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0 Foreword 

Andrew S. Glassner 

Computer graphics exists because people have messages to communicate. As our tools 
for rendering, modeling, and animation become more sophisticated, we find it ever 
easier to create meaningful statements. But the tools of graphics are rarely the point of 
our enterprise; our goal is to enable meaningful communication of important ideas. To 
create meaning we must make creative choices, and this leads us to the creation of art. 

There are many ways to define art, and perhaps no definition will ever work univer-
sally. For now, I will use a broad definition that includes all "technical" creations and 
say that any creative act can result in art, whether it produces a painting, a song, a 
video showing tidal forces on Saturn, or a daydream. The last example is something 
created purely to entertain its creator; all other forms of art are vehicles for commu-
nication. Every image we produce with computer graphics that is ultimately destined 
to be shown to another person contains a message: the image is simply the vehicle for 
communicating that underlying idea. That idea may be very simple {e.g., a restful ar-
rangement of colors), or very complex (e.g., particle flow in turbulent water), but the 
image is always subservient to the message: without its intended message, the image 
has no intrinsic value. 

For these reasons, I believe that as we develop our tools we must keep in mind 
how they help people create, refine, and present their ideas. Each new option in a 
paint program, each new method for interpolating 3D keyframes, and indeed every new 
technique, should be evaluated in terms of not just its technical performance, but also 
in terms of whether it improves people's ability to communicate. 

The point of view that images exist to carry messages is quite far from the idea that 
computers should be generating their own images. The concept of computer-generated 
art (as opposed to computer-assisted art, which is what we have now) has been around 
as long as computers and science fiction have been around. Sometimes hailed as a good 
and sometimes couched as a warning, the idea that computers might start creating 
images, films, sculptures, and other artifacts in the same form as traditional media 
carries with it some interesting questions for those of us who create images to express 
our ideas and who create new tools for that purpose. 

The computer is the perfect simulator and imitator, but only along one axis of the 
human experience: intellectual analysis. This is an essential part of what it is to be 
human, but not the whole thing. It is, however, the only tool at our disposal as creators 
of new hardware and software, because the computer is inherently a logical, rational 
device. We have no way of writing an intuitive or spiritual program; those ideas just 
don't fit into the computer model. We can force these ideas onto the Procrustean bed 

IX 
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of computers and try to create an algorithmic model of intuition, but I believe this does 
more harm than good: it means distorting the very nature of something not based on 
reason to codify it using the tools of reason. Perhaps someday there will be a way to 
emulate intuition and imagination and soul, but I see no hope of doing that with the 
machines and ideas that form the field of computers as we know them now. 

Without these essential human characteristics, a computer by itself cannot produce 
art that carries anywhere near the levels of meaning that a human artist can provide. An 
artifact produced by a person carries within it many layers of conscious and unconscious 
thought, imagination, filtering, selection, phrasing, shaping, and so on. Artists struggle 
to find the right way to present something, to find the essential core of the message they 
are communicating. Even practical artists, for example, those who produce images of 
traffic flow on urban streets, select shapes and colors and compositions that work best, 
as judged by both objective and subjective criteria. We can try to codify our processes 
for these selections and judgments, but so many of them happen so deeply inside us 
that often the best we can do is create a behaviorist's paradise: a book of rules that, 
when obeyed, usually produces a reasonable result. Music composed by mechanically 
following the rules of theory is nothing like what a five-year-old makes when banging 
on a piano, but which has more heart? Which speaks more directly to us as people? 

Returning to computer graphics, I believe that the best images and films are the 
ones that are made by people with something to say, and that we should address our 
tools to helping those people with their message. We ought not to try to place layers of 
computer-generated art over their message in order to make it look more sophisticated, 
creative, or artistic in some way, because this creates information without meaning. 

Let us take as an example an imaginary lighting system (unimplemented to my knowl-
edge) that attempts to provide lighting for scene designers. Someone creates an image 
or animation that appears splotchy; that is, there are some large dark regions and ev-
erything else is about evenly lit. The person invokes the lighting system, which inserts 
a new light to illuminate the dark regions. Is this a good thing? Consider that the new 
light may create new highlights if the surfaces are shiny—do those highlights draw a 
viewer's eye away from a region of more importance? Does the new light create shadows 
that change how the surface appears to move? Is it simply out of place in some way? 
Perhaps. The computer can't answer these questions, because they are vague and hard 
to define—two of the characteristics of a problem ill-suited for computerization. It is 
better to leave the creator of the image to define and place that light than to do it 
automatically. This has very little to do with expertise and experience, and everything 
to do with the complex job of trading off countless vague and intuitive decisions when 
we create anything. Whatever the person decides, it will have been a decision formed 
and evaluated by someone with intent, and, like the five-year-old on the piano, the mes-
sage, even if imperfectly stated, is always more important than whether or not the rules 
were followed. To break the rules we sometimes need tools more powerful than the ones 
we've had in the past. And when we share those tools, the entire community gains as 
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we discover each other's insights. Part of the inspiration for the Graphics Gems series 
was to provide some of the small and large tools that would prove useful to creative 
people working on creative tasks. 

So it is with great pleasure that I welcome you to Graphics Gems V, a volume of 
new and useful tools for you to apply to your work as you create images, films, and 
the systems that help people create them. My goal in this series has been to provide 
programmers with tools that have been forged by necessity, shaped by experience, and 
shared through a sense of community. 

When I had the original idea for the first Graphics Gems, I was inspired by a wallet-
sized card one of my college professors carried, which had the entire APL language 
(with examples!) printed on its two sides. I thought Gems would be a small paperback 
book that you could just carry around casually; in fact, we were uncertain that we could 
fill enough pages, even with large type and wide margins, to make it financially sound 
to print the book. The flood of high-quality submissions I received in response to the 
original solicitation quickly changed that premise, and now we have produced five large, 
densely packed volumes. 

It gives me particular pleasure to note that all of the source code for all the Gems 
books is freely available to the public through many different channels. This is important 
to me, and I thank AP Professional for supporting this approach. You can now find 
much of the Gems source code on disk and CD-ROM, as well as through anonymous 
ftp, the World Wide Web, and other Internet servers. 

The tools in this book are yours, to extend your reach, conserve your time, and 
encourage you to reach for ever-higher dreams. Enjoy! 
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0 Preface 

As with previous volumes of the Graphics Gems series, this book ultimately serves 
a number of purposes. First, it provides a recognized, moderated forum of computer 
graphics dialogue, allowing emerging techniques to come to light before a large audience. 
Where possible, it places evolving methods within their historical context through its 
choice of entries and through interactions between the technical editor and each contrib-
utor. My emphasis on the latter, which took the form of providing citations lists, related 
articles, and copyediting for many authors, proved to be both a major undertaking and 
a rewarding task. 

Second, the book serves as a means of dissemination and distribution of this infor-
mation across a broad and secure domain. Today, the contents of this book "in any 
form and by any means, electronic or mechanical" is circulating in libraries lacking 
the benefits of Internet access. Tomorrow, it will be in libraries that will abandon 
that network. I regard my floppy disk from Volume III as both a landmark step in 
publishing and a 5 1/4'' historical keepsake. [As an electronic document, the diskette 
included with this book contains code from all five volumes. The original authors have 
in some cases revised their entries to correct bugs or to cite related work; see, for ex-
ample, the code that accompanies Volume IV's "Point in Polygon Strategies." This 
decision in not running previous code verbatim also keeps the diskettes up to publica-
tion date with respect to their anonymous FTP mirrors at Princeton.edu (see under 
/pub/Graphics/GraphicsGems) and elsewhere.] 

Finally, the book provides information in a medium that will never be outmoded. 
Good gems and good books are worthy of rereading simply on their own merit. The 
best implementations appearing here either transcend the C language in which they 
were first coded or are presently reembodied in C merely for the time being. Ultimately, 
this volume is not a summary of past work but a congress of ideas looking toward the 
electronic frontier. 

Notable entries include Herbison-Evans' noniterative root solver, which opens the 
volume. Its code has perhaps the oldest pedigree of any gem, having begun life on an 
English Electric KDF9 in Algol-60 before migrating to an IBM 7040 (Fortran), thence to 
a PDPl l /34 . Other feature-length entries include the surveys. Chin's illustrative binary 
space partition "walk-through" is detailed to the point of a complete implementation, 
making it a welcome contribution for even the casual graphics programmer. Of similar 
value is the book's concluding survey of four extended graphics libraries. Owing to 
the extreme code length of these and a few other gems, only excerpts appear in print, 
though such gems in toto may truly be said to exist between the book's covers. Gems 
lacking code (the other extreme) are more rare; Goldman provides a remarkably concise 
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summary of curve and surface basis identities annotated with a valuable citations list. 
Finally, most of the entries in Part VI collectively describe advances in halftoning and 
image processing at the state of the art that beckon for further experimentation. 

The editor wishes to acknowledge two who helped make this work possible: Eric 
Haines served as an external reviewer for four submissions and also provided editorial 
assistance in rewriting a portion of one contribution. Special thanks go to MIT's resident 
expert in communication policy, Dr. Branko Gerovak, who ran a make-shift Mass Ave 
sneaker net one late Cambridge afternoon in early Fall and to the AP PROFESSIONAL 
staff—Jenifer Niles, sponsoring editor, Cindy Kogut, production editor, and Jacqui 
Young, editorial assistant—who coordinated and managed the entire project. 

0 Afterword 0 
Five years ago a friend and fellow PARC alumnus conceived of a computer graphics text 
unlike any previous. A collected work, its appendices would contain full implementa-
tions—in C and placed in the public domain—of the algorithms it described. For many 
of us, Glassner's book offered the perfect niche for the mathematical tools and tricks 
accumulated over years of graphics programming, whose essential design details would 
fit neither a short note nor a journal article. Hitherto, our gems-in-the-rough were 
strewn across the backs of envelopes, among disk subdirectories, and within desk-side 
shoe boxes. We polished what we had, contributed liberally, then waited. The book 
proved a runaway success. 

An evolution of volumes followed. In the second, Arvo captured many more gems not 
already in hardback (together, those texts total nearly fifteen hundred pages). Color 
plates were added. While the form and style of the book remained unchanged per se, 
the accompanying code was already ensconced on an Internet-based repository at Yale 
by the time the edition appeared in print. 

The third volume retained the color plates while the FTP mirror migrated from Yale 
to Princeton. More important, the code was reproduced on floppy disk attached to the 
back cover, wherein it became a physical portion of Kirk's volume. Not coincidentally, 
a book leading the edge in graphics content was also pushing the envelope in methods 
of electronic publishing, as suggested by the four ISBN numbers that catalogue both 
the printed pages and IBM/Macintosh diskettes. 

These advances, plus the sizable niche market of literate computer professionals, 
helped give rise to AP PROFESSIONAL. The fourth volume, edited by Heckbert, 
became a founding entry. The Internet was more widely employed for manuscript sub-
mission as well as correspondence. Accordingly, a standardized typesetting language 
(L^TgX) was chosen and a book style sheet provided. As a consequence, that volume— 
and this which follows—underwent an appendectomy in that the code listings now 
accompany their respective gems. In short, gems publication has became a desktop 
enterprise for nearly all parties involved. 
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This is the fifth collection of graphics gems, those practical programming essentials. 
The fifth volume in a series traditionally provides a summary of work to date. With 
this in mind, the gems were solicited (electronically) with two requests. First, that 
they constitute summary works. Second, that they satisfy my benchmark for a good 
gem: Would the author look up their own work? What came over the transom were 
over one hundred highly diverse submissions. Herein are four dozen shining examples 
from contributors who span four continents and who have widely diverse professional 
backgrounds. While there are only a few summary gems, each entry is unique, at times 
scintillating, and worth reading carefully many times over, as I have already done. 

To the gems! 

Alan Paeth 
Kelowna, British Columbia 
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Algebra and Arithmetic 

The gems in this section describe general mathematical techniques having ready applica-
tion to computer graphics. The methods are crafted with both efficiency and numerical 
stability in mind. 

Herbison-Evans' root finder (LI) offers the penultimate word in polynomial root 
finding for computationally closed forms. One immediate gem application generalizes 
the efficient 3D eigenvalue finder (gem III.2 in volume IV) onto the 4D case. Turkowski 
(1.2, 1.3) provides two elegant and efficient (inverse) square root finders. The first is 
optimized for use with floating-point hardware and requires no divisions; the second 
is suitable for integer hardware and features a fixed binary point having adjustable 
position. Shoemake (1.4) discusses the utility of rational approximation and derives an 
implementation more stable than one based upon first principles. The availability of his 
code makes it a useful tool in crafting well-tuned software, as when finding the integer 
coefficients for the code that concludes gem II.7. 
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01.1 
Solving Quartics and Cubics 
for Graphics 

Don Herbison-Evans 
Central Queensland University 
Bundaberg Campus 
herbisod@musgra ve. cqu. edu. au 

0 Introduction 0 

In principle, quartic and cubic equations can be solved without using iterative tech-
niques. In practice, most numerical algorithms based directly upon analytic solutions 
of these equations are neither well-behaved nor efficient. This gem^ derives a robust 
C-language implementation based upon the solutions of Neumark and Ferrari. Its su-
periority in controlling both round-off error and overflow is also demonstrated. 

0 Background 0 

Quartic equations need to be solved when ray tracing fourth-degree surfaces, e.g., a 
torus. Quartics also need to be solved in a number of problems involving quadric sur-
faces. Quadric surfaces (e.g., ellipsoids, paraboloids, hyperboloids, cones) are useful in 
computer graphics for generating objects with curved surfaces (Badler and Smoliar 
1979). Fewer primitives are required than with planar surfaces to approximate a curved 
surface to a given accuracy (Herbison-Evans 1982b). 

Bicubic surfaces may also be used for the composition of curved objects. They have the 
advantage of being able to incorporate recurves: lines of inflection. There is a problem, 
however, when drawing the outlines of bicubics in the calculation of hidden arcs. The 
visibility of an outline can change where its projection intersects that of another outline. 
The intersection can be found as the simultaneous solution of the two projected outlines. 
For bicubic surfaces, these outlines are cubics, and the simultaneous solution of two of 
these is a sextic which can be solved only by iterative techniques. For quadric surfaces, 
the projected outlines are quadratic. The simultaneous solution of two of these leads to 
a quartic equation. 

^This gem updates a prior technical report (Herbison-Evans 1986). 

Copyright (c) 1995 by Academic Press , Inc. 
All r ights of reproduct ion in any form reserved. 

^ IBM ISBN 0-12-543455-3 
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The need to solve cubic equations in computer graphics arises in the solution of the 
quartic equations mentioned above. Also, a number of problems that involve the use of 
cubic splines require the solution of cubic equations. 

One simplifying feature of the computer graphics problem is that often only the real 
roots (if there are any) are required. The full solution of the quartic in the complex 
domain (Nonweiler 1967) is then an unnecessary use of computing resources. (See also 
"Ellipse Intersections"in gem II.6.) 

Another simplification in the graphics problem is that displays have a limited resolu-
tion, so that only a limited number of accurate digits in the solution of a cubic or quartic 
may be required. A resolution of one in one million should in principle be achievable 
using single-precision floating-point (thirty-two bit) arithmetic, which would be more 
than adequate for most current displays. 

0 Iterative Techniques 0 

The roots of quartic and cubic equations can be obtained by iterative techniques. These 
techniques can be useful in animation where scenes change little from one frame to the 
next. Then the roots for the equations in one frame are good starting points for the 
solution of the equations in the next frame. There are two problems with this approach. 

One problem is storage. For a scene composed of n quadric surfaces, 4n{n — 1) roots 
may need to be stored between frames. A compromise is to store pointers to those pairs 
of quadrics that give no roots. This trivial idea can be used to halve the number of 
computations within a given frame, for if quadric "a" has no intersection with quadric 
"b," then "b" will not intersect "a." 

The other problem is more serious: It is the problem of deciding when the number of 
roots changes. There appears to be no simple way to find the number of roots of a cubic 
or quartic. The best-known algorithm for finding the number of real roots, the Sturm 
sequence (Hook and McAree 1990), involves approximately as much computation as 
solving the equations directly by radicals (Ralston 1965). Without information about 
the number of roots, iteration where a root has disappeared can waste a lot of computer 
time, and searching for new roots that may have appeared becomes difficult. 

Even when a root has been found, deflation of the polynomial to the next lower degree 
is prone to severe round-off exaggeration (Conte and de Boor 1980). 

Thus there may be an advantage in examining the techniques available for obtaining 
the real roots of quartics and cubics analytically. 

0 Quartic Equations <> 
Quartics are the highest-degree polynomials that can be solved analytically in general by 
the method of radicals, that is, operating on the coefficients with a sequence of operators 
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from the set: sum, difference, product, quotient, and the extraction of an integral order 
root. An algorithm for doing this was first published in the sixteenth century (Cardano 
1545). A number of other algorithms have subsequently been published. The question 
that arises is which algorithm is best to use on a computer for finding the real roots, in 
terms of speed and stability for computer graphics. 

Very little attention appears to have been given to a comparison of the algorithms. 
They have differing properties with regard to overflow and the exaggeration of round-off 
errors. Where a picture results from the computation, any errors may be rather obvious. 
Figures 1, 2, and 3 show a computer bug composed of ellipsoids with full outlines, incor-
rect hidden outlines, and correct hidden outlines, respectively. In computer animation, 
the flashing of incorrectly calculated hidden arcs is most disturbing. 

Many algorithms use the idea of first solving a particular cubic equation, the coeffi-
cients of which are derived from those of the quartic. A root of the cubic is then used 
to factorize the quartic into quadratics, which may then be solved. The algorithms may 
then be classified according to the way the coefficients of the quartic are combined to 
form the coefficients of the subsidiary cubic equation. For a general quartic equation of 
the form 

x^ + ax^ + bx'^ + cx + d = 0, 

the subsidiary cubic can be one of the following forms: 

Ferrari-Lagrange (TurnbuU 1947): 

y^ + hy^ + (ac - 4d)y + {a^d + c^ - 4bd) = 0. 

Descartes-Euler-Cardano (Strong 1859): 

y'H2b-la')y' + {^,a'-a'b+ac+b'~M)y+ (abc - ^ + ^ - ^ ^ ^ ± ^ - A = 0. 

Neumark (Neumark 1965): 

y^ - 2by'^ + {ac + b^ - Ad)y + {a^d - abc + c^) = 0. 

The casual user of the literature may be confused by variations in the presentation 
of quartic and cubic equations. Sometimes the coefficients are labeled from the lowest-
degree term to the highest. Sometimes the highest-degree term has a nonunit coefficient, 
or the numerical factors of 3, 4, and 6 are included. There are also a number of trivial 
changes to the cubic caused by the following: 

if y^ + 'py^ + ^y + r = 0 
then z^ — pz^ + qz — r — Q for ^ = —y 
and z^ + 2pz'^ + Aqz + 8r = 0 (or z = 2y. 
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Figure 1. The polyellipsoid caterpillar. 

Figure 2, Hidden arcs solved using first-principles quartics. 

Figure 3. Hidden arcs solved using methods described here. 

Table 1, lines one through three (both panels) shows the stable combinations of signs 
of the quartic coefficients for the computation of the coefficients of these subsidiary cu-
bics. For mstance, row three, column two indicates that given a quartic with coefficients 
a , 6 , c > 0 and d < 0, then under Neumark's algorithm the coefficients p and q of the 
subsidiary cubic are stable. 
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Table 1 

Var iab le 

Fer ra r i ( subs id . ) 

Desca r t e s ( subs id . ) 

N e u m a r k (subs id . ) 

Fer ra r i (y > 0) 

1 Fer ra r i {y < 0) | 

N e u m a r k {y > 0) 

N e u m a r k (y < 0) 

Quartic, subsidiary cubic, and intermediate coefficient stability. 

1 «+ 1 
6+ 

c+ 

1 ^+ 
1 P 

1 P 

^ 

91 

91,2^1 

d-

p q 

p q 

ef P 

P 
91 

Pi ,2^1,2 

C-

d+ 

pq 

p r 

ef 
91 

9l,2hi,2 

d-

P 

P J 

^' 1 
efP 

91 1 
Pi ,2^1,2 1 

1 -̂ 1 
c+ 

1 ^+ 
P f^ 

P f 

P ^ 

1 ef 
e2 

91 hi 

91,2 

d-

P Q 

p q r 

p q 

ef P 
e^ P 

Pi,2^1,2 

Pi,2 

c- 1 
d+ 

p q r 

P 

P 

efe^ 
91 hi 

91,2 

d- 1 

^ f 
P 1 
P [ 

^' [ 
ef e2 

9ihi,2 

91,2 1 

Fer ra r i ( subs id . ) 

Desca r t e s ( subs id . ) 

N e u m a r k (subs id . ) 

1 Fer ra r i {y > 0) 

1 Fer ra r i (y < 0) 

N e u m a r k {y > 0) 

N e u m a r k (y < 0) 

1 ^~ 1 
b+ 

c+ 

1 d+ 
1 P~Q 

P f 

ef 
91 

1 Pi ,2^1,2 

d-

P 

P 

f 
ef f^ 

91 

Pi,2^1,2 

c 

d+ 

P 

P 

ef 

91 

Pi ,2^1 

d-

pq 

pq 

ef f^ 1 
P 
91 

Pi ,2^1 

h-
c+ 

L d+ 
\ p q r 

1 ^ 
1 ^ 

e / e 2 

Pi hi 

1 Pi,2 

d-

P 

P 

P 

P 
ef e2 p 

91 hi,2 

91,2 

c- 1 
d+ 

p r 

p r 

p r 

ef 
e2 

Pi hi 

91,2 

d- [ 

VQ [ 
p q r 

P Q [ 

ef P 1 
e^ P 

Pi,2^1,2 

Pi,2 1 

Ferrari's Algorithm 

Of the three subsidiary cubics, that from Ferrari's algorithm has two stable combinations 
of signs of a, 6, c, and d for the derivation of all of the coefficients of the cubic, p, g, and 
r. For this reason, attempts were made initially (see Figures 1 and 2) to use Ferrari's 
method for finding quadric outline intersections (Herbison-Evans 1982a). 

The coefficients of the subsequent quadratics depend on two intermediate quantities, 
e and / , where 

2 2 L 

e — a —0 — y^ 

ef = \ay + \c. 

The signs of each of the quartic coefficients a, 6, c, rf, and y, the cubic root, may 
be positive or negative, giving thirty-two possible combinations of signs. Of these, only 
twelve can be clearly solved in a stable fashion for e and / by the choice of two out of 
the three equations involving them. Two are from the stable cases for the calculation 
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of 2?, g, and r. In the remaining twenty cases, the most stable choices are unclear. This 
is shown in Table 1, lines four and five. 

The quadratic equations are then 

x^ + Gx + H = 0, 

x^ + gx + h = 0, 

where 

G = +^a + e, g — +\a — e, 

H = -\y + f, h = -\y~f. 

If a and e are the same sign, and h and y are the same sign, then g may be more 
accurately computed using 

g = {h + y)/G. 

If a and e are opposite signs, G can be more accurately computed from ^ in a similar 
fashion. 

If y and / are the same sign, then H may be more accurately computed using 

H = d/h. 

If y and / are opposite in sign, then h can be computed similarly from H more accu-
rately. 

The solution of the quadratic equations requires the evaluation of the discriminants 

g^ - Ah and G^ _ 4 ^ 

Unless h and H are negative, one or both of these evaluations will be unstable. Un-
fortunately, positive h and H values are incompatible with the two stable cases for 
the evaluation of p, ^, r, e, and / , so there is no combination of coefficients for which 
Ferrari's algorithm can be made entirely stable. 

It might appear that the problem can be alleviated by observing that reversing the 
signs of a and c simply reverses the signs of the roots, but may alter the stability of the 
intermediate quantities. However, all the algorithms appear to have identical stabilities 
under this transformation. 

Descartes-Euler-Cardano Algorithm 

This algorithm also has two combinations of quartic coefficients for which the evaluation 
of the subsidiary cubic coefficients is stable. However, the calculation of these coefficients 
involves significantly more operations than Ferrari's or Neumark's algorithms. Also, the 
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high power of a in the coefficients makes this algorithm prone to loss of precision and 
also overflow. 

In this algorithm, if the greatest root of the cubic, ?/, is negative, the quartic has no 
real roots. Otherwise, the coefficients of the quadratics involve the quantities m, ni , 
and 712: 

where 

X'^ + mX + m = 0, X^ - mX + 77,2 = 0, and x = X 

m = y/y, 

ni = l{y + A + B/m), 
712 = \{y + A-B/7n), 

and 

B = c+\a^ - \ah. 

There appears to be no way of making the evaluation of A, JB, ni , and 712 stable. Some 
quantities are bound to be subtracted, leading to possible loss of precision. 

Neumark's Algorithm 

Attempts were also made to stabilize the algorithm of Neumark. In this, the coefficients 
of the quadratic equations are parameters g^ G, /i, and if, where: 

H = 

« = 2 

h-y + 

a + ^Ja? - Ay 

a{b-y)-2c 

^a^ - Ay 

9 = 2 a - y â  - 4y 

0 y j—c 

5 

y) - 2c! 
! - 4 y _ 

Some cancellations due to the additions and subtractions can be eliminated by writing 

G = gi+g2, g = 9i-g2, 

H = hi + h2', h — hi — /i2, 

where 

9i = 2^' 92 = \4^--M^^ 
hi = ^{h - y), h2 = . . ' • , 

2 Va2 - 4y 
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and using the identities 

G ' g = y^ H ' h = d. 

Thus, if gi and ^2 are the same sign, G will be accurate, but g will lose significant digits 
by cancellation. Then the value of g can be better obtained using 

9 = y/G. 

If gi and g2 are of opposite signs, then g will be accurate, and G better obtained using 

G = y/g. 

Similarly, h and H can be obtained without cancellation from /ii, /12, and d. 
The computation of g2 and /i2 can be made more stable under some circumstances 

using the alternative formulation: 

Furthermore, 

ahi — c 
92 = 

Vib-y^-Ad' 

Thus, 52 and /12 can both be computed either using 

m = (6 - y)^ - 4d 

or using 

n = a^ — Ay. 

If y is negative, n should be used. If y is positive and h and d are negative, m should 
be used. Thus, seven of the thirty-two sign combinations give stable results with this 
algorithm. These are shown in Table 1, lines six and seven. For other cases, a rough 
guide to which expression to use can be found by assessing the errors of each of these 
expressions by summing the moduli of the addends: 

e{m) = b^^2 |&y|+y2 + 4 |d|, 

e{n) = a^ + A \y\. 

Thus, if 

\m\ • e(n) > |n| • e(m), 

then m should be used; otherwise, n is more accurate. 
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0 The Cubic 0 

y^ +py'^ + qy-\-r =^ o. 

The solution may be expressed (Littlewood 1950) using 

and the discriminant 

u\^ . 2 

If this is positive, then there is one root, y, to the cubic, which may be found using 

3 W--V u 3 2 p 

where 

This formulation is suitable if v is negative. The calculation in this form can lose 
accuracy if v is positive. This problem can be overcome by the rationalization 

w — v w^ — v^ 2 fu^^ 
2 2{w + v) w + vX'i) ' 

giving the alternative formulation of the root: 

_ 3 w + v _ u 3 2 _ p 

^~ ^~2 3 V ^ + ̂  ~ 3* 
A computational problem with this algorithm is overflow while calculating w, for 

0{j) = 0ip^)+0iq')+0{r^). 

If the cubic is the subsidiary cubic of a quartic, then the different algorithms each 
have differing overflow behaviors: 

Ferrari: 0{j) = 0{a^(P) + 0{a^c^) + 0(6^) + 0{c'^) + 0{d^), 

Descartes: 0{j) = 0{a^^) + Oib^) + 0{c'^) + 0{d^), 

Neumark: 0{j) = ©(a^) + 0(6^) + 0{c^) + 0{d^). 
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Before evaluating the terms oiw/it is useful to test p, q^ and r against the appropriate 
root of the maximum number represented on the machine ("M"). The values of u 
and V should similarly be tested. In the event that some value is too large, various 
approximations can be employed, for example, 

if IPI > ^ v ^ , then y ^ - p . 2 

if \v\>y/M, then y^—^p+\/\v\, 

if \u\ > ^ v ^ , then y ^ -^p. 

If the discriminant j is negative, then there are three real roots to the cubic. These real 
roots of the cubic may then be obtained via parameters 5, t, and k: 

t = -v/{2s^), 
fc = ^ arccost, 

giving 

yi •— 2s • cos k — | p , 

7/2 — s{—cosk + y/Ssink) — | p , 

7/3 = s{— cosk — v 3 sink) — ^p. 
Note that if the discriminant is negative, then u must also be negative, guaranteeing 

a real value for s. This value may be taken as positive without loss of generality. Also, 
k will lie in the range 0 to 60 degrees, so that cos(/c) and sin(fc) are both positive. Thus, 

yi>y2> ys-

If the cubic is a subsidiary of a quartic, either yi or ys may be the most useful root. 
Unfortunately, p = —2b in Neumark's algorithm, so although yi may be the largest root, 
it may not be positive. Then if b and d are both negative, it would be advantageous to 
use the most negative root: ^3. 

The functions sine and cosine of ^ arccos(t) may be tabulated to speed the calculation 
(Herbison-Evans 1982a, Cromwell 1994). Sufficient accuracy (1 in 10^) can be obtained 
with a table of two hundred entries with linear interpolation, requiring four multiplica-
tions, eight additions, and two tests for each function. When t is near its extremes, the 
asymptotic forms may be useful: 

for t-^0: 
sin(^arccost) - ^ - {lV3)t + 0{f), 

cos(^ arccos^) ^ ^\/3 + ^t + 0{t^)] 

for t -> 1: 
sin(|arccost) ^ | v '(l - t) + 0((1 - t)^/^), 

cos(iarccost) ^ l - ^(1 - t) + 0((1 - t)^). 
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Table 2. Operation counts (min[max]) for best combination of stabilized algorithms. 

Cubic 
Quartic 

1 Quadratic (x2) 

1 Totals 

Additions 
and 

subtractions 

9 [12] 
5 [14] 
1[2] 

16 [30] 

Multiplications 
and 

divisions 

11 [15] 
6 [22] 
2 [4] 

21 [45] 

Functions 
e.g. 

root, sine 

2 [3] 
0[2] 
0[1] 

2 [7] 

Tests 

15 [15] 

1 [36] 

1[3] 
18 [57] 1 

If the discriminant j is expanded in terms of the coefficients of the cubic, it has ten 
terms. Two pairs of terms cancel and another pair coalesce, leaving five independent 
terms. In principle, any pair of subsets of these may cancel catastrophically, leaving 
an incorrect value or even an incorrect sign for the discriminant. This problem can be 
alleviated by calculating the five terms separately, and then combining them in increas-
ing order of magnitude (Wilkinson 1963). When quartics are solved, the discriminant 
should be expanded in terms of the quartic coefficients directly. This gives fifteen terms 
that can be sorted by modulus and combined in increasing order. 

0 Conclusion 0 
There have been many algorithms proposed for solving quartic and cubic equations, 
but most have been proposed with aims of generality or simplicity rather than error 
minimization or overfiow avoidance. The work described here gives a low rate of error 
using single-precision floating-point arithmetic for the computer animation of quadric 
surfaces. 

The operation counts of the best combination of stabilized algorithms are summarized 
in Table 2. 

A further comment may be useful here concerning the language used to implement 
these algorithms. Compilers for the C language often perform operations on single-
precision variables (float) in double precision, converting back to single precision for 
storage. Thus, there might be little speed advantage in using f loat variables compared 
with using double for these algorithms. Fortran compilers may not do this. For example, 
using a VAX8600, the time taken to solve 10,000 different quartics was 6.3 seconds for 
Fortran single precision (using f 77), 15.5 seconds for C single precision (using cc), and 
16.1 seconds for C using double precision. 

A check on the accuracy of the roots can be done at the cost of more computation. 
Each root may be substituted back into the original equation and the residual calculated. 
This can then be substituted into the derivative to give an estimate of the error of the 
root, or used for a Reguli-Falsi or, better still, a Newton-Raphson correction. 

A comparison of the stabilities of the three algorithms for the solution of quartic equa-
tions was made. Quartics were examined that had all combinations and permutations 
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of coefficients from the ten-element set: 

±10^ ±10^, ± 1 , ± 1 0 - ^ ± 1 0 - ^ 

Of the 10,000 equations, the three algorithms agreed on the number of real roots in 8,453 
cases. Of these, 1,408 had no real roots. Of the remaining 7,045 equations, Ferrari's 
algorithm had the least worst error in 1,659 cases, Neumark's in 2,918, Descartes' in 
88, and in the other 2,380 cases, two or more algorithms had equal worst errors. 

It may be observed that four of the seven stable cases for Neumark's algorithm 
coincide with four of the twelve stable cases for Ferrari's algorithm, making only fifteen 
stable cases in all out of the thirty-two possible sign combinations. Further work on this 
topic may be able to increase the number of stable cases. 
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Computing the Inverse 
Square Root 
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turk@apple.com 

0 Introduction 0 

In computer graphics calculations, the square root is often followed by a division, as 
when normalizing vectors: 

= ^\J2^ 

This adds a significant amount of computational overhead, as a floating-point division 
typically costs much more than multiplication. 

The cost of division may be mitigated by a reciprocation. This gem derives the method 
and provides an implementation for directly computing the inverse square root, / (x) = 

0 Description of the Algorithm 0 

The algorithm is noteworthy, as no divisions are required. It is based upon the method 
of successive approximations (Ralston and Rabinowitz 1978). The square root may also 
be computed at the cost of one additional multiplication, as y/x = x • f{x). 

The algorithm has two parts: computing an initial estimate, and refining the root by 
using a fixed number of iterations. 

Initialization 

The initial estimate, or seed, is determined by table look-up. The inverse square root of 
a floating-point number m • 2^ is given by 

( m . 2 T ' / 2 ^ m - V 2 . 2 - / 2 . 

Copyright (c) 1995 by Academic Press, Inc. 
All r ights of reproduct ion in any form reserved. 
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The exponent e is adjusted by negation and halving (or shifting if radix-2) to form 
the seed exponent. If the seed exponent — | is to be an integer, then e must be even. 
When e is odd, the next smaller even value is considered and the mantissa is doubled 
(that is, [ 1 . . . 4) becomes its domain of representation). The extended mantissa indexes 
a lookup table whose entries contain the inverse square root on the restricted domain. 
The final seed value is formed by merging the seed mantissa and seed exponent. 

Single-precision floating-point numbers typically employ a 24-bit mantissa (with the 
most significant one bit "hidden"), an eight-bit excess-127 exponent, and a sign bit.^ 
Since the iteration we have chosen has quadratic convergence, the number of significant 
bits roughly doubles with each iteration. This suggests a seed table indexed by a twelve-
bit mantissa, requiring just one iteration. However, the table length (2 • 2^^ two-byte 
entries, hence 16,384 bytes) becomes prohibitive. Additional iterations allow for a much 
more relaxed table length, described later. 

The Iteration 

Given an approximate inverse square root 1/^ a better one, ^n+i? may be found using 
the iteration^ 

Vn (3 - xyl) 
Vn-hi = 2 • 

An implementation is presented below. 

<> C Implementation 0 
/* Compute the Inverse Square Root 
* of an IEEE Single Precision Floating-Point number. 
* 
* Written by Ken Turkowski. 
*/ 

/* Specified parameters */ 
#define LOOKUP_BITS 6 /* Number of mantissa bits for lookup */ 
#define EXP_POS 23 /* Position of the exponent */ 
#define EXP_BIAS 127 /* Bias of exponent */ 
/* The mantissa is assumed to be just down from the exponent */ 

/* Type of result */ 

^lEEE arithmetic (Donovan and Van Hook 1994) supports 24 (53) bit single (double) precision 
mantissas; calculation employs such features as "round-to-nearest" or "even-if-tie," a guard bit, a round 
bit, and a sticky bit. 

^This algorithm was inspired by the Weitek technical note "Performing Floating-Point Square Root 
with the WTL 1032/1033." 
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#ifndef DOUBLE_PRECISION 
typedef float FLOAT; 

#else /* DOUBLE_PRECISION */ 
typedef double FLOAT; 
#endif /* DOUBLE_PRECISION */ 

/* Derived parameters */ 

#define LOOKUP_POS 
#define SEED_POS 
#define TABLE_SIZE 
#define LOOKUP_MASK 
#define GET_EXP(a) 
#define SET_EXP(a) 
#define GET_EMANT(a) 

(EXP_POS-LOOKUP_BITS) /̂  
(EXP_P0S-8) /•* 
(2 « LOOKUP_BITS) /' 
(TABLE_SIZE - 1) 
(((a) » EXP_POS) & OxFF) 
((a) « EXP_POS) 

Position of mantissa lookup */ 
Position of mantissa seed */ 
Number of entries in table */ 
/* Mask for table input */ 
/* Extract exponent */ 
/* Set exponent */ 

(((a) » LOOKUP_POS) & LOOKUP_MASK) /̂  Extended mantissa 
* MSB's */ 

#define SET_MANTSEED(a) (((unsigned long)(a)) « SEED_POS) /* Set mantissa 
* 8 MSB's */ 

#include <stdlib.h> 
#include <math.h> 

static unsigned char *iSqrt = NULL; 

union _flint { 
unsigned long 
float 

} fi, fo; 

l; 

f; 

static void 
MakelnverseSqrtLookupTable(void) 
{ 

register long f; 
register unsigned char *h; 
union _flint fi, fo; 

iSqrt = malloc(TABLE_SIZE); 
for (f = 0, h = iSqrt; f < TABLE_SIZE; f++) { 

fi.i = ((EXP_BIAS-1) « EXP_POS) | (f « LOOKUP_POS); 
fo.f = 1.0 / sqrt(fi.f); 
*h++ = ((fo.i + (l<<(SEED_P0S-2))) » SEED_POS) & OxFF; /* rounding */ 

} 
\ iSqrt[TABLE_SIZE / 2] = OxFF; /* Special case for 1.0 */ 

} 

/* The following returns the inverse square root */ 
FLOAT 
InvSqrt(float x) 

{ 
register unsigned long a = ((union _flint*)(&x))->i; 
register float arg = x; 
union _flint seed; 
register FLOAT, r; 
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if (iSqrt == NULL) MakelnverseSqrtLookupTable(); 

seed.i = SET_EXP(((3*EXP_BIAS-1) - GET_EXP(a)) » 1) 
I SET_MANTSEED(iSqrt[GET_EMANT(a)]); 

/* Seed: accurate to LOOKUP_BITS */ 
r = seed.f; 

/* First iteration: accurate to 2*L00KUP_BITS */ 
r = ( 3 . 0 - r * r * arg) * r * 0.5; 

/* Second iteration: accurate to 4*L00KUP_BITS */ 
r = ( 3 . 0 - r * r * arg) * r * 0.5; 

#ifdef DOUBLE_PRECISION 
/* Third iteration: accurate to 8*L00KUP_BITS */ 
r = ( 3 . 0 - r * r * arg) * r * 0.5; 

#endif /* DOUBLE_PRECISION */ 
return(r); 

} 

0 Numerical Accuracy (Empirical Results) 0 
This procedure has been exhaustively tested for all single-precision IEEE mantissas 
Lying between 0.5 and 2.0 using IEEE arithmetic. Empirical results appear in Table 1. 

Note that the minimum of the maximum errors is one least significant bit; that is, 
perfect accuracy is never achieved for all possible numbers. This is due to numerical 
roundoff in intermediate computations. However, in the case of two single-precision 
iterations from a six-, seven-, and eight-bit seed, an "exact" result is computed for 
nearly all numbers (except for one-bit errors in 0.7%, 0.04%, and 0.007% of all numbers, 
respectively). 

From Table 1 it can be seen that the techniques producing the highest accuracy 
with the minimum memory and computation are a six-bit seed with two iterations or a 
three-bit seed with three iterations for single precision, and a seven-bit seed with three 
iterations for double precision. Obviously, a smaller table or fewer iterations can be 
used if less precision is adequate for a given task. Note that single precision may be 
employed to compute the first twenty-three bits of double-precision calculations. 

A slight increase in overall accuracy may be achieved by judicious choice of seed 
values. The method for determining the seed value in this algorithrn. was found superior 
to that used in the Weitek technical note, but there is still room for further improvement. 
In particular, the computed exponent for numbers just slightly greater than or equal to 
one is too small, so the mantissa is set to the largest value in the table to compensate 
for this. Additionally, up to one more effective bit of seed precision could be achieved 
by setting the table value equal to the average of the range for the entry, rather than 
the edge of the range as is done in this implementation. 
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Table 1. Effect of seed precision on resultant precision. 
Itera-
tions 

i 
1 
1 
2 
2 
2 
2 
2 
3 
3 

2 
2 
2 
2 
3 
3 
3 
3 
3 

I 3 

Single precision 
Seed bits 

8 
7 
6 
8 
7 
6 
5 
4 
4 
3 

Final bits 

16 
14 
12 
23 
23 

23 
21 
17 
23 
23 

Double precision 
8 
7 
6 
5 
8 
7 
6 
5 
4 
3 

32 
29 
25 
21 
52 
52 
51 
43 
35 
27 

0 Implementation Notes 0 

Certain compilers do not pass single-precision values as procedure parameters but in-
stead promote them to double or extended precision. In such cases, pointers may be 
passed instead. The multiplication by 0.5 amounts to a decrement of the exponent, 
as supported by the IEEE-defined operation scalb. Unless hand-coding, the machine 
multiply is faster than the subroutine overhead lost in invoking IdexpO, scalb() , or 
related routines to effect the change. 

The code is highly portable: non-IEEE (e.g., radix-16) fioating-point hardware merely 
requires new macros for proper seed construction. A 128-byte table is small enough to 
be hard-coded into the sources; this also assures that the correct table entries (to the 
LSB) are evaluated and further allows for more carefully tuned/tweaked entries whose 
defining formula might be complex. 

Previous gems (Lalonde and Dawson 1990, Hill 1992) use a similar method for con-
structing and indexing a mantissa table. However, these solve instead for the conven-
tional square root and omit the iteration step. 
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Fixed-Point Square Root 
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0 Introduction 0 
Many graphics algorithms rely upon fixed-point arithmetic and its inherent speed ad-
vantage over floating point. Often, a fixed-point algorithm requires the evaluation of a 
square root. This gem describes an algorithm that computes the square root directly 
in its fixed-point representation, saving the expense of (re)converting and evaluating in 
floating point. A related gem (Musial 1991) computes an approximate integer square 
root through the use of integer divisions, but the following algorithm uses more elemen-
tary operations. 

0 The Algorithm 0 
The algorithm is based upon a fixed-point format having two integer and thirty frac-
tional bits, operated upon using conventional machine (integer) arithmetic. This choice 
gives a domain of representation [—2.0,2.0) suitable for representing normals, colors, 
and other graphic quantities whose magnitude is bounded by unity. 

This algorithm is based upon a method, similar to longhand decimal division, that 
was taught in schools before the advent of electronic calculators (Gellert et al. 1975). 
This implementation, called the "binary restoring square root extraction," substitutes 
binary digits (bits), further streamlining the algorithm. 

A radical r (the square root of the radicand x) is constructed a bit at a time such 
that r^ < X is always preserved by application of the identity 

(r + l)2 = r2 + 2 r 4 - l , 

in which the (2r + 1) term is subtracted from the radicand x at each step. If the result 
is non-negative, a "1" is generated; otherwise, a "0" is generated and the radicand is 
unaltered (i.e., restored). 

Two radicand bits are consumed and one radical bit generated with each loop itera-
tion. Although this algorithm has only 0{n) (linear) convergence, the loop is so simple 
that it executes quickly, making it amenable to hardware implementation. 

Copyright @ 1995 by Academic Press, Inc. 
All r ights of reproduct ion in any form reserved. 
IBM ISBN 0-12-543455-3 
•K J ' -^j 1_ TCiTTM r\ i n r A t-t A m-7 "V J^M 



/. 3 Fixed-Point Square Root 0 23 

0 C Implementation 0 

/* The definitions below yield 2 integer bits, 3 0 fractional bits */ 
#define FRACBITS 3 0 /* Must be even! */ 
#define ITERS (15 + (FRACBITS » 1)) 
typedef long TFract; 

TFract 
FFracSqrt(TFract x) 
{ 

register unsigned long root, remHi, remLo, testDiv, count; 

root = 0 ; /* Clear root */ 
remHi = 0 ; /* Clear high part of partial remainder */ 
remLo = x; /* Get argument into low part of partial remainder */ 
count = ITERS; /* Load loop counter */ 

do { 
remHi = (remHi « 2) | (remLo >> 30); remLo <<= 2; /* get 2 bits of arg */ 
root « = 1; /* Get ready for the next bit in the root */ 
testDiv = (root << 1) + 1; /* Test radical */ 
if (remHi >= testDiv) { 

remHi -= testDiv; 
root += 1; 

} 
} while (count-- != 0); 

return(root); 

0 Discussion <> 

A nonrestoring version of the algorithm (Hwang 1979) may run shghtly faster at the 
expense of a shghtly more complicated inner loop. 

This algorithm may be modified to return the square root of a 32-bit integer by 
redefining FRACBITS as zero, producing a variant requiring one additional iteration 
(count = 15). Other formats having even numbers of fractional bits can be accom-
modated simply by adjusting these values. Note that the square root of a long in t 
(thirty-two bits) yields a short i n t (sixteen bits). 
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0 Introduction 0 

One way to combat accuracy losses in graphical algorithms such as intersection testing 
is to use rational numbers instead of floating point. For these and other purposes, the 
following discussion (accompanied by code) presents a way to construct a rational ap-
proximation to a floating-point number, optionally limiting the size of the integers used. 
The mathematical theory of best rational approximations is a necessary ingredient, but 
because it assumes perfect real numbers, it is not sufficient. Floating-point arithmetic 
must be avoided even during conversion! 

Rational approximation with limits is surprisingly difficult. Consider the number 
0.84375 (which has an exact IEEE ffoating-point representation). Its only best rational 
approximations are these few values: 

3 4 5 n 16 27 
' 4 ' 5 ' 6 ' 1 3 ' 1 9 ' 3 2 ' 

Approximations not on the list (such as 8/9) are bigger, but not better. 
Before reading more, readers might like to challenge themselves by trying to devise a 

mathematical procedure that finds exactly these values (without attempting exhaustive 
search). For a greater challenge, try to find the best approximation given a limit. Given 
the limit 9, say, the procedure should return 5/6. For the ultimate challenge, try to 
write a C program that does this for an arbitrary floating-point number using 32-bit 
arithmetic, without generating floating-point exceptions. 

Those who attempt any of these challenges will appreciate this gem most. Those with 
"a lazy attitude" (Knuth 1973, p. 73) must be content with less. 

0 Best Rational Approximations 0 

A best rational approximation to a real number x is a rational number n/d (with positive 
denominator d) that is closer to x than any approximation with a smaller denominator. 

Copyright (c) 1995 by Academic Press, Inc. 
All r ights of reproduct ion in any form reserved. 
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A (regular) continued fraction (Behnke et al. 1974) is a fraction of the form 

1 
C0 + - . I 

C2 + -

with positive Cjt for A: > 0. This expression will be abbreviated below as 

^ [C0 ,C1 ,C2 , . . . ] . 

Every real number has a unique continued fraction (possibly infinite), which is the key 
to its best rational approximations. (More precisely, finite continued fractions must 
absorb any trailing 1 to be unique.) 

For example, the continued fraction for 0.84375 is 

0.84375 = jr[0,l ,5,2,2]. 

Continued fractions for its best rational approximations are 

3/4 = J^[0,l,3], 
4/5 = J^[0,l,4], 

5/6 = J^[0,l,5], 

11/13 = J?^[0,1,5,2], 

16/19 = ^[0,1,5,2,1], 

27/32 = jr[0,1,5,2,2]. 

It is evident that knowing the continued fraction of x is a big step toward knowing 
its best rational approximations, though mysteries remain. (Why, for instance, does the 
list not include ^[0,1,2] or ^[0,1,5,1]?) The most basic rule is this: 

Rule 1 All best rational approximations of x can he obtained by truncating the contin-
ued fraction for x, and possibly decrementing its last term. 

The option of decrementing large terms (such as the 292 in TT = ^ [3 , 7,15,1,292,...]) 
permits many best approximations. But as the exceptions indicate, restrictions apply. 
The basic rule of decrementing is this: 

Rule 2 The decremented value of the last term must be at least half its original value. 

This explains why ^ [0 ,1 , 2] did not appear on the list, since 2 is less than half of 5. 
Any decremented value greater than half the original is always permissible, but there is 
one final rule. When the decremented value is exactly half the original value, sometimes 
it is allowed, and sometimes it is not. (Consider ^[0,1,5,1] versus ^[0,1,5, 2,1].) Taking 
the last term to be c^, the rule for discrimination is this: 
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Rule 3 When Ck is even, using the decremented value Ck/2 gives a best rational ap-
proximation just when T[ck, c^-i, Cfc_2,.. •,ci] > T[ck, c/^+i, 0^4-2,...]. 

Although this form of the rule is easy to state, a more convenient form to implement 
will appear in the algorithm given later. In any case, since 

but 

^ [ 2 , 5 , 1 ] - 2 i < 2 i =^[2 ,2 ] 

^[2,2,5,1] = 2 ^ > 2 = J^[2], 
'13 

no mysteries remain in the example above. 

0 Continued Fraction Calculations 0 
In the realm of ideal mathematics, continued fractions are easy to calculate. First, set 
Co -= [x\. Now, since a: — CQ is less than 1, set xi — l / (x — CQ)^ and repeat. That is, set 
ci = L îJ? cind X2 — l / (xi — ci), and so on. If Xk happens to be an integer, Ck is the 
last term (and x was a rational number). 

The trouble with this version of the algorithm is that it loses accuracy when imple-
mented using floating-point arithmetic. However, an accurate integer version can be 
derived from Euclid's GCD algorithm, because floating-point numbers are integers di-
vided by a power of 2. Let x = a_2/a_i, so that CQ = [a_2/a_ij and ao = a_2 mod a_i. 
Then iterate with ci = [a_i/aoJ and ai — a-i mod ao, and so on. After the first nonzero 
term (co if a; > 1, otherwise ci), all subsequent values of Ck and Ok are sure to fit in 
32-bit integers if x is an IEEE 32-bit floating-point number. Best of all, full accuracy is 
retained at every step. 

Applying this to 0.84375, which happens to be exactly 27/32, gives 

Co = [27/32J -: 0 ao = 27 mod 32 = 27, 
ci = [32/27J = 1 ai = 32 mod 27 = 5, 
C2 = L27/5J = 5 a2 = 27 mod 5 = 2, 
C3 = [5/2J = 2 as = 5 mod 2 = 1 , 
C4 = [2/lJ = 2 a4 = 2 mod 1 = 0 . 

Converting a continued fraction to an ordinary fraction is easily done incrementally. 
Begin with the dummy initial fractions n_2/c?_2 — 0/1 and n_i /d_i = 1/0. Then fold 
the Ck term into the numerator and denominator using 

rik = nk-2 + Tik-iCk 

and 

dk — dk-2 + dk-iCk. 



28 <> Algebra and Arithmetic 

This makes it possible to monitor the size of the numerator and denominator as they 
grow with each new term. With a httle care, accumulation can stop before either one 
grows beyond a given limit. 

For the example above, pure truncation gives the following: 

Ck 0 1 5 2 2 
rifc 0 1 0 1 5 11 27 
4 1 0 1 1 6 13 32 

0 Complications 0 

Computer programs frequently contain a small amount of heavily used code and a much 
larger amount of special case handling. This routine is no exception, with an iiiner loop 
of only ten lines (of which three merely shuffle variables). Most of the remaining code 
is devoted to careful handling of the first continued fraction term, and to getting the 
exactly half case right. 

There are two potential problems with the first nonzero term. The simplest is that it 
could be too large to fit in a 32-bit integer. But then it must exceed the limit (which 
necessarily fits), so a fioating-point comparision against some constants can "pretest" 
the floating-point value of x. The more awkward problem is that even though [1/xJ 
may fit (when x < 1), the fioating-point computation of l/x loses accuracy. A custom 
multiple-precision fixed-point divide solves this problem, though it is inelegant. 

A little care is needed in testing approximations against the limit. The algorithm sets 
up the inner loop so the denominator is always larger, to avoid testing the numerator. 
But if the denominator increases one step too many, it may not fit in a 32-bit integer. 
Testing Ck > {I — dk-2)/dk-i, not dk-2 + dk-iCk > /, avoids this hazard. 

The final problem is to discriminate the exactly half case. Since it should rarely 
occur, one option is to "just say no"—which is safe, if not accurate. But there is a 
better solution using data already at hand: Allow Ck/2 whenever dk-2/dk-i > a^/ak-i^ 
or (since floating-point division would lose accuracy) whenever dk-2(^k-i > dk-idj^. 
(Equations (6.131) and (6.135) of Concrete Mathematics (Graham et al. 1989) are the 
basis for a proof.) This involves generating and comparing two 64-bit integer results, 
but that is not so hard (Knuth 1981, p. 253). 

Readers interested in learning more about continued fractions are encouraged to 
seek out Item 101 in the unusual collection known as HAKMEM (Beeler et al 1972). 
Not explored here are connections to computational complexity (Shallit 1991) and to 
Bresenham's line drawing algorithm. (As a final challenge, find the next term in the 
sequence 1,3,29, 545,6914705085169818401684631,... —Ed.) 
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<> Code 0 
/*••••* rat h. ******/ 

/* Ken Shoemake, 1994 */ 

#ifndef _H_rat 
#define _H_rat 

#include <limits.h> 
typedef int BOOL; 
#define TRUE 1 
#define FALSE 0 
#define BITS (32-1) 
#if (INT_MAX>=2147483 647) 

typedef int INT32; 
typedef unsigned int UINT32; 

#else 
typedef long INT32; 
typedef unsigned long UINT32; 

#endif 
typedef struct {INT32 numer,denom;} Rational; 

Rational ratapprox(float x, INT32 limit); 
#endif 

/**••** 2rat c **•****/ 

/* Ken Shoemake, 1994 */ 

# include <math.h> 
#include "rat.h" 

static void Mul32(UINT32 x, UINT32 y, U1NT32 *hi, UINT32 *lo) 

{ 
UINT32 xlo = x&OxFFFF, xhi = (x»16) &OxFFFF; 
UINT32 ylo = y&OxFFFF, yhi = (y»16) &OxFFFF; 
UINT32 tl, t2, t3, s; 
UINT32 lolo, lohi, tllo, tlhi, t21o, t2hi, carry; 
*lo = xlo * ylo; *hi - xhi * yhi; 
tl = xhi * ylo; t2 = xlo * yhi; 
lolo = *lo&OxFFFF; lohi = (*lo»16) &OxFFFF; 
tllo = tl&OxFFFF; tlhi = (tl»16) &OxFFFF; 
t21o = t2&0xFFFF; t2hi = (t2»16) &OxFFFF; 
t3 = lohi + tllo + t21o; 
carry = t3&0xFFFF; lohi = (t3«16) &OxFFFF; 

*hi += tlhi + t2hi + carry; *lo = (lohi«16) + lolo; 

}; 

/* ratapprox(x,n) returns the best rational approximation to x whose numerator 
and denominator are less than or equal to n in absolute value. The denominator 
will be positive, and the numerator and denominator will be in lowest terms. 
IEEE 32-bit floating point and 32-bit integers are required. 

All best rational approximations of a real x may be obtained from x's 
continued fraction representation, x = cO + 1/(cl + 1/(c2 + l/(...))) 
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by truncation to k terms and possibly "interpolation" of the last term. 
The continued fraction expansion itself is obtained by a variant of the 
standard GCD algorithm, which is folded into the recursions generating 
successive numerators and denominators. These recursions both have the 
same form: f[k] = c[k]*f[k-l] + f[k-2]. For further information, see 
Fundamentals of Mathematics, Volume I, MIT Press, 1983. 

