o I'RE LIBRARY
- Tel: +44 1203 523523
Fax: +44 1203 524211

T 2

WARWICK

AUTHOR: Michele A. A. Zito DEGREE: Ph.D.
TITLE: Randomised Techniques in Combinatorial Algorithmics

DATE OF DEPOSIT: 16 JULY, 1999

I agree that this thesis shall be available in accordance with the regulations govern-
ing the University of Warwick theses.

I agree that the summary of this thesis may be submitted for publication.

I agree that the thesis may be photocopied (single copies for study purposes only).

Theses with no restriction on photocopying will also be made available to the British Library for microfilming.
The British Library may supply copies to individuals or libraries. subject to a statement from them that the copy
is supplied for non-publishing purposes. All copies supplied by the British Library will carry the following
statement:

“Attention is drawn to the fact that the copyright of this thesis rests with its author. This
copy of the thesis has been supplied on the condition that anyone who consults it is understood
to recognise that its copyright rests with its author and that no quotation from the thesis and no
information derived from it may be published without the author’s written consent.”

AUTHOR' S SIGNATURE & .ttt ittt ts ettt

USER’S DECLARATION

1. I undertake not to quote or make use of any information from this thesis with-
out making acknowledgement to the author.

2. I'turther undertake to allow no-one else to use this thesis while it is in my care.

DATE SIGNATURE ADDRESS

THE UNIVERSITY OF WARWICK, COVENTRY CV4 7AL

WARWICK

Randomised Techniques in Combinatorial Algorithmics

by

Michele A. A. Zito

Thesis
Submitted to the University of Warwick
for the degree of

Doctor of Philosophy

Department of Computer Science

November 1999

Contents

List of Figures

Acknowledgments

Declarations

Abstract

Chapter 1 Introduction

1.1
1.2

Algorithmic Background,
Technical Preliminaries e
1.2.1 Problems e
1.2.2 Parallel Computational Complexity
1.2.3 Probability e
1.24 Graphs e e e e
1.25 Random Graphs i i e
126 GroupTheory. e

Chapter 2 Parallel Uniform Generation of Unlabelled Graphs

2.1
22
2.3

24

2.5
2.6
2.7

Introduction
Sampling Orbits o e e e e e e
Restarting Algorithms L .
Integer Partitions e e e e
2.4.1 Definitions and Relationship with Conjugacy Classes
2.4.2 Parallel Algorithm for Listing Integer Partitions
Reducing Uniform Generation to Sampling in a Permutation Group
RNC Non Uniform Selection

Algorithm Based on Conjugacy Class Listing

iii

vii

viii

ix

10
15
17
20
24

2.8 Avoiding Conjugacy Classes v v v v i i i i e e e e e

2.9 Conclusions

Chapter 3 Approximating Combinatorial Thresholds

3.1 Improved Upper Bound on the Non 3-Colourability Threshold

3.1.1 Definitions and Preliminary Results

3.1.2 MainResult. e e e

3.1.3 ConcludingRemarks 0 .

3.2 Improved Upper Bound on the Unsatisfiability Threshold

3.2.1 The Young Coupon Collector

3.2.2 Application to the Unsatisfiability Threshold

323 Refined Analysis e

3.3 Conclusions

Chapter 4 Hard Matchings

4.1 Approximation Algorithms: General Concepts

4.2 Problem Definitions o e e e e e e e e e e

4.3 NP-hardnessResults i i e e e e

4.3.1 MINMAXLMATCH in Almost Regular Bipartite Graphs

4.3.2 MAXINDMATCH and Graph Spanners

4.4 Combinatorial Bounds e

4.5 Linear Time Solutionfor Trees 0 v v i i i i e

4.6 Hardness of ApproXimation.t v v vt i e e e

4.6.1 MINMAXLMATCH v o e i e e e e e e e e e e e e e e e

4,62 MAXINDMATCH o o e e e e e e e e e e e e e e e e e

4.7 Small Maximal Matchings in Random Graphs

477.1 General Graphs e

472 Bipartite Graphs e

4.8 Large Induced Matchings in Random Graphs

4.9 Conclusions

Bibliography

v

91
93
95
97
97
100
101
106
108
110
112
116
117
120
126
132

134

List of Figures

1.1 Approcessor PRAM e 7
1.2 The 64 distinct labelled graphson 4 vertices. 16
1.3 The 11 distinct unlabelled graphs on 4 vertices. 17
1.4 Examples of randomgraphs, 19
2.1 Probability distributions on conjugacy classes forn = 5,7,8,10. 29
2.2 Exampleofsetfamily. 33
2.3 Integer partitions of 8 in different representations. 36
2.4 Distribution of differentorbitsforn =4.. oo, 45
2.5 Valuesof Gafterstep(2). v v v v v i i e e e e 53
3.1 A legal 3-colouring (left) and a maximal 3-colouring (right). 69
32 Legaledgesforavertexv. i 71
3.3 Partition of the parameter space used to upper bound E(X ﬁ). 83
34 Graphof fi(z*(r),y* (7). . .« o 87
3.5 Locatingthe bestvalueofec. 89
4.1 Possible Vertex COVEIS v v v vt e e 94
4.2 Gadget replacing a vertex of degree one in a bipartite graph. 97
43 A (1,3)-graphandits 2-padding. 98
4.4 A cubic graph with small maximal matching and large induced matching. 104
4.5 A d-regular graph with small maximal matching and large induced matching. . . . 105
4.6 A cubic graph with small maximal induced matching. 106
47 Gadgetsforavertexv; EV(G). o 111
4.8 Gadgetreplacing a vertex of degreeone. oo 112
4.9 Gadgetreplacing a vertex of degreetwo. L L. 113
4.10 Possible ways to define the matching in G’ giventhe oneinG. 113
4.11 Filling an empty gadget,normalcases. 114

4.12 Filling an empty gadget, special cases

4.13 Possible relationships between pairs of split independentsets

4.14 Dependence between pairs of induced matchings of sizek

vi

Acknowledgments

Although my work in Theoretical Computer Science has been mainly a solitary walk through Dis-
crete Mathematics and Computational Complexity Theory, I would like to thank the many people
that joined my walk from time to time or that helped my progress, first in Warwick University and
then in the University of Liverpool.

First and foremost I would like to thank Alan Gibbons, my supervisor for his presence, his
trust in me and his constant support. He has always been much more optimistic about my work than
myself and he has often given me the strength to go on. Also I thank Mike Paterson and Martin Dyer
for their careful reading of my thesis. Their comments and suggestions have contributed to improve
the quality of my work.

I would also like to thank all the people that I met at Warwick. I feel particularly indebted
to S. Muthukhrishnan (Muthu). His company, scientific, and social advice was a pleasure during the
many days and evenings that we spent together at Warwick.

My thanks go also to all the people in the Department of Computer Science, at the Univer-
sity of Liverpool, especially Paul Dunne, Ken Chan and all the technical staff, for their friendship
and support. Thanks to William (Billy) Duckworth, my office colleague during my staying in Liv-
erpool (at least until he decided that the other hemisphere is more interesting than this one), for
keeping me interested in spanners and teaching me the exact difference between “tree”, “three” and
“free”! It was a great pleasure for me to work with him.

I thank the ‘Universita di Bari’ in Italy for giving me the cultural means and the financial
support to start my scientific journey. I am particularly grateful to Prof. Salvatore Caporaso, who
introduced me to the Theory of Computation. I valued his conversations, the many arguments and
the useful discussions we had. I also thank Nicola Galesi for the time we spent together, the work
we did and the rock&roll music we played.

Finally, last but not least, I feel deeply grateful to my parents and my wife, for their constant

love and support.

Michele A. A. Zito July, 1999

vii

Declarations

This thesis is submitted to the University of Warwick in support of my application for admission to
the degree of Doctor of Philosophy. No part of it has been submitted in support of an application for
another degree or qualification of this or any other institution of learning. Parts of the thesis appeared

in the following refereed papers in which my own work was that of a full pro-rata contributor:

e M. Zito, I. Pu, M. Amos, and A. Gibbons. RNC Algorithms for the Uniform Generation of
Combinatorial Structures. Proceedings of the 7th ACM-SIAM Annual Symposium on Discrete

Algorithms, pp. 429-437, 1996.

e P E. Dunne and M. Zito. An Improved Upper Bound on the Non-3-colourability Threshold.

Information Processing Letters, 65:17-23, 1998.

e M. Zito. Induced Matchings In Regular Graphs and Trees. Proceedings of the 25th Interna-
tional Workshop on Graph-Theoretic Concepts in Computer Science, 1999. Lecture Notes in

Computer Science, vol 1665, Springer Verlag.

e M. Zito. Small Maximal Matchings in Random Graphs. Submitted LATIN’2000: Theoretical

Informatics.
Unrefereed papers were also presented as follows:

e M. Zito, I. Pu, A. Gibbons. Uniform Parallel Generation of Combinatorial Structures. /1th
British Colloguium on Theoretical Computer Science, Swansea, April 1995. Bulletin of the

European Association of Theoretical Computer Science, 58, 1996.

e . Pu, M. Zito, M. Amos, A. Gibbons. RNC Algorithms for the Uniform Generations of Paths
and Trees in Graphs. //th British Colloquium on Theoretical Computer Science, Swansea,

April 1995. Bulletin of the European Association of Theoretical Computer Science, 58, 1996.

e P. E. Dunne and M. Zito. On the 3-Colourability Threshold. [3th British Colloquium on
Theoretical Computer Science, Sheffield, 1997. Bulletin of the European Association of The-

oretical Computer Science, 64, 1998.

Michele A. A. Zito July, 1999

viii

Abstract

Probabilistic techniques are becoming more and more important in Computer Science.
Some of them are useful for the analysis of algorithms. The aim of this thesis is to describe and
develop applications of these techniques.

We first look at the problem of generating a graph uniformly at random from the set of all
unlabelled graphs with n vertices, by means of efficient parallel algorithms. Our model of parallel
computation is the well-known parallel random access machine (PRAM). The algorithms presented
here are among the first parallel algorithms for random generation of combinatorial structures. We
present two different parallel algorithms for the uniform generation of unlabelled graphs. The algo-
rithms run in O(log® n) time with high probability on an EREW PRAM using O(n?) processors.

Combinatorial and algorithmic notions of approximation are another important thread in
this thesis. We look at possible ways of approximating the parameters that describe the phase tran-
sitional behaviour (similar in some sense to the transition in Physics between solid and liquid state)
of two important computational problems: that of deciding whether a graph is colourable using only
three colours so that no two adjacent vertices receive the same colour, and that of deciding whether
a propositional boolean formula in conjunctive normal form with clauses containing at most three
literals is satisfiable. A specific notion of maximal solution and, for the second problem, the use of a
probabilistic model called the (young) coupon collector allows us to improve the best known results
for these problems.

Finally we look at two graph theoretic matching problems. We first study the computa-
tional complexity of these problems and the algorithmic approximability of the optimal solutions,
in particular classes of graphs. We also derive an algorithm that solves one of them optimally in
linear time when the input graph is a tree as well as a number of non-approximability results. Then
we make some assumptions about the input distribution, we study the expected structure of these
matchings and we derive improved approximation results on several models of random graphs.

ix

Chapter 1

Introduction

This chapter provides, in the first section, the algorithmic context of this thesis. The remainder of

the chapter describes essential technical preliminaries for all subsequent chapters.

1.1 Algorithmic Background

Probabilistic techniques are becoming more and more important in Computer Science. Probabilistic
paradigms can be grouped in two main classes: those concerned with the construction of randomised
algorithms (under some reasonable model of computation) and those involved in the analysis of al-
gorithms. Among the first, some have acquired wide popularity. Random sampling is often used
to guess a solution in problems for which a large set of candidate solutions provably exists. A re-
cent beautiful application of this technique is in the problem of computing the minimum spanning
tree of a graph [KKT95]. Random re-ordering can be used to improve the performances of sorting
algorithms [Knu73]. Montecarlo simulation of suitably defined Markov chains or (some other ran-
domised dynamic process) finds wider and wider applications in generation and counting problems
[DFKO91] as well as in algorithmic analysis [FS96]. Finally what is called sometimes control ran-
domisation (loosely speaking different algorithms or sub-routines are run on the particular problem
instance depending on some random choices) is exploited to devise good hashing algorithms and
for the complementary pattern matching problem [KR87]. In all cases the main advantages of the
specific algorithmic solution over more traditional deterministic approaches are simplicity and good
performance improvement It could be argued that this is achieved at the price of a more involved

analysis process but since a good deal of discrete mathematics is involved in algorithmic analysis of

traditional techniques anyway, this does not seem a major problem.

As mentioned at the beginning there is also another class of probabilistic paradigms. Al-
though not directly related to algorithmic design, their use helps in understanding the combinatorial
structure of several computational problems. Normally the set of all inputs for a specific problem is
viewed as a probability space (see Section 1.2.3 for a formal definition of this concept) and this fact is
exploited in either the performance analysis of specific algorithms or the understanding of structural
properties of combinatorial problems. In the former case, sometimes called input randomisation
[Bol85], the advantage is that the usual “worst-case approach” is abandoned and therefore worst-
case instances only marginally influence the complexity of the different algorithmic solutions. In
the latter case, sometimes, the probabilistic approach enables us to understand the behaviour of few
parameters characterising the specific problem [ASE92].

The aim of this thesis is to describe and develop a few applications of several probabilistic
techniques related to the second type of paradigm described above. The usual assumption about
input randomisation is that input instances can indeed be generated with the desired distribution.
In some cases this is an important problem in its own right. For example it is still an important
open problem to find an efficient algorithm for generating a planar graph uniformly at random
[HP73, DVW96, Sch97]. Several techniques have been developed to build sequential algorithms for
generating combinatorial structures according to some predefined probability distribution [NW78].
In Chapter 2 we look at the issues involved in finding parallel algorithms for sampling combinatorial
objects uniformly at random. In some cases trivial parallelisation of a sequential algorithm solves
the problem quite efficiently. In some others the nature of the problem seems to prevent efficient
solutions. The focus of this work is on “unlabelled” structures. All relevant definitions are given in
Chapter 1.2 and 2. Loosely speaking the aim is to sample an object in a given set, disregarding a
number of possible symmetries. For instance, if we were to sample the result of throwing two dice,
we might be only interested in the sum of the two individual outcomes, not their ordered values.
In this case the order among the two outcomes is irrelevant. In Chapter 2 we will study similar
problems in the context of graph theory.

Combinatorial and algorithmic notions of approximation are another important thread in
this thesis. One of the generation algorithms described in Chapter 2 outputs a graph with a prob-
ability distribution that, in some sense, only approximates the uniform one. In Chapter 3 we look
at possible ways of approximating the parameters that describe the phase transitional behaviour

(similar in some sense to the transition in Physics between solid and liquid state) of two important

computational problems: that of deciding whether a graph is colourable using only three colours
so that no two adjacent vertices receive the same colour, and that of deciding whether a proposi-
tional boolean formula in conjunctive normal form with clauses containing at most three literals is
satisfiable. A specific notion of maximal solution and, for the second problem, the use of a proba-
bilistic model called (young) coupon collector allow us to improve the best known results for these
problems.

Chapter 4 is even more about approximation, but the final part of it will describe a num-
ber of results obtained through the use of a number of probabilistic techniques. We look at two
graph theoretic problems. A graph is given, as a collection of nodes and edges joining them, and
we are interested in finding a set of disjoint edges satisfying some additional constraints. The goal
in each case is to find an “optimal” set according to some criterion that is part of the specific prob-
lem definition. We first study the computational complexity of these problems and the algorithmic
approximability of the optimal solutions, in particular classes of graphs. Then we make some as-
sumptions about the input distribution, we study the expected structure of these matchings and we
derive improved approximation results on several models of random graphs (see Section 1.2.5 for
the formal definitions).

The thesis is mainly self-contained. All concepts used in it are defined. Original definitions
are nurnbered whereas, normally, well-known concepts are introduced in a less formal way and nor-
mally referenced. All original results are proved in full details. All non-original results are clearly
stated and their proof is normally either sketched or the reader is referred to an appropriate biblio-
graphic reference. Chapter 2 contains some general definitions from the branches of mathematics
and computability that are related to this thesis; the reader familiar with the specific field should
be able to skip Chapter 2. However, to avoid conceptual discontinuities, a few specific technical

concepts and results are introduced in the relevant chapters.

1.2 Technical Preliminaries

We recall some basic terminology and well-known results in the different areas of Computer Science
and Mathematics which will be used later on. This section contains all those background definitions
and results which are particularly useful in more than one of the following chapters, or simply too
long to be put in the specific chapter, without distracting the reader’s attention.

Some knowledge of basic set theory and elementary calculus is assumed [Giu83]. If f is a

function on real numbers, for every y € IR U {—o00, +00}, f(z) — y (or simply f — y when the

independent variable is clear from the context) is a shorthand for

lim f(z) =y

T—r00

Also, the reader should be familiar with sequential computational models like Turing machines or
Random Access Machines [AHU74] and basic complexity theoretic definitions [GJ79, BDG88].
Asymptotic notations like O(n2), o(1), Q(n), w(2") and ©(n) will denote function classes but we
will normally write f = Q(n) (instead of f € (n)) with the intended meaning that there exists
a constant ¢ such that f(n) > cn for n sufficiently large. The reader is referred to Section 2.1
in Cormen, Leiserson and Rivest [CLLR90], for more formal definitions. In particular, given two
functions f and g on integers, we will write f ~ g and we will say that f is asymptotic to g if the
ratio f(n)/g(n) — 1 (the concept can be extended to functions on real numbers).

This section’s content can be subdivided into two parts. The first two sections describe con-
cepts from Computability Theory and Computational Complexity. The remaining sections present
some relevant definitions and results from different areas of Mathematics.

More specifically, in Section 1.2.1 we recall some elementary definitions related to com-
putational problems that will be used throughout this thesis. Section 1.2.2 defines the models of
parallel computation which will be used in Chapter 2. Also the relevant complexity measures and
complexity classes are defined. Section 1.2.3 introduces the basic terminology related to Probabil-
ity Theory. Section 1.2.4 describes the relevant concepts in graph theory. Section 1.2.5 provides
a glimpse into the beautiful and by now well established theory of random graphs. We describe
several models of random graphs, each providing a different framework for the analysis of combi-
natorial and algorithmic properties of graphs. Finally Section 1.2.6 introduces all basic definitions

and results in group and action theory that will be needed later, especially in Chapter 2.

1.2.1 Problems

Many computational problems can be viewed as the seeking of partial information about a relation
(see [BDGS88, Chapter 1] or [BCI91]). More specifically suppose X is a finite alphabet and that
problem instances and solutions are encoded as strings over X.. A relation SOL C ¥* x X* defines
an association between problem instances and solutions. For every z € ¥* the set SOL(z) contains
all the y € X* that encode a solution associated with z, with the implicit convention that if z does

not encode a problem instance then SOL(z) = @. For every z € X*, let |z| denote the length of

(the encoding) z. Notice incidentally that if S is a set, |S| will be used, in the usual sense, as the
cardinality of S. In this setting a decision problem is described by the relation SOL and a question
which has a yes/no answer in terms of SOL [BDG88, p. 11]. If z € X*, a decision problem
(also known as existence problem) answers the following question: is there a y € X* such that
y € SOL(x)? If z,y € X* are given, another decision problem (which will be referred to as the
membership problem) answers the question: does y belong to SOL(z)?

There is a natural correspondence between a decision problem Q and the set () of instances
that have a “yes” answer. Thus no strong distinction between Q and @) will be kept: the “name” of
the decision problem will also denote the set of instances with a solution. Notice that @ C X* so
the words language or property will also be used as qualifiers.

Several other types of problems are definable in this setting. Informally, if z € ¥* is (the

encoding of) a problem instance then

1. a construction problem (or search problem) aims at exhibiting a y € ¥* such that (z,y) €

SOL;

2. an optimisation problem, given a cost function ¢(z,y), aims at finding the y € X* with

(z,y) € SOL such that ¢(z,y) is maximised (respectively minimised);

3. a uniform generation problem, aims at generating a word y € X* satisfying (z,y) € SOL

such that all y in SOL(z) come up equally often;

4. a counting problem, aims at finding the number of elements in SOL(z).

Example. In what follows we recall, in a rather informal way, a number of definitions related
to boolean algebra. The reader is referred to [BDG88, Chapter 1] or [Dun88] for a more formal
treatment of the subject.

A boolean formula is an expression like

&(z3,T12, Tas, T3a, T10) =af (T25 AZ12) V 2(—Z70 V (023 A T34))

built up from the elements z; of a countable set X’ of propositional variables, a finite set of connec-
tives (usually including A, V and =) and the brackets.

If variables are assigned values over a binary set of truth-values denoted by ¥V = {0,1}
and connectives are interpreted in the usual way as operations on V' then each formula represents

a function on V. It is evident that under this interpretation the formula ¢(z3, 12, To5, T34, T70) iS

equivalent to ¢(x1, T2, T3, 24, T5) obtained by replacing zz with z;, £12 with 22 and so on. Thus,

without loss of generality, a formula on n different variables can be regarded as containing exactly

the variables xy,...,T,. Let X|n = {z1,..., T, }. Sometimes notation ¢(Z) will be used instead
of p(z1,Z2,...,Tn).
A \%
1|11 1|11 -
1100 11110 110
0101 0|11 0|1
0010 0010

Any function o : X |n — V is called an n variable-truth-assignment (or simply a truth-
assignment). Notation ¢{a} will be used for the truth-value of ¢ after each variable z; has been
replaced by a(xz;) and the tables above (called truth-tables) have been used to find the truth-value
of conjunctions, disjunctions or negations of truth-values. Since truth-values are nothing but binary
digits, the set of all n-variable-truth-assignments will normally be denoted by {0, 1}™.

The formula is said to be in conjunctive normal form (CNF for short) if it is in the form
CinCy...ANCp,

where each clause C} is the disjunction of some variables or negation of variables (expressions like
x; or nz; are called literals). Every boolean formula can be transformed by purely algebraic rules
into a CNF formula (see for example [BDGS88, p. 17-18]). A CNF formula ¢ is in k-CNF if the
maximum number of literals forming a clause is &.

Every k-CNF formulae can be encoded over the finite alphabet ¥ = {A,V,—,(,),0,1}
(e.g. variable z; is encoded by the binary representation of 7). In this setting, k-SAT is the well
known NP-complete problem [GJ79] of deciding whether a k-CNF ¢ is satisfiable, i.e. whether
there exists an assignment o of values in V to all variables in ¢ such that the value of ¢ under this

assignment is one.

Combinatorial structures associated with computational problems can be characterised by a
number of parameters, describing specific features of the problem instances. For example a k-CNF
formula is built on some 7 variables, m clauses and each clause has at most k literals. A graph (see
Section 1.2.4 for relevant definitions) might have n vertices, m edges, maximum degree A. In most
cases it will be possible to define two functions on natural numbers, the order and the size. Z,, C ¥*

is the set of problem instances of order n.

The relationships between different parameters characterising the instances of two specific
problems will be the object of the work described in Chapter 3. We conclude this section with a
remark and a couple of useful definitions.

It is worth noticing that there might be no relationship between these parameters and the
length of the encoding of the instances of a particular problem. For instance the natural encoding of
a k-CNF formula of order (i.e. number of variables) n and size (i.e. number of clauses) m described
in the example above has length at most km logn.

A set Q C X* is a monotone increasing property (respectively monotone decreasing prop-

erty) with respect to a partial order <q if for every fixed n
z€Z,NQ,y €I,z <gy(respectivelyy <g z) =y € Q
A set) C X* is a convex property if for every z,y,2 € I, * <qg y <@ z and z,z € @ imply

y € Q.

1.2.2 Parallel Computational Complexity

The algorithms described in Chapter 2 are designed for an idealised model of parallel computation

called (see [GR88], for example) parallel random access machine (PRAM).

Main Control Program

/

Figure 1.1: A p processor PRAM

Shared Random Access Memory ‘

There are p processors working synchronously and communicating through a common
random-access memory. Each processor is a sequential random access machine (or RAM for short)
in the spirit of [CR73]. The set of arithmetic operations available to each processor includes ad-
dition, subtraction, multiplication and division between arbitrary length integers at unit cost. Each
RAM is also augmented with a facility to generate random numbers. The expressions rand(0, 1) is
a call to a function returning a random real number between O and 1. Tuples of values (also called
records) will be used occasionally. For example, following the most standard notations, z.date is
the identifier for the variable associated with the field “date” of the record structure z. Ordinal nu-

merals are used as default field names. Assignments and the usual relational operations between

field variables as well as whole record variables are allowed. Constant tuples will be represented by
lists of value. For example (4,1, 3.14, 3) is a constant four-tuple. Constant time direct and indirect
indexing allow us to handle (multidimensional) arrays of integers or real numbers. For example AJi]
is the i-th element of an array A, A[i : j] is the portion of A between index ¢ and index j, defined if
J > i and with A[i : i] = A[i]. The expression Az, -] denotes the row vector formed by all elements
in row ¢. In what follows the terms array and list will be used interchangeably.

In a single computation step each processor can perform any arithmetic operation on the
proper number of operands stored in the shared memory. Notation @ < b + ¢ is a shorthand for the
sequence

fetch(Ry, b); fetch(Ro, ¢); R3 < Ry + Ra;store(a, R3);

including three memory transfer operations and one arithmetic manipulation. However given the
asymptotic nature of the complexity results proved in Chapter 2, a < b + ¢ will be counted as
a single step. Operands R;, Rs and Rg are registers local to each processor: each processor has
available a constant number of them (the exact value of this constant being irrelevant). All the
algorithms do not use shared access to the same memory location in a single time step. A PRAM
enforcing this constraint is called Exclusive Read Exclusive Write PRAM (or EREW PRAM). Other
models allowing some degree of concurrent access are the Concurrent Read Exclusive Write PRAM
(or CREW PRAM) and the Concurrent Read Concurrent Write PRAM (or CRCW PRAM).

A PRAM algorithm will normally be specified as a sequence of instructions in a PASCAL-

like pseudo-code. The most important syntactic constructs are listed below.

e Assignments such as a < b + c are the simplest instructions.

e Programs will contain typical control structures like if-then-else conditionals, for and while
loops. In particular when similar tasks need to be performed on different data a parallel for

loop statement might be used. The syntax will be as follows
for all x € X in parallel do instructions

Indentation will show nested instructions.

The complexity measures we use are (parallel) running time and number of processors, nor-
mally expressed in asymptotic notation and as a function of the input length. By efficient algorithms
we mean algorithms that run in polylogarithmic (i.e. O(log;’c n) for some constant k) time in the

input length using a polynomial number of processors. Such problems define the complexity class

NC. A PRAM algorithm, in particular, is said to be optimal (see [GR88]) if the product of its par-
allel running time ¢(n) with the number of processors used p(n) is within a constant factor of the
computation time of the fastest existing sequential algorithm. The quantity w(n) = t(n) - p(n) is
called work.

Function and procedure names will often be used as macros. In particular the following

pre-defined subroutines are assumed.

1. A function copying in O(logn) time using O(n/logn) processors an element x across all
positions of an array of n elements. The syntax will be copy(z,n) and the result will be an

array of n elements all equal to .

2. A function computing an associative operation on a list of n elements in a certain domain, in
O(logn) time using O(n/ logn) processors. The function will have as parameters the list,
its size n, the operation to be performed and will return a value of the appropriate type. The

correct syntax for the function computing the sum of the n elements of a list L is tree(L, n, +).

3. If + is an associative operation over some domain D and L[1], . .., L[n] is an array of elements
of D the prefix sums problem is to compute the n prefix sums S[i] = Z;Zl L[j] fori =
1,...,n. The algorithms in Chapter 2 will make use of a function prefix, computing the prefix
sums of a list of n elements in parallel (this is also known as parallel prefix computation).
If L is a list of n elements and X is the integer multiplication, then the instruction R <
prefix(L,n, x) is carried out in O(logn) parallel steps using O(n/ logn) processors, if n is

the number of element of the list L. After this instruction it will be R[i] = Hj.:l L[j].

The following definition (essentially from [Joh90]) captures the class of PRAM algorithms

which will be of interest in Chapter 2.

Definition 1 A search problem belongs to the class RNC if there exists a randomised PRAM algo-
rithm A whose running time is polylogarithmic which uses a polynomial number of processors and

such that
1. ifSOL(z) # 0 then A outputs y € SOL(x) with probability more than 1/2;

2. if SOL(z) = O then the output of A is undefined.

Indeed, in all cases, the parallel algorithms in this thesis will satisfy a stronger condition.

If SiJ(z) # 0 then the probability that the algorithm does not produce an output is bounded above

by an inverse polynomial function. In all such cases we say that the algorithms succeed with high
probability.

Sometimes it is convenient to slow down part of a parallel algorithm in order to achieve
optimal work over the whole algorithm. Consider a computation that can be done in ¢ parallel steps
with z; primitive operations at step ¢. Trivial parallel implementation will run in ¢ steps on m =
max x; processors. If we have p < m processors the ith step will be simulated in [z;/p] < z;/p+1
time and so the total parallel time is no more than 22:1 x; /p+t. This is known as Brent’s scheduling
principle [Bre74]. This is assuming that processor allocation is not a problem: for specific problems
we may need to provide the processor allocation scheme explicitly (i.e. redesigning the algorithm
to work using p processors). Sometimes this principle can be used to find the number of processors
which gives optimal work. For examples all library functions above have optimal work whenever
p(n) = O(n/logn). Of course reducing the number of processors will slow down the computation.
So if the parallel prefix operation is run on a list of n elements using n/ log® n processors the

resulting algorithm runs in O(log® n) parallels steps.

1.2.3 Probability

Many of the results in this thesis are probabilistic. In this section some terminology and general
results are given.

Following [GS92], a probability space is a triple (2, X, Pr), where € is a set called a sample
space, ¥ = {E : E C Q} is the set of events and Pr is a non-negative real valued measure on X
with Pr[Q2] = 1. The elements of) are particular events called elementary events. Unless otherwise
stated 2 will be a finite set and ¥ will be the set of all subsets of). For every E € X the probability

of the event E, Pr[E] =4¢ > g Prw].

w€eE

Theorem 1 The probabilities assigned to the elements of a sample space § satisfy the following

properties (for every E, F € ¥):
1. Pr[E] > 0.
2. (Monotonicity) If E C F then Pr[E] < Pr[F].
3. Pr[EUF] =Pr[E] + Pr[F] — Pr[EN F].

4. Pr[E] =1 — Pr[E].

10

Theorem 2 (Total probability) If Fy,..., Ey, is a partition of Q with E; € X foralli and E € ¥
then Pr[E] = Y7, Pr[E N E;].

Proof. Immediate from Theorem 1.3 since the events £ N E; are all disjoint. O

Pr[E|F] will denote the probability of the event E given that the event F has happened.
If Pr[F] > 0, we define Pr[E|F] =4 Pr[E N F]/Pr[F]. A sequence of events E; are mutually
independent if Pr[Ey N ... E,] = [[;_, Pr[E;]. Mutual independence between pairs of events is

called pairwise independence.

Example. Let Q = {a,b,c,d} with Pr[a] = q and Pr[b] = Pr[c] = Pr[d] = p. Let E; = {a,b},
E; = {a,c} and E3 = {a,d}. P1[E;] = p+ q and Pr[E; N E» N E3] = Pr[{a}] = ¢q. Solving

q = (p + q)? with the constraint 3p + ¢ = 1 we get
PT[El N E2 n E3] = PI‘[El] . PI‘[EQ] . PT[E3]

for p = (3 — v/3)/4 and ¢ = (3v/3 — 5)/4. On the other hand Pr[FE;|E;] = q/(p + q) # Pr[E;].
Similarly sample spaces can be built in which it is possible to construct events that are pairwise

independent but not mutually independent.

A real valued random variable X on a probability space (€2, X, Pr) is a function from €2 to
the set of real numbers such that for every real number z the set {w € Q : X(w) < z} € X. The
distribution function of a random variable X is the function F' : R — [0,1] with F(z) = Pr[X <

Moments. If A is any real-valued function on the set of real numbers IR then the expectation of
h(z) is
E(A(X)) =4) _ h(z) Pr[X = q]
Q

In particular the mean of arandom variable X, usually denoted by u, is E(X) and the k-th moment of
X is E(X*) (of course, if 2 is not finite, these quantities might not exist). The k-th binomial moment
of X is E(()) whereas the k-th factorial moment of X is Ex(X) =4 E(X-(X-1).. (X —k+1)).
It follows that B¢ (X) = k! E(()).

Theorem 3 [f X =3 X; then E(X) = 3" E(X;).

This result, known as linearity of expectation, (the proof follows immediately from the definition of

expectation) is a very useful tool for computing the mean of a random variable. For example if the

11

value of X is the sum of a number of very simple random variables X; then the mean of X is easily
defined in terms of the means of the Xj;.

The variance of X, usually denoted by o2, is defined by Var(X) =4 E(X — p)?) =
E(X?) — u?.

Theoremd [f X = > X; and the X; are pairwise independent then Var(X) = Y, Var(X;).

Theorem 5 If X is a positive random variable then Pr[X >] < E(X*)/Ak for every A > 0 and

integer k > 0.

Proof. By definition E(X*) > >, ¥ Pr[X = z]. If z > X then the sum above is lower bounded
by A¥ Pr[X >)] and the result follows.]

Theorem 5 has many useful special cases, depending on the choices of A and k.
Theorem 6 (Markov inequality) Pr[X > 0] < E(X).
Theorem 7 (Chebyshev inequality) Pr[|X — E(X)| > A-0] < A72

An important use of Chebyshev inequality is in proving that a positive random variable takes
a value larger than zero with “high” probability (this property will be used repeatedly for example

in Chapter 4).
Corollary 1 If X > 0 then Pr[X = 0] < Var(X)/E(X)2

Proof. Pr[X = 0] < Pr[|X — E(X)| > A-o]if A = p/o. O

So assuming that a natural number n can be associated as a parameter with the elements
of the sample space under consideration, and that E(X) and Var(X) are thus functions of n, if
limy, 0 E(X) = oo and Var(X) = o(E(X)?) then the last corollary implies that Pr[X = 0]

becomes smaller and smaller as a function of n.

Distributions. We now briefly review the discrete probability distributions that will be used in
later chapters. The discrete uniform distribution on a finite sample space) containing n elements is
defined by

Priw;] = % Vie{l,...,n}

and in this case we say that w; is generated uniformly at random. The random variable X : Q —

{1,...,n} defined by X (w;) = % has discrete uniform distribution (or equivalently that its values

12

are distributed uniformly over). Using the following simple identities, which can be easily proved

by induction on n,
n
1 1)(2 1
Zi:@ ZiQZn(TH_)(2n +1)
i—=1 i=1

it is possible to derive

1< 1 nin+1) n+1
E(X)=— =—. =
(X) ; n 2 2
1 1\?
Var(X) = — (z—”;)
i=1
LIvme . (n+1)
= ElZz —Zz(n+1)+z 1
i=1 i=1 i=1
_ 1 "Zz_ii_n-;-l (nl—l)
i i=1
1 s nm+1) n2-1
- n;Z 2 1

(n+D)@n+1) (n+1* _n?-1
6 2) T 12

If X : Q - {0,1} and Pr[X = 1] = p then X is called a 0~I-random variable or random
indicator. 0-1-random variables model an important class of random processes called Bernoulli
trials. During one of these trials an experiment is performed which succeeds with a certain positive

probability p. In particular from now on we will always abbreviate Pr[X = 1] by Pr[X] and

Pr[X = 0] by Pr[X]. We have
EX)=0-(1-p)+1:-p=p
Var(X) =(0-p)*-1-p)+ (1 -p)* p=(1-p)(* +p-p°) =p(1 - p)

Random indicators have many applications in probability. For example they can be used to estimate

the variance of a random variable.

