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PREFACE

After the book “Basic Operator Theory” by Gohberg-Goldberg was pub-
lished, we, that is the present authors, intended to continue with another book which
would show the readers the large variety of classes of operators and the important role
they play in applications. The book was planned to be of modest size, but due to the
profusion of results in this area of analysis, the number of topics grew larger than ex-
pected. Consequently, we decided to divide the material into two volumes — the first
volume being presented now.

During the past years, courses and seminars were given at our respective in-
stitutions based on parts of the texts. These were well received by the audience and
enabled us to make appropriate choices for the topics and presentation for the two vol-
umes. We would like to thank G.J. Groenewald, A.B. Kuijper and A.C.M. Ran of the

Vrije Universiteit at Amsterdam, who provided us with lists of remarks and corrections.

We are now aware that the Basic Operator Theory book should be revised so
that it may suitably fit in with our present volumes. This revision is planned to be the
last step of an induction and not the first.

We gratefully acknowledge the support from the mathematics departments of
Tel Aviv University, the University of Maryland at College Park, and the Vrije Univer-
siteit at Amsterdam, which enabled us to visit and confer with each other. We also thank
the Nathan and Lillian Silver Chair in Mathematical Analysis and Operator Theory for
its financial assistance.

March 15, 1990 The authors
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INTRODUCTION

These two volumes constitute texts for graduate courses in linear operator
theory. The reader is assumed to have a knowledge of both complex analysis and the
first elements of operator theory. The texts are intended to concisely present a variety
of classes of linear operators, each with its own character, theory, techniques and tools.
For each of the classes, various differential and integral operators motivate or illustrate
the main results. Although each class is treated separately and the first impression may
be that of many different theories, interconnections appear frequently and unexpectedly.
The result is a beautiful, unified and powerful theory.

The classes we have chosen are representatives of the principal important
classes of operators, and we believe that these illustrate the richness of operator theory,
both in its theoretical developments and in its applications. Because we wanted the
books to be of reasonable size, we were selective in the classes we chose and restricted
our attention to the main features of the corresponding theories. However, these theories
have been updated and enhanced by new developments, many of which appear here for

“the first time in an operator-theory text.

The books present a wide panorama of modern operator theory. They are
not encyclopedic in nature and do not delve too deeply into one particular area. In our
opinion it is this combination that will make the books attractive to readers who know
basic operator theory. '

The exposition is self-contained and has been simplified and polished in an
effort to make advanced topics accessible to a wide audience of students and researchers
in mathematics, science and engineering.

The classes encompass compact operators, various subclasses of compact op-
erators (such as trace class and Hilbert-Schmidt operators), Fredholm operators (bounded
and unbounded), Wiener-Hopf and Toeplitz operators, selfadjoint operators (bounded
and unbounded), and integral and differential operators on finite and infinite intervals.
The two volumes also contain an introduction to the theory of Banach algebras with
applications to algebras of Toeplitz operators, the first elements of the theory of op-
erator semigroups with applications to initial value problems, the theory of triangular
representation, the method of factorization for general operators and for matrix func-
tions, an introduction to the theory of characteristic operator functions for contractions.
Also included are recent developments concerning extension and completion problems for
operator matrices and matrix functions.

The first volume is divided into Parts I-IV.

Part I discusses the elements of spectral theory that apply to arbitrary
bounded operators. The topics discussed include spectral decomposition theorems, Riesz
projections, functional calculus and eigenvalues of finite type. Analytic equivalence and
an analysis of linear operator pencils are elements that appear here for the first time



2 INTRODUCTION

in a text book. Also included is the spectral theorem for bounded selfadjoint operators,
which is presented in an unconventional form as a further refinement of the Riesz spectral
projection theory.

Part II presents different classes of compact operators including trace class
operators and Hilbert-Schmidt operators. Trace and determinant are introduced as natu-
ral generalizations of their matrix counter parts. This part also contains theorems about
the growth of the resolvent and completeness of eigenvectors and generalized eigenvec-
tors. Integral operators with semi-separable kernels, which arise in problems of networks
and systems, are also treated here.

Part III describes Wiener-Hopf integral operators and begins with an intro-
duction to the theory of Fredholm operators. Here the main results are index and factor-
ization theorems. As a novelty this part contains a complete treatment of Wiener-Hopf
integral equations with a rational matrix symbol based on connections with mathemati-
cal systems theory. In the latter framework a finite dimensional analogue of the transport
equation is treated.

Part IV treats unbounded linear operators. Several results about bounded
operators are extended to this class. Many examples of unbounded operators arising
from ordinary and partial differential equations are given. This part also contains an
introduction to the theory of strongly continuous semigroups with applications to initial
value problems and transport theory.

The second volume is divided into Parts V-IX. The titles are as follows.
Part V: Triangular Representations; Part VI: Contractive Operators; Part VII: Toeplitz
Operators; Part VIII: Banach Algebras and Algebras of Operators; Part IX: Extension
and Completion Problems.



PART I
GENERAL SPECTRAL THEORY

This part is devoted to elements of spectral theory that can be applied to
arbitrary bounded operators regardless of the class they belong to. Three main topics
are discussed, namely separation of spectra and functional calculus (Chapters I and IV),
isolated eigenvalues of finite type which behave like eigenvalues of matrices (Chapter
II), and analytic equivalence of operators for the case when the spectral parameter is
linear as well as for nonlinear dependence (Chapter III). The spectral theory for bounded
selfadjoint operators, which is the main topic of Chapter V, is presented here as a further
refinement of the spectral separation theorems of F. Riesz.



CHAPTER I
RIESZ PROJECTIONS AND FUNCTIONAL CALCULUS

This chapter is concerned with the part of the spectral theory which is appli-
cable to all bounded linear operators. It contains theorems on decomposition of operators
corresponding to separated parts of the spectrum, the general version of the functional
calculus and applications to operator and differential equations and to stability problems.

To make clear the approach followed in this chapter let us first recall the case
when the operator is a compact selfadjoint operator A acting on a Hilbert space H. In
that case H decomposes into an orthogonal sum of eigenspaces, namely

H=KerA®dKer(\; —A) D Ker(Ag —A)D---

where Ay, Ag,... is the sequence of distinct non-zero eigenvalues of A. Without the
selfadjointness condition such a decomposition of the space does not hold true. This is
already clear in the finite dimensional case. For example,

0 1

4= o]

0 0
on H = C? has only one eigenvalue, namely, A = 0, and the corresponding eigenspace is
different from H.

The finite dimensional case provides a hint for the type of decomposition one
may be looking for in the non-selfadjoint case. Assume H is finite dimensional, and
let A1,...,Ar be the different eigenvalues of A. In H there exists a basis such that the
matrix J4 of A with respect to this basis has Jordan normal form, that is, J4 appears
as a block diagonal matrix such that the blocks on the diagonal are elementary Jordan
blocks of the form

(1) T = J

Let M, be the space spanned by the basis vectors that correspond to the elementary
Jordan blocks in J4 with A, on the main diagonal. Then

(2) H=M®&- - &M,

each space M, is invariant under A and the restriction of A to M, has a single eigenvalue,
namely A,.

To find the space M, one does not have to know the Jordan basis. There is
a direct way. In fact,

(3) M, = Im[zim /(A - A)'ld/\],

Ty
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where I', is a contour around A, separating A, from the other eigenvalues. To see this,
note that for the k x k matrix T given by (1)

A=2)"1 (=272 o (A=p7k

(/\_T)—-l - (’\_’\j)_l ,
(A =xj)"2
(A=)t

and hence Elﬂ,;rf (A =T)~1d) is equal to the k x k identity matrix if j = v and equal to

the zero matrixvotherwise. It follows that
1 -1 T if T € My,
[QE/(*‘A) d*]"— {0 if zeM,jAy
r,

In particular (3) holds.

In formula (3) the finite dimensionality of the space does not play a role
anymore. In fact, as we shall see in this chapter, formula (3) can also be used in the
infinite dimensional case to obtain spectral decompositions of the space similar to the one
given in (2). To carry out this program requires the use of methods of contour integration
and of complex analysis for vector and operator valued functions. The first section of
this chapter is devoted to the latter topics.

I.1 PRELIMINARIES ABOUT OPERATORS AND OPERATOR-
VALUED FUNCTIONS

We begin with a few words about terminology and notation. All linear spaces
in this book are vector spaces over C (the field of complex numbers). Unless stated
otherwise, an operator is a bounded linear operator acting between Banach or Hilbert
spaces. The identity on a linear space X is denoted by Ix or just by I. In expressions
like AT — A we shall often omit the symbol I and write A — A. The word subspace denotes
a closed linear manifold in a Banach or Hilbert space. Given Banach spaces X and YV
the symbol £(X,Y") stands for the Banach space of all bounded linear operators from X
into Y (endowed with the operator norm). We shall write £(X) instead of £(X, X).

Next, we recall (see [GG]) some basic facts from the spectral theory of a
bounded linear operator. Let A:X — X be a bounded linear operator acting on a
Banach space X. By definition the resolvent set p(A) of A is the set of all complex
numbers A such that for each y € X the equation Az — Az = y has a unique solution
z € X. Equivalently, A € p(4) if and only if A — A is an invertible operator, that is,
there is a bounded linear operator R(A) on X such that

(1) RO — A) = (A — A)R() = 1.

The complement of p(A) in C is called the spectrum of A and is denoted by o(A4). It is
well-known (see [GG], Theorem X.6.1) that 6(A) is a bounded closed subset of C. The
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operator R()) appearing in (1) will be denoted by (A — A)~! and the operator function
(- — A)~1 will be called the resolvent of A.

In what follows some basic theorems of complex analysis are extended to
vector and operator valued functions. We start with the definition of contour integrals
of the form:

2) LI OV
2mi g ’
r

where the integrand is a function with values in some Banach space.

First, let us make clear what kind of contours are used in (2). We call T a
Cauchy contour if T is the oriented boundary of a bounded Cauchy domain in C. By
definition, a Cauchy domain is a disjoint union in C of a finite number of non-empty
open connected sets Aj,...,A,, say, such that A; N A; = @ (i # j) and for each j the
boundary of A; consists of a finite number of non-intersecting closed rectifiable Jordan
curves which are oriented in such a way that A; belongs to the inner domains of the
curves. If o is a compact subset of 2 (nonempty) open set 2 C C, then one can always
find a Cauchy contour I in  such that o belongs to the inner domain of I. To see this,
construct in the complex plane a grid of congruent hexagons of diameter less one third
of the distance between o and C\{2, and let A be the interior of the union of all closed
hexagons of the grid which have a non-empty intersection with o. Then the boundary
of A is a Cauchy contour of the desired type.

Let I" be a Cauchy contour, and let ¢g:I" — Z be a continuous function on I'
with values in the Banach space Z. Then (as in complex function theory) the integral
(2) is defined as a Stieltjes integral, but now its convergence has to be understood in the
norm of Z. Thus the value of (2) is a vector in Z which appears as the limit (in the norm
of Z) of the corresponding Stieltjes sum. From this definition it is clear that

3) Flon [oar] = 5= [Pl
T

r

for any continuous linear functional F on Z. Note that the integrand of the second
integral in (3) is just a scalar-valued function. Often the integral in (2) can be computed
if g has additional analyticity properties.

Let © be a non-empty open set in C, and let Z be a Banach space. The
function ¢: Q2 — Z is said to be analytic at Ag € Q if in some neighbourhood U of Ag in
1 the function g can be represented as the sum of a power series in A — Ag, i.e.,

oo
(4) g =D (A=X)"m, A€l
n=0
Here g9, g1, ... are vectors in Z (which do not depend on A) and the series in (4) converges

in the norm of Z. If g is analytic at each point of Q, then g is called analyiic on .
For such a function the Cauchy integral formula holds true. Indeed, assume ¢g: 2 — Z is
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analytic on  and let I be a Cauchy contour such that I and its inner domain are in .
Then

(5) §00) = 57 [ ToooNar

r

for any point Ag inside I'.

To prove (5), let y be the vector in Z defined by the right hand side of (5).
Take an arbitrary continuous linear functional F on Z. Note that Fo g is a scalar-valued
analytic function. Hence, by the usual Cauchy integral formula,

F(g(X)) = %/A_IAOF(g(/\))d/\

r

Now use (3) to conclude that F(g(Ag)) = F(y). Since F is an arbitrary continuous linear
functional on Z, the Hahn-Banach theorem implies that g(\¢) = y, which proves (5).

Let © be a non-empty open set in C, and let g: Q2 — Z have values in the
Banach space Z. The function g is called differentiable on Q if for each Ag in §2 the

derivative
1
"(Ao):= im ———(g(\) = g()
g'(o):= lim 1—-(g()) —9(R0))

exists in the norm of Z. Obviously, analyticity of ¢ implies that g is differentiable.
The converse statement is also true. For scalar functions this is a well-known fact from
complex function theory. To prove it for vector functions, assume that g is differentiable
on {2, and let Ag be an arbitrary point of 2. Choose a circle I’ with centre at Ag and
with radius r in such a way that I and its inner domain are in 2. We shall show that

1 1

(6) g(p) = mg(/\)d/\, |~ Aol <.

2mi

Note that differentiability of ¢ implies that g is continuous, and so the right hand side
of (6) is well-defined. Let F' be an arbitrary continuous linear functional on Z. Then
the scalar function F o g is differentiable on 2, and hence analytic on 2. So (5) holds
for F o g instead of g. Since F is an arbitrary continuous linear functional on Z, we can

apply (3) and the Hahn-Banach theorem to conclude that (6) holds. From (6) and

Z (= )n+1(“_’\°)n

for |4 — Ag| < v and A €T, it follows that

(7 9(p) = Z(# Ao) (—/WQ(A) )
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which proves the analyticity of g.

Let us specify some of the preceding results for the case when Z is the Banach
space £L(X,Y). Let X and Y be Banach spaces, and let g:I' — £(X,Y") be a continuous
function. Then the value of the integral (2) is a bounded linear operator from X into Y,
and for each z € X we have

(8) (% / g(/\)d/\>x - / o(N)zd>.
r r

Furthermore, if A: X7 — X and B:Y — Y] are bounded linear operators acting between
Banach spaces, then

(9) B(% /g(A)dA)A - E%/Bg(A)AdA.
r r

Let g: Q0 — L(X,Y) be analytic on 2, and assume that for a point Ag in  the operator
g(Ag) is invertible. Then there exists an open neighbourhood U of Ag in € such that g(A)
is invertible for A € & and g(-)~! is analytic on &. The last statement follows from the
formula

(10) (971 = —g(N) gAY gV, Xel,
and the fact that differentiability is the same as analyticity.

Let A: X — X be a bounded linear operator on the Banach space X. The
resolvent R(-) = (- — A)~! is one of the main operator functions which we have to study.
From what we proved in the previous paragraph (see also [GG], Theorem X.8.1) it is
clear that the resolvent R(-) is analytic on the open set p(A). We also know (see [GG],
Section X.6) that

o0
- 1
RN =(A-4)"" =3 WA R Al

n=0

From these facts it follows that o(A) is a non-empty set whenever X # (0). Indeed,
assume that ¢(A) = 0. Take a vector z in X and a continuous linear functional F' on
X. Then the function f(-) = F((- - A)"lx) is a bounded entire function. Hence, by
Liouville’s theorem f()) is constant. Since (A — A)™! — 0 if A — oo, it follows that
f(X) = 0 on C. This holds for any continuous linear functional F' on X. So, by the
Hahn-Banach theorem, (A — A)7lz = 0 for all A. By the way, the above argument also
shows that the Liouville theorem carries over to entire functions that have their values
in a Banach space.

1.2 SPECTRAL DECOMPOSITION AND RIESZ PROJECTION

In this section A is a bounded linear operator on a Banach space X. If N is
a subspace of X invariant under A, then A|N denotes the restriction of A to N, which
has to be considered as an operator from N into N.
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Assume that the spectrum of A is the disjoint union of two non-empty closed
subsets ¢ and 7. We want to show that to this decomposition of the spectrum there
corresponds a direct sum decomposition of the space, X = M & L, such that M and L
are A-invariant subspaces of X, the spectrum of the restriction A|M is precisely equal
to o and that of A|L to 7. To prove that such a spectral decomposition exists we study
(cf. formula (3) in the introduction to this chapter) the operator

(1) /(A A)~ldA.

27rz

A set o is called an isolated part of o(A) if both ¢ and r: = 0(A)\o are closed
subsets of 0(A). Given an isolated part o of o(A) we define P, to be the bounded linear
operator on X given by the right hand side (1), where we assume that I’ is a Cauchy
contour (in the resolvent set of A) around ¢ separating ¢ from 7 = o(4)\c. By the
latter we mean that o belongs to the inner domain of I and 7 to the outer domain of I'.
The existence of such contours has been proved in the previous section, where one also
finds the definition of the integral (1). Since (A — A)~! is an analytic operator function
(in A) on the resolvent set of A, a standard argument of complex function theory shows
that the definition of P, does not depend on the particular choice of the contour I'. The
operator Py is called the Riesz projection of A corresponding to the isolated part o. The
use of the word projection is justified by the next lemma.

LEMMA 2.1. The operator P, is a projection, i.e., P2 = P,.

PROOF. Let I'; and I’y be Cauchy contours around o separating ¢ from
T = 0(A)\o. Assume that [ is in the inner domain of I'y. Then

P2 <2m /(,\ A 1dA) (%Z(#—A)—ldy)
=<%) //(/\—A)"l(,u—A)‘ld,ud/\.

Iy Iy
Now use the so-called resolvent equation,
2 Q- -e-AT === -7, Apep(4),

and write P2 @ — R, where
1\? 1 .
0= (o) [ [0 07
Ty Iy
1 - 1
= ) O (z/ Id*‘)d

Iy 2
1

A — 1
=5 ( A)"dA = P,,
Iy
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and

<2m) // (e AT dud)
() [rtzo-are
= o /(“_ A <2w /—M)

d X
SE_ 2 (MeTly), 20 (peTw),
B—A I

A
T2 r

Here we used

and these identities hold true, because I'y is in the inner domain of I's. Furthermore,
the interchange of the integrals in the computation for R is justified by the fact that the
integrand is a continuous operator function on I'y x I's.

THEOREM 2.2. Let o be an isolated part of o(A), and put M =1Im P, and
L =KerP,. Then X = M @ L, the spaces M and L are A-invariant subspaces and

(3) - o(AlM) =g, o(A|L) = o(A)\o.

PROOF. Since P, is a projection, it is clear that M and L are closed sub-
spaces and X = M @ L. From A(\ — A)~! = (A — A)"14 for A € p(A), it follows that
AP, = Py A, which implies that M and L are invariant under A. It remains to prove
(3)-

Let T' be a Cauchy contour around o separating ¢ from 7:= o(A4)\o. For
p ¢ T put

— 1 1 _ -1
r

Since P, commutes with 4, we know that P, commutes with the resolvent (A — A)~1,
and hence P, commutes with S(u). Thus the spaces M and L are invariant under S(u).
One computes that

S(p)(A—p) =(A—p@)S(u)
L / (AW - A7

27

=5 /—Id/\— —/(/\ A)~tdx

_ {I - P, for p inside I",
" |\ =P,I for poutside L.
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Take u ¢ 0. Without loss of generality we assume that T has been chosen such that u is
outside I'. But then the above computation shows that

(A-p)S(w)z =S(u)(A—pz=-z, zEM.

Since S(p)M C M, it follows that A — ¢ maps M in a one-one way onto M and
(k= A|M)™! = S(u)|M. Thus p € p(A|M), and we may conclude that ¢(A|M) C 0. In
a similar way one shows that o(A|L) C 7.

Finally, take X ¢ o(A|M) U o(A|L). Then A\ — A maps M (resp., L) in a
one-one way onto M (resp., L). It follows that A € p(A4). So

o(A) Co(A|IM)Uo(A|L) CoUT =0(A),

and (3) is proved. O
When applied to ¢ = o(A), Theorem 2.2 yields

(4) Poray = 1.

Indeed, put ¢ = ¢(A), and let M and L be as in Theorem 2.2. Then o(A|L) = o(A)\o =
0. This can happen only when L = (0). Thus M = X and (4) is proved.

COROLLARY 2.3. Assume o(A) is a disjoint union of two closed subsets o
and 7. Then

(8) P,+ P, =1, Py-P, = 0.
PROOF. Choose Cauchy contoursI’, I'1 and 'y as indicated by the following

picture:

r

A standard argument from complex function theory shows that

1 1 1
6 5 - 4! — [(A=—A)d\= — — AV 4.
©) 271 /(/\ A)TdA+ 2m /( ) 2me /(/\ A)7d
r : Iy r
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The left hand side of (6) is equal to Py + Pr. By formula (4) the right hand side of (6) is
I. Thus the first identity in (5) is proved. Using this, we have Py Pr = Po(I — Pz) = 0.
[}

The next proposition shows that the identities in (3) determine the spaces M
and L uniquely.

PROPOSITION 2.4. Assume X is a direct sum of A-invariant subspaces M
and L. Then o(A) = o(A|M)Uo(A|L), and if o(A|M)No(A|L) =0, then

(7) M= ImPa(A|M)’ L = Ker Pa(A|M)'

PROOF. Since M and L are invariant under A4, the operator A — A4 has the
following 2 x 2 operator matrix representation relative to the direct sum X = M @ L :

/\_A=[,\——A1 0 }

0 A—As

where A; = A|M and Ay = A|L. But this implies that A € p(A4) if and only if A €
p(A1) N p(Az), and in that case

-1

8 a—ayyl=| (A4 0 .
( ) ( A) [ 0 (/\ —Az)_l
Thus p(A4) = p(A1) N p(A2), and o(A) = 0(A41) U o(Az).

Next, assume o(A4;) N o(A2) = 0. Take a Cauchy contour I' around o(A;)
which separates o(A;) from gAg), and integrate (8) over I'. Because of (4) and (5),

1
27t

/(A — A7)~ 1A = Iy, %/(,\ — 4)"ldr =0.
T T

Thus

1 Ayt =[Im O
P"(Al)“zwi/(’\ 4) d’\“[ 0 0]’
r

which proves (7). O

PROPOSITION 2.5. Assume X is a Hilbert space, and let o be an isolated
part of oc(A). Then = {)\| X € o} i3 an isolated part of o(A*) and

(9) (Po(4))" = Pr(A").

PROOF. The first statement about o is trivial. Let ' be a Cauchy contour
around o with separates o from o(A4)\o. Let a: J — C be a parametrization of I'. Denote
by T the curve parametrized by the function m, t € J, and let —T be the same curve
with the opposite orientation. Then —T is a Cauchy contour around & which separates
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7 from o(A*)\7. Now

N Y A)-ldx)*
r

= 1im{2—71r7 Zj;(a(tj) — a(tj—1))(als;) - A)—l}

=lim Z(a(tj) — alio1) (als;) ~ A*) ™

== /(,\ A" )"l = PHA*). ©

I.3 FUNCTIONAL CALCULUS

Let A: X — X be a bounded linear operator acting on the Banach space X.
Note that

ATA—A) T =A"T A -2+ )0 - A7
=241 (A — 47— AL

Proceeding in this way one finds that
n—1 o
(1) AMA = AT =AM A - AT = D AT

Now, let T’ be a Cauchy contour around the spectrum o(A). Note that the integral over
I of the last term in (1) is the zero operator. It follows that

At = (27” /(,\ A)‘ld/\>

1
=—— [ A" =AM = — [ A"(A - 4)7 .
27ri/ ( ) 27ri/ ( )
r r
Let p(A) = 37 _, @nA™ be a complex polynomial. The preceding calculations imply
n=0

(2) pAy= Y and” = / PN\ = A)7TdA.
n=0
The latter expression for p(A) is the starting point of a new definition.

An open set {2 in C is called an open neighbourhood of a set o if o C 2. By
F(A) we denote the family of all complex-valued functions f that are analytic on some
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open neighbourhood (which may depend on f) of a(A4). All complex polynomials belong
to F(A). Given f € F(A) we define

fly= s [ 00 - 7
aA

Here A is a bounded Cauchy domain in the open neighbourhood £ of 6(A) on which f is
defined and o0(A) C A C A C Q. Note that f(A4) is a bounded linear operator on X. A
standard argument of complex function theory shows that its definition does not depend
on the particular choice of the Cauchy domain A. In other words, if f and g belong to
F(A) and f()A) = g(A) on some open neighbourhood of o(A), then f(A) = g(A).

In this setting the Riesz projections appear by using functions which take only
the values 1 and 0. More precisely, if o is an isolated part of o(A4), then the corresponding
Riesz projection P, is equal to h(A), where Fk is a function which takes the value 1 on an
open neighbourhood of & and the value 0 on an open neighbourhood of the complement
og(A)\o. In particular, f(A) = I (resp., f(A) = 0) whenever f is equal to 1 (resp., 0) on
an open neighbourhood of o(A4).

THEOREM 3.1. Given f, g in F(A), then
() (f+9)(4) = f(4) +9(4),

(ii) (af)(4) = af(A), a €C,

(i) (f9)(A4) = f(A)g(A4).

PROOF. Let §2 be the intersection of the domains of f and g. On §2 the
functions f + g, af and fg are defined by

(f+ ) = fN)+9(2),  (af)(A) = af(N),
(f9)(A) = f(N)g(N), Aeq.

Obviously, f + g, af and fg are in F(A). Since f(A) appears linearly in the definition
of f(A), the statements (i) and (i1) are easy to check. We prove (iii).

Let A1 and Ag be bounded Cauchy domains such that
o(A)CAICAICA2C Ay CQ,
and for v = 1,2 let '), be the boundary of A,. Then

f)a(4) = (5 : (/s - 7tan) ([ aturcu - A7)

I, I
= (;}r;)z//f(/\)g(#)(z\ — A)"Hp — A)"dpd)
ISR Y
- (2%) : [ [ #0090 = 07 HO = )77 = (= )7 e
'y T

=7 — 72
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where
2
= (%) 1‘/1‘/ FOVg() (e = M)A — A)"VdpdA
- % /('21? /(f‘ - A)'lg(#)du> FOYX = A)71dA
I:‘1 Fz
=§%/ﬂ”ﬂMO—ArwA=uwmx
r,
and

vi=(5) [ [ £t = 07— A

'y s
=(§§2//ﬂwdmw—M*w—Aeru
', Iy
- = gﬂ@wwmwﬁwpmwu
) % ry
= 0.

To get the last equality we use the fact that all points x4 on I's do not belong to Aj.
Hence for p € Ty the function (u — )71 f(-) is analytic on an open neighbourhood of
Aj, and thus, by Cauchy’s theorem, [(u — A)~1f(A)dXA = 0. Note that in the above

ry
computations the change in the order of the integrals is allowed because of the continuity

of the function
() = FNg()(pe = X) " (p = A
onTy xTq. O

THEOREM 3.2. Let f(A) = Y.02 5w A for X in some open neighbourhood
Q of o(A). Then f € F(A) and

(3) fA) =) a,4”,

v=0
where the latter series converges in the operator norm.

PROOF. Let I’ be the boundary of a bounded Cauchy domain A such that
o(A) C A C A CQ. Let p be the radius of convergence of the series 3.5 5, A¥. Since
the latter series converges for A € , it follows that the open set £ is a subset of the
open disc {A € C||A| < p}. This implies that f is analytic on §, and hence f € F(A).
Furthermore, we see that the series Y 023 ayAY converges uniformly on the compact set
A and hence also on I'. For n > 0 put sn(A) = 3.0_; @, A, and let £(T") denote the
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length of the contour I'. Then

- For

v=0

= Hf(A) — sn(4)]|
=l () = 50X = A)'l‘““
r

1 -1
< o (D) (x| FO) — s (V) max I3 = 4)7
—0 (n — o),
which proves (3). O

The next theorem is known as the spectral mapping theorem.

THEOREM 3.3. If f € F(A), then
(4) o(f(4) ={f(N) | X € o(A)} = flo(A)].

PROOF. Let f be analytic on the open neighbourhood Q of o(A4). Take
Ao € 0(A), and define a function ¢g on by

9(2) = (z = 20) 7 H(f(2) — f(R0)), M #zEQ,
and g(Mo) = f/(Ao), where f' denotes the derivative of f. Obviously, g € F(A) and
(5) f(z) = f(Qo) = (z — Xo)g(z) = 9(2)(z — do),  z€Q
Now apply Theorem 3.1. It follows from (5) that

F(A) — f(Ro)T = (A = XI)g(A) = g(A)(A — Ao D).

Since Ag € o(A4), the operator A — AgI is not invertible. But then the same conclusion
holds true for f(A) — f(Ao)I, which implies that f(Ag) € o(f(A)). We have proved that

flo(A)] Co(f(4)).
To prove the reverse inclusion, take 8 € C\f[o(A)]. Then there exists an

open neighbourhood Qg of 6(A) such Q9 C Q and f(z) — f # 0 for z € Q. Put
h(z) = (f(2) — B)~! for z € Qp. Then h € F(A) and

h(2)(f(z) = B) =1 = (f(z) = B)h(2),  z€ Ry,
and we can apply Theorem 3.1 to show that
MA)(F(4) - BT) = I = (f(4) ~ BI)K(A).

Thus f(A)— pI is invertible, and hence 8 € C\o(f(A)). We see that flo(A)] D o (f(A4)),
and the theorem is proved. O
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I.4 AN OPERATOR EQUATION
Let X and Y be Banach spaces,andlet A:Y - Y, B: X - X andC: X =Y

be given operators. Consider the operator equation
(1) AZ-7ZB=C.

In (1) the unknown is an operator Z from X into ¥. Note that equation (1) is solvable
if and only if there exists an operator Z: X — Y such that the following operator matrix
identity holds true:

Iy Z A C Iy -7 _[A4 Q
@ [o IXHO B][O Ix]—[o sl
The various factors in (2) act as bounded linear operators on ¥ @ X.

From (2) one sees that the problem to solve (1) has to do with similarity of
operators. Indeed, the first and third factors in the left hand side of (2) are invertible

and
y z1' [y -2
0 Ix 10 Ix |
Thus the operators

A C A 0
Q (s 5] [0 3]
are similar whenever equation (1) is solvable. If the spaces X and Y are finite dimensional,
then the converse statement also holds true (see Gohberg-Lancaster-Rodman [1], page
342). In the infinite dimensional case it is unknown whether similarity of the operators
in (3) implies that (1) is solvable. Another application connected with equation (1) will
be given in Section 1.6.

THEOREM 4.1. Assume that the spectra of the operators A:Y — Y and
B: X — X are disjoint. Then the operator equation (1) has a unique solution Z: X - Y
which is given by

Z= % /(A — A)1C(O\ - B)ldx

(4) b
- 2‘_”11 /(A ~ A)71CO = By,

I'sp

where 'y aend T'g are Cauchy contours around o(A) and o(B), respectively, which
separete o(A) from o(B).

PROOF. The fact that ¢(A) and o(B) are disjoint compact sets allows us
to choose Cauchy contours I'y and I'g as indicated. First, let us assume that Z: X — Y
is a solution of (1). Then

ZO-B) -(A-A)Z=C, AeC,
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and hence
(5) A—A)1z-zO0-B)l=0-4)"c-B)"!

for each A € p(A) N p(B). In particular, the identity (5) holds true for A € T'4. Next,
use that o(A) is inside I' 4 and o(B) is outside I'4, and integrate (5) over I' 4. We see
that Z is given by the first identity in (4). If we replace in the above argument I'4 by
I'g, then we obtain the second identity in (4).

It remains to show that (1) is solvable. To do this, let Z be the bounded
linear operator from X into Y defined by the first identity in (4). Then

AZ = = /A(,\ — A)1c(r - B)~ld
2me

T, ]

— 1 _ _ -1 _ -1

= /(A A+ A)(A — A)~1C(A = B)~1dA
Ca

_ 1 -1 Copy-lgy L -1

_%/A(A—A) C(\ — B)~1d) 27”./00 B)~ldx.
s s

Note that the second integral in the last identity is equal to the zero operator. Thus

AZ = = /(/\ — 410\ = B)"Y(A = B + B)dA

2m
Ta

_ -1 1 -t =1

= /(A Ao+ o /(/\ 4)71C(x - B)~'Bax
s r's

~C+2B.

It follows that Z is a solution of (1). O
Consider the Banach space £L(X,Y) of all bounded linear operators from X

into Y, and define J: L(X,Y) — L(X,Y) by J(Z) = AZ — ZB, where A and B are as
in the beginning of this section. Obviously, J is a bounded linear operator. Theorem 4.1
tells us that J is invertible if o(A4) N o(B) = §. Note that

(J-A)(Z)=(A-)N)Z - ZB, AecC.
It follows that J — AI is invertible, whenever (A — A) N o(B) = §, and hence
(6) o(J)C{a—f|aca(A),sea(B)}

D.C. Kleinecke (see Introduction of Lumer-Rosenblum [1]) has shown that the spectrum
of J is equal to the right hand side of (6).



CHAPTER I. RIESZ PROJECTIONS AND FUNCTIONAL CALCULUS 19

1.5 THE DIFFERENTIAL EQUATION ¢ = Ay
Let A be a bounded linear operator on the Banach space X. Consider the
equation

(1) ¥ (t) = Ay(1), 0<t<oo.

A function y: [0,00) — X is said to be a solution of (1) if y is continuous on [0, c0) and
1
li - = R)y—y()|i=0
hgg]”Ay(t) =yt +h) —y( ))N

for each t > 0. Of course one expects the solutions of (1) to be of the form y(¢) = e*4xz,
where z is some vector in X. By definition

2) oA = %/et’\(z\ — 4)~ld),
(1
T

where I is a Cauchy contour around o(A). Hence, according to Theorem 3.2, the operator
e'4 is also given by

= 1
(3) eh =" —var.

!
V.
v=0

LEMMA 5.1. The function t +— et4 from R into L(X) is differentiable and

d
4 tAy tA.
(4) —dt(e ) = Ae
PROOF. Take a fixed t € R, and choose h # 0 in R such that |h|||4] < %

From the functional calculus it follows that e(t+h)4 = ¢hdctA Thys

%{e(t+h)A _ et} — At <

1

e =0 - a] 14y
i _1_hu—1Au
= v!

o0
< [h]- 4] (Z |h|"-2||A||")

v=2

< 2A- [l - 4P 0 (R —0),

tA
Nle i

and (4) is proved. O
THEOREM 5.2. The initial value problem

(5) {y’(t) = Ay(t), 0<t< oo,

y(0) = =,
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tA

has precisely one solution, namely y(t) = e*“z.

PROOF. Put y(t) = e!4z. From the functional calculus it follows that
¢%94 = I, and hence y(0) = =. But then we can apply Lemma 5.1 to show that y is a
solution of (5).

Assume w: [0, 00) — X is a second solution of (5). Consider g(t) = e~t4w(t)
for t > 0. Then

®) L) = e A= At + e A Au(t) =0, >0

Let F be an arbitrary continuous linear functional on X. Then h = F o g is a continuous
scalar function on [0, 00) and according to (6) the derivative h'(t) = 0 for t > 0. It follows
that h is constant on [0,00), and thus

F(e_tAw(t)) = F(z), t>0.

An application of the Hahn-Banach theorem yields that e"*4w(t) = x for ¢ > 0. By the
functional calculus (e"4)~1 = ¢~h4 for any h € R. Hence w(t) = e!4z,¢ > 0. ©

A solution y of (1) is called asymptotically stable if y(t) — 0ift — co. If every
solution of (1) is asymptotically stable, then the equation (1) is said to be asymptotically
stable. (Since y(t) = 0 is a solution of (1), the vector £ = 0 is an equilibrium point of
the differential equation (1). In this terminology asymptotic stability of (1) is equivalent
to the requirement that r = 0 is a so-called asymptotically stable equilibrium point for
(1)

THEOREM 5.3. If o(A) lies in the open healf plane R < 0, then equation
(1) is asymptotically stable. Conversely, if (1) is asymptotically stable, then o(A) lies in
the closed half plane RX < 0. If, in addition, X is finite dimensional, then asymptotic

stability of (1) is equivalent to the statement that o(A) belongs to the open half plane
RA < 0.

To prove Theorem 5.3 we shall make use of the following lemma.

LEMMA 54. If o(A) belongs to the open half plane RA < v, then there
ezists a constant C (depending on A and v) such that

) et4] < Ce,  t>0.
Conversely, from (7) it follows that o(A) belongs to the closed half plane RX < 4.

PROOF. Assume o(A) belongs to the open half plane A < 4. Then we
may choose a Cauchy contour I' around o(A) such that T also belongs to X < +. Let
£(T) be the length of I'. Note that |et’\| < el for A €T and ¢ > 0. Thus

1
4] = 27”/ AN — A)—ldAH
T

IA

1 -1 yt
- >
(zﬂf(l“)r;lggll(/\ 4) ||)e, i>0,
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which proves (7).

To prove the converse statement, assume that (7) holds true. Then for t > 0
the spectrum of e!4 belongs to the closed disc with center at 0 and radius Ce. According
to the spectral mapping theorem (Theorem 3.3) this implies that

et?b\ = |e’\t| < Ce-yt’ Ae O'(A).
This holds for each ¢ > 0. Now take a fixed A € 0(A). Then exp{t(RA — v)} £ C for
t > 0, which implies that A <. Thus Ro(4) <v. ©

PROOF OF THEOREM 5.3. Assume Ro(A) < 0. Since o(A) is compact,
there exists ¢ > 0 such that ¢(A) belongs to the open half plane A < —e. By Lemma
5.4 this implies that

4] < ce™®, t>0

for some constant C. So for each z € X we may conclude that e!4z — 0 if ¢ — oo.
Hence (1) is asymptotically stable.

Next, assume that (1) is asymptotically stable. Take z € X. According to
our assumption e!4z — 0 if t — co. In particular, there exists a constant C (depending
on z) such that ||e!4z|| < C; < oo for all ¢ > 0. But then we can apply the principle of
uniform boundedness to show that there exists a constant C such that ||e!4|| < C < oo
for t > 0. This implies (Lemma 5.4) that R0(A4) < 0.

Finally, assume (1) is asymptotically stable and dim X < co. We want to
show that Ro(A) < 0. We already know that Ro(A) < 0. Suppose A = ib € o(A)
with b € R. Since X is finite dimensional, A is an eigenvalue of A. Let z # 0 be a
corresponding eigenvector. Then e*4z = eitbz. It follows that

2]l = lle®z|| = ||e*4z]| =0,  t— oo.

Thus z = 0, which is a contradiction. o
The next theorem is another useful application of Lemma 5.4. -
THEOREM 5.5. Let A:Y - Y, B:X — X and C: X — Y be operators

acting between Banach spaces, and assume that the spectra of A and B are in the open
half plane RX\ < 0. Then the operator equation

(8) AZ+ZB=C

has o unique solution Z in L(X,Y), namely

[o ]
(9) 7 =- / et4CetBat.
0

PROOF. From the condition on ¢(A) and ¢(B) it follows that o(A4) N
o(—B) = §. According to Theorem 4.1 this implies that the equation

AZ + ZB=AZ - Z(-B) = C
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has a unique solution Z in £(X,Y). We have to prove that Z is given by (9).

The integral in (9) is considered as an improper Riemann-Stieltjes integral.
Note that the integrand is continuous. The fact that c(A) and o(B) are in the open half
plane A < 0 implies (see the first part of the proof of Theorem 5.3) that there exist
positive constants € and M such that

e < Me™t,  ||etP| < Me™t (£ 20).

It follows that the integral in (9) is well-defined. Next, observe that
%(etACetB) = AetACe!P 4 et Ce!BB.
Hence

—C = lim (e™Ce™8 — C)
T—00

i { 4(/ etACetht) (/ etACetht) B}
T—00
0 0

= —(AZ + ZB),
where Z is the right hand side of (9). O

1.6 LYAPUNOV'S THEOREM

A bounded linear operator A on a Hilbert space H is said to be strictly positive
if A is selfadjoint and there exists a constant § > 0 such that

(1) (Az,z) 2 §(z,2), T € H.

Here (-,-) is the inner product on H. If —A is strictly positive, then A is called strictly
negative. The next theorem is known as Lyapunov’s theorem.

THEOREM 6.1. The spectrum of an operator A on a Hilbert space H belongs
to the open half plane R < 0 if and only if there exists a strictly positive operator Z on
H such that ZA 4 A*Z 1s strictly negative.

Here A* stands for the adjoint of A. The proof of Theorem 6.1 will be based
on the following lemma.

LEMMA 6.2. Let A be an operator on a Hilbert space. If A+ A* is sirictly
negative, then o(A) belongs to the open half plane R\ < 0.

PROOF. Choose § > 0 such that ((A+ A*)z,z) < —6(z,z) for £ € H. Take
a fixed z € H and consider the function ¢(t) = [et4z||2. Note that

d d
Ech(t) = E(emx, etdz)

d .
_ _(etA etA

dt
= (e'47(4* + A)etlz, z)
= (4" + A)e'z, eMz) < —8io(2).

z,z)
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Thus, (e5%p(t))' = 8eSte(t) + €St/ (t) < 0, which implies that eStp(t) < ¢(0) for ¢ > 0.
Thus

1
letAal < exp(~38t)lell, 20
We conclude that ||e!4|| < exp(—36t) for ¢ > 0. According to Lemma 5.4 this shows that

Ro(4) <0. O

PROOF OF THEOREM 6.1. Assume there exists a strictly positive operator
Z on H such that ZA 4 A*Z is strictly negative. Choose § > 0 in such a way that (1)
holds with A replaced by Z. On H we introduce a new inner product [-,-] by setting

2,9 =(Zz,y) (z,y € H).
Let ||| - || be the corresponding norm. Note that
(2) sllz)® < l=l* < 12 1lll=]%, = € E.

Thus the original norm || - || and the new norm ||| - || are equivalent. In particular, H
endowed with [+, -] is again a Hilbert space. It follows that A is a bounded linear operator
on H endowed with the new || - ||. By A# we denote the adjoint of A with respect to
the inner product [-,:]. For z and y in H we have

[Az,y] = (ZAz,y) = (z,A%Zy)
[z, A#y] = (ZI,A#y) = (a:,ZA#y).

We conclude that ZA# = A*Z. Thus

[(A+ A*)z 2] = (ZAz,z) + (ZA#z,2)
=((ZA+ A*Z)z,z).

According to our hypotheses ZA + A*Z is strictly negative. Now use that |- || and ||| - |||
are equivalent norms. It follows that A + A# is also strictly negative. But then we can
apply Lemma 6.2 to show that Ro(A4) < 0.

To prove the converse, assume that Ro(A) < 0. Then ¢(A4) and o(4*)
are both in the open half plane £\ < 0, and Theorem 5.5 tells us that the equation
ZA+ A*Z = -2I has a unique solution, namely

o
(3) Z:= 2/e““e“‘dt.
0

Since —2I is strictly negative, it suffices to show that Z (defined by (3)) is strictly
positive. From (etA)* = e!4” it is clear that e!4"¢e!4 s selfadjoint, and hence

e} e}
(4) (Zz,z) = 2/(6tA‘€tA.’E,I)dt = 2/ let4z||?dt.
0 0
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For t > 0 we have
2]l = le™*4etAz]| < [le=*4]l[|e*4=]]
< etlAllet4z),
and thus
letdz| > e~ thallz|  (z € H,¢t > 0).

By inserting the latter inequality in (4) one sees that

oo
1
72,9) 22 [ Al = (—>||z||2-
(Z2,2) J 4]

Thus Z 1s strictly positive. O
Let A be an operator on a Hilbert space H with spectrum in RA < 0, and let
y:[0,00) — H be a solution of the differential equation
y'(t) = Ay(2), 0<t<oo.
Then we know (see the previous section) that

ly(®)|| < Ce™¢t,  ¢t>0,

for some positive constants C and €. Lyapunov’s theorem allows us to say a bit more
about the behaviour of the function y, namely, there exists € > 0 and an equivalent norm
Il - I on H such that e%t||y(¢)||| is decreasing as a function of ¢. In fact, € > 0 and || - ||
may be taken as follows:

llzll: = (Z2, )72, ((ZA+ A*2)z,2) < —¢|j2|® (= € H),
where Z is a strictly positive operator with the property described in Theorem 6.1. The
proof of Lemma 6.2 and the first part of the proof of Theorem 6.1 show that with this
choice of € and || - || the function et||y(¢)||| is decreasing indeed.



CHAPTER II
EIGENVALUES OF FINITE TYPE

The results of the previous chapter are developed further for the case when
the operator has isolated eigenvalues with properties of the same type as eigenvalues of
finite matrices. The problem of completeness of eigenvectors and generalized eigenvectors
appears in a natural way. The results are applied to compact operators. This chapter
also contains limit theorems for spectra and the infinite dimensional version of Schur’s
lemma about triangular forms.

II.1 DEFINITION AND MAIN PROPERTIES

In this section A is a bounded linear operator acting on a Banach space X.
Let o be an isolated part of o(A). We are interested in conditions which guarantee that
the corresponding Riesz projection P, has finite rank. For this purpose we need the
following definition. A point Mg € o(A) is called an eigenvalue of finite type if the space
X admits a direct sum decomposition, X = M & L, with the following properties:

(E1) M and L are A-invariant subspaces,
(E2) dimM < oo,
(Es) o(A|M) = {Xo}, Ao & o(A|L).
Since the spectrum of an operator acting on a finite dimensional space consists of eigen-

values only, conditions (E9) and (E3) imply that Ag is an eigenvalue of A|M and hence
also of A.

An operator may have eigenvalues which are not of finite type. For example,
let S:€y — £9 be the backwards shift of s, i.e., S(a1,as,a3,...) = (a2, a3,a4,...).
Then each A in the open unit disc is an eigenvalue of S. Indeed,

S(1,\A2,..) = M1,),02)..), Al < 1.

But none of these eigenvalues are of finite type, because (as follows from the next theorem)
eigenvalues of finite type are isolated points in the spectrum.

THEOREM 1.1. A point Ay in o(A) is an eigenvalue of finite type if and
only if Ao i3 an isolated point in o(A) and the corresponding Riesz projection P{,\O} has
fintte Tank.

PROOF. Note that g is an isolated point of 6(A) means that the set {g} is
an isolated part of o(A4). Now let Ag be such a point, and assume that the corresponding
Riesz projection Py} has finite rank. Put M =Im Py, y and L = Ker Py }. Then
Theorem 1.2.2 tells us that X = M & L and the properties (E1), (E2) and (E3) hold.
Thus Ag is an eigenvalue of finite type.

Conversely, assume Ag is an eigenvalue of A of finite type. So X admits a
direct sum decomposition, X = M @ L, with the properties (E;), (E2) and (E3). Apply
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Proposition 1.2.4. It follows that o(A4) = {A\g}Ua(A|L). Since Ao ¢ d(A|L), we conclude
that Ag is an isolated point of ¢(A) and M = Im Py, }. But dim M < co. So Py} has
finite rank. O

Let Ag be an eigenvalue of A4 of finite type, and let X = M @ L be a direct sum
decomposition with the properties (E;), (E3) and (E3). From Proposition 1.2.4 it follows
that M and L are uniquely determined. In fact, M = Im P{,\O} and L = Ker Py, }. The
dimension of the space M will be called the algebraic multiplicity of the eigenvalue A
and is denoted by m(Ap; A). In other words,

(1) m(Ap; A) =ra.nkP{,\0}.

The geometric multiplicity of A as an eigenvalue of A is, by definition, equal
to dim Ker(Ag — A).

COROLLARY 1.2. Let o be an isolated part of o(A). Then the correspond-
ing Riesz projection Py has finite rank if and only if o consists of a finite number of
eigenvalues of A of finite type. Furthermore, in that case

(2) rank P, = Z m(A; A).
A€o

PROOF. The space M:= ImP, is an A-invariant subspace of X and
o(A|M) = o. Assume rank P, is finite. Then we know from Linear Algebra that o(A|M)
consists of a finite number of eigenvalues, say A1, ..., Ar, and M admits a direct sum de-
composition M = M; @ My @ -+ @ M, such that AM; C M; and o(A|M;) = {};}
forj=1,...,r. Nowput L; =M ®--- @ M;1 ®--- ® Mjy1 ® My ® Ker P;. Then
X = M; & L; and the conditions (E1), (Ez) and (E3) are fulfilled. It follows that o
consists of a finite number of eigenvalues of finite type.

To prove the converse, assume ¢ = {A1,...,Ar}, where Ay, ..., A, are (differ-
ent) eigenvalues of A of finite type. Then (cf. Corollary 1.2.3)
Im P, = ImP{/\l} D--- ImP{/\r}.

Hence rank P, = 3°%_, rank Py = Ti=1m(Aj;A) <oo. O

The next theorem describes the behaviour of the resolvent in a neighbourhood
of an eigenvalue of finite type.

THEOREM 1.3. Let Ay be an eigenvalue of A of finite type. Then the
resolvent (A — A)~1 admits at Ao an ezpansion of the following type:

(3) (A=A =Y (A-2)B,

v=-—q
where B_1,...,B_4 are operators of finite rank. Here ¢ < m(Ag; A) and the series in
(3) converges in the operator mnorm for all \ in some punctured disc 0 < |A — Xg| < &.

PROOF. Put M = ImP{,\o} and L = Ker Py, y. Then X = M @ L and
relative to this direct sum decomposition A — A admits the following 2 x 2 operator matrix
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representation:

A—4 0
0 A—A4y |’

where A] = A|M and A; = A|L. Since )\g is an isolated point of o(A4), it follows that
for some § > 0

r-a=|

(4) ()\_.A)—1=[()\—611)_1 (A_(/)h)_l], 0<|A— Aol < 6.

Note that A; acts on a finite dimensional space and A; has precisely one point in its
spectrum, namely A\g. So M has a basis such that the matrix of A relative to this basis
has a Jordan normal form with A¢ on the main diagonal. Consider the following single
m % m Jordan block:

Ao 1
Ao 1
J= 1
Ao
As is well-known
A=2)"1 (A=) - (A=A
A=X) b 0 (A=)l
O gyl o B2t e (-0)
(A= Ao)?
But then we may conclude that
q a .
(5) A—ADT' =) (A= 20) (A1 =)7L A# D,

=1

where ¢ < dim M = m()g; A). Next, recall that Ay ¢ o(A|L). Thus Ag — Aj is invertible,
and hence

(6) (A= A42) 1= —(A=20)" (A2 — Ao)™¥"!

v=0

for [A — Ag| < ||(Ao — 42)7 1|71, From (4), (5) and (6) it is now clear that (3) holds
provided we define

Buz[(Al—)(‘)O)_u_l g:l, v=-1,...,~¢q,

0 0

BV=|:0 _(AZ_)\O)—V_l], l/=0,1,2,....
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Note that the operators B_1,...,B—4 are of finite rank. O

Let Ap be an isolated point in ¢(A). Then (with arguments similar to the
ones used in the proof of Theorem 1.3) it can be shown that the resolvent (A — A)~1
admits the following expansion:

(7) A=4A)= > (A-X)B.

v=—00

in some punctured disc 0 < |\~ Ap| < €. Note that in this expansion the coefficient B_;
is precisely the Riesz projection P{,\o}. Thus if (7) holds and rank B_; < oo, then Ap is
an eigenvalue of finite type. Furthermore, in that case B, = 0 for v < —m(Ag; A).

1I.2 JORDAN CHAINS

Let A: X — X be an operator acting on the Banach space X, and let Ay be
an eigenvalue of A. An ordered set {zg,z1,...,Zr—1} in X is called a Jordan chain of
A at Ay if zp # 0 and

(1) Azg = Aoz, Az; = Xz + Tj-1 G=1,...,7r=1).
Note that the first vector in a Jordan chain is an eigenvector of A. The elements
z1,...,Zr—1 in (1) are called generalized eigenvectors of A.

Jordan chains may be characterized in the following way. Let z¢,...,z,._1 be
vectors in X. Then {zg,...,zr—1} is a Jordan chain of A at A if and only if the vectors
zg,...,Zr—1 are linearly independent, the space My = span{zg,...,Z,~1} is invariant
under A, and the matrix A|Mj relative to the basis z¢,...,z,—1 is a single Jordan block
with Ag on the main diagonal, i.e., with respect to zg,...,2,—1

Ao 1
Ao 1
matrix(A|My) =
1
Ao

PROPOSITION 2.1. If Ag is an eigenvalue of finite type, then Im P{Ao} has
o basis of eigenvectors and generalized eigenvectors.
PROOF. The space M = Im P(y,} is finite dimensional and A-invariant.

Thus M has a basis such that relative to this basis the matrix of A|M has a Jordan normal
form. It follows that the basis elements are eigenvectors or generalized eigenvectors of

A. O

PROPOSITION 2.2. The vectors zg,...,Zr—1 form a Jordan chain of A at
Ao of and only if ¢ # 0 and

(2) y(t) = ! (ri —Vl—!t”xr_1_u)

v=0
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satisfies the differential equation y'(t) = Ay(t), —oo <t < oo.

PROOF. Assume zg,...,Zr~1 form a Jordan chain for A at Ag. Then for A
in the resolvent set of A

(3) (A=A4)" 1z Z(A /\0)V+1IJ v, j=0,...,7—1.

v=0

Take a Cauchy contour I' around the spectrum of A. One computes that
etz = _}_:/et’\(/\ ~ Az, _1dr
2me

oo
1
=et’\°zm (Zm /(/\ A)"(A— A) g, ld/\)
n=0
r—1 1
= gltho Z ;'_Jtnxr—l-—n = y(t).

n=0

According to Lemma 1.5.1 this implies that y(-) is a solution of y'(t) = Ay(t), —oo < ¢
< 00.

Next, assume that the function y(-) given by (2) satisfies the differential
equation y'(t) = Ay(t), —co <t < oo. Then

(A= 20)y(t) =4'(t) — Xoy(t)
r—2 1.
= gtot Z ﬁt-’:cr_z_j.
j=0

It follows that (A — Ag)zg = 0 and (A — A\g)z; = zj_y for j = 1,...,7 — 1. Thus
Zg,...,Zr—1 i1s @ Jordan chain. O

Solutions of y'(t) = Ay(t), —co < t < o0, of the form (2) are called ele-
mentary solutions. Note that the elementary solutions are precisely those solutions for
which the initial value at 0 is an eigenvector or generalized eigenvector. If the initial
value is a linear combination of eigenvectors and generalized eigenvectors (corresponding
to possibly different eigenvalues), then obviously the solution is a linear combination of
elementary solutions. Thus, if the linear span of all eigenvectors and generalized eigen-
vectors of A is dense in the space X, then any solution of y'(t) = Ay(t), —co < t < oo,
can be approximated uniformly on finite intervals by linear combinations of elementary
solutions. From these observations the importance of the completeness of eigenvectors
and generalized eigenvectors is apparent. Completeness is also important if one wants
to calculate f(A) for functions f different from e!. For compact operators the prob-
lem of completeness (i.e., under what conditions is the linear span of eigenvectors and
generalized eigenvectors dense) is one of the main topics of Part II of the present book.

Let A9 be an eigenvalue of A of finite type, and let {z¢,z1,...,7,~1} be a
Jordan chain of A at A\g. Then (3) holds. Take a Cauchy contour I' around )¢ which
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separates Ao from o(A)\{Ao}. By integrating (3) over I' one sees that Py yz; = z;
for j =0,...,r — 1. It follows (cf. Proposition 2.1) that Im Py, } is precisely the space
spanned by a.ll exgenvectors and generalized eigenvectors of A corresponding to Ag. For
this reason Im Pyy 3 is often called the generalized eigenspace of A corresponding to the
eigenvalue \g. Note that the generalized eigenspace of A corresponding to Ag is equal to
Ker(Ag — A)" for any r > m(Ag; 4).

11.3 EIGENVALUES OF COMPACT OPERATORS

THEOREM 3.1. Let A be a compact operator on a Banach space, and let
o be an isolated part of o(A). If O does not belong to o, then the corresponding Riesz
projection P, has finite rank.

PROOF. Let I be a Cauchy contour around ¢ which separates ¢ from
o(A)\o. Since 0 ¢ o, we may assume without loss of generality that 0 belongs to
the outer domain of I'. It follows that

=5 /(/\ A"y

2"%/ (A= A+ AN — A)"tdA
%/% / SA(N — A)"ldx
r

= A(z—m, / - A)-ldA).
r

Thus P, is compact. Since P, is a projection, this implies that rank Py is finite. O

COROLLARY 3.2. Any non-zero point in the spectrum of a compact operator
18 an eigenvalue of finite type.

PROOF. Let Ay be a non-zero point in the spectrum of the compact operator
A. From [GG], Section XI.6 we already know that Ag is an isolated point in a(A4). (Let us
remark that in [GG] the latter statement is proved under a certain additional restriction
on A; a general proof will be given in Section XI.8 of the chapter on Fredholm operators.)
According to Theorem 3.1 the operator Py y has finite rank. Thus by Theorem 1.1 the
point Ag is an eigenvalue of finite type m]

In the remaining part of this section A is a compact operator acting on a
separable Hilbert space H. We know now that the non-zero part of the spectrum of 4 is
a finite or countable set of eigenvalues of finite type. This set can only accumulate at 0.
In what follows

0 A1(4), A2 (A4), A3(4), ...

denotes the (finite or infinite) sequence of non-zero eigenvalues of A with the following
convention:
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(i) each non-zero eigenvalue of A appears in the sequence (1) as many times as the
value of its algebraic multiplicity,

(ii) the eigenvalues are ordered according to decreasing absolute value, i.e., |M\1(4)| >
[A2(A)] 2 [A3(4A)] = --- .
The following lemma is known as the lemma of Schur.

LEMMA 3.3. Let A be a compact operator on a Hilbert space H, and let
E 4 denote the smallest closed linear manifold of H containing all the eigenvectors and
generalized eigenvectors of A corresponding to non-zero etgenvalues. In E4 there extsts
an orthonormal basis py,ps,... such that for 3 =1,2,...

(2) Apj = a1jp1+ - +ajjpg,  ajj = Ai(A)

PROOF. Let p1,pa,... be the different non-zero eigenvalues of A. Assume
|#1| > |p2| = -- -, and let m; be the algebraic multiplicity of x;. Obviously,

E4 =Spa.n{ImP{uJ.} |7 =1,2,...}.

In Im P{uj we choose a basis wj1,...,Wjm; such that the matrix of A|Im P{uj} relative
to this basis has a Jordan normal form. This is done for each ;. Consider the set

V= {wi1,- ., Wim; W21, -+ W2my, W31, - -}

Then V is linearly independent set of vectors and E4 = spanV. Now apply the
Gram-Schmidt orthonormalization procedure to V. The resulting orthonormal system
©1,%2,.-. has the desired properties. O

In the special case that E4 = H the lemma of Schur shows that H has an
orthonormal basis ¢1,3,... such that the matrix of A with respect to this basis is an
upper triangular matrix with non-zero diagonal elements.

In general we may write H = E4 @ E‘f{. Let us consider the 2 x 2 operator
matrix of A relative to the decomposition H = E4 @ E‘f{. Since E 4 is invariant under
A, the element in the left lower corner is the zero operator. Thus

(3) A=[A81 ﬁ;z]:EA@Eﬁ—»EA@Ef;.

LEMMA 3.4. The operator A 1n (3) is a compact operator and o(Agy) has
no non-zero elements.

PROOQOF. Let @ be the orthogonal projection of H onto E‘f{. Then Agsz =
QAz for each z € Ej. Since A is compact, it follows that the same is true for Agq.
Assume that p is a non-zero element in 6(A22). Then % is 2 non-zero element in a(A3y),
and hence 7 is an eigenvalue of A3,. Let zo # 0 in EA!- be a corresponding eigenvector.

From AE4 C E, it follows that A*Ex C E7, and hence A}, = A* | EX. But then
A*zo = @zo, and we conclude that

(4) 0 # o € Bx N1m Py (4%).
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On the other hand Im Pry (A) C E4. So we can apply Proposition 1.2.5 to show that

Ef C (Im Py,y(A)) " = Ker Pp,y(A)°
= Ker P{ﬁ}(A*),

which contradicts (4). Thus ¢(A22) has no non-zero elements. O

A compact operator whose spectrum consists of the zero element only is called
a Volterra operator. To study such operators one cannot use the functional calculus of
Section 1.3, but one needs more advanced methods. In Part II we shall develop some
of these more advanced methods. Note that the system of eigenvectors and generalized
eigenvectors of A is complete if, for example, dim E‘;]{ < oo or the Volterra operator Agg
in (3) is the zero operator.

II.4 CONTINUITY OF SPECTRA AND EIGENVALUES

Let A: X — X be a bounded linear operator acting on the Banach space X.
In this section we describe what happens to the spectrum or parts of the spectrum of A
if the operator A is subjected to a small perturbation,

THEOREM 4.1. Let Q be an open neighbourhood of o(A). Then there ezists
€ > 0 such that o(B) C Q for any operator B on X with |A— B| <e.

PROOQOF. Choose a Cauchy contour I in § around o(A). Put
(1) v =min{||(A - A)7H|7" | A e T},

Assume that ||A — B|| < §v. Then
1 —1—
(2) A=) - =Bl <5l -47H™,  xeT.

Since A — A is invertible for A\ € T', we can apply Corollary I11.8.2 in [GG] to show that
o(B)NT = and

I(x = A~ 124 - B
—I(x = A=A - Bj|
<2A(A-A7PA-Bll,  XeT.

IV =4~ =(A = B)H <+

Let P be the Riesz projection corresponding to the part of o(B) inside T'. Then
1 -1 -1
I-P||=|— A—A —-(A—B dA
7= Pl =[5 [0~ 7~ - By
r

<5 [I0- 47 = (= B) ! ax
r

<C||A-B|,
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where

(3) C= %/“(,\ — A)"1||2d) < oo.

r

Now, put ¢ = min{}~,(C 4+ 1)} and take |[A~B|| <e. Then |- P|| < 1. But I— P
is a projection, and thus I — P = 0. Note that I — P is the Riesz projection corresponding
to the part of o(B) outside I'. Since I — P = 0, it follows that ¢(B) is inside I, and
hence o(B) C . O

The next theorem concerns the behaviour of the eigenvalues of finite type
under small perturbations.

THEOREM 4.2. Let o be a finite set of eigenvalues of A of finite type, and
let T be a contour around o which separates o from a(A)\o. Then there ezists € > 0 such
that for any operator B on X with |A — B|| < € the following holds true: o(B)NT = 8,
the part of o(B) inside I is a finite set of eigenvalues of finite type and

(4) Yo mAB) = Y. m(hA).

A inside T A inside T’

To prove Theorem 4.2 we use the following lemma (due to B. Sz-Nagy [1,2]).

LEMMA 4.3. Let P and Q be projections of the Banach space X. If ||P —
Q| <1, then :

(5) X =KerP®Im@Q, X =ImP®KerQ.

Furthermore, P and Q have the same rank.

PROOF. Our assumption implies that the operators S:= I — P + @Q and
T:=1I— Q + P are invertible. Take z € X, and put y = S~ 1z. Then z = Sy = (I —
P)y+Qy € Ker P+Im Q. Furthermore,if z € Ker PNIm @, then Tz = z—Qz+ Pz = 0,
and hence z = 0. This proves the first identity in (5). By interchanging the roles of P
and @ one obtains the second identity in (5). O

PROOF OF THEOREM 4.2. Pute = min{%‘y,(C’ + 1)_1}, where the con-
stants v and C are defined as in (1) and (3), respectively. Since ¢ < %7, one can use
the same arguments as in the proof of Theorem 4.1 to show that o(B)NT = §. Let P
(resp. @) be the Riesz projection corresponding to the part of o(A) (resp. o(B)) inside
I'. Then P = P, has finite rank (Corollary 1.2) and (see the proof of Theorem 4.1)

IP-@ll<C|lA-B| <1.
Now apply Lemma 4.3. We obtain rank = rank P < co. But then we can use Corollary
1.2 to finish the proof. O

COROLLARY 4.4. The limit in the operator norm of a sequence of Volterra
operators i3 again a Volterra operator.

PROOF. Let Ap, As,... be a sequence of Volterra operators on the Banach
space X, and assume that the sequence converges in the operator norm to the bounded
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linear operator A. Thus ||[A, — A|| — 0 for n — oo. Then A is compact (cf. [GG],
Theorem I1.14.3). We want to show that o(A4) consists of the zero element only. Suppose
not, and let 0 # A € o(A). Then A is an eigenvalue of finite type for A. Choose a circle
in the resolvent set of A with centre at A and radius r < |A| such that A is the only point
of o(A) inside I'. Now apply Theorem 4.2. So for n sufficiently large the operator Ap
must have an eigenvalue of finite type inside I'. Since An is Volterra and 0 is not inside
T', this is impossible. Thus A is Volterra. 0O

If we drop the compactness condition on the operators in Corollary 4.4, then
the statement does not remain true. More precisely, one can construct (see Rickart [1],
page 282) a sequence Aj, As,. .. of bounded linear operators on a Hilbert space H, which
converges in the operator norm to an operator A, such that ¢(A4,) = {0} forn =1,2,...
and o(A) contains non-zero elements.

COROLLARY 4.5. A Volterra operator on a Hilbert space is the limit in the
operator norm of a sequence of finite rank Volterra operators.

PROOF. Let A be a Volterra operator on a Hilbert space H. Thus 4 is
compact and A has no non-zero elements in the spectrum. Since A is compact and acts on
a Hilbert space, there exists (see [GG], Theorem VIII.4.2) a sequence Aj, Aa, ... of finite
rank operators such that ||An — A|] = 0 (r — o). Let Ey, be the closed linear manifold
in H containing all the eigenvectors and generalized eigenvectors of A, corresponding
to non-zero eigenvalues. Obviously, dim F, < oo. Relative to the decomposition H =
E,® E;’; the operator A, admits a 2 X 2 operator matrix representation, namely

4= | AT Aégi } .
n
From Lemma 3.3 we know that the space E, has an orthonormal basis <pg"), . ,<p$:)

such that the matrix of Ag'll) relative to this basis has the following upper triangular
form:

/\I(An) * e *
/\Tn (An)
Define Dy, on Ey, by setting Dn<p§.") = /\j(An)cpg-n), and consider

A - Do A

Vi =
" 0 A

Since dim E,, < 00, the operator A,, — V, has finite rank, and hence V;; = A,, — (An—Vy)
is a finite rank operator. According to Lemma 3.4 the operator Agg) has no non-zero

eigenvalues. By construction the same is true for Ag'll) — Dy,. Hence V;, has no non-zero
eigenvalues, and thus V, is a finite rank Volterra operator. It remains to show that

(6) [ An = Vall = 1 Dnll = max (A =0 (n— o).
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To prove (6), take @ = {) € C||/\| < &}, where § is some positive number.
Note that ¢(A4) = {0} € Q. According to Theorem 4.1 this implies that there exists an
integer NV such that ¢(4,) ¢ Q for n > N. So for each j we have |A;(An)| < 6 whenever
n > N. This proves (6). o



CHAPTER III
ANALYTIC EQUIVALENCE

In this chapter we study a concept of equivalence which allows one to com-
pare spectra and spectral properties of different operators with the aim to find their
similarities. Local and global aspects of the equivalence concept are studied separately.
Equivalence is also used for the analysis of operators which depend analytically (and not
necessarily linearly) on the spectral parameter.

II1.1 A FIRST EXAMPLE
The type of equivalence studied in this chapter has its origins in the theory
of differential equations. Consider the n-th order equation:

(1) M) + An1p V(@) + -+ Ago(t) =0,

where Ag,...,An—1 are operators acting on a Banach space X and ¢ is an X-valued
function on R. The usual way to deal with the equation (1) is to replace it by the
following linear system:

4

ditw(t) —p2(t) =0,

d
Zonm(t) = en(t) =0,

d
d_t‘Pn(t) + AO‘Pl(t) +e 4 An—l‘Pn(t) =0,

\

which can be written in the form

d

2 — =

(2) S8() = C2(1),

with
0 Ix 0 0 1
0 0 Ix 0 P2

(3) C= . . . . ’ ¢ = .
: : : - Ix :

—Ao —A1 —42 - -4, n

The operator C acts as a bounded linear operator on the space X™ (the direct sum of
n copies of X') and ® is an X™-valued function. Equations (1) and (2) are equivalent in
the following sense: If ¢ is a solution of (1), then & with ¢; = <p(j_1), ji=1,...,n,isa
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solution of (2), and, conversely, if ® is a solution of (2), then ¢ = ¢ is a solution of (1).
It follows (cf. Section 1.5) that the general solution of (1) is given by

o(t) = Qe'“n,

where 7 is an arbitrary vector in X™ and @ assigns to a vector in X™ its first X-
component, i.e.,

Q= 0 - 0:X"—>X.

The equivalence between (1) and its linearized version (2) can be made more
explicit in the following way. Let L(\) be the monic operator polynomial

L) = AT+ A" 4, 1 4 -+ + Ap.
Then the following identity holds true
L(X)
Ix
(4) . = F(A\)(Mx» — C)E(N), AeC.

Ix

Here C is given by the first equality in (3) and

r Ix
A x Ix
E(\) = . . . ’
L /\"_IIX /\"_2.[)( I §%
i Bn—l(’\) Bn—2(’\) T BO(/\)
—Ix 0 0
F(A\) = —Ix cee 0 »
i o _Ix 0

with By(A) = Ix and B,y 1(A) = ABy(A\) + Ap—y—,, for » = 0,1,...,n — 2. From the
lower triangular form of E()) it is evident that E()) is an invertible operator on X™.
A cyclic permutation of the columns transforms F(A) into an upper triangular operator
matrix with Ix or —Ix on the main diagonal. Hence also F'(A) is an invertible operator
on X™. Furthermore, E(\), F()) and their inverses E(A\)~!, F(A\)~1 are polynomials in
A. In particular, all these operators depend analytically on the variable A. It is this type
of analytic equivalence which forms the main topic of this chapter.

II1.2 GLOBAL EQUIVALENCE

Let © be an open set in C, and for each X in 2 let T(A\):X; — Y7 and
S(A): X9 — Y5 be bounded linear operators which act between (complex) Banach spaces.
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The operator functions T(-) and S(-) are called (globally) equivalent on Q if there exist
operator functions E: Q — L£(X1,X2) and F:Q — L(Y2,Y1), which are analytic on {,
such that

(1.a) T(A) = F(A)S(A)E(X), AeQ,
and, in addition, E()\) and F()) are invertible for each A € . In that case also
(1.b) S = FO)TITO)EMN™Y,  deQ

and the operator functions E(-)~! and F(-)~! are again analytic on Q. Formula (4) in
the previous section provides a first example of global equivalence. The next example
describes another context in which this notion appears.

Let A: X — Y and B:Y — X be operators acting between Banach spaces.
Then the operator functions T()) = (A\y — AB)® Ix and S(\) = (AIx — BA) @ Iy are
globally equivalent on C\{0}. In fact,

My —AB 0] _ My —BA 0
(2) IS A ] Rl |20, a0
where
E(A) —_ —A—IB A—IIX E(A)_l _ —A A—]‘Iy
My —AB A |’ My —BA M1B |’

_[-A Iy —)"14B -1 _[=x"1B IX—,\—IBA]
F(’\)“[IX A~1B ] FQ) ‘[ Iy A ’

From the equivalence in (2) it follows that A # 0 belongs to o¢(AB) if and only if A
belongs to o(BA). In other words:

(3 a(AB)\{0} = o(BA\{0}.
Later (e.g., in the next section and in Corollary VII.6.2) we shall see that the equivalence

in (2) implies that several other spectral characteristics of AB and BA are the same.

Given an operator function T: — £(X,Y) and a Banach space Z, we call
the operator function

T¢) 0|,
[ 0 IZ].Q—MC(X@Z,Y@Z)
the Z-eztension of T(-). According to formula (4) in the previous section a suitable

extension of a monic operator polynomial is equivalent on C to a linear function. The
next theorem gives another example of linearization by extension and equivalence.

THEOREM 2.1. Let T be a Cauchy contour around 0 in C, and let T(-) be

an operator function, which 1s analytic on the inner domain Q of T, continuous on QUL
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and whose values are operators on the Banach space X. Denote by C(I', X)) the Banach
space of all X -valued continuous functions on I’ endowed with the supremum norm. Let

Z = {f € C(T, X) F/%f(odc - 0},

and define A on C(T', X) by setting

O (ANE) = #1@) = 5 [U-TQUQC, 2T,
r

Then the Z-extension of T(A) is equivalent on Q to A — A.

PROOF. Let 7: X — C(T', X) be the canonical embedding, i.e., 7(z)(z) = =
for each z € I" and z € X. Furthermore, define w: C(I', X) — X by

1 1
wf = 5 r/ SO,

Obviously, wr = Ix and P:= rw is a projection of C(I', X) with Ker P = Z. Let
J:X ® Z — C(I, X) be given by J(z,g9) = 7z + g. Then J is invertible and J~1f =

Next, consider on C(T', X) the following two auxiliary operators:

(V)(z) = 2f(2), (Mf)(z) = T(z)f(z), z €T

The set §2 is in the resolvent set of V. In fact, for each A € Q we have
(A=) () =(A—2)"1f(z), =ze€eTl.

Since M. commutes with V, the operator M also commutes with (A — V)~1 for each
A € Q. For A € Q we define:

B\ =I+PV(A-V) ' —PV(A-V)IM,
EQ) = (A - V)1,
F(\) = J"Y(I-PBO\)I - P)).
Obviously, E(A): X & Z — C(T', X) and F(A): C(T,X) — X & Z are invertible operators

which depend analytically on the variable A in . Note that A=V — PV + PVM. It
follows that for A € Q

FO)A — AEQN) = FO) I+ PV -V) L —PVYMMA-V) 17
= J7 I - PB(A\)(I - P)|B(\)J
= J7B(\) = PB(\)(I — P)B(\)]J
= J7B(\) - PB(\){I — P)|J
=J71PB(\)PJ +JY(I - P)J.
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Now, use the Cauchy integral formula to show that B(A)7 = 7T()). We conclude that

FON( = A)E()) = [ T(O*) IOZ ] . e,
and the theorem is proved. &

It can be shown (see Gohberg-Kaashoek-Lay [2]) that the spectrum of the
operator A defined by (4) is given by

o(A) =T U{X € Q| T()) not invertible}.

The next theorem shows that for an operator function of the form A — A4
the procedure of linearization by extension and equivalence does not simplify further the
operator A and leads to operators that are similar to A.

THEOREM 2.2. Let A1 and Ao be operators acting on the Banach spaces X3
and Xq, respectively, and suppose that for some Banach spaces Z1 and Zo the eztensions
(A= A1)® Iz, and (A — A2)® Iz, are equivalent on some open set ) containing o(4;)U
o(Az). Then Ay and Ag are similar. In fact, if the equivalence is given by

A—A 0 A—A 0
(5) (: 1 2

0 Iz]=F(’\)[ 0 I

1

] E(\), Aeq,

2

then SA; = AS, where S: X1 — Xo is an invertible operator defined by

_ 1 a1 -1
(6) S = 5m [\ 42) I maF () na
T

and its inverse is equal to

(1) s-1= é%/le(/\)‘lrg(/\ _ Ag)~ld).
(1
T

Here T 13 the boundary of some bounded Cauchy domain A such that (U(Al)Uo'(Ag)) -
ACACS;for i=1,2 the map m;: X; ® Z; — X; is the projection of X; ® Z; onto X;
and 7;: X; — X; ® Z; i3 the natural embedding of X; into X; & Z;.

PROOF. From the equivalence (5) it follows that the integrands in (6) and
(7) satisfy the following identities:

(8) (A= A2)ImF(\)7lr = mEA)n(A - A1)7H, AeQ,
(9) mEM) I\ —Ad) L= (A= 4) " Im F(\)m2,  Aeq.
Let the contour I' be as in the theorem. Since the integrals

1
— [ mF(A\) " ryd), L / mo E(A)r1dA
27 27

r r
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are equal to the zero operator, one computes that

4y5 = % /(A2 A4+ M) = A2) T F(A) ™ LrdA
r
= i,/,\(,\ — A9) Iy F(N) "1 d)
2wt
r
- L,/MZE(A)rl(A — A)"ldA
2nt
J |

- %/WZE(/\)Q(/\ A+ AN — A" ldA
r

1 -
- <-27r;/7r2E(,\)r1(/\ — A1) 1dA>A1 =S4,
r

Let T be the operator defined by the right hand side of (7). It remains to show
that T'S and ST are identity operators. To do this we shall use the resolvent equation
(cf. formula (2) in Section 1.2) and the fact that the operators

(10) T EA) " () = Ag)  mp F(A) Tl — (A = Ap)7!

(11) mE(A) (A — A1) TIm F(A)m2 — (A — A2)7!

depend analytically on A in . To see that the function in (10) is analytic on £ we
employ the equivalence (5). First we take the inverses of the left hand side and the right
hand side of (5). Next we multiply both sides from the left by 71 and from the right by
my. This shows that

(A—4)"1 o
0

(- a0~ = mEO) | o, | Foia,

for A € Q\{c(A1)Uoc(Az)}. It follows that for such A the expression in (10) is equal to

mE()™! [8 122 ]F(/\)‘lrl.

Since E(-)~! and F(-)~! are analytic on 2, we see that (10) extends to a function which
is analytic on 2. Now, let I’y and I's be contours with the same properties as I', and
assume that I’y is in the inner domain of I's. Then, by (8) and (9),

ST = (%) i F/ I1/ T BT (A — A1) ™Y — A1) Vg F()rpdud

2
= <%) //W2E(A)T1(# = N7HOA = A7 = (= Ap) Y m F(p)radudA
Iy I
A- B,
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where

A= (%)2 //ME(A)H(,L — )71 = A) "M F()radpd)

Ty Iy
1 -1 1 -1
- - — - A du }dA
o WQE(/\)Tl(/\ Al) (27”. /(I‘ ) 7I'1F(y.)‘l'2 #)

T I
= % T E(A)r1(A — A1) "t m F(X)r2dA

I
=L [O—aylar=1
T om 2 - X

Iy

B= (%) : r/ r/ B\ (i — M) (1 = A1)~ 'my F(ps)rydud
1

_1 - —
= omi (27ri /(" = A) 17’215(/\)Tld/\)(# — A7 m F(p)rodp
r2 I‘l

= 0.

The last equality follows from the fact that p is not in the inner domain of I'; and hence
(¢ — -)"lmaE(-)m is analytic on I'; and its inner domain. We have now proved that
ST = Ix,. In a similar way, using the analyticity of (10) instead of (11), one obtains
TS = IX‘ . 0

For linear functions A — A; and A — A, global equivalence on C means just

that 4; and A4 are similar. This follows from the next corollary.

COROLLARY 2.3. Two operators Ay and Ag are similar if and only if
A— Ay and A — Ay are egquivalent on some open set containing (A1) and o(Asg).

PROOF. If A; and Ay are similar, then, obviously, A — A; and A — A4 are
equivalent on C. Theorem 2.2 gives the reverse implication. O

II1.3 LOCAL EQUIVALENCE

Let §2 be an open set in C, and let T'(-) and S(-) be operator functions defined
on Q. Given Ag in Q we say that T(-) and S(-) are (locally) equivalent at A¢ if there
exists an open neighbourhood U of Ay in Q such that

T(\) = FOS(VE(Q),  Ael,

where E()A) and F(A) are invertible operators which depend analytically on A in &/. In
other words, using the terminology of the previous section, the operator functions T(-)
and S(-) are equivalent at Ag if they are globally equivalent on an open neighbourhood
of Ag. In what follows we shall be concerned mainly with the case when T(A) = A — 4,
and S(A) = A — A5 with 4; and Aj bounded linear operators on a Banach space X.
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THEOREM 3.1. Let A — A1 and XA — Ay be equivalent at the point Ay, and
assume that g is an eigenvalue of finite type for A1. Then A is an eigenvalue of finite
type for Ay and the restrictions Aj|Im P{,\o}(Al) and Az|Im P{,\o}(Ag) are similar.

PROOF. For some open neighbourhood U of Ag we have
(1) A—Ay=FMN(A-AE(N), el

Here E()) and F()) are invertible operators on the Banach space X and E(-) and F(-)
are analytic on &/. According to our hypothesis Ag is an isolated point in ¢(A4;). From
(1) it follows that Ag is also an isolated point in ¢(Az). For v = 1,2 let P, be the Riesz
projection of A, corresponding to the part {Ap}. Write A, as a 2 X 2 operator matrix
relative to the decomposition X = Im P, @ Ker Pp:

- Aul 0 —
AV_[ 0 Ay2:|, v=12.

It remains to show that A;; and A2 are similar.

Note that A\g — 412 and Mg — Ag2 are invertible. So without loss of generality
(replace U by a smaller neighbourhood if necessary) we may assume that A — Aj2 and
A — A9y are invertible for each A in U. Define

Eo(A) = [ fim P, 0

0 /\—AIZ}E(/\)’ Ael,

Fo()) = [I‘"b”z (3 — fpg)-! ]

Then E¢(A) and Fy()) are invertible for each A € U and as functions Ey(-) and Fy(-) are
analytic on U/. Furthermore,

F()), AEU.

A=A 0 } [ A—An 0 ]
= Fyp( Ey(A
l: 0 IKer Py 0( ) 0 IKer Py 0( )

for A € U. Now, recall that o(Aj;) = o(A21) = {Xo}. Thus (A — A1) ® Ixe: P and
(A = A21) ® Ig., p, are (globally) equivalent on the open set U containing o(A4;;) and
o(Az21). But then we can apply Theorem 2.2 to show that 4;; and Ay are similar. O

THEOREM 3.2. Let A; and A2 be compact operators, and assume that
A — Ay and XA — Ay are equivalent at each point of C. Then Ay and Ay are similar.

PROOF. For some open neighbourhood i/ of 0 we have
(2) A=A = F(A)(A - A1E()N), AelU.

Here E(A) and F()) are invertible operators on the Banach space X and E(-) and F(-)
are analytic on U. Let ¢ be the part of the spectrum of A; outside &. We know that
o consists of a finite number of eigenvalues of finite type (Section I1.3). Since A — 4
and A — A, are equivalent at each point of C, the operators A; and A5 have the same
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spectrum. It follows that the part of o(A3) outside U coincides with . For v = 1,2
let P, be the Riesz projection of A, corresponding to o. Write A, as a 2 x 2 operator
matrix relative to the decomposition X = Ker P, & Im P,:

Agq O

= = 1, 2
Av [ 0 Ay ] v
From Theorem 3.1 we know that A;9 and Ay, are similar. It remains to prove that A

and Ay are similar.

Note that o(A412) = 0(Ag2) = ¢. Thus A — Aj3 and A — Agj are invertible for
each A in Y. From (2) it follows that

A— Ag 0 A— A 0 ]
= A Ep(N), A€eU,
0 IIm Py } FO( ) [ 0 IIm Py 0( )
where
Tger 0
Ep(N) = [ Ko P A= A ] E()), AeU,
_ IKer Py 0
Fo(A) = [ 0 (A —A?.?.)_l F(N), A€EU.

So (A— A21) @ Iy, p, and (A — A11) @ Iy, p, are globally equivalent on U/, and hence we
can apply Theorem 2.2 to show that Aj; and Ag; are similar. O

Note that in Theorem 3.2 it is not necessary to assume that both A; and Ay
are compact. In fact it suffices to assume that one of the operators is compact, and then
the similarity implies that the other is also compact.

The question whether or not Theorem 3.2 holds for arbitrary (not necessarily
compact) bounded linear operators is an unsolved problem.

If two operator functions T(:) and S(-) are globally equivalent on an open
set £, then, obviously, T(-) and S(-) are (locally) equivalent at each point of Q. For
certain special classes of operator functions the converse statement is also true, however,
in general, local equivalence at each point of 2 does not imply global equivalence on 2
(see Gohberg-Kaashoek-Lay [2], Leiterer [1], and Apostol [1] for further information).
Note that the problem mentioned in the preceding paragraph can be phrased as follows:
If A\— A; and A — A9 are locally equivalent at each point of C, does it follow that A — A,
and A — Az are globally equivalent on C?

IIT.4 MATRICIAL COUPLING AND EQUIVALENCE

In this section we present a general method to obtain equivalence. This
method is based on the notion of matricial coupling of operators which is defined as
follows. Two operators T: X; — Z; and S: Z5 — X3, acting between Banach spaces, are
sald to be matricially coupled if they are related in the following way:

(1) [ T A12}—1=[311 312]'
Ag1 A By S
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More precisely, this means that one can construct an invertible 2 x 2 operator matrix

"4 A -
2 11 12 |, X AR WA

with 417 = T, such that its inverse is given by

[ Bi1 Big |

(3) By By | 121 B Zy — X1 ® Xy,

where Bys = 5. The 2 x 2 operator matrices appearing in (2) and (3) are called the
coupling matrices and we shall refer to (1) as the coupling relation.

To give an example of matricially coupled operators, let A: X — Y and
B:Y — X be operators acting between Banach spaces. Then the operators AIy — AB
and Ay — BA are matricially coupled for each non-zero A. In fact,
-1
Ay — AB A AL —A
4 = Y AF#O0.
(4) -A"1B A lry } [ A1B AMx—-BA|’ 7

The next theorem shows that a matricial coupling of T and S is of particular
interest if one of the operators is more simple than the other.

THEOREM 4.1. Assume T:X; — Z1 aend S5:Z9 — Xy are mairicially
coupled operators, and let the coupling relation be given by

-1
(5) [ T A } _ [ By Bz } .
A1 Ag By S
Thep
T 0 S 0
© ‘ [0 IXz]zF[O IZl]E’
where E and F are invertible 2 x 2 operator mairices
A1 Agp ] [ —-A12  TBp ]
7 E= ) F= )
@) [ T A Ix, By
_ By, B - —By1 SA2
8 E 1_ 12 11 :| , F 1_ ,: .
® [ S By I, Ap

PROOF. By direct computation, using (5). O

Theorem 4.1 leads to a global equivalence theorem if the entries in (5) depend
analytically on a parameter A. Let £ be an open set in C, and let

(9) T():Q— L(X1,Z1),  S() € L(Z2,X2)
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be analytic operator-valued functions. We say that T'(-) and S(-) are analytically matri-
cially coupled on Q if T(-) and S(-) are related in the following way:

T(A)  A12(0) 17 _ [ Bu()) Brz())
(10) PGS Aiﬁ(»] ‘[Biim SO\ ] rea,

where the operators Aja()), Az1()), Ag2()) (and hence also the operators Byj(}),
Bi3()), B21())) depend analytically on the variable A. Formula (4) implies that the
operator functions Aly — AB and AIx — BA are analytically matricially coupled on

C\{0}.

THEOREM 4.2. Assume that the analytic operator functions T(-) and S(-)
in (9) are analytically matricially coupled. Then the Xg-extension of T(-) is globally
equivalent on Q to the Zp-eztension of S(-).

PROOF. Take A € . According to our hypothesis T(A) and S(\) are
matricially coupled. So we may apply Theorem 4.1. Since the entries of the coupling
matrices in (10) depend analytically on the parameter A, the same is true for the entries
of the operator matrices F and F appearing in (7) and (8). Thus

TN 0| _ S(A) 0
(11) [ 0 Iy, ] = F()\) [ 0 Iz, E(N), A e Q,
where E(-) and F(-) are analytic and for each A € {2 the operators E()) and F()) are
invertible. This gives the desired result. O

The conditions of Theorem 4.2 are symmetric with respect to A;; and Bj;
appearing in the coupling relation (10), but the equivalence relation in (11) is not. In
fact, under the conditions of Theorem 4.2 one can also prove another equivalence relation
which shows that the Zg-extension of T'(-) is globally equivalent on € to the X;-extension
of S(-).

Note that the equivalence in formula (2) of Section III.2 may be obtained as
a corollary of Theorem 4.1 and formula (4).

Theorem 4.1 allows us to compare the invertibility properties of matricially
coupled operators. The following corollary will be useful later (e.g., in Chapters IX and
XIII).

COROLLARY 4.3. Let T and S be matricially coupled operators, and let the

coupling relation be given by

(12) [ T A12}_1= [311 312]_
Az Az By S
Then
(13) KerT = {Bj3z | z € Ker S}, KerS = {A217 | z € Ker T},

(14) ImT:{zGZl |B212€Im5}, ImS={2:€X2|A123:€ImT},
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(15) dim Ker T = dimKer S, codimImT = codimIm S.
Furthermore, the operator T is invertible if and only if S is invertible, and in that case
(16) T~ = Bj1 — B12S7 By,  S71= Ay — AnT ' Aps.

PROOF. Since T and S are matricially coupled, we may apply Theorem 4.1.
The relation (6) implies

T 0

Ker [ 0 Iy,

]:E-lxer[s 0 ]
1

0 Iz

which yields the first identity in (13). From (6) it also follows that y € Im T if and only

if
—A195829+ TBy12
[gJEFIm[g IO ]___{[ 12522 11 1]
VAN Sz9 + Bo12z1

The coupling relation (12) implies that 419821 + TBy; = Iz,. Thusy € ImT if and
only if y = z; with B2y2; € Im S, which proves the first identity in (14). The second
identities in (13) and (14) follow from the first by interchanging the roles of T and S.
Formula (15) and the statement about invertibility are direct consequences of formula
(6). To get (16) note that

T-1 0 =1 s-1 0 -1
() [0 IX:]_E [0 IZ]F '

1

21 € Z1,22 € Zz}-

Now compute the (1,1)-entry of the 2 x 2 operator matrix defined by the right hand side
of (17). This gives the first identity in (16). The second is obtained by interchanging the
rolesof T and S. O

To illustrate the results of this section we show that the usual method of
reducing the inversion of an operator I — K, with K finite rank, to that of a matrix (see
[GG], Theorem I1.7.1) can be understood and made more precise in the present context.
Assume that K: X — X is given by

n
KI=Z<,0j(I)yJ', z € X,
j=1

where y1,...,yn are given vectors in the Banach space X and ¢1,...,¢, are continuous
linear functionals on X. Define A: X —» C™ and B:C" — X by
<P1(I) ! n
Az = , B : = Z ;Y5
‘Pn(I) &n =1

Note that G = AB acts on C™ and its matrix with respect to the standard basis of C"
is given by

mat(G) = (‘Pi(yj))?,j:l'



48 11I.4 MATRICIAL COUPLING AND EQUIVALENCE

Since K = BA, the operator functions AIx — I and A, — G are analytically matricially
coupled on C\{0} (cf. formula (4)). Here I, is the identity on C™. It follows (Corollary
4.3) that for A # 0

(Mx —K)™l = %IX + —;\-B(AI,, -&)71A
whenever det(AIn — G) # 0. Furthermore, the non-zero eigenvalues of K and G are the
same, the corresponding multiplicities are equal and the relationship between the Jordan
chains of K and G (which is not obvious) becomes transparent.



CHAPTER IV
LINEAR OPERATOR PENCILS

In this chapter we study linear pencils AG — A4, where G and A are bounded
linear operators acting between complex Banach spaces X and Y. The simplest example
is the case when X =Y and G = I, the identity operator on X. This case was already
considered in the previous chapters. If G is invertible, then spectral problems concerning
the pencil AG — A are easily reduced to those of AT — G~1A. In this chapter we consider
the more general case when G is not invertible, but we assume that the pencil is regular,
i.e., for some Ag € C the operator \¢gG — A is invertible. The latter property allows us
to write

¢ AG = A= (A= 2)(AG — A)[(A = 20) 1+ (XoG — 4)71G].

From this expression it is already clear that the Riesz theory developed in Chapters I
and II may be extended to regular pencils. In what follows we make this extension in a
more preferable and direct way without using the identity (1). The results are applied
to difference equations and parallel those of Chapter I.

IV.l1 SPECTRAL DECOMPOSITION

By a linear operator pencil acting between X and ¥ (or on X if X =Y)
we shall mean a linear operator polynomial AG — A, where G: X — Y and A: X - Y
are bounded linear operators acting between complex Banach spaces and A is a complex
variable. Often the words linear and operator will be omitted, and we shall just use the
term pencil.

The spectrum of the pencil AG — A will be denoted by o(G, A) and is, by
definition, the subset of the extended complex plane Coo = C U {c0} determined by
the following properties. The point co € o(G, A) if and only if G is not invertible, and
a(G, A) N C consists of all those A € C for which AG — A4 is not invertible. As for the
case when X =Y and G = I one proves that o(G, A) is nonempty whenever X # (0)
or Y # (0) (see the end of Section 1.1). With respect to the usual topology on Coo (see
[C], page 8) the spectrum o(G, A) is compact. Its complement (in C) is the resolvent
set of A\G — A, which is denoted by p(G, A). Note that co € p(G, A) if and only if G is
invertible. It may happen that p(G, A) is empty. E.g., take X =Y = C2 and

1 0
s=a-]3 8]

The pencil AG — A is sald to be regular if p(G,A) # B. Given a nonempty
subset A of Coo, we say that AG — A is A-regular if A C p(G,A). We shall study
T-regular pencils, where T' is a Cauchy contour (see Section 1.1). Recall that the inner
domain A4 of a Cauchy contour I' consists of all points inside I. By definition the outer
domain A_ of T is the set A_ = Coo\(A4+ UT). Note that co € A_. The next theorem
may be viewed as the analogue of Lemma 1.2.1 and Theorem 1.2.2.
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THEOREM 1.1. Let T be a Cauchy contour with A4 end A_ as inner and
outer domain, respectively, and let AG — A be a T-regular linear operator pencil acting
between X and Y. Put

(1) 2 L_/(AG—A)—IGdA;X o X,
2m ‘
r

-1 A
(2) Q= / GG — A)~ld\Y - Y.
r

Then P and @ are projections on X and Y, respectively, and relative to the decom-
positions X = Ker PO ImP and Y = Ker@Q & ImQ the following partitioning holds

true:

AG1 — A 0

® AG‘A=[ 0 AGy—As

]:KerPGBImP—»KerQGBImQ,

where AG1 — A1 and MGy — Ay are U'-regular pencils such that
@ (G, A1) = A_No(G,A),  o(Ga, Az) = Ay N (G, A).

PROOF. We have to modify the arguments which have been used to derive
the properties of the Riesz projections (see the proofs of Lemma I.2.1 and Theorem 1.2.2).
Only the main differences will be explained. First, note that for a linear operator pencil
a generalized resolvent equation holds true, namely

5) (AG = A)™1 = (4G — A)™L = (1 = (MG — A)"1G(1G — A)7Y,

where A and p are in p(G, A). Introduce the following auxiliary operator

K= —1—,/(AG — A ldvyY - X,
2wt
r

Obviously,
(6) P =KG, Q=GK.

Using the resolvent identity (5), the usual contour integration arguments show that
KGK = K (cf., the proof of Lemma 1.2.1), and hence the identities in (6) imply that P
and @ are projections. We also have

(7 GP=QG, AP=QA, K=KQ=PK.

The first identity in (7) is obvious, the third follows from (6) and the fact that K = KGK,
and the second identity in (7) is an easy consequence of the following formula:

(8) AMG - A)7IG = GG — 4)714, X € p(G, A).
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Formula (7) allows us to partition the operators G, A and K in the following way:

(9) G=[CE;1 C?]:KerPeBImP—»KerQGBImQ,
2

(10) A=[‘%1 j}:KerP@ImP—»KerQealmc;),
2

(11) K:[g 2]:KerQ€BImQ—>KerP€BImP.

From (9) and (10) we conclude that (3) holds. Since AG — A is invertible for A € T,
it follows that the same holds true for AG1 — A1 and AGy — A9. Thus AG1 — A; and
AG9 — Ay are D-regular. The identities in (6) imply that G4 is invertible and Gz_l = L.
In particular, co ¢ (G2, A2). Next consider

TO) = 5 /(,\ —0)"l(¢G - ATl Y - X.
T

The operator T'(A) is well-defined and bounded for A ¢ I'. One checks that

P—I for XeAyg,

(12) TG - 4) = { P for A€ A_\{o};

Q-1 for XeAy,

(13) (AG — A)T()) = { Q for A€ A_\{c0}.

From the generalized resolvent equation (5) and contour integration arguments it follows

that T(A)Q = PT()), A € T, and hence T(A) partitions as follows:

T(/\)=[T1(()/\) TZ(()/\)]:KerQGBImQ—)KerPEBImP, A¢gPl.

But then we can use (12) and (13) to conclude that

(14) (AGy — A1) = =Ty (), A€E Ay,

(15) (AGy — A2)"1 =Ty(N), A€ A_\{oo}).

We already know that T' belongs to p(G1,41) and p(Gg, Az). Thus (14) implies that
A4 UT is a subset of p(G1, A1), and hence 0(G1,A4;) C A_. Since oo € p(Gaq, A2),
we also get that A_ UT is contained in p(G2,A2). Thus o(G2, 43) C A4. Obviously,
0(G,A) = 0(G1,A1) Uo(Ga, Az), and hence (4) holds true. ©
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If in Theorem 1.1 the spectrum o(G, A) lies inside I', then the projections
P and Q are the identity operators on X and Y, respectively. To see this, note that
according to (4) the inclusion o(G,A) C A4 implies that 0(G1,A1) = #. But if the
latter holds, then Ker P and Ker Q must consist of the zero element only, and hence P
and Q are identity operators. In a similar way one shows that o(G,A) C A_ implies
that P and @ are both zero.

From the remarks made in the previous paragraph it also follows that the
projections P and @Q appearing in Theorem 1.1 are uniquely determined by the spectral
properties of the pencils A\G; — A1 and A\Gy — A3. We make this more explicit in the
next corollary which concerns the case when 0 is inside T'.

COROLLARY 1.2. Let T be a Cauchy contour with A4 and A_ as inner and
outer domain, respectively, and let A\G — A be a T'-regular linear operator pencil acting
between the spaces X and Y. Assume that 0 is inside T'. Then there ezists a projection
Q on Y and an invertible operator E:Y — X such that relative to the decomposition
Y =KerQ ® Im Q the following partitioning holds true:

_|Mu-h 0 .
(16) (AG — A)E = [ 0 /\Iz_Qz].KerQ@ImQ——»KerQ@ImQ,

where Iy (resp. I) denotes the identity operator on KerQ (resp. ImQ), the pencil
A — I is (A4 UT)-regular and Ao — Qg is (A_UT)-regular. Furthermore, Q and E
(and hence also the operators Q1 and 3) are uniquely determined. In fact

(a7 Q=5 [Gue- a4,
r
(18) = o (- chee - a7,
r
(19) o= % o ]=5 [€-choe- a7
r

PROOF. Let P and Q be given by (1) and (2). Then the partitioning (3)
holds true and the spectra of the pencils A\G; — A1 and AG3 — A3 are given by (4). Since
0 € Ay, the operator A; is invertible. We also know that G3 is invertible (because
oo € A_). Now, put

ATV 0

2

] KerQ@®ImQ — Ker P® Im P,

(21) Q1 =G1ATY, Q2= A Gyt
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With Q, E, Q; and 5, defined in this way, (16) holds true and the pencils A2 — I; and
Ay — Q2 have the desired regularity properties.

Next we prove the uniqueness of Q and E. So let us assume that for some
projection Q on Y and some invertible operator E:Y — X the identity (16) holds true,
with AQ; — I;, and A — Qg regular on Ay UT and A_ UT, respectively. Formula (16)
implies that

(22) GE=[91 0]; AE=[I1 0].
Thus

o 6o - = / GE[((G — A)E]1d(
r
=2Lr/[m(<91—h) 1 (412_002)-1]‘1(
[l

Here we used the regularity properties of the pencils AQ; — I and Al, — 2. It follows
that @Q is given by (17), and so Q is uniquely determined. From

(23) (AG—-A)1=E [ (A 511)'1 o, _002)_1 ] . XerT,

and the properties of the pencils A\Q2; — I1 and AIs — Q22 we may conclude that

1 1,0 0]
(24) e (ORI B )
) r

1 - I, ¢
25 — “l¢e-A) i =E| "1 =E(I-Q).
(25) o [~ - aytac =B [0 0] - Bu-Q)
r
To prove the last formula one uses that 0 € A4 and co € A_, and thus for somee > 0

—¢THCU -0 =) ¢TIy, 0< ¢ <e,
v=0

¢TI CL-0)7 =) TR, o< ¢ <

v=0

Since E = EQ+ E(I —Q), we obtain that F is given by (18). In particular, E is uniquely
determined.
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To prove (19) we first use (23) and the regularity properties of AQ; — I} and
Al — Q5 to show that

(26) Ziﬂ/c(cG—A)—lcx:E[g &]
r

Formulas (25) and (26), together with the first identity in (22), yield

L [¢-¢M6e -4l = GE [

2w

0 0

0 QZ]+GE[II 0]:9. o

0 0

Let AG — A and I' be as in Corollary 1.2. We shall call the 2 x 2 operator
matrix in (16) the I'-spectral decomposition of the pencil AG — A, and we shall refer to
the operator Q in (19) as the associated operator corresponding to AG — A and I". For
the projection @ and the operator E in Corollary 1.2 we shall use the words separating
projection and right equivalence operator, respectively. For later purposes we list the
following identities (cf. (22)):

(27) AE(I-Q)=1-Q, AEQ = QQ,

(28) GE(I-Q)=I-Q), GEQ=Q.

Later we shall apply Corollary 1.2 for the case when I' is equal to the unit
circle T. Note that in that case the regularity properties of the pencils AQ; — I; and
Al — Qg are just equivalent to the requirement that the spectrum of € lies in the open
unit circle.

IV.2 A SECOND OPERATOR EQUATION

In this section we consider the operator equation
(1) A1ZG9— G1ZA9 =C.

Here A;,G1: X1 — Y] and Ay, Gs: X9 — Y3 are given operators acting between Banach
spaces. The problem is for a given C € £(X3,Y]) to find Z € £(Y3,X;) such that (1)
holds. The operator equation considered in Section 1.4 is a special case of (1). In fact,
to get equation (1.4.1) from (1) we have to take X; = Y7, X9 = Y3 and Gy, G should
be the identity operators on X; and Xg, respectively. The next theorem is the analogue
of Theorem 1.4.1.

THEOREM 2.1. If the spectra of the pencils A\G1 — A1 and AGy — As are
disjoint, then for any right hand C € L(X2,Y7) equation (1) haes a unique solution
Z € L(Y2,X1). More precisely, if T is a Cauchy contour such that o(Gj, A;) is in the
inner domain of I, and o(Gy, Ag) is in the outer domain of T', then

(2) Z = 2i (AG1 — A1)"1C(MGy — Ag)~1d).
me
r
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"PROOF. Since 0(G1, A1) N 0(G2, A2) = 0, the point co cannot be in both
spectra. So without loss of generality we may assume that co ¢ o(Gp,A1). Then
(G1, A1) is a compact subset of C which lies in the open set V = C\o(G32, A2). Choose
a bounded Cauchy domain A such that ¢(G1,41) C A C A C V, and let T' be the
oriented boundary of A. Then I' is a Cauchy contour, ¢(Gq, A1) is in the inner domain
of I and 0(G2, A) is in the outer domain of I'. So it suffices to prove the second part
of the theorem, i.e., we have to show that (2) gives the unique solution of (1). Recall
(see the remark after the proof of Theorem 1.1) that from the location of the spectra it
follows that

1 1 _
(3) o / G1(AG1— A~ lar =1, omi /(/\Gz — A9)71Gad) =0,
r r

where now [ stands for the identity operator on Y.

Let Z be given by (2). Then Z € L(Y3,X) and because of (3)

1
426G, = z—m-/Al(AGl — 41)"'C(AG2 — A2)"1Gad)
r
= = / —C(AGy — A2)"1G2d
2me
r
1
+ %/AGI(’\GI — A1)7IC(AG3 ~ A3) 7 Gad)
r
1
= % /GI(AGI ke Al)-IC(AGZ —A2)_1(AG2 _ A2 +A2)dA
r

= %/GI(AGI _ A)"1Cd) + G1Z As
r

=C+ GIZAz.

Hence Z is a solution of (1).

Conversely, if Z is a solution of (1). Then

C=A412Gy — AG1ZGo + A\G1 ZG4 — G1Z Ay
= —(AG1 — A1)ZG2 + G1Z(AGo — A9).

It follows that

1
o /(AG1 — A1) C(AGy — Az)"1d)
T

-1 _ 1 _
= %/ZGZ(/\Gz - Az) 1d/\ + % /(/\Gl - Al) IGIZd/\
r r

=2
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Here we used the analogue of (3) with the order of G, and (AG, — A,)~! interchanged
(v = 1,2). We have now proved that equation (1) is uniquely solvable and its unique
solution is given by (2). O

COROLLARY 2.2. Let T1: X, — X1 and T2: X9 — X3 be bounded linear
operators acting between Banach spaces and with spectra in the open unit disc. Then for
any C € L(Xq,X1) the equation

(4) T\ZTy—Z =C

has a unique solution Z € L(X2,X1), namely

oo
(5) Z=-) T{CTy.
v=0

PROOF. We apply Theorem 2.1 with A\G; — A1 = A} — T} and AG2 —
Ay = ATy — I,. Here I, denotes the identity operator on X, (v = 1,2). Obviously,
U(Gl,Al) = U(T]_) and

o(Ga, A2) = {A71 | X € o(T2)},

where we use the convention that 071 = co. Since ¢(7T}) and ¢(T32) are in the open unit
disc, the spectra o(Gq, A1) and 0(G2, A2) are disjoint, and Theorem 2.1 implies that (4)
has a unique solution which is given by

(6) Z=

2mi

L /(,\I1 ~T))"'C(A\T, — I)7LdA.
1
1

Here T is the unit circle endowed with the counter clockwise orientation. But
1
-1 -1
(-T)T'=3 ST, AeT,
v=1

oo
ATy - L)' =-) X7y, €T,
v=0

because g(Ty) and o(T,) are in the open unit disc. It follows that the right hand side of
(6) is equal to the right hand side of (5). O

IV.3 HOMOGENEOUS DIFFERENCE EQUATION

In this section we consider the difference equation:

(1) { G$n+1=.AIn, n=0,1,2,...,

zTp =Y.

Here G and A are bounded linear operators acting on a Banach space X and y is a given
vector in X. We shall assume that the pencil AG — A is regular. If G = I, the identity
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operator on X, or, more generally, if G is invertible, then (1) is always solvable and the
general solution of (1) is given by

(2) zn= (G714, n=012,....

If G is not invertible, the situation is different and in that case it may happen that (1)
is never solvable for y # 0. For example, let G be the zero operator and A the identity
operator on X. Then the pencil AG — A is regular, but (1) is only solvable for y = 0,
and in the latter case the solution is the trivial one, namely ¢, =0 (n =0,1,2,...). The
next theorem is an analogue of Theorem 1.5.3.

THEOREM 3.1. Let AG — A be a regular linear operator pencil acting on
X. If the spectrum o(G, A) belongs to the open unit disc, then for each y in X equation
(1) is solvable and the (unique) solution xg,z1,z2,... converges to zero. Conversely, if
for each y in X equation (1) is solvable and its solution zg,z1,2,... converges to zero,
then (G, A) belongs to the closed unit disc. If, in addition, dimX < oo, then o(G,A)
belongs to the open unit disc.

PROOF. Let D denote the open unit disc, and assume that o(G,A4) C D.
In particular, co ¢ (G, A), and thus G is invertible. But then equation (1) is solvable
for each y € X and given y the general solution of (1) is described by (2). Note that
o(G71A) = o(G, A). Since (G~1A) is compact and lies in D, there exists 0 < p < 1
such that

o(G714) c {) e C[|]A| < p}.

Let I" be the circle with center o and radius p, and let the orientation on I' be counter
clockwise. Then, by the operational calculus,

1
=1 4\ — ney _ =1 4\—1
G 4" =l [Am( = G71a)
r
< ntl AG — —IG
P (max I(AG — 4)TG)

—0 (n — o0).

Thus (2) implies that for each y € X the solution of (1) tends to zero if n — oo.

Next, assume that for each y € X equation (1) is solvable and that the
solutions tend to zero if n — co. We want to show that o(G,A) C D. Takey € X.
Since (1) is solvable, there exists z € X such that Gz = Ay. This holds for each y.
Hence ImA C ImG, and thus Im(AG — A) C ImG. Now use that AG — A is regular.
So for some A\g € D the operator A\¢G — A is invertible, and hence ImG = X. Our
hypotheses also imply that Ker G = (0). Assume not, i.e., KerG # (0). Then we can
construct a solution zg,z1,z2,... of (1) such that ||z;{| > j for ; =0,1,2,... . Indeed,
assume we have constructed zg,...,zn_1 such that Gz 1 = Azj for j =0,...,n -1
and ||z;|| > j for j =0,...,n. Since InG = X, there exists z € X such that Gz = Az,.
Choose z € Ker G such that ||z + z]| > n + 1, and define 2,41 = = + z. Proceeding in
this way yields the desired solution. But the existence of such a solution contradicts our
hypotheses. So Ker G = (0). We have now proved that G is invertible.
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Since G is invertible, the solution of (1) is given by (2). So our hypotheses
imply that for each y € X

lim (G~1A4)"y = 0.
n—oo
But then we can use the principle of uniform boundedness to show that

(3) M:=sup |[(GT1A)"| < co.
n

Now take A € ¢(G,A). Then A € o(G~1A) and, by the spectral mapping theorem
(Theorem 1.3.3), the point A" belongs to o((G~1A4)"). According to (3), this implies
|A"| < M forn =0,1,2,..., which is possible only if |A\| < 1. This proves that ¢(G, A) C
D.

