setting UWj = Cpj, j = 1,2, .... Consider tPij(t,S) = CPi(t)CPj(s), and put 

k = L(Aw""wP)tPPa' 
"',p 

The fact that Ea,p /(Awa,W,B)/2 < 00 implies that k is square integrable. Let 
K: L2([0, 1]) -+ L2([0, 1]) be the corresponding integral operator. From what we proved 
above for the integral operator K we know that 
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But then 

UAU- 1cpOl = UAwOl = U(~)AWOl'Wp}wp) 
P 

= L:(AwOl,wp}cpp 
p 

= L:(KcpOl'CPP}CPP = KcpOl' 
P 

which proves that U AU-1 = K. 
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The set of all Hilbert-Schmidt operators will be denoted by 52. On 52 we 
define a norm: 

(7) 

We shall refer to (7) as the Hilbert-Schmidt norm of A. From formula (1) it is clear that 

(8) 

for any orthonormal basis CP1, CP2,'" in the underlying Hilbert space. This identity can be 
used to compute the Hilbert-Schmidt norm in concrete cases. For example, if A: £2 -t £2 
is given by (2), then 

This follows immediately from (4) and the identity (8). Also, the Hilbert-Schmidt norm 
of the integral operator K in (5) is given by 

This is clear from (6) and (8). 

The set 52 is a normed operator ideal, whose norm comes from a Hilbert 
space structure. This is the contents of the next theorem. First we prove the following 
lemma. 

LEMMA 2.2. If A and B are in 52, then AB E 51 and 

(9) 

If, in addition, B = A *, then equality holds in (9). 
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PROOF. From Corollary 1.3 it is clear that 

00 00 

L Sj(AB) ~ L Sj(A)Sj(B) ~ IIAI12I1BII2. 
j=1 j=1 

This proves (9). If, in addition, B = A*, then (by Corollary VL1.2) 

00 00 00 

IIAA*lh = L sj(AA*) = L Aj(AA*) = L Sj(A*)2 
j=1 j=1 j=l 
00 

= L sj(A? = IIAII~· 0 

j=1 

THEOREM 2.3. The Jet of all Hilbert-Schmidt operatorJ on a Hilbert Jpace 
H is a Hilbert space with respect to the inner product 

(10) (A,B) = trAB*, 

and the corresponding norm is equal to the Hilbert-Schmidt norm II ·112. Furthermore, 
if A: H -+ H is Hilbert-Schmidt and B: Ho -+ Hand C: H -+ Ho are bounded linear 
operators, then CAB is Hilbert-Schmidt and 

(11) 

For operatorJ of rank one the Hilbert-Schmidt norm 11·112 coincides withthe usual operator 
norm, while in general 

(12) 

PROOF. We first prove the second part of the theorem. From the inequality 
sj(CAB) ~ IIClIsj(A)IIBIl formula (11) is clear. If A has rank one, then sj(A) = 0 for 
j 2: 2, and hence in that case 

In general, we have IIAI12 2: sl(A) = IIAII. From sj(A) = sj(A*) it follows that IIAII2 = 
IIA*112. SO (12) is proved. 

Take A, B: H -+ H in 52, and let CPl, CP2, ••. be an orthonormal basis in 
H. Note that (1IAcpjll)j and (1IBcpjll)j belong to £2. So (IIAcpjll + IIBcpjll)j is a square 
summable sequence, and hence 

j j 

This shows that A + BE 52. As lI(aA)cpjll = lalllAcpjll, one also sees that aA E 52. So 
the set of all Hilbert-Schmidt operators on H is a vector space. 
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If A, B: H -+ H are in S2, then, by Lemma 2.2, the operator AB* e Sl. So 
the sesquilinear form (10) is well-defined. From the properties of the trace it is clear that 
(A, B) is an inner product. Moreover, 

00 

(A,A) = trAA* = trA* A = L Aj(A* A) 
j=l 

00 

= L sj(A? = IIAII~· 
j=l 

To prove that the inner product of S2 is complete, let An: H -+ H, n = 
1,2, ... , be a Cauchy sequence in the Hilbert-Schmidt norm II . 112. As IIAII ~ IIAII2' the 
sequence (An) is a Cauchy sequence in the usual operator norm, and hence 

(13) A= lim An 
n-+oo 

exists in C(H). From (9) and (12) we see that 

IIAnA~ - AkAklh ~ IIAn - Akll211Akll2 + IIAnIl2I1A~ - Ak 1l 2, 

and hence (AnA~) is a Cauchy sequence in Sl. But Sl is a Banach space. So 
limn-+oo AnA~ exists in Sl' Since (13) holds in the usual operator norm, the opera
tor A is compact and 

AA* = lim AnA~ e Sl. n-+oo 

Hence A e S2. Now (AnA*) is also a Cauchy sequence in Sl. So, using the same 
arguments as before, we conclude that AnA* -+ AA* in Sl. Taking adjoints we see that 
also AA~ -+ AA * in Sl. Hence, by Lemma 2.2, 

IIAn - AII~ = II(An - A)(A~ - A*)lh 

~ IIAnA~ - AA*III + IIAnA* - AA*1I1 + IIAA~ - AA*III 

tends to zero if n -+ 00. Hence (An) converges in S2. 0 

The fact that the integral operator (5) is a universal model of a Hilbert
Schmidt operator implies that the Hilbert space S2 is linearly isometric to L2([0,1] x 
[0,1]). Indeed, let W1.W2, ... and 1.,01,1.,02, ... be orthonormal bases in H and L2([0, 1]), 
respectively, and define 

(14) Jk = U-1KU, 

where K is the integral operator given by (5) and U: H -+ L2([0,1]) is the unitary 
operator defined by UWj = I.,Oj. Obviously, J is linear and 

Thus J is a linear isometry. To see that J is onto, note that J-l(A) = k with 

k = L(Awa,w,B}7f,Ba, 
a,,B 
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where "p{3a(t,s) = CP{3(t)CPa(S). 

Since L2([0, 1] x [0,1]) is a Hilbert space, one could use the isometry J in (14) 
to give a quick proof of the fact that any Cauchy sequence in 52 is convergent. 

COROLLARY 2.4. The operators of finite rank are dense in 52. 

PROOF. We use the notation introduced in the two paragraphs preceding 
this corollary. Let M be the linear space of all functions of the form 

n 

h = E ca{3"p{3ol> 
a,{3=! 

where n is an arbitrary positive integer and ca {3 are arbitrary complex numbers. Obvi
ously, M is dense in L2([0, 1] x [0,1]). Now apply the isometry J defined by (14). It 
follows that J(M) is dense in 52. Since J(h) is a finite rank operator for each h in M, 
we conclude that the finite rank operators are dense in 52. 0 

VIII.3 COMPLETENESS FOR HILBERT-SCHMIDT 
OPERATORS 

THEOREM 3.1. Let A be a Hilbert-Schmidt operator, and assume that 
AlR = l(A + A*) and A~ = -la(A - A*) are nonnegative operators. Then the system of 
eigenvectors and generalized eigenvectors of A is complete. 

PROOF. Consider the Schur decomposition of H corresponding to A, that 
is, H = EA E/:) EX, where EA is the smallest subspace containing all the eigenvectors 
and generalized eigenvectors of A corresponding to non-zero eigenvalues. Since A~ is 
nonnegative, we have to show (see the first paragraph of the proof of Theorem VI1.8.2) 
that EX C Ker A. 

Let P be the orthogonal projection of H onto EX, and consider the operator 

We know that B is a Volterra operator (Lemma 11.3.4). As si(B) :5 siCA), the operator 
B is also Hilbert-Schmidt. Furthermore, 

(Bcp, cp) = (Acp, cp), (B*cp,cp) = (A*cp,cp) 

for each cp E EX, and thus BlR = !(B + B*) and B~ = -la(B - B*) are nonnegative 
operators as well. So B is an operator of the same type as A. It suffices to show that 
B = o. Indeed, if B is the zero operator, then 

0= (Bcp, cp) = (Acp, cp) = (AlRCP, cp) + i(A~cp, cp) 

for each cp E EX. In particular, (AlRCP, cp) = 0 and (A~cp, cp) = 0 for cp E EX. As 
AlR is nonnegative, there exists a unique nonnegative operator C such that C2 = AlR. 
Obviously, IICcpll2 = (AlRCP, cp). It follows that Ccp = 0 for each cp E EX. But then 
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A~c,o = C2c,o = 0 for c,o E E;.t. Similarly, A9c,o = 0 for each c,o E E;.t. Thus Ac,o = 
A~c,o + iA9c,o = 0 for c,o E E±, which proves that E± C Ker A. 

Let us prove that B = O. As B is Hilbert-Schmidt and Volterra, the operator 
B2 is trace class and Volterra. So tr B2 = 0 by Theorem VII.6.1(i). Note that 

(1) B2 = (B~ - B~) + i(B~B9 + B9B~). 
The fact that B is Hilbert-Schmidt, implies that B~ and B9 are Hilbert-Schmidt, and 
hence all the terms in (1) are trace class operators. Using the linearity of the trace we 
have 

(2) 

Note that B~ and B~ are selfadjoint. So tr B~ - fi B~ is a real number. Furthermore, 

tr(B~B9) = tr(B9B~) = tr(B~B9)*) = tr(B~B9)' 

So tr(B~B9) + tr(B9B~) = 2tr(B~B9) is a real number too. But then (2) yields 
tr(B~B9) = O. We shall prove that this implies that B~[ImB9) = (0). 

Using the spectral theorem we can write 

B9 = L ).j(B9)(·,tPj}tPj, 
j 

where tP1. tP2,'" is an orthonormal system in El Put M = ImB9. Note that M is the 
closed linear span of the vectors tPl, tP2, .. , . As B9c,o = 0 for each c,o in the orthogonal 
complement of M in E±, we have 

tr(B~B9) = L(B~B9tP",tP,,}. 

" 
But B9tP" = )."(B9)tP,,. So 

(3) 0 = tr(B~B9) = L )."(B9)(B~tP,,, tP,,}· 

" 
Note that all terms in the right hand side of (3) are nonnegative and ).,,(B9) > O. It 
follows that (B~tP", tP,,) = 0 for all v. Since B~ is nonnegative, we can use the square 
root argument as before to show that B~tP" = 0 for all v. Hence B~c,o = 0 for each 
c,oEM= ImB9· 

Note that B9M C M. The fact that B~[M) = (0), implies that BM C M 
and 

B91M = (-iB)IM. 
Hence B91M is a compact selfadjoint operator with no nonzero eigenvalues. It follows 
that B9 is zero on M, and hence 0 = B9tP" = )."(B9)tP,, for all v. But then B9 must be 
the zero operator. So B = B~ is a selfadjoint Volterra operator, and thus B = O. This 
completes the proof of the theorem. 0 

Theorem 3.1 is due to V.B. Lidskii [1). To get completeness theorems for 
other classes of compact operators one has to use more powerful results than the trace 
formula in Theorem VII.6.1(i). In fact, one has to study the growth of the resolvent 
operator (1 - )'A)-l at infinity. This will be done in Chapter X. 



CHAPTER IX 

INTEGRAL OPERATORS WITH SEMI-SEPARABLE KERNELS 

In this chapter integral operators with semi-separable kernels are introduced 
and analyzed. Such operators turn out to be Hilbert-Schmidt, and their inversion prop
erties may be read off from certain finite dimensional operators. In the case when the 
operators are also trace class, their trace and determinant may be computed explicitly 
in terms of the associated finite dimensional operators. 

IX.1 DEFINITION AND EXAMPLES 

Let -00 < a < b < 00. By Lr([a, b]) we denote the space of all em-valued 
functions that are square integrable (relative to the Lebesgue measure) on [a, b]. Thus 
c.p: [a, b] -+ em belongs to Lr([a, b]) if and only if for each j the j-th component of c.p is 
square integrable on [a, b]. As usual, two functions that are equal almost everywhere are 
identified. The space Lr([a, b]) is a Hilbert space with inner product 

(1) 
n b 

(c.p, tP) = ?= J c.pj(t)tPj(t)dt. 
J=l a 

Here c.pj and tPj are the j-th components of c.p and tP, respectively. 

An operator K: Lr([a, b]) -+ Lr([a, b]) will be called an integral operator if 
its action is given by 

b 

(2) (Kc.p)(t) = J k(t,s)c.p(s)ds, a:::; t :::; b. 
a 

Here k is an m X m matrix function which is called the kernel function of K. Note that 
K may be written as 

m m 

(3) K= LLTiKij7l'j, 
i=l j=l 

where 
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b 

(Kijf)(t): = J kij(t,s)f(s)ds, a ~ t ~ b. 

a 

Here CPj is the j-th component of cP, the symbol Ski stands for the Kronecker delta, and 
kij(t,S) is the (i,j)-th entry of k(t,s). 

We say that K has a semi-separable kernel function if k admits the following 
representation: 

(4) 

Here Fv(t) and Gv(t) (v = 1,2) are matrices of sizes m x nv and nv x m, respectively, 
and as functions of t the entries of Fv(t) and Gv(t) are square integrable on [a, bJ. In 
that case the right hand side of (4) is called a semi-separable representation of k, the 
integer n: = nl + n2 is called the order of the representation (4), and nl and n2 will be 
referred to as the lower order and upper order, respectively. If (4) holds, then (2) can 
be rewritten as 

t b 

(5) (Kcp)(t) = FI(t) J G1 (s)cp(s)ds +F2(t) J G2(s)cp(s)ds, a ~ t:5 b. 

a t 

The kernel function 

n 
(6) let,s) = I:: cved"lt-sl 

v=1 

is an example of a (scalar) semi-separable kernel function. Indeed, l can be brought into 
the form (4) by taking 

As we shall see in Section XIV.3, semi-separable kernel functions also arise 
from Green's functions corresponding to certain differential operators. 

PROPOSITION 1.1. An integral operator with a semi-separable kernel func
tion is a Hilbert-Schmidt operator. 

PROOF. We first consider the scalar case, i.e., m = 1. Then the semi
separability of the kernel function k implies that k is square integrable on each of tp.e 
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triangles a S; s S; t S; b and a S; t < s S; b. It follows that k is a square integrable over 
[a, b] x [a, b], and hence the corresponding integral operator is a Hilbert-Schmidt operator 
(cf., Section VII1.2). The general case is reduced to the scalar case by using formula (3) 
and Theorem VII1.2.3. 0 

In general, an integral operator with a semi-separable kernel function does 
not belong to the trace class operators. For example, consider the operator of integration: 

(7) 

1 

V: L2([O, I]) ~ L2([O,I]), (Vf)(t):= 2i J f(s)ds, 
t 

OS;tS;l. 

In Section V1.1 it was shown that the j-th singular value of V is equal to 4/(2j -1)"11·, and 
thus V is not a trace class operator. However, the kernel function of V is semi-separable. 
Indeed, for V = K formula (5) holds true with 

OS;tS;l. 

All operators K: Lr([a, b]) ~ Lr([a, b]) of finite rank are integral operators 
with a semi-separable kernel function. To prove this, assume rankK = n < 00. Then 
(see [GG], Theorem 11.6.1) there exist vectors gl> ... ,gn in Lr([a,b]) and iI, ... ,fn in 
Lr([a, b]) such that for every tp E Lr([a, b]): 

n 

(8) (Ktp)(t) = L (tp,gv}fv(t). 
v=l 

Now, let F(t) be the m x n matrix of which the j-th column is equal to fj(t), and let 
G(t) be the n x m matrix of which the i-th row is equal to gi(t)*. Here, for x E en 
the symbol x* denotes the row vector of which the j-th entry is equal to the complex 
conjugate of the j-th entry of x. Then (8) implies that 

b 

(Ktp)(t) = F(t) J G(s)tp(s)ds, a S; t S; b. 
a 

In particular, the kernel function k of K can be written as in (4) with Fl = F2 = F and 
G1 = G2 = G. 

The converse statement is also true: if in (4) we have Fl = F2 and G1 = G2, 
then the corresponding integral operator has finite rank. In general, as examples (6) and 
(7) show, integral operators with semi-separable kernel do not have finite rank. 

IX.2 INVERSION 

This section concerns the inversion of an operator I - K, where 
K: L2([a, b]) ~ Lr([a, b]) is an integrable operator with a semi-separable kernel function 
k. Let 

(1) 
a S; s S; t S; b, 

as; t < s S; b, 
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be a semi-separable representation of k. With (1) we associate the following matrix 

(2) a:5 t :5 b. 

Since the entries of F1 , F2 and Gl, G2 are square integrable on a :5 t :5 b, it follows that 
entries of A are (Lebesgue) integrable on a :5 t :5 b. Note that A(t) is a square matrix of 
size n X n, where n is the order of the representation (1). 

THEOREM 2.1. Let K: Lr([a, b]) -+ Lr([a, b]) be an integral operator with 
a semi-separable kernel function k, and let (1) be a semi-separable representation of k 
of order n, say.- Let U( t) be the unique continuous n X n matrix function such that 

t 

(3) U(t) = In + J A(s)U(s)ds, a :5 t :5 b, 
a 

where A(t) i.9 given by (2) and In i.9 the n X n identity matrix. Partition U(t) a.9 a 2 X 2 
block matrix according to the partitioning of the right hand side of (2): 

(4) a :5 t :5 b. 

Then 1- K i.9 invertible if and only if det U22(b) #- O. Furthermore, in that ca.ge 

b 

(5) (I - K)-l4')(t) = 4'(t) + J l(t,s)4'(s)ds, 
a 

with resolvent kernel 

(6) 

where 

(7) 

(8) 

I(t,s) = { C(t)U(t)(I - P)U(s)-l B(s), 

-C(t)U(t)PU(s)-l B(s), 

a :5 t :5 b, 

s ::; t, 

s > t, 

In (8) the integer n2 is the upper order of the representation (1). The operator 
V: Cn2 -+ cn2 defined by Vx = U22(b)x will be called the indicator of 1- K associated 
with the representation (1). 
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The proof of Theorem 2.1 goes in a number of steps. First we prove the 
existence of the matrix U(t) and derive its properties (Lemma 2.2 below). Next we show 
that the operator I - K and its indicator V are matricially coupled (Theorem 2.3 below), 
and finally we apply Corollary III.4.3 to get the desired results about the inversion of 
I-K. 

LEMMA 2.2. Let A be an n x n matrix of which the entries are Lebesgue 
integrable on a ~ t ~ b. Then there exists a unique continuous n x n matrix function 
U(t) such that 

t 

(9) U(t) = In + J A(s)U(s)ds, a ~ t ~ b. 

a 

Furthermore, det U(t) ¥ 0 and 

t 

(10) U(t)-l = In - J U(s)-l A(s)ds, a ~ t ~ b. 

a 

PROOF. Given an n X n matrix A the symbol II All denotes the norm of the 
operator on en induced by A. For a ~ t ~ b, put 

t t 

Ul(t) = J A(s)ds, Uk+l(t) = J A(S)Uk(S)ds, k ~ 1. 

a a 

Then for k ~ 1, 

(11) a ~ t ~ b. 

a 

This inequality can be proved by induction. Indeed, (11) holds for k = 1. Let 

t 

:J(t) = J IIA(s)llds, a ~ t ~ b. 

a 

Suppose that (11) holds for k = p - 1. Then :J'(t) = IIA(t)1I a.e. and 

t 

IIUp(t)1I ~ J IIA(s)1I II Up-l (s)lIds 
a 

t 

~ (p ~ I)! J :J'(s).J(s)P-lds 
a 

t 

= ~:J(t)P = ~ (J IIA(s)lIdS)P. 
p. p. 

a 
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Thus (11) is established. Put 

00 

(12) U(t) = In + L Uk(t), a ~ t ~ b. 
k=l 

It follows from (11) that for each a ~ t ~ b 

k~l. 

Thus the series in (12) converges uniformly on a ~ t ~ b. Since all Uk are continuous on 
[a, b], we conclude that the same holds true for U. Furthermore, by Lebesgue's dominated 
convergence theorem, 

t toot J A(t)U(s)ds = J A(s)ds + L J A(S)Uk(S)ds 
a a k=la 

00 

= U1 (t) + L Uk+l(t) 
k=l 

= U(t) - I, a ~ t ~ b. 

We have now proved that U is a continuous n x n matrix function satisfying (9). Let fj 
be a second function with the same properties. Put W = U - fj. Then W is a continuous 
n x n matrix function and 

t 

Wet) = J A(s)W(s)ds, a ~ t ~ b. 

a 

Let m = max{IIW(s)" I a ~ s :5 b}. An argument similar to the one used to establish 
inequality (11) gives 

a ~ t ~ b, k = 1,2, .... 

By taking the limit for k ~ 00 one sees that "W(t)" = 0 for a ~ t :5 b. Hence U = U, 
and we have proved that U is uniquely determined by (9). 

U sing similar arguments (or duality), one proves that there exists a continuous 
n x n matrix function V such that 

t 

(13) Vet) = In - J V(s)A(s)ds, a ~ t ~ b. 
a 

From the theory of integration (see, e.g., [R], Section 8.15) we know that formulas (9) 
and (13) imply that U and V are absolutely continuous on [a, b] and, except for a set 
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of measure zero, U'(t) = A(t)U(t) and V'(t) = -V(t)A(t). Put Z(t) = V(t)U(t) for 
a ::; t ::; b. Then Z is also absolutely continuous and 

Z'(t) = V'(t)U(t) + V(t)U'(t) 

= -V(t)A(t)U(t) + V(t)A(t)U(t) = 0 

almost everywhere on [a, b]. But then 

V(t)U(t) = V(a)U(a) = In, a ::; t ::; b. 

Since U(t) and Vet) are square matrices, we may conclude that det U(t) "# 0 and 
U(t)-l = Vet) for a ::; t ::; b. 0 

The matrix U(t) defined by (9) is called the fundamental matrix (normalized 
to In at t = a) of the differential equation 

(14) x'(t) = A(t)x(t), a ::; t ::; b. 

The general solution of (14) is given by U(t)x, where x is an arbitrary vector in en. 

THEOREM 2.3. Let K: L2'([a, b]) -+ L2'([a, b]) be an integral operator with 
a semi-separable kernel function k, and let (1) be a semi-separable representation of k. 
Let V: e n2 -+ e n2 be the indicator of I -K associated with the representation (1). Then 
I - K and V are matricially coupled. More precisely, 

(15) [ I - K -R] -1 [ (I - H)-l (I - HV)-l R 1 ' 
Q In2 = -Q(I - H)-l 

where H, Q and R are defined as follows: 

(16) 

t t 

(Hcp)(t) = F1(t) J Gl(s)cp(s)ds - F2(t) J G2(s)r.p(s)ds, a ::; t ::; b, 

a a 

b 

(17) Qr.p = J G2( s )cp( s )ds, 
a 

(18) a ::; t ::; b. 

PROOF. Let G(t) and B(t) be defined by (7), and let U(t) be as in (3), 
where A(t) is given by (2). First we shall prove that I - H is invertible and 

t 

(19) (I - H)-l1j;)(t) = 1j;(t) + G(t)U(t) J U(s)-lB(s)1j;(s)ds, a ::; t ::; b. 

a 
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To do this, let T: Lr([a, b]) -+ Lr([a, b]) be the operator defined by the right hand side 
of (19). Take tp E Lr([a, b]). Then 

t 

(Htp)(t) = G(t) 1 B(s)tp(s)ds, a :5 t :5 b, 

a 

and hence for a :5 t :5 b we have 

t t 

(T(l - H)tp)(t) = tp(t) - G(t) 1 B(s)tp(s)ds + G(t)U(t) 1 U(s)-l B(s)tp(s)ds 
a a 

t 8 

- G(t)U(t) 1 U(s)-l B(s)G(s) (I B(a)tp(a)da) ds. 
a a 

Note that B(s)G(s) = A(s), and hence we can use formula (10) and partial integration 
to show that 

t 8 1 U(s)-l B(s)G(s)(I B(a)tp(a)da )dS = 
a a 

t t 

= -U(t)-l 1 B(a)tp(a)da + 1 U(s)-l B(s)tp(s)ds. 
a a 

It follows that T(l - H)tp = tp. In a similar way one shows that (1 - H)Ttp = tp. Thus 
(19) holds. 

Next, we use formula (10) to compute that for a :5 t :5 b, 

t 

((1 - H)-l Rx)(t) = (Rx)(t) + G(t)U(t) 1 U(s)-l B(s)(Rx)(s)ds 
a 

t 

= G(t)[~] +G(t)U(t) 1 u(s)-lB(S)G(S)[~]dS 
a 

t 

= G(t)[~] +G(t)U(t) 1 u(s)-lA(S)[~]dS 
a 

= G(t) [~] + G(t)U(t)(1 - U(t)-l] [~] ds. 

It follows that 

(20) (1 _H)-lRx)(t) = G(t)U(t)[~], a :5 t :5 b, 
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and hence 

b 

Q(I - H)-l Rx = J G2(S)C(S)U(S) [~] ds 
a 

b 

= -[0 I] J B(s)C(S)U(S)[~]dS 
a 

b 

= -[0 I] J A(S)U(s)[~]dS 
a 

= X - U22(b)x = X - Vx. 

This proves that V = In2 - Q(I - H)-l R. 

Note that K = H + RQ. Thus 

1- K = 1- H - RQ = (I - HHI - (I - H)-l RQ}. 

Now apply formula (4) in Section 1Il.4 with ,\ = 1, A = -(I - H)-l Rand B = -Q. It 
follows that 

(21) [I (I - H)-l R ]-1 = [I - (I - H)-l RQ 

-Q V Q 
Multiplying both sides of (21) on the left by (I - H) (fj In2 and then taking inverses yields 
(15). 0 

PROOF OF THEOREM 2.1. Let V be the indicator of I -K associated with 
the representation (1). Then (Theorem 2.3) the operators 1- K and V are matricially 
coupled via (15). So we can apply Corollary III.4.3 to show that 1- K is invertible if 
and only if V is invertible. Furthermore, in that case (see formula (16) in Section III.4) 

(22) (I - K)-l = (I - H)-l + (I - H)-l RV-1Q(I _ H)-I, 

where H, Q and R are defined by the formulas (16)-(18). Since U22(b) is the matrix of 
V relative to the standard basis in en, the operator I - K is invertible if and only if 
det U22(b) =I- O. 

To derive an explicit formula for (I - K)-l we use (22). We already have 
explicit formulas for (I - H)-l and (I - H)-l R (see (19) and (20». Let us compute 
Q(I - H)-I. Take <p E L2([a, b]). Then 

b 

Q(I - H)-l<p = -[0 I] J B(s)((I - H)-l<p)(s)ds 

a 

b b 

= -[0 I] J B(s)<p(s)ds - [0 I] J B(s)C(s)U(s) 
a a 

s 

X (J U(a)-l B(a)<p(a)da) ds. 

a 
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Since B(s)G(s) = A(s), we can apply (3) and partial integration to show that 

b s 

J B(S)G(s)U(s)(J U(a)-l B(a)ep(a)da )dS = 

a a 
b b 

= U(b) J U(a)-l B(a)ep(a)da - J B(s)ep(s)ds. 
a a 

It follows that 

b 

(23) Q(I - H)-lep = -[0 IjU(b) J U(s)-l B(s)ep(s)ds, 
a 

and hence (use (20)) 

(24) 

((I - H)-l RV-1Q(I - H)-lep)(t) = 
b 

- G(t)U(t)P J U(s)-l B(s)ep(s)ds, 
a 

a ~ t ~ b, 
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where P is given by (8). Finally use (19), (22) and (24) to derive the formulas (5) and 
(6). 0 

COROLLARY 2:4. Let K: L2'([a, b]) - L2'([a, b]) be an integral operator 
with a semi-separable kernel function k, and let (1) be a semi-separable representation of 
k. Let V: cn2 _ Cn2 be the indicator of I - K associated with the representation (1). 
Then 

(25) Ker(I - K) = {ep E L2'([a,b]) I ep(t) = G(t)U(t)[~],x E KerV}, 

b 

(26) Im(I - K) = { 1fJ E L2'([a, b]) I [0 I)U(b) J U(s)-l B(s)1fJ(s)ds E 1m V}. 
a 

Here U(t), B(t) and G(t) are as in (3) and (7). 

PROOF. From Theorem 2.3 and Corollary III.4.3 we conclude that 

Ker(I - K) = {ep I ep = (I - H)-IRx,x E KerV}, 

Im(I - K) = {1/J I Q(I - H)-I1fJ E 1m V}, 

where H, Q and R are defined by (16)-(18). But then we can use formulas (20) and (23) 
to get (25) and (26). 0 
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Let us illustrate Theorem 2.1 and Corollary 2.4 with an example. Consider 
the integral equation 

(27) 

T 

J(t) - j e-lt-sIJ(s)ds = get), 

o 
o ::; t ::; T. 

The right hand side g E L2([0, rD, and we want to solve (27) in L2([0, rD. The corre
sponding kernel is semi-separable (cf., formula (1.6»; in fact 

(28) 
e- 1t- sl = {FI(t)GI(S), 0::; S ::; t ::; r, 

F2(t)G2(S), 0::; t < s :5 r, 

where FI(t) = G2(t) = e-t and F2(t) = GI(t) = et . To solve (27) we first determine the 
indicator associated with the representation (28). Note that the upper order n2 = 1, and 
hence in this case the indicator is just a number. One computes that for the representation 
(28) the matrices A(t) and U(t) in (2) and (3) are given by 

A(t) = [ 1 
_e-2t 

e2t ] , 
-1 

U(t) = [etcost etsint]. 
_e-t sin t e-t cos t 

Hence V = e-T cosr. 

Take 0 < r i= i + br for k = 0,1,2, . .. . Then V i= 0, and hence equation 
(27) is uniquely solvable in L2([0, rD. To get the solution we apply formulas (5) and (6). 
One computes that in this case 

U(t)-I = [ e-t cost 
e-t sint 

C(t)U(t) = [ cost - sint 

_et sint ] , 

et cos t 

sin t + cos t ], 

U(S)-I B(s) = [s~ns + coss ] , 
Slns - coss 

p_[ 0 0] 
- - tanr 1 ' 

and hence the unique solution of (27) is given by 

t 

J(t) = get) + {(cost - sint) + tanr(sint + cost)} j(cos s + sins)g(s)ds 

o 
T 

- (sin t + cos t) j {(I - tan r) sin s - (1 + tan r) cos s }g( s )ds, 0:5 t ::; r. 

t 

Next, assume that r = ~ + br for some non-negative integer k. Then the 
indicator V is equal to zero, and hence equation (27) is not uniquely solvable. By applying 
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Corollary 2.4 one sees (use formula (26» that (27) is solvable if and only if 

r 

j(Sins + coss)g(s)ds = 0, 

o 

159 

and in that case (use formulas (25), (19) and the coupling relation (15)) the general 
solution of equation (27) is given by 

t 

J(t) = get) + (sint + cost) j(sins - coss)g(s)ds 

o 
t 

+ (cos t - sin t) j (sin s + cos s )g(s )ds + c(sin t + cos t), 

o 

IX.3 EIGENVALUES AND DETERMINANT 

c E C. 

This section concerns the eigenvalues of an integral operator with a semi
separable kernel. As before, 

(1) 

is a semi-separable representation and 

(2) 

a :5 s :5 t :5 b, 

a :5 t < s :5 b, 

Gl(t)F2(t) 1 
-G2(t)F2(t) , 

a :5 t :5 b. 

THEOREM 3.1. Let K: Lr([a, b]) -+ Lr([a, b]) be an integral operator with 
a semi-separable kernel Junction k, and let (1) be a semi-separable representation oj k of 
order n, say. For each J.L E C let U(t; J.L) be the unique n x n matrix Junction determined 
by 

t 

(3) U(t; J.L) = In + J.L j A(s)U(s; J.L)ds, a :5 t :5 b, 

a 

where A(t) is given by (2) and In is the n x n identity matrix. Partition U(t; J.L) as a 
2 x 2 block matrix according to the partitioning of the right hand side of (2): 

(4) a :5 t :5 b. 

Put 

(5) J.L E C. 
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Then 01( iJ an entire function, and A '" 0 iJ an eigenvalue of K if and only if 01( A -1) = 
O. Furthermore, the geometric multiplicitieJ of the non-zero eigenvalueJ of K are bounded 
above by the minimum of the lower and upper order of the Jemi-Jeparable repreJentation 
(1). 

PROOF. For a :::; t :::; b put 

t t 

U1(t) = J A(s)ds, Uk+1(t) = J A(S)Uk(S)ds, k ~ 2. 

a a 

From the proof of Lemma 2.2 it follows that for every p. E C 
00 

U(tj p.) = In + L P.kUk(t), a:::; t :::; b. 
k=l 

But then the estimate (2.11) implies that for each t E [a, b) the entries of U(tj p.) are 
analytic in p. on the entire complex plane. In particular, the entries of U22(bj p.) are 
entire functions in p., and hence the same is true for 0K(P.)' 

Note that p.K is again an integral operator with a semi-separable kernel 
function. In fact, 

(6) { 
P.F1(t)G1(S), a:::; s :::; t :::; b, 

p.k(t,s) = 
P.F2(t)G2(S), a:::; t < s :::; b, 

and the right hand side of (6) is a semi-separable representation for the kernel function 
of p.K. Let V(p.) be the indicator of I - p.K associated with the representation (6). Then 

(7) det V(p.) = det U22(bj p.) = 0K(P.). 

Take A '" O. Then A is an eigenvalue of K if and only if I - A-I K is not 
invertible. But then Theorem 2.1 and formula (7) imply that A is an eigenvalue of Kif 
and only if 0K(A -1) = O. Furthermore, we can apply Corollary 2.4 to show that 

dimKer(A - K) = dim Ker(I - A-1K) :::; dimKerV(A-1 ) :::; n2, 

where n2 is the upper order of the representation (1). This shows that the latter number 
is an upper bound for the geometric multiplicities of the non-zero eigenvalues of K. By 
interchanging the roles of the triangles a :::; s :::; t :::; b and a :::; t :::; s :::; b one sees that the 
lower order is also an upper bound. 0 

Theorem 3.1 states that the function c5K(A) has the properties of a deter
minant function. The next theorem makes this statement more precise for trace class 
operators. 

THEOREM 3.2. Let K: Lr([a, b)) -+ Lr([a, b)) be an integral operator with 
a Jemi-Jeparable kernel function k, and let (1) be a Jemi-Jeparable repreJentation of k. 
AJJume K iJ a trace claJJ operator. Then 

b 

(8) trK = J trG2(s)F2(S)ds, 
a 
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(9) P. E e, 

where 0KO is the entire function defined by (5). 

PROOF. Let H, Q, and R be the operators defined by the formulas (16)-(18) 
in the previous section. We know that K = H + RQ. Furthermore, RQ is an operator 
of finite rank. It follows that H = K - RQ is a trace class operator. In the proof of 
Theorem 2.3 it was shown that the operator 1- H is invertible. Now, replace K by p.K, 
and use the semi-separable representation (6) for the kernel function of p.K. Then H has 
to be replaced by p.H, and we may conclude that 1- p.H is invertible. This holds for 
each p. E C. Hence H has no non-zero eigenvalues. But then Theorem VII.6.1 implies 
that 

(10) trH = 0, det(I - p.H) = 1 

The first equality in (10) implies that 

tr K = tr(H + RQ) = tr RQ = trQR, 

by Corollary VII.6.2(i). Note that QR is the operator on en given by J: G2(s)F2(S)ds. 
Since the trace class norm and the usual operator norm are equivalent norms on operators 
on en, the continuity of the trace in the trace class norm implies that the integral and 
trace may be interchanged. This proves (8). 

To prove (9) we use the second identity in (10) and Corollary VII.6.2(ii). 
Take p. E C. Since p.K, p.H and p.(I - p.H)-l RQ are trace class operators, the identity 

1- p.K = (I - p.H){I - p.(I - p.H)-l RQ} 

implies (see Theorem VII.3.3) that 

det(I - p.K) = det(I - p.H) det{I - p.(I - p.H)-l RQ} 

= det{I - p.(l - p.H)-lRQ} 

= det{ln2 - p.Q(l - p.H)-l R}. 

Here n2 is the upper order of the semi-separable representation (1). Let V(p.) be the 
indicator of I - p.K associated with the representation (6). From the proof of Theorem 
2.3 (with K replaced by p.K) we know that 

V(p.) = ln2 - p.Q(l - p.H)-l R. 

Thus det(I - p.K) = det V(p.) = 0K(P.), by formula (7). 0 

Theorem 3.2 may be used to compute trace and determinant of an integral 
operator. For example, let K: L2([0' 7]) -+ L2([0, 7]) be the integral operator with kernel 

(11) k(t,s) = e- 1t- sl , o :::; t :::; T, 0:::; S :::; T. 

First, let us prove that K is a trace class operator. To do this, let 

t 

(Tf)(t) = J f(s)ds. 
o 
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The operator T is an integral operator with a semi-separable kernel function, and hence 
T is Hilbert-Schmidt. Also, for each /J E C the operator 1 - /JT is invertible and 

t 

(1 - /JT)-lTg)~t) = f e#'(t-s)g(s)ds, 
o 

0:5 t :5 T. 

Let H: L2([0, T]) - L2([0, T]) be defined by 
t t 

(H f)(t) = f e-(t-s) f(s)ds - f e(t-s) f(s)ds. 

o 0 
Then 

H = (1 + T)-lT - (1 - T)-lT = -2(1 + Trl(1 - T)-lT2, 
and hence H is a trace class operator. Since K - H is an operator of rank 1, it follows 
that K is also a trace class operator. 

The kernel function (11) is semi-separable. In fact, 

(12) e-1t-sl = {F1(t)Gl(S), 0:5 s :5 t :5 T, 
F2(t)G2(S), 0:5 t < s :5 T, 

where Fl(t) = G2(t) = e-t and F2(t) = Gl(t) = et • Thus, according to formula (8), 
r r 

trK = J trG2(s)F2(S)ds = f ds = T. 
o . 0 

For the representation (12) the entries of the matrix 

[ 
Ull(tjJl) U12(tj/J) 1 

U(tj Jl) = , 
U21(tjJl) U22(tjJl) 

which is defined by (3), are as follows: 

Ull (tj Jl) = et { ~(e-at + eat) + 1 ~/J (e-at _ eat) }, 

U12 (tj Jl) = et{;: (eat _ e-at )}, 

U21(tj /J) = e-t {;: (e-at _ eat) }, 

U22(tj Jl) = e-t {~(e-at + eat) + 1 ~Jl (eat _ e-at ) }, 

where a2 = 1- 2Jl. Note that the choice of the square root is not essential here because 
the formulas do not change if a is replaced by -a. Formula (9) in Theorem 3.2 now 
implies that 

det(1 - JlK) = U22(TjJl) 

= e-r{cosh(TV2Jl-1) + (1- Jl)Tsinh~ 1)}. 
T 2Jl-1 



CHAPTER X 

THE GROWTH OF THE RESOLVENT OPERATOR 
AND APPLICATIONS TO COMPLETENESS 

The behaviour of the resolvent in a neighbourhood of the spectrum is one of 
the important characteristics of an operator. The first section presents a basic theorem 
in which a sharp evaluation is given of the norm of an inverse operator in terms of 
the determinant and the singular values. The theorem is used in the second section to 
evaluate the growth of the resolvent of a Volterra operator. The applications concern 
two completeness theorems, which are presented in the last two sections. 

X.1 MAIN THEOREM 

Throughout this chapter the underlying spaces are separable Hilbert spaces. 
We begin with a simple observation which will be used in the proof of the main theorem. 
If A is an n X n matrix, then 

(1) Si(I"': A) :::; 1 + siCA), j = 1, ... ,n. 

For j = 1 the inequality (1) is an immediate consequence of triangle inequality for the 
norm and the fact that 11111 = 1. For arbitrary j we use Theorem VI.1.5. Indeed, choose 
an n X n matrix F of rank j - 1 such that siCA) = IIA - FII. Then 

si(I + A) :::; III + A - FII :::; 1 + IIA - FII = 1 + siCA), 

and formula (1) is proved. 

THEOREM 1.1. Let A be a trace class operator, and assume det(I +A) i:- o. 
Then I + A is invertible and 

(2) 
1 00 

11(1 + A)-III:::; I det(I + A)I Jl (1 + si(A». 

PROOF. We have already seen that det(I + A) i:- 0 implies that I + A is 
invertible. So we have to prove (2). This will be done in three steps. First we show that 
(2) may be proved by reduction to operators of finite rank. So let us assume that (2) 
holds for operators of finite rank. Choose a sequence (Pn ) of orthogonal projections such 
that Pn --+ I (n --+ 00) pointwise. Then PnAPn --+ A in the trace class norm by Theorem 
VI.4.3. 

As det(I + A) = limn-+oo det(I + PnAPn) (see the remark at the end of 
Section VII.3), we have det(I + PnAPn) i:- 0 for n sufficiently large. So 1+ PnAPn is 
invertible and 

(3) II (I + PnApn)-III :::; Idet(I+1Pn APn)1 ij(l+Si(PnAPn») 
J 
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for n ~ no, say. The fact that PnAPn -+ A in the trace class norm implies that 
PnAPn -+ A in the usual operator norm, and hence 

(n-+oo). 

As sj(PnAPn) ~ sj(A) for all j, we see from (3) that 

Taking limits, as n -+ 00, on the left and right yields (2). 

Next, assume that A is of finite rank. Then there exists a finite dimensional 
subspace M of H such that 

AMCM, AM.L = (0). 

Let Ao: M -+ M be the restriction of A to M. Note that the right hand side of (2) does 
not change if A is replaced by Ao. Furthermore 

As the right hand side of (2) is larger than or equal to 1 (see Theorem VII.3.3), it suffices 
to prove (2) for Ao instead of A. In other words, without loss of generality we may 
assume that dimH < 00. 

Assume dimH = n, and consider R = [det(I + A)](I + A)-I. To compute 
the norm of R, we compute sICR): 

s~(R) = Al(R* R) = I det(I + A)12 Al (I + A*)-I(I + A)-I). 

Observe that 

n 

I det(I + A)12 = det[(I + A) (I + A*)] = II Aj(I + A)(I + A*»), 
j=1 

So 
n-l n-l 

s~(R) = II Aj(I + A)(I + A*» = II sj(I + A). 
i=l j=l 

Next apply the inequalities (1). One obtains that 

n-l n-l 
sICR) = II sj(I + A) ~ II (1 + sjCA»). 

j=l j=1 
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So, if dimH = n, then 

(4) 
n-1 

11(1 + A)-111 $ I det(; + A)I }l (1 + sj(A)) , 

and the theorem is proved. 0 

The inequalities (1), (2) and (4) cannot be sharpened. In fact, if A is a 
non-negative n x n matrix, then we have equality in (1) as well as in (4). This follows 
immediately from the fact that for a non-negative operator the j-th singular number is 
equal to the j-th eigenvalue. In (2) we have equality if A is a non-negative trace class 
operator with an infinite number of eigenvalues. 

X.2 COROLLARIES TO THE MAIN THEOREM 

In this section we use the main theorem to describe the behaviour of 
11(1 - zA)-111 for Izl large. First of all, if A is trace class and det(1 - zA) =? 0, then 
1- zA is invertible and 

11(1 - zAr1 11 < 1 elzlllAlh 
- det(I - zA) , 

because of (1.2) and 1 + t $ et for t ~ 0. Recall that IIAII1 stands for the trace class 
norm of the operator A. It follows that if A is trace class and a Volterra operator, then 
det(I - zA) = 1 for each z, and hence 

z E C. 

This inequality can be sharpened. In fact, the next theorem shows that for a trace class 
Volterra operator the entire function 11(1 - zA)-111 is a function of exponential type zero 
(cf. Section VII.5). 

THEOREM 2.1. Let A be a trace class Volterra operator. Then, given 8 > 0, 
there exists a positive constant C such that 

(1) 11(1 - zA)-111 $ Ce'5IzI, z E C. 

PROOF. Choose m such that L:~m+1 sj(A) < ~8. By applying the main 
theorem of the previous section, one obtains 

Now use the fact that a polynomial is of exponential type zero. So there exists a constant 
C such that 

m 

IT (1 + Izlsj(A)) $ Cet,slzl, 
j=1 
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and (1) is proved. 0 

If not A but a certain power of A is trace class, then still one can obtain an 
estimation of the growth of the resolvent at 00. This is the content of the next theorem. 

THEOREM 2.2. Let A be a Volterra operator, and assume that 

00 

(2) LSj(At < 00 

j=l 

for some r > O. Then, given 6 > 0, there exists a positive constant C such that 

(3) z E C. 

PROOF. First, take 0 < r ~ 1. We begin with an elementary inequality: 

(4) z E C, 

where (3 is some constant depending on r only. To prove (4), note that for Izl < 1 one 
has Izl ~ Izlr, and thus 

Izl < 1. 

As Izl-r 10g(1 + Izl) -+ 0 if Izl -+ 00, the function Izl-r 10g(1 + Izl) is bounded on Izi 2': 1. 
So there exists (3 2': 1 such that loge 1 + I z I) ~ (31 z I r for I z I 2': 1. This proves (4). 

Let 6 > 0 be given. Choose m such that E~m+l sj(A)T < ~(3-l, where 
(3 > 0 is as in (4). Using (4) and Theorem 1.1, we get 

Proceeding as in the proof of Theorem 2.1, one obtains the desired inequality (3). 

Next, assume r 2': 1. Choose a positive integer q such that r ~ q < r + 1, and 
put p = r/q. Note that 0 < p ~ 1. From the inequality, 

00 00 

L Sj(Aqr/q ~ L sj(Ar 
j=l j=l 

(see Section VIlLI), it follows that E~l sj(Aq)P < 00. So we can apply the first part 
of the proof to Aq. Hence there exists a positive constant Cl such that 

In particular, 

(5) 
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Now, we use that 

(6) 

Since any polynomial is of exponential type zero, there exists a constant C2 such that 

III + zA + ... + zq-l Aq-11l :5 C2etslzl. 

Using Izl :5 Izlr for Izl ~ 1, one gets 

(7) 

for some constant C3 and each z E C. Now take the norm in (6) and insert the inequalities 
(5) and (7). One obtains the desired formula (3). 0 

X.3 APPLICATIONS TO COMPLETENESS 

Theorem VIL8.1 tells us that the system of eigenvectors and generalized eigen
vectors of a trace class operator A is complete whenever for each cp the number (Acp, cp) is 
in the closed upper halfplane. One has also completeness if A is Hilbert-Schmidt and the 
numbers {Acp, cp} are in the first closed quadrant of the complex plane (Theorem VIlL3.1). 
In the next completeness theorem the condition that A is trace class or Hilbert-Schmidt 
is weakened, while on the other hand the numbers {Acp, cp} are required to be in a certain 
angular sector with a sharper opening. 

THEOREM 3.1. Let A be a compact operator 3uch that L~l Sj(Al < 00 

for 30me r ~ 1. A33ume that the 3et 

(1) WA = {{Acp,cp} 1 cp E H, IIcplI = 1} 

lie3 in a cl03ed angle with vertex at zero and opening ~. Then the 3y3tem of eigenvector3 
and generalized eigenvector3 of A i3 complete. 

For r = 1 the above theorem is just Theorem VIL8.1. For r = 2 it contains 
the completeness theorem for Hilbert-Schmidt operators. The set WA, defined by (1), is 
called the numerical range of A. We begin with a lemma that relates the location of the 
numerical range to that of the spectrum. 

LEMMA 3.2. Let W A be the numerical range of an arbitrary bounded linear 
operator A acting on a Hilbert 3pace H. If A f; W A, then A - A i3 invertible and 

(2) 

PROOF. Here W A denotes the closure of the set WA. Take A f; W A, and 
put 8 = dist(A, W A). Obviously, 8 > o. For x E H with IIxll = 1 we have 

(3) II(A - A)xll ~ I«A - A)x,x}1 = IA - (Ax, x}1 ~ 8 > o. 
So A - A is injective and has closed range. Similarly 

II(A - A)*xll ~ IX - {A*x, x}1 = IA - {Ax, x}1 ~ 8 > 0, 
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and thus Ker(oX - A)* = (0). It follows that 

Im(oX - A) = Im(oX - A) = (Ker(oX - A)*].l = H. 

Thus oX - A is invertible and (3) implies (2). 0 

LEMMA 3.3. If the numerical range W A lies in a closed angle with vertex 
at zero and opening ::;: rr, then Ker A = Ker A * . 

PROOF. We may choosew such that B: = eiw A has its numerical range in the 
closed upper half plane. Note that this implies that the imaginary part B~ = t.(B -B*) 
is non-negative. But then (see the second paragraph of the proof of Theorem VIL8.2) 
we know that Ker B = Ker B*. Obviously, Ker A = Ker B and Ker A * = Ker B*, and 
hence the lemma is proved. 0 

PROOF OF THEOREM 3.1. Let n be an open angle with vertex at zero 
and opening ~ such that 

(4) 

The sides of n we denote by R. and m. First we show that (4) implies the existence of an 
open angle n' with the same opening as n such that 1- zA is invertible for z f. n' and 

(5) 11(1 - zA)-lll ::;: 21zl, z f. n'. 

m 

Figure 1 

To prove (5), let Dl and D2 be closed discs of radius 1 that are outside it 
and are tangent to the lines R. and m at the point 0, respectively. Put D = Dl U D2. 
Take 0 =t- oX E D. From Lemma 3.2 and condition (4) we know that oX - A is invertible 
and 
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Put p = IAI, and let rp = {z E DJlzl = p}. Let us compute do = min{dist(z,Q) I z E 
r pl. Of course this minimum do is attained in the points a and,B (see Figure 1). One 
easily computes (see Figure 2) that the distance of a to the line £ is equal to !p2. So 
do = !p2, and hence dist(A, Q) 2: ~p2. It follows that 

Figure 2 

(6) 0"1 A ED. 

Next one makes the transformation z f-+ z-l. This transformation maps the closed discs 
Dl and D2 onto closed halfplanes D~ and D2, respectively, and thus the complement of 
D is mapped by z f-+ z-l onto an open angle D/. As Dl and D2 are tangent at 0 to the 
lines £ and m, respectively, the opening of n' is equal to the opening of n. Now take 
z tt n'. Then A = z-l "10 and belongs to D. So (6) holds. But then J - zA is invertible 
and inequality (5) holds true. 

Next, assume that A is a Volterra operator which satisfies the conditions of 
Theorem 3.1. We shall prove that A = o. Introduce the operator function A(z) = 
A(J - zA)-l. Obviously, A(z) is an entire function, and 

So we apply the inequality (5) to show that 

(7) sup IIA(z)11 < 00. 

zt/:.D/ 

z"lO. 

Furthermore, according to the evaluation of the resolvent given in Theorem 2.2, we know 
that for each {j > 0 there exists a constant C such that 

(8) z E C. 

Now, consider the function A(z) on n'. We know that A(z) is analytic in n' and con
tinuous up to its boundary. On the sides of the angle D/ the function A(z) is uniformly 
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bounded by (7). Furthermore, inside 1"2' we have the inequality (8). As the opening of 1"2' 
is equal to ~, we can apply the Phragmen-Lindelof theorem (see [C], Corollary VI.4.4) to 
show A(z) is bounded on 1"2'. Using (7), we conclude that A(z) is bounded on the entire 
complex plane. So by Liouville's theorem A(z) is a constant function. It follows that 

A(z) = A + zA2 + ... = A, 

and hence A2 = O. 

The identity A2 = 0 implies A = O. Suppose not. Then there exists a 
vector x such that A2 x = 0 and y: = Ax =I- O. According to Lemma 3.3 the vector 
y E Ker A = Ker A * = 1m A.1. On the other hand, y E 1m A. So we conclude that y 1- y, 
and hence y = 0, which is a contradiction. Thus A = O. 

Finally, let A be an arbitrary compact operator that satisfies the conditions 
of Theorem 3.1. Let H = EA ED EX, where EA is the smallest subspace containing all the 
eigenvectors and generalized eigenvectors of A corresponding to the non-zero eigenvalues. 
Since, for some w, the operator eiw A has a non-negative imaginary part, it suffices to 
show (cf. the first paragraph of the proof of Theorem VII.8.2) that EX C Ker A. Let P 
be the orthogonal projection of H onto EX. We know (Lemma 11.3.4) that the operator 

B:= PAIEx:EX -+ EX 

is a compact Volterra operator. For tp E EX one has 

(Btp, tp) = (P Atp, tp) = (Atp, tp). 

So WE C WA . Furthermore, sj(B) :::; sj(A) for j = 1,2, .... So B satisfies the condition 
of Theorem 3.1. But then B = O. Now, note that 

B* = A*IEx. 

SO EX C Ker A *. But then we can apply Lemma 3.3 to show that EX C Ker A, and the 
proof is complete. 0 

X.4 THE KELDYSH THEOREM FOR COMPLETENESS 

In this section we shall prove the following completeness theorem, which is 
due to V.M. Keldysh [1]. 

THEOREM 4.1. Let K be a compact selfadjoint operator with Ker K = (0), 
and assume that 

00 

(1) L IAj(K)r < 00 

j=l 

for some r ::::: 1. Furthermore, let S be a compact operator such that I + S is invertible. 
Then the system of eigenvectors and generalized eigenvectors of the operator 

(2) A = K(I + S) 
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is complete. Moreover, given e: > 0, all the eigenvalues of A, with a possible exception 
of a finite number, are in the sector 

(3) .6. = {peicp 1 p :::: 0,171" - cpl < e: or Icpl < e:}. 

The conditions of the Keldysh theorem appear naturally in certain differential 
equations. For example, consider the differential operator 

dx 
dt + b(t)x. 

Write B = ft, and let C be the operator of multiplication by bet). Choose boundary 
conditions such that B is selfadjoint, invertible and B-1 is Hilbert-Schmidt. Taking 
inverses, one obtains the compact operator 

which is an operator of the type considered in the Keldysh theorem. In the chapter on 
unbounded Fredholm operators (see Section XVII.5) we shall return to examples of this 
type and make the statements more precise. 

Theorem 4.1 does not hold true if the compactness condition on J{ is dropped. 
To see this, take J{ = I, and let S be the operator of integration. Also, note that the 
invertibility of 1+ S is equivalent to the statement that Ker A = (0). Indeed, since 
S is compact, the operator 1+ S is invertible if and only if Ker(l + S) = (0). But 
Ker(I + S) = Ker A because J{ is injective by assumption. 

To prove Theorem 4.1 we need the following lemma. 

LEMMA 4.2. Let J{ be a compact selfadjoint operator with Ker J{ = (0), and 
let T be an arbitrary compact operator. Furthermore, let n be a closed angle with vertex 
at zero that does not contain non-zero real points. Then 

lim IIT(1 - zl()-ll1 = 0, 
zEO,z-+oo 

and the convergence is uniform on n. 
PROOF. First we consider the case that 

T = (.,f)g, 

where f and g are fixed vectors of norm one. According to the spectral theorem for 
compact selfadjoint operators, 

00 

J{ = L Aj(.,cpj)cpj, 
j=l 

where CPl, CP2, ... is an orthonormal set in Hand Aj = Aj(J{) for j = 1,2, .... For cP E H 
and zEn we have 

00 

T(I - zJ{)-lcp = L(l- ZAj)-l(cp,cpj)(cpj,f)g. 
j=l 
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It follows that 

and so for zEn 

(4) 

Now let n' be the image of the angle n under z -+ z-l. Again, n' is a closed 
angle with origin at zero. Without loss of generality we may assume that n' is as in 
Figure 1. From Figure 1 it is clear that for 0 1= zEn 

(5) 1 1 1_ Iz-11 < _1_ 
1-Ajz -IZ-1_Ajl- sinw' 

o A.j 

Figure 1 

j = 1,2, .... 

Now, let c > 0 be given. Choose N such that 

00 1 L IU,<,Oj)1 2 < 2"c2 sinw. 
j=N+1 

Next, choose R > 0 such that for Izl ;::: R and zEn 

N 1 L 1(1- ZAj)-1I1U,<,Oj)1 2 < 2"c2 . 

j=l 

Employing formulas (4) and (5), one obtains that 

IIT(l - zK)-ll1 < e (Z E n, Izi ;::: R). 



CHAPTER X. THE GROWTH OF THE RESOLVENT OPERATOR 173 

This proves the lemma for the case that T has rank one. 

Using finite linear combinations of operators of rank one, one sees that the 
lemma holds true for any operator T of finite rank. The case when T is an arbitrary 
compact operator is proved via approximation by operators of finite rank. In order to 
do this, note that formula (5) also implies that 

(6) II(I - zK)-lll :5 _.1_ 
Slnw 

(z En), 

and thus 

IIT(I - zK)-lll :5 _.I_IIT - FII + IIF(I - zK)-lll 
Slnw 

for any zEn. From this inequality, and the first part of the proof, it is clear that the 
lemma holds for an arbitrary compact operator T. 0 

PROOF OF THEOREM 4.1. Let 12 and 12' be the closed angles with origin 
at zero described by the following figure: 

Figure 2 

So the complement of nun' in C is the sector described by formula (3). Note 
that 12 U 12' U {oo} is invariant under the map z ....... 1/ z. 

Define T = S(I + S)-I. The operator T is compact and I - T = (I + S)-I. 
So 

I - zA = I - zK(I + S) = (I - T - zK)(I + S). 

Now take zEn un'. Then I - zK is invertible, and thus 

(7) I - zA = [I - T(I - zK)-l](I - zK)(I + S). 

According to Lemma 4.2, there exists R > 0 such that 

(8) (z E nU 12', Izl:::: R). 
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It follows that for zEn U n' and Izl·;::: R the operator 1- zA is invertible. So the 
non-zero eigenvalues of A in nUn' lie outside the disc Izl :5 1/ R, and thus A has only a 
finite number of eigenvalues in nun'. This shows that all the eigenvalues of A, except 
for a finite number, are in the set 6. defined in (3). 

Let EA be the smallest subspace containing all eigenvectors and generalized 
eigenvectors corresponding to non-zero eigenvalues of A. Since I + S and K are injec
tive, the operator A is injective, and hence the system of eigenvectors and generalized 
eigenvectors of A is complete if and only if EA = H. Let P be the orthogonal projection 
onto EX, and put 

B = PAlE±: EX - EX. 

To prove completeness it suffices to show that the Volterra operator B is the zero operator. 
Indeed, assume B = O. Then B* = O. But B* = A*IEx. SO EX C KerA*. However 
A* =:= (I + S)* K has a trivial kernel. It follows that EX = (0) and hence H = EA. 

To prove that B = 0, we first show that, for some 'Y ;::: 0, 

(9) z E nUn'. 

From the inequality (8) it is clear that 

(z En un', Izl ;::: R). 

Furthermore, we know from the proof of Lemma 4.2 (see formula (6)) that 

(z E nun'). 

It follows that 

(10) (zEnun',lzl;:::R). 

Now 

(I - zB)-l = P(I - zA)-lIEX, 

whenever I - zA is invertible. It follows that formula (10) remains true if in the left 
hand side of (10) the operator A is replaced by B. Next, observe that 11(1 - zB)-lll is a 
continuous function on the compact set 

(11) {z E n n n'll z I :5 R}, 

and thus 11(1 -zB)-lll is bounded on the set (11). So 11(1 -zB)-lll is bounded on nun', 
and (9) is proved. 

According to formula (1), we have L:~l sj(KY < 00. As 

B = PK(I + S)IEx, 
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we also have L:~l sj(Br < 00 (see Proposition VI.1.3 and Corollary VI.1.4). So we 
can apply Theorem 2.2 to show that given 8 > 0 there exists a constant C such that 

(12) z E C. 

Now consider (I - zB)-l on the closed angle 

We may assume that 0 < e :::; fro On the sides of ~l the function (I -zB)-l is bounded 
in norm (see formula (9)) and for the behaviour at infinity we have formula (12). So 
we may apply the Phragmen-Lindelof theorem (see [C], Corollary VI.4.4) to show that 
(I - zB)-l is bounded on ~1' In exactly the same way one can prove that (I - zB)-l 
is bounded on 

~2 = {pei"" I p ~ 0, I'll" - 'PI:::; e}. 

This, together with (9), implies that (I - zB)-1 is a bounded entire function. Hence, by 
the Liouville theorem, the function (I - zB)-1 must be constant. As its value at zero is 
equal to I, we see that I = 1- zB, and hence B is the zero operator. 0 

We conclude with a few remarks. If the system of eigenvectors and generalized 
eigenvectors of an operator A is complete, then it does not follow that one has also 
completeness for the adjoint operator A*. But, if A is as in Theorem 4.1, then we have 
also completeness for A*. Indeed, first of all note that completeness is invariant under 
similarity. So, if K and S are as in Theorem 4.1, then we also have completeness for the 
operator 

(I + S)K = (I + S)[K(I + S)](I + S)-I. 

As S* has the same properties as S, Theorem 4.1 and the previous remark imply com
pleteness for (I + S*)K, which is just the adjoint of A = K(I + S). 

In Gohberg-Krein [3] it is shown that in Theorem 4.1 one does not need the 
full strength of condition (1). Also, condition (1) may be replaced by 

00 

LSj(st < 00 

j=1 

for some r ~ 1. Furthermore, Macaev [1] (see also Macaev [2]) has proved that the 
conclusion of Theorem 4.1 remains valid if instead of (1) one has 

00 

LjSj(S) < 00, 

j=1 

but one cannot go beyond this class of operators. 
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COMMENTS ON PART II 

Except for Chapter IX. the present part consists of a selection from the main 
results in the book Gohberg-Krein [3]. The exposition, however, is considerably differ
ent. Trace and determinant are introduced from their finite dimensional analogues by a 
continuity argument. Also the evaluation of the growth of the resolvent in Chapter X 
is based on the finite dimensional case. The material in Chapter IX is taken from the 
paper Gohberg-Kaashoek [1]. The problem of completeness of eigenvectors and general
ized eigenvectors, considered in Chapters VII, VIII and X, is an important topic which is 
mainly discussed in the Soviet literature. For recent developments in this area (which are 
many) we refer to the excellent book by A.S. Markus (Markus [1]). The latter contains 
also an extended list of references. 



EXERCISES TO PART II 

In the exercises below, H is a separable Hilbert space and, unless mentioned 
explicitly otherwise, all operators are bounded linear operators acting on H. The se
quence of s-numbers sl(A),S2(A), ... of an operator A. is considered to be an infinite 
sequence by adding zeros if necessary. 

1. Let A and B be compact operators and r a positive number. Show that 

n ....... 00, 

implies that sn(A + B) = o(n- r ) for n ....... 00. 

2. Let A., Band r be as in Exercise 1, and let I be a nonnegative integer. Show that 

lim n r sn(A) = 0, 
n-+oo 

implies that n r sn(A + B) ....... I if n ....... 00. 

3. Let A be a compact operator, and let <PI. <P2, ... be an orthonormal basis of H. 
Assume that 

j = 1,2, .... 

Prove that 

(i) A* A<pj = Sj(A)2<pj, j = 1,2, ... , 

(ii) A<pj = (A<pj,<pj)<Pj, j = 1,2, ... . 

4. Assume sj(A) = l~j(A)1 for j = 1,2,... . Show that there exists an orthonormal 
basis consisting of eigenvectors of A. What happens additionally if sj(A) = ~j(A) for 
j = 1,2, ... ? 

5. Let A be a compact operator and P an orthogonal projection. Show that 

Sj(PAP + (I - P)A(1 - P)) = sj(A), 

implies that PAP + (I - P)A(I - P) = A. 

6. Let the operator A be given by 

00 

j = 1,2, ... , 

Ax = '2Jx,<pj)1/Jj, X EH, 
j=l 

where L~111<pjIl2 < 00, L~l II1/Jj112 < 00. Show that A is a trace class operator. 

7. Let T he the operator on C2 given by the infinite matrix 
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where (CPi) and ( tPi) are as in the previous exercise. Show that T is a trace class operator, 
and prove that T and the operator A of the previous exercise have the same non-zero 
eigenvalues. 

8. Let A be an operator of finite rank. Show that all the non-zero s-numbers of A are 
equal to 1 if A * = A * AA * and A = AA * A. Prove also the reverse implication. What 
can you say about these implications if A is compact but not of finite rank? 

9. Let AI. A2, ... be a sequence in 8 1 which converges in the trace class norm to A. 
Prove that 

lim det(I + AAn) = det(I + AA) 
n-oo 

and the convergence in (*) is uniform on compact subsets of C. 

10. Let A be compact. Determine linearly independent vectors Y1, ... , Yn such that 

9(AY1, ... ,AYn) = (fI Sj(A)2)g(YI. ... ,Yn). 
)=1 

Here g(ZI. ... , zn) denotes the Gram determinant of the vectors ZI. ... , Zn. 

11. Let T be the operator on £2 given by the infinite matrix 

Compute the s-numbers of T. 

12. Let T be the operator on £2 given by the infinite matrix 

(ai/3j )0=1 , 

where (aI. a2, ... ) and (131,132, ... ) are in £2. Compute the s-numbers of T. 

13. Let K be the operator on L2([0, 1]) defined by 

1 

(Kcp)(t) = J sgn(t - s)cp(s)ds, 
o 

Compute the s-numbers of K. 

a ::; t ::; 1. 

14. Assume that A has N « +00) non-zero s-numbers. Show that the number of 
non-zero eigenvalues of A, multiplicities taken into account, is at most equal to N. 

15. Let T on £2 be given by the infinite matrix 

0 0 0 0 
1 0 0 0 
0 1 0 0 2" 
0 0 1 0 3" 
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Prove that T is a Hilbert-Schmidt operator, but not a trace class operator. 

16. Let T be an integer, and let T on £2 be given by the infinite matrix 

( Oi-r,)) 00 , 

J i,j=l 

where Ok,j is the Kronecker delta. Prove that T is not a trace class operator. 

17. Let T be an integer, and let Ton £2 be given by the infinite matrix 

(0 '_P)oo 
i-r,jJ i,j=l' 

where Ok,j is the Kronecker delta. For which pis T a trace class operator? 

18. Let T be an integer, and let A on £2 be given by the infinite matrix 

179 

where Ok,j is the Kronecker delta. Show that A E Sl if and only if I:j lajl < 00, and 
prove that in that case 

00 

L 
j=min(1,r+1) 

19. Let A on £2 be given by the infinite matrix (aij)0=1' and assume that 

00 00 

11: = L L laijl < 00. 

i=l j=l 

Prove that A E Sl and IIAll1 ::; 11. 

20. Let q be a positive integer, and let Ton £2 be given by the infinite matrix (aij )0=1' 
where 

{
a' 

aij = 0' 
for J = q, 

for j -:f. q. 

Prove that T E Sl and IITIII = (I:~1 lai 12) 1/2. 

21. Let T on £2 be given by the infinite matrix (aij )0=1' and assume that 

Prove that T E Sl and IITll1 ::; 12. How is the number 11 in Exercise 19 related to 12? 

22. Assume that 

A = [ All 
A21 
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is a trace class operator. Prove: 

(a) each Aij is a trace class operator; 

(b) tr A = tr All + tr A22; 
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(c) det(I - AA) = det(I - AA22)det(I - AAll - A2A12(I - AA22)-lA21). 

23. Let To, Tl and T2 be trace class operators. Show that the sequence of zeros of the 
function 

A ~ det(I + ATo + A2T1T2) 

is absolutely summable. (Hint: use linearization and global equivalence.) 

24. Show that a trace class operator can be written as the product of two Hilbert-Schmidt 
operators. 

25. For i,j = 1, ... , n let Aij be a Hilbert-Schmidt operator on H. Prove that the 
operator 

is a Hilbert-Schmidt operator on the direct sum Hn of n copies of H and 

Let Tpq be the operator on Hn which one obtains if in (*) for (i, j) =I- (p, q) the operator 
Aij is replaced by the zero operator. Prove that {Tpq I p, q = 1, ... ,n} is an orthonormal 
system relative to the inner product on S2. 

26. Let the operator A on £2 be given by an infinite upper triangular matrix 

.. '1 ... . 

Prove that the linear span of eigenvectors and generalized eigenvectors of A is dense in 
£2' 

27. Let H = HI EB H2, and assume that the operator 

is compact. Show that the linear span of eigenvectors and generalized eigenvectors of A 
is dense in H whenever this property holds for An and A22 in the corresponding spaces. 
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28. Does the statement in Exercise 26 remain true if "upper" is replaced by "lower"? 
What happens if we add compactness to the conditions? 

29. Let A be a compact operator. If the linear span of eigenvectors and generalized 
eigenvectors of A is dense in H, does it follow that the same is true for A*? 

A family F of operators on H is called projectionally invariant if given A E F 
the operator PAP E F for each orthogonal projection P. 

30. Let F be a projectionally invariant set of compact operators on H, and assume that 
each non-zero A in F has a non-zero eigenvalue. Then the linear span of eigenvectors 
and generalized eigenvectors of A is dense in H for each A in F. Prove this statement. 

31. Let F be the family of the trace class operators A on H for which A';} ~ O. Show 
that F is projectionally invariant and each non-zero A in F has a non-zero eigenvalue. 

32. Derive the completeness theorems of Lidskii (Theorems VII.8.1 and VIII.3.1) by 
using the preceding exercises. 

33. Let Kl> K2 be integral operators on L2'([a, b]) with semi-separable kernel functions. 
Prove that Kl + K2 and KIK2 are again integral operators with semi-separable kernel 
functions. 

34. Let K be the integral operator on L2([0, 1]) with kernel function k(t,s) = sgn(t-s). 
Determine a semi-separable representation of k, and use this representation to compute 
the eigenvalues, the eigenvectors and the resolvent of K. Is K a trace class operator? 

35. Let K be the integral operator on L2([0, 1]) with kernel function 

{ 
Q for 0:5 s :5 t :5 1, 

k(t, s) = 
f3 for 0:5 t < s :5 1, 

where Q and f3 are two different complex numbers. Compute the eigenvalues, the eigen
vectors and the resolvent of K by using a semi-separable representation of k. Is K a 
trace class operator? 

36. Consider the following system of equations: 

{ 
pet) = A(t)p(t) + B(t)u(t), 
yet) = C(t)p(t), 
NIx(a) + N2X(b) = O. 

a :5 t :5 b, 

Here A(·), B(·) and C(·) are matrix functions of sizes n x n, n x m and m x n, respectively, 
the entries of A(.) are integrable on [a, b] and those of B(·) and CO are square integrable 
on the same interval. The matrices NI, N2 are n x n matrices such that 

det(NI + N2U(b)) -:j; 0, 

where UC) is the fundamental matrix (normalized to In at t 
equation 

x'(t) = A(t)x(t), a :5 t :5 b. 

a) of the differential 
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Show that for each tt E Lr([a, b]), there exists a unique y E Lr([a, b]) such that (*) is 
satisfied for some p E L~([a, b]). Prove that the map tt 1-+ Y determined by (*) is an 
integral operator on Lr([a, b]) with a semi-separable kernel function and determine a 
semi-separable representation for this kernel function. Show that any integral operator 
on Lr([a, b]) with a semi-separable kernel function may be represented in this way. 



PART III 

FREDHOLM OPERATORS: GENERAL THEORY AND 
WIENER-HOPF INTEGRAL OPERATORS 

This part presents an introduction to the general theory of Fredholm opera
tors. It also contains elements of the theory of Wiener-Hopf integral operators. The latter 
are treated here as examples of Fredholm operators. A main part of the Wiener-Hopf 
theory developed in this part concerns systems of equations with a rational matrix sym
bol. This restriction allows one to include recent results which provide explicit formulas 
for the inverse and Fredholm characteristics. 



CHAPTER XI 

FREDHOLM OPERATORS 

This chapter presents a concise introduction to the abstract theory of Fred
holm operators. It also contains some examples; however the main applications will 
concern Wiener-Hopf integral operators and Toeplitz operators which we shall deal with 
in the next chapters and in Volume II. The first section contains the definition of a Fred
holm operator and the first examples. In Section 2 we pay special attention to operators 
with closed range. The basic perturbation theorems and the properties of the index are 
given in Sections 3 and 4. In Section 5 Fredholm operators are studied in the framework 
of the Calkin algebra. Connections with generalized invertibility appear in Section 6. 
Index formulas in terms of trace and determinant are given in Section 7. Sections 8 and 
9 are devoted to Fredholm operator valued functions that are analytic and to equivalence 
of such functions. An operator theory generalization of Rouche's theorem appears here. 
The last section concerns singular values of bounded operators and their connections 
with the essential spectrum. 

XL1 DEFINITION AND FIRST EXAMPLES 

A bounded linear operator A: X _ Y, acting between complex Banach spaces 
X and Y, is called a Fredholm operator if its range 1m A is closed and the numbers 

(1) n(A) = dimKer A, d(A) = dim(Y/lmA) 

are finite. In that case indA = n(A)-d(A) is said to be the index of A. In the next section 
(Corollary 2.3) we shall see that the condition "1m A is closed" is automatically fulfilled 
if the quotient space Y / 1m A is finite dimensional. Let us consider a few examples. 

(i) If X and Y are both finite dimensional spaces, then any operator A: X -+ 

Y is Fredholm and 

indA = dimX - dimY. 

(ii) If K: X _ X is a compact operator on the Banach space X, then 
A = I - K is a Fredholm operator and indA = O. This follows from the Fredholm theory 
for compact operators (see [GG], Theorem XI.4.1). We shall come back to this example 
in Sections 2 and 4. 

(2) 

(iii) Consider the following two point boundary value problem: 

{ f'(t) = Mf(t) + get), 
NIf(a) + N2f(b) = x. 

a ::; t ::; b, 

Here M is an n x n matrix, the function g is a given function in L2'([a, bJ) (thus g is an 
en-valued function of which the components are in L2([a, bJ)) and x is a given vector in 
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en. The boundary conditions are defined in terms of two n X n matrices Nt and N2. 
The problem is to find a solution in the space 

(3) X = {f e L~([a, b]) I I absolutely continuous, I' e L~([a, b])}. 

Note that X is a Hilbert space with the norm 1111 III = (11/11 2 + 111'11 2 )1/2, where II . II 
denotes the usual norm on L~([a, b]). In operator form, (2) may be summarized by 

(4) . _ [ I' - MI ] _ [g ] 
AI· - Nd(a) + N2f(b) - x . 

We claim that A: X _ L~([a, b)) E9 en is a Fredholm operator of index zero. To see this 
let T be the n x n matrix defined by 

(5) 

and introduce the following auxiliary operators 

(6) E = [~ I~2]: en E9 L~([a, b)) _ L~([a, b]) E9 en, 

(7) F = L~] :X - en E9L~([a,b]), 

where 
b 

Vg = N2 / e(b-s)Mg(s)ds, 9 e L~([a, b)), 

a 

7r1 = I(a), DI=I'_MI, leX, 
and h2 and In are the identity operators on L~([a, b]) and en, respectively. Then E 
and F are invertible, 

t 

F-1 [ ; ] = e(t-a)M x + / e(t-s)M g( s )ds, a :5 t :5 b, 
a 

and the following equivalence relation holds true: 

(8) 

Since E and F are invertible, (8) implies that A is a Fredholm operator and indA = O. 
We shall return to this example in Section 8. 
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(iv) Consider on £2 the shift operators Sr and SI. defined by 

Sr(Xl,X2,X3,.") = (O,X},X2,"')' 

SI.(Xl,X2,X3, ... ) = (X2,X3,X4," .). 

Both operators are Fredholm operators, indSr = -1 and indSI. = +1. With Sr and Sf. 
it is easy to build a Fredholm operator whose index is equal to an arbitrary prescribed 
integer. Indeed, put X = £2 EEl £2, and define A: X -+ X by the following 2 x 2 operator 
matrix 

A = [Sf ~l]' 
Then A is a Fredholm operator, n(A) = q, d(A) = p and indA = q - p. 

XI.2 OPERATORS WITH CLOSED RANGE 

As before, £(X, Y) denotes the space of all bounded linear operators acting 
from X into Y, where X and Y are complex Banach spaces. Given A E £(X, Y), we 
write d( x, Ker A) for the distance of a vector x E X to the kernel of A, i.e., 

d(x,KerA) = inf{lIx - ylllAy = o}. 

THEOREM 2.1. The operator A E £(X, Y) has closed range if and only if 
there exists c > 0 such that 

(1) IIAxll 2:: cd(x, Ker A), x EX. 

PROOF. An element of the quotient space X = XI Ker A will be denoted 
by x. The space X is a Banach space with norm !!x!! = d(x, Ker A). Define A.: X -+ Y 
by Ax = Ax. The operator A is 1-1, linear, bounded and lmA = lmA. Suppose ImA 
is closed. Then A-I, considered as a map from the Banach space ImA into the Banach 
space X, is a closed operator. Hence, by the closed graph theorem, A-). is bounded and 

IIAxll = IIAxll 2:: 11...1-1 11-1 IIxll = IIA- 1 11-1d(x,KerA). 

Thus (1) holds with c = 11...1- 1 11- 1 . 

Conversely, assume (1) holds. Suppose AXn -+ y. It follows from (1) that 
(Xn) is a Cauchy sequence in the Banach space X which therefore converges to some 
x EX. Hence 

AXn = AXn -+ Ax = Ax, 

and y = Ax, which proves that 1m A is closed. 0 

THEOREM 2.2. The operator A E £(X, Y) has a closed range whenever 
there exists a subspace (i.e. a closed linear manifold) Yo such that lmA EEl Yo is closed. 

PROOF. Define Ao:X x Yo -+ Y by Ao(x,yo) = Ax + Yo. The space 
X x Yo is a Banach space with the norm defined by II (x, y) II = II x II + II y II. Clearly, 
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Ao is a bounded linear operator and Im Ao = 1m A EB Yo which is closed by hypothesis. 
Moreover, Ker Ao = Ker A x {O}. Theorem 2.1 asserts that there exists c > 0 such that 
for all x EX 

JlAxJI = JlAo(x, O)JI ~ cd(x, 0), Ker Ao) = cd(x, Ker A). 

Hence Im A is closed by the same theorem. 0 

COROLLARY 2.3. If the range of A E C(X, Y) is complemented (in partic
ular, if dim(Y / Im A) is finite), then 1m A is closed. 

PROOF. The range of A is complemented means that there exists a closed 
linear manifold Yo of Y such that ImAEBYo = Y. According to Theorem 2.2, this implies 
that 1m A is closed. 0 

To see the importance of the previous corollary, note that for a linear manifold 
M of a Banach space Y the statement 

(2) Y=MEBYo 

for some subspace Yo does not imply that M is closed. To see this, take a non-continuous 
linear functional f on Y and put M = Ker f. Then there exists a one-dimensional 
subspace Yo such that (2) holds true. But M = Ker f cannot be closed because f is not 
continuous. 

THEOREM 2.4. If the operator A E C(X, Y) maps bounded closed sets in 
X onto closed sets in Y, then ImA is closed. 