Theorem 8 If X can be decomposed in the sum of n not necessarily independent random indicators

then
1. Var(X) <237 o PrlX; A X;] + E(X) where the sum is over all 2-sets on {1,...,n}.

2. Var(X) < Eqo(X) + O(E(X)).

Proof. It follows from the definition that Var(X) < E(X?). For every real number z > 0 we
can write 72 = z + 2(2). Hence E(X?) = E(X) + 2E((¥)). If X = 3, X; then (¥) is the
number of ways in which two different X; can assume the value one, disregarding the ordering. So
E((3)) = Y BUX:, X53) = Yo, 5y PriXa A Xyl overall {i,5} € {1,...,n}.

The second inequality is trivial since Eo(X) = 2E((3)). O

The proof of Theorem 8 gives a combinatorial meaning to E(()2()) in terms of the random
indicators X;. If X = Y"1 | X; where X; are random indicators also the k-moment and the k-th
factorial moment of X have an interpretation in terms of the X;. E(X?) is the sum over all pairs of
(not necessarily distinct) ¢ and j of Pr[X; A X;] where E(X) is the sum over all ordered pairs of

distinct 7 and j of Pr[X; A Xj].

If X; are n independent random indicators with common success probability equal to p
then X = 2?21 X; has binomial distribution with parameters n and p. Simple calculations (using

Theorem 3 and 4) imply

E(X) = np Var(X) = np(1 - p)

If a sequence of identical independent random experiments is performed with common
success probability equal to p then the random variable Y; counting the number of trials up to the
first success has geometric distribution with parameter p. Pr[Y; = k] = p(1 — p)*~! hence using

the binomial theorem and some easy properties of power series

—-p
P2

E(v1) =1/p Var(¥;) =

In the same setting as above Y counting the number of trial up to the k-th success has the
Pascal distribution (or negative binomial distribution). Pr[Yy, = n] = (Z:i) p*(1 — p)"~*. Since
each trial is independent Y; = Z?:l Ylj where the Ylj have a geometric distribution. Hence by

Theorem 3 and Theorem 4 and the results for the geometric distribution we have

k(1-p
E(Yy) =k/p Var(Yz) = Mlop) o)
Improved Tail Inequalities. The beauty of Theorem 5 resides in the fact the only assumption
made on X is on the existence of E(X*). If more accurate information is available it is possi-
ble to improve considerably the quality of the results. The following Theorem states a couple of

inequalities proved in [Hm90].

14

Theorem 9 Lein € Wandletpy,...,pn € Rwith0<p; <1l i=1,...,n. Putp=(1/n)> p;
and m = np and let X1, ..., X, be independent 0-1 random variables with Pr(X;) = p;, 1 =

1,...,n. Let S =3 X;. Then
Pr(S> (1+e)m)<e ™3 0<e<1

and

Pr(S<(1—em)<e ™2 0<e<1.

In most cases the Chernoff bounds stated above will be used on a sequence of n independent iden-
tically distributed 0-1 random variables. Under these assumptions, .S has binomial distribution and

some improved bounds are possible (see [Bol85, Ch. IJ).

1.2.4 Graphs

Most of the graph-theoretic terminology will be taken from [Har69] and [Bol79]. A (simple undi-
rected) graph G = (V, E) is a pair consisting of a finite nonempty set V' = V(G) of vertices (or
nodes or points) and a collection E = E(G) of distinct subsets of V' each consisting of two elements
called edges (or lines). If e = {u,v} € E then the vertices u and v are adjacent, vertex u and the
whole edge e are incident (or else we say that u belongs to e, sometimes using the set-theoretic
notation u € e). Also if f = {v,w} € F then e and f are incident. If F' C E(G) then V (F) is the
set of vertices incident to some e € F. For every U C V(G), N(U) will denote the set of vertices
adjacent to some v € U and not belonging to U. If U = {v} we write N (v) instead of N ({v}). If
U,W C V then cut(U, V) is the set of edges having one endpoint in U and the other in W.

The degree of a vertex v is defined as degg v =g4¢ |N(v)|. The minimum (resp. maximum)
degree of G is = §(G) = minyey deggv (resp. A = A(G) = maxyey degg v). For all
i1 €40,...,n—1}1et V;(G) = {v € V : degg v = i}. A multiset is a collection of objects in which
a single object can appear several time. A multigraph is a pair H = (U, E) in which U is the set of
vertices and E is a multiset of edges. If e appears z. > 1 times in E then each of its occurrences is
a parallel edge. The skeleton of a multigraph H = (U, E) is a graph G with V(G) = U and E(G)
containing a single copy of every parallel edge in H plus all the e € E with £, = 1. A graph is
directed if the edges are ordered pairs. Round brackets will enclose vertices belonging to a directed
edge.

A graph is labelled if its vertices are distinguished from one another by names. Figure 1.2

shows the 64 different labelled graphs on four vertices. Some of these graphs only differ for the

15

1o o2 Vi V2 1 2 Vi Y2 1 V2 Vie Ve 1T V2 1o o2 "10><A/V2 Vi pYe 1 V2
v, 0 oY, \ v/ vL|><Lv ‘ ! v[><] in‘v

Vso oV Vso oY Vso OV Vpo—o0VYs 3 Vao—0Vs V4 oV 4 3 Vg0V 4 —0V; 47— V;
Vig o2 Vie oY Vig Y2 Vig pY2 Vig Y2 ViV M Vo Vi V2 Vi V2
VAL A v40_<Lv3 VAI Iv:5 vAJJzOv3 nl/lva v"o\Lv3 v“z;v3 VAKVS v‘w&.v3
Vig oYe Vig Y2 Vi V2 Vig o¥2 Vig Y2 Vi, V2 Vig oY Vi V2 Vi V2
V4o—oVYy "4<£4J"3 V4 CC><"3 V4 N"s Vact—oVy Yy O4£"a Va lj"a Va4 i:>~<£"3 1 N"a
Vig Y2 Vi Yy Vi Y2 Vs Ve Vi ov2 vy V2 Vi V2
R w b WINLWN, WXy WX
Vi o2 M V2 Vig Ve Vi 2o Vi V2
DA NN Wl IR Vi
Vi p¥2 o Vig Ve Vi Ve Vi V2oV V2
V4‘/j"3 V4(/IV3 V4O—£Ve "aigivs "4&"3

4 3 4
1o 2 Vi pY2 Vi (i[\

\ ’ZO Vs \ \,Xw Vs \ ‘L V3

V. v, V. V,

Figure 1.2: The 64 distinct labelled graphs on 4 vertices.

labelling of their vertices, their topological structure is the same. More formally, two graphs G
and G5 are isomorphic if there is a one-to-one correspondence between their labels which preserves
adjacencies. A graph is unlabelled if it is considered disregarding all possible labelling of its vertices
that preserve adjacencies. Figure 1.3 shows the eleven unlabelled graphs on four vertices.

A graph is completely determined by either its adjacencies or its incidences. This informa-
tion can be conveniently stated in matrix form. The adjacency matrix of a labelled undirected (resp.
directed) graph G = (V, E) with n vertices, is an n X n matrix A such that, for all v;,v; €V,
A; ; = 1if v; is adjacent to v; (resp. if (v;,v;) € E) and A; ; = 0 otherwise.

A subgraph of G = (V,E)isagraph H = (W,F) with W C Vand F C E. Hisa
spanning subgraphif W =V and it is an induced subgraph if whenever u,v € W with {u,v} € E
then {u,v} € F. If W C V(G) we will denote by G[W] the induced subgraph of G with vertex
set W. K, is the complete simple graph on n vertices. It has n(n — 1)/2 edges. Every graph on n

vertices is a subgraph of K,,.

16

A graph G = (V, E) is bipartite if V can be partitioned in two sets V; and V2 such that
every line of G joins a vertex in V; with a vertex in Va. K, n, is the complete bipartite graph
onn = ni + ng vertices. A graph is planar if it can be drawn on the plane so that no two edges
intersect.

If G is a graph and v € V then G — v is the graph obtained from G by removing v and all
edges incident to it; if v € V then G+v = (VUv, E). Ife = {u,v} € Ethen G—e = (V, E\{e})

and G + e = (V U {u, v}, E U e). These operations extend naturally to sets of vertices and edges.

co e ol NNV KU X K

Figure 1.3: The 11 distinct unlabelled graphs on 4 vertices.

A pathin a graph G = (V, E) is an ordered sequence of vertices formed by a starting vertex
v followed by a path whose starting vertex belongs to N (v). The path is simple if all vertices in the
sequence are distinct. The length of a path P = (v1,...,v) is k — 1. A cycle is a simple path
P = (vy,...,vt) such that v; = vg. A single vertex is a cycle of length zero. Since v € N (v) there
is no cycle of length one. An edge {u,v} € E belongs to a path P = (vy,...,vg) if there exists
i € {1,...,k — 1} such that {u,v} = {v;,viy1}. Two vertices u and v in a graph are connected
if there is a path P = (vy,...,vx) such that {u, v} = {v1,vr}. The distance dste(u,v) between
them is the length of a shortest path between them. The subscript G will be omitted when clear from
the context. A connected component is a subgraph whose vertex setis U C V, such thatallu,v € U

are connected and no v € V' \ U is connected to some u € U.

1.2.5 Random Graphs

Let G™™ be the set of all (labelled and undirected) graphs with n vertices and m edges. If N = (’2‘)
and G" = U _, G™™ then |gmm| = (M) and |G"| = 2V. Informally, a random graph is a pair
formed by an element G of G™ along with a non-negative real value pg such that) e pe = 1.
In other words random graphs are elements of a probability space associated with G™, called the
random graph model. There are several random graph models. In most cases the set of events is the
set of all subsets of G™ and the definition is completed by giving a probability to each G € G™. If T’
is a random graph model we will write G € I" to mean that Pr[G] is defined according to the given

model.

The probability space G(n,m) is obtained by assigning the same probability to all graphs on

17

n vertices and m edges and assigning to all other graphs probability zero. Foreachm = 0,1,..., N,
G(n,m) has () elements that occur with the same probability (1Y) !, Sometimes the alternative
notation G(K,,,m) is used instead of G(n, m), where K, is called the base graph since the elements
of the sample space are all subgraphs of the complete graph. Variants of G(n,m) are thus obtained
by changing the base graph. For example the sample space of G(K,, »,m) is the set of all bipartite
graphs on m + n vertices and m edges. This is made into a probability space by giving the same
probability to all such graphs.

In the model G(n, p) (sometimes denoted by G(K,,,p)) we have 0 < p < 1 and the model
consists of all graphs with n labelled vertices in which edges are chosen independently and with
probability p. In other words if G € G(n,p) and |E(G)| = m then Pr[G] = p™(1 — p)N—™.
A variant of G(n,p) is G(Ky, (pi,;)) in which edge {7, j} is selected to be part of the graph or
not with probability p; ;. So for example G(K,, n,p), whose sample space is the set of bipartite
graphs on n 4+ n vertices in which each edge is present with probability p, is indeed an instance of
G(Kan, (pi;))-

To avoid undesired inconsistencies it is important that under fairly general assumptions
results obtained on one model translate to results in another model. A property @ holds almost
always (or a.a.), for almost all graphs or almost everywhere (a.e.) if limy,_, o, Pr[G € Q] = 1. The

following theorem, reported in [Bol85, Ch.IT], relates G(n, p) and G(n, m).

Theorem 10 (i) Ler Q be any property and suppose that limy,_,oo p(1 — p)N = +o0o. Then the

Jfollowing two assertions are equivalent.
1. Almost every graph in G(n,p) has Q.

2. Givenz > 0ande > 0, if n is sufficiently large, there arel > (1—€)2z+/p(1 — p)N integers
My, ..., M; with

PN —z/p(1 —p)N < M1 < My < ... < M; < pN + z+/p(1 — p)N
such that Prag,[Q] > 1 — e foreveryi=1,...,1

(ii) If @ is a convex property and limy,_,, p(1 — p)N = +o00, then almost every graph in

G(n,p) has Q, where M = |pN + z+/p(1 — p)N|.
(iii) If Q is a property and 0 < p = M/N < 1 then

Pru[Q] < Prp[Q]e!/%M/27p(1 — p) N < 3v/M Pr,[Q]

18

The success of a random graph model depends on many factors. From a practical point of
view the model must be reasonable in terms of real world problems and it must be computationally
easy to generate graphs according to the specific distribution assigned by the model. From the
theoretical point of view the choice of one model over another depends on the specific problem at
hand and it is often a matter of trading-off the simplicity of combinatorial calculations performed
under the assumption that a given graph was sampled according to a certain model, for the tightness
of the desired results. G(n,m) often gives sharper results but it is sometimes more difficult to handle
than G(n,p). In Chapter 3 a slightly different model will be used which keeps the good features of
G(n,m) and is easier to analyse. Let M™™ be the set of all (labelled and undirected) multigraphs
on n vertices and m edges; let M™ = [J>-_ M™™. M(n,m) is the probability space whose
sample space is the set of pairs (M,o) where M € M™™ and ¢ is a permutation of m objects
(see Section 1.2.6 for further details on permutation groups) giving an ordering on the m edges of
M. The probability measure on the sample space assigns the same probability N =™ to all elements

of M™™ x S,,,. Strictly speaking, M(n,m) is a random multigraph model. Figure 1.4 shows

Figure 1.4: Examples of random graphs

a graph on 7 vertices and 13 edges and a multigraph with the same number of vertices and edges.
In particular the multigraph shown on the right corresponds to m! elements of the sample space of
M(n,m), one for each possible ordering. The model is somehow intermediate between G(n,m)
and the uniform model or multigraph process model as defined in [JKEP93] in which m ordered
pairs of (not necessarily distinct) elements of [n] = {1,2,...,n} are sampled.

The practical significance of M (n,m) is supported by the very simple process which en-
ables us to generate an element in this space: for m times select uniformly at random an element in
[n](), the set of unordered pairs of integers in [n] = {1,...,n}.

Again a result that relates properties of M(n,m) to those of G(n,m) is needed. The fol-

lowing suffices for the purposes of Chapter 3.

Theorem 11 Let X andY be two random variables defined respectively on G(n, m) and M(n,m).

If X(G) =Y (G) forevery G € G™™ N M™™ andm = en then E(X) < O(E(Y)).

19

Proof.

m! (N —m)!
E(X) = Ge%;mX(G)%
m!
< X))o
Ge;ﬂ" (N —m)
= ¥ x@Og (1-F)
Gegn,m

If m = en since N = n(n — 1) /2 we have

m\—m 2n
1— —) < e
(N/ =°

which is asymptotic to e®’. Hence

BX) <0 Y X
aegnm

For every simple graph G with m edges there are exactly m! elements of (G,0) € M™™ x S,

Since X(G) = Y (G) for every G € G™™ N M™™ we can write E(X) < O(1) - E(Y). O

1.2.6 Group Theory
Most of the definitions and the results in this section are taken from [Rot65].

Basic Definitions. A group is an ordered pair (G, *) where G is a set and * is a binary operation

on G satisfying the following properties:
gl g1 % (g2 g3) = (g1 * g2) * gs forall g1, 95,95 € G.
g2 There exists id € G (the identity) such that g xid = g = id x g forall g € G.

g3 Forall g; € G there exists go € G (the inverse of gq, often denoted by g7 1y such that g; * go =

id=gg*g1.

If X is a nonempty set, a permutation of X is a bijective function g on X. Let Sx denote
the set of permutations on X. Although most of the definitions are general, in all our subsequent
discussion X will be the set [n].

There are many ways to represent permutations. We will normally use the cycle notation

defined as follows:

(1) Given g, draw n points labelled with the numbers in [n].

20

(2) Join the point labelled 7 to the point labelled j by an edge with an arrow
pointing towards 7 if g(¢) = j. (This will form a number of cycles).
(3) Write down a list (41,42, .. .,%x) for each cycle formed in step (2).

(4) Remove all lists formed by a single element.
So for example g € Sg with g{1) = 3, g(2) = 2, g(3) = 4 g(4) = 1, g(5) = 6 and

g(6) = 5 will be represented as (1 34)(5 6). It is possible to associate a unique multiset {1 : k1,2 :

ka,...,n : kn} (sometimes represented symbolically as z¥z¥2 .. zk» or simply [ky, ko, .. ., kn])

to every permutation g € .S,, describing its cycle structure (or cycle type): g has k; cycles of length
i. In particular k; is the number of elements of [n] that are fixed by g, i.e. such that g(i) = 7. If
g(%) # i we say that g moves 1.

If g1, 92 € Sx then g4 o go is a new function on X such that (g1 0 g2)(z) =4r g1(g2(z)). It
is easy to verify that g; o go € Sx. The pair (Sx, o) is indeed a group called the symmetric group

on X. Sy, will denote both the set S}, and the group (S, ©).

Subgroups and Lagrange Theorem. If (G, %) is a group, a nonempty subset H of G is a subgroup
of (G, %) if

sgl g1 xgo € Hforall g1,90 € H.

sg2 The identity of (G, *) belongs to H.

sg3 gl € Hforallge H.

Theorem 12 [f H is a subgroup of a group G then there exists m € INT such that |G| = m|H)|.

Proof. (Sketch, see [Rot65] for details) Given H and g € G, define the set gH = {g+xh: h € H}.

[t follows from g1-g3 and sgl-sg3 that
1. |gH|=|H|forallg € G.
2. If g1 # g2 € G theneither gt H = go H or g1t H N go H = {.
3. Forall g4 € G there exists go € G such that g; € goH.

So there exists an m such that G = g1 H U ... U g,, H and the sets g; H form a partition of G. O
The study of permutation groups is strictly related to the study of graphs because a graph

provides a picture of a particular type of subgroup in S,,.

21

Definition 2 [HP73] Given a graph G = (V, E) the collection of all permutations g € Sy such
that {u,v} € E if and only if {g(u),g(v)} € E for all u,v € V is the automorphism group of G
and is denoted by Aut(G).

The structure and the properties of the automorphism group of a graph are of particular

importance in the study of unlabelled graphs and isomorphisms between labelled graphs.

Action Theory. A group (G, *) acts on a set §2 if there is a function (called action) - : G x Q@ — Q

such that
1. id-a = aforeach a € Q.
2. 91-(g2-0a)=(g1%g2)-aforallg;,gs € Gand o € .

The action of G on §2 induces an equivalence relation ~ on Q (a ~ 3 if and only if & = g3 for some
g € G). The equivalence classes are called orbits. Foreach g € G, define Fiz(g) = {a € Q: g-a=

a} and conversely for each a € Q) define the stabilizer of a tobethesetT'y = {g € G : g - a = a}.
Lemma 1 T, is a subgroup of G.

In particular S, can be acting on itself: f-g = fogo f~1. In this case ~ is called conjugacy
relation and the orbits are called conjugacy classes. In what follows C' will denote a conjugacy class

in S,.
Theorem 13 Conjugacy classes in Sy, are formed by all permutations with the same cycle type.

Proof. If g=...(...4j...)... then h o g o h~! has the same effect of applying h to the elements
of g hence g and h o g o h~! have the same cycle type. Let f and g belong to the same conjugacy
class. Then f = h o go h™! for some h € S,,. But this implies that f has the same cycle type of g.

Conversely if f and g have the same cycle type, align the two cycle notations, define h and
it is easy to prove that f and g are conjugate. O

Thus the number of different conjugacy classes is the same as the number of different cycles
types. From now on, a conjugacy class C' will be identified with the decomposition of n defining the

cycle type of the permutations in C'. The following result is well known (see for example [Kri86]).

Theorem 14 The number of permutations with cycle type [ki, ..., kn] is l_[n?i':kk')
i=1 v

22

Proof. Given the form of the cycle notation

S_)(_)"'(_),S_’_)(_’_ "'(_’_)"'(_’_""’_),

' '

kl k2

it is possible to count the number of ways to fill it.
e There are n! ways to fill the n places.
e The first k1 unary cycles can be arranged in k1! ways.

e The ks cycles of length 2 can be arranged in k2! ways times for each of the ks cycles the

possible ways to start (two). So k! - 2%2 overall.

e Similarly for k;, there are ¢ ways to start one of the i-cycles. Hence k;! - i¥: ways to put ik;

chosen items in cycles of length 3.

The following theorem states a couple of well known results which will be useful.
Theorem 15 Let G be a finite group acting on a set Q # .
1. (Orbit-Stabilizer Theorem) For each orbit w, |{(g,a) : & € wN Fiz(g)}| = |G|

2. (Frobenius-Burnside Lemma) The number of orbits is

1 1
==Y |l == ¥ |Fiz(g)|.
m = 1g] 2 el = gy L Fisto)

9€g
Proof. For each orbit w the elements of {(g,a) : @ € w N Fiz(g)} are pairs with g € T', and
a € w. There are |Ty| - |w| of these pairs. The first result follows from Theorem 12 applied to T,
since there is a bijection ¢ between w and the collection g;[',: if 8 € w then 8 = g - a for some
g € G; define ¢(8) = gl',.
The first part of the second result follows from the first result. Assume there are wy, . .., Wy,
different orbits. Summing over all a € w; we have

S Jwil-Tal = 3 161

aCw; aEw;

and from this

Y lwil - ITa] = |wil - 1G]

acw;

and finally, simplifying on both sides

> ITal =16

acw;

Finally, adding over all orbits

m
> D Il =mld]
i=1 a€w;
To understand the second equality observe that the sum on the left in the expression above is counting

pairs (g,a) for o € Q and g € T',. This is equivalent to count pairs (g,) for g € G and o €

Fiz(G). Hence

Y Y Tl =) |Fiz(g)l

i=1 aCw; 9€G

Pair Group and Combinatorial Results. Let ST(?) be the permutation group on the set of un-

ordered pairs of numbers in [n]. Every permutation g € \S,, induces a permutation g* € S,(LQ) defined
by g"({¢,7}) = {9(2), 9(1)}.
Theorem 16 Let f,g € C C S, and assume the cycle type of C is [ky, . . . , kn]. Then

]. f* ~ g*’.

2. |Fiz(g)| = 24©) where q(C) is the number of cycles of g* € s definable in terms of g;

3. Ifom) =¢ {z : 1 <z < n,ged(n,z) = 1}| is the Euler totient function and 1(3) =

252/1[' kij then
1 n
_ . 2 N
9(C) = 5 {;l(l) (i) —1(1) +l(2)}
4. |Fiz(f) Nw| = |Fiz(g) Nw| for every orbit w.

Proof. For every g € S, the cycle type of g* only depends on the cycle type of g (see for example
[HP73, p. 84]). The first statement is then immediate. The second statement follows from Theorem
15.2 and the formula for the number of unlabelled graphs given by the Pélya enumeration theorem

(see [HP73, Section 4.1]). The third and fourth results are mentioned in [DW83]. O

1.3 Concluding Remarks

This chapter has provided both the algorithmic context and the necessary technical background for
this thesis. A few more specific concepts will be defined in the relevant chapters. We are now in a

position to apply a number of randomised techniques to several combinatorial problem areas.

24

Chapter 2

Parallel Uniform Generation of

Unlabelled Graphs

In this chapter we look at some of the issues involved in the construction of parallel algorithms for
sampling combinatorial objects uniformly at random. The focus is on the generation of unlabelled
structures. After giving some introductory remarks, providing the main motivations and defining
our notion of parallel uniform generator, in Section 2.2 we describe the main features of Dixon and
Wilf’s [DW83] algorithmic solution to the problem of generating an unlabelled undirected graph on
a given number of vertices. We present its advantages and drawbacks and comment on the limits
of some simple parallelisations. In Section 2.3 we present the major algorithmic technique that,
combined with some of the features of Dixon and Wilf’s solution, allows us to define our parallel
generators. Section 2.4 represents a detour from the main chapter’s goal. The focus is shifted to
the problem of devising efficient parallel algorithms for listing integer partitions. Such an algorithm
will be used as a subroutine in the uniform generation algorithms presented in the following sections.
The last four sections of the chapter present the main parallel algorithmic solutions. In Section 2.5
we describe how to implement efficiently in parallel the second part of Dixon and Wilf’s algorithm.
The initial parallel generation problem is thus reduced to the problem of sampling correctly into an
appropriate set of permutations. We then present three increasingly good methods to achieve this.
Section 2.6 describes a first algorithm which shares some of the drawbacks of Dixon and Wilf’s
solution and, moreover does not produce an exactly uniform output. With an appropriate choice of

some parameters, given the number of unlabelled graphs on n vertices, the algorithm generates one

25

of them in O(logn) steps with optimal O(n?) work on an EREW PRAM, with high probability.
Unfortunately some unlabelled graphs are much more likely to occur than others. Better algorithmic
solutions are described in Section 2.7 and 2.8. We present two algorithms that, given the number of
vertices and no other counting information, generate an unlabelled graph in O(logn) parallel steps
and O(n? logn) work on an EREW PRAM, with high probability. The first one mimics in a tighter
way the original Dixon and Wilf’s algorithm, whereas the second one, based on a solution proposed

by Wormald [Wor87], moves further from Dixon and Wilf’s framework.

2.1 Introduction

Graphs are very popular partly because they may be used to model many different problems and
partly because, in most real-world situations, they are relatively easy to handle computationally.

To get a better understanding of some property of a family F of graphs in many cases it
may seem useful to list all the graphs in F. For graphs with a large number of vertices this may
become impractical because the cardinality of F can be super-polynomial in the order (i.e. number
of vertices) of the graph. The listing of few “typical” representatives obtained by a randomised
procedure which outputs graphs with a uniform distribution can be a viable alternative.

As mentioned in Section 1.1, assumptions about the input distribution sometimes make the
analysis of a particular algorithm easier. Theoretical results on the performance of a given algorithm
can then be tested experimentally if a procedure exists for generating input graphs according to the
desired distribution.

Uniform generation problems are also related to counting problems [JVV86]. Efficient
uniform generation algorithms can be exploited, through sampling techniques, to devise efficient
counting algorithms and conversely counting information is often crucial in uniform generation
procedures. Since counting problems are often computationally demanding tasks (see for example
[Val79]), uniform generation problems are difficult as well. If the requirement of getting exact
counting information or an output which is exactly uniform is relaxed then both types of problems
sometimes become solvable in polynomial time.

Sequential algorithms exist for the uniform generation of several classes of combinatorial
objects. The reader is referred to [NW78] for a large collection of early results and to surveys like
[Tin90, Sin93, DVW96, Wil97] for a few more up-to-date results. In this chapter we address the

problem of determining the parallel complexity of some uniform generation problems on graphs.

26

Very little seems to be known about this problem [AS94]. The problems considered are not compu-
tationally demanding and the main aim is to show the existence of good PRAM algorithms. Also
the material in this thesis can be a starting point for a deeper understanding of the issues involved in
the seeking of parallel algorithmic solutions to other uniform generation problems.

The definition of a parallel uniform generator can be stated in the style of [JVV86]:
Definition 3 A randomised algorithm A is a uniform generator for a relation SOL if and only if
1. there exists a function ¢ : ¥* — (0, 1] such that, for all z,y € T*,

0 (z,y) ¢ SOL

¢(z) otherwise

2. Forall x € X* such that SOL(z) # 0, Pr[Iy € SOL(z) : A(z) =y] > 1/2

If the algorithm is designed for a PRAM then A is a parallel uniform generator. In this
chapter we consider PRAM algorithms that run in polylogarithmic time using a polynomial number
of processors. Hence Definition 3 is actually a refinement of Definition 1 with the property that the
output is uniformly distributed.

In some cases the second property in the definition above is easily met. For example the
algorithm below always generates (the adjacency matrix of) a labelled graph on n vertices which is

distributed uniformly at random over all such graphs.

Input: n (* the number of vertices *)

(1) forall i,7 € {1,...,n} with ¢ < j in parallel do
) if (rand(0,1) > 1/2)

3 Gli,j] + 1;

C) G[j, i + 1

(5 else

(6) Gli, 7] + O;

@) Glj,i] < 0

The main focus of this chapter will be on the uniform generation of unlabelled graphs.
Unlabelled generation in general shows a strong interplay between Group Theory, Combinatorics
and Computer Science. In the most general (and rather informal) setting we want to sample a set
of structures disregarding possible existing symmetries. Action theory gives a way to describe and

account for these symmetries. Section 1.2.6 provides the reader with all relevant definitions.

27

Unlabelled uniformly generated random graphs are often even more useful than labelled
ones for experimental studies, especially when the properties of interest are preserved under vertex
relabellings. A quantity of examples come from graph-theoretic applications in Chemistry [Har69,
Chapter 1]. Molecules can be represented as multi-graphs whose vertices are labelled by a particular
chemical element. Different vertices may receive the same label and in many applications the only
characteristic that matters is the way in which these vertices are connected. Thus these multi-graphs
can be considered as unlabelled. An important open problem is to count the different possible
unlabelled multi-graphs that correspond to existing molecules [GJ97].

In the next section we review the key ingredients of the basic algorithmic solution for the

selection of an unlabelled undirected graph on a given number of vertices.

2.2 Sampling Orbits

The parallel algorithms for generating unlabelled graphs uniformly at random presented in the fol-
lowing sections are based on a general procedure DW for generating an orbit w of the set {2 under

the action of a permutation group G, first described in [DW83].

(1) Select a conjugacy class C C G with probability Pr[C] = E“T%ﬂ
(by Theorem 16.2 g can be any member of C' since | Fiz(g)| is the same
for all g € C; also m is the number of orbits).

(2) Select uniformly at random o € Fiz(g) and return its orbit.

The important observation in the analysis of DW (stated in Theorem 15.2) is the fact that
if we list pairs (g, &) where g is a permutation and @ € w N Fig(g) then each orbit occurs exactly
|G| times in this listing.

Notice that the number of orbits is an input to the algorithm above. Therefore DW is indeed
a nice and clean example of the relationship between counting and generation mentioned above. If
the number of orbits is known, using this number D)W will return an orbit distributed uniformly over
the set of all orbits.

Algorithm DWW can be adapted to generate unlabelled graphs of given order assuming that
their number is known in advance. In this case 2 = G", the set of all labelled graphs with n vertices,
and G = S, the symmetric group of order n. The action of S,, on G" is a mapping which, given

a graph and a permutation, relabels the vertices of the graph according to the permutation. The

28

0.8) 0.5

[}
ale
.
]
o fm
»
"y
]
3
]

3 10 12 12

0.8 n=38 o_zlm n=10

0.3 0.3

0.2 0.2

Figure 2.1: Probability distributions on conjugacy classes forn = 5,7, 8, 10.

parameter m is the number of unlabelled graphs on n vertices. A sequential algorithm running in
0O(n?) expected time is obtained by noticing that, although the number of conjugacy classes is super-
polynomial (see Theorem 19 below), the probability distribution defined in step (1) assigns very high
probability to conjugacy classes containing permutations moving very few elements. Figure 2.1 (to
be read in row major order) shows this distribution for values of n = 5,7, 8,10. More formally we

give the following definition:

Definition 4 If C; and C; are two conjugacy classes in Sy, then C; < Cj if the number of elements
fixed by the permutations in C; is larger than the number of elements fixed by the permutations
in Cj. The partial order < is called weak ascending lexicographic order (w.a.l. order for short).
In particular C; ~ C; if the permutations in the two conjugacy classes fix the same number of

elements.

Ideally we would like to prove that Pr[C;] is a decreasing function of the number of po-
sitions that are not fixed. But this is clearly false in all the examples in Figure 2.1. However it
is possible to prove monotonicity on a subset of all conjugacy classes and then, with a little more
effort, to establish that the probability of choosing a small (in w.a.l. order) conjugacy class in this

subset is much larger than that of choosing any other conjugacy class.

Definition 5 A conjugacy class is called dominant if its cycle type is of the form [n— 2k, k,0,. . ., 0]

forsome k € {0,...,|n/2|}. D, is the family of all dominant conjugacy classes in Sp,.

29

It follows from the definition that if C' € D,, then Pr[C] as defined in DW only depends

on the number of cycles of length two of the permutations belonging to C.

Lemma 2 For all n sufficiently large, if C € D,, then Pr[C] is a decreasing function of the number

of cycles of length two in the permutations in C.

Proof. Theorem 16 gives an expression for the cardinality of the set Fiz(g). If C' is dominant then

I(1) =n — k for some k € {0,...,|[n/2]},1(2) =k, all other (2) are null and
4(C) = o) (n— k) + 0K — (n— k) + k)

Function (%), as defined in Theorem 16.3, is the well known Euler function giving the number
of positive integers less than 4 that are prime to ¢. In particular (see, for example, [Rio58, p. 62])

©(1) = ¢(2) = 1. Hence

q(C) = %{nz—an+k2+k2—n+k+k}

= (Z) — k(n — 1) + k?

Thus it is possible to write
o(3)—kn+k?

mPrCl = o onw

and the proof will be completed by showing that f,, (k) : IN — IR defined by

2(’2‘)—kn+k2

Inlk) =4 (n — 2k)! k!

is a decreasing function of k. For any fixed n, the ratio

(k) (k +1)2n—1-2

b+ D) (m—2B)(n—2k—1)

If k < n/2 —log[(v/2 + €)n] for any € > 0, then

Fa(k) 92log[(V2+¢€)n]—1 [(\/§+ e)n]2

E+D > =D~ 2nn-1)

which is larger than one for any n > 2. If n/2 — log[(vV/2 + €)n] < k < |n/2] — 1 then

falk) n/2 — log[(v2 + €)n]
falk+1) = 2(2log[(vV2 + €)n] — 2)(2log[(v/2 + €)n] — 3)
n — 21og[(v2 + €)n]
8(log[(v2 + €)n] — 1)(21og[(v2 + €)n] — 3)

which again is larger than one for n sufficiently large. |

30

Lemma 3 For every integer k such that k = O(n/ logn), if C1 is a dominant conjugacy class with
associated cycle type [n — 2k, k,0,...,0], then Pr[C] < Pr[Cy] for every conjugacy class C with
C; <C.

Proof. Let C; be a dominant conjugacy class with associated cycle type [n — 2k, k,0,...,0]. By
Lemma 2 we only need to prove that Pr[C}] > Pr[C] for every conjugacy class whose permutations
move 2k + 1 or 2k + 2 elements. We state the argument explicitly for permutations moving 2k + 1
elements. Following [HP73] let ggf') = m) Pr[C] where the sum is over all conjugacy classes
whose permutations move exactly ¢ elements. Harary and Palmer [HP73] prove that

o o(B)+(i—ni+i?/2)/2
g(l) < :
ro= (n —9)!

Let C; be a conjugacy class whose permutations have cycle type [n — 2k, k, 0, .. ., 0]. We have

2)—k(n—2)+k>—243
gk < 9(3)—k(n-2)+k*-3+%
(n—2k-1)!