Finally, assume additionally that dimX < oco. Take Ao € o(G,A), and
suppose that |Ag| = 1. Then )g is an eigenvalue of G™14, i.e., there exists y # 0 such
that G™' Ay = Agy. But this implies that

I(G=14)"yll = [IAgyll = llull # 0

for each n, and hence (G—1A4)"y does not tend to zero if n — oo. This is a contradiction,
Yy

and it follows that ¢(G,A) CD. O
Let A be a bounded linear operator on the Banach space X. The difference

equation
(4) T+l = Azn, n=20,1,2,...
is said to be asymptotically stable if every solution zg,z1,... of (4) converges to zero if

n — co. Since (4) is solvable for each initial value zg = y in X, Theorem 3.1 yields the
following corollary.

COROLLARY 3.2. If o(A) lies in the open unit disc D, then equation (4)
13 asymptotically stable. Conversely, if (4) is asymptotically stable, then o(A) lies in the
closed unit disc. If, in addition, X is finite dimensional, then asymptotic stability of (4)
is equivalent to o(A) C D.



CHAPTER V
SPECTRAL THEORY FOR BOUNDED SELFADJOINT OPERATORS

A compact selfadjoint operator A acting on a Hilbert space can be represented
in the form

(1) A= Z /\jAEJ’,

j
where {};} is the set of non-zero eigenvalues of 4, the operator AE; is the orthogonal
projection onto the eigenspace Ker(A; — A) and the series converges in the operator norm.
The aim of this chapter is to obtain an analogous representation for an arbitrary bounded
selfadjoint operator. The first step is to rewrite the right hand side of (1) as a Stieltjes
integral,

@) A= / ME(N),

with the operator-valued integrator given by E()) = 3 5. <y AE;. We shall see that the
representation (2) also holds for a non-compact selfadjoint operator. In the latter case
E()) is the orthogonal projection onto the maximal A-invariant subspace M such that the
spectrum of A|M is contained in (—oo, A]. The construction of such spectral subspaces
is given in Section 2 of this chapter. Their general properties are discussed in the first
section. In the third section bounded resolutions of the identity are introduced and
integrals of the type appearing in (2) are defined. The representation (2) is established
in Section 4. In Section 5 spectrum and resolvent are described in terms of the resolution
of the identity. In Section 6 the functional calculus is used to construct the square root
of a non-negative operator and, as an application, the polar decomposition is obtained.
The last section concerns the spectral theorem for unitary operators.

V.1 SPECTRAL SUBSPACES

Let A be a bounded linear operator acting on a complex Banach space X,
and let o be a closed subset of C. An A-invariant subspace M of X is called the spectral
subspace of A associated with o if M has the following two properties:

(5) o(AIM) C o,
(ii) if N is any A-invariant subspace of X such that o(A|N) C o, then N C M.
In other words, M is the spectral subspace of A associated with o if and only if M is the
largest A-invariant subspace M such that o(A4|M) C o. Note that the properties (i) and
(ii) determine M uniquely. If o is an isolated part of ¢(A4), then the spectral theory of
Section 1.2 shows that the range of the Riesz projection Py(A) is the spectral subspace

of A associated with ¢. Indeed, in that case O’(Al Im P;(A)) C o, because of Theorem
1.2.2, and if N is an A-invariant subspace such that o(4|N) C o, then

P,(A)z = P,(A|N)z =z, z € N,
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which shows that N C Im Py(A).

PROPOSITION 1.1. Let M be an A-invartiant subspace of X, and let o be
a closed subset of o(A) such that C\o is connected. Then M is the spectral subspace of
A assoctated with o if and only if M is the largest A-invariant subspace of X such that
(A — A)" 1z has an analytic continuation to C\o for each z € M.

PROOF. Let N be any A-invariant subspace such that (A — A)~!z has an
analytic continuation to C\o for each # € N. We shall prove that o(A|N) C 0.

Take z € N. By our hypotheses on N there exists an X-valued function u(-),
defined and analytic on C\o, such that

(1) uN=(A-A)Ts, A€ p(4).

It follows that (A — A)u(A) = z for A € p(A). Since C\o is an open connected set which
contains p(A) as a subset, we conclude (by analytic continuation) that

(2) (A=Au()) ==z, A€ C\o.

We claim that u(A) € N for each A € C\o. Assume not, then u(Ag) ¢ N for some A\ & o.
The space N is closed. So, by the Hahn-Banach theorem, there exists a continuous linear
functional g on X which annihilates N such that g(u(Ag)) # 0. Wehave (A—A)"lz e N
for [A| > || A||, because N is A-invariant. Thus (1) implies that g(u()X)) = 0 for |A| > || 4]
Since g(u(-)) is analytic on C\o, we see that g(u())) = 0 for each A € C\o, including
A = Ag, which is a contradiction. Thus u(A) € N for all A € C\o. But then (2) shows
that (A — A)N = N for X € C\o.

To prove that 0(A|N) C o, it remains to show that Ker(A—(A|N)) = {0} for
each A € C\o. Again take £ € N, and let u(-) be as in the previous paragraph. Assume
that Az = Aoz, where Ag € C\o. We want to show that z = 0. If Ag € p(A), then this
is automatically true. Therefore assume Ag ¢ p(A). But then it follows that

A=Atz =N =X)"tz, A€ p(A).

Thus u(A) = (A~ Xg) "1z for A € p(A). By analytic continuation, the latter identity also
holds for A € C\o, X # Ag. But u(-) is also analytic at A\g. This can only happen when
z = 0. Thus Ker(A\g — (4|NV)) = {0}, and we have shown that ¢(4|N) C 0.

Now, assume that M is the spectral subspace of A associated with o. Ac-
cording to our hypotheses on M, the resolvent set p(A) is contained in p(A|M). Thus
for A € p(A) we have

(3) A—-A lz=A-(AM) 1z, =zeM

Since o(A|M) C o, it follows that (A — A)"!z has an analytic continuation to C\o
for each z € M. Let N be another A-invariant subspace with this property. Then,
by the result of the first three paragraphs of the proof, ¢(4|N) C o. But this implies
that N C M, because of property (ii) in the definition of a spectral subspace. Thus M
is the largest A-invariant subspace with the property that (A — A)~lz has an analytic
continuation to C\¢ for each z € M.
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To prove the converse implication, assume that M is as in the last sentence
of the previous paragraph. Then, as we have seen above, 6(A|M) C 0. Let N be another
A-invariant subspace such that o(4|N) C o. Then (3) holds with M replaced by N,
and thus (A — 4)7!z has an analytic continuation to C\o for each ¢ € N. But M is the
largest A-invariant subspace with this property. So N C M, and we have proved that
M 1is the spectral subspace of A associated with 0. O

Let M be an A-invariant subspace, and assume that M is the spectral sub-
space of A associated with the set o. Of course, one would like to have

(4) o(AIM) = o No(A).

If o is an isolated part of 0( A), then this equality holds true (see Theorem 1.2.2). However,
in general it fails. In Lyubich-Macaev [1] an example is given of an operator 4 such that
o(A) =[0,1] and 0(A) = o(A|L) for any A-invariant subspace L # {0}. Thus, if o is a
proper closed subinterval of [0, 1], then for the latter operator the spectral subspace M
associated with o consists of the zero element only and (4) does not hold. This example
shows that one has to be careful with the notion of a spectral subspace. In this context
it should also be mentioned that it may happen that a bounded linear operator on a
Banach space has no non-trivial (i.e., containing non-zero vectors but not equal to the
whole space) invariant subspace at all (see Beauzamy [1], [2], Enflo [1], and Read [1],
[2] for examples). For an arbitrary Hilbert space operator the existence of a non-trivial
invariant subspace is still an open problem. In the next section we shall construct spectral
subspaces for selfadjoint operators, and we shall see (in Section 5) that they satisfy the
identity (4) up to a natural modification.

V.2 SPECTRAL SUBSPACES FOR SELFADJOINT
OPERATORS

In what follows H is a complex Hilbert space. The inner product on H will
be denoted by (-,-). As usual, L(H) stands for the set of all (bounded linear) operators
on H. Recall (see [GG], Section 11.12) that an operator A € L(H) is called selfadjoint if
A = A*, that is, (Az,y) = (z, Ay) for each = and y in H. For a selfadjoint operator A
the numbers (Az,z) are real, and hence we may define

(1) m(A4) := in_ (Az,z), M(A) := sup (Az,z).
=1 llzll=1

THEOREM 2.1. If A € L(H) is selfadjoint, then its spectrum o(A) 13 real,
o(4) C [m(4), M(a)] and

(2) [ =ATHSISAI™, S #o.
Furthermore, [m(A), M(A)] 13 the smallest closed interval containing o(A).

PROOF. Let A = a + b with a, b real and b # 0. Since a — A is selfadjoint,
(3) I = A)z)* = (@ = A)ell* + 6 |z]1* = [5[2]|z]?

for each z € H. Therefore A — A is injective. From (3) it also follows that Im(\ ~ A) is
closed. Indeed, assume that (A — A)zn, — y for n — co. Then (3) implies that (z,) is
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a Cauchy-sequence. Since H is a Hilbert space, it follows that ¢ = limp 00 Zn exists,
and, from the continuity of A, we may conclude that y = (A — A)zg € Im() — A). Thus
Im(A — A) is closed. But then

Im(A — A) = Im(A — 4) = Ker(A — A)* = {0} = H,
and A — A is bijective. This proves that A ¢ o(A). Replacing z in formula (3) by
(A — A)~1y, yields (2).
We know now that o(A) is real. Take A € R and A > M(A). Then

(4) I = Azllizl] > (A = A)e,z) = (A = M(A)) |||

Since A — M(A) > 0, formula (4) implies that A — A is injective and Im(A — A) is closed.
It follows (as in the preceding paragraph) that A — A is bijective. Thus A ¢ o(A). In
a similar way one shows that A < m(A4) implies that A ¢ ¢(A), and therefore o(A4) C
[m(A4), M(A)).

To prove the last part of the theorem, let o(A) C [m, M]. We have to show

that m < m(A) and M > M(A). Assume that m(A) < m. Consider the operator

:= A —m(A)I. From our hypothesis it follows that T' is invertible and (T'z,z) > 0.

By applying the Cauchy-Schwarz inequality to the (possibly nondefinite) inner product
[z,y] := (Tz,y), one sees that

(Tz,9)|> < (Tz,2)(Ty,y), =,y€H.
By taking y = T'z the following inequality is obtained:
(5) ITall* < (T2,2)(T?2,Tz), =€ H.
From the definition of m(A) we know that there exists a sequence z1,z2,...in H, ||zn|| =
1 (n=1,2,...), such that (Tzp,zsn) — 0 if n — oo. But then the inequality (5) implies
that | Tzn|| — 0 if » — oo, which contradicts the invertibility of T'. Indeed,

[ Tznll 2 | T7H " eall = IT7HI7H >0, 21

Hence we must have m < m(A4). In a similar way one shows that M(A) < M. O

Let A € L(H) be selfadjoint. From Theorem 2.1 we know that A — A is in-
vertible for A ¢ [m(A), M(A)]. For later purposes we note the following two inequalities:

(6a) (A=A 2| < D= MAITH, RA> M(4),

(66) I =) e <P -—m(AI7! RA<m(A).

To prove (6a) write A = a + ib with a, b real and a > M(A). Take z € H. From (4) we
know that '

(e — A)z|| 2 (a — M(A))l|=].
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Inserting this inequality in (3) yields

(A — A)z|? > {la — M(A4)* + [b]2}]|z||?
> |\ — M(4)%||z||?,

which proves (6a). In a similar way one proves (6b).

THEOREM 2.2. Let A € L(H) be selfadjoint, and take s < t in R. Then

the spectral subspace of A associated with [s,t] ezists and 1s equal to the space

(7) Ker(s — A) ® Im Q, ¢ ® Ker(t — A).

Here

(®) Qo= om (£ O -0 - A7
Ty

and Ty is the boundary of the rectangle with vertices s+ 1 and t 1.

To prove Theorem 2.2 we develop for operators of the type (8) a calculus
which resembles the functional calculus developed in Sections 1.2 and I.3. This will be
done in the next two lemmas.

LEMMA 23. For s < t in R the operator Qs in (8) i3 a well-defined
selfadjoint operator, Q3 1B = Byt for any B € L(H) that commutes with A, and

(1) Qe = (t — A)(s — A4) if o(4) C[s,1],
(i) Qo2 =0 if o(A) N (s,t) =0.

PROOF. The contour I's; appearing in formula (8) is assumed to be posi-
tively oriented, i.e., the open rectangle with boundary I' ¢ belongs to the inner domain of
I's,t. Note that Iy y intersects ¢(A4) in at most two points, namely s and ¢. If both s and
t do not belong to o(A4), then I'y; has an empty intersection with ¢(4) and, according
to the functional calculus of Section 1.3,

(9) et = (s — A)(t — A)P,(4),

where P;(A) is the Riesz projection of A corresponding to ¢ = o(A4) N[s,t]. From (9) it
is natural to expect that the statements (i) and (ii) hold true.

If s and/or ¢t belong to o(A4), then (8) has to be understood as:

(10) Uei=tims [ (- 06 -0C - A7,
TS

where I'S , is the part of I'y ¢ outside the open discs |s — (| < € and [t — (| < . By

Theorem 2.1 the function

(11) ¢ it = s = O —A)7H|
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is bounded on T :\{s,t}, and hence the limit in (10) exists in the norm of L(H). It
follows that s 1 is a well-defined bounded linear operator. Since A is selfadjoint and I's ¢
is symmetric with respect to the real line, the arguments used in the proof of Proposition
1.2.5 show that QF ; = Qs 1.

If B € L(H) commutes with A, then B commutes with the integrand in (8),
and hence the convergence of the integral in the norm of £L(H) implies that B commutes
with Qs,t~

To prove (i), assume that o(A) C [s,t]. Take 0 <& <1, and let A, be the
closed contour which is the union of the curve F:,t and the curves

; 1 1
{t+€ew _5”5“’55”}’

; 1 3
{s+ee"" -2—7r§<p§ 571'}

The orientation on Af, is given so that [s,?] is in the inner domain of Aj5,. Since
o(A) C [s,t], we know from Section 1.3 that

(12) a7 [ (= O = O = A7 = (¢ = A)(s - 4).
K

3.t

From o(A) C [s,t] it also follows that s < m(A) and ¢t > M(A). But then we can use
the inequalities (2), (6a) and (6b) to show that there exists a constant C, not depending
on g, such that

IE=Os~ O =A)THSC, €A N\Tae

Since the length of the curve Aj)t\l‘,,t tends to zero if € | 0, we conclude that the left
hand side of (12) tends to Q,: in the norm of L(H) if € | 0. The right hand side of (12)
is independent of ¢, and thus (i) holds true.

Next, we prove (ii). Assume o(A) N (s,t) = @. First we consider the case
when o(A) C (—o0,3]. Takee > 0, and let AS, be the contour which consists of the part
of T's s outside the open disc |s — (| < € and the curve

™

; 1
Wl _Zr<p< .
{s+ee 27r__<p_2<p}

For € > 0 sufficiently small Ai,t is a well-defined closed contour and, by our assumption

on o(A),
1
(13) 5

[a=o6-o¢-atac=o
AE

From o(A) C (—o0, s] it also follows that s < M(A), and hence we can use the inequalities
(2) and (6a) to show that there exists a constant C, independent of ¢, such that

It == -4 <C (€D Ty
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As in the proof of (i), it follows that

=i (g [ 4000 - ay7ac),

and hence 3¢ = 0. In a similar way one shows that Q, ; = 0 if 0(A4) C [t, 00).

For the general case consider the set ¢ = 0(A) N (—o00,s]. By our assumption
on o(A), the set o is an isolated part of 6(A4). Let P be the corresponding Riesz projec-
tion. Put M = Im P and L = Ker P. The M and L are invariant under A. Furthermore,
the operators A|M and A|L are selfadjoint. Now

(14a) Qo pz = 5% /(t COs = O - (AM)] Vxd;, e M,
| AP

(148) gz = 5o /(t — s = O - (AIL)] "'zd¢, =z e L.
Cat

From Section 1.2 we know that o(A4|M) C (—oo,s] and ¢(A|L) C [t,00). Thus the
integrals in (14a) and (14b) are zero by what has been proved so far. Since H = M @ L,
it follows that Qs; =0. O

For s <t in R let Fy denote the set of all complex-valued functions that are
continuous on the set

(15) Z(s,t) = C\{(—00,3) U (t,0)}

and analytic on the interior of Z(s,t). For g € Fy,; we define

(16) Ruile) = 57 [ 9Ot =Os = ¢ = )7L
rs,t

The integral in (16) has to be understood in the same way as the integral in (8). Note
that g is continuouson Iy ;. Since (t—()(s—¢)(¢{—A)~! is bounded in the operator norm
on I'g t\{s,¢}, it follows that the same holds true for the integrand in (16), and hence the
(improper) integral in (16) converges in the norm of L(H). Obviously, Qs = Qs (1),
where 1 stands for the function which is identically equal to one. As for £, ¢ (see Lemma
2.3) one can prove that Q5 ¢(9)B = Bs,(g) for any operator B that commutes with A.
Note that Qg :(g) is selfadjoint if ¢ is symmetric with respect to the real line, i.e., if

9()=9(0), CE€E(s,1).

(Here the bar denotes the operation of complex conjugation.) To prove the last statement
one uses the symmetry in I's ; and arguments of the type used in the proof of Proposition
1.2.5.
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To derive properties of £, 4(g) it is sometimes convenient to replace I's ¢ by
other curves. Therefore we mention that in (16) (as well as in (8)) the curve Iy ; may
be replaced by any simple closed rectifiable oriented Jordan curve with the following
properties. The curve I' is symmetric with respect to the real line, the open interval
(s,t) belongs to the inner domain of I' and there exists p > 0 such that the part of T
in the disc |s — {| < p (resp. |t — (| < p) lies in the sector s + re!¥ (resp. t + €*#) with
0 £r < pand |%—7r + cp| < ;}w. By Theorem 2.1 this non-tangential behaviour of T’
guarantees that the integrand in (16) is again bounded on I'\{s, ¢} in the operator norm,
and hence the integral in (16) is also well-defined for I" instead of s ;. We shall refer to
a curve I' with the above properties as an (s,t)-admissible curve. The usual argument
of complex function theory shows that the value of the integral in (16) does not change
if s ¢ is replaced by an (s, t)-admissible curve.

LEMMA 2.4. Let A € L(H) be selfadjoint, and let g € F3 1. Then
(17) t(9)? = (t — A)(s — A),e(9%),
and for any complez polynomial p
(18) P(A)Qs t(g) = Qs,1(pg)-
PROOF. First we shall prove (18). To do this, it suffices to consider the case
when p(¢) = ¢". By formula (1) in Section L.3,

1 n—1 o
A"Qa,t(g) = Qa,t(("g) - g(C)(t - C)(S - C) Z C"_I_JAJ dc
27rzr£ (jzo )

By analyticity the latter integral is zero, and so (18) holds true.
The proof of (17) will be based on the following identity:

(19) Q0(9)0,5(9) = (t — A)(s — A p(s?), s<a<p<t.
To prove (19) we apply the same type of arguments as in the proof of Theorem I.3.1(iii).

First we replace the curve I'y s by a curve I' which is (s, t)-admissible and contains Ty, g
in its inner domain. It follows that

0 i0s0) = (o) [ [ 906 =06 = 08 = N~ )

stloa,pg
(¢~ AT - 4)7Tdrd¢
2
_ (2%) [ [ st = oxs - 38 = M =0
I Ta,p

A= —4) T = (A= A) 7 }dAdg
=11 —T72,
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where

m={(s) [o0xt-06-0 - 4

T
([ Ry,
Lap
= O,
because the curve I' is in the outer domain of T, g, and
2
m=(5m) [ s - Na -2 - )7
Tap
g(O)t = =¢)
(2 i)
T
= [ g0 = X5 = A8 = M@ = NA = 4)7hdr
ra.ﬂ

= ~(t — A)(s — A)Q% a(g2)-

Here we used that I', g is in the inner domain of I, and we applied formula (18) with
p(¢) = (t = ¢)(s — ¢) and with g2 in place of g. The change in the order of integration is
justified by the fact that the integrand is integrable on I' x T'y, 5. We have now proved
(19).

To derive (17) from (19) it suffices to show that for g € Fy ¢
(20) Qaplg) = Qse(g),  BTE als,

with convergence in the norm of £L(H). Take s < a < f < ¢, and let € > 0 be given. For
0 <6< 1let T, 4(d) be the oriented boundary of the rectangle with vertices a +¢6 and
B % i6. The orientation is such that the interval (@, 3) belongs to the inner domain of
Ly p(6). We write V, g(8) for the vertical parts of Ty g(6) and H, g(6) for the horizontal
parts. Of course, 'y g(4) is an (a, §)-admissible curve. By Theorem 2.1,

9B = )@= )¢—A)TH < (t=s+1)sup{lg(¢)] | s < R¢ <t [SC] < 6}
Since the length of V, 3(6) is 46, it follows that we may choose § € (0,1] in such a way
that

(21) R G CEICEI S B
Va,5(8)

for each (a,8) C (s,t). Fix § € (0,1] such that (21) holds. Since the set Hs¢(8) is
compact, we can find a constant C' > 0 so that for each {( € H;(6)

(22) lg(O)E = (s = (¢ -4 <,
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19(0)(B — C)a = Q)¢ — 4)™ = g(O)(t = O)(s = (¢ — A)7
< C(lap — st] + o — 5| + 1B — t]).

(23)

The length of the curve H, g(8) is less than or equal to 2(t —s). Thus, by using inequality
(23), we see that there exists pg > 0 such that |a — s| + |8 —t| < po implies that

51,;- / 9(O)(B = e = )¢ — A) d¢
(24) H, 3(8)
- 2%” / 9(O(t = s = O - A)'ldgH < 25_

Ha,ﬁ(a)

Write Ay g(6) for Hy1(8)\Hy g(6). Since the length of Ag g(6) is equal to 2(|a — s| +
|8 — t]), inequality (22) shows that there exists 0 < p < pg such that

L / 9Ot = O)(s = O)(C — A)~Ldc

2m
Aa,p(8)

1
(25) < ZE,

whenever |a — s| + | — t| < p. From (21), (24) and (25), the statement (20) is clear. O
PROOF OF THEOREM 2.2. Assume Az = tz. Then (( — A)~lz =

(¢ —t)"1z, and hence Qs,tz = 0. Since ,,¢ is selfadjoint, it follows that

(26a) Ker(t — A) C Ker Q5 ¢ = (Tm 25,¢)*.

Here (as well as in (7)) the bar means that one has to take the closure of the corresponding
set. In a similar way one proves that

(26b) Ker(s — A) C Ker 5 ¢ = (Tm 2 1)t

We also know that eigenvectors of A corresponding to different eigenvalues are orthogonal,
because A is selfadjoint. Thus Ker(s — A) C Ker(t — A)* and Ker(t — A) C Ker(s — A)L.
This together with (26a) and (26b) implies that the set given by (7) is a well-defined closed
linear manifold of H. In what follows it will be denoted by L(s,t). Since AQy; = Q, 4,
by Lemma 2.3, we know that Im ;¢ is invariant under A. But then, by the continuity
of A, the same is true for ImQ, ;. Also Ker(s — A) and Ker(t — A) are invariant under
A. So we conclude that L(s,t) is an A-invariant subspace.

We proceed by showing that
(27) el < (Az,2) < tllal?, = € L(s,).
To achieve this, let gg be the analytic continuation of the function
(28) Vi—), —co< A<t
to the region C\[t,00). Put go(t) = 0. Note that

(29) W) =t—¢,  (€E(s,1).
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Here Z(s,t) is as in (15). We conclude that g9 € Fy ¢, and, by Lemma 2.4,

Qs,4(90)% = (t = A)(s — A)s2(95)

1 -

= o [ =0 - 0 - A7
T
Tap
= (t— A0,

From the definition of gg it follows that gg is symmetric with respect to the real line.
Hence §25,t(g0) is selfadjoint. Also §, ¢ is selfadjoint. Thus for each € H we have

((t — A g2, Q5 p2) = (£ — A)Qf,t:c, z)
= (Qs,1(90)%x, z) = ||Q,4(90)=||* > 0.
By continuity it follows that {(t — A)y,y) > 0 for each y € Im )5 ;. Now take z € L(s,1),
and write £ = ¢1 + y + z2, where z1 € Ker(s — 4), y € ImQy and z9 € Ker(t — A).
Since the elements z1, y and z5 are mutually orthogonal, we see that
((t = Az, z) = ((t ~ A)z1,21) +{t — Ay, v) +((t — A)za,22)
= (t =)= [1> + (¢t - Ay, y) 20,

and the second inequality in (27) is proved. To establish the first inequality in (27) one
repeats the above arguments with the function (28) replaced by

(30) VA —s, 3 <A <oo.

Since A|L(s,t) is selfadjoint, the inequalities in (27) imply that o(A|L(s, 1))
is contained in [s,t] (cf. Theorem 2.1). We want to show that L(s,t) is the largest A-
invariant subspace with this property. Thus, let N be another A-invariant subspace such
that o(A4|N) C [s,t]. We have to prove that N C L(s,t). Take z € N. Note that N1
is also invariant under A4, because A is selfadjoint. It follows (cf. formula (8) in Section
1.2) that

C-A)le=[-(AIN)] 'z, (€ p(A)
Now apply Lemma 2.3(i) to A|N in place of A. Since A|N is selfadjoint, this yields

Que = o [ 06— Ol — (AIV)] et

PR
= [t—(AIN)] [s — (AIN)]=
= (- A)(s — A)z,

and we have proved that (t — A)(s — A)N C Im Q. It follows that

N =[NnKer(t — A)] + [NNKer(s — A)] + (¢t — A)(s ~ A)N
C Ker(t — A) + Ker(s — A) + ImQ, ¢
= I(s,0),
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which completes the proof of Theorem 2.2. O
COROLLARY 2.5. Let A € L(H) be selfadjoint and t € R. Then the spectral

subspace of A associated with (—oo,t] ezists and is equal to the space

(31) L= Ker(t—A)EBIm(E%/(t—C)(C—A)—ldg').
Tt

Here Ty is the boundary of the rectangle with vertices t £1 and t — 1 — |t — m(A4)| £ 4.
Furthermore,

(32a) ((A—1t)z,z) €0, z €L,

(32b) (A-t)z,z) >0, zelLtl

PROOF. Put r:=t—1— |t — m(A)|. By definition, r < min(t,m(A4)), and
hence r — A is invertible. Let L(r,t) be the spectral subspace of A associated with [r,?].
From Theorem 2.2 we know that L(r,t) exists. Obviously, cr(A|L(r,t)) is contained in

(—c0,t]. Let N be another A-invariant subspace such that o(A|N) C (—co,]. Since N+
is also invariant under A, we have (see Proposition 1.2.4)

a(A|N) C o(A4) C [m(A), M(A)].
It follows that o(A|N) C [r,t], because r < m(A). But then N C L(r,t), and L(r,t) is

also the spectral subspace of A associated with (—oo,1].

Next, we show that L(r,t) = L, where L is given by (31). Let us assume that
It is oriented in such a way that the open rectangle with boundary I'; belongs to the
inner domain of I'¢, and put

(33) Q= ﬁ /(t — )¢ - A)7dc
T

The operator {; is well-defined for the same reason as the operator £, ; in (8) is well-
defined. Note that for s = r the curve I't is equal to the curve I'y ; appearing in Theorem
2.2. Tt follows that

Qur — A) = (r — A)Q = Oy,

where 2, ¢ i1s defined by (8) with s replaced by r. Since r — A is invertible, we see that
Im Q2 ; and Im ; coincide, and hence

L(r,t)=Ker(r - A)®ImQr: ® Ker(t — A)
=ImQ; ®Ker(t —A) =L,

which proves formula (31).
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Since L = L(r,t), formula (32a) is just a corollary of the second inequality
in (27) (applied to L(r,t) instead of L(s,t)). To prove (32b), choose u > max(t, M(A4)).
We shall prove that L+ = Im Q4. As soon as this identity has been established, we can
apply to first inequality in (27) (with (s,t) replaced by (t,u)) to show that (32b) holds
true.

We know that A|L is a selfadjoint operator which has its spectrum in (—co, t].
Thus Lemma 2.3(ii) applied to A|L shows that for each z € L

Uz = - / (w= )t — O)[¢ — (AIL)] " zd¢ = 0.
Teu

In particular, Tm $%, C Ker © 4, and hence
Tm O,y = (Ker Q) C (m)'L
We already know (see formula (26a)) that Im Q; ,, C Ker(t — A)L, and so
ImQy C {Ker(t — 4) + Tm O, 1+
= {Ker(t — A) + Tm Oy} = L.
To prove the reverse inclusion, note that (by formula (18))

Q,.,t(u —A)+ Qpu(r —A) = (u-— A)Q,-,t +(r— A)Qt,u
L [ w-0e-00 -0 -4

2w
I‘r,t

tom [ = Ow=0E -0 - )
Tiu

2 [ w=0t = O — O(¢ - A) L.

2mi
I‘r,u

Since o(4) C [m(A),M(A)] C (r,u), the last integral can be computed by using the
functional calculus of Section 1.3. It follows that

(34) Qrp(u—A) + Qu(r — A) = (u—A)(t - A)(r — A).

Thusif z € L+ and z L Tm € u, then z is orthogonal to the range of the left hand side
of (34), which implies that z is orthogonal to the range of the right hand side of (34).
But then z must be orthogonal to Im(t — A) (because u — A and r — A are invertible).
However Ker(t — A) C L and z L L. So z =0, and thus ImQy = Lt o
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V.3 RESOLUTION OF THE IDENTITY

A family {E(t)},cR of orthogonal projections on the Hilbert space H is called
a (bounded) resolution of the identity supported by the compact interval [m, M] if

(C1) ImE(s) C Im E(t) whenever s <t,
(C2) TmE(s) = N{ImE(t) | ¢ > s},
(C3) E(t)=0ift <m,
(Cs) E(t)=Iift> M.

Later, in Chapter XVI, we shall also need resolutions of the identity that are not bounded,
but all resolutions in the present chapter will be bounded, and therefore in what follows
we omit the word bounded.

Note that condition (Cy) is equivalent to the requirement that
E(s)= E(t)E(s) = E(s)E(t), s <t

and hence the projections in a resolution of the identity commute with one another.
Condition (Cg2) means that the resolution is required to be continuous from the right.
To be more precise, the following proposition holds.

PROPOSITION 3.1. Let {E(t)};cp be a resolution of the identity on H.
Then

E(\e = lim E(t)z, H
(Vz = Lm E(t)z T €
PROOF. Takeafixedz € H. Let A < s < t. The operator AE := E(t)—E(s)

is an orthogonal projection, because of condition (Cy). Furthermore, E(s)AE = 0, and
thus

((AE)z,E(s)z) = (E(s)(AE)z,z) =0,
which shows that (AE)z L E(s)z. So the Pythagorean equality gives:
(1) IE(t)e — E(s)z* = | E@)=|l” — |1 E(s)z]?, s <t

It follows that the function || E(-)z|| is a monotonely increasing nonnegative function, and
thus limy) 5 || E()|| exists. Since H is a complete metric space, the inequality (1) and the
Cauchy criterion for convergence imply that

(2) 2= lim E(t)z

exists. We have to show that z = E())z.
Take p > A. Then, by condition (Cy),
E(p)z = ltilr;l E(p)E(t)z = lim E(p)E(t)z
r<t<u

= lin} Elt)r = 2.
f—
A<tlu
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This shows that z € Im E(y) for each g > A. But then we can apply condition (Ca) to
show that z € Im E()). Thus (use again condition (Cy))

z2=E(Nz = ltllrf\l E(MNE(t)z

=lim EQ\)z = E(\)z.
lim E(\)z = EA)e. 0

Together with Theorem 2.2 the next theorem shows how one may construct
resolutions of the identity.

THEOREM 3.2. Let A € L(H) be selfadjoint, and for t € R let E(t) be
the orthogonal projection of H onto the spectral subspace of A associated with (—oo,1].
Then {E(t)};cR i3 @ resolution of the identity supported by the interval [m(A4), M(A)].
Furthermore, if B € L(H) commutes with A, then B commutes with each E(t).

PROOF. Let L(t) be the spectral subspace of A associated with (—oo,1].
From Corollary 2.5 we know that L(t) is well-defined and given by formula (31) in
Section 2. Take s < t. We know that L(s) is A-invariant and o (A|L(s)) is contained in
(=00, s]. Hence, also o(A|L(s)) C (—oo,t]. But L(t) is the largest A-invariant subspace
N with ¢(A|N) C (=o00,t]. Thus L(s) C L(¢), and (Cy) is established. Since o(A) C
[m(A4), M(A4)], the functional calculus of Section 1.3 shows that L(t) = 0 for ¢ < m(A4)
and

L(t) =Ker(t — A)®Im(t — A) = H, t > M(A).
Thus conditions (C3) and (Cy4) are fulfilled.

Next we check condition (Cg). Write L(s + 0) for the space N{L(¢) | t > s}.
Obviously, L(s) C L(s + 0). The subspace L(s + 0) is invariant under A4, because L(t) is
invariant under A for each t > s. Take t > s, and let N = L(t) N L(s 4+ 0)+. Then N is
also invariant under A, and so (cf. Proposition 1.2.4)

o(A|L(s +0)) C a(A|L(t)) C (—o0,1].
It follows that
a(A|L(s +0)) C m(—oo,t] = (—o00,s].
t>s

But L(s) is the largest A-invariant subspace L with ¢(A|L) C (—o0, s]. Hence L(s+0) C
L(s), and (C3) is satisfied.

To prove the last part of the theorem, assume that B € £L(H) commutes with
A. Let Qq: be the operator defined by formula (8) in Section 2. By Lemma 2.3 the
operator B commutes with {2 for any s < t in R. Now fix t € R. From the proof of
Corollary 2.5 we know that

L(t) =Ker(t— A)®Im Oy, L)t =ImQpq,

provided that r < min(t,m(A)) and u > max(t, M(A)). Since B commutes with A and
with the operators 2 ; and € ,, the spaces L(t) and L(t)t are invariant under B. But



74 V.3 RESOLUTION OF THE IDENTITY

this is equivalent to the statement that B commutes with the orthogonal projection on
L(t). o

We shall refer to the resolution defined in Theorem 3.2 as the resolution of the
identity for the selfadjoint operator A. In the next section we shall see that a selfadjoint
operator may be reconstructed from its resolution. As a first step in this direction we
show here how a resolution of the identity can be used to build new operators using a
Stieltjes type of integral.

Let { E(t)};cR be a resolution of the identity supported by the interval [m, M].
Choose a < m and § > M, and let f be a complex-valued continuous function on [, J].
Let P be a partition, @ = Ay < A} < -+ < Ap = f, of the interval [e, §], and let
T = {#1,...,tn} be a set of points such that Ajo1 £t < Ajforj=1,...,n. As usual
the width of the partition P (i.e., the maximal length of the subintervals [A;_1, A;]) is
denoted by v(P). Consider the Stieltjes type sum:

and define
B
(4) !fAME = Jim  Se(f:P).

Note that S-(f; P) is a bounded linear operator on H. A standard argument from the
theory of Riemann-Stieltjes integration shows that the limit in the right hand side of
(4) exists in the norm of £(H). Indeed, take € > 0, and let P and Q be partitions of
[, 8] with v(P) < 6 and v(Q) < 6, where § > 0 has been chosen in such a way that
|f(t) — f(3)| < €/2 whenever |t — 5| < §. Consider Stieltjes type sums for P and Q:

SH(f; P) = anwA% E(ni-1)}

i=1

o(f;Q) = Zf(sg){E(#g)—E(ug 1}

First, assume that Q is finer than P, and put tJ- = t; if (1, 5] C [2i-1, ;). Tt follows
that |t} —s;| < é, and hence |f(t;) = f(sj)| <e/2for j =1,...,r. Now use that for each
z € H the vectors (E(pj) — E(;tj_l))z, Jj =1,...,r, are mutually orthogonal. So

2

1(S7(f; P) = So(f;Q@))z|? = NW—%D@m% (4j-1))z

=§:U09—f®ﬂPMEWﬂ—EU@4DdV
j=1
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< (/2)? (ZII (B(us) - E(p]-_l))a:||2>
j=1

2
= (e/2)*[| (B(8) = E(a))z||
= (e/2)?||z1%,
and hence ||S-(f; P) — So(f; @)|| < €/2. But then, always (without the assumption that
Q is finer than P), we have ||S-(f; P) — So(f; Q)|| < €. Since L(H), endowed with the

operator norm, is a Banach space, we may conclude that the limit in (4) exists in £(H).

The value of the integral in (4) depends only on the values of f on [m, M].
To see this, choose the partition P = {a& = Ay < A1 < -+ < Ay = B} in such a way that
m and M belong to P. So m = A, and M = A, for some k and £. It follows that

L
(5) S(fiP)= Y ft;){E(M) — E(Aj-1)} + Re(f; P),

where

n

k
R(5iP) = (L + 30 B - By-1)]

j=1  j=t+1
= f(te)E(m) + f(te11) (I = E(M))
— f(m)E(m) + f(M)(I - E(M)),  v»(P)—0,
because of the continuity of f. Since the first term in the right hand side of (5) only

involves values of f on [m, M|, we conclude that indeed the integral in (4) is uniquely
determined by the values of f on [m, M].

For a complex-valued continuous function f on [m, M| we define

M+0 B

(6) / FOVE() = / FNE),
m—0 a

where [a, 8] is any interval with ¢« < m and § > M and fis an arbitrary continuous
extension of f to [@,]. The remark made in the previous paragraph shows that the
integral in the left hand side of (6) is well-defined.

THEOREM 3.3. Let {E(t)};cR be a resolution of the identity on H supported
by the interval [m, M|, and let C([m, M]) be the linear space of complez-valued continuous
function on [m,M]. Then the map

M40

T C(m, M) — £(H),  T(f) = / FOVEQ)
m-—0
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has the following properties:
(i) J is linear,
(ii) I(f9) = T()T (9),
(iii) T(f)* = T(F),
(iv) J(e) = I, where e(t) =1 for m <t < M,
(v) 17 £l < max{|f(M)| | m <\ < M}.

Furthermore, if T € L(H) commutes with E(t) for each t € R, then J(f) commutes
with T

PROOF. Choose @« < m and § > M, and let P be a partition of [«, ).
Each f € C([m, M]) is extended to a continuous function on [a, f], also denoted by f,
by setting
f(m) for a<t<m,
ft) =
f(M) for M<tLB.

Then

i (f; P),
%I)ri»OS(f )

@ IH=,

with convergence in the norm of L(H). Hence it suffices to prove the theorem for Sr(f; P)
instead of J(f).

Obviously, S-(f; P) is linear in f, and so (i) is proved. Set P = {a = A9 <
A1 < -+ < Ay = B}. Note that

(E(Xj) = E(Xj-1) (E(A\:) — E(Xi—1))
=6;(E(\) — E(Aj-1),  4i=1,...,m,

where 6;; is the Kronecker delta. This implies that S-(fg; P) = Sr(f,P)S-(g; P), and
hence (ii) is proved. Since

(B(Aj) = EQj-1)” = E() = E(Aj-1)

fori = 1,...,n, we have Sy (f; P)* = Sr(f, P), which proves (iii). Statement (iv) follows
from

n

Se(e;P) = > (E()\;) — E(A\j—1)) = 1.
j=1

To prove (v), recall that for each z in H the vectors (E(};) — E(\j_1))z,j =1,...,n,
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are mutually orthogonal, and hence

I1S+(f; P)zl|? = I F(tH{EQ) = E(\j—1)}a?

=1

= Y IfEPIHER)) — E(xj-1))=?
i=1

<Y IHEG) - EQy-0)al)?

Jj=1
=72 |{E(B) - E(a)}=|* = +*|<l1?,
where

7= max, lf(®)] = w2y |£(2)I-

The above calculations show that ||.Sr(f; P)|| < v, which proves (v).

Finally, assume that T € L(H) commutes with E(t) for each ¢ € R. Then
TS-(f; P) = S(f; P)T, and (7) implies that J(f) commutes with T. O

V.4 THE SPECTRAL THEOREM

The first theorem of this section is called the spectral theorem for a bounded
selfadjoint operator.

THEOREM 4.1. Let A € L(H) be selfadjoint, and let {E(t)}teR be the
resolution of the identity for A. Then

M(A)+0
(1) A= / AdE(N).
m(A)—0

PROOF. By definition (see the previous section) E(t) is the orthogonal
projection of H onto the spectral subspace of A associated with (—oo,t]. Take s < ¢, and
put Lo = Im{E(t) — E(s)}. Obviously, Ly = Im E(t) N Ker E(s). We know that Im E(t)
and Im E(s) are invariant under A. Since A is selfadjoint, also Ker E(s) is invariant
under A, and hence Ly is invariant under A. By formulas (32a) and (32b) in Section 2,

(2) 3“1”2 < (AI"'E) < t||$||2, z € Lo.

We are now ready to prove (1). Choose a < m(A) and 8 > M(A). Let
P={a=X <A << A =} be a partition of [, 3]. From the result of the
previous paragraph we know that

0 <{(A - XDy y) < (5 — Aoyl
for each y € Im{E(A;) — E(X;-1)}, and hence
3 (4 = X—D{EQ;) — By} < (A = Aj-1):
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Take z € H. Then

‘ Az - ?:_‘{ A—1{E(N) — E(Aj_1}= ’
- il(A —2-){E(M) — E(\jo1))= ’
iz
= Zn; (A = X-){E(R;) = E(Aj-1)}z||?
i=
< i(&' = A= {ER) = EQj-1)el?
iz

< max (A = Aj-1)” Z_; IHEM) = BQy-1)}ali? = »(P)?||z]|?,

where v(P) is the width of the partition P. The first inequality in the above calculation
follows from (3). Furthermore, we have used that Im{E(\;)—E(}A;_1)} is invariant under
Afor j =1,...,n, and hence the vectors (A — Aj_1){E(};j) — E(Aj-1)}=z, 7 = 1,...,n,
are mutually orthogonal. We conclude that

n
> A{E(N) - E(j-1)} = 4, v(P) =0,
j=1
in the operator norm, and (1) is proved. O

The next theorem shows that the resolution of the identity for a selfadjoint
operator A is uniquely determined by formula (1).

THEOREM 4.2. Let {E(t)};cR be a resolution of the identity on H supported
by the interval [m, M|. Then the operator
M+0
@) A= / AE(N)
m—0
is selfadjoint and {E(t)},cR is the resolution of the identity for A.

PROOF. It is clear from Theorem 3.2 that A is selfadjoint. Let {F(t)},cR
be the resolution of the identity for A. Put n = min(m,m(A)) and N = max(M, M(A)).
Then the two resolutions {E(t)},cg and {F(t)},cR are both supported by the interval
[n, N]. Furthermore (cf. formula (4) in Section 3), we have

N+0 N+0

j;AdE(A):A: / AdF(N).

n—0
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So we can apply Theorem 3.3 (i), (ii) and (iv) to show that

N+0 N40
(5) / FOVEQ) = / FOVF(A)
n—9

n—0

for each complex polynomial f(A). But then Theorem 3.3(v) and the Weierstrass approx-
imation theorem imply that (5) holds for each f € C([n,N]). Take @ < n and f > N.
According to formula (4) in Section 3 and by what has been proved so far

8 8
©) [ sz = [ fovare)

for each f € C([a, B]), the space of all complex valued continuous functions on [a, §].
Take z € H, and put g(t) = (E(t)z,z) and h(t) = (F(t)z,z) for o <t < B. From (86) it
follows that

B B
% [ s00da3) = / FOVRQ), € C(la, B]).

Note that g(a) = h(a) = 0. Furthermore, both g and h are monotonely increasing and
right continuous (by Proposition 3.1). But then (7) and the Stieltjes integration theory
imply that ¢ = h. In other words, for each z € H

(8) (E(t)z,z) = (F(t)z,z), a<t<LB.

Now use that for T € £(H) and any = and y in H the following identity holds:

o) (Tz,3) = F{(T(= +9),2 +9) — (T ~ v),2~ )
+{T(z +iy), z +iy) — T (z —iy),z ~1iy)}.

So (8) yields that for each z and y € H
(E(t)z,y) = (F(t)z,y), a<t<p,

which implies that E(¢) = F(t) for a <t < 8. For t ¢ [a, f] this equality is trivial. Thus
E(t)y=F(t)forallteR. O

Let A € L(H) be selfadjoint, and let {E(t)}ter be the resolution of the
identity for A. Theorems 4.1 and 3.3 imply that

M(A)+0
w= [ B
m(A)—0
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for any complex polynomial p. We extend this formula to any complex-valued continuous
function f on [m(A), M(A)] by setting

M(A)+0

(10) A= [ faEW.

m(A)-0

Note that the map f — f(A) from C([m(A), M(A)]) into L(H) has the same properties
as the map J in Theorem 3.3. The functional calculus defined by (10) involves a richer
family of functions than the one defined in Section I1.3.

The resolution of the identity for a selfadjoint operator A can be extended to
a spectral measure defined on the Borel subsets of the spectrum of A. This fact allows
one to extend the functional calculus defined by (10) to bounded Borel functions on
o(A). We shall derive these results later (in Volume II) for the (larger) class of normal
operators.

V.5 SPECTRUM AND RESOLVENT

In this section we describe the spectrum and resolvent of a bounded selfadjoint
operator in terms of its resolution of the identity {E(t)};,cr. In what follows E(t — 0)
denotes the orthogonal projection onto the smallest closed linear manifold containing
Im E(A) for each A < t.

THEOREM 5.1. Let A € L(H) be selfadjoint, and let {E(t)},cp be the
resolution of the identity for A. Then for s <t the spectral subspace L of A associated
with [s,1] is equal to the image of E(t) — E(s —0) and

(1) o(AlL)N(s,t) = o(A4) N (s,t).
PROOF. Put N =Im{E(t)— E(s—0)}. The space Im E(?) is invariant under
A. Also Im E(}) is invariant under A for each A < s. This implies that Im E(s — 0) is

invariant under A. Since A is selfadjoint, we conclude that also Ker E(s — 0) is A-
invariant, and thus the same holds true for V. Take z € N. Choose a < m(A4) and

B > M(A). Then
tne = / 14509 .2

Our choice of z yields

=], A=t
(E(M)z, {
0, A<s.
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Hence, by the theory of Stieltjes integration,

t
(Az,z) = / M(E(\)z, 7,

which implies that
{((A = 38)z,z) >0, {(t — A)z,z) > 0.

In other words, m(4[N) > s and M(A|N) < t, and we can apply Theorem 2.1 to show
that o(A|N) C [s,t]. Since L is the largest A-invariant subspace with this property, we
have proved that N C L.

We know that Im E(2) is the largest A-invariant subspace with the property
that o(A|Im E(t)) C (—oo,t]. This implies that L C Im E(t). Let us show that also
L C Ker E(s — 0). Take A < s. Recall (see Corollary 2.5) that

Im E()\) = Ker(A — 4) & Im Q,,
where Q) is given by formula (33) in Section 2 (with X instead of ). Since c(A|L) C [s, 1],
the functional calculus of Section 1.3 yields 23z = 0 for each z € L, and thus
L C KerQ2y = (Im\Q,\"L,

because 2 is selfadjoint. The inclusion o(A|L) C [s,?], also implies that L = (A — A)L,
and therefore

L C Im(A — A) C Ker(A — 4)*.

So L+ 5 Im E()) for each A < s. But then L+ O Im E(s—0), and thus L C Ker E(s—0).
We have now proved that L = Im{E(t) — E(s ~ 0)}.

It remains to prove (1). Since A is selfadjoint, L+ is also invariant under 4,
and thus

o(A) = o(AIL)Uo(A|LY),

because of Proposition 1.2.4. So to prove (1) it suffices to show that o(A|LL)N(s,t) = 0.
Note that

Lt =Im E(t)' ® Im E(s — 0).

Both Im E(¢)+ and Im E(s — 0) are invariant under A. From the definition of the resolu-
tion {E(A\)},¢R and Corollary 2.5 we know that {(A —t)z,z) > 0 for each z € Im E@)*.

Hence, by Theorem 2.1, we have o (A| Im E(t)%) C [t,00). Similarly, for each A < s
(Az,z) < M|z||? < s||=||?, z € Im E()),

and thus ((s —~ A)z,z) > 0 for each z € Im E(s — 0), which implies (by Theorem 2.1)
that o (A|Im E(s — 0)) C (—o0,s]. Thus

o(A|LY) = o(A|Im E(t)*) U o (Al Im E(s — 0)) C [t,00) N (00, 3],
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and hence o(A|LL) N (s,8) =0. O

In (1) the open interval (s,t) may not be replaced by the closed interval [s, ¢].
For example, take

A:Lp(0,1]) = La(0,1]),  (AN() =tf(t) (0<t<1).

Consider the closed interval [1,2]. The spectral subspace L of A associated with [1,2]
consists of the zero element only, and hence o(A|L) = 0. But o(A4) N [1,2]) = {1}.

COROLLARY 5.2. Let A € L(H) be selfadjoint, and let {E(t)}, g be the
resolution of the identity for A. Then

(2) Im{E(t) — E(t — 0)} = Ker(t — A), t€eR.
In particular, t is an eigenvalue of A if and only if E(t) # E(t —0).

PROOF. Note that Ker(t — A) is the largest A-invariant subspace N such
that o(A|N) C {t}. Indeed, if c(A|N) C {t} and N # {0}, then m(A|N) = M(A|N) =1,

and thus {(Az,z) = t{(z,z) for each z € N, which implies (cf. [GG], Corollary 111.4.2)
that A — ¢ is zero on N. Now apply Theorem 5.1 with s =¢. O

COROLLARY 5.3. Let A € L(H) be selfadjoint, and let {E(t)},.g be the
resolution of the identity for A. Then p € RN p(T) if and only if E(p —e) = E(p +¢€)
for some € > 0.

PROOQF. We know (cf. Corollary 2.5) that
(3) Im E(t) = Ker(t — A) & Im 4,

where € is given by formula (33) in Section 2. Now, assume that u € p(A). Choose
€ > 0 such that [u —e,u+ €] C p(A). Then the functional calculus of Section 1.3 implies
that Q; = Q, for all t € [u — ¢, +¢]. In particular, Qy_c = Qute. Furthermore,
Ker(u + & — A) and Ker(u — e — A) both consist of the zero element only (because p —¢
and p + ¢ are in p(A)). So (3) yields that ImE(u+¢) = ImE(p — €).

Conversely, assume that E(p — €) = E(u + ¢) for some € > 0. Then, by
Theorem 5.1, the spectral subspace L of A associated with [i — &, + %e] consists of
the zero element only, and thus (1) implies that

1 1 1 1
AHn(p-=2 Ze) = - Ze) =0
o(A) (,u 25,,u+ 25) o(A|lL)N (,u 56 H + 26) 0

In particular, p € p(4). O

V.6 SQUARE ROOT AND POLAR DECOMPOSITION

An operator A € L(H) is called non-negative (notation: A > 0) if A4 is
selfadjoint and (Az,z) > 0 for each z € H. In that case m(A) > 0 and M(A4) = ||4]|.

THEOREM 6.1. If A i3 non-negative, then there extsts a unique non-negative
operator B such that B2 = A. Furthermore, B commutes with each operator that com-
mutes with A.
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The operator B in Theorem 6.1 is called the square root of A. To prove
Theorem 6.1 we use the functional calculus introduced in the next to last paragraph of
Section 4. Let A € L(H) be selfadjoint. Recall that for a complex-valued continuous
function f on [m(4), M(A)]
M(A)+0

(1) F(A) = / FVE(N),

m(A)—0

where {E(t)},cR is the resolution of the identity for A. From Theorem 3.3 we know that

(2) (f +9)(A4) = f(A) + g(4), (f9)(4) = f(A)g(4),
(3) f(A* = f(4),
(4) (A < max{|f(t)] | m(A) <t < M(A)},

whenever f and g are continuous on [m(A), M(A4)]. Formula (2) and Theorems 4.1 and
3.3(iv) imply that formula (1) yields the usual expression for polynomials, i.e.,

(5) p(AN) =) ;M = p(A) =Y ajAl.
i=0 =0

LEMMA 6.2. The operator f(A) commutes with each operator that commutes
with A.

PROOF. By the Welerstrass approximation theorem there exists a sequence
(pn) of polynomials such that pp — f uniformly on [m(A), M(A)]. The inequality (4)
implies that p,(A) — f(A) in the operator norm. Now, let S be an operator commuting
with A. Then S commutes with p,(A) for each n, and thus

Sf(A) = nl_l_’n;o Spn(A) = nl_i_’ngop,,(A)S = f(A)S. O
PROOF OF THEOREM 6.1. Choose a < 0 and 3 > |4, put

0 for a<t<0,
12 for 0<t<§B,
and let go be the restriction of g to [m(A), M(A)]. Then B = go(A4) is a well-defined
operator, which is selfadjoint by formula (3). According to the second identity in (2) we
have B2 = g2(A) = A. From
8
(B2,2) = (s0(4)z,2) = [ 9®)d(E(®)z,2)

[ 2



84 V.6 SQUARE ROOT AND POLAR DECOMPOSITION

we see that- B > 0. Lemma 6.2 implies that B commutes with each operator that
commutes with A.

To prove the uniqueness, let C be a second non-negative operator such that
C? = A. Without loss of generality we may assume that 8 > ||C||. Choose a sequence
of polynomials p1, p,... such that p, — ¢g (n — oo0) uniformly on [a, 8]. Then pn — go
uniformly on [m(A), M(A)], and thus pn(A) — B in the operator norm (by the inequality
(4)). Put gn(t) = pn(t?) for n =1,2,... . Then qi,4q2,-- - is 2 sequence of polynomials
which converges uniformly on [0, ||C||] to ¢(¢) = t. It follows (apply the inequality (4) to
C instead of A) that ¢,(C) — C in the operator norm. From (5), applied to C, we see
that ¢n(C) = pn(A). Thus

B = lim pa(A) = lim ¢,(C)=C. O
n—o0 n—oo

Square roots can be used to extend the familiar representation re'? of a
complex number to operators on a Hilbert space. To do this, first a few preparations.
An operator U € L(H) is called a partial isometry if

(6) WUzl = zll, oLKerU.

In that case Ker U+ is called the initial space of U and ImU is called the final space.
Note that the range of a partial isometry is always closed.

THEOREM 6.3. Let A€ L(H). Then there ezists a partial isometry U and

a non-negative operator R such that

(7) A=UR.

Furthermore, U and R may be chosen such that Im R 1s the initial space of U, and in
that case the decomposition (7) is unique.

The decomposition (7) is called the polar decomposition of A if the additional
condition ITm R = Ker U+ is fulfilled.

PROOF OF THEOREM 6.3. Let R be the square root of A*A. Since A*A4
is non-negative, R is well-defined by Theorem 6.1. Note that

|Az||? = (Az, Az) = (A* Az, )

®) = (R%z,z) = (Rz, Rz) = |Rz||?, z € H,

which implies that Ker R = Ker A. Now define an operator Uy : InR — H by setting
Upy = Az, where z is any vector in H such that y = Rz. The particular choice of z is not
important. Indeed, if Rz = Rz, then 21 — 92 € Ker R = Ker A, and thus Ar; = Ars.
From (8) we see that for y = Rx

[Uoyll = l|Az|| = || R=]| = [ly]|-

So, by continuity, we may extend Uy to a bounded linear operator from Im R to H, which
we shall also denote by Uy. This extension again preserves the norm, i.e., ||Ugy|| = |lyl|
for y € Im R. Next, put

9) Uy = Uy Py, y € H,
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where P is the orthogonal projection of H onto Im R. Then U is a partial isometry, the
initial space of U is Im R, and (7) holds.

It remains to prove the uniqueness of the polar decomposition. Assume A =
Uy Ry, where R; is a non-negative operator and U is a partial isometry with initial space
Im R;. The latter part of our assumptions implies that ||Uyy|| = ||y|| for all y = R;=z.
Thus

(A*Az,z) = ||Az||? = ||[U1R12|? = || Ryz|? = (R2z,2), z € H.

But then A*A4 = R?, by [GG], Corollary II1.4.2. Since Ry > 0, the uniqueness statement
in Theorem 6.1 implies that Ry is the square root of A*A. Let R and U be as in the
first paragraph of the proof. Then Rj = R and UR = U R. It follows that U; and U
coincide on the subspace M := Im R; = Im R. Since M is the initial space for both U
and U, we also know that U; and U coincide on ML HenceU; =U. O

Let A = UR be the polar decomposition of A. From the construction of U
and R in the first paragraph of the proof of Theorem 6.3 it follows that

Tm A* = Ker AL = Ker Rt =Im R,

and hence Im A* is the initial space of the partial isometry U. One can also prove that
Im A is the final space of U. Indeed,

ImU=TmU>mA=UImR) D U(mR)=InU,

and thus Im U = Im A.

V.7 UNITARY OPERATORS

Let {E(t)},cR be a resolution of the identity supported by [—=, 7] and let U
be defined by

7+0
(1) U= / e E(N).

—7—0

Then U is unitary, i.e., the operator U is invertible and U~! = U* (see [GG], Section
VIIL.3 for the definition of a unitary operator). Indeed, the operator

+0

) V= / e=NE(N)

—7—0
is well-defined, and by Theorem 3.3 we have U* = V and VU = UV = I, which shows
that U is unitary.

Conversely, any unitary operator admits a representation as in (1). This is
the spectral theorem for unitary operators.
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THEOREM 7.1. Let U € L(H) be unitary. Then there erists a unique
resolution of the identity {E(t)},cR supported by [—m, ] such that

40
(3) U= / e dE(N).

—n—0

Furthermore, the resolution in (3) is obtained as follows. Put

@) = o /(e'" O — )¢ - Uy,

where ¢ is the boundary of the set consisting of all A = re’® with 0 < r < 2 and
—7m < 8 <t. Then E(t) is the orthogonal projection onto the subspace

(5) Ker(e'™ — U) @ Tm A; @ Ker(e't — U)

for —w <t < =, the projection E(t) =0 for t < —w and E(t) =1 for t > =.
The operator A¢ in (4) is well-defined because of the following lemma.

LEMMA 7.2. The spectrum of a unitary operator U lies on the unit circle
and

(6) A=) <[1=A7h AL

PROOF. Since U is an isometry (cf., Theorem VIIL.3.1 in [GG]), ||U|| £ 1
and hence A € p(U) for |A| > 1. Also 0 € p(U), because U is invertible. Take 0 < |A| < 1.
Then A —U = AU(U* — A~1). Now use that U* is an isometry. So U* — A~1 is invertible
and it follows that A € p(U). This proves that o(U) lies in the unit circle.

Let A = rei? with r > 1, Then

(A =Dl = (A = )z, (A = U)a)
={(A=U*(A=U)z,z)
= (r? + Dlz)|* — (XU + AU*), z)
> (r? + Diz)|® ~ |IXU + AU*||||=]|?
> (r? + D]le||® - 2r|l<||
= (r = 1)*|l<|?

which proves (6) for [A] > 1. For A = 0 the inequality (6) is trivial. Take 0 < |A| < 1.
Then [A71| > 1, and thus

I =)~ = AN e = a7h ™o
ST =T == D7 o
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The proof of Theorem 7.1 can now be given using the same type of arguments
as used in Sections 2-4. Again the subspace (5) may be identified with the largest U-
invariant subspace N such that o(U|N) lies in the arc {e** | —7 < s < t}. We omit
further details. We shall come back to the representation (3) in Volume II.

The approach to the spectral theorem developed in the present chapter applies
to larger classes of operators. For example, it may also be applied to operators A that
are normal (i.e., AA* = A*A) and have spectrum on a C*-curve.

COMMENTS ON PART 1

Chapter I contains standard material. One can find more about the topics
of the last three sections of this chapter in the book Daleckii-Krein [1]. The operator
differential equation y’ = Ay, discussed in Section 1.5, is of special interest when A is an
unbounded operator. We shall return to this topic in Chapter XIX, where the connec-
tions between differential equations and semigroups will be explained. The material in
Chapter II is taken from the corresponding material in Gohberg-Krein [1], [3], however
the exposition is different and based on analogies with the finite dimensional case. The
notion of equivalence, which is the main topic of Chapter III, has its roots in the analysis
of matrix polynomials (see, e.g., Gelfand [1], Gohberg-Lancaster-Rodman [1]). In opera-
tor theory it was introduced in the seventies. The first three sections of Chapter III are
based on the papers Gohberg-Kaashoek-Lay [1], [2] and Kaashoek-Van der Mee-Rodman
[1]. Section II1.4 is taken from Bart-Gohberg-Kaashoek [4]. The first section of Chapter
IV, which extends the Riesz theory to operator pencils, contains results from Stummel
[1]. The exposition of the spectral theorem for bounded selfadjoint operators given in
Chapter V uses the main idea from the paper Lorch [1] (see also the book Lorch [2]). The
approach used in this chapter may be viewed as the starting point of a spectral theory
for more general classes of operators (see, e.g., the papers Lyubich-Macaev [1], Wolf [1],
and the books Dunford-Schwartz [2], Colojara-Foias [1]).



EXERCISES TO PART I

In the exercises below, A is a bounded linear operator acting on a complex
Banach space X. The symbol I stands for the identity operator on X.

1. Let N be a positive integer, and assume that A = I. Prove the following statements:
(a) o(A) is a finite set;
(b) each point of o(A) is an eigenvalue;
(c) the resolvent of A has a simple pole at each yu € 0(A), i.e., for A near p

_ 1 < ;
(A—4)yl= /\__;B_l +) (A —uYBj;
7=0

(d) the operator B_1 in (c) is a projection with ImB_; = Ker(u — A) and
Ker B_1 is the direct sum of Ker(A — A) with A # u.
2. Let N be a positive integer. Prove that A = I if and only if
(*) A=MP1+ P+ +ANPp,
where A1, A9,..., AN are the N-th roots of unity and Py, Pa, ..., Py are mutually disjoint
projections (i.e., P;Pj = §;; P; for all 7 and j) and Y= bPi=1

3. Let A be an operator such that p(A4) = 0, where p is a polynomial of degree N with N
different roots. Generalize for this operator the statements in Exercises 1 and 2, which
concern the polynomial p(A) = AV — 1.

4. Let A be an operator such that p(A) = 0, where p is some non-zero polynomial. Prove
the following statements:

(a) o(A) is a finite set;
(b) each point of 6(A) is an eigenvalue;

(c) the resolvent of A has a pole at each p € o(A4) of order less than or equal
to the multiplicity of 4 as a zero of p(A).

Is the representation (*) in Exercise 2 again valid? If not, replace it by another repre-
sentation.

5. Let N > 2 be an integer. Give an example of an operator 4 on #5 such that AN = 0,
AN-1 £ 0 and dim X/ Ker AV~ < co.

6. Consider a direct sum decomposition X = Xg @ X7 @ --- & Xny_1, where X is
a subspace of X and X3i,...,Xny_1 are finite dimensional. Let A; : X; — X;_; be
an operator (j = 1,...,N — 1), and assume that relative to the decomposition X =
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Xo® X1@®-- @ Xn_q the operator A admits the following representation:

0 4 0 - 0 0
0 0 Ay --- 0 0
(**) A= . . . . .
0 0 0 - 0 Ay_;
0 O o --- 0 0

Prove that AN =0 and dim Ker A7+1/ Ker A7 is finite for j = 1,...,N — 1.

7. Let N > 2 be an integer. Assume that AV = 0 and dimKer A2/ Ker A is finite.
Prove that A can be represented in the form (**) of Exercise 6. Are the numbers dim X;
(7 =1,...,N — 1) uniquely determined by A? If yes, prove this statement; if no, give
additional conditions on Aj,..., An-1 that guarantee their uniqueness.

8. Assume that A has no spectrum on the unit circle |[A| = 1. Let P be the Riesz
projection associated with the part of 0(A) inside the unit circle. Prove that

(a) I — A™ is invertible;
(b) (I-—AM~1= % EZ;& (I- E(n)kA)_l, where €(n) = exp(—2mi/n);

) —n)=1 n— -1
(¢) P =limpooo ﬂ—ﬁ)‘-—l Ek:(} (I- E(n)kA) ;
(d) P =limpoeo(l — A™)7 L.

9. Let o be an isolated part of 0(4) and N an A-invariant subspace. Show that ¢(A4|N) C
o implies that N C Im Py(4).

10. Let M be an A-invariant subspace of X. Prove that o(A|M) C o(A) whenever 4 is
compact. Is o(A|M) always a subset of 0(A)? If yes, prove this statement; if no, give an
additional condition on ¢(A4) that guarantees the inclusion.

11. Let f € F(A) and g € F(f(A)). Show that the composition product g o f is well-
defined on a suitable open neighbourhood of ¢(A) and prove that g(f(4)) = (g0 f)(4).

12. Assume that the spectrum of A lies in the open left half plane. Prove that

(o o]
(A—A)"1 = /e"\temdt, RA >0,
0

ia
/ MO —A)ld\,  t>0.
—1ia

13. Assume that iR No(4) = ). Prove that

etd = lim
a—00
a€R

ia
lim /(,\ — A)~ldx

aER

—ia
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exists in the operator norm. Let @ be the operator defined by this limit, and let P be
the Riesz projection associated with the part of 0(A) in the open left half plane. Which
of the following statements is true?

i) Q=P —1,

(iv) Q=P —3I
14. Consider the non-homogeneous differential equation:

{ o(t) = Az(t) + f(t), t>0,

(1) 2(0) = zo,

where f:[0,00) — X is continuous. Prove that its solution is given by
t
z(t) = ethzg + /e(t_’)Af(s)ds, t>0.
0

15. Assume that t(R N o(A) = @. Show that for each bounded continuous X-valued
function on R the equation

z'(t) = Az(t) + f(b), —00 <t < o0,

has a unique bounded solution.

16. Consider the equation
() = Az(t) + f(t), t>0,
2(0) = zg, 2'(0) =1,

where f :[0,00) — X is continuous. Extend the result of Exercise 14 for this equation.
Hint: use linearization.

17. Compute the general solution of the equation
Tptl = Azn + Un, n=20,1,2,... .
18. By definition the spectral radius is the number given by
r(A) = max{|A| | X € 0(A4)}.
Prove that
(a) r(A4) <A™V forn =1,2,...;

(b) limp—oo [|A™||}/™ exists (use that for any sequence (ax) of non-negative
numbers limp— 00 Yan exists if an4+m < anam for all n and m; see Problem 98 in Part
I of Pélya-Szegd [1]);
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(c) T(A) = limp—c0 ”Anlll/n'
19. Show that

lim *log [[e4!]| = max{RA | A € o(A)}.
t—oco
20. Assume that o(A4) belongs to the open unit circle. Put

lizli = sup{[|A™z]| | = > 0}.

Show that ||| - ||| is an equivalent norm on X, and relative to this norm A is a contraction.
Redefine the norm || - ||| so that A becomes a strict contraction, i.e.,
||| z(l
(Al = <l
o Il
If the underlying space is a Hilbert space, then one can choose a norm ||| - |||, defined via

an inner product, such that A is a strict contraction relative to this Hilbert space norm.
21. Assume that in the operator norm A" — P if n — oo. Prove that
(2) AP=PA=P and P?2= P,
(b) 1 is an isolated point of o(A) if P #£0.
Determine the principal part of the series expansion of (A — A)~1 at the point 1.
22. Consider the equation
n .
Y epAizBF =,
3,k=0

where A: X - X, B:Y — Y and C: Y — X are given operators acting between
Banach spaces and cj; (j,k =0,...,n) are constants. Assume that

P ) = > cpMuF#£0, (M) €o(4) x o(B).
7,k=0

Show that the equation has a unique solution which has the form:

4Wz//p(A (= 4)7C(u - B) ddd

Here 'y and I'g are Cauchy contours around ¢(A) and o(B), respectively, such that
p(A,p) # 0 for (A, u) € Ay x Ap, where Ay (resp. Ap) is the closure of the inner
domain of I'4 (resp. I'g).

23. Let A = Z_f;l AjPj, where A1,..., Ay are different complex numbersand Py,. .., Py

are mutually disjoint projections such that Z_f;l P; = I. Consider the operator J :
L(X) — £(X) defined by

J(S)=AS -S4, SeL(X).
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Prove that
Ker(J) = {S € L(X) | PjSP, =0 (j # k)},

Im(7)={SeL(X)|P;SP;=0,;5=1,...,N}.

Determine the spectrum of J and show that J can be written in the form J =
E;=1 #;R;, where Ry,..., R, are mutually disjoint projections and p1,..., r are com-
plex numbers.

24, Let T: X - Y and S :Y — X be operators acting between Banach spaces, and
assume that g # 0 is an eigenvalue of finite type of ST. Prove that u is also an eigenvalue
of finite type of T'S. Show that the operators ST|Im Py,}(ST) and T'S|Im Py, (T'S) are
similar. Are the above results also true if one allows i to be zero?

25. Assume that for some polynomial p the operator p(A) is compact. Show that
A € p(A) or A is an eigenvalue of finite type whenever p(A) # 0. If p(A) = 0, does it
follow that A is not an eigenvalue of finite type? If yes, prove this statement; if no, give
an example.

26. Prove that in the infinite dimensional case 4 always has spectral points that are not
eigenvalues of finite type.

27. Let A and B be operators acting on the Banach space X, and assume that o(A4) N
o(B) = 0. Prove that the operator functions

(A-A)MN-B) 0 A—A 0
0 I\’
are globally equivalent on C.

28. Let Ag, A1, As,... be 2 bounded sequence in £(X), and consider the entire operator
function

A(N) = —AA;.

The aim of this exercise is to construct a “linearization” of A(:). Let £;{X} be the
Banach space of all sequences z = (z9,71,2,...) with elements z; in X such that
llzll = 32520 llz;ll < co. Define T and S on £1{X} by setting

o0
ZAjl‘j,.’ltl,:L‘g,...),

T(.’l,‘o,:l,‘l,:l,‘g,. . ) = (
j=0

S(IO,II,.’L‘Q,...) = (0;1‘0)%‘1‘11 %‘1‘2)"')'

Prove that T and S are bounded linear operators, ¢(S) = {0} and for a suitable Banach
space Z the Z-extension of A() is equivalent on C to the linear function T'— AS.

In the remaining exercises the underlying space X is assumed to be a Hilbert
space and is denoted by H.
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29. Assume that A is selfadjoint, and let Ag be an isolated point in o(A4). Prove that
(a) Ao Is an eigenvalue of A,
(b) the resolvent of A has a simple pole at Ag,
(¢) the Riesz projection P{Ao}(A) is an orthogonal projection.

30. Assume that A is selfadjoint, and let o be an isolated part of o(4). Show that the
Riesz projection P,(A) is selfadjoint.

31. Assume that A is selfadjoint, and let {E(t)}, g be the resolution of the identity for
A. If N is an A-invariant subspace, then N is also invariant under E(2) for each ¢t € R.
Prove this statement.

32. Assume that 4 is selfadjoint, and let {E(t)},c g be the resolution of the identity for

A. For s < t let Q4 be the operator defined by formula (8) in Section V.2. Show that
Qs = (t = A)(s — A){E(t) — E(s)}.

33. Assume that 4 is selfadjoint, and let {E(t)}, g be the resolution of the identity for

A. Prove the following statements:

(a) If the sequence (A™z) converges for each z € H, then [m(4), M(4)] C
[—1,1] and —1 is not an eigenvalue of 4.

(b) 0 < 6 <1, then
i [|AM{E1 - 8) ~ E(~1+8)}]| =0.
(c) Foreachz e H
AMEQ=0) = B(-1)}z ~ 0 (n— o).

(d) The sequence (A™z) is convergent for z E‘Im{E(l) —E(1-0)}.

(e) If [m(A),M(A)] C [-1,1] and —1 is not an eigenvalue of A, then the
sequence (A™z) is convergent for each z € H. In this case the map P, defined by

Pz = lim A"z (r € H),
n—oo

is the orthogonal projection of H onto Ker(I + A4).



PART I1
CLASSES OF COMPACT OPERATORS

This part contains the basic elements of the theory of non-selfadjoint com-
pact operators. The topics are singular values (Chapter VI), trace and determinant
(Chapter VII), Hilbert-Schmidt operators (Chapter VIII), evaluation of the resolvent
and completeness theorems (Chapters VII, VIII and X). Some of the results are illus-
trated for integral operators with semi-separable kernel functions (Chapter IX). One of
the main aims is to obtain the results (whenever possible) by a limit procedure from the
corresponding results for matrices.



CHAPTER VI
SINGULAR VALUES OF COMPACT OPERATORS

The singular values of a compact operator A are by definition the eigenvalues
of (A*A)1/2. These numbers are important characteristics for compact operators. In
this chapter the main properties of the singular values are studied. In the last sectionthe
trace class operators are introduced. For the latter operators the trace and determinant
will be defined in the next chapter.

VI.1 THE SINGULAR VALUES

In the study of compact operators one of the difficulties is that there are non-
trivial compact operators which do not have any eigenvalue (see the example in Section
II1.4 of [GG]). To analyze such operators one cannot use the methods of the previous
chapters. The singular values, which form the main topic of the present section, provide
alternative tools.

Let A: Hy — Hs be a compact operator acting between Hilbert spaces. Note
that A*A4 is a compact (positive) selfadjoint operator on Hy. Let

(1) AL(A*A) > Ag(A*A) > Ng(A*A4) > -

be the sequence of non-zero eigenvalues of A* A where each eigenvalue is repeated as
many times as the value of its multiplicity. The number of non-zero eigenvalues of 4*A4
is finite if and only if A has finite rank and in that case the sequence (1) is extended by
zero elements so that in all cases (1) is an infinite sequence. By definition, for j = 1,2, ...
the j-th singular value or j-th s-number is the number s;(A4) := ();(A*A4)) 1z, By using
the min-max theorem ([GG|, Theorem II1.9.1), one sees that

| Az||

2 i(4) =
(2) sJ( ) dilizj—IO;?;ixM (E4 ,

In (2) the symbol M stands for a finite dimensional subspace of Hj.

In what follows we shall assume that A is a compact operator on a Hilbert
space H. Thus we take H; = Hy9 = H. However all results can easily be extended to the
case when the operators act between different spaces.

THEOREM 1.1. A4 compact operator A on a Hilbert space H admits a rep-
resentation of the form

(3) A= si(A) 05,

where v(A) is the number of non-zero s-numbers of A (counted according to multi-

plicities), (cpj);-’_(_ﬁ) and (1,[)_7-);-’_(__'1) are orthonormal systems in H and the series in (3)
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converges in the operator norm if v(A) = co. Furthermore, if B = E;’ 195{( 955,
where (p;)¥~, and (1/;J) _; are orthonormal systems and (cx_,) ‘_1 i3 a nom-increasing
sequence of positive numbers which converges to zero if v = oo, then B is a compact
operator and s;(B) = aj, 1 < j < v+ 1, are the non-zero s- number.s of B.

PROOF. Write s; = s;(A) for j > 1. From the spectral theorem for self-
adjoint compact operators we know that there exists an orthonormal system @1, ¢p9,...

such that A*4 = E;’ f}) s?( ypi)pj. Put ¥y = sJ.’lAcpj for each j. Then
(%5, %e) = s 55 (Awj, Avg)
= s7lsp 1A Ay, k)
= sj3; {05, Pk) = Sk

and thus ¥1,9,... is also an orthonormal system. Any z € H can be written in the
form

v(A)
(4) z = Z (I)‘Pj)‘Pj +u,

i=1

where u € Ker A*A. From (A*Au,u) = ||Aul|? it follows that Ker 4*4 = Ker A. Fur-
thermore, Ap; = s;%;. Applying A to (4) now yields Az = E;'(;}) s;j{z,p;)¥;. To prove
the first part of the theorem it remains to show that the series in (3) converges in the
operator norm if ¥(A4) = co. Assume v(A) = oo, and let An = 3%, s;{-,¢;)%;. Then
for each z € H

o0

2
(4= An)el? < Y i)l < (supsd )l
j=n+1 i>n
and thus A, — A in the operator norm.

To prove the converse statement, let B be as in the theorem. If v is finite, then
B is of finite rank, and hence compact. If v = 0o, put B = E;-‘=1 a;j{-,@;j);. Asin the
previous paragraph one shows that B, — B in the operator norm. Since By, is of finite
rank, it follows that B is compact. Next, one computes that B* = E?:l a;(,¥;)e;,

1/2

and so B*B = 3 7, a?(-,cpj)cpj. Thus s;(B) = (A;(B*B)) 12 aj. O

We call (3) a Schmidt-representation of A. Since s;(A) = 0 for j > v(4),
we can represent A also in the form A4 = E;’ 1 sJ(A)( ®;)%;, where v = dim H (which
is finite or equal to co) and (¢; )f=1 and (%)%= are orthonormal systems (which are
extensions of the orthonormal systems in (3)). For the finite dimensional case the latter
representation of A means that an n X n matrix A can be factored as

$1 0
A=U . V’

0 Sn
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where U and V are n x n unitary matrices and s; > 32 2 -++ > 3n are non-negative
numbers which are precisely the first n singular values of the operator induced by the
canonical action of the matrix A on C®. The above matrix factorization is called a
singular value decomposition of the matrix A.

The infinite dimensional version of the singular value decomposition is the
representation A = UDV. Here A is a compact operator on an infinite dimensional
Hilbert space H, the middle term D is a diagonal operator on £2 with diagonal elements
s1(A),32(A),... and V: H — £9 and U: ¢y — H are bounded linear operators such that
U*U and VV* are the identity operators on £5.

By taking adjoints in (3), we get

v(A)
(5) AT =3 s (A ¥)es

j=1
and, by the second part of Theorem 1.1, formula (5) is a Schmidt-representation of A*.
This yields the following corollary.

COROLLARY 1.2. The operator A and its adjoint A* have the same singular
values.

PROPOSITION 1.3. If A:H — H is a compact operator and B,C: H - H
are bounded linear operators, then
(6) s;j(BAC) < ||B|l - lIC|| - s;(A), 7 21.

PROOF. By duality, using Corollary 1.2, it suffices to show that s;(BA) <
| Blls;(A). But the latter inequality is an immediate consequence of the min-max de-
scription of the s-numbersin (2). O

COROLLARY 1.4. For any orthogonal projection P on H
(7) s;(PA|Im P) < s;(A), i>1.

PROOF. 1t is easy to check that the operators PA|Im P:Im P — Im P and
PAP:H — H have the same singular values. Since ||P}| < 1, formula (6) implies that
sj(PAP) < 5;(A). Thus (7) holds. O

The following theorem gives another interpretation of the singular values,
namely as approximation numbers.

THEOREM 1.5. Let A be a compact operator on the Hilbert space H. Then
forn=1,2,...

sn(A) = min{||A — K|||K € £L(H),rank K < n —1}.

PROOF. Assume rank K = m < n — 1. Then dim(Ker K)J- = m, and so by
the min-max formula_ for the s-numbers
[| Az|]
max
0#z€ Ker K ”(L‘”
I(A — K)z|]

= max ————— <||[A-K]|.
0#z€ Ker K Izl

sn(4) < smp1(4) <
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So sp(A) £ ||A— K| for any K with rank K < n—1. It remains to prove that the infimum
is attained and is equal to sp(4). To do this, let A = Z]V(;;) s;(A)(-,p;)%; be a Schmidt-
representation of 4. Take n < v(A) + 1, and consider Kp, = Z;‘;ll 5;(A)(- @505 (the
operator Ky = 0). Then rank K, = n — 1 and

|4 = Kr|| < sups;(A) =sn(A).
jz2n

Thus the minimum is attained in K = K, and is equal to sn(4). If n > v(4), then
rank A must be < n —1 and sp(A4) = 0, and thus in this case the minimum is attained
at K=A4. O

COROLLARY 1.6. For compact operators A, B on H
(8) lsn(A) —sn(B)| <[|[A=-Bl, n2>1

PROOQOF. Takerank K < n—1. Then sn(4) < |[A- K| < |A-B||+||B-K]||.
It follows that sn(A4) — ||A — B|| is a lower bound for ||B — K|| when K runs over all
operators of rank < n—1. According to Theorem 1.5 this implies that sp(A4)—||[A—B| <
sn(B), and thus sp(A4) — sn(B) < ||A — B||. Interchanging in the latter inequality the
roles of A and B yields (8). o

We compute the s-numbers for the operator of integration. Consider

1
Vila(o,1) > 20,1, (VAX®) =2i [ f(s)ds.
14

To find the s-numbers of V we have to determine the non-zero eigenvalues of V*V. Note

that (V*f)(¢) = —Zi}f(s)ds, and thus
0

(V*VF)(t) = 4](/1 f(u)du) ds.
0 4

Take A > 0. We want to find a non-zero solution of the equation V*V f = Af. By
putting g = V*V f one checks that the equation V*V f = ) f is equivalent to the following
boundary value problem:
(9) A" +49=0, g(0)=0, ¢'(1)=0.
The general solution of the differential equation in (9) is equal to

g(t) =7 exp(2it)\_1/2) + 72 exp(—2it)\_1/2).
The boundary condition at 0 implies that 7 = —v9 (= «v), and thus ¢(t) =
2i’ysin(2t)\_1/2). Now recall that we want g # 0 (which implies v # 0) and ¢'(1) = 0.
Such a solution exists if and only if cos2A~1/2 = 0. It follows that the non-zero eigen-
values of V*V are precisely the numbers (;11-(2k + 1)7r) —2, k=0,1,2,..., and hence

4

(10) s;(V) = TS

j=1,2,... .
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VI.2 EIGENVALUES AND s-NUMBERS

This section concerns various connections between eigenvalues and s-numbers
of compact operators. As in Section II.3 we let A1(A1), A2(4),... denote the sequence of
non-zero eigenvalues of the compact operator A. The eigenvalues are ordered according to
decreasing absolute values and multiplicities are taken into account. We shall extend the

sequence A1(A), A2(A),... to an infinite sequence by adding zero elements if necessary.
In particular, if A is a Volterra operator, then A;(A) =0for j =1,2,... . If A acts on
H = C™, then

(1) IT sl =TT si4).
7=1 =1

To see this recall that det A = [T72; A;(A4), and thus

m m

[I 5i(A)? = det A*A = (det A*)det A = |det A = [] [X;(A)I%.
Besides (1) what other connections exist between eigenvalues and s-numbers in the finite
dimensional case? We shall prove (see Theorem 2.1 below) that

(2) [T < I sit4),  n=1,...,m-1
j=1 j=1

It turns out that (1) and (2) give a complete description of all possible connections
between eigenvalues and s-numbers of operators on C™. That is,iff a1 > --- > am > 0
and f1 2 --- 2 B > 0 are two sets of non-negative numbers which are related in the
following way:

n n m m
Hajgnﬂj (n=1,...,m—1), I« =] 5
j=1 j=1 ji=1 j=1

then there exists A on C™ such that |A;(A4)| = «; and s;(A) = §; (see A. Horn [1]).
THEOREM 2.1. For a compact operator A on a Hilbert space

n

(3) [T < I si4), n>1.
i=1

j=1

PROOF. We use Schur’s lemma (Lemma I1.3.3). Let E4 be the smallest
closed linear subspace of H spanned by all eigenvectors and generalized eigenvectors of
A corresponding to non-zero eigenvalues of A. We know that E4 has an orthonormal
basis ()7 such that Ay = E?:l ajrpj with agp = Ag(A). ¥ n > v ( and hence
dim E 4 is finite), then A,(A) = 0 and in that case the inequality (3) holds true trivially.
Next, take n < v+1, and let M be the subspace spanned by #1,...,%n. Sincedim M =n
is finite and AM C M, formula (1) implies that

TT )1 =TT 1A = T si(Ala).
5=1 i=1 j=1
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Next, use Corollary 1.4, to show that s;(A|M) < s;(4) and the proof is finished. O

By using the next lemma, Theorem 2.1 serves as a source for many other
useful inequalities between eigenvalues and s-numbers.

LEMMA 2.2. Let v = ¢(t1,...,tn) be a real-valued differentiable function
on an open set D of R™, and let ) be a conver subset of D such that

2

Oy Oy Oy
4 Yy > > 2 (#)>0 te Q.
@ Wz zfwz 25l w20, e

If a = (a1,...,an) and b = (b1,...,bn) are points in Q such that Z_I;:l aj < Z_I;:l b;
for k=1,2,...,n, then p(a) < ¢(b).

PROOF. Define E:R™ — R™ by setting Et = (¢1,%1 +1%2,...,t1 +t2+ " tn).
Then E is invertible and relative to the standard basis of R™ the operators E and E~1
are given by the matrices

1 0 1 0
11 -1 1

E=|. | , E-l=
11 -+ 1 0 -1 1

Since € is convex, Ab+ (1 — XMa € § for 0 < A < 1. Define #:{0,1] — R by ¥(A) =
©(Ab+ (1= MNa). Then ¢ is differentiable and

n
0
W) =Y 2L b+ (1= Na)(bj — aj) = (v, b~ a)
j=1""
where yy = (-gz“li(t,\), ceey gt%(t,\)) with ty = Ab+ (1 — A)a and (-,-) is the inner product
on R™. Using the operators E and E~1 we may write ¢/()\) = ((E~1)*yy, E(b — a)).
Because of our conditions on a and & the coordinates of the vector E(b — a) are all

non-negative. Formula (4) implies that the same is true for (E~1)*y,. It follows that
P/(A) >0 for 0 < A <1, and thus p(a) = 9(0) < P(1) =¢(b). O

COROLLARY 2.3. Let f:R — R be twice differentiable, and assume that
f'(#) >0 and f"(¢t) >0 for each t €ER. Let a1 2 a3 > -+ > an and by > by > - > by
be two systems of real numbers such that Z_?:l a; < Z_?:l b; for k=1,...,n. Then

k k
S fa) < S F), k=1,...,n
j=1 j=1

PROOF. Apply Lemma 2.2 with ¢(21,...,tn) = Z?:l f(t;), the set D = R™
and Q={t€R™ [t1 212> ---2ta}. O

We return to the connections between eigenvalues and s-numbers.

COROLLARY 2.4. For a compact operator A on H and p > 0

(5) ST AP < S si(4P,  n>l.
i=1 ij=1
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PROOF. Choose v such that Aj(4) # 0 for j < v+ 1 and A;j(A) = 0 for
J 2 v+ 1. (Note that v may be finite or infinite and v < v(A).) It suffices to prove (5)
forl1 <n <wv+1. Puta; =log|Aj(A4)| and b; logsJ(A) Then a; > az > -+ > an and

by > by > -+ > bn, and Theorem 2.1 yields that ZJ —14¢; < ZJ —1 bj for £ =1,2,.
Now apply Corollary 2.3 with f(t) = eP?, and (5) follows. O

COROLLARY 2.5. For a compact operator A on H and r >0

(6) [Ta+rxn < [ +7si(4), n21.
ji=1

j=1
PROOF. As in the proof of Corollary 2.4, put a; = log|A;(4)|, b; =
log s;(A), and apply Corollary 2.3 with f(t) = log(1 + ret) aQ

COROLLARY 2.6. Let A be a compact operator on H, and let n be a positive
integer. Then

(7 S a1 > s (4) 85, (4),  r2n

151 < <jaSr 1<h <+ <jnSr

PROOQOF. Choose v as in the proof of Corollary 2.4. It suffices to prove (7)
forr <v+1. Take D=R"and Q= {t € R" | t; = --- > t,-}. Consider on D the function

Pty ,tr) = Z exp(t;, + - +tj,)
1<j1 < <jan &1

Then € is a convex subset of D and for ¢t € Q the inequalities (4) hold true. Theorem
2.1 allows us to apply Lemma 2.2 with a; = log|A;(4)| and b; =logs;(4),j =1,...,n
This yields the desired inequality. O :

VI.3 FURTHER PROPERTIES OF SINGULAR VALUES
THEOREM 3.1. For a compact operator A on a Hilbert space H and n =
(£ dimH)

n

(1) ZSJ'(A) = max

. Upiyeens
j=1 1 ¥$n

n

> (UApj, 05|,

j=1

where the mazimum 13 taken over all unitary operators U on H and all orthonormal
systems Y1,...,pn 1n H.

PROOF. Let U be a unitary operator on H, and let ¢1,...,9n be an or-
thonormal system in H. Define P to be the orthogonal projection onto span{p1,...,¢n}-
Put F = PUAP|Im P:Im P — Im P. Since Im P is finite dimensional, we know that

n n
tr F'=Y (PUAPpj,0;) = Y (UApj,0;).
j=1 i=1
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But tr F' = Z?:l A;(F), and so, using Corollaries 2.4, 1.4 and Proposition 1.3, we see
that

Z Udpj )| < D (P < Zs;(F)
i=1 1=1 ] =1
< si(4)
=1

So 3 %-18j(A) is an upper bound for the numbers | 3 7_;(UApj,¢;)[. It remains to
show that this upper bound is attained.

To do this, write A = 3 % s5(A4)(, <pJ)1/}J, where (<pJ —~; and (1/}1)-__1 are
orthonormal systems and n < v. Choose a unitary operator U:H — H such that

U;j =¢j,5=1,...,n. Then
(UAG;, 3;) = (ABj,b;5) = s;(A),

and it is clear that in (1) the maximum is attained for U = U and pvi=9; (J=1,...,n).
a

The absolute value in the right hand side of (1) can also be put after the
summation sign, that is,

(2) D si(4) = max Z| UAgj, i),
j=1

y‘Ply »¥n ] =1

where as in (1) the maximum is taken over all unitary operators U on H and all or-
thonormal systems ¢1,...,¢n. To see this, fix U and ¢1,...,¢n. Forj =1,...nlet §;
be the argument of (UAgj;, ;). Introduce a new unitary operator Ug on H by setting

Ugep; = eing*goj,j= 1,...,n,and Ujz = U*z for = L span{¢1,...,¥n}. Then

n
Z UAp;,e;) U Apj, ;)

a
I
—

s

™% (U Apj, 05)

1
.M:’

“
Il
—

n

(UoApj,05) <> si(A),

Il
.M:’

[
,I_!‘

and hence (2) follows from (1).

COROLLARY 3.2. If A and B are compact operators on the Hilbert space
H, then

(3) dosi(A+B) <Y sj(A)+ Y si(B), n>l

i=1 5=1 =1
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PROOF. Choose a unitary operator U on H and an orthonormal system
®1,...,%n in H such that

n

> sj(A+B) =

i=1

> (U(A + B)oj, ;).
i=1

Such a choice can be made by Theorem 3.1. It follows (again using Theorem 3.1) that

n

n n
> si(A+B)= Z Udpj, ;) + Y _(UBpj,#;)
Jj=1 j=1 j=1
n

n
Z Udepj, ei)| +|>_(UBwj, ;)
— =

< Zsj(A) + Zs]-(B). o
i=1 ji=1

By taking U in (2) to be the identity operator on H one obtains the following
corollary.

COROLLARY 3.3. Let A be a compact operator on H, and let ¢y,...,¢n
be an orthonormal system in H. Then

(4) S KAej, o) <3 si(4), >l
j=1 i=1

Inequality (4) is an interesting inequality, even in the finite dimensional case.
In the finite dimensional case (4) describes all the connections between the diagonal
elements relative to an orthonormal basis and the s-numbers (see Mirsky [1]).

VI.4 TRACE CLASS OPERATORS

We want a reasonable class of operators for which a trace and a determinant
can be defined. For an operator A acting on a finite dimensional Hilbert space H there
1s no problem:

n
trAi= Y (Apj,@;),

i=1
det( + A):= det(8ij + (Avj, ¢i))i j=1,
where ¢1,...,¢n is an arbitrary orthonormal basis in H. Choose now ¢1,...,9n such

that the matrix of A with respect to ¢1,...,¢n has an upper triangular form. Then the
diagonal elements of the matrix are preciesly the eigenvalues (multiplicities taken into
account) of 4, and thus

(1) trd =Y X(4), det(I+4)=]](1+)(4).
J

J
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In the infinite dimensional case the number of eigenvalues may be infinite, and hence in
that case one has to worry about convergence in (1).

For a Hilbert space H we define
D
S1:= {A:H — H | A compact ,Zs]'(A) < oo}.
j=1

The elements of S are called the trace class operators on H. Note that because of
Corollaries 2.4 and 2.5 for any trace class operator the series and infinite product in (1)
converge. It turns out (as we shall see in the next chapter) that one can define tr A and
det(I + A) for A € S; and that for such an operator (1) holds true. In this section we
give the first properties of the class 5.

THEOREM 4.1. The space S1 endowed with the norm

x

(2) 4l =" s;(4)

j=1

s a complez Banach space. The finite rank operators are dense in Sy relative to the
norm (2). Furthermore, ||A|l1 2 || 4|l and equality holds if and only if A has rank < 1.

PROOF. From si(A) = ||4|| it follows that || A||; > ||4||, and hence ||A]|; =0
implies A = 0. Conversely, if A = 0, then all s-numbers of A are zero, and hence
|All1 = 0. So ||[A||1 =0 if and only if A =0.

From s;(aA) = |a|s;j(A) for each j > 1 and Corollary 3.2 it is clear that S;
is a linear space over C and (using the result of the previous paragraph) we also see that
|-|l1 is a norm on S7. Let us prove the completeness. Let (4,), be a Cauchy sequence in
(51,1 - |l1)- From [|A|l1 = ||A|| we conclude that (4. )x is a Cauchy sequence in the usual
operator norm. But L(H) with the operator norm is complete, and so in the operator
norm the sequence (An)n converges to some operator A. Since all 4, are compact, the
same is true for A. Given € > 0 there exists a positive integer N = N(¢) such that

k
(3) > 5i(An — Am) < ||An — Amlh <& (n,m = N).
j=1

Here k is an arbitrary positive integer. Next use that the s-numbers are continuous in
the operator norm (Corollary 1.6), and take the limit for m — oo in the left hand side
of (3). It follows that for each k¥ > 1

k
> sj(An—A)<e (R N),
1=1

and hence ||An — A|l1 < € for n > N. This shows that the sequence (A,)n converges to
Ain | -|l; and (S1,]| - |l1) is complete.
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Obviously, the finite rank operators are in S3. To see that they are dense

in (S1,]| - |l1), let A € Sy have infinite rank. Consider its Schmidt-representation 4 =
Z;’il sj(A){(,¢;)¥;, and put An = E;-l:l s]'(A)(-,ng)'t,bj. Then
[e ]
A=An= Y si(A) e,
j=n+1

and thus [|[4 — An|ly = 3°52,41 55(4) = 0if n — co.

We already know that ||A||; > ||4|l. If ||4]l1 = ||4]], then s;(A) = O for
j > 2, and from the Schmidt-representation of A it is clear that rank A < 1. Conversely,
if rank A < 1, then we can use Theorem 1.5 to show that s;(A4) = 0 for j > 2, and hence
Al =ll4]l. ©

The norm || -||; is called the trace class norm. If the underlying Hilbert space

H is separable, then the same is true for (S1,]| - ||1). To see this, we first note that for
each z, y in H
(4) {5 2yl = ll=llylls

because the trace class norm and the operator norm coincide for rank one operators.
Thus for two finite rank operators F' = 37, (-, z;)y; and F = 377, (-, Z;)Y; we have

M:

8
<

IF - Fllls (> 25)y5 = (25)511

.,
i
—

(> 25)(y; = ¥5)ll + Z {25 = Z5)¥5h

“
I
—

s

MB TiMB

IIIJ - lly; = w51l + Z llz5 — Z; 119

i=1
< D U=l llys = g5l + Mz = 251195 — vsll + llzy — Z51llly;11)
=1
Now assume H = ¢, and consider the set Fg of all finite rank operators F =
E;‘ 1{»z;)y;, where n is arbitrary and the vectors zj,...,zn and y;1...,yn are £o-

sequences of the form (a, + tb,)32; with a, and b, ratlona.l for all v. From what we
proved so far it is clear that in the trace class norm the set Fg is dense in the set of all
finite rank operators, and hence in the trace class norm Fgq is dense in S;. Since Fg
is countable, this proves that Sy is separable when H = ¢2. But any separable Hilbert
space is isometrically isomorphic to 9, and and thus S is separable if H is separable.

The next proposition shows that S; is an ideal in the ring of all bounded
linear operators on H.

PROPOSITION 4.2. Let A€ S5y, and let B and C be bounded linear opera-
tors on H. Then BAC € Sy and

(5) [BAC|: < [IBIlIAl I
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PROOF. Apply Proposition 1.3. O

To give a non-trivial example of a trace class operator, consider, on La([a, b]),
the integral operator

b
Kf= /k(-,s)f(s)ds.

If k(+,-) is continuous and the operator K is non-negative, then K is a trace class operator.
Indeed, since K is non-negative, s;(K) = A;j(K) for j > 1. But then it follows from
Theorem IV.4.1 in [GG] (which is a corollary of Mercer’s theorem) that

o0 o0 b
D si(K) =Y X(K) = /k(s,s)ds < co.
Jj=1 Jj=1 a

Proposition 4.2 allows us to produce many other examples of trace class operators. Con-
sider on Ly([a,b]) the integral operator

b
Af=/k(-,s)a(s)f(s)ds,
a
b b L
where a(-) and k(-,-) are continuous functions and [ [ k(t,s)f(s)f(t)dsdt > 0 for each
aa

f € L2([a,b]). Then A is a trace class operator. Indeed, A = KM, where M is the
operator of multiplication by a(-) on La([a,b]) and K is the non-negative trace class
operator considered in the previous paragraph. Hence A = KM € 5j.

1
The operator of integration, (V f)(t) = 2i [ f(s)ds, on Ly([0,1]) is not a trace
t

class operator, since formula (10) in Section 1 gives

o0 o0 4
;Sj(V) 252 G =

The next theorem will turn out to be useful later.

THEOREM 4.3. Let A € S1, and let (Tn) and (Sn) be sequences of bounded
linear operators on H which converge pointwise to T and S, respectively (i.e., Tpz — Tz
and Spz — Sz for each z € H). Then TR,AS}, — TAS* in the trace class norm.

PROOF. First, assume that A = (-,)¥. Then ThAS); = (-, Sne)Tny, and
thus
IThAS7 —TAS™ Iy < ||Sne =Sl ITYI+1Sell-ITn% — Y|+ Snp — Sl - [ Tnp — Toh||-

Because of the pointwise convergence we see that T, ASY — TAS*. By taking finite
linear combinations we may conclude that the theorem is proved for the case when A is
a finite rank operator. The general case will be proved by approximation.
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Take A € S1. Let ¢ > 0 be given. Since Thz — Tz and Spz — Sz for each
z € H, the uniform boundedness principle shows that there exists a positive constant
¥ < oo such that || Tx|| < v and ||Sy|| € v for all » > 1. It follows that also ||T|| < v
and ||S|| < v. Choose a finite rank operator F such that ||4 — F||; < €/3v2. Using the
triangle inequality, Proposition 4.2 and || B*|| = ||B]||, one sees that

ITnAS; — TAS™|ly < ITnllll4 = FlllIS3l + 1T2F Sy — TES |l + I T4 — FlilIS™)|
2
< 56 + | TnFS;, — TFS*|;.
Next, apply the result of the first paragraph of the proof. So there exists a positive integer

N such that [|[ThFS); — TFS*|; < 31;6 for n > N. But then |ThAS;, — TAS*||1 < € for
n>N. DO



CHAPTER VII
TRACE AND DETERMINANT

The first section of this chapter has an introductory character; it explains
the principles we use to define the trace and determinant. The precise definitions are
given in the next two sections where we also derive the first properties of the trace and
determinant. In Section 4 the analyticity of det(/ —AA) as a function of A is proved. The
main theorem is given in the sixth section and expresses trace and determinant in terms
of the eigenvalues. Some technical results from complex function theory, which are used
in the proof of the main theorem, are derived in Section 5. The connections with the
classical Fredholm determinant are described in Section 7. The last section contains as a
first application two completeness theorems for eigenvectors and generalized eigenvectors.

VII.1 INTRODUCTION

Throughout this chapter we assume, for simplicity, that the underlying Hilbert
spaces are separable. To introduce trace and determinant for trace class operators we
follow two principles, namely that of permanency and of continuity. The principle of
permanency means that trace and determinant will be introduced in such a way that
for operators on finite dimensional spaces the new definitions agree with what is already
known from matrix theory. This leads in a natural way to definitions of trace and
determinant for operators of finite rank. Next we use continuity to extend the definitions
of trace and determinant to all trace class operators.

Let us start with a finite rank operator F': H — H acting on the Hilbert space
H. Given F there exists a finite dimensional subspace Hy of H such that

(1) FH| C Hy, HllCKerF.

Indeed, if F = Z?:l('v‘Pj)’/’j’ then Hy = span{x1,- ,¥n,¥1,--.,¥n} has the desired

properties. It follows that with respect to the decomposition H = H; EBHIl the operators
F and I 4+ F can be written as 2 x 2 operator matrices of the following form:

|0 | h+F O
(2) F_[O 0], I+F_[ 0 1.2].

Here Fy is the restriction of F' to the finite dimensional subspace H; and for i = 1,2
the symbol I; stands for the identity operator H;, where Hy = Hll. Since Hj is a finite
dimensional space, tr F} and det(I; + F}) are well-defined. We use this and define

(3) tr F: = tr Iy, det(f + F): = det(ly + F}).

Note that the definitions do not depend on the particular choice of the space Hj. To see
this first of all recall that

n n
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where n = dim H; and Ap,...,An are the eigenvalues of Fj counted according to their
algebraic multiplicities. In the two identities in (4) the zero eigenvalues do not give
a contribution. Furthermore, it is clear from (2) that the non-zero eigenvalues of Fj
coincide with the non-zero eigenvalues of F' (multiplicities taken into account). Thus

(5) trF =Y X(F), det(I+F)=]](1+X(F),
J J

VIL.2 DEFINITION OF THE TRACE

On the operators of finite rank the trace acts as a linear functional which is
continuous in the trace class norm. Indeed, let F and G be operators of finite rank acting
on the Hilbert space H. Then

(la) to(F + G) =tr F +tr G,
(1b) _ tr(aF) = atr F (a € C),
(1e) [tr F —tr G| < ||F - G-

To prove (la) and (1b) we use the corresponding properties of the trace on matrices.
Choose finite dimensional subspaces H; and Hj such that FH1 C Hy, HiL C Ker F,
GH; C Hy and Hy- C Ker G. Put Hy = H; + Hy. Then Hj is finite dimensional and

2) (F+G)Hy C Hy, Hg c (KerF)n (KerG) C Ker(F + G).

Thus
tr(F 4+ G) = tr((F 4+ G)|Hy) = tr F|Hg + tr G|Ho = tr F + tr G.
This proves (1a). Further

tr(aF) = tr(aF)|H) =tra(F|Hy) = atr F|H;] = atr F.

To prove (1c) we use the linearity of the trace and Corollary VI1.2.4 to obtain

(3) lte FI <3 I < ) s5(F) = | Fllh-
J J

The continuity of the trace on operators of finite rank allows us to extend the
definition of the trace to all trace class operators. In fact, given a trace class operator A
we define

(4) trA:= lim trfy,
n—oco
where Fy, Fy, F3, ... is an arbitrary sequence of finite rank operators converging in trace

class norm to A. Such a sequence always exists because the finite rank operators are
dense in S7. Note that formula (1c) guarantees that the limit exists and does not depend
on the particular choice of the sequence Fj, Fy,... . From definition (4) it is clear that
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formulas (1a), (1b), (1c) and (3) also hold for arbitrary trace class operators. So we have
the following theorem.

THEOREM 2.1. On the trace operators the trace is a linear functional which
18 conlinuous in the trace class norm and
ltrA[ <[4l (A €S
The trace of a square matrix is equal to the sum of its diagonal elements.
The next theorem is the infinite dimensional analogue of this result.

THEOREM 2.2. Let A be a trace class operator on H. Then

oo

(5) trA =Y (Aej,»j)
j=1

for any orthonormal basis p1,92,-.. of H.

PROQOF. Let P, be the orthogonal projection on the space spanned by
©1,---,%n. Then P,z — z for each z. It follows (cf. Theorem VI1.4.3) that P,AP, — A
in trace class norm, and thus, by the definition of the trace,

(6) trA = lim tr P,APy,.
n—oo

From matrix theorem we know that tr PhnAPn = 3 7.1 (Apj, ;). Inserting this in (6)
yields the desired formula (5). O
For a finite rank operator F' we know that tr F' = 37, Aj(F). This identity

also holds for an arbitrary trace class operator, but at this stage it cannot be obtained

by a simple continuity argument. We shall prove the equality in Section 6 (see Theorem
6.1).

According to Theorem 2.2, the trace of A is precisely the sum of the diagonal
elements in the matrix A relative to an orthonormal basis. The next theorem may be
viewed as a continuous analogue of this result.

THEOREM 2.3. Let A be the integral operator on Ly([a,b]) defined by

b
(M (Af)(®) = / k(t,5)f(s)ds, a<t<b,

a

and assume that kernel function k is continuous on [a,b] x [a,b]. If, in addition, A is a
trace class operator, then

b
(8) trA = /k(t,t)dt.

PROOF. If the operator A is non-negative, then the theorem follows im-
mediately from Mercer’s theorem, see [GG], Theorem IV.4.1. The proof of the general
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case also uses Mercer’s theorem; in fact, it is reduced to Mercer’s theorem by using the
averaging operator M} (k > 0), which on Ls([a, b]) is defined by

b
©) (Muf)(t) = / At —9)f(s), a<t<b,

where
_ @)t for [t <A,
An(t) = { 0 for [t|>h

Obviously, M}, is a selfadjoint integral operator on Ly([a,b]) and its range consists of
continuous functions only. Furthermore

(10) G| Mhf ~ fllz=0,  f € Lz(a,8)).
Here || - ||2 denotes the usual norm on L2 ([a, b]).

To prove (10), take f € Lo{[a,d]). It will be convenient to consider f on R
by setting f(t) = 0 for t ¢ [a,b]. Put fo(t) = f(t — «). Now let € > 0 be given. Then
(see [R], Theorem 9.5) there exists § > 0 such that || fa — fll2 < € for |a| < §. Choose
|h| < 6. Then, for each g € Ly([a, ]), we have

b
/ (MR F)(E) — F®)lla()ldt

/b V An(@)(f(t = @) = £(2) da|lg(t)ldt

Ap(o)| falt) — f()llg(t)]dadt

/b anta)( /b [al®) = SOla(0)dt ) do

h
1
< 5 [ Vo= Flllllader < elgla
-h

IA
\.o-
\55\&

It follows that ||M} f — fll2 < € for |h] < &, which proves (10).
For any g € La([a, b] X [a, b]) we define

t+h s+h

(1) n(t9) = g [ [ oteB)dads.

t—hs—h
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In (11) the function ¢ is assumed to be zero outside [a,d] x [a,b]. Note that g is
continuous on [a,b] x [a,b]. Let G and G} be the integral operators on Lz([a,b]) with
kernel functions g and g, respectively. Since

b b
gn(t,s) = //A(t — a)g(a, B)A(B — s)dadp,

we see that G, = M, GM,,. We shall prove that for any h > 0 the operator G}, is a trace
class operator and

b
(12) trGp = /gh(t,t)dt.

a

First we show that G can be written as a sum G[l] - G[2] +iG[3] —1Gpy), where Gnyp G[z],
G(3) and G[y) are non-negative integral operators with kernel functions in Ly([a, ] X [a, b]).
Indeed, G = Gg + iGg, where G (resp., Gg) is the integral operator whose kernel
function is equal to 27 1(g +g») (resp., (2i) 1 (g — g+)), where ga(t,s) = g(s,t). Since Gg
and Gg are selfadjoint, we may write

Gof =) _aj(fiei)ei, [ € Ly[a,b]),
J

Gof = bi(fidi)bj,  f € La(la,b]),
j

where {(¢;),(a;)} and {(¢;),(b;)} are basic systems of eigenvectors and eigenvalues for
Gg and Gg, respectively. Now put

Gy f = Zma.x(aj,o)(f, ©i)pj
7

Gigf =D min(—a;,0){f,¢;)w;,
J

Gpa)f = Y _ max(b;, 0)(f,%;)%;,
J

Glyf = Z max(—bj, 0)(f,%;)%;.
7

Since (a;) and (b;) are sequences in £3, the operators G[1]’ G(2), Gi3) and G[y) are again
integral operators with kernel functions from Lo([a, b] X [a, b]) and they are non-negative.
Obviously, G = G[y) — G[g) + iG[3) — iG[q], Which is the desired decomposition. Since
Gy = M, GM}, and M, is selfadjoint, the map G — G, preserves the non-negativity of
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the operator G. Thus for v = 1,2,3,4 the operator (G[,))s is a non-negative integral
operator with a continuous kernel function. Hence we can apply [GG], Theorem IV.4.1
to show that G|, is a trace class operator and that (12) holds for G|, instead of G

(v =1,2,3,4). But then, by linearity, G} is a trace class operator and (12) is proved.