PROOF. Suppose ImA is not closed. Then, by Theorem 2.1, there exists a 
sequence (xn) such that AXn -+ 0 (n -+ 00) and d(xn, Ker A) = 1 for n = 1,2, .... For 
each n choose Zn E Ker A such that Jlxn - znJl < 2, and let V be the closure of the set 
{xn - Zn In = 1,2, ... }. Since V is closed and bounded in X, its image AV is closed in 
Y. Note that AXn = A(xn -zn) E AV. So 0 E AV, and thus there exists u E VnKerA. 
From the definition of V it follows that 

(3) 

for some no. But (3) implies that d(xno,Ker A) < i, which contradicts the fact that 
d(xn, KerA) = 1 for all n. So ImA is closed. 0 

If K: X -+ X is compact, then the operator A = 1- K satisfies the condition 
of Theorem 2.1. To see this, let V be a closed bounded set in X, and let 

(4) y = lim (I - K)xn, 
n-+oo 

where Xl, x2, . " is a sequence in V. We have to prove that y = (I - K)x for some 
x E V. Since V is bounded and K is compact, the sequence (Kxn)n has a convergent 
subsequence (K Xni )i, say. Using (4), we see that 

Xo = lim Xn o = lim (I - K)xn o + Kxno) . a. 1;, 
z--+CX) 1-+00 
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exists. But then y = (I - K)xo E (I - K)V, and (I - K)V is closed. We have the 
following corollary. 

COROLLARY 2.5. If K: X -+ X is compact, then I - K is a Fredholm 
operator. 

PROOF. From the previous paragraph we know that A = I - K satisfies the 
condition of Theorem 2.4. So Im(I - K) is closed. Since x = Kx for x E Ker(I - K), 
it follows that the identity operator acts as a compact operator on Ker(I - K). Thus 
n(I - K) < 00. 

To prove that d( I - K) < 00, we use that the conjugate operator K': X, -+ X' 
is also compact. Since Im(I - K) is closed, we have Im(I - K) = Ker(I - K')l.., and 
thus d(I - K) = n(I - K') < 00. 0 

In Section 4 we shall see that ind(I - K) = 0 if the operator K is compact. 

XI.3 PRODUCT OF FREDHOLM OPERATORS 

To study the properties of a Fredholm operator we shall employ bijective 
operators which are closely related to Fredholm operators. Let A: X -+ Y be a bounded 
linear operator acting between the Banach spaces X and Y. Suppose A has the property 
that Ker A and 1m A are complemented by subspaces (i.e., closed linear manifolds) Xo 
and Yo, respectively. Define A: XO x Yo -+ Y by 

A(xo, Yo) = Axo + Yo· 

The space Xo _x Yo is a Banach space with the norm defined by n(x, Y)II = IIxll + IIYII and 
the operator A is a bijective bounded linear operator. We call A the bijection associated 
with A (and the subspaces Xo and Yo). If A is Fredholm, then such a bijection always 
exists and Yo is finite dimensional. If we identify the space Xo with Xo x {O}, then the 
operator 

Ao:Xo -+ Y, 

is a common restriction of A and A. 
Aox = Ax, 

LEMMA 3.1. Suppose Ao: M -+ Y is a restriction of A E L(X, Y) to a 
subspace M of X with codim M = n < 00. Then A is Fredholm if and only if Ao is 
Fredholm, in which case ind A = ind Ao + n. 

PROOF. It suffices to prove the lemma for n = 1. Put X = M EB Sp{XI}' 
We consider two cases. 

Case 1. Assume AXI rt. ImAo. Then AX = AoM EB sp{Axd and KerA = 
Ker Ao. Hence 

(1) d(Ao) = d(A) + 1, n(Ao) = n(A). 

Case 2. Assume AXI E ImAo. Then ImA = ImAo and there exists u E M 
such that AXI = Aou. Consequently, Ker A = Ker Ao EB sp{ Xl - u}. Thus 

(2) d(Ao) = d(A), n(Ao) = n(A) - 1. 
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The lemma follows immediately from (1) or (2). 0 

THEOREM 3.2. If A: X ~ Y and B: Y ~ Z are Fredholm operators, then 
BA is a Fredholm operator and 

ind(BA) = indB + indA. 

PROOF. Let A be a bijection associated with A and the subspaces Xo and 
Yo, and let Ao be the restriction of A to Xo. Since A is invertible, the operator BA is 
Fredholm and indBA = indB. By identifying the spaces Xo and Xo x {O}, we see that 
BAo is a common restriction of BA and BA. So, according to the previous lemma, BA 
is Fredholm and 

indBA = indBAo + dim(X/Xo) 

= indBA - dim(Xo x Yo/Xo X {O}) + n(A) 

= indB + indA. 0 

XI.4 PERTURBATION THEOREMS 

THEOREM 4.1. Suppose A: X ~ Y is a Fredholm operator, and let A be 
a bijection associated with A. If B: X ~ Y is a bounded linear operator with IIBII < 
IIA -111-1, then A + B is Fredholm and 

(i) n(A + B) :::; n(A), 

(ii) d(A + B) :::; d(A), 

(iii) ind( A + B) = ind A. 

PROOF. Let Xo and Yo be the subspaces corresponding to the bijection A. 
Put C = A + B, and define 0: Xo x Yo ~ Y by O(xo, Yo) = Cxo + Yo. By definition, 
A( xo, Yo) = Axo + Yo. Since A is invertible and 

the operator 0 is also invertible. Note that the operator Co: Xo ~ Y, defined by Cox = 
Cx, is a common restriction of C and O. SO, by Lemma 3.1, the operator C is Fredholm 
and 

ind C = ind Co + n(A) 

= indO - d(A) + n(A) = indA 

The invertibilityof 0 implies that Xo n Ker C = {O}. Thus 

n(C):::; dimX/Xo = n(A), 

which proves (i). Finally, note that (ii) is a simple consequence of (i) and (iii). 0 

THEOREM 4.2. If A: X ~ Y is a Fredholm operator and K: X ~ Y zs 
compact, then A + K is a Fredholm operator and indA = ind(A + K). 
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PROOF. Let X = Xo EB KerA and Y = Yo EB ImA. On Xo x Yo define A 
and K by 

A(xo,yo) = Axo +Yo, K(xo, Yo) = Kxo + Yo· 

The operator K is compact, since K is compact and Yo is finite dimensional. From 
(A + K)(xo, 0) = (A + K)xo and Lemma 3.1 it follows that A + K is Fredholm if and 
only if A + I< is Fredholm. But A is invertible. So 

...1+ I< = ...1[1 + A-1 I<]. 

Observe that A-II< is compact. So, by Corollary 2.5, the operator 1+...1-1 I< is Fredholm. 
Hence A + K is Fredholm. 

To prove the statement about the index, consider the integer-valued function 
f(>..) = ind(A + >..K). Applying Theorem 4.1 to A + >"K in place of A shows that f is 
continuous on [0,1]. Consequently, f is constant. In particular, 

indA = f(O) = f(l) = ind(A + K). 0 

COROLLARY 4.3. If K: X -+ X i" compact, then 1- K is Fredholm and 
ind(I - K) = O. 

PROOF. Apply the preceding theorem with A = I and note that 
indI=O. 0 

XI.5 INVERTIBILITY MODULO COMPACT OPERATORS 
(CALKIN ALGEBRA) 

THEOREM 5.1. An operator A E LeX, Y) is Fredholm if and only if there 
exists an operator T. E LeY, X) such that I - T A and I - AT are operators of finite 
rank. 

PROOF. Suppose A is Fredholm, and let X = Xo EB Ker A, Y = Yo EB 1m A 
where Xo and Yo are subspaces of X and Y, respectively. Define Ao to be the restriction 
of A to Xo. Since Ao is 1 -1 and ImAo is closed, the operator Ai)I, considered as a 
map from ImA onto Xo, is bounded (cf. Theorem 2.1). Put T = Ai)IQ, where Q is the 
projection from Y onto ImA along Yo. Obviously, ImT = Xo and KerT = Yo. It is 
easy to verify that 1- TA is the projection of X onto Ker A along Xo and I - AT is the 
projection of Y onto Yo along ImA. In particular, 1- TA and I - AT are operators of 
finite rank. 

Conversely, assume that TA = 1- Kl and AT = 1- K2, where Kl and K2 
are operators of finite rank. Since Ker ACKer T A and 1m A ~ 1m AT, we see that 

(1) n(A) :5 neT A) = n(I - K 1 ) < 00, d(A) :5 d(AT) = d(I - K2) < 00. 

Thus A is Fredholm. 0 

Theorem 5.1 remains true if the statement "I - T A and I - AT are operators 
of finite rank" is replaced by I - T A and I - AT are compact operators (cf. formula 
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(1». In other words, an operator A is a Fredholm operator if and only if A is invertible 
modulo compact operators. We make this more precise for the case when X = Y. 

Let JC(X) denote the space of all compact operators on X. Note that JC(X) 
is a subspace of LeX) = LeX, X). On the quotient space £(X)jJC(X) define the product 
[C][D] = [CD], where [C] is the coset C + JC(X). The space £(X)jJC(X) with this 
additional operation is an algebra, called the Calkin algebra, with unit [1]. 

THEOREM 5.2. An operator A E LeX) is a Fredholm operator if and only 
if [A] has an inverse in the Calkin algebra £(X)jJC(X). 

PROOF. If A is Fredholm, then there exists, by Theorem 5.1, an operator 
T E LeX) such that AT - I and T A - I are compact operators. Hence [A][T] = [T][A] = 
[IJ, and thus [T] is the inverse of [A] in the Calkin algebra. 

On the other hand, if [A][T] = [T][A] = [1], then AT = I - Kl and T A = 
I - K2, where Kl and K2 are compact operators. Then it follows from (1) that A is 
Fredholm. 0 

Let A E LeX). The essential spectrum (notation: uess(A)) of A is, by defi
nition, the set of all .x E C such that .x - A is not a Fredholm operator. The essential 
spectrum uess(A) may also be understood as the spectrum of the coset A + JC(X) in 
the Calkin algebra. (The latter interpretation will be made more precise in the Banach 
algebra part in Volume II.) Obviously, uessCA) C u(A), and thus uess(A) is a bounded 
set. From Theorem 4.1 it follows that C\uess(A) is open, and hence uess(A) is compact. 
If dim X < 00, then all operators on X are Fredholm operators, and hence, in that case, 
uess(A) = 0. At the end of Section 8 it will be shown that uess(A) is always nonempty if 
X is infinite dimensional. Theorem 4.2 implies that 

(1) uess(A) = uess(A + K), K E JC(X). 

For later purposes we include the following result 

THEOREM 5.3. An operator A E LeX, Y) is a Fredholm operator with 
indA = 0 if and only if there exists an operator F E LeX, Y) of finite rank such that 
A + F is invertible. 

PROOF. Suppose A is Fredholm with indA = O. Put X = Xo ffi KerA 
and Y = Yo ffi 1m A. Since ind A = 0, we have dim Ker A = dim Yo. So there exists an 
invertible operator Fo: Ker A ~ Yo. Define F = Fo(I - P), where P is the projection of 
X onto Xo along Ker A. Obviously, A + F is invertible. 

Conversely, assume S = A + F is invertible, where F has finite rank. Then, 
by Theorem 4.2, the operator A is Fredholm and ind A = ind S = o. 0 

XI.6 GENERALIZED INVERSES 

The operator T = Ai) 1 Q which was defined in the first part of the proof of 
Theorem 5.1, has the following properties: 

(1) ATA=A, TAT=T. 
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Given A E 'c(X, Y), any operator T E 'c(Y,X) satisfying the two identities in (1) is 
called a generalized inverJe of A. If A is invertible, then A-I is the only generalized 
inverse of A. 

Generalized inverses are useful in solving linear equations. Suppose A has a 
generalized inverse T. If the equation Ax = y is solvable for a given y E Y, then Ty is a 
solution (not necessarily the only one). Indeed, since Ax = y is solvable, there exists xo 
such that Axo = y, and hence ATy = AT Axo = Axo = y. 

THEOREM 6.1. An operator A E 'c(X, Y) haJ a generalized inverJe if and 
only if Ker A and ImA are complemented in X and Y, reJpectively. 

PROOF. If X = XoEl:1Ker A and Y = YoEl:1ImA, then the operator T: Y --+ X 
defined by T(Axo + YO) = xo, where Xo E Xo, Yo E Yo, is a generalized inverse of A. 

Conversely, if A has a generalized inverse T E ,c(y, X), then it is easy to 
check that AT and T A are projections. Indeed 

(AT)2 = (ATA)T = AT, (TA)2 = T(ATA) = TA. 

Obviously, Im(AT) C ImA. From A = (AT)A it follows that !rnA C Im(AT), and thus 
AT is a projection onto ImA. Similarly, Ker A C KerTA and A(TA) = A implies that 
Ker T ACKer A. Thus T A is a projection whose kernel coincides with Ker A. Thus 1m A 
and Ker A are complemented. 0 

COROLLARY 6.2. Every Fredholm operator haJ a generalized inverJe. 

Recall (see Corollary 2.3) that ImA is complemented in Y implies that ImA 
is closed. Thus, if X and Y are Hilbert spaces, then A E 'c(X, Y) has a generalized 
inverse if and only if 1m A is closed. 

Every generalized inverse T of A is of the form described in the first part of 
the proof of Theorem 6.1. To see this, put Xo = 1m T A and Yo = Ker AT. Since AT 
is a projection onto 1m A and T A is a projection whose kernel coincides with Ker A, it 
follows that 

X = Ker T A EI:1 1m T A = Ker A EI:1 Xo, 

Y = 1m AT EI:1 KerAT = ImAEI:1 yo. 
Any y E Y is of the form y = Axo + Yo for some Xo E Xo and YO E Yo. Now Ty = 
TAxo + Tyo and TAxo = vo E Xo. Since Axo = ATAxo = Avo and A is 1 - 1 on 
Xo, we get xo = vo = TAxo. Also, Yo E Yo = Ker AT gives Tyo = TATyo = TO = O. 
Thus Ty = xo. Note that the foregoing also shows that T is uniquely determined by the 
spaces Xo = 1m T A and Yo = Ker AT. Indeed, if S is a generalized inverse of A such 
that 1mTA = 1m SA and KerAT = KerAS, then 

S(Axo + YO) = T(Axo + Yo), 

and thus Sand T coincide. 

Another way to describe all generalized inverses of A is as follows. 

THEOREM 6.3. SuppoJe To iJ a generalized inverJe of A. The Jet of gen
eralized inverJeJ of A consists of all operators of the form 

(2) T=PToQ, 
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where Q is a projection onto 1m A and P is a projection whose kernel coincides with 
KerA. 

PROOF. Suppose To and T are generalized inverses of A. Then AT A = A = 
AToA and therefore 

T = TAT = (T A)To(AT). 

We observed previously that AT is a projection onto 1m A and T A is a projection along 
KerA. 

Conversely, suppose T is of the form (2). Since 1m(I - P) = Ker A we have 
A = AP. Also QA = A. Thus 

A(PToQ)A = AToQA = AToA = A, 
(PToQ)A(PToQ) = PToAToQ = PToQ. 0 

Let A E £(X, Y). An opera.'tor T E £(Y, X) is called a generalized inverse 
of A in the weak sense if the first identity in (1) holds (but not necessarily the second). 
The remark preceding Theorem 6.1 is also true for generalized inverses in the weak sense. 
Furthermore, if T is a generalized inverse of A in the weak sense, then the operator 
S: = TAT is a generalized inverse of A in the ordinary sense. Indeed 

ASA = (ATA)TA = ATA = A, 
SAS = T(AT A)T AT = T(AT A)T = TAT = S. 

It follows that Theorem 6.1 remains true if the term generalized inverse is understood in 
the weak sense. 

XI.7 INDEX, TRACE AND DETERMINANT 

In this section all operators are bounded linear operators acting on (separable) 
Hilbert spaces. If A: H -+ H is a Fredholm operator, then there exists an operator 
T: H -+ H such that I - AT and 1- T A are trace class operators or even operators of 
finite rank. The next theorem expresses the index of A in terms of the traces of I - AT 
and I -TA. 

THEOREM 7.1. Let A: H -+ H be a Fredholm operator, and let T: H -+ H 
be such that I - AT and I - T A are trace class operators. Then AT - T A is a trace 
class operator and 

indA = tr[AT - TAl. 

PROOF. Let A+ be a generalized inverse of A. Then T = A+ + G, where 

G = (I - A+ A)T - A+(I - AT). 

Since 1- A+ A has finite rank and I - AT is a trace class operator, it follows that Gis 
a trace class operator. Now 
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Note that trGA = trAG (see Corollary VII.6.2). Thus it suffices to prove the theorem 
for T = A+. 

Recall that I -AA+ and I -A+ A are projections of finite rank. Thus I -AA+ 
and I - A+ A are trace class operators. But then AA+ - A+ A is a trace class operator 
and 

tr[AA+ - A+ Al = tr(I - A+ A) - tr(I - AA+) 

= rank(I - A+ A) - rank(I - AA+) 

= n(A) - d(A) = indA. 

Here we used that the trace of a finite rank projection is equal to the rank of the projec
tion. 0 

Consider the n X n operator matrix 

(1) 

Here Aij, 1 $ i,j $ n, are operators acting on H, and we view A as an operator acting 
on the direct sum of n copies of H. Given A in (1), we set 

(2) det A = L (sgn 0' )AItTl A2tT2 ... AntTn . 
tT 

In (2) the summation is over all permutations 0' of the numbers 1,2, ... ,n and sgnO' 
denotes the sign of the permutation 0'. Note that det A is an operator on Hj its definition 
depends not only on A but also on the given partitioning of A. 

PROPOSITION 7.2. Assume that all the entries of the operator matrix 
A = [Aij If,j=1 commute with one another. Then A is invertible if and only if det A 
is invertible, and in that case A-I is given by the analogue of Cramer's rule. 

PROOF. Note that detA commutes w.ith all the entries Aij. Assume that 
det A is invertible. Let Mij be the (n - 1) x (n - 1) operator matrix which one obtains 
from A = [Aijlf,j=1 by deleting the i-th row and j-th column. For each i and j put 

Bij = (-l)i+j(det Mji)(det A)-I, 

and let B = [Bijlf,j=l. The usual argumentfor scalar determinants shows that AB = BA 
is equal to the identity operator on Hn. So A is invertible and A-I = B is obtained by 
applying the operator matrix analogue of Cramer's rule. 

Next, assume that A is invertible, and let S = A-I. Write S = [Sij]f,j=1 
where Sij acts on H. Consider 

D= [ 
Aors 

A~.l 
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for a fixed pair r,s. From our hypothesis on A it follows that DA = AD. But then 
A-ID = DA-l, and thus Ars commutes with each entry of S = A-I. Next consider l Sij 

E= 

o 
where Sij is a fixed entry of S. According to what has been proved so far, EA = AE. 
Hence A-IE = EA -1, and thus Sij commutes with each entry of S. It follows that 
the entries of S commute with one another and with the entries of A. But then we may 
conclude that 

det Adet S = det AS = I, detSdetA = detSA = I. 

Thus det A is invertible. 0 

THEOREM 7.3. Assume that the entries of the operator matrix A = 
[Ai)·]'.l ·-1 commute modulo the compact operators. Then A is a Fredholm operator if ',)-
and only if det A is a Fredholm operator. 

PROOF. Go to the Calkin algebra and apply the same reasoning as in the 
proof of the previous proposition. 0 

In general, under the conditions of Theorem 7.3, one may not conclude that 
indA = ind(det A). In fact, given integers p and q, there exists (see Kozak [1]) a 2 x 2 
operator matrix whose entries commute modulo the compact operators such that ind A = 
p and ind( det A) = q. The next theorems present positive results in this direction. 

THEOREM 7.4. Assume that the entries of the operator matrix A = 
[Aij]~j=1 commute modulo the compact operators, and let the operators 

k = 1, ... ,n, 

be Fredholm operators. Then A and det A are Fredholm operators with 

(3) indA = ind(det A). 

PROOF. Since Dn = det A, the ope"rator det A is Fredholm. So we know 
from Theorem 7.3 that A is Fredholm. To prove (3) we go to the Calkin algebra B = 
.c(H)/K(H), where K(H) denotes the set of all compact operators on H. Given T E 
.c(H), we denote by T the coset T + K(H). From our hypotheses it follows that 

k= 1, ... ,n, 

is invertible in the Calkin algebra B. As in the scalar case (see also Chapter XXI in 
Volume II) this allows us to make an LU-factorization for the matrix [Aijl~j=I' that is, 

(4) ~ln 1 [~~1 
Lnn Unl 

~'" 1 ' 
Unn 
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where Lij and Uij are operators on H for each i and j, 

(5) Lij E JC(H) (j > i), Uij E JC(H) (j < i), 

and the two matrices in the right hand side of (4) are invertible in the algebra Bnxn 
of all n x n matrices with entries in the Calkin algebra B. Moreover, since the entries 
Aij commute modulo the compact operators, the construction of the LU -factorization 
implies that all the operators Lij and Uij (i,j = 1, ... , n) commute modulo the compact 
operators. Put 

o 1 _ [un ,U-

Lnn 0 

Then L and U are Fredholm operators on Hn and A - LU is compact, because of (4) 
and (5). Thus 

ind A = ind( LU) = ind L + ind U. 

Furthermore, detA, detL and detU are Fredholm operators and, again by (4) and (5), 
the operator det A - (det L)(det U) is compact. Therefore 

ind( det A) = ind( det L) + ind( det U). 

It remains to show that indL = ind(det L) and indU = ind(det U). 

Let us prSlve that ind U = ind( det U) (the equality for L instead of U is proved 
in a similar way). First observe that from the construction of the LU-factorization it 
follows that the product UllU22··· Ukk is Fredholm for each k. Since the elements 
Un, ... , Unn commute modulo the compact operators, each diagonal entry Uii is Fred
holm. Take 0 ~ t ~ 1, and let U(t) be the n x n operator matrix which one obtains if 
for each i > j the entry Uij in U is replaced by tUij. Note that U(t) is upper triangu
lar and has the same diagonal entries as U. So U(t) is also Fredholm. Obviously, the 
map t 1-+ U(t) is continuous in the operator norm. Theorem 4.1 implies that ind U(t) is 
independent of t. In particular, 

indU = indU(l) = indU(O). 

Note that U(O) is a block diagonal matrix. Hence 

n 

indU(O) = LindUjj = ind(UnU22··· Unn ). 
j=l 

To complete the proof it remains to observe that, because of the triangular form of U, 
the product Un U22 ... Unn is equal to det U. 0 

COROLLARY 7.5. Assume that the entries of the operator matrix B = 
[Bijl~j=l commute modulo the compact operators, and let B be a Fredholm operator. If 
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B can be approximated sufficiently close in the operator norm on .c(Hn) by an operator 
A = [AiJ·]':l·-1 with the properties described in the previous theorem, then ',J-

(6) indB = ind(det B). 

PROOF. We apply Theorem 4.1. Since B is Fredholm, there exists a constant 
, > 0 such that A E .c(Hn) and IIA - BII < , implies that A is Fredholm operator and 
ind A = ind B. Also det B is Fredholm. Therefore there exists a constant ,1 > 0 
such that T E .c(H) and liT - det BII < ,1 implies that T is a Fredholm operator and 
ind T = ind( det B). Now use that the map A ~ det A is continuous in the operator norm. 
So there exists a constant p, 0 < p ::; , such that II A - B II < P yields II det A - det B II < ,1. 
Thus, if the ball 

(7) 

contains an operator A = [AijJr,j=1 with the properties described in the previous theo
rem, then 

indB = indA = ind(det A) = ind(det B), 

and hence (6) holds true. 0 

The above corollary and the next theorem will be used later (in Section XII.3 
and in Volume II) to derive index theorems for Wiener-Hopf and Toeplitz operators. 

THEOREM 7.6. Assume that the entries of the operator matrix A = 
[Aijlr,j=1 commute modulo the trace class operators, and let A be a Fredholm opera
tor. Then det A is a Fredholm operator and ind( det A) = ind A. 

PROOF. We already know that det A is a Fredholm operator. Choose an 
operator T: H -+ H such that T(det A) - I and (det A)T - I are trace class operators. 
Theorem 5.2 shows that T is a Fredholm operator. Note that, modulo the trace class 
operators, det A commutes with each entry Ars of A. It follows that 

TArs - ArsT = T Ars{I - (det A)T} + {T(det A) - I}ArsT, 

and hence, modulo the trace class operators, T commutes with each entry of A. Put 

(8) 

Note that the entries of B commute modulo the trace class operators. Furthermore 
det B = T det A, and hence det B-1 is a trace class operator. From (8) we see that 

ind B = ind T + indA = - ind(det A) + indA. 

So it suffices to prove that indB = O. 

Let Mjk be the (n - 1) X (n -1) operator matrix which one obtains from B 
by deleting in B the j-th row and the k-th column. Put Cjk = (_l)j+k det Mkj, and 
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let C = [Cjklj,k=l. Note that modulo the trace class operators the entries Cjk commute 
with one another and with the entries of B. By the operator matrix analogue of Cramer's 
rule it follows that 

BC - [( det B)Oij If,j=l' CB - [{det B)oijl~j=l 

are trace class operators. But det B-1 is a trace class operator. So BC - IH" and 
CB - IHn are operators of trace class. But then we can apply Theorem 7.1 to show that 
indB = tr(BC - CB). 

Note that BC - CB is an n x n operator matrix whose entries are trace class 
operators. A simple application of Theorem VII.2.2 shows that 

tr(BC - CB) = tr(.f BjkCkj - CjkBkj). 
],k=l 

Next one checks that 

(9a) BjkCkj = L (sgnO')BjerjBlerl ... Bj-l,erj_1 Bj+1,erj+l ···Bner,,; 
erj=k 

(9b) CjkBkj = L (sgnO')Blerl ... Bk-l,er/C_l Bk+1,er1c+l ... B ner" Bker/c· 
er/c=j 

In (9a) the summation is over all permutations 0' = (0'1. . .. ,O'n) of the numbers 1, ... ,n 
with O'j = k, and in (9b) the summation is over all 0' = (0'1. ... , O'n) such that O'k = j. 
Given a permutation 0' = (0'1. .. . ,O'n) write 

Ej(O') = BIerI··· Bj-l,erj_l Bj+l,erj+l ... Bner". 

Then 

indB = L(sgn 0') tr(t BjerjEj(O') - Ej(O')Bjerj). 
er ]=1 

(10) 

For j = 2, ... , n - 1 the operator 

Ej(O') - Bj+l,erj+l ... Bner" BIerI ... Bj-lerj_l 

is a trace class operator. So we can apply Corollary VII.6.2(i) to show that 

tr{ Bjerj Ej( 0') - Bjerj ... B ner" BIerI ... Bj-lerj_l} 

= tr{Ej(O')Bjerj - Bj+1erj+l ... B ner" BIerI ... Bjerj}. 

So 

tr{BjerjEj(O') - Ej(O')Bjerj} 

= tr{Bjerj ... Bner"Blerl ... Bj-lerj_l - Bj+lerj+l ... Bnu"Blul ... Bjuj} 

for j = 2, ... ,n -1. Note that 

B1ul El(O') - El(0')B1ul + Bnu"En(O') - En(O')Bnu" 
= Bnu"Blul ... Bn-lu,,_l - B2u2 ... B n- 1u,,_l B 1ul · 

By using this in (10), one obtains that indB = O. 0 
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In this section, n is an open, connected subset of C, and W: n -> .c(X, Y) is an 
operator function, which is analytic on n. We assume that the values of Ware Fredholm 
operators acting between the complex Banach spaces X and Y. Since n is connected and 
the index is an integer-valued continuous function, it follows that ind W(A) is constant 
and does not depend on A. We begin with the case when the index is zero. 

To give an example of such an operator function, assume that the matrices 
M, Nl and N2 appearing in the two point boundary value problem (2) in Section 1 
depend analytically on a parameter A. Thus 

{ f'(t) = M(A)f(t) + get), a ~ t ~ b, 
Nl(A)f(a) + N2(A)f(b) = x, 

where MO, Nl(') and N20 are n x n matrix functions whose entries are analytic on n, 
say. Let A( A) be the associated operator, 

_ [ f'-M(A)f ] 
A(A)f - N1(A)f(a) + N2(A)f(b) , 

where X is the space defined in formula (3) of Section 1. Then A(·) is an operator 
function which is analytic on n and the values of A(·) are Fredholm operators of index 
O. Put 

By adding the parameter A to the equivalence relation in formula (8) of Section lone 
sees that the L~([a, b))-extension of the matrix function T(·) is globally equivalent on n 
to the Fredholm operator valued function A(·) (d. Section III.2). 

Let W: n -> .c(X, Y) be an operator function which is analytic on n. Take 
Ao En, and assume that W(Ao) is a Fredholm operator of index zero. Then (see Theorem 
5.3) there exists an operator F: X -> Y of finite rank such that W(Ao) + F is invertible. 
Since W(A) is continuous in A, this implies that E(A) = W(A) + F is invertible for A in 
some open disc 1 A - Ao 1 < 80. So 

(1) W(A) = E(A) - F = E(A)[I - E(A)-l FJ, IA - Aol < 80 . 

The fact that F is an operator of finite rank implies that Ker F has a finite dimensional 
complement Xo in X. Let P be the projection of X along Ker F onto Xo. Note that P 
has finite rank and FP = F. It follows that 

(2) I - E(A)-lF = [I - PE(A)-l FP][I - (I - P)E(A)-l FPj. 

Put G(A) = I - (I - P)E(A)-l FP. Note that G is well-defined and analytic on the disc 
IA - Aol < 80 . Furthermore, the values of G are invertible operators on Xj in fact 

G(A)-l = I + (I - P)E(A)-l FP, IA - Aol < 80 . 
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By combining (1) and (2) we see that 

(3) W(,\) = E('\){I - PE(,\)-1 FP}G('\), 1,\ - '\01 < 80, 

where E and F are analytic operator functions on 1,\ - '\01 < 80 and their values are 
invertible operators. In other words, using the terminology of Section III.3, the operator 
functions W(·) and 1- PE(.)-IFP are equivalent at '\0' This leads to the following 
theorem. 

THEOREM 8.1. Let W: n -+ LeX, Y) be an analytic operator function, and 
assume that for some '\0 En the operator W('\o) is a Fredholm operator of index zero. 
Then W is equivalent at '\0 to an analytic operator function D of the form 

(4) 

where Po, Pt, . .. , Pr are mutually disjoint projections of the Banach space X, the pro
jections PI"", Pr have rank one, the projection I - Po has finite rank and 11:1 ~ 11:2 ~ 
•.• ~ II:r are positive integers. 

PROOF. According to formula (3) the operator function W is equivalent at 
'\0 to an operator function of the form 

(5) I 0 ]: 1m P EB Ker P -+ 1m P EB Ker P. 
KerP 

Here WoO is holomorphic on 1'\-'\01 < 8 and Wo('\) acts on the finite dimensional space 
1m P. Now assume the theorem has been proved for Wo. Thus the operator function Wo 
is equivalent at '\0 to an operator function Do of the form 

where 11"0,11"1, ••• ,11" r are mutually disjoint projections of 1m P and rank 11" j = 1 for j = 
1, ... , r. Put Pj = 11"jP for j = 1, ... , r, and let 

I 0 ]: 1m P EB Ker P -+ 1m P EB Ker P. 
KerP 

Then the operator function (5) (and hence W) is equivalent at '\0 to the function 

and the projections Po, PI, . .. , Pr have the desired properties. It follows that it suffices 
to prove the theorem for the case when X = Y is finite dimensional. 

Assume X = Y = en. As usual, we identify an operator on en with its 
matrix corresponding to the standard basis of en. So we assume that 

(6) 

where aij are scalar functions that are analytic at >'0. If all entries aij are identically 
zero in a neighbourhood of >'0, then the theorem is true trivially. Therefore assume that 
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for at least one pair (i,j) the function aij does not vanish identically in a neighbourhood 
of .Ao. In that case we may write 

where bij()..O) -:f: O. Choose (io,jo) in such a way that the number .e(io,jo) is minimal. 
By interchanging rows and columns in (6) (that is, by applying a number of equivalence 
operations) we may assume that io = 1, jo = 1. Furthermore, by multiplying W()") on 
the left by the diagonal matrix 

[ 

bl1()..)-l 

E()") = 

o 

1 1 
we may suppose that an()..) = ().. - )..0)"1 and aij()..) = ().. - )..0)"1 Cij ()..) , where Cij 
is analytic at )..0. Note that the diagonal matrix E()..) is invertible and E()") depends 
analytically on ).. in a neighbourhood of )..0. Thus multiplication by E()") is an equivalence 
operation. 

Next subtract Ci1()..) times the first row from the i-th row. That is, multiply 
We)..) on the left by 

1 

Ei()..) = -Ci1(..\) 1 

1 

Here blanks denote zero entries. Again Ei()..) is invertible and Ei(..\) depends analytically 
on ..\ in a neighbourhood of )..0. Thus multiplication by Ei()..) is an allowed operation. 
Also, subtract Clj times the first column from the j-th column, which is also an equiv
alence operation. Do this for 1 :5 i,j :5 n. It follows that W is equivalent at )..0 to an 
operator function of the form 

Q,:(>') 1 
Qnn(..\) 

where Qij()..) = (..\ - )..O)"l{3ij()..) with {3ij analytic at ..\0. Apply induction and the 
theorem is proved. 0 

One can show (see Gohberg-Sigal [1], Gohberg-Kaashoek-Lay [2], and the 
references therein) that the integers kl' ... ,kr appearing in (4) are uniquely determined 
by W. Furthermore, since W is equivalent at ..\0 to the function (4), we have 

dim Ker W()..o) = rank( I - Po), 
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and hence rank(I - Po) is also uniquely determined by W. 

In Theorem S.l the condition that ind W(>'o) = 0 cannot be omitted. This 
stems from the fact that in (4) the operator Po is a Fredholm operator of index zero. Thus 
for any operator function W which is equivalent to D at >'0, the operator W(>'o) has to 
be Fredholm with index zero, because the latter property is invariant under equivalence. 
However, if one allows the operator function D to be slightly more complicated, then 
the analogue of Theorem S.2 holds for arbitrary Fredholm operator valued functions (see 
Gohberg-Kaashoek-Lay [2]). 

THEOREMS.2. Let W: 11 ~ C(X, Y) be analytic, and assume that W(>.) is 
Fredholm for each>' E 11. Then there exists a finite or countable subset ~ of 11, which 
has no accumulation points inside 11, and there exist constants no and do such that 

(7a) 
(7b) 

dimKer W(>.) = no, 
dimKerW(>.) > no, 

codimIm W(>.) = do 
codimIm W(>.) > do 

(>. E 11\~), 

(>. E ~). 

PROOF. We already observed (see the beginning of this section) that 
ind W(>.) is constant on 11. Put 

no = min dim Ker W(>.), 
..\EO 

do = mincodimIm W(>.), 
..\EO 

and let ~ = {>. E 11 1 dim Ker W(>.) > no}. Since ind W(>.) is constant on 11, we also have 
~ = {>. E 11 1 codimIm W(>.) > do}. We have to prove that ~ is a finite or countable 
subset of 11 without accumulation points in 11. In other words, it suffices to show that ~ 
consists of isolated points only. 

First assume that ind W(>.) = 0 for each>' E 11. Take >'0 E 11. According to 
Theorem 8.1, the function VV is equivalent at >'0 to an operator function D of the form 
(4). Note that 

(Sa) 

(8b) 

Ker D(>.) _ { Ker Po 
- Ker( Po + PI + ... + Pr ) 

for >. = >'0, 
for >. # >'0; 

ImD(>.) _ { ImPo for >. = >'0, 
- Im(Po + PI + ... + Pr ) for >. # >'0; 

It follows that dim Ker D( >.) and codim 1m D( >.) are constant on the punctured disc 
o < I>' - >'01 < 00· Furthermore, dim Ker D( >'0) ~ dim Ker D( >.) and codim 1m D( >'0) ~ 
codimlmD(>.) for I>' - >'01 < 00. Since W is equivalent at >'0 to D, we have 

dimKerW(>.) = dim Ker D(>'), codimlm W(>.) = codimImD(>.) 

for>. in a neighbourhood of >'0. So dimKer W(>.) and codimIm W(>.) are constant on 
punctured discs and at the centers the values of these functions can only increase. It 
follows that the set ~) which has been introduced in the first paragraph of the proof, con
sists of isolated points only. Indeed, let A be the set of discontinuity points of the function 
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dimKer W(·). We have proved that A consists of isolated points only, and hence n\A is 
open and connected. Since dimKerW(·) is integer-valued, the function dimKerW(·) is 
constant on n\A. We know that in the points of A the values of dimkerW(·) increase. 
Thus ~ C A and ~ consists of isolated points only. 

_ Next, we assume t~at p = ind W~>') =1= O. First consider the case when p > O. 
Put Y = Y EB CP, and define W: n -+ .c(X, Y) by setting 

W('\)x = [ W~)x ] , x EX. 

Then Ker W(>') = Ker W(>.) and 1m W(>') = 1m W(>')EB{O}. It follows that W is analytic 
on n, its values are Fredholm operators and ind W(>') = ind W(>.)-p = 0 for each>' E n. 
Now apply to W the result proved in the previous paragraph and the theorem is proved 
for p = ind W(>.) > O. The case when p = ind W(>.) < 0 is treated in a similar way by 
using the function 

W: n -+ .c(X EB C-P, Y), W(>.) [ : ] = W(>.)x. 0 

COROLLARY 8.3. Let A: X -+ Y be a Fredholm operator, and let B: X -+ Y 
be a bounded linear operator. Then there exist c > 0 and integers no and do such that 

n(A) 2:: no = n(A + >'B), 
d(A) 2:: do = d(A + ,\B), 

0< 1>'1 < c, 

0< 1>'1 < c. 

PROOF. Apply the previous theorem to W(>.) = A + >'B. 0 

COROLLARY 8.4. Let W: n -+ .c(X, Y) be an analytic Fredholm operator 
valued function, and assume that W(z) is invertible for some zEn. Then the set 

(9) ~ = {>. E n I W( >.) is not invertible} 

is at most countable and has no accumulation point inside n. Furthermore, for >'0 E ~ 
and >. E n\~ sufficiently close to >'0, we have 

00 

(10) W(>.)-I = L (,\ - >'o)n An, 
n=-q 

where Ao is a Fredholm operator of index zero and A-I"'" A_q are operators of finite 
rank. 

PROOF. The fact that the set (9) is at most countable and has no accumula
tion point inside n is clear from Theorem 8.2. Take >'0 E ~. Since W(>.) is invertible for 
>. close to >'0, it is clear that ind W(>.o) = O. So according to Theorem 8.1 the function 
W is equivalent at >'0 to an operator function D of the form (4). Thus 

(11) W(>.) = E(>.)D(>.)G(>.), I>' - >'01 < 8, 

where E(>.) and G('\) are invertible and depend analytically on >.. Write 

00 00 

E(>.)-l = L(>' - >'o)n En, G(>.)-l = ~(>. - >'o)nGn. 
n=O n=O 
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Note that D(>.)-1 = Po + (>. - >'0)- ICIP1 + 000 + (>. - >'o)-lCr Pro Thus D(>.)-1 = 
L:~=-q(>' - >'o)nDn, where Do = Po is a Fredholm operator of index zero and 
D_l. 0 0 0' D_q are operators of finite rank. From (11) we see that 

o < I>' - >'0 1 < 80 0 

Thus the operator An in (10) is given by 

An = L GkDI.Em. 
k+l+m=n 
k;::O,m;::O 

For n = 0 this shows that Ao = GoDoEo + Ko, where Ko is a finite sum of operators of 
the form GkDI.Em with e < O. Thus Ko is an operator of finite rank. Note that Go and 
Eo are invertible. Thus GoDoEo is a Fredholm operator of index zero, and hence the 
same is true for Ao. For n < 0 the operator An is of finite rank, because in that case An 
is a finite sum of operators GkDI.Em with e < O. 0 

Corollary 8.4 has interesting consequences for the essential spectrum of an 
operator. 

COROLLARY 8.5. Let A E .c(X), and a33~me that the complement in C of 
the e33ential 3pectrum O"ess(A) i3 connected. Then O"(A)\O"ess(A) con3i3t3 of eigenvalue3 
of finite type only. 

PROOF. We apply Corollary 8.4 to the function W(>') = U - A with 
n = C\O"ess(A). Obviously, W(>.) is a Fredholm operator which depends analytically on 
>. E n. For 1>'1 > IIAII the operator W(>.) is invertible. Since n is an open, connected 
subset of C, Corollary 8.4 shows that the set 

{>' E n 1 >. E O"(A)} 

has no accumulation point in n. It follows that the points of O"(A)\O"es.(A) are isolated 
points of O"(A). Take >'0 E O"(A)\O"ess(A). Then for>. '" >'0, >. sufficiently close to >'0, we 
have 

00 

(U - A)-l = L (>. - >'o)n B n , 

n=-q 

where Bo is a Fredholm operator of index zero and B_t. ... , B_q are operators of finite 
rank (see the second part of Corollary 8.4). Recall that B_1 is equal to the Riesz 
projection Ppo}(A). Thus the latter operator has finite rank, and >'0 is an eigenvalue of 
A of finite type because of Theorem 11.1.1. 0 

If X is a Hilbert space and A E .c(X) selfadjoint, then O"e •• (A) is a compact 
subset of the real line, and hence C\O"e •• (A) is connected. Thus, by Corollary 8.5, for a 
selfadjoint operator the spectral points outside the essential spectrum are eigenvalues of 
finite type. 

Let A: X -+ X be a compact operator. Then O"e •• (A) is empty or consists 
of the point zero only (cf. Corollary 4.3). In particular, C\O"ess(A) is connected, and 
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hence we may apply Corollary 8.5 to A. This provides an alternative proof of the fact 
(Corollary 11.3.2) that the non-zero part of the spectrum of a compact operator A consists 
of eigenvalues of finite type only. 

Corollary 8.5 may also be used to show that <Tes.(A) is non-empty whenever 
X is infinite dimensional. Indeed, assume that <Tess(A) = 0. Then, by Corollary 8.5, the 
spectrum of A consists of eigenvalues of finite type only. In particular, <T(A) must consist 
of a finite number of points AI. ... ,Ar , say. But then 

dimX = dim(ImP{Ad(A) ffi··· ffi 1m ppr} (A») 
= rank P{At} (A) + ... + rankP{Ar}(A) < 00. 

XI.9 AN OPERATOR VERSION OF ROUCHE'S THEOREM 

Throughout this section H is a separable Hilbert space, n is an open con
nected subset of e, and W: n -+ C(H) is an operator function which is analytic on 
n. We say that AO E n is an eigenvalue of finite type of W(-) if W(AO) is Fredholm, 
W(AO)X = 0 for some non-zero x E H and W(A) is invertible for all A in some punctured 
disc 0 < IA - Aol < e around AO. In that case, ind W(AO) = 0, and hence, by Theorem 
8.1, the operator function W is equivalent at AO to an operator function of the form 

(1) 

where Po, PI, . .. ,Pr are as in Theorem 8.1 and satisfy the additional condition that 

(2) Po + PI + ... + Pr = I. 

Note that (2) follows from the fact that in this case D(A) is invertible for A :f. AO and 
A sufficiently close to AO. The sum KI + ... + Kr of the indices in (1) is called the 
algebraic multiplicity of W at AO and will be denoted by m(Ao; WO). We shall see from 
Theorem 9.1 below that the number m(Ao; We-)) is well-defined and does not depend on 
the particular choice ofthe function D(·) in (1). If H = en, then det D( A) = (). - Ao)m , 
where m = KI + ... + K r , and hence in that case, because of the equivalence between 
W(·) and D(·) at AO, the algebraic multiplicity m(Ao; We-)) is precisely the order of AO 
as a zero of det W(·). 

Let r be a Cauchy contour in n such that its inner domain ~ is a subset of n. 
The operator function W is said to be normal with respect to r if W()') is invertible for 
all A E r and W(A) is Fredholm for all A in the inner domain~. Assume that W is such 
an operator function. Then Corollary 8.4 implies that W(A) is invertible for all ). E ~, 
except for a finite number of points which are eigenvalues of finite type of W. This allows 
us to define the algebraic multiplicity m (r; W(-» of W relative to the contour r, namely 

m(r; W(.») = m(A1; W(·» + ... + m(Ap; W(-)), 

where AI, . .. ,Ap are the eigenvalues of finite type of Winside r. 
In what follows W'(A) denotes the derivative of W at A. We shall prove the 

following two theorems. 
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THEOREM 9.1. Let W: n -4 £(H) be an analytic operator function, and 
a33ume that W i3 normal with re3pect to the contour f. Then 

(3) m(fj W(.)) = tr(2~i J W'(A)W(A)-1 dA). 
r 

THEOREM 9.2. Let W, S: n -4 £(H) be analytic operator function3, and 
a3sume that W i3 normal with respect to f. If 

(4) A E f, 

then V(·) = W(·) + S(·) i3 al30 normal with re3pect to f and 

(5) m(fj VO) = m(f; WO). 

The second theorem may be viewed as an operator generalization of Rouche's 
theorem from complex function theory. 

To prove Theorem 9.1 it will be convenient to use the following terminology. 
An £(H)-valued operator function G is called finitely meromorphic at AO if G has a pole 
at AO and the coefficients of the principal part of its Laurent expansion at AO are operators 
of finite rank, i.e., in some punctured neighbourhood of AO we have an expansion 

00 

G(A) = L (A - AOtGv , 
v=-q 

which converges in the operator norm on £(H), such that G-1, ... , G-q are finite rank 
operators. In that case we write ::::G(A) for the principal of Gat Ao. Thus 

-1 

(6) ::::G(A) = _L (A - AOtGv , 
v=-q 

Note that ::::G is analytic on C\ {Ao} and its values are finite rank operators. We need 
the following lemma. 

LEMMA 9.3. Let G1 and G2 be £(H)-valued operator functions which are 
finitely meromorphic at Ao. Then G1 G2 and G2G1 are finitely meromorphic at AO and 

(7) 

PROOF. Here G1G2 is the operator function defined by (G1G2)(A) = 
G1(A)G2(A). In what follows A =I- AO and A is sufficiently close to Ao. For v = 1,2 
put 

Then HI and H2 are analytic at AO and 
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The last three terms are finitely meromorphic at >'0, and HIH2 is analytic at >'0. Thus 
Gl G2 is finitely meromorphic at >'0 and 

All coefficients in the Laurent expansion of Hl'E.G2 at >'0 are operators of finite rank. 
Furthermore, the Laurent expansion of HI 'E.G2 at >'0 converges in the trace class norm. 
Since the trace is a continuous linear functional on the trace class operators with respect 
to the trace class norm (Theorem VII.2.1), we may conclude that 

(9) 

Similarly, 

(10) 

For the third term in the right hand side of (8) we also have 

(11) 

Next, use Corollary VII.6.2(i) to derive the following identities: 

(12) 

(13) 

(14) 

Finally, write the analogues of (8), (9), (10) and (11) with Gl and G2 interchanged. 
Then the identities (12), (13) and (14) yield the desired result (7). 0 

PROOF OF THEOREM 9.1. Let 6. be the inner domain of the Cauchy 
contour r. The operator function W'(·)WO-1 is analytic on 6. u r, except possibly 
at a finite number of points in 6. which are eigenvalues of finite type of W. Hence, 
by Cauchy's theorem for analytic functions, it suffices to prove the theorem in the case 
where r is a circle of sufficiently small radius p with center at an eigenvalue >'0 of W. 
Recall that W is equivalent at >'0 to the operator function D defined in (1). So there 
exists an open neighbourhood U of >'0 such that 

(15) W(>.) = E(>.)D(>.)F(>.), >. E U, 

where E(>.) and F(>.) are invertible operators which depend analytically on>. in U. We 
shall assume that the radius p of the circle r has been chosen in such a way that >. E U 
whenever I>' - >'01 :::; p. Omitting the variable>. we may write 

(16) 
W'W- 1 = (E'DF + ED' F + EDF')F- 1 D-1 E- 1 

= E' E- 1 + ED' D- 1 E- 1 + EDF' F- 1 D- 1 E- 1• 
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From Corollary 8.4 we know that W-l is finitely meromorphic at AO. Since W is analytic 
on U, its derivative W' is also analytic on U, and thus W'W-l is finitely meromorphic. 
It follows that 

(17) 

is a well-defined operator of finite rank. In (17) the integrand may be replaced by the 
principal part of W'(·)W(.)-l at AO. But then the integral exists in the trace class norm, 
and thus trace and integral may be interchanged. So we see that 

(18) 

tr K = tr(2~i j 3{W'(A)W(A)-1 }dA) 
r 

= ~ jtr3{W'(A)W(A)-1 }dA. 
27l"~ 

r 

Next, we use (16). Note that 

(19) 

In particular, DO-l is finitely meromorphic at AO. All other functions appearing in the 
right hand side of (16) are analytic at AO. It follows that for AO =I- A E U 

(20) 
tr3{W'(A)W(A)-1} = tr3{ E(A)D'(A)D(A)-l E(A)-l} 

+ tr3{ E(A)D(A)F'(A)F(A)-l D(A)-l E(A)-l}. 

Now we use Lemma 9.3 to interchange factors in the two terms of the right hand side of 
(20). We have the following identities: 

(21) 

(22) 

tr3{ E(A)D'(A)D(A)-l E(A)-l} = tr3{ D'(A)D(A)-l E(A)-l E(A)} 

= tr3{ D'(A)D(A)-l}, 

tr3{ E(A)D(A)F'(A)F(A)-l D(A)-l E(A)-l} 

= tr3{ F'(A)F(A)-l D(A)-l E(A)-l E(A)D(A)} 

= tr3{F'(A)F(A)-1} = o. 

From (1) and (19) we see that 

D'(A)D(A)-l = ,q(A - Ao)-l PI + ... + II:r(A - Ao)-l Pr , 

and thus 

(23) tr3{D'(A)D(A)-1} = (tll:j)(A-AO)-l, 
)=1 

A =I- AO· 
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Formulas (20)-(23) yield 

(24) tr3{W'(A)W(A)-1} = (t II:j )(A - AO)-I, 
J=1 

Our choice of r implies that m(r; W(·») is equal to 11:1 + ... + II:r . Thus, by using (24) 
in the second integral appearing in (18), we obtain the desired result (3). 0 

Theorem 9.1 implies that the definition of the algebraic multiplicity of W at 
AO (as given in the first paragraph of this section) does not depend on the particular 
choice of the function D(·) in (1). In fact (see also (24)), the residue of tr3W'(.)W(·)-1 
at AO is equal to 11:1 + ... + II:r , and hence the latter number is uniquely determined by 
W. 

Before we prove Theorem 9.2, let us first consider the case when W(A) = 
WA(A) = AI - A, where A is a bounded linear operator on H (and n = C). From 
Corollary 8.5 it follows that AO is an eigenvalue of finite type of W AO if and only if AO is 
an eigenvalue of finite type of A (see Section 11.1). Theorem 9.1 implies that in that case 
m(Ao; WAO) is precisely the algebraic multiplicity of AO as an eigenvalue of A. To see 
this, choose a positively oriented circle ro with center at AO such that u(A) n ro = 0 and 
AO is the only point in the spectrum of A inside roo Then WA is normal with respect to 
ro and 

(25) 2~i j W~(A)WA(A)-1dA = 2~i j(Al - A)-IdA. 

ra ra 

The right hand side of (25) is the Riesz projection p{.\a} of A corresponding to the point 
Ao. The rank of p{.\a} is finite and equal to m(Ao; A), the algebraic multiplicity of AO as 
an eigenvalue of A (cf. Section 11.1). By Theorem 9.1 the trace of the left hand side of 
(25) is equal to m(Ao; WAO). Since the trace of a finite rank projection is equal to the 
rank of the projection, it follows that 

From the remarks in the previous paragraph one sees that Theorem 9.2 may 
be viewed as a generalization (and a further refinement) of Theorem 11.4.2. 

PROOF OF THEOREM 9.2. The proof is split into two parts. As before, 
~ denotes the inner domain of r. 

PART (i). First we show that V is normal with respect to r. Put C(-) = 
WO-lS(-). For A E r we have IIC(A)II < 1, and hence I+C(A) is invertible for A E r. By 
our hypotheses, the same holds true for W(A). Thus yeA) = W(A)[I +C(A)] is invertible 
for A E r. To prove that yeA) is Fredholm for A E ~, we study the behaviour of CO on 
~. From its definition we see that C is analytic at each point of r, and C is analytic on 
~, except possibly for a finite number of points inside ~, which are eigenvalues of finite 
type of W. Let A}, ... , Ap be these exceptional points. From Corollary 8.4 we know that 
WO-l is finitely meromorphic at the points A1, ... , Ap. Since S is analytic on n, it 
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follows that C is also finitely meromorphic at Al, ... ,Ap. So for A close to Aj we have 

00 

C(A) = L (A - AjtCj,v, 
v=-qj 

where Cj,_ b ... ,Cj,_qj are operators of finite rank. Put 

N = n{KerCj,v 1 v = -1, ... , -qj, j = 1, ... ,pl. 

The space N is a closed linear manifold of H and dim H / N < 00. Let C N( A): N -+ H be 
defined by CN(A)x = C(A)x for each x E N. Then CN is an C(N,H)-valued operator 
function which is analytic at each point of r u~. From (4) it follows that there exists 
o :5 I < 1 such that IIC(A)II :5 I for all A E r. In particular, for x E Nand y E H we 
have 

(26) 

whenever A E r. But (CN(·)X, y) is analytic at each point of ru~. So, by the maximum 
modulus principle, the inequality (26) holds for all A E r u ~, and thus 

(27) .\ E ~ur. 

Now define 8(.\): H -+ H by taking 8(.\) = CN(.\)II, where II is the orthogonal projec
tion of H onto N. Then 8 is an C(H)-valued operator function which is analytic at each 
point of r u ~ and 118(.\)11 :5 I < 1 for.\ E r u~. It follows that 1+ 8(.\) is invertible 
for each .\ E r u~. We know that W(A) is Fredholm for each .\ E ~. So the same holds 
true for W('\)[I + 8(.\)]. Note that V('\) and W('\)[I + 8(.\)] coincide on the space N. 
But N has finite codimension in H. So we may apply Lemma 3.1 twice to conclude that 
V('\) is Fredholm for each .\ E ~. Thus V is normal with respect to r. 

PART (ii). In this part we prove formula (5) by using the method of lin
earization. Without loss of generality we may assume that 0 is in the inner domain of r. 
Choose a bounded Cauchy domain e such that r c e c e c f!. Let Ko be the space of 
all H-valued continuous functions on ae endowed with the inner product 

(28) (J,g) = J (J(O,g(O)d(, 
a6 

and let K be a Hilbert space such that Ko is a linear submanifold of K which is dense in 
K and for elements J and 9 in Ko the inner product in K coincides with the one given by 
(28). Up to a linear isometry the Hilbert space K is uniquely determined by Ko. Since 
H is separable, the same is true for K. 

For 0 :5 t :5 1 we let At be the operator on K defined by 

(29) (Atf)(z) = zJ(z) - 2~i J [I - W(O - tS(O] J(Od(, z E ae. 
a6 
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The operator At is bounded on Ko, and hence, by continuity, At extends to a bounded 
linear operator on K, which we also denote by At. From (29) it follows that the map 

(30) [0, 1) ~ C(K) 

is continuous with respect to the operator norm on C(K). 

Let w: K ~ H be the (unique) bounded linear operator such that 

(31) 1 J 1 wf = 27l"i ,f(Od(, f E Ko· 
ae 

Note that w is bounded on Ko, and hence, by continuity, it extends to all of K. Put 
Z = Kerw. Then Z is a (separable) Hilbert space in its own right, and for 0 :::; t :::; 1 
the Z-extension of W(.) + tS(·) is equivalent on 0 to A - At. To prove this, one uses the 
same arguments as were used in the proof of Theorem II1.2.1. In fact, all formulas in the 
proof of Theorem II1.2.1 hold on Ko and, by continuity, also on K. 

Put Wt(A) = A - At. The above equivalence implies that Wt is normal with 
respect to f. By extension and equivalence the algebraic multiplicity does not change. 
Thus 

(32) m(f; W(·) + tS(.» = m(f; WtO). 

By the remarks made in the second paragraph after the proof of Theorem 9.1, we have 

(33) m(f; WtO) = L meA; At). 
oX inside r 

Furthermore, by Theorem II.4.2, the quantity in the right hand side of (33) 
is a continuous function of t. It follows that the same holds true for the first quantity in 
(32). Since these functions are integer-valued, we conclude that m (f; W(·) + tS(·») does 
not depend on t E [0,1]' and hence (5) is proved. 0 

The results of this section also hold for operator functions whose values act 
on Banach spaces. To see this one needs the trace of a finite rank operator F acting on 
a Banach space X. This quantity is defined as follows: 

n 

trF= Lgj(Xj), 
j=l 

where Xl, ... , xn are vectors in X and gl, ... , gn are continuous linear functionals on X 
such that 

n 

F = L gj(.)Xj. 
j=l 

One can prove (see, e.g., Gohberg-Krupnik [1)) that tr F is a linear functional on the 
finite rank operators F and tr(FG) = tr(GF) for any bounded linear operator G. With 
this definition of the trace the proofs given above carryover to the Banach space case. 



212 XI.IO SINGULAR VALUES FOR BOUNDED OPERATORS 

XI.I0 SINGULAR VALUES FOR BOUNDED OPERATORS 

In this section we introduce s-numbers (singular values) for arbitrary (not 
necessarily compact) operators acting on a Hilbert space. The starting point is Theorem 
VI.1.5 which identifies the s-numbers of a compact operator as certain approximation 
numbers. Let A: H ~ H be a bounded linear operator acting on the complex Hilbert 
space H. By definition the j-th singular value (s-number) of A is the number 

(1) Sj(A) = inf{IIA - Kill K E£(H),rankK :::; j -I}. 

Note that sI(A) = IIAII and sI(A) ~ s2(A) ~ .... Many properties of s-numbers of 
compact operators carryover to the non-compact case. For example, Proposition VI.1.3 
and Corollaries VI. 1.2, VI. 1.4 and VI. 1.6 hold for arbitrary bounded linear operators. The 
definition (1) also presents a way to introduce s-numbers for operators acting between 
Banach spaces. 

Since (Sj(A))~I is a non-increasing sequence of non-negative numbers, we 
may define 

(2) soo(A): = lim sn(A) = inf sn(A). 
n-+oo n 

The next theorem (together with the fact that the set of compact operators on H is 
closed in £(H)) shows that soo(A) = 0 if and only if A is compact. 

THEOREM 10.1. For A E £(H) 

(3) soo(A) = inf{IIA - KII I K compact}. 

PROOF. Let, be the number defined by the right hand side of (3). Let 
K E £(H) be of finite rank, rankK = n, say. Then K is compact, and thus,:::; IIA-KII. 
It follows (see (1)) that, :::; sn+1(A), and hence, :::; soo(A). To prove the reverse 
inequality, take c > O. Choose a compact operator K such that IIA-KII < ,+ ~c. Next, 
choose a finite rank operator FE £(H) such that 11K - FII < ~c. Then IIA ~ FII < ,+c. 
According to the second identity in (2), we have soo(A) :::; IIA-FII. Hence soo(A) < ,+c. 
But c > 0 is arbitrary, and therefore sooCA) :::; ,. 0 

THEOREM 10.2. The number soo(A) is the square root of the maximum of 
the essential spectrum of A * A. 

PROOF. Put S = A* A. Since S is nonnegative, the essential spectrum of S 
is a compact subset of the nonnegative real line, and hence the maximum of the essential 
spectrum of S is a well-defined number /-L, say. Let c > O. By Theorem 10.1 there exists 
a compact operator K such that IIA - KII < sooCA) + c. Thus 

IICA - K)*(A - K)II = sup (A - K)*(A - K)x, x) 
IIxll=I 

= sup II(A - K)x11 2 
IIxll=I 

= IIA - KI12 < (soo(A) + c)2. 
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Since T:= (A-K)*(A-K) = S+C, where C is a compact operator, T and S have the 
same essential spectrum. In particular, I-' E u(T). Thus 

Since e > 0 is arbitrary, this shows that soo(A)2 ~ 1-'. 

To prove the converse we consider the set E = {,\ E U(S)IA > I-'}. This set 
consists of eigenvalues of finite type only (apply Corollary 8.5). In particular, each A E E 
is an isolated point of u(S). It follows that E is at most countable. Let 1-'1 > 1-'2 > ... 
be the points in E. By Ho we denote the smallest closed linear manifold containing all 
eigenvectors of S corresponding to the eigenvalues 1-'1,1-'2, ... , and P will be the orthogonal 
projection onto the space Hl:= H~. Put So = SCI - P). Note that the space Ho has 
an orthonormal basis CPl, CP2, •• • consisting of eigenvectors of S. Thus we may write 

(4) Sox = LAj(X,cpj)cpj, 
j 

xEH, 

where Al ~ A2 ~ A3 ~ ... is the sequence 1-'1 > 1-'2 > 1-'3 > ... with each I-'j repeated as 
many times as the value of its algebraic multiplicity. The operator K, defined by 

Kx = L(AY2 _ 1-'1/2)(x,cpj)cpj, 
j 

xEH, 

is nonnegative and K has finite rank (if the sequence AI, A2, ... is finite) or is compact. 

Next, use the polar decomposition (see Section V.6) to write A as A = U R, 
where R = (A* A)I/2 = SI/2 and U is a partial isometry. Put C = UK. Then C is 
compact, and, by Theorem 10.1, 

(5) Soo(A) ~ IIA-CII = IIUR-UKII ~ IIR-KII· 

Since S commutes with P, also its square root R commutes with P (Theorem V.6.1) and 

R(I - P)x = S~/2x = L AY2(x,cpj)cpj, 
j 

It follows that R - K = RP + 1-'1/2(1 - P), and thus 

(6) 

It remains to show that IIRPII ~ 1-'1/2. 

xEH. 

Let {E(t)}tER be the resolution of the identity for the non-negative oper
ator S. From Theorem V.5.3 we know that E(·) is constant on (I-',OO)\Pl,A2, ... }. 
Furthermore, by Corollary V.5.2, 

i ~ 1. 
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It follows that Im(I - E(t») c Ho for t > p., and hence HI C ImE(t) for t > p.. This 
shows that 

ImE(p.) = n{ImE(t) It> p.} ::) HI· 

(With a little extra effort one shows that E(p.) = P, but we don't need this equality.) 
Choose a < 0 and f3 > IISII, and let 

{ 
0, a ::; t < 0, 

get) = t1/2, f3 o::;t::; . 

Then for each x E H, 

{3 

(RPx,x) = (RPx,Px) = J g(t)d(E(t)Px,Px} 
01 

J.l 

= J t1/ 2d(E(t)Px, Px} ::; p.l/2I1xI12, 
o 

because (E(t)Px, Px) = IIPxll 2 ::; IIxll2 for t 2: p.. It follows that IIRPII ::; p.l/2. 0 

The proof of Theorem 10.2 shows that the infimum in (3) is actually a mini
mum. To see this, let G be the operator introduced in the proof of Theorem 10.2. Since 
soo(A) = p.l/2 (the notation is as in the proof of Theorem 10.2), formulas (5) and (6) 
imply that IIA - Gil = soo(A), and hence the infimum in (3) is attained for K = G. 

A further refinement of the arguments used in the proof of Theorem 10.2 yields 
the following alternative description of the s-numbers of A E .c(H). Let ).1 2: >'2 2: ... 
be the eigenvalues (multiplicities taken into account) of A* A strictly larger than the 
maximum p. of the essential spectrum of A * A, and let N be the number of elements in 

the sequence >'1 2: >'2 2: ... . Then sj(A) = >.y2, j = 1,2, ... , if N is infinite, and 
otherwise 

{ 
>.Y2, j = 1, ... ,N, 

s ·(A) = J 
J 1/2. P. , J = N + 1, N + 2, .... 



CHAPTER XII 

WIENER-HOPF INTEGRAL OPERATORS 

In this chapter we deal with integral operators of the following type: 

t 00 

X(t) - J k(t - s)g(s)ds = I(t), 0 $ t < 00. 

o 
Here g and I are em-valued functions with components in L2([0,00]) and the kernel 
function k is an m X m matrix function. The corresponding operators are called Wiener
Hopi (integral) operators. We shall restrict the attention to the case when the entries of 
k are integrable on the real line. Wiener-Hopf integral operators provide one of the main 
examples for the Fredholm theory. In this case the index may be expressed in terms of 
topological properties of the symbol. The chapter consists of three sections. The first 
has an introductory character and concerns the analogous equation on the full line. In 
Section 2 the first properties of Wiener-Hopf operators are derived. The last section is 
devoted to the Fredholm theory. . 

XII.l CONVOLUTION OPERATORS 

This section concerns operators of the form A = 1- L, where 
00 

(1) (Lc,o)(t) = J k(t - s)c,o(s)ds, -00 < t < 00. 

-00 

The operators A and L will be considered on L;n(R), the space of all em-valued functions 
that are square integrable (relative to the Lebesgue measure) on the real line R. The 
space L;n(R) is a Hilbert space with inner product 

m 00 

(c,o, t{;) = ~ J c,oj (t)t{;j (t)dt. 
.1=1_00 

(2) 

Here c,oj and t{;j are the j-th components of c,o and t{;, respectively. As usual, two functions 
that are equal almost everywhere are identified. 

The function k in (1), which is called the kernel function of L, is assumed to 
be an m X m matrix function, k = [kij]r·=l' of which the entries kij are integrable on 
R. One could take a more general class orkernel functions, as we shall do in the discrete 
case (in Volume II), but the present class is already rich enough to explain the main 
points of the theory. The integrability condition on the entries of k implies that L is a 
well-defined bounded linear operator on L;n(R). In fact, 

(3) 
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where Ilkijlll is the norm of kij as an element of Ll(R). To prove (3), note that L2'(R) 
is equal to the Cartesian product of m copies of L2(R), and hence L may be represented 
by an m x m matrix whose entries are operators on L2(R). In this case 

(4) 

where 

(5) 

Here the symbol * denotes the usual convolution product. It is well-known (see, e.g., [RJ, 
Ch. 7, Exercise 4) thatfor g E Ll(R) and! E L2(R) the convolution product g*! E L2(R) 
and IIg * !II ~ IlglIlll!ll· Let <P E L2'(R), and let <Pj denote its j-th component. Then 

m 

IIL<p1l2 = L II(L<pM 2 

i=l 

= tilt kij * <pj112 
~=l )=1 

which proves (3). 

With the operator A = I - L we associate the following m x m matrix function: 

00 

(6) W(s): = Im - J eistk(t)dt, s E R. 

-00 

Here Im denotes the m x m identity matrix. Since the entries of k are in Ll(R), we may 
conclude (cf., [R], Theorem 9.6) that the entries of Ware continuous functions on Rand 

(7) lim W(s) = Im. 
Is 1""'00 

The function W is called the symbol of A, and we shall refer to A as the convolution 
operator with symbol W. 

To study A in terms of its symbol we need the Fourier transformation. Recall 
that for! E Ll(R) n L2(R) the Fourier transform 1(>..), which is defined by 

00 

1(>\) = vh J e-i>'t!(t)dt, -00 <,\ < 00, 

-00 
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is an element of L2(R). By the Plancherel theorem ([R], Theorem 9.13) the map f 1-+ f 
extends to an isometry U which maps all of L2(R) onto L2(R). Since Lr(R) is equal to 
the Cartesian product of m copies of L2(R), the operator U induces in a natural wayan 
isometry, also denoted by U, from Lr(R) onto Lr(R), namely 

(8) U cp = U [ 7] = [ U ~l ]. 
CPm Ucpm 

The operator U is called the Fourier transformation on Lr(R) and Ucp the Fourier 
transform of cp. Obviously, U: Lr(R) ~ Lr(R) is unitary, i.e., U* = U-l, and hence 

(9) (U-lcp)(t) = (Ucp)( -t), a.e .. 

THEOREM 1.1. Let A be the convolution operator on Lr(R) with symbol 
W, and let U be the Fourier transformation on Lr(R). Then 

(10) U- 1 AUcp = W(·)cp(·), cp E Lr(R). 

PROOF. Let Lij be as in (5). Take fin Ll(R) n L2(R). By using (9) and 
the connections between Fourier transforms and convolution products ([R], Theorem 9.2) 
one proves that for almost all s E R 

(U-1LijJ)(S) = (ULijJ)(-S) 

= [U(kij * J)](-s) 
00 

= (J eist kij(t)dt) fc -s) 
-00 

00 

= (J eistkij(t)dt)(U-l J)(s). 

-00 

00 

(Mij9)(S) = (J eistkij(t)dt)9(S)' 
-00 

Since Mij is an operator of multiplication by a bounded continuous function on R, the 
operator Mij is well-defined and bounded on L2(R). We have proved that 

(11) 

for any 9 E U-l[Ll(R) n L2(R)]. Since the latter set is dense in L2(R), the continuity of 
the operators in (ll) implies that (11) holds for any 9 E L2(R). Thus U-l LijU = Mij' 
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Now use U-l AU = 1- U-l LU, where L is given by (4), and the identity (8), to obtain 
formula (10). 0 

The operator on Lr(R) defined by the right hand side of (10) will be called 
the operator of multiplication by W and will be denoted by Mw. 

COROLLARY 1.2. Let A be the convolution operator on Lr(R) with symbol 
W. Then 

(12) IIAII = sup{IIW(t)1I1 t E R}. 

PROOF. In (12) the term IIW(t)1I is the norm of the m x m matrix Wet) as 
an operator on em; thus IIW(t)1I is the largest singular value of the matrix Wet). Let 
Mw be the operator of multiplication by W. By Theorem 1.1 it suffices to show that 
IIMwll is given by the right hand side of (12). First take 'I' E Lr(R). Then 

00 

II M wcpll2 = J IIW(t)cp(t)1I2dt 
-00 

00 

~ J IIW(t)1I2I1cp(t)112dt 
-00 

~ (sup IIW(t)II)2 '11'1'112, 
tER 

which shows that the right hand side of (12) is an upper bound for IIMwll. 

Next, fix to E R, and let x be an arbitrary vector in em with IIxll = 1. Define 
a sequence in Lr(R) by 

CPn(t) = {vIlx for to - ~ ~ t :::; to + ~, 
o otherwise. 

Then IICPnll = 1 for n = 1,2, ... , and hence 

00 

II Mwl1 2 ~ II MwCPnll 2 = J IIW(t)CPn(t)112dt 
-00 

to +.1. 

= ~ J n IlW(t)xIl 2dt -+ IIW(to)xIl2. 

to-~ 

Here we used the continuity in t of the integrand IIW(t)xI1 2 . It follows that IIMwl1 ~ 
IIW(to)xll. Since x is an arbitrary vector of norm one, we get IIMwl1 ~ IIW(to)ll. Also 
to is arbitrary. Thus IIMwl1 is an upper bound for the right hand side of (12). 0 

COROLLARY 1.3. Convolution operators on L2(R) commute with one an-
other. 
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PROOF. The statement follows from Theorem 1.1 and the fact that operators 
of multiplication by scalar functions on L2(R) commute with one another. 0 

THEOREM 1.4. Let A be the convolution operator on L2'(R) with symbol 
W. Then A is invertible if and only if det W(s) i= 0 for each s E R. In that case 

00 

(13) W(s)-l = 1m - J eistkX(t)dt, sER 
-00 

for some m x m matrix function k x with entries in L1 (R) and 

00 

(14) (A-l7f)(t) = 7f(t) - J kX(t - s)7f(s)ds, t E R. 

-00 

PROOF. Since L2'(R) is the Cartesian product of m copies of L2(R), the 
operator A may be represented as an m x m operator matrix, 

(15) 

of which the entries act on L 2(R). Note that Aij = oijI - Lij, where Lij is given by (5) 
and Oij is the Kronecker delta. Corollary 1.3 implies that the entries in (15) commute 
with another. Thus, by Proposition XI.7.2, the operator A is invertible if and only if 
detA is invertible. 

Let U be the Fourier transformation. Then U-1 Aij U = Oij I - Mij, where 
Mij is as in (11). It follows that U- 1 AijU is the operator of multiplication by the (i,j)-th 
entry of the symbol W of A. But then 

M:= U-1(detA)U = det(U-1AU) 

is the operator of multiplication by det W. 

Assume A is invertible. Then M is invertible and p = II M-11I-l > O. Put 

(16) En = {t E R II det W(t)1 < ~p, It I :::; n}. 

Let XEn be the characteristic function of the set En (i.e., XEn(t) 
XEn (t) = 0 otherwise). Then 

p211XEn 112:::; IIMXEn 112 
00 

= J 1 ( det W ( t) ) X En ( t ) 12 dt 
-00 

n = 1,2, ... , 

1 if tEEn and 
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and hence XEn = 0 for n = 1,2, .... It follows that the set E: = {t E R I I det W(t)1 < 
!p} has Lebesgue measure zero. But det Wet) is a continuous function in t. Thus E is 
an open set of measure zero, which implies that E = 0. In particular, det Wet) #- 0 for 
all t E R. 

To prove the converse statement and the formula for A-I, assume that 
det Wet) #- 0 for all t E R. In that case there exists an m x m matrix function k X 

of which the entries are in Ll(R) such that (13) holds. This result is the matrix version 
of a theorem of N. Wiener which will be proved in the Banach algebra part of this book 
(in Volume II). Note that k X belongs to the class of kernel functions considered in this 
section. Let A x be the operator on Lr(R) defined by the right hand side of (14). For
mula (13) implies that A x is the convolution operator on LrCR) with symbol WO-l. 
But then we can use Theorem 1.1 to show that 

U- 1 AA X U<p = (U- 1 AU)(U-1 A X U)<p 

= WOWO-l<p = <p, 

and thus AA x = I. Similarly, A x A = I. Thus A is invertible and A-I = A x . 0 

COROLLARY 1.5. The convolution operator A is a Fredholm operator if and 
only if A is invertible. 

PROOF. Assume that A is Fredholm. Write A as an m x m operator matrix 
as in (15). Since the entries in (15) commute with one another, Theorem XI.7.3 implies 
that detA is Fredholm. Let U be the Fourier transformation on L2(R), and put M: = 
U-1(detA)U. We have already seen that M is the operator of multiplication by det W. 
Consider the set 

Fn = {t E R I detW(t) = O,ltl:::; n}, 

and let N(Fn) be the subspace of L2(R) consisting of all f that are zero almost everywhere 
on R\Fn. Note that N(Fn) C KerM. Since M is Fredholm, dimN(Fn) < (X), but then 
Fn must have measure zero. It follows that the set {t E R I det Wet) = O} has measure 
zero, and thus M is injective. We also know that M has closed range. Thus there exists 
p > 0 such that liM fli ~ p11I11 for each I E L2(R). Now define En as in (16), and 
proceed as in the proof of Theorem 1.4. One obtains that det Wet) #- 0 for all t E R, and 
thus, by Theorem 1.4, the operator A is invertible. The converse statement is trivial. 0 

XII.2 WIENER-HOPF OPERATORS 

This section concerns operators of the form T = I - K, where 

00 

(1) (K<p)(t) = J k(t - s)<p(s)ds, 0:::; t < (X). 

o 

The operators T and K will be considered on Lr([O, (X)j), the space of all em-valued 
functions that are square integrable (relative to the Lebesgue measure) on the real line, 
which we shall identify with the subspace of Lr(R) consisting of all <p that are zero 
almost everywhere on (-(X), 0). 
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As in the previous section the function k in (1) is assumed to be an m x m 
matrix function, k = [ki}·jl!l._l' of which the entries are in Ll(R). This implies that K is 

t,}-

a well-defined bounded operator on L;n(R) and 

(2) IIKII :::; (~t, Ilkijlliy/2, 

where IIkijlll is the norm of kij as an element of L1(R). To see this, note that 

(3) L;n(R) = L;n([O, 00)) EEl L;n« -00,0]). 

Here L;n«-oo,O]) is the subspace of L;n(R) consisting of all functions c.p that are zero 
almost everywhere on [0,00). The decomposition (3) is an orthogonal one. Now, let 
L be defined by (1.1), and let Q be the projection of L;n(R) onto L;n([O,oo)) along 
L;n« -00,0]). Then 

(4) Kc.p=QLc.p, c.pEL;n([O,oo)). 

Since Q is orthogonal, we conclude that IIKII :::; IILI!' and hence (2) follows from the 
inequality (3) in the previous section. 

With the operator T = 1- K we associate its symbol, which is defined to be 
the m x m matrix function 

I 
00 

(5) W(s) = 1m - J eistk(t)dt, s E R. 

-00 

Note that k is uniquely determined by W. We shall refer to T as the Wiener-Hop! 
operator with symbol W. 

Up to unitary equivalence a Wiener-Hopf operator is a compression of a 
multiplication operator. To see this, let U be the Fourier transformation, and put 
H2'(R) = U L;n« -00,0]). Thus c.p E H2'(R) if and only if 

o 
(6) c.p(s) = ~ J e-ist1jJ(t)dt, s E R, 

-00 

for some 1jJ E L;n« -00,0]). It follows that c.p E H2'(R) has an analytic continuation to 
the upper half plane. Indeed, let c.p be given by (6). Note that eYt 1jJ(t) is an integrable 
function and belongs to L;n(R) if y > O. Hence 

(7) 

o 
c.p(x + iy) = _1_ J e-i(x+iy)t1jJ(t)dt 

y'2; 
-00 

is well-defined for y > 0 and c.p is analytic in the open upper half plane. For fixed y > 0 
the function c.p(. + iy) is the Fourier transform of eyt 1jJ( t), and hence 

00 0 

J 1Ic.p(x + iy)11 2dx = J Ile yt1jJ(t)11 2dt 
-00 -00 
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In particular, 

(8) 

Conversely, by the Paley-Wiener theorem (see [R], Theorem 19.2), if c.p is a em-valued 
function which is analytic in the open upper half plane and satisfies (8), then there exists 
a unique t/J E Lr« -00,0]) such that (7) holds and 1It/J1l = p. Thus via formulas (6) and 
(7) the space Hi(R) may be identified with the space of all functions that are analytic on 
the open upper half plane, take values in em and satisfy the uniform square-integrability 
condition (8). In that case the norm of a function c.p E Hr(R) is also given by the 
right hand side of (8). The space Hr(R) is called the Hardy space of square-integrable 
em-valued functions on R. 

THEOREM 2.1. Let T be the Wiener-Hopf operator on Lr(R) with symbol 
W, and let U be the Fourier transform. Then 

(9) 

Here Mw is the operator of multiplication by Wand P is the orthogonal projection of 
Lr(R) onto Hr(R). 

PROOF. From formula (9) in the previous section we know that U-l = 
IU = UI, where 

(10) (Ic.p )(t) = c.p( -t). 