*/ 
Rational ratapprox(float x, INT32 limit) 

{ 
float tooLargeToFix = Idexpd.O, BITS); /* 0x4f 000000=2147483648 . 0 */ 
float tooSmallToFix = Idexpd.O, -BITS); /* 0x30000000=4.6566e-10 */ 
float halfTooSmallToFix = Idexpd.O, -BITS-1); /* 0x2f800000=2.3283e-10 */ 
int expForInt =24; /* This exponent in float makes mantissa an INT32 */ 
static Rational ratZero = {0, 1}; 
INT32 sign = 1; 
BOOL flip = FALSE; /* If TRUE, nk and dk are swapped */ 
int scale; /* Power of 2 to get x into integer domain */ 
UINT32 ak2, akl, ak; /* GCD arguments, initially 1 and x */ 
UINT32 ck, climit; /* ck is GCD quotient and c.f. term k */ 
INT32 nk, dk; /* Result num. and den., recursively found */ 
INT32 nkl = 0, dk2 = 0; /* History terms for recursion */ 
INT32 nk2 = 1, dkl = 1; 
BOOL hard = FALSE; 
Rational val; 

if (limit <= 0) return (ratZero); /* Insist limit > 0 */ 
if (x<0.0) { x = - x ; sign = -1;} 
val.numer = sign; val.denom = limit; 
/* Handle first non-zero term of continued fraction, 

rest prepared for integer GCD, sure to fit. 
*/ 

if (x >= 1.0) {/* First continued fraction term is non-zero */ 
float rest; 
if (x >= tooLargeToFix || (ck = x) >= limit) 

{val.numer = sign*limit; val.denom = 1; return (val);} 
flip = TRUE; /* Keep denominator larger, for fast loop test */ 
nk = 1; dk = ck; /* Make new numerator and denominator */ 
rest = X - ck; 
frexp(1.0,&scale); 
scale = expForInt - scale; 
ak = ldexp(rest, scale); 
akl = Idexpd.O, scale); 

} else {/* First continued fraction term is zero */ 
int n; 
UINT32 num = 1; 
if (x <= tooSmallToFix) { /* Is x too tiny to be 1/INT32 ? */ 

if (x <= halfTooSmallToFix) return (ratZero); 
if (limit > (UINT32)(0.5/x)) return (val); 
else return (ratZero); 

} 
/* Treating 1.0 and x as integers, divide 1/x in a peculiar way 

to get accurate remainder 
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frexp(x,&scale); 
scale = expForInt - scale; 
akl = ldexp(x, scale); 
n = (scale<BITS)?scale:BITS; 
num <<= n; 
ck = num/akl; 
ak = num%akl; 
while ((scale -= n) > 0) {/'* 

n = (scale<8)?scale:8; 
num = ak<<n; 
ck = ck<<n + num/akl; 
ak = num%akl; 

/ 
} 
/* 
if 

All 
(ck 
if 

done with 
>= limit) 
(2*limit 
return ( 

else return 

divide * 

{ 
> ck) 
val) ; 
(ratZero) 

/* stay within UINT32 arithmetic */ 

/* First attempt at 1/x */ 
/* First attempt at remainder */ 

Shift quotient, remainder until done */ 
/* The 8 is 24 bits of x in 32 bits */ 

/* Reduce remainder */ 

/* Is X too tiny to be 1/limit ? */ 

nk = 1; dk ck; 
} 

} 
if 

{ 

akl 
nkl 
dkl 

= ak 
= nk 

- dk 

while (ak != 0) 
ak2 = akl; 
nk2 = nkl; 
dk2 = dkl; 
ck = ak2/akl; 
ak = ak2 - ck*akl; 
climit = (limit - dk2)/dkl; 
if (climit <= ck) {hard =: TRUE; 
nk = ck*nkl + nk2; 
dk - ck*dkl + dk2; 

(hard) { 
UINT32 twoClimit = 2*climit; 
if (twoClimit >= ck) { 

nk 
dk 
if 

= climit*nkl 
= climit*dkl 
(twoClimit = 

f nk2; 
f dk2; 
ck) { 

/* Make new numer and denom */ 

/* If possible, quit when have exact result */ 
/* Prepare for next term */ 
/* (This loop does almost all the work) */ 

/* Get next term of continued fraction */ 
/* Get remainder (GCD step) */ 
/* Anticipate result of recursion on denom */ 
break;} /* Do not let denom exceed limit */ 
/* Make new result numer and denom */ 

If climit < ck/2 no improvement possible */ 
Make limited numerator and denominator */ 

/' If climit == ck improvement not sure */ 
/* Using climit is better only when dk2/dkl > ak/akl */ 
/* For full precision, test dk2*akl > dkl*ak */ 
UINT32 dk2aklHi, dk2aklLo, dklakHi, dklakLo; 
Mul32(flip?nk2:dk2, akl, &dk2aklHi, &dk2aklLo); 
Mul32(flip?nkl:dkl, ak, &dklakHi, &dklakLo); 
if ((dk2aklHi < dklakHi) 
II ((dk2aklHi == dklakHi) && (dk2aklLo <= dklakLo))) 

{ nk = nkl; dk = dkl; } /* Not an improvement, so undo step */ 
} 

} 
} 
if (flip) 
else 
return (val) , 

{val.numer = sign*dk; val.denom = nk;} 
{val.numer = sign*nk; val.denom = dk;} 
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II • I I • 
Computational 

Geometry 

The gems in this section describe abstract geometric models having practical graphics 
application. Their use in rendering is not limited to merely the spatial but includes 
colorimetric operations within (Euclidean) color space, as when r, ^, and b replace x, 
y, and z. 

Van Gelder's polyhedron volume and area finders (11.1) employ both computational 
optimizations and a mathematical reformulation not previously appearing in print. The 
latter's derivation is illustrated clearly, the former defended through empirical tables. 
The spherical geometry reviewed by Carvalho and Cavalcanti (II.2) rederives Girard's 
method of spherical excesses, ultimately yielding a point-in-polygon test while squelch-
ing a bug in a previous gem. Glassner (II.3) offers a reentrant polygon clipper whose 
edge traverse includes a nonsequential step, yielding a compact algorithm not prone to 
unnecessary object fragmentation. Hanson, who previously described the geometry of 
4D space in practical terms, now derives and describes (II.4) their rotation. A prac-
tical application (trackball manipulation) keeps the related application well in hand. 
Buckley (II.5) provides an insightful nearest lattice point test. Based upon the proper-
ties of space close packing, it is first conceived as a geometric color quantizer having 
possible spatial applications. Hill (II.6) derives a method of ellipse-ellipse intersection 
not requiring quartic polynomials by application of quadratic matrix forms. Both the 
intersection methods per se and the treatment of the linear algebra provide valuable 
graphics tools. The distance approximations by Paeth (II.7) are treated in essentially 
geometrical terms, off'ering insight into the nature of both cubic symmetry and spherical 
surfaces while producing a useful set of TV-dimensional containment heuristics. 
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011.1 
Efficient Computation of 
Polygon Area and Polyhedron 
Volume 

Allen Van Gelder 
University of California 
Santa Cruz, California 

0 Introduction 0 

This gem describes new methods to obtain the area of a planar polygon and the volume 
of a polyhedron, in three-dimensional space. They provide substantial speed-ups (factors 
ranging from two to sixteen) over previously reported methods. In most cases, the new 
methods are also easier to program. 

Implementers should be familiar with basic vector operations, particularly the cross 
product (Foley et al 1990, Appendix). This gem assumes a right-handed coordinate 
system; for a left-handed coordinate system, define the cross product to be the negative 
of its usual definition. Some derivations require slightly more advanced knowledge of 
vector calculus (Marsden et al. 1993). Derivations are sketched separately in the section 
"Derivations and Proofs." 

0 Background 0 

Formulas for polyhedral area and volume are older than computers, but their computa-
tional efficiency is seldom addressed. A previous gem has adapted 3D methods for area 
and volume computation from standard sources (Goldman 1991); for conciseness, they 
are referred to here as the "Goldman method." Formulas for polygonal area in 2D have 
also been summarized (Eves 1968, Glassner 1990, Rokne 1991). 

Area Vectors 

The most important observation for the formulas to be obtained is that area is most 
productively thought of as a vector^ particularly if further calculations are to be done 
with it. This point of view is well known in vector calculus. For example, the dot product 

Copyright (c) 1995 by Academic Press, Inc. 
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Operation 
Notation 

Cost symbol 
Floating Mpy's 

add 
V + W 

a 
0 

scale 
cv 
a 
3 

dot prod. 
V • W 

6 
3 

cross prod. 
V X W 

7 
6 

magnitude 

l|v|| 
M 

~ 17 

Figure 1 . Cost of vector operations. 

of an area vector with a direction vector yields the (scalar) area of the projection in 
that direction. 

Assume a bounded surface lies in a plane in 3D, having normal vector n. The interior 
of the surface is denoted as S and the boundary is denoted as dS. It is not necessary 
to know the normal vector to compute the area vector: 

^ Ids 
X ds, (1) 

where r is the position vector, ds is the differential arc length vector, and "x" denotes 
the cross product. The boundary curve dS is traversed in counterclockwise order when 
viewed from the half space into which the normal vector points. 

It can also be shown that the vectors A and n are collinear. This observation allows 
the program to avoid computing normal vectors separately. 

This gem treats the case in which the boundary of 5 is a planar polygon. Its vertices 
are PQ, P I , . . . , P^ - i , Po? listed in counterclockwise order when viewed from the half 
space into which the normal vector points. Equation (1) can be reduced to 

k-2 

2A = ^ P , X P^+i + Pfc_i X Po, (2) 

which is essentially that given by Goldman {op. cit.). Improvements are described in 
the section "Polygon Area Calculation." 

Computational Cost Model 

Computational costs will be estimated symbolically in terms of the costs of the various 
3D vector operations (see Figure 1). Floating-point multiplies, usually the dominant 
instruction, appear in the last row. Vector magnitude consists of a dot product followed 
by a square root. 

Equation (2) costs (/c7 + (fc—l)a) in general, which becomes (47 + 3a) for a quadri-
lateral. 
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<> Polygon Area Calculation 0 

This section describes how Equation (1) can be reformulated based on geometric insight, 
and computed much more efficiently. The same idea applies to 2D polygons. Observe 
the following: 

Proposition. The area of a planar quadrilateral is one-half the cross product of its 
diagonals, that is, using the counterclockwise indexing convention, 

A(quad) = ^(P2 - Po) X (P3 - P i ) . (3) 

To exploit the proposition, partition a fc-sided polygon into a series of quadrilaterals 
formed between PQ and three consecutive vertices. For k odd, a triangle completes the 
sequence. To express the formula in an easily coded form, some additional notation is 
useful: Let h = [^{k — 1)J, and let ^ = 0 if fc is odd, or ^ = k—1 if k is even. Then 

h-i 

2A = X^(P2i - Po) X (P2i+i - P2z- i ) + (P2/. - Po) X (P^ - P2/.-1). (4) 
i=l 

This can also be derived formally from Equation (2). 
The cost of Equation (4) is (/17 + (3/i — l )a ) . Roughly speaking, half of the cross 

products in Equation (2) have been replaced by vector subtractions. A quadrilateral 
now costs only (7 + 2a), which is nearly a factor of four better. 

0 Polyhedron Volume Calculation 0 

Let i? be a polyhedron with N vertices and m faces, labeled F o , . . . , Fm-i- For each 
face Fj, choose an arbitrary vertex of that face, which is called its representative vertex 
and is denoted by Pi?.. The volume of R is given by 

m—l m—1 

^ - 5 E P ^ . - A , = | E P F , - ( 2 A , ) , (5) 
j=0 j=0 

where Aj is the vector area of Fj. Again, this is a "mathematician's formula," which 
makes no attempt to optimize computational costs.^ However, it still offers a substantial 

^Consider this illustrative joke. Question 1: How does a mathematician make a cup of tea, given a 
kettle of water at room temperature? Answer 1: He puts the kettle on the stove. When the water boils, he 
pours some into a cup with tea leaves. Question 2: How does a mathematician make a cup of tea, given 
a kettle of boiling water? Answer 2: He sets the kettle aside until the water cools to room temperature, 
thereby reducing the problem to one previously solved. 
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improvement over the Goldman formula by eliminating vector-magnitude calculations 
and by using the more efficient Equation (4) to evaluate the vectors (2Ao). . . (2A^_i). 

For example, on a hexahedron having quadrilateral faces (a deformed cube), the 
Goldman method would cost (12M + 3O7 + 66 -\- 6a -\- 30a), while Equation (5) costs 
(67 + 6^ + 12a). A further optimization for hexahedra is described later. 

The mystically inclined may ponder the following fact: If a polyhedron has rational 
vertices, then it may have sides of irrational length, and it may have faces of irrational 
(scalar) area, but its volume is surely rational! 

Optimizations and Special Cases 

This section describes two optimization techniques for volume calculations and applies 
them to obtain further improvements on all polyhedra with four to six faces. Such figures 
arise frequently in finite element analysis, 3D flow simulations, and related graphics 
applications. 

The first economy of computation is to use a small set of representative vertices in 
Equation (5). One vertex can represent all the faces upon which it is incident. The area 
vectors of those faces can be added together first, and then just one dot product is 
taken with their common representative vertex. 

A second possible economy is (conceptually) to translate the origin to one of the 
representative vertices. Then the contribution of all faces containing that vertex becomes 
zero in Equation (5). The program need not compute the area vectors for those faces. 
The actual cost of the translation operation is one vector subtraction per remaining 
representative vertex. It is important to notice that the translation operation need not 
actually be applied to vectors participating in the area calculations of Equation (4), 
because they already appear as diff'erences. If there are thirty or more representative 
vertices, this step may not be cost-effective. 

Application of these optimizations depends on the topology of the polyhedron, so this 
gem can only give specifics for special cases. The remainder of this section describes 
optimizations for all polyhedra of four to six faces. 

First, consider a tetrahedron. Assume the orientation is such that P i , P2, P4 appear 
in clockwise order when viewed from PQ (see Figure 2). The second optimization makes 
it unnecessary to compute the areas of three of its faces, giving 

F(tetra) = i ( P i - Po) • ((P2 - P i ) x (P4 - P i ) ) . (6) 

This special case is well known, of course. Its cost is (7 + 5 + 3a). (By omitting the 
factor of | , Equation (6) gives the volume of a parallelepiped. This also computes a 
3 x 3 determinant efficiently.) 
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Figure 2. Orientations of tetrahedral vertices for Equation (6) and inexahedral vertices for Equation (8). 

More surprisingly, Equation (6) can be extended at no cost to the hexahedron formed 
by two abutting tetrahedra. To the above tetrahedron, add vertex P7 with edges to P i , 
P2, and P4. The volume of this polyhedron is 

y(dbl-tetra) = ^(Pr - Po) • ((P2 - P i ) x (P4 - P i ) ) . (7) 

Now consider a hexahedron with quadrilateral faces, that is, a deformed cube. Let the 
vertices be labeled as for a cube: PQ, . . . , P7 appear in the orientation shown in Figure 2. 
Observe that all five-faced polyhedra can be obtained by coalescing appropriate vertices 
of this figure. 

Now choose PQ and P7 as the representative vertices. After translating the origin to 
Po, only the faces containing P7 require their areas to be calculated. The formula then 
reduces to 

y(hexa) = i (P7 - Po) • (Pi X (P3 - P5) + P2X (Pe - Ps) + P4 x (P5 - Pe)). (8) 

To the best of the author's knowledge, this formula has not previously appeared in 
print. Its cost is (87 + 6 + 6a). This saves another factor of two over straightforward 
application of Equations (5) and (4). 

Basing costs on the number of multiplies (except a = 1, not 0), the Goldman method 
would cost 450. Equation (8) costs 27. The ratio of 450/27 gives the factor of sixteen 
promised in the introductory sentence. 

0 Derivations and Proofs 0 

All facts about vector calculus mentioned in this section can be found in standard texts 
(Marsden et al 1993). 
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P i 

Figure 3. Parallelogram based on diagonals of an arbitrary quadrilateral. 

Equation (1). The author has not seen this coordinate-independent formulation in 
print, but it is easily verified. Recall that the cross product commutes with rotation, 
that is, R{a x b) = (Ra) x (i?6), where i? is a rotation transformation. Therefore it 
suffices to consider the case in which the surface normal is k, the unit vector in the 
positive z direction. Then the z component of r is constant on the curve dS, and the 
integral simplifies to 

h (p {xdy — y dx) k. 
Jds Ids 

The magnitude is known to be the area of S by Green's theorem. Also, the area vector 
is collinear with the surface normal. 

Equation (2). Mathematically, only the component of r orthogonal to ds contributes 
to the cross product, and this component does not change along the line segment from 
Pi to Pi-fi. The contribution of this segment is Pi x (Pi+i — Pi). But Pi x Pi = 0. 

As seen geometrically, the right side is the vector sum of the areas of k triangles with 
vertices (0,Pi, Pi+i).) 

Equation (3). Circumscribe the quadrilateral by a parallelogram whose sides are par-
allel to the diagonals of the quadrilateral (Figure 3). The area of the parallelogram is 
(P2 — Po) X (P3 — Pi)- The triangles are congruent in pairs. 

Equation (5). Mathematically, by the divergence theorem, the volume of a 3D region 
R bounded by the surface dR is 

V = = U[ r-̂ A, (9) 
JJdR 

where dA is the outwardly oriented differential area vector. When R is a, polyhedron, 
let Fj be any face, and let P be any fixed point on that face. Then r • dA — P • dA for 
all points r on Fy Choose a representative vertex Pp^ as P , and the integral on that 
face simplifies to Pp. • jjfp. dA, 
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Geometrically, the right side is the algebraic sum of the volumes of m pyramids with 
bases FQ ... Fm-i and common apex at the origin. (If the origin is outside the volume, 
some volumes are negative.) Each pyramid's altitude is P̂ ;̂ . • (Aj/| |Aj| |). 

Equation (8). The intermediate formula for the deformed cube, after translating the 
origin to PQ in Equation (5), is 

liPr - Po) • ((Pi - Pj) X {Ps - Ps) + (P2 - Pr) X (Pe - Ps) + (P4 - P7) x (P5 - Pe)) 

All the cross products involving P7 cancel. 

0 Conclusions 0 
The discrete equations of area and volume, when derived by first principles, describe 
an underlying geometry of mensuration based upon triangles. An algebraic rederiva-
tion substituting the quadrilateral provides added computational efficiency. Factors of 
improvement may be estimated based upon machine costs of select operations. The 
derivation is faster regardless of machine specifics because scalar sums and differences 
replace slower vector-based operations, including the cross product and absolute value. 
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0 Introduction 0 

This gem presents a method based on spherical polygons to determine if a given point 
is inside or outside a three-dimensional polyhedron, given by its face list. This approach 
extends a well-known 2D technique (Haines 1994) to 3D. 

In two dimensions, one can decide whether a point p is inside a simple polygon P by 
computing the signed angle around p determined by each side of P . If p is not on the 
boundary of P , the sum S of all such signed angles is necessarily —27r, 0, or 27r. If 5 = 0, 
p is exterior to P . Otherwise, p is interior to P . Usually, this method is considered to 
be inferior to the one that is based on counting the number of intersections with P of 
a ray through p. However, it deserves attention for its elegance and simplicity. 

Below, it is shown how to extend the signed angle method to the 3D problem. It is 
assumed that P is a simple polyhedron, given by its face list, in which the faces are 
consistently oriented. 

0 Method of Solution 0 

First observe that the measure of the signed angle corresponding to an edge is (in the 
2D case) the measure of the directed arc obtained by projecting that edge onto the 
unit circle whose center is the point p being tested. The arc is positive if its orienta-
tion is counterclockwise and negative otherwise. The corresponding operation in three 
dimensions is to project each face of the polyhedron onto a unit sphere of center p and 
compute the signed area of the spherical polygon thus determined. The sign is posi-
tive if the spherical polygon has counterclockwise orientation and negative otherwise 
(Figure 1). In analogy to the 2D case, the following holds: 

Theorem. The sum S of the signed areas of the projections of all faces of the simple 
polyhedron P onto the unit sphere of center p is necessarily 0, ATT, or —47r. 
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Figure 1. Projecting faces in 3D. 

If S' = 0, then p is exterior to P; otherwise, p is interior to P. 

Proof. The projections of all edges of P partition the surface of the unit sphere into 
a finite family Q — {Qi, (52, • • •, Qm} of spherical polygons. The projection of a face of 
P is a finite union of elements of Q. Each element of Q may appear in the projection 
of several faces, and in each case its area may contribute positively or negatively to the 
total signed area S, depending on the face orientation. Hence, S can be expressed as 
S — Y^=\ ^i' area((5^), where ai is the net contribution of Qi. Assume that p is interior 
to P and that the faces of P have counterclockwise orientation. Let us compute the 
contribution ai of a spherical polygon Qi to S. Consider a ray defined by p and an 
arbitrary point interior to Qi. This ray may cross several faces of P . The first crossing 
goes from the inside to the outside of P (Figure 2). As a consequence, the orientation of 
the projection of the first face crossed is counterclockwise, and the area of Qi is counted 
positively. If there is another crossing, then it goes from the outside to the inside, and so 
the corresponding face projects onto a clockwise spherical polygon. Since p is interior, 
the total number of crossings is odd, and the ray goes from the inside to the outside 
once more often than it goes the other way. So, the net contribution of Qi is positive 
and ai = 1. Since this happens for every Q^, 5 is equal to the area of the sphere, which 
is given by 47r. 

If the faces of P have clockwise orientation, then S = —An. Finally, if p is exterior, 
the number of crossings is even, and the total contribution of each spherical polygon is 
zero, regardless of the orientation of the faces of P . Thus, in this case 5 = 0. i 
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Figure 2. Crossing faces. 

Computing Signed Areas of Spherical Projections of Polygons 

To use the previous theorem to locate a point p with respect to a polyhedron P, it is 
necessary to find the signed area of the projection of each face F of P onto the unit 
sphere of center p. It is possible to project each vertex onto the sphere and employ the 
routine presented in a previous gem (Miller 1994) to compute^ the signed area of the 
spherical polygon thus obtained. A more practical approach avoids the projection of 
faces onto the sphere. Presented below, it is based upon the classical formula of Girard 
for the area of a spherical triangle. 

According to Girard's formula (Coxeter 1961, Lines 1965, Bian 1992), the area of a 
spherical triangle on the unit sphere is given hy S = A + B + C — 27r, where A, 5 , 
and C are the (spherical) angles at each vertex, and 27r is the spherical excess. This is 
readily extended for spherical polygons by adjusting the excess. If a spherical n-gon is 
triangulated into n — 2 spherical triangles, its area may be expressed by 

3= E^0-2("-2)7r. (1) 

The spherical angle at a given vertex A is the angle a determined by the tangents 
to two great circles corresponding to the sides that cross at A. But a is also the angle 
formed by the planes containing those two great circles. Thus, a can be determined from 
the normal vectors to each of these planes, which can be computed without actually 
projecting the vertices onto the sphere (Figure 3). 

^A correction to his implementation concludes this work. 
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Figure 3. Computing spherical angles. 

Note, however, that the corresponding angle A of the spherical polygon may be either 
a or 27T — a, depending on whether A is the projection of a convex or concave angle. 
This can be ascertained by computing the vector product of the two corresponding face 
edges and comparing the resulting vector with the normal vector to the plane. If they 
have the same orientation, the angle is convex and A = a; otherwise, A = 27r — a. 

This procedure is executed for each vertex of the polygon, and Equation (1) then 
gives the area of the spherical polygon. Finally, it is necessary to find the sign to be 
attributed to this area. It suffices to compute the inner product of the face normal 
vector and the vector pv that joins the center p of the sphere to an arbitrary vertex v 
of the face. If this product is positive, the projection of F is counterclockwise and its 
signed area is positive. Otherwise, the area takes a negative value. 

Code Revision for Computing the Area of a Spherical Polygon 

The published routine {op. cit., page 136) used to compute the area of a spherical 
polygon does not work in every case. The error lies in the statement 

if (Lam2 < Lamjl.) Excess = - Excess; 

appearing as the penultimate line of the final if statement. The method fails when the 
polygon crosses the 0° meridian (the case is analogous to crossing the international date 
line). It should be replaced by 
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double Lam; 
Lam = (Lam2 - Laml > 0) ? Lam2 - Laml : Lam2 - Laml + 4*HalfPi; 
if (Lam > 2*HalfPi) Excess= -Excess; 

With this revision in place the routine may be used to find the correct orientation of 
the projected face and hence the correct signed area. 

0 ANSI C Code 0 

The code given below reads the face list of a polyhedron (description of each face, 
consisting of the number of vertices and the coordinates of each vertex) and tests an 
arbitrary point for inclusion in the polyhedron. To keep it short, the code does not test 
whether a given point is too close to a polygon plane. In practice, should this happen, 
the code should check for proximity to the polygon and return point on the boundary. 

#include <math.h> 
#include <stdlib.h> 
#include <stdio.h> 

#ifndef max 
#define max(a,b) ((a)>(b)?(a):(b)) 
#define min(a,b) ((a)<(b)?(a):(b)) 
#endif 
#define PI 3.141592653589793324 
#define GeoZeroVec(v) ((v).x = (v).y = (v).z = 0.0) 
#define GeoMultVec(a,b,c) \ 
do {(c).x = a*(b).x; (c).y = a*(b).y; (c).z = a*(b).z; } while (0) 

#define Geo_Vet(a,b,c) \ 
do {(c).X = (b).x-(a).x; (c).y = (b).y-(a).y; (c).z = (b).z-(a).z;} while (0) 

typedef double Rdouble; 
typedef float Rfloat; 
typedef struct _GeoPoint { Rfloat x, y, z; } GeoPoint; 

/*========-=============--- Geometrical Procedures ======================= */ 

Rdouble GeoDotProd { GeoPoint *vec0, GeoPoint *vecl ) 

{ 

return ( vecO->x * vecl->x + vecO->y * vecl->y + vecO->z * vecl->z ); 

} 

void GeoCrossProd ( GeoPoint *inO, GeoPoint *inl, GeoPoint *out ) 

{ 
out->x = (inO->y * inl->z) - (inO->z * inl->y); 
out->y = (inO->z * inl->x) - (inO->x * inl->z); 
out->z = (inO->x * inl->y) - (inO->y * inl->x); 

Rdouble GeoTripleProd ( GeoPoint *vecO, GeoPoint *vecl, GeoPoint *vec2 ) 

{ 
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GeoPoint tmp; 

GeoCrossProd ( vecO, vecl, &tmp ); 
return ( GeoDotProd( &tmp, vec2 ) ); 
} 

Rdouble GeoVecLen ( GeoPoint *vec ) 

{ 

return sqrt ( GeoDotProd ( vec, vec ) ); 

} 

int GeoPolyNormal ( int n_verts, GeoPoint *verts, GeoPoint *n ) 

( 
int i ; 
Rfloat n_size; 
GeoPoint vO, vl, p; 

GeoZeroVec ( *n ); 
Geo_Vet ( verts[0], verts[1], vO ); 
for ( i = 2; i < n_verts; i++ ) 

{ 
Geo_Vet ( verts[0], verts[i], vl ); 
GeoCrossProd ( &vO, &vl, &p ); 
n->x += p.x; n->y += p.y; n->z += p.z; 
vO = vl; 
} 

n_size = GeoVecLen ( n ); 
if ( n_size > 0.0 ) 

{ 
GeoMultVec ( l/n_size, *n, *n ); 
return 1; 
} 

else 
return 0; 

} 

/ *==z=z======zz==-============ geo_solid_angle = =================== 
/* 
Calculates the solid angle given by the spherical projection of 
a 3D plane polygon 

*/ 

Rdouble geo_solid_angle ( 
int n_vert, /* number of vertices */ 
GeoPoint *verts, /* vertex coordinates list */ 
GeoPoint *p ) /* point to be tested */ 

{ 
int i ; 
Rdouble area = 0.0, ang, s, 11, 12; 
GeoPoint pi, p2, rl, a, b, nl, n2; 
GeoPoint plane; 
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if ( n_vert < 3 ) return 0.0; 

GeoPolyNormal ( n_vert, verts, &plane 

WARNING: at this point, a practical implementation should check 
whether p is too close to the polygon plane. If it is, then 
there are two possibilities: 
a) if the projection of p onto the plane is outside the 

polygon, then area zero should be returned; 
b) otherwise, p is on the polyhedron boundary. 

p2 = verts[n_vert-l]; /* last vertex */ 
pi = verts[0]; /* first vertex */ 
Geo_Vet ( pi, p2, a ); /* a = p2 - pi */ 

for ( i = 0; i < n_vert; i++ ) 
( 
Geo_Vet(*p, pi, rl); 
p2 = verts[(i+1)%n_vert]; 
Geo_Vet ( pi, p2, b ); 
GeoCrossProd ( &a, &rl, &nl ); 
GeoCrossProd ( &rl, &b, &n2 ); 

11 = GeoVecLen ( &nl ); 
12 = GeoVecLen ( &n2 ); 
s = GeoDotProd ( &nl, &n2 ) / ( 11 * 12 ); 
ang = acos ( max(-1.0,min(1.0,s)) ); 
s = GeoTripleProd( &b, &a, &plane ); 
area += s > 0.0 ? PI - ang : PI + ang; 

GeoMultVec ( -1.0, b, a ); 
pl = p2; 
} 

area -= PI*(n_vert-2); 

return ( GeoDotProd ( &plane, Scrl ) > 0.0 ) ? -area : area; 
} 

/* ====================== main ========================== */ 

int main ( void ) 

{ 
FILE *f; 
char s[32]; 
int nv, j; 
GeoPoint verts[100], p; 
Rdouble Area =0.0; 

fprintf ( stdout, "\nFile Name: " ); 
gets ( s ) ; 
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if ( (f = fopen ( s, "r" )) == NULL ) 
{ 
fprintf ( stdout, "Can not open the Polyhedron file \n" ); 
exit ( 1 ); 
} 

fprintf ( stdout, "\nPoint to be tested: " ); 
fscanf( stdin, "%f %f %f", &p.x, &p.y, &p.z ); 

while ( fscanf ( f, "%d", &nv ) == 1 ) 
{ 
for ( j = 0; j < nv; j++ ) 

if ( fscanf ( f, "%f %f %f", 
&verts[j].x, &verts[j].y, &verts[j].z ) != 3 ) 

{ 
fprintf ( stdout, "Invalid Polyhedron file \n" ); 
exit ( 2 ) ; 
} 

Area += geo_solid_angle ( nv, verts, &p ); 

} 

fprintf ( stdout, "\n Area = %12.41f spherical radians.\n". Area); 
fprintf ( stdout, "\n The point is %s", 

( (Area > 2*PI) || (Area < -2*PI) )? "inside" : "outside" ); 
fprintf ( stdout, "the given polyhedron \n" ); 
return 1; 
} 
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0 Introduction 0 

Polygons are a popular modeling primitive. Polygon clipping against a line or a plane is 
one of the most common^ rendering operations. The classic reentrant method (Suther-
land and Hodgman 1974) clips a convex polygon against a line, yielding a pair of 
polygons lying on either side of the line. The algorithm is conceptually elegant and easy 
to program for convex polygons, but becomes difficult to implement for concave ones. 
Although it can be patched up to treat these cases (Foley et al 1990), the patching 
becomes complicated, involving the detection of degenerate edges. 

This gem presents a simple yet robust method for clipping concave polygons. The 
method considers that often one merely needs the polygon lying to one side of the 
line. In the general case, both polygons are returned, suggesting an algorithm that can 
accommodate multiple polygons such as those produced when a concave polygon is split 
into many fragments (which may also be concave). 

0 The Algorithm <> 

Following standard convention, discussion is phrased in terms of a clipping line, which 
may also represent the line of intersection between a clipping plane and the polygon. 
The line is oriented: It has a positive side and a negative side. Points (or polygon parts) 
on the positive side of the clipping line are inside^ otherwise outside. 

Consider Figure 1(a), which shows a polygon and a clipping line. The vertices of 
the polygon are labeled 1 through 8; assume vertex 1 is inside. To recapitulate the 
operations of the Sutherland-Hodgman algorithm, first traverse the polygon's vertices 
(in either order). Test the current edge for intersection against the clipping line. If 
it does intersect, compute the point of intersection and insert it into the vertex list 
between the two endpoints. Continuing for all edges results in the new points labeled 
A through H. For purposes of discussion, this will be called a prepared polygon (now 
having sixteen vertices). 

^A basic utility supporting this operation for general polygons appears on page 386. 

Copyright (c) 1995 by Academic Press , Inc. 
All rights of reproduct ion in any form reserved. 
IBM ISBN 0-12-543455-3 ^ ^ 
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A 
/ / A 

Figure 1. Reentrant clipping of a concave polygon 

The Sutherland-Hodgman approach considers vertex 1 as inside and creates the A 
on exit, the point B on reentry includes vertex 3, and so on, constructing the polygon 
(1, A, B, 3, . . . ) . But points A and B do not belong to the same final polygons, so this 
is not an auspicious beginning. 

The gem's approach is based on the observation that the new intersection points 
necessarily come in pairs that exactly correspond to edges. (This is the famous Jordan 
Curve theorem in action.) That is, it considers the sequential points of intersection 
along the cutting edge while evaluating consecutive vertices along the polygon. 

In the example, points G and B represent a pair, though they were generated at 
different times during the edge traverse. To find such pairs, pick any two intersection 
points X and Y at random. All points of intersection lie along the line through X and 
y . Treating this as a directed line, find the signed distance of each intersection point 
from X. For example, if one used D and F as the pair of points, with D at the origin of 
the line and F lying in the positive direction, then points C, F , and G lie at increasingly 
positive distances from D, and E, H, and A lie at increasingly negative distances. In 
a second structure, sort these distance-point pairs by distance to create a second list, 
for example, A, iJ, E^ Z), C, F, G, B. Return to the polygon (the primary data 
structure) and create links between adjacent pairs, beginning at the head of the list. In 
the example, this generates the pairs (A,i7), (F, Z?), (C, F) , and (G, S ) . 

Note that pair production always requires an even number of points. This can be a 
problem for vertices lying directly upon (or edges coincident with) the clipping line. The 
solution borrows a technique from ray tracing (Haines 1989). The heart of the method 
is that all vertices are classified as inside or outside in an initial pass before clipping 
begins, and any vertex that is on the line is considered to be inside. This approach has 
the desirable property that if a polygon is clipped against the same line twice in a row, 
it will not be changed. 
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0 Pseudocode Implementation 0 

ConcaveClip(Polygon polygon, Line clipper) 

for each vertex V in polygon.vertices 
V.link := NULL 
u := signed distance of V to clipper 
if (u < 0) then V.inside := FALSE 

else V.inside := TRUE 
endif 

endfor 
createdList := NULL 
vertex V := polygon.vertices 
do 

N := V.next 
if (V.inside <> N.inside) then 

compute location of intersection point P 
insert P in polygon.vertices between V and N 
append P to createdList 
V := P 
endif 

V := N 
while (V <> first vertex in polygon) 

A := first vertex in createdList 
B := second vertex in createdList 
for each vertex V in createdList 

V.distance := distance from A along line AB 
end for 

sort createdList by distance 
for each consecutive pair of vertices A and B in createdList 

A.link := B 
B.link := A 
end for 

for each vertex V in polygon.vertices 
V.visited := FALSE 
end for 

while any V.visited in polygon.vertices is FALSE 
/* start of a new polygon */ 
find first unvisited vertex U 
V := U 
do 

V.visited := TRUE 
/* emit V as a vertex of the polygon */ 
if (V.link = TRUE) 

V = V.link 
V.visited := TRUE 
/* emit V as a vertex of the polygon */ 
endif 

V := V.next 
while (V <> U) 

end while 
end ConcaveClip 
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Program Data Structures 

The implementation assumes that a polygon's vertices are stored as records in a linked 
list, with the next field locating successive records. Additional fields are used for in-
ternal bookkeeping: The boolean ins ide is true for a vertex on the positive side of 
the clipping line. New vertices employ a d is tance field for sorting and a l ink field 
that locates its mated pair. The latter serves double duty in identifying the (non) orig-
inal vertices as the field is then (not) NULL. The v i s i t e d flag assures that all original 
vertices are accounted for in the output. The sorting step employs a vertex list called 
crea tedLis t . 

Program Operation 

The code first evaluates each polygon vertex with respect to the clipping line and sets 
the ins ide field FALSE for all vertices having a nonpositive distance. The c rea tedLis t 
is also cleared. The polygon traverse now commences. Two successive (original) vertices 
having differing ins ide fields cross the clipping line. When encountered, compute the 
point of intersection, insert it into the list of vertices, and add it to c rea tedLis t . It is 
important to advance the walking vertex pointer so that this newly created vertex is 
not revisited on the next trip around the loop. 

The next step picks any two points in c rea tedLis t (e.g., the first two) and assigns 
signed distances to all the other points based on the oriented line they define. The 
points are sorted by this distance, and the l i nk fields set so that the vextex in each 
pair points to its mate. 

The last step creates the new polygons. Since there may be multiple fragments, the 
code first sets the v i s i t e d field of all vertices FALSE. This loop begins with any unvisited 
vertex and walks around the polygon in order, emitting each vertex (and marking it 
visited). When a new vertex with non-NULL link is encountered, its mate is picked up 
before continuing around the polygon. The polygon construction loop runs as long as 
unvisited vertices remain. When it is done, all new polygons have been built. Note that 
each new vertex on the clipping line will be output twice, while an original vertex is 
only output once. 

The algorithm is simple to implement, and robust because the only classification 
concerns the intersection of an edge and a clipping line. When the number of vertices 
in the polygon is small, a simple sorting procedure will often work well. Note that even 
a relatively simple polygon can quickly become complicated after a few clips, as seen in 
Figure 1(b). 
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0 Introduction 0 

A previous gem^ (Hanson 1994) described a family of techniques for dealing with the 
geometry of A/'-dimensional models in the context of graphics applications. Here, that 
framework is used to examine rotations in A^-dimensional Euclidean space in greater 
detail. In particular, a natural A/'-dimensional extension is created both for the 3D 
rolling ball technique described in an earlier gem (Hanson 1992) and for its analogous 
virtual sphere method (Chen et al. 1988). This work also addresses practical methods 
for specifying and understanding the parameters of iV-dimensional rotations. The gem 
concludes by presenting explicit 4D extensions of the 3D quaternion orientation splines. 

Additional details and insights are available in the classic sources (see, for example, 
Sommerville 1985, Coxeter 1991, Hocking and Young 1961, Efimov and Rozendorn 
1975). 

0 The A/-Dimensional Rolling Ball 0 

Basic Intuition of tine Rolling Ball 

The defining property of any A/'-dimensional rolling ball (or tangent space) rotation 
algorithm is that it takes a unit vector VQ = (0 ,0 , . . . , 0,1) pointing purely in the 
Nth. direction (towards the "north pole" of the ball) and tips it in the direction of an 
orthogonal unit vector fi = (rii, n 2 , . . . , njsf-i, 0) lying in the {N — l)-plane tangent to 
the ball at the north pole, thus producing a new, rotated unit vector v, where 

V = MN • VQ = n s in ^ + VQ COS ^, 

^The reader is referred to "Geometry for AT-Dimensional Graphics" in Volume IV of this series. 

Copyright (c) 1995 by Academic Press , Inc. 
All r ights of reproduct ion in any form reserved. 

IBM ISBN 0-12-543455-3 
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-1 -sin G 0 

(a) (b) 

Figure 1. The "north pole" vector VQ pulled toward the tangent vector n, as by an unseen finger. 

as indicated schematically in Figure 1(a). (Note: for notational simplicity the compo-
nents of column vectors appear as horizontal lists.) 

By the conventional right-hand rule, a positive rotation (e.g., one that moves the 
X onto the y axis) moves the north pole into the negative direction of the remaining 
axes of the rotation plane. That is, if the 2D "rolling circle" acts on VQ = (0,1) and 
n = (—1,0) as shown in Figure 1(b), then 

V = M2 • vo — A sin 6 + vo cos 9 — {— sin ^, cos 9) , 

where the rotation matrix M2 can be written 

M2 = 

(1) 

If the right-handed coordinate frame is adopted, the sign of fi will follow standard 
convention. 

The intuitive model may be summarized in kinesthetic terms. If one is looking straight 
down at the north pole, the rolling ball pulls the unseen A t̂h component of a vector 
along the direction n of the (Â  — l)-dimensional controller motion, bringing the unseen 
component gradually into view. 

Implementation. In practice, one chooses a radius R for the ball containing the object 
or scene to be rotated and moves the controller^ a distance r in the tangent direction 
fi, as indicated in Figure 2(a). Working from the simplified diagram in Figure 2(b), 
we define D^ — B? + r'^ and choose the rotation parameters c = cos 9 — R/D and 
s = sm9 = r/D. 

For interactive systems, this choice has the particular advantage that, however rapidly 
the user moves the controller, 0 < {r/D) < +1 , so 0 < ^ < 7r/2. Depending upon the 

cos 9 — sir] 10] 
+ sin 9 cos 9 

c +nxs' 
—rixS c 

c 

.+^ 
—s 
c 

^The "controller" may include a slider, 2D mouse, 3D mouse, or other physical or virtual device. 
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+ North 

A 

• ' 5 'S^t ' '^ 

- Tangent + Tangent 
(a) (b) 

Figure 2. The notation used in implementing the rolling ball rotation model for N dimensions. 

desired interface behavior, an alternative choice would be to take 6 = r/R. This requires 
computing a trigonometric function instead of a square root, and it may cause large 
discontinuities in orientation for large controller motion. 

3D 

The explicit 3D rolling ball formula can be derived starting from an arbitrary 2D mouse 
displacement r = (x, ?/, 0) = {rrix, rriy^ 0), where n^ + n^ — 1. Then one replaces Equa-
tion (1) with rix = +1 by the analogous 3x3 matrix RQ for (x, z) rotations and encloses 
this in a conjugate pair of rotations Rxy that transform the 2D mouse displacement r 
into the strictly positive x-direction and back. Since even r = (—1,0,0) is rotated to 
the positive x-direction before i?o acts, all signs are correct. With the explicit matrices 

'xy — 

'rix 
Uy 

0 

-Uy 

rix 

0 

01 
0 
1 

) Ro = 

r c 0 
0 1 

-s 0 

+s 
0 
c 

one thereby finds an alternative derivation of the author's formula in a previous gem 
(Hanson 1992): 

Ms = RxyRo{Rxy) 

\c + (%)^(1 - c) -nxny{l - c) rixS 
-rixriyil - c) c+ (na,)^(l - c) riyS 

-UxS -riojS 

1 - (^x)^(l - c) -nxny{l - c) rixS 
-nxny{l-c) 1- {ny)'^{l-c) UyS (2) 
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4D 

The 4D case takes as input a 3D mouse motion r = (x, y, z, 0) = (rn^, rriy^ rn^, 0), with 
n1 + riy + nl = 1. Then one first transforms [ny^riz) into a pure y-component, rotates 
that result to yield a pure x-component, performs a rotation by 6 in the (x,7x;)-plane, 
and reverses the first two rotations. Defining the required matrices as 

i^yz — 

1 0 
0 I!^ 

Tyz 

0 ^ 

0 0 

0 0' 
-f^ 0 
IbL 0 5 -^xy — 

nx 
fyz 

0 
0 

fyz 

rix 
0 
0 

0 
0 
1 
0 

0-
0 
0 
1 

, ^ 0 = 

c 0 0 +s 
0 1 0 0 
0 0 1 0 

- s 0 0 c 

, (3) 

where Ty^ = riy + nl, we find 

M4 — RyzRxyRoyRxy \Ryz)-' 

1 - {rixf{l - C) - ( 1 - CJUxTly 
-(1 - c)nxny 1 - (%)̂ (1 - c) 
-(1 - c)nxnz -(1 - c)nynz 

— SUr —sn,, 

- ( 1 - c)nxnz 
- ( 1 - c)nynz 

l - ( n , ) 2 ( l - c ) 
-SUz 

SUx 

sriy 
sriz 

c 

(4) 

ND 

The extension of this procedure to any dimension is accomplished by having the con-
troller interface supply an (A^ — l)-dimensional vector r = (rni, r n 2 , . . . , rniv-i, 0) with 
r ' r = r^ and n • n = 1 and applying the rotation 

MN = RN-2,N~IRN-3,N-2 • ' • ^1,2^0(^1,2) 

(m)2(i -(1 - c)n2ni 

- ( 1 - c)nin2 1 - (^2)^(1 - c) 

-(1 - c)ninN-i - ( 1 - c)n2nN-i 

— Sni —8712 

' {RN-S,N-2) {RN-2,N-I) 

- ( 1 - c)nN-ini 

- ( 1 -c)nN-in2 

- ( n ^ - i ) ' ( l - c ) 

-sriN-i 

sni 

8712 

871N-1 

C 

(5) 

Recall that the controller input f = rh that selects the direction to "pull" also de-
termines c = cos^ = R/D, s = sinO = r/D^ with D'^ — R? -\- r^, or, alternatively, 
e = r/R. 
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0 Controlling the Remaining Rotational Degrees of Freedom 0 

There are N{N — l ) /2 parameters in a general AT-dimensional orthogonal rotation 
matrix, one parameter for each possible pair of axes specifying a plane of rotation (the 
3D intuition about "axes of rotation" does not extend simply to higher dimensions). 
The matrix Mjsi in Equation (5) has only {N — 1) independent parameters: One must 
now account for the remaining {N — l){N — 2)/2 degrees of freedom needed for arbitrary 
rotations. 

In fact, the noncommutativity of the rotation group allows us to generate all the 
other rotations by small circular motions of the controller in the {N — l)-dimensional 
subspace of r = rh. Moving the controller in circles in the (l,2)-plane, (l,3)-plane, 
etc., of the (TV — l)-dimensional controller space exactly generates the missing {N — 1) 
{N—2)/2 rotations required to exhaust the full parameter space. In mathematical terms, 
the additional motions are generated by the commutation relations of the SO{N) Lie 
algebra for z, j = 1 , . . . , Â  — 1, 

[RiN, RJN] — SijRNN — SjNRiN + ^INRJN — ^NNRIJ 

= -Rij . 

The minus sign in the preceding equation means that clockwise controller motions in the 
(i, j)-plane inevitably produce counterclockwise rotations of the object, and vice versa. 
Thus, the philosophy (Hanson 1992) of achieving the full set of context-free rotation 
group transformations with a limited set of controller moves extends perfectly to N 
dimensions. Implementation Note: In practice, the effectiveness of this technique varies 
considerably with the application; the size of the counterrotation experienced may be 
relatively small for parameters that give appropriate spatial motion sensitivity with 
current 3D mouse technology. 

Alternative Context Philosophies 

The rolling ball interface is a context-free interface that allows the user of a virtual 
reality application to ignore the absolute position of the controller and requires no sup-
plementary cursor context display; thus, one may avoid distractions that may disturb 
stereography and immersive effects in a virtual reality environment. However, some ap-
plications are better adapted to context-sensitive interfaces such as the Arcball method 
(Shoemake 1994) or the virtual sphere approach (Chen et al. 1988). The virtual sphere 
approach in particular can be straightforwardly extended to higher dimensions by us-
ing the rolling ball equations inside a displayed spatial context (typically a sphere) and 
changing over to an [N — l)-dimensional rolling ball outside the context; that is, as 
the controller approaches and passes the displayed inner domain context sphere, the 
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rotation action changes to one tha t leaves the A^th coordinate fixed but changes the 
remaining {N — 1) coordinates as though an (N — 1)-dimensional rolling ball controller 
were at tached to the nearest point on the sphere. Similar flexibility can be achieved by 
using a different controller state to signal a discrete rather than a continuous context 
switch to the {N — l)-dimensional controller. 

0 Handy Formulas for A/-Dimensional Rotations 0 

For some applications, the incremental orientation control methods described above 
are not as useful as knowing a single matrix for the entire A^-dimensional orientation 
frame for an object. The following subsections describe three ways to represent such an 
orientation frame. 

Columns Are New Axes 

One straightforward construction simply notes tha t if the default coordinate frame is 
represented by the orthonormal set of unit vectors x i = ( 1 , 0 , . . . , 0), X2 = ( 0 , 1 , 0 , . . . , 0), 
. . . , Xjv = ( 0 , . . . , 0,1), and the desired axes of the new (orthonormal) coordinate frame 
are known to be a i = {a[\a[\ ... ^a[ ^), a2, . . . , kjsj, then the rotation matrix that 
transforms any vector to tha t frame just has the new axes as its columns: 

M = [ai a2 • • • aA^]. 

The orthonormality constraints give M the required A (̂A^ — l ) / 2 degrees of freedom. 

Concatenated Subplane Rotations 

Rotations in the plane of a pair of coordinate axes (x^,Xj), i^j 
written as the block matrix 

Â  can be 

Rij{9> ij) 

0 0 

cos 9ij 0 

0 0 
sin 6ij 0 

0 0 

0 

1 

0 

0 - sin ( 
0 0 

0 
0 cosOi 

0 0 

(6) 
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and thus the N{N — l)/2 distinct Rij{9ij) may be concatenated in some order to produce 
a rotation matrix such as 

i<j 

with N{N—l)/2 degrees of freedom parametrized by {9ij}. However, since the matrices 
Rij do not commute, different orderings give different results, and it is difficult to 
intuitively understand the global rotation. In fact, as is the case for 3D Euler angles, 
one may even repeat some matrices (with distinct parameters) and omit others, and 
still not miss any degrees of freedom. 

Quotient Space Decomposition 

Another useful decomposition relies on the classic quotient property of the topological 
spaces of the orthogonal groups (Helgason 1962), 

SO{N)/SO{N - 1) = S^-^ , (7) 

where S^ is a X-dimensional topological sphere. In practical terms, this means that the 
N{N—l)/2 parameters of SO{N), the mathematical group of A^'-dimensional orthogonal 
rotations, can be viewed as a nested family of points on spheres. The 2D form is the 
matrix (1) parameterizing the points on the circle S^; the 3D form reduces to the 
standard matrix 

Ms{e,h) = 
' c+ (ni)^(l - c) nin2(l - c) - sris nsni{l - c) + sn2 
^1^2(1 - c) + sns c + (n2)^(l - c) n^n2{l — c) — sni 
nins{l - c) - 8712 ^2^3(1 - c) + sni c+ (^3)^(1 - c) 

(8) 

where the two free parameters of fi • n = (ni)^ + (n2)^ + (^3)^ = 1 describe a point on 
the two-sphere. These two parameters plus a third from the S^ described by ĉ  + s^ = 1 
(i.e., c = cos6, s = sin9) yield the required total of three free parameters equivalent 
to the three Euler angles. The 4D and higher forms are already too unwieldy to be 
conveniently written as single matrices. 

0 Interpolating A/-Dimensional Orientation Frames 0 

To define a uniform-angular-velocity interpolation between two iV-dimensional orienta-
tion frames, one might either consider independently interpolating each angle in Equa-
tion (6), or might take the quotient space decomposition given by the hierarchy of points 
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on the spheres (S '^~^ , . . . , 5^, 5^) and apply a constant angular velocity spherical in-
terpolation to each spherical point in each successive dimension using the "Slerp" 

^ / X 01 /^ ^ N ^ sin((l-t)6>) . smite) 
Unit) - Slerp n i ,n2 , t = ni ^\ ' + ^ 2 ^ ^ 

sin(^) sin(&) 

where cos0 = fii • n2. (This formula is simply the result of applying a Gram-Schmidt 
decomposition while enforcing unit norm in any dimension.) 

Either of these methods often achieves the goal of smooth appearance, but the solu-
tions are neither unique nor mathematically compelling, since the curve is not guaran-
teed to be a geodesic in SO{N). 

In general, specification of geodesic curves in SO{N) (Barr et al. 1992) is a difficult 
problem; fortunately, the two most important cases for interactive systems, N = 3 and 
N — 4^ have elegant solutions using the covering or "Spin" groups. For 50(3), geodesic 
interpolations and suitable corresponding splines are definable using Shoemake's quater-
nion splines (Shoemake 1985), which can be simply formulated using Slerps on S^ as 
follows: Let n be a unit 3-vector, so that 

(70 = cos((9/2), q = nsin((9/2) 

is automatically a point on S^ due to the constraint (go)^ + (^i)^ + (^2)^ + (93)^ = 1-
Then each point on S^ corresponds to an 50(3) rotation matrix 

r̂ O + 9 1 - 9 2 - ^ 3 
2^1 ̂ 2 + 2(7og'3 

_ 2(71(73 - 2qoq2 

2(71^2 - 2go^3 

Q0 + Q2-Q1- QI 
2(72(73 + 2(7ogi 

2(71(73 + 2qoq2 

2q2q3 - 2(70(71 

Qo + qs-Qi- QL 

Rs = 2^1 ̂ 2 + 2(70(73 Qo + qi-Qi- Qi "^Q^qs - 2qoqi , (9) 

which the reader can verify reduces exactly to the nested-sphere form in Equation (8). 
Note that the quaternions q and —q each correspond to the same 3D rotation. Slerping q 
generates sequences of matrices i?3(t) that are geodesic interpolations. Arbitrary splines 
can be defined using the method of Schlag (Schlag 1991). 

Quaternions in Four Dimensions 

In four dimensions, the correspondence between the rotation group 50(4) and the spin 
group Spin(4) that is its double covering may be computed by extending quaternion 
multiplication to act not just on three-vectors ("pure" quaternions) v = (0, V), but on 
full four-vector quaternions v^ in the following way: 

1^=0 
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Thus, the general double-quaternion parameterization for 4D rotation matrices takes 
the form 

R4 = 

• qoPo + qiPi + q2P2 + qsPs 
+qiPo - qoPi + q3P2 - q2P3 
+q2Po - qoP2 + qiPs - qsPi 
+qsPo - qoPs + q2Pi - qiP2 

-q2Po + qoP2 + qiPs -
qiP2 + q2Pi - qsPo -
qoPo + q2P2 - qiPi -
q2Ps + q3P2 + qiPo + 

-qiPo + qoPi + q3P2 - q2P3 
qoPo + qiPi - q2P2 - q3P3 
qiP2 + q2Pi + qoP3 + q3Po 
qiP3 + q3Pi - qoP2 - q2Po 

- q3Pi -q3Po + qoP3 + q2Pi - qiP2 
qoP3 qiP3 + q3Pl + q2P0 + qoP2 
q3P3 q2P3 + q3P2 - qoPi - qiPo 
qopi qopo + q3P3 - qipi - '̂̂ ^̂  q2P2 

(10) 

One may check that Equation (9) is just the lower right-hand corner of the degenerate 
p = q case of Equation (10). 

Shoemake-style interpolation between two distinct 4D frames is now achieved by ap-
plying the desired Slerp-based interpolation method independently to a set of quaternion 
coordinates q(t) on one three-sphere, and to a separate set of quaternion coordinates 
p{t) on another. The resulting matrix i?4(t) gives geodesic interpolations for simple 
Slerps and can be used as the basis for corresponding spline methods (Schlag 1991, 
Barr et al. 1992). Analogues of the N = 3 and Â  = 4 approaches for general N involve 
computing Spin(A/') geodesies and thus are quite complex. 

Controls 

As pointed out by Shoemake (Shoemake 1994), the Arcball controller can be adapted 
with complete faithfulness of spirit to the 4D case, since one can pick two points in 
a three-sphere to specify an initial 4D frame, and then pick two more points in the 
three-sphere to define the current 4D frame. Equation (10) gives the complete form 
of the effective 4D rotation. Alternately, one can replace the 4D rolling ball or virtual 
sphere controls described earlier by a pair (or more) of 3D controllers (Hanson 1992). 
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This gem describes a method of quantizing values (locating the nearest neighbor) in 
3-space. The method was originally intended as an optimal means of color coding, using 
a non-Cartesian partitioning of space. The solution, based upon the geometry of the 
truncated octahedron, has general applications, as in heuristics for intersection testing. 

0 Original Problem 0 

More and more, color image, interchange, and management applications are using the 
1976 CIE L*a*6* or "CIELAB" color space to represent color data. CIELAB (together 
with CIELUV) comprises CIE recommendations defining approximately uniform color 
spaces useful in calculating color differences. The recommendations are based upon 
the good correlation between the perceptual difference of two colors compared to the 
Euclidean distance between the two points representing these colors in CIELAB three-
space. 

In a digital system where a color is represented or quantized in CIELAB space, the 
usual practice is to quantize each coordinate L*, a*, 6* independently and uniformly. 
As a result, the collection of all quantized points or codewords lies on the simple cubic 
lattice shown in Figure 1, and quantizing a point is equivalent to selecting the nearest 
lattice point. In each dimension, the lattice points are separated by a distance equal to 
the quantization step. 

Associated with each lattice point is a Dirichlet or Voronoi region, containing the 
points that are closer to that lattice point than to any other. In this application, this 
region is called a quantization or Q region and contains the points that after quanti-
zation are represented by the associated lattice point or codeword. In the case of the 
simple cubic lattice, the Q regions are cubes centered on the lattice points; the Q region 
for a lattice point is shown in Figure 1. The edge length e of the cube corresponds to 
the quantization step. A cube is a parallelohedron: a polyhedron that can fill three-

Copyright (c) 1995 by Academic Press, Inc. 
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Figure 1, Simple cubic lattice and cubic Q region. 

space by translations alone. In effect, the quantizer is filling CIELAB space with cubic 
Q regions. 

One criterion for choosing the size of the quantization step e is the maximum quanti-
zation error. Quantization error is the difference or distance \\v — Q{v)\\ between a value 
V and the codeword Q{v) used to represent it. In CIELAB space, this is the difference 
between the actual color and the color used to represent it. For a cubic Q region, this 
is equivalent to the radius of the sphere (the circumsphere) that circumscribes a cube 
with edge length e. In Figure 1, the maximum quantization error is half the length of 
the body diagonal, or e>/3/2. 