Next, we apply the result of the previous paragraph to k. Since k is continu-
ous,

kn(t,s) — k(t,s) (h—0)
uniformly on any square [a’,¥] x [d/, 8] with a < o’ < ' < b and

kp(t,s)| £ max |k(t,s
agﬁ’ébl a(t,8)] —agt,sgbl (t,9)]

for any h > 0. Now use that A is a trace class operator. So according to Theorem V1.4.3,
formula (10) implies that My AM} — A in the trace class norm if A — 0. It follows (cf.
Theorem 2.1) that
= i = lim tr A
tr A &1_:3) tr My AM,, '{1}:}) rAp
b b
- Ain%)/kh(t,t)dt - /k(t,t)dt,
a a

which proves (8). O

VIL.3 DEFINITION OF THE DETERMINANT

We return to the determinant. To define the determinant for I + A, where A
is an arbitrary trace class operator on a Hilbert space H, we follow the same procedure
as for the trace. However, we shall see that for the determinant the continuity argument
is more involved.

First note that for finite rank operators F' and G on H the following equality
holds:

(1) det(I + F)I + G) = det(I + F) - det(I + G).

Observe that (I + F)(I + G) =I + C, where C = F + G + FG is an operator of finite
rank. Thus the left-hand side of (1) is well-defined. To prove (1) we use that this product
formula holds for matrices and for operators on a finite dimensional space. Take Hy as
in formula (2.2). Then

(F+G+ FG)Hy C Hy, Hy CKer(F + G+ FG).
Let Iy be the identity on Hy. According to the definition of the determinant for I + F,

where F' is of finite rank, we have
det(I + F)(I + G) = det[(I + F)(I + G)|Hp]
= det[(Io + F|Ho)(Ip + G|Hp))
= det(Iy + F|Hp) - det(lp + G|Hy)
= det(I + F) - det(I + G).
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This proves (1).

We shall also need that for a finite rank operator F' the following inequalities
hold true:

(2) |det(] + F)| < exp || Fl1.
(3) |det(I + F) — 1| < (exp || Flj1) — 1.

To prove these inequalities we use that 1 +¢ < expt for t > 0 and we apply the second
equality in (1.5) and Corollaries VI.2.5 and VI.2.6. Indeed,

|det(Z + F)| < T + IX(F))
J

< H(l + 3;(F)) < exp (Z .SJ'(F))
j j
=exp | Fll1,

which proves (2), and

|det(I + F) — 1] =

T +x0) - 1‘

J
< Z |’\J'1(F)’\J'2(F)""\J'j(F)|
7 j1<j2<<jn

SD D2 si(F)sjp(F) -9, (F)

7 j1<j2<-<jn

J
< —l+4exp (Z sJ-(F)) = —14exp || F|1,
j

which proves (3). O

LEMMA 3.1. Let A be a trace class operator, and let F1Fs,... be a sequence
of finite rank operators converging to A in trace class norm. Then

(4) lim det(I + Fp)
n—oo

ezists and does not depend on the particular choice of the sequence Fy, Fy, ... .

PROOF. First assume that I + A is invertible. Then I + F}, is invertible for
n sufficiently large. So without loss of generality we may assume that I + F, is invertible
for all n. We have

I+F,=(+ Fr;)[I + (I + Fn) Y (Fm — Fp)).
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From the multiplicativity property (1) and the inequalities (2) and (3) we conclude that

| det(I 4 Fm) — det(I + Fy)| = | det(I + Fy)| - | det[I + (I + Fn) ™ (Fm — Fn)] — 1]
< elFall (lI+F) T (Fn=Folli 1) 50 (m,n — o),

Here we used that (|| Fy]|1)n is 2 bounded sequence and
I(Z+ Fa)™ (Fm = Fa)l1 =0 (m,n— oo).

So we see that (det(I + Fy)), is a Cauchy sequence. Furthermore, if F, Fj,... is a
second sequence of finite rank operators converging to A in trace class norm, then by the
same arguments

det(I 4+ Fy) —det(I + F,)— 0 (n — o0).
So the limit (4) exists and does not depend on the particular choice of the sequence
F,Fy,....

Next we consider the case when I + A is not invertible. We shall prove that
in this case

(5) det(I + F,) — 0 (n — o).

Since I + A is not invertible, the point —1 is an isolated eigenvalue of finite type for A.
Let P be the corresponding Riesz projection, and put H; = Im P, Hy = Ker P. With
respect to the decomposition H = Hy & Hy we write F}, Fs,... and the operator A as
2 X 2 operator matrices:

F, = KD kP Az[Au 0 ]
P o

Since F; — A in trace class norm, we have

”Kﬂl) — A1 — 0, Hng)lll — 0,
KD =0, K5y — Aselly — 0

for n = oo. For i = 1,2 let I; be the identity operator on H;. Note that Iy + Agg
(n)

is invertible. So for n sufficiently large the operator Iy + KZ; will be invertible too.

Without loss of generality we may assume that Ip + Ké;) is invertible for all n. This
allows us to factor I + Fy in the following way:

(6) I+ Fo=(I4Cr)(I+ D)+ Ep),

where

o [0 KK
0 0
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D K{'ll) K(")(I +K(")) 1K(") 0
" 0 K

£ 0 0
n (12+K(")) 1K(") 0 :

For each n the operators Cp, D, and E,, are operators of finite rank. From the structure
of Cp and E, it is clear that C, and E, have no non-zero eigenvalues. It follows that
det(I + Cn) = det(I + E;) = 1. So, using formula (1), we see from (6) that

(7 det(I + Fp,) = det(I + Dn).
Now
(8)  det(I + Dn) = det[l; + K{ — KD (I + K{P) 1K) - det(L, + K(J).

By the first part of the proof, det(Is + K(")) — det(I + Agg). Since H is finite dimen-
sional and

K - K + KK A

in Hqi, we know from the continuity of the determinant on matrices that
det[; + KT — K1, + K 1K] - det(I + A1)

But det(l; + A11) = 0. So (7) and (8) together show that det(I + F,) - 0if n - c0. O

Lemma 3.1 and the fact that the finite rank operators are dense in S; allow
us to extend the definition of the determinant to operators I + A, where A is an arbitrary
trace class operator. Indeed, given a trace class operator 4 we define

(9) det(I + A):= m%o det(I + Fp),
n—
where FY, Fy,. .. is a sequence of finite rank operators which converges to A in the trace

class norm. Lemma 3.1 tells us that det(I + A) is well-defined.

THEOREM 3.2. Let A be a trace class operator on H, and let p1,92,... be
an orthonormal basis of H. Then

det(I + A) = lim det(8jx + (AP, 95))] por-

PROOF. Let P, be the orthogonal projection onto the space spanned by
©1,..-,¢n. Then (PhAP,) is a sequence of finite rank operators which converges in the
trace class norm to A. Thus

det(I + A) = nli{%o det(I + PnAPyn)
= lim det((I + PaAP,)|Im Py).
n—oo
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With respect to the basis ¢1,...,n the operator (I + PrAPy)|Im P, has the following
matrix representation:

mat((I + PaAPy)|Im Pp) = (8% + (Awp, ¢j));k=1,

which proves the theorem. O

THEOREM 3.3. For trace class operators A and B the following formulas

hold ?rue:

(10) det(I + A)(I + B) = det(I + A)det(I + B),

(1) | det(Z + A)| < [T(1+5;(4)) <expllAl,
J

(12) | det(I + A) — 1| < (exp [|All1) — 1.

PROOF. To prove (10) and (12) we use the definition of the determinant
and the fact that these formulas hold true for operators of finite rank (cf. (1) and (3)).
To prove the first inequality in (11), let ¢j,2,... be an orthonormal basis in H, and
let P,, be the orthogonal projection onto the space spanned by ¢1,...,¢n. According to
the second identity in formula (1.5) we have

|det( + PaAP,)| = [[J(1+ Aj(PaAP))

J

< I +sj(PaAPy))
F] .

< H(l + SJ'(A)),
J

where Proposition VI.1.3 has been used to obtain the last inequality. Note that the last
term in the preceding formula does not depend on n. Since

det(I + A) = nlggo det(I + PR AP,),

the first inequality in (11) is proved. The second inequality in (11) follows from 1 + = <
exp ¢ for z > 0 and the definition of the trace class norm. O

From the second part of the proof of Lemma 3.1 (cf. formula (5)) it follows
that det(I + A) = 0 whenever I + A is not invertible. The converse statement is also
true. To see this assume that I + A is invertible. Then (I + A)™! = I + C, where
C = —A(I + A)71 is a trace class operator. So, according to formula (10), we have

det(I + A) -det(J+ C)=det(I + A)(I+C) = 1.
It follows that det(] = A) # 0. So we proved that

(13) det(I + A) =0 & I + A not invertible.
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We shall come back to this statement with more details in Section 6.

The map A — det(I + A) is continuous in the trace class norm, i.e.,

(14) lim det(I + An) = det(J + A)
n—oo
for any sequence Ay, As,... of trace class operators which converges in the trace class

norm to A. To see this, we choose for each n a finite rank operator Fy; such that
1
A — Fall1 < % | det(I + An) — det( + F)| < ~.
Then ||Fn — A]l; = 0if n - co and thus
det(I + A) = lim det(I 4 Fn) = lim det(I + Ayn),
n—o0 n—oo

which proves (14).

VIi.4 ANALYTICITY OF THE DETERMINANT

For a trace class operator A the determinant det(I — AA) is well-defined for
each A € C. In this section we describe the properties of det(I — AA4) as a function of A.
If F is an operator of finite rank, then

r

(1) det(I — AF) = ] (1 = M;(F)),
i=1
where A(F),...,Ar(F) are the non-zero eigenvalues of F' counted according to their

algebraic multiplicity. In particular, det(I — AF') is a polynomial in A when F is of finite
rank.

LEMMA 4.1. Let A be a trace class operator, and let Fy, Fy, ... be a sequence
of operators of finite rank which converges to A in trace class norm. Then

(2) det(I — AFp) — det(I — AA) (n — o0)
and the convergence in (2) is uniform on compact subsets of C.

PROOF. Formula (2) is clear from the definition of the determinant. The
main point is to prove that in (2) the convergence is uniform on compact subsets of C.
Let 2 C C be compact. Take R > 0 such that 2 is contained in the open disc |A| < R.
Further we choose R in such a way that A has no spectrum on the circle |[¢| = R~}
(i.e., I — AA is invertible for [A\| = R). From our hypotheses it follows that F;, — A in
the operator norm. Hence for n sufficiently large the operator F,; has no spectrum on
|¢] = R~1 and for |A\] = R

(3) (I -AF) ' 5 (I-24)"1 (n—- )

Furthermore, in (3) the. convergence is uniform on |A| = R. For n sufficiently large we
have (see the first paragraph of the proof of Lemma 3.1)

Irﬁa.)izldet(I — AFp) — det(I — AFyp)| < efllFall (oRIT=AF) " (Fn=Fa)llh _ 13},
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Now observe that (||Fn|[1)n is a bounded sequence. Furthermore, since, in (3), the
convergence is uniform on |A| = R, there exists a constant Cr such that

|;|l1p |(Z = AFn) " (Frm — F)ll1 £ CrllFm — Fall1.
=R

But then it is clear that the sequence (det(I — AFy)) converges uniformly on || = R.
As Fy, has finite rank, det(I — AFy) is a polynomial in A. So, by the maximum modulus
principle, the sequence (det(I - ’\F"))n converges uniformly on |A| < R and hence also
on ). O

THEOREM 4.2. Let A be a trace class operator, and let Aj(A), Aa(A),... be
the sequence of non-zero eigenvalues of A. Then the function A(\) = det(I — AA) is an
entire function which satisfies the identity

(4) AN =AM tr AT —2A)7L, N #N(4)7T

and AX) = 325 ApAF with

a1 1 0
fog g 2
(-1* 2
(5) Ak=Tdet : . T ., , kZl,
' k-1
O Ok-1 - a1

where oj = trd7 (j=1,2,...).

PROOF. Choose a sequence F, Fy,... of operators of finite rank which
converges to A in trace class norm. Put dn()\) = det(f — AFy,). We know that d,(A) is a
polynomial in A and dn(A) — A()) uniformly on |A| < R for each R > 0. It follows that
A(}) is analytic on |[A| < R. Since R is arbitrary it follows that A is an entire function.

Choose 0 < R < |A1(A)|~L. Then I — )\A is invertible for |A| < R. Hence for
n sufficiently large the operator I — AF}, is invertible for each |A| < R and
(6) (I-AF) ' (I -24)71  (n—>c0)

on |A| € R. Without loss of generality we may assume that for each n and |[A| < R the
operator I — AFy, is invertible. This implies that d,(A) # 0 for |A| < R. From (1) we see
that

i n )\
dn(A) o 1 — AN (Fn)
Now, X\;(Fnp)(1 — /\/\j(Fn))_l, j = 1,...,mn, are precisely the non-zero eigenvalues
(counted according to their algebraic multiplicity) of the finite rank operator
Fo(I = AF,)~ 1. Tt follows that

(7) d(A) = —da(M)tr Fa(I - AFy)™Y, A <R
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Note that Fp(I — AF,)~! — A(J — AA)~! in trace class norm. Furthermore, dy()) —
A(}), and the fact that the latter convergenceis uniform on compact subsets of C implies
that also d},(A) — A’()). So in (7) we may take the limit for n — oo, and hence we see
that the identity in (4) holds for |A] < R.

Next we observe that tr A(J — AA)~! is analytic on the open set Q = {) €
ClA#X(4)71,j =1,2,...}. Indeed, for A\g € Q and |A — Ao sufficiently small we have

[e ]
A(I _ /\A)_l — Z(/\ _ /\0)"An+1(f _ /\oA)_n—l,
n=0
and the series converges in the trace class norm. But the trace is a continuous linear
functional on $;. So

oo
tr AT ~ AA)™h =D (A = Ao)an,

n=0

where ap = tr[A®T(I — X\gA4)™"~1], n = 0,1,2,... . This proves the analyticity of
tr A(I — AA)~1 on Q. We already know that A and its derivative A’ are analytic on .
So, by analytic continuation, the identity in (4) holds for all A s /\J-(A)_l, i=12,....

To prove (5) we compare the coefficients of the Taylor expansions at zero of
the functions appearing in (4). By taking Ag = 0 in the previous paragraph one sees that

o0
br A(T — AA)™L =) M tr47H
ji=1

for || sufficiently small. Furthermore, A(}) = =0 AjM with Ag = 1 and A'()) =
Eﬁo(j +1)Aj41M. So, according to (4),

k-1
(8) IcAk=—-ZAjtrAk‘j, k=1,2,... .
j=0

Put oj =tr A7, j = 1,2,..., and recall that Ag = 1. This allows us to rewrite (8) in the
form:

—o1 =14,
— 09 = 0101 + 249,
9)
—0f =0k 181+ 0k—282 + -+ 018p 1 + kD
Now consider (9) as a system of k linear equations with & unknowns Aj,...,A,. Note

that the determinant of the coefficient matrix is equal to kl. So, by applying Cramer’s
rule, we see that A is given by (5). O

The next theorem describes the behaviour of det(I — AA) for A near infinity.
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THEOREM 4.3. Let A be a trace class operator. Given € > O there ezists a
positive constant Ce such that

|det(I — AA)| < CeePl, A ecC.

PROOF. Since A is a trace class operator, there exists N such that
E_?°=N+1 s;(A) > 5. Moreover, there exists a positive constant Ce such that

N &€
H (1 + |z\|3j(A)) <Ce exP(El’“),
i=1

because ¢ exp(—nt) is bounded on 0 € ¢t < oo for each n > 0. Next we use the first
inequality in (3.11), which yields

|det(1 —24)] < T (1 + 1Alsj(4))
ji=1

< {ﬁ(l + i) fo (S si()

j=1 j=N+1
S Cgeell\l. a
In the terminology of the next section the property described in Theorem

4.3 means that as a function of A the determinant det(I — AA) is an entire function of
exponential type zero.

VII.5 INTERMEZZO ABOUT ENTIRE FUNCTIONS OF
EXPONENTIAL TYPE

This section may be omitted in the first reading; it plays a role in the second
proof of the fundamental theorem for the trace given in the next section.

Let f be an entire complex-valued function. We say that f is of ezponential
type zero if given € > 0 there exists a positive constant C, such that

(1) IF(A)] < Cees] X ecC.

The function f(A) = det(l — AA), where A is a trace class operator, is an example of
such a function. The condition that f is of exponential type zero is equivalent to the
requirement that
. log M(R)

2 1 —_
( ) Rl—r»noo R
where M(R) = max{|f(\)|||A| = R}. We shall prove the following theorem.

THEOREM 5.1. Let ay,as,... be the zeros of the entire function f ordered

according to increasing absolute values and multiplicities taken into account. Assume
that

(3) Z li

=0,
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If f is of ezponential type zero and f(0) =1, then f admits the representation

b A
(4) =11 (1 - ;)-
j=1 7
We begin with a lemma.
LEMMA 5.2. Let g(\) = 1.2 ckA¥ for |\| < R, and take 0 <r < R. Then

(5) ekl < GO -Rg®), k21,

where y(r) = max{?Rg(/\)||,\| =r}.
PROOF. From the definition of g it follows that

oo -1
. 1 . 1 ;
ty k_ikt 1 k| —ikt
Rg(re'’) = Reo + kg—l SCkT et*t 4 g 5 Ik le= , 0<t<2n.

k=—00
Therefore
2w
(6a) Reg = %/%g(re“)dt,
0
27
(65) cp = Lk/seg(re“)e—“kdt, k>
nr
0

2r .
Take k > 1. Recall that | e~ tkdt = 0. So we have
0

2w
1 L
—ek = — [lar) - Ro(releHan.
nr
0

Next we use that y(r) > Rg(re't). It follows that

IA

27
ool < % 1) = Ro(rea
0

= 5 (em(r) - 2%0) = () - Re(0)). ©

The above lemma already allows us to prove Theorem 5.1 for the case when
the entire function f has no zeros. We have the following corollary.

COROLLARY 5.3. An entire function of ezponential type zero which has no
zeros 18 a constant function.
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PROOF. Let f be an entire function of exponential type zero. We may
assume that f(0) = 1. Our hypotheses imply that f(A\) = exp(g(})) for an entire
function ¢g. Indeed, put

f’(t)

9N = | Ty

where the integration is along any rectiﬁable curve joining the points 0 and A. Then
g is well-defined, and one checks easily that the derivative of f(A)exp(—g())) vanishes
identically. Since g(0) = 0 and f(0) = 1, this implies that f(A) = exp(g(})).

From |f()A)| £ M(R) for |\| € R we conclude that
Rg(A) < log M(R), |A| < R.

So we apply Lemma 5.2 to show that for ¥ > 1 the k-th coefficient in the Taylor expansion
of g at 0 satisfies the following inequality:
log M(R) — Rg(0)

Rk '
Next we use that f is of exponential type 0. So, according to formula (2), the right hand
side of (7) converges to 0 if R — co. Hence ¢ is a constant function and thussois f. O

PROOF OF THEOREM 5.1. Because of the condition (3) the infinite product

in (4) is well-defined and converges uniformly on compact subsets of C. Put

FOO) = h(N) ﬁ (1 - ai)

j=1 7

(") killg“‘)(O)l <2

Then A is an entire function which has no zeros, and thus (cf. the first part of the proof
of Corollary 5.3) h(A) = exp(g(A)) for some entire function g. Note that g(0) = 0. Take
R > 1 and put

®) ey =e® T (1-2).
la;|>R 7

Obviously fr(A) has no zeros in |A| < R, and we may write

(9) frRO) =92 Al < R,
where
A
(10) sr(3) = g+ 3 tog(1-2).
[a;[>R 7

Note that the series in (10) converges uniformly on |A| < R. This allows us to compare
in a simple way the coefficients of the Taylor expansions at zero of the various functions
appearing in (10). For k > 1 we have



CHAPTER VII. TRACE AND DETERMINANT 125

It follows that

(11) POl o+ ¥ o k2
) |aJ|>R J

Because of (3) the second term in the right hand side of (11) converges to zero if R — co.
We shall prove that the same is true for the first term.

According to (8),

s =m0 II (1-2).

a
laj|<R I

Note that |1 — AI > 1 whenever [A| = 2R and |a;| < R. It follows that [f(A)] > [fr(M)I

for |A| = 2R. In particular, |fr(})| < M(2R) if |A| = 2R, which by the maximum
modulus principle implies that

|frR(N)| < M(2R), Al £ R.
It follows that
(12) Rgp(\) <logM(2R), <R

By Lemma 5.2, this implies that
k
GO < Frlos MER) - Ror(@), k21

But f is of exponential type zero. So formula (2) holds true, and we may conclude that
for each k¥ > 1 the number ( )(0) — 0 if R — oo. Hence, returning to (11), we see
that g(k)(O) = 0 for each k > 0, and thus ¢ = 0. The theorem is proved. O

Theorem 5.1 is a special case of the Hadamard factorization theorem (see,
e.g., [C], Section XI.3.1). The converse of Theorem 5.1 also holds true, i.e., if (3) holds
and f is given by (4), then f is of exponential type zero, f(0) = 1 and ay, ag, ... are the
zeros of f.

VII.6e THE FUNDAMENTAL THEOREM FOR TRACE AND
DETERMINANT

The main theorem of this section identifies trace and determinant in terms
of eigenvalues and their multiplicities. The result for the trace is due to V.B. Lidskii
[2]. Two proofs are given. The first follows the main idea of the proof of Gohberg-Krein
[3]. It is based on Theorems 4.2 and 4.3 and does not require the result of the preceding
section. The second proof focusses on the connection with complex analysis and is based
on the representation theorem for entire functions of exponential type zero which has
been proved in the previous section.
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THEOREM 6.1. Let A be a trace class operator, and let A1(A), A2(A),... be

the sequence of non-zero eigenvalues of A (multiplicities taken into account). Then
(i) tr 4 = X5 As(4),
(ii) det(I — A) = Hj(l —2j(4)).
FIRST PROOF OF THEOREM 6.1. Let E4 be the closed linear hull of the

eigenvectors and generalized eigenvectors corresponding to the non-zero eigenvalues of
A. We consider three cases.

(I) The case E4 = {0}. Thus A has no non-zero eigenvalues. We have to
prove that tr A = 0 and det(I — A) = 1. First we shall prove that tr A¥ = 0 for k£ > 2.
To do this, choose an orthonormal basis ¢1,p9,... in H. Let Pp be the orthogonal
projection onto span{®1,...,pn}. Put Apn = PyAP,, and fix £ > 2. Since P, AP, has
finite rank,

tr Ak =) "Xi(4n)f, n=1,2,....
j

By Corollary VI1.2.6 and Proposition VI1.1.3,

STINAR S D si(An) <D si(4) = |4,
j J J

and hence

tr K] <> 2(4n)IF
J
< a(An)FE S T A (4n)]
J

< M (AL AL

From Theorem VI1.4.3 we know that 4,, — A in the trace class norm, and hence A, — A
in the operator norm (because [|T|| < ||T|1)- Since o(A) = {0}, we can apply Theorem
I1.4.1 to show that A\;(An) — 0if n — oo. But then we may conclude that tr AX — 0
if n — 00. On the other hand (by Theorem V1.4.3) A¥ — AF in the trace class norm if
n — oo, and thus the continuity of the trace on S; yields

k_ ) k_ >
(1) tr A _nll,néotrA" 0, k>2

From (1) and Theorem 4.2 we see that

(2) det(I — AA) = i (_kl,)k(tr A)k,\k = e~ AMrA
k=0 '

This, together with Theorem 4.3, implies that tr A = 0. Indeed, assume tr A # 0. Take
€= %| tr A|. Then, by Theorem 4.3, there exists a constant C > 0 such that

e-elAlle—AtrAl — e—slAll det(I —X4)| < C
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for all A € C, which is impossible. Thus tr A = 0, and, by formula (2), also det(I—A4) = 1.

(II) The case E4 = H. By Schur’s lemma in Section I1.3, the space H has
an orthonormal basis ¢1, s, ... such that

Apj = ajjor+ -+ 5505,  ajj = Xi(A).

Let @Qn be the orthogonal projection on the space spanned by ¢1,...,¢n. Obviously,
Im @y, is invariant under A. The matrix of A|Im @y, is upper triangular with respect to
the basis ¢1,...,pn and has A\1(4),..., An(A) on the main diagonal. Thus

tr(A|Im Qn) = Y Xj(4),  det(frmg, — A|ImQn) = [T (1 - 2;(4)).
j=1 j=1

Since @QnAQn — A in the trace class norm, the definitions of trace and determinant yield
trA= lim tr(QnAQn)
n—oo

= n]i»r%o tr(A| Im Qn) = Z /\J(A)’
J

and
det(I — A) = lim det(] — QnAQn)
= lim det(/im@, — 4lImQn) = [](1 - X;(4)),

2
which proves the theorem for the case when E4 = H.

(III) The general case. Put A} = E4 and Hy = E;‘{, and let I; and Iy be
the identity operators on Hy and Hj, respectively. Since F 4 is invariant under A4, the
operator A has a 2 x 2 operator matrix representation of the following type:

A A
(3) A=[ 011 A;;]:Hl@ﬂzaﬂl@ﬂg.

The entries 417, A2 and Agg are trace class operators, by Proposition VI1.4.2. For the
operator Aj; the system of eigenvectors and generalized eigenvectors corresponding to
the non-zero eigenvalues is dense in Hy. Furthermore, A;(411) = A;(A), because of the
definition of E 4. So, by what has been proved under (II),

(4) trA; = Y Ai(4),  det(l1 — 411) = [J(1 - 3;(4)).
j j

According to Lemma II.3.4, the operator A3z has no non-zero eigenvalues. So we may
use the result proved under (I) to conclude that

(5) tr Agp =0, det(Iz — Agg) = 1.
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Finally, by Theorems 2.2 and 3.2,
tr A =tr 4y; + tr Agg,

det(I — A) = det(I; — A1) det(Iz — Agg),
which together with (4) and (5), proves the theorem. O

SECOND PROOF OF THEOREM 6.1. We know that the determinant
A(X) = det(I — AA) is an entire function. First we shall show that

(6) /\1(A)_1, /\2(A)—1,

is the sequence of zeros of A ordered according to increasing absolute values and multi-
plicities taken into account.

Take z #£ A;(A)™},j =1,2,... . Then I — zA is invertible. Hence, by (3.13),
det(I — zA) # 0. So z is not a zero of A.

Next, assume that z = /\6'1, where \p is a non-zero eigenvalue of A. Let P be
the Riesz projection of A corresponding to Ag. Since Ag is an eigenvalue of finite type,
we know that P has finite rank. Moreover, Im P has a basis such that, with respect to
this basis, the matrix of A|Im P is a Jordan matrix which has Ag on the main diagonal.
It follows that

det(I — APAP) = det(fjp — AA|Im P)
= (1-2x)™,
where m = dimIm P. Note that by definition m is the algebraic multiplicity of Ag as an
eigenvalue of A. Since )¢ is not an eigenvalue of (I — P)A(I — P), the result proved in
the previous paragraph implies that z = A5 is not a zero of det(I — A(I — P)A(I — P)).
Now observe that

I—-XA=I-APAP)(I - MI—P)A(I - P)).
So, using the multiplicativity of the determinant, we see that
det(I — AA) = (1 — Axg)™ det[I — A(I — P)A(I — P)],

which shows that z = /\0_1 is a zero of A whose multiplicity is equal to the algebraic
multiplicity of Ag as an eigenvalue of A. Hence we know the zeros of A(A) = det(I — AA4)
and their multiplicities.

Next we prove (ii). From Theorems 4.2 and 4.3 we know that A is an entire
function of exponential type zero. Obviously A(0) = 1. Since

ST <Y s5(4) < oo,
J

j
the sequence of zeros of A satisfies the inequality (5.3). So we can apply Theorem 5.1 to
show that
(7 det(I — \A) = H(1 — A);(4)).

J
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By taking A = 1 in (7) we obtain (ii).

From (7) it also follows that the coefficient Aj of A in the Taylor expansion
of A(}) at zero is equal to — 37, Aj(A). On the other hand, according to Theorem 4.2,
we have A1 = —tr A. This proves (i). O

COROLLARY 6.2. Let A be a trace class operator and B be an arbitrary
bounded linear operator, both acting on the Hilbert space H. Then

(i) tr AB = tr BA
(ii) det(I — AB) = det(I — BA).

PROOF. From Proposition VI1.4.2 we know that AB and BA are both trace
class operators. Now use (see Section II1.2) that the operator functions

A—AB O A-BA O
0 I’ 0 I

are globally equivalent on C\{0}. It follows (see Theorem III.3.1) that AB and BA have
the same non-zero eigenvalues multiplicities taken into account. But then (i) and (ii) are
clear from Theorem 6.1. O

VII.7 CRAMER’S RULE AND FREDHOLM FORMULAS
FOR THE RESOLVENT

From matrix theory we know that for an n x n matrix 4 the matrix I — A4
is invertible if and only if A()\) = det(I — AA) # 0, and in that case Cramer’s rule gives
a formula for the inverse matrix, namely:

1

1 a1l L
) (T= 247" = rs MO,
where M(A) is an n X n matrix whose (i, j)-th entry is the cofactor of the (j,)-th entry
in the matrix I — AA. In particular, the entries of M()\) are polynomials in A. Since
(I —XA)"1 = I+ XMA(I — MA)~1, we can rewrite (1) in the form

A
2 - -1 _ -~ _D()
(2) (I =) =T+ 5DV,

where D()) is an n X n matrix whose entries are polynomials in .
THEOREM 7.1. Let A € S1. Then I — XA 13 invertible if and only i)
A(X) = det(I — XA) #£ 0, and in that case

(3) I-X2A)"1=TI+ ﬁp(x),

where D()\) = z;io /\ij 18 an entire operator function whose coefficients are trace
class operators which are uniquely determined by the recurrence relation:

1
(4) Dy =A, m =Dy 1A — ;(tl‘ Dm—l)A (m > 1)
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The sequence Zj°=0 /\ij converges in the trace class norm and

[ o 1 0 0 0 ]
oo o1 2 e 0
_ (=~ : : S S
) Dm = m! det Om-1 Om—2 Om-3 -+ m=1 10 '
Om  Om—1 Om—-2 *'+ 01 m
Am+1 Am Am— 1 ... A2 A

where gj =tr AJ (5 > 1) and in (5) the determinant has to be understood as the operator
which i3 obtained by formal ezpansion according to the last row.

PROOF. From Theorem 6.1 we know that A(A) = det(I — AA) = 0 if and
onlyif A = A -(A)"1 for some j. It follows that I — XA is invertible if and only if A(A) # 0.

To prove (3) we first assume that A is an operator of finite rank. Then there
exists a finite dimensional subspace H; of H such that AH; C H; and H‘L C Ker A.

With respect to the decomposition H = Hy EBHiL the operator (I—AA)™! can be written
in the form:
(L —XA1))™1 o

®) CERVIR S

Since Hj is finite dimensional, we know from matrix theory (see the first paragraph of
this section) that

-1
Q) (h=241)7 =L+ 3 (/\) D1(A),
where Aj(A) = det(I; — AA;) and Dy(}) is a polynomial in A. By definition, A(A) =

A1(A). Put
D)) = [ DléA) 0 ]

It is clear from (6) and (7) that formula (3) holds true. Note that in this case D(}) is a
polynomial in A whose coefficients are operators of finite rank.

To prove (3) for an arbitrary A € S, we take a sequence F}, F, ... of operators
of finite rank which converges in the trace class norm to A. Put Ap()) = det(I — A Fy),
and write

(I=AFp)™ ! =T+ ———5n().

A (/\)
We know that S,(}) is a polynomial in A. Furthermore, by Lemma 4, An(}) — A(})
(n — o0) uniformly on compact subsets of C.

Choose a large circle I' around 0 such that I — AA is invertible for each A € T
Since F, — A in Sy-norm and hence also in the ordinary operator norm, it follows that
for n sufficiently large the operator I — AF}, is invertible for each A € T,

(8) (I-AF) 1o (I =24)71  (n— ),
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and in (8) the convergence is uniform on I'. Next consider

Sa(A) = Ap(NFn(I = MFR)™L
From what has been proved so far, it is clear that for each A € T,
(9) Sa(X) = ANAT =24 (n— o)

and in (9) the convergence is uniform on T'.

Since Sp(}) is a polynomial in A, we may conclude that (S,(})),, converges
uniformly on |A| € R, where R is the radius of the circle I'. Note that R can be taken
arbitrary large. Thus

(10) D() = lim Sa()

exists for each A and D(A) is an entire operator function. By combining (9) and (10)
we see that (3) holds for A € I'. But then, using analytic continuation, it is clear that
formula (3) holds for each A with A(X) # 0.

Since D(X) = A(MNA(I — AA)~1, we have

(11) D()\) = i A" Dy, = i A (i AjA'"+1‘j>,
m=0 j=0

m=0

where Ag, Aq,... are the Taylor coefficients of A(A) = det(I — AA) at zero. It follows
that

m
Dm =Y AjATFIST (m>0).

j=0
Hence Dy = A and
(12) Dm=Dp_1A+AmA  (m>1).
From formula (4) in Section 4 we know that A’(A) = —A(A)tr A(J — AA)~L. Thus
(13) tr D(A) = =A'(X).
Since 372 4 A" Dy, converges in the operator norm, we may conclude (cf. Theorem V1.4.3)
that 3724 A"Dp A converges in the trace class norm, and hence, by (12), the series in

(11) converges in the trace class norm. This implies that tr D,,_1 = —mA,, for m > 1.
Inserting this in (12) yields the desired recurrence relation (4).

It remains to prove (5). Put Ey = A, and for m > 1 let E,; be the operator
defined by the right hand side of (5). Note that

="
tr B, = T det Mp41 (n 2 0),
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where M}, is the k x k matrix defined by

o1 1 0 -~ 0
[P o1 2 e 0
Mp=| : o (k21).
Ok—1 Ok—2 O3 -+ k—1
9%  Ok—1 Ok -+ O]

From the definition of E, it is clear that

(="
E, = - det M, |A+ E,_1A (n>1).

It follows that the sequence Ey, Eq, E3, ... satisfies the same recurrence relation as the
sequence Dy, Dq,Dq,... . As Ey = Dy, we may conclude that D,; = E, for n > 1, and

the theorem is proved. O

If a trace class operator A admits a particular representation (e.g., as an
integral operator), then the recurrence relation (4) can often be used to give explicit
formulas for the resolvent (I — AA4)~! in terms of the particular representation of A. We
shall illustrate this with two examples.

First consider the case when A = (a;j)ﬁj:__l. Consider the subdeterminants:
rierp \ »
(14) (24 ( s1-- sp ) = det(arl‘gj )i,j—_—l'

Here 1 <r; <k,1<s; <kfori,j=1,...,p. Note that the numbers defined by (14)

are equal to zero for p > k 4+ 1. We claim that the (4, 7)-th entry of (I — AA)~! is given
by

A cat AR k i orTa
15 Bij ¥ oo Qi+ Y AT .
( ) IJ+A(’\) ai]+n—1 n! r Z-:—la(J TL""'Tn ) ’
- 1ysefn=—=

where A(A) = det(I — AA). To see this, put By = A and let Ey; be the k x k matrix
whose (¢, 7)-th entry is equal to

k
i -1)" T reeeT
1.1_( 1 n
B=5r 2 «(5 i)

ry,..ra=1

Note that
(=1 k T T
(16) By = > (), ezo
| P 4 -
nl g =1 T1 Tn+1

By expanding
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in terms of its first column, one sees that

E‘J = (——trEn 1)&1_7 + ZE g —1%rj (Tl _>_ 1)
r=1

It follows that
En = (—% tr En—l)A +E,_14 (n2> 1),

and hence the operators Ey, E1, E3, ... satisfy the recurrence relation (4). Thus

A
I 4 1_[ § : np

Since E, = 0 for n > k, this proves (15). Next, recall that the m-th Taylor coefficients
of A()) at zero is given by

1
Am=——trE,1, m > 1.
m

Together with (16), this yields the following formula for the determinant:
k k
_ =" n ryceTh
A(/\)—1+Z n! /\ Z & T+ Tn :
n=1 r1,..,ra=1

Our second example concerns an integral operator on La([a, b]) of the form

b

AN = [Keofeds,  asi<h

a

We assume that the kernel k is a continuous function on [a, b] X [a,b]. Such an operator
A does not have to be a trace class operator. Therefore we require, in addition, that A
is a trace class operator.

Consider the following continuous function of 2n variables:

T
K( s:: ) _det(k(t"’s."))i_] =1

s1

We claim that
17 —2A)7 1= n
(17) (I —AA) A(A) Z/\ Hp,

where A()A) = det(I — A4) and Hy is the integral operator on Ly([a,b]) with kernel

function
b
S tl
/K( s b1 --tn )dtl
a

b
(18) altrs) = L [




134 VIL.7 CRAMER’S RULE AND FREDHOLM FORMULAS FOR THE RESOLVENT

To see this we use Theorem 2.3.

First we expand the integrand in (18) in terms of its first column. This gives

b

(19) hn(t,s) = enk(t,s) + /hn_l(t,u)k(u,s)du,
a
where
( 1)n b b
—a — .. tl T tn s .
(20) En = l / /K ( tl . -tn ) dtl dtn.
a a

From (19) we see that the operators Hy, Hq, Ha, ... satisfy the following recurrence re-
lation:

(21) Ho =4, Hy=enA+Hy, 1A (n2 1).

It follows that all operators Hy, are trace class operators. Since hy, is a continuous kernel
we can apply Theorem 2.3 to show that

tr Hn = —(n + 1)ent1 (n20),

and thus ¢, = —% tr H,_1. Inserting this'in (21) shows that the operators Hy, Hy, ...
satisfy the recurrence relation (4). Hence H, = Dy and (17) is proved. Since the m-th
Taylor coefficient of A()) at zero is given by Am = —m ™1 tr H,,_1 = &, We see that

(=) b b
— = 2 AT SN tietn
(22) det(I —AA) =1+ 1 ! / /K(tl---t )dtl din.
n= a a

Formula (17) suggests to write the resolvent (I — AA)~! in the form of an
integral operator:

b
(T =287 1)(0) = 1) + 55 [ Rtvsif)s,

where

- 5o b
. _ (_/\)n t t1---tn X
(23) R(t,s,/\)_ZT/--- K( D0 Yan o,
n=0 a a

n

It turns out that the series in (23) is convergent for each A. The representation of the
resolvent kernel R(2, s; A) given above holds for an arbitrary continuous kernel. This goes
back to the work of I. Fredholm [1]. With some modifications the representation is also
true for non-continuous Lo-kernels (see D. Hilbert [1], T. Carleman [1]).
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VII.8 COMPLETENESS OF EIGENVECTORS AND
GENERALIZED EIGENVECTORS

Recall (see Section II.2) that a compact operator A on a Hilbert space H is
said to have a complete system of eigenvectors and generalized eigenvectors if the smallest

linear manifold in H containing all eigenvectors and generalized eigenvectors of A is dense
in H.

THEOREM 8.1. Let A be a trace class operator, and assume that Ag =
zl{(A—A*) i3 non-negative. Then A has a complete system of eigenvectors and generalized
eigenvectors.

Theorem 8.1 is sharp in the following sense. If, in Theorem 8.1, the condition
A € 57 is replaced by the weaker condition that

(1) > si(AM <o

=1

for each € > 0, then the theorem is no longer true. To see this, consider the operator of
integration:

1
ViLy((0,1)) = Lo(0,1)), (V) =2 / f(s)ds.
t

We know (see formula (10) in Section VI.1) that s;(V) =4/(2j — 1)7 for j = 1,2,... .
It follows that (1) is satisfied by A = V, but V ¢ S1. Note that the imaginary part of V
is non-negative; in fact,

1
(Vaf)(t) = / f(s)ds,
0
and thus

2
(ng,f): > 0.

jf(s)ds
0

Obviously, since V has no non-zero eigenvalues, the operator V' does not have a complete
system of eigenvectors and generalized eigenvectors.

We shall prove Theorem 8.1 as a corollary of the following more general
theorem.

THEOREM 8.2. Let A be a compact operator, and assume that Ag =
%{(A — A*) is a non-negative trace class operator. Then

(2) > 9X;(4) < tr Ag,
i

and we have equality in (2) if and only if A has a complete system of eigenvectors and
generalized eigenvectors.
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PROOF. Let H be the space on which A4 acts, and let E4 be the smallest
subspace of H containing all eigenvectors and generalized eigenvectors corresponding to
non-zero eigenvalues of A. We first show (under the condition Ag > 0) the operator A has
a complete system of eigenvectors and generalized eigenvectors if and only if Ej C Ker A.

Take z € Ker A. Then (Az,z) = 0 and (A*z,z) = (z,Az) = 0. It follows
that (Aqz,z) = 0. The fact that Ag > 0 implies that exists a unique non-negative
operator S such that $2 = Ag ([GG], Corollary VI.1.2). Note that

|Sz]|2 = (Sz, Sz) = (S22, z) = (Agz,z) =0,

and thus Sz = 0. But then Agz = S(Sz) = 0, and hence 4*z = 0. We may conclude
that Ker A C Ker A*. Repeating the above argument for A* instead of A shows that
Ker A = Ker A*, and thus

(3) H =XKer A ®ImA.

The latter identity implies that A has no generalized eigenvectors corresponding to the
eigenvalue A = 0. Indeed, assume zp,z1,...,z,—1 is a Jordan chain of A corresponding
to A =0. Then Az; = zg and Azg = 0. Thus 0 # zp € Ker AN Im A4, which contradicts
(3). Note that E4 C TmA. It follows that A has a complete system of eigenvectors
and generalized eigenvectors if and only if E4 = Im A, which happens if and only if
E+ C Ker A.

Next, we take a Schur basis in Eg4, i.e., an orthonormal basis ¢1,p9,... of
E 4 such that

(4) Ap; = ajjer+ - +ajzep  aj; = A(A)

Let 1,%9,... be an orthonormal basis of Ei By Theorem 2.2,

(5) trAdg = > (Agpj,0;) + 3 (Aaws, ;).

j=1 j=1

Note that (Agw, ) = S(Ap, ¢) for each ¢ € H. In particular, (Agyw;,p;) = S(Ap;,¢;)
for each j. According to (4), we have (Apj,¢;) = Aj(A). We conclude that

[o ]

S (A 05 =D SN(A).
J

j=1

Since Ag > 0, all terms in the right hand side of (5) are non-negative. It follows that
(2) holds and we have equality in(2) if and only if

(6) (Ag¥;,%5) =0 (1=12,...).

Let S be the unique non-negative operator such that S? = Ag. Then
(Agj,%j) = 0 implies that Si; = 0, and hence also Ag; = S*p; = 0. So (6) is
equivalent to the requirement that Agy = 0 for each ¢ € Ej
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Assume Ag is zero on E;i' Since A*Ej’ C Ef{, we conclude that A leaves E;li-
invariant and the operators A and A* coincide on Ef{ Then B: = AlEi— is a compact
selfadjoint operator which has no non-zero eigenvalues (cf. Lemma 11.3.4). Hence B = 0,
and we see that Ef{ C Ker A.

Conversely, if E;‘{ C Ker A, then Ag is zero on Ef{. Thus we have equality in

(2) if and only if E;l{ C Ker A, which, as we pointed out, occurs if and only if E4 = Im A.
a

PROOF OF THEOREM 8.1. According to the first part of Theorem 6.1,

(7 trd=)_ Xj(A).
j

Since A is a trace class operator, the same is true for A*. Hence Ag = %—;(A - A*)isa
trace class operator and

tr Ag = 2LtrA— —trA* = 28‘)\ (4).

But then we can apply Theorem 8.2 to show that A has a complete system of eigenvectors
and generalized eigenvectors. O

Note that the proof of Theorem 8.1 requires the fundamental theorem for the
trace (i.e., formula (7)), but to apply Theorem 8.1 no information about the eigenvalues
of A is needed.



CHAPTER VIII
HILBERT-SCHMIDT OPERATORS

This chapter concerns another important set of compact operators, namely
the Hilbert-Schmidt operators. The class of Hilbert-Schmidt operators has a natural
Hilbert space structure and it contains the trace class operators. In the first section
some additional properties of s-numbers are derived. In the second section the Hilbert-
Schmidt operators are introduced and their main properties are established. The last
section contains a completeness theorem for eigenvectors and generalized eigenvectors of
Hilbert-Schmidt operators.

VIIi1.1 FURTHER INEQUALITIES ABOUT s-NUMBERS

Throughout the chapter we assume that the underlying spaces are separable
Hilbert spaces. In this section we shall prove the following basic inequality for s-numbers
of a compact operator A:
k
(1)

k
si (A1 <N si(A), k=12, .
3 =1

1

Here 7 > 0 is an arbitrary positive number and ¢ is an arbitrary positive integer. The
proof of this inequality is based on the following theorem.
THEOREM 1.1. Let A be a compact operator on the Hilbert space H, and
let @1,...,94 be vectors in H. Then
k

(2) det({Aw;, Ap;))Eioq < (H Sj(A)z) det({es, 05))F ;1.

3=1
Furthermore, if 1,...,p, are the first k eigenvectors of A*A in the Schmidt form of
A, then equality holds in (2).

PROOF. 1If ¢1,...,9 are linearly dependent, then the same is true of
Ag1,...,Apr, and hence in that case the left and right hand sides of (2) are both
equal to zero. So, we may assume that ¢1,...,%; are linearly independent.

Let P be the orthogonal projection onto the space M spanned by ¢1,..., 9.
Choose an orthonormal basis ¥1,...,¥; iIn M = Im P. There exist an invertible linear
operator E: M — M such that Ev; = ¢; fort = 1,...,k. Note that

(Api, Ap;) = (E*PA* APEY;, ;).
Define D: M — M by setting Dy = PA*APy for ¢ € M. As 11,...,¥} is an orthonor-
mal basis, we have
(3) det({Ap;, Ap;)) = det(E*PA*APE)
= det(E*DE) = (det D)(det E*E).
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Again, using the fact that 1;,...,9, is an orthonormal basis for M, we have
(4) det E*E = det((E* E;,%;)) = det({¢i,¢;))-
Furthermore,
k k k
(5) det D = [] A;(D) = [] s;(PA*AP) < [] s5(A4)%.
i=1 j=1 i=1

By inserting (4) and (5) in (3) one obtains the desired inequality (2).

If ©1,...,@k are the first k eigenvectors of A*A in a Schmidt representation
of A, then s;(PA*AP) = s;(A%A) = sj(A)2 for j = 1,...,k. So in that case we have
equality in formula (5), and thus in (2) also. O

Formula (2) has an interesting geometric interpretation. Recall that
det({y;,j)) is just equal to the Gram determinant of the vectors ¢1,...,¢,. Hence,
if ¢1,...,¢ are linearly independent, then det({p;,¢;)) is equal to the square of the
volume of the parallelopiped spanned by 1, ...,¢r. Now assume that A is an invertible
linear transformation. Then formula (2) says that after applying the linear transforma-
tion A the volume of the parallelopiped is at most equal to the volume of the original
parallelopiped multiplied by the product of the first k£ singular values of A.

As a consequence of Theorem 1.1 we derive the following inequality.

COROLLARY 1.2. Let A and B be compact operators on a Hilbert space H.
Then

k

k
(6) [Isi(4B) < ] si(A)sj(B),  k=1,2,... .

=1 =1

PROOF. Let ¢1,...,pi be the first k eigenvectorsof B* A* AB in the Schmidt
form of AB. According to Theorem 1.1, we have

k
(7) det((ABypi, ABp;))k sy = (H sj<AB)2) det((pir05))% 52t

7=1

Now apply the inequality (2), first for A with respect to the vectors By,..., By, and

next for B with respect to ¢1,...,¢k. One obtains
k
det((ABy;, ABy;))f =1 < (H s,-<A)2) det((Bi, By;))f j=1
(8) 7
< (T si(4Pss(B? ) dettlonosljmn.
1=1

As ¢1,..., ¢k is an orthonormal system, the determinant det((y;,%;)) = 1. So (7) and
{8) together give the desired inequality (6). O
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We are now able to prove the inequality (1). Let ¢ be an arbitrary positive
integer. By repeatedly applying (6) it is clear that

k k
(9 [T s5¢49) < H (A,  k=1,2,....
._1 =

Put a; = log s;(A?) and b; = logs;(A)9. Obviously a; > a3 > a3 > ---and by > by 2
by > ... . Furthermore, from (9) we have

k k
Z Z E=1,2,....

Taker > 0, and put f(t) = e4t. The first and second derivative of f are positive functions
on the real line. So by Corollary VI.2.3,

k

k
> flai) <D ()
j=1 j=1
But f(a;) = s;(A9)"/9 and f(b;) = s;(A)", and thus inequality (1) is satisfied.

COROLLARY 1.3. Let A and B be compact operators on a Hilbert space H.
Then
k

k
D si(AB) < Z (A)s;(B), k=1,2,....
i=1 i=1

PROOF. One uses the same arguments as in the paragraph preceding the
present corollary. Put a; = logs;(AB) and b; = log(sJ-(A)sJ-(B)), and apply Corollary
VI1.2.3 for the case when f(t) =¢t. O

VIII.2 HILBERT-SCHMIDT OPERATORS

A compact linear operator A on a Hilbert space is said to be a Hilber{-Schmidi
operator if A*A is a trace class operator.

THEOREM 2.1. For a compact linear operator A the following statements
are equivalent:

(i) A is a Hilbert-Schmidt operator;

(ii) E?il | Av;]|? < oo for some (for any) orthonormal basis w1, 99, p3,. .. ;

(i) 327%=1 [{Ag;, o) < co for some (for any) orthonormal basis
P1,P2,P3y--- 5

(iv) 122 55(4)? < co.

PROOF. Let A;(A*A), Aa(A*A),... be the sequence of nonzero eigenvalues
of A*A. We extend this sequence to an infinite sequence by adding zero elements if
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necessary. For any orthonormal basis ¢1, ¢2, ... one has
oo oo
SN (ATA) = (A" Apj, ;)
j=1

j=1
=3 llA;liP = D KAe;, vl
j=1 k=1

In formula (1) we allow the sums to be infinite. Note that the last equality in (1) is a
direct consequence of the identity of Parseval. The second equality in (1) is obvious from
(A*Ayp, ) = ||Agp||%. To prove the first equality in (1) we use the spectral theorem for
A*A. Write

A A=3 A (A A,
v=1

where 11,139, ... is an orthonormal system of eigenvectors of A* A. Note that

(A*Apj05) = Y M(A*A)(wj, )

v=1

As all terms are nonnegative we have

S (A Apspi) = 3 A(A"A) (Z |<<pj,wu>|2)
v=1 ji=1

i=1
oo
=3 " A (4% A).
v=1
This proves formula (1).

From formula (1) the equivalence of the statements (i), (i1) and (iii) is evident.
Moreover, as A;(A*A) = s;(A)?, the implications (i) ¢ (iv) are trivial. O

Examples of Hilbert-Schmidt operators are easy to find. Let (a;;){5-; be an
infinite matrix with complex entries, and assume that A: ¢y — £5 is defined by

[e o]

(2) (A:c),'=Za,'j:Cj, 1=1,2,... .
=1

Then A is a Hilbert-Schmidt operator if and only if
o0
(3) > aiil? < oo
i,j=1
To see this, let €7, ¢€9,... be the standard orthonormal basis of £5. Note that

(4) (Aej,e;) = (Aej); = ajj.
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Thus, if A is Hilbert-Schmidt, then (3) holds true because of Theorem 2.1(iii). Conversely,
if (3) is true, then A is a compact operator, and applying Theorem 2.1, again, one sees
that A is Hilbert-Schmidt.

The second example concerns the integral operator

1
5) (K)(t) = / k(t,s)p(s)ds, 0<t<1, aec.,
0

on L9([0,1]). If the kernel function k is square integrable, then the operator K is Hilbert-
Schmidt. To prove this, we choose an orthonormal basis (¢;)52; of L2([0,1]). Define
$ij(t,s) = wi(t)p;(s). We know that (¥;;)75=; is an orthonormal basis of Lo([0,1] x
[0,1]). We have
11
(Koo, pp) = / / k(t, $)pa(s)pp(t)dsdt
0

0
1

= /1 / k(t, s)bpq(t, s)dsdt
00

= (kﬂbﬂa),

where the latter inner product denotes the inner product on L3([0,1] x [0,1]). As k €
Ly([0,1] x [0,1]), it follows that

(6) > UK e, 0p)[* = [1E]* < oo,
o,B

Since K is eompact, Theorem 2.1 implies that K is Hilbert-Schmidt.

The preceding example is, in a certain sense, a universal model for a Hilbert-
Schmidt operator. More precisely, given a Hilbert-Schmidt operator A: H — H| there
exists a unitary operator U: H — Lo([0, 1]) such that the operator UAU ! is an integral
operator on Lg([0,1]) with a square integrable kernel function. Take an orthonormal
basis (w;) in H and an orthonormal basis (p;) in La([0,1]). Define U: H — Lo([0,1]) by

setting Uw; = ;, 7 =1,2,... . Consider v;;(t,s) = p;i(t)p;(s), and put

k= Z(Awa,wﬂ)¢ﬂa-
a,pB

The fact that 3, 4 I(Awa,wﬂ)|2 < oo implies that k is square integrable. Let
K:Ly([0,1]) — L2([0,1]) be the corresponding integral operator. From what we proved
above for the integral operator K we know that

<I<Lpaa ‘P,@) = (kv wﬂa) = (Aw(‘—'?wﬂ)'
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But then

UAU lpo = Udwa = U(Z(Awa,wﬂ)wﬂ)
B

= Z(Awa,wﬂ)cpﬂ
B
Z Koa,pg)epg = Koa,
B

which proves that UAU~! = K.

The set of all Hilbert-Schmidt operators will be denoted by S3. On Sy we
define a norm:

0 1/2
1) 14]l2 = (Zs,-<A)2) .

J=1

We shall refer to (7) as the Hilbert-Schmidt norm of A. From formula (1) it is clear that

o0 1/2
(8) 142 = ( 3 |<Aso,-,sok>|2)

J,k=1

for any orthonormal basis ¢1, ¢2,. .. in the underlying Hilbert space. This identity can be
used to compute the Hilbert-Schmidt norm in concrete cases. For example, if A: £y — €9
is given by (2), then

oo 1/2
lAll2 = (Z |aij|2) -
ij=1

This follows immediately from (4) and the identity (8). Also, the Hilbert-Schmidt norm
of the integral operator K in (5) is given by

il = 0/1

This is clear from (6) and (8).

The set S9 is a normed operator ideal, whose norm comes from a Hilbert
space structure. This is the contents of the next theorem. First we prove the following
lemma.

1/2
|k(t, s)|2dtds) .

o .

LEMMA 2.2. If A and B are in Sy, then AB € S1 and
(9) |AB|l1 < | All2l|Bll2-

If, in addition, B = A*, then equality holds in (9).
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PROOF. From Corollary 1.3 it is clear that

3 si(AB) <3 si(A)s;(B) < [|All2lIBll2-
j=1 j=1

This proves (9). If, in addition, B = A*, then (by Corollary VI.1.2)

o0 o0 o0
[AA™[ly =D si(A4*) =) A(44%) =) s5(4%)?
j=1 j=1 j=1
o0
=Y s;i(A?=4]3 ©
j=1

THEOREM 2.3. The set of all Hilbert-Schmidt operators on a Hilbert space
H is a Hilbert space with respect to the inner product

(10) (A, B) = tr AB*,

and the corresponding norm is equal to the Hilbert-Schmidt norm || - ||2. Furthermore,
if AiH — H is Hilbert-Schmidt and B: Hy — H and C: H — Hjy are bounded linear
operators, then CAB is Hilbert-Schmidt and

(11 ICAB|2 < IIClllIAll211BII-

For operators of rank one the Hilbert-Schmidt norm ||-||2 coincides with the usual operator
norm, while in general

(12) Al < ll4llz = 14%l2, A€ S

PROOF. We first prove the second part of the theorem. From the inequality
sj(CAB) < ||C||sj(A)||B|| formula (11) is clear. If A has rank one, then s;(A) = 0 for
j 2 2, and hence in that case

1/2
Il = (S oi(a7) " = s104) = .

J

In general, we have ||4||2 > s1(A) = ||A||. From s;(A4) = s;(A*) it follows that ||4|2 =
|4*||2. So (12) is proved.

Take AJB:H — H in S5, and let ¢1,99,... be an orthonormal basis in
H. Note that (||4g;[l); and (I By;); belong to £2. So (|Aw;] + | By;ll); is a square
summable sequence, and hence

S IA+ B)eill? < S (lAgjll + 1 Be;l)? < oo
7 7

This shows that A+ B € S3. As |[(ad)e;|| = |a|||Av;|l, one also sees that a4 € S3. So
the set of all Hilbert-Schmidt operators on H is a vector space.
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If A,B:H — H are in Ss, then, by Lemma 2.2, the operator AB* € S1. So
the sesquilinear form (10) is well-defined. From the properties of the trace it is clear that
(A, B) is an inner product. Moreover,

o0
(A, A) = tr AA* =tr A*A =) );(A*A)
i=1
o0

= " si(4)% =43

=1

To prove that the inner product of Sy is complete, let An: H — H, n =
1,2,..., be a Cauchy sequence in the Hilbert-Schmidt norm || - ||2. As |[A|| < ||Al|2, the
sequence (An) is a Cauchy sequence in the usual operator norm, and hence

(13) A= lim 4,

n—o0

exists in L(H). From (9) and (12) we see that
[ AnA7 — ArAilly < 14 — Akll2llAZll2 + | Anll2ll 47 — ARll2,

and hence (AnA}) is a Cauchy sequence in S;. But S; is a Banach space. So
limp 0o An A}, exists in S1. Since (13) holds in the usual operator norm, the opera-
tor A is compact and

AA* = lim A, A4} €8S).
n—oo
Hence A € S3. Now (AnA*) is also a Cauchy sequence in Si. So, using the same

arguments as before, we conclude that A,4* — AA* in S;. Taking adjoints we see that
also AA}, — AA* in S;. Hence, by Lemma 2.2,

[[4n — All3 = I(An — A)(47, — ANl
< 1 Andl — AA” | + [ AnA® — AA" | + || A4} — A" |y
tends to zero if n — oo. Hence (An) convergesin S3. O

The fact that the integral operator (5) is a universal model of a Hilbert-
Schmidt operator implies that the Hilbert space S5 is linearly isometric to L2([0,1] x
[0,1]). Indeed, let wi,ws,... and @1,p2,... be orthonormal bases in H and Lo([0, 1]),
respectively, and define

(14) J: Ly([0,1] x [0,1]) — So, Jk=U"1KU,

where K is the integral operator given by (5) and U: H — Lo([0,1]) is the unitary
operator defined by Uw; = ¢;. Obviously, J is linear and

| Tkll2 = 1K N2 = &l £, (0,11 0,1y

Thus J is a linear isometry. To see that J is onto, note that J~!(A) = k with

k= Z(Awa,wﬂ)z/)ﬂa,
B
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where ¥g4(t,5) = pg(t)pals).
Since L2 ([0, 1] x [0, 1]) is a Hilbert space, one could use the isometry J in (14)
to give a quick proof of the fact that any Cauchy sequence in S3 is convergent.
COROLLARY 2.4. The operators of finite rank are dense in Sy.

PROOF. We use the notation introduced in the two paragraphs preceding
this corollary. Let M be the linear space of all functions of the form

n

h= )" cap¥pe

a,f=1

where n is an arbitrary positive integer and c,g are arbitrary complex numbers. Obvi-
ously, M is dense in Ly([0,1] x [0,1]). Now apply the isometry J defined by (14). It
follows that J(M) is dense in S3. Since J(h) is a finite rank operator for each k in M,
we conclude that the finite rank operators are dense in S3. O

VIII.3 COMPLETENESS FOR HILBERT-SCHMIDT
OPERATORS

THEOREM 3.1. Let A be a Hilbert-Schmidt operator, and assume that
Ag = %—(A + A%) and Ag = 21-;(/1 — A*) are nonnegative operators. Then the system of
eigenvectors and generalized eigenvectors of A i3 complete.

PROOQOF. Consider the Schur decomposition of H corresponding to 4, that
is, H=FE, & Ei, where E 4 is the smallest subspace containing all the eigenvectors
and generalized eigenvectors of A corresponding to non-zero eigenvalues. Since Ag is
nonnegative, we have to show (see the first paragraph of the proof of Theorem VII.8.2)
that B4 C Ker A.

Let P be the orthogonal projection of H onto Ek, and consider the operator
B:= PA|EL:Ef — E3.

We know that B is a Volterra operator (Lemma I1.3.4). As s;(B) < s;(A), the operator
B is also Hilbert-Schmidt. Furthermore,

(Bo,p) = (Ap, ), (B p,0) = (A%p, )

for each ¢ € E4, and thus By = %(B + B*) and Bg = %;(B — B*) are nonnegative
operators as well. So B is an operator of the same type as 4. It suffices to show that
B = 0. Indeed, if B is the zero operator, then

0= (B, ) = (Ap,p) = (Arp, ») + i{Agp, p)

for each ¢ € Ej In particular, (Agp,p) = 0 and {Agp,p) = 0 for ¢ € Ej As
As is nonnegative, there exists a unique nonnegative operator C such that C? = Ag.
Obviously, ||Cy||? = (Are, ). It follows that Cp = 0 for each ¢ € Ej But then
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Age = C%p = 0 for ¢ € E4. Similarly, Agp = 0 for each ¢ € Ey. Thus Ap =
Ao + 1Agp = 0 for ¢ € E+, which proves that Ej C Ker A.

Let us prove that B = 0. As B is Hilbert-Schmidt and Volterra, the operator
B? is trace class and Volterra. So tr B2 = 0 by Theorem VIL6.1(i). Note that
(1) B? = (B§ — B}) + i(BrBg + By Bg).
The fact that B is Hilbert-Schmidt, implies that Bg and Bg are Hilbert-Schmidt, and
hence all the terms in (1) are trace class operators. Using the linearity of the trace we
have
(2) 0 = tr B? = (tr B4 — tr B4) + i(tr(BrBg) + tr(Bg Bg)).
Note that B§e and Bg. are selfadjoint. So tr Bg? —~tr B%. is a real number. Furthermore,

tr(BrBg) = tr(BgBg) = tr((BgRBg)*) = tr(BgpBg).

So tr(BgBg) + tr{BgBg) = 2tr(BgBg) is a real number too. But then (2) yields
tr(ByBg) = 0. We shall prove that this implies that Bg[Im Bg] = (0).

Using the spectral theorem we can write

By = X(B)(, %)%
j

where 11,13, ... is an orthonormal system in EAL. Put M = Im Bg. Note that M is the
closed linear span of the vectors ¥1,%9,... . As Bgy = 0 for each ¢ in the orthogonal
complement of M in Ei, we have

tr(BrBg) = > (BrBa¥v,®u).

v

But Bgy, = A, (Bg)yy. So
3) 0 = tr(ByBg) = Z Av(Bg){Bgiy, Pu).

Note that all terms in the right hand side of (3) are nonnegative and A, (Bg) > 0. It
follows that (Bgi,,1,) = 0 for all v. Since Bg is nonnegative, we can use the square
root argument as before to show that By, = O for all v. Hence Byy = 0 for each
¢ € M = Im Bg.

Note that BqM C M. The fact that Bg(M| = (0), implies that BM Cc M
and

Bg|M = (—iB)|M.
Hence Bg|M is a compact selfadjoint operator with no nonzero eigenvalues. It follows
that Bg is zero on M, and hence 0 = Bgi, = A,(Bg)¥, for all v. But then Bg must be

the zero operator. So B = By, is a selfadjoint Volterra operator, and thus B = 0. This
completes the proof of the theorem. ©

Theorem 3.1 is due to V.B. Lidskii [1]. To get completeness theorems for
other classes of compact operators one has to use more powerful results than the trace
formula in Theorem VIL.6.1(i). In fact, one has to study the growth of the resolvent
operator (I — AA)~! at infinity. This will be done in Chapter X.



CHAPTER IX
INTEGRAL OPERATORS WITH SEMI-SEPARABLE KERNELS

In this chapter integral operators with semi-separable kernels are introduced
and analyzed. Such operators turn out to be Hilbert-Schmidt, and their inversion prop-
erties may be read off from certain finite dimensional operators. In the case when the
operators are also trace class, their trace and determinant may be computed explicitly
in terms of the associated finite dimensional operators.

IX.1 DEFINITION AND EXAMPLES

Let —oo < a < b < co. By L7*([a,b]) we denote the space of all C™-valued
functions that are square integrable (relative to the Lebesgue measure) on [a,b]. Thus
p:[a,b] — C™ belongs to L7*([a, b]) if and only if for each j the j-th component of ¢ is
square integrable on [a, b]. As usual, two functions that are equal almost everywhere are
identified. The space L5*([a,b]) is a Hilbert space with inner product

n &
() o) =Y [ ei0B@ar
j=1lg

Here ¢; and 4, are the j-th components of  and 1, respectively.

An operator K: L3 ([a,b]) — L3*([a, b]) will be called an integral operator if
1ts action is given by

b
(2) (Kp)(t) = /k(t,s)cp(s)ds, a<t<h

a

Here & is an m x m matrix function which is called the kernel function of K. Note that
K may be written as

m m
(3) K=>"% " nKin;,
i=1j=1

where

7 LT ([a,b]) = La([a,8]),  mjpi=j;

biif
7i: La([a, B]) — L5*([a, b]), Tif5=|: : ];
‘Smif
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Kij: La([a, b)) — L2([a, 8]),

b
(K Py= [ kst 0f(s)ds,  a<t<h

a

Here ¢; is the j-th component of ¢, the symbol 6;; stands for the Kronecker delta, and
k;;(t,s) is the (,7)-th entry of k(t, s).

We say that K has a semi-separable kernel function if k admits the following
representatiorn:

(4) k(2 s) = { F(#)G1(8), a<s<t <y,

F(t)Ga(s), a<t<s<h
Here F,(t) and G (t) (v = 1,2) are matrices of sizes m X n, and n, X m, respectively,
and as functions of ¢ the entries of F,(¢t) and G, (¢) are square integrable on [a,b]. In
that case the right hand side of (4) is called a semi-separable representation of k, the
integer n: = ny + ng is called the order of the representation (4), and n; and ng will be

referred to as the lower order and upper order, respectively. If (4) holds, then (2) can
be rewritten as

t b
5)  (Ko)t) = Fl(t)/Gl(s)cp(s)ds + F2(i)/G2(s)<p(s)ds, a<t<b
a t

The kernel function

n

(6) £t,s) = Z cpedvit=sl

v=l
is an example of a (scalar) semi-separable kernel function. Indeed, £ can be brought into

the form (4) by taking

Fi(t) = [cre®t-- - cpednt

Fy(t) = [cre~ %t ... cpe9nt)

e—dit edit
Gi(t) = : o Gat)=|
o—dnt gdnt
As we shall see in Section XIV.3, semi-separable kernel functions also arise
from Green’s functions corresponding to certain differential operators.

PROPOSITION 1.1. An integral operator with a semi-separable kernel func-
tion i3 a Hilbert-Schmidt operator.

PROOF. We first consider the scalar case, i.e., m = 1. Then the semi-
separability of the kernel function k implies that k is square integrable on each of the
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triangles a < s <t < band a <t < s <b. It follows that k is a square integrable over
[a, b] x [a, b], and hence the corresponding integral operator is a Hilbert-Schmidt operator
(cf., Section VIIL.2). The general case is reduced to the scalar case by using formula (3)
and Theorem VIII.2.3. O

In general, an integral operator with a semi-separable kernel function does
not belong to the trace class operators. For example, consider the operator of integration:

1
(1) ViLa(0,1) = La(0, 1), (VA(Wi=2i [ fs)ds,  0<t<1.
t

In Section VI.1 it was shown that the j-th singular value of V' is equal to 4/(2j — 1), and
thus V is not a trace class operator. However, the kernel function of V' is semi-separable.
Indeed, for V = K formula (5) holds true with

Fi(t)=Gy(t) =0, Fy(t)=2, Got)=1, 0<t<L.

All operators K: LG ([a, b]) — L7*([a,b]) of finite rank are integral operators
with a semi-separable kernel function. To prove this, assume rank X = n < oo. Then

(see [GG], Theorem II1.6.1) there exist vectors g1,...,gn in L§([a,d]) and f1,...,fn in
LT ([a, b]) such that for every ¢ € L7*([a, b]):
n
(8) (Ko)(t) = Z(‘Pa gv) fu(t).
v=1

Now, let F(t) be the m x n matrix of which the j-th column is equal to f;(t), and let
G(t) be the n x m matrix of which the i-th row is equal to g;(¢)*. Here, for z € C®
the symbol z* denotes the row vector of which the j-th entry is equal to the complex
conjugate of the j-th entry of z. Then (8) implies that

b
(Kp)(t) = F(¢) / G(3)p(s)ds, a<t<hb.

In particular, the kernel function k of K can be written as in (4) with F} = F = F' and
G1=G2=G.

The converse statement is also true: if in (4) we have F} = Fy and G = Ga,
then the corresponding integral operator has finite rank. In general, as examples (6) and
(7) show, integral operators with semi-separable kernel do not have finite rank.

IX.2 INVERSION

This section concerns the inversion of an operator I — K, where
K: L3 ([a,b]) = LF([a,b]) is an integrable operator with a semi-separable kernel function
k. Let

M (t,s) = { ROGE), ez ==h

Fy(t)Ga(s), a<t<s<b,
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be a semi-separable representation of k. With (1) we associate the following matrix

<t<hb

(2) A(t) = Gi1(t)Fi(t)  Gi(t)Fa(t)
T | —eFR®) ~GaFR) |

Since the entries of F}, F, and G1, G2 are square integrable on a <t < b, it follows that
entries of A are (Lebesgue) integrable on a <t < b. Note that A(t) is a square matrix of
size n X n, where n is the order of the representation (1).

THEOREM 2.1. Let K: L} ([a,b]) — L5*([a,b]) be an integral operator with
a semi-separable kernel function k, and let (1) be a semi-separable representation of k
of order n, say.- Let U(t) be the unique continuous n X n matriz function such that

t
(3) UR)=In+ / A(s)U(s)ds, a<t

a

IA

b,

where A(t) is given by (2) and I, is the n X n identity matriz. Partition U(t) as a 2 x 2
block matriz according to the partitioning of the right hand side of (2):

Un(t) Uha(t) ]

a<t<hb.
Ua1(t) Uaa(t)

(4) Ut) = [

Then I — K is invertible if and only if det Uap(b) # 0. Furthermore, in that case

b
(5) (T-K)T9) ) = ot)+ [t )e()ds,  astsy,

with resolvent kernel

CHU®)I — P)U(s)"1B(s), s<t,
(6) v(t,s) = )

-C()U()PU(s)"* B(s), s>t
where

G1(t)

™ cw=1R0 RO, Bw:[—@m]’
g P 0 0
®) T L Uga(0)" U (b))  In, ]

In (8) the integer ng is the upper order of the representation (1). The operator
V:C"2 — C"2 defined by Vz = Usa(b)z will be called the indicator of I — K associated
with the representation (1).
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The proof of Theorem 2.1 goes in a number of steps. First we prove the
existence of the matrix U(t) and derive its properties (Lemma 2.2 below). Next we show
that the operator I — K and its indicator V are matricially coupled (Theorem 2.3 below),
and finally we apply Corollary II1.4.3 to get the desired results about the inversion of
I-K.

LEMMA 2.2. Let A be an n X n matriz of which the entries are Lebesgue
integrable on a <t < b. Then there exists a unique continuous n X n matriz function

U(t) such that

14
(9) U(t) = In + / A(s)U(s)ds, a<t<bh.

Furthermore, det U(t) # 0 and

t
(10) U)! = I — / Uls)-lA(s)ds, a<t<b.

PROOF. Given an n X n matrix A the symbol ||A|| denotes the norm of the
operator on C" induced by A. Fora < ¢ < b, put

t t
Ui(t) = /A(s)ds, Up1(t) = /A(s)Uk(s)ds, k>1.

Then for k > 1,

(1) 10 ( / IAGs) ||ds) . a<t<b

This inequality can be proved by induction. Indeed, (11) holds for k¥ = 1. Let
t
7() =/||A(s)||ds, a<t<b.

Suppose that (11) holds for ¥ = p — 1. Then J'(¢) = || A(t)|| a.e. and

t
1000 < [ NANIT,-1(lds

t
- (—1—1)!/7'(8)7(s)1’-1ds

Zaer=3( / la)lds)"
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Thus (11) is established. Put

(12) U(t):In-i—iUk(t), a<t<hb.
k=1

It follows from (11) that for eacha <t <b
L ok
U@l < 5T B, k21

Thus the series in (12) converges uniformly on a < t < b. Since all U}, are continuous on
[a, b], we conclude that the same holds true for U. Furthermore, by Lebesgue’s dominated
convergence theorem,

jA(t)U(s)ds = jA(s)ds + i jA(s)Uk(s)ds

a k=14

oo
=Ui(t) + Z Uk+1(2)
k=1

We have now proved that U is a continuous n X n matrix function satisfying (9). Let U

be a second function with the same properties. Put W = U — U. Then W is a continuous
n X n matrix function and

t
Wi(t) = /A(s)W(s)ds, a<t<h

Let m = max{||W(s)|| | « £ s < b}. An argument similar to the one used to establish
inequality (11) gives

W@l < ZIG)F,  ast<b, k=1z2....

By taking the limit for k — oo one sees that |W(t)|| = 0 for @ < ¢t < b. Hence U = U,
and we have proved that U is uniquely determined by (9).

Using similar arguments (or duality), one proves that there exists a continuous
n X n matrix function V such that

t
(13) V(t) = I — / V(s)A(s)ds, a<t<b.

a

From the theory of integration (see, e.g., [R], Section 8.15) we know that formulas (9)
and (13) imply that U and V are absolutely continuous on [a,b] and, except for a set
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of measure zero, U'(t) = A(t)U(t) and V'(t) = =V (t)A(t). Put Z(t) = V(t)U(t) for
a <t <b. Then Z is also absolutely continuous and
Z'(t) = V'(t)U(t) + V(U'(2)
= -V()ARQ)U(t) + V(t)A(t)U(t) =0

almost everywhere on [a, b]. But then
V()U(t) = V(a)U(a) = I, a<t<hb.
Since U(t) and V(t) are square matrices, we may conclude that detU(t) # 0 and
Uy ! =V(t)fora<t<b o
The matrix U(t) defined by (9) is called the fundamental matriz (normalized
to In at t = a) of the differential equation
(14) ' (t) = A(t)z(t), a<t<b.

The general solution of (14) is given by U(t)z, where z is an arbitrary vector in C”.

THEOREM 2.3. Let K: L% ([a,b]) — L5([a,b]) be an integral operator with
a semi-separable kernel function k, and let (1) be a semi-separable representation of k.
Let V:C"2 — C™2 be the indicator of I—K associated with the representation (1). Then
I — K and V are matricially coupled. More precisely,

(15)
Q In, -Q(I - H)! 1%

where H, @ and R are defined as follows:

[I—K —R]‘1=[ (I - H)-1 (I—H)‘IR},

(16) H: L5 ([a,8]) — L5 ([a, 8]),

t t
(Ho)(t) = Fy(t) / G1(s)p(s)ds — F(t) / Ga(s)p(s)ds, a<t<b,

b
(17) Q: LY ([a,b]) — C™2, Qe = /GQ(S)(P(S)dS,
(18) R:C™ — LT ([a,b]), (Rz)(t) = Fy(t)z, a<t<hb.

PROOF. Let C(t) and B(t) be defined by (7), and let U(t) be as in (3),
where A(t) is given by (2). First we shall prove that I — H is invertible and

t
(19) (I —H) 1)) = 9(t) + C(HU(2) / U(s)~ B(s)y(s)ds, a<t<hb
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To do this, let T: L7*([a, b]) — L7*([a, b]) be the operator defined by the right hand side
of (19). Take ¢ € LT*([a,d]). Then

t
(o)) = C0) [ Bls)o(s)ds,  ast<b

and hence for a <t < b we have

t t
(T = Dyo)(®) = #(6) = O(&) [ Bs)es)ds +CWUD [ UGy Blsye(s)ds

— cwu() ] U9 Bs)0G) / Bla)p(a)da ) ds.

Note that B(s)C(s) = A(s), and hence we can use formula (10) and partial integration
to show that

] 09 B0 / Blap(a)da ) ds =

t

: .
= —U(t)_l/B(a)tp(a)da+/U(s)-1B(s)tp(s)ds.

a

It follows that T(I — H)p = ¢. In a similar way one shows that (I — H)Ty = ¢. Thus
(19) holds.

Next, we use formula (10) to compute that for a < ¢ < b,

t
(I = H)"'Rz)(t) = (Rz)(t) + C()U(t) / U(s)~1B(s)(Rz)(s)ds
t
+CMU®R) / U(s)_lB(s)C(s)[g]ds

+CU®) /t U(s)~1A(s) [2] ds

p

|+ coyvma-ve [2] ds.
It follows that

(20) (I - H)™'Rz)(t) = C()U () [2], a<t<b,
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and hence

QU —H) 'Rz = /ng(s)C(s)U(s)[g]ds

—_[0 I]/bB(s)C(s)U(s)[g]ds

-0 I]/bA(s)U(s)[g]ds

=z —Uyp(b)r =z —Vz.
This proves that V = I,, — Q(I — H)"1R.
Note that K = H + RQ. Thus
I-K=I-H-RQ=(I-H){I-(I-H)RQ).
Now apply formula (4) in Section I11.4 with A=1, A= —(I — H)"!Rand B=-Q. It

follows that
I (I—H)‘lR]—l ~ [I—(I—H)—lRQ —(I-H)'R

o |

-Q 4 Q In,
Multiplying both sides of (21) on the left by (I — H) @ In, and then taking inverses yields
(15). o

PROOF OF THEOREM 2.1. Let V be the indicator of I — K associated with
the representation (1). Then (Theorem 2.3) the operators I — K and V are matricially
coupled via (15). So we can apply Corollary II1.4.3 to show that I — K is invertible if
and only if V is invertible. Furthermore, in that case (see formula (16) in Section III.4)
(22) I-K)'=(I-H)"'+{I-H)RvIQU-H) !,
where H, Q and R are defined by the formulas (16)-(18). Since Usgq(b) is the matrix of

V relative to the standard basis in C™, the operator I — K is invertible if and only if
det Uay(b) # 0.

To derive an explicit formula for (I — K)~! we use (22). We already have
explicit formulas for (I — H)~! and (I — H)"!R (see (19) and (20)). Let us compute
Q(I — H)~!. Take ¢ € LJ*([a,d]). Then

QU-H) o =—[0 I / B(s)((I = H)™1p)(s)ds
ab b
=0 1) [ B —10 1) [ BeCEUE)

X (/3 U(a)-lB(a)<p(a)da) ds.

a
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Since B(s)C(s) = A(s), we can apply (3) and partial integration to show that

L]

/b B(s)C(s)U(s)( / U(a)"lB(a)go(a)da> ds =

b b
— Ub) / U(a)' B(a)p(a)da — / B(s)p(s)ds.
It follows that
b
(23) QI -m e =10 NUG) [ U Bleels)ds,

and hence (use (20))

(I-HE)'RVTIQU - H) o)1) =
b
- C(t)U(t)P/U(s)—lB(s)<p(s)ds, a<t<b,

a

(24)

where P is given by (8). Finally use (19), (22) and (24) to derive the formulas (5) and
(6). o

COROLLARY 2.4. Let K:L%([a,b]) — L3*([a,d]) be an integral operator
with a semi-separable kernel function k, and let (1) be a semi-separable representation of
k. Let V:C™ — C™ be the indicator of I — K associated with the representation (1).
Then

(25) Ker(I — K) = {p € LT([a,b]) | ¢(t) = C(t)U(t)[g] ,z € KerV},

b
(26) Im(I-K)= {4) € Lo, b)) | [0 IU(B) / U(s)"1B(s)p(s)ds € ImV}.

Here U(t), B(t) and C(t) are as in (3) and (7).
PROOF. From Theorem 2.3 and Corollary II1.4.3 we conclude that

Kerf(I - K)={p|p = - H) 'Rz,z € Ker V},

Im(I - K)={¢ | QU - H) ' € ImV},

where H, Q and R are defined by (16)-(18). But then we can use formulas (20) and (23)
to get (25) and (26). O
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Let us illustrate Theorem 2.1 and Corollary 2.4 with an example. Consider
the integral equation

(27) f(t) - / e~lt=slf(s)ds = g(t), O0<t<T.
0

The right hand side g € L2([0,7]), and we want to solve (27) in L([0,7]). The corre-
sponding kernel is semi-separable (cf., formula (1.6)); in fact

e=lt=sl _ { Fi(t)G1(s), 0<s<t<rm,

(28)
Fg(t)Gg(s), 0<t<s<T,

where Fi(t) = G2(t) = et and Fp(t) = G1(t) = e'. To solve (27) we first determine the
indicator associated with the representation (28). Note that the upper order ng = 1, and
hence in this case the indicator is just a number. One computes that for the representation
(28) the matrices A(t) and U(t) in (2) and (3) are given by

1 e2t etcost et sint

ao=[ L] wo=] 4

—e -1 —e~tsint e~ tcost

Hence V =e T cosT.

Take 0 < 7 # F + kw for k = 0,1,2,... . Then V # 0, and hence equation
(27) is uniquely solvable in Ls([0,7]). To get the solution we apply formulas (5) and (6).
One computes that in this case

e~tcost —etsint ]
b}

e"tsint elcost

U@)~! = [

C(#)U(t) =[ cost —sint sint+ cost ],

U(s)~1B(s) = [sins+coSs ] ’

sin8 — cos 8

|

—tan7T 1

and hence the unique solution of (27) is given by

t
f(t) = g(t) + {(cost —sint) + tanr(sint + cost)} /(cos 8 + sin s)g(s)ds
0

-
— (sint + cos t)/{(l —tan7)sins — (1 +tan7)coss}g(s)ds, 0<t<r.
t

Next, assume that 7 = % + kn for some non-negative integer k. Then the
indicator V is equal to zero, and hence equation (27) is not uniquely solvable. By applying
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Corollary 2.4 one sees (use formula (26)) that (27) is solvable if and only if
T
/(sins + cos s)g(s)ds =0,
0

and in that case (use formulas (25), (19) and the coupling relation (15)) the general
solution of equation (27) is given by

¢
f(t) = g(t) + (sint + cost) /(sins — cos s)g(s)ds
0

t
+ (cost — sint) /(sins + cos s)g(s)ds + c(sint + cost), ceC.
0

I1X.3 EIGENVALUES AND DETERMINANT

This section concerns the eigenvalues of an integral operator with a semi-
separable kernel. As before,

K(t F(t)G1(s), a<s<t<h
(t,9) = Fo(t)Ga(s), a<t<s<b,

ey

is a semi-separable representation and

Gi()F1(t)  Gi(t)Fa(t) ]
—Go(t)Fi(t) —Ga(t)Fy(t) |’

<t<hb.

(2) A(t) = {

THEOREM 3.1. Let K:L$([a,b]) — LT*([a,b]) be an integral operator with
a semi-separable kernel function k, and let (1) be a semi-separable representation of k of
order n, say. For each p € C let U(t; 1) be the unique n x n matriz function determined

by
t

3) Utti) = In+u [ A@U(sids,  a<t<h,
a

where A(t) is given by (2) and I, is the n x n identity matriz. Partition U(t;p) as a
2 x 2 block matriz according to the partitioning of the right hand side of (2):

Uit ) Ura(tp)

} , a<t<hb
Ua1(tip) Usza(t; i)

(4) Ultip) = [

Put

(5) bk (p): = detUpa(bsp), pecC.
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Then S is an entire function, and A # 0 is an eigenvalue of K if and only if §x(A~1) =
0. Furthermore, the geometric multiplicities of the non-zero eigenvalues of K are bounded
above by the minimum of the lower and upper order of the semi-separable representation

(1)
PROOF. Fora<t<bput
t t
Ui(t) = /A(s)ds, U 1(t) = /A(s)Uk(s)ds, k> 2.
a a

From the proof of Lemma 2.2 it follows that for every p € C

oo
Ultip) = In+ Y uwFUp(t), a<t<b.
k=1

But then the estimate (2.11) implies that for each ¢ € [a,b] the entries of U(t;u) are
analytic in gz on the entire complex plane. In particular, the entries of Ugg(b; 1) are
entire functions in g, and hence the same is true for §x(u).

Note that pK is again an integral operator with a semi-separable kernel
function. In fact,
yFl(t)Gl(s), a S S S t S b,
pFy(t)Ga(s), a<t<s<b,

(6) pk(t,s) = {

and the right hand side of (6) is a semi-separable representation for the kernel function
of uK. Let V(u) be the indicator of I — K associated with the representation (6). Then

(N det V(u) = det Uga(b; ) = g ().

Take A 3 0. Then ) is an eigenvalue of K if and only if I — A™1K is not
invertible. But then Theorem 2.1 and formula (7) imply that A is an eigenvalue of K if
and only if §x(A~1) = 0. Furthermore, we can apply Corollary 2.4 to show that

dimKer(A — K) = dim Ker(I — A"1K) < dim Ker V(A7 1) < ng,

where ns is the upper order of the representation (1). This shows that the latter number
is an upper bound for the geometric multiplicities of the non-zero eigenvalues of K. By
interchanging the roles of the triangles a < s <¢ < band a € ¢t < 3 < b one sees that the
lower order is also an upper bound. O

Theorem 3.1 states that the function §g(A) has the properties of a deter-
minant function. The next theorem makes this statement more precise for trace class
operators.

THEOREM 3.2. Let K: L3 ([a,b]) — LT ([a, b)) be an integral operator with
a semi-separable kernel function k, and let (1) be a semi-separable representation of k.
Assume K 1s a trace class operator. Then

b
(8) tr K = /ter(s)Fz(s)ds,

a
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(9) det(I — pK) = 6g(n), pmeC,
where Sg(-) is the entire function defined by (5).

PROOF. Let H, Q, and R be the operators defined by the formulas (16)—(18)
in the previous section. We know that K = H + RQ. Furthermore, RQ is an operator
of finite rank. It follows that H = K — RQ is a trace class operator. In the proof of
Theorem 2.3 it was shown that the operator I — H is invertible. Now, replace K by pK,
and use the semi-separable representation (6) for the kernel function of uX. Then H has
to be replaced by uH, and we may conclude that I — pH is invertible. This holds for
each ¢ € C. Hence H has no non-zero eigenvalues. But then Theorem VIL6.1 implies
that

(10) trH=0, det(I—pH)=1 (r€C).
The first equality in (10) implies that
tr K = tr(H + RQ) = tr RQ = tr QR,

by Corollary VIL.6.2(i). Note that QR is the operator on C™ given by fab Ga(s)Fy(s)ds.
Since the trace class norm and the usual operator norm are equivalent norms on operators
on C™, the continuity of the trace in the trace class norm implies that the integral and
trace may be interchanged. This proves (8).

To prove (9) we use the second identity in (10) and Corollary VII.6.2(ii).
Take p € C. Since pK, pH and p(I — pH)~1RQ are trace class operators, the identity

I—pK =(I-pH){I-p(I-pH) 'RQ}
implies (see Theorem VII1.3.3) that
det(] — pK) = det(I — pH)det{I — u(I — pH)"'RQ}
= det{I — p(I — pH)"' RQ}
= det{In, — uQ(I — pH) ' R}.

Here ny is the upper order of the semi-separable representation (1). Let V(u) be the
indicator of I — pK associated with the representation (6). From the proof of Theorem
2.3 (with K replaced by uK) we know that

V(p) = In, — pQ(I — pH) ™' R.
Thus det(f — pK) = det V(u) = §g (), by formula (7). o

Theorem 3.2 may be used to compute trace and determinant of an integral
operator. For example, let K: L([0,7]) — L2([0, 7]) be the integral operator with kernel

(11) k(t,s) = e lt=l, 0<t<r, 0<s<T.

First, let us prove that K is a trace class operator. To do this, let

t
T:Ly([0,7)) — Lo(0,7]),  (TH() = / f(s)ds.
0
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The operator T is an integral operator with a semi-separable kernel function, and hence
T is Hilbert-Schmidt. Also, for each p € C the operator I — uT is invertible and

t
(I - yT)_ng)(t) = / A t=9) g(s)ds, 0<t<r.
0

Let H: Ly([0,7]) — Lo([0,7]) be defined by
t

t

(W) = [ f(s)ds = [0 f(s)as.
0 0

Then

H=(I+T)'T-(I-T)"'T=—-2+T)'(-T)"'T%

and hence H is a trace class operator. Since K — H is an operator of rank 1, it follows
that K is also a trace class operator.

The kernel function (11) is semi-separable. In fact,
J—ltsl _ { F#)Gi(s), 0<s<t<,
Fy(t)Ga(s), 0<t<s<,
where Fj(t) = Ga(t) = e~ and Fy(t) = G1(t) = e!. Thus, according to formula (8),

(12)

tr K =/trG2(s)Fz(s)ds = /ds =T
0 . 0

For the representation (12) the entries of the matrix
Un(tp) Ura(tp) ]

Utypu) = Ua1(t; i) Uaa(t;p)

which is defined by (3), are as follows:

Ul = e Jeot 4 ooty 4 et ey |

Usa(ti ) = o Lo(e - e},

Ua1(t; u) = e—t{%(f“t - eo‘t)},
Una(t; ) = e‘t{%(e“"‘ +e*) + 12_—a“(e“‘ - e“")},

where a? = 1 — 2u. Note that the choice of the square root is not essential here because
the formulas do not change if @ is replaced by —a. Formula (9) in Theorem 3.2 now
implies that

det(I — pK) = Uza(7; 1)

= e'f{cosh(T\/2y -D+(1- #)Tinl‘:(% ﬁ;l }



CHAPTER X

THE GROWTH OF THE RESOLVENT OPERATOR
AND APPLICATIONS TO COMPLETENESS

The behaviour of the resolvent in a neighbourhood of the spectrum is one of
the important characteristics of an operator. The first section presents a basic theorem
in which a sharp evaluation is given of the norm of an inverse operator in terms of
the determinant and the singular values. The theorem is used in the second section to
evaluate the growth of the resolvent of a Volterra operator. The applications concern
two completeness theorems, which are presented in the last two sections.

X.1 MAIN THEOREM

Throughout this chapter the underlying spaces are separable Hilbert spaces.
We begin with a simple observation which will be used in the proof of the main theorem.
If Ais an n X n matrix, then

(1) s;(I+A)<1+5s5(4), i=1...,n.

For j = 1 the inequality (1) is an immediate consequence of triangle inequality for the
norm and the fact that ||I|| = 1. For arbitrary j we use Theorem VI.1.5. Indeed, choose
an n x n matrix F of rank j — 1 such that s;(A) = ||A — F||. Then

i+ A) S| T+A-F||<1+||A-F||=1+s;(A),

and formula (1) is proved.

THEOREM 1.1. Let A be a trace class operator, and assume det(I+ A) # 0.
Then I + A s invertible and '

- 1 -
(2) Iz +4)7H < mgu +55(4)).

PROOF. We have already seen that det(] + A) # 0 implies that [ + A is
invertible. So we have to prove (2). This will be done in three steps. First we show that
(2) may be proved by reduction to operators of finite rank. So let us assume that (2)
holds for operators of finite rank. Choose a sequence (Py) of orthogonal projections such
that P, — I (n — oo) pointwise. Then P, AP, — A in the trace class norm by Theorem
VI4.3.

As det(I + A) = limpeodet(l + P, AP,) (see the remark at the end of
Section VIIL.3), we have det(I + P, AP,) # 0 for n sufficiently large. So I + P,AP, is
invertible and

3) I+ PadP) M € s [T+ siPaam)
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for n > ng, say. The fact that P,AP, — A in the trace class norm implies that

P,AP, — A in the usual operator norm, and hence
I+ PrAPy) Y = [T+ A7 (n— o0).
As $;(PnAPr) < 5;(A) for all j, we see from (3) that

(I 4+ PaAP) Y| < e +1PnAPn)| 1;[(1 + s;(4)).

Taking limits, as n — oo, on the left and right yields (2).

Next, assume that A4 is of finite rank. Then there exists a finite dimensional
subspace M of H such that

AM c M, AML =(0).

Let Ag: M — M be the restriction of A to M. Note that the right hand side of (2) does
not change if A is replaced by 4p. Furthermore

(T + A) 7 < max{1, ||(1 + Ao) M}

As the right hand side of (2) is larger than or equal to 1 (see Theorem VII.3.3), it suffices
to prove (2) for Ay instead of A. In other words, without loss of generality we may
assume that dim H < oo.

Assume dim H = n, and consider R = [det(I + 4)](I + A)~!. To compute
the norm of R, we compute s1(R):

sH(R) = M(R*R) = | det(I + A)P\ (T + A%)7H (T + 4)71).

Observe that

| det(I + A)|? = det[(I + A)(I + A*)] = f_[ A (I + AT+ 4%),
j=1

1
((T+A)T + A4%))

M+ T+ ™) = 5
So

n—1 n—1
sSR) = [ (T + AT+ 4%) =[] 37+ 4).
j=1 j=1

Next apply the inequalities (1). One obtains that

n-1 n—-1
si(R) = [[ s;(1+4) < [T (1 +5;(4)).
i=1

j=1
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So, if dim H = n, then

n—1

(4) I+ 4)7H < m [0 +e5(4),

and the theorem is proved. O

The inequalities (1), (2) and (4) cannot be sharpened. In fact, if A is a
non-negative n X n matrix, then we have equality in (1) as well as in (4). This follows
immediately from the fact that for a non-negative operator the j-th singular number is
equal to the j-th eigenvalue. In (2) we have equality if A is a non-negative trace class
operator with an infinite number of eigenvalues.

X.2 COROLLARIES TO THE MAIN THEOREM

In this section we use the main theorem to describe the behaviour of
(I —24)71|| for |z| large. First of all, if A is trace class and det(I — z4) # 0, then
I — 2A is invertible and

1
—zA) Y < ——_cl2lllAllh
I ==A70 < Fer =

because of (1.2) and 1 4+ ¢ < et for ¢t > 0. Recall that | A4||; stands for the trace class
norm of the operator A. It follows that if A is trace class and a Volterra operator, then
det(I — zA) =1 for each z, and hence

I = zA) 1 < eFll4h s ec.

This inequality can be sharpened. In fact, the next theorem shows that for a trace class
Volterra operator the entire function ||(I — zA)~1|| is a function of exponential type zero
(cf. Section VILS5).

THEOREM 2.1. Let A be a trace class Volterra operator. Then, given § > 0,
there ezists a positive constant C such that

(1) I(I-zA4) Y <cedll,  zec.

PROOF. Choose m such that 3522 1, s;(4) < #6. By applying the main
theorem of the previous section, one obtains

12— =4)7Y) < H(1+|z|sj(A)) = [H 1+IZISJ(A>)] i
i=1 j=1

Now use the fact that a polynomial is of exponential type zero. So there exists a constant
C such that

m
H (1+ |2|sj(A)) < Cei5|z|
J=1
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and (1) is proved. O

If not A but a certain power of A4 is trace class, then still one can obtain an
estimation of the growth of the resolvent at co. This is the content of the next theorem.

THEOREM 2.2. Let A be a Volterra operator, and assume that

(2) 3 65(A)" < o0
j=1

for some r > 0. Then, given § > 0, there ezists a positive constant C such that

(3) NI =z4) Y <ceflsl",  zec.

PROOF. First, take 0 < » < 1. We begin with an elementary inequality:
(4) 1+l < flEl, 2 ec,

where B is some constant depending on r only. To prove (4), note that for |z| < 1 one
has |z| £ |2|", and thus

1+ |z) < elfl < el lz| < 1.

As |2]7" log(1+z]) = 0if |z| — oo, the function |z| =7 log(1l + |z|) is bounded on |z| > 1.
So there exists 8 > 1 such that log(1 + |z|) < B|z|" for |z] > 1. This proves (4).

Let & > 0 be given. Choose m such that 3772 .4 s;(A4)" < %ﬂ_l, where
B > 0is as in (4). Using (4) and Theorem 1.1, we get

I = 24) IS T (1 + lels;(A) S [H 1+ |z|sj<A>)] 3OII
j=1 j=1

Proceeding as in the proof of Theorem 2.1, one obtains the desired inequality (3).

Next, assume r > 1. Choose a positive integer ¢ such that r < ¢ < r+1, and
put p = r/q. Note that 0 < p < 1. From the inequality,

> s (AN <D si(A)
j=1 j=1

(see Section VIIL.1), it follows that E;’il $;(A%)P < co. So we can apply the first part
of the proof to A9. Hemnce there exists a positive constant C7 such that

NI = A49)~Y < Crex®PP, dec.
In particular,

(5) I(I - 2949)71) < Cre2®t”,  aec.
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Now, we use that

(6) (I—zA) =T+ 24+ + 2971 AT71)(I — 2949)7 L.

Since any polynomial is of exponential type zero, there exists a constant Cy such that
I+ zA + -+ 29714971 < Cpexdlel.

Using |z| < |z|" for |z| > 1, one gets
|r

™ I+ 2A+ -+ 29714971 < Cae3dl

for some constant C'3 and each z € C. Now take the norm in (6) and insert the inequalities
(5) and (7). One obtains the desired formula (3). ©

X.3 APPLICATIONS TO COMPLETENESS

Theorem VIIL.8.1 tells us that the system of eigenvectors and generalized eigen-
vectors of a trace class operator A is complete whenever for each ¢ the number (Ap, ¢) is
in the closed upper halfplane. One has also completeness if A is Hilbert-Schmidt and the
numbers ( Ay, ¢) are in the first closed quadrant of the complex plane (Theorem VII1.3.1).
In the next completeness theorem the condition that A is trace class or Hilbert-Schmidt
is weakened, while on the other hand the numbers (A¢p, ¢) are required to be in a certain
angular sector with a sharper opening.

THEOREM 3.1. Let A be a compact operator such that 3552, s;(A)" < oo

for some r > 1. Assume that the set

1) Wa = {{dp,¢) | v € H,|lo| = 1}
lies in a closed angle with vertez at zero and opening T. Then the system of eigenvectors
and generalized eigenvectors of A is complete.

For » = 1 the above theorem is just Theorem VII.8.1. For r = 2 it contains
the completeness theorem for Hilbert-Schmidt operators. The set W4, defined by (1), is
called the numerical range of A. We begin with a lemma that relates the location of the
numerical range to that of the spectrum.

LEMMA 3.2. Let W4 be the numerical range of an arbitrary bounded linear
operator A acting on a Hilbert space H. If A\ é W 4, then A\ — A i3 invertible and

(2) (2 = A)7H| < [dist(A, W 4)] 7.

PROOF. Here W, denotes the closure of the set W,. Take A ¢ W 4, and
put & = dist(A, W 4). Obviously, § > 0. For z € H with ||z|| = 1 we have

3) IO = Al > 1(h — Az, 3)] = A — (Az,2)| > 6 > 0.
So A — A is injective and has closed range. Similarly

I\ = A2 = X = (A%2,2)] = |\ = (Az,2)] 2 6 >0,
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and thus Ker(A — A)* = (0). It follows that
Im(A — A) = Im(} — 4) = [Ker(A — A)*]+ = H.

Thus A — A is invertible and (3) implies (2). O
LEMMA 3.3. If the numerical range W4 lies in a closed angle with vertez
at zero and opening < 7, then Ker A = Ker A*.

PROOF. We may choose w such that B: = e’ A hasits numerical range in the
closed upper half plane. Note that this implies that the imaginary part Bg = %;(B —B*)
is non-negative. But then (see the second paragraph of the proof of Theorem VII.8.2)
we know that Ker B = Ker B*. Obviously, Ker A = Ker B and Ker A* = Ker B*, and
hence the lemma is proved. O

PROOF OF THEOREM 3.1. Let 2 be an open angle with vertex at zero
and opening T such that

(4) Wyt

The sides of §2 we denote by £ and m. First we show that (4) implies the existence of an
open angle ' with the same opening as Q such that J — zA4 is invertible for z ¢ ' and

(5) , (I —z4)7Y < 2|2, z¢ Q.

Figure 1

To prove (5), let Dy and Dy be closed discs of radius 1 that are outside Q2
and are tangent to the lines £ and m at the point 0, respectively. Put D = D; U D,.
Take 0 # A € D. From Lemma 3.2 and condition (4) we know that A — A is invertible

and

(A= A)7Y| < {dist(A, )}~
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Put p= |, and let T, = {z € D||z| = p}. Let us compute dy = min{dist(z,Q) | z €
T',}. Of course this minimum dy is attained in the points a andf (see Figure 1). One
easily computes (see Figure 2) that the distance of a to the line £ is equal to %—pz. So

do = 5p?, and hence dist(), ) > 1p?. It follows that

D,
-u o= (&1
Figure 2
(6) I(r = A)~Y <2]A"2, 0#AeD.

Next one makes the transformation z — z~1. This transformation maps the closed discs
D1 and D; onto closed halfplanes D} and Dj, respectively, and thus the complement of
D is mapped by z — z~! onto an open angle . As D1 and D5 are tangent at 0 to the
lines £ and m, respectively, the opening of { is equal to the opening of Q. Now take
z ¢ Q. Then A = 271 # 0 and belongs to D. So (6) holds. But then I — zA is invertible
and inequality (3) holds true.

Next, assume that A is a Volterra operator which satisfies the conditions of
Theorem 3.1. We shall prove that A = 0. Introduce the operator function A(z) =
A(I — zA)~!. Obviously, A(z) is an entire function, and

A(z)=z"H{(I - z4)"1 -1},  z#0.
So we apply the inequality (3) to show that

(7 sup [|A(2)l| < oo.
z @Y

Furthermore, according to the evaluation of the resolvent given in Theorem 2.2, we know
that for each 6 > 0 there exists a constant C such that

(8) A=) < e, zec.

Now, consider the function A(z) on /. We know that A(z) is analytic in ' and con-
tinuous up to its boundary. On the sides of the angle ' the function A(z) is uniformly
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bounded by (7). Furthermore, inside Q' we have the inequality (8). As the opening of
is equal to T, we can apply the Phragmén-Lindeldf theorem (see [C], Corollary V1.4.4) to
show A(z) is bounded on Q. Using (7), we conclude that A(z) is bounded on the entire
complex plane. So by Liouville’s theorem A(z) is a constant function. It follows that

A(z) = A+ zA% +--- = A,

and hence A2 = 0.

The identity A2 = 0 implies A = 0. Suppose not. Then there exists a
vector = such that 42z = 0 and y:= Az # 0. According to Lemma 3.3 the vector
y € Ker A = Ker A* = Im AL, On the other hand, y € Im A. So we conclude that y L y,
and hence y = 0, which is a contradiction. Thus A = 0.

Finally, let A be an arbitrary compact operator that satisfies the conditions
of Theorem 3.1. Let H = E4 EBEj, where E 4 is the smallest subspace containing all the
eigenvectors and generalized eigenvectors of A corresponding to the non-zero eigenvalues.
Since, for some w, the operator e“A has a non-negative imaginary part, it suffices to
show (cf. the first paragraph of the proof of Theorem VIL.8.2) that Ej C Ker A. Let P
be the orthogonal projection of H onto Ej. We know (Lemma II.3.4) that the operator

B:= PA|E;:Ex — Ex

is a compact Volterra operator. For ¢ € Ej one has

(Bo,p) = (PAp,p) = (Ap, p).

So Wg C W4. Furthermore, s;(B) < sj(A) for j = 1,2,.... So B satisfies the condition
of Theorem 3.1. But then B = 0. Now, note that

B* = A*|Ef.
So Ej C Ker A*. But then we can apply Lemma 3.3 to show that Ej C Ker A, and the

proof is complete. O

X.4 THE KELDYSH THEOREM FOR COMPLETENESS

In this section we shall prove the following completeness theorem, which is
due to V.M. Keldysh [1].

THEOREM 4.1. Let K be a compact selfadjoint operator with Ker K = (0),

and assume that
oo

(1) D INE) < oo
Jj=1

for some r > 1. Furthermore, let S be a compact operator such that I + S is tnvertible.
Then the system of eigenvectors and generalized eigenvectors of the operator

2) A=K(I+5)
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ts complete. Moreover, given € > 0, all the eigenvalues of A, with a possible exception
of a finite number, are in the sector

(3) A= {pe* | p 2 0,|m—p| <& orlp| < e}

The conditions of the Keldysh theorem appear naturally in certain differential
equations. For example, consider the differential operator

dz

— + b(t)z.

Write B = de’ and let C be the operator of multiplication by &(¢). Choose boundary
conditions such that B is selfadjoint, invertible and B! is Hilbert-Schmidt. Taking
inverses, one obtains the compact operator

A=B"lYI+cB™H !,

which is an operator of the type considered in the Keldysh theorem. In the chapter on
unbounded Fredholm operators (see Section XVII.5) we shall return to examples of this
type and make the statements more precise.

Theorem 4.1 does not hold true if the compactness condition on K is dropped.
To see this, take K = I, and let S be the operator of integration. Also, note that the
invertibility of I + S is equivalent to the statement that Ker A = (0). Indeed, since
S is compact, the operator I + S is invertible if and only if Ker(I + S) = (0). But
Ker(I + S) = Ker A because K is injective by assumption.

To prove Theorem 4.1 we need the following lemma.

LEMMA 4.2. Let K be a compact selfadjoint operator with Ker K = (0), and
let T be an arbitrary compact operator. Furthermore, let Q be a closed angle with vertez
at zero that does not contain non-zero real points. Then

lim ||T(I - zK)7}|| =0,

2EQ,z—00
and the convergence is uniform on Q.

PROOF. First we consider the case that
T= ('1 f)ga

where f and ¢ are fixed vectors of norm one. According to the spectral theorem for
compact selfadjoint operators,

o0
J=1
where 1,3, ... is an orthonormal set in H and A\; = A\;(K) for j = 1,2,.... Forp € H

and z € ) we have

T(I-zK)"lp = Z(l — 225) Yo, 0505, 9.
j=1
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It follows that

1T~ zK)" ol < D711 = 23)7HFr05)1 - s 03
j=1

0o 1/2

< (Z a- zAj)-1<f,saj>|2) el
i=1

and so for z €

o 1/2
|- zA,->-1<f,sa,->|2) .

@ Iz - 27 <
j=1
Now let Q' be the image of the angle Q under z — z~1. Again, ' is a closed
angle with origin at zero. Without loss of generality we may assume that Q' is as in
Figure 1. From Figure 1 it is clear that for 0 # z €

1 |z71 1 .
5 = < =1,2,....
(5) 1- )5z |z=1 = X;| ~ sinw’ J
Ql
o l/z
() ()
0 A
Figure 1

Now, let ¢ > 0 be given. Choose N such that

[e <]

1 .
2 el < 56l sinw.

Next, choose R > 0 such that for |z| > Rand z € Q
al 1
oI 2A) K Fop) P < g2
Jj=1
Employing formulas (4) and (5), one obtains that

IT(I-zK)" Y <e (2€9Q,]2| 2 R).
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This proves the lemma for the case that T has rank one.

Using finite linear combinations of operators of rank one, one sees that the
lemma holds true for any operator T of finite rank. The case when T is an arbitrary
compact operator is proved via approximation by operators of finite rank. In order to
do this, note that formula (5) also implies that

(6) I(T = zK)~H <

(2 € Q),

sinw
and thus
1
- I T~ — -1
I7( = 2K)~1 £ ——|IT ~ Fl| + | F(I - zK)™Y

for any z € Q2. From this inequality, and the first part of the proof, it is clear that the
lemma holds for an arbitrary compact operator T. ©

PROOF OF THEOREM 4.1. Let Q and ' be the closed angles with origin
at zero described by the following figure:

QI

Figure 2

So the complement of QU in C is the sector described by formula (3). Note
that QU Q' U {oo} is invariant under the map z + 1/z.

Define T = S(I + S)~!. The operator T is compact and I — T = (I + §)~!,
So

I—2A=I~:K(I+8)=(I-T—zK)I+5)
Now take z € QU . Then I — zK is invertible, and thus

(7) I—zA=[I-T(-zK)Y" (I -2K)YI+5).
According to Lemma 4.2, there exists R > 0 such that

(8) |IT(I - zK)7Y| < (z€ QU |z| > R).

DO
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It follows that for z € QU Q' and |z| > R the operator I — zA is invertible. So the
non-zero eigenvalues of 4 in QU ' lie outside the disc |z| £ 1/R, and thus A has only a
finite number of eigenvalues in £ U €. This shows that all the eigenvalues of A, except
for a finite number, are in the set A defined in (3).