Take c.p E Hr(R). Thus c.p = UIt/J for some t/J E Lr([O, 00 )). It follows that 

Uc.p = IU-1c.p =I2t/J = t/J E Lr([O,oo)). 

In this way one proves that U Hr (R) = Lr([O, 00)). Since U is unitary, we see that 
p = U-1QU, where Q is the (orthogonal) projection of Lr(R) onto Lr([O, oo)) along 
Lr« -00,0]). 

Again, take c.p E Hr(R). Then 

where A = 1- L with L as in (4). From Theorem 1.1 we know that U-1AU = Mw, 
which proves (9). 0 

THEOREM 2.2. Let T be the Wiener-Hopf operator on Lr([O,oo)) with 
symbol W. Then 

(11) IITII = sup{IIW(t)1I1 t E R}. 

PROOF. Let A be the convolution operator on Lr(R) with symbol W. By 
Corollary 1.2 it is sufficient to show that IITII = IIAII. We. know (see formula (4)) that 
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Tep = QAep for each ep E Lr([O, 00 )). Here Q is the orthogonal projection of Lr(R) onto 
Lr([O, 00)). Since IIQII = 1, it follows that IITII :5I1AII· 

To prove the reverse inequality, let Sr be the operator defined by 

(12) (Srep)(t) = ep(t - T), -00 < t < 00. 

For each T E R the operator Sr is a well-defined bounded linear operator on Lr(R), 

(13) 

and Sr is invertible. Furthermore, S; = S-r = S:;:l for all T E R. Write A = 1- L and 
T = 1- K, where L is defined by (1.1) and K by (1). A simple computation shows that 

(14) S-rASr = 1- S-rLSr = I - L = A, T E R. 

Now, let M be the subset of Lr(R) consisting of all f E Lr(R) with compact support. 
Thus, if ep E M, then there exists a", ~ ° such that ep(t) = 0 for almost all It I ~ a",. In 
that case Srep has support in [0,00) whenever T > a"" and thus QSrep = Srep for T > a",. 
Take ep, 'Ij; E M, and choose T > ° sufficiently large. Then 

I(Aep,'Ij;)1 = I(S-rASr'lj;,ep)1 
= I (ASrep, Sr'lj;) I 
= I(TQSrep,QSr'lj;)1 
:5 IITIIIIQSrepIlIlQSr'lj;lI :5 IITlillepllll'lj;lI· 

Since M is dense in Lr(R), this implies that 

I(Aep,'Ij;)1 :5I1Tllllepllll'lj;lI, 
and hence IIAII :5 IITII. 0 

The class of symbols defined by (5) is closed under the usual product of matrix 
functions. Thus, if WI and W2 are symbols and W(s) = W 1 (S)W2(S) for all s E R, then 
there exists an m X m matrix function k of which the entries are in Ll (R) such that (5) 
holds. This statement follows from the fact that Ll(R) is closed under the convolution 
product and the fact that (modulo a suitable normalization) the Fourier transform of a 
convolution product is the product of the Fourier transforms. 

THEOREM 2.3. Let Tl and T2 be the Wiener-Hopf operators with symbols 
WI and W2, respectively, and let T be the Wiener-Hopf operator with symbol W, where 
W(s) = WI (S)W2(S) for all s E R. Then T - TIT2 is a compact operator. Furthermore, 
if WI or W2 is a rational matrix junction, then T - TIT2 has finite rank. 

For the proof of Theorem 2.3 we need the following two lemmas. 

LEMMA 2.4. Let k = [kijl7,j=1 be an m x m matrix function of which the 
entries are integrable on [0,00), and let H be the operator on LrCR) defined by 

(15) 

00 

(Hep)(t) = J k(t + s)ep(s)ds, 

o 
t ~ 0. 
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Then H is compact and 

(16) 

where IIkij IiI is the norm of kij as an element of L1 ([0,00». 

PROOF. Let L on Lr(R) be defined by (1.1), let Q be the projection of 
Lr(R) onto Lr([O, 00)) along Lr« -00,0]), and let Ion Lr(R) be as in formula (10). 
Then 

(17) Hcp = QL(I - Q)(Icp), cp E Lr([O, 00». 

It follows that H is a well-defined bounded linear operator on Lr([O, 00)), and the right 
hand side of the inequality (1.3) is an upper bound for IIHII, which implies (16). 

Since Lr([O, 00)) is a Cartesian product of m copies of L2([0, 00)), the oper
ator H may be represented by the m X m operator matrix 

(18) HIm l' 
Hmm 

where Hij is the operator on L2([0, 00)) defined by 

00 

(HijJ)(t) = J kij(t + s)f(s)ds, 
o 

t ~ 0. 

To prove that H is compact, it suffices to prove that each of the entries Hij is compact. 
In other words to prove the compactness we may, without loss of generality, assume that 
m=l. 

Take k(t) = e-tp(t), where pet) = ao + a1t + ... + antn is a polynomial with 
complex coefficients. Then 

00 

(HpJ)(t): = J e-(Hs)p(t + s)f(s)dt 

o 
n n 00 

= ?= L ( : ) aje-ttn- v J e-SsVf(s)ds, 
J=Ov=o 0 

t ~ 0. 

It follows that rank Hp is finite. Since the functions e-tp(t), p arbitrary complex poly
nomial, are dense in L 1([0,00» (see B. Sz-Nagy [3], items 7.3.2 and 7.3.3), we can find 
a sequence of complex polynomials Pl,P2, ... such that e-tpn(t) -+ k(t) in the norm of 
Ll([O, 00)). But then we may apply inequality (16) to show that IIH - HPnll -+ ° if 
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n -+ 00. It follows that H is the limit in the operator norm of a sequence of finite rank 
operators. Thus H is compact. 0 

The operator H defined by (15) is called the Hankel operator on L2"([O, (0)) 
with kernel function k. Assume that the entries of k are functions of the form 

(19) (!il'a < 0). 

Then the argument used in the last part of the proof of Lemma 2.4 shows that each of 
the entries Hij in (18) is an operator of finite rank, and thus H is an operator of finite 
rank. 

LEMMA 2.5. Let A be the convolution operator with symbol W. Write A as 
a 2 x 2 operator matriz relative to the decomposition (3): 

(20) A = [ Au 
A21 

Then An is the Wiener-Hop! operator with symbol Wand the operators A12 and A21 
are compact. If, in addition, W is a rational matm junction, then A12 and A21 have 
finite rank. 

PROOF. Formula (4) implies that An = T is the Wiener-Hopf operator 
with symbol W. Lemma 2.3 and formula (17) imply that A12 is compact. By changing 
t to -t one proves in a similar way that A21 is compact. 

Recall that a matrix function is rational if each of its entries is a rational 
function, i.e., the quotient of two polynomials. Note that 

(21) (S'o: < 0), 

(22) (S'o: > 0). 
-ex> 

Since a symbol is continuous on the real line, the entries of a rational symbol have no 
poles on R. Furthermore, by the continuous analogue of the Riemann-Lebesgue lemma 
(see [R], Theorem 9.6) W(A) -+ 1m if A -+ 00. It follows, by the method of partial 
fractional expansion, that the entries of W(A) are functions of the form 

r qj 

C+ LL>ij(A-O:j)-(n+l), 
j=ln=l 

where C and Cjn are constants and C;Saj i 0 for j = 1, ... ,r. So the equalities (21) and 
(22) imply that a symbol W is rational ~f and only if the entries of its kernel function k 
are finite linear combinations of functions of the form 

(23) h(t) = ." { 
altnle-ialt t > 0 

a2tn2e-la2t, t<O, 
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where aI, a2 are arbitrary complex numbers, ~al < 0 and 8'a2 > O. Thus, if W is 
rational, then the result stated in the paragraph preceding the present lemma can be 
used to show that A12 and A21 are operators of finite rank. 0 

PROOF OF THEOREM 2.3. Let A, Al and A2 be the convolution operators 
on Lr(R) with symbols W, WI and W2, respectively. Write A, Al and A2 as 2 x 2 
operator matrices relative to the decomposition (3): 

A = [ All 
A21 

[ 
A(v) 

_ 11 
Av - (v) 

A21 

A(v) ] 12 
(v) , 

A22 
v = 1,2. 

Then (Lemma 2.5) we have T = All, Tl = AW and T2 = AW. From Theorem 1.1 we 
know that A = AIA2' and hence 

(24) 

By Lemma 2.5 the operators Al~ and A~~ are compact, and hence T - TIT2 is compact. 

Next, assume that WI or W2 is rational. Then we know from Lemma 2.5 that 

AW or A~~) is finite rank. In either case the product AW A~;) has finite rank, which 
proves the theorem. 0 

COROLLARY 2.6. Let Tl and T2 be Wiener-Hopf operators on L2([O, (0» 
with (scalar) symbols WI and W2. Then TIT2 - T2Tl is a compact operator. If, m 

addition, WI or W2 is rational, then TIT2 - T2Tl has finite rank. 

PROOF. Let T be the Wiener-Hopf operator with symbol W(·) = 
Wl(,)W2(')' Since m = 1, we have WIW2 = W2Wl, and thus T is also the Wiener
Hopf operator with symbol W2(-)Wl(-)' It follows that T - TIT2 and T - T2Tl are both 
compact (by Theorem 2.3), and hence the difference TIT2 - T2Tl is also compact. The 
second statement is proved in a similar way. 0 

XII.3 THE FREDHOLM INDEX 

In this section we derive the first Fredholm theorem for Wiener-Hopf opera-
tors. 

THEOREM 3.1. Let T be the Wiener-Hopf operator on Lr([O,oo» with 
symbol W. Then T is a Fredholm operator if and only if det W( s) =1= 0 for all s E R, 
and in that case the index of T is equal to the negative of the winding number relative 
to the origin of the curve parametrized by the function 

(1) t 1-+ det Wet), -00 ~ t ~ 00. 

Before we prove the theorem, first a few remarks about the winding number. 
Let a be a continuous function on R such that limltl-+oo a( t) exists, and assume that the 
closed curve fa parametrized by t 1-+ aCt), -00 ~ t ~ 00, does not pass through the 
origin. The winding number K:(f a; 0) of fa relative to the origin is, by definition, equal 
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to 2~ times the total variation of the argument function arg(a(t») when the variable t 
varies over -00 ~ t ~ 00, i.e., 

(2) I\:(ra; 0): = 2~ [arga(t)l~_oo· 

If, in addition, a is piecewise continuously differentiable, then the winding number is also 
given by 

(3) 

For example, if ret) = (t - a)(t - b)-l with a and b non-real, then 

(4) 
for (SOa)(SOb) > 0, 
for ~a > 0, ~b < 0, 
for SOa < 0, SOb > o. 

Let f3 be another continuous function on R such that limJtJ-+oo f3(t) exists. If 

1f3(t) - a(t)1 < la(t)I, -00 ~ t ~ 00, 

then the curve r.B parametrized by f3 does not meet the origin and l\:(r.B; 0) = I\:(r a; 0). 
For piecewise continuously differentiable functions a and f3 this follows from [Rl, Theorem 
10.35, and for arbitrary continuous functions it is proved by an approximation argument. 

PROOF OF THEOREM 3.1. We split the proof into seven parts. The first 
part contains a general remark. 

PART (i). Assume m = 1, and let A be the convolution operator on L2(R) 
with symbol W. Let 

(5) A = [ An 
A21 

be the 2 x 2 operator matrix representation of A relative to the decomposition 

(6) 

We claim that the Banach conjugate A~l of An is similar to A22. To prove this, take t.p 
in L2« -00,0]), and let V t.p be the continuous linear functional on L2([O, 00» defined by 

00 

(V t.p)( 1/» = J 1/>( t)t.p( -t)dt, 
o 

Obviously, V is an isometry from L2«-00,0j) onto L2([O,00»'. For t.p E L2((-00,O]) 



228 XII.3 THE FREDHOLM INDEX 

and tf; E L2([O,=)) we have 

(A~l Vcp)(tf;) = (Vcp)(Alltf;) 
00 

= /(Alltf;)(t)CP( -t)dt 
o 
00 00 00 

= / tf;(t)cp(-t)dt- /(/ k(t-S)tf;(s)ds)cp(-t)dt 
o 0 0 
00 00 00 

= / tf;(s)cp( -s)ds - / (/ k(t - s)cp( -t)dt)tf;(S)dS 
o 0 0 
00 0 

= / tf;(s) { cp( -s) - / k( -s - t)cp(t)dt }ds 
o -00 

00 

= / tf;(S)(A22CP)(-s)ds = (VA22CP)tf;· 
o 

The change in the order of the integrals is justified by Fubini's theorem. The above 
calculation shows that A'n V = V A22, and hence A22 is similar to All' 

PART (ii). Assume that det Wet) -1= 0 for all t E R. We shall prove that Tis 
a Fredholm operator. Note that Theorem 1.4 implies that WO- I is of the form 

00 

W(s)-l = 1m - / eistkX(t)dt, 

o 
s E R, 

where k X is an m x m matrix function with entries in LI(R). Let TX be the Wiener-Hopf 
operator with symbol WO-I, i.e., 

(7) 

00 

(Txcp)(t) = cp(t) - / kX(t - s)cp(s)ds, 
o 

t ~ O. 

Since WOWO-l = WO-IW(·) = 1, Theorem 2.3 implies that 1 - TT x and 1 - TXT 
are compact. Hence T is invertible modulo the compact operators, and thus T is a 
Fredholm operator. 

PART (iii). Take m = 1, and assume that T is Fredholm. We shall prove 
that det Wet) -1= 0 for all t E R. Consider the representation (5). We know (see Lemma 
2.5) that Au = T and thus Au is Fredholm. By duality, the same is true for A~l (apply 
Theorem XI.5.1 and use that the conjugate of a finite rank operator has again finite 
rank). Since m = 1, the operators All and A22 are similar (see Part (i)). It follows that 

[ All 0 ] 
o A22 
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is a Fredholm operator. According to Lemma 2.5 the operators A12 and A21 are compact, 
and hence A is the sum of a Fredholm operator and a compact operator. So A is also 
Fredholm, and we can apply Corollary 1.5 to show that A is invertible, which implies 
det Wet) =1= 0 for all t E R (by Theorem 1.4). 

PART (iv). Assume that T is Fredholm. We shall prove that det Wet) =1= 0 
for all t E R. Since Lr([O, 00)) is the Cartesian product of m copies of L2([0, 00)) we 
may represent T as an m X m operator matrix: 

T = [ T~l T~m ]. 

Tml Tmm 

(8) 

Here Tij = cijI - Kij, where Cij is the Kronecker delta and 
00 

(9) (KijJ)(t) = J kij(t - s)f(s)ds, t ;:: o. 
o 

The function kij is the (i,j)-th entry of the kernel function k of T. Note that 1- Kij 
are Wiener-Hopf operators on L2([0, 00)) with (scalar) symbols, and hence we can apply 
Corollary 2.6 to show that the entries Tij in (8) commute with one another modulo the 
compact operators. So Theorem XI.7.3 implies that detT is a Fredholm operator. 

Since our class of symbols is closed under the product of (matrix) functions, 
det W is again a symbol. Let Tdet W be the corresponding Wiener-Hopf operator (acting 
on L 2([0,00))). A repeated application of Theorem 2.3 implies that detT - TdetW is a 
compact operator. It follows that Tdet W is a perturbation of detT by a compact operator, 
and hence Tdet W is a Fredholm operator. By Part (iii) of the proof this implies that its 
symbol does not vanish on the real line, that is, det Wet) =1= 0 for all t E R. 

PART (v). It remains to prove the formula for the index. To do this we first 
show that, without loss of generality, we may assume that the symbol W is rational. 
Consider functions of the form 

(10) h(t) = ." { 
altnl e-iO<l t t > 0 

a2tn2 e-10<2 t , t < 0, 

where aI, a2 are arbitrary complex numbers, ~al < 0 and ~a2 > o. The linear span of 
functions h of the form (10) is dense in L 1(R). So we can find a sequence kl.·k2, ... of 
m x mmatrix functions, kn = [(kn)ijlij=l' such that 

m m 

(11) L L IIkij - (kn)ijllr -+ 0 (n-+oo), 
i=l j=l 

and for each n the (i, j)-th entry of kn is a finite linear combination of functions h of the 
form (10). In (11) the function kij is the (i,j)-th entry of the kernel function k of T. 
Put 

00 

(Tn<p)(t) = <pet) - J kn(t - s)<p(s)ds, 

o 
t ;:: 0, 
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00 

Wn(S) = 1m - J eistkn(t)dt, S E R. 
-00 

From (11) it follows (cf. formula (2.2)) that liT - Tnll --+ 0 if n --+ 00, and hence, by 
Theorem 2.2, 

(12) sup IIW(t) - Wn(t)1! --+ 0 
tER 

(n --+ 00). 

The special form of the entries of kn imply (see the paragraph preceding Lemma 2.5) 
that the symbols WI (.:\), W2(':\), ... are rational matrix functions. 

Now assume that T is Fredholm (and thus det Wet) =J 0 for all t E R). Since 
Tn --+ T in the operator norm, there exists a positive integer no such that for n ~ no 
the operator Tn is Fredholm and indTn = indT. From (12) it follows that there exists 
nI ~ no such that 

(13) I det Wn(t) - det W(t)1 < I det W(t)l, t E R, 

for each n ~ nl. Note that det W(±oo) = det Wn(±oo) = 1 for all n. Thus (13) implies 
(see the paragraph preceding the present proof) that for n ~ nI the curve parametrized 
by 

(14) t 1-+ det Wn(t), -00 ~ t ~ 00, 

does not pass through the origin and the winding number relative to the origin of this 
curve is equal to the winding number relative to the origin of the curve parametrized by 
(1). We conclude that it suffices to derive the formula for the index for the case when 
the symbol is rational. 

PART (vi). Assume that T is Fredholm, and let its symbol W be a rational 
matrix function. In this part we shall show that it suffices to derive the formula of the 
index for the case when m = 1. Again consider the representation (8). Since the symbol 
is rational, Corollary 2.6 implies that the entries Tij in (8) commute with one another 
modulo the operators of finite rank. But then we can use Theorem XI.7.6 to show that 
detT is Fredholm and ind T = ind( detT). 

Let Tdet W be the Wiener-Hopf operator with symbol det W. We already 
proved that detT - Tdet W is a compact operator. Thus Tdet W is a Fredholm operator 
and 

ind T = ind( detT) = ind Tdet w. 

Note that det W is a rational function. So it suffices to derive the formula of the index 
for the case when m = 1 and W rational. 

PART (vii). Now take m = 1, and let T be a Wiener-Hopf operator on 
L2 ([O, 00)) with a rational symbol w. We assume that T is a Fredholm operator (and 
thus wet) =J 0 for all t E R), and we shall compute the index of T. Write w(s) = pes )/q(s), 
where p and q are scalar polynomials with no common zeros. By the continuous analogue 
of the Riemann-Lebesgue lemma, w(.:\) --+ 1 if 1.:\1 --+ 00, and hence the degree of p is 
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equal to the degree of q. Furthermore, p and q have no zeros on the real line, because w 
has no poles on Rand wet) -:f 0 for t E R. Let n+ (resp. k+) be the number of zeros of p 
(resp. q) in the open upper half plane, and let n_ (resp. k_) be the number of zeros of p 
(resp. q) in the open lower half plane. Then n+ + n_ = k+ + k_, and hence we may put 

(15) 

It follows that w may be factored as 

(
A_i)r l+ (A-an L (A-aj) 

w(s) = A+i . n: (A-bT)' n: (A-b-:-)' 
1=1 1 1=1 1 

(16) 

where aj, bj are in open upper half plane and aj, bj are in the open lower half plane. 

Put T( s) = (s - a)( s - b) -1 with a, b non-real, and let ST' be the Wiener-Hopf operator 
on L 2 ([0, 00)) with symbol T. From formulas (2.21) and (2.22) we see that 

{ 
J(t) - i(b - a) j e-ib(t-s) J(s)ds, if '2Sb < 0, 

(17) (SrJ)(t) = ~ 
J(t) + i(b - a) { e-ib(t-s) J(s)ds, if '2Sb > O. 

Let O'(A) = (A - b)(A - a)-l = T(A)-l, and let Su be the Wiener-Hopf operator on 
L2([0, 00)) with symbol 0'. One obtains Su J by interchanging a and b in the right hand 
side of (17). A direct computation shows that 

(18) 

(19) 

(20) 

It follows that 

'2Sb < 0, 

KerSr = {ce- iat IcE C}, '2Sb> O. 

n(Sr) = d(Sr) = 0, 

n(Sr) = 0 d(Sr) = 1, 

n(Sr) = 1, d(Sr) = 0, 

('2Sa )('2Sb) > 0, 

'2Sa > 0, '2Sb < 0, 

'2Sa < 0, '2Sb > O. 

Let "'r be the winding number relative to the origin of the curve parametrized by t __ T( t). 
By comparing the above formulas for n(Sr) and d(Sr) with the expression (4) we see 
that ind Sr = -"'r' From the definition of the winding number in (2) it follows that 
the winding number corresponding to a product of functions is equal to the sum of the 
winding numbers corresponding to the factors. So, by repeatedly using (4), we obtain 
from (16) that the winding number (relative to the origin) of the curve parametrized by 
t I-t wet) is equal to r. Furthermore, by repeatedly applying Corollary 2.6, we see that 
the index of T is the index of a product of Fredholm operators of the form Sr. Since 
the index of a product is the sum of the indices of the separate factors, we conclude that 
indT = -r. 0 



CHAPTER XIII 

WIENER-HOPF INTEGRAL OPERATORS WITH 
RATIONAL SYMBOLS 

In this chapter we study in more detail Wiener-Hopf integral operators with a 
rational matrix symbol. The technique of Wiener-Hopf factorization is introduced. The 
fact that the symbols are rational allows us to represent them in a special way. We use 
this representation to construct explicitly the factors in a canonical Wiener-Hopf factor
ization. In this way explicit formulas for the inverse and the Fredholm characteristics 
are obtained. Also convolution operators on a finite interval are analyzed in terms of the 
special representation of the symbol. An example from linear transport theory illustrates 
the general theory. 

XIII.1 PRELIMINARIES AND SCALAR CASE 

Let W be a rational matrix function. Thus each of the entries of W is the 
quotient of two polynomials. The expression "W has no poles in the set ~" will mean 
that none of the entries of W has a pole in ~. In that case W is analytic on ~. In what 
follows ng;;xm(R) denotes the set of all rational m x m matrix functions that have no 
poles on the real line and at infinity. The latter means that 

(1) W(oo): = lim W("\) 
)..-+00 

exists. 

Let T be a Wiener-Hopf operator on L2([0,00)) with symbol W. Thus 
T = I - K, where 

(2) 

(3) 

00 

(Ktp)(t) = J k(t - s)tp(s)ds, 

o 

00 

o ~ t < 00, 

W("\) = Im - J ei)..tk(t)dt. 

-00 

Here k is an m x m matrix function whose entries belong to L1 (R). Throughout this 
chapter we assume that W is rational. This implies that W E n~xm(R) and W(oo) = 
Im. Indeed, (3) implies that W is continuous on R (and thus W has no poles on R), and, 
by the continuous analogue of the Riemann-Lebesgue lemma, the limit (1) exists and is 
equal to Im. 

We shall use the fact that the converse statement is also true, i.e, if W E 
ng;;xm(R) and W(oo) = I m , then there exists an m x m matrix function k with entries 
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in Ll (R) such that (3) holds. Recall that this fact was established in the proof of Lemma 
XII.2.5 by using the partial fraction expansion of the entries of W. 

THEOREM 1.1. Let T be the Wiener-Hopf operator on L2'([O, 00)) with 
rational symbol W. Assume that W has no poles in S<A ~ 0 (resp. S<A:5 0) and 
det W(A) =f:. 0 for ~A ~ 0 (resp. ~A :5 0). Then T is invertible and T-l is the Wiener
Hopf operator with symbol W(-)-l. 

To prove Theorem 1.1 we need the following further refinement of Theorem 
XII.2.3. 

PROPOSITION 1.2. Let Tl and T2 be Wiener-Hopf operators on L2'([O, 00)) 
with rational symbols WI and W2, respectively, and let T be the Wiener-Hopf operator 
with symbol W, where W(s) = Wl(S)W2(S) for all s E R. Then T = TIT2, whenever 
WI has no poles in ~A < 0 or W2 has no poles in ~A > O. 

PROOF. We use the notation introduced in the proof of Theorem XII.2.3. 
Assume that W1(A) has no poles in ~A < O. We know that Wl(A) has no poles on the 
real line and at infinity. Thus the partial fraction expansions of the entries of Wl(A) and 
formula (22) in Section XII.2 tells us that 

o 
(4) WI(A) = Im - J ei>.tk1(t)dt, 

-00 

where kl is an m x m matrix function with entries in Ll(R) and k1(t) = 0 for t > O. By 

definition the operator AW appearing in formula (24) of Section XII.2 is given by 

o 

(AWcp)(t) = - J k1(t - s)cp(s)ds, t ~ 0, 

-00 

and hence AW = O. But then formula (24) of Section XII.2 implies that T = T1T2. The 
same result holds true when W2(A) has no poles in S<A > 0, because then the operator 

A~~) in formula (24) of Section XII.2 is the zero operator. 0 

PROOF OF THEOREM 1.1. Our hypotheses imply that W(-)-1 E 
R.~xm(R) and W( 00 )-1 = Im. Thus W(-)-1 is the symbol of a Wiener-Hopf opera
tor TX, say. Note that either W(.)-1 has no poles in S<A ~ 0 or W(-)-1 has no poles 
in S<A :5 O. Now apply Proposition 1.2, first with WI = Wand W 2 = W(-)-I, and next 
with WI = W(-)-1 and W2 = W. It follows that TT x and TXT are equal to the identity 
operator on L2'([O, 00 )), and hence T X = T-I. 0 

To show the importance of Theorem 1.1, let us restrict the attention to the 
scalar case. So let T be a Wiener-Hopf operator on L2([0, 00)) with a scalar rational 
symbol w. Assume W(A) #- 0 for A E R. In Part (vii) of the proof of Theorem XII.3.1 we 
have shown (see formula (16) in Section XII.3) that W may be represented in the form 

(5) A E Fil, 
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where w+ (resp. w_) is a scalar rational function with no poles and zeros in ~A 2: 0 
(resp. ~.\ ::; 0), 

w±( 00) = lim w±(.\) = 1, 
.\ ..... 00 

and K is the winding number relative to the origin of the curve parametrized by wet) 
for -00 ::; t ::; 00. The representation (5) is called the Wiener-Hopf factorization of w 
relative to the real line. In the next theorem we write Tcp for the Wiener-Hopf operator 
on L2([0, 00)) with symbol cpo 

THEOREM 1.3. Let T be the Wiener-Hopf operator on L2([0,00)) with 
Jcalar rational symbol w. AJJume wet) -f. ° for t E R, and let 

be the Wiener-H opf factorization of w relative to the real line. Then T is invertible if 
and only if K = 0, and in that case 

T- I = T _loT -1. w+ w_ 

Furthermore, if K > 0, then T is right invertible, dCT) = K and a right inverse of T is 
given by 

T+ = T -lSfT -1. w+ w_ 

If K < 0, then T is left invertible, neT) = -K and a left inverse of T is given by 

T+ = T -1 (S2)-"'T -1· w+ w_ 

Here S2 (resp. Sr) is the Wiener-Hopf operator on L2([0, 00)) with symbol (A-i)(A+i)-l 
(resp. (A+i)(A-i)-l). 

PROOF. Because of Proposition 1.2 we may write 

(6) 

where To is the Wiener-Hopf operator on L2([0, 00)) with symbol 8(A) = 
[(A - i)(A + i)-I]",. By Theorem 1.1 the factors Tw_ and Tw+ are invertible operators 
with inverses T -1 and T -1, respectively. Proposition 1.2 yields w_ w+ 

(7) 
for K::; 0, 

for K 2: O. 

From the formulas (18), (19) and (20) in Section XII.3 we see that 

(8) 

Thus S1 and S2 are right and left invertible, respectively, and 

(9a) n(Sf) = ind(Sf) = kind(Sl) = k, 
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(9b) d(S~) = - ind(S~) = -kind(S2) = k, 

for k = 1,2, .... The equivalence relation (6) implies that T has the desired properties. 
o 

Theorem 1.3 provides an effective method to find the inverse of a Wiener
Hopf operator on L2([0, 00)) with a scalar rational symbol. The aim of the next sections 
is to apply this method (if possible) to matrix symbols. The first step is to extend the 
notion of Wiener-Hopf factorization to rational matrix functions. 

XIII.2 WIENER-HOPF FACTORIZATION 

Recall that R.~xm(R) is the set of all rational m x m matrix functions that 
have no poles on the real line and at infinity. The following theorem is the main result 
of this section. 

THEOREM 2.1. Let W E R.~xm(R), and assume that det W(A) =I- 0 for 
A E RU{oo}. Then there exist W+, W_ in R.~xm(R) and integers 11:1 ~ 11:2 ~ ... ~ II:m 
such that 

(1) 

and 

(A-i) 11:1 

m 

W(A) = W_(A) 
(A-i) 11:2 

m 

(A_i)lI:m 
m 

(j) W+ has no poles in <;}A ~ 0 and det W+(A) =I- 0 for <;}A ~ 0, 

(jj) W_ has no poles in <;}A ~ 0 and det W+(A) =I- 0 for <;}A ~ 0, 

(jjj) det W±(oo) =I- o. 

A E R, 

The factorization (1) is called a right Wiener-Hopf factorization of W relative 
to the real line. One obtains a left Wiener-Hopf factorization if in (2) the positions of 
the functions W+(A) and W_(A) are interchanged. In what follows we shall often omit 
the word "right". We shall show in the next section that the integers 11:1, ... ,lI:m in (1) 
are uniquely determined by W; they are called the (right) factorization indices. If in 
(1) all indices 11:1, ... , II:m are equal to zero, then (1) is said to be a (right) canonical 
factorization. In general (except for the scalar case), the factors W + and W _ are not 
uniquely determined by W. 

For a scalar rational function an explicit construction of a Wiener-Hopf fac
torization has been given in the previous section. For the matrix case the standard 
construction of the Wiener-Hopf factorization (which we shall give below) does not yield 
explicit formulas for the factors W+ and W_ nor for the indices, but only an algorithm 
which yields the factors and the indices in a finite number of steps. We shall come back 
to this in Section 6. 
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PROOF OF THEOREM 2.1. It will be convenient to pass from the real line 
to the unit circle by using the Mobius transformation 

(2) (r) _ .1 + ( 
"1." - Z • 

1-( 

Put <I> ( 0 = W ("1 ( ()). Then <I> is a rational m x m matrix function. Since "1 maps the 
unit circle Tonto R U {oo}, the function <I> has no poles on T and det <I> ( 0 #- 0 for all 
( E T. We shall show that <I> can be factored as 

(3) 1(1 = 1, 

where 11:1 :::; 11:2 :::; .•• :::; II:m are integers and the functions <I>+ and <I>_ are rational m x m 
matrix functions with no poles on T which have the following properties: 

(i) <I>+ has no poles on 1(1 :::; 1 and det <I> + (0 #- 0 for 1(1 :::; 1, 

(ii) <I>_ has no poles on 1(1 ~ 1 and det <I>-(O #- 0 for 1(1 ~ 1, 

(iii) <I> _ has no pole at infinity and det <I> _ (00) #- O. 

Assume that the factorization has been established. As a map of the Riemann 
sphere C U {oo} into itself the Mobius transformation "1 is bijective and the inverse map 
"1-1 is given by "1-1(,\) = (,\ - i)('\ + i)-I. Put 

(4) W+(,\) = <I>+("1-1(,\)) , W_(,\) = <I>_("1-1(,\)). 

The functions W+ and W_ have the desired properties. Indeed, "1-1 maps the real line 
into the unit circle and "1-1(00) = 1. Thus, W+, W_ belong to R~xm(R) and 

det W±(,\) = det <I>±("1-1(,\)) #- 0, ,\ E R U {oo}. 

Furthermore, since "1-1 maps the open upper half plane onto the open unit disc 1(1 < 1 
and the open lower half plane onto the set 1(1 > 1, the conditions (j) and OJ) are also 
fulfilled. The factorization (1) follows from (3) by replacing ( by (,\ - i)('\ + i)-I. So it 
suffices to establish the factorization (3). 

We shall refer to (3) as a (right) Wiener-Hopf factorization relative to the 
circle. For a sca,lar rational function <p which has no poles and zeros on T, the factor
ization (3) may be constructed by applying the inverse Mobius transformation "1-1 and 
the Wiener-Hopffactorization result for scalar rational functions relative to the real line. 
A more direct argument goes as follows. Write <p(0 as a quotient Ql(0/q2(O of two 
polynomials which have no common zeros. Since <p has no poles and zeros on T, the 
polynomials Ql and Q2 have no zeros on T. Thus we may write 

k+ k-

Ql(A) = C! II (,\ - tj) II (,\ - tj), 
j=l j=l 

£+ £-

Q2('\) = C2 II (,\ - rt) II (,\ - rT), 
j=l j=l 
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where tt and rt are inside the unit circle and the points tj and rT are outside T. Put 
K, = k+ - e+ and 

(5) 

with d = Q/C2. Then 

(6) 

rrj!l (1 - (-ltn 
<p-(O = rrH ( (-1 +)' . 1 1- r· J= J 

(E T, 

and the factors <p_ and <p+ have the properties described by (i), (ii) and (iii). Thus (6) 
is a Wiener-Hopf factorization of <p relative to the unit circle, and we are finished with 
the scalar case. 

Next, we consider the general case. Let .p be a rational m X m matrix function 
which has no poles on T, and assume that det.p( 0 i:- 0 for '(I = 1. Let q be a common 
multiple of all the denominators of.p. Then .p(O = ~P(O, where P(O is an m X m 

matrix whose entries are polynomials in (. (In particular, P has no poles in 1(' ::; 1.) Since 
the entries of .p have no poles on T, we may assume that q has no zeros on T, and hence 
we know (see the previous paragraph) that the scalar rational function <p(O = q(O-l 
admits a Wiener-Hopf factorization relative to T: 

(E T. 

Now assume that P admits a Wiener-Hopf factorization relative to T: 

(7) (E T. 

Then 

(E T, 

is a Wiener-Hopf factorization of .p relative to T. So we have to prove (7). In other 
words, it suffices to prove the factorization for the case when the entries of .p(e) are 
polynomials in (. 

To simplify the proof, let us say that two rational m x m matrix functions .pI 
and .p2 are (left) strictly equivalent if .pl(e) = E(O.p2(O, where E is a rational m x m 
matrix function such that 

(a) E has no poles on '(I ~ 1 and det E(O i:- 0 for 1(' ~ 1, 

(;3) E has no pole at infinity and det E( 00) i:- O. 

We have to prove that .p is strictly equivalent to a function of the form 

where .p+ is as in (i). 
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Let ~(O be an m x m matrix whose entries are polynomials in (, and assume 
det~(O =1= 0 for '(I = 1. Let Tl, ... ,Tq be the zeros of det~(O in '(I < 1, and let 
R1 , ... ,Rq be the corresponding multiplicities. We assume that Tq = 0, and put Rq = 0 if 
Tq is not a zero for det ~(.). Consider the j-th row of ~(O: 

Let Pj be the mInImUm of the multiplicities of Tl as a zero of the polynomials 
~jl(O, ... , ~jm(O· We call Pj the j-th row multiplicity of Tl· Obviously, PI + ... +Pm ::; 
Rl · If "L.r;~l Pj < Rl, then 

det[(( - Tl)-Pj~jk(Olrk=l 

is zero in ( = Tl. So there exists complex numbers C!, ... , Cm, not all equal to zero, such 
that 

m 

f(O = L Cj(( - Tl)-Pj fj(O 
j=l 

has a zero in Tl. Choose Cr =1= 0 such that Pr ::; Pj when Cj =1= O. Consider 

1 

1 
Cr 

1 

1 

Note that det Er( 0 = Cr for ( =1= Tl. Since Cr =1= 0, it follows that for E = Er the 
conditions (a) and ({3) are fulfilled. Thus multiplication on the left by Er is a strict 
equivalence operation. Observe that Er( O~( 0 is obtained from ~(O by replacing the 
r-th row in ~(O by (( - Tl)Pr f(O. This implies that the entries of Er(O~(O are again 
polynomials. From 

det (Er( ()~( 0) = Cr det ~(O, 

we may conclude that in 1(' < 1 the zeros of det(Er(O~(O) coincide with those of 
det ~(O, multiplicities taken into account. Now, let pi, ... ,Pm be the row multiplicities 
of Er(O~(O for Tl. Then pj = Pj for j =1= rand Pr ;::: Pr + 1. Thus (apply a number 
of strict equivalence operations if necessary) we may assume that the sum of the row 
multiplicities for Tl is equal to Rl. 

So, assume that 2:.f=1 Pj = Rl . Consider 

[ 
C:~TI)PI 

F(()= 
o 
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Multiplication on the left by F( 0 is a strict equivalence operation. Put <,p1 (0 = 
F(O<,p(O. Then the entries <,p1(O are polynomials. Moreover, in ICI < 1 the func
tion det <,p1(O has zeros in 72, ... , 7 q with multiplicities £2, ... ,£q-1,£q + £1. Now apply 
an induction argument. It follows that after a finite number of strict equivalence opera
tions we may reduce the factorization problem to the case where the entries of <,p( 0 are 
polynomials, det <,pC 0 has only a zero in the origin and the sum of the row multiplicities 
for 0 is equal to the multiplicity of 0 as a zero of det <,p(O. But this case is easy to treat. 
Indeed, put 

where 11:1, ... , II:m are the row multiplicities for 0 of the rows in <,p(O. Then the entries 
of <,p+( 0 are polynomials and det <,p+( 0 = C- l det <,p( 0, where £ = I:~1 II:j. Thus 
det <,p+(O =f. 0 for ICI ~ 1 and 

<,p(O = ([CKjoij]2j=1)<,p+(O, C E T, 

is a Wiener-Hopf factorization relative to T. Note that by reordering the rows in the 
diagonal term (which is a strict equivalence operation), we may assume that 11:1 ~ 11:2 ~ 
... ~ II:m. 0 

From the properties of the factors in (1) it is clear that the condition 
"det W(A) =f. 0 for A E R U {CXl}" in Theorem 2.1 is a necessary condition for the existence 
of a Wiener-Hopf factorization relative to the real line. 

XIII.3 INVERSION AND FREDHOLM CHARACTERISTICS 

The results of this section may be viewed as the matrix analogue of Theorem 
1.3. We shall prove the following two theorems. 

THEOREM 3.1. Let T be a Wiener-Hopf operator on Lr([O, CXl)) with a 
rational symbol W. Then T is invertible if and only if 

(i) det W(A) =f. 0 for all A E R, 

(ii) W admits a (right) canonical factorization relative to the real line. 

In that case the inverse of T is obtained in the following way. Construct a right canonical 
factorization W(A) = W_(A)W+(A), A E R, and choose m x m matrix function 'Y- and 
'Y+ with entries in L1(R) such that 

CIa) 

(Ib) 

o 
W_(A)-1 = 1m + J ei>'t'Y_(t)dt, 

-00 

00 

W+(A)-l = 1m + J ei>.t'Y+(t)dt. 

o 
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Then 

(2) 

where 

(3) 

00 

(T-l,p)(t) = ,pet) + J I(t,s),p(s)ds, 

o 

{ 
,+(t - s) + l,+(t - ah-(a - s)da, 

,et,s) = t 

I-(t - s) + J ,+(t - ah-(a - s)da, 
o 

t ~ 0, 

o ::; s < t < 00, 

o ::; t < s < 00. 

THEOREM 3.2. Let T be a Wiener-Hopf operator on Lr([O,oo» with a 
rational symbol. Assume that det W(A) =F 0 for all A E R, and let 

(4) A E R, 

be a Wiener-Hopf factorization of W relative to the real line. Then T is a Fredholm 
operator 

(5) neT) = L -Kj, d(T) = L Kj, 

H:'<O 1-

and a generalized inverse of T is given by the operator 

S2H:l 

I 
(6) 

I 

H:' >0 1-

s;m 
where VI and V2 are the Wiener-Hopf operators on Lr([O,oo» with symbols W+(·)-1 
and W _0-1 , respectively, Sl and S2 are the Wiener-Hopf operators on L2([0, 00» 
defined by 

(7) 

(8) 

00 

(Sd)(t) = f(t) - 2 J et- s f(s)ds, 

t 

t 

(S2I)(t) = f(t) - 2 J es-tf(s)ds, 

o 

t ~ 0, 

t ~ 0, 
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the numbers 11:1> ••• , II:r are the negative factorization indices, II:s+1, .. ·, II:m are the pos
itive factorization indices, and the unspecified entries of the m x m operator matrix in 
(6) are zero. 

Theorem 3.1 will appear as a corollary of Theorem 3.2. Therefore we begin 
with the proof of the latter theorem. 

PROOF OF THEOREM 3.2. Let T1 and T2 be the Wiener-Hopf operators 
with symbols W+ and W_, respectively, and let TD be the Wiener-Hopf operator with 
symbol D(A) = [8kj (f-Fftj J:'j=1. By Proposition 1.2 

(9) 

From Theorem 1.1 we know that T1 and T2 are invertible operators, TIl = VI and 
T2- 1 = V2, where VI and V2 are as in the theorem. So to find the Fredholm properties 
of T we have to analyze the operator TD. 

The symbol of the Wiener-Hopf operator S2, defined in (8), is equal to r(A) = 
(A - i)(A + i)-I, and Sl is the Wiener-Hopf operator with symbol U(A) = r(A)-l. So 
we may apply formulas (8) and (9) in Section 1 to show that Sl and S2 are Fredholm 
operators and 

(lOa) n(Sf) = k, d(Sf) = 0, indSf = k, 

(lOb) n(S~) = 0, d(S~) = k, indS~ = -k, 

for k = 1,2, .... Now TD is the m x m diagonal operator matrix 

d· (S-1t1 S-Itr I I SIt,+l Sltm) lag 1 ' .•. , 1 " ... , , 2 ' ... , 2 . 

From (lOa) and (lOb) it follows that TD is a Fredholm operator and 

r m 

(11) n(TD) = L -lI:j, d(TD) = L II:j. 

j=l j=s+l 

The equivalence relation (9) implies that T is a Fredholm operator, n(T) = n(TD) and 
d(T) = d(TD), which yields (8). From SlS2 = I it follows that operator defined by 
the diagonal matrix in the right hand side of (6) is a generalized inverse of TD. Since 
VI = TIl and V2 = T2- 1, we conclude that (6) defines a generalized inverse of T. 0 

PROOF OF THEOREM 3.1. Assume that T is invertible. In particular, T 
is Fredholm, and thus Theorem XII.3.1 implies that condition (i) is fulfilled, and hence, 
by Theorem 2.1, the symbol W admits a Wiener-Hopffactorization as in (4). Since T is 
invertible, n(T) = d(T) = O. But then formula (5) implies that all the indices II:j in (4) 
must be zero, and the factorization is a canonical one, which proves (ii). . 

Conversely, assume (i) and (ii) hold. Then W admits a factorization as in 
(4) with II:j = 0 for j = 1, ... , m. Thus Theorem 3.2 implies that T is invertible and 
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T-I = VI V2, where VI and V2 are the Wiener-Ropf operators with symbols W+(.)-I 
and W_(-)-l, respectively. Since W+(),)-I has no poles in <;S), 2: 0, we know (see the 
proof of Proposition 1.2) that (Ib) holds for some m X m matrix function 1+ with entries 
in LI(R). It follows that 

Similarly, 

t 

(VI~)(t) = ~(t) + J I+(t - s)~(s)ds, 
o 

00 

t 2: o. 

(V2~)(t) = ~(t) + J I-(t - s)~(s)ds, t 2: 0, 

t 

where 1_ is as in (Ia). We may assume that ,+(t) = 0 for t < 0 and I-(t) = 0 for t > o. 
It follows that 

00 

(VI V2~)(t) = (V2~)(t) + J ,+(t - a)(V2~)(a)da 
o 

00 00 

= ~(t) + J I-(t - s)~(s)ds + J ,+(t - a)~(a)da 
o 0 

00 00 

+ J 1+(t-a)(J I_(a-s)~(s)ds)da. 
o 0 

By Fubini's theorem the order of the integrals in the last term may be interchanged. 
This yields 

00 t 

= ~(t) + J I-(t - s)~(s)ds + J I+(t - s)~(s)ds 
t 0 

00 min(t,s) 

+ J( J 1+(t-ah-(a-s)da)~(s)dS, 
o 0 

which proves (2) and (3). 0 

Formula (5) can be used to prove that the factorization indices are uniquely 
determined by W. Indeed, let 

We),) = W_(),) ([Oki (~ ~ D Ki] :i=J W+(),), ), E R, 

be a Wiener-Ropf factorization of W relative to the real line. Put 

Wv (),) = ~ We),)· (), .)-V 
), + z 
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Note that K.j = Itj - II, j = 1, ... ,m, are the factorization indices for W v. Let Tv be the 
Wiener-Hopf operator on L2([O, 00)) with symbol Wv , and apply the second identity in 
(5) to Tv and Tv+!. One obtains that 

d(Tv) - d(Tv+!) = L (ltj -II) - L (ltj - II -1) 
Itj-V~O Itj-v-l~O 

= L 1 = #{j Iltj ~ II + I}. 
Itj -v~l 

It follows that 

#{j Iltj = II} = d(Tv-l) - 2d(Tv) + d(Tv+1), 

which shows that the factorization indices are uniquely determined by W. 

To make Theorem 3.1 an effective tool for the inversion of Wiener-Hopf oper
ators one has to compute explicitly the inverse Fourier transforms in (la) and (lb). The 
special representation that will be introduced in the next section, provides a solution for 
this problem. 

XIII.4 INTERMEZZO ABOUT REALIZATION 

In this section we show that the matrix functions in 'R.~xm(R) admit a special 
representation. 

THEOREM 4.1. A rational m X m matrix function W with no poles on the 
real line and at infinity admits the following representation 

(1) W(A) = D + C(A - A)-l B, .A E R. 

Here A is a square matrix of size n x n, say, and A has no real eigenvalue, Band C 
are matrices of size n x m and m X n, respectively, and D = W( 00). 

PROOF. Let A1. ... ,.Ap be the poles (of the entries) of W. Fix 1 ::s; j ::s; p, 
and consider the Laurent series expansion of W in a punctured neighbourhood of Aj: 

00 

W(A) = L (.A - Aj)" Aj,v-
v=-qj 

Introduce the following block matrices 

AjI I 

[ Aj,-l 1 AjI I 
Aj,-2 

Nj = Qj = 

Aj,~qj, ' AjI I 
AjI 

Rj = [I 0 0]. 
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Here I denotes the m x m identity matrix, the blanks in Nj stand for zero entries, 
and Nj has (block) size qj x qj. The matrix>. - Nj is invertible for>. i= >'j, and 
W(>.) - Rj(>' - Nj)-lQj is analytic in >'j. We carry out this construction for each j, 
and define 

C = [Rl R2 Rp ]. 

Note that A is a block diagonal matrix with diagonal elements N1, N2,"" Np. So the 
eigenvalues of A are precisely the poles >'1, ... , >'p. In particular, A has no eigenvalues 
on the real line. From 

p 

C(>. - A)-l B = L. Rj(>' - Nj)-lQj, 
j=l 

we conclude that V(>.): = W(>') - C(>. - A)-l B is analytic in >. on the entire complex 
plane. Furthermore, 

lim V(>.) = W(oo). 
>. ...... 00 

Liouville's theorem for entire functions implies that V(>') is identically equal to D 
W(oo), which yields the representation (1). 0 

If W is as in (1), then we shall say that W is in realized form, and we shall 
call the right hand side of (1) a realization of W. Note that for W E R.~xm(R) the 
matrix A in a realization of W has no real eigenvalue by definition. 

In what follows we identify a p X q matrix with the linear transformation from 
cq into CP defined by the canonical action of the matrix relative to the standard bases 
in cq and Cp. In particular, the matrix A appearing in (1) will be viewed as an operator 
on cn. 

The next theorem shows how realizations may be used to construct inverse 
Fourier transforms. 

THEOREM 4.2. Let W E R.~xm(R), and let W(>.) = D + C(>. - A)-l B, 
>. E R, be a realization. Then 

(2a) 

with 

(2b) 

00 

W(>.) = D - J ei>.tk(t)dt 

-00 

k(t) = . ' { 
iCe-itA(I - P)B 

-iCe-1tAPB, 

t > 0, 

t < 0, 
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where P is the Riesz projection of A corresponding to the eigenvalues in the upper half 
plane. 

PROOF. It suffices to show that for>. not an eigenvalue of A the following 
identity holds: 

(3) { 
-i J ei>'te-itAxdt, x E Ker P, 

(>.-A)-Ix = ~ 
i J ei>'te-itAxdt, x E 1m P. 
-00 

To prove (3) take x E Ker P. Put Al = AI Ker P. Note -iAI has all its eigenvalues in 
the open left half plane. Thus e-itAx = e-itA1 x is exponentially decaying (see Section 
1.5). Furthermore, 

It follows that 
00 00 

(>. - A)(i J ei>.te-itAxdt) = J (ei(>.-A)t x )' dt = -x, 

o 0 

which proves the part of (3) connected with Ker P. For x E ImP a similar argument can 
be used. 0 

XIII.5 INVERSION OF CONVOLUTION OPERATORS 

In this section I - L is a convolution operator on L2'(R) with a rational 
symbol W. Recall that W has no poles on the real line and 

W(oo):= lim W(>.) = 1m, 
>'-'00 

and so, by Theorem 4.1, the symbol W admits a realization 

(1) W(>.) = 1+ C(>. - Ar l B, 

Our aim is to describe the inversion of I - L in terms of the matrices A, Band C. 

THEOREM 5.1. Let I -L be a convolution operator on L2'(R) with a rational 
symbol W, and let (1) be a given realization of W. Then 1- L is invertible if and only 
if the matrix A x: = A - BC has no real eigenvalue. In that case 

00 

(2) ((I - L)-Icp)(t) = cp(t) - J e(t - s)cp(s)ds, t E R, 

-00 

with 

(3) kX(t) = -z e. x - ,t > , { 
'C -itAX (I PX)B 0 

iCe-ztA px B, . t < 0, 
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where px iJ the RieJz projection of AX correJponding to the eigenvalueJ in the upper 
half plane. 

For the proof of Theorem 4.1 we need the following lemma. 

LEMMA 5.2. Let W be aJ in (1). Then det W(A) =1= 0 for all A E R if and 
only if AX: = A - BC has no real eigenvalue, and in that case 

(4) 

PROOF. By Corollary VII.6.2 

det W(A) = det[I + C(A - A)-l B] 

= det[1 + (A - A)-l BC] 

= det[(A - A)-I(A - A X)] 

det(,\ - AX) 
= , 

det(A - A) 

Thus if A E R, then det W(A) =1= 0 if and only if A is not an eigenvalue of AX . 

Next, assume that det(,\-A X ) =1= 0, and let us solve the equation W('\)x = y. 
Introduce a new unknown by setting z = ('\_A)-l Bx. Then given y we have to compute 
x from 

(5) { AZ = Az + Bz, 
y=Cz+x. 

This is easy. Apply B to the second equation in (5) and subtract the result from the first 
equation in (5). This yields the following equivalent system: 

which proves (4). 0 

{ 
AZ = A x z + By, 

x = -Cz+y. 

PROOF OF THEOREM 5.1. By Theorem XII.1.4 the operator 1- L is 
invertible if and only if det W('\) =1= 0 for all A E R, and, by the previous lemma, the latter 
condition is equivalent to the requirement that A x: = A - BC has no real eigenvalue. 
From Theorem XII. 1.4 we also know that in that case the inverse of 1- L is given by (2) 
with k x uniquely determined by 

00 

W(.\)-l = 1m - J eiAte(t)dt, A E R. 

-00 
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Since W(,\)-l has the realization (4) we can apply Theorem 4.2 to get the expression 
(3) for P. 0 

The following lemma will be used in the next section. 

LEMMA 5.3. Let W be as in (1), and assume that det W(,\) :f. 0 for all 
,\ E R. Put A x = A - BC. Then for ,\ E R 

C(,\ - AX)-l = W(,\)-IC(,\ - A)-I, 

(,\ - A x )-IB = (,\ _ A)-l BW(,\)-l, 

(,\ - A X)-l = (,\ _ A)-l _ (,\ _ A)-l BW(,\)-IC('\ _ A)-I. 

PROOF. From Lemma 5.2 we know that ,\ - A x is invertible for each ,\ E R. 
The desired formulas follow by a direct computation, using (4) and the identity 

(6) 

XIII.6 EXPLICIT CANONICAL FACTORIZATION 

This section concerns explicit factorization in terms of a given realization. 
We begin with canonical factorization. 

THEOREM 6.1. Let W be a rational m x m matrix function without poles 
on the real line and at infinity, and let W be given in realized form: 

(1) W(,\) = D + C(,\ - A)-l B, 

Let n be order of the matrix A. Then W admits a right canonical factorization relative 
to the real line if and only if 

(i) D is invertible and A x: = A - BD-IC has no real eigenvalues, 

(ii) en = ImP EB Ker px. 

Here P and px are the Riesz projections of A and AX, respectively, corresponding to 
the eigenvalues in the upper half plane. If conditions (i) and (ii) are fulfilled, then a right 
canonical factorization W(,\) = W_(,\)W+(,\), ,\ E R, is obtained by taking 

(2) W_(,\) = D + C(,\ - A)-I(I - II)B, 

(3) 

(4) ,\ E R, 

(5) 

where II is the projection of en along 1m Ponto Ker px. 
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PROOF. We know (see the last paragraph of Section 2) that the condition 
"det W(..\) #- 0 for all ..\ E R U {oo}" is a necessary condition for the existence of a 
canonical factorization. Thus in order that W admits such a factorization, the matrix 
D = W( 00) must be invertible and, by applying Lemma 5.2 to 

(6) V("\): = D-IW(,,\) = Im + D-IC(..\ - A)-I B, ..\ E R, 

one sees that A x: = A - BD-IC cannot have a real eigenvalue. Thus condition (i) is 
fulfilled whenever W admits a canonical factorization. 

Assume that conditions (i) and (ii) hold true. Write A, B, C and AX as 
operator matrices relative to the decomposition in (ii): 

(7) 

(8) 

(9) C=[CI C2j:lmPEBKerpx _em, 

(10) o ]: 1m P EB Ker P x _ 1m P EB Ker P x . 
A~2 

The zeros in the left lower corner of the matrix in (7) and in the right upper corner of 
the matrix in (10) are justified by the fact that ImP is invariant under A and Ker px is 
invariant under A x. From A x = A - BD-IC it follows that 

(11) 

(12) 

Let W_ and W+ be the matrix functions defined by (2) and (3), respectively. By using 
the block matrix representations (7)-(9) we may rewrite W _ and W + in the following 
form: 

(13) 

(14) 

From (7) and the first identity in (11) one sees that 

[ ..\ - All 
W_("\)W+("\) = D + [CI C2 J 0 

= D + C(..\ - A)-I B = W("\), 

-BI D-IC2 
..\ - A22 

..\ E R, 
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which gives us the desired factorization. 

Recall that A has no eigenvalues on the real line. Since 1m P is the maximal 
A-invariant subspace M of en such that AIM has all its eigenvalues in the open upper 
half plane, the matrix All has all its eigenvalues in the open upper half plane and A22 has 
all its eigenvalues in the open lower half plane. A similar argument applied to A x shows 
that A;2 has all its eigenvalues in the open lower half plane and A~l has all its eigenvalues 
in the open upper half plane. In particular, A~l and A;2 have no real eigenvalues. But 
then we can use the identities in (12) and Lemma 5.2 to conclude that 

(15) 

(16) 

To get (15) from (13) one applies Lemma 5.2 to D-l W _(,>.). From the location of the 
eigenvalues of All, A22, A~l and A;2 it is now clear that the conditions (j)-(jjj) in 
Theorem 2.1 are fulfilled. Thus our factorization W(,\) = W_(,\)W+(,\), ,\ E R, is a 
right canonical factorization. The formulas (4) and (5) follow from (15) and (16), the 
block matrix representations (8)-(10), and the definition of the projection II. 

Next, we consider the converse. Assume that W admits a right canonical 
factorization relative to the real line: 

(17) 

We already know that this implies (i). So we have to prove (ii). Take x E 1m P n Ker px, 
and put 

(,\ E R). 

Since x E 1m P, the function If!- has an analytic continuation to the closed lower half 
plane 8''\ :5 0, and x E Ker px implies that If!+ has an analytic continuation to <;S,\ ~ O. 
Note that W('\)If!+('\) = If!-('\), ,\ E R, because of Lemma 5.3 (applied to D-IW(,\». 
It follows (use the factorization (17» that 

(18) 

Now employ the properties of the factors W_ and W+ and Liouville's theorem. We 
obtain that both terms in (18) are identically zero, and thus If!-('\) = 0 for all ,\ E R. 
But then we can apply the third identity in Lemma 5.3 to show that 

(19) 

holds for all ,\ E R and hence also for all ,\ outside the eigenvalue sets of A and A x. Take 
a contour r in the open upper half plane such that the eigenvalues of A and A x in the 
open upper half plane are inside r. Integrating (19) over r yields 0 = px x = Px = x. 
Thus ImP n Ker px = (0). 
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We proceed by showing that en = 1m P + Ker P x. Take y E en such that 
y .1 (1m P + Ker PX). Let y* be the row vector of which the j-th entry is equal to the 
complex conjugate of the j-th entry of y (j = 1, ... , m). Put 

(A E R). 

Since y* P = 0, we have ~p+(A) = y*(A - A)-I(J - P)B, and hence tP+ has an analytic 
continuation to ~A ~ o. From y*(J - PX) = 0 it follows that tP- has an analytic 
continuation to ~A ~ o. Lemma 5.3 (applied to D-l W(A)) implies that tP_(A)W(A) = 
tP+(A), A E R, and hence we can use the same arguments as in the preceding paragraph 
to show that y = O. The equality in (ii) is now proved. 0 

Let W be as in (1). From the remark made in the first paragraph of the proof 
of Theorem 6.1 one may deduce that W admits a Wiener-Hopf factorization relative to 
the real line if and only if D is invertible and A x: = A - BD-IC has no real eigenvalue. 
Let us assume that these conditions are fulfilled. Then, as for canonical factorization, one 
can describe explicitly the factors in a Wiener-Hopf factorization of W in terms of the 
matrices A, B, C and D appearing in the realization (1). Also the factorization indices 
may be expressed in terms of these matrices. The formulas for the factors are more 
complex than in the case of canonical factorization and we shall not give them here. To 
obtain the factorization indices in terms of the realization (1) we proceed as follows. Put 
M = 1m P and MX = Ker px, where P and px are the lliesz projections of A and A x, 
respectively, corresponding to the eigenvalues in the upper half plane. Then there are 
precisely t negative factorization indices Itl, ... ,Itt and precisely s positive factorization 
indices Itt+l, ... ,ltt+s, where 

t = dim MnMx 
"::"M-::--n-M~x"""-n""'K=-e-r C-=, 

-di M+Mx+lmB 
s- m M+Mx . 

Furthermore, these factorization indices are given by 

where 

Itj = -#{v ~ 1 I dim(KII_d K II ) ~ j}, j = 1, ... ,t, 

Itj = #{v ~ 11 dim(HII /HII _I) ~ s + t - j + I}, 

KII = M n M X n KerC n··· n KerCAII - 1 , 

HII = M + M X +!mB + ... + ImAII - 1B, 

Ko = M n M X , Ho = M + MX. 

j = t + 1, ... , t + s, 

For these and related results we refer to Bart-Gohberg-Kaashoek [5]. 

XIII.7 EXPLICIT INVERSION 

In this section the factorization formulas derived in the previous section are 
applied to construct explicitly the inverse of a Wiener-Hopf operator on Lr([O, 00)) with 
a rational (matrix) symbol. The necessary and sufficient conditions for invertibility and 
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the formula for the inverse are expressed explicitly in terms of the data appearing in a 
realization of the symbol. Recall that a rational symbol W belongs to the class n~xm(R) 
and W(oo) = Im, the m X m identity matrix. 

THEOREM 7.1. Let T be a Wiener-Hopf operator on L2'([O, (0)) with a 
rational symbol W given in realized form: 

(1) W(A) = Im + C(A - A)-l B, 

Let n be the order of the matrix A, and put A x = A - BC. Then T is invertible if and 
only if AX has no real eigenvalue and 

(2) en = ImP E9 Kerp x , 

where P and px are the Riesz projections of A and A x, respectively, corresponding to 
the eigenvalues in the upper half plane. In that case, 

(3) 

with 

(4) 

00 

(T-11Jl)(t) = 1JI(t) + J l(t,s)1JI(s)ds, 
o 

t;::: 0, 

o ::; s < t < 00, 
l(t,S) = { 

iCe-itAXIIeisAX B, 

_iCe-itAX (I - II)eisAX B, 0::; t < s < 00. 

Here II is the projection of en along 1m Ponto Ker P x . 

PROOF. Theorems 3.1 and 6.1 imply that Tis invertible if and only if AX has 
no real eigenvalue and (2) holds. Assume that the latter two conditions are satisfied. We 
have to construct the inverse of T. Again we apply Theorems 3.1 and 6.1. By Theorem 
6.1 (which we apply with D = I) the symbol W admits a right canonical factorization 
W(A) = W_(A)W+(A), A E R, with 

W_(A)-l = Im - C(I - II)(A - AX)-l B, A E R, 

To construct T-l we have to compute the inverse Fourier transforms of W_O-l and 
W+O-l. To do this we use Theorem 4.2. Note that (I - II)PX = I - II and pXII = o. 
It follows that 

o 
W_(A)-l = Im + J eiAtl_(t)dt, 

-00 

00 

W+(A)-l = Im + J eiAtl+(t)dt, 

o 
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where 

(5) 1'-(t) = -iC(1 - II)e- itAX B, t :::; 0, 

(6) 

To compute the kernel l' in (3) we shall apply formula (3.3). Since 1m P is invariant under 
A and Ker px under A x, we have IIA(1 - II) = 0 and IIA x (I - II) = IIA x - A x II, and 
thus 

(7) IIBC(1 - II) = II(A - AX)(1 - II) = AXIl - IIAx. 

It follows that 

and hence for 0 :::; s < t < 00 

s 

1'(t,s) = 1'+(t-s) + 11'+(t-ah -(a-s)da 
o 

s 

= 1'+(t - s) - iCe- itAX (1 ie iOtAX IIBC(I - II)e- iOtAX da) eisAX B 

o 

A similar calculation yields the desired expression for 1'( t, s) when 0 :::; t < s < 00. 0 

XIII.8 KERNEL, IMAGE AND GENERALIZED INVERSE 

In this section we use the realization approach to derive explicit formulas for 
the Fredholm characteristics and a generalized inverse of a Wiener-Hopf operator. 

THEOREM 8.1. Let T be a Wiener-Hopf operator on L2([0,00» with a 
rational symbol W given in realized form: 

(1) W(A) = 1m + C(A - A)-l B, A E R. 

Let n be the order of the matrix A, and put A x = A - BC. Then T is a Fredholm 
operator if and only if AX has no real eigenvalue. Next assume that the latter condition 
holds, and let P and px be the Riesz projection of A and A x, respectively, corresponding 
to the eigenvalues in the upper half plane. Then 

(2) KerT = {cp E L 2C[0, 00» I cpCt) = Ce- iiAX x, x E ImP n Ker PX}, 
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00 

(3) 1m T = { '!/J E L;n([O, 00)) J pXeisAX B'!/J(s)ds E ImP + Ker pX }, 

(4) 

(5) 

o 

n(T) = dim(ImP n Ker PX), 
en 

d(T) = dim I P K P , m + er x 

ind(T) = rankP - rankP x , 

and a generalized inverse of T in the weak sense is given by the operator 

(6) 

with 

(7) 

00 

(T+'!/J)(t) = '!/J(t) + J -::Y(t,s)'!/J(s)ds, 
o 

t ~ 0, 

-(t ) ,-, { 
iCe-itAX (I - IT)eisAX B ° < s < t < 00 

I ,s = .AX- .AX 
-iCe-it lIelS B, 0::; t < s < 00. 

Here IT = px + (I - PX)S+ px, where S+ is a generalized inverse of the operator 

(8) S:ImP -+ ImPx, Sx = pXx (x E ImP). 

PROOF. From Theorem XII.3.1 we know that T is Fredholm if and only if 
det W(A) i= ° for each A E R. According to Lemma 5.2 the latter condition is equivalent 
to the requirement that A x has no real eigenvalue. This proves the first part of the 
theorem. 

In what follows we assume that A x has no real eigenvalue. Formulas (2)-(6) 
can be proved by using Theorem 3.2 and explicit formulas for the factors in the Wiener
Hopf factorization (3.4). In particular, one may derive (4) and (5) from formula (3.5) 
and the formulas for the factorization indices Kj given at the end of Section 6. We shall 
follow a different route and employ matricial coupling (see Section IlI.4). We shall show 
that the Wiener-Hopf operator T and the finite dimensional operator S defined by (8) 
are matricially coupled. More precisely, the following coupling relation holds: 

(9) 

Here 

[ T U] -1 _ [TX UX] 
R Q - RX S . 

U:lmpx -+ L;n([O,oo)), 

UX:lmP -+ L;n([O,oo)), 

R: L;([O, 00)) -+ 1m P, 

Q: 1m px -+ ImP, 

(Ux)(t) = iCe-itA(1 - P)x, 

(UXx)(t) = iCe-itAX(J _ PX)x, 
00 

R<p = - J PeisAB<p(s)ds, 
o 

00 

RX<p = J pXeisAX B<p(s)ds, 
o 

Qx = Px, 
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and TX is the Wiener-Hopf operator on L2'([O, 00)) with symbol WO-1. 

To prove (9) we have to verify (8) identities. Here we shall establish four of 
them, namely 

(10) 

(11) 

(12) 

(13) 

TT X + U R X = h;n([o,oo)) 

RTx +QRx =0, 
TUx +US=O, 

RU x + QS = [ImP. 

The other four identities can be obtained by interchanging the roles of W(·) and W(-)-l. 
It will be convenient to consider the convolution operators [-L and [_LX on L2'(R) with 
symbols W(·) and WO-1, respectively. With respect to the decomposition L2'(R) = 
L2'([O, 00)) EB L2'(( -00, OD, we may write [ - L and [ - LX in the following form 

[_L=[T H] 
* * ' : ] . 

From Theorem XIL1.4 we know that (I - L)-l = [- LX. Thus to prove (10) it suffices 
to show that H H X = U RX. Take <.p E L2'([O, 00)). According to Theorem 5.1 

00 

(Hx<.p)(t) = _iCe-itAX J pXeisAX B<.p(s)ds 

o 
·C -itAXRx = -2 e <.p, t ~ O. 

It follows (cf. Theorem 4.2) that 

o 
(HHx<.p)(t) = _iCe-itA J (I - P)eisAB(Hx<.p)(s)ds 

-00 

o 

= i [U (J ([ - P)eisA BCe-isAX PXdS) RX<.p] (t), 
-00 

From 

(14) d ( isA -isAX) . isABC -isAx ds e e = 2e e , 

we conclude that 

o 

i J (I - P)eisA BCe-isAX pXds = (I _ P)PX, 
-00 

and thus H HX <.p = U([ - P)PX R X = U R X, which proves (10). 

t ~ O. 
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To prove (11), note that all operators involved are bounded linear operators. 
Hence it suffices to establish (11) on a dense subset of Lr([O, 00 )). We take as dense 
subset the set of all em-valued continuous functions on [0,00) with compact support. 
Let r.p be such a function. We have 

where 
t 

r.p1(t) = /(1 -pX)eisAX Br.p(s)ds, 

o 
00 

t ~ 0, 

r.p2(t) = / pXeisAx Br.p(s)ds, 

t 

t ~ 0. 

t ~ 0, 

Note that r.p1 and r.p2 are differentiable. This allows us to use partial integration and to 
show that 

00 

- i / PeisABCe-isAX(1 - PX)r.pI(s)ds 

o 
00 

= - / (peiSAe-iSAX (I - PX)'r.pI(s)ds 

o 
00 

= _PeisAe-isAx (I - PX)r.pI(S) 7 + / PeisAe-isAX (I- PX)r.pi(s)ds 

o 
00 

= / PeiSA(1 _ PX)Br.p(s)ds. 

o 

A similar calculation yields 

00 

i / PeisABCe-isAX pXr.p2(s)ds 

o 
00 

= PeisAe-isAX pXr.p2(S) T + / PeisApx Br.p(s)ds 

o 
00 00 

= -P J pXeisAX Br.p(s)ds + J PeisApx Br.p(s)ds 

o 0 
00 

= _QRXr.p + J PeisAPXBr.p(s). 

o 
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It follows that 

which proves (11). 
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00 

RTxr.p = Rr.p + J PeisA(l - PX)Br.p(s)ds - QRXr.p 

o 
00 

+ J PeisApx Br.p(s)ds = _QRxr.p, 

o 

Next, observe that 

t 

i J (I - P)eiSA BCe-isAX (I - pX )ds = (I - P)eitAe-itAX (I - PX) - (I - P)(l _ PX), 

o 

00 

i J PeisA BCe-isAX (I - PX)ds = _PeitAe-itAX (I _ PX). 

t 

Take x E 1m P. Then (I - P)(l - PX)x = -(I - P)PX x and the two preceding identities 
yield: 

(TUX x )(t) = (U X x )(t) - iC(l - P)e-itAX (I - PX)x 

+ iCe-itA(I - P)(l - PX)x - iCPe-itAX (I - PX)x 

= _iCe-itA(l _ P)PXx 

= -(USx)(t), t 2: 0, 

and (12) is proved. For x E 1m P we also have 

00 

RUxx = -i J PeisABCe-isAX(I - pX)xds 

o 
00 

= _PeisAe-isAx (I _ PX) I 
o 

= P(l - PX)x = -QSx + x, 

which proves (13). 

The coupling relation (9) is now proved, and thus we can apply the results of 
Section III.4. By Corollary 1II.4.3 

(15) 

(16) 

(17) 

KerT = {r.p I r.p = UXx,x E KerS}, 

ImT = N I RX'ljJ ElmS}. 

neT) = n(S), d(T) = deS). 
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Note that Ker S = Im P n Ker P x and 

(18) 

With these remarks we have proved (2), (3) and the first identity in (4). To prove the 
second identity in (4) one uses that 

(19) deS) = dim[ImPX IImS] = dim ImP ~~erPx 
From (17) and the definition of S it follows that 

n(T) = rankP - rankS, d(T) = rankPx - rankS, 

and thus ind(T) is given by (5). Finally, let S+ be a generalized inverse of S. Put 

r+ = T X - U X S+ R X • 

Then, by using (9), 

TT+T = TTxT - (TUX)S+(RXT) 

= TTxT - USS+SR 

=TTxT-USR 

= TTxT + URxT = T, 

which shows that T+ is a generalized inverse of T in the weak sense. We know that the 
action of TX is given by 

00 

(Txt/J)(t) = t/J(t) - J kX(t - s)t/J(s)ds, 

o 

where k X is the kernel given by formula (5.3). Since 

00 

t ~ 0, 

(U X S+ RXc.p)(t) = J iCe-itAX (I - PX)S+ pXeisAx Bc.p(s)ds, 

o 

we see that the action of T+ is given by (6) and (7). 0 

t ~ 0, 

From KerS = ImP n Kerpx and (19) it follows that S is invertible if and 
only if en = ImP EB Kerp x . In that case the operator T+, given by (6) and (7), is 
the inverse of T and IT is the projection of en onto Im P along Ker px. It follows that 
Theorem 8.1 contains Theorem 7.1 as a special case. 

XIII.9 AN EXAMPLE FROM TRANSPORT THEORY (1) 

In this section we apply the theory of Wiener-Hopf operators developed in 
the present chapter to solve a finite dimensional version of a linear transport equation. 
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Transport theory concerns the mathematical analysis of equations that de
scribe transport phenomena in matter, e.g., a flow of electrons through a metal strip 
or radiative transfer in a stellar atmosphere. Always these phenomena concern the mi
gration of particles in a medium. Collision of the particles may result in absorption 
or production of new particles. For a homogeneous medium and without interaction be
tween the particles, the mathematical equation describing a stationary transport problem 
is an integro-differential equation of the following form 

(1) 
1 

ILO:;(t,IL) +'if;(t,IL) = J k(IL,IL')'if;(t, IL')df.L' , 

-1 

-1 :5 IL :5 1. 

This equation is a balance equation. The unknown function 'if; is a density function 
related to the (expected) number of particles in an infinitesimal volume element. The 
right hand side of (1) describes the effect of the collisions. The function k, which is called 
the scattering junction, is assumed to be real symmetric. The variable IL is the cosine of 
the scattering angle and therefore -1 :5 IL :5 1. The variable t is not a time variable, but 
a position variable (sometimes referred to as the optical depth). 

In this section we assume that the medium is semi-infinite, and hence the 
position variable runs over the interval 0 :5 t < 00. Since the density of the incoming 
particles is known, the values of 'if;(0, IL) are known for 0:5 IL :5 1. It follows that equation 
(1) appears with the following boundary condition: 

(2) 'if;(O, IL) = «'+(IL), 0< IL :5 1, 

where «'+ is a given function on [0,1]. There is also a boundary condition at infinity 
which is often stated as an integrability condition on the solution 'if;. Equation (1) with 
o :5 t < 00 and the boundary condition (2) is called the half range problem. 

In this section we consider a finite dimensional version of the half range 
problem. We assume that scattering occurs in a finite number of directions only. This 
assumption reduces the equation (1) and the boundary condition (2) to 

(3) 

j = 1, ... ,n, 0:5 t < 00, 

(4) ILj > o. 

To deal with the latter version of the half range problem, introduce the en-valued vector 
function 

0:5 t < 00, 
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and the matrices 

This allows us to rewrite (3) and (4) in the following form: 

(5) { Tt/J'(t) = -t/J(t) + Ft/J(t), 
P+t/J(O) = x+. 

o ~ t < 00, 

Here T and F are selfadjoint n x n matrices, P+ is the spectral projection of T corre
sponding to the positive eigenvalues and x+ is a given vector in ImP+. In what follows 
we assume that T is invertible (which corresponds to the requirement that all /-Lj in (3) 
are different from 0). We shall look for solutions t/J of (5) in the space L~([O, 00 ». 

First we show that the problem (5) is equivalent to a Wiener-Hopf integral 
equation with a rational matrix symbol. Introduce the following matrix function: 

(6) h(t) = +, , { 
e-tT-I P T-l t> 0 

- -tT-lp T-l t 0 e _, <. 

Here P_ = I - P+. Since P+ (resp. P_) is the spectral projection of T corresponding 
to the positive (resp. negative) eigenvalues, the function e-tT- I P+ (resp. e-tT- I P_) is 
exponentially decaying on 0 ~ t < 00 (resp. -00 < t ~ 0). It follows that h is a n x n 
matrix function of which the entries are integrable on R. 

THEOREM 9.1. Let t/J E L2([0, 00». Then t/J is a solution of the equation 
(5) if and only if t/J is a solution of the Wiener-Hopf integral equation 

(7) 
00 

t/J(t) - j h(t - s)Ft/J(s)ds = J(t), 

o 
o ~ t < 00, 

where J is the function in L2([0, 00» defined by 

(8) -tT-l f(t) = e x+, o ~ t < 00. 

PROOF. Assume that t/J is a solution of (5). Applying T-l to the first 
identity in (5) and solving the resulting equation yields 

t 

(9) t/J(t) = e- tT- 1 t/J(O) + e-tT- 1 j esT-1T-1 Ft/J(s)ds, o ~ t < 00. 

o 

Next, apply etT- 1 P _ to both sides of (9) and use that etT- I and P _ commute. Since 

etT- 1 P- is exponentially decaying on 0 ~ t < 00, the function etT- 1 P_Ft/J(t) is inte
grable on 0 ~ t < 00, and thus 

00 

(10) lim etT- 1 P-t/J(t) = P-t/JCO) + jesT- 1 p_T-lFt/JCs)ds. 
t-= 

o 
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Also the function etT- 1 P-1f;(t) is integrable on 0':::; t < 00, and thus the left hand side 
of (10) is equal to zero, which proves that 

(11) 

00 

P-1f;(O) = - J esT- 1 P_T- 1 F1f;(s)ds. 

o 

Now, replace 1f;(0) in (9) by P+1f;(O) + P-1f;(O), use the boundary condition in (5) and 
apply (11). We conclude that 

00 t 

1f;(t) = e-tT- 1 x+ - J e-(t-s)T-l P_T- 1 F1f;(s)ds + J e-(t-s)T-1T-1 F1f;(s)ds 

o 0 
00 

= e-tT- 1 x+ + J h(t - s)F1f;(s)ds, 
o 

0':::; t < 00. 

Thus 1f; is a solution of (7) with f given by (8). 

To prove the converse statement, assume that 1f; is a solution of (7) with f 
given by (8). Thus 

(12) 

t 

1f;(t) = e-tT-1x+ +e-tT- 1 J esT- 1P+T-1F1f;(s)ds 

o 
00 

- e-tT- 1 J esT- 1 P_T-1 F1f;(s)ds, 

t 

0':::; t < 00. 

It follows that 1f; is absolutely continuous on each compact interval of [0,00), and hence 
the integrands in the right hand side of (12) are continuous functions of the variable s. 
But then 1f; is differentiable on [0,00), and we see that for 0 .:::; t < 00 

1f;'(t) = _T-l1f;(t) + P+T-1F1f;(t) + P_T-1 F1f;(t) 

= -T- l 1f;(t) + T- 1F1f;(t), 

and hence 1f; satisfies the first equation in (5). From (12) it also follows that 

00 

1f;(0) = x+ - J esT- 1P_T- 1F1f;(s)ds, 

o 
0':::; t < 00, 

which implies that P+1f;(O) = P+x+ = x+. We conclude that 1f; is a solution of the 
problem (5). 0 

Let us compute the symbol of equation (7): 
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00 00 0 J eiAth(t)dt = J ei(A+iT-l)tp+T-1dt - J ei(A+iT-l)tp_T-1dt 

-00 0 -00 

= -i(A + iT-1 )-lei(HiT-l)t P+T-1 i 
o 

o + i(A + iT-I)-lei(HiT-l)tp_T-1 I 
-00 

= i(A + iT-1)-I P+T-1 + i(A + iT-1)-1 P_T-1 

= i(A + iT-1)-IT-1 

It follows that the symbol W of the Wiener-Hopf equation (7) has the following realiza
tion: 

(13) W(A) = 1- iI(A + iT-1 )-IT-I F. 