Another criterion for choosing the size of the quantization step is minimizing the 
visibility of quantization contours (the two are correlated in CIELAB space) so that 
quantizing a smooth color gradient or color sweep will not introduce spurious contours, 
which are the color space analogue of jaggies. Because a color gradient can have any 
orientation in color space, two colors that are nearly the same could be encoded by 
CIELAB values separated by a distance equal to the body diagonal of the cube that is 
the Q region. This is the maximum distance between adjacent codewords or neighboring 
lattice points, which are ones whose Q regions have a common point. In Figure 1, 
this distance is e\/3, or twice the maximum quantization error. (As will be noted in 
a moment, the two criteria are not so simply related for other lattice quantizers.) It 
determines the worst-case visibility of quantization contours, as two colors that are 
nearly the same could be represented by colors separated by this distance. 
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cube hexagonal truncated rhombic elongated 
prism octahedron dodecahedron dodecahedron 

Figure 2. The five parallelohedra. 

0 Geometric Quantization 0 

A more economical quantizer would achieve the same quantization criterion using fewer 
codewords or equivalently larger Q regions to cover the entire color space (Buckley 
1981, 1993). Thus, the largest uniform volume surrounding any codeword is sought, 
as this provides the most efficient means to partition a space in the fewest number of 
lattice points. The unique solutions are known to crystallography and lattice theory and 
necessarily have opposing faces that are parallel and congruent. The five space-filling 
convex polyhedra or parallelohedra are shown in Figure 2: the cube, hexagonal prism, 
rhombic dodecahedron, truncated octahedron, and elongated dodecahedron (Coxeter 
1973). Of these five, only the first four need be considered, as the rhombic dodecahedron 
is the limiting case of an elongated dodecahedron: Collapsing the edges shared by pairs 
of hexagonal faces of the latter results in the former. 

Each of these four parallelohedra is the Q region for a different lattice and conse-
quently a different quantizer. From Figure 1, the cube is the Q region for a simple cubic 
lattice. The rhombic dodecahedron is the Q region for the face-centered cubic lattice 
(Figure 3a). This parallelohedron has twelve rhombic faces and fourteen vertices. The 
truncated octahedron is the Q region for the body-centered cubic lattice. It has six 
square faces, eight hexagonal faces, and twenty-four vertices. The hexagonal prism is 
the Q region for two-dimensional hexagonal lattices, stacked one above the other. 

If the quantizer criterion is minimizing the quantizer error r, then the most eco-
nomical quantizer is the one whose Q region has the largest volume for a given r, 
because it will use the fewest Q regions, and consequently the fewest lattice points or 
codewords, to cover the space. The volume of the cube, rhombic dodecahedron, and 
truncated octahedron can be described in terms of the radius r of their circumspheres. 
For the hexagonal prism, the prism height h must also be considered. However, h — y/r 
maximizes its volume with respect to its circumsphere. 
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Figure 3. Cubic lattices: face centered (a) and body centered (b). 

Table 1 compares the metrics of the four parallelohedra. Column 2 gives the ratio 
of the maximum distance d between adjacent lattice points (which is equivalent to 
the quantization step size) to the circumsphere radius r (which is equivalent to the 
quantization error). Columns 3 and 4 give the volume, normalized for the quantization 
error r and the maximum adjacent distance d. 

According to the table, the truncated octahedron has the largest volume for a given r. 
If a truncated octahedron and a cube are inscribed inside the same sphere, the volume 
of the truncated octahedron would be 12\/3/5\/5, or 1.86 times that of the cube. This 
means that a uniform quantizer based on a body-centered cubic lattice would use 53.8% 
as many codewords to achieve the same minimum error as a quantizer based on a simple 
cubic lattice. 

Similarly, if the quantizer criterion is minimizing the quantization step size (the max-
imum distance d between adjacent codewords), then the most economical quantizer is 

Table 1 . Metrics of parallelohedra. 

Parallelohedron 

cube 

rhombic 
dodecahedron 

truncated 
octahedron 

hexagonal 
prism 

d/r ratio 

2 

2 

4 / v ^ 

^ 

Normahzed volume 

V{r)/r'^ Vid)/d^ 

8 / ( 3 A / 3 ) ^ 1.54 l/(3v/3) ^ 0.19 

2 1/4 = 0.25 

32/ (5^5) ^ 2.86 1/2 = 0.5 

2 2 / (5^5) ?^0.18 
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Figure 4. Body-centered cubic lattice. 

the one whose Q region has the largest volume for a given d. Again, it will use the fewest 
Q regions, and consequently the fewest lattice points or codewords, to cover the space. 
The table shows that the truncated octahedron has the largest volume for a given d. For 
the same d, the ratio of the volume of a truncated octahedron to the volume of a cube is 
3\/3/2 or 2.60. Therefore, a body-centered cubic lattice quantizer requires 38.5% of the 
codewords used by a simple cubic lattice quantizer while meeting the same worst-case 
visibility criterion for quantization contours. 

<> Implementation 0 

Implementing a body-centered cubic lattice quantizer (Conway and Sloane 1982) is a 
straightforward task. Figure 4 shows that a body-centered cubic lattice is equivalent to 
two interlaced simple cubic lattices, A and S, whose lattice points are represented by 
filled and open circles. The given color is quantized first on lattice A in the usual way 
by independently quantizing the L*, a*, and 6* coordinates. The color is then quantized 
on lattice B in the same way. If the lattice point on A that is closest to the color is 
closer to it than the closest lattice point on 5 , then the closest lattice point on A is 
returned. Otherwise, the closest lattice point on B is returned. So a body-centered cubic 
lattice quantizer is equivalent to a program that compares the quantization errors of 
two simple cubic lattice quantizers. 

0 Related Work 0 
Color quantization traditionally employs a spatial partitioning, most often the Carte-
sian product (Paeth 1990b) of three unit intervals of irregular subdivision (Heckbert 
1982). These define a cubic lattice formed by parallel cutting planes and having irreg-
ular spacing (Paeth 1989). Determination of axis quantization is described in previ-
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ous gems (Gervautz and Purgathofer 1990, Wu 1990) and elsewhere. A non-Cartesian 
method based upon the geometry of the cuboctahedron was also described in other 
gems (Paeth 1990a, 1991). Other geometrical explorations of color quantization are 
also known (Turkowski 1986). Recent color research at the University of Waterloo ex-
plored the OSA space by applying semiregular solids (Lai 1991); reflective color space 
models based upon parallelotopes and zonotopes have also been employed (Paeth 1994). 
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This gem introduces the matrix form of the general planar conic section equation. 
This form is then used to extend the familiar transformation by homogeneous matrices 
to ellipses, and to find intersections of pairs of ellipses without reference to quartic 
equations. 

0 Matrix Form of a Planar Conic 0 

All conic sections (including degenerate forms) can be expressed as a second-degree 
equation: 

Ax'^ + 2Bxy + Cy^ + 2Dx + 2Ey + F = 0. 

Equation (1) can be written as a matrix equation, 

XSX^ - 0. 

(1) 

(2) 

Here S is the symmetric "characteristic matrix" (Rogers and Adams 1990, Hosaka 
1990) given by 

S = 
A B D 
B C E 
D E F 

and X = [x y 1]. (3) 

0 Transformation of Ellipses 0 

One use of the characteristic matrix is to transform conic sections. The most important 
conic section in computer graphics (excluding the line-a degenerate conic) is the ellipse 
(including circles). Techniques to transform ellipses are detailed here, although one may 
extend these methods to parabolas and hyperbolas. 
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Transformation of Points 

Transformation of a point (x^y) to a point {x'^y') by equations 

x' = ax -\- cy -\- m 
y' = hx + dy + n 

is expressed {op. cit.) as 

with 

T = 
a b 0 
c d 0 
m n 1 

X' = XT , 

, X = [ X y 1 ] , and X' = [ x̂  y^ 1 ] . 

(4) 

(5) 

(6) 

The added dimensionahty ( 3 x 3 for planar operations) allows the expression of trans-
lation by vector {m, n) as 

(7) 

Forms for rotation, scaling, and shearing resemble their 2 x 2 analogues, with zeros 
introduced on the off-diagonal, and unity on the diagonal, that is, rotation by ip: 

-t-m,n — 

" 1 
0 
m 

0 
1 
n 

0 
0 
1 

V ~ 

COS(p 

— simp 
0 

sini^ 
cosip 

0 

0 
0 
1 

(8) 

Multiplying these elementary matrices together allows one to create more complex 
transformations. For example, one can rotate by ip around an arbitrary point {m^n) 
with the transformation 

^ — -^^—m,—n-ti^(p ^m,n- (9) 

This equation can be interpreted as: translate from the pivot point to the origin; 
rotate by ip; translate back. 

Transformation of Conies 

Conic sections can be transformed using transformation matrices. Consider a point X 
on a conic section and its image X' under the transformation T (i.e., X' = XT) . Such 
a point (X) must satisfy XSX^ = 0. Assuming that the transformation is invertable. 
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X = X T - i and X"^ = (XT-^)^ = ( T - I ) ' ^ X T . Substituting these expressions into (2) 
gives 

0 = XT-iS(T-^) '^X'^; (10) 

hence, the transformed characteristic matrix is S = T ^S(T ^)^. The result of this 
matrix product is still symmetric, since 

. T T 

T-^S ( T - ^ ) = ( T - ^ ) S ^ ( T - ^ ) = T-^S ( T - 1 ) = S. 

Thus, ellipses remain ellipsoidal under general transformation, an important property. 

Computing the Characteristic Matrix from Ellipse Parameters 

The defining properties of general ellipses may now be examined under arbitrary trans-
formation. Without loss of generality, consider an ellipse symmetric about the origin 
having semimajor and semiminor axes TX and Vy parallel to the coordinate axes. That 
is, the unit circle defined by characteristic matrix 

^u — 

1 0 0 
0 1 0 
0 0 - 1 

(11) 

is scaled in x hy TX^ in y by Ty (matrix a), and rotated (inclined) by (f (matrix R), 
giving 

^ e — \^rx,ry^^) ^u V^^a^^^y V̂ j 
l T 

(12) 

Expansion yields 

cos^ (f j _ sin"̂  if 
+ i^:^ - ^jsiiKfCosif 0 

(̂ ~4) sm (f cos if 

- 1 

(13) 

Retrieving Ellipse Parameters from the Characteristic Matrix 

Conversely, a characteristic matrix may be converted into ellipse parameters. First select 
the rotation that diagonalizes the characteristic matrix. It is 
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1 _i / 2B \ 
(14) 

Rotating by — v? yields the diagonal characteristic matrix 

A 0 0 
0 B 0 
0 0 - 1 

which represents a coaxial, rectilinear ellipse with semiaxes 

(15) 

(16) 

0 Intersections of Ellipses 0 
Unlike finding intersections of two circles or of a line and circle, there is no obvious 
geometric method to find ellipse-ellipse intersections. One might imagine that one must 
solve a quartic equation to arrive at the four possible intersection points, but not so. 
Once again, characteristic matrices offer an elegant means of solution. 

Given conic characteristic matrices Si and S2, any point X on their intersection must 
satisfy both XSiX^ = 0 and XS2X^ = 0. Taking an arbitrary linear combination gives 
a X S i X ^ + /3XS2XT = 0. Factoring out X and X'^ gives 

X(Si + /iS2)XT = 0, (17) 

where M = f. Note that Si + /iS2 is symmetric (as any linear combination of symmetric 
matrices will be), and hence it, too, is a conic characteristic matrix. Thus, the (poten-
tially four) points of intersection lie upon a third conic. Now, Si + /XS2 need not define 
an ellipse, in fact choosing fi so that Si + /iS'2 is degenerate is best. This reduces the 
problem of finding the intersections between two conies to the problem of finding the 
intersections between a set of lines and a conic (Hosaka 1990). 

The algorithm contains four steps: 

1. Transformation 
Create the conic characteristic matrix as described above. The formulas of the 
preceding section assume the ellipse center is at the origin, so one must translate 
both characteristic matrices to their correct centers using 

S — T^^S(T , . - 1 XT 
-m.nJ ' T — 

-•- 7 7 7 . n 

1 0 0 
0 1 0 
m n 1 

(18) 

where (m, n) is an ellipse center. (This offset will be reapplied to the final solutions.) 
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2. Degeneration 
Solve for fi such that |Si + [182] = 0 (conies having zero determinant are degen-
erate). The cubic equation in /i is easily solved using the algorithms presented in 
gem LI. 

3. Linearization 
For each /x found above, interpret the elements (3) of ^i + /iS'2 as a system of 
lines. The matrix takes three possible forms based on zero elements. To accom-
modate numerical imprecision, a value V is "approximately zero" when |y | < £; 
e = 10~'^Mm{rx^ry) is typical. 

(a) Single Line, A = B = C = 0 
Si + 11S2 represents a line having equation Dx + Ey -\- F = 0. Calculate two 
points on this line: I f — 1 < — ^ < 1 , substitute x = { —1, 1} into y = — ^ ^ ^ 
to obtain corresponding values of y; otherwise, use ?/ = { —1, l } i n x = ^^— 
to produce values of x. 
Parallel Lines, B'^ - AC = 0 
Rotate by 

(b) 

25 
(19) 

to make the lines parallel to one of the axes, yielding a matrix of the form 

A 
0 
D 

0 
0 
0 

Dl 
0 
F 

ro 
0 
0 

0 
B 
E 

0 
E 
F 

(20) 

These matrices represent the quadratic equations Ax^ + Dx + F = 0 or By^ + 
Ey + F = 0 whose roots (ri and r2) determine where the lines cross the x (y) 
axis. Compute two points on each line [e.g., (ri, —1), (ri, 1)], and rotate these 
points by —(f back to their original position. 

(c) Crossing Lines, B'^ - AC > 0 
S1+/J.S2 represents a pair of crossing lines. Rotate by (p as in (b), then translate 
the intersection to the origin using 

m 

n 

CD-BE 
' B^-AC ' 
AE-BD 
B^-AC 

(21) 

with m and n computed with the rotated coefficients (Rogers and Adams 
1990). After the translation, (0,0) and (\A\~^^'^ ,\B\~^/^) are points on the 



//. 6 Matrix-based Ellipse Geometry (} 77 

first line, and (0,0) and (|-A|~ ^ , — \B\~ ' j are points on the second. Again, 
transform each of these points back to the original position (translate by 
(—m, —n), rotate by —(/̂ ). 

(d) (Else) 
Ignore; continue with next [i. 

4. Intersection 
For each line found in (c), calculate the intersections of that line with the first 
ellipse. This is easily done by transforming the ellipse-line system into a circle-
line system, finding the intersections and transforming the points back. Test each 
intersection point to determine if it is on the second ellipse (again turn the second 
ellipse into a circle and test against the circle). If so, one of the intersections of the 
ellipses has been found. 
There are several details and optimizations that we leave to the source code listing. 
The source code can be found in the file CONMAT.C on the accompanying disk. 

0 Acknowledgments <> 
Thanks are due to Alan Paeth, whose suggestions greatly improved this gem, and to 
Michael Riddle and Susan Montooth for their support of this effort. 

0 Bibliography 0 
(Farin 1988) G. Farin. Curves and Surfaces for Computer Aided Geometric Design: A 

Practical Guide. Academic Press, New York, 1988. 

(Hosaka 1990) M. Hosaka. Modeling of Curves and Surfaces in CAD/CAM, pages 48-
49. Springer, Berlin, 1990. 

(Rogers and Adams 1990) D. F. Rogers and J. A. Adams. Mathematical Elements for 
Computer Graphics, pages 87-88, 236-242. McGraw-Hih, New York, 1990. 



011.7 
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0 Introduction 0 
This gem presents an n-dimensional linear approximation that can only overestimate 
distance, preserving the valuable containment property of the previous 2D method 
(Paeth 1990a). Whereas the latter was solved using trigonometry, this gem employs 
geometric methods to derive a family of semiregular polytopes having cubic symmetry. 
These solids provide a nested sequence of bounding that encases the n-sphere: that 
locus of points in n-space lying at a unit distance from the origin. As a bonus, the 
gem provides geometric insight and illustration of the symmetries of the n-dimensional 
"hypercube" measure solid. 

0 Background 0 
The n-dimensional Manhattan^ ll^lli = |^ i | + *•• + |^n|) norm and infinity norm 
||X||oo = linin^oo(kir + • • • + knD^^^ are computationally attractive. Both may be 
evaluated using integer arithmetic; the first sums the first n components of X, the 
second is Max( |x i | , . . . , \xn\)- Each consistently over- and underestimates the distance 
described by the Euclidean norm ||X||2, as seen in Figure 1. 

A linear approximation is a compromise sharing properties of the other two norms: It 
ranks the component magnitudes (instead of finding merely the maximum), then sums 
these Manhattan-style subject to weights: 

Iapprox = C i | x i | H \-Cn\Xn\. (1) 

In particular, given weight vectors W with values (1 ,0 , . . . , 0) and ( ! , . . . , ! ) the norms 
||X||oo and | |X||i are rederived, respectively. Previously {op. cit.)^ the tightest solu-
tion possible in 2D used the weight set W = (1,tan(7r/8)) ^ (l^^)- The last form 

^This is also known as the "taxicab" norm. 
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(a) Conventional Norms (b) Linear Approximations 

Figure 1, Distance metrics in 2D. 

rederives the rule-of-thumb method long known in graphics circles; since tan(7r/8) < ^, 
increasing the weight of C2 can only loosen the approximation, thereby increasing the 
overestimation and contracting the surface of unit distance, as seen in Figure 1(b). 

0 Methods of Extension 0 

Algebraic Extension 

In the first volume of Graphics Gems (Glassner 1990), the editor asserts that higher-
dimensional distance approximations may be formed by nesting smaller ones. Proce-
durally, this suggests that dist3(...) may be defined in terms of dist2(...) using two 
variants: 

dist3(xi,X2,X3) = dist2[dist2(xi,X2),a^3], 

dist3(xi,X2,X3) = dist2[xi,dist2(x2,X3)]. 

Substituting the previous approximation 

dist2(xi,X2) = max(|xi|,|x2|) + ^min(|a;i|, \x2\) 

(2) 

(3) 



80 0 Computational Geometry 

and expanding yields the two candidate approximations 

dist3(xi,X2,X3) = max(|xi|, k2| , ksl) + med(|xi|, |x2|, l^sl) + ^min(|xi| , \x2\, \xs\), 

dist3(a;i,X2,X3) = max(|xi|, |x2|, |x3|) + ^med(|xi|, |x2|, l^sl) + ^ min(|xi|, |x2|, Ixs])-

(4) 

Remarkably, the conjecture holds for the traditional metrics, provides excellent solu-
tions in the approximate 3D case, and is false. To disprove the assertion, consider the 
form in (4b) above in 4D, operating on the vector X = (1,1,1,1). The vector defines 
the body diagonal of a hypercube and has a (Euclidean) length of two. The approxima-
tion employs the weight set W = (1, ̂ , | , | ) , giving an estimated length of 15/8 < 2, 
underestimating the length, and the assertion fails. (In higher dimensions the length of 
the body diagonal grows arbitrarily large, while the approximation is still bounded by 
the value two.) 

The underlying reason for failure is subtle: The partial component magnitudes com-
puted by the nested dist2() in (4b) have a range that is sufficient to alter their proper 
position in the terms. Put another way, ranking all n component magnitudes constitutes 
a sort, requiring 0 (n log n) steps. However, unrolling the sequence of nested function 
calls would provide a straight-line implementation requiring only 0{n) max and min 
operations, which are insufficient to support the sort having an O(nlogn) bound. 

Geometric Extension 

The geometric extension to 3D considers the locus of points X = {xi,X2^xs) having a 
unit length under the approximation. Substituting the weight vector linear sum is a dot 
product, giving the equation of a plane not passing through the origin: 

W • X = 1 with xi > X2 > X3. (5) 

The left-hand side (5a) defines a plane; the right-hand (5b) sets hmits on the range 
of coordinates within the plane, forming a polygon. Moreover, (5a) admits solutions 
having eightfold symmetry (±xi, ±^2, ±X3). Likewise, (5b) admits the sixfold symmetry 
created when permuting the three components. In general, the defining (hyper)plane 
for any solution remains valid as long as the component ordering is preserved. At its 
limits, when two components are equal (e.g., xi = X2), the original ordering in (5b) also 
holds for a second limit, for example, X2 > xi > x^. Since both hold concurrently, these 
define a line of intersection of the weight plane W - X = 1 with the symmetry plane 
xi = X2. 
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The symmetry planes seen above are present in any n-space. Sign complementation 
yields the 2^-fold cubic symmetry planes related to the (nonunit) hypercube having 
vertices ( ± 1 , . . . , ±1), which is the regular measure solid (Coxeter 1973) present in any 
n-space. The second set are the (n!)-fold symmetry planes that describe an irregular 
cross solid, the dual {op. cit.) of an n-dimensional rectangular brick.^ 

With both this geometric symmetry and the original overestimation constraint, an 
analytical solution may now be constructed. In ID, all norms are equivalent and wi = \^ 
trivially. In 2D, the "fold-over" point where the components of X change order occurs 
along the line a:i = 0:2, accounting for the exact solution appearing in Figure 1(b). This 
introduces the new weight W2 = \/2 — 1. 

In 3D the solution is a polyhedron. Cartesian symmetry indicates that a regular 
octagon lying in the z (flatland) plane appearing in Figure 1(b) must occupy the x 
and y planes as well—that is, the evaluation of dist3(l, 1,0) must be invariant under 
parameter permutation. This constraint ensures that any solution in a higher dimension 
rederives one in the lower where trailing components are elided. Geometrically, this zero 
substitution projects the figure onto a plane containing the Cartesian axes. 

The trial polyhedron created in this fashion has eighteen vertices ( 3 x 8 — 6; less six 
because each octahedral vertex is counted twice). This is not the desired solid, which 
by the previous symmetry conditions should have additional vertices (this vertex tally 
is not rigorous: A large number of redundant vertices could be present). Its convex hull 
shows that its greatest departure from the sphere occurs near the body diagonals of an 
encasing cube. In fact, the missing vertices are the extreme crossover points found when 
xi = X2 — X2, along the body diagonal of an encasing cube. When one solves for correct 
distance, the ones-vector V = (1,1,1) has a distance of \ / 3 . The exact fit may now be 
found by determining the value of w^ that admits this solution, thus providing both an 
exact fit along the symmetry planes while preserving the lower-dimensional solutions. 
Based on previous weights, the required value is 103 = \/3 — V^. 

In all dimensions, the length estimation oi x — ( ± 1 , . . . , ± 1 ) invokes the solution 
of the plane equation (5) regardless of component permutation. That is, this vertex is 
common to all the weight planes and hence is the extreme point not present in the trial 
solid now introduced by dimensional increase. Put another way, changing any of the 
n components of this ones-vector by e crosses over to one of n plane equations, whose 
intersection is n-space. Since multiplicity reduces dimensionality, these define a feature 
of dimension n — n, a (nondegenerate) point. 

^The regular cross solid in three-space is the octahedron, whose vertices are the permutations of 
(±1,0,0). 
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n 
y/n 

wn 
error 

Table 1. 
1 
1 
1 

1.0 

Exact wei 
2 

1.4142 
.4142 
1.082 

ghts for encasing polytopes. 
3 

1.7321 
.3178 
1.128 

4 
2.0000 
.2679 
1.159 

5 
2.2362 
.2361 
1.183 

The complete solution may be created by computing the exact lengths of the ones-
vector V and adjusting the succession of weight accordingly, giving the exact solution 

^n = V^ — Vn — 1. (6) 

These are presented in Table 1. 

0 Geometrical Analysis <> 

In the 3D case, the hull of the solid formed by three mutually perpendicular and in-
terlocking octagons accommodates these eight additional vertices of cubic symmetry. 
The new solid has twenty-six vertices and may be regarded as the superposition of 
the cube's mid-faces (six), mid-edges (twelve), and vertices (eight), in which each point 
group (in the first octant) lies along the respective vectors (1,0,0), (1,1,0), and (1,1,1). 
Adding the origin (0,0,0) as a twenty-seventh point forms a 3 x 3 x 3 point lattice and 
demonstrates the decomposition of the three-cube into its forty-eight (2^n!) Dirichlet 
cells, which are tetrahedra whose four vertices are taken from the vector set presented 
immediately above. This may be easily generalized. For instance, the four-cube contains 
cells having the five vertices (0,0,0,0) through (1,1,1,1) (ones are shifted in from the 
left); the related sum is 

2^C{n, 1) + 2^C{n, 2) + 2^C(n, 3) + 2^(n, 3) = 3^ - 1 = 80, (7) 

as expected. (Here C(i,j) is the choose function.) 
Adjusting the vertices so that each is a unit-length vector is akin to a spherical 

projection of the vertices of the Dirichlet cell (see also page 68). This forms a solid 
having vertices 

(1,0,0), ( ^ , ^ ) , (Vs.Vs.Vs) (8) 

taking under all permutations and sign alternations. The solid is a hexakis octahedron 
having twenty-six vertices (Color Plate II.7). Through largely geometrical means, its 
vertex components have been presented in exact form, as with related gems (Paeth 
1990c, 1991). 

Substitution of other weights forms distinct yet related solids, as seen in Figure 2. 
For example, setting W2 = ws yields coincident vertices by symmetry, thereby reducing 
the total number of faces. Put another way, the points defining a triangle converge to a 
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Family of surfaces (r,s) which solve 
Max(lx/,/yl,/z/) + rMed(...) + sMin(...) = 1. 

The vertices of the surfaces' convex hull are 
(1,0,0), (u,u,0), (v,v,v), 

in all sign alternations and permutations, with 
u = l/(r+l), V = l/(r+s+l). 

Legend Cube (hexahedron) 
(0.0, 0.0) 

Rhombic Dodecahedron 
(1.0,0.0) 

Trapezoidal Icositetrahedron 
(sqrt(2)-l,sqrt(2)-l) 

Hexakis Octahedron 
(sqrt(2)-l, sqrt(3)-sqrt(2)) 

Octahedron 
(1.0, 1.0) 

Figure 2. Semiregular solids of cubic symmetry in 3D. 
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single vertex, "collapsing" the face. Setting W2 = ws = A/2 — 1 forms the dual of a cubic 
rhombidodecahedron, called a trapezoidal icositetrahedon, seen in Figure 2(d). Coxeter 
regards W = (1,1,0) as "nearly" a Platonic solid analogous to the regular 24-cell.^ 

0 Error Estimation 0 

Error estimation is elegantly supported by the geometric method. Previously, the 2D 
case found the point of greatest deviation at 22.5°, for which the maximum error is 
tan(7r/8) = \ /2 — 1. Although this point can be located by symmetry considerations of 
the solution in Figure 1(b), this does not generaUze easily to higher dimensions. (That 
is, the trigonometric solution previously employed is now a minimization in multiple 
variables.) 

Geometrically, a surface reaches its extrema relative to some point when the segment 
spanning the point 's segment is perpendicular to the surface. The encasing unit sphere 
lies at a constant distance and hence is everywhere perpendicular to an origin vector. 
In contrast, the bounding solid has faces whose point minimum distance is indicated 
by the normal vector of their defining plane equation, as in (5a). Since this vector 
is perpendicular both to the face and to the sphere, it defines the span of greatest 
deviation between both. The normal vector is the weight vector, so the distance ratio 
of a (nonunit) vector W is | |W| |approx/ | |^ | |2- These appear as the "max dev." ratios 
appearing in Table 1. As the relative length is in reference to a unit sphere, the absolute 
deviation (span length) can be found by subtracting these values into one (the sphere's 
radius). 

The point of closest approach exists on every face on the solid circumscribed by 
the sphere. Moreover, each lies at the same origin distance: A smaller sphere may be 
inscribed. In fact, these points of contact can serve as vertices defining the convex hull 
of the (inscribed) dual. The solid is the dual rhombidodecahedron having forty-eight 
vertices. Through largely geometrical means, the components of its vertices have been 
determined. These are 

( ± 1 , ±[V2 - 1], ± [ \ / 3 - v^]) (all permutations). (9) 

The number of faces is necessarily twenty-six; dualization is a self-complementary oper-
ation tha t exchanges the meaning of face and vertex and in/circum-sphere. Both solids 
have seventy-two edges by Euler's formula F + F = £" — 2, which is invariant under 
dualization. (The edges may be grouped together in space and are oriented at right 
angles to each other.) 

^This self-dual analogue can be related both to the weight set W = (1,1,0,0) and to the quaternions. 
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Implementation 

The best solution has irrational values (these define the vertex positions of the unit cubic 
rhombidodecahedron). Although valuable in its own right, the related code embodies 
floating-point calculations, thereby defeating the gem's original purpose: to provide a 
fast approximation using integer^ arithmetic. 

Instead, the coefficients Ci may be increased at will. This loosens slightly the exact 
containment (which is an inexact approximation) and thus allows integral and rational 
solutions (see also Figure 1). By inspection, the weight set W = (1,0.5) is a good 
choice in 2D. In 3D, the weight set W = (1,0.5,0.25) is particularly attractive, because 
11(1,1,1)11 = y/S ^ 1.732 < 1.75 is a good fit and the method may take advantage of 
bit shifts to have components of diminishing magnitude. 

In four dimensions, methods of rational approximation (see also page 25) may be 
used to find computationally attractive forms. Exhaustive searching is still required 
because the continuants for each weight tend to have distinct denominators and the 
GCD of the weight set tends to form unattractively large values. Hand analysis yields 
the particularly compelling weights 

^ 1 - 1 , W2 = - . ws = - . w, = - , (10) 

Note that w^ = 3.16 slightly underestimates \/3 — \/2 = .3178+. However, the previous 
overestimation in W2 = 4.16 versus .41421+ is enough to overcome the loss. That is, 
the bounding solid draws in from the sphere along the axes (1,1,0,0), providing for an 
otherwise oversize weight when dist4 is evaluated with (1,1,1,0). As a final bonus, the 
four-vector (1,1,1,1) has integral length, so an exact fit is possible as the numerator of 
W4 has an exact integral value. The program code is then 

dist4(xi,X2,X3,X4) - |xi | + 1/60(25 \x2\ + 19 |x3| + 16 |x4|), (11) 

where it is assumed that the components of X are sorted by magnitude, an operation 
that may take place in five comparisons (the minimum) using merely swap operations; 
the swap/sort operations are borrowed from the implementation appearing in a previous 
gem (Paeth 1990b), and are employed below. 

0 C Implementation 0 

#define absv(x) i f (x < 0) x = -x 
#define inorder (x ,y ) {int t ; i f ( ( t = a - b) < 0) {a - = t ; b + = t ; ) } 

^The admission of floating point allows an exact Euclidean norm at a cost of only n + 6 multiplications, 
with n the cost of the dot product and 6 the overhead for an efficient square root, as on page 16. 
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len 

{ 

4(a, b, c, d) 

absv(a); absv(b); 
absv(c); absv(d); 
inorder(a, b); inorder(c, d); 
inorder(a, c); inorder(b, d); 
inorder(b, c); 
a += (25*b + 19*c + 16*d)/60; 
a++; 

return(a); 

/ 
/ 
/ 
/ 
/ 

/ 
/ 

* get the absolute values */ 
* (component magnitudes) */ 
* everyone has a chance to play */ 
* (a,d) are big (winner, loser) */ 
* playoff for 2nd and 3rd slots */ 
/* compute 4D approximate length */ 
* Roundoff -> underestimation */ 
* omit the above one bit jitter */ 

0 Conclusions 0 

In higher dimensions the weight equation (6) shows that weights diminish slowly, and 
the added complexity of both magnitude computation and element sorting strongly 
favor the use of the Euclidean norm in floating point. Finally, the values for 3D linear 
approximation provided by Ritter {op. cit.) were created by empirical testing.^ This 
method provides a means of exact computation. 
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Modeling and 
Transformation 

The gems in this section describe algebraic models and their transformations. In most 
cases a linear algebra underlies the derivations, supporting a natural extension to higher 
dimensions, as with gems 11.4 and II.7 of the previous section. 

In the first gem (III.l), Alciatore and Miranda apply the method of least squares 
to fit a line to a set of points. What is unique is that perpendicular distance is cho-
sen to create a true isotropic fit, not a conventional fit by abscissa. Hill and Roberts 
(III.2) review modeling methods related to the marching cubes method in which slope 
discontinuities and their ambiguities arise. These occur at the adjoining boundaries 
between the discrete cells that collectively approximate a continuous surface. Arata 
provides a straightforward study of tri-cubic interpolation, whereby a set of gridded 
data takes on a higher dimensional fit (compared with commonplace tri-linear meth-
ods). Catmull-Rom splines are the model of choice; their coefficients suggest particularly 
fast evaluation. Miller (III.4) describes the affine mapping between related point sets on 
two distinct Cartesian planes. This overdetermined problem arises with noisy data. His 
first-principles approach illustrates matrix-based singular value decomposition (SVD) 
while providing a freestanding C implementation requiring no external matrix library. 
Chin provides a thorough description of BSP trees (III.5). The worked examples are 
carefully illustrated and treat all the conventional cases (e.g, preprocessing interpene-
trating data; locating the tree's root) plus a number of optimizations. A C-language 
suite (excerpted throughout the text) completes the work. Blanc's discussion of axial 
deformation techniques (III.6) describes the procedural manipulation of data sets by 
transformations more intuitive than the mathematician's. Based upon a model that 
minimizes artifacts of the underlying coordinate system, the axial deformations include 
bending, twisting, and pinching. 

89 
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Olll.i 
The Best Least-Squares Line Fit 

David Alciatore Rick Miranda 
Mechanical Engineering Department Mathematics Department 
Colorado State University Colorado State University 
Fort Collins, Colorado Fort Collins, Colorado 

0 Introduction 0 

Traditional approaches for fitting least-squares lines to a set of two-dimensional data 
points involve minimizing the sum of the squares of the minimum vertical distances 
between the data points and the fitted line. That is, the fit is against a set of independent 
observations in the range^ y. This gem presents a numerically stable algorithm that fits 
a line to a set of ordered pairs (cc,y) by minimizing its least-squared distance to each 
point without regard to orientation. This is a true 2D point-fitting method exhibiting 
rotational invariance. 

0 Background 0 

The classical formula for the univariate case based on vertical error measurement is 

y = myX + by, (1) 

m,j = 

Uy — 

Though well known, and presented in many numerical, statistical, and analytical 
texts (Charpra and Canale 1988, Chatfield 1970, Kryszig 1983), the method is not 
acceptable as a general line-fitting tool. Its frequent misapplication gives poor results 
when both coordinates are uncertain or when the line to be fit is near vertical {rriy —> oc). 
Reversing the axes merely disguises the problem: The method still remains sensitive to 
the orientation of the coordinate system. 

A least-squares line-fitting method that is insensitive to coordinate system orientation 
can be constructed by minimizing instead the sum of the squares of the perpendicular 

^Horizontal distances can also be used by reversing the roles of the variables. 

Copyright (c) 1995 by Academic Press , Inc. 
All r ights of reproduct ion in any form reserved. 

IBM ISBN 0-12-543455-3 
M l A/rar>ir.fo«V, T C ; R N n-19-.c=i4.'^4.'^7-X 



92 0 Modeling and Transformation 

distances between the data points and their nearest points on the target hne. (The 
perpendiculars are geometric features of the model independent of the coordinate sys-
tem.) Such an algorithm has been presented in the literature (Ehrig 1985), but the 
algorithm is based on a slope-intercept form of the line resulting in solution degeneracy 
and numerical inaccuracies; as the line approaches vertical, the slope and intercept grow 
without bound. Also, the equations provided {op. cit.) have two solutions, and the user 
must perform a test to determine the correct one. 

The algorithm presented in the next section uses a 9-p (line angle, distance from 
the origin) parameterization of the line that results in no degenerate cases and gives 
a unique solution. This parameterization has been used for statistical fitting of noisy 
data with outlying points as in image data (Weiss 1988, Rosenfeld and Sher 1986), but 
the parameterization has not been applied to a least-squares line fit. 

The perpendicular error measurement least-squares technique is also readily applied 
to circular arc fitting. Several robust solutions to this problem have been presented in 
the literature (Karimaki 1992, Moura and Kitney 1991, Chernov and Ososkov 1984). 

0 Optimal Least-Squares Fit 0 

The problem may now be stated. Given an arbitrary line defined by parameters {6, p) 
and the sum of the squares of the related perpendicular distances ri between points 
(xi^yi) and their nearest points to this line (Figure 1), then find the values of 6 and p 
that minimize this sum. That is, minimize the value 

z = J2rHp,&); (2) 
i=l 

where Â  is the number of data points to be fitted and r̂  is a function of the chosen 
line. Locating the zeros of the derivative of this function forms the method of solution. 

To simplify the analysis and to avoid degeneracies, the parameter p is chosen to be 
the length of a perpendicular erected between the line and the origin, and 9 is chosen 
to be its orientation with respect to the x axis (Figure 1). From simple plane geometry, 
the parametric equation for the line is given by 

XS0 + Ĉ6> + p = 0, (3) 

where 

Co = cos(^) and SQ = sin(^). (4) 

The perpendicular distance n is given by 

n = ViCe - XiSe - p. (5) 



///. 1 The Best Least-Squares Line Fit <} 93 

(XN' YN) 

(xi, Yi) 

Figure 1. Least-squares line fit geometry. 

To minimize the sum of errors Z in (2), the following must hold: 

dZ ^ , dZ ^ 

Taking derivatives of (2) using (5) results in the following expressions: 

acQSe + b{sQ - CQ) + cpco + dpso = 0 

and 

dc0 — CSQ — Np^ 

where 

AT AT N N N 

a = Y,^^i -J2yi^^^Yl^^^^'c == XI^ '̂ ^ndd = J2yi' 
i=l i=l 1=1 i=l 

Equation (8) can be written as 

(6) 

(7) 

(8) 

(9) 

xse - yc0 + p = 0, (10) 
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where (x^y) is the centroid of the data set {{xi^yi)}. Since (10) appears in the form 
presented in (3), the fit necessarily passes through the centroid of the data. 

Equation (7) can be simphfied if the original data are translated so that the centroid 
is located at the origin, by setting 

x[=Xi-x and y[ = yi-y. (11) 

This translation results in 

(^ = d' = p' = 0, (12) 

and (7) reduces to 

where 

a'cese + h\sl - cj) = 0, (13) 

«' - E (^0' - E (y^f ̂ d̂ b^ = Y,x[y[. (14) 

Equation (13) is a quadratic equation that can be solved for the ratio CQ/SQ^ giving 

Co a ± 7 

so P 

where 

(15) 

a = a\f3 = 2b\ and 7 = y ^ M ^ . (16) 

Equation (15) can be written as 

Co = t(a d= 7) and so — t/3, (17) 

where t is a constant satisfying the condition 5^ + ĉ  == 1. One of these solutions is the 
minimum of (2) representing the best-fit line, and the other is a maximum representing 
the worst-fit line passing through the centroid of the data. It should be noted that 
this worst-fit line is always perpendicular to the best-fit line since the solutions of 
Equation (15) (which represent the line slopes) are negative reciprocals of each other. To 
determine which solution represents the best-fit line (other than by graphical inspection 
of the data), the second-derivative test can be employed. The following must hold: 
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The second derivative of the error function gives 

= 2a{4 - sj) + 4.pC0Se. (19) 

After substituting (17) and simplifying, the second-derivative test (18) reduces to 

t'^-y^ia ± 7) > 0. (20) 

This forces a ± 7 > 0, and since 7 > a, the a + 7 solution represents the best-fit line. 
Therefore, the best-fit line [in the form of (3) and (17)] is defined by 

px-{a + 7)y = -p/t = C, (21) 

where C is a constant that can be determined (10) by requiring that the hne pass 
thi^ough the centroid: 

C = f3x — {a + ^)y. (22) 

Therefore, from (16) and (21), the constants defining the best-fit line in standard 
form are 

A = 26', 

B = -[a' + ^{a'f + A(b'f) 

C = Ax + By. 

(23) 

0 Example 0 
The following data will be used to demonstrate the results of the method: 

i 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

Xi 

0.237 
0.191 
0.056 
0.000 
0.179 
0.127 
0.089 
0.136 
0.202 

0.085 
0.208 
0.156 
0.038 

m ' 
-1.000 
-0.833 
-0.667 

-0.500 
-0.333 
-0.167 
0.000 
0.167 

0.333 
0.500 
0.667 
0.833 
1.000 
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e-^ 

Figure 2. Example line fit. 

The centroid of this data is located at 

x = 0.131,5^ = 0.000. 

Expressed in terns of (14), this gives 

a' = -4.992 and b' = -0.075, 

and so from (23) the final solution is 

A = -0.149, B = -0.002, and C = -0.020. 

This line {Ax-\- By = C) is plotted in Figure 2 along with the results from Equation (1) 
for purposes of comparison. The original y — rriyX + by fit afforded by (1) is extremely 
poor since the data lie near a vertical line. 
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0 Conclusions 0 
The method for determining the hne passing through a two-dimensional data set and 
having best least-squares fit was derived. This line's orientation minimizes the sum 
of the squares of the perpendicular distances between the data and the line. A p-9 
parameterization of the line resulted in a fairly straightforward analysis. The results, 
which were expressed in standard {Ax + By — C) form, provide a unique, general, and 
robust solution that is free of degenerate cases. The only possible indeterminacy occurs 
when oi — h' — 0. However, this case can occur only when the data exhibit a perfect 
circular symmetry (isomorphism under arbitrary rotation). In this case, there is no line 
of "best fit" because all lines passing through the centroid have a fit that is equally 
good or bad. 
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0 Introduction 0 

The representation of n-dimensional continuous surfaces often employs a discrete lattice 
of n-dimensional cube cells. For instance, the marching cubes method locates the surface 
lying between adjacent vertices of the n-cube edges in which the cell vertices represent 
discrete sample values (Lorensen and Cline 1987). The volume's surface exists at a point 
of zero value: It intersects any cube edge whose vertex values have opposing sign. 

Ambiguities occur in the cells whose vertex sets show many sign alternations. Geo-
metrically, the surface intersects one face of the n-cube through each of its four edges. It 
is these special cases that engender the need for resolution as a central concern in sur-
face modeling. This gem reviews and illustrates the disambiguation strategies described 
in the literature. 

0 Background 0 

In an ideal surface algorithm, the features of the surface geometry should match those of 
the underlying surface. In particular, if the original surface is continuous, the represen-
tational model must preserve this continuity. Most practical algorithms create spurious 
holes (false negatives) or additional surfaces (false positives) depending on the "ea-
gerness" of the algorithm in joining pieces of the surface model along adjacent cube 
faces. This is the consequence known as the "ambiguous face" n-cube present in any 
dimension n > 2 whose vertex signs resemble a spatial "checkerboard" (Figure 1). The 
abutting of two cubes having such faces then introduces the possibility of false positives 
or negatives (Figure 2). 

In this gem, we refer to the vertex classification with respect to the threshold as 
inside or outside the surface. The surface intersects the edge between an inside and an 

Copyright © 1995 by Academic Press, Inc. 
All r ights of reproduct ion in any form reserved. 
IBM ISBN 0-12-543455-3 

OQ 



III.2 Surface Models and the Resolution of N-Dimensional Cell Ambiguity <> 99 

Figure 1 . Ambiguous face choices. 

Surface showing false negative Ideal surface 

Figure 2. Ambiguous face. 

outside vertex, shown gray on the diagrams; hnear interpolation is used to calculate 
this position. The ambiguous face can be estimated using the vertex classification, but 
can never be completely disambiguated. 

The local surface contours can be represented by sections of a hyperbola and the 
ambiguous face can be one of three orientations (Figure 1); therefore, the cross repre-
sentation is the other orientations taken to the limit and is normally discarded. 

The cells can be subdivided into further n-cubes or into simplices. A simplex is 
the simplest nondegenerate object in n dimensions (Hanson 1994, Moore 1992a), for 
example, a triangle in two dimensions and a tetrahedron in three dimensions. A simplex 
is always unambiguous and so can be used in an n-cube disambiguation strategy. 

0 static Analysis 0 
To disambiguate the ambiguous face, the static techniques consider only the vertex 
classification points; they do not introduce extra classification points. These methods 
are generally fast, but they do not guarantee an ideal or faithful surface. 

Uniform Orientation 

Always present the surface at a common orientation whenever the evaluation of an 
ambiguous face is encountered. Computation of orientation can be implemented using a 
lookup table (Lorensen and Cline 1987) or by algorithm (Wyvill et al. 1986, Bloomenthal 
1988, Bloomenthal 1994). If the data resolution is high, the surface segments will be 
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/ 

Figure 3. Uniform orientation. 

Figure 4. Adjacent cell disambiguation. 

small and the anomalies unnoticeable (unless the surface is zoomed). This method is 
simple to implement and is fast to execute (Figure 3). 

Face Adjacency 

In some cases the adjacent cell configuration can be used to disambiguate the 77.-cube 
(Duurst 1988, Zahlten 1992); for example, if an "inverted" cube and a "normal" cube 
orientation are adjacent, then the surface should be added (Figure 4). The new surface 
intersects the diagonal between the nonadjacent vertices c and rf, where vertex d is 
inside and vertex c is outside the surface. 

Simplex Decomposition 

In two dimensions the square can be decomposed into two triangle segments and treated 
as by the uniform orientation method. In three dimensions the cube has many decom-
positions into tetrahedra (Moore 1992b, 1992a) (Figure 5); examples of five tetrahedra 
(Ning and Bloomenthal 1993) and six tetrahedra (Zahlten 1992) behave like the fixed 
orientation method in that they add an extra diagonal that affects the connectivity of 
the surface. The orientation of the diagonal is determined by the simplex decomposition. 
To maintain surface consistency, neighboring n-cubes should have the same diagonal 
orientation (mirrored simplex orientation). 
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Triangle boundary elements Tetrahedron surface elements 

5 tetrahedra orientation 

-^ ^-

The middle 
tetrahedra 

6 tetrahedra orientation 

Figure 5. Sinnplex decompositions, and surfaces. 

0 Interpolation Analysis 0 

This section reviews disambiguation techniques that require the computation of addi-
tional values or vertices for the decision. The values are often created by methods of 
trilinear interpolation (Hill 1994). Other interpolation techniques may also be consid-
ered (e.g., tricubic interpolation, gem III.3). 

Closest Orientation 

The four face intersection points are located by linear interpolation, the total length of 
the connecting paths calculated, and the orientation having the shortest path is chosen 
(Mackerras 1992). If both paths are the same length, then the cross configuration is 
chosen (Cottifava and Moli 1969). In Figure 1, the closest orientation technique would 
select configuration A. 
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Resampling 

The data are resampled at a higher resolution and solution reattempted. This is pos-
sible only when the data are algorithmically obtained or readily resampled. Moreover, 
ambiguities may still remain at the higher resolution. 

Interpolation 

The data resolution is doubled using a trilinear interpolation (Hill 1994) or a tricubic 
interpolation. The tricubic interpolation considers points outside the local neighbors. 
As with the resampling technique, ambiguities may still occur at the finer resolution. 
(A variation reinterpolates merely the ambiguous cells.) 

Subdivision 

All the n-cubes that are on the surface are subdivided (using hnear interpolation) until 
a predefined limit is reached. The limit can be the pixel size, for example, dividing cubes 
(Cline et al. 1988), or smaller (Cook et al. 1987). Each subcube is inside^ outside^ or on 
the surface and may be shaded and projected onto the view plane. Trilinear interpolation 
cannot introduce an ambiguous case, but might not (therefore) faithfully model the 
surface. However, adaptive subdivision techniques (using interpolation or resampling 
methods) can be used at points of great interest or high curvature (Bloomenthal 1988). 

Simplex Decomposition 

In two dimensions the two-cube can be decomposed into two or four triangles (Figure 5); 
with two triangles the method is similar to the uniform orientation strategy, but with 
four triangles an extra center vertex is required. This can be obtained by averaging 
the four vertices (that is, from bilinear interpolation). If the center value is inside the 
threshold, then orientation B is chosen; otherwise, orientation A is used (Figure 1). 
This method is often named "facial average" and can be used on any n-cube face when 
n > 1 (WyviU et al, 1986, Wilhelms and Gelder 1990, Hall 1990). 

In three dimensions the three-cube can be divided into twelve tetrahedra (Figure 6) 
and the required value at the center of the cube found using trilinear interpolation. 

Bilinear Contours 

The contours of the image can be represented (locally) by parts of a hyperbola (Nielson 
and Hamann 1991). The ambiguous face occurs when both parts of the hyperbola 
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Figure 6. Twelve-tetrahedra orientation in a cube. 

A 

# P3 

o pi 

Figure 7. Bilinear contours. 

intersect a face; therefore, the topology of the hyperbola equals the connection of the 
contour. The correct orientation (Figure 7) is achieved by comparing the threshold 
with the bilinear interpolation at the crossing point of the asymptotes of the hyperbola, 
given by p^^^^^^l^p2 - If ^^^ interpolation value is less than the threshold, then use 
orientation A; otherwise, use orientation B. 

Gradient 

Disambiguation of the cell can be achieved by calculating the gradient contribution 
(Ning and Bloomenthal 1993, Wilhelms and Gelder 1990) from the neighboring faces 
that point toward the center of the ambiguous face. These gradient contributions can 
be added to the four face vertex values and used to create a better approximation for 
the center of that face. This center value can then be used to disambiguate the cell 
(Figure 8). 

Quadratic 

Disambiguation can be achieved by fitting a quadratic curve to the local values (using 
the method of least squares). The orientation of the curve is then used to disambiguate 
the face (Wilhelms and Gelder 1990, Ning and Bloomenthal 1993). 

0 Summary 0 
The n-cube with an ambiguous face can never be disambiguated by the vertex classifi-
cation alone; however, at high resolutions the anomalies become unnoticeable. 
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Figure 8. Gradient disambiguation. 
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Figure 9. Concave triangle surfaces 

The simplex decomposition strategies work well if a center vertex is calculated, but 
they accrue many triangle elements. 

Subdivision techniques can be used to view an enlargement of the image without false 
positives and negatives appearing, and the pixel-sized cubes are then projected onto 
the viewing plane using a gradient shading based upon the four vertices. Subdivision 
techniques also eliminate degenerate triangle segments. Degenerate segments (very small 
triangle pieces) occur when the data resolution is high, or at the edge of the evaluation 
mesh. The degenerate triangles degrade the rendering efficiency. Degenerate triangles 
can also be reduced by using a "bending" technique (Moore and Warren 1992). 

The gradient and quadratic methods are more accurate and more expensive than 
other methods, but they are useful if the sampling rate is low and if the data cannot 
be resampled. 

Most disambiguation strategies, after deciding on the face orientation, place an extra 
surface section on the face. However, two such adjacent surfaces may share a common 
face. To resolve this, concave surfaces (Nielson and Hamann 1991) are used (Figure 9). 

In the choice of disambiguation strategy there is a contention between speed and 
fidelity. Static methods are generally faster but can lead to erroneous surfaces. When 
the data resolution is sufficiently high, these artifacts are not significant. 
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0 Introduction 0 

In many cases, linear interpolation provides a very good compromise between speed 
and accuracy. However, when the data volume is nonisotropic, linear interpolation may 
introduce objectionable artifacts. In these cases cubic interpolation may be substituted 
(Pokorny and Gerald 1989; a generous treatment appears in Chapters seven and eight). 

This gem reviews tricubic interpolation and provides a C code implementation. Ad-
ditional information on bilinear and bicubic interpolation is available in the literature 
(Andrews and Patterson III 1976). 

0 The Implementation 0 

This implementation uses Catmull-Rom interpolating curves. For the one-dimensional 
case, these curves can be expressed by the following matrix formula: 

C{u) = [i u u 1] 

-0.5 
1.0 
-0.5 
0 

1.5 
-2 .5 

0 
1 

-1 .5 
2.0 
0.5 
0 

0.5 • 
-0 .5 

0 
0 

"Pi-i^ 
Pi 

Pi+i 
.Pi+2. 

where C{u) is the interpolated value, Pi-i , Pi, Pi+i, Pi+2 are four consecutive data 
points, and ue [0,1] is a parameter that defines the fractional position between pi and 
Pij^i. Certain run-time optimizations can be employed to reduce the number of floating-
point multiplications required by the above equation (see source code). 

Tricubic interpolation is done by cascading the one-dimensional operations in the 
X, y , then Z directions. Sixteen interpolations using sixty-four original data values 
are performed in the X direction (in the inner loop of the code). Four interpolations 
using the prior sixteen values are then done in the Y direction. Finally, the data from 
the previous four interpolations are combined in the Z direction for the final value. As 
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with trilinear interpolation (Hill 1994), the order of combination is not important; the 
interpolated value is unique. 

The application as a whole must treat cases where the value requiring interpolation 
has a reduced set of neighboring points pi (edge effects). There are two possible ways 
of handling these edge effects. A range check can be applied before the interpolation 
function is called, and if the position of this computed value is next to an edge point, 
trilinear interpolation can be used (the preferred implementation). Alternatively, the 
function can be modified to do the range checking itself and arbitrarily set (to some 
background value) the neighboring points that fall outside of the data set before doing 
the tricubic interpolation. 

0 C Code 0 
typedef struct 

{ 
float X, y, z; 

} Point; 

* TriCubic - tri-cubic interpolation at point, p. 
* inputs: 
* p - the interpolation point. 
* volume - a pointer to the float volume data, stored in x, 
* y, then z order (x index increasing fastest). 
* xDim, yDim, zDim - dimensions of the array of volume data. 
* returns: 
* the interpolated value at p. 
* note: 
* NO range checking is done in this function. 

float TriCubic (Point p, float *volume, int xDim, int yDim, int zDim) 

{ 
int X, y, z; 
register int i, j, k; 
float dx, dy, dz ; 
register float *pv; 
float u[4], v[4], w[4]; 
float r[4], q[4]; 
float vox = 0; 
int xyDim; 

xyDim = xDim * yDim; 

X = (int) p.x, y = (int) p.y, z = (int) p.z; 
if (x < 0 I I X >= xDim | | y < 0 | | y >= yDim | | z < 0 | | z >= zDim) 
return (0); 
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dx = p.x - (float) X, dy = p.y - (float) y, dz = p.z - (float) z; 
pv = volume + ( x - 1 ) + ( y - 1 ) * xDim + (z - 1) * xyDim; 

# define CUBE(x) ((x) * (x) * (x)) 
# define SQR(x) ((x) * (x)) 
/* 
#define DOUBLE(x) ((x) + (x)) 
#define HALF(x) 
• 

* may also be used to reduce the number of floating point 
* multiplications. The IEEE standard allows for DOUBLE/fiALF 
* operations. 
*/ 

/* factors for Catmull-Rom interpolation */ 

u[0] = -0.5 * CUBE (dx) + SQR (dx) - 0.5 * dx; 
u[l] = 1.5 * CUBE (dx) - 2.5 * SQR (dx) + 1; 
u[2] = -1.5 * CUBE (dx) + 2 * SQR (dx) + 0.5 * dx; 
u[3] = 0.5 * CUBE (dx) - 0.5 * SQR (dx); 

v[0] = -0.5 * CUBE (dy) + SQR (dy) - 0.5 * dy; 
v[l] = 1.5 * CUBE (dy) - 2.5 * SQR (dy) + 1; 
v[2] = -1.5 * CUBE (dy) + 2 * SQR (dy) + 0.5 * dy; 
v[3] = 0.5 * CUBE (dy) - 0.5 * SQR (dy); 

w[0] = -0.5 * CUBE (dz) + SQR (dz) - 0.5 * dz; 
w[l] = 1.5 * CUBE (dz) - 2.5 * SQR (dz) + 1; 
w[2] = -1.5 * CUBE (dz) + 2 * SQR (dz) + 0.5 * dz; 
w[3] = 0.5 * CUBE (dz) - 0.5 * SQR (dz); 

for (k = 0; k < 4; k++) 

{ 
q[k] = 0; 
for (j = 0; j < 4; j++) 
{ 
r[j] = 0; 
for (i = 0; i < 4; i++) 
{ 
r[j] += u[i] * *pv; 
PV++; 

) 
q[k] += v[j] * r[j]; 
pv += xDim - 4; 

} 
vox += w[k] * q[k]; 
pv += xyDim - 4 * xDim; 

} 

return (vox < 0 ? 0.0 : vox); 

} 
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0 III.4 
Transforming Coordinates from 
One Coordinate Plane to 
Another 

Robert D. Miller 
East Lansing, Michigan 

0 Introduction 0 

A common problem in graphics requires converting Cartesian coordinates from one ref-
erence system to corresponding points on a different reference frame. Other apphcations 
might include registration of overlays on an existing map or drawing in which the co-
ordinate systems of each can only be determined empirically. The conversion of local 
(digitized) coordinates to a common world coordinate system may be done with the 
procedures outlined in this gem. 

0 Method 0 

To find a general transformation between 2D coordinate systems, coordinates of some 
corresponding points are known. A transformation will be determined that will then 
map any other point from one system to the other. Schematically, one wishes to convert 
the position of any point on A to its corresponding position on B as shown (Figure 1) 
by finding equations that convert {xi^yi) to (Ci^rji). 

In the simplest case, the transformation determines an origin offset between the two 
systems, a scale factor difference, and a relative rotation. To solve for these unknowns 
(three in each coordinate), at least three pairs of corresponding points are required in 
order to determine a unique transformation. 