Let F4 be the smallest subspace containing all eigenvectors and generalized
eigenvectors corresponding to non-zero eigenvalues of A. Since I + § and K are injec-
tive, the operator A is injective, and hence the system of eigenvectors and generalized
eigenvectors of A is complete if and only if £4 = H. Let P be the orthogonal projection
onto Ef{, and put

B = PA|EL:Ef — E3.

To prove completeness it suffices to show that the Volterra operator B is the zero operator.
Indeed, assume B = 0. Then B* = 0. But B* = A*|[E4. So Ef C Ker A*. However
A* = (I + S)*K has a trivial kernel. It follows that Ef{ = (0) and hence A = E4.

To prove that B = 0, we first show that, for some v > 0,
(9) I(I-2B)"|<v<o0, zeQU.
From the inequality (8) it is clear that
I =TU -zK)" 7Y <2 (:€QU,|z| > R).

Furthermore, we know from the proof of Lemma 4.2 (see formula (6)) that

1
- -1 <« !
(I - zK) “"sine (zeuQ).
It follows that
2
(10) (I —zA4)7H| < Ell(“‘ ST (zeQu,z| 2 R).

Now
(I-2B)"'= P(I-2z4)"YES,

whenever I — zA is invertible. It follows that formula (10) remains true if in the left
hand side of (10) the operator A is replaced by B. Next, observe that ||( —zB)~!||is a
continuous function on the compact set

(11) {zeQn@'|lz] < R},

and thus ||(I —2zB)~1|| is bounded on the set (11). So ||(I —zB)~!| is bounded on QUE/,
and (9) is proved.

According to formula (1), we have Z;’c:’l sj(K)" < co. As

B = PK(I + S)|EX,
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we also have Z?‘;l 3;(B)" < oo (see Proposition VI.1.3 and Corollary VI.1.4). So we
can apply Theorem 2.2 to show that given § > 0 there exists a constant C such that

(12) (I —-zB)~ Y <cedll) zec
Now consider (I — zB)~1 on the closed angle
Ay = {pe? | p 2 0,]p| <€}

We may assume that 0 < & < #%. On the sides of A; the function (I - zB)~! is bounded
in norm (see formula (9)) and for the behaviour at infinity we have formula (12). So
we may apply the Phragmén-Lindelsf theorem (see [C], Corollary V1.4.4) to show that
(I — zB)~! is bounded on A;. In exactly the same way one can prove that (I — z2B)™!
is bounded on

Az = {pe | p20,|m — | <e}.

This, together with (9), implies that (I — zB)~1! is a bounded entire function. Hence, by
the Liouville theorem, the function (I — 2B)~! must be constant. As its value at zero is
equal to I, we see that I = I — 2B, and hence B is the zero operator. O

We conclude with a few remarks. If the system of eigenvectors and generalized
eigenvectors of an operator A is complete, then it does not follow that one has also
completeness for the adjoint operator A*. But, if A is as in Theorem 4.1, then we have
also completeness for A*. Indeed, first of all note that completeness is invariant under
similarity. So, if K and S are as in Theorem 4.1, then we also have completeness for the
operator

(I+8)K = (I+S)[K(U+S))I+8)~

As S* has the same properties as S, Theorem 4.1 and the previous remark imply com-
pleteness for (I + S*)K, which is just the adjoint of A = K(I + S).

In Gohberg-Krein [3] it is shown that in Theorem 4.1 one does not need the
full strength of condition (1). Also, condition (1) may be replaced by

Y s5(S) < o0
i=1

for some r > 1. Furthermore, Macaev [1] (see also Macaev [2]) has proved that the
conclusion of Theorem 4.1 remains valid if instead of (1) one has

D isi(8) < oo,

j=1

but one cannot go beyond this class of operators.
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COMMENTS ON PART II

Except for Chapter IX the present part consists of a selection from the main
results in the book Gohberg-Krein [3]. The exposition, however, is considerably differ-
ent. Trace and determinant are introduced from their finite dimensional analogues by a
continuity argument. Also the evaluation of the growth of the resolvent in Chapter X
is based on the finite dimensional case. The material in Chapter IX is taken from the
paper Gohberg-Kaashoek [1]. The problem of completeness of eigenvectors and general-
ized eigenvectors, considered in Chapters VII, VIII and X, is an important topic which is
mainly discussed in the Soviet literature. For recent developments in this area (which are
many) we refer to the excellent book by A.S. Markus (Markus [1]). The latter contains
also an extended list of references.



EXERCISES TO PART II

In the exercises below, H is a separable Hilbert space and, unless mentioned
explicitly otherwise, all operators are bounded linear operators acting on H. The se-
quence of s-numbers s;(A4), s3(A),... of an operator A is considered to be an infinite
sequence by adding zeros if necessary.

1. Let A and B be compact operators and 7 a positive number. Show that
sn(4) =o(n™"), sp(B)=o(n""), n — oo,

implies that sn(A + B) = o(n™") for n — oo.

2. Let 4, B and r be as in Exercise 1, and let v be a nonnegative integer. Show that

lim n"s,(A4) =0, lim n"sn(B) =%

implies that n"s,(A + B) - v ifn — co.

3. Let A be a compact operator, and let 1,¢2,... be an orthonormal basis of H.
Assume that

I(Apj, o)l = s;(4),  1=12,..
Prove that .
(i) A*Ap; = s]-(A)2<pj, i=12,...,
(i) Ap; = (Apj,@j)v;, 7 =1,2,....
4. Assume s;(A4) = |A;(A)| for j = 1,2,... . Show that there exists an orthonormal

basis consisting of eigenvectors of A. What happens additionally if s;(A) = A;(A) for
j=112...7

5. Let A be a compact operator and P an orthogonal projection. Show that
8;{PAP + (I — P)A(I — P)) = sj(A), j=12,...,

implies that PAP + (I — P)A( — P) = A.

6. Let the operator A be given by

oo

Az = (z,05)%;, z€H,
j=1

where 3752, llejl|? < oo, PR ;112 < co. Show that A is a trace class operator.

7. Let T be the operator on ¢; given by the infinite matrix

(5 0)75=1 »
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where (¢;) and (1;) are as in the previous exercise. Show that T is a trace class operator,
and prove that T and the operator A of the previous exercise have the same non-zero
eigenvalues.

8. Let A be an operator of finite rank. Show that all the non-zero s-numbers of 4 are
equal to 1 if A* = A*AA* and A = AA*A. Prove also the reverse implication. What
can you say about these implications if A is compact but not of finite rank?

9. Let A;, As,... be a sequence in S; which converges in the trace class norm to A.
Prove that
(%) lim det(l + AAy) = det(I + AA)
n—oo
and the convergence in (*) is uniform on compact subsets of C.
10. Let A be compact. Determine linearly independent vectors %3, ..., yn such that
n
9(Ayy, ..., Ayn) = (H Sj(A)z)g(yl,---,ynl
Jj=1
Here g(z1,...,2n) denotes the Gram determinant of the vectors zy,..., zn.

11. Let T be the operator on £y given by the infinite matrix
(e e
(2—%(i+j)) )
1,j=1

12. Let T be the operator on £3 given by the infinite matrix

(aiﬂj )?3::1 3
where (a1, as,...) and (81, f9,...) are in {3. Compute the s-numbers of 7T".
13. Let K be the operator on L2([0,1]) defined by

Compute the s-numbers of 7.

1
(Ke)(®) /sgn t — s)p(s)ds, 0<t< L
0

Compute the s-numbers of K.

14. Assume that A has IV (< +o0) non-zero s-numbers. Show that the number of
non-zero eigenvalues of A, multiplicities taken into account, is at most equal to V.

15. Let T on ¢ be given by the infinite matrix

00 00
1000
03 00
00 3 0
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Prove that T is a Hilbert-Schmidt operator, but not a trace class operator.

16. Let r be an integer, and let T on {3 be given by the infinite matrix

1\®
(5i—r,j T) ’
77/ 4,5=1

where &y, ; is the Kronecker delta. Prove that T is not a trace class operator.
17. Let r be an integer, and let T on €3 be given by the infinite matrix

(e ]

(5i—r,jj _p)i,jzl’
where &y, ; is the Kronecker delta. For which p is T' a trace class operator?

18. Let r be an integer, and let A on ¢3 be given by the infinite matrix

(Simr jo;)T5=1>

where 6 ; is the Kronecker delta. Show that A € S7 if and only if Zj Jaj| < oo, and
prove that in that case

(e ]

lAli= > lajl:

j=min(1,7+1)

19. Let A on {3 be given by the infinite matrix (ai;)75~;, and assume that

oo o0
y:i= ZZ lai;| < co.

i=1j=1

Prove that A € S; and ||A|]; € 7.

20}; Let ¢ be a positive integer, and let T on £ be given by the infinite matrix (aij)?"’j=1,
where

{ a; for j=gq,
ai; = .

0 for j#gq.
Prove that T € Sy and | T]|; = (532 |as[2)*/>.

21. Let T on £; be given by the infinite matrix (a;;){5=;, and assume that
0, 00 1/2
Yo: = Z( laij|2> < 00.
j=1 ‘i=1

Prove that T € 57 and ||T||; < v2- How is the number 7; in Exercise 19 related to v5?
22. Assume that

A1n A }
A= Heo H Ho H
[ A Az —He
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is a trace class operator. Prove:
(a) each A;j is a trace class operator;
(b) tr A = tr Ajj + tr Agg;
(c) det(I ~ AA) = det(I — AAzq)det(I — AA11 — A2A12(1 — MAg2) "1 A9).

23. Let Ty, T) and T be trace class operators. Show that the sequence of zeros of the
function

A det(I + ATp + N2T1T3)
is absolutely summable. (Hint: use linearization and global equivalence.)

24. Show that a trace class operator can be written as the product of two Hilbert-Schimidt
operators.

25. For ¢,j = 1,...,n let A;; be a Hilbert-Schmidt operator on H. Prove that the
operator

App - Ain

(+) T=| :
An1 -+ Ann

is a Hilbert-Schmidt operator on the direct sum H" of n copies of H and

n 1/2
1Tz = (Z ||A,-J-||%) .

ij=1

Let T4 be the operator on H™ which one obtains if in (*) for (4,7) # (p, ¢) the operator
A;j is replaced by the zero operator. Prove that {Tpq | p,¢ = 1,...,n} is an orthonormal
system relative to the inner product on S5.

26. Let the operator A on £5 be given by an infinite upper triangular matrix
aip; a12 a3

0 azg a3
(*) 0 0 a3

Prove that the linear span of eigenvectors and generalized eigenvectors of A is dense in
Ly,

27. Let H = H; @ Hq, and assume that the operator

A= |41 A |l g on L HeH
0 Ay

is compact. Show that the linear span of eigenvectors and generalized eigenvectors of A
is dense in H whenever this property holds for A1; and A, in the corresponding spaces.
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28. Does the statement in Exercise 26 remain true if “upper” is replaced by “lower”?
What happens if we add compactness to the conditions?

29. Let A be a compact operator. If the linear span of eigenvectors and generalized
eigenvectors of A is dense in H, does it follow that the same is true for A*?

A family F of operators on H is called projectionally invariant if given A € F
the operator PAP € F for each orthogonal projection P.

30. Let F be a projectionally invariant set of compact operators on H, and assume that
each non-zero A in F has a non-zero eigenvalue. Then the linear span of eigenvectors
and generalized eigenvectors of A is dense in H for each A in F. Prove this statement.

31. Let F be the family of the trace class operators A on H for which Ag > 0. Show
that F is projectionally invariant and each non-zero 4 in F has a non-zero eigenvalue.

32. Derive the completeness theorems of Lidskii (Theorems VIL.8.1 and VIIL.3.1) by
using the preceding exercises.

33. Let K, K> be integral operators on L7*([a, b]) with semi-separable kernel functions.
Prove that K; + K9 and K1 K5 are again integral operators with semi-separable kernel
functions.

34. Let K be the integral operator on L9([0, 1]) with kernel function k(t,s) = sgn(t —s).
Determine a semi-separable representation of &k, and use this representation to compute
the eigenvalues, the eigenvectors and the resolvent of K. Is K a trace class operator?

35. Let K be the integral operator on Lo([0,1]) with kernel function

a for 0<s<t<1,
B for 0<t<s<1,

k(t,s) = {

where a and B are two different complex numbers. Compute the eigenvalues, the eigen-
vectors and the resolvent of K by using a semi-separable representation of k. Is K a
trace class operator?

36. Consider the following system of equations:

4(t) = A(p(t) + B(Hu(t), a<t<b
() y(t) = C(t)e(d),
Niz(a) + Naz(b) = 0.

Here A(+), B(-) and C(-) are matrix functions of sizes n X n, n xm and m x n, respectively,
the entries of A(-) are integrable on [a, b] and those of B(-) and C(-) are square integrable
on the same interval. The matrices N1, N9 are n X n matrices such that

det(N1 + NzU(b)) # 0,

where U(-) is the fundamental matrix (normalized to I, at t = a) of the differential
equation

' () = A(t)z(t), a<t<hb
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Show that for each u € L3([q,b]), there exists a unique y € LF*([a, b]) such that (%) is
satisfied for some p € L%([a,b]). Prove that the map u + y determined by (*) is an
integral operator on L%*([a,b]) with a semi-separable kernel function and determine a
semi-separable representation for this kernel function. Show that any integral operator
on L§*([a,b]) with a semi-separable kernel function may be represented in this way.



PART III

FREDHOLM OPERATORS: GENERAL THEORY AND
WIENER-HOPF INTEGRAL OPERATORS

This part presents an introduction to the general theory of Fredholm opera-
tors. It also contains elements of the theory of Wiener-Hopf integral operators. The latter
are treated here as examples of Fredholm operators. A main part of the Wiener-Hopf
theory developed in this part concerns systems of equations with a rational matrix sym-
bol. This restriction allows one to include recent results which provide explicit formulas
for the inverse and Fredholm characteristics.



CHAPTER XI
FREDHOLM OPERATORS

This chapter presents a concise introduction to the abstract theory of Fred-
holm operators. It also contains some examples; however the main applications will
concern Wiener-Hopf integral operators and Toeplitz operators which we shall deal with
in the next chapters and in Volume II. The first section contains the definition of a Fred-
holm operator and the first examples. In Section 2 we pay special attention to operators
with closed range. The basic perturbation theorems and the properties of the index are
given in Sections 3 and 4. In Section 5 Fredholm operators are studied in the framework
of the Calkin algebra. Connections with generalized invertibility appear in Section 6.
Index formulas in terms of trace and determinant are given in Section 7. Sections 8 and
9 are devoted to Fredholm operator valued functions that are analytic and to equivalence
of such functions. An operator theory generalization of Rouché’s theorem appears here.
The last section concerns singular values of bounded operators and their connections
with the essential spectrum.

XI.1 DEFINITION AND FIRST EXAMPLES

A bounded linear operator A: X — Y, acting between complex Banach spaces
X and Y, is called a Fredholm operator if its range Im A is closed and the numbers

(1) n(A) = dim Ker 4, d(A) = dim(Y/Im A)

are finite. In that case ind A = n(A4)—~d(A) is said to be the indez of A. In the next section
(Corollary 2.3) we shall see that the condition “Im A is closed” is automatically fulfilled
if the quotient space Y/ Im 4 is finite dimensional. Let us consider a few examples.

(i) If X and Y are both finite dimensional spaces, then any operator A: X —
Y is Fredholm and

ind4d =dimX - dimY.

(ii) If K:X — X is a compact operator on the Banach space X, then
A = I - K is a Fredholm operator and ind A = 0. This follows from the Fredholm theory
for compact operators (see [GG], Theorem XI.4.1). We shall come back to this example
in Sections 2 and 4.

(iii) Consider the following two point boundary value problem:

(2) { flt)y=Mf@)+9(t), a<t<d,

N1 f(a) + Naf(b) = =.

Here M is an n X n matrix, the function g is a given function in L%([a,b]) (thus g is an
€C"-valued function of which the components are in Ly([a,b])) and z is a given vector in
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C". The boundary conditions are defined in terms of two n X n matrices N1 and Nj.
The problem is to find a solution in the space

(3) X = {f € L}([a,b]) | f absolutely continuous, f' € L3([a,?])}.

Note that X is a Hilbert space with the norm ||| f]| = (||flI% + [|/'11?)'/2, where || - ||
denotes the usual norm on L}([a,d]). In operator form, (2) may be summarized by

) A5:= | sty ) ] -[z]-

We claim that 4: X — Lg([a, b)) ® C™ is a Fredholm operator of index zero. To see this
let T be the n x n matrix defined by

(5) T = Ny + Naeb-a)M

and introduce the following auxiliary operators

© E=| P % |icronpan) - Baec
(7 F=[p]:X - c*eL3(a,b),
where

b

Vg =N, / =M g(5)ds, g € L3([a, b)),

nf=f(a)y Df=f-Mf, f[eX,

and Iy, and I, are the identity operators on L}([a,b]) and C™, respectively. Then E
and F are invertible,
=[5, 5]

Iy, O

t
Pl [ : ] =t=a)M g | / =M g(5)ds, a<t<b,
a
and the following equivalence relation holds true:

(®) a=5[ 2|r

Since E and F are invertible, (8) implies that A is a Fredholm operator and ind A = 0.
We shall return to this example in Section 8.
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(iv) Consider on ¢y the shift operators Sr and Sy defined by

ST(I17I2yz37 .. ) = (0,1?1,1?2, . '),
Si(z1,72,73,...) = (T2,73,T4,.-.)-
Both operators are Fredholm operators, ind Sr = —1 and ind Sy = +1. With Sr and S,

it is easy to build a Fredholm operator whose index is equal to an arbitrary prescribed
integer. Indeed, put X = €9 ® ¢5, and define A: X — X by the following 2 x 2 operator

matrix
_[sE o
=7 gl
Then A is a Fredholm operator, n(A) = ¢, d(A) = p andind A = g — p.

XI1.2 OPERATORS WITH CLOSED RANGE

As before, £L(X,Y’) denotes the space of all bounded linear operators acting
from X into Y, where X and Y are complex Banach spaces. Given 4 € L(X,Y), we
write d(z,Ker A) for the distance of a vectorz € X to the kernel of 4, i.e,,

d(z,Ker A) = inf{||z — y|||Ay = 0}.

THEOREM 2.1. The operator A € L(X,Y) has closed range if and only i
there ezists ¢ > 0 such that

(1) |Az|| > cd(z,Ker A), re X

PROOF. An element of the quotient space X = X/Ker A will be denoted
by #. The space X is a Banach space with norm ||Z|| = d(z,Ker A). Define A:X —» Y
by A% = Az. The operator A is 1 — 1, linear, bounded and Im A = Im A. Suppose Im A4
is closed. Then A-1, considered as a map from the Banach space Im 4 into the Banach
space X, is a closed operator. Hence, by the closed graph theorem, A1 is bounded and

lAz|| = [|[AZ] > A7 H|2] = |47  d(z, Ker 4).

Thus (1) holds with ¢ = | A~1||1.
Conversely, assume (1) holds. Suppose Az, — y. It follows from (1) that
(2n) is a Cauchy sequence in the Banach space X which therefore converges to some
Z € X. Hence
Azp = /if:n — A% = Ar,
and y = Az, which proves that Im A4 is closed. O

THEOREM 2.2. The operator A € L(X,Y) has a closed range whenever
there ezists a subspace (i.e. a closed linear manifold) Yy such that ImA® Yy is closed.

PROOF. Define Ag: X x Yy — Y by Ao(z,y0) = Az + yo- The space
X x Y, is a Banach space with the norm defined by ||(z,y)|| = |lz]| + |ly]l. Clearly,
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Ay is a bounded linear operator and Im Ap = Im A @ Y which is closed by hypothesis.
Moreover, Ker Ag = Ker 4 x {0}. Theorem 2.1 asserts that there exists ¢ > 0 such that
forallz € X

|Az|| = || Ao(z,0)| = cd((z,O),Ker Ao) = cd(z,Ker A).

Hence Im A is closed by the same theorem. O

COROLLARY 2.3. If the range of A € L(X,Y) is complemented (in partic-
ular, if dim(Y/Im A) is finite), then Im A 13 closed.

PROOF. The range of A is complemented means that there exists a closed
linear manifold Y of Y such that Im A@ Yy = Y. According to Theorem 2.2, this implies
that Im A is closed. O

To see the importance of the previous corollary, note that for a linear manifold
M of a Banach space Y the statement

(2) Y=MoYy

for some subspace Yy does not imply that M is closed. To see this, take a non-continuous
linear functional f on ¥ and put M = Kerf. Then there exists a one-dimensional
subspace Yp such that (2) holds true. But M = Ker f cannot be closed because f is not
continuous.

THEOREM 2.4. If the operator A € L(X,Y) maps bounded closed sets in
X onto closed sets in Y, then Im A is closed.

PROOF. Suppose Im A4 is not closed. Then, by Theorem 2.1, there exists a
sequence (zn) such that Az, — 0 (n — o) and d(zn,Ker A) =1for n = 1,2,.... For
each n choose z, € Ker A such that ||zn — 2n|| < 2, and let V be the closure of the set
{zn —2zn|n=1,2,...}. Since V is closed and bounded in X, its image AV is closed in
Y. Note that Az, = A(zn —2n) € AV. So 0 € AV, and thus there exists u € V NKer A.
From the definition of V it follows that

1
(3) s = (@ = 2n0)ll < 5
for some ng. But (3) implies that d(zn,,Ker 4) < %, which contradicts the fact that
d(zn,Ker A) = 1for all n. So Im A4 is closed. O

If K: X — X is compact, then the operator 4 = I — K satisfies the condition
of Theorem 2.1. To see this, let V be a closed bounded set in X, and let

(4) y= lm (I - K)zn,
n—oo
where z1,29,... is a sequence in V. We have to prove that y = (I — K)z for some

z € V. Since V is bounded and K is compact, the sequence (Kz,), has a convergent
subsequence (Kzy,);, say. Using (4), we see that

2o = lim zn; = lim (I — K)zn; + Kzn;)

T—CQ 1—CQ
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exists. But then y = (I — K)z¢ € (I — K)V, and (I — K)V is closed. We have the
following corollary.

COROLLARY 2.5. If K: X — X is compact, then I — K 13 a Fredholm

operator.

PROOF. From the previous paragraph we know that A = I — K satisfies the
condition of Theorem 2.4. So Im(I — K) is closed. Since z = Kz for z € Ker(I — K),
it follows that the identity operator acts as a compact operator on Ker(I — K). Thus
n(I — K) < co.

To prove that d(I— K) < oo, we use that the conjugate operator K': X' — X'
is also compact. Since Im(I — K) is closed, we have Im(I — K) = Ker(I — K')1, and
thusdI - K)=n(I-K')<o. O

In Section 4 we shall see that ind(I — K) = 0 if the operator K is compact.

Xi.3 PRODUCT OF FREDHOLM OPERATORS

To study the properties of a Fredholm operator we shall employ bijective
operators which are closely related to Fredholm operators. Let A: X — Y be a bounded
linear operator acting between the Banach spaces X and Y. Suppose A has the property
that Ker A and Im A are complemented by subspaces (i.e., closed linear manifolds) Xg
and Yj, respectively. Define 4: Xy x Yy — Y by

A(zo,v0) = Azo + yo-

The space X x Yy is a Banach space with the norm defined by ||(z, y)|| = ||z|| + [l¥]| and
the operator A is a bijective bounded linear operator. We call A the bijection associated
with A (and the subspaces Xy and Yp). If A is Fredholm, then such a bijection always
exists and Yj is finite dimensional. If we identify the space X with Xy x {0}, then the
operator

Ag:Xg =Y, Apz = Az,
is a common restriction of A and A.

LEMMA 3.1. Suppose Ag:M — Y is a restriction of A € L(X,Y) to a
subspace M of X with codlmM = n < co. Then A is Fredholm if and only if Ag is
Fredholm, in which case ind A = ind 4g + n.

PROOF. It suffices to prove the lemma for n = 1. Put X = M & sp{z;}.
We consider two cases.

Case 1. Assume Az € Im Ag. Then AX = AoM @ sp{Az:} and Ker 4 =
Ker Ag. Hence :

(1) d(Ag) = d(A)+1,  n(Ag) = n(A).

Case 2. Assume Azy € Im Ag. Then Im A = Im A and there exists u € M
such that Az; = Apu. Consequently, Ker A = Ker Ag @ sp{z; — u}. Thus

@ C d(A)=d(4),  n(de)=n(A)- 1.
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The lemma follows immediately from (1) or (2). ©

THEOREM 3.2. If A: X —» Y and B:Y — Z are Fredholm operators, then
BA i3 a Fredholm operator and

ind(BA) = ind B + ind A.

PROOF. Let A be a bijection associated with 4 and the subspaces X and
Yy, and let Ag be thg restriction of A to Xg. Since A is invertible, the operator BA is
Fredholm and ind BA = ind B. By identifying the spaces Xo and Xo x {0}, we see that
BAy is a common restriction of BA and BA. So, according to the previous lemma, BA
is Fredholm and
ind BA =ind B4y + dim(X/Xp)
=ind BA — dim(Xp x Yo/Xo % {0}) + n(A)
=indB+ind4. O

XI.4 PERTURBATION THEOREMS

THEOREM 4.1. Suppose A:X — Y is a Fredholm operator, and let A be
a bijection associated with A. If B:X — Y is a bounded linear operator with || B|| <
|A-1||=%, then A + B is Fredholm and

(1) n(4+ B) < n(4),
(i) d(A+ B) < d(A),
(iii) ind(4 + B) = ind A.

PROOQOF. Let Xp and Yy be the subspaces corresponding to the bijection A.
Put C = 4 + B, and define C: Xo x Yo — Y by C(z0,%0) = Cz¢ + yo. By definition,
A(zg,y0) = Azg + yo. Since A is invertible and

IA~Cl <lA-Cl =Bl <A™,

the operator C is also invertible. Note ~tha.t the operator Co: X9 — Y, defined by Coz =
Cz, is a common restriction of C' and C. So, by Lemma 3.1, the operator C is Fredholm
and

indC =ind Cy + n(4)
=indC — d(A) + n(A) =ind 4

The invertibility of C implies that Xo N Ker C = {0}. Thus
n(C) < dim X/ Xy = n(A4),

which proves (i). Finally, note that (ii) is a simple consequence of (i) and (ii1). O

THEOREM 4.2. If A: X — Y is a Fredholm operator and K: X — Y 13
compact, then A+ K is a Fredholm operator and ind A = ind(4 + K).
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 PROOF. Let X = Xo@Kerd and Y = ¥ ®ImA. On Xg x Yy define 4
and K by

A(zg,y0) = Azo + yo, K(zg,y0) = Kxo + yo-

The operator K is compact, since K is compact and Yy is finite dimensional. From
(A + K)(20,0) = (4 + K)z¢ and Lemma 3.1 it follows that A + K is Fredholm if and
only if A+ K is Fredholm. But A is invertible. So

A+ K =A[I+A71K].

Observe that A=1K is compact. So, by Corollary 2.5, the operator I+ A~ 1K is Fredholm.
Hence A + K is Fredholm.

To prove the statement about the index, consider the integer-valued function

f(A) = ind(A + AK). Applying Theorem 4.1 to A + AK in place of A shows that f is
continuous on [0,1]. Consequently, f is constant. In particular,

ind A = f(0) = f(1) = ind(4 + K). ©

COROLLARY 4.3. If K: X — X 1s compact, then I — K 1s Fredholm and
ind(I — K)=0.

PROOF. Apply the preceding theorem with A = I and note that
ind7=0. O

XI5 INVERTIBILITY MODULO COMPACT OPERATORS
(CALKIN ALGEBRA)

THEOREM 5.1. An operator A € L(X,Y) is Fredholm if and only if there
exists an operator T. € L(Y,X) such that I — TA and I — AT are operators of finite
rank.

PROOF. Suppose 4 is Fredholm, andlet X = Xg @ Ker 4, Y =Yy @ImA
where X and Y} are subspaces of X and Y, respectively. Define Ay to be the restriction
of A to Xp. Since Ag is 1 — 1 and Im Ag is closed, the operator Ao_l, considered as a
map from Im A onto Xy, is bounded (cf. Theorem 2.1). Put T' = AJIQ, where @ is the
projection from Y onto Im A along Yy. Obviously, ImT = Xy and KerT = Yp. It is
easy to verify that I — T A is the projection of X onto Ker A along X and I — AT is the
projection of ¥ onto Yp along Im 4. In particular, I — TA and I — AT are operators of
finite rank.

Conversely, assume that TA = I — K7 and AT = I — K5, where K; and Ky
are operators of finite rank. Since Ker A C KerT A and Im A D Im AT, we see that

(1) n(4) <n(TA) =n(I-K;)<oo, d(A)<dAT)=d(I - K) < oco.

Thus A is Fredholm. O

Theorem 5.1 remains true if the statement “I —T' A and I — AT are operators
of finite rank” is replaced by I — T'A and I — AT are compact operators (cf. formula
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(1)). In other words, an operator A is a Fredholm operator if and only if A is invertible
modulo compact operators. We make this more precise for the case when X =Y.

Let K(X) denote the space of all compact operators on X. Note that K(X)
is a subspace of £L(X) = £(X, X). On the quotient space L(X)/K(X) define the product
[C][D] = [CD], where [C] is the coset C + K(X). The space L(X)/K(X) with this
additional operation is an algebra, called the Calkin algebra, with unit [I].

THEOREM 5.2. An operator A € L(X) ts a Fredholm operator if and only
if [A] has an inverse in the Calkin algebra L(X)/K(X).

PROOF. If A is Fredholm, then there exists, by Theorem 5.1, an operator
T € L(X) such that AT —I and T'A — I are compact operators. Hence [A4][T] = [T][4] =
(1], and thus [T is the inverse of [A] in the Calkin algebra.

On the other hand, if [A]{T] = [T|[A] = [{], then AT = I — K; and T4 =
I — Ky, where K; and K9 are compact operators. Then it follows from (1) that A is
Fredholm. O

Let A € £(X). The essential spectrum (notation: oess(A)) of A is, by defi-
nition, the set of all A € C such that A — A is not a Fredholm operator. The essential
spectrum oegs(A) may also be understood as the spectrum of the coset 4 + K(X) in
the Calkin algebra. (The latter interpretation will be made more precise in the Banach
algebra part in Volume II.) Obviously, oess(A4) C o(A4), and thus cess(A4) is a bounded
set. From Theorem 4.1 it follows that C\gess(A) is open, and hence gess(A) is compact.
If dim X < oo, then all operators on X are Fredholm operators, and hence, in that case,
Oess(A) = 0. At the end of Section 8 it will be shown that gess(A) is always nonempty if
X is infinite dimensional. Theorem 4.2 implies that

(1) o'ess(A) = o'ess(A + K), K e K(X)

For later purposes we include the following result

THEOREM 5.3. An operator A € L(X,Y) i3 a Fredholm operator with
ind A = 0 if and only if there ezists an operator F € L(X,Y) of finite rank such that
A+ F 13 invertible.

PROOF. Suppose A is Fredholm with ind A = 0. Put X = Xg @ Ker A
and Y = Yy @ Im A. Since ind A = 0, we have dimKer A = dimYj. So there exists an
invertible operator Fy: Ker A — Yj. Define F' = Fy(I — P), where P is the projection of
X onto Xg along Ker A. Obviously, A + F is invertible.

Conversely, assume S = A + F is invertible, where F' has finite rank. Then,
by Theorem 4.2, the operator A is Fredholm and ind4A =ind§ =0. O

XI.6 GENERALIZED INVERSES

The operator T' = AalQ which was defined in the first part of the proof of
Theorem 5.1, has the following properties:

(1) ATA=A, TAT=T.
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Given A € L(X,Y), any operator T € L(Y, X) satisfying the two identities in (1) is
called a generalized inverse of A. If A is invertible, then A1 is the only generalized
inverse of A.

Generalized inverses are useful in solving linear equations. Suppose A has a
generalized inverse T. If the equation Az = y is solvable for a given y € Y, then Ty is a
solution (not necessarily the only one). Indeed, since Az = y is solvable, there exists zg
such that Azy = y, and hence ATy = ATAzg = Azg = y.

THEOREM 6.1. An operator A € L(X,Y) has o generalized inverse zf and
only if Ker A and Im A are complemented in X and Y, respectively.

PROOF. If X = Xg@KerAand Y = Yy®Im A, then the operator T:Y — X
defined by T(Azg + yo) = zg, where zg € Xy, yo € Y, is a generalized inverse of A.

Conversely, if A has a generalized inverse T € L(Y, X), then it is easy to
check that AT and T A are projections. Indeed
(AT)? = (ATA)T = AT,  (TA)? = T(ATA) =

Obviously, Im(AT) C Im A. From A = (AT)A it follows that Im A C Im(AT'), and thus
AT is a projection onto Im A. Similarly, Ker A C KerTA and A(TA) = A implies that
KerTA C Ker A. Thus T A is a projection whose kernel coincides with Ker A. ThusIm A
and Ker A are complemented. O

COROLLARY 6.2. Every Fredholm operator has a generalized inverse.

Recall (see Corollary 2.3) that Im A is complemented in Y implies that Im 4
is closed. Thus, if X and Y are Hilbert spaces, then A € £(X,Y) has a generalized

inverse if and only if Im A is closed.

Every generalized inverse T of A is of the form described in the first part of
the proof of Theorem 6.1. To see this, put Xg = ImTA and Yy = Ker AT. Since AT
is a projection onto Im A and T A is a projection whose kernel coincides with Ker 4, it
follows that

X =KerTA®ImTA = Ker A ® X,
=ImAT®Ker AT =Im A Y).
Any y € Y is of the form y = Az¢ + yg for some z¢g € Xy and yg € Yy. Now Ty =
TAzxg + Tyo and TAzy = vg € Xg. Since Azg = ATAzg = Avg and Ais 1 —1 on
Xo, we get 29 = vg = TAzg. Also, yo € Yy = Ker AT gives Tyg = TATyy = T0 = 0.
Thus Ty = z¢. Note that the foregoing also shows that T is uniquely determined by the
spaces Xg = ImTA and Yy = Ker AT. Indeed, if S is a generalized inverse of A such
that ImTA = Im SA and Ker AT = Ker AS, then
S(Azg +yo) = T(Azo + yo),
and thus S and T coincide.
Another way to describe all generalized inverses of A is as follows.

THEOREM 6.3. Suppose Ty is a generalized inverse of A. The set of gen-

eralized inverses of A consists of all operators of the form

2) T = PTyQ,
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where Q 18 a projection onto Im A and P 13 a projection whose kernel coincides with
Ker A.

PROOF. Suppose Ty and T are generalized inversesof 4. Then ATA=A =
ATy A and therefore

T = TAT = (TA)To(AT).

We observed previously that AT is a projection onto Im A and T4 is a projection along
Ker A.

Conversely, suppose T is of the form (2). Since Im(f — P} = Ker A we have
A= AP. Also QA = A. Thus

A(PToQ)A = AToQA = AToA = A,
(PToQ)A(PTyQ) = PI)ATyQ = PTpQ. O

Let 4 € L(X,Y). An operator T € L(Y,X) is called a generalized inverse
of A in the weak sense if the first identity in (1) holds (but not necessarily the second).
The remark preceding Theorem 6.1 is also true for generalized inverses in the weak sense.
Furthermore, if T is a generalized inverse of A in the weak sense, then the operator
S:=TAT is a generalized inverse of A in the ordinary sense. Indeed

ASA = (ATA)TA = ATA = 4,
SAS = T(ATA)TAT = T(ATA)T = TAT = 8.

It follows that Theorem 6.1 remains true if the term generalized inverse is understood in
the weak sense.

XI.7 INDEX, TRACE AND DETERMINANT

In this section all operators are bounded linear operators acting on (separable)
Hilbert spaces. If A:H — H is a Fredholm operator, then there exists an operator
T:H — H such that I — AT and I — T'A are trace class operators or even operators of
finite rank. The next theorem expresses the index of A in terms of the traces of I — AT
and I - T A.

THEOREM 7.1. Let A:H — H be a Fredholm operator, and let T:H — H
be such that I — AT and I — T A are trace class operators. Then AT — TA 1s a trace
class operator and

ind A = tr[AT — TA].
PROOF. Let A7 be a generalized inverse of A. Then T = AT + G, where
G=I—-ATAT - AT(I - AT).

Since I — At A has finite rank and I — AT is a trace class operator, it follows that G is
a trace class operator. Now

TA— AT = ATA -~ AAT + GA — AG.
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Note that tr GA = tr AG (see Corollary VII.6.2). Thus it suffices to prove the theorem
for T = A*.

Recall that I—AA™* and I— A+ A are projections of finite rank. Thus I—AA™
and I — At A are trace class operators. But then AAT — At A is a trace class operator
and

tr[AAT — AV Al = tr(I — ATA) —tr(I — AAT)
=rank(] — AT A) — rank(] — AAT)
=n(A) —- d(A) = ind A.
Here we used that the trace of a finite rank projection is equal to the rank of the projec-

tion. 0O

Consider the n X n operator matrix

Ann o A
(1) A= : : Heo---@H—->Ho---® H.
Anl Ann

Here A;j, 1 <4,j < n, are operators acting on H, and we view A as an operator acting
on the direct sum of n copies of H. Given A in (1), we set

(2) det A= (sgno)Aio, A2sy * Ancn-
-

In (2) the summation is over all permutations ¢ of the numbers 1,2,...,n and sgno
denotes the sign of the permutation 0. Note that det A is an operator on H; its definition
depends not only on A but also on the given partitioning of A.

PROPOSITION 7.2. Assume that all the entries of the operator matriz
A= [Aij];tj:l commute with one another. Then A is invertible if and only if det A
is invertible, and in that case A~1 is given by the analogue of Cramer’s rule.

PROOF. Note that det A commutes with all the entries A;;. Assume that

det A is invertible. Let M;; be the (n — 1) X (n — 1) operator matrix which one obtains
from A = [Aij]?j=l by deleting the i-th row and j-th column. For each 7 and j put

B;j = (=1)"F(det Mj;)(det A)7 1,

and let B = [B;j|7}; ;. The usual argument for scalar determinants shows that AB = BA

is equal to the identity operator on H". So A is invertible and A~1 = B is obtained by
applying the operator matrix analogue of Cramer’s rule.

Next, assume that A is invertible, and let S = A~1. Write § = [Si;]7 =1
where S;; acts on H. Consider ’

Ars 0
Ars

0 Ars



CHAPTER XI. FREDHOLM OPERATORS 195

for a fixed pair r,s. From our hypothesis on A it follows that DA = AD. But then
A~1D = DA™ and thus A,, commutes with each entry of $ = A~!. Next consider

Sij 0

0 Si;
where S;; is a fixed entry of S. According to what has been proved so far, EA = AE.
Hence A™1E = EA~!, and thus S;; commutes with each entry of S. It follows that

the entries of S commute with one another and with the entries of A. But then we may
conclude that

det Adet S =det AS =1, detSdet A=det SA=1.

Thus det A is invertible. O

THEOREM 7.3. Assume that the entries of the operator matriz A =
[Aij]?jzl commute modulo the compact operators. Then A is a Fredholm operator if
and only if det A i3 a Fredholm operator.

PROOF. Go to the Calkin algebra and apply the same reasoning as in the
proof of the previous proposition. DO

In general, under the conditions of Theorem 7.3, one may not conclude that
ind A = ind(det A). In fact, given integers p and g, there exists (see Kozak [1]) a 2 x 2
operator matrix whose entries commute modulo the compact operators such that ind 4 =
p and ind(det A) = ¢q. The next theorems present positive results in this direction.

THEOREM 7.4. Assume that the entries of the operator matriz A =
[Aij]f:j:l commute modulo the compact operators, and let the operators

Dy =det([4i]F;=y), k=1,...,n,
be Fredholm operators. Then A and det A are Fredholm operators with
(3) ' ind A = ind(det A).

PROOF. Since D, = det A, the operator det A is Fredholm. So we know
from Theorem 7.3 that A is Fredholm. To prove (3) we go to the Calkin algebra B =
L(H)/K(H), where K(H) denotes the set of all compact operators on H. Given T €
L(H), we denote by T' the coset T + K(H). From our hypotheses it follows that

ﬁk = det([‘&j]ﬁj:l)» k=1,...,n,

is invertible in the Calkin algebra B. As in the scalar case (see also Chapter XXI in

Volume II) this allows us to make an LU-factorization for the matrix [A,'j]?j=1, that is,
Ay oo Ag, Lin - L | [0 -+ Uin

(4) : = : ,

Ay - Apn Lpi o Lnn Upi - Upn
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where L;; and Uj; are operators on H for each 1 and 7,
(8) Lij e K(H) (§j>1), Ui; e K(H) (j <1),

and the two matrices in the right hand side of (4) are invertible in the algebra B"*"
of all n X n matrices with entries in the Calkin algebra B. Moreover, since the entries
A;; commute modulo the compact operators, the construction of the LU-factorization
implies that all the operators L;; and U;; (4,5 = 1,...,n) commute modulo the compact

operators. Put
L 0 Ui -+ Uin

Lnl Lnn 0 Unn

Then L and U are Fredholm operators on H™ and A — LU is compact, because of (4)
and (5). Thus

ind A = ind(LU) = ind L +ind U.

Furthermore, det A, det L and det U are Fredholm operators and, again by (4) and (5),
the operator det A — (det L)(det U) is compact. Therefore

ind(det A) = ind(det L) + ind(det U).

It remains to show that ind L = ind(det L) and ind U = ind(det U).

Let us prove that ind U = ind(det U) (the equality for L instead of U is proved
in a similar way). I?irst observe that from the construction of the LU-factorization it
follows that the product Uj3Usg---Upi is Fredholm for each k. Since the elements
U11,...,Unn commute modulo the compact operators, each diagonal entry U;; is Fred-
holm. Take 0 < ¢ < 1, and let U(t) be the n x n operator matrix which one obtains if
for each i > j the entry U in U is replaced by tU;;. Note that U(t) is upper triangu-
lar and has the same diagonal entries as U. So U(t) is also Fredholm. Obviously, the
map t — U(t) is continuous in the operator norm. Theorem 4.1 implies that ind U(¢) is
independent of t. In particular,

indU = indU(1) = ind U(0).

Note that U(0) is a block diagonal matrix. Hence
n
indU(0) = ) indUj; = ind(U11Uz2 - - - Unn).
=1

To complete the proof it remains to observe that, because of the triangular form of U,
the product U11Ug9 -+ - Unn is equal to detU. O

COROLLARY 7.5. Assume that the entries of the operator matric B =
[Bij]gr':j:l commute modulo the compact operators, and let B be a Fredholm operator. If
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B can be approzimated sufficiently close in the operator norm on L(H™) by an operator
A= [A,'j]?]-zl with the properties described in the previous theorem, then

(6) ind B = ind(det B).

PROOF. We apply Theorem 4.1. Since B is Fredholm, there exists a constant
v > 0 such that A € £L(H™) and ||A — B|| < -y implies that A is Fredholm operator and
indA = ind B. Also det B is Fredholm. Therefore there exists a constant y; > 0
such that T € L(H) and ||T — det B|| < 7; implies that T is a Fredholm operator and
ind T = ind(det B). Now use that the map A + det A is continuousin the operator norm.
So there exists a constant p, 0 < p < v such that |4~ B|| < p yields || det A—det B|| < 71.
Thus, if the ball

(M {aecH™) |4~ Bl <p}
contains an operator 4 = [A,-j]"-:]-=1 with the properties described in the previous theo-
rem, then
ind B = ind A = ind(det A) = ind(det B),
and hence (6) holds true. O

The above corollary and the next theorem will be used later (in Section XII.3
and in Volume II) to derive index theorems for Wiener-Hopf and Toeplitz operators.

THEOREM 7.6. Assume that the entries of the operator mairiz A =
[A,'j]?,j=1 commute modulo the trace class operators, and let A be a Fredholm opera-

tor. Then det A is a Fredholm operator and ind(det A) = ind A.

PROOF. We already know that det A is a Fredholm operator. Choose an
operator T: H — H such that T(det A) — I and (det A)T — I are trace class operators.
Theorem 5.2 shows that T is a Fredholm operator. Note that, modulo the trace class
operators, det A commutes with each entry Arg of A. It follows that

TArs — ApsT =TAp{I — (det A)T} + {T(det A) — [} AT,
and hence, modulo the trace class operators, T commutes with each entry of A. Put
T 0
(8) B = . A
0 - I
Note that the entries of B commute modulo the trace class operators. Furthermore
det B = T det A, and hence det B — I is a trace class operator. From (8) we see that

ind B =indT + ind A = —ind(det A) + ind A.

So it suffices to prove that ind B = 0.

Let M be the (n — 1) x (n — 1) operator matrix which one obtains from B
by deleting in B the j-th row and the k-th column. Put Cjr = (=1)7tk det My;, and
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let C = [Cj]}_;. Note that modulo the trace class operators the entries Cj; commute
with one another and with the entries of B. By the operator matrix analogue of Cramer’s
rule it follows that

BC — [(det B)&;;] CB — [(det B)6ij17 521

ij=
are trace class operators. But det B — I is a trace class operator. So BC — Ign and
CB — Ign are operators of trace class. But then we can apply Theorem 7.1 to show that
ind B = tr(BC — CB).

Note that BC — CB is an n x n operator matrix whose entries are trace class
operators. A simple application of Theorem VII.2.2 shows that

n
tr(BC — CB) = tr( > BjCij— jkBkJ->.
J,k:l
Next one checks that

(9a) BjxCrj = D (sg00)Bjo; Bio, *** Bj=1,0;_1 Bj+l,0i41 '~ Bron;

oj=k
(95) CixBrj = Y (sgno)Bio; - - Be—1,04_ Bet1,0041 " " Bron Broy-

or=j
In (92a) the summation is over all permutations o = (01,...,0n) of the numbers 1,...,n
with 0; = k, and in (9b) the summation is over all ¢ = (01,...,0n) such that o = j.
Given a permutation ¢ = (01,...,0,) write

EJ(U) = B101 T Bj—l,oj—l Bj+1,0j+1 e Bno,,-

Then
n
(10) ind B =) (sgno) tr(Z Bjs; Ej(0) — EJ-(a)Bj,,,.).
o4 J=1
Forj =2,...,n — 1 the operator
Ej(a) - Bj+1,trj+1 “+Bnon, Bioy - Bj_loj—l
is a trace class operator. So we can apply Corollary VII.6.2(i) to show that
tr{Bjoj Ej(d) - Bjoj -+ Bna, Bla; s Bj—llfj—l}

= tr{Ej(d)Bjoj - Bj+10j+l s Bno,, Blol e szr_,- }

So
tr{Bjoj Ej(a) - Ej(a)Bj,,j}
= tr{B_]o] Tt BndnBllT] e Bj—loj_l - Bj+10j+1 o 'BﬂUnBlal e BJ(TJ}
for j =2,...,n — 1. Note that
Bio, E1(0) — E1(0)B1s, + Bnon En(0) — En(0)Bno,

= Bnon Blol Tt Bn—lan_l - BZoz tte Bn—lon_l Blo; .

By using this in (10), one obtains that ind B=0. O
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XI1.8 ANALYTIC FREDHOLM OPERATOR VALUED
FUNCTIONS

In this section, §2 is an open, connected subset of C, and W: ! — L(X,Y )is an
operator function, which is analytic on Q. We assume that the values of W are Fredholm
operators acting between the complex Banach spaces X and Y. Since § is connected and
the index is an integer-valued continuous function, it follows that ind W(A) is constant
and does not depend on A. We begin with the case when the index is zero.

To give an example of such an operator function, assume that the matrices
M, N1 and N, appearing in the two point boundary value problem (2) in Section 1
depend analytically on a parameter A. Thus

Fi(8) = M(A)f(t) +9(t), ast<d,
Ni(N)f(a) + Na(QN)f(b) = =,
where M(-), N1(-) and Ny(+) are n x n matrix functions whose entries are analytic on £,
say. Let A()\) be the associated operator,
=M\
Ni(A)f(a) + Nao(A)f(b) |’
where X is the space defined in formula (3) of Section 1. Then A(-) is an operator

function which is analytic on Q and the values of A(-) are Fredholm operators of index

0. Put

AQA): X — L3([a,8)) & C", AN S =

T(A) = Ni(M) + NQ(/\)e(b_a)M(/\)_

By adding the parameter A to the equivalence relation in formula (8) of Section 1 one
sees that the L3([a, b])-extension of the matrix function T'(-) is globally equivalent on £
to the Fredholm operator valued function A(-) (cf. Section II1.2).

Let W:Q — L(X,Y) be an operator function which is analytic on Q. Take
Ao € Q, and assume that W(\g) is a Fredholm operator of index zero. Then (see Theorem
5.3) there exists an operator F: X — Y of finite rank such that W()q) + F is invertible.
Since W(A) is continuous in A, this implies that E(A) = W(A) + F is invertible for ) in
some open disc |A — Ag| < &y. So

(1) W) = EQ) - F= EQ)I - BEQ)T'Fl, A= | < .

The fact that F is an operator of finite rank implies that Ker F' has a finite dimensional
complement X in X. Let P be the projection of X along Ker F' onto Xg3. Note that P
has finite rank and F'P = F. It follows that

(2) I-EN)F=[I-PEN'FP|I - (I~ P)E\)"IFP].

Put G(A\) = I - (I — P)E(A\)"1FP. Note that G is well-defined and analytic on the disc
|A — Ag| < 8y. Furthermore, the values of G are invertible operators on X; in fact

G\ '=I+(I-P)E)IFP, A = Xo| < bo.



200 X1.8 ANALYTIC FREDHOLM OPERATOR VALUED FUNCTIONS

By combining (1) and (2) we see that
(3) W(A) = EQ){I - PEQ)T'FPIG(A),  |A= Aol < éo,

where E and F are analytic operator functions on |A — A\g| < 8g and their values are
invertible operators. In other words, using the terminology of Section III.3, the operator
functions W(-) and I — PE(-)"!FP are equivalent at A\g. This leads to the following
theorem.

THEOREM 8.1. Let W:Q — L(X,Y) be an analytic operator function, and

assume that for some A\g € Q the operator W()g) is o Fredholm operator of indez zero.
Then W is equivalent at Ao to an analytic operator function D of the form

(4) DA) =Py + (A= X)" P+ ---+ (A= X)) Pr,

where Py, Py,...,Pr are mutually disjoint projections of the Banach space X, the pro-
jections Py, ..., P, have rank one, the projection I — Py has finite rank end k1 < k9 <
-+ < Ky are positive integers.

PROOF. According to formula (3) the operator function W is equivalent at
Ao to an operator function of the form

Wo() 0

5

( ) [ 0 IKer P
Here Wy(-) is holomorphic on |[A—Xg| < § and Wy()\) acts on the finite dimensional space

Im P. Now assume the theorem has been proved for Wj. Thus the operator function Wy
is equivalent at Ay to an operator function Dy of the form

] :ImP@® KerP — Im P & Ker P.

Do(M) =mo+ (A = X)) tmy 4+ -+ (A = X)) 7r,
where g, 71,...,7r are mutually disjoint projections of Im P and rank7; =1 for j =

l,...,r. Put Pj=m;Pforj=1,...,r,and let

Po=|™ 9 |.mP@®KerP— ImP@KerP.
0 IKerP

Then the operator function (5) (and hence W) is equivalent at Ag to the function
DN =Py+(A=X)" P +---4+ (A= A)* Pr,

and the projections Py, Py, ..., P, have the desired properties. It follows that it suffices
to prove the theorem for the case when X =Y is finite dimensional.

Assume X = Y = C". As usual, we identify an operator on C™ with its
matrix corresponding to the standard basis of C". So we assume that

(6) W) = la(WV]Fj=15

where a;; are scalar functions that are analytic at Ag. If all entries a;; are identically
zero in a neighbourhood of Ag, then the theorem is true trivially. Therefore assume that
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for at least one pair (¢, j) the function a;; does not vanish identically in a neighbourhood
of Ag. In that case we may write

aij(A) = (A = 2o) BN (N),

where b;;(Ag) # 0. Choose (ig,7j0) in such a way that the number £(zg, jo) is minimal.
By interchanging rows and columns in (6) (that is, by applying a number of equivalence
operations) we may assume that ig = 1, 7o = 1. Furthermore, by multiplying W(}\) on
the left by the diagonal matrix

b11(A)7! 0
() = o
0 . 1
we may suppose that a;;(A) = (A — Xg)®! and aj;(A) = (A — Ag)®1¢i;(A), where ¢
is analytic at Ag. Note that the diagonal matrix E()) is invertible and E()) depends

analytically on A in a neighbourhood of Ag. Thus multiplication by E(}A) is an equivalence
operation.

Next subtract ¢;1(A) times the first row from the i-th row. That is, multiply
W(X) on the left by

E,'(/\) = _Cil(/\) ‘ 1

1

Here blanks denote zero entries. Again E;()) is invertible and E;(\) depends analytically
on A in a neighbourhood of A\g. Thus multiplication by E;()) is an allowed operation.
Also, subtract ¢;; times the first column from the j-th column, which is also an equiv-
alence operation. Do this for 1 < i, < n. It follows that W is equivalent at Ay to an
operator function of the form

A=X)* 0 o 0
0 age(A) - agn(X)
0 ana(N) - ana())

where a;;(A) = (A — Xg)" B;;(A) with §;; analytic at A\g. Apply induction and the
theorem is proved. O

One can show (see Gohberg-Sigal [1], Gohberg-Kaashoek-Lay [2], and the
references therein) that the integers k1, ..., k- appearing in (4) are uniquely determined
by W. Furthermore, since W is equivalent at Ag to the function (4), we have

dim Ker W(Ag) = rank(Il — P),
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and hence rank(l — Pp) is also uniquely determined by W.

In Theorem 8.1 the condition that ind W(Ag) = 0 cannot be omitted. This
stems from the fact that in (4) the operator Py is a Fredholm operator of index zero. Thus
for any operator function W which is equivalent to D at \g, the operator W (o) has to
be Fredholm with index zero, because the latter property is invariant under equivalence.
However, if one allows the operator function D to be slightly more complicated, then
the analogue of Theorem 8.2 holds for arbitrary Fredholm operator valued functions (see
Gohberg-Kaashoek-Lay [2]).

THEOREM 8.2. Let W:Q — L(X,Y) be analytic, and assume that W(A) s
Fredholm for each A € Q. Then there exists a finite or countable subset ¥ of Q, which
has no accumulation points inside 2, and there ezist constants ng and dg such that

(7a) dim Ker W(X) = no, codimImW(A)=dp (X € Q\XL),
(7b) dim Ker W(X) > ng, codimImW(A) >dy ()€ X).

PROOF. We already observed (see the beginning of this section) that
ind W(A) is constant on Q. Put

ng = mindim Ker W(}), dp = min codim Im W(}),
AEQ AEQ

andlet ¥ = {\ € Q| dim Ker W(A) > ng}. Since ind W{()) is constant on 2, we also have
={) € Q| codimImW(})) > dop}. We have to prove that T is a finite or countable
subset of 2 without accumulation points in . In other words, it suffices to show that ©
consists of isolated points only.

First assume that ind W(A) = 0 for each A € Q. Take A\g € Q. According to
Theorem 8.1, the function W is equivalent at Ag to an operator function D of the form
(4). Note that

_ | Ker Py for A= A,
(8a) Ker D(A) = { Ker(Pop+ Py +---+ Py) for A#Ag;

_ ].ITIPO for A= ’\0;
(8b) Im D()) = { Im(Pp+ Py +--+P) for X3# Mg

It follows that dimKer D(A) and codim Im D()\) are constant on the punctured disc
0 < |A = Xo| < é¢. Furthermore, dimKer D(\g) > dim Ker D(A) and codim Im D()\g) >
codim Im D(A) for |A — Ag| < 8. Since W is equivalent at A\g to D, we have

dim Ker W(A) = dim Ker D(A), codim Im W(A) = codim Im D(})

for A in a neighbourhood of Ag. So dim Ker W(\) and codim Im W(\) are constant on
punctured discs and at the centers the values of these functions can only increase. It
follows that the set X, which has been introduced in the first paragraph of the proof, con-
sists of isolated points only. Indeed, let A be the set of discontinuity points of the function
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dim Ker W(-). We have proved that A consists of isolated points only, and hence Q\A is
open and connected. Since dim Ker W(-) is integer-valued, the function dim Ker W(-) is
constant on 2\A. We know that in the points of A the values of dimker W(-) increase.
Thus £ C A and T consists of isolated points only.

B Next, we assume that p = ind W(A) # 0. First consider the case when p > 0.
Put Y =Y & CP, and define W: Q! — £(X,Y) by setting
W(Ne = | W(O’\)“ |, eex

Then Ker W(A) = Ker W(A) and Im W(A) = Im W(A)®{0}. It follows that W is analytic
on £, its values are Fredholm operators and ind W()) = ind W(A)—p = 0 for each A € Q.
Now apply to W the result proved in the previous paragraph and the theorem is proved
for p = ind W(A) > 0. The case when p = ind W(A) < 0 is treated in a similar way by
using the function

W:Q o LXeCPY), W) [ i ] =Wz, ©
COROLLARY 8.3. Let A: X — Y be a Fredholm operator, and let B: X —»Y
be a bounded linear operator. Then there exist € > 0 and integers ng and dy such that
n(A) > ng =n(A + AB), 0 <Al <e,
d(A) > dyp = d(A + AB), 0<|M<e.
PROOF. Apply the previous theorem to W(A) = A+ AB. O

COROLLARY 84. Let W:Q — L(X,Y) be an analytic Fredholm operator
valued function, and assume that W(z) is invertible for some z € Q. Then the set

(9) T ={A € Q| W(A) is not invertible}

13 at most countable and has no accumulation point inside Q. Furthermore, for g € T
and A € Q\Z sufficiently close to Ag, we have

o o)
(10) W)= " (A=) 4n,
n=-—q
where Ag 1s a Fredholm operator of index zero and A_q, ..., A_q are operators of finite
rank.

PROOF. The fact that the set (9) is at most countable and has no accumula-
tion point inside 2 is clear from Theorem 8.2. Take Ao € T. Since W(J) is invertible for
A close to A, it is clear that ind W()g) = 0. So according to Theorem 8.1 the function
W is equivalent at A¢ to an operator function D of the form (4). Thus

(11) W) = EQDAGR), A=Al <5,
where E(A) and G(\) are invertible and depend analytically on A\. Write

EQ)™ = i(x —X)*E.,  G)7'= i(A — X0)"Gn.

n=0 n=0
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Note that D(A)™! = Py + (A — Ag)~ %Py + --- + (A — M)~ " P.. Thus DN =
Z?z_q(/\ — Ag)"D,,, where Dy = P, is a Fredholm operator of index zero and
D_y,...,D_4 are operators of finite rank. From (11) we see that

W™ =G6)TIDMWTIEW T, 0 < |A = Aol < bo.
Thus the operator A, in (10) is given by

An = Z GrDyEnm,.

kg-lpm=n

k20,m>0
For n = 0 this shows that Ag = GogDgFgy + Kp, where K is a finite sum of operators of
the form G D¢E;, with £ < 0. Thus Kj is an operator of finite rank. Note that Gg and
E, are invertible. Thus GgDgEj is a Fredholm operator of index zero, and hence the
same is true for Ag. For n < 0 the operator A, is of finite rank, because in that case An
is a finite sum of operators G D/E, with £ < 0. D

Corollary 8.4 has interesting consequences for the essential spectrum of an
operator.

COROLLARY 8.5. Let A € L(X), and assume that the complement in C of
the essential spectrum ooe(A) ts connected. Then o(A)\Cess(A) consists of eigenvalues
of finite type only.

PROOF. We apply Corollary 8.4 to the function W(A) = A — A with
Q = C\0ess(A). Obviously, W()) is a Fredholm operator which depends analytically on
A € Q. For |A| > ||A|| the operator W(A) is invertible. Since 2 is an open, connected
subset of C, Corollary 8.4 shows that the set

{AeQlrea(4)}

has no accumulation point in Q. It follows that the points of o(A)\cess(A) are isolated
points of o(A4). Take Ag € 0(A)\0ess(A). Then for A 3 Ag, A sufficiently close to Ag, we
have

(M -4 = f: (A= X0)"Bn,

n=-—q

where By is a Fredholm operator of index zero and B_j, ..., B—4 are operators of finite
rank (see the second part of Corollary 8.4). Recall that B_j is equal to the Riesz
projection Py }(A). Thus the latter operator has finite rank, and Ag is an eigenvalue of
A of finite type because of Theorem I1.1.1. O

If X is a Hilbert space and A € L(X) selfadjoint, then oess(A) is a compact
subset of the real line, and hence C\oess(A) is connected. Thus, by Corollary 8.5, for a
selfadjoint operator the spectral points outside the essential spectrum are eigenvalues of
finite type.

Let A:X — X be a compact operator. Then oess(A) is empty or consists
of the point zero only (cf. Corollary 4.3). In particular, C\oess(A) is connected, and
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hence we may apply Corollary 8.5 to A. This provides an alternative proof of the fact
(Corollary I1.3.2) that the non-zero part of the spectrum of a compact operator A consists
of eigenvalues of finite type only.

Corollary 8.5 may also be used to show that gess(A) is non-empty whenever
X is infinite dimensional. Indeed, assume that gess(A) = @. Then, by Corollary 8.5, the
spectrum of A consists of eigenvalues of finite type only. In particular, o(A) must consist
of a finite number of points A1,..., Ar, say. But then

dim X = dim(Im Pp5 }(4) & - -- & Im Py (4))
= ra.nkP{)‘l}(A) +---+ ra.nkP{,\r}(A) < 0o.

X1.9 AN OPERATOR VERSION OF ROUCHE’S THEOREM

Throughout this section H is a separable Hilbert space, {2 is an open con-
nected subset of C, and W:§) — L(H) is an operator function which is analytic on
2. We say that A\g € Q is an eigenvalue of finite type of W(-) if W()g) is Fredholm,
W(Xo)z = 0 for some non-zero z € H and W(X) is invertible for all A in some punctured
disc 0 < |A — Ag| < ¢ around Ag. In that case, ind W()g) = 0, and hence, by Theorem
8.1, the operator function W is equivalent at Ag to an operator function of the form

(1) D(A)=Po+ (A =A)"* Pr+ -+ (A= Xo)* Pr,
where Py, P1,..., Pr are as in Theorem 8.1 and satisfy the additional condition that
(2) PB+P+--+P =1

Note that (2) follows from the fact that in this case D()) is invertible for A # A9 and
X sufficiently close to Ag. The sum kj + --- + £y of the indices in (1) is called the
algebraic multiplicity of W at A\g and will be denoted by m(/\o; W()) We shall see from
Theorem 9.1 below that the number m(Ag; W(-)) is well-defined and does not depend on
the particular choice of the function D(-) in (1). If H = C", then det D(X) = (A — Xg)™,
where m = k) + --- + k,, and hence in that case, because of the equivalence between
W(-) and D(-) at Ao, the algebraic multiplicity m (Ag; W(-)) is precisely the order of g
as a zero of det W(.).

Let I" be a Cauchy contour in {2 such that its inner domain A is a subset of Q.
The operator function W is said to be normal with respect to I' if W()) is invertible for
all A € T and W(X) is Fredholm for all X in the inner domain A. Assume that W is such
an operator function. Then Corollary 8.4 implies that W () is invertible for all A € A,
except for a finite number of points which are eigenvalues of finite type of W. This allows
us to define the algebraic multiplicity m(F; W()) of W relative to the contour ', namely

m(L;W()) = m(A; W) + -+ m(Ap W()),

where A1,..., Ap are the eigenvalues of finite type of W inside T'.

In what follows W/()) denotes the derivative of W at A\. We shall prove the
following two theorems.
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THEOREM 9.1. Let W:Q — L(H) be an analytic operator function, and

assume that W is normal with respect to the contour I'. Then
(3) m(T; W()) = tr<§1—./w'(A)W(A)—1dA>.
i
r

THEOREM 9.2. Let W,S5:Q — L(H) be analytic operator functions, and
assume that W is normal with respect to I'. If

(4) W) ~IS(WI <1,  AeT,
then V() = W(-) + S(-) is also normal with respect to I and
(5) m(L; V() = m(TW(")).

The second theorem may be viewed as an operator generalization of Rouché’s
theorem from complex function theory.

To prove Theorem 9.1 it will be convenient to use the following terminology.
An L(H)-valued operator function G is called finitely meromorphic at g if G has a pole
at Ag and the coefficients of the principal part of its Laurent expansion at Ay are operators
of finite rank, i.e., in some punctured neighbourhood of Ag we have an expansion

GA) = D (A—20)"G,,

V:—q

which converges in the operator norm on L(H), such that G_1,...,G—4 are finite rank
operators. In that case we write ZG()) for the principal of G at Ag. Thus

-1
(6) EGAN) = D> (A=20)*Gy,  A# .

v=—q

Note that =G is analytic on C\{\g} and its values are finite rank operators. We need
the following lemma.

LEMMA 9.3. Let Gy and Gg be L(H)-valued operator functions which are
finitely meromorphic at Ag. Then G1G2 and G9G; are finitely meromorphic at Ay and

(7) rE(G162)(A) = rE(G2G)(N), A # Ao

PROOF. Here G;G, is the operator function defined by (G1G2)(A) =
G1(A)G2(A). In what follows A 3 )¢ and X is sufficiently close to Ag. For v = 1,2
put

H,(A) = G,(A) —Z=ZGu(N).
Then H; and Hy are analytic at Ag and

(G1G2)(N) = (H1 H2)(A) + H1(M)(EG2(V)) + (EG1(V)) Ha(A) + (EG1(N)) (EG2(N))-
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The last three terms are finitely meromorphic at Ag, and HqHo is analytic at Ag. Thus
G1G3 is finitely meromorphic at ¢ and

(8) Z(G1G2)(N) = E{H1(N)=G2(V)} + E{(EG1( V) Ha(N)} + E{(EG1(V)) (EG2(V) }.

All coefficients in the Laurent expansion of H1=G3 at )¢ are operators of finite rank.
Furthermore, the Laurent expansion of H1ZG2 at Ag converges in the trace class norm.
Since the trace is a continuous linear functional on the trace class operators with respect
to the trace class norm (Theorem VII.2.1), we may conclude that

(9) tr 2{H1(N)ZG2(\)} = Etr{ H1(V)EGa (M)}
Similarly,

(10) trZ{(EG1(N) H2(N)} = Etr{(EG1(V)) H2a(V)}.
For the third term in the right hand side of (8) we also have

(11) tr2{(EG1 (V) (EG2(N) } = Etr{(EG1(N)) (EG2(V)) }-

Next, use Corollary VII.6.2(i) to derive the following identities:

(12) tr Hi(\)EG()) = tr(EG2()\)) H (M),
(13) tr(2G1(V) Ha(N) = tr Ho(\)EG1 (M),
(14) tr(EG1 (V) (EG2(N)) = tr(EG2(V)) (EG1(N))-

Finally, write the analogues of (8), (9), (10) and (11) with G1 and G2 interchanged.
Then the identities (12), (13) and (14) yield the desired result (7). O

PROOF OF THEOREM 9.1. Let A be the inner domain of the Cauchy
contour I'. The operator function W/(-)W(-)~! is analytic on A UT, except possibly
at a finite number of points in A which are eigenvalues of finite type of W. Hence,
by Cauchy’s theorem for analytic functions, it suffices to prove the theorem in the case
where I’ is a circle of sufficiently small radius p with center at an eigenvalue Ag of W.
Recall that W is equivalent at Ag to the operator function D defined in (1). So there
exists an open neighbourhood U of Ag such that

(15) W()) = EQ)DOV)F(),  AelU,

where E()) and F()) are invertible operators which depend analytically on A in 2. We
shall assume that the radius p of the circle I" has been chosen in such a way that A € &/
whenever |A — Ag| £ p. Omitting the variable A we may write

W'W~! =(E'DF + ED'F + EDF')F~1p~1E~!

16
(0 =E'E"'+ED'D'E"'+ EDF'FT'DT'ETL.
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From Corollary 8.4 we know that W= is finitely meromorphic at Ag. Since W is analytic
on U, its derivative W’ is also analytic on I, and thus W/W~1 is finitely meromorphic.
It follows that

1 ) -
(17) K:= %/W(/\)W(/\) Ldx
r

is a well-defined operator of finite rank. In (17) the integrand may be replaced by the
principal part of W/ ()W (-)~1 at A\g. But then the integral exists in the trace class norm,
and thus trace and integral may be interchanged. So we see that

tr K = tr(% /E{W’(/\)W(/\)‘l}d/\)
(18) | r
- 1i/trE{W’(/\)W(/\)_1}d/\.
T

T 2mi

Next, we use (16). Note that
(19) DA P =P+ (A=) P 44+ (A=) " Py, X # do.

In particular, D(-)~! is finitely meromorphic at Ag. All other functions appearing in the
right hand side of (16) are analytic at Ag. It follows that for Ag # A € U
trE{W MW} = teZ{EN)D'(N\)DN)LE()) 1}

(20) +tr Z{EQA)DNF' (N FN)"IDN)LEMN) L.

Now we use Lemma 9.3 to interchange factors in the two terms of the right hand side of
(20). We have the following identities:
(21) trE2{ E(A)D'(\)D(A) "' E(A\)71} = trE{D'(\)D(A)"LE(\)TE(N)}
= tr2{D'(\)D(N)"1},
trZ{EQA) DN F' (N FA)~1 D) ~1E(\) 1}
(22) = trZ{F' (NF\) "' D) E\)TEMN)D(N)}
=trZ{F'(\)F\) !} = 0.

From (1) and (19) we see that
DD = mi(A=20) Pyt (A= 20) TP, M N,

and thus

(23) tr2{D'(\) DN} = ( n]-)(/\ - A;,)—l, A # Ao

=1
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Formulas (20)—(23) yield

r

(24) tr E{W'(/\)W(/\)_l} = (Z nj)(/\ - /\0)_1, A # Ao.

i=1

Our choice of T implies that m(T; W(-)) is equal to k1 + - - + &r. Thus, by using (24)
in the second integral appearing in (18), we obtain the desired result (3). O

Theorem 9.1 implies that the definition of the algebraic multiplicity of W at
Ao (as given in the first paragraph of this section) does not depend on the particular
choice of the function D(-) in (1). In fact (see also (24)), the residue of tr EW!(YW()~L
at Ap is equal to k1 + -+ + Ky, and hence the latter number is uniquely determined by
w.

Before we prove Theorem 9.2, let us first consider the case when W()) =
Wa(A) = Al — A, where A is a bounded linear operator on H (and @ = C). From
Corollary 8.5 it follows that Ag is an eigenvalue of finite type of W4(-) if and only if Mg is
an eigenvalue of finite type of A (see Section II.1). Theorem 9.1 implies that in that case
m(Ao; Wa(-)) is precisely the algebraic multiplicity of Mg as an eigenvalue of A. To see
this, choose a positively oriented circle I’y with center at Ag such that ¢(4)NTy = @ and
Ag is the only point in the spectrum of A inside I'y. Then W4 is normal with respect to
Fo and

1 / -1 1 -1
L (wogw - - A
(25) - / LOWA) A = /(/\I A)~1d
To Ty

The right hand side of (25) is the Riesz projection Py} of A corresponding to the point
Ao- The rank of Py} is finite and equal to m(Ag; A), the algebraic multiplicity of Aq as
an eigenvalue of A (cf. Section II.1). By Theorem 9.1 the trace of the left hand side of
(25) is equal to m(Ag; Wa()). Since the trace of a finite rank projection is equal to the
rank of the projection, it follows that

m(Ao; Wa()) = m(Ao; A).

From the remarks in the previous paragraph one sees that Theorem 9.2 may
be viewed as a generalization (and a further refinement) of Theorem II1.4.2.

PROOF OF THEOREM 9.2. The proof is split into two parts. As before,
A denotes the inner domain of T'.

PART (i). First we show that V is normal with respect to I". Put C(-) =
W(-)~15(-). For A € T wehave ||C(\)| < 1, and hence I+C()) is invertiblefor A € . By
our hypotheses, the same holds true for W(}). Thus V(X)) = W(A)[I+ C())] is invertible
for A € T'. To prove that V() is Fredholm for A € A, we study the behaviour of C(-) on
A. From its definition we see that C is analytic at each point of I', and C is analytic on
A, except possibly for a finite number of points inside A, which are eigenvalues of finite
type of W. Let Aq,...,Ap be these exceptional points. From Corollary 8.4 we know that
W(-)~! is finitely meromorphic at the points Aj,...,Ap. Since S is analytic on Q, it
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follows that C is also finitely meromorphic at Aj,...,Ap. So for A close to A; we have
o0
C)= D (A=2))"Cju,
v=-—gj
where C; _1,..., Cj,—q; are operators of finite rank. Put
N = ﬂ{Keer,,, |v=-1,...,—¢;, i =1,...,p}.

The space N is a closed linear manifold of H and dim H/N < oo. Let Cny(A): N — H be
defined by Cn(A)z = C(M\)x for each x € N. Then Cy is an L(N, H)-valued operator
function which is analytic at each point of U A. From (4) it follows that there exists
0 < 4 < 1 such that ||C(M\)|| < v for all A € T'. In particular, for z € N and y € H we
have

(26) HCN Nz, y)l < ~ll=llliwll,

whenever A € I'. But (Cn(-)z,y) is analytic at each point of TUA. So, by the maximum
modulus principle, the inequality (26) holds for all A € ' U A, and thus

(27) ICNM €v<1, AeAUT.

Now define C(\): H — H by taking C()\) = Cn(M)II, where II is the orthogonal projec-
tion of H onto N. Then C is an L(H)-valued operator function which is analytic at each
point of TUA and ||[C(A)|| < v < 1 for A € TUA. It follows that T + C()) is invertible
for each A € TUA. We know that W() is Fredholm for each A € A. So the same holds
true for W(A)[I + C(A)]. Note that V(A) and W(A)[I + C())] coincide on the space N.

But N has finite codimension in H. So we may apply Lemma 3.1 twice to conclude that
V(A) is Fredholm for each A € A. Thus V is normal with respect to I.

PART (ii). In this part we prove formula (5) by using the method of lin-
earization. Without loss of generality we may assume that 0 is in the inner domain of T
Choose a bounded Cauchy domain © such that ' ¢ © C © C Q. Let Ky be the space of
all H-valued continuous functions on 30 endowed with the inner product

(28) (f, ) = / (F(O), 9(O))dC,
e[S

and let K be a Hilbert space such that Kj is a linear submanifold of K which is dense in
K and for elements f and ¢ in Ko the inner product in K coincides with the one given by
(28). Up to a linear isometry the Hilbert space K is uniquely determined by Kj. Since
H is separable, the same is true for K.

For 0 <t <1 welet A; be the operator on K defined by

(9)  (ANE) =@ - 5 [I1-WO-tS©)f0s, =€ 00.

(7S]
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The operator A; is bounded on Kj, and hence, by continuity, A; extends to a bounded
linear operator on K, which we also denote by A;. From (29) it follows that the map

(30) t— Ay, [0,1] — C(K)

is continuous with respect to the operator norm on £(K).

Let w: K — H be the (unique) bounded linear operator such that

(31) wf = o [ 200U, feKo.
8o

Note that w is bounded on Kjp, and hence, by continuity, it extends to all of K. Put
Z = Kerw. Then Z is a (separable) Hilbert space in its own right, and for 0 < ¢t < 1
the Z-extension of W(-) +tS(-) is equivalent on © to A — A;. To prove this, one uses the
same arguments as were used in the proof of Theorem III.2.1. In fact, all formulas in the
proof of Theorem II1.2.1 hold on Ky and, by continuity, also on K.

Put Wy(A) = A — A;. The above equivalence implies that W} is normal with
respect to I'. By extension and equivalence the algebraic multiplicity does not change.

Thus
(32) m(l"; w()+ tS(-)) = m(I‘; Wt())
By the remarks made in the second paragraph after the proof of Theorem 9.1, we have

(33) m(T;We(-)) = D, m(X A4,

A inside T

Furthermore, by Theorem I1.4.2, the quantity in the right hand side of (33)
is a continuous function of ¢. It follows that the same holds true for the first quantity in
(82). Since these functions are integer-valued, we conclude that m(I; W(-) +tS5(-)) does
not depend on ¢t € [0, 1], and hence (5) is proved. O

The results of this section also hold for operator functions whose values act
on Banach spaces. To see this one needs the trace of a finite rank operator F' acting on
a Banach space X. This quantity is defined as follows:

n
tr FF = Zgj(zj),
i=1

where z4,..., T, are vectorsin X and gj,...,gn are continuous linear functionals on X
such that

F =Y g;()s;.
=1

One can prove (see, e.g., Gohberg-Krupnik [1]) that tr F' is a linear functional on the
finite rank operators F’ and tr(F'G) = tr(GF) for any bounded linear operator G. With
this definition of the trace the proofs given above carry over to the Banach space case.
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XI1.10 SINGULAR VALUES FOR BOUNDED OPERATORS

In this section we introduce s-numbers (singular values) for arbitrary (not
necessarily compact) operators acting on a Hilbert space. The starting point is Theorem
VI.1.5 which identifies the s-numbers of a compact operator as certain approximation
numbers. Let A:H — H be a bounded linear operator acting on the complex Hilbert
space H. By definition the j-th singular value (s-number) of A is the number

(1) s;(A) = inf{||A - K| | K € L(H),rank K < j —1}.

Note that s1(A) = ||4| and s1(4) > s2(4) > -+ . Many properties of s-numbers of
compact operators carry over to the non-compact case. For example, Proposition VI.1.3
and Corollaries VI.1.2, VI.1.4 and VI.1.6 hold for arbitrary bounded linear operators. The
definition (1) also presents a way to introduce s-numbers for operators acting between
Banach spaces.

Since (s_,-(A));il is a non-increasing sequence of non-negative numbers, we
may define

(2) Seo(A): = Jim sn(A) = inf sn(4).

The next theorem (together with the fact that the set of compact operators on H is
closed in L(H)) shows that so(A) = 0 if and only if A4 is compact.

THEOREM 10.1. For A € L(H)
(3) Seo(A) =inf{||A — K|| | K compact}.

PROOF. Let v be the number defined by the right hand side of (3). Let
K € L(H) be of finite rank, rank K = n, say. Then K is compact, and thus y < ||A—-K]||.
It follows (see (1)) that v < sp41(A), and hence v < so0(A). To prove the reverse
inequality, take € > 0. Choose a compact operator K such that [|[A~ K| < v+ %e. Next,
choose a finite rank operator F' € L(H) such that | K — F|| < 2. Then |4~ F| < y+e.
According to the second identity in (2), we have so5(A) < ||A—~F||. Hence s0(4) < y+e.
But € > 0 is arbitrary, and therefore so(4) < v. O

THEOREM 10.2. The number sco(A) i3 the square root of the mazimum of
the essential specirum of A*A.

PROOF. Put S = A*A. Since S is nonnegative, the essential spectrum of S
is a compact subset of the nonnegative real line, and hence the maximum of the essential
spectrum of S is a well-defined number g, say. Let € > 0. By Theorem 10.1 there exists
a compact operator K such that |4 — K|| < sco(A) + €. Thus

(A - K)(A - K)|| = sup ((A—K)*(A- K)z,z)

ll=|l=1
= sup [|(4 - K)z||?
z|[=1

= |4 = K[1* < (soo(4) +¢)%.
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Since T:= (A— K)*(A— K) = S+ C, where C' is a compact operator, T and S have the
same essential spectrum. In particular, g € o(T). Thus

B < ITN S (so0(A) +€)™.

Since € > 0 is arbitrary, this shows that seo(4)% > p.

To prove the converse we consider the set ¥ = {A € o(S)|A > pu}. This set
consists of eigenvalues of finite type only (apply Corollary 8.5). In particular, each A €
is an isolated point of ¢(S). It follows that X is at most countable. Let pu; > pg > ---
be the points in . By Hp we denote the smallest closed linear manifold containing all
eigenvectors of S corresponding to the eigenvalues uy, 2, .. ., and P will be the orthogonal
projection onto the space Hy:= H(,L. Put So = S(I — P). Note that the space Hy has
an orthonormal basis @1, 2, ... consisting of eigenvectors of S. Thus we may write

(4) Soz =Y Aj(z,pj)ei, T €H,
J

where A1 2> A2 > A3 > --- is the sequence p; > pug > p3 > -+ with each pu; repeated as
many times as the value of its algebraic multiplicity. The operator K, defined by

Kz = Z(}\}/Z _ #1/2)(31‘/’_1')‘/’;], s €H,
i

is nonnegative and K has finite rank (if the sequence A1, A9, ... is finite) or is compact.
Next, use the polar decomposition (see Section V.6) to write A as A = UR,

where R = (A*A)1/2 = §1/2 and U is a partial isometry. Put C = UK. Then C is

compact, and, by Theorem 10.1,

(8) 300(4) S |A-C|| = |[UR-UK]| <||R~ K]

Since S commutes with P, also its square root R commutes with P (Theorem V.6.1) and

R(I-P)z =Sy =Y 2/*(z,0;)0;, ze€H.
i

It follows that R — K = RP + pl/2(I — P), and thus
(6) IR — K|| < max{||RP]|, x!/?}.

It remains to show that |[RP|| < u!/2.

Let {E(t)},cp be the resolution of the identity for the non-negative oper-
ator S. From Theorem V.5.3 we know that E(-) is constant on (g, o00)\{A1,X2,...}.
Furthermore, by Corollary V.5.2,

Im{E(\;) — E(A; — 0)} = Ker(\; — §) C Hyp,  i>1.
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It follows that Im(I — E(t)) C Hp for ¢ > p, and hence Hy C Im E(t) for ¢t > p. This
shows that

ImE(p) = N{Im E(¢) | ¢t > p} D H.

(With a little extra effort one shows that E(u) = P, but we don’t need this equality.)
Choose o < 0 and 8 > || 5], and let

0, a<t<O,
t) =
9(t) t1/2, o<t <p.

Then for each z € H,

i
(RPz,z) = (RPz,Pz) = /g(t)d(E(t)Pa:,Pa:)

[+ 4

m
= [ 82aB()Pe, o) < w2Yal,
0

because (E(t)Pz, Pz) = ||Pz||? < ||z||2 for t > p. It follows that [|RP|| < ul/2. O

The proof of Theorem 10.2 shows that the infimum in (3) is actually a mini-
mum. To see this, let C be the operator introduced in the proof of Theorem 10.2. Since
sco(A) = pl/2 (the notation is as in the proof of Theorem 10.2), formulas (5) and (6)
imply that ||A — C|| = sec(A4), and hence the infimum in (3) is attained for K = C.

A further refinement of the arguments used in the proof of Theorem 10.2 yields
the following alternative description of the s-numbers of A € L{(H). Let Ay > Ag > -
be the eigenvalues (multiplicities taken into account) of A*A strictly larger than the
maximum g of the essential spectrum of A*A, and let N be the number of elements in

the sequence A\; > Ay > --- . Then s;(4) = )\;/2, j =1,2,..., if N is infinite, and
otherwise
A2 j=1,...,N,
sj(A)y=< 7

pl/2, j=N4+1,N+2,....



CHAPTER XII
WIENER-HOPF INTEGRAL OPERATORS

In this chapter we deal with integral operators of the following type:

7

K - /k(t —8)g(s)ds = f(t), 0<t <oo.
0

Here g and f are C™-valued functions with components in L3([0,c0]) and the kernel
function k is an m X m matrix function. The corresponding operators are called Wiener-
Hopf (integral) operators. We shall restrict the attention to the case when the entries of
k are integrable on the real line. Wiener-Hopf integral operators provide one of the main
examples for the Fredholm theory. In this case the index may be expressed in terms of
topological properties of the symbol. The chapter consists of three sections. The first
has an introductory character and concerns the analogous equation on the full line. In
Section 2 the first properties of Wiener-Hopf operators are derived. The last section is
devoted to the Fredholm theory.

X11.1 CONVOLUTION OPERATORS

This section concerns operators of the form A = I — L, where

oo

(1) (Lo)(t) = / k(t - s)p(s)ds,  —o0 <t < oo,
—00

The operators A and L will be considered on LT*(R), the space of all C™-valued functions
that are square integrable (relative to the Lebesgue measure) on the real line R. The
space LT*(R) is a Hilbert space with inner product

m o0
@) =3 [ eitpma

—

I=l-oo

Here ; and 1; are the j-th components of ¢ and ¥, respectively. As usual, two functions
that are equal almost everywhere are identified.

The function k in (1), which is called the kernel function of L, is assumed to
be an m X m matrix function, k = [k;;]7%_;, of which the entries k;; are integrable on
R. One could take a more general class of} kernel functions, as we shall do in the discrete
case (in Volume II), but the present class is already rich enough to explain the main
points of the theory. The integrability condition on the entries of k implies that L is a
well-defined bounded linear operator on LJ*(R). In fact,

m m 1/2
(3) nLns(Zan,-jn%) ,

i=1j=1
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where | ki;||1 is the norm of k;; as an element of L1(R). To prove (3), note that L7*(R)
is equal to the Cartesian product of m copies of La(R), and hence L may be represented
by an m x m matrix whose entries are operators on Lo(R). In this case

L1 Lim

(4) L= [ : : } :L3'(R) — L3*(R),
Lml e me

where

(5) L,'j: LZ(R) ol LZ(R), Lijf = kij * f.

Here the symbol * denotes the usual convolution product. It is well-known (see, e.g., [R],
Ch. 7, Exercise 4) that for ¢ € L1(R) and f € Lo(R) the convolution product g+ f € La(R)
and ||g * f|| < |lgll1llfll- Let ¢ € LT (R), and let ¢; denote its j-th component. Then

m
IZel? = > I(Zekill®
i=1
m
> kijxe;
j=1

m

>

m m 2
<> (X kshullest)

i=1 “j=1

2

m

1
m

< (23 Ikl )
> .

1 =1

<

which proves (3).

With the operator A = I— L we associate the following m xm matrix function:
oo
(6) W(s):=In — / eiStk(t)dt, s €R.
—0o0

Here I, denotes the m x m identity matrix. Since the entries of k are in Lq(R), we may
conclude (cf., [R], Theorem 9.6) that the entries of W are continuous functions on R and

(7) Lim W(s) = L.

|s]—o0

The function W is called the symbol of A, and we shall refer to A as the convolution
operator with symbol W.

To study A in terms of its symbol we need the Fourier transformation. Recall

-~

that for f € L1(R) N La(R) the Fourier transform f(A), which is defined by

SN Y ey _
f(/\)_\/Z—w_/e f(t)de, 00 < A < oo,
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is an element of Ly(R). By the Plancherel theorem ([R], Theorem 9.13) the map f — f
extends to an isometry U which maps all of La(R) onto La(R). Since L3*(R) is equal to
the Cartesian product of m copies of La(R), the operator U induces in a natural way an
isometry, also denoted by U, from LF*(R) onto LT*(R), namely

1 Uer
(8) Up=U| : |=

The operator U is called the Fourier transformation on LJ*(R) and Ue the Fourier
transform of . Obviously, U: LP(R) — LP(R) is unitary, i.e., U* = U~!, and hence

(9) (UTle)(t) = (Up)(—t), ae. .

THEOREM 1.1. Let A be the convolution operator on LF*(R) with symbol
W, and let U be the Fourier transformation on LY'(R). Then

(10) Ut AUp =W ()e(), v € LB (R).
PROOF. Let L;; be as in (5). Take f in L1(R) N Ly(R). By using (9) and

the connections between Fourier transforms and convolution products ([R], Theorem 9.2)
one proves that for almost all s € R

(U™1Lijf)(s) = (ULij f)(—s)
= [U(kij * f))(—s)

= (/ e"”k,-j(t)dt)f(—s)

- (7 efstk.-j(t)dt) (U f)(s)-

Let M;;: Ly(R) — Lo(R) be defined by

(Mii0)(s) = ( 7 e"“k,-]-(t)dt)g(s).

—C0

Since M;j; is an operator of multiplication by a bounded continuous function on R, the
operator M;; is well-defined and bounded on Ly(R). We have proved that

(11) U™lL;;Ug = Mijg

for any ¢ € U™1[L1(R) N La(R)]. Since the latter set is dense in Ly(R), the continuity of
the operators in (11) implies that (11) holds for any g € Lo(R). Thus U‘lL;J-U = M;;.
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Now use UTYAU = I — U~1LU, where L is given by (4), and the identity (8), to obtain
formula (10). O

The operator on LJ*(R) defined by the right hand side of (10) will be called
the operator of multiplication by W and will be denoted by My .

COROLLARY 1.2. Let A be the convolution operator on LT*(R) with symbol
W. Then

(12) Al = sup{[[W (2| | t € R}.

PROOF. In (12) the term ||W(¢)|| is the norm of the m x m matrix W(t) as
an operator on C™; thus ||W(t)] is the largest singular value of the matrix W (t). Let
Mw be the operator of multiplication by W. By Theorem 1.1 it suffices to show that
[[Mw || is given by the right hand side of (12). First take ¢ € LF*(R). Then

1Myweo|? = / W () (t)]2dt

< / W@l 2dt

2
< (suRp ||W<t)||) el

te
which shows that the right hand side of (12) is an upper bound for ||[My||.
Next, fix tp € R, and let z be an arbitrary vector in C™ with ||z]| = 1. Define
a sequence in LI*(R) by

7 —Llci<y+ L
<pn(t)={\/;z forto'n_ <to+ 3,
0 otherwise.

Then ||¢n]|=1forn=1,2,..., and hence

| My on]? = / OO

M2 >
-0
to+%
n
=3 [ 1woalPe - Wit
to—1

Here we used the continuity in ¢ of the integrand ||[W(¢)z||2. It follows that || M| >
[[W(to)z||. Since z is an arbitrary vector of norm one, we get ||Mw| = ||[W(t0)||. Also
to is arbitrary. Thus ||Mw| is an upper bound for the right hand side of (12). O

COROLLARY 1.3. Convolution operators on Lo(R) commute with one an-
other.
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PROOF. The statement follows from Theorem 1.1 and the fact that operators
of multiplication by scalar functions on Lg(R) commute with one another. O

THEOREM 14. Let A be the convolution operator on LJ*(R) with symbol
W. Then A is invertible if and only if det W(s) # 0 for each s € R. In that case

o0
(13) W(s) ! = I - / e tEX (8)dt, seER
-0
for some m X m mairiz function k* with entries in Li(R) and

oo

(14) (A‘H/;)(t):z/;(t)—/k"(t—s)d;(s)ds, teR.

—00

PROOF. Since LP*(R) is the Cartesian product of m copies of Ly(R), the
operator A may be represented as an m X m operator matrix,

Ay o Aim
Ami - Amm

of which the entries act on Ly(R). Note that A;; = &;;1 — L;;j, where L;; is given by (5)
and &;; is the Kronecker delta. Corollary 1.3 implies that the entries in (15) commute
with another. Thus, by Proposition XI1.7.2, the operator A is invertible if and only if
det A is invertible.

Let U be the Fourier transformation. Then U‘lAijU = 6;;1 — M;;, where
M;; is asin (11). It follows that U"lA,-J-U is the operator of multiplication by the (7, 7)-th
entry of the symbol W of A. But then

M:=U"Y(detA)U = det(U~ AU)

is the operator of multiplication by det W.
Assume A is invertible. Then M is invertible and p = ||[M~1||~! > 0. Put

(16) En={tER||detW(t)|<%p,|t|§n}.

Let xg, be the characteristic function of the set E, (i.e., xg, (f) = 1 if t € En and
XE, (t) = 0 otherwise). Then

2
PlxelI? < |1Mxg,|

- /‘(detW(t))xEn(t)|2dt

1
VT
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and hence xg, =0 forn =1,2,... . It follows that the set E:= {t € R||det W(t)| <
%p} has Lebesgue measure zero. But det W(¢) is a continuous function in ¢t. Thus F is
an open set of measure zero, which implies that E = (. In particular, det W(¢) # 0 for
allt € R.

To prove the converse statement and the formula for A~1, assume that
det W(t) # 0 for all ¢t € R. In that case there exists an m X m matrix function k*
of which the entries are in L;(R) such that (13) holds. This result is the matrix version
of a theorem of N. Wiener which will be proved in the Banach algebra part of this book
(in Volume II). Note that k* belongs to the class of kernel functions considered in this
section. Let A™ be the operator on LJ*(R) defined by the right hand side of (14). For-
mula (13) implies that A% is the convolution operator on LJ*(R) with symbol W(-)~1.
But then we can use Theorem 1.1 to show that

U YAAXUp = (UL AUY UL AXU)p
=WEOW(E) e =0,

and thus AAX = I. Similarly, AXA = I. Thus A is invertibleand A~1 = AX. o

COROLLARY 1.5. The convolution operator A is a Fredholm operator if and
only if A is invertible.

PROOF. Assume that A is Fredholm. Write A as an m X m operator matrix
as in (15). Since the entries in (15) commute with one another, Theorem XI1.7.3 implies
that detA is Fredholm. Let U be the Fourier transformation on Ly(R), and put M:=
U~1(detA)U. We have already seen that M is the operator of multiplication by det W.
Consider the set

Fp={teR|detW(t) =0,|t| < n},

and let N(Fy) be the subspace of La(R) consisting of all f that are zero almost everywhere
on R\ F;,. Note that N(Fy,) C Ker M. Since M is Fredholm, dim N(Fy) < oo, but then
F,, must have measure zero. It follows that the set {t € R | det W(¢) = 0} has measure
zero, and thus M is injective. We also know that M has closed range. Thus there exists
p > 0 such that ||Mf|| > p||f|| for each f € Ly(R). Now define E, as in (16), and
proceed as in the proof of Theorem 1.4. One obtains that det W(t) # 0 for all ¢t € R, and
thus, by Theorem 1.4, the operator A is invertible. The converse statement is trivial. ©

XII.2 WIENER-HOPF OPERATORS
This section concerns operators of the form 7' = I — K, where
[o o]

(1) (Ko)(t) = /k(t — s)p(s)ds, 0<t< oo
0

The operators T and K will be considered on LF*([0,00]), the space of all C™-valued
functions that are square integrable (relative to the Lebesgue measure) on the real line,
which we shall identify with the subspace of LJ*(R) consisting of all ¢ that are zero
almost everywhere on (—o0, 0).
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As in the previous section the function k in (1) is assumed to be an m x m
matrix function, k = [kij];”J.:l, of which the entries are in Lq(R). This implies that K is
a well-defined bounded operator on LJ*(R) and

m m 1/2
@) 1K < (ZZ ||k.-j||%) ,

where ||k;;||1 is the norm of k;; as an element of L;(R). To see this, note that

(3) LF(R) = L7([0,0)) & L3*((—00,0]).

Here LY*((—o0,0]) is the subspace of LJ*(R) consisting of all functions ¢ that are zero
almost everywhere on [0,00). The decomposition (3) is an orthogonal one. Now, let
L be defined by (1.1), and let @ be the projection of LF*(R) onto LT*([0,00)) along
L3 ((—00,0]). Then

(4) Ko=QLp, € LF([0,00)).

Since @ is orthogonal, we conclude that || K| < ||L||, and hence (2) follows from the
inequality (3) in the previous section.

With the operator T = I — K we associate its symbol, which is defined to be

the m x m matrix function
)
oo

) W(s) = Im — / ttk(t)dt,  s€R.

—o0
Note that k is uniquely determined by W. We shall refer to T as the Wiener-Hopf
operator with symbol W.

Up to unitary equivalence a Wiener-Hopf operator is a compression of a
multiplication operator. To see this, let U be the Fourier transformation, and put
HP'(R) = ULP((—o0,0]). Thus ¢ € H*(R) if and only if

0
_ _1_ e-—ist s
(6) o= 7 / B(H)dt, s eR,

for some 1 € LJ*((—o0,0]). It follows that v € HJ*(R) has an analytic continuation to
the upper half plane. Indeed, let ¢ be given by (6). Note that e¥!3(t) is an integrable
function and belongs to L*(R) if y > 0. Hence

0
(7) o(z +iy) = _\/:12=W / =+ (1) dy

is well-defined for y > 0 and ¢ is analytic in the open upper half plane. For fixed y > 0
the function (- + iy) is the Fourier transform of e¥!)(¢), and hence

[es) 0
/ lo(z + iy)|2dz = / levtap(t)] 2 dt

2 2
< #1° = llell”.
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In particular,

oo 1/2
(8) p=swn( [ llote +inlPds) " <o
y>0 v

Conversely, by the Paley-Wiener theorem (see [R], Theorem 19.2), if ¢ is a C™-valued
function which is analytic in the open upper half plane and satisfies (8), then there exists
a unique ¥ € LJ*((—o0,0]) such that (7) holds and ||%|| = p. Thus via formulas (6) and
(7) the space H7*(R) may be identified with the space of all functions that are analytic on
the open upper half plane, take values in C™ and satisfy the uniform square-integrability
condition (8). In that case the norm of a function ¢ € HJ*(R) is also given by the
right hand side of (8). The space HJ*(R) is called the Hardy space of square-integrable
C™-valued functions on R.

THEOREM 2.1. Let T be the Wiener-Hopf operator on LT*(R) with symbol
W, and let U be the Fourier transform. Then

(9) UTlTUe =PMwy, ¢ € HF'(R).

Here My is the operator of multiplication by W and P i3 the orthogonal projection of
L7 (R) onto HF*(R).
PROOF. From formula (9) in the previous section we know that U~1 =
IU = UZI, where
(10) I:L7(R) - LF'(R),  (Te)(t) = o(-1).
Take ¢ € HJ*(R). Thus ¢ = UT% for some 3 € LT*([0,00)). It follows that
Up =IU o = T2 = ¢ € LF([0,00)).

In this way one proves that UHJ*(R) = L7*([0,00)). Since U is unitary, we see that
P = U~1QU, where Q is the (orthogonal) projection of LJ*(R) onto LJ*([0,0)) along
L3 ((=00,0]).

Again, take ¢ € HJ*(R). Then
U lTUe =U"1QAUp = PU L AU,

where A = I — L with L as in (4). From Theorem 1.1 we know that U~14U = My,
which proves (9). O

THEOREM 2.2. Let T be the Wiener-Hopf operator on LT*([0,00)) with
symbol W. Then

(11) IT|l = sup{|W(t)|| | ¢ € R}.

PROOF. Let A be the convolution operator on L7*(R) with symbol W. By
Corollary 1.2 it is sufficient to show that ||T|| = ||4||. We know (see formula (4)) that
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T = QA for each ¢ € LT([0,00)). Here Q is the orthogonal projection of LT*(R) onto
L3*([0,00)). Since ||Q|| = 1, it follows that ||T'|| < || A]|.

To prove the reverse inequality, let Sr be the operator defined by
(12) (Srp)(t) = p(t—T), —c0<t< oo

For each 7 € R the operator S; is a well-defined bounded linear operator on LJ*(R),

(13) ISrell = llell, @€ LF(R),

and S is invertible. Furthermore, S} = S_r = S;! for all 7 € R. Write A=1I - L and
T =1- K, where L is defined by (1.1) and K by (1). A simple computation shows that

(14) S—rAS;r=I1—-S_+LS,=1—-L=A, T €R.

Now, let M be the subset of LJ*(R) consisting of all f € LT*(R) with compact support.
Thus, if ¢ € M, then there exists a, > 0 such that ¢(t) = 0 for almost all [t| > a,. In
that case Sr¢ has support in [0, c0) whenever T > ay, and thus QSr¢ = Sy for T > a,.
Take ¢, € M, and choose 7 > 0 sufficiently large. Then

[(Ap,¥)| = [(S—rASzib, )]

[(ASr, Srip)|

I(TQSHP, Qs‘r"/’)l

S NTNIQSellllQS-4Il < 1Tl |l-

Since M is dense in LE*(R), this implies that

(Ao, ) < ITNllellllell, % € LT(R),

and hence [|4]| < [T ©

The class of symbols defined by (5) is closed under the usual product of matrix
functions. Thus, if W) and W5 are symbols and W(s) = W1(s)Wa(s) for all s € R, then
there exists an m x m matrix function k of which the entries are in L1(R) such that (5)
holds. This statement follows from the fact that L;(R) is closed under the convolution
product and the fact that (modulo a suitable normalization) the Fourier transform of a
convolution product is the product of the Fourier transforms.

THEOREM 2.3. Let Ty and Ty be the Wiener-Hopf operators with symbols
W1 and Wy, respectively, and let T be the Wiener-Hopf operator with symbol W, where
W(s) = Wi (s)Wa(s) for all s € R. Then T — T1T» is a compact operator. Furthermore,
if Wy or Wy is a rational matriz funciion, then T — Ty Ty has finite rank.

For the proof of Theorem 2.3 we need the following two lemmas.

LEMMA 2.4. Let k = [k;]7=; be an m x m matriz function of which the
entries are integrable on [0,00), and let H be the operator on LT*(R) defined by

o0

(15) (He)(t) = /k(t + s)p(s)ds, t>0.
0
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Then H is compact and

m m 1/2
(16) 1z < (Zanun%) ,
i=1 j=1

where ||kij||1 is the norm of ki;j as an element of L1([0,00)).

PROOF. Let L on LT(R) be defined by (1.1), let @ be the projection of
LT (R) onto LF*([0, 00)) along LF*((~—o0,0]), and let T on LT*(R) be as in formula (10).
Then

(17) Hop = QL(I-Q)Zy), ¢ € Ly ([0,00)).
It follows that H is a well-defined bounded linear operator on LZ*([0, 00)), and the right
hand side of the inequality (1.3) is an upper bound for ||H||, which implies (16).

Since LF*([0,00)) is a Cartesian product of m copies of L3([0,c0)), the oper-

ator H may be represented by the m x m operator matrix

Hyp -+ Him
Hml Hmm

where H;; is the operator on Ly([0, o)) defined by
o0
(Hy O = [ Ryt +9(6)ds,  t20.
0

To prove that H is compact, it suffices to prove that each of the entries H;; is compact.
In other words to prove the compactness we may, without loss of generality, assume that
m = 1.

Take k(t) = e~ !p(t), where p(t) = ag + a1t + - - - + ant™ is a polynomial with
complex coefficients. Then

(Hp)e): = [ = CFp(e+ o))
0
= Z ( n ) aje—tt"_y/e_ssyf(s)ds) t20.
7=0v=0 Y 0

It follows that rank Hp is finite. Since the functions e~*p(t), p arbitrary complex poly-
nomial, are dense in L1([0,00)) (see B. Sz-Nagy [3], items 7.3.2 and 7.3.3), we can find
a sequence of complex polynomials py,pg,... such that e~!p,(t) — k(t) in the norm of
Li([0,00)). But then we may apply inequality (16) to show that HH - Hpn” — 0if
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n — oco. It follows that H is the limit in the operator norm of a sequence of finite rank
operators. Thus H is compact. O

The operator H defined by (15) is called the Hankel operator on L5*(]0, ))
with kernel function k. Assume that the entries of k¥ are functions of the form

(19) tneiot (Sa < 0).

Then the argument used in the last part of the proof of Lemma 2.4 shows that each of
the entries H;; in (18) is an operator of finite rank, and thus H is an operator of finite
rank.

LEMMA 2.5. Let A be the convolution operator with symbol W. Write A as
a 2 X 2 operator matriz relative to the decomposition (3):

An A ]
20 A= .
(20) [ A1 A2
Then Ay is the Wiener-Hopf operator with symbol W and the operators Ajy and A9
are compact. If, in addition, W is a rational matriz function, then Ajo and A have
finite rank.

PROOF. Formula (4) implies that Aj; = T is the Wiener-Hopf operator

with symbol W. Lemma 2.3 and formula (17) imply that A;9 is compact. By changing
t to —~¢ one proves in a similar way that A,; is compact.

Recall that a matrix function is rational if each of its entries is a rational
function, i.e., the quotient of two polynomials. Note that

o0
—yn+1 . i
(21) (A= a)n = (20 /t"e—"”e""dt (Sa < 0),
n.
0
—\n+1 . .
(22) (A= o)D) = —% / teTiteiMNgr  (Sa > 0).

— o0

Since a symbol is continuous on the real line, the entries of a rational symbol have no
poles on R. Furthermore, by the continuous analogue of the Riemann-Lebesgue lemma
(see [R], Theorem 9.6) W(A) — I if A — oo. It follows, by the method of partial
fractional expansion, that the entries of W(\) are functions of the form

r 95
c+ Z Z C,'J'(/\ - aj)—(n-f-l)’
j=1ln=1
where ¢ and ¢y, are constants and Seaj # 0 for j = 1,...,7. So the equalities (21) and

(22) imply that a symbol W is rational if and only if the entries of its kernel function
are finite linear combinations of functions of the form

tnl —ialt, t>0,
(23) ey =4 °
aptNze=ie2t ¢ <0,
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where ay, ap are arbitrary complex numbers, Sa; < 0 and Sag > 0. Thus, if W is
rational, then the result stated in the paragraph preceding the present lemma can be
used to show that A2 and Ag; are operators of finite rank. O

PROOF OF THEOREM 2.3. Let A, A1 and A3 be the convolution operators
on L7*(R) with symbols W, W; and W,, respectively. Write 4, A; and Az as 2 x 2
operator matrices relative to the decomposition (3):

A1l Ap ]
A = y A =
[ Az Az v

Al 4

v=12.
A Al

? bl

Then (Lemma 2.5) we have T = Ay, T} = Agll) and Tp = Agzl). From Theorem 1.1 we
know that A = A1 As, and hence

(24) T =TTy + ADAD.

By Lemma 2.5 the operators Aglz) and Agzl) are compact, and hence T — 11Ty is compact.

Next, assume that W; or Wy is rational. Then we know from Lemma 2.5 that

Aglz) or Agzl) is finite rank. In either case the product Aglz)Agzl) has finite rank, which
proves the theorem. O

COROLLARY 2.6. Let Ty and Ty be Wiener-Hopf operators on L2([0, c0))
with (scalar) symbols Wy and Wy. Then T1Ty — ToTy is a compact operator. If, in
addition, W1 or Wo is rational, then TYTy — ToT has finite rank.

PROOF. Let T be the Wiener-Hopf operator with symbol W(.) =
Wi1(-)Wa(-). Since m = 1, we have W1 Wy = WyW;, and thus T is also the Wiener-
Hopf operator with symbol Wa(-)Wy(-). It follows that T — T3 T3 and T — T3T} are both
compact (by Theorem 2.3), and hence the difference T)Ty — T2T} is also compact. The
second statement is proved in a similar way. D

X11.3 THE FREDHOLM INDEX

In this section we derive the first Fredholm theorem for Wiener-Hopf opera-
tors.

THEOREM 3.1. Let T be the Wiener-Hopf operator on L3*([0,c0)) with
symbol W. Then T is a Fredholm operator if and only if det W(s) # 0 for all s € R,
and in that case the indez of T s equal to the negative of the winding number relative
to the origin of the curve parametrized by the function

(1) t — det W(2), —00 <t < oo

Before we prove the theorem, first a few remarks about the winding number.
Let a be a continuous function on R such that limj;_,., a(t) exists, and assume that the
closed curve I'y parametrized by ¢ — a(t), —co < t < co, does not pass through the
origin. The winding number k([y;0) of 'y relative to the origin is, by definition, equal
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to % times the total variation of the argument function a.rg(a(t)) when the variable ¢

varies over —oo < t < oo, l.e.,

2) (T 0): = olarg ()2 oo

If, in addition, « is piecewise continuously differentiable, then the winding numberis also
given by

1 1
3) H(Tai0) = 5 / T
Lo
For example, if 7(t) = (¢t — a)(t — b)~! with a and b non-real, then
0 for (Sa)(SbH) >0,
K(I“r; 0) =

1 for Sa >0, Sb <O,
—1 for TSa<0, Sb>0.

(4)

Let § be another continuous function on R such that limy_, B(t) exists. If
[B(t) — a(t)] < |a(?)],  —c0<t< oo,
then the curve I'y parametrized by § does not meet the origin and #(I'g; 0) = x(T'w; 0).

For piecewise continuously differentiable functions & and g this follows from [R], Theorem
10.35, and for arbitrary continuous functions it is proved by an approximation argument.

PROOF OF THEOREM 3.1. We split the proof into seven parts. The first

part contains a general remark.

PART (i). Assume m = 1, and let A be the convolution operator on Ly(R)
with symbol W. Let

A1r A ]
5 A=
) [ Ag; Az

be the 2 X 2 operator matrix representation of A relative to the decomposition

(6) La(R) = L»([0,00)) @ La((—o0,0]).

We claim that the Banach conjugate A'11 of Aq1 1s similar to Agy. To prove this, take ¢
in La((—o0,0]), and let V¢ be the continuous linear functional on Ls([0, o)) defined by

(Vo)) = / B(Op(—)dt, b € ([0, 00)).
0

Obviously, V is an isometry from Ly((—o0,0]) onto Ls([0,00)). For ¢ € Ly((—00,0])
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and ¥ e L4([0,00)) we have
(A1 Ve)(®) = (Vo) (And)

oo

= / (A1) ()p(—t)dt

/ B(Ep(~t 7(7k<t — b(e)ds ) ol -ty

0
o0

0

/zﬁ(s ©(—s) 7 /k(t— s)e(— )dt>1/1(s)ds
-0 0

/zb(s {<p( —3) / k(—s—t)<p(t)dt}ds

- / ¥(5)(Az20)(—s)ds = (V Agzp)b.
0

The change in the order of the integrals is justified by Fubini’s theorem. The above
calculation shows that A,V = V Agg, and hence Ay is similar to A);.