This allows us to apply Theorem 7.1 with 

(14) B = T-IF, C = -iI. 

THEOREM 9.2. Aaaume that I - F ia poaitive definite. Then for each 
f E L~([O,oo)) the equation 

(15) 

00 

'IjJ(t) - J h(t - s)F'IjJ(s)ds = f(t), 

o 
° :5 t < 00, 

haa a unique aolution 'IjJ E L~([O, 00)). In particular, if the right hand aide f ia given by 
(8), then the aolution of (15) ia 

(16) ° :5 t < 00, 

where II ia the projection of en along Ker P+ onto the apectral aubapace of (I - F)-IT 
correaponding to eigenvaluea in the open right half plane. 

A priori it is not clear that a projection II as in (16) may be defined; it will 
be part of the proof to show the existence of II. 

PROOF OF THEOREM 9.2. We apply Theorem 7.1 with A, B and C as in 
(14). Note that 

(17) AX = A - BC = -iT-lei - F). 

To prove that (15) is uniquely solvable in L2([O, 00)), we have to show that A X has no 
real eigenvalue and en = M ED MX , where M is the spectral subspace of A corresponding 
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to the eigenvalues in 'S'\ > 0 and MX is the spectral subspace of AX corresponding to 
the eigenvalues in 'S'\ < O. Put S = (I - F)-IT, and consider the sesquilinear form: 

(18) [x, y] = ((I - F)x, y). 

Since I - F is positive definite, S is well-defined and [.,.] is an inner product on en. 
From 

[Sx, y] = ((I - F)Sx, y) = (Tx, y), 

it follows that S is selfadjoint with respect to the inner product [', .]. But then the same 
is true for the operator iA x = S-I. Thus, A x is invertible and has its eigenvalues on 
the imaginary axis. In particular, A x has no real eigenvalue. 

Let P+ and Q+ be the spectral projections of T and S, respectively, corre
sponding to the eigenvalues in ~).. > O. The equality iA = T-l implies that M = Ker P +. 
Similarly, iAx = S-1 yields M X = ImQ+. Since T and S are invertible, TI Ker P+ is 
negative definite and SlIm Q+ is positive definite. Thus 

o I- x E Ker P+ => (Tx,x) < 0, 

o I- x E ImQ+ => [Sx,x] > O. 

But [Sx,x] = (Tx,x) for all x E en. It follows that KerP+ n ImQ+ = {O}. In 
particular, rankP+ ? rankQ+. By repeating the argument with the roles of P+ and Q+ 
interchanged, we see that rankQ+ ? rankP+, and hence rankQ+ = rankP+. But then 
we may conclude that en = Ker P+ EB ImQ+. 

We have now proved that (15) is uniquely solvable in L2([0, 00 )). Also, we 
have shown that the projection II in (16) is well-defined. In fact, II is the projection of 
en along M onto MX. It remains to prove (16). Let J be given by (8). From Theorem 
7.1 we know that the solution of (15) is given by 

00 

V;(t) = J(t) + J 'Y(t,s)J(s)ds, 
o 

0:::; t < 00, 

where the resolvent kernel 'Y is defined by formula (4) in Section 7. Note that J may be 
rewritten as 

0:::; t < 00. 

Since 

d ( isAX -isA) isAX ('Be) -isA ds e e = -e l e , 

it follows that 
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t 

t/;(t) = iCe-itAx+ + iCe-itAX J ITeisAX (iBC)e-isAx+ds 

o 
00 

- iCe-itAX J(I -IT)eiSAX (iBC)e-isAx+ds 

t 

·C -itA ·C -itAX (IT isAx -isA tl) = z e x+ - z e e e x+ 
s=o 

+ iCe-itAX (I -IT)eisAX e-isAx+ i). 
s=t 

Next use that 

(t-+oo) 

(t-+oo). 

In the latter limit we employ the fact that (I - IT)Q+ = O. It is now clear that 

t/;(t) = iCe-itAx+ _ iCe-itAX ITeitAX e-itAx+ 

+ iCe-itAX ITx+ _ iCe-itAX (I _ IT)eitAX e-itAx+ 

·C -itAX IT = z e x+, 0:5 t < 00. 

Since iAx = T-l(I - F), the above calculations prove (16). o. 

COROLLARY 9.3. If 1- F is positive definite, then the problem (5) has a 
unique solution in L~([Ooo)), namely 

(19) 0:5 t < 00, 

where IT is the projection of en along KerP+ onto the spectral subspace of (I -F)-IT 
corresponding to the eigenvalues in the open right half plane. 

PROOF. Apply Theorems 9.1 and 9.2. 0 

To solve (5) effectively requires one to compute the projection IT in (19) and 
to analyse further the matrix R = T-I(I - F). From the proof of Theorem 9.2 we know 
that R is selfadjoint with respect to the inner product [.,.J defined in (18), and hence R 
admits a diagonal representation. In the last part of this section we show how one may 
compute IT and find a diagonal representation of R for a concrete class of examples. 

(20) 

(21) 

In what follows the underlying space in (5) assumed to be e2n , and we take 

F = (.,g)g, 
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where 

Thus T is a 2n X 2n diagonal matrix whose diagonal elements are specified by the right 
hand side of (20). We shall assume that 

(22) al > ... > an> 0, mj =1= 0 (j = 1, ... , n), 

(23) 

It follows that T is selfadjoint and the spectral projection P + is given by 

(24) P+ = diag(I, ... , 1,0, ... ,0). 

Condition (23) implies that 1- F is positive definite, and hence with T and F as in 
(20) and (21), equation (5) is uniquely solvable in L~n([o,oo)). We shall prove that its 
solution is given by 

(25) [ A -trA-l ] Ie 1 XO 
1f;(t) = A -trA-1 , 

2e I XO 
t ~ 0, 

where Xo is the vector in en whose coordinates are the first n coordinates of X+, 

(26) [ 
c.m. ]n 

c/- ~k j,k=I' 

[ ] 
n 

A cjmj 
2= , 

Cj + Ik j,k=1 

(27) 

Here Cj = 1/ aj for j = 1, ... ,n and 11, ... "n are the n different zeros in the open right 
half plane of the function 

(28) 

The matrix Al is of so-called Hilbert type and its inverse can be computed 
explicitly. In fact (see Knuth [ID 

Here DI and D2 are n X n diagonal matrices. Their v-th diagonal elements are given by 

Ili=I(Cj -'v) 
I1itv( Ij - IV)' 

I1j=l (cv - Ij) 

I1itv( Cv - Cj) , 
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respectively. Thus for the class of examples considered here the problem to solve the 
equation (5) is reduced to finding the zeros in the open right half plane of the scalar 
function (28). 

To establish formula (25) we have to analyse the spectral properties of the 
matrix R = T-I(I - F) with T and F as in (20) and (21). This is done in the next two 
lemmas. 

LEMMA 9.4. The 2n x 2n matrix R has 2n different eigenvalues. They are 
of the form ±'j, j = 1, ... , n, where 

(29) o < 11 < q < 12 < C2 < ... < In < Cn, 

and they coincide with the zeros of the function (28). 

Recall that Cj = 1/ O!j. Put I-j = -,j for j = 1, ... , n. Thus 
1-1, ... ,'-n,'l,··· "n are the eigenvalues of R = T-I(I - F). 

LEMMA 9.5. For Ikl = 1, ... , n the vector 

(30) f qmI Cnm n Clml Cnm n ( )
T 

k = Cl - Ik ' ... , Cn - Ik ' q + Ik ' ... , Cn + Ik 

is an eigenvector of R corresponding to the eigenvalue 'Yk. 

PROOF OF LEMMA 9.4. Let W be the symbol of the Wiener-Hopf equation 
associated with (5). Thus W('\) = 1+ C('\ - A)-I B, where A = -iT-I, B = T-IF 
and C = -iI. In what follows T and F are as in (20) and (21), and hence 

(31) A = diag( -icI, ... , -icn, icI, ... , iCn). 

Put e = Ilgll-i g . Then Fe = Ilgllg and 

(W('\)e, e) = 1 + ((,\ - A)-I Ag, g) 

n -ic'lm'12 n iC'lm'1 2 
=1+~ J J +~ J J 

~ ,\ + ic . ~,\ - ic . 
j=l J j=l J 

n c~lm '1 2 
=1-2~ J J 

~ ,\2 + C~ 
j==1 J 

=w(i'\), 

where we) is defined by (28). The previous calculation implies that there exists an 
invertible matrix S such that 

(32) W(,\) - S [ w(i'\) 
- V('\) 

Recall that W(,\)-l = 1- C('\ - AX)-lB (see Lemma 5.2). We know that 
iA x = T-I(I - F) is selfadjoint relative to an equivalent inner product. It follows that 
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the eigenvalues of AX are on the imaginary axis, and hence the same holds true for the 
poles of WO-l. But then we can use (32) to show that the function w has its zeros on 
the real line. Since w().) = w( -).), a simple sketch of the function t f--t wet), 0::; t < 00, 

shows that w has precisely 2n zeros, which are of the form ±'j, where ,1, ... "n satisfy 
(29). 

It remains to show that each zero of w is an eigenvalue of R = iA x. So 
assume that w(,) = O. Then 

0= we,) = (W( -i,)e, e) = 1 + (( -if - Ar1 Ag, g). 

Thus (j, g) = 1 for f = (if + A)-1 Ag. We claim that f is an eigenvectorfor R. Indeed, 

Rf = iAf - iBCf = iAf - iAFf 

= iA( if + A)-1 Ag - i(j, g)Ag 

= iAg + ,(if + A)-l Ag - iAg = ,f. 

Since f i= 0, we conclude that, is an eigenvalue of Rand f is a corresponding eigenvector. 
o 

PROOF OF LEMMA 9.5. From the last part of the proof of Lemma 9.4 we 
know that fk: = (i,k + A)-1 Ag is an eigenvector of R corresponding to the eigenvalue 
,k' Since A is given by (31), we see that fk is equal to the right hand side of (30). 0 

To prove (25) requires one to specify further the formula of ljJ appearing in 
Corollary 9.3. In particular, we have to compute the matrix R = T-l(I - F) and the 
projection II for the case considered here. To do this, introduce the 2n x 2n matrix 

A = [h", fn f-1'" f-nl 

with f±k, k = 1, ... , n, defined by (30). The matrix A is invertible and diagonalizes R, 
i.e., R = ADA -1, where 

D = diag(,l,'" ,In, -,1,"" -In)' 

If follows that 

where r is given by (27). Next, we partition A as a 2 x 2 block matrix whose entries are 
n x n matrices. This yields 

where Al and A2 are as in (26). Put 
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Then M = KerP+ and MX is the spectral subspace of T-I(I - F) (and hence of 
(I - F)-IT) corresponding to the eigenvalues in the open right half plane. Thus e2n = 
M E9 MX, and the projection IT of e2n along M onto M X is given by 

Finally, partition the given vector x+ as [ xOO ], where Xo E en and 0 is the zero vector 

in en. Then 

which proves formula (25). 

XIII.to CONVOLUTION OPERATORS ON A FINITE 
INTERVAL 

The results discussed in the last three sections carryover to convolution 
operators on a finite interval [0, r}. Such operators are of the form A = 1- K, where 

r 

(1) (Kcp)(t) = J k(t - s)cp(s)ds, 0:5 t :5 r. 

° 
The kernel function k will be an m x m matrix function whose entries are integrable on 
[0, r}, and the operator K will be considered on Lf([O, rD. To make more precise the 
type of kernel functions we shall deal with, let us first assume that k is the restriction 
to [-r, r] of an m x m matrix function f. with entries in L1(R) whose Fourier transform 
e is rational. This implies, by Theorem 4.1, that e admits a realization, and hence, by 
Theorem 4.2, the kernel function k can be written in the form: 

(2) k(t) = { i~e-it~(I - P)B, 0:5 t ::; r, 
_zCe- ttA P B, -r :::; t < 0, 

where A is a square matrix of size n x n, say, which has no real eigenvalue, B and C 
are matrices of sizes n x m and m x n, respectively, and P is the Riesz projection of A 
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corresponding to the eigenvalues in the upper half plane. The actual value of k at zero 
is not relevant; for simplicity we assume here that k(O) = k(O+). 

In what follows we shall work with a slightly more general representation of 
k. We shall assume that the kernel function k of (1) admits a representation (2), where 
A is an arbitrary n x n matrix and P is a projection commuting with A. Thus A is 
allowed to have real eigenvalues and P is not required to be a Riesz projection. We shall 
refer to (2) as an ezponentiaZ representation of k. 

One of our aims is to find the condition of invertibility of I - K and to 
determine its inverse in terms of the representation (2). 

The representation (2) implies that the operator K in (1) has a semi-separable 
kernel function (cf. Section IX.l). Indeed, let h, ... , J n1' and 91, ... , gn2 be bases of 
Ker P and 1m P, respectively, and let E be the n x n matrix whose columns are the 
vectors h, ... , J n1 , g1, •.. , gn2. Then E is invertible and 

(3) 

Here, as usual, the symbol Ik denotes the k x k identity matrix. Since P commutes with 
A, it follows that 

(4) 
o ~ s ~ t ~ T, 

o ~ t < s ~ T, 

where 

(5a) 

(5b) 

The semi-separable representation (4) allows us to apply the results of Sections IX.2 and 
IX.3, which yields the following theorems. 

THEOREM 10.1. Let K be the integral operator on LT([O, T]) defined by 
(1), and assume that k has the ezponentiaZ representation (2). Let n be the order oj A, 
and put A x = A - Be. Then I - K is invertible if and only if the map 

(6) 

is invertible. In that case 

r 

(I - K)-l J)(t) = J(t) + J 'Y(t, s)J(s)ds, 
o 

o ~ t ~ T, 
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with 

(7) { 
iGe-itAX TIreisAX B, 

,(t,S) = 
_iGe-itAX (1 - TIr )eisAX B, 

o ~ s ~ t ~ r, 

o ~ t < s ~ r. 

Here TIr is the projection of en along 1m P defined by 

(8) 

THEOREM 10.2. Let K be the integral operator on Lr([O, r)) defined by 
(1), and assume that k has the exponential representation (2). Let n be the order of A, 
and put 

(9) 

where AX = A - BG. Then 

Ker(1 - K) = {'P I 'P(t) = Ge-itAX Py, Y E KerSr}, 

r 

Im(1 - K) = {J E Lr([O, r]) I PeirAe-irAX J eisAx BJ(s)ds E 1m Sr }, 

o 
and a generalized inverse of 1 - K in the weak sense is given by the operator 

with 

(10) 

r 

((1 - K)+ J)(t) = J(t) + J ::yet, s)f(s)ds, 

o 
o ~ t ~ r, 

o ~ s ~ t ~ r, 

o ~ t < s ~ r. 

Here ITrx = S; Peir Ae-ir A x x for x E en, where S; is a generalized inverse of Sr. 

We shall refer to the operator Sr in (6) and (9) as the indicator of 1 - K 
associated with the representation (2). Note that Sr acts on a finite dimensional space, 
and hence it always has a generalized inverse. 

PROOF OF THEOREMS 10.1 AND 10.2. We shall employ the semi
separable representation (4) and we shall apply Theorem IX.2.3. Let us compute the 
indicator V of 1 - K associated with the representation (4) (cf. Section IX.2). Put 

A(t) = [GI(t)FI(t) GI(t)F2(t)] 0 
-G2(t)F2(t) -G2(t)F2(t) ' ~ t ~ r, 

where F I , F2 and GI, G2 are as in (5a) and (5b). Furthermore, let U(t) = 
E-IeitAe-itAX E for 0 ~ t ~ r. Since 

o ~ t ~ r, 
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t t ! A(s)U(s)ds = ! E-leiSA(iBC)e-iSAX Eds 

o 0 
t 

= E-1{! ~ (eisAe-isAX )dS}E 

o 
= E-l{eitAe-itAX - In}E 

= U(t) - In, 0 :5 t :5 T. 

It follows that U(t) is the fundamental matrix (normalized to In at t = 0) of the differ
ential equation x'(t) = A(t)x(t), 0:5 t :5 T, and therefore 

V=[O In2 ]U(T) [ I~2 ] 

= [0 In2 jE-leirAe-irAX E [ I~2 ] 
= [0 In2 jE-1 PeirAe-irAX PE [ I~2 ] 
= [0 In2 jE-1SrE [ I~2 ] , 

where Sr is the indicator of I - K associated with the representation (2). In the above 
calculation we used that P satisfies (3). Note that the linear transformation 

Eo = E [ I~2 ] : Cn2 ~ 1m P 

is invertible and Eol = [0 In2 jE-ll ImP. Thus we have shown that V = EolSrEo. 

It follows that the operators I - K and Sr are matricially coupled. To find 
the coupling relation we refer to Theorem IX.3.2 for the case considered here. Introduce 
the following operators 

(11) 

(12) 

(13) 

H: Li([O, Tj) ~ Li([O, TD, 

t 

(Hcp)(t) = iCe-itA! eisABcp(s)ds, 

o 
0:5 t :5 Tj 

R: Im P ~ Li([O, Tj), (Rx)(t) = iCe-itAx, ° :5 t :5 T, 

Q: Li([O, TJ) ~ ImP, 

r 

Qcp = - ! PeisABcp(s)ds. 

o 
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The final result of the previous paragraph and Theorem IX.2.3 imply that the operators 
I -H and 

[ I Q K II=P]: L2'([O, T]) EB 1m P -7 L2'([O, T]) EB 1m P 

are invertible and 

(14) R 
lImP 

(I - H)-l 
-Q(I - H)-l 

which is the desired coupling relation. Furthermore (see formula (19) in Section IX.2 for 
the case considered here), 

(15) 

t 

((I - H)-IJ)(t) :::;: J(t) + iCe-itAX J eisAX BJ(s)ds, 
o 

0:5 t :5 T. 

It follows (see Corollary III.4.3) that 1- K is invertible if and only if ST is 
invertible, and in that case 

(16) 

Since (cf. formulas (20) and (23) in Section IX.2) 

(17) ((I - H)-l Rx)(t) :::;: iCe-itAX x, 0:5 t :5 T, 

T 

(18) Q(I - H)-l J:::;: _PeiTAe-iTAX J eisAX BJ(s)ds, 

o 

formulas (15) and (16) yield the expression for (I - K)-l appearing in Theorem 10.l. 
To complete the proof of Theorem 10.1, it remains to show that the map ITT defined by 
(8) is a projection of en along ImP. To do this, note that ITTP :::;: 0 according to the 
definition of ST' On the other hand Im( I - ITT) c 1m P, and hence ITT (I - ITT) :::;: O. 
Thus ITT is a projection and Ker ITT:::;: ImP. 

Next, we prove Theorem 10.2. The descriptions of Ker(I - K) and Im(I - K) 
follow directly from Corollary III.4.3 by using the coupling relation (14) and the formulas 
(17) and (18). To prove the second part of the theorem, assume that S:j: is a generalized 
inverse of ST' Put 

(19) (I - K)+ :::;: (I - H)-l + (I - H)-l RS;:Q(I - H)-I. 

We want to show that (I - K)+ is a generalized inverse of I - K in the weak sense. To 
do this, note that the coupling relation (14) implies that 

(I - K)(I - H)-I:::;: 1+ RQ(I - H)-l 

(I - K)(I - H)-l R :::;: -RST, 

Q(I - H)-I(I - K) :::;: STQ. 
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Since SrSt Sr = Sr, we see that 

(I - K)(I - K)+(I - K) = (I - K)(I - H)-I(I - K) 

+ (I - K)(I - H)-l RStQ(I - H)-I(I - K) 

= 1- K + RQ(I - H)-I(I - K) - RSrSt SrQ 
= 1- K + RSrQ- RSrQ = 1- K, 

and hence (I - K)+ is the desired generalized inverse. Inserting (15), (17) and (18) into 
(19) yield the expression for (I - K)+ appearing in Theorem 10.2. 0 

The operators K considered in this section are Hilbert-Schmidt operators. 
The following theorem provides a simple criterion for K to be a trace class operator. 

THEOREM 10.3. Let K be the integral operator on Lr([O, TJ) defined by 
(1), and assume that k has the exponential representation (2). Then K is a trace class 
operator if and only if CB = 0, and in that case 

(20) trK = -iTtrCPB, det(I - K) = det Sr, 

where Sr is the indicator of 1- K associated with the representation (2). 

PROOF. Let H, R and Q be defined by (11), (12) and (13), respectively. 
Since K = H + RQ and RQ has finite rank, we have to show that H is a trace class 
operator if and only if C B = O. 

Let MA be the multiplication operator on L~([O, TJ) induced by A, i.e., 

(MACP)(t) = Acp(t), 0$ t $ T. 

Then MA is a bounded operator which commutes with the operator J: L~([O, TJ) _ 
L~([O, T]) defined by 

(21) 

Note that 

t 

(Jcp)(t) = -i J cp(s)ds, 
o 

t 

(JMACP)(t) = -i J Acp(s)ds, 
o 

0$ t $ T. 

0$ t $ T. 

Next apply Theorem 10.1 to K = JMA (and thus with A = 0, B = -A, C = I and 
P = 0). It follows that I - J MA is invertible and 

t 

[(I - JMA)-lcp](t) = cp(t) - i J e-i(t-s)A A!.p(s)ds, 0$ t ~ T. 

o 
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But then 

t s 

[J(I - JMA)-lcp](t) = (Jcp)(t) - / (/ e-i(s-a)AAcp(a)da )dS 

o 0 
t t 

= (Jcp)(t) - / (/ e-i(S-a)AACP(a)dS)da 

o a 
t t 

= (Jcp)(t) - i / {/ (:S e-i(s-a)A )dS }cp(a)da 
o a 

t 

= -i / e-i(t-a)Acp(a)da, o ~ t ~ T. 

o 

So we have proved the identity 

(22) 

where MB: Lr([O, T]) --+ L~([O, T]) and Me: L~([O, TD --+ Lr([O, TD are the multiplica
tion operators induced by B and C, respectively. 

Formula (22) implies that 

H = -MeJMB - MeJ2MA(I - JMA)-lMB. 

Since J is a Hilbert-Schmidt operator, J2 is a trace class operator (Lemma VIII.2.2). 
Hence H is a trace class operator if and only if MeJ MB is trace class. Let bjk and Cjk 
be the (j, k )-th entries of the matrices of B and C, respectively. Identifying Lr([O, T D 
with a product of m copies of L2([0, TD, one can write the operator 

as an m x m matrix whose entries are operators on L 2 ([0, TD. The (j, k )-th entry of this 
operator matrix is equal to 

(~ cjVbVk)JO, 

where Jo is the operator on L2([O, TD defined by the right hand side of (21). Now 
MeJ MB is trace class if and only if each entry of its operator matrix is trace class. Since 
Jo is not a trace class operator (cf. formula (10) in Section VI.l), the latter happens if 
and only if 

n 

2:= Cjvbvk = 0, 
v=l 

j,k=l, ... ,m, 

which is equivalent to C B = O. This proves the first part of the theorem. 
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Next, assume that K is a trace class operator. It remains to prove the two 
identities in (20). This we do by applying Theorem IX.3.2 to the semi-separable repre
sentation (4). According to formula (8) in Section IX.3, we have 

r r 

trK = J trG2(s)F2(S)ds = J trF2(s)G2(S)ds 
o 0 

r . J t C -isAE [0 0 = -z reO In2 

o 
r 

= -i J trCe-isApeisABds 

o 
r 

= -i J trCPBds = -irtrCPB. 
o 

Here we used (5a) and (5b), the identity (3) and the fact that A and P commute. 

Let V be the indicator of 1- K associated with the representation (4). From 
the proof of Theorem 10.1 and 10.2 we know that V and Sr are similar. Thus det V = 
det Sr, and we can use formula (9) in Section IX.3 to prove the second identity in (20). 
o 

In the proof of Theorems 10.1 and 10.2 we have only used the semi-separable 
representation (4) and not the fact that A commutes with P. It follows that Theorems 
10.1 and 10.2 also hold true if K is an integral operator on Lr([O, r]) with the property 
that its kernel function k admits a representation of the following form: 

{ 
iCe-itA(I _ P)eisAB, 

k(t,s) = .. 
-iCe-ItA PelS A B, 

o ~ s ~ t ~ r, 

o ~ t < s ~ r, 

where P is a projection (which does not have to commute with A). With the exception 
of the first identity in (20), also Theorem 10.3 is valid for such an operator. 

To illustrate the results of this section we consider the finite slab version of 
the transport equation. In this version the medium is like a strip and the densities of the 
incoming particles at one side and of the outgoing particles at the other side are known. 
As in the previous section we assume that scattering occurs only in a finite number of 
directions. In that case the finite slab problem reduces to an equation of the following 
form: 

(23) { Tt/J'(t) = -t/J(t) + Ft/J(t), 
P+t/J(O) = x+, P-t/J(r) = x_. 

o ~ t ~ r, 

Here T and F are selfadjoint matrices, T is assumed to be invertible, P + and P _ are 
the spectral projections of T corresponding to the positive and negative eigenvalues, 
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respectively. The vector x+ (resp. x_) is a given vector in ImP+ (resp. ImP_). We 
shall look for solutions of (23) in the space L;n([O, rD. It is of particular interest to 
consider the case when equation (23) has a non-trivial solution with x+ and x_ both 
equal to the zero vector. (In Physics this case is meaningful; it concerns a so-called 
multiplying medium.) 

As for the half range problem we first show that the finite slab problem (23) 
is equivalent to an integral equation of convolution type. 

THEOREM 10.4. Let 1jJ E L~([O, rD. Then 1jJ is a solution of (23) if and 
only if 1jJ is a solution of the integral equation 

(24) 

where 

(25) 

(26) 

(27) 

T 

1jJ(t)- J h(t-s)F1jJ(s)ds =f(t), 
o 

o :5 t :5 r, 

t 2: 0, 

t < 0, 

o :5 t :5 r. 

PROOF. Assume that 1jJ is a solution of (23). Then 

t 

1jJ(t) = e-tT- l 1jJ(O) + e-tT- 1 J esT-1T-1 F1jJ(s)ds, o :5 t :5 r. 

o 

Apply etT- 1 P _ to both sides of (27), evaluate the result at t = r, and use that etT- 1 
and P _ commute. It follows that 

(28) 

T 

P-1jJ(O) = eTT- 1 P_1jJ(r) - J esT- 1 P_T- 1 F1jJ(s)ds. 

o 

Now, replace 1jJ(0) in (27) by P + 1jJ(O) + P _1jJ(0), and use (28) and the boundary conditions 
in (23). We conclude that 

1jJ(t) = e-tT- 1 x+ + e(T-t)T-l x_ 

T t -J e-(t-s)T- 1 p_T-1F1jJ(s)ds+ J e-(t-s)T-1 T- 1F1jJ(s)ds 

o 0 
T 

= J(t) + J h(t - s)F1jJ(s)ds, 
o 

o :5 t :5 r, 
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where h and J are given by (25) and (26), respectively. Thus"p is a solution of (24). 

The reverse implication is proved by the same type of arguments as used in 
the second part of the proof of Th~rem 9.1. 0 

From (25) it is clear that the kernel function k(·) = h(·)F of the integral 
operator associated with (24) admits an exponential representation. In fact, to get the 
representation (2) one has to take 

(29) 

It follows that we may apply Theorems 10.1 and 10.2 to obtain solutions of (24). 

THEOREM 10.5. Assume that 1- F is nonnegative definite. Then for each 
J E L~([O, r]) the equation 

(30) 

T 

"p(t) - J h(t - s)F"p(s)ds = J(t), 

o 
0:5 t :5 r, 

has a unique solution "p E L~([O, r]). Moreover, if the right hand side J is given by (26), 
then the solution of (30) is 

0:5 t :5 r, 

where M(r):ImP_ - ImP_ is defined by 

(32) x E ImP_. 

PROOF. The first step is to show that M( r) is invertible. Since M( r) acts on 
a finite dimensional space, it suffices to show that M( r) is injective. Take 0 :f. y E 1m P _, 
and consider the expression 

(33) py(r) = (TM(r)y,y). 

We shall prove that py( r) as a function of r is monotonely decreasing on 0 :5 r < 00. 

Assume for the moment that this has been proved. Then 

(34) py(r):5 py(O) = (Ty,y). 

Since P - is the spectral projection of T corresponding to the negative eigenvalues, 0 :f. 
y E 1m P - implies that the third term in (34) is strictly negative. But then py( r) :f. 0, 
and hence M( r)y must be different zero. Thus M( r) is injective. 

To prove that py is monotonely decreasing, we first assume that I - F is 
positive definite. Put R = T-l(I - F). The operator R is selfadjoint with respect to the 
inner product 

[x, z): = {(I - F)x, z). 
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Indeed, because of the selfadjointness of T and F, we have 

[&, z] = {(I - F)T-l(I - F)x, z) 

= {(I - F), T- 1(I - F)z) 

= [x,Rz] 

for x and z in en. It follows that e-rR is nonnegative definite relative to the inner 
product [., l Now, observe that py is differentiable and 

p~(-r) = {-(I _ F)e-rT- 1(I-F)y, y) 

= -[e-rRy, y] :5 0, 0:5 T < 00. 

Thus py is monotonely decreasing if I - F is positive definite. 

To prove the latter result for the nonnegative definite case, we choose a se
quence FI, F2, ... of selfadjoint n x n matrices such that Fj -+ F as j -+ 00 and I - Fj is 
positive definite for each j. Let Mj(T) be the operator defined by (32) with F replaced 
by Fj, and consider 

Py,j(T) = (TMj(T)y,y), 0:5 T < 00. 

Obviously, Mj(T) -+ M(T) as j -+ 00, and hence 

(35) py(T) = .lim py)·(T), 
)-+00 ' 

0:5 T < 00. 

Since I - Fj is positive definite, Py,j is monotonely decreasing (see the preceding para
graph). But then, by (35), the same must be true for py. We have now shown that M(T) 
is invertible. 

Next, we show that the equation (30) is uniquely solvable. Consider the 
kernel function k(·) = h(·)F of the integral operator associated with (30). We know that 
k(·) can be written in the form (2) by taking A, B, C and P as in (29). Since 

(36) AX = A - BC = -iT-lei - F), 

the indicator Sr associated with this exponential representation of k(·) is given by 

(37) Sr = PeirAPM(T): ImP -+ ImP. 

The map PeirAp: ImP -+ ImP is invertible; its inverse being Pe-irAp. Also M(T) is 
invertible. It follows that Sr is invertible, and hence, by Theorem 10.1, the equation (30) 
is uniquely solvable in L~([O, T]). 

Finally, let us compute the solution of (30) for f given by (26). To do this 
we use formula (7) for the resolvent kernel. Note that f may be written in the form 

0:5 t :5 T. 
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First, assume that x_ = O. Then, according to Theorem 10.1, the solution 'IjJ of (30) has 
the following representation: 

t 

'IjJ(t) = J(t) + iCe-itAX!IT J eisAX (iBC)e-isAx+ds 

o 
T 

- iCe-itAX (1 - lIT) J eisAX (iBC)e-isAx+ds. 

t 

Recall that 

isAX('BC) -isA d ( isAX -isA) e ~ e =-dse e . 

Thus the two integrals in the formula for 'IjJ can be computed. This yields: 

'IjJ(t) = J(t) - iCe-itAXIITeitAX e-itAx+ + iCe-itAXIITx+ 

+ iCe-itAX (1 _ lIT )eiTAX e-iTAx+ - iCe-itAX (1 _ lIT )eitAX e-itAx+ 

= J(t) - iCe-itAx+ + iCe-itAX IITx+ + iCe-itAX (I -!IT )eiTAX e-iTAx+. 

From the definition of lIT (see formula (8)) we conclude that 

because P = P_ = (1 - P+). Thus, if x_ = 0, then 

.,,() ·C -itA x II 
'f/ t = ~ e TX+, o ~ t ~ r. 

In a similar way one shows that for x+ = 0 the solution 'IjJ is given by 

o ~ t ~ r. 

It follows that for J given by (26) the solution 'IjJ of (30) is equal to 

(38) o ~ t ~ r. 

By (8) and (37) 

!ITX+ + (1 -!IT )eiTAX x_ = x+ - S;:l PeiTAe-iTAX x+ + S;:l PeiTAx_ 

= x+ - M(r)-lPe- iTAX x+ + M(r)-lx_ 

= x+ + M(r)-l{x_ - Pe-iTAX x+}. 

Here we used that x_ E ImP and that P commutes with eiTA . Since iAx = T-l(I -F), 
iC = 1 and P = P _, formula (38) and the preceding calculation yield the desired 
expression (31). 0 



CHAPTER XIII. WIENER-HOPF INTEGRAL OPERATORS WITH RATIONAL SYMBOLS 279 

COROLLARY 10.6. If I - F i3 nonnegative definite, then the finite 3lab 
problem (23) ha3 a unique 30lution l/;, namely 

l/;(t) = e-tT - 1 (I-F){x+ + M(rrl(x _ _ P_e-TT- 1 (I-F)x+)}, 

where M(r):ImP_ -+ ImP_ is defined by (32). 

o ~ t ~ r, 

PROOF. Note that a solution of (23) is continuous on [0, rJ and thus belongs 
to L2'([O, rD. So we can apply Theorems 10.4 and 10.5 to get the desired result. 0 

The next theorem deals with the case of a multiplying medium. It concerns 
the finite slab problem (23) with both x_ and x+ equal to the zero vector, i.e., the 
equation 

(39) { Tl/;(t) = -l/;(t) + Fl/;(t), 
P + l/;(O) = 0, P -l/;(O) = o. 

o ~ t ~ r, 

As before M(r):ImP_ -+ ImP_ is defined by (32). 

THEOREM 10.7. The problem (39) ha3 a nontrivial solution if and only if 
det M( r) i- 0, and in that case the general solution of (39) is given by 

(40) o ~ t ~ x, 

where y is any vector in Im P _ such that M( r)y = o. Furthermore, if all the eigenvalues 
of T-l(I - F) are real, then there are only finitely many r's for which (39) has a 
nontrivial solution. 

PROOF. Note that any solution of (39) is a function belonging to L2'([O, r]). 
Thus, by Theorem 10.4, the solutions of the problem (39) coincide with the solutions 
l/; E L2'([O, rD of the equation 

T 

( 41) l/;(t) - J h(t - s)Fl/;(s)ds = 0, o ~ t ~ r. 
o 

Here h(.) is as in (25). Now apply Theorems 10.1 and 10.2 with A, B, C and P as in (29), 
and use (37). It follows that (39) has a nontrivial solution if and only if detM(r) i- 0, 
and in that case the general solution of (39) is given by (40) with y E Ker M( r). For the 
proof of the latter statement we also use that 

·C -itAX -tT-l(I-F) z e = e , o ~ t ~ r. 

Next, assume that all the eigenvalues of T-l(I - F) are real. Note that 
det M( r) depends analytically on r and det M(O) i- O. It follows that the number 
of zeros of det M(·) on [0,00) is finite or countable, and in the latter case the only 
accumulation point of these zeros is the point infinity. Since T-l(I - F) has only real 
eigenvalues, det M( r) is a linear combination of functions (in r) of the form ri eAT with 
A real. Let AO be the largest A in the exponent of functions ri eAT which appear in the 
linear combination with a nonzero coefficient. Then 

e-AOTdetM(r) =p(r)+q(r), 
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where p( r) is a nonzero polynomial and q( r) is analytic in r and tends to zero if r - 00. 

In particular, Ip(r)l- c, 0 < e ~ +00 if r _ 00, and it follows that detM(r) f: 0 for r 
sufficiently large. Hence M( r) has only a finite number of zeros. 0 

equation 

(42) 

We conclude this section with the following simple example. Consider the 

{ 
~l(t) = (e -1)t/1t(t) + etP2(t), 0 ~ t ~ r, 

-~2(t) = eth(t) + (e -1)tP2(t), 0 ~ t ~ r, 

tPl (0) = 0, tP2(0) = o. 
The problem is to find scalar functions tPl and tP2 that satisfy (42). Hence e is a positive 
constant. Equation (42) may be rewritten in the form (39) by taking 

T = [~ ~1]' F = e [i i], 

p+ = [~ ~], p- = [~ ~1]· 
Note that 1- F is nonnegative definite if and only if e ~ ~. Thus for e ~ ~ equation 
(42) has only a trivial solution, namely tPl = tP2 = 0 (cf. Corollary 10.6). In what follows 
we assume that e > ~. 

We have to analyse 

R: = T- 1(I _ F) = [ 1 -e e e ] -(1- e) . 

This matrix has two different eigenvalues, namely ±i-/2e - 1. (Here we use that e > !). 
Put a = i-/2e -1, and consider the matrix 

A=[1_~_a 1-~+a]· 
The matrix A is invertible and 

A -1 = _1_ [ a + 1 - e -e], 
2ca a-1+c c 

Now consider the scalar function 

R-A[a - 0 

t ~ o. 
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Theorem 10.7 tells us that (42) has a nontrivial solution if and only if m( T) = 0, and in 
that case the general solution of (42) is given by 

'¢l(t) = "Y[ 1 0 ]e-tT- 1 (I-F) [ ~ ] 
sine T y'2C=T) 

="YC ~ , 
y2c -1 

'¢2( t) = "Ym( t), 0 ::; t ::; T, 

where"Y is an arbitrary complex parameter. Note that for each c > ! there exist infinitely 
many T'S such that equation (42) has nontrivial solutions. 

COMMENTS ON PART III 

The first six sections of Chapter XI contain the standard elements of the 
abstract Fredholm theory which may also be found in other books (see, e.g., Kato [1]). 
Sections 7, 8 and 9 in this chapter concern more recent material. Theorem 7.1 is taken 
from Calderon [1] (see also Fedosov [ID and Theorem 7.6 from Markus-Feldman [1]. 
The results of Sections 8 and 9 are based on the papers Markus-Sigal [1], Gohberg-Sigal 
[1], and Gohberg-Kaashoek-Lay [1], [2]. Theorems 9.1 and 9.2 may also be proved for 
finitely meromorphic operator functions that are of so-called Fredholm type. For these 
and other generalizations we refer to Gohberg-Sigal [1], Sigal [1] and Bart-Kaashoek-Lay 
[1]. The results in the last section of Chapter XI come from the book Gohberg-Krein [3]. 
The approach followed in this section allows one to introduce and to develop a theory 
of singular values for operators on Banach spaces. In this wider framework the singular 
values are approximation numbers which are extensively studied in the books Pietsch 
[1] and Konig [1]. Chapter XII contains standard material about Wiener-Hopf integral 
operators, which is taken from the paper Gohberg-Krein [2] (see also the book Gohberg
Feldman [ID. Chapter XIII, which contains more recent material, is based on Section 
4.5 of the book Bart-Gohberg-Kaashoek [1] and the papers Bart-Gohberg-Kaashoek [2], 
[3]. The notion of a realization has its origin in mathematical system theory (see, e.g., 
Kalman-Falb-Arbib [1], Kailath [1]). The examples from linear transport theory in the 
last two sections of Chapter XIII are inspired by Chapter 6 in Bart-Gohberg-Kaashoek 
[1], Van der Mee [1] and Ran-Rodman [1]. We shall return to the study of concrete 
classes of Fredholm operators, like Toeplitz and Wiener-Hopf integral operators, in the 
second volume. Unbounded Fredholm operators will be treated in Part IV. 
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In what follows, X and Y are complex Banach spaces and I denotes the 
identity operator on X or Y. In the first six exercises, A E .c(X, Y) and BE .c(y,X). 

1. Assume that the product AB is a Fredholm operator. Which of the following state
ments is true? 

(a) The operator A is Fredholm. 

(b) The operator B is Fredholm. 

( c) Both A and B are Fredholm. 

2. Assume that AB is Fredholm. Show that 

(a) ImA is closed and d(A) < 00, 

(b) 1mB is closed and nCB) < 00. 

3. If AB is Fredholm, does it follow that BA is Fredholm? 

4. If I - AB is Fredholm, does it follow that I - B A is Fredholm? 

5. Assume that AB is Fredholm. Prove that A is Fredholm if and only if B is Fredholm. 

6. If A is a Fredholm operator and T is a generalized inverse of A, then T is a Fredholm 
operator and ind T = - ind A. Prove this. 

7. Let A, B E .c(X, Y). The operator A is Fredholm and T is a generalized inverse of 
A. Assume that the operator C = 1+ T B is invertible. Prove that A + B is a Fredholm 
operator and 

(a) n(A + B) ~ n(A), 

(b) d(A + B) ~ d(A), 

(c) ind(A+B) =indA. 

Hint: use Exercises 5 and 6. 

8. Let A, B and C be as in the previous exercise, and assume now that C is Fredholm. 
Prove that B is a Fredholm operator and ind(A + B) = indA + indC. 

9. Use Exercise 7 to give a new proof of Theorem XI.4.1 (with, perhaps, a different 
bound for IIBII). 
10. Use Exercise 8 to give a new proof of Theorem XI.4.2. 

11. Assume that the operator 

is Fredholm. Which of the following statements is true? 

(a) The operator A is Fredholm. 
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(b) The operator B is Fredholm. 

(c) Both A and B are Fredholm. 

12. Assume that the operator 

T= [~ i] :X€aY-+X€aY 

is Fredholm. Answer for this case the question posed in the previous exercise. 

13. Consider the operator 

283 

and assume that A and B are Fredholm operators. Prove that T is a Fredholm operator 
and 

indT = indA +indB. 

In the next three exercises A is a bounded linear operator on the Banach 
space x. 
14. Let N be a positive integer, and assume that AN - I is a compact operator. Prove 
that the essential spectrum of A is a subset of the set of N-th roots of unity. 

15. Let p be a non-zero polynomial, and assume that P(A) is compact. Prove that the 
essential spectrum of A is a subset of the set of zeros of p. 

16. For each positive integer N, put 

PN(A) = inf{IIAN - Kill K compact}. 

Prove that O'ess(A) = {O} if and only if PN(A)l/N -+ 0 as N -+ 00 (cf., Exercise 18 to 
Part I). 

17. Let A E C(X, Z) and B E C(Y, Z) be operators acting between complex Banach 
spaces, and assume that Z = 1m A €a 1m B. Show that A and B have closed range. 

18. Let A E C(X, Y), and assume that 1m A is closed. Show that the conjugate A' has 
closed range and ImA' = (KerA).L. (Hint: first consider the case when KerA = {O}.) 

19. Let A E C(X, Y), and assume that ImA' = (Ker A).L. Prove that A has closed range 
and 1m A = ~Ker A'). 

An operator A E C(X, Y) is called aemi-Fredholm if ImA is closed and n(A) 
or d(A) is finite. The index of such an operator A is defined by 

{ 
+00, 

indA = -00, 

n(A) - d(A), 

if n(A) = 00, 

if d(A) = (Xl, 

otherwise. 

20. Prove that A E C(X, Y) is semi-Fredholm if and only if the conjugate operator A' 
is semi-Fredholm, and show that in that case indA = -indA'. 
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21. Extend the first perturbation theorem in Section XI.4 to semi-Fredholm operators. 
(Hint: see Section V.1 of Goldberg [1].) 

22. Extend the second perturbation theorem in Section XI.4 to semi-Fredholm operators. 
(Hint: see Section V.2 of Goldberg [1].) 

23. Let A E C(X, Y) and B E C(Y, X), and assume that the product AB is semi
Fredholm. Show that one of the factors is semi-Fredholm, but not necessarily both. 

24. If A E C(X, Y) and B E C(Y,X) are semi-Fredholm, does it follow that AB is 
semi-Fredholm? If yes, prove this statement; if no, give an additional condition under 
which the statement is true. 

25. Assume that the operator 

is Fredholm. Which of the following statements is true? 

(a) The operator A is semi-Fredholm. 

(b) The operator B is semi-Fredholm. 

(c) Both A and B are semi-Fredholm. 

Answer the same question assuming only that T is semi-Fredholm. 

26. The analogue of the statement in Exercise 13 for semi-Fredholm operators holds 
true. Prove or disprove this. 

27. Determine the kernel function of the Wiener-Hopf operator T on L2([0, 00)) with 
symbol (~)n. Show that T is Fredholm and compute neT) and d(T). 

28. Let T be the Wiener-Hopf operator on L2([0, 00)) with symbol 

Compute the kernel function of T. Show that T is invertible and determine its inverse. 

29. Let To: be the Wiener-Hopf operator on L2([0, 00)) with symbol 

( A-i) (A+i) Wo:(A) = 2a A + i + 1- 3a + a A _ i . 

For which a E C is the operator To: left, right or two-sided invertible? Construct the 
inverse of To: if it exists. 

30. For a E R let Ta be the Wiener-Hopf operator on L2 ([0, 00)) with symbol 

( A-i) (A+i) W(A) = a A + i + 1 - a A _ i . 

Determine the spectrum of Ta. 
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The remaining exercises deal with convolution operators with kernel function 

n 

k(t) = L dje-Itlcj, -00 < t < 00. 

j=l 

Here 0 < cl < c2 < ... < Cn and dj > 0 (j = 1, ... , n). 

31. Show that k may be represented in the form 

by taking 

k t = { iCe-itA(I - P)B, t > 0, 
( ) ·C -itApB t 0 -l e , < , 

A = diag( -iCl, ... , -icn, iq, ... , iCn) 
P = diag(O, ... , 0,1, ... ,1) 

B =Ag, C=gT, 

where g is the 2n x 1 matrix whose transpose is given by 

32. Let L be the convolution operator on L2(R) defined by 

00 

(Lf)(t) = J k(t - s)J(s)ds, -00 < t < 00. 

-00 

Prove that I - L is invertible if and only if 

t dj <~. 
j=l Cj 2 

Determine the inverse of 1- L if it exists. Hint: use Theorem XIII.5.1 and Lemmas 
XIII.9.4 and 9.5. 

33. Let T be the Wiener-Hopf operator on L2([0, 00)) given by 

00 

(Tf)(t) = J(t) - J k(t - s)J(s)ds, 0:5 t < 00. 

o 

Show that T is invertible if and only if condition (*) in the previous exercise is fulfilled. 
Determine the inverse of T if it exists. 

34. Let w(·) be the symbol of the Wiener-Hopf operator T defined in the previous 
exercise. Determine a right canonical factorization of w(·) whenever it exists. 
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35. Let K be the convolution operator on L2([O, TJ) defined by 

r 

(Kf)(t) = J ket - s)f(s)ds, 
o 

o ::; t ::; T. 
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Show that K is a trace class operator and compute tr K. Prove that 1- K is invertible 
if 

l:n dj 1 
-<
c· - 2' 

j=l J 

and in that case give a formula for the resolvent kernel. 



PART IV 

CLASSES OF UNBOUNDED LINEAR OPERATORS 

One of the most important classes of operators is the class of unbounded 
operators. This includes differential operators which playa vital role in applications. In 
this part an introduction to the theory of unbounded operators is presented. We start 
with the study of their adjoints and conjugates, and then concentrate on certain types 
of ordinary and partial differential operators (Chapter XIV). In the next three chap
ters (XV-XVII) results proved earlier for bounded operators are extended to unbounded 
operators. The main topics are functional calculus, the spectral theorem, and the the
ory of Fredholm operators. The last chapter contains an introduction to the theory of 
strongly continuous semigroups with applications to the abstract Cauchy problem and 
linear transport theory. 



CHAPTER XIV 

UNBOUNDED LINEAR OPERATORS 

This chapter gives an introduction to the theory of unbounded linear opera
tors between Banach spaces. The important notions of closed and closable operators and 
their conjugates are analyzed with much attention paid to ordinary and partial differen
tial operators. In particular, maximal and minimal operators and the properties of their 
inverses are studied. The chapter is divided into 6 sections. The first two sections are 
devoted to the general theory, and the other four sections deal mainly with differential 
operators. 

XIV.1 PRELIMINARIES 

Throughout this chapter X and Y will denote complex Banach spaces. A 
linear operator A with domain V(A) C X and range ImA C Y is denoted by A(X -+ Y). 
For X = Y the resolvent set peA) is the set of all complex numbers>' for which>' - A 
is invertible and the inverse R(>.) = (>. - A)-l is bounded on X. The operator valued 
function R(·) is called the resolvent of A. 

PROPOSITION 1.1. The resolvent set peA) of the operator A(X -+ X) is 
open. If peA) f:. 0, then the resolvent R(·) is analytic on peA). Moreover, if ..\0 E peA) 
and 1..\ - ..\01 < IIR(..\0)1I-1, then ..\ is in peA) and 

00 

(1) R("\) = L( _1)k(..\ - ..\o)k R(..\o)k+1; 
k=O 

the series converges in the norm on £(X). If ..\ and p. are in peA), then 

(2) R("\) - R(p.) = (p. - "\)R("\)R(p.). 

PROOF. The proof is the same as for the bounded case; see, e.g., [GG], 
Sections X.6 and X.8. 0 

The identity (2) will be called the resolvent identity (or resolvent equation). 
As for bounded operators, the spectrum u(A) of A is defined to be the complement in 
C of peA). However, while the spectrum of a bounded operator is a non-empty compact 
set, the spectrum of an unbounded operator may be empty or all of C. 

For example, let X = Y = C([O, 1]), the space of complex valued continuous 
functions endowed with the supremum norm, and define Al and A2 by 

(3) V(At} = {f E C([O, 1]) 1 l' E C[O, In, At! = !" 

(4) 
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Since eAt E Ker(,\ - AI), the spectrum o-(AI) = C. On the other hand, o-(A2) = 0. To 
see this, note that Ker(,\ - A2) = {O}. Also, for any 9 E Y, the equation (,\ - A2)Y = 9 
has a solution Y E V(A2), namely 

t 

yet) = - J eA(t-s)g(s)ds, 

o 

Hence ,\ - A2 is invertible and 

O:5t:51. 

Recall (see [GG], Section X.3) that an operator is closed if its graph G(A) = 
{(x, Ax) I x E V(A)} is a closed linear manifold in the Banach space X X Y with norm 
II (x, y)11 = IIxll + Ilyll· It is clear that A is closed if and only if Xn E V(A), n = 1,2, ... , 
Xn -+ x and AXn -+ y imply x E V(A) and Ax = y. The differential operators defined 
by (3) and (4) are closed. More general differential operators are shown to be closed in 
Section XIV.3. 

PROPOSITION 1.2. If the operator A(X -+ X) has a non-empty resolvent 
set peA), then A is closed. 

PROOF. If'\o E peA), then ('\0 - A)-I is a bounded operator on X. Hence 
('\0 - A)-I is closed which implies that '\0 - A is closed. But then A is closed. 0 

An operator A(X -+ Y) is called closable if it can be extended to a closed 
linear operator C(X -+ Y), i.e., V(A) C V(C) and Cx = Ax for x E V(A). In that case 
C is called a closed linear extension of A. 

PROPOSITION 1.3. An operator A(X -+ Y) is closable if and only if 
(0, y) E G(A) implies y = O. 

PROOF. Suppose that C is a closed linear extension of A and (0, y) E G(A). 
Then (O~E G(C) and therefore y = CO = O. On the other hand, suppose that 
(0, y) tf. G(A) whenever y #- o. Put 

V = {x EX 13yx E Y such that (x,yx) E G(A)}. 

The set V is a linear manifold in X. For each x E V there is precisely one Yx E Y such that 
(x, Yx) E G(A). Indeed, assume (x, Yx) and (x, y~) are in G(A). Then (0, yx-y~) E G(A), 
and by our hypothesis Yx = y~. Define B(X -+ Y) by setting 

V(B) = V, Bx = Yx. 

Then B is a well-defined linear operator and G(B) = G(A). Thus B is closed. If 
x E V(A), then (x,Ax) E G(A). This implies that x E V(B) and Bx = Ax. Hence B is 
a closed linear extension of A. 0 

Let A be closable. The operator B constructed in the proof of Proposition 
1.3 is called the minimal closed linear extension of A and is denoted by A. Since G(A) = 
G(A), any other closed linear extension of A is also an extension of A. 



290 XIV.2 ADJOINT AND CONJUGATE OPERATORS 

PROPOSITION 1.4. If A(X -+ Y) i3 clo3able and has finite rank, then A 
i3 bounded on it3 domain. 

PROOF. First we prove that 1m A = 1m A. Obviously, 1m A C 1m A. Take 
y E 1m A, say y = Ax. Then (x, y) E G( A) = G( A), and hence there exists a sequence 
Xl, X2, ... in V(A) such that Xn -+ x and AXn -+ y. In particular, y E ImA. Since 1m A 
is closed, y E 1m A. Thus 1m A = 1m A. 

It follows that A also has finite rank. So we may assume without lOfls of 
generality that A is closed. Then Ker A is closed. Indeed, let z E Ker A, and let 
Xl, x2, ... be a sequence in Ker A such that Xn -+ z. Since AXn = 0, it follows that 
(z,O) E G(A) = G(A), and hence Az = o. Thus z E Ker A. 

Since the map [x] -+ Ax is an isomorphism from V(A)/KerA onto ImA, 
we have dimV(A)/KerA = dimlmA < 00. Hence V(A) = KerA Ef) Z for some finite 
dimensional subspace Z. It follows (see [GG], Theorem IX.2.5) that V(A) is a closed 
subspace of X. Thus A: V(A) -+ Y is a closed operator acting between Banach spaces 
and thus, by the closed graph theorem, the operator A is bounded on V(A). 0 

For later purposes we introduce the following terminology. Let A(X -+ Y) 
and B(X -+ Y) be operators. We say that A is a re3triction of B or, alternatively, B is 
an exten3ion of A if 

(5) V(A) C V(B), Ax =Bx (x E V(A)). 

In that case we write A C B. Note that (5) is equivalent to G(A) C G(B). 

XIV.2 ADJOINT AND CONJUGATE OPERATORS 

Recall that given a bounded operator A from a Hilbert space HI. into a 
Hilbert space H2, the adjoint A* of A is defined as follows. For each y E H2 the 
linear functional Fy(x) = (Ax,y) is bounded on HI. Hence, by the Riesz representation 
theorem, there exists a unique z E HI such that 

(Ax,y) = Fy(x) = (x,z), 

Define A*y = z. Then A* is a bounded linear operator from H2 into HI. and (Ax, y) = 
(x, A*y) for all x E HI and y E H2. 

Suppose now that A is densely defined but not necessarily bounded. Then 
given y E H2, the functional Fy defined on V(A) by Fy(x) = (Ax, y) may be unbounded 
and the Riesz representation theorem does not apply. So we must modify the above 
definition in order to define A*. To do this we put 

(1) ( *) { I I{Ax,Y)I} V A = y E H2 sup II II < 00 . 
O'¢xED(A) x 

Take y E V(A*). Since V(A) = HI, the functional Fy has a unique bounded linear exten
sion F y to all of HI. Therefore the Riesz representation theorem ensures the existence 
of a unique z E HI such that Fy(x) = (x,z), x E V(A). Define A*y = z. Hence 

(Ax, y) = (x,A*y), x E V(A), Y E V(A*). 
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The operator A * (H 2 -t HI) is linear and is called the adjoint of A. 

If'D(A) is not dense in X, then the set 'D(A*) defined by (1) is well-defined. 
But given y E 'D(A*), the linear functional Fy(x) = (Ax,y), x E 'D(A), can be extended 
in many different ways to a bounded linear functional on X, i.e., there are many different 
z E X such that Fy(x) = (x,z), x E 'D(A), and hence A* has to be defined as a multi
valued map. In what follows we shall not consider this case. 

It can happen that 'D( A *) = {O}, as is seen in the following example. Take 
HI = H2 = £2. Let ek = (Okj)j;:=I' 0kj the Kronecker delta, k = 1,2, ... , and let 
{eij } i,'j= 1 be any double indexing of {ed~I' For each i, j define Aeij = ei and extend 
A linearly to the span of {ek}~I' Obviously, A is densely defined in £2' Suppose 
y = (ab a2,"') is in 'D(A*). Then for each positive integer nand i, 

00 00 

nlai\2 ~ L I(Aeij,y)12 = L l(eij,A*y)12 ~ I\A*yI\2. 
j=I j=I 

Hence y = (ai)~1 = O. 

If Hi is a Hilbert space with inner product (', ')i, i = 1,2, then HI x H2 is a 
Hilbert space with inner product [".j defined by 

For any Me HI X H2 the orthogonal complement Ml.. of M is to be taken with respect 
to the inner product [', .j. 

PROPOSITION 2.1. Let HI, H2 be Hilbert .3pace.3, and let the operator A 
(HI -+ H2) have den.3e domain in HI- Then 

(2) G(A)l.. = {( -A*y, y) lyE 'D(A*)}, 

and the operator A*(H2 -+ HI) i.3 clo.3ed. 

PROOF. Let G'(A*) denote the right hand side of (2). From 

[(x, Ax), (-A*y, y)j = (x, -A*y) + (Ax, y) = 0, 

it follows that G'(A*) C G(A)l... Given (u,v) E G(A)l.., 

0= [(x,Ax),(u,v)j = (x,u) + (Ax,v), x E'D(A). 

Hence v E 'D(A*) and A*v = -u, which shows that G(A)l.. C G'(A*). 

Let J:Hl x H2 -+ H2 X HI be defined by J(x,y) = (y,-x). Then J is a 
homeomorphism and JG'(A*) = G(A*). From (2) it follows that G'(A*) is closed, and 
hence G(A*) is closed. 0 

The concept of the adjoint of a densely defined operator has a natural exten
sion to operators between Banach spaces as follows. Given the operator A(X -+ Y) with 
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domain'D(A) dense in X, define the conjugate A' between the conjugate spaces yl and 
X, by 

'D(A') = {g E y' I goA is bounded on 'D(A)}, 

A'g = goA, 

where goA is the unique bounded linear extension of goA to all of X. The operator 
A'(Y' -+ X') is linear. 

The next example exhibits the conjugate of the operator of differentiation on 
Lp([O,l]), 1 S; p < 00. To do this we make use of the following result. For a subset S of 
a Banach space X and a subset N of the conjugate space X', we define 

S1.. = {F E X' I F(s) = 0 for all s E S}, 

1..N = {x E X I G(x) = 0 for all G EN}. 

Obviously, S C1.. (S1..). The Hahn-Banach theorem implies that J..(M1..) = M if M is a 
subspace (= closed linear manifold) of X. If N is a subspace of X, then, in general, it 
does not follow that (1.. N)1.. = N. However, the latter equality holds true if dim N < 00. 

To see this, let Gl, ... , Gn be a basis of N, and assume that F E (1.. N)1... Then 

n n KerGj = 1..N C KerF. 
j=l 

Hence F is a linear combination of Gll ... , Gn (see Lemma XVI.1.2), and thus FEN. 
Since always N C (1.. N)J.., we have proved that (1.. N)1.. = N for any finite dimensional 
subspace N of X'. 

Now let us consider the conjugate of the operator of differentiation. More 
precisely, we shall determine the conjugate of the operator A(X -+ X), where X = 
Lp([O,l]), 1 S; p < 00, 

'D(A) = {f E X I f absolutely continuous on [0,1), f' E X, f(O) = f(l)}, 

Af = f'· 

The domain 'D(A) is dense in X. Given a bounded linear functional F on Lp([O,l]), 
1 S; p < 00, there exists a unique 9 E Lq([O, 1]), p-l + q-l = 1, with the property that 

1 

F(f) = [f,g):= J f(s)g(s)ds, 
o 

f E Lp([O, 1]). 

This allows us to identify Lp([O, 1])' with Lq([O, 1]). Thus A' acts on Lq([O, 1]). We shall 
show that 

(3) 

'D(A') = {g E Lq([O, 1]) I 9 absolutely continuous on [0,1], 

g' E Lq([O, 1]), g(O) = g(l)}, 

A'g = -g'. 
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Let M be the linear manifold described on the right hand side of (3). H gEM, then for 
every f E V(A), integration by parts yields 

1 1 

[Af,gj = J J'(s)g(s)ds = - J f(s)l(s)ds. 
o 0 

By Holders inequality, I[Af,gll :5 IIfllll9'lI. Hence 9 E VeA') and A'g = -g'. It remains 
to prove that VeA') c M. Suppose h E VeA'), A' h = h* and f E V(A). Then integration 
by parts gives 

1 1 J J'(s)h(s)ds = [Af,hj = [f,A'h] = J f(s)h*(s)ds 

(4) o 0 
1 

= f(O)(H(l) - H(O») - J f'(s)H(s)ds, 
o 

where H(s) = f; h*(t)dt. We shall now show that h + H is constant a.e. To do this 

we take Q E .L{1}, i.e., the function Q E Lp([O, 1]) and fl Q(s)ds = O. Clearly, f(s) = 
f; Q(t)dt is in V(A). Therefore by (4), 

1 J Q(x)[h(x) + H(x)]dx = 0, 

o 

which shows that h + HE (.Lspan{l}).L = span{l}, i.e., h + H is a constant c a.e. Thus 
we may redefine h on a set of measure zero so that h = -H + c. Hence h is absolutely 
continuous on [0,1] and h' = -h* E Lq([O,1]). Also for 9 E V(A), (4) shows that 

1 

g(0)(H(1) - H(O») = J cg'(x)dx = c(g(1) - g(O») = o. 
o 

So if we take g(O) =F 0, then 0 = H(1) - H(O) = h(O) - h(1). Hence h E V(A). 

Other examples of adjoints of differential operators appear in Section XIV.4. 
Since bounded linear functionals on a Hilbert space H correspond to elements in H via 
the lliesz representation theorem, we shall only speak of the adjoint of an operator on 
H rather than its conjugate. 

x E V(A), 

PROPOSITION 2.2. The conjugate of a densely defined operator is closed. 

PROOF. Given A(X -t Y), suppose gn -t 9 and A' 9n -t f. Then for all 

f(x) = lim(A' gn)(x) = limgn(Ax) = g(Ax). 
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Hence 9 E V(A') and A' 9 = f. 0 

PROPOSITION 2.3. Let the domain of the operator A(X -+ X) be den3e in 
X. Then A i3 cl03able if and only if for every y#-O in Y there exists 9 E V(A') such 
that g(y) #- O. 

PROOF. Suppose A is closable and 0 #- y E Y. Let C be a closed linear 
extension of A. Then (O,y) tI. G(C):> G(A). Hence there exists w E (X x Y)' such that 
w(O,y) #- 0 and w(G(A») = O. Define f E X' and 9 E Y' by 

f(x) = w(x,O), g(v) = w(O,v). 

Then 

f(x) + g(Ax) = w(x, Ax) = 0, 

Hence 9 E V(A') and g(y) = w(O,y) #- O. 

x E V(A). 

Suppose for each u #- 0 in Y there exists 9 E V(A') so that g(u) #- O. If 
(O,y) E G(A), then there exists a sequence (x n ) in V(A) so that Xn -+ 0 and AXn -+ y. 
For each 9 E V(A'), 

0= limA' g(xn ) = limg(Axn ) = g(y). 

Hence y = 0 and A is closable by Proposition 1.3. 0 

Proposition 2.3 is equivalent to the statement that A is closable if and only 
if l.V(A') = {O}. 

PROPOSITION 2.4. Let HI and H2 be Hilbert spaces, and let A(HI -+ H 2) 
have domain dense in HI. Then A is closable if and only if V(A*) is dense in H2. In 
this case, 

A = A**, A* = (A)*, 

where A is the minimal closed linear extension of A. 

PROOF. Suppose A is closable and w J.. V(A*). Then w = 0 by Proposition 
2.3. Hence V(A*) = H2. Conversely, if V(A*) = H2 and (v, y) = 0 for all y E V(A*), 
then v = 0 and therefore A is closable by Proposition 2.3. Let U be defined on HI X H2 
by U(x,y) = (y,x). Now by Proposition 2.1, 

G(A) = G(A) = G(A).1.l. = (UG( _A*)).1. = UG( _A*).1. = U2G(A**) = G(A**). 

Hence A = A **. If we replace A by A * and use the fact that A * is closed (Proposition 
2.2), we get A* = A*** = (A)*. 0 

PROPOSITION 2.5. Let HI and H2 be Hilbert spaces, and let A (HI -+ H 2) 
be densely defined. Then 

(i) ImAl. = KerA*, 

(ii) ImA = KerA*l.. 

If, in addition, A is closable, then 
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(iii) Ker A = ImA*ol n V(A). 

PROOF. (i). If q E ImAol, then (Ax,g) = 0 for all x E V(A). Hence 
9 E V( A *) and A * 9 = O. Thus 1m Aol C Ker A *. The reverse inclusion is proved as in 
the bounded case (see [GG], Theorem 11.11.4). Statement (ii) is an immediate corollary 
of (i) and the fact that (Mol)ol = M for a linear manifold M. The proof of (iii) is 
analogous to that of (i) (and uses that V(A*) is dense in H2). 0 

PROPOSITION 2.6. A closed densely defined operator A(HI -+ H2) is in
vertible if and only if its adjoint A* is invertible, in which case (A*)-I = (A -1)*. 

PROOF. Assume A is invertible. By Proposition 2.5 the operator A* is 
injective. Since A-I is bounded from H2 into HI, the adjoint (A-I)* has domain HI. 
Hence for z E HI and x E V(A) 

(Ax, (A-I)*z) = (A- 1Ax,z) = (x,z). 

Therefore, 

(5) 

We have shown that A* is both injective and surjective. Since A* is closed, it is invertible 
(by the closed graph theorem) and (A*)-1 = (A -1)* because of (5). If A* is invertible, 
then by Proposition 2.4 and the above result applied to A * in place of A, we have A = A ** 
is invertible. 0 

XIV.3 ORDINARY DIFFERENTIAL OPERATORS 

Let r be the differential expression of the form 

where D = ft and each ak is locally integrable on an interval J. Let ACn( J) denote 
the set of complex valued functions 9 on J with the property that g(n-l) exists and 
is absolutely continuous on each compact subinterval of J. Thus g(n) exists a.e. on J. 
Define the linear differential operator Tmax,T,J(L2(J) -+ L2(J») by 

V(Tmax,T,J) = {g E ACn(J) n L2(J) I rg E L2(J)}, 

Tmax,T,Jg = rg. 

This operator is called the maximal operator corresponding to rand J. Where it is clear 
which r and J we are dealing with, we write Tmax instead of Tmax T J. We shall now 
show that certain restrictions of Tmax are invertible when J is comp~~t. 

THEOREM 3.1. Let Tmax (L2([a, bJ) -+ L2([a, bJ)) be the maximal operator 
corresponding to r and the compact interval [a, b]. Let T be the restriction of Tma.x to 
those 9 E V(Tmax) which satisfy the boundary conditions 

n n 

(1) L aWgU- 1)(a) + L aWgU-l)(b) = 0, 1 ~ i ~ n, 
j=l j=1 
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where eiLch a~;) ia a given conatant. Then T ia invertible if and only if 

(2) 

with Nk the n x n matrix [a~~)]~ '-1' k = 1,2, and U(t) the unique continuoua n x n 
I) 1,)-

matrix auch that 
t 

U(t) = In + J A(s)U(s)ds, a $ t $ b, 

a 

where 

A(t) ~ [ ~ 
1 0 0 
0 1 0 

0 0 1 
-ao(t) -al(t) -a2(t) -an-let) 

If (2) holda, then T-l ia the Hilbert-Schmidt operator on L2([a, b]) given by 

b 

with 

Here 

(T- l f)(t) = J G(t,s)J(s)ds, 
a 

{ 
CU(t)(I - P)U(s)-lB, 

G(t s) -
,- -CU(t)PU(s)-l B, 

P = (Nl + N2U(b» -1 N2U(b), 

a $ t $ b, 

a $ s < t $ b, 

a $ t < s $ b. 

B ~ [ ~ j . c ~ [1 0 0 J. 

PROOF. Since the entries of A(t) are integrable on [a, b], we know from 
Lemma IX.2.2 that U(t) and U(t)-l are well-defined. From the integral expression for 
U(t) it follows that the entries of U(t) are absolutely continuous functions on a $ t $ b 
and U(t)' = A(t)U(t) a.e. on [a, b]. We shall first show that 

b 

(3) ImT = {J E L 2([a, bJ) I N2U(b) J U(s)-l BJ(s)ds E Im(Nl + N2U(b»)} 

a 

and 

(4) KerT = {g E L2([a, b]) I get) = CU(t)x, X E Ker(N1 + N2U(b»)}. 
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Assume f E 1m T. Then 

(5) { x'(t) = A(t)x(t) + Bf(t), 
N1x(a) + N2X(b) = 0, 

has a solution. In fact, we may take 

[ 
g( t) 1 g'(t) 

x(t) = 0 , 

g(n-·l)(t) 

where Tg = f. The solution of (5) is of the form 

t 

a :5 t :5 b, 

a :5 t :5 b, 

(6) x(t) = U(t)xo + U(t) J U(s)-l Bf(s)dso 
a 

Since x(·) satisfies the boundary conditions, we see that 

b 

= NIXO + N2U(b)xo + N2U(b) J U(s)-l Bf(s)ds. 
a 

So 

b 

N2U(b) J U(s)-l Bf(s)ds = -(Nl + N2U(b»)xo E Im(Nl + N2U(b»). 
a 

Conversely, assume that 

b 

N2U(b) J U(s)-l Bf(s)ds E Im(Nl + N2U(b»). 
a 

Then there is Xo E en such that 

b 

N2U(b) J U(s)-l Bf(s)ds = -(Nl + N2U(b»)xo. 
a 

It follows that 

t 

(7) x(t) = U(t)XO + U(t) J U(s)-l Bf(s)ds, a :5 t :5 b, 

a 

297 
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satisfies (5), and therefore g = Cx E VeT) and Tg = f. Hence f E 1m T. 

To prove (4), we set f = 0 in (5) and (6) to obtain 

(8) { x'(t) = A(t)x(t), a :5 t :5 b, 
N1x(a) + N2X(b) = O. 

The general solution of the first equation in (8) is of the form x(t) = U(t)x(a). For x(t) 
to satisfy the second equation in (8), 

must hold. Also, get) = CU(t)x(a) E KerT. Thus (4) follows. 

It is clear from (3) and (4) that T is bijective if Nl + N2U(b) is invertible, 
or equivalently, det(Nl + N2U(b») =f O. In this case, it follows from (6) and the above 
discussion that if f E L2([a, b]) and Tg = f, then get) = Cx(t) with x(t) given by (7). 
Using the boundary conditions we see that 

b 

x(a) = -[Nl + N2U(b)]-1 N2U(b) J U(s)-l Bf(s)ds. 
a 

b t 

x(t) = -U(t)P J U(s)-l Bf(s)ds + U(t) J U(s)-l Bf(s)ds 
a a 

t b 

= U(t)(I - P) J U(s)-l Bf(s)ds - U(t)P J U(s)-l Bf(s)ds 
a t 

for each t E [a,b]. The formula for G(t,s) as stated in the theorem is now clear from 
T-l f = Cx(t). In particular, T-l is a bounded linear operator, and thus T is invertible. 

N ext we shall show that 

(9) dim KerT = dim Ker(Nl + N2U(b»). 

By (4) it suffices to show that CU(t)x = 0 for all t E [a, b] implies x = O. Let Uj(t) be 
the j-th row of U(t). Since 

U'(t) = A(t)U(t), a :5 t :5 b, a.e., 

we see that for 1 :5 j :5 n - 1, 

(10) a :5 t :5 b, a.e .. 
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From CU(t)x = 0 it follows that Ul(t)X = o. Apply (10) repeatedly and obtain Uj(t)x = 
0, 1 ::; j ::; n. But then det U(t) =j:. 0 implies x = o. 

From (9) we see that T is invertible implies that Nl + N2U( b) has full column 
rank. Since Nl + N2U(b) is a square matrix, we conclude that det(Nl + N 2U(b)) =j:. 0 
whenever T is invertible. 0 

It is clear that with Nl = I and N2 = 0, the operator T is surjective. Since 
T is a restriction of Tmax , it follows that Tmax is also surjective. Setting Nl = N2 = 0 
in (9) yields T = Tmax and dim Ker Tmax = n. Hence we have the following result. 

COROLLARY 3.2. The maximal operator corresponding to T and a compact 
interval is surjective and its kernel is n-dimensional. 

PROPOSITION 3.3. The maximal operator corresponding to T and any in
terval is closed. 

PROOF. Let us first assume that the interval J is compact. If we take 
Nl = I and N2 = 0 in Theorem 3.1, then the corresponding operator T has a bounded 
inverse on L2( J). Hence T is closed. Since Tmax is an extension of the invertible operator 
T, it follows that 

G(Tmax) = G(T) EB (KerTmax x {OJ). 

Therefore G(Tmax) is closed since G(T) is closed and KerTmax x {OJ is finite dimensional. 

Now let J be any interval, and let Tl = Tmax,T,J. Suppose fl, 12, ... is a 
sequence in V(Tt} such that 

fn -+ f E L2(J), 

For any compact subinterval Jo of J, let To = Tmax,T,Jo . If we consider fn, f and gas 
elements of L 2(Jo), then fn -+ f and Tofn -+ g in L2(JO). Since To is closed by what we 
have just proved, f E V(To) and Tof = g on L2( Jo). But Jo was an arbitrary subinterval 
of J. Therefore f E V(Tl) and Tlf = g. 0 

PROPOSITION 3.4. If J is a compact interval, then any closed operator A 
which is a restriction of T max T J has a closed range. If, in addition, A is injective, then 
A-I(ImA -+ L2(J)) is comp~ct. 

PROOF. Let us first assume that A is injective. By Theorem 3.1 there is an 
invertible operator T which is a restriction of Tmax and has a compact inverse. Define 

V(F) = ImA, 

Since A-I is closed and T-I is bounded, the operator F is closed. Also 1m F C Ker T max 
and the latter space is finite dimensional. Hence F is bounded by Proposition 1.4. So 
V(F) is closed. Since F has finite rank, it follows that F is compact. From A-I = 
F + (T-II 1m A) and the compactness of F and T-l we have that A-I is compact. In 
particular, A-I is bounded and thus 1m A is closed. 

If A is not injective, take Al to be the restriction of A to V(A) n Ker A.l. 
Then Al is closed, injective and a restriction of Tmax. Hence 1m A = 1m Al is closed. 0 
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Let TR,T,J be the restriction of the maximal operator to those f E D(Tmax,T,J) 
that have compact support in the interior of J. By the support of a function f we mean 
the closure of the set {x I f(x) =1= a}. Thus f E D(TR,T,J) if and only if f E D(Tmax,T,J) 
and there exists a compact set C (depending on f) such that 

{x E J I f(x) =1= O} C C C intJ. 

Since Tmax is closed, TR = TR T J is closable. The minimal closed linear extension of 
TR is called the minimal operat~; corresponding to T and J and is denoted by Tmin,T,J' 
When it is clear which T and J we are dealing with, we write Tmin instead of Tmin,T,J' 

PROPOSITION 3.5. The minimal operator Tmin corresponding to T and the 
compact interval [a, b] is injective, has closed range and T~~ is compact on 1m Tmin. If 
9 E D(Tmin), then g(k)(a) = g(k)(b) = 0, 0 ~ k ~ n-l. 

PROOF. Since Tmin is a closed operator and a restriction of Tmax , Proposi
tion 3.4 implies that 1m(Tmin) is closed. Let Tl be the invertible operator in Theorem 3.1 
corresponding to Nl = I, N2 = O. Then Tl is a closed linear extension of TR, because 

D(TR) C {g E D(Tmax) I g(k)(a) = 0,0 ~ k ~ n -I} = D(Tl)' 

Hence Tl is an extension of Tmim and thus Tmin is injective. But then Proposition 3.4 
implies that T~~ is compact on ImTmin. Finally, let T2 be the invertible operator in 
Theorem 3.1 corresponding to Nl = 0, N2 = I. Then 

D(TR) C {h E D(Tmax) I h(k)(b) = 0,0 ~ k ~ n -I} = D(T2)' 

It follows that T2 is a closed linear extension of TR and hence also of Tmin. It follows 
that D(Tmin) C D(Tt} n D(T2), which proves the last statement of the proposition. 0 

XIV.4 ADJOINTS OF ORDINARY DIFFERENTIAL OPERA
TORS 

Throughout this section, T = Dn + L:k~i ak(t)Dk, with ak E Ck(J), the 
space of complex valued functions which have continuous k-th order derivatives on the 
interval J (not necessarily compact). Let Ccr(J) be the space of infinitely differentiable 
functions with compact support in the interior of J. The extra smoothness conditions on 
the coefficients of T imply that Ccr( J) is contained in D(TR,T,J)' Since Ccr( J) is dense 
in L2(J), it follows that the domains of TR T J, Tmin T J and Tmax T J are also dense in 
L2(J)· """ 

Our aim now is to determine the adjoints T!ax and T;in' First let us remark 
that Proposition 2.4 shows that Til = T~n' In order to have a clue to the domains of 
the adjoints, take f, 9 in Cer(J). Then 

(Tf,g) = t ( ak(t)j<k)(t)g(t)dt, an(t) = l. 
k=OJJ 

Note that the integrals are well-defined since f and its derivatives have compact support. 
Successive integration by parts yields 

J ak(t)j<k) (t)g( t)dt = J (_l)k (ak( t)g( t)) (k) f(t)dt, 

J J 
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and therefore 

(1) (r/,g) = (I,r*g), /, 9 E C(f( J), 

where 
n-l 

r*g = (_l)n g(n) + L( -l)k(akg)(k). 
k=O 

By Leibnitz's rule, 

Hence we can rewrite r* in the form 

n 

r* = L bk(t)Dk, 
k=O 

where 
n . 

bk = L(-l)i(~)~i-k), 
i=k 

o ~ k ~ n, 

which belongs to Ck(J) because ai E Ci(J). Thus r* is a differential expression of the 
same type as r. One calls r* the Lagrange adjoint of r. 

THEOREM 4.1. Let Tmax,r be the maximal operator corresponding to rand 
an arbitrary interval J. Then 

(2) 

The proof relies on the following lemma. 

LEMMA 4.2. If r* is the Lagrange adjoint of r, then r** = r. 

PROOF. Let Jo = [a, b] be any compact interval in the interior of J. Take 
/ in C(f(Jo) and gin cn(Jo). One shows (in the same way as (1) is proved) that 

(I,rg) = (r* /,g) = (I,r**g). 

Since C(f(Jo) is dense in L2(JO) (cf. Lemma 5.1 in the next section), we have rg = r**g 
a.e. on Jo. But then rg = r**g on Jo since these two functions are continuous. Now 

n-l 
r**h = h(n) + L q(t)h(k), 

k=O 

where Ck E Ck(J). Now let get) = tP for 0 ~ p ~ n - 1. Then rg = r**g on Jo yields 
ak = Ck on Jo. But Jo was an arbitrary compact interval in the interior of J. Hence 
ak = Ck on the interior of J, and thus, by continuity, ak = Ck. 0 
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PROOF OF THEOREM 4.1. Take 1 E 'D(TR,r) and 9 E 'D(Tmax,r*). Since 
1 has compact support in the interior of J, one shows (cf. (1» that 

(TR,r/,g) = ('II, g) = (I,r*g). 