The equations to convert from (x,y) to (C,^) ^^^ 

(i == axi + byi + c, 

rii = dxi + eyi + f for i = 1,2,3. 

m 

Copyright (c) 1995 by Academic Press , Inc. 
All r ights of reproduct ion in any form reserved. 

IBM ISBN 0-12-543455-3 
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A B 

Figure 1. Coordinate plane transformation from A to B. 

Using homogeneous coordinates to recast in matrix form, these equations become 

'^A 
C2 
.C3J 

= 
'xi yi r 
X2 2/2 1 

.^3 ys 1. 

'a' 
b 
c 

? 

'Vi 

m 
Jls. 

= 
'xi 2/1 r 

X2 2/2 1 

_^3 ys 1. 

"d' 
e 

L/J 
Then matrix inversion gives 

'xi 2/1 1" 

X2 2/2 1 

.^3 2/3 1. 

— i 
Ki] 
C2 
kaj 

? 

"d" 
e 

L/J 
"^1 2/1 1" 
X2 2/2 1 

L 3̂ 2/3 1. 

— 1 
'Vi' 
m 
\.m\ 

These transformations may be written in a more compact form. In one coordinate, 

q = D p , so p = D~^q, 

where 

a 
b 
c_ 

, q = 
M 
C2 

kaj 
, D = 

'xi yi 1 
X2 2/2 1 
X3 2/3 1 

and the point set D is the data matrix. 

General Linear Fit 

Usually these data points are determined by measurement and are accompanied by 
random, normally distributed measurement errors. When more than the minimum three 
points are specified, the transformation is overdetermined. The additional information 
may be used to find a "best" (in the least-squares sense) statistical fit. The least-squares 
method minimizes the squares of the differences between the actual transformations and 
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those values predicted by the equations. The predicted values are 

( = ax + by + c, 

fj = dx + ey + f for i = 1,2,3. 

The three equations to be minimized, for i = 1, 2 , . . . , n, are 

i i 

m i n ^ ( C i - Cif = m i n ^ ( 0 - axi - byi - cf, 

min^(7/ i - fjif = min^(r?^ - dxi - eyi - ff. 

Minimize these quantities by differentiating with respect to a, 6, and c (and again for 
d, e, and / ) , set each to zero, and solve the system. For all n data points, this step gives 
a covariance matrix, M, well-known to methods of statistical regression (Vandergraft 
1983): 

M = E XiVi E Vi E Vi 

Hxi Y.yi " E l 

= D^D. 

The solutions are 

"o" 
b 

\c_ 
= M - i 

"d" 
e 
. / . 

"E '^iSi 

T,yiCi 
.EO . 

= M-^ 
" E XiTji'^ 

E ViVi 
.EO 

M" D^ 

M 

•Ci 

.CsJ 

D^ 
^1 

and 

General Quadratic Fit 

In practice, a second-order or higher fit may be desired because of slightly nonconstant 
scale factors, for example. An exact second-order fit requires six data points using the 
transformation equations 

C = a^x^ + a^y^ + a^x + a2y + aixy + QQ, 

rj = h^x^ + h^y^ + 63a; -|- 622/ + bixy + bo. 
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Each row, i, of the data matrix D now becomes [xf yf Xi yi Xiyi 1], for i — 
1,2,.. . , 6, and the solutions are 

"as" 

_ao. 

= D - i 
"cr 

.Ce. 

and 
"&5" 

.K 

= D - i 
'^l] 

.%. 

Generahzing this second-order scheme to a least-squares fit, minimize 

^{Ci - a^x'f - a^yf - a'^x^ - a2yi - alX^yi - ao)^, 

Y^im - hx^ - b4yi - bsXi - b2yi - hiXiyi - h^f. 

This gives the coefficient matrix, M: 

M 

Y.xi 
ExfVi 
Exf 
Exhi 
Exhi 
E^f 

Exhi 
Eyf 
ExiVi 

Eyf 
Zxivf 
Eyf 

Exf 
Zx^yf 
Exl 
JlxiVi 

T.xhi 
T.xi 

Exhi 
Zyf 
T,Xiyi 

Eyf 
Zxiyf 
Hyi 

Exfvi 
E Xivf 

Exhi 
Exiyf 
Exhi 
J2xiyi 

Y.x1 
Y.yi 
TjXi 

T,yi 
T,xiyi 

n 

= D^D, as before. 

The solutions are 

as 
a4 

^3 

^2 

ai 

ao_ 

= M-^ 

ExH^ 
EyfQ 

T,yiCi 

Z-/ ^^ Vi si 

ECi 

and 

b5 

b4 

63 

&2 

bi 

>o. 

= M-^ 

Zxhi 
Eyfvi 
YlXiTIi 

EyiVi 

E Xi yif]. 

Em 

Note that operations on each coordinate take place completely independently. This 
allows a Gaussian elimination upon matrix M to take place, transforming M augmented 
by the column vector on the right-hand side into the solution vector. This technique is 
implemented in the program code; other methods could also be used. 

More generally, a weighted set of input data may be employed, as some of the data 
points have positions whose accuracies are trusted with a higher degree of confidence 
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than others. To use weighted values, each summation in the coefficient matrix and in 
the right-hand column vector would include a factor Wi for a relative weight. 

For practical graphics applications, the coordinate transformations described here are 
based upon simple models that prove useful. Related methods such as the SVD (Golub 
and Van Loan 1989) as used in a somewhat related gem (Wu 1992) generalize the 
technique, but the requisite mathematical subroutine libraries are overkill for solving 
the task at hand. The program presented below is both fully self-contained and carefully 
designed. 

0 C Code 0 

#include <stdio.h> 
#include <stdlib.h> 

#define SQR(a) ((a)*(a)) 

typedef double MATX[10][10]; 
typedef double VECT[10]; 
typedef struct {double x; double y;} Point2; 

Point2 pt[1023]; /* From coordinates */ 
zeta[1023], eta[1023]; /* To coordinates */ 

int npoints; 

int Gauss (MATX ain, VECT bin, int n, VECT v) 
/* Gaussian elimination by converting to upper triangular system. 

Row interchanges are done via re-indexing sub[]. See Vandergraft: 
Intro. Numerical Methods, 2ed, Academic Press, 1983, Chapter 6. */ 

{ MATX a; VECT b; 
int i, j, k, last, index; 
double big, absv; 
int sub[21],• 

for(]<:=0; Ic < n ; 'k++) { / * malce l o c a l c o p i e s */ 
f o r ( j = 0 ; j < n ; j++) a [ l c ] [ j ] = a i n [Ic] [ j ] ; 
b [ k ] = b i n [ k ] ; 
} 

l a s t= n - 1 ; 
for (k= 0; k <= last; k++) sub[k]= k; 
for (k= 0; k <= last-1; k++) { 

big= 0.0; 
for (i= k; i <= last; i++) { 

absv= abs(a[sub[i]][k]); 
if (absv > big) 

{ big= absv; index= i; } 
} 
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if (big == 0.0) return 0; 
j= sub[k]; 
sub[k]= sub[index]; 
sub[index]= j; 
big= 1.0/a[sub[k]][k]; 
for (i= k+1; i <= last; i++) { 

a[sub[i]][k]= -a[sub[i]][k]*big; 
for (j= k+1; j <= last; j++) 

a [ s u b [ i ] ] [ j ] += a [ s u b [ i ] ] [k] * a [ s u b [ k ] ] [ j ] , 
b [ s u b [ i ] ] += a [ s u b [ i ] ] [ k ] * b [ s u b [ k ] ] ; 
} 

} 
v[last]= b[sub[last]] / a[sub[last]][last]; 
for (k= last-1; k >= 0; k--) { 

v[k]= b[sub[k]]; 
for (i= k+1; i <= last; i++) 

v[k] = v[k] -a[sub[k]][i] * v[i]; 
v[k] = v[k] /a[sub[k]][k]; 

} 
return 1; 

} 

void PrintMatrix(MATX a, VECT v, int size) 
{ int r, c; 

for(r= 0; r < size; r++) { 
for(c= 0; c < size; C++) printf("%14.61f ",a[r][c]). 
printfC %14.61f\n", v[r]); 
} 

printf("\n"); 
} 

void PrintSolution (VECT v, int vectorsize, char wliicli) 
/* Print the solution vector */ 
{ int k; 

printf("Solution vector %c\n", which); 
for(k = 0; k < vectorsize; k++) 

if (abs(v[k]) < 1.0E6) printf("%14.6f ",v[k]); 
else printf("%14.6e ", v[k]); 

printf("\n"); 
} 

void FirstOrderExact(VECT xv, VECT yv) 
{ int k, ok; VECT b; MATX c; 

for(k= 0; k<-2; k++) b[k] = zeta[k]; 
for(k= 0; k<=2; k++) { 

c[k][0] = pt[k].x; 
c[k][1] - pt[k].y; 
c[k][2] = 1.0; 
}; 
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printf("Augmented matrix:\n"); 
PrintMatrix(c, b, 3); 
ok =Gauss(c, b, 3, xv); 
PrintSolution(xv, 3, 'X'); 

for(k- 0; k<=2; k++) b[k] = eta[k]; 
for(k= 0; k<=2; k++) { 

c [ k ] [0] = p t [ k ] . x ; 
c [ k ] [1] = p t [ k ] . y ; 
c [ k ] [ 2 ] = 1 .0 ; 
} ; 

PrintMatrix(c, b, 3); 
ok =Gauss(c, b, 3, yv); 
PrintSolution(yv, 3, 'Y'); 

void SecondOrderExact(VECT xv, VECT yv) 
{ int k, ok; VECT b; MATX c; 

for(k= 0; k<=5; k++) b[k] = zeta[k]; 
for(k= 0; k<=5; k++) { 

c [ k ] [ 0 ] 
c [ k ] [ 1 ] 
c [ k ] [ 2 ] 
c [ k ] [ 3 ] 
c [ k ] [ 4 ] 
c [ k ] [ 5 ] 
} 

= p t [ k ] 
= p t [ k ] 
= p t [ k ] 
= p t [ k ] 
= P t [ k ] 
= 1; 

. x * p t [ k ] 

. y * p t [ k ] 

. x; 
• y ; 
. x * p t [ k ] 

. x; 
• y ; 

• y ; 

printf("Augmented matrix:\n"); 
PrintMatrix(c, b, 6); 
ok =Gauss(c, b, 6, xv); 
printf("x = a5*xV2 + a4*yV2 + a3*x + a2*y + al*x*y + aO:\n"), 
PrintSolution(xv, 6, 'X'); 

for(k= 0; k<=5; k++) b[k] = eta[k]; 
for(k-: 0; k< = 5; k++) { 

c[k][0] = SQR(pt[k].X); 
c [ k ] [ 1 ] 
c [ k ] [ 2 ] 
c [ k ] [ 3 ] 
c [ k ] [ 4 ] 
c [ k ] [5] 
} 

= S Q R ( p t [ k ] . y ) ; 
= p t [ k ] . x ; 
= p t [ k ] . y ; 
= p t [ k ] . x * p t [ k ] 
= 1; 

printf("Augmented matrix:\n"); 
PrintMatrix(c, b, 6); 
ok =Gauss(c, b, 6, yv); 
printf("y = b5*xV2 + b4*yV2 + b3*x + b2*y + bl*x*y + bO:\n"), 
PrintSolution(yv, 6, 'Y'); 
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void FirstOrderLeastSquares(int npoints, VECT xv, VECT yv) 

{ MATX c; VECT b; 

double suinx= 

sumd= 

int k, ok; 

0, suinxx= 

0, sumdx= 

double xt, yt; 

for(k=0; k < 

sumx += 

sumxx += 

sumy += 

sumyy += 

sumxy += 

sumd += 

sumdx += 

sumxy += 

} 

npoints; 

pt[k].x; 

SQR(pt[k] 

pt[k].y; 

SQR(pt[k] 

0, 

0, 

k++) 

.X); 

• y ) ; 
pt[k].x*pt[k] 

zeta[k]; 

pt[k].x*z 

sumy= 0, sumyy: 

sumdy = 0; 

{ 

• y; 

eta[k]; 

pt[k].y*zeta[k]; 

sumxy= 

c[0][0] = sumxx; 

c[1][0] = sumxy; 

c[2][0] = sumx; 

c[0][1] = sumxy; 

c[1][1] = sumyy; 

c[2][1] = sumy; 

c[0][2] = sumx; 

c[l][2] = sumy; 

c[2][2] = npoints; 

b[0] = sumdx; b[l] = sumdy; 

ok = Gauss (c, b, 3, xv) ; 

b[2] = sumd; 

} 

sumd = sumdx = sumdy = 0; 

for(k=0; k < npoints; k++) { 

sumd += eta[k]; 

sumdx-i-= pt [k] .x*eta[k] ; 

sumxy+= pt[k].y*eta[k]; 

}; 

b[0] = sumdx; b[l] = sumdy; b[2] = sumd; 

ok = Gauss(c, b, 3, y v ) ; 

printf("residualsXn"); 

for(k=0; k < npoints; k++) { 

xt = zeta[k] -(pt[k].x*xv[0] + pt[k].y*xv[l] 

yt = eta[k] -(pt[k].x*yv[0] + pt[k].y*yv[l] 

printf("%4d %12.6 %12.6\n", xt, y t ) ; 

} 

xv[2]) 

yv[2]), 

void SecondOrderLeastSquares(MATX c, int npoints, VECT xv, VECT yv) 

{ int j, k, ok; 

MATX c; VECT b; 

double sumd=0, sumdx^^O, sumdx2 = 0, sumdy=0, 

sumdy2 = 0, sumdxy = 0; 

double px2, py2, xt, yt; 

for(j=0; j<= 5; j++) 

for(k=0; k<- 5; k++) c[j][k] = 0; 
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for(k =0; k < npoints; 
px2 = SQR(pt[k].X) 
py2 = SQR(pt[k] 

k++) { 

c[0] [0 
c[0][1 
c[0] [2 
c[0] [3 
c[0] [4 
c[0] [5 
c[l] [1 
c[l] [2 
c[l] [3 
c[l] [4 
c[l] [5 
c[2] [2 
c[2] [3 
c[2] [4 
c[2] [5 
c[3] [3 
c[3] [4 
c[3] [5 
c[4] [4 
c[4] [5 

+= 

+= 

+= 

y); 
*px2 ; 
*py2 ; 
*pt[k].x; 
*pt[k].y; 
*pt[k].X 

*̂ py2 ; 
.X *py2; 
•y *py2; 
.X *py2 ̂  

px2 
px2 
px2 
px2 
px2 
px2 
py2 
pt[k] 
pt[k].y 
pt[k].X 
py2; 
px2; 
pt[k].X 
px2 *pt [k] .y; 
pt[k].x; 
py2; 
pt[k].X *py2; 
pt[k].y; 
px2 *py2; 
pt[k].X *pt[k] 

/* coefficients for normal equations */ 

pt[k].y; 

pt[k].y; 

pt[k].y; 

• y; 

sumd 
sumdx 
sumdx2 
sumdy 
suindy2 
sumdxy 
} 

+= zeta[k]; 
+= pt[k].X *zeta[k]; 
+= px2 *zeta[k]; 
+= p t [ k ] . y * z e t a [ k ] ; 
+= py2 * z e t a [ k ] ; 
+= p t [ k ] . x * p t [ k ] . y * z e t a [ k ] ; 

c [ l ] [0] 
c [ 2 ] [0] 
c [ 3 ] [0] 
c [ 4 ] [0] 

= c [ 0 ] [ 1 ] 
=c [0 ] [2] 
=c[0] [3] 
= c [ 0 ] [ 4 ] 

/ * C o e f f i c i e n t m a t r i x i s symmet r i c a b o u t d i a g o n a l */ 
c [ 2 ] [1] = c [ l ] [ 2 ] ; 
c [ 3 ] [ 1 ] 
c [ 4 ] [ 1 ] 

= c [ l ] [3] 
= c [ l ] [4] 

c [ 5 ] [ 0 ] = c [ 0 ] [ 5 ] ; c [ 5 ] [ 1 ] = c [ l ] [ 5 ] , 

c [ 5 ] [ 4 ] = c [ 4 ] [ 5 ] ; c [ 5 ] [ 5 ] = n p o i n t s ; 

c [ 3 ] [ 2 ] 
c [ 4 ] [ 2 ] 
c [ 4 ] [ 3 ] 
c [ 5 ] [ 2 ] 
c [ 5 ] [ 3 ] 

=c[2][3] 

= c [ 2 ] [ 4 ] 
= c [ 3 ] [ 4 ] 
= c [ 2 ] [ 5 ] 
= c [ 3 ] [ 5 ] 

b [ 0 ] =sumdx2; 
b [ 3 ] =sumdy; 

b [ l ] =sumdy2; 
b [ 4 ] =sumdxy; 

b [ 2 ] =sumdx; 
b [ 5 ] =sumd; 

/ * new v e c t o r */ 

printf("Augmented matrix:\n"); 
PrintMatrix(c, b, 6) ; 
ok =Gauss(c, b, 6, xv); 
printf("X = a5*xV2 + a4*yV2 + a3*x + a2*y + al*x*y + aO:\n"); 
PrintSolution(xv, 6, 'X'); 

sumd = sumdx = sumdx2 = sumdy = sumdy2 = sumdxy =0; 
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for(k =0; k < npoints; k++) { 
sumd += eta[k]; 
sumdx += pt[k].x *eta[k]; 
sumdx2 += px2 *eta[k]; 
suitidy += pt[k].y *eta[k]; 
sumdy2 += py2 *zeta[k]; 
sumdxy += pt[k].x *pt[k].y *eta[k]; 
} 

/* Coefficient matrix must remain unchanged. */ 

b[0] =sumdx2; b[l] =sumdy2; b[2] =sumdx; /* New vector */ 
b[3] =sumdy; b[4] =sumdxy; b[5] =sumd; 

ok = G a u s s ( c , b , 6, y v ) ; 
p r i n t f C ' y = b5*xV2 + b4*yV2 + b3*x + b2*y + b l * x * y + b O : \ n " ) ; 
PrintSolution(yv, 6, 'Y'); 

printf("Residuals:\n") ; 
for(k =0; k < npoints; k++) { 

x t = S Q R { p t [ k ] . x ) * x v [ 0 ] + S Q R ( p t [ k ] . y ) * x v [ l ] + 
p t [ k ] . x *xv[2] + p t [ k ] . y * x v [ 3 ] + 
p t [ k ] . x * p t [ k ] . y * x v [ 4 ] + x v [ 5 ] ; 

x t = z e t a [ k ] - x t ; 
y t = S Q R { p t [ k ] . x ) * y v [ 0 ] + S Q R ( p t [ k ] . y ) * y v [ l ] + 

p t [ k ] . x * y v [ 2 ] + p t [ k ] . y * y v [ 3 ] + 
p t [ k ] . x * p t [ k ] . y * y v [ 4 ] + y v [ 5 ] ; 

y t = e t a [ k ] - y t ; 
printf("%4d %12.6f %12.6f\n", (k+1), xt, yt); 

} 
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A Walk through BSP Trees 
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0 Introduction 0 

Binary space-partitioning (BSP) trees are data structures that allow for fast visible-
surface determination in environments where the viewer moves while the polygonal 
objects remain static, as in interactive walkthroughs. This gem describes the construc-
tion of BSP trees and their traversal, which generates polygons in a sorted order suitable 
for rendering. It concludes with an efficient viewer/object collision detection algorithm 
based upon this versatile data structure. 

0 Background 0 

One solution to the visible-surface problem is to render a scene's polygons in back-
to-front order^ so that polygons nearer to the viewer overwrite those farther away. 
Unfortunately, this simple painter's algorithm offers no consistent means of identifying 
polygon depth; choosing either the extreme vertices or the centroid as the sorting key 
fails in certain cases. As seen from above in Figure 1, polygon B is more distant than A 
using either key, but will be incorrectly rendered before A. This algorithm also fails in 
cases of cyclic overlaps and interpenetrating polygons (Figure 2). Here, no polygon can 
be drawn first without incorrectly overwriting what should be in front of it. The depth 
sort algorithm (Newell et al. 1972) solves all of these problems, but in a view-dependent 
way. 

The BSP-tree visible-surface algorithm (Fuchs et al. 1980) provides a simple, elegant, 
and efficient solution to these problems in a view-independent way. A BSP tree is a 
binary tree that represents a recursive partitioning of n-space, based upon an earlier 
algorithm (Schumacker et al. 1969). In three-space, arbitrarily oriented planes partition 
the scene. (A less general method employing axis-aligned planes in the context of ray 
tracing was presented as a previous gem (Sung and Shirley 1992).) The back-to-front 
rendering order is then determined by a tree traversal governed solely by the position of 

^This order is also useful in some transparency and antialiasing algorithms (Foley et al. 1990). 

Copyright (c) 1995 by Academic Press, Inc. 
All r ights of reproduct ion in any form reserved. 

^ ^ ^ IBM ISBN 0-12-543455-3 
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Farthest Vertices 

Centroids ^ 

4 Viewer 

Figure 1 . "Back-to-front" ambiguity. 

Figure 2. Cyclic overlaps and penetration. 

the viewer; no sorting key is needed. The BSP-tree algorithm deals with the problem of 
cyclic overlaps and polygon interpenetration by splitting the offending polygons during 

, the initial construction of the BSP tree, described below. 

0 BSP-Tree Construction 0 

The BSP tree is constructed only once for a given static scene. First, a polygon is 
selected. Any one will do. Its plane partitions the scene into two half-spaces. One half-
space contains all remaining polygons in the positive side of this root polygon, relative 
to its plane equation; the other contains all polygons in its negative side. Polygons 
that straddle the plane are split by the plane, and their positive and negative pieces 
are assigned to the appropriate half-space. (A related gem (Chin 1992) provides an 
implementation for this operation for convex polygons.) This process recurs within 
each half-space until that space is empty. The pseudocode for the BSP-tree construction 
follows. 
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BSPnode *BSPconstructTree(POLYGON *polygonList) 

{ 
/* choose a polygon's plane from a list of polygons */ 
plane= BSPchoosePlane(polygonList); 

/* partition a list of polygons by the plane into 4 separate lists: 
* -lists of polygons in negative/positive sides of the plane 
* -lists of coplanar polygons facing in same/opposite directions as plane 
*/ 

BSPpartitionFaceListWithPlane(plane,polygonList,&negativeList,&positiveList, 
ScsameList, &oppList) ; 

/* create node and save lists of polygons */ 
newBSPnode= allocateO; 
newBSPnode->saineList= sameList; newBSPnode->oppList= oppList; 

/* recursively process remaining polygons, if any, on either side */ 
if (negativeList == NULL) newBSPnode->negativeSide= NULL; 
else newBSPnode->negativeSide= BSPconstructTree(negativeList); 
if (positiveList == NULL) newBSPnode->positiveSide= NULL; 
else newBSPnode->positiveSide= BSPconstructTree(positiveList); 

return(newBSPnode); 
} /* BSPconstructTree0 */ 

A sample construction (Figure 3) shows both the geometry and its BSP tree at 
successive steps. The scene begins in Figure 3(a) with six polygons, depicted in 2D as 
lines. Arrows represent their surface normals with the arrowhead indicating the direction 
of the positive half-space. The — and + signs represent the respective negative and 
positive BSP-tree branches. The circled letters represent polygons yet to be processed 
for that half-space, that is, unassigned nodes. 

First, select polygon E to define a root partitioning plane. It partitions the scene into 
two half-spaces as indicated by the thin line in Figure 3(b). One half-space contains 
all the remaining polygons in its positive side, i.e., B. The other half-space contains all 
the remaining polygons in its negative side, i.e., A, A, and D. Since C straddles the 
partitioning plane, it is split into Ci and C2. Deposit each portion of C into the appro-
priate half-space (Figure 3(b)). Node E becomes the root; its two branches (ellipses) 
each contain a list of polygons yet to be processed for its corresponding half-space. 

This process is continued recursively by choosing another plane within each half-
space to partition the remaining polygons. This continues until no planes remain, as 
in Figures 3(c) and (d). Note that polygons coplanar to the selected partitioning plane 
are kept in the same node under two separate lists: One list contains polygons facing 
the same direction as the partitioning plane, and the other contains those facing the 
opposite direction, that is, A and A respectively in Figure 3(c). 

Whereas all polygons exhibiting cyclic overlaps or interpenetration will be appropri-
ately split during the building of the BSP tree, additional splitting of other polygons 
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(c) 

Figure 3. Example of BSP-tree construction. 

may also occur. For example, C did not exhibit any problems yet was still partitioned. 
Note that all splitting occurs independent of the viewer's position and direction. 

Partitioning Plane Selection 

Different BSP trees can result depending on which polygon's plane was selected at each 
step. As an example, consider the alternative BSP tree shown in Figure 4. This BSP tree 
is one node smaller because no polygon was split during its construction. Therefore, it 
is preferable to select that polygon which minimizes the amount of splitting. Floors and 
walls are good candidates in typical scenes since they tend not to split other objects. 
One heuristic examines the first n polygons at each step and selects the one whose plane 
splits the least number of other polygons in the list (Fuchs et al. 1983). 
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0 -/v 
A(A) B 

Figure 4. Alternative BSP tree of scene in Figure 3. 

0 BSP-Tree Traversal 0 
The BSP tree's greatest advantage is that a special in-order traversal of it provides for 
an 0(n) back-to-front ordering of polygons from an arbitrary viewpoint. This traversal 
recursively does the following. To render polygon P , first all of the polygons in P 's half-
space opposite the viewer are rendered, then P is rendered, then all of the polygons 
in P's half-space containing the viewer are rendered. The pseudocode for the BSP-tree 
traversal follows. 

void BSPtraverseTreeAndRender(bspNode,position) 

{ 
if (bspNode == NULL) return; 

/* in which side of the plane is the viewer? is it the + side? */ 
if (BSPisViewerlnPositiveSideOfPlane(bspNode->plane,position)) { 

/* yes, recurse on - side, render this node, and recurse on + side */ 
BSPtraverseTreeAndRender(bspNode->negativeSide,position); 
/* transform, clip and project polygons in this node to display */ 
render (bspNode->saineList) ; 
render(bspNode->oppList); /* comment out for back-face culling */ 
BSPtraverseTreeAndRender(bspNode->positiveSide,position); 

} 
else { /* viewer is in - side or on plane */ 

/* recurse on + side, render this node, and recurse on - side */ 
BSPtraverseTreeAndRender(bspNode->positiveSide,position); 
/* transform, clip and project polygons in this node to display */ 
render(bspNode->oppList); 
render(bspNode->sameList) ; /* comment out for back-face culling */ 
BSPtraverseTreeAndRender(bspNode->negativeSide,position); 

} 
} /* BSPtraverseTreeAndRender() */ 

A sample traversal follows for viewpoint t appearing in Figure 3(d). First, t is on the 
positive side of node £', so traverse the negative side of node E. Next, t is on the 
negative side of node A so A's positive side is traversed. Render C2 since it is the only 
polygon there. Next, render node A's polygons: A and A. (Coplanar polygons in the 
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• Viewer • Viewer 

(a) (b) 

Figure 5. "Back-to-front" ordering is independent of distance. 

same node can be rendered in any order.) After that, traverse the negative side of node 
A, rendering D. Next, traverse the positive side of node E. As Ci's negative half-space 
is empty, render Ci. Finally, traverse the positive side of node Ci, rendering B. 

The complete back-to-front ordering is [C2 ^A ^A ^D ,E ^Ci , 5 ] . A similar BSP-
tree traversal for viewpoint u is [B ^Ci ^E ,D ^A ^A ,C2]. Continuing to the BSP 
tree in Figure 4, viewpoints t and u yield the orderings [C ,A ,^4 ,£" ,£ ) ,B] and 
[B ,D ,E ^A ,A ,C] respectively. Note that these orderings are different despite an 
identical viewpoint and scene, since their BSP trees differ. 

It is interesting that this "back-to-front" ordering is independent of distance to the 
viewer. For example, in Figure 5(a), polygon B lies in the half-space opposite the viewer 
and is rendered first; F then overwrites it. However, in Figure 5(b), B is still rendered 
first even though F is clearly much farther away from the viewer. This is also apparent 
in Figure 3(d) from viewpoint u. Although Ci is second only to B in the sorted hst in 
line 5 above, E and D (which are rendered immediately after Ci) are actually farther 
away from u than Ci. 

More remarkably, this "back-to-front" ordering is independent not only of distance, 
but of direction as well. That is, a given position generates the same ordering regardless 
of viewer direction. Therefore, only the viewing positions, not directions, need be shown 
in Figures 3(d) and 4. For example, if viewer t pivots in place to face away from the 
scene, the BSP tree will still be traversed in its entirety, yielding again the same back-to-
front ordering. However, none of the polygons will be visible after sending them down 
the graphics pipeline where they are ultimately transformed, clipped, and projected 
onto the display (Foley et al. 1990). 

If the viewer is surrounded by polygons, as in the case of viewpoint v in Figure 
3(d), the "back-to-front" ordering is generated as follows. First, v lies in the positive 
side of node £", so traverse its negative side toward node A. Since v is in ^ ' s negative 
side, traverse A's positive side, rendering C2. Return to render A and A. Traverse ^ ' s 
negative side, rendering D. Return to render E. Next, traverse the positive side of 
E. Since v is in the positive side of Ci and its negative branch is empty, render Ci. 
Traverse Ci's positive side, finally rendering B. The ordering is [C2, A^ A, D, E^ Ci^B]. 
Similarly, the ordering for v in Figure 4 yields [C, J5, D, A, A, E]. Even though the viewer 
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Figure 6. View-frustum culling. 

is surrounded by polygons, no polygons are eliminated from the sorted list. They still 
need to be rendered by sending them down the graphics pipeline. Therefore, when using 
BSP trees as a visible-surface algorithm, there is no advantage in balancing the BSP 
tree since the entire tree is traversed. 

Note that the traversal returns merely an ordering; it does not reveal which polygons 
are actually within the view frustum. It guarantees only that when polygons are sent 
down the graphics pipeline in this "back-to-front" order, any polygon that should be 
obscured by another will be, with respect to the viewer. 

The next two sections discuss two optimizations to the BSP-tree traversal: back-face 
culling and view-frustum culling. 

Back-Face Culling 

Back-face culling can be done at no cost during this traversal as indicated in the traversal 
pseudocode. Whenever the viewer is in the negative half-space of the polygon to be 
rendered, that polygon can be culled. For example, from viewpoint t in Figure 3(d), 
polygons A and B are tagged as back-facing. Similarly, A, Ci, C2, D, and E are marked 
as such with respect to u. Likewise, A and D may be back-face culled with respect to 
V. Note that even with back-face culling, the entire BSP tree is traversed. 

View-Frustum Culling 

In addition to supporting back-face culling, BSP trees can be used to accomplish view-
frustum culling (Foley et al. 1990). If all of the view frustum's eight vertices lie com-
pletely on one side of a polygon's plane, then the entire subtree on the opposite side 
can be eliminated from further traversal. (Determining which side of a plane a point is 
in has been discussed in a previous gem (Chin 1992).) For example, the view frustum, 
shown as a filled quadrilateral in Figure 6, lies completely in the negative side of polygon 
5 's plane. Thus, B and its positive subtree consisting of A can be completely pruned. 
The traversal is called recursively with B's negative subtree, which contains C. Since 
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the view-frustum straddles C's plane, it is not culled; the ordered list consists merely 
of [C]. By comparison, without view-frustum culling the sorted list is [C , S , A]. Note 
that view-frustum culling does not guarantee that all polygons outside the view frustum 
are omitted. For example, C remains in the ordered list, though it lies outside the view 
frustum. As mentioned previously, the graphics pipeline ultimately clips C during final 
rendering. 

The following pseudocode incorporates view-frustum culling into the BSP-tree traver-
sal. 

void BSPtraverseTreeAndCullViewFrustum(bspNode,position) 

{ 
if (bspNode == NULL) return; 

side= whichSideIsViewFrustuin(bspNode->plane, viewFrustiim) ; 
if (side == POSITIVE) 

BSPtraverseTreeAndCuliViewFrus turn(bspNode->pos i t iveS ide,pos i tion); 
else if (side == NEGATIVE) 

BSPtraverseTreeAndCullViewFrustum(bspNode->negativeSide,position); 
else { assert(side == BOTH); 

/* insert 2nd if-statement of BSPtraverseTreeAndRender() and 
* replace BSPtraverseTreeAndRender() with 
* BSPtraverseTreeAndCullViewFrustum() 
*/ 

} 
} /* BSPtraverseTreeAndCullViewFrustuin() */ 

0 A Viewer Collision Detection Algorithm 0 

A desirable addition to interactive walkthroughs is the ability to detect collisions be-
tween the viewer and the objects in the scene. This is easily added by modifying the 
BSP-tree data structure to represent solid models (Thibault and Naylor 1987). The main 
difference between this and the previous BSP-tree data structure is the addition of "in" 
and "out" leaf nodes which correspond to convex regions that are either inside some 
object or outside all objects respectively. Figure 7 depicts a BSP-tree solid-modeling rep-
resentation of a scene containing two concave objects with outward-pointing normals. 
There are six "in" leaf nodes and eight "out" leaf nodes, corresponding to the same 
number of "in" and "out" regions in the scene. BSPconstructTreeO can be made to 
generate this BSP-tree variant by simply modifying the following two statements from 

if (negativeList == NULL) newBSPnode->negativeSide= NULL; 

if (positiveList == NULL) newBSPnode->positiveSide= NULL; 

to 
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Figure 7. BSP-tree solid-modeling representation of two concave objects. 

if (negativeList == NULL) newBSPnode->negativeSide= allocate(IN); 

if (positiveList == NULL) newBSPnode->positiveSide= allocate(OUT); 

The BSP-tree traversal operates as before except that leaf nodes are ignored. 
Given this BSP-tree solid-modeling representation, collision detection between the 

viewer and the objects in the scene is simple. First, the viewer's path from one frame 
to the next is modeled as a line segment. Next the endpoints are classified as "on" an 
object, "in" an object, or "out" (side) all objects. The classifier filters each point down 
the BSP tree toward the leaves to determine the point's state (described below). A 
collision is detected if at least one endpoint is "on" or if the endpoints have dissimilar 
states. If the test fails, a collision is still possible since objects may lie between the 
endpoints. In this case a line segment is classified next by filtering it down the BSP 
tree toward the leaves. A collision occurs if and only if the line segment fragments have 
dissimilar states. 

Point and Line Segnnent Classification 

A point is classified as follows. First it is compared with the root's plane. It is then 
filtered down the branch for the side in which it lies. The process continues recursively 
until it reaches a leaf node, whereupon the point is classified as "in" or "out." If it is 
on the plane, it is filtered down both sides and the classifications are compared. If the 
two classifications differ, the point is "on" since it is on a boundary; otherwise, it is 
classified by the common value (Thibault and Naylor 1987). Classifying a line segment 
is similar except that if a line segment straddles a plane, it is split and filtered down 
the corresponding sides to be classified separately. 
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Note that all planes are assigned a small tolerance to determine if a primitive is on 
the plane. Balancing the tree, in this case, will result in a more efficient classification 
since primitives are filtered down to the leaves (Thibault and Naylor 1987). 

0 Implementation 0 

The routines BSPconstructTreeO and BSPtraverseTreeAndRenderO contain the C 
code for the BSP-tree solid-modeling construction and traversal procedures, respec-
tively. The input format of the polygons for BSPconstructTreeO is detailed in a prior 
gem (Chin 1992) along with the splitter, BSPpartit ionFaceListWithPlaneO, which 
has been slightly modified for this gem. A heuristic that selects a "good" partitioning 
plane is implemented in BSPchoosePlaneO. The function BSPdidViewerCollideWith 
Scene 0 supplies the viewer collision detection algorithm which calls 
BSPclassifyPointO and BSPclass i fyLinelnter iorO to classify their correspond-
ing primitives. Left as an exercise is BSPtraverseTreeAndCullViewFrustumO. Most 
of the core routines are listed at the end of this gem; the complete source code resides 
on the accompanying disk. Pseudocode for a sample driver for these routines follows. 

void main() 

{ 
POSITION position= NULL, newPosition= NULL; 
/* construct BSP tree for a given scene */ 
BSPnode *bspTree= BSPconstructTree(getScene()); 

do { 
/* display scene for a given viewpoint */ 
BSPtraverseTreeAndRender(bspTree,position); 

newPosition= wait for viewer's new position; 
/* check for a collision */ 
if (BSPdidViewerCollideWithScene(bspTree,position,newPosition)) 

print "Collision!" 
position^ newPosition; 

} while (user does not exit); 

BSPfreeTree(bspTree); 
} /* mainO */ 

0 Conclusion 0 

The BSP tree was presented as an efficient data structure used to interactively render 
polygons in correct back-to-front^ order. Close study showed that the order is not pre-

^Rendering in front-to-back order is an alternative (Gordon and Chen 1991). 
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cisely "back-to-front," but is functionally equivalent to it. Optimizations were described 
that further cull the polygon list. Finally, the BSP-tree framework supports additional 
methods, including viewer collision detection, Boolean operations (Thibault and Naylor 
1987) and shadow generation (Chin and Feiner 1989, Chin and Feiner 1992). 
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0 C Code 0 

bsp.h 

/* bsp.h: header file for BSP tree algorithm 
* Copyright (c) Norman Chin 

#ifndef 
#define 

#include 
#include 
#include 
#include 
#include 
#include 

_BSP_INCLUDED 
_BSP_INCLUDED 

<stdio.h> 
<stdlib.h> 
<assert.h> 
<math.h> 
<values.h> 
"GraphicsGems.h" 

/* exitO */ 
/* assert 0 */ 
/* fabsO */ 
/* MAXINT */ 

typedef struct { float rr,gg,bb; } COLOR; 
typedef struct { float xx,yy,zz; } POINT; 
typedef struct { float aa,bb,cc,dd; } PLANE; 

typedef struct vertexTag { 
float xx,yy,zz; /* vertex position */ 
struct vertexTag *vnext; /* pointer to next vertex in CCW order */ 

} VERTEX; 
#define NULL_VERTEX ((VERTEX *) NULL) 

typedef struct faceTag { 
COLOR color; /* color of face */ 
VERTEX *vhead; /* head of list of vertices */ 
PLANE plane; /* plane equation of face */ 
struct faceTag *fnext; /* pointer to next face */ 

} FACE; 
#define NULL_FACE ((FACE *) NULL) 
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typedef enum {PARTITION_NODE= 'p', IN_NODE= 'i', OUT_NODE= 'o'} NODE_TYPE; 

typedef struct partitionnodeTag { 
FACE *sameDir, *oppDir; /* pointers to faces embedded in node */ 

struct bspnodeTag *negativeSide, *positiveSide; /* "-" & "+" branches */ 
} PARTITIONNODE; 
#define NULL_PARTITIONNODE ((PARTITIONNODE *) NULL) 

typedef struct bspnodeTag { 
NODE_TYPE kind; /* kind of BSP node */ 

PARTITIONNODE *node; /* if kind == (IN_NODE || OUT_NODE) then NULL */ 
} BSPNODE; 
#define NULL_BSPNODE ((BSPNODE *) NULL) 

#define TOLER 0.0000076 
#define IS_EQ(a,b) ((fabs((double)(a)-(b)) >= (double) TOLER) ? 0 : 1) 
typedef enum (NEGATIVE^ -1, ZERO= 0, POSITIVE^ 1} SIGN; 
#define FSIGN(f) (((f) < -TOLER) ? NEGATIVE : ((f) > TOLER ? POSITIVE : ZERO)) 

/* external functions */ 
BSPNODE *BSPconstructTree(FACE **faceList); 
boolean BSPisViewerlnPositiveSideOfPlane(const PLANE *plane,const POINT *position) , 
void BSPtraverseTreeAndRender(const BSPNODE *bspNode,const POINT ^position); 
boolean BSPdidViewerCollideWithScene(const POINT *from, const POINT *to, 

const BSPNODE *bspTree); 
/* the complete file is on disk */ 
#endif /* _BSP_INCLUDED */ 

bspTree.c 

/* bspTree.c: module to construct and traverse a BSP tree. 

* Copyright (c) Norman Chin 

#include "bsp.h" 

/* local functions */ 

static void BSPchoosePlane(FACE *faceList,PLANE *plane); 
static boolean doesFaceStraddlePlane(const FACE *face,const PLANE *plane); 

/* Returns a BSP tree of scene from a list of convex faces. 
* These faces' vertices are oriented in counterclockwise order where the last 
* vertex is a duplicate of the first, i.e., a square has five vertices. 
• 

* faceList - list of faces 
*/ 

BSPNODE *BSPconstructTree(FACE **faceList) 

{ 
BSPNODE *newBspNode; PLANE plane; 
FACE *sameDirList,*oppDirList, *faceNegList,*facePosList; 
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/* choose plane to split scene with */ 
BSPchoosePlane(*faceList,&plane); 
BSPpartitionFaceListWithPlane(&plane,faceList,&faceNegList,&facePosList, 

&sameDirList,&oppDirList); 
assert(*faceList == NULL_FACE); assert(sameDirList != NULL_FACE); 

/* construct the tree */ 
newBspNode= allocBspNode(PARTITION_NODE,sameDirList,oppDirList); 

/* construct tree's "-" branch */ 
if (faceNegList == NULL_FACE) 
newBspNode->node->negativeSide= allocBspNode(IN_NODE,NULL_FACE,NULL_FACE); 
else newBspNode->node->negativeSide= BSPconstructTree(&faceNegList); 

/* construct tree's "+" branch */ 
if (facePosList == NULL_FACE) 
newBspNode->node->positiveSide=allocBspNode(OUT_NODE,NULL_FACE,NULL_FACE); 
else newBspNode->node->positiveSide= BSPconstructTree(&facePosList); 

return(newBspNode); 
} /* BSPconstructTree0 */ 

/* Traverses BSP tree to render scene back-to-front based on viewer position. 

* bspNode - a node in BSP tree 
* position - position of viewer 
*/ 

void BSPtraverseTreeAndRender(const BSPNODE *bspNode,const POINT *position) 
{ 

if (bspNode == NULL_BSPNODE) return; 

if (bspNode->kind == PARTITION_NODE) { 
if (BSPisViewerlnPositiveSideOfPlane(&bspNode->node->sameDir->plane,position)){ 

BSPtraverseTreeAndRender(bspNode->node->negativeSide,position); 
drawFaceList(stdout,bspNode->node->sameDir); 
drawFaceList(stdout,bspNode->node->oppDir); /* back-face cull */ 
BSPtraverseTreeAndRender(bspNode->node->positiveSide,position); 

} 
else { 

BSPtraverseTreeAndRender(bspNode->node->positiveSide,position); 
drawFaceList(stdout,bspNode->node->oppDir); 
drawFaceList(stdout,bspNode->node->sameDir); /* back-face cull */ 
BSPtraverseTreeAndRender(bspNode->node->negativeSide,position); 

} 
} 
else assert(bspNode->kind == IN_NODE || bspNode->kind == OUT_NODE); 

} /* BSPtraverseTreeAndRender() */ 
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/* Chooses plane with which to partition. 
* The algorithm is to examine the first MAX_CANDIDATES on face list. For 
* each candidate, count how many splits it would make against the scene. 
* Then return the one with the minimum amount of splits as the 
* partitioning plane. 
• 

* faceList - list of faces 
* plane - plane equation returned 
*/ 

static void BSPchoosePlane(FACE *faceList,PLANE *plane) 
{ 

FACE *rootrav; int ii; 
int minCount= MAXINT; 
FACE *chosenRoot= faceList; /* pick first face for now */ 

assert(faceList != NULL_FACE) ; 
/* for all candidates... */ 

#define MAX_CANDIDATES 100 
for (rootrav= faceList, ii= 0; rootrav != NULL_FACE && ii< MAX_CANDIDATES; 

rootrav= rootrav->fnext, ii++) { 
FACE *ftrav; int count= 0; 
/* for all faces in scene other than itself... */ 
for (ftrav= faceList; ftrav != NULL_FACE; ftrav= ftrav->fnext) { 

if (ftrav != rootrav) 
if (doesFaceStraddlePlane(ftrav,&rootrav->plane)) count++; 

} 
/* remember minimum count and its corresponding face */ 
if (count < minCount) { minCount= count; chosenRoot= rootrav; } 
if (count == 0) break; /* can't do better than 0 so return this plane */ 

} 
*plane= chosenRoot->plane; /* return partitioning plane */ 

} /* BSPchoosePlane() */ 

/* Returns a boolean to indicate whether the face straddles the plane 

* face - face to check 
* plane - plane 
*/ 

static boolean doesFaceStraddlePlane(const FACE *face, const PLANE *plane) 
{ 

boolean anyNegative= 0, anyPositive= 0; 
VERTEX *vtrav; 

assert(face->vhead != NULL_VERTEX); 
/* for all vertices... */ 
for (vtrav= face->vhead; vtrav->vnext !=NULL_VERTEX; vtrav= vtrav->vnext) { 

float value= plane->aa*vtrav->xx + plane->bb*vtrav->yy + 
plane->cc*vtrav->zz + plane->dd; 

/* check which side vertex is on relative to plane */ 
SIGN sign= FSIGN(value); 
if (sign == NEGATIVE) anyNegative= 1; 
else if (sign == POSITIVE) anyPositive= 1; 
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/* if vertices on both sides of plane then face straddles else it no */ 
if (anyNegative && anyPositive) return(l); 

} 
return(0); 

} /* doesFaceStraddlePlane() */ 

/* Returns a boolean to indicate whether or not point is in + side of plane. 

* plane - plane 
* position - position of point 
*/ 

boolean BSPisViewerlnPositiveSideOfPlane(const PLANE *plane,const POINT *position) 
{ 

float dp= plane->aa*position->xx + plane->bb*position->yy + 
plane->cc*position->zz + plane->dd; 

return( (dp > 0.0) ? 1 : 0 ); 
} /* BSPisViewerlnPositiveSideOfPlane() */ 
/* the complete file is on disk */ 
/*** bspTree.c ***/ 

bspCollide.c 

/* bspCollide.c: module to detect collisions between the viewer and static 
* objects in an environment represented as a BSP tree. 
* Copyright (c) Norman Chin 
*/ 

#include "bsp.h" 

/* flags to indicate if any piece of a line segment is inside any polyhedron 
* or outside all polyhedra 

static boolean anyPieceOfLineIn, anyPieceOfLineOut; 

/* local functions - see function definition */ 
static int BSPclassifyPoint(const POINT *point, const BSPNODE *bspNode); 
static void BSPclassifyLinelnterior(const POINT *from, const POINT *to, 

const BSPNODE *bspNode); 

/* Returns a boolean to indicate whether or not a collision had occurred 
* between the viewer and any static objects in an environment represented as 
* a BSP tree. 
•*• 
* from - start position of viewer 
* to - end position of viewer 
* bspTree - BSP tree of scene 
*/ 

boolean BSPdidViewerCollideWithScene(const POINT *from, const POINT *to, 
const BSPNODE *bspTree) 

{ 
/* first classify the endpoints */ 
int signl= BSPclassifyPoint(from,bspTree); 
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int sign2= BSPclassifyPoint(to,bspTree); 

/* collision occurs iff there's a state change between endpoints or 
* either endpoint is on an object 
*/ 

if (signl == 0 || sign2 == 0 || signl != sign2) return(l); 
else { 

anyPieceOfLineIn= anyPieceOfLineOut= 0; /* clear flags */ 
/* since we already classified the endpoints, try interior of line */ 
/* this routine will set the flags to appropriate values */ 
BSPclassifyLinelnterior(from,to,bspTree); 

/* if line interior is inside and outside an object, collision detected*/ 
/* else no collision detected */ 
return( (anyPieceOfLineIn && anyPieceOfLineOut) ? 1 : 0 ); 

} 
} /* BSPdidViewerCollideWithSceneO */ 

/* Classifies point as to whether or not it is inside, outside or on an object 
* represented as a BSP tree, where inside is -1, outside is 1, on is 0. 

* point - position of point 
* bspNode - a node in BSP tree 
*/ 

static int BSPclassifyPoint(const POINT *point,const BSPNODE *bspNode) 
{ 

if (bspNode == NULL_BSPNODE) return(l); /* point is out since no tree */ 

if (bspNode->kind == PARTITION_NODE) { /* compare point with plane */ 
const PLANE *plane= &bspNode->node->sameDir->plane; 
float dp= plane->aa*point->xx + plane->bb*point->yy + 

plane->cc*point->zz + plane->dd; 
if (dp < -TOLER) /* point on "-" side, filter down "-" branch */ 

return(BSPclassifyPoint(point,bspNode->node->negativeSide)); 
else if (dp > TOLER) /* point on "+" side, filter down "+" branch */ 

return(BSPclassifyPoint(point,bspNode->node->positiveSide)); 
else { 

/* point is on plane, so classify the neighborhood of point by 
* filtering the same point down both branches. 
*/ 

int signl= BSPclassifyPoint(point,bspNode->node->negativeSide); 
int sign2= BSPclassifyPoint(point,bspNode->node->positiveSide); 
/* if classification is same then return it otherwise it's on */ 
return( (signl == sign2) ? signl : 0 ); 

} 
} 
else if (bspNode->kind == OUT_NODE) return(l); /* point is outside */ 
else { assert(bspNode->kind == IN_NODE); return(-l); } /* point is inside */ 

} /* BSPclassifyPoint0 */ 

/* Classifies interior of line segment (not including endpoints) as to whether 
* or not any piece is inside or outside an object represented as a BSP tree. 
* If it's on, it's recursively called on both half-spaces to set the flags. 
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* There is no explicit on condition like we have with BSPclassifyPoint(), 
• 

* from - endpoint of line segment 
* to - other endpoint of line segment 
* bspNode - a node in BSP tree 
*/ 

static void BSPclassifyLinelnterior(const POINT *from,const POINT *to, 
const BSPNODE *bspNode) 

{ 
if (bspNode->kind == PARTITION_NODE) { /* compare line segment with plane */ 

float ixx,iyY,izz; 
const PLANE *plane= &bspNode->node->sameDir->plane; 
float dpl= plane->aa*from->xx + plane->bb*from->yy + 

plane->cc*from->zz + plane->dd; 
float dp2= plane->aa*to->xx + plane->bb*to->Yy + 

plane->cc*to->zz + plane->dd; 
SIGN signl= FSIGN(dpl); SIGN sign2= FSIGN(dp2); 

if ( (signl == NEGATIVE && sign2 == POSITIVE) || 
(signl == POSITIVE && sign2 == NEGATIVE) ) { /* split! */ 

SIGN check= anyEdgelntersectWithPlane(from->xx,from->yy,from->zz, 
to->xx,to->yy,to->zz, 
plane,&ixx,&iyy,&izz); 

POINT iPoint; 
assert(check != ZERO); 

/* filter split line segments down appropriate branches */ 
iPoint.xx= ixx; iPoint.yy= iyy; iPoint.zz= izz; 
if (signl == NEGATIVE) { assert(sign2 == POSITIVE); 

BSPclassifyLinelnterior(from,&iPoint,bspNode->node->negativeSide); 
BSPclassifyLinelnterior(to,&iPoint,bspNode->node->positiveSide); 

} 
else { assert(signl == POSITIVE && sign2 == NEGATIVE); 

BSPclassifyLinelnterior(from,&iPoint,bspNode->node->positiveSide); 
BSPclassifyLinelnterior(to,&iPoint,bspNode->node->negativeSide); 

} 
} 
else { /* no split,so on same side */ 

if (signl == ZERO && sign2 == ZERO) { 
BSPclassifyLinelnterior(from,to,bspNode->node->negativeSide); 
BSPclassifyLinelnterior(from,to,bspNode->node->positiveSide); 

} 
else if (signl == NEGATIVE || sign2 == NEGATIVE) { 

BSPclassifyLinelnterior(from,to,bspNode->node->negativeSide); 
} 
else { assert(signl == POSITIVE || sign2 == POSITIVE); 

BSPclassifyLinelnterior(from,to,bspNode->node->positiveSide); 
} 

} 
} 
else if (bspNode->kind == IN_NODE) anyPieceOfLineIn= 1; /* line inside */ 
else { assert(bspNode->kind == OUT_NODE); anyPieceOfLineOut= 1; } 
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} /* BSPclassifyLinelnterior0 */ 
/*** bspCollide.c ***/ 
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0 Introduction 0 
Global deformation techniques were first introduced to extend the set of primitives that 
may be used in constructive solid modeling (Barr 1984, Sederberg and Parry 1986). In 
fact, these techniques are more general and have been consequently adapted to tessel-
lated surfaces or parametric patches as well. This gem proposes a generic implemen-
tation of several of these global deformation techniques. The term "generic" focuses 
on the fact that the implementation depends neither on a given geometric model for 
surfaces nor on specific data structures for internal representation. 

The principle of global deformation is to map each point {x,y,z) in the Euclidian 
space R^ onto another point {x\ y' ^z') under a deformation function f{x^y^z^a^b,c,...). 
The additional parameters (a, 6, c,.. .) used by the deformation function are either con-
stants or values returned by shape functions. Moreover, according to the way these 
shape functions are defined, global deformation techniques may be further classified as 
procedural or interactive. 

There is a subset of global deformation techniques for which the shape functions 
operate upon only one coordinate (typically z) of the initial point P. For this and related 
reasons (Lazarus et al. 1992), such techniques are called axial deformation techniques in 
what follows. Although they are relatively specific compared to more general techniques 
such as FFD (Sederberg and Parry 1986) or EFFD (Coquihart 1990), axial deformations 
have been found useful in many computer graphics applications; for instance, all the 
procedural techniques proposed in Barr's original work on global deformations (Barr 
1984) were axial deformations. 

0 Description 0 
The general mapping function for axial deformations may be expressed by 

(x', y', z') - / (x , y, z, a{z), b{z),c{z),...). (1) 

Copyright (c) 1995 by Academic Press, Inc. 
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The axial deformations proposed here are defined with a simphfied form of Equation (1) 
that uses only two additional parameters: 

{x\y',z') = f{x,y,z,s{z),a), (2) 

where ^(z): R -^ [0,1] is the shape function and a G R is the amplitude of the defor-
mation. The role of both parameters may be understood intuitively: When the shape 
function s{z) is null for a given point (x, y, z), it means that this point will be unchanged 
by the deformation; similarly, when the amplitude a is null, the whole object remains 
undeformed. 

In the generic implementation proposed here, each deformation routine acts only on 
points: It takes the coordinates of a point on the original object, computes its displace-
ment according to the deformation function, and finally returns the new coordinates of 
the point. A complete implementation of axial deformations should include some inter-
active tools for defining the shape function. Such a tool lies outside the scope of this 
gem, but many interesting procedural deformations may be obtained by using general-
purpose functions, such as the wave generators described elsewhere in this volume (gem 
VILl). 

Six different axial deformations are provided (pinch, taper, mold, twist, shear, bend), 
which differ only by the function / that is applied on each point. Figure 1 shows 
several objects that may be obtained with the six deformation operators, starting from 
a parallelepiped. In fact, two kinds of operators are used here: The first kind (pinch, 
shear, bend) takes the Cartesian coordinates (x, ^, z) of the point in the local frame, 
whereas the second kind (taper, mold, twist) acts on the cylindrical coordinates (r, ^, z). 
The following lines give an overview of the work that is done by each operator: 

pinch: The x coordinate is scaled according to a and s{z). 
taper: The r coordinate is scaled according to a and s{z), 
mold: The r coordinate is scaled according to a and s{9). 
twist: The 6 coordinate is scaled according to a and s{z). 
shear: The z axis is translated according to a and s{z). 
bend: The z axis is rotated according to a and s{z). 

For each deformation technique, two routines are provided. The first (local.*) as-
sumes that the coordinates of the incoming point are already expressed in the local 
frame where the deformation is defined (i.e., the frame for which the z coordinate is 
used by the shape function). The second one (world.*) takes the coordinates of the 
point in the world frame and returns the coordinates in the same frame. For this, it 
needs an additional parameter defining the local frame and performs the deformation 
within this frame. The implementation uses the toolbox of macro functions given on 
the distribution disk (Schlick 1995) which provides the frame conversion routines. 
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(a) (b) (c) (d) (e) (f) (g) 

Figure 1. (a) Original object, (b) pinch, (c) taper, (d) mold, (e) twist, (f) shear, (g) bend. 

Finally, note that a unit-cube frame (Blanc and Schlick 1994) may be employed instead 
of the traditional frame having unit vectors, because it facilitates the deformation of 
objects independently of their position, orientation, and size. 

0 Source Files 0 

AXD.H : Carole Blanc (4 June 1994) 

This package provides an implementation of 6 different algorithms 
for doing axial deformations. 