PART (ii). Assume that det W(¢) # 0 for all t € R. We shall prove that T is
a Fredholm operator. Note that Theorem 1.4 implies that W(-)~! is of the form
o0
W)™ = In — /ei’th(t)dt, s €R,
0

where k* is an ™ X m matrix function with entriesin L(R). Let T be the Wiener-Hopf
operator with symbol W(-)71, i.e.,

(7 (T>p) /kx t —s)p(s)d t>0.

Since W(-)W(-)~! = W(-)"'W(-) = I, Theorem 2.3 implies that I — TT> and I — TXT
are compact. Hence T is invertible modulo the compact operators, and thus T is a
Fredholm operator.

PART (iii). Take m = 1, and assume that T is Fredholm. We shall prove
that det W(t) # 0 for all t € R. Consider the representation (5). We know (see Lemma
2.5) that Ay; = T and thus A;y is Fredholm. By duality, the same is true for A}, (apply
Theorem XI.5.1 and use that the conjugate of a finite rank operator has again finite
rank). Since m = 1, the operators A]; and A are similar (see Part (i)). It follows that

Ay O
0 Ag
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is a Fredholm operator. According to Lemma 2.5 the operators Ap and A2] are compact,
and hence A is the sum of a Fredholm operator and a compact operator. So A is also
Fredholm, and we can apply Corollary 1.5 to show that A is invertible, which implies
det W(t) # 0 for all t € R (by Theorem 1.4).

PART (iv). Assume that T is Fredholm. We shall prove that det W(t) # 0
for all t € R. Since LT}([0,00)) is the Cartesian product of m copies of Lz([0,00)) we
may represent 7' as an m x m operator matrix:

Tin - Tim

(8) T= : :
Tm1 - Tmm

Here Tj; = 6;;1 — Kj;, where §;; is the Kronecker delta and

(9) (Kif)XO) = [kt = 9)fe)ds, 20
0

The function k;; is the (4, 7)-th entry of the kernel function k of T. Note that I — Kj;
are Wiener-Hopf operators on Ls([0,o0)) with (scalar) symbols, and hence we can apply
Corollary 2.6 to show that the entries T;; in (8) commute with one another modulo the
compact operators. So Theorem XI.7.3 implies that detT is a Fredholm operator.

Since our class of symbols is closed under the product of (matrix) functions,
det W is again a symbol. Let Ty.¢ w be the corresponding Wiener-Hopf operator (acting
on Ly([0,00))). A repeated application of Theorem 2.3 implies that detT — T w is a
compact operator. It follows that Tyes w is a perturbation of detT" by a compact operator,
and hence T4 w 1s a Fredholm operator. By Part (iii) of the proof this implies that its
symbol does not vanish on the real line, that is, det W(t) # 0 for all t € R.

PART (v). It remains to prove the formula for the index. To do this we first
show that, without loss of generality, we may assume that the symbol W is rational.
Consider functions of the form

themiat ¢ >0
(10) re)=4 ¢ ’
agtnze~i2t ¢ < Q)

where aj, as are arbitrary complex numbers, Sa; < 0 and Sag > 0. The linear span of
functions h of the form (10) is dense in L1(R). So we can find a sequence ki,k2,... of
m x m matrix functions, kn = [(kn)i;]7=;, such that

(11) DS ki — (kadiillf >0 (> 00),

i=1 =1
and for each n the (z,7)-th entry of k,, is a finite linear combination of functions h of the

form (10). In (11) the function k;; is the (¢,7)-th entry of the kernel function k& of T
Put

(Tuo)®) = p(0) = [ kalt = S)p()ds, 120,
0
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o0
Wn(s) = Im — / e tkn(t)dt, s€eR.
—00

From (11) it follows (cf. formula (2.2)) that ||T'— Th|| — 0 if n — oo, and hence, by
Theorem 2.2

(12) sup [W(t) = Wa(t)| =0 (n — o).
teR

The special form of the entries of kn imply (see the paragraph preceding Lemma 2.5)
that the symbols Wy (), Wa(A),. .. are rational matrix functions.

Now assume that T is Fredholm (and thus det W(t) # 0 for all £ € R). Since
T, — T in the operator norm, there exists a positive integer ng such that for n > ng
the operator Ty, is Fredholm and ind T, = indT. From (12) it follows that there exists
ny > ng such that

(13) | det Wi(t) — det W(2)] < |det W(t)], teR,

for each n > n1. Note that det W(Zoo) = det Wn(Zoo) = 1 for all n. Thus (13) implies
(see the paragraph preceding the present proof) that for » > n; the curve parametrized
by

(14) t — det Wi(2), —00 St < oo,

does not pass through the origin and the winding number relative to the origin of this
curve is equal to the winding number relative to the origin of the curve parametrized by
(1). We conclude that it suffices to derive the formula for the index for the case when
the symbol is rational.

PART (vi). Assume that T is Fredholm, and let its symbol W be a rational
matrix function. In this part we shall show that it suffices to derive the formula of the
index for the case when m = 1. Again consider the representation (8). Since the symbol
is rational, Corollary 2.6 implies that the entries Tj; in (8) commute with one another
modulo the operators of finite rank. But then we can use Theorem XI.7.6 to show that
detT is Fredholm and ind T' = ind(detT).

Let Tyeyw be the Wiener-Hopf operator with symbol det W. We already
proved that detT — Tye, w is a compact operator. Thus Tyeyw is a Fredholm operator
and

ind T = ind(detT) = ind Tyeq -

Note that det W is a rational function. So it suffices to derive the formula of the index
for the case when m = 1 and W rational.

PART (vii). Now take m = 1, and let T be a Wiener-Hopf operator on
L9([0,00)) with a rational symbol w. We assume that T is a Fredholm operator (and
thus w(t) # 0 for all t € R), and we shall compute the index of T'. Write w(s) = p(s)/q(s),
where p and ¢ are scalar polynomials with no common zeros. By the continuous analogue
of the Riemann-Lebesgue lemma, w()\) — 1 if |A\] = oo, and hence the degree of p is
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equal to the degree of ¢. Furthermore, p and ¢ have no zeros on the real line, because w
has no poles on R and w(t) # 0 for ¢t € R. Let ny (resp. k+) be the number of zeros of p
(resp. ¢) in the open upper half plane, and let n_ (resp. k_) be the number of zeros of p
(resp. ¢) in the open lower half plane. Then ny +n- = kt 4 k_, and hence we may put

(15) ri= g — by = —(ne — k).
It follows that w may be factored as
. iy +y - -
A—i\T (A—al) (A—a;
(16) w(s) = (—) . H IO H TS
Ati) SO (b

where a;', b;' are in open upper half plane and a;’, b, are in the open lower half plane.
Put 7(s) = (s — a)(s — b)~! with a, b non-real, and let S, be the Wiener-Hopf operator

on Ly([0,00)) with symbol 7. From formulas (2.21) and (2.22) we see that

@) —i(b—a) e~ =9 f(s)ds, if Tb<O,
0
)

11
(17) (Sr () = o
@) +1(b—a) [ e~ ®(=3) f(s)ds, if Sb> 0.
t

Let o(A) = (A = b)(A = a)"! = ()7L, and let S; be the Wiener-Hopf operator on
Ly([0,00)) with symbol o. One obtains Sqf by interchanging a and b in the right hand
side of (17). A direct computation shows that

(18) S,S, =1, Sb<o0,
(19) Ker Sy = {ce™" | c € C}, Sb > 0.
(20) () =Sr (S0 =Sn

It follows that
n(ST) = d(ST) = 0, (C\?a)(%b) > 0,

n(S;)=0 d(S;)=1, Sa>0, Sb<O0,

n(Sy) =1, d(S;)=0, Sa <0, Sb>0.

Let xr be the winding number relative to the origin of the curve parametrized by t — 7(2).
By comparing the above formulas for n(S;) and d(Sr) with the expression (4) we see
that ind S; = —x,. From the definition of the winding number in (2) it follows that
the winding number corresponding to a product of functions is equal to the sum of the
winding numbers corresponding to the factors. So, by repeatedly using (4), we obtain
from (16) that the winding number (relative to the origin) of the curve parametrized by
t — w(t) is equal to r. Furthermore, by repeatedly applying Corollary 2.6, we see that
the index of T is the index of a product of Fredholm operators of the form S;. Since
the index of a product is the sum of the indices of the separate factors, we conclude that
indT =-r. O



CHAPTER XIII

WIENER-HOPF INTEGRAL OPERATORS WITH
RATIONAL SYMBOLS

In this chapter we study in more detail Wiener-Hopf integral operators with a
rational matrix symbol. The technique of Wiener-Hopf factorization is introduced. The
fact that the symbols are rational allows us to represent them in a special way. We use
this representation to construct explicitly the factors in a canonical Wiener-Hopf factor-
ization. In this way explicit formulas for the inverse and the Fredholm characteristics
are obtained. Also convolution operators on a finite interval are analyzed in terms of the
special representation of the symbol. An example from linear transport theory illustrates
the general theory.

XIII.1 PRELIMINARIES AND SCALAR CASE

Let W be a rational matrix function. Thus each of the entries of W is the
quotient of two polynomials. The expression “W has no poles in the set £” will mean
that none of the entries of W has a pole in Z. In that case W is analytic on =. In what
follows R *™(R) denotes the set of all rational m x m matrix functions that have no
poles on the real line and at infinity. The latter means that

(1) W(oo):= lim W(X)

A—o0
exists.

Let T be a Wiener-Hopf operator on LJ*([0,00)) with symbol W. Thus
T =1- K, where

(2) (Ke)(t) = /k(t — s)p(s)ds, 0<t< oo,
4}
(3) W) = In — / e k(t)dt.

Here k is an m x m matrix function whose entries belong to L{(R). Throughout this
chapter we assume that W is rational. This implies that W € RTZX™(R) and W(oo) =
Im. Indeed, (3) implies that W is continuous on R (and thus W has no poles on R), and,
by the continuous analogue of the Riemann-Lebesgue lemma, the limit (1) exists and is
equal to [,.

We shall use the fact that the converse statement is also true, ie, if W €
RE™(R) and W(oo) = Iy, then there exists an m x m matrix function k with entries
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in L1(R) such that (3) holds. Recall that this fact was established in the proof of Lemma
XII.2.5 by using the partial fraction expansion of the entries of W.

THEOREM 1.1. Let T be the Wiener-Hopf operator on L3}([0,00)) with
rational symbol W. Assume that W has no poles in SA > 0 (resp. S < 0) and
det W(A) # 0 for SA >0 (resp. SA < 0). Then T is invertible and T~1 is the Wiener-
Hopf operator with symbol W(-)~1.

To prove Theorem 1.1 we need the following further refinement of Theorem
XII.2.3.

PROPOSITION 1.2. Let Ty and Ty be Wiener-Hopf operators on L5*([0, 00))
with rational symbols W1 and Wy, respectively, and let T be the Wiener-Hopf operator
with symbol W, where W(s) = W1 (s)Wa(s) for all s € R. Then T = T\ T3, whenever
W1 has no poles in S\ < 0 or Wa has no poles in A > 0.

PROOF. We use the notation introduced in the proof of Theorem XII.2.3.
Assume that W7()) has no poles in A < 0. We know that W1()) has no poles on the
real line and at infinity. Thus the partial fraction expansions of the entries of Wj()) and
formula (22) in Section XII.2 tells us that

0
(4) Wi(A) = In — / e Mk ()dt,

— o0

where k1 is an m X m matrix function with entries in L1(R) and %¥1(t) = 0 for t > 0. By
definition the operator A( ) appearing in formula (24) of Section XII.2 is given by

0
(Alz e)t) = - / ki1(t — s)p(s)ds, t>0,

—0o0

and hence Aglz) = 0. But then formula (24) of Section XII.2 implies that T' = T3 T5. The
same result holds true when W2(\) has no poles in ¥\ > 0, because then the operator

Agl) in formula (24) of Section XII.2 is the zero operator. O

PROOF OF THEOREM 1.1. Our hypotheses imply that W(:)~! ¢
RTX™(R) and W(oo)™! = I;,. Thus W(-)~! is the symbol of a Wiener-Hopf opera-
tor T*, say. Note that either W(-)~! has no poles in S\ > 0 or W(-)~! has no poles
in X\ < 0. Now apply Proposition 1.2, first with W7 = W and Wy = W(-)~!, and next
with Wi = W(-)~"! and Wy = W. It follows that TT* and T*T are equal to the identity
operator on LZ*([0,00)), and hence T* =T-1. g

To show the importance of Theorem 1.1, let us restrict the attention to the
scalar case. So let T be a Wiener-Hopf operator on L4([0,00)) with a scalar rational
symbol w. Assume w(A) # 0 for A € R. In Part (vii) of the proof of Theorem XII.3.1 we
have shown (see formula (16) in Section XIL.3) that w may be represented in the form

(5) o) =) (33 ) we, AeR,
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where wy (resp. w-) is a scalar rational function with no poles and zeros in A > 0
(resp. SA <0),

w4 (o0) = )‘li_'n;owi(/\) =1,

and x is the winding number relative to the origin of the curve parametrized by w(t)
for —oo <t € co. The representation (5) is called the Wiener-Hopf factorization of w
relative to the real line. In the next theorem we write T,, for the Wiener-Hopf operator
on Ls([0, 00)) with symbol ¢.

THEOREM 1.3. Let T be the Wiener-Hopf operator on Lo([0,00)) with
scalar rational symbol w. Assume w(t) #0 for t €R, and let

oW =w-0(555) wr AeR

be the Wiener-Hopf factorization of w relative to the real line. Then T is invertible if
and only if kK =0, and in that case

T1=T 10T 1.
wy w_

Furthermore, if k > 0, then T is right invertible, d(T) = k and a right inverse of T is
given by

Tt = Tw;l SfTwzl.
If k<0, then T 1s left invertible, n(T) = —k and a left inverse of T is given by
Tt = Tw;l(SQ)—"Twzl.

Here Sy (resp. Sy) is the Wiener-Hopf operator on Lao([0,00)) with symbol (A—i)(A+1)~1
(resp. (A +9)(A =19)71).

PROOF. Because of Proposition 1.2 we may write
(6) T= Tw_TéTw+ )

where T; is the Wiener-Hopf operator on La([0, 00)) with symbol 6(A) =
[(A —4)(A +4)71]*. By Theorem 1.1 the factors T.,_ and T., are invertible operators
with inverses T _1 and T -1, respectively. Proposition 1.2 yields

- +

R T, ={ (S1)™" for k<0,

S5 for «>0.
From the formulas (18), (19) and (20) in Section XII.3 we see that
(8) 5152 =1, n(S1) =1, d(S2) = 1.
Thus S; and 53 are right and left invertible, respectively, and
(9a) n(S§) = ind(S¥) = kind(S) = &,
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(95) d(S%) = —ind(S¥) = —kind(Sy) = k,
for k =1,2,.... The equivalence relation (6) implies that T has the desired properties.
a

Theorem 1.3 provides an effective method to find the inverse of a Wiener-
Hopf operator on Ly ([0, 00)) with a scalar rational symbol. The aim of the next sections
is to apply this method (if possible) to matrix symbols. The first step is to extend the
notion of Wiener-Hopf factorization to rational matrix functions.

XI1I11.2 WIENER-HOPF FACTORIZATION

Recall that R2*™(R) is the set of all rational m x m matrix functions that
have no poles on the real line and at infinity. The following theorem is the main result
of this section.

THEOREM 2.1. Let W € RZX™(R), and assume that det W(X) # 0 for
A € RU {o0}. Then there ezist Wy, W_ in RIZ*™(R) and integers k1 < kg < - < Km

such that
_ Ki -
A—i
)

(1) W) =w-(}) (Ar;:) ’ Wi(d),  A€R,
| O

() Wy has no poles in A >0 and det W (A) # 0 for SA >0,
(Ji) W has no poles in SA <0 and det W (A) # 0 for SA L0,

(jji) det Wx(c0) # 0.

The factorization (1) is called a right Wiener-Hopf factorization of W relative
to the real line. One obtains a left Wiener-Hopf factorization if in (2) the positions of
the functions W, (A) and W_(}) are interchanged. In what follows we shall often omit
the word “right”. We shall show in the next section that the integers x1,..., £m in (1)
are uniquely determined by W; they are called the (right) factorization indices. If in
(1) all indices «j,...,Kkm are equal to zero, then (1) is said to be a (right) canonical
factorization. In general (except for the scalar case), the factors W4 and W_ are not
uniquely determined by W.

and

For a scalar rational function an explicit construction of a Wiener-Hopf fac-
torization has been given in the previous section. For the matrix case the standard
construction of the Wiener-Hopf factorization (which we shall give below) does not yield
explicit formulas for the factors W4 and W_ nor for the indices, but only an algorithm
which yields the factors and the indices in a finite number of steps. We shall come back
to this in Section 6.
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PROOF OF THEOREM 2.1. It will be convenient to pass from the real line

to the unit circle by using the Mdbius transformation

(2) ”0) =i

Put &(¢) = W(n(¢)). Then & is a rational m x m matrix function. Since 1 maps the
unit circle T onto R U {oo}, the function @ has no poles on T and det ®(¢) # 0 for all
¢ € T. We shall show that & can be factored as

¢
¢
(3) 2(¢) =2-(¢) . 24(0), KI=1,
. -
where k1 < kg £ -+ £ Ky are integers and the functions @4 and ®_ are rational m xm
matrix functions with no poles on T which have the following properties:

(i) @4+ hasno poleson |¢| £ 1 and det ®4(¢) # 0 for [(| £ 1,
(i1) ®_ has no poles on |¢| > 1 and det ®_({) # 0 for |{| > 1,
(iii) @ - has no pole at infinity and det ®_(o0) # 0.

Assume that the factorization has been established. As a map of the Riemann
sphere C U {0} into itself the Mdbius transformation 7 is bijective and the inverse map
n~1lis given by n71(\) = (A —9)(A +4)~L. Put

(4) Wa(h) = e (n7(V),  W-(N) = 3_(r71(V)).

The functions W4 and W_ have the desired properties. Indeed, 771 maps the real line
into the unit circle and 77!(c0) = 1. Thus, W4, W_ belong to RZ*™(R) and

det Wi()) = det 2+(n"1(N) #0, A €RU {co}.

Furthermore, since 7! maps the open upper half plane onto the open unit disc |[¢] < 1

and the open lower half plane onto the set |{| > 1, the conditions (j) and (jj) are also
fulfilled. The factorization (1) follows from (3) by replacing ¢ by (A — ¢)(A +4)71. So it
suffices to establish the factorization (3).

We shall refer to (3) as a (right) Wiener-Hopf factorization relative to the
circle. For a scalar rational function ¢ which has no poles and zeros on T, the factor-
ization (3) may be constructed by applying the inverse Mobius transformation ! and
the Wiener-Hopf factorization result for scalar rational functions relative to the real line,
A more direct argument goes as follows. Write ¢({) as a quotient ¢1(¢)/q2(¢) of two
polynomials which have no common zeros. Since ¢ has no poles and zeros on T, the
polynomials ¢; and ¢o have no zeros on T. Thus we may write

k+ k-~
a) =a [JA-tH [[A-1),
=1 j=1

Ay £
e =c [[O0- IO -7,
j=1

i=1
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where t}-" and T]T" are inside the unit circle and the points t]-_ and ‘rj_ are outside T. Put
k =kt — ¢+ and

T2, (¢ - 5 Ka—-¢ith
5 C = d__—_7 - C) = + ’
© O=dne ey YT
with d = ¢1/c2. Then
(6) Q) = p-(O)CFps(¢), (€T,

and the factors ¢— and ¢4 have the properties described by (1), (ii) and (iii). Thus (6)
is a Wiener-Hopf factorization of ¢ relative to the unit circle, and we are finished with
the scalar case.

Next, we consider the general case. Let ® be a rational m x m matrix function
which has no poles on T, and assume that det ®(¢) 5 0 for [{| = 1. Let ¢ be a common
multiple of all the denominators of ®. Then ®(() = Zf(lfjp(o’ where P(() is anm X m
matrix whose entries are polynomials in {. (In particular, P has no polesin || < 1.) Since
the entries of ® have no poles on T, we may assume that ¢ has no zeros on T, and hence
we know (see the previous paragraph) that the scalar rational function ¢(¢) = ¢(¢)™?
admits a Wiener-Hopf factorization relative to T:

1

=—= = e T.
Now assume that P admits 2 Wiener-Hopf factorization relative to T:
(7 P(¢) = P-(O)([¢™8;]5-1) P+(C),  CeT.

Then
B(C) = (p-(OP-(O)([¢"F™6:5]7 1) (v+(OP1(C)),  CE€T,

is a Wiener-Hopf factorization of & relative to T. So we have to prove (7). In other
words, it suffices to prove the factorization for the case when the entries of ®(() are
polynomials in .

To simplify the proof, let us say that two rational m X m matrix functions ¢4
and ®9 are (left) strictly equivalent if 1(¢) = E(()®2(¢), where E is a rational m x m
matrix function such that

(a) E has no poles on |{| > 1 and det E(¢) # 0 for |[¢| > 1,
(8) FE has no pole at infinity and det E(o0) % 0.

We have to prove that & is strictly equivalent to a function of the form
( [an ‘51]] Z}=1)¢+(C)7

where & is as in (i).
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Let ®(() be an m X m matrix whose entries are polynomials in ¢, and assume
det ®(¢) # 0 for |[(| = 1. Let 7y,...,74 be the zeros of det ®(¢{) in |{| < 1, and let
21,...,€4 be the corresponding multiplicities. We assume that r; = 0, and put {4 = 0 if
T4 is not a zero for det ®(-). Consider the j-th row of &(¢):

£5(€) = [w1(¢) - pim(Q)]:

Let p; be the minimum of the multiplicities of 71 as a zero of the polynomials
©;1(€),- - -, 0jm(C). We call p; the j-th row multiplicity of 7. Obviously, p1+---+pm <
£1. If ET:I pj < {4y, then

det[(¢ — 1) TPk (O)] T =1

is zero in ( = 71. So there exists complex numbers ¢y, ..., ¢m, not all equal to zero, such
that
m
£ =D e =m) TP (O
i=1

has a zero in 71. Choose ¢, # 0 such that p, < p; when ¢; # 0. Consider

i 1
1
EQ) = | =y cr SR (e e

] 1 |

Note that det E.({) = ¢, for ¢ # 7. Since ¢, # 0, it follows that for E = E, the
conditions (a) and (8) are fulfilled. Thus multiplication on the left by E, is a strict
equivalence operation. Observe that E,.(¢)®(() is obtained from ®(({) by replacing the
r-th row in ®(¢) by (¢ — 7 )Pr f(¢). This implies that the entries of E.(¢)®(() are again

polynomials. From

det (E-(¢)®(¢)) = cr det (), ¢ # 1,

we may conclude that in [{| < 1 the zeros of det(E-(()®(¢)) coincide with those of
det ®(¢), multiplicities taken into account. Now, let p1, ..., Pm be the row multiplicities
of E-(¢()®(¢) for 71. Then p; = p; for j # r and pr > pr + 1. Thus (apply a number
of strict equivalence operations if necessary) we may assume that the sum of the row
multiplicities for 7 is equal to £;.

So, assume that E;"zl p; = £1. Consider

(C_Er_l)Pl 0
F(() =
0 (C__CT_I)Pm
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Multiplication on the left by F(¢) is a strict equivalence operation. Put &;({) =
F(¢)®(¢). Then the entries ®;(¢) are polynomials. Moreover, in || < 1 the func-
tion det ®1(¢) has zeros in 79,..., 7 with multiplicities £3,...,£4-1,44 + £1. Now apply
an induction argument. It follows that after a finite number of strict equivalence opera-
tions we may reduce the factorization problem to the case where the entries of $(¢) are
polynomials, det ®(¢) has only a zero in the origin and the sum of the row multiplicities
for 0 is equal to the multiplicity of 0 as a zero of det ®(¢). But this case is easy to treat.
Indeed, put

(T 0
(TR
.(0) = . 2(¢),
0 (Trm
where k1,...,km are the row multiplicities for 0 of the rows in ®#(¢). Then the entries

of ®4+(¢) are polynomials and det ®4(¢) = ¢~¢det $(¢), where £ = Z;nzl xj. Thus
det @(¢) # 0 for |¢| £ 1 and

®(¢) = ([¢¥6i5)521)8+(C),  CET,

is a Wiener-Hopf factorization relative to T. Note that by reordering the rows in the
diagonal term (which is a strict equivalence operation), we may assume that k1 < kg <
e S Km- m]

From the properties of the factors in (1) it is clear that the condition
“det W(A) # Ofor A € RU{co}” in Theorem 2.1 is a necessary condition for the existence
of a Wiener-Hopf factorization relative to the real line.

XII1.3 INVERSION AND FREDHOLM CHARACTERISTICS

The results of this section may be viewed as the matrix analogue of Theorem
1.3. We shall prove the following two theorems.

THEOREM 3.1. Let T be a Wiener-Hopf operator on LJ*([0,00)) with a
rational symbol W. Then T is invertible if and only if

(1) det W(A) # 0 for all A€ R,
(ii) W admits a (right) canonical factorization relative to the real line.

In that case the inverse of T i3 obtained in the following way. Construct a right canonical
factorization W(A) = W_(AN)W4(A), A € R, and choose m X m matriz function v_ and
Y+ with entries in L1(R) such that

0
(1a) W_(\)! = I + / eMty_(t)dt,
(1b) Wi N =Im + /ei’\t7+(t)dt.

0



240 XII1.3 INVERSION AND FREDHOLM CHARACTERISTICS

Then
(2) (T-19)(t) = B(t) + 77@, Sy(s)ds,  t20,
where 0
et — ) + jmt —a)y-(a—s)da, 0<s<t<oo,
(3 At =

¢
y-(t—38)+ [v+(t —a)y—(a —s)da, 0<t<s<oco.
0

THEOREM 3.2. Let T be a Wiener-Hopf operator on LT*([0,00)) with a
rational symbol. Assume that det W(X) # 0 for all X € R, and let

(4) W) = W.(A)([&kj (i :L :)Nj]:jzl)w+(x), X €R,

be a Wiener-Hopf factorization of W relative to the real line. Then T is a Fredholm
operator

(5) n(T)= Y —rj  dT)= ) &j

x; <0 k; 20
and a generalized inverse of T is given by the operator

- —K1 -
SZ

Sy
I
(6) T =V Va,

K-a+1
Sl

Km
i Sem |

where Vi and Va are the Wiener-Hopf operators on LT*([0,00)) with symbols Wy (-)~!
and W_(-)"1, respectively, Sy and Sy are the Wiener-Hopf operators on Lo([0,0))
defined by

M (S1f)(E) = f() —2 / eI f(s)ds, £ 0,
t
t

(8) (S2)(t) = f(2) — 2 / etf(s)ds,  £30,

4
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the numbers ky1,...,x, are the negative factorization indices, Ks41,...,5m are the pos-
itive factorization indices, and the unspecified eniries of the m x m operator matriz in
(6) are zero.

Theorem 3.1 will appear as a corollary of Theorem 3.2. Therefore we begin
with the proof of the latter theorem.

PROOF OF THEOREM 3.2. Let T} and T be the Wiener-Hopf operators
with symbols Wy and W_, respectively, and let Tp be the Wiener-Hopf operator with
symbol D(A) = [8x;(355)™ ] 4=+ By Proposition 1.2
(9) T =TTpTh.

From Theorem 1.1 we know that 73 and T% are invertible operators, Tl—l = V7 and
T2_l = Vs, where V] and V; are as in the theorem. So to find the Fredholm properties
of T' we have to analyze the operator Tp.

The symbol of the Wiener-Hopf operator Sg, defined in (8), is equal to 7(A) =
(A —4)(A +14)"1, and S is the Wiener-Hopf operator with symbol () = 7(A)~!. So
we may apply formulas (8) and (9) in Section 1 to show that S; and S are Fredholm
operators and

(10a) n(SK)=k  d(SF)=0, indSf=rk,
(105) n(SH) =0, dSH=k  indSE=—k,
for k =1,2,... . Now Tp is the m x m diagonal operator matrix

diag(S7™, ..., ST I,..., I, 55°* ... S5m).

From (10a) and (10b) it follows that Tp is a Fredholm operator and

r

(11) n(Tp)=Y -rj  dTp)= D =j.

j=1 j=s+1

The equivalence relation (9) implies that T is a Fredholm operator, n(T) = n(Tp) and
d(T) = d(Tp), which yields (8). From S1S2 = I it follows that operator defined by
the diagonal matrix in the right hand side of (6) is a generalized inverse of Tp. Since
Vi = Tl_l and V3 = T, %, we conclude that (6) defines a generalized inverse of T. ©

PROOF OF THEOREM 3.1. Assume that T is invertible. In particular, T'
is Fredholm, and thus Theorem XII.3.1 implies that condition (i) is fulfilled, and hence,
by Theorem 2.1, the symbol W admits a Wiener-Hopf factorization as in (4). Since T is
invertible, n(T) = d(T) = 0. But then formula (5) implies that all the indices x; in (4)
must be zero, and the factorization is a canonical one, which proves (ii). '

Conversely, assume (i) and (ii) hold. Then W admits a factorization as in
(4) with x; = 0 for j = 1,...,m. Thus Theorem 3.2 implies that T is invertible and
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T-1 = V1 Vs, where V; and V, are the Wiener-Hopf operators with symbols W.(-)~}
and W_(-)"1, respectively. Since Wy (A)~! has no poles in SA > 0, we know (see the
proof of Proposition 1.2) that (1b) holds for some m x m matrix function 4 with entries
in L (R). It follows that

t
(Vo)) =9(O) + [ 7t = b(a)ds, £z 0.
0

Similarly,
(Vap)(t) = ¥(t) + /7_(7.‘ — 8)Y(s)ds, t>0,
t

where v_ is as in (1a). We may assume that v4(¢) = 0 for ¢ < 0 and v—(t) =0 for ¢t > 0.
It follows that

(V1Va)(t) = (Va) () + [ 7+(t — a)(Vay)(a)da

= (1) + / y—(t — syb(s)ds + / i (t = a)p(e)da
0 0

+ '707_,_(1: - a) ('707_ (a — s)z/)(s)ds) do.
0 0

By Fubini’s theorem the order of the integrals in the last term may be interchanged.
This yields

(T~1y)(t) = (Vi Vaw)(2)

o0

t
= 90)+ [r-(t = ype)ds + [ ralt = syu(s)ds
t 0

min(t,s)

+ 7( / it — a)y—(a — s)da) (s)ds,
0 0

which proves (2) and (3). O

Formula (5) can be used to prove that the factorization indices are uniquely
determined by W. Indeed, let

W) = W-<A)([6k,-(*‘i)nj]m Jm, aew,

A+ k,j=1

be a Wiener-Hopf factorization of W relative to the real line. Put

W,(\) = (i ;Z) —yW(/\).
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Note that K; = k; — v, j = 1,...,m, are the factorization indices for W,. Let T, be the
Wiener-Hopf operator on L*([0, 00)) with symbol Wy, and apply the second identity in
(5) to T, and T, 41. One obtains that

dT)—dT4)= . (5j—v)— Y (kj—v=1)

Kj—r2>0 Kj—v—120

= Z (kj—v) - Z (kj—v—1)
Kj—v>1 Kj=-v2>1

= Z 1=#{j|nj211+1}.
rj—v2>1

It follows that
#{.7 | Ky = v} = d(Tu—l) - 2d(Tu) + d(T,_,+1),
which shows that the factorization indices are uniquely determined by W.

To make Theorem 3.1 an effective tool for the inversion of Wiener-Hopf oper-
ators one has to compute explicitly the inverse Fourier transforms in (1la) and {1b). The
special representation that will be introduced in the next section, provides a solution for
this problem.

XII1.4 INTERMEZZO ABOUT REALIZATION

In this section we show that the matrix functions in RZ*™(R) admit a special
representation.

THEOREM 4.1. A rational m x m matriz function W with no poles on the
real line and at infinity admits the following representation
(1) W) =D+CA-A)"'B, )reR.
Here A i3 a square matriz of size n X n, say, and A has no real eigenvalue, B and C
are matrices of size n x m and m x n, respectively, and D = W(o0).

PROOF. Let Aq,...,Ap be the poles (of the entries) of W. Fix 1 < j < p,
and consider the Laurent series expansion of W in a punctured neighbourhood of A;:

o
W)= Y (A=X)45,.
v=—g;
Introduce the following block matrices
Al T
j A
. Jr—l
PYTEN | Aj
N] = . , QJ - . )
AL T
/\jI 7,—4;



244 XIII.4 INTERMEZZO ABOUT REALIZATION

Here I denotes the m x m identity matrix, the blanks in N; stand for zero entries,
and N; has (block) size g; x g;. The matrix A — Nj is invertible for A # A;, and
W(A) — Rj(A — N;)~1Q; is analytic in Aj. We carry out this construction for each j,
and define

Ny @1
N Q2
A= L . B=| |,
Np @p
C=[R Ry - Ryl
Note that A is a block diagonal matrix with diagonal elements N1, Na,..., Np. So the
eigenvalues of A are precisely the poles Ay,...,Ap. In particular, A has no eigenvalues

on the real line. From

p
CA-A)"'B= ZR]-(/\ - Nj)™'Qj,
i=1

we conclude that V(A): = W()\) = C(A — A)"1B is analytic in A on the entire complex
plane. Furthermore,

Jim V(3) = W(o).

Liouville's theorem for entire functions implies that V() is identically equal to D =
W (c0), which yields the representation (1). O

If W is as in (1), then we shall say that W is in realized form, and we shall
call the right hand side of (1) a realization of W. Note that for W € RZ*™(R) the
matrix A in a realization of W has no real eigenvalue by definition.

In what follows we identify a p X ¢ matrix with the linear transformation from
C? into CP defined by the canonical action of the matrix relative to the standard bases

in C? and CP. In particular, the matrix A appearing in (1) will be viewed as an operator
on C".

The next theorem shows how realizations may be used to construct inverse
Fourier transforms.

THEOREM 4.2. Let W € RX™(R), and let W(A) = D + C(\ — A)"1B,
A € R, be a realization. Then

(2a) W(\) =D — / M k(1) dt

with

iCe~#A(I = P)B, >0,

(26) k(t) = .
© ~iCe~#APB, t <0,
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where P 13 the Riesz projection of A corresponding to the eigenvalues in the upper half
plane.

PROOF. It suffices to show that for A not an eigenvalue of 4 the following
identity holds:

Sy . .
—if eMe=itAzdt g € Ker P,
— 0
(3) A-4) o= o ..
i f eiMe=itAzdt  z €ImP.

—_0

To prove (3) take z € Ker P. Put A; = A|Ker P. Note —1A4; has all its eigenvalues in
the open left half plane. Thus e~4z = e~#413 is exponentially decaying (see Section
1.5). Furthermore,

—(j—t(ei(’\_A)t:c) =1(\ — A)ei(’\'A)t:c.

It follows that

(A—A)(i

o0
ei,\te—imxdt) _ /(ei(z\—A)tz)ldt .
0

which proves the part of (3) connected with Ker P. For z € Im P a similar argument can
be used. D

XIII.5 INVERSION OF CONVOLUTION OPERATORS

In this section I — L is a convolution operator on LJ*(R) with a rational
symbol W. Recall that W has no poles on the real line and

W(oo): = /\li’rx;o W(A) = Iy,

and so, by Theorem 4.1, the symbol W admits a realization
(1) W) =I+C(A—A)"1B, A€ER.

Our aim is to describe the inversion of I — L in terms of the matrices A, B and C.

THEOREM 5.1. Let I—L be a convolution operator on LT*(R) with a rational
symbol W, and let (1) be a given realization of W. Then I — L is invertible if and only
if the matriz A*:= A — BC has no real eigenvalue. In that case

(2) (=D =v®- [ FE-sp()ds,  teR

with

3) () = { .—iCe.“":‘x(I—PX)B, t>0,
iCemitA* px B, 1 <0,
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where P* i3 the Riesz projection of AX corresponding to the eigenvalues in the upper
half plane.

For the proof of Theorem 4.1 we need the following lemma.

LEMMA 5.2. Let W be as in (1). Then det W(A) # 0 for all A € R if and
only if AX:= A — BC has no real eigenvalue, and in that case
(4) W) 1=I-Cc(—-4%)"1B, AeR.

PROOF. By Corollary VII.6.2

det W()\) = det[] + C(A — A)~1B]
= det[I + (A — A)71BC]
= det[(A — A)71(\ — 4%)]
_ det(\ — AX)

_detr A7) R.
deth =4y’ €

Thus if A € R, then det W()\) # 0 if and only if X is not an eigenvalue of A*.

Next, assume that det(A — 4% ) # 0, and let us solve the equation W(A)z = y.
Introduce a new unknown by setting z = (A~ A)~!Bz. Then given y we have to compute
z from

(5)

Az = Az + Bz,
y=Cz+z.

This is easy. Apply B to the second equation in (5) and subtract the result from the first
equation in (5). This yields the following equivalent system:

Az = AXz + By,
z=-Cz+y.

Hence z = (A — AX)~1By, and
WA ly=z=y—-C(A—A%) 1By,

which proves (4). O

PROOF OF THEOREM 5.1. By Theorem XIL.1.4 the operator I — L is
invertibleif and only if det W(X) # 0 for all A € R, and, by the previous lemma, the latter
condition is equivalent to the requirement that AX:= A — BC has no real eigenvalue.
From Theorem XII.1.4 we also know that in that case the inverse of I — L is given by (2)
with £* uniquely determined by

o0
WOy = I, — / dMEX(1)d,  A€R.

—00
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Since W(/\)‘1 has the realization (4) we can apply Theorem 4.2 to get the expression
(3) for k*. O

The following lemma will be used in the next section.
LEMMA 5.3. Let W be as in (1), and assume that det W(A) # O for all
A€ER. Put AX =A— BC. Then for AER
CA=-a%"t=wn e -4
(A ~A%)"1B= (- 4)"1BWO)?,
A=A T=0-A)"1-0 -4 1BwO) e - 4L

PROQF. From Lemma 5.2 we know that A — AX is invertible for each A € R.
The desired formulas follow by a direct computation, using (4) and the identity

(6) BC=A-A*=(M-A")—(A—A4). O

XI1II.6 EXPLICIT CANONICAL FACTORIZATION

This section concerns explicit factorization in terms of a given realization.
We begin with canonical factorization.

THEOREM 6.1. Let W be a rational m x m matriz function without poles
on the real line and at infinity, and let W be given in realized form:
(1) W) =D+C(A-A4)71B, AeR
Let n be order of the matriz A. Then W admits a right canonical factorization relative
to the real line if and only if

(i) D is invertible and AX:= A — BD™1C has no real eigenvalues,

(ii) C™ = Im P @ Ker P*.

Here P and P> are the Riesz projections of A and A>, respectively, corresponding to
the eigenvalues in the upper half plane. If conditions (i) and (ii) are fulfilled, then a right
canonical factorization W(A) = W_(A)W4(A), A € R, s obtained by taking

(2) W_(\)=D+C(A-A)"}(I-MB, Xe€R,

(3) Wi\ =I+D7ICI(A—A)"'B, A€R,

(4) wW_(A\)"l=D"l_Dp lcI-m(-4*)"1BD"!,  )eR,
(5) Wi(M\)l=I-D7lc(A—A%)"IB, )A€R,

where II is the projection of C™ along Im P onto Ker PX,
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PROOF. We know (see the last paragraph of Section 2) that the condition
“det W(A) # 0 for all A € RU {oc}” is a necessary condition for the existence of a
canonical factorization. Thus in order that W admits such a factorization, the matrix
D = W{(co) must be invertible and, by applying Lemma 5.2 to

(6) V(\):=D7IW(\) = In + D~1C(A — A)7!B, ) €ER,

one sees that AX:= 4 — BD~1C cannot have a real eigenvalue. Thus condition (i) is
fulfilled whenever W admits a canonical factorization.

Assume that conditions (i) and (ii) hold true. Write A, B, C and A* as
operator matrices relative to the decomposition in (ii):

(1) A=| 41 A2 |1 p g Ker PX o Im P @ Ker P,
(8) B = [gl ]:Cm—>ImP®KerPx,
2
(9) C=[C; C3):ImP&KerP*—CTm,
X
(10) AX = [ ﬁ}} on ]:IrnPGBKerP>< — Im P @ Ker P*.
21 22

The zeros in the left lower corner of the matrix in (7) and in the right upper corner of
the matrix in (10) are justified by the fact that Im P is invariant under A and Ker P* is
invariant under AX. From AX = A — BD~1C it follows that

(11) A;2 = B1D71C,;,  AY =-ByD7'Cy,

(12) Afl = Ay ~- BlD_lcl, A;2 = Agg — BgD_1C2.

Let W_ and Wi be the matrix functions defined by (2) and (3), respectively. By using
the block matrix representations (7)—(9) we may rewrite W_ and W, in the following
form:

(13) W_(A)=D+Ci(A—An)"'B;, AER,

(14) Wi(A) =I+D71Cy(A - A22)"'Ba, AER.

From (7) and the first identity in (11) one sees that

~ -1
W_(AWW4(\) =D+[Cy ¢ ]| 7 A ~BD 102] [Bl]

0 A~ Az By
=D+C(A-A)"B=W(\), JAe€eR,
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which gives us the desired factorization.

Recall that A has no eigenvalues on the real line. Since Im P is the maximal
A-invariant subspace M of C" such that A|M has all its eigenvalues in the open upper
half plane, the matrix A1 has all its eigenvalues in the open upper half plane and 422 has
all its eigenvalues in the open lower half plane. A similar argument applied to A* shows
that A%, has all its eigenvalues in the open lower half plane and A} has all its eigenvalues
in the open upper half plane. In particular, Ai‘l and A;‘z have no real eigenvalues. But
then we can use the identities in (12) and Lemma 5.2 to conclude that

(15) w-(\)"!'=D"1-D7lCi (M- A})7IB1D7L,  X€R,

(16) Wi\t =I-D71Cy(A - A4%)71B;, MeR.

To get (15) from (13) one applies Lemma 5.2 to D™1W_()). From the location of the
eigenvalues of Aj1, A2, A} and A%, it is now clear that the conditions (j)-(jjj) in
Theorem 2.1 are fulfilled. Thus our factorization W(\) = W_(A)W4(A), A € R, is a
right canonical factorization. The formulas (4) and (5) follow from (15) and (16), the
block matrix representations (8)-(10), and the definition of the projection II.

Next, we consider the converse. Assume that W admits a right canonical
factorization relative to the real line:

(17) W) = Wo(MWe()), AeR.

We already know that this implies (i). So we have to prove (ii). Take ¢ € Im PNKer P*,
and put

- (N =CA-A)71z, o (V) =D71C(A-4%)"1z (A eR).

Since z € Im P, the function ¢— has an analytic continuation to the closed lower half
plane SA €0, and £ € Ker P* implies that ¢4 has an analytic continuation to SA > 0.
Note that W(A)@+()) = ¢—(A), A € R, because of Lemma 5.3 (applied to D~1W(})).
It follows (use the factorization (17)) that

(18) Wi(Nps(N) = Wo(Nlp-(3),  AeR.

Now employ the properties of the factors W_ and W4 and Liouville’s theorem. We
obtain that both terms in (18) are identically zero, and thus ¢_(A) = 0 for all A € R.
But then we can apply the third identity in Lemma 5.3 to show that

(19) A=Az =(A-4)" 1z

holds for all A € R and hence also for all A outside the eigenvalue sets of A and A%. Take
a contour I' in the open upper half plane such that the eigenvalues of 4 and AX in the
open upper half plane are inside I'. Integrating (19) over I yields 0 = P*z = Pz = z.
Thus Im P N Ker P* = (0).
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We proceed by showing that C* = Im P + Ker P*. Take y € C" such that
y L (Im P + Ker P*). Let y* be the row vector of which the j-th entry is equal to the
complex conjugate of the j-th entry of y (f = 1,...,m). Put

$-(N) =y* (A= 2)7BD7Y, g (N =y"(A-A)'B  (AeR).

Since y*P = 0, we have 1+()) = y*(A — A)~1(I — P)B, and hence ¥4 has an analytic
continuation to A > 0. From y*(I — P*) = 0 it follows that %_ has an analytic
continuation to A < 0. Lemma 5.3 (applied to D~1W())) implies that ¥_(A)W(X) =
¥+(A), A € R, and hence we can use the same arguments as in the preceding paragraph
to show that y = 0. The equality in (ii) is now proved. O

Let W be as in (1). From the remark made in the first paragraph of the proof
of Theorem 6.1 one may deduce that W admits a Wiener-Hopf factorization relative to
the real line if and only if D is invertible and A*:= A — BD~1C has no real eigenvalue.
Let us assume that these conditions are fulfilled. Then, as for canonical factorization, one
can describe explicitly the factors in a Wiener-Hopf factorization of W in terms of the
matrices A, B, C and D appearing in the realization (1). Also the factorization indices
may be expressed in terms of these matrices. The formulas for the factors are more
complex than in the case of canonical factorization and we shall not give them here. To
obtain the factorization indices in terms of the realization (1) we proceed as follows. Put
M =Im P and M* = Ker P*, where P and P* are the Riesz projections of A and A%,
respectively, corresponding to the eigenvalues in the upper half plane. Then there are

precisely ¢ negative factorization indices 1, ..., k¢ and precisely s positive factorization
indices #K341,...,Kt+s, where
. MnM* . M+M*+ImB
t = dim , s = dim
MnM*XNKeC M+ MX*

Furthermore, these factorization indices are given by

'c]=_#{V21,dlm(KU—1/KV)Z]}3 j=1a"'vty

kj=#{v>1|dim(H,/H,1)>s+t—j+1}, j=t+1,...,t+s,
where
K,=MnM*nKerCn---NKerCA” "1, v>1
H =M+M*+ImB+---+ImA”"1B, v>1
Ko=MnM*, Hy=M+ M*.

For these and related results we refer to Bart-Gohberg-Kaashoek [5].

XIII.7 EXPLICIT INVERSION

In this section the factorization formulas derived in the previous section are
applied to construct explicitly the inverse of a Wiener-Hopf operator on LF*([0, 00)) with
a rational (matrix) symbol. The necessary and sufficient conditions for invertibility and
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the formula for the inverse are expressed explicitly in terms of the data appearing in a
realization of the symbol. Recall that a rational symbol W belongs to the class RZ*™(R)
and W(oo) = I, the m x m identity matrix.

THEOREM 7.1. Let T be a Wiener-Hopf operator on LJ*([0,00)) with a
rational symbol W given in realized form:

(1) W) =In+COA—-A4)"!B, JleR.

Let n be the order of the matriz A, and put A* = A — BC. Then T is invertible if and
only if A* has no real eigenvalue and

(2) C" = Im P @ Ker P*,

where P and P* are the Riesz projections of A and A, respectively, corresponding to
the eigenvalues in the upper half plane. In that case,

[ee]
(3) u“wMﬂ=wﬂ+/vw@w@a, £20,
0
with
@ (t,9) iCe” A [IeisAX B 0<s<t<oo,
Y(L,8) = . i
—iCe~tAX ([ —M)e®A™ B, 0<t < s < oo.

Here 11 is the projection of C" along Im P onto Ker P*.

PROOF. Theorems 3.1 and 6.1 imply that T is invertibleif and only if A* has
no real eigenvalue and (2) holds. Assume that the latter two conditions are satisfied. We
have to construct the inverse of T. Again we apply Theorems 3.1 and 6.1. By Theorem

6.1 (which we apply with D = I) the symbol W admits a right canonical factorization
W(A) = W_(A)W4()), X € R, with

W_(A\)"! =In-CI -I)(A - A*)" 1B, ) €R,

Wi\ =L, -CA=-A%)"IB, XeR.

To construct T—! we have to compute the inverse Fourier transforms of W_(-)~! and
W4(-)~1. To do this we use Theorem 4.2. Note that (I — II)P* = —II and PXII = 0.
It follows that

0
m@ﬂ=m+/a%4w,
—0o0

[ee]

Wi\ =Im + /Ci’\t‘7+(t)dt,
0
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where
(5) y_(t) = —iC(I-Me#4*B,  t<0,
(6) i (t) =iCe™#AXTIB,  t>0.

To compute the kernel v in (3) we shall apply formula (3.3). Since Im P is invariant under
A and Ker P* under A%, we have ITIA(I —1I) = 0 and IIA* (I —II) = IA* — A*II, and
thus

) IBC(I — ) = TI(A — AX)(I —I) = AXTI — TAX.

It follows that

%(c"a“‘x He_ian) = jeixAX (A*TI — HAx)e_ian

= ie'*A* IBC(I — M)e~ 4™
and hence for 0 < s <t < o0

3

Y(t,s) = 4t — ) + / 74 (t = a)y— (o — s)da
0

3

= 74 (t — s) — iCe™ 4% (/ i AN IBC (I — M)e~ A% da) 4" B

=iCe AT [I4™ B
A similar calculation yields the desired expression for y(¢,s) when 0 <t < s<oo. O

XIII.8 KERNEL, IMAGE AND GENERALIZED INVERSE

In this section we use the realization approach to derive explicit formulas for
the Fredholm characteristics and a generalized inverse of a Wiener-Hopf operator.

THEOREM 8.1. Let T be a Wiener-Hopf operator on LF({0,00)) with

rational symbol W given in realized form:
(1) W) =In+C(A-A4)"'B, XeR.

Let n be the order of the matriz A, and put AX = A~ BC. Then T is a Fredholm
operator if and only if A* has no real eigenvalue. Nezt assume that the latter condition
holds, and let P and P* be the Riesz projection of A and AX, respectively, corresponding
to the eigenvalues in the upper half plane. Then

(2) KerT = {¢ € LT ([0,00)) | p(t) = Ce™ 4"z, z € Im P N Ker P*},



CHAPTER XIIIl. WIENER-HOPF INTEGRAL OPERATORS WITH RATIONAL SYMBOLS 253

[e o]
(3) ImT = {¢ € Lgn([o,oo))/PxefsA‘B¢(s)ds € ImP +KerPX},
[}
X : Cn
(5) ind(T) = rank P — rank P>,
and a generalized inverse of T in the weak sense 1s given by the operator
[e o]
®) (@0 =00 + [Tt beds,  t20,
0
with
- iCe=tAX ([ ~T)e'*4* B, 0<s<t< oo,
(M 7(t,9) ={ X e ax
—iCe A [[e19A* B, 0<t<s < oo.

Here I = P* + (I = PX)S*T P>, where St is a generalized inverse of the operator
(8) S:Im P — Im P*, Sz =P*z (z€lmP).

PROOF. From Theorem XII.3.1 we know that T is Fredholm if and only if
det W(A) # 0 for each A € R. According to Lemma 5.2 the latter condition is equivalent
to the requirement that A* has no real eigenvalue. This proves the first part of the
theorem.

In what follows we assume that A* has no real eigenvalue. Formulas (2)-(6)
can be proved by using Theorem 3.2 and explicit formulas for the factors in the Wiener-
Hopf factorization (3.4). In particular, one may derive (4) and (5) from formula (3.5)
and the formulas for the factorization indices x; given at the end of Section 6. We shall
follow a different route and employ matricial coupling (see Section II1.4). We shall show
that the Wiener-Hopf operator T and the finite dimensional operator S defined by (8)
are matricially coupled. More precisely, the following coupling relation holds:

© T vt _[T* UX
R Q " | R S |-
Here
U:Im P* — LT[0, 00)), (Uz)(t) = iCe "A(I - P)z,
U*:Im P — L3([0, 0)), (UXz)(t) =iCe™ A (I — P¥)z,
oo .
R: L7 ([0,00)) — Im P, Ry = — of Pei$ABo(s)ds,
oo . x
R*: L3Y([0,00)) — Im PX, R*p = of PXeisA% Boy(s)ds,

Q:Im P* — Im P, Qz = Px,
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and T is the Wiener-Hopf operator on LJ*([0,00)) with symbol W(-)~1.

To prove (9) we have to verify (8) identities. Here we shall establish four of
them, namely

(10) TT* + UR* = Ipm((0,00))
(11) RT* + QR* =0,

(12) TU* +US =0,

(13) RU* + QS = It p.

The other four identities can be obtained by interchanging the roles of W(-) and W(-)~1.

It will be convenient to consider the convolution operators I —L and I—L* on LT*(R) with

symbols W(-) and W(-)~}, respectively. With respect to the decomposition LJ*(R) =
7([0,00)) ® LF*((—00,0]), we may write I — L and I — L™ in the following form

I—L=[T H}, I_sz[f_rx *}'

* ok HX =

From Theorem XII.1.4 we know that (I — L)™' = I — L*. Thus to prove (10) it suffices
to show that HH* = UR*. Take ¢ € L*([0,00)). According to Theorem 5.1

(o)
(H*)(t) = —iCe™itA™ /PxeiSAchp(s)ds
0

= —iCe #AYRXy ¢t <O

It follows (cf. Theorem 4.2) that

0
(HH*@)(t) = —iCe 4 / (I — P)e*AB(H*)(s)ds

— o0

0
= i[U(/(I— P)eiSABCe‘iSAxP"ds>R"cp] (), t>0.
— o0
From
(14) %(eisAe—isAx) — ieiSABCC—iSAx,

we conclude that

0
; / (I — P)e*ABCe™ 4% PXds = (I — P)P*,

—o0

and thus HH* p = U(I — P)P* R* = UR*, which proves (10).
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To prove (11), note that all operators involved are bounded linear operators.
Hence it suffices to establish (11) on a dense subset of L7*([0,00)). We take as dense
subset the set of all C™-valued continuous functions on [0,00) with compact support.
Let ¢ be such a function. We have

(T*p)(t) = @(t) +iCe A% (I — PX)py(t) —iCe A" PXpp(t), >0

b

where
t
p1(t) = /(I — PX)e* A" By(s)ds, t>0,

0
=]

pa(t) = /Pxei"Athp(s)ds, t>0.
t

Note that ¢ and ¢ are differentiable. This allows us to use partial integration and to
show that

o0

- i/PefsABce—fsA*(I — PX)p1(s)ds
0
o0
=— / (PeisAe;isAx(I - Px))'tpl(s)ds
0
[o ] ° .
= —Pel*Ae9A% (1 _ PXYoi(s) | + / PeisAe=isAX (1 _ pX)o! (5)ds
0 0
[o o]
= / Pei*A(I — P*)By(s)ds.
0

A similar calculation yields

oo
1 / P4 BCe 4% PX (0 (s)ds
0

[ o]
. . oo .
= PeisAe=isAX pX0(s) | +/Pe"’APthp(s)ds
0
0

[ o] [ o]
= —P/PxeiSAthp(s)ds +/Pei8APthp(s)ds
0 0

o0
=—-QR*p + /PeiSAPthp(s).
0
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It follows that

oo
RT*y = Ry + /Pei’A(I — PX)By(s)ds — QR ¢
0

+ PeisAPchp(s)ds = —-QR*yp,

which proves (11).
Next, observe that

t
i/(.r _ P)eisABCe=iA% (I = PX)ds = (I — P)eitAe=A ([ — PX) _ (I = P)(I = PX),
0

(o o]
i/Pef’ABce—“A"(I — PX)ds = —PeitAeA% (1 — PX),

i
Take z € Im P. Then (I - P)(I—P*)z = —(I — P)P*z and the two preceding identities
yield:

(TU*z)(t) = (UXz)(t) —iC(I = P)e” 4% (I — P*)z
+iCe A1 — P)(I — P*)z — iCPe~#4(I — P*)z
= —iCe™A(] — P)P*z

—(US=z)(t), t20,

and (12) is proved. For z € Im P we also have

oo
RU*z = —i/Pe"ABce—*'sAx(I —~ PX)zds
0

— _PeisAe—isAx(I_ PX)

=)
|
0

=P(I—-P*)z = -QSz +z,

which proves (13).

The coupling relation (9) is now proved, and thus we can apply the results of
Section 111.4. By Corollary I11.4.3

(15) KerT = {p | =U*z,z € Ker S},
(16) ImT = { | R*% € Im S).
(17) n(T) = n(S), d(T) = d(S).
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Note that Ker S = Im P N Ker P* and
(18) P*XzeImS < z€IlmP +Ker P*.

With these remarks we have proved (2), (3) and the first identity in (4). To prove the
second identity in (4) one uses that

cr
— A3 X = 1 —_—
(19) d(S) = dim[Im P*/Im S] d1mI P TR PX

From (17) and the definition of S it follows that
n(T) = rank P — rank S, d(T) = rank P* — rank S,
and thus ind(7T) is given by (5). Finally, let ST be a generalized inverse of S. Put
Tt =T* -U*StTRX.
Then, by using (9),
TTHT = TT*T — (TUX)ST(R*T)
=TT*T - USS*TSR
=TT*T -USR
=TT*T+UR*T =T,

which shows that TF is a generalized inverse of T' in the weak sense. We know that the
action of T* is given by

(TX$)(t) = $(t) - / BX(t = s)p(s)ds, >0,
0

where k* is the kernel given by formula (5.3). Since
o<
(UXSTRXp)(t) = /iCe'itAx(I — PX)§tPXe A% By(s)ds, t 20,
0
we see that the action of Tt is given by (6) and (7). o

From Ker S = Im P N Ker P* and (19) it follows that S is invertible if and
only if C* = Im P @ Ker P*. In that case the operator T't, given by (6) and (7), is
the inverse of T and II is the projection of C™ onto Im P along Ker P*. 1t follows that
Theorem 8.1 contains Theorem 7.1 as a special case.

XIII.9 AN EXAMPLE FROM TRANSPORT THEORY (1)

In this section we apply the theory of Wiener-Hopf operators developed in
the present chapter to solve a finite dimensional version of a linear transport equation.
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Transport theory concerns the mathematical analysis of equations that de-
scribe transport phenomena in matter, e.g., a flow of electrons through a metal strip
or radiative transfer in a stellar atmosphere. Always these phenomena concern the mi-
gration of particles in a medium. Collision of the particles may result in absorption
or production of new particles. For a homogeneous medium and without interaction be-
tween the particles, the mathematical equation describing a stationary transport problem
is an integro-differential equation of the following form

1
(1) Wop )+ 0(e) = [Ku ), —1<pgl.
21

This equation is a balance equation. The unknown function ¥ is a density function
related to the (expected) number of particles in an infinitesimal volume element. The
right hand side of (1) describes the effect of the collisions. The function k, which is called
the scattering function, is assumed to be real symmetric. The variable x is the cosine of
the scattering angle and therefore —1 < p < 1. The variable ¢ is not a time variable, but
a position variable (sometimes referred to as the optical depth).

In this section we assume that the medium is semi-infinite, and hence the
position variable runs over the interval 0 < ¢t < oo. Since the density of the incoming
particles is known, the values of ¥(0, ) are known for 0 < p < 1. It follows that equation
(1) appears with the following boundary condition:

(2) Y(0,u) = <p+(:u')’ O<p<l,

where ¢4 is a given function on [0,1]. There is also a boundary condition at infinity
which is often stated as an integrability condition on the solution 1. Equation (1) with
0 £t < oo and the boundary condition (2) is called the half range problem.

In this section we consider a finite dimensional version of the half range
problem. We assume that scattering occurs in a finite number of directions only. This
assumption reduces the equation (1) and the boundary condition (2) to

n

0
- b G o)+ (65) = 32 K o ol )

j=1y"'7na Ost<00,

(4) bt pi) = e+(#i) p; >0

To deal with the latter version of the half range problem, introduce the C™-valued vector
function

Y(t, p1)
P(t) = : , 0=t <o,
d)(ty ,U.n)
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and the matrices
T=(u;8) ka1, F = (15, 00)) ] =1

This allows us to rewrite (3) and (4) in the following form:

TY'(t) = —p(t) + Fyp(t), 0<t< oo,
P+'l/)(0) =T4.

Here T and F are selfadjoint n x n matrices, P4 is the spectral projection of T corre-

sponding to the positive eigenvalues and z is a given vector in Im Py. In what follows

we assume that T is invertible (which corresponds to the requirement that all x; in (3)
are different from 0). We shall look for solutions % of (5) in the space LE([0, co)).

First we show that the problem (5) is equivalent to a Wiener-Hopf integral
equation with a rational matrix symbol. Introduce the following matrix function:

ht) = { e—tT'p Tl t>0,
—e~tT7'p_ 71 t<o.

(5)

(6)

Here P_ = I — P4. Since Py (resp. P-) is the spectral projection of T corresponding
to the positive (resp. negative) eigenvalues, the function e=t7 "' Py (resp. e"T 7" P_) is
exponentially decaying on 0 <t < oo (resp. —oco <t < 0). It follows that hisan xn
matrix function of which the entries are integrable on R.

THEOREM 9.1. Let ¢ € LE([0,00)). Then 3 is a solution of the equation
(8) if and only if 1 1s a solution of the Wiener-Hopf integral equation

(7) wt) = [ Bt - 9PUs)s = (), 0<t<oo,

0
where f 13 the function in L3([0,00)) defined by

(8) f(t) = e_tT-la:.,., 0<t<oo.

PROOF. Assume that 9 is a solution of (5). Applying T~! to the first
identity in (5) and solving the resulting equation yields

t
(9) () = e T p(0) + =T /esT“T-lm(s)ds, 0<t< oo
0

Next, apply e!T ™' P_ to both sides of (9) and use that e!T~' and P_ commute. Since
e!T™' P_ is exponentially decaying on 0 < t < oo, the function etT_lP_Fd)(t) is inte-
grable on 0 < t < oo, and thus

o0

(10) Jim. e!T™ P_ap(t) = P_yp(0) +/esT—1P_T‘1Fz/)(s)ds.
0
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Also the function etT—lP_z/)(t) is integrable on 0 < t < oo, and thus the left hand side
of (10) is equal to zero, which proves that

(11) P_y(0) = — / T p_T=1 Fip(s)ds.
0

Now, replace 4(0) in (9) by P4+1(0) + P—_1(0), use the boundary condition in (5) and
apply (11). We conclude that

t
(1) = e T 2y — [ e~ t=0T™ p_p=1py(s)ds + /e-(“’)T“T'le/)(s)ds
0

= e_tT_la:+ + [ h(t — s)Fy(s)ds, 0<t<o0.

0\8 0\8

Thus % is a solution of (7) with f given by (8).

To prove the converse statement, assume that v is a solution of (7) with f
given by (8). Thus

t
P(t) = e_tT_l:c+ +e T /e’T_1P+T_1Fz/)(s)ds
0

(12)
o0

_ T / T P_T 1 y(s)ds, 0<t<oo.
t

It follows that 3 is absolutely continuous on each compact interval of [0,00), and hence
the integrands in the right hand side of (12) are continuous functions of the variable s.
But then 7 is differentiable on [0, 00), and we see that for 0 <t < oo

P'(t) = =T~ Y9(t) + P+ T F(t) + P-T 1 Fy(t)
= —T719(t) + T~ Fy(2),

and hence % satisfies the first equation in (§). From (12) it also follows that
[o o]
$(0) = o4 — /esT“P_T—lpzp(s)ds, 0<t< oo,
0

which implies that P;¢(0) = Pyz4 = z4. We conclude that 9 is a solution of the
problem (5). O

Let us compute the symbol of equation (7):
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co o 0
/ei/\th(t)dt=/ei(/\+iT'1)tP+T—1dt_ / GOHT Nt p =14
—0o0 0 -0

— i+ iT—l)—lei(,\+iT“)tP+T—1°|°

0

. — 0
+i(/\+z‘T—1)—le1(/\+1T l)iP_T—l ,

-0
A+ DTIPT piA +irH)TlPT
i\ 4"t

It follows that the symbol W of the Wiener-Hopf equation (7) has the following realiza-
tion:

(13) W) =T -+~ H7 TR
This allows us to apply Theorem 7.1 with
(14) A=—iT71, B=T"1F C = —~il.

THEOREM 9.2. Assume that I — F i3 positive definite. Then for each
f € LE([0,00)) the equation

(15) () - / Bt — )Pp(s)ds = f(1), 0 <t < oo,
0

has a unigque solution ¢ € LE([0,00)). In particular, if the right hand side f is given by
(8), then the solution of (15) 1s

(16) P(t) = e T I=F)g, 0<t<oo,

where II is the projection of C™ along Ker Py onto the spectral subspace of (I — F)~IT
corresponding to eigenvalues in the open right half plane.

A priori it is not clear that a projection II as in (16) may be defined; it will
be part of the proof to show the existence of II.

PROOF OF THEOREM 9.2. We apply Theorem 7.1 with A, B and C as in
(14). Note that

(17) A¥=A-BC=—iT"YI-F).

To prove that (15) is uniquely solvable in L3 ([0, c0)), we have to show that A* has no
real eigenvalue and C" = M @ M*, where M is the spectral subspace of A corresponding
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to the eigenvalues in SA > 0 and M is the spectral subspace of A* corresponding to
the eigenvalues in S\ < 0. Put § = (I — F)~!T, and consider the sesquilinear form:

(18) [z,5] = ((I — F)z,y).
Since I — F is positive definite, S is well-defined and [-,-] is an inner product on C".
From

[S:l:,y] = <(I_ F)Sz’y) = (TI’y))

it follows that S is selfadjoint with respect to the inner product [-,-]. But then the same
is true for the operator 14X = $~1. Thus, A* is invertible and has its eigenvalues on
the imaginary axis. In particular, 4% has no real eigenvalue.

Let Py and Q4 be the spectral projections of T and S, respectively, corre-
sponding to the eigenvalues in ®\ > 0. The equality iA = 7! implies that M = Ker Py.
Similarly, i4* = §~1 yields M* = ImQ4. Since T and S are invertible, T| Ker Py is
negative definite and S|Im Q4 is positive definite. Thus

0#zeKerPy = (Tz,z) <0,
0#zelmQ4y = [Sz,z] > 0.

But [Sz,z] = (Tz,z) for all z € C?. It follows that Ker Py NIm Q4+ = {0}. In
particular, rank Py > rank Q4. By repeating the argument with the roles of Py and @4
interchanged, we see that rank Q4+ > rank P4, and hence rank @4 = rank Py. But then
we may conclude that C* = Ker Py @ Im Q4.

We have now proved that (15) is uniquely solvable in L3([0,00)). Also, we
have shown that the projection II in (16) is well-defined. In fact, II is the projection of
C™ along M onto M*. It remains to prove (16). Let f be given by (8). From Theorem
7.1 we know that the solution of (15) is given by

WO =0+ [, 0t <,
0

where the resolvent kernel « is defined by formula (4) in Section 7. Note that f may be
rewritten as

f@) = iCe Az, 0<t<oco.

Since
Zld;(eisAxe—isA) — _eisAx(ch)e—isA,

it follows that
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t
() = iCe Az, +iCe™ A" / Me*4* (iBC)e™ 4z ds
0

o
— iCeitAY / (I —M)e™A* (iBC)e 4z ds
t

t
o~ i v —itAX isAX —i
=iCe 'tASC.;.——ZCC itA (Hc:aA e zsAI+ I )
a=0

+ Z-Cc—ztAx ((I _ H)e"’Axc_”AI.;. | )

g=t

Next use that

: -1
ez, =TT Przy 0 (t — o0)

(I -4 = (I-MeS ™ (I-Q4) =0  (t— o),
In the latter limit we employ the fact that (I — II)@4+ = 0. It is now clear that

d)(t) - Z.CC_itA:'C.(.. _ Z-Ce—itAXHc‘itAx c—itA$+
+iCe~#A Iz, — iCe A (I- M)A e =it Az,

= iCe_itAXHa:+, 0<t <o

Since 14X = T~1(I — F), the above calculations prove (16). .
COROLLARY 9.3. If I — F 13 positive definite, then the problem (5) has a

unique solution in L5([0c0)), namely

(19) Y(t)=e TPz, 0<t<oo,

where 11 is the projection of C™ along Ker Py onto the spectral subspace of (I — F)~1T
corresponding to the eigenvalues in the open right half plane.

PROOF. Apply Theorems 9.1 and 9.2. O

To solve (5) effectively requires one to compute the projection II in (19) and
to analyse further the matrix R = T~1(I — F). From the proof of Theorem 9.2 we know
that R is selfadjoint with respect to the inner product [-, -] defined in (18), and hence R
admits a diagonal representation. In the last part of this section we show how one may
compute II and find a diagonal representation of R for a concrete class of examples.

In what follows the underlying space in (5) assumed to be €27, and we take

(20) T = diag(eq,. .., an,—aq,..., —an),
(21) F={99,
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where
T
g=(m1,...,mp,Mm1,...,Mn)" .

Thus T is a 2n x 2n diagonal matrix whose diagonal elements are specified by the right
hand side of (20). We shall assume that

(22) @y > >ap >0, m;#0 (j=1,...,n)

n

1

(23) > Imjl? < 3
=1

It follows that T is selfadjoint and the spectral projection Py is given by
(24) Py = diag(1,...,1,0,...,0).

Condition (23) implies that I — F is positive definite, and hence with T and F" as in
(20) and (21), equation (5) is uniquely solvable in L2"([0,00)). We shall prove that its
solution is given by

Ale_tFAl_lzo ] £>0

(25) o0 = | gL

where ¢ is the vector in C" whose coordinates are the first n coordinates of z 4,

(26) Ay = [ ST ] , Ay = [ﬂ] )
¢ = Tkl ;=1 ¢+ Vel k=1

(27) r =diag(717"')7n)'
Here ¢;j = 1/ajfor j =1,...,n and v1,...,7n are the n different zeros in the open right
half plane of the function

n_ .2 m-|2
28 N=1+4+2Y L T
(28) o) =1+23 55

The matrix Aj is of so-called Hilbert type and its inverse can be computed
explicitly. In fact (see Knuth [1])

-1, -171"
c m

-1
Ay =D [C .
k=5 ] k=1

Here Dy and D, are n x n diagonal matrices. Their v-th diagonal elements are given by

H;'l=1(cj - ) H?:l(cu - 7;)
[Tz (v =) [Tiguer —¢5)’
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respectively. Thus for the class of examples considered here the problem to solve the
equation (5) is reduced to finding the zeros in the open right half plane of the scalar
function (28).

To establish formula (25) we have to analyse the spectral properties of the
matrix R = T7}(I — F) with T and F as in (20) and (21). This is done in the next two
lemmas.

LEMMA 9.4. The 2n X 2n mairiz R has 2n different eigenvalues. They are
of the form xvj, j =1,...,n, where
(29) 0<y1 <1 <719<ea< < Yn < Cn,

and they cotncide with the zeros of the function (28).

Recall that ¢;j = 1l/aj. Put y-; = —v; for 5 = 1,...,n. Thus
YelyeeerT=nsVls---,Tn are the eigenvalues of R = T~1(I — F).

LEMMA 9.5. For |k|=1,...,n the vector

cymy CnMp cymy CnMn T
(30) fk= b I ) b AR ]
€1 — Yk Cn =Y €1+ 7Yk ¢n + Tk

13 an eigenvector of R corresponding to the eigenvalue .

PROOF OF LEMMA 9.4. Let W be the symbol of the Wiener-Hopf equation
associated with (5). Thus W()\) = I + C(A ~ A)"1B, where A = —iT~!, B = T7!F
and C = —iI. In what follows T and F are as in (20) and (21), and hence
(31) A = diag(—icy,..., —icn,icy,. .., icn).

Put e = ||g||~'g. Then Fe = ||g|lg and

(W(Ne,e) =1+ (A — 4)" 1 Ag,9)

n
icj|lm;| ic;|m;|
=1 31T 51T
+ Z A+ A—1c
=1
n C?lmj|2
=1-
£~ A2 4 c?
j=1
= w(zA),

where w(-) is defined by (28). The previous calculation implies that there exists an
invertible matrix S such that

(32) W(A):S[C{)/((i;\)) Ici_l ]5—1.

Recall that W(A)~! = I — C(A — A%X)~!B (see Lemma 5.2). We know that
1A% = T~YI — F) is selfadjoint relative to an equivalent inner product. It follows that
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the eigenvalues of A* are on the imaginary axis, and hence the same holds true for the
poles of W(-)~1. But then we can use (32) to show that the function w has its zeros on
the real line. Since w(A) = w(—A), a simple sketch of the function ¢ — w(t), 0 <t < oo,
shows that w has precisely 2n zeros, which are of the form 4+y;, where 71, ..., n satisfy
(29).

It remains to show that each zero of w is an eigenvalue of R = 1:4*. So
assume that w(vy) = 0. Then

0=w(y) = (W(=ir)e,e) = 1+ {(~iv — 4)7 ' 4g,9).
Thus (f,g) =1 for f = (iy + A)~! Ag. We claim that f is an eigenvector for R. Indeed,
Rf =iAf —i«BCf =iAf —iAFf
=1A(iy + A) " Ag - i(f, ) Ag
=iAg+(iv+ A" Ag —iAg = 7f.

Since f 3 0, we conclude that v is an eigenvalue of R and f is a corresponding eigenvector.
a

PROOF OF LEMMA 9.5. From the last part of the proof of Lemma 9.4 we
know that fi:= (i7x + A)"1Ag is an eigenvector of R corresponding to the eigenvalue
7k- Since A is given by (31), we see that fi is equal to the right hand side of (30). ©

To prove (25) requires one to specify further the formula of 3 appearing in
Corollary 9.3. In particular, we have to compute the matrix R = T~1(I — F) and the
projection II for the case considered here. To do this, introduce the 2n x 2n matrix

A=[fifa fo1-+ f=n]

with fig, k = 1,...,n, defined by (30). The matrix A is invertible and diagonalizes R,
ie.,, R=ADA~!, where

D = diag(71,- -+, Yns =15+ - » —¥n)-

If follows that

- —tT
e—tT YI=F) _ g ~tDp-1 _ 5 [ e . e?r ] AL

where I is given by (27). Next, we partition A as a 2 x 2 block matrix whose entries are
n X n matrices. This yields
[ %)
- b

Ay Ay
where A; and Aj are as in (26). Put

Ien
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Then M = Ker Py and MX* is the spectral subspace of T~}(I — F) (and hence of
(I ~ F)~'T) corresponding to the eigenvalues in the open right half plane. Thus C2" =
M @ M*, and the projection II of C2* along M onto M* is given by

qo[M 0][7 0][A O -1

T A, T][O0O][ A T

[A 0 A7Y 0 =[ I 0
Tl A2 0| —ApATY T AaATY O |

Zo
0

Finally, partition the given vector z4 as [ ] , where zg € C™ and 0 is the zero vector

in C". Then

e~ 0 A ] o
=A[ 0 el AT? A, | AL 20
ettt 0 Al-la:g
_A[ 0 etl 0

_ Ale_trAl_lzo
T | Agem AT zg |

which proves formula (25).

XII1.106 CONVOLUTION OPERATORS ON A FINITE
INTERVAL

The results discussed in the last three sections carry over to convolution
operators on a finite interval [0, 7]. Such operators are of the form A = I — K, where

r

(1) (Ko)(t) = /k(t—s)cp(s)ds, 0<t<r
0

The kernel function & will be an m x m matrix function whose entries are integrable on
[0, 7], and the operator K will be considered on LY*(]0,7]). To make more precise the
type of kernel functions we shall deal with, let us first assume that k is the restriction
to [—7,7] of an m X m matrix function ¢ with entries in L;(R) whose Fourier transform
7 is rational. This implies, by Theorem 4.1, that ? admits a realization, and hence, by
Theorem 4.2, the kernel function k£ can be written in the form:

(2) Kt = { iCe™A(I - P)B, 0<t<m,

—iCe~4ApPB, —r<t<O,

where A is a square matrix of size n X n, say, which has no real eigenvalue, B and C
are matrices of sizes n X m and m X n, respectively, and P is the Riesz projection of 4
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corresponding to the eigenvalues in the upper half plane. The actual value of k at zero
is not relevant; for simplicity we assume here that k(0) = k(0+).

In what follows we shall work with a slightly more general representation of
k. We shall assume that the kernel function k of (1) admits a representation (2), where
A is an arbitrary n x n matrix and P is a projection commuting with 4. Thus A is
allowed to have real eigenvalues and P is not required to be a Riesz projection. We shall
refer to (2) as an ezponential representation of k.

One of our aims is to find the condition of invertibility of I — K and to
determine its inverse in terms of the representation (2).

The representation (2) implies that the operator K in (1) has a semi-separable
kernel function (cf. Section IX.1). Indeed, let fi,..., fn,, and g1,...,9n, be bases of
Ker P and Im P, respectively, and let F be the n X n matrix whose columns are the

vectors f1,..., fny,91,--.,9n,. Then E is invertible and
0 0 -1
3 = .
3) P E[OJM]E

Here, as usual, the symbol I denotes the k x k identity matrix. Since P commutes with
A, 1t follows that

(4) B(t— s) = Fi(t)Gy(s), 0<s<t<m,
F(t)Gy(s), 0<t<s<r,
where
(5a) Fi(t) =iCe™™4E [ Igl } ,  Gi(t)=[In, O0]E"'e*4B,
(5b) Fo(t) = iCe™ AR [ IO ] ’ Ga(t) = —[0 I, |E-1e*AB.
na

The semi-separable representation (4) allows us to apply the results of Sections IX.2 and
IX.3, which yields the following theorems.

THEOREM 10.1. Let K be the integral operator on LT*([0,7]) defined by
(1), and assume that k has the ezponential representation (2). Let n be the order of A,
and put A = A— BC. Then I — K is invertible if and only if the map

(6) Sy = Pel™e~ AP Im P » Im P

1$ wnverttble. In that case

T

(U—KYUNﬂ=ﬂﬂ+/7@ﬂﬂﬁ%, 0<t<r

0
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with

) A(ts) = { iCe‘i‘AxHrei“AxB,. 0<s<t<T,
—iCe'itAx(I - Hr)e“’AxB, 0<t<s<T.

Here I1; s the projection of C™ along Im P defined by

(8) yz =1z~ S:lPeiTAe_irszz:, zeC™

THEOREM 10.2. Let K be the integral operator on LT*([0,7]) defined by
(1), and assume that k has the ezponential representation (2). Let n be the order of A,
and put

9) S, = Pei™ A=A p.Im P — Im P,
where AX = A — BC. Then
Ker(I — K) = {¢ | o(t) = Ce~#4* Py,  yeKerS,},

,
Im(] ~ K) = {f € LP([0,7]) | Peim4e A% /eisA*Bf(s)ds € Im 5,},
]
and a generalized inverse of I — K in the weak sense 1s given by the operator
T
(=K AW =0+ [t 0<t<r,
0
with
(10) F(trs) = { CeTIA )R,
—iCe—itAX [, ¢isA* B,
Here l,;z = SHPei"Ae~ A 1 for £ &€ CM, where St is o generalized inverse of Sr.

We shall refer to the operator S; in (6) and (9) as the indicator of I — K
associated with the representation (2). Note that S; acts on a finite dimensional space,
and hence it always has a generalized inverse.

PROOF OF THEOREMS 10.1 AND 10.2. We shall employ the semi-
separable representation (4) and we shall apply Theorem 1X.2.3. Let us compute the

indicator V of I — K associated with the representation (4) (cf. Section IX.2). Put

Gi(t)R(t) Gi(H)F(t)
=Go(t)Fa(t) ~Ga(t)Fa(t) |

where F), F, and Gj, G are as in (5a) and (5b). Furthermore, let U(t) =
E~leitA —itAX B for <t < 7. Since

At) = 0<t<T,

At) = ET1*AGBC)e T ME,  0<t<,
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we have

¢ ¢
/A(S)U(S)ds = /E—leisA(z-BC)e—isAXEds
0 0

t
— E—l{/di(eisAe—isA")ds}E
S
0

— E—l{eitAe--itA>< —In}E
=U®#)—I,, 0<t<r

It follows that U(t) is the fundamental matrix (normalized to I, at ¢t = 0) of the differ-
ential equation z’(t) = A(¢)z(t), 0 <t < 7, and therefore

V=[0 I, ]U(T)[ IS, J

—[0 I, |E-leiTAc—iTAXE [ IO ]
na

=10 I, ]E—IPe"fAe—"fA"PE[IO ]
ny

- 0
=[0 I, )E 15,E[Inz ]

where Sr is the indicator of I — K associated with the representation (2). In the above
calculation we used that P satisfies (3). Note that the linear transformation

0

FEy=F
o=E|

]:an — Im P

is invertible and EO_1 =[0 I, ]JE7}|Im P. Thus we have shown that V = Eo_ls,-Eo.

It follows that the operators I — K and Sr are matricially coupled. To find
the coupling relation we refer to Theorem IX.3.2 for the case considered here. Introduce
the following operators

(11) H:LP([0,7]) — LF([0,7]),
t

(Hp)(t) = iCe™itA / e**4 By (s)ds, 0<t< T
0

(12) RImP— LP(0,7]),  (Re)(t) =iCe ™z,  0<t<r,

T

(13) Q:LT([0,7])) > ImP, Qp= —/Pei’ABcp(s)ds.
0
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The final result of the previous paragraph and Theorem IX.2.3 imply that the operators
I — H and

[ I-K R

Qo rn.p |FEOMN@mP = LE(0r])@mP

are invertible and

[I-K R 7! [(I—H)‘l (I - H)"'R

(14)  Q Inp | T | -QU-H) Sr ’

which is the desired coupling relation. Furthermore (see formula (19) in Section IX.2 for
the case considered here),

t
(15) (= H)"Lf)(t) = f(t) +iCe™ 4% /ei’AxBf(s)ds, o<t<r
0

It follows (see Corollary II1.4.3) that I — K is invertible if and only if S is
invertible, and in that case

(16) (I-K)l'=(I-H)'+I-HRSI'QUI -H)™
Since (cf. formulas (20) and (23) in Section IX.2)

(17) (I - H)"'Rz)(t) = iCe~ A g, 0<t <,
(18) QU — H)™1 f = — PeitAe—itA* / ¢i*A% B f(s)ds,
0

formulas (15) and (16) yield the expression for (I — K)~! appearing in Theorem 10.1.
To complete the proof of Theorem 10.1, it remains to show that the map I, defined by
(8) is a projection of C™ along Im P. To do this, note that II;P = 0 according to the
definition of Sr. On the other hand Im(f — II;) C Im P, and hence II.(I — II;) = 0.
Thus II; is a projection and Ker Il = Im P.

Next, we prove Theorem 10.2. The descriptions of Ker(I — K') and Im(I — K)
follow directly from Corollary 111.4.3 by using the coupling relation (14) and the formulas
(17) and (18). To prove the second part of the theorem, assume that S; is a generalized
inverse of S,. Put

(19) (I-K)yr=(I-H)'+{I-H) RSrQ(UI - H)™L.

We want to show that (I — K)T is a generalized inverse of I — K in the weak sense. To
do this, note that the coupling relation (14) implies that

(I-K)I~H)"'=I+RQU - H)™!
(I-K)YI-H)'R=-RS,
QU -H)Y(I-K)=35.Q.
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Since S-S} Sr = Sr, we see that

(I—K)I - K)H(I—K)= (I - K)(I - B) (I - K)
+(I~K)YI-H)'RS}QUI -H)"Y(I -K)
=I—-K+RQ( -H)™(I-K)-RS-SFS-Q
=I-K+ RS$;,Q—-RS-Q=I—-K,
and hence (I — K)¥ is the desired generalized inverse. Inserting (15), (17) and (18) into
(19) yield the expression for (I — K)¥ appearing in Theorem 10.2. O

The operators K considered in this section are Hilbert-Schmidt operators.
The following theorem provides a simple criterion for K to be a trace class operator.

THEOREM 10.3. Let K be the integral operator on LF([0,7]) defined by
(1), and assume that k has the ezponential representation (2). Then K is a trace class
operator if and only if CB =0, and in that case
(20) tr K = —irtrCPB, det(I — K) = det S,

where Sr is the indicator of I — K associated with the representation (2).

PROOF. Let H, R and Q be defined by (11), (12) and (13), respectively.
Since K = H + RQ and RQ has finite rank, we have to show that H is a trace class
operator if and only if CB = 0.

Let M4 be the multiplication operator on L3([0,7]) induced by A4, i.e.,
(Map)(t) = Ap(2), 0<t<r.

Then M, is a bounded operator which commutes with the operator J: L3([0,7]) —
5([0,7]) defined by

t
(21) (Je)@@®) = —i/<p(s)ds, 0<t<r.
0
Note that
¢
(IMae)®) = -—i/Ago(s)ds, 0Lt
0

Next apply Theorem 10.1 to K = JM, (and thus with A =0, B = ~4, C = I and
P =0). It follows that I — JM 4 is invertible and

11
(I = TMA) " ol(t) = (t) - & / e =4 fp(s)ds, 0<t<T
0
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But then

[J(I = TM4)"to)(2) = (Je)(t) —

(/ e'i("o‘)AAap(a)da) ds
0

t

|
I

= (J)(t) - ( / e_i("a)AAcp(a)ds) da
0 a
= (Jo)(t) i j { j (j—se-“’-a“) ds}cp(a)da
4] a

t
= —1 / e_i(t'o‘)Acp(a)da, 0<t< T
0

So we have proved the identity
(22) H=-McJ(I—-JMy) ' Mp,
where Mp: LT*([0,7]) — L3([0,7]) and Mc: L3([0,7]) — LT*([0,7]) are the multiplica-
tion operators induced by B and C, respectively.
Formula (22) implies that

H=-McJMp — McJ?Ma(I — IM4) ' Mp.

Since J is a Hilbert-Schmidt operator, J? is a trace class operator (Lemma VIIL.2.2).
Hence H is a trace class operator if and only if McJMp is trace class. Let b;; and cj
be the (j, k)-th entries of the matrices of B and C, respectively. Identifying L5*([0,7])
with a product of m copies of Ly([0,7]), one can write the operator

McJMp: L;n([o’ T]) - Lgn([ov T])

as an m X m matrix whose entries are operators on L2([0,7]). The (7, k)-th entry of this
operator matrix is equal to

n
(Z Cjubuk) Jo,
v=1

where Jy is the operator on L2([0,7]) defined by the right hand side of (21). Now
McJMp is trace class if and only if each entry of its operator matrix is trace class. Since
Jo is not a trace class operator (cf. formula (10) in Section VI.1), the latter happens if
and only if

n
chubukz(); Lk=1,...,m,
v=1

which is equivalent to C B = 0. This proves the first part of the theorem.
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Next, assume that K is a trace class operator. It remains to prove the two
identities in (20). This we do by applying Theorem IX.3.2 to the semi-separable repre-
sentation (4). According to formula (8) in Section IX.3, we have

T T
tr K = /tr Ga(s)Fy(s)ds = /ter(s)Gz(s)ds
0 0
.
= =i [wceitAp| 0 O | prigsdpy,
0 In2
0

,
= —i/trCe-iSAPei’ABds
0

T

= —i/tr CPBds = —irtr CPB.
0

Here we used (5a) and (5b), the identity (3) and the fact that A and P commute.

Let V be the indicator of I — K associated with the representation (4). From
the proof of Theorem 10.1 and 10.2 we know that V and Sr are similar. Thus detV =
det Sr, and we can use formula (9) in Section IX.3 to prove the second identity in (20).
a

In the proof of Theorems 10.1 and 10.2 we have only used the semi-separable
representation (4) and not the fact that A commutes with P. It follows that Theorems
10.1 and 10.2 also hold true if K is an integral operator on LF*([0, 7]) with the property
that its kernel function k admits a representation of the following form:

K.s) iCe™™A(] — P)e®4B, 0<s<t<r,
? s = . .
—iCeitApeisAp, 0<t<s<r,

where P is a projection (which does not have to commute with A). With the exception
of the first identity in (20), also Theorem 10.3 is valid for such an operator.

To illustrate the results of this section we consider the finite slab version of
the transport equation. In this version the medium is like a strip and the densities of the
incoming particles at one side and of the outgoing particles at the other side are known.
As in the previous section we assume that scattering occurs only in a finite number of
directions. In that case the finite slab problem reduces to an equation of the following
form:

TY'(t) = =9(t) + Fy(t), 0<t<,
(23) { Pip(0) = 24, P_ih(r) = a-.

Here T and F are selfadjoint matrices, T is assumed to be invertible, Py and P- are
the spectral projections of T corresponding to the positive and negative eigenvalues,
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respectively. The vector 4 (resp. z—) is a given vector in Im Py (resp. Im P_). We
shall look for solutions of (23) in the space LF*([0,7]). It is of particular interest to
consider the case when equation (23) has a non-trivial solution with z4 and z_ both
equal to the zero vector. (In Physics this case is meaningful; it concerns a so-called
multiplying medium.)

As for the half range problem we first show that the finite slab problem (23)

is equivalent to an integral equation of convolution type.

THEOREM 10.4. Let v € LB([0,7]). Then 1 is a solution of (23) if and

only if ¢ i3 a solution of the integral equation

,
(24) w(t) — / h(t — )Fp(s)ds = f(£), O0<t<r
0
where
—iT_IP T—l >0
(25) h(t) - { [4 1-!- ) - Y
—e T p T ¢t <0,
(26) fA=e Tz, +e0T 2 o<t<r
PROOF. Assume that 3 is a solution of (23). Then
t
en e =TT+ T [T Py, 0ty
0

Apply eT™' P_ to both sides of (27), evaluate the result at ¢t = 7, and use that etT™!
and P_ commute. It follows that

r

(28) Pop(0) =T Poy(r) - [T
0

-1

P_T~1Fy(s)ds.

Now, replace ¥(0) in (27) by P4+%(0)+ P_1(0), and use (28) and the boundary conditions
in (23). We conclude that

w(t) — e_tT—xI+ + e(T—t)T_lx_
, t
_ / e~ (=T p_T=1py(s)ds + / e =T =1 py(s)ds
0

0
r

= f(t) +/h(t — s)Fy(s)ds, 0<t<,
0
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where h and f are given by (25) and (26), respectively. Thus ¢ is a solution of (24).

The reverse implication is proved by the same type of arguments as used in
the second part of the proof of Theorem 9.1. O

From (25) it is clear that the kernel function k(-) = h(:)F of the integral
operator associated with (24) admits an exponential representation. In fact, to get the
representation (2) one has to take

(29) A=—iT7)!, B=T"'F, C=-i, P=P_.

It follows that we may apply Theorems 10.1 and 10.2 to obtain solutions of (24).
THEOREM 10.5. Assume that I — F i3 nonnegative definite. Then for each
f € L3([0,7]) the equation

T

(30) P(t) ~ /h(t —8)Fy(s)ds = f(t), 0<t<,

0

has a unique solution ¥ € L}([0,7]). Moreover, if the right hand side f is given by (26),
then the solution of (30) is

(31) () =e TP gy 4 M(r) Tz - P-eTT U=z )}, o<t <,
where M(7):Im P_ — Im P_ is defined by
(32) M(r)z = P_eTTTHI=F)g, z€ImP_.

PROOF. The first step is to show that M(r) is invertible. Since M(7) acts on
a finite dimensional space, it suffices to show that M(r) is injective. Take 0 # y € Im P_,
and consider the expression

(33) py(T) = (TM(7)y,y).

We shall prove that py(7) as a function of 7 is monotonely decreasing on 0 < 7 < 0.
Assume for the moment that this has been proved. Then

(34) py(T) < py(0) = (Ty,v)-

Since P_ is the spectral projection of T corresponding to the negative eigenvalues, 0 #
y € Im P_ implies that the third term in (34) is strictly negative. But then py(7) # 0,
and hence M(1)y must be different zero. Thus M(7) is injective.

To prove that p, is monotonely decreasing, we first assume that I — F' is
positive definite. Put R = T~1(I — F). The operator R is selfadjoint with respect to the
inner product

[z, z]: = (I — F)z, 2).
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Indeed, because of the selfadjointness of T and F, we have

[Rz, 2] = (I - F)T™}I - F)z, 2)
= ((I-F),T~}I - F)z)
= [z, Rz]

for z and z in C". It follows that e~ "® is nonnegative definite relative to the inner
product [, ]. Now, observe that py is differentiable and

py(7) = (=(I = F)e= T I=Fy )
= ~[e""Ry,y] <0, 0<T<o0.

Thus py is monotonely decreasing if I — F' is positive definite.

To prove the latter result for the nonnegative definite case, we choose a se-
quence F1, Fy,... of selfadjoint n X n matrices such that F; —+ F asj — coand I - F} is
positive definite for each j. Let M;(7) be the operator defined by (32) with F replaced
by Fj, and consider

pyi(1) = (TM;(1)y,y), 0L 7 <oo.
Obviously, Mj;(r) — M(r) as j — 00, and hence

= 1i ; < .
(35) py(T) ]i»n.}o Py (T), 0<T <00

Since I — Fj is positive definite, py ; is monotonely decreasing (see the preceding para-
graph). But then, by (35), the same must be true for py. We have now shown that M(r)
is invertible.

Next, we show that the equation (30) is uniquely solvable. Consider the
kernel function k(-) = k(-)F of the integral operator associated with (30). We know that
k(-) can be written in the form (2) by taking A, B, C and P as in (29). Since

(36) AX =A— BC = —iT~ (I - F),

the indicator S associated with this exponential representation of k(-) is given by

(37) S, = Pel"™APM(7):Im P — Im P.

The map Pe"AP:Im P — Im P is invertible; its inverse being Pe™i"AP. Also M(1) is

invertible. It follows that S is invertible, and hence, by Theorem 10.1, the equation (30)
is uniquely solvable in L% ([0, r]).

Finally, let us compute the solution of (30) for f given by (26). To do this
we use formula (7) for the resolvent kernel. Note that f may be written in the form

f(t) =iCe "4z, + iCe'i(t"")Ax_, 0<t<r
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First, assume that z_ = 0. Then, according to Theorem 10.1, the solution 9 of (30) has
the following representation:

t
P(t) = f(t) + iCe_iMXHT/ei"Ax(iBC)e—i"Aa:_;_ds
0

.
—iCe™ AT (T — H,)/efsA"(iBC)e-"sAz+ds.
t

Recall that
(94X (;BC)eioA = _%(cimx e~isA).
Thus the two integrals in the formula for 1 can be computed. This yields:
Y(t) = f(t) — iCe AN A% Az, 4 iCe A I, 2y
+ iCe—itAx (I _ Hr)ei‘rAx e_iTAa:_,_ _ iCe—itAx (I _ Hr)eitAx e—itAz_'_

= f(t) —iCe "4z, +iCe #A 2y + iCetAY (I- IO, )ei™ A% e~iT Az |
From the definition of Il (see formula (8)) we conclude that
(I —T,)e™ e 4z, = ST 1Pz, =0,
because P = P_ = (I — P4). Thus,if z_ =0, then
P(t) =iCe 4 Mrzy, 0<t<T
In a similar way one shows that for z4 = 0 the solution % is given by
(1) =iCe AT — )™z, 0<t<T
It follows that for f given by (26) the solution 9 of (30) is equal to
(38) P(t) =iCe A (Mrzy + (I — )™z}, 0<t< T
By (8) and (37)
Orzq + (I —I,)e™ z_ =z — S71Pe ™A™ iTA  z, 4 51l

=z4— M(r) 1P Az, + M(7) 1z_
=z4 + M) Hzo - Pem 4%z, }.
Here we used that z_ € Im P and that P commutes with e"4. Since 1A% = T~1(I - F),

1C = I and P = P_, formula (38) and the preceding calculation yield the desired
expression (31). O
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COROLLARY 10.6. If I — F is nonnegative definite, then the finite slab
problem (23) has a unique solution i, namely

P(t) = e TP g, 4 M(r) N oo — Poe”™T U gy}, 0<t<,

where M(7):Im P— — Im P~ is defined by (32).

PROOF. Note that a solution of (23) is continuous on [0, 7] and thus belongs
to LZ([0,7]). So we can apply Theorems 10.4 and 10.5 to get the desired result. O

The next theorem deals with the case of a multiplying medium. It concerns
the finite slab problem (23) with both z_ and z4 equal to the zero vector, i.e., the
equation

Ty(t) = —p(t) + Fo(t),  0<ts<m
(39 TR

As before M(7):Im P_ — Im P_ is defined by (32).

THEOREM 10.7. The problem (39) has a nontrivial solution if and only if
det M(7) # 0, and in that case the general solution of (39) is given by

(40) Yty =e TPy, 0<t<y,

where y 13 any vector in Im P_ such that M(7)y = 0. Furthermore, if all the eigenvalues
of T~Y(I — F) are real, then there are only finitely many 7’s for which (39) has a
nontrivial solution.

PROOF. Note that any solution of (39) is a function belonging to L2([0, 7]).
Thus, by Theorem 10.4, the solutions of the problem (39) coincide with the solutions
¥ € L3([0,7]) of the equation

T

(41) $(t) — /h(t —§)Fyp(s)ds =0, 0<t<r.
0

Here h(-) is as in (25). Now apply Theorems 10.1 and 10.2 with A, B, C and P as in (29),
and use (37). It follows that (39) has a nontrivial solution if and only if det M () # 0,
and in that case the general solution of (39) is given by (40) with y € Ker M(7). For the
proof of the latter statement we also use that

iCe™HAY = ~tT7WI-F)  g<t<r

Next, assume that all the eigenvalues of T7!(I — F) are real. Note that
det M(7) depends analytically on 7 and det M(0) # 0. It follows that the number
of zeros of det M(-) on [0,00) is finite or countable, and in the latter case the only
accumulation point of these zeros is the point infinity. Since T71(I — F) has only real
eigenvalues, det M(7) is a linear combination of functions (in 7) of the form 77¢*™ with
A real. Let Ay be the largest A in the exponent of functions r7e*” which appear in the
linear combination with a nonzero coefficient. Then

e~ M7 det M(r) = p(7) + o(7),
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where p(7) is a nonzero polynomial and g(7) is analytic in 7 and tends to zero if 7 — oo.
In particular, [p(7)| — ¢, 0 < ¢ < 400 if 7 — 00, and it follows that det M(r) # 0 for 7
sufficiently large. Hence M(7) has only a finite number of zeros. O

We conclude this section with the following simple example. Consider the
equation

b1(t) = (c = D)1 (t) + cppa(t), 0<t <,
(42) —ta(t) = cp1(t) + (c — Dpa(t), 0<t<m,
$1(0) =0, %5(0) =0.

The problem is to find scalar functions 17 and 9 that satisfy (42). Hence c is a positive
constant. Equation (42) may be rewritten in the form (39) by taking

1 0 11
-[s 5] r[ii]

10 0 0
=loa] [0 ]
Note that I — F' is nonnegative definite if and only if ¢ < %— Thus for ¢ < %— equation

(42) has only a trivial solution, namely 17 = 42 = 0 (cf. Corollary 10.6). In what follows
we assume that ¢ > %

We have to analyse

R=T"'(I-F)= [ toe A ]

This matrix has two different eigenvalues, namely +i1/2¢ — 1. (Here we use that ¢ > %—)
Put o = i4/2¢ — 1, and consider the matrix

c c
A—[l—c—a 1—c+a]'

The matrix A is invertible and

-1 _ 1 a+l—c —c _ a 0 -1
A T 2a| a=14c ¢ |’ R=A 0 -« AT
Now consider the scalar function
m(t)=[0 1]e T U-F) [ (1’ ]
=[0 1 ]e_tR [ 2 ]
_ e~te -1 0
=[0 1]A [ 0 oo ] A 1
=cos(t\/20—1)+(1—c)§i(t—2c;l), t>0.

V2c—1
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Theorem 10.7 tells us that (42) has a nontrivial solution if and only if m(7) = 0, and in
that case the general solution of (42) is given by

107 0 in(rv2¢c—-1)
Yi(t) =7[1 0]~ TP [ 1 ] =,ch_‘1(\/_2_c__f_1__,

Pa(t) = ym(t), 0t

where 7 is an arbitrary complex parameter. Note that for each ¢ > % there exist infinitely
many 7’s such that equation (42) has nontrivial solutions.

COMMENTS ON PART III

The first six sections of Chapter XI contain the standard elements of the
abstract Fredholm theory which may also be found in other books (see, e.g., Kato [1]).
Sections 7, 8 and 9 in this chapter concern more recent material. Theorem 7.1 is taken
from Calderon [1] (see also Fedosov [1]) and Theorem 7.6 from Markus-Feldman {1].
The results of Sections 8 and 9 are based on the papers Markus-Sigal [1], Gohberg-Sigal
[1], and Gohberg-Kaashoek-Lay [1], [2]. Theorems 9.1 and 9.2 may also be proved for
finitely meromorphic operator functions that are of so-called Fredholm type. For these
and other generalizations we refer to Gohberg-Sigal [1], Sigal [1] and Bart-Kaashoek-Lay
[1]. The results in the last section of Chapter XI come from the book Gohberg-Krein [3].
The approach followed in this section allows one to introduce and to develop a theory
of singular values for operators on Banach spaces. In this wider framework the singular
values are approximation numbers which are extensively studied in the books Pietsch
[1] and Kénig [1]. Chapter XII contains standard material about Wiener-Hopf integral
operators, which is taken from the paper Gohberg-Krein [2] (see also the book Gohberg-
Feldman [1]). Chapter XIII, which contains more recent material, is based on Section
4.5 of the book Bart-Gohberg-Kaashoek [1] and the papers Bart-Gohberg-Kaashoek [2],
[3]. The notion of a realization has its origin in mathematical system theory (see, e.g.,
Kalman-Falb-Arbib [1], Kailath [1]). The examples from linear transport theory in the
last two sections of Chapter XIII are inspired by Chapter 6 in Bart-Gohberg-Kaashoek
(1], Van der Mee [1] and Ran-Rodman [1]. We shall return to the study of concrete
classes of Fredholm operators, like Toeplitz and Wiener-Hopf integral operators, in the
second volume. Unbounded Fredholm operators will be treated in Part IV.
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In what follows, X and Y are complex Banach spaces and I denotes the
identity operator on X or Y. In the first six exercises, A € £L(X,Y) and B € L(Y, X).

1. Assume that the product AB is a Fredholm operator. Which of the following state-
ments is true?

(a) The operator A is Fredholm.
(b) The operator B is Fredholm.
(c) Both A and B are Fredholm.
2. Assume that AB is Fredholm. Show that
(a) Im A is closed and d(4) < oo,
(b) Im B is closed and n(B) < co.
3. If AB is Fredholm, does it follow that BA is Fredholm?
4. If I — AB is Fredholm, does it follow that I — BA is Fredholm?
5. Assume that AB is Fredholm. Prove that A is Fredholm if and only if B is Fredholm.
6.

If A is a Fredholm operator and 7' is a generalized inverse of 4, then T is a Fredholm
operator and indT = —ind A. Prove this.

7. Let A,B € L(X,Y). The operator A is Fredholm and 7 is a generalized inverse of
A. Assume that the operator C = I'+ T'B is invertible. Prove that A + B is a Fredholm
operator and

(a) n(A + B) < n(4),

(b) d(A + B) < d(A),

(c) ind(A + B) = ind A.
Hint: use Exercises 5 and 6.

8. Let A, B and C be as in the previous exercise, and assume now that C is Fredholm.
Prove that B is a Fredholm operator and ind(A + B) = ind A + indC.

9. Use Exercise 7 to give a new proof of Theorem XI.4.1 (with, perhaps, a different
bound for || B||).

10. Use Exercise 8 to give a new proof of Theorem XI1.4.2.
11. Assume that the operator

A 0
T_[O B}.XGBY—MXGBY

is Fredholm. Which of the following statements is true?
(a) The operator A is Fredholm.
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(b) The operator B is Fredholm.
(c) Both A and B are Fredholm.
12. Assume that the operator

A C].
T=[0 B].X@Y——»XGBY

is Fredholm. Answer for this case the question posed in the previous exercise.

13. Consider the operator

A C|.
T=[0 B].XEBY—*XGBY,

and assume that A and B are Fredholm operators. Prove that T is a Fredholm operator
and

indT = ind A 4+ ind B.
In the next three exercises A is a bounded linear operator on the Banach
space X.

14. Let N be a positive integer, and assume that AN _ I'is a compact operator. Prove
that the essential spectrum of A is a subset of the set of N-th roots of unity.

15. Let p be a non-zero polynomial, and assume that p(A) is compact. Prove that the
essential spectrum of A is a subset of the set of zeros of p.

16. For each positive integer N, put
pn(A) = inf{||AY — K|| | K compact}.
Prove that cess(A) = {0} if and only if py(A)Y/Y — 0 as N — oo (cf., Exercise 18 to

Part I).

17. Let A € L(X,Z) and B € L(Y,Z) be operators acting between complex Banach
spaces, and assume that Z = Im A ® Im B. Show that A and B have closed range.

18. Let A € £(X,Y), and assume that Im A is closed. Show that the conjugate A’ has
closed range and Im A’ = (Ker A)L. (Hint: first consider the case when Ker A = {0}.)

19. Let A € £(X,Y), and assume that Im A’ = (Ker A)L. Prove that A has closed range
and ImA = (Ker 4").

An operator A € L(X,Y) is called semi-Fredholm if Im A is closed and n(4)
or d(A) is finite. The indez of such an operator A is defined by

+00, if n(A) = o0,
ind4d={ —oo, if d(A) = oo,
n(A) — d(A), otherwise.

20. Prove that A € £(X,Y) is semi-Fredholm if and only if the conjugate operator A’
is semi-Fredholm, and show that in that case ind A = —ind 4’
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21. Extend the first perturbation theorem in Section XI.4 to semi-Fredholm operators.
(Hint: see Section V.1 of Goldberg [1].)

22. Extend the second perturbation theorem in Section XI.4 to semi-Fredholm operators.
(Hint: see Section V.2 of Goldberg [1].)

23. Let A € L(X,Y) and B € L(Y,X), and assume that the product AB is semi-
Fredholm. Show that one of the factors is semi-Fredholm, but not necessarily both.

24. If A € L(X,Y) and B € L(Y,X) are semi-Fredholm, does it follow that AB is
semi-Fredholm? If yes, prove this statement; if no, give an additional condition under
which the statement is true.

25. Assume that the operator

A C
T_[O B].X@Y—»X@Y

is Fredholm. Which of the following statements is true?
(2) The operator A is semi-Fredholm.
(b) The operator B is semi-Fredholm.
(c) Both A and B are semi-Fredholm.
Answer the same question assuming only that T is semi-Fredholm.

26. The analogue of the statement in Exercise 13 for semi-Fredholm operators holds
true. Prove or disprove this.

27. Determine the kernel function of the Wiener-Hopf operator T on L2({0, 00)) with
symbol (3\‘% ". Show that T is Fredholm and compute n(T) and d(T).

28. Let T be the Wiener-Hopf operator on Ly([0,00)) with symbol

3/ A—1 7 A+
A)=—= —— .
w(d) 2(,\+i)+2 (,\—i)
Compute the kernel function of T. Show that T is invertible and determine its inverse.
29. Let Ty be the Wiener-Hopf operator on Ls([0,00)) with symbol
A—1 A+t

-1

For which o € C is the operator T, left, right or two-sided invertible? Construct the
inverse of Ty if it exists.

30. For a € R let Ty be the Wiener-Hopf operator on Ly([0, 00)) with symbol

w(/\)za(:\\;:) +1—a(:\\t::>.

Determine the spectrum of Tj.
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The remaining exercises deal with convolution operators with kernel function

n
k()= dje I, —co <t <oo.
j=1
Here0<ci <eg <+ <en a_nd_dJ >0(j=1,...,n).
31. Show that k may be represented in the form
;Ce~#*A(I ~ P)B, t>0,
k() = 4 1O _( )
—iCe~"APB, t <0,
by taking
A = diag(—icy,...,—icn,t€1,...,iCn)
P = diag(0,...,0,1,...,1)
B=4g, C=4,

where g is the 2n x 1 matrix whose transpose is given by

r_| [d. [d& [d . [dn
g = c1 Cn c1 cn |

32. Let L be the convolution operator on Ly(R) defined by

o]

(LA = / k(t — s)f(s)ds, —oo <t < oo.

—oQ
Prove that I — L is invertible if and only if

2 <2
(%) E > <3
j=1

Determine the inverse of I —~ L if it exists. Hint: use Theorem XIII.5.1 and Lemmas
XTII1.9.4 and 9.5.

33. Let T be the Wiener-Hopf operator on L2([0,00)) given by

o]

(THE) = () —/k(t C$)f(s)ds,  0<t< oo
0
Show that T is invertible if and only if condition (*) in the previous exercise is fulfilled.
Determine the inverse of T if it exists.

34. Let w(:) be the symbol of the Wiener-Hopf operator T’ defined in the previous
exercise. Determine a right canonical factorization of w(-) whenever it exists.
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35. Let K be the convolution operator on L4([0, 7]) defined by

r

(Kf)(t) = /k(t —s)f(s)ds, O0<t<T

0

Show that K is a trace class operator and compute tr K. Prove that I — K is invertible
if

and in that case give a formula for the resolvent kernel.



