
GRAPHICS GEMS V

This is a volume in

The Graphics Gems Series
A Collection of Practical Techniques
for the Computer Graphics Programmer

Series Ed i t o r

Andrew Glassner
Microsoft
Redmond, Washington

GRAPHICS G
V

E MS

Edited by Alan W. Paeth
Computer Science Department
Okanagan University College
Kelowna, British Columbia

M ~4
An Imprint of Elsevier

San Diego San Francisco New York Boston
London Sydney Tokyo

This book is printed on acid-free paper Q

Copyright © 1995 by Academic Press
All rights reserved.
No part of this publication may be reproduced or
transmitted in any form or by any means, electronic
or mechanical, including photocopy, recording, or
any information storage and retrieval system, without
permission in writing from the publisher.

Permissions may be sought directly from Elsevier's Science and Technology Rights Department in
Oxford, UK. Phone: (44) 1865 843830, Fax: (44) 1865 853333, e-mail: permissions@elsevier.co.uk.
You may also complete your request on-line via the Elsevier homepage: http://www.elsevier.com by
selecting "Customer Support" and then "Obtaining Permissions".

ACADEMIC PRESS
An Imprint of Elsevier

525 B Street, Suite 1900, San Diego, CA 92101-4495 USA
http: l lwww.academicpress.com

Academic Press
24-28 Oval Road, London NWI 7DX United Kingdom
h ttp:llwww.hbuklapl

Morgan Kaufmann
340 Pine Street, Sixth Floor, San Francisco, CA 94104-3205
ht tp: l lmkp.com

Library of Congress Cataloging-in-Publication Data
Graphics Gems V / edited by Alan W. Paeth.

p. cm. - - (The graphics gems series)
Includes bibliographical references and index.
ISBN 0-12-543455-3 ('with IBM disk)
ISBN 0-12-543457-X (with Macintosh disk)

1. Computer Graphics. I. Paeth, Alan W. II. Graphics Gems 5.
III. Title: Graphics Gems five. IV. Series.
T385.G6935 1995
006.6 '6--dc20 93-41849

CIP

Printed in the United States of America

04 05 06 07 08 MP 7 6 5

0 Contents

Foreword b y Andrew S. Glassner . ix

Preface . xiii

. Author Index. xvii

I. Algebra and Arithmetic . 1

1.1. Solving Quartics and Cubics for Graphics 3

1.2. Computing the Inverse Square Root . 16

1.3. Fixed-Point Square Root . 22

1.4. Rational Approximation . 25

Don Herbison- Evans

Ken Turkowski

Ken Turkowski

Ken Shoemake

11. Computational Geometry . 33

11.1. Efficient Computation of Polygon Area and Polyhedron Volume . . 35
Allen Van Gelder

Paulo Cezar Pinto Carvalho and Paulo Roma Cavalcanti

Andrew S. Glassner

Andrew J. Hanson

Robert Buckley

Kenneth J . Hill

Alan Wm. Paeth

11.2. Point in Polyhedron Testing Using Spherical Polygons. 42

11.3. Clipping a Concave Polygon . 50

11.4. Rotations for N-Dimensional Graphics 55

11.5. Parallelohedra and Uniform Quantization 65

11.6. Matrix-based Ellipse Geometry . 72

11.7. Distance Approximations and Bounding Polyhedra 78

V

vi 0 Contents

111. Modeling and Transformation. 89

111.1. The Best Least-Squares Line Fit . 91

Cell Ambiguity . 98

111.3. Tricubic Interpolation . 107

David Alciatore and Rick Miranda

111.2. Surface Models and the Resolution of N-Dimensional

Steve Hill and Jonathan C. Roberts

Louis K. Arata

111.4. Transforming Coordinates from One Coordinate Plane
to Another . 111
Robert D. Mzller

A Walk through BSP Trees . 121
Norman Chin

Generic Implementation of Axial Deformation Techniques 139
Carole Blanc

111.5.

111.6.

IV. Curves and Surfaces. 147

Identities for the Univariate and Bivariate Bernstein
Basis Functions . 149
Ronald N . Goldman

IV.2. Identities for the B-Spline Basis Functions 163
Ronald N. Goldman

IV.3. Circular Arc Subdivision . 168
Ken Turkowski

IV.4. Adaptive Sampling of Parametric Curves 173
Luiz Henrique de Figueiredo

IV.5. Fast Generation of Ellipsoids . 179
Jaewoo Ahn

IV.6. Sparse Smooth Connection between Bhzier/B-Spline Curves 191
Chandrajit Bajaj and Guoliang Xu

IV.7. The Length of B6zier Curves . 199
Jens Gravesen

IV.8. Quick and Simple Bkzier Curve Drawing 206
Robert D. Miller

IV.9. Linear Form Curves . 210
Ken Shoemake

IV.l.

Contents 0 vii

V. Ray Tracing and Radiosity . 225

V.l . Computing the Intersection of a Line and a Cone 227
Ching-Kuang Shene

Ray Intersection of Tessellated Surfaces: Quadrangles
versus Triangles . 232
Christophe Schlick and Gilles Subrenat

Faster Ray Tracing Using Scanline Rejection 242
Tomas Moller

Ray Tracing a Swept Sphere. 258
Andreas Leipelt

Acceleration of Ray Tracing via Voronoi Diagrams 268
Ga‘bor Mdrton

Direct Lighting Models for Ray Tracing with Cylindrical Lamps . . 285
Kurt Zimmerman

Improving Intermediate Radiosity Images Using Directional Light . 290
Martin Feda

V.2.

V.3.

V.4.

V.5.

V.6.

V. 7.

VI. Halftoning and Image Processing . 295

VI. 1. Improved Threshold Matrices for Ordered Dithering 297
Werner Purgathofer, Robert F. Tobler, and Manfred Geiler

Halftoning with Selective Precipitation and Adaptive Clustering . . 302
Tien-tsin Wong and Siu-chi Hsu

Faster “Pixel-Perfect” Line Clipping . 314
Steven Eker

Efficient and Robust 2D Shape Vectorization 323
Jean-FranCois Doue‘ and Ruben Gonzalez Rubio

Reversible Straight Line Edge Reconstruction 338
S. C. Hsu and I. H. H. Lee

Priority-based Adaptive Image Refinement 355
Rajesh Sharma

Sampling Patterns Optimized for Uniform Distribution of Edges . . 359
Robert A. Cross

VI.2.

VI.3.

VI.4.

VI.5.

VI.6.

VI.7.

VII. Util it ies. . . 365

VII.l. Wave Generators for Computer Graphics 367
Christophe Schlick

viii ~ Contents

V I I . 2 . Fast P o l y g o n - C u b e In tersec t ion Test ing 375

Daniel Green and Don Hatch

V I I . 3 . Veloci ty-based Collision Detec t ion . 380

William Bouma and George Vanggek, Jr.

V I I . 4 . Spat ia l Pa r t i t i on ing of a Polygon by a P lane 386

George Vanggek, Jr.

V I I . 5 . Fast Po lygon Tr iangu la t ion Based on Seidel 's A lgor i thm 394

A tul Narkhede and Dinesh Manocha

V I I . 6 . Accura te Z-Buffer Render ing . 398

Raghu Karinthi

V I I . 7 . A Survey of E x t e n d e d Graphics Libraries 400

Alan Win. Paeth, Ferdi Scheepers, and Stephen May

Index . 407

Volume I - V Cumula t ive Index . 411

0 Foreword

Andrew S. Glassner

Computer graphics exists because people have messages to communicate. As our tools
for rendering, modeling, and animation become more sophisticated, we find it ever
easier to create meaningful statements. But the tools of graphics are rarely the point of
our enterprise; our goal is to enable meaningful communication of important ideas. To
create meaning we must make creative choices, and this leads us to the creation of art.

There are many ways to define art, and perhaps no definition will ever work univer-
sally. For now, I will use a broad definition that includes all "technical" creations and
say that any creative act can result in art, whether it produces a painting, a song, a
video showing tidal forces on Saturn, or a daydream. The last example is something
created purely to entertain its creator; all other forms of art are vehicles for commu-
nication. Every image we produce with computer graphics that is ultimately destined
to be shown to another person contains a message: the image is simply the vehicle for
communicating that underlying idea. That idea may be very simple {e.g., a restful ar-
rangement of colors), or very complex (e.g., particle flow in turbulent water), but the
image is always subservient to the message: without its intended message, the image
has no intrinsic value.

For these reasons, I believe that as we develop our tools we must keep in mind
how they help people create, refine, and present their ideas. Each new option in a
paint program, each new method for interpolating 3D keyframes, and indeed every new
technique, should be evaluated in terms of not just its technical performance, but also
in terms of whether it improves people's ability to communicate.

The point of view that images exist to carry messages is quite far from the idea that
computers should be generating their own images. The concept of computer-generated
art (as opposed to computer-assisted art, which is what we have now) has been around
as long as computers and science fiction have been around. Sometimes hailed as a good
and sometimes couched as a warning, the idea that computers might start creating
images, films, sculptures, and other artifacts in the same form as traditional media
carries with it some interesting questions for those of us who create images to express
our ideas and who create new tools for that purpose.

The computer is the perfect simulator and imitator, but only along one axis of the
human experience: intellectual analysis. This is an essential part of what it is to be
human, but not the whole thing. It is, however, the only tool at our disposal as creators
of new hardware and software, because the computer is inherently a logical, rational
device. We have no way of writing an intuitive or spiritual program; those ideas just
don't fit into the computer model. We can force these ideas onto the Procrustean bed

IX

X 0 Foreword

of computers and try to create an algorithmic model of intuition, but I believe this does
more harm than good: it means distorting the very nature of something not based on
reason to codify it using the tools of reason. Perhaps someday there will be a way to
emulate intuition and imagination and soul, but I see no hope of doing that with the
machines and ideas that form the field of computers as we know them now.

Without these essential human characteristics, a computer by itself cannot produce
art that carries anywhere near the levels of meaning that a human artist can provide. An
artifact produced by a person carries within it many layers of conscious and unconscious
thought, imagination, filtering, selection, phrasing, shaping, and so on. Artists struggle
to find the right way to present something, to find the essential core of the message they
are communicating. Even practical artists, for example, those who produce images of
traffic flow on urban streets, select shapes and colors and compositions that work best,
as judged by both objective and subjective criteria. We can try to codify our processes
for these selections and judgments, but so many of them happen so deeply inside us
that often the best we can do is create a behaviorist's paradise: a book of rules that,
when obeyed, usually produces a reasonable result. Music composed by mechanically
following the rules of theory is nothing like what a five-year-old makes when banging
on a piano, but which has more heart? Which speaks more directly to us as people?

Returning to computer graphics, I believe that the best images and films are the
ones that are made by people with something to say, and that we should address our
tools to helping those people with their message. We ought not to try to place layers of
computer-generated art over their message in order to make it look more sophisticated,
creative, or artistic in some way, because this creates information without meaning.

Let us take as an example an imaginary lighting system (unimplemented to my knowl-
edge) that attempts to provide lighting for scene designers. Someone creates an image
or animation that appears splotchy; that is, there are some large dark regions and ev-
erything else is about evenly lit. The person invokes the lighting system, which inserts
a new light to illuminate the dark regions. Is this a good thing? Consider that the new
light may create new highlights if the surfaces are shiny—do those highlights draw a
viewer's eye away from a region of more importance? Does the new light create shadows
that change how the surface appears to move? Is it simply out of place in some way?
Perhaps. The computer can't answer these questions, because they are vague and hard
to define—two of the characteristics of a problem ill-suited for computerization. It is
better to leave the creator of the image to define and place that light than to do it
automatically. This has very little to do with expertise and experience, and everything
to do with the complex job of trading off countless vague and intuitive decisions when
we create anything. Whatever the person decides, it will have been a decision formed
and evaluated by someone with intent, and, like the five-year-old on the piano, the mes-
sage, even if imperfectly stated, is always more important than whether or not the rules
were followed. To break the rules we sometimes need tools more powerful than the ones
we've had in the past. And when we share those tools, the entire community gains as

Foreword 0 x i

we discover each other's insights. Part of the inspiration for the Graphics Gems series
was to provide some of the small and large tools that would prove useful to creative
people working on creative tasks.

So it is with great pleasure that I welcome you to Graphics Gems V, a volume of
new and useful tools for you to apply to your work as you create images, films, and
the systems that help people create them. My goal in this series has been to provide
programmers with tools that have been forged by necessity, shaped by experience, and
shared through a sense of community.

When I had the original idea for the first Graphics Gems, I was inspired by a wallet-
sized card one of my college professors carried, which had the entire APL language
(with examples!) printed on its two sides. I thought Gems would be a small paperback
book that you could just carry around casually; in fact, we were uncertain that we could
fill enough pages, even with large type and wide margins, to make it financially sound
to print the book. The flood of high-quality submissions I received in response to the
original solicitation quickly changed that premise, and now we have produced five large,
densely packed volumes.

It gives me particular pleasure to note that all of the source code for all the Gems
books is freely available to the public through many different channels. This is important
to me, and I thank AP Professional for supporting this approach. You can now find
much of the Gems source code on disk and CD-ROM, as well as through anonymous
ftp, the World Wide Web, and other Internet servers.

The tools in this book are yours, to extend your reach, conserve your time, and
encourage you to reach for ever-higher dreams. Enjoy!

This Page Intentionally Left Blank

0 Preface

As with previous volumes of the Graphics Gems series, this book ultimately serves
a number of purposes. First, it provides a recognized, moderated forum of computer
graphics dialogue, allowing emerging techniques to come to light before a large audience.
Where possible, it places evolving methods within their historical context through its
choice of entries and through interactions between the technical editor and each contrib-
utor. My emphasis on the latter, which took the form of providing citations lists, related
articles, and copyediting for many authors, proved to be both a major undertaking and
a rewarding task.

Second, the book serves as a means of dissemination and distribution of this infor-
mation across a broad and secure domain. Today, the contents of this book "in any
form and by any means, electronic or mechanical" is circulating in libraries lacking
the benefits of Internet access. Tomorrow, it will be in libraries that will abandon
that network. I regard my floppy disk from Volume III as both a landmark step in
publishing and a 5 1/4'' historical keepsake. [As an electronic document, the diskette
included with this book contains code from all five volumes. The original authors have
in some cases revised their entries to correct bugs or to cite related work; see, for ex-
ample, the code that accompanies Volume IV's "Point in Polygon Strategies." This
decision in not running previous code verbatim also keeps the diskettes up to publica-
tion date with respect to their anonymous FTP mirrors at Princeton.edu (see under
/pub/Graphics/GraphicsGems) and elsewhere.]

Finally, the book provides information in a medium that will never be outmoded.
Good gems and good books are worthy of rereading simply on their own merit. The
best implementations appearing here either transcend the C language in which they
were first coded or are presently reembodied in C merely for the time being. Ultimately,
this volume is not a summary of past work but a congress of ideas looking toward the
electronic frontier.

Notable entries include Herbison-Evans' noniterative root solver, which opens the
volume. Its code has perhaps the oldest pedigree of any gem, having begun life on an
English Electric KDF9 in Algol-60 before migrating to an IBM 7040 (Fortran), thence to
a PDPl l /34 . Other feature-length entries include the surveys. Chin's illustrative binary
space partition "walk-through" is detailed to the point of a complete implementation,
making it a welcome contribution for even the casual graphics programmer. Of similar
value is the book's concluding survey of four extended graphics libraries. Owing to
the extreme code length of these and a few other gems, only excerpts appear in print,
though such gems in toto may truly be said to exist between the book's covers. Gems
lacking code (the other extreme) are more rare; Goldman provides a remarkably concise

XIII

xiv 0 Preface

summary of curve and surface basis identities annotated with a valuable citations list.
Finally, most of the entries in Part VI collectively describe advances in halftoning and
image processing at the state of the art that beckon for further experimentation.

The editor wishes to acknowledge two who helped make this work possible: Eric
Haines served as an external reviewer for four submissions and also provided editorial
assistance in rewriting a portion of one contribution. Special thanks go to MIT's resident
expert in communication policy, Dr. Branko Gerovak, who ran a make-shift Mass Ave
sneaker net one late Cambridge afternoon in early Fall and to the AP PROFESSIONAL
staff—Jenifer Niles, sponsoring editor, Cindy Kogut, production editor, and Jacqui
Young, editorial assistant—who coordinated and managed the entire project.

0 Afterword 0
Five years ago a friend and fellow PARC alumnus conceived of a computer graphics text
unlike any previous. A collected work, its appendices would contain full implementa-
tions—in C and placed in the public domain—of the algorithms it described. For many
of us, Glassner's book offered the perfect niche for the mathematical tools and tricks
accumulated over years of graphics programming, whose essential design details would
fit neither a short note nor a journal article. Hitherto, our gems-in-the-rough were
strewn across the backs of envelopes, among disk subdirectories, and within desk-side
shoe boxes. We polished what we had, contributed liberally, then waited. The book
proved a runaway success.

An evolution of volumes followed. In the second, Arvo captured many more gems not
already in hardback (together, those texts total nearly fifteen hundred pages). Color
plates were added. While the form and style of the book remained unchanged per se,
the accompanying code was already ensconced on an Internet-based repository at Yale
by the time the edition appeared in print.

The third volume retained the color plates while the FTP mirror migrated from Yale
to Princeton. More important, the code was reproduced on floppy disk attached to the
back cover, wherein it became a physical portion of Kirk's volume. Not coincidentally,
a book leading the edge in graphics content was also pushing the envelope in methods
of electronic publishing, as suggested by the four ISBN numbers that catalogue both
the printed pages and IBM/Macintosh diskettes.

These advances, plus the sizable niche market of literate computer professionals,
helped give rise to AP PROFESSIONAL. The fourth volume, edited by Heckbert,
became a founding entry. The Internet was more widely employed for manuscript sub-
mission as well as correspondence. Accordingly, a standardized typesetting language
(L^TgX) was chosen and a book style sheet provided. As a consequence, that volume—
and this which follows—underwent an appendectomy in that the code listings now
accompany their respective gems. In short, gems publication has became a desktop
enterprise for nearly all parties involved.

Preface 0 XV

This is the fifth collection of graphics gems, those practical programming essentials.
The fifth volume in a series traditionally provides a summary of work to date. With
this in mind, the gems were solicited (electronically) with two requests. First, that
they constitute summary works. Second, that they satisfy my benchmark for a good
gem: Would the author look up their own work? What came over the transom were
over one hundred highly diverse submissions. Herein are four dozen shining examples
from contributors who span four continents and who have widely diverse professional
backgrounds. While there are only a few summary gems, each entry is unique, at times
scintillating, and worth reading carefully many times over, as I have already done.

To the gems!

Alan Paeth
Kelowna, British Columbia

LIMITED WARRANTY AND DISCLAIMER OF LIABILITY

ACADEMIC PRESS, INC. ("AP") AND ANYONE ELSE WHO HAS BEEN INVOLVED IN THE CREATION OR PRO-
DUCTION OF THE ACCOMPANYING CODE ("THE PRODUCT") CANNOT AND DO NOT WARRANT THE PERFOR-
MANCE OR RESULTS THAT MAY BE OBTAINED BY USING THE PRODUCT. THE PRODUCT IS SOLD "AS IS"
WITHOUT WARRANTY OF ANY KIND (EXCEPT AS HEREAFTER DESCRIBED), EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, ANY WARRANTY OF PERFORMANCE OR ANY IMPLIED WARRANTY OF
MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. AP WARRANTS ONLY THAT THE MAG-
NETIC DISKETTE(S) ON WHICH THE CODE IS RECORDED IS FREE FROM DEFECTS IN MATERIAL AND FAULTY
WORKMANSHIP UNDER THE NORMAL USE AND SERVICE FOR A PERIOD OF NINETY (90) DAYS FROM THE
DATE THE PRODUCT IS DELIVERED. THE PURCHASER'S SOLE AND EXCLUSIVE REMEDY IN THE EVENT OF A
DEFECT IS EXPRESSLY LIMITED TO EITHER REPLACEMENT OF THE DISKETTE(S) OR REFUND OF THE PUR-

CHASE PRICE, AT AP'S SOLE DISCRETION.

IN NO EVENT, WHETHER AS A RESULT OF BREACH OF CONTRACT, WARRANTY OR TORT (INCLUDING NEGLI-
GENCE), WILL AP OR ANYONE WHO HAS BEEN INVOLVED IN THE CREATION OR PRODUCTION OF THE PROD-
UCT BE LIABLE TO PURCHASER FOR ANY DAMAGES, INCLUDING ANY LOST PROFITS, LOST SAVINGS OR
OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
PRODUCT OR ANY MODIFICATIONS THEREOF, OR DUE TO THE CONTENTS OF THE CODE, EVEN IF AP HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY.

Any request for replacement of a defective diskette must be postage prepaid and must be accompanied by the original defective
diskette, your mailing address and telephone number, and proof of date of purchase and purchase price. Send such requests, stat-
ing the nature of the problem, to Academic Press Customer Service, 6277 Sea Harbor Drive, Orlando, FL 32887, 1-800-321-
5068. APP shall have no obligation to refund the purchase price or to replace a diskette based on claims of defects in the nature

or operation of the Product.

Some states do not allow limitation on how long an implied warranty lasts, nor exclusions or limitations of incidental or conse-
quential damage, so the above limitations and exclusions may not apply to you. This Warranty gives you specific legal rights,

and you may also have other rights which vary from jurisdiction to jurisdiction.

THE RE-EXPORT OF UNITED STATES ORIGIN SOFTWARE IS SUBJECT TO THE UNITED STATES LAWS UNDER
THE EXPORT ADMINISTRATION ACT OF 1969 AS AMENDED. ANY FURTHER SALE OF THE PRODUCT SHALL BE
IN COMPLIANCE WITH THE UNITED STATES DEPARTMENT OF COMMERCE ADMINISTRATION REGULATIONS.
COMPLIANCE WITH SUCH REGULATIONS IS YOUR RESPONSIBILITY AND NOT THE RESPONSIBILITY OF AP.

0 Author Index

Numbers in parentheses indicate pages on which authors' gems begin.

Jaewoo Ahn (179), Systems Engineering Research Institute^ K/ST, PO Box 1, Yusong,
Taejon 305-600, South Korea

David G. Alciatore (91), Department of Mechanical Engineering, Colorado State Uni-
versity, Fort Collins, Colorado 80523, dga@lance.colostate.edu

Louis K. Arata (107), Picker International, Ohio Imaging, Nuclear Medicine Division,
23130 Miles Road, Bedford Heights, Ohio 441^8-5443, arata@nm.picker.com

Chandrajit Bajaj (191), Department of Computer Sciences, Purdue University, West
Lafayette, Indiana 47906-1398

Carole Blanc (139), Laboratoire Bordelais de Recherche en Informatique, 351, cours de
la Liberation, 33405 Talence, France, blanc@labri.u-bordeaux.fr

William Bouma (380), Department of Computer Sciences, Purdue University, West
Lafayette, Indiana 47906-1398

Robert Buckley (65), Xerox Corporation, MS 0128-27E, 800 Phillips Road, Webster,
New York 14580, buckley.wbstl28@xerox.com

Paulo Cezar Pinto Carvalho (42), Instituto de Matemdtica Pura e Aplicada, Univer-
sidade Federal do Rio de Janeiro, Estrada Dona Castorino, 110, 22460-320 Rio de
Janeiro, Brazil, pcezar@visgraf.impa.br

Paulo Roma Cavalcanti (42), Instituto de Matemdtica Pura e Aplicada, Universidade
Federal do Rio de Janeiro, Estrada Dona Castorino, 110, 22460-320 Rio de Janeiro,
Brazil, proma@visgraf.impa. br

Norman Chin (121), Silicon Graphics, Inc., 2011 North Shoreline Boulevard, Mountain
View, California 94043, nc@sgi.com

Robert A. Cross (359), Department of Computer Science, Indiana University, Lindley
Hall 215, Bloomington, Indiana 47405, rcross@cs.indiana.edu

XVII

xviii 0 Author Index

Luiz Henrique de Figueiredo (173), Instituto de Matemdtica Pura e Aplicada, Univer-
sidade Federal do Rio de Janeiro, Estrada Dona Castorino, 110, 22460-320 Rio de
Janeiro, Brazil, lhf@visgraf.impa.hr

Jean-Frangois Doue (323), Gerencia Comercial, Aguos Argentinos, Av. Cordoba 1950,
CP1120, Buenos Aires, Argentina

Steven Eker (314), Department of Computer Science, Brunei University, Uxbridge, Mid-
dlesex UBS 3PH, United Kingdom, Steven.Eker@brunel.ac.uk

Martin Feda (290), Institute of Computer Graphics, Technical University of Vienna,
Karlsplatz 13/186, A-IO4O Vienna, Austria, feda@cg.tuwien.ac.at

Manfred Geiler (297), Institute of Computer Graphics, Technical University of Vienna,
Karlsplatz 13/186, A-IO4O Vienna, Austria

Andrew S. Glassner (50), Microsoft, 16011 Northeast 36th Way, Redmond, Washington
98052-6399

Ronald N. Goldman (149, 163), Department of Computer Science, Rice University, PC
Box 1892-MS 132, Houston, Texas 77251-1892, rng@cs.rice.edu

Jens Gravesen (199), Mathematical Institute, Technical University of Denmark, Building
303, DK-2800 Lyngby, Denmark

Daniel Green (375), Autodesk, Inc., Multimedia Division, 111 Mclnnis Parkway, San
Rafael, California 94903, daniel.green@autodesk.com

Andrew J. Hanson (55), Department of Computer Science, Indiana University, Lindley
Hall 215, Bloomington, Indiana 47405, hanson@cs.indiana.edu

Don Hatch (375), Silicon Graphics, Inc., 2011 North Shoreline Boulevard, Mountain
View, California 94043, hatch@sgi.com

Don Herbison-Evans (3), Central Queensland University, Bundaberg Campus, PC Box
5424, Bundaberg West, Queensland, Australia 4670, herbisod@musgrave.cqu.edu.au

Kenneth J. Hill (72), Evolution Computing, 885 North Granite Reed Road #49, Scotts-
dale, Arizona 85257, 76667.2576@compuserve.com

Steve Hill (98), Computing Laboratory, University of Kent, Canterbury, Kent CT2 7NF,
United Kingdom

Author Index 0 xix

Siu-chi Hsu (302, 338), Computer Science Department^ The Chinese University of Hong
Kong, Shatin, New Territories, Hong Kong, schsu@acm.org

Raghu Karinthi (398), Department of Statistics and Computer Science, West Virginia
University, PC Box 6330, Knapp Hall, Morgantown, West Virginia 26506,
raghu@cs.wvu.edu

I. H. H. Lee (338), Creature House, Ltd., Hong Kong, creature@acm.org

Andreas Leipelt (258), Mathematisches Seminar der Universitdt Hamburg, Bundes-
strasse 55, D-20146 Hamburg, Germany, leipelt@GEOMAT.math.uni-hamburg.de

Dinesh Manocha (394), Department of Computer Science, University of North Caro-
lina at Chapel Hill, CB# 3175, Sitterson Hall, Chapel Hill, North Carolina 27599,
manocha@cs.unc. edu

Gabor Marton (268), Process Control Department, Technical University of Budapest,
Milegyetem Rkp. 9/R, Budapest, H-1111, Hungary, marton@seeger.fsz.bme.hu

Stephen May (400), Department of Computer Science, The Ohio State University,
Columbus, Ohio 43210, smay@cgrg.ohio-state.edu

Robert D. Miller (111, 206), 1837 Burrwood Circle, East Lansing, Michigan 48823

Rick Miranda (91), Department of Mathematics, Colorado State University, Fort Collins,
Colorado 80523

Tomas Moller (242), Lund Institute of Technology, Ulrikedalsvagen 4C:314, 224 58
Lund, Sweden, d91tm@efd.lth.se

Atul Narkhede (394), Department of Computer Science, University of North Caro-
lina at Chapel Hill, CB# 3175, Sitterson Hall, Chapel Hill, North Carolina 27599,
narkhede@cs.unc.edu

Alan Wm. Paeth, editor (78, 400), Department of Computer Science, Okanagan Uni-
versity College, 3333 College Way, Kelowna, British Columbia, VIV 1V7 Canada,
awpaeth@ okanagan. be. ca

Werner Purgathofer (297), Institute of Computer Graphics, Technical University of
Vienna, Karlsplatz 13/186, A-IO4O Vienna, Austria

Jonathan C. Roberts (98), Computing Laboratory, University of Kent, Canterbury, Kent
CT2 7NF, United Kingdom

XX 0 Author Index

Ruben Gonzalez Rubio (323), University of Sherhrooke, 2500 University Boulevard,
Sherbrooke GIT 2RE, Quebec, Canada

Ferdi Scheepers (400), Department of Computer Science, The Ohio State University,
Columbus, Ohio 43210, ferdi@cgrg.ohio-state.edu

Christophe Schlick (232, 367), Laboratoire Bordelais de Recherche en Informatique, 351,
cours de la Liberation, 33405 Talence, France, schlick@labri.u-bordeaux.fr

Rajesh Sharma (355), Indiana University, Lindley Hall 310, Bloomington, Indiana
47405, rsharma@cs.indiana.edu

Ching-Kuang Shene (227), Department of Math and Computer Science, Northern Michi-
gan University, I4OI Presque Isle Avenue, Marquette, Michigan 49855, shene@nmu.edu

Ken Shoemake (25, 210), Computer Science Department, University of Pennsylvania,
220 S. 33rd Street, Philadelphia, Pennsylvania 19104, shoemake@graphics.cis.upenn.edu

Gilles Subrenat (232), Laboratoire Bordelais de Recherche en Informatique, 351, cours
de la Liberation, 33405 Talence, France, subrenat@labri.u-bordeaux.fr

Robert F. Tobler (297), Institute of Computer Graphics, Technical University of Vienna,
Karlsplatz 13/186, A-IO4O Vienna, Austria

Ken Turkowski (16, 22, 168), Apple Computer, Inc., 1 Infinite Loop, MS 301-3J, Cuper-
tino, California 95014, turk@apple.com

Allen Van Gelder (35), Baskin Computer Science Center, 225 A.S., Computer and
Information Sciences, University of California, Santa Cruz, California 95064

George Vanecek, Jr. (380, 386), Department of Computer Sciences, Purdue University,
West Lafayette, Indiana 47906-1398

Tien-tsin Wong (302), Computer Science Department, The Chinese University of Hong
Kong, Shatin, New Territories, Hong Kong, ttwong@cs.cuhk.hk

Guoliang Xu (191), Department of Computer Sciences, Purdue University, West Lafay-
ette, Indiana 47906-1398

Kurt Zimmerman (285), Indiana University, Lindley Hall 215, Bloomington, Indiana
4 74 05, kuzimmer@cs. indiana. edu

Algebra and Arithmetic

The gems in this section describe general mathematical techniques having ready applica-
tion to computer graphics. The methods are crafted with both efficiency and numerical
stability in mind.

Herbison-Evans' root finder (LI) offers the penultimate word in polynomial root
finding for computationally closed forms. One immediate gem application generalizes
the efficient 3D eigenvalue finder (gem III.2 in volume IV) onto the 4D case. Turkowski
(1.2, 1.3) provides two elegant and efficient (inverse) square root finders. The first is
optimized for use with floating-point hardware and requires no divisions; the second
is suitable for integer hardware and features a fixed binary point having adjustable
position. Shoemake (1.4) discusses the utility of rational approximation and derives an
implementation more stable than one based upon first principles. The availability of his
code makes it a useful tool in crafting well-tuned software, as when finding the integer
coefficients for the code that concludes gem II.7.

This Page Intentionally Left Blank

01.1
Solving Quartics and Cubics
for Graphics

Don Herbison-Evans
Central Queensland University
Bundaberg Campus
herbisod@musgra ve. cqu. edu. au

0 Introduction 0

In principle, quartic and cubic equations can be solved without using iterative tech-
niques. In practice, most numerical algorithms based directly upon analytic solutions
of these equations are neither well-behaved nor efficient. This gem^ derives a robust
C-language implementation based upon the solutions of Neumark and Ferrari. Its su-
periority in controlling both round-off error and overflow is also demonstrated.

0 Background 0

Quartic equations need to be solved when ray tracing fourth-degree surfaces, e.g., a
torus. Quartics also need to be solved in a number of problems involving quadric sur-
faces. Quadric surfaces (e.g., ellipsoids, paraboloids, hyperboloids, cones) are useful in
computer graphics for generating objects with curved surfaces (Badler and Smoliar
1979). Fewer primitives are required than with planar surfaces to approximate a curved
surface to a given accuracy (Herbison-Evans 1982b).

Bicubic surfaces may also be used for the composition of curved objects. They have the
advantage of being able to incorporate recurves: lines of inflection. There is a problem,
however, when drawing the outlines of bicubics in the calculation of hidden arcs. The
visibility of an outline can change where its projection intersects that of another outline.
The intersection can be found as the simultaneous solution of the two projected outlines.
For bicubic surfaces, these outlines are cubics, and the simultaneous solution of two of
these is a sextic which can be solved only by iterative techniques. For quadric surfaces,
the projected outlines are quadratic. The simultaneous solution of two of these leads to
a quartic equation.

^This gem updates a prior technical report (Herbison-Evans 1986).

Copyright (c) 1995 by Academic Press , Inc.
All r ights of reproduct ion in any form reserved.

^ IBM ISBN 0-12-543455-3

4 0 Algebra and Arithmetic

The need to solve cubic equations in computer graphics arises in the solution of the
quartic equations mentioned above. Also, a number of problems that involve the use of
cubic splines require the solution of cubic equations.

One simplifying feature of the computer graphics problem is that often only the real
roots (if there are any) are required. The full solution of the quartic in the complex
domain (Nonweiler 1967) is then an unnecessary use of computing resources. (See also
"Ellipse Intersections"in gem II.6.)

Another simplification in the graphics problem is that displays have a limited resolu-
tion, so that only a limited number of accurate digits in the solution of a cubic or quartic
may be required. A resolution of one in one million should in principle be achievable
using single-precision floating-point (thirty-two bit) arithmetic, which would be more
than adequate for most current displays.

0 Iterative Techniques 0

The roots of quartic and cubic equations can be obtained by iterative techniques. These
techniques can be useful in animation where scenes change little from one frame to the
next. Then the roots for the equations in one frame are good starting points for the
solution of the equations in the next frame. There are two problems with this approach.

One problem is storage. For a scene composed of n quadric surfaces, 4n{n — 1) roots
may need to be stored between frames. A compromise is to store pointers to those pairs
of quadrics that give no roots. This trivial idea can be used to halve the number of
computations within a given frame, for if quadric "a" has no intersection with quadric
"b," then "b" will not intersect "a."

The other problem is more serious: It is the problem of deciding when the number of
roots changes. There appears to be no simple way to find the number of roots of a cubic
or quartic. The best-known algorithm for finding the number of real roots, the Sturm
sequence (Hook and McAree 1990), involves approximately as much computation as
solving the equations directly by radicals (Ralston 1965). Without information about
the number of roots, iteration where a root has disappeared can waste a lot of computer
time, and searching for new roots that may have appeared becomes difficult.

Even when a root has been found, deflation of the polynomial to the next lower degree
is prone to severe round-off exaggeration (Conte and de Boor 1980).

Thus there may be an advantage in examining the techniques available for obtaining
the real roots of quartics and cubics analytically.

0 Quartic Equations <>
Quartics are the highest-degree polynomials that can be solved analytically in general by
the method of radicals, that is, operating on the coefficients with a sequence of operators

/. 1 Solving Quartics and Cubics for Graphics 0 5

from the set: sum, difference, product, quotient, and the extraction of an integral order
root. An algorithm for doing this was first published in the sixteenth century (Cardano
1545). A number of other algorithms have subsequently been published. The question
that arises is which algorithm is best to use on a computer for finding the real roots, in
terms of speed and stability for computer graphics.

Very little attention appears to have been given to a comparison of the algorithms.
They have differing properties with regard to overflow and the exaggeration of round-off
errors. Where a picture results from the computation, any errors may be rather obvious.
Figures 1, 2, and 3 show a computer bug composed of ellipsoids with full outlines, incor-
rect hidden outlines, and correct hidden outlines, respectively. In computer animation,
the flashing of incorrectly calculated hidden arcs is most disturbing.

Many algorithms use the idea of first solving a particular cubic equation, the coeffi-
cients of which are derived from those of the quartic. A root of the cubic is then used
to factorize the quartic into quadratics, which may then be solved. The algorithms may
then be classified according to the way the coefficients of the quartic are combined to
form the coefficients of the subsidiary cubic equation. For a general quartic equation of
the form

x^ + ax^ + bx'^ + cx + d = 0,

the subsidiary cubic can be one of the following forms:

Ferrari-Lagrange (TurnbuU 1947):

y^ + hy^ + (ac - 4d)y + {a^d + c^ - 4bd) = 0.

Descartes-Euler-Cardano (Strong 1859):

y'H2b-la')y' + {^,a'-a'b+ac+b'~M)y+ (abc - ^ + ^ - ^ ^ ^ ± ^ - A = 0.

Neumark (Neumark 1965):

y^ - 2by'^ + {ac + b^ - Ad)y + {a^d - abc + c^) = 0.

The casual user of the literature may be confused by variations in the presentation
of quartic and cubic equations. Sometimes the coefficients are labeled from the lowest-
degree term to the highest. Sometimes the highest-degree term has a nonunit coefficient,
or the numerical factors of 3, 4, and 6 are included. There are also a number of trivial
changes to the cubic caused by the following:

if y^ + 'py^ + ^y + r = 0
then z^ — pz^ + qz — r — Q for ^ = —y
and z^ + 2pz'^ + Aqz + 8r = 0 (or z = 2y.

6 0 Algebra and Arithmetic

Figure 1. The polyellipsoid caterpillar.

Figure 2, Hidden arcs solved using first-principles quartics.

Figure 3. Hidden arcs solved using methods described here.

Table 1, lines one through three (both panels) shows the stable combinations of signs
of the quartic coefficients for the computation of the coefficients of these subsidiary cu-
bics. For mstance, row three, column two indicates that given a quartic with coefficients
a , 6 , c > 0 and d < 0, then under Neumark's algorithm the coefficients p and q of the
subsidiary cubic are stable.

/. 1 Solving Quartics and Cubics for Graphics 0 7

Table 1

Var iab le

Fer ra r i (subs id .)

Desca r t e s (subs id .)

N e u m a r k (subs id .)

Fer ra r i (y > 0)

1 Fer ra r i {y < 0) |

N e u m a r k {y > 0)

N e u m a r k (y < 0)

Quartic, subsidiary cubic, and intermediate coefficient stability.

1 «+ 1
6+

c+

1 ^+
1 P

1 P

^

91

91,2^1

d-

p q

p q

ef P

P
91

Pi ,2^1,2

C-

d+

pq

p r

ef
91

9l,2hi,2

d-

P

P J

^' 1
efP

91 1
Pi ,2^1,2 1

1 -̂ 1
c+

1 ^+
P f^

P f

P ^

1 ef
e2

91 hi

91,2

d-

P Q

p q r

p q

ef P
e^ P

Pi,2^1,2

Pi,2

c- 1
d+

p q r

P

P

efe^
91 hi

91,2

d- 1

^ f
P 1
P [

^' [
ef e2

9ihi,2

91,2 1

Fer ra r i (subs id .)

Desca r t e s (subs id .)

N e u m a r k (subs id .)

1 Fer ra r i {y > 0)

1 Fer ra r i (y < 0)

N e u m a r k {y > 0)

N e u m a r k (y < 0)

1 ^~ 1
b+

c+

1 d+
1 P~Q

P f

ef
91

1 Pi ,2^1,2

d-

P

P

f
ef f^

91

Pi,2^1,2

c

d+

P

P

ef

91

Pi ,2^1

d-

pq

pq

ef f^ 1
P
91

Pi ,2^1

h-
c+

L d+
\ p q r

1 ^
1 ^

e / e 2

Pi hi

1 Pi,2

d-

P

P

P

P
ef e2 p

91 hi,2

91,2

c- 1
d+

p r

p r

p r

ef
e2

Pi hi

91,2

d- [

VQ [
p q r

P Q [

ef P 1
e^ P

Pi,2^1,2

Pi,2 1

Ferrari's Algorithm

Of the three subsidiary cubics, that from Ferrari's algorithm has two stable combinations
of signs of a, 6, c, and d for the derivation of all of the coefficients of the cubic, p, g, and
r. For this reason, attempts were made initially (see Figures 1 and 2) to use Ferrari's
method for finding quadric outline intersections (Herbison-Evans 1982a).

The coefficients of the subsequent quadratics depend on two intermediate quantities,
e and / , where

2 2 L

e — a —0 — y^

ef = \ay + \c.

The signs of each of the quartic coefficients a, 6, c, rf, and y, the cubic root, may
be positive or negative, giving thirty-two possible combinations of signs. Of these, only
twelve can be clearly solved in a stable fashion for e and / by the choice of two out of
the three equations involving them. Two are from the stable cases for the calculation

8 0 Algebra and Arithmetic

of 2?, g, and r. In the remaining twenty cases, the most stable choices are unclear. This
is shown in Table 1, lines four and five.

The quadratic equations are then

x^ + Gx + H = 0,

x^ + gx + h = 0,

where

G = +^a + e, g — +\a — e,

H = -\y + f, h = -\y~f.

If a and e are the same sign, and h and y are the same sign, then g may be more
accurately computed using

g = {h + y)/G.

If a and e are opposite signs, G can be more accurately computed from ^ in a similar
fashion.

If y and / are the same sign, then H may be more accurately computed using

H = d/h.

If y and / are opposite in sign, then h can be computed similarly from H more accu-
rately.

The solution of the quadratic equations requires the evaluation of the discriminants

g^ - Ah and G^ _ 4 ^

Unless h and H are negative, one or both of these evaluations will be unstable. Un-
fortunately, positive h and H values are incompatible with the two stable cases for
the evaluation of p, ^, r, e, and / , so there is no combination of coefficients for which
Ferrari's algorithm can be made entirely stable.

It might appear that the problem can be alleviated by observing that reversing the
signs of a and c simply reverses the signs of the roots, but may alter the stability of the
intermediate quantities. However, all the algorithms appear to have identical stabilities
under this transformation.

Descartes-Euler-Cardano Algorithm

This algorithm also has two combinations of quartic coefficients for which the evaluation
of the subsidiary cubic coefficients is stable. However, the calculation of these coefficients
involves significantly more operations than Ferrari's or Neumark's algorithms. Also, the

/. 1 Solving Quartics and Cubics for Graphics 0 9

high power of a in the coefficients makes this algorithm prone to loss of precision and
also overflow.

In this algorithm, if the greatest root of the cubic, ?/, is negative, the quartic has no
real roots. Otherwise, the coefficients of the quadratics involve the quantities m, ni ,
and 712:

where

X'^ + mX + m = 0, X^ - mX + 77,2 = 0, and x = X

m = y/y,

ni = l{y + A + B/m),
712 = \{y + A-B/7n),

and

B = c+\a^ - \ah.

There appears to be no way of making the evaluation of A, JB, ni , and 712 stable. Some
quantities are bound to be subtracted, leading to possible loss of precision.

Neumark's Algorithm

Attempts were also made to stabilize the algorithm of Neumark. In this, the coefficients
of the quadratic equations are parameters g^ G, /i, and if, where:

H =

« = 2

h-y +

a + ^Ja? - Ay

a{b-y)-2c

^a^ - Ay

9 = 2 a - y â - 4y

0 y j—c

5

y) - 2c!
! - 4 y _

Some cancellations due to the additions and subtractions can be eliminated by writing

G = gi+g2, g = 9i-g2,

H = hi + h2', h — hi — /i2,

where

9i = 2^' 92 = \4^--M^^
hi = ^{h - y), h2 = . . ' • ,

2 Va2 - 4y

10 0 Algebra and Arithmetic

and using the identities

G ' g = y^ H ' h = d.

Thus, if gi and ^2 are the same sign, G will be accurate, but g will lose significant digits
by cancellation. Then the value of g can be better obtained using

9 = y/G.

If gi and g2 are of opposite signs, then g will be accurate, and G better obtained using

G = y/g.

Similarly, h and H can be obtained without cancellation from /ii, /12, and d.
The computation of g2 and /i2 can be made more stable under some circumstances

using the alternative formulation:

Furthermore,

ahi — c
92 =

Vib-y^-Ad'

Thus, 52 and /12 can both be computed either using

m = (6 - y)^ - 4d

or using

n = a^ — Ay.

If y is negative, n should be used. If y is positive and h and d are negative, m should
be used. Thus, seven of the thirty-two sign combinations give stable results with this
algorithm. These are shown in Table 1, lines six and seven. For other cases, a rough
guide to which expression to use can be found by assessing the errors of each of these
expressions by summing the moduli of the addends:

e{m) = b^^2 |&y|+y2 + 4 |d|,

e{n) = a^ + A \y\.

Thus, if

\m\ • e(n) > |n| • e(m),

then m should be used; otherwise, n is more accurate.

Let the cubic equation be

/. 1 Solving Quartics and Cubics for Graphics 0 11

0 The Cubic 0

y^ +py'^ + qy-\-r =^ o.

The solution may be expressed (Littlewood 1950) using

and the discriminant

u\^ . 2

If this is positive, then there is one root, y, to the cubic, which may be found using

3 W--V u 3 2 p

where

This formulation is suitable if v is negative. The calculation in this form can lose
accuracy if v is positive. This problem can be overcome by the rationalization

w — v w^ — v^ 2 fu^^
2 2{w + v) w + vX'i) '

giving the alternative formulation of the root:

_ 3 w + v _ u 3 2 _ p

^~ ^~2 3 V ^ + ̂ ~ 3*
A computational problem with this algorithm is overflow while calculating w, for

0{j) = 0ip^)+0iq')+0{r^).

If the cubic is the subsidiary cubic of a quartic, then the different algorithms each
have differing overflow behaviors:

Ferrari: 0{j) = 0{a^(P) + 0{a^c^) + 0(6^) + 0{c'^) + 0{d^),

Descartes: 0{j) = 0{a^^) + Oib^) + 0{c'^) + 0{d^),

Neumark: 0{j) = ©(a^) + 0(6^) + 0{c^) + 0{d^).

12 0 Algebra and Arithmetic

Before evaluating the terms oiw/it is useful to test p, q^ and r against the appropriate
root of the maximum number represented on the machine ("M"). The values of u
and V should similarly be tested. In the event that some value is too large, various
approximations can be employed, for example,

if IPI > ^ v ^ , then y ^ - p . 2

if \v\>y/M, then y^—^p+\/\v\,

if \u\ > ^ v ^ , then y ^ -^p.

If the discriminant j is negative, then there are three real roots to the cubic. These real
roots of the cubic may then be obtained via parameters 5, t, and k:

t = -v/{2s^),
fc = ^ arccost,

giving

yi •— 2s • cos k — | p ,

7/2 — s{—cosk + y/Ssink) — | p ,

7/3 = s{— cosk — v 3 sink) — ^p.
Note that if the discriminant is negative, then u must also be negative, guaranteeing

a real value for s. This value may be taken as positive without loss of generality. Also,
k will lie in the range 0 to 60 degrees, so that cos(/c) and sin(fc) are both positive. Thus,

yi>y2> ys-

If the cubic is a subsidiary of a quartic, either yi or ys may be the most useful root.
Unfortunately, p = —2b in Neumark's algorithm, so although yi may be the largest root,
it may not be positive. Then if b and d are both negative, it would be advantageous to
use the most negative root: ^3.

The functions sine and cosine of ^ arccos(t) may be tabulated to speed the calculation
(Herbison-Evans 1982a, Cromwell 1994). Sufficient accuracy (1 in 10^) can be obtained
with a table of two hundred entries with linear interpolation, requiring four multiplica-
tions, eight additions, and two tests for each function. When t is near its extremes, the
asymptotic forms may be useful:

for t-^0:
sin(^arccost) - ^ - {lV3)t + 0{f),

cos(^ arccos^) ^ ^\/3 + ^t + 0{t^)]

for t -> 1:
sin(|arccost) ^ | v '(l - t) + 0((1 - t)^/^),

cos(iarccost) ^ l - ^(1 - t) + 0((1 - t)^).

/. 1 Solving Quartics and Cubics for Graphics 0 13

Table 2. Operation counts (min[max]) for best combination of stabilized algorithms.

Cubic
Quartic

1 Quadratic (x2)

1 Totals

Additions
and

subtractions

9 [12]
5 [14]
1[2]

16 [30]

Multiplications
and

divisions

11 [15]
6 [22]
2 [4]

21 [45]

Functions
e.g.

root, sine

2 [3]
0[2]
0[1]

2 [7]

Tests

15 [15]

1 [36]

1[3]
18 [57] 1

If the discriminant j is expanded in terms of the coefficients of the cubic, it has ten
terms. Two pairs of terms cancel and another pair coalesce, leaving five independent
terms. In principle, any pair of subsets of these may cancel catastrophically, leaving
an incorrect value or even an incorrect sign for the discriminant. This problem can be
alleviated by calculating the five terms separately, and then combining them in increas-
ing order of magnitude (Wilkinson 1963). When quartics are solved, the discriminant
should be expanded in terms of the quartic coefficients directly. This gives fifteen terms
that can be sorted by modulus and combined in increasing order.

0 Conclusion 0
There have been many algorithms proposed for solving quartic and cubic equations,
but most have been proposed with aims of generality or simplicity rather than error
minimization or overfiow avoidance. The work described here gives a low rate of error
using single-precision floating-point arithmetic for the computer animation of quadric
surfaces.

The operation counts of the best combination of stabilized algorithms are summarized
in Table 2.

A further comment may be useful here concerning the language used to implement
these algorithms. Compilers for the C language often perform operations on single-
precision variables (float) in double precision, converting back to single precision for
storage. Thus, there might be little speed advantage in using f loat variables compared
with using double for these algorithms. Fortran compilers may not do this. For example,
using a VAX8600, the time taken to solve 10,000 different quartics was 6.3 seconds for
Fortran single precision (using f 77), 15.5 seconds for C single precision (using cc), and
16.1 seconds for C using double precision.

A check on the accuracy of the roots can be done at the cost of more computation.
Each root may be substituted back into the original equation and the residual calculated.
This can then be substituted into the derivative to give an estimate of the error of the
root, or used for a Reguli-Falsi or, better still, a Newton-Raphson correction.

A comparison of the stabilities of the three algorithms for the solution of quartic equa-
tions was made. Quartics were examined that had all combinations and permutations

14 0 Algebra and Arithmetic

of coefficients from the ten-element set:

±10^ ±10^, ± 1 , ± 1 0 - ^ ± 1 0 - ^

Of the 10,000 equations, the three algorithms agreed on the number of real roots in 8,453
cases. Of these, 1,408 had no real roots. Of the remaining 7,045 equations, Ferrari's
algorithm had the least worst error in 1,659 cases, Neumark's in 2,918, Descartes' in
88, and in the other 2,380 cases, two or more algorithms had equal worst errors.

It may be observed that four of the seven stable cases for Neumark's algorithm
coincide with four of the twelve stable cases for Ferrari's algorithm, making only fifteen
stable cases in all out of the thirty-two possible sign combinations. Further work on this
topic may be able to increase the number of stable cases.

0 Acknowledgments 0
Thanks are due to the Departments of Computer Science at the Universities of Sydney
(Australia) and Waterloo (Canada) where much of this work was done. Initial investi-
gations on which the work was based were made by Charles Prineas. Thanks are also
due to the late Alan Tritter for discussions, to Zoe Kaszas for the initial preparation of
this paper, to Professor John Bennett for his continual encouragement, and finally to
Alan Paeth for turning the paper into such an elegant IMgX document.

0 Bibliography 0
(Badler and Smoliar 1979) Norman I. Badler and S. W. Smoliar. Digital representa-

tions of human movement. ACM Computing Surveys, ll(l):24-27, 1979.

(Cardano 1545) Girolamo Cardano. Ars Magna. University of Pavia, 1545.

(Conte and de Boor 1980) S. D. Conte and C. de Boor. Elementary Numerical Analy-
sis. McGraw-Hill, New York, 1980.

(Cromwell 1994) Robert L. Cromwell. Efficient eigenvalues for visualization. In Paul
Heckbert, editor, Graphics Gems IV, pages 193-198. AP Professional, Boston,
1994.

(Herbison-Evans 1982a) Don Herbison-Evans. Caterpillars and the inaccurate solution
of cubic and quartic equations. Australian Computer Science Communications,
5(l):80-89, 1982.

(Herbison-Evans 1982b) Don Herbison-Evans. Real time animation of human figure
drawings with hidden lines omitted. IEEE Computer Graphics and Applications,
2(9):27-33, 1982.

/. 1 Solving Quartics and Cubics for Graphics 0 15

(Herbison-Evans 1986) Don Herbison-Evans. Solving quartics and cubics for graphics.
Technical Report CS-86-56, University of Waterloo, November 1986. (out of print).

(Hook and McAree 1990) D. G. Hook and P. R. McAree. Using Sturm sequences to
bracket real roots of polynomial equations. In Andrew Glassner, editor, Graphics
Gems, pages 416-422. AP Professional, Boston, 1990.

(Littlewood 1950) D. E. Littlewood. A University Algebra, page 173. Heineman, Lon-
don, 1950.

(Neumark 1965) S. Neumark. Solution of Cubic and Quartic Equations. Pergamon
Press, Oxford, 1965.

(Nonweiler 1967) T. R. F. Nonweiler. Roots of low order polynomial equations. In Col-
lected Algorithms of the ACM, C2 edition, 1967. Algorithm 326.

(Ralston 1965) A. Ralston. A First Course in Numerical Analysis, page 351. McGraw-
Hill, New York, 1965.

(Strong 1859) T. Strong. Elementary and Higher Algebra, page 469. Pratt and Oakley,
1859.

(TurnbuU 1947) H. W. TurnbuU. Theory of Equations, fourth edition, page 130. Oliver
and Boyd, London, 1947.

(Wilkinson 1963) J. J. Wilkinson. Rounding Errors in Algebraic Processes, page 17.
Prentice-Hall, London, 1963.

01.2
Computing the Inverse
Square Root

Ken Turkowski
Apple Computer, Inc.
Cupertino, California
turk@apple.com

0 Introduction 0

In computer graphics calculations, the square root is often followed by a division, as
when normalizing vectors:

= ^\J2^

This adds a significant amount of computational overhead, as a floating-point division
typically costs much more than multiplication.

The cost of division may be mitigated by a reciprocation. This gem derives the method
and provides an implementation for directly computing the inverse square root, / (x) =

0 Description of the Algorithm 0

The algorithm is noteworthy, as no divisions are required. It is based upon the method
of successive approximations (Ralston and Rabinowitz 1978). The square root may also
be computed at the cost of one additional multiplication, as y/x = x • f{x).

The algorithm has two parts: computing an initial estimate, and refining the root by
using a fixed number of iterations.

Initialization

The initial estimate, or seed, is determined by table look-up. The inverse square root of
a floating-point number m • 2^ is given by

(m . 2 T ' / 2 ^ m - V 2 . 2 - / 2 .

Copyright (c) 1995 by Academic Press, Inc.
All r ights of reproduct ion in any form reserved.
IBM ISBN 0-12-543455-3

1.2 Computing the Inverse Square Root 0 17

The exponent e is adjusted by negation and halving (or shifting if radix-2) to form
the seed exponent. If the seed exponent — | is to be an integer, then e must be even.
When e is odd, the next smaller even value is considered and the mantissa is doubled
(that is, [1 . . . 4) becomes its domain of representation). The extended mantissa indexes
a lookup table whose entries contain the inverse square root on the restricted domain.
The final seed value is formed by merging the seed mantissa and seed exponent.

Single-precision floating-point numbers typically employ a 24-bit mantissa (with the
most significant one bit "hidden"), an eight-bit excess-127 exponent, and a sign bit.^
Since the iteration we have chosen has quadratic convergence, the number of significant
bits roughly doubles with each iteration. This suggests a seed table indexed by a twelve-
bit mantissa, requiring just one iteration. However, the table length (2 • 2^^ two-byte
entries, hence 16,384 bytes) becomes prohibitive. Additional iterations allow for a much
more relaxed table length, described later.

The Iteration

Given an approximate inverse square root 1/^ a better one, ^n+i? may be found using
the iteration^

Vn (3 - xyl)
Vn-hi = 2 •

An implementation is presented below.

<> C Implementation 0
/* Compute the Inverse Square Root
* of an IEEE Single Precision Floating-Point number.
*
* Written by Ken Turkowski.
*/

/* Specified parameters */
#define LOOKUP_BITS 6 /* Number of mantissa bits for lookup */
#define EXP_POS 23 /* Position of the exponent */
#define EXP_BIAS 127 /* Bias of exponent */
/* The mantissa is assumed to be just down from the exponent */

/* Type of result */

^lEEE arithmetic (Donovan and Van Hook 1994) supports 24 (53) bit single (double) precision
mantissas; calculation employs such features as "round-to-nearest" or "even-if-tie," a guard bit, a round
bit, and a sticky bit.

^This algorithm was inspired by the Weitek technical note "Performing Floating-Point Square Root
with the WTL 1032/1033."

18 0 Algebra and Arithmetic

#ifndef DOUBLE_PRECISION
typedef float FLOAT;

#else /* DOUBLE_PRECISION */
typedef double FLOAT;
#endif /* DOUBLE_PRECISION */

/* Derived parameters */

#define LOOKUP_POS
#define SEED_POS
#define TABLE_SIZE
#define LOOKUP_MASK
#define GET_EXP(a)
#define SET_EXP(a)
#define GET_EMANT(a)

(EXP_POS-LOOKUP_BITS) /̂
(EXP_P0S-8) /•*
(2 « LOOKUP_BITS) /'
(TABLE_SIZE - 1)
(((a) » EXP_POS) & OxFF)
((a) « EXP_POS)

Position of mantissa lookup */
Position of mantissa seed */
Number of entries in table */
/* Mask for table input */
/* Extract exponent */
/* Set exponent */

(((a) » LOOKUP_POS) & LOOKUP_MASK) /̂ Extended mantissa
* MSB's */

#define SET_MANTSEED(a) (((unsigned long)(a)) « SEED_POS) /* Set mantissa
* 8 MSB's */

#include <stdlib.h>
#include <math.h>

static unsigned char *iSqrt = NULL;

union _flint {
unsigned long
float

} fi, fo;

l;

f;

static void
MakelnverseSqrtLookupTable(void)
{

register long f;
register unsigned char *h;
union _flint fi, fo;

iSqrt = malloc(TABLE_SIZE);
for (f = 0, h = iSqrt; f < TABLE_SIZE; f++) {

fi.i = ((EXP_BIAS-1) « EXP_POS) | (f « LOOKUP_POS);
fo.f = 1.0 / sqrt(fi.f);
h++ = ((fo.i + (l<<(SEED_P0S-2))) » SEED_POS) & OxFF; / rounding */

}
\ iSqrt[TABLE_SIZE / 2] = OxFF; /* Special case for 1.0 */

}

/* The following returns the inverse square root */
FLOAT
InvSqrt(float x)

{
register unsigned long a = ((union _flint*)(&x))->i;
register float arg = x;
union _flint seed;
register FLOAT, r;

1.2 Computing the Inverse Square Root 0 19

if (iSqrt == NULL) MakelnverseSqrtLookupTable();

seed.i = SET_EXP(((3*EXP_BIAS-1) - GET_EXP(a)) » 1)
I SET_MANTSEED(iSqrt[GET_EMANT(a)]);

/* Seed: accurate to LOOKUP_BITS */
r = seed.f;

/* First iteration: accurate to 2*L00KUP_BITS */
r = (3 . 0 - r * r * arg) * r * 0.5;

/* Second iteration: accurate to 4*L00KUP_BITS */
r = (3 . 0 - r * r * arg) * r * 0.5;

#ifdef DOUBLE_PRECISION
/* Third iteration: accurate to 8*L00KUP_BITS */
r = (3 . 0 - r * r * arg) * r * 0.5;

#endif /* DOUBLE_PRECISION */
return(r);

}

0 Numerical Accuracy (Empirical Results) 0
This procedure has been exhaustively tested for all single-precision IEEE mantissas
Lying between 0.5 and 2.0 using IEEE arithmetic. Empirical results appear in Table 1.

Note that the minimum of the maximum errors is one least significant bit; that is,
perfect accuracy is never achieved for all possible numbers. This is due to numerical
roundoff in intermediate computations. However, in the case of two single-precision
iterations from a six-, seven-, and eight-bit seed, an "exact" result is computed for
nearly all numbers (except for one-bit errors in 0.7%, 0.04%, and 0.007% of all numbers,
respectively).

From Table 1 it can be seen that the techniques producing the highest accuracy
with the minimum memory and computation are a six-bit seed with two iterations or a
three-bit seed with three iterations for single precision, and a seven-bit seed with three
iterations for double precision. Obviously, a smaller table or fewer iterations can be
used if less precision is adequate for a given task. Note that single precision may be
employed to compute the first twenty-three bits of double-precision calculations.

A slight increase in overall accuracy may be achieved by judicious choice of seed
values. The method for determining the seed value in this algorithrn. was found superior
to that used in the Weitek technical note, but there is still room for further improvement.
In particular, the computed exponent for numbers just slightly greater than or equal to
one is too small, so the mantissa is set to the largest value in the table to compensate
for this. Additionally, up to one more effective bit of seed precision could be achieved
by setting the table value equal to the average of the range for the entry, rather than
the edge of the range as is done in this implementation.

20 0 Algebra and Arithmetic

Table 1. Effect of seed precision on resultant precision.
Itera-
tions

i
1
1
2
2
2
2
2
3
3

2
2
2
2
3
3
3
3
3

I 3

Single precision
Seed bits

8
7
6
8
7
6
5
4
4
3

Final bits

16
14
12
23
23

23
21
17
23
23

Double precision
8
7
6
5
8
7
6
5
4
3

32
29
25
21
52
52
51
43
35
27

0 Implementation Notes 0

Certain compilers do not pass single-precision values as procedure parameters but in-
stead promote them to double or extended precision. In such cases, pointers may be
passed instead. The multiplication by 0.5 amounts to a decrement of the exponent,
as supported by the IEEE-defined operation scalb. Unless hand-coding, the machine
multiply is faster than the subroutine overhead lost in invoking IdexpO, scalb() , or
related routines to effect the change.

The code is highly portable: non-IEEE (e.g., radix-16) fioating-point hardware merely
requires new macros for proper seed construction. A 128-byte table is small enough to
be hard-coded into the sources; this also assures that the correct table entries (to the
LSB) are evaluated and further allows for more carefully tuned/tweaked entries whose
defining formula might be complex.

Previous gems (Lalonde and Dawson 1990, Hill 1992) use a similar method for con-
structing and indexing a mantissa table. However, these solve instead for the conven-
tional square root and omit the iteration step.

1.2 Computing the Inverse Square Root 0 21

0 Bibliography 0
(Donovan and Van Hook 1994) Walt Donovan and Tim Van Hook. Direct outcode cal-

culation for faster clip testing. In Paul Heckbert, editor, Graphics Gems /F , page
126. AP Professional, Boston, 1994.

(Hill 1992) Steve Hill. IEEE fast square root. In David Kirk, editor, Graphics Gems
III, page 48. AP Professional, Boston, 1992.

(Hwang 1979) Kai Hwang. Computer Arithmetic: Principles, Architecture, and Design,
pages 360-379. Wiley, 1979.

(Lalonde and Dawson 1990) Paul Lalonde and Robert Dawson. A high-speed, low-
precision square root. In Andrew Glassner, editor, Graphics Gems, pages 424-426.
AP Professional, Boston, 1990.

(Ralston and Rabinowitz 1978) Anthony Ralston and Philip Rabinowitz. A First
Course in Numerical Analysis, pages 344-347. McGraw-Hill, 1978.

01.3
Fixed-Point Square Root

Ken Turkowski
Apple Computer, Inc.
Cupertino, California
turk@apple.com

0 Introduction 0
Many graphics algorithms rely upon fixed-point arithmetic and its inherent speed ad-
vantage over floating point. Often, a fixed-point algorithm requires the evaluation of a
square root. This gem describes an algorithm that computes the square root directly
in its fixed-point representation, saving the expense of (re)converting and evaluating in
floating point. A related gem (Musial 1991) computes an approximate integer square
root through the use of integer divisions, but the following algorithm uses more elemen-
tary operations.

0 The Algorithm 0
The algorithm is based upon a fixed-point format having two integer and thirty frac-
tional bits, operated upon using conventional machine (integer) arithmetic. This choice
gives a domain of representation [—2.0,2.0) suitable for representing normals, colors,
and other graphic quantities whose magnitude is bounded by unity.

This algorithm is based upon a method, similar to longhand decimal division, that
was taught in schools before the advent of electronic calculators (Gellert et al. 1975).
This implementation, called the "binary restoring square root extraction," substitutes
binary digits (bits), further streamlining the algorithm.

A radical r (the square root of the radicand x) is constructed a bit at a time such
that r^ < X is always preserved by application of the identity

(r + l)2 = r2 + 2 r 4 - l ,

in which the (2r + 1) term is subtracted from the radicand x at each step. If the result
is non-negative, a "1" is generated; otherwise, a "0" is generated and the radicand is
unaltered (i.e., restored).

Two radicand bits are consumed and one radical bit generated with each loop itera-
tion. Although this algorithm has only 0{n) (linear) convergence, the loop is so simple
that it executes quickly, making it amenable to hardware implementation.

Copyright @ 1995 by Academic Press, Inc.
All r ights of reproduct ion in any form reserved.
IBM ISBN 0-12-543455-3
•K J ' -^j 1_ TCiTTM r\ i n r A t-t A m-7 "V J^M

/. 3 Fixed-Point Square Root 0 23

0 C Implementation 0

/* The definitions below yield 2 integer bits, 3 0 fractional bits */
#define FRACBITS 3 0 /* Must be even! */
#define ITERS (15 + (FRACBITS » 1))
typedef long TFract;

TFract
FFracSqrt(TFract x)
{

register unsigned long root, remHi, remLo, testDiv, count;

root = 0 ; /* Clear root */
remHi = 0 ; /* Clear high part of partial remainder */
remLo = x; /* Get argument into low part of partial remainder */
count = ITERS; /* Load loop counter */

do {
remHi = (remHi « 2) | (remLo >> 30); remLo <<= 2; /* get 2 bits of arg */
root « = 1; /* Get ready for the next bit in the root */
testDiv = (root << 1) + 1; /* Test radical */
if (remHi >= testDiv) {

remHi -= testDiv;
root += 1;

}
} while (count-- != 0);

return(root);

0 Discussion <>

A nonrestoring version of the algorithm (Hwang 1979) may run shghtly faster at the
expense of a shghtly more complicated inner loop.

This algorithm may be modified to return the square root of a 32-bit integer by
redefining FRACBITS as zero, producing a variant requiring one additional iteration
(count = 15). Other formats having even numbers of fractional bits can be accom-
modated simply by adjusting these values. Note that the square root of a long in t
(thirty-two bits) yields a short i n t (sixteen bits).

0 Bibliography 0

(Gellert et al 1975) W. Gellert, H. Kiistner, M. Hellwich, and H. Kastner. The VNR
Concise Encyclopedia of Mathematics^ pages 52-53. Van Nostrand Reinhold, 1975.

24 0 Algebra and Arithmetic

(Hwang 1979) Kai Hwang. Computer Arithmetic: Principles, Architecture, and Design^
pages 360-366. Wiley, 1979.

(Musial 1991) Christopher Musial. An integer square root algorithm. In James Arvo,
editor, Graphics Gems 11^ pages 387-388. AP Professional, Boston, 1991.

01.4
Rational Approximation

Ken Shoemake
University of Pennsylvania
Philadelphia, Pennsylvania
shoemal<e ©graphics, cis. upenn. edu

0 Introduction 0

One way to combat accuracy losses in graphical algorithms such as intersection testing
is to use rational numbers instead of floating point. For these and other purposes, the
following discussion (accompanied by code) presents a way to construct a rational ap-
proximation to a floating-point number, optionally limiting the size of the integers used.
The mathematical theory of best rational approximations is a necessary ingredient, but
because it assumes perfect real numbers, it is not sufficient. Floating-point arithmetic
must be avoided even during conversion!

Rational approximation with limits is surprisingly difficult. Consider the number
0.84375 (which has an exact IEEE ffoating-point representation). Its only best rational
approximations are these few values:

3 4 5 n 16 27
' 4 ' 5 ' 6 ' 1 3 ' 1 9 ' 3 2 '

Approximations not on the list (such as 8/9) are bigger, but not better.
Before reading more, readers might like to challenge themselves by trying to devise a

mathematical procedure that finds exactly these values (without attempting exhaustive
search). For a greater challenge, try to find the best approximation given a limit. Given
the limit 9, say, the procedure should return 5/6. For the ultimate challenge, try to
write a C program that does this for an arbitrary floating-point number using 32-bit
arithmetic, without generating floating-point exceptions.

Those who attempt any of these challenges will appreciate this gem most. Those with
"a lazy attitude" (Knuth 1973, p. 73) must be content with less.

0 Best Rational Approximations 0

A best rational approximation to a real number x is a rational number n/d (with positive
denominator d) that is closer to x than any approximation with a smaller denominator.

Copyright (c) 1995 by Academic Press, Inc.
All r ights of reproduct ion in any form reserved.

^ ^ IBM ISBN 0-12-543455-3

26 0 Algebra and Arithmetic

A (regular) continued fraction (Behnke et al. 1974) is a fraction of the form

1
C0 + - . I

C2 + -

with positive Cjt for A: > 0. This expression will be abbreviated below as

^ [C0 ,C1 ,C2 , . . .] .

Every real number has a unique continued fraction (possibly infinite), which is the key
to its best rational approximations. (More precisely, finite continued fractions must
absorb any trailing 1 to be unique.)

For example, the continued fraction for 0.84375 is

0.84375 = jr[0,l ,5,2,2].

Continued fractions for its best rational approximations are

3/4 = J^[0,l,3],
4/5 = J^[0,l,4],

5/6 = J^[0,l,5],

11/13 = J?^[0,1,5,2],

16/19 = ^[0,1,5,2,1],

27/32 = jr[0,1,5,2,2].

It is evident that knowing the continued fraction of x is a big step toward knowing
its best rational approximations, though mysteries remain. (Why, for instance, does the
list not include ^[0,1,2] or ^[0,1,5,1]?) The most basic rule is this:

Rule 1 All best rational approximations of x can he obtained by truncating the contin-
ued fraction for x, and possibly decrementing its last term.

The option of decrementing large terms (such as the 292 in TT = ^ [3 , 7,15,1,292,...])
permits many best approximations. But as the exceptions indicate, restrictions apply.
The basic rule of decrementing is this:

Rule 2 The decremented value of the last term must be at least half its original value.

This explains why ^ [0 ,1 , 2] did not appear on the list, since 2 is less than half of 5.
Any decremented value greater than half the original is always permissible, but there is
one final rule. When the decremented value is exactly half the original value, sometimes
it is allowed, and sometimes it is not. (Consider ^[0,1,5,1] versus ^[0,1,5, 2,1].) Taking
the last term to be c^, the rule for discrimination is this:

1.4 Rational Approximation 0 27

Rule 3 When Ck is even, using the decremented value Ck/2 gives a best rational ap-
proximation just when T[ck, c^-i, Cfc_2,.. •,ci] > T[ck, c/^+i, 0^4-2,...].

Although this form of the rule is easy to state, a more convenient form to implement
will appear in the algorithm given later. In any case, since

but

^ [2 , 5 , 1] - 2 i < 2 i =^[2 ,2]

^[2,2,5,1] = 2 ^ > 2 = J^[2],
'13

no mysteries remain in the example above.

0 Continued Fraction Calculations 0
In the realm of ideal mathematics, continued fractions are easy to calculate. First, set
Co -= [x\. Now, since a: — CQ is less than 1, set xi — l / (x — CQ)^ and repeat. That is, set
ci = L îJ? cind X2 — l / (xi — ci), and so on. If Xk happens to be an integer, Ck is the
last term (and x was a rational number).

The trouble with this version of the algorithm is that it loses accuracy when imple-
mented using floating-point arithmetic. However, an accurate integer version can be
derived from Euclid's GCD algorithm, because floating-point numbers are integers di-
vided by a power of 2. Let x = a_2/a_i, so that CQ = [a_2/a_ij and ao = a_2 mod a_i.
Then iterate with ci = [a_i/aoJ and ai — a-i mod ao, and so on. After the first nonzero
term (co if a; > 1, otherwise ci), all subsequent values of Ck and Ok are sure to fit in
32-bit integers if x is an IEEE 32-bit floating-point number. Best of all, full accuracy is
retained at every step.

Applying this to 0.84375, which happens to be exactly 27/32, gives

Co = [27/32J -: 0 ao = 27 mod 32 = 27,
ci = [32/27J = 1 ai = 32 mod 27 = 5,
C2 = L27/5J = 5 a2 = 27 mod 5 = 2,
C3 = [5/2J = 2 as = 5 mod 2 = 1 ,
C4 = [2/lJ = 2 a4 = 2 mod 1 = 0 .

Converting a continued fraction to an ordinary fraction is easily done incrementally.
Begin with the dummy initial fractions n_2/c?_2 — 0/1 and n_i /d_i = 1/0. Then fold
the Ck term into the numerator and denominator using

rik = nk-2 + Tik-iCk

and

dk — dk-2 + dk-iCk.

28 <> Algebra and Arithmetic

This makes it possible to monitor the size of the numerator and denominator as they
grow with each new term. With a httle care, accumulation can stop before either one
grows beyond a given limit.

For the example above, pure truncation gives the following:

Ck 0 1 5 2 2
rifc 0 1 0 1 5 11 27
4 1 0 1 1 6 13 32

0 Complications 0

Computer programs frequently contain a small amount of heavily used code and a much
larger amount of special case handling. This routine is no exception, with an iiiner loop
of only ten lines (of which three merely shuffle variables). Most of the remaining code
is devoted to careful handling of the first continued fraction term, and to getting the
exactly half case right.

There are two potential problems with the first nonzero term. The simplest is that it
could be too large to fit in a 32-bit integer. But then it must exceed the limit (which
necessarily fits), so a fioating-point comparision against some constants can "pretest"
the floating-point value of x. The more awkward problem is that even though [1/xJ
may fit (when x < 1), the fioating-point computation of l/x loses accuracy. A custom
multiple-precision fixed-point divide solves this problem, though it is inelegant.

A little care is needed in testing approximations against the limit. The algorithm sets
up the inner loop so the denominator is always larger, to avoid testing the numerator.
But if the denominator increases one step too many, it may not fit in a 32-bit integer.
Testing Ck > {I — dk-2)/dk-i, not dk-2 + dk-iCk > /, avoids this hazard.

The final problem is to discriminate the exactly half case. Since it should rarely
occur, one option is to "just say no"—which is safe, if not accurate. But there is a
better solution using data already at hand: Allow Ck/2 whenever dk-2/dk-i > a^/ak-i^
or (since floating-point division would lose accuracy) whenever dk-2(^k-i > dk-idj^.
(Equations (6.131) and (6.135) of Concrete Mathematics (Graham et al. 1989) are the
basis for a proof.) This involves generating and comparing two 64-bit integer results,
but that is not so hard (Knuth 1981, p. 253).

Readers interested in learning more about continued fractions are encouraged to
seek out Item 101 in the unusual collection known as HAKMEM (Beeler et al 1972).
Not explored here are connections to computational complexity (Shallit 1991) and to
Bresenham's line drawing algorithm. (As a final challenge, find the next term in the
sequence 1,3,29, 545,6914705085169818401684631,... —Ed.)

1.4 Rational Approximation <C> 2 9

<> Code 0
/*••••* rat h. ******/

/* Ken Shoemake, 1994 */

#ifndef _H_rat
#define _H_rat

#include <limits.h>
typedef int BOOL;
#define TRUE 1
#define FALSE 0
#define BITS (32-1)
#if (INT_MAX>=2147483 647)

typedef int INT32;
typedef unsigned int UINT32;

#else
typedef long INT32;
typedef unsigned long UINT32;

#endif
typedef struct {INT32 numer,denom;} Rational;

Rational ratapprox(float x, INT32 limit);
#endif

/**••** 2rat c **•****/

/* Ken Shoemake, 1994 */

include <math.h>
#include "rat.h"

static void Mul32(UINT32 x, UINT32 y, U1NT32 *hi, UINT32 *lo)

{
UINT32 xlo = x&OxFFFF, xhi = (x»16) &OxFFFF;
UINT32 ylo = y&OxFFFF, yhi = (y»16) &OxFFFF;
UINT32 tl, t2, t3, s;
UINT32 lolo, lohi, tllo, tlhi, t21o, t2hi, carry;
*lo = xlo * ylo; *hi - xhi * yhi;
tl = xhi * ylo; t2 = xlo * yhi;
lolo = *lo&OxFFFF; lohi = (*lo»16) &OxFFFF;
tllo = tl&OxFFFF; tlhi = (tl»16) &OxFFFF;
t21o = t2&0xFFFF; t2hi = (t2»16) &OxFFFF;
t3 = lohi + tllo + t21o;
carry = t3&0xFFFF; lohi = (t3«16) &OxFFFF;

*hi += tlhi + t2hi + carry; *lo = (lohi«16) + lolo;

};

/* ratapprox(x,n) returns the best rational approximation to x whose numerator
and denominator are less than or equal to n in absolute value. The denominator
will be positive, and the numerator and denominator will be in lowest terms.
IEEE 32-bit floating point and 32-bit integers are required.

All best rational approximations of a real x may be obtained from x's
continued fraction representation, x = cO + 1/(cl + 1/(c2 + l/(...)))

30 0 Algebra and Arithmetic

by truncation to k terms and possibly "interpolation" of the last term.
The continued fraction expansion itself is obtained by a variant of the
standard GCD algorithm, which is folded into the recursions generating
successive numerators and denominators. These recursions both have the
same form: f[k] = c[k]*f[k-l] + f[k-2]. For further information, see
Fundamentals of Mathematics, Volume I, MIT Press, 1983.

*/
Rational ratapprox(float x, INT32 limit)

{
float tooLargeToFix = Idexpd.O, BITS); /* 0x4f 000000=2147483648 . 0 */
float tooSmallToFix = Idexpd.O, -BITS); /* 0x30000000=4.6566e-10 */
float halfTooSmallToFix = Idexpd.O, -BITS-1); /* 0x2f800000=2.3283e-10 */
int expForInt =24; /* This exponent in float makes mantissa an INT32 */
static Rational ratZero = {0, 1};
INT32 sign = 1;
BOOL flip = FALSE; /* If TRUE, nk and dk are swapped */
int scale; /* Power of 2 to get x into integer domain */
UINT32 ak2, akl, ak; /* GCD arguments, initially 1 and x */
UINT32 ck, climit; /* ck is GCD quotient and c.f. term k */
INT32 nk, dk; /* Result num. and den., recursively found */
INT32 nkl = 0, dk2 = 0; /* History terms for recursion */
INT32 nk2 = 1, dkl = 1;
BOOL hard = FALSE;
Rational val;

if (limit <= 0) return (ratZero); /* Insist limit > 0 */
if (x<0.0) { x = - x ; sign = -1;}
val.numer = sign; val.denom = limit;
/* Handle first non-zero term of continued fraction,

rest prepared for integer GCD, sure to fit.
*/

if (x >= 1.0) {/* First continued fraction term is non-zero */
float rest;
if (x >= tooLargeToFix || (ck = x) >= limit)

{val.numer = sign*limit; val.denom = 1; return (val);}
flip = TRUE; /* Keep denominator larger, for fast loop test */
nk = 1; dk = ck; /* Make new numerator and denominator */
rest = X - ck;
frexp(1.0,&scale);
scale = expForInt - scale;
ak = ldexp(rest, scale);
akl = Idexpd.O, scale);

} else {/* First continued fraction term is zero */
int n;
UINT32 num = 1;
if (x <= tooSmallToFix) { /* Is x too tiny to be 1/INT32 ? */

if (x <= halfTooSmallToFix) return (ratZero);
if (limit > (UINT32)(0.5/x)) return (val);
else return (ratZero);

}
/* Treating 1.0 and x as integers, divide 1/x in a peculiar way

to get accurate remainder

1.4 Rational Approximation 0 31

frexp(x,&scale);
scale = expForInt - scale;
akl = ldexp(x, scale);
n = (scale<BITS)?scale:BITS;
num <<= n;
ck = num/akl;
ak = num%akl;
while ((scale -= n) > 0) {/'*

n = (scale<8)?scale:8;
num = ak<<n;
ck = ck<<n + num/akl;
ak = num%akl;

/
}
/*
if

All
(ck
if

done with
>= limit)
(2*limit
return (

else return

divide *

{
> ck)
val) ;
(ratZero)

/* stay within UINT32 arithmetic */

/* First attempt at 1/x */
/* First attempt at remainder */

Shift quotient, remainder until done */
/* The 8 is 24 bits of x in 32 bits */

/* Reduce remainder */

/* Is X too tiny to be 1/limit ? */

nk = 1; dk ck;
}

}
if

{

akl
nkl
dkl

= ak
= nk

- dk

while (ak != 0)
ak2 = akl;
nk2 = nkl;
dk2 = dkl;
ck = ak2/akl;
ak = ak2 - ck*akl;
climit = (limit - dk2)/dkl;
if (climit <= ck) {hard =: TRUE;
nk = ck*nkl + nk2;
dk - ck*dkl + dk2;

(hard) {
UINT32 twoClimit = 2*climit;
if (twoClimit >= ck) {

nk
dk
if

= climit*nkl
= climit*dkl
(twoClimit =

f nk2;
f dk2;
ck) {

/* Make new numer and denom */

/* If possible, quit when have exact result */
/* Prepare for next term */
/* (This loop does almost all the work) */

/* Get next term of continued fraction */
/* Get remainder (GCD step) */
/* Anticipate result of recursion on denom */
break;} /* Do not let denom exceed limit */
/* Make new result numer and denom */

If climit < ck/2 no improvement possible */
Make limited numerator and denominator */

/' If climit == ck improvement not sure */
/* Using climit is better only when dk2/dkl > ak/akl */
/* For full precision, test dk2*akl > dkl*ak */
UINT32 dk2aklHi, dk2aklLo, dklakHi, dklakLo;
Mul32(flip?nk2:dk2, akl, &dk2aklHi, &dk2aklLo);
Mul32(flip?nkl:dkl, ak, &dklakHi, &dklakLo);
if ((dk2aklHi < dklakHi)
II ((dk2aklHi == dklakHi) && (dk2aklLo <= dklakLo)))

{ nk = nkl; dk = dkl; } /* Not an improvement, so undo step */
}

}
}
if (flip)
else
return (val) ,

{val.numer = sign*dk; val.denom = nk;}
{val.numer = sign*nk; val.denom = dk;}

32 0 Algebra and Arithmetic

0 Bibliography 0
(Beeler et al 1972) M. Beeler, R.W, Gosper, and R. Schroeppel. HAKMEM. Artificial

Intelligence Memo 239, Massachusetts Institute of Technology, Cambridge, MA,
February 1972.

(Behnke et al. 1974) H. Behnke, F. Bachmann, K. Fladt, and W. Siiss. Foundations of
Mathematics: The Real Number System and Algebra, Volume 1 of Fundamentals
of Mathematics, The MIT Press, Cambridge, MA, 1974.

(Graham et al. 1989) Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Con-
crete Mathematics. Addison-Wesley, Reading, MA, 1989.

(Knuth 1973) Donald E. Knuth. Sorting and Searching, Volume 3 of The Art of Com-
puter Programming. Addison-Wesley, Reading, MA, 1973.

(Knuth 1981) Donald E. Knuth. Seminumerical Algorithms, 2nd edition. Volume 2 of
The Art of Computer Programming. Addison-Wesley, Reading, MA, 1981.

(Shallit 1991) Jeffrey Outlaw Shallit. Description of generalized continued fractions by
finite automata. Technical Report CS-91-44, University of Waterloo, September
1991.

II • I I •
Computational

Geometry

The gems in this section describe abstract geometric models having practical graphics
application. Their use in rendering is not limited to merely the spatial but includes
colorimetric operations within (Euclidean) color space, as when r, ^, and b replace x,
y, and z.

Van Gelder's polyhedron volume and area finders (11.1) employ both computational
optimizations and a mathematical reformulation not previously appearing in print. The
latter's derivation is illustrated clearly, the former defended through empirical tables.
The spherical geometry reviewed by Carvalho and Cavalcanti (II.2) rederives Girard's
method of spherical excesses, ultimately yielding a point-in-polygon test while squelch-
ing a bug in a previous gem. Glassner (II.3) offers a reentrant polygon clipper whose
edge traverse includes a nonsequential step, yielding a compact algorithm not prone to
unnecessary object fragmentation. Hanson, who previously described the geometry of
4D space in practical terms, now derives and describes (II.4) their rotation. A prac-
tical application (trackball manipulation) keeps the related application well in hand.
Buckley (II.5) provides an insightful nearest lattice point test. Based upon the proper-
ties of space close packing, it is first conceived as a geometric color quantizer having
possible spatial applications. Hill (II.6) derives a method of ellipse-ellipse intersection
not requiring quartic polynomials by application of quadratic matrix forms. Both the
intersection methods per se and the treatment of the linear algebra provide valuable
graphics tools. The distance approximations by Paeth (II.7) are treated in essentially
geometrical terms, off'ering insight into the nature of both cubic symmetry and spherical
surfaces while producing a useful set of TV-dimensional containment heuristics.

33

This Page Intentionally Left Blank

011.1
Efficient Computation of
Polygon Area and Polyhedron
Volume

Allen Van Gelder
University of California
Santa Cruz, California

0 Introduction 0

This gem describes new methods to obtain the area of a planar polygon and the volume
of a polyhedron, in three-dimensional space. They provide substantial speed-ups (factors
ranging from two to sixteen) over previously reported methods. In most cases, the new
methods are also easier to program.

Implementers should be familiar with basic vector operations, particularly the cross
product (Foley et al 1990, Appendix). This gem assumes a right-handed coordinate
system; for a left-handed coordinate system, define the cross product to be the negative
of its usual definition. Some derivations require slightly more advanced knowledge of
vector calculus (Marsden et al. 1993). Derivations are sketched separately in the section
"Derivations and Proofs."

0 Background 0

Formulas for polyhedral area and volume are older than computers, but their computa-
tional efficiency is seldom addressed. A previous gem has adapted 3D methods for area
and volume computation from standard sources (Goldman 1991); for conciseness, they
are referred to here as the "Goldman method." Formulas for polygonal area in 2D have
also been summarized (Eves 1968, Glassner 1990, Rokne 1991).

Area Vectors

The most important observation for the formulas to be obtained is that area is most
productively thought of as a vector^ particularly if further calculations are to be done
with it. This point of view is well known in vector calculus. For example, the dot product

Copyright (c) 1995 by Academic Press, Inc.
All rights of reproduct ion in any form reserved.

IBM ISBN 0-12-543455-3
4 1 ^ Ti/r_ _ ' j ^ 1 Tf~tT-»TVT r\ -in r-ziO/tt-i-r AT"

36 0 Computational Geometry

Operation
Notation

Cost symbol
Floating Mpy's

add
V + W

a
0

scale
cv
a
3

dot prod.
V • W

6
3

cross prod.
V X W

7
6

magnitude

l|v||
M

~ 17

Figure 1 . Cost of vector operations.

of an area vector with a direction vector yields the (scalar) area of the projection in
that direction.

Assume a bounded surface lies in a plane in 3D, having normal vector n. The interior
of the surface is denoted as S and the boundary is denoted as dS. It is not necessary
to know the normal vector to compute the area vector:

^ Ids
X ds, (1)

where r is the position vector, ds is the differential arc length vector, and "x" denotes
the cross product. The boundary curve dS is traversed in counterclockwise order when
viewed from the half space into which the normal vector points.

It can also be shown that the vectors A and n are collinear. This observation allows
the program to avoid computing normal vectors separately.

This gem treats the case in which the boundary of 5 is a planar polygon. Its vertices
are PQ, P I , . . . , P^ - i , Po? listed in counterclockwise order when viewed from the half
space into which the normal vector points. Equation (1) can be reduced to

k-2

2A = ^ P , X P^+i + Pfc_i X Po, (2)

which is essentially that given by Goldman {op. cit.). Improvements are described in
the section "Polygon Area Calculation."

Computational Cost Model

Computational costs will be estimated symbolically in terms of the costs of the various
3D vector operations (see Figure 1). Floating-point multiplies, usually the dominant
instruction, appear in the last row. Vector magnitude consists of a dot product followed
by a square root.

Equation (2) costs (/c7 + (fc—l)a) in general, which becomes (47 + 3a) for a quadri-
lateral.

//. 1 Efficient Computation of Polygon Area and Polyliedron Volume 0 37

<> Polygon Area Calculation 0

This section describes how Equation (1) can be reformulated based on geometric insight,
and computed much more efficiently. The same idea applies to 2D polygons. Observe
the following:

Proposition. The area of a planar quadrilateral is one-half the cross product of its
diagonals, that is, using the counterclockwise indexing convention,

A(quad) = ^(P2 - Po) X (P3 - P i) . (3)

To exploit the proposition, partition a fc-sided polygon into a series of quadrilaterals
formed between PQ and three consecutive vertices. For k odd, a triangle completes the
sequence. To express the formula in an easily coded form, some additional notation is
useful: Let h = [^{k — 1)J, and let ^ = 0 if fc is odd, or ^ = k—1 if k is even. Then

h-i

2A = X^(P2i - Po) X (P2i+i - P2z- i) + (P2/. - Po) X (P^ - P2/.-1). (4)
i=l

This can also be derived formally from Equation (2).
The cost of Equation (4) is (/17 + (3/i — l)a) . Roughly speaking, half of the cross

products in Equation (2) have been replaced by vector subtractions. A quadrilateral
now costs only (7 + 2a), which is nearly a factor of four better.

0 Polyhedron Volume Calculation 0

Let i? be a polyhedron with N vertices and m faces, labeled F o , . . . , Fm-i- For each
face Fj, choose an arbitrary vertex of that face, which is called its representative vertex
and is denoted by Pi?.. The volume of R is given by

m—l m—1

^ - 5 E P ^ . - A , = | E P F , - (2 A ,) , (5)
j=0 j=0

where Aj is the vector area of Fj. Again, this is a "mathematician's formula," which
makes no attempt to optimize computational costs.^ However, it still offers a substantial

^Consider this illustrative joke. Question 1: How does a mathematician make a cup of tea, given a
kettle of water at room temperature? Answer 1: He puts the kettle on the stove. When the water boils, he
pours some into a cup with tea leaves. Question 2: How does a mathematician make a cup of tea, given
a kettle of boiling water? Answer 2: He sets the kettle aside until the water cools to room temperature,
thereby reducing the problem to one previously solved.

38 0 Computational Geometry

improvement over the Goldman formula by eliminating vector-magnitude calculations
and by using the more efficient Equation (4) to evaluate the vectors (2Ao). . . (2A^_i).

For example, on a hexahedron having quadrilateral faces (a deformed cube), the
Goldman method would cost (12M + 3O7 + 66 -\- 6a -\- 30a), while Equation (5) costs
(67 + 6^ + 12a). A further optimization for hexahedra is described later.

The mystically inclined may ponder the following fact: If a polyhedron has rational
vertices, then it may have sides of irrational length, and it may have faces of irrational
(scalar) area, but its volume is surely rational!

Optimizations and Special Cases

This section describes two optimization techniques for volume calculations and applies
them to obtain further improvements on all polyhedra with four to six faces. Such figures
arise frequently in finite element analysis, 3D flow simulations, and related graphics
applications.

The first economy of computation is to use a small set of representative vertices in
Equation (5). One vertex can represent all the faces upon which it is incident. The area
vectors of those faces can be added together first, and then just one dot product is
taken with their common representative vertex.

A second possible economy is (conceptually) to translate the origin to one of the
representative vertices. Then the contribution of all faces containing that vertex becomes
zero in Equation (5). The program need not compute the area vectors for those faces.
The actual cost of the translation operation is one vector subtraction per remaining
representative vertex. It is important to notice that the translation operation need not
actually be applied to vectors participating in the area calculations of Equation (4),
because they already appear as diff'erences. If there are thirty or more representative
vertices, this step may not be cost-effective.

Application of these optimizations depends on the topology of the polyhedron, so this
gem can only give specifics for special cases. The remainder of this section describes
optimizations for all polyhedra of four to six faces.

First, consider a tetrahedron. Assume the orientation is such that P i , P2, P4 appear
in clockwise order when viewed from PQ (see Figure 2). The second optimization makes
it unnecessary to compute the areas of three of its faces, giving

F(tetra) = i (P i - Po) • ((P2 - P i) x (P4 - P i)) . (6)

This special case is well known, of course. Its cost is (7 + 5 + 3a). (By omitting the
factor of | , Equation (6) gives the volume of a parallelepiped. This also computes a
3 x 3 determinant efficiently.)

//. 1 Efficient Computation of Polygon Area and Polyhiedron Volume 0 39

Figure 2. Orientations of tetrahedral vertices for Equation (6) and inexahedral vertices for Equation (8).

More surprisingly, Equation (6) can be extended at no cost to the hexahedron formed
by two abutting tetrahedra. To the above tetrahedron, add vertex P7 with edges to P i ,
P2, and P4. The volume of this polyhedron is

y(dbl-tetra) = ^(Pr - Po) • ((P2 - P i) x (P4 - P i)) . (7)

Now consider a hexahedron with quadrilateral faces, that is, a deformed cube. Let the
vertices be labeled as for a cube: PQ, . . . , P7 appear in the orientation shown in Figure 2.
Observe that all five-faced polyhedra can be obtained by coalescing appropriate vertices
of this figure.

Now choose PQ and P7 as the representative vertices. After translating the origin to
Po, only the faces containing P7 require their areas to be calculated. The formula then
reduces to

y(hexa) = i (P7 - Po) • (Pi X (P3 - P5) + P2X (Pe - Ps) + P4 x (P5 - Pe)). (8)

To the best of the author's knowledge, this formula has not previously appeared in
print. Its cost is (87 + 6 + 6a). This saves another factor of two over straightforward
application of Equations (5) and (4).

Basing costs on the number of multiplies (except a = 1, not 0), the Goldman method
would cost 450. Equation (8) costs 27. The ratio of 450/27 gives the factor of sixteen
promised in the introductory sentence.

0 Derivations and Proofs 0

All facts about vector calculus mentioned in this section can be found in standard texts
(Marsden et al 1993).

40 0 Computational Geometry

P i

Figure 3. Parallelogram based on diagonals of an arbitrary quadrilateral.

Equation (1). The author has not seen this coordinate-independent formulation in
print, but it is easily verified. Recall that the cross product commutes with rotation,
that is, R{a x b) = (Ra) x (i?6), where i? is a rotation transformation. Therefore it
suffices to consider the case in which the surface normal is k, the unit vector in the
positive z direction. Then the z component of r is constant on the curve dS, and the
integral simplifies to

h (p {xdy — y dx) k.
Jds Ids

The magnitude is known to be the area of S by Green's theorem. Also, the area vector
is collinear with the surface normal.

Equation (2). Mathematically, only the component of r orthogonal to ds contributes
to the cross product, and this component does not change along the line segment from
Pi to Pi-fi. The contribution of this segment is Pi x (Pi+i — Pi). But Pi x Pi = 0.

As seen geometrically, the right side is the vector sum of the areas of k triangles with
vertices (0,Pi, Pi+i).)

Equation (3). Circumscribe the quadrilateral by a parallelogram whose sides are par-
allel to the diagonals of the quadrilateral (Figure 3). The area of the parallelogram is
(P2 — Po) X (P3 — Pi)- The triangles are congruent in pairs.

Equation (5). Mathematically, by the divergence theorem, the volume of a 3D region
R bounded by the surface dR is

V = = U[r-̂ A, (9)
JJdR

where dA is the outwardly oriented differential area vector. When R is a, polyhedron,
let Fj be any face, and let P be any fixed point on that face. Then r • dA — P • dA for
all points r on Fy Choose a representative vertex Pp^ as P , and the integral on that
face simplifies to Pp. • jjfp. dA,

//. 1 Efficient Computation of Polygon Area and Polyhedron Volume 0 41

Geometrically, the right side is the algebraic sum of the volumes of m pyramids with
bases FQ ... Fm-i and common apex at the origin. (If the origin is outside the volume,
some volumes are negative.) Each pyramid's altitude is P̂ ;̂ . • (Aj/| |Aj| |).

Equation (8). The intermediate formula for the deformed cube, after translating the
origin to PQ in Equation (5), is

liPr - Po) • ((Pi - Pj) X {Ps - Ps) + (P2 - Pr) X (Pe - Ps) + (P4 - P7) x (P5 - Pe))

All the cross products involving P7 cancel.

0 Conclusions 0
The discrete equations of area and volume, when derived by first principles, describe
an underlying geometry of mensuration based upon triangles. An algebraic rederiva-
tion substituting the quadrilateral provides added computational efficiency. Factors of
improvement may be estimated based upon machine costs of select operations. The
derivation is faster regardless of machine specifics because scalar sums and differences
replace slower vector-based operations, including the cross product and absolute value.

0 Bibliography <>
(Eves 1968) Howard Eves. Analytical geometry. In William H. Beyer, editor, CRC

Handbook of Mathematical Sciences^ 5th edition. CRC Press, Boca Raton, FL,
1968.

(Foley et al. 1990) James D. Foley, Andries Van Dam, Steven Feiner, and John Hughes.
Computer Graphics: Principles and Practice^ 2nd edition. Addison-Wesley, Read-
ing, MA, 1990.

(Glassner 1990) Andrew S. Glassner. Useful 2D geometry. In Andrew S. Glassner, edi-
tor, Graphics Gems^ pages 3-11. AP Professional, Boston, 1990.

(Goldman 1991) Ronald N. Goldman. Area of planar polygons and volume of polyhe-
dra. In James Arvo, editor, Graphics Gems 11^ pages 170-171. AP Professional,
Boston, 1991.

(Marsden et al. 1993) Jerrold E. Marsden, Anthony J. Tromba, and Alan Weinstein.
Basic Multivariate Calculus. Springer-Verlag, New York, 1993.

(Rokne 1991) Jon Rokne. Area of a simple polygon. In James Arvo, editor, Graphics
Gems 11^ pages 5-6. AP Professional, Boston, 1991.

011.2
Point in Polyhedron Testing
Using Spherical Polygons

Paulo Cezar Pinto Carvalho Paulo Roma Cavalcanti
IMPA, Institute de Matematica Pura e Aplicada IMPA, Institute de Matematica Pura e Aplicada
UFRJ, Universidade Federal de Rie de Janeire UFRJ, Universidade Federal do Rie de Janeiro
Rio de Janeiro, Brazil Rio de Janeiro, Brazil
pcezar@ visgraf.impa.br proma @ visgraf.impa.br

0 Introduction 0

This gem presents a method based on spherical polygons to determine if a given point
is inside or outside a three-dimensional polyhedron, given by its face list. This approach
extends a well-known 2D technique (Haines 1994) to 3D.

In two dimensions, one can decide whether a point p is inside a simple polygon P by
computing the signed angle around p determined by each side of P . If p is not on the
boundary of P , the sum S of all such signed angles is necessarily —27r, 0, or 27r. If 5 = 0,
p is exterior to P . Otherwise, p is interior to P . Usually, this method is considered to
be inferior to the one that is based on counting the number of intersections with P of
a ray through p. However, it deserves attention for its elegance and simplicity.

Below, it is shown how to extend the signed angle method to the 3D problem. It is
assumed that P is a simple polyhedron, given by its face list, in which the faces are
consistently oriented.

0 Method of Solution 0

First observe that the measure of the signed angle corresponding to an edge is (in the
2D case) the measure of the directed arc obtained by projecting that edge onto the
unit circle whose center is the point p being tested. The arc is positive if its orienta-
tion is counterclockwise and negative otherwise. The corresponding operation in three
dimensions is to project each face of the polyhedron onto a unit sphere of center p and
compute the signed area of the spherical polygon thus determined. The sign is posi-
tive if the spherical polygon has counterclockwise orientation and negative otherwise
(Figure 1). In analogy to the 2D case, the following holds:

Theorem. The sum S of the signed areas of the projections of all faces of the simple
polyhedron P onto the unit sphere of center p is necessarily 0, ATT, or —47r.

Copyright (c) 1995 by Academic Press, Inc.
All rights of reproduct ion in any form reserved.
IBM ISBN 0-12-543455-3

11.2 Point in Polyhedron Testing Using Spherical Polygons 0 43

Figure 1. Projecting faces in 3D.

If S' = 0, then p is exterior to P; otherwise, p is interior to P.

Proof. The projections of all edges of P partition the surface of the unit sphere into
a finite family Q — {Qi, (52, • • •, Qm} of spherical polygons. The projection of a face of
P is a finite union of elements of Q. Each element of Q may appear in the projection
of several faces, and in each case its area may contribute positively or negatively to the
total signed area S, depending on the face orientation. Hence, S can be expressed as
S — Y^=\ ^i' area((5^), where ai is the net contribution of Qi. Assume that p is interior
to P and that the faces of P have counterclockwise orientation. Let us compute the
contribution ai of a spherical polygon Qi to S. Consider a ray defined by p and an
arbitrary point interior to Qi. This ray may cross several faces of P . The first crossing
goes from the inside to the outside of P (Figure 2). As a consequence, the orientation of
the projection of the first face crossed is counterclockwise, and the area of Qi is counted
positively. If there is another crossing, then it goes from the outside to the inside, and so
the corresponding face projects onto a clockwise spherical polygon. Since p is interior,
the total number of crossings is odd, and the ray goes from the inside to the outside
once more often than it goes the other way. So, the net contribution of Qi is positive
and ai = 1. Since this happens for every Q^, 5 is equal to the area of the sphere, which
is given by 47r.

If the faces of P have clockwise orientation, then S = —An. Finally, if p is exterior,
the number of crossings is even, and the total contribution of each spherical polygon is
zero, regardless of the orientation of the faces of P . Thus, in this case 5 = 0. i

44 0 Computational Geometry

Figure 2. Crossing faces.

Computing Signed Areas of Spherical Projections of Polygons

To use the previous theorem to locate a point p with respect to a polyhedron P, it is
necessary to find the signed area of the projection of each face F of P onto the unit
sphere of center p. It is possible to project each vertex onto the sphere and employ the
routine presented in a previous gem (Miller 1994) to compute^ the signed area of the
spherical polygon thus obtained. A more practical approach avoids the projection of
faces onto the sphere. Presented below, it is based upon the classical formula of Girard
for the area of a spherical triangle.

According to Girard's formula (Coxeter 1961, Lines 1965, Bian 1992), the area of a
spherical triangle on the unit sphere is given hy S = A + B + C — 27r, where A, 5 ,
and C are the (spherical) angles at each vertex, and 27r is the spherical excess. This is
readily extended for spherical polygons by adjusting the excess. If a spherical n-gon is
triangulated into n — 2 spherical triangles, its area may be expressed by

3= E^0-2("-2)7r. (1)

The spherical angle at a given vertex A is the angle a determined by the tangents
to two great circles corresponding to the sides that cross at A. But a is also the angle
formed by the planes containing those two great circles. Thus, a can be determined from
the normal vectors to each of these planes, which can be computed without actually
projecting the vertices onto the sphere (Figure 3).