From these identities it is clear that 

'D(Tmax,r*) C'D(Til,r)' 

for 9 E 'D(Tmax r*). Suppose h E 'D(TR* ). To prove the first two identities in (2), it , ,r 
remains to show that h E 'D(Tmax,r*). Let Jo = [a, b] be a compact subinterval of J. 
Define 

t 

(Vf)(t) = j I(s)ds. 
a 

Straightforward computations verify that for 1 E L2([a, b]) and k ~ 1 the following 
identities hold: 

(3) 

t 
k j(t_S)k-l 

(V f)(t) = (k _ I)! I(s)ds, a:S t :S b, 
a 

(4) 

b 
k * j(s_t)k-l 

((V) I)(t) = (k -I)! I(s)ds, a :S t :S b, 

t 

(5) 

(6) l:Si:Sk-1. 

Consider the space M consisting of alII E 'D(TR,r) such that the support of 1 is contained 
in [a, b]. Thus for 1 E M the support of f is a compact set in the interior of J, which is 
also contained in [a, b]. It follows that for each 1 E M 

i = 0, ... ,n-1. 

Now put h* = Til rh, and take 1 E M. Formula (6) yields I(k) = vn-k in) for 
o :S k :S n, and hen~e 

(Vn in), h*) = (I, h*) = ('I I, h) 

= (t akj<k) , h) = (t ak V n- k j<n), h) 
k=O k=O 

= (/(n) , tevn-k)*akh). 
k=O 
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Here an = 1. Therefore fen) is orthogonal to 

(7) 
n 

k: = _(V*)nh* + 2)Vn-k)*akh 
k=O 

303 

with respect to the inner product in L2([a, b]). Our aim is to show that k is equal a.e. 
to a polynomial of degree :5 n - 1. To do this let [e, dJ be an arbitrary compact interval 
in the interior of [a, b]. Identify L2([e, dJ) with the subspace of L2([a, b]) consisting of all 
functions that are equal to zero a.e. on [a, b]\[e, dJ. Let 'Po denote the set of polynomials 
of degree :5 n - 1 restricted to [e, dJ. Take u E 'Pt, the orthogonal complement of 'Po in 
L2([e, dJ), and put 

{ 

t 
(t - s)n-l 

get) = ! (n -I)! u(s)ds, e:5 t :5 d, 

o t E J\[e, dJ. 

Then gEM, and by the above result with 9 in place of f, we have g(n) ..L k. Now 
g(n) = u a.e. on [e, dJ and g(n)(t) = 0 for t rt [e, dJ. It follows that 

d b J u(s)k(s)ds = J g(n)(s)k(s)ds = o. 
c a 

Let ko be the restriction of k to [e, dJ. It follows that ko E ('Pt).L, and hence there exists 
a polynomial Po of degree at most n - 1 such that ko = Po a.e. on [e, dJ. This holds for 
any interval [e, dJ in the interior of [a, b]. But then there exists a polynomial p of degree 
at most n - 1 such that k = p a.e. on [a, b]. Therefore by (7) 

(8) 
n-l 

h = p + (vn)*h* - L(Vn-k)*akh 
k=O 

almost everywhere on [a, b]. If we define hI to be the right hand side of (8), then h = hI 
considered as elements of L2([a, b]). Clearly, hI is absolutely continuous and hi = h2 
almost everywhere on [a, b], where 

n-2 
h2 = Dp - (vn-I)* h* + an-Ih l + L (Vn-I-k)*akhl. 

k=O 

The function h2 is absolutely continuous on [a, b]. In particular, h2 is continuous on 
[a, b]. But then 

t t 

h1(t) - hl(a) = J hi(s)ds = J h2(S)ds, a :5 t :5 b, 

a a 
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implies that hI is differentiable and hI = h2 on all of [a, b]. Next, note that h2 = h3 
almost everywhere on [a, b], where 

h3 = D2p + (_1)2(Vn-2)*h* - (-l)(an-Ihd 

n-3 
- (-1)2(an_2hl) - 2)-1)2(Vn- 2- k)*akhl. 

k=O 

Again h3 is continuous on [a, b]. Hence hI is twice differentiable and h~2) = h3. Pro
ceeding in this way one finds that hI is in ACn([a, b]). Since [a, b] is an arbitrary interval 
of J, we may conclude that h E ACn(J) n L2(J). From formulas (8) and (5) and the 
fact that p is a polynomial of degree ~ n - 1, we see that r*(h) = h* on [a, b]. Hence 
r*(h) = h* E L2(J), and we have proved that hE 1)(Tmax ,ro). 

To prove the third identity in (2), we replace r by r* and apply Proposition 
2.4 to Tmin,ro. This yields 

T~ax,r = T;in,ro = Tmin,ro. 0 

COROLLARY 4.3. If Tmin r is the minimal operator corresponding to rand 
a compact interval J, then codimImT~in,r = n. 

PROOF. By Proposition 2.5 and Theorem 4.1, 

codim1m Tmin,r = dim(ImTmin,r).l 

= dim Ker Ttcin,r = dimKerTmax,ro. 

Since the interval J is compact, dimKerTmax,ro = n by Corollary 3.2. 0 

Next we shall describe the adjoint of a differential operator of the type con
sidered in Theorem 3.1. In order to do this we need the following preliminary results. 

Successive integration by parts shows that for all j and g in ACn([a, b]), the 
following Green's formula holds: 

(9) (rj, g) - (J,r*g) = Fb(J,9) - Fa(J,g), 

where 

n i 

(10) Ft(J, g) = L L( _l)k-1 j(i-k) (t)( ai(t)9(t)) (k-l). 
i=1 k=1 

Applying Leibnitz's rule to Ft(J, g), we get 

n i k-I 
Ft(J,g) = L L L(_l)k-l(k -:-l)a~k-j-I)(t)j(i-k)(t)g(j)(t) 

i=lk=lj=O J 
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n i-I i-m-I . 
= L L L (_I)i-m-1 C - ~ - 1 )a~i-m-j-I) (t)J(m) (t)g(j)(t) 

i=1 m=O j=o J 

n-I n-m-I n . 
= L L L (_I)i-m-1 C - ~ -1)a~i-m-j-I)(t)J(m)(t)g(j)(t) 

O . o· . I J m= J= l=m+J+ 
n-I n-m-I n-m-I 

= L L L (-I)k(~)a~~~~1 (t)J(m) (t)g(j) (t). 
m=O j=O k=j J 

The latter identity allows us to rewrite Ft(f, g) in the following form: 

(11) Ft(f, g) = Wt(g)* F(t)*Wt(f). 

Here F(t) = [FmJ·(t)]n-Lo is the n x n matrix with entries m,J-

if m + j :::::; n -1, 

otherwise. 

Furthermore, 

(12) [ 
J(t) 1 f'(t) 

Wt(f) = . , 

jCn":I)(t) 

[ 
get) 1 g'(t) 

Wt(g) = . , 

g(n-·I)(t) 

and the symbol * denotes the usual matrix adjoint. The character W in (12) stands 
for Wronskian. Note that Fmj(t) = (-I)ia:n(t), j + m = n - 1. Since an(t) == 1 and 
Fmj(t) = 0 for j + m > n - 1, we conclude that 

(13) I det F(t)1 = 1, a:::::; t :::::; b. 

In particular, F(t) is invertible for a :::::; t :::::; b. 

As we are interested in finding the adjoint of a differential operator subject 
to the boundary conditions 

n-I n-I 

L O:ij9(j) (a) + L f3i j i j ) (b) = 0, 1:::::; i :::::; k, 
j=O j=O 

it will be necessary to define the corresponding adjoint boundary conditions. We start 
with the k x n matrices 

(14) N [ ]k n-I 
I = O:ij i=l, j=O' 
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Let f be the rank of the matrix N = [N1 N21. Then dimKer N = 2n - f, and we can 
construct matrices G1 and G2 of size n x (2n - f) such that 

(15) KerN = Ker[ N1 N21 = 1m [ g~ ] . 
Next we introduce 

(16a) 

(16b) 

[ #12n-l n-1 G*F( ) a·· ·-1 ·-0:= - 1 a, lJ l- , J-

[f3#12n-l n-1. - G*F(b) ij i=l, j=O· - 2 . 

Here F(t) is the n x n matrix appearing in (11). We shall refer to the system of equations 

n-1 n-1 
L a~g(j)(a) + L f3tg(j)(b) = 0, 1 :5 i :5 2n - f, 
j=O j=O 

as the adjoint boundary conditions. We are now prepared to prove the following duality 
theorem. 

THEOREM 4.4. Let T(L2([a, b]) ~ L2([a, bJ)) be the restriction of Tmax,T 
to those 9 E V(Tmax,T) which satisfy the boundary conditions 

n-1 n-1 
(17) Bi(9) = L aijg(j) (a) + L f3ijg(j)(b) = 0, 1 :5 i :5 k. 

j=O j=O 

Assume that the rank of the k x 2n matrix ([aij][f3ijJ] is f. Then the adjoint T* is 
the restriction of Tmax,T* to those f E V(Tmax,T*) which satisfy the adjoint boundary 
conditions 

n-1 n-1 
(18) BtU) = L a~f(j)(a) + L f3tfU) (b) = 0, 1 :5 i :5 2n - f, 

j=O j=O 

where a~ and f3t are defined in (16a) and (16b). 

PROOF. Define A(L2([a, b]) ~ L2([a, b])) by 

V(A) = {f E V(Tmax,T*) I BtU) = 0,1 :5 p :5 2n - f}, 

Af = r* J. 

We must show that A = T*. Let f E V(A) and 9 E VeT) be given. Consider the vectors 
Wa(g) and Wb(9) defined by formula (12). Formula (17) implies that 

[ Wa(g) ] EKerN 
Wb(9) , 
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and hence, according to (15), there exists a vector d in C2n- l such that Wa(g) = G1d 
and Wb(9) = G2d. From (9) and (11) we have 

(Tg, f) - (g, Af) = (rg, f) - (g, r* f) 
= Wb(f)* F(b)*Wb(9) - Wa(f)* F(a)*Wa(g) 

= (Wb(9), F(b)Wb(f») - (Wa(g), F(a)Wa(f») 
= (G2d,F(b)Wb(f») - (GId,F(a)Wa(f») 
= (d, GiF(b)Wb(f») - (d, GiF(a)Wa(f») 

= (d,NfWa(f) + Nt Wb (f») , 

where Nf (resp. Nt) is the matrix in the left hand side of (16a) (resp. (16b». But then 
we can use (18) to show that (Tg, f) = (g, Af). Hence f E 'D(T*) and T* f = Af which 
proves that A is a restriction of T*. 

It remains to prove that 'D(T*) C 'D(A). Take h E'D(T*). From the second 
part of Proposition 3.5 it follows that Tmin r is a restriction of T. Hence T* is a restriction 
of T~in,r. By Theorem 4.1, we have T~in,r = Tmax,r.. Thus h E 'D(Tmax,r.) and 
T* h = r* h. There exist polynomials ql, ... ,q2n-l such that 

(19) 

where 

[

hI (t) 
hi (t) 

hln-=I)(t) 

hr ( t) j 
h~(t) 

h~n~I)(t) . 

To see this, put 

(20) 
n-j-I .. 

. _ ~ (_I)n n+i-l (t-a)t+1 (t-b)n 
Pal(t) - L ., ( . ) (b- )n+i ' 

i=O J. t a 
o $ j $ n - 1, 

(21) 
n-j-I .. 

. t _ ~ (_I)n n+i-l (t-b)t+1 (t-a)n 
Pbl( ) - L ., ( . ) (_ b)n+i ' 

i=O J. l a 
O$j$n-l. 

Then 

(22) 

(23) 

N ow define ql, ... ,q2n-l by setting 
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From this definition and the formulas (22) and (23) it is clear that (19) is fulfilled. Since 
N1G1 + N2G2 = 0, formula (19) implies that q1, ... ,q2n-l belong to the domain of T. 
Hence, because of (9) and (11), 

0= {Tqv,h} - {qv,T*h} = {rqv,h} - {qv,r*h} 
= Wb(h)* F(b)*Wb(qv) - Wa(h)* F(b)*Wa(qv) 

for v = 1, ... ,2n - t. Again using (19), we see that 

Wb(h)* F(b)*G2 - Wa{h)* F{a)*G1 = o. 
Take matrix adjoints in the latter identity and use (I6a) and (I6b). This shows that 
B'ff(h) = 0 for v = 1, ... , 2n -t. Thus h E V(A). 0 

The linear functionals B1, ... ,Bk appearing in (17) are linearly independent 
on V{Tmax,r) if and only if the rank t of the k x 2n matrix N = [N1 N2 1 is precisely 
equal to k. Here N1 and N2 are as in (I4). To see this note that for 1'1, ... , I'k and 9 in 
V(Tmax,r) 

k 

(24) L: I'i B i(9) = [1'1·· . I'kl (N1 Wa(g) + N2 W b(9»). 
i=1 

Now assume that t = rank[ N1 N21 < k. Then there exist 1'1, ... ,I'k, not all zero, such 
that 

(25) 

and hence (24) shows that B}, ... , Bk are linearly dependent on V(Tmax,r). To prove 
the converse statement, assume that there are I'll ... ,I'k' not all zero, such that the left 
hand side of (24) is zero for each 9 E V(Tmax,r). Since the interval we are working with 
is compact, all polynomials are in V(Tmax,r). In particular, we may take 9 = Paj or 
9 = Pbj, where Paj and Pbj, 0:::; j :::; n -1, are the polynomials defined by (20) and (21). 
But then (24) yields 

o = [1'1 ... I'kl (N1 Wa(Paj) + N2 Wb(Paj») 

0= b1··· I'k](N1 Wa(Pbj) + N2 W b(Pbj») 

for j = 0, ... , n - 1. So we can use (22) and (23) to show that (25) holds, and hence 
rank N < k. Note that in the above discussion the actual form of r is irrelevant, because 
for a compact interval, V(Tmax,r) is independent of r for the class of r's considered in 
this section. 

The linear functionals Bf, . .. ,Bfn_l defined by (18) are linearly independent 
on V(Tmax,ro). To prove this, it is sufficient to show (use the result of the previous 

paragraph) that the rank of the matrix [ Nf Nt 1 is precisely equal to 2n -t. Here Nf 

and Nt are the matrices defined by the left hand sides of (I6a) and (I6b), respectively. 
Thus 

(26) 
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From the definitions of G1 and G2 we know that rank[ Gi Gi] = 2n - £. Since F(a) 

and F(b) are invertible (see formula (13», we conclude from (26) that [Nt Nt'] has 
the desired rank. The results of this and the previous paragraph will be used in Chapter 
XVI. 

For J = [a, b], a compact interval, Theorems 4.1 and 4.4 remain true if the 
leading coefficient (i.e., the coefficient of Dn) in the differential expression 7 is a function 
in Cn([a, b]) which does not vanish on [a, b]. To be more precise, let p = '£,1=0 cj(t)Dj, 
where Cj E Cj([a, b]) for 0 ~ j ~ n. By definition the Lagrange adjoint of p is the 
differential expression 

n 
p*g = L( -1)j(cjg)(j). 

j=o 

Now assume that cn(t) =I 0 for all a ~ t ~ b. Put aj = Cj/Cn for 0 ~ j ~ n - 1, and let 

n-l 

7g = Dng + L ajDjg. 
j=O 

Note that aj E Cj([a, b]) for 0 ~ j ~ n-l, and hence 7 belongs to the class of differential 
expressions to which Theorems 4.1 and 4.4 apply. Obviously, 

(27) pg = Cn (7g), * *(-) p 9 = 7 cng· 

The definitions of Tmax,p and Tmin,p are analogous to those of Tmax,r and Tmin,r' From 
(27) it follows that 

Tmax,p = Me"Tmax,r, 

Tmax,p· = Tmax,r·M;n' 

Tmin,p = Mc"Tmin,r 

Tmin,p· = Tmin,T· M ;". 

Here Me" is the operator of multiplication by Cn on L2([a, bj), i.e., 

Since Cn is continuous on [a, b] and cn(t) =I 0 for a ~ t ~ b, the operator Men is invertible 
and (Men )-1 = MI/cn' From these remarks it is now clear that Theorems 4.1 and 4.4 
also hold for p in place of 7. 

As an example of the above results, let p be the differential expression given 
by 

pj = D(p!') + gj = pj" + p' j' + gj, 

where p E C2([a, b]) and g E C([a, b]) are real-valued functions. Assume that pet) =I 0 
for all a ~ t ~ b. Define T( L2([a, bJ) -t L2([a, bD) by 

VeT) = {J E AC2 ([a, b]) I pj E L2([a, bJ),j(a) = !,(b) = O}, 

Tj = pf. 
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Let us compute T*. A simple calculation gives p* = p. To find the adjoint boundary 
conditions, note that the boundary conditions for T are given by 

Bd=f(a) =0, B2f = f'(b) = o. 

Therefore 

A basis for Ker N is {[ 0 1 00 ]T, [ 001 0 ]T}. Thus we may take 

Furthermore, 

So by (26), 

[ a~ # au 
# a20 a21 

Thus 

Foo(t) = p'(t) - p'(t) = 0, 
Fl0(t) = pet), 

FOl(t) = -pet), 
Fu(t) = o. 

Pti 1 ~ [0 1 0 0 1 [ -~a) 
pea) 

,a~ 0 

,afa ,aft 0 0 1 0 0 0 
0 0 

_ [ -pea) 0 0 -~(b) ] . - 0 0 0 

Bf f = -p(a)f(a), Bf f = -p(b)f'(b). 

0 

-~b) 1 
0 
0 

pCb) 

Since pea) I: 0 and pCb) I: 0, the operators T and T* have the same domain. Also p = p*. 
So Theorem 4.4 yields T = T* . 

XIV.5 INTERMEZZO ABOUT SOBOLEV SPACES 

We now introduce the notions of weak derivatives and Sobolev spaces which 
are needed to study the Dirichlet problem in the next section. We shall assume that 
11 is a bounded open set in Rn. The points of Rn are denoted by x = (Xl. ... ,xn ). 

For Dj = ~ and a = (al. ... , an), an n-tuple of non-negative integers, we define 
J 

DOt = Drl D~2 ... D~n and D? = I. The order of DOt is lal = L:.i=1 aj. For each non-

negative integer k, we denote by Ck (11) the set of continuous complex valued functions 
on 11 whose partial derivatives up to order k exist and are continuous on 11. The set 
C OO(S1) = nr:o Ck(S1) and C~(S1) is the set of functions in COO(S1) which have compact 
support in 11. Recall that the support of a complex valued function f defined on S1 is the 
closure in S1 of the set {x E 11 I f(x) I: O}. We denote the support of f by suppj. We 
write f E Ck(n) if f E Ck(O), where 0 is some open set containing the closure n of S1. 
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By L2(n) we denote the Hilbert space of all Lebesgue square integrable functions on n 
endowed with the usual inner product. 

To define Sobolev spaces it is necessary to start with the concept of a weak 
derivative which relies on the following lemma. 

LEMMA 5.1. The space c8"(n) is dense in L2(n). 

PROOF. We write C(n) for the space of all complex valued continuous 
functions on n and Co(n) for the space consisting of the functions in C(n) that have 
compact support in n. Since Co(n) is dense in L2(n) ([R], Theorem 3.14), it suffices 
to prove that c8"(n) is dense in Co(n) with respect to the L2(n)-norm. Let <.p be a 
real-valued function on Rn with the following properties: 

(a) <p E coo(Rn), 

(b) c,o(x) > 0, IIxll < 1, 

(c) c,o(x) = 0, IIxll ~ 1, 

(d) J <p(x)dx = 1. 
R" 

An example of such a function is 

<.p(x) = { bexp[(lIxll 2 _1)-1], 
0, 

IIxll < 1 
Ilxll ~ 1 

with the constant b chosen so that (d) holds. Suppose u E Co(n) is given with compact 
support K. Extend u to all of Rn by setting u(x) = 0 for x ft n. Let e be any positive 
number which is strictly less than the distance from K to Rn\n. Define for all x E Rn, 

1 J (x - y) Ue = en <.p -e- u(y)dy. 
R" 

Since <p E coo(Rn), differentiation under the integral sign shows that Ue is in coo(Rn). 
Also, SUPPUe is a compact subset of n. For suppose u(x) '" o. Then by (c) and the 
assumption that suppu = Ken, there exists y E K such that IIx - yll < e. Hence 
supp Ue is a closed subset of the compact set of points whose distance from K is at 
most e. It follows from the definition of e that this latter set is contained in n. Hence 
Ue E c8"(n). It remains to prove that liIDe--+o lIue - ull = O. By (d) we may write 

1 J (x- y ) u(x) = en c,o -e- u(x)dy. 
R" 

Therefore 

1 J (x -y) IUe(x)-u(x)l~en c,o -e- lu(y)-u(x)ldy 

R" 

< sup lu(y) - u(x)l. 
Iix-vli<e 
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Since u is uniformly continuous on Rn, it follows that as c: - 0, U e converges uniformly 
to u on n. Hence lime-+o Ilue - ull = O. 0 

By Ll(n) we denote the space of Lebesgue integrable functions on n. Let 
a = (aI, ... ,an) be an n-tuple of non-negative integers. A function f E Ll (n) is said to 
have a weak a-derivative 9 E Ll (n) if for every <p E c(r(n), 

J f(x)DOt<p(x)dx = (_l)IOtI J 9(X)<p(x)dx. 

n n 
In this case we write DOt f = 9. Here integration is with respect to Lebesgue measure. 
Since c(r(n) is dense in L 2(n), it follows that if 91 and 92 are weak a-derivatives of f, 
then 91 = 92 a.e. If f E CIOtI(n), then integration by parts shows that DOt f is the usual 
a-derivative of f. 

To illustrate the notion of a weak derivative, let n = (0,2) and define 

f(x) = {x' 0 < x $ 1, 
1, 1 < x < 2. 

Then for every <p E c(r(n), 

where 

2 1 2 J f(x)<p'(x)dx = J x<p'(x)dx + J <p'(x)dx 
o 0 1 

1 

= <p(1)- J <p(x)dx-<p(l) 
o 

2 

= - f 9(X)<p(x)dx, 
o 

g(x) = { ~: 0< x $1, 
1 < x < 2. 

Hence 9 is the weak derivative of f in Ll(n). Now 9 is differentiable at x i=- 1, yet 9 
does not have a weak derivative in LI(n). Indeed, suppose Dg = h for some h E LI(n). 
Then for every <p E c(r(n), 

2 2 1 -J h(x)<p(x)dx = J g(x)<p'(x)dx = f <p'(x)dx = <p(1). 
o 0 0 

But this is impossible since there exist <Pn E c(r(n), n = 1,2, ... , such that 0 ::; <pn ::; 1, 
<pn(l) = 1 and <Pn has support in the interval (1 - !i, 1 + !i), whence 

2 

1 = <Pn(l) = - f h(x)<pn(x)dx - O. 

o 
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In the larger framework of the theory of distributions, g has a derivative, 
namely the Dirac 0 functional supported at 1, i.e., o(<p) = <p(1) for all <p E cO'(n). The 
argument used above shows that this distribution 0 is not defined by a function in Ll (0.). 

For each non-negative integer m, let Hm(n) denote the set of those 1 E L2(n) 
which have weak o:-derivatives in L2(n) for 0 ~ 10:1 ~ m. Since DOl = I for 10:1 = 0, we 
set Ho(n) = L2(n). Define an inner product (., ·}m on Hm(n) by 

(J,g}m = :E j(DOIJ)(X)(DOIg)(x)dx. 
1001::;mn 

The space Hm(n) with this inner product is called the Sobolev space of order m. Note 

that II . 110 ~ II . 11m, where II 110 is the usual norm on L2(n) and IIfllm = (J, f}~2. 
Clearly, cO'(n) c Hm(n). Define H~(n) to be the closure in Hm(n) of cO'(n). Note 
that H8(n) = Ho(n) by Lemma 5.1. For m ;:: 1 the space H~(n) is a proper subspace of 
Hm(n). For example, it can be shown (cf. Friedman [1], Section 10.2) that the constant 
function 1 belongs to Hm(n) but not to H~(n) for m ;:: 1. 

THEOREM 5.2. The Sobolev space Hm(n) is a Hilbert space. 

PROOF. Let (lj) be a Cauchy sequence in Hm(n). Since 

10:1 ~ m, 

the sequence (DOl 1j) converges in L2(n) to some gOt. Therefore for each <p E Coo(n) and 
10:1 ~ m, 

j go(x)DOI<p(x)dx = lim J h(x)DOI<p(x)dx 

n n 

= lime -1 )IOtI j DOt 1j (x )<p( x )dx 

n 

= (_1)1011 j gOl(x)<p(x)dx. 

n 

IIgo - fjll~ = :E IIgOl - DOl 1jl15 -+ o. 0 

1001::;m 

The next theorem (Theorem 5.4 below) is fundamental for the study of the 
generalized Dirichlet problem. To prove it we need the following result. 

PROPOSITION 5.3. Let S denote the cube rrf:l [ai, bi] in RN, with bi -ai = 
£ > 0, 1 ~ i ~ N. For each <p E Cl(S) we have the inequality: 

(1) 
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(2) 
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Zl Z2 

cp(X) - cp(y) = 1 DICP(6, Y2,···, YN )d6 + 1 D2CP(Xlo e2, Y3,···, YN )d6 
Yl Y2 

ZN 

+ ... + 1 DNCP(Xlo X2,··· ,XN-l,eN)deN· 
YN 

The Cauchy-Schwarz inequality and (2) imply 

Icp(X) - cp(Y)12 = Icp(x)12 - cp(X)~(y) - ~(X)cp(y) + Icp(Y)12 
b1 

::; .eN (I IDICP(6, Y2,· .. , YN )12d6 

(3) 
b2 

+ 1 ID2CP(Xl,6,Y3, ... ,YN)12d6 

bN 

+ ... + 1 IDNCP(Xlo X2, ... ,XN_l,eN)12deN). 
aN 

Successive integration of each side of (3) with respect to Xl. X2, ... , x N, Ylo ... , YN (i.e., 
integration on S x S) yields 

UN 1 Icp(x)1 2dx - 211 cp(X)dxI 2 
::; .eN.eN+1 t 1 IDiCP(x)12dx, 

s s 1=1 S 

which is equivalent to (1). 0 

THEOREM 5.4. The embedding from Hf(11) into L2(11) is compact. 

PROOF. The closure of a set U in a Banach space is compact if and only if 
it is totally bounded. That is to say (see [W], 24B), for every c > 0 there exists a finite 
set UI, ... , Urn in U such that for each U E U, 

min"u - Uk" < c. 
k 

Since C~(11) is dense in Hf(11), the theorem will be proved once we show that the set 

U = {cp I cP E C~(11), "cplii = I} 

is totally bounded in L2(11). Given c > 0, let Q be a cube in Rn which contains 11, and 
let Q = U1=1 Sk> where SI. S2, .. . , Sp are cubes whose edges have length.e ::; c/ ffn such 
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that the interiors of S1, ... , Sp do not intersect. Take <P E U, and put <P = ° on Q\n. 
Since <P E Coo(n), we have <P E C 1(Sj) for each j. Thus by (1), 

I 1<p(x)12dx = t 11<p(x) 12 dx 
o k=lSk 

~ €; ItIDi<P(x)12+ (~)ntll <p(X)dX I
2 

Q .=1 k=1 Sk 
(4) 

~ €; 1I<pIII + (~) n til <p(X)dXI2. 
k=1Sk 

Consider the map K<p = (a1(<p), ... , ap(<p)) , where ak(<p) 

K<p E CP and 

J <p(x)dx. Obviously, 
Sk 

IIK<pIl~p ~ £nll<p1l5 ~ £nll<pllr· 
Hence K(U) is bounded and therefore totally bounded in CP. So one may find <PI, ... ,<pm 
in U such that for each l/J E U there exists j (depending on l/J) with 

(~)ntll(l/J(X)_<Pj(X))dxI2 = (~)nIlKl/J_K<pjll~p < €:. 
k=1 Sk 

Replacing <p by l/J - <P j in (4) gives 

2 €2 2 €2 2 2 1 2 2 
1Il/J - <pjllo ~ 6 11 l/J - <pjll! + 4" ~ 3"€ + 4€ < € . 

Hence U is totally bounded in L2(n). 0 

XIV.6 THE OPERATOR DEFINED BY THE DIRICHLET 
PROBLEM 

In this section we introduce and study a closed unbounded operator associated 
with the generalized Dirichlet problem. 

Let n be a bounded open set in Rn. It is assumed throughout this section 
that the boundary an of n is of class C 2 • By this we mean that given any point 
x E an, there exists an open neighborhood U of x and a homeomorphism h from U onto 
E = {y E Rn Illyll ~ 1}, with the following properties: 

(1) 

(a) hex) = OJ 

(b) hand h- 1 are in C2(U) and C2(E), respectivelYj 

(c) h(U n an) = {y E Rn I Y = (YI, ... ,Yn-1,0),liyli < 1}. 

Let L be a partial differential expression of the form 
n n 

L = L aij(x)DiDj + L bi(X)Di, 
i,j=1 i=O 
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where each aij and bi are in Coo(IT) and Dol = I. At times it will be convenient to 
rewrite L in the so-called divergence form: 

n n 

(2) L = L Di(aij(x)Dj) + Lai(X)Di, 
i,j=l i=O 

with ai E Coo(IT) for i = 0, ... ,n. 

A classical Dirichlet problem is to determine if for every f E C(f2) there exists 
a unique u E C(IT), the space of continuous complex valued functions on IT, such that 

(3) { Lu = f on f2, 
u = 0 on of2. 

If now I is in L2(f2), then the equation Lu = I makes sense if u E H2(f2) and each Di 
is a weak derivative. Furthermore, if u E C(Q) n HP(f2), then one can prove (see, e.g., 
Friedman [1], Section 10.2) that the boundary condition in (3) is automatically fulfilled. 
This leads to a generalized Dirichlet problem, which is concerned with the existence and 
uniqueness of the solution of 

(4) 

where f is arbitrary in L 2(f2). The operator A(L2(f2) -4 L2(f2)) defined by 

(5) Au = Lu, 

will be referred to as the Dirichlet operator on L2(f2) associated with L. 

In this section we study the Dirichlet operator under the additional assump
tion that L is uniformly elliptic, which means that there exists a constant c > 0 such 
that 

(6) 

for every x E f2 and (Zl' Z2, ... , Zn) E en. For example, if ~ is the Laplacian 2:i=l Dr, 
then -~ is uniformly elliptic. 

THEOREM 6.1. Let A(L2(f2) -4 L2(f2)) be the Dirichlet operator associated 
with the differential expression L. Assume that L is uniformly elliptic. Then A is a 
closed densely defined operator. Furthermore, there exists Ao E R such that A + A is 
invertible and (A + A)-l is compact whenever A 2:: Ao. 

Note that the above theorem implies that for I E L2(f2) the generalized 
Dirichlet problem 

(A + L)u = I 
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is uniquely solvable if L is uniformly elliptic and A E R is sufficiently large. 

The proof of Theorem 6.1 depends on the following preliminary results. 

LEMMA 6.2. If L is uniformly elliptic, then there exist constants a > 0 and 
f3 ~ 0 such that for every r.p E cO'(n), 

(7) 

PROOF. We use the divergence form (2) for L. For each r.p E cO'(n), 
integration by parts yields 

(8) 

(Lr.p,r.p}o = - .t f aij(x)Djr.p(x)Dirp(x)dx 
1,3=1 0 

+ t f ai(x) (Dir.p(X)rp(x)dx. 
,=0 0 

Since each a; is bounded on n, uniform ellipticity and (8) imply that there exist constants 
M ~ 0 and c> 0 such that for all r.p E cO'(n) 

(9) lR(Lr.p,r.p}o ~ eft IDir.p(x)12dx - 2M f t ID;r.p(x)IIr.p(x)ldx. 
o ,=1 0 1=0 

Now for any real numbers s, t and anye > 0, 

(10) 2st = 2(svfe) ( )et) :::; (svfe)2 + ()et) 2 = eS2 + ~t2. 

Hence (9) and (10) yield 

For e sufficiently small, 

a=c-Me>O, 

and 

M 
f3 = c + -en + 1) > 0, 

e 

r.p E cO'Cn). 0 

We continue to use the divergence form (2) for L. If u E H2(n), then for all 
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<p E C~(o), 

(Lu,<p}o = .t -J aij(x)Dju(x)D{1j5(x)dx 
1,)=1 0 

(11) 

where 

(12) 

+ t J ai(x) (DiU(X))c,o(x)dx 
i=OO 

= .t J U(X)Dj(aij(x)Dic,o(x))dx - t J U(X)Di(a(x)c,o(x))dx 
1,)=1 0 1=1 0 

+ J u(x)ao(x)c,o(x)dx = (u,L*<p}o, 
o 

n n 

L*<p= L Dj(aijDi<p)- LDi(ai<P)+ao<p. 
i,j=1 i=1 

The expression L* is called the Lagrange adjoint of L. 

For u E H2(0) the linear functional Fu(<p): = (u, L*<p) is II lIo-bounded on 
C~(O), because of (11). Conversely, if u E L2(0) and Fu is a II lIo-bounded linear 
functional on C~ (0), then since C~( 0) is dense in L2( 0) (by Lemma 5.1), the functional 
Fu has a unique bounded linear extension to L2(0). Hence, by the Riesz representation 
theorem, there exists a unique f E L2(0) such that 

(u, L*<p}o = (I, <p}o, <p E C~(O). 

In this case we write Lu ~ f. If u E H2(0), then Lu = f, because of (11). 

For the proof of Theorem 6.1 we need conditions which guarantee that Lu ~ f 
implies Lu = f, that is, the weak solution u is in fact a strong solution. It turns out 
that the latter implication holds if u E HP(O) (which is contained in L2(0)) and L is 
uniformly elliptic. More precisely, the following theorem is true. 

THEOREM 6.3. If the differential expression L is uniformly elliptic, u E 
HP(O) and Lu ~ f for some f E L2(0), then u E H2(0) and Lu = f. 

The proof of Theorem 6.3 requires a considerable amount of work which 
belongs to the theory of partial differential equations, and therefore it is omitted here. 
However, to give an impression of the proof we review briefly its main steps. The first 
major step is to establish interior regularity, that is to say, if V is an open set with 
V C 0, then u E H2(V) and there exists a constant C depending on V such that 

lI u IlH2(V) S C{lIfIlL2CO) + Il u IIL2 CO)}· 

Next one proves that if now 0 is the r-half-ball 

0= {x = (Xl, ... ,Xn ) E Rn IlIxll < r, Xn > o}, 
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and 

v = { x En IlIxll < ~r}, 
then u E H2(V) and there exists a constant C such that 

Finally, one covers an by a finite number of open sets ni, i = 1, ... , N, such that each 
open set ni nn can be mapped by a 1-1 C2-map onto a half-ball. By applying the above 
results and summing the corresponding estimates, the theorem is then proved. The 
details of the proof may be found in Friedman [1], Showalter [1] or in Gilbarg-Trudinger 
[1]. 

We also need the following lemma, which is a generalization of the Riesz rep
resentation theorem and is known as the Lax-Milgram lemma. Recall that a sesquilinear 
form B( u, v) on VI x l/2, where VI and V2 are vector spaces over C, is a functional which 
is linear in u and conjugate linear in v. 

LEMMA 6.4. Let H be a Hilbert space and let B(·,·) be a sesquilinear form 
on H x H. Suppose that there exist constants c > 0 and C > 0 such that 

(13) IB(u,v)1 ~ Cllullllvll, u,v in H, 

(14) u EH. 

Then given a bounded linear functional F on H, there exist unique v and w in H with 
the property that 

F(u) = B(u,v) = B(w,u), u EH. 

PROOF. For each z E H, the map u -I- B(u, z) is a bounded linear functional 
on H. Hence, by the Riesz representation theorem, there exists a unique s E H such 
that 

(15) B(u,z) = (u,s), uEH. 

Define Az = s. Then A is linear on H, (u, Az) = B( u, z) and it follows from (13) that A 
is bounded on H. Now by (14) 

(16) IIAulillull2: I(Au,u)1 = IB(u,u)l2: cllull 2. 

Hence A is injective and has a closed range. Since (16) also holds for A * in place of A, 
the operator A * is injective and 

ImA = (Ker A*).l.. = H. 

Therefore A is invertible. Given the bounded linear functional F on H, there exists a 
unique y E H such that 

F(u) = (u,y), uEH. 
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Since A is invertible, Av = y for some v E H. Therefore 

F(u) = (u,y) = (u,Av) = B(u,v), u EH. 

The uniqueness of v is a consequence of (14). Finally, since Bl(u,x) = B(x,u) is a 
sesquilinear form on H X H satisfying (13) and (14), the result we just proved applied 
to F and Bl ensures the existence of a unique w E H such that 

F(u) = Bl(U,W) = B(w,u), u E H. 0 

PROOF OF THEOREM 6.1. We write L in the divergence form (2). As 
before, L* denotes the Lagrange adjoint of L. Define B(·,·) on Hf(S1) X Hf(S1) by 

n n 

(17) B(u,v) = - L (aijDju, DiV}O + L(aiDiu,v}O. 
i,j=l i=O 

Clearly, B is sesquilinear. From (11) we obtain 

(18) B(u,<.p) = (u,L*<.p}o, 

(19) <.p E C8"(S1). 

Hence, by Lemma 6.2, there exist constants a > 0 and (J ~ 0 such that 

(20) <.p E C8"(S1). 

It follows readily from the boundedness of each aij and ai that for some constant 7, 

(21) 

Since C8"(S1) is dense in Hf(S1), formulas (20) and (21) imply 

(22) ~B(u,u) ~ allull~ - {Jllull~, 

Now take AO = {J, and let ,\ ~ AO. Define the sesquilinear form B A ( ., .) on Hf (S1) x Hf (S1) 
by 

BA(u,v) = A(U,V}O + B(u,v). 

The inequalities (21) and (22) imply that BAh·) satisfies the hypotheses of Lemma 6.4 
with H = Hf(S1). Take g E L2(S1). Then the linear functional 

Fg(u) = (u,g}o, 

is bounded on HPCS1). Thus, by Lemma 6.4, there exists f E HPCS1) such that 

FgCu) = BA(f, u) = A{U, f)o + B(f, u), u E HP(S1). 
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From (18) it follows that for each rp E C8"(f!), 

(g,rp}o = Fg(rp) = >.(f,rp}o +B(f,rp) = (f,(>. +L*)rp}o· 

In other words, (>. + L)f ~ g. Since f E HP(f!) and L (and hence>. + L) is uniformly 
elliptic, we know from Theorem 6.3 that f E H2(f!) and (>. + L)f = g. In particular, 
f E D(A) and (>. + A)f = g. This proves that>. + A is surjective. 

Take u E D(A) = HP(f!) n H2(f!). Formula (17) implies that 

B(u,rp) = (Lu,rp}o, rp E C8"(f!), 

because Lu E L2(f!). Now use (21) and the fact that C8"(f!) is dense in HP(f!) to show 
that B(u,u) = (Lu,u}o. But then (22) yields 

(23) 
11(>' + A)ullollullo ~ ~((>. + L)u,u}o = >'lIull5 + ~B(u, u) 

~ allullt ~ allul15· 
Here we used that >. ~ >'0 = {3. Since (23) holds for any u E D(A), we have now proved 
that>. + A has a bounded inverse. In particular (cf. Proposition 1.2) the operator A is 
closed. 

It remains to prove that (>. + A)-l is a compact operator on L2(f!). Given a 
bounded sequence (gn) in L2(f!), let Un = (>. + A)-lgn. Then, by (23), 

lIunlit ::; ~lIgnllollunllo ::; ~llgnlioliunliI. 
a a 

Therefore (un) is a II IIl-bo\lnded sequence in HP(f!). But then, by Theorem 5.4, the 
sequence (un) has a subsequence which converges in L2(f!), which proves the compactness 
of (>. + A)-Ion L2(f!). 0 

THEOREM 6.5. Let A(L2(f!) -+ L2(f!)) be the Dirichlet operator a330ciated 
with the differential expre33ion L, and let L* be the Lagrange adjoint of L. If L i3 
uniformly elliptic, then A * i3 the Dirichlet operator a330ciated with L *, i. e., D( A *) = 
D(A) and A*u = L*u. 

PROOF. Let A* (L2(f!) -+ L2(f!)) be the Dirichlet operator associated with 
L*. It follows from (12) that L* is uniformly elliptic. Thus, by Theorem 6.1, there exists 
>. E R such that>. + A and>' + A* have bounded inverses on L2(f!). By (11) (applied to 
>. + L* in place of L) we have 

(24) ((>. + A)rp, (>. + A*)-l f)o = (rp, (>. + L*)(>' + A*)-l f)o = (rp, f)o 

for any f E L2(f!) and any rp E C8"(f!). 

To prove the theorem it suffices to show that (>.+A)C8"(f!) is dense in L2(f!). 
For if this is the case, then given h E L2(f!) there exists a sequence (rpn) in C8"Cf!) such 
that (>. + A)rpn -+ h in L2(f!), and so by (24), 

(h, (>. + A*)-l f)o = lim((>' + A)rpn, (>. + A*)-l f)o 

= lim(rpn,f)o = ((>. + A)-lh,f)o, 
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for any f E L2(D). Hence 

Therefore A * = A*. 

It remains to prove that ('\+A)C8"(D) is dense in L2(D). Suppose not. Since 
(,\ + A)C8"(D) is contained in C8"(D), Lemma 5.1 implies that there exists 'IjJ =I- 0 in 
C8"(D) such that 

(25) 'P E C8"(D). 

Let B(·,·) be the sesquilinear form defined by (17). Then (11) and (18) imply that 

(26) 0 = (,\ + A)'P, 'IjJ) 0 = ('P, (,\ + L * )'IjJ ) 0 = ,\ ( 'P, 'IjJ) 0 + B ( 'P, 'IjJ ) 

for all 'P E C8"(D). In particular, 

(27) ,\11'ljJlla + B( ljJ, 'IjJ) = o. 

By (23) (which holds for any u E 'D(A)) the left hand side of (27) dominates a11ljJ1I~ for 
,\ ~;3. It follows that 'IjJ = 0, which is a contradiction. 0 
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FUNCTIONAL CALCULUS FOR UNBOUNDED OPERATORS 

In the first two sections of this chapter the theory of Riesz projections and the 
functional calculus developed in Chapter I are extended to unbounded linear operators. 
This extension is quite straightforward. The next two sections concern a more difficult 
problem, namely, the case when the contour of integration goes through infinity. For the 
unbounded case (when infinity always belongs to the spectrum) the solution requires a 
spectral decomposition for the spectrum at infinity. 

XV.! INTRODUCTION OF THE FUNCTIONAL CALCULUS 

Let X be a complex Banach space, and let A(X -4 X) be an unbounded 
linear operator with non-empty resolvent set peA). We assume that 'D(A) f X. The 
purpose of this section is to develop an operational calculus for A based on the calculus 
for bounded operators presented in Section 1.3. In fact, the bounded operator we choose 
is (a - A)-I, where a is fixed in peA). The spectrum a(a - A)-I) is compact, and, as 
we have seen, a(A) is closed but may be unbounded. Our first step is to "compactify" 
a( A) as follows. Let C<Xl be the extended complex plane, C<Xl = C U { 00 }, endowed with 
the usual topology (see [C], page 8). The set Cex> is a compact topological space and the 
Mobius transformation 

(1) 

is a homeomorphism from Cex> onto C<Xl. We shall now show that 

(2) 

First note that 7](00) = 0 E a(a - A)-I), because Im(a - A)-I) is not equal to X. 
Next we use the identity 

(3) .\. - A = (a - .\.)[(a - .\.)-1 - (a - A)-Il(a - A), 

which holds for any .\. f a. Since art. a(A), it follows from (3) that.\. E a(A) if and only 
if 7](.\.) = (a - ).)-1 E a(a - A)-I). From these remarks formula (2) is clear. From (2) 
and the fact that 7] is a homeomorphism we may conclude that a( A) U {oo} is compact 
in Cex>. 

Equality (2) also gives a clue to the definition of f(A). Let Fex>(A) denote 
the set of all complex functions that are analytic on an open set in Coo containing a(A) 
and 00. Take f E Fex>(A). Then f 0 7]-1 is analytic on an open neighbourhood of 
a(a - A)-I). Hence the operator (f 0 7]-1 )(n: - A)-I) E L(X) can be defined as in 
Section 1.3. This we take as our definition of f(A). Thus 

(4) f E Fex>(A). 
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Given f E FCXl(A), there exists an open set n C Coo such that G(A) C n, 
the complement of n is a compact subset of C and f is analytic on n. The argument 
given in Section I.1 shows that there exists an unbounded Cauchy domain 6. such that 
G(A) C 6. C 6. en. As before, a6. is the oriented boundary of 6.. Thus a6. is oriented 
in such a way that 6. is the inner domain of a6.. The following integral representation 
is the counter part to f(A) when A is bounded. Since the formula does not involve a, it 
shows that f(A) is independent of a. 

PROPOSITION 1.1. Suppose that f is analytic on an open set n in CCXl 
containing G(A) and 00. Let 6. be an unbounded Cauchy domain such that G(A) C 6. C 
6. c n. Then 

f(A) = f(00)1 + 2~i J f(>.)(>. - A)-ld>', 

at:.. 
where a6. is the (oriented) boundary of 6.. 

PROOF. Let a E peA) be fixed. Since>. -+ (A - A)-1 is analytic on peA), 
we know from Cauchy's integral theorem that the above integral is unchanged if 6. is 

I ~ -, 
replaced by an unbounded Cauchy domain 6.', where G(A) C 6. C 6. C 6. and a rt. 6. . 
Hence we may assume a rt. 6.. By (2), the set 7](6. U {oo}) is a Cauchy domain containing 
G((a - A)-I) and r = 7](a6.) is its oriented boundary. Let B = (a - A)-I. It follows 
from (3) that if a =f:. >. E peA) and z = (a - >.)-1, then 

(>. - A)-1 = zB(z - B)-1 = z[-1 + z(z - B)-I]. 

By change of variable>. = 7]-I(z) = a - z-l, Cauchy's integral formula and Section I.3 
give 

result. 

2~i J f(>.)(>. - A)-IdA = 2~i J f(7]-I(z)) (_z-1 1 + (z - B)-1 )dz 

at:.. r 
= - f(7]-1(0))1 + (f 0 7]-I)(B) 

=-f(00)1+f(A). 0 

From the above results and Theorems 1.3.1, 1.3.3 we obtain the following 

THEOREM 1.2. If f and 9 are in FCXl(A), then 

(a) (f + g)(A) = f(A) + g(A)j (af)(A) = af(A), a E C, 

(b) (fg)(A) = f(A)g(A), 

(c) G(J(A)) = J[G(A) U {oo}]. 

To illustrate the operational calculus for unbounded operators, we consider 
an example. Let X = L1([0, 00]), and let A be the maximal operator corresponding to 
T = -it and the interval [0,00), i.e., 

D(A) = {y E X I y is absolutely continuous on each 

compact subinterval of [0, 00) and y' EX}, 

Ay = y'. 
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We shall now show that 

(5) u(A) = {oX I ~A ~ O}. 

Given 9 EX, the general solution to the differential equation 

IS 

AY - y' = 9 

t 

yet) = eAt [c - J e-ASg(S)dS]. 
o 

Suppose lJU > O. If we take c = Jooo e-ASg(s)ds, then 

00 00 

yet) = eAt J e-ASg(s)ds = J e-ASg(t + s)ds. 
t 0 
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It is easy to see that y is in V(A) and, as noted above, (A - A)y = g. Thus A - A is 
surjective. Moreover, A - A is injective, since (A - A)y = 0 implies y = keAt , which is 
not in X unless k = o. Hence 

and 

00 

(A - A)-lg)(t) = J e-ASg(t + s)ds 
o 

II(A - A)-III ~ ;A. 

If ~A < 0, then A is an eigenvalue of A with eigenvector eAt. Hence A E u(A). Since 
u(A) is closed, we have {A I ~A = O} is also in u(A), which establishes (5). 

If f E Foo(A), then there exist positive numbers r and e with the properties 
that f is analytic on 

{A IIAI > r} U {A I ~A < e}. 

In particular, f is analytic on the closure of the Cauchy domain ~ = {oX I IAI > 2r}U 
{A I ~A < !} :J u(A), and 

00 

(J(A)g) (t) = f( 00 )g(t) + 2~i J f(A) [J e-ASg(t + s )dS] dA. 
at}. 0 
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XV.2 RIESZ PROJECTIONS AND EIGENVALUES OF FINITE 
TYPE 

The results in Sections 1.2 and 11.1 concerning spectral decompositions and 
eigenvalues of finite type can be extended to closed (linear) operators. We shall show 
how this can be accomplished. 

Given an operator A(X -+ X), a linear manifold M C X is called A-invariant 
if A(M n D(A») eM. In that case AIM denotes the operator with domain M n D(A) 
and range in M. 

THEOREM 2.1. SuppoJe A(X -+ X) iJ a cloJed operator with spectrum 
O'(A) = O'UT, where 0' iJ contained in a bounded Cauchy domain .6. Juch that .6.nT = 0. 
Let r be the (oriented) boundary of .6.. Then 

x EX, 

(1) 

and 

(2) 

(i) Pq = k Ir(>" - A)-Id>" iJ a projection, 

(ii) the JubJpaceJ M = ImPq and N = Ker Pq are A-invariant, 

(iii) the JubJpace M iJ contained in D(A) and AIM iJ bounded, 

(iv) O'(AIM) = 0' and O'(AIN) = T. 

PROOF. The proof of (i) is the same as the proof of Lemma 1.2.1. Given 

j A(>.. - A)-Ixd>" = j[-x + >..(>.. - A)-Ixjd>". 

r r 

An approximation of these integrals by Riemann-sums and use of the assumption that 
A is closed imply Pqx E D(A) and 

(3) APqx = j[-x + >..(>.. - A)-Ixjd>... 

r 

Thus M C D(A). Now if x E M, then Ax = APqx = PqAx E M, which shows that Jy! 

is A-invariant. Since APqx = PqAx if x E D(A), it also follows that N is A-invariant. 
Equality (3) implies that AIM is bounded. The proof of (iv) is the same as the proof of 
Theorem 1.2.2. 0 

A point >"0 E O'(A) is called an eigenvalue of A of finite type if >"0 is an isolated 
point of O'(A) and the associated projection p po } has finite rank. Here ppo} is defined 
by (1) with 0' = Po}· Since Po} = 0'( A I 1m ppo}) and 1m ppo} is finite dimensional 
(in D(A)), it follows that >"0 is an eigenvalue of A. 

THEOREM 2.2. Let A(X -+ X) be a cloJed operator, and let >"0 be an 
eigenvalue of A of finite type. Then the reJolvent (>.. - A)-I admitJ an expanJion of the 
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form 

p-l = 
(A - A)-l = _1_p{~ } + ~)A _ AO)-k-l Bk - ~)A - AO)kTk+1. 

A - AO 0 k=l k=O 

Here p i8 80me p08itive integer, B = (A - AO )Ppo} and 

T = 2~i j(A - AO)-I(A - A)-IdA, 

r 
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where r i8 the p08itively oriented boundary of a cl08ed di8c with centre AO which i8 di8joint 
from U(A)\{AO}. 

PROOF. Let Po = ppo} and Ao = AI 1m Po· By Theorem 2.1, u(Ao) = 
{Ao}. Thus U(AO - Ao) = {O}, and therefore 

= 
(A - AO)-l = ~)A - AO)-k-I(Ao - Ao)k 

k=O 

converges in £(M) for all A t= AO, where M = 1m Po. Since 

(A - A)-l Pox = (A - AO)-lx = PO(A - A)-lx, XEM, 

it follows that for A ~ u(A), 

(4) 

where 

B: = (A - AO)Po = ~ j(A - AO)(A - A)-IdA E £(X). 
2n 

r 
Since B has finite rank, BP = 0 for some positive integer p. Let T be as in the theorem. 
Since A is closed, the same is true for A - AO, and hence computations similar to those 
given in the proof of Lemma 1.2.1 and Theorem 1.2.2 show that 

(A - A)T = (A - Ao)T - (A - Ao)T = 1 - Po - (A - Ao)T, PoT = O. 

Hence 

(5) (A - A)T = (1 - Po) - (A - Ao)(1 - Po)T = (1 - Po)[1 - (A - Ao)T]. 

Now for A sufficiently close to AO and A t= AO, the operators A - A and 1 - (A - Ao)T are 
invertible. Therefore from (5) we get 

00 

(6) (A - A)-I(I - Po) = -T[I - (A - Ao)T]-l = - 2)A - AO)kTk+l 
k=O 
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for A =F AO sufficiently close to AO. Since (A - A)-l = (A - A)-l Po + (A - A)-I(I - Po), 
the theorem is an immediate consequence of (4) and (6) and the observation made earlier 
that BP = 0 for some positive integer p. 0 

It can happen that the spectrum of an unbounded operator consists of eigen
values of finite type only. For example, let X = e[O, 1]. Define A(X --. X) by 

V(A) = {f E X I f' EX, f(O) = f(I)}, 

Af = f'. 

The spectrum of A consists of eigenvalues 2mri, n = 0, ±I, .... If A E peA), then for all 
gEX, 

t 

(A - A)-lg)(t) = eAt rCA - / e-ASg(S)dS], 

o 

where CA = eA(eA - 1)-1 Jo1 e-ASg(s)ds. If we let rn be a small circle about An = 
2mri which excludes the other eigenvalues of A, then the formula for the corresponding 
projection Pn is given by 

1 

(Png)(t) = 2~i (/ (A - A)-lgdA )(t) = eAnt / e-AnSg(s)ds. 

rn 0 

The rank of Pn is 1. Thus (T(A) consists only of eigenvalues of A of finite type. 

The operator A above has the property that (A - A)-l is compact for every 
A E peA). Operators with this property are called operators with compact resolvent. The 
partial differential operator appearing in Theorem XIV.6.1 is also an example of such an 
operator. 

THEOREM 2.3. Suppose A(X --. X) has the property that (AO - A)-l is 
compact for some AO E peA). Then the operator (A - A)-l is compact for all A E peA). 
The spectrum of A does not have a limit point in C and every point in (T(A) is an 
eigenvalue of A of finite type. For any A E C, the operator A - A has closed range and 

(7) dim Ker(A - A) = codimIm(A - A) < 00. 

PROOF. By Proposition XIV.I.I, 

(J1. - A)-l = ('xo - A)-l + ('xo - J1.)(J1. - A)-I(AO - A)-l 

which is compact for all J1. E peA). Next we use the Mobius transformation rCA) 
('xo - A)-l and the following identity (see (2) in the previous section) 

r[(T(A) U {oo}] = (T(AO - A)-I). 

Since r is a homeomorphism and the operator Po - A)-I is compact, it follows that 
(T(A) is a finite or countable set which does not have a limit point in C. To see that each 
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17 E O"(A) is an eigenvalue of A of finite type, it remains to prove that the corresponding 
Riesz projection p{T/} = (27ri)-I Jr(>,-A)-Id'\ has finite rank. Now (,\_A)-I is compact 
for every ,\ E peA). Therefore p{T/} is the limit in £(X) of Riemann sums of compact 
operators. Hence p{T/} is compact. Since this operator is also a projection, 1m p{T/} is 
finite dimensional. To prove (7), let ,\ be arbitrary in C. Note that 

(8) (,\ - A) = [I - ('\0 - '\)('\0 - A)-I](,\O - A). 

Since ('\0 - A)-I is compact, 1+ (,\ - '\0)('\0 - A)-I is a Fredholm operator with index 
zero by Corollary XI.4.3. It follows from (8) and the invertibility of '\0 - A that 

Im('\ - A) = Im[I + (,\ - '\0)('\0 - A)-I], 

dim Ker('\ - A) = dim Ker[I + (,\ - '\0)('\0 - A)-I] 

= codimlm[I + (,\ - '\0)('\0 - A)-I] 

= codimlm(,\ - A) < (Xl. 0 

XV.3 SPLITTING OF THE SPECTRUM AT INFINITY 

Let X be a (complex) Banach space, and let A(X -+ X) be a closed linear 
operator such that the strip I)R,\I < h is in the resolvent set peA). Here h is a positive 
number which we shall keep fixed throughout the section. If A is everywhere defined (and 
hence bounded) our assumptions imply that there exists a decomposition, X = X_ EBX+, 
such that X_ and X+ are A-invariant subspaces of X and 

(La) O"(A I X_) C {,\ Eel )R'\ S; -h}, 

(lob) 

This spectral decomposition of X is obtained by taking X _ = Ker P and X+ = 1m P, 
where P is the Riesz projection corresponding to the part 0"+ of O"(A) in the open right 
half plane, i.e., 

(2) P = ~ J(,\ - A)-Id,\. 
27rZ 

r 

The contour r in (2) is in the open right half plane and contains 0"+ in its inner domain. 
In the case when A is not everywhere defined, it is a problem to make a decomposition 
of the space X with the properties (La) and (lob). In general, the contour r appearing 
in (2) does not exist, and hence one cannot define a projection as in (2). 

To make more transparent the difficulty which one encounters here, consider 
the operator A-I (which is a well-defined bounded linear operator because of our as
sumption on peA)). The spectrum of A-I lies in the two closed discs which one obtains 
by applying the transformation ,\ f-+ ,\ -1 to the closed half planes )R'\ S; -h and )R'\ 2 h 
(in the extended complex plane Coo). In other words, 0"( A -1) lies in the set 

(3) 
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Note that the point 0 is always in O'(A -1) (if A is unbounded) and at the point 0 the 
two closed discs in (3) intersect. In general, 0 will not be an isolated point of O'(A -1). 
In fact, it may happen that 0'(A-1) is precisely equal to the set (3). The problem is now 
to make a spectral decomposition of the space when the parts of the spectrum are not 
disjoint. For the original operator A this means that we have to split the spectrum at 
infinity. In this section we shall deal with a case for which the above mentioned problem 
can be solved. 

For the operator A which we shall consider, the resolvent operator (A - A)-1 
will be uniformly bounded on the strip I~AI < h, that is, 

(4) sup II (A - A)-111 < 00. 

IlR~l<h 

First, we shall introduce the candidates for the spaces X_ and X+ for such an operator. 
We define N _ to be the set of all vectors x E X for which there exists an X -valued 
function <P;, bounded and analytic on ~A > -h, which takes its values in 'D(A) and 
satisfies 

(5) (A - A)<p;(A) = x, ~A > -h. 

Roughly speaking, N _ consists of all vectors x E X such that (A - A) -1 x has a bounded 
analytic continuation to the open half plane ~A > -h. The function <p; (assuming it 
exists) is uniquely determined by x. Analogously, we let N+ be the set of all vectors 
x E X for which there exists an X -valued function <Pt, bounded and analytic on ~A < h, 
which takes it values in 'D(A) and satisfies 

(6) (A - A)<p;(A) = x, ~A < h. 

Also <Pt is unique, provided it exists. Obviously, the sets N _ and N + are (possibly non
closed) linear manifolds of X. Their closures will be denoted by X_ and X+, respectively. 
Thus, by definition, 

(7) 

THEOREM 3.1. Let A(X -+ X) be a densely defined closed linear operator 
for which condition (4) holds true for some h > 0, and let X_ and X+ be the subspaces 
defined in (7). Then X = X_ ffi X+, and furthermore, 

(8) 

if and only if, for some (for each) 0 < a < h, the map 

a+ioo 

(9) x f--+ -1. J A -2(A - A)-1 A 2xdA, 
21l'z .. 

a-ioo 

extends to a bounded linear operator P on X, and in that case the spaces X_ and X+ 
are invariant under A, 

(10.a) O'(AIX_) c pEe I ~A:S -h}, 
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(la.b) 

and P is the projection of X along X_ onto X+. 

For bounded linear operators Theorem 3.1 is trivial. First of all note that for 
a bounded linear operator A on X condition (4) is fulfilled for some h > a if and only if 
the imaginary axis 1RA = a belongs to the resolvent set peA) of A. Furthermore, in that 
case, a straightforward argument based on Cauchy's theorem and the identity 

shows that the Riesz projection P corresponding to the part of O"(A) in the open right 
half plane is given by the (improper) integral 

a+ioo 

P=;7r~ j A-2 (A-A)-IA2 dA, 
a-ioe 

for some a < 0: < h. 

The proof of Theorem 3.1 will be based on two lemmas. In what follows 
A(X -+ X) is a (not necessarily densely defined) closed linear operator for which condi
tion (4) holds true. In particular, the strip I1RAI < h is in peA). We fix a < 0: < h and 
introduce the following auxiliary operators: 

(11) 

(12) 

S_ = _1_ -aj+ioo A -2(A _ A)-IdA, 
27ri 

-a-iCXJ 

a+iCXl 

S+=~~ j A-2(A-A)-ldA. 
0:-;00 

The integrals in (11) and (12) have to be understood as improper integrals. Condition 
(4) guarantees that S_ and S+ are well-defined bounded linear operators on X. We 
shall prove that S_ and S+ commute with A. The latter means that S±D(A) c D(A.) 
and AS±x = S±Ax for each x E D(A). To see this, let T = A-I be the bounded 
inverse of A. Since T commutes with the resolvent operator (A - A)-I, the operators 
S_ and S+ commute with T. Take x E D(A), and put y = Ax. Then x = Ty, and so 
S±x = S±Ty = TS±y E D(A). Also 

LEMMA 3.2. The operators S- and S+ commute, S_S+ = S+5_ = a and 
Ker S_ n Ker S+ = {a}. 

PROOF. To compute S_S+ we use the resolvent formula (Proposition 
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XIV.I.l) and use Fubini's theorem. We have 

2 -a+ioo a+ioo 

-S_S+ = (2~i) / / >.-2p-2(>. - A)-I(p - A)-Idpd>' 

-a-ioo a-ioo 
2 -a+ioo a+ioo 

= (2~J / / >.-2p-2(p - >.)-1[(>. - A)-I - (p - A)-I)dpd>' 

-a-icc> Ct-ioo 

2 -a+ioo a+ioo 
= (~.) / (/ dp )>.-2(>. -A)-Id>' 

27l"Z p2(p - >.) 
-a-ioo a-ioo 

( 1 ) 2 a/+ioo( -a/+ioo d>' ) -2 -1 
- 27l"i >.2(p _ >.) p (p - A) dp. 

a-ioo -a-ioo 

The use of Fubini's theorem is justified by the fact that 

~>. = -<l,~p = <l, 

where I denotes the left hand side of (4). A standard argument of complex function 
theory shows that the integrals between parentheses are zero. Hence S_S+ = O. Analo
gously, S+S_ = O. 

To prove that Ker S_ n Ker S+ = {OJ, let r be a circle around the origin with 
radius r, 0 < r < <l. The orientation on r is counter clockwise. Recall that T = A-I. 
By the operational calculus for closed linear operators, 

Using Cauchy's theorem and (4), one easily gets 

a+ioo -a-ioo 
/ >.-2(>. _ A)-Id>' = / >.-2(>. - A)-Id>' - / >.-2(>. _ A)-Id>', 

r a-ioo -a-ioo 

and thus T2 = S_ + S+. Hence KerS_ n KerS+ C KerT2 = {OJ. 0 

As before, let T = A-I. Since T commutes with S_ and S+, one has 
T[Im S±J c 1m S±. Put 

(13) 

Then M_ and M+ are invariant subspaces for the bounded operator T. In fact, T M± c 
D(A) n M±. Note that A maps TM_ into M_ and TM+ into M+. We define 
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A_(M_ -+ M_) and A+(M+ -+ M+) to be the restrictions A to TM_ and TM+, 
respectively. Thus 

(x E V(A±)). 

From Lemma 3.2 we know that S+S- = O. This implies that S+[ImS_) = 
{O}, and hence, by definition, S+[M-l = {O}. In a similar way, S-[M+l = {O}. So, we 
have 

LEMMA 3.3. Suppose that V(A) is dense in X. Then the operators A_ and 
A+ are closed and densely defined, their spectra are located as follows: 

(14) u(A_) C {.X Eel ~.\ ~ -h}, 

(15) 

and V(A~) C N_ and V(At) C N+, where N_ and N+ are as in (7). 

PROOF. Let T = A-I, and let M_ and M+ be defined by (13). Obviously, 
A_ maps V(A_) in a one-one way onto M_ and A:l = TIM_. Thus A:l is a closed 
operator, and hence the same is true for A_. Since 1m T = V( A) is dense in X, the space 
ImS_ C ImS_T. Now S_T = TS_, and so ImS_T = T[ImS-l C TM_. We conclude 
that M _ C T M _, and thus V( A_) = T M _ is dense in M _. In a similar way one proves 
that A+ is a closed densely defined linear operator. 

Next we prove (14). First take I~zl < h. Then z E peA) and (z - A)-1 
commutes with S_. Hence (z - A)-l leaves M_ invariant. By the resolvent equation, we 
have (z - A)-l = -T + zT(z - A)-I, and so (z - A)-l maps M_ into T M_ = V(A_). 
It follows that z E p(A_) and (z - A_)-1 = (z - A)-lIM_. As a second step we take 
~z ~ h, and put 

(16) 
o<+ioo 2 

-1 J z -1 R(z) = 271'i .\2(.\ _ z) (.\ - A) d.\. 
o<-ioo 

Since condition (4) is satisfied, R(z) is a well-defined bounded linear operator on X. 
From 

(z - A) [.\2(;2_ z) (.\ - A)-I] = - ~~ (.\ - A)-l + .\2(;2_ z /' 

it follows that 

-1 O<J+ioo [z2 -1] 2 
271'i (z-A) ,\2(,\_z)(.\-A) d.\=-z S++I. 

o<-ioo 

Now use that z - A is a closed linear operator to conclude that R(z) maps X into VeAl 
and (z - A)R(z) = -z2 s+ + I. Take x E M_. Recall that M_ C KerS+, and so 
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(z - A)R(z)x = x. As we observed above, (A - A)-l leaves M_ invariant. But then 
it is clear that R(z)x E M_. In turn, this gives that AR(z)x = zR(z)x - x E M_ 
too, and so R(z)x E TM_ = 'D(A_). Thus (z - A_)R(z)x = x. In the case when 
x E 'D(A_) = TM_, then also R(z)(z - A_)x = x. This follows from the fact that R(z) 
commutes with T. Hence z E p(A_) and (z - A_)-l = R(z)IM_. We have now proved 
that (14) holds true, and we have shown that 

(17) (z _ A_)-l = { (z - A)-lIM_, I~zl < h, 
R(z)IM_, ~z ~ h. 

Analogous arguments yield (15). 

To prove the inclusion 'D(A:') C N _, take x E 'D(A:'). For ~A > -h define 
'P;(A) = (A - A_)-lx. Obviously, 'P; is analytic on ~A > -h. Since 'D(A_) C 'D(A), 
the values of 'P; are in 'D(A) and 

(A - A)'P;;(A) = (A - A_)'P;;(A) = x, ~A > -h. 

Condition (4) and formula (17) imply that 'P; is bounded on I~AI < h. So, in order 
to prove that x E N_ it is sufficient to show that 'P; is bounded on ~A ~ h. Since 
x E 'D(A:'), we have 

'P;;(z) = z-l x + z-2 A_x + z-2(z - A_ )-1 A:'x. 

From formulas (16) and (17) we conclude that 
o+ioo 

z-2(z - A_ )-1 A:' x = ;7r~ J A2()..1_ z) ().. - A)-l A:'xd)" 
a-ico 

for ~z ~ h. Together with (4) this gives that z-2(z - A_)-l A:' x is bounded on ~z ~ h. 
Trivially, the same is true for the functions z-l x and z-2 A_x. Hence 'P; is also bounded 
on ~z ~ h. Thus x E N_. In a similar way, one proves that 'D(A~) C N+. 0 

PROOF OF THEOREM 3.1. The proof is divided into two parts. In the 
first part we show that Theorem 3.1 remains correct when X_ and X+ are replaced by 
the spaces M_ and M+, respectively. Here M_ and M+ are defined by (13). 

PART I. We already know that M_ C KerS+ and M+ C KerS_. Now 
Ker S- n Ker S+ = {O} (Lemma 3.2). Thus M_ n M+ = {O}. So, in order to prove that 

(18) X = M_ tJ) M+, 

it remains to show that M_ + M+ is dense in X. For this we pass to the conjugate A' of 
A. The linear operator A' is closed and condition (4) remains valid when A is replaced 
by A' (cf., Proposition XIV.2.6). The conjugates S'- and S~ of S_ and S+ (see (11) and 
(12» are given by 

-7iOO
).. -2p _ A')-ld'\, 

-a-ioo 

a+ioo 

S' =.2 r ).. -2().. _ A')-ld)". 
+ 27ri J 

a-ioo 
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Maybe the domain D(A') of A' is not dense in the conjugate X' of X. However, in 
Lemma 3.2 we did not require D(A) to be dense in X. Therefore the lemma also applies 
with S'- instead of S_ and S+ instead of S+. Hence Ker S'- n Ker S+ = {O}. But then 
ImS_ + ImS+ is dense in X (use [GGJ, Theorem XI.5.1(i». According to (13) this 
implies that M_ + M+ is dense in X. 

(19) 

For x E D(A2), put 

a+ioo 

Lx = -1. J >.-2(>. - A)-I A2xd>., 
27l"z 

a-ioo 

Condition (4) guarantees that Lx is well-defined. From the definition of S+ (formula 
(12» it follows that Lx = S+A2x. If x E D(A:'), then A 2x E M_ C Ker S+ and so 
Lx = O. Recall from the proof of Lemma 3.2 that S_ + S+ = T2, where T = A-I. Thus 
Lx = x - S_A2x, which implies that Lx = x for x E D(A~). 

Next, assume that there exists a bounded linear operator P on X such that 
Px = Lx for x E D(A2). Then P vanishes on D(A:') and coincides with the identity 

on D(A~). From Lemma 3.3 we know that T_ = A=I is a well-defined bounded linear 
operator on M _ and 1m T _ = D( A_) is dense in M _. But then D( A:') = 1m T': is dense 
in M _ . Since P is bounded, we may conclude that P vanishes on M _ . Analogously, 
D(A~) is dense in M+, and so P coincides with the identity on M+. 

Take x in the closure of M_ + M+, say 

x = lim (x; +xt), 
k-+oo 

with x; E M_ and xt E M+. Then xt = P(x; + xt) converges to Px when k tends 
to infinity. Since M+ is closed (see (13», this implies that Px E M+. It also follows 
that x; converges to x - Px when k tends to infinity, and so x - Px E M_. But then 
x E M_ + M+, and we conclude that M_ + M+ is closed. Together with (18) this yields 
that X = M_ EB M+ and P is the projection of X along M_ onto M+. 

Conversely, suppose X = M_ EB M+, and let P be the projection of X along 
M_ onto M+. Then Px = 0 = Lx for x E D(A:') and Px = x = Lx for x E V(A~). So 
P and L coincide on V(A:') EB V(A~). With T = A-I we have 

V(A2) = 1m T2 = T2[M_ EB M+J 

= T2 M_ EB T2 M+ = D(A:') EB D(A~). 

Hence Px = Lx for all x E V(A2), and thus the map (9) extends to a bounded linear 
operator on X. 

From X = M_ EB M+, we get 

D(A) = ImT = TM_ EBTM+ = D(A_) EBD(A+). 

Here, as before, T = A-I. It follows that V(A_) = D(A) n M_ and D(A+) = V(A) n 
M+. This implies that M_ and M+ are invariant under A. Also, A_ and A+ are the 
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restrictions of A to M_ and M+, respectively. Combining this with (14) and (15) we get 

u(AIM_) = u(A_) C {A E C IlRA ~ -h}, 
u(AIM+) = u(A+) C {A E C IlJU ~ h}. 

This completes the first part of the proof. 

PART II. Here we prove Theorem 3.1 the way it is stated. Take x E N+, 
and let CPt be a bounded, analytic X -valued function on lRA < h such that 

(A - A)cp~(A) = x, lRA < h. 

According to the definition of S_ (formula (11)) we have 

S_x = 2~i -7 iOO 
A -2cp~(A)dA. 

-CII-ioo 

A straightforward argument, based on Cauchy's theorem and using the boundedness 
condition on CPt, shows that the latter integral is zero. It follows that N+ C KerS_. 
Taking closures we get X+ C KerS_. Analogously one proves that X_ C KerS+. But 
then Lemma 3.2 gives that x_nx+ = {a}. FromLemma3.3weknowthatD(A:') C N_ 
and D(A~) C N+. In Part I of the proof it was already noted that D(A:') is dense in 
M_ and D(A~) is dense in M+. Hence M_ C X_ and M+ C X+. Taking into account 
(18), one may now conclude that X = X_ $ X+. 

Next, assume that there exists a bounded linear operator P on X such that 
Px = Lx for all x E D(A2). Here Lx is defined by (19) and is equal to the right hand 
side of (9). As we have seen in Part I of the.proof, this implies that X = M_ $ M+ and 
that P is the projection of X along M_ onto M+. Since M_ C X_ and M+ C X+ and 
X_ n X+ = {a}, it follows that X_ = M_ and X+ = M+. So X = X_ $ X+ and P is 
the projection of X along X_ onto X+. 

Finally, suppose that X = X_ $ X+. As M_ is a closed subspace of X_ 
and M+ is a closed subspace of X+, the space M_ $ M+ is closed. Together with (18) 
this implies X = M_ $ M+. So again X_ = M_ and X+ = M+. But then the desired 
conclusions are clear from what was established in Part I of the proof. 0 

We shall refer to the spaces X_ and X+ appearing in Theorem 3.1 as the 
3pectral 3ub3pace3 of A corre3ponding to the left and right half plane, re3pectively. 

XV.4 A PERTURBATION THEOREM 

In this section we show that the direct sum decomposition, X = X_ $ X+, 
in Theorem 3.1 is preserved under certain perturbations of A. 

THEOREM 4.1. For 1.1 = 1,2 let A,,(X -+ X) be a den3ely defined cloud 
linear operator 3uch that for 30me h > a the 3trip IlRAI < h i3 in the re301vent 3et p(A,,) 
and 

(1) sup II(A - A,,)-lll < 00, 

I!RAI<h 
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and let X~), X¥) be the spectral su.bspaces of Av corresponding to the left and right 
half plane, respectively. Assu.me D(A~) C D(AD and 

(2) sup 1>.1 211(A - A2)-1 - (A - Al)-111 < 00. 

I~AI<h 

Then X = X~I) E9 X~) implie8 X = X~) E9 X~) . 

PROOF. Choose 0 < Q < h. For v = 1,2 define Lv:D(A~) -+ X by setting 

a+ioo 

Lvx = -1. J A-2(A - Av)-l A~xdA, 
211"% 

a-ioo 

Since'X = X~l) E9 X~), Theorem 3.1 implies that Ll extends to a bounded linear 
operator on X. Hence, in order to prove the theorem, it suffices to show that there exists 
a constant 'YO such that 

x E V(A~). 

Take x E D(A~). Then x E D(AD, and for v = 1,2 

(A - Av)-l A~x = -Avx - AX + A2(A - Av)-lx. 

Hence 

a+ioo 

L2X - LIX = ~ J A-2[(A2 - Adx + A2(A - Al)-lx - A2(A - A2)-l x jdA 
211"% 

a-ioo 

a+ioo 

= ~ J ,12 [A2(A - Al)-l x - A2(A - A2)-lxjdA, 
211"% A 

a-ioo 

and it follows that 

where'Y denotes the left hand side of (2). 0 

When Aland A2 are bounded operators, the conclusion of Theorem 4.1 is 
trivial and does not need condition (2). In fact, in the bounded case condition (2) is 
fulfilled automatically. This one sees by subtracting the Neumann series of Al and A2, 
and noting that the resulting power series in A-I starts with a term involving A -2. 

Let us illustrate Theorem 4.1 with an example. Take X = Ll(R), and let 
A(X -+ X) be defined as follows. The domain D(A) of A consists of all functions f E X 
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such that J is absolutely continuous on each compact subinterval of [0,00) and on each 
compact subinterval of (-00,0] and, moreover, J' EX. Note that functions in D(A) are 
allowed to have a jump discontinuity at 0. For J E 'D(A) we set 

(3) (Af)(t) = { f'(t) - qJ(t), t > 0, 
J'(t) + qJ(t), t < 0. 

Here q is a fixed positive real number. Applying the same reasoning as in the example 
after Theorem 1.2, one proves that peA) is precisely equal to the strip I1RAI < q and for 
,\ E peA) 

00 

/ e-(,x+q)t J(t + s)dt, s> 0, 

(,\ - A)-l J){s) = o 
o 

- / e-(,x-q)t J(t + s)dt, s < 0. 

-00 

It follows that 

,\ E peA). 

Fix ° < h < q. Then condition (4) in Section XV.3 is satisfied. In this case the spectral 
subspaces X_ and X+ are easily determined. In fact 

X_ = {f E X I J = ° a.e. on [O,oo)}, 

X+ = {f E X I J = ° a.e. on (-oo,On· 

It follows that for A defined by (3) the spectral decomposition 

(4) 

holds true. 

Next, we consider a perturbation of the operator defined by (3), namely, the 
operator A x = A + D, where D is the rank one integral operator 

00 

(5) DJ= (/ se-qJSJJ(S)ds)g. 
-00 

Here g is a function in D(A) which will remain fixed in what follows. Note that both g 
and Ag are in L1(R). Since D is bounded, AX is a closed linear operator with domain 
D(A X) = D(A). We shall prove that A x has no spectrum on the imaginary axis if and 
only if 

00 

(6) / ,\-2(e-,xs + AS -l)e-qJsJ g(s)ds i= 1, 1RA = 0. 
-00 
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Furthermore, we shall show that in that case the spectral decomposition (4) also holds 
true for A x instead of A. 

First note that 

(7) I~'\I < q. 

It follows that for I~'\I < q the operator ,\ - A x is invertible if and only if 1-D('\ - A)-1 
is invertible. Since D has rank one, the latter occurs if and only if F('\ - A)-lg) =J. 1, 
where F is the continuous linear functional on Ll(R) given by the integral in (5), that 
is, 

00 

F(f) = J se-qls1f(s)ds. 

-00 

A straightforward computation shows that for f in Ll (R) and I~'\I < q 

00 

F('\ - A)-1 f) = J ,\ -2(e- AS +'\s - 1)e-qls1 f(s)ds. 

-00 

In particular, F('\ - A)-lg) is equal to the left hand side of (6), and hence (6) is the 
necessary and sufficient condition in order that ,\ - A x is invertible for ~,\ = O. 