PART IV
CLASSES OF UNBOUNDED LINEAR OPERATORS

One of the most important classes of operators is the class of unbounded
operators. This includes differential operators which play a vital role in applications. In
this part an introduction to the theory of unbounded operators is presented. We start
with the study of their adjoints and conjugates, and then concentrate on certain types
of ordinary and partial differential operators (Chapter XIV). In the next three chap-
ters (XV-XVII) results proved earlier for bounded operators are extended to unbounded
operators. The main topics are functional calculus, the spectral theorem, and the the-
ory of Fredholm operators. The last chapter contains an introduction to the theory of
strongly continuous semigroups with applications to the abstract Cauchy problem and
linear transport theory.



CHAPTER XIV
UNBOUNDED LINEAR OPERATORS

This chapter gives an introduction to the theory of unbounded linear opera-
tors between Banach spaces. The important notions of closed and closable operators and
their conjugates are analyzed with much attention paid to ordinary and partial differen-
tial operators. In particular, maximal and minimal operators and the properties of their
inverses are studied. The chapter is divided into 6 sections. The first two sections are
devoted to the general theory, and the other four sections deal mainly with differential
operators.

XIV.1 PRELIMINARIES

Throughout this chepter X and Y will denote complez Banach spaces. A
linear operator A with domain D(A4) C X and range Im A C Y is denoted by A(X — Y).
For X =Y the resolvent set p(A) is the set of all complex numbers A for which A — A4
is invertible and the inverse R(\) = (A — A)~! is bounded on X. The operator valued
function R(-) is called the resolvent of A.

PROPOSITION 1.1. The resolvent set p(A) of the operator A(X — X) is
open. If p(A) # 0, then the resolvent R(-) is analytic on p(A). Moreover, if Ay € p(A)
and |A — Xof < |R(Xo)l|™L, then X is in p(A) and

1) R()\) = fj(—l)ku — Xo)FR(Xo)*+1;
k=0

the series converges in the norm on L(X). If A and u are in p(A), then
(2) R(\) - R(s) = (4 — )RO)R(w).
PROOF. The proof is the same as for the bounded case; see, e.g., [GG],

Sections X.6 and X.8. O

The identity (2) will be called the resolvent identity (or resolvent equation).
As for bounded operators, the spectrum o(A) of A is defined to be the complement in
C of p(A). However, while the spectrum of a bounded operator is a non-empty compact
set, the spectrum of an unbounded operator may be empty or all of C.

For example, let X =Y = C([0,1]), the space of complex valued continuous
functions endowed with the supremum norm, and define 4; and 4, by

(3) - DAy ={fec(oa|f eco1]}, Af=f,

4) D(A2) = {f € D(A;1) | f(0) = 0}, Aof = 1.
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Since e*t € Ker(A — Ay), the spectrum (A1) = C. On the other hand, o(A2) = 0. To
see this, note that Ker(A — 45) = {0}. Also, for any g € Y, the equation (A — As)y = ¢
has a solution y € D(A4;), namely

t
y(t) = —/e’\(t")g(s)ds, 0<t<1.
0

Hence A — A3 is invertible and

(A = 42)~ gl = llyll < e igll.

Recall (see [GG], Section X.3) that an operator is closed if its graph G(A4) =
{(z,Az) | = € D(A)} is a closed linear manifold in the Banach space X x ¥ with norm
[z, )l = llz|l + |lyll- It is clear that A is closed if and only if z, € D(A), n = 1,2,...,
zn — z and Az, — y imply z € D(A) and Az = y. The differential operators defined
by (3) and (4) are closed. More general differential operators are shown to be closed in
Section XIV.3.

PROPOSITION 1.2. If the operator A(X — X) has a non-empty resolvent
set p(A), then A is closed.

PROOF. If Ay € p(A), then (Mg — A)7! is a bounded operator on X. Hence
9 — A)7 " 1s closed which implies that Ag — A 1s closed. But then A is closed. O
Ao — A)~1 is closed which implies that Ag — A is closed. But then A is closed

An operator A(X — Y) is called closable if it can be extended to a closed
linear operator C'(X — Y), i.e., D(4) C D(C) and Cz = Az for £ € D(A4). In that case
C is called a closed linear eztension of A.

PROPOSITION 1.3. An operator A(X — Y) s closable if and only if
(0,y) € G(A) tmplies y = 0.

PROOQF. Suppose that C is a closed linear extension of A and (0,y) € G(4).
Then (0,y) € G(C) and therefore y = CO = 0. On the other hand, suppose that
(0,y) ¢ G(A) whenever y # 0. Put

D= {z € X |3Jyz €Y such that (z,y:) € G(A4)}.
The set D is a linear manifold in X. Foreach z € D there is precisely one y, € Y suchthat

(z,yz) € G(A). Indeed, assume (z,y; ) and (z,y, ) arein G(A). Then (0, y= —vy.) € G(A),
and by our hypothesis y; = y,. Define B(X — Y') by setting

D(B) =D, Bz=vy,.

Then B is a well-defined linear operator and G(B) = G(A). Thus B is closed. If
z € D(A), then (z, Az) € G(A). This implies that z € D(B) and Bz = Azx. Hence B is
a closed linear extension of A. O

Let A be closable. The operator B constructed in the proof of Proposition
1.3 is called the minimal closed linear extension of A and is denoted by A. Since G(4) =
G(A), any other closed linear extension of 4 is also an extension of A.
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PROPOSITION 1.4. If A(X —Y) is closable and has finite rank, then A

18 bounded on its domain.

PROOF. First we prove that In A = Im A. Obviously, Im A C ImA. Take
y € Im A, say y = Az. Then (z,y) € G(A) = G(A), and hence there exists a sequence
z1,2g,... in D(A) such that z, — z and Az, — y. In particular, y € Im 4. Since Im A
is closed, y € Im A. Thus ImA = Im 4.

It follows that A also has finite rank. So we may assume without loss of
generality that A is closed. Then Ker A is closed. Indeed, let z € Ker A, and let
T1,%2,... be a sequence in Ker A such that z, — 2. Since Az, = 0, it follows that
(2,0) € G(A) = G(A), and hence Az = 0. Thus z € Ker A.

Since the map [z] — Az is an isomorphism from D(A)/Ker A onto Im 4,
we have dimD(A)/ Ker A = dimIm A < co. Hence D(A) = Ker A @ Z for some finite
dimensional subspace Z. It follows (see [GG], Theorem IX.2.5) that D(A) is a closed
subspace of X. Thus A:D(A) — Y is a closed operator acting between Banach spaces
and thus, by the closed graph theorem, the operator A is bounded on D(4). O

For later purposes we introduce the following terminology. Let A(X — Y)
and B(X — Y') be operators. We say that A is a restriction of B or, alternatively, B is
an eztension of A if

(5) D(4) c D(B), Az=Bz (z€D(A)).
In that case we write A C B. Note that (53) is equivalent to G(A) C G(B).

XIV.2 ADJOINT AND CONJUGATE OPERATORS

Recall that given a bounded operator A from a Hilbert space Hy, into a
Hilbert space Hj, the adjoint A* of A is defined as follows. For each y € Ha the
linear functional Fy(z) = (Az,y) is bounded on Hy. Hence, by the Riesz representation
theorem, there exists a unique z € Hy such that

(Az,y) = Fy(z) = (z,2), z € Hy.

Define A*y = z. Then A* is a bounded linear operator from H2 into Hy, and (Az,y) =
{(z, A*y) for all z € Hy and y € Hy.

Suppose now that A is densely defined but not necessarily bounded. Then
given y € Hy, the functional F;, defined on D(A) by Fy(z) = (Az,y) may be unbounded
and the Riesz representation theorem does not apply. So we must modify the above
definition in order to define A*. To do this we put

[{Az, y)|
1 D(A®) = H su _— .
( ) ( ) {ye 2|0¢:€%(A) ”1:” < oo
Take y € D(A*). Since D(A) = Hj, the functional Fy has a unique bounded linear exten-
sion F'y to all of Hy. Therefore the Riesz representation theorem ensures the existence
of a unique z € Hy such that Fy(z) = (z,z), z € D(A). Define A*y = z. Hence

3

({Az,y) = (¢, A"y), z € D(A), y € D(4%).
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The operator A* (Hy — Hj) is linear and is called the adjoint of A.

If D(A) is not dense in X, then the set D(A*) defined by (1) is well-defined.
But given y € D(A*), the linear functional Fy(z) = (Az,y), z € D(A), can be extended
in many different ways to a bounded linear functional on X, i.e., there are many different
z € X such that Fy(z) = {z,2), ¢ € D(A), and hence A* has to be defined as a multi-
valued map. In what follows we shall not consider this case.

It can happen that D(A4*) = {0}, as is seen in the following example. Take
Hy = Hy = £5. Let ¢ = (5kj)§?gl, 6r; the Kronecker delta, k = 1,2,..., and let
{e;j}?3=1 be any double indexing of {e;}32;. For each ¢, j define Ae;; = e; and extend
A linearly to the span of {e;}72,. Obviously, A is densely defined in £;. Suppose
y = (a1, a2,...) is in D(A*). Then for each positive integer n and 1,

oo oo
nlesl® <3 I(Aeij, y)P = D Hei, A0 < 14%y)1%.
Hence y = ()2, = 0.
If H; is a Hilbert space with inner product {-,-};, 2 = 1,2, then Hy x Hp is a
Hilbert space with inner product [-,-] defined by

[(z1,22), (y1,¥2)] = {21,¥1)1 + {z2,¥2)2-

For any M C Hj x Hj the orthogonal complement M+ of M is to be taken with respect
to the inner product [-,].

PROPOSITION 2.1. Let Hy, Hy be Hilbert spaces, and let the operator A
(Hy — Ha3) have dense domain in Hy. Then

(2) G(AY = {(-A"y,v) |y € D(4")},

and the operator A*(Ho — Hyp) 1s closed.
PROOF. Let G'(A*) denote the right hand side of (2). From

[(:E,A(D),(—-A*y,y)] = (zv'—Aty) + (Azry) =0,
it follows that G'(A*) C G(A)*. Given (u,v) € G(A)+,
0 =[(z, Az), (uv,v)] = (z,u) + (4z,v),  z € D(A).

Hence v € D(A*) and A*v = —u, which shows that G(4)+ C G'(4*).

Let J: Hy x Hy — Hj x Hj be defined by J(z,y) = (y,~z). Then J is a
homeomorphism and JG'(A*) = G(A*). From (2) it follows that G’(4*) is closed, and
hence G(A*) is closed. O

The concept of the adjoint of a densely defined operator has a natural exten-
sion to operators between Banach spaces as follows. Given the operator A(X — Y) with
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domain D(A) dense in X, define the conjugate A’ between the conjugate spaces Y’ and
X' by
D(A')={g €Y' |goAisbounded on D(A)},
Alg=go4,
where g o A is the unique bounded linear extension of g o A to all of X. The operator
A'(Y" — X') is linear. '

The next example exhibits the conjugate of the operator of differentiation on
Ly([0,1]), 1 € p < oo. To do this we make use of the following result. For a subset S of
a Banach space X and a subset N of the conjugate space X', we define

St={FeX'|F(s)=0foral s € S},
iN={xe X |G(z)=0forall G N}.
Obviously, § ct (S-L). The Hahn-Banach theorem implies that 'L(M'L) =Mif Misa
subspace (= closed linear manifold) of X. If N is a subspace of X, then, in general, it

does not follow that (A N)L = N. However, the latter equality holds true if dim N < oo.
To see this, let G1,...,Gn be a basis of N, and assume that F' € ('LN)-L. Then

n
[ KerGj = N C Ker F.
j=1

Hence F is a linear combination of Gy,...,Gn (see Lemma XVI.1.2), and thus F' € N.
Since always N C (1 N)L, we have proved that (L N)L = N for any finite dimensional
subspace N of X',

Now let us consider the conjugate of the operator of differentiation. More
precisely, we shall determine the conjugate of the operator A(X — X), where X =
L,([0,1]), 1 < p < oo,

D(A) = {f € X | f absolutely continuous on [0,1], f’ € X, f(0) = f(1)},
Af=f. '

The domain D(A) is dense in X. Given a bounded linear functional F on Lp([0, 1]),
1 < p < oo, there exists a unique g € L¢([0,1]), p~ 1 4+ ¢! =1, with the property that

1
F(f) = [f,q] == / f(s)g(s)ds, € Ly([0,1]).
0

This allows us to identify L,([0,1]) with Lq([0,1]). Thus A’ acts on Lg([0, 1]). We shall
show that

D(A") = {g € Lg([0,1]) | g absolutely continuous on [0, 1],

(3) g’ € Ly([0,1]),9(0) = g(1)},
A'g =—gqg.
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Let M be the linear manifold described on the right hand side of (3). If ¢ € M, then for
every f € D(A), integration by parts yields

1 1
Ahol= [ £9e)s == [ 1(:)g' ().
0 0

By Hélders inequality, |[Af, g]| < ||fllll¢’||- Hence g € D(A’) and A'g = —¢'. It remains
to prove that D(A’) C M. Suppose h € D(A"), A'h = h* and f € D(A). Then integration
by parts gives

1 1
[ £ms)as = arm = 17,48 = [ for*(s)ds
(4) 0 0 .
= FO(EW) - HO) - [ £(9)H(s)de,
0

where H(s) = f§ h*(t)dt. We shall now show that h + H is constant a.e. To do this

we take Q € 1{1}, i.e., the function Q € Lp([0,1]) and f01 Q(s)ds = 0. Clearly, f(s) =
Jo Q()dt is in D(A). Therefore by (4),

1
/ Q(2)[h(z) + H(z)ldz =0,
0

which shows that A + H € (+span{1})1 = span{1}, i.e., A + H is a constant c a.e. Thus
we may redefine h on a set of measure zero so that h = —H + ¢. Hence h is absolutely
continuous on [0,1] and A' = —h* € Ly([0,1]). Also for g € D(A), (4) shows that

1
g(0)(H(1) - H(0)) = / ¢q'(z)ds = c(9(1) — 9(0)) = 0.
0

So if we take ¢(0) 0, then 0 = H(1) — H(0) = h(0) — A(1). Hence h € D(A).

Other examples of adjoints of differential operators appear in Section XIV 4.
Since bounded linear functionals on a Hilbert space H correspond to elements in H via
the Riesz representation theorem, we shall only speak of the adjoint of an operator on
H rather than its conjugate.

PROPOSITION 2.2. The conjugate of a densely defined operator is closed.

PROOF. Given A(X — Y), suppose g, — g and A'gp, — f. Then for all
z € D(4),

f(z) = lim(A'gn)(=z) = lim gn(Az) = g(Az).
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Hence g € D(A') and A'g=f. O

PROPOSITION 2.3. Let the domain of the operator A(X — X) be dense in
X. Then A is closable if and only if for every y # 0 in Y there exists g € D(A’) such
that g(y) # 0.

PROOF. Suppose A is closable and 0 # y € Y. Let C be a closed linear
extension of A. Then (0,y) ¢ G(C) D G(A). Hence there exists w € (X x Y)’ such that
w(0,y) # 0 and w(G(A)) = 0. Define f € X’ and g € Y’ by

f(@) =w(z,0),  g(v) =w(0,v).
Then
f(z) + 9(Az) = w(z,Az) =0, z € D(A).
Hence g € D(A’) and g(y) = w(0,y) # 0.

Suppose for each u # 0 in Y there exists g € D(A’) so that g(u) # 0. If
(0,y) € G(A), then there exists a sequence (zn) in D(A) so that z, — 0 and Azn — .
For each g € D(A),

0 = lim A'g(zy) = lim g(Azn) = g(y).
Hence y = 0 and A is closable by Proposition 1.3. O

Proposition 2.3 is equivalent to the statement that A is closable if and only
if LD(A") = {0}.

PROPOSITION 2.4. Let Hy and Hjy be Hilbert spaces, and let A(H1 — Hj)
have domain dense in Hy. Then A is closable if and only if D(A*) is dense in Ha. In
this case,

A=A, A = (4A),
where A i3 the minimal closed linear extension of A.

PROOF. Suppose A is closable and w L D(A*). Then w = 0 by Proposition
2.3. Hence D(A*) = Hj,. Conversely, if D(A*) = Ha and (v,y) = 0 for all y € D(A4*),
then v = 0 and therefore A is closable by Proposition 2.3. Let U be defined on Hy x Hy
by U(z,y) = (y,z). Now by Proposition 2.1,

G(A) = G(A) = G(A)Y** = (UG(-4")" = UG(-A")L = U2G(4™) = G(4™).
Hence A = A**. If we replace A by A* and use the fact that A* is closed (Proposition

2.2), we get A* = A™* = (A)*. O

PROPOSITION 2.5. Let Hy and Ho be Hilbert spaces, and let A (H; — Hs)
be densely defined. Then

(i) Im AL+ = Ker A*,
(i) Tm A = Ker A*+.
If, in addition, A 1s closable, then
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(iii) Ker 4 = Im A*L N D(4).

PROOF. (i). If ¢ € Im AL, then (Az,g) = O for all £ € D(A). Hence
g € D(A*) and A*g = 0. Thus Im Al C Ker A*. The reverse inclusion is proved as in
the bounded case (see [GG], Theorem I1.11.4). Statement (ii) is an immediate corollary
of (i) and the fact that (M1)L = M for a linear manifold M. The proof of (iii) is
analogous to that of (i) (and uses that D(A*) is dense in Hp). O

PROPOSITION 2.6. A closed densely defined operator A(Hy — Hj) is in-
vertible if and only if its adjoint A* is invertible, in which case (A*)~! = (A~1)*.

PROOF. Assume A is invertible. By Proposition 2.5 the operator A* is
injective. Since A~! is bounded from H into H7y, the adjoint (A~!)* has domain Hj.
Hence for z € Hy and = € D(A)

(Az,(A™1)*z) = (A7 4z, 2) = (g, 2).
Therefore,
(5) (A~1)*z € D(4Y), A*(A7Yz =2

We have shown that A* is both injective and surjective. Since A* is closed, it is invertible
(by the closed graph theorem) and (A*)~1! = (A7!)* because of (5). If A* is invertible,
then by Proposition 2.4 and the above result applied to A* in place of A, we have A = A**
is invertible. O

XIV.3 ORDINARY DIFFERENTIAL OPERATORS
Let 7 be the differential expression of the form

T=D"+ap ()" + -+ a1(1)D + ao(2),

where D = Hd? and each aj is locally integrable on an interval J. Let AC,(J) denote

the set of complex valued functions g on J with the property that ¢(™=1) exists and
is absolutely continuous on each compact subinterval of J. Thus ¢(") exists a.e. on J.
Define the linear differential operator Tiax,r, (La(J) — La(J)) by

D(Tmax,r,J) = {g € ACn(J) N Ly(J) | g € La(J)},
Tmax,r,.lg =T7g9.

This operator is called the mazimal operator corresponding to 7 and J. Where it is clear
which 7 and J we are dealing with, we write Tmax instead of Tiax r 7. We shall now
show that certain restrictions of Tihax are invertible when J is compact.

THEOREM 3.1. Let Trax (L2([a,8]) — La([a,d])) be the mazimal operator
corresponding to T and the compact interval [a,d]. Let T be the restriction of Tmax to
those g € D(Tmax) which satisfy the boundary conditions

(1) Y aPg0 @) + Y gDy =0, 1<i<n,
j=1 j=1
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where each ozg-c) 18 a given constant. Then T is invertible if and only if

(2) det(Ny + NaU(b)) # 0,
with N the n x n matriz [ag.‘) Ti=1 k=12, and U(t) the unique continuous n X n

matriz such that

t
Ut) = I, + / A(s)U(s)ds, a<t<b,

where
0 1 0 0
0 0 1 0
A(t) = : . :
0 0 0 1
—ag(t) —ay(t) -—az(t) - —an-1(t)

If (2) holds, then T~! is the Hilbert-Schmidt operator on La([a,b]) given by

b
(T7L1H)() =/G(t,s)f(s)ds, a<t<b,

with
Glts) CU@)I - P)U(s)"'B, a<s<t<b,
,8) =
—CU@)PU(s)"'B, a<t<s<b
Here
P = (Ny + NaU(b)) "I NoU(b),
0
B=|:|, c¢=[10 - o0l
0
1

PROOF. Since the entries of A(t) are integrable on [a,b], we know from
Lemma IX.2.2 that U(t) and U(t)~! are well-defined. From the integral expression for
U(t) it follows that the entries of U(t) are absolutely continuous functions on a <t <b
and U(t) = A(t)U(t) a.e. on [a,b]. We shall first show that

b
(3) ImT={f€ Ly([a,8]) | NgU(b)/U(s)‘le(s)a’s € Im(Ny + NoU(8)) }

and

(4) KerT = {g € Ly([a,b]) | g(t) = CU(t)z,z € Ker(Ny + N2U(b))}.
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Assume f € ImT. Then

(5)

2'(t) = A(t)z(t) + Bf(t), a<t<b,
Niz(a) + Naz(b) = 0,

has a solution. In fact, we may take

g(t)
z(t) = glft) , a<t<b,
gn1(t)
where Tg = f. The solution of (5) is of the form
t
(6) z(t) = U(t)zo + U(2) / U(s)~ ! Bf(s)ds.

Since z(-) satisfies the boundary conditions, we see that

0 = Nyz(a) + Naz(b)
b
= Nyzg + NoU(b)zg + N2U(b) / U(s)_le(s)ds.
So
b
NoU(b) / U(s)_le(s)ds = —(N1 + NgU(b))Io (S Im(N1 + NgU(b)).
Conversely, assume that
b
NoU(b) / U(s)"1Bf(s)ds € Im(N1 + NgU(b)).

Then there is zg € C” such that

b
NZU(b)/U(s)‘le(s)ds = — (N1 + NoU(b)) .

It follows that

t
(7) z(t) = U(t)zg + U(2) / U(s)"!Bf(s)ds, a<t<hb,
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satisfies (5), and therefore ¢ = Cz € D(T') and Tg = f. Hence f € ImT.
To prove (4), we set f =0 in (5) and (6) to obtain

(8)

{ 2'(t) = A(t)z(t), a<t<b,
Niz(a) + Noz(b) = 0.

The general solution of the first equation in (8) is of the form z(t) = U(t)z(a). For z(t)
to satisfy the second equation in (8),

(N1 + NaU(b))z(a) =0

must hold. Also, g(t) = CU(t)z(a) € Ker T. Thus (4) follows.

1t is clear from (3) and (4) that T is bijective if N1 + NoU(b) is invertible,
or equivalently, det(Ny + NaU(b)) # 0. In this case, it follows from (6) and the above
discussion that if f € Lo([a,b]) and Tg = f, then g(t) = Cz(t) with z(t) given by (7).
Using the boundary conditions we see that

b
z(a) = =[Ny + N2U(b)]‘1N2U(b)/U(s)_le(s)ds.
It follows that for P = [Ny + NoU(8)]~ 1N, U(b),

b t
z(t) = —U(t)P/U(s)‘le(s)ds +U(t)/U(s)‘1Bf(s)ds

t b
=U@t)(I - P) / U(s)"1Bf(s)ds — U(t)P/U(s)_le(s)ds
a t

for each t € [a,b]. The formula for G(t,s) as stated in the theorem is now clear from
T~1f = Cz(t). In particular, T~! is a bounded linear operator, and thus T is invertible.

Next we shall show that
(9) dim Ker T' = dim Ker(Ny + NoU(b)).

By (4) it suffices to show that CU(t)z = 0 for all t € [a, b] implies z = 0. Let U;(t) be
the j-th row of U(¢). Since

U'(t) = A()U(2), a<t<hb, a.e.,
we see that for 1 <7 <n-1,

(10) Ui(t) = U 41(2), a<t<b, ae. .
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From CU(t)z = 0 it follows that Uy (t)z = 0. Apply (10) repeatedly and obtain Uj;(t)z =
0,1 <j <n. But then det U(t) # 0 implies z = 0.
From (9) we see that T is invertible implies that N1 + NoU(b) has full column

rank. Since Ny + NoU(b) is a square matrix, we conclude that det (N1 + NgU(b)) #0
whenever T is invertible. g

It is clear that with Ny = I and Ny = 0, the operator T is surjective. Since
T is a restriction of Tay, it follows that Tinax is also surjective. Setting N = Ny =0
in (9) yields T = Tmax and dim Ker Tynax = n. Hence we have the following result.

COROLLARY 3.2. The mazimal operator corresponding to 7 and a compact
interval is surjective and its kernel is n-dimensional.

PROPOSITION 3.3. The mazimal operator corresponding to T and any in-
terval i3 closed.

PROOF. Let us first assume that the interval J is compact. If we take
N1 =1 and N9 = 0 in Theorem 3.1, then the corresponding operator T has a bounded
inverseon Lo(J). Hence T is closed. Since Tmax is an extension of the invertible operator
T, it follows that

G(Tmax) = G(T) & (Ker Trmax x {0}).
Therefore G(Tmax ) is closed since G(T') is closed and Ker Tmax % {0} is finite dimensional.

Now let J be any interval, and let 77 = Tiax,rg. Suppose f1,f2,... s a
sequence in D(T7) such that

fa = f € La(J), Tifn — g € Lo(J).

For any compact subinterval Jg of J, let Ty = Tinax 7,4, If we consider fn, f and g as
elements of La(Jp), then fr, — f and Ty fn — g in Lo(Jp). Since Ty is closed by what we
have just proved, f € D(Ty) and Ty f = g on Lo(Jy). But Jy was an arbitrary subinterval
of J. Therefore f e D(T1)and T1f =¢9. O

PROPOSITION 3.4. If J is a compact interval, then any closed operator A
which is a restriction of Tmax,r,y has a closed range. If, in addition, A is injective, then
A™H(Im A — Ly(J)) is compact.

PROOF. Let us first assume that A is injective. By Theorem 3.1 there is an
invertible operator T which is a restriction of Tmax and has a compact inverse. Define

D(F)=ImA, F=A""—(T7'ImA).

Since A~ is closed and 7! is bounded, the operator F' is closed. Also Im F' C Ker Thmax
and the latter space is finite dimensional. Hence F is bounded by Proposition 1.4. So
D(F) is closed. Since F has finite rank, it follows that F' is compact. From A~! =
F +(T7!YIm A) and the compactness of F and T~! we have that A~! is compact. In
particular, 4”1 is bounded and thus Im A is closed.

If A is not injective, take A; to be the restriction of A to D(A) N Ker AL.
Then A; is closed, injective and a restriction of Tmax. Hence Im A = Im Aj is closed. O
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Let Tg ;s be the restriction of the maximal operator to those f € D(Tmax,r,7)
that have compact support in the interior of J. By the support of a function f we mean
the closure of the set {z | f(z) # 0}. Thus f € D(Tg,r,s) if and only if f € D(Trax,r,7)
and there exists a compact set C (depending on f) such that

{z € J]| f(z) #0} C C CintJ.

Since Tmax is closed, Tp = Tg r s is closable. The minimal closed linear extension of
Tp is called the minimal operator corresponding to 7 and J and is denoted by Trin 1 J-
When it is clear which 7 and J we are dealing with, we write Tr;, instead of Tiyip - 7.

PROPOSITION 3.5. The minimal operator Tiyi, corresponding to T and the

compact interval [a,b] is injective, has closed range and Tn_uln 18 compact on Im Ty If

9 € D(Tmin), then g®)(a) = g®)(5) =0,0<k<n—1.

PROOQF. Since Ty is a closed operator and a restriction of Tmax, Proposi-
tion 3.4 implies that Im(7,;y,) is closed. Let T7 be the invertible operator in Theorem 3.1
corresponding to N1 = I, Ng = 0. Then T} is a closed linear extension of Tg, because

D(TR) C {9 € D(Tmax) | §¥)(a) = 0,0 <k <n~1} = D(Ty).
Hence T7 is an extension of Ty, and thus Ty, is injective. But then Proposition 3.4

implies that Tn_ﬁl is compact on Im T5,. Finally, let T5 be the invertible operator in
Theorem 3.1 corresponding to N7 = 0, N = I. Then

D(Tg) C {h € D(Tmax) | K (8) =0,0 < k <n — 1} = D(Ty).

It follows that T is a closed linear extension of Tp and hence also of Tpi,. It follows
that D(Tmin) C DP(T1) N D(T3), which proves the last statement of the proposition. O

XIV.4 ADJOINTS OF ORDINARY DIFFERENTIAL OPERA-
TORS

Throughout this section, = = D™ + 22;11 ag(t)D*, with a; € C*(J), the
space of complex valued functions which have continuous k-th order derivatives on the
interval J (not necessarily compact). Let C§°(J) be the space of infinitely differentiable
functions with compact support in the interior of J. The extra smoothness conditions on
the coefficients of 7 imply that C§°(J) is contained in D(Tp r s). Since C§°(J) is dense
in Ly(J), it follows that the domains of TR r 7, Tmin,r,s a0d Tmax,r,s are also dense in
Lo(J).

Our aim now is to determine the adjoints T} ,, and T5; . First let us remark

that Proposition 2.4 shows that Tp = T3; . In order to have a clue to the domains of
the adjoints, take f, g in C§°(J). Then

P N A Y~ an(t) = 1.
(rf,9) kgo /J dOfP T, an(t) =1

Note that the integrals are well-defined since f and its derivatives have compact support.
Successive integration by parts yields

/ a ()% ()7(D)dt = / (~1)* (ax(0)7®)® f(1)at,
J

J
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and therefore

(1) (rf,9)=(f,7%9),  f,9€C5(I),
where
n—1
g = (=1 + 3 (-1 @)™
k=0
By Leibnitz’s rule,

i
(Ejg)(-’) = Z(i)ag; ¥)gw),
ll=0

Hence we can rewrite 7* in the form

n
™ =Y b(t)DF,

k=0
where
1y (I )g0k)
by, = Z(_l)J(k)ajJ , 0<k<n,
j=k

which belongs to C¥(J) because a; € CI(J). Thus 7* is a differential expression of the
same type as 7. One calls 7* the Lagrange adjoint of 7.

THEOREM 4.1. Let Tmax,r be the mazimal operator corresponding to 7 and
an arbitrary interval J. Then
(2) ;rllin,r = T;Z,r = Tmax,r* » Tx:mx,r = Tmin,‘r"-

The proof relies on the following lemma.

LEMMA 4.2, If 7* is the Lagrange adjoint of 7, then 7** = 7.

PROOF. Let Jy = [a,d] be any compact interval in the interior of J. Take
fin C§°(Jo) and g in C™(Jp). One shows (in the same way as (1) is proved) that

(firg) =(m"f,9) =(f,7™"9).

Since C§°(Jg) is dense in La(Jy) (cf. Lemma 5.1 in the next section), we have 7g = 7**¢g
a.e. on Jg. But then 7g = 7**¢ on Jy since these two functions are continuous. Now

n—-1
™*h =R 4 Z ck(t)h(k),
k=0

where ¢, € C*(J). Now let g(t) = t? for 0 < p < n — 1. Then 7g = 7**g on Jy yields
ar = ¢; on Jyg. But Jy was an arbitrary compact interval in the interior of J. Hence
ap = cj on the interior of J, and thus, by continuity, ay = ¢;. O
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PROOF OF THEOREM 4.1. Take f € D(Tg,r) and g € D(Tinax,r+)- Since
f has compact support in the interior of J, one shows (cf. (1)) that

(Trrfr9) =(7f,9) = (f,7"9).
From these identities it is clear that
D(Tmax,f‘) - D(Tﬁ,r)’ Tmax,rg = T;%,rg

for g € D(Tmax,r+). Suppose h € D(T} ). To prove the first two identities in (2), it
remains to show that A € D(Tmax,r+)- Let Jo = [a,b] be a compact subinterval of J.
Define

t
V:Lo((e,8]) — Lo(la,8]),  (VA)(E) = / f(s)ds.

Straightforward computations verify that for f € La([a,b]) and & > 1 the following
identities hold:

t

3 v = [ o s asiss
b(s t)k 1

(4) ((VEY A () = o estsh

(5) DRV Yef = (=1)Ff ae,k>1,

(6) VED*f=f, feACi(a,b]), fUN(a)=0, 1<j<k-1

Consider the space M consisting of all f € D(Tg ;) such that the support of f is contained
in a,b]. Thus for f € M the support of f is a compact set in the interior of J, which is
also contained in [a, b]. It follows that for each f € M

D)y =fDpy=0, j=0,...,n—1

Now put h* = Tj Th and take f € M. Formula (6) yields f(F) = yn- kf(n) for
0 <k < n, and hence

(VP R*) = (f,h*) = (rf,h)

= <Z akf<’°>,h> = <Z akv"—kf<">,h>
k=0

k=0

_ < o) Z(V""“)*akh>.
k=0
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Here an = 1. Therefore f(™) is orthogonal to

(7 ki= —(V*)R* 4 Y (VPR gk
k=0

with respect to the inner product in Lg([a,d]). Our aim is to show that k is equal a.e.
to a polynomial of degree < n — 1. To do this let [¢, d] be an arbitrary compact interval
in the interior of [a,d]. Identify La([c,d]) with the subspace of La([a, b]) consisting of all
functions that are equal to zero a.e. on [a, 8]\[c, d]. Let Pg denote the set of polynomials
of degree < n — 1 restricted to [c,d]. Take u € 'Pol, the orthogonal complement of Py in

Ly([e,d]), and put

i
t —s)n—1
g(t) = /ﬁu@)da c<t<d,
c 0 te J\[c,d.

Then ¢ € M, and by the above result with ¢ in place of f, we have g™ L k. Now
g™ = u ae. on[c,d] and ¢(™)(t) = 0 for t ¢ [c,d]. It follows that

d

/ u(s)k(s)ds = /b ¢\ (s)k(s)ds = 0.

c

Let ko be the restriction of k to [c,d]. It follows that kg € (Pg-)L, and hence there exists
a polynomial pg of degree at most n — 1 such that kg = pg a.e. on [¢,d]. This holds for
any interval [¢,d] in the interior of [a,b]. But then there exists a polynomial p of degree
at most n — 1 such that k¥ = p a.e. on [a, b]. Therefore by (7)

n—1

®) h=p+(VM)*h* = Y (V™ F)*ach
k=0

almost everywhere on [a, b]. If we define k1 to be the right hand side of (8), then h = hj
considered as elements of Ly([a,b]). Clearly, h; is absolutely continuous and k) = ko
almost everywhere on [a, b], where

n—2
hy = Dp — (VP R* + Gu_1hy + 3 (V1R )*aph,.
k=0

The function hy is absolutely continuous on [a,b]. In particular, hs is continuous on
[a,b]. But then

i i

h1(t) — hqy(a) = / 1(s)ds = /hg(s)ds, a<t<hb,

a a
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implies that hj is differentiable and h} = hg on all of [a,b]. Next, note that h} = h
almost everywhere on [a, b], where

hy = D?p + (=1)*(V*72)*R* — (= 1)(@n-1h1)
n—3
— (—1)%(@n-2h1) = Y_(-DXV™ ) k.
k=0

Again h3 is continuous on [a,b]. Hence hj is twice differentiable and hg2) = hjy. Pro-
ceeding in this way one finds that ky is in ACn([a,b]). Since [a,b] is an arbitrary interval
of J, we may conclude that h € ACn(J) N Lo(J). From formulas (8) and (5) and the
fact that p is a polynomial of degree < n — 1, we see that 7*(h) = h* on [a,b]. Hence
7*(h) = h* € Lo(J), and we have proved that h € D(Tinax,r=)-

To prove the third identity in (2), we replace 7 by 7* and apply Proposition
2.4 to Tiyin r-- This yields

* ek — .
Tmax,r = Tmin,r‘ = Trmn,r‘- O

COROLLARY 4.3. If Tpyin,r 13 the minimal operator corresponding to 7 and
a compact interval J, then codimIm Ty, » = n.

PROOF. By Proposition 2.5 and Theorem 4.1,

codim Im Tpyip » = dim(Im Tmin,,.)'L
= dim Ker Ty;, , = dim Ker Timax,r+-

min,r

Since the interval J is compact, dim Ker Trnax r+ = n by Corollary 3.2. O

Next we shall describe the adjoint of a differential operator of the type con-
sidered in Theorem 3.1. In order to do this we need the following preliminary results.

Successive integration by parts shows that for all f and g in ACy([a, b)), the
following Green’s formula holds:

(9) (rf,9) = (f,7"9) = Fy(f,9) — Fa(f,9),

where

(10 Fifi9) = 3 3 (=D A0 (1) (ai(e)g () <.
i=1 k=1

Applying Leibnitz’s rule to Fy(f,g), we get

n i

k-1
Fy(f,g9) = Z Z Z(_l)k—l(k ;— l)agk—j—l)(t)f(i—k)(t)g(j)(t)

1=1 k=1 3=0
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S (1)t (F T T gl ) o) (15000 o)
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= > Dl 0F ™ 05 )

The latter identity allows us to rewrite F;(f,g) in the following form:

(11) Fi(f,9) = Wi(g)" F(&)*W(f)-
Here F(t) = [Fpn;(t)]], _1—0 is the n x n matrix with entries

n—-m-1

=] 2 U DL, tmri<n-1,
0, otherwise.
Furthermore,
f() 9(t)
(12) Wi(f) = f’:(t) , Wilg) = ? ft) ,
Fn=)(2) g=1)(2)

and the symbol * denotes the usual matrix adjoint. The character W in (12) stands
for Wronskian. Note that Fin;(t) = (—=1)!@n(t), j + m = n — 1. Since an(t) =1 and
Fu;(t) =0 for j + m > n — 1, we conclude that

(13) ldet ()| =1, a<t<b

In particular, F'(¢) is invertible for a < ¢ < b.

As we are interested in finding the adjoint of a differential operator subject
to the boundary conditions

Z C!IJg(J)(a) + Z ,ngg("’)(b) —_ 0 1< 7 < k,

3=0

1t will be necessary to define the corresponding adjoint boundary conditions. We start
with the & x n matrices

(14) M= el 720, N2 =1651E, 1o
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Let £ be the rank of the matrix N = [ N; Ny ]. Then dimKer N = 2n — ¢, and we can
construct matrices Gy and G of size n x (2n — £) such that

(15) Ker N = Ker[ N N2]=Im[ g; ]

Next we introduce

(16a) [a ]2" t n- 0 := -G F(a),

(160) [BE12nTE 2l = G3F(b).

Here F(t) is the n x n matrix appearing in (11). We shall refer to the system of equations

ZO‘ g(J)(a)+Zﬂ# (J)(b)—o 1<i<2n ¢,

7=0

as the adjoint boundary conditions. We are now prepared to prove the following duality
theorem.

THEOREM 4.4. Let T(L3([a,8]) — Lo([a,b])) be the restriction of Tmax,r
to those g € D(Timax,+) which satisfy the boundary conditions

n—1 n—1
(17) Bi(g) =Y aijgP(a) + Y BijgP () =0, 1<i<k
j=0 7=0

Assume that the rank of the k x 2n matriz [[a;;][Bi;]] is £. Then the adjoint T* is
the restriction of Tmax,r to those f € D(Tmax,r+) which satisfy the adjoint boundary
conditions

n—1 n—1
(18) BF(f) = ol fOa)+ Y D) =0, 1<i<2m-¢
j=0 7=0
where a?; and ﬂf: are defined in (16a) and (16b).
PROOF. Define A(Ly([a,b]) — L2([a,d])) by
D(A) = {f € D(Tmax,~) | BF(f) =0,1<p<2n -2},
Af = f.

We must show that A = T*. Let f € D(A) and g € D(T') be given. Consider the vectors
Wa(g) and Wy(g) defined by formula (12). Formula (17) implies that

) | e,
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and hence, according to (15), there exists a vector d in C2"~¢ such that Wa(g) = G1d
and Wy(g9) = Gad. From (9) and (11) we have

(Tg, f) — (g, Af) = (g, f) = (9,7*f)
= Wy (£)"F(6)*Wy(9) ~ Wa(f)*F(a)* Wa(g)
= (Wi(9), FO)Wo(£)) — (Walg), F(a)Wa(f))
= (Gad, FO)Wy(f)) — (G1d, F(a)Wa(f))
= (d, G3F()W,(f)) — (d, G1F(a)Wa(f))
= (d, NFWa(f) + NFW,(£)),

where N# (resp. Ngﬁ) is the matrix in the left hand side of (16a) (resp. (16b)). But then
we can use (18) to show that (Tg, f) = (g, Af). Hence f € D(T*) and T*f = Af which
proves that A is a restriction of T™.

It remains to prove that D(T™) C D(A). Take h € D(T™). From the second
part of Proposition 3.5 it follows that T, » is & restriction of T. Hence T™* is a restriction

of Tmmr By Theorem 4.1, we have T* min,r = Tmax,re- Thus h € D(Tmax,r+) and
T*h = 7*h. There exist polynomials gq1,...,g9,_¢ such that
(19) Gy = Wal(q1,---,92n-0)s Ga = Wi(q1,---,92n-0);
where
hi(t) - Re(t)
Ri(t) oo hy(t)
Wt(hl,...,hr)i= : :
RO - R8T
To see this, put
n—j—1
(= 1) n+z—1 (t —a)Hi(t — b)" .
(20)  pajt) = Z VG e 0Sisn-l,
n—-j—1
(G 1) n+z—1 (t = b)iHi(t —a)” .
(21) (1) = Z S g 0Sisn-l
Then
(22) Wa(PaO,---ypa n—1)=I; Wb(PaO,---,Pa n—1)=0v
(23) Wa(peos---+Po n=1) =0, Wi(pbo,--+,Pb n—1) = 1.

Now define q1,...,q9,_¢ by setting

(q1(2) - g2n—£(t)] = [Pao(t) - Pa n—1(t)]G1 + [Pro(t) - Py n—1(2)]G2.
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From this definition and the formulas (22) and (23) it is clear that (19) is fulfilled. Since
N1G1 + NyG2 = 0, formula (19) implies that g1, ..., gon—¢ belong to the domain of T
Hence, because of (9) and (11),

0= (Tqy,h) — (g, T*h) = {rqw, k) = (g, 7"h)
= Wy(h)*F(b)*Wy(q,) — Wa(h)* F(b)*Wa(qy)
forv =1,...,2n — £. Again using (19), we see that
Wy(R)*F(8)* Gy — Wa(h)*F(a)*Gy = 0.
Take matrix adjoints in the latter identity and use (16a) and (16b). This shows that
B¥(R)=0forv=1,...,2n — £ Thus h € D(4). O

The linear functionals By,..., By appearing in (17) are linearly independent
on D(Tiax,r) if and only if the rank £ of the k¥ x 2n matrix N =[ N1 N, ] is precisely
equal to k. Here Ny and N3 are as in (14). To see this note that for ¥1,...,7¢ and g in
D(Tinax,r)

k
(24) > %Bi(g) = [ Vel (N1 Walg) + NaWi(9))-
1=1

Now assume that £ = rank[ N; N2 ] < k. Then there exist 71, ..., g, not all zero, such
that

(25) (1 wml[NM1 N2 ]=0,
and hence (24) shows that Bj,..., B} are linearly dependent on D(Twax,r). To prove
the converse statement, assume that there are 71, ...,7%, not all zero, such that the left

hand side of (24) is zero for each g € D(Timax,r). Since the interval we are working with
is compact, all polynomials are in D(Tmax,r). In particular, we may take g = pqj or
g = ppj, where pg; and py;, 0 < j < n—1, are the polynomials defined by (20) and (21).
But then (24) yields

0= [71 T 7k](N1Wa(Paj) + NZWb(Paj))
0=[y1- 7] (N1 Wa(pp;) + NaWi(ps;))

for j = 0,...,n — 1. So we can use (22) and (23) to show that (25) holds, and hence
rank N < k. Note that in the above discussion the actual form of 7 is irrelevant, because
for a compact interval, D(Tmax,r) is independent of 7 for the class of 7's considered in
this section.

The linear functionals B#, R Bfn—t defined by (18) are linearly independent

on D(Tax,r+). To prove this, it is sufficient to show (use the result of the previous

paragraph) that the rank of the matrix [ N{# N2# ] is precisely equal to 2n—#£. Here Ni#

and N2# are the matrices defined by the left hand sides of (16a) and (16b), respectively.
Thus

(26) (vt Nf1=l6 631 RO 0]
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From the definitions of G and Gy we know that rank[ G G35 ] = 2n — £. Since F(a)

and F(b) are invertible (see formula (13)), we conclude from (26) that | Nl# N# | has
the desired rank. The results of this and the previous paragraph will be used in Chapter
XVL

For J = [a,}], a compact interval, Theorems 4.1 and 4.4 remain true if the
leading coefficient (i.e., the coefficient of D™) in the differential expression 7 is a function
in C™([a, b]) wl_lich does not vanish on [a,b]. To be more precise, let p = 37%_g ¢;(t)D,
where ¢; € C’([a,b]) for 0 < j < n. By definition the Lagrange adjoint of p is the
differential expression

n
prg = (-1)(zi9).
7=0
Now assume that cn(t) # 0 for alla <t < b. Put a; = ¢j/cn for 0 < j <n—1, and let
n—-1

rg=D"g + Z aijg.
j=0

Note that a; € C¥([a, b]) for 0 < j < n—1, and hence T belongs to the class of differential
expressions to which Theorems 4.1 and 4.4 apply. Obviously,

(27) pg =cn(rg),  p'g=1"(Cny).

The definitions of Timax,p and Tinin,p are analogous to those of Trax,r and Trnin,r- From

(27) it follows that

Tmax,p = Mc, Trnax,r, Tmin,p = M., Tmin,r

Tmax,p‘ = Tmax,r'M:,,a Tmin,p‘ = min.‘r‘M:,, .
Here M., is the operator of multiplication by ¢, on Ly([a, b]), i.e.,
Me,: La([a,b]) — La([a,b]), M, f = cnf.

Since ¢y, is continuous on [a, b] and cn(t) # 0 for a < ¢t < b, the operator M., is invertible
and (M., )~ = My, . From these remarks it is now clear that Theorems 4.1 and 4.4
also hold for p in place of 7.

As an example of the above results, let p be the differential expression given
by

pf =D(pf)+af =pf" +9'f' + ¢f,
where p € C%([qa,b]) and ¢ € C([a,b]) are real-valued functions. Assume that p(t) #0
for all @ <t < b. Define T(Ly([a,b]) — Ly([a,b])) by

D(T) = {f € ACy([a,b]) | pf € La([a,b]), f(a) = f'(b) = 0},
Tf=pf.
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Let us compute T*. A simple calculation gives p* = p. To find the adjoint boundary
conditions, note that the boundary conditions for T are given by

Bif = f(a)=0, Baf =f(b)=0.

Therefore
_|1 0 oo _ ~[1 000

A basis for Ker Nis {{0100]7,[001 0]7}. Thus we may take

00 01
a-[5] e-l0a]

Furthermore,
Foo(t) =p'(t) = P'(t) =0,  Foi(t) = —p(2),
Fio(t) = p(t), Fi1(t) = 0.
So by (26),
0 p(a) O 0
$gggl-aralwe ¥ b
o a J;; B 0 0 1 —p
20 21 20 21 0 0 p(b) 0
_| —p(a) 0 O 0
- 0 0 0 —p(b) |-
Thus

B f=—p(a)f(a), BFf=—p)f ().

Since p(a) # 0 and p(b) # 0, the operators T and T* have the same domain. Also p = p*.
So Theorem 4.4 yields T = T*.

XIV.5 INTERMEZZO ABOUT SOBOLEV SPACES

We now introduce the notions of weak derivatives and Sobolev spaces which
are needed to study the Dirichlet problem in the next section. We shall assume that

Q is a bounded open set in R™. The points of R" are denoted by z = (z1,...,zs)-
For D; = 32—] and @« = (a1,...,an), an n-tuple of non-negative integers, we define

D* = Df*D3? --- D% and D? = I. The order of D® is |a| = Z?:l a;. For each non-
negative integer k, we denote by C*(Q) the set of continuous complex valued functions
on ! whose partial derivatives up to order k exist and are continuous on . The set
C®(Q) = N2y CH(Q) and C§(Q) is the set of functions in C°°(Q) which have compact
support in Q. Recall that the support of a complex valued function f defined on 2 is the
closure in {2 of the set {z € | f(z) # 0}. We denote the support of f by supp f. We
write f € C*(Q) if f € C¥(O), where O is some open set containing the closure Q of (.
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By L3(£)) we denote the Hilbert space of all Lebesgue square integrable functions on 2
endowed with the usual inner product.

To define Sobolev spaces it is necessary to start with the concept of a weak
derivative which relies on the following lemma.

LEMMA 5.1. The space C§(R2) is dense in Lo(Q).

PROOF. We write C(Q) for the space of all complex valued continuous
functions on @ and Cy(f) for the space consisting of the functions in C(f2) that have
compact support in Q. Since Co(f2) is dense in La(Q) ([R], Theorem 3.14), it suffices
to prove that C§°(2) is dense in Co(2) with respect to the L2({2)-norm. Let ¢ be a
real-valued function on R™ with the following properties:

(a) ¢ € C°(R™),

(®) ¢(z) >0, ||lz]| <1,

(©) ¢(@) =0, flall 2 1,

(d) [ e(z)dr =1.

RVI

An example of such a function is

[ bexpl(lel = D)1, el <1
plo) = { 0, el > 1

with the constant b chosen so that (d) holds. Suppose u € Cy(Q2) is given with compact
support K. Extend u to all of R™ by setting u(z) = 0 for z ¢ Q. Let ¢ be any positive
number which is strictly less than the distance from K to R*\Q. Define for all z € R™,

ue = L w(z ; y)u(y)dy-

En

R"

Since ¢ € C®(R™), differentiation under the integral sign shows that u. is in C*°(R").
Also, suppu, is a compact subset of 2. For suppose u(z) # 0. Then by (c) and the
assumption that suppu = K C Q, there exists y € K such that ||z — y|] < €. Hence
supp ue is a closed subset of the compact set of points whose distance from K is at
most ¢. It follows from the definition of € that this latter set is contained in 2. Hence
ue € C§°(2). It remains to prove that lime_q ||ue — u|| = 0. By (d) we may write

u(z) = Ein/<p(” ;y)u(a:)dy.
A

Therefore
ete) — u(@l < 2 [ o(Z52 Jiuts) - wlale
Rﬂ

< sup  |u(y) — u(z)|.
[lz—yll<e
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Since u is uniformly continuous on R, it follows that as € — 0, u. converges uniformly
to u on . Hence lim._,q [|ue —u||=0. O

By L1(f2) we denote the space of Lebesgue integrable functions on . Let
a = (a1,...,an) be an n-tuple of non-negative integers. A function f € L1(Q) is said to
have a weak a-derivative g € L1(R) if for every ¢ € C§°(£2),

[ @Dz = (-1l [ g@e(a)ds.
Q Q

In this case we write D®f = g. Here integration is with respect to Lebesgue measure.
Since C§°(R2) is dense in Ly(R), it follows that if g1 and go are weak a-derivatives of f,

then g1 =g a.e. If f € C|°‘|(Q), then integration by parts shows that D% f is the usual
a-derivative of f.

To illustrate the notion of a weak derivative, let = (0,2) and define

z, 0<z<1,
f("’)"{1, l<z<2

Then for every ¢ € C§°(Q),

/zf(:v)w'(l')dz = /1:v<p'(:v)dl' +/2<p'(:v)d:v
0 0 1

where

(2) = 1, 0<z <1,
g\#)= 0, 1<z<?2

Hence g is the weak derivative of f in L1(2). Now g is differentiable at = # 1, yet ¢
does not have a weak derivative in L1(2). Indeed, suppose Dg = h for some h € L1(£2).
Then for every ¢ € C§°(Q),

But this is impossible since there exist ¢, € C§°(2), n =1,2,..., such that 0 < ¢, < 1,
©n(1) = 1 and ¢, has support in the interval (1 - 1,1+ 1), whence

2

1= pn(1) = —/h(a:)cpn(x)dx 0.
0
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In the larger framework of the theory of distributions, ¢ has a derivative,
namely the Dirac é functional supported at 1, i.e., §(p) = (1) for all p € C§°(Q). The
argument used above shows that this distribution § is not defined by a function in Ly ().

For each non-negative integer m, let Hn(Q) denote the set of those f € Lo(R)
which have weak a-derivatives in Lo(f2) for 0 < |a| £ m. Since D® = I for |a| = 0, we
set Ho(§2) = Lo(f2). Define an inner product (-, )m on Hm(§2) by

(frghm= 3 / (D*f)(=)(D*g)(z)dz.

lal<m g

The space Hm(2) with this inner product is called the Sobolev space of order m. Note

that || - llo £ || - llm, where || |lo is the usual norm on Ly(Q2) and ||f||;m = (f,f),l-,{z.
Clearly, C§°(Q2) C Hm(S2). Define HJ () to be the closure in Hy, () of C§°(). Note
that HJ(Q) = Ho(Q) by Lemma 5.1. For m > 1 the space HY, () is a proper subspace of
Hp,(Q). For example, it can be shown (cf. Friedman [1], Section 10.2) that the constant
function 1 belongs to Hm(Q) but not to HY, () for m > 1.

THEOREM 5.2. The Sobolev space Hp () ts a Hilbert space.
PROOF. Let (f;) be a Cauchy sequence in Hp, (). Since
ID%f; — D% fello < Ifj = fillm, ol S m,

the sequence (D? f;) converges in Lo(§2) to some go. Therefore for each ¢ € C§°(£2) and
laf <m,

/go(z)D"‘cp(z)d:c = lim/fj(:c)Dacp(z)dz
Q Q
= lim(—~1)lel / D fi(z)p(z)dz
Q

= (-1 [ ga@)ee)iz.
Q
Hence gg € Hn (), D%g¢ = go and

lgo — fillZa = 3 llge — D*f5ll§ — 0. @

o] <m
The next theorem (Theorem 5.4 below) is fundamental for the study of the
generalized Dirichlet problem. To prove it we need the following result.

PROPOSITION 5.3. Let S denote the cube Hfil[a;, b;] in RN, with b;—a; =
£>0,1<i< N. For each p € C1(S) we have the inequality:

N & 1
(1) 5/ o)z < 5/ S IDio(a)fa + ZW‘ 5/ p(a)da

2
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PROOF. For z = (z1,z9,...,zn) and y = (¥1,¥2,---,yn) In S,

Y 2
o(z) - ly) = /Dw(el,yz,...,ymdcl +/D2<P(-"-‘1,€2,y3,---,yN)d§2
n Y2

(2) o

+"'+/DN<P(11,I2,---,IN—l,EN)dEN-

YN

The Cauchy-Schwarzinequality and (2) imply

le(z) — o)1 = lo(2)1? - p(2)B(y) — B)e(y) + ()

by
< {¢N (/ |D19(€1, 92, - - - yn)|2ds

ay

by
(3) 9
+ [ |Dag(z1,€2,93,-- -, yn)"dé2
a;
by
+--+ / |DN<P(1:1’I2$"' ’zN—l7£N)|2d£N)‘
an
Successive integration of each side of (3) with respect to zy,z9,...,zN5,¥1,.--,¥N (i€,

integration on S x S) yields

2 N
<ene" S [ Dip(a)Pas,

20N / lo(z)[2dz — 2( / o(z)dz
S S

which is equivalent to (1). O
THEOREM 5.4. The embedding from H{(Q) into Lo(Q) is compact.

PROOF. The closure of a set U in a Banach space is compact if and only if
it is totally bounded. That is to say (see [W], 24B), for every ¢ > 0 there exists a finite
set uj,...,um In U such that for each u € U,

mkin flu —ug] <e.

Since C§°(f2) is dense in H?(Q), the theorem will be proved once we show that the set

U={e|pel§), el =1}

is totally bounded in Ly(f2). Given € > 0, let @ be a cube in R™ which contains {2, and
let Q = UZ=1Sk’ where Sy, Sa,..., Sy are cubes whose edges have length £ < £/v/3n such
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that the interiors of Sy,...,5, do not intersect. Take ¢ € U, and put ¢ = 0 on Q\Q.
Since ¢ € C§°(Q), we have p € Cl(Sj) for each j. Thus by (1),

[ =" [ o
Q

k=15k
p

< ! gw,«o(z)\? +(3) > 5/ o(2)d
Dot + (1) >

/cp(z)dz

k=1 Sk

2

IA

(4)

2

IA

Consider the map K¢ = (al(cp),...,ap(cp)), where ap(p) = [ p(z)dz. Obviously,
Sk
Ky € CP and

2 2
IKellE < lleli§ < €Nl

Hence K (U) is bounded and therefore totally bounded in CP. So one may find ¢1,...,¢m
in U such that for each ¢ € U there exists j (depending on %) with

()" S|/ v - prtenas

2

2 1\" )
= (3) v - Koyl < 5

%
Replacing ¢ by ¥ — ¢; in (4) gives
2

€ 2 2 1 2 2
— < = . .
2 36 + 45 <€

2
€
I 5113 < Sllv — 51 +
Hence U is totally bounded in Ly(Q2). O

XIvVv.6 THE OPERATOR DEFINED BY THE DIRICHLET
PROBLEM

In this section we introduce and study a closed unbounded operator associated
with the generalized Dirichlet problem.

Let © be a bounded open set in R™. It is assumed throughout this section
that the boundary 8Q of Q is of class C2. By this we mean that given any point
z € 09, there exists an open neighborhood U of z and a homeomorphism k from U onto
E = {y e R"| |ly| <1}, with the following properties:

(a) h(z) = 0;

(b) h and A~! are in C2(U) and C2%(E), respectively;

(c) (UNB) ={y €R™ |y = (y1,---,¥n=1,0), [ly]| < 1}.
Let L be a partial differential expression of the form

(1) L= a;(z)DiDj+ ) bi(z)D;,

i,j=1 =0
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where each a;; and b; are in C®(Q2) and Dof = f. At times it will be convenient to
rewrite L in the so-called divergence form:

n n
(2) L= 3" Di(a;(z)D;) + Y ai(z)Di,
ij=1 i=0
with a; € C®°(Q) fori = 0,...,n.

A classical Dirichlet problem is to determine if for every f € C(f_l) there exists
a unique u € C(R), the space of continuous complex valued functions on §, such that

Lu=f on K,
() {u=0 on Q.

If now f is in La(f2), then the equation Lu = f makes sense if u € Ha(2) and each D;
is a weak derivative. Furthermore, if u € C(€2) N HY(Q), then one can prove (see, e.g.,
Friedman [1], Section 10.2) that the boundary condition in (3) is automatically fulfilled.
This leads to a generalized Dirichlet problem, which is concerned with the existence and
uniqueness of the solution of

4 Lu:fv
@ u € HY(Q) N Hy(9),

where f is arbitrary in Ly(Q). The operator A(L2(2) — La(f2)) defined by
(5) D(A) = HY(Q) N Hy(Q),  Au= Lu,

will be referred to as the Dirichlet operator on La(Q) associated with L.

In this section we study the Dirichlet operator under the additional assump-
tion that L is uniformly elliptic, which means that there exists a constant ¢ > 0 such
that

n n

(6) W( Z aij(ft)?iz]') < —c (Z |Zi|2)

i7=1 i=1

for every z € Q and (21, 22,...,2n) € C". For example, if A is the Laplacian ) iL, D?,
then —A is uniformly elliptic.

THEOREM 6.1. Let A(La(2) — Ly(R)) be the Dirichlet operator associated
with the differential ezpression L. Assume that L is uniformly elliptic. Then A i3 a
closed densely defined operator. Furthermore, there ezists Ay € R such that A 4+ A 1is
invertible and (A + A)™! is compact whenever A > ).

Note that the above theorem implies that for f € L2(Q) the generalized
Dirichlet problem

u€ H(Q)NHy(Q), (A+Lu=f
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is uniquely solvable if L is uniformly elliptic and A € R is sufficiently large.
The proof of Theorem 6.1 depends on the following preliminary results.

LEMMA 6.2. If L is uniformly elliptic, then there ezist constants a > 0 and
B 2 0 such that for every ¢ € C§(R),

) R(Le, )0 = alloll - Bllel3-

PROOF. We use the divergence form (2) for L. For each ¢ € C§°(£2),
integration by parts yields

o=~ Y [as(@)Dse(e)Dip(a)ds
l',j=19

+ Z/ai(z)(Di<P($))¢($)dm.

(8)

Since each a; is bounded on §2, uniform ellipticity and (8) imply that there exist constants
M > 0 and ¢ > 0 such that for all ¢ € C§°(Q)

©) R(Lp,o)o 2 ¢ [ 3 IDiw(@)Pds 24 [ 3 IDig(a)lo(a)lds.
o i=1 o =0

Now for any real numbers s, ¢ and any ¢ > 0,

L

\/Et) < (sve)? + (%t)z =es? + ét?

(10) 25t = 2(5\/a<

Hence (9) and (10) yield

n n

1

> . 20, D; 2, 2 2

R(Lp,eho2 e [ 3 Dio()da — I3 L elDip(o)l + Zlo(e)de
Q = Q =

M
= (e~ Mool = (c+ 2+ 1) el
For ¢ sufficiently small,
a=c—Me >0, ,6=c+-4:-(n+1)>0,

and
R(Le,0)o 2 allplli - Bllelf, v eCg(Q). o

We continue to use the divergence form (2) for L. If u € H2(Q), then for all
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@€ C&°(Q),

(Lup)o = 3 ~ [ ay(@)Dju()Di(a)d
Q

i,j=1
+Z/a;(z)(D;u(z))¢(z)dz
(11) e i
= Z /u(z)Dj (aij(z)Dip(z))dz — Z/u(z)D;(a(z)?(z))dz
Lj=1q i=1g
+ [w@a@re)ds = (L,
Q
where
(12) L*¢= > Dj(@iDip) — ZD:'(EM) + Goep.
ij=1 i=1

The expression L* is called the Lagrange adjoint of L.

For u € H2(Q) the linear functional Fu(p):= {u,L*y) is || |lo-bounded on
C§°(£2), because of (11). Conversely, if u € Ly(2) and Fy is a || |lo-bounded linear
functional on C§°(£2), then since C§(£2) is dense in Lo(2) (by Lemma 5.1), the functional
Fy has a unique bounded linear extension to Ly(§2). Hence, by the Riesz representation
theorem, there exists a unique f € La(€2) such that

(u, L¥¢)o = {f,)0, v € C5°(Q).
In this case we write Lu = f. If u € Hy(Q), then Lu = f, because of (11).

For the proof of Theorem 6.1 we need conditions which guarantee that Lu = f
implies Lu = f, that is, the weak solution u is in fact a strong solution. It turns out
that the latter implication holds if v € HY(Q) (which is contained in Ly(Q)) and L is
uniformly elliptic. More precisely, the following theorem is true.

THEOREM 6.3. If the differential exzpression L i3 uniformly elliptic, u €
HY(Q) and Lu 2 f for some f € Ly(R), then u € Hy(R) and Lu = f.

The proof of Theorem 6.3 requires a considerable amount of work which
belongs to the theory of partial differential equations, and therefore it is omitted here.
However, to give an impression of the proof we review briefly its main steps. The first
major step is to establish interior regularity, that is to say, if V is an open set with
V C Q, then u € Hy(V) and there exists a constant C depending on V such that

el ar, vy < CUN o0 + ullny(ey )-
Next one proves that if now 2 is the mhalf-ball

Q= {z=(z1,...,2n) € R* | [lz]l < T, zn > 0},
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and
1
V = {.’L‘ €N | “.’L‘“ < ET},
then u € H3(V) and there exists a constant C such that

el ey 0y < CLIF L, @) + 1l @)}

Finally, one covers 9§ by a finite number of open sets {;, 1 = 1,..., N, such that each
open set ;N can be mapped by a 1-1 C'?-map onto a half-ball. By applying the above
results and summing the corresponding estimates, the theorem is then proved. The
details of the proof may be found in Friedman [1], Showalter [1] or in Gilbarg-Trudinger
[1].

We also need the following lemma, which is a generalization of the Riesz rep-
resentation theorem and is known as the Laz-Milgram lemma. Recall that a sesquilinear
form B(u,v) on V; x V5, where V; and V5 are vector spaces over C, is a functional which
is linear in u and conjugate linear in v.

LEMMA 6.4. Let H be a Hilbert space and let B(-,-) be a sesquilinear form
on H x H. Suppose that there exist constants ¢ > 0 and C > 0 such that

(13) |B(u,v)] < C|lu||||v|l, u,vin H,

(14) |B(u,w)| > c||u||?, ue H.

Then given a bounded linear functional F' on H, there ezist unique v and w in H with
the property that

F(u) = B(u,v) = B(w,u), u € H.

PROOF. Foreach z € H, the map u — B(u, z) is a bounded linear functional
on H. Hence, by the Riesz representation theorem, there exists a unique s € H such
that

(15) B(u,z) = (u, s), u € H.

Define Az = 5. Then A is linear on H, (u, Az) = B(u, z) and it follows from (13) that A
is bounded on H. Now by (14)

(16) lAullllull > [(Au,u)| = [B(u,u)| = cfJu|*.

Hence A is injective and has a closed range. Since (16) also holds for A* in place of A,
the operator A* is injective and

ImA = (Ker 4*)t = H.

Therefore A is invertible. Given the bounded linear functional F on H, there exists a
unique y € H such that

F(u) = (u,y), u € H



320 XIV.6 THE OPERATOR DEFINED BY THE DIRICHLET PROBLEM

Since A is invertible, Av = y for some v € H. Therefore
F(u) = (u,y) = (u, 4v) = B(u,v), u € H.

The uniqueness of v is a consequence of (14). Finally, since By(u,z) = B(z,u) is a
sesquilinear form on H x H satisfying (13) and (14), the result we just proved applied
to F and B; ensures the existence of a unique w € H such that

F(u) = By(u,w) = B(w,u), v€H O

PROOF OF THEOREM 6.1. We write L in the divergence form (2). As
before, L* denotes the Lagrange adjoint of L. Define B(:,-) on H?(Q) X H?(Q) by

n n
(17) B(u,v) = — Z (aij Dju, Div)o + Z(a,-D,'u,v)o.
i,7=1 i=0
Clearly, B is sesquilinear. From (11) we obtain

(18) B(“»‘P) = (uvL*‘P)O, u € H?(Q)v p € CSO(Q)»

(19) B(p,¢) = {Le,v)o, v € CF°(Q).

Hence, by Lemma 6.2, there exist constants a > 0 and 8 > 0 such that

(20) RB(p, ) = R(Le,v)o 2 allell} - Bllelld, ¢ € CE(Q).

It follows readily from the boundedness of each a;j and a; that for some constant v,
(21) |B(w,0)| < vllulhllvl,  wv € HI(Q).

Since C§°(Q) is dense in HY(Q2), formulas (20) and (21) imply

(22) RB(u,u) 2 aflul} - Blullf,  «e€HYQ).

Now take Ag = 3, and let A > Ag. Define the sesquilinear form B)(-,-) on H?(Q) X H?(Q)
by

By (u,v) = A{u,v)o + B(u,v).

The inequalities (21) and (22) imply that B)(-,-) satisfies the hypotheses of Lemma 6.4
with H = HY(Q). Take g € L2(€2). Then the linear functional

Fg(u) = (u»g)()v u € HIO(Q)$
is bounded on H{(Q). Thus, by Lemma 6.4, there exists f € H)(Q) such that

Fy(u) = By(f,u) = Mu, fo + B(f,u),  ue€ HY(Q).
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From (18) it follows that for each ¢ € C§°(Q),

(g,90)0 = Fy(p) = Mf,0)o + B(f,0) = (f,(A + L*)p)o-

In other words, (A + L)f £ g. Since f € HY(2) and L (and hence A + L) is uniformly
elliptic, we know from Theorem 6.3 that f € Hy(Q?) and (A + L)f = ¢. In particular,
f €D(A) and (A + A)f = g. This proves that A + A is surjective.

Take u € D(4) = HY(Q) N Hy(2). Formula (17) implies that
B(u,¢) = (Lu,p)0, ¢ € C5°(Q),

because Lu € Lo(Q). Now use (21) and the fact that C§() is dense in H)(Q) to show
that B(u,u) = (Lu,u)q. But then (22) yields

N+ Aullollullo 2 R(A + L)u, u)o = Allull§ + RB(u, u)

(23)
2 allull} 2 aflul}.

Here we used that A > Mg = 3. Since (23) holds for any u € D(A), we have now proved
that A + A has a bounded inverse. In particular (cf. Proposition 1.2) the operator A is
closed.

It remains to prove that (A + 4)~! is a compact operator on Ly(Q). Given a
bounded sequence (gn) in L2(f2), let un = (A + A)"lgn. Then, by (23),

1 1
llunllf < = llgnliollunllo < —lignllollunll1-

Therefore (un) is a || |[1-bounded sequence in H{)(Q) But then, by Theorem 5.4, the
sequence (un ) has a subsequence which convergesin Lo({2), which proves the compactness

of A+ A)"lon Ly(Q). O

THEOREM 6.5. Let A(Lo(2) — Lo(f2)) be the Dirichlet operator associated
with the differential ezpression L, and let L* be the Lagrange adjoint of L. If L is
uniformly elliptic, then A™ 1s the Dirichlet operator associated with L*) i.e., D(A*) =
D(A) and A*u = L*u.

PROOF. Let Ay (La(2) — Lo(R2)) be the Dirichlet operator associated with
L*. Tt follows from (12) that L* is uniformly elliptic. Thus, by Theorem 6.1, there exists
A € R such that A+ A and A + A have bounded inverses on Ly(2). By (11) (applied to
A+ L* in place of L) we have

(24) (A + e, A+ 47 o = (e, (A + LA + 4)7 o = (v, flo
for any f € La(f2) and any ¢ € C§°(£2).
To prove the theorem it suffices to show that (A+A)C§(£2) is dense in Ly (£2).
For if this is the case, then given h € Ly(2) there exists a sequence () in C§°(£2) such
that (A + A)pn — hin L2(Q), and so by (24),
(hy (A + 42) 71 fo = Lm((X + A)pn, (A + 44) 7 o
= lim(pn, f)o = (A + A) 7', fo,
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for any f € Ly(Q2). Hence
A+A =[O0+ A =0+ 4.)7 L

Therefore A* = A..

It remains to prove that (A+ A)C§°(R) is dense in Ly({2). Suppose not. Since
(A + A)C§R(R) is contained in C§°(2), Lemma 5.1 implies that there exists ¢ # 0 in
C§°(92) such that

(25) (A+A)p,d)o =0, @€ C(Q).

Let B(:,-) be the sesquilinear form defined by (17). Then (11) and (18) imply that
(26) 0=((A+A)p,¥)o = (@, (A + L")P)o = Me,¥)o + Ble, ¥)

for all p € C§(R2). In particular,

(27) Al + B(%, %) = 0.

By (23) (which holds for any u € D(A)) the left hand side of (27) dominates a||d)||% for
A > (. It follows that ¢ = 0, which is a contradiction. O



CHAPTER XV
FUNCTIONAL CALCULUS FOR UNBOUNDED OPERATORS

In the first two sections of this chapter the theory of Riesz projections and the
functional calculus developed in Chapter I are extended to unbounded linear operators.
This extension is quite straightforward. The next two sections concern a more difficult
problem, namely, the case when the contour of integration goes through infinity. For the
unbounded case (when infinity always belongs to the spectrum) the solution requires a
spectral decomposition for the spectrum at infinity.

XV.1 INTRODUCTION OF THE FUNCTIONAL CALCULUS

Let X be a complex Banach space, and let A(X — X) be an unbounded
linear operator with non-empty resolvent set p(A4). We assume that D(A4) # X. The
purpose of this section is to develop an operational calculus for A based on the calculus
for bounded operators presented in Section I1.3. In fact, the bounded operator we choose
is (@ — A)~1, where « is fixed in p(4). The spectrum o((a — A)~1) is compact, and, as
we have seen, ¢(A) is closed but may be unbounded. Our first step is to “compactify”
o(A) as follows. Let Coo be the extended complex plane, Coo = CU {o0}, endowed with
the usual topology (see [C], page 8). The set Co is a compact topological space and the
M¢ébius transformation

(1) n(A) = (a =271
is 2 homeomorphism from C., onto Coo. We shall now show that
(2) n[o(A) U {o0}] = o((a — A)7H).

First note that n(c0) = 0 € o((a — 4)™1), because Im((a — A)~1) is not equal to X.
Next we use the identity

(3) A= A=(a= NN = (@A) (a - 4),

which holds for any A # «. Since a ¢ o(A), it follows from (3) that A € o(A4) if and only
if n(A) = (e — A)"! € o((a — A)~'). From these remarks formula (2) is clear. From (2)
and the fact that 7 is a homeomorphism we may conclude that 0(A4) U {co} is compact
in Co.

Equality (2) also gives a clue to the definition of f(A4). Let Foo(A) denote
the set of all complex functions that are analytic on an open set in Co, containing o(A4)
and co. Take f € Foo(A). Then f o7n~! is analytic on an open neighbourhood of
o((a — A)~1). Hence the operator (f on~!)((a — A)~!) € L(X) can be defined as in
Section 1.3. This we take as our definition of f(A4). Thus

(4) flA:=(fon™)((a—4)1),  f€FuolA).
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Given f € Foo(A), there exists an open set  C Coo such that o(4) C Q,
the complement of Q is a compact subset of C and f is analytic on . The argument
given in Section 1.1 shows that there exists an unbounded Cauchy domain A such that
o(A) C A C A C Q. As before, A is the oriented boundary of A. Thus A is oriented
in such a way that A is the inner domain of 3A. The following integral representation
is the counter part to f(A) when A is bounded. Since the formula does not involve a, it
shows that f(A) is independent of a.

PROPOSITION 1.1. Suppose that f is analytic on an open set Q in Coo
containing o(A) and oo. Let A be an unbounded Cauchy domain such that o(A) C A C
ACQ. Then

£(A) = fleo) + 5z [ A= 71,
8A

where A i3 the (oriented) boundary of A.

PROOF. Let a € p(A) be fixed. Since A — (A — A)~! is analytic on p(4),
we know from Cauchy’s integral theorem that the above integral is unchanged if A is
replaced by an unbounded Cauchy domain A/, where o(4) C A’ C ANcAandad¢?B.
Hence we may assume a ¢ A. By (2), the set n(AU{oo}) is a Cauchy domain containing
o{(a — A)7!) and I' = 7(8A) is its oriented boundary. Let B = (a — A)~1. It follows
from (3) that if @ # A € p(A4) and z = (& — A)™!, then

(A—A)1'=2B(z—B) ! =z[-I+42( — B)™1].
By change of variable A = 7~1(z) = @ — 271, Cauchy’s integral formula and Section 1.3
give
1
271

/ FO)A —A)"ldA = %m./f(ﬂ_l(z))(—z_11+ (z— B)"1)dz
oA r

=—f(n™ (O +(fon™")(B)
=—f(oo)l + f(4). O
From the above results and Theorems 1.3.1, 1.3.3 we obtain the following
result.

THEOREM 1.2. If f and g are in Fo(A), then

(2) (f +9)(4) = f(4) +9(A4); (ef)(A) = af(4), « € C,

(b) (f9)(A) = f(A)g(A),

(c) o(f(4)) = flo(4) U{oo}].

To illustrate the operational calculus for unbounded operators, we consider
an example. Let X = L1([0,00]), and let A be the maximal operator corresponding to
T = Etlli and the interval [0, c0), i.e.,

D(A) = {y € X | y is absolutely continuous on each
compact subinterval of [0,00) and ' € X},
Ay =1
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We shall now show that

(5) o(A) = {}| R < 0}.

Given g € X, the general solution to the differential equation
-y =g

1s

y(t) = et [c - /t e—’\"g(s)ds] :
0

Suppose RA > 0. If we take c = [ e~ g(s)ds, then

o0 o0
y(t) = e’\t/e"\sg(s)ds = /e_’\“’g(t + 8)ds.
t 0

It is easy to see that y is in D(A4) and, as noted above, (A — A)y = g. Thus A — A is
surjective. Moreover, A — A is injective, since (A — A)y = 0 implies y = ke which is
not in X unless k£ = 0. Hence

(=40 = [ glt + s)ds
0

and

1
-1 .

If R\ < 0, then ) is an eigenvalue of A with eigenvector e*!. Hence A € o(A4). Since
a(A) is closed, we have {A | RA = 0} is also in o(4), which establishes (5).

If f € Foo(A), then there exist positive numbers r and € with the properties
that f is analytic on

A > U R <€)

In particular, f is analytic on the closure of the Cauchy domain A = {\ | [A\] > 2r}U
{AIRA < §} Do(A), and

(F(A)g)(t) = f(oo)g(t) + ﬁ /f(/\)[/e_’\sg(t+s)ds] dX.
8A 0
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XV.2 RIESZ PROJECTIONS AND EIGENVALUES OF FINITE
TYPE

The results in Sections 1.2 and II.1 concerning spectral decompositions and
eigenvalues of finite type can be extended to closed (linear) operators. We shall show
how this can be accomplished.

Given an operator A(X — X), a linear manifold M C X is called A-invariant
if A(M ND(A)) C M. In that case A|M denotes the operator with domain M N D(A)
and range in M.

THEOREM 2.1. Suppose A(X — X) is a closed operator with specirum
o0(A) = cUr, where o is contained in a bounded Cauchy domain A such thet ANT =40.
Let T be the (oriented) boundary of A. Then

(i) P, = 21?{fr()‘ — A)~ld) is a projection,

(ii) the subspaces M =Im P, and N = Ker Py are A-invariant,

(iii) the subspace M 1is contained in D(A) and A|M is bounded,

(iv) o(A|M) = o and o(A|N) = 7.

PROOF. The proof of (i) is the same as the proof of Lemma [.2.1. Given

z€e X,
(1) P = /(A — A)zd)
T
and
(2) /A(,\ —A)lzd) = /[—z +A(A — A)"Lz]d

r r

An approximation of these integrals by Riemann-sums and use of the assumption that
A is closed imply P,z € D(A) and

(3) AP,z = /[—z + A — A) " lz]dA.
r

Thus M C D(A). Now if z € M, then Az = AP,z = Py Az € M, which shows that M
is A-invariant. Since AP,z = P, Az if z € D(A), it also follows that N is A-invariant.
Equality (3) implies that A|M is bounded. The proof of (iv) is the same as the proof of
Theorem 1.2.2. O

A point Ag € o(A) is called an eigenvalue of A of finite type if Ag is an isolated
point of ¢(A) and the associated projection P(),) has finite rank. Here P(y,} is defined
by (1) with ¢ = {Ao}. Since {Ao} = o(A4|Im Pyy;}) and Im Py, is finite dimensional
(in D(A)), it follows that Ag is an eigenvalue of A.

THEOREM 2.2. Let A(X — X) be a closed operator, and let Ay be an
eigenvalue of A of finite type. Then the resolvent (A — A)™! admits an ezpansion of the
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form

-1

)4 0
_ 1 k-
(A =47 = = Ppgy + 2 (A=) k=1pk 3 (A = Ag)kTRL
o k=1 k=0

Here p 1s some positive integer, B = (A — /\O)P{Ao} and
=L /(A —Xg)7H(A - N)71dx,
271
T

where T is the positively oriented boundary of a closed disc with centre Ay which is disjoint
from a(A\{X o}

PROOF. Let Pp = Py} and 4g = A|Im Py. By Theorem 2.1, o(Ap) =
{Mo}. Thus o(Ag — A¢) = {0}, and therefore

(A= 40 = 30— 20) 7 (g — 2o)F
k=0
converges in L(M) for all A # A\, where M = Im Py. Since
(A—A) 1Pz =(A—Ag) 'z =P\ - 4)" 'z, zE€EM,
it follows that for A ¢ o(A),

1

(4) (-4 P = o

(oo}
Po+ ) (A= X0)*1BE,
k=1

where

Bi=(A—X\)Py = 2—715 /(,\ - X0)(A = A)7ld) € L(X).
r

Since B has finite rank, BP = ( for some positive integer p. Let T be as in the theorem.
Since A is closed, the same is true for A — Ag, and hence computations similar to those
given in the proof of Lemma 1.2.1 and Theorem 1.2.2 show that

(A-XNT=(A-2)T-A=X)T=I-PFP—(A—-2A0)T, PyT = 0.
Hence
(5) (A= NT == P)— (A= Ao)I = Po)T = (I - Ro)[I — (A = Ao)T].
Now for A sufficiently close to Ag and A # Ag, the operators A — A and I — (A — Ag)T are

invertible. Therefore from (5) we get

(6) A=A I = PR) = =TI - (A= 2)T] ™" = — i(A — Ao)FTrH!
k=0
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for A # Ag sufficiently close to Ag. Since (A — A4)~! = (A - A) 1Py + (A = 4)~Y(I - Ry),
the theorem is an immediate consequence of (4) and (6) and the observation made earlier
that BP = 0 for some positive integer p. O

It can happen that the spectrum of an unbounded operator consists of eigen-
values of finite type only. For example, let X = C[0,1]. Define A(X — X) by

D(A)={feX|f eX, f(0)=f(1)},
Af = f'.

The spectrum of A consists of eigenvalues 2nni, n = 0,%1,... . If A € p(A4), then for all
ge X,

(A= A) 1) (t) = e [CA - /te‘A’g(S)dS] ,

0

where ¢y = e*(e* — 1)1 fol e~2g(s)ds. If we let T, be a small circle about Ap =
2nmi which excludes the other eigenvalues of A, then the formula for the corresponding
projection Py, is given by

1
(Pag)(®) = o ([ = )70 )0 = > [ ehmeg(a)as.
m
n 0
The rank of Py is 1. Thus o(A) consists only of eigenvalues of 4 of finite type.

The operator A above has the property that (A — A)‘1 is compact for every
A € p(A). Operators with this property are called operators with compact resolvent. The
partial differential operator appearing in Theorem XIV.6.1 is also an example of such an
operator.

THEOREM 2.3. Suppose A(X — X) has the property that (Mg — A)7! is
compact for some Ao € p(A). Then the operator (A — A)~1 is compact for all X € p(A).
The spectrum of A does not have a limit point in C and every point in o(A) i3 an
eigenvalue of A of finite type. For any A € C, the operator A\ — A has closed range and

(7 dim Ker(A — 4) = codim Im(A — 4) < co.
PROOF. By Proposition XIV.1.1,
(k=A™ =0~ A7+ o~ m)(u = 4) 7 (Ao - A7

which is compact for all © € p(A). Next we use the M8bius transformation 7(A) =
(Ao — A)7! and the following identity (see (2) in the previous section)

7[o(A) U {o0}] = o((ho — 4)71).

Since T is a homeomorphism and the operator (Mg — A)~! is compact, it follows that
og(A) is a finite or countable set which does not have a limit point in C. To see that each
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n € 0(A) is an eigenvalue of A of finite type, it remains to prove that the corresponding
Riesz projection Py = (2mi)~1 fF(A—A)'ldA has finite rank. Now (A—A4)~1 is compact
for every A € p(A). Therefore Pyyy is the limit in £(X) of Riemann sums of compact
operators. Hence P{,]} is compact. Since this operator is also a projection, Im P{n} is
finite dimensional. To prove (7), let A be arbitrary in C. Note that

(8) (A= 4) = [T = (Ao = N)(ho — 4)7H(ho — 4).

Since (Ag — A)~1 is compact, I+ (A — Ag)(Xo — A)~! is a Fredholm operator with index
zero by Corollary X1.4.3. It follows from (8) and the invertibility of Ag — A that

Im(A — A) = Im[I + (A = Ao)(No — A)7],
dim Ker(A — A) = dim Ker[I + (A — Ag)(Xo — 4)7}]
= codimIm[I + (A — Ag)(ho — 4)7}]
=codimIm(A — A) < c0. O

XV.3 SPLITTING OF THE SPECTRUM AT INFINITY

Let X be a (complex) Banach space, and let A(X — X)) be a closed linear
operator such that the strip |[RA| < h is in the resolvent set p(A). Here h is a positive
number which we shall keep fixed throughout the section. If A is everywhere defined (and
hence bounded) our assumptions imply that there exists a decomposition, X = X_ @ X4,
such that X_ and X4 are A-invariant subspaces of X and

(1.a) og(A| X-)C{A€eC|RNL —h},

(1.b) o(A] Xy) C{AeC|R)N>h}.

This spectral decomposition of X is obtained by taking X_ = Ker P and X4 = Im P,
where P is the Riesz projection corresponding to the part o4 of ¢(A) in the open right
half plane, i.e.,
2) P=_= (A= A)7rd)

2m1

r

The contour I in (2) is in the open right half plane and contains o4 in its inner domain.
In the case when A is not everywhere defined, it is a problem to make a decomposition
of the space X with the properties (1.a) and (1.b). In general, the contour I' appearing
in (2) does not exist, and hence one cannot define a projection as in (2).

To make more transparent the difficulty which one encounters here, consider
the operator A~! (which is a well-defined bounded linear operator because of our as-
sumption on p(A4)). The spectrum of A~ lies in the two closed discs which one obtains
by applying the transformation A — A~1 to the closed half planes R\ < —h and R\ > h
(in the extended complex plane Coo). In other words, o(A4~!) lies in the set

1 1 1 1
(3) {AHA—%SE}u{A A+ —| < }

oh{= h
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Note that the point 0 is always in o(A~!) (if A is unbounded) and at the point 0 the
two closed discs in (3) intersect. In general, 0 will not be an isolated point of o(A4~1).
In fact, it may happen that o(A4~!) is precisely equal to the set (3). The problem is now
to make a spectral decomposition of the space when the parts of the spectrum are not
disjoint. For the original operator A this means that we have to split the spectrum at
infinity. In this section we shall deal with a case for which the above mentioned problem
can be solved.

For the operator A which we shall consider, the resolvent operator (A — 4)~!
will be uniformly bounded on the strip [RA| < &, that is,

(4) sup [[(A —A4)7}| < co.
RA|<h

First, we shall introduce the candidates for the spaces X_ and X4 for such an operator.
We define N_ to be the set of all vectors z € X for which there exists an X-valued
function ¢, bounded and analytic on A > —h, which takes its values in D(A) and
satisfies

(5) A=Az (\) =z, RA>—h

Roughly speaking, N_ consists of all vectors ¢ € X such that (A— 4)~ 1z has a bounded
analytic continuation to the open half plane A > —h. The function ¢; (assuming it
exists) is uniquely determined by z. Analogously, we let N4+ be the set of all vectors
z € X for which there exists an X-valued function ¢}, bounded and analytic on RA < A,
which takes it values in D(A) and satisfies

(6) A—Apf(A) =z, RA<h

Also o7 is unique, provided it exists. Obviously, the sets N_ and N4 are (possibly non-
closed) linear manifolds of X. Their closures will be denoted by X_ and X, respectively.
Thus, by definition,

(7) X_=N_, X+ =Ng.

THEOREM 3.1. Let A(X — X) be a densely defined closed linear operator
for which condition (4) holds true for some h > 0, and let X_ and X4 be the subspaces
defined in (7). Then X = X_ @ X4, and furthermore,

(8) X=X_oX4
if and only if, for some (for each) 0 < a < h, the map
a+ico
(9) T —— / AT2(A— A)"1A%zd), z e D(4?),
1
a—ico A

eztends to a bounded linear operator P on X, and in that case the spaces X_ and X4
are invariant under A,

(10.a) o(A|X-) C {A e C| RA < =k},
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(10.0) o(AlX4+) C {A € C{RA 2> R},

and P 13 the projection of X along X_ onto X4.

For bounded linear operators Theorem 3.1 is trivial. First of all note that for
a bounded linear operator A on X condition (4) is fulfilled for some A > 0 if and only if
the imaginary axis RA = 0 belongs to the resolvent set p(A) of A. Furthermore, in that
case, a straightforward argument based on Cauchy’s theorem and the identity

ATZA = A)TTAZ=(A—A) " -l -2

shows that the Riesz projection P corresponding to the part of o(A) in the open right
half plane is given by the (improper) integral

a+i00
P=_— / AT2(A = A)TTAZ4),

a—1i00

for some 0 < o < h.

The proof of Theorem 3.1 will be based on two lemmas. In what follows
A(X — X) is a (not necessarily densely defined) closed linear operator for which condi-
tion (4) holds true. In particular, the strip [RA| < h is in p(A4). We fix 0 < a@ < h and
introduce the following auxiliary operators:

—atioo

(11) S_ = / A72(A = A)7ld),

o+100
(12) Sy = —— / AT2(0 = A)~lda

a—100

The integrals in (11) and (12) have to be understood as improper integrals. Condition
(4) guarantees that S— and St are well-defined bounded linear operators on X. We
shall prove that S_ and St commute with A. The latter means that S+D(A) C D(A)
and AS+z = SiAz for each z € D(A). To see this, let T = A~! be the bounded
inverse of A. Since T' commutes with the resolvent operator (A — A)~!, the operators
S- and 5S4 commute with T. Take ¢ € D(A), and put y = Az. Then z = Ty, and so
Stz = S+Ty =TS+y € D(A). Also

ASt+z = ATS+y = S+y = St Axz.

LEMMA 3.2. The operators S_ and S+ commute, S-Sy =S4 S_ =0 and
Ker S—- NKer S+ = {0}.

PROQF. To compute S_S; we use the resolvent formula (Proposition
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XIV.1.1) and use Fubini’s theorem. We have

9 —a+ico atioco

-5_S4 = (%) / / A72472(0 — A) "M (p ~ A) " ldpdr
e
- (g) [ 25 w=07 0 - 97 - (e - )7 duar

] 2 —a+ico  atico d
H -2 -1
_ (L a2~ A)laa
() | ([ mim)o-»
—a—ico a—ico
atico —atico

—(é—i—i)z / ( / %)#'%#—A)_ldy.

a—ico —a—ioco

The use of Fubini’s theorem is justified by the fact that

‘ (p—4)!
N2 = )

where v denotes the left hand side of (4). A standard argument of complex function
theory shows that the integrals between parentheses are zero. Hence $_54 = 0. Analo-
gously, S+ 5_ = 0.

To prove that Ker S_ NKer S4 = {0}, let I be a circle around the origin with
radius r, 0 < r < a. The orientation on T is counter clockwise. Recall that T = A~1,
By the operational calculus for closed linear operators,

v
R = —a,Rpu = a,
= 2a\2[u2’ HIH =

T? = A2 = 2‘_1 A"2(A — 4)~Lax.
e
r

Using Cauchy’s theorem and (4), one easily gets

a+ico —a—ioo
//\‘2(/\—A)‘1d,\= / A7\ - A) 7 — / AT — A)7ldy,
r a—i00 —a—i00

and thus T2 = S_ + S;. Hence Ker S_ NKer Sy C KerT? = {0}. ©

As before, let T = A~l. Since T commutes with S_ and Si, one has
T[lm S+] C Im S+. Put

(13) M_=ImS_, My =ImSy.

Then M_ and M4 are invariant subspaces for the bounded operator T'. In fact, TM4+ C
D(A) N M4+. Note that A maps TM_ into M_ and TMy4 into M. We define
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A_(M- — M_) and Ay (M4 — My) to be the restrictions A to TM_ and TMy,
respectively. Thus

D(Ax) =TMy, Axz=Az  (z € D(Ax)).

From Lemma 3.2 we know that Sy S_ = 0. This implies that S4[ImS_] =
{0}, and hence, by definition, Sy [M~-] = {0}. In a similar way, S—[M4] = {0}. So, we

have
M_ C Ker Sy, My Cc KerS—_.

LEMMA 3.3. Suppose that D(A) is dense in X. Then the operators A_ and
Ay are closed and densely defined, their spectra are located as follows:

(14) o(A_)C {r€C|RA < —h},

(15) a(Ay) C{A e C| R = h},
and D(A2) C N- and ’D(Aﬁ_) C Ny, where N_ and Ny are as in (7).

PROOF. Let T = A~1, and let M~ and M4 be defined by (13). Obviously,
A_ maps D(A-) in a one-one way onto M_ and A”! = T|M_. Thus A”! is a closed
operator, and hence the same is true for A_. Since ImT = D(A) is dense in X, the space
ImS_ CImS.T. Now S_-T=TS5_,and so ImS_T = T[Im S_] C TM_. We conclude
that M_ C TM_, and thus D(A_) = TM_ is dense in M_. In a similar way one proves
that A4 is a closed densely defined linear operator.

Next we prove (14). First take |Rz| < k. Then z € p(4) and (z — 4)~!
commutes with S_. Hence (z — A)~1 leaves M_ invariant. By the resolvent equation, we
have (2 — A)~! = —T + 2T(z — A)~!, and so (z — A)~! maps M_ into TM_ = D(A-).
It follows that z € p(A-) and (z — A_)7! = (2 — 4)"1|M_. As a second step we take
Rz > h, and put
) a+100 42
27 220\ = 2)

a—ioo

(16) R(z) = (A —A)"ld).

Since condition (4) is satisfied, R(z) is a well-defined bounded linear operator on X.
From

22

A)[ ]\ A)"l]— - )1 £
(z - m( - =-3z(A-4) o oab

it follows that
a+ic0

- / (= - A) [A’?‘(’;‘Z—TZ)(A - A)‘l] dh =225y + 1.

a—1i00

Now use that z — A is a closed linear operator to conclude that R(z) maps X into D(4)
and (2 — A)R(z) = —2254 + I. Take z € M_. Recall that M_ C Ker Sy, and so
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(z — A)R(z)z = z. As we observed above, (A — A)~! leaves M_ invariant. But then
it is clear that R(z)z € M—. In turn, this gives that AR(z)z = zR(2)z —z € M.
too, and so R(z)z € TM_ = D(A_). Thus (z — A_)R(z)z = z. In the case when
z € D(A_) = TM_, then also R(z)(z — A-)z = z. This follows from the fact that R(z)
commutes with T. Hence z € p(4A—) and (z — A_)~} = R(z)|M—. We have now proved
that (14) holds true, and we have shown that

_ 1 (z=A)7 M=, |Rz| <h,
a7 (z—-A4-)7" = { R(z)|M-, Rz > h,
Analogous arguments yield (15).

To prove the inclusion D(AQ_) C N_, take z € ’D(A2_). For R\ > —h define
vz (X)) = (A = A_)"1z. Obviously, ¢ is analytic on R\ > —h. Since D(A-) C D(A),
the values of 7 are in D(A4) and
(A= Aps () =(A—A)ps (V) =2,  RA>—h

Condition (4) and formula (17) imply that ¢ is bounded on |RA| < h. So, in order
to prove that z € N_ it is sufficient to show that ¢z is bounded on A > h. Since
z € D(A%), we have

er(z)=zlz+2z7 %Az + 2722 — A_)" A2z
From formulas (16) and (17) we conclude that
a+ioco
-1 1
o1 N2(h - 2)
=100
for Rz > h. Together with (4) this gives that 272(2z — A—)"1 A% z is bounded on Rz > h.
1

272z - A ) 1A%z = (A — A)"1A% zd)

Trivially, the same is true for the functions 2~ 1z and 2= 2A4_z. Hence @z is also bounded
on Rz > h. Thus £ € N_. In a similar way, one proves that ’D(A_%_) CNi O

PROOF OF THEOREM 3.1. The proof is divided into two parts. In the
first part we show that Theorem 3.1 remains correct when X_ and X4 are replaced by
the spaces M_ and My, respectively. Here M_ and M are defined by (13).

PART I. We already know that M_ C Ker Sy and M4 C KerS_. Now
Ker S_ N Ker Sy = {0} (Lemma 3.2). Thus M_ N M4+ = {0}. So, in order to prove that
(18) X=M_& M,
it remains to show that M_ 4+ M, is dense in X. For this we pass to the conjugate A’ of
A. The linear operator A’ is closed and condition (4) remains valid when A is replaced

by A’ (cf., Proposition XIV.2.6). The conjugates S’ and S, of S and S4 (see (11) and
(12)) are given by

—a+ico
Sl o= b / A"2( — AN 1d),
2m2
~0—100
a+ico
sto= 22 [ a-200— 4 1an,
7 omi )

a—1i00
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Maybe the domain D(A") of 4’ is not dense in the conjugate X' of X. However, in
Lemma 3.2 we did not require D(A) to be dense in X. Therefore the lemma also applies
with S_ instead of S_ and S/, instead of S4. Hence Ker S’ NKer S’ = {0}. But then
ImS_ + Im Sy is dense in X (use [GG], Theorem XI.5.1(i)). According to (13) this
implies that M_ + M is dense in X.

For z € D(A4?), put
a+100

(19) Lz = — A2\ - A)71A42%zd), z € D(4?).

2m1
a—ioco
Condition (4) guarantees that Lz is well-defined. From the definition of S4 (formula
(12)) it follows that Lz = Sy A2%z. If z € D(A2), then A%z € M- C Ker S4 and so
Lz = 0. Recall from the proof of Lemma 3.2 that S_ + S = T2, where T = A~!. Thus
Lz = 2 — S_A%z, which implies that Lz = z for z € ’D(Aﬁ_).
Next, assume that there exists a bounded linear operator P on X such that
Pz = Lz for z € D(A?). Then P vanishes on D(A2) and coincides with the identity
on ’D(A%_). From Lemma 3.3 we know that - = AZ! is a well-defined bounded linear

operator on M_ and ImT_ = D(A-) is dense in M_. But then D(A2) = Im T2 is dense
in M_. Since P is bounded, we may conclude that P vanishes on M_. Analogously,
’D(Aﬁ_) is dense in M4, and so P coincides with the identity on M.

Take z in the closure of M_ + M, say
= i T4zt
T k—l—»n;o(zk +z),

with z7 € M_ and z € My. Then I;: = P(z} + :c;:') converges to Pz when k tends
to infinity. Since M is closed (see (13)), this implies that Pz € M. It also follows
that =, converges to # — Pz when k tends to infinity, and so £ — Pz € M_. But then
z € M_ + M, and we conclude that M_ + My is closed. Together with (18) this yields
that X = M_ @ M4 and P is the projection of X along M_ onto M.

Conversely, suppose X = M_ @ M4, and let P be the projection of X along
M_ onto M. Then Pz =0 = Lz for € D(A2) and Pz =z = Lz for z € D(A%). So
P and L coincide on ’D(AZ_) @ ’D(A%_). With T = A~! we have
D(A?) = ImT? = T [M_ & M4]
=T:M_® T*M; = D(A2) @ D(42).
Hence Pz = Lz for all € D(A?), and thus the map (9) extends to a bounded linear
operator on X.

From X = M_ & M4, we get
D(A)=ImT =TM_dTM+ =D(A_)d D(A4).

Here, as before, T = A~1. It follows that D(A_) = D(4A) N M_ and D(4+) = D(4) N
M4, This implies that M_ and M are invariant under A. Also, A— and A4 are the
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restrictions of A to M_ and M, respectively. Combining this with (14) and (15) we get
g(AIM-)=0(A_) Cc {A e C| RN < =h},
o(AIMy) = o(A+) C {A € C | RA 2 h).

This completes the first part of the proof.

PART II. Here we prove Theorem 3.1 the way it is stated. Take z € N4,
and let 7 be a bounded, analytic X-valued function on R\ < k such that

(A—ApF(\) =2z, RA<k

According to the definition of S_ (formula (11)) we have

1 —a+1ioco
- = -2 .+
Soz = 5 / A% (A)dA.
—a—ico

A straightforward argument, based on Cauchy’s theorem and using the boundedness
condition on ¢}, shows that the latter integral is zero. It follows that Ny C Ker S_.
Taking closures we get X4 C Ker S—. Analogously one proves that X_ C Ker.S;. But
then Lemma 3.2 gives that X_-NX4 = {0}. From Lemma 3.3 we know that D(A2) c N_
and 'D(A?,_) C Ng. In Part I of the proof it was already noted that D(A2) is dense in
M_ and ’D(A_%_) is dense in M4. Hence M_ C X_ and M4 C X4. Taking into account
(18), one may now conclude that X = X_ @ X.

Next, assume that there exists a bounded linear operator P on X such that
Pz = Lz for all z € D(A?). Here Lz is defined by (19) and is equal to the right hand
side of (9). As we have seen in Part I of the -proof, this implies that X = M_ @ M4 and
that P is the projection of X along M_ onto M. Since M_ C X and M} C X4 and
X_NnX4 ={0},it follows that X_. =M_ and Xy = M4. So X =X_@ X4 and Pis
the projection of X along X_ onto X.

Finally, suppose that X = X_ & X4. As M_ is a closed subspace of X_
and M, is a closed subspace of X4, the space M_ @ M is closed. Together with (18)
this implies X = M_ & M. So again X = M_ and X4 = M4. But then the desired
conclusions are clear from what was established in Part I of the proof. O

We shall refer to the spaces X_ and X appearing in Theorem 3.1 as the
spectral subspaces of A corresponding to the left and right half plane, respectively.

XV.4 A PERTURBATION THEOREM

In this section we show that the direct sum decomposition, X = X_ @ X4,
in Theorem 3.1 is preserved under certain perturbations of A.

THEOREM 4.1. For v = 1,2 let A,(X — X) be a densely defined closed
linear operator such that for some h > 0 the sirip |RA| < h is in the resolvent set p(A,)
and

(1) sup [|(A — 4,)7H|| < oo,
|RA|<h
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and let X(_V), X_(:) be the spectral subspaces of A, corresponding to the left and right
half plane, respectively. Assume D(A3) C D(A?) and

(2) sup [A2[I(A = A2)™! = (A = 41) 7Y < oo
IRA|<h

Then X = XV & X implies X = X @ xP.
PROOF. Choose 0 < a < h. For v = 1,2 define L,: D(42) — X by setting

a+tioo
Loz = ;_1 / A"2(A—A,)"1A2zd),  z e D(A2).
me
a—ioo

Since X = XE_l) e X (1), Theorem 3.1 implies that Lj extends to a bounded linear
operator on X. Hence, in order to prove the theorem, it suffices to show that there exists
a constant g such that

L2z — Lizll < wollzll, = € D(43).
Take z € D(A2%). Then z € D(A42), and for v = 1,2

A—A) 142z = —A,z - Az + 220 — 4,) 7z

Hence
a+ioco
Loz — Lz = 51_ / A72[(Ag — Ay)z 4+ 220 — A7 re — A2()\ — Ag) " 1z]d)

me
a—ico

1 a+ico 1

- / V0= A)7hz = M2 - Ag)Hald,

a—ioo

and it follows that

oo
v ds v
— < — — = —
||L2.’l: L1:1:|| S o (/ ) 32)”1‘” 2&”2:”,

—00

where v denotes the left hand side of (2). O

When A; and As are bounded operators, the conclusion of Theorem 4.1 is
trivial and does not need condition (2). In fact, in the bounded case condition (2) is
fulfilled automatically. This one sees by subtracting the Neumann series of 4; and A,
and noting that the resulting power series in A™! starts with a term involving A~2,

Let us illustrate Theorem 4.1 with an example. Take X = L;(R), and let
A(X — X) be defined as follows. The domain D(A) of A4 consists of all functions f € X
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such that f is absolutely continuous on each compact subinterval of [0,00) and on each
compact subinterval of (—oo, 0] and, moreover, f’ € X. Note that functions in D(A) are
allowed to have a jump discontinuity at 0. For f € D(A) we set

fi(t) —af(®), t>0,
fi()+qf(t), t<O.
Here ¢ is a fixed positive real number. Applying the same reasoning as in the example

after Theorem 1.2, one proves that p(A) is precisely equal to the strip |[RA| < ¢ and for
A€ p(4)

6 (ANE) = {

/e_(’\""”tf(t + s)dt, s> 0,
(==
- / e O-Dtf(t 4 5)dt, s <O

— 00
It follows that
[(F = A) 7| < max{|RA+q|7L,|RA — g1}, A€ p(A)

Fix 0 < h < g. Then condition (4) in Section XV.3 is satisfied. In this case the spectral
subspaces X_ and X are easily determined. In fact

X-={feX|f=0ae on[0,00)},

X+={feX|f=0ae on (—o0,0]}.
It follows that for A defined by (3) the spectral decomposition
(4) X=X_o X+

holds true.

Next, we consider a perturbation of the operator defined by (3), namely, the
operator AX = A 4+ D, where D is the rank one integral operator

oo
(5) Df = ( / selel f(s)ds) 7.
—0o0
Here ¢ is a function in D(A) which will remain fixed in what follows. Note that both ¢
and Ag are in L1(R). Since D is bounded, A* is a closed linear operator with domain

D(A*) = D(A). We shall prove that A* has no spectrum on the imaginary axis if and
only if

(6) / A6 4 e — 1)emlelg(s)ds £1,  RA=0.

-0
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Furthermore, we shall show that in that case the spectral decomposition (4) also holds
true for A* instead of A.

First note that
(7 A—AX=[I-DA-A4)"1A-4), IRA<q

It follows that for |RA| < ¢ the operator A— A is invertibleif and only if I — D(A— A4)~1
is invertible. Since D has rank one, the latter occurs if and only if F((A — 4)~1g) # 1,
where F' is the continuous linear functional on L1(R) given by the integral in (5), that
is,

(o)
F(f) = / se~ Il f(s)ds.
-0
A straightforward computation shows that for f in L;j(R) and |RA| < ¢
(o)
F((A - A)71f) = / A"2(e™29 4 As — 1)e 91 f(s)ds.
-0

In particular, F((A — A)~1g) is equal to the left hand side of (6), and hence (6) is the
necessary and sufficient condition in order that A — A* is invertible for RA = 0.

Denote the left hand side of (6) by d(A). Note that the function d(-) is analytic
in the strip |RA| < ¢. Take 0 < € < q. The Riemann-Lebesgue lemma (see [R], Theorem
9.6) implies that

8 I d(A) = 0.
(8) N (A)

So there exists p > 0 such that d(A) # 1 for |RA| < € and |A| > p. It follows that d(-) — 1
has only a finite number of zeros in the strip |RA| < e.

Next, assume that d(A) # 1 for RA = 0. Thus d(-) — 1 has no zeros on
the imaginary axis. The result of the previous paragraph implies that we may choose
0 < h < g such that d(A) # 1 for |RA| < k. But then it follows that A — A is invertible
for |RA| < h, and we can use (7) to show that for f € Ly(R)

A=A = (A= A7+ (1-d) ™
CF(A-ATINHM -4, IR <A
From formula (8) and d(A) # 1 for [RA| < h we conclude that (1 — d(-))_1 is bounded

on the strip |RA| < h. Also ||(- — A)~1|| is a bounded function on |RA| < k. But then we
can use (9) to show that

(9)

sup ||[(A — A7 < 0.
[RA|<h

In other words, condition (4) in Section XV.3 is also fulfilled for A%, Let X* and Xjf be
the spectral subspaces of A* corresponding to the left and right half plane, respectively.
Theorem 3.1 tells us that X = XX @ X . We want to show

(10) X=X*®XX.
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To do this we apply Theorem 4.1. From (9) it follows that for f € L1(R)

MA-A)T - -7 ] =
=1 —-dN))TTFOA=-ATTHMA-A)Yg, R <R

Rewrite A(A — A)~! as I + A(A — A)~!. A simple computation shows that

[e o]

F(Af) = — / et g ()dt.

—0o0

Thus F o A extends to a bounded linear functional, G say, defined of Li(R). Next,
recall that ¢ € D(A). Thus Ag is a well-defined element of L1(R) and A(A — 4A)"1g =
(A — A)~1(Ag). We conclude that

MO = A7 = (A= 7] = (1-d(0) T x
x[F(H+G((A - N)llg+ (A -4 4g],  [RA <A
Since (1 — d(-))_1 and ||(- — A)7!|| are bounded on |RA| < h, there exists a constant v
such that
PO - )7 = O = )TN <AL IRA <A

In other words, condition (2) is fulfilled with A; = A and Ay = A*. Tt follows that (10)
holds true.



CHAPTER XVI
UNBOUNDED SELFADJOINT OPERATORS

This chapter introduces the reader to unbounded selfadjoint operators on a
complex Hilbert space. We give examples of such operators, describe their elementary
properties, and prove the spectral theorem. The main method employed here is to trans-
fer from the unbounded operator to its resolvent and to apply our results for bounded
selfadjoint operators.

XVI.1 SELFADJOINT ORDINARY DIFFERENTIAL OPERA-

TORS

Let H be a complex Hilbert space. An operator T(H — H) is called self-
adjoint if T is densely defined and T* = T. There are many important examples of
unbounded selfadjoint operators. This section concerns selfadjointness for ordinary dif-
ferential operators of the type considered in Theorem XIV.4.4.

THEOREM 1.1. Let 1 be the differential ezpression T = Z?:O aj(t)Dj,
where a; € CI([a,b]), 0 < j < n, and an(t) # 0 for all a <t < b. Let T(Ly([a,b]) —

Ly([a,b])) be the restriction of Tmax,r to those g € D(Tmax,r) which satisfy the following
boundary conditions

n—1 n-—1

(1) Bi(g) =Y aijgP(a)+ Y BiygP(b) =0, 1<i<k.
=0 3=0

Put

) M=ol 75, N =181 750

Assume that the rank of the k x 2n matriz N = N1 Ny ] is k. Then T is selfadjoint
if and only if the following three conditions are satisfied:

(i) T = T*’
(ii) k = n,
(i) Ny (F(2)71)"VF = Na(F(5)"1)" I

Here F(t) is the n x n matriz [ij(t)]"mjjlzo with

n—m-— (k=7 .
Srr -k (B)albha @, mai<n-n,

0, m+j>n—1.