^A correction to his implementation concludes this work.

11.2 Point in Polyhedron Testing Using Spiierical Polygons 0 45

Figure 3. Computing spherical angles.

Note, however, that the corresponding angle A of the spherical polygon may be either
a or 27T — a, depending on whether A is the projection of a convex or concave angle.
This can be ascertained by computing the vector product of the two corresponding face
edges and comparing the resulting vector with the normal vector to the plane. If they
have the same orientation, the angle is convex and A = a; otherwise, A = 27r — a.

This procedure is executed for each vertex of the polygon, and Equation (1) then
gives the area of the spherical polygon. Finally, it is necessary to find the sign to be
attributed to this area. It suffices to compute the inner product of the face normal
vector and the vector pv that joins the center p of the sphere to an arbitrary vertex v
of the face. If this product is positive, the projection of F is counterclockwise and its
signed area is positive. Otherwise, the area takes a negative value.

Code Revision for Computing the Area of a Spherical Polygon

The published routine {op. cit., page 136) used to compute the area of a spherical
polygon does not work in every case. The error lies in the statement

if (Lam2 < Lamjl.) Excess = - Excess;

appearing as the penultimate line of the final if statement. The method fails when the
polygon crosses the 0° meridian (the case is analogous to crossing the international date
line). It should be replaced by

46 0 Computational Geometry

double Lam;
Lam = (Lam2 - Laml > 0) ? Lam2 - Laml : Lam2 - Laml + 4*HalfPi;
if (Lam > 2*HalfPi) Excess= -Excess;

With this revision in place the routine may be used to find the correct orientation of
the projected face and hence the correct signed area.

0 ANSI C Code 0

The code given below reads the face list of a polyhedron (description of each face,
consisting of the number of vertices and the coordinates of each vertex) and tests an
arbitrary point for inclusion in the polyhedron. To keep it short, the code does not test
whether a given point is too close to a polygon plane. In practice, should this happen,
the code should check for proximity to the polygon and return point on the boundary.

#include <math.h>
#include <stdlib.h>
#include <stdio.h>

#ifndef max
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#endif
#define PI 3.141592653589793324
#define GeoZeroVec(v) ((v).x = (v).y = (v).z = 0.0)
#define GeoMultVec(a,b,c) \
do {(c).x = a*(b).x; (c).y = a*(b).y; (c).z = a*(b).z; } while (0)

#define Geo_Vet(a,b,c) \
do {(c).X = (b).x-(a).x; (c).y = (b).y-(a).y; (c).z = (b).z-(a).z;} while (0)

typedef double Rdouble;
typedef float Rfloat;
typedef struct _GeoPoint { Rfloat x, y, z; } GeoPoint;

/*========-=============--- Geometrical Procedures ======================= */

Rdouble GeoDotProd { GeoPoint *vec0, GeoPoint *vecl)

{

return (vecO->x * vecl->x + vecO->y * vecl->y + vecO->z * vecl->z);

}

void GeoCrossProd (GeoPoint *inO, GeoPoint *inl, GeoPoint *out)

{
out->x = (inO->y * inl->z) - (inO->z * inl->y);
out->y = (inO->z * inl->x) - (inO->x * inl->z);
out->z = (inO->x * inl->y) - (inO->y * inl->x);

Rdouble GeoTripleProd (GeoPoint *vecO, GeoPoint *vecl, GeoPoint *vec2)

{

11.2 Point in Polytiedron Testing Using Spliehcal Polygons 0 47

GeoPoint tmp;

GeoCrossProd (vecO, vecl, &tmp);
return (GeoDotProd(&tmp, vec2));
}

Rdouble GeoVecLen (GeoPoint *vec)

{

return sqrt (GeoDotProd (vec, vec));

}

int GeoPolyNormal (int n_verts, GeoPoint *verts, GeoPoint *n)

(
int i ;
Rfloat n_size;
GeoPoint vO, vl, p;

GeoZeroVec (*n);
Geo_Vet (verts[0], verts[1], vO);
for (i = 2; i < n_verts; i++)

{
Geo_Vet (verts[0], verts[i], vl);
GeoCrossProd (&vO, &vl, &p);
n->x += p.x; n->y += p.y; n->z += p.z;
vO = vl;
}

n_size = GeoVecLen (n);
if (n_size > 0.0)

{
GeoMultVec (l/n_size, *n, *n);
return 1;
}

else
return 0;

}

/ *==z=z======zz==-============ geo_solid_angle = ===================
/*
Calculates the solid angle given by the spherical projection of
a 3D plane polygon

*/

Rdouble geo_solid_angle (
int n_vert, /* number of vertices */
GeoPoint *verts, /* vertex coordinates list */
GeoPoint *p) /* point to be tested */

{
int i ;
Rdouble area = 0.0, ang, s, 11, 12;
GeoPoint pi, p2, rl, a, b, nl, n2;
GeoPoint plane;

48 0 Computational Geometry

if (n_vert < 3) return 0.0;

GeoPolyNormal (n_vert, verts, &plane

WARNING: at this point, a practical implementation should check
whether p is too close to the polygon plane. If it is, then
there are two possibilities:
a) if the projection of p onto the plane is outside the

polygon, then area zero should be returned;
b) otherwise, p is on the polyhedron boundary.

p2 = verts[n_vert-l]; /* last vertex */
pi = verts[0]; /* first vertex */
Geo_Vet (pi, p2, a); /* a = p2 - pi */

for (i = 0; i < n_vert; i++)
(
Geo_Vet(*p, pi, rl);
p2 = verts[(i+1)%n_vert];
Geo_Vet (pi, p2, b);
GeoCrossProd (&a, &rl, &nl);
GeoCrossProd (&rl, &b, &n2);

11 = GeoVecLen (&nl);
12 = GeoVecLen (&n2);
s = GeoDotProd (&nl, &n2) / (11 * 12);
ang = acos (max(-1.0,min(1.0,s)));
s = GeoTripleProd(&b, &a, &plane);
area += s > 0.0 ? PI - ang : PI + ang;

GeoMultVec (-1.0, b, a);
pl = p2;
}

area -= PI*(n_vert-2);

return (GeoDotProd (&plane, Scrl) > 0.0) ? -area : area;
}

/* ====================== main ========================== */

int main (void)

{
FILE *f;
char s[32];
int nv, j;
GeoPoint verts[100], p;
Rdouble Area =0.0;

fprintf (stdout, "\nFile Name: ");
gets (s) ;

11.2 Point in Polytiedron Testing Using Sphen'cal Polygons 0 49

if ((f = fopen (s, "r")) == NULL)
{
fprintf (stdout, "Can not open the Polyhedron file \n");
exit (1);
}

fprintf (stdout, "\nPoint to be tested: ");
fscanf(stdin, "%f %f %f", &p.x, &p.y, &p.z);

while (fscanf (f, "%d", &nv) == 1)
{
for (j = 0; j < nv; j++)

if (fscanf (f, "%f %f %f",
&verts[j].x, &verts[j].y, &verts[j].z) != 3)

{
fprintf (stdout, "Invalid Polyhedron file \n");
exit (2) ;
}

Area += geo_solid_angle (nv, verts, &p);

}

fprintf (stdout, "\n Area = %12.41f spherical radians.\n". Area);
fprintf (stdout, "\n The point is %s",

((Area > 2*PI) || (Area < -2*PI))? "inside" : "outside");
fprintf (stdout, "the given polyhedron \n");
return 1;
}

0 Bibliography 0
(Bian 1992) Burning Bian. Hemispherical projection of a triangle. In David Kirk, editor,

Graphics Gems ///, Chapter 6.8, page 316. AP Professional, Boston, 1992.

(Coxeter 1961) H. S. M. Coxeter. Introduction to Geometry. John Wiley and Sons, New
York, 1961.

(Haines 1994) Eric Haines. Point in polygon strategies. In Paul Heckbert, editor, Graph-
ics Gems IV, pages 24-46. AP Professional, Boston, 1994.

(Lines 1965) L. Lines. Solid Geometry. Dover Publications, New York, 1965.

(Miller 1994) Robert D. Miller. Computing the area of a spherical polygon. In Paul
Heckbert, editor, Graphics Gems IV, pages 132-137. AP Professional, Boston,
1994.

011.3
Clipping a Concave Polygon

Andrew S. Glassner
Microsoft Corp.
Redmond, Washington

0 Introduction 0

Polygons are a popular modeling primitive. Polygon clipping against a line or a plane is
one of the most common^ rendering operations. The classic reentrant method (Suther-
land and Hodgman 1974) clips a convex polygon against a line, yielding a pair of
polygons lying on either side of the line. The algorithm is conceptually elegant and easy
to program for convex polygons, but becomes difficult to implement for concave ones.
Although it can be patched up to treat these cases (Foley et al 1990), the patching
becomes complicated, involving the detection of degenerate edges.

This gem presents a simple yet robust method for clipping concave polygons. The
method considers that often one merely needs the polygon lying to one side of the
line. In the general case, both polygons are returned, suggesting an algorithm that can
accommodate multiple polygons such as those produced when a concave polygon is split
into many fragments (which may also be concave).

0 The Algorithm <>

Following standard convention, discussion is phrased in terms of a clipping line, which
may also represent the line of intersection between a clipping plane and the polygon.
The line is oriented: It has a positive side and a negative side. Points (or polygon parts)
on the positive side of the clipping line are inside^ otherwise outside.

Consider Figure 1(a), which shows a polygon and a clipping line. The vertices of
the polygon are labeled 1 through 8; assume vertex 1 is inside. To recapitulate the
operations of the Sutherland-Hodgman algorithm, first traverse the polygon's vertices
(in either order). Test the current edge for intersection against the clipping line. If
it does intersect, compute the point of intersection and insert it into the vertex list
between the two endpoints. Continuing for all edges results in the new points labeled
A through H. For purposes of discussion, this will be called a prepared polygon (now
having sixteen vertices).

^A basic utility supporting this operation for general polygons appears on page 386.

Copyright (c) 1995 by Academic Press , Inc.
All rights of reproduct ion in any form reserved.
IBM ISBN 0-12-543455-3 ^ ^

11.3 Clipping a Concave Polygon 0 51

A
/ / A

Figure 1. Reentrant clipping of a concave polygon

The Sutherland-Hodgman approach considers vertex 1 as inside and creates the A
on exit, the point B on reentry includes vertex 3, and so on, constructing the polygon
(1, A, B, 3, . . .) . But points A and B do not belong to the same final polygons, so this
is not an auspicious beginning.

The gem's approach is based on the observation that the new intersection points
necessarily come in pairs that exactly correspond to edges. (This is the famous Jordan
Curve theorem in action.) That is, it considers the sequential points of intersection
along the cutting edge while evaluating consecutive vertices along the polygon.

In the example, points G and B represent a pair, though they were generated at
different times during the edge traverse. To find such pairs, pick any two intersection
points X and Y at random. All points of intersection lie along the line through X and
y . Treating this as a directed line, find the signed distance of each intersection point
from X. For example, if one used D and F as the pair of points, with D at the origin of
the line and F lying in the positive direction, then points C, F , and G lie at increasingly
positive distances from D, and E, H, and A lie at increasingly negative distances. In
a second structure, sort these distance-point pairs by distance to create a second list,
for example, A, iJ, E^ Z), C, F, G, B. Return to the polygon (the primary data
structure) and create links between adjacent pairs, beginning at the head of the list. In
the example, this generates the pairs (A,i7), (F, Z?), (C, F) , and (G, S) .

Note that pair production always requires an even number of points. This can be a
problem for vertices lying directly upon (or edges coincident with) the clipping line. The
solution borrows a technique from ray tracing (Haines 1989). The heart of the method
is that all vertices are classified as inside or outside in an initial pass before clipping
begins, and any vertex that is on the line is considered to be inside. This approach has
the desirable property that if a polygon is clipped against the same line twice in a row,
it will not be changed.

52 0 Computational Geometry

0 Pseudocode Implementation 0

ConcaveClip(Polygon polygon, Line clipper)

for each vertex V in polygon.vertices
V.link := NULL
u := signed distance of V to clipper
if (u < 0) then V.inside := FALSE

else V.inside := TRUE
endif

endfor
createdList := NULL
vertex V := polygon.vertices
do

N := V.next
if (V.inside <> N.inside) then

compute location of intersection point P
insert P in polygon.vertices between V and N
append P to createdList
V := P
endif

V := N
while (V <> first vertex in polygon)

A := first vertex in createdList
B := second vertex in createdList
for each vertex V in createdList

V.distance := distance from A along line AB
end for

sort createdList by distance
for each consecutive pair of vertices A and B in createdList

A.link := B
B.link := A
end for

for each vertex V in polygon.vertices
V.visited := FALSE
end for

while any V.visited in polygon.vertices is FALSE
/* start of a new polygon */
find first unvisited vertex U
V := U
do

V.visited := TRUE
/* emit V as a vertex of the polygon */
if (V.link = TRUE)

V = V.link
V.visited := TRUE
/* emit V as a vertex of the polygon */
endif

V := V.next
while (V <> U)

end while
end ConcaveClip

11.3 Clipping a Concave Polygon 0 53

Program Data Structures

The implementation assumes that a polygon's vertices are stored as records in a linked
list, with the next field locating successive records. Additional fields are used for in-
ternal bookkeeping: The boolean ins ide is true for a vertex on the positive side of
the clipping line. New vertices employ a d is tance field for sorting and a l ink field
that locates its mated pair. The latter serves double duty in identifying the (non) orig-
inal vertices as the field is then (not) NULL. The v i s i t e d flag assures that all original
vertices are accounted for in the output. The sorting step employs a vertex list called
crea tedLis t .

Program Operation

The code first evaluates each polygon vertex with respect to the clipping line and sets
the ins ide field FALSE for all vertices having a nonpositive distance. The c rea tedLis t
is also cleared. The polygon traverse now commences. Two successive (original) vertices
having differing ins ide fields cross the clipping line. When encountered, compute the
point of intersection, insert it into the list of vertices, and add it to c rea tedLis t . It is
important to advance the walking vertex pointer so that this newly created vertex is
not revisited on the next trip around the loop.

The next step picks any two points in c rea tedLis t (e.g., the first two) and assigns
signed distances to all the other points based on the oriented line they define. The
points are sorted by this distance, and the l i nk fields set so that the vextex in each
pair points to its mate.

The last step creates the new polygons. Since there may be multiple fragments, the
code first sets the v i s i t e d field of all vertices FALSE. This loop begins with any unvisited
vertex and walks around the polygon in order, emitting each vertex (and marking it
visited). When a new vertex with non-NULL link is encountered, its mate is picked up
before continuing around the polygon. The polygon construction loop runs as long as
unvisited vertices remain. When it is done, all new polygons have been built. Note that
each new vertex on the clipping line will be output twice, while an original vertex is
only output once.

The algorithm is simple to implement, and robust because the only classification
concerns the intersection of an edge and a clipping line. When the number of vertices
in the polygon is small, a simple sorting procedure will often work well. Note that even
a relatively simple polygon can quickly become complicated after a few clips, as seen in
Figure 1(b).

54 0 Computational Geometry

0 Bibliography 0
(Foley et al. 1990) James D. Foley, Andries van Dam, Steven K. Feiner, and John F.

Hughes. Computer Graphics: Principles and Practice^ 2nd edition. Addison-
Wesley, Reading, MA, 1990.

(Haines 1989) Eric Haines. Essential ray tracing algorithms. In Andrew Glassner, edi-
tor. An Introduction to Ray Tracing. Academic Press, New York, 1989.

(Sutherland and Hodgman 1974) Ivan E. Sutherland and Gary W. Hodgman. Reen-
trant polygon clipping. CACM, 17(l):32-42, January 1974.

011.4
Rotations for /V-Dimensional
Graphics

Andrew J. Hanson
Computer Science Department
Indiana University
Bloomington, Indiana
hanson @cs. indiana.edu

0 Introduction 0

A previous gem^ (Hanson 1994) described a family of techniques for dealing with the
geometry of A/'-dimensional models in the context of graphics applications. Here, that
framework is used to examine rotations in A^-dimensional Euclidean space in greater
detail. In particular, a natural A/'-dimensional extension is created both for the 3D
rolling ball technique described in an earlier gem (Hanson 1992) and for its analogous
virtual sphere method (Chen et al. 1988). This work also addresses practical methods
for specifying and understanding the parameters of iV-dimensional rotations. The gem
concludes by presenting explicit 4D extensions of the 3D quaternion orientation splines.

Additional details and insights are available in the classic sources (see, for example,
Sommerville 1985, Coxeter 1991, Hocking and Young 1961, Efimov and Rozendorn
1975).

0 The A/-Dimensional Rolling Ball 0

Basic Intuition of tine Rolling Ball

The defining property of any A/'-dimensional rolling ball (or tangent space) rotation
algorithm is that it takes a unit vector VQ = (0 ,0 , . . . , 0,1) pointing purely in the
Nth. direction (towards the "north pole" of the ball) and tips it in the direction of an
orthogonal unit vector fi = (rii, n 2 , . . . , njsf-i, 0) lying in the {N — l)-plane tangent to
the ball at the north pole, thus producing a new, rotated unit vector v, where

V = MN • VQ = n s in ^ + VQ COS ^,

^The reader is referred to "Geometry for AT-Dimensional Graphics" in Volume IV of this series.

Copyright (c) 1995 by Academic Press , Inc.
All r ights of reproduct ion in any form reserved.

IBM ISBN 0-12-543455-3

56 0 Computational Geometry

-1 -sin G 0

(a) (b)

Figure 1. The "north pole" vector VQ pulled toward the tangent vector n, as by an unseen finger.

as indicated schematically in Figure 1(a). (Note: for notational simplicity the compo-
nents of column vectors appear as horizontal lists.)

By the conventional right-hand rule, a positive rotation (e.g., one that moves the
X onto the y axis) moves the north pole into the negative direction of the remaining
axes of the rotation plane. That is, if the 2D "rolling circle" acts on VQ = (0,1) and
n = (—1,0) as shown in Figure 1(b), then

V = M2 • vo — A sin 6 + vo cos 9 — {— sin ^, cos 9) ,

where the rotation matrix M2 can be written

M2 =

(1)

If the right-handed coordinate frame is adopted, the sign of fi will follow standard
convention.

The intuitive model may be summarized in kinesthetic terms. If one is looking straight
down at the north pole, the rolling ball pulls the unseen A t̂h component of a vector
along the direction n of the (Â — l)-dimensional controller motion, bringing the unseen
component gradually into view.

Implementation. In practice, one chooses a radius R for the ball containing the object
or scene to be rotated and moves the controller^ a distance r in the tangent direction
fi, as indicated in Figure 2(a). Working from the simplified diagram in Figure 2(b),
we define D^ — B? + r'^ and choose the rotation parameters c = cos 9 — R/D and
s = sm9 = r/D.

For interactive systems, this choice has the particular advantage that, however rapidly
the user moves the controller, 0 < {r/D) < +1 , so 0 < ^ < 7r/2. Depending upon the

cos 9 — sir] 10]
+ sin 9 cos 9

c +nxs'
—rixS c

c

.+^
—s
c

^The "controller" may include a slider, 2D mouse, 3D mouse, or other physical or virtual device.

11.4 Rotations for N-Dimensional Graphics 0 5 7

+ North

A

• ' 5 'S^t ' '^

- Tangent + Tangent
(a) (b)

Figure 2. The notation used in implementing the rolling ball rotation model for N dimensions.

desired interface behavior, an alternative choice would be to take 6 = r/R. This requires
computing a trigonometric function instead of a square root, and it may cause large
discontinuities in orientation for large controller motion.

3D

The explicit 3D rolling ball formula can be derived starting from an arbitrary 2D mouse
displacement r = (x, ?/, 0) = {rrix, rriy^ 0), where n^ + n^ — 1. Then one replaces Equa-
tion (1) with rix = +1 by the analogous 3x3 matrix RQ for (x, z) rotations and encloses
this in a conjugate pair of rotations Rxy that transform the 2D mouse displacement r
into the strictly positive x-direction and back. Since even r = (—1,0,0) is rotated to
the positive x-direction before i?o acts, all signs are correct. With the explicit matrices

'xy —

'rix
Uy

0

-Uy

rix

0

01
0
1

) Ro =

r c 0
0 1

-s 0

+s
0
c

one thereby finds an alternative derivation of the author's formula in a previous gem
(Hanson 1992):

Ms = RxyRo{Rxy)

\c + (%)^(1 - c) -nxny{l - c) rixS
-rixriyil - c) c+ (na,)^(l - c) riyS

-UxS -riojS

1 - (^x)^(l - c) -nxny{l - c) rixS
-nxny{l-c) 1- {ny)'^{l-c) UyS (2)

58 0 Computational Geometry

4D

The 4D case takes as input a 3D mouse motion r = (x, y, z, 0) = (rn^, rriy^ rn^, 0), with
n1 + riy + nl = 1. Then one first transforms [ny^riz) into a pure y-component, rotates
that result to yield a pure x-component, performs a rotation by 6 in the (x,7x;)-plane,
and reverses the first two rotations. Defining the required matrices as

i^yz —

1 0
0 I!^

Tyz

0 ^

0 0

0 0'
-f^ 0
IbL 0 5 -^xy —

nx
fyz

0
0

fyz

rix
0
0

0
0
1
0

0-
0
0
1

, ^ 0 =

c 0 0 +s
0 1 0 0
0 0 1 0

- s 0 0 c

, (3)

where Ty^ = riy + nl, we find

M4 — RyzRxyRoyRxy \Ryz)-'

1 - {rixf{l - C) - (1 - CJUxTly
-(1 - c)nxny 1 - (%)̂ (1 - c)
-(1 - c)nxnz -(1 - c)nynz

— SUr —sn,,

- (1 - c)nxnz
- (1 - c)nynz

l - (n ,) 2 (l - c)
-SUz

SUx

sriy
sriz

c

(4)

ND

The extension of this procedure to any dimension is accomplished by having the con-
troller interface supply an (A^ — l)-dimensional vector r = (rni, r n 2 , . . . , rniv-i, 0) with
r ' r = r^ and n • n = 1 and applying the rotation

MN = RN-2,N~IRN-3,N-2 • ' • ^1,2^0(^1,2)

(m)2(i -(1 - c)n2ni

- (1 - c)nin2 1 - (^2)^(1 - c)

-(1 - c)ninN-i - (1 - c)n2nN-i

— Sni —8712

' {RN-S,N-2) {RN-2,N-I)

- (1 - c)nN-ini

- (1 -c)nN-in2

- (n ^ - i) ' (l - c)

-sriN-i

sni

8712

871N-1

C

(5)

Recall that the controller input f = rh that selects the direction to "pull" also de-
termines c = cos^ = R/D, s = sinO = r/D^ with D'^ — R? -\- r^, or, alternatively,
e = r/R.

11.4 Rotations for N-Dimensional Graphics 0 59

0 Controlling the Remaining Rotational Degrees of Freedom 0

There are N{N — l) /2 parameters in a general AT-dimensional orthogonal rotation
matrix, one parameter for each possible pair of axes specifying a plane of rotation (the
3D intuition about "axes of rotation" does not extend simply to higher dimensions).
The matrix Mjsi in Equation (5) has only {N — 1) independent parameters: One must
now account for the remaining {N — l){N — 2)/2 degrees of freedom needed for arbitrary
rotations.

In fact, the noncommutativity of the rotation group allows us to generate all the
other rotations by small circular motions of the controller in the {N — l)-dimensional
subspace of r = rh. Moving the controller in circles in the (l,2)-plane, (l,3)-plane,
etc., of the (TV — l)-dimensional controller space exactly generates the missing {N — 1)
{N—2)/2 rotations required to exhaust the full parameter space. In mathematical terms,
the additional motions are generated by the commutation relations of the SO{N) Lie
algebra for z, j = 1 , . . . , Â — 1,

[RiN, RJN] — SijRNN — SjNRiN + ^INRJN — ^NNRIJ

= -Rij .

The minus sign in the preceding equation means that clockwise controller motions in the
(i, j)-plane inevitably produce counterclockwise rotations of the object, and vice versa.
Thus, the philosophy (Hanson 1992) of achieving the full set of context-free rotation
group transformations with a limited set of controller moves extends perfectly to N
dimensions. Implementation Note: In practice, the effectiveness of this technique varies
considerably with the application; the size of the counterrotation experienced may be
relatively small for parameters that give appropriate spatial motion sensitivity with
current 3D mouse technology.

Alternative Context Philosophies

The rolling ball interface is a context-free interface that allows the user of a virtual
reality application to ignore the absolute position of the controller and requires no sup-
plementary cursor context display; thus, one may avoid distractions that may disturb
stereography and immersive effects in a virtual reality environment. However, some ap-
plications are better adapted to context-sensitive interfaces such as the Arcball method
(Shoemake 1994) or the virtual sphere approach (Chen et al. 1988). The virtual sphere
approach in particular can be straightforwardly extended to higher dimensions by us-
ing the rolling ball equations inside a displayed spatial context (typically a sphere) and
changing over to an [N — l)-dimensional rolling ball outside the context; that is, as
the controller approaches and passes the displayed inner domain context sphere, the

60 0 Computational Geometry

rotation action changes to one tha t leaves the A^th coordinate fixed but changes the
remaining {N — 1) coordinates as though an (N — 1)-dimensional rolling ball controller
were at tached to the nearest point on the sphere. Similar flexibility can be achieved by
using a different controller state to signal a discrete rather than a continuous context
switch to the {N — l)-dimensional controller.

0 Handy Formulas for A/-Dimensional Rotations 0

For some applications, the incremental orientation control methods described above
are not as useful as knowing a single matrix for the entire A^-dimensional orientation
frame for an object. The following subsections describe three ways to represent such an
orientation frame.

Columns Are New Axes

One straightforward construction simply notes tha t if the default coordinate frame is
represented by the orthonormal set of unit vectors x i = (1 , 0 , . . . , 0), X2 = (0 , 1 , 0 , . . . , 0),
. . . , Xjv = (0 , . . . , 0,1), and the desired axes of the new (orthonormal) coordinate frame
are known to be a i = {a[\a[\ ... ^a[^), a2, . . . , kjsj, then the rotation matrix that
transforms any vector to tha t frame just has the new axes as its columns:

M = [ai a2 • • • aA^].

The orthonormality constraints give M the required A (̂A^ — l) / 2 degrees of freedom.

Concatenated Subplane Rotations

Rotations in the plane of a pair of coordinate axes (x^,Xj), i^j
written as the block matrix

Â can be

Rij{9> ij)

0 0

cos 9ij 0

0 0
sin 6ij 0

0 0

0

1

0

0 - sin (
0 0

0
0 cosOi

0 0

(6)

11.4 Rotations for N-Dimensional Grapliics 0 61

and thus the N{N — l)/2 distinct Rij{9ij) may be concatenated in some order to produce
a rotation matrix such as

i<j

with N{N—l)/2 degrees of freedom parametrized by {9ij}. However, since the matrices
Rij do not commute, different orderings give different results, and it is difficult to
intuitively understand the global rotation. In fact, as is the case for 3D Euler angles,
one may even repeat some matrices (with distinct parameters) and omit others, and
still not miss any degrees of freedom.

Quotient Space Decomposition

Another useful decomposition relies on the classic quotient property of the topological
spaces of the orthogonal groups (Helgason 1962),

SO{N)/SO{N - 1) = S^-^ , (7)

where S^ is a X-dimensional topological sphere. In practical terms, this means that the
N{N—l)/2 parameters of SO{N), the mathematical group of A^'-dimensional orthogonal
rotations, can be viewed as a nested family of points on spheres. The 2D form is the
matrix (1) parameterizing the points on the circle S^; the 3D form reduces to the
standard matrix

Ms{e,h) =
' c+ (ni)^(l - c) nin2(l - c) - sris nsni{l - c) + sn2
^1^2(1 - c) + sns c + (n2)^(l - c) n^n2{l — c) — sni
nins{l - c) - 8712 ^2^3(1 - c) + sni c+ (^3)^(1 - c)

(8)

where the two free parameters of fi • n = (ni)^ + (n2)^ + (^3)^ = 1 describe a point on
the two-sphere. These two parameters plus a third from the S^ described by ĉ + s^ = 1
(i.e., c = cos6, s = sin9) yield the required total of three free parameters equivalent
to the three Euler angles. The 4D and higher forms are already too unwieldy to be
conveniently written as single matrices.

0 Interpolating A/-Dimensional Orientation Frames 0

To define a uniform-angular-velocity interpolation between two iV-dimensional orienta-
tion frames, one might either consider independently interpolating each angle in Equa-
tion (6), or might take the quotient space decomposition given by the hierarchy of points

62 0 Computational Geometry

on the spheres (S '^~^ , . . . , 5^, 5^) and apply a constant angular velocity spherical in-
terpolation to each spherical point in each successive dimension using the "Slerp"

^ / X 01 /^ ^ N ^ sin((l-t)6>) . smite)
Unit) - Slerp n i ,n2 , t = ni ^\ ' + ^ 2 ^ ^

sin(^) sin(&)

where cos0 = fii • n2. (This formula is simply the result of applying a Gram-Schmidt
decomposition while enforcing unit norm in any dimension.)

Either of these methods often achieves the goal of smooth appearance, but the solu-
tions are neither unique nor mathematically compelling, since the curve is not guaran-
teed to be a geodesic in SO{N).

In general, specification of geodesic curves in SO{N) (Barr et al. 1992) is a difficult
problem; fortunately, the two most important cases for interactive systems, N = 3 and
N — 4^ have elegant solutions using the covering or "Spin" groups. For 50(3), geodesic
interpolations and suitable corresponding splines are definable using Shoemake's quater-
nion splines (Shoemake 1985), which can be simply formulated using Slerps on S^ as
follows: Let n be a unit 3-vector, so that

(70 = cos((9/2), q = nsin((9/2)

is automatically a point on S^ due to the constraint (go)^ + (^i)^ + (^2)^ + (93)^ = 1-
Then each point on S^ corresponds to an 50(3) rotation matrix

r̂ O + 9 1 - 9 2 - ^ 3
2^1 ̂ 2 + 2(7og'3

_ 2(71(73 - 2qoq2

2(71^2 - 2go^3

Q0 + Q2-Q1- QI
2(72(73 + 2(7ogi

2(71(73 + 2qoq2

2q2q3 - 2(70(71

Qo + qs-Qi- QL

Rs = 2^1 ̂ 2 + 2(70(73 Qo + qi-Qi- Qi "^Q^qs - 2qoqi , (9)

which the reader can verify reduces exactly to the nested-sphere form in Equation (8).
Note that the quaternions q and —q each correspond to the same 3D rotation. Slerping q
generates sequences of matrices i?3(t) that are geodesic interpolations. Arbitrary splines
can be defined using the method of Schlag (Schlag 1991).

Quaternions in Four Dimensions

In four dimensions, the correspondence between the rotation group 50(4) and the spin
group Spin(4) that is its double covering may be computed by extending quaternion
multiplication to act not just on three-vectors ("pure" quaternions) v = (0, V), but on
full four-vector quaternions v^ in the following way:

1^=0

11.4 Rotations for N-Dimensional Graphics 0 63

Thus, the general double-quaternion parameterization for 4D rotation matrices takes
the form

R4 =

• qoPo + qiPi + q2P2 + qsPs
+qiPo - qoPi + q3P2 - q2P3
+q2Po - qoP2 + qiPs - qsPi
+qsPo - qoPs + q2Pi - qiP2

-q2Po + qoP2 + qiPs -
qiP2 + q2Pi - qsPo -
qoPo + q2P2 - qiPi -
q2Ps + q3P2 + qiPo +

-qiPo + qoPi + q3P2 - q2P3
qoPo + qiPi - q2P2 - q3P3
qiP2 + q2Pi + qoP3 + q3Po
qiP3 + q3Pi - qoP2 - q2Po

- q3Pi -q3Po + qoP3 + q2Pi - qiP2
qoP3 qiP3 + q3Pl + q2P0 + qoP2
q3P3 q2P3 + q3P2 - qoPi - qiPo
qopi qopo + q3P3 - qipi - '̂̂ ^̂ q2P2

(10)

One may check that Equation (9) is just the lower right-hand corner of the degenerate
p = q case of Equation (10).

Shoemake-style interpolation between two distinct 4D frames is now achieved by ap-
plying the desired Slerp-based interpolation method independently to a set of quaternion
coordinates q(t) on one three-sphere, and to a separate set of quaternion coordinates
p{t) on another. The resulting matrix i?4(t) gives geodesic interpolations for simple
Slerps and can be used as the basis for corresponding spline methods (Schlag 1991,
Barr et al. 1992). Analogues of the N = 3 and Â = 4 approaches for general N involve
computing Spin(A/') geodesies and thus are quite complex.

Controls

As pointed out by Shoemake (Shoemake 1994), the Arcball controller can be adapted
with complete faithfulness of spirit to the 4D case, since one can pick two points in
a three-sphere to specify an initial 4D frame, and then pick two more points in the
three-sphere to define the current 4D frame. Equation (10) gives the complete form
of the effective 4D rotation. Alternately, one can replace the 4D rolling ball or virtual
sphere controls described earlier by a pair (or more) of 3D controllers (Hanson 1992).

0 Acknowledgment 0

This work was supported in part by NSF grant IRI-91-06389.

0 Bibliography 0

(Barr et al. 1992) Alan H. Barr, Bena Currin, Steven Gabriel, and John F. Hughes.
Smooth interpolation of orientations with angular velocity constraints using
quaternions. Computer Graphics^ 26(2):313-320, 1992.

64 0 Computational Geometry

(Chen et al. 1988) Michael Chen, S. Joy Mountford, and Abigail Sellen. A study in
interactive 3-D rotation using 2-D control devices. In Proceedings of Siggraph 88^
Volume 22, pages 121-130, 1988.

(Coxeter 1991) H. S. M. Coxeter. Regular Complex Polytopes^ second edition. Cam-
bridge University Press, 1991.

(Efimov and Rozendorn 1975) N.V. Efimov and E.R. Rozendorn. Linear Algebra and
Multi-Dimensional Geometry. Mir Publishers, Moscow, 1975.

(Hanson 1992) Andrew J. Hanson. The rolling ball. In David Kirk, editor, Graphics
Cems III., pages 51-60. AP Professional, Boston, 1992.

(Hanson 1994) Andrew J. Hanson. Geometry for A^-dimensional graphics. In Paul Heck-
bert, editor, Graphics Gems /F , pages 149-170. AP Professional, Boston, 1994.

(Helgason 1962) Sigurdur Helgason. Differential Geometry and Symmetric Spaces. Aca-
demic Press, New York, 1962.

(Hocking and Young 1961) John G. Hocking and Gail S. Young. Topology. Addison-
Wesley, 1961.

(Schlag 1991) John Schlag. Using geometric constructions to interpolate orientations
with quaternions. In James Arvo, editor, Graphics Gems 11^ pages 377-380. AP
Professional, Boston, 1991.

(Shoemake 1985) Ken Shoemake. Animating rotation with quaternion curves. In Com-
puter Graphics, Volume 19, pages 245-254, 1985. Proceedings of SIGGRAPH 1985.

(Shoemake 1994) Ken Shoemake. Arcball rotation control. In Paul Heckbert, editor,
Graphics Gems IV, pages 172-192. AP Professional, Boston, 1994.

(Sommerville 1958) D. M. Y. Sommerville. An Introduction to the Geometry of N Di-
mensions. Reprinted by Dover Press, 1958.

011.5
Parallelohedra and
Uniform Quantization

Robert Buckley
Xerox Digital Imaging Technology Center
Webster, New York
buckley. wbst128 ©xerox, com

This gem describes a method of quantizing values (locating the nearest neighbor) in
3-space. The method was originally intended as an optimal means of color coding, using
a non-Cartesian partitioning of space. The solution, based upon the geometry of the
truncated octahedron, has general applications, as in heuristics for intersection testing.

0 Original Problem 0

More and more, color image, interchange, and management applications are using the
1976 CIE L*a*6* or "CIELAB" color space to represent color data. CIELAB (together
with CIELUV) comprises CIE recommendations defining approximately uniform color
spaces useful in calculating color differences. The recommendations are based upon
the good correlation between the perceptual difference of two colors compared to the
Euclidean distance between the two points representing these colors in CIELAB three-
space.

In a digital system where a color is represented or quantized in CIELAB space, the
usual practice is to quantize each coordinate L*, a*, 6* independently and uniformly.
As a result, the collection of all quantized points or codewords lies on the simple cubic
lattice shown in Figure 1, and quantizing a point is equivalent to selecting the nearest
lattice point. In each dimension, the lattice points are separated by a distance equal to
the quantization step.

Associated with each lattice point is a Dirichlet or Voronoi region, containing the
points that are closer to that lattice point than to any other. In this application, this
region is called a quantization or Q region and contains the points that after quanti-
zation are represented by the associated lattice point or codeword. In the case of the
simple cubic lattice, the Q regions are cubes centered on the lattice points; the Q region
for a lattice point is shown in Figure 1. The edge length e of the cube corresponds to
the quantization step. A cube is a parallelohedron: a polyhedron that can fill three-

Copyright (c) 1995 by Academic Press, Inc.
All r ights of reproduct ion in any form reserved.

IBM ISBN 0-12-543455-3

66 <> Computational Geometry

Figure 1, Simple cubic lattice and cubic Q region.

space by translations alone. In effect, the quantizer is filling CIELAB space with cubic
Q regions.

One criterion for choosing the size of the quantization step e is the maximum quanti-
zation error. Quantization error is the difference or distance \\v — Q{v)\\ between a value
V and the codeword Q{v) used to represent it. In CIELAB space, this is the difference
between the actual color and the color used to represent it. For a cubic Q region, this
is equivalent to the radius of the sphere (the circumsphere) that circumscribes a cube
with edge length e. In Figure 1, the maximum quantization error is half the length of
the body diagonal, or e>/3/2.

Another criterion for choosing the size of the quantization step is minimizing the
visibility of quantization contours (the two are correlated in CIELAB space) so that
quantizing a smooth color gradient or color sweep will not introduce spurious contours,
which are the color space analogue of jaggies. Because a color gradient can have any
orientation in color space, two colors that are nearly the same could be encoded by
CIELAB values separated by a distance equal to the body diagonal of the cube that is
the Q region. This is the maximum distance between adjacent codewords or neighboring
lattice points, which are ones whose Q regions have a common point. In Figure 1,
this distance is e\/3, or twice the maximum quantization error. (As will be noted in
a moment, the two criteria are not so simply related for other lattice quantizers.) It
determines the worst-case visibility of quantization contours, as two colors that are
nearly the same could be represented by colors separated by this distance.

11.5 Parallelohedra and Uniform Quantization 0 67

cube hexagonal truncated rhombic elongated
prism octahedron dodecahedron dodecahedron

Figure 2. The five parallelohedra.

0 Geometric Quantization 0

A more economical quantizer would achieve the same quantization criterion using fewer
codewords or equivalently larger Q regions to cover the entire color space (Buckley
1981, 1993). Thus, the largest uniform volume surrounding any codeword is sought,
as this provides the most efficient means to partition a space in the fewest number of
lattice points. The unique solutions are known to crystallography and lattice theory and
necessarily have opposing faces that are parallel and congruent. The five space-filling
convex polyhedra or parallelohedra are shown in Figure 2: the cube, hexagonal prism,
rhombic dodecahedron, truncated octahedron, and elongated dodecahedron (Coxeter
1973). Of these five, only the first four need be considered, as the rhombic dodecahedron
is the limiting case of an elongated dodecahedron: Collapsing the edges shared by pairs
of hexagonal faces of the latter results in the former.

Each of these four parallelohedra is the Q region for a different lattice and conse-
quently a different quantizer. From Figure 1, the cube is the Q region for a simple cubic
lattice. The rhombic dodecahedron is the Q region for the face-centered cubic lattice
(Figure 3a). This parallelohedron has twelve rhombic faces and fourteen vertices. The
truncated octahedron is the Q region for the body-centered cubic lattice. It has six
square faces, eight hexagonal faces, and twenty-four vertices. The hexagonal prism is
the Q region for two-dimensional hexagonal lattices, stacked one above the other.

If the quantizer criterion is minimizing the quantizer error r, then the most eco-
nomical quantizer is the one whose Q region has the largest volume for a given r,
because it will use the fewest Q regions, and consequently the fewest lattice points or
codewords, to cover the space. The volume of the cube, rhombic dodecahedron, and
truncated octahedron can be described in terms of the radius r of their circumspheres.
For the hexagonal prism, the prism height h must also be considered. However, h — y/r
maximizes its volume with respect to its circumsphere.

6 8 0 Computational Geometry

Figure 3. Cubic lattices: face centered (a) and body centered (b).

Table 1 compares the metrics of the four parallelohedra. Column 2 gives the ratio
of the maximum distance d between adjacent lattice points (which is equivalent to
the quantization step size) to the circumsphere radius r (which is equivalent to the
quantization error). Columns 3 and 4 give the volume, normalized for the quantization
error r and the maximum adjacent distance d.

According to the table, the truncated octahedron has the largest volume for a given r.
If a truncated octahedron and a cube are inscribed inside the same sphere, the volume
of the truncated octahedron would be 12\/3/5\/5, or 1.86 times that of the cube. This
means that a uniform quantizer based on a body-centered cubic lattice would use 53.8%
as many codewords to achieve the same minimum error as a quantizer based on a simple
cubic lattice.

Similarly, if the quantizer criterion is minimizing the quantization step size (the max-
imum distance d between adjacent codewords), then the most economical quantizer is

Table 1 . Metrics of parallelohedra.

Parallelohedron

cube

rhombic
dodecahedron

truncated
octahedron

hexagonal
prism

d/r ratio

2

2

4 / v ^

^

Normahzed volume

V{r)/r'^ Vid)/d^

8 / (3 A / 3) ^ 1.54 l/(3v/3) ^ 0.19

2 1/4 = 0.25

32/ (5^5) ^ 2.86 1/2 = 0.5

2 2 / (5^5) ?^0.18

11.5 Parallelohedra and Uniform Quantization 0 69

Figure 4. Body-centered cubic lattice.

the one whose Q region has the largest volume for a given d. Again, it will use the fewest
Q regions, and consequently the fewest lattice points or codewords, to cover the space.
The table shows that the truncated octahedron has the largest volume for a given d. For
the same d, the ratio of the volume of a truncated octahedron to the volume of a cube is
3\/3/2 or 2.60. Therefore, a body-centered cubic lattice quantizer requires 38.5% of the
codewords used by a simple cubic lattice quantizer while meeting the same worst-case
visibility criterion for quantization contours.

<> Implementation 0

Implementing a body-centered cubic lattice quantizer (Conway and Sloane 1982) is a
straightforward task. Figure 4 shows that a body-centered cubic lattice is equivalent to
two interlaced simple cubic lattices, A and S, whose lattice points are represented by
filled and open circles. The given color is quantized first on lattice A in the usual way
by independently quantizing the L*, a*, and 6* coordinates. The color is then quantized
on lattice B in the same way. If the lattice point on A that is closest to the color is
closer to it than the closest lattice point on 5 , then the closest lattice point on A is
returned. Otherwise, the closest lattice point on B is returned. So a body-centered cubic
lattice quantizer is equivalent to a program that compares the quantization errors of
two simple cubic lattice quantizers.

0 Related Work 0
Color quantization traditionally employs a spatial partitioning, most often the Carte-
sian product (Paeth 1990b) of three unit intervals of irregular subdivision (Heckbert
1982). These define a cubic lattice formed by parallel cutting planes and having irreg-
ular spacing (Paeth 1989). Determination of axis quantization is described in previ-

70 0 Computational Geometry

ous gems (Gervautz and Purgathofer 1990, Wu 1990) and elsewhere. A non-Cartesian
method based upon the geometry of the cuboctahedron was also described in other
gems (Paeth 1990a, 1991). Other geometrical explorations of color quantization are
also known (Turkowski 1986). Recent color research at the University of Waterloo ex-
plored the OSA space by applying semiregular solids (Lai 1991); reflective color space
models based upon parallelotopes and zonotopes have also been employed (Paeth 1994).

0 Bibliography 0
(Buckley 1981) Robert Buckley. Digital Color Image Coding and the Geometry of Color

Space. PhD thesis, Massachusetts Institute of Technology, 1981.

(Buckley 1993) Robert Buckley. The quantization of the CIE uniform color spaces using
cubic lattices. In Colour 93; 7th Congress of the AIC, pages 246-247. International
Colour Association (AIC), June 1993.

(Conway and Sloane 1982) J. H. Conway and N. J. A. Sloane. Fast quantizing and
decoding algorithms for lattice quantizers and codes. IEEE Trans. Inform. Theory^
IT-28(2):227-232, March 1982.

(Coxeter 1973) H. S. M. Coxeter. Convex Polytopes. Dover Publications, New York,
1973.

(Gervautz and Purgathofer 1990) Michael Gervautz and Werner Purgathofer. A simple
method for color quantization: Octree quantization. In Andrew Glassner, editor,
Graphics Gems., pages 287-293. AP Professional, Boston, 1990.

(Heckbert 1982) Paul S. Heckbert. Color image quantization for frame buffer dis-
play. Computer Graphics (ACM SIGGRAPH '82 Proceedings), 16(3):297-307, July
1982.

(Lai 1991) James W. Lai. Implementation of colour design tools using the OSA Uniform
Colour System. Master's thesis. University of Waterloo, 1991.

(Paeth 1989) Alan Wm. Paeth. Algorithms for fast color correction. In Int. Symp. Di-
gest of Technical Papers, Volume 30, pages 169-175. Society for Information Dis-
play (SID), 3Q 1989.

(Paeth 1990a) Alan Wm. Paeth. Mapping RGB triples onto four bits. In Andrew Glass-
ner, editor, Graphics Gems, Chapter 4, pages 233-245. AP Professional, Boston,
1990.

(Paeth 1990b) Alan Wm. Paeth. Proper treatment of pixels as integers. In Andrew
Glassner, editor, Graphics Gems, pages 254-256. AP Professional, Boston, 1990.

11.5 Parallelohedra and Uniform Quantization 0 71

(Paeth 1991) Alan Wm. Paeth. Mapping RGB triples onto 16 distinct values. In James
Arvo, editor, Graphics Gems 11^ Chapter 3.5, pages 143-146. AP Professional,
Boston, 1991.

(Paeth 1994) Alan Wm. Paeth. Linear Models of Reflective Colour. PhD thesis, Uni-
versity of Waterloo, 1994.

(Turkowski 1986) Kenneth Turkowski. Anti-aliasing in topological color spaces. Com-
puter Graphics (ACM SIGGRAPH '86 Proceedings), 20(4), August 1986.

(Wu 1990) Xiaolin Wu. Efficient statistical computations for optimal color quantiza-
tion. In James Arvo, editor, Graphics Gems III, pages 287-293. AP Professional,
Boston, 1990.

011.6
Matrix-based Ellipse Geometry

Kenneth J. Hill
Evolution Computing
Scottsdale, Arizona
76667.2576 @ CompuServe, com

This gem introduces the matrix form of the general planar conic section equation.
This form is then used to extend the familiar transformation by homogeneous matrices
to ellipses, and to find intersections of pairs of ellipses without reference to quartic
equations.

0 Matrix Form of a Planar Conic 0

All conic sections (including degenerate forms) can be expressed as a second-degree
equation:

Ax'^ + 2Bxy + Cy^ + 2Dx + 2Ey + F = 0.

Equation (1) can be written as a matrix equation,

XSX^ - 0.

(1)

(2)

Here S is the symmetric "characteristic matrix" (Rogers and Adams 1990, Hosaka
1990) given by

S =
A B D
B C E
D E F

and X = [x y 1]. (3)

0 Transformation of Ellipses 0

One use of the characteristic matrix is to transform conic sections. The most important
conic section in computer graphics (excluding the line-a degenerate conic) is the ellipse
(including circles). Techniques to transform ellipses are detailed here, although one may
extend these methods to parabolas and hyperbolas.

Copyright (c) 1995 by Academic Press, Inc.
All r ights of reproduct ion in any form reserved.
IBM ISBN 0-12-543455-3

70

11.6 Matrix-based Ellipse Geometry 0 73

Transformation of Points

Transformation of a point (x^y) to a point {x'^y') by equations

x' = ax -\- cy -\- m
y' = hx + dy + n

is expressed {op. cit.) as

with

T =
a b 0
c d 0
m n 1

X' = XT ,

, X = [X y 1] , and X' = [x̂ y^ 1] .

(4)

(5)

(6)

The added dimensionahty (3 x 3 for planar operations) allows the expression of trans-
lation by vector {m, n) as

(7)

Forms for rotation, scaling, and shearing resemble their 2 x 2 analogues, with zeros
introduced on the off-diagonal, and unity on the diagonal, that is, rotation by ip:

-t-m,n —

" 1
0
m

0
1
n

0
0
1

V ~

COS(p

— simp
0

sini^
cosip

0

0
0
1

(8)

Multiplying these elementary matrices together allows one to create more complex
transformations. For example, one can rotate by ip around an arbitrary point {m^n)
with the transformation

^ — -^^—m,—n-ti^(p ^m,n- (9)

This equation can be interpreted as: translate from the pivot point to the origin;
rotate by ip; translate back.

Transformation of Conies

Conic sections can be transformed using transformation matrices. Consider a point X
on a conic section and its image X' under the transformation T (i.e., X' = XT) . Such
a point (X) must satisfy XSX^ = 0. Assuming that the transformation is invertable.

74 <> Computational Geometry

X = X T - i and X"^ = (XT-^)^ = (T - I) ' ^ X T . Substituting these expressions into (2)
gives

0 = XT-iS(T-^) '^X'^; (10)

hence, the transformed characteristic matrix is S = T ^S(T ^)^. The result of this
matrix product is still symmetric, since

. T T

T-^S (T - ^) = (T - ^) S ^ (T - ^) = T-^S (T - 1) = S.

Thus, ellipses remain ellipsoidal under general transformation, an important property.

Computing the Characteristic Matrix from Ellipse Parameters

The defining properties of general ellipses may now be examined under arbitrary trans-
formation. Without loss of generality, consider an ellipse symmetric about the origin
having semimajor and semiminor axes TX and Vy parallel to the coordinate axes. That
is, the unit circle defined by characteristic matrix

^u —

1 0 0
0 1 0
0 0 - 1

(11)

is scaled in x hy TX^ in y by Ty (matrix a), and rotated (inclined) by (f (matrix R),
giving

^ e — \^rx,ry^^) ^u V^^a^^^y V̂ j
l T

(12)

Expansion yields

cos^ (f j _ sin"̂ if
+ i^:^ - ^jsiiKfCosif 0

(̂ ~4) sm (f cos if

- 1

(13)

Retrieving Ellipse Parameters from the Characteristic Matrix

Conversely, a characteristic matrix may be converted into ellipse parameters. First select
the rotation that diagonalizes the characteristic matrix. It is

11.6 Matrix-based Ellipse Geometry <0> 75

1 _i / 2B \
(14)

Rotating by — v? yields the diagonal characteristic matrix

A 0 0
0 B 0
0 0 - 1

which represents a coaxial, rectilinear ellipse with semiaxes

(15)

(16)

0 Intersections of Ellipses 0
Unlike finding intersections of two circles or of a line and circle, there is no obvious
geometric method to find ellipse-ellipse intersections. One might imagine that one must
solve a quartic equation to arrive at the four possible intersection points, but not so.
Once again, characteristic matrices offer an elegant means of solution.

Given conic characteristic matrices Si and S2, any point X on their intersection must
satisfy both XSiX^ = 0 and XS2X^ = 0. Taking an arbitrary linear combination gives
a X S i X ^ + /3XS2XT = 0. Factoring out X and X'^ gives

X(Si + /iS2)XT = 0, (17)

where M = f. Note that Si + /iS2 is symmetric (as any linear combination of symmetric
matrices will be), and hence it, too, is a conic characteristic matrix. Thus, the (poten-
tially four) points of intersection lie upon a third conic. Now, Si + /XS2 need not define
an ellipse, in fact choosing fi so that Si + /iS'2 is degenerate is best. This reduces the
problem of finding the intersections between two conies to the problem of finding the
intersections between a set of lines and a conic (Hosaka 1990).

The algorithm contains four steps:

1. Transformation
Create the conic characteristic matrix as described above. The formulas of the
preceding section assume the ellipse center is at the origin, so one must translate
both characteristic matrices to their correct centers using

S — T^^S(T , . - 1 XT
-m.nJ ' T —

-•- 7 7 7 . n

1 0 0
0 1 0
m n 1

(18)

where (m, n) is an ellipse center. (This offset will be reapplied to the final solutions.)

76 <> Computational Geometry

2. Degeneration
Solve for fi such that |Si + [182] = 0 (conies having zero determinant are degen-
erate). The cubic equation in /i is easily solved using the algorithms presented in
gem LI.

3. Linearization
For each /x found above, interpret the elements (3) of ^i + /iS'2 as a system of
lines. The matrix takes three possible forms based on zero elements. To accom-
modate numerical imprecision, a value V is "approximately zero" when |y | < £;
e = 10~'^Mm{rx^ry) is typical.

(a) Single Line, A = B = C = 0
Si + 11S2 represents a line having equation Dx + Ey -\- F = 0. Calculate two
points on this line: I f — 1 < — ^ < 1 , substitute x = { —1, 1} into y = — ^ ^ ^
to obtain corresponding values of y; otherwise, use ?/ = { —1, l } i n x = ^^—
to produce values of x.
Parallel Lines, B'^ - AC = 0
Rotate by

(b)

25
(19)

to make the lines parallel to one of the axes, yielding a matrix of the form

A
0
D

0
0
0

Dl
0
F

ro
0
0

0
B
E

0
E
F

(20)

These matrices represent the quadratic equations Ax^ + Dx + F = 0 or By^ +
Ey + F = 0 whose roots (ri and r2) determine where the lines cross the x (y)
axis. Compute two points on each line [e.g., (ri, —1), (ri, 1)], and rotate these
points by —(f back to their original position.

(c) Crossing Lines, B'^ - AC > 0
S1+/J.S2 represents a pair of crossing lines. Rotate by (p as in (b), then translate
the intersection to the origin using

m

n

CD-BE
' B^-AC '
AE-BD
B^-AC

(21)

with m and n computed with the rotated coefficients (Rogers and Adams
1990). After the translation, (0,0) and (\A\~^^'^ ,\B\~^/^) are points on the

//. 6 Matrix-based Ellipse Geometry (} 77

first line, and (0,0) and (|-A|~ ^ , — \B\~ ' j are points on the second. Again,
transform each of these points back to the original position (translate by
(—m, —n), rotate by —(/̂).

(d) (Else)
Ignore; continue with next [i.

4. Intersection
For each line found in (c), calculate the intersections of that line with the first
ellipse. This is easily done by transforming the ellipse-line system into a circle-
line system, finding the intersections and transforming the points back. Test each
intersection point to determine if it is on the second ellipse (again turn the second
ellipse into a circle and test against the circle). If so, one of the intersections of the
ellipses has been found.
There are several details and optimizations that we leave to the source code listing.
The source code can be found in the file CONMAT.C on the accompanying disk.

0 Acknowledgments <>
Thanks are due to Alan Paeth, whose suggestions greatly improved this gem, and to
Michael Riddle and Susan Montooth for their support of this effort.

0 Bibliography 0
(Farin 1988) G. Farin. Curves and Surfaces for Computer Aided Geometric Design: A

Practical Guide. Academic Press, New York, 1988.

(Hosaka 1990) M. Hosaka. Modeling of Curves and Surfaces in CAD/CAM, pages 48-
49. Springer, Berlin, 1990.

(Rogers and Adams 1990) D. F. Rogers and J. A. Adams. Mathematical Elements for
Computer Graphics, pages 87-88, 236-242. McGraw-Hih, New York, 1990.

011.7
Distance Approximations and
Bounding Polyhedra

Alan Wm. Paetli
Department of Computer Science
Okanagan University College
Kelowna, British Columbia
a wpaeth @ okanagan. be. ca

0 Introduction 0
This gem presents an n-dimensional linear approximation that can only overestimate
distance, preserving the valuable containment property of the previous 2D method
(Paeth 1990a). Whereas the latter was solved using trigonometry, this gem employs
geometric methods to derive a family of semiregular polytopes having cubic symmetry.
These solids provide a nested sequence of bounding that encases the n-sphere: that
locus of points in n-space lying at a unit distance from the origin. As a bonus, the
gem provides geometric insight and illustration of the symmetries of the n-dimensional
"hypercube" measure solid.

0 Background 0
The n-dimensional Manhattan^ ll^lli = |^ i | + *•• + |^n|) norm and infinity norm
||X||oo = linin^oo(kir + • • • + knD^^^ are computationally attractive. Both may be
evaluated using integer arithmetic; the first sums the first n components of X, the
second is Max(|x i | , . . . , \xn\)- Each consistently over- and underestimates the distance
described by the Euclidean norm ||X||2, as seen in Figure 1.

A linear approximation is a compromise sharing properties of the other two norms: It
ranks the component magnitudes (instead of finding merely the maximum), then sums
these Manhattan-style subject to weights:

Iapprox = C i | x i | H \-Cn\Xn\. (1)

In particular, given weight vectors W with values (1 ,0 , . . . , 0) and (! , . . . , !) the norms
||X||oo and | |X||i are rederived, respectively. Previously {op. cit.)^ the tightest solu-
tion possible in 2D used the weight set W = (1,tan(7r/8)) ^ (l^^)- The last form

^This is also known as the "taxicab" norm.

Copyright (c) 1995 by Academic Press, Inc.
All r ights of reproduct ion in any form reserved.
IBM ISBN 0-12-543455-3
TV/T ' . . J i_ TOTTNT /"» 1 o r /I o / I r rr "V # # %

//. 7 Distance Approximations and Bounding Polyliedra <) 79

(a) Conventional Norms (b) Linear Approximations

Figure 1, Distance metrics in 2D.

rederives the rule-of-thumb method long known in graphics circles; since tan(7r/8) < ^,
increasing the weight of C2 can only loosen the approximation, thereby increasing the
overestimation and contracting the surface of unit distance, as seen in Figure 1(b).

0 Methods of Extension 0

Algebraic Extension

In the first volume of Graphics Gems (Glassner 1990), the editor asserts that higher-
dimensional distance approximations may be formed by nesting smaller ones. Proce-
durally, this suggests that dist3(...) may be defined in terms of dist2(...) using two
variants:

dist3(xi,X2,X3) = dist2[dist2(xi,X2),a^3],

dist3(xi,X2,X3) = dist2[xi,dist2(x2,X3)].

Substituting the previous approximation

dist2(xi,X2) = max(|xi|,|x2|) + ^min(|a;i|, \x2\)

(2)

(3)

80 0 Computational Geometry

and expanding yields the two candidate approximations

dist3(xi,X2,X3) = max(|xi|, k2| , ksl) + med(|xi|, |x2|, l^sl) + ^min(|xi| , \x2\, \xs\),

dist3(a;i,X2,X3) = max(|xi|, |x2|, |x3|) + ^med(|xi|, |x2|, l^sl) + ^ min(|xi|, |x2|, Ixs])-

(4)

Remarkably, the conjecture holds for the traditional metrics, provides excellent solu-
tions in the approximate 3D case, and is false. To disprove the assertion, consider the
form in (4b) above in 4D, operating on the vector X = (1,1,1,1). The vector defines
the body diagonal of a hypercube and has a (Euclidean) length of two. The approxima-
tion employs the weight set W = (1, ̂ , | , |) , giving an estimated length of 15/8 < 2,
underestimating the length, and the assertion fails. (In higher dimensions the length of
the body diagonal grows arbitrarily large, while the approximation is still bounded by
the value two.)

The underlying reason for failure is subtle: The partial component magnitudes com-
puted by the nested dist2() in (4b) have a range that is sufficient to alter their proper
position in the terms. Put another way, ranking all n component magnitudes constitutes
a sort, requiring 0 (n log n) steps. However, unrolling the sequence of nested function
calls would provide a straight-line implementation requiring only 0{n) max and min
operations, which are insufficient to support the sort having an O(nlogn) bound.

Geometric Extension

The geometric extension to 3D considers the locus of points X = {xi,X2^xs) having a
unit length under the approximation. Substituting the weight vector linear sum is a dot
product, giving the equation of a plane not passing through the origin:

W • X = 1 with xi > X2 > X3. (5)

The left-hand side (5a) defines a plane; the right-hand (5b) sets hmits on the range
of coordinates within the plane, forming a polygon. Moreover, (5a) admits solutions
having eightfold symmetry (±xi, ±^2, ±X3). Likewise, (5b) admits the sixfold symmetry
created when permuting the three components. In general, the defining (hyper)plane
for any solution remains valid as long as the component ordering is preserved. At its
limits, when two components are equal (e.g., xi = X2), the original ordering in (5b) also
holds for a second limit, for example, X2 > xi > x^. Since both hold concurrently, these
define a line of intersection of the weight plane W - X = 1 with the symmetry plane
xi = X2.

//. 7 Distance Approximations and Bounding Polyiiedra 0 81

The symmetry planes seen above are present in any n-space. Sign complementation
yields the 2^-fold cubic symmetry planes related to the (nonunit) hypercube having
vertices (± 1 , . . . , ±1), which is the regular measure solid (Coxeter 1973) present in any
n-space. The second set are the (n!)-fold symmetry planes that describe an irregular
cross solid, the dual {op. cit.) of an n-dimensional rectangular brick.^

With both this geometric symmetry and the original overestimation constraint, an
analytical solution may now be constructed. In ID, all norms are equivalent and wi = \^
trivially. In 2D, the "fold-over" point where the components of X change order occurs
along the line a:i = 0:2, accounting for the exact solution appearing in Figure 1(b). This
introduces the new weight W2 = \/2 — 1.

In 3D the solution is a polyhedron. Cartesian symmetry indicates that a regular
octagon lying in the z (flatland) plane appearing in Figure 1(b) must occupy the x
and y planes as well—that is, the evaluation of dist3(l, 1,0) must be invariant under
parameter permutation. This constraint ensures that any solution in a higher dimension
rederives one in the lower where trailing components are elided. Geometrically, this zero
substitution projects the figure onto a plane containing the Cartesian axes.

The trial polyhedron created in this fashion has eighteen vertices (3 x 8 — 6; less six
because each octahedral vertex is counted twice). This is not the desired solid, which
by the previous symmetry conditions should have additional vertices (this vertex tally
is not rigorous: A large number of redundant vertices could be present). Its convex hull
shows that its greatest departure from the sphere occurs near the body diagonals of an
encasing cube. In fact, the missing vertices are the extreme crossover points found when
xi = X2 — X2, along the body diagonal of an encasing cube. When one solves for correct
distance, the ones-vector V = (1,1,1) has a distance of \ / 3 . The exact fit may now be
found by determining the value of w^ that admits this solution, thus providing both an
exact fit along the symmetry planes while preserving the lower-dimensional solutions.
Based on previous weights, the required value is 103 = \/3 — V^.

In all dimensions, the length estimation oi x — (± 1 , . . . , ± 1) invokes the solution
of the plane equation (5) regardless of component permutation. That is, this vertex is
common to all the weight planes and hence is the extreme point not present in the trial
solid now introduced by dimensional increase. Put another way, changing any of the
n components of this ones-vector by e crosses over to one of n plane equations, whose
intersection is n-space. Since multiplicity reduces dimensionality, these define a feature
of dimension n — n, a (nondegenerate) point.

^The regular cross solid in three-space is the octahedron, whose vertices are the permutations of
(±1,0,0).

82 0 Computational Geometry

n
y/n

wn
error

Table 1.
1
1
1

1.0

Exact wei
2

1.4142
.4142
1.082

ghts for encasing polytopes.
3

1.7321
.3178
1.128

4
2.0000
.2679
1.159

5
2.2362
.2361
1.183

The complete solution may be created by computing the exact lengths of the ones-
vector V and adjusting the succession of weight accordingly, giving the exact solution

^n = V^ — Vn — 1. (6)

These are presented in Table 1.

0 Geometrical Analysis <>

In the 3D case, the hull of the solid formed by three mutually perpendicular and in-
terlocking octagons accommodates these eight additional vertices of cubic symmetry.
The new solid has twenty-six vertices and may be regarded as the superposition of
the cube's mid-faces (six), mid-edges (twelve), and vertices (eight), in which each point
group (in the first octant) lies along the respective vectors (1,0,0), (1,1,0), and (1,1,1).
Adding the origin (0,0,0) as a twenty-seventh point forms a 3 x 3 x 3 point lattice and
demonstrates the decomposition of the three-cube into its forty-eight (2^n!) Dirichlet
cells, which are tetrahedra whose four vertices are taken from the vector set presented
immediately above. This may be easily generalized. For instance, the four-cube contains
cells having the five vertices (0,0,0,0) through (1,1,1,1) (ones are shifted in from the
left); the related sum is

2^C{n, 1) + 2^C{n, 2) + 2^C(n, 3) + 2^(n, 3) = 3^ - 1 = 80, (7)

as expected. (Here C(i,j) is the choose function.)
Adjusting the vertices so that each is a unit-length vector is akin to a spherical

projection of the vertices of the Dirichlet cell (see also page 68). This forms a solid
having vertices

(1,0,0), (^ , ^) , (Vs.Vs.Vs) (8)

taking under all permutations and sign alternations. The solid is a hexakis octahedron
having twenty-six vertices (Color Plate II.7). Through largely geometrical means, its
vertex components have been presented in exact form, as with related gems (Paeth
1990c, 1991).

Substitution of other weights forms distinct yet related solids, as seen in Figure 2.
For example, setting W2 = ws yields coincident vertices by symmetry, thereby reducing
the total number of faces. Put another way, the points defining a triangle converge to a

//. 7 Distance Approximations and Bounding Polyiiedra 0 83

Family of surfaces (r,s) which solve
Max(lx/,/yl,/z/) + rMed(...) + sMin(...) = 1.

The vertices of the surfaces' convex hull are
(1,0,0), (u,u,0), (v,v,v),

in all sign alternations and permutations, with
u = l/(r+l), V = l/(r+s+l).

Legend Cube (hexahedron)
(0.0, 0.0)

Rhombic Dodecahedron
(1.0,0.0)

Trapezoidal Icositetrahedron
(sqrt(2)-l,sqrt(2)-l)

Hexakis Octahedron
(sqrt(2)-l, sqrt(3)-sqrt(2))

Octahedron
(1.0, 1.0)

Figure 2. Semiregular solids of cubic symmetry in 3D.

84 <} Computational Geometry

single vertex, "collapsing" the face. Setting W2 = ws = A/2 — 1 forms the dual of a cubic
rhombidodecahedron, called a trapezoidal icositetrahedon, seen in Figure 2(d). Coxeter
regards W = (1,1,0) as "nearly" a Platonic solid analogous to the regular 24-cell.^

0 Error Estimation 0

Error estimation is elegantly supported by the geometric method. Previously, the 2D
case found the point of greatest deviation at 22.5°, for which the maximum error is
tan(7r/8) = \ /2 — 1. Although this point can be located by symmetry considerations of
the solution in Figure 1(b), this does not generaUze easily to higher dimensions. (That
is, the trigonometric solution previously employed is now a minimization in multiple
variables.)

Geometrically, a surface reaches its extrema relative to some point when the segment
spanning the point 's segment is perpendicular to the surface. The encasing unit sphere
lies at a constant distance and hence is everywhere perpendicular to an origin vector.
In contrast, the bounding solid has faces whose point minimum distance is indicated
by the normal vector of their defining plane equation, as in (5a). Since this vector
is perpendicular both to the face and to the sphere, it defines the span of greatest
deviation between both. The normal vector is the weight vector, so the distance ratio
of a (nonunit) vector W is | |W| |approx/ | |^ | |2- These appear as the "max dev." ratios
appearing in Table 1. As the relative length is in reference to a unit sphere, the absolute
deviation (span length) can be found by subtracting these values into one (the sphere's
radius).

The point of closest approach exists on every face on the solid circumscribed by
the sphere. Moreover, each lies at the same origin distance: A smaller sphere may be
inscribed. In fact, these points of contact can serve as vertices defining the convex hull
of the (inscribed) dual. The solid is the dual rhombidodecahedron having forty-eight
vertices. Through largely geometrical means, the components of its vertices have been
determined. These are

(± 1 , ±[V2 - 1], ± [\ / 3 - v^]) (all permutations). (9)

The number of faces is necessarily twenty-six; dualization is a self-complementary oper-
ation tha t exchanges the meaning of face and vertex and in/circum-sphere. Both solids
have seventy-two edges by Euler's formula F + F = £" — 2, which is invariant under
dualization. (The edges may be grouped together in space and are oriented at right
angles to each other.)

^This self-dual analogue can be related both to the weight set W = (1,1,0,0) and to the quaternions.

//. 7 Distance Approximations and Bounding Polyhedra 0 85

Implementation

The best solution has irrational values (these define the vertex positions of the unit cubic
rhombidodecahedron). Although valuable in its own right, the related code embodies
floating-point calculations, thereby defeating the gem's original purpose: to provide a
fast approximation using integer^ arithmetic.

Instead, the coefficients Ci may be increased at will. This loosens slightly the exact
containment (which is an inexact approximation) and thus allows integral and rational
solutions (see also Figure 1). By inspection, the weight set W = (1,0.5) is a good
choice in 2D. In 3D, the weight set W = (1,0.5,0.25) is particularly attractive, because
11(1,1,1)11 = y/S ^ 1.732 < 1.75 is a good fit and the method may take advantage of
bit shifts to have components of diminishing magnitude.

In four dimensions, methods of rational approximation (see also page 25) may be
used to find computationally attractive forms. Exhaustive searching is still required
because the continuants for each weight tend to have distinct denominators and the
GCD of the weight set tends to form unattractively large values. Hand analysis yields
the particularly compelling weights

^ 1 - 1 , W2 = - . ws = - . w, = - , (10)

Note that w^ = 3.16 slightly underestimates \/3 — \/2 = .3178+. However, the previous
overestimation in W2 = 4.16 versus .41421+ is enough to overcome the loss. That is,
the bounding solid draws in from the sphere along the axes (1,1,0,0), providing for an
otherwise oversize weight when dist4 is evaluated with (1,1,1,0). As a final bonus, the
four-vector (1,1,1,1) has integral length, so an exact fit is possible as the numerator of
W4 has an exact integral value. The program code is then

dist4(xi,X2,X3,X4) - |xi | + 1/60(25 \x2\ + 19 |x3| + 16 |x4|), (11)

where it is assumed that the components of X are sorted by magnitude, an operation
that may take place in five comparisons (the minimum) using merely swap operations;
the swap/sort operations are borrowed from the implementation appearing in a previous
gem (Paeth 1990b), and are employed below.

0 C Implementation 0

#define absv(x) i f (x < 0) x = -x
#define inorder (x ,y) {int t ; i f ((t = a - b) < 0) {a - = t ; b + = t ;) }

^The admission of floating point allows an exact Euclidean norm at a cost of only n + 6 multiplications,
with n the cost of the dot product and 6 the overhead for an efficient square root, as on page 16.

86 0 Computational Geometry

len

{

4(a, b, c, d)

absv(a); absv(b);
absv(c); absv(d);
inorder(a, b); inorder(c, d);
inorder(a, c); inorder(b, d);
inorder(b, c);
a += (25*b + 19*c + 16*d)/60;
a++;

return(a);

/
/
/
/
/

/
/

* get the absolute values */
* (component magnitudes) */
* everyone has a chance to play */
* (a,d) are big (winner, loser) */
* playoff for 2nd and 3rd slots */
/* compute 4D approximate length */
* Roundoff -> underestimation */
* omit the above one bit jitter */

0 Conclusions 0

In higher dimensions the weight equation (6) shows that weights diminish slowly, and
the added complexity of both magnitude computation and element sorting strongly
favor the use of the Euclidean norm in floating point. Finally, the values for 3D linear
approximation provided by Ritter {op. cit.) were created by empirical testing.^ This
method provides a means of exact computation.

0 Bibliography 0

(Coxeter 1973) H. S. M. Coxeter. Regular Polytopes. Dover, New York, 1973.

(Glassner 1990) Andrew Glassner. Distance measures summary (section introduction).
In Andrew Glassner, editor, Graphics Gems^ page 423. AP Professional, Boston,
1990.

(Paeth 1990a) Alan Wm. Paeth. A fast approximation to the hypotenuse. In Andrew
Glassner, editor, Graphics Gems^ Chapter 8, pages 427-431. AP Professional,
Boston, 1990.

(Paeth 1990b) Alan Wm. Paeth. Median finding on a 3 x 3 grid. In Andrew Glassner,
editor, Graphics Gems, Chapter 3, pages 171-175. AP Professional, Boston, 1990.

(Paeth 1990c) Alan Wm. Paeth. Trigonometric functions at select points. In Andrew
Glassner, editor, Graphics Gems, Chapter 1, pages 18-19. AP Professional, Boston,
1990.

^The authors exchanged ideas by telephone in collaboration after the back-to-back pubUcation of
their independent gems.

//. 7 Distance Approximations and Bounding Polyhedra 0 87

(Paeth 1991) Alan Wm. Paeth. Exact dihedral metrics for common polyhedra. In James
Arvo, editor, Graphics Gems 11^ Chapter 4.3, pages 1-2. AP Professional, Boston,
1991.

(Ritter 1990) Jack Ritter. An efficient bounding sphere. In Andrew Glassner, editor,
Graphics Gems^ Chapter 5, pages 301-303. AP Professional, Boston, 1990.

This Page Intentionally Left Blank

0 I I I 0

Modeling and
Transformation

The gems in this section describe algebraic models and their transformations. In most
cases a linear algebra underlies the derivations, supporting a natural extension to higher
dimensions, as with gems 11.4 and II.7 of the previous section.

In the first gem (III.l), Alciatore and Miranda apply the method of least squares
to fit a line to a set of points. What is unique is that perpendicular distance is cho-
sen to create a true isotropic fit, not a conventional fit by abscissa. Hill and Roberts
(III.2) review modeling methods related to the marching cubes method in which slope
discontinuities and their ambiguities arise. These occur at the adjoining boundaries
between the discrete cells that collectively approximate a continuous surface. Arata
provides a straightforward study of tri-cubic interpolation, whereby a set of gridded
data takes on a higher dimensional fit (compared with commonplace tri-linear meth-
ods). Catmull-Rom splines are the model of choice; their coefficients suggest particularly
fast evaluation. Miller (III.4) describes the affine mapping between related point sets on
two distinct Cartesian planes. This overdetermined problem arises with noisy data. His
first-principles approach illustrates matrix-based singular value decomposition (SVD)
while providing a freestanding C implementation requiring no external matrix library.
Chin provides a thorough description of BSP trees (III.5). The worked examples are
carefully illustrated and treat all the conventional cases (e.g, preprocessing interpene-
trating data; locating the tree's root) plus a number of optimizations. A C-language
suite (excerpted throughout the text) completes the work. Blanc's discussion of axial
deformation techniques (III.6) describes the procedural manipulation of data sets by
transformations more intuitive than the mathematician's. Based upon a model that
minimizes artifacts of the underlying coordinate system, the axial deformations include
bending, twisting, and pinching.

89

This Page Intentionally Left Blank

Olll.i
The Best Least-Squares Line Fit

David Alciatore Rick Miranda
Mechanical Engineering Department Mathematics Department
Colorado State University Colorado State University
Fort Collins, Colorado Fort Collins, Colorado

0 Introduction 0

Traditional approaches for fitting least-squares lines to a set of two-dimensional data
points involve minimizing the sum of the squares of the minimum vertical distances
between the data points and the fitted line. That is, the fit is against a set of independent
observations in the range^ y. This gem presents a numerically stable algorithm that fits
a line to a set of ordered pairs (cc,y) by minimizing its least-squared distance to each
point without regard to orientation. This is a true 2D point-fitting method exhibiting
rotational invariance.

0 Background 0

The classical formula for the univariate case based on vertical error measurement is

y = myX + by, (1)

m,j =

Uy —

Though well known, and presented in many numerical, statistical, and analytical
texts (Charpra and Canale 1988, Chatfield 1970, Kryszig 1983), the method is not
acceptable as a general line-fitting tool. Its frequent misapplication gives poor results
when both coordinates are uncertain or when the line to be fit is near vertical {rriy —> oc).
Reversing the axes merely disguises the problem: The method still remains sensitive to
the orientation of the coordinate system.

A least-squares line-fitting method that is insensitive to coordinate system orientation
can be constructed by minimizing instead the sum of the squares of the perpendicular

^Horizontal distances can also be used by reversing the roles of the variables.

Copyright (c) 1995 by Academic Press , Inc.
All r ights of reproduct ion in any form reserved.

IBM ISBN 0-12-543455-3
M l A/rar>ir.fo«V, T C ; R N n-19-.c=i4.'^4.'^7-X

92 0 Modeling and Transformation

distances between the data points and their nearest points on the target hne. (The
perpendiculars are geometric features of the model independent of the coordinate sys-
tem.) Such an algorithm has been presented in the literature (Ehrig 1985), but the
algorithm is based on a slope-intercept form of the line resulting in solution degeneracy
and numerical inaccuracies; as the line approaches vertical, the slope and intercept grow
without bound. Also, the equations provided {op. cit.) have two solutions, and the user
must perform a test to determine the correct one.

The algorithm presented in the next section uses a 9-p (line angle, distance from
the origin) parameterization of the line that results in no degenerate cases and gives
a unique solution. This parameterization has been used for statistical fitting of noisy
data with outlying points as in image data (Weiss 1988, Rosenfeld and Sher 1986), but
the parameterization has not been applied to a least-squares line fit.

The perpendicular error measurement least-squares technique is also readily applied
to circular arc fitting. Several robust solutions to this problem have been presented in
the literature (Karimaki 1992, Moura and Kitney 1991, Chernov and Ososkov 1984).

0 Optimal Least-Squares Fit 0

The problem may now be stated. Given an arbitrary line defined by parameters {6, p)
and the sum of the squares of the related perpendicular distances ri between points
(xi^yi) and their nearest points to this line (Figure 1), then find the values of 6 and p
that minimize this sum. That is, minimize the value

z = J2rHp,&); (2)
i=l

where Â is the number of data points to be fitted and r̂ is a function of the chosen
line. Locating the zeros of the derivative of this function forms the method of solution.

To simplify the analysis and to avoid degeneracies, the parameter p is chosen to be
the length of a perpendicular erected between the line and the origin, and 9 is chosen
to be its orientation with respect to the x axis (Figure 1). From simple plane geometry,
the parametric equation for the line is given by

XS0 + Ĉ6> + p = 0, (3)

where

Co = cos(^) and SQ = sin(^). (4)

The perpendicular distance n is given by

n = ViCe - XiSe - p. (5)

///. 1 The Best Least-Squares Line Fit <} 93

(XN' YN)

(xi, Yi)

Figure 1. Least-squares line fit geometry.

To minimize the sum of errors Z in (2), the following must hold:

dZ ^ , dZ ^

Taking derivatives of (2) using (5) results in the following expressions:

acQSe + b{sQ - CQ) + cpco + dpso = 0

and

dc0 — CSQ — Np^

where

AT AT N N N

a = Y,^^i -J2yi^^^Yl^^^^'c == XI^ '̂ ^ndd = J2yi'
i=l i=l 1=1 i=l

Equation (8) can be written as

(6)

(7)

(8)

(9)

xse - yc0 + p = 0, (10)

94 0 Modeling and Transformation

where (x^y) is the centroid of the data set {{xi^yi)}. Since (10) appears in the form
presented in (3), the fit necessarily passes through the centroid of the data.

Equation (7) can be simphfied if the original data are translated so that the centroid
is located at the origin, by setting

x[=Xi-x and y[= yi-y. (11)

This translation results in

(^ = d' = p' = 0, (12)

and (7) reduces to

where

a'cese + h\sl - cj) = 0, (13)

«' - E (^0' - E (y^f ̂ d̂ b^ = Y,x[y[. (14)

Equation (13) is a quadratic equation that can be solved for the ratio CQ/SQ^ giving

Co a ± 7

so P

where

(15)

a = a\f3 = 2b\ and 7 = y ^ M ^ . (16)

Equation (15) can be written as

Co = t(a d= 7) and so — t/3, (17)

where t is a constant satisfying the condition 5^ + ĉ == 1. One of these solutions is the
minimum of (2) representing the best-fit line, and the other is a maximum representing
the worst-fit line passing through the centroid of the data. It should be noted that
this worst-fit line is always perpendicular to the best-fit line since the solutions of
Equation (15) (which represent the line slopes) are negative reciprocals of each other. To
determine which solution represents the best-fit line (other than by graphical inspection
of the data), the second-derivative test can be employed. The following must hold:

///. 1 The Best Least-Squares Line Fit 0 95

The second derivative of the error function gives

= 2a{4 - sj) + 4.pC0Se. (19)

After substituting (17) and simplifying, the second-derivative test (18) reduces to

t'^-y^ia ± 7) > 0. (20)

This forces a ± 7 > 0, and since 7 > a, the a + 7 solution represents the best-fit line.
Therefore, the best-fit line [in the form of (3) and (17)] is defined by

px-{a + 7)y = -p/t = C, (21)

where C is a constant that can be determined (10) by requiring that the hne pass
thi^ough the centroid:

C = f3x — {a + ^)y. (22)

Therefore, from (16) and (21), the constants defining the best-fit line in standard
form are

A = 26',

B = -[a' + ^{a'f + A(b'f)

C = Ax + By.

(23)

0 Example 0
The following data will be used to demonstrate the results of the method:

i
1
2
3
4
5
6
7
8
9
10
11
12
13

Xi

0.237
0.191
0.056
0.000
0.179
0.127
0.089
0.136
0.202

0.085
0.208
0.156
0.038

m '
-1.000
-0.833
-0.667

-0.500
-0.333
-0.167
0.000
0.167

0.333
0.500
0.667
0.833
1.000

96 0 Modeling and Transformation

e-^

Figure 2. Example line fit.

The centroid of this data is located at

x = 0.131,5^ = 0.000.

Expressed in terns of (14), this gives

a' = -4.992 and b' = -0.075,

and so from (23) the final solution is

A = -0.149, B = -0.002, and C = -0.020.

This line {Ax-\- By = C) is plotted in Figure 2 along with the results from Equation (1)
for purposes of comparison. The original y — rriyX + by fit afforded by (1) is extremely
poor since the data lie near a vertical line.

///. 1 The Best Least-Squares Line Fit 0 97

0 Conclusions 0
The method for determining the hne passing through a two-dimensional data set and
having best least-squares fit was derived. This line's orientation minimizes the sum
of the squares of the perpendicular distances between the data and the line. A p-9
parameterization of the line resulted in a fairly straightforward analysis. The results,
which were expressed in standard {Ax + By — C) form, provide a unique, general, and
robust solution that is free of degenerate cases. The only possible indeterminacy occurs
when oi — h' — 0. However, this case can occur only when the data exhibit a perfect
circular symmetry (isomorphism under arbitrary rotation). In this case, there is no line
of "best fit" because all lines passing through the centroid have a fit that is equally
good or bad.

0 Bibliography 0
(Charpra and Canale 1988) S. Charpra and R. Canale. Numerical Methods for Engi-

neers, 2nd ed. McGraw-Hill, 1988.

(Chatfield 1970) C. Chatfield. Statistics for Technology, Penguin Books, 1970.

(Chernov and Ososkov 1984) N. Chernov and G. Ososkov. Effective algorithm for circle
fitting. Computer Physics Communications, 33:329-333, 1984.

(Ehrig 1985) H. Ehrig. 45th annual meeting of the ACMS. Technical report, ACMS,
1985.

(Karimaki 1992) V. Karimaki. Fast code to fit circular arcs. Computer Physics Com-
munications, 69:133-141, 1992.

(Kryszig 1983) E. Kryszig. Advanced Engineering Mathematics, 5th ed. John Wiley and
Sons, 1983.

(Moura and Kitney 1991) L. Moura and R. Kitney. A direct method for least-squares
circle fitting. Computer Physics Communications, 64:57-63, 1991.

(Rosenfeld and Sher 1986) A. Rosenfeld and A. Sher. Direction weighted line fitting to
edge data. Technical Report CAR-TR-189, Computer Vision Laboratory, Univer-
sity of Maryland, 1986.

(Weiss 1988) I. Weiss. Straight line fitting in a noisy image. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition, pages 647-652, 1988.

0III.2
Surface Models and the
Resolution of AZ-Dimensional
Cell Ambiguity

Steve Hill Jonathan C. Roberts
Computing Laboratory Computing Laboratory
University of Kent University of Kent
United Kingdom United Kingdom

0 Introduction 0

The representation of n-dimensional continuous surfaces often employs a discrete lattice
of n-dimensional cube cells. For instance, the marching cubes method locates the surface
lying between adjacent vertices of the n-cube edges in which the cell vertices represent
discrete sample values (Lorensen and Cline 1987). The volume's surface exists at a point
of zero value: It intersects any cube edge whose vertex values have opposing sign.

Ambiguities occur in the cells whose vertex sets show many sign alternations. Geo-
metrically, the surface intersects one face of the n-cube through each of its four edges. It
is these special cases that engender the need for resolution as a central concern in sur-
face modeling. This gem reviews and illustrates the disambiguation strategies described
in the literature.

0 Background 0

In an ideal surface algorithm, the features of the surface geometry should match those of
the underlying surface. In particular, if the original surface is continuous, the represen-
tational model must preserve this continuity. Most practical algorithms create spurious
holes (false negatives) or additional surfaces (false positives) depending on the "ea-
gerness" of the algorithm in joining pieces of the surface model along adjacent cube
faces. This is the consequence known as the "ambiguous face" n-cube present in any
dimension n > 2 whose vertex signs resemble a spatial "checkerboard" (Figure 1). The
abutting of two cubes having such faces then introduces the possibility of false positives
or negatives (Figure 2).

In this gem, we refer to the vertex classification with respect to the threshold as
inside or outside the surface. The surface intersects the edge between an inside and an

Copyright © 1995 by Academic Press, Inc.
All r ights of reproduct ion in any form reserved.
IBM ISBN 0-12-543455-3

OQ

III.2 Surface Models and the Resolution of N-Dimensional Cell Ambiguity <> 99

Figure 1 . Ambiguous face choices.

Surface showing false negative Ideal surface

Figure 2. Ambiguous face.

outside vertex, shown gray on the diagrams; hnear interpolation is used to calculate
this position. The ambiguous face can be estimated using the vertex classification, but
can never be completely disambiguated.

The local surface contours can be represented by sections of a hyperbola and the
ambiguous face can be one of three orientations (Figure 1); therefore, the cross repre-
sentation is the other orientations taken to the limit and is normally discarded.

The cells can be subdivided into further n-cubes or into simplices. A simplex is
the simplest nondegenerate object in n dimensions (Hanson 1994, Moore 1992a), for
example, a triangle in two dimensions and a tetrahedron in three dimensions. A simplex
is always unambiguous and so can be used in an n-cube disambiguation strategy.

0 static Analysis 0
To disambiguate the ambiguous face, the static techniques consider only the vertex
classification points; they do not introduce extra classification points. These methods
are generally fast, but they do not guarantee an ideal or faithful surface.

Uniform Orientation

Always present the surface at a common orientation whenever the evaluation of an
ambiguous face is encountered. Computation of orientation can be implemented using a
lookup table (Lorensen and Cline 1987) or by algorithm (Wyvill et al. 1986, Bloomenthal
1988, Bloomenthal 1994). If the data resolution is high, the surface segments will be

100 0 Modeling and Transformation

,^7\
A-

/

Figure 3. Uniform orientation.

Figure 4. Adjacent cell disambiguation.

small and the anomalies unnoticeable (unless the surface is zoomed). This method is
simple to implement and is fast to execute (Figure 3).

Face Adjacency

In some cases the adjacent cell configuration can be used to disambiguate the 77.-cube
(Duurst 1988, Zahlten 1992); for example, if an "inverted" cube and a "normal" cube
orientation are adjacent, then the surface should be added (Figure 4). The new surface
intersects the diagonal between the nonadjacent vertices c and rf, where vertex d is
inside and vertex c is outside the surface.

Simplex Decomposition

In two dimensions the square can be decomposed into two triangle segments and treated
as by the uniform orientation method. In three dimensions the cube has many decom-
positions into tetrahedra (Moore 1992b, 1992a) (Figure 5); examples of five tetrahedra
(Ning and Bloomenthal 1993) and six tetrahedra (Zahlten 1992) behave like the fixed
orientation method in that they add an extra diagonal that affects the connectivity of
the surface. The orientation of the diagonal is determined by the simplex decomposition.
To maintain surface consistency, neighboring n-cubes should have the same diagonal
orientation (mirrored simplex orientation).

111.2 Surface Models and the Resolution of N-Dimensional Cell Ambiguity <} 101

Triangle boundary elements Tetrahedron surface elements

5 tetrahedra orientation

-^ ^-

The middle
tetrahedra

6 tetrahedra orientation

Figure 5. Sinnplex decompositions, and surfaces.

0 Interpolation Analysis 0

This section reviews disambiguation techniques that require the computation of addi-
tional values or vertices for the decision. The values are often created by methods of
trilinear interpolation (Hill 1994). Other interpolation techniques may also be consid-
ered (e.g., tricubic interpolation, gem III.3).

Closest Orientation

The four face intersection points are located by linear interpolation, the total length of
the connecting paths calculated, and the orientation having the shortest path is chosen
(Mackerras 1992). If both paths are the same length, then the cross configuration is
chosen (Cottifava and Moli 1969). In Figure 1, the closest orientation technique would
select configuration A.

102 0 Modeling and Transformation

Resampling

The data are resampled at a higher resolution and solution reattempted. This is pos-
sible only when the data are algorithmically obtained or readily resampled. Moreover,
ambiguities may still remain at the higher resolution.

Interpolation

The data resolution is doubled using a trilinear interpolation (Hill 1994) or a tricubic
interpolation. The tricubic interpolation considers points outside the local neighbors.
As with the resampling technique, ambiguities may still occur at the finer resolution.
(A variation reinterpolates merely the ambiguous cells.)

Subdivision

All the n-cubes that are on the surface are subdivided (using hnear interpolation) until
a predefined limit is reached. The limit can be the pixel size, for example, dividing cubes
(Cline et al. 1988), or smaller (Cook et al. 1987). Each subcube is inside^ outside^ or on
the surface and may be shaded and projected onto the view plane. Trilinear interpolation
cannot introduce an ambiguous case, but might not (therefore) faithfully model the
surface. However, adaptive subdivision techniques (using interpolation or resampling
methods) can be used at points of great interest or high curvature (Bloomenthal 1988).

Simplex Decomposition

In two dimensions the two-cube can be decomposed into two or four triangles (Figure 5);
with two triangles the method is similar to the uniform orientation strategy, but with
four triangles an extra center vertex is required. This can be obtained by averaging
the four vertices (that is, from bilinear interpolation). If the center value is inside the
threshold, then orientation B is chosen; otherwise, orientation A is used (Figure 1).
This method is often named "facial average" and can be used on any n-cube face when
n > 1 (WyviU et al, 1986, Wilhelms and Gelder 1990, Hall 1990).

In three dimensions the three-cube can be divided into twelve tetrahedra (Figure 6)
and the required value at the center of the cube found using trilinear interpolation.

Bilinear Contours

The contours of the image can be represented (locally) by parts of a hyperbola (Nielson
and Hamann 1991). The ambiguous face occurs when both parts of the hyperbola

111.2 Surface Models and the Resolution of N-Dimensional Cell Ambiguity 0 103

Figure 6. Twelve-tetrahedra orientation in a cube.

A

P3

o pi

Figure 7. Bilinear contours.

intersect a face; therefore, the topology of the hyperbola equals the connection of the
contour. The correct orientation (Figure 7) is achieved by comparing the threshold
with the bilinear interpolation at the crossing point of the asymptotes of the hyperbola,
given by p^^^^^^l^p2 - If ^^^ interpolation value is less than the threshold, then use
orientation A; otherwise, use orientation B.

Gradient

Disambiguation of the cell can be achieved by calculating the gradient contribution
(Ning and Bloomenthal 1993, Wilhelms and Gelder 1990) from the neighboring faces
that point toward the center of the ambiguous face. These gradient contributions can
be added to the four face vertex values and used to create a better approximation for
the center of that face. This center value can then be used to disambiguate the cell
(Figure 8).

Quadratic

Disambiguation can be achieved by fitting a quadratic curve to the local values (using
the method of least squares). The orientation of the curve is then used to disambiguate
the face (Wilhelms and Gelder 1990, Ning and Bloomenthal 1993).

0 Summary 0
The n-cube with an ambiguous face can never be disambiguated by the vertex classifi-
cation alone; however, at high resolutions the anomalies become unnoticeable.

104 0 Modeling and Transformation

i—i

nW
O

Gradient
calculations

Ambiguous Cell

O

Figure 8. Gradient disambiguation.

\jf r\ c

k-—J %

7\
7

p

\> ^

/

1 N ^

V-—I

''*-''̂

fvyx c

1 / x>^

7\
J

Surface showing shared face Ideal surface

Figure 9. Concave triangle surfaces

The simplex decomposition strategies work well if a center vertex is calculated, but
they accrue many triangle elements.

Subdivision techniques can be used to view an enlargement of the image without false
positives and negatives appearing, and the pixel-sized cubes are then projected onto
the viewing plane using a gradient shading based upon the four vertices. Subdivision
techniques also eliminate degenerate triangle segments. Degenerate segments (very small
triangle pieces) occur when the data resolution is high, or at the edge of the evaluation
mesh. The degenerate triangles degrade the rendering efficiency. Degenerate triangles
can also be reduced by using a "bending" technique (Moore and Warren 1992).

The gradient and quadratic methods are more accurate and more expensive than
other methods, but they are useful if the sampling rate is low and if the data cannot
be resampled.

Most disambiguation strategies, after deciding on the face orientation, place an extra
surface section on the face. However, two such adjacent surfaces may share a common
face. To resolve this, concave surfaces (Nielson and Hamann 1991) are used (Figure 9).

In the choice of disambiguation strategy there is a contention between speed and
fidelity. Static methods are generally faster but can lead to erroneous surfaces. When
the data resolution is sufficiently high, these artifacts are not significant.

III.2 Surface Models and the Resolution of N-Dimensional Cell Ambiguity 0 105

0 Bibliography 0
(Bloomenthal 1988) Jules Bloomenthal. Polygonization of implicit surfaces. Computer

Aided Geometric Design^ 5:341-355, 1988.

(Bloomenthal 1994) Jules Bloomenthal. An implicit surface polygonizer. In Paul S.
Heckbert, editor, Graphics Gems /V, pages 324-349. AP Professional, Boston,
1994.

(Cline et al 1988) H. E. Cline, W. E. Lorensen, S. Ludke, C. R. Crawford, and B. C.
Teeter. Two algorithms for the three-dimensional reconstruction of tomograms.
Medical Physics, 15(3):320-327, May/June 1988.

(Cook et al. 1987) Robert L. Cook, Loren Carpenter, and Edwin Catmull. The Reyes
image rendering architecture. Computer Graphics, 21(4):95-102, July 1987.

(Cottifava and Moli 1969) G. Cottifava and G. Le Moli. Automatic contour map. Com.-
munications of the ACM, 12(7):386-391, 1969.

(Duurst 1988) M. J. Duurst. Additional reference to marching cubes. Computer Graph-
ics, 22(2):72-73, April 1988.

(Hall 1990) Mark Hall. Defining surface from sampled data. In Andrew S. Glassner,
editor, Graphics Gems, pages 552-557. AP Professional, Boston, 1990.

(Hanson 1994) Andrew J. Hanson. Geometry of n-dimensional graphics. In Paul S.
Heckbert, editor, Graphics Gems IV, pages 149-170. AP Professional, Boston,
1994.

(Hill 1994) Steve Hill. Tri-linear interpolation. In Paul S. Heckbert, editor, Graphics
Gems IV, pages 521-525. AP Professional, Boston, 1994.

(Lorensen and Cline 1987) William E. Lorensen and Harvey E. Cline. Marching
cubes: A high resolution 3D surface construction algorithm. Computer Graphics,
21(4):163-169, July 1987.

(Mackerras 1992) Paul Mackerras. A fast parallel marching-cubes implementation on
the Fujitsu APIOOO. Technical Report TR-CS-92-10, Australian National Univer-
sity, Department of Computer Science, August 1992.

(Moore and Warren 1992) Doug Moore and Joe Warren. Compact isocontours from
sampled data. In David Kirk, editor, Graphics Gems III, pages 23-28. AP Profes-
sional, Boston, 1992.

(Moore 1992a) Doug Moore. Subdividing simplices. In David Kirk, editor, Graphics
Gems III, pages 244-249. AP Professional, Boston, 1992.

106 0 Modeling and Transformation

(Moore 1992b) Doug Moore. Understanding simploids. In David Kirk, editor, Graphics
Gems III, pages 250-255. AP Professional, Boston, 1992.

(Nielson and Hamann 1991) Gregory M. Nielson and Bernd Hamann. The asymptotic
decider: Resolving the ambiguity in the marching cubes. In Proceedings Visualiza-
tion '91 - sponsored by the IEEE Computer Society, pages 83-91, 1991.

(Ning and Bloomenthal 1993) Paul Ning and Jules Bloomenthal. An evaluation of
implicit surface tilers. IEEE Computer Graphics and Applications, 13(6):33-41,
November 1993.

(Wilhelms and Gelder 1990) Jane Wilhelms and Allen Van Gelder. Topological con-
siderations in isosurface generation - extended abstract. Computer Graphics,
24(5):79-86, November 1990.

(Wyvill et al. 1986) Geoff Wyvill, Craig McPheeters, and Brian Wyvill. Data structure
for soft objects. The Visual Computer, 2(4):227-234, 1986.

(Zahlten 1992) Cornelia Zahlten. Piecewise linear approximation of isovalued surfaces.
In F. H. Post and A. J. S. Hin, editors. Advances in Scientific Visualization, pages
105-118. Springer-Verlag, 1992.

0 III.3
Tricubic Interpolation

Louis K. Arata
Picker International
Ohio Imaging
Nuclear Medicine Division
Bedford Heights, Ohio
arata @ nm.picker.com

0 Introduction 0

In many cases, linear interpolation provides a very good compromise between speed
and accuracy. However, when the data volume is nonisotropic, linear interpolation may
introduce objectionable artifacts. In these cases cubic interpolation may be substituted
(Pokorny and Gerald 1989; a generous treatment appears in Chapters seven and eight).

This gem reviews tricubic interpolation and provides a C code implementation. Ad-
ditional information on bilinear and bicubic interpolation is available in the literature
(Andrews and Patterson III 1976).

0 The Implementation 0

This implementation uses Catmull-Rom interpolating curves. For the one-dimensional
case, these curves can be expressed by the following matrix formula:

C{u) = [i u u 1]

-0.5
1.0
-0.5
0

1.5
-2 .5

0
1

-1 .5
2.0
0.5
0

0.5 •
-0 .5

0
0

"Pi-i^
Pi

Pi+i
.Pi+2.

where C{u) is the interpolated value, Pi-i , Pi, Pi+i, Pi+2 are four consecutive data
points, and ue [0,1] is a parameter that defines the fractional position between pi and
Pij^i. Certain run-time optimizations can be employed to reduce the number of floating-
point multiplications required by the above equation (see source code).

Tricubic interpolation is done by cascading the one-dimensional operations in the
X, y , then Z directions. Sixteen interpolations using sixty-four original data values
are performed in the X direction (in the inner loop of the code). Four interpolations
using the prior sixteen values are then done in the Y direction. Finally, the data from
the previous four interpolations are combined in the Z direction for the final value. As

MV7

Copyright (c) 1995 by Academic Press, Inc.
All r ights of reproduct ion in any form reserved.

IBM ISBN 0-12-543455-3
„ u TCT3TS.T n 1 0 KArtAnrr ^sr

108 <> Modeling and Transformation

with trilinear interpolation (Hill 1994), the order of combination is not important; the
interpolated value is unique.

The application as a whole must treat cases where the value requiring interpolation
has a reduced set of neighboring points pi (edge effects). There are two possible ways
of handling these edge effects. A range check can be applied before the interpolation
function is called, and if the position of this computed value is next to an edge point,
trilinear interpolation can be used (the preferred implementation). Alternatively, the
function can be modified to do the range checking itself and arbitrarily set (to some
background value) the neighboring points that fall outside of the data set before doing
the tricubic interpolation.

0 C Code 0
typedef struct

{
float X, y, z;

} Point;

* TriCubic - tri-cubic interpolation at point, p.
* inputs:
* p - the interpolation point.
* volume - a pointer to the float volume data, stored in x,
* y, then z order (x index increasing fastest).
* xDim, yDim, zDim - dimensions of the array of volume data.
* returns:
* the interpolated value at p.
* note:
* NO range checking is done in this function.

float TriCubic (Point p, float *volume, int xDim, int yDim, int zDim)

{
int X, y, z;
register int i, j, k;
float dx, dy, dz ;
register float *pv;
float u[4], v[4], w[4];
float r[4], q[4];
float vox = 0;
int xyDim;

xyDim = xDim * yDim;

X = (int) p.x, y = (int) p.y, z = (int) p.z;
if (x < 0 I I X >= xDim | | y < 0 | | y >= yDim | | z < 0 | | z >= zDim)
return (0);

111.3 Tricubic Interpolation 0 109

dx = p.x - (float) X, dy = p.y - (float) y, dz = p.z - (float) z;
pv = volume + (x - 1) + (y - 1) * xDim + (z - 1) * xyDim;

define CUBE(x) ((x) * (x) * (x))
define SQR(x) ((x) * (x))
/*
#define DOUBLE(x) ((x) + (x))
#define HALF(x)
•

* may also be used to reduce the number of floating point
* multiplications. The IEEE standard allows for DOUBLE/fiALF
* operations.
*/

/* factors for Catmull-Rom interpolation */

u[0] = -0.5 * CUBE (dx) + SQR (dx) - 0.5 * dx;
u[l] = 1.5 * CUBE (dx) - 2.5 * SQR (dx) + 1;
u[2] = -1.5 * CUBE (dx) + 2 * SQR (dx) + 0.5 * dx;
u[3] = 0.5 * CUBE (dx) - 0.5 * SQR (dx);

v[0] = -0.5 * CUBE (dy) + SQR (dy) - 0.5 * dy;
v[l] = 1.5 * CUBE (dy) - 2.5 * SQR (dy) + 1;
v[2] = -1.5 * CUBE (dy) + 2 * SQR (dy) + 0.5 * dy;
v[3] = 0.5 * CUBE (dy) - 0.5 * SQR (dy);

w[0] = -0.5 * CUBE (dz) + SQR (dz) - 0.5 * dz;
w[l] = 1.5 * CUBE (dz) - 2.5 * SQR (dz) + 1;
w[2] = -1.5 * CUBE (dz) + 2 * SQR (dz) + 0.5 * dz;
w[3] = 0.5 * CUBE (dz) - 0.5 * SQR (dz);

for (k = 0; k < 4; k++)

{
q[k] = 0;
for (j = 0; j < 4; j++)
{
r[j] = 0;
for (i = 0; i < 4; i++)
{
r[j] += u[i] * *pv;
PV++;

)
q[k] += v[j] * r[j];
pv += xDim - 4;

}
vox += w[k] * q[k];
pv += xyDim - 4 * xDim;

}

return (vox < 0 ? 0.0 : vox);

}

110 0 Modeling and Transformation

0 Bibliography 0
(Andrews and Patterson III 1976) Harry C. Andrews and Claude L. Patterson III. Dig-

ital interpolation of discrete images. IEEE Transactions on Computers^ 25(2):196-
202, February 1976.