"Generic Implementation of Axial Deformation Techniques" 
in Graphics Gems V (edited by A. Paeth), Academic Press 

*/ 

#ifndef _AXD_ 
#define _AXD_ 

** This package uses the "Toolbox of Macros Functions for Computer Graphics" 
** which provides files : tool.h, real.h, uint.h, sint.h, vec?.h and mat?.h 

#include "real.h" 

typedef real (*shape) (real); 

extern void local_pinch (rv3 *Point, shape Shape, real Ampli); 

extern void world__pinch (rv3 *Point, frameS Frame, shape Shape, real Ampli), 
extern void local_taper (rv3 *Point, shape Shape, real Ampli); 
extern void world_taper (rv3 *Point, frame3 Frame, shape Shape, real Ampli), 
extern void local_mould (rv3 *Point, shape Shape, real Ampli); 
extern void world_mould (rv3 *Point, frame3 Frame, shape Shape, real Ampli), 
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extern void local_twist (rv3 *Point, shape Shape, real Ampli); 
extern void world_twist (rv3 *Point, frameS Frame, shape Shape, real Ampli); 
extern void local_shear (rv3 *Point, shape Shape, real Ampli); 
extern void world_shear (rv3 *Point, frame3 Frame, shape Shape, real Ampli); 
extern void local_bend (rv3 *Point, shape Shape, real Ampli); 
extern void world_bend (rv3 *Point, frame3 Frame, shape Shape, real Ampli) ; 

#endif 

AXD.C : Carole Blanc (4 June 1994) 

This package provides an implementation of 6 different algorithms 
for doing axial deformations. 

"Generic Implementation of Axial Deformation Techniques" 
in Graphics Gems V (edited by A. Paeth), Academic Press 

\* */ 

#include "axd.h" 
#include "mat3.h" 

/* 
** Each "local_*" routines inputs/outputs the following arguments 
• * 

** Input: Point = coordinates of the point in the local frame 
** Shape = shape function of the deformation 
** Ampli = amplitude of the deformation 
** Output: Point = coordinates of the deformed point in the local frame 

** Each "world_*" routines inputs/outputs the following arguments 
• * 

** Input: Point = coordinates of the point in the world frame 
** Frame = local frame in which the deformation is applied 
** Shape = shape function of the deformation 
** Ampli = amplitude of the deformation 
** Output: Point = coordinates of the deformed point in the world frame 
• • 

** Note: The "Frame" argument must be initialized by MAKE_FRAME3 (see "mat3.h") 

*/ 

/* 
** pinch : Scale the x coordinate of the object according to z 

*/ 

void local__pinch (realvec3 *Point, shape Shape, real Ampli) 

{ 

Point->x *= 1.0 - Ampli * Shape (Point->z); 

} 
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void world_pinch (realvecS *Point, frameS Frame, shape Shape, real Ampli) 

{ 
L0CAL_FRAME3 (Point, Frame); 

local_pinch (Point, Shape, Ampli); 
W0RLD_FRAME3 (Point, Frame); 

} 

/* 
** taper : Scale the polar radius of the object according to z 
*/ 

void local_taper (realvecS *Point, shape Shape, real Ampli) 

{ 
register real Tmp; 

Tmp = 1.0 - Ampli * Shape (Point->z); Point->x *= Tmp; Point->y *= Tmp; 
} 

void world_taper (realvecS *Point, frame3 Frame, shape Shape, real Ampli) 

{ 
L0CAL_FRAME3 (Point, Frame); 

local_taper (Point, Shape, Ampli); 
W0RLD_FRAME3 (Point, Frame); 

} 

/* 
** mould : Scale the polar radius of the object according to the polar angle 
*/ 

void local_mould (realvec3 *Point, shape Shape, real Ampli) 

{ 
register real Tmp; 

Tmp = atan2 (Point->y, Point->x) / PI; 

Tmp = 1.0 - Ampli * Shape (Tmp); Point->x *= Tmp; Point->y *= Tmp; 

} 

void world_mould (realvec3 *Point, frame3 Frame, shape Shape, real Ampli) 

{ 
L0CAL_FRAME3 (Point, Frame); 
local_mould (Point, Shape, Ampli); 
W0RLD_FRAME3 (Point, Frame); 

} 

/* 
** twist : Scale the polar angle of the object according to z 
*/ 
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void local_twist (realvecS *Point, shape Shape, real Ampli) 

{ 
register real Tmp, Cos, Sin; 

Tmp = PI * Ampli * Shape (Point->z); 
Cos = cos (Tmp) ; Sin = sin (Tmp) ; Tmp = Point->x; 
Point->x = Cos * Tmp - Sin * Point->y; 
Point->y = Sin * Tmp + Cos * Point->y; 

} 

void world_twist (realvec3 *Point, frame3 Frame, shape Shape, real Ampli) 

{ 
L0CAL_FRAME3 (Point, Frame); 
local_twist (Point, Shape, Ampli); 

W0RLD_FRAME3 (Point, Frame); 

} 

** shear : Translate the z axis of the object along x according to z 
*/ 

void local_shear (realvec3 *Point, shape Shape, real Ampli) 

{ 

Point->x += Ampli * Shape (Point->z); 

} 

void world_shear (realvec3 *Point, frame3 Frame, shape Shape, real Ampli) 
{ 
L0CAL_FRAME3 (Point, Frame); 
local_shear (Point, Shape, Ampli); 
W0RLD_FRAME3 (Point, Frame); 

} 

/* 
** bend : Rotate the z axis of the object around y according to z 
*/ 

void local_bend (realvec3 *Point, shape Shape, real Ampli) 

{ 
register real Tmp, Cos, Sin; 

Tmp = PI * Ampli * Shape (Point->z); 
Cos = cos (Tmp); Sin = sin (Tmp); Tmp = Point->z; 
Point->z = Cos * Tmp - Sin * Point->x; 

Point->x = Sin * Tmp + Cos * Point->x; 

} 

void world_bend (realvec3 *Point, frame3 Frame, shape Shape, real Ampli) 

{ 
L0CAL_FRAME3 (Point, Frame); 
local_bend (Point, Shape, Ampli); 
W0RLD_FRAME3 (Point, Frame); 

} 
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Curves and Surfaces 

The gems in this section describe curves and surfaces. This is the book's largest con-
tributed section. The gems chosen support a straightforward machine implementation 
of the methods presented. 

In the first two gems, Goldman catalogs the identities that underlie the univariate 
and bivariate Bernstein (IV. 1) and the B-spline (IV.2) basis functions. The entries in-
clude historical citations. Their compact notation (and the parallel treatment in IV. 1) 
add further value by better revealing the deep structure of these important models. 
Turkowski (IV.3) derives an equation for circular arc "bending" of arcs bisected from 
a parent of known bend. By this equation, recursive binary subdivision may be di-
rectly employed in order to render these curves using a compact and efficient routine, 
de Figueiredo (IV.4) employs a related nonuniform curve subdivision in order to solve 
problems of curve length, rendering, and point on curve testing. Ahn (IV.5) provides an 
efficient computation of the vertices of any ellipsoid. The code minimizes trigonomet-
ric evaluations and produces the edge and face lists used to describe these polyhedral 
approximations. Bajaj and Xu (IV.6) derive conditions for curves through a sparse(st) 
set of points. They apply the formulas to join parametric cubic curves using a reduced 
data set while preserving continuity (pseudocode included). Data thinning of digitized 
font descriptions is one immediate application. Gravesen (IV.7) estimates the length 
of Bezier curves using six related subdivision methods. Extensive empirical data sum-
marizes their behavior in reference to a large number of curves (not shown), while two 
representative curves provide worthwhile benchmarks for such estimators. Miller (IV.8) 
describes the efficient rendering of Bezier curves by applying continuously evaluated 
subexpressions to the factorial and exponential terms that describe such curves. The 
section closes with a tutorial by Shoemake (IV.9) that describes a broad class of uni-
variate and multivariate curves and surfaces in terms of simple linear interpolation. 
This grand unification helps demythologize the field while simultaneously presenting 
compact formulas in terms of one underlying function. 

147 
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Oiv.1 
Identities for the Univariate and 
Bivariate Bernstein Basis 
Functions 

Ronald N. Goldman 
Department of Computer Science 
Rice University 
Houston, Texas 
rng@cs.rice.edu 

0 Introduction 0 
Bezier curves and surfaces are essential to a wide variety of applications in computer 
graphics and geometric modeling, and the Bernstein basis functions play a central role 
in the construction and analysis of these curve and surface schemes. Here we shall adopt 
the standard notation 5^(t),0 < k < n, and B'^j{s,t)^0 < i + j < n, to represent the 
univariate and bivariate Bernstein basis functions of degree n. 

Let {Pk} and {Pij} be arrays of control points. Then Bezier curves and surfaces are 
defined in the following fashion. 

Bezier Curve 

C{t) = Y,BmPk. te[OA] 
k 

Tensor Product Bezier Surface 

Pis,t) = ^Y.Bris)B^{t)Pij, s,t e [0,1] 
i 3 

Triangular Bezier Surface 

T{s,t) = Y, Bidi^^'^)PiJ^ (^'0 eA^ = {{s,t) I s,t > 0 a n d 5 + t < 1} 
0<^+j<r^ 

The purpose of this gem is to assemble in one place those identities involving the uni-
variate and bivariate Bernstein basis functions that help to facilitate the symbolic and 
numeric manipulation of Bezier curves and surfaces. This gem presents these identities 
in a consistent framework and may serve both as a compact reference and as a subject 
for further study. 

Copyright (c) 1995 by Academic Press, Inc. 
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The formulas are organized into twenty-five categories. In general, each category 
begins with the formulas for the univariate bases and then lists the corresponding 
formulas for the bivariate bases, though in some cases no direct univariate (xvii) or 
bivariate (xi) analogues exist. 

Currently these identities are widely scattered throughout the literature. For all of 
the more complicated identities, citations have been provided where proofs of these 
formulas or analogous formulas may be found. However, some of the simpler identities 
are so well known or so easy to derive from other identities that no citation is supplied. 

0 Identities for the Bernstein Basis Functions 0 
(i) Definitions 

(a) 

Bnt) = (^y{i-tr-', o<fc< n 

n\ n\ 
kj k\{n-k)\ 

(b) 

B^j{s,t)= (.^^sH^{l-s-t)''-'-^, 0<i + j <n 

n \ n\ 

(ii) Non-negativity 

(a) 

(b) 

(iii) Symmetries 

(a) 

B^it) > 0, 0 < ^ < 1 

Bm = Bl.ki^-t) 



IV. 11dentities for the Univariate and Bivariate Bernstein Basis Functions 0 151 

(b) 

(c) 

(d) 

(iv) Corner Values 

(a) 

(b) 

(c) 

(d) 

(e) 

(v) Boundary Values 

(a) 

Brj{s,t) = Br,^_,_j{s,i~s-t) 

Bl^{s,t) = B^_i_^^^{\-s~t,t) 

Bl^{s,t) = Bl,{t,s) 

= l,k = 0 

BUl)^0,k^n 

= l^k = n 

S-,(0,0) = 0 , ( i , j ) # ( 0 , 0 ) 

= l ,(z,j) = (0,0) 

B^j{l,0)=0,{i,j)^in,0) 

= l , ( i , j ) = (n,0) 

BfjiO,l)=0,ii,j)j^iO,n) 

= l , ( i , i ) = (0,n) 
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(b) 

= Bf{t), 1 = 0 

(c) 

5r |^ . ( s , l - s ) = 0, i + j ^ n 
= Br'{s), i + j = n 

(vi) Partitions of Unity (Farin 1988) 

(a) 

(b) 

(vii) Alternating Sums 

(a) 

k 

EE^M(^*) = I 

^ ( - i ) ^ 5 , " ( i ) = ( i - 2 t r 

(b) 

j2J2{-iy+'B^jis,t) = (1 - 25 - 2tr 
i 3 

(viii) Conversion to Monomial Form (Polya and Schoenberg 1958) 

(a) 

Bl{t)/{\-tr={^^u\ u = t/{l-t) 

(b) 

Bk fc"WA"=(^)«"-', u = {i-t)/t 
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(c) 

Brj{s,t)/{1 - s - t r = ( ^ i ) ' ' ' ' ' ' ' " = ^/(^ -s-t),v = t/{l -s-t) 

(d) 

B^j{s, 1)18^ =(j^ .") w"-^-J't;^ u={l-s- t)/s, V = t/s 

(e) 

B^^jis, t)/t^ = ( . ""^y^v^-'-^, u = s/t, v = {l-s- t)/t 

(ix) Representation in Terms of Monomials (Farouki and Rajan 1988) 

(a) 

Bm= E (-i)'"'(fc)("-fc)*' 
k<j<n 

(b) 

^i:.(->*)=EE(-ir^^'^'"''0'',-)(r_^7^-)-'*'' o<k+i<n 

(x) Representation of Monomials (Farouki and Rajan 1988) 

(a) 

•^/ DTI/ 

n ̂  

(b) 

j<A:<n 

fc>U>j ( ^ 
V J. 
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(xi) Linear Independence 

(a) 

Y^ CkBl{t) = 0 <;=» Cfe = 0 for all k 
k 

(b) 

^ ^ C i j B , ^ j ( s , t ) = 0 4=^ Cij = 0, for all i,j 
i J 

(xii) Descartes' Law of Signs (Polya and Schoenberg 1958) 

(a) 

Zeros in (0,1) of < ^ CkB]^{t) > < Sign alternations of (CQ, c i , . . . , C^) 

(b) There is no known analogous formula for the bivariate Bernstein basis func-
tions. 

(xiii) Recursion (Farin 1988) 

(a) 

Bm = {^-t)B';^-\t) + tB]^zl{t) 

(b) 

Bl^{s, t) = {l-s- t)B^-\s, t) + sB^ll^is, t) + tBljl.is, t) 

(xiv) Discrete Convolution 

(a) 

{B^{t),...,Bl{t)) = {{\-t),t]*---*{{l-tlt] 

n factors 

(b) 

{BlS),...,Bl^{t)) = {{l-s~t),s,t}*---*{{l-s-t),s,t} 
' . ' 

n factors 
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(xv) Subdivision (Goldman 1982, 1983) 

(a) 

B^rt) = Yl Bhr)Bm 
i<k<n 

(b) 

(c) 

(d) 

(e) 

(f) 

5f((l-i)r + i)= E B:SkHr)Bm 
0<k<i 

k \p-\-q=i 

B^jisu, sv + t) = Y^Yl Blj-i{u, v)Bli{s, t) 
k I 

B^jitu + s,tv) = Y.Yl BUJ{U, v)Bli{s, t) 
k I 

BI^{{1 -s-t)u + s,{l-s-t)v + t)=Y.Y. ^r-t7-^(^' ̂ )̂ W(̂ ' 0 
k I 

(g) 

5 [ j ( ( l — S - t)Ul + SVi + tWi, (1 — 5 - t)u2 + SV2 + tW2) 

= EE I E Bl^^-\uuU2)BlM.V2)B[j{w^.W2) \ Bli{s,t) 
k I y a-\-c-\-e=i,b-\-d-\-f=j 

(xvi) Partial Derivatives (Farin 1988) 

(a) 

dBm/dt = n{B^Zl{t)-Br\t)} 



156 0 Curves and Surfaces 

(b) 

-^^jc'/*'=i^.j; (-i)"0)̂ »"-7w 
0<j<p 

(c) 

(d) 

(e) 

dBlj{s,t)/ds = n{Bl-l^{s,t) - B^-\s,t)} 

dB?j{s,t)/dt = n{B^-},{s,t) - B^-\s,t)} 

dP+w^jis,t)/dsPdt'^ 

_ ! _ _ ^ ^ ( _ i ) . . , . . . . (P) (^) B^:-l,is, t) 

(xvii) Directional Derivatives (Farin 1986) 

(a) 

Du{Blj{s, t)] = n{u,B^ll^{s, t) + U2B^-},{s, t) - (m + U2)Blj\s, t)) 

(b) 

D^{Bl^{s,t)] 

(D^i denotes the mth directional derivative in the direction u — (1^1,^2).) 

(xviii) Integrals (Farin 1988) 

(a) 

(b) 

0<j<fc 
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(c) 

/ ' BUr)dT ^ -^ 

Jo n-\-
(d) 

(e) 

(f) 

(g) 

(h) 

(i) 

(J) 

n+ 1 

i:sr,..,..--j:f-s^ 

^1-t B?-^^ 

/-i.»>,,M. = E - ^ 
h<i 

1-t m^'^ B^^\t) 
Jo '^ n + 1 

k>j-\-l 

k<j 

1-s R'^+l Br'is) 
Jo '̂  n + 1 

/ / Bf,.(<T,r)(iadr = ^ -^ 
(n + l)(n + 2) 
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(xix) Degree Elevation (Farin 1988) 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

l̂  + l - f c ^ n + l . 
{i-t)Bnt)= ^ ^ ^ Bi^\t) 

tBm = '^^B-xiit) 

Bm = ^^i^Br\t) + ^^B-aii^) 

^Br,M = ^^B^^\]^{s,t) 

tBT.M = f±\B-]^,{s,t) 

BU^,t) = ^^^±l-^Br;Hs,t) 

(xx) Products and Higher-Order Degree Elevation (Farouki and Rajan 1988) 

(a) 

BTit)Bm = ^i^B-nt) 
J + k, 
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(b) 

m\ n 

0<J<m 
\3 + k. 

(c) 

m \ n 

i + J^ j + 1 

m \ n 

(d) 

[i + k j + l) 

(xxi) Generating Functions 

(a) 

Y,BUt)x' = {{l-t) + txr 
k 

(b) 

J2BUt)e'y = {{l-t) + teyr 
k 

(c) 

E E ^"i(^' *)̂ '2/̂ ' = {(1 - 5 -«) + ^^ + *y}" 
i 3 

(d) 

E E BW^ t)e'-e^' = {(i-s-t) + se- + te^" 
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(xxii) Marsden Identities (Cavaretta and Micchelli 1992, Marsden 1970) 

(a) 

(b) 

{sx+ty+ir = EE(^+i)'(y+^yBUs,t) 
i J 

(xxiii) de Boor-Fix Formulas 
(de Boor and Fix 1973, Lodha and Goldman 1994, Zhao and Sun 1988) 

(a) 

(b) 

{^) E E Q 0 (n -p -QV-d ' ^ ' ^BUO,Oydsm" = 6i,uhi 
p 1 

(xxiv) Relationships between Univariate and Bivariate Basis Functions 
(Goldman and Filip 1987, Goldman 1983) 

(a) 

(b) 

(c) 

0<j<n—i 

0<i<n—j 

BUs + t)= E BTj{s,t) 
i-\-j=k 
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(d) 

(e) 

k I 

(xxv) Conversion between Bivariate and Tensor Product Bases 
(Goldman and Filip 1987, Brueckner 1980) 

(a) 

fk\ fl\fm + n-k-l 

BT{s)B-it) = E E ^'^ )^^n^ ' " ' ' ^^^^^^'^ '^ 
[ n 

(b) 

n \ (p\ (q\ (n — p\ (n — q^ 

^-Bl{s)Bf{t) 
k,l P,q 
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<> Introduction 0 
The purpose of this gem is to collect in one place those properties and identities of 
the B-spline basis functions that are most helpful for understanding and investigating 
B-spline curves and tensor product B-spline surfaces. This gem presents these identities 
in a consistent framework and may serve both as a compact reference and as a source 
for additional investigation. Further discussion and proofs of most of these identities 
can be found in general references books on splines (Bartels et al. 1987, de Boor 1978, 
Schumaker 1981). Citations are provided for some of the less common identities. 

<> Notation 0 
The A:th B-spline basis function, Nk^n{^)^ of degree n over the knot vector to, t i , . . . , t ^ 
is a piecewise polynomial of degree n with breakpoints at the knots and support in the 
interval [t/c,tjt+n-hi]- The smoothness at each knot depends on its multiplicity. Usually 
the B-spline basis functions are defined recursively, though explicit formulas in terms 
of divided differences are also known (see below). 

B-spline curves and surfaces are constructed by setting 

C{t) = EkNkAt)Pk (curves) 
S{u^v) = Yji 12j Ni,m{u)Nj^riiy)Pij (tcusor product surfaces). 

NURBS curves and surfaces are defined similarly by introducing a collection of scalar 
weights, multiplying the control points by the weights, and scaling by a denominator 
that is the sum of the weights times the basis functions. Thus, 

^^^^ _ Ek^kAt)^kPk (NURBS curves) 

S{u,v) = ~^ 1^ (tensor product NURBS surfaces). 
S p J2n 'i^P,qNp,m(u)Np,n{v) 

-'q 

1RQ 
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When there is no confusion about the location of the knots, the notation Nk^n{t) 
denotes the B-sphne basis function of degree n with support in the interval [tk, tk-\-n-\-i]' 
Otherwise, knots are made explicit: 

Nk,n{t I tk', " ' 1 ik+n+i) = the B-splinc basis function of degree n with 
breakpoints at the knots t^ , . . . , t^j+n+i and support 
in the interval [t^, tjt+n+i]-

In several formulas it is necessary to normalize by dividing each B-spline by the length 
of its support. An abbreviated (and easier to remember) notation may be used: 

Nk,n{t)/Support = Nk,ri{t)/{tk+n+l " tk)-

Finally, the notation F[xo^... ^Xn] denotes the divided difference of a function F 
evaluated at the parameters XQ, - - - ^Xn] A^ denotes the simplex 

{{vi,...,Vn+i) I vi,...,Vn+i > 0 and E^fc = 1}, and 

{x-t)l = ̂  (x - 1 ) ^ x>t 
0 x<t 

0 Algebraic Identities for B-Spline Basis Functions 0 

(i) Compact Support 

S u p p o r t {A^fc,n(0} = [tk^tk-^n+l] 

(ii) Smoothness at the Knots 

r appears /x times in the sequence tjt , . . . , ĵt+n-f i = > Nk,n{t) is (7^~^ at r 

(iii) Interpolation at the Knots 

tj-^l = • ' ' = tjj^n = > Nj^ri{tj-\-l) = 1 

(iv) Evaluation at the Knots 

^k.nV'k^j I Â:? • • • ^tk+n+l) — ^k,n-l{ik-\-j | /̂c? • • • 7 ^ fc+ j - l 5 ^/c+j+15 • • • 5^fc+n+l) 

(v) Non-negativity 
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(vi) Partition of Unity 

k 

(vii) Recursion 

,n-\-l{t) — {{t — tk)/{tk-\-n-hl ~ tk)}Nk,n{t) 

+ {{tk+n+2 - t)/{tk+n+2 " tk+l)}Nk+l,n{t) 

Nk,n-^l{t) = {t- tk)Nk,n{t)/Support + {tk+n-h2 " t)Nk-^i^ri{t)/SuppOVt 

(viii) Differentiation 

dNk^n{t)/dt = n{Nk^n-l{t)/{tk-\-n - tk) - Nk-^i^n-l{t)/{tk+n+l " ^A:-fl)} 

dNk,n{t)/dt = n{Nk,n-iit)/Support - Nk+i^n-iit)/Support} 

(ix) Integration 

^Support I Support J (^ + 1) 

^Support I Support J I n! J /c, • • •, fc+n+i 

y_oo I S u p p o r t / I S u p p o r t / ' ' * ~ r ^ (m + n + 1 ) ! / ^ ^ ^^+ 

(Here the subscripts x and ?/ denote the variable with respect to which to 
compute the divided difference.) 

(x) Linear Independence 

5 3 ^kNk,n{t) = 0 ^=^ Ck = Q for all k 
k 

(xi) Variation Diminishing Property 

Sign alternations in [tn^tm-n) of 
. k 

< Sign alternations (CQ, . . . , c^) 
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(xii) Nodes 

t = Yllitk+i + ••• + tk+n)/n]Nk,nit) 
k 

(xiii) Representation of the Monomials 

n! 
IT^*'^ = X] ] lI(*fc+<T(i) • • • *fc+(T(i)) } Nk,n{t) {cr = permutation of { 1 , . . . , n}) 

j ! (n 

(xiv) Divided Difference Formula 

Nk,n{t) -= i-ir+^tk+n+l - tk){t - X)l[tk, . . . , tk+n+l] 

M = (-ir-(*-xr,[.....,w.] 
(xv) Marsden Identity (Marsden 1970) 

k 

(xvi) de Boor-Fix Formula (de Boor and Fix 1973) 

for all r G {tk+i,tk+n) 
(xvii) Knot Insertion (Boehm 1980) 

Nk,n{t\tk, • • • , tk+n+l) = \ — \ Nk^n{t \tki- -• ,T," - tk+n) 
I ^k+n ~ '^k ) 

+ \ 7 ( ]^k+l,n{t I tk+l, . . . , r , . . . , tk+n+l) 
I f^k+n+l ~ f^k+1 J 

(xviii) Degree Elevation (Prautzsch 1984) 

Nk,n{t U/c, • • • ,tk+n+l) = 22'^k,n+l{t | ^/c, • • • ,tk+j,tk+j, • • • tA;+n+l) / (^ + 1) 
J 

(xix) Continuous Convolution Formula for Uniform B-splines 

/

CXD 

No^n-i{t-x \0,...,n)dx 
- O O 

A ô,n(̂  I 0 , . . . ,n + 1) = X[o,i] * • • • * X[o,i](^ factors) 

X[o,i] = characteristic function on [0,1] 
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0 Introduction 0 

This gem presents an algebraic solution to the rendering problem of circular arcs. These 
forms commonly arise in graphic design. For instance, well-designed typefaces may apply 
a very slight curvature on a portion of a letterform to produce a profound aesthetic 
effect-^ 

A circular arc may be represented in terms of the center and radius of its parent 
circle, plus the starting and ending angles 6st and Bend- This suggests a first-principles 
solution that generates successive points on the arc by evaluating the sine and cosine 
of a series of intermediate angles: 

X = XQ + r cos 6 with 

y ^yo + r sin(9, Ost <0 < Oend-

Clearly, this approach is computationally intensive. Moreover, the method has nu-
merical problems if the radius is large, the circle's center is remote, or the values have 
limited precision (e.g., fixed-point or even single-precision floating point). All these un-
desirable conditions arise for any arc having a very small bend, as its radius of curvature 
rapidly grows to infinity. 

An algebraic, vector-based approach instead subdivides the arc into two halves until 
the (inverse radius of) curvature goes to zero and a vector suffices. This suggests a recur-
sive implementation that can also terminate when a sufficient number of intermediate 
vertices have been produced (i.e., the length of the intermediate vector is very small, 
independent of curvature). This approach avoids both trigonometric operations and 
ill-conditioned formulas. The method is derived from related work (Karow 1987) based 
upon a suggestion. Both the expressions and an error analysis are presented below. 

^Hermann Zapf's Optima is such an example, resembling his well-known Helvetica save for a slight 
curve on otherwise vertical strokes. 
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(̂ ^O'̂ o) 

i^b'Vb) 

Figure 1. Bisecting and quad-secting the arc. 

i^^,y^) 

<> Derivation 0 

The circular arc is represented by its endpoints and the chordal deviation: 

(xo, yo, xi , yi, d). 

The sign of d is used to distinguish between the two arcs that he on either side of the 
chord that joins the endpoints (in Figure 1, d is positive). 

The bisection point of each arc is used as an endpoint for each half arc: 

Vb 

2 
J/O +J/1 ^,xr-_xo 

where 

L = yj{xi - XQY + (yi - yoY 

is the length of the chord. 
The chordal deviation d' ̂  or sagitta, of the bisected arc can be approximated by 

4 

In other words, when an arc is divided into congruent "sub-arc" halves, their chordal 
deviation is divided by about four. 

By repeated bisection of the arc, the chordal deviation is reduced with quadratic con-
vergence. The arc is then replaced with a series of sub-arcs until a tolerance is reached. 
This approximation works well for arcs subtending less than about 75°; however, this 
depends upon the resolution and arc radius (estimated by d). 
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0 Proof 0 
The ratio between the two chordal deviations can be expressed as 

d _ 1 — cos 6 

d/^ l - c o s f 

where 9 is the angle subtended by the smaller arc. Substituting cos^ = 2cos^ f ~" ^ 
yields 

d l - ( 2 c O s 2 f - l ) 1 - C 0 s 2 f /^ e\ 

-J, = ^ 9—- = 2-; r = 2 1 + cos - . 
d' l - c o s | l - c o s f V 2 J 

This is an exact representation. Expanding its reciprocal as a Taylor series about zero 
gives 

d 2(1 + cos f) 4 ^ 6 4 ^ 1 5 3 6 ^ " ^ ^ '̂ 

the desired result. 
The error in the approximation of d' can be approximated well by retaining terms 

through the quadratic, |^. The exact error is 

' l - c o s f l \ 
e^d' -d' = d 2 

1 - COS ^ 4 

0 C Implementation 0 
/* arcdivide.c - recursive circular arc subdivision (FP version) */ 

#define DMAX 0.5 /* max chordal deviation = 1/2 pixel */ 

#include <math.h> 
#include <GraphicsGems.h> 

/* Function prototype for externally defined functions */ 
void DrawLine(Point2 pO, Point2 pi); 

void 
DrawArc(Point2 pO, Point2 pi, double d) 

{ 
if (fabs(d) <= DMAX) DrawLine(pO, pi); 
else { 

Vector2 v; 
Point2 pm, pb; 
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double dSub; 

v.x = pl.x - pO.x; 
v.y = pl.y - pO.y; 

/* vector from pO to pi */ 

pm.x = pO.x + 0.5 * v.x; /* midpoint */ 
pm.y = pO.y + 0.5 * v.y; 

dSub = d / 4; 
V2Scale(&v, dSub); 

pb.x = pm.x - v.y; 
pb.y = pm.y + v.x; 

DrawArc(p 0, pb, dSub); 
DrawArc(pb, pi, dSub); 

/* subdivided vector */ 

/* bisection point */ 

/* first half arc */ 
/* second half arc */ 

0 Discussion 0 
This method quickly produces a polyhne that inscribes the circular arc. It should be 
faster than a previous gem (Musial 1991), which employs a secant-based root finder 
and trigonometric functions to maintain arc length while splitting errors between the 
outside and inside of the arc. 

A variant method (Paeth 1988) uses a nonuniform chord subdivision to locate the 
point where the sagitta has dropped to half its height. Given a chord on the inter-
val [—1... +1] along the x-axis having sagitta s, the points of half-sagitta descent lie 
at ± ^ A / 2 + s. These converge to a constant offset for s ^ 0 — a parabola then ap-
proximates the circle. This formulation adds floating-point overhead to account for the 
nonuniform subdivision. 

For IEEE-based (radix 2) floating-point representations, halving operations are al-
most free. 

A fixed-point implementation of this uniform subdivision algorithm will be faster on 
many machines than a floating-point implementation. Multiplication by two and four 
can be accomplished by a right shift, and a flxed-point square root (see page 22) can 
be used to help rescale the vector. 

Given dmax ? the maximum chordal deviation allowed by approximating a circular arc 
by a series of line segments, the number of arc bisections n can be computed as 

n = 
Mo I 

where do is the initial chordal deviation and [• • •] is the ceiling function. This fact can 
be used to write a faster implementation that uses iteration instead of recursion, as 
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advocated for parametric curves in another gem (Lindgren et al. 1992) that also uses 
maximum chordal deviation as a subdivision criterion. 
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0 Introduction 0 

Approximating a parametric curve by a polygonal curve is a practical undertaking, 
involving a sampling of the parameter domain. A first-principles uniform sampling 
strategy remains the most popular. Unfortunately, it can prove very inefficient if high 
precision is required. 

This gem presents an adaptive method for sampling the domain with respect to 
local curvature. Samples concentration is in proportion to this curvature, resulting in 
a more efficient approximation—in the limit, a flat curve is approximated by merely 
two endpoints. Applications of this sampling strategy, including rasterization and arc 
length parametrization, are also discussed. 

0 Uniform Sampling 0 

Let 7: [0,1] -^ R^ describe a curve lying in d-dimensional space (typically, d < 3). To 
approximate 7, choose n equally spaced sample points 0 == ti < ti < • • • < t^ = 1, which 
define the vertices VQ^VI, ... ^Vn', where Vi = ^{U)- The challenge is to choose sample 
points ti.. .tn that induce a good approximation while keeping n small. Methods of 
uniform sampling most often choose n by trial and error (trading accuracy for efficiency), 
though automated heuristic tests are available (Lindgren et al. 1992). 

0 Adaptive Sampling 0 

Ideally, a nonuniform parametric sampling gives rise to a "uniform" vertex precision, 
leading to increased sampling density in regions of high curvature. The general method 
described here is based upon the following strategy: 
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1. Choose a criterion for refining samples. 
2. Evaluate the criterion on the interval. 
3. If the curve is almost flat in the interval, then the sample is given by its two 

extremes. 
4. Otherwise, divide the interval into two parts and recursively sample the two parts. 

This strategy is similar to using the de Casteljau algorithm for Bezier curves, stopping 
when the control polygon is almost flat. There are a number of heuristic refinement 
criteria applicable to general curves. 

Refinement Criteria 

The refinement criterion employed here, termed probing^ chooses an intermediate point 
m within the interval of consideration [a, b]. Next, it tests the three candidate vertices for 
(approximate) collinearity, that is, VaVm \\ VmVb is evaluated with Va = 7(tt), Vm = "y{m) 
and Vb = 7(6). This flatness (parallel vector) test may take a number of forms: 

• the area of the triangle VaVmVb is small; 

• the angle /.VaVmVa is close to 180°; 

• Vm lies near the chord VaVb] 

• I'̂ a — '̂ ml + I'̂ m — '̂ fel is approximately equal to \va — Vb\'', 
• the curve's tangents at 7(a), 7(m) and 7(6) are approximately parallel. 

(The last is of value when a closed-form expression for 7's derivative is available.) 
Although they are not equivalent in theory, empirical practice shows that these tests 

are equally eff"ective in locating regions of low curvature. The area criterion is the 
algorithm's method of choice, as it requires no square roots. 

Choosing the Interior Point 

The intuitive choice for the interior point m is the interval's midpoint, m = ^{a + b). 
A subtle form of sampling error, or aliasing^ arises: The probing strategy considers a 
curve "flat" throughout the interval a < t < b when a flatness test is satisfled. In fact, 
the heuristic fails should the curve undulate along the interval under consideration. The 
sinusoid curve [̂ , sin(^)] with t sampled at ZLZTT is a ready example. Here, every vertex 
Vi lies along the x-axis. In general, any deterministic probing is vulnerable to aliasing. 

Random probing along the interval avoids aliasing sampling due to such symmetries 
in 7. Since sampling near the interval's midpoint is desirable, a uniform distribution 
may be biased toward this interior. In this implementation, a uniform distribution on 
the restricted interval [0.45,0.55] is employed. Other variations may substitute Gaussian 
distributions (easily found by summing random variables, by virtue of the central limit 
theorem) or use multiple probes. Vertices having the greatest deviation may then be 
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chosen preferentially or otherwise used in a recursive evaluation of higher order (Chan-
dler 1990). In practice, the binary recursion scheme presented next provides adequate 
results. 

The Algorithm 

For the sake of efficiency, arrange the sampling so that the interior vertex used for the 
flatness test is also the point of subdivision, should recursion take place. This ensures 
that 7 is evaluated exactly once at each sample point. The pseudocode for the algorithm 
is 

sample(a, fc, va^ vb): 
m ^^ random point in [a, h] 
vm ^r~ 7(m) 
if fla.t{va, vm., vb) 

l±iie{va,vb) 
else 

sainple(a, m, va, vm.) 
sainple(m, 6, f m, vb) 

Invoking the function sample(0,1,7(0), 7(1)) initiates the procedure on the complete 
domain 0 < t < 1. The function f l a t implements one of the refinement criteria sug-
gested earlier; l i n e is the basic line-drawing operation. 

Note that this algorithm generates points in the exact order that they occur along 
the curve, as the recursive implementation performs a depth-first search of the interval 
"tree." With proper adaptation, the algorithm performs a direct rasterization of the 
curve, as when l ine(va ,vb) describes coincident pixels or the test f la t (va ,vm,vb) 
evaluates adjacent pixels. Here, (discrete) F substitutes for its continuous counterpart 7. 
The pseudocode is 

r a s t e r ( a , 6, va, vb): 
if neighbors(t'a, vb) 

iplot{va) 
else 

m <— random point in [a, b] 
vm. <r— F(m) 
ra s t e r (a , m, va, vm.) 
r a s t e r (m, 6, vm., vb) 

Invoking the function r a s t e r (0 ,1 , F(0), F(1)) initiates the procedure on the complete 
domain 0 < t < 1, though the final pixel F(l) must be plotted explicitly. Note that this 
implementation requires neither a tolerance test nor a l i n e function; recursion depth 
is determined by the display resolution. 
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0 Applications 0 
Adaptive sampling strategies may be adopted to solve problems in related fields of 
numerical integration, quadrature of explicit functions, line integration, or arc length 
parametrization. The pseudocode for computing the length of a curve is 

length(a, 6, i;a, vb): 
m <— random point in [a, b] 
vm <— 7(m) 
if flact{va^vm,vb) 

return \vb — va\ 
else 

return length(a, m, va^ vm) + length(m, 6, vm^ vb) 

Functions may also be evaluated based upon methods of binary descent. The arc 
length parametrization of a curve locates the parameter value t having the correspond-
ing vertex Vt at a desired length along a curve. This calculation is of value in digital 
animation (Guenter and Parent 1990). 

Finally, polygonal lines digitized either manually or automatically (e.g., using an 
image edge detection algorithm) usually have a large number of vertices. Here, the 
refining criterion may be used to thin (remove) any redundant vertex Vm collinear with 
bracketing vertices I v ^ . The size of the bracketing interval can once again be computed 
in adaptive fashion using binary recursion. In this guise, an adaptive sample "running 
in reverse" rederives a method commonly employed in digital cartography (Visvalingam 
and Whyatt 1990). 

0 Implementation 0 
An implementation of the adaptive sampling method is now presented. Created for use 
with three-dimensional curves, the code is easily modified to arbitrary dimension, or 
reworked to provide direct rasterization as in the second pseudocode example. 

The data structure Point is a s t r u c t containing the parameter value t and the 
coordinates x, y, z of 7(t). It is used to ensure that 7 is never evaluated more than once 
at any point. Macros providing efficient access to this structure are also provided; these 
macros also increase program clarity. 

The code's core is the recursive sampling function sample, which calls two user-
defined functions: gamma, which computes the coordinates of the point on the curve 
corresponding to a parameter value, and l ine , which performs the line segment render-
ing. The function f l a t implements a refinement criterion based on triangle area, using 
the cross product (the user-supplied tolerance t o l is used within this code). 

The code has been written for simplicity and presentation. A production version 
passes the functions gamma, l i ne , and t o l as parameters to the top-level entry point 
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aspc, allowing generic operation. In all cases, invoking aspc(a,6) begins the adaptive 
sampling of the curve along the interval [a, b]. 

/* aspc.c -- generic adaptive sampling of parametric curves */ 

typedef struct point { double t,x,y,z; } Point; 

#define T(p) ((p)->t) 

#define X(p) ((p)->x) 
#define Y(p) ((p)->y) 
#define Z(p) ((p)->z) 

extern void gamma(Point* p); /* user supplied */ 
extern void line(Point* p, Point* q); /* user supplied */ 

static void sample(Point* p, Point* q) 

{ 
Point rr, *r=&rr; 
double t = 0.45 + 0.1 * (rand()/(double) RAND_MAX); 
T(r) = T(p) + t*(T(q)-T(p)); 
gamma(r); 
if (flat(p,q,r)) line(p,q); else { sample(p,r); sample(r,q); } 

} 

static int flat(Point* p. Point* q, Point* r) 

{ 
extern double tol; /* user supplied */ 
double xp = X(p)-X(r); double yp = Y(p)-Y(r); double zp = Z(p)-Z(r); 
double xq = X(q)-X(r); double yq = Y(q)-Y(r); double zq = Z(q)-Z(r); 
double X = yp*zq-yq*zp; 
double y = xp*zq-xq*zp; 
double z = xp*yq-xq*yp; 
return (x*x+y*y+z*z) < tol; /* |pr x qr|V2 < tol */ 

} 

void aspc(double a, double b) /* entry point */ 

{ 
Point pp, *p = &:pp; 
Point qq, *q = &qq; 
srand(time(0)); /* randomize */ 
T(p)= a; gamma(p); T(q)=b; gamma(q); /* set up */ 
sample(p,q); /* sample */ 

} 
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Fast Generation of Ellipsoids 
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0 Introduction 0 

Among the many methods for generating a polygonal approximation to an ellipse in 
standard position (of the form x^/a^ + y^/6^ = 1) (Anton 1984), the one shown in 
Figure 1 is simple and common. The idea is to subdivide the angles in plane around the 
center of the unit circle equally, forming a polygonal approximation to the unit circle, 
which is then scaled by a in the x axis, and by b in the y axis. 

Note that vertices get denser around the sharper-axis direction of the ellipse rather 
than around the smoother-axis one, which is a merit of the method. When the degree 
of approximation n is given and the approximation is to yield a symmetric polygon 
of 4 • n vertices, the whole 4 • n vertices on the unit circle need not actually be com-
puted. Only the first half of the vertices in the first quadrant need to be computed; 
the cosine and sine values corresponding to the angles i/n • 7r/2, i = 0 , 1 , . . . , [n/2\ 
are computed [Figure 1(a)]. The other half in the first quadrant are found by knowing 
that cos(7r/2 — 9) = sm9 [Figure 1(b)]. The first quadrant of the ellipse is obtained by 
scaling [Figure 1(c)], and the remaining quadrants are obtained by reflecting it in the 
X and the y axis [Figure 1(d)]. 

The idea for 2D ellipse generation is directly generalized to 3D ellipsoid generation. 
Vertices on the surface of the unit sphere are generated by subdividing the angles in 
space around the center of the unit sphere regularly, forming a polyhedral approximation 
to the unit sphere, which is then scaled appropriately in each of the x, ?/, and z axes. 
Triangular faces are also generated with vertices ordered counterclockwise when viewed 
from the outside. Ellipsoids are symmetric with respect to each of the XT/, yz, and zx 
planes. Thus, we need to compute vertices only in the first octant of the ellipsoid, and 
the vertices in the other octants can be found by reflections. In fact, as will be discussed, 
many fewer cosine and sine evaluations are made than is usually thought, even for the 
initialization of the first octant of the unit sphere. 

A regular subdivision of the angles in space around the center of the unit sphere is 
shown in Figures 2(a) and 2(b). Here, n > 1 is the degree of subdivision, and ( i , i ) , 
j = 0 ,1 , . . . , i , i = 0 ,1 , . . . , n , corresponds to the vertex with the azimuthal angle 
9 = j/i • 7r/2 and the incidence angle (f) = i/n • 7r/2 (with the convention that 0/0 = 0). 
The number of vertices and faces generated under this subdivision are l + 4 - ( l + 2 + 
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I / 

(b) (c) (d) 

Figure 1. A polygonal approximation to an ellipse (n = 7). (a) (cos ̂ , sin ^), 0 = i/n - 7r/2, / = 
0 , 1 , . . . , [n/2j. (b) The first quadrant of the unit circle, (c) The first quadrant of the ellipse, (d) A polygonal 
approximation to the ellipse, (a cos 0, bs\n9),0 = i/n • 7r/2, / = 0 , 1 , . . . , 4 • n — 1. 

+ n - l + n + n - l + --- + 2 + l) + l = 4-n2 + 2 a n d 4 - ( l + 3 + --- + 2 n 
1) • 2 = 8 • n'̂ , respectively. Incidentally, these numbers are the same as those from the 
octahedral subdivision method (Angel 1990, Koenderink 1990), which starts from the 
unit octahedron, subdivides each of the eight original triangular faces into smaller ones, 
and then projects the vertices of the subdivided triangular faces onto the surface of the 
unit sphere, forming a refined polyhedral approximation to the unit sphere. 

Specifically, three steps are involved in generating a polyhedral approximation to an 
ellipsoid using the current method, now called the angular subdivision method: 

1. Initialization of trigonometric values: Cosine and sine values are evaluated corre-
sponding to the azimuthal and the incidence angles of vertices in the first octant 
of the unit sphere. 

2. Generation of the first octant of the ellipsoid: The first octant of the unit sphere is 
scaled appropriately in each axis direction. 

3. Generation of the ellipsoid: Vertices and their unit normals are generated from 
refiections of those in the first octant, and triangular faces are generated. 

In what follows, assume that an ellipsoid is in standard position (of the form x'^/a'^ + 
y'^/b'^ + z^ jc? — 1) (Anton 1984), and that its parameters of axis length along the x, y, 
and z axes are a, 6, and c, respectively. Assume also that n > 1 denotes the degree of 
subdivision, d the azimuthal angle measured from the zx plane counterclockwise when 
viewed from the positive z axis onto the origin, and 0 the incidence angle measured 
from the positive z axis. 

0 Ellipsoid Generation 0 
Step 1: Initialization of Trigonometric Values 

The cosine and sine arguments needed for the angular subdivision method are the 
angles belonging to the vertices on the first octant of the unit sphere. Figure 2(a) is a 
projection of the first octant of the unit sphere having vertices generated by the angular 
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/ \ 
1,0—1,1 

/ \ / \ 
2,0—2,1—2,2 

/ \ / \ / \ 
3,0—3,1—3,2—3,3 

/ \ / \ / \ / \ 
4,0 — 4,1—4,2—4,3—4,4 

/ \ / \ / \ / \ / \ 
5,0—5,1—5,2—5,3—5,4—5,5 

/ \ / \ / \ / \ / \ / \ 
6,0 — 6,1—6,2—6,3—6,4 — 6,5—6,6 

/ \ / \ / \ / \ / \ / \ / \ 
7,0—7,1—7,2—7,3—7,4—7,5—7,6—7,7 

(b) 

/ \ /_\ 
/ \ / \ / \ / \ 
• 2,1 • • — 0 , 4 — • 

/ \ / \ / \ / \ / \ / \ 
• — 3 , 1 — • • • 1,9—2,9— • 

/ \ / \ / \ / \ / \ / \ / \ / \ 
• — 4 , 1 — • • • • —3,16-4,16-5,16— • 

/ \ / \ / \ / \ / \ / \ / \ / \ / \ / \ 
• — 5 , 1 — 5 , 2 — • • • • —6,25—7,25-8,25-9,25— • 

/ \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ 
• — 6 , 1 — • • • • • • —10,36-11,36-12,36-13,36-14,36— • 

/ \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ 
• 7,1—7,2—7,3— • • • • • —15,49-16,49-17,49-18,49-19,49-20,49— • 

(c) (d) 

Figure 2. The first octant of the unit sphere (n = 7). (a) Vertices on the first octant, (b) (ij), 

j = 0 , 1 , . . . , /, / = 0 , 1 , . . . , n, corresponding to the vertex with (0,4>) = (j/i • 7r/2, i/n • 7r/2). (c) 

(/,y)'s with 0 < y < /, gcd(/,y) = 1. (d) (/c, /)'s for finding the slots of (/,y)'s with gcd(/,y) > 1. 

subdivision method with n = 7. Figure 2(b) draws the relationship between the vertices 
and their azimuthal angle 9 and incidence angle (/), where 6 = j/i-7r/2 and </> = z/n-7r/2. 

A minimal set of angles for which the cosine and sine values need to be evaluated may 
now be found. First, only the azimuthal angles need to be considered, since (f) = z/n-7r/2, 
0 < z < n, is the same as ^ = j/i • 7r/2, 0 < j < i, i = n. Second, the angles when j = 0 
ov j — i are trivial and do not need real evaluations for cosine and sine values, nor do 
the angles corresponding to {h- i^h • j) for /i — 2 , . . . , [n / i j , since they are the same as 
the angle corresponding to (i, j ) . Moreover, (cos^, sin^) for 9 = {i — j)/i • 7r/2 is the 
same as (sin ^, cos ̂ ) for 9 = j/i • 7r/2. Therefore, we need to evaluate cosine and sine 
values only for the angles j/i • 7r/2, where gcd(z, j ) = 1, 1 < j < L^/2J, i = 2 , . . . ,n. 
Figure 2(c) shows those (i, j ) ' s corresponding to these angles. 

For the other (i , i) 's that are not trivial and gcd(i, j ) > 1, 1 < j < i, i = 2 , . . . , n, their 
corresponding cosine and sine values are copied from those of (i/gcd(z, j ) , 
j / gcd( i , j )) or from those of (i, i — j) in step 2. In practice, an array of l + 2H hn —1 



182 0 Curves and Surfaces 

= (n — 1) • n/2 slots for (cos0,sm0)'s corresponding to the vertices (i, j ) , 0 < j < z, 
2 < i < n is initialized (see Figure 3(a)). Figure 2(d) associates a pair (kj) to each of 
the nontrivial (2,j)'s of Figure 2(b), where k = (i — 2) - {i — l ) /2 + j — 1 and / = i^. 
Incidentally, k is the same as the index of the array of slots for (cos ̂ , sin ^), where 
6 = j/i ' 7r/2 (see Figure 3(a)). Then, the index of the slot for {h - i, /i • j ) , /i > 2 is 
{h'i-2)'{h'i- l ) /2 + /i • j - 1, or equivalently, h - k + {{h - 1) - h/2) • /. The latter 
form directly shows us that the indices for (/i • i, h- j),h > 1 are A:, 2 • fc + /, 3 • fc + 3 • Z, 
4 • fc + 6 • /, 5 • fc + 10 • /, etc. The indices advance successively by A: + /, A: + 2 • /, fc + 3 • Z, 
A: + 4 • Z, etc. That is, knowing (cos ̂ , sin ^) of the slot for (z, j ) with gcd(z, j ) = 1, the 
indices of the slots for (/i • z, h - j)^ 2 < h < [n/zj, that have the same (cos 0, sin ^) 
values are k + E^^Zlik + d'l). 

s t r u c t s l o t { f l oa t cos, s in ; enum { None, Only, Done } f l ag ; }; 

The f lag field of each slot for (z, j ) marks the status of the slot. None marks that cos 
and s in are not set yet. Only marks that they are set, but still need to be copied to 
(/i • z, /i • j ) , /i = 2 , . . . , [n/i\, and Done marks that nothing need be done. Note that the 
initialization does not need to be done for every invocation of the angular subdivision 
method; once it is initialized for some maximum degree of subdivision rimax^ no further 
initialization is necessary for any degree of subdivision n < nmax- In other words, as 
long as the degree of subdivision does not exceed rimax^ no further cosine and sine 
evaluations are necessary in generating ellipsoids. Step 1 is implemented by the routine 
e l l i p s o i d _ i n i t 0 . 

Step 2: Construction of the First Octant of the Ellipsoid 

The position (Px^Py^Pz) and the unit normal {ux^ny^Uz) of a vertex on an ellipsoid are 
computed by 

PxiO^cj)) = cos6 ' sincf)' a, 

Py{0, (j)) = sin ^ • sin (p • 6, 

Pz{0,(f)) = cosci)' c, 

nx{6^(f)) = cos9 • sin(/) • a~ \ 

ny{9,(f)) = sin^ • sine/) • 6~^, 

nz{9^(j)) — cos(/) • c~-̂ . 

Note that all the necessary cosine and sine values have been computed and stored in a 
table in step 1. Figure 3(a) shows the indices of the table [cf. Figure 2(d)]. Figure 3(b) 
shows the first octant of an ellipsoid that is to be generated in step 2. This is called 
the hase octant to avoid any confusion with the first octant of the eight octants of the 
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Figure 3. Generation of an ellipsoid {n = 4). (a) Indices of the cosine and sine table, (b) Indices of the 
base octant of the ellipsoid, (c) An approximation to the ellipsoid as generated through reflections of the 
base octant. 

ellipsoid that are to be generated from this base octant in step 3. Step 2 is implemented 
by the routine e l l ipsoid_octant( ) . 

Step 3: Generation of the Ellipsoid 

After the base octant is constructed, it is reflected through the three coordinate planes 
to produce an array of all vertices. An array of all triangular faces is also produced 
by finding all the appropriate ordered sets of three indices of the vertex array. Fig-
ure 4 shows the indices of the vertex array and the face array. Step 3 is implemented 
by both sequential and parallel means, by e l l ipsoid_seq() and e l l ipsoid_par() , 
respectively. 

0 Timing Comparisons 0 
Table 1 lists execution times for generating ellipsoids using this angular subdivision 
method. The depth column denotes the degrees of subdivision, and #v and #f the 
numbers of vertices and triangular faces generated, respectively. Execution times are 
measured in microseconds using the UNIX system call geUimeofday{3B) in the SGPs 
Onyx'^^ system with four R4400 150 MHz CPUs. Those in the init column are for step 
1, and those in the seq and par columns are for steps 2 and 3 in sequential and parallel 
means, respectively. Note again that the initialization need be done only for the largest 
degree of subdivision that will be used, once and for all, [see e l l i p s o i d _ i n i t ( ) ] . In 
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Figure 4. Indices of arrays of vertices and faces (n = 4) as viewed from the positive z axis for (a), (b) 

the first, second, third, and fourth octants, and (c), (d) the fifth, sixth, seventh, and eighth octants. 

Table 1 . Approximate timing of angular subdivision method. 
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the parallel means, the four processors in the machine are utilized by compiling only 
the e l l ipsoid_par() routine with some simple compiler directives specified in the 
code for independent loops. It could be tuned further for better performances. Those in 
the libsphere column denote the times for generating spheres using the Sphere Library 
provided in the SGI's IRIS GL^^ system. The comparisons may not be too accurate, 
however, since the internal operations of the library may not be properly counted, 
although the author tried to be quite reasonable. 

0 Conclusions 0 
An efficient angular subdivision of the unit sphere used to model ellipsoid data is de-
scribed. Unit normals for vertices are also computed accurately from their defining 
equations. A minimal number of trigonometric functions are evaluated, and parallel 
constructions may be employed. (Code for both sequential and parallel implementa-
tions is provided.) 

The initialization of the base octant (steps 1 and 2) may be done using other methods 
such as the octahedral subdivision method and then reflections (step 3) may be applied 
to change the schemes and degrees of approximation. 