Denote the left hand side of (6) by d('\). Note that the function d(·) is analytic 
in the strip I~'\I < q. Take 0 < c < q. The Riemann-Lebesgue lemma (see [R], Theorem 
9.6) implies that 

(8) lim d('\) = O. 
A--+oo,IRAI::;e 

So there exists p > 0 such that d('\) =J. 1 for I~'\I ::; c and 1,\1 ~ p. It follows that dO-1 
has only a finite number of zeros in the strip I~'\I ::; c. 

Next, assume that d('\) =J. 1 for ~,\ = O. Thus d(·) - 1 has no zeros on 
the imaginary axis. The result of the previous paragraph implies that we may choose 
0< h < q such that d('\) =J. 1 for I~'\I ::; h. But then it follows that ,\ - AX is invertible 
for I~'\I ::; h, and we can use (7) to show that for f E Ll (R) 

(,\ - A x ) -1 f = (,\ _ A) -1 f + (1 _ d('\)) -1 . 

. F('\ - ArlJ)('\ - A)-l g , 
(9) 

I~'\I ::; h. 

From formula (8) and d('\) =J. 1 for I~'\I ::; h we conclude that (1- d(·n- 1 is bounded 
on the strip I~'\I ::; h. Also 11(' - A)-III is a bounded function on I~'\I ::; h. But then we 
can use (9) to show that 

sup 1I(,\-AX )-II1<oo. 
IRAI<h 

In other words, condition (4) in Section XV.3 is also fulfilled for AX. Let X~ and X~ be 
the spectral subspaces of AX corresponding to the left and right half plane, respectively. 

Theorem 3.1 tells us that X = X~ EEl X~. We want to show 

(10) X = X~ EEl X~. 
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To do this we apply Theorem 4.1. From (9) it follows that for f E Ll(R) 

A2[(,\ - AX)-l f - (A - A)-lfl = 

= (1 - d(A)) -1 F('\('\ - A)-l f)'\(A _ A)-lg, I)RAI ~ h. 

Rewrite '\(A - A)-l as 1+ A(A - A)-t. A simple computation shows that 

ex> 

F(Af) = - J e-q1t1f(t)dt. 

-ex> 

Thus F 0 A extends to a bounded linear functional, G say, defined of Ll (R). Next, 
recall that 9 E D(A). Thus Ag is a well-defined element of Ll(R) and A('\ - A)-lg = 
(,\ - A)-l(Ag). We conclude that 

,\2 [(A - AX)-l f - (,\ - A)-l fl = (1- d(A))-lx 

X [F(f) + G(A - A)-l f)][g + (A - A)-l Agl, 

Since (1- d(·n-1 and 11(· - A)-III are bounded on I)RAI ~ h, there exists a constant 'Y 
such that 

In other words, condition (2) is fulfilled with Al = A and A2 = AX. It follows that (10) 
holds true. 



CHAPTER XVI 

UNBOUNDED SELFADJOINT OPERATORS 

This chapter introduces the reader to unbounded selfadjoint operators on a 
complex Hilbert space. We give examples of such operators, describe their elementary 
properties, and prove the spectral theorem. The main method employed here is to trans
fer from the unbounded operator to its resolvent and to apply our results for bounded 
selfadjoint operators. 

XVI. I SELFADJOINT ORDINARY DIFFERENTIAL OPERA
TORS 

Let H be a complex Hilbert space. An operator T(H - H) is called self
adjoint if T is densely defined and T* = T. There are many important examples of 
unbounded selfadjoint operators. This section concerns selfadjointness for ordinary dif
ferential operators of the type considered in Theorem XIV.4.4. 

THEOREM 1.1. Let r be the differential expression r = "£']=0 aj(t)Dj, 
where ai E Ci([a, b]), 0 5 j 5 n, and an(t) =1= 0 for all a 5 t 5 b. Let T(L2([a, b)) -
L2([a, b])) be the restriction of Tmax,T to those 9 E V(Tmax,T) which satisfy the following 
boundary conditions 

n-1 n-1 
(1) B;(g) = L O:;jg(i)(a) + L f3;jg(i)(b) = 0, 15 i 5 k. 

i=O j=O 

Put 

(2) N [ ]k n-1 
1 = O:ij ;=1, j=O' 

Assume that the rank of the k x 2n matriz N = [N1 N 2 ] is k. Then T is selfadjoint 
if and only if the following three conditions are satisfied: 

(i)r=r*, 

(ii) k = n, 

(iii) N1(F(a)-1)*Ni = N2(F(b)-1)*Ni. 

Here F(t) is the n x n matriz [Fm3·(t)]n-·~0 with m,3-

(3) { 
"n-m-1( l)k (k) _(k-j) (t) 

Fmj(t) = L..k=j - j am+k+l ' 

0, 

m+j 5 n -1, 

m+j>n-1. 

For the proof of Theorem 1.1 we need the following lemma. 
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LEMMA 1.2. Let h, ... , fk' g be linear functiona13 on a vector 3pace V over 
C. Suppo3e nj=lKerfj C Kerg. Then g E sp{h, .. ·,Jd· 

PROOF. Let M = {(h(x), ... ,Jk(X)) I x E V}. Clearly, M is a subspace of 
Ck . Define a linear functional F on M by 

F(h(x), ... , fk(X)) = g(x), x E V. 

The functional F is well-defined since (h(x), ... ,fk(X)) = (h(y), ... ,Jk(y)) implies 

that x - y E nJ=l Ker fj C Ker g, whence g( x) = g(y). Let F be any linear extension of 

F to all of Ck , and let el, ... ,ek be the standard basis for C k • Then for all x E V, 

k k 

g(x) = F(h(x), ... , fk(X)) = F(~ fj(x)e j ) = (~F(ej)!i )(x). 0 

PROOF OF THEOREM 1.1. From Theorem XIV.4.4 (and the remark in the 
one but last paragraph of Section XIV.4) we know that the adjoint T* is the restriction 
of Tmax,r' to those f E V(Tmax,r.) which satisfy the adjoint boundary conditions 

n-l n-l 
Bf(J) = L a~f(j)(a) + L j3~f(j)(b) = 0, 1 SiS 2n - e, 

j=O j=O 

where e = rank[ Nl N2]. Note that e = k by our assumption on rank[ Nl N2]. 

Suppose T = T*. Since C~([a, b]) is contained in the domain of T = T*, we 
have r<p = r*<p for each <p E C~([a, b]). By Green's formula «9) in Section XIV.4) 

for all f E cn([a, b]) and <p E C~([a, b]). Since C~([a, b]) is dense in L2([a, b]), we con
clude that r f = r* f for f E Cn([a, b]). Recall that r* is of the form r* = 2:.}=0 bj(t)Dn 
with bj E Cj([a, b]) for 0 S j S n. By choosing f to be the polynomials t j , 0 S j S n, 
we obtain aj = bj, 0 S j S n. Thus (i) holds. 

To prove (ii) note that the assumption rank[ Nl N2 ] = k implies (see the 
paragraph after the proof of Theorem XIV.4.4) that the linear functionals {Bl, ... , Bd 
are linearly independent on V = V(Tmax,r). Also (see the second paragraph after the 

proof of Theorem XIV.4.4) the functionals {Bf, ... , B'fn_k} are linearly independent on 
V. (Recall that V is also equal to V(Tmax,r' ).) Since T = T*, Theorem XIV.4.4 shows 

that n7=1 Ker Bi = n;~le Ker Bf. Hence 

(4) span{Bl,···,Bd = span{Bf,···,B'fn_k} 

by Lemma 1.2. Therefore k = 2n - k or k = n. 

Next, we prove (iii). By (4) and k = n there exist constants Cij, 1 S i,j S n, 

such that Bi = 2::}=1 cijBf for i = 1, ... , n. Since both {Bdi=l and {Bt}i=l are 
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linearly independent the matrix C = [Cij]?'j=1 is invertible. Let Paj and Pbj, 0 ~ j ~ n-1, 
be the polynomials defined by formulas (20) and (21) in Section XIV.4. Then 

n n 

air = Bi(Par) = LCijBf(Par) = LCijCxfr, 
j=1 j=1 
n n 

f3ir = Bi(Pbr) = L CijBJ(Pbr) = L Cijf3f;, 
j=1 j=1 

for 1 ~ i ~ n and 0 ~ r ~ n - 1. It follows that 

(5) 

where Nf = [af;]i=l, j~J and Nt = [f3~]i=l, j~J. Now recall (see formula (26) in 
Section XIV.4) that 

(6) [ # #] [ • G.] [-F(a) 0 ] Nl N2 = G1 2 0 F(b) , 

where F(t) is as in the theorem and Gl and G2 are n x n matrices such that NIGI + 
N2G2 = o. We know (formula (13) in Section XIV.4) that F(a) and F(b) are invertible. 
Thus (use (5) and (6)) 

o = Nl Gl + N2 G2 = [Nl N2 1 [ g~ ] 
[ ] [ -F(a)-1 0 ]. [ Ni ] (C- 1). 

= Nl N2 0 F(b)-1 N2 ' 

which yields (iii). 

To prove the reverse implication, assume that (i), (ii) and (iii) hold. Define 
n x n matrices Dl and D2 by setting 

[ ~~ ] = [_F~)-1 F(~-1 r [ Z~ ] . 
Then NIDI + N2D2 = 0 because of (iii). By (ii) 

rank [ ~~ ] = rank[ NI N2] = k = n. 

It follows that there exists an invertible n x n matrix E such that 

where G1 and G2 are as in formula (15) of Section XIV.4. Now use (6) to show that 

[NI N2] = [Di D2] [-~(a) F~b)] 

= E*[ Gi G2] [-~(a) F~b)] = E*[ Nt Nt]. 
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It follows that span{Bdf=l = span{Bflf=l because E is invertible. Since r = r* 
(condition (i)), Theorem XIV.4.4 implies T = T*. 0 

COROLLARY 1.3. Let r be the differential e:cpression given by 

r f = D(p!') + qf, 

where p E C2([a, b]) and q E C([a, b]) are real-valued functions with pet) ¥= 0 for all t E 
[a, b]. Let T(L2([a, b]) -+ L2([a, bJ)) be the restriction of Tmax,r to those 9 E 'D(Tmax,r) 
which satisfy the boundary conditions: 

BIg = olOg(a) + ol1g'(a) + f3lOg(b) + f311g'(b) = 0, 

B 2g = 020g(a) + 02lg'(a) + f320g(b) + f32lg'(b) = 0, 

where each 0ij and f3ij is a real number. Then T is selfadjoint if and only if the rank of 
[[Oij H.Bij 1] is 2 and 

(7) _1_ det [010 011] __ 1_ det [f3l0 f311] 
pea) 020 021 - pCb) f320 f321 . 

PROOF. It was shown in the example at the end of Section XIV.4 that 
r = r* and 

F(t) = [ 0 p(t)] . 
-pet) 0 

But then condition (iii) in the previous theorem reduces to 

1 [01] 1 [01] 
p(a)d1 -1 0 = p(b)d2 -1 0 ' 

where d1 = det[oij] and d2 = det[f3ij]. Hence (iii) is equivalent to (7), and the corollary 
follows. 0 

XVI.2 AN EXAMPLE FROM PARTIAL DIFFERENTIAL 
EQUATIONS 

C2. Let 
THEOREM 2.1. Let n be a bounded open set in Rn with boundary of class 

n 

L = L Di(aij(x)Dj) + ao(x), 
i,j=l 

where ao is a real-valued function in COO(n) and aij = aji E COO(IT), 1 .:5 i,j .:5 n. 
Assume that L is uniformly elliptic. Then the operator A(L2(n) -+ L2(n)) defined by 

Au=Lu 

is selfadjoint. 
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PROOF. Note that A is the Dirichlet operator on L2(f!) associated with L. 
Since the boundary of f! is of class C2 , we can apply the results of Section XIV.6. In 
particular, Theorem XIV.6.5 tells us that A* is the Dirichlet operator on L2(f!) associated 
with the Lagrange adjoint L* of L because L is uniformly elliptic. Recall that 

n 

L* = :E Dj (aij(x)Di) + ao(x). 
i,j=l 

Our condition on the coefficients of L imply that L = L *, and hence A = A * . 0 

The above theorem also holds true if -L is uniformly elliptic. In particular, 
the theorem applies to the Laplacian 6. = L:i=l Dr, because -6. is uniformly elliptic 
and its coefficients have the desired symmetry properties. Thus, if L = 6., then the 
operator A defined in (1) is selfadjoint. 

XVI.3 SPECTRUM AND CAYLEY TRANSFORM 

Throughout the remaining part of this chapter H denotes a complex Hilbe~t 
space. 

THEOREM 3.1. If A(H --t H) is selfadjoint, then A is a closed operator, 
its spectrum a(A) C Rand 

(1) Im.x =1= o. 
PROOF. The operator A is closed by Proposition XIV.2.2. Let .x = a + ib, 

b =1= 0 with a and b real. Since a - A is selfadjoint, 

(2) 

Therefore .x - A is injective. From (2) and the fact that .x - A is closed, it follows that 
Im(.x - A) is closed. Hence 

ImA = (Ker A).l. H, 

by Proposition XIV.2.5. Therefore.x E peA), the resolvent set of A, and (1) is a conse
quence of (2). 0 

Let A(H --t H) be densely defined, and assume that for some real .x the 
operator .x - A is invertible. Then .x - A * is invertible and 

(3) 

because of Proposition XIV.2.6. It follows that A is selfadjoint if and only if the bounded 
operator (.x - A) -1 is selfadjoint. 

The transformation of an unbounded operator into a bounded one is often 
useful. There is a specific transformation of this type which is widely used. We have 
in mind the so-called Cayley transform. This transformation may be viewed as the 
operator-valued version of the Mobius transformation 

(4) 
z+i W=--., 
z-z 
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which maps the real line onto the unit circle. If we replace in (4) the variable z by a 
selfadjoint operator A, then the resulting operator . 

(5) U = (A + i)(A - i)-l 

is called the Cayley transform of A. Note that (A - i)-l in (5) is well-defined because 
of Theorem 3.1. 

THEOREM 3.2. If A(H --. H) is a selfadjoint operator, then its Cayley 
transform is unitary. 

PROOF. By Theorem 3.1 the operator A + i maps the domain of A in a 
one-one way onto H. It follows that the Cayley transform U is invertible on H. Also, 
given y E H, there exist x E 'D(A) such that (A - i)x = y. So, by (2), 

IIUyll2 = II(A + i)xll2 = IIAxll2 + IIxll2 = II(A - i)xll2 = IIYIl2. 
Hence U is an isometry and invertible. Therefore U is unitary. 0 

If U is the Cayley transform of the selfadjoint operator A(H --. H), then A 
may be recovered from U via the following formula: 

(6) Ax = i(U - I)-I(U + I)x, x E 'D(A). 

To see this, note that 

U - I = {(A + i) - (A - i)}(A - i)-l = 2i(A - i)-I, 

and hence U - I maps H in a one-one way onto the domain of A. Also, for x E'D(A), 
we have (U - I) Ax = i(U + I)x, which implies (6). 

THEOREM 3.3. Let A(H --. H) be closed and densely defined. Then 

(a) 1+ A* A is invertible with 11(1 + A* A)-III :5 1, 

(b) A* A is selfadjoint. 

PROOF. Given z E H, Proposition XIV.2.1 ensures the existence of vectors 
u E D(A) and v E 'D(A*) such that 

(z,O) = (u, Au) + (A*v, -v) 
or 

z = u + A*v, 0 = Au - v. 
Thus z = (1 + A* A)u, and hence 1+ A* A is surjective. Suppose x E 'D(A* A). Then 

11(1 + A* A)xllllxll ~ (I + A* A)x, x} = IIxll2 + IIAxll2 ~ IIx1l2, 
and therefore (a) holds. 

Put T = (I + A* A)-I. For x and y in H we have 

(Tx, y} = (Tx, (I + A* A)Ty} = (Tx, Ty} + (ATx, ATy} 
and 

(x, Ty} = (I + A* A)Tx, Ty} = (Tx, Ty} + (ATx, ATy}. 
Thus T is selfadjoint and 

'D(A* A) = ImT = H. 
Proposition XIV.2.6 now implies that A* A is selfadjoint. 0 
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XVI.4 SYMMETRIC OPERATORS 

In a number of important cases a densely defined operator on a Hilbert space 
H possesses the main feature of selfadjointness, namely 

(1) (Ax, y) = (x, Ay), x, Y E D(A). 

Such an operator is called symmetric. Note that A is symmetric if and only if A C A* 
(Le., A is a restriction of A*). In this case A is closable and its minimal closed linear 
extension A is again symmetric since A C A* = (A)*, by Proposition XIV.2A. 

Let T = Ek=O ak(t)Dk with ak E ek([a, b]) for 0 :s k :s n and an(t) -:f:. 0 for 
a :s t :s b. Assume T = T*, where T* is the Lagrange adjoint of T (see Section XIV.4). 
Then the minimal operator Tmin,r is symmetric but not selfadjoint on L 2([a, b]). Indeed, 

(2) Tmin,r C Tmax,r = T~in,r , 

by Theorem XIVA.1 (and T = T*). However, Tmin,r -:f:. Tmax,r because the constant 
function 1 E D(Tmax,r) and 1 r1. D(Tmin,r), by the second part of Proposition XIV.3.5. 
The operator Tmax,r is not symmetric as T~ax,r = Tmin,r is not an extension of Tmax,r. 

THEOREM 4.1. Let A(H --t H) be symmetric. Then the following three 
statements are equivalent: 

(3) 

(a) A is selfadjoint, 

(b) Im(A ± i) = H, 

(c) A is closed and Ker(A* ± i) = {OJ. 

PROOF. (a) => (b). This is a trivial consequence of Theorem 3.1. 

(b) => (c). By Proposition XIV.2.5, 

Ker(A* ± i) = Im(A =f i).l. = {OJ. 

Since A is symmetric, the operator A * + i is an extension of A + i. But A + i is surjective. 
So Ker(A* + i) = {OJ implies A* = A. In particular, A is closed. 

(c) => (a). Since A is symmetric, equality (2) in Section XVI.3 holds. In 
particular, II(A + i)xll ~ Ilxll for all x E D(A). This, together with the fact that A is 
closed, implies that Im(A + i) is closed. Hence 

Im(A + i) = Ker(A* - i)l. = H. 

Since A* + i is injective and an extension of the surjective operator A + i, it follows that 
A = A*. 0 

We note that Theorem 4.1 remains valid if i and -i are replaced by A and X, 
resp., for some nonreal A. 

PROPOSITION 4.2. A symmetric operator A(H --t H) which is surjective is 
selfadjoint. In particular, if the resolvent set peA) of a symmetric operator A(H --t H) 
contains a real number, then A is selfadjoint. 
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PROOF. Take y E'D(A*). Since A is surjective, there exists z E 'D(A) such 
that Az = A*y. Hence for any x E'D(A), 

(Ax,y) = (x,A*y) = (x,Az) = (Ax,z). 

It follows that y = z because ImA = H. Thus 'D(A*) C "D(A). But A C A*. Therefore 
A=A*. 

For the second part, it suffices to note that given r E R the operator r - A is 
symmetric (selfadjoint) if and only if A is symmetric (selfadjoint). 0 

In the theory of symmetric operators one of the important problems is to 
extend a symmetric operator to a selfadjoint one. We shall not deal with this problem, 
but we shall make a few remarks to illustrate some of the results; for the complete theory 
the reader is referred to the books Riesz-Sz.-Nagy [1] and Dunford-Schwartz [1]. One of 
the main tools to treat the above extension problem is a generalization of the Cayley 
transform, which is used to reduce the problem to the problem of extending a partial 
isometry to a unitary operator. This reduction is effective and leads to a full solution 
(see Riesz-Nagy [1]). 

It turns out that the selfadjoint extension problem for symmetric operators is 
not always solvable. In fact, the general theory shows (see the books referred to above) 
that a symmetric operator T( H -+ H) has a selfadjoint extension if and only if 

(4) dim Ker(T* - i) = dim Ker(T* + i). 

Let us apply this result to the minimal operator Tmin 'T" J with T = iD. Since T = T*, 
Theorem XIVA.I implies that Tmin,'T",J is a symmetric' operator on L2(J). Next, we 
specify the interval J. First, take J = [0,00). The operator Tmin 'T" [0 00) does not have a 
selfadjoint extension. Indeed ' , , 

Ker(T;in 'T" [0 00) - i) = {O}, , , , 

Ker(T~n,'T",[O,oo) + i) = {ae- t I a. E e}, 

and hence (4) is violated. On the other hand, Tmin,'T",J has a selfadjoint extension for any 
compact interval J. To see this, take J = [a, b], and let T(L2([a, b]) -+ L2([a, bD) be the 
restriction of Tmax,'T" to those 9 E "D(Tmax,'T") such that g(a) + g(b) = O. Then Theorem 
1.1 implies that T is a selfadjoint extension of Tmin,'T",[a,bj. 

XVI. 5 UNBOUNDED SELFADJOINT OPERATORS WITH A 
COMPACT INVERSE 

The Dirichlet operator A in Theorem 2.1 has the property that for all suffi
ciently large -\ in R the operator (-\ + A)-l is a compact selfadjoint operator. This is 
an immediate consequence of Theorem 2.1, Theorem XIV.6.1 and formula (3) in Section 
XVI.3. Also, if T is the differential operator defined in Theorem 1.1, then T has a com
pact selfadjoint inverse provided conditions (i)-(iii) in Theorem 1.1 and condition (2) in 
Theorem XIV.3.1 are fulfilled. 
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In this section we employ the spectral theory of compact selfadjoint operators 
(see, e.g., [GG], Section Il1.5) to derive the spectral properties of a selfadjoint operator 
with a compact inverse. For an unbounded operator A(H -+ H) with domain D(A) a 
vector x is called an eigenvector of A with eigenvalue A if 0 =I x E D(A) and Ax = AX. 

THEOREM 5.1. Suppose A(H -+ H) is selfadjoint and has a compact in
verse. Then 

(a) there exists an orthonormal basis {CPl, CP2, ... } for H consisting of eigen
vectors of A. If Ill,1l2,'" are the corresponding eigenvalues, then each Ilj is real and 
Illj I -+ 00, provided dim H = 00. The number of repetitions of Ilj in the sequence 
Ill,1l2,'" is precisely dimKer(llj -A), 

(b) D(A) = {v E H l2:j IlljI21(v,cpj)12 < oo}, 

(c) Av = Ej Ilj(V,CPj)cpj, v E D(A). 

PROOF. Put T = A-I. Formula (3) in Section XVI.3 implies that T is self
adjoint. Thus T is a compact selfadjoint operator with KerT = {OJ. Hence there exists 
an orthonormal basis {cpI> CP2, . .. } of H consisting of eigenvectors of T with corresponding 
real (nonzero) eigenvalues AI, A2,'" such that Aj -+ 0 if dimH = 00. Also the number of 
repetitions of each Aj in the sequence At. A2, ... is precisely equal to dim Ker{ Aj - T) (see 
[GG], Section III.6). The above results, together with the observation that Tcpj = AjCPj 
if and only if Acpj = X;lcpj, proves (a) with Ilj = Ajl. 

(1) 

Then 

Next, assume that v E H is such that 

L IJLjI2I(v,cpj)12 < 00. 

j 

v = ~(v,cpj)CPj = A-I (~JLj{v,CPj)CPj) E D(A). 
1 1 

Conversely, if v E DCA), then 

Av = L{Av,cpj)cpj = L Ilj{Av, Tcpj)cpj 
j j 

= Lllj{TAv,cpj)cpj = Lllj{v,cpj)cpj. 
j j 

The latter identity proves (c). It also shows that v satisfies (1), and hence (b) is proved. 
o 

The operator A in Theorem 5.1 has a compact resolvent, and so Theorem 
XV.2.3 applies to A. Hence, if A is selfadjoint and has a compact inverse, then the 
spectrum u{A) of A is a finite or countable set consisting of eigenvalues of finite type 
only. From Theorem 5.1{a) and (c) it follows that 

u{A) = {Ilj Ij = 1,2, ... }. 
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XVI.6 THE SPECTRAL THEOREM FOR UNBOUNDED SELF
ADJOINT OPERATORS 

In this section the spectral theorem for bounded selfadjoint operators is ex
tended to unbounded ones. We begin with the definition of a resolution of the identity. A 
family {E(t)}tER of orthogonal projections on the Hilbert space H is called a resolution 
of the identity on H if 

(PI) ImE(s) C ImE(t) whenever s $ t, 

(P2 ) ImE(s) = n{ImE(t) It> s}, 

(P3) n{ImE(t) It E R} = {OJ, 

(P4 ) span{ImE(t) It E R} is dense in H. 

Note that this definition is an extension of the definition of a bounded resolution of the 
identity given in Section V.3. The conditions (PI) and (P2) are the same as the conditions 
(Cl) and (C2) in Section V.3, but (P3) and (P4) are weaker than the corresponding 
conditions (C3) and (C4 ). In fact, in this section the resolutions of the identity are not 
required to be supported by a bounded interval (as is the case in Section V.3). 

THEOREM 6.1. Let A(H -+ H) be a selfadjoint operator. Then there exists 
a unique resolution of the identity {E(t)}tER such that 

(a) 'D(A) = {x E HI f A2d(E(A)x,x} < oo}, 
R 

N 
(b) Ax = limN-+oo( f AdE(A»X, 

-N 
x E'D(A). 

Furthermore, if S is a bounded linear operator on H commuting with A, i.e., 

(1) SV(A) C'D(A), SAx = ASx (x E'D(A», 

then S commutes with E(t) for each t E R. 

Let us explain the meaning of the integrals appearing in Theorem 6.1. Let 
{E(t)hER be a resolution of the identity. Take a bounded interval [a, ,8], and let 
f: [a,,8} -+ C be a continuous function. Then 

(2) 

{3 

J f(A)dE(A):= lim STU, P). 
v(P)-+o 

0< 

Here P is a partition, a = AO < Al < '" < An = ,8, of the interval [a, ,8], the number 
v(P) is the maximal length of the subintervals [Aj-l, Aj], the symbol T stands for a set, 
T = {tl. ... , tn}, of points tj E [Aj-l, Aj], and 

n 

STU,P) = L f(tj)(E(Aj) - E(Aj_l»). 
j=l 

Note that STU, P) is a bounded linear operator on H. The usual argument from the 
theory of Riemann-Stieltjes integration shows that the limit in the right hand side of (2) 
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exists in the norm of .c(H) (d., the text after formula (4) in Section V.3), and hence 
the left hand side of (2) is a well-defined bounded linear operator on H. Now take 
Q = N, j3 = -N and f(>..) = >.., and one sees that the second integral in Theorem 6.1 is 
a well-defined operator on H. 

The first integral in Theorem 6.1 has to be understood as an improper Stieltjes 
integral. Note that the integrator (E(·)x,x) is a non-negative monotonically increasing 
function and the integrand >..2 is non-negative on R. Thus 

00 

(3) J >..2d(E(>..)x, x) 
-00 

is a non-negative number if the integral converges and is +00 otherwise. Condition (a) 
in Theorem 6.1 states that x E 'V(A) if and only if the integral (3) is convergent. 

There are various ways to prove Theorem 6.1. A direct way is to give an 
explicit formula for the projection E( t) in terms of contour integrals of the type appearing 
in Section V.2. This means to prove the analogues of Theorems V.2.2 and V.3.2 for 
unbounded selfadjoint operators. Here we shall follow a less direct approach and prove 
Theorem 6.1 by reduction to the bounded case. For this purpose we need two lemmas. 

The first lemma shows that (a) and (b) in Theorem 6.1 define a selfadjoint 
operator. 

LEMMA 6.2. Let {E(t)hER be a resolution of the identity on the Hilbert 
space H, and let T(H ..... H) be defined by 

00 

'V(T) = {x E H I J >..2d(E(>..)x,x) < oo}, 
-00 

Then T is a selfadjoint operator. 

(4) 

PROOF. The proof is divided into four parts. 

Part (i). First we show that for each x E H 

lim E(t)x = 0, 
t!-oo 

lim E(t)x = x. 
tloo 

From the property (PI) of a resolution of the identity it follows that IIE(,)xIl 2 is a 
monotonically increasing function. This function is also bounded, because IIE(t)1I ~ 1 
for each t. Hence we may conclude that the limits 

(5) lim IIE(t)xIl2, 
t!-oo 

lim IIE(t)xIl2 
tToo 
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exist. Property (PI) also shows that the vectors E(t)x-E(s)x and E(s)x are orthogonal 
whenever t ~ s, and thus, by the Pythagorean theorem, 

I/E(t)x - E(s)xI/2 = I/E(t)xI/ 2 -I/E(s)xI/2, t ~ s. 

Since H is a Hilbert space, the last identity and (5) imply that the limits 

Xo = lim E(t)x, Xl = lim E(t)x 
t!-oo tToo 

exist in the norm of H. Obviously, Xo E ImE(t) for each t, and hence Xo = 0 by property 
(P3). Furthermore, the vector X - Xl is orthogonal to ImE(t) for all t, and hence X = Xl 
by property (P4 ). 

(6) 

Part (ii). In this part we show that 

N 

VeT) = { X E H I J~oo (J AdE(A») X exists in H}. 
-N 

N 
Given x E H, put YN = ( J AdE(A))X. From the definition of the integral it follows 

-N 
that 

(7) 
n 

YN = lim 'L:>j(E(Aj)X - E(Aj_I)X), 
v(P}-+o j=l 

where P is the partition -N = AO < Al < ... < An = N with width v(P) and Aj-l :::; 
tj :::; Aj for j = 1, ... , n. Since the vectors are mutually orthogonal, we see that 

n 

= lim L t]{ (E(tj )x, x) - (E(tj_I)X, x)} 
v(P}-+o j=l 

N 

= J A2d(E(A)X, x). 
-N 

Now, assume that x belongs to the right hand side of (6). Then the sequence (1IYNII)N=1 
converges and hence 

00 

J A2d(E(A)X,X) = lim IIYNI1 2 < 00. 
N-+oo 

-00 

Thus x E VeT). On the other hand if x E VeT), then for N > M ~ 1 

N M 

YN - YM = (J AdE(A»)x - (J AdE(A»)x -40 
-N -M 
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as N, M --+ 00, because 

d 2 d 

II (1 >'dE(>'») xII = 1 >.2d(E(>.)x, x} --+ 0 
c c 

as c, d both go to 00 or both to -00. Hence the sequence (YN) converges in H which 
shows that x belongs to the right hand side of (6). 

Part (iii). From (6) we conclude that T is a well-defined linear operator. 
Let us show that its domain is dense in H. For R > 0 we write QR for the orthogonal 
projection E(R)-E(-R). Take x EX. The identities in. (4) imply that IIX-QRXIl--+ 0 
if R --+ 00. Thus to prove that T is densely defined, it suffices to show that QRX E VeT) 
for R > o. Fix R > O. Then 

N R 

(8) (1 >'dE(>'»)QRx = (1 >'dE(>'»)X, 
-N -R 

N>R. 

Thus for N sufficiently large the left hand side of (8) is independent of N. According to 
(6), this implies that QRX E VeT), and hence VeT) is dense in H. 

Part (iv). We prove that T is selfadjoint. Take x, Y in X. A consideration 
of Riemann-Stieltjes sums leads to 

N N 

(9) 1 >.d(E(>')x,y} = ((1 >'dE(>'»)X,y) 
-N -N 

for each N > O. In particular, the integral in the left hand side of (9) exists. Now, take 
x, y E VeT). Then 

N 

(Tx, y) = J~oo (( 1 >'dE(>'») x, y) 
-N 
N 

= lim 1 >.d(E(>.)x, y) 
N-+oo 

-N 
N 

= lim 1 >.d(x, E(>')y) 
N-+oo 

-N 
N 

= J~oo (x, (J )"dE(>'»)y) = (x, Ty). 
-N 

Thus T is symmetric. Finally, take z E V(T*). To finish the proof we have to show that 
z E VeT). As in Part (iii) of the proof, let QR denote the projection E(R) - E( -R). 
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Take an arbitrary x E X. Since QRX E VeT), we have 

(x,QRT*z) = (TQRX,Z) 
R 

= ((J AdE(A))X,Z) 
-R 

R 

=(x,(J AdE(A))Z). 
-R 

Here we used (8) to get the second equality; the third equality follows by applying twice 
(9). We know that QRT*z --+ T*z (R --+ 00) in the norm of H. Thus 

R 

J~oo(x, (J AdE(A))Z) = (x,T*z). 
-R 

This equality holds for each x E X. Now, take for x the vector 

Note that 

It follows that 

N 

XN = (J AdE(A))Z. 
-N 

R 

(XN, (J AdE(A))Z) = (XN,XN), 
-R 

R 

R>N. 

IIxNII2 = J~oo(XN' (J AdE(A))Z) 
-R 

= (xN,T*z). 

But then we may conclude that IIxNl1 :::; IIT*zlI, and we see that 

(10) 

N 

J A2d(E(A)Z, z} = IIxNII2 :::; IIT*zlI· 
-N 

This holds for each N > O. Since the third term in (10) is a fixed finite number, 
independent of N, we have proved that Z E VeT). 0 

For the second lemma we need some additional notation. Let HI, H2, .. . be a 
sequence of Hilbert spaces. By EB~l Hj we denote the space consisting of all sequences 
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x = (Xl,X2, ... ) such that Xj E Hj (j = 1,2, ... ) and l:~11IxjIl2 < 00. The space 
EB~l Hj is a Hilbert space with the inner product defined by 

00 

(x,y) = 2)Xj,Yj). 
j=l 

Here (x j, Yj) denotes the inner product of the vectors x j and Yj in the space Hj. 

Now, for j = 1,2, ... let Aj be a bounded linear operator on Hj. With the 
sequence AI, A 2, ... we associate an operator A (EB~l Hj -+ EB~I Hj) by setting 

D(A) = {x = (XI,X2,"') E !Hj It, II AjXj 112 < oo}, 

Ax = (AlXl,A2X2, .. ')' x E D(A). 

It is a simple matter to check that A is a well-defined linear operator. Since all sequences 
(Xl, x2, . .. ) with a finite number of non-zero entries are in D(A), the operator A is densely 
defined. The operator A is also closed. Indeed, if x(I), x(2), ... is a sequence in D(A), 
x(n) = (Xl (n), X2(n), ... ), such that 

x(n) -+ x, Ax(n) -+ y (n -+ 00), 

then for j = 1,2, ... 

which implies that x E D(A) and Ax = y. We shall denote the operator A by 
diag( Aj )~I' If the sequence AI, A2, ... is uniformly bounded, i.e., 

(11) sup{IIAjlllj = 1,2, ... } < 00, 

then diag(Aj )~l is a bounded operator defined on the whole space. (The converse of 
the latter statement is also true.) 

LEMMA 6.3. For j = 1,2, ... let Aj: Hj -+ Hj be a bounded selfadjoint 
operator acting on the Hilbert space Hj. Let {Ej(t)}tER be the resolution of the identity 
forAj(j=1,2, ... ). Put 

Then A is a selfadjoint operator, {E(t)hER is a resolution of the identity and 

(12) 
00 00 

D(A) = { x E $ Hj I J ).2d{E()')x, x) < 00 }, 

)=1 -00 
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(13) :z: E 1'(A). 

PROOF. The proof is divided into three parts. First we show that the 
operator A is selfadjoint. 

Part (i). Take:z:, yin 1'(A). Then 

00 

(A:z:,y) = L)Ajxj,Yj) 
j=1 
00 

= 2)xj,AjYj) = (:z:,Ay). 
j=1 

The second equality holds true because Aj is selfadjoint for each j. The above calculation 
shows that A C A *. To prove the reverse inclusion, take z E 1'( A *). Fix a positive integer 
k, and let x be an arbitrary element of Hk. Consider the sequence $ = (6jkX)'f=I' 
Obviously, $ E 1'(A). Write [A*zlk for the k-th entry of the sequence A*z. Then 

This holds for each x E Hk, and thus AkZk = [A*zlk' But then 

00 00 

L II AkZkll 2 = L II [A*zlk 112 = IIA*zIl2 < 00. 

k=1 k=1 

Hence z E 1'(A), and it follows that A = A*. 

Part (ii). In this part we prove that {E(t)hER is a resolution of the identity. 
We know that Ej(t) is an orthogonal projection for each j. It follows that 

sup{IIEj(t)1I Ii = 1,2, ... }:51. 

Hence (cf., the remark made at the end of the paragraph preceding the present lemma) 
the operator E(t) is a bounded operator on the whole space EB~1 Hj. Since each Ej(t) 
is selfadjoint, also E(t) is selfadjoint (by the result proved under Part (i)). From 

we see that E(t) is a projection. So {E(t)}tER is a family of orthogonal projections. Note 
that 

(14) ImE(t) = {:z: = (Xl,X2, ... ) I Xj E 1m Ej(t), j = 1,2, ... }. 

As conditions (Cl) and (C2) in Section V.3 are fulfilled for each of the resolutions 
{Ej(t)hER, the identity (14) implies that (PI) and (P2) hold for the family {E(t)hER' 
Next, assume:z: E ImE(t) for all t E R. To prove that condition (P3) holds we have 
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to show that :c = O. Consider the k-th entry Xk of :c. According to (14), the vector 
Xk E ImEk(t) for all t E R. But the resolution {Ek(t)}tER is supported by a compact 
interval. Hence Ek(t) = 0 for t sufficiently small, which shows that Xk = O. This holds 
for each k. Hence:c = 0 and (P3) is established. Finally, let y..l 1m E(t) for all t E R. 
To prove (P4), it suffices to show that y = o. Fix a positive integer k, and let t be an 
arbitrary real number. Take x E 1m Ek(t). Then iC := (8jkX)'f=1 belongs to ImE(t) by 
(14), and thus 

(Yk, x) = (y, iC) = o. 
It follows that Yk..llmEk(t) for all t E R. Now use again that the resolution {Ek(t)}tER 
is supported by a compact interval. Thus Ek(t) = I for t sufficiently large, which implies 
that Yk = o. But k is arbitrary. So y = 0, and condition (P 4) holds true. 

Part (iii). Next, we prove the identities (12) and (13). Let T(EB'f=l Hj -+ 

EB'f=l Hj) be the operator defined by the right hand sides of (12) and (13). Thus the 
domain of T is given by the right hand side of (12) and its action by the right hand side 
of (13). We want to prove that T = A. First, we show that TeA. Take z E D(T). For 
each k the vector Xk belongs to Hk. Since {Ek(t)hER is the resolution of the identity 
for the selfadjoint operator Ab we have 

(15) 

provided 

f3 

II Akx kll 2 = J )...2d(Ek()...)Xb X k}, 
a 

Q < m(Ak) = inf{ (AkZ, z) I z E Hb Ilzll = I}, 

13 > M(Ak) = sup{ (AkZ, z) I z E Hk, IIzll = I}. 

Note that the left hand side of (15) is independent of Q and 13, and hence in (15) we may 
replace Q by -00 and 13 by 00. It follows that 

p P <Xl 

L II Akx kll 2 = L J )...2d(Ek()...)Xb Xk} 
k==l k==l_ oo 

00 P 

= J )...2d( L (Ek()...)Xk, Xk}) 
-00 k==l 

00 ::; J )...2d(E()"')z, z} < 00, 

-00 

which holds for p = 1,2, .... Hence 2:k=1I1AkXkI12 < 00, and thus z E D(A). We 
proceed by showing Tz = Az. Let [·lk denote the map which assigns to a vector in 
EB'f=l Hj its k-th coordinate. Then 
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N 

[T:C]k = N~=[ (J AdE(A))XL 
-N 
N 

= )~=(J AdEk(A))Xk . 
-N 

From the spectral theorem for bounded selfadjoint operators (Section VA) we know that 

for N > M(Ak) and -N < m(Ak). Thus the second limit in (16) is equal to AkXk. This 
holds for each k. Thus T:c = A:c. We have now proved that TeA. By Lemma 6.2 the 
operator T is selfadjoint. Also, A is selfadjoint. Thus A = A* C T* = T. Therefore, 
T=A. 0 

PROOF OF THEOREM 6.1. Let A(H -+ H) be selfadjoint. Introduce the 
operator B = T*T, where T:= (A - i)-I. Theorem 3.1 implies that T is a well-defined 
bounded linear operator on H and IITII :::; 1. Hence B is a well-defined, bounded non
negative selfadjoint operator and IIBII :::; 1. In what follows {F(t)}tER is the bounded 
resolution of the identity for B. Since IIBII :::; 1, we have 

m(B) = inf{(Bx, x) IlIxll = 1} ~ 0, 
M(B) = sup{(Bx, x} IlIxll = 1} :::; 1, 

and hence the resolution for B is supported by the interval [0,1]. Note that the operator 
T is injective, and therefore B is also injective, which implies (cf. Corollary V.5.2) that 
F(O) is the zero operator. 

For n = 1,2, ... let Hn be the range of the orthogonal projection F(l/n) -
F(l/(n + 1)). Obviously, each Hn is a subspace (closed linear submanifold) of H, and 
hence each Hn is a Hilbert space in its own right. We claim that the Hilbert spaces H 
and EBJ=I Hj are isometrically isomorphic. Indeed, define 

= (Xl 

(17) J: EB Hj -+ H, J:c = J(x!, X2' .. ·) = L Xj. 

j=1 j=1 

To see that the map J is well-defined, take :c = (Xl, x2, ... ) E EBJ=I Hj, and put 
Sn = l:j:=:l X j for n ~ 1. First, note that the spaces HI, H2 , ... are mutually orthogonal, 
because 

j i k. 
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In particular, Xjl..xk for j I: k . . Thus for m > n we have 

which goes to zero as n,m -+ 00. Hence the sequence (Sn) is a Cauchy sequence, and 
therefore the series E~l Xj converges in H. Furthermore, 

1I1:z:112 = IIfXj l12 = f IIxjl12 = 11:z:1I, 
3=1 3=1 

and so J is a well-defined isometry. The latter fact implies that 1m J is closed. Thus, 
in order to prove that ImJ = H, it suffices to show that x = 0 whenever xl..ImJ. To 
do this, take xl..ImJ. Then xl..Hn for each n, and hence xl.. Im{F(l) - F(l/n)} for 
each n. As F(l) = I, we conclude that x E ImF(l/n) for n = 1,2, .... According to 
conditions (Cl) and (C2) in the definition of a bounded resolution (see Section V.3), this 
yields x E 1m F(O). But F(O) is the zero operator. So x = 0, and we have shown that 
the map J in (17) has the desired properties. 

Next, we prove that 

(18) Hn C 1J(A), AHn CHn. 

Note that T* = (A + i)-l by Proposition XIV.2.6 and the selfadjointness of A. Thus 
B = (A+i)-I(A-i)-l, and hence 1mB C 1J(A). Since F(t) is the orthogonal projection 
of H onto the spectral subspace of B associated with (-00, t] (by Theorem V.3.2), the 
space 1m F(t) is invariant under B. This implies that for each n the space Hn is invariant 
under B and, according to Theorem V.5.1, 

In particular, BIHn is invertible, and hence Hn C 1mB C 1J(A) for each n. 

To prove the second inclusion in (18), observe that T commutes with B. 
Hence T commutes with each F(t) by the second part of Theorem V.3.2, and therefore 
THn C Hn for each n. Fix n, and take x E Hn. Then x = Bz for some z E Hn by the 
result of the previous paragraph, and thus 

Ax = ABz = A(A + i)-leA - i)-lz = Tz - iBz E Hn, 

which proves AHn C Hn. 

For each j 2:: 1 let Aj: Hj -+ Hi be the restriction of A to Hj. Since A is 
closed, the same is true for Ai, and hence by the closed graph theorem Ai is a bounded 
linear operator on Hi for each j. Also, Ai is selfadjoint for each j. The next step of the 
proof is to apply Lemma 6.3. First, note that 

(19) 
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where J is the invertible isometry defined by (17). To prove (19), put C = J-IAJ, 
and write D for diag(Aj )~l' Both C and D are selfadjoint operators acting in 
ffi~l Hj. We want to show that C = D. Take z = (XI,X2,"') in V(D), and put 
zen) = (XI, ... ,Xn,O,O, ... ) for n = 1,2, .... Since Hj C V(A) for j 2: 1, we have 
Xl + ... + Xn E V(A), and hence zen) E V(C). Moreover, 

Cz(n) = (AIXb'" ,Anxn, 0, 0, ... ) = Dz(n). 

This holds for each n 2: 1. Also 

zen) -+ z, Cz(n) = Dz(n) -+ Dz (n -+ 00). 

It follows that z E V(C) and Cz = Dz. Thus C is an extension of D, but then C = D, 
because both C and D are selfadjoint. 

Formula (19) suggests how to construct the desired resolution of the identity 
for A. Indeed, put 

(20) t E R, 

where {Ej(t)}tER is the bounded resolution of the identity for the bounded selfadjoint 
operator Aj (j 2: 1). Since J is an invertible isometry, Lemma 6.3 and formula (19) 
imply that {E(t)}tER is a resolution of the identity such that (a) and (b) in Theorem 6.1 
hold true. 

We have now completed the proof of the first part of Theorem 6.1. It remains 
to prove the uniqueness and the statement about commutativity. We proceed with the 
latter. Let S: H -+ H be a bounded linear operator commuting with A (i.e., formula 
(1) holds). We want to show that S commutes with each E(t). To do this note that 
(1) implies that S commutes with the bounded operators (A - i)-I and (A + i)-I. It 
follows that S commutes with B. But then we can use the last part of Theorem V.3.2 
to show that S commutes with the projections F(I/n) - F(I/( n + 1)), n = 1,2, .... In 
particular, the spaces Hb H2, ... are invariant under S. Put 

Sj = SIHj: Hj -+ Hj, j = 1,2, ... 

Since S commutes with A, it follows that Sj commutes with Aj for each j 2: 1. Now, 
apply Theorem V.3.2 again. We obtain that for each t E R the operator Sj commutes 
with Ej(t). Take X E H. We may write X = L:~l Xj with Xj E Hj for j 2: 1. Then 

00 

SE(t)x = 2:: SjEj(t)xj 
j=l 
00 

= L Ej(t)SjXj = E(t)Sx, 
j=l 

and so S commutes with E(t) for each t E R. 

t E R, 
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Finally, we prove uniqueness. Let {G(t)}tER be a second resolution of the 
identity such that (a) and (b) in Theorem 6.1 hold with G in place of E. We want to 
show that GU = E(·). Fix t E R. First we shall show that G(t) commutes with A. Take 
x E'D(A). Then 

and hence 

It follows that 

(G(A)G(t)X G(t)x) = { (G(A)X, x), 
, (G(t)x, x), 

(G(A)G(t)X, G(t)x) ~ (G(A)x, x), 

00 00 

A < t, 
A ~ t, 

J A2d(G(A)G(t)X, G(t)x) ~ J A2 d(G(A)X, x) < 00. 

-00 -00 

Thus by condition (a) in Theorem 6.1 (with E replaced by G) we obtain G(t)x E'D(A). 
Furthermore, since (b) in Theorem 6.1 holds for G in place of E, 

N 

AG(t)x = ,)~oo (J AdG(A)) G(t)x 
-N 

= G(t)Ax. 

Here we used that G(t) commutes with G(A) for each A E R. 

Since G(t) commutes with A, it follows that G(t) commutes with the bounded 
selfadjoint operator B. As before, by the last part of Theorem V.3.2, this implies that 
the spaces HI, H2,'" are invariant under G(t). Put 

j = 1,2, ... 

By condition (a) in Theorem 6.1 (with G in place of E) 

Thus 

(21) 

n 2 

IIAxl12 = ,)~ooll (J AdG(A)) xii 

00 

-N 
N 

= lim J A2d(G(A)X, x), N--+oo 
-N 

J A2d(Gj(A)x,x) ~ IIAj1l211x1l 2 , 

-00 

x E'D(A). 
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which implies that Gj(>') = 0 on the interval-oo < >. < -IIAjll and Gj(>') is the identity 
operator on Hj for IIAjll < >. < 00. Indeed, if Xo E ImGj(>'o), where >'0 < -IIAjll, then 
(Gj(>')xo,xo) = IIxoll2 for >. ~ >'0, and hence 

00 

IIAjll211xoll2 ~ J >.2d(Gj(>')xo,xo) 
-00 

>'0 

= J >.2d(Gj(>')xo,xo) 
-00 

>'0 

~ >.~ J d(Gj(>')xo,xo) = >'~llxoIl2. 
-00 

Since >'5 > IIAjIl2, this yields Xo = o. Similarly, if >'0> IIAjl1 and xo..L 1m Gj(>'o), then 
(G(>')xo,xo) = 0 for>':5 >'0, 

00 

IIAjll211 xoll2 ~ J >.2d(Gj(>')xo, xo) 
-00 

00 

= J >.2d(Gj(>')xo,xo) ~ >'~llxoIl2, 
>'0 

and thus Xo = o. It follows that {Gj(t)}tER is a bounded resolution of the identity 
supported by the compact interval [-IIAjll, IIAjlll. Condition (b) in Theorem 6.1 (with 
G in place of E) implies that 

N 

Ajx = J~oo(J >.dGj(>'))X,x E Hj, 
-N 

and hence we may conclude (by Theorem VA.2) that {Gj(t)}tER is the resolution of the 
identity of the bounded selfadjoint operator Aj. In other words, Gj(t) = Ej(t) for each 
t E R. This holds for each j ~ 1. Take x E H, and write x = L:~1 Xj with Xj E Hj for 
j ~ 1. Then 

00 00 

G(t)x = L Gj(t)Xj = L Ej(t)xj = E(t)x 
j=1 j=1 

for each t E R, which completes the proof. 0 

The resolution {E(t)}tER appearing in Theorem 6.1 will be referred to as 
the resolution of the identity for A. The operator-valued function which assigns to each 
left open interval (a,b] the orthogonal projection E(b) - E(a) will be called the spectral 
measure of A and will be denoted by EA. In other words, 

EA(a, b]) = E(b) - E(a), a < b. 
The extension of the spectral measure to other sets will be discussed later (in Volume II) 
in the section about the spectral theorem for normal operators. 
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XVI.7 AN ILLUSTRATIVE EXAMPLE 

In this section we compute the spectral measure for a particular unbounded 
selfadjoint operator. We have in mind the operator T(L2(R) -+ L2(R)) defined by 

(1) Tf = if', f E "V(T), 

where "V(T) consists of all f E L2(R) such that f is absolutely continuous on every 
compact interval of R and f' E L2(R). In other words, T = Tmax,T on L2(R) with 
T = iD. We shall prove the following two theorems. 

THEOREM 7.1. The operator T is selfadjoint, u(T) = R and the spectral 
measure ET of T is given by 

(2) 
1 JOO ei(s-t)b - ei(s-t)a 

(ET«a, b])g)(t) = 27r i(s _ t) g(s)ds, a.e., 
-00 

where 9 E L2(R) and -00 < a < b < 00. 

THEOREM 7.2. The operator T is unitarily equivalent to the multiplication 
operator M(L2(R) -+ L2(R)) defined by 

(3a) 

(3b) (Mf)(t) = tf(t). 

More precisely 

(4) T=UMU- 1 , 

where U is the Fourier transformation on L2(R), i.e., 

00 

(Uf)(t) = vb- J e-its f(s)ds. 
-00 

First let us prove that T is selfadjoint. Note that 

(5) lim f(t) = 0, 
t-±oo 

f E "V(T). 

Indeed, integration by parts yields 

t t J f'(s)f(s)ds = If(t)12 -If(0)1 2 - J f(s)f'(s)ds, 
o 0 

which implies that limt_±oo If(t)1 exists. Since Ifl2 is integrable, this limit must be zero. 
Thus we can use integration by parts to show that for every f, 9 E "V(T) 

(Tf,g) = (i!"g) = (f,ig') = (f,Tg). 
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It follows that T C T*. Next, let T be the differential expression T = iD. Since T = 
Tmax , .. on L2(R) and T = T*, Theorem XIV.4.1 yields 

T* = (Tmax , .. )* = Tmin, ... = Tmin, .. 

C Tmax , .. = T, 

and we have T* = T. (This also proves that Tmin iD = Tmax iD which is never the case 
for compact intervals.) " 

PROOF OF THEOREM 7.2. First we establish the following formulas. For 
every f E L2(R), 

(6) 

00 . 

1 d J e-tts - 1 
(UJ)(t) = rn=-d . f(s)ds, 

v21l" t zs 
a.e., 

-00 

(7) 

00 . 

1 d J etts - 1 
(U-IJ)(t) = rn=-d . f(s)ds, a.e .. 

v21l" t zs 
-00 

Let (In) be a sequence of functions in L2(R) with compact support which converges in 
L2(R) to f. For each t > 0, define 7/;t to be the characteristic function on [0, tl. Then by 
Fubini's theorem, 

t 

J(UJ)(s)ds = lim (ufn,7/;t) 
n--oo 

o 
t 00 

= lim ~ J J e- isa fn(a)dads 
n-oo V 21l" 

(8) o -00 

00 t 

= nl~~ vb J [J e-isads]fn(a)da 
-00 0 

00 . 

1 J e-,ta - 1 
= lim rn= . fn(a)da. 

n--oo V 21l" -za 
-00 

N ow for every t E R the function 

(9) ht(s) = { 
s # 0, 

t, s = 0, 

is in L 2 (R). This follows from the continuity of ht on R and the inequality 

lsi ~ 1. 
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From (8) we get 

t 

J(Uf)(S)dS= lim ~(Jn,ht)= ~(J,ht) 
n--+oo V 27r V 27r 

(10) o 
00 . 

1 J e-tta _l 
= fiC . f(O'.)dO'.. 

V 27r -to. 
-co 

Since U f is in L2([0, t]) C Ll([O, t]), the left hand side of (10) is differentiable for almost 
every t E R and (6) follows. The proof for t < a is similar. Formula (7) is obtained by 
applying the above argument to U- 1 with -i replaced by i. 

We are now prepared to prove formula (4). Given f E VeT), we have from 
(7) that 

co . 

(U-ITf)(t) = ~dd J e,ts -1 f'(s)ds. 
v27r t s 

-co 

Since the function ht, defined by (9), has a continuous derivative on every interval, 
integration by parts and (5) give 

co . . 

(U-1Tf)(t) = __ I_:i J itse,ts - (e'ts - 1) f(s)ds 
y'2i dt s2 

-co 
co . 00 . 

1 d J e,ts - lId J elts - 1 - its 
= fiC-d t . f(s)ds + fiC-d 2 f(s)ds 

v27r t tS v27r t s 
(11) 

-co -co 
OC) • ex:> • 

1 d J e,ts - 1 1 J etts - 1 
= fiCt-d . f(s)ds + fiC . f(s)ds 

v27r t tS v27r tS 
-co -co 

co . 
1 J e,ts - 1 

- fiC . f(s)ds = t(U- 1 f)(t). 
V 27r ZS 

-co 

Thus U- 1 f E V(M) and MU- 1 f = U-1Tf. We have now proved that T c UMU- 1. 
Note that M is symmetric. Since U is unitary, it follows that U MU- 1 is also symmetric. 
Hence 

(12) 

because T is selfadjoint, and (4) is proved. 0 

Since U is unitary and T is selfadjoint, the identity (4) implies that M is 
selfadjoint. Next, we prove that the resolution of the identity for the selfadjoint operator 
M is given by 

(13) G(t)f = 1/J(-oo,tjf, 
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where tP( -oo,t] is the characteristic function of the interval (-00, tJ. It is clear that 
{G(t)hER is a resolution of the identity on L2(R). Let us prove that (a) and (b) in 
Theorem 6.1 hold. We start by showing that 

00 

(14) V(M) = V := {I E L2(R) 1 J )..2d(G()..)I, I} < 00 }. 
-00 

Given e > 0, let -N = )..0 < )..1 < ... < )..p = N be a partition of [-N, NJ with 
I)..j - )..j-ll < e for j = 1, ... ,p. Take 1 E L2(R). Then 

N p 

I J )..211()..)12d)" - ~ )..j{(G()..j)I,j} - (G()..j-dl,J)}I 
-N )=1 

p Aj 

= I~ J ()..2 - )..j)II()..)12d)" :5 e1l11l 2. 
)=IAj _ 1 

It follows that 
N N J )..211()..)12d)" = J )..2d(G()..)I, j} 

-N -N 

for each N. Thus 1 E V(M) if and only if 1 E V. Now, take 1 E V(M), and let 
N = )..0 < )..1 < ... < )..p = N be a partition such that )..j - )..j-l < e for j = 1, ... ,p. 
Then 

IIMI - .t. )..j{G()..j) - G()..j_d}111 2 

p ~ -N 00 

= ~ J I).. - )..jI211()..)1 2d)" + J )..211()..)12d)" + J )..2 II()..)12d)" 
)- Aj_l -00 N 

:5 e2111112 + c:, 

for N sufficiently large. This shows that 

1 E V(M). 

This result combined with (14) proves that (a) and (b) in Theorem 6.1 hold for M and 
the projections (13). Therefore {G(t)hER is the resolution of the identity for M. 

PROOF OF THEOREM 7.1. We already showed that T = T*. Let us 
determine aCT). Since T = T*, we know that aCT) C R, by Theorem 3.1. Take).. E R. 
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We shall prove that A - T is not surjective (and hence cr(T) = R). Choose Q < 0 such 
that 

(15) 

and let 

(16) 

CI< f s-lei>.8ds =1= 0, 
-00 

get) = -{ 
t-1, -00 < t < Q, 

0, otherwise. 

Then 9 E L2(R). Suppose 9 E Im(A - T). Then (A - T)J = 9 for some J E VeT). In 
particular, J' = -iAJ + ig. It follows that for any a E R 

t 

(17) J(t) = e-i,\(t-a) J(a) + i f e-i,\(t-8)g(s)ds. 
a 

Now use (15) and take in (17) the limit for a -+ -00. Then (5) implies that 

CI< 

J(t) = ie-i..\t (J s-lei>.8ds). t > Q. 

-00 

Then IJ(t)1 = c for t > Q, where c is a constant which is different from zero (because of 
(15)). But this contradicts (5). Thus 9 rt. Im(A - T), and A - T is not surjective. 

Finally, we prove formula (2). Since T and M are unitarily equivalent via (4), 
it is rather straightforward to determine the resolution of the identity for T. For t E R 
define 

(18) E(t)J = UG(t)U-l J, 

where {G( t) hER is the resolution of the identity for M, which is defined by (13). Since U 
is unitary, {E( t) hER is a resolution of the identity, and by considering lliemann-Stieltjes 
sums it follows from (4) and (18) that {E(t)}tER satisfies (a) and (b) in Theorem 6.1 
(for T in place of A). Hence {E(t)hER is the resolution of the identity for T. 

Now, let us compute ET(a, bJ) = E(b) - E(a). Take f E C.r'(R). Fubini's 
theorem gives 

(ET«a, b])f)(t) = (U{G(b) - G(a)}U-1 f)(t) 
00 

= ~ f e-itstP[a,bj(S)(U-1 f)(s)ds 
-00 
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(19) 

where 
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00 00 

= 2~ J e-itS(J eiSa1j;[a,b](s)f(a)da)dS 
-00 -00 

00 b 

= 2~ J [J ei(a-t)s dS] f( a )da 
-00 a 

00 

= ~ J ht(a)f(a)da, 
211" 

-00 

ei(a-t)b _ ei(a-t)a 
ht(a) = , 

a - t 
a f. t. 

Note that ht is bounded on 0 < la - tl ::; 1 and Iht(a)1 ::; 21a - tl-1 for la - tl ~ 1. 
We conclude that ht E L2(R). Now take g E L2(R). Since CQ"'(R) is dense in L2(R) 
and ET(a, bJ) is a bounded operator, there exists a sequence (In) in C8"(R) such that 
fn -+ g and ET(a,bl)fn -+ ET(a,bl)g in the norm of L2(R). But then 

ET(a,bl)g = lim ET(a,bl)fn = lim -21 {fn,ht} = (g,ht), 
n~oo n--+oo 7r 

which proves (2). 0 

Let T be the operator appearing in Theorem 7.1. We know that any non-real 
,\ belongs to the resolvent set of T. A simple computation, using (5) and (17) shows that 
for'\ 1. R 

(20) { 

i j e-i>.(t-s)g(s)ds, 

(,\ _ T)-lg)(t) = -00 
00 

-i J e-i>.(t-s)g(s)ds, 
t 

Im'\ < 0, 

Im'\>O, 

where g is an arbitrary element of L2(R). For later purposes (see Section XVII.2) we 
note that Im('\ - T) is not closed for real >.. To see this, take>. E R. If g = 0 in (17), 
then f in (17) must also be zero, because e-i>.(t-a) f(a) is in L2(R) only if f(a) = O. It 
follows that ,\ - T is injective, and hence, using T = T*, 

Im(>' - T) = Ker('\ - T).l = L2(R). 

Since ,\ - T is not surjective, this implies that the range of >. - T is not closed. 



CHAPTER XVII 

UNBOUNDED FREDHOLM OPERATORS AND 
PERTURBATION THEOREMS 

In this chapter the perturbation theory developed for bounded Fredholm op
erators in Sections XI.3 and XI.4 is extended to closed unbounded Fredholm operators. 
For the additive perturbation theorems this is accomplished via the simple device of 
renorming the domain of the operator T. In this way T becomes a bounded Fredholm 
operator to which the theorems of Chapter XI are applicable. We start with some prop
erties and examples of the graph norm. The third and fourth section contain the main 
perturbation theorems. Section 5 presents a completeness theorem for certain compact 
perturbations of unbounded selfadjoint operators. 

XVII.l THE GRAPH NORM 

Throughout this chapter X and Yare complex Banach spaces. Given an 
operator T(X -+ Y) the graph norm II liT on V(T) is defined by 

IIxliT = IIxll + IITxll· 

This norm is also referred to as the T-norm on V(T). In what follows, XT denotes V(T) 
endowed with the graph norm. Note that T: XT -+ Y is bounded. Since XT is linearly 
isometric to the graph of T, it is clear that XT is a Banach space if and only if T is 
closed. 

An operator B(X -+ Y) is called T-bounded if 

(i) V(T) c V(B) and 

(ii) B is bounded on XT. 

The latter condition means that there exists a constant 'Y ~ 0 such that 

IIBxll ~ 'Y(lIxll + IITxlJ), x E V(T). 

Obviously, a bounded operator on X is T-bounded. 

PROPOSITION 1.1. Suppose that T(X -+ Y) is closed and B(X ~ Y) is 
closable with V(T) C 1J(B). Then B is T-bounded. 

PROOF. Let Bo be the restriction of B to V(T), and consider Bo as an 
operator of X T into Y. We claim that Bo is closable. Indeed, if Xn -+ 0 in XT and 
Boxn -+ yin Y, then 11·11 ~ II· liT implies that Xn ~ 0 in V(T) and hence y = 0, because 
B is closable. Since Bo: XT -+ Y, its closed linear extension coincides with Bo. So Bo is 
closed. But XT is a Banach space, and thus Bo is bounded by the closed graph theorem. 
o 
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As a consequence of Proposition 1.1, we show that lower order differential 
operators are bounded relative to those of higher order. To be precise, we have the 
following result. 

COROLLARY 1.2. Let T and B be the maximal operator corresponding to 
a compact interval J and the differential expressions 

n-l 
T = D n + L ak(t)Dk , 

k=O 

m-l 

v = Dm + L bj(t)Dj, 
j=o 

respectively, where m < n, and each ak E Ll(J), each bj E L2(J). Then B is T-bounded. 

PROOF. By Proposition XIV.3.3, the operators T and B are closed. More
over'V(T) C 'V(B). Indeed, if 9 E 'V(T), then g(n-l) is absolutely continuous on J and 
therefore so is g(m-l), since m < n. Because of the condition on the coefficients of v, the 
function v(g) is in L2(J). Thus 9 E 'V(B), and B is T-bounded by Proposition 1.1. 0 

Let T and B be linear operators from X to Y. We say that B is T-compact 
if 

(i) 'V(T) C'V(B) and 

(ii) B is compact on XT. 

If we require that the coefficients ak of T in the above corollary be bounded, then we 
have the following result. 

THEOREM 1.3. Let T and B be the maximal operators corresponding to a 
compact interval J and the differential expressions 

n-l 
T = D n + L ak(t)Dk , 

k=O 

m 

V = L bj(t)Dj, 
k=O 

respectively, where m < n and each ak E Loo(J), each bj E L2( J). Then B is T
compact. 

First we prove the following two lemmas which are of interest in their own 
right. 

LEMMA 1.4. Let T = D n + 2:k:5 ak(t)Dk, where ak E Loo([a, b]). Let T be 
the maximal operator corresponding to T and [a, b]. Then there exists a constant c ;::: 0 
so that for all I E 'V(T) 

(1) III(k) II :::; c(IIIII + IITIII), 0:::; k:::; n. 

PROOF. For 0 :::; k :::; n - 1 let Bk be the maximal operator corresponding 
to Dk and [a, b]. Apply Corollary 1.2 to T and Bk. It follows that there exists a constant 
Cl ;::: 0 such that for all I E 'V(T) 

(2) III(k) II :::; cl(IIIII + IITII!), O:::;k:::;n-1. 
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But then 

n-l 
(3) ::; IITfl1 + L Ilaklloolltck)II 

k=O 

::; (1 + I: Ilakllooel)(llfll + IITfll)· 
k=O 

Inequality (1) now follows from (2) and (3). 0 

LEMMA 1.5. Given e > 0 there exists a constant K such that 

(4) If(t)1 ::; ellf'll + Kllfll, a ::; t ::; b, 

for all absolutely continuous functions f on [a, b] such that f' E L2([a, b]). 

PROOF. Let Jl = [a, e], J2 = [e, b], where a < e < b. Choose TJ > 0 so that 
a ::; e - TJ and e + TJ ::; b. Let r,p be in C 1([O, 17]) with the following properties: 0 ::; r,p ::; 1, 
r,p(O) = 1 and r,p(17) = O. Then for t E It 

TJ 

f(t) = - J i.[r,p(s)f(t + s)]ds 
ds 

o 
TJ TJ 

= - J r,p(s)f'(t + s)ds - J r,p'(s)f(t + s)ds. 
o 0 

By the Cauchy-Schwartz inequality, 

(5) t E It, 

where IX = max{Ir,p'(s)11 0 ::; s ::; 17}. Similarly, 

TJ 

f(t) = - J ![r,p(s)f(t - s)]ds, t E ]Z, 

o 

and hence also 

(6) t E ]z. 

Without loss of generality we assume that 17 < e2 . Then (5) and (6) give the desired 
inequality (4). 0 

PROOF OF THEOREM 1.3. Let (9j) be a bounded sequence in XT. By 
Lemma 1.4 applied to f = 9j there exists I :::=: 0 such that 

(7) o ::; k ::; n, 
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and all j ~ 1. Next apply Lemma 1.5 with e = 1 to I = gjk) , where 0 ~ k ~ n - 1, and 
use (7). It follows that there exists a constant M so that for all t E J 

(8) o ~ k ~ n - 1, j ~ 1. 

From (7) it also follows that for t, s E J, s < t, 

t 

IgY)(t) - gjk)(s)1 = If gjk+l) (a)dal 
8 (9) 

~ It - Sll/2I1gjk+l) II 
~ 1'lt - sll/2(lIgjll + IITgjll), o ~ k ~ n - 1, j ~ 1. 

Since (gj )~l is bounded in XT, the inequalities in (8) and (9) imply thatfor 0 ~ k ~ n-1 

the sequence (gY))~l is uniformly bounded and equicontinuous. Hence by the Ascoli
Arzela theorem ([W], Section 43), the sequence (gj) has a subsequence (gj,o) which 
converges uniformly on J. Again, by the Ascoli-Arzela theorem, the sequence (gj,o) 
has a subsequence (gj,l) which converges uniformly on J. So, (9j,l) and (gj,l) converge 
uniformly on J. Continuing in this manner, a subsequence (fj) of (gj) is obtained with 

the property that (f?))~l converges uniformly for 0 ~ k ~ n - 1. Therefore 

m 

IIBlk - Blill ~ L IIbk(fi(k) - I?))II 
k=O 

~ (maxlli(k)(t) - 1?)(t)l) (f IIbkll) 
tEJ k=O 

-+ 0 (i,j -+ 00), 

which shows that the subsequence (Blj) of (Bgj) converges. Hence B:XT -+ Y is 
compact, and therefore B is T-compact. 0 

XVII. 2 FREDHOLM OPERATORS AND ESSENTIAL SPEC
TRUM 

As before, X and Y are complex Banach spaces. An operator T(X -+ Y) is 
called a Fredholm operator if T is closed and the integers 

neT) := dim Ker T, d(T) := dim(Y / 1m T) 

are finite. In that case ind T = neT) - d(T) is called the index of T. Evidently, 1m T, 
neT) and d(T) are independent of any norm on 1)(T). Thus if we let Tl be the operator T 
acting on 1)(T) endowed with the graph norm, then 1m T = 1m Tl is closed by Corollary 
XI.2.3. 
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As for bounded operators (see Section XI.5) the essential spectrum of an 
operator T(X -10 X) is defined to be the set of all A E C such that A - T is not a 
Fredholm operator. This set is denoted by O'ess(T). As the following examples show it 
may happen that O'ess(T) is empty. 

Let Tmax be the maximal operator corresponding to a compact interval J = 
[a, b] and the differential expression 

n-l 
(1) T = Dn + E ak(t)Dk , ak E Ck([a, bJ), 05k5n-1. 

k=O 

Then Tmax(L2([a, b]) -10 L2([a, b])) is a Fredholm operator with n(Tmax) = n and 
d(Tmax) = 0, by Corollary XIV.3.2 and Proposition XIV.3.3. Next we apply this result 
to A - Tmax in place of Tmax. It follows that O'ess(Tmax) = 0. Also the minimal operator 
Tmin corresponding to the differential expression T in (1) is a Fredholm operator. In fact, 
n(Tmin) = 0 and d(Tmin) = n, by Proposition XIV.3.5 and Corollary XIV.4.3. Note that 
Tmin is closed by definition and!m Tmin is closed (according to Proposition XIV.3.5). By 
replacing Tmin by A - Tmim we conclude that also O'ess(Tmin) = 0. 

For differential operators defined by differential expressions on an infinite 
interval the situation is different. In general such operators have a nonempty essential 
spectrum. For example, let T(L2(R) -10 L2(R») be the maximal operator corresponding 
to T = iD. In Section XVI. 7 we showed that !m( A - T) is not closed for A E R and 

n(A - T) = d(A - T) = 0, 1m A =/: O. 

Since T is a maximal operator, A-T is closed for each A (cf. Proposition XIV.3.3). Hence 
O'ess(T) = R. Other examples of this type will be given in the next chapter. 

THEOREM 2.1. Let T(X -10 X) be an operator with a nonempty resolvent 
set, and let n be an open connected subset of C\O'ess(T). If n n peT) =/: 0, then O'(T) n n 
is a finite or countable set, with no accumulation point in n, consisting of eigenvalues of 
T of finite type. 

PROOF. Let XT be the space VeT) endowed with the T-norm, and for A E n 
define W(A): XT -10 X by W(A)X = AX - Tx for each X EXT. From 

IIW(A)xll~IAlllxll + IITxll 5 (1 + IAl)lIxllT' 
we conclude that W(A) is a bounded operator from the Banach space XT into the Banach 
space X which depends analytically on the parameter A. Moreover, by our hypothesis, 
W(A) is a Fredholm operator for each A En. Since 

O'(T) n n = {A E n I W(A) not invertible}, 

it follows from Corollary XI.8.4 that O'(T) n n is a finite or countable set with no accu
mulation point in n. Take AO E O'(T) n n, and let F: XT -10 X be defined by Fx = x. 
For A =/: AO and A sufficiently close to AO we have 

00 

(2) (A - T)-l = FW(A)-l = L (A - AO)n FAn, 
n=-q 
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where A_ l , ... , A_q are operators of finite rank. Here we used the second part of Corol
lary XI.S.4 and the fact that F: XT ~ X is bounded. Thus >'0 is an isolated point of 
aCT) and by (2) the associated Riesz projection ppo} is equal to FA_I. In particular, 
rank p po } is finite, and hence >'0 is an eigenvalue of finite type. 0 

XVII.3 THE PRODUCT THEOREM 

The aim of this section is to extend Theorem XI.3.2 to unbounded Fredholm 
operators. Given two operators T(X ~ Y) and S(Z ~ X), where Z is a Banach space, 
the product T S( Z ~ Y) is the operator defined by 

V(TS) = {z E V(S) I Sz E V(T)}, 

(TS)z = T(Sz), 

We shall prove the following theorem. 

z E VeTS). 

THEOREM 3.1. Let T(X ~ Y) be a densely defined Fredholm operator, 
and let S(Z ~ X) be a Fredholm operator, where Z is a Banach space. Then TS is a 
Fredholm operator and 

(1) ind(TS) = ind T + indS. 

For the proof of Theorem 3.1 we need the following proposition. 

PROPOSITION 3.2. Let T(X ~ Y) be a closed operator with closed range 
and dimKerT < 00. Let C be a closed opertor with domain in a complex Banach space 
Z and range in X. Then TC is a closed operator. 

PROOF. Let (Zj) be a sequence in V(TC), and assume that Zn ~ Z in Z 
and TCzn ~ yin Y. Put xi = CZj, j = 1,2, ... , and consider the sequence ([xi]) in 
the quotient space V(T)j Ker T. Let XT be the domain VeT) endowed with the graph 
norm, and let Tl: XT ~ Y be the restriction of T to VeT). Then Tl has a closed range, 
and we can apply Theorem X1.2.1 to show that the sequence ([Xj]) is a Cauchy sequence 
in the quotient space XTj KerT. The identity map from V(T)jKerT into XTj KerT is 
continuous, because 

lI[xlllT = inf{lIx - ZIIT I Z E KerT} 

= inf{lIx - zil + IITxlI1 Z E KerT} 

= Il[xlll + IITxll, x E VeT). 

Hence ([xi]) is also a Cauchy sequence in V(T)j KerT, which therefore converges to some 
[xl E XjKerT. Consequently there is a sequence (un) in KerT such that Xn + Un ~ X 
if n ~ 00. 

Next we show that (un) is bounded. Assume this is not the case. Then 
there exists a subsequence (un') of (un) such that 0 < lIun,ll ~ 00 if n' ~ 00. Since 
(1Iun,lI-lun,) is a bounded sequence in the finite dimensional space KerT, it has a sub
sequence which converges t~ some v E Ker T. By passing to this subsequence we may 
assume that Ilun,lI-1un, ~ v. It follows that IIvll = 1. Note that 

lIun,lI-lzn' ~ 0, 
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C(lIun,lI- l Zn') = Ilun,lI-l(xn, + Un') -lIun,lI-lun, ~ -v, 

because lIun' II ~ 00. Since C is closed, we conclude that v = 0, which contradicts 
IIvll = 1. 

Hence (un) is bounded. Since Ker T is finite dimensional, there exists a 
subsequence (u nj ) of (un) which converges to some u E Ker T. Therefore Xnj ~ x - u. 
We now have 

Znj ~ Z, CZnj =xnj ~x-u, TCznj ~ y 

for j ~ 00. But the operators C and T are closed. Hence Z E V( C), the vector 
Cz = x - u E VeT) and y = T(x - u) = TCz. Hence TC is closed. 0 

PROOF OF THEOREM 3.1. By Proposition 3.2 the operator TS is closed. 
The quotient space Ker(TS)j Ker S is isomorphic to 1m S n KerT under the map [x] ~ 
Sx. Hence 

(2) neTS) = n(S) + dim(Im S n KerT) < 00. 

Put Nl = ImS n KerT. Since KerT is finite dimensional, 

(3) 

for some finite dimensional subspace N2. Obviously, 1m S n N2 = {OJ. Furthermore 
ImSEBN2 is closed, because ImS is closed and dimN2 < 00 (see [GG], Theorem IX.2.5). 

Next, we prove that there exists a finite dimensional subspace N3 such that 

(4) N3 C VeT). 

Put Xo = ImS EB N2, and let k = dimXjXo. Note that k:::; codimImS < 00. If k = 0, 
then we take N3 = {OJ in (4). Assume k > O. Since VeT) = X and Xo is closed, VeT) is 
not entirely contained in Xo. So there exists a vector Xl E VeT) such that Xl tf. Xo. Put 
Xl = Xo EBspan{xd. Then Xl is closed and dimXjXl = k-1. Thus we can repeat the 
above reasoning for Xl in place of Xo. Proceeding in this way we find in k steps vectors 
Xl,···,Xk in VeT) such that X = Xo EBspan{xt, ... ,xd. Put N3 = span{xl, ... ,xd 
and (4) is fulfilled. 

The space N3 is isomorphic to the quotient space ImT/Im(TS) under the 
map u ~ [Tu], because of (4). Indeed, if x E VeT), then (4) implies that x = Sz+v+u, 
where Z E V(S), v E N2 C Ker T and u E N3. It follows that Sz = x - v - u E VeT) and 
T(Sz) = Tx - Tu, which shows that [Tx] = [Tu]. Furthermore, if [Tu] = [0] for u E N3, 
then 

u E ImS + KerT = ImS EB N2, 

and hence U = O. So U ~ [Tu] has the desired properties, and thus 

(5) d(TS) = d(T) + dimN3 < 00. 

We have now proved that TS is a Fredholm operator. To prove the index 
formula (1) note that dim Nl = neT) - dim N2, by (3), and dim N3 = d( S) - dim N 2 , by 
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(4). So, using formulas (2) and (5), we have 

ind(TS) = neTS) - d(TS) 

= n(S) + dimNl - d(T) - dimN3 

= neT) + n(S) - d(T) - deS) 

= ind T +- ind S. 0 

Simple finite dimensional examples already show that the index formula (1) 
for T S may fail to hold true if the density condition on the domain of T is not fulfilled. 
Indeed, let S: C2 -+ C2 be defined by S(XI, X2) = (Xl, 0), and let T(C2 -+ C2) be the 
operator with 

VeT) = span{(l, On, 
Then T and S are both Fredholm operators, indT = -1 and indS = O. Note that 
TS = S. Thus ind(TS) = 0 =I- -1 = indT + indS. 

XVII.4 ADDITIVE PERTURBATIONS 

In this section we employ the graph norm to extend the perturbation theorems 
of Section XI.4 to unbounded Fredholm operators. For two operators T(X -+ Y) and 
B(X -+ Y) such that VeT) c V(B), the operator T + B is defined by 

(1) V(T + B) = VeT), (T + B)x = Tx + Bx. 

LEMMA 4.1. Let T(X -+ Y) be a closed operator, and let B(X -+ Y) have 
the following properties: 

(i) VeT) c V(B), 

(ii) there exist numbers a and b, b < 1, such that 

IIBxll ~ allxll + bll Tx II , x E VeT). 

Then T + B is closed. 