(Hill 1994) Steve Hill. Tri-linear interpolation. In Paul Heckbert, editor, Graphics Gems
IV, pages 521-525. AP Professinal, Boston, 1994.

(Pokorny and Gerald 1989) Cornel K. Pokorny and Curtis F. Gerald. Computer Graph-
ics: The Principles Behind the Art and Science. Franklin, Beedle and Associates,
Irvine, California, 1989, Chapters 7 and 8.

0 III.4
Transforming Coordinates from
One Coordinate Plane to
Another

Robert D. Miller
East Lansing, Michigan

0 Introduction 0

A common problem in graphics requires converting Cartesian coordinates from one ref-
erence system to corresponding points on a different reference frame. Other apphcations
might include registration of overlays on an existing map or drawing in which the co-
ordinate systems of each can only be determined empirically. The conversion of local
(digitized) coordinates to a common world coordinate system may be done with the
procedures outlined in this gem.

0 Method 0

To find a general transformation between 2D coordinate systems, coordinates of some
corresponding points are known. A transformation will be determined that will then
map any other point from one system to the other. Schematically, one wishes to convert
the position of any point on A to its corresponding position on B as shown (Figure 1)
by finding equations that convert {xi^yi) to (Ci^rji).

In the simplest case, the transformation determines an origin offset between the two
systems, a scale factor difference, and a relative rotation. To solve for these unknowns
(three in each coordinate), at least three pairs of corresponding points are required in
order to determine a unique transformation.

The equations to convert from (x,y) to (C,^) ^^^

(i == axi + byi + c,

rii = dxi + eyi + f for i = 1,2,3.

m

Copyright (c) 1995 by Academic Press , Inc.
All r ights of reproduct ion in any form reserved.

IBM ISBN 0-12-543455-3

112 0 Modeling and Transformation

A B

Figure 1. Coordinate plane transformation from A to B.

Using homogeneous coordinates to recast in matrix form, these equations become

'^A
C2
.C3J

=
'xi yi r
X2 2/2 1

.^3 ys 1.

'a'
b
c

?

'Vi

m
Jls.

=
'xi 2/1 r

X2 2/2 1

_^3 ys 1.

"d'
e

L/J
Then matrix inversion gives

'xi 2/1 1"

X2 2/2 1

.^3 2/3 1.

— i
Ki]
C2
kaj

?

"d"
e

L/J
"^1 2/1 1"
X2 2/2 1

L 3̂ 2/3 1.

— 1
'Vi'
m
\.m\

These transformations may be written in a more compact form. In one coordinate,

q = D p , so p = D~^q,

where

a
b
c_

, q =
M
C2

kaj
, D =

'xi yi 1
X2 2/2 1
X3 2/3 1

and the point set D is the data matrix.

General Linear Fit

Usually these data points are determined by measurement and are accompanied by
random, normally distributed measurement errors. When more than the minimum three
points are specified, the transformation is overdetermined. The additional information
may be used to find a "best" (in the least-squares sense) statistical fit. The least-squares
method minimizes the squares of the differences between the actual transformations and

III.4 Transforming Coordinates from One Coordinate Plane to Another 0 113

those values predicted by the equations. The predicted values are

(= ax + by + c,

fj = dx + ey + f for i = 1,2,3.

The three equations to be minimized, for i = 1, 2 , . . . , n, are

i i

m i n ^ (C i - Cif = m i n ^ (0 - axi - byi - cf,

min^(7/ i - fjif = min^(r?^ - dxi - eyi - ff.

Minimize these quantities by differentiating with respect to a, 6, and c (and again for
d, e, and /) , set each to zero, and solve the system. For all n data points, this step gives
a covariance matrix, M, well-known to methods of statistical regression (Vandergraft
1983):

M = E XiVi E Vi E Vi

Hxi Y.yi " E l

= D^D.

The solutions are

"o"
b

\c_
= M - i

"d"
e
. / .

"E '^iSi

T,yiCi
.EO .

= M-^
" E XiTji'^

E ViVi
.EO

M" D^

M

•Ci

.CsJ

D^
^1

and

General Quadratic Fit

In practice, a second-order or higher fit may be desired because of slightly nonconstant
scale factors, for example. An exact second-order fit requires six data points using the
transformation equations

C = a^x^ + a^y^ + a^x + a2y + aixy + QQ,

rj = h^x^ + h^y^ + 63a; -|- 622/ + bixy + bo.

114 0 Modeling and Transformation

Each row, i, of the data matrix D now becomes [xf yf Xi yi Xiyi 1], for i —
1,2,.. . , 6, and the solutions are

"as"

_ao.

= D - i
"cr

.Ce.

and
"&5"

.K

= D - i
'^l]

.%.

Generahzing this second-order scheme to a least-squares fit, minimize

^{Ci - a^x'f - a^yf - a'^x^ - a2yi - alX^yi - ao)^,

Y^im - hx^ - b4yi - bsXi - b2yi - hiXiyi - h^f.

This gives the coefficient matrix, M:

M

Y.xi
ExfVi
Exf
Exhi
Exhi
E^f

Exhi
Eyf
ExiVi

Eyf
Zxivf
Eyf

Exf
Zx^yf
Exl
JlxiVi

T.xhi
T.xi

Exhi
Zyf
T,Xiyi

Eyf
Zxiyf
Hyi

Exfvi
E Xivf

Exhi
Exiyf
Exhi
J2xiyi

Y.x1
Y.yi
TjXi

T,yi
T,xiyi

n

= D^D, as before.

The solutions are

as
a4

^3

^2

ai

ao_

= M-^

ExH^
EyfQ

T,yiCi

Z-/ ^^ Vi si

ECi

and

b5

b4

63

&2

bi

>o.

= M-^

Zxhi
Eyfvi
YlXiTIi

EyiVi

E Xi yif].

Em

Note that operations on each coordinate take place completely independently. This
allows a Gaussian elimination upon matrix M to take place, transforming M augmented
by the column vector on the right-hand side into the solution vector. This technique is
implemented in the program code; other methods could also be used.

More generally, a weighted set of input data may be employed, as some of the data
points have positions whose accuracies are trusted with a higher degree of confidence

III.4 Transforming Coordinates from One Coordinate Plane to Another 0 115

than others. To use weighted values, each summation in the coefficient matrix and in
the right-hand column vector would include a factor Wi for a relative weight.

For practical graphics applications, the coordinate transformations described here are
based upon simple models that prove useful. Related methods such as the SVD (Golub
and Van Loan 1989) as used in a somewhat related gem (Wu 1992) generalize the
technique, but the requisite mathematical subroutine libraries are overkill for solving
the task at hand. The program presented below is both fully self-contained and carefully
designed.

0 C Code 0

#include <stdio.h>
#include <stdlib.h>

#define SQR(a) ((a)*(a))

typedef double MATX[10][10];
typedef double VECT[10];
typedef struct {double x; double y;} Point2;

Point2 pt[1023]; /* From coordinates */
zeta[1023], eta[1023]; /* To coordinates */

int npoints;

int Gauss (MATX ain, VECT bin, int n, VECT v)
/* Gaussian elimination by converting to upper triangular system.

Row interchanges are done via re-indexing sub[]. See Vandergraft:
Intro. Numerical Methods, 2ed, Academic Press, 1983, Chapter 6. */

{ MATX a; VECT b;
int i, j, k, last, index;
double big, absv;
int sub[21],•

for(]<:=0; Ic < n ; 'k++) { / * malce l o c a l c o p i e s */
f o r (j = 0 ; j < n ; j++) a [l c] [j] = a i n [Ic] [j] ;
b [k] = b i n [k] ;
}

l a s t= n - 1 ;
for (k= 0; k <= last; k++) sub[k]= k;
for (k= 0; k <= last-1; k++) {

big= 0.0;
for (i= k; i <= last; i++) {

absv= abs(a[sub[i]][k]);
if (absv > big)

{ big= absv; index= i; }
}

116 0 Modeling and Transformation

if (big == 0.0) return 0;
j= sub[k];
sub[k]= sub[index];
sub[index]= j;
big= 1.0/a[sub[k]][k];
for (i= k+1; i <= last; i++) {

a[sub[i]][k]= -a[sub[i]][k]*big;
for (j= k+1; j <= last; j++)

a [s u b [i]] [j] += a [s u b [i]] [k] * a [s u b [k]] [j] ,
b [s u b [i]] += a [s u b [i]] [k] * b [s u b [k]] ;
}

}
v[last]= b[sub[last]] / a[sub[last]][last];
for (k= last-1; k >= 0; k--) {

v[k]= b[sub[k]];
for (i= k+1; i <= last; i++)

v[k] = v[k] -a[sub[k]][i] * v[i];
v[k] = v[k] /a[sub[k]][k];

}
return 1;

}

void PrintMatrix(MATX a, VECT v, int size)
{ int r, c;

for(r= 0; r < size; r++) {
for(c= 0; c < size; C++) printf("%14.61f ",a[r][c]).
printfC %14.61f\n", v[r]);
}

printf("\n");
}

void PrintSolution (VECT v, int vectorsize, char wliicli)
/* Print the solution vector */
{ int k;

printf("Solution vector %c\n", which);
for(k = 0; k < vectorsize; k++)

if (abs(v[k]) < 1.0E6) printf("%14.6f ",v[k]);
else printf("%14.6e ", v[k]);

printf("\n");
}

void FirstOrderExact(VECT xv, VECT yv)
{ int k, ok; VECT b; MATX c;

for(k= 0; k<-2; k++) b[k] = zeta[k];
for(k= 0; k<=2; k++) {

c[k][0] = pt[k].x;
c[k][1] - pt[k].y;
c[k][2] = 1.0;
};

111.4 Transforming Coordinates from One Coordinate Plane to Another 0 117

printf("Augmented matrix:\n");
PrintMatrix(c, b, 3);
ok =Gauss(c, b, 3, xv);
PrintSolution(xv, 3, 'X');

for(k- 0; k<=2; k++) b[k] = eta[k];
for(k= 0; k<=2; k++) {

c [k] [0] = p t [k] . x ;
c [k] [1] = p t [k] . y ;
c [k] [2] = 1 .0 ;
} ;

PrintMatrix(c, b, 3);
ok =Gauss(c, b, 3, yv);
PrintSolution(yv, 3, 'Y');

void SecondOrderExact(VECT xv, VECT yv)
{ int k, ok; VECT b; MATX c;

for(k= 0; k<=5; k++) b[k] = zeta[k];
for(k= 0; k<=5; k++) {

c [k] [0]
c [k] [1]
c [k] [2]
c [k] [3]
c [k] [4]
c [k] [5]
}

= p t [k]
= p t [k]
= p t [k]
= p t [k]
= P t [k]
= 1;

. x * p t [k]

. y * p t [k]

. x;
• y ;
. x * p t [k]

. x;
• y ;

• y ;

printf("Augmented matrix:\n");
PrintMatrix(c, b, 6);
ok =Gauss(c, b, 6, xv);
printf("x = a5*xV2 + a4*yV2 + a3*x + a2*y + al*x*y + aO:\n"),
PrintSolution(xv, 6, 'X');

for(k= 0; k<=5; k++) b[k] = eta[k];
for(k-: 0; k< = 5; k++) {

c[k][0] = SQR(pt[k].X);
c [k] [1]
c [k] [2]
c [k] [3]
c [k] [4]
c [k] [5]
}

= S Q R (p t [k] . y) ;
= p t [k] . x ;
= p t [k] . y ;
= p t [k] . x * p t [k]
= 1;

printf("Augmented matrix:\n");
PrintMatrix(c, b, 6);
ok =Gauss(c, b, 6, yv);
printf("y = b5*xV2 + b4*yV2 + b3*x + b2*y + bl*x*y + bO:\n"),
PrintSolution(yv, 6, 'Y');

118 0 Modeling and Transformation

void FirstOrderLeastSquares(int npoints, VECT xv, VECT yv)

{ MATX c; VECT b;

double suinx=

sumd=

int k, ok;

0, suinxx=

0, sumdx=

double xt, yt;

for(k=0; k <

sumx +=

sumxx +=

sumy +=

sumyy +=

sumxy +=

sumd +=

sumdx +=

sumxy +=

}

npoints;

pt[k].x;

SQR(pt[k]

pt[k].y;

SQR(pt[k]

0,

0,

k++)

.X);

• y) ;
pt[k].x*pt[k]

zeta[k];

pt[k].x*z

sumy= 0, sumyy:

sumdy = 0;

{

• y;

eta[k];

pt[k].y*zeta[k];

sumxy=

c[0][0] = sumxx;

c[1][0] = sumxy;

c[2][0] = sumx;

c[0][1] = sumxy;

c[1][1] = sumyy;

c[2][1] = sumy;

c[0][2] = sumx;

c[l][2] = sumy;

c[2][2] = npoints;

b[0] = sumdx; b[l] = sumdy;

ok = Gauss (c, b, 3, xv) ;

b[2] = sumd;

}

sumd = sumdx = sumdy = 0;

for(k=0; k < npoints; k++) {

sumd += eta[k];

sumdx-i-= pt [k] .x*eta[k] ;

sumxy+= pt[k].y*eta[k];

};

b[0] = sumdx; b[l] = sumdy; b[2] = sumd;

ok = Gauss(c, b, 3, y v) ;

printf("residualsXn");

for(k=0; k < npoints; k++) {

xt = zeta[k] -(pt[k].x*xv[0] + pt[k].y*xv[l]

yt = eta[k] -(pt[k].x*yv[0] + pt[k].y*yv[l]

printf("%4d %12.6 %12.6\n", xt, y t) ;

}

xv[2])

yv[2]),

void SecondOrderLeastSquares(MATX c, int npoints, VECT xv, VECT yv)

{ int j, k, ok;

MATX c; VECT b;

double sumd=0, sumdx^^O, sumdx2 = 0, sumdy=0,

sumdy2 = 0, sumdxy = 0;

double px2, py2, xt, yt;

for(j=0; j<= 5; j++)

for(k=0; k<- 5; k++) c[j][k] = 0;

111.4 Transforming Coordinates from One Coordinate Plane to Another 0 119

for(k =0; k < npoints;
px2 = SQR(pt[k].X)
py2 = SQR(pt[k]

k++) {

c[0] [0
c[0][1
c[0] [2
c[0] [3
c[0] [4
c[0] [5
c[l] [1
c[l] [2
c[l] [3
c[l] [4
c[l] [5
c[2] [2
c[2] [3
c[2] [4
c[2] [5
c[3] [3
c[3] [4
c[3] [5
c[4] [4
c[4] [5

+=

+=

+=

y);
*px2 ;
*py2 ;
*pt[k].x;
*pt[k].y;
*pt[k].X

*̂ py2 ;
.X *py2;
•y *py2;
.X *py2 ̂

px2
px2
px2
px2
px2
px2
py2
pt[k]
pt[k].y
pt[k].X
py2;
px2;
pt[k].X
px2 *pt [k] .y;
pt[k].x;
py2;
pt[k].X *py2;
pt[k].y;
px2 *py2;
pt[k].X *pt[k]

/* coefficients for normal equations */

pt[k].y;

pt[k].y;

pt[k].y;

• y;

sumd
sumdx
sumdx2
sumdy
suindy2
sumdxy
}

+= zeta[k];
+= pt[k].X *zeta[k];
+= px2 *zeta[k];
+= p t [k] . y * z e t a [k] ;
+= py2 * z e t a [k] ;
+= p t [k] . x * p t [k] . y * z e t a [k] ;

c [l] [0]
c [2] [0]
c [3] [0]
c [4] [0]

= c [0] [1]
=c [0] [2]
=c[0] [3]
= c [0] [4]

/ * C o e f f i c i e n t m a t r i x i s symmet r i c a b o u t d i a g o n a l */
c [2] [1] = c [l] [2] ;
c [3] [1]
c [4] [1]

= c [l] [3]
= c [l] [4]

c [5] [0] = c [0] [5] ; c [5] [1] = c [l] [5] ,

c [5] [4] = c [4] [5] ; c [5] [5] = n p o i n t s ;

c [3] [2]
c [4] [2]
c [4] [3]
c [5] [2]
c [5] [3]

=c[2][3]

= c [2] [4]
= c [3] [4]
= c [2] [5]
= c [3] [5]

b [0] =sumdx2;
b [3] =sumdy;

b [l] =sumdy2;
b [4] =sumdxy;

b [2] =sumdx;
b [5] =sumd;

/ * new v e c t o r */

printf("Augmented matrix:\n");
PrintMatrix(c, b, 6) ;
ok =Gauss(c, b, 6, xv);
printf("X = a5*xV2 + a4*yV2 + a3*x + a2*y + al*x*y + aO:\n");
PrintSolution(xv, 6, 'X');

sumd = sumdx = sumdx2 = sumdy = sumdy2 = sumdxy =0;

120 0 Modeling and Transformation

for(k =0; k < npoints; k++) {
sumd += eta[k];
sumdx += pt[k].x *eta[k];
sumdx2 += px2 *eta[k];
suitidy += pt[k].y *eta[k];
sumdy2 += py2 *zeta[k];
sumdxy += pt[k].x *pt[k].y *eta[k];
}

/* Coefficient matrix must remain unchanged. */

b[0] =sumdx2; b[l] =sumdy2; b[2] =sumdx; /* New vector */
b[3] =sumdy; b[4] =sumdxy; b[5] =sumd;

ok = G a u s s (c , b , 6, y v) ;
p r i n t f C ' y = b5*xV2 + b4*yV2 + b3*x + b2*y + b l * x * y + b O : \ n ") ;
PrintSolution(yv, 6, 'Y');

printf("Residuals:\n") ;
for(k =0; k < npoints; k++) {

x t = S Q R { p t [k] . x) * x v [0] + S Q R (p t [k] . y) * x v [l] +
p t [k] . x *xv[2] + p t [k] . y * x v [3] +
p t [k] . x * p t [k] . y * x v [4] + x v [5] ;

x t = z e t a [k] - x t ;
y t = S Q R { p t [k] . x) * y v [0] + S Q R (p t [k] . y) * y v [l] +

p t [k] . x * y v [2] + p t [k] . y * y v [3] +
p t [k] . x * p t [k] . y * y v [4] + y v [5] ;

y t = e t a [k] - y t ;
printf("%4d %12.6f %12.6f\n", (k+1), xt, yt);

}

0 Bibliography 0
(Golub and Van Loan 1989) G. H. Golub and Charles F. Van Loan. Matrix Compu-

tations^ 2nd edition, Chapter 8.3, Computing the SVD, pages 427-436. Johns
Hopkins University Press, Baltimore, Maryland, 1989.

(Vandergraft 1983) James S. Vandergraft. Introduction to Numerical Computations,
2nd edition. Chapter 6. Academic Press, New York, 1983.

(Wu 1992) Xiaolin Wu. A linear-time simple bounding volume algorithm. In David
Kirk, editor, Graphics Gems III. AP Professional, Boston, 1992.

0 III.5
A Walk through BSP Trees

Norman Chin
Department of Computer Science
Columbia University
New York, New Yorl<
nc@cs.columbia.edu

0 Introduction 0

Binary space-partitioning (BSP) trees are data structures that allow for fast visible-
surface determination in environments where the viewer moves while the polygonal
objects remain static, as in interactive walkthroughs. This gem describes the construc-
tion of BSP trees and their traversal, which generates polygons in a sorted order suitable
for rendering. It concludes with an efficient viewer/object collision detection algorithm
based upon this versatile data structure.

0 Background 0

One solution to the visible-surface problem is to render a scene's polygons in back-
to-front order^ so that polygons nearer to the viewer overwrite those farther away.
Unfortunately, this simple painter's algorithm offers no consistent means of identifying
polygon depth; choosing either the extreme vertices or the centroid as the sorting key
fails in certain cases. As seen from above in Figure 1, polygon B is more distant than A
using either key, but will be incorrectly rendered before A. This algorithm also fails in
cases of cyclic overlaps and interpenetrating polygons (Figure 2). Here, no polygon can
be drawn first without incorrectly overwriting what should be in front of it. The depth
sort algorithm (Newell et al. 1972) solves all of these problems, but in a view-dependent
way.

The BSP-tree visible-surface algorithm (Fuchs et al. 1980) provides a simple, elegant,
and efficient solution to these problems in a view-independent way. A BSP tree is a
binary tree that represents a recursive partitioning of n-space, based upon an earlier
algorithm (Schumacker et al. 1969). In three-space, arbitrarily oriented planes partition
the scene. (A less general method employing axis-aligned planes in the context of ray
tracing was presented as a previous gem (Sung and Shirley 1992).) The back-to-front
rendering order is then determined by a tree traversal governed solely by the position of

^This order is also useful in some transparency and antialiasing algorithms (Foley et al. 1990).

Copyright (c) 1995 by Academic Press, Inc.
All r ights of reproduct ion in any form reserved.

^ ^ ^ IBM ISBN 0-12-543455-3

122 0 Modeling and Transformation

Farthest Vertices

Centroids ^

4 Viewer

Figure 1 . "Back-to-front" ambiguity.

Figure 2. Cyclic overlaps and penetration.

the viewer; no sorting key is needed. The BSP-tree algorithm deals with the problem of
cyclic overlaps and polygon interpenetration by splitting the offending polygons during

, the initial construction of the BSP tree, described below.

0 BSP-Tree Construction 0

The BSP tree is constructed only once for a given static scene. First, a polygon is
selected. Any one will do. Its plane partitions the scene into two half-spaces. One half-
space contains all remaining polygons in the positive side of this root polygon, relative
to its plane equation; the other contains all polygons in its negative side. Polygons
that straddle the plane are split by the plane, and their positive and negative pieces
are assigned to the appropriate half-space. (A related gem (Chin 1992) provides an
implementation for this operation for convex polygons.) This process recurs within
each half-space until that space is empty. The pseudocode for the BSP-tree construction
follows.

III.5 A Walk through BSP Trees 0 123

BSPnode *BSPconstructTree(POLYGON *polygonList)

{
/* choose a polygon's plane from a list of polygons */
plane= BSPchoosePlane(polygonList);

/* partition a list of polygons by the plane into 4 separate lists:
* -lists of polygons in negative/positive sides of the plane
* -lists of coplanar polygons facing in same/opposite directions as plane
*/

BSPpartitionFaceListWithPlane(plane,polygonList,&negativeList,&positiveList,
ScsameList, &oppList) ;

/* create node and save lists of polygons */
newBSPnode= allocateO;
newBSPnode->saineList= sameList; newBSPnode->oppList= oppList;

/* recursively process remaining polygons, if any, on either side */
if (negativeList == NULL) newBSPnode->negativeSide= NULL;
else newBSPnode->negativeSide= BSPconstructTree(negativeList);
if (positiveList == NULL) newBSPnode->positiveSide= NULL;
else newBSPnode->positiveSide= BSPconstructTree(positiveList);

return(newBSPnode);
} /* BSPconstructTree0 */

A sample construction (Figure 3) shows both the geometry and its BSP tree at
successive steps. The scene begins in Figure 3(a) with six polygons, depicted in 2D as
lines. Arrows represent their surface normals with the arrowhead indicating the direction
of the positive half-space. The — and + signs represent the respective negative and
positive BSP-tree branches. The circled letters represent polygons yet to be processed
for that half-space, that is, unassigned nodes.

First, select polygon E to define a root partitioning plane. It partitions the scene into
two half-spaces as indicated by the thin line in Figure 3(b). One half-space contains
all the remaining polygons in its positive side, i.e., B. The other half-space contains all
the remaining polygons in its negative side, i.e., A, A, and D. Since C straddles the
partitioning plane, it is split into Ci and C2. Deposit each portion of C into the appro-
priate half-space (Figure 3(b)). Node E becomes the root; its two branches (ellipses)
each contain a list of polygons yet to be processed for its corresponding half-space.

This process is continued recursively by choosing another plane within each half-
space to partition the remaining polygons. This continues until no planes remain, as
in Figures 3(c) and (d). Note that polygons coplanar to the selected partitioning plane
are kept in the same node under two separate lists: One list contains polygons facing
the same direction as the partitioning plane, and the other contains those facing the
opposite direction, that is, A and A respectively in Figure 3(c).

Whereas all polygons exhibiting cyclic overlaps or interpenetration will be appropri-
ately split during the building of the BSP tree, additional splitting of other polygons

124 0 Modeling and Transformation

(c)

Figure 3. Example of BSP-tree construction.

may also occur. For example, C did not exhibit any problems yet was still partitioned.
Note that all splitting occurs independent of the viewer's position and direction.

Partitioning Plane Selection

Different BSP trees can result depending on which polygon's plane was selected at each
step. As an example, consider the alternative BSP tree shown in Figure 4. This BSP tree
is one node smaller because no polygon was split during its construction. Therefore, it
is preferable to select that polygon which minimizes the amount of splitting. Floors and
walls are good candidates in typical scenes since they tend not to split other objects.
One heuristic examines the first n polygons at each step and selects the one whose plane
splits the least number of other polygons in the list (Fuchs et al. 1983).

III.5 A Walk through BSP Trees 0 125

0 -/v
A(A) B

Figure 4. Alternative BSP tree of scene in Figure 3.

0 BSP-Tree Traversal 0
The BSP tree's greatest advantage is that a special in-order traversal of it provides for
an 0(n) back-to-front ordering of polygons from an arbitrary viewpoint. This traversal
recursively does the following. To render polygon P , first all of the polygons in P 's half-
space opposite the viewer are rendered, then P is rendered, then all of the polygons
in P's half-space containing the viewer are rendered. The pseudocode for the BSP-tree
traversal follows.

void BSPtraverseTreeAndRender(bspNode,position)

{
if (bspNode == NULL) return;

/* in which side of the plane is the viewer? is it the + side? */
if (BSPisViewerlnPositiveSideOfPlane(bspNode->plane,position)) {

/* yes, recurse on - side, render this node, and recurse on + side */
BSPtraverseTreeAndRender(bspNode->negativeSide,position);
/* transform, clip and project polygons in this node to display */
render (bspNode->saineList) ;
render(bspNode->oppList); /* comment out for back-face culling */
BSPtraverseTreeAndRender(bspNode->positiveSide,position);

}
else { /* viewer is in - side or on plane */

/* recurse on + side, render this node, and recurse on - side */
BSPtraverseTreeAndRender(bspNode->positiveSide,position);
/* transform, clip and project polygons in this node to display */
render(bspNode->oppList);
render(bspNode->sameList) ; /* comment out for back-face culling */
BSPtraverseTreeAndRender(bspNode->negativeSide,position);

}
} /* BSPtraverseTreeAndRender() */

A sample traversal follows for viewpoint t appearing in Figure 3(d). First, t is on the
positive side of node £', so traverse the negative side of node E. Next, t is on the
negative side of node A so A's positive side is traversed. Render C2 since it is the only
polygon there. Next, render node A's polygons: A and A. (Coplanar polygons in the

126 0 Modeling and Transformation

• Viewer • Viewer

(a) (b)

Figure 5. "Back-to-front" ordering is independent of distance.

same node can be rendered in any order.) After that, traverse the negative side of node
A, rendering D. Next, traverse the positive side of node E. As Ci's negative half-space
is empty, render Ci. Finally, traverse the positive side of node Ci, rendering B.

The complete back-to-front ordering is [C2 ^A ^A ^D ,E ^Ci , 5] . A similar BSP-
tree traversal for viewpoint u is [B ^Ci ^E ,D ^A ^A ,C2]. Continuing to the BSP
tree in Figure 4, viewpoints t and u yield the orderings [C ,A ,^4 ,£" ,£) ,B] and
[B ,D ,E ^A ,A ,C] respectively. Note that these orderings are different despite an
identical viewpoint and scene, since their BSP trees differ.

It is interesting that this "back-to-front" ordering is independent of distance to the
viewer. For example, in Figure 5(a), polygon B lies in the half-space opposite the viewer
and is rendered first; F then overwrites it. However, in Figure 5(b), B is still rendered
first even though F is clearly much farther away from the viewer. This is also apparent
in Figure 3(d) from viewpoint u. Although Ci is second only to B in the sorted hst in
line 5 above, E and D (which are rendered immediately after Ci) are actually farther
away from u than Ci.

More remarkably, this "back-to-front" ordering is independent not only of distance,
but of direction as well. That is, a given position generates the same ordering regardless
of viewer direction. Therefore, only the viewing positions, not directions, need be shown
in Figures 3(d) and 4. For example, if viewer t pivots in place to face away from the
scene, the BSP tree will still be traversed in its entirety, yielding again the same back-to-
front ordering. However, none of the polygons will be visible after sending them down
the graphics pipeline where they are ultimately transformed, clipped, and projected
onto the display (Foley et al. 1990).

If the viewer is surrounded by polygons, as in the case of viewpoint v in Figure
3(d), the "back-to-front" ordering is generated as follows. First, v lies in the positive
side of node £", so traverse its negative side toward node A. Since v is in ^ ' s negative
side, traverse A's positive side, rendering C2. Return to render A and A. Traverse ^ ' s
negative side, rendering D. Return to render E. Next, traverse the positive side of
E. Since v is in the positive side of Ci and its negative branch is empty, render Ci.
Traverse Ci's positive side, finally rendering B. The ordering is [C2, A^ A, D, E^ Ci^B].
Similarly, the ordering for v in Figure 4 yields [C, J5, D, A, A, E]. Even though the viewer

III.5 A Walk through BSP Trees 0 127

Figure 6. View-frustum culling.

is surrounded by polygons, no polygons are eliminated from the sorted list. They still
need to be rendered by sending them down the graphics pipeline. Therefore, when using
BSP trees as a visible-surface algorithm, there is no advantage in balancing the BSP
tree since the entire tree is traversed.

Note that the traversal returns merely an ordering; it does not reveal which polygons
are actually within the view frustum. It guarantees only that when polygons are sent
down the graphics pipeline in this "back-to-front" order, any polygon that should be
obscured by another will be, with respect to the viewer.

The next two sections discuss two optimizations to the BSP-tree traversal: back-face
culling and view-frustum culling.

Back-Face Culling

Back-face culling can be done at no cost during this traversal as indicated in the traversal
pseudocode. Whenever the viewer is in the negative half-space of the polygon to be
rendered, that polygon can be culled. For example, from viewpoint t in Figure 3(d),
polygons A and B are tagged as back-facing. Similarly, A, Ci, C2, D, and E are marked
as such with respect to u. Likewise, A and D may be back-face culled with respect to
V. Note that even with back-face culling, the entire BSP tree is traversed.

View-Frustum Culling

In addition to supporting back-face culling, BSP trees can be used to accomplish view-
frustum culling (Foley et al. 1990). If all of the view frustum's eight vertices lie com-
pletely on one side of a polygon's plane, then the entire subtree on the opposite side
can be eliminated from further traversal. (Determining which side of a plane a point is
in has been discussed in a previous gem (Chin 1992).) For example, the view frustum,
shown as a filled quadrilateral in Figure 6, lies completely in the negative side of polygon
5 's plane. Thus, B and its positive subtree consisting of A can be completely pruned.
The traversal is called recursively with B's negative subtree, which contains C. Since

128 <> Modeling and Transformation

the view-frustum straddles C's plane, it is not culled; the ordered list consists merely
of [C]. By comparison, without view-frustum culling the sorted list is [C , S , A]. Note
that view-frustum culling does not guarantee that all polygons outside the view frustum
are omitted. For example, C remains in the ordered list, though it lies outside the view
frustum. As mentioned previously, the graphics pipeline ultimately clips C during final
rendering.

The following pseudocode incorporates view-frustum culling into the BSP-tree traver-
sal.

void BSPtraverseTreeAndCullViewFrustum(bspNode,position)

{
if (bspNode == NULL) return;

side= whichSideIsViewFrustuin(bspNode->plane, viewFrustiim) ;
if (side == POSITIVE)

BSPtraverseTreeAndCuliViewFrus turn(bspNode->pos i t iveS ide,pos i tion);
else if (side == NEGATIVE)

BSPtraverseTreeAndCullViewFrustum(bspNode->negativeSide,position);
else { assert(side == BOTH);

/* insert 2nd if-statement of BSPtraverseTreeAndRender() and
* replace BSPtraverseTreeAndRender() with
* BSPtraverseTreeAndCullViewFrustum()
*/

}
} /* BSPtraverseTreeAndCullViewFrustuin() */

0 A Viewer Collision Detection Algorithm 0

A desirable addition to interactive walkthroughs is the ability to detect collisions be-
tween the viewer and the objects in the scene. This is easily added by modifying the
BSP-tree data structure to represent solid models (Thibault and Naylor 1987). The main
difference between this and the previous BSP-tree data structure is the addition of "in"
and "out" leaf nodes which correspond to convex regions that are either inside some
object or outside all objects respectively. Figure 7 depicts a BSP-tree solid-modeling rep-
resentation of a scene containing two concave objects with outward-pointing normals.
There are six "in" leaf nodes and eight "out" leaf nodes, corresponding to the same
number of "in" and "out" regions in the scene. BSPconstructTreeO can be made to
generate this BSP-tree variant by simply modifying the following two statements from

if (negativeList == NULL) newBSPnode->negativeSide= NULL;

if (positiveList == NULL) newBSPnode->positiveSide= NULL;

to

III.5 A Walk through BSP Trees 0 129

in out c °̂ t f^ c

- / \ - / \ - / \
in ij in out ^ out

-/ V I ou

" J
- / \+
in out

Figure 7. BSP-tree solid-modeling representation of two concave objects.

if (negativeList == NULL) newBSPnode->negativeSide= allocate(IN);

if (positiveList == NULL) newBSPnode->positiveSide= allocate(OUT);

The BSP-tree traversal operates as before except that leaf nodes are ignored.
Given this BSP-tree solid-modeling representation, collision detection between the

viewer and the objects in the scene is simple. First, the viewer's path from one frame
to the next is modeled as a line segment. Next the endpoints are classified as "on" an
object, "in" an object, or "out" (side) all objects. The classifier filters each point down
the BSP tree toward the leaves to determine the point's state (described below). A
collision is detected if at least one endpoint is "on" or if the endpoints have dissimilar
states. If the test fails, a collision is still possible since objects may lie between the
endpoints. In this case a line segment is classified next by filtering it down the BSP
tree toward the leaves. A collision occurs if and only if the line segment fragments have
dissimilar states.

Point and Line Segnnent Classification

A point is classified as follows. First it is compared with the root's plane. It is then
filtered down the branch for the side in which it lies. The process continues recursively
until it reaches a leaf node, whereupon the point is classified as "in" or "out." If it is
on the plane, it is filtered down both sides and the classifications are compared. If the
two classifications differ, the point is "on" since it is on a boundary; otherwise, it is
classified by the common value (Thibault and Naylor 1987). Classifying a line segment
is similar except that if a line segment straddles a plane, it is split and filtered down
the corresponding sides to be classified separately.

130 0 Modeling and Transformation

Note that all planes are assigned a small tolerance to determine if a primitive is on
the plane. Balancing the tree, in this case, will result in a more efficient classification
since primitives are filtered down to the leaves (Thibault and Naylor 1987).

0 Implementation 0

The routines BSPconstructTreeO and BSPtraverseTreeAndRenderO contain the C
code for the BSP-tree solid-modeling construction and traversal procedures, respec-
tively. The input format of the polygons for BSPconstructTreeO is detailed in a prior
gem (Chin 1992) along with the splitter, BSPpartit ionFaceListWithPlaneO, which
has been slightly modified for this gem. A heuristic that selects a "good" partitioning
plane is implemented in BSPchoosePlaneO. The function BSPdidViewerCollideWith
Scene 0 supplies the viewer collision detection algorithm which calls
BSPclassifyPointO and BSPclass i fyLinelnter iorO to classify their correspond-
ing primitives. Left as an exercise is BSPtraverseTreeAndCullViewFrustumO. Most
of the core routines are listed at the end of this gem; the complete source code resides
on the accompanying disk. Pseudocode for a sample driver for these routines follows.

void main()

{
POSITION position= NULL, newPosition= NULL;
/* construct BSP tree for a given scene */
BSPnode *bspTree= BSPconstructTree(getScene());

do {
/* display scene for a given viewpoint */
BSPtraverseTreeAndRender(bspTree,position);

newPosition= wait for viewer's new position;
/* check for a collision */
if (BSPdidViewerCollideWithScene(bspTree,position,newPosition))

print "Collision!"
position^ newPosition;

} while (user does not exit);

BSPfreeTree(bspTree);
} /* mainO */

0 Conclusion 0

The BSP tree was presented as an efficient data structure used to interactively render
polygons in correct back-to-front^ order. Close study showed that the order is not pre-

^Rendering in front-to-back order is an alternative (Gordon and Chen 1991).

III.5 A Walk through BSP Trees 0 131

cisely "back-to-front," but is functionally equivalent to it. Optimizations were described
that further cull the polygon list. Finally, the BSP-tree framework supports additional
methods, including viewer collision detection, Boolean operations (Thibault and Naylor
1987) and shadow generation (Chin and Feiner 1989, Chin and Feiner 1992).

0 Acknowledgments 0

I would like to thank Alan Paeth and George Wolberg for their many suggestions on
improving this gem. A special thanks goes to my advisor Steve Feiner for his com-
ments and for his encouragment in implementing the BSP-based solid modeler, which
ultimately resulted in my deeper understanding of the field.

0 C Code 0

bsp.h

/* bsp.h: header file for BSP tree algorithm
* Copyright (c) Norman Chin

#ifndef
#define

#include
#include
#include
#include
#include
#include

_BSP_INCLUDED
_BSP_INCLUDED

<stdio.h>
<stdlib.h>
<assert.h>
<math.h>
<values.h>
"GraphicsGems.h"

/* exitO */
/* assert 0 */
/* fabsO */
/* MAXINT */

typedef struct { float rr,gg,bb; } COLOR;
typedef struct { float xx,yy,zz; } POINT;
typedef struct { float aa,bb,cc,dd; } PLANE;

typedef struct vertexTag {
float xx,yy,zz; /* vertex position */
struct vertexTag *vnext; /* pointer to next vertex in CCW order */

} VERTEX;
#define NULL_VERTEX ((VERTEX *) NULL)

typedef struct faceTag {
COLOR color; /* color of face */
VERTEX *vhead; /* head of list of vertices */
PLANE plane; /* plane equation of face */
struct faceTag *fnext; /* pointer to next face */

} FACE;
#define NULL_FACE ((FACE *) NULL)

132 0 Modeling and Transformation

typedef enum {PARTITION_NODE= 'p', IN_NODE= 'i', OUT_NODE= 'o'} NODE_TYPE;

typedef struct partitionnodeTag {
FACE *sameDir, *oppDir; /* pointers to faces embedded in node */

struct bspnodeTag *negativeSide, *positiveSide; /* "-" & "+" branches */
} PARTITIONNODE;
#define NULL_PARTITIONNODE ((PARTITIONNODE *) NULL)

typedef struct bspnodeTag {
NODE_TYPE kind; /* kind of BSP node */

PARTITIONNODE *node; /* if kind == (IN_NODE || OUT_NODE) then NULL */
} BSPNODE;
#define NULL_BSPNODE ((BSPNODE *) NULL)

#define TOLER 0.0000076
#define IS_EQ(a,b) ((fabs((double)(a)-(b)) >= (double) TOLER) ? 0 : 1)
typedef enum (NEGATIVE^ -1, ZERO= 0, POSITIVE^ 1} SIGN;
#define FSIGN(f) (((f) < -TOLER) ? NEGATIVE : ((f) > TOLER ? POSITIVE : ZERO))

/* external functions */
BSPNODE *BSPconstructTree(FACE **faceList);
boolean BSPisViewerlnPositiveSideOfPlane(const PLANE *plane,const POINT *position) ,
void BSPtraverseTreeAndRender(const BSPNODE *bspNode,const POINT ^position);
boolean BSPdidViewerCollideWithScene(const POINT *from, const POINT *to,

const BSPNODE *bspTree);
/* the complete file is on disk */
#endif /* _BSP_INCLUDED */

bspTree.c

/* bspTree.c: module to construct and traverse a BSP tree.

* Copyright (c) Norman Chin

#include "bsp.h"

/* local functions */

static void BSPchoosePlane(FACE *faceList,PLANE *plane);
static boolean doesFaceStraddlePlane(const FACE *face,const PLANE *plane);

/* Returns a BSP tree of scene from a list of convex faces.
* These faces' vertices are oriented in counterclockwise order where the last
* vertex is a duplicate of the first, i.e., a square has five vertices.
•

* faceList - list of faces
*/

BSPNODE *BSPconstructTree(FACE **faceList)

{
BSPNODE *newBspNode; PLANE plane;
FACE *sameDirList,*oppDirList, *faceNegList,*facePosList;

III.5 A Walk through BSP Trees 0 133

/* choose plane to split scene with */
BSPchoosePlane(*faceList,&plane);
BSPpartitionFaceListWithPlane(&plane,faceList,&faceNegList,&facePosList,

&sameDirList,&oppDirList);
assert(*faceList == NULL_FACE); assert(sameDirList != NULL_FACE);

/* construct the tree */
newBspNode= allocBspNode(PARTITION_NODE,sameDirList,oppDirList);

/* construct tree's "-" branch */
if (faceNegList == NULL_FACE)
newBspNode->node->negativeSide= allocBspNode(IN_NODE,NULL_FACE,NULL_FACE);
else newBspNode->node->negativeSide= BSPconstructTree(&faceNegList);

/* construct tree's "+" branch */
if (facePosList == NULL_FACE)
newBspNode->node->positiveSide=allocBspNode(OUT_NODE,NULL_FACE,NULL_FACE);
else newBspNode->node->positiveSide= BSPconstructTree(&facePosList);

return(newBspNode);
} /* BSPconstructTree0 */

/* Traverses BSP tree to render scene back-to-front based on viewer position.

* bspNode - a node in BSP tree
* position - position of viewer
*/

void BSPtraverseTreeAndRender(const BSPNODE *bspNode,const POINT *position)
{

if (bspNode == NULL_BSPNODE) return;

if (bspNode->kind == PARTITION_NODE) {
if (BSPisViewerlnPositiveSideOfPlane(&bspNode->node->sameDir->plane,position)){

BSPtraverseTreeAndRender(bspNode->node->negativeSide,position);
drawFaceList(stdout,bspNode->node->sameDir);
drawFaceList(stdout,bspNode->node->oppDir); /* back-face cull */
BSPtraverseTreeAndRender(bspNode->node->positiveSide,position);

}
else {

BSPtraverseTreeAndRender(bspNode->node->positiveSide,position);
drawFaceList(stdout,bspNode->node->oppDir);
drawFaceList(stdout,bspNode->node->sameDir); /* back-face cull */
BSPtraverseTreeAndRender(bspNode->node->negativeSide,position);

}
}
else assert(bspNode->kind == IN_NODE || bspNode->kind == OUT_NODE);

} /* BSPtraverseTreeAndRender() */

134 0 Modeling and Transformation

/* Chooses plane with which to partition.
* The algorithm is to examine the first MAX_CANDIDATES on face list. For
* each candidate, count how many splits it would make against the scene.
* Then return the one with the minimum amount of splits as the
* partitioning plane.
•

* faceList - list of faces
* plane - plane equation returned
*/

static void BSPchoosePlane(FACE *faceList,PLANE *plane)
{

FACE *rootrav; int ii;
int minCount= MAXINT;
FACE *chosenRoot= faceList; /* pick first face for now */

assert(faceList != NULL_FACE) ;
/* for all candidates... */

#define MAX_CANDIDATES 100
for (rootrav= faceList, ii= 0; rootrav != NULL_FACE && ii< MAX_CANDIDATES;

rootrav= rootrav->fnext, ii++) {
FACE *ftrav; int count= 0;
/* for all faces in scene other than itself... */
for (ftrav= faceList; ftrav != NULL_FACE; ftrav= ftrav->fnext) {

if (ftrav != rootrav)
if (doesFaceStraddlePlane(ftrav,&rootrav->plane)) count++;

}
/* remember minimum count and its corresponding face */
if (count < minCount) { minCount= count; chosenRoot= rootrav; }
if (count == 0) break; /* can't do better than 0 so return this plane */

}
plane= chosenRoot->plane; / return partitioning plane */

} /* BSPchoosePlane() */

/* Returns a boolean to indicate whether the face straddles the plane

* face - face to check
* plane - plane
*/

static boolean doesFaceStraddlePlane(const FACE *face, const PLANE *plane)
{

boolean anyNegative= 0, anyPositive= 0;
VERTEX *vtrav;

assert(face->vhead != NULL_VERTEX);
/* for all vertices... */
for (vtrav= face->vhead; vtrav->vnext !=NULL_VERTEX; vtrav= vtrav->vnext) {

float value= plane->aa*vtrav->xx + plane->bb*vtrav->yy +
plane->cc*vtrav->zz + plane->dd;

/* check which side vertex is on relative to plane */
SIGN sign= FSIGN(value);
if (sign == NEGATIVE) anyNegative= 1;
else if (sign == POSITIVE) anyPositive= 1;

III.5 A Walk through BSP Trees 0 135

/* if vertices on both sides of plane then face straddles else it no */
if (anyNegative && anyPositive) return(l);

}
return(0);

} /* doesFaceStraddlePlane() */

/* Returns a boolean to indicate whether or not point is in + side of plane.

* plane - plane
* position - position of point
*/

boolean BSPisViewerlnPositiveSideOfPlane(const PLANE *plane,const POINT *position)
{

float dp= plane->aa*position->xx + plane->bb*position->yy +
plane->cc*position->zz + plane->dd;

return((dp > 0.0) ? 1 : 0);
} /* BSPisViewerlnPositiveSideOfPlane() */
/* the complete file is on disk */
/*** bspTree.c ***/

bspCollide.c

/* bspCollide.c: module to detect collisions between the viewer and static
* objects in an environment represented as a BSP tree.
* Copyright (c) Norman Chin
*/

#include "bsp.h"

/* flags to indicate if any piece of a line segment is inside any polyhedron
* or outside all polyhedra

static boolean anyPieceOfLineIn, anyPieceOfLineOut;

/* local functions - see function definition */
static int BSPclassifyPoint(const POINT *point, const BSPNODE *bspNode);
static void BSPclassifyLinelnterior(const POINT *from, const POINT *to,

const BSPNODE *bspNode);

/* Returns a boolean to indicate whether or not a collision had occurred
* between the viewer and any static objects in an environment represented as
* a BSP tree.
•*•
* from - start position of viewer
* to - end position of viewer
* bspTree - BSP tree of scene
*/

boolean BSPdidViewerCollideWithScene(const POINT *from, const POINT *to,
const BSPNODE *bspTree)

{
/* first classify the endpoints */
int signl= BSPclassifyPoint(from,bspTree);

136 0 Modeling and Transformation

int sign2= BSPclassifyPoint(to,bspTree);

/* collision occurs iff there's a state change between endpoints or
* either endpoint is on an object
*/

if (signl == 0 || sign2 == 0 || signl != sign2) return(l);
else {

anyPieceOfLineIn= anyPieceOfLineOut= 0; /* clear flags */
/* since we already classified the endpoints, try interior of line */
/* this routine will set the flags to appropriate values */
BSPclassifyLinelnterior(from,to,bspTree);

/* if line interior is inside and outside an object, collision detected*/
/* else no collision detected */
return((anyPieceOfLineIn && anyPieceOfLineOut) ? 1 : 0);

}
} /* BSPdidViewerCollideWithSceneO */

/* Classifies point as to whether or not it is inside, outside or on an object
* represented as a BSP tree, where inside is -1, outside is 1, on is 0.

* point - position of point
* bspNode - a node in BSP tree
*/

static int BSPclassifyPoint(const POINT *point,const BSPNODE *bspNode)
{

if (bspNode == NULL_BSPNODE) return(l); /* point is out since no tree */

if (bspNode->kind == PARTITION_NODE) { /* compare point with plane */
const PLANE *plane= &bspNode->node->sameDir->plane;
float dp= plane->aa*point->xx + plane->bb*point->yy +

plane->cc*point->zz + plane->dd;
if (dp < -TOLER) /* point on "-" side, filter down "-" branch */

return(BSPclassifyPoint(point,bspNode->node->negativeSide));
else if (dp > TOLER) /* point on "+" side, filter down "+" branch */

return(BSPclassifyPoint(point,bspNode->node->positiveSide));
else {

/* point is on plane, so classify the neighborhood of point by
* filtering the same point down both branches.
*/

int signl= BSPclassifyPoint(point,bspNode->node->negativeSide);
int sign2= BSPclassifyPoint(point,bspNode->node->positiveSide);
/* if classification is same then return it otherwise it's on */
return((signl == sign2) ? signl : 0);

}
}
else if (bspNode->kind == OUT_NODE) return(l); /* point is outside */
else { assert(bspNode->kind == IN_NODE); return(-l); } /* point is inside */

} /* BSPclassifyPoint0 */

/* Classifies interior of line segment (not including endpoints) as to whether
* or not any piece is inside or outside an object represented as a BSP tree.
* If it's on, it's recursively called on both half-spaces to set the flags.

III.5 A Walk through BSP Trees <} 137

* There is no explicit on condition like we have with BSPclassifyPoint(),
•

* from - endpoint of line segment
* to - other endpoint of line segment
* bspNode - a node in BSP tree
*/

static void BSPclassifyLinelnterior(const POINT *from,const POINT *to,
const BSPNODE *bspNode)

{
if (bspNode->kind == PARTITION_NODE) { /* compare line segment with plane */

float ixx,iyY,izz;
const PLANE *plane= &bspNode->node->sameDir->plane;
float dpl= plane->aa*from->xx + plane->bb*from->yy +

plane->cc*from->zz + plane->dd;
float dp2= plane->aa*to->xx + plane->bb*to->Yy +

plane->cc*to->zz + plane->dd;
SIGN signl= FSIGN(dpl); SIGN sign2= FSIGN(dp2);

if ((signl == NEGATIVE && sign2 == POSITIVE) ||
(signl == POSITIVE && sign2 == NEGATIVE)) { /* split! */

SIGN check= anyEdgelntersectWithPlane(from->xx,from->yy,from->zz,
to->xx,to->yy,to->zz,
plane,&ixx,&iyy,&izz);

POINT iPoint;
assert(check != ZERO);

/* filter split line segments down appropriate branches */
iPoint.xx= ixx; iPoint.yy= iyy; iPoint.zz= izz;
if (signl == NEGATIVE) { assert(sign2 == POSITIVE);

BSPclassifyLinelnterior(from,&iPoint,bspNode->node->negativeSide);
BSPclassifyLinelnterior(to,&iPoint,bspNode->node->positiveSide);

}
else { assert(signl == POSITIVE && sign2 == NEGATIVE);

BSPclassifyLinelnterior(from,&iPoint,bspNode->node->positiveSide);
BSPclassifyLinelnterior(to,&iPoint,bspNode->node->negativeSide);

}
}
else { /* no split,so on same side */

if (signl == ZERO && sign2 == ZERO) {
BSPclassifyLinelnterior(from,to,bspNode->node->negativeSide);
BSPclassifyLinelnterior(from,to,bspNode->node->positiveSide);

}
else if (signl == NEGATIVE || sign2 == NEGATIVE) {

BSPclassifyLinelnterior(from,to,bspNode->node->negativeSide);
}
else { assert(signl == POSITIVE || sign2 == POSITIVE);

BSPclassifyLinelnterior(from,to,bspNode->node->positiveSide);
}

}
}
else if (bspNode->kind == IN_NODE) anyPieceOfLineIn= 1; /* line inside */
else { assert(bspNode->kind == OUT_NODE); anyPieceOfLineOut= 1; }

138 0 Modeling and Transformation

} /* BSPclassifyLinelnterior0 */
/*** bspCollide.c ***/

0 Bibliography 0
(Chin and Feiner 1989) Norman Chin and Steven K. Feiner. Near real-time shadow

generation using BSP trees. Computer Graphics (SIGGRAPH ^89 Proceedings)^
23(3):99-106, July 1989.

(Chin and Feiner 1992) Norman Chin and Steven K. Feiner. Fast object-precision
shadow generation for area light sources using BSP trees. Computer Graphics
(1992 Symposium on Interactive 3D Graphics)^ pages 21 30, March 1992.

(Chin 1992) Norman Chin. Partitioning a 3-D convex polygon with an arbitrary plane.
In David Kirk, editor, Graphics Gems III, pages 219-222,502-510. AP Professional,
Boston, 1992.

(Foley et al. 1990) J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer
Graphics: Principles and Practice. Addison-Wesley, Reading, MA, 1990.

(Fuchs et al. 1980) H. Fuchs, A. M. Kedem, and B. F. Naylor. On visible surface genera-
tion by a priori tree structures. Computer Graphics (SIGGRAPH '80 Proceedings),
14(3):124-133, July 1980.

(Fuchs et al. 1983) H. Fuchs, G. D. Abram, and E. D. Grant. Near real-time shaded dis-
play of rigid objects. Computer Graphics (SIGGRAPH '83 Proceedings), 17(3) :65-
72, July 1983.

(Gordon and Chen 1991) D. Gordon and S. Chen. Front-to-back display of BSP trees.
IEEE Computer Graphics and Applications, ll(5):79-85, September 1991.

(Newell et al. 1972) M. E. Newell, R. G. Newell, and T. L. Sancha. A solution to the
hidden surface problem. Proceedings of the ACM National Conference '12, pages
443-450, 1972.

(Schumacker et al. 1969) R. Schumacker, B. Brand, M. Gilliland, and W. Sharp. Study
for applying computer-generated images to visual simulation. Technical Report
AFHRL-TR-69-14, USAF Human Resources Laboratory, 1969.

(Sung and Shirley 1992) K. Sung and P. Shirley. Ray tracing with the BSP tree. In
David Kirk, editor, Graphics Gems III, pages 271-274. AP Professional, Boston,
1992.

(Thibault and Naylor 1987) W. C. Thibault and B. F. Naylor. Set operations on
polyhedra using BSP trees. Computer Graphics (SIGGRAPH '81 Proceedings),
21(4):153-162, July 1987.

0III.6
Generic Implementation of Axial
Deformation Techniques

Carole Blanc
Laboratoire Bordelais de Recherche en Informatique (LaBRI)
Talence, France
blanc @labri. u-bordeaux. fr

0 Introduction 0
Global deformation techniques were first introduced to extend the set of primitives that
may be used in constructive solid modeling (Barr 1984, Sederberg and Parry 1986). In
fact, these techniques are more general and have been consequently adapted to tessel-
lated surfaces or parametric patches as well. This gem proposes a generic implemen-
tation of several of these global deformation techniques. The term "generic" focuses
on the fact that the implementation depends neither on a given geometric model for
surfaces nor on specific data structures for internal representation.

The principle of global deformation is to map each point {x,y,z) in the Euclidian
space R^ onto another point {x\ y' ^z') under a deformation function f{x^y^z^a^b,c,...).
The additional parameters (a, 6, c,.. .) used by the deformation function are either con-
stants or values returned by shape functions. Moreover, according to the way these
shape functions are defined, global deformation techniques may be further classified as
procedural or interactive.

There is a subset of global deformation techniques for which the shape functions
operate upon only one coordinate (typically z) of the initial point P. For this and related
reasons (Lazarus et al. 1992), such techniques are called axial deformation techniques in
what follows. Although they are relatively specific compared to more general techniques
such as FFD (Sederberg and Parry 1986) or EFFD (Coquihart 1990), axial deformations
have been found useful in many computer graphics applications; for instance, all the
procedural techniques proposed in Barr's original work on global deformations (Barr
1984) were axial deformations.

0 Description 0
The general mapping function for axial deformations may be expressed by

(x', y', z') - / (x , y, z, a{z), b{z),c{z),...). (1)

Copyright (c) 1995 by Academic Press, Inc.
All rights of reproduct ion in any form reserved.

^ ^ ^ IBM ISBN 0-12-543455-3

140 0 Modeling and Transformation

The axial deformations proposed here are defined with a simphfied form of Equation (1)
that uses only two additional parameters:

{x\y',z') = f{x,y,z,s{z),a), (2)

where ^(z): R -^ [0,1] is the shape function and a G R is the amplitude of the defor-
mation. The role of both parameters may be understood intuitively: When the shape
function s{z) is null for a given point (x, y, z), it means that this point will be unchanged
by the deformation; similarly, when the amplitude a is null, the whole object remains
undeformed.

In the generic implementation proposed here, each deformation routine acts only on
points: It takes the coordinates of a point on the original object, computes its displace-
ment according to the deformation function, and finally returns the new coordinates of
the point. A complete implementation of axial deformations should include some inter-
active tools for defining the shape function. Such a tool lies outside the scope of this
gem, but many interesting procedural deformations may be obtained by using general-
purpose functions, such as the wave generators described elsewhere in this volume (gem
VILl).

Six different axial deformations are provided (pinch, taper, mold, twist, shear, bend),
which differ only by the function / that is applied on each point. Figure 1 shows
several objects that may be obtained with the six deformation operators, starting from
a parallelepiped. In fact, two kinds of operators are used here: The first kind (pinch,
shear, bend) takes the Cartesian coordinates (x, ^, z) of the point in the local frame,
whereas the second kind (taper, mold, twist) acts on the cylindrical coordinates (r, ^, z).
The following lines give an overview of the work that is done by each operator:

pinch: The x coordinate is scaled according to a and s{z).
taper: The r coordinate is scaled according to a and s{z),
mold: The r coordinate is scaled according to a and s{9).
twist: The 6 coordinate is scaled according to a and s{z).
shear: The z axis is translated according to a and s{z).
bend: The z axis is rotated according to a and s{z).

For each deformation technique, two routines are provided. The first (local.*) as-
sumes that the coordinates of the incoming point are already expressed in the local
frame where the deformation is defined (i.e., the frame for which the z coordinate is
used by the shape function). The second one (world.*) takes the coordinates of the
point in the world frame and returns the coordinates in the same frame. For this, it
needs an additional parameter defining the local frame and performs the deformation
within this frame. The implementation uses the toolbox of macro functions given on
the distribution disk (Schlick 1995) which provides the frame conversion routines.

///. 6 Generic Implementation of Axial Deformation Techniques 0 141

(a) (b) (c) (d) (e) (f) (g)

Figure 1. (a) Original object, (b) pinch, (c) taper, (d) mold, (e) twist, (f) shear, (g) bend.

Finally, note that a unit-cube frame (Blanc and Schlick 1994) may be employed instead
of the traditional frame having unit vectors, because it facilitates the deformation of
objects independently of their position, orientation, and size.

0 Source Files 0

AXD.H : Carole Blanc (4 June 1994)

This package provides an implementation of 6 different algorithms
for doing axial deformations.

"Generic Implementation of Axial Deformation Techniques"
in Graphics Gems V (edited by A. Paeth), Academic Press

*/

#ifndef _AXD_
#define _AXD_

** This package uses the "Toolbox of Macros Functions for Computer Graphics"
** which provides files : tool.h, real.h, uint.h, sint.h, vec?.h and mat?.h

#include "real.h"

typedef real (*shape) (real);

extern void local_pinch (rv3 *Point, shape Shape, real Ampli);

extern void world__pinch (rv3 *Point, frameS Frame, shape Shape, real Ampli),
extern void local_taper (rv3 *Point, shape Shape, real Ampli);
extern void world_taper (rv3 *Point, frame3 Frame, shape Shape, real Ampli),
extern void local_mould (rv3 *Point, shape Shape, real Ampli);
extern void world_mould (rv3 *Point, frame3 Frame, shape Shape, real Ampli),

142 0 Modeling and Transformation

extern void local_twist (rv3 *Point, shape Shape, real Ampli);
extern void world_twist (rv3 *Point, frameS Frame, shape Shape, real Ampli);
extern void local_shear (rv3 *Point, shape Shape, real Ampli);
extern void world_shear (rv3 *Point, frame3 Frame, shape Shape, real Ampli);
extern void local_bend (rv3 *Point, shape Shape, real Ampli);
extern void world_bend (rv3 *Point, frame3 Frame, shape Shape, real Ampli) ;

#endif

AXD.C : Carole Blanc (4 June 1994)

This package provides an implementation of 6 different algorithms
for doing axial deformations.

"Generic Implementation of Axial Deformation Techniques"
in Graphics Gems V (edited by A. Paeth), Academic Press

* */

#include "axd.h"
#include "mat3.h"

/*
** Each "local_*" routines inputs/outputs the following arguments
• *

** Input: Point = coordinates of the point in the local frame
** Shape = shape function of the deformation
** Ampli = amplitude of the deformation
** Output: Point = coordinates of the deformed point in the local frame

** Each "world_*" routines inputs/outputs the following arguments
• *

** Input: Point = coordinates of the point in the world frame
** Frame = local frame in which the deformation is applied
** Shape = shape function of the deformation
** Ampli = amplitude of the deformation
** Output: Point = coordinates of the deformed point in the world frame
• •

** Note: The "Frame" argument must be initialized by MAKE_FRAME3 (see "mat3.h")

*/

/*
** pinch : Scale the x coordinate of the object according to z

*/

void local__pinch (realvec3 *Point, shape Shape, real Ampli)

{

Point->x *= 1.0 - Ampli * Shape (Point->z);

}

///. 6 Generic Implementation of Axial Deformation Techniques 0 143

void world_pinch (realvecS *Point, frameS Frame, shape Shape, real Ampli)

{
L0CAL_FRAME3 (Point, Frame);

local_pinch (Point, Shape, Ampli);
W0RLD_FRAME3 (Point, Frame);

}

/*
** taper : Scale the polar radius of the object according to z
*/

void local_taper (realvecS *Point, shape Shape, real Ampli)

{
register real Tmp;

Tmp = 1.0 - Ampli * Shape (Point->z); Point->x *= Tmp; Point->y *= Tmp;
}

void world_taper (realvecS *Point, frame3 Frame, shape Shape, real Ampli)

{
L0CAL_FRAME3 (Point, Frame);

local_taper (Point, Shape, Ampli);
W0RLD_FRAME3 (Point, Frame);

}

/*
** mould : Scale the polar radius of the object according to the polar angle
*/

void local_mould (realvec3 *Point, shape Shape, real Ampli)

{
register real Tmp;

Tmp = atan2 (Point->y, Point->x) / PI;

Tmp = 1.0 - Ampli * Shape (Tmp); Point->x *= Tmp; Point->y *= Tmp;

}

void world_mould (realvec3 *Point, frame3 Frame, shape Shape, real Ampli)

{
L0CAL_FRAME3 (Point, Frame);
local_mould (Point, Shape, Ampli);
W0RLD_FRAME3 (Point, Frame);

}

/*
** twist : Scale the polar angle of the object according to z
*/

144 0 Modeling and Transformation

void local_twist (realvecS *Point, shape Shape, real Ampli)

{
register real Tmp, Cos, Sin;

Tmp = PI * Ampli * Shape (Point->z);
Cos = cos (Tmp) ; Sin = sin (Tmp) ; Tmp = Point->x;
Point->x = Cos * Tmp - Sin * Point->y;
Point->y = Sin * Tmp + Cos * Point->y;

}

void world_twist (realvec3 *Point, frame3 Frame, shape Shape, real Ampli)

{
L0CAL_FRAME3 (Point, Frame);
local_twist (Point, Shape, Ampli);

W0RLD_FRAME3 (Point, Frame);

}

** shear : Translate the z axis of the object along x according to z
*/

void local_shear (realvec3 *Point, shape Shape, real Ampli)

{

Point->x += Ampli * Shape (Point->z);

}

void world_shear (realvec3 *Point, frame3 Frame, shape Shape, real Ampli)
{
L0CAL_FRAME3 (Point, Frame);
local_shear (Point, Shape, Ampli);
W0RLD_FRAME3 (Point, Frame);

}

/*
** bend : Rotate the z axis of the object around y according to z
*/

void local_bend (realvec3 *Point, shape Shape, real Ampli)

{
register real Tmp, Cos, Sin;

Tmp = PI * Ampli * Shape (Point->z);
Cos = cos (Tmp); Sin = sin (Tmp); Tmp = Point->z;
Point->z = Cos * Tmp - Sin * Point->x;

Point->x = Sin * Tmp + Cos * Point->x;

}

void world_bend (realvec3 *Point, frame3 Frame, shape Shape, real Ampli)

{
L0CAL_FRAME3 (Point, Frame);
local_bend (Point, Shape, Ampli);
W0RLD_FRAME3 (Point, Frame);

}

111.6 Generic Implementation of Axial Deformation Techniques 0 145

0 Bibliography 0
(Barr 1984) A. Barr. Global and local deformations of solid primitives. Computer

Graphics, 18(3):21-30, 1984.

(Blanc and Schlick 1994) C. Blanc and C. Schlick. Easy transformations between carte-
sian, cylindrical and spherical coordinates. Technical Report 832/94, LaBRI, 1994.

(Coquillart 1990) S. Coquillart. Extended free form deformations: A sculpturing tool
for 3D geometric modeling. Computer Graphics, 24(4): 187-196, 1990.

(Lazarus et al. 1992) F. Lazarus, S. Coquillart, and P. Jancene. Interactive axial de-
formations (in French). In Proc. of Groplan 92 (Nantes, France), pages 117-124,
1992.

(Schlick 1995) C. Schlick. A toolbox of macro functions for computer graphics. In
Graphics Gems V. Academic Press, 1995.

(Sederberg and Parry 1986) T. Sederberg and S. Parry. Free-form deformations of solid
geometric models. Computer Graphics, 20(4): 151-160, 1986.

This Page Intentionally Left Blank

IV • I Y •

Curves and Surfaces

The gems in this section describe curves and surfaces. This is the book's largest con-
tributed section. The gems chosen support a straightforward machine implementation
of the methods presented.

In the first two gems, Goldman catalogs the identities that underlie the univariate
and bivariate Bernstein (IV. 1) and the B-spline (IV.2) basis functions. The entries in-
clude historical citations. Their compact notation (and the parallel treatment in IV. 1)
add further value by better revealing the deep structure of these important models.
Turkowski (IV.3) derives an equation for circular arc "bending" of arcs bisected from
a parent of known bend. By this equation, recursive binary subdivision may be di-
rectly employed in order to render these curves using a compact and efficient routine,
de Figueiredo (IV.4) employs a related nonuniform curve subdivision in order to solve
problems of curve length, rendering, and point on curve testing. Ahn (IV.5) provides an
efficient computation of the vertices of any ellipsoid. The code minimizes trigonomet-
ric evaluations and produces the edge and face lists used to describe these polyhedral
approximations. Bajaj and Xu (IV.6) derive conditions for curves through a sparse(st)
set of points. They apply the formulas to join parametric cubic curves using a reduced
data set while preserving continuity (pseudocode included). Data thinning of digitized
font descriptions is one immediate application. Gravesen (IV.7) estimates the length
of Bezier curves using six related subdivision methods. Extensive empirical data sum-
marizes their behavior in reference to a large number of curves (not shown), while two
representative curves provide worthwhile benchmarks for such estimators. Miller (IV.8)
describes the efficient rendering of Bezier curves by applying continuously evaluated
subexpressions to the factorial and exponential terms that describe such curves. The
section closes with a tutorial by Shoemake (IV.9) that describes a broad class of uni-
variate and multivariate curves and surfaces in terms of simple linear interpolation.
This grand unification helps demythologize the field while simultaneously presenting
compact formulas in terms of one underlying function.

147

This Page Intentionally Left Blank

Oiv.1
Identities for the Univariate and
Bivariate Bernstein Basis
Functions

Ronald N. Goldman
Department of Computer Science
Rice University
Houston, Texas
rng@cs.rice.edu

0 Introduction 0
Bezier curves and surfaces are essential to a wide variety of applications in computer
graphics and geometric modeling, and the Bernstein basis functions play a central role
in the construction and analysis of these curve and surface schemes. Here we shall adopt
the standard notation 5^(t),0 < k < n, and B'^j{s,t)^0 < i + j < n, to represent the
univariate and bivariate Bernstein basis functions of degree n.

Let {Pk} and {Pij} be arrays of control points. Then Bezier curves and surfaces are
defined in the following fashion.

Bezier Curve

C{t) = Y,BmPk. te[OA]
k

Tensor Product Bezier Surface

Pis,t) = ^Y.Bris)B^{t)Pij, s,t e [0,1]
i 3

Triangular Bezier Surface

T{s,t) = Y, Bidi^^'^)PiJ^ (^'0 eA^ = {{s,t) I s,t > 0 a n d 5 + t < 1}
0<^+j<r^

The purpose of this gem is to assemble in one place those identities involving the uni-
variate and bivariate Bernstein basis functions that help to facilitate the symbolic and
numeric manipulation of Bezier curves and surfaces. This gem presents these identities
in a consistent framework and may serve both as a compact reference and as a subject
for further study.

Copyright (c) 1995 by Academic Press, Inc.
All r ights of reproduct ion in any form reserved.

IBM ISBN 0-12-543455-3

150 0 Curves and Surfaces

The formulas are organized into twenty-five categories. In general, each category
begins with the formulas for the univariate bases and then lists the corresponding
formulas for the bivariate bases, though in some cases no direct univariate (xvii) or
bivariate (xi) analogues exist.

Currently these identities are widely scattered throughout the literature. For all of
the more complicated identities, citations have been provided where proofs of these
formulas or analogous formulas may be found. However, some of the simpler identities
are so well known or so easy to derive from other identities that no citation is supplied.

0 Identities for the Bernstein Basis Functions 0
(i) Definitions

(a)

Bnt) = (^y{i-tr-', o<fc< n

n\ n\
kj k\{n-k)\

(b)

B^j{s,t)= (.^^sH^{l-s-t)''-'-^, 0<i + j <n

n \ n\

(ii) Non-negativity

(a)

(b)

(iii) Symmetries

(a)

B^it) > 0, 0 < ^ < 1

Bm = Bl.ki^-t)

IV. 11dentities for the Univariate and Bivariate Bernstein Basis Functions 0 151

(b)

(c)

(d)

(iv) Corner Values

(a)

(b)

(c)

(d)

(e)

(v) Boundary Values

(a)

Brj{s,t) = Br,^_,_j{s,i~s-t)

Bl^{s,t) = B^_i_^^^{\-s~t,t)

Bl^{s,t) = Bl,{t,s)

= l,k = 0

BUl)^0,k^n

= l^k = n

S-,(0,0) = 0 , (i , j) # (0 , 0)

= l ,(z,j) = (0,0)

B^j{l,0)=0,{i,j)^in,0)

= l , (i , j) = (n,0)

BfjiO,l)=0,ii,j)j^iO,n)

= l , (i , i) = (0,n)

152 0 Curves and Surfaces

(b)

= Bf{t), 1 = 0

(c)

5r |^ . (s , l - s) = 0, i + j ^ n
= Br'{s), i + j = n

(vi) Partitions of Unity (Farin 1988)

(a)

(b)

(vii) Alternating Sums

(a)

k

EE^M(^*) = I

^ (- i) ^ 5 , " (i) = (i - 2 t r

(b)

j2J2{-iy+'B^jis,t) = (1 - 25 - 2tr
i 3

(viii) Conversion to Monomial Form (Polya and Schoenberg 1958)

(a)

Bl{t)/{\-tr={^^u\ u = t/{l-t)

(b)

Bk fc"WA"=(^)«"-', u = {i-t)/t

IV. 11dentities for the Univariate and Bivariate Bernstein Basis Functions <0> 153

(c)

Brj{s,t)/{1 - s - t r = (^ i) ' ' ' ' ' ' ' " = ^/(^ -s-t),v = t/{l -s-t)

(d)

B^j{s, 1)18^ =(j^ .") w"-^-J't;^ u={l-s- t)/s, V = t/s

(e)

B^^jis, t)/t^ = (. ""^y^v^-'-^, u = s/t, v = {l-s- t)/t

(ix) Representation in Terms of Monomials (Farouki and Rajan 1988)

(a)

Bm= E (-i)'"'(fc)("-fc)*'
k<j<n

(b)

^i:.(->*)=EE(-ir^^'^'"''0'',-)(r_^7^-)-'*'' o<k+i<n

(x) Representation of Monomials (Farouki and Rajan 1988)

(a)

•^/ DTI/

n ̂

(b)

j<A:<n

fc>U>j (^
V J.

154 0 Curves and Surfaces

(xi) Linear Independence

(a)

Y^ CkBl{t) = 0 <;=» Cfe = 0 for all k
k

(b)

^ ^ C i j B , ^ j (s , t) = 0 4=^ Cij = 0, for all i,j
i J

(xii) Descartes' Law of Signs (Polya and Schoenberg 1958)

(a)

Zeros in (0,1) of < ^ CkB]^{t) > < Sign alternations of (CQ, c i , . . . , C^)

(b) There is no known analogous formula for the bivariate Bernstein basis func-
tions.

(xiii) Recursion (Farin 1988)

(a)

Bm = {^-t)B';^-\t) + tB]^zl{t)

(b)

Bl^{s, t) = {l-s- t)B^-\s, t) + sB^ll^is, t) + tBljl.is, t)

(xiv) Discrete Convolution

(a)

{B^{t),...,Bl{t)) = {{\-t),t]*---*{{l-tlt]

n factors

(b)

{BlS),...,Bl^{t)) = {{l-s~t),s,t}*---*{{l-s-t),s,t}
' . '

n factors

IV. 11dentities for the Univariate and Bivariate Bernstein Basis Functions 0 155

(xv) Subdivision (Goldman 1982, 1983)

(a)

B^rt) = Yl Bhr)Bm
i<k<n

(b)

(c)

(d)

(e)

(f)

5f((l-i)r + i)= E B:SkHr)Bm
0<k<i

k \p-\-q=i

B^jisu, sv + t) = Y^Yl Blj-i{u, v)Bli{s, t)
k I

B^jitu + s,tv) = Y.Yl BUJ{U, v)Bli{s, t)
k I

BI^{{1 -s-t)u + s,{l-s-t)v + t)=Y.Y. ^r-t7-^(^' ̂)̂ W(̂ ' 0
k I

(g)

5 [j ((l — S - t)Ul + SVi + tWi, (1 — 5 - t)u2 + SV2 + tW2)

= EE I E Bl^^-\uuU2)BlM.V2)B[j{w^.W2) \ Bli{s,t)
k I y a-\-c-\-e=i,b-\-d-\-f=j

(xvi) Partial Derivatives (Farin 1988)

(a)

dBm/dt = n{B^Zl{t)-Br\t)}

156 0 Curves and Surfaces

(b)

-^^jc'/*'=i^.j; (-i)"0)̂ »"-7w
0<j<p

(c)

(d)

(e)

dBlj{s,t)/ds = n{Bl-l^{s,t) - B^-\s,t)}

dB?j{s,t)/dt = n{B^-},{s,t) - B^-\s,t)}

dP+w^jis,t)/dsPdt'^

_ ! _ _ ^ ^ (_ i) . . , (P) (^) B^:-l,is, t)

(xvii) Directional Derivatives (Farin 1986)

(a)

Du{Blj{s, t)] = n{u,B^ll^{s, t) + U2B^-},{s, t) - (m + U2)Blj\s, t))

(b)

D^{Bl^{s,t)]

(D^i denotes the mth directional derivative in the direction u — (1^1,^2).)

(xviii) Integrals (Farin 1988)

(a)

(b)

0<j<fc

IV. 11dentities for tlie Univariate and Bivariate Bernstein Basis Functions 0 157

(c)

/ ' BUr)dT ^ -^

Jo n-\-
(d)

(e)

(f)

(g)

(h)

(i)

(J)

n+ 1

i:sr,..,..--j:f-s^

^1-t B?-^^

/-i.»>,,M. = E - ^
h<i

1-t m^'^ B^^\t)
Jo '^ n + 1

k>j-\-l

k<j

1-s R'^+l Br'is)
Jo '̂ n + 1

/ / Bf,.(<T,r)(iadr = ^ -^
(n + l)(n + 2)

158 0 Curves and Surfaces

(xix) Degree Elevation (Farin 1988)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

l̂ + l - f c ^ n + l .
{i-t)Bnt)= ^ ^ ^ Bi^\t)

tBm = '^^B-xiit)

Bm = ^^i^Br\t) + ^^B-aii^)

^Br,M = ^^B^^\]^{s,t)

tBT.M = f±\B-]^,{s,t)

BU^,t) = ^^^±l-^Br;Hs,t)

(xx) Products and Higher-Order Degree Elevation (Farouki and Rajan 1988)

(a)

BTit)Bm = ^i^B-nt)
J + k,

IV. 11dentities for the Univariate and Bivariate Bernstein Basis Functions 0 159

(b)

m\ n

0<J<m
\3 + k.

(c)

m \ n

i + J^ j + 1

m \ n

(d)

[i + k j + l)

(xxi) Generating Functions

(a)

Y,BUt)x' = {{l-t) + txr
k

(b)

J2BUt)e'y = {{l-t) + teyr
k

(c)

E E ^"i(^' *)̂ '2/̂ ' = {(1 - 5 -«) + ^^ + *y}"
i 3

(d)

E E BW^ t)e'-e^' = {(i-s-t) + se- + te^"

160 0 Curves and Surfaces

(xxii) Marsden Identities (Cavaretta and Micchelli 1992, Marsden 1970)

(a)

(b)

{sx+ty+ir = EE(^+i)'(y+^yBUs,t)
i J

(xxiii) de Boor-Fix Formulas
(de Boor and Fix 1973, Lodha and Goldman 1994, Zhao and Sun 1988)

(a)

(b)

{^) E E Q 0 (n -p -QV-d ' ^ ' ^BUO,Oydsm" = 6i,uhi
p 1

(xxiv) Relationships between Univariate and Bivariate Basis Functions
(Goldman and Filip 1987, Goldman 1983)

(a)

(b)

(c)

0<j<n—i

0<i<n—j

BUs + t)= E BTj{s,t)
i-\-j=k

IV. 11dentities for the Univariate and Bivariate Bernstein Basis Functions 0 161

(d)

(e)

k I

(xxv) Conversion between Bivariate and Tensor Product Bases
(Goldman and Filip 1987, Brueckner 1980)

(a)

fk\ fl\fm + n-k-l

BT{s)B-it) = E E ^'^)^^n^ ' " ' ' ^^^^^^'^ '^
[n

(b)

n \ (p\ (q\ (n — p\ (n — q^

^-Bl{s)Bf{t)
k,l P,q

0 Acknowledgment 0
This work was partially supported by NSF grant CCR-9113239.

0 Bibliography 0
(de Boor and Fix 1973) C. de Boor and G. Fix. Spline approximation by quasi-

interpolants. J. Approx. Theory^ 8:19-45, 1973.

(Brueckner 1980) I. Brueckner. Construction of Bezier points of quadrilaterals from
those of triangles. Computer-Aided Design^ 12:21-24, 1980.

(Cavaretta and Micchelli 1992) A. Cavaretta and C. Micchelli. Pyramid patches pro-
vide potential polynomial paradigms. In T. Lyche and L. Schumaker, editors.
Mathematical Methods in CAGD II, pages 69-100. Academic Press, Boston, 1992.

162 0 Curves and Surfaces

(Farin 1986) G. Farin. Triangular Bernstein-Bezier patches. Computer Aided Geomet-
ric Design, 3:83-127, 1986.

(Farin 1988) G. Farin. Curves and Surfaces for Computer Aided Geometric Design: A
Practical Guide. Academic Press, Inc., New York, 1988.

(Farouki and Rajan 1988) R. T. Farouki and V. T. Rajan. Algorithms for polynomials
in Bernstein form. Computer Aided Geometric Design, 5:1-26, 1988.

(Goldman 1982) R. N. Goldman. Using degenerate Bezier triangles and tetrahedra to
subdivide Bezier curves. Computer-Aided Design, 14(6):307-311, 1982.

(Goldman 1983) R. N. Goldman. Subdivision algorithms for Bezier triangles.
Computer-Aided Design, 15(3):159-166, 1983.

(Goldman and Filip 1987) R. N. Goldman and D. Filip. Conversion from Bezier rect-
angles to Bezier triangles. Computer-Aided Design, 19(l):25-28, 1987.

(Lodha and Goldman 1994) S. Lodha and R. N. Goldman. A multivariate generaliza-
tion of the de Boor-Fix formula. In Pierre-Jean Laurent, Alain Le Mehaute, and
Larry Schumaker, editors. Curves and Surfaces in Geometric Design, pages 301-
310. A.K. Peters, Ltd., 1994.

(Marsden 1970) M. J. Marsden. An identity for spline functions with applications to
variation-diminishing spline approximation. J. Approx. Theory, 3:7-49, 1970.

(Polya and Schoenberg 1958) G. Polya and I. Schoenberg. Remarks on De La Vallee
Poussin means and convex conformal maps of the circle. Pacific Jour, of Math.,
8:296-334, 1958.

(Zhao and Sun 1988) K. Zhao and J. Sun. Dual bases of multivariate Bernstein-Bezier
polynomials. Computer Aided Geometric Design, 5:119-125, 1988.

OlV.2
Identities for the B-Spline Basis
Functions

Ronald N. Goldman
Department of Computer Science
Rice University
Houston, Texas
rng@cs.rice.edu

<> Introduction 0
The purpose of this gem is to collect in one place those properties and identities of
the B-spline basis functions that are most helpful for understanding and investigating
B-spline curves and tensor product B-spline surfaces. This gem presents these identities
in a consistent framework and may serve both as a compact reference and as a source
for additional investigation. Further discussion and proofs of most of these identities
can be found in general references books on splines (Bartels et al. 1987, de Boor 1978,
Schumaker 1981). Citations are provided for some of the less common identities.

<> Notation 0
The A:th B-spline basis function, Nk^n{^)^ of degree n over the knot vector to, t i , . . . , t ^
is a piecewise polynomial of degree n with breakpoints at the knots and support in the
interval [t/c,tjt+n-hi]- The smoothness at each knot depends on its multiplicity. Usually
the B-spline basis functions are defined recursively, though explicit formulas in terms
of divided differences are also known (see below).

B-spline curves and surfaces are constructed by setting

C{t) = EkNkAt)Pk (curves)
S{u^v) = Yji 12j Ni,m{u)Nj^riiy)Pij (tcusor product surfaces).

NURBS curves and surfaces are defined similarly by introducing a collection of scalar
weights, multiplying the control points by the weights, and scaling by a denominator
that is the sum of the weights times the basis functions. Thus,

^^^^ _ Ek^kAt)^kPk (NURBS curves)

S{u,v) = ~^ 1^ (tensor product NURBS surfaces).
S p J2n 'i^P,qNp,m(u)Np,n{v)

-'q

1RQ

Copyright (c) 1995 by Academic Press, Inc.
All r ights of reproduct ion in any form reserved.

IBM ISBN 0-12-543455-3

164 0 Curves and Surfaces

When there is no confusion about the location of the knots, the notation Nk^n{t)
denotes the B-sphne basis function of degree n with support in the interval [tk, tk-\-n-\-i]'
Otherwise, knots are made explicit:

Nk,n{t I tk', " ' 1 ik+n+i) = the B-splinc basis function of degree n with
breakpoints at the knots t^ , . . . , t^j+n+i and support
in the interval [t^, tjt+n+i]-

In several formulas it is necessary to normalize by dividing each B-spline by the length
of its support. An abbreviated (and easier to remember) notation may be used:

Nk,n{t)/Support = Nk,ri{t)/{tk+n+l " tk)-

Finally, the notation F[xo^... ^Xn] denotes the divided difference of a function F
evaluated at the parameters XQ, - - - ^Xn] A^ denotes the simplex

{{vi,...,Vn+i) I vi,...,Vn+i > 0 and E^fc = 1}, and

{x-t)l = ̂ (x - 1) ^ x>t
0 x<t

0 Algebraic Identities for B-Spline Basis Functions 0

(i) Compact Support

S u p p o r t {A^fc,n(0} = [tk^tk-^n+l]

(ii) Smoothness at the Knots

r appears /x times in the sequence tjt , . . . , ĵt+n-f i = > Nk,n{t) is (7^~^ at r

(iii) Interpolation at the Knots

tj-^l = • ' ' = tjj^n = > Nj^ri{tj-\-l) = 1

(iv) Evaluation at the Knots

^k.nV'k^j I Â:? • • • ^tk+n+l) — ^k,n-l{ik-\-j | /̂c? • • • 7 ^ fc+ j - l 5 ^/c+j+15 • • • 5^fc+n+l)

(v) Non-negativity

IV.2 Identities for the B-Spline Basis Functions 0 165

(vi) Partition of Unity

k

(vii) Recursion

,n-\-l{t) — {{t — tk)/{tk-\-n-hl ~ tk)}Nk,n{t)

+ {{tk+n+2 - t)/{tk+n+2 " tk+l)}Nk+l,n{t)

Nk,n-^l{t) = {t- tk)Nk,n{t)/Support + {tk+n-h2 " t)Nk-^i^ri{t)/SuppOVt

(viii) Differentiation

dNk^n{t)/dt = n{Nk^n-l{t)/{tk-\-n - tk) - Nk-^i^n-l{t)/{tk+n+l " ^A:-fl)}

dNk,n{t)/dt = n{Nk,n-iit)/Support - Nk+i^n-iit)/Support}

(ix) Integration

^Support I Support J (^ + 1)

^Support I Support J I n! J /c, • • •, fc+n+i

y_oo I S u p p o r t / I S u p p o r t / ' ' * ~ r ^ (m + n + 1) ! / ^ ^ ^^+

(Here the subscripts x and ?/ denote the variable with respect to which to
compute the divided difference.)

(x) Linear Independence

5 3 ^kNk,n{t) = 0 ^=^ Ck = Q for all k
k

(xi) Variation Diminishing Property

Sign alternations in [tn^tm-n) of
. k

< Sign alternations (CQ, . . . , c^)

166 <> Curves and Surfaces

(xii) Nodes

t = Yllitk+i + ••• + tk+n)/n]Nk,nit)
k

(xiii) Representation of the Monomials

n!
IT^*'^ = X]] lI(*fc+<T(i) • • • *fc+(T(i)) } Nk,n{t) {cr = permutation of { 1 , . . . , n})

j ! (n

(xiv) Divided Difference Formula

Nk,n{t) -= i-ir+^tk+n+l - tk){t - X)l[tk, . . . , tk+n+l]

M = (-ir-(*-xr,[.....,w.]
(xv) Marsden Identity (Marsden 1970)

k

(xvi) de Boor-Fix Formula (de Boor and Fix 1973)

for all r G {tk+i,tk+n)
(xvii) Knot Insertion (Boehm 1980)

Nk,n{t\tk, • • • , tk+n+l) = \ — \ Nk^n{t \tki- -• ,T," - tk+n)
I ^k+n ~ '^k)

+ \ 7 (]^k+l,n{t I tk+l, . . . , r , . . . , tk+n+l)
I f^k+n+l ~ f^k+1 J

(xviii) Degree Elevation (Prautzsch 1984)

Nk,n{t U/c, • • • ,tk+n+l) = 22'^k,n+l{t | ^/c, • • • ,tk+j,tk+j, • • • tA;+n+l) / (^ + 1)
J

(xix) Continuous Convolution Formula for Uniform B-splines

/

CXD

No^n-i{t-x \0,...,n)dx
- O O

A ô,n(̂ I 0 , . . . ,n + 1) = X[o,i] * • • • * X[o,i](^ factors)

X[o,i] = characteristic function on [0,1]

IV.2 Identities for ttie B-Spline Basis Functions 0 167

<> Acknowledgment 0
This work was partially supported by NSF grant CCR-9113239.

0 Bibliography 0
(Bartels et al. 1987) R. Bartels, J. Beatty, and B. Barsky. An Introduction to Splines

for Use in Computer Graphics and Geometric Modeling. Morgan Kaufmann
Publishers, Inc., 1987.

(Boehm 1980) W. Boehm. Inserting new knots into B-spline curves. Computer-Aided
Design, 12:199-201, 1980.

(de Boor 1978) C. de Boor. A Practical Guide to Splines. Springer, 1978.

(de Boor and Fix 1973) C. de Boor and G. Fix. Spline approximation by quasi-
interpolants. J. Approx. Theory, 8:19-45, 1973.

(Marsden 1970) M. J. Marsden. An identity for spline functions with applications to
variation-diminishing spline approximation. J. Approx. Theory, 3:7-49, 1970.

(Prautzsch 1984) H. Prautzsch. Degree elevation of B-spline curves. Computer Aided
Geometric Design, 1:193-198, 1984.

(Schumaker 1981) L. Schumaker. Spline Functions: Basic Theory. John Wiley and
Sons, New York, 1981.

OlV.3
Circular Arc Subdivision

Ken Turkowski
Apple Computer, Inc.
Cupertino, California
turk@apple.com

0 Introduction 0

This gem presents an algebraic solution to the rendering problem of circular arcs. These
forms commonly arise in graphic design. For instance, well-designed typefaces may apply
a very slight curvature on a portion of a letterform to produce a profound aesthetic
effect-^

A circular arc may be represented in terms of the center and radius of its parent
circle, plus the starting and ending angles 6st and Bend- This suggests a first-principles
solution that generates successive points on the arc by evaluating the sine and cosine
of a series of intermediate angles:

X = XQ + r cos 6 with

y ^yo + r sin(9, Ost <0 < Oend-

Clearly, this approach is computationally intensive. Moreover, the method has nu-
merical problems if the radius is large, the circle's center is remote, or the values have
limited precision (e.g., fixed-point or even single-precision floating point). All these un-
desirable conditions arise for any arc having a very small bend, as its radius of curvature
rapidly grows to infinity.

An algebraic, vector-based approach instead subdivides the arc into two halves until
the (inverse radius of) curvature goes to zero and a vector suffices. This suggests a recur-
sive implementation that can also terminate when a sufficient number of intermediate
vertices have been produced (i.e., the length of the intermediate vector is very small,
independent of curvature). This approach avoids both trigonometric operations and
ill-conditioned formulas. The method is derived from related work (Karow 1987) based
upon a suggestion. Both the expressions and an error analysis are presented below.

^Hermann Zapf's Optima is such an example, resembling his well-known Helvetica save for a slight
curve on otherwise vertical strokes.

Copyright (c) 1995 by Academic Press, Inc.
All rights of reproduct ion in any form reserved.
IBM ISBN 0-12-543455-3

IV.3 Circular Arc Subdivision 0 169

(̂ ^O'̂ o)

i^b'Vb)

Figure 1. Bisecting and quad-secting the arc.

i^^,y^)

<> Derivation 0

The circular arc is represented by its endpoints and the chordal deviation:

(xo, yo, xi , yi, d).

The sign of d is used to distinguish between the two arcs that he on either side of the
chord that joins the endpoints (in Figure 1, d is positive).

The bisection point of each arc is used as an endpoint for each half arc:

Vb

2
J/O +J/1 ^,xr-_xo

where

L = yj{xi - XQY + (yi - yoY

is the length of the chord.
The chordal deviation d' ̂ or sagitta, of the bisected arc can be approximated by

4

In other words, when an arc is divided into congruent "sub-arc" halves, their chordal
deviation is divided by about four.

By repeated bisection of the arc, the chordal deviation is reduced with quadratic con-
vergence. The arc is then replaced with a series of sub-arcs until a tolerance is reached.
This approximation works well for arcs subtending less than about 75°; however, this
depends upon the resolution and arc radius (estimated by d).

170 0 Curves and Surfaces

0 Proof 0
The ratio between the two chordal deviations can be expressed as

d _ 1 — cos 6

d/^ l - c o s f

where 9 is the angle subtended by the smaller arc. Substituting cos^ = 2cos^ f ~" ^
yields

d l - (2 c O s 2 f - l) 1 - C 0 s 2 f /^ e\

-J, = ^ 9—- = 2-; r = 2 1 + cos - .
d' l - c o s | l - c o s f V 2 J

This is an exact representation. Expanding its reciprocal as a Taylor series about zero
gives

d 2(1 + cos f) 4 ^ 6 4 ^ 1 5 3 6 ^ " ^ ^ '̂

the desired result.
The error in the approximation of d' can be approximated well by retaining terms

through the quadratic, |^. The exact error is

' l - c o s f l \
e^d' -d' = d 2

1 - COS ^ 4

0 C Implementation 0
/* arcdivide.c - recursive circular arc subdivision (FP version) */

#define DMAX 0.5 /* max chordal deviation = 1/2 pixel */

#include <math.h>
#include <GraphicsGems.h>

/* Function prototype for externally defined functions */
void DrawLine(Point2 pO, Point2 pi);

void
DrawArc(Point2 pO, Point2 pi, double d)

{
if (fabs(d) <= DMAX) DrawLine(pO, pi);
else {

Vector2 v;
Point2 pm, pb;

IV.3 Circular Arc Subdivision 0 171

double dSub;

v.x = pl.x - pO.x;
v.y = pl.y - pO.y;

/* vector from pO to pi */

pm.x = pO.x + 0.5 * v.x; /* midpoint */
pm.y = pO.y + 0.5 * v.y;

dSub = d / 4;
V2Scale(&v, dSub);

pb.x = pm.x - v.y;
pb.y = pm.y + v.x;

DrawArc(p 0, pb, dSub);
DrawArc(pb, pi, dSub);

/* subdivided vector */

/* bisection point */

/* first half arc */
/* second half arc */

0 Discussion 0
This method quickly produces a polyhne that inscribes the circular arc. It should be
faster than a previous gem (Musial 1991), which employs a secant-based root finder
and trigonometric functions to maintain arc length while splitting errors between the
outside and inside of the arc.

A variant method (Paeth 1988) uses a nonuniform chord subdivision to locate the
point where the sagitta has dropped to half its height. Given a chord on the inter-
val [—1... +1] along the x-axis having sagitta s, the points of half-sagitta descent lie
at ± ^ A / 2 + s. These converge to a constant offset for s ^ 0 — a parabola then ap-
proximates the circle. This formulation adds floating-point overhead to account for the
nonuniform subdivision.

For IEEE-based (radix 2) floating-point representations, halving operations are al-
most free.

A fixed-point implementation of this uniform subdivision algorithm will be faster on
many machines than a floating-point implementation. Multiplication by two and four
can be accomplished by a right shift, and a flxed-point square root (see page 22) can
be used to help rescale the vector.

Given dmax ? the maximum chordal deviation allowed by approximating a circular arc
by a series of line segments, the number of arc bisections n can be computed as

n =
Mo I

where do is the initial chordal deviation and [• • •] is the ceiling function. This fact can
be used to write a faster implementation that uses iteration instead of recursion, as

172 0 Curves and Surfaces

advocated for parametric curves in another gem (Lindgren et al. 1992) that also uses
maximum chordal deviation as a subdivision criterion.

0 Bibliography 0
(Karow 1987) Peter Karow. Digital Formats for Typefaces, pages 236-251. URW

Verlag, Hamburg, Germany, 1987.

(Lindgren et al. 1992) Terence Lindgren, Juan Sanchez, and Jim Hall. Curve
tessellation criteria through sampling. In David Kirk, editor, Graphics Gems III,
pages 262-265. AP Professional, Boston, 1992.

(Musial 1991) Christopher Musial. A good straight-line approximation of a circular arc.
In James Arvo, editor, Graphics Gems II, pages 435-439. AP Professional, Boston,
1991.

(Paeth 1988) Alan Paeth. Lemming editor. IRIS Software Exchange, 1(17), Summer
1988.

OlV.4
Adaptive Sampling of
Parametric Curves

Luiz Henrique de Figueiredo
IMPA, Institute de Matematica Pura e Aplicada
Rio de Janeiro, Brasil
llif@ visgraf. impa.br

0 Introduction 0

Approximating a parametric curve by a polygonal curve is a practical undertaking,
involving a sampling of the parameter domain. A first-principles uniform sampling
strategy remains the most popular. Unfortunately, it can prove very inefficient if high
precision is required.

This gem presents an adaptive method for sampling the domain with respect to
local curvature. Samples concentration is in proportion to this curvature, resulting in
a more efficient approximation—in the limit, a flat curve is approximated by merely
two endpoints. Applications of this sampling strategy, including rasterization and arc
length parametrization, are also discussed.

0 Uniform Sampling 0

Let 7: [0,1] -^ R^ describe a curve lying in d-dimensional space (typically, d < 3). To
approximate 7, choose n equally spaced sample points 0 == ti < ti < • • • < t^ = 1, which
define the vertices VQ^VI, ... ^Vn', where Vi = ^{U)- The challenge is to choose sample
points ti.. .tn that induce a good approximation while keeping n small. Methods of
uniform sampling most often choose n by trial and error (trading accuracy for efficiency),
though automated heuristic tests are available (Lindgren et al. 1992).

0 Adaptive Sampling 0

Ideally, a nonuniform parametric sampling gives rise to a "uniform" vertex precision,
leading to increased sampling density in regions of high curvature. The general method
described here is based upon the following strategy:

Copyright (c) 1995 by Academic Press , Inc.
All r ights of reproduct ion in any form reserved.

IBM ISBN 0-12-543455-3
• # _ ^ A/r : „ ^ — u Tor>"M n 1 0 C / I O / I C T V

174 0 Curves and Surfaces

1. Choose a criterion for refining samples.
2. Evaluate the criterion on the interval.
3. If the curve is almost flat in the interval, then the sample is given by its two

extremes.
4. Otherwise, divide the interval into two parts and recursively sample the two parts.

This strategy is similar to using the de Casteljau algorithm for Bezier curves, stopping
when the control polygon is almost flat. There are a number of heuristic refinement
criteria applicable to general curves.

Refinement Criteria

The refinement criterion employed here, termed probing^ chooses an intermediate point
m within the interval of consideration [a, b]. Next, it tests the three candidate vertices for
(approximate) collinearity, that is, VaVm \\ VmVb is evaluated with Va = 7(tt), Vm = "y{m)
and Vb = 7(6). This flatness (parallel vector) test may take a number of forms:

• the area of the triangle VaVmVb is small;

• the angle /.VaVmVa is close to 180°;

• Vm lies near the chord VaVb]

• I'̂ a — '̂ ml + I'̂ m — '̂ fel is approximately equal to \va — Vb\'',
• the curve's tangents at 7(a), 7(m) and 7(6) are approximately parallel.

(The last is of value when a closed-form expression for 7's derivative is available.)
Although they are not equivalent in theory, empirical practice shows that these tests

are equally eff"ective in locating regions of low curvature. The area criterion is the
algorithm's method of choice, as it requires no square roots.

Choosing the Interior Point

The intuitive choice for the interior point m is the interval's midpoint, m = ^{a + b).
A subtle form of sampling error, or aliasing^ arises: The probing strategy considers a
curve "flat" throughout the interval a < t < b when a flatness test is satisfled. In fact,
the heuristic fails should the curve undulate along the interval under consideration. The
sinusoid curve [̂ , sin(^)] with t sampled at ZLZTT is a ready example. Here, every vertex
Vi lies along the x-axis. In general, any deterministic probing is vulnerable to aliasing.

Random probing along the interval avoids aliasing sampling due to such symmetries
in 7. Since sampling near the interval's midpoint is desirable, a uniform distribution
may be biased toward this interior. In this implementation, a uniform distribution on
the restricted interval [0.45,0.55] is employed. Other variations may substitute Gaussian
distributions (easily found by summing random variables, by virtue of the central limit
theorem) or use multiple probes. Vertices having the greatest deviation may then be

IV.4 Adaptive Sampling of Parametric Curves 0 175

chosen preferentially or otherwise used in a recursive evaluation of higher order (Chan-
dler 1990). In practice, the binary recursion scheme presented next provides adequate
results.

The Algorithm

For the sake of efficiency, arrange the sampling so that the interior vertex used for the
flatness test is also the point of subdivision, should recursion take place. This ensures
that 7 is evaluated exactly once at each sample point. The pseudocode for the algorithm
is

sample(a, fc, va^ vb):
m ^^ random point in [a, h]
vm ^r~ 7(m)
if fla.t{va, vm., vb)

l±iie{va,vb)
else

sainple(a, m, va, vm.)
sainple(m, 6, f m, vb)

Invoking the function sample(0,1,7(0), 7(1)) initiates the procedure on the complete
domain 0 < t < 1. The function f l a t implements one of the refinement criteria sug-
gested earlier; l i n e is the basic line-drawing operation.

Note that this algorithm generates points in the exact order that they occur along
the curve, as the recursive implementation performs a depth-first search of the interval
"tree." With proper adaptation, the algorithm performs a direct rasterization of the
curve, as when l ine(va ,vb) describes coincident pixels or the test f la t (va ,vm,vb)
evaluates adjacent pixels. Here, (discrete) F substitutes for its continuous counterpart 7.
The pseudocode is

r a s t e r (a , 6, va, vb):
if neighbors(t'a, vb)

iplot{va)
else

m <— random point in [a, b]
vm. <r— F(m)
ra s t e r (a , m, va, vm.)
r a s t e r (m, 6, vm., vb)

Invoking the function r a s t e r (0 ,1 , F(0), F(1)) initiates the procedure on the complete
domain 0 < t < 1, though the final pixel F(l) must be plotted explicitly. Note that this
implementation requires neither a tolerance test nor a l i n e function; recursion depth
is determined by the display resolution.

176 0 Curves and Surfaces

0 Applications 0
Adaptive sampling strategies may be adopted to solve problems in related fields of
numerical integration, quadrature of explicit functions, line integration, or arc length
parametrization. The pseudocode for computing the length of a curve is

length(a, 6, i;a, vb):
m <— random point in [a, b]
vm <— 7(m)
if flact{va^vm,vb)

return \vb — va\
else

return length(a, m, va^ vm) + length(m, 6, vm^ vb)

Functions may also be evaluated based upon methods of binary descent. The arc
length parametrization of a curve locates the parameter value t having the correspond-
ing vertex Vt at a desired length along a curve. This calculation is of value in digital
animation (Guenter and Parent 1990).

Finally, polygonal lines digitized either manually or automatically (e.g., using an
image edge detection algorithm) usually have a large number of vertices. Here, the
refining criterion may be used to thin (remove) any redundant vertex Vm collinear with
bracketing vertices I v ^ . The size of the bracketing interval can once again be computed
in adaptive fashion using binary recursion. In this guise, an adaptive sample "running
in reverse" rederives a method commonly employed in digital cartography (Visvalingam
and Whyatt 1990).

0 Implementation 0
An implementation of the adaptive sampling method is now presented. Created for use
with three-dimensional curves, the code is easily modified to arbitrary dimension, or
reworked to provide direct rasterization as in the second pseudocode example.

The data structure Point is a s t r u c t containing the parameter value t and the
coordinates x, y, z of 7(t). It is used to ensure that 7 is never evaluated more than once
at any point. Macros providing efficient access to this structure are also provided; these
macros also increase program clarity.

The code's core is the recursive sampling function sample, which calls two user-
defined functions: gamma, which computes the coordinates of the point on the curve
corresponding to a parameter value, and l ine , which performs the line segment render-
ing. The function f l a t implements a refinement criterion based on triangle area, using
the cross product (the user-supplied tolerance t o l is used within this code).