An ellipsoid in nonstandard position can be modeled by an appropriate transforma-
tion of its corresponding ellipsoid in standard position. Since a sphere of radius r is an 
ellipsoid with a = b = c = r^ the method can be adjusted to model sphere's data more 
efficiently. Other objects exhibiting (eightfold) symmetry, such as quadratic surfaces 
and tori, may be modeled efficiently using methods adapting reflections, and they are 
extensions worthy of additional study. 
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0 An Efficient Implementation in C 0 

/*-< ellipsoid.h > */ 

#ifndef ellipsoid_H 
#define ellipsoid_H 

typedef struct point { float x, y, z; } point; 
typedef struct vertex { 

point p, n; /* point and unit normal */ 
} vertex; 
typedef struct face { 

int vO, vl, v2; /* indices of vertex array for a triangular face */ 
} face; 
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typedef struct object { 
int nv, nf; /* numbers of elements in v and f */ 
vertex *v; face *f; /* arrays of vertices and faces */ 

} object; 

void ellipsoid_init (int n); 
void ellipsoid_seq (object *ellipsoid, int n, float a, float b, float c), 
void ellipsoid__par (object *ellipsoid, int n, float a, float b, float c) , 

#endif /* ellipsoid_H */ 

/*-< ellipsoid.c > 

#include <stdio.h> 
#include <math.h> 
#include <malloc.h> 
#include "ellipsoid.h" 

typedef struct slot { float cos, sin; enum { None, Only, Done } flag; } slot; 

static int n_max = 0 ; /* current maximum degree of subdivision */ 
static slot *table = NULL; /* an array of slots */ 
static vertex *octant = NULL; /* the base octant of the ellipsoid */ 

#define SetP(p,px,py,pz) (p).x=(px), (p).y=(py), (p).z=(pz) 
#define SetV(v,px,py,pz,nx,ny,nz) SetP((v)->p,px,py,pz), SetP((v)->n,nx,ny,nz) 
#define SetF(f,iO,il,12) (f)->vO = iO, (f)->vl = il, (f)->v2 = 12 

/* 
// Compute the necessary cosine and sine values for generating ellipsoids 
// with the degree of subdivision n, and initialize the array table[]. 
// The largest n becomes n_max, and calls with n <= n_max return immediately. 
// The memory for the base octant is allocated to cope with any n <= n_max. 
*/ 
void ellipsoid_init (int n) 
{ 

int n_table, i, j, k, 1, m, h, d; 
slot *tO, *tl, *t2; 
float theta; 

if (n > n_max) { 
n_max = n; 
if (table) free (table); 
if ((n_table = ((n-l)*n)/2) == 0) table = NULL; 
else table = (slot *) malloc (n_table * sizeof(slot)); 
if (octant) free (octant); 
octant = (vertex *) malloc (((n+1)*(n+2))/2 * sizeof(vertex)); 

for (to = table, k = n_table; k > 0; k--, tO++) tO->flag = None; 
for (to = table, k = 0, 1 = 1, m = 3, i = 2; i<= n_max; i + +) { 

1 += m, m += 2, h = n_max / i - 1; 
for (tl = tO + i - 2, j = 1; j < i; j++, k++, t0 + +, tl--) { 

if (tO->flag == None) { 
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theta = (M_PI_2 * j) / i; 
tO->cos = tl->sin = cos (theta); 
tO->sin = tl->cos = sin (theta); 
tO->flag = tl->flag = Only; 

} 
if (tO->flag == Only) { 

tO->flag = Done; 
for (d = k+1, t2 = tO; 

t2 += d, d += 1; 

t2->cos = tO->cos; 
t2->sin = tO->sin; 
t2->flag = Done; 

} 

h > 0; -) { 

/* 
// Construct the base octant of the ellipsoid whose parameters are a, b, and c, 
// with the degree of subdivision n using the cosine and sine values in table[] 
// It is assumed that n <= n_max. 

static void ellipsoid_octant (int n, float a, float b, float c) 

{ 
int i, j; 
float a_l, b_l, c_l; 
float cos_ph, sin_ph, px, py, pz, nx, ny, nz, nznz, rnorm, tmp; 
vertex *o = octant; 
slot *table_th, *table_ph; 

a_l = 1.0 / a; b_l = 1.0 / b; c_l -
o = octant; 
table_th = table; 
table_ph = table + ((n-1)*(n-2))/2; 

1.0 / c; 

SetV (o, 0.0, 0.0, c, 0.0, 0.0, 1.0), o++; 
for (i = 1; i < n; i++, table_ph++) { 

cos_ph = table_ph->cos; 
sin__ph = table_ph->sin; 
pz = cos_ph * c; 
nz = cos_ph * c_l; 
nznz = nz * nz; 

/* i = 0, j 

px = sin__ph * a; 
nx = sin_ph * a_l; 
rnorm = 1.0 / sqrt (nx*nx + nznz); 
SetV (o, px, 0.0, pz, nx*rnorm, 0.0, 
for (j = i; --j > 0; table_th++) { 

tmp = table_th->cos * sin_ph; 
px = tmp * a; 
nx = tmp * a_l; 

/* 0 
nz*rnorm), o++; 

j = 0 */ 
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tmp = table_th->sin * sin_ph; 
py = tmp * b; 
ny = tmp * b_l; 
rnorm = 1.0 / s q r t (nx*nx + ny*ny + n z n z ) ; / * 0 < i < n , 0 < j < i * / 
SetV (o , px , py , p z , nx*rnorm, ny*rnorm, n z * r n o r m ) , o++; 

} 
py = s i n _ p h * b ; 
ny = sin_j)h * b _ l ; 
rnorm = 1.0 / sqrt (ny*ny + nznz); /* 0 < i < n, j = i */ 
SetV (o, 0.0, py, pz, 0.0, ny*rnorm, nz*rnorm), o++; 

} 
SetV (o, a, 0.0, 0.0, 1.0, 0.0, 0.0), o++; / * i = n , j = 0 * / 
for (j = i; --j > 0; table_th++) { 

tmp = table_th->cos; 
px = tmp * a; 
nx = tmp * a_l; 
tmp = table_th->sin; 
py = tmp * b; 
ny = tmp * b_l; 

rnorm = 1.0 / s q r t (nx*nx + n y * n y ) ; / * i = n , 0 < j < i * / 
SetV (o , p x , py , 0 . 0 , nx*rnorm, ny*rnorm, 0 . 0 ) , o++; 

} 
SetV (o , 0 . 0 , b , 0 . 0 , 0 . 0 , 1 .0 , 0 . 0 ) ; / * i = n , j = i */ 

/* 
// Note the following conventions in ellipsoid_seq() and ellipsoid__par(): 
// the north pole: 
// the 1st octant: 
// the 2nd octant: 
// the 3rd octant: 
// the 4th octant: 
// the 5th octant: 
// the 6th octant: 
// the 7th octant: 
// the 8th octant: 270 <= th < 360, 90 < ph <= 180, and 
// the south pole: 
*/ 

/* 
// Generate the vertices for the ellipsoid with parameters a, b, and c 
// with the degree of subdivision n, by reflecting the base octant. 
// Also generate triangular faces of the ellipsoid with vertices ordered 
// counterclockwise when viewed from the outside. 
*/ 

/* sequential version */ 
void ellipsoid_seq (object *ellipsoid, int n, float a, float b, float c) 

{ 
vertex *v, *o; 
face *f; 
int i, j, ko, kv, kw, kvO, kwO; 

0 
90 

180 
270 

0 
90 
180 
270 

< = 
< = 
< = 
< = 
< = 
< = 
< = 
< = 

th = 
th < 
th < 
th < 
th < 
th < 
th < 
th < 
th < 
th = 

0, 
90, 

180, 
270, 
360, 
90, 

180, 
270, 
360, 

0, 

0 
0 
0 
0 

90 
90 
90 
90 

ph 
< ph 
< ph 
< ph 
< ph 
< ph 
< ph 
< ph 
< ph 

ph 

= 
< = 
< = 
< = 
< = 
< = 
< = 
< = 
< = 
= 

0, 
90, 
90, 
90, 
90, 

180, 
180, 
180, 
180, 
180. 
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/* Check parameters for validity. */ 
if (n <= 0 II n_max < n || a < = 0 . 0 || b < = 0 . 0 || c<=0.0) { 

ellipsoid->nv = 0; ellipsoid->v = NULL; 
ellipsoid->nf = 0; ellipsoid->f = NULL; 

return; 

} 

/* Initialize the base octant. */ 
ellipsoid_octant (n, a, b, c); 

/* Allocate memories for vertices and faces. */ 
ellipsoid->nv = 4*n*n + 2; 
ellipsoid->nf = 8*n*n; 
ellipsoid->v = (vertex *) malloc (ellipsoid->nv * sizeof(vertex)); 
ellipsoid->f = (face *) malloc (ellipsoid->nf * sizeof(face)); 

/* Generate vertices of the ellipsoid from octant[]. */ 
V = ellipsoid->v; 
o = octant; 

#define op o->p 
#define on o->n 

SetV (v, op.x, op.y, op.z, on.x, on.y, on.z), v++; /* the north pole */ 
for (i = 0; ++i <= n;) { 

o += i; 
for (j = i; --j >= 0; o++, v++) /* 1st octant */ 

SetV (v, op.x, op.y, op.z, on.x, on.y, on.z); 
for (j = i; --j >= 0; o--, v++) /* 2nd octant */ 

SetV (v, -op.x, op.y, op.z, -on.x, on.y, on.z); 
for (j = i; --j >= 0; 0++, V++) /* 3rd octant */ 

SetV (v, -op.x, -op.y, op.z, -on.x, -on.y, on.z); 
for (j = i; --j >= 0; o--, V++) /* 4th octant */ 

SetV (v, op.x, -op.y, op.z, on.x, -on.y, on.z); 

} 
for (; --i > 1;) { 

o -= i; 
for (j = i; --j > 0; o++, v++) /* 5th octant */ 

SetV (v, op.x, op.y, -op.z, on.x, on.y, -on.z); 
for (j = i; --j > 0; o--, v++) /* 6th octant */ 

SetV (v, -op.x, op.y, -op.z, -on.x, on.y, -on.z); 
for (j = i; --j > 0; o++, v++) /* 7th octant */ 

SetV (v, -op.x, -op.y, -op.z, -on.x, -on.y, -on.z); 
for (j = i; --j > 0; o--, V++) /* 8th octant */ 

SetV (v, op.x, -op.y, -op.z, on.x, -on.y, -on.z); 

} 
o--, SetV (v, -op.x, -op.y, -op.z, -on.x, -on.y, -on.z); /* the south pole */ 

#undef op 
#undef on 

/* Generate triangular faces of the ellipsoid. */ 
f = ellipsoid->f; 
kv = 0, kw = 1; 



190 0 Curves and Surfaces 

for (i = 0; i < n; i++) { 
kvO = kv, kwO = kw; 
for (ko = 1; ko <= 3; ko++) /* the 1st, 2nd, 3rd octants */ 

for (j = i;; j--) { 
SetF (f, kv, kw, ++kw) , f++; 
if (j == 0) break; 
SetF (f, kv, kw, +H-kv) , f++; 

} 
for (j = i;; j--) { /* the 4th octant */ 

if (j == 0) { SetF (f, kvO, kw, kwO), kv++, kw++, f++; break; } 
SetF (f, kv, kw, -»-+kw) , f++; 
if (j == 1) SetF (f, kv, kw, kvO), f++; 
else SetF (f, kv, kw, ++kv), f++; 

} 
} 
for (; --i >= 0;) { 

kvO = kv, kwO = kw; 
for (ko = 5; ko <= 7; ko++) /* the 5th, 6th, 7th octants */ 

for (j = i;; j--) { 
SetF (f, kv, kw, ++kv) , f+-»-; 
if (j == 0) break; 
SetF (f, kv, kw, ++kw), f++; 

} 
for (j = i;; j--) { /* the 8th octant */ 

if (j == 0) { SetF (f, kv, kwO, kvO) , kv++, kw++, f++; break; } 
SetF (f, kv, kw, ++kv) , f++; 
if (j == 1) SetF (f, kv, kw, kwO), f++; 
else SetF (f, kv, kw, ++kw), f++; 

} 
} 

} 

/* parallel version */ 
void ellipsoid_par (object *ellipsoid, int n, float a, float b, float c) 
{ 
/* Code for this is included on on-line version of current graphics gems. */ 

} 
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Sparse Smooth Connection 
between Bezier/B-Spline Curves 
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0 Introduction 0 
Often in interactive font design, free-form sketching, and input path specification for 
graphics animation, one is faced with the problem of connecting two Bezier or B-spUne 
polynomial curves with a piecewise transition polynomial curve achieving prescribed 
continuity at the two endpoints. Furthermore, one desires the transition polynomial 
curve to have the fewest number of (sparse) pieces. This issue is addressed by first 
identifying the degrees of freedom^ needed to achieve the conditions for smoothness 
and sparseness, described below, by solving the following two problems: 

Conditions for Smooth Connection. Given two polynomials P : [a^b] -^ M and 
Q : [c^d] ^^ ]R of degree n with b < c^ find a piecewise polynomial R : [b^c] -^ M also 
of degree n, such that 

(1°) R is C^'i^ continuous in (6, c) for any integer /i with 1 < ^ < n, 
(2°) P and R join at b with C''̂ "/^! continuity for any integer fii with 1 < /^i < n, 
(3°) R and Q joint at c with C^"^^ continuity for any integer /i2 with 1 < /X2 < n. 

Conditions for Sparse (Smooth) Connection. In addition to the preceding condi-
tions (1°), (2°), and (3°), it is required that (4°) R has the fewest number of segments. 

As an example, the composite function (P, i?, Q) may be a single B-spline. It is obvious 
that there are potentially infinite ways to join any two polynomials with prescribed 
continuity. The goal here is not only to achieve a smooth join, but also to make the 
join as simple as possible. Here simple means that the polynomial R is to determined, 
as far as possible, from P and Q. 

The solution to both the foregoing problems is derived by the use of blossoming 
(Ramshaw 1989, Seidel 1989). For a given degree n polynomial F : IR -^ M^ the blossom 
of F , denoted as / = B{F), is an n-affine symmetric function satisfying f{u,... ,u) = 
F{u). A function f : M —^ IR is called afftne if it preserves affine combinations, that 

^The succesive degrees of freedom form a hierarchy and use the notation (1°) to (3°). 
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is, if / satisfies f{Yji o^i^i) = Y^i cafi^i) for all real numbers a i , . . . , a/̂ , u i , . . . , n/c G iR 
with J2i^i = ^' ^ function / : M^ -^ M is called n-affine if it is an affine function on 
each individual argument with the others held fixed. Finally, a function / : FT -^ iR is 
called symmetric if / keeps its value under any permutation of its arguments. 

0 Solution of Smooth Connections 0 

Lemma 1. Let ASn be the set of all n-affine symmetric functions, ti < • • - < tn < 
tn+i <"'< t2n. Then the map M : f e ASn -> {/(t^ t^+i , . . . , ti^ri-i)}'^=i ^ ST"^^ is 
a one to one map between ASn ci'^d JBT''^^, 

Proof: It is obvious that M is a linear map, and by M ( / ) = (0, . . . , 0 ) it can be 
proved that / = 0. In fact, by the progressive de Casteljau algorithm (Ramshaw 1989), 
/ (x i , . . . ,Xn) = 0, i.e., / = 0. Now, the only thing left to be proved is that M is 
invertible, that is, given (bi, 62 , . . . , b^+i) G iR'̂ "̂ ,̂ there exists an / G ASn^ such that 
M ( / ) =: (fei,..., 6n+i)- This f = fi can be constructed by the following progressive de 
Casteljau algorithm: 

/°() = 6i, z = l , 2 , . . . , n + l, 

fl{xi,...,Xr) = ""^^ ^—f:[~'^{xi,...,Xr-l) 

+ 7 —7 /i+1 (xi , . . . ,Xr_i) , 2 = l , 2 , . . . , n + l - r , 
^n-\-i î-f-r—1 

for r = 1 , . . . , n (see Theorem 7.1, Ramshaw 1989). O 

Lemma 2. The smooth connection conditions can always be met. 

Proof: This lemma is proved constructively as follows. 

(i) If n + 1 < /xi + /X2, then the piecewise polynomial R to be determined degenerates 
to a single segment, and R can be determined by using the Hermite interpolation 
conditions: 

R^){b) = P^\b), i - 0 , l , . . . , n - / i i , 

R^){c) = Q^'^{c), i = 0 , l , . . . , n - / i 2 . (1) 

If n + 1 = /ii +//25 the solution is unique. If n + 1 < lJ^i-\-fi2j there is no uniqueness. 
If R is of degree 2n — /ii — //2 + 1(< ^)? then we have uniqueness. 

(ii) If n + 1 > fii + 122, Equation (1) has no solution in general. Here a 5-spline 
F{x) : [a, d] -^ M is constructed such that 

F{x)\[aM = P{x), F{x)\[^^a] = Q{x), (2) 
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and R{x) = F(x)|[5c] satisfies the smootii conditions (1°), (2°), and (3°). Let 

T = (to = ' • ' = tji) < {tn-\-l = ' ' ' = ^n+/xi) < tn+fii+l ^ * * * 

^ t2n-iJL2+l < ^2n-At2-|-2 = • • • = ( t2n+l < ^2n+2 = • * • = ^871+2)7 

where tn = a, tn+i = b, t2n+\ = c, t2n+2 = d and t^+y^^+i,..., t2n-fi2+i ^^^ chosen 
so that each of them has multipUcity < // in T. Let {N^{x)}'J2,t^ ^^ ^^^ normahzed 
B-sphne bases over T, and let 

di = fi{ti^i,.,.ti-^n), >̂  = 0, l , . . . , n , 

di = / 2 ( % i , . . . t^+n), >̂  = n + 1 , . . . , 2n + 1. 

where / i = B(P)^ /2 = ^(Q) are the blossoms of P and Q, respectively. Then 
F{x) = T^^t^diNf{x) is the required B-spline (see Theorem 3.4, (Seidel 1989)). 
In fact, F{x) is C"̂ ~/̂ i and C^~^2 continuous at h and c, respectively, since b has 
multiplicity /xi and c has multiplicity /X2. Furthermore, since t^+^i+i , . . . ,t2n-AX2+i 
have multiplicity < //, f{x) is C"^~^ continuous on (6, c). Now it only remains to 
show that condition (2) is satisfied. From Theorem 3.4 (Seidel 1989), we have 

di = B{F\\a^^){U^i,..., U^n)^ ^ = 0 , 1 , . . . , n, 

di = J5(F|[c,d])(^£+i, • • •, ^^+n), ^ =- n + 1 , . . . , 2n + 1. 

Hence, 

/ l ( t^+l , . . . ,t^+n) = 5(F|[^^5])(t^+i, . . . ,t^+n), ^ = 0, 1, . . . , n , 

/2(t£+l, . . . ,t^+n) = 5(F|[c,d])(^^+l, • • -M+n), ^ = n + 1, . . . , 2n + 1. 

Since / i , /2, J5(F|[a,6]) and 5(F|[c,ci]) are in ASn^ it follows from Lemma 1 that / i 
= ^ ( i ^ l M ) , /2 = ^(F|[e,di), ^^d then P - F|j,,^],g - F|[e,d]. O 

Thus, a total of n + 1 — (/xi +112) knots are inserted in (6, c), leaving i? with at most 
n + 2 — (//I +112) pieces. Since the t^+^i+i , . . . , t2n-p,2+i knots can be arbitrarily chosen 
under the required conditions, R is not unique. 

Corollary 3. The sparse (smooth) connection conditions can always be met. 

0 The Computation of the Sparse Connection Polynomial 0 
The proof of Lemma 2 already provides a way to compute the transition polynomial 
R, Furthermore, this uses only the information that comes from P and Q and some 
inserted knots. However, the number of pieces of R may not be minimal. In order to 
get a sparse connection polynomial, the intention is to insert the least number of knots. 
As in the discussion above, there are two possible cases. 
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(i) li n + 1 < fii + ii2^ the problem is reduced to a Hermite interpolation problem as 
before. One segment is enough to connect the two given polynomials. Then the 
number of segments is minimum. Now we give a B-spline representation of the 
composite function. Let 

T = [to = ' ' ' = tn < tn-\-l = ' ' ' = ^n+/xi < ^n+fj^i+l 

= ' ' ' = tn-^fj,i+fi2 ^ tn+fii-\-fi2 + l — ' ' ' = t2n4-Mi+At2 + l ) V^) 

and {N^{x)}'^^^'~^^^ be the normalized B-spline bases over T. Then F{x) = 
^n+Mi+M2 ^^ N^(^x) is the required function, where 

de = /i(t^+i,...t^H-n), >f = 0, l , . . . , n , 
de are free, ^ = n + 1 , . . . , /ii + /i2 — 1, (4) 
di = f2{te+i,'"te+n)^ ^ = /ii + / i 2 , . . . , n + //i +/i2. 

(ii) If n + 1 > /ii + /i2, then the computation of the inserted knots proceeds as follows, 
with i increasing from 0 to n + 1 — (/ii + /X2)-

(a) Let 

Ti = {to = ' ' • = tn < tn-\-l = ' = tn-\-^i < Xi < - ' < Xi < tn-^f^i+i+l 

~ * ' * ~ mH-/xi+/Z2-h* ^ ^n-|-/xi-|-At2+^-l-l = = • • • = 62n+/xi+/i2+^-l-l/ ' V^J 

where tn = a, tn-\-i = b, tn+;xi+/x2+i = c, tn-h;xi+/̂ 2-hi+i = ^ ^^d x i , . . . ,Xi are the 
knots to be determined and satisfying the following conditions: 

b < Xj < c, /gx 
Xj has multiplicity < /i in T .̂ ^ "̂  

(b) For ^ = i + /ii + / i2 , . . . , n, the de Boor points (Seidel 1989) de are determined 
satisfying conditions from both P and Q. These double conditions leads to the 
following equations for unknowns x i , . . . , x^: 

B{P){t£^l, . . . , t n + ^ i , X i , . . . , X i , t n + / z i + i + l , . . . ,^^-hn) 

for -£ = z + //I + )U2,..., n, or 

C/^(xi, . . . , X i ) = S ( P - ( 5 ) ( t ^ + l , . . . , t n + ; i i , X i , . . . , X ^ , ^ n + / i l + ^ + l , • • • , ^^+n) = 0 

for ^ = 2 + /ii + //2, • • •, ''̂ - There are n + 1 — (i + /ii + //2) equations and i unknowns. 
The ideal cases (a unique solution is expected) are i = n + l — {i + /j,i +112) or i = 
"̂̂  ~ 2 "̂̂ ^̂  • Comparing this with the proof of Lemma 2, in which n + 1 — (/xi + /i2) 
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knots are inserted, this ideal case will reduce the number of the inserted knots to 
half. For example, if n = 3 (cubic), /xi = /i2 = 1 {C^ continuity), then i = 1. If 
Ml = M2 "= 2 (C^ continuity), then i = 0. li n = 5, fxi = /JL2 = 2 {C^ continuity), 
i = 1. If /ii = /i2 = 1 {C^ continuity), i — 2. 

Let P{x) = E]=o^j^'^ Q{^) = E]^objX^' Then B{P - Q){ui,... ,Un) -
YJj=Q{aj - hj)/{^)ajn{ui,..., Un), where (Jjn[ui, ...,Un) is the j t h n-variable el-
ementary symmetric function (Chrystal 1964). Therefore, 5^ (x i , . . . ,Xi) can be 

(£) 

writ ten as gi = S}=o ^j ^^jii^i^ • • • ? ^i)- Let aj = crji{xi^..., Xi) be the unknowns, 
j = 1, 2 , . . . , z, (To = 1. Thus, the following system of linear equations is obtained: 

(^+Ml+M2) (x+Mi+M2) 
a 

(i+jUi+/J,2) 

a 
( i+^l+/X2+l) (iH-/xi+/i2-hl) 

a 
(i+/LA 1+^2 + 1) 

Sn) An) An) 

02 

a, 

a< 

(i+/il-f/^2) 
0 

( i+/ i l+/ i2 + l) 
0 

An) 

(7) 
(c) If Equation (7) has no solution, increase i by 1, until it has a solution (it may 
have many solutions). Let [ a i , . . . ,cr^]^ be a solution of (7). Form a polynomial 
equation 

h{x) := J^i-x) 
k=0 

l-k ak = 0. (8) 

If all the roots Xj of h{x) are real, and they satisfy (6), then the required knots 
Xj are obtained. Otherwise, i is increased until the required knots are obtained. If 
(7) has many solutions, a closed form of the solution of (8) is helpful to get the 
required solution. If i < 5, the closed form of the root Xj is available. 

The case i = 0 needs separate consideration, since Equations (7) and (8) are 
degenerate. In this case gi are constants. If they are all zero, then do not insert 
knots in (6, c) and compute the de Boor points (4), but no degree of freedom is 
left. If not all gi are zero, the next i must be considered. 

Since the solution Xj's tha t satisfy condition (6) are desired. Equation (8) is 
solved for ak tha t satisfies the following necessary condition: 

b^ <ak< k = 1 ,2 , . . . , 2 . (9) 

(d) Let tn-\-fj,i-\-j = Xj for j = 1 , . . . , i. Let 

di = / i ( t £ + i , . . . t ^ + n ) , >f = 0, l , . . . , n , 

di = /2 ( t£+i , . . . t ^+n) , £ = n + 1,... ,n + fii + IJL2 + i. 

(10) 

(11) 
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Then, as in the proof of Lemma 2, the B-sphne function F{x) = T!^^o'~^^^'^' de^^i^) 
is required, where {Np{x)}^^Q^^^'^^^ are the normahzed B-sphne bases over T .̂ 

0 Pseudocode of the Algorithm 0 

Pseudocode of the preceding algorithm is presented here. Standard hbrary procedures 
for solving a linear equation and for finding the real roots of a polynomial are assumed. 

Sparse Connection Algorithm 
Input 
P, Q coefficients arrays of the polynomial P and Q in power bases. 
A, B endpoints of interval [a,b], 
C, D endpoints of interval [c,d]. 
N degree of the given polynomials. 
MUl, MU2 continuity at b and c, respectively. 
MU continuity in (b, c). 

Output 
D coefficients array of the de Boor points di. 
Knots is inserted knots in (b, c) . 
I number of inserted knots. 

1 = 0 
for j = 0 to N do 

Pa)-P(J) /(^) Q{}) = Q0)/O c(j) = P(j) - Q(j) 
endloop 
for j = 0 to 2N+MU1 + MU2 +1 do 

i f j < N t h e n T(j) =A 
else if j < N + MUl then T(j) =B 
else if j < N + MUl + MU2 then T(j) =C 
else T(j) =D 
end if 

endloop 
if AT + 1 < MUl + MU2 then 

for 1 = 0 to N+MUl + MU2 do 
for j = 1 to N do Point(j) = T(l+j) endloop 
if 1 < N then 

call EVALUATE(P, N, Point, N, Coeffout) 
D(l) = Coeffout(O) 
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else if 1 > MUl + MU2 then 
call EVALUATE(Q, N, Point, N, CoeflFout) 
D(l) = Coeffout(O) 

else D(l) are free , set to zero 
end if 

endloop 
else 

for i = 1 to N + 1 - (MUl + MU2) do 
for 1 = i + MUl + MU2 to N do 

for j = 1 to N - i do Point(j) = T(l+j) endloop 
call EVALUATE(C, N, Point, N - i , Coeffout) 
for k = 1 to i do Matrix(l - i - MUl - MU2, k - 1) = Coeffout(k) 
endloop 
Lefthand(l - i - MUl - MU2) = - CoeflFout(O) 

endloop 
call LINEARSOLVER(Matrix, Lefthand, Solution) 
call POLYSOLVER(Solution, i, Knots) 
if all Knots satisfy the condition (6) then goto L 

endloop 
L: I = i 

for j = 0 to 2N+MU1 + MU2 + i + 1 do 
if j < N then T(j) =A 
else if j < N + MUl then T(j) =B 
else if j < N + MUl + i then T(j) = Knots(j - N - MUl) 
else if j < N + MUl + MU2 + i then T(j) =C 
else T(j) = D end if 

endloop 
for 1 = 0 to N do 

for j = 1 to N do Point(j) = T(I+j) endloop 
call EVALUATE(P, N, Point, N, Coeffout) 
D(l) = Coeffout(O) 

endloop 
for 1 = N+1 to N + MUl + MU2 + i do 

for j = 1 to N do Point(j) = T(l+j) endloop 
call EVALUATE(Q, N, Point, N, Coeffout) 
D(l) = Coeffout(O) 

endloop 
end if 
finish 
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Procedure to evaluate an n-affine symmetric function 
procedure EVALUATE(Coeffin, N, Point, M, Coeffout) 
Coeffin is the input coefficients array. N — 1 is the number of coefficients. Point is the 
input evaluating points array. M is the number of evaluating points . CoefFout is the 
output coefficients array. 

for j = 0 to N do Coeffout(j) = Coeffin(j) endloop 
for k = 0 to M - 1 do 

for j == 1 to N - k do Coeffout(j-l) = CoefFout(j-l) + Point(k)*Coeffout(j) 
endloop 

endloop 
return 
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0 Introduction 0 

It is an often-used fact that the control polygon of a Bezier curve approximates the curve 
and that repeated subdivision produces a sequence of control polygons that converge 
to the curve (Farin 1988). The length of these control polygons converges to the arc 
length of the Bezier curve, and with the use of a certain convex combination of the 
length of the control polygon and the length of the chord between the endpoints of the 
segments, the convergence becomes much faster. This gem derives and implements an 
adaptive method for the calculation of the arc length based on this result. Previously, 
Gaussian quadrature has been combined with adaptive subdivision to find the arc length 
of arbitrary parametric curves (Guenter and Parent 1990). 

0 Background <> 

Given an nth-degree Bezier curve b{t) with control points Qo?Qi, • • • iQn-, define the 
lengths 

arc length: L{b) = f h'{t)dt, 
Jo 

n 

polygon length: Lp(6) = ^\Qi- Qi_i|, 

chord length: Lc{h) = |Qn - Qo|, 
with Lc{b) < L{b) < Lp{b). As suggested above, subdividing any curve takes place at 
its parametric midpoint. De Casteljau's algorithm (Farin 1988) yields 

Q^i=Qh i = 0 , . . . , n , 

Qf = i Q f - i + iQf-/, z = 0 , . . . , n - f c , fc = l , . . . , n . 

Copyright (c) 1995 by Academic Press , Inc. 
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Prom the algorithm we get the control polygon Qo' Qo' • • •' Qo ^̂ ^ ^^^ ^^^^ ^^^^ ^f ^^^ 

curve b\{t) = ^ (^H sind the control polygon QQ^ Qi~^^ • • • ? Qn ^̂ ^ ^^e second half of 

the curve b^it) = b (^ + ^tj. After k repetitions we obtain 2^ Bezier curves ftf,..., b^^: 

where bf (t) =̂  b (2-^{i - 1 + t ) ) . 
Now define 

Lj(6) = ^ L , ( 6 f ) and L^(6) = ^ L e (fc,̂ ) . 

As described previously (Gravesen 1993), this gives 

L j ( 6 ) \ L ( 6 ) and L J ( 6 ) - L(6) = 0(2-2*=), 

L^,{b)/L{b) and L,̂ (6) - L(6) = 0(2-2^). 

The length of the curve is bounded below by L^ and above by L^, so we may expect 
some combination of the two to give a better approximation. Indeed, if one defines the 
weighted averages 

n + 1 n + 1 

L (̂6) = 5:La(ftf) = ^^^cl?') + ^ ^ J W . 
i = l 

then 

L'l(h)^L{b) and L^(6) - L(6) = 0(2-^'=), 

indicating a high rate of convergence (Gravesen 1993). 

0 The Algorithms 0 

Consider evaluating the length of a curve that has already undergone partial subdivision. 
The order statistics just given indicate that as each new subdivision halves the curve, 
the related error of the length of the segment will be j ^ of the previous error. To keep the 
total number of subdivisions (which is proportional to the cost) as small as possible, do 
not subdivide the segments that have a small error. This suggests an adaptive scheme: 
Either use !/«, or, if the error is too large, subdivide the segment and calculate the 
length of the two halves. The principle is illustrated by the pseudocode in Figure 1. 
Similar use of adaptive subdivision can be found on page 173 and elsewhere (Chandler 
1990, Guenter and Parent 1990, Lindgren et al 1992). 
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BezierLength(b, eps): real 
b: record of BezierCurve; degree, control points, etc. 
eps : real; Error tolerance. 

begin 
Lp <^ polyJength(b); The length of the control polygon. 
Lc <— chord_length(b); The length of the chord. 
n <^ degree(b); The degree of b. 
err <^ error(); The error estimate. 
if err < eps then return (2*Lc+(n-l)*Lp)/(n+l); 
else begin 

bl, b2 -^ subdivide(b); The two halves of b. 
epsl, eps2 <— tolerance(); The tolerances on the two halves. 
return length(bl, epsl) + length(b2, eps2); 
end; 

end BezierLength 

Figure 1. Pseudocode for adaptive calculation of the arc length of a Bezier curve. 

The code makes use of the following functions. 

degree(b) returns the degree of the curve b. 

poly_length(b) returns the length of the control polygon of the curve b. 

chord_length(b) returns the length of the chord of the curve b. 

subdivide(b) returns the two halves of b. Presently, the point of division is always 
t = ^] exploration of other values of t might prove worthwhile. 

error() is the error estimate. The following three methods are suggested. 

1. Lp — Lc. This is in fact an error bound, but Lp — Lc = 0{2~'^^), while the 
error is 0(2""^^), so it will be a gross overestimate for small errors. 

2. {Lp — LcY' This estimate has order 0(2~^^) and hence the proper asymptotic 
behavior. 

3. Y~|Ĵ a "~ ^al- Here one assumes an error of the form c2~^^\ solving for c gives 
c = if (L^ - L^) and L = L^ - ^ (L^ - L^). This yields both an estimate of the 
absolute value of the error and an estimate of the error per se. One can then 
perform the usual "error correction," and for the length use L^ — j^{L^ — L]) 
instead of merely L^. This gives a better approximation, but the error will be 
overestimated for small error values. 
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(a) (b) 

Figure 2. (a) A cubic curve with a cusp, and (b) a curve with arc length equal to /.°. 

tolerance() is the error tolerance. Given a segment with an error tolerance 6, if sub-
division is required, then determine error tolerances ei and €2 for the two new 
segments. The simple estimate ê  = e/2 is used to control the absolute error and 
ê  = 6 is used for the relative error. 

The error estimates can be used not only when calculating the length of a Bezier 
curve, but in any situation that makes use of adaptive subdivision of Bezier curves. 

0 Empirical Tests 0 
Empirical study of the algorithms on a number of sample curves suggests that (1) a 
precision of 0.1% can be obtained by subdividing the curve into four to twelve segments 
and that (2) cubic curves need only be divided into approximately four segments to 
obtain this accuracy. 

The error estimates have been checked by comparing the given tolerance e with the 
real error err. Ideally one should have err/e ^ 1, and under no circumstances err/e ^ 1. 
As expected, the error estimate Lp — Lc is a gross overestimate, and err/e <C 1 holds 
even for moderate e, so Lp — Lc should not be used unless it is absolutely vital to have 
an error bound. 

For most curves, both {Lp — Lc)^ and | j^(I/a ~ ^a)l behave well, but practice shows 
that (Lp — Lc)^ fails when the curve has a cusp [Figure 2(a)]. Quantitative performance 
is given in Table 1. Special attention should be given to values when using error estimate 
{Lp — Lcf'^ as the factor in underestimation may be as large as forty-five. 

Consider now the curve whose control points are the corners of a square [Figure 2(b)]. 
Its length can be calculated exactly: It is half the square's perimeter. This is the same as 
L^ = {Lp-\-Lc)/2 and fools the estimate |^(L^—1/^)|. The performance of the algorithms 
for this curve is summarized in Table 2. Note that j^\L\ — L^^\ underestimates the error 
by a factor of fifteen in the worst case. 
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Table 1 . Results for the curve with the cusp. The number e is the error bound, err/e is the absolute error 

divided by the error bound, and n is the total number of subdivisions. 

error estimate L-o — Ln 

e 

err/e 

n 

0.1 

0.082 

3 

0.01 

0.049 

13 

0.001 

0.031 

47 

0.0001 
2 - 1 0 - 3 

119 

0.00001 
1 .10 -3 

445 

error estimate 

e 

err/e 

n 

0.1 

0.902 

1 

[ivp — Lc 

0.01 

0.820 

3 

)^ 
0.001 

7.138 

5 

0.0001 

6.747 

7 

0.00001 

48.805 

13 

error estimate YE\L\ — L^\ 

e 

err/e 

n 

0.1 

0.027 

3 

0.01 

0.273 

3 

0.001 

0.173 

7 

0.0001 

0.011 

19 

0.00001 
9 - 1 0 - 3 

31 

Table 2. Results for the curve with arc length equal to L°. The number e is the error bound, err/e is the 

absolute error divided by the error bound, and n is the total number of subdivisions. 

error estimate L^ — Lc 

e 

err/e 

n 

0.1 
5 •10 -4 

7 

0.01 

2 - 1 0 - ^ 

31 

0.001 
6 - 1 0 - 6 

107 

0.0001 

5 - 1 0 - 7 

255 

0.00001 
2 . 1 0 - 8 

1023 

error estimate (L^ 

e 

err/e 

n 

0.1 
8 •10 -3 

3 

error estimate T^ 
15 

e 

err/e 

n 

0.1 

0.158 

7 

0 ~ Lc) 

0.01 
5 . 1 0 - 3 

7 

0.001 

0.046 

9 

0.0001 

0.030 

15 

0.00001 

0.066 

29 
Li-LO\ 

0.01 

1.581 

7 

0.001 

15.812 

7 

0.0001 
1 .10 -3 

7 

0.00001 

3 - 1 0 - 5 

15 

For both curves (and all other tested curves) it is clear that the first estimate Lp -
forces far too many subdivisions. 

0 Implementation 0 

When calculating Lc and Lp one can replace the control points Qi with the forward dif-
ferences AQi = Qi+i — Qi. This lowers both the degree (by one) and the cost of subdivi-
sion. Instead of b(t) = E L o QiBf{t) we consider the curve nh\t) = TJlZo AQiB]'~'^{t). 
Then 

Lp = J2\^Qil 
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that is, the length of the control polygon of b is the sum of the length of the control 
vectors of nb\ and 

that is, the length of the chord of b is the length of the sum of the control vectors of 
n6'. However, added care is required during subdivision. The first half of the curve is 
merely b\{t) = b (^t\ hence bWt) == ^b' (^t) = ^b\{t), and similarly for the second 
half. Thus, when working with nb^ one should divide every control vector by two after 
each subdivision, or equivalently divide the length by two. 

0 Program Code 0 

The actual implementation makes use of the following functions: 

degree(b) as in the pseudocode. 

suin_of_length(b) replaces poly_length(b). 

length_of_sum(b) replaces chord_length(b). 

destructive_subdiv(b) replaces subdivide(b). Subdivision is most efficient if the orig-
inal control points are allowed to be overwritten, and as the code does not operate 
upon the original control points, but with the forward differences, this does no 
harm. 

DiffBezierCurve(b) returns a curve with control points equal to the forward differ-
ences of the original control points. 

FreeBezierCurve(b) frees the memory occupied by the curve b. 

Six implementations are presented on the floppy disk accompanying this volume. 
These are based on the three error estimates with two variations (relative and absolute) 
and have the name BezierLengthni;, in which n is the method number (1,2,3) and n 
is the variation r or a. 
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Quick and Simple Bezier 
Curve Drawing 

Robert D. Miller 
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0 Abstract 0 

This gem describes a simple and efficient method for drawing Bezier curves. The method 
requires neither the subdivisions nor the attendant complexity of the de Casteljau al-
gorithm (Farin 1993). Instead, calculations are reorganized to support the computation 
of factorials and integral powers, yielding a straightforward implementation. 

0 Method 0 

The general equation for a point q(t) on a Bezier curve (Mortenson 1985) is 

q(t) = pfcB/cnW, 

where 

t is the curve's parameter; 0 < t < 1, 

Pk is the kth vertex of the control polygon, 

Bk,n= f^V'=(l-i^-^ and 

The terms q, p, and B are written as vectors, indicating that they have components 
for each spatial dimension. 

Writing out the first equation gives 

Copyright (c) 1995 by Academic Press , Inc. 
All r ights of reproduct ion in any form reserved. 
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The calculations are performed in two steps. The first step (procedure BezierForm) 
evaluates P/c(^) for each spatial dimension and each fcth control vertex. Successive bi-
nomial coefficients may be evaluated in a loop body that contains two additions, one 
multipUcation, and one integer division by employing the following recurrence relation: 

To generate points along the curve, merely evaluate the remaining terms, t^{l — t)^~^^ 
as a second step (procedure BezierCurve). The implementation utilizes two loops. The 
first loop computes 

The second loop sums terms giving 

represented in the array q. 
Each loop computes successive powers using integer multiplication. The loop counter 

runs from n — 1 down to zero, forming the factors that scale (1 — t). 
The curve is evaluated using the parameter t, where 0 < t < 1. As t moves from 

zero to one, in steps of c?t, the length of the resulting curve segment is not, in general, 
proportional to dt. In other words, the curve is not traced with constant velocity as t 
changes. 

Advantages of this method are its speed and ease of implementation. These routines 
work well with higher-order curves, not just the common cubic (four-point) curve. A 
strong benefit of curves of order higher than three is that the shape of the curve may be 
modified without changing the endpoints or the tangents of the curve at those points. 

The Bezier curve may be redrawn with higher resolution simply by calling 
BezierCurve, specifying a smaller step size, as the results from BezierForm need not be 
recalculated. In practice, as within an interactive curve editor, a curve may first need to 
be drawn, modified, then redrawn in the original form to restore the background color 
(Paeth 1992). The routines described next make this an especially simple task. 

0 Code 0 

/* Quick and Simple Bezier Curve Drawing Robert D. Miller 
* This 2-D planar Bezier curve drawing software is 3-D compliant 
* redefine Point and change the commented lines as indicated. 
* / 
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#include <stdio.h> 
#define MaxCtlPoints 12 

typedef struct {float x; float y;} Point; 

/* typedef struct {float x; float y; float z 
typedef Point PtArray[99]; 
typedef Point BezArray[MaxCtlPoints]; 

/* for 2-D curves */ 
/* for 3-D space curves */ 

} Point; */ 

void BezierForin(int NumCtlPoints, PtArray p, BezArray c) 
Setup Bezier coefficient array once for each control polygon, 

int k; long n, choose; 
n= NumCtlPoints -1; 
for(k = 0; k <= n; k++) { 

if (k == 0) choose = 1; 
else if (k == 1) choose = n; 

3-D curves */ 

e l s e c h o o s e = 

C [ k ] . X = p [ k ] 

c [ k ] . y = p [ k ] 

c [ k ] . z = p [ k ] 

} ; 

c h o o s e * ( n - k + l ) / k ; 

.X * c h o o s e ; 

. y * c h o o s e ; 

. z * c h o o s e ; * / / * u s e f o r 

void BezierCurve(int NumCtlPoints, BezArray c, Point *pt, float t) 
/* Return Point pt(t), t <= 0 <= 1 from C, given the number 

of Points in control polygon. BezierForm must be called 
once for any given control polygon. */ 

{ int k, n; 
float tl, tt, u; 
BezArray b; 

n = N u m C t l P o i n t s - 1 ; i. 

b [ 0 ] . X - c [ 0 ] . x ; 

b [ 0 ] . y - c [ 0 ] . y ; 

b [ 0 ] . z = c [ 0 ] . z ; * / 

f o r ( k =1; k < = n ; k++) { 

b [ k ] . X = c [ k ] . X * u ; 

b[k].y = c[k].y *u; 
/* b[k].z = c[k].z *u 

u =u*t; 
}; 

/* for 3-D curves */ 

*/ /* for 3-D curves */ 

( * p t ) . X -
t l - 1 - t ; 
f o r ( k =n-

(*pt) 
(*pt) 

/ * (*pt) 

b [ n ] 

1; k 
. X + = 

. y + = 

. z += 

t t = t t * t l ; 
} 

. x ; 

> = 0 ; 

b [ k ] 

b [ k ] 

b [ k ] 

( * p t ) . y 

t t 

k - -

. X 

• y 
. z 

= t l 

-) { 
* t t ; 

* t t ; 

* t t ; 

b[n].y; 

/* Again, 3-D */ 
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float u; 
int k; 
PtArray pn; 
BezArray be-
Point pt; 
void main () 

{ 
p n [ 0 ] . X = 100 
p n [ l ] . X = 120 
p n [ 2 ] . X = 140 
p n [ 3 ] . X = 160 
B e z i e r F o r i n ( 4 , 

p n [ 0 ] . y = 20 
p n [ l ] . y = 40 
p n [ 2 ] . y - 25 
p n [ 3 ] . y = 20 

pn , b e ) ; 

f o r ( k =0; k <=10; k++) { 
BezierCurve(4, be, &pt, (float)k/10.0); 
printf("%3d %8.4f %8.4f\n",k, pt.x, pt.y), 

/* draw curve */ 
/* if (k = 0) MoveTo(pt.x, pt.y); 

else LineTo(pt.x, pt.y); */ 
} 
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0 Introduction 0 
Straight lines are simple curves: easy to understand, and easy to manipulate. A gen-
eralization, the multilinear form, underlies the common curves of computer graphics 
(Ramshaw 1987, Barry and Goldman 1988). This gem uses multilinearity and symme-
try to explain Lagrange polynomials, Bezier and B-spline curves, the de Casteljau and 
de Boor algorithms, and Catmull-Rom splines; and it unites all these in a single routine. 
Though space prevents it here, these methods can also be applied to other curves, to 
rectangular and triangular surface patches, and to geometric continuity. 

0 Curves from Two Points 0 
Through every pair of distinct points there is a unique line; this is an axiom of Euclidean 
geometry. But use of points and lines in computer graphics is impossible without a 
numerical representation. Points are commonly represented using (x, y, z) coordinates. 
Lines, however, may be represented in a variety of ways—Pliicker coordinates, implicit 
equations, parametric equations—depending on the task. The developments below use 
a parametric function of the form F{t)^ where t is a real-valued parameter and the 
result is a point on the line. 

Among the various forms of such a function, one is particularly convenient. Suppose 
point po has coordinates (xo^yo^zo) and point pi has coordinates (xi^yi^zi). Since 
the unique vector translating po to pi is VQI = (xi — xo.yi — yo.zi — ZQ)^ a simple 
parametric function for the line though points po sind pi is F{t) = po + ^^oi- With a 
little manipulation, this gives 

F{t) = ((1 - t)xo + txu (1 - t)yo + tyi, (1 - t)zo + tzi) 

or, more succinctly, F{t) = (1 — t)po + tpi. 
Although the above computations may seem pedantic, weighted sums of points should 

be used with caution. While adding a vector to a point—performing a translation—is 
fine, adding a point to a point is not. The vector VQI is a difference of points, pi —po = 

Copyright (c) 1995 by Academic Press, Inc. 
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(l)pi + (—l)po, a weighted sum in which the weights alone sum to 0. Any scalar multiple 
of a vector is still a vector, and it gives scaled weights that still sum to 0. So adding 
to a point any expression giving a vector must give a weighted sum of points in which 
the weights alone sum to 1. Algebraic rearrangements will not alter that fact, as the 
expression in question shows. 

Use of t = (to, ti), with to + h either 0 or 1, allows a more general line function: 

line(t;po,Pi) = bo Pi] - t 
[XQ X{ 

h/0 y\ 
L̂ o ^1 . 

to 
"xo" 
yo 

. ^ 0 . 

r 

• 
to 

L'^x J 

+ tl 
\x{ 

\v\ 
L^i. 

\toXo + t\x{ 
toyo + hVi 
toZo + tiZi_^ 

When to + h = 1, this still gives a point; but when to + ti = 0, it gives a vector. For 
convenience, define the mapping t = (1 — t, t) and the constant 6 = (—1,1). Then t = 0 
gives po; t = i gives pi; and t = t, t G [0,1] gives points in between. Clearly \me{t]po,Pi) 
gives the earlier F{t), but now t = 6 gives pi — po-

This vector result is significant, since ^i = 6 and the "line" function is linear. Thus, 
^F{t) = -^\me{t;po^pi) = line((5;po5Pi)- More generally, suppose the interval [ao,ai] 
should parameterize the line segment from po to pi. Define 

bary(t;ao,ai) = ai 
t-

-t 
ao ai - ao 

and consider f{t) = line(bary(t;ao,ai);po5Pi)- Then /(ao) = po? / (^ i ) — Pi? and 
^f{t) = lme{6;po,Pi)/{ai — ao). Of course, letting ao = 0 and ai = 1 again gives the 
previous simpler line function, F(t). 

Incidentally, the name "bary" refers to barycentric coordinates, and this entire dis-
cussion fits within the discipline of affine geometry. With minimal changes barycentric 
coordinates can describe planes instead of lines. That is a tempting digression, but it is 
time to turn to curves that bend. 

0 Curves from Three Points 0 
Starting with two points, weighted sums with a single free parameter generate a line. 
With three points, there are more interesting possibilities. Unless the points happen to 
be collinear, a line is unlikely. We will consider four options, but notice that any option 
must give a curve that lies in the plane of the three points, po, Pi, and p2-
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Polylines 

The easiest option, but the least satisfactory, is a polyhne. That is, use the hne segment 
from PQ to pi when t is between ao and ai, and use the hne segment from pi to p2 when 
t is between ai and a2. For this to make sense, necessarily ao < ai < a2- Polylines need 
only one trivial piece of new machinery: an interval selector. Binary search, comparing 
t to ai, would be a natural implementation. 

Polylines are easy, but not smooth. Technically, they have position continuity (C^), 
but not derivative continuity (C^). Other options are smoother, but if the points are 
close to each other or nearly collinear, polylines look smooth because their angles are 
not visible—a feature of great practical utility. 

One interesting subtlety shows up even in these elementary curves. Suppose the con-
trol points are collinear. Then the two pieces of the curve must lie together on a line, 
but the curve is not C^, even though the derivative of the second segment is a multiple 
of the derivative of the first segment. A picture of the curve looks perfectly smooth, but 
an object translating along the curve jerks as it crosses pi—where it abruptly changes 
speed. This situation is known as geometric continuity, and the polyline generated by 
collinear points (with pi between po and P2) is said to have G^ continuity. This simply 
means that a different parameterization of the curve (changing a2, for instance) does 
give C^ continuity. (In fact, this example has G^ continuity.) 

Smooth Interpolation 

Polylines have only C^ continuity because they abruptly change direction. To get a 
C^ curve, a smooth transition is needed. That, however, is easily accomplished with a 
doubly weighted sum built by nesting line functions. 

Consider two unrelated line segments, through po and pi in the first case, and PQ and 
Pi in the second. Now find points p and p' on each, and combine the results using the 
line function again. A smooth curve that goes through po a,t t = ao, pi at t = ai, and 
P2 at t = a2 uses this approach with a judicious choice of points and parameters. (See 
Figure 1(a).) A suitable curve definition is 

F{t) ==line(bary(^;ao,a2);line(bary(t;ao,ai);po,Pi),line(bary(^;ai,a2);pi,P2)), 

which simplifies to 

^ ^ {t-ai){t-a2) ^ {t-ao){t-a2) ^ {t - ao){t - ai) 
(ao - a i ) ( a o - a 2 ) ^ (^i - ao)(ai - a2) ^ (^2 - ao)(a2 - ai) 

This method, called divided differences, goes back hundreds of years (Dahlquist and 
Bjorck 1974). The weight functions, {t — ai){t — a2)/(ao — ai)(ao — a2) and so on, are 
Lagrange polynomials. As expected, the weight for pi is 1 when t = ai^ and 0 when 
t = aj^ j ^ i. Equal â  can be used for fitting derivatives (Hermite interpolation). 
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(a) (b) 

Figure 1. (a) Lagrange interpolation, (b) Lines between lines. 

Interpolation looks appealing at first, but experience reveals a serious drawback. Like 
a rebellious child, it tends to behave very badly when one is not looking—between the 
interpolation points. More cooperation is possible. 

Bezier Curves 

Interpolating curves use a different interval for each line of the construction. Beautiful 
simplification and better behavior come from using the same interval for all. So let every 
ti be obtained using some fixed interval [ao,ai]. 

Now again consider line segments (po^Pi) and (^0,^1). Find points p and p' at t i on 
each, then combine them using Iine(t2;p,p0- Alternatively, findPQ = lme{t2;PQ.PQ) and 
Pi = line(t2;pi,pi), ^^en use line(ti;po,y/). The result is the same either way. When 
the first segment is from po to pi and the second is from pi to ^2, an ancient theorem by 
Menelaus permits even more freedom of evaluation: t i can swap with t2 (Seidel 1991). 
The resulting function 

/ ( t i , t 2 ) = line(t2;line(ti;po,Pi),line(ti;pi,p2)), 

under the condition that t i = t2 =̂  t = (1 — t , t ) , simplifies to 

fit, t) - (1 - tfpo + 2(1 - t)tpi + t^p2. 

The function F{t) = f(t,t) is, in fact, the degree two Bezier curve determined by po, 
pi, and p2- The three weight polynomials, (1 — t)^, 2(1 — t)t, and t^, are the degree two 
Bernstein polynomials, defined for degree n as 

where (^) means the binomial coefficient n\/i\ {n — i)\. 
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Since F(0) = po and F{1) = p2^ this form of curve interpolates the end control 
points. It does not, however, go through the middle control point, pi. That requires the 
bilinear / , the polar form or blossom (Ramshaw 1987) of F, In Figure 1(b), the graph 
of a degree two blossom, the bilinear nature of / is evident from the two families of 
lines. The control points are /(0,0) = po, /(0,1) = /(l^O) = pi, and /(1,1) == p2-

Rational Curves 

Parametric polynomial curves have a major limitation: They cannot exactly describe a 
circle (or an ellipse or hyperbola). Yet these are much-needed curves, and they have a 
simple degree two implicit form. Unfortunately, implicit curves of degree at least three 
generally have no parametric form (Sederberg 1983). For example, the plane curve 
y'^ + x — x^ = 0 is clearly impossible to parameterize because it consists of two separate 
pieces. Fortunately, for degree two there is a way around the problem. Consider the 
curve with control points (1,0,1), (1,1,1), and (0,2,2), namely 

F{t) = {l-t^,2t,l + t^). 

Its perspective projection from the origin using z as depth is 

^1-f 2t \ 
F{t) = l + f2 ' l + t2 

As t varies from 0 to 1, this sweeps out the first quadrant of a unit circle^ (Paeth 
1991). Although the interval [—1,1] gives a semicircle, a full circle requires [—(X),cx)], 
which is not practical. Thus, a full circle requires two or more rational Bezier curves and 
consequently incurs some amount of parametric discontinuity. Once again, modelers get 
their desired geometric continuity, but animators are left unhappy. (The only way to 
completely satisfy animators who want steady circular motion is to use sine and cosine.) 

Because of the difficulties of manipulating 4D points (and for other reasons), rational 
curves are usually managed in a slightly different way. Ordinary 3D control points 
are supplemented by weights to control a curve in space. This makes it easy to place a 
quarter-circle perpendicular to, say, the y axis by using the points and weights (1,0,0; 1), 
(1,0,1;1), and (0,0,1; 2). The weighted point {x^y,z;w) is treated as (wx^wy^wz^w), 
and the resulting 4D curve is projected by dividing out the w component (instead of the 
z component). Notice that the 4D point {wx,wy,wz,w), from the weighted 3D point 
{x^y,z;w)^ projects to (x^y^z) for any (nonzero) w. 

The quarter-circle is still not in standard form, however. It is always possible to have 
the end weights be 1, with only the center weight varying. The standard form (in the x-
y plane) has control points (1,0,0; 1), (1,1,0; \/2/2), (0,1,0; 1). Altering just the center 
weight gives a whole family of conies (circle, ellipse, hyperbola, parabola). 

^Readers may confirm that the sum of the squares of the projected x and y components is 1. 
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0 Simple Curves from Many Points 0 
Each of these curves defined by three points has a generahzation to any number of 
points, with four points being used often, and larger numbers rarely. Polylines through 
n + 1 points, po to pn^ need n + 1 real values, ao to a^. A t in any interval [a ,̂ aij^i] is 
mapped onto a line segment from pi to Pi^i. 

Interpolating curves that take the same data can be built by overlapping larger and 
larger intervals. For example, to go from three points to four points, build the curve 
over P05 Pi? Q'Hd p2 and the curve over pi, P2, and ps, then use the interval [ao, as] to go 
between them. As before, the interior points agree, and the ends get all the weight at 
the right time. Explicitly, the four-point interpolating curve [see Figure 2(b)] is 

F{t) = line(bary(t;ao,a3); 
line(bary(t;ao,a2); 

line(bary(t;ao,ai);po,Pi), 
line(bary(t;ai,a2);pi,P2)), 

line(bary(t;ai,a3); 
line(bary(t;ai,a2);pi,P2), 
line(bary(t; a2, a3);p2,P3))) 

Bezier curves use the same points, but require only a single interval, [ao, ai] (and that 
is often implicitly [0,1]). They build up in much the same way as interpolating curves. 
For example, 

/ ( t i , t2 , t3 ) == line(t3; 
line(t2;line(ti;po,Pi),lme(ti;pi,p2)) 
line(t2;line(ti;pi,p2),line(ti;p2,P3))) 

These, plus their rational versions, are the simple possibilities. For small numbers of 
points they are fine, but for large numbers of points spline curves are better. Fortunately, 
splines can be constructed in this same fashion. And the best way to understand splines 
is to look closer at blossoms. 

0 Blossoms <> 
The blossom of a degree n polynomial function F{t) is a symmetric multilinear poly-
nomial function^ / ( t i , . . . , t^ ) . Multilinearity means that, considered as a function of 
ti , / is linear for each z, 1 < i < n. Symmetry means that / ( . . . , t^ , . . . , t j , . . . ) = 
/ ( . . . , t j , . . . , t ^ , . . . ) , for all 1 < z,j < n. Also connecting F and / is the "diagonal 
equivalence" F{t) = f{i,...,i), which, with symmetry and linearity, gives a unique 
correspondence. Since uniqueness still holds when F has degree at most n, or when / 

^For convenience, this includes the logically separate "homogenization," t \-^ i. 
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has at least n arguments, we can elevate the degree of a curve at will. For example, 
given a two-argument /2, the equivalent three-argument /s is 

/3(tl , t2,t3) = ^/2(t l , t2) + ^/2(t l , t3) + ^/2(t2,t3) 

De Casteljau Evaluation 

The Bezier curve construction given previously is called the de Casteljau algorithm 
(Farin 1993), and it springs directly from blossom properties. From the values /(0,0) 
and /(0,1) , blossom linearity leads to /(O, t), computed with the line function. Likewise, 
/(0,1) and /(1,1) give / ( t , 1), which by symmetry equals / ( I , f). Now from /(O, t) and 
f{l^t) linearity gives f{t,t)^ which by diagonal equivalence is F{t). Even the debris is 
useful: The points /(0,0), /(O, t), and / ( t , t) are the control points for the portion of the 
curve parameterized by [0,t]; and the points / ( t , f ) , / (? , ! ) , and / ( i , l ) are the control 
points for the portion of the curve parameterized by [t, 1]. 

Derivatives 

Blossoms' symmetry and linearity simplify many calculations. Derivative calculations 
are of special interest, since they are prominent in spline discussions. If fn is the blos-
som of a degree n polynomial function F , then the derivative at a, -^F{a), is just 
n/n(<5,d,d^... ,d). Linearity accounts for the 6, while symmetry accounts for the factor 
of n. The second derivative, ^ F ( a ) , substitutes a second 6 and appends a factor of 
n — 1, giving n(n — 1) /n(^, (5, a , . . . , a). Higher derivatives follow suit. Thus, with suitable 
arguments, the de Casteljau algorithm will compute derivatives as well as points. 

0 Splines 0 
Splines add polynomial smoothness to polyline seams. In fact, polylines and Bezier 
curves are both extreme members of the family of B-spline curves. B-spline curves do 
not interpolate their control points, but Catmull-Rom splines do, and Lagrange in-
terpolants can be treated as a degenerate case. Since spline curves are composed of 
multiple polynomials joined end to end, evaluation begins by localizing t to an appro-
priate interval—^just like polylines. 