PROOF. For all x E VeT), 

(2) II(T + B)xll ~ allxll + (1 + b)IITxll, 

(3) II(T + B)xll ~ IITxll-IIBxll ~ -allxll + (1 - b)IITxll. 

It follows that 

(4) IITxll ~ (1 - b)-l (allxll + II(T + B)xll). 

Suppose Xn -+ x and (T+B)xn -+ y. It is clear from (4) that (Txn) is a Cauchy sequence 
which therefore converges to some z E Y. Since T is closed, x E VeT) = V(T + B) and 
Tx = z. By (2), 

II(T + B)(xn - x)11 ~ allxn - xII + (1 + b)IITxn - Txll -+ O. 
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Hence (T + B)xn -+ (T + B)x which shows that y = (T + B)x, and thus T + B is closed. 
o 

Let T(X -+ Y) be a Fredholm operator, and let Tl be the operator T re
stricted to VeT) with the T-norm. Then Tl is a bounded Fredholm operator. Thus Tl 
has a bijection 1'1 associated with it which is defined at the beginning of Section XI.3. 
We shall refer to 1'1 as a bijection associated with T and denote it by T. We now have 
the following generalization of Theorem XI.4.1 and Corollary XI.8.3. 

THEOREM 4.2. Let T(X -+ Y) be a Fredholm operator, and let l' be a 
bijection associated with T. Suppose B(X -+ Y) is an operator with V(B) :J VeT) such 
that for some 0 $ "'I $ 1 

IIBxll $ 'Ymin(l, IIT-1 11-1 )(lIxll + IITxll), x E VeT). 

Then T + B is a Fredholm operator with 

(i) neT + B) $ n(T), 

(ii) d(T + B) $ d(T), 

(iii) ind(T + B) = ind T, 
\ 

and there exist e > 0 and integers no and do such that 

(5a) n(T) ~ no = neT + )"B), 0< 1)..1 < e, 

(5b) d(T) ~ do = d(T + )"B), 0< 1)..1 <e. 

PROOF. Since IIBxll $ 'Y(lIxll + IITxll) for all x E VeT) and "'I < 1, Lemma 
4.1 implies that T + B is closed. Let XT be the space VeT) endowed with the T-norm. 
Define Tl and Bl to be the restrictions of T and B, respectively, to XT. Then XT is 
a Banach space, Tl:XT -+ Y is a Fredholm operator and Bl:XT -+ Y is a bounded 
linear operator such that IIBlll < 111'-111-1. Statements (i), (ii) and (iii) follow now 
immediately from Theorem XI.4.1, and formulas (5a) and (5b) are a consequence of 
Corollary XI.8.3. 0 

THEOREM 4.3. Suppose that T(X -+ Y) is a Fredholm operator and 
B(X -+ Y) is T-compact. Then 

(i) T + B is a Fredholm operator, 

(ii) ind(T + B) = indT. 

Furthermore, there exists a finite or countable subset 'E of C which has no accumulation 
point inside C and there exist constants no and do such that 

(6a) dim Ker(T + )"B) = no, codimlm(T + )"B) = do, ).. E C\'E, 

(6b) dim Ker(T + )"B) > no, codimlm(T + )"B) > do, ).. E 'E. 
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PROOF. Let XT be the space V(T) endowed with the T-norm. Define Tl 
and Bl to. be the restrictions of T and B, respectively, to XT. Then Tl is a Fredholm 
operator and Bl is compact. Thus we can apply Theorem XI.4.2 to show that Tl + Bl 
is a Fredholm operator and ind(Tl + Bl) = indTl. It follows that 

ind(T + B) = ind(Tl + Bd = ind Tl = ind T. 

So to prove (i) and (ii) it remains to show that T+B is a closed operator. Let E(X -4 XT) 
be defined by 

VeE) = V(T), Ex =x. 

Since E-l:XT -4 X is a bounded operator, the graph of E-1 is closed in XT x X, and 
hence the graph of E is closed in X x XT. Thus E is a closed operator. Note that 
T + B = (Tl + Bl)E. Since Tl + Bl has closed range and dimKer(Tl + B1) < 00, 

Proposition 3.2 yields that T + B is closed. 

To prove the final statement of the theorem, note that W(A) = Tl + ABI is 
an analytic function on C whose values are bounded Fredholm operators from XT into Y 
(because of Theorem XI.4.2). This allows us to apply Theorem XI.8.2 to get the formulas 
(6a) and (6b). 0 

Theorem 4.3 yields the following corollary for the essential spectrum. 

COROLLARY 4.4. Let T(X -4 X) and B(X -4 X) be operators, and assume 
that B is T-compact. Then 

(7) (fess(T + B) C (fess(T). 

PROOF. Take A rt. (fess(T). Thus A - T is a Fredholm operator. From 

Ilxll + IITxll ::; (1 + IAI)(lIxll + II(A - T)xll) 

it follows that B is also (A - T)-compact. But then we can apply Theorem 4.3 t~ show 
that A rt. (fess(T + B). 0 

XVII.5 A COMPLETENESS THEOREM 

Throughout this section H is a complex Hilbert space. Let A(H -4 H) be an 
operator. As for bounded operators, a vector x E H is called a generalized eigenvector 
of A corresponding to AO if for some k ~ 1 

(1) 

In that case xo = (AO - A)k x is an eigenvector and .\0 is the corresponding eigenvalue. 
Note that (1) requires that the vectors x, (.\0 - A)x, ... ,(.\0 - A)kx all belong to V(A). 
The set of eigenvectors and generalized eigenvectors of A is said to be complete if the 
linear span of these vectors is dense in H. (To avoid confusion let us remark that by 
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definition every eigenvector is also a generalized eigenvector, and hence the part in the 
preceding sentence referring to the eigenvectors could be omitted.) In this section we shall 
prove completeness for certain differential operators. We begin with a general theorem. 

THEOREM 5.1. Let T(H -+ H) be a selfadjoint operator with a compact 
inverse, and let B(H -+ H) be T-compact. Assume that the sequence of eigenvalues 
fJl, P2, ... of T (multiplicities taken into account) satisfies the condition 

(2) 00 ( 1 )P 2:: ~ <00 
j=l p] 

for some p ~ 1, and assume that 1+ BT-l is invertible. Then the entire spectrum of 
T + B consists of eigenvalues of finite type and the set of eigenvectors and generalized 
eigenvectors of T + B is complete. 

PROOF. We may represent T + B in the form 

(3) T + B = (I + BT-1 )T. 

Since B is T compact, the operator BT-1: H -+ H is compact. To see this, let HT 
be the space VeT) endowed with the T-norm. Let Tl and Bl be the operators T and 
B, respectively, considered as operators from the Banach space HT into H. By our 
hypotheses, Bl is compact and Tl has a bounded inverse. Thus BIT1- 1 is compact. But 
BT-l = B1T1- 1, and therefore BT-l is a compact operator on H. 

Since 1+ BT-l and T are invertible, (3) implies that 

(4) 

The first factor in the right hand side of (4) is a compact operator on H and the second 
factor is a bounded linear operator on H. We conclude that T+B has a compact inverse, 
and hence T + B has a compact resolvent. So, by Theorem XV.2.3, the entire spectrum 
of T + B consists of eigenvalues of finite type. 

Next, we apply the Keldysh theorem for completeness (Theorem X.4.1) to 
A = (T + B)-I. Put K = T-l and 5 = BT-l. Then the operator K is a compact 
selfadjoint operator on H, the space Ker K consists of the zero vector only, and (2) 
implies that for the sequence AI, A2,'" of eigenvalues of K (multiplicities taken into 
account) 

00 

2:: IAjlP < 00, 

j=l 

where p is a real number ~ 1. The operator 5 is compact and 1+5 is invertible in C( H). 
Since A = K(I + 5)-1 by (4), the Keldysh theorem implies that the set of eigenvectors 
and generalized eigenvectors of A is complete. 

Now, let x be an eigenvector or generalized eigenvector of A corresponding to 
the eigenvalue Ao. Thus (1) holds for some k ~ O. Then AO =f 0 (because A is injective) 
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and x = >'01 Aq(A)x, where q(A) is some polynomial in A. The latter identity implies 
that x E 1m An = 'D(T + B)n) for each n, and hence 

(5) 

for j = 0,1,2, .... Recall that T + B is injective. Thus (1) and (5) imply that 

Hence x is also an eigenvector or generalized eigenvector of T + B, and thus we have 
completeness for T + B. 0 

In the next corollary we prove completeness for a class of differential operators 
acting in L~([a, bJ), the space of all en-valued functions with components in L2([a, bJ). 
The space L~([a, bJ) is a Hilbert space with inner product 

n b 

(I, g) = ?: J h(t)gj(t)dt, 
J=1a 

where fj and gj are the j-th components of f and g, respectively. A function f E 
L~([a, b]) is said to be absolutely continuous if each of its components is absolutely 
continuous. The derivative of a en-valued function is also defined component wise. 

COROLLARY 5.2. Let A(L~([a, bJ) -+ L~([a, bD) be defined by 

'D(A) = {f I f absolutely continuous, f' E L~([a, bJ), Nd(a) + N2f(b) = O}, 

Af = if' + B(t)f· 

Here B(·) is a continuous n X n matrix function on [a, b] and N1, N2 are n X n matrices 
such that 

(6) 

Let U(t) be the unique continuous n X n matrix function such that 

t 

U(t) = In + i J B(s)U(s)ds, a :S t :S b. 

a 

If, in addition, det(N1 + N2U(b» =f 0, then the spectrum of A consists of eigenvalues of 
finite type only and the set of eigenvectors and generalized eigenvectors of A is complete. 

PROOF. Introduce the following auxiliary operators T and B: 

'D(T) = 'D(A), Tf = if', 

B: L~([a, b]) -+ L~([a, b]), (Bf)(t) = B(t)f(t). 
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Then A = T + B. To prove the corollary it suffices to show that T and B satisfy the 
hypotheses of Theorem 5.l. 

The first condition in (6) implies that T is invertible and one computes that 
its inverse is given by 

where 

b 

(T-lg)(t) = J k(t,s)g(s)ds, a ~ t ~ b, 

a 

{ 
-i(Nl +N2)-lNb a ~ s < t ~ b, 

k(t,s) = 
+i(N1 +N2)-lN2, a ~ t < s ~ b. 

In particular, T-l is a Hilbert-Schmidt operator, and hence formula (2) holds with 
p = 2. The second condition in (6) implies that N2(NI + N2)-1 = (Nl + N2)-1 Nl, 
and therefore k(t, s)* = k(s, t), which implies that T- is selfadjoint. Hence T is an 
unbounded selfadjoint operator. 

The operator B is bounded and BT-l is compact, because T-l is compact. 
The condition det(N1 + N2U(b)) =/: 0 implies that T + B is invertible. Indeed, take 
9 E L~([a, b]), and let us solve the equation 

(7) if' + B(t)J = 9 

with J in the domain of A = T + B. The general solution of (7) is given by 

t 

(8) J(t) = U(t)x - iU(t) J U(s)-lg(s)ds, a ~ t ~ b. 
a 

Since J has to satisfy the boundary conditions, one sees that x in (8) is uniquely deter
mined and given by 

b 

x = i(N1 + N2U(b)) -1 N2U(b) J U(s)-lg(s)ds. 
a 

Thus (7) has a unique solution in V(T + B) for each 9 E L~([a, b]), and therefore T + B 
is invertible. Thus I + BT-1 is invertible, and we have proved that T and B have the 
desired properties. 0 

For other completeness theorems for unbounded operators (including partial 
differential operators) we refer to the book of A.S. Markus [1]. 



CHAPTER XVIII 

A CLASS OF ORDINARY DIFFERENTIAL OPERATORS 
ON A HALF LINE 

Ordinary differential operators on a half line differ considerably from their 
counterparts on a finite interval. In this chapter these differences are illustrated for a 
specific class of differential operators on [0,00). The operators involved do not have a 
compact resolvent. Their spectra and essential spectra are described. Also, the Green's 
function and the Fredholm characteristics are computed explicitly. The first four sections 
concern first order constant coefficient differential operators. Applications to Wiener
Hopf integral equations appear in the fifth section. In the last section the results are 
extended to higher order differential operators on [0,00). 

XVIII.1 DEFINITION AND ADJOINT 

The differential operators considered in this chapter act in the space 
L~([O, 00 )), the Hilbert space of all en-valued functions whose components are square 
(Lebesgue) integrable on [0,00). Here n is a positive integer which we shall keep fixed 
throughout the chapter. Recall (see Sections XII.1 and XII.2) that for f and g in 
L~([O,oo)) 

00 

(f,g) = j(f(t),g(t)}dt, 
o 

where the inner product under the integral sign is the usual inner product in en. 

(1) 

Consider the following initial value problem for en-valued functions: 

{ 
f'(t) = -Af(t), 

f(O) E L. 

Here A is an n X n matrix with complex entries and L is a subspace of en. With (1) we 
associate an operator T with domain and range in L~([O, 00)) as follows. The domain 
VeT) of T consists of all f E L~([O, 00)) such that (each component of) f is absolutely 
continuous on compact intervals of [0,00), the initial value f(O) ELand the derivative 
f' (which is defined component wise) is in L~([O, 00)). The action of T is given by: 

(2) (Tf)(t) = f'(t) + AfCt), t 2: 0, a.e .. 

Obviously, T(L2([0,00)) ---+ L2C[O,00))) and T is linear. We shall refer to T as the 
differential operator in L2C[O, 00)) associated with (1). If L = en, then T may be viewed 
as the maximal operator corresponding to the differential expression T f = f' + Af and 
the interval [0,00). 
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THEOREM 1.1. The differential operator T in L2'([O, 00)) associated with 
(1) is a densely defined closed operator and T* = -S, where S is the differential operator 
in L2'([O, 00)) associated with 

(3) { 
f'(t) = A* J(t), 

J(O) E L1-. 

t ~ 0, 

Here A* is the adjoint oj the matrix A in (1) and L1- is the orthogonal complement in 
en oj the subspace L in (1). 

PROOF. Let 'Do be the space of all en-valued functions J on [0,00) with the 
property that each component of J is a COO-function with compact support in the open 
interval (0,00). Obviously, J(O) = 0 for each J E 'Do. It follows that 'Do C 'D(T). Since 
'Do is dense in L2'([O, 00)) (cf., Lemma XIV.5.1) we conclude that T is densely defined. 

Let S be the differential operator in L2'([O, 00)) associated with (3). We want 
to show that T* = -So First we prove that T* is an extension of -So Take J E 'D(T) 
and 9 E'D(S). Let us show that 

(4) (f',g)=-(f,g'). 
The function (f(.),g(.)) is a finite sum of products of functions which are absolutely 
continuous on each compact subinterval of [0,00). Thus (f('), g(.)) is differentiable a.e. 
on [0,00) and 

(5) :t (f(t),g(t)) = (f'(t),g(t)) + (f(t),g'(t)), 0 5 t < 00, a.e .. 

Note that J(O)1.g(O). Thus (f(0), g(O)) = 0 and integrating (5) over 0 5 t 5 c yields 
c c 

(f(c),g(c)) = j(f'(t),g(t))dt + j(f(t),g'(t))dt. 
o 0 

This holds for each c > O. According to our hypotheses, J' and g' are in L2'([O, 00)), and 
so 

(6) lim (f(c),g(c)) = (f',g) + (f,g'). 
c-too 

Since J and 9 are in L2'([O,oo)), the function (f(-),g(')) is integrable on [0,00), which 
implies that the limit in the left hand side of (6) is zero, and (4) is proved. By using (4), 
we get 

00 

(TJ, g) = j (f'(t) + AJ(t),g(t))dt 
o 
00 00 

= j(f'(t),9(t))dt + j(AJ(t),9(t))dt 
o 0 

00 00 

= - j(f(t),g'(t))dt + j(f(t),A*9(t))dt 
o 0 

= (f, -Sg), 
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which yields that 9 E 'V(T*) and T*g = -Sg. Thus -S C T*. 

Next, we prove that T* = -So Take h E 'V(T*). It suffices to show that 
h E 'D( -S). So we have to prove that h is absolutely continuous on each compact 
subinterval of [0,00), the derivative h' E L~([O, 00» and h(O)J..L. Fix an arbitrary 
positive number c. For j = 1, ... ,n let Xj be the en-valued function defined by 

[ 
Olj 1 

Xj(t) = :. ' 

an} 

o :S t :S c, 

where Oij is the Kronecker delta. The subspace of L~([O, c]) spanned by Xl,'" ,Xn will 
be denoted by M. Take u E L~([O, cD such that uJ..M, and put 

( )_ {jU(S)dS' 
9 t - 0 

0, 

o :S t :S c, 

t> C. 

For the j-th component gj of 9 we have 

t 

gj(t) = j<u(t),Xj(t»)dt, o :S t :S C. 

o 

It follows that gj(c) = 0 for j = 1, ... ,no Hence g(c) = 0, and we may conclude that 9 
is absolutely continuous on each compact subinterval of [0,00). Obviously, g(O) = 0 and 
g' E L~([O, 00». Thus 9 E 'V(T) and 

c 00 

j (g(t), (T* h)(t»)dt = j (g(t), (T* h)(t»)dt 
a 0 

00 

= j (g'(t) + Ag(t), h(t)}dt 

o 
c c 

= j(g'(t),h(t»)dt+ j(9(t),A*h(t)}dt. 

o 0 

Here we used that 9 and g' are zero on (c, 00). Put 

t 

vet) = j {(T*h)(s) - A*h(s)}ds, 

o 
o :S t :S C. 

Then the result of the previous calculation can be summarized as: 

c c 

(7) j(g'(t),h(t)}dt = j(g(t),V'(t)}dt. 

o 0 



CHAPTER XVIII. A CLASS OF ORDINARY DIFFERENTIAL OPERATORS ON A HALF LINE 385 

Since g(O) = gee) = 0 and let) = u(t) a.e. on 0 ~ t ~ e, partial integration in (7) yields 
c 

j (u(t), h(t) + v(t))dt = 0, 

o 
which shows that on [0, c] the function h + v is orthogonal to u. But u is an arbitrary 
element of the orthogonal complement of M in L~([O, cD. We conclude that on [0, c] 
the function h + v is a linear combination of the functions XI, ... , Xn . Note that the 
functions Xl, . .. , Xn and v are absolutely continuous on [0, c]. Moreover, Xl. . .. , X~ are 
zero. It follows that h is absolutely continuous on [0, c] and 

h'(t) = A*h(t) - (T*h)(t), 0 ~ t ~ c, a.e .. 

This holds for each c > O. Thus h is absolutely continuous on each compact interval and 

(9) h'(t) = A*h(t) - (T*h)(t), o ~ t < 00, a.e .. 

Since the right hand side of (9) is in L~([O, 00)), we also have h' E L~([O, 00 )). To prove 
that h(O) E L.l., take x E L, and let 

J(t) = { ! xdt, 0 ~ t ~ 1, 

0, t > 1. 

Then J E V(T), and thus 
1 00 

j(f(t),h'(t))dt = j(f(t),h'(t))dt 
o 0 

00 

= j(f(t),A*h(t) - (T*h)(t))dt 

o 
00 00 

= j (AJ(t), h(t))dt - j (Tf)(t), h(t))dt 

o 0 
00 

= - j (f'(t), h(t))dt 

o 
1 

=- j(f'(t),h(t))dt. 

o 
Since J(I) = 0, the above calculation and the formula for partial integration shows that 

(x, h(O)) = (f(0), h(O)) = O. 

This holds for each x E L, and so h(O) E L.l.. 

We have now proved that T* = -S. Note that S is an operator of the 
same type as T. Thus we may apply to S the results proved so far. It follows that 
T** = -S* = T, and therefore T is closed (by Proposition XIV.2.2). 0 
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XVIII.2 INVERTIBILITY AND GREEN'S FUNCTION 

Let T be the differential operator in L2([0, (0)) associated with 

{ 
f'(t) = -AJ(t), 

f(O) E L. 

t ~ 0, 

As in the previous section, A is assumed to be an n x n matrix and L is a subspace of 
en. In this section we analyze the invertibility of T and compute its resolvent kernel 
(Green's function). 

THEOREM 2.1. Let T be the differential operator in L~([O, (0)) a880ciated 
with (1). Then T i8 invertible if and only if A has no eigenvalue8 on the imaginary axi8 
and 

(2) en = L ED Ker Q, 

where Q i8 the Rie8Z projection of A corre8ponding to the eigenvalue8 of A in the open 
left half plane. Furthermore, in that ca8e the inver8e of T i8 the integral operator on 
L~( [0,(0)) given by 

with 

(3) 

00 

(T-lg)(t) = J -y(t,s)g(s)ds, 

o 

{ 
e-tA(I _ II)esA , 

-y(t,s) = 
_e-tAIIesA , 

o ~ t < 00, 

o ~ s < t < 00, 

o ~ t < s < 00, 

where II i8 the projection of en onto L along KerQ. 

PROOF. We split the proof into four parts. The first part concerns a general 
statement about T. 

Part (i). First we show that for J E VeT) and TJ = 9 the following equality 
holds true: 

(4) 

00 

QJ(O) = - J QeSAg(s)ds. 

o 

Since Tf = g, we have f'(t) = -Af(t) + get) a.e. on [0, (0), and hence 

(5) 

t 

f(t) = e-tAf(O) + e-tA J eSAg(s)ds, 

o 

Multiplying (5) from the left by QetA yields 

(6) 

t 

QetA J(t) = Qf(O) + J QesAg(s)ds, 

o 

t ~ o. 

t ~ o. 
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Recall that Q is the Riesz projection of A corresponding to the eigenvalues in the open left 
half plane. This implies (cf. Lemma 1.5.3) that II QetA II ~ 'Ye-6t for some constants 'Y ~ 0 
and 6 > O. It follows that QetAh(t) is integrable on 0 ~ t < 00 for any h E L~([O,oo)), 
in particular, for h = I and h = g. The latter implies that the right hand side of (6) has 
a limit for t -+ 00. Since the left hand side of (6) is integrable on [0,00), this limit must 
be zero, which proves (4). 

Part (ii). In this part we assume that A has no eigenvalues on the imaginary 
axis and that T is invertible. We shall show that (2) holds. Take x E L n Ker Q, and 
consider the function I(t) = e-tAx. Since A has no eigenvalues on the imaginary axis, 
x E KerQ implies that I E L~([O,oo)). But then I E VeT) and TI = O. Therefore, by 
the injectivity of T, we have I = O. It follows that x = 1(0) = 0, and thus L n KerQ = 
{O}. 

(7) 

Next, take y E en, and consider the function 

{ Ay, 0 ~ t ~ k, 
gle(t) = 

0, t > k, 

where k is an arbitrary positive integer. Since T is surjective, there exists lie E VeT) 
such that Tile = gle. It follows (from (4)) that 

00 

Qlle(O) = - J QeSAgle(s)ds = Qy - QeleAy. 

o 

We know that lle(O) E L. Thus 

Qy - QeleAy = lle(O) - (I - Q)/Ie(O) E L + Ker Q. 

The function QetA is exponentially decaying on 0 ~ t < 00. Hence QeleAy -+ 0 if k -+ 00. 
Now use that L + KerQ is closed (because of finite dimensionality), and it follows that 
Qy E L + Ker Q. But then y = Qy + (I - Q)y E L + Ker Q. Recall that y is an arbitrary 
vector in en. So we may conclude that L + Ker Q = en. 

Part (iii). In this part we assume that T is invertible. We shall show that A 
has no eigenvalues on the imaginary axis. For a E R and a sufficiently small the operator 
T - aI is again invertible (cf. Proposition XIV.I.1). Note that VeT - aI) = VeT) and 
for I E VeT - aI) 

([T - aI)f)(t) = I'(t) + (A - aIn)/(t), t ~ 0, a.e .. 

Here In is the n X n identity matrix. It follows that T - aI is the differential operator on 
Lq([O, 00)) associated with the initial value problem (1) with A - £lIn in place of A. Now 
take a # 0 and a sufficiently small. Then A - £lIn has no eigenvalues on the imaginary 
axis. So, by the result of Part (ii) of the proof, 

(8) 
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where Qat is the Riesz projection of A corresponding to the eigenvalues in the open half 
plane !R..\ < 0. We conclude that for 0 < 0 E R and 0 sufficiently small, Ker Qat = 
Ker Q-at. But for 0> 0 the space Ker Q-at contains the eigenvectors of A corresponding 
to eigenvalues on the imaginary axis, while these vectors are not in Ker Qat. Therefore 
A has no eigenvalues on the imaginary axis. 

The results proved in Parts (ii) and (iii) show that for the invertibility of T 
it is necessary that A has no eigenvalues on the imaginary axis and the decomposition 
(2) holds. The final part of the proof concerns the sufficiency of these conditions and the 
formula for the inverse. 

Part (iv). Assume that A has no eigenvalue on the imaginary axis and that 
(2) holds. First, we show that T is injective. Assume TJ = O. By (4) and (5) we 
have J(t) = e-tA J(O) with J(O) E KerQ. Since J E VeT), also J(O) E L, and hence 
J(O) = 0 by (2). We conclude that J = 0, which shows that T is injective. Next, take 
g E L~([O,oo», and put 

00 

x = -II J QeBAg(s)ds, 
o 

where II is the projection of en onto L along KerQ. Note that QeBAg(s) is integrable 
on [0,00), and thus x is a well-defined vector of L. Define 

(9) 
t 

J(t) = e-tAx + e-tA J eBAg(s)ds, 

o 
0::; t < 00. 

Then J is absolutely continuous on compact subintervals of [0,00), the initial vector 
J(O) = x ELand 

(10) J'(t) = -AJ(t) + get), 0::; t < 00. 

To prove that J E VeT), we have to show that J E L2'([O, 00». To do this, note that 
QII = Q. This allows us to rewrite J in the form 

00 00 

(11) J(t) = _e-tA(I - Q)II J QeSAg(s)ds + J h(t - s)g(s)ds, 0::; t < 00, 
o 0 

where 

(12) h(t) = { e-tA(I - Q), t;::: 0, 
_e-tAQ, t < O. 

Here we used that A commutes with Q. Note that h is a matrix-valued kernel function, 
which is continuous on R\ {O}, has a jump discontinuity at 0 and 

Ilh(t)1I ::; ce-d1tl , t E R, 
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for some constants c ~ 0 and d > O. It follows that the integral in the right hand side 
of (11) defines a bounded linear operator on L~([O,oo» (cf., Sections XILl and XII.2). 
The same is true for the first term in the right hand side of (11), because e-tA(I - Q) 
and QetA are matrices with square integrable entries. In particular, f E VeT). 

We have now proved that T is bijective and T-lg is the function defined 
by the right hand side of (11). Thus T- l is a bounded linear operator on L~([O,oo», 
and so T is invertible. It remains to establish formula (3) for the resolvent kernel. To 
obtain (3) one uses the fact that II(I - Q) = 0 and Q(I - II) = O. These two equalities 
imply that (I - Q)IIQ + Q = II. Since T-lg is given by the right hand side of (11), the 
latter identity, QetA = etAQ for all t E R and formulas (11) and (12) yield the desired 
representation (3). 0 

(1) 

XVIII.3 THE SPECTRUM 

Let T be the differential operator in L"2( [0,00» associated with 

{ 
f'(t) = -Af(t), 

f(O) E L. 

t ~ 0, 

As in the previous section, A is assumed to be an n x n matrix and L is a subspace of 
en. The next theorem describes the spectrum of T. 

THEOREM3.I. Let T be the differential operator in L"2([O, 00)) associated 
with (1), and let al, ... ,as be the real parts of the eigenvalues of A ordered increasingly. 
Put aD = -00 and as+l = 00. Then the spectrum aCT) is the entire complex plane or 
consists of the closed half planes iRA :$ aj-l and iRA ~ aj for some 1 :$ j :$ s + I. 

PROOF. Assume aCT) i:- C. Take AD E peT), and write AD = a + ib with a 
and b real. The operator T - ADI is the differential operator associated with the initial 
value problem (1) with A - ADI in place of A (cf. Part (iii) of the proof of Theorem 2.1). 
Since T - ADI is invertible, we can apply Theorem 2.1 to show that A has no eigenvalues 
on the line iRA = a and 

(2) 

where Qa is the Riesz projection of A corresponding to the eigenvalues in the half plane 
iRA < a. In particular, aj-l < a < aj for some j E {I, 2, ... ,s + I}. 

In what follows, QOl denotes the Riesz projection of A corresponding to the 
eigenvalues in iRA < Q. We have 

(3a) 

(3b) 

(3c) 
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But then we see from (2) that 

(4) 

Now, take A E C, and put a = lRA. Then QCt is the Riesz projection of A-A corresponding 
to the eigenvalues in the open left half plane. Thus, by Theorem 2.1 and (4), the operator 
T - AI is not invertible if lRA > aj or lRA :s aj-I' Since (J(T) is closed, we conclude the 
the closed half planes lRA ~ aj and lRA :s aj-I are in (J(T). 

Finally, take aj-I < lRA < aj, and put a = lRA. Then A - AIn has no 
eigenvalues on the imaginary axis and (2) holds with a in place of a. It follows from 
Theorem 2.1 that T - AI is invertible, and hence A rt. (J(T). 0 

The results of this and the previous section are of particular interest for a 
number of different choices of L. Here we illustrate this with two corollaries; the first 
concerns the case L = {O} and in the second we take L = en. 

COROLLARY 3.2. Let T be the differential operator in L2'([O, 00)) associated 
with (1). Assume L = {O}. Then the spectrum of T consists of the closed half plane 
lRA ~ a, where a = min{lRA I A E (J(An. Furthermore, for lRA < a 

t 

([A - T]-I f](t) = - J e(t-s)(A-A) f(s)ds, 

o 
o :s t < 00. 

PROOF. By Theorem 2.1, the operator T is invertible if and only if all the 
eigenvalues of A are in the open right half plane and in that case 

t 

(T- I f)(t) = J e-(t-s)A f(s)ds, 

o 
O:S t < 00. 

Now, apply this result with T and A replaced by T - AI and A - AIn , respectively, and 
the corollary follows. 0 

The second corollary is proved in a similar waYi we omit the details. 

COROLLARY 3.3. Let T be the differential operator in L~([O, 00)) associated 
with (1). Assume L :;; en. Then the spectrum of T consists of the closed half plane 
lRA :s b, where b = max{lRA I A E (J(An. Furthermore, for lRA > b 

00 

([A - Tj-l f)(t) = J e(t-s)(A-A)g(s)ds, 

t 

o :s t < 00. 

XVIII.4 FREDHOLM CHARACTERISTICS 

This section concerns the Fredholm properties of the differential operator 
associated with 

(1) { 
f'(t) = -Af(t), 

f(O) E L. 

t ~ 0, 
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As in the previous section, A is an n x n matrix and L is a subspace of en. We shall 
prove the following two theorems. 

THEOREM 4.1. Let T be the differential operator in L2'([O, 00)) associated 
with (1). Then T is a Fredholm operator if and only if A has no eigenvalues on the 
imaginary axis, and in that case 

(2) indT = dimL - dimM, 

where M is the space spanned by the eigenvectors and generalized eigenvectors of A 
corresponding to eigenvalues of A in the open left half plane. Furthermore, the essential 
spectrum of T consists of the union of the lines parallel to the imaginary axis through 
the eigenvalues of A. 

THEOREM 4.2. Let T be the differential operator in L2'([O, 00)) associated 
with (1), and assume that A has no eigenvalues on the imaginary axis. Let Q be the 
Riesz projection corresponding to the eigenvalues of A in the open left half plane, and 
put !vI = 1m Q, N = Ker Q. Then T is a Fredholm operator and 

(3) 

(4) 

(5) 

(6) 

KerT = {f I f(t) = e-tAx, x E L n N}, 

00 

ImT = {g E L2'([O, 00)) I J QeSAg(s)ds E L + N}, 

o 

neT) = dim(L n N), d(T) = dim en j(L + N), 

indT = dimL - dimM. 

Furthermore, let f be the bounded linear operator on L2'([O, 00)) defined by 

with 

00 

(ff)(t) = J ,(t,s)f(s)ds, 

o 
t ~ 0, 

o ::; s < t < 00, 

o ::; t < s < 00, 

where S+: M ~ L is a generalized inverse of the operator S = QIL: L ~ M in the weak 
sense (i.e., SS+ S = S). Then 

(7) T = TfT, fj = fTfj (Cfj)CO) E L). 

It is convenient to prove the second theorem first. 
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PROOF OF THEOREM 4.2. The proof is split into four parts. In the first 
part we recall some facts proved in Section 2. 

(8) 

(9) 

Part (i). For J E VeT) and TJ = 9 the following identities hold true: 

00 

QJ(O) = - J QeSAg(s)ds, 
o 

00 

J(t) = e-tA(I - Q)J(O) + J h(t - s)g(s)ds, 
o 

0:::; t < 00, 

where h is the n x n matrix function defined by formula (12) in Section 2. Since A has 
no eigenvalues on the imaginary axis, we know that 

IIh(t)1I :::; ce-d1tl , t E R, 

for some positive constants c and d. Hence the integral in (9) is well-defined. Note that 
formula (8) is proved in Part (i) of the proof of Theorem 2.1. Formula (9) follows from 
(8) and the identity (5) in Section 2. 

Part (ii). In this part we prove (3) and (4). Assume that J E KerT. Then 
9 = TJ = 0, and (9) implies that J(t) = e-tAz for some z E KerQ = N. Also, 
z = J(O) E L. So z E L n N. Conversely, if J(t) = e-tAz with z E L n N, then J E VeT) 
and T J = O. Thus J E Ker T and (3) is proved. 

(10) 

Assume 9 E 1m T. So 9 = T J for some J E VeT). Formula (8) tells us that 

00 J QeSAg(s)ds E L + N. 
o 

Conversely, if 9 E Lr([O, 00)) and (10) holds, then there exists x E L such that Qx is 
equal to the left hand side of (10). Using this x, put 

(11) 

00 

J(t) = _e-tA(I - Q)x + J h(t - s)g(s)ds, 

o 
0:::; t < 00. 

Then J E L2([0, 00)) and 

00 00 

J(t) = _e-tAx + e- tA J QeSAg(s)ds + J h(t - s)g(s)ds 

o 0 
t 

= _e-tAx + e- tA J eSAg(s)ds, 

o 
0:::; t < 00. 
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Here we used that Q commutes with A. From the above calculation it is clear that f is 
absolutely continuous on each compact subinterval of [0,00), the vector f(O) = -x E L 
and f' = -Af + g. Thus f E D(T) and Tf = g. Hence 9 E ImT, and we have proved 
(4). 

Part (iii). Next, we prove (5) and (6). Note that the map x f-+ e-tAx is an 
isomorphism from L n N onto KerT, because of (3). It follows that the first identity in 
(5) holds. To prove the second, define 

00 en 
J: L~([O,oo)) ~ L + N' Jg = [J QeSAg(s)ds], 

o 

where [y] denotes the coset y + (L + N) for any y E en. According to (4) we have 
Ker J = 1m T. So to prove the second identity in (5) it suffices to show that J is 
surjective. Take x E en. Then (I - Q)x E N, and so [x] = [Qx]. Put 

{ -Ax 
9k(t) = 0 

for 0:::; t :::; k, 

for t> k. 

Then 9k E L~([O,oo)) for k = 1,2, ... and 

(12) 

k 

J9k = -[J QesAAxds] 

o 
= [Qx - QekAx) ~ [Qx], k ~ 00. 

Here we used that QetAx is exponentially decaying. Since en /(L + N) is finite dimen
sional, the image of J is closed, and thus (12) implies that [x] = [Qx] E 1m J. Thus J is 
surjective, which finishes the proof of (5). 

From Theorem 1.1 we know that T is closed. Thus the identities in (5) imply 
that T is Fredholm and 

indT = dim(L n N) - {n - dim(L + N)} 

= dim L + dim N - n 

= dimL - dimM, 

because M and N are complementary subspaces of en. 

that 

(13) 

Part (iv). It remains to establish (7). Take 9 E ImT. We know (see (4)) 

00 

z:= J QeSAg(s)ds E L + N. 

o 

Thus z = Qz E QL = ImS. Pur x = S+z. Then x ELand 

Qx = QS+z = SS+z = z, 
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because 55+ 5 = 5. Thus x ELand Qx is equal to the integral in (13). Now define J 
by the right hand side of (11). Then (as we have seen before), the function J E VeT) 
and T J = g. Because of the special form of x, the function J may be rewritten as 

(14) 

00 00 

J(t) = _e-tA(I - Q)5+ J QeSAg(s)ds + J h(t - s)g(s)ds 

o 0 
00 

= J ,(t,s)g(s)ds = (fg)(t), 
o 

° 5 t < 00. 

We conclude that Tfg = 9 for each 9 E Im T, and hence the first identity in (7) holds. 

For any J E L2([0,00)) the function fJ is absolutely continuous on each 
compact subinterval of[O, 00) and (f f)' = -A(f f)+ J. Thus, if, in addition, (f f)(0) E L, 
then f J = VeT) and Tf J = J, which proves the second identity in (7). Note that the 
first part of (14) implies that f is a bounded linear operator on L 2([0,00)). 0 

PROOF OF THEOREM 4.1. Assume that A has no eigenvalues on the imag
inary axis. Note that the space M is precisely the image of the projection Q appearing 
in Theorem 4.2. So we know from Theorem 4.2 that T is a Fredholm operator with index 
given by (2). 

To prove the converse statement, let us assume that A has eigenvalues on the 
imaginary axis. We have to show that T is not a Fredholm operator. By contradiction, 
assume that T is a Fredholm operator. Then, by Theorem XVII.4.2, for a E R, a 
sufficiently small, the operator T + aI is again a Fredholm operator and 

(15) ind(T + aI) = ind T. 

Note that VeT + aI) = VeT) and for J E VeT + aI) 

((T + aI)J)(t) = J'(t) + (A + aIn)J(t), t 2: 0, a.e .. 

Here In is the n x n identity matrix. It follows that T + aI is the differential operator on 
L2([0, 00)) associated with the initial value problem (1) with A+aIn in place of A. Now 
take a f=- ° and a sufficiently small. Then A + aIn has no eigenvalues on the imaginary 
aXIs. So, by what we have proved so far, 

(16) ind(T + aI) = dimL - dim Mae, 

where Mae is the spectral subspace spanned by the eigenvectors and generalized eigen
vectors of A corresponding to eigenvalues in the half plane ~>. < a. By comparing (15) 
and (16) we see that dim Me. = dim M-e.. But this contradicts the fact that A has 
eigenvalues on the imaginary axis. Thus T is not a Fredholm operator. 

It remains to prove the statement about the essential spectrum of T. Take 
/-L E C. We have already seen that T - pI is the differential operator associated with the 
initial value problem (1) with A - /-LIn in place of A. So according to the first part of 
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the theorem, the operator T - f1.1 is Fredholm if and only if A - f1.1n has no eigenvalue 
on the imaginary axis. Thus f1. E O"ess(T) if and only if there exists a E R such that ia is 
an eigenvalue of A - f1.1n, or, equivalently, ia + f1. is an eigenvalue of A. It follows that 
f1. E O"ess(T) if and only if the line through f1. parallel to the imaginary axis contains an 
eigenvalue of A. In other words, O"ess(T) is precisely the union of the lines parallel to the 
imaginary axis through the eigenvalues of A. 0 

XVIII.5 APPLICATIONS TO WIENER-HOPF OPERATORS 

In this section the results of the previous sections are used to analyse Wiener
Hopf operators. This analysis provides an alternative way to derive the inversion and 
Fredholm properties of Wiener-Hopf operators on L2'([O, 00» with a rational symbol 
(Theorems XII1.7.1 and 8.1). Also an application to so-called first kind Wiener-Hopf 
operators is included. 

Let S: L2'([O, 00» ~ L2'([O, 00» be a Wiener-Hopf operator with a rational 
m x m matrix symbol W. Thus 

(1) 

and 

(2) 

ex) 

(S'P)(t) = 'P(t) - J k(t - s)'P(s)ds, 
o 

ex) 

W("\) = 1m - J eiJ..tk(t)ds, 
-ex) 

° ::; t < 00, 

(cf., Section XIIL1). Since the symbol W is rational, we know from Section XIIL4 that 
W can be written in realized form, that is, 

(3) W("\) = 1 + C(..\ - A)-lB, ..\ E R, 

where A is a square matrix of order n, say, which has no eigenvalues on the real line, and 
B and C are matrices of sizes n x m and m X n, respectively. First, we employ (3) to 
derive a special representation of S. 

LEMMA 5.1. Let S be the Wiener-Hopf operator on L2'([O, 00» with the 
symbol W given in the realized form (3). Then 

(4) 

where MB and Me are the multiplication operators defined by 

(5) MB:L2 ([0,00» ----> L2'([O, 00», (MBf)(t) = Bf(t) ° ::; t < 00, 

(6) Me: L2'([O, 00» ~ L2'([O, 00», (Mef)(t) = C f(t), ° ::; t < 00, 
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and T is the differential operator in L2'([O, 00)) associated with 

(7) { 
f'(t) = -iAf(t), 

f(O) E ImP. 

t ~ 0, 

Here P is the Riesz projection of A corresponding to the eigenvalues in the open upper 
half plane. 

PROOF. First, we prove that T is invertible. By our assumption on A 
the matrix iA has no eigenvalues on the imaginary axis and the Riesz projection of iA 
corresponding to the eigenvalues in the open left half plane is precisely P. Now, apply 
Theorem 2.1 with iA in place of A and with L = 1m P. In this case the matching condition 
in formula (2) of Section 2 is automatically fulfilled. It follows that the differential 
operator T associated with (7) is invertible. Furthermore, for the case considered here, 
the projection II appearing in Theorem 2.1 is equal to P. But then we may conclude 
from Theorem 2.1 that 

(8) 

where 

(9) 

00 

(T-lg)(t) = J h(t - s)g(s)ds, 

o 

h(t) = ' { 
e-itA(J _ P) 

_e-itAp, 

Here we used that P and e-itA commute. 

o ~ t < 00, 

t > 0, 

t < O. 

Next, recall from Theorem XIII.4.2 that the realization (3) implies that the 
kernel function k of Sin (1) is given by 

k(t) = . ' { 
iCe-itA(I - P)B 

-iCe-·tAPB, 
t > 0, 

t < O. 

But then we see from (9) that k(·) = Ch(·)B, which, according to (8) and (1), implies 
that (4) holds. 0 

The representation (4) will allow us to describe the inversion and Fredholm 
properties of the Wiener-Hopf operator S in terms of the differential operator T X asso
ciated with the following initial value problem: 

(10) 

where P is as in (7). 

{ 
f'(t) = -i(A - BC)f(t), 

f(O) E ImP, 

t ~ 0, 

THEOREM 5.2. Let S be the Wiener-Hopf operator on L2([0, 00)) with 
the symbol W given in the realized form (3), and let TX be the differential operator in 
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L~([O, 00)) associated with (10). Then S is invertible if and only if TX is invertible, and 
in that case 

(11) 

where MB and Me are as in (5) and (6), respectively. 

PROOF. We shall apply Lemma 5.1. Let T be the differential operator 
associated with the problem (7). By Lemma 5.1 the operator T is invertible. Note that 
T and TX have the same domain and 

(12) f E 'V(T) = 'V(TX ). 

It follows that the operator SX = TXT-l is a well-defined bounded linear operator on 
L~([O, 00 )), which is invertible if and only if TX is invertible. According to (12), we have 

(13) 

The formulas (4) and (13) imply that the operators S and SX are matricially coupled 
(see Section IlIA). Hence, we can apply Corollary IlI.4.3 to show that S is invertible if 
and only if SX is invertible, and in that case 

Since SX = TXT-I, this proves the theorem. 0 

Let TX be the differential operator associated with (10). Apply Theorem 2.1 
to TX. This yields necessary and sufficient conditions for the invertibility of TX and 
(when these conditions are fulfilled) an explicit formula for (TX )-1. Using these results 
in Theorem 5.2 yields an inversion theorem for Wiener-Hopf operators which is precisely, 
Theorem XIlI.7.1. 

The next theorem concerns the Fredholm properties. 

THEOREM 5.3. Let S be the Wiener-Hopf operator on Lr([O, 00)) with 
the symbol W given in the realized form (3), and let TX be the differential operator in 
L~([O, 00» associated with (10). Then 

(14) KerS = {Cf If E KerT X }, 

(15) ImS = {g E Lr([O,oo)) I Bg E 1mTX}, 

(16) dimKerS = dimKerTx , codim 1m S = codim 1m T X , 

and the operator S is Fredholm if and only if TX is a Fredholm operator. 

PROOF. We use the same terminology as in the proof of Theorem 5.2. In 
particular, 

(17) 
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From (4) and (17) we deduce that S and SX are matricially coupled, and hence, by 
Corollary III.4.3, 

ImS = {g E L2'([O, 00» I Bg E ImSX}, 

dim Ker S = dim Ker SX , co dim 1m S = codim 1m S x . 

Since KerS x = TKerTx and ImS x = ImTx, the previous identities prove (14), (15) 
and (16). As TX is closed (by Theorem 1.1), formula (16) implies that S is Fredholm if 
and only if the same is true for TX. 0 

Note that the Fredholm properties of T X may be derived from Theorems 4.1 
and 4.2. Hence, the latter theorems, together with Theorem 5.3, yield the Fredholm 
properties 'of the Wiener-Hopf operator S. The final results are the same as the ones in 
Theorem XIII.S.l. 

As a further application of the results proved in the previous sections, we 
compute the spectrum of the Wiener-Hopf operator 

00 

(Hf)(t) = J h(t - s)f(s)ds, 0:5 t < 00, 

o 

with kernel function 

h(t) = " { 
e-itA(I - P) t > 0 

_e-itAp, t < 0, 

where A is an n x n matrix without eigenvalues on the real line and P is the Riesz 
projection of A corresponding to the eigenvalues in the open upper half plane. The 
operator H is a so-calledfir3t kind Wiener-Hopf operator acting on L2([0, 00 »; its symbol 
is given by 

00 J eiAth(t)dt = i('\ - A)-I. 

-00 

THEOREM 5.4. Assume that the n x n matrix A has no eigenvalues on the 
real line, and let H be the fir3t kind Wiener-Hopf operator on L 2([0,00» with symbol 
i(.\ - A)-I. Then the spectrum of H is the union of the closed discs 

.\+-<-I 1 I 1 
2a+ - 2a+' 

.\+-<--I 1 I 1 
2a_ - 2Ia-I' 

where 

(18a) a+ = min{'S.\I.\ E O"(A), 'S.\ > OJ, 

(I8b) a_ = max{'S.\I.\ E O"(A), 'S.\ < OJ. 
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PROOF. Let P be the Riesz projection of A corresponding to the eigenvalues 
in the open upper half plane, and consider the differential operator T on Lz([O, 00)) 
associated with 

(19) { 
f'(t) = -iAf(t), 

f(O) E ImP. 

t 2:: 0, 

From the first part of the proof of Lemma 5.1 we know that T is invertible and T- I = H. 
Thus 

(20) a(H) = {~ I >. E aCT) } U {O}. 

Since iA has no eigenvalues on the imaginary axis, Theorem 3.1 (applied to (19» shows 
that 

aCT) = {>'jlR>'::; -a+} U {>.jlR>' 2:: -a_}, 

where a+ and a_ are defined by (lSa) and (lSb). Now use (20) and the theorem is 
proved. 0 

(1) 

XVIII.6 HIGHER ORDER DIFFERENTIAL OPERATORS ON 
A HALF LINE 

Throughout this section T is the differential expression 

T = D n + an_IDn - 1 + ... + aID + ao, 

where D = -it and ao,· .. , an-I are given complex numbers. Furthermore, L will be a 
given subspace in en. With T and L we associated a differential operator T (L2( [0,00» --+ 

L 2 ([0, 00») as follows: 

D(T) = { u E D(Tmax)1 : E L}, [ 
u(O) 1 

u(n-I)(o) 

Tu = TU, U E D(T). 

Here Tmax is the maximal operator in L2([O, 00» corresponding to T and the interval 
[0,00). By definition, the function u(n-l) exists for each u E D(Tmax) and u(n-l) IS 
absolutely continuous on the compact subintervals of [0,00). Thus the vector 

(u(O), u' (0), ... ,u(n-l) (0) f, 
appearing in the definition of D(T), is well-defined. We shall refer to T as the differential 
operator in Ll ([0,00» defined by T and the subspace L. 

The polynomialp(>.) = >.n+ I:~;;;;5 al/>.l/ is called the symbol ofthe differential 
expression T. It determines T uniquely via T = p( D). 
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We shall prove the following three theorems. 

THEOREM 6.1. Let T be the differential operator in L2([0, 00)) defined by 
the differential expression 1" and the subspace L. Put 

1 

(2) 

The operator T is a closed operator, which is invertible if and only if the following two 
conditions are satisfied: 

(i) the symbol p(.) of 1" has no zeros on the imaginary axis, 

(ii) en = L EB N, where N is the spectral subspace of H spanned by the 
eigenvectors and generalized eigenvectors of H corresponding to eigenvalues in )R). < 0. 

Furthermore, in that case 

with 

where 

(3) 

00 

(T-1v)(s) = J ,(t,s)v(s)ds, 

o 

c= [1 ° 
and II is the projection of en onto £ along N. 

0:::; t < 00, 

0:::; s < t < 00, 

0:::; t < s < 00, 

0], 

THEOREM 6.2. Let T be the differential operator in L2([0, 00)) defined by 
the differential expression 1" and the subspace L. Then T is Fredholm if and only if the 
symbol p(.) of 1" has no zeros on the imaginary axis, and in that case 

(4) indT = dimL - m, 

where m is the number of zeros (multiplicities taken into account) of p(.) in the open 
right half plane. 

THEOREM 6.3. Assume that the differential operator T in £2([0,00)) de
fined by the differential expression 1" and the subspace L is Fredholm. Put 

1 
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C = [1 0 0], 

and let Q be the Riesz projection oj H corresponding to the eigenvalues in ~). > O. Then 

(5) 

(6) 

(7) 

(8) 

KerT = {u I u(t) = CetH x, x E L n KerQ}, 

00 

ImT= {v E L2([0, 00» I J Qe-tHBv(s)ds E L+Ker Q }, 

o 

neT) = dim(L n Ker Q), 
en 

d(T) = dim L + KerQ 

indT = dimL - dimImQ. 

Furthermore, let r be the bounded linear operator on L~([O, 00» defined by 

with 

(9) 

00 

(rv)(t) = J ,et, s)v(s)ds, 

o 
t? 0, 

{ 
CetH[J - Q - (I - Q)R+Q]e-sH B, 0 S; s < t < 00, 

,et,s) = 
_CetH[Q + (I - Q)R+Q)e-sH B, 0 S; t < s < 00, 

where R+: 1m Q --+ L is a generalized inverse oj the operator R = QIL: L --+ 1m Q in the 
weak sense (i.e., RR+ R = R). Then 

(10) T=TrT. 

We shall need the following basic fact about the domain of Tmax. 

PROPOSITION 6.4. Let Tmax be the maximal operator in L2([0, 00» corre
sponding to T and the interval [0,00). Then 

(11) u E V(Tmax) =} U = [ :' 1 E L2([0, 00». 
u(n:-l) 

The implication (11) also holds for differential expressions T of which the 
coefficients are Loo-functions on [0,00) (see, e.g., S. Goldberg [1], Theorem VI.6.2). 

To prove Theorems 6.1-6.3 and Proposition 6.4 we shall employ the differen
tial operator S in L~([O,oo» associated with 

(12) { 
J'(t) = H J(t), 

J(O) E L. 

t? 0, 
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Here H is the n X n matrix defined by (2). The operator S may be viewed as a linearization 
of the differential operator T defined by T and L. In what follows the main idea is to 
apply first the theorems of Sections 2 and 4 to S and next to use the results to derive 
the corresponding theorems for T. We begin with a lemma. 

LEMMA 6.5. Let T be the differential operator in L2([0, 00» defined by T 

and L, and let S be the differential operator in L~([O, 00» a880ciated with (12). Let B 
and C be a8 in (3). A88'ltme f E V(S) and Sf = Bv. Then Cf E VeT) and TCf = v. 

PROOF. Let fl, ... '!n be the components of f. Then 

[ 
fi -12 1 

f~-l - fn 
f~ + aofl + aIf2 + ... + an-Ifn 

Sf=f'-Hf= (13) 

Since the first n - 1 components of Bv are zero, the identity Sf = Bv implies that 

(14) f · - f ei- I ). 1 J - I ' J = 1, ... , n - , T(fl) = v. 

Hence, also 

(15) [ ~£~~j 1 = [ ~~~~j 1 E L. 

f}n-:I) (0) fn~O) 
Put u = C f. In other words, u = fl. The first n - 1 identities in (14) and formula (15) 
imply that u E VeT). The last identity in (14) shows that Tu = v. 0 

PROOF OF PROPOSITION 6.4. Let p be the symbol of T. Since p is a 
polynomial, the set {p(,\) I ,\ E iR} is not the entire complex plane, and hence we can 
find a complex number c such that p(.) - c has no zeros on the imaginary axis. Obviously, 
the domain of T max does not change if T is replaced by T - c. Thus for the proof of (11) we 
may assume without loss of generality that the symbol p has no zeros on the imaginary 
axis. 

Put g = BTmaxu, where B is as in (3). Let Smax be the differential operator 
in L~([O, 00» associated with (12) and with L = cn. Since det('\ - H) = p(,\), the 
matrix H has no eigenvalues on the imaginary axis, and hence we can apply Theorem 
4.2 (with A = -H and L = cn) to show that Smax is surjective. Thus there exists 
f E V(Smax) such that Smaxf = BTmaxu. But then Lemma 6.5 shows that Cf E VeT) 
and Tmax(Cf) = Tmaxu. Thus Cf - u E KerTmax . From the proof of Lemma 6.5 (see 
formula (14» we know that the first n - 1 derivatives of Cf are in L2([O, 00». Thus it 
remains to prove (11) for u E KerTmax . 

Take u E KerTmax . Thus T(U) = O. Let b be an arbitrary positive number, 
and consider the differential expression T on [0, b]. According to formula (4) in Section 
XIV.3 there exists a vector Xb such that 

o :s t :s b, 
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where as before, C is given by the second identity in (3). Note that 

(16) 

is the n x n identity matrix. It follows that 

Thus Xb does not depend on b, and we may conclude that u(t) = CetH x for some x E en 
and all t ;::: o. Write x = Xo + Xl with Xo E ImQ and Xl E KerQ, where Q is the Riesz 
projection of H corresponding to the eigenvalues in the open right half plane. Note that 
UI(t) = CetH xl, 0 ::; t < 00, and all its derivatives are in L2([O, 00». In fact, since Hi Xl 

belongs to KerQ, we conclude (see Lemma 1.5.4) that 

0::; t < 00, 

is exponentially decaying. To finish the proof we show that Xo = O. 

In order to do this, consider the function 

00 

(17) r(A) = J e-)'tCetH xodt, ?RA > O. 

° 
The function e-).t is in L2([O, 00» for each A in open right half plane. Also, 

0::; t < 00, 
is in L2([O, 00». It follows that the right hand side of (17) is well-defined. From complex 
function theory (see, e.g., [RJ, Section 19.1) we know that r(·) is analytic in ?RA > O. 
Choose, > 0 such that H -, has all its eigenvalues in the open left half plane. Then 
e(H -).)t is exponentially decaying for each ?RA ;::: , by Lemma 1.5.4, and hence 

00 J e->'tCetHxodt = C(H - Arle(H->.)txolt=oo 

° t=o 

= C(A - H)-lxO, ?RA 2::, > O. 

It follows that 

(18) ?RA 2:: , > o. 
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Since Xo Elm Q, the function C('\ - H)-lxo is rational and has its poles in ~,\ > O. On 
the other hand, according to (18), the function C(,\-H)-l Xo has an analytic continuation 
on ~,\ > O. Therefore C('\ - H)-lxO is analytic on the entire complex plane. From the 
Neumann series expansion we see that 

1,\1 -> 00. 

But then Liouville's theorem implies that C('\ - H)-lxO is identically zero, and thus 
(again use the Neumann series expansion) CHixo = 0 for j = 0,1,2, .... Now recall 
that the matrix in (16) is the n x n identity matrix. Thus 

Xo = [ c~ 1 Xo = 0, 

CHn-l 

and the proof of (11) is completed. 0 

The next lemma will allow us to describe the Fredholm properties of T in 
terms of those of S. 

LEMMA 6.6. Let T be the differential operator in L2([O, (0)) defined by T 

and L, and let S be the differential operator in L 2([O, (0)) associated with (12). Let B 
and C be as in (3). Then 

(19) 

(20) 

(21) 

KerT = {Cf I f E KerS}, 

ImT = {v E L2([0, (0)) I Bv ElmS}, 

dim Ker T = dim Ker S, codim 1m T = co dim 1m S. 

PROOF. Take u E KerT. Then u E VeT) c V(Tmax), and hence (by 
Proposition 6.4) 

[ :' 1 u'- EL~([O,oo)). 

u(n-l) 

Since u E VeT), we have u(O) E L. Hence u E V(S), and (13) (with f replaced by u) 
yields Su = O. Thus u = Cu with u E KerS. Conversely, assume Sf = O. Then Lemma 
6.5 implies that C f E Ker T. Furthermore, from the proof of Lemma 6.5 (see formula 
(14)) we see that the j-th component of f is equal to (C j)U-l) for j = 1, ... , n. Thus 
C f = 0 implies f = O. We conclude that C maps Ker S in a one-one way onto Ker T, 
which proves (19) and the first identity in (21). 

To prove (20), let v = Tu for some u E VeT). As in the first paragraph of 
the present proof one shows that 

U- [ u,L 1 E VIS). 
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Thus we can apply (13) with f = iL, which yields 

Su ~ [ 11 ~ BTu ~ Bu. 

Thus Bv ElmS. Conversely, if Bv = Sf for some f E D(S), then v = T(e!), by 
Lemma 6.5. Hence v E 1m T and (20) is proved. 

The proof of the second identity in (21) is based on the following equality: 

(22) 

Formula (13) implies that the right hand side of (22) does not depend on the coefficients 
ao, ... , an-l of T. Thus to prove (22) we may choose the coefficients ao, ... , an-l as we 
like. It follows that for the proof of (22) we may assume without loss of generality that 
the symbol p of T has all its zeros in the open left half plane. Then all the eigenvalues 
of H are in the open left half plane, and we can apply Theorem 4.2 (with A = -H) to 
show that ImS = L2([O,oo)), which proves (22). Now, let 

J: L2([O,OO)) -+ L2([O,oo)) 
ImT ImS 

be defined by 

J(u+hnT) ~ [ ~ 1 +hnS 

Then J is injective because of (20), and the equality (22) shows that J is surjective. 
Thus J is a linear bijective map, and therefore the second identity in (21) holds true. 0 

PROOF OF THEOREM 6.1. First we show that T is closed. Let Ul, U2, ... 

be a sequence in D(T) such that Uj -+ U and TUj -+ v in L2([O,OO)). Since Tmax is an 
extension of T which is closed (by Proposition XIV.3.3), we conclude that U E D(Tmax) 
and T(U) = v. It remains to prove that 

(23) 

To do this we restrict our attention to the compact interval [0, 1]. Let T and To be the 
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operators in L2([0, 1]) defined by 

[ 
g(O) 1 ~ g'(O) 

'V(T) = {g E 'V(Tmax,r,[O,I])1 : E L}, 
g(n-l)(o) 

Tg = reg); 

[ 
g(O) 1 ~ g'(0) 

'V(To) = {g E'V(Tmax,r,[O,I])1 : = 0 }, 

g(n-l)(o) 

TOg = reg)· 

Obviously, 

C(Tmax,r,[O,I]) :::> C(T) :::> C(To). 

The argument in the first paragraph of the proof of Proposition XIV.3.3 shows that the 
graphs C(To) and C(Tmax,r,[O,I]) are closed. Moreover C(To) has finite codimension in 

C(Tmax,r,[O,I])' Thus C(T) is a finite dimensional extension of the closed linear manifold 

C(To), which implies that l' is closed. Let V, U, UI, U2, ... be the restrictions of the 
functions v, u, UI, U2, ••• , respectively, to the interval [0, 1]. Then U}, U2, ... is a sequence 
in 'V(T), Uj -+ U and TUj -+ vin L2([0, 1]). Since l' is closed, we conclude that U E 'V(T), 
and hence (23) is fulfilled. 

According to Lemma 6.6 the operator T is invertible if and only if S is in
vertible. By Theorem 2.1 (applied to -H instead of A) the latter happens if and only if 
H has no eigenvalues on the imaginary axis and 

en = L E9 KerQ, 

where Q is the Riesz projection of H corresponding to the eigenvalues of H in the open 
right half plane. Now note that the eigenvalues of H are precisely the zeros of the symbol 
p of rand Ker Q is equal to the space N appearing in condition (ii) of Theorem 6.1. Thus 
the above arguments show that the conditions (i) and (ii) of Theorem 6.1 are necessary 
and sufficient for the invertibility of T. 

Finally, assume that T is invertible, and let us derive the formula for its 
inverse. Take v E L2([0, 00)), and put u = Tv. Then, as was shown in the second 
paragraph of the proof of Lemma 6.6, 

SU= BTu = Bv. 

Now S is invertible, and so 

(24) u=Cu=CS-IBv. 



CHAPTER XVIII. A CLASS OF ORDINARY DIFFERENTIAL OPERATORS ON A HALF LINE 407 

Theorem 2.1 (applied to A = -H) yields the formula for S-1. By using this formula in 
the third term of (24), one obtains the expression of T-l in Theorem 6.1. 0 

PROOF OF THEOREM 6.2. First we apply Lemma 6.6. Note that both 
T and S are closed operators. Thus Lemma 6.6 shows that T is Fredholm if and only 
if S is Fredholm, and in that case indT = indS. Next, we apply Theorem 4.1 with A 
replaced by -H. It follows that S is Fredholm if and only if H has no eigenvalues on 
the imaginary axis, and in that case 

indS = dimL - dimM, 

where M is the space spanned by the eigenvectors and generalized eigenvectors of H 
corresponding to the eigenvalues in !RA > O. Since det(A - H) = peA), it follows that H 
has no eigenvalues on the imaginary axis if and only if P has no zeros on the imaginary 
axis. Furthermore, dimM is precisely equal to the number m appearing in (4). With 
these remarks the theorem is proved. 0 

PROOF OF THEOREM 6.3. By Lemma 6.6 and Theorem 4.3 (applied with 
A replaced by -H) formulas (5), (6), (7) and (8) are evident. 

To prove (10), let ::yet,s) be the function defined by the right hand side of (9) 
with B and C omitted. Then 

00 

(1'J)(t) = J ::Y(t,s)f(s)ds, t ;::: 0, 

o 
defines a bounded linear operator on L~([O,oo», and from Theorem 4.3 (applied to 
A = -H) we know that S = S1'S. Obviously, rv = C1'Bv for any v E L2([O, (0». Now, 
take u E VeT), and put v = Tu. By Proposition 6.4 

and according to formula (13) (with u in place of J) we have SU = Bv. Thus 

Bv = Su = (S1'S)u = S(1'Bv), 

which, by Lemma 6.5, implies that rv = C1'Bv E VeT) and Trv = v. Since v = Tu, 
the latter identity proves (10). 0 

We conclude this section with a corollary about the essential spectrum. 

COROLLARY 6.7. Let T be the differential operator in L2([O,00» defined 
by T and L, and let p(.) be the symbol of T. Then 

(25) lTe(T) = {peA) I iRA = OJ. 
PROOF. Let c be an arbitrary complex number. Then T - cI is the differen

tial operator defined by T - c and L. The symbol of T - c is the polynomial p(.) - c. Thus, 
by Theorem 6.2, we have c E lTe(T) if and only if p(.) - c has a zero on the imaginary 
axis or, equivalently, if and only if c belongs to the set in the right hand side of (25). 0 



CHAPTER XIX 

STRONGLY CONTINUOUS SEMIGROUPS 

This chapter contains a short introduction to the theory of strongly contin
uous semigroups. Such semigroups stem from the study of certain partial differential 
equations, which are recast in the form 

(1) { 
u'(t) = Au(t), 

u(O) = x, 

0:5 t < 00, 

where u maps [0, 00) into a certain Banach space. When A is unbounded, strongly 
continuous semigroups can be used sometimes to give a meaning to the well-known 
formula etA x for the solution of (1). 

This chapter consists of seven sections. The first three contain the main re
sults about the connections between strongly continuous semigroups and the equation 
(1), which is referred to as the abstract Cauchy problem. The next three sections treat 
different classes of strongly continuous semigroups, namely contraction, unitary and com
pact semigroups. The final section concerns an application to linear transport theory. 

XIX.1 THE ABSTRACT CAUCHY PROBLEM 

Throughout this chapter X is a complex Banach space. Let A(X - X) be a 
linear operator with domain V(A) in X, and let x be a vector in X. The initial value 
problem 

(1) { 
u'(t) = Au(t), 

u(O) = x, 

0:5 t < 00, 

is called the abstract Cauchy-problem associated with A. An X-valued function u on 
o :5 t < 00 is said to be a solution of (1) if u(O) = x and for each t ~ 0 the vector 
u(t) E V(A), 

u'(t) = lim -hI (u(t + h) - u(t)) 
h-O 

exists and u'(t) = Au(t). As usual, u'(O) is the right hand side derivative at O. A solution 
u of (1) is said to be continuously differentiable (or shortly: a CI-solution) if, in addition, 
u': [0,00) - X is a continuous function. For the existence of a solution it is necessary 
that x E V(A). In what follows we shall deal mainly with CI-solutions. 

Abstract Cauchy problems arise in a natural way from certain initial value 
problems involving partial differential equations. An illustration of this is the following. 
Consider the (so-called wave) equation: 

(2) { : (t,s) = ~: (t,s), 0:5 t < 00, s E R, 

v(O,s) = f(s), s E R. 
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Let us assume that f is a given differentiable function on R. Then u(t,s) = f(t + s), 
t E [0,00), s E R, is a solution to (2). Moreover, it is the only solution. Indeed, suppose 
w(t, s) is also a solution of (2). Let h(t, s) = u(t, s) -w(t, s). Then !JJf = !fIi on [0,00) x R 
and h(O, s) = 0, s E R. By the chain rule 

o oh oh 
001 h(OI, (3 - 01) = at (01, (3 - 01) - os (01, (3 - 01) = 0, 

and hence h( 01, (3 - 01) = g«(3) for some differentiable function g. But 0 = h(O, (3) = g«(3), 
(3 E R, and thus h = O. 

To put (2) in the abstract form (1), let us assume that f and f' are bounded 
and uniformly continuous on R. Take X to be the Banach space BUC(R) of all bounded, 
uniformly continuous complex-valued functions on R endowed with the supremum norm, 
and define A(X -+ X) by setting 

V(A) = {g E X 1 g' exists, g' EX}, Ag = g'. 

Then we may rewrite (2) as 

(3) { 
u'(t) = Au(t), 

u(O) = f. 
o ~ t < 00, 

Consider the function u: [0,00) -+ X defined by 

u(t)(s) =u(t,s) = f(t+s), s E R. 

The function u is a CI-solution of the abstract Cauchy problem (3). To see this, note 
that u(O) = f. Furthermore, because of our conditions on f, for each t E [0,00) the 
function u(t) E V(A) and 

(4) 
d 

(Au(t»)(s) = ds u(t)(s) = i'(t + s), s E R. 

On the other hand, 

11~(U(t + h) - u(t» - f'(t + ·)11 = :~~I~(J(t + h + s) - f(t +s» - f'(t + S)I 

Hs+h 

= supl~ J [f'(OI) - f'(t + s)]dOlI· 
sER H8 

Since f' is uniformly continuous on R, it follows that the last term converges to zero 
as h -+ 00. Hence u is differentiable on 0 ~ t < 00 (as an X-valued function) and 
u'(t)(s) = f'(t + s), s E R. Thus u'(t) = Au(t), by (4). Also, given e > 0, the uniform 
continuity of f' implies 

IIu'(td - u'(t2)11 = sup I(Au(tt»)(s) - (AU(t2»(s)1 
8ER 

= sup Ii'(tl + s) - f'(t2 + s)1 < e, 
sER 



410 XIX.l THE ABSTRACT CAUCHY PROBLEM 

provided that It I - t21 is sufficiently small. Hence u' is continuous (in fact, uniformly 
continuous) on R. Thus u solves (3). 

Now suppose that v(·) is a second solution of (3). Define vet,s) = v(t)(s). 
Then, v(O, s) = v(O)( s) = f( s) and 

I*(v(t + h,s) - v(t,s» - (Av(t»(s)1 :511*(v(t + h) - v(t» - Av(t)ll- 0, h - 0, 

which implies that 

~ d 8 
8t(t,s) = (Av(t»)(s) = dsv(t)(s) = 8s v(t,s). 

We have shown that v( t, s) satisfies (2). But (2) has a. unique solution. So also (3) is 
uniquely solvable. 

Theorem 1.5.2 shows tha.t the Cauchy problem (1) has a unique solution 
u(t; x) = etAx for every x E X whenever A is a bounded linear operator on X. This 
result has the following generalization. 

THEOREM 1.1. Let A(X _ X) be denJely defined. Suppose that there exiat 
numbers wand M such that A E peA) and 

(5) k = 1,2, ... , 

whenever (A E R and) A > w. Then the abstract Cauchy problem (1) has one and only 
one solution for each x E V(A). This solution is continuously differentiable and is given 
by 

(6) u(t;x) = lim etA~x, 
'\-+00 

A,\ := AA(A - A)-I. 

PROOF. The proof is divided into six parts. The first four parts show 
that the function defined in (6) is a CI-solution of (1); the last two parts establish the 
uniqueness of the solution. In what follows we assume that the condition of the theorems 
are fulfilled. 

Part (i). First we show that for each y E X 

(7) (AER, A-OO). 

Take y E X. For any z E V(A) 

IIA(A - A)-lz - zll = II(A - A)-I Azil 

:5 M(A -w)-IIiAzlI, A>W. 

It follows that for A > W 
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Note that >.(>. - w)-1 is a decreasing function on w < >. < 00. Now, let c > 0 be given. 
Since 'D( A) = X, we may choose a vector Zo E 'D( A) such that 

1 
(2M + l)IIY - zll < 2c. 

Next, choose N > 2w such that M(>. - w)-II1Azoll < tc for>. > N. Then the above 
calculations show that 

(>. > N), 

and (7) is proved. 

Let A.\ be as in (6). By applying (7) to y = Ax we see that 

(8) A.\x = >.A(>. - A)-Ix = >.(>. - A)-1 Ax -+ Ax (>. -+ 00) 

for each x E 'D(A). 

Part (ii). Note that 

A.\ = >.2(>. - A)-1 - ,\J E LeX), 

and hence etA>. is a well-defined bounded linear operator on X. In this part we show 
that for each y E Y 
(9) lim etA>.y 

.\->00 

exists and the convergence in (9) is uniform on bounded subintervals of 0 ~ t < 00. 

(10) 

For y E Y, we have 

IletA>'yll = e-.\tll et.\2(.\-A)-1 yll 

~ e-.\t f. (t>'~)" 11(>' - A)-"lIllyll 
v. ,,=0 

= Mllyllexp (>. ~w t), >. > w. 

Take>. > P, > w, then p,w(p, - w )-1 ~ >.w(>. - w )-1, and hence (10) implies that 

lIe(t-s)A>'esA!'1I ~ M2exp(~t), 0 ~ s ~ t. 
p,-w 

Since the operators A.\, All' etA>., etA!, commute, it follows that 

t 

(11 ) 

lIetA!'y_etA>'yll = II! ~(e(t-S)A>.esA!')YdSIl 
o 

t 

= II! e(t-s)A>'esA!'(Ally - AW)dsll 

o 

~ M2 exp ( p,wt ) IIAlly - Awll t , >. > p, > w. 
p,-w 
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Now take x E D(A) and 0 :5 t :5 T. Then (10) and (11) imply that for>. > J1. > a > w 

IletAlly - etAAyl1 :5l1etAl'x _ etAAxll + lIetAI'(y - x)1I + lIetAA(y - x)1I 

:5 M exp(~T)(TMIIAJlX - AAxll + 211Y - xII)· a-w 

Now use (8) and the fact that D(A) is dense in X. It follows that the limit (9) exists 
and the convergence is uniform on every bounded t-interval of [0,00). 

Part (iii). For each y E X put 

(12) t 2: O. 

By the preceding part of the proof, T( t) is a well-defined linear transformation on X. 
From (10) it follows that 

IIT(t)YII = lim lIetAA yll:5 lim Mllyll exp ( \ >.w t) 
A-+OO A-+OO A - W 

Hence T(t) E C(X) and 

(13) 

= MIlYliewt . 

t 2: O. 

Since the convergence in (12) is uniform on bounded subintervals of 
o :5 t < 00, the map t ~ T( t)y is continuous from [0,00) into X. In particular, 

(14) 

Also, for all y EX, 

and by (10) 

lim T(t)y = T(O)y = y, 
t!O 

yEX. 

T( t + s)y = lim e(t+s )AA = lim etAA eSAA y, 
A-ex> A-+ex> 

lIetAAesAAy - T(t)T(s)yll 

:5 lIetAAesAAy - etAAT(s)yll + IletAAT(s)y - T(t)T(s)yll 

:5 MilesAAy - T(s)yll exp (>. ~ w t) + lIetAAT(s)y - T(t)T(s)yll -+ 0, 

Therefore 

(15) T(t + s) = T(t)T(s), t 2: 0, s 2: o. 

>. -+ 00. 

Part (iv). Next we prove that u(tj x) = T(t)x is a CI-solution of (1) for every 
x E D(A). Let x E D(A) be fixed. First we show that T(t)Ax = AT(t)x for t 2: O. If 
J1. > w, then 

>. > w. 



CHAPTER XIX. STRONGLY CONTINUOUS SEMIGROUPS 413 

Put Y = (p. - A)x. Taking limits as A -+ 00 gives 

(p. - A)-IT(t)y = T(t)(p. - A)-I y = T(t)x. 

Hence T(t)x E D(A) and 

(p. - A)T(t)x = T(t)y = T(t)(p. - A)x, 

which shows that 

(16) AT(t)x = T(t)Ax, t ~ 0, x E D(A). 

From (10) it follows that 

IIetA~A~x - T(t)Axli :5 MIIA~x - Axil exp C~ ~ w t) + IIetA~Ax - T(t)Axll· 

Hence etA~A~x -+ T(t)Ax if A -+ 00 and the convergence is uniform on each bounded 
subinterval of 0:5 t < 00. It follows that 

(17) 

T(t)x - T(to)x = lim etA~x - etoA~x 
~-+oo 

t 

= lim j i.e8A~ xds 
~-+oo ds 

to 
t 

= lim je8A~A~xdS 
~-+oo 

to 
t 

= j T( s )Axds. 
to 

Since the function s 1-+ T( s )Ax is continuous on [0,00), formula (16) implies that 

t 

_1-CT(t)x - T(to)x) = _1_ jT(S)AXdS 
t - to t - to 

to 

-+ T(to)Ax = AT(to)x, 

We conclude that 

(18) 
d 
dt T(t)x = AT(t)x = T(t)Ax, t ~ 0, 

t -+ to. 

which shows that u( t) = u( t; x) = T( t)x is a Cl-solution of the abstract Cauchy problem 
(1). Indeed, u(O) = T(O)x = x by (14), the vector u(t) = T(t)x E D(A) for every 
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t E [0,(0) because of (16), and the function u is continuously differentiable on [0,(0) and 
satisfies the first equation in (1) because of (18). 

Part (v). To establish the uniqueness of the solution we need the following 
general remark. Let J be a subinterval of [0,(0), and let g: J -+ X be a differentiable 
function such that g(s) E D(A) for every s E J. Then s ~ T(s)g(s) is differentiable on 
J and 

(19) ~ T(s )g(s) = T(s )Ag(s) + T(s)g' (s), s E J. 

To prove (19) take s E J and 0 =f. hER. Then 

1 
h{T(s + h)g(s + h) - T(s)g(s)} 

(20) = ~{T(s + h) _ T(s)}g(s) + T(S){ g(s + h~ - g(S)} 

1 + h{T(s + h) - T(s)}{g(s + h) - g(s)}. 

So to establish (19) it suffices to show that the last term in (20) goes to zero if h -+ O. 
But 

1 
h{T(s + h) - T(s)}{g(s + h) - g(s)} 

= {T(s + h) _ T(s)} { g(s + h~ - g(s) _ g'(s)} 

+ {T(s + h) - T(s)}g'(s) -+ 0, h -+ 0, 

because of (13) and the continuity of the function s ~ T(s)y for any y E X. 

Part (vi). Suppose that v is another solution of (1). We have to show that 
vet) = T(t)x. To do this we fix t > 0 and apply the remark made in the preceding part 
to the function go( s) = v( t - s) with s E J = [0, t]. Note that gO is differentiable and 
go( s) E D( A) for 0 :5 s :5 t. Thus we may conclude that 

d 
ds T(s)v(t - s) = T(s)Av(t - s) + T(s)( -V'(t - s» 

= T(s)Av(t - s) - T(s)Av(t - s) = 0 

for 0 :5 s :5 t. It follows that 

T(t)x - vet) = T(s)v(t - s{:: 

t 

= J ~ T(s)v(t - s)ds = 0, 

o 

and hence vet) = T(t)x, which proves that (1) is uniquely solvable. 0 

The operator A-\ appearing in (6) is called the Yoshida approximant of A. 
This terminology is justified by formula (8). 
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XIX.2 GENERATORS OF STRONGLY CONTINUOUS SEMI
GROUPS 

In the previous section we have seen that the solution u(t; x) of the abstract 
Cauchy problem gives rise to a family T(t), 0 ~ t < 00, in £(X), the set of all bounded 
linear operators on the Banach space X, such that 

(i) T(t + s) = T(t)T(s), 5, t E [0,00), 

(ii) T(O) = I, 

(iii) limt!o T(t)x = x, x EX. 

A family T(t) E £(X), 0 ~ t < 00, with the above properties is called a strongly contin
uous semigroup on X (shortly: a Co semigroup). We shall now show that, conversely, a 
Co semigroup T(·) gives rise to an operator A which satisfies the hypotheses of Theorem 
1.1 and the unique solution to the associated abstract Cauchy problem is u(t; x) = T(t)x 
for each x E'D(A). 

LEMMA 2.1. If T(·) is a strongly continuous semigroup on X, then there 
exist real numbers M and w such thai 

(1) o ~ t < 00. 

PROOF. There exists 6 > 0 such that 

(2) M := sup{IIT(t)111 0 ~ t ~ 6} < 00. 