The code has been written for simplicity and presentation. A production version
passes the functions gamma, l i ne , and t o l as parameters to the top-level entry point

IV.4 Adaptive Sampling of Parametric Curves 0 177

aspc, allowing generic operation. In all cases, invoking aspc(a,6) begins the adaptive
sampling of the curve along the interval [a, b].

/* aspc.c -- generic adaptive sampling of parametric curves */

typedef struct point { double t,x,y,z; } Point;

#define T(p) ((p)->t)

#define X(p) ((p)->x)
#define Y(p) ((p)->y)
#define Z(p) ((p)->z)

extern void gamma(Point* p); /* user supplied */
extern void line(Point* p, Point* q); /* user supplied */

static void sample(Point* p, Point* q)

{
Point rr, *r=&rr;
double t = 0.45 + 0.1 * (rand()/(double) RAND_MAX);
T(r) = T(p) + t*(T(q)-T(p));
gamma(r);
if (flat(p,q,r)) line(p,q); else { sample(p,r); sample(r,q); }

}

static int flat(Point* p. Point* q, Point* r)

{
extern double tol; /* user supplied */
double xp = X(p)-X(r); double yp = Y(p)-Y(r); double zp = Z(p)-Z(r);
double xq = X(q)-X(r); double yq = Y(q)-Y(r); double zq = Z(q)-Z(r);
double X = yp*zq-yq*zp;
double y = xp*zq-xq*zp;
double z = xp*yq-xq*yp;
return (x*x+y*y+z*z) < tol; /* |pr x qr|V2 < tol */

}

void aspc(double a, double b) /* entry point */

{
Point pp, *p = &:pp;
Point qq, *q = &qq;
srand(time(0)); /* randomize */
T(p)= a; gamma(p); T(q)=b; gamma(q); /* set up */
sample(p,q); /* sample */

}

0 Bibliography 0

(Chandler 1990) R. E. Chandler. A recursive technique for rendering parametric curves.
Computers and Graphics, 14(3/4) :477-479, 1990.

178 0 Curves and Surfaces

(Guenter and Parent 1990) B. Guenter and R. Parent. Computing the arc length of
parametric curves. IEEE Computer Graphics and Applications, 10(3):72-78, May
1990.

(Lindgren et al. 1992) T. Lindgren, J. Sanchez, and J. Hall. Curve tesselation criteria
through sampling. In D. Kirk, editor, Graphics Gems III, pages 262-265. AP
Professional, Boston, 1992.

(Visvalingam and Whyatt 1990) M. Visvalingam and J. D. Whyatt. The Douglas-
Peucker algorithm for line simplification: Re-evaluation through visualization.
Computer Graphics Forum, 9(3):213-228, September 1990.

OlV.5
Fast Generation of Ellipsoids

Jaewoo Ahn
Systems Engineering Researcii Institute, KIST
Yusong, Daejon, Soutti Korea

0 Introduction 0

Among the many methods for generating a polygonal approximation to an ellipse in
standard position (of the form x^/a^ + y^/6^ = 1) (Anton 1984), the one shown in
Figure 1 is simple and common. The idea is to subdivide the angles in plane around the
center of the unit circle equally, forming a polygonal approximation to the unit circle,
which is then scaled by a in the x axis, and by b in the y axis.

Note that vertices get denser around the sharper-axis direction of the ellipse rather
than around the smoother-axis one, which is a merit of the method. When the degree
of approximation n is given and the approximation is to yield a symmetric polygon
of 4 • n vertices, the whole 4 • n vertices on the unit circle need not actually be com-
puted. Only the first half of the vertices in the first quadrant need to be computed;
the cosine and sine values corresponding to the angles i/n • 7r/2, i = 0 , 1 , . . . , [n/2\
are computed [Figure 1(a)]. The other half in the first quadrant are found by knowing
that cos(7r/2 — 9) = sm9 [Figure 1(b)]. The first quadrant of the ellipse is obtained by
scaling [Figure 1(c)], and the remaining quadrants are obtained by reflecting it in the
X and the y axis [Figure 1(d)].

The idea for 2D ellipse generation is directly generalized to 3D ellipsoid generation.
Vertices on the surface of the unit sphere are generated by subdividing the angles in
space around the center of the unit sphere regularly, forming a polyhedral approximation
to the unit sphere, which is then scaled appropriately in each of the x, ?/, and z axes.
Triangular faces are also generated with vertices ordered counterclockwise when viewed
from the outside. Ellipsoids are symmetric with respect to each of the XT/, yz, and zx
planes. Thus, we need to compute vertices only in the first octant of the ellipsoid, and
the vertices in the other octants can be found by reflections. In fact, as will be discussed,
many fewer cosine and sine evaluations are made than is usually thought, even for the
initialization of the first octant of the unit sphere.

A regular subdivision of the angles in space around the center of the unit sphere is
shown in Figures 2(a) and 2(b). Here, n > 1 is the degree of subdivision, and (i , i) ,
j = 0 ,1 , . . . , i , i = 0 ,1 , . . . , n , corresponds to the vertex with the azimuthal angle
9 = j/i • 7r/2 and the incidence angle (f) = i/n • 7r/2 (with the convention that 0/0 = 0).
The number of vertices and faces generated under this subdivision are l + 4 - (l + 2 +

Copyright (c) 1995 by Academic Press , Inc.
All r ights of reproduct ion in any form reserved.

IBM ISBN 0-12-543455-3
• # C I •\/f^„i^4.^„U TCTSIVT n 1 O K/IQ/IKT V

180 0 Curves and Surfaces

I /

(b) (c) (d)

Figure 1. A polygonal approximation to an ellipse (n = 7). (a) (cos ̂ , sin ^), 0 = i/n - 7r/2, / =
0 , 1 , . . . , [n/2j. (b) The first quadrant of the unit circle, (c) The first quadrant of the ellipse, (d) A polygonal
approximation to the ellipse, (a cos 0, bs\n9),0 = i/n • 7r/2, / = 0 , 1 , . . . , 4 • n — 1.

+ n - l + n + n - l + --- + 2 + l) + l = 4-n2 + 2 a n d 4 - (l + 3 + --- + 2 n
1) • 2 = 8 • n'̂ , respectively. Incidentally, these numbers are the same as those from the
octahedral subdivision method (Angel 1990, Koenderink 1990), which starts from the
unit octahedron, subdivides each of the eight original triangular faces into smaller ones,
and then projects the vertices of the subdivided triangular faces onto the surface of the
unit sphere, forming a refined polyhedral approximation to the unit sphere.

Specifically, three steps are involved in generating a polyhedral approximation to an
ellipsoid using the current method, now called the angular subdivision method:

1. Initialization of trigonometric values: Cosine and sine values are evaluated corre-
sponding to the azimuthal and the incidence angles of vertices in the first octant
of the unit sphere.

2. Generation of the first octant of the ellipsoid: The first octant of the unit sphere is
scaled appropriately in each axis direction.

3. Generation of the ellipsoid: Vertices and their unit normals are generated from
refiections of those in the first octant, and triangular faces are generated.

In what follows, assume that an ellipsoid is in standard position (of the form x'^/a'^ +
y'^/b'^ + z^ jc? — 1) (Anton 1984), and that its parameters of axis length along the x, y,
and z axes are a, 6, and c, respectively. Assume also that n > 1 denotes the degree of
subdivision, d the azimuthal angle measured from the zx plane counterclockwise when
viewed from the positive z axis onto the origin, and 0 the incidence angle measured
from the positive z axis.

0 Ellipsoid Generation 0
Step 1: Initialization of Trigonometric Values

The cosine and sine arguments needed for the angular subdivision method are the
angles belonging to the vertices on the first octant of the unit sphere. Figure 2(a) is a
projection of the first octant of the unit sphere having vertices generated by the angular

IV.5 Fast Generation of Ellipsoids <C> 1 8 1

0,0

/ \
1,0—1,1

/ \ / \
2,0—2,1—2,2

/ \ / \ / \
3,0—3,1—3,2—3,3

/ \ / \ / \ / \
4,0 — 4,1—4,2—4,3—4,4

/ \ / \ / \ / \ / \
5,0—5,1—5,2—5,3—5,4—5,5

/ \ / \ / \ / \ / \ / \
6,0 — 6,1—6,2—6,3—6,4 — 6,5—6,6

/ \ / \ / \ / \ / \ / \ / \
7,0—7,1—7,2—7,3—7,4—7,5—7,6—7,7

(b)

/ \ /_\
/ \ / \ / \ / \
• 2,1 • • — 0 , 4 — •

/ \ / \ / \ / \ / \ / \
• — 3 , 1 — • • • 1,9—2,9— •

/ \ / \ / \ / \ / \ / \ / \ / \
• — 4 , 1 — • • • • —3,16-4,16-5,16— •

/ \ / \ / \ / \ / \ / \ / \ / \ / \ / \
• — 5 , 1 — 5 , 2 — • • • • —6,25—7,25-8,25-9,25— •

/ \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \
• — 6 , 1 — • • • • • • —10,36-11,36-12,36-13,36-14,36— •

/ \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \
• 7,1—7,2—7,3— • • • • • —15,49-16,49-17,49-18,49-19,49-20,49— •

(c) (d)

Figure 2. The first octant of the unit sphere (n = 7). (a) Vertices on the first octant, (b) (ij),

j = 0 , 1 , . . . , /, / = 0 , 1 , . . . , n, corresponding to the vertex with (0,4>) = (j/i • 7r/2, i/n • 7r/2). (c)

(/,y)'s with 0 < y < /, gcd(/,y) = 1. (d) (/c, /)'s for finding the slots of (/,y)'s with gcd(/,y) > 1.

subdivision method with n = 7. Figure 2(b) draws the relationship between the vertices
and their azimuthal angle 9 and incidence angle (/), where 6 = j/i-7r/2 and </> = z/n-7r/2.

A minimal set of angles for which the cosine and sine values need to be evaluated may
now be found. First, only the azimuthal angles need to be considered, since (f) = z/n-7r/2,
0 < z < n, is the same as ^ = j/i • 7r/2, 0 < j < i, i = n. Second, the angles when j = 0
ov j — i are trivial and do not need real evaluations for cosine and sine values, nor do
the angles corresponding to {h- i^h • j) for /i — 2 , . . . , [n / i j , since they are the same as
the angle corresponding to (i, j) . Moreover, (cos^, sin^) for 9 = {i — j)/i • 7r/2 is the
same as (sin ^, cos ̂) for 9 = j/i • 7r/2. Therefore, we need to evaluate cosine and sine
values only for the angles j/i • 7r/2, where gcd(z, j) = 1, 1 < j < L^/2J, i = 2 , . . . ,n.
Figure 2(c) shows those (i, j) ' s corresponding to these angles.

For the other (i , i) 's that are not trivial and gcd(i, j) > 1, 1 < j < i, i = 2 , . . . , n, their
corresponding cosine and sine values are copied from those of (i/gcd(z, j) ,
j / gcd(i , j)) or from those of (i, i — j) in step 2. In practice, an array of l + 2H hn —1

182 0 Curves and Surfaces

= (n — 1) • n/2 slots for (cos0,sm0)'s corresponding to the vertices (i, j) , 0 < j < z,
2 < i < n is initialized (see Figure 3(a)). Figure 2(d) associates a pair (kj) to each of
the nontrivial (2,j)'s of Figure 2(b), where k = (i — 2) - {i — l) /2 + j — 1 and / = i^.
Incidentally, k is the same as the index of the array of slots for (cos ̂ , sin ^), where
6 = j/i ' 7r/2 (see Figure 3(a)). Then, the index of the slot for {h - i, /i • j) , /i > 2 is
{h'i-2)'{h'i- l) /2 + /i • j - 1, or equivalently, h - k + {{h - 1) - h/2) • /. The latter
form directly shows us that the indices for (/i • i, h- j),h > 1 are A:, 2 • fc + /, 3 • fc + 3 • Z,
4 • fc + 6 • /, 5 • fc + 10 • /, etc. The indices advance successively by A: + /, A: + 2 • /, fc + 3 • Z,
A: + 4 • Z, etc. That is, knowing (cos ̂ , sin ^) of the slot for (z, j) with gcd(z, j) = 1, the
indices of the slots for (/i • z, h - j)^ 2 < h < [n/zj, that have the same (cos 0, sin ^)
values are k + E^^Zlik + d'l).

s t r u c t s l o t { f l oa t cos, s in ; enum { None, Only, Done } f l ag ; };

The f lag field of each slot for (z, j) marks the status of the slot. None marks that cos
and s in are not set yet. Only marks that they are set, but still need to be copied to
(/i • z, /i • j) , /i = 2 , . . . , [n/i\, and Done marks that nothing need be done. Note that the
initialization does not need to be done for every invocation of the angular subdivision
method; once it is initialized for some maximum degree of subdivision rimax^ no further
initialization is necessary for any degree of subdivision n < nmax- In other words, as
long as the degree of subdivision does not exceed rimax^ no further cosine and sine
evaluations are necessary in generating ellipsoids. Step 1 is implemented by the routine
e l l i p s o i d _ i n i t 0 .

Step 2: Construction of the First Octant of the Ellipsoid

The position (Px^Py^Pz) and the unit normal {ux^ny^Uz) of a vertex on an ellipsoid are
computed by

PxiO^cj)) = cos6 ' sincf)' a,

Py{0, (j)) = sin ^ • sin (p • 6,

Pz{0,(f)) = cosci)' c,

nx{6^(f)) = cos9 • sin(/) • a~ \

ny{9,(f)) = sin^ • sine/) • 6~^,

nz{9^(j)) — cos(/) • c~-̂ .

Note that all the necessary cosine and sine values have been computed and stored in a
table in step 1. Figure 3(a) shows the indices of the table [cf. Figure 2(d)]. Figure 3(b)
shows the first octant of an ellipsoid that is to be generated in step 2. This is called
the hase octant to avoid any confusion with the first octant of the eight octants of the

IV.5 Fast Generation of Ellipsoids 0 183

/ \

/ \ / \
. 0 .

/ \ / \ / \
1 2

/ \ / \ / \ / \
. 3 4 5 •

(a)

(c)

Figure 3. Generation of an ellipsoid {n = 4). (a) Indices of the cosine and sine table, (b) Indices of the
base octant of the ellipsoid, (c) An approximation to the ellipsoid as generated through reflections of the
base octant.

ellipsoid that are to be generated from this base octant in step 3. Step 2 is implemented
by the routine e l l ipsoid_octant() .

Step 3: Generation of the Ellipsoid

After the base octant is constructed, it is reflected through the three coordinate planes
to produce an array of all vertices. An array of all triangular faces is also produced
by finding all the appropriate ordered sets of three indices of the vertex array. Fig-
ure 4 shows the indices of the vertex array and the face array. Step 3 is implemented
by both sequential and parallel means, by e l l ipsoid_seq() and e l l ipsoid_par() ,
respectively.

0 Timing Comparisons 0
Table 1 lists execution times for generating ellipsoids using this angular subdivision
method. The depth column denotes the degrees of subdivision, and #v and #f the
numbers of vertices and triangular faces generated, respectively. Execution times are
measured in microseconds using the UNIX system call geUimeofday{3B) in the SGPs
Onyx'^^ system with four R4400 150 MHz CPUs. Those in the init column are for step
1, and those in the seq and par columns are for steps 2 and 3 in sequential and parallel
means, respectively. Note again that the initialization need be done only for the largest
degree of subdivision that will be used, once and for all, [see e l l i p s o i d _ i n i t ()] . In

1 8 4 0 Curves and Surfaces

/\7\t
1 5 13 j

'JMT

Figure 4. Indices of arrays of vertices and faces (n = 4) as viewed from the positive z axis for (a), (b)

the first, second, third, and fourth octants, and (c), (d) the fifth, sixth, seventh, and eighth octants.

Table 1 . Approximate timing of angular subdivision method.

depth

1

2

3

4

5

6

7

8

9

10

15

20

25

30

#v

6

18

38

66

102

146

198

258

326

402

902

1602

2502

3602

#/

8

32

72

128

200

288

392

512

648

800

1800

3200

5000

7200

init

3

9

12

15

21

28

36

45

57

69

151

265

415

595

seq

8

25

42

65

95

129

169

218

275

352

845

1490

2312

3308

par

10

30

50

78

113

154

198

250

305

386

898

1381

2013

2738

libsphere

417

1263

2640

4569

7322

10782

14834

19661

25395

31422

72538

127640

209728

312108

depth

35

40

45

50

55

60

65

70

75

80

85

90

95

100

#v

4902

6402

8102

10002

12102

14402

16902

19602

22502

25602

28902

32402

36102

40002

#/

9800

12800

16200

20000

24200

28800

33800

39200

45000

51200

57800

64800

72200

80000

init

805

1068

1345

1659

2044

2476

2955

3457

4004

4552

5132

5751

6404

7097

seq

4490

5861

7390

9123

11117

13240

15509

19107

23182

28830

34814

41147

47758

54646

par

3601

4581

5644

6966

8323

9701

11279

13100

14802

17084

18758

21827

24489

26944

IV.5 Fast Generation of Ellipsoids 0 185

the parallel means, the four processors in the machine are utilized by compiling only
the e l l ipsoid_par() routine with some simple compiler directives specified in the
code for independent loops. It could be tuned further for better performances. Those in
the libsphere column denote the times for generating spheres using the Sphere Library
provided in the SGI's IRIS GL^^ system. The comparisons may not be too accurate,
however, since the internal operations of the library may not be properly counted,
although the author tried to be quite reasonable.

0 Conclusions 0
An efficient angular subdivision of the unit sphere used to model ellipsoid data is de-
scribed. Unit normals for vertices are also computed accurately from their defining
equations. A minimal number of trigonometric functions are evaluated, and parallel
constructions may be employed. (Code for both sequential and parallel implementa-
tions is provided.)

The initialization of the base octant (steps 1 and 2) may be done using other methods
such as the octahedral subdivision method and then reflections (step 3) may be applied
to change the schemes and degrees of approximation.

An ellipsoid in nonstandard position can be modeled by an appropriate transforma-
tion of its corresponding ellipsoid in standard position. Since a sphere of radius r is an
ellipsoid with a = b = c = r^ the method can be adjusted to model sphere's data more
efficiently. Other objects exhibiting (eightfold) symmetry, such as quadratic surfaces
and tori, may be modeled efficiently using methods adapting reflections, and they are
extensions worthy of additional study.

0 Acknowledgment 0
The author thanks the editor for his valuable comments and criticisms.

0 An Efficient Implementation in C 0

/*-< ellipsoid.h > */

#ifndef ellipsoid_H
#define ellipsoid_H

typedef struct point { float x, y, z; } point;
typedef struct vertex {

point p, n; /* point and unit normal */
} vertex;
typedef struct face {

int vO, vl, v2; /* indices of vertex array for a triangular face */
} face;

186 0 Curves and Surfaces

typedef struct object {
int nv, nf; /* numbers of elements in v and f */
vertex *v; face *f; /* arrays of vertices and faces */

} object;

void ellipsoid_init (int n);
void ellipsoid_seq (object *ellipsoid, int n, float a, float b, float c),
void ellipsoid__par (object *ellipsoid, int n, float a, float b, float c) ,

#endif /* ellipsoid_H */

/*-< ellipsoid.c >

#include <stdio.h>
#include <math.h>
#include <malloc.h>
#include "ellipsoid.h"

typedef struct slot { float cos, sin; enum { None, Only, Done } flag; } slot;

static int n_max = 0 ; /* current maximum degree of subdivision */
static slot *table = NULL; /* an array of slots */
static vertex *octant = NULL; /* the base octant of the ellipsoid */

#define SetP(p,px,py,pz) (p).x=(px), (p).y=(py), (p).z=(pz)
#define SetV(v,px,py,pz,nx,ny,nz) SetP((v)->p,px,py,pz), SetP((v)->n,nx,ny,nz)
#define SetF(f,iO,il,12) (f)->vO = iO, (f)->vl = il, (f)->v2 = 12

/*
// Compute the necessary cosine and sine values for generating ellipsoids
// with the degree of subdivision n, and initialize the array table[].
// The largest n becomes n_max, and calls with n <= n_max return immediately.
// The memory for the base octant is allocated to cope with any n <= n_max.
*/
void ellipsoid_init (int n)
{

int n_table, i, j, k, 1, m, h, d;
slot *tO, *tl, *t2;
float theta;

if (n > n_max) {
n_max = n;
if (table) free (table);
if ((n_table = ((n-l)*n)/2) == 0) table = NULL;
else table = (slot *) malloc (n_table * sizeof(slot));
if (octant) free (octant);
octant = (vertex *) malloc (((n+1)*(n+2))/2 * sizeof(vertex));

for (to = table, k = n_table; k > 0; k--, tO++) tO->flag = None;
for (to = table, k = 0, 1 = 1, m = 3, i = 2; i<= n_max; i + +) {

1 += m, m += 2, h = n_max / i - 1;
for (tl = tO + i - 2, j = 1; j < i; j++, k++, t0 + +, tl--) {

if (tO->flag == None) {

IV.5 Fast Generation of Ellipsoids 0 187

theta = (M_PI_2 * j) / i;
tO->cos = tl->sin = cos (theta);
tO->sin = tl->cos = sin (theta);
tO->flag = tl->flag = Only;

}
if (tO->flag == Only) {

tO->flag = Done;
for (d = k+1, t2 = tO;

t2 += d, d += 1;

t2->cos = tO->cos;
t2->sin = tO->sin;
t2->flag = Done;

}

h > 0; -) {

/*
// Construct the base octant of the ellipsoid whose parameters are a, b, and c,
// with the degree of subdivision n using the cosine and sine values in table[]
// It is assumed that n <= n_max.

static void ellipsoid_octant (int n, float a, float b, float c)

{
int i, j;
float a_l, b_l, c_l;
float cos_ph, sin_ph, px, py, pz, nx, ny, nz, nznz, rnorm, tmp;
vertex *o = octant;
slot *table_th, *table_ph;

a_l = 1.0 / a; b_l = 1.0 / b; c_l -
o = octant;
table_th = table;
table_ph = table + ((n-1)*(n-2))/2;

1.0 / c;

SetV (o, 0.0, 0.0, c, 0.0, 0.0, 1.0), o++;
for (i = 1; i < n; i++, table_ph++) {

cos_ph = table_ph->cos;
sin__ph = table_ph->sin;
pz = cos_ph * c;
nz = cos_ph * c_l;
nznz = nz * nz;

/* i = 0, j

px = sin__ph * a;
nx = sin_ph * a_l;
rnorm = 1.0 / sqrt (nx*nx + nznz);
SetV (o, px, 0.0, pz, nx*rnorm, 0.0,
for (j = i; --j > 0; table_th++) {

tmp = table_th->cos * sin_ph;
px = tmp * a;
nx = tmp * a_l;

/* 0
nz*rnorm), o++;

j = 0 */

188 <> Curves and Surfaces

tmp = table_th->sin * sin_ph;
py = tmp * b;
ny = tmp * b_l;
rnorm = 1.0 / s q r t (nx*nx + ny*ny + n z n z) ; / * 0 < i < n , 0 < j < i * /
SetV (o , px , py , p z , nx*rnorm, ny*rnorm, n z * r n o r m) , o++;

}
py = s i n _ p h * b ;
ny = sin_j)h * b _ l ;
rnorm = 1.0 / sqrt (ny*ny + nznz); /* 0 < i < n, j = i */
SetV (o, 0.0, py, pz, 0.0, ny*rnorm, nz*rnorm), o++;

}
SetV (o, a, 0.0, 0.0, 1.0, 0.0, 0.0), o++; / * i = n , j = 0 * /
for (j = i; --j > 0; table_th++) {

tmp = table_th->cos;
px = tmp * a;
nx = tmp * a_l;
tmp = table_th->sin;
py = tmp * b;
ny = tmp * b_l;

rnorm = 1.0 / s q r t (nx*nx + n y * n y) ; / * i = n , 0 < j < i * /
SetV (o , p x , py , 0 . 0 , nx*rnorm, ny*rnorm, 0 . 0) , o++;

}
SetV (o , 0 . 0 , b , 0 . 0 , 0 . 0 , 1 .0 , 0 . 0) ; / * i = n , j = i */

/*
// Note the following conventions in ellipsoid_seq() and ellipsoid__par():
// the north pole:
// the 1st octant:
// the 2nd octant:
// the 3rd octant:
// the 4th octant:
// the 5th octant:
// the 6th octant:
// the 7th octant:
// the 8th octant: 270 <= th < 360, 90 < ph <= 180, and
// the south pole:
*/

/*
// Generate the vertices for the ellipsoid with parameters a, b, and c
// with the degree of subdivision n, by reflecting the base octant.
// Also generate triangular faces of the ellipsoid with vertices ordered
// counterclockwise when viewed from the outside.
*/

/* sequential version */
void ellipsoid_seq (object *ellipsoid, int n, float a, float b, float c)

{
vertex *v, *o;
face *f;
int i, j, ko, kv, kw, kvO, kwO;

0
90

180
270

0
90
180
270

< =
< =
< =
< =
< =
< =
< =
< =

th =
th <
th <
th <
th <
th <
th <
th <
th <
th =

0,
90,

180,
270,
360,
90,

180,
270,
360,

0,

0
0
0
0

90
90
90
90

ph
< ph
< ph
< ph
< ph
< ph
< ph
< ph
< ph

ph

=
< =
< =
< =
< =
< =
< =
< =
< =
=

0,
90,
90,
90,
90,

180,
180,
180,
180,
180.

IV.5 Fast Generation of Ellipsoids 0 189

/* Check parameters for validity. */
if (n <= 0 II n_max < n || a < = 0 . 0 || b < = 0 . 0 || c<=0.0) {

ellipsoid->nv = 0; ellipsoid->v = NULL;
ellipsoid->nf = 0; ellipsoid->f = NULL;

return;

}

/* Initialize the base octant. */
ellipsoid_octant (n, a, b, c);

/* Allocate memories for vertices and faces. */
ellipsoid->nv = 4*n*n + 2;
ellipsoid->nf = 8*n*n;
ellipsoid->v = (vertex *) malloc (ellipsoid->nv * sizeof(vertex));
ellipsoid->f = (face *) malloc (ellipsoid->nf * sizeof(face));

/* Generate vertices of the ellipsoid from octant[]. */
V = ellipsoid->v;
o = octant;

#define op o->p
#define on o->n

SetV (v, op.x, op.y, op.z, on.x, on.y, on.z), v++; /* the north pole */
for (i = 0; ++i <= n;) {

o += i;
for (j = i; --j >= 0; o++, v++) /* 1st octant */

SetV (v, op.x, op.y, op.z, on.x, on.y, on.z);
for (j = i; --j >= 0; o--, v++) /* 2nd octant */

SetV (v, -op.x, op.y, op.z, -on.x, on.y, on.z);
for (j = i; --j >= 0; 0++, V++) /* 3rd octant */

SetV (v, -op.x, -op.y, op.z, -on.x, -on.y, on.z);
for (j = i; --j >= 0; o--, V++) /* 4th octant */

SetV (v, op.x, -op.y, op.z, on.x, -on.y, on.z);

}
for (; --i > 1;) {

o -= i;
for (j = i; --j > 0; o++, v++) /* 5th octant */

SetV (v, op.x, op.y, -op.z, on.x, on.y, -on.z);
for (j = i; --j > 0; o--, v++) /* 6th octant */

SetV (v, -op.x, op.y, -op.z, -on.x, on.y, -on.z);
for (j = i; --j > 0; o++, v++) /* 7th octant */

SetV (v, -op.x, -op.y, -op.z, -on.x, -on.y, -on.z);
for (j = i; --j > 0; o--, V++) /* 8th octant */

SetV (v, op.x, -op.y, -op.z, on.x, -on.y, -on.z);

}
o--, SetV (v, -op.x, -op.y, -op.z, -on.x, -on.y, -on.z); /* the south pole */

#undef op
#undef on

/* Generate triangular faces of the ellipsoid. */
f = ellipsoid->f;
kv = 0, kw = 1;

190 0 Curves and Surfaces

for (i = 0; i < n; i++) {
kvO = kv, kwO = kw;
for (ko = 1; ko <= 3; ko++) /* the 1st, 2nd, 3rd octants */

for (j = i;; j--) {
SetF (f, kv, kw, ++kw) , f++;
if (j == 0) break;
SetF (f, kv, kw, +H-kv) , f++;

}
for (j = i;; j--) { /* the 4th octant */

if (j == 0) { SetF (f, kvO, kw, kwO), kv++, kw++, f++; break; }
SetF (f, kv, kw, -»-+kw) , f++;
if (j == 1) SetF (f, kv, kw, kvO), f++;
else SetF (f, kv, kw, ++kv), f++;

}
}
for (; --i >= 0;) {

kvO = kv, kwO = kw;
for (ko = 5; ko <= 7; ko++) /* the 5th, 6th, 7th octants */

for (j = i;; j--) {
SetF (f, kv, kw, ++kv) , f+-»-;
if (j == 0) break;
SetF (f, kv, kw, ++kw), f++;

}
for (j = i;; j--) { /* the 8th octant */

if (j == 0) { SetF (f, kv, kwO, kvO) , kv++, kw++, f++; break; }
SetF (f, kv, kw, ++kv) , f++;
if (j == 1) SetF (f, kv, kw, kwO), f++;
else SetF (f, kv, kw, ++kw), f++;

}
}

}

/* parallel version */
void ellipsoid_par (object *ellipsoid, int n, float a, float b, float c)
{
/* Code for this is included on on-line version of current graphics gems. */

}

0 Bibliography 0
(Angel 1990) Edward Angel. Computer Graphics. Addision-Wesley, Boston, 1990.

(Anton 1984) Howard Anton. Elementary Linear Algebra, 4th edition. John Wiley &:
Sons, New York, 1984.

(Koenderink 1990) Jan J. Koenderink. Solid Shape. MIT Press, Cambridge, MA, 1990.

OlV.6
Sparse Smooth Connection
between Bezier/B-Spline Curves

Chandrajit Bajaj Guoliang Xu
Purdue University Computing Center, Academia Sinica
West Lafayette, Indiana Beijing, China

0 Introduction 0
Often in interactive font design, free-form sketching, and input path specification for
graphics animation, one is faced with the problem of connecting two Bezier or B-spUne
polynomial curves with a piecewise transition polynomial curve achieving prescribed
continuity at the two endpoints. Furthermore, one desires the transition polynomial
curve to have the fewest number of (sparse) pieces. This issue is addressed by first
identifying the degrees of freedom^ needed to achieve the conditions for smoothness
and sparseness, described below, by solving the following two problems:

Conditions for Smooth Connection. Given two polynomials P : [a^b] -^ M and
Q : [c^d] ^^]R of degree n with b < c^ find a piecewise polynomial R : [b^c] -^ M also
of degree n, such that

(1°) R is C^'i^ continuous in (6, c) for any integer /i with 1 < ^ < n,
(2°) P and R join at b with C''̂ "/^! continuity for any integer fii with 1 < /^i < n,
(3°) R and Q joint at c with C^"^^ continuity for any integer /i2 with 1 < /X2 < n.

Conditions for Sparse (Smooth) Connection. In addition to the preceding condi-
tions (1°), (2°), and (3°), it is required that (4°) R has the fewest number of segments.

As an example, the composite function (P, i?, Q) may be a single B-spline. It is obvious
that there are potentially infinite ways to join any two polynomials with prescribed
continuity. The goal here is not only to achieve a smooth join, but also to make the
join as simple as possible. Here simple means that the polynomial R is to determined,
as far as possible, from P and Q.

The solution to both the foregoing problems is derived by the use of blossoming
(Ramshaw 1989, Seidel 1989). For a given degree n polynomial F : IR -^ M^ the blossom
of F , denoted as / = B{F), is an n-affine symmetric function satisfying f{u,... ,u) =
F{u). A function f : M —^ IR is called afftne if it preserves affine combinations, that

^The succesive degrees of freedom form a hierarchy and use the notation (1°) to (3°).

Copyright (c) 1995 by Academic Press , Inc.
All r ights of reproduct ion in any form reserved.

IBM ISBN 0-12-543455-3
• M l \/f^^:^4-^^U TCT5M n 1 0 c;/IQ/ir:'7_Y

192 0 Curves and Surfaces

is, if / satisfies f{Yji o^i^i) = Y^i cafi^i) for all real numbers a i , . . . , a/̂ , u i , . . . , n/c G iR
with J2i^i = ^' ^ function / : M^ -^ M is called n-affine if it is an affine function on
each individual argument with the others held fixed. Finally, a function / : FT -^ iR is
called symmetric if / keeps its value under any permutation of its arguments.

0 Solution of Smooth Connections 0

Lemma 1. Let ASn be the set of all n-affine symmetric functions, ti < • • - < tn <
tn+i <"'< t2n. Then the map M : f e ASn -> {/(t^ t^+i , . . . , ti^ri-i)}'^=i ^ ST"^^ is
a one to one map between ASn ci'^d JBT''^^,

Proof: It is obvious that M is a linear map, and by M (/) = (0, . . . , 0) it can be
proved that / = 0. In fact, by the progressive de Casteljau algorithm (Ramshaw 1989),
/ (x i , . . . ,Xn) = 0, i.e., / = 0. Now, the only thing left to be proved is that M is
invertible, that is, given (bi, 62 , . . . , b^+i) G iR'̂ "̂ ,̂ there exists an / G ASn^ such that
M (/) =: (fei,..., 6n+i)- This f = fi can be constructed by the following progressive de
Casteljau algorithm:

/°() = 6i, z = l , 2 , . . . , n + l,

fl{xi,...,Xr) = ""^^ ^—f:[~'^{xi,...,Xr-l)

+ 7 —7 /i+1 (xi , . . . ,Xr_i) , 2 = l , 2 , . . . , n + l - r ,
^n-\-i î-f-r—1

for r = 1 , . . . , n (see Theorem 7.1, Ramshaw 1989). O

Lemma 2. The smooth connection conditions can always be met.

Proof: This lemma is proved constructively as follows.

(i) If n + 1 < /xi + /X2, then the piecewise polynomial R to be determined degenerates
to a single segment, and R can be determined by using the Hermite interpolation
conditions:

R^){b) = P^\b), i - 0 , l , . . . , n - / i i ,

R^){c) = Q^'^{c), i = 0 , l , . . . , n - / i 2 . (1)

If n + 1 = /ii +//25 the solution is unique. If n + 1 < lJ^i-\-fi2j there is no uniqueness.
If R is of degree 2n — /ii — //2 + 1(< ^)? then we have uniqueness.

(ii) If n + 1 > fii + 122, Equation (1) has no solution in general. Here a 5-spline
F{x) : [a, d] -^ M is constructed such that

F{x)\[aM = P{x), F{x)\[^^a] = Q{x), (2)

IV.6 Sparse Smooth Connection between Bezier/B-Spline Curves 0 193

and R{x) = F(x)|[5c] satisfies the smootii conditions (1°), (2°), and (3°). Let

T = (to = ' • ' = tji) < {tn-\-l = ' ' ' = ^n+/xi) < tn+fii+l ^ * * *

^ t2n-iJL2+l < ^2n-At2-|-2 = • • • = (t2n+l < ^2n+2 = • * • = ^871+2)7

where tn = a, tn+i = b, t2n+\ = c, t2n+2 = d and t^+y^^+i,..., t2n-fi2+i ^^^ chosen
so that each of them has multipUcity < // in T. Let {N^{x)}'J2,t^ ^^ ^^^ normahzed
B-sphne bases over T, and let

di = fi{ti^i,.,.ti-^n), >̂ = 0, l , . . . , n ,

di = / 2 (% i , . . . t^+n), >̂ = n + 1 , . . . , 2n + 1.

where / i = B(P)^ /2 = ^(Q) are the blossoms of P and Q, respectively. Then
F{x) = T^^t^diNf{x) is the required B-spline (see Theorem 3.4, (Seidel 1989)).
In fact, F{x) is C"̂ ~/̂ i and C^~^2 continuous at h and c, respectively, since b has
multiplicity /xi and c has multiplicity /X2. Furthermore, since t^+^i+i , . . . ,t2n-AX2+i
have multiplicity < //, f{x) is C"^~^ continuous on (6, c). Now it only remains to
show that condition (2) is satisfied. From Theorem 3.4 (Seidel 1989), we have

di = B{F\\a^^){U^i,..., U^n)^ ^ = 0 , 1 , . . . , n,

di = J5(F|[c,d])(^£+i, • • •, ^^+n), ^ =- n + 1 , . . . , 2n + 1.

Hence,

/ l (t^+l , . . . ,t^+n) = 5(F|[^^5])(t^+i, . . . ,t^+n), ^ = 0, 1, . . . , n ,

/2(t£+l, . . . ,t^+n) = 5(F|[c,d])(^^+l, • • -M+n), ^ = n + 1, . . . , 2n + 1.

Since / i , /2, J5(F|[a,6]) and 5(F|[c,ci]) are in ASn^ it follows from Lemma 1 that / i
= ^ (i ^ l M) , /2 = ^(F|[e,di), ^^d then P - F|j,,^],g - F|[e,d]. O

Thus, a total of n + 1 — (/xi +112) knots are inserted in (6, c), leaving i? with at most
n + 2 — (//I +112) pieces. Since the t^+^i+i , . . . , t2n-p,2+i knots can be arbitrarily chosen
under the required conditions, R is not unique.

Corollary 3. The sparse (smooth) connection conditions can always be met.

0 The Computation of the Sparse Connection Polynomial 0
The proof of Lemma 2 already provides a way to compute the transition polynomial
R, Furthermore, this uses only the information that comes from P and Q and some
inserted knots. However, the number of pieces of R may not be minimal. In order to
get a sparse connection polynomial, the intention is to insert the least number of knots.
As in the discussion above, there are two possible cases.

194 0 Curves and Surfaces

(i) li n + 1 < fii + ii2^ the problem is reduced to a Hermite interpolation problem as
before. One segment is enough to connect the two given polynomials. Then the
number of segments is minimum. Now we give a B-spline representation of the
composite function. Let

T = [to = ' ' ' = tn < tn-\-l = ' ' ' = ^n+/xi < ^n+fj^i+l

= ' ' ' = tn-^fj,i+fi2 ^ tn+fii-\-fi2 + l — ' ' ' = t2n4-Mi+At2 + l) V^)

and {N^{x)}'^^^'~^^^ be the normalized B-spline bases over T. Then F{x) =
^n+Mi+M2 ^^ N^(^x) is the required function, where

de = /i(t^+i,...t^H-n), >f = 0, l , . . . , n ,
de are free, ^ = n + 1 , . . . , /ii + /i2 — 1, (4)
di = f2{te+i,'"te+n)^ ^ = /ii + / i 2 , . . . , n + //i +/i2.

(ii) If n + 1 > /ii + /i2, then the computation of the inserted knots proceeds as follows,
with i increasing from 0 to n + 1 — (/ii + /X2)-

(a) Let

Ti = {to = ' ' • = tn < tn-\-l = ' = tn-\-^i < Xi < - ' < Xi < tn-^f^i+i+l

~ * ' * ~ mH-/xi+/Z2-h* ^ ^n-|-/xi-|-At2+^-l-l = = • • • = 62n+/xi+/i2+^-l-l/ ' V^J

where tn = a, tn-\-i = b, tn+;xi+/x2+i = c, tn-h;xi+/̂ 2-hi+i = ^ ^^d x i , . . . ,Xi are the
knots to be determined and satisfying the following conditions:

b < Xj < c, /gx
Xj has multiplicity < /i in T .̂ ^ "̂

(b) For ^ = i + /ii + / i2 , . . . , n, the de Boor points (Seidel 1989) de are determined
satisfying conditions from both P and Q. These double conditions leads to the
following equations for unknowns x i , . . . , x^:

B{P){t£^l, . . . , t n + ^ i , X i , . . . , X i , t n + / z i + i + l , . . . ,^^-hn)

for -£ = z + //I +)U2,..., n, or

C/^(xi, . . . , X i) = S (P - (5) (t ^ + l , . . . , t n + ; i i , X i , . . . , X ^ , ^ n + / i l + ^ + l , • • • , ^^+n) = 0

for ^ = 2 + /ii + //2, • • •, ''̂ - There are n + 1 — (i + /ii + //2) equations and i unknowns.
The ideal cases (a unique solution is expected) are i = n + l — {i + /j,i +112) or i =
"̂̂ ~ 2 "̂̂ ^̂ • Comparing this with the proof of Lemma 2, in which n + 1 — (/xi + /i2)

IV.6 Sparse Smooth Connection between Bezier/B-Spline Curves 0 195

knots are inserted, this ideal case will reduce the number of the inserted knots to
half. For example, if n = 3 (cubic), /xi = /i2 = 1 {C^ continuity), then i = 1. If
Ml = M2 "= 2 (C^ continuity), then i = 0. li n = 5, fxi = /JL2 = 2 {C^ continuity),
i = 1. If /ii = /i2 = 1 {C^ continuity), i — 2.

Let P{x) = E]=o^j^'^ Q{^) = E]^objX^' Then B{P - Q){ui,... ,Un) -
YJj=Q{aj - hj)/{^)ajn{ui,..., Un), where (Jjn[ui, ...,Un) is the j t h n-variable el-
ementary symmetric function (Chrystal 1964). Therefore, 5^ (x i , . . . ,Xi) can be

(£)

writ ten as gi = S}=o ^j ^^jii^i^ • • • ? ^i)- Let aj = crji{xi^..., Xi) be the unknowns,
j = 1, 2 , . . . , z, (To = 1. Thus, the following system of linear equations is obtained:

(^+Ml+M2) (x+Mi+M2)
a

(i+jUi+/J,2)

a
(i+^l+/X2+l) (iH-/xi+/i2-hl)

a
(i+/LA 1+^2 + 1)

Sn) An) An)

02

a,

a<

(i+/il-f/^2)
0

(i+/ i l+/ i2 + l)
0

An)

(7)
(c) If Equation (7) has no solution, increase i by 1, until it has a solution (it may
have many solutions). Let [a i , . . . ,cr^]^ be a solution of (7). Form a polynomial
equation

h{x) := J^i-x)
k=0

l-k ak = 0. (8)

If all the roots Xj of h{x) are real, and they satisfy (6), then the required knots
Xj are obtained. Otherwise, i is increased until the required knots are obtained. If
(7) has many solutions, a closed form of the solution of (8) is helpful to get the
required solution. If i < 5, the closed form of the root Xj is available.

The case i = 0 needs separate consideration, since Equations (7) and (8) are
degenerate. In this case gi are constants. If they are all zero, then do not insert
knots in (6, c) and compute the de Boor points (4), but no degree of freedom is
left. If not all gi are zero, the next i must be considered.

Since the solution Xj's tha t satisfy condition (6) are desired. Equation (8) is
solved for ak tha t satisfies the following necessary condition:

b^ <ak< k = 1 ,2 , . . . , 2 . (9)

(d) Let tn-\-fj,i-\-j = Xj for j = 1 , . . . , i. Let

di = / i (t £ + i , . . . t ^ + n) , >f = 0, l , . . . , n ,

di = /2 (t£+i , . . . t ^+n) , £ = n + 1,... ,n + fii + IJL2 + i.

(10)

(11)

196 0 Curves and Surfaces

Then, as in the proof of Lemma 2, the B-sphne function F{x) = T!^^o'~^^^'^' de^^i^)
is required, where {Np{x)}^^Q^^^'^^^ are the normahzed B-sphne bases over T .̂

0 Pseudocode of the Algorithm 0

Pseudocode of the preceding algorithm is presented here. Standard hbrary procedures
for solving a linear equation and for finding the real roots of a polynomial are assumed.

Sparse Connection Algorithm
Input
P, Q coefficients arrays of the polynomial P and Q in power bases.
A, B endpoints of interval [a,b],
C, D endpoints of interval [c,d].
N degree of the given polynomials.
MUl, MU2 continuity at b and c, respectively.
MU continuity in (b, c).

Output
D coefficients array of the de Boor points di.
Knots is inserted knots in (b, c) .
I number of inserted knots.

1 = 0
for j = 0 to N do

Pa)-P(J) /(^) Q{}) = Q0)/O c(j) = P(j) - Q(j)
endloop
for j = 0 to 2N+MU1 + MU2 +1 do

i f j < N t h e n T(j) =A
else if j < N + MUl then T(j) =B
else if j < N + MUl + MU2 then T(j) =C
else T(j) =D
end if

endloop
if AT + 1 < MUl + MU2 then

for 1 = 0 to N+MUl + MU2 do
for j = 1 to N do Point(j) = T(l+j) endloop
if 1 < N then

call EVALUATE(P, N, Point, N, Coeffout)
D(l) = Coeffout(O)

iV.6 Sparse Smooth Connection between Bezier/B-Spline Curves 0 197

else if 1 > MUl + MU2 then
call EVALUATE(Q, N, Point, N, CoeflFout)
D(l) = Coeffout(O)

else D(l) are free , set to zero
end if

endloop
else

for i = 1 to N + 1 - (MUl + MU2) do
for 1 = i + MUl + MU2 to N do

for j = 1 to N - i do Point(j) = T(l+j) endloop
call EVALUATE(C, N, Point, N - i , Coeffout)
for k = 1 to i do Matrix(l - i - MUl - MU2, k - 1) = Coeffout(k)
endloop
Lefthand(l - i - MUl - MU2) = - CoeflFout(O)

endloop
call LINEARSOLVER(Matrix, Lefthand, Solution)
call POLYSOLVER(Solution, i, Knots)
if all Knots satisfy the condition (6) then goto L

endloop
L: I = i

for j = 0 to 2N+MU1 + MU2 + i + 1 do
if j < N then T(j) =A
else if j < N + MUl then T(j) =B
else if j < N + MUl + i then T(j) = Knots(j - N - MUl)
else if j < N + MUl + MU2 + i then T(j) =C
else T(j) = D end if

endloop
for 1 = 0 to N do

for j = 1 to N do Point(j) = T(I+j) endloop
call EVALUATE(P, N, Point, N, Coeffout)
D(l) = Coeffout(O)

endloop
for 1 = N+1 to N + MUl + MU2 + i do

for j = 1 to N do Point(j) = T(l+j) endloop
call EVALUATE(Q, N, Point, N, Coeffout)
D(l) = Coeffout(O)

endloop
end if
finish

198 0 Curves and Surfaces

Procedure to evaluate an n-affine symmetric function
procedure EVALUATE(Coeffin, N, Point, M, Coeffout)
Coeffin is the input coefficients array. N — 1 is the number of coefficients. Point is the
input evaluating points array. M is the number of evaluating points . CoefFout is the
output coefficients array.

for j = 0 to N do Coeffout(j) = Coeffin(j) endloop
for k = 0 to M - 1 do

for j == 1 to N - k do Coeffout(j-l) = CoefFout(j-l) + Point(k)*Coeffout(j)
endloop

endloop
return

0 Bibliography 0
(Chrystal 1964) C. Chrystal. Algebra, Part I, 7th ed. Chelsea Pubhshing Company,

New York, 1964.

(Ramshaw 1989) L. Ramshaw. Blossoms are polar forms. Computer-Aided Geometric
Design, 6:323-358, 1989.

(Seidel 1989) Seidel, H.-P. A new multiaffine approach to B-splines. Computer-Aided
Geometric Design, 6:23-32, 1989.

OlV.7
The Length of Bezier Curves

Jens Gravesen
Mathematical Institute
Technical University of Denmark
Lyngby, Denmark

0 Introduction 0

It is an often-used fact that the control polygon of a Bezier curve approximates the curve
and that repeated subdivision produces a sequence of control polygons that converge
to the curve (Farin 1988). The length of these control polygons converges to the arc
length of the Bezier curve, and with the use of a certain convex combination of the
length of the control polygon and the length of the chord between the endpoints of the
segments, the convergence becomes much faster. This gem derives and implements an
adaptive method for the calculation of the arc length based on this result. Previously,
Gaussian quadrature has been combined with adaptive subdivision to find the arc length
of arbitrary parametric curves (Guenter and Parent 1990).

0 Background <>

Given an nth-degree Bezier curve b{t) with control points Qo?Qi, • • • iQn-, define the
lengths

arc length: L{b) = f h'{t)dt,
Jo

n

polygon length: Lp(6) = ^\Qi- Qi_i|,

chord length: Lc{h) = |Qn - Qo|,
with Lc{b) < L{b) < Lp{b). As suggested above, subdividing any curve takes place at
its parametric midpoint. De Casteljau's algorithm (Farin 1988) yields

Q^i=Qh i = 0 , . . . , n ,

Qf = i Q f - i + iQf-/, z = 0 , . . . , n - f c , fc = l , . . . , n .

Copyright (c) 1995 by Academic Press , Inc.
All r ights of reproduct ion in any form reserved.

^ ^ ^ IBM ISBN 0-12-543455-3

200 0 Curves and Surfaces

Prom the algorithm we get the control polygon Qo' Qo' • • •' Qo ^̂ ^ ^^^ ^^^^ ^^^^ ^f ^^^

curve b\{t) = ^ (^H sind the control polygon QQ^ Qi~^^ • • • ? Qn ^̂ ^ ^^e second half of

the curve b^it) = b (^ + ^tj. After k repetitions we obtain 2^ Bezier curves ftf,..., b^^:

where bf (t) =̂ b (2-^{i - 1 + t)) .
Now define

Lj(6) = ^ L , (6 f) and L^(6) = ^ L e (fc,̂) .

As described previously (Gravesen 1993), this gives

L j (6) \ L (6) and L J (6) - L(6) = 0(2-2*=),

L^,{b)/L{b) and L,̂ (6) - L(6) = 0(2-2^).

The length of the curve is bounded below by L^ and above by L^, so we may expect
some combination of the two to give a better approximation. Indeed, if one defines the
weighted averages

n + 1 n + 1

L (̂6) = 5:La(ftf) = ^^^cl?') + ^ ^ J W .
i = l

then

L'l(h)^L{b) and L^(6) - L(6) = 0(2-^'=),

indicating a high rate of convergence (Gravesen 1993).

0 The Algorithms 0

Consider evaluating the length of a curve that has already undergone partial subdivision.
The order statistics just given indicate that as each new subdivision halves the curve,
the related error of the length of the segment will be j ^ of the previous error. To keep the
total number of subdivisions (which is proportional to the cost) as small as possible, do
not subdivide the segments that have a small error. This suggests an adaptive scheme:
Either use !/«, or, if the error is too large, subdivide the segment and calculate the
length of the two halves. The principle is illustrated by the pseudocode in Figure 1.
Similar use of adaptive subdivision can be found on page 173 and elsewhere (Chandler
1990, Guenter and Parent 1990, Lindgren et al 1992).

\y. 7 The Length of Bezier Curves 0 201

BezierLength(b, eps): real
b: record of BezierCurve; degree, control points, etc.
eps : real; Error tolerance.

begin
Lp <^ polyJength(b); The length of the control polygon.
Lc <— chord_length(b); The length of the chord.
n <^ degree(b); The degree of b.
err <^ error(); The error estimate.
if err < eps then return (2*Lc+(n-l)*Lp)/(n+l);
else begin

bl, b2 -^ subdivide(b); The two halves of b.
epsl, eps2 <— tolerance(); The tolerances on the two halves.
return length(bl, epsl) + length(b2, eps2);
end;

end BezierLength

Figure 1. Pseudocode for adaptive calculation of the arc length of a Bezier curve.

The code makes use of the following functions.

degree(b) returns the degree of the curve b.

poly_length(b) returns the length of the control polygon of the curve b.

chord_length(b) returns the length of the chord of the curve b.

subdivide(b) returns the two halves of b. Presently, the point of division is always
t = ^] exploration of other values of t might prove worthwhile.

error() is the error estimate. The following three methods are suggested.

1. Lp — Lc. This is in fact an error bound, but Lp — Lc = 0{2~'^^), while the
error is 0(2""^^), so it will be a gross overestimate for small errors.

2. {Lp — LcY' This estimate has order 0(2~^^) and hence the proper asymptotic
behavior.

3. Y~|Ĵ a "~ ^al- Here one assumes an error of the form c2~^^\ solving for c gives
c = if (L^ - L^) and L = L^ - ^ (L^ - L^). This yields both an estimate of the
absolute value of the error and an estimate of the error per se. One can then
perform the usual "error correction," and for the length use L^ — j^{L^ — L])
instead of merely L^. This gives a better approximation, but the error will be
overestimated for small error values.

202 0 Curves and Surfaces

(a) (b)

Figure 2. (a) A cubic curve with a cusp, and (b) a curve with arc length equal to /.°.

tolerance() is the error tolerance. Given a segment with an error tolerance 6, if sub-
division is required, then determine error tolerances ei and €2 for the two new
segments. The simple estimate ê = e/2 is used to control the absolute error and
ê = 6 is used for the relative error.

The error estimates can be used not only when calculating the length of a Bezier
curve, but in any situation that makes use of adaptive subdivision of Bezier curves.

0 Empirical Tests 0
Empirical study of the algorithms on a number of sample curves suggests that (1) a
precision of 0.1% can be obtained by subdividing the curve into four to twelve segments
and that (2) cubic curves need only be divided into approximately four segments to
obtain this accuracy.

The error estimates have been checked by comparing the given tolerance e with the
real error err. Ideally one should have err/e ^ 1, and under no circumstances err/e ^ 1.
As expected, the error estimate Lp — Lc is a gross overestimate, and err/e <C 1 holds
even for moderate e, so Lp — Lc should not be used unless it is absolutely vital to have
an error bound.

For most curves, both {Lp — Lc)^ and | j^(I/a ~ ^a)l behave well, but practice shows
that (Lp — Lc)^ fails when the curve has a cusp [Figure 2(a)]. Quantitative performance
is given in Table 1. Special attention should be given to values when using error estimate
{Lp — Lcf'^ as the factor in underestimation may be as large as forty-five.

Consider now the curve whose control points are the corners of a square [Figure 2(b)].
Its length can be calculated exactly: It is half the square's perimeter. This is the same as
L^ = {Lp-\-Lc)/2 and fools the estimate |^(L^—1/^)|. The performance of the algorithms
for this curve is summarized in Table 2. Note that j^\L\ — L^^\ underestimates the error
by a factor of fifteen in the worst case.

IV. 7 The Length of Bezier Curves 0 2 0 3

Table 1 . Results for the curve with the cusp. The number e is the error bound, err/e is the absolute error

divided by the error bound, and n is the total number of subdivisions.

error estimate L-o — Ln

e

err/e

n

0.1

0.082

3

0.01

0.049

13

0.001

0.031

47

0.0001
2 - 1 0 - 3

119

0.00001
1 .10 -3

445

error estimate

e

err/e

n

0.1

0.902

1

[ivp — Lc

0.01

0.820

3

)^
0.001

7.138

5

0.0001

6.747

7

0.00001

48.805

13

error estimate YE\L\ — L^\

e

err/e

n

0.1

0.027

3

0.01

0.273

3

0.001

0.173

7

0.0001

0.011

19

0.00001
9 - 1 0 - 3

31

Table 2. Results for the curve with arc length equal to L°. The number e is the error bound, err/e is the

absolute error divided by the error bound, and n is the total number of subdivisions.

error estimate L^ — Lc

e

err/e

n

0.1
5 •10 -4

7

0.01

2 - 1 0 - ^

31

0.001
6 - 1 0 - 6

107

0.0001

5 - 1 0 - 7

255

0.00001
2 . 1 0 - 8

1023

error estimate (L^

e

err/e

n

0.1
8 •10 -3

3

error estimate T^
15

e

err/e

n

0.1

0.158

7

0 ~ Lc)

0.01
5 . 1 0 - 3

7

0.001

0.046

9

0.0001

0.030

15

0.00001

0.066

29
Li-LO\

0.01

1.581

7

0.001

15.812

7

0.0001
1 .10 -3

7

0.00001

3 - 1 0 - 5

15

For both curves (and all other tested curves) it is clear that the first estimate Lp -
forces far too many subdivisions.

0 Implementation 0

When calculating Lc and Lp one can replace the control points Qi with the forward dif-
ferences AQi = Qi+i — Qi. This lowers both the degree (by one) and the cost of subdivi-
sion. Instead of b(t) = E L o QiBf{t) we consider the curve nh\t) = TJlZo AQiB]'~'^{t).
Then

Lp = J2\^Qil

204 0 Curves and Surfaces

that is, the length of the control polygon of b is the sum of the length of the control
vectors of nb\ and

that is, the length of the chord of b is the length of the sum of the control vectors of
n6'. However, added care is required during subdivision. The first half of the curve is
merely b\{t) = b (^t\ hence bWt) == ^b' (^t) = ^b\{t), and similarly for the second
half. Thus, when working with nb^ one should divide every control vector by two after
each subdivision, or equivalently divide the length by two.

0 Program Code 0

The actual implementation makes use of the following functions:

degree(b) as in the pseudocode.

suin_of_length(b) replaces poly_length(b).

length_of_sum(b) replaces chord_length(b).

destructive_subdiv(b) replaces subdivide(b). Subdivision is most efficient if the orig-
inal control points are allowed to be overwritten, and as the code does not operate
upon the original control points, but with the forward differences, this does no
harm.

DiffBezierCurve(b) returns a curve with control points equal to the forward differ-
ences of the original control points.

FreeBezierCurve(b) frees the memory occupied by the curve b.

Six implementations are presented on the floppy disk accompanying this volume.
These are based on the three error estimates with two variations (relative and absolute)
and have the name BezierLengthni;, in which n is the method number (1,2,3) and n
is the variation r or a.

0 Bibliography 0

(Chandler 1990) R. E. Chandler. A recursive technique for rendering parametric curves.
Computers and Graphics, 14(3/4) :477-479, 1990.

(Farin 1988) Gerald Farin. Curves and Surfaces for Computer Aided Geometric Design.
A Practical Guide. Academic Press, London, 1988.

IV. 7 The Length of Bezier Curves 0 205

(Gravesen 1993) Jens Gravesen. Adaptive subdivision and the length of Bezier curves.
DACMM-report 472, The Danish Center for Apphed Mathematics and Mechanics,
Technical University of Denmark, 1993.

(Guenter and Parent 1990) B. Guenter and R. Parent. Computing the arc length of
parametric curves. IEEE Computer Graphics and Applications^ 10(3):72-78, May
1990.

(Lindgren et al. 1992) T. Lindgren, J. Sanchez, and J. Hall. Curve tesselation criteria
through sampling. In D. Kirk, editor, Graphics Gems III, pages 262-265. Academic
Press, 1992.

OlV.8
Quick and Simple Bezier
Curve Drawing

Robert D. Miller
East Lansing, Michigan

0 Abstract 0

This gem describes a simple and efficient method for drawing Bezier curves. The method
requires neither the subdivisions nor the attendant complexity of the de Casteljau al-
gorithm (Farin 1993). Instead, calculations are reorganized to support the computation
of factorials and integral powers, yielding a straightforward implementation.

0 Method 0

The general equation for a point q(t) on a Bezier curve (Mortenson 1985) is

q(t) = pfcB/cnW,

where

t is the curve's parameter; 0 < t < 1,

Pk is the kth vertex of the control polygon,

Bk,n= f^V'=(l-i^-^ and

The terms q, p, and B are written as vectors, indicating that they have components
for each spatial dimension.

Writing out the first equation gives

Copyright (c) 1995 by Academic Press , Inc.
All r ights of reproduct ion in any form reserved.
IBM ISBN 0-12-543455-3 o / \ # ?

IV.8 Quick and Simple Bezier Curve Drawing 0 207

The calculations are performed in two steps. The first step (procedure BezierForm)
evaluates P/c(^) for each spatial dimension and each fcth control vertex. Successive bi-
nomial coefficients may be evaluated in a loop body that contains two additions, one
multipUcation, and one integer division by employing the following recurrence relation:

To generate points along the curve, merely evaluate the remaining terms, t^{l — t)^~^^
as a second step (procedure BezierCurve). The implementation utilizes two loops. The
first loop computes

The second loop sums terms giving

represented in the array q.
Each loop computes successive powers using integer multiplication. The loop counter

runs from n — 1 down to zero, forming the factors that scale (1 — t).
The curve is evaluated using the parameter t, where 0 < t < 1. As t moves from

zero to one, in steps of c?t, the length of the resulting curve segment is not, in general,
proportional to dt. In other words, the curve is not traced with constant velocity as t
changes.

Advantages of this method are its speed and ease of implementation. These routines
work well with higher-order curves, not just the common cubic (four-point) curve. A
strong benefit of curves of order higher than three is that the shape of the curve may be
modified without changing the endpoints or the tangents of the curve at those points.

The Bezier curve may be redrawn with higher resolution simply by calling
BezierCurve, specifying a smaller step size, as the results from BezierForm need not be
recalculated. In practice, as within an interactive curve editor, a curve may first need to
be drawn, modified, then redrawn in the original form to restore the background color
(Paeth 1992). The routines described next make this an especially simple task.

0 Code 0

/* Quick and Simple Bezier Curve Drawing Robert D. Miller
* This 2-D planar Bezier curve drawing software is 3-D compliant
* redefine Point and change the commented lines as indicated.
* /

208 0 Curves and Surfaces

#include <stdio.h>
#define MaxCtlPoints 12

typedef struct {float x; float y;} Point;

/* typedef struct {float x; float y; float z
typedef Point PtArray[99];
typedef Point BezArray[MaxCtlPoints];

/* for 2-D curves */
/* for 3-D space curves */

} Point; */

void BezierForin(int NumCtlPoints, PtArray p, BezArray c)
Setup Bezier coefficient array once for each control polygon,

int k; long n, choose;
n= NumCtlPoints -1;
for(k = 0; k <= n; k++) {

if (k == 0) choose = 1;
else if (k == 1) choose = n;

3-D curves */

e l s e c h o o s e =

C [k] . X = p [k]

c [k] . y = p [k]

c [k] . z = p [k]

} ;

c h o o s e * (n - k + l) / k ;

.X * c h o o s e ;

. y * c h o o s e ;

. z * c h o o s e ; * / / * u s e f o r

void BezierCurve(int NumCtlPoints, BezArray c, Point *pt, float t)
/* Return Point pt(t), t <= 0 <= 1 from C, given the number

of Points in control polygon. BezierForm must be called
once for any given control polygon. */

{ int k, n;
float tl, tt, u;
BezArray b;

n = N u m C t l P o i n t s - 1 ; i.

b [0] . X - c [0] . x ;

b [0] . y - c [0] . y ;

b [0] . z = c [0] . z ; * /

f o r (k =1; k < = n ; k++) {

b [k] . X = c [k] . X * u ;

b[k].y = c[k].y *u;
/* b[k].z = c[k].z *u

u =u*t;
};

/* for 3-D curves */

/ / for 3-D curves */

(* p t) . X -
t l - 1 - t ;
f o r (k =n-

(*pt)
(*pt)

/ * (*pt)

b [n]

1; k
. X + =

. y + =

. z +=

t t = t t * t l ;
}

. x ;

> = 0 ;

b [k]

b [k]

b [k]

(* p t) . y

t t

k - -

. X

• y
. z

= t l

-) {
* t t ;

* t t ;

* t t ;

b[n].y;

/* Again, 3-D */

IV.8 Quick and Simple Bezier Curve Drawing 0 209

float u;
int k;
PtArray pn;
BezArray be-
Point pt;
void main ()

{
p n [0] . X = 100
p n [l] . X = 120
p n [2] . X = 140
p n [3] . X = 160
B e z i e r F o r i n (4 ,

p n [0] . y = 20
p n [l] . y = 40
p n [2] . y - 25
p n [3] . y = 20

pn , b e) ;

f o r (k =0; k <=10; k++) {
BezierCurve(4, be, &pt, (float)k/10.0);
printf("%3d %8.4f %8.4f\n",k, pt.x, pt.y),

/* draw curve */
/* if (k = 0) MoveTo(pt.x, pt.y);

else LineTo(pt.x, pt.y); */
}

0 Bibliography 0
(Farin 1993) Gerald Farin. Curves and Surfaces for CAGD^ 3rd ed. Academic Press,

Boston, 1993.

(Mortenson 1985) Michael E. Mortenson. Geometric Modeling. John Wiley & Sons,
New York, 1985.

(Paeth 1992) Alan Wm Paeth. A generic pixel selection mechanism. In David Kirk,
editor, Graphics Gems III^ Chapter 2.6, pages 77-79. AP Professional, Boston,
1992.

OlV.9
Linear Form Curves

Ken Shoemake
University of Pennsylvania
Philadelphia, Pennsylvania
shoemake ©graphics.cis. upenn. edu

0 Introduction 0
Straight lines are simple curves: easy to understand, and easy to manipulate. A gen-
eralization, the multilinear form, underlies the common curves of computer graphics
(Ramshaw 1987, Barry and Goldman 1988). This gem uses multilinearity and symme-
try to explain Lagrange polynomials, Bezier and B-spline curves, the de Casteljau and
de Boor algorithms, and Catmull-Rom splines; and it unites all these in a single routine.
Though space prevents it here, these methods can also be applied to other curves, to
rectangular and triangular surface patches, and to geometric continuity.

0 Curves from Two Points 0
Through every pair of distinct points there is a unique line; this is an axiom of Euclidean
geometry. But use of points and lines in computer graphics is impossible without a
numerical representation. Points are commonly represented using (x, y, z) coordinates.
Lines, however, may be represented in a variety of ways—Pliicker coordinates, implicit
equations, parametric equations—depending on the task. The developments below use
a parametric function of the form F{t)^ where t is a real-valued parameter and the
result is a point on the line.

Among the various forms of such a function, one is particularly convenient. Suppose
point po has coordinates (xo^yo^zo) and point pi has coordinates (xi^yi^zi). Since
the unique vector translating po to pi is VQI = (xi — xo.yi — yo.zi — ZQ)^ a simple
parametric function for the line though points po sind pi is F{t) = po + ^^oi- With a
little manipulation, this gives

F{t) = ((1 - t)xo + txu (1 - t)yo + tyi, (1 - t)zo + tzi)

or, more succinctly, F{t) = (1 — t)po + tpi.
Although the above computations may seem pedantic, weighted sums of points should

be used with caution. While adding a vector to a point—performing a translation—is
fine, adding a point to a point is not. The vector VQI is a difference of points, pi —po =

Copyright (c) 1995 by Academic Press, Inc.
All r ights of reproduct ion in any form reserved.
IBM ISBN 0-12-543455-3 ^ ^ ^

OH A

IV.9 Linear Form Curves 0 211

(l)pi + (—l)po, a weighted sum in which the weights alone sum to 0. Any scalar multiple
of a vector is still a vector, and it gives scaled weights that still sum to 0. So adding
to a point any expression giving a vector must give a weighted sum of points in which
the weights alone sum to 1. Algebraic rearrangements will not alter that fact, as the
expression in question shows.

Use of t = (to, ti), with to + h either 0 or 1, allows a more general line function:

line(t;po,Pi) = bo Pi] - t
[XQ X{

h/0 y\
L̂ o ^1 .

to
"xo"
yo

. ^ 0 .

r

•
to

L'^x J

+ tl
\x{

\v\
L^i.

\toXo + t\x{
toyo + hVi
toZo + tiZi_^

When to + h = 1, this still gives a point; but when to + ti = 0, it gives a vector. For
convenience, define the mapping t = (1 — t, t) and the constant 6 = (—1,1). Then t = 0
gives po; t = i gives pi; and t = t, t G [0,1] gives points in between. Clearly \me{t]po,Pi)
gives the earlier F{t), but now t = 6 gives pi — po-

This vector result is significant, since ^i = 6 and the "line" function is linear. Thus,
^F{t) = -^\me{t;po^pi) = line((5;po5Pi)- More generally, suppose the interval [ao,ai]
should parameterize the line segment from po to pi. Define

bary(t;ao,ai) = ai
t-

-t
ao ai - ao

and consider f{t) = line(bary(t;ao,ai);po5Pi)- Then /(ao) = po? / (^ i) — Pi? and
^f{t) = lme{6;po,Pi)/{ai — ao). Of course, letting ao = 0 and ai = 1 again gives the
previous simpler line function, F(t).

Incidentally, the name "bary" refers to barycentric coordinates, and this entire dis-
cussion fits within the discipline of affine geometry. With minimal changes barycentric
coordinates can describe planes instead of lines. That is a tempting digression, but it is
time to turn to curves that bend.

0 Curves from Three Points 0
Starting with two points, weighted sums with a single free parameter generate a line.
With three points, there are more interesting possibilities. Unless the points happen to
be collinear, a line is unlikely. We will consider four options, but notice that any option
must give a curve that lies in the plane of the three points, po, Pi, and p2-

212 <0> Curves and Surfaces

Polylines

The easiest option, but the least satisfactory, is a polyhne. That is, use the hne segment
from PQ to pi when t is between ao and ai, and use the hne segment from pi to p2 when
t is between ai and a2. For this to make sense, necessarily ao < ai < a2- Polylines need
only one trivial piece of new machinery: an interval selector. Binary search, comparing
t to ai, would be a natural implementation.

Polylines are easy, but not smooth. Technically, they have position continuity (C^),
but not derivative continuity (C^). Other options are smoother, but if the points are
close to each other or nearly collinear, polylines look smooth because their angles are
not visible—a feature of great practical utility.

One interesting subtlety shows up even in these elementary curves. Suppose the con-
trol points are collinear. Then the two pieces of the curve must lie together on a line,
but the curve is not C^, even though the derivative of the second segment is a multiple
of the derivative of the first segment. A picture of the curve looks perfectly smooth, but
an object translating along the curve jerks as it crosses pi—where it abruptly changes
speed. This situation is known as geometric continuity, and the polyline generated by
collinear points (with pi between po and P2) is said to have G^ continuity. This simply
means that a different parameterization of the curve (changing a2, for instance) does
give C^ continuity. (In fact, this example has G^ continuity.)

Smooth Interpolation

Polylines have only C^ continuity because they abruptly change direction. To get a
C^ curve, a smooth transition is needed. That, however, is easily accomplished with a
doubly weighted sum built by nesting line functions.

Consider two unrelated line segments, through po and pi in the first case, and PQ and
Pi in the second. Now find points p and p' on each, and combine the results using the
line function again. A smooth curve that goes through po a,t t = ao, pi at t = ai, and
P2 at t = a2 uses this approach with a judicious choice of points and parameters. (See
Figure 1(a).) A suitable curve definition is

F{t) ==line(bary(^;ao,a2);line(bary(t;ao,ai);po,Pi),line(bary(^;ai,a2);pi,P2)),

which simplifies to

^ ^ {t-ai){t-a2) ^ {t-ao){t-a2) ^ {t - ao){t - ai)
(ao - a i) (a o - a 2) ^ (^i - ao)(ai - a2) ^ (^2 - ao)(a2 - ai)

This method, called divided differences, goes back hundreds of years (Dahlquist and
Bjorck 1974). The weight functions, {t — ai){t — a2)/(ao — ai)(ao — a2) and so on, are
Lagrange polynomials. As expected, the weight for pi is 1 when t = ai^ and 0 when
t = aj^ j ^ i. Equal â can be used for fitting derivatives (Hermite interpolation).

IV.9 Linear Form Curves 0 213

(a) (b)

Figure 1. (a) Lagrange interpolation, (b) Lines between lines.

Interpolation looks appealing at first, but experience reveals a serious drawback. Like
a rebellious child, it tends to behave very badly when one is not looking—between the
interpolation points. More cooperation is possible.

Bezier Curves

Interpolating curves use a different interval for each line of the construction. Beautiful
simplification and better behavior come from using the same interval for all. So let every
ti be obtained using some fixed interval [ao,ai].

Now again consider line segments (po^Pi) and (^0,^1). Find points p and p' at t i on
each, then combine them using Iine(t2;p,p0- Alternatively, findPQ = lme{t2;PQ.PQ) and
Pi = line(t2;pi,pi), ^^en use line(ti;po,y/). The result is the same either way. When
the first segment is from po to pi and the second is from pi to ^2, an ancient theorem by
Menelaus permits even more freedom of evaluation: t i can swap with t2 (Seidel 1991).
The resulting function

/ (t i , t 2) = line(t2;line(ti;po,Pi),line(ti;pi,p2)),

under the condition that t i = t2 =̂ t = (1 — t , t) , simplifies to

fit, t) - (1 - tfpo + 2(1 - t)tpi + t^p2.

The function F{t) = f(t,t) is, in fact, the degree two Bezier curve determined by po,
pi, and p2- The three weight polynomials, (1 — t)^, 2(1 — t)t, and t^, are the degree two
Bernstein polynomials, defined for degree n as

where (^) means the binomial coefficient n\/i\ {n — i)\.

214 0 Curves and Surfaces

Since F(0) = po and F{1) = p2^ this form of curve interpolates the end control
points. It does not, however, go through the middle control point, pi. That requires the
bilinear / , the polar form or blossom (Ramshaw 1987) of F, In Figure 1(b), the graph
of a degree two blossom, the bilinear nature of / is evident from the two families of
lines. The control points are /(0,0) = po, /(0,1) = /(l^O) = pi, and /(1,1) == p2-

Rational Curves

Parametric polynomial curves have a major limitation: They cannot exactly describe a
circle (or an ellipse or hyperbola). Yet these are much-needed curves, and they have a
simple degree two implicit form. Unfortunately, implicit curves of degree at least three
generally have no parametric form (Sederberg 1983). For example, the plane curve
y'^ + x — x^ = 0 is clearly impossible to parameterize because it consists of two separate
pieces. Fortunately, for degree two there is a way around the problem. Consider the
curve with control points (1,0,1), (1,1,1), and (0,2,2), namely

F{t) = {l-t^,2t,l + t^).

Its perspective projection from the origin using z as depth is

^1-f 2t \
F{t) = l + f2 ' l + t2

As t varies from 0 to 1, this sweeps out the first quadrant of a unit circle^ (Paeth
1991). Although the interval [—1,1] gives a semicircle, a full circle requires [—(X),cx)],
which is not practical. Thus, a full circle requires two or more rational Bezier curves and
consequently incurs some amount of parametric discontinuity. Once again, modelers get
their desired geometric continuity, but animators are left unhappy. (The only way to
completely satisfy animators who want steady circular motion is to use sine and cosine.)

Because of the difficulties of manipulating 4D points (and for other reasons), rational
curves are usually managed in a slightly different way. Ordinary 3D control points
are supplemented by weights to control a curve in space. This makes it easy to place a
quarter-circle perpendicular to, say, the y axis by using the points and weights (1,0,0; 1),
(1,0,1;1), and (0,0,1; 2). The weighted point {x^y,z;w) is treated as (wx^wy^wz^w),
and the resulting 4D curve is projected by dividing out the w component (instead of the
z component). Notice that the 4D point {wx,wy,wz,w), from the weighted 3D point
{x^y,z;w)^ projects to (x^y^z) for any (nonzero) w.

The quarter-circle is still not in standard form, however. It is always possible to have
the end weights be 1, with only the center weight varying. The standard form (in the x-
y plane) has control points (1,0,0; 1), (1,1,0; \/2/2), (0,1,0; 1). Altering just the center
weight gives a whole family of conies (circle, ellipse, hyperbola, parabola).

^Readers may confirm that the sum of the squares of the projected x and y components is 1.

IV.9 Linear Form Curves 0 215

0 Simple Curves from Many Points 0
Each of these curves defined by three points has a generahzation to any number of
points, with four points being used often, and larger numbers rarely. Polylines through
n + 1 points, po to pn^ need n + 1 real values, ao to a^. A t in any interval [a ,̂ aij^i] is
mapped onto a line segment from pi to Pi^i.

Interpolating curves that take the same data can be built by overlapping larger and
larger intervals. For example, to go from three points to four points, build the curve
over P05 Pi? Q'Hd p2 and the curve over pi, P2, and ps, then use the interval [ao, as] to go
between them. As before, the interior points agree, and the ends get all the weight at
the right time. Explicitly, the four-point interpolating curve [see Figure 2(b)] is

F{t) = line(bary(t;ao,a3);
line(bary(t;ao,a2);

line(bary(t;ao,ai);po,Pi),
line(bary(t;ai,a2);pi,P2)),

line(bary(t;ai,a3);
line(bary(t;ai,a2);pi,P2),
line(bary(t; a2, a3);p2,P3)))

Bezier curves use the same points, but require only a single interval, [ao, ai] (and that
is often implicitly [0,1]). They build up in much the same way as interpolating curves.
For example,

/ (t i , t2 , t3) == line(t3;
line(t2;line(ti;po,Pi),lme(ti;pi,p2))
line(t2;line(ti;pi,p2),line(ti;p2,P3)))

These, plus their rational versions, are the simple possibilities. For small numbers of
points they are fine, but for large numbers of points spline curves are better. Fortunately,
splines can be constructed in this same fashion. And the best way to understand splines
is to look closer at blossoms.

0 Blossoms <>
The blossom of a degree n polynomial function F{t) is a symmetric multilinear poly-
nomial function^ / (t i , . . . , t^) . Multilinearity means that, considered as a function of
ti , / is linear for each z, 1 < i < n. Symmetry means that / (. . . , t^ , . . . , t j , . . .) =
/ (. . . , t j , . . . , t ^ , . . .) , for all 1 < z,j < n. Also connecting F and / is the "diagonal
equivalence" F{t) = f{i,...,i), which, with symmetry and linearity, gives a unique
correspondence. Since uniqueness still holds when F has degree at most n, or when /

^For convenience, this includes the logically separate "homogenization," t \-^ i.

216 0 Curves and Surfaces

has at least n arguments, we can elevate the degree of a curve at will. For example,
given a two-argument /2, the equivalent three-argument /s is

/3(tl , t2,t3) = ^/2(t l , t2) + ^/2(t l , t3) + ^/2(t2,t3)

De Casteljau Evaluation

The Bezier curve construction given previously is called the de Casteljau algorithm
(Farin 1993), and it springs directly from blossom properties. From the values /(0,0)
and /(0,1) , blossom linearity leads to /(O, t), computed with the line function. Likewise,
/(0,1) and /(1,1) give / (t , 1), which by symmetry equals / (I , f). Now from /(O, t) and
f{l^t) linearity gives f{t,t)^ which by diagonal equivalence is F{t). Even the debris is
useful: The points /(0,0), /(O, t), and / (t , t) are the control points for the portion of the
curve parameterized by [0,t]; and the points / (t , f) , / (? , !) , and / (i , l) are the control
points for the portion of the curve parameterized by [t, 1].

Derivatives

Blossoms' symmetry and linearity simplify many calculations. Derivative calculations
are of special interest, since they are prominent in spline discussions. If fn is the blos-
som of a degree n polynomial function F , then the derivative at a, -^F{a), is just
n/n(<5,d,d^... ,d). Linearity accounts for the 6, while symmetry accounts for the factor
of n. The second derivative, ^ F (a) , substitutes a second 6 and appends a factor of
n — 1, giving n(n — 1) /n(^, (5, a , . . . , a). Higher derivatives follow suit. Thus, with suitable
arguments, the de Casteljau algorithm will compute derivatives as well as points.

0 Splines 0
Splines add polynomial smoothness to polyline seams. In fact, polylines and Bezier
curves are both extreme members of the family of B-spline curves. B-spline curves do
not interpolate their control points, but Catmull-Rom splines do, and Lagrange in-
terpolants can be treated as a degenerate case. Since spline curves are composed of
multiple polynomials joined end to end, evaluation begins by localizing t to an appro-
priate interval—^just like polylines.

B-Spline Curves

The construction of a B-spline curve by lines reverses the pattern used for Lagrange
interpolation. Interpolation begins with small intervals that grow by unions. B-spline
curves begin with large intervals that shrink by intersections. The initial intervals for
a degree n spline are n atomic intervals wide. That is, they are of the form [ak^ak-^n]-
The intervals chosen are all those that include t.

Pk+5

^(\+4-\+s\+&\+7^

Pk+4 • •

Pk+3 •
t

Pk+2 •

Pk+1

^+8

^+5

IV.9 Linear Form Curves 0 2 1 7

^+1 \+2 \+3 \+4 Po

(a) (b)

Figure 2. (a) De Boor algorithm, (b) Divided difference algorithm.

Consider a degree two curve evaluated at t G [ak-\.2i(^k+s]' The initial intervals will
be [a/e+i,a/e+3] and [afc+2,afc+4]; these are mapped onto (pfc+i,Pfc+2) and (p/e+2,P/c+3)-
This gives two new points for another line. Now map [ak-\-2^G.k+3], the intersection of
the first two intervals, onto this segment, and evaluation is complete. A degree three
case would expand as follows, this time for t G [ak-^s^^k+i]-

F{t) = line(bary(it;aA;+3,a/c-h4);
line(bary(t; a/c+2, a/c+4);

line(bary (t; a/,+i, afc+4); Pfc+i ̂ P/c+2),
line(bary(t;afc+2,afc+5);Pfc+2,P/c+3)),

line(bary(t; a/^+s, a/c+5);
line (bary (t; afc+2, afc+5); :P/C+2 , P/c+3),
line(bary(t; a^+s, a^+e); Pfc+â Pfc+4)))

The process for a degree four curve is depicted in Figure 2(a). This is the celebrated
de Boor algorithm (Farin 1993). For comparison, Figure 2(b) shows interpolation. One
important difference is that each intermediate point generated by the de Boor algorithm
lies between the segment ends, and so the final point must lie within the region enclosed
by the control points used. This "convex hull" property suggests the curve is well
behaved; it is also of great benefit in geometric operations such as intersection.

For degree n, if ak+i through ak-^n are 0 and a/c+n+i through a/c+2n are 1, the de Boor
algorithm reduces to the de Casteljau algorithm. This validates the claim that Bezier
curves are a special case. Alternatively, degree one B-spline curves are simply polylines.

218 0 Curves and Surfaces

Once again the Menelaus theorem apphes, and so the de Boor algorithm computes
blossom values if different arguments are used at each step. Careful study of the al-
gorithm shows that, for any fc, Pk+i is the blossom value /(a/^+i, . . . ,aj^+ri) for any
segment of the curve to which it contributes. This fact is of great practical benefit,
facilitating many of the same operations we saw for Bezier curves. Probably the single
most important operation is knot insertion. Using blossoms, it is simple to derive the
Boehm knot insertion algorithm (Boehm 1980), which is just one de Boor step.

Since the de Boor algorithm computes blossom values, it also computes derivatives.
This makes it easy to compare adjacent curve segments and prove that degree n B-
spline curves are C^~^ smooth: The two polynomials meeting at ak have all but one
control point in common, and so give the same result for all blossom values of the form
/ (a /e , t i , t2 , . . . , t r i- i) . Thus, their first n — 1 derivatives agree, as claimed.

Use of weighted control points and projection gives non-uniform rational B-spline
curves (NURBS). Repeating the control points (and a little more) leads to periodic
B-spline curves, which are closed and continuous (Farin 1993).

Catmull-Rom Splines

Finally, consider Catmull-Rom splines. Catmull and Rom originally described a method
for generating splines of many kinds, not just cubic C^ interpolating splines (Catmull
and Rom 1974). Among the possibilities are interpolating splines of arbitrary smooth-
ness. Such a family is readily generated by combining Lagrange interpolation with
B-splines. (See Figure 3.) For C^ continuity, take n Lagrange steps followed by n + 1
de Boor steps (Barry and Goldman 1988). The first de Boor step is actually equivalent
to another Lagrange step. Readers familiar with the C^ curves may wish to compare
their algorithm with this one.

0 Linear Systems <>

Beyond the basic curve methods discussed so far lies a larger world of linear possibil-
ities. Polynomials of a given degree form a linear space (a vector space), and admit
many different sets of basis polynomials (such as basis vectors) (de Boor 1978). This
gives another way to look at the relationships among Bezier curves (Bernstein basis),
interpolating curves (Lagrange basis), and standard polynomial expressions (power ba-
sis). Splines—which are a collection of polynomial pieces—also form a linear space, for
which B-splines are a basis. Thus, by solving a linear system, it is possible to convert a
spline in Catmull-Rom form to one in B-spline form.

Linear systems allow many other possibilities. The foregoing degree three splines gave
either C^ continuity with interpolation, or C^ continuity without interpolation. A linear
system that depends on every control point can give a spline with both C^ continuity

IV.g Linear Form Curves 0 219

^+1 ^+2 ^+3

Figure 3. Catmull-Rom algorithm.

and interpolation (de Boor 1978). Unfortunately, this spline changes shape everywhere
if any point is moved, and it requires a solution time proportional to the total number
of control points to do so.

A less extreme approach allows manipulation of a curve and its derivatives (and thus,
say, curvature) at a given point (Welch and Witkin 1992). This is again a matter of
solving a linear system relating the desired values to the control points. It is some-
times more convenient to manipulate a curve "directly" like this, moving control points
indirectly. The linear systems involved are under determined, but there are standard
methods (such as pseudo-inverses) to handle them.

0 Conclusions 0

As this gem demonstrates, linear forms unify the construction of many common curves
(and some uncommon ones) and clarify operations on them. While special circumstances
often allow more efficient calculations, unity and clarity are lost. Remarkably, there is
more waiting (Farin 1993). Triangular patches can be generated using the de Casteljau
algorithm on triangles instead of line segments. Rectangular patches can be generated
by splining curves instead of points. (These are the "tensor product" surfaces.) And
n-sided patches (S patches) can be generated by mating n-sided polygons with Bezier

220 0 Curves and Surfaces

simplices, the multidimensional generalization of Bezier curves and triangular patches
(Loop and DeRose 1989).

Blossoms, tensor products, and S patches are all examples of a more general concept.
Complexity can be reduced by factoring one large problem into many small pieces,
perhaps working in a higher dimension. Geometric continuity, only briefly touched upon
here, also yields nicely to this approach (Seidel 1993).

The code that follows will generate curves of many different flavors. Specific possibili-
ties include Lagrange interpolants, Bezier curves, B-spline curves, and C^ Cat mull-Rom
splines. With a suitable wrapper, it can also manage rational versions of all these.

0 Code 0
/****** lincrv.h ******/
/* Ken Shoemake, 1994 */

#define MAXDIM 2
typedef float Vect[MAXDIM];
typedef float Knot;
typedef int Bool;

int DialASpline(Knot t, Knot a[], Vect p[], int m, int n, Vect work[] ,
unsigned int Cn, Bool interp, Vect val);

/****** lincrv.c ******/
/* Ken Shoemake, 1994 */

#include "lincrv.h"

/* Perform a generic vector unary operation. */
#define V_Op(vdst,gets,op,vsrc,n) {register int V_i;\

for(V_i=(n)-l;V_i>=0;V_i--) (vdst)[V_i] gets op ((vsrc)[V_i]);}

static void lerp(Knot t, Knot aO, Knot al, Vect pO, Vect pi, int m, Vect p)

{
register Knot tO=(al-t)/(al-aO), tl=l-tO;
register int i;

for (i=in-l; i> = 0; i--) p[i] = tO*pO[i] + tl*pl[i];

}

/* DialASpline(t,a,p,m,n,work,Cn,interp,val) computes a point val at parameter
t on a spline with knot values a and control points p. The curve will have
Cn continuity, and if interp is TRUE it will interpolate the control points.
Possibilities include Langrange interpolants, Bezier curves, Catmull-Rom
interpolating splines, and B-spline curves. Points have m coordinates, and
n+1 of them are provided. The work array must have room for n+1 points.

int DialASpline(Knot t. Knot a[], Vect p[], int m, int n, Vect work[],
unsigned int Cn, Bool interp, Vect val)

IV.9 Linear Form Curves 0 221

register int i, j , k, h, lo, hi;

if (Cn>n-1) Cn = n-1; /* Anything greater gives one polynomial */
for (k=0; t> a[k]; k++); /* Find enclosing knot interval */
for (h=k; t==a[k]; k++); /* May want to use fewer legs */
if (k>n) {k = n; if (h>k) h = k;}
h = 1+Cn - (k-h); k--;
lo = k-Cn; hi = k+l+Cn;

if (interp) { /* Lagrange interpolation steps */
int drop^O;
if (lo<0) (lo = 0; drop += Cn-k;

if (hi-lo<Cn) {drop += Cn-hi; hi == Cn;}}
if (hi>n) {hi = n; drop += k+l+Cn-n;

if (hi-lo<Cn) {drop += lo-(n-Cn); lo = n-Cn;}}
for (i=lo; i<=hi; i++) V_Op(work[i],=,,p[i],m);
for (j=l; j<=Cn; j++) {

for (i=lo; i<=hi-j; i++) {
lerp(t,a[i],a[i+j],work[i],work[i+l],m,work[i]);

}
}
h = 1+Cn-drop;

} else { /* Prepare for B-spline steps */
if (lo<0) {h +- lo; lo = 0;}
for (i=lo; i<=lo+h; i++) V_Op(work[i], = , ,p[i],m) ;
if (h<0) h = 0;

}
for (j=0; j<h; j++) {

int tmp = 1+Cn-j;
for (i=h-l; i>=j; i--) {

lerp(t,a[lo+i],a[lo+i+tmp],work[lo+i],work[lo+i+l],m,work[lo+i+1]),
}

}
V_Op(val,=,,work[lo+h],m);
return (k);

}

/*** lincrvtest.c ***/

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "lincrv.h"

#define TRUE 1
#define FALSE 0
#define BIG (1.0el2)

static Vect work[4];
static Vect ctlPts[] = { {0,0}, {1,1}, {1,0}, {0,0}, };
static float *knots;
static float bezKts[] = {0, 0, 0, 1, 1, 1, BIG};

222 0 Curves and Surfaces

static
static
static
static
static
static
static
static
static
static

float lagKts[] = {0.00, 0.25, 0.75, 1
float catKts[] = {-1, 0, 1, 2, BIG};
float bspKts[] = {-2, -1, 0, 1, 2, 3,
int m = MAXDIM;
int n = 3;
int Cn = 1;
Bool interp = FALSE;
Vect val = (0.84375, 0.0};
float t = 0;
int eh = 0;

.00, BIG};

BIG};

enum Flavor{PLY, LAG, BEZ, CAT, BSP, NFLAVORS};
char fnames[][4] = {"PLY", "LAG", "BEZ", "CAT", "BSP"};

void main(void)

{
int i, j, k;
int flavor = PLY;

lagKts; interp
lagKts; interp

for (flavor=0; flavor<NFLAVORS; flavor++)
switch (flavor) {
case PLY: knots
case LAG: knots
case BEZ: knots = bezKts; interp =
case CAT: knots = catKts; interp =
case BSP: knots = bspKts; interp =
default: knots = bspKts; interp =
}
printf("Flavor %s: interp=%d, Cn=%d\n
for (t=0.0; t<=1.0; t+=0.125) {

eh = DialASpline(t
printf("(%6.3f) ", t)
for (i=0; i<MAXDIM

}

{

TRUE;
TRUE;
FALSE;
TRUE;
FALSE;

Cn
Cn
Cn
Cn
Cn

0;
2;
2;
1;
2;
0;

break
break
break
break
break
break

knots, ctlPts,

i++) printf("%9.6f

FALSE; Cn

fnames[flavor],interp,Cn);

i, n, work, Cn, interp, val) ,

val[i]); printf("\n");

0 Bibliography 0

(Barry and Goldman 1988) Phillip J. Barry and Ronald N. Goldman. A recursive eval-
uation algorithm for a class of Catmull-Rom splines. Computer Craphics (SIG-
GRAPH '88 Proceedings), 22(4): 199-204, August 1988.

(Boehm 1980) W. Boehm. Inserting new knots into B-spline curves. Computer-Aided
Design, 12(4):199-201, 1980.

(Catmull and Rom 1974) Edwin Catmull and Raphael Rom. A class of local interpo-
lating splines. In R. E. Barnhill and R. F. Riesenfeld, editors, Computer Aided
Geometric Design, pages 317-326. Academic Press, New York NY, 1974.

IV.9 Linear Form Curves 0 223

(Dahlquist and Bjorck 1974) Germund Dahlquist and Ake Bjorck. Numerical Methods.
Prentice-Hall, Englewood Cliffs, NJ, 1974.

(de Boor 1978) Carl de Boor. A Practical Guide to Splines. Springer-Verlag, 1978.

(Farin 1993) Gerald Farin. Curves and Surfaces for Computer Aided Geometric Design^
3rd ed. Academic Press, San Diego, , 1993.

(Loop and DeRose 1989) Charles Loop and Tony DeRose. A multisided generalization
of Bezier surfaces. ACM Transactions on Graphics, 8(3):204-234, July 1989.

(Paeth 1991) Alan W. Paeth. A half-angle identity for digital computation: The joys of
the halved tangent. In James Arvo, editor, Graphics Gems II, Chapter 8.5, pages
381-386. AP Professional, Boston, 1991.

(Ramshaw 1987) Lyle Ramshaw. Blossoming: A connect-the-dots approach to splines.
SRC Research Report 19, Digital, 130 Lytton Avenue, Palo Alto, CA 94301, June
1987.

(Sederberg 1983) Thomas Warren Sederberg. Implicit and Parametric Curves and Sur-
faces for Computer Aided Geometric Design. PhD thesis, Purdue University, Au-
gust 1983.

(Seidel 1991) Hans-Peter Seidel. Menelaus's theorem. In James Arvo, editor, Graphics
Gems II, Chapter 9.5, pages 424-427. AP Professional, Boston, 1991.

(Seidel 1993) Hans-Peter Seidel. Polar forms for geometrically continuous spline curves
of arbitrary degree. ACM Transactions on Graphics, 12(l):l-34, January 1993.

(Welch and Witkin 1992) William Welch and Andrew Witkin. Variational surface mod-
eling. Computer Graphics (SIGGRAPH '92 Proceedings), 26(3):157-166, July
1992.

This Page Intentionally Left Blank

V • V •

Ray Tracing and
Radiosity

The gems in this section describe methods of ray tracing and radiosity. While a few
entries could be classified equally well under either computational geometry or modeling,
these gems have all been crafted with higher-speed photorealistic rendering in mind.

In the first gem (V.l), Shene generalizes his previous cylindrical intersection test gem
to include cones. (A cylinder is a cone with its apex at infinity.) Schlick (V.2) examines
the mathematical and computational pros and cons of ray tracing a surface described
by quadrangle tessellation versus the traditional triangular mesh. Quadrangles clearly
have merit and application. Moller (V.3) presents a set of object-scan line intersection
heuristics and their related equations. These are easily retrofitted to most ray tracing
software and provide for generous speed-ups. Leipelt (V.4) fully derives the equations
of a ray intersecting a sphere swept through space along an arbitrary parametric curve
and having a modulated radius. (This class of objects is truly tubular to the max.)
Marton (V.5) provides a welcome and extensive treatment of Voronoi diagrams. To
better spatially classify objects for faster ray intersection tests, the code implementation
is provided as a fully general and freestanding work. Zimmerman (V.6) derives an
radiosity illumination model in which cylindrical lamps replace a point sources, allowing
added photorealism while only slightly increasing the computational load for a constant
number of fixed sources. Finally, Feda (V.7) introduces directional light to intermediate
radiosity. This provides an added degree of photorealism, as seen in the gem's related
color plates.

225

This Page Intentionally Left Blank

Ov.1
Computing the Intersection of a
Line and a Cone

Ching-Kuang Shene
Northern Michigan University
shene@nmu.edu

0 Introduction 0

Computing the intersection of a line and an object is a common operation in computer
graphics, for example, when ray tracing. Computation of the intersection of a line and
a cylinder has been treated in previous gems (Cychosz and Waggenspack 1994, Shene
1994). This gem extends the latter work by computing the intersection of a line and a
cone through geometric means.

0 Definitions 0

The notation and defining formulas are presented for three geometric objects:

• £(B,d): the line defined by base point B and direction vector^ d.

• ^ (B , n): the plane defined by base point B and normal vector n.

• C (V , V , Q ;) : the cone defined by vertex V, axis direction v, and cone angle a.

In these definitions, bold-face roman type indicates a vector quantity. Moreover, upper
(lower)-case vectors are position (direction) vectors. Position vectors are sometimes
referred to as points. Therefore, P and P are equivalent. The normalized cross product
u (g) V = u X v / | | u X v| | is also employed.

0 Problem Statement 0

Given a test line ^(D,d) and cone C(V,v ,a) , determine the point of intersection by
computing a t such that point D + M lies on C(V, v , a) or show that no intersection
exists.

^In this exposition, | |d|| = 1 holds for any direction vector d.

Copyright © 1995 by Academic Press, Inc.
All rights of reproduction in any form reserved.

^ ^ _ IBM ISBN 0-12-543455-3

228 0 Ray Tracing and Radiosity

(a) (b)

Figure 1. The normal vector n of plane V.

0 The Algorithm 0

If V G ̂ , the intersection point is V. Therefore, in what follows, V ^ £ holds.

Consider the plane V determined by V and i. Its normal vector is n = d (g) DV.
However, if v • n > 0, n is reversed. This ensures that V lies "between" n and v
(Figure 1). Therefore, the desired plane is 7^(V, n). Since V contains V, PPlC is either
a point (i.e., V), or consists of one or two lines. In the following, the computation of
inC will be reduced to the computation oi in{VnC). In other words, the intersection
lines oiVnC will be computed and intersected with i. However, prior to the intersection
computation, a disjoint test is needed.

Checking for Intersection

Let 9 be the angle between v and V [Figure 1(a)]. By trichotomy exactly one of the
following conditions is true:

• e > a:VnC isV, and ^ H C is empty.

• 6 = a: VnC is the tangent line of V and C, and £nC consists of at most one point.

• 0 < a: V nC consists of two lines, and £nC consists of at most two points.

However, using 6 directly is not as efficient as using cos ^, since the latter can be obtained
easily as follows. Let (f) = ^ + 90° be the angle between n and v [Figure 1(b)]. Therefore,
cos 0 = n • V and

cos^ = cos{(f) - 90°) - sin 0 = (1 - cos^ 0)^/^ = (1 - (n • v)^)^/^.

Since the cosine function is monotonically decreasing between 0° and 90°, cos(x) >
cos{y) if and only ii x < y ioi 0° ^ x^y < 90°. Therefore, with cos a and cos^,
tests 6 > a, 9 = a^ and 9 < a can be replaced by cos 9 < cos a, cos^ = cos a, and
cos 9 > cos a, respectively.

y. 1 Computing the Intersection of a Line and a Cone <0 229

(a) (b) (c)

Figure 2. The u-v-w coordinate system and related information.

Solving for Intersection

Assuming cos^ > cos a, two steps are required to compute £nC: (1) computing P D C,
and (2) computing £ H {V nC). For the first step, a well-chosen coordinate system is
vital. Since n and v are not parallel, v x n is well defined. Let vectors u and w be
defined as follows:

u = V (g) n,

w = u (8) V == (v (8) n) (g) V.

Then u, v, and w are perpendicular to each other and form a right-handed u-v-w
coordinate system with origin at V [Figure 2(a)]. Since n _L u and V G 'P, 7̂ contains
the i^-axis and is perpendicular to the vw-pla,ne.

Using this coordinate system, the direction vectors oiVnC are computed as follows.
Consider a plane H with f = 1 in the u-v-w coordinate system. 7-̂ fl C is a circle C,
while HnV is Si line p. Let p and C intersect at A and B. Then the intersection of V

and C consists of two lines, VA and VB. Thus, if their direction vectors, ^i =VA and

62 =VB^ can be found, V nC will be determined.
To compute A and 5 , first note that their tt;-coordinates are both equal to tan^, and

that ^AB = (tan^ a — tan^ ^)^^^, where t a n a is the radius of circle C [Figure 2(b) and

(c)]. Since AB is parallel to the i^-axis, direction vectors ^1 =VA and 62 =VB can be
computed as follows:

Si=v+ (tanl9)w + (tan^ a - tan^ (9)^/^u,

2̂ = V + (tan 9)w - (tan^ a - tan^ l9)^/^u.

230 0 Ray Tracing and Radiosity

Therefore, the intersection Unes of V and C are simply ^i(V, 6i) and ^2(V, 62). Without
loss of generality, assume \\Si\\ = \\62\\ = 1. Note that if V is tangent to C, a = 0, and

Finally, computing £1 D £ and 2̂ H £ yields the desired result. Determining the in-
tersection point of two coplanar lines is not difficult. If ^i and d have the same or
opposite direction (i.e., d x ^1 == 0, or equivalently ||d • (5i|| = 1), ^1 and i are parallel to
each other and there is no intersection point. Otherwise, there exist r and s such that
D + rd = V + 5^1. Since g x g = 0 holds for any nonzero vector g, computing the cross
product with 61, the preceding formula gives

rdx6i = (V - D) X(5i.

Computing the inner product with d x ^1 yields

[(V - D) x (5 i] . (d x (5 i)
r = | d X (5 l | | 2

Thus, £1 n ^ is computed. Replacing ^1 with 62 yields £2 H £.
In practice, the computation for r could be simpler. Let 7r^(x) be the zth component

of vector x. Then

^ ^ 7 r , ((V - D) x (5 i)
7Ti{d X 61)

where 7r̂ (d x ^1) is a nonzero component of vector d x 61.

Remark. Since a cylinder is a cone with its vertex at infinity, the algorithm presented
here provides another way of computing the intersection of a line and a cylinder. In this
case, V is the plane that is parallel to the cylinder axis and contains the given line, and
V DC degenerates to a pair of parallel lines. Consequently, the computation is reduced
to computing the intersection points of this pair of lines with the given one.

0 Acknowledgment 0
This work was supported in part by a faculty research grant of Northern Michigan
University.

0 Bibliography 0
(Cychosz and Waggenspack 1994) J. M. Cychosz and W. N. Waggenspack, Jr. Inter-

secting a ray with a cylinder. In Paul Heckbert, editor, Graphics Gems IV^ pages
356-365. AP Professional, Boston, 1994.

y. 1 Computing the Intersection of a Line and a Cone 0 231

(Shene 1994) Ching-Kuang Shene. Computing the intersection of a line and a cylinder.
In Paul Heckbert, editor, Graphics Gems IV, pages 353-355. AP Professional,
Boston, 1994.

OV.2
Ray Intersection of Tessellated
Surfaces: Quadrangles versus
Triangles

Christophe Schlick
Laboratoire Bordelais de Recherche

en Informatique (LaBRI)
Talence, France
schlick @ labri. u-bordeaux. fr

Gilles Subrenat
Laboratoire Bordelais de Recherche

en Informatique (LaBRI)
Talence, France
subrenat© labri. u-bordeaux. fr

0 Introduction 0

Tessellating a surface into triangular facets for manipulation or visualization has become
a very popular technique in computer graphics. Several reasons explain this popularity.
First, a triangle in three-dimensional space is always convex and necessarily planar,
whereas this does not hold for a facet having four or more vertices. Second, fast tri-
angulation techniques have been developed both for implicit surfaces and parametric
surfaces (Preparata 1985); see, for instance several previous gems (Lischinsky 1994,
Bloomenthal 1994, Peterson 1994). Last, triangular facets are well suited to specific
optimization techniques proposed for ray tracing (Snyder and Barr 1987).

In contrast, this gem presents an algorithm that computes the intersection between a
ray and a quadrangle. It is particularly valuable for tessellating parametric surfaces, and
may be considered as an extension to a previous gem (Badouel 1990) that employed
a triangular decomposition. A comparison of both algorithms in terms of cost and
precision is also presented.