B-Spline Curves 

The construction of a B-spline curve by lines reverses the pattern used for Lagrange 
interpolation. Interpolation begins with small intervals that grow by unions. B-spline 
curves begin with large intervals that shrink by intersections. The initial intervals for 
a degree n spline are n atomic intervals wide. That is, they are of the form [ak^ak-^n]-
The intervals chosen are all those that include t. 
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Figure 2. (a) De Boor algorithm, (b) Divided difference algorithm. 

Consider a degree two curve evaluated at t G [ak-\.2i(^k+s]' The initial intervals will 
be [a/e+i,a/e+3] and [afc+2,afc+4]; these are mapped onto (pfc+i,Pfc+2) and (p/e+2,P/c+3)-
This gives two new points for another line. Now map [ak-\-2^G.k+3], the intersection of 
the first two intervals, onto this segment, and evaluation is complete. A degree three 
case would expand as follows, this time for t G [ak-^s^^k+i]-

F{t) = line(bary(it;aA;+3,a/c-h4); 
line(bary(t; a/c+2, a/c+4); 

line(bary (t; a/,+i, afc+4); Pfc+i ̂  P/c+2), 
line(bary(t;afc+2,afc+5);Pfc+2,P/c+3)), 

line(bary(t; a/^+s, a/c+5); 
line (bary (t; afc+2, afc+5); :P/C+2 , P/c+3), 
line(bary(t; a^+s, a^+e); Pfc+â  Pfc+4))) 

The process for a degree four curve is depicted in Figure 2(a). This is the celebrated 
de Boor algorithm (Farin 1993). For comparison, Figure 2(b) shows interpolation. One 
important difference is that each intermediate point generated by the de Boor algorithm 
lies between the segment ends, and so the final point must lie within the region enclosed 
by the control points used. This "convex hull" property suggests the curve is well 
behaved; it is also of great benefit in geometric operations such as intersection. 

For degree n, if ak+i through ak-^n are 0 and a/c+n+i through a/c+2n are 1, the de Boor 
algorithm reduces to the de Casteljau algorithm. This validates the claim that Bezier 
curves are a special case. Alternatively, degree one B-spline curves are simply polylines. 
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Once again the Menelaus theorem apphes, and so the de Boor algorithm computes 
blossom values if different arguments are used at each step. Careful study of the al-
gorithm shows that, for any fc, Pk+i is the blossom value /(a/^+i, . . . ,aj^+ri) for any 
segment of the curve to which it contributes. This fact is of great practical benefit, 
facilitating many of the same operations we saw for Bezier curves. Probably the single 
most important operation is knot insertion. Using blossoms, it is simple to derive the 
Boehm knot insertion algorithm (Boehm 1980), which is just one de Boor step. 

Since the de Boor algorithm computes blossom values, it also computes derivatives. 
This makes it easy to compare adjacent curve segments and prove that degree n B-
spline curves are C^~^ smooth: The two polynomials meeting at ak have all but one 
control point in common, and so give the same result for all blossom values of the form 
/ (a /e , t i , t2 , . . . , t r i- i) . Thus, their first n — 1 derivatives agree, as claimed. 

Use of weighted control points and projection gives non-uniform rational B-spline 
curves (NURBS). Repeating the control points (and a little more) leads to periodic 
B-spline curves, which are closed and continuous (Farin 1993). 

Catmull-Rom Splines 

Finally, consider Catmull-Rom splines. Catmull and Rom originally described a method 
for generating splines of many kinds, not just cubic C^ interpolating splines (Catmull 
and Rom 1974). Among the possibilities are interpolating splines of arbitrary smooth-
ness. Such a family is readily generated by combining Lagrange interpolation with 
B-splines. (See Figure 3.) For C^ continuity, take n Lagrange steps followed by n + 1 
de Boor steps (Barry and Goldman 1988). The first de Boor step is actually equivalent 
to another Lagrange step. Readers familiar with the C^ curves may wish to compare 
their algorithm with this one. 

0 Linear Systems <> 

Beyond the basic curve methods discussed so far lies a larger world of linear possibil-
ities. Polynomials of a given degree form a linear space (a vector space), and admit 
many different sets of basis polynomials (such as basis vectors) (de Boor 1978). This 
gives another way to look at the relationships among Bezier curves (Bernstein basis), 
interpolating curves (Lagrange basis), and standard polynomial expressions (power ba-
sis). Splines—which are a collection of polynomial pieces—also form a linear space, for 
which B-splines are a basis. Thus, by solving a linear system, it is possible to convert a 
spline in Catmull-Rom form to one in B-spline form. 

Linear systems allow many other possibilities. The foregoing degree three splines gave 
either C^ continuity with interpolation, or C^ continuity without interpolation. A linear 
system that depends on every control point can give a spline with both C^ continuity 
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Figure 3. Catmull-Rom algorithm. 

and interpolation (de Boor 1978). Unfortunately, this spline changes shape everywhere 
if any point is moved, and it requires a solution time proportional to the total number 
of control points to do so. 

A less extreme approach allows manipulation of a curve and its derivatives (and thus, 
say, curvature) at a given point (Welch and Witkin 1992). This is again a matter of 
solving a linear system relating the desired values to the control points. It is some-
times more convenient to manipulate a curve "directly" like this, moving control points 
indirectly. The linear systems involved are under determined, but there are standard 
methods (such as pseudo-inverses) to handle them. 

0 Conclusions 0 

As this gem demonstrates, linear forms unify the construction of many common curves 
(and some uncommon ones) and clarify operations on them. While special circumstances 
often allow more efficient calculations, unity and clarity are lost. Remarkably, there is 
more waiting (Farin 1993). Triangular patches can be generated using the de Casteljau 
algorithm on triangles instead of line segments. Rectangular patches can be generated 
by splining curves instead of points. (These are the "tensor product" surfaces.) And 
n-sided patches (S patches) can be generated by mating n-sided polygons with Bezier 
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simplices, the multidimensional generalization of Bezier curves and triangular patches 
(Loop and DeRose 1989). 

Blossoms, tensor products, and S patches are all examples of a more general concept. 
Complexity can be reduced by factoring one large problem into many small pieces, 
perhaps working in a higher dimension. Geometric continuity, only briefly touched upon 
here, also yields nicely to this approach (Seidel 1993). 

The code that follows will generate curves of many different flavors. Specific possibili-
ties include Lagrange interpolants, Bezier curves, B-spline curves, and C^ Cat mull-Rom 
splines. With a suitable wrapper, it can also manage rational versions of all these. 

0 Code 0 
/****** lincrv.h ******/ 
/* Ken Shoemake, 1994 */ 

#define MAXDIM 2 
typedef float Vect[MAXDIM]; 
typedef float Knot; 
typedef int Bool; 

int DialASpline(Knot t, Knot a[], Vect p[], int m, int n, Vect work[] , 
unsigned int Cn, Bool interp, Vect val); 

/****** lincrv.c ******/ 
/* Ken Shoemake, 1994 */ 

#include "lincrv.h" 

/* Perform a generic vector unary operation. */ 
#define V_Op(vdst,gets,op,vsrc,n) {register int V_i;\ 

for(V_i=(n)-l;V_i>=0;V_i--) (vdst)[V_i] gets op ((vsrc)[V_i]);} 

static void lerp(Knot t, Knot aO, Knot al, Vect pO, Vect pi, int m, Vect p) 

{ 
register Knot tO=(al-t)/(al-aO), tl=l-tO; 
register int i; 

for (i=in-l; i> = 0; i--) p[i] = tO*pO[i] + tl*pl[i]; 

} 

/* DialASpline(t,a,p,m,n,work,Cn,interp,val) computes a point val at parameter 
t on a spline with knot values a and control points p. The curve will have 
Cn continuity, and if interp is TRUE it will interpolate the control points. 
Possibilities include Langrange interpolants, Bezier curves, Catmull-Rom 
interpolating splines, and B-spline curves. Points have m coordinates, and 
n+1 of them are provided. The work array must have room for n+1 points. 

int DialASpline(Knot t. Knot a[], Vect p[], int m, int n, Vect work[], 
unsigned int Cn, Bool interp, Vect val) 
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register int i, j , k, h, lo, hi; 

if (Cn>n-1) Cn = n-1; /* Anything greater gives one polynomial */ 
for (k=0; t> a[k]; k++); /* Find enclosing knot interval */ 
for (h=k; t==a[k]; k++); /* May want to use fewer legs */ 
if (k>n) {k = n; if (h>k) h = k;} 
h = 1+Cn - (k-h); k--; 
lo = k-Cn; hi = k+l+Cn; 

if (interp) { /* Lagrange interpolation steps */ 
int drop^O; 
if (lo<0) (lo = 0; drop += Cn-k; 

if (hi-lo<Cn) {drop += Cn-hi; hi == Cn;}} 
if (hi>n) {hi = n; drop += k+l+Cn-n; 

if (hi-lo<Cn) {drop += lo-(n-Cn); lo = n-Cn;}} 
for (i=lo; i<=hi; i++) V_Op(work[i],=,,p[i],m); 
for (j=l; j<=Cn; j++) { 

for (i=lo; i<=hi-j; i++) { 
lerp(t,a[i],a[i+j],work[i],work[i+l],m,work[i]); 

} 
} 
h = 1+Cn-drop; 

} else { /* Prepare for B-spline steps */ 
if (lo<0) {h +- lo; lo = 0;} 
for (i=lo; i<=lo+h; i++) V_Op(work[i], = , ,p[i],m) ; 
if (h<0) h = 0; 

} 
for (j=0; j<h; j++) { 

int tmp = 1+Cn-j; 
for (i=h-l; i>=j; i--) { 

lerp(t,a[lo+i],a[lo+i+tmp],work[lo+i],work[lo+i+l],m,work[lo+i+1]), 
} 

} 
V_Op(val,=,,work[lo+h],m); 
return (k); 

} 

/*** lincrvtest.c ***/ 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "lincrv.h" 

#define TRUE 1 
#define FALSE 0 
#define BIG (1.0el2) 

static Vect work[4]; 
static Vect ctlPts[] = { {0,0}, {1,1}, {1,0}, {0,0}, }; 
static float *knots; 
static float bezKts[] = {0, 0, 0, 1, 1, 1, BIG}; 
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static 
static 
static 
static 
static 
static 
static 
static 
static 
static 

float lagKts[] = {0.00, 0.25, 0.75, 1 
float catKts[] = {-1, 0, 1, 2, BIG}; 
float bspKts[] = {-2, -1, 0, 1, 2, 3, 
int m = MAXDIM; 
int n = 3; 
int Cn = 1; 
Bool interp = FALSE; 
Vect val = (0.84375, 0.0}; 
float t = 0; 
int eh = 0; 

.00, BIG}; 

BIG}; 

enum Flavor{PLY, LAG, BEZ, CAT, BSP, NFLAVORS}; 
char fnames[][4] = {"PLY", "LAG", "BEZ", "CAT", "BSP"}; 

void main(void) 

{ 
int i, j, k; 
int flavor = PLY; 

lagKts; interp 
lagKts; interp 

for (flavor=0; flavor<NFLAVORS; flavor++) 
switch (flavor) { 
case PLY: knots 
case LAG: knots 
case BEZ: knots = bezKts; interp = 
case CAT: knots = catKts; interp = 
case BSP: knots = bspKts; interp = 
default: knots = bspKts; interp = 
} 
printf("Flavor %s: interp=%d, Cn=%d\n 
for (t=0.0; t<=1.0; t+=0.125) { 

eh = DialASpline(t 
printf("(%6.3f) ", t) 
for (i=0; i<MAXDIM 

} 

{ 

TRUE; 
TRUE; 
FALSE; 
TRUE; 
FALSE; 

Cn 
Cn 
Cn 
Cn 
Cn 

0; 
2; 
2; 
1; 
2; 
0; 

break 
break 
break 
break 
break 
break 

knots, ctlPts, 

i++) printf("%9.6f 

FALSE; Cn 

fnames[flavor],interp,Cn); 

i, n, work, Cn, interp, val) , 

val[i]); printf("\n"); 
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Ray Tracing and 
Radiosity 

The gems in this section describe methods of ray tracing and radiosity. While a few 
entries could be classified equally well under either computational geometry or modeling, 
these gems have all been crafted with higher-speed photorealistic rendering in mind. 

In the first gem (V.l), Shene generalizes his previous cylindrical intersection test gem 
to include cones. (A cylinder is a cone with its apex at infinity.) Schlick (V.2) examines 
the mathematical and computational pros and cons of ray tracing a surface described 
by quadrangle tessellation versus the traditional triangular mesh. Quadrangles clearly 
have merit and application. Moller (V.3) presents a set of object-scan line intersection 
heuristics and their related equations. These are easily retrofitted to most ray tracing 
software and provide for generous speed-ups. Leipelt (V.4) fully derives the equations 
of a ray intersecting a sphere swept through space along an arbitrary parametric curve 
and having a modulated radius. (This class of objects is truly tubular to the max.) 
Marton (V.5) provides a welcome and extensive treatment of Voronoi diagrams. To 
better spatially classify objects for faster ray intersection tests, the code implementation 
is provided as a fully general and freestanding work. Zimmerman (V.6) derives an 
radiosity illumination model in which cylindrical lamps replace a point sources, allowing 
added photorealism while only slightly increasing the computational load for a constant 
number of fixed sources. Finally, Feda (V.7) introduces directional light to intermediate 
radiosity. This provides an added degree of photorealism, as seen in the gem's related 
color plates. 
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Ov.1 
Computing the Intersection of a 
Line and a Cone 

Ching-Kuang Shene 
Northern Michigan University 
shene@nmu.edu 

0 Introduction 0 

Computing the intersection of a line and an object is a common operation in computer 
graphics, for example, when ray tracing. Computation of the intersection of a line and 
a cylinder has been treated in previous gems (Cychosz and Waggenspack 1994, Shene 
1994). This gem extends the latter work by computing the intersection of a line and a 
cone through geometric means. 

0 Definitions 0 

The notation and defining formulas are presented for three geometric objects: 

• £(B,d): the line defined by base point B and direction vector^ d. 

• ^ ( B , n): the plane defined by base point B and normal vector n. 

• C ( V , V , Q ; ) : the cone defined by vertex V, axis direction v, and cone angle a. 

In these definitions, bold-face roman type indicates a vector quantity. Moreover, upper 
(lower)-case vectors are position (direction) vectors. Position vectors are sometimes 
referred to as points. Therefore, P and P are equivalent. The normalized cross product 
u (g) V = u X v / | | u X v| | is also employed. 

0 Problem Statement 0 

Given a test line ^(D,d) and cone C(V,v ,a ) , determine the point of intersection by 
computing a t such that point D + M lies on C(V, v , a ) or show that no intersection 
exists. 

^In this exposition, | |d|| = 1 holds for any direction vector d. 

Copyright © 1995 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 

^ ^ _ IBM ISBN 0-12-543455-3 
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(a) (b) 

Figure 1. The normal vector n of plane V. 

0 The Algorithm 0 

If V G ̂ , the intersection point is V. Therefore, in what follows, V ^ £ holds. 

Consider the plane V determined by V and i. Its normal vector is n = d (g) DV. 
However, if v • n > 0, n is reversed. This ensures that V lies "between" n and v 
(Figure 1). Therefore, the desired plane is 7^(V, n). Since V contains V, PPlC is either 
a point (i.e., V), or consists of one or two lines. In the following, the computation of 
inC will be reduced to the computation oi in{VnC). In other words, the intersection 
lines oiVnC will be computed and intersected with i. However, prior to the intersection 
computation, a disjoint test is needed. 

Checking for Intersection 

Let 9 be the angle between v and V [Figure 1(a)]. By trichotomy exactly one of the 
following conditions is true: 

• e > a:VnC isV, and ^ H C is empty. 

• 6 = a: VnC is the tangent line of V and C, and £nC consists of at most one point. 

• 0 < a: V nC consists of two lines, and £nC consists of at most two points. 

However, using 6 directly is not as efficient as using cos ^, since the latter can be obtained 
easily as follows. Let (f) = ^ + 90° be the angle between n and v [Figure 1(b)]. Therefore, 
cos 0 = n • V and 

cos^ = cos{(f) - 90°) - sin 0 = (1 - cos^ 0)^/^ = (1 - (n • v)^)^/^. 

Since the cosine function is monotonically decreasing between 0° and 90°, cos(x) > 
cos{y) if and only ii x < y ioi 0° ^ x^y < 90°. Therefore, with cos a and cos^, 
tests 6 > a, 9 = a^ and 9 < a can be replaced by cos 9 < cos a, cos^ = cos a, and 
cos 9 > cos a, respectively. 
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(a) (b) (c) 

Figure 2. The u-v-w coordinate system and related information. 

Solving for Intersection 

Assuming cos^ > cos a, two steps are required to compute £nC: (1) computing P D C, 
and (2) computing £ H {V nC). For the first step, a well-chosen coordinate system is 
vital. Since n and v are not parallel, v x n is well defined. Let vectors u and w be 
defined as follows: 

u = V (g) n, 

w = u (8) V == (v (8) n) (g) V. 

Then u, v, and w are perpendicular to each other and form a right-handed u-v-w 
coordinate system with origin at V [Figure 2(a)]. Since n _L u and V G 'P, 7̂  contains 
the i^-axis and is perpendicular to the vw-pla,ne. 

Using this coordinate system, the direction vectors oiVnC are computed as follows. 
Consider a plane H with f = 1 in the u-v-w coordinate system. 7-̂  fl C is a circle C, 
while HnV is Si line p. Let p and C intersect at A and B. Then the intersection of V 

and C consists of two lines, VA and VB. Thus, if their direction vectors, ^i =VA and 

62 =VB^ can be found, V nC will be determined. 
To compute A and 5 , first note that their tt;-coordinates are both equal to tan^, and 

that ^AB = (tan^ a — tan^ ^)^^^, where t a n a is the radius of circle C [Figure 2(b) and 

(c)]. Since AB is parallel to the i^-axis, direction vectors ^1 =VA and 62 =VB can be 
computed as follows: 

Si=v+ (tanl9)w + (tan^ a - tan^ (9)^/^u, 

2̂ = V + (tan 9)w - (tan^ a - tan^ l9)^/^u. 
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Therefore, the intersection Unes of V and C are simply ^i(V, 6i) and ^2(V, 62). Without 
loss of generality, assume \\Si\\ = \\62\\ = 1. Note that if V is tangent to C, a = 0, and 

Finally, computing £1 D £ and 2̂ H £ yields the desired result. Determining the in-
tersection point of two coplanar lines is not difficult. If ^i and d have the same or 
opposite direction (i.e., d x ^1 == 0, or equivalently ||d • (5i|| = 1), ^1 and i are parallel to 
each other and there is no intersection point. Otherwise, there exist r and s such that 
D + rd = V + 5^1. Since g x g = 0 holds for any nonzero vector g, computing the cross 
product with 61, the preceding formula gives 

rdx6i = ( V - D ) X(5i. 

Computing the inner product with d x ^1 yields 

[ ( V - D ) x ( 5 i ] . ( d x ( 5 i ) 
r = | d X ( 5 l | | 2 

Thus, £1 n ^ is computed. Replacing ^1 with 62 yields £2 H £. 
In practice, the computation for r could be simpler. Let 7r^(x) be the zth component 

of vector x. Then 

^ ^ 7 r , ( ( V - D ) x ( 5 i ) 
7Ti{d X 61) 

where 7r̂ (d x ^1) is a nonzero component of vector d x 61. 

Remark. Since a cylinder is a cone with its vertex at infinity, the algorithm presented 
here provides another way of computing the intersection of a line and a cylinder. In this 
case, V is the plane that is parallel to the cylinder axis and contains the given line, and 
V DC degenerates to a pair of parallel lines. Consequently, the computation is reduced 
to computing the intersection points of this pair of lines with the given one. 
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0 Introduction 0 

Tessellating a surface into triangular facets for manipulation or visualization has become 
a very popular technique in computer graphics. Several reasons explain this popularity. 
First, a triangle in three-dimensional space is always convex and necessarily planar, 
whereas this does not hold for a facet having four or more vertices. Second, fast tri-
angulation techniques have been developed both for implicit surfaces and parametric 
surfaces (Preparata 1985); see, for instance several previous gems (Lischinsky 1994, 
Bloomenthal 1994, Peterson 1994). Last, triangular facets are well suited to specific 
optimization techniques proposed for ray tracing (Snyder and Barr 1987). 

In contrast, this gem presents an algorithm that computes the intersection between a 
ray and a quadrangle. It is particularly valuable for tessellating parametric surfaces, and 
may be considered as an extension to a previous gem (Badouel 1990) that employed 
a triangular decomposition. A comparison of both algorithms in terms of cost and 
precision is also presented. 

0 Triangular Facets 0 

In review, compute the precise intersection point between a ray and a triangular facet 
ABC. A point M that belongs to the ray starting from P and going in direction V is 
expressed by 

A M = A P + t V, where t > 0 is the parameter defining position. (1) 

Copyright (c) 1995 by Academic Press, Inc. 
All r ights of reproduct ion in any form reserved. 
IBM ISBN 0-12-543455-3 
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First, the intersection point with the plane of the facet must be estabhshed. Calhng 
N the normal vector of the facet, the parameter of intersection is 

A P • N . , ^, A B X AC 
^ = - ^r T̂ with N = — — - . 2) 

V - N ||AB X AC| | ^ ^ 
If M is inside the triangle, it obeys 

A M = IX AB + i; AC with 0<u<l 0 < i ; < l 0<u + v <1. (3) 

Equation (3) is a linear system of three equations (one for each coordinate), where 
one of them is redundant because it can be obtained by a linear combination of the two 
others. To avoid numerical overflows (division by a number close to zero), discard the 
equation k that corresponds to the greatest absolute component of the normal vector 
(Snyder and Barr 1987): 

ke{x,y,z} with |Nk| = max (|Nx|, |Ny|, |Nz|). (4) 

To simplify notations, introduce the operator * defined hy U^V = {U x V)k to easily 
determine the values u and v: 

A M * AC , A B * A M 
u = ~r^—rr^ and V =-—— ——-. (5) 

A B * A C A B * A C ^ ̂  
Thus, to find if M belongs to ABC, compute u and v by (5) and check if 0 < u < 1, 
0 < f < 1, and 0 < u + V < 1. The advantage of this intersection algorithm is that 
it yields directly the parameters u and '̂, which are subsequently reused to interpolate 
between points A, 5 , and C. In particular, if the three points have corresponding normal 
vectors N ^ , N g , and N c then the normal vector Njvi at point M is given by 

N M = {1-U-V)NA + ^̂  N B + VNQ. (6) 

When a surface is defined by its parametric equation, approximating facets may be fit 
by sampling the isoparametrics in u and v to obtain quadrangles ABCD [Figure 1(a)]. 
With such a tessellation, the previous intersection process can be used again by dividing 
ABCD into two triangles, ABD and CDB [Figure 1(b)]. In this way, one obtains the 
values of u and v for a point M inside the quadrangle with the following definition: 

Triangle ABD : A M = u A B + v AD, 
(7) 

Triangle CDB : CM = (1 - t̂ ) CD + (1 - v) CB. 
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Figure 1. 

(a) 1̂ (b) 

Tessellation of a parametric surface: (a) in quadrangles, (b) in triangles. 

Figure 2. Isoparametric segments on quadrangular facet for parameter u = ^, ^, and ^. (a) Quadrangle, 
(b) Triangles ABD + CDB. (c) Triangles BCA + DAC. 

Then the normal vector N]y[ may be obtained as the bihnear interpolation between 
the four points A, B, C, and D: 

N M = ( 1 - W ) ( 1 - ^ ) N A + 7i ( l - ' ? ; )NB + ^ ^ N c + ( l - ? i ) i ; N D . (8) 

There are two drawbacks to this artificial quadrangle subdivision. First, the result 
depends on the choice of the triangles, and second, the isoparametric segments of the 
quadrangle {u = constant ov v = constant) are not preserved. For instance, Figure 2(a) 
shows the quadrangle ABCD having three isoparametric segments [u = \^ u = ^ and 
?i = | ) , defining line segments nearly parallel to AD and EC. Now consider two possible 
triangulations. Splitting the quadrangle along BD and AC is shown in Figures 2(b) and 
2(c), respectively, with isoparametric segments also drawn. Note that the split neces-



K2 Ray Intersection of Tessellated Surfaces: Quadrangles versus Triangles 0 235 

sarily disturbs the orientation of these segments. This modification of the isoparametric 
directions can induce visible artifacts such as distorted texture mappings. 

This defect can be removed if all four vertices ABCD are used when computing u 
and V. This requires a method based upon quadrangular faceting, described next. 

0 Quadrangular Facets 0 

A point M belongs to a planar and convex quadrangle ABCD iff 

A M = uAB + vAD + uvAE (9) 

with A E = D C + BA = DA + B C 0 < u < l 0 < i ; < l . 

Equation (9) is a quadratic system of three equations. As before, one can be obtained 
by linear combination of the other two. By analogy to (4), eliminate the equation k 
corresponding to the largest absolute component of the normal vector. The final system 
can be solved either in terms oi u ov v: 

u^ (AB*AE) + u (AB*AD + A E * A M ) + A D * A M = 0; v= ^ ^ ~ ^ f ^ ? (10) 
A D + u A E 

^2 (AD*AE) + V (AD*AB + A E * A M ) + A B * A M = 0; u= ^ ^ ~ ^ f ^ ^ . (11) 
^ ^ ^ ^ A B + i;AE ^ ^ 

To find if M lies within the quadrangle, compute u and v by (10) or (11) and check 
that 0 < 16 < 1 and 0 < x; < 1. These parameters allow for a proper four-point 
interpolation (8), which preserves the facets' true isoparametrics [Figure 2(a)]. 

All the previous computations are valid only for planar, convex quadrangles. Thus, 
quadrangles obtained by parametric sampling might not qualify. However, the small 
size of the facets created by such a sampling process allows them to be considered both 
planar and convex. Moreover, the planar and convex condition may be directly enforced 
in certain adaptative sampling schemes (Snyder and Barr 1987, Peterson 1994), thereby 
preventing the generation of unvalid quadrangles. Empirical testing has not revealed any 
distinguishable visual artifacts when using this method. 

0 Trapezoid 0 

When ABCD defines a trapezoid (at least two opposite sides are parallel), the quadratic 
term appearing in (10) or (11) is zero, greatly simplifying computation. Without loss 
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Table 1 . Costs of each computation. 

Number of multiplications 
Number of divisions 

1 Number of square roots 

Plane intersection 

9 
1 

UV triangle 

6 
2 

UV trapezoid 

14 (10) 
2 

UV quadrangle 

17 (13) 
2 
1 1 

(n): number of multiplications if trapezoid/nontrapezoid information is stored offline. 

Table 2. 

Number of multiplications 
Number of divisions 
Number of square roots 

Global intersection costs. 
Triangle (twice) 

30 

6 

Trapezoid 

23 (19) 

3 

Quadrangle | 

26 (22) 
3 
1 1 

(n): number of multiplications if trapezoid/nontrapezoid information is stored offline. 

Table 3. Time measurements. 

Trapezoids 
Quadrangles 

Quadrangle method 

60 
76 

Triangle method 

100 
100 1 

of generality, the solution for the case^ AB \\ DC is now presented. The u coordinate is 
computed by (10), which is now a linear equation. In this trapezoid, all isoparametrics 
in V are exactly parallel to AB and CD. Therefore, v is obtained simply by dividing 
the distance from M to AB (or CD) by the distance from D to AB (or CD): 

A M * AD 
u = AB * A D + AE * A M 

and V = 
A M * (AB + DC) 
A D * (AB + DC) 

(12) 

In the source code concluding this gem, the trapezoid versus nontrapezoid test is done 
on-the-fly by the intersection routine. To speed computation, this test can be computed 
offline for each quadrangle and the result can be stored in the quadrangle structure, 
costing two bits per quadrangle but saving four multiplications per routine call. 

0 Comparison 0 

Table 1 presents the number of numerical operations for different parts of the algo-
rithm. Table 2 compares intersection costs for the three facet types. Table 3 compares 
timings between the triangle and quadrangle algorithms. Intuitively, the intersection 

^Notice t h a t a degenerated quadrangle (i.e., A = B or C = D) is only a par t icular case of a trapezoid, 
and so the same solution can be applied. 
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of a ray with a quadrangle (one quadratic equation and one linear equation) appears 
a priori more expensive than the intersection with a triangle (two linear equations). 
But in fact, for a given quadrangle ABCD, the triangle-based ray intersection must 
be computed twice (except in the few situations where the ray hits the first triangle). 
Moreover, when the quadrangle is a trapezoid, the square root is removed by optimiza-
tion and the quadrangle algorithm easily outperforms its rival. Note: to obtain maximal 
efficiency, algorithms used for time trials employed both macro-based vector functions 
and a precomputed (non)trapezoid flag. The code listed below uses the toolbox of macro 
functions defined in the present volume (page 402); on the distribution disk, there is 
also the code using the Graphics Gems library (Glassner 1990). 

Finally, note that trapezoids are frequently obtained when tessellating classical sur-
faces used in computer graphics, which include ruled surfaces, surfaces of revolution, 
extrusion surfaces (without torsion), and even large regions of many free-form surfaces. 
This makes quadrangle- and trapezoid-based ray intersection algorithms, as described 
here, the method of choice. 

0 Source Code 0 

QUAD.H : Christophe Schlick and Gilles Subrenat (15 May 1994) 

"Ray Intersection of Tessellated Surfaces : Quadrangles versus Triangles" 
in Graphics Gems V (edited by A. Paeth), Academic Press 

\* */ 

#ifndef _QUAD_ 
#define _QUAD_ 

#include <math.h> 
#include "tool.h" 
#include "real.h" 
#include "vec2.h" 
#include "vecS.h" 

/* 
** Type definitions 
*/ 
typedef struct { 

realvecS A,B,C,D; /* Vertices in counter clockwise order */ 
realvec3 Normal; /* Normal vector pointing outwards */ 

} QUAD; 

typedef struct { 
realvecS Point; /* Ray origin */ 
realvecS Vector; /* Ray direction */ 

} RAY; 
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typedef struct { 
realvecS Point; /* Intersection point */ 
real Distance; /* Distance from ray origin to intersection point */ 
real u, v; /* Parametric coordinates of the intersection point */ 

} HIT; 

** External declarations 

extern bool ray_hit_quad (RAY *, QUAD 

#endif 

HIT * ) , 

/' 
QUAD.C : Christophe Schlick and Gilles Subrenat (15 May 1994) 

"Ray Intersection of Tessellated Surfaces : Quadrangles versus Triangles" 
in Graphics Gems V (edited by A. Paeth), Academic Press 

\* */ 

#include "quad.h" 

** Macro definitions 

#define MY_TOL ((real) 0.0001) 

#define LARGEST_COMPONENT(A) (ABS((A).x) > ABS((A).y) ? \ 
(ABS((A).x) >ABS((A).z) ? 'x' : 'z') : \ 
(ABS((A).y) >ABS((A).z) ? 'y' : 'z')) 

/ • * 

** Compute parametric coordinates of the intersection point 
*/ 
static bool point_in_quad (QUAD *Quad, HIT *Hit) 

{ 
char LargestComponent; 
realvec2 A, B, C, D; 
realvec2 M; 
realvec2 AB, BC, CD, AD, AM, AE; 
real u, v; 
real a, b, c, SqrtDelta; 
bool Intersection = FALSE; 
realvec2 Vector; 

/* of the normal vector 
/* Projected vertices 

/* Projected intersection point */ 
/* Miscellanous 3D-vectors */ 
/* Parametric coordinates */ 
/* Quadratic equation */ 
/* Intersection flag */ 
/* Temporary 2D-vector */ 

/* 
Projection on the plane that is most parallel to the facet 

LargestComponent = LARGEST_COMPONENT(Quad->Normal); 

if (LargestComponent == 'x') { 
A.x = Quad->A.y; B.x = Quad->B.y; C.x = Quad->C.y; D.x = Quad->D.y; 
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M.x = Hit->Point.y; 
} 
else { 

A.x = Quad->A.x; B.x = Quad->B.x; C.x = Quad->C.x; D.x = Quad->D.x; 
M.x = Hit->Point.x; 

} 

if (LargestComponent == 'z') { 
A.y = Quad->A.y; B.y = Quad->B.y; C.y = Quad->C.y; D.y = Quad->D.y; 
M.y = Hit->Point.y; 

} 
else { 

A.y = Quad->A.z; B.y = Quad->B.z; C.y = Quad->C.z; D.y = Quad->D.z; 
M.y = Hit->Point.z; 

} 
SUB_VEC2 (AB, B, A); SUB_VEC2 (BC, C, B) , 
SUB_VEC2 (CD, D, C); SUB_VEC2 (AD, D, A), 
ADD_VEC2 (AE, CD, AB); NEG_VEC2 (AE, AE); SUB_VEC2 (AM, M, A); 

if (ZERO_TOL (DELTA_VEC2(AB, CD), MY_TOL)) /* case AB // CD */ 

{ 
SUB_VEC2 (Vector, AB, CD); 
V = DELTA_VEC2(AM, Vector) / DELTA_VEC2(AD, Vector); 
if ((V >= 0.0) && (v <= 1.0)) { 

b = DELTA_VEC2 (AB, AD) - DELTA_VEC2 (AM, AE) ; 
c = DELTA_VEC2 (AM, AD); 
u = ZERO_TOL(b, MY_TOL) ? -1.0 : c/b; 
Intersection = ((u >= 0.0) && (u <= 1.0)); 

} 
} 
else if (ZER0_T0L(DELTA_VEC2(BC, AD), MY_TOL)) /* case AD // BC */ 
{ 

ADD_VEC2 (Vector, AD, BC) ; 
u = DELTA_VEC2(AM, Vector) / DELTA_VEC2(AB, Vector); 
if ((u >= 0.0) && (u <= 1.0)) { 

b = DELTA_VEC2 (AD, AB) - DELTA_VEC2 (AM, AE) ; 
c = DELTA_VEC2 (AM, AB); 
V = ZERO_TOL(b, MY_TOL) ? -1.0 : c/b; 
Intersection = ((v >= 0.0) && (v <= 1.0)); 

} 
} 
else /* general case */ 
{ 

a = DELTA_VEC2(AB, AE); c = - DELTA_VEC2 (AM,AD); 
b = DELTA_VEC2(AB, AD) - DELTA_VEC2(AM, AE); 
a = -0.5/a; b *= a; c *= (a + a); SqrtDelta = b*b + c; 
if (SqrtDelta >= 0.0) { 

SqrtDelta = sqrt(SqrtDelta); 
u = b - SqrtDelta; 
if((u<0.0) II (u>1.0)) /*we want u between 0 and 1 */ 

u = b + SqrtDelta; 
if ((u >= 0.0) && (u <= 1.0)) { 
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V = AD.x + u * AE.x; 
if (ZERO_TOL(v, MY_TOL)) 

V = (AM.y - u * AB.y) / (AD.y + u * AE.y), 
else 

V = (AM.x - u * AB.x) / v; 
Intersection = ((v >= 0.0) && (v <= 1.0)); 

} 
} 

} 
if (Intersection) { 

Hit->u = u; 
Hit->v = v; 

} 
return (Intersection); 

} 

/* 
** Search for an intersection between a facet and a ray 
*/ 
bool hit_ray_quad (RAY *Ray, QUAD *Quad, HIT *Hit) 

{ 
realvec3 Point; 

/* if the ray is parallel to the facet, there is no intersection */ 
Hit->Distance = D0T_VEC3 (Ray->Vector, Quad->Normal); 
if (ZERO_TOL(Hit->Distance, MY_TOL)) return (FALSE); 

/* compute ray intersection with the plane of the facet */ 
SUB_VEC3 (Point, Quad->A, Ray->Point); 
Hit->Distance = D0T_VEC3 (Point, Quad->Normal) / Hit->Distance; 
MULS_VEC3 (Hit->Point, Ray->Vector, Hit->Distance); 
INC_VEC3 (Hit->Point, Ray->Point); 

/* is the point in the facet ? */ 
return (point_in_quad(Quad, Hit)); 
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Faster Ray Tracing Using 
Scanline Rejection 
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Lund, Sweden 
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0 Introduction 0 

Ray tracing speeds may be improved (Weghorst et al. 1984) by testing the primary ray 
intersections. A preprocessing phase uses a hidden surface algorithm to find a visible 
object for each pixel. This gem presents a scanline-based first-hit speedup technique. Its 
added advantage lies in its reuse of geometry-based intersection testing, making for a 
more uniform implementation. It also works with different kinds of supersampling. 

Figure 1 shows an overview of a simple viewing geometry. Assume that the picture 
is rendered one scanline at the time with increasing scanline number. Now consider all 
first-hit intersections for a particular scanline. All lie within a common plane defined by 
the eyepoint E and the scanline. Any object that does not intersect the plane cannot 
intersect a ray; all nonintersecting objects can be rejected for further intersection testing 
during the processing of the scanline. This is depicted in Figure 2. Formally, consider 
two points A and B, which are positioned on a particular scanline in space. The normal 
of the plane is then Â^ = {B - E) x {A - E). NormaUze Â s so lÂ Î = 1 and then 
ds = —Ns • E. The equation of the scanline plane (where P is any point on the plane) 
is 

Ns'P + ds = 0. (1) 

The following subsections present rejection tests for spheres, boxes, and polygons, then 
methods of extension. Each test assumes that only one ray is shot per pixel and that 
this ray passes through the center of the pixel. Each object/scanline test returns a 
status code taken from the set ^nScanline^ Off Scanline, Interval, Never Again}. Addi-
tional heuristic information may also be produced. At the conclusion of all subsections, 
the scanline-rejection technique is generalized to support methods of supersampling, 
adaptive supersampling, and stochastic sampling. 

Copyright (c) 1995 by Academic Press, Inc. 
All r ights of reproduct ion in any form reserved. 
IBM ISBN 0-12-543455-3 
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(0,0) Scanline # 0 

Projection plam 

(width-1,height-1) 

Figure 1. The viewing geometry. Horizontal lines define the scanline center; pixels lie at line crossings. 

Figure 2. The scanline plane through points A, B, and E. Sphere 2 lies on the plane and will be tested 
further; sphere 1 lies below the plane and will not be tested further. 
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Scanline 

Figure 3. The circle of intersection common to sphere and scanline plane. Its scanline projection is the 
interval of guaranteed intersection. S is the vector between two pixels on the (dotted) scanline. 

0 Spheres 0 
The sphere is the basic ray tracing object. Their simphcity makes them useful even 
for an advanced ray tracer. They are, for example, often used as bounding volumes for 
more complex objects. 

Given a sphere with center Sc and radius Sr and a scanline plane, first compute the 
shortest distance between the plane and the center of the circle. Intersection occurs 
iff this is less than or equal to the radius s^. Cost of evaluation is reduced by using 
a distance calculation described in a previous gem (Georgiades 1992). Formally, the 
signed distance t is 

t = Ns-Sc + ds. (2) 

If \t\ < Sr then the status of that sphere is OnScanline. This means that a first-hit 
test must potentially be computed for every pixel on that scanline. If |^| > ŝ  then 
no intersection occurs and the status code returned is OffScanline. This means that 
no additional first-hit tests on that scanline are required for that sphere. Since (2) 
provides a signed distance (side of plane), all first-hit tests on subsequent scanlines may 
be rejected should these scanlines further increase this distance. In this case |t| > Sr 
and Sc lies on the same side of the plane as previous scanlines, and code Never Again is 
set. 

If the sphere intersects the plane, an even more efficient rejection can be made. The 
intersection of a plane and a sphere is a circle whose projection onto the scanline is 
an interval of intersection (Figure 3). Here, code Interval is set; its endpoints are now 
determined. Given the center of the circle Cc and its radius c^, then Cr is easily computed 
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using the Pythagorean relation: s'^ = c^ + t^ and Cc = Sc — tNg. Using the notation 
in Figure 3, compute the interval of intersection by finding vectors Vi and V2. Let 
D = Cc — E and d = \D\, which gives sin^ = Cr/d and the vector H = D x Ng. Since 
\D\ = \H\, Vi and V2 can be computed as 

Vi = sm{e)H + cosi9)D =^H+Jl- (^) D, 

V2 = - sm{9)H + cos(6>)i:̂  = -^H + J l - ( ~ ) D. 

The desired interval is called [IntervaLminJntervalmax] and these values are integers 
representing pixel offsets. They are found by computing the intersection between the 
scanline in space and the lines E+PiVi and E+p2y2. The leftmost point on the scanline 
is called L, and the vector between two adjacent pixels in space is called 5, which gives 
us the scanline L + aS. ai and a2 are computed using the two systems of equations 
below: 

L + aiS = E + (3iVi (3) 

L + a2S = E + (32V2 (4) 

To reduce these systems to two dimensions, simply project the lines onto an axis-
parallel plane (the same projection normally performed on the points of a polygon 
during the point-in-polygon test), that is, throw away the coordinates that correspond 
to uiax{Ns^x^]^s,y^Ns,z)- Call the projection plane the uv-pldiue. Equation (3) reduces 
to the system below: 

Lu + aiSu = Eu + PiVi^u /r\ 
L, + aiS, = E, + fSiVi^y ^̂ ^ 

The linear system (5) has a unique solution (ai , /3i) if Vi is not parallell to S. The value 
of interest, a i , is given by 

Vlu ' {Ey — Ly) — V\y ' {Eu " Lu) / ^ x 

Q̂ i = -" ^—TF w ^ • ( 6 ) 

If Vi is exchanged for V2 in Equation (6), the solution for a2 is obtained. Since S is the 
vector between two adjacent points (a point is here the center of a pixel), ai and a2 
are the (floating-point) horizontal pixel offsets for the projection of the sphere onto the 
scanline. The endpoints of the interval are then 

Interval.min = [0^2! 5 /^\ 
Interval.max — [o^ij, 
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in which the ceiUng and floor functions produce a more conservative estimate that 
includes partially intersected pixels. These calculations guarantee that a ray outside 
the interval cannot intersect the sphere and that a ray inside must intersect the sphere. 

If a sphere is used merely as a bounding volume, then the subsidiary interval com-
putation may be omitted. (Should the test fail, all objects within the bounding volume 
are marked OffScanline. Alternatively, all objects can be marked by the common inter-
val, though this information is of less value.) A bounding volume hierarchy traversal 
is a natural and productive extension. Intersection failure of any point within the tree 
implies failure within all subtrees. 

The distance to the intersection point can also be estimated. The distance t to the 
first intersection is d — Cr <t < d ii the eyepoint is outside the sphere, else 0 <t < 2cr. 
This information can be used to further improve hierarchial traverse (Haines 1991). 

There are some special cases that are all handled in the source code. If d < Cr>, then 
the eyepoint E lies inside the sphere and the status of that sphere is set to OnScanline 
since every ray from the eye will hit the sphere. Another special case is when Vi or V2 
are parallel to S. This simple problem is not discussed here but is treated in the code. 
Note also that the implementation assumes that all spheres that are completely behind 
the eyepoint E are set to NeverAgain before the ray tracing starts. All objects with 
status NeverAgain are immediately rejected from further testing when presented to any 
of the scanline intersection routines. 

0 Polygons 0 

The test for polygons is quite similar to the test just described. Compute the signed 
distance for each vertex of the polygon. Intersection occurs iff at least one is positive 
and one negative. As before, NeverAgain is returned if all points lie on the same side 
as previous scanlines. 

If intersection occurs, an interval may again be constructed by projecting the set of 
intersections (page 386). Find adjacent vertices Vi and V^+i that differ in sign. Then 
the point of intersection is found by computing the intersection between the line 

F, + tiVi+i - V^) 

and the scanline plane. The ^-value of the intersection is 

Ns-iV^+i-ViY 

which in turn gives the point of intersection 

Pi = Vi + t{Vi+i-Vi). 
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To project Pi onto the scanline, find the intersection between the two fines 

L + aiS 

and 

The interval is then given by 

Interval.min — [min(ai)], 
IntervaLmax = [max(a^)J. (8) 

If the polygon is convex and the pixel is inside the interval, then the intersection between 
the ray and the polygon is guaranteed and the point-in-polygon test omitted, saving 
considerable execution time. If the polygon is concave, then all pixels inside the interval 
potentially lie within the polygon, while all rays lying outside the interval miss. 

Boxes are easily treated as special-case polygons using the preceeding methods. 

0 Pseudocode 0 
Given an object record that includes interval offsets, the pseudocode resembles the fol-
lowing: 

for y ^ 0, y < Ymax, y ^y + ldo 
Compute Ns and ds for scanline number y. 
for obj <^ objecto to objectm do 

FirstTest(o6j,?/); /* this sets obj.status and obj.interval.min, max */ 
endloop; 
for X <— 0, X < Xmax^ X ' ^ X + 1 do 

Ray Trace loop 
for obj ^r— objecto to objectm do 

if obj.status—=Interval then 
begin 

\i obj.interval.min < x < obj.interval.max then 
RayTrace(x,y,o6j,tr7ie); /* guaranteed hit */ 

end 
else if obj.status===On/S'can/me then 

RayTrace(x,y,o6j,/aZ5e); /* potential hit */ 
else 

The ray misses the Object. 
endloop; 



2 4 8 0 Ray Tracing and Radiosity 

Scanline-plane 1 

Center of scanline #6 

Figure 4. Stochastic supersampling showing scanline plane 1 and 2 for scanline #2. Note: an object 
may lie between the planes without intersecting them. 

endloop; 
endloop; 

RayTrace(x,y,o6j,mtersec^) is the original "RayTrace" function, now augmented by a 
third "object" parameter indicating the candidate object of intersection and by a fourth 
parameter intersect^ which is set to true if intersection must occur and set to false if it 
is a potential hit. 

0 Supersampling 0 

The algorithm just described is well suited to n x n supersampling and adaptive super-
sampling tasks. The method is largely unchanged: For n x n supersampling, n planes 
are generated per scanline. Adaptive supersampling introduces new planes with each 
additional (fractional) scanline. 

For stochastic supersampling, neither of these techniques can be used. Instead con-
struct, for each scanline, two scanline planes: one through the uppermost part of the 
pixels and one through the bottommost part (Figure 4). To test a sphere for intersec-
tion, start with a signed distance test for both plane 1 and 2 in the figure. Call the 
distances di and 6/2 • If ^1 > ^r or d2 < —5^, then reject the sphere on that scanline. On 
the other hand, if any of the absolute values of di or d2 is less than the radius of the 
sphere, then an interval can be computed. Assuming the pixels are square. Equation 
(7) for the interval calculation changes to 

Interval.min = [min(a2,1,^2,2) — ^1? /Q\ 
Interval.max = [max(ai^i,ai^2) + ^J^ 
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where aij is a^ for scanline plane j . But note that this test will not work for all spheres 
of subpixel size. When the radius Sr is smaller than the projected scanline spacing, it 
may lie between the two planes without intersecting either, requiring an additional test. 
If di < —Sr and d2 > Sr^ the sphere lies between the planes and it is possible that rays 
will hit it on that scanline. Project the sphere onto the projection plane to find the 
interval. 

Observe that one cannot guarantee intersection inside this interval, but the risk of 
miss is small. Outside the interval no intersection will occur, as usual. 

Roughly the same situation applies for polygons. If all points are above plane 1 
or below plane 2, then the polygon is rejected. Otherwise, the polygon is a potential 
first-hit, but note that no interval can easily be computed for polygons. The status 
OnScanline is returned and no further heuristic testing occurs. 

Observe that all objects behind the eyepoint must be rejected before any of these 
tests are done, since the orientation of the planes is inverted behind the eyepoint. 

0 Optimizations 0 
Before all ray tracing commences the five planes of the viewing pyramid can clip and 
reject (status Never Again) all objects outside it. These objects will never be considered. 

Another optimization orders the objects using a linked list during the evaluation 
of each scanline. Every object that receives the NeverAgain status is placed last in 
the list. Objects with status OffScanline preface the NeverAgain objects. The Interval 
and OnScanline objects will thus be first in the list. This order will be changed for 
every scanline, but when traversing the list and finding an object with OffScanline or 
NeverAgain status, the for obj <— objecto to objectm enumeration loop for that pixel 
may immediately terminate. In the same fashion, the for-loop that calls FirstTest may 
terminate when an object with status NeverAgain is encountered. 

The author welcomes the inclusion of additional intersection tests to the library. 
Quadrics (such as the cylinder or the cone) are likely first extensions. 

0 Acknowledgment 0 
Thanks to Alan Paeth, who turned this article into a beautifully cut gem. 

0 Source Code 0 
scanline.cc 
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* Scanline-rejection routines * 
* for spheres and polygons. * 
* By Tomas Moller * 



250 0 Ray Tracing and Radiosity 

#include "vector.h" 

#define EPSILON le-6 /* a small number */ 
#define INFINITY le8 /* a large number */ 
enum StatusFlag {OnScanline,OffScanline,Interval,NeverAgain}; 

struct FirstHitStatus 

{ 

StatusFlag Flag; /* se enum above */ 
short IntervalMin,IntervalMax; /* the interval */ 

}; 

/ • • • * • • • * * • • • • • • • • * • • • • • • * • * * * • • • • * • • • • * • • • • • • • • • * • • • * • • 

* SphereComputeFirstHitStatus - computes the first hit status * 
* for a sphere and the Interval (if any) for the scanline-plane * 
* given by the first two parameters. * 
* • 

* Entry: * 
* Ns - normal of the scanline-plane * 
* ds - "d-value" for the scanline-plane * 
* LeftMost - the leftmost point on the scanline. Referred to * 
* as L in the text. * 
* ScanLineDir - the direction of the scanline in space. * 
* Observe that it is constructed by subtracting two * 
* adjacent points on the scanline from each other. * 
* width - number of pixels per scanline * 
* Ui,Vi - the indices to the uv-plane. 0==x,l==y,2==z * 
* Eyepos - the positition of the eye (or camera) * 
* Sphcen - the centre of the sphere * 
* Sr - the radius of the sphere * 
* • 

* The function returns a struct FirstHitStatus with all * 
* necessary information. * 
• • • • • * * • • • * * • * • * • * • • • • • • • • • * • • • • • • • • • • * • • • • • • * • • • • • • • • 

struct FirstHitStatus SphereComputeFirstHitStatus(Vector &Ns,float ds, 
Vector LeftMost,Vector ScanLineDir,int width,int Ui,int Vi, 
Vector Eyepos,Vector Sphcen,float Sr) 

{ 

struct FirstHitStatus FHstatus; 
float signed_dist=Ns*Sphcen+ds; 
if(signed_dist>Sr) FHstatus.Flag=NeverAgain; /* sphere is above plane */ 
else if(signed_dist<-Sr) FHstatus.Flag=OffScanline; /* below plane */ 
else 

{ 
Vector D,H,Cc,Nd; /* Cc=Circle Origo */ 
float sintheta,costheta,centerdist; 
float cr2,d2,tl,t2,t3,Vlv,Vlu,V2v,V2u; /* squared circle radius */ 
Cc=Sphcen-Ns*signed_dist; 
cr2=Sr*Sr-signed_dist*signed_dist; /* the * is dot-product */ 
D=Cc-Eyepos; 

d2=D*D; /* D dot D=squared length of D 
if(d2<=cr2) 
{ /* we are inside the sphere */ 
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} 

FHstatus.Flag=OnScanline; 

return FHstatus; 

} 
H=D%Ns; /* % = cross product */ 
tl=cr2/d2; 
sintheta=sqrt(tl) ; 
costheta=sqrt(1-tl); 
tl=H[Ui]*sintheta; 
t2=D[Ui]*costheta; 
Vlu=tl+t2; /* compute VI and V2 */ 
V2u=-tl+t2; 
tl=H[Vi]*sintheta; 
t2=D[Vi]*costheta; 
Vlv=tl+t2; 
V2v=-tl+t2; 
tl=LeftMost[Ui]-Eyepos[Ui]; /* some constants */ 
t2=Eyepos[Vi]-LeftMost[Vi]; 
t3=Vlu*ScanLineDir[Vi]-Vlv*ScanLineDir[Ui]; 
if(t3!=0.0) /* VI parallel to ScanLineDir ? */ 
{ 

FHstatus.IntervalMax=(int)floor((Vlv*tl+Vlu*t2)/t3); 
t3=V2u*ScanLineDir[Vi]-V2v*ScanLineDir[Ui]; 

if(t3==0.0) FHstatus.IntervalMin=0; 
else FHstatus.IntervalMin=(int)ceil((V2v*tl+V2u*t2)/t3); 

} 
else /* VI parallel to ScanLineDir */ 
{ 

t3=V2u*ScanLineDir[Vi]-V2v*ScanLineDir[Ui]; 
FHstatus.IntervalMin=(int)ceil((V2v*tl+V2u*t2)/t3); 

FHstatus.IntervalMax=width-l; 

} 
/* check if interval is valid and set status */ 
if(FHstatus.IntervalMin>=width || FHstatus.IntervalMax<0) 

FHstatus.Flag^OffScanline; 
else 
{ 

if(FHstatus.IntervalMax>=width) FHstatus.IntervalMax=width-l; 
if(FHstatus.IntervalMin<0) FHstatus.lntervalMin=0; 
if(FHstatus.IntervalMin==0 && FHstatus.IntervalMax==width-l) 

FHstatus.Flag=OnScanline; 
else FHstatus.Flag=Interval; 

} 
} 
if(FHstatus.IntervalMin>FHstatus.IntervalMax) FHstatus.Flag=OffScanline; 
return FHstatus; 

/* Macro used by PolyComputeFirstHitStatus. It projects 
* the point (x,y,z) onto the scanline and saves the 
* result in [reallntervalMin,reallntervalMax]. 
*/ 
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#define PROJECTPOINT(x,y,z) \ 
switch(Ui) \ 
{ \ 

case Xi:u=x; break; \ 
case Yi:u=y; break; \ 
case Zi:u=z; break; \ 

} \ 
switch(Vi) \ 
{ \ 

case Xi:v=x; break; \ 
case Yi:v=y; break; \ 
case Zi:v=z; break; \ 

} \ 

denom=ScanLineDir [Ui] * (Eyepos [Vi] -v) -ScanLineDir [Vi] * (Eyepos [Ui] -u) ; \ 
if(denom==0.0) \ 
{ \ 

if(ScanLineDir[Ui]!=0.0) alphas(u-Eyepos[Ui])/ScanLineDir[Ui]; \ 
else alpha=(v-Eyepos[Vi])/ScanLineDir[Vi]; \ 
if(alpha>0.0) realIntervalMax=width-l; \ 
else realIntervalMin=0; \ 

} \ 
else \ 
{ \ 

alphas(Eyepos[Ui]-LeftMost[Ui])*(Eyepos[Vi]-v); \ 
alpha-=(Eyepos[Ui]-u)*(Eyepos[Vi]-LeftMost[Vi]); \ 
alpha/=denom; \ 
if(alpha>realIntervalMax) realIntervalMax=alpha; \ 
if(alpha<realIntervalMin) realIntervalMin=alpha; \ 

} \ 

/ • * • • * • • * • • • • * • • • • • • • • • * • * • • • • * • * • • • • • • • • • • • • • • * * • * • 

* PolyComputeFirstHitStatus - computes the first hit status for a * 
* polygon and the Interval (if any) for the scanline-plane * 
* given by the first two parameters. * 
* • 

* Entry: * 
* Ns - normal of the scanline-plane * 
* ds - "d-value" for the scanline-plane * 
* LeftMost - the leftmost point on the scanline. Referred to * 
* as L in the text. * 
* ScanLineDir - the direction of the scanline in space. * 
* Observe that it is constructed by subtracting two * 
* adjacent points on the scanline from each other. * 
* width - number of pixels per scanline * 
* Ui,Vi - the indices to the uv-plane. 0 = =:x, l = =y, 2 = = z * 
* Eyepos - the positition of the eye (or camera) * 
* x,y,z - the points of the polygon * 
* NrVert - Number of vertices * 
* • 

* The function returns a struct FirstHitStatus with all * 
* necessary information. * 
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struct FirstHitStatus PolyComputeFirstHitStatus(Vector Ns,float ds, 
Vector LeftMost,Vector ScanLineDir,int width,int Ui,int Vi, 
Vector Eyepos,float *x,float *y,float *z,short NrVert) 

{ 
struct FirstHitStatus FHstatus; 
Vector isect,dir; 
float dist,prevdist=0,denoin, alpha,u, v; 
float realIntervalMax=-INFINITY,realIntervalMin=INFINITY; 
prevdist=Ns.X()*x[NrVert-1]+Ns.Y()*y[NrVert-1]+Ns.Z()* z[NrVert-1]+ds; 
/* start with last point */ 
for(int i=0;i<NrVert;i++) 
{ 

dist=Ns.X()*x[i]+Ns.Y()*y[i]+Ns.Z()*z[i]+ds; 
if(dist==0.0) 
{ /* point i is on the plane, project it on the scanline */ 

PROJECTPOINT(x[i],y[i],z[i]); 
} 
else if((prevdist<0.0 && dist>0.0) || (prevdist>0.0 && dist<0.0)) 
/* intersection */ 
{ 

isect.Set(x[i],y[i],z[i]); 
if (i==0) 

{ 
dir.SetX(x[NrVert-l]-x[0]) , 
dir.SetY(y[NrVert-l]-y[0]) , 
dir.SetZ(z[NrVert-l]-z[0] ) , 

} 
else dir.Set(x[i-l]-x[i],y[i-l]-y[i],z[i-l]-z[i]); 
alpha=(-ds-Ns*isect)/(Ns*dir); 
isect+=dir*alpha; /* intersection point calculated */ 

PROJECTPOINT(isect.X(),isect.Y(),isect.Z()); 

} 
prevdist=dist ; 

} 
if(realIntervalMax==-INFINITY) //no intersection 
{ 

if(dist>0) FHstatus.Flag=NeverAgain; 
else FHstatus.Flag=OffScanline; 

} 
else if(realIntervalMax<0 || realIntervalMin>=width) 

FHstatus.Flag=OffScanline; 
else 
{ 

FHstatus.IntervalMax=(int)floor(reallntervalMax); 
FHstatus.IntervalMin=(int)ceil(reallntervalMin); 
if(FHstatus.IntervalMax>=width) FHstatus.IntervalMax=width-l; 
if(FHstatus.IntervalMin<0) FHstatus.IntervalMin=0; 
if(FHstatus.IntervalMin==0 && FHstatus.IntervalMax==width-l) 

FHstatus.Flag=OnScanline; 
else FHstatus.Flag=Interval; 

} 
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if(FHstatus.IntervalMin>FHstatus.IntervalMax) FHstatus.Flag=OffScanline; 
return FHstatus; 

vector, h 

* vector.h - a vector class written in C++ * 
* functions for +, -, dotproduct, crossproduct, scaling, * 
* length & normalizing, many of these are operators * 
* By Tomas Mo Her * 

#ifndef VECTOR_H 
#define VECTOR_H 

I r * * * * * * * * * * * - ) * V 

#include <stream.h> 
#include <string.h> 
#include <math.h> 

#define Xi 0 
#define Yi 1 
#define Zi 2 

// indices into vector 

class Vector 

{ 
protected: 

float fx,fy,fz; 
public: 

Vector() {fx=0.0;fy=0.0;fz=0.0;} // 
Vector(float x,float y,float z); // 
Vector(Vectors a); // 
void Set(float x,float y,float z); // 
void SetX(float x); // 
void SetY(float y); // 
void SetZ(float z); // 
void Setlndex(int index,float value); 
// set x,y or z to value depending on 
float X(void) 
float Y(void) 
float Z(void) 
void Add(float x,float y 
void Sub(float x,float y 
void Scale(float a); 
float Length(void); 
void Normalize(void); 

void operator^(Vector& a); 
Vector operator*(float t); 
Vector operator+ (VectorSc a) ; 
Vector operator-(Vector& a); 
Vector operator+(void); 
Vector operator-(void); 
void operator+=(Vector& a); 

float z) , 
float z)i 

// 
// 
// 
// 
// 
// 
// 
// 

constructor with no argument 
constructor with coords 
constructor with vector 
assign new values to vector 
set X 
set y 
set z; 

index 
return fx 
return fy 
return fz 
addition to this vector 
subtraction 
scaling of vector 
length of vector 
normalize vector 

// operator: assignment 
// operator: scaling 
// operator: addition 
// operator: subtraction 
// unary + 
// unary -
// operator: += 
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void operator-^ (VectorSc a); // operator: - = 
void operator*=(float t); // operator: *= (scaling) 
float operator*(Vector& a); // operator: dot product 
Vector operator%(Vector& a); // operator: cross product 
float operator[](short index); 
// if short=0 then X, short=l then Y, else Z, see constants above 

}; 

/* here follows the inline functions and operators */ 

inline Vector::Vector(float x,float y,float z) 
{ fx=x; fy^y; fz=z; } 

inline Vector::Vector(Vector& a) 
{ fx=a.fx; fy=a.fy; fz=a.fz; } 

inline void Vector::Set(float x,float y,float z) 
{ fx=x; fy=y; fz=z; } 

inline void Vector::SetX(float x) 
{ fx=x;} 

inline void Vector::SetY(float y) 

{ fy=y; } 

inline void Vector::SetZ(float z) 
{ fz=z; } 

inline void Vector::Setlndex(int index,float value) 

{ 

switch(index) 

{ 
case Xi: fx=value; 
case Yi: fy=value; 
case Zi: fz=value; 

} 
} 

inline float Vector::X(void) 
{ return fx; } 

inline float Vector::Y(void) 
{ return fy; } 

inline float Vector::Z(void) 
{ return fz; } 

inline void Vector::Add(float x,float y,float z) 
{ fx+=x; fy+=y; fz+=z; } 

inline void Vector::Sub(float x,float y,float z) 
{ fx-=x; fy-=y; fz-=z; } 
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inline void Vector::Scale(float a) 
{ fx*=a; fy*=a; fz*=a; } 

inline float Vector::Length(void) 
{ return sqrt((*this)*(*this)); // square root of Dot(this,this) 

} 

inline void Vector::Normalize(void) 

{ 
if(Length()==0.0) cout<<"ErrorinormalizeXn"; 

else Scale (1. 0/LengthO ) ; 

} 

/*••*••••*••*•*•*** Operators *********************/ 

inline void Vector::operator=(Vector& a) // assignment 

{ fx=a.fx; fy=a.fy; fz=a.fz; } 

inline Vector Vector:: operators-(void) // unary + 
{ return *this; } 

inline Vector Vector::operator*(float t) // scaling 
{ Vector temp; temp.Set(fx*t,fy*t,fz*t); return temp; } 

inline Vector Vector::operators(Vector& a) 
{ Vector sum; sum.Set(fx+a.fx,fy+a.fy,fz+a.fz); return sum; } 

inline Vector Vector::operator-(Vector& a) 
{ Vector sum; sum.Set(fx-a.fx,fy-a.fy,fz-a.fz); return sum; } 

inline Vector Vector::operator-(void) // unary -
{ Vector neg; neg.Set(-fx,-fy,-fz); return neg; } 

inline void Vector::operator+=(Vector& a) 
{ Set(fx+a.fx,fy+a.fy,fz+a.fz); } 

inline void Vector::operator-=(Vector& a) 
{ Set(fx-a.fx,fy-a.fy,fz-a.fz); } 

inline void Vector::operator*=(float t) // scaling 
{ Set(fx*t,fy*t,fz*t); } 

inline float Vector::operator*(Vector& a) // dot product 
{ return fx*a.fx+fy*a.fy+fz*a.fz; } 

inline Vector Vector::operator%(Vector& a) // cross product 

{ 
Vector cross; 
cross.Set(fy*a.fz-fz*a.fy,fz*a.fx-fx*a.fz,fx*a.fy-fy*a.fx); 

return cross; 

} 
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inline float Vector::operator[](short index) 

{ 

switch(index) 

{ 
case Xi: return fx; 
case Yi: return fy; 
case Zi: return fz; 

} 
return 0.0; //if invalid index 

} 
/**•*••***•••*** End of Ooerators *****************/ 
#endif 
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This gem presents the basic algorithms required for ray tracing the swept surface (Han-
rahan 1989) generated by sweeping a sphere along a path. These surfaces look like 
wound tubes with varying thickness, resembling plant stems or exhaust pipes. 