By Lemma 2
o(3)—kn+k?

mPrGl = onw

Hence if C is a conjugacy class whose permutations move 2k + 1 elements

PriC]< Y. PiC] < (n—2k)k! 2%~ 5+E pr{Cy]

C' moving 2k+1

The result follows for sufficiently large n. The argument for conjugacy classes whose permutations

move 2k + 2 objects is the same and the result follows since gﬁf Visa decreasing function of¢. O

A simple way to implement the first step of algorithm DW is to select a random real number
& between zero and one, to list conjugacy classes in w.a.l. order and pick the first conjugacy class
for which the sum of % over all conjugacy classes listed so far is larger than the threshold
. Let t, be the random variable counting the number of conjugacy classes listed by this algorithm.

The following result is proved in [DW83].
Theorem 17 1 < E(t,,) < 3 for everyn € IN.

The second step of DW can be implemented deterministically in O(n2) sequential time so
that the overall algorithm has expected running time O(n?).

The same algorithm can be simulated in parallel. The following result appears in [Pu97]
where, also, other parallel uniform generation algorithms for labelled graphs and subgraphs are

presented.

Theorem 18 There exists an algorithm running in O(logn) expected time using n? processors of
a CREW PRAM which generates uniformly at random an unlabelled graph on n vertices, assuming

their number is known in advance.

This result can be improved by using the algorithms described in Section 2.5 instead of
some of the procedures embedded in the proof of Theorem 18 to obtain an optimal EREW algorithm.
However there are two major problems which are inherent to Dixon and Wilf’s algorithmic solution.
First of all, the number of unlabelled graphs of order n is assumed to be known. Although an exact
formula for this number exists, its computation uses a listing of all conjugacy classes in S,,. The
reader is referred to Section 2.4 for further details on the complexity of listing conjugacy classes.
Secondly it is not easy to convert DW into an RNC algorithm which succeeds with high probability.

By the Markov inequality and monotonicity of probability, Theorem 17 implies that, for
every A > 2 with probability at least 1 — A™%, ¢, is smaller than 3\. It might then be argued that
fixing A (for example to some polynomial function of the number of vertices), selecting a random
& € [0,1] and listing at most 3A conjugacy classes during step (1), provides an algorithm which
always runs in polynomial time and returns a graph with probability at least 1/2. In Section 2.6
a parallelisation of DW based on this idea is described. The resulting algorithm belongs to RNC
and achieves optimal work and very low failure probability. Unfortunately it will be shown that
the distribution over the output graphs is not completely uniform. In a sense, using DW, exact
uniformity seems possible only if the whole process is allowed to run for a super-polynomial number
of steps from time to time.

In Section 2.7 and 2.8 a combination of the main ideas in DW and a different technique
presented in Section 2.3 will result in RNC algorithms with exactly uniform output probability.

Lower failure probability will be traded-off for higher efficiency.

2.3 Restarting Algorithms

To construct parallel algorithms which run in polylogarithmic time using a polynomial nurnber of
processors and produce an output with exactly uniform distribution with high probability, Dixon
and Wilf’s algorithm can be modified with a “restarting” facility. Acceptance-rejection sampling is a
well-known method in Statistics to generate a value according to an unknown probability distribution
(see [Rub81] or [vN51]). It has been used more recently in Computer Science by [KLM89] to

solve approximately some hard counting problems and applied successfully to uniform generation

32

problems by Wormald [Wor87]. In the first part of this section the basic conceptual ingredients of
the technique will be spelled out by looking at a simple “toy” problem. In the second part a short
description of Wormald’s use of a restarting algorithm to solve some uniform generation problems
in the context of unlabelled graphs will be given. The algorithms in Sections 2.7 and 2.8 show how

this idea can be exploited to define efficient parallel uniform generators as well.

Sampling in a Set Union. Consider the following problem. Let S, Ss,. .., S, be n given sets.
An element in the universe S = U} .S; must be sampled uniformly at random. We further assume
that the counting and uniform generation problems for S; for all ¢ can be solved in polynomial
time and that the membership in S; can be decided in polynomial time. Under these conditions the
following algorithm R generates a € S with probability that does not depend on @ and respects also

the second condition in Definition 3.

(1) Repeat n times steps (2)-(5):

(2) Select S; with probability |S;|/ > |S;].
(3) Select a € S; uniformly at random.

(4) Compute N = |[{k € [n] : a € Si}|.

(5) With probability 1/N output @ and stop.

The probability of outputting a specific a during an iteration is

Pr[a] = Pr[output|a] Z Prlalj] Pr[j] = % Z]|VSZ| = ZTSA

The probability of getting an output in one iteration is at least 1/n. Hence over n iterations the

j:e€S;

probability of getting no outputis at most (1 —1/n)"* < 1/e < 1/2.

Figure 2.2: Example of set family.

Figure 2.2 gives a graphical description of the situation in a simple case. The universe S is
partitioned into three classes C; = S1 \ S2, Co = S \ S1 and C3 = S1 N Ss. Ideally the following

algorithm £ should be used.

(1) Select C; with probability |C}|/S;

33

(2) Select a € C; uniformly at random

Unfortunately in most real world cases the cardinalities of the C; are unknown and the uniform
generation inside C; might be difficult. Hence we resort to sampling in the set of pairs (a, 7). From
the point of view of the original problem this is equivalent to sampling each a with a probability
proportional to the number of S; it belongs to. So we need to scale this down by allowing the

selection to take place with probability 1/N. This is exactly what algorithm R does.

Restarting for Unlabelled Graph Generation. Rejection sampling can be applied to the gen-
eration of unlabelled graphs as well. Restarting procedures for generating uniformly at random
unlabelled graphs of various types are described in [Wor87]. In the case of unlabelled graphs on
a given number n of vertices the symmetric group .Sy, is acting on the set G™. Also, the set of all
pairs (g, a), where g is a permutation and a is a graph fixed by g, can be partitioned in classes
T,...,YTp. This time only approximate counting information on the T; is given: |Y;| < r; for
eachi = 1,...,p. The following algorithm W can be used instead of DWW (as long as the r; satisfy

certain conditions, and ¢(n) = Q(logn))

(0) Repeat ¢(n) times steps (1.1), (1.2), (1.3), and (2):
(1.1) select aclass Y'; with probability r;/ > ;.
(1.2) Select a permutation g uniformly at random among those such that
(9,2) € 1.
(1.3) Restart with a probability w (where f is some real valued
function of T;).

(2) select uniformly at random « € F'iz(g) and return its orbit.

Notice that step (2) is exactly the same as before and the only change with respect to Dixon and
Wilf’s solution is in the way a permutation is selected. No exact counting information on the number
of unlabelled graphs with n vertices is needed. If the algorithm gets to step (2), the probability
distribution of the chosen a’s orbit is exactly uniform over all orbits (see [Wor87] for details).
Moreover with high probability the algorithm will succeed in generating a graph.

In Sections 2.7 and 2.8 two possible parallel implementations of this idea will be described.

Before that, in the next section, we will make a detour on integer partitions.

2.4 Integer Partitions

Step (1) in Dixon and Wilf’s algorithm selects a conjugacy class at random with a particular proba-
bility distribution.
Given a probability space over a finite sample space {e, .. ., €, }, the obvious way to select

i

one such event is to compute all the probabilities Pr[e;] fori = 1,. .., z, compute > ;

_, Prle;] for

i =1,...,z, then select a random number £ between zero and one and choose the event e; such that
i—1 i
> Prle] <€ <> Prley]
=1 =1

(in the above expression 22:1 Pr[e;] = 0). To compute the probabilities Pr[e;] a method must be
available to list all the e;’s.

In the first part of this section we describe a well-known bijection between the conjugacy
classes in the permutation group of order n and the set of so called integer partitions of n. By
Theorem 19 below and Theorem 16, for each conjugacy class C, all the information required to
compute Pr[C] can be extracted from the integer partition corresponding to the cycle type of C.
Therefore the selection of a conjugacy class in Dixon and Wilf’s algorithm can be done by listing
the corresponding integer partitions and using them to compute the required probabilities.

As a side result the bijection mentioned above along with some old results on the number
of different integer partitions of a number, implies that the number of different conjugacy classes in
a permutation group is superpolynomial in the order of the group. Hence an explicit listing of all
of them is not a very effective way to compute the required probabilities. However in Section 2.2
we showed that if conjugacy classes are listed in w.a.l. order the first few are much more probable
than all the others. In the final part of the section we describe an NC parallel algorithm for listing a

polynomial number of integer partitions in the corresponding partial order.

2.4.1 Definitions and Relationship with Conjugacy Classes

Forn € IN* any sequence 7 = (a;);—; _, With1<a; <ay <...<ap <nandn = Y a
is called an integer partition of n. Following Theorem 19 below, we will occasionally drop the
distinction between 7 and the cycle type of the conjugacy class associated to it, and represent
by the cycle type notation, [ki, ..., k,] (compare with Section 1.2.6), where n = Z’;:l ik; and
k; gives the number of parts of size 7. A more compact multiplicity notation is obtained by taking

the pairs (k;,) such that k; # 0. Figure 2.3 shows all integer partitions of 8 in the three different

35

representations.

Lemma 4 The number of non-zero pairs in multiplicity notation of any integer partition of n is

O(vn).

Proof. Let (i1,k1)(i2,k2) ... (in, kn) be an integer partition of n into some h non-zero parts. We

can write n = Z;;l ijk; > z;;l i; but also n > Z?:li = h(h — 1)/2, since 4; > j. This

implies b = O(y/n). In particular h < +/2n for every positive integer n. O
standard cycle type multiplicity
11111111 [8,0,0,0,0,0,0,0] 8,1
1111112 [6,1,0,0,0,0,0,0] 6,1 1,2
111113 [5,0,1,0,0,0,0,0] 5,1 1,3
1111202 [4,2,0,0,0,0,0,0) 4,1 2,2
11114 [4,0,0,1,0,0,0,0] 4,1 1,4
11123 [3,1,1,0,0,0,0,0] 3,11,21,3
1115 (3,0,0,0,1,0,0,0] 3,11,5
11222 [2,3,0,0,0,0,0,0) 2,1 3,2
1124 [2,1,0,1,0,0,0,0] 2,1 1,2 1,4
1133 [2,0,2,0,0,0,0,0] 2,1 2,3
116 [2,0,0,0,0,1,0,0] 2,11,6
1223 (1,2,1,0,0,0,0,0] 1,12,2 1,3
125 (1,1,0,0,1,0,0,0] 1,1 1,2 1,5
134 [1,0,1,1,0,0,0,0) 1,11,3 1,4
17 [1,0,0,0,0,0,1,0] 1,11,7
2222 [0,4,0,0,0,0,0,0] 4,2
224 [0,2,0,1,0,0,0,0] 2,2 1,4
233 [0,1,2,0,0,0,0,0] 1,2 2,3
2 6 (0,1,0,0,0,1,0,0] 1,2 1,6
35 (0,0,1,0,1,0,0,0] 1,3 1,5
44 [0,0,0,2,0,0,0,0] 2,4
8 [0,0,0,0,0,0,0,1] 1,8

Figure 2.3: Integer partitions of 8 in different representations.

The next result shows a relationship between integer partitions and conjugacy classes in

permutation groups.

Theorem 19 The number of different conjugacy classes in the permutation group Sy, is exactly the

number p(n) of integer partitions of n.

Proof. The result is proved by showing that every conjugacy class in S,, defines an integer partition

of n and conversely for every integer partition of n there exists a conjugacy class in S,.

By Theorem 13 all permutations in a given conjugacy class have the same cycle type. Since
permutations are bijections every i € [n] belongs to some cycle and to only one cycle. Hence the set

of cycle lengths of a permutation forms an integer partition of n.

Conversely if m = [k1, . .., kyn] is an integer partition of n then the permutation g described
by
(k1+ 1 k1+2) . (k1+ 2ko —1 k1 + 2k2)(k1+2k2 +1 k1+2ks +2 k14 2ko +3) e
kacycles of length 2 k3cycleszf length 3
has k; fixed elements, ks cycles of length 2 and so on. O

Both the counting and the uniform generation problem for integer partitions can be solved
fast in parallel. The following result states a well known combinatorial identity on the number p(n)

and the existence of an NC algorithm for calculating p(n).

Theorem 20 [SS96] For every n € INT the numbers p(i) for i € {0,...,n} can be computed in

O(log® n) time using n® processors on an EREW PRAM.

Proof. It is well known (see for example [Rio58, p. 111]) that the numbers p(%) for ¢ € {0,...,n}
occur as coefficients of z! in the polynomial
II 2 "

j=1 i=0

LetQ;(z) = ZZL:(/]] J 2 and Q[J] be its internal representation. For example if n = 10 then
Q3] = (1,9,0,1,0,0,1,0,0,1,0)

corresponding to 14+z3+z8%+2°. The product of two polynomials can be implemented by a function
poly_prod in O(logn) time using n processors on an EREW PRAM using a parallel algorithm to
perform a Fast Fourier Transform (see [Wil94] for a nice and gentle description of the algorithmic
ideas and [Lei92] for details about the parallel algorithm). Finally n polynomials can be multiplied

using the function tree(@Q, n, poly_prod) as defined in Section 1.2.2. The result follows. O

Example. Forn = 10,

1 |10/5]
[Io > 29 = (Q+z+2®+2%+2' +2° +2%+ 2" +2° +2° +21) -
j=1 i=0

A+22+2* +28 + 28 + 201 + 23 + 2% + 2°)(1 + 2* + %) -

A+25+20)1+250 +29)0 +22) (1 +2°)(1 + 2'9)

37

which eventually gives the polynomial
14z + 22% + 32® + 5z + 72 + 112% + 1527 + 222° + 302° + 422'° + . ..

It is worth noticing that there is a simpler way to compute the p(z)’s. It is easy to design
an algorithm for multiplying two polynomials in O(logn) parallel steps using n? processors on an
EREW PRAM. Such an algorithm can then be used in the proof of Theorem 20 instead of the one
based on Fast Fourier Transform. This results in a O(log® n) time, O(n®) processors algorithm for
computing all the p(¢)’s. Since the value of n for which p(1), ..., p(n) are computed is logarithmic
in the overall input order, the complexity values mentioned above do not represent any penalty.

We conclude this section by stating without proof a well-known asymptotic identity on

p(n). It will be used in analysing the algorithms presented in the next sub-section.

n\/2n/3

B - e
Theorem 21 [And76, Th. 6.3] p(n) ~ YR

2.4.2 Parallel Algorithm for Listing Integer Partitions

Due to their super-polynomial number there is no hope of finding an NC algorithm for listing all
integer partitions of n in any order. The w.a.l. order defined on conjugacy classes in Section 2.2
induces a homonymous partial order on integer partitions in the most obvious way: given two par-
titions 7 and 7, we say that m; precedes mo (and we write m; < 72) in w.a.l. order if the number
of parts of size one in 71 is greater than that of my. In this section an NC algorithm for listing a
polynomial number of partitions in w.a.l. order in multiplicity notation will be described.

We start by defining two parameters related to integer partitions of n. Let s3(n) be the

number of partitions of n € INT with smallest part of size at least 2; in particular s5(0) = s5(1) = 0.

Lemma 5 5,(j) = p(j) — p(j — 1) for every j > 1.

Proof. The number of partitions of j with no part of size one is the number of partitions of j less
the number of partitions of j starting with a one and ending in any possible way, thatis p(j — 1). O
Let u(k) denote the number of integer partitions of n with at least n — & ones, for every

k € {0,...,n}. The following lemma states the most important properties of u(k).

Lemma 6 Foreveryn € IN:

1. The parameter u(k) is independent of n. Move specifically it is u(k) = p(k) = 1 +

Z§=0 82(4) for every k € {0,...,n}.

2. Foreveryc € RY ifk = |clog® n| then u(k) = © (M)

og®n

Proof. The number of partitions of nn containing at least n. — k parts of size one is exactly the number
of integer partitions of k. To understand the second equality, a partition of & is either formed by all

ones or contains k£ — j ones and its remaining parts form a partition of 3 with smallest part of size at

least 2.
For the second part, If k£ = |clog® n], by Theorem 21
o™V/2k/3 o™V/2k/3
(1- E)W <wu(k) =p(k) <(1 +€)m-
The result follows. O

The key idea of the algorithm is to consider each partition as formed by two disjoint com-
ponents: a prefix of n — ¢ ones (for some ¢ € {0} U {2,...,k}) and a tail consisting of an arbitrary
integer partition of ¢ with smallest part of size at least two. A more detailed description is as follows
(partitions are represented in multiplicity notation, polynomials of degree d by the vector of their

d + 1 coefficients).

Input: n, k and polynomials Q[j] forj =1,...,k

(1) p + tree(Q, k, poly _prod);

2 B « prefix(p[1 : k], k, +);

3) List[1,1] « (n, 1);

4 Cycle_Type[1, 1] + (n,1);

(5) ifk>2

©) forallie€ {2,...,k},j € {1,...,p[¢]} in parallel do
%) List[Bli — 1] + j,1] (n —i,1);

®) for all ¢ € {2,...,k} in parallel do

9) List[B[i — 1] +1: B[i — 1] + p[4],2 : 2[Vk] + 1] + FL(:);
(10) Address[1] + 1;

(1) forall ¢ € {2,..., B[k]} in parallel do

(12) if List[i, 1] = (-, 1) and List[s, 2] = (-, 1)

(13) Address[¢] + 0;

(14) else Address[i] « 1;

(15) Address + prefix(Address, B[k], +);

(16) forall ¢ € {2,..., B[k]} and ¢ odd in parallel do

an if Address[i — 1] # Address[i]

(18) Cycle_Type[i — 1, -] « List[¢ — 1,];

(19 for all ¢ € {2,..., B[k]} and ¢ even in parallel do
(20) if Address[i — 1] # Address][i]
(21) Cycle_Type[i — 1,-] « List[i — 1,];

A 2-dimensional array Cycle_Type of size

k
(Z p(i)) x (2 VE] + 1)
i=1
is used to store all required integer partitions (we assume the array as well as the partial result array
List are initialised so that at the beginning Cycle_Type[z,y] = List[z,y] = 0 for all z and y). For
every legal z and y, Cycle_Type[z, y] will contain the y-th pair (k;, ,,) of the z-th partition in the
listing.

A preliminary bookkeeping stage (steps (1) and (2)) is needed to allocate the right number
of processors and amount of space to complete the listing. The i-th entry of the array p gives
the number of partitions of ¢ and is computed by a tree computation using the function poly_prod
defined in Theorem 20. The values of another vector B are obtained from p by parallel prefix.
Fori = 2,...,k, using p(¢) processors all partitions of 4 will be computed and stored in positions
Bli—1]+1,...,B[i — 1] + p(i) of List.

Since partitions are stored in multiplicity notation, prefixes of n—1 ones are encoded as pairs
(n —1,1). In step (3) List[1,1] is set to (n, 1) and then, (step (6) and (7)) for every i € {2,...,k},
List[B[¢ — 1] + j, 1] are set to the value (n — i, 1) for p[i] different values of j.

The algorithm then uses k — 1 groups of p(%) processors to complete the listing (steps (8)
and (9)). The i-th group (for ¢ € {2,...,k}) lists all partitions of 7 using a natural parallelisation
(breadth-first traversal of a binary tree) of the algorithm in [FL83]. Conceptually a tree 7 is built
whose nodes correspond to partitions of 4. From a partition 7 two “children” partitions are obtained

by applying (in parallel using two different processors) the following rules
A. add one part of size two and remove two parts of size one.

B. if the smallest part greater than one has multiplicity one then increase it by one and remove

one part of size one.

So for example if ¢ = 8, partition (8, 1) is the label for the root of T;. This has one child (6, 1)(1,2)

obtained applying rule A and this in turn has two children (4,1)(2, 2) and (5, 1)(1, 3) obtained from

40

rule A and B respectively. We then apply, if possible, the rules to these new leaves until the process
is complete. Notice that the concurrent access to 7 to generate its two children can be avoided, for
instance by storing two copies of every node, one to be used in building its left children and the
other one for the right one.

A final clean-up stage is needed to remove from List all partitions whose tail is a partition
of ¢ having smallest element one and compact the remaining elements. A sufficient condition for

List[z, -] to contain a “useless” partition is that
List[z,1] = (n —,1) List[z,2] = (4, 1)

For every z € {2, - E?Zl o(j)} this condition can be tested in one parallel step. The clean-up
stage is implemented by first (steps (11) through (14)) filling an array Address with zeroes and ones
depending on the condition above. Then parallel prefix is run on Address. After this Address[i] is
the address of List[z,] in the final array Cycle_Type. The two final for loops (two distinct loops
are needed to avoid memory conflicts) copy A into Cycle_Type avoiding the copying of “useless”

elements.
Lemma 7 The depth of the tree T; in step (9) of the algorithm above is O(i) for all i.
Proof. The partitions of ¢ into 7 parts is the set of nodes at level 4 — 3 + 1in 7. O

Theorem 22 For any given k, the algorithm above generates u(k) partitions of n in w.a.l. order in

O(k3/?) time using O(u(k)) processors on an EREW PRAM.

Proof. If k stages are allowed the algorithm uses O(Zfzo p(%)) processors to compute u (k) parti-
tions and the running time is proportional to the depth of the deepest 7; times the maximum time
spent at each node (which is at least the time to write down a partition in multiplicity notation, i.e.
O(k)).

By Lemma 5, deleting terms equal to zero,

k

k k
2P0 =1+ s0)+3 p(i-1).

=0 =2

By Lemma 6.2 for every j sufficiently large

p(G) > (-9

74/25/3 _ w/2(5—1)/3
e 1 6(1 1)e 2/3(1—56

4jv3 1l+e Ji— 4(5 —1)v3
1—c¢ 1 / .
& 1+e(1+jT1)e - 1)

41

where € is chosen so that the constant multiplying p(5 — 1) is larger than one. Hence we can write

k k 1 k
D) <1+ s0) + 2D p()

j=0

for some ¢ > 1 and from this conclude

k
>opl) < o [2 w)

2.5 Reducing Uniform Generation to Sampling in a Permuta-
tion Group

In this section an implementation of the second step of algorithm DW will be given. It is not difficult
to prove that if a permutation g € .S, has been selected (for instance according to the distributions
given by algorithms DW or W in Section 2.2 and 2.3), then a graph can be constructed efficiently
in parallel with optimal work. As a by-product the proof of Theorem 23 provides an optimal NC

solution to the counting problem associated with Fiz(g).

Theorem 23 Given a permutation g € Sy, the cardinality of the set Fiz(g) can be determined
in O(logn) deterministic parallel time on an EREW PRAM with O(n?/logn) processors. Also
a graph in Fiz(g) can be generated uniformly at random in O(logn) parallel time on an EREW

PRAM with O(n? [logn) processors.

Proof. Given g € Sy, a graph in Fiz(g) is obtained by generating g* € S and picking sets of
edges to be part of the graph by selecting cycles of g* with probability 1/2.

The PRAM implementation of this algorithm is rather straightforward. Sometimes the code
is a bit convoluted because of the need to avoid concurrent read operations. The first six steps of the

algorithm, given g, constructs g* € Sr(f).

Input: n, g be stored as an array G such that G[i] = g(¢)

(1) forall¢ € {1,...,n} in parallel do

©) Hi, -] + copy(Gli], n);

3 G*[i,].val « copy(G[i], n);

4 foralli,j € {1,...,n} and ¢ < j in parallel do

(5) G*[i, j]-val « (min{G*[i, j].val, H[j, i]}, max{G™*[i, j].val, H[j,i]});
©6) G*[i, j] leader « (i, j);

42

G*[i, 7]-val contains the pair {g(¢), g(j)}, whereas G*[i, j].leader will be needed for the
next stage. Its intended meaning is to keep track of the lexicographically smallest pair {z,y} be-
longing to the same cycle (in g*) that {4, j} belong to. The parallel time complexity of the piece of
code above is O(1) using n(n — 1) /2 processors on an EREW PRAM.

The next stage computes the cycle structure of g*. This is the bottleneck computation. The
main technique used here is pointer jumping. The following algorithm associates with every {3, j }
the value of the lexicographically smallest pair {z, y} belonging to the same cycle as {i,j} in g*.

The “>" used in step (9) is shorthand for the function implementing the lexicographic order.

7 fork € {1,...,[2logn]} do

(8) foralli,j € {1,...,n} and ¢ < j in parallel do

9 if (G*[i, j].leader > G*[G™*[i, §].val first, G*[i, §].val.second].leader)
(10) G*[¢, jl.leader «+ G*[G™[i, j].val first, G*[i, §].val.second].leader;
(11) G*[¢, j].val < G*[G"[¢, j].val first, G*[i, j].val.second].val;

For clarity this is a simple O(logn)-time O(n?)-processor EREW PRAM algorithm. An
optimal EREW algorithm for computing the cycle structure of g* can be obtained by adapting the
optimal O(log n) time deterministic list ranking procedure due to Cole and Vishkin (see [CV88]).

Having computed the cycle structure of g*, a label is associated with each cycle and the

array of labels is ranked.

(12) foralli,j € {1,...,n} and ¢ < j in parallel do
(13) if (G™[3, j]-val = G™[i, j].leader)

(14) Ord[(i — 1)n + 5] + 1;

(15) else Ord[(i —)n+ j] + 0;

(16) Ord < prefix(Ord, n(n — 1) /2, +);

After this Ord[n(n — 1)/2] contains the value of log |Fiz(g)|. The bottle-neck from the
complexity point of view is the cycle structure computation and the first half of the theorem is thus
proved.

Finally an array Cycles is created which contains with probability a half the label of the
cycle leader for each cycle. All other elements of Cycles are assumed to be set to zero by some

constant parallel time initialisation procedure.

a7 forall¢,j € {1,...,n} and ¢ < j in parallel do

(18) if ((G*[i, §].val = G™[i, j].leader) and (rand(0,1) < 1/2))
(19 Cycles[Ord[(i — 1)n + j]] + G*[i, j].val;

It is now easy to devise an algorithm that, using Cycles, deletes from G* all edges which
have not been selected. O
The algorithms contained in the proof of Theorem 23 will be used to implement the final
part (step (2) in the algorithm in Section 2.2) of the selection in all RNC algorithms described in the

following sections.

2.6 RNC Non Uniform Selection

In Section 2.2 (see Theorem 18) it was mentioned that DW can be simulated on a PRAM using a
polynomial number of processors by an algorithm running in O (log n) expected parallel time.

The same sequential algorithm can be converted into an optimal parallel algorithm having
polylogarithmic worst case parallel time with high probability. The resulting algorithm, which will
be called N, is based on a different conjugacy class selection procedure. The number of conjugacy
classes that will ever be considered by the process is fixed in advance as a certain function of n. Here

is a high level description of V.

(1.1) For a given k (to be defined later) select i € {1,...,u(k)} with prob-
ability Pr[C;] = 1< |2:L 2 and return “ERROR” with probability 1 —
Sy Prcil.

(1.2) Construct a representative g of C;.

(2) Select uniformly at random « € Fiz(g) and return its orbit.

The major problem with this algorithm is that, although reasonable in practice, the distri-
bution of the output graphs is not uniform. A super-polynomial number of conjugacy classes is not
considered at all by the process and this introduces some imbalance in the probability distribution.
For the original Dixon and Wilf’s procedure, using Theorem 15 it is easy to show that it is equally

likely for the output graph « to be in any of the orbits:

Privel = 3 PrlwalCIPrC]= 3 |F|’P-’fzizf;lw| |C|7|nF|;zz(| 9

CCSn CCSn

C||Fiz(g) Nw| = —— Fiz(g)Nw| =
5] 3 [ClIFisle)nw m|sn|§' (9) e

——|Sx
CCS, |S"|

44

If S;t(k) =CiUCU...U Cu(k)= then

|[Fiz(g) Nw| |C||Fiz(g)] 1 .
Prlw = - = C||Fiz(g) Nw
ol = 2, TRl sl mis 2, ICIFE@ N
Cgsn() Cgsn()
1 .
= T Z |Fiz(g) Nw]
" esr®

An upper bound on Pr[w,] is derived remembering that, by Theorem 15.7,

Z |Fiz(g) Nw| < |Sp| =nl.

gEeS™
Hence Prjw] < 1/m. If u = 1 then S}, = C; = {id}. The set of graphs fixed by the identity
permutation coincides with the whole set of labelled graphs on n vertices. The distribution of rep-
resentatives of different orbits in G™ is very imbalanced. The (orbit of the) complete graph appears
only once whereas orbits corresponding to labelled graphs with trivial automorphism group have n!
representatives. Hence Pr[w] > 1/(mn!). Figure 2.4 shows a small example. Rows are associ-

ce e e DN TN AKX

:(4,1) ' fJH W] D L
|

=]

:
3:(2,2) T IJ | ‘ = 7 L
6 (1,4) J_J - # ‘_ B |

~ =1 representative

0

Figure 2.4: Distribution of different orbits for n = 4.

ated with conjugacy classes, columns with orbits (the eleven unlabelled graphs on n = 4 vertices
are drawn on the top to represent them). Notation z : (i1, k1)(i2, k2) ... (in, kn) means “there are
x permutations with cycle type (¢1,k1)(i2,k2) - - - (in, kn). A small square in the row marked by
conjugacy class C' stands for a labelled graph belonging to the orbit in the particular column and to
some set Fiz(g) for some g € C, with occurrences of the same graphs in two different sets being
counted twice. If only conjugacy classes above the dashed line are listed one of the two unlabelled
graphs with four edges occur more than three times as often as the complete graph.

However, for sufficiently large n, graphs “behaving” like K, are very rare. This implies that

the distribution on unlabelled graphs given by the algorithm above, although not exactly uniform, is

45

skewed in very few cases.
Definition 6 A randomised algorithm A is a (v, ¢)-uniform generator for a relation SOL if and
only if

1. Pr[A(z) = y] = 0forall (z,y) € SOL.

2. there exist functions ¥, ¢ : ¥* — (0,1] with ¥(z) < ¢(z) for all z € X*, such that if
T,y € Ip,
P(z) < PrlA(z) = y] < ¢(z)

and

i 12 PIEA@) = 4] < (@)

S [SOL() =0

3. Forall x € ¥* such that SOL(z) # 0, Pr[Fy € SOL(z) : A(z) =y] > 1/2

The qualifiers “parallel”, “RNC”, and “with high probability” can be applied to this defi-
nition in the usual way. Definition 6 is meant to capture the type of approximation to the uniform
distribution given by the algorithm sketched at the beginning of the section. For n sufficiently large
the probability that the graph generated by the algorithm belongs to a specific orbit is uniform “most
of the time”. It is interesting to compare Definition 6 with another notion of approximation to the

uniform distribution.

Definition 7 [JVV86] A randomised algorithm A is an almost uniform generator with tolerance €

(0 < e < 1) forarelation SOL if and only if

1. there exists a function ¢ : ¥* — (0,1] such that, for all x,y € ¥* and for all ¢ € [0,1),

Pr[A(z,€) = y] € I(z,€) with

o=l © (@,y) ¢ SOL
7 %_3}, 1+ e)qb(:n)] otherwise

2. Forall x € ¥* such that SOL(z) # 0, Pr[Fy € SOL(z) : Az, e) =y] > 1/2

An almost uniform generator always produces an output with probability which approxi-
mates tightly the uniform but is never guaranteed to produce output with exactly uniform distribution
(i.e. with constant probability). If y € SOL(z) and a cost function P (z,y) =4 Pr[A(z) = y]

is associated with z and y then a generation problem can be recast as an optimisation problem in

46

which the goal is to optimise the “uniformity” of the output distribution. An almost uniform genera-
tor is, in some sense, an approximation scheme (see Section 4.1 in Chapter 4) for the exact uniform
distribution. On the other hand, a (%, ¢)-uniform generator produces exactly uniform outputs in
most cases in the sense that it fails to do so on a small proportion of elements of SOL(z) as stated
in the second condition of Definition 6. However some outputs can be generated with rather small

probability.

Theorem 24 There is an optimal EREW PRAM RNC (1/n!m, 1/m)-uniform generator for the class
of unlabelled graphs on n vertices, if their number m is known in advance. Moreover an output is

produced with high probability.

Proof. (Sketch) The result follows from the statement in [Bol85, p. 204] that almost all labelled
graphs on n vertices has trivial automorphism group. Hence the sequential algorithm at the begin-
ning of the section will produce a uniform output with probability (over all labelled graphs) going
to one. The proof is completed by the paragraphs following this theorem which provide details on
the computation of the probabilities associated with each conjugacy class and on the construction
of the representative permutation. The resulting algorithm runs in O(logn) parallel steps using

O(n?/ logn) processors. |

Selecting a conjugacy class. The implementation of step (1.1) in algorithm N{ assumes that
probabilities Pr[C;] for i = 1,...,u(k) have been computed. Lemma 9 and Theorem 25 below
describe an algorithm for computing these probabilities that runs in polylogarithmic time using a
polynomial number of processors as long as not too many conjugacy classes are listed. The value of
k can be either kept to a constant, in which case an optimal algorithm running in O(log n) parallel
steps using O(n?/ log n) processors is obtained, or chosen to be in (log n), in which case a slower
but still optimal algorithm is obtained. Notice that by the bounds in Lemma 6.2, k& cannot be chosen
to be asymptotically larger than log2 n otherwise u(k) becomes too large.

First a tight bound on the number of cycles of the permutations in Sﬁf) associated with those

g belonging to one of the conjugacy classes generated by our parallelisation of DW is proved.

+ - _ +2) p
Lemma 8 Foreveryn € IN" and for every x € {0,2,...,n—1}, let h(z,n) = T — ﬂﬁ—l. IfC

is a conjugacy class in Sy, with cycle type [n — x, ka, ks, .. .] then

(5) ~2bem <a(©) < (3) - e

47

Proof. Let n be given and C' be an arbitrary conjugacy class in S,,. From calculations in [HP73], if

[k1, ko, k3, - . .] is C’s cycle type, then

a(C) = il H ki + zn;z(’;) + Y ged(i, j)kik;

i= i= i<j
The upper bound is proved in [HP73, p. 197]. For the lower bound, if z = 0 then ¢(C) = (}) + 2.
Otherwise since [z] >z —1/2and 3, . ged(i, j)kik; > (n — z)z, we have
n . no ., 92 n .
3—1 Zki ’Lkz’
q(C)ZZ(5)k,+. > —27+(n—x)x
i=1 i=1 i=1
and therefore
n ., 92 n
’Lkz’ kz
q(C) > Z 3 —Z;-{-(n—z):v
i=1 i=1
_ (n—-x) n—) =ikii ki
= 5 5 + Z 5 Z 5 +(n—z)x
=2 i=1
T gy
— — bl — — hhi)
(2) n:l:+2+2+2+(n T)T ;2
n T
>) —o)r— 2
> (2) h(z,n) + (n — z)z 5
The result follows since nz — 2% — /2 > 0if z < n. |

Lemma 9 Foreveryn € INt and for every k € {0,...,n}, let

g(n, k) = max{ n® u(k)n “(k)\//;n} .

logn’ logn’ log?n
Let Cy,...,Cuw be the first u(k) conjugacy classes in Sy, in w.a.l. order. If the cycle types of the

conjugacy classes have been computed then all the numbers |Cg|29C%) for s = 1,..., u(k) are

computable in O(Vk logn) parallel steps using O(g(n, k)) processors on an EREW PRAM.