0 Triangular Facets 0

In review, compute the precise intersection point between a ray and a triangular facet
ABC. A point M that belongs to the ray starting from P and going in direction V is
expressed by

A M = A P + t V, where t > 0 is the parameter defining position. (1)

Copyright (c) 1995 by Academic Press, Inc.
All r ights of reproduct ion in any form reserved.
IBM ISBN 0-12-543455-3

O Q O

\/.2 Ray Intersection of Tessellated Surfaces: Quadrangles versus Triangles 0 233

First, the intersection point with the plane of the facet must be estabhshed. Calhng
N the normal vector of the facet, the parameter of intersection is

A P • N . , ^, A B X AC
^ = - ^r T̂ with N = — — - . 2)

V - N ||AB X AC| | ^ ^
If M is inside the triangle, it obeys

A M = IX AB + i; AC with 0<u<l 0 < i ; < l 0<u + v <1. (3)

Equation (3) is a linear system of three equations (one for each coordinate), where
one of them is redundant because it can be obtained by a linear combination of the two
others. To avoid numerical overflows (division by a number close to zero), discard the
equation k that corresponds to the greatest absolute component of the normal vector
(Snyder and Barr 1987):

ke{x,y,z} with |Nk| = max (|Nx|, |Ny|, |Nz|). (4)

To simplify notations, introduce the operator * defined hy U^V = {U x V)k to easily
determine the values u and v:

A M * AC , A B * A M
u = ~r^—rr^ and V =-—— ——-. (5)

A B * A C A B * A C ^ ̂
Thus, to find if M belongs to ABC, compute u and v by (5) and check if 0 < u < 1,
0 < f < 1, and 0 < u + V < 1. The advantage of this intersection algorithm is that
it yields directly the parameters u and '̂, which are subsequently reused to interpolate
between points A, 5 , and C. In particular, if the three points have corresponding normal
vectors N ^ , N g , and N c then the normal vector Njvi at point M is given by

N M = {1-U-V)NA + ^̂ N B + VNQ. (6)

When a surface is defined by its parametric equation, approximating facets may be fit
by sampling the isoparametrics in u and v to obtain quadrangles ABCD [Figure 1(a)].
With such a tessellation, the previous intersection process can be used again by dividing
ABCD into two triangles, ABD and CDB [Figure 1(b)]. In this way, one obtains the
values of u and v for a point M inside the quadrangle with the following definition:

Triangle ABD : A M = u A B + v AD,
(7)

Triangle CDB : CM = (1 - t̂) CD + (1 - v) CB.

2 3 4 0 Ray Tracing and Radiosity

Figure 1.

(a) 1̂ (b)

Tessellation of a parametric surface: (a) in quadrangles, (b) in triangles.

Figure 2. Isoparametric segments on quadrangular facet for parameter u = ^, ^, and ^. (a) Quadrangle,
(b) Triangles ABD + CDB. (c) Triangles BCA + DAC.

Then the normal vector N]y[may be obtained as the bihnear interpolation between
the four points A, B, C, and D:

N M = (1 - W) (1 - ^) N A + 7i (l - ' ? ;)NB + ^ ^ N c + (l - ? i) i ; N D . (8)

There are two drawbacks to this artificial quadrangle subdivision. First, the result
depends on the choice of the triangles, and second, the isoparametric segments of the
quadrangle {u = constant ov v = constant) are not preserved. For instance, Figure 2(a)
shows the quadrangle ABCD having three isoparametric segments [u = \^ u = ^ and
?i = |) , defining line segments nearly parallel to AD and EC. Now consider two possible
triangulations. Splitting the quadrangle along BD and AC is shown in Figures 2(b) and
2(c), respectively, with isoparametric segments also drawn. Note that the split neces-

K2 Ray Intersection of Tessellated Surfaces: Quadrangles versus Triangles 0 235

sarily disturbs the orientation of these segments. This modification of the isoparametric
directions can induce visible artifacts such as distorted texture mappings.

This defect can be removed if all four vertices ABCD are used when computing u
and V. This requires a method based upon quadrangular faceting, described next.

0 Quadrangular Facets 0

A point M belongs to a planar and convex quadrangle ABCD iff

A M = uAB + vAD + uvAE (9)

with A E = D C + BA = DA + B C 0 < u < l 0 < i ; < l .

Equation (9) is a quadratic system of three equations. As before, one can be obtained
by linear combination of the other two. By analogy to (4), eliminate the equation k
corresponding to the largest absolute component of the normal vector. The final system
can be solved either in terms oi u ov v:

u^ (AB*AE) + u (AB*AD + A E * A M) + A D * A M = 0; v= ^ ^ ~ ^ f ^ ? (10)
A D + u A E

^2 (AD*AE) + V (AD*AB + A E * A M) + A B * A M = 0; u= ^ ^ ~ ^ f ^ ^ . (11)
^ ^ ^ ^ A B + i;AE ^ ^

To find if M lies within the quadrangle, compute u and v by (10) or (11) and check
that 0 < 16 < 1 and 0 < x; < 1. These parameters allow for a proper four-point
interpolation (8), which preserves the facets' true isoparametrics [Figure 2(a)].

All the previous computations are valid only for planar, convex quadrangles. Thus,
quadrangles obtained by parametric sampling might not qualify. However, the small
size of the facets created by such a sampling process allows them to be considered both
planar and convex. Moreover, the planar and convex condition may be directly enforced
in certain adaptative sampling schemes (Snyder and Barr 1987, Peterson 1994), thereby
preventing the generation of unvalid quadrangles. Empirical testing has not revealed any
distinguishable visual artifacts when using this method.

0 Trapezoid 0

When ABCD defines a trapezoid (at least two opposite sides are parallel), the quadratic
term appearing in (10) or (11) is zero, greatly simplifying computation. Without loss

236 0 Ray Tracing and Radiosity

Table 1 . Costs of each computation.

Number of multiplications
Number of divisions

1 Number of square roots

Plane intersection

9
1

UV triangle

6
2

UV trapezoid

14 (10)
2

UV quadrangle

17 (13)
2
1 1

(n): number of multiplications if trapezoid/nontrapezoid information is stored offline.

Table 2.

Number of multiplications
Number of divisions
Number of square roots

Global intersection costs.
Triangle (twice)

30

6

Trapezoid

23 (19)

3

Quadrangle |

26 (22)
3
1 1

(n): number of multiplications if trapezoid/nontrapezoid information is stored offline.

Table 3. Time measurements.

Trapezoids
Quadrangles

Quadrangle method

60
76

Triangle method

100
100 1

of generality, the solution for the case^ AB \\ DC is now presented. The u coordinate is
computed by (10), which is now a linear equation. In this trapezoid, all isoparametrics
in V are exactly parallel to AB and CD. Therefore, v is obtained simply by dividing
the distance from M to AB (or CD) by the distance from D to AB (or CD):

A M * AD
u = AB * A D + AE * A M

and V =
A M * (AB + DC)
A D * (AB + DC)

(12)

In the source code concluding this gem, the trapezoid versus nontrapezoid test is done
on-the-fly by the intersection routine. To speed computation, this test can be computed
offline for each quadrangle and the result can be stored in the quadrangle structure,
costing two bits per quadrangle but saving four multiplications per routine call.

0 Comparison 0

Table 1 presents the number of numerical operations for different parts of the algo-
rithm. Table 2 compares intersection costs for the three facet types. Table 3 compares
timings between the triangle and quadrangle algorithms. Intuitively, the intersection

^Notice t h a t a degenerated quadrangle (i.e., A = B or C = D) is only a par t icular case of a trapezoid,
and so the same solution can be applied.

\/.2 Ray Intersection of Tessellated Surfaces: Quadrangles versus Triangles 0 237

of a ray with a quadrangle (one quadratic equation and one linear equation) appears
a priori more expensive than the intersection with a triangle (two linear equations).
But in fact, for a given quadrangle ABCD, the triangle-based ray intersection must
be computed twice (except in the few situations where the ray hits the first triangle).
Moreover, when the quadrangle is a trapezoid, the square root is removed by optimiza-
tion and the quadrangle algorithm easily outperforms its rival. Note: to obtain maximal
efficiency, algorithms used for time trials employed both macro-based vector functions
and a precomputed (non)trapezoid flag. The code listed below uses the toolbox of macro
functions defined in the present volume (page 402); on the distribution disk, there is
also the code using the Graphics Gems library (Glassner 1990).

Finally, note that trapezoids are frequently obtained when tessellating classical sur-
faces used in computer graphics, which include ruled surfaces, surfaces of revolution,
extrusion surfaces (without torsion), and even large regions of many free-form surfaces.
This makes quadrangle- and trapezoid-based ray intersection algorithms, as described
here, the method of choice.

0 Source Code 0

QUAD.H : Christophe Schlick and Gilles Subrenat (15 May 1994)

"Ray Intersection of Tessellated Surfaces : Quadrangles versus Triangles"
in Graphics Gems V (edited by A. Paeth), Academic Press

* */

#ifndef _QUAD_
#define _QUAD_

#include <math.h>
#include "tool.h"
#include "real.h"
#include "vec2.h"
#include "vecS.h"

/*
** Type definitions
*/
typedef struct {

realvecS A,B,C,D; /* Vertices in counter clockwise order */
realvec3 Normal; /* Normal vector pointing outwards */

} QUAD;

typedef struct {
realvecS Point; /* Ray origin */
realvecS Vector; /* Ray direction */

} RAY;

238 0 Ray Tracing and Radiosity

typedef struct {
realvecS Point; /* Intersection point */
real Distance; /* Distance from ray origin to intersection point */
real u, v; /* Parametric coordinates of the intersection point */

} HIT;

** External declarations

extern bool ray_hit_quad (RAY *, QUAD

#endif

HIT *) ,

/'
QUAD.C : Christophe Schlick and Gilles Subrenat (15 May 1994)

"Ray Intersection of Tessellated Surfaces : Quadrangles versus Triangles"
in Graphics Gems V (edited by A. Paeth), Academic Press

* */

#include "quad.h"

** Macro definitions

#define MY_TOL ((real) 0.0001)

#define LARGEST_COMPONENT(A) (ABS((A).x) > ABS((A).y) ? \
(ABS((A).x) >ABS((A).z) ? 'x' : 'z') : \
(ABS((A).y) >ABS((A).z) ? 'y' : 'z'))

/ • *

** Compute parametric coordinates of the intersection point
*/
static bool point_in_quad (QUAD *Quad, HIT *Hit)

{
char LargestComponent;
realvec2 A, B, C, D;
realvec2 M;
realvec2 AB, BC, CD, AD, AM, AE;
real u, v;
real a, b, c, SqrtDelta;
bool Intersection = FALSE;
realvec2 Vector;

/* of the normal vector
/* Projected vertices

/* Projected intersection point */
/* Miscellanous 3D-vectors */
/* Parametric coordinates */
/* Quadratic equation */
/* Intersection flag */
/* Temporary 2D-vector */

/*
Projection on the plane that is most parallel to the facet

LargestComponent = LARGEST_COMPONENT(Quad->Normal);

if (LargestComponent == 'x') {
A.x = Quad->A.y; B.x = Quad->B.y; C.x = Quad->C.y; D.x = Quad->D.y;

\/.2 Ray Intersection of Tessellated Surfaces: Quadrangles versus Triangles 0 239

M.x = Hit->Point.y;
}
else {

A.x = Quad->A.x; B.x = Quad->B.x; C.x = Quad->C.x; D.x = Quad->D.x;
M.x = Hit->Point.x;

}

if (LargestComponent == 'z') {
A.y = Quad->A.y; B.y = Quad->B.y; C.y = Quad->C.y; D.y = Quad->D.y;
M.y = Hit->Point.y;

}
else {

A.y = Quad->A.z; B.y = Quad->B.z; C.y = Quad->C.z; D.y = Quad->D.z;
M.y = Hit->Point.z;

}
SUB_VEC2 (AB, B, A); SUB_VEC2 (BC, C, B) ,
SUB_VEC2 (CD, D, C); SUB_VEC2 (AD, D, A),
ADD_VEC2 (AE, CD, AB); NEG_VEC2 (AE, AE); SUB_VEC2 (AM, M, A);

if (ZERO_TOL (DELTA_VEC2(AB, CD), MY_TOL)) /* case AB // CD */

{
SUB_VEC2 (Vector, AB, CD);
V = DELTA_VEC2(AM, Vector) / DELTA_VEC2(AD, Vector);
if ((V >= 0.0) && (v <= 1.0)) {

b = DELTA_VEC2 (AB, AD) - DELTA_VEC2 (AM, AE) ;
c = DELTA_VEC2 (AM, AD);
u = ZERO_TOL(b, MY_TOL) ? -1.0 : c/b;
Intersection = ((u >= 0.0) && (u <= 1.0));

}
}
else if (ZER0_T0L(DELTA_VEC2(BC, AD), MY_TOL)) /* case AD // BC */
{

ADD_VEC2 (Vector, AD, BC) ;
u = DELTA_VEC2(AM, Vector) / DELTA_VEC2(AB, Vector);
if ((u >= 0.0) && (u <= 1.0)) {

b = DELTA_VEC2 (AD, AB) - DELTA_VEC2 (AM, AE) ;
c = DELTA_VEC2 (AM, AB);
V = ZERO_TOL(b, MY_TOL) ? -1.0 : c/b;
Intersection = ((v >= 0.0) && (v <= 1.0));

}
}
else /* general case */
{

a = DELTA_VEC2(AB, AE); c = - DELTA_VEC2 (AM,AD);
b = DELTA_VEC2(AB, AD) - DELTA_VEC2(AM, AE);
a = -0.5/a; b *= a; c *= (a + a); SqrtDelta = b*b + c;
if (SqrtDelta >= 0.0) {

SqrtDelta = sqrt(SqrtDelta);
u = b - SqrtDelta;
if((u<0.0) II (u>1.0)) /*we want u between 0 and 1 */

u = b + SqrtDelta;
if ((u >= 0.0) && (u <= 1.0)) {

240 0 Ray Tracing and Radiosity

V = AD.x + u * AE.x;
if (ZERO_TOL(v, MY_TOL))

V = (AM.y - u * AB.y) / (AD.y + u * AE.y),
else

V = (AM.x - u * AB.x) / v;
Intersection = ((v >= 0.0) && (v <= 1.0));

}
}

}
if (Intersection) {

Hit->u = u;
Hit->v = v;

}
return (Intersection);

}

/*
** Search for an intersection between a facet and a ray
*/
bool hit_ray_quad (RAY *Ray, QUAD *Quad, HIT *Hit)

{
realvec3 Point;

/* if the ray is parallel to the facet, there is no intersection */
Hit->Distance = D0T_VEC3 (Ray->Vector, Quad->Normal);
if (ZERO_TOL(Hit->Distance, MY_TOL)) return (FALSE);

/* compute ray intersection with the plane of the facet */
SUB_VEC3 (Point, Quad->A, Ray->Point);
Hit->Distance = D0T_VEC3 (Point, Quad->Normal) / Hit->Distance;
MULS_VEC3 (Hit->Point, Ray->Vector, Hit->Distance);
INC_VEC3 (Hit->Point, Ray->Point);

/* is the point in the facet ? */
return (point_in_quad(Quad, Hit));

0 Bibliography 0

(Badouel 1990) Didier Badouel. An efficient ray-polygon intersection. In Andrew S.
Glassner, editor, Graphics Gems, pages 390-393. AP Professional, Boston, 1990.

(Bloomenthal 1994) Jules Bloomenthal. An implicit surface polygonizer. In Paul S.
Heckbert, editor, Graphics Gems IV, pages 324-349. AP Professional, Boston,
1994.

(Glassner 1990) Andrew Glassner. 2D and 3D vector library. In Andrew S. Glassner,
editor, Graphics Gems, pages 629-642. AP Professional, Boston, 1990.

\/.2 Ray Intersection of Tessellated Surfaces: Quadrangles versus Triangles 0 241

(Lischinsky 1994) Dani Lischinsky. Incremental Delauney triangulation. In Paul S.
Heckbert, editor, Graphics Gems IV, pages 47-59. AP Professional, Boston, 1994.

(Peterson 1994) John W. Peterson. Tessellation of NURB surfaces. In Paul S. Heckbert,
editor, Graphics Gems IV, pages 286-320. AP Professional, Boston, 1994.

(Preparata 1985) F.P. Preparata. Computational geometry: An introduction. Springer
Verlag, 1985.

(Snyder and Barr 1987) J.M. Snyder and A.H. Barr. Ray tracing complex models con-
taining surface tessellations. Computer Graphics (ACM SIGGRAPH ^87 Proceed-
ings), 21 (4): 119-128, July 1987.

OV.3
Faster Ray Tracing Using
Scanline Rejection

Tomas l\/ldller
Lund Institute of Technology
Lund, Sweden
d91tm@efd.lth.se

0 Introduction 0

Ray tracing speeds may be improved (Weghorst et al. 1984) by testing the primary ray
intersections. A preprocessing phase uses a hidden surface algorithm to find a visible
object for each pixel. This gem presents a scanline-based first-hit speedup technique. Its
added advantage lies in its reuse of geometry-based intersection testing, making for a
more uniform implementation. It also works with different kinds of supersampling.

Figure 1 shows an overview of a simple viewing geometry. Assume that the picture
is rendered one scanline at the time with increasing scanline number. Now consider all
first-hit intersections for a particular scanline. All lie within a common plane defined by
the eyepoint E and the scanline. Any object that does not intersect the plane cannot
intersect a ray; all nonintersecting objects can be rejected for further intersection testing
during the processing of the scanline. This is depicted in Figure 2. Formally, consider
two points A and B, which are positioned on a particular scanline in space. The normal
of the plane is then Â^ = {B - E) x {A - E). NormaUze Â s so lÂ Î = 1 and then
ds = —Ns • E. The equation of the scanline plane (where P is any point on the plane)
is

Ns'P + ds = 0. (1)

The following subsections present rejection tests for spheres, boxes, and polygons, then
methods of extension. Each test assumes that only one ray is shot per pixel and that
this ray passes through the center of the pixel. Each object/scanline test returns a
status code taken from the set ^nScanline^ Off Scanline, Interval, Never Again}. Addi-
tional heuristic information may also be produced. At the conclusion of all subsections,
the scanline-rejection technique is generalized to support methods of supersampling,
adaptive supersampling, and stochastic sampling.

Copyright (c) 1995 by Academic Press, Inc.
All r ights of reproduct ion in any form reserved.
IBM ISBN 0-12-543455-3
•\ /r i t T(-1T-»A.T r\ -in f A t^ A r i^ -^T- ^ MX. jf

v.3 Faster Ray Tracing Using Scan line Rejection 0 243

(0,0) Scanline # 0

Projection plam

(width-1,height-1)

Figure 1. The viewing geometry. Horizontal lines define the scanline center; pixels lie at line crossings.

Figure 2. The scanline plane through points A, B, and E. Sphere 2 lies on the plane and will be tested
further; sphere 1 lies below the plane and will not be tested further.

2 4 4 0 Ray Tracing and Radiosity

Scanline

Figure 3. The circle of intersection common to sphere and scanline plane. Its scanline projection is the
interval of guaranteed intersection. S is the vector between two pixels on the (dotted) scanline.

0 Spheres 0
The sphere is the basic ray tracing object. Their simphcity makes them useful even
for an advanced ray tracer. They are, for example, often used as bounding volumes for
more complex objects.

Given a sphere with center Sc and radius Sr and a scanline plane, first compute the
shortest distance between the plane and the center of the circle. Intersection occurs
iff this is less than or equal to the radius s^. Cost of evaluation is reduced by using
a distance calculation described in a previous gem (Georgiades 1992). Formally, the
signed distance t is

t = Ns-Sc + ds. (2)

If \t\ < Sr then the status of that sphere is OnScanline. This means that a first-hit
test must potentially be computed for every pixel on that scanline. If |^| > ŝ then
no intersection occurs and the status code returned is OffScanline. This means that
no additional first-hit tests on that scanline are required for that sphere. Since (2)
provides a signed distance (side of plane), all first-hit tests on subsequent scanlines may
be rejected should these scanlines further increase this distance. In this case |t| > Sr
and Sc lies on the same side of the plane as previous scanlines, and code Never Again is
set.

If the sphere intersects the plane, an even more efficient rejection can be made. The
intersection of a plane and a sphere is a circle whose projection onto the scanline is
an interval of intersection (Figure 3). Here, code Interval is set; its endpoints are now
determined. Given the center of the circle Cc and its radius c^, then Cr is easily computed

V.3 Faster Ray Tracing Using Scan line Rejection 0 245

using the Pythagorean relation: s'^ = c^ + t^ and Cc = Sc — tNg. Using the notation
in Figure 3, compute the interval of intersection by finding vectors Vi and V2. Let
D = Cc — E and d = \D\, which gives sin^ = Cr/d and the vector H = D x Ng. Since
\D\ = \H\, Vi and V2 can be computed as

Vi = sm{e)H + cosi9)D =^H+Jl- (^) D,

V2 = - sm{9)H + cos(6>)i:̂ = -^H + J l - (~) D.

The desired interval is called [IntervaLminJntervalmax] and these values are integers
representing pixel offsets. They are found by computing the intersection between the
scanline in space and the lines E+PiVi and E+p2y2. The leftmost point on the scanline
is called L, and the vector between two adjacent pixels in space is called 5, which gives
us the scanline L + aS. ai and a2 are computed using the two systems of equations
below:

L + aiS = E + (3iVi (3)

L + a2S = E + (32V2 (4)

To reduce these systems to two dimensions, simply project the lines onto an axis-
parallel plane (the same projection normally performed on the points of a polygon
during the point-in-polygon test), that is, throw away the coordinates that correspond
to uiax{Ns^x^]^s,y^Ns,z)- Call the projection plane the uv-pldiue. Equation (3) reduces
to the system below:

Lu + aiSu = Eu + PiVi^u /r\
L, + aiS, = E, + fSiVi^y ^̂ ^

The linear system (5) has a unique solution (ai , /3i) if Vi is not parallell to S. The value
of interest, a i , is given by

Vlu ' {Ey — Ly) — V\y ' {Eu " Lu) / ^ x

Q̂ i = -" ^—TF w ^ • (6)

If Vi is exchanged for V2 in Equation (6), the solution for a2 is obtained. Since S is the
vector between two adjacent points (a point is here the center of a pixel), ai and a2
are the (floating-point) horizontal pixel offsets for the projection of the sphere onto the
scanline. The endpoints of the interval are then

Interval.min = [0^2! 5 /^\
Interval.max — [o^ij,

246 0 Ray Tracing and Radiosity

in which the ceiUng and floor functions produce a more conservative estimate that
includes partially intersected pixels. These calculations guarantee that a ray outside
the interval cannot intersect the sphere and that a ray inside must intersect the sphere.

If a sphere is used merely as a bounding volume, then the subsidiary interval com-
putation may be omitted. (Should the test fail, all objects within the bounding volume
are marked OffScanline. Alternatively, all objects can be marked by the common inter-
val, though this information is of less value.) A bounding volume hierarchy traversal
is a natural and productive extension. Intersection failure of any point within the tree
implies failure within all subtrees.

The distance to the intersection point can also be estimated. The distance t to the
first intersection is d — Cr <t < d ii the eyepoint is outside the sphere, else 0 <t < 2cr.
This information can be used to further improve hierarchial traverse (Haines 1991).

There are some special cases that are all handled in the source code. If d < Cr>, then
the eyepoint E lies inside the sphere and the status of that sphere is set to OnScanline
since every ray from the eye will hit the sphere. Another special case is when Vi or V2
are parallel to S. This simple problem is not discussed here but is treated in the code.
Note also that the implementation assumes that all spheres that are completely behind
the eyepoint E are set to NeverAgain before the ray tracing starts. All objects with
status NeverAgain are immediately rejected from further testing when presented to any
of the scanline intersection routines.

0 Polygons 0

The test for polygons is quite similar to the test just described. Compute the signed
distance for each vertex of the polygon. Intersection occurs iff at least one is positive
and one negative. As before, NeverAgain is returned if all points lie on the same side
as previous scanlines.

If intersection occurs, an interval may again be constructed by projecting the set of
intersections (page 386). Find adjacent vertices Vi and V^+i that differ in sign. Then
the point of intersection is found by computing the intersection between the line

F, + tiVi+i - V^)

and the scanline plane. The ^-value of the intersection is

Ns-iV^+i-ViY

which in turn gives the point of intersection

Pi = Vi + t{Vi+i-Vi).

\/.3 Faster Ray Tracing Using Scan line Rejection <> 247

To project Pi onto the scanline, find the intersection between the two fines

L + aiS

and

The interval is then given by

Interval.min — [min(ai)],
IntervaLmax = [max(a^)J. (8)

If the polygon is convex and the pixel is inside the interval, then the intersection between
the ray and the polygon is guaranteed and the point-in-polygon test omitted, saving
considerable execution time. If the polygon is concave, then all pixels inside the interval
potentially lie within the polygon, while all rays lying outside the interval miss.

Boxes are easily treated as special-case polygons using the preceeding methods.

0 Pseudocode 0
Given an object record that includes interval offsets, the pseudocode resembles the fol-
lowing:

for y ^ 0, y < Ymax, y ^y + ldo
Compute Ns and ds for scanline number y.
for obj <^ objecto to objectm do

FirstTest(o6j,?/); /* this sets obj.status and obj.interval.min, max */
endloop;
for X <— 0, X < Xmax^ X ' ^ X + 1 do

Ray Trace loop
for obj ^r— objecto to objectm do

if obj.status—=Interval then
begin

\i obj.interval.min < x < obj.interval.max then
RayTrace(x,y,o6j,tr7ie); /* guaranteed hit */

end
else if obj.status===On/S'can/me then

RayTrace(x,y,o6j,/aZ5e); /* potential hit */
else

The ray misses the Object.
endloop;

2 4 8 0 Ray Tracing and Radiosity

Scanline-plane 1

Center of scanline #6

Figure 4. Stochastic supersampling showing scanline plane 1 and 2 for scanline #2. Note: an object
may lie between the planes without intersecting them.

endloop;
endloop;

RayTrace(x,y,o6j,mtersec^) is the original "RayTrace" function, now augmented by a
third "object" parameter indicating the candidate object of intersection and by a fourth
parameter intersect^ which is set to true if intersection must occur and set to false if it
is a potential hit.

0 Supersampling 0

The algorithm just described is well suited to n x n supersampling and adaptive super-
sampling tasks. The method is largely unchanged: For n x n supersampling, n planes
are generated per scanline. Adaptive supersampling introduces new planes with each
additional (fractional) scanline.

For stochastic supersampling, neither of these techniques can be used. Instead con-
struct, for each scanline, two scanline planes: one through the uppermost part of the
pixels and one through the bottommost part (Figure 4). To test a sphere for intersec-
tion, start with a signed distance test for both plane 1 and 2 in the figure. Call the
distances di and 6/2 • If ^1 > ^r or d2 < —5^, then reject the sphere on that scanline. On
the other hand, if any of the absolute values of di or d2 is less than the radius of the
sphere, then an interval can be computed. Assuming the pixels are square. Equation
(7) for the interval calculation changes to

Interval.min = [min(a2,1,^2,2) — ^1? /Q\
Interval.max = [max(ai^i,ai^2) + ^J^

y.S Faster Ray Tracing Using Scan line Rejection 0 249

where aij is a^ for scanline plane j . But note that this test will not work for all spheres
of subpixel size. When the radius Sr is smaller than the projected scanline spacing, it
may lie between the two planes without intersecting either, requiring an additional test.
If di < —Sr and d2 > Sr^ the sphere lies between the planes and it is possible that rays
will hit it on that scanline. Project the sphere onto the projection plane to find the
interval.

Observe that one cannot guarantee intersection inside this interval, but the risk of
miss is small. Outside the interval no intersection will occur, as usual.

Roughly the same situation applies for polygons. If all points are above plane 1
or below plane 2, then the polygon is rejected. Otherwise, the polygon is a potential
first-hit, but note that no interval can easily be computed for polygons. The status
OnScanline is returned and no further heuristic testing occurs.

Observe that all objects behind the eyepoint must be rejected before any of these
tests are done, since the orientation of the planes is inverted behind the eyepoint.

0 Optimizations 0
Before all ray tracing commences the five planes of the viewing pyramid can clip and
reject (status Never Again) all objects outside it. These objects will never be considered.

Another optimization orders the objects using a linked list during the evaluation
of each scanline. Every object that receives the NeverAgain status is placed last in
the list. Objects with status OffScanline preface the NeverAgain objects. The Interval
and OnScanline objects will thus be first in the list. This order will be changed for
every scanline, but when traversing the list and finding an object with OffScanline or
NeverAgain status, the for obj <— objecto to objectm enumeration loop for that pixel
may immediately terminate. In the same fashion, the for-loop that calls FirstTest may
terminate when an object with status NeverAgain is encountered.

The author welcomes the inclusion of additional intersection tests to the library.
Quadrics (such as the cylinder or the cone) are likely first extensions.

0 Acknowledgment 0
Thanks to Alan Paeth, who turned this article into a beautifully cut gem.

0 Source Code 0
scanline.cc

/•k-k-k-k-k-k-kiek-k

* Scanline-rejection routines *
* for spheres and polygons. *
* By Tomas Moller *

250 0 Ray Tracing and Radiosity

#include "vector.h"

#define EPSILON le-6 /* a small number */
#define INFINITY le8 /* a large number */
enum StatusFlag {OnScanline,OffScanline,Interval,NeverAgain};

struct FirstHitStatus

{

StatusFlag Flag; /* se enum above */
short IntervalMin,IntervalMax; /* the interval */

};

/ • • • * • • • * * • • • • • • • • * • • • • • • * • * * * • • • • * • • • • * • • • • • • • • • * • • • * • •

* SphereComputeFirstHitStatus - computes the first hit status *
* for a sphere and the Interval (if any) for the scanline-plane *
* given by the first two parameters. *
* •

* Entry: *
* Ns - normal of the scanline-plane *
* ds - "d-value" for the scanline-plane *
* LeftMost - the leftmost point on the scanline. Referred to *
* as L in the text. *
* ScanLineDir - the direction of the scanline in space. *
* Observe that it is constructed by subtracting two *
* adjacent points on the scanline from each other. *
* width - number of pixels per scanline *
* Ui,Vi - the indices to the uv-plane. 0==x,l==y,2==z *
* Eyepos - the positition of the eye (or camera) *
* Sphcen - the centre of the sphere *
* Sr - the radius of the sphere *
* •

* The function returns a struct FirstHitStatus with all *
* necessary information. *
• • • • • * * • • • * * • * • * • * • • • • • • • • • * • • • • • • • • • • * • • • • • • * • • • • • • • •

struct FirstHitStatus SphereComputeFirstHitStatus(Vector &Ns,float ds,
Vector LeftMost,Vector ScanLineDir,int width,int Ui,int Vi,
Vector Eyepos,Vector Sphcen,float Sr)

{

struct FirstHitStatus FHstatus;
float signed_dist=Ns*Sphcen+ds;
if(signed_dist>Sr) FHstatus.Flag=NeverAgain; /* sphere is above plane */
else if(signed_dist<-Sr) FHstatus.Flag=OffScanline; /* below plane */
else

{
Vector D,H,Cc,Nd; /* Cc=Circle Origo */
float sintheta,costheta,centerdist;
float cr2,d2,tl,t2,t3,Vlv,Vlu,V2v,V2u; /* squared circle radius */
Cc=Sphcen-Ns*signed_dist;
cr2=Sr*Sr-signed_dist*signed_dist; /* the * is dot-product */
D=Cc-Eyepos;

d2=D*D; /* D dot D=squared length of D
if(d2<=cr2)
{ /* we are inside the sphere */

V.3 Faster Ray Tracing Using Scanline Rejection 0 251

}

FHstatus.Flag=OnScanline;

return FHstatus;

}
H=D%Ns; /* % = cross product */
tl=cr2/d2;
sintheta=sqrt(tl) ;
costheta=sqrt(1-tl);
tl=H[Ui]*sintheta;
t2=D[Ui]*costheta;
Vlu=tl+t2; /* compute VI and V2 */
V2u=-tl+t2;
tl=H[Vi]*sintheta;
t2=D[Vi]*costheta;
Vlv=tl+t2;
V2v=-tl+t2;
tl=LeftMost[Ui]-Eyepos[Ui]; /* some constants */
t2=Eyepos[Vi]-LeftMost[Vi];
t3=Vlu*ScanLineDir[Vi]-Vlv*ScanLineDir[Ui];
if(t3!=0.0) /* VI parallel to ScanLineDir ? */
{

FHstatus.IntervalMax=(int)floor((Vlv*tl+Vlu*t2)/t3);
t3=V2u*ScanLineDir[Vi]-V2v*ScanLineDir[Ui];

if(t3==0.0) FHstatus.IntervalMin=0;
else FHstatus.IntervalMin=(int)ceil((V2v*tl+V2u*t2)/t3);

}
else /* VI parallel to ScanLineDir */
{

t3=V2u*ScanLineDir[Vi]-V2v*ScanLineDir[Ui];
FHstatus.IntervalMin=(int)ceil((V2v*tl+V2u*t2)/t3);

FHstatus.IntervalMax=width-l;

}
/* check if interval is valid and set status */
if(FHstatus.IntervalMin>=width || FHstatus.IntervalMax<0)

FHstatus.Flag^OffScanline;
else
{

if(FHstatus.IntervalMax>=width) FHstatus.IntervalMax=width-l;
if(FHstatus.IntervalMin<0) FHstatus.lntervalMin=0;
if(FHstatus.IntervalMin==0 && FHstatus.IntervalMax==width-l)

FHstatus.Flag=OnScanline;
else FHstatus.Flag=Interval;

}
}
if(FHstatus.IntervalMin>FHstatus.IntervalMax) FHstatus.Flag=OffScanline;
return FHstatus;

/* Macro used by PolyComputeFirstHitStatus. It projects
* the point (x,y,z) onto the scanline and saves the
* result in [reallntervalMin,reallntervalMax].
*/

252 0 Ray Tracing and Radiosity

#define PROJECTPOINT(x,y,z) \
switch(Ui) \
{ \

case Xi:u=x; break; \
case Yi:u=y; break; \
case Zi:u=z; break; \

} \
switch(Vi) \
{ \

case Xi:v=x; break; \
case Yi:v=y; break; \
case Zi:v=z; break; \

} \

denom=ScanLineDir [Ui] * (Eyepos [Vi] -v) -ScanLineDir [Vi] * (Eyepos [Ui] -u) ; \
if(denom==0.0) \
{ \

if(ScanLineDir[Ui]!=0.0) alphas(u-Eyepos[Ui])/ScanLineDir[Ui]; \
else alpha=(v-Eyepos[Vi])/ScanLineDir[Vi]; \
if(alpha>0.0) realIntervalMax=width-l; \
else realIntervalMin=0; \

} \
else \
{ \

alphas(Eyepos[Ui]-LeftMost[Ui])*(Eyepos[Vi]-v); \
alpha-=(Eyepos[Ui]-u)*(Eyepos[Vi]-LeftMost[Vi]); \
alpha/=denom; \
if(alpha>realIntervalMax) realIntervalMax=alpha; \
if(alpha<realIntervalMin) realIntervalMin=alpha; \

} \

/ • * • • * • • * • • • • * • • • • • • • • • * • * • • • • * • * • • • • • • • • • • • • • • * * • * •

* PolyComputeFirstHitStatus - computes the first hit status for a *
* polygon and the Interval (if any) for the scanline-plane *
* given by the first two parameters. *
* •

* Entry: *
* Ns - normal of the scanline-plane *
* ds - "d-value" for the scanline-plane *
* LeftMost - the leftmost point on the scanline. Referred to *
* as L in the text. *
* ScanLineDir - the direction of the scanline in space. *
* Observe that it is constructed by subtracting two *
* adjacent points on the scanline from each other. *
* width - number of pixels per scanline *
* Ui,Vi - the indices to the uv-plane. 0 = =:x, l = =y, 2 = = z *
* Eyepos - the positition of the eye (or camera) *
* x,y,z - the points of the polygon *
* NrVert - Number of vertices *
* •

* The function returns a struct FirstHitStatus with all *
* necessary information. *

\/.3 Faster Ray Tracing Using Scanline Rejection 0 253

struct FirstHitStatus PolyComputeFirstHitStatus(Vector Ns,float ds,
Vector LeftMost,Vector ScanLineDir,int width,int Ui,int Vi,
Vector Eyepos,float *x,float *y,float *z,short NrVert)

{
struct FirstHitStatus FHstatus;
Vector isect,dir;
float dist,prevdist=0,denoin, alpha,u, v;
float realIntervalMax=-INFINITY,realIntervalMin=INFINITY;
prevdist=Ns.X()*x[NrVert-1]+Ns.Y()*y[NrVert-1]+Ns.Z()* z[NrVert-1]+ds;
/* start with last point */
for(int i=0;i<NrVert;i++)
{

dist=Ns.X()*x[i]+Ns.Y()*y[i]+Ns.Z()*z[i]+ds;
if(dist==0.0)
{ /* point i is on the plane, project it on the scanline */

PROJECTPOINT(x[i],y[i],z[i]);
}
else if((prevdist<0.0 && dist>0.0) || (prevdist>0.0 && dist<0.0))
/* intersection */
{

isect.Set(x[i],y[i],z[i]);
if (i==0)

{
dir.SetX(x[NrVert-l]-x[0]) ,
dir.SetY(y[NrVert-l]-y[0]) ,
dir.SetZ(z[NrVert-l]-z[0]) ,

}
else dir.Set(x[i-l]-x[i],y[i-l]-y[i],z[i-l]-z[i]);
alpha=(-ds-Ns*isect)/(Ns*dir);
isect+=dir*alpha; /* intersection point calculated */

PROJECTPOINT(isect.X(),isect.Y(),isect.Z());

}
prevdist=dist ;

}
if(realIntervalMax==-INFINITY) //no intersection
{

if(dist>0) FHstatus.Flag=NeverAgain;
else FHstatus.Flag=OffScanline;

}
else if(realIntervalMax<0 || realIntervalMin>=width)

FHstatus.Flag=OffScanline;
else
{

FHstatus.IntervalMax=(int)floor(reallntervalMax);
FHstatus.IntervalMin=(int)ceil(reallntervalMin);
if(FHstatus.IntervalMax>=width) FHstatus.IntervalMax=width-l;
if(FHstatus.IntervalMin<0) FHstatus.IntervalMin=0;
if(FHstatus.IntervalMin==0 && FHstatus.IntervalMax==width-l)

FHstatus.Flag=OnScanline;
else FHstatus.Flag=Interval;

}

254 0 Ray Tracing and Radiosity

if(FHstatus.IntervalMin>FHstatus.IntervalMax) FHstatus.Flag=OffScanline;
return FHstatus;

vector, h

* vector.h - a vector class written in C++ *
* functions for +, -, dotproduct, crossproduct, scaling, *
* length & normalizing, many of these are operators *
* By Tomas Mo Her *

#ifndef VECTOR_H
#define VECTOR_H

I r * * * * * * * * * * * -) * V

#include <stream.h>
#include <string.h>
#include <math.h>

#define Xi 0
#define Yi 1
#define Zi 2

// indices into vector

class Vector

{
protected:

float fx,fy,fz;
public:

Vector() {fx=0.0;fy=0.0;fz=0.0;} //
Vector(float x,float y,float z); //
Vector(Vectors a); //
void Set(float x,float y,float z); //
void SetX(float x); //
void SetY(float y); //
void SetZ(float z); //
void Setlndex(int index,float value);
// set x,y or z to value depending on
float X(void)
float Y(void)
float Z(void)
void Add(float x,float y
void Sub(float x,float y
void Scale(float a);
float Length(void);
void Normalize(void);

void operator^(Vector& a);
Vector operator*(float t);
Vector operator+ (VectorSc a) ;
Vector operator-(Vector& a);
Vector operator+(void);
Vector operator-(void);
void operator+=(Vector& a);

float z) ,
float z)i

//
//
//
//
//
//
//
//

constructor with no argument
constructor with coords
constructor with vector
assign new values to vector
set X
set y
set z;

index
return fx
return fy
return fz
addition to this vector
subtraction
scaling of vector
length of vector
normalize vector

// operator: assignment
// operator: scaling
// operator: addition
// operator: subtraction
// unary +
// unary -
// operator: +=

y.S Faster Ray Tracing Using Scan line Rejection 0 255

void operator-^ (VectorSc a); // operator: - =
void operator*=(float t); // operator: *= (scaling)
float operator*(Vector& a); // operator: dot product
Vector operator%(Vector& a); // operator: cross product
float operator[](short index);
// if short=0 then X, short=l then Y, else Z, see constants above

};

/* here follows the inline functions and operators */

inline Vector::Vector(float x,float y,float z)
{ fx=x; fy^y; fz=z; }

inline Vector::Vector(Vector& a)
{ fx=a.fx; fy=a.fy; fz=a.fz; }

inline void Vector::Set(float x,float y,float z)
{ fx=x; fy=y; fz=z; }

inline void Vector::SetX(float x)
{ fx=x;}

inline void Vector::SetY(float y)

{ fy=y; }

inline void Vector::SetZ(float z)
{ fz=z; }

inline void Vector::Setlndex(int index,float value)

{

switch(index)

{
case Xi: fx=value;
case Yi: fy=value;
case Zi: fz=value;

}
}

inline float Vector::X(void)
{ return fx; }

inline float Vector::Y(void)
{ return fy; }

inline float Vector::Z(void)
{ return fz; }

inline void Vector::Add(float x,float y,float z)
{ fx+=x; fy+=y; fz+=z; }

inline void Vector::Sub(float x,float y,float z)
{ fx-=x; fy-=y; fz-=z; }

256 0 R^y Tracing and Radiosity

inline void Vector::Scale(float a)
{ fx*=a; fy*=a; fz*=a; }

inline float Vector::Length(void)
{ return sqrt((*this)*(*this)); // square root of Dot(this,this)

}

inline void Vector::Normalize(void)

{
if(Length()==0.0) cout<<"ErrorinormalizeXn";

else Scale (1. 0/LengthO) ;

}

/*••*••••*••*•*•*** Operators *********************/

inline void Vector::operator=(Vector& a) // assignment

{ fx=a.fx; fy=a.fy; fz=a.fz; }

inline Vector Vector:: operators-(void) // unary +
{ return *this; }

inline Vector Vector::operator*(float t) // scaling
{ Vector temp; temp.Set(fx*t,fy*t,fz*t); return temp; }

inline Vector Vector::operators(Vector& a)
{ Vector sum; sum.Set(fx+a.fx,fy+a.fy,fz+a.fz); return sum; }

inline Vector Vector::operator-(Vector& a)
{ Vector sum; sum.Set(fx-a.fx,fy-a.fy,fz-a.fz); return sum; }

inline Vector Vector::operator-(void) // unary -
{ Vector neg; neg.Set(-fx,-fy,-fz); return neg; }

inline void Vector::operator+=(Vector& a)
{ Set(fx+a.fx,fy+a.fy,fz+a.fz); }

inline void Vector::operator-=(Vector& a)
{ Set(fx-a.fx,fy-a.fy,fz-a.fz); }

inline void Vector::operator*=(float t) // scaling
{ Set(fx*t,fy*t,fz*t); }

inline float Vector::operator*(Vector& a) // dot product
{ return fx*a.fx+fy*a.fy+fz*a.fz; }

inline Vector Vector::operator%(Vector& a) // cross product

{
Vector cross;
cross.Set(fy*a.fz-fz*a.fy,fz*a.fx-fx*a.fz,fx*a.fy-fy*a.fx);

return cross;

}

V.3 Faster Ray Tracing Using Scan line Rejection 0 257

inline float Vector::operator[](short index)

{

switch(index)

{
case Xi: return fx;
case Yi: return fy;
case Zi: return fz;

}
return 0.0; //if invalid index

}
/**•*••***•••*** End of Ooerators *****************/
#endif

0 Bibliography 0
(Beatty et al 1981) J. C. Beatty, K. S. Booth, and L. H. Matthies. Revisiting Watkins

algorithm. In Proceedings, 7th Canadian Man-Computer Communications Confer-
ence (CMCCS '81), June 1981.

(Georgiades 1992) Priamos Georgiades. Signed distance from point to plane. In David
Kirk, editor, Graphics Gems III, pages 223-224. AP Professional, Boston, 1992.

(Glassner 1989) Andrew S. Glassner. An Introduction to Ray Tracing. AP Professional,
London, 1989.

(Haines 1991) Eric Haines. Efficiency improvements for hierarchy traversal in ray trac-
ing. In James Arvo, editor, Graphics Gems II, pages 267-272. AP Professional,
London, 1991.

(Watkins 1970) G. S. Watkins. A Real Time Visible Surface Algorithm. PhD thesis.
University of Utah, Salt Lake City, UT, June 1970.

(Weghorst et al. 1984) H. Weghorst, G. Hooper, and D. P. Greenberg. Improved com-
putational methods for ray tracing. ACM Trans. Graphics, pages 52-69, 1984.

OV.4
Ray Tracing a Swept Sphere

Andreas Leipelt
Mathematisches Seminar der Universitat Hamburg
Hamburg, Germany
leipelt® GEOMAT. math, uni-hamburg. de

This gem presents the basic algorithms required for ray tracing the swept surface (Han-
rahan 1989) generated by sweeping a sphere along a path. These surfaces look like
wound tubes with varying thickness, resembling plant stems or exhaust pipes.

0 Introduction 0

For ray tracing this interesting modeling primitive, one needs to solve the following
problems:

Compute the intersections with a ray.

Determine the axis-aligned bounding box.

Decide if a point is inside or not.

Compute the surface normal at an intersection point.

In order to ease the computation, it is assumed that the sweep path is represented by
a vector-valued polynomial c{t) of degree n parameterized by time t on the bounded
interval [a, 6]. Similarly, the sphere's radius is "modulated" during the sweep, defined
by the nonnegative real-valued polynomial r{t) of degree m.

The problems listed above, save for the normal computation, can be solved by using
a common technique: finding the absolute or positive minima (maxima) of a function
on an interval. Real analysis off'ers the following steps:

1. Calculate the first derivative of the given function.
2. Find all roots of the derivative, thereby locating the global extrema.
3. Evaluate the function at the roots and choose the smallest (largest) value.
4. Check the function at the interval's endpoints as it may take a larger (smaller)

value there.

In all cases this will lead to a polynomial equation. For solving polynomial equations,
refer to (Schwarze 1990) and (Hook and McAree 1990). Robust solution of cubics and
quartics is treated on page 3.

Copyright (c) 1995 by Academic Press, Inc.
All r ights of reproduct ion in any form reserved.
IBM ISBN 0-12-543455-3
A /T : „ J 1_ TOTTNT O 1 0 C /I O y4 r T •\r ^ " ^ X

\/A Ray Tracing a Swept Sphere 0 259

0 Intersections with a Ray 0

To find the intersections with a ray, first intersect all spheres of the sweeping process
with the ray. The t-depending spheres are given by the equation

\\c{t)-x\\^ = r{t)^, te[a,..b], (1)

where || || denotes the usual Euclidean distance in three-space. This ray is defined
parametrically:

x = a + Xd, (2)

with normalized direction d. Substituting the ray equation in Equation (1) gives

\\c{t) - af - 2\c{t) 'd + X^ - r{tf = 0 . (3)

Define

p{t) = c{t) • d and q{t) = \\c{t) - af - r{tf . (4)

The degree of the polynomial p is less than or equal to n, and the degree of q is less than
or equal to max{2n, 2m}. With this notation, the quadratic equation for A is obtained:

Â - 2Xp{t) + q{t) = 0 . (5)

The t-depending solutions of this equation are

Xit) = Pit) ± ^p{tf - q{t) . (6)

This is in general a complex-valued function. Nevertheless, the described algorithm can
be used in order to find the positive minimum of A(t), because a root t of the derivative
with complex A(t) does not lead to an intersection point. Hence, in a bad case one
computes more roots of the derivative than needed. The first derivative of \{t) is

Thus, the equation

^^-"^m^-"
is to be solved. This equation is equivalent to

p'{t) = T{2p{t)p'{t) - q'im2^p{t)^-q{t))-'

260 0 Ray Tracing and Radiosity

or

2p'{t)^p{tf-q{t) = T{2p{t)p'{t) - q'{t)) . (9)

Squaring Equation (9) results in

¥{tfipitf - q{t)) = Mtfp'itf - Ap{t)p'{t)q'{t) + q'{tf

or

0 = q'{tf - Ap{t)p'{t)q'{t) + ip'itfqit) . (10)

Now generalize (10), giving

s{t) = q'{tf + ^p'{t){p'{t)q{t) - p{t)q'{t)) . (11)

The polynomial s{t) is of a degree less than or equal to max{4n — 2,4m — 2}. Find all
roots of s{t) and evaluate A at these roots. Accept only those values A that are real and
positive (an intersection only occurs for a positive parameter A) and find the smallest
one. Check the values A(a) and A(6), too.

The Axis-Aligned Bounding Box

The polynomial c has three components, ci(t),C2(t), and cs{t). Build the polynomials

rriiit) = c^{t) - r(t), Mi{t) = ait) + r{t), i = 1 , . . . , 3.

Now define mini as the absolute minimum of mi{t)^ treated separably by component.
That is, a unique time tmin need not exist for which mi{tmin) = mirii^ i = 1 , . . . , 3. Es-
tablish maxi as well. The vectors {mini^min2^mins) and (maxi,max2,maxs) form the
lower-left and upper-right corner of the bounding box. These extrema are computable
in the manner described, resulting in the best-fitting axis-aligned bounding box.

The Inside Test

A point P in three-space is inside the surface iff there exists a value to G [a. . . 6] such
that

\\c{to) - Pf - r{tof < 0.

Hence, find a negative minimum of the polynomial \\c{t) — P |p — r(t)^. Reapply the
algorithm to locate a minimum.

\/A Ray Tracing a Swept Sphere 0 261

0 Computation of the Normal 0
An intersection point belongs to a parameter t of the surface. The normal at this point
is only the normal of the sphere with center c{t) and radius r{t). The calculation of a
sphere's normal is straightforward and is described in the C + + implementation.

0 Hints 0
The degree of the polynomial s grows four times faster than that of c'and r: deg{s) =
4max(de^(r),c?e^(c)) — 2. For this reason, restricting the degree to deg{r) < 3 and
deg{c) < 3 is advised, suggesting the use of surface models based upon cubic splines.
Both the polynomial root solver gem (Hook and McAree 1990), based upon the Sturm
sequences, and most methods of (modified) regular Falsi encounter difficulties when the
polynomial degree exceeds ten; substitution of other root solvers is recommended.

0 C++ Implementation <>

* POLY.H

* Andreas Leipelt, "Ray Tracing a Swept Sphere"
* from "Graphics Gems", Academic Press
*

#ifndef POLY_CLASS
#define POLY_CLASS

#define MAX_DEGREE 10
#define polyeps lE-10 // tolerance for polynomial coefficients

class polynomial {
public:

int deg;
double coef[MAX_DEGREE+1] ;

polynomial();
double eval(double);
int roots_between(double,double,double*);
double min(double,double);
double max(double,double);
polynomial derivative();

};

polynomial operator+(polynomial&, polynomial&)
polynomial operator-(polynomial&, polynomial&)
polynomial operator*(polynomial&, polynomial&)

262 0 Ray Tracing and Radiosity

polynomial operator*(double, polynomial&),

#endif

* POLY.CPP
* Andreas Leipelt, "Ray Tracing a Swept Sphere"
* from "Graphics Gems", Academic Press
•A-

* Implementation of the polynomial class. The code is
* not complete ! You need to insert a root solver in

* the method 'root_between' .

*/

#include <math.h>
#include "poly.h"

// constructor of the polynomial class
polynomial::polynomial()
{
deg = 0;

for (double *fp = &coef[MAX_DEGREE]; fp >= coef; fp--) *fp = 0.0;
}

// evaluates the polynomial with Horner's scheme.
double polynomial::eval(double x)

{
double *fp = &coef[deg], val;
for (val = *fp--; fp >= coef; fp--) val = val*x + *fp;

return val;

}

// returns the first derivative of the polynomial.
polynomial polynomial::derivative()

{
polynomial ret;

if (!deg) return ret;
ret.deg = deg-1;
for (int i=0; i <= ret.deg; i++) ret.coef[i] = (i+1)*coef[i+1];
return ret;

}

// returns the absolute minimum of the given polynomial in the
// interval [a , b]
double polynomial::min(double a, double b)

{
double roots[MAX_DEGREE], tmp, Min = eval(a);

int n = derivative().roots_between(a, b, roots);
roots[n] = b;

\/A Ray Tracing a Swept Sphere <) 263

for (int i=0; i <= n; i++) {
tmp = eval(roots[i]);
if (tmp < Min) Min = tmp;

}

return Min;

}

// returns the absolute maximum of the given polynomial in the
// interval [a ; b]
double polynomial::max(double a, double b)
{
double roots[MAX_DEGREE], tmp, Max = eval(a);

int n = derivative 0 .roots_between(a, b, roots);
roots [n] = b;
for (int i=0; i <= n; i++) {
tmp = eval(roots[i]);
if (tmp > Max) Max = tmp;

}

return Max;

}

int polynomial::roots_between(double a, double b, double *roots)

(
// This function should return the number of roots between
//a and b and the array 'roots' should contain these roots.
// Refer to Hook and McAree, "Using Sturm Sequences to Bracket
// Real Roots of Polynomial Equations" in "Graphics Gems I"
return 0;

}

polynomial operator+(polynomial& p, polynomial& q)

{
polynomial sum;

if (p.deg < q.deg) sum.deg = q.deg;
else sum.deg = p.deg;
for (int i=0; i <= sum.deg; i++)

s\im.coef[i] = p.coef[i] + q.coef[i];
if (p.deg == q.deg) {
while (sum.deg > -1 && fabs(sum.coef[sum.deg]) < polyeps)

sum.coef[sum.deg--] = 0.0;
if (sum.deg < 0) sum.deg = 0;

}

return sum;

}

polynomial operator-(polynomial& p, polynomial& q)

{
polynomial dif;

if (p.deg < q.deg) dif.deg = q.deg;
else dif.deg = p.deg;

264 0 Ray Tracing and Radiosity

for (int i=0; i <= dif.deg; i++)
dif.coef[i] = p.coef[i] - q.coef[i];

if (p.deg == q.deg) {
while (dif.deg > -1 && fabs(dif.coef[dif.deg]) < polyeps)

dif.coef[dif.deg--] = 0.0;
if (dif.deg < 0) dif.deg = 0;

}

return dif;

}

polynomial operator* (polynomial& p, polynoinial& q)

{
polynomial prod;

prod.deg = p.deg + q.deg;
for (int i=0; i <= p.deg; i++)

for (int j=0; j <= q.deg; j++)
prod.coef[i+j] += p.coef[i]*q.coef[j];

return prod;
}

polynomial operator*(double s, polynomial& p)

{
polynomial scale;

if (s == 0.0) return scale;
scale.deg = p.deg;
for (int i=0; i <= p.deg; i++) scale.coef[i] = s*p.coef[i];
return scale;

}

/ • * • • * * • * • • • • * • • • * • • • • * • • • • • * • * • • • • * * • * • * * • • • • * • • • • • • *

* SWEEP.CPP
* Andreas Leipelt, "Ray Tracing a Swept Sphere"
* from "Graphics Gems", Academic Press

* This file contains the code to handle a swept sphere in

* ray tracing

*/

#include <math.h>
#include "poly.h"

#define rayeps lE-8 // tolerance for intersection test

// refer to Andrew Woo, "Fast Ray-Box Intersection",
// "Graphics Gems I"
extern char HitBoundingBox(double*,double*,double*,double*);

// class of the swept sphere primitive
class swept_sph {
polynomial m[3]; // center of the sphere

\/A Ray Tracing a Swept Sphere 0 265

polynomial r;
polynomial r2;
double a, b;
double minB[3] ,

maxB[3];
double param;

public:

// radius of the sphere
// r2 = r*r
// the interval [a;b], where m and r live
// lower left corner of the bounding box
// upper right corner of the bounding box
// parameter of last intersection, used for member
// 'normal'

swept_sph 0 {}
swept_sph(polynomial*,polynomial,double,double),
int intersect{double*,double*,double*);
void normal(double*,double*);
int inside(double*);

// constructor of the swept_sph-class
swept_sph::swept_sph(polynomial *M, polynomial R, double A, double B)

//
//
//
//
//
{

trajectory of the center of the moving sphere.
An array of polynomials, which is interpreted as a
vector valued polynomial.
varying radius of the moving sphere. The radius is assumed
to be non-negative.

for
r =
r2 =

(int]

R;
•• r * r ;

i < 3; i++) m[i] = M[i] ,

a = A; b = B;
// Calculate the axis aligned bounding box
for (i=0; i < 3; i++) {
minB[i] = (m[i] - r).min(a, b);
maxB[i] = (m[i] + r).max(a, b);

}
}

int swept_sph::intersect(double *origin, double *dir, double *1)
// origin : origin of the ray
// dir : unit direction of the ray
// t : intersection parameter of the ray
{
polynomial p, q, dp, dq, s;
double save[3];
double roots[MAX_DEGREE];
double p_val, q_val, D, test;

if (!HitBoundingBox(minB, maxB, origin, dir))
// save the constant term of the trajectory
for (int i=0; i < 3; i++) {
save[i] = m[i].coef[0];
m[i].coef[0] -= origin[i];

}
p = dir[0]*m[0] + dir[l]*m[l] + dir[2]*m[2];
q = m[0]*m[0] + m[l]*m[l] + m[2]*m[2] - r2 ;

return 0;

266 <> Ray Tracing and Radiosity

dp = p.derivative();
dq = q.derivative 0;
s = dq*dq + 4.0*dp*(dp*q - p*dq);
int n = s.roots_between(a, b, roots);
roots[n++] = a;
roots[n] = b;
*1 = 1E20;
// test all possible values
for (i=0; i <= n; i++) {

// calculate the real solutions of the equation
// 1 = p_val +- sqrt(p_val*p_val - q_val)
p_val = p.eval(roots[i]);
q_val = q.eval(roots[i]);
D = p_val*p_val - q_val;
if (D >= 0.0) {

// check, if the candidate roots[i] leads to a better
// intersection value 1
D = sqrt(D);
test = p_val - D;
if (test < rayeps) test = p_val + D;
if ((test >= rayeps) && (test < *1)) {

param = roots[i];
*1 = test;

}
}

}
// restore the constant term of the trajectory
for (i=0; i < 3; i++) m[i].coef[0] = save[i];
if (*1 < 1E20) return 1;
else return 0;

}

void swept_sph::normal(double
// IP : intersection point
// Nrm : normal at IP
{

^IP, double* Nrm)

double R = r.eval(param);
// if the radius is zero,
if (R < polyeps) {
Nrm[0] = Nrm[1] = 0.0;
Nrm[2] = 1.0;
return;

}
for (int i=0; i < 3; i++)

return an arbitrary normal.

Nrm[i] = (IP[i] - m[i].eval(param))/R;

}

// returns 1, if the point P lies inside.
int swept_sph::inside(double *P)

{
double save[3];
int is_inside;

for (int i=0; i < 3; i++) {

yA Ray Tracing a Swept Sphere 0 267

s a v e [i] = m [i] . c o e f [0] ;
m [i] . c o e f [0] -= P [i] ;

} ;
i s _ i n s i d e =

((m [0] * m [0] + m [l] * m [l] + m [2] * m [2] - r 2) . m i n (a , b) < r a y e p s)
f o r (i = 0 ; i < 3 ; i++) m [i] . c o e f [0] = s a v e [i] ;
r e t u r n i s _ i n s i d e ;

}

0 Bibliography 0
(Hanrahan 1989) Pat Hanrahan. A survey of ray-surface intersection algorithms. In

Andrew S. Glassner, editor, An Introduction to Ray Tracing. AP Professional,
Boston, 1989.

(Hook and McAree 1990) D. G. Hook and P. R. McAree. Using Sturm sequences to
bracket real roots of polynomial equations. In Andrew S. Glassner, editor, Graphics
Gems. AP Professional, Boston, 1990.

(Schwarze 1990) Jochen Schwarze. Cubic and quartic roots. In Andrew S. Glassner,
editor, Graphics Gems. AP Professional, Boston, 1990.

OV.5
Acceleration of Ray Tracing via
Voronoi Diagrams

Gabor Marton
Department of Process Control
Technical University of Budapest
Budapest, Hungary
marton @ seeger fsz. bme. hu

Voronoi diagrams are among the most frequently studied structures in discrete and
computational geometry. They are not only elegant but also very powerful, having an
almost inexhaustible treasury of applications. A previous gem (Lischinski 1994) presents
code for the two-dimensional case only. In this gem Voronoi diagrams are applied to
methods of ray tracing. A d-dimensional diagram solver (coded in C++) is also provided.

0 Introduction 0

Ray tracing, despite its unique simulation potentialities, is generally known as a time-
consuming method of image synthesis. Although the method itself is classical (Whitted
1980), much research effort is still directed toward improving its effectiveness.

A survey of ray tracing acceleration techniques has been given (Arvo and Kirk 1989).
Following their terminology, the method presented here is a space subdivision technique.
Their common characteristic is the reduction of ray-object tests by subdividing the
object scene. The operation is in two parts. First, a preprocessing phase decomposes
the scene into disjoint territories called cells. A list associated with each cell contains
references to those objects that have non-empty intersection with it. Last, the tracing
phase enumerates, for each ray generated, the cells encountered successively by the ray.
The object lists of the cells encountered are the only candidates for object intersection
testing. This enumeration of cells in object space is called voxel walking.

Two different types of cell have been used up to this time:

1. Regular Cubic Lattice: These employ a regular grid of congruent cubic cells. The
advantage of this choice is that voxel walking is easily performed—the original im-
plementation used a three-dimensional DDA line generator (Fujimoto et al. 1986).
The disadvantage is the lack of spatial adaptivity: The structure of the grid does
not conform itself to the actual arrangement and shape of the objects.

Copyright (c) 1995 by Academic Press, Inc.
All r ights of reproduct ion in any form reserved.
IBM ISBN 0-12-543455-3
A * : „ i l_ TCiTTNT r\ 1 <-» r /• o / I rr T "V J^%H.

V.5 Acceleration of Ray Tracing via Voronoi Diagrams <> 269

.""P4

Figure 1. An example Voronoi diagram (solid) and its dual (dotted).

2. Octree Spatial Partition: This well-known data structure (Meagher 1982) was
adapted to this task by Glassner and contemporaries (Glassner 1984). It may be
regarded as a locally adaptive, eightfold Cartesian subdivision. Voxel walking be-
comes more complex, but there are fewer cells.

3. Voronoi Diagrams (new): These approach the ideal (impossible in practice) of plac-
ing exactly one object within each cell. The methods are reviewed and then applied
to ray tracing in the following two sections.

0 Voronoi Diagrams 0
Given Si set pi,... ,pn oi particles (points) in the d-dimensional Euclidean space
classify all space into distinct regions such that each region contains all points of £^
closest to its defining particle. Thus, the Voronoi cell V{pi) corresponding to a particle
Pi is defined as the set of points closer to pi than to any other particle pj. Figure 1
shows a (closest point) Voronoi diagram in two dimensions. Formally:

V{pi) = {peS'': yj^i: \\p-Pi\\<\\p-Pj\\}.

Let B{pi,pj) denote the bisector plane between pi and pj , that is, the set of points being
at an equal distance from pi and pj:

B{p„pj)^{peS'': \\p-p,\\ = \\p-p^\\},

and let H{pi^Pj) denote the half space bounded by B{pi^pj) and containing pi, that is,
the set of points being closer to pi than to pj:

n{pi,pj) = {pe£'': | | p - P i | | < | | p - p , | | } .

270 0 Ray Tracing and Radiosity

Then V{pi) is the region common to the half spaces defined by pi and all the other
particles pj. Formally, this is the region of intersection,

also containing its defining particle pi. The Voronoi cells are convex and disjoint ter-
ritories and (their closure) completely cover the space. The cells corresponding to the
particles on the convex hull of the set p i , . . . ,pri are unbounded; the others are bounded.
This aggregate of the cells is called the Voronoi diagram of the particle set (Voronoi
1908). Alternative names are Dirichlet tesselation (Dirichlet 1850) and Thiessen tessel-
lation (Thiessen 1911).

If the particles pi , . . . ,p^i are in general position, then exactly d+l cells meet at each
vertex of each cell. Such a vertex, called a Voronoi vertex^ is at equal distance from
its forming particles contained by the meeting cells. In other words, it is the center
of the circumsphere of the d-simplex formed by the d+l particles. These simplexes,
called Delaunay simplexes^ are also disjoint and completely cover the convex hull of the
particle set. Their aggregate, which is the dual of the Voronoi diagram, is called the
Delaunay triangulation of the particle set [Figure 1(b)]. This triangulation possesses the
very important empty circumsphere property^ that is, the circumspheres of the Delaunay
simplexes contain no further particles beyond those forming the simplex (Preparata and
Shamos 1985). This property is usually exploited when constructing Voronoi diagrams
by a computer program.

The properties of Voronoi diagrams have been thoroughly investigated within geo-
metric, combinatorial, and statistical contexts. The interested reader is referred to an
extensive survey with companion bibliography (Aurenhammer 1991).

0 Computing Multidimensional Voronoi Diagrams 0
Constructing Voronoi diagrams by computer program is a rewarding challenge. A two-
dimensional implementation appeared in the previous Graphics Gems volume (Lischin-
ski 1994); a solution for arbitrary d-dimensional spaces is also known (Bowyer 1981,
Watson 1981). Their general methods are elegant, relatively simple to implement, and
worthy of greater attention. Though more efficient two-dimensional methods are possi-
ble, Bowyer's algorithm serves as the best starting point and is now reviewed.

The data structure used to represent the diagram is a spatial graph whose nodes are
the Voronoi vertices and whose edges are the one-dimensional edges of the Voronoi cell
boundaries (Voronoi edges). A node v is represented by a 2(d+ l)-tuple:

V = (po,--.,P(i,^0,-..,^d), (1)

where po^... ^pd are (references to) the forming particles and VQ, ... ,Vd are (references
to) the neighboring nodes (vertices) along the Voronoi edges. Some vertex references

V.5 Acceleration of Ray Tracing via Voronoi Diagrams 0 271

Figure 2. Inserting a new particle (q) into the Voronoi diagram.

may be empty. This occurs at those vertices that contribute to the convex hull of the
particles. For example, in Figure 1 the vertex vi is formed by the particles ^1,^2,^65
and its neighbors are only V2 and v^. Two nodes v,w are neighbors iff the two sets of
their forming particles contain exactly d identical ones:

w e {vo{v),..., Vd{v)} iff II {po{v),... ,Pd{v)} n { p o M , . . . ,Pd{w)} II = d.

These d particles form a ring around the Voronoi edge v^ w from which they are situated
at equal distance. The vertex representation in (1) has a normal form: The ring around
each edge v, Vi{v) outgoing from v must contain the particles {po{v)^... ^pd{v)}\{pi{v)}.
For example, in Figure 1 the correct representation of vertex vi is (l5i,P2 5P65'̂ 2?'̂ 5?0)-
This ensures that the forming particle Pi{v) always "opposes" edge v,Vi{v).

Bowyer's algorithm performs an incremental construction (based on this data struc-
ture). That is, the particles are inserted into the structure one by one. It is assumed
furthermore that the new particle to be inserted always falls into the convex hull of
the previous insertions. (This can always be achieved by bounding the original particles
by a d-simplex spanned by d + 1 pseudo-particles. These form a single Voronoi vertex
having no neighbors at the beginning. The real particles can then be inserted one by
one in any order.) The insertion algorithm exploits the empty circumsphere property
of Delaunay triangulations. Its main steps provide for the insertion of a new particle q.
It is described as follows:

1. Initial Vertex Location: Find any vertex i;̂ ^ in the current structure nearer to q
than to its forming particles. (In Figure 2 it is 1̂ 2•) This search is best done by a
linear walk through the Delaunay simplexes from the centroid of the structure to
q (the circumsphere of the simplex containing q will also contain q). This vertex
will definitely be among those which should be deleted from the structure.

272 0 Ray Tracing and Radiosity

2. Tree Search: Check the vertex structure, starting from Vi^^ to find all the other
vertices to be deleted, that is, collect those vertices whose empty circumsphere
property is hurt by q. This results in a list t ' i^, . . . , Vi^ of vertices. (In Figure 2 this
list is t'2,1'1-)

3. Create New Vertices: For each of the vertices Vi-^^.., ,t;i^, consider its neighbors
one by one. Let w denote any neighbor of vi.. If w itself has also to be deleted,
then take the next one. Otherwise, the ring of particles around the edge Vi^^w and
the new particle q form a new vertex. Create this vertex and put it onto a list. (In
Figure 2 the ring around the edge vi^v^ is pi^pe] thus, ^,pi,P6 form a new vertex.)
The result is a hst i^ i , . . . , WN of new vertices.

4. Link Insertion: The new vertices t t ; i , . . . , WN are linked to each other and to their
neighbors from the original structure by identifying the identical rings of particles
around the outgoing edges, updating the structure in place. (In Figure 2 wi and
W2 are mutually linked because both contain the ring q^pi. For the same reason,
wi is also connected to v^ and W4.)

Note that the particles p i , . . . ,Pn may occupy arbitrary position. Consequently, a num-
ber of degenerate cases can arise in the implementation. (They occur more frequently
than one might think!) These are treated by Bowyer in his original article.

0 Voronoi Subdivision for Ray Tracing 0

Voronoi diagrams are very elegant, but the objects within the scene are not isolated
points. The structure itself could be extended to accomodate point sets. [The power di-
agram (Aurenhammer 1991), for example, is one possible generalization of the Voronoi
diagram, where the particles are spheres.] This possibility is, however, left for future re-
search. A computationally less expensive solution is to choose the particle set p i , . . . ,j9n
to be a set of some representative points of the objects^ for example their centroids,
and create a Voronoi diagram upon this set. Identifying optimal sets of representative
particles is also a subject of further research.

The Voronoi data structure described in the previous section can be augmented to
suit the task at hand. Voronoi vertices remain the same. The representation of a particle
p (omitted above on account of its simplicity) now contains two lists in addition to its
spatial coordinates:

p= {x,y,z,L,P) ,

where x, y, z are its coordinates, L contains references to those objects that have non-
empty intersection with the Voronoi cell V(p), and P contains references to those par-
ticles that are contiguous to p in the diagram; that is, there is an edge between them
in the Delaunay triangulation [in other words, P represents the union of the particles

V.5 Acceleration of Ray Tracing via Voronoi Diagrams 0 273

Figure 3. A superfluous object appearing in the list L(p).

forming the boundary of the cell V{p) minus p]. Both lists are built in the preprocessing
phase and are used in the tracing phase during voxel walking.

The lists P are built after the diagram has been completed. A traversal is performed
on the vertex structure, and for each vertex v^ its forming particles po{v)^... ,Pd{v) are
taken one by one. Taking Pi{v), each of the other forming particles is added to the list
P{pi{v)), provided that it is not already there, since more simplexes share one edge in
the triangulation.

The lists L can be built after the lists P are ready because these latter ones provide a
more suitable representation of the Voronoi cells than the vertex structure: The cell V(p)
is in fact the intersection of the half spaces defined by p and the contiguous particles:

qeP{p)
(2)

This property can be exploited when building the lists L{p): If there is at least one
among the half spaces H{p^q) that has empty intersection with an object o, then o is
not put onto list I/(p); otherwise, it is. Note that the lack of such a half space does not
necessarily imply that o intersects V{p). As illustrated in Figure 3, superfluous objects
may appear in the list L{p). A more sophisticated solution could be a search for a
separating plane, as shown by a dashed line in the figure, though the added expense
might not justify this extension.

0 Voxel Walking 0
A ray r is customarily represented by a pair.

(3)

274 0 Ray Tracing and Radiosity

where s ^ £^ is the starting point and 6 E £^ is the direction vector, so tha t the points
of the ray are generated by the equation

r{T) = s + r6 {ren), (4)

where r > 0 is known as the ray parameter. The enumeration of the Voronoi cells along
the pa th of the ray needs the following two kinds of steps:

1. Voxel Initialization: Locate the start ing point of the ray in the structure, tha t is,
find the cell Vi containing s. This cell contains the first ray span.

2. Voxel Walk. Provided tha t the cell Vi containing the i th ray span has already been
found, the cell V^+i containing the (i + l) t h span should be identified.

Step 1 can be realized by the methods used in step 2: Prom an arbitrary point, say
g, s tar t a pseudo-ray r' — {q^s — q) toward s and perform step 2 along r' repeatedly
until reaching s. This assumes tha t the location of q is known a priori. The centroid of
the structure is a suitable first approximation; a more effective choice (exploiting image
coherence) will be discussed later.

Por step 2, assume tha t the ray parameter r̂ where r enters the cell Vi is known
(ri is set to zero). Then compute the other intersection point between the ray and the
boundary of the cell, tha t is, where r exits Vi. (Prom the convexity of Voronoi cells, there
are at most two intersection points.) This results in the ray parameter r^_^l, according
to the inductive assumption, and V^+i is the contiguous cell on the other side of the face
containing the intersection point. The walk concludes when either there are no more
cells (no TiJ^i is found because r exits the convex hull of the objects) or an intersection
is found between r and an object on the list associated with the cell Vi.

Note tha t the Voronoi cells are associated with the particles p i , . . . ,Pn- Therefore,
voxel walking is the enumeration of a corresponding sequence of particles. The inter-
section between the ray and the boundary of a cell can easily be computed since the
lists P{pi) are available. According to Equation (2),

rnV^ = rr^V{q^)= n rnn{q^,q),

tha t is, the ray span contained by the cell is the intersection of the ray spans contained
by the half spaces defined by qi and the contiguous particles. The bisector plane)S(^^, g),
which is the boundary of such a half space, is the set of points p satisfying the equation

{p-h{qi + q))'{q-qi) = ^.

where "•" denotes scalar product. Substi tuting the ray equation (4) yields

(5)
{\{qi + q) - s) • {q - qi

^•{q- qi)

V.5 Acceleration of Ray Tracing via Voronoi Diagrams 0 275

for the intersection point between the bisector plane and the ray. The ray parameter
defining the point of exit is

qeP{qi)

and the next cell is the associated contiguous cell. Note that a negative denominator in
(5) implies a backward step; such neighbors can immediately be excluded from consid-
eration. Zero denominators should also be excluded (the ray is going parallel with the
face).

Exploiting Image Coherence

The location of the starting point of the ray (step 1) can be more effectively performed
by exploiting image coherence. For this reason, the representation of rays in (3) is
augmented with a new item c, called the ray code:

r = (s, 6, c).

The code c uniquely identifies a ray as reflective or transmissive, together with the
identity of all ancestor rays, beginning with the main ray. With r denoting the ancestor
of a ray r, this may be encoded as

{ 0, if r is the main ray;

2c(f) + 1, if r is the reflective child of f;
2c(r) + 2, if r is the transmissive child of r.

For a maximal depth of recurrence Dmax, an array ^start [] of size 2̂ "̂ ^̂ ~̂ ^ — 1 can be built
storing references to possible starting cells. If the starting point of a ray r is found to be
in cell V{q)^ then a reference to q is put into the array at position ^start[c(r)] (C-style
indexing). When the next pixel of the image is evaluated, then the starting points of
the rays are located by starting the walk from the cells referenced by the array g'start-
In the majority of cases, no step needs to be done.

0 Implementation Details 0

The proposed method is used in an object-oriented implementation of the widely known
ray tracer called POV-Ray (POV-Ray Team 1993). The implementation was written in
C + + and was compiled by GNU C + + compiler (gcc, g++) under HP-UX. The source
code of the parser and scanner was generated by yacc and lex from the grammar rules
and token definitions.

276 0 Ray Tracing and Radiosity

voronoi.h

The most general part of the source code is located in the file voronoi.h. It contains
the templates for computing Voronoi diagrams in a space of arbitrary dimension. The
templates are parameterized by the dimension number denoted by D in the code. In
order to declare the template voronoi<D>, which is the diagram itself, it is necessary to
declare the templates permutation<D>, vector<D>, and matrix<D>, as they appear in
this order in the header file. The constructor of voronoi<D> is responsible for building
the diagram, and its operator () is used for traversal.

// PERMUTATION TEMPLATE (USED IN GAUSSIAN ELIMINATION)

template <int D> class permutation {
int n[D]; // ELEMENTS

public:
permutation() {for(register int i=0; i<D; i++) n[i]=i;}
int operator[](int i) {return n[i];}
void operator()(int i, int j) { // SWAP

if(i==j) return;
register int t=n[i]; n[i]=n[j]; n[j]=t;

}
};

// D-DIMENSIONAL VECTOR TEMPLATE

template <int D> class vector {
friend ostream& operator<< (ostream& o, vector<D>&: v) ;
double x[D]; // COORDINATES

public:
vector() {for(register int i=0; i<D; i++) x[i]=0.;}
vector(double x[D]) {for(register int i=0; i<D; i++) this->x[i]=x[i];}
vector(double x[D], permutation<D>& p) {

for(register int i=0; i<D; i++) this->x[i]=x[p[i]];

}
double operator[](int i) {return x[i];}
void operator-^(vector<D>& v) {

for (register int 1 = 0; i<D; i-i-+) x [i]-=v.x [i] ;
}
vector<D> operator*(double d) {

vector<D> w; for(register int 1=0; i<D; i++) w.x[1]=x[i]*d;
return w;

}
vector<D> operator/(double d) {

vector<D> w; for(register int 1=0; i<D; i++) w.x[i]=x[1]/d;
return w;

}
double operator*(vector<D>& v) {

double d=0.; for(register int 1=0; i<D; i++) d+=x[i]*v.x[i];
return d;

}
vector<D> operators- (vector<D>& v) {

V.5 Acceleration of Ray Tracing via Voronoi Diagrams 0 277

vector<D> w; for(register int i=0; i<D;i++) w.x[i]=x[i]+v.x[i];
return w;

}
vector<D> operator-(vector<D>& v) {

vector<D> w; for(register int i=0; i<D;i++) w.x[i]=x[i]-v.x[i];
return w;

}
};

// D-DIMENSIONAL SQUARE MATRIX TEMPLATE

template <int D> class matrix {
friend ostream& operator<<(ostream& o, matrix<D>& A);
vector<D> a[D]; // ROWS

public:
matrix(vector<D> a[D]) {for(register int i=0;i<D;i++) this->a[i]=a[i];}
matrix(double a[D][D]) {

for(register int i=0; i<D; i++) this->a[i]=vector<D>(a[i]);
}
vector<D> operator*(vector<D>& x) {

double y[D];
for (register int i=0; i<D; i++) y [i] =a [i] *x;
return vector<D>(y);

}
int operator 0 (vector<D>& x, vector<D>& b) { // SOLVE (*this)x=b

// GAUSSIAN ELIMINATION METHOD

const double EPS=le-10;
vector<D> B[D]; double c[D]; permutation<D> p;
register int i, j, k;
for(i=0; i<D; i++) {B[i]=a[i]; c[i]=b[i];} // COPY
for(i=0; i<D; i++) { // THROUGH ROWS

double a, amax=0., e, emain;
for(j=i; j<D; j++) // MAIN ELEMENT

if((a=fabs(e=B[p[j]][i]))>amax)
{emain=e; amax=a; k=j;}

if(amax<EPS) return 0; // SINGULAR
p(i,k); // SWAP
for(j=i+l; j<D; j++) { // NULL BELOW

double s=B[p[j]][i]/emain;
B[p[j]]-=B[p[i]]*s;
c[p[j]]-=c[p[i]]*s;

}
}
for(i=D-l; i>=0; i--) { // BUILD SOLUTION

for(j=D-l; j>i; j--) c[p[i]]-=B[p[i]][j]*c[p[j]];

c[p[i]]/=B[p[i]] [i];
}
x=vector<D>(c,p); return 1;

}
};

278 <> Ray Tracing and Radiosity

II VORONOI-VERTEX TEMPLATE

template <int D> struct vertex {
vector<D>* p[D+l];
vertex<D>* v[D+l];
vector<D> c;
double rr;
int b;
int i ;
long t;

private:
void initialize(vector<D>* f[D+l]) {

register int i;
for(i-0; i<D+l; i++) {p[i]-f[i]
this->b=-l; this->i=0; this->t=
vector<D> A[D]; double b[D];
for(i=0; i<D; i++) {

A[i]=(*f[i+l])-(*f[i]);
b[i]={((*f[i+l])+(*f[i]

}
if(!matrix<D>(A)(c,vector<D>(b)

rr=-l.;
return;

}
rr=(*p[0]-c)*(*p[0]-c);

// FORMING POINTS
// CONTIGUOUS VERTICES
// POSITION
// RADIUS SQUARE
// BACK INDEX (WORK)
// ACTUAL INDEX (WORK)
// TRAVERSE CODE (WORK)

; v[i]=(vertex<D>*)0;}
OL;

))*0.5)*A[i];

)) { // EQUATION A*c=b
// DEGENERATE

public:

// FORMING POINTS
// POINT q AND RING

}

vertex(vector<D>* f[D+l]) {initialize(f);}
vertex(vector<D> *q, vertex<D> *v, int i) {

vector<D> *f[D+l]; f[0]=q;
for(register int j=l; j<D+l; j++) f[j]=v->p[(j+i)%(D+1
initialize(f);

}
};

// VORONOI-DIAGRAM TEMPLATE

template <int D> class voronoi {
friend ostream& operator<<(ostream& o
vector<D> C;
vector<D> *b[D+l];
vertex<D> *c;
double 11(vector<D>& v) (return v*v;}
double dd(vector<D>& v, vector<D>& w)

vector<D> d=v-w; return d*d;

}
void normals(int d, double n[D+l][D])

register int i, j;
if(d--2) {

n[0] [0]=1.0; n[0] [1]=1.0;
n[l] [0]=-1.0; n[l] [1]=1.0;
n[2] [0]=0.0; n[2] [1]=-1.0;
return;

voronoi<D>& v);
// CENTROID
// BOUNDING SIMPLEX
// CLOSEST TO CENTROID
// LENGTH SQUARE

{ // DISTANCE SQUARE

{ // NORMAL VECTORS FOR bound()

pub l i c :

} ;

V.5 Acceleration of Ray Tracing via Voronoi Diagrams 0 279

}
normals(d-l, n);
for(i=0; i<d; i++) n[i][d-1]=1.0;
for(i=0; i<d-l; i++) n[d][i]=0.0;
n[d][d-l]=-1.0;

}
void bound(list<vector<D>*>* 1); // BUILD BOUNDING SIMPLEX
vector<D>* q; // ACTUAL POINT
list<vertex<D>*> *ld; // VERTICES TO DELETE
void findO; // FIND A VERTEX TO DELETE
void searchO; // FIND ALL VERTICES TO DELETE
list<vertex<D>*> *ln; // NEW VERTICES
void create 0; // CREATE NEW VERTICES
int samering{vertex<D>*v, int iv, vertex<D>*w, int iw) {

for(register int i=(iv+1)%(D+1);i!=iv;i=(i+1)%(D+1)) {
vector<D> *p=v->p[i];
for(register int j=(iw+1)%(D+1);j!=iw;j=(j+1)%(D+1))

if(w->p[j]==p) {j=-l; break;}
if(j>=0) return 0;

}

return 1;

}
void linkO; // LINK NEW VERTICES TO EACH 0.
void build(list<vector<D>*>* 1) { // DISJOINT PARTICLES

traverse=OL;
bound(1);
for(vector<D>* p=l->first(); p; p=l->next())

{q=p; find(); search(); create(); link();}

}
long traverse; // TRAVERSE CODE
static void free(vertex<D>*v){delete v;}// FOR DESTRUCTOR
static void donothing(vertex<D>*v){} // FOR REINITIALIZE traverse

voronoi(list<vector<D>*>* 1) {
for(register int i=0; i<D+l; i++) b[i]=new vector<D>;
build(l);

}
voronoi(list<vector<D>*>* 1, vector<D> *b[D+l]) {

for(register int i=0; i<D+l; i++) this->b[i]=b[i];
build(l);

}
void operator 0 (void (*f) (vertex<D>* v)); // TRAVERSE VERTICES
/voronoi() {

(*this)(free); // TRAVERSE AND DELETE

for(register int i=0;i<D+l;i++) delete b[i];

}

template <int D> void voronoi<D>::bound(list<vector<D>*>* 1) {
register int i, j;

// NORMAL VECTORS FOR FACES OF BOUNDING SIMPLEX

280 0 Ray Tracing and Radiosity

double a[D+l][D]; normals(D, a);
vector<D> n[D+l];
for(1=0; i<D+l; i++) n[i]=vector<D>(a[i])/sqrt(11(vector<D>(a[1])));

// MAXIMAL DISTANCES IN DIRECTION OF NORMALS

double d, dinax[D+l] , dmin[D+l] ; register int first=l;
for(vector<D>* p=l->first(); p; p=l->next()) {

for(1=0; i<D+l; i++) {
d=n[i]*(*p);
if (first II d>dinax[i]) dmax[i]=d;
if (first II d<dinin[i]) dmin[i]=d;

}

first=0;

}

// VERTICES OF BOUNDING SIMPLEX (INTERSECT FACES CYCLICALLY)

for(1=0; i<D+l; 1++) dmax[1]+=(dmax[i]-dmin[1])*.5; // INACCURACY
vector<D> A[D]; double t[D];
for(1=0; i<D+l; 1++) {

for(j=0; j<D; j++) {
A [j] = n [(i + j) % (D + l)] ;
t [j] = d i n a x [(i + j)%(D+l)] ;

}
(v o i d) m a t r i x < D > (A) (* b [l] , v e c t o r < D > (t)) ; / / EQUATION A * b [i] = t

}

// CENTRAL VERTEX AND CENTROID

c=new vertex<D>(b);
for(1=0; 1<D+1; 1++) C=C+(*b[i]);
C=C*(1./(double)(D+1));

}

template <lnt D> void voronoi<D>::find() {
register int 1, j;
double P[D+1][D+1]; for(j=0; j<D+l; j++) P[D][j]=l.;
double q[D+l]; for(j=0; j<D; j++) q[j] = (*this->q) [j] ; q[D]=l.;
vertex<D> *v=c;
vector<D+l> a; // BARICENTRIC COORDINATES OF q
for(;;) {

for(1=0; i<D; 1++) for(j=0; j<D+l; j++) P[1][j]=(*v->p[j])[1];
(void)matrix<D+l>(P)(a,vector<D+l>(q)); // SOLVE P*a=q
double amlnus=0.;
for(j=0; j<D+l; j++) if(a[j]<aminus) {aminus=a[j]; 1=j;}
if(aminus<0.) {v=v->v[i]; continue;}
break; // q INSIDE

}

ld=new list<vertex<D>*>; *ld+=v;

}

V.5 Acceleration of Ray Tracing via Voronoi Diagrams 0 281

template <int D> void voronoi<D>::search() {
vertex<D> *vstart=ld->first() , *v=vstart; v->b=-l;
register int back=0;
for(;;) {

register int go=0, i; vertex<D> *n;
do {

if(back) { //
*ld+=v;

i=v->b; v->b=-l; v=v->v[i];

}

STEP BACKWARDS

back=0; continue;

if(v->i==v->b) continue;
if(v->v[v->i]==(vertex<D>*)0)
n=v->v[v->i];
if(n->b>=0) continue;
if((*ld)[n]) continue;
if(dd(*q,n->c)<n->rr) go=l;
if(go) break;

} while((v->i=(v->i+l)%(D+l))!=0);
if(go) {

for(i=0; i<D+l; i++)
if(v==n->v[i]) {n->b=i

v=n; continue;
}
if(v==vstart) break;
back=l;

continue;
// NEIGHBOR
// ALREADY TRAVERSED
// ALREADY ON LIST
// GO IF q IN SPHERE

// STEP FORWARDS
// COMPUTE BACK INDEX
break;}

}

template <int D> void voronoi<D>::create() {
vertex<D> *v;
ln=new list<vertex<D>*>;
for(v=ld->first(); v; v=ld->next()) {

for(register int i=0; i<D+l; i++) {
vertex<D> *n=v->v[i];
if((*ld)[n]) continue;
vertex<D> *m=new vertex<D>(q,v,i);
if(m->rr<0.)

{delete m;*ld+=n;continue;}
*ln+=m;
register int j;
for(j=0; j<D+l; j++)

if(m->p[j]==q) m->v[j]=n;
if(n==(vertex<D>*)0) continue;
for(j=0; j<D+l; j++)

if(n->v[j]==v) n->v[j]=m;

}

// TAKE VERTICES
// TAKE NEIGHBORS

// ALSO DELETED
// POINT q + RING i

// DEGENERACY
// STORE

// OUTER LINK
//NO REAL NEIGHBOR

// BACK LINK

}
if((*ld)[c]) {

double d, ddmin; register int first=l;
for(v=ln->first0 ; v; v=ln->next()) {

d=dd(v->c,C);
if(first II d<ddmin) {c=v; ddmin=d;}
first=0;

// NEW C NEEDED

282 0 Ray Tracing and Radiosity

for(v=ld->first()
delete Id;

v; v=ld->next()) {delete v;} // DELETE VERTICES

}

template <int D> void voronoi<D>::link() {
register int i, j, n, iv, iw;
vertex<D> *v, *w;
n=0; for(v=ln->first(); v; v=ln->next()) n++;
vertex<D> *N[n];
n=0; for(v=ln->first(); v; v=ln->next()) N[n++]=v;
for(i=0; i<n-l; i++) {

v=N[i];
for(j=i+l; j<n; j++) {

w=N[j] ;
for(iv=0; iv<D+l; iv++) {

for(iw=0; iw<D+l; iw++) {

}

if (sainering(v, iv,w, iw))
{v->v[iv]=w; w->v[iw]=v;}

}
delete In;

template <int D> void voronoi<D>::operator()(void (*f)(vertex<D>* v)) {
traverse++;
if(traverse==-lL) {

traverse=-2L; (*this)(donothing);
traverse=OL;

}
vertex<D> *v=c; v->b=D+l;
register int back=0;
for(;;) {

v->t=traverse;
register int go=0;
vertex<D> *n;
do {

if(back) {
vertex<D>*n=v->v[v->b];
v->b=-l;
f (V);

v=n; back=0; continue;

}
if(v->i==v->b) continue;
if(v->v[v->i]==(vertex<D>*)0)

continue;
n=v->v[v->i];
if(n->t==traverse) continue;
go=l; break;

// OVERFLOW
// REINITIALIZE

// PARTICULAR CASE

// ITERATIVE TRAVERSE
// MARK AS TRAVERSED
// DON'T GO YET
// ACTUAL NEIGHBOR
// ACTION ON ACTUAL v
// STEP BACKWARDS
// FROM WHERE WE CAME
// FOR NEXT USAGE
// PERFORM ACTION
// TAKE BACK VERTEX

// DON'T STEP BACK YET

//NO REAL NEIGHBOR
// WHERE WE SHOULD GO
// ALREADY TRAVERSED
// GO ON

y.S Acceleration of Ray Tracing via Voronoi Diagrams 0 283

} while((v->i=(v->i + l)%(D+l)) !=0) ; // UNTIL NOT ALL DONE
if(go) { // STEP FORWARDS

for(register int i=0;i<D+l;i++) // FIND BACK LINK
if(v==n->v[i])

{n->b=i;break;} // BOOK
v=n; continue; // LET'S GO

}
if(v==c) break; // RETURNED

back=l; //GO BACK IF NO BETTER

}
f(c); c->b=-l; c->t=traverse; // THE LAST ONE

0 Bibliography 0
(Arvo and Kirk 1989) James Arvo and David Kirk. A survey of ray tracing acceleration

techniques. In Andrew S. Glassner, editor, An Introduction to Ray Tracing^ pages
201-262. Academic Press, London, 1989.

(Aurenhammer 1991) Franz Aurenhammer. Voronoi-diagrams — a survey of a funda-
mental geometric data structure. ACM Computing Surveys^ 23(3):346-405, 1991.

(Bowyer 1981) A. Bowyer. Computing Dirichlet tessellations. The Computer Journal^
24(2):162-166, 1981.

(Dirichlet 1850) G. L. Dirichlet. Uber die Reduction der positiven quadratischen For-
men mit drei unbestimmten ganzen Zahlen. J. Reine u. Angew. Math., (40):209-
227, 1850.

(Fujimoto et al. 1986) Akira Fujimoto, Tanaka Takayuki, and Iwata Kansei. Arts: Ac-
celerated ray-tracing system. IEEE Computer Graphics and Applications, 6(4): 16-
26, 1986.

(Glassner 1984) Andrew S. Glassner. Space subdivision for fast ray tracing. IEEE Com-
puter Graphics and Applications, 4(10):15-22, 1984.

(Lischinski 1994) Dani Lischinski. Incremental Delaunay triangulation. In Paul S. Heck-
bert, editor, Graphics Gems IV, pages 47-59. Academic Press, Boston, 1994.

(Meagher 1982) D. Meagher. Geometric modelling using octree encoding. Computer
Graphics and Image Processing, 20(4):129-147, 1982.

(POV-Ray Team 1993) POV-Ray Team. Persistence of vision ray tracer
(POV-Ray), version 2.0, user's documentation, 1993. anonymous ftp from
alfred.CCS.carleton.ca in /pub/pov-ray/P0V-Ray2.0.

(Preparata and Shamos 1985) Franco P. Preparata and Michael Ian Shamos. Compu-
tational Geometry: An Introduction. Springer-Verlag, New York, 1985.

284 0 Ray Tracing and Radiosity

(Thiessen 1911) A. H. Thiessen. Precipitation average for large area. Monthly Weather
Rev., (39): 1082-1084, 1911.

(Voronoi 1908) M. G. Voronoi. Nouvelles applications des parametres continus a la
theorie des formes quadratiques. J. Reine u. Angew. Math., (134):198-287, 1908.

(Watson 1981) D. F. Watson. Computing the n-dimensional Delaunay tessellation with
application to Voronoi polytopes. The Computer Journal, 24(2):167-172, 1981.

(Whitted 1980) Turner Whitted. An improved illumination model for shaded display.
Communications of the ACM, 23(6):343-349, 1980.

OV.6
Direct Lighting l\/lodels for Ray
Tracing with Cylindrical Lamps

Kurt Zimmerman
Indiana University
Bloomington, Indiana
kuzimmer@cs.indiana.edu

Fluorescent lights are used for many lighting applications, such as classrooms and shop-
ping centers, and neon lights are again becoming popular for advertising signs and cos-
metic lighting. Fluorescent and neon luminaires^ can be modeled as diffuse emitting
cylinders with associated spectral distributions. The following gem presents a method
for performing the direct lighting computations for cylindrical luminaires in distribution
ray tracing.

This gem extends a previous entry (Wang 1992) that presents physically correct
methods for computing the contribution of spherical and triangular luminaires. The
reader is referred to recent publications (Wang 1994), which provide more detailed
accounts of these methods.

0 Direct Lighting Computations 0

Suppose that a point x is illuminated by a luminaire E. The radiance reflected in
direction oj towards x is defined by the rendering equation (Kajiya 1986)

L{x,ij)= / g{x,x')p{x,uj,uj')LE{x\uj')cose-r— ^ , (1)

where x' is a point on the luminaire E, g{x.,x') = 1 if x' is visible from x and zero
otherwise, u' is the direction from x' to x, p is the bidirectional reflectance distribution
function (BRDF), 6 is the angle between the vector —uj' and the surface normal at x,
9' is the angle between u' and the surface normal at x', and LE{X'^u') is the emitted
radiance from the luminaire point x' in direction u'. The geometry for this equation
with respect to a cylindrical luminaire is shown in Figure 1.

^The term "luminaire" refers to a light, lamp, or generic light source.

Copyright (c) 1995 by Academic Press , Inc.
All r ights of reproduct ion in any form reserved.

IBM ISBN 0-12-543455-3
^3m^^\ TV A' : „ j 1- T C i m v T r\ -in cr /» o >< rr rr "vr

286 0 Ray Tracing and Radiosity

cylidrical luminaire

view point solid angle of luminaire

unit hemisphere

Figure 1. Calculating radiance.

Monte Carlo integration may be used to obtain an accurate approximation to (1). A
set of n points x i , . . . , x̂ i then estimates the integral

Jxen ^ ^h\ ^(^^)'

where p{x) is any probability density function that is positive when f[x) is nonzero and
X is distributed by p(x), written x ~ p{x).

In traditional distribution ray tracing (Cook et al. 1984), n = 1. This means that
each luminaire is sampled with one shadow ray, giving the Monte Carlo estimate

L{x,uj) = g{x^x')p{x^uo^uj')Le{x' ̂ uo']
cos 6 cos 6'

p{x')\\x' — x p ' (2)

which can now be generalized for n > 1.
The following steps determine L(x,a;):

1. Select a probability density function p.
2. Choose x' on the luminaire such that x' ~ p.
3. Compute g{x^ x') by sending a shadow ray to determine if there is an obstruction.
4. If ^ = 1, then compute L(x,a;) by Equation (2); else set L{X,UJ) = 0.

The most difficult part lies in determining x^ and p{x'). The following offers, without
derivation, a good p and the associated method for generating x^

\/.6 Direct Lighting Models for Ray Tracing with Cylindrical Lamps 0 2 8 7

cross-section of cylinder

U
cylinder centered on w axis

Figure 2. Two views of the generated lunninaire point x' in relation to the illuminated point x.

0 Sampling Cylindrical Luminaires 0
For spherical and triangular luminaires, previous research (Wang 1992) suggests a sam-
pling based on the estimated subtense (solid angle) of the luminaire as a good strategy.
However, for a cylinder this angle can be difficult to characterize (Figure 1). Therefore,
an alternative approach is taken, which follows from the observation that an approx-
imation to solid-angle-based sampling can be obtained by choosing p such that the
luminaire point x' is more likely to be generated nearer to the illuminated point x. This
approach provides a reasonable approximation because x' subtends a greater differential
solid angle as it moves nearer to x. The probability density function p is then designed
to produce sample positions in which the distance \\x — x'\\ is weighted toward the value
(d — r) (Figure 2). The suggested p generates sample positions with these characteris-
tics by selecting w' according to an appropriate linear function along the height of the
cylinder and by selecting (f)' with a cosine distribution about the vector defined by x
and the center of the cylinder.

The following steps assume a uvw coordinate system where the cylinder center is
the w axis and the base is at the coordinate origin (Figure 2). This simplifies calcu-
lations and requires the use of only a simple coordinate transformation. It is further
assumed that cylindrical luminaires are diffuse, since fluorescent tubes and neon tubes
are nearly diffuse, and that the ends of the cylinder do not emit light. Sample positions
are generated in the following manner.

288 0 Ray Tracing and Radiosity

1. Generate {(jy'^w'). Let ^i and ^2 be random numbers such that ^1,^2 ^ [0^1) ^^d
let D = j ^ - ^ with di the distance from the origin to x and d2 the distance from
the point (0,0, h) to x:

{(()', w')= Uiir^ ; yd^ — T^ (2^) [l + ̂ -V(-l-^)'-4^^2])

2. Find x^ Let x — (xu^Xy^x^)- Then

(T \ V

- {xu cos 0' — x̂ ; sin 0 j 5 ;̂ i^v cos </>' + x̂ ^ sin 0'), it;').
3. Return x^ and p(x'):

, „ f-2D , 1 + D\ dcoscj)'
p{x) = —n^-w H — 7 = = .

It should be noted that as the distance between x and the luminaire becomes large,
simpler strategies can be utilized with similar results. Simpler strategies should be used
when possible because they require less computation per sample, provided that the
strategy does not introduce too much error. For example, an acceptable simplification
of the preceding strategy would set w' = ^2^- This would in turn simplify the probability
density function to

pix') =
d cos (f)'

2rhVd^ - r2

Determining when to use a simple or complex strategy is subject to statistical analysis.
It should also be noted that these strategies have been designed for diffuse environ-

ments. Because the Monte Carlo estimates are unbiased, they will work for environments
with more complex reflective properties, but many samples may then be required.

0 Bibliography 0

(Cook et al. 1984) Robert L. Cook, Thomas Porter, and Loren Carpenter. Distributed
ray tracing. Computer Graphics (ACM SIGGRAPH '84 Proceedings), 18(4):165-
174, July 1984.

(Kajiya 1986) James T. Kajiya. The rendering equation. Computer Graphics (ACM
SIGGRAPH '86 Proceedings), 20(4): 143-150, August 1986.

V.6 Direct Lighting Models for Ray Tracing with Cylindrical Lamps 0 289

(Wang 1992) Changyaw Wang. Physically correct direct lighting for distribution ray
tracing. In David Kirk, editor, Graphics Gems III, pages 307-313. AP Professional,
Boston, 1992.

(Wang 1994) Changyaw Wang. The Direct Lighting Computation in Global Illumina-
tion Methods. PhD thesis, Indiana University, 1994.

OV.7
Improving Intermediate
Radiosity Images Using
Directional Light

Martin Feda
Technical University of Vienna
Vienna, Austria
feda @cg. tuwien.ac.at

This gem describes a simple extension of ambient light to directional light for the
improvement of progressive refinement radiosity images (Cohen et al. 1988). Directional
light gives the user a much better impression of the scene geometry than ambient light,
for only a little additional expense. The approach described here exploits the same
approach as ambient light to estimate the final illumination, but includes a directional
component. Although the new technique presented here is simple and gives much better
results than the conventional ambient light, surprisingly it has been neither described
in literature nor implemented.

0 Background 0

The most commonly used radiosity method is the progressive refinement approach (Co-
hen et al. 1988). It starts with an initial radiosity solution of low accuracy, which is then
continuously improved, converging to the final solution. Intermediate images can be dis-
played after each iteration step. However, the illumination of the environment is usually
inadequate during early iterations. The visual feedback can be improved by ambient
light, which provides an a priori estimate of the final illumination. The ambient light
depends on the unshot radiosities and the reflectivity of the environment. Although the
estimate itself is quite good, the quality of early intermediate images using ambient
light is still unsuitable in most cases. Since ambient light does not account for surface
orientation, there are no contrasts between surfaces of uniform material, such as walls
in a room. This makes it impossible to see the shape of objects and their distance from
the viewing position. In fact, the user typically does not have the impression of viewing
a three-dimensional scene during early iterations, especially in regions occluded from

Copyright (c) 1995 by Academic Press, Inc.
All r ights of reproduct ion in any form reserved.
IBM ISBN 0-12-543455-3 ^ ^ ^

V. 7 Improving Intermediate Radiosity Images Using Directional Light 0 291

all shooting patches. The problem is especially troublesome for complex scenes, where
the progressive refinement algorithm converges very slowly.