(3) ij(t) = {

For the proof of Theorem 1.1 we need the following lemma.
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LEMMA 1.2. Let f1,..., fi, g be linear functionals on a vector space V over
C. Suppose ﬂle Ker f; C Kerg. Then g € sp{f1,---,fk}-

PROOF. Let M = {(fi(z),..., fr(z)) | z € V}. Clearly, M is a subspace of
C*. Define a linear functional F on M by

F((f1(2),- .-, fr(2)) = 9(2), zeV.

The functional F is well-defined since (fi(z),...,fr(z)) = (A(w),. .., f(y)) implies
that z —y € ﬂ?:l Ker f; C Kerg, whence g(z) = g(y). Let F' be any linear extension of
F to all of C*, and let ey,..., e be the standard basis for C*¥. Then forall z € V,

9() = F(Ai(@). .., ful) = F(Z fj<z)ej) - (Z F(ej)fj)u). o
j=1 =1

PROOF OF THEOREM 1.1. From Theorem XIV.4.4 (and the remark in the
one but last paragraph of Section XIV.4) we know that the adjoint T* is the restriction
of Trnax,r+ to those f € D(Tinax,r+) which satisfy the adjoint boundary conditions

n—1 n—1

BF(f) =3 ol fDa)+ > pEfD@B) =0, 1<i<om-—g
j=0 =0

where £ = rank[ N7 N, ]. Note that £ = k by our assumption on rank[ N7 N |.

Suppose T = T™*. Since C§°([a,b]) is contained in the domain of T' = T*, we
have T = %y for each ¢ € C§°([a,b]). By Green’s formula ((9) in Section XIV.4)

(rfie) = (fim7p) = (firo) = (T f,¢)
for all f € C™([a,b]) and ¢ € C§°([a,d]). Since C§°([a,b]) is dense in La([a, b]), we con-
clude that 7 f = r* f for f € C"([a,b]). Recall that 7* is of the form r* = 377 _, b;(t)D"
with b; € CI([a,b]) for 0 < j < n. By choosing f to be the polynomials t/, 0 < j < n,
we obtain a; = b;, 0 < j < n. Thus (i) holds.

To prove (ii) note that the assumption rank[ N; N3 | = k implies (see the
paragraph after the proof of Theorem XIV.4.4) that the linear functionals {Bj,..., By}
are linearly independent on D = D(Tmax,r). Also (see the second paragraph after the

proof of Theorem XIV.4.4) the functionals {B#, cees BZ#n—k} are linearly independent on
D. (Recall that D is also equal to D(Tmax,r+)-) Since T = T*, Theorem XIV 4.4 shows

that ﬂle Ker B; = ﬂ?;;l Ker B#. Hence
(4) span{Bj,..., B} =spa.n{B#,...,Bi_k}

by Lemma 1.2. Therefore k =2n —k or k = n.

Next, we prove (iii). By (4) and k = n there exist constants ¢;;, 1 < 4,5 < n,
such that B; = Y.7_; c;; BY for i = 1,...,n. Since both {B;}7; and {BF}, are
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linearly independent the matrix C' = [cij]} ;= is invertible. Let psj and py;, 0 < j < n—1,
be the polynomials defined by formulas (20) and (21) in Section XIV.4. Then

n n
air = Bi(par) = 3 i BY (par) = 3 _ cijalh,
j=1 j=1

n n
Bir = Bi(psr) = Z ¢ijBj (per) = Zc"fﬂﬁ’
i=1 1=1

for1<:<nand 0<r <n-1. It follows that
(5) (N1 N2 )=C[Nf NF,

where N# = [aﬁ w1, ;';01 and VN = [ﬂ?_g;E =1, ;';01 Now recall (see formula (26) in

Section XIV.4) that

© (v ag1=ter ozl O 0]

where F(t) is as in the theorem and G and G2 are n X n matrices such that NyG; +
NG9 = 0. We know (formula (13) in Section XIV.4) that F(a) and F(b) are invertible.
Thus (use (5) and (6))

0=NG1+N2Ga=[M N2][ g;}

which yields (iii).

To prove the reverse implication, assume that (i), (ii) and (iii) hold. Define
n x n matrices Dy and Dy by setting

Dy ] _ [ =F(a)~! 0 [ Ny
Dy | 0 F(b)~! Ny |
Then N1D1 + NaDy = 0 because of (iii). By (ii)
rank D =rank[| N; My]=k=n
Dy ! '

It follows that there exists an invertible n x n matrix F such that
D | _| &
[ Dy ] - [ Ga ] &
where G1 and G are as in formula (15) of Section XIV.4. Now use (6) to show that
_tnr pry| —Fl@) O
[Nl N2]—[D1 DQ][ 0 F(b)]

—F(a) O

= E* |G} G;][ 0 F(b)]=E*[N# NF .
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It follows that span{B;}%, = spa.n{Bl#}?:1 because E is invertible. Since 7 = 7*
(condition (1)), Theorem XIV.4.4 implies T =T*. O

COROLLARY 1.3. Let 7 be the differential ezpression given by

7f = D(pf') + ¢f,

where p € C%([a,b]) and q € C([a,b]) are real-valued functions with p(t) # 0 for allt €
la,]. Let T(Ly([a,b]) — Lo([a,b])) be the restriction of Tmax,r to those g € D(Tmax,r)
which satisfy the boundary conditions:

B1g = ajpg(a) + e119'(a) + B109(d) + f114'(b) = 0,

Bag = ang(a) + a219'(a) + B209(b) + B214'(b) = 0,

where each a;j and Bi; is a real number. Then T is selfadjoint if and only if the rank of

[[ai;1[Bi1] is 2 and

7 ap 11 ] _ Ldet[ B P ]

pa) [ a2 az1 | p(b) Bao B2
PROOF. It was shown in the example at the end of Section XIV.4 that

r=1* and
F(t) = [ _;’(t) #t) ]

But then condition (iii) in the previous theorem reduces to

1 0 1 1 0 1
—d =——d ,
p(a) 1[—1 0] p(®) 2[—1 0]
where d; = det[a;;] and dy = det[B;;]. Hence (iii) is equivalent to (7), and the corollary

follows. O

XVI.2 AN EXAMPLE FROM PARTIAL DIFFERENTIAL
EQUATIONS

THEOREM 2.1. Let Q be a bounded open set in R™ with boundary of class

C2?. Let
n
L= )" Di(aij(z)D;j) + ag(),
i,j=1
where ag is a real-valued function in C®(Q) and a5 = aj; € C®(N), 1 < 4,5 < n.
Assume that L is uniformly elliptic. Then the operator A(Ly(S2) — L2(82)) defined by
D(A) = H}(Q) N Ho (),  Au = Lu

is selfadjoint.
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PROOQOF. Note that A is the Dirichlet operator on Ly(2) associated with L.
Since the boundary of Q is of class C2, we can apply the results of Section XIV.6. In
particular, Theorem XIV.6.5 tells us that A* is the Dirichlet operator on Lo(Q2) associated
with the Lagrange adjoint L* of L because L is uniformly elliptic. Recall that

n
L* = Z Dj(E,'J'(:z:)D,') + @p(z).
'7j=1
Our condition on the coefficients of L imply that L = L*, and hence A = A*. O
The above theorem also holds true if —L is uniformly elliptic. In particular,
the theorem applies to the Laplacian A = 3°7L, D?, because —A is uniformly elliptic

and its coefficients have the desired symmetry properties. Thus, if L = A, then the
operator A defined in (1) is selfadjoint.

XVI.3 SPECTRUM AND CAYLEY TRANSFORM
Throughout the remaining part of this chapter H denotes a complez Hilbert

space.

THEOREM 3.1. If A(H — H) is selfadjoint, then A is a closed operator,
its spectrum o(A) C R and

(1) A=A < mA7h, ImA#0.

PROOF. The operator A is closed by Proposition XIV.2.2. Let A = a + zb,
b # 0 with a and b real. Since a — 4 is selfadjoint,

(2) (A = A2l = li(a = Azl|® + 52)|=]1* = |62 |z]|.

Therefore A — A is injective. From (2) and the fact that A — A is closed, it follows that
Im(A — A) is closed. Hence

Im A = (Ker A)1 H,

by Proposition XIV.2.5. Therefore A € p(A), the resolvent set of A, and (1) is a conse-
quence of (2). O

Let A(H — H) be densely defined, and assume that for some real A the
operator A — A is invertible. Then A — A* is invertible and

(3 A=-4a9t = -471,

because of Proposition XIV.2.6. It follows that A is selfadjoint if and only if the bounded
operator (A — A)7! is selfadjoint.

The transformation of an unbounded operator into a bounded one is often
useful. There is a specific transformation of this type which is widely used. We have
in mind the so-called Cayley transform. This transformation may be viewed as the
operator-valued version of the M&bius transformation

(4) w=z+2,

’
Z2—1
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which maps the real line onto the unit circle. If we replace in (4) the variable z by a
selfadjoint operator A, then the resulting operator

(5) U=(A+i)(A-i)7!
is called the Cayley transform of A. Note that (4 —i)~! in (5) is well-defined because
of Theorem 3.1.

THEOREM 3.2. If A(H — H) is a selfadjoint operator, then its Cayle;

transform is unitary.

PROOF. By Theorem 3.1 the operator A + 7 maps the domain of A in a
one-one way onto H. It follows that the Cayley transform U is invertible on H. Also,
given y € H, there exist z € D(A) such that (4 — i)z =y. So, by (2),

. 2 - 2 2
1Uyl1% = [I(4 +d)eli® = [|Az]|® + ll=]|* = (4 =)= = [lvl|*.
Hence U is an isometry and invertible. Therefore U is unitary. O

If U is the Cayley transform of the selfadjoint operator A(H — H), then A
may be recovered from U via the following formula:

(6) Az =i(U - I)"YU + Dz, zeDA).
To see this, note that
U—I={A+1)—-(A-)}(A-9)"1=2i(A -0},
and hence U — I maps H in a one-one way onto the domain of A. Also, for z € D(A4),
we have (U — INAz = i(U + I)z, which implies (6).

THEOREM 3.3. Let A(H — H) be closed and densely defined. Then
(2) I + A*A is invertible with ||(I + A*A4)7Y|| <1,
(b) A*A is selfadjoint.
PROOF. Given z € H, Proposition XIV.2.1 ensures the existence of vectors
u € D(A) and v € D(A*) such that
(2,0) = (u, Au) + (4*v, —v)
or
z=u+ A%v, 0= Au —v.
Thus z = (I + A*A)u, and hence I + A*A is surjective. Suppose z € D(A*A). Then
I + A*Aalllal] 2 (I + A* A)z,2) = |22 + [ Az|2 > |jal]?,
and therefore (a) holds.
Put T = (I + A*A)~!. For z and y in H we have
(Tz,y) = (Tz,(I+ A*A)Ty) = (Tz,Ty) + (ATz, ATy)
and
(2, Ty) =((I + A*A)Tz,Ty) = (Tz,Ty) + (ATz, ATy).
Thus T is selfadjoint and
DA A) =TT = K.
Proposition XIV.2.6 now implies that A*A is selfadjoint. O
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XVI.4 SYMMETRIC OPERATORS

In a number of important cases a densely defined operator on a Hilbert space
H possesses the main feature of selfadjointness, namely

(1) (Az,y) = (z, Ay), z,y € D(A).

Such an operator is called symmetric. Note that A is symmetric if and only if A C A*
(i.e., A is a restriction of A*). In this case A is closable and its minimal closed linear
extension A is again symmetric since A C A* = (A)*, by Proposition XIV.2.4.

Let 7 = Y R_o ax(t)D* with ag € C¥([a,b]) for 0 < k < n and an(t) # 0 for
a £t < b Assume 7 = 7%, where 7* is the Lagrange adjoint of 7 (see Section XIV.4).
Then the minimal operator Trin - is symmetric but not selfadjoint on La([a,b]). Indeed,

(2) Trin,r C Tmax,r = Tr:ﬁn,r ’

by Theorem XIV.4.1 (and 7 = 7*). However, Tjinr # Tmax,r because the constant
function 1 € D(Tmax,r) and 1 € D(Trin,r), by the second part of Proposition XIV.3.5.
The operator Tiax,r is not symmetric as Thax,r = Trmin,r is not an extension of Tmax,r.

THEOREM 4.1. Let A(H — H) be symmetric. Then the following three
statements are equivalent:

(a) A is selfadjoint,

(b) Im(A +1) = H,

(¢) A 13 closed and Ker( A* +1) = {0}.

PROOF. (a) = (b). This is a trivial consequence of Theorem 3.1.

(b) = (¢). By Proposition XIV.2.5,
(3) Ker(A* +1) = Im(A F1)* = {0}.
Since A is symmetric, the operator A* +7 is an extension of A+37. But A+ is surjective.
So Ker(A* +1) = {0} implies A* = A. In particular, 4 is closed.

(c) = (a). Since A is symmetric, equality (2) in Section XVI.3 holds. In
particular, ||(A + ?)z|| > ||z| for all £ € D(A). This, together with the fact that A is
closed, implies that Im(A + ¢) is closed. Hence

Im(A + 1) = Ker(4* —7)+ = H.
Since A* +i is injective and an extension of the surjective operator A + 1, it follows that
A=A* 0O
We note that Theorem 4.1 remains valid if ¢ and —: are replaced by A and X,
resp., for some nonreal A.

PROPOSITION 4.2. A symmetric operator A(H — H) which is surjective is
selfadjoint. In particular, if the resolvent set p(A) of a symmetric operator A(H — H)
contains a real number, then A is selfadjoint.
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PROOF. Takey € D(A*). Since A is surjective, there exists z € D(A4) such
that Az = A*y. Hence for any z € D(A),

(Az,y) = (z,4%y) = (z, Az) = (Az,2).

It follows that y = z because Im A = H. Thus D(A*) C D(A). But A C A*. Therefore
A=A~

For the second part, it suffices to note that given r € R the operator r — A 1s
symmetric (selfadjoint) if and only if A is symmetric (selfadjoint). O

In the theory of symmetric operators one of the important problems is to
extend a symmetric operator to a selfadjoint one. We shall not deal with this problem,
but we shall make a few remarks to illustrate some of the results; for the complete theory
the reader is referred to the books Riesz-Sz.-Nagy [1] and Dunford-Schwartz [1]. One of
the main tools to treat the above extension problem is a generalization of the Cayley
transform, which is used to reduce the problem to the problem of extending a partial
isometry to a unitary operator. This reduction is effective and leads to a full solution

(see Riesz-Nagy [1]).

It turns out that the selfadjoint extension problem for symmetric operators is
not always solvable. In fact, the general theory shows (see the books referred to above)
that a symmetric operator T(H — H) has a selfadjoint extension if and only if

(4) dim Ker(T* — i) = dim Ker(T™ +1).

Let us apply this result to the minimal operator T » g with 7 = ¢D. Since 7 = 7%,
Theorem XIV.4.1 implies that Ty, s is 2 symmetric operator on Ly(J). Next, we
specify the interval J. First, take J = [0, 00). The operator Tiin 1 [0,00) does not have a
selfadjoint extension. Indeed

Ker(Tr:lin,r,[O,oo) —1) = {0},
Ker(T, [0,00) T ) ={ae"t|a eC},

in,r
and hence (4) is violated. On the other hand, Tin,r s has a selfadjoint extension for any
compact interval J. To see this, take J = [a,}], and let T'(Ly([e,b]) — Lo([a, b])) be the
restriction of Tmax,r to those g € D(Tmax,r) such that g(a) + g(b) = 0. Then Theorem
1.1 implies that T is a selfadjoint extension of Tryip 7 [a 8-

XVI.5 UNBOUNDED SELFADJOINT OPERATORS WITH A
COMPACT INVERSE

The Dirichlet operator A in Theorem 2.1 has the property that for all suffi-
ciently large A in R the operator (A + A)~! is a compact selfadjoint operator. This is
an immediate consequence of Theorem 2.1, Theorem XIV.6.1 and formula (3) in Section
XVIL.3. Also, if T is the differential operator defined in Theorem 1.1, then T has a com-
pact selfadjoint inverse provided conditions (i)-(iii) in Theorem 1.1 and condition (2) in
Theorem XIV.3.1 are fulfilled.



CHAPTER XVI. UNBOUNDED SELFADJOINT OPERATORS 349

In this section we employ the spectral theory of compact selfadjoint operators
(see, e.g., [GG], Section II1.5) to derive the spectral properties of a selfadjoint operator
with a compact inverse. For an unbounded operator A(H — H) with domain D(A) a
vector 7 is called an eigenvector of A with eigenvalue X if 0 # £ € D(A) and Az = Az.

THEOREM 5.1. Suppose A(H — H) is selfadjoint and has a compact in-

verse. Then

(a) there ezists an orthonormal basis {p1,p9,...} for H consisting of eigen-
vectors of A. If py,pa,--- are the corresponding eigenvalues, then each pu; is real and
|pj| — oo, provided dimH = co. The number of repetitions of u; in the sequence
K1, fo, -~ 18 precisely dim Ker(p; — A),

(b) D(4) = {v € H| L; Inj|%{v, 05)1* < 0},

(c) 4v = 5, (v, 05)05> v € D(A).

PROOF. Put T = A~1. Formula (3) in Section XVI.3 implies that T is self-
adjoint. Thus T is a compact selfadjoint operator with KerT' = {0}. Hence there exists
an orthonormal basis {1, ¥3, ...} of H consisting of eigenvectors of T with corresponding
real (nonzero) eigenvalues Ay, Ag,- - such that A; — 0if dim H = co. Also the number of

repetitions of each ); in the sequence A1, Ag, . .. is precisely equal to dim Ker(A; —T') (see
[GG], Section IIL.6). The above results, together with the observation that Ty; = Aj¢;

if and only if Ap; = /\j_lapj, proves (a) with pj = /\J.'l.
Next, assume that v € H is such that
(1) Dl 1(v, )1
J
Then
=Y (v.0j)e "1<Zﬂj(v,w)w) € D(4).
3 3
Conversely, if v € D(A), then
Av =" (Av,0;)p; =Y pj{Av,Te;)p;
J J
= Z#j(TAv,w)soj = Z#j(”;‘ﬂj)‘ﬂg
J J

The latter identity proves (c). It also shows that v satisfies (1), and hence (b) is proved.
a

The operator A in Theorem 5.1 has a compact resolvent, and so Theorem
XV.2.3 applies to A. Hence, if A is selfadjoint and has a compact inverse, then the
spectrum o(A) of A is a finite or countable set consisting of eigenvalues of finite type
only. From Theorem 5.1(a) and (¢) it follows that

o(A) = {uj |7 =1,2,..).
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XVI.6 THE SPECTRAL THEOREM FOR UNBOUNDED SELF-
ADJOINT OPERATORS

In this section the spectral theorem for bounded selfadjoint operators is ex-
tended to unbounded ones. We begin with the definition of a resolution of the identity. A
family {E(t)}ter of orthogonal projections on the Hilbert space H is called a resolution
of the identity on H if

(P1) Im E(s) C Im E(t) whenever s < ¢,
(P2) Im E(s) = N{Im E(¢) | t > s},

(P3) N{Im E(2) | ¢ € R} = {0},

(P4) span{Im E(t) | t € R} is dense in H.

Note that this definition is an extension of the definition of a bounded resolution of the
identity given in Section V.3. The conditions (P1) and (P3) are the same as the conditions
(C1) and (Cy) in Section V.3, but (P3) and (P4) are weaker than the corresponding
conditions (C3) and (C4). In fact, in this section the resolutions of the identity are not
required to be supported by a bounded interval (as is the case in Section V.3).

THEOREM 6.1. Let A(H — H) be a selfadjoint operator. Then there ezists
a unique resolution of the identity {E(t)}ier such that

(a) D(A) = {z € H | l{x\Zd(E(/\)a:,:z:) < oo},

(b) Az = limpy—e0( va ME()))z, z € D(A).
N

Furthermore, if S is a bounded linear operator on H commuting with A, i.e.,
(1) SD(A) C D(A), SAz = ASz (z € D(A)),

then S commutes with E(t) for each t € R.

Let us explain the meaning of the integrals appearing in Theorem 6.1. Let
{E(t)}ter be a resolution of the identity. Take a bounded interval [@,f], and let
f:{a, B} — C be a continuous function. Then

) / FOVBQ) = lim  S:(f,P)

Here P is a partition, & = g < A1 < --- < Ap = 3, of the interval [«, §], the number
v(P) is the maximal length of the subintervals [A;_1, A;], the symbol 7 stands for a set,
7= {t1,...,tn}, of points t; € [A;_1,};], and

S-(f,P) = Zf(t E()j) — E(\j—1)).

Note that S;(f, P) is a bounded linear operator on H. The usual argument from the
theory of Riemann-Stieltjes integration shows that the limit in the right hand side of (2)
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exists in the norm of L(H) (cf., the text after formula (4) in Section V.3), and hence
the left hand side of (2) is a well-defined bounded linear operator on H. Now take
a=N,f =-N and f()A) = A, and one sees that the second integral in Theorem 6.1 is
a well-defined operator on H.

The first integral in Theorem 6.1 has to be understood as an improper Stieltjes
integral. Note that the integrator (E(-)z,z) is a non-negative monotonically increasing
function and the integrand A* is non-negative on R. Thus

(3) / A2d(BE(MN)z, )

is a non-negative number if the integral converges and is +oco otherwise. Condition (a)
in Theorem 6.1 states that € D(A) if and only if the integral (3) is convergent.

There are various ways to prove Theorem 6.1. A direct way is to give an
explicit formula for the projection E(t) in terms of contour integrals of the type appearing
in Section V.2. This means to prove the analogues of Theorems V.2.2 and V.3.2 for
unbounded selfadjoint operators. Here we shall follow a less direct approach and prove
Theorem 6.1 by reduction to the bounded case. For this purpose we need two lemmas.

The first lemma shows that (a) and (b) in Theorem 6.1 define a selfadjoint
operator.

LEMMA 6.2. Let {E(t)}ter be a resolution of the identity on the Hilbert
space H, and let T(H — H) be defined by

D(T) = {a: €H| 7 A2d(E(N)z,z) < oo},

N

Ta:=ngnoo(/ AdE(A))a:.

Then T i3 a selfadjoint operator.
PROOF. The proof is divided into four parts.
Part (i). First we show that for each z € H

(4) lim E(t)r =0, lim E(t)z = z.

t]—co tToo
From the property (P;) of a resolution of the identity it follows that ||E(-)z||? is a
monotonically increasing function. This function is also bounded, because || E(¢)|| <1

for each t. Hence we may conclude that the limits

(5) b [B@l?  lim | E@)e]?
t]—o0 tToo
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exist. Property (P1) also shows that the vectors E(t)z — E(s)z and E(s)z are orthogonal
whenever t > s, and thus, by the Pythagorean theorem,

IE()z - E(s)z]* = | Et)=|* - | E(s)=l®,  t2s.
Since H is a Hilbert space, the last identity and (5) imply that the limits
zg = lim E(t)z, z1 = lim E(t)z
t]—oo tfoo

exist in the norm of H. Obviously, g € Im E(t) for each t, and hence ¢ = 0 by property
(P3). Furthermore, the vector z — z; is orthogonal to Im E(t) for all ¢, and hence r = z;

by property (Py).
Part (i1). In this part we show that

N
(6) D(T) = {a: €EH| A}im (/ /\dE(/\)>a: exists in H}.
—00
N ;!
Given z € H, put yy = ( f AE()))z. From the definition of the integral it follows

that

(7) yN = Zt (E(Aj)z — E(Aj-1)z),

U(P) 0

where P is the partition —N = )y < A\; < -+ < Ay = N with width v(P) and A;_1 <
t; < Ajfor j =1,...,n. Since the vectors are mutually orthogonal, we see that

llyn|?

n
lim 3 2B )e — EQj_pel?

v(P)—0 =1

= th (E(tj)e,z) — (E(tj-1)z,2)}

N

/ A d(E(\)z, z).

-N

Now, assume that z belongs to the right hand side of (6). Then the sequence (||yx||)3=;
converges and hence

o0

/ Nd(E(\)z,z) = lim [lyn? < oo,
N—oo

—00

Thus z € D(T). On the other hand if z € D(T), thenfor N > M > 1

N y
UN — Ypr = (4 /\dE(/\))z - ({4 /\dE(/\))a,- 0
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as N, M — oo, because

(] om0

as ¢, d both go to co or both to —co. Hence the sequence (yy) converges in H which
shows that = belongs to the right hand side of (6).

2 d
= /z\zd(E(,\)x,x) -0

Part (iii). From (6) we conclude that T is a well-defined linear operator.
Let us show that its domain is dense in H. For R > 0 we write @ for the orthogonal
projection E(R) — E(—R). Take z € X. The identities in (4) imply that ||z ~ Qrz| — 0
if R — 0o. Thus to prove that T is densely defined, it suffices to show that Qpz € D(T)
for R > 0. Fix R > 0. Then

® ([ razo0)ans=( [ siz)e. wom
N R

Thus for N sufficiently large the left hand side of (8) is independent of N. According to
(6), this implies that Q gz € D(T), and hence D(T) is dense in H.

Part (iv). We prove that T is selfadjoint. Take z, y in X. A consideration
of Riemann-Stieltjes sums leads to

N N

(9) [ ratEye = [ AdE(A))x,w

-N -N

for each N > 0. In particular, the integral in the left hand side of (9) exists. Now, take
z,y € D(T). Then

(Tz,y) = lim ((]V /\dE(/\)).’E )
Ad{E(N)z,y)

Ad{z, E(A)y)

e |
e

= 1\,121100(1,( /N ,\dE(/\)>y)=(w,Ty)-

Thus T is symmetric. Finally, take z € D(T*). To finish the proof we have to show that
z € D(T). As in Part (iii) of the proof, let @p denote the projection E(R) — E(—R).
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Take an arbitrary z € X. Since Qpz € D(T), we have

(z,QrT"2) = (TQR%,2)
R

_ ((/ AdE(A)) z,2)

o / iz
R

Here we used (8) to get the second equality; the third equality follows by applying twice
(9). We know that @rT*z — T*2 (R — o00) in the norm of H. Thus

Jim (z, (/R ,\dE(,\)) 2) = (z,T*z).

This equality holds for each z € X. Now, take for z the vector

N
N = (/ ,\dE(,\)) .

-N
Note that
R
(IN,(/)\dE(/\))z)=(zN,zN), R>N.
R
It follows that
R
len||? = lim (zn, (/ ,\dE(/\)) z)
fizroo -R

= (IN’T*Z)‘

But then we may conclude that ||zn]|| < ||T*z||, and we see that
N
(10) [ Ra(E)z2) = llewll? < 171,
N

This holds for each N > 0. Since the third term in (10) is a fixed finite number,
independent of N, we have proved that z € D(T). ©

For the second lemma we need some additional notation. Let Hqy, Hy,... be a
sequence of Hilbert spaces. By 6910?—.1 H; we denote the space consisting of all sequences
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z = (21,%2,...) such that z; € H; (j = 1,2,...) and Z?il ”1’]”2 < oo. The space
@52, Hj is a Hilbert space with the inner product defined by
o0
(=,u) =) (25,95)

j=1

Here (z;,y;) denotes the inner product of the vectors z; and y; in the space H;.

Now, for y = 1,2,... let A; be a bounded linear operator on H;. With the
sequence Ay, Ag,... we associate an operator A (EB‘;‘;I H; — @?‘;1 Hj) by setting
o0 o0
D(A) = {a: = (z1,72,.-.) € D H; | D ll4jz5l% < oo},
i=1 j=1
Az = (Ayz1, Agzo,...), z € D(A).
It is a simple matter to check that A is a well-defined linear operator. Since all sequences
(z1,z2,...) with a finite number of non-zero entries are in D(A), the operator A is densely
defined. The operator A is also closed. Indeed, if (1), z(2),... is a sequence in D(4),
z(n) = (z1(n),z2(n),...), such that
2(n) >z, Ax(n) oy (n— o),
then for j =1,2,...

Ajz; = nll»néo Ajzi(n) = nleoo(A:v(n))j =y},

which implies that @ € D(A) and Az = y. We shall denote the operator A by
diag(A; )‘;‘;1 If the sequence A, Ag,... is uniformly bounded, i.e.,

(11) sup{||4;]| 7 =1,2,...} < oo,

then diag(A; );’?:1 is a bounded operator defined on the whole space. (The converse of
the latter statement is also true.)

LEMMA 6.3. For j = 1,2,... let Aj:H; — H; be a bounded selfadjoint
operator acting on the Hilbert space H;. Let {E;(t)}ter be the resolution of the identity
for A; (7 =1,2,...). Put

A = diag(4;)52,, E(t) = diag(Ej(t))?‘;l.

Then A 13 a selfadjoint operator, {E(t)}ter 13 a resolution of the identity and

(12) D(A)=<=z¢€ T H; | A2 d(E(V)z,z) < oo ¢,
== @1 [ }
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(13) Az = Nli_t'noo(j /\dE(,\)>:c, x € D(A).

PROOF. The proof is divided into three parts. First we show that the
operator A is selfadjoint.

Part (i). Take x, y in D(A). Then

(Az,y) Z Ajzi,y;5)
i=1

oo
.’t], ]y] :c Ay)
Jj=1

The second equality holds true because A; is selfadjoint for each j. The above calculation
shows that A C A*. To prove the reverse inclusion, take z € D(A*). Fix a positive integer
k, and let z be an arbitrary element of Hy. Consider the sequence Z = (6]',:1:);?;1
Obviously, T € D(A). Write [A*2], for the k-th entry of the sequence A*z. Then

(z,Arzi) = (A, 2) = (AT, 2) = (T, A" 2) = (=, [A"2]).
This holds for each z € Hy, and thus Agzp = [A%2];. But then
o o
Dol Azl® = Y 1A 2]kl® = 1A% =) < oo.
k=1 k=1

Hence z € D(A), and it follows that 4 = A*.

Part (ii). In this part we prove that {E(¢)}:cr is a resolution of the identity.
We know that E;(t) is an orthogonal projection for each j. It follows that

sup{||B;(O)]| |7 =1,2,...} S 1.

Hence (cf., the remark made at the end of the paragraph preceding the present lemma)
the operator E(t) is a bounded operator on the whole space 63;";1 Hj. Since each E;(t)
is selfadjoint, also E(t) is selfadjoint (by the result proved under Part (i)). From

E(t)® = diag(E;(t)%) 72, = diag(E;(1)52, = E(t),

we see that E(t) is a projection. So {E(t)}:¢r is a family of orthogonal projections. Note
that

(14) ImE(t) = {z = (z1,22,...) | z; e ImE;(¢t), j =1,2,...}.
As conditions (C;) and (Cs) in Section V.3 are fulfilled for each of the resolutions

{E;(t)}teRr, the identity (14) implies that (P;) and (P2) hold for the family {E(t)}:er-
Next, assume z € Im E(¢) for all t € R. To prove that condition (P3) holds we have
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to show that ® = 0. Consider the k-th entry z; of . According to (14), the vector
z) € Im Ei(t) for all t € R. But the resolution {Ey(t)}:cr 1s supported by a compact
interval. Hence Ey(t) = 0 for t sufficiently small, which shows that z; = 0. This holds
for each k. Hence = = 0 and (P3) is established. Finally, let y 1L Im E(t) for all t € R.
To prove (Py4), it suffices to show that y = 0. Fix a positive integer k, and let ¢t be an
arbitrary real number. Take z € Im Ei(t). Then Z := (§;7);2, belongs to Im E(t) by
(14), and thus

(yk,I) = (y’a) =0

It follows that yi L Im Ej(t) for all ¢t € R. Now use again that the resolution {E(t)}ter
is supported by a compact interval. Thus Ei(t) = I for t sufficiently large, which implies
that y; = 0. But k is arbitrary. So y = 0, and condition (P4) holds true.

Part (iii). Next, we prove the identities (12) and (13). Let T(Pjz; H; —
@?‘;1 H;) be the operator defined by the right hand sides of (12) and (13). Thus the
domain of T is given by the right hand side of (12) and its action by the right hand side
of (13). We want to prove that T = A. First, we show that T C A. Take € D(T). For
each k the vector z belongs to Hi. Since {Ej(t)}icr is the resolution of the identity
for the selfadjoint operator Ay, we have

I2]
(15) | Azl = / N2d(Ey, (Mg, zx),
s 4

provided
a <m(Ag) =inf{(A4z,2) | 2 € Hy, ||z] =1},
B> M(Ag) = sup{(A4rz, 2} | z € H, ||| = 1}.

Note that the left hand side of (15) is independent of & and 3, and hence in (15) we may
replace & by —oco and 8 by co. It follows that

P P %
> el = Y [ AdBek, )
k=1 k=1_oo

o

= / ,\2d<kXp: (Ek(x\)xk,xk))
=1

-
(=]

< /Aﬂd(E(,\)z,z)<oo,

— o0
which holds for p = 1,2,... . Hence 552, [|Axzx]|? < oo, and thus z € D(A). We

proceed by showing T2z = Az. Let []; denote the map which assigns to a vector in
D521 Hj its k-th coordinate. Then
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= [( [ ),

N
=1Jflw(/ /\dEk(/\)):ck.

(16)

From the spectral theorem for bounded selfadjoint operators (Section V.4) we know that

N

/ AEL()) = Ag
N

for N > M(Ag) and —N < m(Ay). Thus the second limit in (16) is equal to Agzg. This
holds for each k. Thus Tz = Az. We have now proved that 7' C A. By Lemma 6.2 the
operator T is selfadjoint. Also, A is selfadjoint. Thus A = A* C T* = T. Therefore,
T=A 0O

PROOF OF THEOREM 6.1. Let A(H — H) be selfadjoint. Introduce the
operator B = T*T, where T := (A — i)}, Theorem 3.1 implies that T is a well-defined
bounded linear operator on H and ||T|| € 1. Hence B is a well-defined, bounded non-
negative selfadjoint operator and ||B|| < 1. In what follows {F(t)}:cr is the bounded
resolution of the identity for B. Since || B|| < 1, we have

m(B) = inf{(Bz,2) | ||l = 1} 2 0,
M(B) = sup{(Bz,3) | || = 1} < 1,

and hence the resolution for B is supported by the interval [0, 1]. Note that the operator
T is injective, and therefore B is also injective, which implies (¢f. Corollary V.5.2) that
F(0) is the zero operator.

Forn =1,2,... let H, be the range of the orthogonal projection F(1/n) —
F(1/(n + 1)). Obviously, each Hp is a subspace (closed linear submanifold) of H, and
hence each H), is a Hilbert space in its own right. We claim that the Hilbert spaces H
and EB‘;‘;I H; are isometrically isomorphic. Indeed, define

o o] o o]
(17) J:@HjeH, Ja::](a:l,:cg,...)=z:cj.
J=1 j=1

To see that the map J is well-defined, take ¢ = (z1,z2,...) € @5‘;1 H;, and put
Sp = Z?:l z; for n > 1. First, note that the spaces Hy, Ha, ... are mutually orthogonal,

O e
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In particular, z; Lz for j # k. Thus for m > n we have

m

>z

j=n+1

2 m

= > leill?

j=n+1

lsm — snll? =

which goes to zero as n,m — oco. Hence the sequence (sn) is a Cauchy sequence, and
therefore the series Z;’_?:l z; converges in H. Furthermore,

2 [e o]
= > Izl = ll=ll,
j=1

o0

>z

=1

17| =

and so J is a well-defined isometry. The latter fact implies that Im J is closed. Thus,
in order to prove that Im J = H, it suffices to show that z = 0 whenever zLImJ. To
do this, take L Im J. Then zlH, for each n, and hence zL Im{F(1) — F(1/n)} for
each n. As F(1) = I, we conclude that £ € Im F(1/n) for n = 1,2,... . According to
conditions (C;) and (Cs) in the definition of a bounded resolution (see Section V.3), this
yields z € Im F'(0). But F(0) is the zero operator. So z = 0, and we have shown that
the map J in (17) has the desired properties.

Next, we prove that
(18) Hn C D(A), AH, C Hn.

Note that T* = (A +1)~! by Proposition XIV.2.6 and the selfadjointness of A. Thus
B = (A+1)"1(A—4)~1, and hence Im B C D(A). Since F(t) is the orthogonal projection
of H onto the spectral subspace of B associated with {(—co,?] (by Theorem V.3.2), the
space Im F'(¢) is invariant under B. This implies that for each n the space Hy is invariant
under B and, according to Theorem V.5.1,

a(BlHn)Ca(BIIm{F(;lz-) —F(nil —o> }) c [;%H

In particular, B|Hy is invertible, and hence H, C Im B C D(A) for each n.

To prove the second inclusion in (18), observe that T commutes with B.
Hence T commutes with each F'(t) by the second part of Theorem V.3.2, and therefore
TH, C Hy for each n. Fix n, and take z € H,. Then z = Bz for some z € Hy, by the
result of the previous paragraph, and thus

Az = ABz = A(A+:) YA -9z =Tz —iBz € Hn,

which proves AH, C Hn.

For each j > 1 let Aj: H; — H; be the restriction of A to H;. Since A is
closed, the same is true for A;, and hence by the closed graph theorem A; is a bounded
linear operator on H; for each j. Also, A; is selfadjoint for each j. The next step of the
proof is to apply Lemma 6.3. First, note that

(19) A= J{diag(4;)52,}7 7,



360 XV1.6 THE SPECTRAL THEOREM FOR UNBOUNDED SELFADJOINT OPERATORS

where J is the invertible isometry defined by (17). To prove (19), put C = J~14J,
and write D for diag(Aj)J‘?;l. Both C and D are selfadjoint operators acting in
@©j=; Hj. We want to show that C = D. Take # = (z1,%2,...) in D(D), and put
z(n) = (1,...,2n,0,0,...) for n = 1,2,... . Since H; C D(A) for j > 1, we have
z1+ -+ + zn € D(A), and hence z(n) € D(C). Moreover,

Cz(n) =(4:z21,...,4p2n,0,0,...) = Dz(n).
This holds for each n > 1. Also
z(n) -z, Cz(n)= Dz(n) — Dz (n — o00).

It follows that @ € D(C) and Cx = Da. Thus C is an extension of D, but then C = D,
because both C and D are selfadjoint.

Formula (19) suggests how to construct the desired resolution of the identity
for A. Indeed, put

(20) E(t) = J{diag(E;(1);2,}J ™",  tE€R,

where {E;(t)}ter is the bounded resolution of the identity for the bounded selfadjoint
operator A; (7 > 1). Since J is an invertible isometry, Lemma 6.3 and formula (19)
imply that {E(¢)}ser is a resolution of the identity such that (a) and (b) in Theorem 6.1
hold true.

We have now completed the proof of the first part of Theorem 6.1. It remains
to prove the uniqueness and the statement about commutativity. We proceed with the
latter. Let S:H — H be a bounded linear operator commuting with A (i.e., formula
(1) holds). We want to show that S commutes with each E(t). To do this note that
(1) implies that S commutes with the bounded operators (A —2)™! and (A +:)~1. It
follows that S commutes with B. But then we can use the last part of Theorem V.3.2
to show that S commutes with the projections F(1/n) — F(1/(n+1)),n=1,2,.... In
particular, the spaces Hy, Hg,... are invariant under S. Put

Sj=S|Hj:Hj—>Hj, j=142,....

Since S commutes with A4, it follows that S; commutes with A4; for each j > 1. Now,
apply Theorem V.3.2 again. We obtain that for each ¢ € R the operator S; commutes
with E;(t). Take z € H. We may write z = 32, z; with z; € Hj for j > 1. Then

o0
SE(t)z =) S;E;(t)z;
7j=1
o0
=Y E;(t)S;z; = E(t)Sz,  te€R,
i=1

and so 5 commutes with E(¢) for each t € R.
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Finally, we prove uniqueness. Let {G(t)}:cr be a second resolution of the
identity such that (a) and (b) in Theorem 6.1 hold with G in place of E. We want to
show that G(-) = E(-). Fix t € R. First we shall show that G(t) commutes with A. Take
z € D(A). Then

(GNG(t)z,G(t)T) = { <(Cc;;((?))§§)) iii

and hence
(G(NG(t)z,G(t)z) < (G(N)z,z), A€eR.
It follows that

/ A2d(G(N)G(t)z, G(t)z) < / A2d(G(N)z,T) < oo.

Thus by condition (a) in Theorem 6.1 (with E replaced by G) we obtain G(t)x € D(A).
Furthermore, since (b) in Theorem 6.1 holds for G in place of E,

AG(t)z = A}ifloo< /N ,\dG(,\)> G(t)z

N
= lim G(t)</ /\dG(/\))a:
N—oco
-N
= G(t)Az.
Here we used that G(t) commutes with G()) for each A € R.

Since G(t) commutes with A, it follows that G(t) commutes with the bounded
selfadjoint operator B. As before, by the last part of Theorem V.3.2, this implies that
the spaces Hi, Ho, ... are invariant under G(¢). Put

Gj(t)=G(t)|Hj:Hj-—>H]', 1=1,2,....
By condition (a) in Theorem 6.1 (with G in place of E)

n
| Az||? = Jim H(/ /\dG(/\))z
—00
N

2

N
= lim //\2d(G(/\)z,x), z € D(A).
N —o0
-N
Thus

o0
(21) [ di6;002.2) < I4IPIeIP, =€
-0



362 XVI.6 THE SPECTRAL THEOREM FOR UNBOUNDED SELFADJOINT OPERATORS

which implies that G;(A) = 0 on the interval —oo < A < —||4;|| and G;(A) is the identity
operator on Hj for ||Aj]] < A < co. Indeed, if zg € Im Gj(Ag), where Ao < —[|4;]|, then
(Gj(Mzo,20) = ||zo]|? for A > A9, and hence

o
14512 l2oli? > / A2d(G;(N)zo, 20)
—00

Ao
_ / A2d(G;(N)z0, 7o)

-

Ao
>33 [ dG;(0m0,z0) = Nlzol”.
—0oQ
Since A3 > ||4;]|2, this yields g = 0. Similarly, if Ag > ||4;|| and 2oL Im G;(Xo), then
(G(M)zo,z0) = 0 for A < Ag,

o0
14;[12/lzo |2 > / X2d(G(A)z0, 7o)
-—_0

[e]
- /Azd(Gj(/\):co,:co) > ABlloll?,
Ao
and thus zg = 0. It follows that {G;(t)}:cr is a bounded resolution of the identity

supported by the compact interval [—|[4;]|, || 4;]l]. Condition (b) in Theorem 6.1 (with
G in place of E) implies that /

N
Ajz = lim (/ Ade(/\))I,.’c € H;,
N—ooo
-N

and hence we may conclude (by Theorem V.4.2) that {G;(t)}ter is the resolution of the
identity of the bounded selfadjoint operator A;. In other words, G;(t) = E;(t) for each
t € R. This holds for each j > 1. Take z € H, and write z = E;’;’l x; with z; € H; for
7 2 1. Then

oo o«
G(t)z =Y _ Gj(t)z; = Y _ Ej(t)zj = E(t)z
1=1 i=1
for each ¢t € R, which completes the proof. O

The resolution {E(t)}:er appearing in Theorem 6.1 will be referred to as
the resolution of the identity for A. The operator-valued function which assigns to each
left open interval (a, b] the orthogonal projection E(b) — E(a) will be called the spectral
measure of A and will be denoted by E4. In other words,

E4((a,b]) = E(b) — E(a), a<b.
The extension of the spectral measure to other sets will be discussed later (in Volume IT)
in the section about the spectral theorem for normal operators.
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XVI.7 AN ILLUSTRATIVE EXAMPLE

In this section we compute the spectral measure for a particular unbounded
selfadjoint operator. We have in mind the operator T(La(R) — Ly(R)) defined by

(1) Tf=if', feDT),

where D(T) consists of all f € Ly(R) such that f is absolutely continuous on every
compact interval of R and f' € Ly(R). In other words, T = Tmax,r on Ly(R) with
T =1D. We shall prove the following two theorems.

THEOREM 7.1. The operator T 1s selfadjoint, o(T) = R and the spectral
measure Ep of T 13 given by

® eils—t)b _ ,i(s—t)a

(2) (Brl(a,tho)t) = 5 [ Tem—o(s)ds, ae,

—0o0

where g € La(R) and —o0o < a < b < 0.

THEOREM 7.2. The operator T 1is unitarily equivalent to the multiplication
operator M (Lo(R) — La(R)) defined by

(3a) D(M) = {f € Ly(R) | tf(2) € L2(R)},

(30) (Mf)(t) = tf(2).
More precisely
(4) T=UMU"!,

where U 13 the Fourier transformation on Lo(R), i.e.,

e = \/% / €=t f(5)ds.

First let us prove that T is selfadjoint. Note that
(5) lim f(t) =0, f € D(T).
t—too

Indeed, integration by parts yields
t 4
/ () F)ds = If(@)I2 - O - / f()F(5)ds,
0 0

which implies that lim¢—oo | f(£)| exists. Since | f|? is integrable, this limit must be zero.
Thus we can use integration by parts to show that for every f,g € D(T)

(Tf,9) = (if',9) = (f,id') = (f,Tg).
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It follows that T" C T™*. Next, let 7 be the differential expression 7 = ¢D. Since T =
Tmax,r on La(R) and 7 = r*, Theorem XIV.4.1 yields

T = (Tmax,‘r)' = dmin,7* = Tmin,r

C Tmax,r =T,
and we have T* = T. (This also proves that Tiin ip = Tmax,ip Which is never the case

for compact intervals.)

PROOF OF THEOREM 7.2. First we establish the following formulas. For
every f € Ly(R),

1 d [ eits 1

(®) N0 = 7= [ 1o, e,
- 1 d 7 eits — 1

(7 (U lf)(t) = \/—T_WE / o f(s)ds, a.e. .

—0o0

Let (fn) be a sequence of functions in Ly(R) with compact support which converges in
L2(R) to f. For each ¢ > 0, define 9; to be the characteristic function on [0,t]. Then by
Fubini’s theorem,

t
Jwsxs)as = tim @0
0

—00
(8) e
= Jim ——= / [ / e-"wds] fn(a)da
7l-—ov;a 0
1 * 117 1
e —
= Lim V2 / o In(@)de
—00
Now for every t € R the function
e“’—l
) 0)
©) =1 = 7
t, s =0,

is in Lo(R). This follows from the continuity of ~; on R and the inequality

2
|he(s)] < [k ls| = 1.
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From (8) we get

t
0/ (UF)a)ds = Jim () = —=(f, )

(10)

—1ta

= \/27 /  f(a)da.

Since U f is in La([0,¢]) C L1({0,¢]), the left hand side of (10) is differentiable for almost
every t € R and (6) follows. The proof for ¢ < 0 is similar. Formula (7) is obtained by
applying the above argument to U~! with —i replaced by i.

We are now prepared to prove formula (4). Given f € D(T'), we have from
(7) that
S
1 d eits — 1

V2o dt

—Oo0

(UTITF)() = f'(s)ds.

Since the function h¢, defined by (9), has a continuous derivative on every interval,
integration by parts and (5) give

3 its _ (pils _
TH == [ EE s
1 d ooc‘t"—- 1 d oo:‘:““’—1 ts
(11) -~ R
d its _
- —\/iz—_rta—t / e~ to)ds + \/_ / L f(s)ds

% f(s)ds = (UL F)(2).

=

Thus U™l f € D(M) and MU~1f = U~1Tf. We have now proved that T C UMU™!.
Note that M is symmetric. Since U is unitary, it follows that UMU 1 is also symmetric.
Hence

(12) UMUTY c(UMUYY cT* =T,
because T is selfadjoint, and (4) is proved. O

Since U is unitary and T is selfadjoint, the identity (4) implies that M is
selfadjoint. Next, we prove that the resolution of the identity for the selfadjoint operator
M is given by

(13) G()f = Yoeogfs € La(R),
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where t(_, 4 is the characteristic function of the interval (—oo,t]. It is clear that
{G(t)}ter is a resolution of the identity on La(R). Let us prove that (a) and (b) in
Theorem 6.1 hold. We start by showing that

(14) D) =Di={f e La®) | [ NGO < oo,

Given ¢ > 0, let =N = X9 < A} < -+ < Ap = N be a partition of [-N, N] with
A2 —A%_|| <eforj=1,...,p. Take f € Ly(R). Then

N p
[ JESTRIS SPRUONIA —(G(Aj-1)f,f)}‘
-N Jj=1

p N
3 / (A2 = AB)|F(N)[2dA < e] I

J=1/\j—1

It follows that
N N
[ 2sopar= [ a2acovsp
-N -N
for each N. Thus f € D(M) if and only if f € D. Now, take f € D(M), and let

N = Xg < A1 < -+ < A\p = N be a partition such that A\; —A;_; <efor j=1,...,p
Then

2

p
’ Mf = 2{G(;) - G-} f
1=1

'\j -N oo
p
-y / A = A [2LF0)2dA + / N F(A)PdA + / X2|F(A)[2dA
j=1,\j_1 —o0 N

<2fI? +e,

for N sufficiently large. This shows that

N
Mf= lim (/ /\dG(/\))f, f € D(M).
N—o0
-N
This result combined with (14) proves that (a) and (b) in Theorem 6.1 hold for M and
the projections (13). Therefore {G(t)}tcr is the resolution of the identity for M.

PROOF OF THEOREM 7.1. We already showed that T = T*. Let us
determine ¢(T). Since T = T*, we know that o(T) C R, by Theorem 3.1. Take A € R.
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We shall prove that A — T is not surjective (and hence ¢(T") = R). Choose a < 0 such
that

[=4
(15) / s7letMds £ 0,
—o0
and let
(16) 0 t7l, —co<t<a,
9= 0, otherwise.

Then g € La(R). Suppose g € Im{A —T). Then (A ~T)f = g for some f € D(T). In
particular, f/ = —iAf +ig. It follows that for any a € R

t

(17) £(6) = N f(a) +i [ e g(a)as

a

Now use (15) and take in (17) the limit for @ = —co. Then (5) implies that

=4
F(t) = jem i (/ s_lei’\’ds>, t> a.

—00

Then |f(t)| = ¢ for t > a, where ¢ is a constant which is different from zero (because of
(15)). But this contradicts (5). Thus ¢ ¢ Im(A — T'), and A — T is not surjective.

Finally, we prove formula (2). Since T and M are unitarily equivalent via (4),
it is rather straightforward to determine the resolution of the identity for T. For ¢t € R
define

(18) E@)f =UGHU™'f,  feLyR),

where {G(t)}¢¢r is the resolution of the identity for M, which is defined by (13). Since U
is unitary, { E(t)}ter is a resolution of the identity, and by considering Riemann-Stieltjes
sums it follows from (4) and (18) that {E(¢)}ier satisfies (a) and (b) in Theorem 6.1
(for T in place of 4). Hence {E(t)}ter is the resolution of the identity for T.

Now, let us compute Er((a,b]) = E(b) — E(a). Take f € C§°(R). Fubini’s

theorem gives

(Br(( 8)1)(®) = (U{60) - G@H)(®)
— o= [ T s

— 00
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= —21; eits (/ 8i3a¢[a,b](s)f(a)da) ds
o b
(19) - 51; [/ 8i(a_:)sd8] Fa)da

1
=3 / ht(a)f(a)da,

where

i(a—t)b _ i(a—t)a
hy(a) = < ¢

po— , a #t.

Note that hy is bounded on 0 < |a —t| < 1 and |he(e@)| < 2|a —¢|7! for |a —¢] > 1.
We conclude that hy € Lo(R). Now take g € L2(R). Since C§°(R) is dense in La(R)
and ET((a,b]) is a bounded operator, there exists a sequence (fn) in C§°(R) such that
fn — g and Er((a, b)) fn — Er((a, b])g in the norm of Ly(R). But then

Br((a,8)g = Jim Er((a8])fo = lim o=(fa, i) = (9,T0)

which proves (2). O

Let T be the operator appearing in Theorem 7.1. We know that any non-real
A belongs to the resolvent set of T. A simple computation, using (8) and (17) shows that
for A ¢ R

t .
i [ eA(t=9g(s)ds, Im <0,
—00

(20) GB-Dlw={ =
—i [ 7 (t=9)g(s)ds, ImA >0,
t

where ¢ is an arbitrary element of Ly(R). For later purposes (see Section XVIL.2) we
note that Im(A — T') is not closed for real A\. To see this, take A € R. If ¢ = 0 in (17),
then f in (17) must also be zero, because e~*Mt=9) f(a) is in Lo(R) only if f(a) = 0. It
follows that A — T is injective, and hence, using T = T*,

Im(A = T) = Ker(A — T)* = Ly(R).

Since A — T is not surjective, this implies that the range of A — T is not closed.



CHAPTER XVII

UNBOUNDED FREDHOLM OPERATORS AND
PERTURBATION THEOREMS

In this chapter the perturbation theory developed for bounded Fredholm op-
erators in Sections XI.3 and XI.4 is extended to closed unbounded Fredholm operators.
For the additive perturbation theorems this is accomplished via the simple device of
renorming the domain of the operator T. In this way T becomes a bounded Fredholm
operator to which the theorems of Chapter XI are applicable. We start with some prop-
erties and examples of the graph norm. The third and fourth section contain the main
perturbation theorems. Section 5 presents a completeness theorem for certain compact
perturbations of unbounded selfadjoint operators.

XVII.1 THE GRAPH NORM

Throughout this chapter X and Y are complez Banach spaces. Given an

operator T(X — Y) the graph norm || |7 on D(T) is defined by
lzllz = ll=ll + |1 T=]|.

This norm is also referred to as the T-norm on D(T). In what follows, X1 denotes D(T)
endowed with the graph norm. Note that T: X — Y is bounded. Since X7 is linearly
1sometric to the graph of T, it is clear that X¢ is a Banach space if and only if T is
closed.

An operator B(X — Y) is called T-bounded if
(i) D(T) C D(B) and
(ii) B is bounded on X.

The latter condition means that there exists a constant v > 0 such that
|Bz|| < y(llzll + 1T=l), =€ D(T).

Obviously, a bounded operator on X is T-bounded.

PROPOSITION 1.1. Suppose that T(X — Y') is closed and B(X — Y) is
closable with D(T) C D(B). Then B is T-bounded.

PROOF. Let By be the restriction of B to D(T), and consider By as an
operator of X into Y. We claim that By is closable. Indeed, if z, — 0 in X and
Bozn, — yin Y, then ||| £ |||l implies that 2, — 0 in D(T) and hence y = 0, because
B is closable. Since By: X — Y, its closed linear extension coincides with By. So By is
closed. But X7 is a Banach space, and thus By is bounded by the closed graph theorem.
(]
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As a consequence of Proposition 1.1, we show that lower order differential
operators are bounded relative to those of higher order. To be precise, we have the
following result.

COROLLARY 1.2. Let T and B be the mazimal operator corresponding to
a compact interval J and the differential expressions

n-1 m—1
T=D"+) ay(t)D*, v=D"+ ) bi(t)D,
k=0 j=0

respectively, where m < n, and each a € Ly(J), each b; € La(J). Then B is T-bounded.

PROOF. By Proposition XIV.3.3, the operators T and B are closed. More-
over D(T) C D(B). Indeed, if g € D(T), then ¢g{"~1) is absolutely continuous on J and
therefore so is g("""l , since m < n. Because of the condition on the coefficients of v, the
function v(g) is in L2(J). Thus g € D(B), and B is T-bounded by Proposition 1.1. O

Let T and B be linear operators from X to Y. We say that B is T-compact
if

(1) D(T) ¢ D(B) and

(ii) B is compact on X7.

If we require that the coefficients a; of 7 in the above corollary be bounded, then we
have the following result.

THEQOREM 1.3. Let T and B be the mazimal operators corresponding to a
compact interval J and the differential ezpressions

n-—1 m
T=D"+Y a®)DF, v=> b)DI,
k=0 k=0

respectively, where m < n and each ar € Loo(J), each by € La(J). Then B is T-
compact.

First we prove the following two lemmas which are of interest in their own
right.

LEMMA 1.4. Let 7 = D"+ Y 220 ai(t)D¥, where a) € Loo([a,b]). Let T be
the mazimal operator corresponding to T and [a,b]. Then there ezists a constant ¢ > 0

30 that for all f € D(T)

M IF®N < el +ITAD,  0<k<n,
PROOF. For 0 < k < n —1 let By be the maximal operator corresponding

to D¥ and (a,b]. Apply Corollary 1.2 to T and By. It follows that there exists a constant
¢1 2 0 such that for all f € D(T)

2) WO < adlft +1TAl), 0<k<n-1
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But then
n—1
LFE) = | f = > ar(t)f*
k=0
n-1
(3) <ITAI+ D llallooll P
k=0

n—1

<(1+X lalloc ) C1£11-+ 51
k=0

Inequality (1) now follows from (2) and (3). O

LEMMA 1.5. Given € > 0 there ezxists a constant K such that
(4) IfOI <elf I+ Klfll, a<t<h,
for all absolutely continuous functions f on [a,d] such that f' € Lo([a,b]).

PROOF. Let J; = [a,c], Jo = [c, ], where a < ¢ < b. Choose 77 > 0 so that
a<c—nandc+7n <b Let ¢ be in CY([0,7]) with the following properties: 0 < ¢ < 1,
©{0) =1 and ¢(n) = 0. Then for t € J;

7
50 == [ et +)lds

(=1

1 7
=— /(p(s)fl(t +s)ds — /cp'(s)f(t + s)ds.
0

0

By the Cauchy-Schwartz inequality,

(5) 17 < 27+ en 2 fll, tedy,

where o = max{]¢’(s)] | 0 £ s £ n}. Similarly,

7
f =~ [ Sl -lds,  ten,

0

and hence also

(6) FOI < 2N + a2 fll,  te o

Without loss of generality we assume that n < €2. Then (5) and (6) give the desired
inequality (4). O

PROOF OF THEOREM 1.3. Let (g;) be a bounded sequence in X7. By
Lemma 1.4 applied to f = g; there exists v > 0 such that

k
(7) 1981 < A(llgsll + ITgs1),  0<k<n,
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and all j > 1. Next apply Lemma 1.5 withe =1to f = gg-k), where 0 € k <n -1, and
use (7). It follows that there exists a constant M so that for all ¢t € J

k .
(8) 9@ < M(lgjll + I Tgs1),  0<k<n—1,j>1.

From (7) it also follows that for t,s € J, s < ¢,

t
90) = () = [ o (@)

(9)

k+1
< |t — s|M?g$F D)
< Alt — s|2(|lgjll + I Tg;l), O0<k<n—1,;>1.

Since (g;)92.1 is bounded in X, the inequalities in (8) and (9) imply thatfor 0 < k < n-—-1

the sequence (g_,(ik) )?;1 is uniformly bounded and equicontinuous. Hence by the Ascoli-

Arzela theorem ([W], Section 43), the sequence (gj) has a subsequence (gj0) which
converges uniformly on J. Again, by the Ascoli-Arzela theorem, the sequence (9_17’,0)

has a subsequence (g; 1) which converges uniformly on J. So, (g5,1) and (9_;',1) converge
uniformly on J. Continuing in this manner, a subsequence (f;) of (g;) is obtained with

the property that ( fJ(k) )52, converges uniformly for 0 < k < n — 1. Therefore

IBfi - Bf; 1 < 3 (£ — £

k=0 .
(®) (g — §5) 3
< (a0 - o) (S o)
=0 (4] — o0),

which shows that the subsequence (Bf;) of (Bg;) converges. Hence B: X7 — Y is
compact, and therefore B is T-compact. O

XVIL.2 FREDHOLM OPERATORS AND ESSENTIAL SPEC-
TRUM

As before, X and Y are complex Banach spaces. An operator T(X — Y) is
called a Fredholm operator if T is closed and the integers

n(T) := dimKer T, d(T) .= dim(Y/ImT)

are finite. In that case indT = n(T) — d(T) is called the indez of T. Evidently, Im T,
n(T) and d(T') are independent of any norm on D(T'). Thus if we let T} be the operator T
acting on D(T) endowed with the graph norm, then ImT = Im T is closed by Corollary
X1.23.
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As for bounded operators (see Section XI.5) the essential spectrum of an
operator T(X — X) is defined to be the set of all A € C such that A — T is not a
Fredholm operator. This set is denoted by gess(T'). As the following examples show it
may happen that gess(T') is empty.

Let Timax be the maximal operator corresponding to a compact interval J =
[a, b] and the differential expression

n—1
(1) T=D"+3Y a(t)D¥, ar€C¥[a,b]), 0<k<n-1.
k=0

Then Tmax(L2([a,b]) — Ls([a,b])) is & Fredholm operator with n(Tmax) = n and
d(Tmax) = 0, by Corollary XIV.3.2 and Proposition XIV.3.3. Next we apply this result
to A — Tax in place of Tiax. It follows that oess(Tmax) = 8. Also the minimal operator
Tmin corresponding to the differential expression 7 in (1) is a Fredholm operator. In fact,
n(Tinin) = 0 and d(Tpin) = n, by Proposition XIV.3.5 and Corollary XIV.4.3. Note that
Tmin is closed by definition and Im Ty, is closed (according to Proposition XIV.3.5). By
replacing T by A — Tpnin, we conclude that also gess(Timin) = 0.

For differential operators defined by differential expressions on an infinite
interval the situation is different. In general such operators have a nonempty essential
spectrum. For example, let T(La(R) — L2(R)) be the maximal operator corresponding
to 7 = iD. In Section XVI.7 we showed that Im(XA — T') is not closed for A € R and

n(A=T)=d(A-T)=0, Im A #0.
Since T is a maximal operator, A—T is closed for each A (cf. Proposition XIV.3.3). Hence
Oess(T) = R. Other examples of this type will be given in the next chapter.

THEOREM 2.1. Let T(X — X) be an operator with a nonempty resolvent
set, and let Q be an open connected subset of C\Gess(T). If AN p(T) # 8, then o(T)NG
18 a finite or countable set, with no accumulation point in §Q, consisting of eigenvalues of
T of finite type.

PROOF. Let Xt be the space D(T) endowed with the T-norm, and for A € 2
define W(A): X7 — X by W(A\)z = Az — Tz for each z € Xp. From
WD)l =Mzl + 1Tzl < (1 + [ADllT,

we conclude that W(\) is a bounded operator from the Banach space X7 into the Banach
space X which depends analytically on the parameter A. Moreover, by our hypothesis,
W(X) is a Fredholm operator for each A € 2. Since

o(T)N={x € Q| W(A) not invertible},

it follows from Corollary XI1.8.4 that ¢(T) N §2 is a finite or countable set with no accu-
mulation point in 2. Take Mg € o(T) N2, and let F: X9 — X be defined by Fz = z.
For A # Ay and ) sufficiently close to A\g we have

2) O-T)t=FwH)l= i (A = Xo)"FAp,

n=—gq
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where A_j,..., A_q4 are operators of finite rank. Here we used the second part of Corol-
lary XI1.8.4 and the fact that F: X — X is bounded. Thus Ag is an isolated point of
o(T) and by (2) the associated Riesz projection Pyy,} is equal to FA_y. In particular,
rank Py),} is finite, and hence Ag is an eigenvalue of finite type. O

XVII.3 THE PRODUCT THEOREM

The aim of this section is to extend Theorem XI.3.2 to unbounded Fredholm
operators. Given two operators T(X — Y) and S(Z — X), where Z is a Banach space,
the product TS(Z — Y') is the operator defined by

D(TS)={z€D(S)| Sz e D(T)},

(TS)z = T(S=), z € D(TS).
We shall prove the following theorem.
THEOREM 3.1. Let T(X — Y) be a densely defined Fredholm operator,

and let S(Z — X) be a Fredholm operator, where Z is a Banach space. Then TS is a
Fredholm operator and

(1) ind(TS) =indT + ind S.
For the proof of Theorem 3.1 we need the following proposition.
PROPOSITION 3.2. Let T(X — Y') be a closed operator with closed range

and dimKerT < oo. Let C be a closed opertor with domain in a complez Banach space
Z and range in X. Then TC 13 a closed operator.

PROOF. Let (z;) be a sequence in D(TC), and assume that zn — z in Z
and TCzp — yin Y. Put z; = Cz;, j = 1,2,..., and consider the sequence ([z;]) in
the quotient space D(T)/ Ker T. Let X7 be the domain D(T') endowed with the graph
norm, and let T3: X7 — Y be the restriction of T to D(T'). Then T} has a closed range,
and we can apply Theorem XI.2.1 to show that the sequence ([z;]) is a Cauchy sequence
in the quotient space Xp/ Ker T. The identity map from D(T)/ Ker T into Xr/KerT is
continuous, because

inf{||z - z||7 | z € Ker T}
inf{||z — 2|| + ||Tz| | z € Ker T’}
z)ll + | Tz||, = e D(T).

=il

Hence ([z,]) is also a Cauchy sequence in D(T')/ Ker T, which therefore converges to some
[z] € X/ KerT. Consequently there is a sequence (un) in Ker T such that z,, + un — =
if n — oo.

Next we show that (un) is bounded. Assume this is not the case. Then
there exists a subsequence (u,s) of (un) such that 0 < |Juy|| — oo if n’ — oo. Since
(|tn]l = L) is a bounded sequence in the finite dimensional space Ker T, it has a sub-
sequence which converges to some v € KerT. By passing to this subsequence we may
assume that ||u,/|| " u — v. It follows that ||v|| = 1. Note that

||un,||"1zn/ — 0,
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C(”un'”_lzn’) = ”un’”_l(zn’ +upr) — ”un’"_lun' - -,
because ||u,s]| = co. Since C is closed, we conclude that v = 0, which contradicts
[l = 1.
Hence (un) is bounded. Since KerT is finite dimensional, there exists a

subsequence (u,,j) of (un) which converges to some u € KerT'. Therefore z,; — z — u.
We now have

Zn; — z, Czn; = zn; > T — v, TCzn; — vy

for j — oco. But the operators C and T are closed. Hence z € D(C), the vector
Cz=z—v€DT)andy =T(z —u) =TCz Hence TC is closed. O

PROOF OF THEOREM 3.1. By Proposition 3.2 the operator T'S is closed.
The quotient space Ker(T'S)/ Ker S is isomorphic to Im S N Ker T under the map [z]
Sz. Hence

(2) n(TS) = n(S) + dim(Im S NKerT) < co.
Put Ny =Im SN KerT. Since KerT is finite dimensional,
(3) KerT = N1 @ No,

for some finite dimensional subspace Ny. Obviously, ImS N Ny = {0}. Furthermore
Im S @ Ns is closed, because Im S is closed and dim N3 < oo (see [GG], Theorem 1X.2.5).

Next, we prove that there exists a finite dimensional subspace N3 such that
(4) (ImS & N2)® N3 = X, N3 c D(T).

Put Xo = Im .S & Na, and let £ = dim X/ Xy. Note that £ < codimIm S < oo. If £ =0,
then we take N3 = {0} in (4). Assume k£ > 0. Since D(T) = X and Xj is closed, D(T) is
not entirely contained in Xj. So there exists a vector 1 € D(T') such that z; ¢ Xp. Put
X1 = X¢®span{z;}. Then X; is closed and dim X/X; = k— 1. Thus we can repeat the
above reasoning for X in place of Xy. Proceeding in this way we find in k steps vectors
z1,... 2k in D(T) such that X = Xy ® span{zi,...,zx}. Put N3 = span{zy,...,zx}
and (4) is fulfilled.

The space N3 is isomorphic to the quotient space Im T/ Im(TS) under the
map u +— [Tu], because of (4). Indeed, if z € D(T'), then (4) implies that z = Sz+ v+,
where z € D(S), v € No C Ker T and © € Nj. It follows that Sz = £ —v—u € D(T) and
T(Sz) = Tz — Tu, which shows that [Tz] = [Tu]. Furthermore, if [Tu] = {0] for u € N3,
then

u€ImS+KerT =ImS @ Ny,
and hence u = 0. So u + [T'u] has the desired properties, and thus
(5) d(TS) =d(T) + dim N3 < oo.

We have now proved that T'S is a Fredholm operator. To prove the index
formula (1) note that dim N7 = n(T) — dim N3, by (3), and dim N3 = d(S) — dim Ny, by
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(4). So, using formulas (2) and (5), we have
ind(TS) =n(TS) —d(TS)
=n(S) + dim N; — d(T) — dim N3
= n(T) + n(S) — d(T) — d(S)
=indT +indS. ©
Simple finite dimensional examples already show that the index formula (1)
for T'S may fail to hold true if the density condition on the domain of T is not fulfilled.

Indeed, let S:C2 — C2? be defined by S(z1,z3) = (z1,0), and let T(C? — C2) be the
operator with

D(T) =span{(1,0)},  T(z1,0) = (21,0).
Then T and S are both Fredholm operators, indT = —1 and indS = 0. Note that
TS =S5. Thusind(TS)=0%# —1=indT +ind S.

XVII.4 ADDITIVE PERTURBATIONS

In this section we employ the graph norm to extend the perturbation theorems
of Section XI.4 to unbounded Fredholm operators. For two operators 7(X — Y) and
B(X — Y) such that D(T') C D(B), the operator T + B is defined by

(1) D(T + B) =D(T), (T + B)z =Tz + Ba.

LEMMA 4.1. Let T(X — YY) be a closed operator, and let B(X — Y) have
the following properties:

(i) D(T) C D(B),

(i1) there ezist numbers a and b, b < 1, such that
I1Bz|| < allzl| + bl T=], = €D(T).

Then T + B i3 closed.
PROOQF. For all z € D(T),

(2) I(T + B)z|| < allz|| + (1 + &) T,

(3) (T + B)z|| > ||Tz|| - ||Bz|| = —allz|| + (1 = 3)||Tz|.
It follows that
(4) ITz|| < (1 ~5)~" (alle]| + (T + B)z|).

Suppose z, — z and (T'+ B)z, — y. It is clear from (4) that (T'z,) is a Cauchy sequence
which therefore converges to some z € Y. Since T is closed, z € D(T') = D(T + B) and
Tz = z. By (2),

I(T + B)(zn — 2)|| < allzn —z|| + (1 +0)||Tzn — Tz|| — 0.
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Hence (T + B)zn — (T + B)z which shows that y = (T + B)z, and thus T + B is closed.
[m]

Let T(X — Y) be a Fredbolm operator, and let 71 be the operator T re-
stricted to D(T') with the T-norm. Then T} is a bounded Fredholm operator. Thus T}
has a bijection T1 associated with it which is defined at the beginning of Section XI1.3.
We shall refer to Ty as a bijection associated with T and denote it by T. We now have
the following generalization of Theorem XI.4.1 and Corollary XI.8.3.

THEOREM 4.2. Let T(X — Y) be a Fredholm operator, and let T be a
bijection associated with T. Suppose B(X — Y) is an operator with D(B) D D(T) such
that for some 0 <y <1

Bzl < ymin(1, | T~ M DUl + I T=l), =€ D(T).

Then T + B 13 a Fredholm operator with
(i) n(T + B) < n(T),
(i) d(T + B) < d(T),
(1ii) ind(T + B) = ind T,

and there exist € > O and integers ng and dy such that

(5a) n(T) 2 no=n(T+AB), 0<Al<e,

(58) d(T) > do = d(T + AB), 0< A <e.

PROOF. Since ||Bz|| < ¥(||z|| + [|Tz||) for all £ € D(T) and v < 1, Lemma
4.1 implies that T + B is closed. Let X7 be the space D(T") endowed with the T-norm.
Define T} and Bj to be the restrictions of T and B, respectively, to Xp. Then Xr is
a Banach space, T1: X7 — Y is a Fredholm operator and B1: X7 — Y is a bounded
linear operator such that ||By|| < ||T71[|7!. Statements (i), (ii) and (iii) follow now
immediately from Theorem XI.4.1, and formulas (5a) and (5b) are a consequence of
Corollary X1.8.3. O

THEOREM 4.3. Suppose that T(X — Y) is a Fredholm operator and
B(X —Y) is T-compact. Then

(i) T + B s a Fredholm operator,
(ii) ind(T + B) = ind T

Furthermore, there ezists a finite or countable subset & of C which has no accumulation
point inside C and there exist constants ng and dy such that

(6a) dimKer(T + AB) = ng, codimIm(T + AB) = dy, AeC\L,

(6b) dimKer(T + AB) > ng, codimIm(T + AB) > dy, Agez.
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PROOF. Let Xy be the space D(T) endowed with the T-norm. Define T;
and B to be the restrictions of T and B, respectively, to Xp. Then T7 is a Fredholm
operator and Bj is compact. Thus we can apply Theorem XI1.4.2 to show that T + B;
is a Fredholm operator and ind(T} + B;) = ind T}. It follows that

n(T+B)=n(T, +B;) < oo, d(T+ B)=d(T)+B) < 0,

ind(T + B) = ind(T} + B;) = ind T} =indT.

So to prove (i) and (ii) it remains to show that T+ B is a closed operator. Let E(X — X7)
be defined by

D(E) =D(T), Ez =z

Since E~!: X7 — X is a bounded operator, the graph of E~! is closed in X7 x X, and
hence the graph of E is closed in X x Xp. Thus F is a closed operator. Note that
T+ B = (T1 + B1)E. Since T} + By has closed range and dim Ker(T} + B1) < oo,
Proposition 3.2 yields that T + B is closed.

To prove the final statement of the theorem, note that W(A) = T} + AB is
an analytic function on C whose values are bounded Fredholm operators from X into Y
(because of Theorem XI.4.2). This allows us to apply Theorem XI.8.2 to get the formulas
(6a) and (6b). O

Theorem 4.3 yields the following corollary for the essential spectrum.

COROLLARY 4.4. Let T(X — X) and B(X — X)) be operators, and assume
that B is T-compact. Then

(7) Oess(T + B) C 0ess(T).
PROOF. Take A ¢ 0ess(T). Thus A — T is a Fredholm operator. From
Izl + 1Tl < (1 + AD(ll=ll + I(A = T)=))

it follows that B is also (A — T)-compact. But then we can apply Theorem 4.3 to show
that A ¢ 0ess (T + B). O

XVIL5 A COMPLETENESS THEOREM

Throughout this section H is a complex Hilbert space. Let A(H — H) be an
operator. As for bounded operators, a vector z € H is called a generalized eigenvector
of A corresponding to Ag if for some k > 1

(1) (Mo —AFFlz =0, (No—A)fz#£0.

In that case zg = (A9 — A)*z is an eigenvector and )¢ is the corresponding eigenvalue.
Note that (1) requires that the vectors z, (Mg — A)z,..., (Ao — A)*z all belong to D(A).
The set of eigenvectors and generalized eigenvectors of A is said to be complete if the
linear span of these vectors is dense in H. (To avoid confusion let us remark that by



CHAPTER XVII. UNBOUNDED FREDHOLM OPERATORS AND PERTURBATION THEOREMS 379

definition every eigenvector is also a generalized eigenvector, and hence the part in the
preceding sentence referring to the eigenvectors could be omitted.) In this section we shall
prove completeness for certain differential operators. We begin with a general theorem.

THEOREM 5.1. Let T(H — H) be a selfadjoint operator with a compact

inverse, and let B(H — H) be T-compact. Assume that the sequence of eigenvalues

K1, 42, ... of T (multiplicities taken into account) satisfies the condition
@) S(E)
2 — < o0

i=1 Hi

for some p > 1, and assume that I + BT ™1 is invertible. Then the entire spectrum of
T + B consists of eigenvalues of finite type and the set of eigenvectors and generalized
etgenvectors of T + B 13 complete.

PROOF. We may represent T + B in the form
(3) T+ B=(+BT"T.

Since B is T compact, the operator BT'~!: H — H is compact. To see this, let Hy
be the space D(T) endowed with the T-norm. Let 77 and B be the operators T' and
B, respectively, considered as operators from the Banach space Hp into H. By our
hypotheses, By is compact and 7} has a bounded inverse. Thus BlTl'1 is compact. But

BT-1 = BlTl—l, and therefore BT ! is a compact operator on H.
Since I + BT~! and T are invertible, (3) implies that

4) (T+B) !=7"'(I+BT H L

The first factor in the right hand side of (4) is a compact operator on H and the second
factor is a bounded linear operator on H. We conclude that 7'+ B has a compact inverse,
and hence T + B has a compact resolvent. So, by Theorem XV.2.3, the entire spectrum
of T 4+ B consists of eigenvalues of finite type.

Next, we apply the Keldysh theorem for completeness (Theorem X.4.1) to
A=(T+B)"!. Put K =771 and § = BT~!. Then the operator K is a compact
selfadjoint operator on H, the space Ker K consists of the zero vector only, and (2)
implies that for the sequence A1, Aq,... of eigenvalues of K (multiplicities taken into
account)

x
> AP < oo,
=1

where p is a real number > 1. The operator S is compact and I+ .5 is invertible in £L(H).
Since 4 = K(I + S5)7! by (4), the Keldysh theorem implies that the set of eigenvectors
and generalized eigenvectors of A4 is complete.

Now, let z be an eigenvector or generalized eigenvector of A corresponding to
the eigenvalue Ag. Thus (1) holds for some k > 0. Then Ay # 0 (because A is injective)
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and z = A;1Ag(A)z, where g(A) is some polynomial in A. The latter identity implies
that z € Im A™ = D((T + B)") for each n, and hence

(5) (T +B)Y (Ao — Az = N[(T+ B) - ;=
for j =0,1,2,.... Recall that T + B is injective. Thus (1) and (5) imply that
(T+B)- X\ e=0, [(T+B)-X'fz#0.

Hence z is also an eigenvector or generalized eigenvector of T' 4+ B, and thus we have
completeness for T+ B. O

In the next corollary we prove completeness for a class of differential operators
acting in L%([a, b]), the space of all C"-valued functions with components in Ly({a, ]).
The space L3 ([a,b]) is a Hilbert space with inner product

n b
(h.9) =3 [ Hnd,
=13

where f; and g; are the j-th components of f and g, respectively. A function f €
L%([a,b]) is said to be absolutely continuous if each of its components is absolutely
continuous. The derivative of a C™-valued function is also defined component wise.

COROLLARY 5.2. Let A(L3([a,d]) — L3([a,d])) be defined by
D(A) = {f | f absolutely continuous, f' € L([a,b]), N1f(a) + N2f(b) =0},

Af = if' + B()f.

Here B(-) 13 a continuous n X n matriz function on [a,b] and Nj, Ny are n X n matrices
such that

(6) det(N7 + N2) #£0,  NiNI = NyNj.

Let U(t) be the unigue continuous n X n matriz function such that
t
Uity =1I, +i/B(s)U(s)ds, a<t<b.
a

If, in addition, det(Ny + NoU(b)) # 0, then the spectrum of A consists of eigenvalues of
finite type only and the set of eigenvectors and generalized eigenvectors of A is complete.

PROOF. Introduce the following auxiliary operators T and B:

D(T)=D(4), Tf=if,

B:L3([a,b]) = L3([a,8]),  (BA)(®) = BA)f(2).



CHAPTER XVII. UNBOUNDED FREDHOLM OPERATORS AND PERTURBATION THEOREMS 381

Then A = T + B. To prove the corollary it suffices to show that T and B satisfy the
hypotheses of Theorem 5.1.

The first condition in (6) implies that T is invertible and one computes that

its inverse is given by

b
(T1g)t) = / Kt s)g(s)ds, a<t<b

a

where
—i(Nl +N2)_1N1, a<s<t<h,
k(t,s) =
+i(V7 +N2)_1N2, a<t<s<hb
In particular, 7! is a Hilbert-Schmidt operator, and hence formula (2) holds with
p = 2. The second condition in (6) implies that N;(Nll* + N3)71 = (N + Np)~1hy,

and therefore k(t,s)* = k(s,t), which implies that T~' is selfadjoint. Hence T is an
unbounded selfadjoint operator.

The operator B is bounded and BT~ is compact, because ! is compact.
The condition det(Ny + N2U(b)) # O implies that T + B is invertible. Indeed, take
g € L%([a,b]), and let us solve the equation
(7) if +B(t)f =g

with f in the domain of A = T + B. The general solution of (7) is given by

t
®) £(8) = Ut)e — iU(8) / U(s)lg(s)ds, a<t<b.

Since f has to satisfy the boundary conditions, one sees that z in (8) is uniquely deter-
mined and given by

b
o =i(Ny + N2U (b)) "' N2U (b) /U(s)-lg(s)ds.

Thus (7) has a unique solution in D(T + B) for each ¢ € L3([a, b]), and therefore T + B
is invertible. Thus I + BT ™! is invertible, and we have proved that T and B have the
desired properties. O

For other completeness theorems for unbounded operators (including partial
differential operators) we refer to the book of A.S. Markus [1].



CHAPTER XVIII

A CLASS OF ORDINARY DIFFERENTIAL OPERATORS
ON A HALF LINE

Ordinary differential operators on a half line differ considerably from their
counterparts on a finite interval. In this chapter these differences are illustrated for a
specific class of differential operators on [0,00). The operators involved do not have a
compact resolvent. Their spectra and essential spectra are described. Also, the Green'’s
function and the Fredholm characteristics are computed explicitly. The first four sections
concern first order constant coefficient differential operators. Applications to Wiener-
Hopf integral equations appear in the fifth section. In the last section the results are
extended to higher order differential operators on [0, c0).

XVIIL.1 DEFINITION AND ADJOINT

The differential operators considered in this chapter act in the space
L2([0,0)), the Hilbert space of all C"-valued functions whose components are square
(Lebesgue) integrable on [0, 00). Here n is a positive integer which we shall keep fixed
throughout the chapter. Recall (see Sections XII.1 and XIIL.2) that for f and g in
13((0,0))

(f,9) = / (F(8), g()dt,
0

where the inner product under the integral sign is the usual inner product in C".

Consider the following initial value problem for C™-valued functions:
f(0) e L.

Here A is an n X n matrix with complex entries and L is a subspace of C". With (1) we
associate an operator 7' with domain and range in LJ([0,00)) as follows. The domain
D(T) of T consists of all f € LF([0,00)) such that (each component of) f is absolutely
continuous on compact intervals of [0, 00), the initial value f(0) € L and the derivative
f" (which is defined component wise) is in L([0,00)). The action of T is given by:

(2) (THE) = F(8) + Af(R),  £20, ae..

Obviously, T(L5([0,00)) — L%([0,00))) and T is linear. We shall refer to T as the
differential operator in L3([0,00)) associated with (1). If L = C™, then T may be viewed
as the maximal operator corresponding to the differential expression rf = f' + Af and
the interval [0, co).
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THEOREM 1.1. The differential operator T in L3([0,00)) associated with
(1) is @ densely defined closed operator and T* = —S, where S i3 the differential operator
in L3([0,00)) associated with

(3) { Fi(t) = A*f(1), t>0,

f(0) € Lt.
Here A* is the adjoint of the matriz A in (1) and Lt is the orthogonal complement in
C™ of the subspace L in (1).

PROOF. Let Dy be the space of all C*-valued functions f on [0, co) with the
property that each component of f is a C°°-function with compact support in the open
interval (0, 00). Obviously, f(0) = 0 for each f € Dy. It follows that Dy C D(T). Since
Dy is dense in LE([0, 00)) (cf., Lemma XIV.5.1) we conclude that T is densely defined.

Let S be the differential operator in LF([0, 00)) associated with (3). We want
to show that T* = —S. First we prove that 7™ is an extension of —S. Take f € D(T)
and g € D(S). Let us show that

(4) (f,’g)z—(f:gl)'

The function (f(-),¢(:)) is a finite sum of products of functions which are absolutely
continuous on each compact subinterval of [0,00). Thus {f(-),g(-)) is differentiable a.e.
on [0, 00) and

®) %(f(t)’g(t)) = (f'(1),9(1)) + (f(2),d' (1)), 0<t<oo, ae. .
Note that f(0)Lg(0). Thus (f(0),9(0)) = 0 and integrating (5) over 0 < ¢t < ¢ yields

(£(e)r9(e)) = /(f’(f),g(f))df + /(f(f),g'(f))df-
0 0

This holds for each ¢ > 0. According to our hypotheses, f’ and ¢’ are in LZ([0,00)), and
so

(6) Jim (f(c),9(c)) = (', 9) +(f,9").

Since f and g are in LZ([0,00)), the function (f(-), g(-)} is integrable on [0, c0), which
implies that the limit in the left hand side of (6) is zero, and (4) is proved. By using (4),
we get

(Th,0) = [((0)+ A4S0, o(e))at
0

= /(f’(t),g(t))dt + /(Af(t),g(f))dt
0 0

- [t et + Juso, argepe
0 Q

= (fv_sg)y
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which yields that ¢ € D(T*) and T*g = ~Sg. Thus -5 C T™.

Next, we prove that T* = —§. Take h € D(T™*). It suffices to show that
h € D(-S5). So we have to prove that h is absolutely continuous on each compact
subinterval of [0,00), the derivative k' € L3([0,00)) and h(0)LL. Fix an arbitrary
positive number ¢. For j = 1,...,n let X; be the C™-valued function defined by

81;
xm=1| : |, o<t<q
Onj

where §;; is the Kronecker delta. The subspace of L3((0,¢]) spanned by A7,...,Xn will
be denoted by M. Take u € LB([0,c]) such that L M, and put

o(t) = 0ftu(s)ds, 0<t<e,
0, t>ec.
For the j-th component g; of g we have
t
5t = [, 2m)d, o<t
0

It follows that g;(c) = 0 for j = 1,...,n. Hence g(c) = 0, and we may conclude that ¢
is absolutely continuous on each compact subinterval of {0, 00). Obviously, g(0) = 0 and
g’ € L3([0,00)). Thus g € D(T') and

c

/ (g(t), (T*R)(t))dt =

a

\'8

(9(2), (T™R)(2))dt

80

(g'(t) + Ag(t), h(t))dt

c

(g'(2), h(t))dt + /(g(t),A*h(t))dt.

0

O T —

Here we used that g and ¢’ are zero on (¢, c0). Put

t
v(t) = /{(T*h)(s) — A*h(s)}ds, 0<t<e.
0

Then the result of the previous calculation can be summarized as:

C c

™) / (¢'(8), h(t))dt = / (g(t), ' (8)) dt.
0

0



CHAPTER XVIIIl. A CLASS OF ORDINARY DIFFERENTIAL OPERATORS ON A HALF LINE 385

Since ¢(0) = g(c) = 0 and ¢'(t) = u(t) a.e. on 0 < t < ¢, partial integration in (7) yields
C
/(u(t), h(t) +v(t))dt =0,
0

which shows that on [0, ] the function ~ + v is orthogonal to u. But u is an arbitrary
element of the orthogonal complement of M in LZ([0,c]). We conclude that on [0,c]
the function A + v is a linear combination of the functions &1,...,Xn. Note that the
functions X1,...,An and v are absolutely continuouson [0, c|. Moreover, X, ... , X} are
zero. It follows that k is absolutely continuous on [0, ¢] and

R'(t) = A*h(t) — (T*R)(t), 0<t<e, ae..
This holds for each ¢ > 0. Thus k is absolutely continuous on each compact interval and
(9) R'(t) = A*R(t) — (T*R)(2), 0<t< oo, ae..

Since the right hand side of (9) is in LF([0,0)), we also have A’ € L3([0,00)). To prove
that k(0) € LL, take « € L, and let

1
zdt, 0<t<1,
f) = tf

0, t>1.
Then f € D(T), and thus

1 oo
Jusowands = [r,n @)
0 0
= [t amhe) - (T )t
0
= [1asf,mpae - [(Tix0), mo)a
0 0
= - [tr@hena
0

1
= - [tr@heat
0

Since f(1) = 0, the above calculation and the formula for partial integration shows that

(z,R(0)) = (f(0),r(0)) = 0.
This holds for each = € L, and so h(0) € L+.

We have now proved that 7% = —S. Note that S is an operator of the
same type as T. Thus we may apply to S the results proved so far. It follows that
T** = —5§* =T, and therefore T is closed (by Proposition XIV.2.2). O
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XVIII.2 INVERTIBILITY AND GREEN’S FUNCTION
Let T be the differential operator in L([0,00)) associated with

filit) = -Af@), t>0,
f(0) € L.
As in the previous section, A is assumed to be an n X n matrix and L is a subspace of

C™. In this section we analyze the invertibility of T and compute its resolvent kernel
(Green’s function).

THEOREM 2.1. Let T be the differential operator in LE([0,00)) associated
with (1). Then T is invertible +f and only if A has no eigenvalues on the imaginary azis
and

(2) C"=LopKerQ,

(1)

where @ is the Riesz projection of A corresponding to the eigenvalues of A in the open
left half plane. Furthermore, in that case the inverse of T 1is the integral operator on
£3([0,00)) given by

(T~ 1g)(t) = /7(t,s)g(s)ds, 0<t< oo,
0

with

e~ tA(I —TDesA, 0<s<t<oo,
3) NODIER B
—e"tALe%A, 0<t<s < oo,

where 11 is the projection of C™ onto L along Ker Q.

PROOF. We split the proof into four parts. The first part concerns a general
statement about T'.

Part (i). First we show that for f € D(T) and T'f = g the following equality
holds true:

(@) Qs0) = - [ GesAg(sas.
0
Since Tf = g, we have f'(1) = —Af(¢) + g(¢) a.e. on [0,00), and hence
t
(5) fO = T Ap0) + et [edge)ds, 120
0
Multiplying (5) from the left by Qe?4 yields

t
(6) Qe £(t) = QF(0) + / QeAg(s)ds, ¢ 0.
0
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Recall that @ is the Riesz projection of A corresponding to the eigenvalues in the open left
half plane. This implies (cf. Lemma 1.5.3) that [|Qet4| < ~e~% for some constants vy > 0
and § > 0. It follows that Qe!4A(t) is integrable on 0 < ¢ < oo for any h € L3([0, 00)),
in particular, for h = f and A = g. The latter implies that the right hand side of (6) has
a limit for ¢ — co. Since the left hand side of (6) is integrable on [0, o), this limit must
be zero, which proves (4).

Part (ii). In this part we assume that A has no eigenvalues on the imaginary
axis and that T is invertible. We shall show that (2) holds. Take z € L N Ker@Q, and
consider the function f(¢) = e~?4z. Since A has no eigenvalues on the imaginary axis,
z € Ker Q implies that f € L}([0,00)). But then f € D(T) and Tf = 0. Therefore, by
the injectivity of 7', we have f = 0. It follows that z = f(0) = 0, and thus LN Ker Q =
{0}.

Next, take y € C", and consider the function

Ay, 0<t<k,
0, t >k,

(7) )= {

where k is an arbitrary positive integer. Since T is surjective, there exists f € D(T)
such that T fy = g;. It follows (from (4)) that

Qfr(0) = —/Qe’Agk(S)ds = Qy — Qek4y.
0

We know that fi(0) € L. Thus

Qy — Qe*y = £1(0) — (I — Q) fx(0) € L + Ker Q.

The function Qet4 is exponentially decaying on 0 < t < co. Hence QeF4y — 0 if k — oo.
Now use that L + Ker Q is closed (because of finite dimensionality), and it follows that
Qye L+KerQ. But theny = Qy+ (I — Q)y € L +Ker Q. Recall that y is an arbitrary
vector in C™. So we may conclude that L + Ker@ = C".

Part (iii). In this part we assume that T is invertible. We shall show that 4
has no eigenvalues on the imaginary axis. For « € R and « sufficiently small the operator
T — ol is again invertible (cf. Proposition XIV.1.1). Note that D(T — aI) = D(T') and
for f € D(T — ol)

([T — aI]f)(®) = f'(t) + (A — alp) f(2), t>0, ae. .
Here I, is the n X n identity matrix. It follows that T — I is the differential operator on
L3([0,00)) associated with the initial value problem (1) with A— o, in place of A. Now

take o # 0 and « sufficiently small. Then A — al, has no eigenvalues on the imaginary
axis. So, by the result of Part (ii) of the proof,

(8) C" = Lo KerQq,
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where Qu is the Riesz projection of A corresponding to the eigenvalues in the open half
plane A < a. We conclude that for 0 < « € R and a sufficiently small, Ker Qo =
Ker Q. But for & > 0 the space Ker Q_, contains the eigenvectors of A corresponding
to eigenvalues on the imaginary axis, while these vectors are not in Ker Q. Therefore
A has no eigenvalues on the imaginary axis.

The results proved in Parts (ii) and (iii) show that for the invertibility of T
it is necessary that A has no eigenvalues on the imaginary axis and the decomposition
(2) holds. The final part of the proof concerns the sufficiency of these conditions and the
formula for the inverse.

Part (iv). Assume that A has no eigenvalue on the imaginary axis and that
(2) holds. First, we show that T is injective. Assume Tf = 0. By (4) and (5) we
have f(t) = e~tAf(0) with f(0) € KerQ. Since f € D(T), also f(0) € L, and hence
f(0) = 0 by (2). We conclude that f = 0, which shows that T is injective. Next, take
g € L3([0,00)), and put

z = ~II Qe’Ag(s)ds,
/

where II is the projection of C" onto L along Ker Q. Note that Qe®4g¢(s) is integrable
on [0, 00), and thus z is a well-defined vector of L. Define

t
(9) f(t) = etz 4 e tA / e*4g(s)ds, 0<t<oo.
0
Then f is absolutely continuous on compact subintervals of [0,00), the initial vector
f(0) =z € L and
(10) Fl(t) = —Af(®) + g(2), 0<t<oo.
To prove that f € D(T), we have to show that f € L3([0,00)). To do this, note that
QII = Q. This allows us to rewrite f in the form
o0 ©0
(11)  f(t) = —e AU - Q)H/Qe“‘g(s)ds +/h(t —8)g(s)ds, 0<t< oo,
0 0

where

(12) h(t) = { e~tA(I-Q), t>0,

—etAQ, t <0

Here we used that A commutes with Q. Note that & is a matrix-valued kernel function,
which is continuous on R\{0}, has a jump discontinuity at 0 and

[h@)|| < ce~dl teR,
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for some constants ¢ > 0 and d > 0. It follows that the integral in the right hand side
of (11) defines a bounded linear operator on L3([0,00)) (cf., Sections XII.1 and XII.2).
The same is true for the first term in the right hand side of (11), because e *A(I — Q)
and Qe!4 are matrices with square integrable entries. In particular, f € D(T).

We have now proved that T is bijective and T!lg is the function defined
by the right hand side of (11). Thus 77! is a bounded linear operator on L3([0, c0)),
and so T is invertible. It remains to establish formula (3) for the resolvent kernel. To
obtain (3) one uses the fact that II(J — @) = 0 and Q(J — IT) = 0. These two equalities
imply that (I — @Q)IIQ + Q =1II. Since T~ lg is given by the right hand side of (11), the
latter identity, Qet4 = e*4Q for all t € R and formulas (11) and (12) yield the desired
representation (3). o

XVIII.3 THE SPECTRUM
Let T be the differential operator in LZ([0, 00)) associated with

) { fl(t) = —Af(t), t=>0,

F(0) € L.

As in the previous section, A is assumed to be an n X n matrix and L is a subspace of
C™. The next theorem describes the spectrum of 7.

THEOREM 3.1. Let T be the differential operator in L5([0,00)) associated
with (1), and let a1,...,as be the real parts of the eigenvalues of A ordered increasingly.
Put ap = —o00 and ag4; = oo. Then the spectrum o(T) i3 the entire complez plane or
consists of the closed half planes RX < aj—y and R > a;j for some 1 <j < s+ 1.

PROOF. Assume o(T) # C. Take Ay € p(T), and write A\g = a + b with a
and b real. The operator T — Mg/ is the differential operator associated with the initial
value problem (1) with A — A\p[J in place of A (cf. Part (iii) of the proof of Theorem 2.1).
Since T'— AgI is invertible, we can apply Theorem 2.1 to show that A has no eigenvalues
on the line RA = a and

(2) C" = L@ Ker Qq,

where Qq is the Riesz projection of A corresponding to the eigenvalues in the half plane
RX < a. In particular, a;_; < a < a; for some j € {1,2,...,5+1}.

In what follows, Q« denotes the Riesz projection of A corresponding to the
eigenvalues in R\ < . We have
(3a) KerQo C KerQ,, KerQq # KerQq, a > aj,

(3b) KerQq = Ker Qq, aj_1 < a < aj,

(3¢) KerQuo D KerQ,, KerQq # KerQq, a<aj-1.
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But then we see from (2) that
(4) L+ KerQq #C" (a > qj), LNKerQq # {0} (« < aj_1).

Now, take A € C, and put & = R). Then Q,, is the Riesz projection of A— A corresponding
to the eigenvalues in the open left half plane. Thus, by Theorem 2.1 and (4), the operator
T — Al is not invertible if R\ > a; or RA < aj_1. Since o(T) is closed, we conclude the
the closed half planes R\ > a; and R\ < a;_1 are in o(T).

Finally, take a;_1 < R\ < aj, and put @ = RA. Then A — Al has no
eigenvalues on the imaginary axis and (2) holds with « in place of a. It follows from
Theorem 2.1 that T — AT is invertible, and hence A ¢ o(T). O

The results of this and the previous section are of particular interest for a
number of different choices of L. Here we illustrate this with two corollaries; the first
concerns the case L = {0} and in the second we take L = C".

COROLLARY 3.2. Let T be the differential operator in LE([0, 00)) associated
with (1). Assume L = {0}. Then the specirum of T consists of the closed half plane
RA > a, where a = min{RA | A € 6(A)}. Furthermore, for RA < a

t
(A =T 1f() = —/e(‘_’)(’\"A)f(s)ds, 0<1t<oo.
0

PROOF. By Theorem 2.1, the operator T is invertible if and only if all the
eigenvalues of A are in the open right half plane and in that case

t
(T-1f)(8) = / e (=NAf(s)ds,  0<t< oo.
0
Now, apply this result with T and A replaced by T — Al and A — A, respectively, and
the corollary follows. O

The second corollary is proved in a similar way; we omit the details.

COROLLARY 3.3. Let T be the differential operator in L3([0, c0)) associated
with (1). Assume L = C™. Then the spectrum of T consists of the closed half plane
RA < b, where b = max{RA | A € 0(A4)}. Furthermore, for RA > b

o0

(A =771 1)) = / =00-A)g(5)ds, 0 <t < oo,
t

XVIII.4 FREDHOLM CHARACTERISTICS

This section concerns the Fredholm properties of the differential operator
associated with

(1

{ fl(t) = —Af(t), t>0,
f(0) € L.
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As in the previous section, 4 is an n X n matrix and L is a subspace of C*. We shall
prove the following two theorems.

THEOREM 4.1. Let T be the differential operator in L3([0,00)) associated
with (1). Then T is a Fredholm operator if and only if A has no eigenvalues on the
imaginary azis, and in that case

(2) ind7 = dim L — dim M,

where M 1is the space spanned by the eigenvectors and generalized eigenvectors of A
corresponding to eigenvalues of A in the open left half plane. Furthermore, the essential
spectrum of T consists of the union of the lines parallel to the imaginary azis through
the eigenvalues of A.

THEOREM 4.2. Let T be the differential operator in L3([0,00)) associated
with (1), and assume that A has no eigenvalues on the imaginary azis. Let Q be the
Riesz projection corresponding to the eigenvalues of A in the open left half plane, and
put M =ImQ, N =Ker@Q. Then T is a Fredholm operator and

(3) KerT = {f | f(t) = e 2, z € LN N},

(4) ImT = {g € L3([0,0)) | /Qe’Ag(s)ds €L+ N},
0

(5) n(T) = dim(L N N), d(T) = dimC™/(L + N),

(6) indT = dim L — dim M.

Furthermore, let T be the bounded linear operator on L3([0,00)) defined by

o>

(T)(t) = / A(t,8)f(s)ds, >0,

0
with

(t S)z{e_‘A[I—Q—(I—Q)S"'Q]CSA, 0<s<t< oo,
AR —e_tA[Q+(I—Q)S+Q]eSA, 0<t<s< oo,

where ST: M — L is a generalized inverse of the operator S = Q|L:L — M in the weak
sense (i.e., SSTS = S). Then

(7) T=TTT, Tf=TITf ((Tf)(0) € L).

It is convenient to prove the second theorem first.
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PROOF OF THEOREM 4.2. The proof is split into four parts. In the first
part we recall some facts proved in Section 2.

Part (i). For f € D(T) and T'f = g the following identities hold true:

(8) QF(0) = — / QetAg(s)ds,
0
9) f(2) = eI = Q)f(0) + / Bt = s)g(s)ds, 0 <t < oo,
0

where k is the n X n matrix function defined by formula (12) in Section 2. Since A has
no eigenvalues on the imaginary axis, we know that

IRl < e, teR,

for some positive constants ¢ and d. Hence the integral in (9) is well-defined. Note that
formula (8) is proved in Part (i) of the proof of Theorem 2.1. Formula (9) follows from
(8) and the identity (5) in Section 2.

Part (ii). In this part we prove (3) and (4). Assume that f € KerT. Then
g = Tf = 0, and (9) implies that f(t) = e *4z for some z € KerQ = N. Also,
z= f(0) € L. So z € LN N. Conversely, if f(t) = e~t42 with 2 € LN N, then f € D(T)
and Tf = 0. Thus f € Ker T and (3) is proved.

Assume g € ImT. So g = T f for some f € D(T). Formula (8) tells us that
oo
(10) /Qe"Ag(s)ds €L+ N.
0

Conversely, if ¢ € L3*([0,00)) and (10) holds, then there exists z € L such that Qz is
equal to the left hand side of (10). Using this z, put

(11) f@) = eI - Q) +/h(t — s)g(s)ds, 0<t < oo.
0

Then f € L}([0,00)) and

f(t) = —e7tz o7t [ Qes4g(s)ds + [ h(t — s)g(s)ds
[octmon]

t
= —etr ftA / e*4g(s)ds, 0<t <oo0.
0
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Here we used that @ commutes with A. From the above calculation it is clear that f is
absolutely continuous on each compact subinterval of [0, 00), the vector f(0) = —z € L
and f' = ~Af +g. Thus f € D(T) and Tf = g. Hence ¢ € Im T, and we have proved
(4). :

Part (iii). Next, we prove (5) and (6). Note that the map z + e~!4z is an
isomorphism from L N N onto KerT', because of (3). It follows that the first identity in
(5) holds. To prove the second, define

L30,00) = gy =] @eAg(s)ds)
0

where [y] denotes the coset y + (L + N) for any y € C". According to (4) we have
KerJ = Im7T. So to prove the second identity in (5) it suffices to show that J is
surjective. Take z € C™. Then (I — Q)z € N, and so [z] = [Qz]. Put
(t)—{_AI for 0<t<k,
I 0 for t> k.

Then g € L3([0,00)) for k =1,2,... and

k
= - *A Azds
2 Jor = [O/Qe Azds|

=[Qz — QeFAz] - [Qz],  k — co.

Here we used that Qe!4z is exponentially decaying. Since C™/(L + N) is finite dimen-
sional, the image of J is closed, and thus (12) implies that [z] = [Qz] € Im J. Thus J is
surjective, which finishes the proof of (5).

From Theorem 1.1 we know that T is closed. Thus the identities in (5) imply
that T is Fredholm and

indT =dim(LNN) — {n —dim(L + N)}
=dimL+dmN —n
= dim L ~ dim M,
because M and N are complementary subspaces of C™.
Part (iv). It remains to establish (7). Take ¢ € ImT. We know (see (4))

that
o0

(13) z = /QesAg(s)ds €L+ N.
0

Thus 2= Qz € QL =Im S. Pur z = Stz. Then z € L and
Qr=QStz=55%2 =2z,
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because SSTS = 5. Thus z € L and Qxz is equal to the integral in (13). Now define f
by the right hand side of (11). Then (as we have seen before), the function f € D(T)
and T f = g. Because of the special form of z, the function f may be rewritten as

f(t) = —e A1 - Q)5+/Q63Ag(s)ds + /h(t — 5)g(s)ds
4] 4]

(14)

[+te.90s1is = xye, 0t <en
0

We conclude that TT'g = g for each g € Im T, and hence the first identity in (7) holds.

For any f € L3([0,00)) the function I'f is absolutely continuous on each
compact subinterval of [0, 00) and (T'f) = —A(T'f)+f. Thus,if, in addition, (L'f)(0) € L,
then I'f = D(T') and TTf = f, which proves the second identity in (7). Note that the
first part of (14) implies that I is a bounded linear operator on L3([0,00)). O

PROOF OF THEOREM 4.1. Assume that A has no eigenvalues on the imag-
inary axis. Note that the space M is precisely the image of the projection @ appearing
in Theorem 4.2. So we know from Theorem 4.2 that T is a Fredholm operator with index
given by (2).

To prove the converse statement, let us assume that A has eigenvalues on the
imaginary axis. We have to show that T is not a Fredholm operator. By contradiction,
assume that T is a Fredholm operator. Then, by Theorem XVII.4.2, for « € R, «
sufficiently small, the operator T + ol is again a Fredholm operator and

(15) ind(T + al) = indT.
Note that D(T + aI) = D(T') and for f € D(T + al)
(T +al)f)(t) = f(t) + (A + aln)f(t), t>0, ae. .

Here I, is the n x n identity matrix. It follows that T'+ a[ is the differential operator on
L3(]0, 00)) associated with the initial value problem (1) with A+ o5 in place of A. Now
take o £ 0 and « sufficiently small. Then A + ol has no eigenvalues on the imaginary
axis. So, by what we have proved so far,

(16) ind(T + o) = dim L — dim Ma,

where M, is the spectral subspace spanned by the eigenvectors and generalized eigen-
vectors of A corresponding to eigenvalues in the half plane ®A < a. By comparing (15)
and (16) we see that dim My = dim M_,. But this contradicts the fact that A has
eigenvalues on the imaginary axis. Thus T is not a Fredholm operator.

It remains to prove the statement about the essential spectrum of 7. Take
u € C. We have already seen that T'— uI is the differential operator associated with the
initial value problem (1) with A — pl, in place of A. So according to the first part of
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the theorem, the operator T — pI is Fredholm if and only if A — pl, has no eigenvalue
on the imaginary axis. Thus pt € gess(T') if and only if there exists a € R such that ia is
an eigenvalue of A — ul,, or, equivalently, ia + p is an eigenvalue of A. It follows that
i € Tess(T) if and only if the line through p parallel to the imaginary axis contains an
eigenvalue of A. In other words, cess(T") 1s precisely the union of the lines parallel to the
imaginary axis through the eigenvalues of A. O

XVII1.5 APPLICATIONS TO WIENER-HOPF OPERATORS

In this section the results of the previous sections are used to analyse Wiener-
Hopf operators. This analysis provides an alternative way to derive the inversion and
Fredholm properties of Wiener-Hopf operators on L5*([0,00)) with a rational symbol
(Theorems XIIL7.1 and 8.1). Also an application to so-called first kind Wiener-Hopf
operators is included.

Let S: L*([0,00)) — L3*({0,00)) be a Wiener-Hopf operator with a rational
m X m matrix symbol W. Thus

(1) (So)t) = p(t) = [ Kt=sho(s)ds, 0 t<oo,
0

and

(2) W(A) = Im — / eME(t)ds, AeR

(cf., Section XIIL.1). Since the symbol W is rational, we know from Section XIII.4 that
W can be written in realized form, that is,

(3) W(\) =1+C(\—-A4)"!B, A €R,
where A is a square matrix of order n, say, which has no eigenvalues on the real line, and

B and C are matrices of sizes n x m and m X n, respectively. First, we employ (3) to
derive a special representation of S.

LEMMA 5.1. Let S be the Wiener-Hopf operator on LT'([0,00)) with the
symbol W given in the realized form (3). Then

(4) S=I—iMcT Mg,
where Mp and M are the multiplication operators defined by

(5) Mp: L3'([0,00)) — L3([0,00)), (Mpf)(t)=Bf(t) 0<t<oo,

(6) Mc: L3([0,00)) — LF'([0,00)), (Mcf)(t) =Cf(t), 0<t<oo,
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and T is the differential operator in L3([0,00)) associated with

) { fi(t) = —iAf(t), t>0,

f(0) € Im P.

Here P is the Riesz projection of A corresponding to the eigenvalues in the open upper
half plane.

PROOF. First, we prove that T is invertible. By our assumption on A
the matrix 74 has no eigenvalues on the imaginary axis and the Riesz projection of i4
corresponding to the eigenvalues in the open left half plane is precisely P. Now, apply
Theorem 2.1 with A in place of 4 and with L = Im P. In this case the matching condition
in formula (2) of Section 2 is automatically fulfilled. It follows that the differential
operator T associated with (7) is invertible. Furthermore, for the case considered here,
the projection II appearing in Theorem 2.1 is equal to P. But then we may conclude
from Theorem 2.1 that

(8) (Tg)(t) = / Bt — $)g(s)ds,  0<t< oo,
0

where

e—itA _
©) h(t)={ (I—P), t>0,

—e~itAp t<0.

Here we used that P and e~#4 commute.