Proof. Let n and k be given. Assume 71, . . ., y(x) are the partitions of n describing the cycle types
of conjugacy classes C1, . .., Cy(x). The algorithm starts off performing some computation which
only depends on n, not on the conjugacy classes. First all “useful” powers of two are computed.
Since only conjugacy classes whose permutations move at most k& objects are listed, by Lemma
8 an array Pow of size = h(k,n) will suffice. After the execution of the code below for every
J € {1,...,size}, Pow[j, 1] = 2°°und+7 where bound = (%) —2h(k,n)—1,foralli € {1,...,u(k)}
(again multiple copies are needed to avoid concurrent reads in following stages). A first piece of

pseudo-code is need to generate the value 2bound+1:

48

&y
@
3
“
&)
(6)
(M

rep «+ [logn;
forall j € {1,...,[(bound + 1)/rep]} in parallel do
s+ (j—1rep+1;
while (s < j rep) do
Small Pow[s] + 2;
s+ s+1;

Pow[1, 1] ¢ tree(Small_Pow, bound + 1, x)

Each processor initialises [logn] elements of the array Small_Pow. Then a tree computation is run

on this array to compute 2°°un4+1 Without loss of generality step (7) is run in O(log n) steps using

O(n?/ logn) processors. All the other elements of Pow are computed as follows.

8
&)
10
amn
12)

for all j € {2, ...,size} in parallel do
Pow[j, 1] + 2;

Pow[-, 1] + prefix(Powl[-, 1], size, x)

for all j € {1, ...,size} in parallel do

Powlj, -] « copy(Powl[j, 1], u(k));

Steps (8) through (10) run in O(logn) parallel steps using O(size/ logn) processors. For the final

part, if k = O(log® n) and it is such that u(k) = O(n/log® n), there are about h(k,n) = O(nk)

objects to be copied u(k) times each. By slowing down the copy function to make it run in

O(log n) parallel steps, the whole algorithm’s running time is in the same order of magnitude using

O(n?/ logn) processors.

All factorials of j for j = 1,...,n are computed similarly. The following algorithm runs

in O(log n) parallel steps and has optimal work O(n u(k)).

(13)
(14
15)
(16)
an
(18)

Fact[0,1] « 1;

forall j € {1,...,n} in parallel do
Fact[j, 1] < 7;

Fact[-, 1] prefix(Fact[-, 1], n + 1, x)

for all j € {0, ..., n} in parallel do

Fact[j, -] + copy(Fact[j, 1], u(k));

Finally we compute ¢(5) for all § = 1,...,n using the equation (see [GKP89, p. 134])
T

o (j) =ji_f[1 (1 - pi) = sz [Iw:i-1)

i—1 Di i—1

49

(where p; are the primes occurring in the prime factorisation of j). There exists a real constant
¢ > 0 such that there are at most [cj/log | primes less than j (see for instance the discussion

in [GKP89, Sect. 4.3]). In the following code the array primes is a one dimensional array of size

z = [en/logn].

19 primes[-, 1] < SP(n);

(20) for all i € {1,...,z} in parallel do

@n primes[¢, -] + copy(primes][i, 1], n);

(22) foralléi € {1,...,z},j € {1,...,n} in parallel do
(23) if (j mod primes][i, j]) =0

24 Vect[i, j] < primes]i, j]

(25) else Vect[i, j] « 1;

(26) for all j € {1, ..., n} in parallel do

@n Prod[j].first « tree(Vect[-, 5], z, X)

(28) Prod[j].second + tree(Vect[-, j] — 1, z, x)
29 Phi[j, 1] < j Prod|[j].second/Prod|[j].first
(30) forall j € {1,...,n} in parallel do

31 Phi[j, -] + copy(Phi[j, 1], u(k));

Steps (19) through (21) in the algorithm above lists all primes up to n in O(logn) parallel steps
using O(n/(lognloglogn)) processors (see [SP94]) copying them to avoid subsequent concurrent
reads. Then (steps (22) through (25)) in parallel for every j, x processors are used to single out the
primes belonging to the prime decomposition of j. For each 4, the value primes[i, 7] is assigned to
Vect[s, j] if primes[z, 7] divides j. After this using standard PRAM functions we can define Phi[j]
(this is done in steps (26) through (31)). The best trade-off for the algorithm complexities is obtained
if the copying steps are made to run in O(log) parallel steps. The resulting complexity of the piece
of code above is O(log n) parallel steps using O((n/ logn)?) processors.

After the computation above, given partitions 7y, 72, . .., Ty(k) Stored in multiplicity no-
tation in the 2-dimensional array Cycle_Type as discussed in Section 2.4 the data structures Pow,
Fact and Phi are used to compute the desired cardinalities. A set of n/ logn processors {P} : i =
1,...,n/logn} is associated with each partition Cycle_Type[s, -] for s = 1,...,u(k). Each pro-
cessor will compute a logarithmic number of [(7) = Z]ri/lﬂ k;; (and store them into a portion of an
array L). Since all partitions have at least n — k ones, by Lemma 4, there are only O(+v/k) non-zero

elements in each of the vectors Cycle_Type[s, -]. Hence a logarithmic number of [(i) can be com-

50

puted in O (k) sequential time (after the required copies of Cycle_Type[s, -] have been made to avoid

concurrent reads). After O(k) parallel steps all the I(z) for each partition have been computed using

(0] (7;0’;(7]?) processors. The pseudo code is as follows:

24 rep «+ [logn;

(25) foralls € {1,...,u(k)},j € {1,...,2[Vk] + 1} in parallel do
(26) Copies_CT][s, 7,] + copy(Cycle_Typels, j], [n/rep])
27N foralls € {1,...,u(k)},r € {1,...,[n/rep]} in parallel do
(28) t+1;

29) while ¢ < rep do

(30) i« (r—1Drep+t;

31D L[s,] « 0;

(32) for j = 1t0 2vk + 1 do

(33) if (Copies_CT[s, 4, i].second mod 7 = 0)

34 L[s,i] « L[s,i]+ Copies_CT]Js, j, ¢].first;
(35 tt+1

The complexity of this part of the algorithm is O(v/k logn) parallel steps using o(n?/ logn) pro-
Cessors.

For every s the value

A =5 {_Zza)%o(i) — 1) + zm}

logn

is then computed using Phi[s, -] and L[s, -] (see [DW83]) in O(log n) parallel steps using O (” u(k))
processors. The value of ¢(C,) will be a pointer in the array Pow.

In parallel for each conjugacy class Cs, O(n/logn) processors can compute the product
Product[s] = T2, (i*k;!) in O(vk logn) time (each of the §*: factors require a tree computation)
by just scanning the array Cycle_Type[s, -], containing the partition in multiplicity notation (see
Section 2.4). Then the cardinality of Cj is stored in Card[s] = Fact[n, s]/Product[s] and the
computation of the numerator of Pr[C}] can be easily completed.

The running time of the whole algorithm is dominated by the time to compute Product,
O(\/E logn). Depending on the chosen value of k, the most expensive step in terms of number of
processors is either the initial computation of Pow (O(n?/logn) processors) or some of the copy

operations. O

51

Theorem 25 For everyn € INT and for every k € {0,...,n}, let g(n, k) be the function defined
in Lemma 9. Let Cy,...,Cyy) be the first u(k) conjugacy classes in Sy in w.a.l. order. If m, the
number of unlabelled graphs on n vertices is given, the probabilities Pr[Cy] involved in algorithm
NU above, for s = 1,. .., u(k), are computable in O(vk logn) steps using O(g(n, k)) processors

on an EREW PRAM.

Proof. Given m, the number of orbits and the quantity computed as described in Lemma 9 Pr[C;] =

|C5[29(C5) /mn! for s = 1, ..., u(k) can be computed quite easily. |

Theorem 26 For every n € INT, there exists a constant ¢ € R such that if k < clog2 n and
all probabilities Pt[Cs] for s = 1,...,u(k) have been computed, then step (1.1) of NU can be

implemented in constant parallel time and sublinear work on an EREW PRAM with high probability.

Proof. The parallel algorithm implementing step (1.1) of NU is described below.

Input: . the number of vertices, the values Pr[Cs] forall s = 1,. .., u(k)
ey P[0] « 0;
@ P[L: (k)] « prefix(Pr[C], u(k), +);
3 £ « rand(0, 1);
4 forall s € {1, ..., u(k)} in parallel do
(5) if ((P[s — 1] < £) and (P[s] > €))
(6) output(Cs) and stop;

The value of ¢ can be found from Lemma 6.

The probability that the process does not succeed is

u(k) p(n)
1-— Z PT[CZ] = Z PI‘[C,]
i=1 i=u(k)+1

The following result is from [HP73, p. 198]:

p(n)) K

22 n
D PGl <m0 (zT/)
i=u(k)+1

From which we deduce that the probability of failure is O (2,?%) : O
Selecting a permutation. Given a conjugacy class, for the purposes of the algorithm N, any

g € C “behaves” in the same way: by Theorem 16.2, |Fiz(g)| is the same for every g € C.

52

i= 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
mn= 1 1 3 3 3 3 3 3 3 3 11 11 11 11 11 11 11 11 11 20 20 20 20 20 20
lengh= 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 6 6 6 6 6 6
next = -
Figure 2.5: Values of G after step (2).
Definition 8 If C' has cycle type whose non-zero elements are ((kj,,j1),-- -, (kj.,Jc)) then the

canonical representative g € C' is the permutation such that the numbers involved in cycles of length

Jz (forz € {1,...,c}) are the numbers between 1 + 5 yky and jokj, + 32, ;. Yky in the

Y<ja=

usual order.

Example. Ifn = 16 and the conjugacy class has the associated cycle type ((3,1)(2,4)(1,5)) then
its canonical representative is g = (1)(2)(3)(456 7)(8 910 11)(12 13 14 15 16).

Lemma 10 Given a conjugacy class C such that all permutations in C have cycle type ((kj, , 1),
..., (kj., Jc)), the canonical representative of C can be built deterministically in O(logn) parallel

steps and O(n) work on an EREW PRAM.

Proof. The permutation g will be again represented by an array of n elements such that the ¢th
element contains the address (i.e. the index) of the element following ¢ in its cycle. The array can be
built in O(log n) steps using O(n/ logn) processors. Indeed the real bottleneck in the running time
is O(log k) in the first stage; all other stages can be run in optimal linear work and even constant
parallel time. Given the chosen cycle type in the array Cycle_Type][s, -] the algorithm will define the

contents of an array of length n whose elements are four-tuples:

e G[i].min is the smallest number belonging to a cycle of the same length as the one that i

belongs to.
e Gli].length is the length of the cycle that belongs to.

e Gli].next is the value of g(3).

A detailed algorithmic description is as follows:

(1) Initialise a vector Offst such that Offst[1] is equal to one and, for all

i € {2,...,n}, Offst[4] is equal to
Cycle_Typel[s,] first - Cycle_Type[s, i].second,

53

and run parallel prefix on it. This takes O(log k) parallel steps using
O(V'k/ log k) processors on an EREW PRAM since there are only at
most O(v/k) non-zero elements in Cycle_Type. After this stage Offst[4]
will contain the first element involved in a cycle of length ¢ (for every
length that is actually present). If n = 25 and the given cycle type is
(2,1), (4,2), (3,3), (1,6) then Offst =1, 3,11, 20, 26.

(2) Define the elements in position Offst[j] (for j < |C|) in G by the tuple:
(Offst[4], Cycle_Type]s, i].second, 0)

then replicate elements min and length so that each (processor associ-
ated with a particular) cell in the result array knows what is the length
of the cycle it belongs to and what is the first element in a cycle of
the same length. In the example above after this stage the fields of G
contain the values reported in Figure 2.5. The worst case is when all
cycles have the same length. In this case the optimal copying steps run
in O(n) work.

(3) Itis now possible to compute the field next in constant parallel time and
optimal linear work. G[i].next is always ¢ + 1 unless
(a) Gli].length = 1, in this case G[i].next = 4; or
(b) (i+1— G[#]-min) mod G[:].length = 0, in which case G[i].next =
G[i].min + Gli].length((i — G[i].min) + GJé].length) where “+”

returns the integral part of the division between its two operands.

2.7 Algorithm Based on Conjugacy Class Listing

The use of the restarting paradigm described in Section 2.3 seems to be crucial to the definition of
RNC algorithms for sampling unlabelled graphs of given order with uniform distribution. The RNC
algorithm described in this section does not require the number of unlabelled graphs on n vertices
as input.

Let Cy, ..., Cym) be conjugacy classes with permutations containing at least n — k fixed

54

elements and let Cp = Sy, \ Uf:(ﬁ) C;. Define

n
n iG+2) _ in T
By = 2(3)) A R
0 . (n—1)!
i=k+1

and B = By + E:‘L’i) |C;||Fiz(g)|. Consider the following sequential algorithm A4,

(1.1) selecti € {0,1,...,u(k)} with probability

By ifi = 0;
PI‘[Ci] = .
etk 2;(0') otherwise

(1.2) if ¢ = 0 then select a permutation g € Cp uniformly at random other-
wise construct a representative g € C; (by Lemma 16./ in Section 1.2,
if 2 > 0 then g can be any member of C).

(1.3) goto (2) with probability

ICollgzm(y)I ifi=0;

Pr[Out|(i, g)] = {

1 otherwise

(otherwise go back to step (1.1)).

(2) select uniformly at random o € Fiz(g) and return its orbit.

A single execution of steps (1.1) through (1.3) of A is called a run. A successful run is a

run which ends with goto (2).
Theorem 27 Algorithm A generates unlabelled graphs on n vertices uniformly at random.

Proof. The probability that .4 generates a particular graph is

u(k) C: .

1 |Cy]29(C) |Co||Fiz(g)] 1 1 By
PrlA=qa] = e i — 2
; 2:C) B gg(;o By |Fiz(g)| |Co| B

1 < 1 _nl

= gl 5=5%

i=1 gECg
which is the same for all graphs. O

The natural parallelisation of algorithm .4 consists of executing p runs independently and in
parallel and outputting a graph if at least one run is successful. It will be shown that if p = Q(logn)
then the probability that there is no successful run is O(1/n). The following paragraphs provide
details of the implementation of the single steps. Theorem 32 is the main algorithmic result of this

section.

55

Selecting a conjugacy class. The implementation of step (1.1) in algorithm .4 assumes that prob-
abilities Pr[C;] for i = 0,...,u(k) have been computed. The pseudo-code for this pre-processing

phase is as follows. The value of k& will be fixed in Theorem 29.

(1) Form a list of the first u(k) partitions 7; in w.a.l. order.
(2) Compute Pr[C;] forall j € {1,...,u(k)}.
(3) Run parallel prefix on the probability vector and store the result into an
array P; then define Pr[Cp] as 1 — P[u(k)].
(4) Finally update the vector P so that P[j] < P[j] + Pr[C] for all j €
{0,...,u(k)}.
The most expensive steps in this process are (1) and (2)-(3). Theorem 22 deals with the
partition generation. Theorem 28 below shows that as long as not too many conjugacy classes are

listed, the selection probabilities can be tabulated in NC.

Theorem 28 For everyn € INT and for every k € {0, ...,n}, let g(n, k) be the function defined in
Lemma 9. The probabilities Pr[Cy] for s = 0, ..., u(k) are computable in O(v/k logn) steps using

O(g(n, k)) processors on an EREW PRAM.

Proof. Step (3) of the algorithm above shows how to compute Pr[Cp], given all other probabilities,
using parallel prefix. Hence we only need to show how to define Pr[Cs] = |C,|29(C5)/B for
s =1,...,u(k). By Lemma 9 the quantities |C,|2¢(C) for all s can be computed in O(v/k logn)
parallel steps using O(g(n, k)) processors on an EREW PRAM. A final piece of code is needed to

compute By. This can be described as follows:

(1) Initialise By = 2(5). This can be done in O(log n) parallel steps using
optimal O(n?) work.

(2) Copy n times Fact[n]. Then processor P; fori = k+ 1,...,n uses
Fact[n, 7] to define Ratio[i] = Fact[n,i]/Fact[n — &k + 4, 1] in optimal
linear work.

(3) The number h(k + 1, n)ﬁ =2+ s computed using an opti-
mal linear work algorithm and stored in Pow2[1, 1].

(4) Fori = 2,...n — k, Pow2[i, 1] is initialised to v/2 and then parallel
prefix is run on it. After this Pow2[¢, 1] = 2- 5+

(5) Then, each Pow2[i, 1] is copied k + ¢ — 1 times and a tree compu-

56

L . . (btin | (bti)(btit2)
tation is run. After this Pow2[i,1] = 2=~ =2 1

(for all

(6) Using a tree computation on the product Pow2[i, 1]Ratio[#] the summa-
tion in the definition of By is easily computed in O(log n) parallel time
and linear work. Then By can be redefined in terms of its initial value
and the sum above.

(7) B — By can be easily computed by tree(Card, u(k), +) and B defined
consequently. Finally Pr[s] + Card[s]/B in constant time for all
s = 1,...,u(k). All this can be achieved in O(logn) parallel steps

using O(u(k)/ logn) processors.

O

Theorem 29 For every n € INY, there exists a constant ¢ € R such that if k < clog;2 n and
all probabilities Pt[Cs] for s = 0,...,u(k) have been computed, then step (1.1) of A can be

implemented in constant parallel time and sublinear work on an EREW PRAM.

Proof. Similar to that of Theorem 26. O

Selecting a permutation. If the class chosen by step (1.1) is Cp, a permutation g € Cp is gen-
erated uniformly at random. There are several algorithms for generating permutations in parallel
uniformly at random (see for instance [AS91]). If R; is the set of permutations which move exactly
i elements out of n then g € Cp = UiZ k41 fti 1s built by first selecting one of the R; with proba-
bility proportional to its size and subsequently selecting a random permutation g moving exactly

objects using a method described in [Wor87].

Lemma 11 For everyn € INT, |R;| = (nnT'z)' Z;ZO(—l)j;—!for alli € {1,...,n}. Moreover all

the numbers |R;| can be computed in O(logn) time and linear work on an EREW PRAM.

Proof. Given a finite set .S, a simple combinatorial principle, known as inclusion-exclusion states
(see for instance [Rio58, Ch. 3]) that if 4; = {z € S : P;(z)} for some property P; with i =

1,2,...,m then the number of objects in S that have none of the properties P; is

(Al =181 =D 1Ad+) 1AinA;| =D JAinA; N Akl + ...+ (-D)™[A1N A2 .. N Ay
i=1

57

In the case of interest, let A; = {g € S, : g(¢) = %}. Then |4;| = (n — 1)! and in general
|Az; N...N A | = (n — 7)!. This implies that the number of derangements of ¢ objects is
D@) = XZ:(—UJ' (’) (i — ! =4 Xn:(—nﬂ'l.
§=0 J =R
The number of ways of selecting an element in R; is the number of ways of choosing n — 1 fixed

objects out of n, times the number of derangements on the remaining ¢ objects.

(1) In Theorem 28 it was proved that a vector Fact of length n whose
j-th position contains j! can be computed in O(logn) time and lin-
ear work. Using this vector another vector Sums such that Sums[i] =
Z;ZO (—=1)7 Jl—, can then be computed within the same complexity.

(2) A third vector Frac containing the ratios (nL—'zF can again be computed
within the same complexity.

(3) Finally (in constant time using a linear number of processors) |R;| =

Frac[7] Sumsz].

The pseudo-code for the algorithm described above is

(1) Fact[0,1] « 1;

2) Ft« Fact[n, 1];

3 for all ¢ € {0, ..., n} in parallel do
) if odd ¢

o Sums[i] + —1/Fact[z, 1];
©) else Sums[i] + 1/Fact[z, 1];
0 Fli] « Ft/Fact[n — i, 1]

8) Sums « prefix(Sums, n + 1, +);
©) for all ¢ € {0,...,n} in parallel do
(10) R[i] + F[¢] Sums]i];

O

Lemma 12 Elements of Cy can be generated uniformly at random in O(logn) parallel steps using

on processors with high probability if § = Q(logn).

Proof. First a class R; is selected with probability ZEPI;L‘I' Then & groups of n processors are

allocated. Each of them, independently, selects a random permutation of 1,2,...,% (in O(logs)

time steps and ¢ processors using a result in [AS91]). Let the random variable X denote the number

58

of derangements in ¢ trials. X is binomially distributed with success probability p = D (%) /i!, where
D(i) was defined in Lemma 11. Since et =)22, %, it follows that p ~ e~ (details are in
[GKP89, pp. 195]). Then Pr[X = 0] can be bounded above by e~ 90 using standard results on the
tail of the binomial distribution (for example Theorem 9) and the result follows. O

If step (1.1) returns a conjugacy class then, for the purposes of the algorithm A, any g € C
“behaves” in the same way: by Lemma 16.2, | Fiz(g)| is the same for every g € C. By Lemma 10
the canonical permutation can be generated deterministically in O(logn) parallel steps and linear

work on a EREW PRAM.

Theorem 30 Step (1.2) of A can be implemented in O(logn) time and O(nlog® n) work on an

EREW PRAM with high probability.

Restarting Probability. If Cy was chosen in step (1.1) and a random permutation g € Cp was
selected in step (1.2) the algorithm A proceeds to the selection of a graph in Fiz(g) with probability
|Col|Fiz(g)|/Bo. The implementation of step (1.3) chosen here does not present any particular
difficulty. The values of By has been computed already (see Theorem 28). Also, |Co| = n! —
Z;‘:(’i) |C;| can be easily computed in O(log n) parallel steps and optimal linear work using the data
structures defined in Theorem 28. Finally, the cycle type of g¢* can be defined using pointer jumping

and algorithmic solutions as in Section 2.5.

Probabilistic Analysis. The parallelisation of algorithm A4 is obtained by performing p indepen-
dent trials each simulating a run of 4, in parallel. In this final paragraph an upper bound on the
probability that the whole process fails to produce a graph over p trials is given. Let X, be a random

indicator equal to one if the s-th run is successful.
Lemma 13 Ifm is the number of unlabelled graphs on n vertices then Pr[X, = 1] ~ "!Tm.

Proof. The algorithm chooses an index 7 and a permutation g € Cj;. Let Out = Out(; 4) denote the

event “the algorithm terminates given that some ¢ and g were generated”.

Pr(X, =1] = Y _ Pr[Out|(i,)] Pr[(i, 9)]

(i,9)

Remembering that
[CallFiz(g)] 54 = 0;

Pr[Out|(¢, 9)] = { Bo

1 otherwise

59

and

. N
Pr{(i,)] = { meg o
Wf”f;% otherwise

Simplifying and making the sums explicit we get (here ¢ ~ 1 is the probability that Step (2) does
generate a permutation in C;)

u(k) u(k)

Prix=11=0 3, 53 G- 55 57 iricta) = 7

i=0 g€C; =0 g€C;

The last equality follows by Frobenius’ lemma since Z;‘:Uf)) Y ogec; |Fiz(g)| = 3 s, |Fiz(g)].
|
Let X = 3" X, count the number of successful runs over p trials. By Theorem 9, Pr[X =

0] < e O(E(X)), The following result shows that the expected value of X is sufficiently high.
Lemma 14 E(X,) = O(1).

Proof. By Theorem 15.2 nlm = > |C |2q(C) where the sum is over all conjugacy classes. We
need to prove that Bo ~ 3 ;o k) |Ci[29(¢). Let R; = {g : g € Sn,g moves i elements}.
Co = Uimpyy Riand |Ry| ~ (n"f'), (forall§ > 1).
Now we write By in terms of the conjugacy classes and by Lemma 8
n .
By~ 3 2076 37 o) > 3T |Gif20()
i=k+1 CCR; i>u(k)
From above, direct calculations show that
it

n n . ! n n 2 42
Bo = 9(3)—htim) ___ < p19(3) -
o= D TENTE DI &

i=k+1 i=k+1

) 0 52 ()

i=k+1
from this By < n! |C;]29(CY) (where C} is the conjugacy class formed by the identity permutation).
Hence the contribution of By to B is asymptotically smaller than that of Z;‘:(]i) |C;]29(%%) and since

Z;‘:(’;) |C;]24(C4) ~ nlm (see [HP73]) the result follows. O
Theorem 31 [f p = Q(logn) then with high probability there exists a successful run.

Proof. Follows from Lemma 14 and the previous discussion. O
Putting together Theorem 28, Theorem 29, Theorem 30, Theorem 23 and the argument on
the restarting probabilities we get an RNC algorithm for generating uniformly at random unlabelled

graphs of given order.

60

Theorem 32 For every n, there exists an RNC algorithm for generating unlabelled graphs on n
vertices uniformly at random in O(log n) time and O(n? logn) work on an EREW PRAM. Moreover

an output is generated with high probability.

Proof. The most expensive step in the proposed parallel implementation of algorithm A is the
preprocessing required to compute the probabilities Pr[C]. However this only needs to be done
once. If p trials are run in parallel and & is chosen to be a constant, the resulting algorithm runs in
O(log n) time and O(pn?) work on a EREW PRAM. The result follows by choosing p = O(logn).

O

2.8 Avoiding Conjugacy Classes

In [Wor87] an alternative sequential algorithm is described which does not require any information
about the conjugacy classes in Sy,. The collection (R;);, as defined in Lemma 14, is a partition of

Sn. IfB; =2G) andfor2 < i <n, B; = 2@>—h(iv")(nl_ where h(i,n) is the function defined

n—i)!

in Lemma 8 then |R;| < B; foralli =1,...,n.

The sequential generation algorithm W is described by the following steps (in what follows
M =370, By

(1.1) select R; with probability £¢;

(1.2) select uniformly at random g € R;;

(1.3) goto (2) with probability)l (otherwise the run is failing and

|R;||Fiz(g
B;
the whole process is started again).

(2) select uniformly at random « € Fiz(g) and return its orbit.

As before on a successful iteration the distribution of the output of W is uniform over
unlabelled graphs on n vertices and each iteration has a fixed (very high) success probability "'7'"

The parallel implementation of W does not need to be described in great details since most
of the work has been done already. After a preprocessing stage in which all the B;, fori =1,...,n
are computed, p trials are run in parallel each consisting in the successive selection of a class R;, a
permutation g € R; and the computation of the probabilities to restart the process. If p = Q(logn)
at least one of the trials ends with high probability (see [Wor87]). Finally one of the terminating
processes is chosen and a graph in Fiz(g) is generated. If all the B; have been computed, the

numerical calculations involved in (the parallel version of) Step (1.3) above can be performed in

61

O(logn) steps using O(n?/logn) processors since g(C') < n2. Step (1.2) can be performed using
the same algorithm described in Section 2.7. A graph can be output using the “usual” final phase

(see Section 2.5).

Lemma 15 For all n € INT, the bounds B; , the selection probabilities B;/M and all the |R;)|
for all i € {0,...,n}, in algorithm W can be computed in O(logn) steps using O(n?/logn)

processors on an EREW PRAM.

Proof. An array BJ[7] is used to store the bounds defined at the beginning of the section. In particular
B[1] can be defined in O(logn) steps using O(n?/logn) processors. Then all other B[] for i =

2,...,n are computed as follows

(1) B + copy(BJ[1], n);

2) for all ¢, 2 < ¢ < n in parallel do

3) V] +n—i+1;

€] V + prefix(V,n — 1, x)

(5) Compute Pow2[¢, 1] as in Section 2.7

©) for all ¢, 2 < ¢ < n in parallel do

) Define BJé] in terms of their initial value, V'[¢] and Pow2[t, 1]

M + tree(B[],n,+) and for all 1 < ¢ < n Pr[i] = B[i]/M. Finally compute the vector | R;| for

1 =1,...,n as in Section 2.7. O

Theorem 33 There exists a randomised parallel algorithm for generating unlabelled graphs uni-
formly at random in time O(logn) and O(n? logn) work on an EREW PRAM which succeeds with

high probability.

Proof. The algorithm listed after this proof solves the problem. The time to compute every iteration
of the inner loop is dominated by the time to generate g € R; uniformly at random (which is
O(logn) and O(én) processors by Lemma 12) and the time to compute |Fiz(g)| = 2¢©). To
compute |Fiz(g)| the cycle type of g has to be determined first and then 29() can be computed
using a simplified version of the algorithm in Theorem 28 in O(logn) time using O(n?/ logn)
processors (all the required powers of 2 have been computed already). The final selection of a can

be performed again as in the algorithm A. So the overall running time is O(logn) using at most

2 2
0 (Plc?ﬂ + =) processors. O

logn

62

(1 for all j,1 < j < pin parallel do

2 P + prefix(Pr[i], n, +);

€) £ - rand(0, 1);

4) foralll € {1,...,n} in parallel do

Q) if (Pi—1 < ¢) and (P, > £))

(6) i < L

@) Generate a random permutation g; € R;;;
(8) Compute |Fiz(gi,)| as in Section 2.5;

©) ¢ + rand(0, 1)

(10) if (g; generated) A (Cj < W)
an Aj+ 1

(12) else A; « 0;

(13) j=min{j | 4; #0};

(14) if defined(j)

(15) Choose @ € Fiz(g;);

(16) Return the orbit of a; Stop;

2.9 Conclusions

In this chapter we have presented some of the issues involved in the efficient parallel generation of
unlabelled undirected graphs. After presenting our definition of uniform generator we analysed the
main steps involved in sequential algorithms. We showed how some of them can be parallelised
quite easily, whereas some others present some problems. Using rejection sampling and algorithmic
techniques from [Wor87] we showed the existence of an RNC for generating unlabelled graphs on

n vertices uniformly at random in O(log n) parallel steps using O(n?) processors.

Chapter 3

Approximating Combinatorial

Thresholds

This chapter explores another use of randomness in Computer Science. Probabilistic techniques can
be used to gain some structural information about specific decision problems. Empirical studies
have indicated that a number of decision problems exhibit the following behaviour: if two integer
functions order(z) and size(z) (see Section 1.2.1) are defined for every instance z, and Z,, is the
set of instances of order 7, then most of those z € I, for which m = size(z) is “small” have
SOL(z) # B and most instances for which m is “large” have SOL(z) = (. Furthermore, there is
an apparent threshold function § = 6(n) such that, if z € Z,, wheneverm < 6(n) then SOL(z) # 0
and whenever m > 8(n) then SOL(z) = (. Behaviour of this nature is known as a phase transition.

For the satisfiability problem introduced in Section 1.2, the order of an instance ¢ is the
number of variables occurring in ¢ and m is the number of clauses in ¢. Experiments reported
in [HW94] suggest that a phase transition occurs at m = 4.24 n. By purely analytical means
Goerdt [Goe92] proved that a sharp threshold exists at m = n for the polynomial time solvable
2-SAT (similar results were obtained independently in [CR92] who also considered the general &-
SAT case). Results for £ > 2 are much weaker and, although the existence of a threshold has been
recently confirmed [Fri97], its exact “location” has yet to be found. Initial upper bounds on §(n) for
k = 3 were obtained in [CS88] where it was proved that “almost all” m-clause, n-variable instances

with m > 5.19 n are unsatisfiable. The best results to date are

Theorem 34 [KKKS98] Almost all formulae with more than 4.601 n clauses are not satisfiable.

64

Theorem 35 [FS96] Almost all formulae with less than 3.003 n clauses are satisfiable.

Phase transition phenomena are not restricted to decision problems. In fact the last two
sections in Chapter 4 will provide examples of such phenomena in the context of optimisation prob-
lems.

The importance of studying these problems lies partly in the fact that they shed more light
on the combinatorial properties of specific problems, partly in that the presence and location of the
threshold function seems to be related to regions in the parameter space where the problem is most
difficult to solve [CS88, HW94]. Far from attempting to settle such ambitious claims we concentrate
on the combinatorial aspects of this type of problems. The aim of this chapter is twofold. In the first
part we will define and analyse the phase transitional behaviour of another graph theoretic property,
that of vertex k-colourability (k-CoL for short) [GJ79]. A very simple argument given in Section
3.1.1 shows that almost all n vertex graphs with more than 2.71n edges cannot be “legally” coloured
with only three colours. By a more careful analysis of a necessary condition for the existence of one
such colouring, in Section 3.1.2 we are then able to strengthen this bound to 2.61n.

In the second part of the chapter, we describe a probabilistic technique which can be use-
ful in approximating the threshold function of several combinatorial problems. Roughly speaking
sometimes the non-existence of a property in a given input instance is implied by the simultaneous
truth of a number of local conditions involving elementary building blocks of the instance. This is
well modelled in a random setting by the so-called coupon collector problem. In Section 3.2 we give
the relevant definitions and then, using some tight asymptotic expressions for the probabilities asso-
ciated with coupon collector instances, we improve the upper bound on the unsatisfiability threshold

given by Theorem 34 to 4.5793n.

3.1 Improved Upper Bound on the Non 3-Colourability Thresh-

old

In this Section some new results on the non 3-colourability threshold are presented. After giving all
relevant definitions and a simple bound (see Theorem 36 below), the main result of the Section is
presented in Theorem 37. The Section finishes with a number of remarks and possibilities of further

developments.

65

3.1.1 Definitions and Preliminary Results

The informal notion of phase transition described above can be formalised once the measure with
respect to which the sharp change in behaviour is observed is defined. The approach taken in this
thesis is probabilistic. Given a decision problem), a probability space can be associated with the
class of all instances Z = |J,, Z, (where, as usual, Z,, is the set of instances of order n), by assigning
a probability to each z € Z. The expression Pr[z € Q | z € Z,], abbreviated as Pr,[Q)], is the
probability that z € Z,, is in Q. Usually Pr,,[@Q] will also depend on some other parameters of the
specific problem. For graph problems, if n is the number of vertices a natural second parameter is
m, the number of edges. Thus Pry, ,,[Q)] is the probability that an instance of order n and size m

belongs to). We are now ready to define the notion of threshold function and phase transition.

Definition 9 A monotone decreasing decision problem @) has a phase transition with threshold func-
tion 8(n) if

(@) ifmf0(n) < 1—o0(1) then Prp n[Q] = 1

(b) if m/6(n) > 1+ o(1) then Pry [Q] — 0.

A recent result [FK96] states that many monotone graph properties have a phase transition
in the sense of Definition 9. Unfortunately, this result does not imply that the exact location of the
threshold function is known for every specific problem. It is thus interesting to prove constructive
bounds on the threshold function for specific problems.

The proofs of Theorem 34 and 35 are based on fairly standard techniques for approximat-
ing a threshold function. For a monotone decreasing problem @) an upper bound on the threshold

function is given by the so called first moment method. This is described as follows:

1. We define ar.v. X = X, , counting the number of solutions for a random instance of order

n and size m. The event “X = (” is equivalent to the event “SOL(z) = §”.
2. We find E(X) as a function of n and m.

3. We find my, the smallest value of m such that for all m > mg we have that lim,,_,,, E(X) =

0.
4. We use the Markov inequality (see Theorem 6) to prove that lim,,_, o, Pr,[Q] = 0.

If limy, oo E(X) = 00, sometimes a lower bound on the threshold function can be proved

by the more refined second moment method which is based on an analysis of Var(X) and Corollary

66

1 in Section 1.2.3. Unfortunately in many interesting cases the variance is rather large relative to the
mean, so that we cannot hope to prove that X > 0 almost always using the second moment method.
In some cases, such as the constructive proof of Theorem 35, it is possible to define an algorithm

and to prove that if the size of the input is sufficiently small then X > 0 almost always.