0 Illumination Estimation by Ambient Light 0

The difference between the current radiosity values and the complete solution can be
estimated based on the amount of radiosity that has not yet been "shot," that is,
radiosity not distributed to the environment (Cohen et al. 1988). The estimate uses the
average unshot radiosity of all patches in the scene, given by

AB.„ ^ 2 ^ . (1)

where AB^ denotes the unshot radiosity and Ai the area of patch i. On average, without
knowing where unshot radiosity will arrive, a fraction pav will be reflected, where pav
denotes the average reflectance in the scene,

llPi' ^i /r)\

Prom the reflected radiosity, some fraction will be rereflected, and so on. The global
interreflections can therefore be approximated by an infinite sum,

R=l + p,, + pl^ + pt + '" = . (3)
^ Pav

The amount of radiosity that will be received by a patch at later iterations can be
estimated by

^estimate = R ' ^Bav • (4)

Since the incoming direction is not known in advance, Bestimate is used to represent
ambient light (Cohen et al. 1988). For display purposes, the following estimate of the
final radiosity of patch or element i is conventionally used:

Bi = Bi + Pi ' Bestimate • (5)

0 Illumination Estimation by Directional Light 0

Although the incoming direction of radiosity that will be received at later iterations is
not known, it is not necessary to use Bestimate ^ purely ambient light. It can also be

292 0 Ray Tracing and Radiosity

assumed to be directional, falling onto a patch or element i from an arbitrary direction.
If L is the normalized vector pointing to this incoming direction, and N is the surface
normal, the diffuse illumination of the patch due to the estimated directional light can
be computed by the dot product {N • L), as in simple illumination models (Phong
1975). In practice, BesUmate should be used as partly ambient and partly directional
light. Therefore the displayed radiosity can be computed by the following formula:

^display = Bi + Pi- Bestimate • [{1 - d) + d • max(0 , (iV • L))] . (6)

The parameter d determines the fraction of directional light, li d = 1, Bestimate is
used as purely directional illumination; for d = 0, it is purely ambient. The parameter
d can be interactively changed by the user after each image. Typically, d ^ 0.5 gives
best results. There exist several possibilities in choosing the incoming direction of the
estimated directional light. A good choice is to use the point of view as a virtual light
source, so that L points to the virtual camera. The advantage of this choice is that
the directional light illuminates all parts of the scene seen by the user. This enables
the user to perceive the orientation of all visible surfaces. However, if walkthroughs
are performed with this technique during early iterations, the directional component
of estimated illumination will change from image to image. Another possibility is to
use several virtual point light sources distributed in the scene, or several predefined
incoming directions specified by the user. In both cases, the directional component has
to be split up among the light sources or incoming directions. Bad choices are using the
light sources or the patches with the most unshot energy as virtual light sources. In the
first case, the effect of direct illumination is increased, which is computed during the
first iterations anyhow, while regions in shadow are not improved. In the second case,
the incoming direction would change at each iteration step, thus irritating the user.

0 Results 0

Radiosity images generated with the method described here give a much better impres-
sion of the scene geometry than with pure ambient light, especially during early iteration
steps, maintaining a useful approximation of the correct illumination. Examples appear
as Color Plates V.7a-V.7c. The contribution of estimated directional illumination de-
creases at each progressive refinement iteration in the same manner as the classical
ambient light, so that the generated images converge continuously to the correctly il-
luminated image. The additional expense of the new method—the computation of the
dot product—is insignificant and can be performed by the graphics hardware.

V. 7 Improving Intermediate Radiosity Images Using Directional Light 0 293

0 Bibliography 0
(Cohen et al. 1988) Michael F. Cohen, Shenchang Eric Chen, John R. Wallace, and

Donald P. Greenberg. A progressive refinement approach to fast radiosity image
generation. Computer Graphics (ACM SIGGRAPH '88 Proceedings), 22(4):75-84,
August 1988.

(Phong 1975) Bui-Tuong Phong. Illumination for computer generated images. Commu-
nications of the ACM, 18(6):311-317, June 1975.

This Page Intentionally Left Blank

VI • Y I •

Halftoning and Image
Processing

The gems in this section describe methods used either to create scenes having a discrete
structure (halftoning) or to analyze them, thus reconstructing a continuous model where
possible (image processing).

The gem by Tobler, Purgathofer, and Geiler (VI.l) showcases state-of-the-art re-
search in constructing ordered dither matrices used for digital halftoning. The book's
color plates and monochromatic images illustrate their success; a full description of
the methods is the subject of a journal article, published concurrently. Wong and Hsu
describe a new variation upon precipitation-based halftoning, itself an emerging topic.
Their method (VI.2) produces demonstrably superior results, with illustrations accom-
panying the stepwise refinements they describe. Eker (VL3) presents a screen-coordinate
line-clipping algorithm that produces an invariant set of "on" pixels independent of end-
point position along the line that underlies the segment. The problem is common to
window-based systems; he provides a newer method of solution. Done and Rubio de-
scribe an algorithm (VI.4) that reconstructs bitmap shapes into vector motion chains.
Their pattern-based method of attack is closely related to the theory of cellular au-
tomata. Along similar lines, Hsu and Lee (VI.5) provide an exact and reversible inverse
to the popular Bresenham line-drawing algorithm. Careful attention is paid to the best
placement of endpoints common to two vectors, creating a method that produces coor-
dinate pairs from a bitmap scene. Both methods are well suited to lossless, high-ratio
compression of fax documents as well as to bitmap magnification by way of coordinate
transformation. Sharma (VI.6) reconsiders adaptive image refinement. Here, images
are sampled at lower resolution when full detail is not required (as in browsing). His

295

296 0 Halftoning and Image Processing

sampling heuristic is based upon object priority; extensions to this early work might
ultimately offer animated display at low data rates by minimizing the computations
associated with perceptually unimportant scene features. Finally, Cross (VL7) provides
a random point sampling pattern having the minimum statistical correlation to a set
of edges at arbitrary slope. His highly concise results represent many CPU hours spent
"distilling" scene data with the aid of neural networks. (Note: the book's floppy disk
and associated FTP mirrors offer his latest vintages.)

Ovi.1
Improved Threshold Matrices for
Ordered Dithering

Werner Purgathofer Robert R Tobler
Technical University of Vienna Techinical University of Vienna
Vienna, Austria Vienna, Austria

Manfred Geiler
Technical University of Vienna
Vienna, Austria

This gem presents an improved halftoning technique using dispersed dots.^ This corre-
sponds to finding a microdot distribution that approximates the intensity levels that
have to be rendered. An improved threshold matrix for ordered dithering is presented
that avoids unwanted low-frequency portions without introducing too much random
noise. Since the new method produces images of high quality, it is ideally suited for
output generation in high-end image processing systems.

0 Introduction 0

Ordered dithering is a digital halftoning technique (Ulichney 1987) that generates mi-
crodot distributions by using a so-called threshold matrix. This matrix of threshold
values is replicated and put on top of the image. If the intensity of the pixel is lower
than its corresponding threshold value, a microdot is set in the output image. Thus,
neighboring pixels are compared to different threshold values.

There are two major variants of ordered dithering:

• Dispersed Dot Dithering (Lippel and Kurland 1971, Bayer 1973): If consecutive
threshold values are placed far from each other within the matrix, halftoning of an
image of constant intensity will produce a number of dispersed microdots. Since
current threshold matrices are almost always based on regular orderings of the
threshold values, the resulting output image will display highly visible patterns.

^Bgised on "Forced Random Dithering: Improved Threshold Matrices for Ordered Dithering" by
W. Purgathofer, R. F. Tobler, and M. Geiler, which appeared in the Proceedings of the First IEEE
Conference on Image Processing, November 13-16, 1994, Austin, Texas, pp. 1032-1035.

Copyright (c) 1995 by Academic Press , Inc.
All r ights of reproduct ion in any form reserved.

^ ^ ^ IBM ISBN 0-12-543455-3

298 0 Halftoning and Image Processing

• Clustered Dot Dithering: If consecutive threshold values are placed in a special
sequence within the matrix, the microdots will join to create larger dots. The larger
dots will result in a visible raster that is superimposed on the output image. This
method will produce images similar to those found in cheap newspapers.

To overcome these artifacts, various improvements have been suggested that distribute
the quantization error made at each pixel (Knuth 1987, Lippel and Kurland 1971). All
of these methods reduce the performance of the original algorithm. A different method
that does not introduce regular patterns, random threshold dithering^ can be achieved
by comparing each pixel to a random value between 0 and 1 that is generated anew for
each pixel of the input. But this method, also known under the name dithering with
white noise (Ulichney 1988), introduces a great deal of noise into the output image.

Random threshold dithering can also be done with the ordered dithering algorithm,
by using a huge matrix with the threshold values placed in random ordering. Thus,
random threshold dithering and ordered dithering with completely regular matrices
can be viewed as the two extreme cases of a whole range of dithering matrices with
various degrees of randomness in the distribution of threshold values.

0 Improved Threshold Matrices 0
Since ordered dithering has very good characteristics in terms of performance and
achievable parallelism, our goal was to find threshold matrices for this algorithm that
have improved characteristics compared to previously known matrices. A threshold ma-
trix used for ordered dithering has to satisfy the following criteria:

• It should not introduce all-too-obvious regular patterns into the dithered image. A
certain degree of randomness is useful to avoid this kind of artifact.

• It should not be too random, so that the amount of noise introduced by the dithering
process does not degrade the image information too much.

• It should not introduce artifacts at the boundaries between replicated threshold
matrices. Thus, the algorithm to generate the matrix has to compensate for these
boundaries.

A New Way to Generate the Matrices

In order to derive the computation of such in-between matrices, it is useful to think
about a different algorithm for generating these matrices: selecting positions for the
threshold values one by one, starting with the lowest value. This corresponds to adding
microdots to a dot distribution as the desired intensity level slowly changes from white
to black. Additional constraints can be specified to influence the emerging pattern of
values. If the microdots (points) are thrown in randomly according to an equal distri-
bution, and the matrix is made as large as the image, a matrix for random threshold

VI. 11mproved Threshold Matrices for Ordered Dithering 0 299

dithering can be generated. The other extreme can be achieved by using the following
rule: Put each new point in the position farthest away from all previous points. This
rule specifies a set of matrices that contains the completely regular matrices for ordered
dithering (Bayer 1973). After introducing a repulsive force field generated by all points
already included in the matrix, new values can be thrown in randomly, and their posi-
tion can be changed according to the force field. The force-field function used can be
arbitrarily chosen to influence the resulting dot distribution.

The Force-Field Function

In order to produce isotropic images, the force-field function should be radially sym-
metric. The function should also discourage additional points from being placed close
to already-existing points to avoid clustering. Therefore, the following function for gen-
erating the force field of points thrown into the threshold matrix has been chosen:

fir) = exp (- (^y^ . (1)

Here r = \/x^ + y^ is the distance from the point, and p and s are parameters to
control the function. As new points are added, their force fields are added to a force-
field matrix. To avoid problems at the boundaries of the repeatedly used threshold
matrix, the top and bottom edge and the left and right edge of the force-field matrix
are joined, changing it topologically to a torus.

Selecting Positions for Threshold Values

In order to avoid being caught in local minima of the force-field matrix, a large number
of empty positions from the matrix are randomly selected, and the force-field intensities
at these positions are compared. The new point is then fixed at the randomly selected
position having minimum value. Here the number of selected positions governs the
precision with which the global minimum is found. Selecting half of all free positions
for finding the minimum and choosing the parameter values s = 0.5 and p = 0.5 for
the force-field function yields dithering matrices that are best suited for generating
dithering patterns without too many artifacts.

The Size of the Matrix

Nowadays most images use pixel values in the range [0...255]. In order to achieve
the same resolution in the number of intensity levels, the matrix has to be at least 16
by 16 points: A matrix of size n by n can generate n? + 1 dot patterns of different
density if images with constant intensity levels are used. In general, bigger matrices are
better than smaller matrices. Not only is the resolution in the number of intensity levels
higher, but they also introduce less obvious recurring patterns of dots, which can be

300 0 Halftoning and Image Processing

Figure 1. A 150 dpi image rendered using (top left to bottom right) random threshold dithering, ordered
dithering with regular matrix, clustered dot dithering, ordered dithering with improved matrix.

quite visible for small matrices. Bigger matrices use more memory; therefore, the upper
limit is given by the amount of fast memory that is available. A matrix with a size of
300 X 300 pixels seems to be a realistic value, since there are almost no artifacts due to
recognizable repeating patterns. For this size of matrix, the memory requirements are
ninety kilobytes (if the input image has intensity levels in the range [0. . . 255]), which
is small enough for the matrix to completely reside in the secondary caches of current
hardware. The resulting algorithm is therefore extremely fast.

Using Multiple Matrices for Color Images

In color printing, three or four color channels are overlaid to produce intermediate colors
by subtractive color mixing. A lot of methods introduce highly visible moire patterns
into the output image, since they produce very regular dot distributions (Roetling 1976).
In conventional printing this problem is solved by twisting the channel patterns by a few

VI. 11mproved Threshold Matrices for Ordered Dithering 0 301

degrees against each other, a technique not apphcable in computer-generated images.
The new method can avoid this problem, if different matrices are used for each channel
(or the same matrix with different offsets). The overlaid matrices are then completely
uncorrelated and therefore not subject to any interference.

0 Results 0
Figure 1 (Color Plate Vl.la-d) shows the results of applying a few different algorithms
on the same image. The improved matrices avoid too much random noise (compare ran-
dom threshold dithering) and regular dot distributions introduced by threshold patterns
(compare ordered dithering with regular matrix and clustered dot dithering).

The presented method is very fast since it is derived from ordered dithering (the time
for generating the threshold matrix does not need to be considered, since this is a one-
time operation), can be parallelized easily, and generates dot distributions for dithering
that do not exhibit too many artifacts. Although the contrast of the produced images
is a little low, this can be overcome by proper image preparation.

0 Bibliography <>
(Bayer 1973) B. E. Bayer. An optimum method for two-level rendition of continuous-

tone pictures. In IEEE Conference on Communication, Conference Record^ pages
(26-ll)-(26-15), 1973.

(Knuth 1987) D. E. Knuth. Digital halftones by dot diffusion. ACM Transactions on
Graphics, 6(4):245-273, 1987.

(Lippel and Kurland 1971) J. O. Lippel and M. Kurland. The effect of dither on lu-
minance quantization of pictures. IEEE Transactions on Communications and
Technology, 19(4):879-888, 1971.

(Roetling 1976) Paul G. Roetling. Halftone method with edge enhancement and Moire
suppression. Jour. Opt. Soc. Amer., 66(10):985-989, October 1976.

(Uhchney 1987) Robert Uhchney. Digital Halftoning. MIT Press, Cambridge, MA,
1987.

(Uhchney 1988) R. A. Uhchney. Dithering with blue noise. In Proc. IEEE, 76;56-79,
1988.

OVI.2
Halftoning with Selective
Precipitation and Adaptive
Clustering

Tien-tsin Wong Siu-chi Hsu
Computer Science Department Creature House, Ltd.
The Chinese University of Hong Kong Hong Kong
Shatin, Hong Kong schsu @acm. org
ttwong @ cs. cuhk. hk

Halftoning techniques are used to display continuous tone pictures on bilevel displays
and printers (or on those with a very limited number of shades). The most popular
and well-known techniques are ordered dither and error diffusion. The latter produces
aperiodic patterns with limited low-frequency components, a useful property (Ulichney
1987), but its dispersed dots suffer from an excessive smudging, which is especially
objectionable on high-resolution devices. Ordered dither, on the other hand, is capable
of clustering the dots produced by using a properly designed dither matrix. However,
a regular dither pattern is then clearly visible in the output picture. A comparison of
most digital halftoning techniques can be found in the literature (Schumacher 1991,
Ulichney 1987).

Recently, researchers have been investigating new halftoning techniques that traverse
images along a space-filling curve (Cole 1990, Velho and de Miranda Gomes 1991, Zhang
and Webber 1993), based upon a Peano curve algorithm of the last decade (Witten
and Neal 1982). The space-filling curve halftoning is attractive because of the pleasant
smooth grains in the resultant image and the aperiodicity of the halftone pattern. Velho
and de Miranda Gomes {op. cit.) further proposed a clustered-dot space-filling curve
halftoning algorithm that reduces the smudging problem. However, clustering the dots
naively would blur the image excessively. This gem presents two improvements, selective
precipitation and adaptive clustering., used to minimize blurring.

0 Selective Precipitation 0
The first improvement is to precipitate black dots selectively. The original clustered-dot
space-filling curve halftoning algorithm precipitates the black dots at a fixed location,
say, at the beginning of each cluster. This results in a poor approximation to the original
image when the original gray values in a particular cluster are not gathered around that

Copyright © 1995 by Academic Press, Inc.
All r ights of reproduct ion in any form reserved.
IBM ISBN 0-12-543455-3
Tk/r_ _• i _ _ i Tm->T\.T r\ -i o tr /« o / i ir rr - v ^ 1 1 ^

VI.2 Halftoning with Selective Precipitation and Adaptive Clustering 0 3 0 3

a. Grayscale Image Pixels

b. Original Dithering Result

c. After Selective Precipitation

Figure 1. Halftoning (a 1D continuous tone image) using precipitation.

a. Grayscale Image Pixels

b. Velho and Gomes suggestion

c. After Selective Precipitation

Figure 2. Halftoning using selective precipitation.

fixed location (Figure 1). Although Velho and de Miranda Gomes have briefly suggested
that the white subregion can be centered at the pixel with the highest intensity in order
to preserve details, this may still result in a poor approximation (Figure 2).

By placing the black output dots over the area with the highest total gray value, a
better approximation can be obtained. This technique is called selective precipitation.
The number of black dots to be output in the current cluster is determined by summing
all gray values inside the cluster. This number is then used as the length of a moving
window that shifts within the halftone cluster. The objective is to find the position of
the moving window having the highest summed gray pixel value. The black dots are
then precipitated at that position.

In essence, spatial offsets are applied to localize the position of maximum dot density.
This approach advances the original ARIES technique researched extensively at Xerox
(Roetling 1976). The basic algorithm is sketched below.

304 0 Halftoning and Image Processing

Input

1. input [] : a one-dimensional array of continuous tone pixels on the range [0. . . 1]
presented as a one-dimensional array in the order of the space-filling traverse.

2. c l u s t e r s i z e : the cluster size.
3. c lusterstart: the index of the current cluster's first element.
4. graysum: cumulative gray sum within the current cluster.

winlen := [graysumj
graysum := graysum - winlen
winsum := 0
maxsum := 0
wins ta r t := c l u s t e r s t a r t
for i := wins ta r t t o (winstar t+winlen- l) do

begin
winsum := winsum + input[i]

end

while (winstart+winlen) - clusterstart < clustersize

begin

if maxsum < winsum

begin

maxsxim := winsum

rightplace := winstart

end

winsum := winsum - input[winstart] + input[winstart+winlen]

winstart := winstart + 1

end

Output

1. Black dots are produced at rightplace for winlen positions.
2. The final quantization error is in graysum.

The time complexity of this process is clearly linear.

0 Adaptive Clustering 0

Another factor that causes the blurring is the rigid grouping of output black dots
(Figure 3). Here, the original gray values are grouped at opposite ends of the cluster.
Presented with such data, selective precipitation can generate black dots only at the
one end having a higher total gray value. A better approximation can be obtained by
dividing the cluster into two smaller clusters and performing the selective precipitation
process in both clusters.

VI.2 Halftoning with Selective Precipitation and Adaptive Clustering 0 305

a. Grayscale Image Pixels

b. After Selective Precipitation

c. Cutting the cluster into 2 parts

Figure 3. Selective precipitation with adaptive clustering.

One method of locating the point of subdivision is finding the sharp edges. Since
human eyes are more sensitive to high-frequency changes, blurring phenomena on sharp
edges are more noticeable. A partitioning of clusters at sharp edges therefore preserves
sharp details. This approach is used; the improvement is called adaptive clustering.

Since the space-filling curve goes through each pixel in the image exactly once, it
effectively scales down the 2D edge detection problem into a ID problem. It is therefore
sufficient to employ merely a ID filter along the space-filling curve in order to detect
sharp edges. That is, the curve's traverse constitutes a continuous image signal. Apply-
ing the standard ID negative of the Laplacian of the Gaussian filter (Jain 1989) can
detect these sharp edges along the chain (signal). The formula of the filter is

exp(-xV2o-2)

27r
1 - ^

where a is the standard deviation and x is the input signal. A filter kernel with a width
of seven pixels (cr = 1) is sufficient.

The adaptive clustering algorithm is now outlined. Traverse the image pixels along
a chosen space-filling cover, forming a cluster whenever N (the maximum cluster size)
pixels have been traversed or a sharp edge is encountered, whichever comes first. Perform
selective precipitation upon the current cluster. The pseudocode follows.

Input

1. N: maximum cluster size.
2. T: threshold.
3. M: number of input pixels.
4. input [1 . .M]: ID pixel data in preselected order.

306 0 Halftoning and Image Processing

graysum := 0
clustersize := 0
clusterindex := 0
lastconvol := 0
for index := 0 to M-1 do
begin

convol := InvLaplGaussian(input,

graysum := graysum + input[index]
clustersize := clustersize + 1
if Iconvol-lastconvoll > T or clustersize > N
begin

precipitate(input, graysum

index-3)
Convolve array with seven sample window
centered about current pixel.
Accumulate total gray.
Increase current cluster.

clustersize := 0
clusterindex := index

end
lastconvol := convol

clustersize, clusterindex);
Perform selective precipitation outlined
in the previous pseudocode.
Begin next cluster.

end

The sensitivity of the edge detection filter affects the resulting halftone image and
may be controlled with a user-defined threshold T. This value can also be determined
automatically using previous techniques (Schlag 1991). A lower threshold detects addi-
tional edges, resulting in potentially smaller clusters.

Figures 4 and 5 show the performance of the improved halftoning method. Note
the excessive blurring, seen as a loss of floor texture [Figure 4(b)] or of fine image
detail [Figure 5(b)]. This blurring phenomenon is significantly reduced when selective
precipitation and adaptive clustering is employed [Figures 4(c) and 5(c), respectively].

0 C Implementation <>

* Halftoning using Space Filling Curve with adaptive clustering and
* selective precipitation

* Limitation:
* Only process image with size 2vn x 2Vn where n is positive integer.

unsigned char **path; /* space-filling curve path */
/*
* path[] is a global array storing the information to move along
* the space-filling curve.

VI.2 Halftoning with Selective Precipitation and Adaptive Clustering 0 3 0 7

immi^,:-.-:••:•••'•'•• / ' " m ^ ^ ^ i i i B ^ : ? ^ , - - • • • • : • • • : : • • • : • . - ^ ^ ^ s ^ ^ ^ ^

^ i ? ^
(b)

Figure 4, Teapot, (a) Original grayscale image (256x256). (b) Space-filling dithering; cluster size N = 9
pixels, (c) Selective precipitation with adaptive clustering; N = 9.

3 0 8 0 Halftoning and Image Processing

Figure 5. F16 factory, (a) Original grayscale Image (256x256). (b) Space-filling dithering; cluster size
A/ = 9 pixels, (c) Selective precipitation with adaptive clustering; A/ = 9.

VI.2 Halftoning with Selective Precipitation and Adaptive Clustering 0 309

genspacefill() is a function to generate the information in path[].
This function is implemented based on a gem in Graphics Gems II,
Ken Musgrave, "A Peano Curve Generation Algorithm".

macro to move along the space-filling curve using the * move
•

*/
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

0 is a
the

TRUE
FALSE
BLACK
WHITE
LEFT
RIGHT
UP
DOWN
END
move(X

macr
infor

1
0
255
0
0
1
2
3
255

,y) switch (path[x][y])
{
case UP: y++; break
case DOWN: y--; break
case LEFT: x--; break
case RIGHT:x++; break

}

Description of parameters:

picture,
out,
maxclustersize,
thresh,
do_sp,

do ac.

2D array holding the grayscale image.
2D array holding the dithered image.
Max cluster size, N.
Edge detection threshold T.
Flag to switch on/off selective precipitation.
To switch off the selective precipitation,
set do_sp = FALSE.
Flag to switch on/off adaptive clustering.
To switch off the adaptive clustering, set do_ac=FALSE

void spacefilterwindow(int **picture, int **out, int maxclustersize,
int thresh, char do_sp, char do_ac)

char edge ;
char ending;
int accumulator;
int currclustersize;
int frontx, fronty;
int windowx, windowy;
int clusterx, clustery
int windowlen;
int winsum;
int maxsum;
int rightplace;
int ^cluster;
int last, i,j, tempx,
long filter[7] = {-1,

/* Flag indicates sudden change detected */
/* flag indicates end of space-filling curve */
/* Accumulate gray value */
/* Record size of current cluster */
/* Pointer to the front of the cluster */
/* Pointer to first pixel applied with filter */
/* Pointer to first pixel in current cluster */
/* Size of the moving window */
/* Current moving window's sum */
/* Maximum moving window's sum recorded */
/* Position of the moving window with max sum */
/* An array hold the pixel of current cluster */

tempy, currx, curry; /* temp variables */
-5, 0, 13, 0, -5, -1}; /* ID -ve Lap. Gauss, filter */

310 0 Halftoning and Image Processing

long convolution; /* Convolution value in this turn */
long lastconvolution; /* Convolution value in last turn */
/*
* Description of the pointer along the space-filling curve.

* clusterx,
* clustery

windowx,
windowy

I
V

currx,
curry

frontx,
fronty

I
V

Cluster

I
/\ I

/ \ I
- / \ I
\/ \/ I

-ve Laplacian of Gaussian Filter
V

if ((cluster=malloc(sizeof(int)*maxclustersize))==NULL)

{
fprintf(stderr,"not enough memory for clusterXn");
return;

}
genspacefill(); /* generates the spacefilling path */

convolution=0;
currclustersize=0;
accumulator=0;
for (frontx=0, fronty=0, i=0 ; i<7 ; i++)

{
if (i<3)
{
cluster[currclustersize] = picture[frontx][fronty];
accumulator += cluster[currclustersize];
currclustersize++;

}
if (i==3)
{ currx = frontx; curry = fronty; }

convolution += filter[i]*(long)(picture[frontx][fronty]);
move(frontx,fronty); /* assume the image has at least 7 pixels */

}
lastconvolution = convolution;
clusterx=0; clustery=0;
windowx= 0; windowy= 0;
edge=FALSE;
ending=FALSE;

Vi2 Halftoning with Selective Precipitation and Adaptive Clustering 0 311

while (TRUE)

{

if (do_ac) /* switch on/off adaptive clustering */

(
/* do convolution */
convolution = 0;
for (tempx=windowx, tempy=windowy, i=0 ; i<7 ; i++)
{

convolution += fliter[i]*picture[tempx][tempy];
move(tempx,tempy);

}

/* detect sudden change */
if ((convolution >= 0 && lastconvolution <=0

&& abs(convolution-lastconvolution)>thresh)
I I (convolution <= 0 && lastconvolution >=0

&& abs(convolution-lastconvolution)>thresh))
edge=TRUE; /* force output dots */

}

/* Output dots if necessary */
if (edge || currclustersize >= maxclustersize || ending)

{
edge=FALSE;

/* Search the best position within cluster to precipitate */
rightplace = 0;
if (do_sp) /* switch on/off selective precipitation */
{
windowlen = accumulator/BLACK;
winsum = 0;
for (i=0; i<windowlen; i++)
winsum += cluster[i];

for (maxsum=winsum, last=0; i<currclustersize; i++, last++)
{
winsum+= cluster[i] - cluster[last];
if (winsum > maxsum)
{
rightplace=last+l ;
maxsum=winsum;

}
}

}

/* Output dots */
for (i=0 ; currclustersize!=0 ; currclustersize--, i++)

{

if (accumulator>=BLACK && i>=rightplace) /* precipitates */

{

out[clusterx][clustery]=BLACK,•
accumulator-=BLACK;

}

312 0 Halftoning and Image Processing

else
out[clusterx][clustery]=WHITE;

move(clusterx,clustery)
} /* for */

if (ending)
break;

} /* if */

cluster[currclustersize] = picture[currx][curry],
accumulator += cluster[currclustersize];
currclustersize++ ;
if (patli [currx] [curry] ==END)
ending = TRUE;

move(currx,curry);
move(windowx,windowy);
move(frontx,fronty);

} /* wliile */

0 Bibliography 0
(Cole 1990) A. J. Cole. Naive halftoning. In T. S. Chua and Kunii, editors, Proceedings

of CG International '90, pages 203-222. Springer-Verlag, 1990.

(Jain 1989) Anil K. Jain. Fundamentals of Digital Image Processing. Prentice Hall,
1989.

(Roetling 1976) Paul J. Roetling. Halftone method with edge enhancement and moire
suppression. Journal of the Optical Society of America, 66(10):985-989, October
1976.

(Schlag 1991) John Schlag. Noise thresholding in edge images. In James Arvo, editor,
Graphics Gems II, page 105. AP Professional, Boston, 1991.

(Schumacher 1991) Dale A. Schumacher. A comparsion of digial halftoning techniques.
In James Arvo, editor, Graphics Gems II, pages 57-77. AP Professional, Boston,
1991.

(Ulichney 1987) R. Ulichney. Digital Halftoning. MIT Press, Cambridge, MA, 1987.

(Velho and de Miranda Gomes 1991) Luiz Velho and Jonas de Miranda Gomes. Digital
halftoning with space filling curves. In Thomas W. Sederberg, editor. Computer
Graphics (SIGGRAPH '91 Proceedings), Volume 25, pages 81-90, July 1991.

VI.2 Halftoning with Selective Precipitation and Adaptive Clustering 0 313

(Witten and Neal 1982) I. H. Witten and R. M. Neal. Using Peano curves for bilevel
display of continuous-tone images. IEEE Computer Graphics and Applications^
2:47-52, May 1982.

(Zhang and Webber 1993) Yuefeng Zhang and Robert E. Webber. Space diffusion: An
improved parallel halftoning technique using space-filling curves. In James T. Ka-
jiya, editor, Computer Graphics (SIGGRAPH ^93 Proceedings), Volume 27, pages
305-312, August 1993.

OVI.3
Faster "Pixel-Perfect" Line
Clipping

Steven Eker
Brunei University
Uxbridge, United Kingdom

0 Introduction <>

This gem considers the problem of "pixel-perfect" line clipping. The task is to gener-
ate precisely those pixels of a rasterized line that lie within a given clipping rectangle.
This requirement arises naturally in window systems when redrawing an exposed rect-
angle containing part of a rasterized line. Any pixel imperfection will show up as a
discontinuity in the line. Clipping the line to the rectangle, rounding each clipped end-
point to the nearest pixel, and rasterizing the resulting line is not an adequate solution
(Figure 1). Rasterizing the line and then clipping the pixels is inefficient; an improved
method is known (Pike 1983). In comparison to other clippers, it avoids missing pixels
at the ends of the clipped segment by using a more sophisticated rounding technique,
and avoids off-by-one errors in the positions of the generated pixels by adjusting the
starting conditions of the fine rasterizer (Bresenham 1965).

The solution presented here is based on Pike's method but with several refinements:
integer clipping tests in the style of Dorr (Dorr 1990) are used, and the calculation of
subsequently unused products is avoided, as suggested by Krammer (Krammer 1992).
Also, a novel idea is introduced: that of choosing at which end to start drawing the fine
in order to minimize the number of multiplications and divisions required for clipping.
In fact, the algorithm requires at most one division that is used to establish algebraically
the intersection of the line and rectangle at the point where pixel production commences.
Termination occurs when the final in-rectangle pixel is generated and is detected by
discrete methods.

0 Algorithm 0

Without loss of generality, assume that the clipping rectangle is specified by bottom-left
and top-right corners (x/, yt) and (x .̂, yt) with xi < Xr^ yb ^ Uti and the line is specified
by endpoints (xi.yi) and (x2, ̂ 2). Then put Ax = X2 - xi; Ay = y2 - yi.

Copyright (c) 1995 by Academic Press, Inc.
All r ights of reproduct ion in any form reserved.
IBM ISBN 0-12-543455-3

VI.3 Faster "Pixel-Perfecf Line Clipping 0 315

O
oo

off-by-one
error

Figure 1, Improper line rasterization when clipping endpoints to the nearest pixel.

The algorithm produces a set of pixels. Ambiguity in pixel choice occurs when the line
passes exactly midway between two pixels. A uniform rounding (bias) based on octants
is one solution (Bresenham 1987). This is often impractical: Most implementations
"fold" this symmetry into one octant or quadrant. In practice there are two choices:
either round toward (xi,yi) or round toward (x2,^2)- Here the algorithm takes a flag,
allowing the user to select between endpoints. If, after comparing the endpoints against
the clipping rectangle, it is advantageous to exchange the endpoints and draw the line
starting from the other end, this flag is inverted to preserve the rounding direction and
ensure that the same set of pixels is generated.

For the sake of exposition, consider merely the case A^ > 0, A ;̂ > 0, Â ^ > A^ with
rounding toward (x2,y2)- With a careful consideration of symmetry, the other fifteen
cases can be implemented cheaply. The pixels (x, y) in the rasterization of the undipped
line are given by

y = yi + t;(.-x,) + l (1)

for X = xi, xi + 1 , . . . , X2, and the Bresenham error term r at each pixel (x, y) is given
by

r - 2Ay{x - XI + 1) - 2A^(y - yi) - A^.

Outcode Computation

Rectangle-object intersection tests traditionally employ a "space partitioning" defined
by the extension of the rectangle's edges. The classic Cohen-Sutherland line-clipping
algorithm (Newman 1979) computes an outcode using (at most) four comparisons for
each endpoint. The outcode encodes the endpoint's half-plane membership as a four-bit
number. Here a type which is the number of bits set in an endpoint's outcode is also
computed. The half-planes, outcodes, and types are shown in Figure 2. In the usual

316 0 Halftoning and Image Processing

Figure 2. Outcode and type computation for endpoints.

way, a line that lies completely within one half-plane can be rejected. This occurs when
a bitwise-and of its outcodes is nonzero.

Clipping the First Endpoint

If the first endpoint is of type 0, no clipping is necessary. Otherwise, if it is of type 2
and (under the previous assumptions) must lie outside the left and bottom edges, the
edge to which it should be clipped must be determined. Remember, however, that it
is the pixel set and not the line that must be clipped: The line may intersect one edge
while the pixel set may need to be clipped to the other. Using Equation (1), the pixel
set must be clipped along the bottom edge if

yi + ^ ^ ^ ^ - ^ 1) + ^ < 2/6,

and otherwise along the left edge. This inequality can be simplified, giving

2Ay{xi - xi)-^ AJ: < 2Aj:{yb-yi)-

As a result of this test, one of the two set bits in the outcode can reset to zero.
The (adjusted) outcode now indicates the proper clipping edge. For clipping to the

left edge, the starting coordinates {xs^ys) will be Xs <— xi and ^5 —̂ yi + 1 , where

t = it'̂ ' Xl) +
1 2Ay{xi - xi) + A^

One must test the ys against yt- If ys is greater, the line hes entirely above the clip-
ping rectangle and is rejected. Otherwise, the Bresenham error term at {xg, ys) can be
calculated from the Bresenham error term at (xi,yi) by adding

2Ay{xi - xi) - 2A:,t.

VI. 3 Faster "Pixel-Perfect" Line Clipping 0 317

For clipping to the bottom edge, the starting coordinates {xs^Vs) will be ys ^- Vb^
and Xc will be the least x such that

yi + = yb-

It can be shown that Xg = xi +1^ where

2A^{yb - vi) - A:, + 2Ay - 1
t = 2A,

One must test Xg against x^. If Xs is greater, the line lies entirely to the right of the
clipping rectangle and is rejected. Otherwise, the Bresenham error term at {xg^Vs) can
be calculated from the Bresenham error term at (x 1,7/1) by adding

2Ayt-2A^{yb-yi).

Clipping the Second Endpoint

The key idea when clipping the second endpoint is that the line-rectangle intersection
need not be computed algebraically. Instead, the Bresenham line-drawing algorithm
is terminated when it encounters an edge of the clipping rectangle. The extra tests
required to detect this may be removed from the pixel drawing loop by precomputing
the number of repetitions. This requires that one determine which edge is (first) hit.

If the second endpoint is of type 0, no clipping is necessary. Otherwise, if it is of type
2 and (under the previous assumptions) must lie outside of the top and right edges, the
edge to which it should be clipped must be determined. Using Equation (1), the pixel
set must be clipped along the top edge if

Vi ^J^r-X,) + l > Vu

and otherwise along the right edge. This inequality can be simplified, giving

2 A ^ (^ t - y i) + A^ < 2Ay{xr-xi) + l.

As a result of this test, one of the two set bits in the outcode can reset to zero.
The (adjusted) outcode now indicates the proper clipping edge. For clipping to the

right edge, the Bresenham algorithm must terminate after it has completed iL Xy Xg
steps to the right.

For clipping to the top edge, the Bresenham algorithm must terminate after it has
completed n = yt — ys steps upwards. Here the loop repeats until the conditional y-step
is executed for the (n + l) th time. An alternative version of Bresenham's algorithm

318 0 Halftoning and Image Processing

is used where the loop counter is only decremented and tested inside the conditional
^-step.

Which Way Around to Draw the Line?

Allowing for common subexpressions, one can count the multiplications and divisions
needed to clip the first endpoint and update the Bresenham error term depending on
its type. The results are summarized in the following table.

Type

0
1
2

Multiplications

0
2
3

Divisions

0
1
1

For the second endpoint, two multiplications are needed if it has type 2, and none oth-
erwise. Clearly it is advantageous to swap the endpoints whenever the second endpoint
has type 0 and the first endpoint has a nonzero type. Less obviously, a multiplication
is saved by swapping the endpoints when the first endpoint has type 1 and the second
endpoint has type 2.

0 Putting It All Together 0

The biggest difficulty in implementing this approach is finding an elegant and efficient
way of handling all sixteen cases. Note that the rounding direction for integer division
in ANSI C is only defined for positive numbers. Some implementors get around this
difficulty by using a preprocessor flag to select different fragments of code depending
on whether the target architecture has symmetric or asymmetric rounding (Dorr 1990).
The approach taken here is to ensure that division is applied only to positive operands.
Therefore, the absolute value of A ;̂ (Ay) is taken, and the sign is stored in a separate
variable Sx (sy). This divides the number of cases by four and is also convenient for
implementing Bresenham's algorithm.

It turns out that all the expressions used in tests and for calculating clipped coor-
dinates change by at most one if the opposite rounding direction is assumed [toward
(xi^yi)] for rasterization. Thus, four cases can be collapsed to two by incorporating a
0-1 flag, dir^ or its complement into such expressions.

The remaining two cases are distinguished by whether the slope of the line is less
than or equal to 45° (the "semihorizontal" case) or greater than 45° (the "semivertical"
case). These two cases cannot be collapsed easily, so separate code is used for each case;
however, the most complex part of the algorithm is written as a preprocessor macro
that is expanded once for each case.

VI.3 Faster "Pixel-Perfect" Line Clipping 0 319

Further Refinements

There are a couple of changes that can be made to the basic implementation to optimize
it for specific circumstances and hardware.

First, if a large proportion of the lines are expected to be rectilinear {Ax = 0 or
A^ = 0), it is advantageous to detect such lines when A ;̂ and Ay are computed and
use the obvious fast clipping and drawing algorithms for them.

In clipping the second endpoint when it has type 2, two multiplications are used
to determine which of two candidate edges will be hit when rasterizing the line. This
is done so that only a single exit condition is needed for the Bresenham algorithm
loop. If multiplications are prohibitively expensive on the target architecture while
lines are expected to be relatively short, it may be advantageous to use a modified
Bresenham algorithm with two loop counters and two exit conditions and avoid the two
multiplications.

0 C Implementation of the Line Clipper 0
#define LEFT 1
#define RIGHT 2
#define BOTTOM 4
#define TOP 8

#define SWAP(x, y) { int _t = x; x = y; y = _t; }

#define OUTCODE(x, y, outcode, type) \

{ \
if (x < xl) outcode = LEFT, type = 1; \
else if (x > xr) outcode = RIGHT, type = 1 ; \
else outcode = type = 0 ; \
if (y < yb) outcode |= BOTTOM, type++; \
else if (y > yt) outcode |= TOP, type++; \

}

ttdefine CLIP(al, a2, bl, da, da2, db2, as, bs, sa, sb, \
amin, AMIN, amax, AMAX, bmin, BMIN, bmax, BMAX) \

{ \
if (outl) { \

if (outl & AMIN) { ca = db2 * (amin - al) ; as = amin; } \
else if (outl & AMAX) { ca = db2 * (al - amax); as = amax; } \
if (outl & BMIN) { cb = da2 * (bmin - bl) ; bs = bmin; } \
else if (outl & BMAX) { cb = da2 * (bl - bmax); bs = bmax; } \
if (typel == 2) \
outl 8c= (ca + da < cb + !dir) ? /(AMIN | AMAX) : /(BMAX | BMIN); \

if (outl & (AMIN I AMAX)) { \
cb = (ca + da - !dir) / da2; \
if (sb >= 0) { if ((bs = bl + cb) > bmax) return; } \
else { if ((bs = bl - cb) < bmin) return; } \
r += ca - da2 * cb; \

320 0 Halftoning and Image Processing

}
else {

ca = (cb - da + db2 - dir) / db2;
if (sa >= 0) { if ((as = al + ca)
else { if ((as = al
r += db2 * ca - cb;

ca) < amin)
> amax) return; }
return; }

else { as =
alt
if

iJ

= 0;
(out2) {
E (type2
ca = db2
cb = da2
out2 Sc=

al;

==
•

*

bs =

2) {
((out2
((out2

(cb + da

bl,

&
&
< (

; }

AMIN)
BMIN)
::a + d:

?
?

Lr;

al
bl
1 ?

- amin
- bmin
/(AMIN

amax - al);
bmax - bl);
AMAX) : /(BMIN | BMAX),

if (out2 & (AMIN I AMAX)) n = (out2 & AMIN) ? as - amin : amax
else { n = (out2 & BMIN) ? bs - bmin : bmax - bs; alt = 1; }

}
else n (a2 as) a2 - as as - a2;

void clip(int dir, int xl, int yl, int x2, int y2,
int xl, int yb, int xr, int yt)

If dir = 0, round towards (xl, yl)
If dir = 1, round towards (x2, y2)

V

int adx, ady, adx2, ady2, sx, sy;
int outl, out2, typel, type2;
int ca, cb, r, diff, xs, ys, n, alt;

OUTCODE(xl, yl, outl, typel);
0UTC0DE(x2, y2, out2, type2);
if (outl & out2) return;
if ((typel != 0 && type2 == 0)

SWAP(outl, out2);
SWAP(typel, type2);
SWAP(xl, x2);

II (typel == 2 && type2 == 1)){

SWAP(yl,
dir V= 1

}
xs = xl;
ys = yl;
sx = 1;
adx = x2 -
if (adx <
sy = 1;
ady = y2 -
if (ady <
adx2 = adx

y2)

xl;
0) {

yl;
0) {
+ a

adx -adx; sx = -1; }

ady = -ady; sy -1; }
+ adx;

VI. 3 Faster "Pixel-Perfect" Line Clipping 0 321

/* alternate Bresenham */

ady2 = ady + ady;
if (adx >= ady) {

k

^ line is semi-horizontal

r = ady2 - adx - !dir;
CLIP(xl, x2, yl, adx, adx2, ady2, xs, ys, sx, sy,

xl, LEFT, xr, RIGHT, yb, BOTTOM, yt, TOP);
diff = ady2 - adx2;
if (alt) {

for (;; xs += sx) {
plot(xs, ys);
if (r >= 0) {

if (--n < 0) break;
r += diff;
ys += sy;

}
else r += ady2;

}
}
else{

for (;; xs += sx) {
plot(xs, ys);
if (--n < 0) break;
if (r >= 0) { r += diff; ys += sy; }
else r += ady2;

}
}

/* standard Bresenham */

}
else {

/*
line is semi-vertical

/* alternate Bresenham */

r = adx2 - ady - !dir;
CLIP(yl, y2, xl, ady, ady2, adx2, ys, xs, sy, sx,

yb, BOTTOM, yt, TOP, xl, LEFT, xr, RIGHT);
diff = adx2 - ady2;
if (alt) {

for (;; ys += sy) {
plot(xs, ys);
if (r >= 0) {

if (--n < 0) break;
r += diff;
xs += sx;

}
else r += adx2;

}
)
else {

for (;; ys += sy) {
plot(xs, ys);
if (--n < 0) break;
if (r >= 0) { r += diff; xs += sx; }

/* standard Bresenham */

322 0 Halftoning and Image Processing

e l s e r += adx2;
}

}

}

}

0 Bibliography 0
(Bresenham 1965) Jack E. Bresenham. Algorithm for the control of a digital plotter.

IBM Systems Journal, 4(1):106-111, May 1965.

(Bresenham 1987) Jack E. Bresenham. Ambiguities in incremental line rastering. IEEE
Computer Graphics and Applications, 7(5):31-43, May 1987.

(Dorr 1990) Michael Dorr. A new approach to parametric line clipping. Computers &
Graphics, 14(3/4) :449-464, 1990.

(Krammer 1992) Gergely Krammer. A line clipping algorithm and its analysis. Com-
puter Graphics Forum (Eurographics ^92), ll(3):253-266, 1992.

(Newman 1979) W. M. Newman. Principle of Interactive Computer Graphics. McGraw-
Hill, New York, 1979.

(Pike 1983) Rob Pike. Graphics in overlapping bitmap layers. ACM Transactions on
Graphics, 2(2): 135-160, April 1983.

OVI.4
Efficient and Robust 2D Shape
Vectorization

Jean-Franpois Doue Ruben Gonzalez Rubio
HEC University of Sherbroof<e
Paris, France Canada

0 Introduction 0

In computer graphics applications, it is often convenient to be able to convert a shape
from its bitmap representation to a vectorized form. Indeed, a vectorized form has
many advantages over a bitmap: It can be transformed without loss of resolution, and
it is sometimes better suited for the needs of computer vision. This gem presents an
algorithm to perform the vectorization of arbitrary 2D shapes (a shape is defined here
as "a set of contiguous pixels of the same color"). We developed the algorithm for a
computer vision application: The purpose was to study how to train a neural network to
recognize arbitrarily scaled handwritten digits and required the network to be presented
with a more meaningful representation of the data than just a raw bitmap (Michaud
et al. 1993).

The first part of this gem summarizes the problem, explains how it is usually solved,
and shows the limits of this technique. The second part presents a simple yet very use-
ful extension of the algorithm, based on pattern matching, that solves the limitations
raised in the first part. It uses postprocessing rules somewhat similar to the produc-
tion rules found in formal systems. Finally, a third section makes some remarks about
vectorization that can be useful.

0 Summary of the Problem 0

Vectorization transforms a shape into a collection of vectors that delimits its boundaries.
Since vectorization starts from a coarse approximation of the shape (its rasterization
on a grid of pixels), it can only produce a limited number of vectors, which can be
encoded as integers in the [0,7] range (see Figure 1). The collection is also sometimes

Copyright (c) 1995 by Academic Press, Inc.
All r ights of reproduct ion in any form reserved.

IBM ISBN 0-12-543455-3

3 2 4 0 Halftoning and Image Processing

2
3 4

starting
point K

^ 0

^ ilBL
1 iiib VW^\
SiiilLL •iirriig BB i^
rn rrr 222000766600666444222446644355

a: the 8 possible
directions

b: the bitmap
representation

c: the vectorized
representation

Figure 1 . The original algorithm.

(

r ^
/ ^

^ ̂^ X ̂

/ ̂
/ ̂

: :

^ N

r ^
r ^

^ ̂ ^ ̂

r \
r ^

\ /

^ ^

/- N^-y N

r N

V J

a: after the downwards pass. b: after the rightwards pass.

Figure 2. Generating the contour.

called "chain code." The encoding process has already been described by others (Plaziac
1991, Ballard and Brown 1992), but deserves some explanation.

The Usual Algorithm

First, the algorithm generates the boundaries. It does so in four phases, scanning the
bitmap in a particular direction (leftward, rightward, upward and downward) at each
phase. Each phase adds a layer of pixels to the shape any time it comes across a
boundary, a bit as if it were "snowing" on the shape. Figure 2 shows how each of the
first two phases adds pixels to the bitmap to progressively determine the contour of the
shape. The other two passes work exactly the same way.

Finally, the algorithm finds a pixel of the contour of the shape and may now enter
its main loop (see the following pseudocode).

VI.4 Efficient and Robust 2D Sfiape Vectorization 0 325

^ \

^ \
/ • \

^ \

^ \

D

^ \

^ \ ^ \

Br Mr ̂ H

m Mr «

^

^A^

®
^
^

ck)

Figure 3. A dead end.

loop
mark(p)
for idelta = 0 to 7
delta = ccw[idelta]
if boundary(p+delta)

addChain(delta)
p := p + delta
endif

while movesRemain()

// Mark present location.
// Index of neigbor offsets, ccw.
// Get unit offset vector.
// Found neighboring boundary.
// Record motion.
// Update location (vector add).

Limitations

This algorithm, though it sets the ground rules of chain code generation, is not perfect. It
especially has problems with thin bitmaps or bitmaps that present very narrow canyons.
Following are two examples of the kind of problems that usually arise.

Problem 1. In the first example, the algorithm is applied to a small, lower-case m
(see Figure 3). The algorithm starts normally at point A, then comes close to a very
narrow canyon (only one pixel wide), at point B. Since it is checking the directions
counterclockwise, it falls into the canyon. However, as it continues deeper into the
canyon, marking the pixels along its way, it does not notice that it is blocking its exit.
The algorithm terminates at the bottom of the canyon (point C), leaving two-thirds of
the m unvectorized!

Problem 2. In the second example, the algorithm is applied to a 1, starting at point
A (see Figure 4). Theoretically, a good algorithm should walk up a vertical line until

326 0 Halftoning and Image Processing

>)

C^)H :s

>)

^

^

"^

^

^
^t)
vt)
:t)
vD
^

O

t)
P o o o
0 o
0

0
OB

O

y
0

o
/ N

O
^

O
O
O
O
O o

0
0
0
0 / \

o
0
0

a: the right path b: a short cut

Figure 4. A leak.

point 5 , then take the "staircase" leftward until point C and then go back up until
point D. However, as it reaches point B, the standard algorithm takes a short cut,
and goes directly to point D. This comes from the fact that it checks all the directions
counterclockwise: For thin 45° lines, it has no way of knowing whether route C or route
D is the best one.

0 The New Algorithm 0

A very simple extension will solve the two problems. The trick is to subdivide every
pixel of the bitmap into a 4 x 4 grid of "smaller" pixels, as shown in Figure 5 (anything
greater than 2 x 2 (3x3 and beyond) would work too, requiring less memory). However,
four is a more practical number, since computers can multiply and divide by four very
easily using bit-shifts.

At the new scale, problem 1 simply disappears. In a 4 x 4 world, there are no more
narrow canyons. All canyons are at least four pixels wide. There is no risk of getting
stuck.

Problem 2 still persists, but becomes simpler. In the 4 x 4 world, the straight moves
(left, right, up, down) always have priority over the oblique moves (left-up, right-up,
left-down, right-down). Oblique routes should only be taken as a last resort, when no
straight route is possible. Therefore, problem 2 is easily solved by changing the order
in which the directions are checked. The rightward, upward, leftward, and downward
directions should always be checked first, and only then the oblique directions.

VIA Efficient and Robust 2D Shiape Vectorization 0 327

Starting point

:)
:)
:)
:)
^ \

:) ^ \

:)
1
1

a: scale 1 bitmap

^^^^m

H I

\,
\
^ ^
.)
i i i
1

)|)|)| 1
i)i
)i
)i
)i
)i
)l)l)l

)

)

t
L

D

J

)

lb

)

- P ")

J
I
[

^ m •b
IP

J 1

))

t J

In
upui

b: scale 4 bitmap

Figure 5. The new algorithm.

Shortcomings

The reader will have at least three objections regarding the new method:

1. The new algorithm generates a chain code at 4x that is much longer than the chain
code at Ix and very different from it.

2. The chain code is wrong. Suppose the algorithm is applied to an oblique 45° line
at I x . Then at 4x one will end up with the chain code for a big staircase instead
of the chain code for an oblique line.

3. The new algorithm will be extremely slow. Given a scale factor of 4x, there are
sixteen times as many pixels to process.

Two Additional Tricks

It turns out that two rather simple tricks will overcome most of the problems raised by
these three remarks.

1. The first trick is based on an interesting property of the chain code at 4x and
solves the first two objections. The chain code can be very easily postprocessed to
obtain a 1 x chain code, using three simple rules of pattern searching. Using C to
indicate a code value, if the input is a code at 4x and the desired output is a code
at I x , then the reduction rules are as follows:

328 0 Halftoning and Image Processing

cccc -
ccc
cc
c

-̂ c
- {}
^ cc
^ c

reduce to one copy,
eliminate,
(ignored).
identity,

in which the fourth pat tern rule (identity) subsumes the third.
A simple example will prove the efficiency and the simplicity of this postprocess-

ing technique (see Figure 5). Scanning manually from Figure 5(a), one naturally
obtains the following code:

766662222176666222217666655353322221

A good algorithm should be able to achieve the same results. The original algorithm
would certainly fail, since the figure presents both problems 1 and 2. The new
algorithm applied to the shape yields the following results:

4x chain code [Figure 5(b)]:
000 7 6666 eeee eeee eeee eee ooo 2222 2222 2222 2222 222 1
000 7 6666 eeee eeee eeee eee 000 2222 2222 2222 2222 222 1
000 7 6666 6666 6666 6666 666 5 444 666 5 444 3 222 444 eee 5
444 3 222 444 3 2222 2222 2222 2222 222 1

After postprocessing the 4x code, one obtains the exact result.

Postprocessed I x chain code [Figure (5a)]:
766662222176666222217666655353322221

The second trick does not completely solve the last objection (there is truly more
processing to do), but it helps considerably. The original algorithm spent most
of its t ime blindly testing the eight possible directions of motion, which was not
very efficient. The reader will notice that the chain code at 4x presents many long
segments of identical continuous values, meaning that the algorithm often keeps on
moving in the same direction for at least a few steps. By keeping track of the last
direction in which it was moving and using it as a first guess for the next move,
the new algorithm can save many computations.

0 Additional Remarks 0

Computing the Derivative

It is often interesting to compute the (discrete) derivative of the chain code, since it
is invariant under boundary rotations. The derivative of the chain code reflects the

VI.4 Efficient and Robust 2D Sfiape Vectorization 0 329

change in the orientation of the tangent to the contour as one moves from one point
of the contour to the next. The derivative cannot simply be the difference between two
consecutive direction codes, since this would imply many discontinuities. For instance,
if the current direction is 7 and the next one is 0, the change should not be recorded as
0 — 7 = —7, but rather as —1, the shortest path on the trigonometric circle. To do this,
we will use the following implementation:

C'f, ^ {Ck - Ck-i + 12) mod 8 - 4 . (1)

The reader should be careful with the mod function, which is here meant as the genuine
modulo function for relative integers (i.e., —2 mod 8 = 6 and not —2, as some math
packages will compute. The a mod b function should return the smallest integer r in
the [0,6—1] range such that bq + r = a).

The Problem of the Starting Point

A difficult problem to solve is that of the starting point. Since the chain code reflects
the contour of the object, it is indeed cyclic. A suitable starting point must be found.
Ideally, the behavior of the algorithm should be invariant under boundary rotation.
A canonical form is quite important for certain applications such as optical character
recognition (OCR). The C + + code presented below chooses the contour pixel closest to
the upper-left corner of the bounding box of the shape. However, this is just a convention
and certainly not the perfect choice.

Extensions

Though the present method finds merely the contours of 2D objects, voids can be iden-
tified following the generation of the shape's contour. The postprocessing of the chain
code using a simple pattern matcher is a powerful technique worthy of further study.
Extended rules sets, particularly those useful for different scale factors, deserve atten-
tion. The interested reader is directed to standard treatments (Olson 1992, Schneider
1990, Feldman 1992, Freeman 1961) for supplementary information.

0 C Code <>

pt2.H

typedef struct pt2Struct{
int x,y;

} Pt2;

extern pt2* addPt2(pt2 *a, pt2 *b, pt2 *c);
extern pt2* subPt2(pt2 *a, pt2 *b, pt2 *c);

330 <} Halftoning and Image Processing

pt2.C

#include "pt2.h"

/* */
/* Two utility functions to add and subtract 2D integer points.*/

/* */
/ * • • * * * • • • * * * • • • • • * • • • * * * • • • • * • * * • • • * • • • • * • * • • • * * *

pt2* addPt2(pt2 *a, pt2 *b, pt2 *c)
{ c->x = a->x + b->x; c->y = a->y + b->y; r e tu rn c; }

pt2* subPt2(pt2 *a, pt2 *b, pt2 *c)
{ c->x = a->x - b->x; c->y = a->y - b->y; r e tu rn c; }

chainCode.H

#define DEFAULT_CODE_LENGTH 512
#define SCALE 4

class chainCode{
public:

char* code;
int length;

chainCode();
/chainCode();
void add(char c);
chainCode* postProcess{);
void printSelf();

};

\paragraph{chainCode.C}
\begin{codingeightpt}
#include <stdlib.h>
#include <stdio.h>
#include "chainCode.h"

/ • • • • • • • • * * • • • * • • • • • • * • • • • • • • • • • • • • • • • • * • * • • • * • • • •

/* */
/* Class constructor. */
/* */
/ • • • * * • • * • • • • * • * • • • • • * • • • • • • • • • • • • • • * • • • • • • • • • • * • • • • • * *

chainCode::chainCode()

{
code = malloc(DEFAULT_CODE_LENGTH * sizeof(char));

VIA Efficient and Robust 2D Stiape Vectorization 0 331

code[0] = 'XO';
length = DEFAULT_CODE_LENGTH;
}

/* */
/* Class destructor. */

/* */

chainCode::/chainCode()
{ free(code); }

/* */
/* This method appends a new code to the chain. If there */
/* is not enough memory left, the function doubles the size */
/* of the chain code. */
/* It receives as a parameter the new code to be added (c). */
/* */
/ • • • • • • i t *

void chainCode::add(char c)

{
int 1 = strlen(code);

if (1 >= length-1){
length *= 2;
code = realloc(code, length);

}
code[1] = c;
code[1+1] = 'XO';
}

/* */
/* This method post-processes a 4x chain code to generate a Ix */
/* chain code. A pointer to the Ix code is returned. The method */
/* uses the 4 following rules: */
/* CCCC -> C : reduce to one copy */
/* CCC -> {} : eliminate */
/* CC -> CC : (ignored) */
/* C -> C : identity */
/* */

chainCode* chainCode::postProcess()

{
int i = 0, j;
chainCode *filtCode;

332 0 Halftoning and Image Processing

filtCode = new chainCode();

while (i<length){

if (i+SCALE-1 < length){

for (j=0; j<SCALE-l; j++)

if (code[i+j] != code[i+j+l])

break;

if (j == SCALE-1){

filtCode->add(code[i]);

i += SCALE;

continue;

}

}

if (i+SCALE-2 < length){

for (j=0; j<SCALE-2; j++)

if (code[i+j] != code[i+j+l])

break;

if (j == SCALE-2){

i += SCALE-1;

continue;

}

}

filtCode->add(code[i]);

i + +;

}

return filtCode;

}

/ • • • • • • • • • * • * * • • • • * • * • • • • *

/* */
/* A utility method to display the chain code */
/* */

void chainCode::printSelf()
{ printf("\n%s", code); }

vectorize.C

#include <string.h>
#include <stdlib.h>
#include <limits.h>
#include "chainCode.h"
#include "pt2.h"

/* DEFINITION OF THE CONSTANTS */

#define CONTOUR 'C
#define VISITED 'v'
#define BLACK '1'
#define WHITE '0'

W. 4 Efficient and Robust 2D Stiape Vectorization 0 333

/* DEFINITION OF THE MACROS */

ttdefine PIX(a,b) ((b) * f_size.x + (a))
#define PIX2(a,b) ((b) * size->x + (a))
#define MIN(x,y) ((x)<(y) ? (x) : (y))
ttdefine MAX(x,y) ((x)>(y) ? (x) : (y))

/* */
/* This is the main function. It receives as a parameter a */
/* bitmap image of size 'size' and outputs a chain code. */
/* The following constraints are placed on the bitmap: */
/* + Each pixel is encoded as a char. */
/* + Only white (0) and black (1) pixels are taken into */
/* account. */
/* + The shape to encode should have no holes and should be */
/* in a single piece. */
/* */
/ * * * * • * * * • • • • * * * * * * * * * * * • • • * • * * • • • * * • • * * * * * * * * * * * • • * • *

chainCode* encode(pt2 *size, char ^bitmap)

{
static pt2 contour_dir[8] { 1 ,

{ 0 ,

{ - 1 ,
{ 0 ,

{ 1 ,

{ - 1 ,

(- 1 ,

{ 1 ,

0 } ,

- 1 } ,
0 } ,

1 } ,

- 1 } ,

- 1 } ,

1 } ,

1 } }
chainCode *codel,

code4;
char *fatmap,

direction_code[8] = {'0','2','4','6','1','3','5','7'};
int i,j,u,v,

flag,
d, distance,
last_dir;

pt2 pixel,
test_pixel,
start__pixel,
f_size,
bbox[2] = {{INT_MAX, INT_MAX},

{-INT_MAX, -INT_MAX}};

/* CREATE AN EMPTY CHAIN CODE TO RETURN THE RESULT */
codel = new chainCode();

/* RESCAN THE BITMAP AT A GREATER RESOLUTION (4x4 GREATER) */
/* ADD TWO BLANK LINES TO THE LEFT, RIGHT, TOP AND BOTTOM */
/* OF THE FATMAP. THESE COULD BE NECESSARY TO AVOID THE */
/* CONTOUR TO BE DRAWN OUTSIDE OF THE BOUNDS OF THE MATRIX */

334 0 Halftoning and Image Processing

f_size.x = 2 + SCALE*size->x + 2;
f_size.y = 2 + SCALE*size->y + 2;
fatmap = malloc{f_size.x * f_size.y * sizeof(char));
for (i=0; i<f_size.x * f_size.y; i++)

fatmap[i] = WHITE;
for (j=0; j<size->y; j++)

for (i=0; i<size->x; i++)
if (bitmap[PIX2(i,j)] == BLACK)

for(v=0; v<SCALE; v++)
for(u=0; u<SCALE; u++)

fatmap[PIX(2+4*i+u, 2+4*j+v)] = BLACK;

/* GENERATE THE CONTOUR OF THE BITMAP USING 4 SUCCESSIVE */
/* PASSES: FOR EACH DIRECTION, WE SCAN EACH LINE UNTIL */
/* WE REACH A BLACK PIXEL: THE PIXEL JUST BEFORE IT IS A */
/* CONTOUR PIXEL */

/* PASS 1: LEFTWARDS */
for (j=0; j<f_size.y; j++)

for(i=l; i<f_size.x; i++)
if (fatmap[PIX(i,j)] ==

if (flag == 0) {
fatmap[PIX(i-l,
flag

}
}

else
flag 0;

BLACK){

j) : CONTOUR;

/* PASS 2: RIGHTWARDS */
for (j=0; j<f_size.y; j++)

for (i=f_size.x - 1; i>=0; i--)
if (fatmap[PIX(i,j)] == BLACK){

if (flag == 0) {
fatmap[PIX(i+l, j)] = CONTOUR;

flag

}

1;

}
else

flag = 0;

/* PASS 3: DOWNWARDS */
flag = 0;
for (i=0; i<f_size.x; i++)

for (j=0; j<f_size.y; j++)
if (fatmap[PIX(i,j)]

if (flag == 0) {
fatmap[PIX(i,
flag = 1;
}

}
else

BLACK){

j-1)] CONTOUR;

VIA Efficient and Robust 2D Sliape Vectorization <} 335

flag - 0;

/* PASS 4: UPWARDS */
flag = 0;
for (1=0; i<f_size.x; i++)

for {j=f_size.y - 1; j>=0; j--)
If (fatmap[PIX(l,j)] == BLACK){

If (flag == 0) {
fatmap[PIX(i, j+1)] = CONTOUR;
flag = 1;
}

}
else

flag = 0;

/* COMPUTE THE BOUNDING BOX OF THE CHARACTER (L,T,R,B) */
for (j=0; j<f_size.y; j++)

for(i=l; i<f_size.x; i++)
if (fatmap[PIX(i, j)]==^CONTOUR) {

bbox[0].X = MIN(i, bbox[0].x);
bbox[0].y = MIN(j, bbox[0].y);
bbox[l].x = MAX(i, bbox[l].x);
bbox[l].y = MAX(j, bbox[l].y);
}

/* DETERMINE THE CONTOUR PIXEL CLOSEST TO THE UPPER LEFT CORNER */
/* OF THE BOUNDING BOX */

distance = INT_MAX;
for (j=0; j<f_size.y; j++)

for(1=1; i<f_size.x; i++)
if (fatmap[PIX(i,j)]==CONTOUR){

d = (i-bbox[0].x) * (i-bbox[0].x) + (j-bbox[0].y) * (j-bbox[0].y);
if (d < distance) {

distance = d;
start_pixel.x = i;
start_pixel.y = j;
>

}

/* BEGIN THE ENCODING PROCEDURE */
pixel.X = start_pixel.x;
pixel.y = start_pixel.y;
fatmap[PIX(pixel.X, pixel.y)] = VISITED;
last_dir = 4;
while(0 < 1) {

/* AT FIRST, CHECK THE PIXEL IN THE LAST KNOWN DIRECTION */
addPt2(&pixel, &contour_dir[last_dir], &test_pixel);
if (fatmap[PIX(test_pixel.x, test_pixel.y)] == CONTOUR){

pixel.X = test_pixel.x;
pixel.y = test_pixel.y;

336 0 Halftoning and Image Processing

fatmap[PIX(pixel.X, pixel.y)] = VISITED;
code4.add(direction_code[last_dir]);
}

/* CHECK ALL THE POSSIBLE DIRECTIONS, CLOCKWISE */
for (i=0;i<8;i++) {

addPt2(&pixel, &contour_dir[i], &test_pixel);
if (fatmap[PIX(test_pixel.x, test_pixel.y)] == CONTOUR){

pixel.x = test_pixel.x;
pixel.y = test_pixel.y;
fatInap[PIX(pixel.x, pixel.y)] = VISITED;
code4.add(direction_code[i]);
last_dir = i;
break;
}

}
if (i == 8)

break;

}

/* WRITE THE LAST MOVE TO THE OUTPUT VECTOR */
for (i=0; i<8; i++) {

subPt2(&start_pixel, &pixel, &test_pixel);
if (test_pixel.x==contour_dir[i].X && test_pixel.y==contour_dir[i].y){

code4.add(direction_code[i]);
break;
}

}

/* POST-PROCESSING LOOP: */
/* GO BACK TO A LOWER RESOLUTION BY FILTERING THE 4x CODE */

codel = code4.postProcess();
return codel;

}

0 Bibliography 0

(Ballard and Brown 1992) Dana H. Ballard and Christopher M. Brown. Computer Vi-
sion. Prentice Hall, 1992.

(Feldman 1992) Tim Feldman. Generating isovalue contours from a pixmap. In David
Kirk, editor, Graphics Gems III. AP Professional, Boston, 1992.

(Freeman 1961) H. Freeman. On the encoding of arbitrary geometric configurations.
IRE Transactions on Electronic Computers, EC-10(2), 1961.

(Michaud et al. 1993) Frangois Michaud, Ruben Gonzalez Rubio, and Alain
Berkane. Etude de I'interdependance des parametres d'apprentissage avec la
retropropagation standard. To appear, 1993.

VI.4 Efficient and Robust 2D Stiape Vectorization 0 337

(Olson 1992) John Olson. Smoothing enlarged monochrome images. In Andrew Glass-
ner, editor, Graphics Gems, AP Professional, Boston, 1992.

(Plaziac 1991) Nathalie Plaziac. Reconnaissance de caracteres par les reseaux neu-
ronaux. Master's thesis, Institut National de la Recherche Scientifique, Montreal,
Canada, 1991.

(Schneider 1990) Philip J. Schneider. An algorithm for automatically fitting digitized
curves. In David Kirk, editor, Graphics Gems III. AP Professional, Boston, 1990.

OVI.5
Reversible Straight Line Edge
Reconstruction

S. C. Hsu I. H. H. Lee
Computer Science Department Creature House, Ltd.
The Chinese University of Hong Kong Hong Kong
schsu@acm.org creature@acm.org

0 Introduction 0

Jagged edges, appearing in digitized images due to aliasing, are often magnified when
images are being manipulated (e.g., enlarged or rotated). To eliminate this nuisance,
many techniques have been developed to reconstruct analytical representations of jagged
edges (Chryssafis 1986), also described in other gems and/or cited below. Edge recon-
struction techniques are also employed in commercial graphics packages to extract out-
lines from scanned artwork. This "vectorization" is an essential step when subsequent
processing involves clipping frames, enlargement, or producing high-resolution output.

Published techniques include least-squares minimization (Cantoni 1971), the con-
struction of regions of bounded precision (Williams 1981), edge following (Roth 1982),
an edge inference algorithm (Bloomenthal 1983) based on the recognition of repeated
jag patterns, and the use of simple templates for smoothing staircase patterns (Olsen
1990).

Some of these methods (Cantoni 1971, Williams 1981) need quadratic time to render
(in the worst case), since the original data has to be traced more than once. Pattern-
based techniques generate more lines than are needed, should no obvious jag patterns
be identified. Finally, none of these methods is designed with an underlying digitization
model in mind.

This gem presents an algorithm for fitting a sequence of line segments to the jagged
edge contour formed by a chain of pixels. Only a single trace through the pixel edges is
required. The algorithm is based on the inverse process of Bresenham's midpoint line
algorithm (Bresenham 1965). Only integer arithmetic is required in the reconstruction
process, and the time complexity of the algorithm is 0{N), where N is the number of
raster edges in the given image. The efficiency of the algorithm makes it useful as a pre-
processing pass used to locate the sharp corners prior to employing conventional curve
fitting techniques, as are described in a previous gem (Schneider 1990). Furthermore,
the straight lines resulting have a valuable property: They can perfectly reconstruct the

Copyright (c) 1995 by Academic Press, Inc.
All r ights of reproduct ion in any form reserved.
IBM ISBN 0-12-543455-3 ^ ^ ^

VI.5 Reversible Straight Line Edge Reconstruction 0 339

2nd
3rd 2nd 3rd

2nd l i s t nth 1st I 13rd

1st

Pixel Edges

(a) (b)

Figure 1. (a) Pixel edge patterns exhibiting dominant and transverse directions (three-edge patterns,
symmetric cases omitted), (b) The U-turn case forcing a quick stop.

original jagged pattern if re-rasterized using Bresenham's algorithm. This reversibility
makes it possible to use the fitted edges as a lossless data representation of the original.

0 Outline Reconstruction 0
Given an image in bitmap form, the positions of pixel edges can be extracted by simple
comparison of adjacent pixels, described in a previous gem (Feldman 1992).

Assume that the existence of jagged edges is a result of having applied Bresenham's
algorithm to a set of imaginary line segments, the set that is the objective. It follows
that all the possible line segments that could be fitted to a jagged edge must fall within
±0.5 pixel length from their corresponding pixel edges. A line segment is allowed to
start or end at any position along a pixel edge or along the normal to the midpoint of
that pixel edge (within ±0.5 pixel length from the midpoint). The reason for this shall
be apparent later.

Establishing the Dominant and Transverse Directions

By examining the first few consecutive pixel edges, one can establish a dominant direc-
tion (toward which more pixel edges point) and a transverse direction (toward which
fewer pixel edges point) of the intended line segment. This in effect classifies the direc-
tion of the intended line segment into one of the octants as in Bresenham's algorithm.
The possible patterns of the first few pixel edges are shown in Figure 1.

Inverse Midpoint Algorithm

The line extending (in the transverse direction) 0.5 pixel length on either side from the
midpoint of a pixel edge is called the bounding window of that pixel edge. Now for
the first pixel edge we could extend two lines from the starting point to the ±0.5 pixel
length positions on the bounding window. The slopes of these lines correspond to the
maximum and minimum gradient limits for the set of possible line segments that could
have produced the jagged pattern so far (Figure 2).

3 4 0 0 Halftoning and Image Processing

Pixel edge

Bounding
windows

^.jL'^ Gradient range of pixel edge A
^ ^ " B

Starting ^^dPP^^^TT^'\'"' i I B I Tightened gradient range after B
point

Figure 2. The bounding windows of the pixel edges. Corresponding gradient ranges are shaded.

Similarly, each subsequent pixel edge has its own bounding window and gradient lim-
its. Therefore, in stepping onto a new pixel edge, the gradient limits are tightened. The
minimum gradient limit becomes the larger of the previous and the current minimum
gradient limits. Similarly, the updated maximum gradient limit is the smaller of the
previous and the current maximum gradient limits.

To avoid the use of floating-point coordinates to represent the endpoints, coordinates
with a predefined subpixel resolution are used. Hence, any gradient limit can be repre-
sented as a pair of integers, that is, the components of the gradient vector, dx and dy.
Thus, a comparison between two gradient limits involves only a test of the sign of the
cross product of the gradient vectors: dxi x dy2 — dx2 x dy\. Note that only two integer
multiplications and one integer comparison are required.

TernnJnation Criteria

Consideration of pixel edge extension stops on meeting any of the following conditions:

1. The orientation of the next pixel edge is neither dominant nor transverse.
2. Two consecutive transverse pixel edges are encountered.
3. The maximum gradient limit no longer exceeds the minimum gradient limit.

Now the bounding window on the preceding pixel edge is the last consecutive bound-
ing window through which one can "see" from the starting point. The fitted line segment
shall end here, at a position (on the bounding window) closest to the midpoint of the
last successful pixel edge; hence the assumption of the position of the starting point.

It is important that the fitted line segment does not touch any edges of the bounding
windows. Otherwise, one cannot uniquely identify the appropriate pixel edge when
recovering the jagged pattern.

VI.5 Reversible Straight Line Edge Reconstruction 0 341

Dominant
direction

Transverse
direction

Gradient limits

One possible endpoint

No endpoint can be found on these
bounding windows

Figure 3. Establishing final location of an endpoint that cannot be located in the initial windows.

Locating the Endpoint

Because of the finite resolution of endpoint coordinates, it is possible that no endpoint
can be established even before the gradient limits cross over. Three solutions to this
problem are considered. The first is to introduce an extra test on the tightening of
gradient limits: If there is no point within the new bounding window (under the subpixel
resolution) that can satisfy the gradient limits, then the new pixel edge will not be
considered. Instead, the line will end within the last bounding window. Using this
method means that an extra test is needed for each pixel edge. The line segments fitted
are also not the longest possible (Figure 3). This method was rejected, as it would
results in many more line segments than are necessary.

The second method of solution proceeds irrespective of resolution until the gradient
limits cross over. It then backtracks along previous pixel edges until an endpoint be-
neath the level of subpixel resolution can be found. This method finds line segments
of maximum length. In practice, backtracking beyond one pixel edge is rarely required
given a subpixel resolution of 1/16 pixel.

The first two methods terminate the line segments at an arbitrary point within the
bounding window, for example, the one closest to the midpoint, and restart from that
point. This occasionally results in shorter fitted lines having a more ragged appearance.
The third method overcomes this problem by testing all the feasible ending positions
within the last bounding window to determine which gives the longest continuing line.
This gives the best results and increases the execution time by only a constant factor
proportional to the subpixel resolution.

3 4 2 0 Halftoning and Image Processing

(a) (b)

Figure 4. A test image reconstructed exactly using line segments, (a) With backtracking (276 line

segments; 0.071 sec), (b) With exhaustive endpoint testing (261 line segments; 0.776 sec).

0 Reconstructing the Jagged Edges 0
To recover the original jagged pattern from the hne segments fitted, one need only
apply Bresenham's midpoint line algorithm (Heckbert 1990). Since our Une segments
neither start nor end at the midpoints of any pixel edge, the initial value of the decision
variable must be preloaded with the offset having a precision scaled in proportion to
the subpixel resolution. A sample implementation is presented below.

0 C Implementation <>
/* revfit.h: definitions for reversible straight line reconstruction routines */
#include "GraphicsGems.h"
#define HRZ 1
#define VRT 2
/* Watch out for the precision of 'int' type. Make sure that the max */
/* coordinate value * SUBPIXRES can be stored in an 'int'. */
#define SUBPIXRES 32

• • • • • • • • • • • • A ^ • ^ t • • • • • • /
/* typedef for Edgelist: the list of edges where lines are to be fitted */

•k-k-k-k-k-k-k-k-k-k-k-k-k-k-k* k k - k k - k - k k - k - k - k - k k k k k k k I

VI. 5 Reversible Straight Line Edge Reconstruction 0 343

typedef struct {
int x,y;
int dir;
} PixelEdge;

typedef struct {
int Nedges;
int current;
PixelEdge *list;
} Edgelist;

+ve

V
1 - - > +ve

*/
*/
*/

/* in bitmap resolution
/* <--H edge
/* (x,y)--> * I <-- V edge

/* number of edges in the list */
/* current edge being visited */
/* the list of edges found from the pixmap */

int fitlines(Edgelist el, boolean Pretest, boolean TryAllEndPts,
IntPoint2 *lines, int MaxLines);

void linestojagged(int Nlines, IntPoint2 *lines);

/*
revfit.c : edge reconstruction and the inverse process.

*/
ttinclude <stdio.h>
#include "GraphicsGems.h"
#include "revfit.h"

#define HalfSUBPIXRES (SUBPIXRES/2)
#define ESTABLISHED 127
#define MAXRUN 2000 /* max no of pixel edges in a line */

extern DrawPixelEdge(int x, int y, int V_H); /* a user supplied function */
/* for drawing a PixelEdge */

* typedef's for sub-pixel resolution pixel edges and gradient bounds *

typedef struct {
int xl,yl; /* from (coordinates multiplied by sub-pixel resolution) */
int x2,y2; /* to (coordinates multiplied by sub-pixel resolution) */

} Pedge;

typedef struct {
int ly,Ix; /* lower limit */
int uy,ux; /* upper limit */

} Bound;

/* midpt coordinates of a Pedge #define MidX(e) (((e).xl+(e).x2)/2)
#define MidY(e) (((e).yl+(e).y2)/2)
#define Is_Horizontal(d) (abs(d)==HRZ) /̂
#define Is_Vertical(d) (abs(d)==VRT) /*
#define against(a,b) (!((a)+(b))) /̂
#define Bound_OK(b) (slopecmp((b).uy,(b).ux,(b).ly,(b).Ix))
#define WithinBound(dy,dx,b) (slopecmp((dy),(dx),(b).ly,(b).Ix) &&\

slopecmp((b).uy,(b).ux,(dy),(dx)))

a horizontal direction? (1, -1) */
a vertical direction? (2, -2) */
whether two directions are opp. */

344 0 Halftoning and Image Processing

* Get_Pedge(): Returns a pointer to the current Pedge from the list el. *
* The position of the cursor of list is not modified. *
* Returns NULL if no more edges in the list. *
* Coordinates multiplied by sub-pixel resolution. *

static Pedge *Get_Pedge(Edgelist el) {
static Pedge e;
int dir;
if (el.current>=el.Nedges) return NULL;
if {Is_Horizontal(dir=(el.list[el.current].dir))) {
e.yl=e.y2=el.list[el.current].y*SUBPIXRES + HalfSUBPIXRES;
e .xl=el . list [el .current] .x*SUBPIXRES

- (dir>0 ? HalfSUBPIXRES : -HalfSUBPIXRES);
e.x2=e.xl + (dir>0 ? SUBPIXRES : -SUBPIXRES);

}
else {

e.xl=e.x2=el.list[el.current].x*SUBPIXRES + HalfSUBPIXRES;
e.yl^el.list[el.current].y*SUBPIXRES

- (dir>0 ? HalfSUBPIXRES : -HalfSUBPIXRES);
e.y2=e.yl + (dir>0 ? SUBPIXRES : -SUBPIXRES);

}
return &e;
} /* Get_Pedge() */

/ • ^

* forward(): Update the cursor of the list to the next edge. *
* • • • • • • • • * • • • • • • • • • * * • • • • • • • • • • • • • • • * * • • • * • • • * • • • •

#define forward(el) (((el) .current)++)

/ • • • * • * • • • * • * * • * * • • • • • * • • * • • * • * • * • • • • • * • • • • • * • • • * • • • * • • • • * • * • • •

* backward() : Move baclc the cursor of the list one place so that *
* the previous edge can be visited again. *
• • * • • • * * • * • * * * * • • • • • • * • • • • • • • • • • * • • * * • • •

#define bacl<:ward(el) (((el) . current)--)

/ • \

* wayof(): return a direction. *

/* the directions no.s are chosen s.t. dl==-d2 if dl,d2 are opp. */
static int wayof(Pedge e) {
int d=e.x2-e.xl;
return d ? d/SUBPIXRES /* 1 or -1 for horizontal edge */

: (e.y2 - e.yl)/HalfSUBPIXRES; /* 2 or -2 for vertical edge */
} /* wayof0 */

/ • • • • * • • • • * • • • • • • * • • * • * * • • * • * • • • • • • • • • • • • • * * • • • • • • • * * • • • • •

* slopecmpO : True if grad vector of the 1st is on the counter-clocJcwise *
* side of the 2nd one *
• ^

static int slopecmp(int dyl,int dxl, int dy2,int dx2) {
return (long)dx2*dyl > (long)dxl*dy2;

} /* slopecmp() */

VI.5 Reversible Straight Line Edge Reconstruction 0 345

* calcboundO: calc the bounds (the pair of gradient limits) for the Pedge *
^ • * * * * * * * * * * * * *

void calcbound(int dominantdir, Pedge e, int Sx, int Sy,
Bound* b, IntPoint2 *gradU, IntPoint2 *gradL) {

/* gradU and gradL shall be filled with the gradients just within the limits */
int dy,dx;

if (Is_Horizontal(dominantdir)) { /* horizontal dominant direction */
b->uy = (e.yl+e.y2+SUBPIXRES)/2-Sy;
b->ux = (e.xl+e.x2)/2 -Sx;
b->ly = (e.yl+e.y2-SUBPIXRES)/2-Sy;
gradU->x = gradL->x = b->lx = b->ux;
gradU->y = b->uy-l; gradL->y = b->ly+l;

}
else { /* up or down dominant direction */

b->uy = (e.yl+e.y2)/2 -Sy;
b->ux = (e.xl+e.x2+SUBPIXRES)/2-Sx;
gradU->y = gradL->y = b->ly = b->uy;
b->lx = (e.xl+e.x2-SUBPIXRES)/2-Sx;
gradU->x = b->ux-l; gradL->x = b->lx+l;

}
if (!Bound_OK(*b)) { /* swaps the bounds if necessary */
IntPoint2 p;
dx=b->ux; dy=b->uy;
b->ux=b->lx; b->uy=b->ly;
b->lx=dx; b->ly=dy;
p=*gradU; *gradU=*gradL; *gradL=p;

}
} /* calcboundO */

* fitlines() : The reversible straight line edge reconstruction routine *
**

int fitlines(Edgelist el, boolean Pretest, boolean TryAllEndPts,
IntPoint2 *lines, int MaxNLine) {

/* *
* el : The supplied list of PixelEdges.
* Pretest : l=perform pre-test on each pixel edge, i.e., stop as soon as
* a valid end pt cannot be found on a pixel edge.
* 0=Allows stepping back.
* TryAllEndPts: l=Try all possible end-pts, 0=Use the one closest to mid-pt.
* lines[] : A preallocated array to be filled with end pts of fitted lines
* Note: Coordinates of the end pts are multiplied by SUBPIXRES.
* MaxNLine : The size of the lines[] array.
* */
int i,linescount,startp,Nendpt,Nstartpt,NPedges,Nbound; /* counters */
int Sx,Sy,Ex,Ey, Ux,Uy,Lx,Ly, maindir,trnsvrse,dnow, ndir,dir[3];
flag breaktrace, starttrace; /* flags */
int currentsave, bestpt, maxlen, bestpt_currentsave, bestpt_Nendpt;
IntPoint2 startpts[SUBPIXRES],endlist[SUBPIXRES],bestpt_endlist[SUBPIXRES];
Pedge Pedgehistory[MAXRUN],e,last,*nextp,estartsave,bestpt_last;
Bound bound[MAXRUN];

346 0 Halftoning and Image Processing

el.current=0;
e = *Get_Pedge(el) ;
Sx = MidX(e);
Sy = MidY(e);

/* set cursor to the first edge */
/* first edge */

if {ITryAllEndPts) {
lines[0].X = Sx;
lines[0].y = Sy;
linescount=l;

}
else {
flag hori = Is_Horizontal(wayof(e))i
Nstartpt=0;
startpts[0].X = Sx;
startpts[0].y = Sy;
for (i=l;i<HalfSUBPIXRES;i++) { /*

startpts[Nstartpt].x = hori ?
startpts[Nstartpt++].y = !hori ?
startpts[Nstartpt].x = hori ?

/* record the 1st starting pt.

the list of possible init. starting pts

Sx-i
Sy+i
Sx-i

startpts[Nstartpt++].y = !hori ? Sy+i

Sx;
Sy;
Sx;
Sy;

}
startp=0; /* counter for the list of possible starting pts (startpts[])
bestpt_currentsave=currentsave=el.current; /* save these for rewinding
estartsave=e;
maxlen=bestpt=-l; /* no best starting pt (bestpt) yet
linescount=0;

} /* if (ITryAllEndPts) .. else .. */

for (starttrace=TRUE;;) {
if (starttrace) {
dir [0] =wayof (e) ; ndir^^l;
starttrace=0; breaktrace=0;
Pedgehistory[0]=e;
NPedges=l;
Nbound= 0;
} /* if (starttrace) */

/* loop for all PixelEdges */
/* beginning of a new line segment */
/* no.of distinct directions so far */

/* the first Pedge traced */
/* reset the counters */

last=e;
forward(el); /* go on to the next PixelEdge */
if ((nextp=Get_Pedge(el))!=NULL) { /* get a new Pedge */
Pedgehistory[NPedges++]=*nextp;
e=*nextp;
dnow=wayof(e); /* direction of the current edge */

}

if (nextp==NULL || ndir==ESTABLISHED){ /* maindir and trnsvrse established */
Bound b;
IntPoint2 gradU,gradL;
flag lowerupdated, upperupdated;

if (nextp!=NULL) {
calcbound(maindir,e,Sx,Sy,&b,&gradU,&gradL);

VI.5 Reversible Straight Line Edge Reconstruction 0 347

bound[Nbound]=bound[Nbound-1];

lowerupdated=upperupdated=FALSE;
if (slopecmp(bound[Nbound-1].uy,bound[Nbound-1].ux,

b.uy,b.ux)) { /* update tlie upper limit */
bound[Nbound].uy=b.uy;
bound[Nbound].ux=b.ux;
upperupdated=TRUE;
}
if (slopecmp(b.ly,b.Ix,

bound[Nbound-1].ly,
bound[Nbound-1].Ix)) { /* update the lower limit */

bound[Nbound].ly=b.ly;
bound[Nbound].lx=b.Ix;
lowerupdated=TRUE;
}

} /* if (nextp!=NULL) */

if (nextp==NULL || /* no more PixelEdge */
(dnow!=trnsvrse && dnow!=maindir) || /* U-turn */
(dnow==trnsvrse && dnow==wayof(last)) || /* 2 trnsvrse edges */
! Bound_OK (bound[Nbound]) | | /* not witliin limits */
(Pretest && /* if Pretest, check if tliere is any pt witliin limits */
((lowerupdated && !Wit]iinBound(gradU.y, gradU.x, bound [Nbound])) ||
(upperupdated && !Wit]iinBound(gradL.y, gradL .x, bound [Nbound]))))) {

/* now we sliall calculate the starting pt for tlie next trace */
for (;;) {/* loop until tlie endpoint lies wittiin tlie gradient limits */
int dx,dy,tmp; flag exact,EndptOK;

Ex=MidX(last); Ey=MidY(last);
if (Nbound==0) { /* i.e. first few PixelEdges. tlierefore mid-pt is olc */
if (TryAllEndPts){
endlist[0].x=Ex; endlist[0].y=Ey;
Nendpt=l;
}
brealc; /* end pt found */

}

b = bound[Nbound-1];

dx= Ex - Sx; /* tlie slope of the mid-pt of the last Pedge */

dy= Ey - Sy;

if (TryAllEndPts && el.current-currentsave>maxlen) {
/* find all possible end pts only if length longer than maxlen so far */
int h,addy,addx;

i f (abs(maindir)==l) { addy=l; addx=0; } e l s e {addy=0; addx^l;}
i f (WithinBound(dy,dx,b)) { /* chec]<: mid-pt f i r s t */

end l i s t [0] .x=Ex; end l i s t [0] .y=Ey; Nendpt=l;
}

348 0 Halftoning and Image Processing

else Nendpt=0;
for (h=l; h<SUBPIXRES/2; h++) {
if (WithinBound(dy+addy*h,dx+addx*h,b)) {
endlist[Nendpt].x = Ex + addx*h;
endlist[Nendpt++].y = Ey + addy^h;
}
else if (WithinBound(dy-addy*h,dx-addx*h,b))
endlist[Nendpt].x = Ex - addx*h;
endlist[Nendpt++].y = Ey - addy*h;
}
} /* for (h) */
Ex=endlist[0].x; Ey=endlist[0].y;
EndptOK = Nendpt>0;

/* offset from mid-pt

else { /* TryAllEndPts==FALSE. just calc the pt closest to the mid-pt */
if (!slopecmp(dy,dx,b.ly,b.Ix)) {
/*
* dy dx is equal or below the lower limit.
* i.e. the slope just above the lower limit should be taken.
* if the lower gradient limit hits exactly on a sub-pixel res point,
* the truncation of the integer division has done part of the job.

if (Is_Horizontal(maindir)) {
tmp= dx*b.ly; exact= (dx==0
Ey = tmp/b.lx + Sy + (b.lx>0 ?

}
else {
tmp= dy*b.lx;
Ex = tmp/b.ly

exact= (dy==0
Sx + (b.ly>0 7

I tmp%b.lx:= = 0) ;
(b.ly>0 ? 1
{b.ly>0 ? -exact

I tmp%b.ly==0);
(b.lx>0 ? -exact
(b.lx>0 ? 1

exact)

-1));

-1)
exact));

}
EndptOK = Pretest || WithinBound(Ey-Sy,Ex-Sx,b);
}
else if {!slopecmp(b.uy,b.ux,dy,dx)) {
/*
* dy dx is equal or above the upper limit.
* i.e. the slope just below the upper limit should be taken.
* if the upper gradient limit hits exactly on a sub-pixel res point,
* the truncation of the integer division has done part of the job.
*/

tmp= dx*b.uy; exact= (tmp%b.ux==0);
Ey = tmp/b.ux + Sy + (b.ux>0 ? (b.uy>0

: (b.uy>0
}
else {
tmp= dy*b.ux; exact= (tmp%b.uy==0);
Ex = tmp/b.uy + Sx + (b.uy>0 ? (b.ux>0

: (b.ux>0

7
7

7
7

-exact
1

1
-exact

:-l)
: exact));

: exact)

:-l));
}

EndptOK = Pretest || WithinBound(Ey-Sy,Ex-Sx,b);

}

VI.5 Reversible Straight Line Edge Reconstruction 0 349

else /* dy,dx is within the limits, i.e. midpoint is taken. */
EndptOK=l;
} /* if (TryAllEndPts)..else.. */

if (EndptOK) break; /* if Pretest is TRUE, EndptOK always TRUE */
else { /* no valid endpoint can be found, step back one edge */
backward(el);
last = Pedgehistory[--NPedges-2];
Nbound--;

} /* for (;;) */
breaktrace=TRUE;

/* until a valid end pt is found
/* one line segment found.

}
limits not crossed over yet
one more new valid bound

/* continue to get another Pedge

else { /*
Nbound++; /*
continue;
} /* if (various trace breaking conditions) */
} /* if (nextp==NULL || ndir==ESTABLISHED) */
else { /* i.e. dominant and trnsvrse direction not yet established */
breaktrace = FALSE;
if (ndir<3) {
for (1=0;i<ndir;i++) (/
if (against(dnow,dir[i])) { /
breaktrace = TRUE; /
Ex=MidX(last); Ey^MidY(last);
if (TryAllEndPts) {

endlist[0].x=Ex; endlist[0].y=Ey
Nendpt=l;

} /* if (TryAllEndPts) */
} /* for 0 */
}
if (ndir<2 || dnow!=dir[l]
dir[ndir]=dnow;
ndir++;
}

}

compare with previous dir's
there is a 'U' turn ...
therefore an early stop

dir[0]!=dir[l]) {

if (ndir==3)

{

/* now we can establish the directions..,
/* _ I */
/* _| or _| */ if (dir[0]!=dir[l]) {

maindir=dir[2];
if (dir[l]-:-dir[2]) {
trnsvrse=dir[0]; /* the 1st dir is the trnsvrse dir
if (Is_Horizontal(maindir)) {
Ux = Lx = MidX(e) - Sx;

Uy = (Ly = e.yl-Sy-HalfSUBPIXRES) +SUBPIXRES;

}
else {
Uy = Ly = MidY(e) - Sy;
Ux = (Lx = e.xl-Sx-HalfSUBPIXRES) +SUBPIXRES;
}
)

350 0 Halftoning and Image Processing

else {
trnsvrse=dir[1];
if (Is_Horizontal(maindir)) {
Lx = Ux = MidX(e)-Sx;
Ly = (Uy = MidY{e)+HalfSUBPIXRES-Sy) -SUBPIXRES;
}
else {
Ly = Uy = MidY(e)-Sy;
Lx = (Ux - MidX(e)+HalfSUBPIXRES-Sx) -SUBPIXRES;
}
}

}
else {
maindir=dir[0];
trnsvrse=dir[2];
if (Is_Horizontal(maindir)) {

I */

Lx = e.xl
Ux = Lx +
Uy = Ly =
}
else {
Ly = e.yl

+ (maindir>0 ? -HalfSUBPIXRES : HalfSUBPIXRES) - Sx;
(maindir>0 ? SUBPIXRES : -SUBPIXRES);
MidY(e) - Sy;

Uy
Ux

Ly
Lx

+ (maindir>0
(maindir>0 ?
MidX(e) - Sx;

? -HalfSUBPIXRES : HalfSUBPIXRES) - Sy
SUBPIXRES : -SUBPIXRES);

bound[0].lx=Ux;

}
}
if (slopecmp(Ly,Lx,Uy,Ux)) {
bound[0].uy=Ly; bound[0].ux=Lx
bound[0].ly=Uy;
}
else {
bound[0].uy=Uy;
bound[0].ly=Ly;

}
Nbound=1;
ndir = ESTABLISHED;
} /* if (ndir==3) */
/* if (ndir==ESTABLISHED).,

bound[0]
bound[0]

ux=Ux;
lx=Lx;

/* swap the grad limits if necessary */
/* Ly Lx larger */

/* Uy Ux larger */

/* first bound established */

.else.

if (breaktrace) {

backward(el);

one line ended

/' last pixel edge shall be the start of another line.

if (TryAllEndPts) {
if (maxlen < (el. current-currentsave)) { /'*
maxlen = el.current-currentsave; /̂
bestpt_last=last; /*
bestpt=startp; /*
bestpt_currentsave=el.current; /*
for (i=0; i<Nendpt; i++) bestpt_endlist[i]=endlist[i]; /* save end pts */
bestpt_Nendpt=Nendpt; /* save the no. of end pts */
}

longer than the longest */
longest distance so far */
save the last edge */
update the best pt so far*/
save the cursor for el */

VI.5 Reversible Straight Line Edge Reconstruction 0 351

startp++; /* next starting pt in startpts[] */
if (startp >= Nstartpt) { /* all starting pts have been tried */
currentsave=el.current=bestpt_currentsave; /* save the ending pos */
estartsave=e=bestpt_last; /* save the ending Pedge */
lines[linescount++] = startpts[bestpt]; /* record the best pt */
if (linescount>=MaxNLine) return -1; /* too many lines */
if (bestpt_currentsave>=el.Nedges-1) { /* no more Pixel edges ? */
lines[linescount++]=bestpt_endlist[0]; /* record end pt as well */
return linescount>=MaxNLine ? -1 : linescount;/* done */

}

Nstartpt=bestpt_Nendpt; /* use the list of end pts as starting pts */
for (i=0; i<bestpt_Nendpt; i++) startpts[i]=bestpt_endlist[i];

startp=0; /* consider the first one in the new list */
Sx=startpts[0].x; Sy=startpts[0].y;
maxlen=bestpt=-l; /* reset maxlen and bestpt to undefined */

}
else { /* i.e. startp<Nstartpt. try next starting point */
Sx=startpts[startp].x; Sy=startpts[startp].y; /* next starting pt */

/* rewind and start again */
el.current=currentsave;
e=lastrestartsave;
} /* if (startp>=Nstartpt) ... else ... */

}
else { /* i.e. TryAllEndPts==FALSE. simply start at the end pt again */
Sx=Ex; Sy=Ey; e=last;
lines[linescount].x=Ex; lines[linescount++].y=Ey;
if (linescount>=MaxNLine) return -1; /* too many lines */

if (el.current>=el.Nedges-1) return linescount;/* no more Pedges, done */

}
starttrace=TRUE; /* start again */
} /* if (brea]ctrace) */

} /* for (starttrace=TRUE;;) infinite loop */
} /* fitlinesO */

* T H E I N V E R S E P R O C E S S *

#define divisible(a,b) ((a)%(b)==0)
#define ishori(x,y) (divisible(x,SUBPIXRES)||\

divisible(y+HalfSUBPIXRES,SUBPIXRES))
#define isvert(x,y) (divisible(y,SUBPIXRES)||\

divisible(x+HalfSUBPIXRES,SUBPIXRES))
#define sign(x) ((x)>=0 ? 1 : -1)
#define Trunc(n) ((n)/SUBPIXRES*SUBPIXRES)
static int lastx,lasty,lastdir; /* to avoid duplicated pixel edges */

static void drawHPedge(int x, int y) { /* draw a horizontal pixel edge */
if (lastx=:=x && lasty==y && lastdir==HRZ) /* starting edge==last ending edge */

return;

352 0 Halftoning and Image Processing

lastx=x; lasty^y; lastdir=HRZ;
DrawPixelEdge(x/SUBPIXRES, y/SUBPIXRES, HRZ); /* call the user function */
} /* drawHPedgeO */

static void drawVPedge(int x, int y) { /* draw a vertical pixel edge */
if (lastx==x && lasty==y && lastdir==VRT) /* starting edge==last ending edge */
return;

lastx=x; lasty=y; lastdir=VRT;
DrawPixelEdge(x/SUBPIXRES, y/SUBPIXRES, VRT); /* call the user function */
} /* drawVPedge0 */

* makejaggedline(): A modified Bresenham's midpoint algorithm. Based on *
* the code from the original Graphics Gem. Neither the starting pt *
* nor the ending pt need to be at the mid-pt of a pixel edge. *
* The decision variable has been scaled by SUBPIXRES and preloaded *
* with the offset from a 'proper' starting pt, i.e. the mid-pt of the *
* first pixel edge pointing to the dominant direction. *

static makejaggedline(int xl, int yl, int x2, int y2) {
int d, x, y, ax, ay, sx, sy, dx, dy, finaltrnsvrse;

dx = x2-xl; ax = abs(dx)*SUBPIXRES; sx = sign(dx)*SUBPIXRES;
dy = y2-yl; ay = abs(dy)*SUBPIXRES; sy = sign(dy)*SUBPIXRES;

if (ax>ay) /* x dominant */

{ /*============*/

if (isvert(xl,yl)) /* 1st edge is trnsvrse. skip to the mid-pt */
{ /* of the next dominant dir edge. */
y=Trunc(yl + HalfSUBPIXRES) + sy/2;
x=Trunc(xl) + HalfSUBPIXRES + sx/2;
drawVPedge(x-sx/2,y-sy/2); /* draw the skipped edge */
}
else { /* 1st edge is dominant, shift to the mid-pt */
x=Trunc(xl + HalfSUBPIXRES);

y=Trunc(yl) + HalfSUBPIXRES;

}
/* preload decision var 'd' with offset x-xl, y-yl. (if any) */
d = ay - (ax>>l) + ay* (x-xl)/sx - ax* (y-yl)/sy;
for (;;) {
drawHPedge(x,y);
if (abs(x-x2) < HalfSUBPIXRES) return; /* final edge is a dominant one */
X += sx;
finaltrnsvrse = dx>0 ? x>x2: x<x2;
if (d>0 I I finaltrnsvrse) { /* if the final edge is a trnsvrse */
drawVPedge(x-sx/2,y+sy/2); /* one, draw it before stopping */
y += sy;
d -= ax;
}
if (finaltrnsvrse) return;
d += ay;
} /* for (;;) */

Vi5 Reversible Straight Line Edge Reconstruction 0 353

e l s e /* y dominant */
{ /* = = = = := = = = = = = = */

if (ishori(xl,yl)) /* 1st edge trnsvrse. skip to the mid-pt */
{ /* of the next dominant dir edge */
x=Trunc(xl + HalfSUBPIXRES) + sx/2;
y=Trunc(yl) + HalfSUBPIXRES + sy/2;
drawHPedge(x-sx/2, y-sy/2); /* draw the skipped edge */
}
else { /* 1st edge is dominant, shift to the mid-pt */
x=Trunc(xl) + HalfSUBPIXRES;

y=Trunc(yl + HalfSUBPIXRES);

}
/* preload decision var 'd' with offset x-xl, y-yl (if any) */
d = ax - (ay»l) + ax* (y-yl)/sy - ay* (x~xl)/sx;
for (;;) {
drawVPedge(x,y);
if (abs(y-y2) < HalfSUBPIXRES) return; /* final edge is a dominant one */
y += sy;
finaltrnsvrse = dy>0 ? y>y2 : y<y2;
if (d>0 I I finaltrnsvrse) { /* if the final one is a trnsvrse */
drawHPedge(x+sx/2, y-sy/2); /* one, draw it before stopping. */
X += sx;
d -= ay;
}
if (finaltrnsvrse) return;
d += ax;
} /* for (;;) */

} /* if (ax>ay)... else ...*/
} /* makejaggedline() */

* linestojagged(): reconstruct a sequence of pixel edges from given lines *
* by calling the makejaggedline() function. *

void linestojagged(int Nlines, IntPoint2 *lines) {
int from_x, from__y, i;
lastdir=0;
for (from_x=lines [0] .X, from_y=lines [0] .y, i = l; i<Nlines; i++) {
makejaggedline(from_x,from_y,lines[i].x,lines[i].y);
from_x=lines[i].x; from_y=lines[i].y;
}
} /* linetojagged() */

0 Bibliography 0

(Bloomenthal 1983) Jules Bloomenthal. Edge inference with applications to antialias-
ing. In Computer Graphics (SIGGRAPH ^83 Proceedings)^ Volume 17, pages 157-
162, July 1983.

354 0 Halftoning and Image Processing

(Bresenham 1965) J. E. Bresenham. Algorithm for computer control of a digital plotter.
IBM Systems Journal, 4(l):25-30, 1965.

(Cantoni 1971) A. Cantoni. Optimal curve fitting with piecewise linear functions. IEEE
Transactions on Computers, C-20(l), January 1971.

(Chryssafis 1986) A. Chryssafis. Anti-aliasing of computer-generated images: A picture
independent approach. Computer Graphics Forum, 5:125-129, 1986.

(Feldman 1992) Tim Feldman. Generating isovalue contours from a pixmap. In David
Kirk, editor, Graphics Gems III, Chapter 1.6, pages 29-33. AP Professional,
Boston, 1992.

(Heckbert 1990) Paul S. Heckbert. Digital line drawing. In Andrew Glassner, editor,
Graphics Gems, Chapter 2.10, pages 99-100. AP Professional, Boston, 1990.