Next, recall from Theorem XIII.4.2 that the realization (3) implies that the
kernel function k of S in (1) is given by

C —itA(r _
k() = iCe .(I P)B, t>0,
—iCe~#APR, t <0
But then we see from (9) that k(-) = Ch(:)B, which, according to (8) and (1), implies
that (4) holds. O

The representation (4) will allow us to describe the inversion and Fredholm
properties of the Wiener-Hopf operator S in terms of the differential operator T asso-
ciated with the following initial value problem:

(10) { f'(t) = —i(A— BC)f(t), t>0,

f(0) € Im P,

where P is as in (7).

THEOREM §.2. Let S be the Wiener-Hopf operator on LT*([0,00)) with
the symbol W given in the realized form (3), and let T* be the differential operator in
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2([0,0)) associated with (10). Then S is invertible if and only if T is invertible, and
in that case

(11) Sl =TI +iMc(T*) *Mp,

where Mp and Mc are as in (5) and (6), respectively.

PROOF. We shall apply Lemma 5.1. Let T be the differential operator
associated with the problem (7). By Lemma 5.1 the operator T is invertible. Note that
T and T* have the same domain and

(12) TXf =Tf —iMgMcf, fe€DT)="DT*).

It follows that the operator $* = T*T~1 is a well-defined bounded linear operator on
2([0,00)), which is invertible if and only if T is invertible. According to (12), we have

(13) S* =T — Mg(iMcT™1).

The formulas (4) and (13) imply that the operators S and S* are matricially coupled
(see Section II1.4). Hence, we can apply Corollary II1.4.3 to show that §S is invertible if
and only if S* is invertible, and in that case

Sl = I +iMcT™H(SX) 1 Mp.

Since $X = TXT~1, this proves the theorem. O

Let T be the differential operator associated with (10). Apply Theorem 2.1
to T'*. This yields necessary and sufficient conditions for the invertibility of 7% and
(when these conditions are fulfilled) an explicit formula for (T%)~1. Using these results
in Theorem 5.2 yields an inversion theorem for Wiener-Hopf operators which is precisely,

Theorem XIII.7.1.
The next theorem concerns the Fredholm properties.

THEOREM 65.3. Let S be the Wiener-Hopf operator on LF*([0,00)) with
the symbol W given in the realized form (3), and let T* be the differential operator in
L%([0,00)) associated with (10). Then

(14) KerS={Cf| f € KerT*},
(15) ImS = {g € LF(0,00)) | Bg € ImnT*},
(16) dimKer § = dim Ker T'%, codim Im § = codim Im T,

and the operator S is Fredholm if and only if T is a Fredholm operator.

PROOF. We use the same terminology as in the proof of Theorem 5.2. In
particular,

(17) S* :=T*T! = I - Mg(iMcT™ ).
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From (4) and (17) we deduce that S and $* are matricially coupled, and hence, by
Corollary I11.4.3,

KerS = {CT h | h € Ker 5™},
ImS = {g € LF([0,00)) | Bg € Im S*},

dimKer S = dim Ker S, codimIm S = codim Im S*.

Since Ker $* = T'Ker T* and Im S* = Im T*, the previous identities prove (14), (15)
and (16). As T* is closed (by Theorem 1.1), formula (16) implies that S is Fredholm if
and only if the same is true for T%. O

Note that the Fredholm properties of T* may be derived from Theorems 4.1
and 4.2. Hence, the latter theorems, together with Theorem 5.3, yield the Fredholm
properties ‘of the Wiener-Hopf operator S. The final results are the same as the ones in
Theorem XIII.8.1.

As a further application of the results proved in the previous sections, we
compute the spectrum of the Wiener-Hopf operator

(Hf)(2) = / R(t = $)f(s)ds,  0<t< oo,
0

with kernel function

~itA(r _P), t>0
h(t) —_ € ( ) b
—e~ AP t <0,

where A is an n X n matrix without eigenvalues on the real line and P is the Riesz
projection of A corresponding to the eigenvalues in the open upper half plane. The
operator H is a so-called first kind Wiener-Hopf operator acting on L3([0, c0)); its symbol
1s given by

[ o]

/ eMR(t)dt = i(A ~ A)7L.
—00
THEOREM 5.4. Assume that the n X n matric A has no eigenvalues on the

real line, and let H be the first kind Wiener-Hopf operator on LG ([0,00)) with symbol
i(A— A)"1. Then the spectrum of H is the union of the closed discs

1 1 1 1
— | < = A — | < 2
’A+2a+ S0 ‘ +2a_{_2|a_|’
where
(18a) at+ = min{SA|A € o(4), A > 0},

(188) a- = max{SA|\ € o(4), SA < 0}.
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PROOF. Let P be the Riesz projection of A corresponding to the eigenvalues
in the open upper half plane, and consider the differential operator T on LZ([0,c0))
associated with

(19) { Fi(t) = —Af(t), t20,

£(0) € Im P.

From the first part of the proof of Lemma 5.1 we know that T is invertibleand T-! = H.
Thus

(20) o(H) = {i— » A€ a(T)} U {0}.
Since 1A has no eigenvalues on the imaginary axis, Theorem 3.1 (applied to (19)) shows
that

o(T)={A | RA< ~arJU{N | RA> —a_},

where a4 and a- are defined by (18a) and (18b). Now use (20) and the theorem is
proved. O

XVIII.6 HIGHER ORDER DIFFERENTIAL OPERATORS ON
A HALF LINE

Throughout this section 7 is the differential expression

(1) r=D"+ap,_1D" 14+ 4+ a;D +ag,

where D = (—% and ag,...,an—] are given complex numbers. Furthermore, L will be a
given subspacein C". With 7 and L we associated a differential operator T'(Ly([0, 00)) —

L([0,00))) as follows:
e L},

u(0)
D(T) = {u € D(Tmax) :

u(n=1)(0)

Tu = Tu, u € D(T).

Here Tmax is the maximal operator in La([0, 00)) corresponding to 7 and the interval
[0,00). By definition, the function u(n=1) exists for each u € D(Tmax ) and u(n=1) s
absolutely continuous on the compact subintervals of [0,00). Thus the vector

(u(0), ' (0), - .., u* D)7,

appearing in the definition of D(T'), is well-defined. We shall refer to T as the differential
operator tn L1([0,00)) defined by 7 and the subspace L.

The polynomial p(\) = /\"+Z:;3 ay A? is called the symbol of the differential
expression 7. It determines 7 uniquely via 7 = p( D).
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We shall prove the following three theorems.

THEOREM 6.1. Let T be the differential operator in Lo([0,00)) defined by
the differential ezpression T and the subspace L. Put

0 1

(2) H= .

—ay —a1 -+ —Gp-1

The operator T 1is a closed operator, which 13 invertible if and only if the following two
conditions are satisfied:

(i) the symbol p(-) of T has no zeros on the imaginary azis,

(ii) C® = L& N, where N is the spectral subspace of H spanned by the
eigenvectors and generalized eigenvectors of H corresponding to eigenvalues in R\ < 0.

Furthermore, in that case

oo
(@7ho)s) = [ahoule)ds,  0<t<o,
0
with
(t,5) CetH(I —Me*HB, 0<s<t< oo,
T, S8) =
—CetHHe"’HB, 0<t<s<oo,
where
0
(3) B = 0 , C=[10 - 0],
1

and II is the projection of C™ onto L along N.

THEOREM 6.2. Let T be the differential operator in Lg([0,00)) defined by
the differential ezpression T and the subspace L. Then T is Fredholm if and only if the
symbol p(-) of T has no zeros on the imaginary azis, and in that case

(4) indT =dimL — m,
where m 13 the number of zeros (multiplicities taken into account) of p(-) in the open
right helf plane.

THEOREM 6.3. Assume that the differential operator T in Lo([0,00)) de-
fined by the differential ezpression T and the subspace L is Fredholm. Put

0 1 0

1 0
—@p —ay -+ —Gp-1 1
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C = [ 1 0 --- 0 ],

and let ) be the Riesz projection of H corresponding to the eigenvalues in RA > 0. Then
(5) KerT = {u|u(t)=CetHa:, z € LNKerQ},

[ o]
(6) ImT = {u € Lo([0,00)) ‘ /Qe_tHBv(s)ds €L+ KerQ},

0

Cn

7 = di d(T) = dim —————>
(7) n(T) = dim(L N Ker Q), (T) = dim LT KO
(8) indT = dim L — dim Im Q.

Furthermore, let T be the bounded linear operator on L3([0,00)) defined by

>

o) = [t sps)ds, 120
0
with
(9) A(t,s) = { CetH[I-Q-(I-QRTQle* B, 0<s<t<oo,
—Cet[Q + (I - QRTQle=*¥ B, 0<t<s< oo,

where RY:Im Q — L is a generalized inverse of the operator R = Q|L: L — Im Q in the
weak sense (i.e., RRYTR = R). Then

(10) T = TTT.

We shall need the following basic fact about the domain of Timax.

PROPOSITION 6.4. Let Trax be the mazimal operator in La([0, 00)) corre-
sponding to T and the interval [0,00). Then

u(n.-l)
The implication (11) also holds for differential expressions 7 of which the
coefficients are Loo-functions on [0,00) (see, e.g., S. Goldberg [1], Theorem VI1.6.2).

To prove Theorems 6.1-6.3 and Proposition 6.4 we shall employ the differen-
tial operator S in LZ([0, o)) associated with

{ f(t)=Hf(t), t>0,

(12) f(0)e L.
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Here H is the nxn matrix defined by (2). The operator § may be viewed as a linearization
of the differential operator T defined by 7 and L. In what follows the main idea is to
apply first the theorems of Sections 2 and 4 to S and next to use the results to derive
the corresponding theorems for T. We begin with a lemma.

LEMMA 6.5. Let T be the differential operator in Ly([0,00)) defined by T
and L, and let S be the differential operator in L3([0,00)) associated with (12). Let B
and C be as in (3). Assume f € D(S) and Sf = Bv. Then Cf € D(T) and TCf = v.

PROOF. Let fi,..., fn be the components of f. Then
fi—F2
(13) Sf=f —Hf= o
n—-1" f"
fatafi+tafa+--+an-1fn

Since the first n — 1 components of Bv are zero, the identity Sf = Bv implies that

(14) fi=fUY j=1,.,n-1, 1(f)=v
Hence, a;150
f1(0) f1(0)
(15) f{go) _ f2F0)
£ £(0)

Put u = Cf. In other words, u = fi. The first n — 1 identities in (14) and formula (15)
imply that v € D(T). The last identity in (14) shows that Tu =v. O

PROOF OF PROPOSITION 6.4. Let p be the symbol of . Since p is a
polynomial, the set {p(A) | A € iR} is not the entire complex plane, and hence we can
find a complex number ¢ such that p(-) — ¢ has no zeros on the imaginary axis. Obviously,
the domain of Trmax does not change if 7 is replaced by 7 —c¢. Thus for the proof of (11) we
may assume without loss of generality that the symbol p has no zeros on the imaginary
axis.

Put g = BTmaxu, where B is as in (3). Let Smax be the differential operator
in LZ([0,00)) associated with (12) and with L = C™. Since det(A — H) = p(A), the
matrix H has no eigenvalues on the imaginary axis, and hence we can apply Theorem
42 (with A = —H and L = C") to show that Smax is surjective. Thus there exists
f € D(Smax) such that Smaxf = BTmaxu. But then Lemma 6.5 shows that C f € D(T)
and Tmax(Cf) = Tmaxu. Thus Cf — u € Ker Timax. From the proof of Lemma 6.5 (see
formula (14)) we know that the first n — 1 derivatives of C'f are in L2([0,00)). Thus it
remains to prove (11) for u € Ker Thax.

Take v € Ker Trpax. Thus 7(u) = 0. Let b be an arbitrary positive number,
and consider the differential expression 7 on [0,5]. According to formula (4) in Section
XIV.3 there exists a vector z; such that

u(t)=Cetflz,,  0<t <,
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where as before, C is given by the second identity in (3). Note that

C
CH
(16) ;
' CH.n.—l

is the n x n identity matrix. It follows that

u(0) c
u'(0) CH
. = : Ty = Tp.
u(n—.l)(o) CI{-n—-l

Thus z; does not depend on b, and we may conclude that u(t) = CetH z for some z € C?
and all ¢ > 0. Write z = zg + 77 with z9 € Im @ and z; € Ker @), where @ is the Riesz
projection of H corresponding to the eigenvalues in the open right half plane. Note that
ui(t) = Cetfzy, 0 <t < oo, and all its derivatives are in Ly([0,00)). In fact, since Hiz;
belongs to Ker @, we conclude (see Lemma 1.5.4) that

ugj)(t)=CetH(Hj:z:1), 0<t < oo,

is exponentially decaying. To finish the proof we show that zg = 0.

In order to do this, consider the function
oo
(17) r(A) = /e_’\tCetH:z:odt, R > 0.
0

A

The function e~*! is in Ly([0, c0)) for each A in open right half plane. Also,

Cetfzg = u(t) — uy(t), 0<t <oo,

is in L9([0, c0)). It follows that the right hand side of (17) is well-defined. From complex
function theory (see, e.g., [R], Section 19.1) we know that r(-) is analytic in A > 0.
Choose v > 0 such that H — v has all its eigenvalues in the open left half plane. Then
e(H =Mt {5 exponentially decaying for each R\ > v by Lemma 1.5.4, and hence

o0
t=
/e"\tCetH:z:odt =C(H — A" Leld- Ntz
t=0
0
=C(\ = H) 'z, RA> v > 0.
It follows that

(18) r(A)=CA-H) lzg, RA>y>0.
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Since zg € Im Q, the function C(A — H)lzg is rational and has its poles in ®A > 0. On
the other hand, according to (18), the function C(A—H)~!zg has an analytic continuation
on RA > 0. Therefore C(A — H)™lzg is analytic on the entire complex plane. From the
Neumann series expansion we see that

CA—H)lzg =0, |N— o
But then Liouville’s theorem implies that C(A — H)~ !z is identically zero, and thus
(again use the Neumann series expansion) CHJzg = 0 for j = 0,1,2,... . Now recall
that the matrix in (16) is the n x n identity matrix. Thus
C
CH
Ty = . z9 =0,
CH'n—l

and the proof of (11) is completed. O

The next lemma will allow us to describe the Fredholm properties of T in
terms of those of S.

LEMMA 6.6. Let T be the differential operator in Lo([0,00)) defined by T
and L, and let S be the differential operator in LB([0,0)) associated with (12). Let B
and C be as in (3). Then

(19) KerT = {Cf| f € Ker S},
(20) ImT = {v € Ly([0,00)) | Bv € Im S},
(21) dimKerT = dimKer S, codimIm7T = codim Im S.

PROOF. Take u € KerT. Then u € D(T) C D(Tmax), and hence (by
Proposition 6.4)

2= | % | ez3(0,00).
L(n=1)
Since u € D(T), we have 4(0) € L. Hence u € D(S), and (13) (with f replaced by %)

yields Su = 0. Thus u = C% with % € Ker S. Conversely, assume Sf = 0. Then Lemma
6.5 implies that Cf € KerT. Furthermore, from the proof of Lemma 6.5 (see formula
(14)) we see that the j-th component of f is equal to (Cf)U~D for j = 1,...,n. Thus
Cf = 0 implies f = 0. We conclude that C maps KerS in a one-one way onto KerT,
which proves (19) and the first identity in (21).

To prove (20), let v = Tu for some u € D(T). As in the first paragraph of
the present proof one shows that

2:=| . |eDs.

4(n—1)
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Thus we can apply (13) with f = 4, which yields
0
ST = 0 — BTu = Bu.
Tu

Thus Bv € ImS. Conversely, if Bv = Sf for some f € D(S), then v = T(Cf), by
Lemma 6.5. Hence v € Im T and (20) is proved.

The proof of the second identity in (21) is based on the following equality:
0
(22) 2([0,00)) = Im5+{

ve La((0,00) .

v

Formula (13) implies that the right hand side of (22) does not depend on the coeflicients
ag, - ..,8n—1 of 7. Thus to prove (22) we may choose the coeflicients ag,...,a,—1 as we
like. It follows that for the proof of (22) we may assume without loss of generality that
the symbol p of T has all its zeros in the open left half plane. Then all the eigenvalues
of H are in the open left half plane, and we can apply Theorem 4.2 (with A = —H) to
show that Im S = L3({0, 00)), which proves (22). Now, let

J: LZ([O’OO)) N Lg([ovoo))
" ImT ImS

be defined by
0

J(v+ImT) = 0 +ImS.
v

Then J is injective because of (20), and the equality (22) shows that J is surjective.
Thus J is a linear bijective map, and therefore the second identity in (21) holds true. O

PROOF OF THEOREM 6.1. First we show that T is closed. Let uj,us,...
be a sequence in D(T') such that u; — u and Tu; — v in L3([0,00)). Since Tmax is an
extension of T which is closed (by Proposition XIV.3.3), we conclude that v € D(Tmax)
and 7(u) = v. It remains to prove that

u(0)
(23) +(0) € L.

u(""'l)(O)

To do this we restrict our attention to the compact interval [0,1]. Let T and Tp be the
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operators in Ly([0,1]) defined by

#@
D(T) = {9 € D(Tmax,r,[o,l])‘ ? (50) € L},
R (V)
Tg=r7(g)%
4@
D(To) = {9 € D(Tmax,r,[0,1]) ? (:0) = 0},
gn=1)(0)

Tog = 7(9)-
Obviously,
G(Tmax,r,[o,l]) S5 G(f) S5 G(TO)-

The argument in the first paragraph of the proof of Proposition XIV.3.3 shows that the
graphs G(Ty) and G(Tax 1 [0,1]) are closed. Moreover G(Tj) has finite codimension in
G(Trmax,r,0,1))- Thus G(T) is a finite dimensional extension of the closed linear manifold
G’(fo), which implies that T is closed. Let o, @, @y, @2, ... be the restrictions of the
functions v, u, uy, ug, ..., respectively, to the interval [0,1]. Then @y, us, ... is a sequence
inD(T), 4; - wand T4; — vin Ly([0,1]). Since T is closed, we conclude that u € D(T),
and hence (23) is fulfilled.

According to Lemma 6.6 the operator T is invertible if and only if S is in-

vertible. By Theorem 2.1 (applied to —H instead of A) the latter happens if and only if
H has no eigenvalues on the imaginary axis and

C" =LoKerQ,

where @ is the Riesz projection of H corresponding to the eigenvalues of H in the open
right half plane. Now note that the eigenvalues of H are precisely the zeros of the symbol
pof 7 and Ker Q is equal to the space N appearing in condition (ii) of Theorem 6.1. Thus
the above arguments show that the conditions (i) and (ii) of Theorem 6.1 are necessary
and sufficient for the invertibility of T'.

Finally, assume that T is invertible, and let us derive the formula for its
inverse. Take v € Ly([0,00)), and put u = Tv. Then, as was shown in the second
paragraph of the proof of Lemma 6.6,

U
!

&)
Il

€ D(S), S% = BTu = Bv.
u(n.—l)
Now S is invertible, and so

(24) w=Ca=CS 1Buv.
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Theorem 2.1 (applied to A = — H) yields the formula for S~!. By using this formula in
the third term of (24), one obtains the expression of 7~! in Theorem 6.1. O

PROOF OF THEOREM 6.2. First we apply Lemma 6.6. Note that both
T and S are closed operators. Thus Lemma 6.6 shows that T is Fredholm if and only
if S is Fredholm, and in that case ind T = ind S. Next, we apply Theorem 4.1 with A
replaced by —H. It follows that S is Fredholm if and only if H has no eigenvalues on
the imaginary axis, and in that case

indS =dim L —dim M,

where M is the space spanned by the eigenvectors and generalized eigenvectors of H
corresponding to the eigenvalues in A > 0. Since det(A — H) = p(1), it follows that H
has no eigenvalues on the imaginary axis if and only if p has no zeros on the imaginary
axis. Furthermore, dim M is precisely equal to the number m appearing in (4). With
these remarks the theorem is proved. O

PROOF OF THEOREM 6.3. By Lemma 6.6 and Theorem 4.3 (applied with
A replaced by —~H) formulas (5), (6), (7) and (8) are evident.

To prove (10), let (¢, s) be the function defined by the right hand side of (9)
with B and C omitted. Then

xQ
En0 = [Feafeds, 120
0
defines a bounded linear operator on L%([0,c0)), and from Theorem 4.3 (applied to

A = —H) we know that S = ST'S. Obviously, ['v = CT'Bv for any v € La([0, 0)). Now,
take v € D(T), and put v = Tu. By Proposition 6.4

U

ul

8)
)

€ D(S),
u(n=1)
and according to formula (13) (with @ in place of f) we have $% = Bv. Thus
Bv = 5% = (ST'S)a = S(T'Bv),

which, by Lemma 6.5, implies that I'v = CT'Bv € D(T) and TTv = v. Since v = Tu,
the latter identity proves (10). O

We conclude this section with a corollary about the essential spectrum.
COROLLARY 6.7. Let T be the differential operator in La([0,0)) defined
by 7 and L, and let p(-) be the symbol of . Then
(25) a'e(T) = {p(A) ' §R/\ = 0}

PROOF. Let ¢ be an arbitrary complex number. Then T — cI is the differen-
tial operator defined by 7 —c and L. The symbol of 7 —c is the polynomial p(-) —¢. Thus,
by Theorem 6.2, we have ¢ € 0¢(T) if and only if p(-) — ¢ has a zero on the imaginary
axis or, equivalently, if and only if ¢ belongs to the set in the right hand side of (25). o



CHAPTER XIX
STRONGLY CONTINUOUS SEMIGROUPS

This chapter contains a short introduction to the theory of strongly contin-
uous semigroups. Such semigroups stem from the study of certain partial differential
equations, which are recast in the form

{ u'(t) = Au(t), 0<t< oo,
u(0) ==z,

where u maps [0,00) into a certain Banach space. When A is unbounded, strongly
continuous semigroups can be used sometimes to give a meaning to the well-known
formula e*4z for the solution of (1).

(1)

This chapter consists of seven sections. The first three contain the main re-
sults about the connections between strongly continuous semigroups and the equation
(1), which is referred to as the abstract Cauchy problem. The next three sections treat
different classes of strongly continuous semigroups, namely contraction, unitary and com-
pact semigroups. The final section concerns an application to linear transport theory.

XIX.1 THE ABSTRACT CAUCHY PROBLEM

Throughout this chapter X is a complex Banach space. Let A(X — X) be a
linear operator with domain D(A) in X, and let = be a vector in X. The initial value
problem

u'(t) = Au(t), 0<1t< oo,
(1) {
u(0) =z,

is called the abstract Cauchy-problem associated with A. An X-valued function u on
0 €t < oo is said to be a solution of (1) if u(0) = z and for each ¢ > 0 the vector
u(t) € D(4),

W/(8) = Jim = (u(t + k) — u(®)

exists and u'(t) = Au(t). Asusual, u’(0) is the right hand side derivative at 0. A solution
u of (1) is said to be continuously differentiable (or shortly: a C1-solution) if, in addition,
u':[0,00) — X is a continuous function. For the existence of a solution it is necessary
that z € D(A). In what follows we shall deal mainly with Cl-solutions.

Abstract Cauchy problems arise in a natural way from certain initial value
problems involving partial differential equations. An illustration of this is the following.
Consider the (so-called wave) equation:

ov ov

- = — <

at(t,s) as(t,s), 0<t<oo, seR,
v(0,5) = f(s),  s€R.

(2)
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Let us assume that f is a given differentiable function on R. Then u(t,s) = f(t + s),
t € [0,00), s € R, is a solution to (2). Moreover, it is the only solutlon Indeed suppose
w(t, s) is also aSOlutlon of (2). Let h(t,s) = u(t,s)~w(t,s). Then $ W 3— on [0,00) xR
and k(0,s) =0, s € R. By the chain rule

a Oh Oh
a—ah(aaﬂ - a) = E'(a)ﬂ - a) - E(avﬂ - a) =0,

and hence h(a, 8 — o) = g(B) for some differentiable function ¢g. But 0 = &(0, 8) = ¢(B),
B €R, and thus A = 0.

To put (2) in the abstract form (1), let us assume that f and f’ are bounded
and uniformly continuous on R. Take X to be the Banach space BUC(R) of all bounded,
uniformly continuous complex-valued functions on R endowed with the supremum norm,
and define A(X — X) by setting

D(A) = {9 € X | ¢’ exists, ¢’ € X}, Ag=4¢.
Then we may rewrite (2) as
@) { u'(t) = Au(t), 0<t < oo,
u(0) =
Consider the function u:[0,00) — X defined by
u(t)(s) = u(t,s) = f(t + s), s €R.

The function u is a C!-solution of the abstract Cauchy problem (3). To see this, note
that 4(0) = f. Furthermore, because of our conditions on f, for each ¢ € [0,00) the
function u(t) € D(A) and

(4) (Au()(s) = Su(t)(s) = f(t+9),  s€R.
On the other hand,

%(f(t+h+s)—f(t+s)) —flt+3)

H%(u(t +h)—u(t) - f'(t+ )H = ::5

) t+s+h
'fzgrh +/ [f'(a) = £(t + 5)]da.

Since f’ is uniformly continuous on R, it follows that the last term converges to zero
as h — oo. Hence u is differentiable on 0 < t < oo (as an X-valued function) and
u'(t)(s) = f'(t +s), s € R. Thus v/(¢) = Au(t), by (4). Also, given £ > 0, the uniform
continuity of f’ implies

[l (t1) — /()| = sup |(Au(ty))(s) — (Au(tz))(s)l
3€
=sup |f'(t1 +3) — f'(t2 + 9)| <,
sGR
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provided that |t; — #3| is sufficiently small. Hence u’ is continuous (in fact, uniformly
continuous) on R. Thus u solves (3).

Now suppose that v(-) is a second solution of (3). Define v(t,s) = v(t)(s).
Then, v(0,3) = v(0)(s) = f(s) and

= (0(t + k) = v(t,9)) = (4v())(9)

< H-’l;(v(t + k) —v(t)) — Av(t)” — 0, h—0,
which implies that

-gt—v(t,s) = (Av(t))(s) = disv(t)(s) = %v(t,s).

We have shown that v(,s) satisfies (2). But (2) has a unique solution. So also (3) is
uniquely solvable.

Theorem 1.5.2 shows that the Cauchy problem (1) has a unique solution
u(t;z) = etdz for every ¢ € X whenever A is a bounded linear operator on X. This
result has the following generalization.

THEOREM 1.1. Let A(X — X) be densely defined. Suppose that there exist
numbers w and M such that A € p(A) and

(5) A=Ak < MO —w)™*,  k=1,2,...,

whenever (A € R and) A\ > w. Then the abstract Cauchy problem (1) has one and only
one solution for each x € D(A). This solution is continuously differentiable and is given
by :

(6) u(t;z) = lim etz Ay = 2N - AL
A—o00
PROOF. The proof is divided into six parts. The first four parts show

that the function defined in (6) is a C1-solution of (1); the last two parts establish the

uniqueness of the solution. In what follows we assume that the condition of the theorems
are fulfilled.

Part (1). First we show that for eachy € X
(7) MA-A)"ly—>y  (AeER, A - ).
Takey € X. For any z € D(A)

IAA = )7z~ 2| = |(A = 4) 71 Az||
SM(/\—w)_l”Az“, A>w.

It follows that for A > w
IAMA=A) Ty —yll S IAA = ATz — 2| + [MA = ANy - 2)|| + |y — 2]l

M AM
< —+1 — z||.
< soolasl+ (£22 +1) Iy =<1
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Note that A(A — w)™! is a decreasing function on w < A < co. Now, let ¢ > 0 be given.
Since D(A) = X, we may choose a vector z9 € D(A) such that

(2M + Dlly — 2]l < ze.
Next, choose N > 2w such that M(\ —w)7!||Az| < %6 for A > N. Then the above
calculations show that
AA-A)ly—yll<e  (A>N),

and (7) is proved.

Let Ay be asin (6). By applying (7) to y = Az we see that
(8) Ayz=2AA-A) lz=) 0 -4 14z » 4z () - =)
for each =z € D(A).

Part (i1). Note that

Ay =222 - 4)7 1 - AT e £(X),

and hence e!4x is a well-defined bounded linear operator on X. In this part we show
that foreachy € Y
(9) lim et4ry
A—o00
exists and the convergence in (9) is uniform on bounded subintervals of 0 < ¢ < oo.

Fory € Y, we have
“etA*y“ — e—-z\t”et,\Z(,\—A)—l

Yl
—“Z(‘ e
l/=0
(10)
Y (i’\) -
)" s oy M)
X_% ”

A
~Misllew(25t). A>w
Take A > u > w, then pw(p —w)™! > dw(A —w)~!, and hence (10) implies that
”e(t_’)A'\e’A“” < M? exp(—w——t) , 0<s<t.
b—w

Since the operators Ay, Ay, et4r . e!4s commute, it follows that

t
d
”etA“y . etA,\y” — H/ E;(C(t_s)A’\CSA")de
0

t
(11) — ”/e(t_s)A*e“’A“(A,,y—A,\y)ds

<M2exp<# )HA,,y—A,\y”t A>p>w.
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Now take z € D(A) and 0 <t < 7. Then (10) and (11) imply that for A> p>a>w
e4ny — ergl] <lletAng — sz + [etAn(y — )+ 43 (y — )]

SMexp( ad

a —w

T)(TMIIAu-r — Ayell +2lly - <l).

Now use (8) and the fact that D(A) is dense in X. It follows that the limit (9) exists
and the convergence is uniform on every bounded t-interval of [0, co).

Part (iii). For each y € X put
(12) T(t)y := /\lim etA"y, t>0.
—CO

By the preceding part of the proof, T(t) is a well-defined linear transformation on X.
From (10) it follows that

Tl = Jim 42yl < tim dyllexp (5225
= Milylle.
Hence T(t) € £(X) and
(13) IT@)| < Mevt,  t>0.

Since the convergence in (12) is uniform on bounded subintervals of
0 £t < o0, the map t — T(t)y is continuous from [0, o) into X. In particular,

(14) mT(y =TOy =y ¥ € X.

Also, for all y € X,

T(t + s)y = lim e(t+9)Ax = Jim e!4r 3y,
A—o0 A—o00

and by (10)
||et4re*Ary — T(H)T(s)y]|
< ||ethreAry — eMAAT(s)y|| + ||t 4> T(s)y — T()T(s)yll

A
< Mlle*Ary — T(s)y]|exp (A—_‘";t) + e T(s)yy ~ TOT(s)yll = 0, A= oo.

Therefore
(15) T(t + s) = T(t)T(s), t>0,s>0.

Part (iv). Next we prove that u(t;z) = T(t)z is a Cl-solution of (1) for every
z € D(A). Let ¢ € D(A) be fixed. First we show that T(t)Az = AT(¢t)z for t > 0. If
i > w, then

(p— A)LetAr = ety — A)71) A>w.
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Put y = (4 — A)z. Taking limits as A — oo gives
(= A)71T(t)y = T(t)(p — A)" 'y = T(t)z.
Hence T'(t)z € D(A) and
(p = A)T()z = T(t)y = T(H)(» — Az,
which shows that
(16) AT(t)z = T(t)Az,  t>0, z € D(A).
From (10) it follows that

A
let4r Ayz — T(t)Az|| < M||4yz — Az|| exp(%t) + ||t Az ~ T(t)Az]|.

Hence e!4> Ayz — T(t)Az if A — oo and the convergence is uniform on each bounded
subinterval of 0 < ¢ < oo. It follows that

T(t)z — T(tg)z = lim etz — oz
A—00

A—00

t

= lim /%e’A"xds
to
t

(17)
= lim [ e*A*Ayzds
A—ro0
to
t
= /T(s)Azds.

to

Since the function s + T(s)Az is continuous on [0, 00), formula (16) implies that

t
1 1
— =——— [ T(s)A
rE— (T(t)z — T(to)z) o / (s)Azds
to
— T(tg)Az = AT (¢)z, t— 1.
We conclude that

(18) %T(t)z = AT(t)z = T(t)4z, t>0,

which shows that u(t) = u(t; z) = T(t)z is a Cl-solution of the abstract Cauchy problem
(1). Indeed, u(0) = T(0)z = x by (14), the vector u(t) = T(t)z € D(A4) for every
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t € [0,00) because of (16), and the function u is continuously differentiable on [0, o0) and
satisfies the first equation in (1) because of (18).

Part (v). To establish the uniqueness of the solution we need the following
general remark. Let J be a subinterval of [0,00), and let g: J — X be a differentiable
function such that g(s) € D(A) for every s € J. Then s — T(s)g(s) is differentiable on
J and

(19) 2 T()g(s) = T()Ag(s) + T()g'(s), s €7,
To prove (19) take s € J and 0 # h € R. Then
H{T(s + Bg(s + ) = T(s)g(s))

(20) - %{T(s +h) = T()}g(s) +T(8){g(s+h’z—g(s)}

+ 2 {T(s +h) = T()} {g(s + ) = g(s)):

So to establish (19) it suffices to show that the last term in (20) goes to zero if h — 0.
But

1

7{T(s +h) = T(s)Hg(s + h) — g(s)}

= (2o + 1) - T} L= g}

+{T(s + k) = T(s)}g'(s) =0, h—0,
because of (13) and the continuity of the function s+ T(s)y for any y € X.

Part (vi). Suppose that v is another solution of (1). We have to show that
v(¢) = T(¢)z. To do this we fix ¢ > 0 and apply the remark made in the preceding part
to the function go(s) = v(t — s) with s € J = [0,¢]. Note that gg is differentiable and
go(s) € D(A) for 0 < s <t. Thus we may conclude that

%T(s)v(t —3) = T(s)Av(t — 8) + T(s)(=v'(t — s))
=T(s)Av(t —s) — T(s)Av(t —s) =0

for 0 < s < t. It follows that

s=t

T(t)z —v(t) =T(s)v(t — 3)

3=0
t

d
- / ZT()u(t - $)ds =0,

0
and hence v(t) = T(t)z, which proves that (1) is uniquely solvable. O

The operator Ay appearing in (6) is called the Yoshida approzimant of A.
This terminology is justified by formula (8).
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XIX.2 GENERATORS OF STRONGLY CONTINUOUS SEMI-
GROUPS

In the previous section we have seen that the solution u(¢; z) of the abstract
Cauchy problem gives rise to a family T(t), 0 < t < oo, in £(X), the set of all bounded
linear operators on the Banach space X, such that

(1) T+ s) = T@)T(s), s,t € [0,00),

(ii) T(0) =1I,

(iii) limg)o T(t)z =z, z € X.
A family T(?) € L(X), 0 < t < oo, with the above properties is called a strongly contin-
uous semigroup on X (shortly: a Cgy semigroup). We shall now show that, conversely, a
Cy semigroup T'(-) gives rise to an operator A which satisfies the hypotheses of Theorem

1.1 and the unique solution to the associated abstract Cauchy problem is u(¢;z) = T(t)z
for each z € D(A).

LEMMA 2.1. If T(-) is a strongly continuous semigroup on X, then there
ezist real numbers M and w such that

(1) IT@)| < Me*t, 0<t < oo.
PROOF. There exists § > 0 such that
(2) M :=sup{||T(¢)[| |0 <t <6} <oo.

If this is not the case, then there exists a sequence (t5) such that ¢, | 0 and | T(t,)|| = n
forn =1,2,... . Hence we may infer from the uniform boundedness principle that for
some z € X, the sequence (||T(tn)z||) is unbounded. But this contradicts property (iii)
in the definition of a strongly continuous semigroup. Thus there exists § > 0 such that
(2) holds. Now, take t = né + r, where 0 < r < 6 and n is a nonnegative integer. Since
T(t) is a semigroup

[T < ITE T < pmH
< MMt/6 — Mcwt’
with w := 6§~ logM. O

For the strongly continuous semigroup T(-) constructed in the proof of The-
orem 1.1 we have seen that

L1
(3) E%Z(T(h)z —z) = Az, z € D(A).

In the following theorem this identity is the starting point for our definition of A.

THEOREM 2.2. Suppose that T(-) is a strongly continuous semigroup on X.
Define A(X — X) by

1
D(A) = {z €eX| }:IF(} E(T(h)z —z) e:cists},

1
Az = 1}:{1& E(T(h)z - z).
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Then A i3 a closed densely defined operator and the abstract Cauchy problem associated
with A has the unique solution u(t;z) = T(t)z for each z € D(A). Furthermore, if M
and w are real numbers such that (1) holds, then for RA > w

(a) A € p(4),
by (A—A)"lz = ?oe_’\tT(t)zdt, z e X,
0

@D INA-A™|<M®RA\-w)™™, n=12,....

PROQOF. The proof is split into six parts. The first four parts concern the
abstract Cauchy problem associated with A and in the two remaining parts we prove the
statements (a)-(c). In what follows we assume that the conditions of the theorem are

fulfilled.

Part (i). The first step is to prove that the map t — T(t) is strongly continu-
ous on [0,00), that is, given z € X we have to show that ¢ — T(t)z is a continuous map
from [0, 00) into X. By property (iii) of a strongly continuous semigroup, ¢t — T'()z is
continuous from the right at tg = 0. Take tg > 0. Then, by property (iii) applied to
y = T(to)z,

lim T($)z — T(to)z = Um T(t — tg)y — y = 0.
lim (t)z — T(to)z ;f;;( 0)y — Y

For t < ty we have
(4) T(t)z ~ T(to)z = T(t)(z — T(to — t)z).

By Lemma 2.1 the function t — T(¢) is uniformly bounded in the operator norm on
compact subintervals of [0,00). It follows (again use property (iii)) that for t T ¢¢ the
right hand side of (4) goes to zero. Thus T(¢)z — T(tg)z — 0 whenever ¢t — tg.

Part (ii). Next we show that D(4) = X. It follows from the strong continuity
of T(-) that for each z € X

t
/T(s)zds — T(0)z = =, t]0.
0
Moreover, z; is in D(A), because for ¢ > 0

(5) Ty 1=

=

t t
%(T(h)zg —z) = % /T(h + s)zds — t—l};/T(s)zds
0

0

t+h t
=2 / T(s)zd ! /T( )zds
~ FEETR )Y

h 0

t+h h

1 1
= T(s)zds — vy /T(s):z:ds
t 0

o | =

—

(T(t):c — :1:), hloO.
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Thus z; € D(A), and hence = € D(A) by (5). We conclude that D(A) = X. It is clear
that A is linear.

Part (iii). In this part we show that for each 2 € D(A) the vector T(t)z €
D(A) and
d
(6) ET(t)a: = T(t)Az = AT(¢)z, 0<t<oco.

To do this, note that

@) %(T(h)T(t)x —T(t)z) — T(t)Az = T(t) [%(T(h)z —z) - Az| -0, hlo.

This shows that T'(t)z € D(A) and AT(¢t)z = T(t)Az. From (7) it also follows that T'(¢)z
has a right-sided derivative equal to T(t)Az. On the other hand

%(T(t + h)z — T(t)z) — T(t)Az

T(~h)x — =z
—

=T(t+h){ —Az}+(T(t+h)—T(t))Az—»0, 10,

because z € D(A), the map ¢ — T(t) is uniformly bounded in the operator norm on
compact subintervals of [0, 00) and ¢ +— T(¢)y is continuous. Thus (6) is established.

From (6) it follows that for z € D(A) the function u(t;z) := T(t)z is a
solution of the abstract Cauchy problem associated with A. To see that there is no other
solution with the same initial value z one applies the same reasoning as used in Part (vi)
of Theorem 1.1. Note that the general remark made in Part (v) of the proof of Theorem
1.1 is valid whenever T(+) is a strongly continuous semigroup.

Part (iv). We show that A is closed. To do this, suppose that z1,z2,...1s 2
sequence in D(A) such that z, — z and Az, — y. From (6) we get

t t
T()zn — zn = /diT(s)a:nds = /T(s)Aa:nds
s
1} 1}

t
— /T(s)yds, n — oo.
0

Here we used that for 0 < s <t
IT(s)Az, —~ T(s)y| < Me*)| Az, — yll-

On the other hand, T(t)zn — zn — T(t)z — z. Thus

o | =
| -

t
/T(s)yds - T(0)y =y, t]o0.
1}



418 XIX.2 GENERATORS OF STRONGLY CONTINUOUS SEMIGROUPS

Hence z € D(A) and Az = y, which shows that A is closed.

Part (v). It remains to establish (a)-(c). First we prove (a) and (b). For
each z € X and RX > w, the Laplace transform

(8) R(\)z := /e—’\tT(t)zdt
0

(considered as an indefinite Riemann-Stieltjes integral) exists. Indeed, since T(t)z is
continuous on 0 < ¢ < oo, the integrand in (8) is a continuous function of ¢, and from
IT(t)z|| < Me“t||z|| and R > w it follows that the norm of the integrand is majorized
by an exponential decaying function. Let us show that R(A)z € D(A). We have

H{T(WR()z ~ R(\)a) = % / e~ MT(¢ + h)zdt — % / e MT(t)cdt
0 0

o o] o o]
= %e’\h /e"“T(t)zdt - %/e"“T(t):cdt
h 0

© h
= —}1;(6’\” - 1)/6"“T(t):cdt — M (% /e_’\tT(t):cdt)
0 0
— AR(M)z — =z, h|O.
Hence R(A)z is in D(A) and AR(A\)z = AR(A)z —z, or (A— A)R(A)z =z for all z € X.
On the other hand, given z € D(A), we have from (6) that

oo oo
R(\)Az = / e MT(t)Azdt = / e MAT(t)zdt = AR(N)z.
0 0

The last equality may be seen by considering Riemann sums corresponding to the inte-
grals

N N
/e_’\tT(t):cdt, /e”“AT(t)zdt,
0 0

and using the fact that A is closed. Hence (a) and (b) are proved.

Part (vi). We prove the statement (c). Define 2 new norm || - ||} on X by
setting

llzlly = sup{e™**||T(s)z|| | 0 < s < oo}.
Since T(0) = I and (1) holds, it is clear that

(9) lzll <llzlly < Mllzl|, =z €X.
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Take RA > w. It follows from (b) that

o0
I = ) ally = sup| [ =TT 0yoct|
320
-0

(o o]
= sup /e(“’—’\)te_“’(’H)T(t + s)a:dtH
320 5

x
1
(w—RA)t — .
< [l ™ aude = el
0

But then [|(A — 4)7"[|; £ (RA —w)™", and by (9)

(A = A7zl < (A = A)7"2lly < (RA —w) " l2fx
< M@ - w)™" 2],

which proves (c). O

The operator A defined in Theorem 2.2 is called the (infinitesimal) generator
of the Cy semigroup T(-).

Let us reconsider Theorem 1.1 in terms of Theorem 2.2. If we start with
an operator A which satisfies the hypotheses of Theorem 1.1, then A determines a Cjy
semigroup T'(-) via the formula

T(t)z = lim ez, Ay :=MA(\ - A4)"L
A—00

Now T(-) has a generator, call it A;. How does A compare with A;? From formula (3)
and the definition of a generator it follows that A is a restriction of 4;. On the other
hand, by Theorem 2.2 (and Lemma 2.1) there exists A such that both A — A and A — 4;
are invertible. But then

X =(A-A)D(A) = (A - 41)D(4) C(A - A1)D(4;) = X,

which implies that D(A) = D(4;), and thus A = A4;. This observation, Theorem 2.2
and the proof of Theorem 1.1 yield the following fundamental result.

THEOREM 2.3 (Hille-Yoshida-Phillips). An operator A(X — X) is the

nfinitesimal generator of a strongly continuous semigroup T(-) satisfying
IT@I < Met, 20,

if and only if A is o closed densely defined operator and for every real A\ > w one has
A€ p(A) with

(10) A=A ™I < MO -w)y™, n=12....
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Let X = BUC(R). The translation semigroup T(-) on X, which is defined by

(11) (T@)f)(s) = f(t + 3), seER, t>0,

is strongly continuous. Let B be its generator. From the example in Section 1 it follows
that B is an extension of the operator A given by

(12) DA)={geX|d X}, Ag=4g.

A simple computation shows that each A > 0 is in p(A). Thus for A € R sufficiently large
both A — A and A — B are invertible, and hence D(A) = D(B). We conclude that the
operator A in (12) is the generator of the translation semigroup on X = BUC(R).

The result of the previous paragraph can be used to prove the classical Weier-
strass approzimation theorem as follows. Let f be a continuous real-valued function on
[0,1]. Extend f to R by letting f(¢) = f(0) for t < 0 and f(¢) = f(1) for ¢t > 1. This
extension we still denote by f. Now apply Theorem 1.1 to the operator A in (12). Then
(13) lim et f = T(t)f,

A—00

where T'(t) is given by (11). From the proof of Theorem 1.1 we know that in (13) the
convergence is uniform in ¢ on [0,1]. Also the series

x tk
3 ks = e
k=0

converges uniformly on 0 < ¢t < 1. Thus, given ¢ > 0, there exists an integer N and a
real number A > 0 such that

N ok
t
sup|(T(1)f)(s) = ) (45 N(s)| <&, 0<E< L
s€R k=0
Setting s = 0 yields

N 1
-3 k<o 0<iL e HUENO),

=0

which is the desired approximation.

Let X = Ly([0,00)) with 1 < p < oo. Next we shall show that the maximal
operator A(X — X) corresponding to 7 = ad? is the generator of the semigroup

(14) (T()f)(s) = f(t +3), t>0, s>0.

Recall that D(A) consists of those f € X which are absolutely continuous on every
compact subinterval of [0,00) and Af = f'. First, we prove that the semigroup (14) is
strongly continuous. For each ¢t > 0 the operator T(t) is bounded on X = Ly([0,00))
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and ||T(2)|| £ 1. Take f € X, and let € > 0. Choose a continuous function ¢ on [0, o)
with support in a bounded interval [0, a] such that ||f — ¢|| < /3. Since ¢ is uniformly
continuous on [0, o), we can find § > 0 such that 0 < ¢ < é implies that

sup|(T()e)(s) —¢(s)| < —Ea"l/”
320

But thenfor 0 <t < §

1T f = fIl S NITONNS —ell + 1T @) — ¢l + lle — fIl <e,
which proves the strong continuity of the semigroup.

Let Ag be the generator of T(t). We have to show that Ap is equal to the
maximal operator A. Take f € D(A). Then

p

”%(T(h)f —f) - M}i‘ﬂ

P
—fmfw

p
dt

Il
o\.H 0\8 0\8 0\8 0\8

h
/wa+@—fmws
0

/[f’(t + zh) — f'(t)]dz pdt

IA

|f(t + zh) = f'(2)|Pdzdt

|f'(t + zh) — f'(t)|Pdtdz

Z
[

=/mqu—fwa—w (h10).
0

This shows that f € D(A4g) and Agf = Af. It remains to show that D(Ag) C D(A).
Take g € D(Ap). Let

u=Agg = llm (T(h)g g)

Forany 0 < a < t < oo, Hélder’s mequa.hty implies that convergence in Lp([a,t]) implies
convergence in Li([a,?]). Hence

t

t
[ tords = tim [ (9t + ) - g()ds
0

a
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= Ei%(%jg(s + h)ds — %jg(s)ds)

a

t+h . t
=}11I%(% / g(s)ds — F/g(s)ds)
a+h a

a+h

1 e 1
=Ef3(ﬁ/g(s)d3—ﬁ a/ g(s)ds).

Since g is integrable on bounded subintervals of [0, co), there exists a set E C [0,00) of
measure zero such that

1 b+h
lim 7 / g(s)ds = g(b), b¢E.
b

But then we may conclude that

t

[uos=av-g@,  tatE.

a

t
If we define §(¢) = [ u(s)ds — g(a), then § = g as elements in X = Lp([0,c0)). Further-

a
more, g € D(A), which proves that D(4g) C D(A4). Thus A = Ag.

Additional examples of generators of C semigroups appear in the next sec-
tions.

X1X.3 THE CAUCHY PROBLEM REVISITED

The following theorem makes precise the relationship between generators of
strongly continuous semigroups and the Cauchy problem.

THEOREM 3.1. Let A(X — X) be a densely defined operator with a non-

empty Tesolvent set. A necessary and sufficient condition that the Cauchy problem
w'(t) = Au(t), 0<1t < oo,
u(0) = =z,
has a unique continuously differentiable solution for every z € D(A) is that A is the

generator of a strongly continuous semigroup.

PROOF. The sufficiency is evident from Theorems 2.2 and 1.1. The proof
of the necessity is split into five parts. In what follows, the function u(+; z) is the unique
C'l-solution to the Cauchy problem above.
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Part (i). We have to associate with A a Cp semigroup. First we restrict our
attention to the domain of A. Define T(t): D(A) — D(A) by T(t)z = u(t;z), 0 < t < oo.
It follows from the uniqueness of the solution that T'(t) is linear. Furthermore, T'(t) is
a semigroup in t. Indeed, for each z € D(A) and s > 0 fixed, w(t) = T(t)T(s)z and
v(t) = T(t + s)z are Cl-solutions to the Cauchy problem with initial condition T(s)z.
Hence w(t) = v(t), and thus T(t + s) = T(t)T(s). Clearly, T(0)z = z for each z € D(A).

Part (ii). Let X4 denote the space D(A) endowed with the graph norm
lzlla = llz]| + ||Az||. Since p(A) # @, the operator A is closed, and therefore X4 is a
Banach space. We shall show that T'(-) is a strongly continuous semigroup on X 4. Since
u(t; z) is continuously differentiable on [0, 00), we have

1 = 1 t = 0' =
(1) ltllrE.T(t)z ltllrg.u(,z) u(0;z) =z,

(2) ltil%l AT(t)z = ltilrg.u'(t; z) = «'(0;z).

The fact that A is closed implies that Az = v/(0;z), and hence (1) and (2) show that
IT(t)z —zlla =0  (¢10).

It remains to prove that T(t) € £(X4). Let F = C([0,1], X 4) be the Banach space of
all continuous functions from [0, 1] into X4 endowed with the supremum norm

s = max{[f(t)lla |0 <t <1}

Define the linear operator S: X4 — F by (Sz)(t) = u(t;z). The function Sz is in F,
because u(t; z) is continuously differentiable on 0 < t < 0o and

[(Sz)(t1) ~ (Sz)(t2)lla = llu(triz) — u(te; D)I| + [[Au(ts; ) — Aulta; )|
= |lu(ty; @) — ulte; )] + ([ (t1; 2) — w'(t2; 2)|l.

Let us prove that S is a closed operator. Suppose ||[zn — z[|4 — 0 and [||Szn — g4 — O
for n — co. Put un(t) = u(t;zn). It follows from the definitions of the norms || - || 4 and
Il lla that

(3) un(t) = Aun(t) > Ag(t)  (n — o)

uniformly on 0 < ¢ <1 and

o(t) = lim un(t) = lim_ (unm) + / u',,(s)ds)
0

t
= lim (zn+/Aun(s)ds)
n—oo
0

t
=a:+/Ag(s)ds, 0<t<1.
0
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Since the convergence in (3) is uniform on 0 < ¢ 5 1, the continuity of ul, implies the
continuity of Ag, and therefore ¢'(t) = Ag(t), 0 <t <1, and ¢(0) = z. Put

g(t), 0<t<
w(t) = { u(t—1;9(1), t>1.

Then w(-) is a C'l-solution of the Cauchy problem with initial value w(0) = ¢(0) = =.
Hence, by the uniqueness of the Cl-solutions, w(t) = u(t; z) for t > 0. Therefore,

(Sz)(t) =u(tiz) =w(t) =g(t), 0=<t<l,

which shows that S is closed on the Banach space X 4. Consequently, S is bounded and
for0<t<1,

(4) IT(®)zlla = I(S2)BOlla < Szlla < WSMlI<lia, =€ Xa.

For t > 0, we have t = n + §, where n is a nonnegative integer and 0 < § < 1. Since T(+)
is a semigroup on D(A), it follows from (4) that

IT(t)zlla = ITQA)T(E)zlla < ISI™ Izl 4

(5)
S UISHISICzlla = iSHellzlla,  0<t<oo, z€ Xy,

where w = log || 5]|.

Part (iii). Next, we show that T(t)Az = AT(t)z for every z € D(A?). For
such a vector ¢ we have

14
T(t)Az = u(t; Az) = Az + /u'(s;Az)ds
0

®) t
= Ar + /Au(s;A:r)ds, 0<t<oo.
0
Put
¢
) w(t)=z+ /u(s;Ar)ds, 0<t <oo.
0

Since A is closed, (6) and (7) imply that

t

Aw(t) = A<I + /u(s; Az)ds)
0

t
= Az + /Au(s;Az)ds = u(t; Az).
0
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Thus Aw(-) is continuous and
w'(t) = u(t; Az) = Aw(t), w(0) = z.
By uniqueness, w(t) = u(t; z), and
(8) T(t)Az = Aw(t) = Au(t;z) = AT(t)z, < € D(A?).

Part (iv). In this part we extend the semigroup T'(-) to all of X. By hypoth-
esis, there exists Ao € p(A). Given z € D(A), the vector y := (Ao — A) "1z is in D(A2).
Thus (5), (8) and the boundedness of the operators (Mg — A)~! and A(Ag — 4)~! imply
that for some positive constants «g, a1, a2,

(9) IT@®e] = 1I(Ao — AT®yl < «olT(t)ylla
< are’|lylla < aze|lzfl, 0 <t < oo

Since D(A) is dense in X, formula (9) shows that T(t) can be extended to a bounded
linear operator on X which we still denote by T'(t). Since T(-) is a semigroup on D(A4), a
continuity argument shows that the same holds true for T(-) on X. Also, by continuity,
T'(0) is the identity operator on X. From

IT(t)z — 2|l ST (t)z — T(t)z|| + || T(t)z — 2|l + [l= — 2]
< (1 + a2e?)||z — 2| + | T(t)z — =

and the fact that 7'(-) is strongly continuous on X 4, it follows that T'(-) is also a strongly
continuous semigroup on X.

Part (v). The proof of the theorem is complete once it is shown that the
infinitesimal generator Ag of the semigroup T'(-) on X is equal to A. For each = € D(A4),
we have

1 1
?(T(t)z -z)= ?(u(t,:z:) —z)
— ¥/(0,z) = Az, t]0.
Thus =z € D(Ap) and Agz = Az. Hence 4 C Ay.
It remains to prove that D(A4g) C D(A). Let z € X be given. Since
(Ao — A)~'D(4) C D(A?)

and D(A) is dense in X, it follows that D(A2) is also dense in X. Therefore there exists
a sequence (z) in D(A2) which converges to z. By Theorem 2.2 and formula (8), there
exists Mg € p(Ap) such that forn =1,2,...

o o]
(A~ Ag) "z, = /e_’\’T(t)zndt,
0
o o]
(A —Ag) YAgzn = (A — Ag) 1Az, = /e"\‘T(t)A:cndt
0

A(e_’\tT(t)zn)dt.
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Since A is closed, we conclude that

AN — Ag)lzn = (M ~ 4g) Y 4ozn
= Ag(\ — Ag) " lzn — Ag(A — Ag) 'z
Also, (A — Ag)~Yzn — (A — Ag)~lz. Again we use that A is closed. It follows that

(A~ Ap)~1z is in D(A). Thus D(A4g) = Im()\ — A9)~! C D(A), and we have proved that
A= Ap. a

The next theorem gives the solution of the inhomogeneous Cauchy problem.

THEOREM 3.2. Let A(X — X) be the infinitesimal generator of the strongly
continuous semigroup T(-). Suppose that f:[0,00) = X is continuously differentiable on
[0,00). Then for each t € D(A), there ezists a unique solution to

{ u'(t) = Au(t) + f(t), 0<t < oo,

10
(10) u(0) = z.

This solution is continuously differentiable and is given by
t
(11) u(t) = T(t)x + /T(t —s)f(s)ds, t>0.
0
PROOF. Put
t t
v(t) = /T(t —38)f(s)ds = /T(s)f(t — 8)ds, t>0.
0 0

Take h > 0, fix t > 0, and let 0 < a < t. Note that

a+h

FUie+m = f@} =@ =7 [{f(©)=F@)ds =0 (L)

In fact, since f’ is uniformly continuous on compact subintervals of [0, c0), the above
convergence is uniform on 0 < a < ¢. It follows that

t
RO R =00) = [T FUE = s+ 1) = St - )|
0
t+h

+ % / T(s)f(t + h — s)ds

t

t
— /T(s)f'(t — s)ds + T(t) f(0), k10
0
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On the other hand,

h t

T(t — s+ h)f(s)ds — -}]i /T(t —3)f(3)ds
0

1 1
o+ B —u()} = 3

o\$

t+h
= L{T(Rp(t) (0} + 3 / T(t — s + h)f(s)ds.
t

Since

S

t+h
[ 15+ wsis - T80, ko,
i
we conclude that
1
lim £AT(R)(8) = o(0) = lim £ (o(t + 1) = v(t)} - £(0).
A similar calculation holds true for t > 0 and A T 0. It follows that

o(t) € D(4), Av(t)=v'(t) - f(t), t20.

Now let u be the function defined by (11), where z € D(A). Then u(0) = z and

u'(t) = %T(t)z +9'(t) = AT(t)z + Av(t) + f(2)
= Au(t) + f(t), t>0.
Thus u is a solution of (10). Since v'(:) and AT(:)z = T(-)Az are continuous functions,
the same holds true for u’.

Suppose that w(-) is another solution to (10). Then u(-) — w(-) is a solution
to the Cauchy problem

(12) { y'(t) = Ay(t), 0<t < oo,

y(0) = 0.
Hence u(t) — w(t) = 0 for all 0 < ¢ < co by the uniqueness of the solution to (12). O

XIX.4 DISSIPATIVE OPERATORS AND CONTRACTION
SEMIGROUPS

A strongly continuous semigroup T(-) is called a contraction semigroup if
7))l < 1 for all £ > 0. The semigroup T(:) defined on X = BUC(R) or on X =
LP([07OO))7 1 S p < 0, by

(TWfF)(s) = flt+s), 20,
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is an example of a contraction semigroup.

THEOREM 4.1. An operator A(X — X) is the infinitesimal generator of a
contraction semigroup if and only if A is densely defined, (0,00) belongs to the resolvent
set of A and

(1) IA=-4) <A™l A>o.

PROOF. The result is an immediate consequence of Theorem 2.3. One only
has to remark that (1) implies that for n = 1,2,...

IA— A <A™,  A>0. o

Dissipative operators arise naturally in the study of contraction semigroups.
We first consider the Hilbert space case. Let H be a Hilbert space. An operator
A(H — H) is called dissipative if

R(Az,z) L0, z € D(A).

THEOREM 4.2. Let H be a Hilbert space, and let A(H — H) be densely
defined. Then A is the generator of a contraction semigroup if and only if A is dissipative
and there ezists @ Ag > 0 in p(A).

PROOF. Suppose A is dissipative and Ay € p(A). Take A > 0 and z € D(A).

Then

(2) I(A = Az = [|Az]|? — 22R(Az,z) + AE[[z]|> = AZ||=z|%.
Hence

(3) (o = )7 < A5

Now for any A,

(A= 4) =T+ (A= 20)(Ro = 4710 — 4).
Therefore, it follows from (3) that A; € p(A4) if |A\; — Ag| < Ao. If we replace Ay by
A1 = Ao £ $X¢ in the above argument, then we have that Ay € p(A) if [A2 — M| < A1
Continuing in this manner, it follows that (0,00) C p(A) and (1) holds. Hence A is the
generator of a contraction semigroup by Theorem 4.1.

Conversely, let A be the generator of a contraction semigroup T(-). Then for

z € D(A)

R(T(h)z — z,z) = R(T(h)z,z) — ||z||? < 0.

Hence
T(h)z ~ =

R{A =i
(42,2) = m (T2

,z) <0, z € D(A).

Also, (0,00) C p(A) by Theorem 4.1. O
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The above theorem can be extended to an arbitrary Banach space X in the
following manner. For each z € X, the Hahn-Banach theorem implies the existence of a
functional F, € X' such that

(4) IF2)? = l|z|* = Fe(2)-

An operator A(X — X) is called dissipative if for each z € D(A) there exists an F;, € X’
such that (4) holds and

(5) RF,(Az) <0, z € D(A).

If X is a Hilbert space, then the two notions of dissipativeness coincide. To see this one
needs only to note that for X a Hilbert space, formula (4) implies that Fy(v) = (v, z).

THEOREM 4.3. A densely defined operator A(X — X) in o Banach space
X 13 the generator of a contraction semigroup if and only if A i3 dissipative and there
ezists a Ag > 0 in p(A).

PROOF. Suppose A is dissipative, and let 0 < Ap € p(A4). Given z € X, let
Fy € X' satisfy (4) and (5). Hence for A > 0,

lzlll[Az — Az > RFz(Az — Az)
= M|z||? - RF:(Az) > Al|z||?.
Thus
(6) (ML = Azl 2 Allzll, A >0,

and the arguments used in the first paragraph of the proof of Theorem 4.2 show that
(0,00) C p(4) and

I =4 <A™, a>o.
Hence A is the generator of a contraction semigroup, by Theorem 4.1.

Conversely, let A be the generator of a contraction semigroup T'(-). For each
z € X there exists an F; € X’ which satisfies (4) (by the Hahn-Banach theorem). Since
IT(®)|| <1, we have

RF(T(h)z — z) = RF:(T(h)z) —||z||*> < 0.
Therefore for z € D(A)

RE.(Az) = lim RF; (%{T(h)z - a:}) <o.

Also (0,00) C p(A) by Theorem 4.1. O

Applications of Theorem 4.2 yield the following results.

PROPOSITION 4.4. Let T = ap(t)D? + a1(t)D + ap(t), where a; is a real-
valued function in CI([a,d]), 0 < 7 < 2, and let A(Lo([a,b]) — La([a,d])) be defined
by

D(A)= {f € La([a,b]) | f is absolutely continuous,
f" € Ly([a, b)), f(a) = f(b) = 0},
Af =1f.
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Then A is the generator of a contraction semigroup whenever as(t) > 0 and ay(t) —
a}(t) +2az(t) <0 for a <t <b.

PROOF. Given f € D(A),
(7) rf = (aa®)f') + (ar(t) = ah(&) f' + ao(8)S-
Integration by parts yields
b
(a2 f'Y, 1) = [(aa(e)f'(0) T
8 “,
=~ [l OFd <o,

a

Here we used the boundary conditions f(a) = f(b) = 0. Now

d d _, —— R
SO = Zf(O)F @) = 2Rf () F()-

Hence

b
Ri(a1 — ah)f', f) = R / (a1(t) — ab(®)) ' ()T D) dt

(9)

b
3 [ (@) - ah(e) glrore

b
%/(“'2'“) — ay (1) [F(8)[%dt,

by partial integration. By (7), (8) and (9),

R(AS, f) < /(a (2) — a4 (t) + 2a0(t)) | f(£)[*dt < O.

Thus A 1s dissipative. If we can show that 1 € p(A), then the proof of the proposition is
complete by Theorem 4.2.

We know (see formula (2)) that ||(I — A)z|| > ||z||. In particular, I — A is
injective. Let us prove that T = I — A is a closed operator. Let p be the differential
expression 1 — 7. The operator T is an extension of Tiyip p. Since codimIm T , = 2
and T is injective, dim D(T)/D(Tipip ) < 2. It follows that for the graphs a similar
inequality holds true. But G(Tpy;n ,) is closed, because Ty , is closed by definition. It
follows that G(T') is closed, and thus T is a closed operator.
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It remains to prove that T' = I — A is surjective. The operator Tmax,p is an
extension of T'. Take f € D(Tinax,p)- Then there exist complex numbers cg, ¢1 such that
g = f —co—cit € D(T). In fact, one may take

_ af(b) — bf(a) o = (@) = £(b)
- a—b ’ ! a—b

It follows that dim D(Tmax,p)/D(T) < 2. Since Ker Trax,p is two dimensional and T is
injective, we conclude that

D(Tmax’p) = Ker Tmax’p @ D(T).

The latter identity and the fact that Tmax,p is surjective imply that ImT = Ls({a, b}).
a

THEOREM 4.5. Let Q be a bounded open set in R™ with boundary of class

C?. Let
n n
L= ajj(z)DiDj + ) ai(z)Di, z€Q,
i,7=1 i=0

where each a;; and a; are in C>®(Q). Assume that L is uniformly elliptic. Define the
operator A(La(Q) — La(Q)) by

D(A) = HY(Q) N Hy(Q),  Au = Lu.

There ezists Ag € R such that if X > Xy, then —X — A is a generator of a contrac-
tion semigroup. Moreover, the operator —A is the generator of a strongly continuous
semigroup.

PROOF. By formula (20) in Section XIV.6, there exists Ag € R such that
—X — A is dissipative for all A > A\g. By Theorem XIV.6.1 we may assume that —A — 4
is invertible for A > A\p. But then —X — A is the generator of a contraction semigroup
T () by Theorem 4.2. Now e*T)(-) is a strongly continuous semigroup. Its generator is
—A. Indeed, since

%(e’\tT,\(t)z —z)= e/\t{%(T/\(t):z; - :5)} + %(e/\t ~1)z,

the domain of the generator of eMT)\(t) is the same as D(~A — A) = D(A), and for
z € D(A)
1
1tilr{]1 ?(e’\tT,\(t)z —z)=(-A—-A)z+ iz =-Az. O

PROPOSITION 4.6. If A is the generator of a contraction semigroup T(-)
on a Hilbert space H, then T(-)* is a contraction semigroup with generator A*.

PROOF. For eachz € H,
IT(t)*z — z||* = IT(t)"=z]|* - 2R(z, T(t)z) + |||
< 2||z||? - 2R(z, T(t)z) — 0, t10.
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Also T(0)* =1,
T()*T(s)* = (T(s)T ()" = T(t +9)",

and ||T(t)*|| = ||T(®)|]| € 1. Hence T(t)* is a contraction semigroup. Let B be its
generator.

If z € D(A) and y € D(B), then
(4,y) = lim 2(T(W)z — 2,1)

1
=1 — * —_ = B .
lgigh(z,T(h) y —y) = (z, By)

Therefore y € D(A*) and A*y = By. In other words, B C A*. It remains to show
that D(A*) C D(B). Since A and B are generators of Cp semigroups, there exists
X € p(A) N p(B). This implies that

X = (A — B)D(B) C (A — A*)D(B),

whence D(B) D (A — A*)"1X =D(4*). O

XIX.5 UNITARY SEMIGROUPS

Throughout this section H is a complex Hilbert space. A strongly continuous
semigroup T(:) on H is called unitary (isometric) if T(t) is a unitary operator (an
isometry) for every ¢t > 0. Our aim is to characterize the generators of the isometric and
unitary semigroups. The next theorem will be one of the main results.

THEOREM 5.1. An operator A(H — H) is the generator of a unitary
semigroup if and only if A =1iB for some selfadjoint operator B.

For the proof of Theorem 5.1 we need the following lemma and some other
preliminary results.

LEMMA 5.2. Let A(H — H) be the generator of a strongly continuous
semigroup T(-). Then for each z € D(A)

%”T(t)z”z = 2R(AT(t)z,z), t>0.
PROOF. Since
=T + Bl ~ |T(2)e]?)
= (3 (T(t + ke — T(t)z), T(¢ + h)z) + (T(D)z, %(T(t + h)z — T(1)2)),
it follows that for each & € D(A)

Jim (T + Rl ~ [T(De]2) = (AT()e, T(2)e) + (T, AT(t)2)
= IR(AT(t)z, T(1)z).
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Here we used that T'(-)z is continuous and
1
Z(T(t +h)z — T(t)a:) — AT(t)z, h—0,

which follows from Theorem 2.2. ©

THEOREM 5.3. Let A(H — H) be the generator of a contraction semigroup
T(-). Then the following statements are equivalent:

(a) T(t) 1s an isometry for t > 0,
(®) (A = A)z|| = =A||z|| for all A < 0 and = € D(A),
(c) A C —A*, that i3, 1A is symmetric.

PROOF. (a) = (c). Let £ € D(A). Since ||T(t)z|| = ||z| for all ¢ > 0,
Lemma 5.2 implies that R{AT(¢)z,T(t)z) = 0. In particular, R{Az,z) = 0. It follows
that (Az,z) = —(z, Az) for each z € D(A), which is equivalent to (c).

(c) = (b). For z € D(A) and A € R, we have
(1) I(A = A)z||? = N?|z||* — 2AR(Az, z) + || A=|.

According to our hypothesis, R{Az,z) = 0. But then we can use (1) to derive (b).

(b) = (2). Again we use (1). Take z € D(A4). Our hypothesis and (1) imply
that ||Az||2 > 2AR(Az,z) for each A < 0. It follows that R(Az,z) > 0. Now, recall that
T(t) maps D(A) into D(A). So we replace z by T(t)z in the preceding argument, and
hence

R(AT(t)z, T(t)z) >0, t>0.

By Lemma 5.2 this yields || T(¢)z|| > ||T(0)z|| = ||z||. On the other hand ||T(¢)z| < |||,
because T(-) is a contraction semigroup. Therefore, T(%) is an isometry on D(A4). By
continuity, ||T(t)z|| = ||z|| for each =z € X since D(4) = X. ©

THEOREM 5.4. Let A(H — H) be the generator of a contraction semigroup
T(-). Then the following statements are equivalent:

(a) T(t) is unitary for t 2 0,
(b) if 0# X €R, then )\ € p(A) and

I =AM <IN,

(c) A =—A*, that 1s, 1A is selfadjoint.

PROOF. (a) = (c). Since T(¢) is unitary, both T(t) and T'(¢)* are isometries.
By Proposition 4.6 the family T(t)*, 0 < ¢t < oo, is a contraction semigroup with gen-
erator A*. Hence A C —A* and A* C ~A** by Theorem 5.3. This proves (c), because
A¥* = A,

(c) = (b). Since A and A* = —A are generators of contraction semigroups,
Theorem 4.1 applied to A and —A implies (b).
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(b) = (a). From our hypothesis it follows that A < 0 implies A € p(A*) and
I = A7 = = A7 =1 = A7 < =27
Hence condition (b) in Theorem 5.3 is satisfied for both A and A*. Therefore T'(t) and
T(t)* are isometries, and thus T() is unitary. O

PROOF OF THEOREM 5.1. Suppose A = iB, where B = B*. Then
1 € p(A), by Theorem XVIL.3.1. Since R(Az,z) = 0, Theorem 4.2 implies that A is the
generator of a contraction semigroup. But then we can use Theorem 5.4 to show that
T(-) is unitary, because 4 = —A4*.

Conversely, if A generates a unitary semigroup, then A = —A* by Theorem
5.4. Therefore A =B, where B = —iA is selfadjoint. O

COROLLARY 5.5. Let 7 be the differential ezpression given by

7f = D(pf') + ¢f,
where p € C%([a,b]) and ¢ € C(|a,b]) are real-valued functions with p(t) # 0, t € [a,b].
Let T(Ly([a,d]) — La([a,d])) be the restriction of Tmax,r to those g € D(Tmax,r) which
satisfy the boundary conditions
a109(a) + a119'(a) + Brog(d) + Br1g'(b) = 0,
azg(a) + a219'(a) + P209(b) + Pa2g'(b) = 0,

where each a;; and fB;; is a real number. Suppose that

rank[alo a1 Po ,311]32
az a1 P P2

and
. [010 011]= 1 det[ﬂlo A1 ]
p(a) ag a2 p(d) P20 B2
Then iT 1s the generator of a unitary semigroup.

PROOF. By Corollary XVI.1.3 the operator T is selfadjoint, and hence
Theorem 5.1 gives the desired result. ©

COROLLARY 5.6. Let 2 be a bounded open set in R™ with boundary of class

C?. Let
n
L= Z Dji(aij(z)Dy) + ag(z),
i,j=1
where ag is @ real-valued function in C®(Q) and ai; = aj; € C>®(Q), i,7 = 1,...,n.

Suppose that L is uniformly elliptic. Then the operator A(Ly(Q) — Ly(Q)) defined by
D(A) = HY}(Q) N Hy(Q), Au=ilu

i3 the generator of a unitary semigroup.

PROOF. Apply Theorem 5.1 and Theorem XVI.2.1. O
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XIX.6 COMPACT SEMIGROUPS

A strongly continuous semigroup T'(-) on X is called compact if T(t) is a
compact operator on X for every t > 0. Here and in what follows, X is a complex
Banach space. In this section we characterize compact semigroups and present some
examples.

THEOREM 6.1. Let T(-) be a strongly continuous semigroup on X with
generator A. Then T(-) is a compact semigroup if and only if the map t — T(t) is
continuous from 0 < t < oo into L(X) and (A — A)~! is compact for some X € p(A).

PROOF. By Lemma 2.1, there exist constants M and w > 0 such that
IT@)|| < Me*?t for 0 <t < co. Suppose that T(+) is a compact semigroup. Given e > 0
and K a compact subset of X, there exists § = §(K,€), 0 < § < 1, such that

(1) IT(h)y —yll <&, yeEK,0<h<6.

Indeed, since K is compact, the set K is totally bounded (see [W], 24B), and hence there
exist y1,...,yn in K with the property that the open balls ||y — y;|| < e(2Me* + 2)71,
j=1,...,n, cover K. Let y € K. Then

IT(R)y —yll S IT(h)y — T(h)will + 1T (R)yi — will + llvi — vl

2
@ < (Me® + Dllyi —vll + TR —wil,  0<Ah<1.

Fix i such that |jy; — y|| < e(2Me* + 2)~1. Next, choose 0 < § < 1 such that
IT(h)yi — will < &/3.

Then, with this choice of §, the inequality (2) implies (1).

Now let a > 0 be arbitrary, and apply (1) to the set K = T(a)S, where S is
the closed unit ball of X. Our hypothesis on T'(-) implies that K is compact. Hence we
have from (1) that there exists §(a) = 8(a,€), 0 < 6(a) < 1, so that

(3) IT(R)T(a)e - T(ae]l <e, 2l <1, 0 < h < ).

1t follows that ||T(h+a) — T(a)|| £ €if 0 £ h < 8(a). This shows that the map t — T(¢)
is a L(X)-valued function which is continuous from the right on 0 < ¢ < oo.

To prove that t — T(t) is also continuous from the left, let ¢y > 0 be given.
Take a > 0 such that 0 < @ < tg < a+1. Choose 0 < 1 < §(a) with tg — 5 > a. Then
for tg —n <t < tg we have 0 < tg —t < 6(a), and hence by (3)

IT(t)e — T(to)z|| = |T(t - a){T(to — )T(a)c — T(a)z}||
< eMe(t=9) Izl <1.

But 0 <t—a<1. Thus

17(t) — T(to)|| SeozuglMe‘”’, tg —n < t < ty,
-—-s——
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which proves the left continuity.

Next we show that R(A) = (A — A)~! is compact if A > w. Since t — T(2) is
continuous in the norm topology and [[e=*T(t)|| < Mel“~Mt it follows from Theorem
2.2(b) that for A > w

RO = / e~ MT(t)dt
0

converges in the operator norm topology. Now

oo
Re()) = / NI,  A>w,

&

is the limit in £(X) of Riemann sums of compact operators since T'(t) is compact for all
t > 0. Therefore R.(\) is compact. But then R()) is compact due to

lim |[Re()) — RO =0, A >w.
€|0

To prove the converse implications, assume now that the map ¢t — T(2) is
continuous from (0, c0) into £(X) and that (Ag — A)~! is compact for some Ag. Then
(A — A)~! is compact for all A € p(A) (Theorem XV.2.3). Fix A > w and define

t
S(t)z = / e 2T(s)zds,  t>0.
0

Now e~*$T(s), 0 < s < o0, is a Cp semigroup with generator A — Al (see the proof of
Theorem 4.5). If we replace T(t) by e *T(t) and A by A — Al in Part (iv) of the proof
of Theorem 2.2, we obtain that

t
/ (A — A)e™2T(s)zds = e MT(t)z — <.
0

Since A — A\ is closed, we coﬁclude that
St)z = (A = A)"Hz - e~ MT(t)z)

is compact for all ¢ > 0. From the assumption that ¢ — T(¢) is continuous with respect
to the operator norm it follows that for any g > 0

to+h
1
T(tg) = eMo (%’F&E / e—’\’T(s)ds)
to

= Mo {%?3 %(S(to + h) - S(tO))}’
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with convergence in £(X). Hence T(3o) is the limit in £(X) of compact operators and
therefore T'(¢p) is compact. O

THEOREM 6.2. Let A(X — X) be the generator of a compact semigroup
T(-). Then o(A) is either empty or consists of a finite or countable set of eigenvalues of
finite type which have no limit point in C. Furthermore,

(4) {e" |pea(A)} =a(TW)\{0}, >0,

and Ap = uy if and only if T(t)p = ety for t > 0.

PROOF. Since A is the generator of a Cp semigroup, p(A) is non-empty.
By Theorem 6.1, the operator A has a compact resolvent, and hence the first statement
about o(A) is a direct consequence of Theorem XV.2.3.

Assume Ap = pp. Let Ay = AA(A — A)~! be the Yoshida approximant of
A. Then Ay = Au(A — u) "1y, and hence, by Theorems 1.1 and 2.2,

A
= i tAy , — i B
T(t)e = Jm e {Aan;oeXP(tA _ﬂ)}%
= ek, t>0.
Conversely, assume that T(t)p = ety for ¢t > 0. Then

1@ - o) = {3 Do ue,  tlo,

Thus ¢ € D(A) and Ap = uep.

It remains to prove (4). Take u € oc(A). Then u is an eigenvalue (of finite
type) of A. Hence there exists ¢ # 0 such that Ap = up. The result of the previous
paragraph shows that e'# is an eigenvalue of T(t). In particular, e'* € o(T(t))\{0}
for t > 0. Next, assume that n # 0 is in o(T(tg)) for some 9 > 0. Since T(tg) is
compact and each T(¢) commutes with T(#g), the space Xp := Ker(nI - T(to)) is a
non-zero finite dimensional subspace which is invariant under each 7°(¢). It follows that
T(t)|Xo, 0 <t < o0, is a Cp semigroup acting on a finite dimensional space, and hence its
generator B is a bounded linear operator with D(B) = Xg. The finite dimensionality of
Xp ensures the existence of an eigenvalue p of B with corresponding eigenvector ¢ € Xj.
Obviously, D(B) C D(A). Thus Ay = pp and 4 € o(A). But then, by the result derived
in the second paragraph of this proof, T(t)¢ = ety for t > 0. In particular, ny = ek,
which implies 7 = e¥% (because ¢ # 0). D

COROLLARY 6.3. Let A(H — H) be the generator of a strongly continuous
semigroup T(-) on a Hilbert space H. A necessary and sufficient condition that T(t)
be compact and selfadjoint for every t > 0 is that A is selfadjoint and has a compact

resolvent. In this case there ezists an orthonormal basis pi1,92,... for H consisting of
eigenvectors of A with corresponding real eigenvalues pq,p2,... and for each € H
(5) T(t)e =) ez, ox)pr, 120

k
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PROOF. Suppose that T(t) is compact and selfadjoint for all ¢ > 0. Take
A > w (where w is as in Lemma 2.1). In the proof of Theorem 6.1 we showed that

o0

6) (A= 4)! = / e~ MT(t)dt

0

is compact. Moreover, the integral in (6) converges in the operator norm. Since T(t) is
selfadjoint for all ¢ > 0, it follows, by taking adjoints of the Riemann sums converging
to (A — A)~1, that (A — A)~! is selfadjoint. By Proposition XIV.2.6, this implies that
(A—A)~1 = (A= A4*)"1, because ) is real. Thus A = A* and A has a compact resolvent.

Next, assume that A is selfadjoint and has a compact resolvent. Choose
a > w (where w is as in Lemma 2.1). Then o — A is selfadjoint and has a compact
inverse. So we may apply Theorem XVI.5.1 to @ — A (instead of A). It follows (make a
translation in «) that there exists an orthonormal basis {¢1,%2,...} of H consisting of

eigenvectors of A with corresponding real eigenvalues p1, p12,... such that |u;| — oo if
dim H = oo and

Az =Y pilz,05)e5, 7 € D(A).
J

Since (w,00) C p(A), we have u; < w, and hence p; — —oo if dimH = oco. From
Ap; = pjp; it follows (by Theorem 6.2) that T(t)p; = etilp;. Each z € H has the
representation x = 3, (z, i)k, and therefore

T(t)z =Y (z,06)T(t)er = Y e** (2, 0k)pk,

k k

which proves (5). Since u; — —oo if dim H = oo, the representation (5) shows that T'(t)
is compact and selfadjoint for each ¢t > 0. O

The operator T(t) given by (5) is Hilbert-Schmidt if and only if 3°, e?#¥? <
oo. It is a trace class operator if and only if 3, e#** < oo.

We end this chapter with the following example. Let H = Ly([0,2n]), and
define A(H — H) by

D(A) = {f € H| f' is absolutely continuous, f' € H,
f(0) = f(2m), f'(0) = f'(2m)},
Af = f".

The operator A is densely defined and dissipative since, by partial integration,
27 27
arn) = [ oD =- [Iropre<o
0 1]

An application of Theorem XIV.3.1 shows that I — A is invertible. Hence 1 € p(A) and
A generates a contraction semigroup T(-) by Theorem 4.2. Now ¢n(t) = (v2r)~1ei™,
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n =0,%1,42,..., is an orthonormal basis for H and Ap, = —n2yp,. Hence T(t)pn =

—n2t

e ¥n by the arguments given in the second paragraph of the proof of Theorem 6.2.
Since
o0

2
Ze_"t<oo, t>0,

n=-—oo

T(t) is a trace class operator for each t > 0. Also, T(t) is selfadjoint, and thus, by
Corollary 6.3, the operator A is selfadjoint and has a compact resolvent. The latter
statements about A may also be derived from Theorems XIV.3.1 and XVIL.1.1.

XIX.7 AN EXAMPLE FROM TRANSPORT THEORY (2)

In this section we return to the half range problem from linear transport the-
ory discussed in Section XIII.9. Here we consider the general case with no restriction on
the number of scattering directions, and we shall employ the semigroup theory developed
in the present chapter to derive a solution.

Recall from Section XIII.9 that the half range problem concerns an integro-
differential equation of the following type:

1
1) #%%LM+¢U#%=/HMMW@MMM -1<p<1,0<t< .
21

The scattering function k is a given real-valued and symmetric Lj-function on [-1,1] x
[—1,1]. In this section we assume that

n
(2) k(p, ') =" ajpj(u)pi(u),

=0
where p; is the j-th normalized Legendre polynomial (see [GG], Section 1.10) and
(3) —oo < aj <1, i=0,1,2,....
The problem is to solve (1) under the boundary condition
(4) P(0,p) =4(p), 0<pu<1,

where @4 is a given continuous function on [0,1]. We shall also require the solution to
be bounded in the following sense

1
(5) sup [ 1b(t,l?ds < oo.
£20 J

By writing ¥(t)(p) = ¥(t, ), we may consider the unknown function ¥ as
a vector function on [0, 00) with values in the Hilbert space La([—1,1]). In this way
equation (1) can be written as an operator differential equation

(6) ITe +u) = Fo),  0<t<o,
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where T and F are the operators on La([—1,1]) defined by
) (TH)) =pfu),  Ff=2Y_ai{f,pj)pjs
j=0

with (-,-) the usual inner product in La([—1,1]). The derivative in (6) is taken with
respect to the norm on Ly([-1,1]). Note that in (6) the function T%(-) has to be
differentiable, which is weaker than requiring the differentiability of .

In the language of the preceding paragraph the boundary condition (4) may
be restated as

(8) Pyp(0) = o4,

where P, is the orthogonal projection from Lao([—1,1]) onto Ly([0,1]), the closed sub-
space of Lo([—1,1]) consisting of all functions that are zero almost everywhere on [-1,0].
The operator T is selfadjoint and the projection P4 may also be interpreted as the or-
thogonal projection onto the spectral subspace of T' associated with the interval [0, c0).

The operator F has finite rank and the hypothesis (3) implies that I — F is
strictly positive. We shall need the following lemma.

LEMMA 7.1. Let T and F be as in (7). Then

(9) sup |a|Y?||(ia = T)"1F| < co.
0#acR

PROOF. Take a # 0in R, and put g; = (ia—T)~!p;. For a suitable positive
constant 7y; we have

1

l51? = [ sz les(l7dn

-1
1

1 1
< [ rpartn =2 (g7 )

-1
It follows that
n C
: -1 illlgsll < ——
lGia —T)"1F|| < Z lajlllg;ll < la|1/2”
=0
with € = 1% |aj|(v;m)Y/2 o

In what follows we shall not require that T and F are given by (7), but we
shall assume that T and F are bounded linear operators acting on an arbitrary complex
Hilbert space H and have the following properties:

(i) T is selfadjoint and Ker T = {0},
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(i1) F is compact and I — F'is strictly positive,
(iii) sup{|e|Y?||(ia — T)"1F|| | 0 # a € R} < oco.

By Lemma 7.1, the operators T and F' in (7) have the properties (i)-(iii). Our aim is to
solve the equation:

(10) { (Tw)(8) = =$(t) + F(t), 0<t<oo,

Pip(0) = 74,
where P4 is the orthogonal projection of H onto the spectral subspace of T associated
with the interval [0,00) and z 4+ is a given vector in Im Py .

We call 4:[0,00) — H a solution of (10) if T4 is continuously differentiable
on [0,00) and 1 satisfies the two equations in (10). The fact that T4 is continuously
differentiable and the invertibility of I — F imply that a solution of (10) is always a
H-valued continuous function.

The first equation in (10) can be rewritten as
(11) (S$) (t) = —¥(t), 0<t<oo,

where S = (I — F)71T. As in Section XIIL.9 we have to analyse the spectral properties
of S. Since I — F is strictly positive, the sesquilinear form

(12) [#,y] = (I — F)z,y)

defines an inner product on H which is equivalent with the original inner product {:,-)
on H, i.e., the norms induced by [-,-] and (-,-) are equivalent. The space H endowed
with the inner product [, -] will be denoted by H*. The operator S is selfadjoint on H*.
Indeed,
[Sz,y] = (I — F)Sz,y) = (T=,y)
(13) =((I - F)~'(I - F)z,Ty)
= ((I - F)z,(I - F)™'Ty) = [=, Sy]

for each z and y. It follows that the spectral subspace HY of S associated with the
interval [0,00) is well-defined. We write @4 for the [-,-]-orthogonal projection of H*
onto H_,’f. Now, consider the operator

(14) S+ = 5|ImQ+:ImQ+—>ImQ+.

The operator S is selfadjoint, Ker Sy = {0} and o(S4+) C [0, 00). It follows that —S_;l
is a densely defined (possibly unbounded) selfadjoint operator,

[-S7'v,u] <0,  yeD(SIY,

and (0,00) C p(—S;l). Thus, by Theorem 4.2, the operator —5;1 is the generator of a
contraction semigroup, which we shall denote by T'(%; —S_';l).
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THEOREM 7.2. Let T and F have the properties (i)—(iii). Then equation
(10) has a unique bounded solution 1 which is given by

(15) P(t) = T(t; -SyHdzy,  0<t < oo,
where I is the projection along Ker Py onto the spectral subspace of S = (I — F)~IT

associated with the interval [0, o00].

The above theorem is the infinite dimensional analogue of Corollary XIII.9.3.
For the proof of Theorem 7.2 we shall not use the method of Section XIIL.9 (which was
based on equivalence with Wiener-Hopf integral equations), but a more direct method
will be employed. To explain the approach followed in the present section, let us return
to the finite dimensional case (i.e., let us assume that H = C™). Rewrite (10) as:

(16) { V() = TN = F)p(), 0<t<oo,

Piyp(0) = z+.

Since H is assumed to be C", the general solution of the first equation in (16) is given
by

(17) Y(t) = =TT U=F)y

for some y € C™. The function 9(-) has to be a function in L#([0,0)), which implies
that y has to an element from Im Q4. Also % has to fulfil the boundary condition in
(16), that is, y — x4 € Ker Py. Thus the vector y in (17) must be chosen in such a way
that

(18) y€ImQy, y—z4+ € Ker Py.

Next, one observes that for each initial value z there exists a unique y satisfying (18)
if and only if

C"=KerPL ®ImQ4+.
Moreover, in that case y = Iz, where II is the projection along Ker Py onto Im Q.

The above reasoning presents basically the outline of the proof of Theorem
7.2. The additional difficulties that we meet are due to the fact that T is not boundedly
invertible, that is, 0 € o(T).

To prove Theorem 7.2 we have first to establish the existence of the projection
IL, i.e., we have to show that

H = KerP+ @IﬂlQ.*.,

where Q4 is as in (14). This will be done in the next lemma.

LEMMA 7.3. The operator

V=(I-P)I-Q4)+PQu:H—- H
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i3 invertible. In particular, H = Ker P+ ® Im Q4.

PROOF. First we show that V is injective. Assume Vz =0. Put y = Q4z.
Then Pty = Py Vz = 0. Hence y € ImQ+ and y € Ker Py. Recall that the operator
S is selfadjoint relative to the inner product [-,-] and Im Q4 is the spectral subspace
of S associated with [0,00). It follows (cf. Corollary V.2.4) that [Sy,y] > 0. On the
other hand, y € Im P;- and Im Py is the spectral subspace of the selfadjoint operator T
associated with [0,00). Hence (Ty,y} < 0. But [Sy,y] = [Ty,y] by (13), and therefore
[Sy,y] = 0. As before, let S be the restriction of S to Im@+. Then S is a nonnegative
operator, and hence there exists a nonnegative operator B on Im @4 such that B 2=-5,
(Theorem V.6.1). From [By, By] = [Sy,y] = 0, we conclude that By = 0. But then
Sy = Syy = B%y = 0. However, S is injective. Thus y = 0, and we have proved that V
is injective.

The operator V may be rewritten as
(19) V=I-(I-2P4+)(Q+ — P4)

We shall prove that Q4+ — Py is a compact operator. When this fact has been established,
the invertibility of V follows. Indeed, if @+ — P4 is compact, then by (19) the operator
V is of the form I — K with K compact. Hence V is a Fredholm operator of index zero
(by Corollary XI.4.3), and thus, since Ker V = {0}, the operator V must be invertible.

To prove that Q4+ — Py is a compact operator, choose ¥ > 1 such that the
spectra of T' and S are in the open interval (—co,7). Let I" be the oriented boundary
of the rectangle with vertices ¢ and v % ¢. The orientation of I" is such that the inner
domain is bounded. Take 0 < € < 1, and let ', be the curve which one obtains from T
by deleting the points i with —e < & < €. Put

— __1_ _ -1 X _ L _ -1
Re = 5 /(,\ T)"'d\,  RY = /(,\ S)~ldA.
r. I,

First, we analyse the difference R} — R.. Note that

A=8)"1-A-D)'=A-T)"(S-T)(A - 9!
=(A=T)"1FS(A - S5)"L

Since F is compact, this implies that (A — S)~! — (A = T)~! is compact for each A € T,
and hence the difference R} — R, is a compact operator. Next, observe that for0 # a € R

(20) [SGa — S)7 | = || - I +ia(ia — S)7H|| < 2Cy,
1\1/2
(21) lGa -7 Fl < () ca

where C; and Cq are some constants, not depending on @. To prove (20) one uses
Theorem V.2.1 and the fact that S is selfadjoint with respect to the equivalent inner
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product [-,-]; the inequality (21) follows from our hypotheses on the operators T and F'
(see property (iii)). From (20) and (21) we conclude that

1/2
lGa = 8)~! — Ga —T)7 V|| < 2(i) C1Cs, 0 # @ €R,

||

and therefore the limit
G =lim(R} - R
Jﬁ}( s — Re)

exists in the operator norm. Since RX — R, is compact for each € > 0, we also know that
G is a compact operator. We shall show that Q@+ — P = G.

By using (20) and its analogue with S replaced by T, one sees that the
following limits exist in the operator norm:

Q =1limTR,, Q% =lim SRX.
€l0 €l0

It follows that

TG = lim((I ~ F)SRX ~TRe) = (I - )2 - Q.
£

Now

- _Tylgy = L — 7)1
Q=— / T(A—T)'dA = 5 / AN = T)"ldA,
r r

where the integrals have to be understood as improper integrals (at 0) which converge
in the operator norm. From the spectral theory developed in Chapter V we know that
Q = TPy (cf. Exercise 32 to Part I). Similarly, 2% = SQ4, and thus

TG=(I-F)SQ+ ~TP+ =T(Q+ — Py).

Since T is injective, we obtain G = @+ — P4, and thus Q4 — P4 is compact.

We have now proved that V is invertible. It remains to establish the direct
sum decomposition H = KerPy & Im@4. From the definition of V' we know that
V(ImQ4) C Im Py and V(Ker@Q4) C Ker Py. Since Py and Q4 are projections and V
is invertible, these inclusions cannot be proper. In particular, V(Im @4) = Im P;. Now,
take y € H. Then z :=V~!P,y € ImQ4 and

Pry=Vz=(I-P)I - Q+)z+ PyQiz = Pyz.

Thus y — z € Ker P4, and we have proved that H = Ker Py + Im Q4. Also Ker P4 N
Im @4+ = {0}, because Ker P NIm Q4+ C Ker V and the latter space consists of the zero
vector only. O

PROOF OF THEOREM 7.2. First we assume that ¥:[0,00) — H is a
bounded solution of (10) and we prove that ¢ admits the representation (15). Recall
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that S is a bounded selfadjoint operator relative to the inner product [-,:]. Choose § >0
such that

1 1
[ < — = 1.
%% S[SI,I]_ 2’ [IaI] 1
Our choice of § implies that [(6S% + S)y,y] < O for each y € KerQ4. Indeed, let
{F(X\)}rer be the resolution of the identity of the selfadjoint operator S, and take y €
Ker Q+. Since Ker S = {0}, we have F(0 — 0) = F(0), and hence Q4+ = I — FY(0), by
Theorem V.5.1. Thus Ker @4 = Im F(0), and hence

[F(N)y, 9] = [v,9, A=0.

But then it follows from the spectral theorem for selfadjoint operators that

0
(652 + S)y, 4] = / (632 + Nd[F(V\y, 4] <0,
~1/s

because §A2 + A <0 for ~6~1 < A <0.

Now, put 7(t) = e~ ¥(I — Q4 )¥(t), 0 < t < co, where 3 is the given bounded
solution of (10). As 1 satisfies the first equation in (10), formula (11) holds, and hence

(22) ditsn(t) = —8Sn(t)—n(t), 0<t< oo

Therefore
%[Sn(t),sn(f)] =[($7)'(#), Sn(®)] + [Sn(t), (Sn) ()]
= —2[(65% + S)n(t),n(1)] 2 0,

since (t) € Ker Q4 for t > 0. We conclude that the function [S7(+), S7(+)] is monotonely
increasing. On the other hand for a suitable positive constant C

[Sa(t),Sn(t)] < e~®tC,  0<t<oo,

because 1 is a bounded solution. Thus [Sn(t), S7(t)] is equal to zero for all ¢ > 0. Since
Ker S = {0}, we conclude that (I — Q4+ )¥(t) =0for 0 <t < oo.

Put u(t) = S¢(t), t = 0, and let
S+ =5ImQ4+:ImQ4+ — ImQ4.

The result of the previous paragraph shows that u is a solution of the following Cauchy
problem

(23) { u/(t) = =S7'u(t), 0<t< oo,
u(0) = S+4(0).
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Note that u(0) € ’D(—S_‘,_'l). Since —S3! is a generator of a contraction semigroup (see
the paragraph preceding Theorem 7.2), we know from Theorem 2.2 that

u(t) = T(t;—S71)S+9(0), 0<t<oo,
where T'(- ; =S 1Y is the semigroups on Im Q4 generated by —S_;l. It follows that
B(t) = S7 u(t) = T(4; —STH$(0), 0=t < oo,

because of formula (6) in Section 2.

To obtain the representation (15) it remains to prove that Ilzy = (0).
From Lemma 7.3 we know that the projection II is well-defined, and, by definition,
II(I — P4) = 0. The function 3 satisfies the second identity in (10). Thus

Moy = TP (0) = TT(0) + (T — P4)(0) = TH(0).
But %(0) € ImQ4 and IIQ4 =.Q+. Therefore, ¥(0) = IIz4. This completes the first

part of the proof.

It remains to show that any 3 given by (15) is a bounded solution of (10).
Thus assume that 3 is given by (15). The values of 1 are vectors in Im Q4 C H. Since
the semigroup in (15) is a contraction semigroup, 1 is a H-valued bounded function on
[0,00). By the strong continuity of the semigroup, v is continuouson [0, c0). Furthermore

(24) Pyp(0) = Pyllzy = Przy — Po(I — Mz = 74,

and hence 3 satisfies the initial condition in (10). To check the identities in (24), one
uses that z4 € Im Py and Im(] — IT) = Ker I = Ker P. Note that Iz € ImQ4, and
hence

T(t; —S7Dzy = T(t; ~S71) ST (S+zy).
Now S4Ilz4 € ’D(—S;l). Therefore, by formula (6) in Section 2,
P(t) = S u(t),  u(t) =T(4-S7")S+zy.
As S4Ilzy € 'D(—S_:l), the function u is continuously differentiable and its derivative
is given by
u'(t) = =T (t; ~SyDIzy = —3(2), 0<t< oo.

Next, observe that Ty(t) = (I — F)Sy(t) = (I — F)u(t) for t > 0. It follows that T4 is
continuously differentiable and 4 satisfies the first equation in (10). O

The literature on the transport theory and related fields is rich. Here and in
Sections XIII.9 and XIII.10 we have only discussed the first basic results.
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COMMENTS ON PART IV

Chapter XIV contains standard material dealing with ordinary and partial
differential operators in Hilbert space. A more extensive treatment of these topics appear,
e.g., in the books Dunford-Schwartz [1], [2], Friedman [1] and Goldberg [1]. The first
two sections in Chapter XV extend, in a straightforward manner, the functional calculus
and the Riesz projections to unbounded operators. The last two sections in this chapter,
which contain a generalization of the Riesz decomposition theorem for a case when the
parts of the spectrum of the operator are not disjoint, is based on papers of Bart-Gohberg-
Kaashoek (6], {7], (8] (see also Stampfli [1]). Chapter XVI deals with basic properties
of unbounded selfadjoint operators and the spectral theorem. The first four sections
of Chapter XVII present the standard elements of the Fredholm theory for unbounded
operators (cf., Goldberg [1], Kato [1]; also Kaashoek [1]). Section XVIIL.5, dealing with
completeness of eigenvectors and generalized eigenvectors, is concerned with a special
case of a theorem from the book Gohberg-Krein [3]. The analysis of the differential
operator on the half line in Chapter XVIII has its roots in the Wiener-Hopf theory as
developed in the papers of Bart-Gohberg-Kaashoek (2, 3]. The results and the way they
are presented seem to be new. Sections 1-6 in Chapter XIX present a first introduction
to the theory of strongly continuous semigroups. More about this topic may be found,
e.g., in the books Hille-Phillips [1], Davies [1] and Pazy [1]. For further reading about
the transport theory see the books of Van der Mee [1], Kaper-Lekkerkerker-Hejtmanek
(1], and Greenberg-Van der Mee-Protopopescu [1].



EXERCISES TO PART IV

In the first four exercises (a;;)§$_; is an infinite matrix and A(¢, — 4y) is
the following operator. The domain D(A4) of A consists of all v = (v1,v2,...) € £p such
that

00 00
(*) w = (ZGU‘UJ',ZagJ’vJ',...)
=1 i=1

is a well-defined sequence in £4. In particular, for v € D(A) the series appearing in (x)
are convergent. The action of A is given by Av =w. Wefix 1 <p<o0,1 < ¢ <o0.

1. Fori,j = 1,2,... assume that a;; = 0 whenever j # ¢ and j # ¢ + 1. Prove that
A is a closed densely defined operator and find its conjugate A’. Show that A can be
unbounded.

2. Assume that for ¢ = 1,2,... the sequence (a,-_,-);'-f__l € £y, where pl4 ()l =1
Show that A is a closed operator.

3. Let (a,'j)';'-’,"j=1 be as in the previous exercise, and assume, in addition, that (a;;)%2; €
24,7 =1,2,.... Prove that A is densely defined and find its conjugate A’.

4. Assume that a;; = j and a;; = 0 for ¢ > 1, where j = 1,2,... . Prove that the
operator A is not closable.

5. Suppose B € L(X) and T(X — X) is a closed operator, where X is a Banach space.
Show that Im B C D(T') implies TB is bounded.

6. Let A and K be bounded linear operators acting on a Banach space X. Assume that
K is compact and Im A C Im K. Use the result of the previous exercise to show that A
is compact.

7. Let 1,2, ... be an orthonormal basis of the Hilbert space H, and put M = span{¢n |
n > 1}. Take v ¢ M, and define A(H — H) by

D(A) = M & span{v},

A(m + av) = av, meM, a €C.

Prove that A is not closable.

8. Given
0 1 0 0
0 0 1 0
At) = : : - :
0 0 0 1

—ap(t) —ai(t) —ai(t) -+ —an-1(t)
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with each ap(-) integrable on [a, 5], let

t
Ut) = In + /A(s)U(s)ds, a<t<b

Prove that
yll(t) ylz(t) yy(t)
U = ylFt) yth) yn.(t)  a<i<o
IO WY Sl SRR a0

where y; € Ker Tmax,r and yl(cj_l)(a) =6k, Jk=1,...,n. Here

n—1

T=D"+ Y ai(t)D*
k=0

and ;i is the Kronecker delta.

9. Let 7 = D2 4 a1(t)D + ao(t), where ag(-) and a;(-) are integrable on [a, ],
and let X = Lo({a,d]). Consider the operator T(X — X) defined by

D(T) = {g S D(Tmax,r) | g(a) = g'(a) = 0}’
Tg=rTg.

Use Theorem XIV.3.1 and the result of the previous exercise to show that T is invertible
and

t
(T71H) = /G(t,s)f(s)ds, a<t<b,

with

o M@ =)
Ct9) = Towte) —won(ey  “SSt<h

where u,v € Ker Tinax,r and satisfy
u(a) =1, u'(a) =0, v(a) = G, v'(a) = 1.

10. Let 7 and X be as in the previous exercise, and let T(X — X) be the restriction of
Tmax,r to those g € D(Tmax,r) that satisfy g(b) = ¢'(b) = 0. Show that T is invertible
and find T-1.

11. Let X = L5([1,3]), and let 7 be the differential expression

r= D%~ 2(t42)D+ 5(t +2)
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Check that y1(t) =t and y2(t) = te! satisfy ry = 0. Prove that T is invertible and find
T-1, where T(X — X) is defined by

D(T) = {9 € D(Tmax,r) | 9(1) = g'(1) = O}a
Tg=rg.
12. Given X = Lg([a,b]) and 7 = D" + 25:(} a;j(t)D?, where each aj(-) is integrable

on [a,b], let T(X — X) be the restriction of Tmax,r to those ¢ € D(Tmax,r) that satisfy
¢ (a)=0for j =0,...,n — 1. Find the resolvent set p(T).

13. Let X = Ly([a,d]), and let r = D" + ZZ;& ai(t)DF, where a;, € C*([a,b]). Define
T(X — X) by

D(T) = {9 € D(Tmax,r) | g (a) = ¢®(b) =0, k=0,...,n—1}, Tg=rg.
Prove that T = Trin r by showing that T is a closed operator and T = Tax,r+-

14. Given H = Ly([0,27]) and 7 = D? + 1, find the adjoint of the operator T(H — H)
defined by

D(T) = {f € D(Tmax,r) | f(0) =0}, Tf=rf.

15. Let H = L9([0,1]), and let T be a differential expression. Find the adjoint of the
operator T(H -+ H), where Tf = v f for f € D(T), in each of the following cases:

(a) T=D*+D,
D(T) = {f € D(Timax,7) | £(0) = f'(1)};
(b) r=D3+1

D(T) = {f € D(Trmax,7) | £(0) + £1(0) = f(1) + £'(1), FP(0) = FAV)};
(c) r=D?4+tD— ¢,
D(T) = {f € D(Tmax,r) | f(0) =0, f(1) = f'(0)}.
16. Let X be a Banach space. Suppose A(X — X) is an operator with Ag € p(A). Prove

that the largest open disc (possibly C) which has its center at Ay and does not intersect
o(A) has radius p~1, where p is the spectral radius of (A9 — A)~1.

17. Let X = C([0,2x]), and let A(X — X) be defined by
D(A) = {u€ X |u' € X, u(0) =u(2r)}, Au = —u'.
(a) Show that o(A) consists of the eigenvalues A\p = k, k= 0,£1,4+2 ... .

(b) For X € p(A), find a formula for (A — A)~lv, where v € X.

(c) Suppose that f is analytic at the integers k = 0,41,%2,...,£N and f(}) is a
constant ¢ for |A| > N. Prove that

N
(fAW) @) =cv(®)+ D (flk) = c)are’™,  0<t<2m,

k=—N
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where
2
oy = L/v(s)e—i’wds, k=0,+1,.. +N.
2r
0

18. Let X be a Banach space, and assume that the operator A(X — X) has a non-
empty resolvent set. Suppose f € Foo(A4) has no zeros on o(A) U {co}. Prove that f(A)
is invertible and find f(A4)~1.

19. Let 7 =¢D and H = Ly([0,1]). Define T(H — H) by

D(T) = {fGD(TmaX,T) |f(0)=f(1)=0}; Tf=if"
Show that T is symmetric. Is T selfadjoint?
20. Let 7 =4D and H = L4([0,1]). Given 6 € R, define Ty(H — H) by

D(Ty) = {f € D(Tmax,r) | f(1) =¥ f(0)},  Tpf =if’.

Prove that Ty is selfadjoint. Show that the operator T in the previous exercise has
infinitely many selfadjoint extensions.

21. Let 7f = D(pf')+qf, where p € C?([a,b]) and g € C([a, b]) are real-valued functions
with p(t) # 0 for all ¢ € [a,b]. Teke H = Ly([a,b]). In each of the following, T(H — H)
is the restriction of Tipax,r to those ¢ € D(Tmax,r) that satisfy the stated boundary
conditions. Determine whether or not the corresponding operator T is selfadjoint.

(2) g(a) = 2g(b);
(b) g(a) =0, g'(b) = 2g(b);
(c) p(a)g(a) +¢'(b) =0, g'(a) = —p(b)g(b).
22. Prove that the spectrum of an unbounded selfadjoint operator is unbounded.

23. Let X be a Banach space. Let T(X — X) and B(X — X) be linear operators.
Assume that T has a non-empty resolvent set and D(T) C D(B). Prove that B is
T-compact if and only if B(T — AI)™! is a compact operator on X for each A € p(T).

24. Let P(X — X) be a closed operator acting in a Banach space. Assume that
PD(P) C D(P) and P2z = Pz for all z € D(P). Does it follow that P is bounded?
(Hint: see the paragraph preceding Theorem 1.5.1 in Gohberg-Feldman [1].)

25. Let P be as in the previous exercise. Prove that P is bounded if and only if there
exists v > 0 such that

llz +yll 2 v(llzll +llyll),  z€KerP, y€ImP.

26. Let A(X — Y) and B(X — Y) be closed operators acting between Banach spaces
X and Y. Suppose that In AN Im B = {0} and Im A + Im B is closed. Prove that Im 4

and Im B are closed.

27. Let X be a Banach space. Suppose that T(X — X) has a compact resolvent. Prove
that for any B € £(X) the operator T + B is a Fredholm operator with index zero.
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28. Let T(X — Y) be a closed operator acting between Banach spaces X and Y. Suppose
that there exists a Ag € C such that Ag — T has closed range and dim Ker(Ag — T') < co.
Prove that for any polynomial p the operator p(T) is closed. (Hint: write p(T) =
(Ao — T)g(T) + <l and use induction.)

29. Let C be an unbounded densely defined closed operator with domain and range in
the Banach space X. Define A(X x X — X x X) by setting

D(A) = X x D(C), A(z,y) = (Cy,0).

Prove
(a) A is a densely defined closed linear operator;
(b) the abstract Cauchy problem
u'(t) = Au(t), 0<t< oo,
(%)
u(0) = (z0,Y0),

has a unique continuously differentiable solution for each (zg,ys) € D(A) (find its for-
mula);

(c) A does not generate a strongly continuous semigroup.

How do the above results relate to Theorem XIX.3.17 What can one say about the
spectrum of A?

30. Prove that any two Cy-semigroups with the same generator are equal.

31. Let T'(:) be a strongly continuous semigroup on the Banach space X with generator
A. Define

t
B\(t)z = / M0 T(s)zds, ¢ >0.
0

Here A € C and z € X. Prove
(a) for every z € X, the vector B)(t)z € D(A) and
(A= A)B\(t)z = Mz —T(t)z, t>0;
(b) for £ € D(A4),
By(t)(\ — A)z = Mz — T(t)z, t>0;
(c) the following spectral inclusion holds:
{1 Xea(A)} co(T(r), t>0.

30. Let X be the Banach space of all f € C([0,1]) with f(1) = 0 endowed with the
supremum norm. For f € X put

(T(t)f)(3)={ f(t(]fs)’ 1St
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Prove that T(-) is a Cy semigroup of contractions on X with generator A given by
D(4)={feX|feC(01]), feX}, Af=f".

Show that o(A) = @, and prove that the inclusion in item (c) of the previous exercise
may be strictly proper.
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