Given an undirected graph G = (V, E) a k-colouring is a mapping x : V — {1,...,k}.
Notice that the mapping is not required to be surjective so any (k — ¢)-colouring (for 1 < i < k) is

a k-colouring. The k-colouring is legal if

{u,v} € E = x(u) # x(v)

The vertex k-colourability problem (or k-COL for short) is the decision problem that takes as input
a graph G = (V, E) and whose solution set is the class of all graphs for which there exists a legal
k-colouring. To simplify notations SOL(G) will be abbreviated as Z¢ or simply Z when the graph
G is clear from the context. Also, in the case k = 3, we use {red, blue, white} as the set of colours.
For any 3-colouring x let R,, B, and W, be the set of vertices in V(@) coloured red, blue and
white, respectively. Lower case letters will be used for their cardinalities, e.g. 7, = |Ry|. The
dependence on x will normally not be shown explicitly.

Since a multigraph and its skeleton have the same number of k-colourings we can study the
3-colourability of random multigraphs and then apply Theorem 11 to deduce corresponding results
for simple graphs with a given number of edges. Before stating a very simple upper bound on the

3-colourability threshold we need the following technical result.

Lemma 16 If G € M(n,m) and e € E(G), the probability that e is legally coloured by a given

3-colouring x is at most 2/3 + O(1/n).

Proof. If only one colour is used (e.g. for example r = b = 0) then trivially the required probability

is null. Otherwise there are precisely

e(n,b,w) =4 (Z) - [(n— (I;-l—w)) + (;) + (1;)] =n(b+w) — (b + w? + bw)

ways of choosing an edge in G that is legally coloured by x. For every fixed value of n define
the function &,(z,y) : (IRY)? = IR by é,(z,y) = e(n,z,y). The point (z,y) = (n/3,n/3)
is stationary for é,(z,y), the Hessian matrix of €,(z,y) is (:% :;) This implies that for every

(z,y) € [0,n] x [0,n] we have &,(z,y) < n?/3. The probability that an edge is chosen so that its

67

endpoints have different colours is at most

n? 2 2 n
3 nn—-1 3n-1

Theorem 36 Almost all graphs on n vertices with more than 2.71 n edges are not 3-colourable.

Proof. If X = X (G) is the r.v. counting the number of legal 3-colourings of a random G sampled
according to the model M (n,m) then the event “X > 07 is equivalent to the event “G € 3-CoL”
(given that G € G™). We use linearity of expectation to compute an upper bound on E(X). If x
is a 3-colouring of the n vertices (i.e. a tri-partition of {1,...,n} in the colour classes R, B and
W) let X, be the random indicator equal to one if and only if x is a legal colouring of G. Since
each edge in G is chosen independently, the probability that x is a legal colouring for G is the
product of the probabilities that each selected edge is legally coloured by x. By Lemma 16 this is
at most 2n/3(n — 1). We have X = }° X, and since E(Xy) = Pr[x € E] < [2n/3(n — 1)]™,
the expectation of X is at most e™1083—m{log3(n—1)=log2n] 3 the upper bound is asymptotically
very small if m/n > log 3/(log3 — log2) ~ 2.7096. The result about simple graphs follows from
Theorem 11. O

It might be worth noticing the asymptotic nature of this result. There is only one simple
graph on n = 4 vertices and m = 6 edges (the complete graph K) and it is not 3-colourable,
whereas there are 68 = 46656 pairs (G, o) where G € M*% and o € Sg. and only 6! = 720 of

them are not 3-colourable.

3.1.2 Main Result

If 3-CoOLy, 1, is the set of 3-colourable graphs of order n and size m, then

[3-COLp m|

PIIX > 0] =g g
If X¢ is a random indicator equal to one if and only if G is 3-colourable then we can write

1 —_—
|Grm|

PriX >0]= >

cge3-CoL, .,

> XePiGl<) X(G)Pr[G] = E(X)

Gegn,m Gegn,m
This simple proof of the Markov inequality explains the problem we face when using this proba-
bilistic tool in Theorem 36. Graphs with a large number of colourings make a large contribution to

the expectation even though they occur with a fairly small probability. In order to reduce this effect

68

Figure 3.1: A legal 3-colouring (left) and a maximal 3-colouring (right).

and improve Theorem 36 we need to identify a subset of the legal colourings of a graph which is
easy to handle combinatorially and compute an upper bound on Pr[X > 0] based only on these

“special” colourings.

Definition 10 For any graph G a maximal 3-colouring is a legal 3-colouring such that by changing

the colour of any single red vertex we get an illegal 3-colouring.

In other words every red vertex in a maximal 3-colouring must be adjacent to a blue and a white
vertex. Vertex v in Figure 3.1 is only adjacent to white vertices hence the given colour is not
maximal. By recolouring v in blue we obtain a maximal 3-colouring (Figure 3.1 on the right).
If G is bipartite it can be vertex coloured using only two colours and without loss of generality we
can assume these to be “blue” and “white”. Any such 2-colouring is a maximal 3-colouring simply
because there is no red coloured vertex. Let EﬁG (again the dependence on G usually will not be
shown explicitly) denote the set of maximal 3-colourings of G. Let X* be the r.v. counting the

number of maximal 3-colourings of G.

Lemma 17 Let G € M(n,m). Then
1. X < Xt < X.
2. Pr[X > 0] < E(X*).

Proof. If Xg = 0 then G is not 3-colourable and X* = 0. If G € 3-CoL then there is a very
simple procedure which converts every legal 3-colouring of GG into a maximal 3-colouring. Let x
be a legal 3-colouring of G and let R = {vy,...,v,} be the set of vertices that are coloured red.
For each i € {1,...,r} recolour v; either blue or white if this gives a legal colouring (leave x(v;)
unchanged, otherwise). After r steps each vertex such that x (v) = R has either been recoloured or is
such that by changing its colour to blue or white the resulting colouring is not legal anymore. Hence
X¢g < X' X% < X is true because all maximal 3-colourings are legal colourings by definition.
The second statement follows from the first one and the chain of inequalities above. O

Using this refined notion of 3-colouring Theorem 36 can be improved as follows.

69

Theorem 37 For n sufficiently large, almost all graphs on n vertices with more than 2.61 n edges

are not 3-colourable.

The proof of this result is by the following argument:
1. By Lemma 17 Pr[X > 0] < E(X").

2. If G has n vertices and m = ¢ n edges then there exists a function h(n,k,c) such that

E(X*) < Yop_, erhlmke),
3. For each fixed c it is possible to find two positive real numbers « and €, with a + € < 1, such
that for n sufficiently large
(a) there exists a positive constant § such that h(n, k,c) < —4 < Oforall k € [an, (a+€)n].
(b) h(n,k,c) < h(n,k+1,c) forall k < an.
(©) h(n,k,c) > h(n,k+1,c)forall (a+e)n <k <n.

4. Thus E(X*) < 3°7_, e~%" and Theorem 37 follows by choosing ¢ = 2.6028, a = 0.696139

and € = 1075.

in the remaining part of this Section all these claims are proved. We start by finding an upper bound
on E(X t‘) in terms of the probability that a given 3-colouring is a legal 3-colouring for a random G

and the conditional probability that the 3-colouring is also maximal.
Lemma 18 E(X*) < (2/3+0(1/n))™ Y, Pr[x € =* | x € =].

Proof. Let Xf(be the random indicator equal to one if and only if ¥ € =*. Again using linearity
of expectation E(X*) = 37 B(X%) = Y Pr[x € E*]. To compute Pr[x € =*] we use the total

probability law (Theorem 2).

Pifx €E% = Pr[x€Z*|x €E] Pr[x € E]+ Pr[x € E* | x € 5] Pr[x ¢ 5]

Pr[x € Ef | x € E] Pr[x € E] + 0 Pr[x ¢ Z]

O
Next we need a technical Lemma stating a useful inequality and an important Theorem

which will allow us to bound the conditional probabilities involved in the computation of E(X¥).

Lemma 19 [1 — (an)~1]® > e~= — O(n™Y) for all positive constants o and c.

70

Figure 3.2: Legal edges for a vertex v.

Proof. For 0 < z < 0.69, log(1 —z) > —z — 2?2 (see for instance [Bol85, p. 5D, therefore, for
sufficiently large n, we have

c 1 c
—+4cnlog|l——)>———
« an a“n

and the result follows by exponentiation. O

The next Theorem is restated from McDiarmid [McD92].

Theorem 38 Let V and I be finite non-empty sets. Let (X, : v € V) be a family of independent
random variables, each taking values in some set containing I; and for eachi € I, let S; = {v €
V: X, =i}. Let (F; : i € I) be a family of increasing properties of V. Then

< HPI'[Si € Fi.

iel

Pr lﬂ{si € Fi}

icl

If e(n, b, w) is the function defined in the proof of Lemma 16, for any 3-colouring x of the
set of vertices and any v € R, there are e(n, b, w) — b (resp. e(n, b, w) — w) ways to choose edges
connecting v to the rest of the graph so that no blue vertex (resp. white vertex) is adjacent to v (see

Figure 3.2 to get some more intuition). Hence if G € M (n, cn) with probability

v is not adjacent to any blue vertex. For every v € R define the events E} = “v is adjacent to at

least one blue vertex”” and E2 =“v is adjacent to at least one white vertex”. It follows that
b cn
PriE)]=1—-(1- ———) .
E=1- (1)
and Pr[E?2] has a similar expression. We have

Prix € Efx € E]=Pr | (| (B, N E})

vER

71

and we aim at using Theorem 38 to upper bound this probability. The following result gives a

uniform upper bound on Pr[EL] Pr[E2] for every v € R.

Lemma 20 For every fixed n € IN and real ¢ > 0 let fn . : IN x IN — [0, 1] be defined by

o= 1= (=) | = () |

ceny 2
Then the maximum value of fr (b, w) subject to b+ w = k is at most {1 - [1 - %—(IW] } .
Proof. To prove the result we relax integrality assumption and we solve
max (s, u)efo,n]x[0,n] In,e(b,w)

s.t. b+w=k
k€ [0,n]

Letting gn x = nk — k2, we have

8fn,c (ba k— b) - en 1— b en—t b + In.k +
0b Gn,k + bk — b2 (gn,k + bk — b2)?

~ (1 _ k=b)C”‘l [2b2k2 - 2kb+gn,k] }
Gn.k + bk — b2 (gn.k + bk — b%)?

The point b = k/2 is stationary for f, .(b,k — b). Moreover the partial derivative is positive if

0 < b < k/2 and negative is k/2 < b < k. Hence b = k/2 is the only stationary point of
fr,c(b,k —b) forb € [0, k]. O

Lemma 21 IfG € M(n,cn) then

XX:Pr[X €T yeq < kg: (Z) ok {1 — exp [—m] + 0(1/n)}2(n_k) .

Proof. To prove the Lemma an upper bound on Pr[y € Zf | x € Z] is defined using Theorem 38.
Let G be a graph with b vertices coloured blue by x, w coloured white and, if k = b+w,r =n—k
vertices coloured red. The set of red vertices is arbitrarily ordered: let v;, for 5 = 1,...,r, be the
Jjth vertex in this ordering. Let I = {1,...,2r}. Let V be the set {1,...,en}. Foreachv € V and
i€ {l,...,7} (resp. i € {r +1,...,2r}) let X, = ¢ € I if the vth edge in G is one of the edges
that makes the event E})‘, (resp. E’giq) true. If F; is, for all ¢ € I, the increasing collection of all
non-empty subsets of V then by Theorem 38

Pr lﬂ{S, € .7:1}] < HPT [S: € Fi]

iel iel

72

Notice that

Pr|((EyNE})| =Pr lﬂ{& € (Fi\ 0)}]
vER i€l
Therefore
Pr ﬂ (E} ﬂEﬁ)] = Pr lﬂ{sz € (F:\ 0)}]
vER i€l
< Pr lﬂ{sz S fz}]
iel
< []Prisie 7]
<[] PriEl PrlE2]
vER

where the first inequality holds because the event on the right-hand side is bigger (see Theorem 1.2)
and the last one is true because the final term contains fewer factors than the previous one.
By Lemma 20 and the argument above, the product of the probability that a particular vertex

coloured red is adjacent to a blue and the probability that it is adjacent to a white vertex is at most

{1‘ [1‘ m]”‘}?-

Thus 2n—k)
Prlx € =t |x €] < {1— [1— m]cn} (n—
By Lemma 19, on
- stomm] 2 [] -0

hence we have

Prix =t xe s < {1 moP [_m] + 0(1/n)}2(n_k)

The result follows since there are (:) 2k ways of allocating the sets B and W so thatr =n — k. O
This last result implies the existence of a function h(n, k, c) such that E(X*) is bounded
above by ZZ:O e™h(mk.) More specifically by simple algebraic manipulations of the upper bound

on E(X*) it is possible to define

2 1 k k
h(n, k,c) =4 clogg + Elog (Z) + ElogZ +2 (1 - 5) log [1 — exp (—m)]

Lemma 22 Forall ¢ > 0 there exist a,e € RT with0 < a4+ € < 1 and

h(n,k+1,¢) = h(n,k,c) >0 0<k<an

h(n,k+1,¢) — h(n,k,c) <0 (a+em<k<n

73

Proof. Let v, = 1 —exp (— 2_32/%). We have

1 2(n —
h(n,k+1,¢) — h(n,k,c) = - [log% - 2log'yk] +2 (1 - %) logfyfy—:l

Since vx < Yp+1 < 1 forall k, if we consider 0 < k < an and (a + €)n < k < n then we have

2(1-a)

1
1 - > — |l
h(n,k+1,c) h(n,k,c)_n [og Eym

- 210g70m+1:| >0

Similarly for (a + e)n <k <n

20 -a—-¢

Y(a+e)nt1
— €) log Jatentl
a+e+1/n) log

1
h(na k+1, c)—h(n, k, C) < E [IOg —2log 7(a+e)n:| +2 (1 —a <0

Y(ate)n

O
Lemma 23 Forany a > n/2ande > 0 suchthata + e < 1, ifan < k < (a + €)n, then

h(n, k, c) <clog §+(a+6) log 2+log (W) +2(1_a_6) IOg(l_eXp (_ 9 _ 3(;+ 6)/2))

Proof. The result follows using Stirling approximation for (a"n) in the definition of h(n, k, ¢) and

simplifying. O

3.1.3 Concluding Remarks

We end this section by noticing that further improvements seem possible. Definition 10 can be

“naturally” strengthened as follows.

Definition 11 A colouring x is better maximal if it is a maximal colouring in which every blue vertex

is adjacent to a white one.

Indeed Achlioptas and Molloy [AM] recently used this definition and proved that almost all
graphs with more than 2.522n edges are not 3-colourable. Experiments reported in [HW94] suggest
that the threshold function for this problem is located around 2.3n. Moreover the existence of a
sharp threshold has been recently proved [AF99]. We believe that by a more careful analysis of the
set of 3-colourings of a graphs it may be possible to move this bound below 2.5n and thus get closer

to real value of the non 3-colourability threshold. We leave this as an open problem.

3.2 Improved Upper Bound on the Unsatisfiability Threshold

The problem of determining the satisfiability of a Boolean formula is certainly one of the most

famous in Computer Science. Its importance lies partly in the fact that the Boolean formula language

74

offers a way to encode many combinatorial problems which preserves the key properties of the
combinatorial problem and partly in the nice combinatorial properties of Boolean functions.

The aim of this section is to analyse the phase transitional properties of 3-SAT, the variant
of the general satisfiability problem in which the input formula is a conjunction of disjunctions of
at most three literals. All relevant definitions were given in Section 1.2.1. Let C,, denote the set of
all clauses with exactly three literals of three distinct variables defined from a set of n variables. A
random formula ¢ is obtained by selecting m clauses C € C,, with replacement. Taking a more
static view, similar to the one used to define random graph models, a random formula model is
a probability space associated with ®,, ,,, be the set of all formulae on n variables and m (not

necessarily all different) clauses.

Definition 12 For any Boolean formula ¢ a maximal satisfying assignment « is a satisfying assign-
ment such that if the variable x occurs in ¢ and a(x) = 0 then the assignment o' defined by
l-—afy) y==2

o'(y) =
aly) otherwise

does not satisfy ¢.

Let Ay be the set of satisfying assignments of ¢ and Ag, the set of maximal satisfying assignments
of ¢. Let X* be the r.v. counting the number of maximal satisfying assignments of ¢. Again not all
satisfying assignments are maximal. Also, if ¢ is satisfiable then there must be at least one maximal
satisfying assignment. So by counting only maximal satisfying assignments it is possible to get an

improved upper bound on the unsatisfiability threshold.

Lemma 24 [f C is selected at random among the set of all clauses on three literals and « is some

truth-assignment then Pr[C{a} = 1] = %.

Proof. There are (’;) ways of choosing three variables to be part of a clause and 23 ways of choosing
whether the three variables occur in positive or negated form. Hence |C,,| = (g) 23. For any fixed
truth assignment o and any choice of three variables z;, z;, z there is a unique clause C' containing
the three variables such that C{a} = 0. Hence

G _, 1

BF =7

Pr[C{a} =1 =1-

75

From the last lemma and the assumption about the random formula model it follows that

Pr[¢{a} = 1] = (7/8)™. By linearity of expectation,

E(x" = (g) > Prla € Al o € Ay]

The final bit of work involves obtaining a good upper bound on the probability that a specific « is a
maximal satisfying assignment conditioned on the fact that ¢ is satisfied by a. Let K, = 1 —e~3¢/7

forevery c € Rt.

Theorem 39 [KKKS98] If ¢ is a random formula on n variables and m = cn clauses, and « sets

s variables to zero then Pr[a € Ags|a € Ay] < (K. +o(1))°.

Theorem 40 [KKKS98] If ¢ is a random formula on n variables and m = cn clauses, the expected
value of X¥ is at most (7/8)°™(1 + K. + o(1))". It follows that the unique positive solution of the

equation

(7/8)¢(2 —e3¢/T) =1

is an upper bound on k (this solution is less than 4.667).

Using a stronger notion of maximality Kirousis, Kranakis, Krizanc, and Stamatiou managed

to improve this bound to ¢y = 4.601+.

The main idea presented in this chapter is a different way of estimating the probability that
an assignment is maximal (according to Definition 12). The expectation of X* is >~ Pr[a € Ai]
The probabilistic model described in the next Section will allow a tighter estimate on Pr{a € Ags]

and this in turn will lead to an improvement on Theorem 40 and on the stronger Theorem 34.

3.2.1 The Young Coupon Collector

A nice way to define the probabilistic model we are interested in is to quote one of the oldest

references to it:

I should like to say straightaway that collecting cigarette-cards is not my hobby. But
recently the manufacturers of the brand of cigarette I smoke started to issue an attractive
series of cards and I said to a friend, “I think I shall save these cards until I obtain the
complete set of fifty.” He replied, “About how many packets do you think you will have

to buy before you get the set?” And this raises an interesting problem in probability

76

which I do not recollect having seen before. (F. G. Maunsell, Mathematical Gazette,

1938)

Maunsell’s paper also contains exact expressions for coupon(4, s), the probability of having
to buy j packets in order to see all the s different cards and the expected number of trials to see all

the cards, assuming that the cards are placed in the packets at random.
Theorem 41 coupon(j,s) = Y i_, (3) (-1 (1 - %)]

Unfortunately the formula in the last theorem is only useful when s is a small constant,
for otherwise its numerical evaluation becomes very slow. Moreover, for large s, the functional
properties of coupon(j,) are not apparent from the expressions above. For this reasons more
recent research has focused on finding useful asymptotic expressions for coupon(j, s) and E(s),
the expected number of trials before all coupons have shown up. A simple argument proves that
E(s) ~ slns + O(s). Moreover using Chebyshev inequality it is fairly simple to prove that the
probability that more than ¢ E(s) trials are needed is very small. A deeper analysis of coupon(j, s)
is needed to prove high probability results for smaller deviations from the mean. The following
is proved for example in Motwani and Raghavan’s recent book on randomised algorithms [MRO5,

Sect. 3.6].

Theorem 42 Let the random variable X denote the number of trials for collecting each of s types

of items. Then, for any constant ¢ € R and j = sln s + cs,

—c

lim PriX >j]=1-e"
§— 00

In this section we need to study the probabilities associated with what could be called
[ChvO1] the young coupon collector. The following result, essentially proved in [Arf51], gives

an asymptotic expression for coupon(j, s) when j = O(s).

[i)
coupon(j, 8) ~ E(e’"0 -1)° (M) (3.1

where rq is the solution of f(r) = j/s with f(r) = re"/(e" — 1) and 0 =4 ro f'(r0).

Theorem 43 [fj = O(s).

Theorem 43 has the following useful corollary.

erg

T
Corollary 2 [Chv91] Let z = j/s with j = O(s). Forall z > 1 define g1(z) =ar (™ —1) (z)
where 1o is the solution of f(r) = z. Also let g1(1) = e™L. Then for all sufficiently large integer s

and all z > 1, coupon(j, 8) ~ g1(x)*.

77

3.2.2 Application to the Unsatisfiability Threshold

Let o be a maximal satisfying assignment of ¢(Z). For every variable z set to zero by « (called a
critical variable), there must exist in ¢ a critical clause of the following type: {Z,l;,l2} € ¢ with
a(ly) = a(ly) = 0. Therefore the random process by which ¢ is built resembles the coupon collector
experiment: if ¢ contains s critical variables then there are s types of coupons, each corresponding
to (any) critical clause associated with a different critical variable. In this section this analogy will
be described formally and exploited to give an improvement to Theorem 40.

It should be remarked that the connection between maximal satisfying assignments (in
the sense of Definition 12) and the coupon collection experiment has been noticed before. In
[DB97], Dubois and Boufkhad prove upper bounds on the unsatisfiability threshold for k-SAT
for all constant k. Their description is in terms of Stirling numbers of second kind S(j,s) =
(1/8) >0 (5)(=1)¥(s —)7 (see [Rio58]) and the following identity follows immediately from

Theorem 41
coupon(j, s) = (s!/s7)S (3, 5)

In Section 3.2.3 it will be shown how the use of a stronger notion of maximality and some results
in [KKKS98] in conjunction with the probability associated with the coupon collector will lead to
an improvement on Theorem 34 which brings the upper bound on the unsatisfiability threshold for
3-SAT down to 4.5793.

Let Cp,(x, @) be the set of critical clauses for variable z under a. For every critical variable
z, [Cu(z,0)| = (”gl) since there are this many ways of selecting the literals I; and ls. Also, for
every pair of critical variables z and y, Cn(z, @) N Cr(y,a) = B. Assuming « sets s variables to

zero, the probability Pr[a € Ai] is the ratio between a function N (n, m, s) and the number of ways

to build a formula on m clauses out of n variables. Hence

N
Prlo € A1) =4 N(n,m, s)

n m
3(3)]
The function N(n,m, s) counts the number of ways to build a formula with m clauses out of n
variables containing at least one critical clause for each of the s critical variables. If ¢ contains

j €{s,s+1,...,m} critical clauses, then

m

C(n,m,s,j) R(n,m,s,j
Pr[aEA&]:Z () I)

= 8G)1"

where C(n,m, s, j) counts the number of ways of choosing j critical clauses so that at least one

78

member of Cp, (2, @) is chosen for each of the s critical variables and R(n,m, s, §) counts the number

of ways of filling up the remainder of ¢ with m — j clauses that are true under a but not critical.

Lemma 25 For any choice of the parameters R(n,m, s,j) = (7(3) — s("gl))m_j.

Proof. By the argument in the proof of Lemma 24 there are 7 (;‘) clauses satisfied by a. If a forces

s variables to be critical there are s disjoint groups of (";1) critical clauses. O

Lemma 26 For any choice of the parameters C(n,m,s,j) = ('Jn) s ("El)]J coupon(7, 8).

Proof. Assume that there are s critical variables associated with a given assignment «. Moreover

¢ contains j critical clauses. There are (T]n) ways of choosing j positions out of the m available.

Also, there are s(”gl) critical clauses. Therefore, if we do not distinguish among the non-critical

n—1

2)]] ways of choosing a sequence of m clauses so that exactly 5 of

clauses, there are (’]”) [s(
them are critical. Since C(n,m, s, j) counts the number of these which has at least one occurrence
of a critical clause for each of the s critical variables, and since there are equal numbers of possible
critical clauses for each variable, the ratio of these terms is the probability coupon(j,). O

In terms of the coupon collector problem, there are s items, the s disjoint sets of critical

clauses, and 7 selections to be made. Critical clauses with respect to a specific critical variable are

indistinguishable.

Theorem 44 [f a sets s variables to zero then
m i m—j
B m 3s . 7 3s
Prla € Ag] = Jz:; (J) (S_n) coupon(3, s) (§ ™
Proof. By the argument at the beginning of the section and Lemma 25 and 26

et G (5 (552)”

j=s 3 3

and the result follows by straightforward algebraic simplifications. O

It is convenient to split the analysis of E(X*) in two main parts.

E(XY) < (g)m % (Z) Pria € Ao € Ag] +

s=0
/0 = [m . 3s\? /7 3s\™Y
£ OS Qresn QC-27 o

The first sum is dealt with using Theorem 39. For a sufficiently small 8 < 1 the expected number of

maximal satisfying assignments with at most 8n critical variables is rather small. The second part

79

of E(X*) will be bounded using the result on the young coupon collector probability in Theorem

43,
Lemma 27 (7) < (%)sﬂ)ralln € Nands €{0,...,n}.
Proof. Foralln € Nand s € {0,...,n}

ny _ n! <n_3
s sl(n—s)! = s

The result is then proved by showing that (s/e)* is a lower bound for s! for all s € IN. By induction

on s, clearly 1 > 1/e. Using the inductive hypothesis
s S
(s+DI>(s+1) (5)

Multiplying and dividing by e(s + 1)**1,

1* ess(s+1
(s+1) > (S:) (sil;ﬁ
_ (.s+1)$Jrl e (s+1)‘!’Jrl
B e (1+1)° e
where the last inequality follows from 1 4+ z < e”. O

Theorem 45 For n sufficiently large there exists an € > 0 such that for every ¢ € (0, o) there exists
a positive real number B¢ . < (K. + €)/(1 + K. + €) such that if ¢ is a random formula on n
variables and m = cn clauses then for all 8 < e .
7 en Bn n
(g) > (3) Pria € ALja € 4g] = o(1)
s=0
Proof. Let ¢ : IN — IN be an arbitrary function on natural numbers with lim,_,, t(n) = 400 and

t(n) = o(n/Inn). First notice that, by Lemma 27,

% (Z) (K +0(1))* < (ﬁ [M]

Also ;
[ne(Kc + o(l))]" < [ne(Kc +1o(1))] s
s = s+
Therefore
§ (Z) (K. +o(1))° < (1+n)) ["e(KLc(—:)O(l))]‘("’ ol [(T/8 (L Ko+ o))

80

If «(n) < s < Bn then
(Z) - 27rs(n—s) (Z)s (%) ::
o (i) (3) ()

Claim 1 The function [n(K. + o(1))/s]*[n/(n — 8)]"~* is increasing in s for all s < (K. +

o(1))n/(1+ K.+ o(1)).

IA

Notice that

e ()) ()

if and only if

(K. + 0(18))J[rn1— (s+1)] (1 + %) (1 - i S)H <1

which in turn, since 1 + z < e for all z € IR, is satisfied if

s+1
et o)n—(s+D] =

The last inequality is true if and only if

8Sn[K, +o(1)]_1

1+ K.+ 0(1)
Hence, upper bounding the sum by its largest term,

Bn

2 (Z)(Kcﬂ(l))s < (n/\/—)[K+0(1))] (n)n—ﬂn

s=u(n) n—fn

o (o) {[50]" (:25) 7

For n sufficiently large the term o(1) in the last expression is upper bounded by some € > 0. The

remaining part of the proof is aimed at showing that for every positive constants € and c there exists

(g)c[KCﬁ+e]ﬁ(l_lﬂ)l_ﬁ<1 .

for all 8 < f¢,. Some simple calculations show that, for every fixed positive € and ¢, the function

a value f3, . such that

heo(8) =45 [(K. +€)/B]°(1 — B)®~ is continuous and positive for 3 € (0,1). Also

éli}n he c(ﬂ) =1 é‘_)rnlhc(ﬂ) =K.+e

Moreover he () has a unique maximum at 3* = (K. +€)/(1+ K. +¢€) and he o(8*) = 1+ K +e.

Since ¢ < ¢p, by Theorem 40 (7/8)°(1+ K.+¢€) > 1. Hence 1 < (8/7)¢ < 1+ K. +¢ and therefore

81

there exists a unique 8¢ . < (K. +€)/(1+ K.+ €) solution of the equation (7/8)¢h .(8) = 1. For
all 8 < S, inequality (3.3) holds and the theorem follows. O
Using the theory of implicit functions it is possible to prove that the function ¢; (3) defined
implicitly by the equation (7/8)¢h .(8) = 1 is increasing in /3 so that smaller values of § result in
smaller values for ¢. This property will be used in Section 3.2.3.
If s is larger that Bn then the asymptotic for the coupon collector given by Theorem 43
becomes useful. In order to successfully bound
22 () (et () (5-50)
o= 8n 8 8n

the following approximations are used:

IA

n s n n—s .

(%) () if fn < s <n
n—s

(n'fs) ifyn<s<n
E} cn—j

(cj_n) (ﬂ) if s < j < yen

IA

IA

ifyen<j<en

o,
R el
IA
Vo N
OO
TR
QCD
S’

7

.

Then, setting y = s/n and z = j/s, the nested summation above is upper bounded by

0(1){// flxy"da:dy+// fa(z,y)"dz dy+

+ /ﬁ e f3(w y)" dxdy+[r , f4(w y)" da:dy}

where y v 1=y yc_zy
nwy = () (&) =] @ aee
by = (5) " [E=20]7 @)™
pey = (1) () [ome] T @
fizy) = (:y)l_ =] 3y

Figure 3.3 gives a graphical description of the partition induced on the space of values for £ and
y by the previous definitions. The four integrals above are estimated quite simply by using some
uniform upper bounds on each of the f;’s and multiplying them by the area of the region on the
plane in which f; is defined. Also, in order to prove the main result of this section, each of the f;’s
is proved to have an upper bound smaller than one for ¢ sufficiently large and some choice of +.

Functions f3(z,y) and f4(z,y) only depend on y and zy. They can be upper bounded rather easily.

Theorem 46 For every ¢ > 0 there exists ay > 1/2 such that f3(z,y) < 1forally € [8,v] and =

such that (ye)/y < z < ¢/y.

82

1 c ye/B c/p

Figure 3.3: Partition of the parameter space used to upper bound E(X*).
Proof. The following chain of inequalities holds for all y € (0, 1]:
N/ 1 \"¢ N7 1 \'"Y
(y) (1—y) B (y) (1—y)
1—
v\
I-y
(1 S 2y)1_y <o
1-y y

Also, (€?¥~1) /y is maximised either at y = 8 or at y = . It follows that there exists a positive real

RN = R R =

constant B such that if 8 > By then the maximum of this function is (¢27~1)/~. Using this fact and

rearranging the expression for f3
e2v=1 (3y\“Y reene (7 —3y\ "
’ < ~ ce (_)
fol@ y)_7 (ce) 8 c—zy

3y/8 is smaller than one and increasing for all y in the given range; zy > yc. Hence

Ty ye
(&) <(3)
ce ce

In the same way 7 — 3y is always larger than one and thus

(7 —3y)° < 7e(t—7)

Finally, setting 1 — t = ¢ — zy,

1 c—zyY 1 1—¢
(=) (=)

and the latter is maximised at t = 1 — 1/e. Hence

2y—14+21 [(397 (7ce)t—7]¢
falz,y) < &7 [M]
¥ 8
The function %2"’_1+% is increasing in (1/2, 1] so a weaker upper bound on f3(z,y) is
1 [(37)7(7ee) ¢
elte]
8

83

For every given ¢ > 0, the expression inside the square brackets is decreasing for every v €
(0,7¢/3]. Hence the upper bound on f3(z,y) is less than one for all ¥ € (v, 1] where 7, satis-
fies [(37)7 (7ce)t=7/8]¢ = e~1—1/e,]

Theorem 47 For every ¢ > 0 there exists a~y > 1/2 such that fo(z,y) < 1forall for ally € (v,1]

and x such that (ye)/y < z < c/y.

Proof. By rearrangements similar to those in Theorem 46

1-y c—zy e
e 7—3y cee (3
falay) < (1—1/) (c—fcy) (g) (5)
1-y yc
e 1 ce\¢ [3
< (7 - (1-7)e (== 2
= (1_y) o= (7-37) (8) (ce)
11—y y 1—vy7¢
< & e 37(7ce)
- 1—v 8
and the result follows. O

A Tittle more effort is needed to get uniform upper bounds on fa(z,y) and fi (z,y). The
following are standard results contained in many introductory analysis texts [Apo57, Giu83]. In
what follows if 7 is an interval in IR? then for each ¢ € IN the class C**(I) contains all functions that

are continuous and differentiable 7 times in 1.

Definition 13 Let I C 1R be an interval. A function f : I — IR is convex if for all z1,x2 € I and
forall X € (0,1), f(Az1 + {1 = XNz2) < Af(z1)+ (1 —A)f(z2). Afunction f : I - R is concave

if —f is convex.

Theorem 48 [Giu83] Let f : I — R with f € C*(I). Then f(z) is concave if and only if

% <Oforallx €I
The following Lemma will be needed in the proof of Theorem 49
Lemma 28 Let f: I x J — Rwith f € C2(I x J). Also assume that
1. The gradient of f is zero at (a,y) for some a € I and for ally € J.
2. % <Oforally € J.
Then maxrx g f(z,y) = maxy f(a,y).

Proof. By contradiction assume there exists a point (Z,§) such that f(Z,5) > f(a,y). Since

% < Oforall y € J, by Theorem 48 f is concave in y over all J. By definition this implies

f(iv :’j) < f(aa g) O

84

Theorem 49 For every ¢ > 0 there exists a v such that f2(z,y) < 1 forally € (v,1] and = such

that 1 < z < (ye)/y.

Proof. For all £ and y in the given range

The function In f(z,y) is defined and continuous in the given domain. Also,

0 - c
%1" fa(z,y) =yln .

and the partial derivative is zero if and only if (z,y) = (3¢/7,y) for all y € (vy,1]. The partial

derivative with respect to y is

3c—zy) 3c—Tx
z(7T-3y) T7-3y

8 -
@mfg(x,y) =zln

and it is also null at (3¢/7,y). The proof is completed by showing that the points (3¢/7,y) are
local maxima and that 8% In fo(z,y) < 0 everywhere else in the given domain. Both results are
consequences of Lemma 28. O

Finally, the following result describes the main features of f;. Notice that f; is the only

function involving the coupon collector’s asymptotic.
Theorem 50 [fc > 4.642 then f1(z,y) < 1forally € [8,v] and z such that 1 < z < (ye)/y.