(Olsen 1990) John Olsen. Smoothing enlarged monochrome images. In Andrew Glass-
ner, editor, Graphics Gems, pages 166-170. AP Professional, Boston, 1990.

(Roth 1982) Scott D. Roth. Ray casting for modeling solids. Computer Graphics and
Image Processing, 18:109-144, 1982.

(Schneider 1990) Philip J. Schneider. An algorithm for automatically fitting digitized
curves. In Andrew Glassner, editor, Graphics Gems, Chapter 11.8, pages 612-626.
AP Professional, Boston, 1990.

(Williams 1981) Charles M. Williams. Bounded straight-line approximation of digitized
planar curves and hues. Computer Graphics and Image Processing, 16:370-381,
1981.

OVI.6
Priority-based Adaptive Image
Refinement

Rajesh Sliarma
Indiana University
Bloomington, Indiana
rsharma @ cs.indiana.edu

0 Introduction 0
This gem presents an extension to image refinement algorithms by incorporating adap-
tive refinement: an image based on priority.

The generation of pixel values, whether by an abstract process (rendering) or by
empirical sampling (scanning), is a sequential process. For interactive purposes, this
does not provide the user a "thumbnail" preview of the entire image. Fast production
of reduced-quality image is of value both in previewing systems and in production of
frames whose objects show rapid, dynamic changes.

A previous gem (HoUasch 1992) addresses the issue of providing an overall image of
reduced quality. His algorithm repeatedly subdivides the image into equal-size rectangles
and displays each rectangle as a solid region whose uniform color is taken from the lower-
left corner of that rectangle. It may be regarded as a low-resolution (point) sampling
of the image rendered by a ray tracer. Subsequently, the pixel is replicated to the full
size of the rectangle (Schumacher 1991). The main drawback of the technique is that
it necessarily treats all the rectangles equally. Thus, it fails to exploit the homogeneity
present, whose subdivision is better deferred.

In contrast, an adaptive algorithm prioritizes rectangles, providing demonstrably bet-
ter results at an equivalent cost of execution (Figure 1; Color Plate VI.6). The main
algorithm, which maintains and makes references to a heap-based priority queue, is
described below.

0 Pseudocode 0
1. i n s e r t (heap, f i r s t _ r ec t) ;

2. while !empty (heap) do {

3. top_rect = top (heap);

4 . draw_rect (top.rect) ;

5. if !((top . rec t .wid th ==1) && (top_rect .height == 1)) {

Copyright (c) 1995 by Academic Press, Inc.
All r ights of reproduct ion in any form reserved.

^ ^ ^ IBM ISBN 0-12-543455-3

356 0 Halftoning and Image Processing

6. split (top.rect, sub_rect_A, sub_rect_B) ,

7. new_sample (sub_rect_A.) ;

8. new_priority (sub_rect_A) ;

9. insert (heap, sub_rect_A) ;

10. new_sainple(sub_rect_B) ;

11 . new_priority (sub_rect-B) ;

12. i n s e r t (heap, sub_rect-B) ;

1 3 . }

1 4 . }

0 Details 0
Each heap entry represents a rectangular region containing the following information
about the region: the lower-left and the upper-right corners, the color of the sample
at the lower-left corner, and the priority of the region. Displaying a solid rectangle
is platform-dependent and is assumed to be much faster than the sampling process.
Splitting of a rectangle is always performed along the longest dimension of the rectangle,
that is, if the length of the rectangle is more than its width, then the rectangle is
divided vertically into two equal-size subrectangles; otherwise, the rectangle is divided
horizontally.

There are various metrics for priority, ranging from the more complicated sequential
probability test ratio (SPRT) (Maillot et al. 1992) to the simplistic area of the rect-
angle. [The algorithm then degenerates to a form similar to the method of an earlier
gem (Hollasch 1992).] Here, we describe an easy-to-implement, fast metric to assign
priorities, based on area and intensity variation of the region. The formula used for
calculating priorities can be expressed as

PL,R = ai * yl + a2 * / + as * Pp, (1)

where PL,R denotes the priority of the rectangle with lower-left and upper-right corners
at L and i?, respectively. A defines the fractional screen area:

A = {R^-L:, + l)^{Ry-Ly-^ 1)/(A^^ * A^)̂, (2)

where Nx and Ny are the width and height of the image, respectively. Pp is the priority
of the parent rectangle, and / is the intensity variation of a region and is computed
as follows. The average luminance value (sum of r, g, and b components) for each of
the top, bottom, left, and right external boundaries of a rectangle are read from the
frame buffer. The absolute difference with the luminance value of the rectangle color is
then computed, and the maximum of these differences is used as a measure for intensity
variation, after normalizing its range to [0,1]. The parameters all lie on the unit interval:
0 < { A , / , P } < 1. Then, ai,a2, and as are constants that can be varied to give more

VI. 6 Priority-based Adaptive Image Refinement 0 357

Nonadaptive (8000 rectangles) Nonadaptive (16,000 rectangles)

Adaptive (8000 rectangles) Adaptive (16,000 rectangles)

Figure 1. Progressive refinement.

358 0 Halftoning and Image Processing

control over the refinement process. To keep the range of the priorities in [0,1], we have
YA=I ^i — 1' leaving two control parameters, as as := 1 — (ai + a2).

Techniques suggesting a rectangle sampling at other than the lower-left corner of
the pixel (rectangular) region exist (Chiu et al. 1994) (see also page 359) and can be
incorporated into the algorithm at the cost of storing the location of the sample.

<> Bibliography 0

(Chiu et al 1994) Kenneth Chiu, Peter Shirley, and Changyaw Wang. Multi-jittered
sampling. In Paul Heckbert, editor, Graphics Gems IV^ pages 9-19. AP Profes-
sional, Boston, 1994.

(HoUasch 1992) Steve Hollasch. Progessive image refinement via gridded sampling. In
David Kirk, editor, Graphics Gems III^ pages 358-361. AP Professional, Boston,
1992.

(Maillot et al 1992) J-L Maillot, L. Carraro, and B. Peroche. Progessive ray tracing.
In Alan Chalmers and Derek Paddon, editors. Third Eurographics Workshop on
Rendering^ pages 9-19. Consolidation Express, Bristol, 1992.

(Painter and Sloan 1989) James Painter and Kenneth Sloan. Antialiased ray tracing
by adaptive progressive refinement. In Jeffrey Lane, editor. Computer Graphics
(SIGGRAPH '89 Proceedings), Volume 23, pages 281-288, July 1989.

(Schumacher 1991) Dale Schumacher. Fast anamorphic image scaling. In James Arvo,
editor, Graphics Gems II, pages 78-79. AP Professional, Boston, 1991.

OVI.7
Sampling Patterns Optimized for
Uniform Distribution of Edges

Robert A. Cross
Indiana University
Bloomington, Indiana
rcross @ cs. Indiana, edu

0 Introduction 0

This gem examines the results of an automated gradient search of optimized samphng
patterns. The intent is to find a set of samples that perform better than other sampling
patterns, yet require no evaluation as they are precomputed.

The present approach extends methods described in a previous gem (Chiu et al. 1994)
whose introduction is restated below:

Monte-Carlo integration is often used to compute pixel values. For every pixel, a set of sample
points is generated. The radiances of each point are then computed and averaged. To avoid
aliasing, the sample points must be generated randomly such that every point is equally likely
to be selected. However, a sampling pattern that is "too random" can overemphasize some parts
of the pixel, resulting in excessive noise unless the number of samples is very large.

0 The Experiment 0

The test images are a set of uniformly distributed anti-aliased lines, produced by ex-
haustive oversampling in order to produce an "exact" image (Figure 1). It is assumed
that any sampling pattern that performs well on this test image will perform well on
any pixels with a uniform edge orientation distribution. The optimal sampling patterns
will then exhibit minimal mean-squared error relative to the test image.

A Monte-Carlo integration was conducted on the Silicon Graphics Onyx
Reality Engine, taking advantage of its hardware accumulation buffer (Haeberli and
Akeley 1990) as follows: For each sample, translate the viewpoint from the origin by
the specified fraction of a screen pixel and scan-convert the line distribution; add the
resulting image into the accumulation buffer. The contents of the accumulation buffer
represent the final image scaled up by Ng (the number of samples). The mean-squared
error is the sum of the squared difference between the generated image and the refer-
ence image, divided by the total pixels: l/7VpX^^j(testij—exact^j)^. This error measure
defines the goodness of a set of samples.

oco

Copyright (c) 1995 by Academic Press , Inc.
All r ights of reproduct ion in any form reserved.

IBM ISBN 0-12-543455-3

3 6 0 0 Halftoning and Image Processing

Figure 1. The goal of the gradient search,
an image of 400 lines in a uniform distribution
anti-aliased with 1000 samples.

Figure 2, Another reference image; a sim-
ple test scene sampled 1000 times.

A genetic algorithm performed the gradient search, combining portions of the best-
performing sets of samples, with mutation introduced to avoid stagnation. The nature
of a genetic algorithm requires a large population to ensure diversity; hardware support
kept run times within reason.

The initial population was composed of random^ N-rooks (Shirley 1991), jittered
(Cook et al 1984), and multijittered (Chiu et al 1994) samples. In each successive
generation, the sampling patterns were crossbred according to fitness to produce a new
test set. The offspring were compared against the reference image to produce new fitness
measures.

0 Results 0
Optimized sampling patterns of Â s = 4 and TV̂ = 16 are shown in Figures 3 and 4.

The per-pixel mean-squared error of the optimized samples is much better than even
multijittered at four samples per pixel (Table 1); the advantage decreases with increasing
samples per pixel. Time constraints restrict present results to Ns < 64; the trend
suggests similar performance for larger sizes. A comparison of all methods against a

Table 1. Average mean-squared error in reproducing Figure 1 (maximum error is 255^ = 65025).

1 Ns
4

16
64

1 256

Random

1457.60
355.41
134.58
36.04

A/^-Rooks

1027.18
721.01
703.88
702.69

Jittered

897.09
125.99

19.47
7.30

Multijittered

800.79
108.96

18.27
7.52

Optimized |
501.87

96.16
23.93

no data

VL 7 Sampling Patterns Optimized for Uniform Distribution of Edges 0 3 6 1

U.8

0.6

0.4

0.2

0

D

+

0

D '

) 0.2 0:4

+

0.6

0 °

+
0

D

0.8 1

0.8

0.6

0.4

0.2

DO

D

Figure 3. Three optimized sets of four sam-
ples.

0.2 0.4 0.6 0.8 1

Figure 4. Three optimized sets of sixteen
samples.

simple test scene (Figure 2) appears in Table 2. The optimized sample sets are strongly
competitive for Ng < 16. For larger sizes, while the accuracy of the optimized sets is
finer than one bit per color component, the comparatively weaker performance indicates
that these sample sets would benefit from further optimization.

0 Conclusions 0

Sampling patterns optimized for a uniform distribution of edges may be found using
an experimental gradient search. The results of the experiment support the initial hy-
pothesis that samples optimized for a uniform distribution of edges will produce low
error for images in general; that is, one can use fewer samples. The speed of contempo-
rary graphics hardware can generate a large set of samples quickly; a large static set of
sampling patterns would be a useful tool.

Because of the size limitations, only sample sets of moderate size are reproduced on
this volume's diskette; larger sample sets (and the software that produced them) are
available on the Gems FTP servers and its mirrors.

Table 2. Average mean-squared error in reproducing the scene shown In Figure 2.

1 Ns
4

16
64

1 256

Random

12.3337
3.1280
0.6886
0.3170

AT-Rooks

5.9019
2.9004
2.7522
2.7435

Jittered

7.7491
0.8900
0.1175
0.0210

Multijittered

4.8132
0.5607
0.0783
0.0161

Opt imized
4 .30309
0.88102
0.23542

no data

362 0 Halftoning and Image Processing

0 Example Sampling Pattems 0

/* Example sample patterns appearing in Graphics Gems V
'"Sampling Patterns Optimized for Uniform Distribution of Edges'
Figures 3 and 4. */

typedef float sample[2];

sample foursamples[3][4]={
{{0.274942, 0.884325}, {0.797099, 0.207128},
{0.765063, 0.715779}, {0.122774, 0.282759}},

{{0.152302, 0.657716}, {0.649413, 0.907929},
{0.305133, 0.221223}, {0.784722, 0.280605}},

{{0.775219, 0.152203}, {0.846312, 0.737633},
{0.247618, 0.777035}, {0.228821, 0.197385}}};

sample sixteensamples[3][16]={
{{0.755279, 0.0497319}, {0.384479, 0.688268},
{0.666094, 0.868388}, {0.317172, 0.0331764},
{0.729309, 0.43103}, {0.0867931, 0.368519}
{0.322668, 1.0}, {0.442302, 0.572752}
{0.889074, 0.606985}, {0.0343768, 0.191404}
{0.910321, 0.872547}, {0.92479, 0.345332}
{0.289126, 0.389783}, {0.896551, 0.141167}
{0.23357, 0.678942}, {0.11281, 0.526939}},

{{0.740161, 0.0942363}, {0.384479, 0.688268},
{0.642662, 0.884825}, {0.324146, 0.0213393},
{0.729309, 0.43103}, {0.0867931, 0.368519},
{0.306925, 0.995787}, {0.442302, 0.572752},
{0.889074, 0.606985}, {0.0343768, 0.191404},
{0.910321, 0.872547}, {0.92479, 0.345332},
{0.299325, 0.371848}, {0.896551, 0.141167},
{0.226811, 0.658172}, {0.27796, 0.873217}},

{{0.73534, 0.316016}, {0.755279, 0.0497319},
{0.152649, 0.442638}, {0.917626, 0.771549},
{0.0492709, 0.836601}, {0.0642901, 0.155284},
{0.94238, 0.458705}, {0.392657, 0.644079},
{0.626425, 0.534164}, {0.0918845, 0.468493},
{0.372743, 0.0552449}, {0.217678, 0.319869},
{0.460074, 0.759592}, {0.827202, 0.875453},
{0.596844, 0.352386}, {0.387125, 0.96096}}};

VI. 7 Sampling Patterns Optimized for Uniform Distribution of Edges 0 363

0 Bibliography 0
(Chiu et al. 1994) Kenneth Chiu, Pete Shirley, and Changyaw Wang. Multi-jittered

sampling. In Paul Heckbert, editor, Graphics Gems /F , pages 370-374. AP Pro-
fessional, Boston, 1994.

(Cook et al. 1984) Robert L. Cook, Thomas Porter, and Loren Carpenter. Distributed
ray tracing. In Hank Christiansen, editor. Computer Graphics (SIGGRAPH '84
Proceedings), Volume 18, pages 137-145, July 1984.

(Haeberli and Akeley 1990) Paul E. Haeberli and Kurt Akeley. The accumulation
buffer: Hardware support for high-quality rendering. In Forest Baskett, editor.
Computer Graphics (SIGGRAPH '90 Proceedings), Volume 24, pages 309-318,
August 1990.

(Shirley 1991) P. Shirley. Discrepancy as a quality measure for sample distributions.
In Werner Purgathofer, editor, Eurographics '91, pages 183-194. North-Holland,
September 1991.

This Page Intentionally Left Blank

utilities

The gems in this section describe general graphics utihties. All place heavy emphasis
on their underlying C code, which provides an extensive and proven solution to a well-
known problem. In some cases, the emphasis is upon extensions, bug fixes, or refinements
to previous gems. In nearly all cases additional code not otherwise appearing in print
is included on the diskette.

Schlick (VII. 1) provides a set of wave generators having adjustable waveform. The
curve family and parameters are chosen to provide a wide range of effects using a man-
ageable set of controls. Immediate applications include the noise-like functions used by
Perlin to simulate texture. Green and Hatch (VII.2) provide a thorough solution to
the intersection of a polygon and a cube. Their work updates a prior gem, includes a
number of useful mathematical and procedural optimizations, and takes advantage of
Hatch's library, surveyed below. Bouma and Vanecek offer a collision detection heuristic
(VII.3) which is in turn based upon a generic and highly robust polygon-plane inter-
section routine (VII.4), derived from the second author's thesis research. This routine,
while seldom invoked directly, provides the essential procedure central to nearly all 3D
(polygon-polygon) intersection routines. Narkhede and Manocha (VII.5) implement a
polygon triangulation procedure based upon Seidel's algorithm. The method offers both
low computational complexity bounds plus a practical run-time performance, making
it worthy of an audience beyond computational geometers. Karinthi (VII.6) provides a
Z-buffer renderer assembled using "off-the-net" components capable of high-resolution
color output given standard scene files. Finally, Paeth (VII.7) surveys four graphics
libraries. The description includes excerpts from a primary work by Scheepers and May
as well as discussions of the methods and code provided by authors whose related gem
contributions appear elsewhere in this volume.

365

This Page Intentionally Left Blank

Ovii.1
Wave Generators for Computer
Graphics

Christophe Schlick
Laboratoire Bordelais de Recherche en Informatique (LaBRI)
Talence, France
schlick® labri. u-bordeaux. fr

0 Introduction 0
The work of Perlin (Perlin 1985, 1989) shows that combining simple generic operators
(e.g., noise, turbulence, bias, gain) allows the creation of complex specific visual effects
such as marble, fire, or water. Though first presented as a procedural approach to
texturing, the ideas have been generalized to many computer graphics applications
(Upstill 1989), including modeling, deformation, rendering, and animation. This gem
provides several wave generators that represent some basic tools for creating many
regular or random visual effects in computer imagery.

0 Noise 0
The most ubiquitous operator is the noise function. It generates a distribution hav-
ing a user-controlled randomness while maintaining valuable statistical properties of
invariance under translation or rotation and limited spectrum bandpass. Several imple-
mentations of the noise function have been proposed since its original development; a
remarkably elegant recursive implementation appears in a previous gem (Ward 1991).
Because the original noise routine was intended for solid texturing, it is often imple-
mented as a 3D function that maps a point on the Euclidian space R^ onto a scalar
value on the unipolar or bipolar interval^ [0,1] or [—1,1].

Despite all its useful properties, the noise function also includes a few weaknesses.
In many situations (for instance, in rendering or animation), there is a need only for ID
randomness; in such cases, using a 3D noise generator involves wasteful calculations.
Another drawback of noise (at least with the usual implementations) is that it provides
random signals that always have C^ continuity. Therefore, many natural phenomena
that involve C^ and C~^ randomness (Peitgen and Saupe 1988) cannot be simulated
by noise without specific post-treatment of the function.

^The first form is recommended, as transformation to the second is straightforward: "t += t - 1 ; " .

Ofi"7

Copyright © 1995 by Academic Press, Inc.
All rights of reproduction in any form reserved.

IBM ISBN 0-12-543455-3

368 0 Utilities

0 Description 0
This gem corrects the previous weaknesses by introducing wave generators as an ad-
dendum to the noise function. Three monodimensional operators are presented here:
Rwave (rectangular wave), Twave (triangular wave), and Swave (sine wave). Each maps
R onto [0,1] providing C~^, C^, and C^ continuity, respectively. Each function *wave
takes four parameters:

t : wave parameter (t G R),
s : shape factor (—1 < 5 < 1),
f : frequency variance (0 < / < 1),
a : amplitude variance (0 < a < 1).

The default waves {s = f = a = 0) are shown in parts (a) of Figures 1-3. Following
the idea of the integer lattice (Perlin 1985), the routines are implemented so that the
extrema of the functions are located at integer values for t. In other words, the period
of each function is 2:

Vp G IN Xwave (2p, 0,0,0) == 1 and Xwave (2p+l, 0,0,0) = 0.

The shape factor s allows a stretch either toward low values {s < 0) or toward high
values {s > 0). The resulting waves with three different values for the shape factor are
shown respectively in parts (b), (c), and (d) of Figures 1-3. The stretching effect is
obtained by using the rational bias function described elsewhere (Schlick 1994).

The frequency variance / and the amplitude variance a are used to introduce some
noise to the waves, either in the frequency domain (a = 0, / 7̂ 0), in the amplitude
domain (a ^ 0, / = 0), or in both (a ^ 0, / 7̂ 0). These AM, FM and hybrid AM+FM
waves appear respectively in parts (b), (c), and (d) of Figures 4-6.

The amount of noise that may be introduced is strictly bounded to preserve the prop-
erties defined by Perlin. For instance, even with maximum frequency domain variance
(/ = 1), the pseudoperiod of the wave stays within the range [1,4]. Similarly, maximum
amplitude domain variance (a = 1) keeps the wave's local maximum (minimum) within
[̂ , 1] ([0, ^]). Therefore, parameters / and a provide a double continuum between four
kinds of waves:

/ = 0 and a = 0
/ — 0 and a = 1
f = I and a = 0
f = 1 and a = 1

constant-frequency/constant-amplitude,
constant-frequency/varying-amplitude,
varying-frequency/constant-amplitude,
varying-frequency/varying-amplitude.

0 Extensions 0
In the preceding description, no precision has been given about the relationship between
the wave parameter t and the point (x, y, z) for which the wave function is computed.
At least three different schemes may be used, giving three different visual effects:

VII. 1 Wave Generators for Computer Graphics 0 3 6 9

(a) s = 0.0 / = 0.0 a = 0.0 (b) . = 0.6 / = 0.0 a -= 0.0

(c) s = 0.9 / = 0.0 a = 0.0 (d) s = - 0 . 6 / = 0.0 a = 0.0

Figure 1 . Rectangular-like waves for different shape factors.

(a) s = 0.0 / = 0.0 a = 0.0 (b) s = 0.6 / = 0.0 a = 0.0

XXAAX /YYYY^
(c) s = 0.9 / = 0.0 a = 0.0 (d) s = - 0 . 6 / = 0.0 a = 0.0

Figure 2. Triangular-like waves for different shape factors.

AAAAA 7V7VA7VA
(a) s = 0.0 / = 0.0 a = 0.0 (b) s = 0.6 / = 0.0 a = 0.0

UJJO. AAAAA
(c) s = 0.9 f = 0.0 a = 0.0 (d) s = - 0 . 6 / = 0.0 a = 0.0

Figure 3. Sinusoidal-like waves for different shape factors.

• t = ax + by + cz, which provides planar waves (every point at a given distance from
the plane ax + by + cz = 0 has the same wave value).

• t = \/{ay — hxY + {bz — cy^ + {ex — az)'^^ which provides cylindrical waves (every
point at a given distance from the axis directed by (a, 6, c) has the same wave value).

• t = \Jx^ + y^ + ^^, which provides spherical waves (every point at a given distance
from the origin has the same wave value).

370 0 Utilities

muiRR ^ ^ ^
(a) s = 0.0 / = 0.0 a = 0.0 (b) s = 0.0 / = 1.0 a = 0.0

LP-
(c) s = 0.0 / = 0.0 a = 1.0 (d) s = 0.0 / = 1.0 a = 1.0

Figure 4. Rectangular-like waves for different frequency and amplitude variances.

(a) s = 0.0 / = 0.0 o = 0.0 (b) s = 0.0 / = 1.0 a = 0.0

(c) s = 0.0 / = 0.0 a = 1.0 (d) s = 0.0 / = 1.0 a = 1.0

Figure 5. Triangular-like waves for different frequency and amplitude variances.

AAAAA ANXAK
(a) 5 = 0.0 / = 0.0 a - 0.0 (b) 5 = 0.0 / = 1.0 a = 0.0

(c) 5 = 0.0 / = 0.0 a - 1 . 0 (d) 5 = 0.0 / = 1.0 a = 1.0

Figure 6. Sinusoidal-like waves for different frequency and amplitude variances.

Although using only monodimensional waves is sufficient in many cases, wave genera-
tors in higher dimensions (with similar shape and variance factors) would be a valuable
extension. A naive solution could be to create such waves by multiplying or averaging
several orthogonal monodimensional waves. Unfortunately, such a process alters the
statistical properties of the resulting waves. The only solution is to devise a specific
scheme for each new dimension. The 2D case is already tricky but can be implemented
with a reasonable effort (a future gem?). The 3D case appears to be much more difficult;
volunteers are welcome.

VII. 1 Wave Generators for Computer Graphics 0 371

0 Source Files 0

/*
WAVE.H : Christophe Schlick (10 September 1993)

This package provides 3 routines for generating rectangular-like,
triangular-like and sine-like waves including specific features.

"Wave Generators for Computer Graphics"
in Graphics Gems V (edited by A. Paeth), Academic Press

*

#ifndef _WAVE_
#define _WAVE_

extern double Rwave (register double t, double s, double Fvar, double Avar)
extern double Twave (register double t, double s, double Fvar, double Avar)
extern double Swave (register double t, double s, double Fvar, double Avar)

#endif

/*
WAVE.C : Christophe Schlick (10 September 1993)

This package provides 3 routines for generating rectangular-like,
triangular-like and sine-like waves including specific features.

"Wave Generators for Computer Graphics"
in Graphics Gems V (edited by A. Paeth), Academic Press

*

include <math.h>
#include "wave.h"

/*
** Macro functions
*/

#define ABS(a) ((a) < 0 ? -(a) : (a))
#define FLOOR(a) ((a) < 0 ? (int) ((a)-1.0) : (int) (a))
#define MAX(a,b) ((a) > (b) ? (a) : (b))
#define MIN(a,b) ((a) < (b) ? (a) : (b))

/*
** rnd : Random function (adapted from Greg Ward in Graphics Gems II)

static double rnd (register long s)

{
s = s << 13 V s;

return (((s*(s*s*15731 + 789221)+1376312589) & 0X7FFFFFFF) / 2147483648.0)

}

372 0 Utilities

#define FRND(a) rnd (17*(a))
#define ARND(a) rnd (97*(a))

/*
** Rwave : Rectangular-like monodimensional wave

•*• *
** Input : t = Wave parameter
** s = Shape factor (in [-1,1])
** f = Frequency variance (in [0,1])
** a = Amplitude variance (in [0,1])

double Rwave (register double t, double s, double f, double a)

{
register int i, j;

register double a, b;

i = j = FLOOR (t); t -= i; j++;

if (f) {

a = (FRND (i) - 0.5) * f;
b = (FRND (j) -0.5) * f + 1 . 0 ;

t = (t-a) / (b-a);
}
if (i & 1) {i++; j--; t = 1.0-t;}
t = (s < 0.0) ? (t+s*t) / (1.0+s*t) : (s > 0.0) ? t / (1.0-s+s*t) : t;
t = t < 0 . 5 ? 0 . 0 : 1 . 0 ;

if (a) {
a = ARND (i) * a * 0.5;
b = ARND (j) * a * 0.5;
t = a + t * (1.0-a-b);

}
return (t);

}

/*
** Twave : Triangular-lilce monodimensional wave

** Input : t = Wave parameter
** s = Sliape fac tor (in [-1,1])
** f = Frequency variance (in [0,1])
** a = Amplitude variance (in [0,1])
*/

double Twave (register double t, double s, double f, double a) {
register int i, j;
register double a, b;

i = j = FLOOR (t); t -= i; j++;

VII. 1 Wave Generators for Computer Graphics 0 373

if (f) {
a = (FRND (i) - 0.5) * f;
b = (FRND (j) - 0.5) * f + 1.0;
if (t < a) {

i--; j--; t++; a++;
b = a; a = (FRND (i) - 0.5) * f;

} else if (t > b) {
i++; j++; t--; b--;
a = b; b = (FRND (j) -0.5) * f + 1 . 0 ;

}

t = (t-a) / (b-a);

}

if (i & 1) {i++; j--; t = 1.0-t;}
t = (s < 0.0) ? (t+s*t) / (1.0+s*t) : (s > 0.0) ? t / (1.0-s+s*t) : t;

if (a) {
a = ARND(i) * a * 0.5
b = ARND(j) * a * 0.5
t = a + t * (1.0-a-b)

}

return (t);

}

/*
** Swave : sinusoidal-like monodimensional wave

** Input : t = Wave parameter
** s = Shape factor (in [-1,1])

f = Frequency variance (in [0,1])
a = Amplitude variance (in [0,1])

V

double Swave (register double t, double s, double f, double a)

{
register int i, j;
register double a, b;

i = j = FLOOR (t); t -= i; j++;

if (f) {
a = (FRND (i) - 0.5) * f;
b = (FRND (j) - 0.5) * f + 1.0;
if (t < a) {

i--; j--; t++; a++;
b = a; a = (FRND (i) - 0.5) * f;

} else if (t > b) {
i++; j++; t--; b--;
a = b; b = (FRND (j) - 0.5) * f + 1.0;

}
t = (t-a) / (b-a);

}

374 0 Utilities

i f (i & 1) { i++; j - - ; t = 1 . 0 - t ; }
t = (s < 0 .0) ? (t + s * t) / (1 . 0 + s * t) : (s > 0 .0) ? t / (1 . 0 - s + s * t) : t ;
t *= t * (3 . 0 - t - t) ;

i f (a) {
a = ARND(i) * a * 0 .5
b = ARND(j) * a * 0 .5
t = a + t * (1 . 0 - a - b)

}
r e t u r n (t) ;

}

0 Bibliography 0
(Peitgen and Saupe 1988) H. Peitgen and D. Saupe. The Science of Fractal Images.

Springer Verlag, 1988.

(Perlin 1985) K. Perlin. An image synthesizer. Computer Graphics^ 19(3):287-296,
1985.

(Perlin 1989) K. Perlin. Hypertexture. Computer Graphics, 23(3):253-262, 1989.

(Schlick 1994) C. Schlick. Fast alternatives to Perlin's bias and gain functions. In Paul
Heckbert, editor, Graphics Gems IV, pages 401-404. AP Professional, Boston,
1994.

(Upstill 1989) S. Upstill. The Renderman Companion. Addison-Wesley, 1989.

(Ward 1991) G. Ward. A recursive implementation of the Perlin noise function. In
James Arvo, editor, Graphics Gems II, pages 253-259. AP Professional, Boston,
1991.

0 VII.2
Fast Polygon-Cube Intersection
Testing

Daniel Green Don Hatch
Autodesk — Multimedia Division Silicon Graphics, Inc.
San Rafael, California Mountain View, California
daniel.green @ autodesk.com hatch @ sgi.com

0 Overview 0
This gem generalizes previous triangle-cube intersection methods (Voorhies 1992) to
support arbitrary n-gons. Convex, concave, self-intersecting, and degenerate polygons
are fully treated, and the new algorithm is more efficient and robust. The implementa-
tion uses the C vector macro library vec.h created by the second author (page 404).

0 Background 0
Efficient polygon-cube intersection testing is an important problem in computer graph-
ics. Renderers can profit from fast polygon tests against display volumes, often avoiding
the more expensive clipping operation. Likewise, bounding volume techniques can utilize
such fast tests on the faces of polyhedral volumes.

The previous gem cited above gives an algorithm that tests whether a given triangle
intersects the axially aligned cube of unit edge centered at the origin.

A related gem (Greene 1994) describes an efficient algorithm for testing convex poly-
hedra against axially aligned boxes. That algorithm works by attempting to find a
plane separating the two figures. That work mentions that the intuitive approach is
inefficient because of the number of possible intersection calculations. (The intuitive
approach contains an intersection test of each polygon edge with each cube face, fol-
lowed by intersecting each cube diagonal with the polygon body.)

0 Description <>
The approach presented here is a hybrid of the two previous techniques. It contains only
a single intersection calculation, which is rarely performed because of the trivial tests
that precede it. The rest of the calculations are of the same sort of fast inequality tests
from the second work. This new implementation, however, is not restricted to convex
figures.

Copyright (c) 1995 by Academic Press , Inc.
All r ights of reproduct ion in any form reserved.

IBM ISBN 0-12-543455-3
•X X • % A T _ • J _ _ 1 Tf~(T->TVT /-I -t r\ r- A f-% A r i-r 'X.r

376 0 Utilities

Table 1. Intersection routines.
Function Name

polygon_intersects_cube
fast_polygon_intersects_cube
trivial-vertex-tests
segment_intersects_cube
polygon_contains_point_3d

File Name

pcube.c
fpcube.c
fpcube.c
pcube.c
pcube.c

Description

low-level definitive test
high-level wrapper test
trivial reject/accept test
low-level edge test
used internally, also generally useful

The top-level entry points of the implementation are described in Table 1. Further
instructions appear within the heavily commented source code released with this book.

The previous triangle testing approach is elegant and sound, and the general approach
has been retained, which proceeds from cheap trivial accept and reject tests through
more expensive edge and face intersection tests. These individual tests have also been
broken out into separate functions in order to allow higher-level routines to be built
on top of them—such as general polyhedra and polygon mesh tests—without having to
suffer redundant tests on shared vertices or edges.

The composite f ast_polygon_intersects_cube function replaces Voorhies' origi-
nal triangle-cube intersection function. It calls t r i v i a l _ v e r t e x _ t e s t s (essentially un-
changed) and, failing classification, invokes the definitive polygon_intersects_cube
function. This overall behavior is unchanged from the original code:

1. Trivial vertex tests.
2. If any edge intersects the cube, return TRUE.
3. If the polygon interior intersects the cube, return TRUE.
4. Return FALSE.

Step 1: Trivial Vertex Tests

The main algorithmic difference in the new point-plane tests is that in a number of
places tests are no longer performed against planes that cannot possibly give useful
information. For example, when the function determines that a point is located to the
left of the cube, testing is not done against the cube's right face plane.

The t r i v i a l _ v e r t e x _ t e s t s function can be used to test an entire set of vertices for
trivial rejection or acceptance. This test is useful for quickly classifying polyhedra or
entire polygon meshes. Another useful application is in testing for trivial rejection of
polyhedral bounding volumes against view volumes (described more fully in the next
section).

The t r i v i a l _ v e r t e x _ t e s t s function stops testing vertices as soon as it determines
that at least one vertex is to the inside of each plane. For example, suppose that at least
one vertex has been found to be to the right of the left face plane, and one is found to
be below the top face plane, and likewise for the other four face planes. There is then

VII.2 Fast Polygon-Cube Intersection Testing 0 377

Intersecting Non-intersecting
Figure 1. Two-dimensional analogue of segment-cube intersection test.

no point in classifying any of the remaining vertices against the face planes because it
is impossible that the vertices as a set all lie outside any one of those planes.

Step 2: Segnnent-Cube Intersection Test

A naive implementation of this step consists of checking whether either endpoint of the
segment is inside the cube, and, if not, checking whether the segment intersects any of
the six cube faces. Such an implementation, however, is inherently error-prone: It gives
a false negative when, due to floating-point roundoff error, the segment slips through
the "cracks" between adjacent cube faces. In fact, the original gem's implementation
suffers from exactly this problem.

The approach used here is to convert this part of the problem into a different problem
space: Testing whether a line segment intersects the cube is equivalent to testing whether
the origin is contained within the convex solid obtained by sweeping a unit cube from
(being centered at) one segment endpoint to the other. This solid is a skewed rhombic
dodecahedron. The code to implement this test consists of just twelve point-plane
sidedness tests, so it is computationally more efficient than the original six line-plane
intersections plus six point-within-polygon tests, in addition to being more robust.

Figure 1 shows the analogous situation in two dimensions, where the swept convex
solid is simply a hexagon. The line segment intersects the square if and only if the
hexagon contains the center of the square.

Any intersection test can be recast in this way. In general, testing whether two objects
A and B have any points in common is equivalent to testing whether the origin is

378 0 Utilities

contained within the composite object:

{a-b\ a e Aandb G B}.

This reasoning can be apphed to the entire original polygon-cube intersection prob-
lem by recasting it as a single point-within-solid test. However, in order to handle
non-convexity or tiny facets in the composite solid, the analysis required is much more
complex than simple sidedness tests. For this reason, that approach was specifically
rejected, although the method is appropriate for the segment-cube intersection step.

Step 3: Polygon Interior-Cube Intersection Test

Since it is now known that no vertex or edge intersects the cube, this step only needs to
test whether any of the four cube diagonals intersects the interior of the polygon. This
observation was utilized in the original gem's implementation. The new implementation
goes a step further and uses the fact that it is sufficient to test against only the one
diagonal that comes closest to being perpendicular to the plane of the polygon; if
the polygon intersects any of the cube diagonals, it will intersect that one. Finding
that diagonal is trivial, so this part of the implementation is up to four times as fast
as the original. Omitting the intersection tests with the other three diagonals avoids
another case of numerical instability in the original gem's implementation: Calculating
the intersection point of the polygon's plane with a cube diagonal that is almost parallel
to that plane can result in a divide-by-zero or unstable solution.

The last part of this step is to test whether the polygon contains the point that is
the intersection of the polygon's plane with the chosen diagonal. This test is performed
by the function polygon_contains_point_3d, which is made externally visible since it
may be useful for other applications.

0 Polyhedron-Cube Intersection Testing 0

When used to test polyhedra, the functions included in this module only test for inter-
sections with points, edges, and surfaces, not volumes. If no such intersection is reported,
the volume of a polyhedron could still contain the entire unit box. That condition would
then need to be checked for with an additional point-within-polyhedron test. The origin
would be a natural point to check in such a test. Below is C-like pseudocode that puts
all the pieces together for a fast, complete polyhedron-cube intersection test.

switch(trivial_vertex_tests(verts))
{

case 1
case 0
case -1

return TRUE /* trivial accept */
return FALSE /* trivial reject */
for each edge

VII.2 Fast Polygon-Cube Intersection Testing 0 379

i f (segmen t_ in te r sec t s_cube(edge))
r e t u r n TRUE

for each face
i f (f a s t _ p o l y g o n _ i n t e r s e c t s _ c u b e (. . . , TRUE, TRUE))

r e t u r n TRUE
r e t u r n polyhedron_conta ins_poin t (polyhedron , o r ig in)

}

Notice that when a box is used as a modehng-space bounding polyhedron, testing its
intersection against a view volume can often be performed in either direction. In other
words, not only can the box be transformed by the viewing transformation that takes
the view volume to the unit cube and then tested there, but the view volume can also
be transformed by the transformation that takes the bounding box to be the unit cube
and the test performed there. In the latter case it is the world-space truncated pyramid
of the view volume that becomes the polyhedron being tested.

0 Conclusions 0

A set of highly optimized intersection tests was described that support a fast polygon-
cube intersection test at the highest level. The latter supports operations upon general
n-gons. All intersection routines are freestanding, making them good candidates for
direct replacement of related routines described previously in this series. Production
versions of this gem's code may be found in the subdirectory pcube on the accompa-
nying diskette and FTP mirrors. The companion library may be found in vec.h and is
described in gem VII.7 of this volume.

0 Bibliography 0

(Greene 1994) Ned Greene. Detecting intersection of a rectangular solid and a convex
polyhedron. In Paul S. Heckbert, editor, Graphics Gems / F , Chapter 1.7, pages
74-82. AP Professional, Boston, 1994.

(Voorhies 1992) Douglas Voorhies. Triangle-cube intersection. In David Kirk, editor,
Graphics Gems III, Chapter V.7, pages 236-239. AP Professional, Boston, 1992.

0 VII.3
Velocity-based Collision
Detection

William Bouma
Purdue University
Department of Computer Sciences
West Lafayette, Indiana
bouma @ cs.purdue.edu

George Vanecek, Jr.
Purdue University
Department of Computer Sciences
West Lafayette, Indiana
hittp://www. cs.purdue. edu/people/vanecek

0 Introduction 0

This gem presents a simple method for speeding up colhsion detection between moving
polyhedra (Vanecek, Jr. 1994). An inexpensive test based on the relative velocities of
points will determine that a polygon cannot possibly be in collision. By applying the test
to all polygons in an object, one can eliminate on average half of the candidate polygons.
The algorithm is used as a preprocessing step to reduce the work of the full collision
test, which generally requires computationally expensive operations such as polygon
intersection. The technique can be employed when objects are in close proximity and
applies to both convex and nonconvex polyhedra.

The procedure is based on the following intuitive principle: At any instant, roughly
half of the polygons on a moving object will be facing in the general direction of motion,
and the other half will be facing away. When considering the possibility of collision
between pairs of objects, the polygons on one object that face backward in their relative
direction of motion cannot collide with the other object. A dot product between the
polygon normal and the relative velocity of a point in the polygon tests if that point
is moving in a direction that could allow it to collide. The test extends cheaply to
the entire polygon by applying it either to the vertices of the polygon, or merely to
those of a simpler bounding polygon (e.g., a rectangle). The alert reader will notice the
similarities between this method and the well-known back-face culling method often
used when rendering polygons (Foley et al. 1990).

0 Preliminaries 0

Consider a polyhedron oriented in the global frame of reference with its local center
indicated by the vector r . The velocity of the center is given as the time derivative r
and the angular velocity about the center is given as u). Using r., r^ and a;, any point

Copyright (c) 1995 by Academic Press, Inc.
All r ights of reproduct ion in any form reserved.
IBM ISBN 0-12-543455-3

Q Q H

VI1.3 Velocity-based Collision Detection 0 381

/ r

O

Figure 1. Instantaneous velocity p at point p.

p = r + c has an instantaneous velocity (as shown in Figure 1) given by the equation

p = r + u: X c. (1)

Given two polyhedra Si and Sj in the same global frame of reference, the relative
velocity at point p of object Si as seen by an observer fixed on Sj is

P^j=P^-PJ (2)

where the instantaneous velocities p^ and Pj are defined by Equation (1). Note tha t
point p is expressed in terms of both Si and Sj as

p = r- + Ci = Vj + Cj. (3)

Expanding Equation (2) using Equation (1) and Equation (3), we obtain

Pij = aij+px LOji, (4)

where aij = r^ — Vj — uJi x ri + UJJ X r^, and ujji — QJJ — Ui are constants for a given
time t. Wi th this equation, we can compute the relative velocity for any point p without
having to compute the points Q or Cj in the coordinate space of either Si or Sj.

0 Algorithm 0
Consider an object Si moving in the presence of another object Sj. The instantaneous
velocity vectors are obtained for the object at some time t. Given a face / of Si in the

382 0 Utilities

Figure 2. Point p, fixed on S/, is moving away from face f when 0 < 7r/2.

global frame of reference, let p ^ f. The angle 6 between the normal vector n / of face
/ and p^j describes whether p is moving toward the outside directly above / or not. It
follows that if 6 is less than 7r/2, then

Pzj • ^ / > 0, (5)

which indicates that in the local neighborhood of p, p is moving toward the empty
space above / , and therefore p can possibly collide with some part of Sj within this
local neighborhood (refer to Figure 2). It follows that \/p G / , {Pij - Uf < 0) implies
that the entire face is moving away from any portion of Sj that may lie directly above
it. Therefore, / cannot collide with Sj at the time t.

The task is simplified by the linear property of the relative velocity vector-space. The
linearity implies that for any two points pi,P2 ^ / that fail Equation (5), all points
along the line segment joining pi and p2 must also fail it. Thus, it is sufficient to check
just the vertices of some convex polygon that completely encloses the face. If all of the
vertices satisfy p^j • n / < 0, then so does every point within the polygon.

Note that there is an efficiency trade-off depending on how the bounding polygon is
chosen. The more area the polygon covers, the more likely it is that a vertex will satisfy
Equation (5). Thus, the corresponding face may be kept even though no points in the
face are moving in a direction of collision. Though one could apply the convex hull of
the face as the bounding polygon, any performance gain might be outstripped given a
face whose convex hull is not sparse. The speed could degrade significantly if the convex
hull of a face has a large number of vertices. It is best to choose for each face the most
tightly approximating polygon using a small constant number of vertices (Weghorst
et al 1984).

VI1.3 Velocity-based Collision Detection 0 383

0 Implementation 0
Care must be taken in coding the algorithm to ensure that all variables lie within a
common frame of reference. Object velocities are commonly kept as global coordinates,
while object geometries remain local. The local reference frame for an object changes
over time subject to the velocities incident upon it. The transformation

p = R^p^ + r^ (6)

maps a point p^ in the local frame to a corresponding point p in the global. The mapping
uses a 3 X 3 rotational matrix, R ,̂ and the translation vector r^. To get a common frame
of reference, one can either apply Equation (6) to the polygon vertices of Si and use
Equation (4) in the global frame, or instead move the relative velocities into the local
frame of Si. Since there is only one linear component and one angular component to the
velocity, but there are many polygon points, it is more efficient to do the latter. The
modified Equation (4) then becomes

in the local frame of s ,̂ where afj = R~^a^j and uj^^ = R~^U;J^.

0 The C++Code 0
The C + + code provides a simple working example of the cull function that prints
out the polygons that have been culled. The function is intended to be incorporated
into an animation system as just one component of a collision detection package. For
convenience, the code uses the vector and matrix definitions in the algebraS.h package
from Gems IV.

/ / - * - C++ - * -
// by Bill Bouma and George Vanecek Jr. Aug, 1994.
// Compile by: g++ -02 -s -o cull cull.cc algebraS.o -Im
#include "algebraS.h" // See Graphics Gems IV, pg534-557
typedef vec3 Point; // Points are not Vectors
typedef vec3 Vector; // Vectors are not Points
typedef unsigned int Index; // Array Indices
typedef unsigned int Counter;

class Polygon {
public:

Polygon (const char pid,
const Vector& nV,
const Counter nPs,
const Point* const p)

: id(pld), pts(p), nPts(nPs), normalVector(nV){ }
const Vector& normal() const { return normalVector; }

384 0 Utilities

char name() const { return id; }
Counter nPoints() const { return nPts; }
const Point& point(const Index i) const { return pts[i]; }

private:
const char
const Counter
const Point*
const Vector

};

id;
nPts;

const pts;
normalVector;

// Unique Id
// pts[0..nPts-1]
// Points around Polygon
// Unit Vector

class MovingPolyhedron {
public:
MovingPolyhedron { const char pid,

const Vector& rv,
const Vector& w ,
const Vector& wv,
const mat4& m,
const Counter nP,
const Polygon* const ps)

: id(pld), r(rv)
const Polygon&
void

private:
const char
const Polygon
const Counter
Vector
Vector
Vector

mat 4

};

v(w) , w(wv) , R(m) , polys (ps), nPolys(nP) { }
polygon(const Index i) const { return polys[i]; }

cull(const MovingPolyhedron&) const;

id; // Unique Id
const polys; // Points in local coordinates

nPolys; // polys[0..nPolys-1]
r; // Center of Rotation (in world coords.)
v; // Linear Velocity (in world coords.)
w; // Angular Velocity (in world coords.)
R; // Orientation Matrix

void MovingPolyhedron::cull(const MovingPolyhedron& j) const

{
const mat4 Rli = ((mat4&)R).transpose();
const Vector aij = Rli * (v - j.v - (w V r)
const Vector wij = Rli * (j.w - w);
for(Index gi = 0; gi < nPolys; ++gi) {
const Polygon& g = polygon(gi);
for (Index pi = 0; pi < g.nPointsO

if((aij + (g.point(pi) V wij))
break;

cout << "Polygon " << g.name() <<
<< " is" << (pi == g.nPointsO
<< "culled." << endl;

(j.w V j . r)) ;

++pi)
* g.normal() > 0.0)

of Polyhedron " << i(
" " : " not ")

}
}

const Counter NPolyPoints = 4;
const Counter NFaces = 6;
static const Point leftPoints[NPolyPoints] = {

Point(-1,-1,-1), Point(-l,-l, 1), Point(-l, 1, 1) ,
static const Point rightPoints[NPolyPoints] = {

Point(-1, -1) };

VI1.3 Velocity-based Collision Detection 0 385

Point(1,
static cons

Point(-l,
static cons

Point(-1,
static cons

Point(-1
static cons

Point(-1
static cons

Polygon(
Polygon(
Polygon(
Polygon(
Polygon(
Polygon(

};

1,-1), Point(1, 1,-1), Point(1,
t Point topPoints[NPolyPoints] =
1,-1), Point(-l, 1, 1), Point(1,

t Point bottomPoints[NPolyPoints]=
1,-1), Point(1,-1,-1), Point(1,-

t Point backPoints[NPolyPoints] =
-1,-1), Point(-l, 1,-1), Point(1,
t Point frontPoints[NPolyPoints] =
1, 1), Point(1,-1, 1), Point(1,

t Polygon cube[NFaces]= {
Vector(-1
Vector(1
Vector(
Vector{
Vector(
Vector(

0,
0,
1,

-1,
0,
0,

0),
0),
0).
0).
-1),
1).

NPolyPoints,
NPolyPoints,
NPolyPoints,
NPolyPoints,
NPolyPoints,
NPolyPoints,

1, 1), Point(1,-1, 1)

{
1, 1), Point(1, 1,-1)

{
1, 1), Point(-l,-l, 1)

{
1,-1), Point(1,-1,-1)

{
1, 1), Point(-1, 1, 1)

leftPoints
riglitPoints
topPoints
bottomPoints
bacJcPoints
frontPoints

int main()

{
MovingPolyliedron A(

MovingPolytiedron B i

A.cull(B);
B.culK A) ;

Vector(10,10, 0
Vector(0, 0, 0
Vector(0, 0, 0
identitySDO ,
NFaces, cube);
•B' ,

Vector(10,10,10
Vector(0, 0,-1
Vector(0, 1, 0
identity3D(),
NFaces, cube);

// Position
// Velocity
// Angular Velocity

// Position
// Velocity
// Angular Velocity

0 Bibliography 0
(Foley et al. 1990) J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer

Graphics, Principles and Practice^ second edition. Addison-Wesley, Reading, MA,
1990.

(Vanecek, Jr. 1994) G. Vanecek, Jr. Back-face culling applied to collision detection of
polyhedra. Journal of Visualization and Computer Animation, 5(l):55-63, Jan-
uary 1994.

(Weghorst et al 1984) Hank Weghorst, Gary Hooper, and Donald P. Greenberg. Im-
proved computation methods for ray tracing. ACM Transactions on Graphics,
3(l):52-69, January 1984.

0 VII.4
Spatial Partitioning of a Polygon
by a Plane

George Vanecek, Jr.
Purdue University
Department of Computer Sciences
West Lafayette, Indiana
vanecek @ cs.purdue. edu

This gem presents an algorithm that partitions a polygon lying in 3D space by a plane,
resulting in three lists of zero or more polygons. If the plane intersects the polygon trans-
versely, the algorithm cuts the polygon by the plane and returns a list of new polygons
that lie above and a list of new polygons that lie below the plane. This algorithm under-
pins many BSP tree and polygon intersection libraries. Splitting a polygon is a common
problem encountered in many 3D geometric applications such as boundary represen-
tation (B-Rep) to BSP tree conversion (Thibault and Naylor 1987), B-Rep to MSP
tree conversion (Vanecek, Jr. 1991), Boolean set operations on polyhedra (Vanecek, Jr.
1989), and convex decomposition. The algorithm presented here extends the convex-
polygon splitting algorithm presented in Gems III (Chin 1992) to nonconvex polygons
that may contain nonmanifold and adjacent, collinear vertices.

To illustrate the operation, consider as an example the polygon in Figure 1(a). The
dashed line indicates the intersection with a transversal cut plane. When cut, the poly-
gon splits into four polygons lying above the cut plane and four polygons below, as is
shown in Figure 1(b).

The algorithm is implemented in C + + and developed under GNU's C + + compiler
version 2.5.8. The C + + code presented here is a stand-alone code using minimally suffi-
cient abstract data types defined as classes. It has been carefully crafted and thoroughly
tested.

0 The Representation of Polygons 0

A polygon is typically represented by a counterclockwise ordered sequence of points
defining the line segments that border the polygon. This sequence of points is then
represented either as an array of points or as a linked list of dynamically allocated
points. The former is used when the shape of the polygon is fixed, while the latter is
used when changes to the shape of the polygon are required.

Copyright (c) 1995 by Academic Press, Inc.
All r ights of reproduct ion in any form reserved.
IBM ISBN 0-12-543455-3
•\ A : _ i 1_ TOTTNT r» -I o r ,< o / I IT I? A/- ^ # * * >

VI 1.4 Spatial Partitioning of a Polygon by a Plane 0 387

ki
(a) (b)

Figure 1. A sample polygon with 30 points shown (a) before the cut and (b) after the cut. The dashed
lines denote the transversal cut plane.

For our purpose, however, it is easier to operate on a representation of a polygon
that is based on its bordering edges rather than one that is based only on the points. A
class DEdge (a directed edge data type) is defined and forms a circular, doubly linked
list of directed edges around the polygon.

class DEdge {
public:

DEdge*
DEdge*
const Point&
const Point&
Where
Where&
WhereSc
double& dis
//. . .

next (
prev (

srcPoint {
dstPoint (

where (
srcWhere (
dstWhere (
tFromRefP (

const
const
const
const
const

Although by itself there is no concept of a proper orientation, the orientation of the
polygon is assumed so that in relation to the support plane of the polygon, the polygon
is ordered counterclockwise when viewed from above the polygon, where above is in the
direction of the support plane's normal. This is a common convention used by boundary
representations for solids.

0 The Algorithm 0

The problem of partitioning a polygon by a plane would be simpler if the polygon could
be assumed to be convex. A single pair of directed edges would be inserted, and the
polygon would split into two new polygons (Chin 1992). It would still be simple, if the
edges of the polygon could be assumed to cleanly cross the cut plane. However, not only
can edges with two different orientations lie on the cut plane, but the existence of inner
holes connected by a bridge edge can cause a crossing that does not lead to a transition
from the outside to the inside (or vice versa) of the polygon, and the polygon can also

388 0 Utilities

Nonmanifold Vertex

Cut Plane

Bridge Edge

Figure 2. A polygon with a hole connected by a bridge edge (i.e., two oppositely oriented collinear and

overlapping directed edges), and with a nonmanifold vertex.

contain nonmanifold vertices (a vertex that has more than two incident edges). These
cases are illustrated in Figure 2.

For a polygon with manifold vertices, the introduction of new edges can be based
purely on local topology (assuming that each vertex of the polygon contains a classifi-
cation label). This label, having a value of either ABOVE, ON, or BELOW, gives the vertex's
position relative to the cut plane. For a few cases involving nonmanifold vertices, geo-
metrical information (i.e., the orientation and angle of the edges in relation to the cut)
must be used to determine the appropriate places to insert the new edges.

The splitting of the polygon, *g, by the cut plane, cut, is performed by the following
routine:

void split(Polygon*& g, const Plane& cut,
List<Polygon>& above,
List<Polygon>& on,
List<Polygon>& below)

{
Counter nOnDEdges = 0;
DEdge* onDEdges[g.nPoints()];
switch(g->classifyPoints(cut, nOnDEdges, onDEdges)) {
case ONABOVE:
case ABOVE:
above << g;
break;

case ON:
on << g;
break;

case ONBELOW:
case BELOW:
on << g;
break;

default/* case CROSS */:
assert(nOnDEdges >= 2);
g->complexCut(cut, nOnDEdges, onDEdges, above, below);

VI1.4 Spatial Partitioning of a Polygon by a Plane 0 389

collectFaces (nOnDEdges, onDEdges, above, below);
g->anchor = NULL;
g->nDEdges = 0;
delete g;

}

g = NULL;

}

The routine returns three hsts containing the new polygons partitioned into sets lying
above, on, or below the cut plane. It also deletes *g.

The partitioning begins by classifying all the points against the cut plane and splitting
any directed edges that cross the cut plane.

Where Polygon:rclassifyPoints(const Plane& cut,
Counter& nOnDEdges,
DEdge* onDEdges[])

{
first 0->srcWhere() = cut.whichSide(first()->srcPoint());
Where polyW = first()->srcWhere();
forEachDEdge(d) {
d->dstWhere() = cut.whichSide(d->dstPoint());
polyW = Where(polyW | d->dstWhere());
if(d->where() == ABOVEBELOW) {

split(cut, d);
onDEdges[nOnDEdges++] = { d = d->next());
d->srcWhere() = ON;

} else if(d->srcWhere() == ON)
onDEdges[nOnDEdges++] = d;

}
return polyW;

}

After the classification, no edge crosses the cut plane and each point is labeled as lying
either ABOVE, ON, or BELOW the cut plane. Furthermore, the edges that have a source
vertex on the cut plane are retained for further processing if needed. At this point
it will be known if the polygon lies completely above, on, or below the cut plane, in
which ca^e the polygon is added to the proper list and the operation completes. If, on
the other hand, the polygon crosses the cut plane, the polygon is split by calling the
Polygon: : complexCut method with the collected edges whose source vertices lie on the
cut plane.

void Polygon::complexCut(const Plane& cut,
const Counter nOnDs, DEdge* const onDs[],
List<Polygon>& above, List<Polygon>& below)

{
sortDEdges(nOnDs, onDs, cut.normal() V plane().normal());
Index startOnD = 0;
DEdge* srcD = NULL;
while(srcD = getSrcD(onDs, startOnD, nOnDs)) {

DEdge* const dstD = getDstD(onDs, startOnD, nOnDs);

390 0 Utilities

assert(dstD 1= NULL);
addBridge(srcD, dstD);
if(srcD->prev()->prev()->srcWhere() == ABOVE)
useSrc = srcD->prev();

else if(dstD->dstWhere() == BELOW)
useSrc = dstD;

The first step sorts the directed edges (with source vertices that lie on the cut plane
as returned by function Polygon: i c lass i fyPoin ts) . The edges are ordered by their
source vertex in increasing distance along a cut direction (e.g., left to right) by the
method

void Polygon::sortDEdges(const Counter nOnDs, DEdge* const onDs[],

const VectorSc cutDir)

{
assert(nOnDs >= 2);
const Point& refP = onDs[0]->srcPoint();
for(Index i = 0; i < nOnDs; ++i)
onDs[i]->distFromRefP() = cutDir * (onDs[i]->srcPoint() - refP);

for(i = nOnDs-1; i > 0; --i)
for(Index j = 0, k = 1; k <= i; j = k++)

if(onDs[j]->distFromRefP() > onDs[k]->distFromRefP() ||
onDs[j]->distFromRefP() == onDs[k]->distFromRefP() &&
onDs[j]->dstWhere() == ABOVE)

swap(onDs[j], onDs[k]);
}

Typically, the number of these edges is small (e.g., two). Consequently, a bubble sort is
used. The sorted edges are then scanned in left-to-right order and used to determine a
source and a destination edge between whose source vertices new edges will be inserted.
The next source directed edge is obtained by

static DEdge* useSrc = NULL;
static DEdge* getSrcD(DEdge* const onDs[],

Index& start, const Counter nOnDs)
{
if(useSrc) {
DEdge* const gotit = useSrc;
useSrc = NULL;
return gotIt;

}
while(start < nOnDs) {

const Where prevW = onDs[start]->prev()->srcWhere();
const Where nextW = onDs[start]->dstWhere();
if(prevW == ABOVE && nextW == BELOW ||

prevW == ABOVE && nextW == ON &&
onDs[start]->next0->distFromRefP() < onDs[start]->distFromRefP() ||

prevW == ON && nextW == BELOW &&
onDs [start]->prev()->distFromRefP() < onDs [start]->distFroinRefP ())

return onDs[start++];

VI1.4 Spatial Partitioning of a Polygon by a Plane 0 391

++start;

}

return NULL;

}

The next destination directed edge is obtained by

static DEdge* getDstD{ DEdge* const onDs[],
IndexSc start, const Counter nOnDs)

{
while{ start < nOnDs) {

const Where prevW = onDs[start]->prev()->srcWhere();
const Where nextW = onDs[start]->dstWhere();
if(prevW == BELOW && nextW == ABOVE ||

prevW == BELOW && nextW == BELOW ||
prevW == ABOVE && nextW == ABOVE ||
prevW == BELOW && nextW == ON &&

onDs[start]->distFromRefP() < onDs[start]->next()->distFromRefP() ||
prevW == ON && nextW == ABOVE &&

onDs[start]->distFromRefP() < onDs[start]->prev()->distFromRefP())
return onDs[start++];

++start;
}

return NULL;

}

These two functions step through the ordered edges, onDs, using s t a r t , the index
into the array. If a sector is defined to be the area on the inside of the polygon taken at
a vertex, there are sixteen possible sector/cut-plane classifications. These are shown in
Table 1. The table has four columns and sixteen rows. The first column shows a sector
characterizing a class of such sectors. A sector of some directed edge g has three vertices,
labeled for simplicity a, /3, and 7. The second and third columns mark the sectors that
are correspondingly the source and destination of a new edge. Of all sixteen possible
sectors, only three sectors can cause an edge pair to be started, and only five can
cause the new edges to terminate. The fourth column gives a condition that is used to
recognize that sector. In the condition, a < V, a = V, and a > V indicate that a is
correspondingly below, on, and above the cut plane V.

Given the source and destination edges, two new directed edges are created and
spliced in between the source and the destination edges (as shown in the example of
Figure 3) by the method

void Polygon:caddBridge{ DEdge* const leftBelow, DEdge* const rghtAbove)

After all the new edges have been inserted, new polygon headers are created, and
associated with the edge cycles. Since, however, it is not known how many times the
edge cycle loops back and touches the cut plane, the constructor for the new polygon
resets all the vertex classification labels to prevent the loop from belonging to more
than one polygon header.

392 0 utilities

Table 1. ^y marks possible source and destination sectors for a new edge, a, p and 7 refer to the
classification for the vertices of the sector. V is the cut plane, a <V indicates that vertex a is below the
cut plane.

a , f3, -y

0

^

^

/N
A
(^

\ ^

S r c

V

D s t

V

V

V

V

Condition

a < P , 7 > P

a < p , 7 = p , ^ < 7

a < P , 7 = P , 7 < / ?

a < P , 7 < P , concave

a < P , 7 < P , convex

a = V,j>V,a< P

a = P , 7 > P , / ? < a

a = V,-f <V,a< p

a, P, 7̂

r
-^iV

^tr^

j)
iv

u
V

S r c

^

V

D s t

V

Condition

a = P , 7 < P , / 3 < a

a — V,j = V,a < ^

a = 7^,7 = ' P , 7 < a

a > P , 7 < P

a > p , 7 = 7:>,/3<7

a > P , 7 = P , 7 < / ^

a > P , 7 > P , convex

a > V,j > V, concave

Before

Figure 3. A polygon before and after one iteration of the edge insertion step. Each arrow indicates a
directed edge and its orientation.

static void collectFaces(const Counter nOnDs, DEdge* const onDs[],
List<Polygon>& above, List<Polygon>& below)

{
for(Index i = 0; i < nOnDs; ++i)
if(onDs[i]->srcWhere() == ON)

if(onDs[i]->dstWhere() == ABOVE)
above << new Polygon(onDs[i], plane());

else if(onDs[i]->dstWhere() == BELOW)
below << new Polygon(onDs[i], plane());

Because of multiconnected polygons (i.e., with holes), the insertion of a pair of edges
does not always split the polygon if the edge connects to an inner loop. Only after

VI 1.4 Spatial Partitioning of a Polygon by a Plane 0 393

another edge pair is inserted on the other side of the hole does the polygon split into
two. In general, inserting n edge pairs can split the polygon into as few as two polygons,
or as many as n + 1 polygons.

Finally, here is a simple test-code fragment given Polygon* g and const Plane
cut Plane showing how to split the polygon and print the result.

List<Polygon> above;
List<Polygon> on;
List<Polygon> below;
split(g, cutPlane, above, on, below);
printPolys("Above", above);
printPolys("On", on);
printPolys("Below", below);

For the sake of readability, the code presented for functions getSrcD and getDstD
is written with the assumption of having vertices with at most two incident sectors. If
nonmanifold vertices having more than two incident sectors fall on the cut plane, the
two functions have to collect all coincident sectors and select from them the innermost
sectors to be cut. This can be easily done by finding the sectors having the smallest
angle between the cut vector and the out-edge.

0 Bibliography 0
(Chin 1992) N. Chin. Partitioning a 3D convex polygon with an arbitrary plane. In

David Kirk, editor, Graphics Gems III, pages 219-222. AP Professional, Boston,
1992.

(Thibault and Naylor 1987) W. C. Thibault and B. F. Naylor. Set operations on poly-
hedra using binary space partitioning trees. ACM Computer Graphics SIGGRAPH
'87, 21(4):153-162, July 1987.

(Vanecek, Jr. 1989) G. Vanecek, Jr. Set Operations on Polyhedra Using Decomposition
Methods. PhD thesis. University of Maryland, College Park, Maryland, June 1989.

(Vanecek, Jr. 1991) G. Vanecek, Jr. Brep-index: A multidimensional space partition-
ing tree. International Journal of Computational Geometry and Applications,
l(3):243-262, September 1991.

OVII.5
Fast Polygon Triangulation
Based on Seidel's Algorithm

AtuI Narkhede
Department of Computer Science
University of Nortf) Carolina
Ctiapel i-IHI, Nortti Carolina
narkhede @ cs. unc. edu

Dinesh Manocha
Department of Computer Science
University of North Carolina
Chapel Hill, North Carolina
manocha @ cs. unc. edu

0 Introduction 0
Computing the triangulation of a polygon is a fundamental algorithm in computational
geometry. In computer graphics, polygon triangulation algorithms are widely used for
tessellating curved geometries, such as those described by splines (Kumar and Manocha
1994). Methods of triangulation include greedy algorithms (O'Rourke 1994), convex hull
differences (Tor and Middleditch 1984) and horizontal decompositions (Seidel 1991).

This gem describes an implementation based on Seidel's algorithm {op. cit.) for tri-
angulating simple polygons having no holes. It is an incremental randomized algorithm
whose expected complexity is 0 (n log* n). In practice, it is almost linear time for a
simple polygon having n vertices. The triangulation does not introduce any additional
vertices and decomposes the polygon into n — 2 triangles. Furthermore, the algorithm
generates a query structure that can be used to determine the location of a point in
logarithmic time. Related gems include incremental Delaunay triangulation of a set of
points (Lischinski 1994) and polygonization of implicit surfaces (Bloomenthal 1994).

<> Overview of the Triangulation Algorithm 0
The algorithm proceeds in three steps as shown in Figure 1.

1. Decompose the Polygon into Trapezoids. Let 5 be a set of nonhorizontal, non-
intersecting line segments of the polygon. The randomized algorithm is used to create
the trapezoidal decomposition of the X — Y plane arising from the segments of set S.
This is done by taking a random ordering 5 i , . . . , 5^ of the segments in S and adding one
segment at a time to incrementally construct the trapezoids. This divides the polygon
into trapezoids (which can degenerate into a triangle if any of the horizontal segments
of the trapezoid is of zero length). The restriction that the segments be nonhorizontal
is necessary to limit the number of neighbors of any trapezoid. However, no generality

Copyright (c) 1995 by Academic Press, Inc.
All r ights of reproduct ion in any form reserved.
IBM ISBN 0-12-543455-3

OO/I

VI1.5 Fast Polygon Triangulation Based on Seidel's Algon'thm 0 395

(a) (b) (c)

Figure 1, Generating monotone polygons from the trapezoid formation.

is lost because of this assumption, as it can be simulated using lexicographic order-
ing. That is, if two points have the same F-coordinate, then the one with the larger
X-coordinate is considered higher. The number of trapezoids is linear in the number
of segments. Seidel proves that if each permutation oi si,... ^Sn is equally likely, then
trapezoid formation takes 0(nlog* n) expected time {op. cit.).

2. Decompose the Trapezoids into Monotone Polygons. A monotone polygon is
a polygon whose boundary consists of two y-monotone chains. These polygons are
computed from the trapezoidal decomposition by checking whether the two vertices of
the original polygon lie on the same side. This is a linear time operation.

3. Triangulate the Monotone Polygons. A monotone polygon can be triangulated
in linear time by using a simple greedy algorithm that repeatedly cuts off the convex
corners of the polygon (Fournier and Montuno 1984). Hence, all the monotone polygons
can be triangulated in 0{n) time.

0 Data Structures for Implementation 0
All the data structures used in the implementation are statically allocated. The trape-
zoid formation requires a structure where the neighbors of each trapezoid and its neigh-
boring segments can be determined in constant time. Therefore, for every trapezoid,
the indices of its neighbors and the segments are stored in its table-entry T.

The query-structure Q, used to determine the location of a point, is implemented as
described by Seidel. The same Q can be later used for fast point-location queries. Both
Q and T are updated as a new segment is added into the existing trapezoid formation.
This entails splitting in two the trapezoid(s) in which the endpoints of the segment lie,
then traversing along the edge of the segment to merge in any neighboring trapezoids

396 0 Utilities

Table 1 . Performance on randomly generated polygons.

Number of Vertices

10
50

100
500

1000
5000

10000
50000

100000

Running Time

0.9 ms
3.5 ms
6.7 ms

42.7 ms
97.6 ms

590.0 ms
1.24 s

7.3 s
15.45 s

which both share the same left and right edges and also share a horizontal edge. All the
monotone polygons are stored in a single linked list with pointers to the first vertex in
the list stored in a table.

0 Implementation Notes 0

Table 1 shows the average running time of the algorithm for randomly generated data
sets of various sizes. All the measurements were taken on an HP Series 735 with execu-
tion times averaged over one hundred repetitions.

Empirical testing has proven the method robust across wide classes of input data.
The present implementation uses an e (epsilon) tolerance when testing for floating-
point equality. This computation occurs when determining whether a point lies to the
left (right) of a segment or when detecting coincident points. This tolerance could
potentially be removed by substituting a well-crafted point-in-polygon test (Haines
1994).

The triangulation code is invoked through the main interface routine,

i n t t r iangula te_polygon(n, v e r t i c e s , t r i a n g l e s) ;

with an n-sided polygon given for input (the vertices are specified in canonical anti-
clockwise order with no duplicate points). The output is an array of n —2 triangles (with
vertices also in anticlockwise order). Once triangulated, point-location queries can be
invoked as

in t i s_point_ins ide_polygon(ver tex) ;

additional details appear in the C source code that accompanies this gem.

VI1.5 Fast Polygon Triangulation Based on Seidel's Algorithm 0 397

0 Bibliography 0
(Bloomenthal 1994) Jules Bloomenthal. An implicit surface polygonizer. In Paul Heck-

bert, editor, Graphics Gems IV^ pages 324-349. AP Professional, Boston, 1994.

(Fournier and Montuno 1984) A. Fournier and D.Y. Montuno. Triangulating simple
polygons and equivalent problems. ACM Trans, on Graphics, 3:153-174, 1984.

(Haines 1994) Eric Haines. Point in polygon strategies. In Paul Heckbert, editor, Graph-
ics Gems /F , pages 24-46. AP Professional, Boston, 1994.

(Kumar and Manocha 1994) S. Kumar and D. Manocha. Interactive display of large
scale NURBS models. Technical Report TR94-008, Department of Computer Sci-
ence, University of North Carolina, 1994.

(Lischinski 1994) Dani Lischinski. Incremental Delaunay triangulation. In Paul Heck-
bert, editor, Graphics Gems IV, pages 47-59. AP Professional, Boston, 1994.

(O'Rourke 1994) J. O'Rourke. Computational Geometry in C Cambridge University
Press, 1994.

(Seidel 1991) R. Seidel. A simple and fast incremental randomized algorithm for com-
puting trapezoidal decompositions and for triangulating polygons. Computational
Geometry: Theory and Applications, l(l):51-64, 1991.

(Tor and Middleditch 1984) S. B. Tor and A. E. Middleditch. Convex decomposition
of simple polygons. ACM Trans, on Graphics, 3(4):244-265, 1984.

0 VII.6
Accurate Z-Buffer Rendering

Raghu Karinthi
West Virginia University
rag In u @ cs. wvu. edu

This gem describes the software implementation of a high-precision color Z-buffer ren-
derer. The system is virtual: No frame-buffer hardware is assumed. Instead, a twenty-
four-bit color model supported by a number of widely available Internet utilities (Fleis-
cher and Salesin 1992, Foley et al 1990) creates a desirable and highly portable system.

0 Description 0
The sequence of steps that map (in perspective) a scene description onto a raster file
appears in Figure 1. This gem leverages off several freely available utilities to embody
each function block. First, the input is presented using a slightly modified version of the
Neutral File Format (NFF) used in the Standard Procedural Database (SPD) created as
a universal means of scene description (Haines 1987). Twenty-four-bit color descriptors
are used, which ultimately represent each output pixel. The matrix library underpinning
both the viewing transformation plus other vector-based computation is taken from the
SPHIGS package (Foley et al 1990). Rasterization is based upon the fixed point methods
whose routines appear in a previous gem (Fleischer and Salesin 1992); extensions include
a 2D RGBZ interpolator. The pixel values are written in TARGA format using file write
and display routines^ taken from Paul Rivero's LUG library.

This gem is written in C and compiles under the Gnu C compiler on Unix platforms.
Source code appears on the gems disk and FTP mirrors. The commands are:

ZRendvl (NFFfile) (TARGAfile)
s x l l (TARGA)

renders input onto output file,
displays the output (.tga) file.

Read Input Lighting —^ Viewing
Transformation

—> Rasterization —^ Output
TARGA file

Figure 1. The z-buffer rendering pipeline.

^The author thanks Todd Montgomery for his assistance.

Copyright © 1995 by Academic Press , Inc.
All r ights of reproduct ion in any form reserved.
IBM ISBN 0-12-543455-3

QOfi

VII. 6 Accurate Z-Buffer Rendering 0 399

0 Bibliography 0
(Fleischer and Salesin 1992) K. Fleischer and D. Salesin. Accurate polygon scan conver-

sion using half-open intervals. In David Kirk, editor, Graphics Gems III, Chapter
7.6, pages 362-365. AP Professional, Boston, 1992.

(Foley et al. 1990) J. Foley, A. van Dam, S. Feiner, and J. Hughes. Computer Graphics:
Principles and Practice, Second Edition, Chapter 7, Object Hierarchy and Simple
PHIGS (SPHIGS). Addison-Wesley, Reading, MA, 1990.

(Haines 1987) E. Haines. A proposal for standard graphics environments. IEEE Com-
puter Graphics and Applications, 17(ll):3-5, November 1987.

0 VII.7
A Survey of Extended Graphics
Libraries

Alan Wm. Paeth Ferdi Scheepers & Stephen May
Department of Computer Science Department of Computer Science
Okanagan University College Ohio State University
Kelowna, British Columbia, Canada Columbus, Ohio
awpaeth@ okanagan.bc.ca ferdi,smay@ cgrg.ohio-state.edu

The very first source code appearing in Graphics Gems described a three-dimensional
vector library. Written humbly in C and offered without an accompanying gem, it
introduced that volume's first appendix.^ From these simple beginnings it is fitting
that Volume V should conclude with a cornucopia of extended graphics libraries. Four
complete works are presented; full run-time details may be found in each library's
sources.

0 Overview 0

The libraries are a synthesis of many ideas appearing as full-fledged gems in Volume
IV. The lineage of each entry may be traced to the revised C entry (Glassner and
Haines 1994) and/or the related C+-I- library (Done 1994). Methods of n-dimensional
Euclidean geometry (Hanson 1994) provide a means of dimension extension, as does
the perp-dot product (Hill 1994).

The libraries have both production and research application. For practical purposes,
straightforward naming conventions assist both maintenance and a "correctness by con-
struction" style of design. Utility functions support memory allocation, stream I/O, or
assertion macros, thereby providing run-time diagnostics or otherwise ensuring proper
operation. As research tools, they have been used to explore the regular polytopes,
Rubik's hypercube, hyperplane rotation, and the mixed orthographic/perspective pro-
jections as is possible when viewing a scene in 4D world coordinates upon a 2D display.

The libraries are written in both C and C++ and offer a number of extensions. Oper-
ators in C + + allow a compelling polymorphism: vl = v2 * f operates naturally upon
vectors or scalars with equal facility; the elements in the right-hand side can commute.

^The library was revised by Bogart in Volume II.

Copyright (c) 1995 by Academic Press, Inc.
All r ights of reproduct ion in any form reserved.
IBM ISBN 0-12-543455-3

VII. 7 A Survey of Extended Graphics Libraries 0 401

Table 1.
Title,
Contributor (s)

A Graphics Math Library

Ferdi Scheepers & Stephen May

A Toolbox of Macro Functions
Christophe Schlick

Penultimate Vector Macros
Don Hatch

The C Vector Library in 4D

Steve Hill

Features of the extended graphics libraries.
Source

Directory

libgm
C+-h (all)
mactbox

C

vec-h

c,c++
GG4D

C

M a c r o -

b a s e d

s o m e

inl ines

yes,

entirely

yes
(inC)

few

Maximum
dimension

3

(4)
3

(4)
n

(n+l)
4

(5)

Additional
comments

The compleat C + +
graphics library

Elegant macros are
gentle on the eyes

C / C + + macros to go
in any dimension

The 4D tour de force
(includes 4D projections)

Macros^ are used to advantage by all and by two exclusively [in C + + the i n l i n e may
substitute (Lippman 1991)]. Macros support fast in-line evaluation of small routines
without procedure overhead—their traditional use. They provide further leverage when
used to redefine functions or even macros, thereby providing a means of "rewriting" a
library at compile time for operation at increased dimension or with double precision
operators substituting for f loa t . The basic capabilities are summarized in Table 1.

Each complete library resides on disk in a private directory whose name appears in
column two. The maximum dimension n (column four) lists the dimension of intended
use; partial extent ion to dimension (n + l) is typically present to support the use of
homogeneous coordinates.

0 A Graphics Math Library 0

The C + + graphics library libgm (eight files) created by Scheepers and May supports a
wide range of traditional vector- and scalar-based geometric operations. It is the largest
library and of value as a direct C + + upgrade to previous entries in this series. It is
production software in the best sense, employing the naming conventions' consistent and
nonconflicting use typical of the genre (Anderson et al. 1991). Other features include
scalar definitions at twenty-digit precision, i n l i n e versions of simple functions, and an
a s se r t macro used to verify expected function input values.

Standard vector operations through 3D are supported, with matrix support extended
to basic 4 x 4 operations (including inversion). Utility operations include range clamps
and linear and Hermite interpolators. Lower-level routines (macros) provide other useful
functions, such as "fuzzy" floating-point equality, of value when (for instance) dealing

^An early macro-based graphics library by Hollasch appears as an appendix in Volumes II and III
(Hollasch 1991, 1992).

402 0 Utilities

Op Description

Table 2. libgm vector operators.
Usage Op Description Usage

[i]

[i]

=
+=

- =
•k —

access component i
2D: i G { 0 , l }
3D: ie {0,1,2}

change component i

2D: i e {0,1}
3D: i e {0,1,2}

assign
destructive add
destructive subtract
destructive scalar multiply

f - v [0] ;

v [0] = f;

v l = v 2 ;
v l += v 2 ;
v l -= v 2 ;
v l * - f;

/ =

+

-
-
•

•

/

= =
I -

destructive scalar divide
requires: divisor ^ 0

addition
subtraction
negation (unary)
scalar pre-multiply
scalar post-multiply
scalar divide

requires: divisor ^ 0
equality (fuzzy)
inequality (fuzzy)

v l

v l
v l
v l
v l
v l
v l

i f
i f

/= f;

= v2 + v 3 ;
= v2 - v 3 ;
= - v 2 ;
= f * v 2 ;

= v2 * f;
= v2 / f;

(v l == v2) . . .
(v l != v2) . . .

with redundant vertices in space models which nonetheless differ slightly to the limits
of machine precision.

As an illustration of style and use, a culled set of representative operations are pre-
sented in Tables 2 and 3. Further details on constructor use and additional operations
and functions may be found in the prototypes gm* .h or the source gmMatrix*. c.

0 A Toolbox of Macro Functions 0

The C-language macro-based toolbox consists of ten *.h files, supporting more than
three-hundred entries. The toolbox is based entirely on macros, hence the preference
of the name "toolbox" over "library." Macros have zero function overhead, but this
advantage is not without some cost. Local variables cannot be declared inside macros
and (in six of the 300+) an additional parameter supplies a temporary variable.

An important feature of the toolbox is that even procedure-like macros return a
value, allowing them to appear as expressions within assignment and if statements.
This functional style of invocation is nicely supported within the macro bodies using
the lesser-known , (comma) operator in C.

The kernel of the toolbox, t oo l .h , is based upon the original GraphicsGems.h and
provides classical constants, and basic and extended functions. The latter includes
clamping or rounding-off, floating-point comparison with tolerance, plus linear, car-
dinal, and Hermite interpolation. The file also provides general-purpose macros for
memory handling, text file manipulation, and run-time error management in the re-
spective macros *_MEM, *_FILE, and *JERROR.

The essential files s i n t . h , u in t . h , and r e a l . h define scalar operations upon val-
ues having type in t , unsigned in t , and f loa t /double . These scalar macros are used
to derive the types s intvec2 through realmat4 that support 2D, 3D, and 4D opera-
tions on vectors and matrices. The related I/O macros GET_SINT, PUT_REALVEC2, and

VII. 7 A Survey of Extended Graphics Libraries 0 403

Function

Table 3.
Description

libgm utility functions.
Usage

gmAbs(f)
gmCe i l (f)
ginClainp(f , f l , f 2)
gmCube(f)
gmDegrees(f)
gmFloo r (f)
gmFuzEQ(f l , f2)
gmFuzGEQ(fl , f2)
gmFuzLEQ(fl, f2)
gmlnv(f)
g m l s Z e r o (f)
g m L e r p (f , f l , f 2)

ginMax(fl, f2)
gmMax(fl , f 2 , f 3)
gmMin(f l , f 2)
ginMin(fl , f 2 , f 3)
gmRadians (f)
gmRound{f)
ginSign(f)
g m S l i d e (f , f l , f 2)

ginSmooth{f)
gmSqr(f)
ginSwap(fl , f2)
gmSwap(i l , 12)
gmTrunc(f)
gmZSign(f)

absolute value of f
least integer greater than or equal to f
clamp f to [f 2 , f 3]
f3
convert angle in radians, f, to angle in degrees
greatest integer less than or equal to f
t r u e iff f 1 is fuzzy equal to f 2
t r u e iff f 1 is fuzzy greater than or equal to f 2
t r u e iff f 1 is fuzzy less than or equal to f 2
inverse of f, f ^ 0
t r u e iff f is fuzzy equal to 0
linear interpolation from f 1 (when f = 0)

to f 2 (when f = 1)
maximum of f 1 and f 2
maximum of f 1 and f 2 and f 3
minimum of f 1 and f 2
minimum of f 1 and f 2 and f 3
convert angle in degrees, f, to angle in radians
f rounded to nearest integer
sign of f (- 1 iff f < 0)
hermite interpolation from f 1 (when f = 0)

to f 2 (when f = 1)
smooth hermite interpolate of f

swap f 1 and f 2
swap i l and 12
f truncated
zero or sign of f (—1, 0, or 1)

fl

fl

= gmAbs(f2);
= gmCeil(f2);

gmClamp(f, fl, f2) ;

fl

fl

fl

if

if

if

fl

if

f3

f =

f =

f =

f =

fl

fl

fl

= gmCube(f2);

= gmDegrees(f2);

= gmFloor(f2);

(gmFuzEQ(fl,f2))

(gmFuzGEQ(fl,f2))

(gmFuzLEQ(fl,f2))

= gmlnv(f2);

(gmIsZero(f)) ...

= gmLerp(f,fl,f2)

: gmMax(fl,f2);

: gmMax(fl,f2,f3);

: gmMin(fl,f2);

• gmMin(fl,f2,f3);
= gmRadians(f2) ;

= gmRound(f2);

= gmSign{f2);

f3 = gmSlide(f,fl,f2) ,
fl = gmSmooth(f2);
fl = gmSqr(f2);

gmSwap(f1,f2);

gmSwap(il,12);

f1 = gmTrunc(f2);

fl = gmZSign(f2);

GET_UINTMAT3 also lend support. This methodology allows complete type substitution
simply by setting a compiler switch, for example, -DSINGLE_SINT, or adding a #def ine
SINGLE_SINT, thereby redefining all macros.

The remaining five *. h files provide an exhaustive set of vector and matrix manipula-
tion tools. Their macros support operations including creation, duplication, arithmetic
operations, comparison with tolerance, interpolations, dot or cross products, matrix
determinant, transposition, and inversion.

The name of any macro takes the form ac t ion . type where "action" describes the
macro operation and "type" the parameter type, for example, MIN_VEC2(V,A,B)- This
helps memorization of names and facilitates an eventual extension of the toolbox. Note
that while the macros are defined in all cases, some cannot provide meaningful results,
for example, matrix inversion upon the integers.

404 0 Utilities

(Editor's note: The root solver QUADRATIC(a,b,c) requiring no temporaries and re-
turning the number of roots is a work of art. Although it will not affect calculations at
double precision, please note the last two digits of #def ine PI.)

<> Penultimate Vector Macros 0

This entry provides a major step in the direction of an ideal and hence "ultimate" macro
library. In practice, the utility of even the most carefully crafted graphics library is
lost when confronted with vectors having dimensional or type mismatch. This library's
reason for existence is compelling: support code reuse in its broadest sense. This is
achieved in an ironic fashion: Here it is the source code (the C program vecJi .c) that
rewrites the macro file vec.h for given dimension n.

A machine-produced macro library has numerous advantages. Automatically pro-
duced files are easily tailored to their target application, are not prone to spurious
typos, and can easily provide a uniform naming convention. The method works with a
flourish: The vec.h file appearing in the distribution accompanying a companion gem
(page 375) was created by executing the command vecJi 4.

The library supports garden-variety vector and matrix arithmetic operations upward
through cross product and inversion, respectively. The former are generalized by us-
ing Hanson's definition {op. cit.) in preference to other alternatives (Goldman 1992);
inversion is performed using Cramer's rule, taking advantage of macros that compute
determinant and adjoints. Hill's "perp-dot" {op. cit) is also employed.

Finally, the library supports conformality in a highly extended sense. For instance,
multiplying a 4 x 4 matrix by a 3 x 3 matrix produces a 4 x 4 result in a natural way.
(In theory, the smaller matrix is augmented, placing I's on the diagonal and O's on the
off-diagonal of the added row and column. In practice, the multiplications by zero and
one are elided in the macro's definition, further increasing run-time efficiency.) As a last
example of extended operation, the matrix operations support both row vector premul-
tiplication and column vector postmultiplication. (Accordingly, the table of operations
gives mathematical names only; parameter considerations are a nonissue.)

Table 4. Generic operations supported by vec.h .
assign

dot product
trace
set to identity
linear interpolation

add
cross product
assign
compare

subtract
transpose
round to integer
compare with zero

scalar multiply
determinant
fill with constant
square of magnitude

scalar divide
adjoint
set to zero
squared difference

Vll. 7 A Survey of Extended Graphics Libraries 0 405

0 The C Vector Library in 4D 0
This library's emphasis is on 4D graphics in its broadest generahty. The C + + Hbrary
by Done {op. cit.) was recoded in C and the scope of operation widened to support
5 x 5 matrices. The traditional (and bulky) matrix procedures which, for example,
assign all elements en masse are largely absent. Replacing them are the affine matrix
operations (rotation, translating, and scaling) which operate on coordinates (x, y, z, w)
in homogeneous coordinates. Beyond simplifying coding style, this makes the library a
useful research vehicle in the interactive exploration and visualization of 4D Euclidean
space. Two affine matrices appear below.

^V^a;5 ^yi ^zi ^w)

f So: 0 0 0 0 \
0 Sy 0 0 0
0 0 5^ 0 0

0 0 0 5̂ y 0

V 0 0 0 0 1 /

^yw{0) =

/ 1 0 0 0 0 \
0 cos^ 0 - s i n ^ 0
0 0 1 0 0
0 sine 0 cos^ 0

\ 0 0 0 0 1 /

The first supports independent (anamorphic) scaling given four parameters presented
as a four-vector. The second rotates a matrix about the y — w hyperplane by an amount
0. (There are six hyperplanes of rotation in 4D, an extension of the three axes of rotation
in 3D.)

Perspective operations in 4D (which become orthographic projection in the limit) can
be defined by analogy to their 3D counterparts; representative matrices appear in the
source listings.

0 Contributors 0
One library was created by authors not appearing elsewere in this volume. These contrib-
utors are Ferdi Scheepers and Stephen May (Ohio State University, Columbus, Ohio),
ferdi@cgrg.ohio-state.edu, and smay@cgrg.ohio-state.edu.

The editor wishes to thank those contributing to this and related works for their
cooperation and patience in providing additional material on short notice.

0 Bibliography 0
(Anderson et al. 1991) E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du

Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. Preliminary
LAPACK users' guide. Technical report, LAPACK Project, Computer Science
Department, University of Tennessee, Knoxville, 1991.

(Doue 1994) Jean-Frangois Doue. C-I-+ vector and matrix algebra routines. In Paul
Heckbert, editor, Graphics Gems IV, pages 534-557. Academic Press, Boston,
1994.

406 0 Utilities

(Glassner and Haines 1994) Andrew Glassner and Eric Haines. C header file and vector
library. In Paul Heckbert, editor, Graphics Gems /F , pages 558-570. Academic
Press, Boston, 1994.

(Goldman 1992) Ronald Goldman. Cross product in four dimensions and beyond. In
David Kirk, editor, Graphics Gems III, pages 84-88. Academic Press, Boston,
1992.

(Hanson 1994) Andrew J. Hanson. Geometry for n-dimensional graphics. In Paul Heck-
bert, editor, Graphics Gems IV, pages 149-170. Academic Press, Boston, 1994.

(Hill 1994) F. S. Hill, Jr. The pleasures of "perp dot" products. In Paul Heckbert,
editor, Graphics Gems IV, pages 138-148. Academic Press, Boston, 1994.

(HoUasch 1991) Steve Hollasch. Useful C macros for vector operations. In James Arvo,
editor, Graphics Gems II, pages 405-407. Academic Press, Boston, 1991.

(Hollasch 1992) Steve Hollasch. Useful C macros for vector operations. In David Kirk,
editor, Graphics Gems III, pages 467-469. Academic Press, Boston, 1992.

(Lippman 1991) Stanley Lippman. C-h-h Primer. Addison-Wesley, Reading, MA, 1991.