If this is not the case, then there exists a sequence (tn) such that tn 10 and IIT(tn)1I ~ n 
for n = 1,2, .... Hence we may infer from the uniform boundedness principle that for 
some x E X, the sequence (IIT(tn)xll) is unbounded. But this contradicts property (iii) 
in the definition of a strongly continuous semigroup. Thus there exists 6 > 0 such that 
(2) holds. Now, take t = n6 + r, where 0 ~ r < 6 and n is a nonnegative integer. Since 
T(t) is a semigroup 

IIT(t)11 ~ IIT(6)nIlIlT(r)1I ~ M n +1 

~ MMt/ 6 = Mewt , 

with w:= 6-1 IogM. 0 

For the strongly continuous semi group T(·) constructed in the proof of The
orem 1.1 we have seen that 

(3) lim -hI (T(h)x - x) = Ax, 
h!O 

x E'D(A). 

In the following theorem this identity is the starting point for our definition of A. 

THEOREM 2.2. Suppose that T(·) is a strongly continuous semigroup on X. 
Define A(X -+ X) by 

'D(A) = { x E X I ~N ~(T(h)x - x) exists }, 

Ax = lim -hI (T(h)x - x). 
hlO 
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Then A is a closed densely defined operator and the abstract Cauchy problem associated 
with A has the unique solution U(tix) = T(t)x for each x E D(A). Furthermore, if M 
and ware real numbers such that (1) holds, then for ?JU > w 

(a) ,\ E peA), 
00 

(b) (,\ - A)-Ix = J e-)..tT(t)xdt, x EX, 
o 

(c) 11('\ - A)-nil::; M(~'\ _w)-n, n = 1,2, .... 

PROOF. The proof is split into six parts. The first four parts concern the 
abstract Cauchy problem associated with A and in the two remaining parts we prove the 
statements (a)-(c). In what follows we assume that the conditions of the theorem are 
fulfilled. 

Part (i). The first step is to prove that the map t 1-+ T(t) is strongly continu
ous on [0,00), that is, given x E X we have to show that t 1-+ T( t)x is a continuous map 
from [0,00) into X. By property (iii) of a strongly continuous semigroup, t 1-+ T(t)x is 
continuous from the right at to = O. Take to > O. Then, by property (iii) applied to 
y = T(to)x, 

lim T(t)x - T(to)x = lim T(t - to)y - Y = O. 
tHo tito 

For t < to we have 

(4) T(t)x - T(to)x = T(t)(x - T(to - t)x). 

By Lemma 2.1 the function t 1-+ T(t) is uniformly bounded in the operator norm on 
compact subintervals of [0,00). It follows (again use property (iii)) that for t i to the 
right hand side of (4) goes to zero. Thus T(t)x - T(to)x -> 0 whenever t -> to. 

Part (ii). Next we show that D(A) = X. It follows from the strong continuity 
of T(·) that for each x E X 

(5) 

t 

Xt := ~ J T(s)xds -> T(O)x = x, 

o 
tl o. 

Moreover, Xt is in D(A), because for t > 0 

t t 

~(T(h)xt - Xt) = t~ J T(h + s)xds - t~ J T(s)xds 
o 0 

t+h t 

= t~ J T(s)xds - t~ J T(s)xds 
h 0 

t+h h 

= t~ J T(s)xds - t~ J T(s)xds 
t 0 

1 
-> -(T(t)x - x), h 10. 

t 
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Thus Xt E V(A), and hence x E V(A) by (5). We conclude that V(A) = x. It is clear 
that A is linear. 

Part (iii). In this part we show that for each x E V(A) the vector T(t)x E 
V(A) and 

(6) 
d 
dtT(t)x = T(t)Ax = AT(t)x, 0:5 t < 00. 

To do this, note that 

(7) ~(T(h)T(t)X-T(t)X)-T(t)AX=T(t)a(T(h)X-X)-AX] -0, h!O. 

This shows that T(t)x E V(A) and AT(t)x = T(t)Ax. From (7) it also follows that T(t)x 
has a right-sided derivative equal to T(t)Ax. On the other hand 

1 h (T(t + h)x - T(t)x) - T(t)Ax 

= T(t + h){T(-~Z - x - AX} + (T(t + h) - T(t))Ax _ 0, hi 0, 

because x E V(A), the map t ..... T(t) is uniformly bounded in the operator norm on 
compact subintervals of [0,00) and t ..... T(t)y is continuous. Thus (6) is established. 

From (6) it follows that for x E V(A) the function u(tjx) := T(t)x is a 
solution of the abstract Cauchy problem associated with A. To see that there is no other 
solution with the same initial value x one applies the same reasoning as used in Part (vi) 
of Theorem 1.1. Note that the general remark made in Part (v) of the proof of Theorem 
1.1 is valid whenever T(·) is a strongly continuous semigroup. 

Part (iv). We show that A is closed. To do this, suppose that Xl, x2, ... is a 
sequence in V(A) such that Xn - x and AXn - y. From (6) we get 

t t 

T(t)xn - Xn = f ~ T(s)xn ds = f T(s)Axn ds 

o 0 

Here we used that for 0 :5 s :5 t 

t - f T(s)yds, 
o 

n-oo. 

IIT(s)Axn - T(s)ylI :5 MewtllAxn - YII· 

On the other hand, T(t)xn - Xn _ T(t)x - x. Thus 

t 

-(T(t)x - x) = - T(s)yds - T(O)y = y, II! 
t t 

o 
t! o. 
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Hence x E'D(A) and Ax = y, which shows that A is closed. 

Part (v). It remains to establish (a )-( c ). First we prove (a) and (b). For 
each x E X and iR>. > w, the Laplace transform 

(8) 

00 

R(>.)x := J e-)"tT(t)xdt 

o 

(considered as an indefinite Riemann-Stieltjes integral) exists. Indeed, since T(t)x is 
continuous on 0 :::; t < co, the integrand in (8) is a continuous function of t, and from 
IJT(t)xlJ :5 MewtlJxlJ and iR>. > w it follows that the norm of the integrand is majorized 
by an exponential decaying function. Let us show that R(>.)x E'D(A). We have 

00 00 

~{T(h)R(>')x - R(>.)x} = ~ J e-)"tT(t + h)xdt - ~ J e-)"tT(t)xdt 
o 0 

00 00 

= *e)"h J e-)"tT(t)xdt - * J e-)..tT(t)xdt 
h 0 

00 h 

= ~(e)"h -1) J e-)..tT(t)xdt - e).h (~J e-)"tT(t)xdt) 
o 0 

-+ >.R(>.)x - x, h L O. 

Hence R(>.)x is in 'D(A) and AR(>.)x = >.R(>.)x - x, or (>. - A)R(>.)x = x for all x E X. 
On the other hand, given x E 'D(A), we have from (6) that 

00 00 

R(>.)Ax = J e-)..tT(t)Axdt = J e-)..tAT(t)xdt = AR(>.)x. 
o 0 

The last equality may be seen by considering Riemann sums corresponding to the inte
grals 

N J e-)..tT(t)xdt, 

o 

N J e-)..t AT(t)xdt, 

o 
and using the fact that A is closed. Hence (a) and (b) are proved. 

Part (vi). We prove the statement (c). Define a new norm 11·111 on X by 
setting 

IJxlh = sup{e-wsIJT(s)xlJl 0:::; s < co}. 

Since T(O) = I and (1) holds, it is clear that 

(9) IlxlJ :::; IJxlh :::; MlJxlJ, x EX. 
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Take lRA > w. It follows from (b) that 

00 

II(A - A)-lxlll = :~~IIJ e-W8T(S)e-,\tT(t)Xdtll 
- 0 

00 

= :~~IIJ e(w-,\)te-w(s+t)T(t + s)xdtll 
- 0 
00 

::; / e(w-lIU)tllxllidt = lRA ~)Ixlh. 
o 

But then II(A - A)-nih::; (lRA - w)-n, and by (9) 

II(A - A)-nxll ::; II(A - A)-nxlh ::; (lRA -w)-nllxlh 

::; M(lRA - w)-nllxll, 

which proves (c). 0 
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The operator A defined in Theorem 2.2 is called the (infinitesimal) generator 
of the Co semigroup T(·). 

Let us reconsider Theorem 1.1 in terms of Theorem 2.2. If we start with 
an operator A which satisfies the hypotheses of Theorem 1.1, then A determines a Co 
semigroup T(·) via the formula 

T(t)x = lim etA>. x, 
'\-+00 

A,\ := AA(A - A)-I. 

Now TO has a generator, call it AI. How does A compare with AI? From formula (3) 
and the definition of a generator it follows that A is a restriction of AI. On the other 
hand, by Theorem 2.2 (and Lemma 2.1) there exists A such that both A - A and A - Al 
are invertible. But then 

x = (A - A)V(A) = (A - AI)V(A) C (A - AI)V(At) = X, 

which implies that V(A) = VeAl), and thus A = AI. This observation, Theorem 2.2 
and the proof of Theorem 1.1 yield the following fundamental result. 

THEOREM 2.3 (Hille-Yoshida-Phillips). An operator A(X - X) is the 
infinitesimal generator of a strongly continuous semigroup T(·) satisfying 

t ~ 0, 

if and only if A is a closed densely defined operator and for every real A > w one has 
A E peA) with 

(10) n = 1,2, .... 
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Let X = BUC(R). The translation semigro'IJ.p T(·) on X, which is defined by 

(11) (T(t)J)(s) = J(t + s), s E R, t ~ 0, 

is strongly continuous. Let B be its generator. From the example in Section 1 it follows 
that B is an extension of the operator A given by 

(12) 'D(A) = {g E X 19' EX}, Ag = 9'. 

A simple computation shows that each ,\ > ° is in peA). Thus for ,\ E R sufficiently large 
both ,\ - A and A - B are invertible, and hence 'D(A) = 'D(B). We conclude that the 
operator A in (12) is the generator of the translation semigroup on X = BUC(R). 

The result of the previous paragraph can be used to prove the classical Weier
strass approximation theorem as follows. Let J be a continuous real-valued function on 
[0,1]. Extend J to R by letting J(t) = J(O) for t :5 0 and J(t) = J(I) for t ~ 1. This 
extension we still denote by J. Now apply Theorem 1.1 to the operator A in (12). Then 

(13) lim etA~ J = T(t)J, 
>'-+00 

where T(t) is given by (11). From the proof of Theorem 1.1 we know that in (13) the 
convergence is uniform in t on [0,1]. Also the series 

converges uniformly on 0 :5 t :5 1. Thus, given e > 0, there exists an integer N and a 
real number ,\ > 0 such that 

I N tic I sup (T(t)J)(s) - L ki(A~J)(s) < e, 
sER Ic=O • 

O:5t:51. 

Setting s = 0 yields 

o :5 t :5 1, 
1 Ie 

cle = k! (A,d)(O), 

which is the desired approximation. 

Let X = Lp([O, 00)) with 1:5 p < 00. Next we shall show that the maximal 
operator A(X -+ X) corresponding to T = It is the generator of the semigroup 

(14) (T(t)J)(s) = J(t + s), t ~ 0, s ~ o. 

Recall that 'D(A) consists of those J E X which are absolutely continuous on every 
compact subinterval of [0,00) and AJ = J'. First, we prove that the semigroup (14) is 
strongly continuous. For each t ~ 0 the operator T(t) is bounded on X = Lp([O,oo)) 
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and IIT( t) II ~ 1. Take f EX, and let e > O. Choose a continuous function <p on [0,(0) 
with support in a bounded interval [0, a] such that IIf - <p1I < e/3. Since <p is uniformly 
continuous on [0,(0), we can find 5 > 0 such that 0 ~ t < 5 implies that 

But then for 0 ~ t < 5 

1 _ / 
supJ(T(t)<p)(s) - <p(s)J < 3ea 1 p. 
8~O 

IIT(t)f - fll ~ IIT(t)lIlIf - <p1I + IIT(t)<p - <p1I + 1I<p - fll < e, 

which proves the strong continuity of the semigroup. 

Let Ao be the generator of T(t). We have to show that Ao is equal to the 
maximal operator A. Take f E D(A). Then 

00 

IIX(T(h)f-f) -Aflr = Jlf(t+h~-f(t) -J'(t)IPdt 
o 
00 h 

= JI~ JU'(t + s) - f'(t)]dSr dt 
o 0 
00 1 

= JIJ[J'(t + xh) - f'(t)]dxI P dt 
o 0 
00 1 

~ J J If'(t + xh) - J'(t)IPdxdt 
o 0 

1 00 

= J J 1J'(t + xh) - J'(t)IPdtdx 
o 0 

1 

= J IIT(xh)f' - f'lIPdx --+ 0 

o 
(h 1 0). 

This shows that f E D(Ao) and Aof = Af. It remains to show that D(Ao) C D(A). 
Take 9 E D(Ao). Let 

u = Aog = lim -hI (T(h)g - g). 
h!O 

For any 0 ~ a < t < 00, Holder's inequality implies that convergence in Lp([a, t]) implies 
convergence in Ll([a, t]). Hence 

t t 

J u(s)ds = ~lo J * (g(s + h) - g(s))ds 
a 0 
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t t 

= ~m(~ J g(S + h)ds - ~ J g(s)ds) 
a a 
t+h t 

= ~m(~ J g(s)ds - ~ J 9(S)dS) 
a+h a 

t+h a+h 

= ~m (~ J g( s )ds - ~ J g( s )ds ) . 
t a 

Since 9 is integrable on bounded subintervals of [0,00), there exists a set E C [0,00) of 
measure zero such that 

b+h 

lim -hI J g(s)ds = g(b), 
h!O 

b 

b¢ E. 

But then we may conclude that 

t J u(s)ds = get) - g(a), t,a ¢ E. 
a 

t 
If we define get) = f u(s)ds - g(a), then g = 9 as elements in X = Lp([O, 00». Further-

a 
more, g E D(A), which proves that D(Ao) C D(A). Thus A = Ao. 

Additional examples of generators of Co semigroups appear in the next sec-
tions. 

XIX.3 THE CAUCHY PROBLEM REVISITED 

The following theorem makes precise the relationship between generators of 
strongly continuous semigroups and the Cauchy problem. 

THEOREM 3.1. Let A(X -+ X) be a densely defined operator with a non
empty resolvent set. A necessary and sufficient condition that the Cauchy problem 

{ 
u'(t) = Au(t), 

u(O) = x, 

0:'5 t < 00, 

has a unique continuously differentiable solution for every x E D(A) is that A is the 
generator of a strongly continuous semigroup. 

PROOF. The sufficiency is evident from Theorems 2.2 and 1.1. The proof 
of the necessity is split into five parts. In what follows, the function u(·; x) is the unique 
CI-solution to the Cauchy problem above. 
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Part (i). We have to associate with A a Co semigroup. First we restrict our 
attention to the domain of A. Define T(t): D(A) -+ D(A) by T(t)x = u(t; x), 0 ::; t < 00. 

lt follows from the uniqueness of the solution that T(t) is linear. Furthermore, T(t) is 
a semi group in t. Indeed, for each x E D(A) and s 2: 0 fixed, wet) = T(t)T(s)x and 
vet) = T(t + s)x are CI-solutions to the Cauchy problem with initial condition T(s)x. 
Hence wet) = vet), and thus T(t + s) = T(t)T(s). Clearly, T(O)x = x for each x E D(A). 

Part (ii). Let XA denote the space D(A) endowed with the graph norm 
IIxliA = IIxll + IIAxll· Since peA) =1= 0, the operator A is closed, and therefore X A is a 
Banach space. We shall show that T(·) is a strongly continuous semi group on X A . Since 
u ( t; x) is con tin uously differentiable on [0, 00 ), we have 

(1) limT(t)x = limu(t;x) = u(O;x) = x, 
t!O t!O 

(2) limAT(t)x = limu'(t;x) = u'(O;x). 
t!O t!O 

The fact that A is closed implies that Ax = u'(O; x), and hence (1) and (2) show that 

IIT(t)x - XIiA -+ 0 (t 1 0). 

lt remains to prove that T(t) E .c(XA)' Let :F = C([O, 1],XA) be the Banach space of 
all continuous functions from [0,1] into XA endowed with the supremum norm 

IIIIIIIA = max{III(t)IIA 10::; t ::; I}. 

Define the linear operator S: XA -+ :F by (Sx)(t) = u(t; x). The function Sx is in F, 
because u( t; x) is continuously differentiable on 0 ::; t < 00 and 

II(SX)(tl) - (Sx)(t2)IIA = IIU(tl; x) - U(t2; x)1I + IIAu(tl; x) - AU(t2; x)1I 

= Ilu(tl;X) - u(t2;x)1I + IIU'(tI;X) - u'(t2;x)ll· 

Let us prove that S is a closed operator. Suppose IIxn - XIiA -+ 0 and IIISxn - giliA -+ 0 
for n -+ 00. Put un(t) = u(tj xn ). lt follows from the definitions of the norms II·IIA and 

III . IliA that 

(3) u~(t) = Aun(t) -+ Ag(t) (n -+ 00) 

uniformly on 0 ::; t ::; 1 and 

t 

get) = lim un(t) = lim (un(O) + JU~(S)ds) 
n --+00 n--+(X) 

o 
t 

= n~~ (xn + J AUn(S)dS) 
o 

t 

= x + J Ag(s)ds, 
o 

o ::; t ::; 1. 
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Since the convergence in (3) is uniform on 0 ::; t ::; 1, the continuity of u~ implies the 
continuity of Ag, and therefore g'(t) = Ag(t), 0 ::; t :::; 1, and g(O) = x. Put 

wet) = { get), 
u(t -ljg(l»), 

O:::;t::;l, 

t ~ 1. 

Then w(·) is a CI-solution of the Cauchy problem with initial value w(O) = g(O) = x. 
Hence, by the uniqueness of the CI-solutions, wet) = u(tj x) for t ~ O. Therefore, 

(Sx)(t) = u(tj x) = wet) = get), o ::; t ::; 1, 

which shows that S is closed on the Banach space XA. Consequently, S is bounded and 
for 0 :::; t ::; 1, 

(4) IIT(t)xIIA = II(Sx)(t)IIA ::; IIISxlliA ::; IISlllIxllA, 

For t ~ 0, we have t = n + 8, where n is a nonnegative integer and 0 ::; 8 < 1. Since T(·) 
is a semigroup on D(A), it follows from (4) that 

(5) 
IIT(t)xIIA = IIT(1)nT(8)xIIA ::; IISlIn+IllxllA 

::; IISllllSlltllxllA = IISlIewtllxllA, 0::; t < 00, x E XA, 

where w = log IISII. 

Part (iii). Next, we show that T(t)Ax = AT(t)x for every x E D(A2 ). For 
such a vector x we have 

(6) 

Put 

(7) 

t 

T(t)Ax = u(tj Ax) = Ax + J u'(Sj Ax)ds 

o 
t 

= Ax + J Au(sjAx)ds, 

o 

t 

wet) = X + J u(Sj Ax)ds, 
o 

o ::; t < 00. 

o ::; t < 00. 

Since A is closed, (6) and (7) imply that 

t 

Aw(t) = A(X + J U(SjAX)dS) 
o 

t 

= Ax + J Au(sj Ax)ds = u(t; Ax). 

o 
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Thus Aw(.) is continuous and 

w'(t) = u(t; Ax) = Aw(t), 

By uniqueness, wet) = u(t;x), and 

w(o) = x. 

(8) T(t)Ax = Aw(t) = Au(t;x) = AT(t)x, 

425 

Part (iv). In this part we extend the semigroup T(·) to all of X. By hypoth
esis, there exists '>'0 E peA). Given x E D(A), the vector y := ('>'0 - A)-Ix is in D(A2). 
Thus (5), (8) and the boundedness of the operators ('>'0 - A)-I and A('>'o - A)-I imply 
that for some positive constants Qo, QI, Q2, 

(9) 
IIT(t)xll = 11('>'0 - A)T(t)yll :5 QoIIT(t)yIlA 

0:5 t < 00. 

Since D(A) is dense in X, formula (9) shows that T(t) can be extended to a bounded 
linear operator on X which we still denote by T(t). Since T(·) is a semi group on D(A), a 
continuity argument shows that the same holds true for T(·) on X. Also, by continuity, 
T(O) is the identity operator on X. From 

IIT(t)z - zll :5 IIT(t)z - T(t)xll + IIT(t)x - xii + IIx - zll 
:5 (1 + Q2ewt )lIx - zll + IIT(t)x - xII 

and the fact that TO is strongly continuous on XA, it follows that T(·) is also a strongly 
continuous semigroup on X. 

Part (v). The proof of the theorem is complete once it is shown that the 
infinitesimal generator Ao of the semigroup T(·) on X is equal to A. For each x E D(A), 
we have 

1 1 
't(T(t)x - x) = 't(u(t,x) - x) 

-+ u'(O,x) = Ax, t ~ O. 

Thus x E D(Ao) and Aox = Ax. Hence A C Ao. 

It remains to prove that D(Ao) C D(A). Let x E X be given. Since 

('>'0 - A)-ID(A) C D(A2) 

and D( A) is dense in X, it follows that D( A 2) is also dense in X. Therefore there exists 
a sequence (xn ) in D(A2) which converges to x. By Theorem 2.2 and formula (8), there 
exists '>'0 E p(Ao) such that for n = 1,2, ... 

00 

(.>. - AO)-Ixn = J e->'tT(t)xndt , 
o 

00 

(.>. - Ao)-I Aoxn = (.>. - Ao)-I AXn = J e->.tT(t)Axndt 

o 
00 

= J A(e->.tT(t)xn)dt. 

o 
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Since A is closed, we conclude that 

A(-\ - AO)-lXn = (-\ - AO)-l AOxn 

= Ao(-\ - AO)-lXn --> Ao(-\ - AO)-lX. 

Also, (-\ - Ao)-lxn --> (-\ - AO)-lx. Again we use that A is closed. It follows that 
(-\ - AO)-lx is in 'D(A). Thus 'D(Ao) = Im(A - Ao)-l C 'D(A), and we have proved that 
A = Ao. 0 

The next theorem gives the solution of the inhomogeneous Cauchy problem. 

THEOREM 3.2. Let A(X --> X) be the infinitesimal generator oj the strongly 
continuous semigroup T(·). Suppose that J: [0,00) --> X is continuously differentiable on 
[0,00). Then Jor each x E'D(A), there exists a unique solution to 

(10) { 
u'(t) = Au(t) + J(t), 

u(O) = x. 

o ~ t < 00, 

This solution is continuously differentiable and is given by 

(11) 

t 

u(t) = T(t)x + J T(t - s)J(s)ds, 
o 

PROOF. Put 

t t 

t ~ o. 

vet) = J T(t - s)J(s)ds = J T(s)J(t - s)ds, 
o 0 

t ~ o. 

Take h > 0, fix t ~ 0, and let 0 ~ a ~ t. Note that 

a+h 

1 1 J y;{J(a + h) - J(a)} - J'(a) = y; {J'(s) - j'(a)}ds --> 0 (h 1 0). 

In fact, since l' is uniformly continuous on compact subintervals of [0,00), the above 
convergence is uniform on 0 ~ a ~ t. It follows that 

t 

X{v(t + h) - vet)} = J T(s) [x{J(t - s + h) - J(t - s)}] ds 
o 

t+h 

+ X J T(s)J(t + h - s)ds 
t 

t 

--> J T(s)f'(t - s)ds + T(t)J(O), h 10. 
o 
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On the other hand, 

Hh t 

~{V(t + h) - vet)} = ~ / T(t - s + h)J(s)ds - ~ / T(t - s)J(s)ds 
o 0 

t+h 

= ~{T(h)v(t) - vet)} + ~ / T(t - s + h)J(s)ds. 
t 

Since 
Hh 

~ / T(t - s + h)J(s)ds -+ T(O)J(t), h 10, 
t 

we conclude that 

lim -hI {T(h)v(t) - vet)} = lim -hI {vet + h) - vet)} - J(t). 
hlo hlo 

A similar calculation holds true for t > 0 and h T O. It follows that 

vet) E D(A), Av(t) = v'et) - J(t), t ~ O. 

Now let u be the function defined by (11), where x E D(A). Then u(O) = x and 

d 
u'(t) = dtT(t)x + v'et) = AT(t)x + Av(t) + J(t) 

= Au(t) + J(t), t ~ O. 

Thus u is a solution of (10). Since v' (·) and AT(·)x = T(·)Ax are continuous functions, 
the same holds true for u' . 

Suppose that w(·) is another solution to (10). Then u(·) - w(·) is a solution 
to the Cauchy problem 

(12) { 
y/(t) = Ay(t), 

yeO) = o. 
0:5 t < 00, 

Hence u(t) - wet) = 0 for all 0:5 t < 00 by the uniqueness of the solution to (12). 0 

XIX.4 DISSIPATIVE OPERATORS AND CONTRACTION 
SEMIGROUPS 

A strongly continuous semigroup T(.) is called a contraction umigroup if 
IIT(t)11 :5 1 for all t ~ O. The semi group TO defined on X = BUG(R) or on X = 
Lp([O,oo)), 1 :5 p < 00, by 

(T(t)J)(s) = J(t + s), t ~ 0, 
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is an example of a contraction semigroup. 

THEOREM 4.1. An operator A(X -+ X) iJ the infiniteJimal generator of a 
contraction Jemigroup if and only if A iJ denJely defined, (0,00) belongJ to the reJolvent 
Jet of A and 

(1) II(A - A)-III ::; A-I, 

PROOF. The result is an immediate consequence of Theorem 2.3. One only 
has to remark that (1) implies that for n = 1,2, ... 

A> o. 0 

Dissipative operators arise naturally in the study of contraction semigroups. 
We first consider the Hilbert space case. Let H be a Hilbert space. An operator 
A(H -+ H) is called diJJipative if 

!R{Ax, x) ::; 0, x E V(A). 

THEOREM 4.2. Let H be a Hilbert space, and let A(H -+ H) be denJely 
defined. Then A iJ the generator of a contraction Jemigroup if and only if A iJ diJJipative 
and there exiJtJ a AO > 0 in peA). 

PROOF. Suppose A is dissipative and AO E peA). Take A > 0 and x E V(A). 
Then 

(2) 

Hence 

(3) 

Now for any A, 

(A - A) = [J + (A - AO)(AO - A)-l](AO - A). 

Therefore, it follows from (3) that AlE p( A) if I A 1 - AO I < Ao. If we replace AO by 
Al = AO ± ~AO in the above argument, then we have that A2 E peA) if IA2 - All < AI. 
Continuing in this manner, it follows that (0,00) C peA) and (1) holds. Hence A is the 
generator of a contraction semigroup by Theorem 4.1. 

x E V(A) 

Hence 

Conversely, let A be the generator of a contraction semigroup T(·). Then for 

!R{T(h)x - x, x) = !R{T(h)x, x) -lIx11 2 ::; o. 

!R{Ax,x) = lim!R{T(h)~ - x ,x) ::; 0, 
hlO 

x E D(A). 

Also, (0,00) C peA) by Theorem 4.1. 0 
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The above theorem can be extended to an arbitrary Banach space X in the 
following manner. For each x E X, the Hahn-Banach theorem implies the existence of a 
functional Fx E X, such that 

(4) 

An operator A(X -+ X) is called diJJipative iff or each x E 'D(A) there exists an Fx E X, 
such that (4) holds and 

(5) x E'D(A). 

If X is a Hilbert space, then the two notions of dissipativeness coincide. To see this one 
needs only to note that for X a Hilbert space, formula (4) implies that Fx( v) = (v, x}. 

THEOREM 4.3. A denJely defined operator A(X -+ X) in a Banach Jpace 
X iJ the generator of a contraction Jemigroup if and only if A iJ diJJipative and there 
exists a Ao > 0 in peA). 

PROOF. Suppose A is dissipative, and let 0 < Ao E peA). Given x E X, let 
Fx E X' satisfy (4) and (5). Hence for A > 0, 

IIxllllAX - Axil ~ lRFx(Ax - Ax) 

= Allxll2 - lRFx(Ax) ~ Allxll2. 
Thus 

(6) II(U - A)xll ~ Allxll, A> 0, 

and the arguments used in the first paragraph of the proof of Theorem 4.2 show that 
(0,00) C peA) and 

A> O. 

Hence A is the generator of a contraction semigroup, by Theorem 4.1. 

Conversely, let A be the generator of a contraction semi group T(·). For each 
x E X there exists an Fx E X, which satisfies (4) (by the Hahn-Banach theorem). Since 
IIT(t)1I S 1, we have 

lRFx{T(h)x - x) = lRFx{T(h)x) -lIxll2 SO. 

Therefore for x E 'D( A) 

lRFx(Ax) = ~NlRFx (~{T(h)x - x}) SO. 

Also (0,00) C peA) by Theorem 4.1. 0 

Applications of Theorem 4.2 yield the following results. 

PROPOSITION 4.4. Let r = a2(t)D2 + al(t)D + ao(t), where ai is a real
valued function in Ci([a, bJ), 0 S j S 2, and let A(L2([a, bJ) -+ L2([a, b])) be defined 
by 

'D(A)'= {f E L2([a, b)) I l' is absolutely continuous, 

f" E L2([a, bJ), f(a) = feb) = O}, 

Af = rf. 
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Then A is the generator of a contraction semigroup whenever a2(t) > 0 and a~(t) -
ai(t) + 2a2(t) ~ 0 for a ~ t ~ b. 

PROOF. Given f E D(A), 

(7) T f = (a2(t)f')' + (al (t) - az(t)) f' + ao(t)f· 

Integration by parts yields 

b 

(( ad')', f) = f (a2( t)f' (t))' f(t)dt 

(8) 
a 

b 

= - f a2(t)If'(t)12dt S; O. 
a 

Here we used the boundary conditions f(a) = feb) = O. Now 

Hence 

b 

)R((al - az)f',j) =)R f (al(t) - az(t))f'(t)f(t)dt 
a 

b 

(9) = ~ f (al(t) - az(t)) !If(t)12dt 
a 

b 

= ~ f (a~(t) - ai(t))lf(t)1 2dt, 
a 

by partial integration. By (7), (8) and (9), 

b 

)R(Af, f) ~ ~ f (a~(t) - ai (t) + 2ao(t)) If(t)1 2dt ~ o. 
a 

Thus A is dissipative. If we can show that 1 E peA), then the proof of the proposition is 
complete by Theorem 4.2. 

We know (see formula (2)) that II(I - A)xll :2: IIxli. In particular, I - A is 
injective. Let us prove that T = I - A is a closed operator. Let p be the differential 
expression 1 - T. The operator T is an extension of Tmin,p' Since codimImTmin,p = 2 
and T is injective, dim D(T)/D(Tmin,p) ~ 2. It follows that for the graphs a similar 
inequality holds true. But G(Tmin,p) is closed, because Tmin,p is closed by definition. It 
follows that G(T) is closed, and thus T is a closed operator. 
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It remains to prove that T = I - A is surjective. The operator Tmax,p is an 
extension of T. Take f E V(Tmax,p). Then there exist complex numbers Co, Cl such that 
g = f - Co - Cl t E VeT). In fact, one may take 

af(b) - bf(a) 
co= a-b ' 

f(a) - feb) 
Cl = a - b . 

It follows that dim V(Tmax,p)/V(T) :5 2. Since KerTmax,p is two dimensional and T is 
injective, we conclude that 

V(Tmax,p) = KerTmax,p EB VeT). 

The latter identity and the fact that Tmax,p is surjective imply that 1m T = L2([a, b]). 
o 

THEOREM 4.5. Let n be a bounded open set in Rn with boundary of class 
c2. Lei 

n n 

L = L aij(x)DiDj + Lai(X)Di, x En, 
i,j=l i=O 

where each aij and ai are in coo (IT). Assume that L is uniformly elliptic. Define the 
operator A( L 2(n) -I- L 2(n)) by 

V(A) = Hf(n) n H2(n), Au = Lu. 

There exists >'0 E R such that if >. ~ >'0, then ->. - A is a generator of a contrac
tion semigroup. Moreover, the operator -A is the generator of a strongly continuous 
sem~group. 

PROOF. By formula (20) in Section XIV.6, there exists >'0 E R such that 
->. - A is dissipative for all >. ~ >'0. By Theorem XIV.6.1 we may assume that ->. - A 
is invertible for >. ~ >'0. But then ->. - A is the generator of a contraction semigroup 
T..\(·) by Theorem 4.2. Now e"\tT..\(.) is a strongly continuous semigroup. Its generator is 
- A. Indeed, since 

1 ..\t ..\t { 1 ( ) } 1 ..\t tee T..\(t)x - x) = e t T..\(t)x - x + tee -l)x, 

the domain of the generator of e..\tT..\(t) is the same as V( ->. - A) = V(A), and for 
x E V(A) 

lim ~(e"\tT..\(t)x - x) = (->. - A)x + >.x = -Ax. 0 
tlo t 

PROPOSITION 4.6. If A is the generator of a contraction semigroup T(·) 
on a Hilbert space H, then T(-)* is a contraction semigroup with generator A*. 

PROOF. For each x E H, 

IIT(t)*x - xll2 = IIT(t)*xIl 2 - 2lR(x, T(t)x} + IIxl12 
:5 211xll2 - 2lR(x, T(t)x} -I- 0, t 1 o. 
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Also T(O)* = I, 

T(t)*T(s)* = (T(s)T(t))* = T(t + s)*, 

and IIT(t)*1I = IIT(t)1I 5 1. Hence T(t)* is a contraction semigroup. Let B be its 
generator. 

IT x E V(A) and y E 'D(B), then 

(Ax,y) = lim -hI (T(h)x - x,y) 
hlO 

= lim -hI (x, T(h)*y - y) = (x, By). 
h!O 

Therefore y E V(A*) and A*y = By. In other words, B C A*. It remains to show 
that 'D(A*) C V(B). Since A and B are generators of Co semigroups, there exists 
,\ E p(A) n p(B). This implies that 

X = (,\ - B)V(B) C (,\ - A*)V(B), 

whence V(B) ::> (,\ - A*)-l X = 'D(A*). 0 

XIX.5 UNITARY SEMIGROUPS 

Throughout thi8 section H is a complex Hilbert space. A strongly continuous 
semigroup TO on H is called unitary (i8ometric) if T(t) is a unitary operator (an 
isometry) for every t ~ O. Our aim is to characterize the generators of the isometric and 
unitary semigroups. The next theorem will be one of the main results. 

THEOREM 5.1. An operator A(H -+ H) is the generator of a unitary 
semigroup if and only if A = iB for some selfadjoint operator B. 

For the proof of Theorem 5.1 we need the following lemma and some other 
preliminary results. 

LEMMA 5.2. Let A(H -+ H) be the generator of a strongly continuous 
semigroup T(.). Then for each x E V(A) 

d 
dt IIT(t)xIl 2 = 2~(AT(t)x, x), t ~ O. 

PROOF. Since 

~(IIT(t + h)xll 2 -IIT(t)xIl2 ) 

1 1 
= (X(T(t + h)x - T(t)x) , T(t + h)x) + (T(t)x, X (T(t + h)x - T(t)x)), 

it follows that for each x E V(A) 

1 
lim -h (II(T(t + h)xll 2 -IIT(t)xIl 2) = (AT(t)x, T(t)x) + (T(t)x, AT(t)x) 
h.-O 

= 2~(AT(t)x, T(t)x). 
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Here we used that T(·)x is continuous and 

1 
h(T(t + h)x - T(t)x) -+ AT(t)x, h -+ 0, 

which follows from Theorem 2.2. 0 

THEOREM 5.3. Let A(H -+ H) be the generator of a contraction semigroup 
T(·). Then the following statements are equivalent: 

(a) T(t) is an isometry for t ~ 0, 

(b) II(A - A)xll ~ -Allxll for all A < 0 and x E D(A), 

(c) A C -A*, that is, iA is symmetric. 

PROOF. (a) => (c). Let x E V(A). Since IIT(t)xll = IIxll for all t ~ 0, 
Lemma 5.2 implies that lR(AT(t)x, T(t)x} = O. In particular, lR(Ax, x} = O. It follows 
that (Ax, x} = -(x, Ax} for each x E V(A), which is equivalent to (c). 

(c) => (b). For x E D(A) and A E R, we have 

(1) 

According to our hypothesis, lR(Ax,x} = O. But then we can use (1) to derive (b). 

(b) => (a). Again we use (1). Take x E D(A). Our hypothesis and (1) imply 
that IIAxll2 ~ 2>.lR(Ax,x} for each A < O. It follows that lR(Ax,x} ~ O. Now, recall that 
T(t) maps D(A) into D(A). So we replace x by T(t)x in the preceding argument, and 
hence 

lR(AT(t)x, T(t)x} ~ 0, t ~ O. 

By Lemma 5.2 this yields IIT(t)xll ~ IIT(O)xll = IIxli. On the other hand IIT(t)xll :::; IIxll, 
because T(·) is a contraction semigroup. Therefore, T(t) is an isometry on D(A). By 
continuity, IIT(t)xll = IIxli for each x E X since D(A) = X. 0 

THEOREM 5.4. Let A(H -+ H) be the generator of a contraction semigroup 
T( .). Then the following statements are equivalent: 

(a) T(t) is unitary for t ~ 0, 

(b) if 0 oF A E R, then A E peA) and 

II(A - A)-III :::; IAI-I , 

(c) A = -A*, that is, iA is selfadjoint. 

PROOF. (a) => (c). Since T(t) is unitary, both T(t) and T(t)* are isometries. 
By Proposition 4.6 the family T(t)*, 0 :::; t < 00, is a contraction semigroup with gen
erator A*. Hence A C -A* and A* C -A** by Theorem 5.3. This proves (c), because 
A** = A. 

(c) => (b). Since A and A* = -A are generators of contraction semigroups, 
Theorem 4.1 applied to A and -A implies (b). 
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(b) => (a). From our hypothesis it follows that A < 0 implies A E p(A*) and 

II(A - A*)-III = II[(A - A)-I]*II = II(A - A)-III < _A-I. 

Hence condition (b) in Theorem 5.3 is satisfied for both A and A*. Therefore T(t) and 
T(t)* are isometries, and thus T(t) is unitary. 0 

PROOF OF THEOREM 5.1. Suppose A = iB, where B = B*. Then 
1 E peA), by Theorem XVL3.1. Since lR(Ax,x) = 0, Theorem 4.2 implies that A is the 
generator of a contraction semigroup. But then we can use Theorem 5.4 to show that 
T(·) is unitary, because A = -A*. 

Conversely, if A generates a unitary semigroup, then A = - A * by Theorem 
5.4. Therefore A = iB, where B = -iA is selfadjoint. 0 

COROLLARY 5.5. Let T be the differential expression given by 

T f = D(pf') + qf, 

where p E C2([a, b]) and q E C([a, b]) are real-valued functions with pet) =I- 0, t E [a, b]. 
Let T(L2([a, b]) -+ L2([a, bD) be the restriction of Tmax,T to those 9 E V(Tmax,T) which 
satisfy the boundary conditions 

a1Og(a) + a11g'(a) + Ihog(b) + /311g'(b) = 0, 

a20g(a) + a21g'(a) + /320g(b) + /322g'(b) = 0, 

where each aij and /3ij is a real number. Suppose that 

and 

/310 /311] = 2 
/320 /321 

_1_ det [aw all] = _1_ det [/310 /311] 
p( a) a20 a21 p( b) /320 /321 . 

Then iT is the generator of a unitary semigroup. 

PROOF. By Corollary XVL1.3 the operator T is selfadjoint, and hence 
Theorem 5.1 gives the desired result. 0 

C2. Let 
COROLLARY 5.6. Let n be a bounded open set in Rn with boundary of class 

n 

L = L Di(aij(x)D1) + ao(x), 
i,j=1 

where ao is a real-valued function in COO(U) and aij = aji E COO(U), i, j = 1, ... , n. 
Suppose that L is uniformly elliptic. Then the operator A(L2(n) -+ L2(n») defined by 

Au = iLu 

is the generator of a unitary semigroup. 

PROOF. Apply Theorem 5.1 and Theorem XVL2.1. 0 
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XIX.6 COMPACT SEMIGROUPS 

A strongly continuous semigroup T(·) on X is called compact if T(t) is a 
compact operator on X for every t > O. Here and in what follows, X is a complex 
Banach space. In this section we characterize compact semigroups and present some 
examples. 

THEOREM 6.1. Let T(·) be a strongly continuous semigroup on X with 
generator A. Then T(·) is a compact semigroup if and only if the map t f-+ T(t) is 
continuous from 0 < t < 00 into C(X) and (A - A)-l is compact for some A E peA). 

PROOF. By Lemma 2.1, there exist constants M and w > 0 such that 
IIT(t)1I ~ Mewt for 0 ~ t < 00. Suppose that T(·) is a compact semigroup. Given 0: > 0 
and K a compact subset of X, there exists 8 = 8(K,0:), 0 < 8 ~ 1, such that 

(1) IIT(h)y - yll < 0:, Y E K, 0 ~ h ~ 8. 

Indeed, since K is compact, the set K is totally bounded (see [W], 24B), and hence there 
exist Y1, ... , Yn in K with the property that the open balls IIY - Yjll < 0:(2MeW + 2)-1, 
j = 1, ... ,n, cover K. Let Y E K. Then 

(2) 
IIT(h)y - YII ~ IIT(h)y - T(h)Yili + IIT(h)Yi - Yill + IIYi - yll 

~ (MeW + 1)IIYi - YII + IIT(h)Yi - Yill, 0 ~ h ~ 1. 

Fix i such that IIYi - YII < 0:(2MeW + 2)-1. Next, choose 0 < 8 ~ 1 such that 

IIT(h)Yi - Yill < 0:/3. 

Then, with this choice of 8, the inequality (2) implies (1). 

Now let a> 0 be arbitrary, and apply (1) to the set K = T(a)S, where S is 
the closed unit ball of X. Our hypothesis on T(·) implies that K is compact. Hence we 
have from (1) that there exists 8(a) = 8(a, 0:), 0 < 8(a) ~ 1, so that 

(3) IIT(h)T(a)x - T(a)xll < 0:, IIxll ~ 1, 0 ~ h ~ 8(a). 

It follows that IIT(h + a) - T(a)1I ~ 0: if 0 ~ h ~ 8(a). This shows that the map t f-+ T(t) 
is a C(X)-valued function which is continuous from the right on 0 < t < 00. 

To prove that t f-+ T(t) is also continuous from the left, let to > 0 be given. 
Take a> 0 such that 0 < a < to < a + 1. Choose 0 < 7J < 8(a) with to - 7J ? a. Then 
for to - 7J ~ t ~ to we have 0 ~ to - t ~ 8(a), and hence by (3) 

IIT(t)x - T(to)xll = IIT(t - a){T(to - t)T(a)x - T(a)x} 1I 

~ o:Mew(t-a) , Ilxll ~ 1. 

But 0 ~ t - a ~ 1. Thus 

IIT(t)-T(to)1I ~o: sup MeWS, 
o~s:9 

to - 7J ~ t ~ to, 
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which proves the left continuity. 

Next we show that R(A) = (A - A)-l is compact if A > w. Since t --+ T(t) is 
continuous in the norm topology and 11e-~tT(t)1I ~ Me("-I-~)t, it follows from Theorem 
2.2(b) that for A > w 

00 

R(A) = I e-~tT(t)dt 
o 

converges in the operator norm topology. Now 

00 

Re(A) = I e-~tT(t)dt, 
e 

A>W, 

is the limit in C(X) of lliemann sums of compact operators since T(t) is compact for all 
t > o. Therefore Re(A) is compact. But then R(A) is compact due to 

lim IIRe(A) - R(A)II = 0, 
e!O 

A >W. 

To prove the converse implications, assume now that the map t 1-+ T(t) is 
continuous from (0,00) into C(X) and that (AO - A)-l is compact for some Ao. Then 
(A - A)-l is compact for all A E peA) (Theorem XV.2.3). Fix A > W and define 

t 

S(t)x = I e-~8T(s)xds, t ~ o. 
o 

Now e-~8T(s), 0 ~ S < 00, is a Co semigroup with generator A - AI (see the proof of 
Theorem 4.5). If we replace T(t) by e-~tT(t) and A by A - AI in Part (iv) of the proof 
of Theorem 2.2, we obtain that 

t I(A -AI)e-~8T(s)xds = e-~tT(t)x - x. 

o 

Since A - AI is closed, we conclude that 

is compact for all t ~ O. From the assumption that t 1-+ T(t) is continuous with respect 
to the operator norm it follows that for any to > 0 

to+h 

T(to) = e~to (~N X J e-~8T(S)dS) 
to 

= e~to {~N X (S(to + h) - S(to») }, 
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with convergence in £(X). Hence T(to) is the limit in £(X) of compact operators and 
therefore T( to) is compact. 0 

THEOREM 6.2. Let A(X --+ X) be the generator of a compact "emigroup 
T(.). Then <7(A) i" either empty or con"i"t" of a finite or countable "et of eigenvalue" of 
finite type which have no limit point in C. Furthermore, 

(4) {etl-' ! J1. E <7(A)} = <7(T(t»\{O}, t > 0, 

and Acp = J1.cp if and only if T(t)cp = el-'tcp for t ;:: O. 

PROOF. Since A is the generator of a Co semigroup, p(A) is non-empty. 
By Theorem 6.1, the operator A has a compact resolvent, and hence the first statement 
about <7(A) is a direct consequence of Theorem XV.2.3. 

Assume Acp = J1.cp. Let AA = '\A('\ - A)-l be the Yoshida approximant of 
A. Then AACP = ,\J1.(,\ -I-')-lcp, and hence, by Theorems 1.1 and 2.2, 

T(t)cp = lim etA>.cp = { lim exp(t \ ,\J1. )}cp 
A ...... OO A ...... OO A - I-' 

= etl-'cp, t ;:: O. 

Conversely, assume that T(t)cp = el-'tcp for t ;:: O. Then 

~(T(t)cp - cp) = {~(el-'t -l)}CP --+ I-'CP, t! O. 

Thus cp E V(A) and Acp = J1.cp. 

It remains to prove (4). Take J1. E <7( A). Then I-' is an eigenvalue (of finite 
type) of A. Hence there exists cp f. 0 such that Acp = I-'Cp. The result of the previous 
paragraph shows that etl-' is an eigenvalue of T(t). In particular, etl-' E <7(T(t»)\{O} 
for t > O. Next, assume that TJ f. 0 is in <7(T(to» for some to > O. Since T(to) is 
compact and each T(t) commutes with T(to), the space Xo := Ker(TJI - T(to» is a 
non-zero finite dimensional subspace which is invariant under each T(t). It follows that 
T(t)!Xo,O ::; t < 00, is a Co semigroup acting on a finite dimensional space, and hence its 
generator B is a bounded linear operator with V(B) = Xo. The finite dimensionality of 
Xo ensures the existence of an eigenvalue I-' of B with corresponding eigenvector cp E Xo. 
Obviously, V(B) C V(A). Thus Acp = J1.cp and J1. E <7(A). But then, by the result derived 
in the second paragraph of this proof, T(t)cp = el-'tcp for t ;:: O. In particular, TJCP = el-'tocp, 
which implies TJ = el-'to (because cp f. 0). 0 

COROLLARY 6.3. Let A(H --+ H) be the generator of a Jtrongly continuouJ 
semigroup T(·) on a Hilbert Jpace H. A neceJJary and Jufficient condition that T(t) 
be compact and selfadjoint for every t > 0 iJ that A iJ Jelfadjoint and has a compact 
resolvent. In thiJ caJe there exiJtJ an orthonormal baJiJ CPl, CP2, ... for H conJiJting of 
eigenvectors of A with correJponding real eigenvalueJ 1-'1, J1.2, . .. and for each x E H 

(5) T(t)x = L el-'kt(x,CPk)CPb 
k 

t ;:: O. 
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PROOF. Suppose that T(t) is compact and selfadjoint for all t > O. Take 
>. > w (where w is as in Lemma 2.1). In the proof of Theorem 6.1 we showed that 

(6) 
00 

(>. - A)-I = J e->.tT(t)dt 

o 

is compact. Moreover, the integral in (6) converges in the operator norm. Since T(t) is 
selfadjoint for all t ~ 0, it follows, by taking adjoints of the Riemann sums converging 
to (>. - A)-I, that (>. - A)-I is selfadjoint. By Proposition XIV.2.6, this implies that 
(>. - A)-1 = (>. - A*)-I, because>. is real. Thus A = A* and A has a compact resolvent. 

Next, assume that A is selfadjoint and has a compact resolvent. Choose 
a > w (where w is as in Lemma 2.1). Then a - A is selfadjoint and has a compact 
inverse. So we may apply Theorem XVI.5.1 to a - A (instead of A). It follows (make a 
translation in a) that there exists an orthonormal basis {CPl, CP2, ... } of H consisting of 
eigenvectors of A with corresponding real eigenvalues 1-'1,1-'2, ... such that II-'jl -- 00 if 
dimH = 00 and 

Ax = LI-'j(x,cpj)cpj, x E V(A). 
j 

Since (w,oo) C peA), we have I-'j ~ w, and hence I-'j -- -00 if dimH = 00. From 
Acpj = I-'jCPj it follows (by Theorem 6.2) that T(t)cpj = el-'jtcpj. Each x E H has the 
representation x = Lk(x,CPk)CPk, and therefore 

T(t)x = L(x, CPk)T(t)CPk = L el-'A:t(x, CPk)CPb 
k k 

which proves (5). Since I-'j -- -00 if dimH = 00, the representation (5) shows that T(t) 
is compact and selfadjoint for each t > O. 0 

The operator T(t) given by (5) is Hilbert-Schmidt if and only if Lk e21-'A:t < 
00. It is a trace class operator if and only if L:k el-'I:t < 00. 

We end this chapter with the following example. Let H = L2([0,27r]), and 
define A( H -- H) by 

V(A) = {f E H I f' is absolutely continuous, f" E H, 

f(O) = f(27r), f'(O) = f'(27r)}, 

Af = f". 

The operator A is densely defined and dissipative since, by partial integration, 

2~ 2~ 

(Af, f) = f f"(t)f(t)dt = - f If'(t)1 2dt ~ o. 
o 0 

An application of Theorem XIV.3.1 shows that I - A is invertible. Hence 1 E peA) and 
A generates a contraction semigroup T(·) by Theorem 4.2. Now CPn(t) = (v'2:;r)-leint , 
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n = 0, ±1, ±2, ... , is an orthonormal basis for H and A'Pn = -n2'Pn. Hence T(t)'Pn = 
e-n2t'Pn by the arguments given in the second paragraph of the proof of Theorem 6.2. 
Since 

t > 0, 

T(t) is a trace class operator for each t > o. Also, T(t) is selfadjoint, and thus, by 
Corollary 6.3, the operator A is selfadjoint and has a compact resolvent. The latter 
statements about A may also be derived from Theorems XIV.3.1 and XV1.1.1. 

XIX.7 AN EXAMPLE FROM TRANSPORT THEORY (2) 

In this section we return to the half range problem from linear transport the
ory discussed in Section XII1.9. Here we consider the general case with no restriction on 
the number of scattering directions, and we shall employ the semigroup theory developed 
in the present chapter to derive a solution. 

Recall from Section XII1.9 that the half range problem concerns an integra
differential equation of the following type: 

(1) 

1 

p.: (t,p.) + 1jJ(t,p.) = J k(p., p.')1jJ(t, p.')dp.', 
-1 

-1 ~ p. ~ 1, 0::; t < 00. 

The scattering function k is a given real-valued and symmetric L1-function on [-1,1] x 
[-1, 1 J. In this section we assume that 

n 

(2) k(p.,p.') = "Lajpj(p.)pj(p.'), 
j=O 

where Pj is the j-th normalized Legendre polynomial (see [GG], Section 1.10) and 

(3) -00 < aj < 1, j = 0,1,2, ... 

The problem is to solve (1) under the boundary condition 

(4) o ~ p. ~ 1, 

where 'P+ is a given continuous function on [0,1]. We shall also require the solution to 
be bounded in the following sense 

(5) 

1 

suPJ 11jJ(t,p.)12dp. < 00. 
t>O 
- -1 

By writing 1jJ(t)(p.) = 1jJ(t,p.), we may consider the unknown function 1jJ as 
a vector function on [0,00) with values in the Hilbert space L2([-1, 1]). In this way 
equation (1) can be written as an operator differential equation 

(6) 
d 
dt T1jJ( t) + 1jJ( t) = F1jJ( t), o ~ t < 00, 
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where T and F are the operators on L2([-1, 1]) defined by 

n 

(7) (Tf)(p.) = p.J(p.), FJ = Laj(f,pj}Pj, 
j=O 

with (".) the usual inner product in L2([-1,1]). The derivative in (6) is taken with 
respect to the norm on L2([-1,1]). Note that in (6) the function T1/;(-) has to be 
differentiable, which is weaker than requiring the differentiability of 1/;. 

In the language of the preceding paragraph the boundary condition (4) may 
be restated as 

(8) 

where P+ is the orthogonal projection from L2([-1, 1]) onto L2([0, 1]), the closed sub
space of L2([-1, 1]) consisting of all functions that are zero almost everywhere on [-1, OJ. 
The operator T is selfadjoint and the projection P+ may also be interpreted as the or
thogonal projection onto the spectral subspace of T associated with the interval [0,(0). 

The operator F has finite rank and the hypothesis (3) implies that 1- F is 
strictly positive. We shall need the following lemma. 

(9) 

LEMMA 7.1. Let T and F be as in (7). Then 

sup laI1/ 2 11(ia - T)-l FII < 00. 

o;eaER 

PROOF. Take a f. 0 in R, and put qj = (ia-T)-1 pj . For a suitable positive 
constant 'Yj we have 

1 

:s; 'Yj J p.2: a2 dp. = 2'Yj (I!I arctan I!I)' 
-1 

It follows that 

with C = I:j=o lajlbj1r)1/2. 0 

In what follows we shall not require that T and F are given by (7), but we 
shall assume that T and F are bounded linear operators acting on an arbitrary complex 
Hilbert space H and have the following properties: 

(i) T is selfadjoint and KerT = {O}, 
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(ii) F is compact and 1 - F is strictly positive, 

(iii) sup{laI1/211(ia - T)-IFIII 0 =/: a E R} < 00. 

441 

By Lemma 7.1, the operators T and F in (7) have the properties (i)-(iii). Our aim is to 
solve the equation: 

(10) { 
(Tt/J)'(t) = -t/J(t) + Ft/J(t), 

P+t/J(O) = x+, 

0:5 t < 00, 

where P+ is the orthogonal projection of H onto the spectral subspace of T associated 
with the interval [0,00) and x+ is a given vector in ImP+. 

We call t/J: [0,00) -+ H a &olution of (10) if Tt/J is continuously differentiable 
on [0,00) and t/J satisfies the two equations in (10). The fact that Tt/J is continuously 
differentiable and the invertibility of 1 - F imply that a solution of (10) is always a 
H-valued continuous function. 

The first equation in (10) can be rewritten as 

(11) (st/J)'(t) = -t/J(t), 0:5 t < 00, 

where S = (1 - F)-IT. As in Section XIII.9 we have to analyse the spectral properties 
of S. Since 1 - F is strictly positive, the sesquilinear form 

(12) [x, yj = (1 - F)x, y) 

defines an inner product on H which is equivalent with the original inner product (.,.) 
on H, i.e., the norms induced by [-,.j and (.,.) are equivalent. The space H endowed 
with the inner product [.,.j will be denoted by HX. The operator S is selfadjoint on HX. 
Indeed, 

(13) 

[Sx, Y1 = (I - F)Sx, y) = (Tx, y) 

= (I - F)-I(I - F)x, Ty) 

= (I - F)x, (I - F)-ITy) = [x, Syj 

for each x and y. It follows that the spectral subspace H; of S associated with the 
interval [0,00) is well-defined. We write Q+ for the [., ·J-orthogonal projection of HX 
onto H;. Now, consider the operator 

(14) 

The operator S+ is selfadjoint, Ker S+ = {O} and oo(S+) C [0,00). It follows that _S.;:1 
is a densely defined (possibly unbounded) selfadjoint operator, 

and (0, 00) C p( - S.;: 1). Thus, by Theorem 4.2, the operator - S.;: 1 is the generator of a 
contraction semigroup, which we shall denote by T(tj _S.;:I). 
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THEOREM 7.2. Let T and F have the properties (i)-(iii). Then equation 
(10) has a unique bounded solution t/J which is given by 

(15) 0:':; t < 00, 

where II is the projection along Ker P+ onto the spectral subspace of S = (1 - F)-IT 
associated with the interval [0,00]. 

The above theorem is the infinite dimensional analogue of Corollary XIII.9.3. 
For the proof of Theorem 7.2 we shall not use the method of Section XIII.9 (which was 
based on equivalence with Wiener-Hopf integral equations), but a more direct method 
will be employed. To explain the approach followed in the present section, let us return 
to the finite dimensional case (i.e., let us assume that H = en). Rewrite (10) as: 

(16) { 
t/J'(t) = _T-I(1 - F)t/J(t), 

P+t/J(O) = x+. 

0:':; t < 00, 

Since H is assumed to be en, the general solution of the first equation in (16) is given 
by 

(17) 

for some y E en. The function t/JO has to be a function in L~([O, 00)), which implies 
that y has to an element from 1m Q+. Also t/J has to fulfil the boundary condition in 
(16), that is, y - x+ E Ker P+. Thus the vector yin (17) must be chosen in such a way 
that 

(18) 

Next, one observes that for each initial value x+ there exists a unique y satisfying (18) 
if and only if 

en = Ker P+ Ef) 1m Q+. 

Moreover, in that case y = IIx+, where II is the projection along Ker P+ onto 1m Q+. 

The above reasoning presents basically the outline of the proof of Theorem 
7.2. The additional difficulties that we meet are due to the fact that T is not boundedly 
invertible, that is, 0 E aCT). 

To prove Theorem 7.2 we have first to establish the existence of the projection 
II, i.e., we have to show that 

where Q+ is as in (14). This will be done in the next lemma. 

LEMMA 7.3. The operator 
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i8 invertible. In particular, H = Ker P + ffi 1m Q+. 

PROOF. First we show that V is injective. Assume Vx = O. Put Y = Q+x. 
Then P + y = P + V x = O. Hence y E 1m Q + and y E Ker P +. Recall that the operator 
S is selfadjoint relative to the inner product [".] and ImQ+ is the spectral subspace 
of S associated with [0,00). It follows (cf. Corollary V.2.4) that [Sy,y] ~ O. On the 
other hand, y E ImPt and ImP+ is the spectral subspace of the selfadjoint operator T 
associated with [0,00). Hence (Ty, y) :::; O. But [Sy, y] = [Ty, y] by (13), and therefore 
[Sy, y] = O. As before, let S+ be the restriction of S to 1m Q+. Then S+ is a nonnegative 
operator, and hence there exists a nonnegative operator B on 1m Q+ such that B2 = S+ 
(Theorem V.6.1). From [By, By] = [Sy, y] = 0, we conclude that By = O. But then 
Sy = S+y = B2y = O. However, S is injective. Thus y = 0, and we have proved that V 
is injective. 

The operator V may be rewritten as 

(19) 

We shall prove that Q+ - P + is a compact operator. When this fact has been established, 
the invertibility of V follows. Indeed, if Q+ - P+ is compact, then by (19) the operator 
V is of the form 1- K with K compact. Hence V is a Fredholm operator of index zero 
(by Corollary XI.4.3), and thus, since Ker V = {O}, the operator V must be invertible. 

To prove that Q+ - P+ is a compact operator, choose 'Y ~ 1 such that the 
spectra of T and S are in the open interval (-00, 'Y ). Let r be the oriented boundary 
of the rectangle with vertices ±i and 'Y ± i. The orientation of r is such that the inner 
domain is bounded. Take 0 < c < 1, and let r ~ be the curve which one obtains from r 
by deleting the points ia with -c: < a < c:. Put 

R~ = 2~i lUI -T)-ldA, 
r. 

First, we analyse the difference R': - R~. Note that 

(A - S)-1 - (A - T)-1 = (A - T)-I(S - T)(A - S)-1 

= (A - T)-1 FS(A - S)-I. 

Since F is compact, this implies that (A - S)-1 - (A - T)-1 is compact for each A E r~, 
and hence the difference R: -R~ is a compact operator. Next, observe that for 0 :F a E R 

(20) 

(21) ( 
1 ) 1/2 

II(ia - T)-1 FII:::; j;j C2, 

where C1 and C2 are some constants, not depending on a. To prove (20) one uses 
Theorem V.2.1 and the fact that S is selfadjoint with respect to the equivalent inner 
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product [., .J; the inequality (21) follows from our hypotheses on the operators T and F 
(see property (iii». From (20) and (21) we conclude that 

o :f: a E R, 

and therefore the limit 

G = lim(R: - Re) 
e10 

exists in the operator norm. Since R: - RI!: is compact for each e > 0, we also know that 
G is a compact operator. We shall show that Q+ - P+ = G. 

By using (20) and its analogue with S replaced by T, one sees that the 
following limits exist in the operator norm: 

It follows that 

Now 

o =limTRe, 
el0 

TG = lim(1 - F)SR: - TR£) = (I - F)OX - O. . 
£10 

o = ~ jT('x - T)-ld'x = -21 . j'x('x - T)-ld'x, 
2~z ~z 

r r 

where the integrals have to be understood as improper integrals (at 0) which converge 
in the operator norm. From the spectral theory developed in Chapter V we know that 
0= TP+ (cf. Exercise 32 to Part I). Similarly, Ox = SQ+, and thus 

Since T is injective, we obtain G = Q+ - P+, and thus Q+ - P+ is compact. 

We have now proved that V is invertible. It remains to establish the direct 
sum decomposition H = Ker P + E9 1m Q+. From the definition of V we know that 
V(lmQ+) C ImP+ and V(KerQ+) C KerP+. Since P+ and Q+ are projections and V 
is invertible, these inclusions cannot be proper. In particular, V(ImQ+) = ImP+. Now, 
take y E H. Then z:= V-1p+y E ImQ+ and 

Thus y - z E Ker P+, and we have proved that H = Ker P+ + ImQ+. Also Ker P+ n 
ImQ+ = {O}, because Ker P+ n ImQ+ C Ker V and the latter space consists of the zero 
vector only. 0 

PROOF OF THEOREM 7.2. First we assume that 'I/J: [0,00) -+ H is a 
bounded solution of (10) and we prove that 'I/J admits the representation (15). Recall 
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that S is a bounded selfadjoint operator relative to the inner product [', .]. Choose 0 > 0 
such that 

1 1 
- 20 :5 [Sx, x] :5 28' [x,x] = 1. 

Our choice of 0 implies that [(OS2 + S)y,y] :5 0 for each y E KerQ+. Indeed, let 
{F('\)hER be the resolution of the identity of the selfadjoint operator S, and take y E 
KerQ+. Since KerS = {OJ, we have F(O - 0) = F(O), and hence Q+ = 1- F(O), by 
Theorem V.5.1. Thus KerQ+ = ImF(O), and hence 

[F('x)y,y] = [y,y], ,\ ~ O. 

But then it follows from the spectral theorem for selfadjoint operators that 

o 

[(oS2 + S)y,y] = J (0,\2 + '\)d[F('\)y,y] :5 0, 

-1/6 

because 0,\2 + ,\ :5 0 for _0-1 :5 ,\ :5 o. 
Now, put T/(t) = e- t6 (1 -Q+)t/J(t), 0:5 t < 00, where t/J is the given bounded 

solution of (10). As t/J satisfies the first equation in (10), formula (11) holds, and hence 

(22) 

Therefore 

d 
dt ST/(t) = -oST/(t) - T/(t), 0:5 t < 00. 

~ [ST/(t), ST/(t)] = [(ST/)'(t), ST/(t)] + [ST/(t), (ST/)'(t)] 

= -2[(oS2 + S)T/(t), T/(t)] ~ 0, 

since T/(t) E KerQ+ for t ~ O. We conclude that the function [ST/('), ST/O] is monotonely 
increasing. On the other hand for a suitable positive constant C 

[S7](t), S7](t)] :5 e-26tC, 0:5 t < 00, 

because t/J is a bounded solution. Thus [S7](t), S7](t)] is equal to zero for all t ~ O. Since 
Ker S = {OJ, we conclude that (I - Q+ )t/J(t) = 0 for 0 :5 t < 00. 

Put u(t) = Stf;(t), t ~ 0, and let 

S+ = SI 1m Q+: 1m Q+ -+ 1m Q+. 

The result of the previous paragraph shows that u is a solution of the following Cauchy 
problem 

(23) { 
u'(t) = _B.:;:lu(t), 

u(O) = S+t/J(O). 

0:5 t < 00, 
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Note that u(O) E 1)(-8.+1). Since _8.+1 is a generator of a contraction semigroup (see 
the paragraph preceding Theorem 7.2), we know from Theorem 2.2 that 

o ~ t < 00, 

where T(· ; _8.+1) is the semigroups on ImQ+ generated by _8.+1 . It follows that 

o ~ t < 00, 

because of formula (6) in Section 2. 

To obtain the representation (15) it remains to prove that ITx+ = .,p(0). 
From Lemma 7.3 we know that the projection IT is well-defined, and, by definition, 
IT(l - P+) = o. The function.,p satisfies the second identity in (10). Thus 

But .,p(0) E ImQ+ and ITQ+ = Q+. Therefore, .,p(0) = ITx+. This completes the first 
part of the proof. 

It remains to show that any .,p given by (15) is a bounded solution of (10). 
Thus assume that .,p is given by (15). The values of.,p are vectors in ImQ+ C H. Since 
the semigroup in (15) is a contraction semigroup, .,p is a H-valued bounded function on 
[0,00). By the strong continuity of the semigroup, .,p is continuous on [0,00). Furthermore 

(24) 

and hence .,p satisfies the initial condition in (10). To check the identities in (24), one 
uses that x+ E ImP+ and Im(l - IT) = KerIT = Ker P+. Note that ITx+ E ImQ+, and 
hence 

T(t; -8.+1)ITx+ = T(t; -8.+1)8.+1(8+ITx+). 

Now 8+ITx+ E 1)( _8.+1). Therefore, by formula (6) in Section 2, 

As 8+ITx+ E 1)(-8.+1 ), the function u is continuously differentiable and its derivative 
is given by 

o ~ t < 00. 

Next, observe that T.,p(t) = (1 -.: F)8.,p(t) = (1 - F)u(t) for t ~ O. It follows that T.,p is 
continuously differentiable and .,p satisfies the first equation in (10). 0 

The literature on the transport theory and related fields is rich. Here and in 
Sections XIII.9 and XIII.I0 we have only discussed the first basic results. 
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COMMENTS ON PART IV 

Chapter XIV contains standard material dealing with ordinary and partial 
differential operators in Hilbert space. A more extensive treatment of these topics appear, 
e.g., in the books Dunford-Schwartz (IJ, [2J, Friedman [IJ and Goldberg [1]. The first 
two sections in Chapter XV extend, in a straightforward manner, the functional calculus 
and the Riesz projections to unbounded operators. The last two sections in this chapter, 
which contain a generalization of the Riesz decomposition theorem for a case when the 
parts of the spectrum of the operator are not disjoint, is based on papers of Bart-Gohberg
Kaashoek (6], [7J, (8] (see also Stampfli (1]). Chapter XVI deals with basic properties 
of unbounded selfadjoint operators and the spectral theorem. The first four sections 
of Chapter XVII present the standard elements of the Fredholm theory for unbounded 
operators (cf., Goldberg [IJ, Kato [IJ; also Kaashoek [1]). Section XVII.5, dealing with 
completeness of eigenvectors and generalized eigenvectors, is concerned with a special 
case of a theorem from the book Gohberg-Krein [3]. The analysis of the differential 
operator on the half line in Chapter XVIII has its roots in the Wiener-Hopf theory as 
developed in the papers of Bart-Gohberg-Kaashoek [2, 3J. The results and the way they 
are presented seem to be new. Sections 1-6 in Chapter XIX present a first introduction 
to the theory of strongly continuous semigroups. More about this topic may be found, 
e.g., in the books Hille-Phillips [IJ, Davies [IJ and pazy [IJ. For further reading about 
the transport theory see the books of Van der Mee [IJ, Kaper-Lekkerkerker-Hejtmanek 
(1], and Greenberg-Van der Mee-Protopopescu [1]. 
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In the first four exercises (aij)r,'j=l is an infinite matrix and A(lp - lq) is 
the following operator. The domain V( A) of A consists of all v = (v!, V2, •.• ) E lp such 
that 

is a well-defined sequence in lq. In particular, for v E 1>(A) the series appearing in (*) 
are convergent. The action of A is given by Av = w. We fix 1 :5 p < 00, 1 :5 q < 00. 

1. For i,j = 1,2, ... assume that aij = 0 whenever j =F i and j =F i + 1. Prove that 
A is a closed densely defined operator and find its conjugate A'. Show that A can be 
unbounded. 

2. Assume that for i = 1,2, ... the sequence (aij)~l E lpl, where p-l + (pl)-l = 1. 
Show that A is a closed operator. 

3. Let (aij )~=l be as in the previous exercise, and assume, in addition, that (aij )~l E 
lq, j = 1,2, .... Prove that A is densely defined and find its conjugate A'. 

4. Assume that alj = j and aij = 0 for i > 1, where j = 1,2,... . Prove that the 
operator A is not closable. 

5. Suppose BE .c(X) and T(X _ X) is a closed operator, where X is a Banach space. 
Show that Im B C VeT) implies T B is bounded. 

6. Let A and K be bounded linear operators acting on a Banach space X. Assume that 
K is compact and ImA C ImK. Use the result of the previous exercise to show that A 
is compact. 

7. Let CPl, CP2, •• • be an orthonormal basis ofthe Hilbert space H, and put M = span{ CPn I 
n ~ 1}. Take v rt M, and define A(H - H) by 

V(A) = M ffispan{v}, 

A(m + av) = av, 

Prove that A is not closable. 

mE M, a E C. 

8. Given 

A(t) = [ ~ 
-a~(t) 

1 0 
o 1 
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with each ak(-) integrable on [a, b], let 

t 

U(t) = In + J A(s)U(s)ds, a :5 t :5 b. 

a 

Prove that 

U(t) = [ 
Yl(t) 
yi (t) 

y~n-:l)(t) 

where Yk E KerTmax•r and y?-l)(a) = 0jk, j, k = 1, ... , n. Here 

and Ojk is the Kronecker delta. 

n-l 

T = Dn + L: ak(t)Dk 
k=O 
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a :5 t :5 b, 

9. Let T = D2 +al(t)D+ao(t), where aoO and al(-) are integrable on [a,b], 
and let X = L2([a, b]). Consider the operator T(X -+ X) defined by 

D(T) = {g E V(Tmax.r) I g(a) = g'(a) = O}, 
Tg = rg. 

Use Theorem XIV.3.1 and the result of the previous exercise to show that T is invertible 
and 

with 

t 

(T- 1 f)(t) = J G(t,s)f(s)ds, 
a 

G( ) _ u(s)v(t) - u(t)v(s) 
t,s - u(s)v'(s) _ u'(s)v(s)' 

a:5 t :5 b, 

a :5 s :5 t :5 b, 

where u,v E KerTmax •r and satisfy 

u(a) = 1, u'(a) = 0, v(a) = 0, v'(a) = 1. 

10. Let T and X be as in the previous exercise, and let T(X -+ X) be the restriction of 
Tmax.r to those 9 E V(Tmax.r) that satisfy g(b) = g'(b) = O. Show that T is invertible 
and find T-l. 

11. Let X = L2([1, 3]), and let r be the differential expression 

1 1 
T = D2 - t(t + 2)D + t2 (t + 2). 
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Check that Yl(t) = t and Y2(t) = tet satisfy ry = O. Prove that T is invertible and find 
T-l, where T(X -> X) is defined by 

VeT) = {g E V(Tmax,T) I g(l) = g'(I) = O}, 

Tg = rg. 

12. Given X = L2([a, b]) and r = Dn + L:j~J aj(t)Dj, where each aj(-) is integrable 
on [a, b], let T(X -> X) be the restriction of Tmax,T to those 9 E V(Tmax,T) that satisfy 
g(j)(a) = 0 for j = 0, ... , n - 1. Find the resolvent set peT). 

13. Let X = L2([a, b]), and let r = Dn + L:T::J ak(t)Dk, where ak E Ck([a, b]). Define 
T(X -> X) by 

VeT) = {g E V(Tmax,T) I g(k)(a) = g(k)(b) = 0, k = 0, ... ,n -I}, Tg = rg. 

Prove that T = Tmin,T by showing that T is a closed operator and T* = Tmax,T" 

14. Given H = L2([0, 271']) and T = D2 + 1, find the adjoint of the operator T(H -> H) 
defined by 

VeT) = {J E V(Tmax,T) I J(O) = O}, TJ = rJ. 

15. Let H = L2([0,1]), and let r be a differential expression. Find the adjoint of the 
operator T(H -> H), where T J = r J for J E VeT), in each of the following cases: 

(a) r=D2 +D, 
VeT) = {J E V(Tmax,T) I J(O) = J' (I)}; 

(b) r = D3 + 1 

VeT) = {J E V(Tmax,T) I J(O) + J' (0) = J(I) + !' (1), J(2) (0) = J(2) (I)}; 

(c) r = D2 + tD - t2, 
VeT) = {J E V(Tmax,T) I J(O) = 0, J(I) = J' (O)}. 

16. Let X be a Banach space. Suppose A(X -> X) is an operator with >'0 E peA). Prove 
that the largest open disc (possibly C) which has its center at >'0 and does not intersect 
u(A) has radius p-l, where p is the spectral radius of (>'0 - A)-l. 

17. Let X = C([O, 271']), and let A(X -> X) be defined by 

V(A) = {u E X I u' E X, u(O) = u(271')}, Au = -iu'. 

(a) Show that u(A) consists of the eigenvalues >'k = k, k = 0, ±1, ±2, .... 

(b) For>. E peA), find a formula for (>. - A)-lv, where vEX. 

(c) Suppose that J is analytic at the integers k = 0,±I,±2, ... ,±N and J(>.) is a 
constant c for 1>'1 > N. Prove that 

N 

(J(A)v)(t) = cv(t) + L (J(k) - c)nkeikt , 
k=-N 
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where 
211' 

cxk =...!... jv(s)e-ik8 ds, 
211" 

o 
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k = 0,±1, ... ,±N. 

18. Let X be a Banach space, and assume that the operator A(X --+ X) has a non
empty resolvent set. Suppose J E .roo (A) has no zeros on (T(A) U {oo}. Prove that J(A) 
is invertible and find J(A)-l. 

19. Let T = iD and H = L2([0, 1]). Define T(H --+ H) by 

VeT) = {J E V(Tmax,r) I J(O) = J(l) = O}, TJ = it. 

Show that T is symmetric. Is T selfadjoint? 

20. Let T = iD and H = L2([0, 1]). Given (J E R, define To(H --+ H) by 

Prove that To is selfadjoint. Show that the operator T in the previous exercise has 
infinitely many selfadjoint extensions. 

21. Let T J = D(pJ')+qJ, where p E C2([a, b]) and q E C([a, b]) are real-valued functions 
with pet) =F 0 for all t E [a, bj. Take H = L2([a, b]). In each of the following, T(H --+ H) 
is the restriction of Tmax,r to those g E V(Tmax,r) that satisfy the stated boundary 
conditions. Determine whether or not the corresponding operator T is selfadjoint. 

(a) g(a) = 2g(b)j 

(b) g(a) = 0, g'(b) = 2g(b)j 

(c) p(a)g(a) + g'(b) = 0, lea) = -p(b)g(b). 

22. Prove that the spectrum of an unbounded selfadjoint operator is unbounded. 

23. Let X be a Banach space. Let T(X --+ X) and B(X --+ X) be linear operators. 
Assume .that T has a non-empty resolvent set and VeT) C V(B). Prove that B is 
T-compact if and only if B(T - .AI)-l is a compact operator on X for each .A E peT). 

24. Let P(X --+ X) be a closed operator acting in a Banach space. Assume that 
PV(P) C V(P) and p2x = Px for all x E V(P). Does it follow that P is bounded? 
(Hint: see the paragraph preceding Theorem I.5.1 in Gohberg-Feldman [1].) 

25. Let P be as in the previous exercise. Prove that P is bounded if and only if there 
exists I > 0 such that 

Ilx + yll ~ ,(lIxll + lIyll), x E KerP, y E ImP. 

26. Let A(X --+ Y) and B(X --+ Y) be closed operators acting between Banach spaces 
X and Y. Suppose that 1m A n 1m B = {O} and 1m A + 1m B is closed. Prove that 1m A 
and 1m B are closed. 

27. Let X be a Banach space. Suppose that T(X --+ X) has a compact resolvent. Prove 
that for any B E C(X) the operator T + B is a Fredholm operator with index zero. 
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28. Let T(X -+ Y) be a closed operator acting between Banach spaces X and Y. Suppose 
that there exists a >'0 E C such that >'0 - T has closed range and dim Ker(>.o - T) < 00. 

Prove that for any polynomial p the operator p(T) is closed. (Hint: write p(T) = 
(>'0 - T)q(T) + cI and use induction.) 

29. Let C be an unbounded densely defined closed operator with domain and range in 
the Banach space X. Define A(X x X -+ X x X) by setting 

D(A) = X x D(C), A(x,y) = (Cy,O). 

Prove 

(a) A is a densely defined closed linear operatorj 

(b) the abstract Cauchy problem 

{ 
u'(t) = Au(t), 

u(O) = (xo, Yo), 

0:::; t < 00, 

has a unique continuously differentiable solution for each (xo, Yo) E D(A) (find its for
mula)j 

(c) A does not generate a strongly continuous semigroup. 

How do the above results relate to Theorem XIX.3.1? What can one say about the 
spectrum of A? 

30. Prove that any two Co-semigroups with the same generator are equal. 

31. Let T(·) be a strongly continuous semigroup on the Banach space X with generator 
A. Define 

t 

B>.(t)x = J e>.(t-s)T(s)xds, 

o 
Here>. E C and x EX. Prove 

(a) for every x E X, the vector B>.(t)x E D(A) and 

(>. - A)B>.(t)x = e>.t x - T(t)x, 

(b) for x E D(A), 

B>.(t)(>. - A)x = e>.t x - T(t)x, 

( c) the following spectral inclusion holds: 

{et>. I ,\ E o-(A)} C o-(T(t)), 

t 2: O. 

t 2: OJ 

t 2: OJ 

t 2: O. 

30. Let X be the Banach space of all J E C([O,I]) with J(l) = 0 endowed with the 
supremum norm. For J E X put 

(T(t)J)(s) = { J(t + s), 
0, 

t + s :::; 1, 
t+s>1. 
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Prove that T(.) is a Co semigroup of contractions on X with generator A given by 

V(A) = {f E X I I E C1([O,1]), I' EX}, AI = 1'. 

Show that u(A) = 0, and prove that the inclusion in item (c) of the previous exercise 
may be strictly proper. 
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