Proof. Since f; is defined and continuous in the given domain, the critical points can be found by

looking at

(7 - 3y) +zyln 3c +ylng (z)

1 _
1 =qyln - —y)l P —
Ilf]_(.’L',y) Y ny+(1 y) nl S(C—{By) 8z

1
+ (c—zy)In
— ()

By definition of r,

%lngl(:ﬂ) %{ln(er—1)+z(ln§—l)}

_ ¢ dr _zdr %
e —1dr rdx T

_ (e” _f)ﬁ % =m?
er—1 r /) dz r

Hence a straightforward computation shows that

0
Gy (@) = 5-In file,y) =yl =

85

This function, for every fixed y, is defined and continuous. For z = 1 since r < z, it follows that

3(c — zy)
r(7 — 3y)

3(c—=zy) 3c—3y
z(7—-3y) 7-3y

> >1

where the last inequality holds for ¢ > 7/3. Hence G (1) > 0. For zy = e,

3(c— zy) _ 3c(1—7) < 3c(1—7)
r(7—-3y) r(7-3y) 7— 3y

The last expression is strictly less than one if

7— 3y

< 3(1=7)

and the upper bound on ¢ is at least 5 for v > 2/3. Hence Gy (ye/y) < 0. So there must be a value

z* = z*(y) such that

3c—zy) _r
z*(7—-3y) z* 3.4

and hence Gy (z*) = 0. Indeed G, (x) is actually strictly decreasing for all z in the given domain
(and therefore there is a unique z*). To see this, notice that, by setting t = zy the function A(t,y) =
3(c—t)

S is a decreasing function of ¢. Hence, for each fixed y, h(zy,) is decreasing in z. Moreover,

by the implicit function theorem,

dr e” —1)2
dr e"(er—1-r7)
This implies that 7 is an increasing function of z and in turn this means that 1/r is decreasing.

The maximum of fi(z,y) is to be found among the critical points of

F(y) =4 In f1(z"(y),9)

Notice that

dF(y) =4 Gy(e" ())dz + 8% In f1(z,y)dy

and if ¢z = z* the first term vanishes. Hence %F(y) = 0if and only if

-y c—z'y) 3c—Tz"

z*(7 — 3y) 7—3y

0 1
—1In fi(z*,y) =1n +z"In

By +1ngi(z") =0 (3.5)

Since
3c=Tz _3c—3xy+3zy—Tz _ 3(c—=zy)
7T—-3y 7—3y ToT-3y

using (3.4) and the definition of g; (z) equation (3.5) simplifies to

LO-pE-n
Y

86

which is satisfied for
e -1
T 2r—1

Yy =y"(r)

It is also possible to express z* as a function of 7 using the definition of g, (z),

" N
¥ =z%(r) = o1
Finally, again using (3.4) and the last two definitions,
T _ 2r(7e" —2)
c(r) = 3(7=3y) + 2y = 320 1)

The maximum value of fi(z,y) in the given range is fi{z*(r),y*(r)). By simple calculus it

1.2

Figure 3.4: Graph of f (z*(r), y*(r)).

is possible to prove that this function is strictly decreasing for r > 1, fi(z*(1),y*(1)) > 1 and
f1(z*(3),¥*(3)) < 1, so that there exists a unique value 79 ~ 1.924 (numerically found using
Mathematica’s built-in Newton approximation method) such that fi(z*(r),y*(r)) < 1 for all

r > ro. ¢(rg) = 4.64248. O

3.2.3 Refined Analysis

The method described in Section 3.2.2, based on the concept of maximal satisfying assignment in
Definition 12 can be further generalised. Smaller and smaller classes of satisfying assignments are

captured by the following definition.

Definition 14 For any boolean formula ¢ an I-maximal satisfying assignment « is a satisfying as-
signment such that any lexicographically larger assignment obtained by changing at most l bits of

a does not satisfy ¢.

Let Afp be the set of /-maximal satisfying assignments of ¢ (so A; = Agﬁ as introduced
in Section 3.2) and X! =4 |Al¢| In [KKKS98] a set Azﬂ (also X% =4 |Azﬁ|) is defined with

A% C Azﬂ C Aj. The following results are proved in that paper

87

Theorem 51 If ¢ is a random formula on n variables and m clauses then
1. E(X) = (7/8)™ Y., Prla € A%|a € AL Prla € Afja € Ay].

2. Letu = e~¢/7. There exists a function d : {0,1}" — IN such that Pr[a € A2ﬂ|a e Al sl <

3ml/2y de) wirh

_ 6u8 In(1/u)
Ty
u?In(1/u u® In(1/u
oy (SR o) + o1/

where () is the smallest root of v = €*¥ for any given z € [0,1/e].

3.0 < (Ko)? <Y < 1then B(X?) < 3m!/2(7/8)™ [[1oy (1 + K ,Y¥/?).

4. Let Z = nInY and df eq(c) =4 c(Z/2)In(7/8) + dilog(1 + K,) — dilog(1 + K.e?/?)
where dilog(z) = — [” 2L dt. Ifdf eq(c) = 0 then lim, 0o E(X#) = 0.

The constant obtained by forcing df -eq(c) = 0 is exactly co = 4.60108.... Notice that
Theorem 51.3 holds for any number K and Y satisfying the given conditions. One simple way to
improve the value of the constant ¢y is to replace K, by some F, < K, and then solve the equation
df _eq(c) = 0 using F, instead of K.

As in the analysis in Section 3.2.2, E(X?#) contains a noise component and a main compo-

nent. The following inequality is implied by the definitions:

X2ﬁ)<2()PraEA]
+Z()Pr[aeA§,]Yd Z()PraeA]

s=pfn s=yn

By Theorem 45 the first summation is very small provided a sufficiently small 3 is used. The bounds
given in Theorem 46 and Theorem 47 imply that the last sum in the expression above is very small,
provided a sufficiently large value for v is used. Hence a direct argument is needed only for the

central sum. If ¢ has at least some ~yen clauses then Pr[a € Agﬁ] is small by Theorem 49. Let

o) = () [2T=20] 7 g

If there is a unique F, = max{fo(z,y) : 8 <y <+v,1 < z < ve/y} By Lemma 24 and Theorem
44

yn

> (7) priae At < (5) " Sy

s:ﬁn o

88

Theorem 52 Function fo(x,y) has a unique absolute maximumfor 8 <y < yand1 < z < ve/y.

Proof. The partial derivatives of In fo(z,y) are

Zinfolz,y) = Ind2n)
fmhen = wniEE -k

where 7 is the solution of f(r) = x as in Theorem 43. Simple analysis as in Theorem 50 implies
that, for every fixed y, there is only one point * such that ;—m In fo(z*,y) = 0. For any given y,

z* = x*(y,r) is the solution to the equation

c—zy T
7-3y 3 (36)

As in Theorem 50 let F(y) = In fo(z*,y). Again the derivative of F(y) is exactly the partial
derivative of fo(z,y) with respect to y evaluated at z = z*. Since

3c—Tx 3cy—Tc+Tc—Tzy T(c—zy) c

y(7 - 3y) y2(7T-3y) yA(T-3y

the condition 7% F(y) = 0 is equivalent to

Since In z < z — 1 for all z > 0 and equality holds at z = 1, the expression on the left is always
negative and only becomes zero whenr = 3¢/7. But substituting this value in the equation f(r) = z
and in (3.6) the value for y is not in the given range. This implies that F'(y) is strictly decreasing
and hence the (unique) maximum of fo(z,y) for 8 <y < «vis fo(z*, 8). O

The improved value of ¢ is obtained by using F, instead of K, in df _eq(c) and solving

df _eq(c) = 0. Notice that the implicit value of ¢ obtained solving df _eq(c) = 0 is a function of £,

4.57934
2.57933

4.57932

3, ET931

0.3962% _396295 0.396305 0.39631
4.5793%

Figure 3.5: Locating the best value of c.

co(B). Tt might be possible to prove (experimentally this looks true) that ¢ = ¢(43) is a decreasing

function of 8. Essentially smaller 3 make F,, larger (this follows from last Theorem) and the larger

89

F, the larger the value of ¢ needed to make the all expression small. The value ¢* = 4.5793 is

obtained by solving numerically ¢1(3) = ca(3) (for § = 0.3963..).

3.3 Conclusions

In this chapter we studied some structural properties related to the problems of deciding whether a
graph is colourable using only three colours and whether a 3-CNF boolean formula is satisfiable or
not.

A simple probabilistic argument implies that “almost all” (in the sense described in Section
1.2.5) graphs on n vertices and more than 2.71n edges cannot be legally coloured with only three
colours. By a more careful analysis of a necessary condition for the existence of one such colouring
we were able to strengthen this bound to 2.61n. Far from believing that these results are best
possible, we concluded the relevant section by pointing out some recent developments and open
problems.

The use of a well known probabilistic model allowed us to prove the best result to date on the
presence of a satisfying assignment for a random formula. In Section 3.2.3 we proved that almost all
3-CNF boolean formulae with n variables and more than 4.5793n clauses are not satisfiable. Again

the possibility of further improvements on these bounds is left open by this work.

90

Chapter 4

Hard Matchings

This chapter will investigate another application of randomness to Computer Science, sometimes
called input randomisation. This is based on the simple principle that sometimes the set of instances
for which a particular problem is difficult to solve forms a rather sparse or well structured subset
of the set of all instances. In this context the assumption that not all inputs occur with the same
probability can be used to derive improved performances for specific algorithmic solutions.

The setting will be that of optimisation problems. Many of these problems seem to be quite
hard to solve exactly. For example the problem of finding the minimum length tour around a set
of towns is the well known NP-complete Travelling Salesman Problem [GJ79]; that of finding the
maximum number of non-adjacent vertices in a graph is equivalent to solving the so called Maximum
Independent Set problem [GJ79]. The hardness results tell us that it is possible to construct a set
of instances on which, under reasonable assumptions, the optimum cannot be found in polynomial
time.

One way to cope with these results is to relax the optimality requirement and be happy
with an approximate solution. In Section 4.1 the notion of approximation will be made precise: the
concepts of approximation algorithm and approximation complexity classes will be defined.

A matching in a graph is a set of disjoint edges. Several optimisation problems are definable
in terms of matchings by just changing the cost function or the optimisation criterion. For instance,
if for any given graph G and matching M in G, the cost function returns the number of edges in
M and the goal is to maximise the value of this function, then the corresponding problem is that of
finding a maximum (cardinality) matching in G. The problem of finding a maximum matching in a

graph has a glorious history and has an important place among combinatorial problems. The class

91

NP can be characterised as the set of all decision problems for which finding a solution among all
possible candidates can take exponential time but checking whether a candidate is a solution only
takes polynomial time (see for example [BDG88, Ch. 8]). Maximum matching is a nice example
of a problem for which, despite of the existence of an exponential number of candidates, a solution
can be found quickly. This fact, discovered by [Edm65], led to a number of algorithmic applications
(see for example [HK73, MV80]).

Few other matching problems share the nice properties of maximum matching. In this
chapter two problems will be considered which are not known to be solvable in polynomial time.
Section 4.2 provides the reader with the relevant definitions and gives an overview of the known
results for these problems. The following four sections present a number of worst case results.

The results in Section 4.3 and 4.6 imply that both problems are NP-hard for graphs with
given bounds on the minimum and maximum degree. In Section 4.3 we introduce the concept of
almost regular graph and we prove that the first problem is NP-hard for almost regular bipartite
graphs of maximum degree 3s for every integer s > 0. For the second one, we show that even
finding a solution whose size is at least a constant fraction e from the optimum is NP-hard for some
fixed € < 1, even if the input graph is almost regular of maximum degree 4s for every integer s > 0.

Section 4.3.2 describes a slightly unrelated hardness result. A relationship is established
between one of the matching problems under consideration and the problem of finding a particular
subgraph of a given graph called a 2-spanner (the reader is referred to Section 4.3.2 for further
details about this problem). The reduction has been recently used [DWZ] to prove approximation
results for an optimisation problem related to 2-spanners in a class of planar graphs. The result was
included in this work as an interesting application of the matching problem considered.

A number of simple positive approximation results are given in Section 4.4 and 4.5. In
the first of the two a general technique is described for obtaining simple guarantees on the quality
of any approximation heuristic for the given problems if the input graphs have known bounds on
the minimum and maximum degrees. Also, families of regular graphs are constructed that match
these guarantees. Secondly, Section 4.5 describes a linear time algorithm which solves optimally
the second problem if the input graph is a tree. The problem was known to be solvable exactly on
trees but the previously known algorithmic solution involved matrix multiplication and an intricate
algorithm for computing a largest independent set in a chordal graph. Our solution is greedy in
flavour in that it builds the optimal matching by traversing the edges in the tree only once.

The simple positive results presented in Section 4.4 are finally matched by a number of

92

negative results, presented in Section 4.6.

Probabilistic techniques are used in the final part of this chapter. Although difficult to solve
exactly in some worst case graphs, the matching problems considered in this chapter can be analysed
rather well if assumptions are made on the distribution of the possible input graphs. Section 4.7 and
4.8 contain some discussion about improved approximation results that follow from the assumption
that the input graphs belong to different models of random graphs. If the input graphs are very likely
to be dense (that is graphs with n vertices and ©(n?) edges) the most likely values of the optima for
the problems discussed can be pinned down quite well. Moreover simple greedy strategies provide
very good quality approximation algorithms. If the most likely input graphs are sparse then the
algorithmic results are weaker, but they still compare favourably with the results of the worst case

analysis mentioned above.

4.1 Approximation Algorithms: General Concepts

The definition of optimisation problem was given informally in Section 1.2. This chapter will be
entirely concerned with a particular class of optimisation problems. All the definitions in this Section

are from [Cre97].

Definition 15 An NP optimisation problem (NPO) P is a tuple (Z,SOL, ¢, opt) where:

(1) L is the set of the instances of P and the membership in T can be decided in polynomial
time.

(2) For each x € I, SOL(z) is the set of feasible solutions of z. Membership in SOL(z)
can be decided in polynomial time and for eachy € SOL(z), the length of y, |y| is polynomial in
the length of .

(3) For each x € T and each y € SOL(x), c(z,y) is an integer, non-negative function,
called the objective or cost function.

(4) opt € {max, min} is the optimisation criterion and tells if the problem P is a maximi-

sation or a minimisation problem.

For example if Z is the set of undirected graphs, SOL(G) is, for every G € Z, the collection
of all sets of vertices U C V(G) such that every edge in G has at least one end pointin U, ¢(G, U) =
|U| for every U € SOL(G), and opt = min then the problem under consideration is that of finding

a, so called, vertex cover of the edges of minimum cardinality (denoted by MINVC). The number

93

of vertices of this optimal cover is a graph parameter normally denoted by 7(G) [LP36].

Definition 16 Let P be an NPO problem. Given an instance x and a feasible solution y of x, the

performance ratio of y with respect to x is

— s c(z,y) opt(z)
R(z,y) = { opt(z) ’ c(z,y) }

where opt(x) is the objective function evaluated at an optimal point,

Figure 4.1: Possible Vertex Covers

For example the vertex cover U in Figure 4.1 has cardinality %T(G) (an optimal cover is

shown on the left). Hence R(G,U) = 3/2.

Definition 17 Let P be an NPO problem and let T' be an algorithm that, for any given instance x of
P, returns a feasible solution T(x) of x. Given an arbitrary functiont : IN = (1, 00) we say that

T is an r(n)-approximation algorithm for P if, for every instance of order n,
R(z,T(x)) < r(n).

Also we say that P can be approximated with ratio r > 1 if there exists an r-approximation algorithm

for P.

For the vertex cover problem a very simple and elegant argument proves that the number of
end-points of the edges in a maximal matching in G always approximates 7(G) within a factor of
two (see for instance [CLR90, Sect. 37.1]).

Optimisation problems can be grouped into classes depending on the quality of the ap-
proximation algorithms that they have. The class APX contains all NPO problems which admit a
polynomial time k-approximation algorithm for some constant k£ > 1. The class PTAS contains all
NPO problems which admit a polynomial time k-approximation algorithm for any constant k£ > 1.
The class PTAS takes its name and is characterised in terms of a particular family of approximation

algorithms.

94

Definition 18 A polynomial time approximation scheme (or ptas) for an NPO problem P is an

algorithm A which takes as input an x € T and an error bound € and has a performance ratio

R (z,A(z)) <1+e¢

The algorithm A runs in time polynomial in the input order and in € ".

4.2 Problem Definitions

In this section the relevant optimisation problems will be defined. All graphs in the following dis-
cussion will be undirected and labelled. If G = (V, E) is a graph, a set M C E is amatching in G if
e1Ney = forall eg,es € M. Let V(M) be the set of vertices belonging to edges in the matching.
A matching M is maximal if for every e € E \ M, there exists f € M such thate N f # @ (we
say that f covers e). A matching M is induced if for every edge e = {u,v}, e € M if and only
ifu,v € V(M) and e € E. A number of parameters can be defined to characterise matchings in

graphs:

Definition 19 If G = (V, E) is a graph then
1. B(G) denotes the minimum cardinality of a maximal matching in G;
2. v(QG) denotes the maximum cardinality of a maiching in G

3. vi(G) denotes the maximum cardinality of an induced matching in G.

In the following sections some of the combinatorial and computational properties of param-
eters (@) and v1(G) will be described. The appelations MINMAXLMATCH and MAXINDMATCH
will be used to identify the corresponding optimisation problems.

A vast literature is concerned with the parameter v(G) (see [LP86] for a beautiful and com-
plete treatment) but much less seems to be known about 3(G) and v;(G). The following paragraphs

give an overview of the known results.

Small Maximal Matchings. The oldest result on 3(G) is by Forcade [For73] who proved an
approximation result on hypercubes. The first negative result is by Yannakakis and Gavril [YG80].
An edge dominating set in a graph is a set of edges F' such that for all e € E(G) there exists

f € Fwithen f # 0. All maximal matchings are edge dominating sets. Yannakakis and Gavril

95

proved that every edge dominating set can be translated into a possibly smaller maximal matching.
Then they proved that finding an edge dominating set with at most k& edges is NP-complete even for
planar or bipartite graphs with maximum degree three. In the same paper they give a polynomial
time algorithm for trees. Subsequently Horton and Kilakos [HK93] extended the NP-completeness
to planar bipartite graphs, planar cubic graphs and few other classes of graphs. A graph is chordal
if for every simple circuit of length at least four there exists an edge not in the circuit connecting
two vertices belonging to the circuit. Horton and Kilakos also gave a O(n?) algorithm for classes of

chordal graphs and a few other classes.

Induced Matchings. The first proof of NP-completeness is in [SV82]. The authors present their
results in terms of d-separated matchings. The notion of distance between two vertices, defined in
Section 1.2.4, can be extended in the obvious way to pairs of edges. Given a graph G = (V, E), for
all e, f € F the distance dstg(e, f) is the length of the shortest path among all paths connecting
the vertices in e and f. A matching M is d-separated if the minimum distance between two edges
in M is 4. Obviously a 2-separated matching is an induced matching. Stockmeyer and Vazirani
prove that finding a §-separated matching of size at least k is NP-complete. Their reduction is from
vertex cover and holds even for bipartite graphs of maximum degree four. An alternative proof of
NP-completeness, again even for bipartite graphs, is in [Cam89]. Induced matchings have attracted

attention following two questions by Erd8s and Nesetril (see [Erd88]):

1. What is the maximum number of edges in a graph of maximum degree A and such that

vi(G) < k?

2. What is the minimum ¢ for which the edge set of G can be partitioned into ¢ induced match-

ings.
A series of improved answers have come in a number of papers [FGST89, HQT93, SY93, L.Z97]

Not much is known about the approximability of 3(G) and v;(G). The only non trivial
result is claimed in [Bak94] where a polynomial time approximation scheme for 3(G) is described

for planar graphs.

96

4.3 NP-hardness Results

In this Section we start describing the new results in this chapter. The class of graphs for which
MINMAXLMATCH and MAXINDMATCH are NP-hard to find is extended. The first result deals
the hardness of MINMAXLMATCH for graphs which show some regularity whereas the second one
relates MAXINDMATCH on bipartite graphs to another interesting combinatorial problem. Other
hardness results will follow as by-products of the results in Section 4.6.

A (8, A)-graph is a graph with minimum degree and maximum degree A. A (d, d)-graph
is a regular graph of degree d (or a d-regular graph). If P is an NPO graph problem, then (8, A)-P
(resp. d-P) denotes the same problem when the input is restricted to the being a (8, A)-graph (resp.

a d-regular graph). Finally, a (8, A)-graph G is almost regular if A /4 is bounded by a constant.

4.3.1 MINMAXLMATCH in Almost Regular Bipartite Graphs

The NP-completeness proofs in [HK73] and [YG80] show that it is NP-hard to find a maximal
matching of minimum cardinality in a planar cubic graph and in planar bipartite (1, 3)-graphs. This
last result can be extended to bipartite (ks,3s)-graphs for every integer s > 0 and ¥ = 1,2. The

following result shows how to remove vertices of degree one from a (1, A)-graph.

Lemma 29 There is a polynomial time reduction from (1, A)-MINMAXLMATCH fo (2, A)-MIN-

MAXLMATCH.

Proof. Given a (1, 3)-graph G, the graph G’ is obtained by replacing each vertex v of degree one
in G by the gadget G,, shown in Figure 4.2. The edge {v, w} incident to v is attached to the vertex
vo. The resulting graph has minimum degree two and maximum degree three. If M is a maximal
matching in G it is easy to build a maximal matching in G’ of size | M |+2|V1(G)|—|V (M)NVL(G))|.
Forevery v € V1(G) add {v1, v2} to M’ moreoverif {u,v} € M then M' will contain also the edge
{vg, vz }. Conversely every matching M’ in G’ can be transformed into a matching M" = M{'UM,',
with |[M"| < |M'|, such that M{' is a maximal matching in G and M" is a set of edges entirely

contained in the gadgets G. O

Figure 4.2: Gadget replacing a vertex of degree one in a bipartite graph.

97

Figure 4.3: A (1, 3)-graph and its 2-padding.

To prove the main hardness result in this section, the following graph operation will be

useful.

Definition 20 The s-padding of a graph G, G, is obtained by replacing every vertex v by a distinct

set of twin vertices vy, . .., vs with {vs,u;} € E(G,) if and only if {u,v} € E(G).

o The vertices of G are partitioned into s layers. Vertices in each layer along with edges

connecting pairs of vertices in the same layer form a copy of the original graph G.

e For each e = {u,v} € E(G) edges e; = {u;,v;} fori = 1,...,s are called twin edges.

Edges e;; = {ui, v} for each i # j are called cross edges.

e Each copy of K, s obtained by replacing two vertices and an edge in G is called a padding
copy of K 5 and sometimes denoted by K¢ ,, to show dependency on the edge in the original

graph G.
The following result is a simple consequence of Definition 20.

Lemma 30 [fG is a (8, A)-graph with n vertices and m edges then G is a (s -8, s - A)-graph with

sn vertices and s*m edges.
To prove Theorem 53 it is important to relate 3(G) to B(G).
Lemma 31 3(G;) < s 8(G), for all graphs G and s > 1.

Proof. If M is a maximal matching in G, a maximal matching M in G is obtained by taking the

union of | M| perfect matchings one in each copy of K¢ ; withe € M. O
Lemma 32 3(G;) > s 8(G), for all bipartite graphs G and s > 1.

Proof. Let G be the padded version of a bipartite graph G, and M be a maximal matching in G.
The s-weighting of the edges of G is a functionw : E(G) — {0, ..., s}. Foreach e € E(G) define
w(e) =g |Ms N E(KS ;)| The following properties hold:

98

I w(v) =g Yo e.peey wle) thenw(v) € {0,..., s} forallv € V(G).

The sum of the weights of the edges incident to v cannot be larger than s otherwise there
would be more than s edges in M, incident to vy, ...,v,; therefore one of these vertices

would be incident to more than one edge in M,.

.Let EGG) = {e € E(G) : w(e) = i} fori € {0,...,s}. Then |J;_, E(¢) is an edge
dominating set of G (as defined in Section 4.2).

This is true because if there was an edge e in G not adjacent to any edge with positive weight
then K{ ; would not be covered by M; in Gs.

. Let G(E(4)) be the subgraph of G induced by V (E(%)). Then E(s) is a maximal matching in
G(E(s)).

The edges in F(s) must be independent because each of them corresponds to a perfect match-

ing in a padding copy of K ,.

. Let G — G(E(i)) be the graph obtained by removing from V(G) all vertices in V(G(E(3)))

and all edges adjacent to them. Then Uf;ll E(4) is an edge dominating set in G — G(E(s)).

. Letv € V(G — G(E(s))); if w(v) < s then w(u) = s for every u € N(v).

Let v; be one of the twin vertices associated with v that is not in V' (M,). For each u € N (v)
each of the edges {v;,u;} (for j = 1,...,s) must be adjacent to a different edge in M,

otherwise they would not be covered.

Using the s-weighting defined above the edges in M can be partitioned into s matchings

each corresponding to a maximal matching in G.

First of all, each edge e in E(s) corresponds to s distinct edges ej,. . .,es in M. Define

M(j) = {e; : foreach e € E(s)}. We prove, reasoning by induction on s, that the set of remaining

edges in M, M, can be partitioned into s sets M7 such that, M7 U M () corresponds to a maximal

matching in G, foreachj = 1,...,s.

BASE. If s = 2 by property 4 above, the set E(1) is formed by a number of paths and even length

cycles, E1, ..., E. Each cycle of length 2m (for some integer m > 1) can be decomposed into two

matchings M and M? of size m by taking alternating edges. If E; is a path then, by property 5

above, neither of its end-points can be adjacent to a vertex v with w(v) = 0. Therefore again two

set of edges are added to M* and M?2.

99

STEP. Let H, be the graph induced by the edges of positive weight less than s. If M* is a maximal
matching in Hy, then w'(e) = w(e) — 1 (resp. w'(e) = w(e)) if e € M? (resp. e & M?) is an
(s—1)-weighting of E(G—G(E(s))) corresponding to the a maximal matching in the s—1-padding

of G — G(E(s)). The inductive hypothesis applies. O
Theorem 53 MINMAXLMATCH is NP-hard for almost regular bipartite graphs.

Proof. We will prove hardness for (ks, 3s)-graphs, with & = 1 or k = 2. Yannakakis and Gavril
[YG80] proved that (1,3)-MINMAXLMATCH is NP-hard for bipartite graphs. The hardness of
(2,3)-MINMAXLMATCH follows from Lemma 29. Then, k = 1,2 the s-padding can be used
to obtain an instance of (ks, 3s)-MINMAXLMATCH restricted to bipartite graphs. The result then

follows from Lemma 31 and Lemma 32. |

4.3.2 MAXINDMATCH and Graph Spanners

Givena graph G = (V, E) a 2-spanneris a spanning subgraph G' with the property that dstg: (u,v) <
2 - dstg(u,v) for every u,v € V. Let s2(G) be the number of edges of a sparsest 2-spanner of G.
The problem has many applications in areas like distributed computing, computational geometry
and biology [PU89, ADJS93]. Peleg and Ullman [PU8Y] introduced the concept of graph spanners
as a means of constructing synchronisers for Hypercubic networks (their results have been recently
improved in [DZ]). The problem of finding a 2-spanner with the minimum number of edges is NP-
hard [Pm89]. In this Section we present a reduction from the problem of finding a sparsest 2-spanner
in a graph to that of finding a largest induced matching in a bipartite graph without small cycles.

For every G on n vertices and m edges, let B(G) be a bipartite graph with vertex sets
U={u,:e € E(G)}and W = {w¢ : C isacycle of length 3 in G}. Two vertices u, € U and

we € W in B(G) are adjacent if the edge e belongs to the cycle C in G.
Lemma 33 s2(G) < m — vi(B(GQ)).

Proof. Let M be an induced matching in B(G). Define S = {e € E(G) : {ue,wc} &€ M}. We
claim that S is a spanner in G. This is so because for every {u., wo} € M the edges f,g € E(G)
that form the cycle C' along with e are such that {u s, we }, {ug, wc} cannot be in M and therefore

are f,g € S. O

Lemma 34 s5(G) > m — v;(B(G)).

100

Proof. Let G be a 2-spanner in G. We prove that we can construct an induced matching in B(G).
If e € E(G) \ E(G') then there exist two edges f,g € G' such that C = {e, f, g} is a triangle in
G. We add {u.,wc¢} to the matching in B(G) and we say that the triangle C' covers e. Let M be
the set of edges in E(B(G)) constructed in this way. Since a triangle can only cover one edge, there
are no two edges in M sharing a vertex we. Also by our construction every edge in E(G) \ E(G")
is considered only once so that there are no two edges in M sharing an edge-vertex. We claim
that M is an induced matching in B(G). Let {u.,wec} € M, assume edge e belongs to triangles
Ci,...,Cye),and let C' = {e, f, g}. No edge {un,wc; } can be in M because, by the definition of
M, {un,wc,;} € M would imply that e € E(G') and therefore {u., wc} ¢ M. Similarly neither
uf, NOI Uy can be in V(M). O

The girth of a graph is the length of its shortest cycles.
Theorem 54 MAXINDMATCH is NP-hard on bipartite graphs with girth at least six.

Proof. For every graph G, the girth of B(G) is at least six, since no two vertices ue,uy € U can

share two neighbours in W. The result follows from Lemma 33 and 34. O

4.4 Combinatorial Bounds

The NP-hardness proofs in the previous section (and those in Section 4.6) imply that under reason-
able assumptions (see [GJ79]) there can be no polynomial time algorithm which finds a maximal
matching of minimum cardinality or one of the largest induced matchings in the given graph. The
next best option is to look for algorithms returning approximate solutions. In this section we de-
scribe some easy combinatorial results which imply some guarantees on the quality of the solutions
for the matching problems under consideration produced by a broad family of algorithms.

The set of all matchings in a graph G, which we denote by M(G), defines an instance
of a type of combinatorial object called an independence system. The following definition is from

[KH78].

Definition 21 An independence system is a pair (E, F) where E is a finite set and F a collection
of subsets of E with the property that whenever F' C G € F then F' € F. The elements of F are
called independent sets. A maximal independent set is an element of F that is not a subset of any

other element of F.

101

Korte and Hausmann [KH78] analysed the independence system (E(G), M (G)) and proved
an upper bound of 2 on the ratio between the cardinalities of any two maximal matchings. The result

they prove is
Theorem 55 v(G) < 2 B(G) for any graph G.

The theorem immediately implies the existence of a simple approximation heuristic for
B(G): an algorithm returning any maximal matching in G is a 2-approximation algorithm. We

therefore have the following theorem.
Theorem 56 MINMAXLMATCH can be approximated with ratio 2.

In the next result a similar argument is applied to (1, A)-MAXINDMATCH. Let G be a
(8, A)-graph. Let M (G) be the set of all induced matchings in G. The pair (E(G), M(G)) is an
independence system. For every S C E the lower rank of S, p(S) is the number of edges of the
smallest (maximal) induced matching included in S; the upper rank p is defined symmetrically. By

a theorem in [KH78], if M is a maximal induced matching, then

w(@) _ B(S)

M| = 5EE p(9)

Theorem 57 Let G be a (8, A)-graph and (E(GQ), M1(Q)) be given. Then

p(S)
rsngaig @ <2(A-1).

Proof. Let My and M5 be two maximal induced matchings in G and let e € Ms \ M;. By the
maximality condition, the set My U {e} is not independent (i.e. it is not an induced matching
anymore). Hence there exists ¢(e) € M at distance less than two from e and since My is maximal
and independent, ¢(e) € My \ M». Indeed ¢ defines a function from My \ M; to My \ M. Let f
be one of the edges in the range of ¢. A bound on the number of edges e € M, \ M; that can be
the pre-image of f € My \ M> is needed. In the worst case (occurring when e is not adjacent to f)
there can be at most 2(A — 1) such e. The result follows. O

The last result proves that any algorithm that returns a maximal induced matching in the

given graph is a 2(A — 1)-approximation algorithm.
Theorem 58 (1, A)-MAXINDMATCH can be approximated with ratio 2(A — 1).

The next set of results describes a technique to obtain improved bounds on 8(G) and v (G)

on (4, A)-graphs. The idea can be readily introduced in the context of vertex cover. Let G = (V, E)

102

be a (4, A)-graph and let U be a vertex cover of cardinality k in G. If U is a vertex cover then
R = V \ U must be an independent set otherwise there would be an edge not covered by U. This
implies that all edges going out from R must end in U. Let d* (v) be the number of edges adjacent
tov € U and to some v' € R. Then

> deg(v) =) d'(v) (4.1)

vER velU

If G has minimum degree § > 0 and maximum degree A

(n—k)5 < deg(v) =Y d'(v) < kA

vER velU

from which

né
k2 A+6

Similar argument can be applied to bound 8(G) and v (G).
Theorem 59 [fG is a (8, A)-graph

3| V(@
1. B(G) > e

2. 11(G) < %@L

Proof. If M is a maximal matching then R = V' \ V(M) is an independent set. Otherwise M could
be extended with any edge connecting two different vertices in B. This implies that all vertices
adjacent to a vertex in R must belong to V' (M). The analogue of (4.1) is

Y deg(v)=) d'(v)

vER veEV (M)
If G has minimum degree § > 0 and maximum degree A > 1,

(n—2k)6 <) deg(v) = Y d'(v) <2k(A-1)

vER vEV (M)

Thus

8|V (G)|
k2 omaro-1)

If M is a maximal induced matching then for each v such that {u,v} € M, (N({v}) —
{u}) NV (M) = (. On the other hand it is not true anymore that R is an independent set (an edge
between two vertices in R is at distance one from edges in M so it cannot be chosen, but its presence
is legal in a maximal induced matching). In this case we can write (where d* now refers to R)

S d@= Y (degv)-1)

vER veEV (M)

103

If G has minimum degree § > 1 and maximum degree A > §

(n—2k)A>2k(6-1) (4.2)
from which we get the upper bound
AV(G)]
< AT
k< 2(A+6-1)
O

Notice that if G is d-regular the lower bound on 3(G) and the upper bound on v;(G)

coincide. Indeed it is not difficult to construct a family of graphs matching these bounds.

v u
4oz,
Voo / AN)
//
//
[/
Vi e Sy
v T u

Figure 4.4: A cubic graph with small maximal matching and large induced matching.

Theorem 60 Letd € IN'. If G is a d-regular graph on n vertices then

n(G) < o on < ()

Moreover for every d = 2i + 1 with i € INT there exists a graph G; on 2(2d — 1) vertices with

I/[(Gi) = ,B(Gl) =d.

Proof. The first part is an immediate consequence of Theorem 59. The second part can be proved by
giving a recursive description of G; for all 4 € INT. To simplify the description it is convenient to
draw G| so that all its vertices are on five different layers, called far-left, mid-left, central, mid-right
and far-right layer. Figure 4.4 shows (Gy. Vertices vy and v (respectively u; and us) are in the
far-left (respectively far-right) layer. Vertices vg and v4 (respectively ug and wu4) are in the mid-left
(respectively mid-right) layer. Vertices z; and 29 are in the central layer. Moreover an horizontal
axis separates odd-indexed vertices (which are below it) from even-indexed ones (which are above),
with smaller indexes below higher ones.