0 Index

Adaptive clustering (halftoning), 302
Adaptive image refinement, 355, plates
Algorithm

Bresenham, exact clipping, 317
Bresenham, inverse, 338
Cohen-Sutherland, 315
de Boor, 217
de Casteljau, 199, 217
Descartes-Euler-Cardano, 8
Ferrari, 7
Neumark, 9
Seidel, 394
Sutherland-Hodgman, 51

Ambiguous face, 99
Angle subdivision, see Ellipsoid generation
Arcs

chord subdivision, nonuniform, 171
chordal deviation, 169
circular, 168
de Casteljau subdivision, variant, 174
radius of curvature, 168
vertex deviation, 170, 174

Area
polygon, 35
quadrilateral, 37
spherical triangle, 44
vectors, 35

ARIES technique (halftoning), 303
Axial deformation, 139

B

B-spline curves
de Boor algorithm, 217
divided difference interpolation, 213, 217
identities of basis functions, 163
nonuniform rational, 216
smooth connecting, 191

Back to front polygon rendering, 126
Back-face culling, 127
Bernstein basis functions, 149
Bezier curves

arc length of, 199
blossoms of, 191, 215
control polygon, 204
de Boor points, 194

identities of Bernstein basis functions, 149
interpolating form, linear, 213
Gaussian quadrature, 199
knot insertion, 194
rendering of, 206
smooth connection, 191
subdivision, parametric, see de Casteljau

algorithm
vertex deviation, 174

Bidirectional reflectance distribution function,
285

Binary space-partitioning trees, 121
Body centered cubic lattice (bcc), 68, see also

Truncated octahedron
BRDF, see Bidirectional reflectance distribution

function
Bresenham algorithm (pixel rendering)

exact clipping, 317
inverse algorithm, pixel to vector, 338

BSP trees, see Binary space-partitioning trees

Catmull-Rom interpolation, 107
Catmull-Rom splines, 218
Cell ambiguity, 98
Chain code, 324, see also Edge contour
Characteristic matrix, see Conic sections
CIELAB, CIELUV color spaces, 62
Circumspheres (space packing), 67, 270
Chpping

scanline-object, 242
Sutherland-Hodgman, 51
vector-viewport, 314
view frustum, 127

Cohen-Sutherland clipping algorithm, 315
Collision testing, viewpoint

moving polyhedra, 380
static polygons, 128

Cone-line intersection, 227
Conic sections, 72
Continued fractions, 26
Contours

edge, 338
surface, 99

Coordinate
barycentric, 211
homogeneous, 112, 214

407

408 0 Index

transformation, 111
unit-cube frame representation, 141

Covariance matrix, 113
Cubic

lattice, body centered, 68, see also Truncated
octahedron

lattice, face centered, 68, see also Rhombic
dodecahedron

symmetric polyhedra, 78, 83
marching cubes, 98
tricubic interpolation, 107

Cubic equations
Descartes-Euler-Cardano, 8
Ferrari's, 7
Neumark's, 9

Cubic lattices, 62
Cuboctahedron, 70
Culling

back-face, 127
view-frustum, 127

Cylindrical luminaire, 285

de Boor algorithm, 217
de Boor-Fix formulas, 160, 166
de Casteljau algorithm, 199, 217
Decomposition

into parallelohedra (space packing), 67
quotient space, 61
Seidel's algorithm (trapezoids, triangles), 394
singular value, 115

Delaunay triangulation, 270
Descartes-Euler-Cardano algorithm, 8
Descartes' law of signs, 154
Directional light, 290
Dirichlet cell, 62, 270
Distance approximations, 78
Dithering, see Ordered dithering
Divergence theorem, 40

Face centered cubic lattice (fee), 68, see also
Rhombic dodecahedron

Ferrari's algorithm, 7
Fluorescent lights, see Cylindrical luminaire

Girard's formula, 44
Graphics libraries, 400
Green's theorem, 40

H

Halftoning, 297, 302
Hermite interpolation, 212, 401
Hexakis octahedron, 82, plates
Hierarchical traverse, 246

Interpolation
B-spline, divided differences, 213, 217
Bezier curves, 213
Hermite, 212, 401
RGBZ, 398
slerp, 62
tricubic, 107

Intersection
cone-line, 227
moving polyhedra-viewpoint, 80
polygon-cube, 375
quadrangle surface-line, 232
scanline-object, 242
swept sphere-line, 258

Lagrange polynomials, 210
Least-squares fit, linear, 92
Lie algebra, 59
Line parameterization, 92

Edge contours, 338
Ellipse intersections

equations, 75
figure, 6

Ellipsoid generation, 179
Euclidean geometry, n-D

graphics libraries, extended, 400
n-D rotation, 55, 405
n-D solids, 79

Euclidean norm, see Distance approximations
Euler angles, see Quotient space decomposition

M

Marching cubes, 98
Marsden identities, 160, 166
Mathematician's tea, 37
Menelaus' theorem, 213
Mensuration, see Area and Volume
Microdot distribution, 297
Moire patterns, 300
Monte-Carlo integration, 359
Multihnearity, 215

Index 0 409

N

Nearest neighbor, 3D, 65
Neumark's algorithm, 9
Neutral file format (NFF), 398
Noise function, see Wave generators
NURBS, see B-splines, nonuniform rational

Octahedral subdivision, see Ellipsoid
generation

Optical character recognition (OCR), 329
Optimal sampling patterns, 359
Ordered dithering, 297, plates
Oriented lines, 50

Packing
body centered cubic (bcc), 68
face centered cubic (fee), 68
circumspherical, 67, 270

Painter's algorithm, see Back to front polygon
rendering

Parallelohedron, 67
Perp-dot product, 400
Polygon partitioning

concave, 50
general 2D in 3D, 386
by half-space membership, 122
triangulation, 394

Polyhedra figures
cube (hexahedron), 67
elongated dodecahedron, 67
hexagonal prism, 67
hexakis octahedron, 83, plates
octahedron, 83
rhombic dodecahedron, 67, 68, 83
trapezoidal icositetrahedron, 83
truncated octahedron, 68

Polylines, 212
Polytopes, semiregular, 67, 78, 83
Progressing refinement, radiosity, 290,

plates

Quadric surfaces, 3
Quartic equations, 4

Descartes-Euler-Cardano, 8
Ferrari's, 7
Neumark's, 9

Quaternions, as rotation groups, 62, 84
Quotient space decomposition, 61

Rational curves, 214
Rational numbers, 25
Rendering software

Bezier curves, 206
Bresenham algorithm, exact clipping, 317
BSP tree based, 131
Z-buffer based, 398

RGBZ interpolation, 398
Rhombic dodecahedron (bcc packing), 68
RoUing ball, 55
Rotation groups, 59

S-patch surfaces, 219
Sagitta, 169
Sampling

Optimal patterns, 359
Solid-angle based, 287
Stochastic supersampling, 248

Scanline-object rejection, 242
Seidel's algorithm, 394
Selective precipitation (halftoning), 302
Sequential probability test ratio, 356
Shape vectorization, 323
Simplex object, 99
Singular value decomposition, 115
Slerp interpolation, 62
Software packages, see Rendering software and

Graphics libraries
Space subdivision, Voronoi, 268
Spatial classification

n-D semiregular cubic solids, 78
n-D Voronoi cells, 270
parallelohedral decomposition (space packing),

67
Spherical polygons, 42
Spherical projection, 43
SPHIGS package, 398
SPRT, see Sequential probability test ratio
Square root

fixed point, 22
floating point, inverse, 16

Staircase patterns, 338
Stochastic supersampling, 248
Subdivision

angle, see Ellipsoid generation
arcs, circular, 168
Bezier, parametric, see de Casteljau algorithm
chord, nonuniform, 171
curve, 174
space (Voronoi), 268
surface, 104

410 0 Index

Surface description
by n-D cubic cells, 98
by quadrangle mesh, 235
by triangular mesh, 232
by voxel, 273

Surfaces
cell ambiguity, 98
contours, 99
quadric, 3
S-patch, 219
subdivision, 104
tensor-product, 219
tessellated, 232

Sutherland-Hodgman clipping, 51
SVD, see Singular value decomposition
Swept spheres, 258

TARGA file format, 398
Tensor product surfaces, 219
Tessellated surfaces, 232
Theiessen tessellation, see Voronoi

diagrams
Theorem

divergence, 40
Green's, 40
Menelaus, 213

Threshold matrices, 297
Trapezoidal

decomposition, from polygon, 394
icositetrahedron, 83
test, 236

Triangle, decomposition from polygon, 395
Tricubic interpolation, 107
Truncated octahedron (fee packing), 68
Tubular extrusions, see Swept spheres

View-frustum culling, 127
Volume

hexahedron, 39
polyhedron, 37
tetrahedron, 38

Voronoi diagrams, 269
Voxel walking, 273

W

Wave generators, 367

Z-buffer, 398
zonotopes, 70

0 Volume l-V Cumulative Index

Format : volume number .page number

Absorption coefficient, II.279-II.280
Absorption index, 11.280
A-buffer, 1.76
Active edge list, I.92-I.93
Adaptive clustering (halftoning), V.302
Adaptive image refinement, V.355
Adaptive meshing, radiosity, shadow boundary

detection, II.311-II.315
Adaptive prediction-correction coders, II.94-11.95
Adaptive subdivision, of surface, IV.287
Addresses, precalculating, 1.285-1.286
Adjacent facets, normals, 11.239
Adjoint matrices, 1.538
Affine matrix

group, 11.345
inverse, II.348-II.349

Affine modeling transformations, normal vectors,
I.539-I.542

Affine transformation, see also Transformation
decomposing, III. 116
unit circle inscribed in square, III. 170

Aggregate objects, 11.264
Albers equal-area conic map projection,

I.321-I.325
Algebra, see Matrix; Vector
Algorithm

Bresenham, see Bresenham's algorithm
Cohen-Sutherland, V.315
de Boor, V.217
de Casteljau, V.199, V.217
Descartes-Euler-Cardano, V.8
Ferrari, V.7
Neumark, V.9
Seidel, V.394
Sutherland-Hodgman, V.51

Aliasing, narrow domains, II. 123-11.124
Alpha blending, 1.210-1.211
Alpha buffer, 1.218
Alpha compositing operators, 1.211
Alternating Bresenham edge-calculator,

III.350-III.351
Altitudes, triangles, intersection, 1.22
Ambiguous face, V.99
Angle-preserving matrix group, 11.345

Angles
encoding, bit patterns, 1.442
not uniform, III.128-III.129
subdivision, see Ellipsoid generation
sum and difference relations, 1.16

Animation
camera control, IV.230
collision detection, IV.83
morphing, IV.445
recording, I.265-I.269

double-framed order, I.265-I.266
2 1/2-D depth-of-field simulation, III.36-III.38

Anti-aliased circle generation, II.445-11.449
Anti-aliased lines, rendering, 1.105—1.106
Anti-aliasing, 1.37, IV.370, IV.445, see also Area of

intersection
advanced, algorithm, 1.194-1.195
combining spatial and temporal, III.376-III.378
edge and bit-mask calculations, III.345-III.354,

III.586
pixel, 1.73
polygon scan conversion, 1.76-1.83
triangular pixels, III.369-III.373

Anti-aliasing filters, 1.143
common resampling tasks, 1.147-1.165

box filter, 1.149
choices of filters, 1.148
comparative frequency responses, 1.161
comparison of filters, 1.151-1.152
continuous, sampled, and discrete signals,

1.147
decimation, 1.147-1.148

with Lanczos2 sine function, 1.160—1.161
Gaussian filter, 1.150-1.153
Gaussian 1/2 filter frequency response, 1.163
Gaussian 1/V2 filter frequency response,

1.164
half-phase filter frequency response,

I.162-I.163
interpolation, 1.147-1.148

by factor of two with Lanczos2 sine
function, 1.158-1.159

with Gaussian 1/2 filter, 1.152-1.154,
1.156

with Gaussian 1/^2 filter, 1.154-1.156

411

412 0 Volume l-V Cumulative Index

Anti-aligising filters (cont.)
Lanczos2 sine functions frequency response,

1.164-1.165
Lanczos-windowed sine functions,

1.156-1.158
sine function, 1.156-1.157
tent filter, 1.149-1.150
zero-phase filter frequency response, 1.162

cone plus cosine, 1.145-1.146
Gaussian filter, 1.144-1.145
minimizing bumpy sampling, 1.144-1.146

Apple patent, II.31-II.32
Apollonius problem, solution, III.203-III.209

10th problem, II. 19-11.24
Approximation, IV.241
Arcball, IV. 175
Archimedean solids, semi-regular, 11.177
Archival media, 11.165
Arcs

chordal deviation, V.169
circular, V.168
de Casteljau subdivision, variant, V.174
chord subdivision, nonuniform, V.171
vertex deviation, V.170, V.174
radius of curvature, V.168

Arctangent, approximation, II.389-11.391
Area

computing, binary digital image, II. 107-11.111
planar polygon, IV.3, IV. 141
polygon, II.5-II.6, V.35
quadrilateral, V.37
spherical polygon, IV. 132
spherical triangle, V.44
triangle, 1.20, IV. 140, IV. 161
vectors, V.35

Area of intersection
circle and half-plane, 1.38-1.39
circle and thick line, 1.40-1.42
two circles, 1.43-1.46

Area-to-diff'erential-area form factor, 11.313
ARIES technique (halftoning), V.303
Arithmetic

complex, IV. 139
exponentiation, IV.385, IV.403
floating point, IV.125, IV.422
integer, IV.123, IV.449, IV.526

Asymmetric filter, II.52-11.53
Autumn terminator, II.440-11.441
Axes, transforming, 1.456-1.459
Axial deformation, V.139
Axis-aligned bounding boxes, transformation,

1.548-1.550
Axis-amount representation, conversion with

matrix, I.466-I.467
Azimuthal equal-area projection, 1.317

Azimuthal equidistant projection, 1.316-1.317
Azimuthal projections, 1.314-1.317

B

Backface culling, I.346-I.347, I.544-I.545, V.127
Back to front polygon rendering, V.126
Banding, 1.263
Bartlett filter, III. 13, III. 15
Barycentric coordinates, IV. 162
Bernstein basis, 11.406, 11.409
Bernstein basis functions, V.149

integration, 1.604-1.606
Bernstein-Bezier, equation conversion to,

I.409-I.411
Bernstein polynomials, 1.613-1.614, 11.407,

II.409-II.410, 11.428
Betacam, 11.154
Beta function, integral form, III.150-III.151
Beveling, 1.107-1.113
Bezier control points, derivation, 11.377
Bezier curve-based root-finder, 1.408-1.415

bounding box, 1.413-1.414
conversion to Bernstein-Bezier form,

I.409-I.411
finding roots, 1.411-1.415
root-finding algorithm, 1.412-1.413

Bezier curves and surfaces, 1.613-1.616,
II.412-II.416, IV.256, IV.261, see also
Cubic Bezier curves

arc length of, V.199
blossoms of, V.191, V.215
control polygon, V.204
de Boor points, V.194
de Casteljau Evaluation Algorithm, 1.587-1.589
derivative formulcis, 11.429
differentiation, 1.589-1.590
fitting to digitized curve, 1.616-1.624
Gaussian quadrature, V.199
identities of Bernstein basis functions, V.149
interpolating form, linear, V.213
interpolation using, III.133-III.136

code, III.468
implementation, III. 136
numeric solution, III. 134
symbolic solution, III.134-III.135

knot insertion, V.194
least-squares approximations, 11.406
monomial evaluation algorithm, 1.590-1.591
multivariate approximation, II.409-11.411
notation, 1.587
parametric surface, IV.278, IV.290
parametric versus geometric continuity,

II.430-II.431
properties, 1.587-1.593
rendering of, V.206

Volume l-V Cumulative Index 0 413

smooth connection, V.191
subdivision, parametric, see de Casteljau

algorithm
in terms of Bernstein polynomials,

I.613-I.614
univariate approximation, II.406-11.408
vertex deviation, V.174

Bezier form, conversion, 1.609-1.611
from monomial form, 1.591-1.592
to monomial form, 1.592-1.593

Bezier simplices, 11.412
Bezier triangles, conversion to rectangular patches,

III.256-III.261, III.536
Bias function, IV.401
Bidirectional reflectance distribution function,

V.285
Bilinear interpolation, see Interpolation
Binary digital image, 11.107

computing area, circumference, and genus,
II.107-II.111

algorithm, II.109-II.111
method, II. 107-11.109

Binary order, animation recording, 1.266-1.269
Binary recursive subdivision, ray-triangle

intersection, II.257-II.263
Binary space partitioning tree, III.226,

V.121-V.138
ray tracing with, III.271-III.274, III.538

Bisection, Strum sequences, 1.420-1.421
Bit arithmetic, see also Element exchanging

bit rotation (tables), 11.84
counting under a mask, 11.372
finding first on bit, 11.366, 11.374
reading a write-mask, 1.219
palindrome generation, 11.369
power of two, test, 11.366
tallying on/off bits, II.374-II.376

BitBlt, IV.486

generalized, algorithm, 1.193-1.194
Bitmap, IV.466, IV.486

black-and-white, compositing, III.34-III.35
scaling operations, optimization, III.17-III.19,

III.425
stretching, III.4-III.7, III.411

Bitmap rotator, 90-degree, II.84-11.85
Bit-mask calculations, III.352-III.354, III.586
Bits

conversion with digits, 1.435
interleaving, quad- and octrees, 1.443-1.447
patterns, encoding angles, 1.442

Black-and-white bitmaps, compositing,
III.34-III.35

Blobby model, IV.324
Blue-green plane, domain, II. 120-11.122

Blue scanlines, adjusting minimum and maximum,
II.122-II.123

Blur, see Image, filter
Body centered cubic lattice (bcc), V.68
Body color model, II.277-II.282

theoretical basis, II.277-II.278
Bottom-Up, 11.206, II.208-II.209
Boundary generator, composited regions,

III.39-III.43, III.441
Bounding box, IV.26, IV.74

axis-aligned, transformation, 1.548-1.550
fifth-degree polynomial, 1.413-1.414
radiosity, II.304-II.305

Bounding method, torus, II.254-11.255
Bounding sphere, I.301-I.303
Bounding volume algorithm

linear-time, III.301-III.306
worst C£Lse, III.302

Bounding volumes
cone, III.297
cube, III.295-III.296
cylinder, III.296-III.297
Hnear-time simple, III.301-III.306
polygon, III.296
rectangular, primitives, III.295-III.300, III.555
sorting, 11.272
sphere, III.298-III.299
torus, III.299

Box, 1.326
intersection with ray, fast, 1.395-1.396
Kuhn's triangulation, III.246-III.247,

III.252-III.253
Box filter, 1.149, 1.180, II.51-II.52, III.13, III.15
Box-sphere intersection testing, 1.335-1.339
Branching, I.558-I.561
BRDF, V.285
Bresenham's algorithm, 1.101 see also Line

drawing
exact clipping, V.317
inverse algorithm, pixel to vector, V.338
line drawing algorithm, 1.105-1.106,

III.4-III.5
spheres-to-voxels conversion, 1.327-1.329

Bresenham's circles, 11.448-11.449
Brightness mapping, IV.415
B-spline curves, IV.252

de Boor algorithm, V.217
divided difference interpolation, V.213, V.217
identities of basis functions, V.163
non-uniform rational, IV.256, IV.286, V.216
smooth connecting, V.191

B-splines, II.377-II.378
cubic, knot insertion, II.425-11.427
parametric surface, IV.286

414 0 Volume l-V Cumulative Index

BSP trees, see Binary space-partitioning trees
Bump mapping, 11.106, IV.433
Bumpy sampling, anti-aliasing filters that

minimize, 1.144-1.146
Butz's algorithm, 11.25

Cache performance, increasing, 11.87
Caching, 11.268
Camera transformation, IV.230
Canonical fill algorithm, 1.279
Cardano's Formula, 1.405
Cartesian color cubes, 1.254-1.255
Cartesian products

color pixels, 1.254-1.256
extensions, 1.256

Cartesian triple, factoring into, 1.255—1.256
Cartography, see Map projections
Catmull-Rom interpolation, V.107
Catmull-Rom splines, V.218
Cell ambiguity, V.98
Cell occupancy, for different grid sizes,

1.262
Center of gravity, triangles, 1.20-1.21
Center of mass, superquadrics. III. 139
Central projection, 1.315
Centroid of a polygon, IV.3
Chain code, V.324, see also Edge contours
Chain rule, 11.184
Change matrix, iteration, 1.468-1.469
Change-of-focus simulation, III.38
Channel, frame buffer, 1.217-1.218
Characteristic matrix, V.72
C header file, III.393-III.395
Chebychev polynomials, 1.60
Chord-length parameterization, 1.617, 1.621
Chrominance, 11.150
Cibachrome, II. 164-11.165
Cibatrans, II. 164-11.165
CIELAB, CIELUV color spaces, V.62
Circle

anti-aliased generation, II.445-11.449
area of intersection

with half-plane, 1.38-1.39
with thick Hne, 1.40-1.42
two circles, 1.43-1.46

bounding, II.14-11.16
Bresenham's algorithm, 1.327-1.329
circumscribing a triangle, IV.47, IV. 143
containing intersection of two circles,

II.17-11.18
drawing, shear algorithm, 1.192 1.193
inscribing a triangle, IV. 145
integral radius, on integral lattices,

I.57-I.60

intersection
with line, 2D, 1.5-1.6
with rectangle, fast checking, 1.51-1.53

with radials, 11.383
tangent line

perpendicular to line, 1.8-1.9
to two circles, 2D, 1.7-1.8
2D, 1.5

touching three given circles, II. 19-11.24
2D, I.4-I.5

Circle clipping algorithm, III.182-III.187, III.487
Circular arc, straight-line approximation,

II.435-II.439
Circular arc fillet, joining two lines,

III.193-III.198, III.496
Circumcenter, triangles, 1.20-1.23
Circumcircle, IV.47, IV. 143
Circumference, computing, binary digital image,

II.107-II.111
Circumradius, triangles, 1.20-1.23
Circumspheres (space packing), V.67, V.270
C^ joint, between cubic Bezier curves, 11.432
CLAHE (contrast limited adaptive histogram

equalization), IV.476
Class numbers, 1.115-1.116
Clipping

complex, 11.44
generic convex polygons, 1.84-1.86
line

n-dimensional, IV. 159
in 2D and 4D, IV. 125

scanline-object, V.242
Sutherland-Hodgman, V.51
3D homogeneous, triangle strips,

II.219-II.231
2D, see Two-dimensional clipping
vector-viewport, V.314
view frustum, V.127

Closed loops, cubic spline interpolation formulas,
I.580-I.582

Clustered-dot dither, 11.63
C macros, vector operations, III.405
Cohen-Sutherland clipping algorithm, V.315
Coherence, 11.26

measure, 11.28, 11.30
Collision detection, IV.83
Collision testing, viewpoint

moving polyhedra, V.380
static polygons, V.128

Color
image display, IV.415
quantization, IV.422
subroutines useful for RBG images, IV.534

Color cube, I.233-I.234, 1.254-1.255
Color descriptor table, 11.144

Volume l-V Cumulative Index 0 415

Color dithering, II.72-11.77
conventions, 11.72
error-propagation dithering, II.75-11.77
gamma correction, II.72-11.73
ordered dithering, II.73-11.75

Color hardcopy, frame buffer, II. 163-11.165
Color maps (LUTS), 1.216-1.218, IV.401, IV.413

animation, random algorithm, II. 134-11.137
basic architecture, 1.215
geometrically determined, 1.233, 11.143
interpolation, 11.138
manipulation, 1-to-l pixel transforms, 1.270-1.274
pseudo, PHIGS PLUS, II. 138-11.140
visible selections, III.77, IV.413

Color pixels, Cartesian products, 1.254-1.256
Color printers, 11.165
Color quantization, see also Octree quantization

algorithm details and analysis, II. 131-11.132
based on variance minimization, 11.127
Cartesian, 1.254
color statistic computations, II. 128-11.131
error, II. 126-11.128
experimental results, 11.133
onto fourteen values, 1.233
inverse color mapping, 11.116
octree based, 1.287
optimal, statistical computations, II. 126-11.133
onto sixteen values, 11.143
variance minimizing, optimal, 11.126

Color reduction filter, III.20-III.22, III.429
Color reference frame, 11.148
Color rendering, linear, III.343-III.348, III.583
Color solid, four-bit, I.235-I.236
Color statistics, computations, II. 128-11.131
Color television monitor, calibration, II. 159-11.162
Combinatorics, inclusion-exclusion, II. 129-11.130
Compact cubes, III.24-III.28
Compaction algorithm, 11.89
Compact isocontours, III.23-III.28

compact cubes, III.24-III.28
cube-based contouring, III.23-III.24

Complex clipping, 11.44
Complexity analysis, RGB triples, 1.244
Complex number, IV. 139
Composited regions, boundary generator,

IIL39-III.43, III.441
Compositing stage. III.37
Compression, 11.49

image file, II.93-II.100
Compression ratios, 11.97, 11.100
Compression techniques, 11.89
Computational cost, jitter generation, 1.67-1.68
Concave polygon

scan conversion, 1.87-1.91
testing for, IV.7

Conducting medium, light reflection, 11.286
Cone

bounding volume. III.297
equation for, IV.321
intersection of ray with, IV.355

Cone-ellipsoid intersection, 1.321-1.322
Cone-line intersection, V.227
Cone plus cosine, 1.145-1.146
Conformal mapping, see Map projections
Conic sections, V.72
Conjugate diameters, III.169-III.171
Connection algorithm, 2-D drawing,

III.173-III.181, III.480
definitions, III.173-III.174
overcrossing correction, III.179-III.180
translate and rotate algorithm, III.174-III.179

Constants, full precision, 1.434
Constraints for interactive rotation, IV. 177
Continued fractions, V.26
Continuity conditions, cubic Bezier curves,

I.615-I.616
Continuous image, 1.246
Continuous signals, 1.147
Contour data, defining surfaces from, 1.558-1.561
Contours

defining, 1.554
edge, V.338
surface, V.99
swept, I.562-I.564

Contrast
cursor, IV.413
display of high, IV.415
enhancement, IV.401, IV.474

Contrast enhancement transform, 1.197-1.198,
I.201-I.202, I.270-I.271, 1.274

Convex
polygon, IV.7, IV.25, IV. 141
polyhedron, collision detection, IV.83

Convex decompositions, polygons, 1.97
Convolution, IV.447
Convolution kernel, 11.50-11.51
Coordinate frames, I.522-I.532

matrix representation, 1.524
problem solving examples, 1.527-1.532
vectors and points, I.522-I.523, 1.526

Coordinate Rotation Digital Computer, see
CORDIC

Coordinates
barycentric, V.211
homogeneous, 1.523, V.112, V.214
nonhomogeneous, 1.523
transformation, V . l l l
unit-cube frame representation, V.141

Coplanar sets, of nearly coplanar polygons,
III.225-III.230, III.512

416 0 Volume l-V Cumulative Index

CORDIC, vector rotation, 1.494-1.497
Corner rounding, IV. 145
Corner value, 1.553-1.554
Cosine

angles between lines, 2D, 1.11
in exponentials, 1.15

Covariance matrix, V.113
C-Print, II. 164-11.165
Crack prevention, IV.292

space packing lattices, 11.174
Cramer's Rule, 1.538, IV.90, IV. 142, IV. 164
Cross product, II.333-11.334

in four dimensions and beyond, III.84-III.88
identity, IV. 158, IV.397
matrix, 1.473
n-dimensional, IV. 156, IV. 167
sign calculation, II.392-11.393
in 2D, IV.140

Cross-section, positioning and orienting, 1.570
Cube

bounding volume, III.295-III.296
dihedral, II. 174-11.175
intersection with triangle, III.236-III.239,

III.521
Cube-based contouring, III.23-111.24
Cubic, see also Cubic lattices

symmetric polyhedra, V.78, V.83
marching cubes, V.98
tricubic interpolation, V.107

Cubic Bezier curves, 1.579, 1.614, II.428-II.429
continuity conditions, 1.615-1.616
forward differencing, I.600-I.601, 1.603
geometrically continuous, II.428-11.434

Cubic B-sphne, III.14-III.15
Cubic curve, 11.413

planar, 1.575-1.578
Cubic equations

Descartes-Euler-Cardano, V.8
Ferrari's, V.7
Neumark's, V.9

Cubic lattices, V.62
body centered, V.68
face centered, V.68, see also Rhombic

dodecahedron
Cubic roots, I.404-I.407
Cubic spline interpolation formulas, 1.579-1.584

closed loops, 1.580-1.582
open curves, 1.582-1.583

Cubic tetrahedral algorithm, delta form-factor
calculation, III.324-III.328, III.575

Cubic tetrahedron, adaptation of hemi-cube
algorithm, II.299-11.302

Cubic triangle, 11.413
conversion to rectangular patches,

III.260-IIL261
Cuboctahedron, 1.237, V.70
Culling

backface, I.346-I.347, I.544-I.545, V.127
view-frustum, V.127

Cumulative transformation matrix. III.295
Current object area, 11.28
Cursor, IV.413
Curvature vector, 1.568
Curves and surfaces, 11.405, see also Surfaces

anti-aliased circle generation, II.445-11.449
Bezier, see Bezier curves and surfaces
B-spline, IV.252
fitting, see Digitized curve fitting
great circle plotting, 11.440-11.444
interpolation with variable control point

approximation, II.417-11.419
intersection of cubic, IV.261
knot insertion, IV.252
Menelaus's theorem, II.424-11.427
number of segments, 11.435-11.436
open, cubic spline interpolation formulas,

I.582-I.583
Peano, IL25-II.26
polynomials, symmetric evaluation,

II.420-II.423
rational, IV.256
reparametrization, IV.263, IV.441
smoothing, IV.241
straight-line approximation of circular arc,

II.435-II.439
subdivision, IV.251

Curve tessellation criteria, III.262-III.265
Cyclic sequences, fast generation, III.67-III.76,

III.458
N = 2, III.67-III.68
iV = 3, III.68-III.70
Â = 3,4,6, III.70-IIL71
N = 6 derivation, III.71-III.73
N = 6 triggering, III.73-III.74
Â = 7, III.74-III.75
Â = 24, III.75-III.76

Cylinder
bounding volume, III.296-III.297
with changing cross-sections, 1.570-1.571
equation for, IV.321
generalized, reference frames, 1.567
intersection of ray with, IV.353, IV.356
normal vector, IV.359

Cylindrical equal area, 1.318-1.319
Cylindrical equirectangular map, 1.310
Cylindrical luminaire, V.285
Cylindrical maps, I.310-I.311

Volume l-V Cumulative Index 0 417

Darklights, III.366-III.368
Databases, direct charting, 1.309-1.310
Data smoothing, IV.241
Data structure, see also Grid

octree, IV.74
scanUne coherent shape algebra, 11.32-11.34

Data value, 1.30
DDA, see Line drawing
DDA algorithm, 1.595
de Boor algorithm, V.217
de Boor-Fix formulas, V.160, V.166
de Casteljau algorithm, V.199, V.217
de Casteljau Evaluation Algorithm, 1.587-1.589,

I.604-I.605
Decimation, 1.148, see also Resampling

Gaussian 1/2 filter, frequency response, 1.163
Gaussian 1 /v^ filter, frequency response, 1.164
Lanczos2 sine functions, frequency response,

1.164-1.165
by factor of four, 1.161
by factor of three, 1.160
by factor of two, I.158-I.159

by two, frequency response
half-phase filters, 1.162-1.163
Lanczos2 sine functions, 1.164-1.165
zero-phase filters, 1.162

Decision tree, III.176-III.177
Decomposition

into parallelohedra (space packing), V.67
quotient space, V.61
Seidel's algorithm (trapezoids, triangles), V.394
singular value, V.115

Delauney triangulation, IV.47, V.270
Del operator, 1.594-1.595, 1.598
Delta form factor, 11.313

calculation, cubic tetrahedral algorithm,
III.324-III.328, III.575

DeMoivre's Theorem, 1.15
Density, superquadrics, III.139-III.140
Depth buffer, 1.218
Depth cuing, 1.365
Depth of field, III.36
2 1/2-D Depth~of-field simulation, computer

animation, III.36-III.38
Descartes-Euler-Cardano algorithm, V.8
Descartes' law of signs, V.154
Destination pixel, contributors to. III. 12
Determinant, IV.154, IV.167
Diagram layout, IV.497, IV.505
Diameters, conjugate, III.169-III.171
Dielectric materials, fresnel formulas, II.287-11.289
Difference, scanline coherent shape algebra,

II.39-II.40

Difference equation, IV.245
Differentiation algorithm, Bezier curves,

I.589-I.590
Diffuse reflection, 11.233
Digital cartography, see Map projections
Digital computation, half-angle identity,

II.381-II.386
Digital dissolve effect, I.221-I.232

case study, I.229-I.231
faster mapping, I.227-I.228
first attempt, I.223-I.224
further research, I.231-I.232
optimizations, 1,230-1.231
randomly traversing 2D array, 1.221-1.222
scrambling integers, I.222-I.223

Digital filtering, see Discrete convolution
Digital generation, sinusoids, III.167-III.169
Digital halftoning, II.57-II.71, IV.489, V,297,

V.302
clustered-dot dither, 11.63
contrast adjustment during, II.63-11.64
error diffusion dithering, II.65-11.71
horizontal lines, 11,60-11.61
magic-square dither, II.60-11.62
to multiple output levels, II.64-II.65
ordered dither matrix, 11.58-11.60
threshold dithering, II.58-11.63

Digital images, color hardcopy, II. 163-11.165
Digital fine drawing, I.99-I.100
Digitized curve fitting, automatic, algorithm,

I.612-I.626
chord-length parameterization, 1.617, 1.621
implementation notes, 1.624-1.625
Newton-Raphson iteration, 1.621-1.623
scalar curves, 1.616

Digits, conversion with bits, 1.435
Directional light, V.290
Direction ratios, 1.456-1.457
Direct lighting, distribution ray tracing,

III.307-III.313, III.562
Dirichlet cell, V.62, V.270
Discrete convolution, image smoothing and

sharpening, II.50-11.56
Discrete image, 1.246
Discrete laplacian filter, 11,53-11.54
Discrete signals, 1.147
Discriminator, 1.101
Display, high fidelity, IV.415
Dissolve algorithm, I.225-I.227
Distance approximations, 1.423, V.78
Distance

between two polyhedra, IV.83
to an ellipsoid, IV. 113
to a hyperplane, IV. 161
to a line, IV. 143

418 0 Volume l-V Cumulative Index

Distance (cont.)
n-dimensional, IV. 120
3D, fast approximation, 1.432—1.433

Distance measures
approximate vector length, 1.429
equations of unit distance, 1.428
fast approximation to 3D Euclidian distance,

I.432-I.433
fast approximation to hypotenuse, 1.427
full-precision constants, 1.434
high speed, low precision square root,

I.424-I.426
Distance variable, 1.105
Distribution check, III.131-III.132
Distribution ray tracing, direct lighting,

III.307-IIL313, III.562
Dither, IV.489
Dithering, see Ordered dithering
Dithering matrix, 1.177
Divergence theorem, V.40
Dodecahedron, 11.176

dihedrals, 11.175, 11.177
transformation of sphere, 11.241

Dot products
n-dimensional, IV. 158
for shading, 1.348-1.360

direct algorithm, I.351-I.352, 1.359
directing vectors, 1.348
new algorithm, 1.351-1.352, I.359-I.360
reflection of light, 1.349-1.352
refraction, I.353-I.354
Snell's law, I.353-I.354

in 2D, IV.140
Double-angle relations, 1.17
Double-framed order, 1.265-1.266
Double speed Bresenham's, 1.101-1.102
Dual solids, 1.236-1.237
Duff's formulation, 11.418
Duratrans, II. 164-11.165
Dymaxion gnomonic projection, 1.316
Dynamic range of image, IV.415, IV.422
Dynamic simulation, mass and spring model,

IV.506

Earth, ellipsoidal approximation, 1.309, IV. 135
Edge calculations, anti-aliasing, III.345-III.354,

III.586
Edge contours, V.338
Edge detectors, 11.105
Edge images, noise thresholding, II. 105-11.106
Edge preservation, IV.61
Edge-sharpening convolutions, 11.55

applied before halftoning, II.70-11.71
Edge structure, II.86-11.87

Eigenvalues, II.324-11.325, see also Matrix,
eigenvalues

Element exchanging, see also Cyclic sequences
subtraction-based, 1.172
of three or more values, 111.67
XOR-based, 1.171, 1.436

Ellipse intersections
equations, V.75
figure, V.6

Ellipsoid, IV. 113
box-sphere intersection testing, generalizing,

I.338-I.339
equation. III.276
intersection with cone, 1.321-1.322
superquadric

inertia tensor, III.140-III.144
"inside-outside" function. III. 148
normal vectors. III. 148
parametric surface functions. III. 147
shells, III.154-III.157
volume. III. 140

Ellipsoid generation, V.179
Euclidean geometry, n-D

graphics libraries, extended, V.400
n-D rotation, V.55, V.405
n-D solids, V.79

Elliptical arc, parametric, see Parametric elliptical
arc algorithm

Elliptical cone, equation. III.277
Elliptical cylinder, equation, III.276
Elliptical hyperboloid, equation. III.277
Elliptical paraboloid, equation. III.277
Elliptical torus

cross section, II.251-11.252
equation, II.251-11.252
intersection with ray, II.251-11.256

Embedding plane, intersection with ray,
I.390-I.391

Embossing, IV.433
Encoded image data, rotation, II.86-11.88
Encoding, adaptive run-length, II.89-11.91
Energy balance criterion. III.320
Enlargement, monochrome images, smoothing,

I.166-I.170
Error diffusion dithering, II.65-11.71

blue noise added, 11.70
edge-enhanced, 11.70-11.71
introduction of random noise, 11.69
serpentine raster pattern, 11.67, 11.69

Error-propagation dithering, II.75-11.77
Euclidean dimensions, four, III.58-III.59
Euclidean distance, see Distance
Euclidean norm, 1.423, V.78
Euler angle, IV.222, see also Quotient space

decomposition

Volume l-V Cumulative Index 0 419

Evolute, IV. 116
Exact computation of 2-D intersections,

III.188-III.192, III.491
Apollonius problem solution, III.203-III.209

Excircle, IV.47, IV. 143
Exponentiation, IV.385, IV.403

Face centered cubic lattice (fee), V.68, see also
Rhombic dodecahedron

Face-connected line segment generation,
n-dimensional space, III.89-III.91

Face dihedrals, II.174-IL175
Faceted shading, 11.234, 11.236
Factorial polynomials, 1.595-1.596
Fast anamorphic image scaling, 11.78—11.79
Fast fill algorithm, precalculating addresses,

I.285-I.286
Fast Fourier transform algorithms, 11.368-11.370
Fast lines, rendering on raster grid, 1.114-1.120

Hobby's polygonal pens, 1.114-1.117
software implementation, 1.117-1.120

Fast memory allocator, 111.49-111.50
Fat curve, generation, 11.43
Fat lines, rendering on raster grid, 1.114-1.120
Fence shading, IV.404
Fermat primes, 1.18
Ferrari's algorithm, V.7
Feuerbach circle, IIL215-III.218, IV. 144
Fiber bundle, IV.230
Fill algorithms, I.278-I.284

canonical, 1.279
optimal, 1.281-1.282
processing shadows, 1.280-1.281

Fillet, IV. 145
Filter, see Image, filter
Filtered image rescahng, IIL8-IIL16, III.414

magnification. III.9
minification, I I I .9-III . i l

Filter post-processing stage. III.37
Filter windows, I.194-I.195
Finite difference, IV.241
First decomposition algorithm, III.99-III.100
First derivative filters, 11.105
First fundamental matrix, 1.543-1.544
Fixed-point trigonometry, CORDIC,

L494-I.497
Flipped bit count, 11.368
Floating point arithmetic, IV. 125, IV.422
Floating point pixel format, II.81-II.82
Floyd-Steinberg error propagation, II.75-11.76
Floyd-Steinberg filter, 11.68
Fluorescent lights, see Cylindrical luminaire
Fog, simulating, 1.364-1.365
Font rendering, three-pass algorithm, 1.193

Form factor
accurate computation, III.329-III.333,

III.577
vertex-to-vertex, III.318-IIL323

Forms
diff"erences with vectors, 1.533-1.535
triangular interpolants, 1.535-1.538

Forward differencing, I.594-I.603, IV.251
Bezier cubics implementation, 1.603
DDA algorithm, 1.595
Del operator, I.594-I.595, 1.598
factorial polynomials, 1.595-1.596
locally circular assumption, 1.599-1.600
Newton's formula, I.596-I.598
step size determination, 1.599-1.601
subdividing, I.601-I.603

4 x 4 matrices, IL351-II.354
Fourier transform, II.368-II.370
Frame buffer, 1.215-1.216, 11.115, see also Image

associated color map, 1.217
color hardcopy, II. 163-11.165
color quantization statistical computations,

II.126-II.133
fill algorithms, I.278-I.284
inverse color map, computation, II. 116-11.125
mapping RGB triples, II. 143-11.146
PHIGS PLUS, II.138-II.142
plane, I.217-I.218
random color map animation algorithm,

II.134-II.137
setting monitor white point, II. 159-11.162
television color encoding, II. 147-11.158

Free-form surface, see Surfaces, parametric
Frenet frame, 1.567-1.568
Fresnel formulas

approximations for applying, II.287-11.289
dielectric materials, II.287-11.289
wavelength-dependent reflection and refraction,

II.286-II.287
Fresnel reflectance curve, 11.284, 11.289
Fresnel transmission curve, 11.284, II.288-II.289
Frexp, 11.82
Full-precision constants, 1.434

Gain function, IV.401
Gamma correction, IV.401, IV.423

color dithering, II.72-II.73
Gamma correction function, 1.199, 1.203-1.206,

1.270, 1.273
Gamma function, computation, III.151-III.152
Gaussian filter, I.144-I.145, I.150-I.153
Gaussian 1/2 filter

frequency response, 1.163
interpolation, I.152-I.154, 1.156

420 0 Volume l-V Cumulative Index

Gaussian l / \ / 2 filter
frequency response, 1.164
interpolation, 1.154-1.156

Gaussian random numbers, 11.136
Gaussians, uniform rotations from, III. 129
Gaussian weighted filter, II.51-11.53
Gauss-Jordan elimination, 11.349
General direction ratios, 1.457
Genus, computing, binary digital image,

II.107-II.111
Geodesies, 1.315, 11.440
Geometric constructions, interpolation of

orientation with quaternions, II.377-11.380
Geometric continuity, I.615-I.616, II.430-II.431
Geometry

n-dimensional, IV.83, IV. 149
2D, IV.138

Girard's formula, see Spherical triangle area
G^ joint, between cubic Bezier curves, 11.432
Gnomonic projection, 1.315
n-gon, 1.18
Gouraud renderer, III.345-III.347
Gouraud shading, 1.84, II.235-II.236, IV.60,

IV.404, IV.526
Gram-Schmidt orthogonalization procedure,

III.108-III.109
modified, III.112-III.113, III.116

Graph, display of, IV.505
Graphic design, IV.497, IV.505
Graphics libraries, V.400
Graphics workstations, motion blur,

III.374-III.382, III.606
Graph labels, nice numbers, 1.61-1.63
Gray interior points, 1.244
Gray ramp, II. 163-11.164
Great circle, IV. 132

arc, code to draw, IV. 178
plotting, II.440-11.444

Green's theorem, V.40
Grid

for fast point search, IV.61
for faster point-in-polygon testing, IV.29
interpolating in a, IV.521
iso-surface of grid data, IV.326
traversing a 3D, IV.366

Gridded sampling, progressive image refinement,
III.358-III.361, III.597

Group theory, II.343-II.344
of infinitesimal rotations, III.56-III.57

H

Haar test. III. 125
Half-angle identity, digital computation,

II.381-II.386
Half-angle relations, 1.16

Half-open intervals, polygon scan conversion,
III.362-III.365, III.599

Half-phase filters, frequency response, decimation
by two, 1.162

Half-plane, area of intersection, with circle,
I.38-I.39

Half-space testing, 1.240-1.241
Half-tangent, II.381-II.386
Halftoning, see Digital halftoning
Halftoning matrix, 11.58
Hardware, scrambling integers in, 1.222-1.223
Hashing, for point search, IV.61
Hashing function, 3D grid, 1.343-1.345
Hash tag, III.386-III.387
Haze, simulating, 1.364-1.365
HDTV, II.154-II.155
Heckbert's algorithm, 11.127
Hemi-cube algorithm, 11.299, III.324

cubic tetrahedral adaptation, 11.299-11.302
Hemispherical projection, triangle, III.314-III.317,

III.569
Hermite interpolation, V.212, V.401
Hermite polynomial, II.398-II.399
Hexagonal construction, 1.238
Hexakis octahedron, V.82
Hidden-surface removal stage, HI.37
Hierarchical traverse, V.246
Hierarchy traversal, II.267-11.272

bottom-up method, II.270-II.271
caching, 11.268
combining top-down and bottom-up

approaches, II.270-11.271
top-down list formation, II.268-11.269

High coherence, 11.28, 11.30
High dimensional, see A^-dimensional
Highlight, see Specular reflection
Hilbert curve, II.27-II.28

coherence of transversal sequences, II.28-11.30
Histogram equalization, IV.474
Hobby's polygonal pens, 1.114-1.117
Hollow objects, box-sphere intersection testing,

I.337-I.338
Homogeneous coordinates, 1.523

clipping lines using, IV. 128
n-dimensional, IV. 154
subroutine library for 2D and 3D, IV.534

Homogeneous media, light absorption,
II.278-II.280

Hopf fibration, IV.232
Horner's rule, II.420-11.421
Hot colors, 11.147, II.152-11.153
Hot pixels

repairing, II. 155-11.156
test, n. l55-II .157

Householder matrix, III. 118

Volume l-V Cumulative Index 0 421

HSL Saturation, 1.449
HSL-to-RGB transform, fast, I.448-L449
HSV Saturation, 1.448
Hue Saturation Value, 1.239-1.240
Hybrid predictor, n .97 -n . l 00
Hypercones, H. l lT
Hyperface, n i . 89 -n i .91
Hyperlattice, HI.89-ni .90
Hyperplane, parametric formula, IV. 162
Hyperspace, see AT-dimensional
Hypertexture procedural volume model, IV.401
Hypervoxel, III.89
Hypotenuse

fast approximation, 1.427-1.431
derivation, I.427-I.429
error analysis, 1.429-1.431

triangles, 1.57-1.59

I

Icosahedron, dihedrals, 11.175, 11.177
Identity, matrix, 1.473
IEEE fast square root, III.48, III.446
IEEE floating point, IV. 125
Illumination, Phong model, IV.385, IV.388
Image

display, high fidelity, IV.415
enhancement, IV.474
filter

bilinear/trilinear reconstruction, IV.445,
IV.521

color reduction, code. III.429
convolution, IV.447
embossing, IV.433
first derivative, 11.105
nonuniform quadratic spline, II. 101-11.102

quantization, IV.422
resampling, IV.440, IV.449, IV.527
thinning, IV.465
warping, IV.440

Image file compression, II.93-11.100
hybrid predictor, II.97-II.100
prediction-correction coding, II.93-11.94

adaptive, II.94-II.95
Image processing, 11.49, HI.3, see also Digital

halftoning
adaptive run-length encoding, II.89-11.91
bitmap scaling operation optimization,

III.17-III.19, HI.425
color dithering, II.72-II.77
color reduction filter, III.20-III.22, III.429
compact isocontours, III.23-III.28
compositing black-and-white bitmaps,

III.34-III.35
fast anamorphic image scaling, II.78-11.79
fast bitmap stretching, III.4-III.7, III.411

fast boundary generator, composited regions,
III.39-IH.43, III.441

filtered image rescaling, III.8-III.16, HI.414
image file compression, II.93-11.100
image smoothing and sharpening by discrete

convolution, II.50-11.56
isovalue contours from pixmap, 111.29-111.33,

III.432
90-degree bitmap rotator, II.84-11.85
noise thresholding in edge images, II. 105-11.106
optimal filter for reconstruction, II. 101-11.104
pixels, II.80-11.83
run-length encoded image data rotation,

II.86-II.88
2 1/2-D depth-of-field simulation for computer

animation, III.36-III.38
Image reconstruction, optimal filter, II. 101-11.104
Image refinement, progressive, gridded sampling,

III.358-III.361, III.597
Image rescahng, filtered, III.8-III.16, III.414
Image scaling, f2ist anamorphic, II.78-11.79
Image sharpening, by discrete convolution,

II.50-IL56
Image smoothing, by discrete convolution,

IL50-II.56
Implicit surface, see Surfaces, implicit
Importance sampling, HI.309
In center, triangles, 1.20-1.21
Incircle, IV. 145
Inclusion-exclusion, combinatorics, II. 129-11.130
Inclusion isotony, HI.64
Inclusion testing, see Polygon, point in polygon

testing
Inertia tensor

superquadric, IIL140-III.145, III.153
world coordinates, HI. 145

Infinitesimal rotations, group theory, III.56-III.57
Inhomogeneous media, light absorption,

II.280-II.281
InputFace, 11.196
InputVertex, 11.196
In radius, triangles, 1.20-1.21
InsertBridge, II.199-II.201
"Inside—outside" function, superquadrics,

III.147-III.148
Integer arithmetic, IV. 123, IV.449, IV.526
Integers, II.371-II.372

counting through bits under mask, II.372-11.373
scrambling, 1.222-1.223
tallying on bits, II.373-II.376

Integer square root algorithm, H.387-II.388
Intensity, 11.233, II.278-II.279

interpolation between adjacent pixels, 11.445
Interactive

camera control, IV.230

422 0 Volume l-V Cumulative Index

Interactive (cont.)
cursor display, IV.413
image warp control, IV.440
orientation control, IV. 175

Interlace artifacts, reduction, III.378-III.379
Interlacing, III.376
InterPhong shading, II.232-11.241

analysis of formula, II.238-11.240
applications, 11.241

Interpolation, 1.148
Bezier curves, V.213
bilinear interpolation in 2D array, IV.445,

IV.475, IV.521
B-spline, divided differences, V.213, V.217
by factor of two, Lanczos2 sine function,

I.158-I.159
formulas, cubic spline, 1.579-1.584
Gaussian filter, 1.150-1.153
Gaussian 1/2 filter, I.152-I.154, 1.156
Gaussian 1/v^ filter, 1.154-1.156
Hermite, V.212, V.401
of image, see Image, filter
linear. III. 122

fast, IV.526
versus splined. III. 122

logarithmic space, III. 121
of ID data, IV.241
quaternion, with extra spins, III.96-III.97,

III.461
RGBZ, V.398
slerp, V.62
tent filter, 1.149-1.150
tricubic, V.107
trilinear interpolation in 3D array, IV.328,

IV.521
using Bezier curves, III.133-III.136,

III.468
Interpolation coefl^icients

closed loops, 1.581
open curves, 1.583

Intersection
box and polyhedron, IV.78
cone-hne, V.227
cubic curves, IV.261
line, see Line, intersections
moving polyhedra-viewpoint, V.80
plane-to-plane, III.233-III.236, III.519
polygon-cube, V.375
quadrangle surface-line, V.232
ray with

cone, IV.355
cylinder, IV.353, IV.356
hyperplane, IV. 165
implicit surface, IV. 113
polygon, IV.26

quadric surface, III.275-III.283, III.547
voxel grid, IV.366

rectangle and polygon, IV.77
scanline coherent shape algebra, 11.37
scanline-object, V.242
swept sphere-line, V.258
triangle-cube, III.236-III.239, III.521
of two circles, circle containing, II.17-11.18
two-dimensional, exact computation,

III.188-III.192, III.491
two polyhedra, IV.83

Interval arithmetic, III.61-III.66, III.454
Interval sampling, II.394-11.395
Inverse color map, 11.116

adjusting blue scanlines, II. 122-11.123
aliasing, II.123-II.124
computation, II. 116-11.125
convexity advantage, II. 119-11.124
domain in blue-green plane, II. 120-11.122
incremental distance calculation, 11.117—11.119
ordering, II. 124-11.125

Inverse of a matrix, see Matrix, inverse
IRE unites, 11.152
Irradiance, III.319-III.320
Iso-surface, IV.324
Isotropic transformations, normal vector, 1.542
Isovalue contours, from pixmap, III.29-III.33,

III.432
Iteration, rotation tools, 1.468

Jacobian matrix, 11.184, III.155, III.158
Jarvis, Judice, and Nanke filter, 11.68
Jell-O, IV.375
Jitter, generation, 1.64-1.74

computational cost, 1.67-1.68
error analysis, 1.72
sampling properties evaluation, 1.69-1.72

Jittered sampling, IV.370
Jitter function

use in ray tracing, 1.72-1.74
using look-up tables, 1.65-1.67

K

Knot insertion, IV.252
into B-splines, II.425-II.427

Kochanek-Bartels formulation, II.417-11.419
Kronecker delta function, IV. 158, IV. 167
Kuhn's triangulation, box, III.246-III.247,

III.252-III.253

Label placement on maps, IV.497
Lagrange polynomials, V.210

Volume l-V Cumulative Index 0 423

Lambertian radiosity model, 11.385
Lambert 's law of absorption, 11.279
Lanczos2 sine function

decimation, 1.160-1.161
frequency response, 1.164-1.165
interpolation by factor of two, 1.158-1.159

LanczosS filter, III. 14, III. 16
Lanczos-windowed sine functions, 1.156-1.158
Lattice, integral, integral radius circle on, 1.57—1.60
Law of cosines, 1.13
Law of sines, 1.13
Law of tangents, 1.13
Layout, IV.497, IV.505
Ldexp, II.82-IL83
Least-squares approximations, Bezier curves and

surfaces, II.406-IL411
Least-squares fit, linear, V.92
Length-preserving matrix group, 11.344-11,345
Level set, 1.552
Levi-Civita symbol, IV. 158, IV. 167
Lie algebra, V.59
Light

absorption
homogeneous media, II.278-11.280
inhomogeneous media, II.280-11.281
translucent media, II.277-11.282

reflection, 11.282
Lighting, see also Illumination

computations. III.226
Light sensing device, II. 161-11.162
Line

area of intersection, thick, with circle, 1.40-1.42
clipping, see Clipping, line
distance to point, I.IO, II.10-II.13
intersection, see also Scanline coherent shape

algebra
Apollonius's 10th problem, II. 19-11.24
bounding circle, II. 14-11.16
calculation, polygons, 1.128
with circle, 1.5-1.6
circle containing intersection of two circles,

II. 17-11.18
distance from point to line, II. 10-11.13
of line segments, II.7-II.9, III.199-III.202,

III.500
Peano curve generation algorithm,

IL25-II.26
point of, 2D, I . l l
segments, 11.7-11.9
space-filling curve, IL27-II.28
3D, 1.304
2D, IV.141
traversal, II.26-IL27

joining two with circular arc fillet,
III.193-III.198, III.496

segment, face connected, generation in
n-dimensional space, III.89-III.91,
III.460

subsegment. III. 189
tangent

to circle, 1.5
to circle and perpendicular to line, 1.8-1.9
to two circles, 1.7-1.8

vertical distance to point, 1.47-1.48
Linear color rendering, III.343-III.348, III.583
Linear congruential generators, 1.67
Linear feedback shift register, 1.222
Linear interpolation, see Interpolation
Linear transformations, IL335-II.337

nonsingular, decomposing, III.108-III.112
singular, decomposing, IIL112-III.116

Line drawing, 1.98
anti-aliasing lines, 1.105-1.106
digital, I.99-I.100
for fast linear interpolation, IV.526
fat lines on raster grid, 1.114-1.120
filling in bevel joints, 1.107-1.113
symmetric double step line algorithm,

I.101-I.104
for 3D voxel traversal, IV.366
two-dimensional clipping, 1.121—1.128

Line-edge intersections, uniform grid, 1.29-1.36
Line equation. III. 190
Line parameterization, V.92
Line structures, 2D, L3-I.4
Lissajous figure. III. 166
Locally circular assumption, 1.599-1.600
Lookup table (LUT), IV.424, IV.449, IV.468, see

also Color maps
color, 11.139
nonlinear pixel mappings, 1.253

Logarithmic space, interpolation, III. 121
Lorentz transformations, III.59-III.60
LU decomposition, 11.349
Luminaires, power from, 11.307
Luminance-color difference space, 11.147
Luminance meter, II. 159-11.160

M

M2, 11.154
Mach band effect, II.235-II.236
Magic square

dither, II.60-II.62
as outer product, 11.74

Magnification of image, IV.449
Mailbox, 11.264

algorithm, 11.268
Mailbox technique, III.285-III.286
Manhat tan distance, 1.432, II.258-II.259
Map-making, IV.497

424 0 Volume l-V Cumulative Index

Mapping
nonlinear pixels, 1.251-1.253
original colors onto representatives, 1.291
RGB triples, II. 143-11.146
3D, 1.306

Map projections, I.307-I.320
Alber's, I.321-I.325
central (gnomonic), 1.315, III.314
cylindrical, 1.310, 11.440, III.290
equal area, 1.312, 1.318, 1.321
Mercator's conformal, 1.313, 11.445
orthographic, 1.316
Sanson's sinusoidal, 1.314
stereographic, 1.316, 11.385

Maps, cyHndrical, I.310-I.311
Marching cubes, IV.325, V.98
Marsden identities, V.160, V.166
Martian panoramas, III.291-III.293
Mass, superquadric, III.139-III.140, III. 152
Mathematician's tea, V.37
Matrix

of central moments, IV. 194
decomposition, IV.207

into simple transformations, II.320-11.323
determinant, IV.154, IV.167
eigenvalues

3 x 3 matrix, IV. 195
4 x 4 matrix, IV.201, IV.209

exponential, II.332-II.333
inverse, IV. 199, IV.534
subroutine library for 3 x 3 and 4 x 4 , IV.534

Matrix groups, 11.344
affine, 11.345
angle-preserving, 11.345
inverse, II.348-II.349
length-preserving, II.344-11.345
membership and privileges, II.346-11.347
nonsingular, 11.345

inverse, 11.350
window-to-viewport, 11.344

inverse, 11.348
Matrix identities, 1.453-1.454
Matrix inversion, I.470-I.471, II.342-II.350

elementary, 11.347
evaluation strategy, II.347-II.348
problem statement, 11.342

Matrix multiplication, fast, 1.460-1.461
Matrix orthogonalization, 1.464
Matrix techniques, 11.319

cross product, 11.333-11.334
data recovery from transformation matrix,

II.324-II.331
4 x 4 matrices, II.351-II.354
linear transformations, II.335-11.337
notation, 11.338

pseudo-perspective, II.340-11.341
quaternions, II.351-11.354
random rotation matrices, II.355-II.356
shear, II.339-II.340
small sparse matrix classification, II.357-11.361
tensor product, 11.333-11.334
transformations as exponentials, II.332-II.337

Matrix-vector, II.360-II.361
Mechanical simulation, mass and spring model,

IV.506
Median cut algorithm, 1.288
Median finding, 3 x 3 and 5 x 5 grid, 1.171-1.175
Medical imaging, contrast enhancement, IV.474

volume data, IV.324, IV.366, IV.521
Memory allocator, III.49-III.50, III.448
Menelaus's theorem, II.424-II.427, V.213
Mensuration, see Area; Volume
Mercator projection, 1.311-1.313
Meridians, I.310-I.311
Mesh

computing normals for 3D, IV.60
generation for 2D region, IV.47

Metric properties, transformations, 1.543-1.544
Metric tensor, 1.543-1.544
Microdot distribution, V.297
Mirror image, transformation matrices, 1.474

data recovery from, 11.327
Mitchell filter, III.15-III.16
Modeling, see also Curves and surfaces; Polygon

affine transformations, 1.539-1.542
Modified cylindrical equidistant projection, 1.311
Modified facet shading, II.236-II.237
Moire patterns, III.339-III.340, V.300
Molecular graphics, IV. 193
Mollweide's Formula, 1.13
Monitor, white point, setting, II. 159-11.162
Monochromatic triples, 11.146
Monochrome enlargements, smoothing, 1.166-1.170

pattern within rules, 1.169
rules, 1.166-1.167

Monomial evaluation algorithm, Bezier curves,
1.590-1.591

Monomial form, conversion
from Bezier form, I.592-I.593
to Bezier form, I.591-I.592

Monte Carlo
label placement, IV.498
sampHng, IV.370

Monte Carlo integration, III.80, V.359
spectral radiance, 111.308

Morphing, IV.445
Motion blur, graphics workstation, III.374-III.382

code, III.606
combining spatial and temporal anti-aliasing,

III.376-III.378

Volume l-V Cumulative Index 0 425

computing on fields, IIL375-IIL376
implementation tricks, III.380-111.382
interlace artifact reduction, III.378-III.379
pixel shifts, III.380-III.381
supersampling in time, III.374-III.375

Multidimensional sum tables, 1.376-1.381
d-dimensional, 1.380-1.381
three-dimensional, 1.378-1.380
two-dimensional, 1.376—1.377

Multi-indices, 11.412
Multilinearity, V.215
Multiple-angle relations, 1.17
Multiple output levels, halftoning to, II.64-11.65
Multivariate approximation, Bezier curves and

surfaces, 11.409

N

Narrow domains, aliasing, II. 123-11.124
National Television Systems Committee, encoding

basics, II.148-II.152
AT-dimensional

distance, IV. 120
extent, overlap testing, III.240-III.243, III.527
geometry, IV. 149
space, face connected line segment generation,

III.460
Nearest neighbor, V.3D, V.65
Nearest-point-on-curve problem, 1.607-1.611

Bezier form conversion, 1.609-1.611
problem statement, 1.608-1.609

Nesting, I.467-I.468
Negative light, III.367
Neumark's algorithm, V.9
Neutral file format (NFF), V.398
Newell's method, plane equation of polygon,

III.231-III.232, III.517
Newton-Raphson iteration, digitized curve fitting,

I.621-I.623
Newton's Formula, 1.14, I.596-I.598
NextFaceAroundVertex, II. 195-11.196
Nice numbers, for graph labels, 1.61-1.63
Nine-point circle, IV. 143
Noise function, V.367
Noise thresholding, edge images, II. 105-11.106
Nolid, 1.238
Nonhomogeneous coordinates, 1.523
Nonlinear pixel mappings, 1.251-1.253
Nonlocality tension, 11.238
Nonsingular matrix group, 11.345

inverse, 11.350
Nonuniform random point sets, via warping,

III.80-III.83
Normal buflPer, I.257-I.258

Normal coding, I.257-I.264
encoding methods, 1.258-1.263

improving, 1.263-1.264
index number, 1.260
principles, I.258-I.259

normal buffer, 1.257-1.258
Normal map, 1.260
Normal vector, 1.539-1.540

of cylinder, IV.359
of ellipsoid, IV.113-IV.114
interpolation, IV.404
n-dimensional, IV. 156
rotation, IV. 168
superquadrics. III. 148
in 2D, IV.138
vertex, IV.60

Normals, see Surface normal
NTSC encoding, see Pixel encoding
Null transform, 1.196-1.197

Numerical and programming techniques, 11.365,
III.47

arctangent, approximation, II.389-11.391
bit picking, II.366-11.367
cross product, in four dimensions and beyond,

III.84-III.88
face-connected line segment generation,

n-dimensional space, III.89-III.91,
III.460

fast generation of cyclic sequences,
III.67-III.76, III.458

fast memory allocator, III.49-III.50, III.448
Fourier transform, II.368-II.370
generic pixel selection mechanism, III.77-III.79
half-angle identity, II.381-II.386
IEEE fast square root, III.48, III.446
integer square root algorithm, II.387-11.388
interval arithmetic, III.61-III.66, III.454
interval sampling, II.394-11.395
nonuniform random point sets, via warping,

III.80-III.83
Perlin noise function, recursive implementation,

II.396-II.401
rolling ball, III.51-III.60, III.452
sign of cross product calculation, II.392-11.393
using geometric constructions to interpolate

orientation with quaternions,
II.377-II.380

NURBS (nonuniform rational B-spline), IV.256,
IV.286, V.216

Object area, II.26-11.27
Object space partitioning, III.284-III.287
Object-space rendering, 11.26
Octahedral subdivision, see Ellipsoid generation

426 0 Volume l-V Cumulative Index

Octahedron, dihedrals, II.174-II.175
Octree, 1.288, IV.74

bit interleaving, 1.443-1.447
Octree quantization, 1.287-1.293

algorithm, 1.289
color table filling, I.290-I.291
evaluation of representatives, 1.289-1.290
improvements, I.291-I.292
mapping onto representatives, 1.291
memory and computational expense,

I.292-I.293
principle, 1.288

Octree-to-Boundary conversion, II.214-11.218
Octree-to-PCS, II.214-II.215
Offset prints, 11.165
1-to-l pixel transforms, I.196-I.209

color-map manipulation, 1.270-1.274
contrast enhancement transform, 1.197-1.198,

I.201-I.202, I.270-I.271, 1.274
gamma correction function, 1.199, 1.203-1.206,

1.270, 1.273
null transform, 1.196-1.197
photo-inversion transform, 1.196, 1.198,

I.270-I.271
quantization transform, 1.196-1.197, 1.199,

1.270, 1.272
sawtooth transform function, 1.203, I.207-I.209

Opcode, 11.36
Open curves, cubic spline interpolation formulas,

I.582-I.583
Optical character recognition (OCR), V.329
Optimal sampling patterns, V.359
Ordered dithering, I.176-I.178, V.297

color, II.73-II.75
matrix, II.58-II.60

Orientation, of triangle, IV. 144
Orientation control, IV. 175

mouse-driven, rolling ball, III.51-III.60, III.452
Oriented lines, V.50
Orthogonalization, matrix, 1.464
Orthogonal loops, 1.105
Orthogonal projection

transformation matrices, 1.475
in 2D, IV.142

Orthogonal transformations, normal vectors,
I.542-I.543

Orthographic projection, 1.309, 1.316
Orthonormal base

movement from one to another, 1.508
3D viewing and rotation using, 1.516-1.521

general rotations, 1.520-1.521
new approach, 1.517-1.520
UVN coordinate system, 1.518-1.519
viewing transformation, pseudo-code, 1.521

Overcrossing correction, III.179-III.180
Overlapping testing, n-dimensional extent,

III.240-III.243, III.527

Packing
body centered cubic (bcc), V.68
face centered cubic (fee), V.68
circumspherical, V.67, V.270

Painter's algorithm, see Back to front polygon
ordering

Paint program, IV.433
PAL encoding, II.153-II.154
Panoramic virtual screen, ray tracing,

III.288-III.294, III.551
Parallel connected stripes representation,

II.203-II.204
Parallelepiped, IV. 155, IV. 161
Parallelogram, IV. 140

approximation, 1.183-1.184
Parallelohedron, V.67
Parallel projection, transformation matrices, 1.475
Parametric continuity, 1.616, 11.430-11.431
Parametric elliptical arc algorithm

code, III.478
conjugate diameters, III.169-III.171
digital generation of sinusoids, III.167-III.169
quarter ellipse, III.164-III.165
simplifying computation, III.171-III.172

Parametric surfsice, see Surfaces, parametric
Parametric surface functions, superquadrics,

III.146-III.147
Partitioning

object space, III.284-III.287
3-D polygons, III.219-III.222, III.502

Patch, see Surfaces, parametric
Patch visibility index, 11.313
Pattern mask, 11.57
PCS-to-boundary conversion, 11.205
PCS-to-Chain procedure, II.205-II.206
Peano curve, 1.28, II.27-11.28

coherence of transversal sequences, II.28-11.30
generation algorithm, 11.25-11.26

Perception
of brightness, IV.416
of texture patterns, IV.487

Perimeter, triangles, 1.20
Periodic plane tesselation, 1.129-1.130
Perlin noise function, recursive implementation,

II.396-II.401
Perp-dot product, IV. 139, V.400
Perpendicular bisector, IV. 139

intersection, triangles, 1.22-1.23
Perpendicular vector, see Normal vector
Perspective, n-dimensional, IV. 153

Volume l-V Cumulative Index 0 427

Perspective projection, transformation matrices,
1.475

PHIGS PLUS, II.138-II.142, 11.420
implementation, II. 141-11.142
pseudo color

interpolation, II. 140-11.141
mapping, II. 138-11.140

Phong illumination (specular formula), IV.385,
IV.388

Phong shading (normal vector interpolation),
IV.60, IV.404

Phosphors
chromaticity, 11.151

coordinates, 11.161
spectral emission curve, II. 160-11.161

Photo-inversion transform, 1.196, 1.198, I.270-I.271
Physically based methods, for graph layout, IV.506
PipeUne accelerator, III.383-III.389
Pixel, II.80-II.83

angular width, III.289
band, anti-aliasing, II.445-11.446
components, II. 109-11.110
destination, contributors to. III. 12
gamma-corrected byte storage, 11.80
locations, II.33-II.34
nonlinear mappings, 1.251-1.253
remapping, 11.78
replication, 11.79
selection mechanism, III.77-III.79
sub-sampling, 11.79
triangular, anti-aliasing, III.369-III.373
unportable bits, 11.81

Pixel coordinates, L246-I.248
continuous, 1.246
converting, I.247-I.248
discrete, 1.246
along unit axis, 1.250

Pixel encoding, see also Color quantization
floating point, common exponent, 11.80
hyperbolic, IV.422
logarithmic {/i - 255 law), 1.251-1.253
non-linear luminance scaling, IV.415
NTSC broadcasting, 11.147

Pixel value, dynamic range, IV.415, IV.422
Pixmap, generating iso-value contours from,

III.29-III.33, III.432
Planar cubic curves, 1.575-1.578
Planar polygon, area, 11.170
Planar rotations, III.124-III.126
Planar subdivision, IV.47
Plane

arbitrary, partitioning 3D convex polygon with,
IIL219-III.222, III.502

comparing two, III.229-III.230

crystallographic groups, 1.129-1.133
embedding, intersection with ray, 1.390-1.391
frame buffer, I.217-I.218
intersection of three, 1.305
periodic tilings on raster grid, 1.129—1.139

wallpaper groups, 1.129-1.133
signed distance to point, III.223-III.224, III.511

Plane equation of polygon, Newell's method,
III.231-III.232, IIL517

Plane-to-plane intersection, III.233-III.236, III.519
Point

distance to line, 1.10, II. 10-11.13
vertical, I.47-I.48

generating random, triangles, 1.24-1.28
generation equation, 11.179
mutual visibility, 1.30-1.31
signed distance to plane, III.223-III.224, III.511
3D, I.522-I.523, 1.526

Point distributions (uniform)
interval (progressive), II.394-11.395
sphere, 1.320, III. 117, III. 126
triangle, 1.24

Point in polygon testing, IV. 16, IV.24
Point-on-line test, 1.49-1.50
Point-triangle intersection, II.259-11.261
Polar decomposition of matrix, IV.207
Polygon, see also Polyhedron

area, II.5-II.6, IV.3, IV.141
spherical, IV. 132

bounding volume, III.296
centroid, IV.3
convexity testing, IV.7, IV.25, IV.141
intersection

calculation, 1.128
fast scan conversion, 1.96
with ray, I.390-I.394

nearly coplanar, grouping into coplanar sets,
III.225-III.230, III.512

plane equation, Newell's method,
III.231-III.232, III.517

point in polygon testing, IV. 16, IV.24
random point, 1.24-1.28
shading, IV.404
Sutherland-Hodgman clipper, III.219-IIL222
texture-space images, 1.366-1.367
3-D, partitioning, IIL219-III.222, III.502
triangulation, IV.47
from twisting reference frames, 1.567-1.568
user-provided display routines, radiosity,

II.295-II.298
Polygonal pens, 1.114-1.117
Polygonization

implicit surface, IV.324
parametric surface, IV.287
planar region, IV.47

428 0 Volume l-V Cumulative Index

Polygon partitioning
concave, V.50
general 2D in 3D, V.386
by half-space membership, V.122
triangulation, V.394

Polygon scan conversion, 1.76-1.83, IV.404
algorithm, I.77-I.82
arbitrary polygons, 1.92-1.97
background, 1.76-1.77
concave, I.87-I.91
fast, I.92-I.97

active edge lists, 1.92-1.93
convex decompositions, 1.97
intersecting polygons, 1.96
traffic between registers and memory, 1.92
x-transition table, 1.93-1.95
y extrema and memory requirements,

I.95-I.96
generic, and chpping, 1.84-1.86
half-open intervals, III.362-III.365, III.599
implementation notes, 1.82-1.83
reducing code redundancy, 1.84
vertices during scan conversion, 1.78-1.79

Polygon stretching, 1.127-1.128
Polyhedra figures

cube (hexahedron), V.67
elongated dodecahedron, V.67
hexagonal prism, V.67
hexakis octahedron, 83
octahedron, V.83
rhombic dodecahedron, V.67-V.68, V.83
trapezoidal icositetrahedron, V.83
truncated octahedron, V.68

Polyhedron, see also Polygon
collision detection, IV.78, IV.83
convex, ray intersection, II.247-11.250
exact dihedral metrics, II. 174-11.178
inferring topology, IV.61
normal vector, IV.60
regular, II.174-II.175
3D, I.565-I.566
volume, II.170-II.171

Polylines, V.212
circular arc, II.435-II.437

Polynomial equations, bracketing real roots, see
Strum sequences

Polynomials
Horner's rule, II.420-II.421
symmetric evaluation, II.420-11.423

Polytope, IV.84, IV. 149
semiregular, V.67, V.78, V.83

Pool, III.49
Popularity algorithm, 1.288

Post-concatenation, transformation matrices,
I.476-I.481

PostScript language, IV. 145, IV.380
Power relations, 1.15
Prediction-correction coding, II.93-11.94, see also

Image file compression
Primitives, rectangular bounding volumes,

III.295-III.300, III.555
Product relations, 1.16
Programming techniques, see Numerical and

programming techniques
Progressing refinement, radiosity, V.290
Progressive image refinement, gridded sampling,

III.358-III.361, III.597
Projection

Albers equal-area conic map, 1.321-1.325
azimuthal, I.314-I.317
data recovery from transformation matrix,

II.329-II.331
equations, view correlation, II. 182-11.183
general, 1.318
hemispherical, triangle, III.314-III.317, III.569
Mercator, 1.311-1.313
n-dimensional, IV. 152
properties, digital cartography, 1.307-1.308
Sanson-Flamsteed sinusoidal, 1.312-1.314
transformation matrices, 1.475
onto vector in 2D, IV. 142

Projective transformations, decomposing,
III.98-III.107

first decomposition algorithm, III.99-III.100
fourth decomposition algorithm, III.104-III.106
second decomposition algorithm, III.100-III.102
third decomposition algorithm, III.102-III.104

Proximity testing, I.237-I.239
Pseudo color

interpolation, PHIGS PLUS, II. 140-11.141
mapping, PHIGS PLUS, II. 138-11.140

Pseudo-perspective, II.340-11.341
Pyramid geometry, rendering with iterated

parameters, II. 186-11.187
Pythagorean relation, 1.57
Pythagorean theorem, 1.599
Pythagorean triangles, prime, 1.58

Quad-edge data structure, IV.48
Quadratic spline, nonuniform, II. 101-11.102
Quadratic surface, equation, III.275-III.279
Quadratic triangles, conversion to rectangular

patches, III.256-III.259, III.536
Quadric surface, V.3, see also Surfaces, implicit

intersection with ray, III.275-III.283, III.547
surface normal, III.282-III.283

Volume l-V Cumulative Index 0 429

Quadtree/octree-to-boundary conversion,
II.202-II.218

Bottom-Up, 11.206, IL208-II.209
Octree-to-Boundary conversion, 11.214—11.218
Octree-to-PCS, II.214-II.215
parallel connected stripes representation,

II.203-II.204
PCS-to-boundary conversion, 11.205
PCS-to-Chain procedure, II.205-II.206
quadtree-to-boundary conversion, 11.21 l-II.213
Quadtree-to-PCS, IL211-II.213
Top-Down, II.206-II.208, 11.210

Quadtrees, 11.31
bit interleaving, 1.443-1.447

Quadtree-to-PCS, II.211-II.213
Quantization, see also Color quantization

comparison of techniques, 1.293
logarithmic, IV.420, IV.422

Quantization transform, 1.196-1.197, 1.199, 1.270,
1.272

Quarter ellipse algorithm, III. 164-111.165
Quartic equations, V.4

Descartes-Euler-Cardano, V.8
Ferrari's, V.7
Neumark's, V.9

Quartic roots, I.406-I.407
Quaternions, I.498-I.515, II.351-II.354, IV.151,

IV.175, IV.209, IV.222, IV.232
algorithmetic implementation, 1.509-1.515
definition, I.499-I.500
geometric construction interpolation of

orientation, II.377-II.380
interpolation with extra spins, III.96-III.97,

III.461
movements from one orthonormal base to

another, 1.508
properties, I.501-I.502
as rotation groups, V.62, V.84
rotations. III.57

in 3D space, 1.503-1.506
set of unit, properties, 1.502-1.503

Quotient space decomposition, V.61

Radiosity, II.293-II.294, III.227, III.269-III.270
accurate form-factor computation,

III.329-III.333, III.577
adaptive meshing, shadow boundary detection,

II.311-II.315
advantage, 11.295
extensions, II.308-II.309
fast vertex update, II.303-II.305
form factors, 11.295

hemi-cube algorithm, cubic tetrahedral
adaptation, II.299-II.302

linear approximation, vertex-to-vertex form
factors, III.318-III.323

progressive, II.296-11.297
implementation, II.297-11.298
refinement, II.306-11.307

ray-traced form factors, II.312-11.313
by ray tracing, II.306-11.310
sending power with rays, II.307-11.308
user-provided polygon display routines,

II.295-II.298
Random, see also Jitter

integers, generation, 1.438-1.439
points in triangles, 1.24-1.28

Random color map animation algorithm,
II.134-IL137

Random distributions, see also Point distributions
general equations, 111.80
interval (progressive), II.394-11.395
jitter sampling, 1.64, IV.370
pseudo-random (PRN) sequences, 1.222-1.225
rotation matrices, 11.355, corrigendum: III. 117

Random noise function, II.396-11.401
Random-number generator, 11.136
Random rotation matrices, II.355-11.356,

III.117-III.120, III.463
Random rotations, uniform, III.124-III.132,

III.465
from Gaussians, III. 129

Raster grid
periodic tilings of plane, see Plane, periodic

tilings on raster grid
rendering fat lines, 1.114-1.120

Raster image, 90-degree rotation, 11.86
Rasterizing, see Scan conversion
Raster representation, 11.111
Raster rotation, fast algorithm, 1.179-1.195

advanced anti-aliasing, 1.194-1.195
arbitrary rotation, 1.186-1.187
circle drawing, 1.192-1.193
comparisons, 1.190-1.191
font rendering, 1.193
further work, 1.195
generalized BitBlt, 1.193-1.194
history, I.191-I.192
implementation, 1.187-1.190
parallelogram approximation, 1.183-1.184
rational rotation, 1.184-1.186
rotation through shearing, 1.181-1.183
statement of problem, 1.180

Raster shearing, 1.179, 1.183-1.184
Rational curves, V.214
Rational numbers, V.25
Rational rotation, 1.184-1.186

430 0 Volume l-V Cumulative Index

Ray
definition, 11.248
intersection with

elliptical torus, II.251-II.256
object, eliminating calculations,

III.284-III.287
quadric surface, III.275-III.283, 111.547
sphere, I.388-I.389

Ray-box intersection, fast, 1.395-1.396
Ray-convex polyhedron intersection, 11.247-11.250
Ray equation, 11.180
Rayleigh probability density function, 11.106
Ray-object intersection, 1.387

tags, II.264-II.266
Ray-plane intersection, II.258-11.259
Ray-polygon intersection, 1.390-1.394
Ray-polyhedron test, II.247-II.250
Ray rejection test, I.385-I.386, III.281-III.282
Rayshade, 11.186, II.188-II.190
Ray tagging, voxel-based ray tracing, II.264-11.266
Ray tracing, II.245-II.246, III.269

algorithm, 1.64
avoiding incorrect shadow intersections,

II.275-II.276
body color model, II.277-II.282
with BSP tree, III.271-III.274, III.538
code, IV.420, IV.534
distribution, direct lighting, III.307-III.313,

III.562
eliminating ray-object intersection calculations,

III.284-III.287
hemispherical projection of triangle,

III.314-III.317, III.569
hierarchy traversal, II.267-II.272
intersection

ray and sphere, I.388-I.389
ray with quadric surface, III.275-III.283,

III.547
intersection testing, see Intersection
jitter function use, 1.72-1.74
linear-time simple bounding volume,

III.301-III.306
minimal, IV.375
panoramic virtual screen, 111.288-111.294,

III.551
radiosity by, II.306-II.310
ray-convex polyhedron intersection,

II.247-II.250
ray-object intersection, 1.387
ray-polygon intersection, 1.390-1.394
ray rejection test, 1.385-1.386
recursive shadow voxel cache, II.273-11.274
sampling, IV.370
shadow attenuation, II.283-II.289

transparent objects, shadow attenuation,
I.397-I.399

voxel-based, II.264-II.266
Ray-triangle intersection, 1.393

binary recursive subdivision, 11.25 7-11.263
constraints, 11.257
point-triangle intersection, II.259-11.261
ray-plane intersection, 11.258-11.259
C/, V computation, II.261-II.262

Real roots, bracketing, see Strum sequences
Reconstruction of continuous function from

discrete samples, IV.521
Rectangle, intersection with circle, fast checking,

I.51-I.53
Rectangular Bezier patches, conversion of Bezier

triangles, III.256-III.261, III.536
Rectangular bounding volumes, primitives,

III.295-III.300, III.555
Recursion property, Bernstein polynomials, 1.614
Recursive shadow voxel cache, II.273-11.274
Reference frames

calculation along space curve, 1.567-1.571
rotation minimizing frames, 1.569
twisting, polygons from, 1.567-1.568

Reference geoid, 1.309
Reflectance, IV.385, IV.388
Reflection, wavelength-dependent, II.286-11.287
Refraction

Snell's law, I.353-I.354
wavelength-dependent, 11.286-11.287

Regions, 1.560
Relative motion, transformations, III. 122
Relaxation, IV.498, IV.506
RemoveEdge, 11.198
Rendering, III.337, see also Illumination; Ray

tracing; Shading
anti-aliasing

edge and bit-mask calculations for,
III.349-III.354, III.586

triangular pixels, III.369-III.373
darklights, III.366-III.368
fast linear color, III.343-III.348, III.583
motion blur on graphics workstations,

III.374-III.382, III.606
pipeline accelerator, 111.383-111.389
polygon scan conversion, using half-open

intervals, III.362-III.365, III.599
shader cache, III.383-III.389
shadow depth map, III.338-III.342, III.582

Rendering software
Bezier curves, V.206
Bresenham algorithm, exact clipping, V.317
BSP tree based, V.131
Z-buffer based, V.398

Rending equation. III.307

Volume l-V Cumulative Index 0 431

Representative color, 11.116
Representative tree, III.228
Resampling, see also Anti-aliasing

curve, IV.441
image, IV.440, IV.449

Rescaling, filtered image, III.8-III.16, III.414
Residency masks, III.284-III.287
RGB, transform from HSL, I.448-I.449
RGB-to-YIQ encoding, 11.151
RGB triples, mapping, II. 143-11.146

onto four bits, 1.233-1.245
algorithm design, 1.241-1.242
Cartesian quantization versus polyhedra,

I.244-I.245
complexity analysis, 1.244
cuboctahedron, 1.237
dual solids, I.236-I.237
eight-point color cube, 1.233-1.234
four-bit color solid, I.235-I.236
gray interior points, 1.244
half-space testing, 1.240-1.241
hexagonal construction, 1.238
nolid, 1.238
proximity testing, 1.237-1.239
related methods, I.239-I.240
rhombic dodecahedron, 1.236
three versus four bits, 1.243-1.244

RGB values
gamma-corrected, 11.157
unencodable, 11.147

RGBZ interpolation, V.398
Rhombic dodecahedron, 1.236

bcc packing, V.68
Rigid-body motion, equations, superquadric,

III.149-III.150
Ritter's simple bounding sphere technique,

III.305-III.306
RMS error, 11.104
Roberts's method, 11.96
Rolling ball, III.51-III.60, III.452, V.55
Rolling-ball algorithm

extensions, III.56-III.60
four Euclidean dimensions, III.58-III.59
group theory of infinitesimal rotations,

III.56-III.57
implementation, III.54-III.56
Lorentz transformations, III.59-III.60
quaternion rotations, III.57
using, III.53-III.54

Root finding, 1.403
Bezier curve-based, see Bezier curve-based

root-finder
cubic, I.404-I.407
for polygonization, IV.326
quartic, I.406-I.407

ray tracing, see Intersection
subroutines, IV.558

Root-finding algorithm, I.412-I.413
Rotation

bit patterns for encoding angles, 1.442
data recovery from transformation matrix,

11.326
Euler angle, IV.222
fast 2D-3D, I.440-I.441
about general line, orthonormal bases,

I.520-I.521
geometrical representation, 1.503-1.504
interactive 3D, IV. 175
n-dimensional, IV. 151
quaternion, see Quaternions
raster, see Raster rotation
run-length encoded image data, II.86-11.88
3D space, see also Orthonormal base

quaternions, 1.503-1.506
transformation matrices, 1.474
twist control, IV.230

Rotation groups, V.59
Rotation matrix, 1.180, see also Random rotation

matrices
homogeneous, 11.352
random, II.355-II.356

Rotation matrix methods, 1.455
fast matrix multiplication, 1.460-1.461
matrix inversion, 1.470—1.471
matrix orthogonalization, 1.464
rotation tools, 1.465-1.469
transforming axes, 1.456-1.459
virtual trackball, I.462-I.463

Rotation minimizing frames, 1.569
Rotation tools, I.465-I.469

converting between matrix and axis-amount
representations, 1.466-1.467

iteration, 1.468
nesting, I.467-I.468
transformation inverses, 1.468

Rounded corners, IV. 145
Run-length encoding, adaptive, II.89-11.91

Sagitta, V.169
Sampled data, defining surfaces from, 1.552-1.557
Sampled signals, 1.147
Sampling

optimal patterns, V.359
solid-angle based, V.287
stochastic, IV.370

supersampling, V.248
Sampling Theorem, 1.147
Sanson-Flamsteed sinusoidal projection,

I.312-I.314

432 0 Volume l-V Cumulative Index

Satellite, 111.24
Sawtooth transform function, 1.203, I.207-I.209
Scaling

bitmap, optimization, III.17-III.19, III.425
data recovery from transformation matrix,

IL327-II.328
transformation matrices, 1.474-1.475

Scan conversion, 1.75, see also Polygon scan
conversion

lines in 3D, IV.366
Scanline coherent shape algebra, II.31-11.45

algorithm, II.34-II.37
applications, II.41-11.44
background, II.31-II.32
data structures, II.32-11.34
difference, II.39-II.40
improvements, II.44-11.45
intersection, 11.37
union, II.38-II.39
utility functions, II.40-11.41

Scanline depth gradient, Z-buffered triangle,
I.361-I.363

Scanline-object rejection, V.242
Scatterplot, IV. 193, IV.497
Seed fill algorithm, 1.275-1.277
Segment data structures, II.33-11.34
Seidel's algorithm, V.394
Selective precipitation (halftoning), V.302
Sequential probability test ratio, V.356
Serpentine raster pattern, 11.67, 11.69
SetWings, II.194-II.195
Shader cache, III.383-III.389

effectiveness. III.388
implementation, III.385-III.388
logical arrangement, 111.384
results, III.388-III.389
shading cache, 111.385

Shading
fast dot products, I.348-I.360
fence, IV.404
Gouraud, IV.60, IV.404, IV.526
Phong, IV.60, IV.404
from z-buffer, IV.433

Shading rays, caching, 11.268
Shading techniques, incremental and empirical,

IL233-IL236
Shading tension, 11.238
Shadow algorithm, II.284-II.285
Shadow attenuation, II.283-11.289

naive scheme, II.283-II.284
wavelength-dependent reflection and refraction,

II.286-II.287
Shadow boundaries

detection, adaptive meshing in radiosity,
II.311-II.315

subdivision criteria, II.313-11.315
visibility index, 11.313

Shadow cache, 11.273
Shadow depth map, III.338-III.342

boundary case, III.340-III.341
code, III.582
Moire pattern problem, III.339-III.340
optimization. III.341

Shadow generation, approximations, 11.283
Shadow object caching, 11.268
Shadows, 1.278

attenuation for ray tracing transparent objects,
I.397-I.399

filling, I.280-I.281
intersections, avoiding incorrect, II.275-11.276

Shadow voxel cache, II.273-II.274
Shaft culUng, III.333
Shape

algebra opcodes, 11.36
decomposition, 11.32
parameters, 11.431, 11.433

Shape-box routine, II.40-11.41
Shape construction, 1.551
Shape representations, stored as linked lists, 11.32
Shape vectorization, V.323
Shared chord, 1.44
Sharpening filter, II.53-11.55
Shear, II.339-II.340, I I I . l lO- I I I . l l l , III.113

data recovery from transformation matrix,
II.328-II.329

geometry, 11.339
Shearing

algorithm, 1.188
raster rotation through, 1.181-1.183
scan-hne, 1.187-1.190

Shear matrices, 1.181
Short loops, unrolling, III.355-III.357, III.594
Shuffle generator, 1.66
Signed distance, point to plane, III.223-III.224,

III.511
Simplex

dividing boxes into, III.252-III.253
n-dimensional, IV. 149
polygonization with tetrahedra, IV.326
splitting into simploid, III.253-III.255
subdividing, III.244-III.249

applications, III.248-III.249
code, III.534
recursively, III.244-III.246
symmetrically, III.246-III.248

Simplex object, V.99
Simploids, III.250-III.255, see also Box; Simplex

dividing boxes into simplices, III.252-III.253
splitting simplices into, III.253-III.255

Simulated annealing, IV.498

Volume l-V Cumulative Index 0 433

Sine function, 1.156-1.157
Lanczos2

decimation by, 1.160-1.161
interpolation by factor of two, 1.158-1.159

Lanczos-windowed, 1.156—1.158
Sine, in exponentials, 1.15
Singular value decomposition, IV.209, V.115
Sinusoids, digital generation, III.167-III.169
Skeleton, image, IV.465
Slerp interpolation, V.62
Small sparse matrix, classification, II.357-11.361
Smoothing, II.53-II.54

of data, IV.241
Smoothing algorithm, monochrome enlargements,

1.166-1.170
Smooth shading, see Shading
Snell's law, refraction, 1.353-1.354
Snub disphenoid, 11.178
Snub figures, II.177-II.178
Sobel and Prewitt operators, 11.105
Software, see also Rendering software

graphics libraries, V.400
scrambling integers in, 1.223
engineering, IV.377

Solid modeling, III.226
Solids

box-sphere intersection testing, 1.335-1.337
quasi-regular, II.174-11.175

Space curve, reference frame calculation,
I.567-I.571

Space-filling curves, II.3-II.4, II.27-II.28
Space packing lattices, crack prevention,

11.174
Space subdivision, Voronoi, V.268
Span, 1.278

data structure, 11.33
processing, II.34-11.35

Span conversion, unrolling short loops,
III.355-IIL357, III.594

Sparse matrix
classification, II.357-II.361

zero structures, II.357-11.358
multiplying a vector, II.360-11.361

S-patch surfaces, V.219
Spatial classification

n-T> semiregular cubic solids, V.78
n-D Voronoi cells, V.270
parallelohedral decomposition (space packing),

V.67
Spatial da ta structure, see Bounding box; Grid;

Octree
Spatial rotations. III. 128
Special effects

contrast enhancement, I.197-I.198, I.201-I.202,
L270-I.271, 1.274

dissolve, see Digital dissolve effect
photo-inversion, 1.196, 1.198, I.270-I.271

Spectral decomposition of matrix, IV.209
Spectral radiance. III.307
Specular reflection, 11.234, IV.385, IV.388, IV.404
Sphere, 1.326

bounding volume, III.298-III.299
box-sphere intersection testing, 1.335-1.339
intersection with ray, 1.388-1.389
moving on, II.172-11.173

Spheres-to-voxels conversion, 1.327-1.334
Spherical

arc, IV. 132
code to draw, IV. 178
polygon, IV. 132

excess, IV. 132
Spherical coordinate transformation, 1.317-1.318
Spherical distribution, uniform, III.126-III.127
Spherical luminaire, importance sampling,

III.310-III.311
Spherical polygons, V.42
Spherical projection, V.43
SPHIGS package, V.398
Spinors, III.57
Splined interpolation. III. 122
Splines, 1.585-1.586, see also B-spline; Curves and

surfaces
SplitEdge, II. 197-11.198
SPRT, V.356
Square root

fixed point, V.22
floating point, inverse, V.16
high speed, low-precision, 1.424-1.426
IEEE, III.48, III.446

Square root algorithm, II.387-II.388
Staircase patterns, V.338
State, code generation, 11.35
Statistics, visualizing 3D data, IV. 193
Stereographic map, 1.316, 11.385
Stipple, IV.487
Stirling's numbers, 1.597
Stochastic sampling, IV.370
Stochastic supersampling, V.248
Storage-free swapping, 1.436-1.437
Stretcher-algorithm, III.6
Stretching, bitmap, III.4-III.7, III.411
Strum sequences, 1.416-1.422

characteristics, 1.420
counting sign changes, 1.419-1.420
driving algorithm, 1.418-1.419
example, 1.417-1.418
method of bisection, I.420-I.421
pseudo-division of polynomials, 1.419

Strum's Theorem, I.416-I.417
Stucki filter, 11.69

434 0 Volume l-V Cumulative Index

Subdividing motion, transformations, III. 123
Subdivision

angle, see Ellipsoid generation
arcs, circular, V.168
Bezier, parametric, see de Casteljau algorithm
chord, nonuniform, V.171
curve, V.174
parametric curve, IV.251, IV.263
parametric surface, IV.287
simplices, III.244-III.249, III.534
space (Voronoi), V.268
surface, V.104
triangulation, IV.47

Subgroup algorithm, III.129-111.131
Subpixel coordinates, 1.77-1.78
Subtabulation, 1.601
Sum tables, multidimensional, see

Multidimensional sum tables
Superquadrics

review, III.137-III.138
rigid physically based, III.137-III.159, III.472

center of mass. III. 139
derivation of volume, mass, and inertia

tensor, III.152-III.159
equations of rigid-body motion,

III.149-III.150
inertia tensor, III.140-III.145
"inside-outside" function, III.147-III.148
normal vectors. III. 148
parametric surface functions, III.146-III.147
quantities, III.138-III.145
volume, density, and mass. III. 139-111.140

Surface description
by n-D cubic cells, V.98
by quadrangle mesh, V.235
by triangular mesh, V.232
by voxel, V.273

Surface normal
quadric surface, III.282-III.283
3D models, I.562-I.566
torus, determination, 11.256

Surface-normal transformations, 1.539-1.547
affine modeling transformations, 1.539-1.542
backface culling, 1.544-1.545
composition, 1.543
isotropic transformations, 1.542
orthogonal transformations, 1.542-1.543
shading, 1.545-1.547
transformations of metric properties,

I.543-I.544
Surfaces, see also Curves and surfaces

cell ambiguity, V.98
contours, V.99
defining

from contour data, 1.558-1.561

from sampled data, 1.552-1.557
assumptions, 1.552-1.553
methods, 1.553-1.557

implicit
blob, IV.324
cone, IV.321, IV.355
cylinder, IV.321, IV.353, IV.356
ellipsoid, IV.113
hyperplane, IV. 154
polygonization, IV.324

parametric
B-spline, IV.286
Bezier, IV.278, IV.290
bilinear Coons patch, IV.438
biquadratic rectangular, IV.278
ellipsoid, IV.114
hyperplane, IV. 162
NURB (nonuniform rational B-spline),

IV.286
poly gonizat ion, IV.287
quartic triangular, IV.278
rational, IV.286
reparametrization, IV.278
subdivision, IV.287

polyhedron, see Polyhedron
quadric, V.3
S-patch, V.219
subdivision, V.104
tensor-product, V.219
tessellated, V.232

Surface shading, 11.234
SU(2) spinors, III.57
Sutherland-Hodgman algorithm, 11.220, 11.231
Sutherland-Hodgman clipping, V.51
Sutherland-Hodgman polygon clipper,

III.219-III.222
SVD, IV.209, V.115
Swapping, see Element exchanging
Swept contours, 1.562-1.564
Swept spheres, V.258
Symmetric double step line algorithm, 1.101-1.104

double speed Bresenham's, 1.101-1.102
line drawing, 1.101
using symmetry, 1.102-1.104

Symmetric evaluation, polynomials,
II.420-II.423

Synthetic actor, 11.241

TARGA file format, V.398
Television color encoding, II. 147-11.158

chrominance, 11.150
color reference frame, 11.148
component systems, 11.154

Volume l-V Cumulative Index 0 435

HDTV, II.154-II.155
hot-pixel test, 11.155-11.157
IRE unites, 11.152
luminance-color difference space, 11.147
NTSC encoding basics, II. 148-11.152
PAL encoding, II. 153-11.154
unencodable RGB values, 11.147

Temporal refinement, progressive, recording
animation in binary order, 1.265-1.269

Tensor
modern view, 1.533—1.535
product, II.333-II.334, III.85

matrix, 1.473
surfaces, V.219

Tent filter, I.149-I.150, II.51-II.52
Tessellated surfaces, V.232
Tessellation, see Polygonization
Tetrahedron, dihedrals, II. 174-11.175
Text, placement on maps, IV.497
Texture

bump mapping, IV.433
environment mapping, IV.435
synthesis, IV.401

Texture cell, I.366-I.367
types, I.371-I.372

Textured cylinder, I.366-I.367
Texture map indices, interpretation, 1.366—1.376

algorithm, I.373-I.375
decision tree, I.369-I.371
replicating cells to create larger texture, 1.369
rigid transformation of square cell,

I.374-I.375
texture space as two-torus, 1.367-1.368
types of cells, I.371-I.372

Texture mapping, III.227
Texture-space images, polygons, 1.366—1.367
Theiessen tessellation, 11.117, IV.47, V.269
Theorem

divergence, V.40
Green's, V.40
Menelaus, V.213

Thinning, image, IV.465
Thomas precession. III.60
3 x 3 matrix, zero structures for, II.358-11.359
Three-dimensional geometry, 1.297-1.300, 11.169,

III.213, see also Digital cartography
backface cuHing, I.346-I.347
Bezier triangle conversion to rectangular

patches, III.256-III.261, III.536
boxes, 1.326
curve tessellation criteria, III.262-III.265
fast n-dimensional extent, III.240-III.243,

III.527
grouping nearly coplanar polygons into

coplanar sets, III.225-III.230, III.512

homogeneous clipping, triangle strips,
II.219-II.231

InterPhong shading, II.232-II.241
intersection

of three planes, 1.305
of two lines, 1.304

mapping, 1.306
moving on a sphere, II.172-11.173
Newell's method, III.231-III.232, III.517
planar polygon, area, 11.170
plane-to-plane intersection, III.233-III.236,

III.519
polyhedra

exact dihedral metrics, II. 174-11.178
volume, II. 170-11.171

quadtree/octree-to-boundary conversion,
II.202-II.218

signed distance from point to plane,
III.223-III.224, III.511

simploids, III.250-III.255
spheres, 1.326
spheres-to-voxels conversion, 1.327-1.334
subdividing simplices, III.244-III.249, III.534
3D grid hashing function, 1.343-1.345
3D polygon partitioning, III.219-III.222,

III.502
triangle-cube intersection, III.236-III.239,

III.521
triangles, III.215-III.218
view correlation, II. 181-11.190
viewing geometry, II. 179-11.180
winged-edge model maintenance, II.191-11.201

Three-dimensional grid, defining surfaces from
sampled data, 1.552-1.557

Three-dimensional homogeneous clipping, triangle
strips, II.219-II.231

against non-normalized clipping volume,
II.224-II.225

algorithm study, II.220-II.223
data study, II.219-II.220
implementation, II.225-IL229
memory considerations, II.223-11.224

Three-dimensional models, surface normals,
I.562-I.566

Three-dimensional polygons, partitioning,
III.219-IIL222, III.502

Three-dimensional vector C, library, III.399
Threshold dithering, IL58-II.63
Thresholding matrix, 11.57, V.297
Tick marks, 1.61-1.63
Tilings, periodic, plane on raster grid, 1.129-1.139
Top-Down, IL206-II.208, 11.210
Topology

polygon data, IV.61
rotation space, IV.230

436 0 Volume l-V Cumulative Index

Toroids, superquadric
inertia tensor, III. 141
"inside-outside" function, III. 148
normal vectors, III. 148
parametric surface functions, III. 147
shells, III.157-III.159
volume. III. 140

Torus
bounding volume. III.299
determining surface normal, 11.256
efficient bounding, II.254-IL255

Trackball, virtual, I.462-I.463
Transformation, III.95

angle-preserving, IV. 199
axis-aligned bounding boxes, 1.548-1.550
decomposing linear and affine, III.108-III.116
as exponentials, II.332-11.337
fast random rotation matrices, III.117-III.120
interpolation, using Bezier curves,

III.133-III.136, III.468
keyframing, III.121-III.123
length-preserving, IV. 199
matrix, see Matrix
projective, decomposing, III.98-III.107
quaternion interpolation with extra spins,

III.96-III.97, III.461
relative motion. III. 122
rigid physically based superquadrics,

III.137-III.159, III.472
subdividing motion. III. 123
subroutines, IV.534, IV.558
3D, coding, see Quaternions
uniform random rotations, III.124-III.132,

III.465
for visualization, IV. 193

Transformation identities, 1.485-1.493
anisotropic scaling following rotation, 1.490
commuting

rotation and anisotropic scaling, 1.490
rotation and isotropic scaling, 1.488
skewing and isotropic scaling, 1.489

exchanging order
of skews, 1.491
of translation and rotation, rules, 1.487

matrix representations of primitive
transformations, 1.492-1.493

reversing order
skewing and anisotropic scaling, 1.489
translation and scaling, 1.487
translation and skewing, 1.488

rotation expressed as
combination of skews and scales, 1.489
three skews, 1.489

skew expressed as two rotations and a scale,
1.491

Transformation inverses, 1.468
Transformation matrix, 1.472-1.475

data recovery, II.324-II.331
mirror image, 11.327
projection, II.329-II.331
rotation, 11.326
scaling, II.327-II.328
shear, IL328-II.329
translation, 11.326

DDA coefficient conversion between-step sizes,
1.602

mirror image, 1.473
notation, 1.472, I.485-I.486
observations, 1.472
post-concatenation, 1.476-1.481

computational cost comparison, 1.479-1.481
direct, I.478-I.479
implementation, 1.476-1.477

primitive transformations, 1.492-1.493
projection, 1.474
rotation, 1.473
scahng, I.473-I.474
translation, 1.472

Transforming axes, 1.456-1.459
Transition table, I.93-I.95
Translate and rotate algorithm, III.174-III.179
Translation, transformation matrices, 1.473

data recovery from, 11.326
Translucent media, light absorption, II.277-11.282
Translucent objects, ray tracing, shadow

attenuation, II.283-II.289
Transmission coefficient, 11.278
Transparent objects, ray tracing, shadow

attenuation, I.397-I.399, II.283-IL289
Transpose of the inverse, 1.541
Trapezoidal

icositetrahedron, V.83
test, V.236
decomposition, from polygon, V.394

Traversal, II.26-II.27
coherence, 11.30

Triangle, I.20-I.23, III.215-III.218
area, 1.20
in center, 1.20-1.21
center of gravity, 1.20-1.21
circumcenter, 1.20-1.23
circumradius, 1.20-1.23
decomposition from polygon, V.395
generating random points, 1.24-1.28
hemispherical projection, III.314-III.317,

III.569
hypotenuse, 1.57-1.59
intersection

of altitudes, 1.22
of perpendicular bisectors, 1.22-1.23

Volume l-V Cumulative Index 0 437

with ray, 1.393, IL257-II.263
perimeter, 1.20
prime pythagorean, 1.58
in radius, I.20-I.21

Triangle-cube intersection, III.236-IIL239, III.521
Triangle filter, II.51-IL52, III.13, III.15
Triangle strips, three-dimensional homogeneous

clipping, II.219-II.231
Triangular interpolants, 1.535-1.538
Triangular luminaire, importance sampling,

III.312-III.313
Triangular pixels, anti-aliasing, IIL369-III.373
Triangulation, IV.47
Tricubic interpolation, V.107
Trigonometric formulas

basic formulas, 1.12-1.17
dihedral, 11.174
halved tangent, 1.184-1.185, 11.381
spherical, 1.317, II.442-II.445
values, closed-form expressions, 1.18-1.19

Trigonometry
angle sum and difference relations, 1.16
DeMoivre's Theorem, 1.15
double-angle relations, 1.17
fixed-point, CORDIC, I.494-I.497
functions, 1.18-1.19

sums and differences, 1.14
half-angle relations, 1.16
inverse functions, 1.14
Law of Cosines, 1.13
Law of Sines, 1.13
Law of Tangents, 1.13
Mollweide's Formula, 1.13
multiple-angle relations, 1.17
Newton's Formula, L14
power relations, 1.15
product relations, L16
sines and cosines and exponentials,

L15
Trilinear interpolation, see Interpolation
Triple scalar product, IV. 155
Tristimulus values, II.159-II.160
Truncated octahedron (fee packing), V.68
Tubular extrusions, V.258
Twist reduction in animation, IV.230
Two-dimensional array, randomly traversing,

digital dissolve effect, 1.221-1.222
Two-dimensional clipping, 1.121-1.128

algorithm, 1.124-1.126
approximation error, 1.186
basic considerations, 1.123-1.124
implementation, 1.126-1.127
integers and vectors, 1.121-1.122

Two-dimensional drawing, intersection, exact
computation, III.188-III.192, III.491

Two-dimensional geometry, 1.3-1.11, II.3-II.4,
III. 163, see also Triangle

area, polygon, II.5-II.6
circles, 1.4-1.5
connection algorithm, III.173-III.181, III.480
cosine of angle between lines, 1.11
distance from point to line, 1.10
fast circle clipping algorithm, III.182-III.187,

III.487
intersection of circle and line, 1.5-1.6
lines tangent

to circle and perpendicular to line, 1.8-1.9
to two circles, 1.7-1.8

line structures, 1.3-1.4
parametric elliptical arc algorithm,

III.164-III.172, III.478
point of intersection between lines, 1.11
point-on-line test, 1.49-1.50
triangles, I.20-I.23

Two-dimensional prediction, 11.95
Two-dimensional rendering, circles of integral

radius on integer lattices, 1.57—1.60
Two-dimensional screen point, 11.181
Two-dimensional template, minimum, 11.95
Two-dimensional vector C, library. III.396

U

Uniform distributions, see Point distributions and
Random distributions

Uniform grid, line-edge intersections, 1.29-1.36
Uniform quantization, 1.288
Unimodular transforms, 1.135
Union, scanline coherent shape algebra, II.38-11.39
Unit quaternions, set, properties, 1.502-1.503
Univariate approximation, Bezier curves and

surfaces, II.406-II.407
Unrolling short loops, span conversion,

III.355-IIL357, III.594
Utility functions, scanline coherent shape algebra,

II.40-II.41
UVN coordinate system, 1.518-1.519
C/, V values, II.261-II.262

Variable control point approximation, curve
interpolation, II.417-II.419

Variance minimization, color quantization based
on, 11.127

Vector operations, C macros, III.405
Vector rotation, CORDIC, I.494-I.497
Vectors

cross product, see Cross product
differences with forms, 1.533-1.535
dot product, see Dot product
norm, IV. 120

438 0 Volume l-V Cumulative Index

Vectors (cont.)
normal, see Normal vector
subroutine library for 2D, 3D, and 4D, IV.534,

IV.558
3D, 1.522-1.523, 1.526
triangular interpolants, 1.535—1.538

Vertex dependence, II.238-II.239
Vertext normal, IV.60

computing, 1.563-1.565
Vertex-to-vertex form factors, linear radiosity

approximation, III.318-III.323
Vertical distance, point to line, 1.47-1.48
Vertical sampling. III.291
Video signal amplitudes, 11.152
View correlation, II.181-II.190

chain rule, 11.184
example, II.188-11.190
implementation details, II. 185-11.188
iteration parameters, 11.184—11.185
mathematical basis, II. 182-11.185
projection equations, II. 182-11.183
pyramid geometry, rendering with iterated

parameters, II. 186-11.187
2D screen point, 11.181

View-frustum culling, V.127
Viewing, 3D, see Orthonormal base
Viewing geometry, II. 179-11.180
Viewing transformation, pseudo-code, 1.521
Virtual screen

cylindrical, III.290-III.291
panoramic, ray tracing, III.288-III.294, III.551

Virtual trackball, 1.462-1.463
Visibility algorithm, I.30-I.31
Visibility index, 11.313
Visualization

of graph, IV.505
of n-dimensional data, IV. 149
of 3D point data, IV. 193

Visualization for Planetary Exploration Lab,
III.291

Volume
hexahedron, V.39
n-dimensional parallelepiped, IV. 155, IV. 161
n-dimensional simplex, IV. 154
polyhedron, V.37
superquadrics, III.139-III.140, III. 152
tetrahedron, IV. 162, V.38

Volume model, procedural "hypertexture", IV.401
Volume rendering, IV.324, IV.366, IV.521
Voronoi diagram, 11.117, IV.47, V.269
Voxel cache, II.273-II.274
Voxel subdivision, 3D grid hashing function,

1.343
Voxel traversal, IV.366
Voxel walking, V.273

W

Wallpaper groups, tiling in raster grids,
I.133-I.139

Warp, IV.440
Wave generators, V.367
Wavelength-dependent reflection and refraction,

II.286-II.287
WEdgeData structuTe, II.192-11.194
Wedge product, III.85-III.88
Whitening filter, 11.95
White point

chromaticities, II. 148-11.149
monitor, setting, II. 159-11.162

Wide line bevel joints, algorithm for filling in,
I.107-I.113

Winding number, IV.22, IV.25
transitions, 1.94-1.95

Window data structure, 11.42
Window-to-viewport matrix group, 11.344

inverse, 11.348
Window tree, 11.42
Winged-edge data structure, IV.48
Winged-edge library, fundamental operations,

11.191
Winged-edge models, maintaining, II. 191-11.201

Euler operators, 11.197
inputFace, 11.196
inputVertex, 11.196
InsertBridge, II. 199-11.201
NextFaceAroundVertex, II.195-11.196
RemoveEdge, 11.198
SetWings, II. 194-11.195
SplitEdge, II. 197-11.198
WEdgeData structure, II.192-11.194

World coordinates, inertia tensor. III. 145
Write-only write mask, reading, 1.219-1.220
WShape, 11.192
Wu's algorithm, 11.127
Wu's anti-aliased circles, II.448-11.449

algorithm, 11.447

X-Z

XOR cursor, III.77, IV.413
X-transition table, 1.93—1.95
Y extrema, polygon fast scan conversion, 1.95-1.96
Z-buffer, V.398

shading from, IV.433
Z-buffered triangle, scanline depth gradient,

I.361-I.363
Zero-phase filters, frequency response, decimation

by two, 1.162
Zero structures, II.357-II.358

for 3 X 3 matrix, II.358-II.359
Zonotopes, V.70

Other AP PROFESSIONAL Titles of Interest

GRAPHICS GEMS PACKAGE
Special Package---Buy the First Three Hardcover Volumes for the Price of Two!
GRAPHICS GEMS- Edited by Andrew J. Glassner
GRAPHICS GEMS II - Edited by James Arvo
GRAPHICS GEMS III- Edited by David Kirk

The GRAPHICS GEMS Series was started in 1990 by Andrew Glassner. The vision and pur-
pose of the Series was--and still is--to provide tips, techniques, and algorithms for graphics
programmers. All of the gems are written by programmers who work in the field and are moti-
vated by a common desire to share interesting ideas and tools with their colleagues. Each
volume provides a new set of innovative solutions to a variety of programming problems.

ISBN: 0-12-270350-2 ONLY $99.95

FROM PIXELS TO ANIMATION- An Introduction to Graphics
Programming
by James Alan Farrell

/ /
From Pixels to Animation: An Introduction to Graphics Programming will serve as an intro-
duction to graphics programming as well as a complete graphics reference for the experi-
enced graphics programmer. It covers the basics of graphics programming, from how a
graphics monitor works to how to draw realistic 3-D images. The book thoroughly explains the
history and inner workings of graphics theories and monitors, and includes advanced topics
and tools--so that even experienced graphics programmers will benefit. A basic knowledge
of C is assumed, but no prior graphics experience is necessary.

ISBN: 0-12-249710-4 Paperback, $39.95

TEXTURING AND MODELING: A Procedural Approach
by David Ebert, F, Kenton Musgrave, Darwyn Peachey,
Ken Perlin, Steve Worley

This book contains a toolbox of procedures upon which programmers can build a library of
procedural textures and objects. Procedural rendering, modeling, shading and texturing are
of growing importance in computer graphics and animation, and, this is the first comprehen-
sive book covering these topics. It also includes extensive explanations of how these func-
tions work, and how to design new functions.

ISBN" 0-12-228760-6 Hardcover, $49.95

VIRTUAL REALITY EXCURSIONS
With Programs in C
by Christopher D. Watkins and Stephen R. Marenka B
This book makes the current applications of virtual reality accessible to the PC user. The
authors have developed software, the 3D World Editor, and an Architecture Visualizer that
enables readers to create their own virtual environments. The topical coverage is extensive
and focuses on a few primary application areas: 3D CAD modeling and architectural model-
ing, flight simulation, and gaming. 3D Glasses Included!

ISBN: 0-12-737865-0 Paperback, $39.95

LEARNING WINDOWS TM PROGRAMMING WITH VIRTUAL REALITY
by Christopher D, Watkins and Russell J, Berube Jr, ! /
This is an innovative book for teaching programming. Throughout the book, readers will
develop a 3-D Virtual Reality game as they learn the Windows programming techniques. The
3-D engine provided with the book generates textured and interactive 3-D imagery like those
found on two very popular shareware games~Wolfenstein 3-D and Doom. Explanations for
development in both DOS and Windows (3.1 and higher) are included.

ISBN: 0-12-737842-1 Paperback, $39.95

RADIOSITY AND REALISTIC IMAGE SYNTHESIS
by Michael F. Cohen and John R. Wallace

This is the first book to provide a comprehensive look at the radiosity method for image syn-
thesis and the tools required to achieve quality results. The book provides valuable assis-
tance to professionals involved in creating realistic computer images~ including architects
and industrial designers, and to those in the entertainment and advertising industries, com-
puter aided design, computer graphics (including virtual reality), and medical imaging fields.
Includes 16 pages of full-color images.

ISBN: 0-12-178270-0 Hardcover, $49.95

3-D SOUND FOR VIRTUAL REALITY AND MULTIMEDIA APPLICATIONS
by Durand R. Begault

One of the key underlying technologies of immersive virtual reality (VR) is 3-D sound. This is
the first introduction to 3~D sound theory and applications aimed at the commercial
engineer. It will provide the reader with an understanding of the communication chain
between source and listener. Special features include components of spatial auditory displays
and psychoacoustics of spatial hearing. Begault overviews many different applications for
spatialized sound, including: auditory feedback, communication systems, aeronautics, com-
puter music, sonification, television and computer interfaces.

ISBN" 0-12-084735-3 Hardcover, $49.95

USING DIGITAL VIDEO / / / by Arch Luther

Digital motion video and sound are now available for any personal computer and can be
installed inexpensively and easily by any PC user. This book teaches the principles of digital
video and audio, and provides a comprehensive look at the technical aspects of both analog
and digital video. It also provides all the information necessary to incorporate and distribute
video and audio into existing applications, electronic presentations, and information, including
production and postproduction.

ISBN" 0-12-460432-3 Paperback, $34.95

VIDEO COMPRESSION FOR MULTIMEDIA
by Jan Ozer

..... .: " "~ , : ~ i

©

This book thoroughly covers and demonstrates the latest compression technologies including
JPEG, MPEG, Fractals, Vector Quantization and Wavelets. Readers will learn how to apply
compression theory during filming to create footage that compresses well on a digital plat-
form. Ozer also explains how to optimize compression settings to achieve the highest possi-
ble compressed video quality and how to create and integrate video into windows applications.

ISBN: 0-12-531940-1 Paperback, $39.95

This Page Intentionally Left Blank

Plate Vl.la. Random dithering. Plate Vl.lb. Ordered dithering.

Plate VI.lc. Clustered dot dithering. Plate Vl.ld. Ordered dithering (improved).

PlateV.Ta.
light.

Original scene under an ambient Plate V.7b. Directional illumination under
ambient sources.

Plate V.7c. Final convergence to a radiometric
solution.

Plate II.7. Hexakis octahedron approximating
the unit sphere.

Plate VI.6. Adaptive progressive refinement
(8000 rectangles).