Let G;_1, fori > 2, be given. The graph G} is obtained by adding four central vertices, two
mid-left and two mid-right vertices. Since G has two central and two pairs of mid vertices and easy
inductions proves that G;_1 has 2[2(: — 1) — 1] central vertices and 2(z — 1) mid-left and mid-right

ones. Let z4(;_1)—1, Z4(zi—1)> 24i-3, 24i—2 be the four “new” central vertices, v9;4+1 and V2(i41)>

104

Z,.
4i-2
i+1
205) gz4guz(i+1)
=2 -4
e i & in I Y
V, - Lo i [
2 N
5. b Do |
Vi o Y S
O.. [}) ..o
& g u
O (0] 2i+1
Vairt §Z4i-3 "

4(i-1)-1

(a) (b) (©) (d)

Figure 4.5: A d-regular graph with small maximal matching and large induced matching.
u2i+1 and ug(;41) the mid-left and mid-right ones. G has all edges of G_; plus the following
groups:

1. two edges connecting each of vg;41, V2(i41)> (respectively ug;41 and u2(i+1)) to v1 and vy
(respectively u; and u2), plus edges

{vait1, 2a(-1)—1}, {v2i41, 2a¢i-1) }»

{'U2(i+1)7 24i-3}, {v2(¢+1), Z4i-2},
{u2it1, Z4(i—1)—1}7 {u2it1, Z4(i—1) }
{U2(z‘+1)7 24i-3}, {U2(z’+1), Z4i-2}

All these edges are the continuous black lines in Figure 4.5.(c).

2. A final set of edges connects each of the even index mid vertices with the central vertices of
G;_1 with indices 45 — 2 and 45 — 3 for j = 0,1,...,% — 1. Each of the odd index mid
vertices are connected with the central vertices of G;_1 with indices 4(j —1) and 4(j — 1) — 1
for j = 1,...,4. The squares in Figure 4.5 represent all mid vertices in G;_1. The bold solid

lines in Figure 4.5.(d) represent this kind of edges.

O
Theorem 59.2 is complemented by the following result, giving a lower bound on the size of

a particular family of induced matchings in the given graph.

105

Figure 4.6: A cubic graph with small maximal induced matching.

Theorem 61 Ler f(6,A) = ‘mzj#. If G is a (6, A)-graph, then vi(G) > |V(G)|/f(6,A).
Moreover for every d > 2 there exists a regular graph of degree d with d - f(d,d) vertices and a

maximal induced matching of size d.

Proof. Let G be a (§, A)-graph on n vertices and M a maximal induced matching in G. An edge
e € E(G) is covered by an edge f € M if there exists a path of length less than two between one of
the end-points of e and one of the end-points of f. Each edge in G’ must be covered by at least one

edge in M. Conversely every edge in M can cover at most 2(A — 1)2 + 2A — 1 edges. Thus

E
M| > 2] 14 ([
20A —1)2+2A -1 = 2(2A2 = 2A +1)
A d-ary depth two tree Ty is formed by connecting with an edge the roots of two identical copies
of a complete d-ary tree on d> — d + 1 vertices. The graph obtained by taking d copies of T all

sharing the same set of (d— 1)2 leaves is regular of degree d, it has d- f (d, d) vertices and a maximal

induced matching of size d. Figure 4.6 shows the appropriate cubic graph. O

4.5 Linear Time Solution for Trees

Although NP-hard for several classes of graphs including planar or bipartite graphs of maximum
degree four and almost regular graphs of maximum degree four (see Theorem 66), the problem
of finding a largest induced matching admits a polynomial time solution on trees [Cam89]. The
algorithmic approach of Cameron reduces the problem to that of finding a largest independent set
in a graph H that can be defined starting from the given tree. If G = (V, E) is a tree, the graph
H = (W, F) has |V| — 1 vertices, one for each edge in G and there is an edge between two members
of W if and only if the two original edges in G are either incident or connected by a single edge.
Notice that |F| = O(|V|?). Moreover each induced matching in G is an independent set of the
same cardinality in H. Gavril’s algorithm [Gav72] finds a largest independent set in a chordal graph
with n vertices and m edges in O(n + m) time. Since the graph H is chordal, a largest induced

matching in the tree can be found in O(|V|?) time. In this section we describe a simpler and more

106

efficient way of finding a maximum induced matching in a tree based on dynamic programming. If
G = (V, E) is a tree we choose a particular vertex 7 € V' to be the roor of the tree (and we say that
Gisrooted atr). If v € V' \ {r} then parent(v) is the unique neighbour of v in the path from v to r;
if parent(v) # r then grandparent(v) = parent(parent(v)). In all other cases parent and grandparent
are not defined. If w = parent(v) then v is w’s child. All children of the same node are siblings of
each other. Let ¢(v) be the number of children of node v. The upper neighbourhood of v (in symbols
UN(v)) is empty if v = r, it includes r and all v’s siblings if v is a child of and it includes v’s
siblings, v’s parent and v’s grandparent otherwise. E(UN(v)) is the set of edges in G connecting

the vertices in UN(v).

Claim 2 If G = (V, E) is a tree and M is an induced matching in G then |M N E(UN(v))| < 1,

Joreveryv € V.

To believe the claim notice that if M is an induced matching in G, any node v in the tree belongs to

one of the following types with respect to the set of edges E{UN(v)):

Type 1. the edge {v, parent(v)} is part of the matching,

Type 2. either {parent(v), grandparent(v)} or {parent(v),w} (where w is some siblings of v)

belongs to the matching,

Type 3. Neither Type 1. nor Type 2. applies.

The algorithm for finding a largest induced matching in a tree G on n vertices handles an
n X 3 matrix Value such that Value[i, ¢] is the cardinality of the matching in the subtree rooted at i if

vertex 1 is of type t.

Lemma 35 If G is a tree on n vertices, Value[i,t] can be computed in O(n) time for every i €

{1,...,n}andt =1,2,3.

Proof. Let G be a tree on n vertices and let r be its root. We assume G is in adjacency list repre-
sentation and that some linear time preprocessing is performed to order (using standard topological
sort [CLR90, Ch. 23]) the vertices in decreasing distance from the root.

The matrix Value can be filled in a bottom-up fashion starting from the deepest vertices of
G. If i is a leaf of G then Value[s, t] = 0 for ¢t = 1,2,3. In filling the entry corresponding to node

1 € V of type t we only need to consider the entries for all children of 2, j1, ..., j,.

107

1. Value[i, 1] = 3% Value[j, 2].

Since {4, parent ()} will be part of the matching, we cannot pick any edge from i to one of
its children. The matching for the tree rooted at ¢ is just the union of the matchings of the

subtrees rooted at each of 4’s children.

2. Value[i, 2] = 29, Value[j, 3].

We cannot pick any edge from ¢ to one of its children here either.

3. If ¢ has c(¢) children then Valuel[i, 3] if defined as the maximum between Zz(ﬁl Value[jg, 3]

and a number or terms
85, = 1+ Value[jg, 1] + Z Value[jy, 2]
£k

If the upper neighbourhood of 7 is unmatched we can either combine the matchings in the
subtrees rooted at each of ¢’s children (assuming these children are of type 3) or add to the
matching an edge from ¢ to one of its children jj (the one that maximises s;,) and complete the
matching for the subtree rooted at ¢ with the matching for the subtree rooted at j; (assuming
Jx is of type 1) and that of the subtrees rooted at each of ¢’s other children (assuming these

children are of type 3).

Option three above is the most expensive involving the maximum over a number of sums equal to
the degree of the vertex under consideration. Since the sum of the degrees in a tree is linear in the

number of vertices the whole table can be computed in linear time. O
Theorem 62 MAXINDMATCH can be solved optimally in polynomial time if G is a tree.

Proof. The largest between Value[r, 1], Value[r,2] and Value[r, 3] is the cardinality of a largest
induced matching in G. By using appropriate date structures it is also possible to store the actual

matching. The complexity of the whole process is O(n). O

4.6 Hardness of Approximation

So far two particular graph theoretic parameters both defined on the set M(G) of the matchings in
G have been considered. After proving some NP-hardness results, their algorithmic approximability

was studied. In this section we present some negative results.

108

Polynomial time approximation schemes (as defined in Section 4.1) for NPO problems are
considered the next best thing to a polynomial time exact algorithm. For many NPO problems an
important question is whether such a scheme exists. The approach taken parallels the development
of NP-completeness: some useful notions of reducibility are defined and then problems are grouped
together on the basis of their non-approximability properties.

Although several notions of approximation preserving reductions have been proposed (see
for example [Cre97]) the L-reduction defined in [PY91] is perhaps the easiest one to use. Let P be
an optimisation problem. For every instance z of P, and every solution y of z, let cp(z,y) be the

cost of the solution y. Let optp(x) be the cost of an optimal solution.

Definition 22 Let P and @Q be two optimisation problems. An L-reduction from P to Q is a four-
tuple (t1,t2,a,) where t1 and to are polynomial time computable functions and o and 3 are
positive constants with the following properties:

(1) t1 maps instances of P to instances of Q and for every instance x of P, optg(t1(z)) <
a - optp(z).

(2) for every instance © of P, ta maps pairs (11(z),y") (where y' is a solution of t1(x)) to a

solution y of T so that

loptp(z) — cp(x, ta2(t1(2), y'))| < Blopto(ti(z) — co(t(=),y')-

We write P <; @ if there exists an L-reduction from P to (). An important property of

L-reductions is given by the following result.

Theorem 63 Let P and Q be two NPO problems such that P <, Q with parameters o« and 3, and

it is NP-hard to approximate P with ratio c.

1. If they are both maximisation problems, then it is NP-hard to approximate @ with ratio
aflc
(e¢B—1)c+1"
2. If they are both minimisation problems, then it is NP-hard to approximate Q) with ratio
(¢B8+1)c—1
afc :

Proof. The result is essentially derived from [Pap94, Proposition 13.2]. To prove the first statement,

suppose by contradiction that there is an algorithm which approximates ¢ with ratio For

afec
(aB—1)c+1"

every instance z of P let y' be the result of applying this algorithm to ¢; (x). Then, by definition of

109

L-reduction,

optp(@) = cp(@: b(h(2),4) goPta(ti(®) — colt(@),y')
optp(z) - optq(t1(z))

therefore

optq (t1(z)) afc
> cq(ti(@),y’) = (aB-1)c+1’

optg(ti(z)) — cq(ta(z),y') _ . (af—-Te+1 1 ([1
optg(t1(z)) s1 afic af (1)

and the result follows.

By definition of performance ratio

Similarly if P and) are minimisation problems and there exists an algorithm which ap-

. . . (ef+1)c—1
proximates) with ratio ~==2=— 72 then

cr(,t(t1(2),4')) — optr(@) _ sco(ti(@),y) — opto(ti())

cp(z,t2(t1(2),y')) - optq(ti(z))
By definition of performance ratio (;gt(;l((z)(f)l)) < (o8 :élc_l and the result follows. O

4.6.1 MINMAXLMATCH

Yannakakis and Gavril [YG80] prove the NP-hardness of (1, 3)-MINMAXLMATCH using a reduc-
tion from 3-MINVC restricted to planar graphs. Their reduction can be used as a building block for

a number of L-reductions.

Theorem 64 3-MINVC <, (k,3)-MINMAXLMATCH with parameters oy = 1+ 2f (k) and By, =
Lwhere f(k) = 3(5) + 2 fork =1,2,3.

Proof. Let G = (V, E) be a planar cubic graph. Reduce 3-MINVC to (k, 3)-MINMAXLMATCH,
by replacing every vertex v; € V' by the gadget H ,f: shown in Figure 4.7. The three edges incident
to v; are attached to u;, m; and p; (there are 3! possibilities to do this). The resulting graph ¢1 (G)x
is planar and A(t1(G)g) = 3 for all k. We claim that 8(t1 (G)x) = f(k)|[V(G)| + 7(G). If U is a

vertex cover of G define

Ml = {{uia wil}a {miawis}a {pi,wi4} 1v; € U} U {{wi17wi2}7 {wiaawi4} L ¢ U}
My, = MU {{Z’ilazi2}7 {Z’iaazi4}7 {Z’isazis} 1v; € V}
M; = MU {{ti17tiz}7 {ti37ti4}7 {tisvtiﬁ} 1Y € V}

U{{2i,5 2iy }> { 2in» Zis }> { Zis» Zio }> { Zia> Zis0 }5 {Zis> 2iy1 }, { 216, 202} 1 v €V}

My, is clearly a matching for all &. It is maximal because all edges in each H}. are adjacent to some
e € M and if e € E was incident to some v; € U then e € E(t1(G)) and it is incident to one of

{uwi, ws, }, {mi, wig b, {pi, wi, } € M. We have |[My| = (2 + 3(';))n +|U|.

110

Figure 4.7: Gadgets for a vertex v; € V(G).

Conversely to prove 3(t1(G)1) > 2n+7(G) Yannakakis and Gavril show that any maximal
matching M in 1 (G)1 can be transformed (in polynomial time) into another M’ containing no edge
of the original graph G' and such that every H? contains either two or three edges in M. Every edge
of the original graph must be adjacent to at least one H} containing three edges in M'; vertices
v; € V associated with such H{ define a vertex cover in G.

For & > 1, any maximal matching M in ¢;(G); can be transformed in another (possibly
smaller) matching M’ that uses the edges in My, \ M; to cover the sets E(H}:) \ E(H?). Then
Yannakakis and Gavril’s applies to M\ (M}, \ M) and the edges in E(t1(G)x) \ (E(H})\ E(H?)).
O

3-MINVC is APX-complete [BK99]. Therefore there exists a ¢g > 1 such thatit is NP-hard
to approximate 7(G) with ratio ¢ even if G is a cubic graph. Using this constant and Theorem 63

we have

Corollary 3 Let ¢y be a constant such that 3-MINVC is NP-hard to approximate with ratio cy.

2(f(k)+1)co—1

Then (k,3)-MINMAXLMATCH is hard to approximate with ratio GrR Do -

111

Figure 4.8: Gadget replacing a vertex of degree one.

4.6.2 MAXINDMATCH

Let MIS denote the problem of finding a largest independent set in a graph (problem GT20 in
[GI79]). Appellations (8, A)-MIS and d-MIS are defined in the obvious way. There is [KM] a very
simple L-reduction from MIS to MAXINDMATCH with parameters « = § = 1. Given a graph

G = (V, E), define t; (G) = (V', E') as follows:
Vi=Vu{v':veV}, E'=EU{{v,v'}:veV}

If U is an independent set in G then F = {{v,v'} : v € U} is an induced matching in ¢ (G).
Conversely if F' is an induced matching in ¢1(G) the set t2(¢1(G), F') obtained by picking one
endpoint from every edge in F is an independent set in G. Therefore the size of a largest independent
setin G is vy (1 (@)).

The s-padding of a graph was introduced in Section 4.3.1. The key property of the s-
paddings with respect to the induced matchings in the original graph is that they preserve the dis-
tances between two vertices. If G = (V, E) is a graph then for every u,v € V(G), dstg(u,v) is the

distance between u and v, defined as the number of edges in a shortest path between u and v.

Lemma 36 For all graphs G and for every s > 2, dstg(u,v) = dsta, (us,v;) for all u,v € V(G)
withu #vandalli,j € {1,2,...,s}.

Lemma 37 For all graphs G and for every s > 2, vi(GQ) = vi(Gs).

Proof. Let M be an induced matching in G. Define M, = {{u1,v1} € E(Gs) : {u,v} € M}. By
Lemma 36 all edges in M, are at distance at least two. Conversely if M is an induced matching in
G; define M = {{u,v} € E(G) : {u4,v;} € M, for somei,j € {1,...,s}}. M is an induced
matching in G. O

The following Lemmas show how to remove vertices of degree one and two from a (1, A)-

graph.

Lemma 38 Any (1, A)-graph G can be transformed in polynomial time into a (2, A)-graph G' such
that |[V1(G)| = vi(G") — vi{(G).

112

A G,

W1@</<\)@ -
Figure 4.9: Gadget replacing a vertex of degree two.

Proof. Given a (1, A)-graph G, the graph G' is obtained by replacing each vertex v of degree
one in G by the gadget G, shown in Figure 4.8. The edge {v,w} incident to v is attached to
vg. The resulting graph has minimum degree two and maximum degree A. If M is an induced
matching in G it is easy to build an induced matching in G’ of size |M| + |V1(G)|. Conversely
every induced matching M’ in G’ will contain exactly one edge from every gadget G;. Replacing
(if necessary) each of these edges by the edge {vy,v2} could only result in a larger matching. The
matching obtained by forgetting the gadget-edges is an induced matching in G and its size is (at

least) |M'| — |[V1(G)]. O

Lemma 39 Any (2,A)-graph G can be transformed in polynomial time into a (3, A)-graph G' such
that |Vo(G)| = vi(G") — vi(G).

Proof. Let G be a (2, A)-graph. Every vertex w of degree two is replaced by the graph G, in Figure
4.9. The two edges {u,w} and {v, w} adjacent to w are replaced by edges {u,w,} and {v,ws}.
Let G' be the resulting (3, A)-graph. If M is a maximal induced matching in G, a matching M' in
G' is obtained by taking all edges in M and adding one edge from each of the graphs G,. Figure
4.10 shows all the relevant cases. If w € V(M) then without loss of generality we can assume that
wy; € V(M') and one of the two edges adjacent to wo can be added to M'. If w ¢ V(M) then
any of the four central edges in G, can be added to M. After these replacements no vertex in the
original graph gets any closer to an edge in the matching. Inequality v7(G") > vi(G) + |Va(G)|
follows from the argument above applied to a maximum induced matching in G.

Conversely for any induced matching M’ in G' at most one edge from each copy of G,
belongs to M'. The copies of Gy, with M' N E(G,,) = (are called empty, all others are called

Sull. Tnequality vr (G) > vi(G") — |V2(QG)| is proved by the following claims applied to a maximum

O

& 3 K XM

Figure 4.10: Possible ways to define the matching in G' given the one in G.

113

—

= K e
Figure 4.11: Filling an empty gadget, normal cases.

induced matching in G'.

Claim 3 Any maximal induced matching M' in G' can be transformed into another induced match-

ing M" in G" with |M'| < |M"| and such that all gadgets in M" are full.
Claim4 M =4 M" N E(Q) is an induced matching in G.

To prove the first claim, an algorithm is described which, given an induced matching M' C E(G'"),
fills all empty gadgets in M’. The algorithm visits in turn all gadgets in G' that have been created

by the reduction and performs the following steps:

(1) If the gadget G, under consideration is empty some local replacements are performed that fill

G-
(2) The gadget G, is then marked as “checked”.

(3) A maximality restoration phase is performed in which, as a consequence of the local replace-

ments in Step (1), some edges might be added to the induced matching.

Initially all gadgets are “unchecked”. Let G, be an unchecked gadget. If G, is full the algorithm
simply marks it as checked and carries on to the next gadget. Otherwise, since M’ is maximal, at
least one of the two edges adjacent to vertices w; and wy must be in M’ for otherwise it would be
possible to extend M' by picking any of the four central edges in G,. Without loss of generality let
{u,wi} € M'. Figure 4.11 shows (up to reflection symmetries) all possible cases. If vertex v does
not belong to another gadget then either of the configurations on the left of Figure 4.11 is replaced
by the one shown on the right. If v is part of another gadget few subcases need to be considered.
Figure 4.12 shows all possible cases and the replacement rule. In all cases after the replacement the
neighbouring gadget is marked as checked. Notice that all replacement rules do not decrease the
size of the induced matching. Also as the process goes by, new edges in E(G) can only be added to
the current matching during the maximality restoration phase. To prove the second claim, assume
by contradiction that two edges e = {u,v} and f = {w,y} in M are at distance one. Notice that

dstg: (e, f) = dste(e, f) unless all the shortest paths between them contain a vertex of degree two.

114

w A P w ACAL AR
W XS , /\.,><f A X

A B SR, A
PSS CON P

l

w AR A w AR RCTR
IR, JSEPIE

]

woRA A w AR ACA
" /\(F/nb/— T N u/\”;\f Vo

d

WA N NN / L Ve W av e /O
u / NTANGEEAS S u / o Voeemy \3

Figure 4.12: Filling an empty gadget, special cases.

The existence of e and f is contradicted by the fact that M’ and M"" are induced matchings in G’
and all gadgets in G’ are filled by M". O
The non-approximability of (ks, (A+1)s)-MAXINDMATCH (for k = 1,2, 3) follows from

Theorem 63 applied to known results on independent set [AFWZ95, BK99].

Theorem 65 Let h(,A,c) = @2)41419/3]]e Define

£(6,A)c+1
9(0,A,c) = ¢
g(i,A,C) = h(’L,A,g(’L - I,A,C)) i Z 1

For every A > 3, let ca be a constant such that it is NP-hard to approximate (1, A)-MIS with ratio
ca. Then for k = 1,2,3 and every integer s > 0 it is NP-hard to approximate (ks, (A + 1)s)-

MAXINDMATCH with ratio g(k — 1, A + 1,¢ca).

Proof. The result for £ = 1 follows from the L-reduction at the beginning of the section for s = 1
and a further L-reduction based on s-paddings for s > 2. For k € {2, 3} If G has minimum degree
k—1, Theorem 61 implies v (G) > |Vx—1(G)|/ f(k — 1, A). The result follows using these bounds

along with the reductions in Lemma 38 and 39. O

Theorem 66 Let cy be a constant such that 3-MIS is NP-hard to approximate with ratio co. Then

for every integer s > 0 it is NP-hard to approximate (3s,4s)-MAXINDMATCH with ratio ﬁ'ﬁ'

Proof. The reduction at the beginning of Section 4.6.2 and Theorem 63 imply that it is NP-hard to
approximate (1,4)-MAXINDMATCH with ratio ¢p. If the original cubic graph G has n vertices, then
t1(G@) has [V1(t1(G@))| = |Va(t1{G))| = n, no vertex of degree two or three, 5n/2 edges and the
maximum number of edges at distance at most one from a given edge is 19. We call one such graph

a special (1,4)-graph.

115

Claim 5 There is an L-reduction from (1,4)-MAXINDMATCH restricted to special (1,4)-graphs to

3,4)-MAXINDMATCH with parameters o = £ and 8 = 1.
5

If G is a (1,4)-graph with [Vo(G)| = [V3(G)| = 0, then replacing each vertex v of degree one with
the gadget in Figure 4.8, gives a (3,4)-graph G'. The properties of special (1,4)-graphs and the

same argument used to prove Theorem 61 imply 11 (G) > Vi (G)|. Therefore

%(G') =n(6) + V(O] £ u(6) + Tu(G) = 2u(G)

Also, for every matching M’ in G', define t2(G’, M') as described in Lemma 38. It follows that
vi(G) — |t2(G', M")| < vi(G") — |M'| and the claim is proved.

Therefore, by Theorem 63, (3,4)-MAXINDMATCH is hard to approximate with ratio ¢; =

4360
38co+5°

particular, |[V3{H)| = |Va(H)|, |E(H)| = 7|V3(H)|/2 and again the maximum number of edges at

The special (3,4)-graphs H generated by the last reduction have again a lot of structure. In

distance at most one from a given edge is 23. O

4.7 Small Maximal Matchings in Random Graphs

The previous sections described a few positive and negative results concerning the complexity and
algorithmic approximability of the parameters 3(G) and v7(G). In this Section we look at the
combinatorial and algorithmic properties of 3(G) when G is a random graph or a random bipartite
graph. (A similar analysis for v;(G) is in Section 4.8).

More specifically, in Section 4.7.1 the size of the smallest maximal matchings in random
graphs generated according to G,, ,, are analysed and a number of improved approximation results are
proved. Two regions of values for the parameter p are considered. If p is a constant it is proved that,
with high probability, & — ﬁ{‘_—p)) <BG) <% - ﬁﬁ. In particular the upper bound
is algorithmic in the sense that there is an algorithm that returns a maximal matching of size at most
5= ﬁ% in a graph G € Gy . The results build up on a relationship between maximal
matchings and independent sets which maybe useful on its own. If p = ¢/n with ¢ constant, on
average, the graph is much sparser. Again it is possible to exploit the relationship between maximal
matchings and independent sets, but the known results for the latter problem are much weaker than

in the dense case. Using them we are only able to prove lower bounds on 3(G). For small values of

c the simplest first moment method actually gives better results.

116

In Section 4.7.2 a similar investigation is performed under the assumption that G is a ran-
dom bipartite graph belonging to G(Ky, n, p). The notion of split independent set is introduced, that
plays a role similar to that of independent set for general graphs. The analysis is completed for the
dense case: it is proved that, with high probability, n — ﬁIﬁT)) <B@G)<n-— ﬁﬁ,
if G belongs to G(Kp, p, p), with p constant.

It should be remarked that some of the results in these sections can be interpreted as phase
transition phenomena. If n and p are fixed and the size (i.e. the cardinality) of the solution is
varied, the proportion of graphs containing a solution of that specific size experiences a dramatic
change in value. For instance, Theorem 68 and 69 on small maximal matchings imply that, on dense
random graphs, as the size of the required matching is increased between two functions in the class
n/2 — ©(logn) the proportion of graphs containing a matching of that given size goes from almost

all to almost none.

4.7.1 General Graphs

Let X = X, «(G) be the random variable counting the number of maximal matchings of size &
in G € G(n,p). Also, let Z = Z, ,_of be the random variable counting independent sets of size

n — 2k and let Y =Y}, ; be the random variable counting perfect matchings in H € Gag p

Theorem 67 If G € G(n,p) then

n—Zk)

1 E(X) = (2) G (8)" ("

2. B(X) = E(Z) - E(Y).

Proof. Let M; be a set of k independent edges, assume that G is a random graph sampled according
to the model G(n,p) and let X ;7 & be the random indicator equal to one if M; is a maximal matching
inG. E(X},)=Pr[X;},]= p’“q(n;%). Then by linearity of expectation
_ i _ . _ k (n72k)
E(X)= Y E(X;.) = |{M;:|Mi| = k}|-pq\">
| M;|=k
The number of matchings of size k is equal to the possible ways of choosing 2k vertices out of n
times the number of ways of connecting them by & independent edges divided by the number of

orderings of these chosen edges:
_ n (2]{:)‘ P k (n—Zk)
E(X)‘(zk) k! (2) ¢

117

The second result is true since

62 =(, 1) =G ()

O

If pis a constant, a natural way to lower bound the size of the smallest maximal matching in

arandom graph would be to get an upper bound on the expectation of X and then to use the Markov
inequality (as we did in Chapter 3). Assuming 2k = n — 2w

n_ n n w
500 = iy (3)) < (BT < () ()

and this goes to zero only if w = Q(y/n). However a different argument gives considerably better

lower bounds. Following Theorem 67.2 it is possible to use the natural relationship between maximal

matchings and independent sets. If M is a maximal matching in G then V'\ V(M) is an independent

set.
Theorem 68 3(G) > & — ﬁgl;»_q) Sor almost all graphs in G(n, p) with p constant,

Proof. Let Z, 5, be the random variable counting independent sets of size 2w = 10%&% ina

random graph G.

Pr[Xpa_ >0 = Pr[Xpa_,>0|Zpa >0]Pr[Z,2, > 0]+
Pr[Xp 2y > 0| Zpaw = 0] Pr[Zp 2, = 0]
< PriXpa_u>0]Zp2 >0Pr[Zp2, >0]+0-1

< Pr[Z,0,>01—0

The last asymptotic result follows from a theorem in [GM75] concerning the independence number
of dense random graphs. This implies 3(G) > § — hi—‘;j‘—% for almost all graphs G € G(n,p). O
The argument before Theorem 68 based on upper bounding E(X) is weak because even
if E(Zp,2.) is small E(X, =_,) might be very large. The random graph G' might have very few
independent sets of size 2w (perhaps, only one) but a large number of maximal matchings of size
& — w (corresponding to the different possible ways of selecting the edges forming the matching).
Results in [GM75] also have algorithmic consequences. Let oy (G) be the size of the in-
dependent set returned by the simplest greedy heuristic which repeatedly places a vertex v in the

independent set I (as long as E(G[I U {v}]) = 0) and removes {v} U N(v) from G. It is easily

1
proved that oy (G) ~ ﬁl%)'

118

Theorem 69 3(G) < & — ﬁg(% for almost all graphs in G(n, p) with p constant.

Proof. Let ZS be an algorithm that first finds a maximal independent set I in G using Grimmett
and McDiarmid’s heuristic and then (attempts to) find a perfect matching in the remaining graph.
With probability going to one |I| > (1 — §) Tlgo(gl% for all § > 0. Also, Grimmett and McDiarmid’s
algorithm does not use any information about G — I. Hence G — I is a completely random graph on
about n — |I| vertices, each edge in it being chosen with constant probability p. Results in [ER66]
imply that almost all such graphs contain a matching leaving at most one vertex unmatched. O

Independent sets are useful also for sparse graphs. If p = £ a lower bound on 3(G) can be

obtained again by studying a(G).
Theorem 70 3(G) > 5 — %g—cfor almost all graphs G € Gy, o/n for ¢ > 2.27.

Proof. a(G) < %g—c for almost all graphs G' € Gy, o/p, for ¢ > 2.27 (See Theorem XI.22 from
Bollobds’ book [Bol85]). The result follows by an argument similar to that of Theorem 68 O

In the dense case knowing the exact value of E(X) does not allow us to improve the lower
bound on 3(G) given by the independent set analysis, since E(Y) is always large if p is constant and
k ~logn. If p = £ for c sufficiently small, E(Y") is small. This implies that the exact expression
for E(X) in Theorem 67 gives some improved lower bounds on 8{G) for sufficiently sparse graphs.
Roughly if ¢ is sufficiently small and U is a large independent set in G then G[V \ U] very rarely

contains a perfect matching.

Theorem 71 Let d be a positive constant larger than one. Then (G) > n/2d for almost all graphs

G € G(n,c/n).

Proof. By Theorem 67 E(X) = #}l)vkl(p/ 2)*(1 — p)("gzk). Using Stirling approximation for

the factorials involved in this expression we have

E(X)No(l)(n)”[p(n—2k)2]’“(1_p)(n2_2,,)2

n — 2k 2ke

Since p = ¢/n, it follows that

500 ~ o) (25:) [“"‘2’”2]2—%2

n — 2k 2kne

Now setting k = n/2d we have

d \"[(d=1\2cd]® _enar2
E(X)No(l)(d_l) l(_) Z] R

119

Taking the logarithm of the right hand side, we have that E(X) — 0 if

2d(d — 1) log + dlog % —c(d-1)2<0

d—1

and this inequality is satisfied for every ¢ larger than a certain ¢(d) > 0. |

4.7.2 Bipartite Graphs

The analysis in the last section can be adapted to the case when G is a bipartite graph. Again 8(G)
is closely related to another graph parameter whose asymptotic behaviour, at least on dense random

graphs, can be estimate rather well.

Definition 23 Given a bipartite graph G = (V1, Va, E) with |V1| = |Va| = n a split independent
set in G is a set of vertices S with |S| = 2w, |S NV;| = w and E(G[S]) = 0. Let 6(G) be the size

of a largest split independent set in G.

One interesting property of split independent sets is that they “control” the existence of
small maximal matching in bipartite graphs in the same way as independent sets control the maximal
matchings in general graphs. If M is a maximal matching in a bipartite graph G then V' \ V(M)
is a split independent set. Let X be the random variable counting maximal matchings in a random
bipartite graph; let Z = Z,, ,,_; be the random variable counting split independent sets of size n — k

and Y =Y, ; the random variable counting perfect matchings in H € G(K x,p)
Theorem 72 If G € G(Kp p,p) then

1. E(X) = (Z)Qk!pkq(”_k)2.

2. E(X)=E(Z)-E(Y).

Proof. Let M; be a set of k independent edges and G € G(K,, ,p) and let X ;7 & be the random
indicator equal to one if M; is a maximal matching in G. B(X} ;) = Pr[X}] = p*q™=®* Then
B(Xpx) = Y B(Xj.) = |{Mi:|Mi] = k}| - pFq™™"

|M;|=k
The number of matchings of size & is given by the possible ways of choosing &k vertices out of n on
each side times the number of permutations on k elements. The result follows. O
If p is constant, it is fairly easy to bound the first two moments of Z and get good estimates

on the value of o(G).

120

Figure 4.13: Possible relationships between pairs of split independent sets

Theorem 73 ¢ (G) ~ %lg/ﬁq for almost all graphs in G(Kp n, p) with p constant.

Proof. The expected number of split independent sets of size 2w is (3)2(1“’2. Hence, if 2w =

2logn
log1/q

n 2 2 nv 2 2 1 1
Pr[Z > 0] < ¢ <|—) ¢¥ = —=exp{2wlogn —w?log -
w w! (w!)? q

and the bound on the right goes to zero if w > %/ﬂq.

Let 2w = 2 [%J for any € > 0. The event “Z = 0” is equivalent to “o(G) < 2w”
because if there is no split independent set of size 2w then the largest of such sets can only have
less than 2w elements. By Chebyshev inequality Pr[Z = 0] < Var(Z)/E(Z)2. Also Var(Z) =
E(Z?) — E(Z)?. There are s, = (Z)2 ways of choosing w vertices from two disjoint sets of n
vertices. If Z* is the random indicator set to one if S¢ is a split independent set in G' then Z =
> 7" and then E(Z?) = 33, . Pr[Z* A Z7] where the sum is over all i,§ € {1,...,s,}. From
the definition of conditional probability Pr[Z¢ A Z7] = Pr[Z* | Z%]Pr[Z?]. Hence E(Z?) =
>, Pr[Z9]132,Pr[Z* | Z7]. Finally by symmetry Pr[Z* | Z9] does not actually depend on j buf
only on the amount of intersection between S* and S7. Thus, letting S* = {1,...,2w}, E(Z?) =
(Zj Pr[Zj]) (>, Pr[Z*| Z1]) = E(Z) - E(Z|Z"). Thus to prove that Pr[Z = 0] converges to

zero it is enough to show that the ratio E(Z|Z')/E(Z) converges to one.

—

Pr[Z = 0] = Pr [a(a) - [4(1—6)10gnH < E(z2))

log1/q E(2)

(this is assuming E(Z|Z1) > E(Z)). Now

w\ (w\[n—w\[/n—w) ,2
BzIZ) = 3 ()()()(>qw bty
0<i1,l2<w b\ \w—1li)\w-1
Define T}; (generic term in E(Z|Z1)/E(Z)) by

w2 = (O

s 2 3 _
Claim 6 Too < 1— 2575 + (“;l—(?:jl-l%g

121

To see this write

o= () (0)
_ [(n—w)~(n—w—l)~...~(n—2o.1+1)]2
n-n—-1)-...-(n—w+1)

- [0 (-22) - ()]

From this

In particular

w 2w
Too < [1-———
0 = (n—w-i—l)
2w? 2w w ? 2
= 1- -) (1-¢&2w3
n—w+1+(2)(n—w+1) (1-9
2w? w3 (2w —1)
<

1—
n—w+1l (n—w+1)?

Claim7 T;; < n_“’—:“fori + 5 = 1 and for sufficiently large n.

The truth of this follows from Claim 6 since

Ty = w n—w\ m—w\/n _2: w?Tho < w?
w—1 w w n—w+1"n—w+1

Claim 8 T;; < Tig foralli,j € {1,...,w} and for sufficiently large n.

The ratio T;; /110 is bounded above as follows

Ti; w! w! n—w! n—w!
To dw—4 jlw—j w—iln—2w+i w—jln—2w+
w—1n—-2w+1 whn-2w ¢¥
' n—w! TTn—wl w
(wh? n—2w! n-2w+1l g%

(w—i)?(w — g2 ‘n—2w+il n-—2w+j w?iljl

< (w)2(i+:i)—2 (= 2w) I g

o g i1
wgq ¥ =1
n — 2w
UJ2

The function i+§.j_1 < 2:”—: forall 4,5 € {1,...,w}. Moreover 52— < % + 1forallw > 1.

Hence

Ty o (w87
Tio — n— 2w

122

From the claims above

2(1—¢)1
pr |y <o |20 =9l T
log1/q
S T00+T10+T01+w2T10—1
2w? w3(2w—1) 2w? wt
< 1- + —
n—w+l m-w+1)? n-w+l n-w+l
wi (2w —1) w?

T (n-w+1)? n-w+l

Theorem 74 3(G) > n — fog’% for almost all graphs in G(Ky, pn,p) with p constant.

The similarities between the properties of independent sets in random graphs and those
of split independent sets in random bipartite graphs have some algorithmic implications. A rather
simple greedy heuristic almost always produces a solution whose cardinality can be predicted quite
tightly. Let I be the independent set to be output. Consider the process that visits the vertices of a
random bipartite graph G(V1, Va, E) in some fixed order. If V; = {v?,...,v%}, then the algorithm

1,2 2

will look at the pair (v, v3) during step j. If {v}, vi} € E and if there is no edge between vg and

any of the vertices which are already in I then both v} and v} are inserted into I. Let 0, (G) = |1].
Theorem 75 o,(G) ~ %% for almost all graphs in G(Knp n, p) with p constant.

Proof. Suppose that 2(k — 1) vertices are already in I. The algorithm above will add two vertices
vy and v, as the kth pair if {v1,v2} ¢ E and there is no edge between either v; or ve and any of the
vertices which are already in I. The two events are independent in the given model and their joint
probability is
(1-p)-(1=p)** = (1-p)**

(since the graph is bipartite, v1, say, can only possibly be adjacent to k£ — 1 of the vertices in I).
Let X} be the random variable equal to the number of pairs considered before the kth pair is added
to I. From the previous discussion it is evident that X has geometric distribution with parameter
P, = (1 —p)?k~1. Moreover the variables X1, Xa, ... are all independent. Let Y, = > 4_, X.
The event “Y,, < n” is implied by “o4(G) > 2w”: if the split independent set returned by the greedy
algorithm contains more than 2w vertices that means that the algorithm finds w independent pairs in
strictly less than n trials. Also if Y,, < n then certainly each of the X} cannot be larger than n (the

opposite implication is obviously false). Hence

Pr[Y, < n] < Pr[N{_1{Xk <n}]= H Pr[X; < n] = H{l —[1-(1-p)2-1}
k=1 k=1

123

Letw = [%] and, given € > 0 and r € IN, choose m > r/e. For sufficiently large n,

w —m > 0. Hence
PI‘[Yw < n] < H {1 - [1 _ (1 _p)2k+l]n} < {1 _ [1 _ (1 _p)2(w—m)+l]n}m
k=w—m

Now, since (1 — z)* > 1 — nz,

PrY, < n] < {n(1 - p)“ "™ = (1 - g2 (1 -) = o(n)

The event “Y,, > n” is equivalent to “o,(G) < 2w”. Letw = [%J. IfY, >n

then there must be at least one & for which X > n/w (for otherwise Y = > X}, would be strictly
smaller than n). Hence
w
Pr[Y,, > n] < PriUp_, {Xi > n/w}] < Y Pr{Xe > njw] <w[l — (1 — p)> 1/«
k=1

By the choice of w,
fn_(l_e)

1-p

<oon{-" 5}

1-p>t>

Hence

(- ln/el
Pr[Y,, >n]§w[1— -]
Since [n/w] > njw—1,
ne
PrY, > n] <wexp {—m - 0(1)}
and the result follows from the choice of w. O
The greedy algorithm analysed in Theorem 75 is equivalent to the following algorithm
which, at the same time, builds the split independent set in a random graph that is uncovered on the

fly. Notice that at the end of the algorithm no choice has been made about the edges connecting

pairs of vertices in (V3 UVa) \ V(M).

Input: n, the order of V; and Va.

() I+ 0

2) E+ 0

(3) repeat

4 Let v; be the first vertex in V; (for¢ = 1, 2);
(5) N(v1) + 0;

124

©) N(v2) + 0

(7 with probability p do

(®) E(G) + E(G) U{v1,v2};

9) N(v1) + {v2};

(10) N(v2) + {v };

(1D if (Vi = 1) A (E(G) =0)

(12) I+ ITU{v1,v2};

13) else

(14) (*let V; = {vs, ui2, - "ui,IVil} (fori =1,2) %)
(15) fori=2to V3| -1

(16) with probability p do

(17) N(v1) < N(v1) U{u2,:};
(18) E(G) + E(G) U {v1,u2,4}:
(19) with probability p do

(20) N(v2) N(v2) U{uq};
(21) E(G) + E(G)U{v2,u1,4};
(22) if {vi,12} € E(G)

(23) I+ TU{v,v};

(24) Vi< Vi\ ({1} UN(v1)):

(25) Va Vo \ ({v2} UN(v2)):

(26) until V; = §;

The advantage of this algorithm is that, after the split independent set has been found, the
graph G — I is still completely undefined. Thus this algorithm can be the first part of a bigger
procedure that first finds a (large) split independent set in a random bipartite graph and then a large
matching in the remaining random graph. The following result is thus the analogue of Theorem 69

for bipartite random graphs.

Theorem 76 5(G) <n — ﬁ%—‘ﬁfor almost all graphs in G(Kp, p, p) with p constant.

125

4.8 Large Induced Matchings in Random Graphs

We conclude this chapter by looking at the properties of large induced matchings in dense and rather
sparse random graphs. The model we use is G(n, p) and we will consider the case p constant and the
case p = ¢/+/n, with ¢ constant. In the former case it is possible to prove that, with high probability,
vi(G) ~ ﬁf_—m). Furthermore there is an algorithm that, with high probability returns an
induced matching of size asymptotic to ﬁﬁ. In the case p = ¢/+/n, with ¢ constant we
were only able to prove that %gc—c\/ﬁ <v(G) < Ly/nlogn.

Let Yz = Y} x(G) be the random variable counting the number of induced matchings of

size k in G € G(n, p).

Expectation. Let M; be a set of k independent edges in G € G(n,p). Define Y}, , the random

p.k>

indicator equal to one if M; is an induced matching in GG. The probability that this happens is
p* times the probability (1 — p)(?)=k = g2k(E=1) that the subgraph induced by the vertices in
V/(M;) does not contain any other edge apart from those in M;. Thus E(Y;) = Pr[Y}, = 1] =

pFq2k(k=1) By linearity of expectation

E(Y;) = (27;) @R (E)k k(=)

Figure 4.14: Dependence between pairs of induced matchings of size &

Variance. The main ingredient in the variance is E(Y% |Yp" &) for some ¢: this is the expected num-
ber of induced matchings of size k given that M; is an induced matching of size & in G. Figure 4.14
shows two matchings of the same size and the possible interactions between them. If M; is given by

the black lines, and M by the light ones we have

Pr[Y;)jk | Y;k] = phl 2=t (k=l=1)+al(k=1)=21s

There are k — [“new” lines and s - 21 of the possible (2("2_1)) — (k—=1)+2(k —1)2I lines which must

not be in M; have already be accounted for in dealing with the probability Pr[Y?]. There are (’l“)

126

ways of choosing I edges in M; to be in M as well. Then there can be s vertices which are adjacent
to both M; and Mj, there are (2*79) ways of choosing them, then (®-2¥) ways of choosing the
other s endpoints and s! ways to connect them in a matching. Finally & — [— s more independent

edges can be chosen in K,,_ar_s. We have

B(Yi|Yy,) =

()5 (G

8

[2(k —1 - 3)]! k—lq2(k—l)(k—l—l)+4l(k—l)—2ls
2k—l-s(f — [— s)!

> (5) ()t 5 () e e ()

Theorem 77 vi(G) ~ li—g% for almost all graphs in G(n, p) with p constant.

Proof. To prove v1(G) < %ﬁ% we use again Markov inequality.

R ORE

1 1
o exp {Qk [logn— (k—1)log 7 —p]}

and this expression goes to zero as . grows to infinity if & > ki—gi‘—% +1.

E(Y)

IA

Letk = [MMJ. Forl =0,...,k and define T} (n) by

log1/q
2! (kY (p 2D - l) (n — 2k)! 2\°
(n)(%) k! _(l) () Z (k—1—3)! (n—4k+ 20+ s)! \ g%
so that %’1’7— = Zz o Ti(n). The following sequence of claims is aimed at proving that

Zf:(]Tl(n) — 1. Note that Zzzo Ti(n) > 1.
Claim 9 Ty(n) < 1+ 4k%/(n — 2k) + O((k*/(n — 2k))?).

To see the claim notice that

(n —2k)! k!
n!

(2k)! (n — 2k)!
sl (2k — 8)! (k—s)! (n — 4k + s)!

8

M=

T()(n) =

Il
©

8

n—2k' . (k) (20! (n—26)!
s=0

s/ (2k—s)! (n — 4k + s)!

k 2kss_ 4k k
n—2k2kz(s> (n=2k)772" = {1+ 5

s=0

and the validity of the claim follows.

127

Claim 10 T3 (n) = O((k/(n — 2k))?).

By simple algebraic manipulations 7% (n) can be expressed in terms of a binomial sum.

2% (n—2k)KICS [2(k— 1) (n — 2k)! 2\°
hm = n! Z(s)(k—s—l)!(n—4k+s+2)! (q_Q)

p) s=0
2% (n—2k) 8 (k-1 (n — 2k)! 2k — 1)1 [/ 2\°
T p al X_:O(s)(n—4k+s+2)! [2(k —1) —]! (q_Q)
2k* 1 = k-1 2k—s—2 _ s 3 °
= N L G ©)

_ %2 (k-1 [4k-1) \° 2% 4k —1) !
~ p(n—2k)? ; (s) (qQ(n—%)) ~ p(n— 2k)? (1+ q2(n—2k))
Claim 11 T;(n) = o(T1(n)) forl =2,... k.

It is fairly easy, if tedious, to express T;_1 (n) in term of T;(n).

() 5= (5 6@

&2k -1+ 1) (n — 2K)! 9 *
‘ ; (8) (k—1l+1-8)1(n—4k+2l -2+ 5)! (q2l—2)

Since (%)) = (1/(k—1+1))(F)and (1 = 1)> =1 +1=12—1-2(- 1),

n\ (2k)! _ Ipg**TY R\ p\Tt a2y
T"l(")(zk) K 2(k—1+ 1)\l (2) 1 X

(2 —1+1) (n — 2k)! 2 *
; (8)(k—l+1—s)!(n—4k+21—2+s)! (q2!—2)

. - —0)\ 2(k—I+1) 2(k—0)+1
Since (2(k sl+1)) = (Q(ks l)) 2(k(—l+1)ls 2(19(—1)411—3’

n ! 4(1-1) ~l
Tl_l(n)(%) (25),:2(%(1—1“) (];) (3) .

FET 2k -1\ 2k-1+41) 2k-1)+1
'Z(3)2(k—l+1)—s2(k—l)+1—s'

s=0

(n — 2k)! 2 \°
(k=1l4+1-8)!(n—4k+20 -2+) \ g*2

Ipg* -1 [k (,_,)-z _2(12_,)’°§1 2(k — 1) (n — 2k)! y
sk—1+1\t)\2) 1 2 s) (k—l—s) (n—4k+20+3)

2(k—1+1) 2—0)+1 (n—4k+2l+s)(n—4k+21—1+s) o (3)3
2k—1l+1)—s2k—-0)+1—s k—l+1-s g%

The three fractions involving s are as small as possible when s = 0. Also ¢2° is always larger than
g*~!*1. Thus, taking everything that does not depend on s out of the sum,

n (2k)! _ Ipg®* =D (n — 4k +2)(n— 4k + 21— 1)
_ >
T’l(”)(zk) B Z2k—1+1) k—1+1 X

128

_ L k=it 3 n— 9k)!
(I;) (3) U ZZ:O (2(ks l)) (k—l—s)(! o —211)1;+2l+s)!

Ipg?*+H=1) /p _ Ak + 2
e SR T
(k—1+1)2 2 i(n)

and,since1 <1<k,

Ipg** (n — 4k)>
Ti-1(n) > 22 Ti(n)
Finally a simple induction on [shows that, forall 1 <1 < k,

1 2k> =l
Ti(n) < n (m) Ti(n)

Using the claims above it is now fairly easy to prove that almost always G € G(n,p) has

(1—6)logn

an induced matching of size [Tog /g

as in Theorem 73, to prove that Pr[Y" > 0] almost always, we just need to show that the ratio
E(Y|YY)/E(Y) — 1. This follows from the claims above since E(Y|Y!)/E(Y) = Ef:o Ti(n). O

It turns out that it is possible to approximate the largest induced matching in a random graph
by another variant of the greedy procedure. Pairs of vertices are visited in some (arbitrary but fixed)

order and added to the induced matching if they are connected and they are not connected to any

(

2
2

other edge in the matching. The following piece of code is one possible implementation.

program Greedy _induced _matching

Input: random G = (V, E) with V = {v1, ..., v,}
() M«0;
2) fori=1to|n/2]do
(3) if ({vai—1,v2:} € E and cut({va;_1,v2;}, V(M)) = @)
4) M +— M U {vai—1,v2:};

Let gry be the cardinality of the resulting matching.

Theorem 78 gr;(G) _logn_ ¢, almost all graphs in Gn.p With p constant.

~ 4logl/q

Proof. The proof technique is identical to that of Theorem 75. If k£ — 1 edges are in the matching

y

J for any § > 0. Applying exactly the same argument

already (let My_1 denote the matching with k — 1 edges) the pair {vj;, v;j+1 } is added to it if

)] {’Uj,’Uj.H} € F and,

129

2) cut({vj,vjt1}, V(Mg_1)) = 0.

The probability that this happens is P, = p(1 — p)**~1 . For k = 1,2,..., let X the geometric

random variables equal to the number of pairs considered until the kth pair is added to the matching.

(1+¢€)logn

Define Z; = 22:1 Xy. Let € be a positive real constant, If [= [Tlog1/4

-| and m > r/e then

l
[[41 -1t -p(1 - p**017/2

Pr[Z; <n/2] <
k=1
< {1-[1-p(1 - p)=m/2ym
N™ gy \Alm—dm?
< (2) p"(1-p)
_ L mnmn—(l-i-e)m — O(n—r)
2(1 — p)*m

4logl/q

1= |ctiogn,

l
PriZ; >n/2] < > Pr{X; > n/2]
k=1

I[1 = p(1 — p)*te=Dln/2t]

<

ey Ln/21]
< 1[1—”"74]

(1-p)
—(1—¢)

pn n
< 1. a7 2
< 1 e"p{ 1—p)s [21J}

Sparse Graphs. The performances of the algorithm “Greedy_induced_matching” described above
can be analysed also on sparser graphs. Let G € G, ./, - The following is a technical result needed

in Theorem 79.

Lemma 40 [fp = = then Iy ’;:Lll < 2 foralln > 4c*.
Proof.
oo ; o
pit 1S
2551 S ptg
P
— P i—2
= pt5) p
=2
P
_ P ¢
= Pt 2 Ep
t=0
2
N A
= ProT,
The result follows using the assumption on p. O

130

Theorem 79 gr;(G) >]%gc—c -/ for almost all graphs in G(n,p) with p = ¢/+/n and ¢ constant.

Proof. At step s there are ¢—1 edges in M. The probability that algorithm Greedy_induced_matching
executes step (4)is P; = p(1— p)4). Let X;, fori = 1,2, ... count the number of edges removed
until the j-th edge is added to M. We have Pr[X; = s] = P;(1 — P;)*~!. So each of the X; has
geometric distribution and E(X;) = 1/P; and Var(X;) = (1 — P;)/P;®. Moreover the random
variables X; are all independent. Let Z = Zle X;. We have Pr[Z > n] = Pr[Gr(G) < k]. Since
all the X; are independent we can derive tight bounds on the expectation and the variance of Z and
use Chebyshev inequality to complete the proof of the theorem. The geometric sum Ele ol is at

most &— for any o > 1, therefore

N4k ' o\ —dk44
D 3

Since 1 — (1 — p)* = p(4 — 6p + 4p° — p*) > p,

1—p 4(1—k)
i < L=

If p = ¢/+/n, using Lemma 40,

Ifk = 1ﬂg:j,cc;‘s\/ﬁthen

for some fixed 5. Similarly

k .
1— p(l _ p)4(z—1)
Var(Z) = Z (0 D

i=1
a- p
< Lo z -9
_ —8k+8
< U 310)
p
Using the assumptions on p and &,
n% 12ck _ 8 cn%
— e VvVn _T:l =
Var(Z) < 5 © =

By Chebyshev inequality, since E(Z) < n —nn

Pr[Z > n] < Pr[Z > E(Z) +nn] <

O
The result in Theorem 79 is complemented by the following Theorem. As above let Y =

Yp.x(G) be the random variable counting the number of induced matchings of size & in G.
Theorem 80 v;(G) < y%—" Jor almost all graphs in G(n,p) with p = ¢/+/n and ¢ constant.

Proof. Without loss of generality, by Theorem 79 it is possible to assume that k& > 13‘3;6—0 -y/n. Using

Markov inequality,

n! c k _2ck!k—1!
PrlY | < Va
>0 < R (wa) ©

< n2k c k _2ck!k—12
I == v
= R (wa) ¢
k
0(1) (ecn? S
27k 2k

0(1) (3ec*n* S ETSH
Vork \2loge

IA

The last upper bound goes to zero if

2
k> ﬂ -log (3ec n)
2¢

logc

By using standard calculus it is not difficult to prove that f(c) = ifgcz is minimised for ¢ = e% and

f(c) > 6e%. Hence the expected number of induced matchings of size k is very small as long as

k> g—flog6e2n= \/5(210g2§+10gn)‘ O

4.9 Conclusions

In this chapter we studied two graph-theoretic problems related to the set of matchings in a graph.
MINMAXLMATCH denotes the problem of finding a maximal matching of minimum cardinality
whereas MAXINDMATCH denotes the problem of finding an induced matching (see the beginning
of Section 4.2 for a precise definition of an induced matching) of maximum cardinality in a given
graph.

The first part of the chapter described a number of worst-case results. In particular, we
proved that MINMAXLMATCH is NP-hard even if the input is an almost regular bipartite graph of
maximum degree 3s, for each integer s > 0, and MAXINDMATCH is NP-hard to approximate with
approximation ration r (for some r > 1) even if the input is an almost regular graph of maximum

degree 4s, for each integer s > 0. After presenting simple approximation heuristics for classes of

132

regular and bounded degree graphs based on structural properties of these matchings, and a linear
time optimal algorithm for MAXINDMATCH if the input graph is a tree, the investigation of the
complexity of these problems in bounded degree graphs was completed by deriving a number of
non-approximability results (see Section 4.6) for several classes of bounded degree graphs.

The second part of the chapter described a number of improved results obtained under the
assumption that the input graph is generated according to a number of different procedures (see

Section 1.2 for all the relevant definitions).

133

[ADIS93]

[AF99]

[AFWZ95]

[AHU74]

[AM]

[And76]

[Apo57]

[Arf51]

[AS91]

[AS94]

[ASE92]

[Bak94]

Bibliography

I. Althofer, G. Das, D. Joseph, and J. Soares. On Sparse Spanners of Weighted Graphs.

Discrete and Computational Geometry, 9:81-100, 1993,

D. Achlioptas and E. Friedgut. A Sharp Threshold for 3-Colourability. Random Struc-

tures and Algorithms, 14:63-70, 1999,

N. Alon, U. Feige, A. Wigderson, and D. Zuckerman. Derandomized Graph Products.

Computational Complexity, 5:60-75, 1995,

A. V. Aho, I. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer

Algorithms. Addison-Wesley, 1974.

D. Achlioptas and M. Molloy. Almost All Graphs with 2.522n Edges are not 3-

Colourable. Electronic Journal of Combinatorics, to appear.

G.E. Andrews. The Theory of Partitions, volume 2 of Encyclopedia of Mathematics

and its Applications. Addison-Wesley, 1976.
T. M. Apostol. Mathematical Analysis. Addison-Wesley, 1957.

G. Arfwedson. A Probability Distribution Connected With Stirling’s Second Class

Numbers. Skandinavisk Aktuarietidskrift, 36:121-132, 1951.

M.D. Atkinson and J.R. Sack. Uniform Generation of Combinatorial Objects in Parallel.
Technical Report SCS-TR-185, School of Computer Science, Carleton University,

Ottawa, Canada, January 1991.

M.D. Atkinson and J.R. Sack. Uniform Generation of Binary Trees in Parallel. Journal

of Parallel and Distributed Computing, 23:101-103, 1994,

N. Alon, J. H. Spencer, and P. Erd6s. The Probabilistic Method. Wiley Interscience

Series in DMATH and Optimization. John Wiley and Sons, 1992.

B. S. Baker. Approximation Algorithms for NP-complete Problems on Planar Graphs.

Journal of the Association for Computing Machinery, 41(1):153-180, January 1994.

134

[BCI1]

[BDGS8S]

[BK99]

[Bol79]

[Bol85]

[Bre74]

[Cam89]

[ChvI1]

[CLR90]

[CR73]

[CR92]

[Cre97]

[CS88]

D. P. Bovet and P. Crescenzi. Teoria della Complessita Computazionale. Franco Angeli,

1991.

J.L. Balcazar, J. Diaz, and J. Gabarro. Structural Complexity I, volume 11 of EATCS

Monographs on Theoretical Computer Science. Springer-Verlag, 1988.

P. Berman and M. Karpinski. On Some Tighter Inapproximability Results. In Pro-
ceedings of the 26th International Colloquium on Automata, Languages, and Pro-
gramming, volume ?7? of Lecture Notes in Computer Science, page 77?7 Springer -
Verlag, 1999.

B. Bollobds. Graph Theory, volume 63 of Graduate Text in Mathematics. Springer

Verlag, 1979.
B. Bollobés. Random Graphs. Academic Press, 1985.

R. P. Brent. The Parallel Evaluation of General Arithmetic Expressions. Journal of the
Association for Computing Machinery, 21:201-206, 1974,

K. Cameron. Induced Matchings. Discrete and Applied Mathematics, 24(1-3):97-102,
1989.

V. Chvétal. Almost All Graphs With 1.44n Edges Are 3-Colourable. Random Structures
and Algorithms, 2:11-28, 1991.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. M.LT.
Press, 1990.

S. A. Cook and R. A. Reckhow. Time Bounded Random Access Machines. Journal of

Computer and System Sciences, 7:354-375, 1973.

V. Chvital and B. Reed. Mick Gets Some (the Odds Are on His Side. In Proceedings of
the 33rd Annual Symposium on Foundations of Computer Science, pages 620-627.

IEEE, 1992.

P. Crescenzi. A Short Guide to Approximation Preserving Reductions. In Proceedings
of the 12th Annual IEEE Conference on Computational Complexity, pages 262-273,
Ulm, 1997. IEEE.

V. Chvatal and E. Szemerédi. Many Hard Examples for Resolution. Journal of the

Association for Computing Machinery, 35(4):759-768, October 1988.

135

[CV88]

[DB97]

[DFK91]

[Dun88]

[DVWOI6]

[DW83]

[DWZ]

[DZ]

[Edm65]

[ER66]

[Erd88]

[FGST89]

[FK96]

R. Cole and U. Vishkin. Approximate Parallel Schedulting, part I: the Basic Technique
With Applications to Optimal Parallel List Ranking in Logarithmic Time. SIAM

Journal on Computing, 17:128—-142, 1988.

O. Dubois and Y. Boufkhad. A General Upper Bound for the Satisfiability Threshold

of Random r-SAT Formulae. Journal of Algorithms, 24(2):395-420, aug 1997.

M. Dyer, A. Frieze, and R. Kannan. A Random Polynomial Time Algorithm for Ap-
proximating the Volume of a Convex Body. Journal of the Association for Comput-
ing Machinery, 38(1):1-17, January 1991.

P. E. Dunne. The Complexity of Boolean Networks, volume 29 of A.PI.C. Series. Aca-
demic Press, 1988.

A. Denise, M. Vasconcellos, and D. J. A. Welsh. The Random Planar Graph. Congres-
sus Numerantium, 113:61-79, 1996.

J.D. Dixon and H.S. Wilf. The Random Selection of Unlabelled Graphs. Journal of
Algorithms, 4:205-213, 1983.

W. Duckworth, N. C. Wormald, and M. Zito. Approximation Algorithms for Finding
Sparse 2-Spanners of 4-Connected Planar Triangulations. Submitted to the 10th
Australasian Workshop on Combinatorial Algorithms.

W. Duckworth and M. Zito. Sparse Hypercube 3-Spanners. To appear in Discrete
Applied Mathematics.

J. Edmonds. Paths, Trees and Flowers. Canadian Journal of Mathematics, 15:449-467,
1965.

P. Erd6s and A. Rényi. On the Existence of a Factor of Degree One of a Connected Ran-
dom Graph. Acta Mathematica Academiae Scientiarum Hungaricae, 17(3—4):359—

368, 1966.

P. Erd6s. Problems and Results in Combinatorial Analysis and Graph Theory. Discrete

Mathematics, 72:81-92, 1988.

R. J. Faudree, A. Gyarfas, R. H. Schelp, and Z. Tuza. Induced Matchings in Bipartite
Graphs. Discrete Mathematics, 78(1-2):83-87, 1989.

E. Friedgut and G. Kalai. Every Monotone Graph Property Has a Sharp Threshold.

Proceedings of the American Mathematical Society, 124:2993-3002, 1996.

136

[FL83]

[For73]

[Fri97]

[FS96]

[Gav72]

[Giu83]

[GJ79]

[GI97]

[GKP89]

[GMT75]

[Goe92]

[GR88]

[GS92]

[Har69]

T. I. Fenner and G. Loizou. Tree Traversal Related Algorithms for Generating Integer

Partitions. SIAM Journal on Computing, 12(3):551-564, August 1983.

R. Forcade. Smallest Maximal Matchings in the Graph of the d-Dimensional Cube.

Journal of Combinatorial Theory (B), 14:153-156, 1973.

E. Friedgut. Necessary and Sufficient Conditions for Sharp Thresholds of Graph Prop-

erties, and the k-Sat Problem. with an appendix of J. Bourgain, October 1997.

A. M. Frieze and S. Suen. Analysis of two Simple Heuristics on a Random Instance of

k-SAT. Journal of Algorithms, 20:312-355, 1996.

E Gavril. Algorithms for Minimum Coloring, Maximum Clique, Minimum Covering
by Cliques and Maximum Independent Set of a Chordal Graph. SIAM Journal on

Computing, 1(2):180-187, June 1972.
E. Giusti. Analisi Matematica, volume 1. Boringhieri, Torino, 1983.

M. R. Garey and D. S. Johnson. Computer and Intractability, a Guide to the Theory of

NP-Completeness. Freeman and Company, 1979.

L. A. Goldberg and M. Jerrum. Randomly Sampling Molecules. In Proceedings of
the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 183—-192,

New Orleans, Louisiana, 5-7 January 1997.

R.L. Graham, D.E. Knuth, and O. Patashnik. Concrete Mathematics. Addison-Wesley,

1989.

G. R. Grimmett and C. J. H. McDiarmid. On Colouring Random Graphs. Mathematical

Proceedings of the Cambridge Philosophical Society, 77:313-324,1975.

A. Goerdt. A Threshold for Unsatisfiability. In I. Havel and V. Krbec, editors, Math-
ematical Foundations of Computer Science, volume 629 of Lecture Notes in Com-

puter Science, pages 264-274. EACTS, Springer-Verlag, 1992.

AM. Gibbons and W. Rytter. Efficient Parallel Algorithms. Cambridge University
Press, 1988.

G. R. Grimmett and D. R. Stirzaker. Probability and Random Processes. Clarendon

Press, Oxford, second edition, 1992.

E. Harary. Graph Theory. Addison-Wesley, 1969,

137

[HK73]

[HK93]

[Hm90]

[HP73]

[HQT93]

[HW94]

[JKEPO3]

[Joh90]

[IVV386]

[KH78]

[KKKS98]

[KKT95]

[KLM&9]

[KM]

J. Hopcroft and R. Karp. Ann%/2 Algorithm for Maximal Matching in Bipartite Graphs.

SIAM Journal on Computing, 2:225-231,1973.

J. D. Horton and K. Kilakos. Minimum Edge Dominating Sets. SIAM Journal on

DMATH, 6(3):375-387, August 1993.

T. Hagerup and C. Riib. A Guided Tour of Chernoff Bounds. Information Processing
Letters, 33(6):305-308, February 1989-90.

FE Harary and E.M. Palmer. Graphical Enumeration. Academic Press, 1973.

P. Hordk, H. Qing, and W. T. Trotter. Induced Matchings in Cubic Graphs. Journal of

Graph Theory, 17(2):151-160, 1993.

T. Hogg and C. P. Williams. The Hardest Constraint Problems: a Double Phase Transi-
tion. Artificial Intelligence, 69:359-377, 1994,

S. Janson, D. E. Knuth, T. buczak, and B. Pittel. The Birth of the Giant Component.
Random Structures and Algorithms, 4(3):233-358, 1993.

D.S. Johnson. A Catalog of Complexity Classes, volume A of Handbook of Theoretical

Computer Science, chapter 2, pages 69-161. Elsevier, 1990.

M.R. Jerrum, L.G. Valiant, and V.V. Vazirani. Random Generation of Combinato-
rial Structures from a Uniform Distribution. Theoretical Computer Science, 43(2—

3):169-188, 1986.

B. Korte and D. Hausmann. An Analysis of the Greedy Heuristic for Independence

Systems. Annals of Discrete Mathematics, 2:65-74, 1978.

L. M. Kirousis, E. Kranakis, D. Krizanc, and Y. C. Stamatiou. Approximating the Un-
satisfiability Threshold of Random Formulas. Random Structures and Algorithms,

12(3):253-269, 1998.

D. R. Karger, P. N. Klein, and R. E. Tarjan. A Randomized Linear-time Algorithm to
Find Minimum Spanning Trees. Journal of the Association for Computing Machin-

ery, 42(2), 1995.

R.M. Karp, M. Luby, and N. Madras. Monte-Carlo Approximation Algorithms for

Enumeration Problems. Journal of Algorithms, 10(3):429-448, September 1989.

S. Khanna and S. Muthukrishnan. Personal communication.

138

[Knu73]

[KR87]

[Kri86]

[Lei92]

[LP86]

[LZ97]

[McD92]

[MRO95]

[MV80]

[NW78]

[Pap94]

[Pm89]

[PU89]

[Pu97]

D. E. Knuth. The Art of Computer Programming: Searching and Sorting, volume 3.

Addison-Wesley, 1973.

R. M. Karp and M. O. Rabin. Efficient Randomized Pattern-matching Algorithms. /BM

Journal of Research and Development, 31:762-773, March 1987.

V. Krishnamurthy. Combinatorics: Theory and Applications. Mathematics and its

Applications. John Wiley and Sons, 1986.

E T. Leighton. Introduction to Parallel Algorithms and Architectures, Arrays Trees

Hypercubes. Morgan Kaufmann, San Mateo, CA, 1992.

L. Lovasz and M. D. Plummer. Matching Theory, volume 29 of Annals of Discrete

Mathematics. North Holland, 1986.

J. Liu and H. Zhou. Maximum Induced Matchings in Graphs. Discrete Mathematics,

170:277-281,1997.

C. McDiarmid. On a Correlation Inequality of Farr. Combinatorics, Probability and

Computing, 1:157-160, 1992.

R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press,

1995.

S. Micali and V. V. Vazirani. An O(v'/2€) Algorithm for Finding Maximum Matching
in General Graphs. In Proceedings of the 21st Annual Symposium on Foundations

of Computer Science, pages 17-27, New York, 1980. IEEE Computer Society Press.

A. Nijenhuis and H.S. Wilf. Combinatorial Algorithms. Academic Press, New York,
1978.

C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994,

D. Peleg and A. A. Schiffer. Graph Spanners. Journal of Graph Theory, 13(1):99-116,
1939.

D. Peleg and J. Ullman. An Optimal Synchronizer for the Hypercube. SIAM Journal
on Computing, 18:740-747, 1989.

I. Pu. Algorithms for Economic Storage and Uniform Generation of Graphs. PhD

thesis, University of Warwick, September 1997.

139

[PY91]

[Rio58]

[Rot65]

[Rub81]

[Sch97]

[Sin93]

[SP94]

[SS96]

[SV82]

[SY93]

[Tin90]

[Val79]

[VN51]

[Wil94]

[Wil97]

C. H. Papadimitriou and M. Yannakakis. Optimization, Approximation and Complexity

Classes. Journal of Computer and System Sciences, 43:425-440, 1991.
J. Riordan. An Introduction to Combinatorial Analysis. Wiley, 1958.

J.J. Rotman. The Theory of Groups: An Introduction. Advanced Mathematics. Allyn

and Bacon, Boston, 1965.
R. Y. Rubinstein. Simulation and the Monte Carlo Method. John Wiley and Sons, 1981.

G. Schaeffer. Bijective Census and Random Generation of Eulerian Planar Maps with
Prescribed Vertex Degrees. Electronic Journal of Combinatorics, 4(1), 1997. Avail-

able from http://www.combinatorics.org.

A. Sinclair. Algorithms for Random Generation and Counting: a Markov Chain Ap-

proach. Birkhiuser, 1993.

J. Sorenson and I. Parberry. Two Fast Parallel Prime Number Sieves. Information and

Computation, 114:115-130, 1994.

L. A. Sanchis and M. B. Squire. Parallel Algorithms for Counting and Randomly Gener-
ating Integer Partitions. Journal of Parallel and Distributed Computing, 34:29-35,
1996.

L. J. Stockmeyer and V. V. Vazirani. NP-Completeness of Some Generalizations of
the Maximum Matching Problem. Information Processing Letters, 15(1):14-19,

August 1982.

A. Steger and M. Yu. On Induced Matchings. Discrete Mathematics, 120:291-295,
1993.

G. Tinhofer. Generating Graphs Uniformly at Random. Computing, 7:235-255, 1990.

L. G. Valiant. The Complexity of Computing the Permanent. Theoretical Computer

Science, 8:189-201, 1979.

J. von Neumann. Various Techniques Used in Connection with Random Digits. U.S.

National Bureau of Standards Applied Mathematics Series, 12:36-38, 1951.
H. Wilf. Algorithms and Complexity. Prentice-Hall, 1994,

D. B. Wilson. Annotated Bibliography of perfectly Random Sampling with Markov

Chains. In D. Aldous and J. Propp, editors, Microsurveys in Discrete Probability,

140

volume 41 of DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, page 209. American Mathematical Society, 1997. Also available from

http://dimacs.rutgers.edu/ dbwilson/exact/.

[Wor87] N.C. Wormald. Generating Random Unlabelled Graphs. SIAM Journal on Computing,

16(4):717-727, 1987.

[YGS80] M. Yannakakis and F. Gavril. Edge Dominating Sets in Graphs. SIAM Journal on
Applied Mathematics, 38(3):364-372, June 1980.

141