0 Introduction 0 

For ray tracing this interesting modeling primitive, one needs to solve the following 
problems: 

Compute the intersections with a ray. 

Determine the axis-aligned bounding box. 

Decide if a point is inside or not. 

Compute the surface normal at an intersection point. 

In order to ease the computation, it is assumed that the sweep path is represented by 
a vector-valued polynomial c{t) of degree n parameterized by time t on the bounded 
interval [a, 6]. Similarly, the sphere's radius is "modulated" during the sweep, defined 
by the nonnegative real-valued polynomial r{t) of degree m. 

The problems listed above, save for the normal computation, can be solved by using 
a common technique: finding the absolute or positive minima (maxima) of a function 
on an interval. Real analysis off'ers the following steps: 

1. Calculate the first derivative of the given function. 
2. Find all roots of the derivative, thereby locating the global extrema. 
3. Evaluate the function at the roots and choose the smallest (largest) value. 
4. Check the function at the interval's endpoints as it may take a larger (smaller) 

value there. 

In all cases this will lead to a polynomial equation. For solving polynomial equations, 
refer to (Schwarze 1990) and (Hook and McAree 1990). Robust solution of cubics and 
quartics is treated on page 3. 
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0 Intersections with a Ray 0 

To find the intersections with a ray, first intersect all spheres of the sweeping process 
with the ray. The t-depending spheres are given by the equation 

\\c{t)-x\\^ = r{t)^, te[a,..b], (1) 

where || || denotes the usual Euclidean distance in three-space. This ray is defined 
parametrically: 

x = a + Xd, (2) 

with normalized direction d. Substituting the ray equation in Equation (1) gives 

\\c{t) - af - 2\c{t) 'd + X^ - r{tf = 0 . (3) 

Define 

p{t) = c{t) • d and q{t) = \\c{t) - af - r{tf . (4) 

The degree of the polynomial p is less than or equal to n, and the degree of q is less than 
or equal to max{2n, 2m}. With this notation, the quadratic equation for A is obtained: 

Â  - 2Xp{t) + q{t) = 0 . (5) 

The t-depending solutions of this equation are 

Xit) = Pit) ± ^p{tf - q{t) . (6) 

This is in general a complex-valued function. Nevertheless, the described algorithm can 
be used in order to find the positive minimum of A(t), because a root t of the derivative 
with complex A(t) does not lead to an intersection point. Hence, in a bad case one 
computes more roots of the derivative than needed. The first derivative of \{t) is 

Thus, the equation 

^^-"^m^-" 
is to be solved. This equation is equivalent to 

p'{t) = T{2p{t)p'{t) - q'im2^p{t)^-q{t))-' 
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or 

2p'{t)^p{tf-q{t) = T{2p{t)p'{t) - q'{t)) . (9) 

Squaring Equation (9) results in 

¥{tfipitf - q{t)) = Mtfp'itf - Ap{t)p'{t)q'{t) + q'{tf 

or 

0 = q'{tf - Ap{t)p'{t)q'{t) + ip'itfqit) . (10) 

Now generalize (10), giving 

s{t) = q'{tf + ^p'{t){p'{t)q{t) - p{t)q'{t)) . (11) 

The polynomial s{t) is of a degree less than or equal to max{4n — 2,4m — 2}. Find all 
roots of s{t) and evaluate A at these roots. Accept only those values A that are real and 
positive (an intersection only occurs for a positive parameter A) and find the smallest 
one. Check the values A(a) and A(6), too. 

The Axis-Aligned Bounding Box 

The polynomial c has three components, ci(t),C2(t), and cs{t). Build the polynomials 

rriiit) = c^{t) - r(t), Mi{t) = ait) + r{t), i = 1 , . . . , 3. 

Now define mini as the absolute minimum of mi{t)^ treated separably by component. 
That is, a unique time tmin need not exist for which mi{tmin) = mirii^ i = 1 , . . . , 3. Es-
tablish maxi as well. The vectors {mini^min2^mins) and (maxi,max2,maxs) form the 
lower-left and upper-right corner of the bounding box. These extrema are computable 
in the manner described, resulting in the best-fitting axis-aligned bounding box. 

The Inside Test 

A point P in three-space is inside the surface iff there exists a value to G [a. . . 6] such 
that 

\\c{to) - Pf - r{tof < 0. 

Hence, find a negative minimum of the polynomial \\c{t) — P |p — r(t)^. Reapply the 
algorithm to locate a minimum. 
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0 Computation of the Normal 0 
An intersection point belongs to a parameter t of the surface. The normal at this point 
is only the normal of the sphere with center c{t) and radius r{t). The calculation of a 
sphere's normal is straightforward and is described in the C + + implementation. 

0 Hints 0 
The degree of the polynomial s grows four times faster than that of c'and r: deg{s) = 
4max(de^(r),c?e^(c)) — 2. For this reason, restricting the degree to deg{r) < 3 and 
deg{c) < 3 is advised, suggesting the use of surface models based upon cubic splines. 
Both the polynomial root solver gem (Hook and McAree 1990), based upon the Sturm 
sequences, and most methods of (modified) regular Falsi encounter difficulties when the 
polynomial degree exceeds ten; substitution of other root solvers is recommended. 

0 C++ Implementation <> 

* POLY.H 

* Andreas Leipelt, "Ray Tracing a Swept Sphere" 
* from "Graphics Gems", Academic Press 
* 

#ifndef POLY_CLASS 
#define POLY_CLASS 

#define MAX_DEGREE 10 
#define polyeps lE-10 // tolerance for polynomial coefficients 

class polynomial { 
public: 

int deg; 
double coef[MAX_DEGREE+1] ; 

polynomial(); 
double eval(double); 
int roots_between(double,double,double*); 
double min(double,double); 
double max(double,double); 
polynomial derivative(); 

}; 

polynomial operator+(polynomial&, polynomial&) 
polynomial operator-(polynomial&, polynomial&) 
polynomial operator*(polynomial&, polynomial&) 
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polynomial operator*(double, polynomial&), 

#endif 

* POLY.CPP 
* Andreas Leipelt, "Ray Tracing a Swept Sphere" 
* from "Graphics Gems", Academic Press 
•A-

* Implementation of the polynomial class. The code is 
* not complete ! You need to insert a root solver in 

* the method 'root_between' . 

*/ 

#include <math.h> 
#include "poly.h" 

// constructor of the polynomial class 
polynomial::polynomial() 
{ 
deg = 0; 

for (double *fp = &coef[MAX_DEGREE]; fp >= coef; fp--) *fp = 0.0; 
} 

// evaluates the polynomial with Horner's scheme. 
double polynomial::eval(double x) 

{ 
double *fp = &coef[deg], val; 
for (val = *fp--; fp >= coef; fp--) val = val*x + *fp; 

return val; 

} 

// returns the first derivative of the polynomial. 
polynomial polynomial::derivative() 

{ 
polynomial ret; 

if (!deg) return ret; 
ret.deg = deg-1; 
for (int i=0; i <= ret.deg; i++) ret.coef[i] = (i+1)*coef[i+1]; 
return ret; 

} 

// returns the absolute minimum of the given polynomial in the 
// interval [a , b] 
double polynomial::min(double a, double b) 

{ 
double roots[MAX_DEGREE], tmp, Min = eval(a); 

int n = derivative().roots_between(a, b, roots); 
roots[n] = b; 
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for (int i=0; i <= n; i++) { 
tmp = eval(roots[i]); 
if (tmp < Min) Min = tmp; 

} 

return Min; 

} 

// returns the absolute maximum of the given polynomial in the 
// interval [a ; b] 
double polynomial::max(double a, double b) 
{ 
double roots[MAX_DEGREE], tmp, Max = eval(a); 

int n = derivative 0 .roots_between(a, b, roots); 
roots [n] = b; 
for (int i=0; i <= n; i++) { 
tmp = eval(roots[i]); 
if (tmp > Max) Max = tmp; 

} 

return Max; 

} 

int polynomial::roots_between(double a, double b, double *roots) 

( 
// This function should return the number of roots between 
//a and b and the array 'roots' should contain these roots. 
// Refer to Hook and McAree, "Using Sturm Sequences to Bracket 
// Real Roots of Polynomial Equations" in "Graphics Gems I" 
return 0; 

} 

polynomial operator+(polynomial& p, polynomial& q) 

{ 
polynomial sum; 

if (p.deg < q.deg) sum.deg = q.deg; 
else sum.deg = p.deg; 
for (int i=0; i <= sum.deg; i++) 

s\im.coef[i] = p.coef[i] + q.coef[i]; 
if (p.deg == q.deg) { 
while (sum.deg > -1 && fabs(sum.coef[sum.deg]) < polyeps) 

sum.coef[sum.deg--] = 0.0; 
if (sum.deg < 0) sum.deg = 0; 

} 

return sum; 

} 

polynomial operator-(polynomial& p, polynomial& q) 

{ 
polynomial dif; 

if (p.deg < q.deg) dif.deg = q.deg; 
else dif.deg = p.deg; 
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for (int i=0; i <= dif.deg; i++) 
dif.coef[i] = p.coef[i] - q.coef[i]; 

if (p.deg == q.deg) { 
while (dif.deg > -1 && fabs(dif.coef[dif.deg]) < polyeps) 

dif.coef[dif.deg--] = 0.0; 
if (dif.deg < 0) dif.deg = 0; 

} 

return dif; 

} 

polynomial operator* (polynomial& p, polynoinial& q) 

{ 
polynomial prod; 

prod.deg = p.deg + q.deg; 
for (int i=0; i <= p.deg; i++) 

for (int j=0; j <= q.deg; j++) 
prod.coef[i+j] += p.coef[i]*q.coef[j]; 

return prod; 
} 

polynomial operator*(double s, polynomial& p) 

{ 
polynomial scale; 

if (s == 0.0) return scale; 
scale.deg = p.deg; 
for (int i=0; i <= p.deg; i++) scale.coef[i] = s*p.coef[i]; 
return scale; 

} 

/ • * • • * * • * • • • • * • • • * • • • • * • • • • • * • * • • • • * * • * • * * • • • • * • • • • • • * 

* SWEEP.CPP 
* Andreas Leipelt, "Ray Tracing a Swept Sphere" 
* from "Graphics Gems", Academic Press 

* This file contains the code to handle a swept sphere in 

* ray tracing 

*/ 

#include <math.h> 
#include "poly.h" 

#define rayeps lE-8 // tolerance for intersection test 

// refer to Andrew Woo, "Fast Ray-Box Intersection", 
// "Graphics Gems I" 
extern char HitBoundingBox(double*,double*,double*,double*); 

// class of the swept sphere primitive 
class swept_sph { 
polynomial m[3]; // center of the sphere 
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polynomial r; 
polynomial r2; 
double a, b; 
double minB[3] , 

maxB[3]; 
double param; 

public: 

// radius of the sphere 
// r2 = r*r 
// the interval [a;b], where m and r live 
// lower left corner of the bounding box 
// upper right corner of the bounding box 
// parameter of last intersection, used for member 
// 'normal' 

swept_sph 0 {} 
swept_sph(polynomial*,polynomial,double,double), 
int intersect{double*,double*,double*); 
void normal(double*,double*); 
int inside(double*); 

// constructor of the swept_sph-class 
swept_sph::swept_sph(polynomial *M, polynomial R, double A, double B) 

// 
// 
// 
// 
// 
{ 

trajectory of the center of the moving sphere. 
An array of polynomials, which is interpreted as a 
vector valued polynomial. 
varying radius of the moving sphere. The radius is assumed 
to be non-negative. 

for 
r = 
r2 = 

(int ] 

R; 
•• r * r ; 

i < 3; i++) m[i] = M[i] , 

a = A; b = B; 
// Calculate the axis aligned bounding box 
for (i=0; i < 3; i++) { 
minB[i] = (m[i] - r).min(a, b); 
maxB[i] = (m[i] + r).max(a, b); 

} 
} 

int swept_sph::intersect(double *origin, double *dir, double *1) 
// origin : origin of the ray 
// dir : unit direction of the ray 
// t : intersection parameter of the ray 
{ 
polynomial p, q, dp, dq, s; 
double save[3]; 
double roots[MAX_DEGREE]; 
double p_val, q_val, D, test; 

if (!HitBoundingBox(minB, maxB, origin, dir)) 
// save the constant term of the trajectory 
for (int i=0; i < 3; i++) { 
save[i] = m[i].coef[0]; 
m[i].coef[0] -= origin[i]; 

} 
p = dir[0]*m[0] + dir[l]*m[l] + dir[2]*m[2]; 
q = m[0]*m[0] + m[l]*m[l] + m[2]*m[2] - r2 ; 

return 0; 
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dp = p.derivative(); 
dq = q.derivative 0; 
s = dq*dq + 4.0*dp*(dp*q - p*dq); 
int n = s.roots_between(a, b, roots); 
roots[n++] = a; 
roots[n] = b; 
*1 = 1E20; 
// test all possible values 
for (i=0; i <= n; i++) { 

// calculate the real solutions of the equation 
// 1 = p_val +- sqrt(p_val*p_val - q_val) 
p_val = p.eval(roots[i]); 
q_val = q.eval(roots[i]); 
D = p_val*p_val - q_val; 
if (D >= 0.0) { 

// check, if the candidate roots[i] leads to a better 
// intersection value 1 
D = sqrt(D); 
test = p_val - D; 
if (test < rayeps) test = p_val + D; 
if ((test >= rayeps) && (test < *1)) { 

param = roots[i]; 
*1 = test; 

} 
} 

} 
// restore the constant term of the trajectory 
for (i=0; i < 3; i++) m[i].coef[0] = save[i]; 
if (*1 < 1E20) return 1; 
else return 0; 

} 

void swept_sph::normal(double 
// IP : intersection point 
// Nrm : normal at IP 
{ 

^IP, double* Nrm) 

double R = r.eval(param); 
// if the radius is zero, 
if (R < polyeps) { 
Nrm[0] = Nrm[1] = 0.0; 
Nrm[2] = 1.0; 
return; 

} 
for (int i=0; i < 3; i++) 

return an arbitrary normal. 

Nrm[i] = (IP[i] - m[i].eval(param))/R; 

} 

// returns 1, if the point P lies inside. 
int swept_sph::inside(double *P) 

{ 
double save[3]; 
int is_inside; 

for (int i=0; i < 3; i++) { 
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s a v e [ i ] = m [ i ] . c o e f [ 0 ] ; 
m [ i ] . c o e f [ 0 ] -= P [ i ] ; 

} ; 
i s _ i n s i d e = 

( ( m [ 0 ] * m [ 0 ] + m [ l ] * m [ l ] + m [ 2 ] * m [ 2 ] - r 2 ) . m i n ( a , b) < r a y e p s ) 
f o r ( i = 0 ; i < 3 ; i++) m [ i ] . c o e f [ 0 ] = s a v e [ i ] ; 
r e t u r n i s _ i n s i d e ; 

} 
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Voronoi diagrams are among the most frequently studied structures in discrete and 
computational geometry. They are not only elegant but also very powerful, having an 
almost inexhaustible treasury of applications. A previous gem (Lischinski 1994) presents 
code for the two-dimensional case only. In this gem Voronoi diagrams are applied to 
methods of ray tracing. A d-dimensional diagram solver (coded in C++) is also provided. 

0 Introduction 0 

Ray tracing, despite its unique simulation potentialities, is generally known as a time-
consuming method of image synthesis. Although the method itself is classical (Whitted 
1980), much research effort is still directed toward improving its effectiveness. 

A survey of ray tracing acceleration techniques has been given (Arvo and Kirk 1989). 
Following their terminology, the method presented here is a space subdivision technique. 
Their common characteristic is the reduction of ray-object tests by subdividing the 
object scene. The operation is in two parts. First, a preprocessing phase decomposes 
the scene into disjoint territories called cells. A list associated with each cell contains 
references to those objects that have non-empty intersection with it. Last, the tracing 
phase enumerates, for each ray generated, the cells encountered successively by the ray. 
The object lists of the cells encountered are the only candidates for object intersection 
testing. This enumeration of cells in object space is called voxel walking. 

Two different types of cell have been used up to this time: 

1. Regular Cubic Lattice: These employ a regular grid of congruent cubic cells. The 
advantage of this choice is that voxel walking is easily performed—the original im-
plementation used a three-dimensional DDA line generator (Fujimoto et al. 1986). 
The disadvantage is the lack of spatial adaptivity: The structure of the grid does 
not conform itself to the actual arrangement and shape of the objects. 
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.""P4 

Figure 1. An example Voronoi diagram (solid) and its dual (dotted). 

2. Octree Spatial Partition: This well-known data structure (Meagher 1982) was 
adapted to this task by Glassner and contemporaries (Glassner 1984). It may be 
regarded as a locally adaptive, eightfold Cartesian subdivision. Voxel walking be-
comes more complex, but there are fewer cells. 

3. Voronoi Diagrams (new): These approach the ideal (impossible in practice) of plac-
ing exactly one object within each cell. The methods are reviewed and then applied 
to ray tracing in the following two sections. 

0 Voronoi Diagrams 0 
Given Si set pi,... ,pn oi particles (points) in the d-dimensional Euclidean space 
classify all space into distinct regions such that each region contains all points of £^ 
closest to its defining particle. Thus, the Voronoi cell V{pi) corresponding to a particle 
Pi is defined as the set of points closer to pi than to any other particle pj. Figure 1 
shows a (closest point) Voronoi diagram in two dimensions. Formally: 

V{pi) = {peS'': yj^i: \\p-Pi\\<\\p-Pj\\}. 

Let B{pi,pj) denote the bisector plane between pi and pj , that is, the set of points being 
at an equal distance from pi and pj: 

B{p„pj)^{peS'': \\p-p,\\ = \\p-p^\\}, 

and let H{pi^Pj) denote the half space bounded by B{pi^pj) and containing pi, that is, 
the set of points being closer to pi than to pj: 

n{pi,pj) = {pe£'': | | p - P i | | < | | p - p , | | } . 
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Then V{pi) is the region common to the half spaces defined by pi and all the other 
particles pj. Formally, this is the region of intersection, 

also containing its defining particle pi. The Voronoi cells are convex and disjoint ter-
ritories and (their closure) completely cover the space. The cells corresponding to the 
particles on the convex hull of the set p i , . . . ,pri are unbounded; the others are bounded. 
This aggregate of the cells is called the Voronoi diagram of the particle set (Voronoi 
1908). Alternative names are Dirichlet tesselation (Dirichlet 1850) and Thiessen tessel-
lation (Thiessen 1911). 

If the particles pi , . . . ,p^i are in general position, then exactly d+l cells meet at each 
vertex of each cell. Such a vertex, called a Voronoi vertex^ is at equal distance from 
its forming particles contained by the meeting cells. In other words, it is the center 
of the circumsphere of the d-simplex formed by the d+l particles. These simplexes, 
called Delaunay simplexes^ are also disjoint and completely cover the convex hull of the 
particle set. Their aggregate, which is the dual of the Voronoi diagram, is called the 
Delaunay triangulation of the particle set [Figure 1(b)]. This triangulation possesses the 
very important empty circumsphere property^ that is, the circumspheres of the Delaunay 
simplexes contain no further particles beyond those forming the simplex (Preparata and 
Shamos 1985). This property is usually exploited when constructing Voronoi diagrams 
by a computer program. 

The properties of Voronoi diagrams have been thoroughly investigated within geo-
metric, combinatorial, and statistical contexts. The interested reader is referred to an 
extensive survey with companion bibliography (Aurenhammer 1991). 

0 Computing Multidimensional Voronoi Diagrams 0 
Constructing Voronoi diagrams by computer program is a rewarding challenge. A two-
dimensional implementation appeared in the previous Graphics Gems volume (Lischin-
ski 1994); a solution for arbitrary d-dimensional spaces is also known (Bowyer 1981, 
Watson 1981). Their general methods are elegant, relatively simple to implement, and 
worthy of greater attention. Though more efficient two-dimensional methods are possi-
ble, Bowyer's algorithm serves as the best starting point and is now reviewed. 

The data structure used to represent the diagram is a spatial graph whose nodes are 
the Voronoi vertices and whose edges are the one-dimensional edges of the Voronoi cell 
boundaries (Voronoi edges). A node v is represented by a 2(d+ l)-tuple: 

V = (po,--.,P(i,^0,-..,^d), (1) 

where po^... ^pd are (references to) the forming particles and VQ, ... ,Vd are (references 
to) the neighboring nodes (vertices) along the Voronoi edges. Some vertex references 
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Figure 2. Inserting a new particle (q) into the Voronoi diagram. 

may be empty. This occurs at those vertices that contribute to the convex hull of the 
particles. For example, in Figure 1 the vertex vi is formed by the particles ^1,^2,^65 
and its neighbors are only V2 and v^. Two nodes v,w are neighbors iff the two sets of 
their forming particles contain exactly d identical ones: 

w e {vo{v),..., Vd{v)} iff II {po{v),... ,Pd{v)} n { p o M , . . . ,Pd{w)} II = d. 

These d particles form a ring around the Voronoi edge v^ w from which they are situated 
at equal distance. The vertex representation in (1) has a normal form: The ring around 
each edge v, Vi{v) outgoing from v must contain the particles {po{v)^... ^pd{v)}\{pi{v)}. 
For example, in Figure 1 the correct representation of vertex vi is (l5i,P2 5P65'̂ 2?'̂ 5?0)-
This ensures that the forming particle Pi{v) always "opposes" edge v,Vi{v). 

Bowyer's algorithm performs an incremental construction (based on this data struc-
ture). That is, the particles are inserted into the structure one by one. It is assumed 
furthermore that the new particle to be inserted always falls into the convex hull of 
the previous insertions. (This can always be achieved by bounding the original particles 
by a d-simplex spanned by d + 1 pseudo-particles. These form a single Voronoi vertex 
having no neighbors at the beginning. The real particles can then be inserted one by 
one in any order.) The insertion algorithm exploits the empty circumsphere property 
of Delaunay triangulations. Its main steps provide for the insertion of a new particle q. 
It is described as follows: 

1. Initial Vertex Location: Find any vertex i;̂ ^ in the current structure nearer to q 
than to its forming particles. (In Figure 2 it is 1̂ 2•) This search is best done by a 
linear walk through the Delaunay simplexes from the centroid of the structure to 
q (the circumsphere of the simplex containing q will also contain q). This vertex 
will definitely be among those which should be deleted from the structure. 
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2. Tree Search: Check the vertex structure, starting from Vi^^ to find all the other 
vertices to be deleted, that is, collect those vertices whose empty circumsphere 
property is hurt by q. This results in a list t ' i^, . . . , Vi^ of vertices. (In Figure 2 this 
list is t'2,1'1-) 

3. Create New Vertices: For each of the vertices Vi-^^.., ,t;i^, consider its neighbors 
one by one. Let w denote any neighbor of vi.. If w itself has also to be deleted, 
then take the next one. Otherwise, the ring of particles around the edge Vi^^w and 
the new particle q form a new vertex. Create this vertex and put it onto a list. (In 
Figure 2 the ring around the edge vi^v^ is pi^pe] thus, ^,pi,P6 form a new vertex.) 
The result is a hst i^ i , . . . , WN of new vertices. 

4. Link Insertion: The new vertices t t ; i , . . . , WN are linked to each other and to their 
neighbors from the original structure by identifying the identical rings of particles 
around the outgoing edges, updating the structure in place. (In Figure 2 wi and 
W2 are mutually linked because both contain the ring q^pi. For the same reason, 
wi is also connected to v^ and W4.) 

Note that the particles p i , . . . ,Pn may occupy arbitrary position. Consequently, a num-
ber of degenerate cases can arise in the implementation. (They occur more frequently 
than one might think!) These are treated by Bowyer in his original article. 

0 Voronoi Subdivision for Ray Tracing 0 

Voronoi diagrams are very elegant, but the objects within the scene are not isolated 
points. The structure itself could be extended to accomodate point sets. [The power di-
agram (Aurenhammer 1991), for example, is one possible generalization of the Voronoi 
diagram, where the particles are spheres.] This possibility is, however, left for future re-
search. A computationally less expensive solution is to choose the particle set p i , . . . ,j9n 
to be a set of some representative points of the objects^ for example their centroids, 
and create a Voronoi diagram upon this set. Identifying optimal sets of representative 
particles is also a subject of further research. 

The Voronoi data structure described in the previous section can be augmented to 
suit the task at hand. Voronoi vertices remain the same. The representation of a particle 
p (omitted above on account of its simplicity) now contains two lists in addition to its 
spatial coordinates: 

p= {x,y,z,L,P) , 

where x, y, z are its coordinates, L contains references to those objects that have non-
empty intersection with the Voronoi cell V(p), and P contains references to those par-
ticles that are contiguous to p in the diagram; that is, there is an edge between them 
in the Delaunay triangulation [in other words, P represents the union of the particles 
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Figure 3. A superfluous object appearing in the list L(p). 

forming the boundary of the cell V{p) minus p]. Both lists are built in the preprocessing 
phase and are used in the tracing phase during voxel walking. 

The lists P are built after the diagram has been completed. A traversal is performed 
on the vertex structure, and for each vertex v^ its forming particles po{v)^... ,Pd{v) are 
taken one by one. Taking Pi{v), each of the other forming particles is added to the list 
P{pi{v)), provided that it is not already there, since more simplexes share one edge in 
the triangulation. 

The lists L can be built after the lists P are ready because these latter ones provide a 
more suitable representation of the Voronoi cells than the vertex structure: The cell V(p) 
is in fact the intersection of the half spaces defined by p and the contiguous particles: 

qeP{p) 
(2) 

This property can be exploited when building the lists L{p): If there is at least one 
among the half spaces H{p^q) that has empty intersection with an object o, then o is 
not put onto list I/(p); otherwise, it is. Note that the lack of such a half space does not 
necessarily imply that o intersects V{p). As illustrated in Figure 3, superfluous objects 
may appear in the list L{p). A more sophisticated solution could be a search for a 
separating plane, as shown by a dashed line in the figure, though the added expense 
might not justify this extension. 

0 Voxel Walking 0 
A ray r is customarily represented by a pair. 

(3) 
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where s ^ £^ is the starting point and 6 E £^ is the direction vector, so tha t the points 
of the ray are generated by the equation 

r{T) = s + r6 {ren), (4) 

where r > 0 is known as the ray parameter. The enumeration of the Voronoi cells along 
the pa th of the ray needs the following two kinds of steps: 

1. Voxel Initialization: Locate the start ing point of the ray in the structure, tha t is, 
find the cell Vi containing s. This cell contains the first ray span. 

2. Voxel Walk. Provided tha t the cell Vi containing the i th ray span has already been 
found, the cell V^+i containing the (i + l ) t h span should be identified. 

Step 1 can be realized by the methods used in step 2: Prom an arbitrary point, say 
g, s tar t a pseudo-ray r' — {q^s — q) toward s and perform step 2 along r' repeatedly 
until reaching s. This assumes tha t the location of q is known a priori. The centroid of 
the structure is a suitable first approximation; a more effective choice (exploiting image 
coherence) will be discussed later. 

Por step 2, assume tha t the ray parameter r̂  where r enters the cell Vi is known 
(ri is set to zero). Then compute the other intersection point between the ray and the 
boundary of the cell, tha t is, where r exits Vi. (Prom the convexity of Voronoi cells, there 
are at most two intersection points.) This results in the ray parameter r^_^l, according 
to the inductive assumption, and V^+i is the contiguous cell on the other side of the face 
containing the intersection point. The walk concludes when either there are no more 
cells (no TiJ^i is found because r exits the convex hull of the objects) or an intersection 
is found between r and an object on the list associated with the cell Vi. 

Note tha t the Voronoi cells are associated with the particles p i , . . . ,Pn- Therefore, 
voxel walking is the enumeration of a corresponding sequence of particles. The inter-
section between the ray and the boundary of a cell can easily be computed since the 
lists P{pi) are available. According to Equation (2), 

rnV^ = rr^V{q^)= n rnn{q^,q), 

tha t is, the ray span contained by the cell is the intersection of the ray spans contained 
by the half spaces defined by qi and the contiguous particles. The bisector plane )S(^^, g), 
which is the boundary of such a half space, is the set of points p satisfying the equation 

{p-h{qi + q))'{q-qi) = ^. 

where "•" denotes scalar product. Substi tuting the ray equation (4) yields 

(5) 
{\{qi + q) - s) • {q - qi 

^•{q- qi) 
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for the intersection point between the bisector plane and the ray. The ray parameter 
defining the point of exit is 

qeP{qi) 

and the next cell is the associated contiguous cell. Note that a negative denominator in 
(5) implies a backward step; such neighbors can immediately be excluded from consid-
eration. Zero denominators should also be excluded (the ray is going parallel with the 
face). 

Exploiting Image Coherence 

The location of the starting point of the ray (step 1) can be more effectively performed 
by exploiting image coherence. For this reason, the representation of rays in (3) is 
augmented with a new item c, called the ray code: 

r = (s, 6, c). 

The code c uniquely identifies a ray as reflective or transmissive, together with the 
identity of all ancestor rays, beginning with the main ray. With r denoting the ancestor 
of a ray r, this may be encoded as 

{ 0, if r is the main ray; 

2c(f) + 1, if r is the reflective child of f; 
2c(r) + 2, if r is the transmissive child of r. 

For a maximal depth of recurrence Dmax, an array ^start [] of size 2̂ "̂ ^̂ ~̂ ^ — 1 can be built 
storing references to possible starting cells. If the starting point of a ray r is found to be 
in cell V{q)^ then a reference to q is put into the array at position ^start[c(r)] (C-style 
indexing). When the next pixel of the image is evaluated, then the starting points of 
the rays are located by starting the walk from the cells referenced by the array g'start-
In the majority of cases, no step needs to be done. 

0 Implementation Details 0 

The proposed method is used in an object-oriented implementation of the widely known 
ray tracer called POV-Ray (POV-Ray Team 1993). The implementation was written in 
C + + and was compiled by GNU C + + compiler (gcc, g++) under HP-UX. The source 
code of the parser and scanner was generated by yacc and lex from the grammar rules 
and token definitions. 
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voronoi.h 

The most general part of the source code is located in the file voronoi.h. It contains 
the templates for computing Voronoi diagrams in a space of arbitrary dimension. The 
templates are parameterized by the dimension number denoted by D in the code. In 
order to declare the template voronoi<D>, which is the diagram itself, it is necessary to 
declare the templates permutation<D>, vector<D>, and matrix<D>, as they appear in 
this order in the header file. The constructor of voronoi<D> is responsible for building 
the diagram, and its operator () is used for traversal. 

// PERMUTATION TEMPLATE (USED IN GAUSSIAN ELIMINATION) 

template <int D> class permutation { 
int n[D]; // ELEMENTS 

public: 
permutation() {for(register int i=0; i<D; i++) n[i]=i;} 
int operator[](int i) {return n[i];} 
void operator()(int i, int j) { // SWAP 

if(i==j) return; 
register int t=n[i]; n[i]=n[j]; n[j]=t; 

} 
}; 

// D-DIMENSIONAL VECTOR TEMPLATE 

template <int D> class vector { 
friend ostream& operator<< (ostream& o, vector<D>&: v) ; 
double x[D]; // COORDINATES 

public: 
vector() {for(register int i=0; i<D; i++) x[i]=0.;} 
vector(double x[D]) {for(register int i=0; i<D; i++) this->x[i]=x[i];} 
vector(double x[D], permutation<D>& p) { 

for(register int i=0; i<D; i++) this->x[i]=x[p[i]]; 

} 
double operator[](int i) {return x[i];} 
void operator-^(vector<D>& v) { 

for (register int 1 = 0; i<D; i-i-+) x [i]-=v.x [i] ; 
} 
vector<D> operator*(double d) { 

vector<D> w; for(register int 1=0; i<D; i++) w.x[1]=x[i]*d; 
return w; 

} 
vector<D> operator/(double d) { 

vector<D> w; for(register int 1=0; i<D; i++) w.x[i]=x[1]/d; 
return w; 

} 
double operator*(vector<D>& v) { 

double d=0.; for(register int 1=0; i<D; i++) d+=x[i]*v.x[i]; 
return d; 

} 
vector<D> operators- (vector<D>& v) { 
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vector<D> w; for(register int i=0; i<D;i++) w.x[i]=x[i]+v.x[i]; 
return w; 

} 
vector<D> operator-(vector<D>& v) { 

vector<D> w; for(register int i=0; i<D;i++) w.x[i]=x[i]-v.x[i]; 
return w; 

} 
}; 

// D-DIMENSIONAL SQUARE MATRIX TEMPLATE 

template <int D> class matrix { 
friend ostream& operator<<(ostream& o, matrix<D>& A); 
vector<D> a[D]; // ROWS 

public: 
matrix(vector<D> a[D]) {for(register int i=0;i<D;i++) this->a[i]=a[i];} 
matrix(double a[D][D]) { 

for(register int i=0; i<D; i++) this->a[i]=vector<D>(a[i]); 
} 
vector<D> operator*(vector<D>& x) { 

double y[D]; 
for (register int i=0; i<D; i++) y [i] =a [i] *x; 
return vector<D>(y); 

} 
int operator 0 (vector<D>& x, vector<D>& b) { // SOLVE (*this)x=b 

// GAUSSIAN ELIMINATION METHOD 

const double EPS=le-10; 
vector<D> B[D]; double c[D]; permutation<D> p; 
register int i, j, k; 
for(i=0; i<D; i++) {B[i]=a[i]; c[i]=b[i];} // COPY 
for(i=0; i<D; i++) { // THROUGH ROWS 

double a, amax=0., e, emain; 
for(j=i; j<D; j++) // MAIN ELEMENT 

if((a=fabs(e=B[p[j]][i]))>amax) 
{emain=e; amax=a; k=j;} 

if(amax<EPS) return 0; // SINGULAR 
p(i,k); // SWAP 
for(j=i+l; j<D; j++) { // NULL BELOW 

double s=B[p[j]][i]/emain; 
B[p[j]]-=B[p[i]]*s; 
c[p[j]]-=c[p[i]]*s; 

} 
} 
for(i=D-l; i>=0; i--) { // BUILD SOLUTION 

for(j=D-l; j>i; j--) c[p[i]]-=B[p[i]][j]*c[p[j]]; 

c[p[i]]/=B[p[i]] [i]; 
} 
x=vector<D>(c,p); return 1; 

} 
}; 
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II VORONOI-VERTEX TEMPLATE 

template <int D> struct vertex { 
vector<D>* p[D+l]; 
vertex<D>* v[D+l]; 
vector<D> c; 
double rr; 
int b; 
int i ; 
long t; 

private: 
void initialize(vector<D>* f[D+l]) { 

register int i; 
for(i-0; i<D+l; i++) {p[i]-f[i] 
this->b=-l; this->i=0; this->t= 
vector<D> A[D]; double b[D]; 
for(i=0; i<D; i++) { 

A[i]=(*f[i+l])-(*f[i]); 
b[i]={((*f[i+l])+(*f[i] 

} 
if(!matrix<D>(A)(c,vector<D>(b) 

rr=-l.; 
return; 

} 
rr=(*p[0]-c)*(*p[0]-c); 

// FORMING POINTS 
// CONTIGUOUS VERTICES 
// POSITION 
// RADIUS SQUARE 
// BACK INDEX (WORK) 
// ACTUAL INDEX (WORK) 
// TRAVERSE CODE (WORK) 

; v[i]=(vertex<D>*)0;} 
OL; 

))*0.5)*A[i]; 

)) { // EQUATION A*c=b 
// DEGENERATE 

public: 

// FORMING POINTS 
// POINT q AND RING 

} 

vertex(vector<D>* f[D+l]) {initialize(f);} 
vertex(vector<D> *q, vertex<D> *v, int i) { 

vector<D> *f[D+l]; f[0]=q; 
for(register int j=l; j<D+l; j++) f[j]=v->p[(j+i)%(D+1 
initialize(f); 

} 
}; 

// VORONOI-DIAGRAM TEMPLATE 

template <int D> class voronoi { 
friend ostream& operator<<(ostream& o 
vector<D> C; 
vector<D> *b[D+l]; 
vertex<D> *c; 
double 11(vector<D>& v) (return v*v;} 
double dd(vector<D>& v, vector<D>& w) 

vector<D> d=v-w; return d*d; 

} 
void normals(int d, double n[D+l][D]) 

register int i, j; 
if(d--2) { 

n[0] [0]=1.0; n[0] [1]=1.0; 
n[l] [0]=-1.0; n[l] [1]=1.0; 
n[2] [0]=0.0; n[2] [1]=-1.0; 
return; 

voronoi<D>& v); 
// CENTROID 
// BOUNDING SIMPLEX 
// CLOSEST TO CENTROID 
// LENGTH SQUARE 

{ // DISTANCE SQUARE 

{ // NORMAL VECTORS FOR bound() 



pub l i c : 

} ; 

V.5 Acceleration of Ray Tracing via Voronoi Diagrams 0 279 

} 
normals(d-l, n); 
for(i=0; i<d; i++) n[i][d-1]=1.0; 
for(i=0; i<d-l; i++) n[d][i]=0.0; 
n[d][d-l]=-1.0; 

} 
void bound(list<vector<D>*>* 1); // BUILD BOUNDING SIMPLEX 
vector<D>* q; // ACTUAL POINT 
list<vertex<D>*> *ld; // VERTICES TO DELETE 
void findO; // FIND A VERTEX TO DELETE 
void searchO; // FIND ALL VERTICES TO DELETE 
list<vertex<D>*> *ln; // NEW VERTICES 
void create 0; // CREATE NEW VERTICES 
int samering{vertex<D>*v, int iv, vertex<D>*w, int iw) { 

for(register int i=(iv+1)%(D+1);i!=iv;i=(i+1)%(D+1)) { 
vector<D> *p=v->p[i]; 
for(register int j=(iw+1)%(D+1);j!=iw;j=(j+1)%(D+1)) 

if(w->p[j]==p) {j=-l; break;} 
if(j>=0) return 0; 

} 

return 1; 

} 
void linkO; // LINK NEW VERTICES TO EACH 0. 
void build(list<vector<D>*>* 1) { // DISJOINT PARTICLES 

traverse=OL; 
bound(1); 
for(vector<D>* p=l->first(); p; p=l->next()) 

{q=p; find(); search(); create(); link();} 

} 
long traverse; // TRAVERSE CODE 
static void free(vertex<D>*v){delete v;}// FOR DESTRUCTOR 
static void donothing(vertex<D>*v){} // FOR REINITIALIZE traverse 

voronoi(list<vector<D>*>* 1) { 
for(register int i=0; i<D+l; i++) b[i]=new vector<D>; 
build(l); 

} 
voronoi(list<vector<D>*>* 1, vector<D> *b[D+l]) { 

for(register int i=0; i<D+l; i++) this->b[i]=b[i]; 
build(l); 

} 
void operator 0 (void (*f) (vertex<D>* v)); // TRAVERSE VERTICES 
/voronoi() { 

(*this)(free); // TRAVERSE AND DELETE 

for(register int i=0;i<D+l;i++) delete b[i]; 

} 

template <int D> void voronoi<D>::bound(list<vector<D>*>* 1) { 
register int i, j; 

// NORMAL VECTORS FOR FACES OF BOUNDING SIMPLEX 
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double a[D+l][D]; normals(D, a); 
vector<D> n[D+l]; 
for(1=0; i<D+l; i++) n[i]=vector<D>(a[i])/sqrt(11(vector<D>(a[1]))); 

// MAXIMAL DISTANCES IN DIRECTION OF NORMALS 

double d, dinax[D+l] , dmin[D+l] ; register int first=l; 
for(vector<D>* p=l->first(); p; p=l->next()) { 

for(1=0; i<D+l; i++) { 
d=n[i]*(*p); 
if (first II d>dinax[i]) dmax[i]=d; 
if (first II d<dinin[i]) dmin[i]=d; 

} 

first=0; 

} 

// VERTICES OF BOUNDING SIMPLEX (INTERSECT FACES CYCLICALLY) 

for(1=0; i<D+l; 1++) dmax[1]+=(dmax[i]-dmin[1])*.5; // INACCURACY 
vector<D> A[D]; double t[D]; 
for(1=0; i<D+l; 1++) { 

for(j=0; j<D; j++) { 
A [ j ] = n [ ( i + j ) % ( D + l ) ] ; 
t [ j ] = d i n a x [ ( i + j )%(D+l) ] ; 

} 
( v o i d ) m a t r i x < D > ( A ) ( * b [ l ] , v e c t o r < D > ( t ) ) ; / / EQUATION A * b [ i ] = t 

} 

// CENTRAL VERTEX AND CENTROID 

c=new vertex<D>(b); 
for(1=0; 1<D+1; 1++) C=C+(*b[i]); 
C=C*(1./(double)(D+1)); 

} 

template <lnt D> void voronoi<D>::find() { 
register int 1, j; 
double P[D+1][D+1]; for(j=0; j<D+l; j++) P[D][j]=l.; 
double q[D+l]; for(j=0; j<D; j++) q[j] = (*this->q) [j] ; q[D]=l.; 
vertex<D> *v=c; 
vector<D+l> a; // BARICENTRIC COORDINATES OF q 
for(;;) { 

for(1=0; i<D; 1++) for(j=0; j<D+l; j++) P[1][j]=(*v->p[j])[1]; 
(void)matrix<D+l>(P)(a,vector<D+l>(q)); // SOLVE P*a=q 
double amlnus=0.; 
for(j=0; j<D+l; j++) if(a[j]<aminus) {aminus=a[j]; 1=j;} 
if(aminus<0.) {v=v->v[i]; continue;} 
break; // q INSIDE 

} 

ld=new list<vertex<D>*>; *ld+=v; 

} 
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template <int D> void voronoi<D>::search() { 
vertex<D> *vstart=ld->first() , *v=vstart; v->b=-l; 
register int back=0; 
for(;;) { 

register int go=0, i; vertex<D> *n; 
do { 

if(back) { // 
*ld+=v; 

i=v->b; v->b=-l; v=v->v[i]; 

} 

STEP BACKWARDS 

back=0; continue; 

if(v->i==v->b) continue; 
if(v->v[v->i]==(vertex<D>*)0) 
n=v->v[v->i]; 
if(n->b>=0) continue; 
if((*ld)[n]) continue; 
if(dd(*q,n->c)<n->rr) go=l; 
if(go) break; 

} while((v->i=(v->i+l)%(D+l))!=0); 
if(go) { 

for(i=0; i<D+l; i++) 
if(v==n->v[i]) {n->b=i 

v=n; continue; 
} 
if(v==vstart) break; 
back=l; 

continue; 
// NEIGHBOR 
// ALREADY TRAVERSED 
// ALREADY ON LIST 
// GO IF q IN SPHERE 

// STEP FORWARDS 
// COMPUTE BACK INDEX 
break;} 

} 

template <int D> void voronoi<D>::create() { 
vertex<D> *v; 
ln=new list<vertex<D>*>; 
for(v=ld->first(); v; v=ld->next()) { 

for(register int i=0; i<D+l; i++) { 
vertex<D> *n=v->v[i]; 
if((*ld)[n]) continue; 
vertex<D> *m=new vertex<D>(q,v,i); 
if(m->rr<0.) 

{delete m;*ld+=n;continue;} 
*ln+=m; 
register int j; 
for(j=0; j<D+l; j++) 

if(m->p[j]==q) m->v[j]=n; 
if(n==(vertex<D>*)0) continue; 
for(j=0; j<D+l; j++) 

if(n->v[j]==v) n->v[j]=m; 

} 

// TAKE VERTICES 
// TAKE NEIGHBORS 

// ALSO DELETED 
// POINT q + RING i 

// DEGENERACY 
// STORE 

// OUTER LINK 
//NO REAL NEIGHBOR 

// BACK LINK 

} 
if((*ld)[c]) { 

double d, ddmin; register int first=l; 
for(v=ln->first0 ; v; v=ln->next()) { 

d=dd(v->c,C); 
if(first II d<ddmin) {c=v; ddmin=d;} 
first=0; 

// NEW C NEEDED 
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for(v=ld->first() 
delete Id; 

v; v=ld->next()) {delete v;} // DELETE VERTICES 

} 

template <int D> void voronoi<D>::link() { 
register int i, j, n, iv, iw; 
vertex<D> *v, *w; 
n=0; for(v=ln->first(); v; v=ln->next()) n++; 
vertex<D> *N[n]; 
n=0; for(v=ln->first(); v; v=ln->next()) N[n++]=v; 
for(i=0; i<n-l; i++) { 

v=N[i]; 
for(j=i+l; j<n; j++) { 

w=N[j] ; 
for(iv=0; iv<D+l; iv++) { 

for(iw=0; iw<D+l; iw++) { 

} 

if (sainering(v, iv,w, iw) ) 
{v->v[iv]=w; w->v[iw]=v;} 

} 
delete In; 

template <int D> void voronoi<D>::operator()(void (*f)(vertex<D>* v)) { 
traverse++; 
if(traverse==-lL) { 

traverse=-2L; (*this)(donothing); 
traverse=OL; 

} 
vertex<D> *v=c; v->b=D+l; 
register int back=0; 
for(;;) { 

v->t=traverse; 
register int go=0; 
vertex<D> *n; 
do { 

if(back) { 
vertex<D>*n=v->v[v->b]; 
v->b=-l; 
f (V); 

v=n; back=0; continue; 

} 
if(v->i==v->b) continue; 
if(v->v[v->i]==(vertex<D>*)0) 

continue; 
n=v->v[v->i]; 
if(n->t==traverse) continue; 
go=l; break; 

// OVERFLOW 
// REINITIALIZE 

// PARTICULAR CASE 

// ITERATIVE TRAVERSE 
// MARK AS TRAVERSED 
// DON'T GO YET 
// ACTUAL NEIGHBOR 
// ACTION ON ACTUAL v 
// STEP BACKWARDS 
// FROM WHERE WE CAME 
// FOR NEXT USAGE 
// PERFORM ACTION 
// TAKE BACK VERTEX 

// DON'T STEP BACK YET 

//NO REAL NEIGHBOR 
// WHERE WE SHOULD GO 
// ALREADY TRAVERSED 
// GO ON 
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} while( (v->i=(v->i + l)%(D+l) ) !=0) ; // UNTIL NOT ALL DONE 
if(go) { // STEP FORWARDS 

for(register int i=0;i<D+l;i++) // FIND BACK LINK 
if(v==n->v[i]) 

{n->b=i;break;} // BOOK 
v=n; continue; // LET'S GO 

} 
if(v==c) break; // RETURNED 

back=l; //GO BACK IF NO BETTER 

} 
f(c); c->b=-l; c->t=traverse; // THE LAST ONE 
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Fluorescent lights are used for many lighting applications, such as classrooms and shop-
ping centers, and neon lights are again becoming popular for advertising signs and cos-
metic lighting. Fluorescent and neon luminaires^ can be modeled as diffuse emitting 
cylinders with associated spectral distributions. The following gem presents a method 
for performing the direct lighting computations for cylindrical luminaires in distribution 
ray tracing. 

This gem extends a previous entry (Wang 1992) that presents physically correct 
methods for computing the contribution of spherical and triangular luminaires. The 
reader is referred to recent publications (Wang 1994), which provide more detailed 
accounts of these methods. 

0 Direct Lighting Computations 0 

Suppose that a point x is illuminated by a luminaire E. The radiance reflected in 
direction oj towards x is defined by the rendering equation (Kajiya 1986) 

L{x,ij)= / g{x,x')p{x,uj,uj')LE{x\uj')cose-r— ^ , (1) 

where x' is a point on the luminaire E, g{x.,x') = 1 if x' is visible from x and zero 
otherwise, u' is the direction from x' to x, p is the bidirectional reflectance distribution 
function (BRDF), 6 is the angle between the vector —uj' and the surface normal at x, 
9' is the angle between u' and the surface normal at x', and LE{X'^u') is the emitted 
radiance from the luminaire point x' in direction u'. The geometry for this equation 
with respect to a cylindrical luminaire is shown in Figure 1. 

^The term "luminaire" refers to a light, lamp, or generic light source. 

Copyright (c) 1995 by Academic Press , Inc. 
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cylidrical luminaire 

view point solid angle of luminaire 

unit hemisphere 

Figure 1. Calculating radiance. 

Monte Carlo integration may be used to obtain an accurate approximation to (1). A 
set of n points x i , . . . , x̂ i then estimates the integral 

Jxen ^ ^h\ ^(^^)' 

where p{x) is any probability density function that is positive when f[x) is nonzero and 
X is distributed by p(x), written x ~ p{x). 

In traditional distribution ray tracing (Cook et al. 1984), n = 1. This means that 
each luminaire is sampled with one shadow ray, giving the Monte Carlo estimate 

L{x,uj) = g{x^x')p{x^uo^uj')Le{x' ̂ uo'] 
cos 6 cos 6' 

p{x')\\x' — x p ' (2) 

which can now be generalized for n > 1. 
The following steps determine L(x,a;): 

1. Select a probability density function p. 
2. Choose x' on the luminaire such that x' ~ p. 
3. Compute g{x^ x') by sending a shadow ray to determine if there is an obstruction. 
4. If ^ = 1, then compute L(x,a;) by Equation (2); else set L{X,UJ) = 0. 

The most difficult part lies in determining x^ and p{x'). The following offers, without 
derivation, a good p and the associated method for generating x^ 
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cross-section of cylinder 

U 
cylinder centered on w axis 

Figure 2. Two views of the generated lunninaire point x' in relation to the illuminated point x. 

0 Sampling Cylindrical Luminaires 0 
For spherical and triangular luminaires, previous research (Wang 1992) suggests a sam-
pling based on the estimated subtense (solid angle) of the luminaire as a good strategy. 
However, for a cylinder this angle can be difficult to characterize (Figure 1). Therefore, 
an alternative approach is taken, which follows from the observation that an approx-
imation to solid-angle-based sampling can be obtained by choosing p such that the 
luminaire point x' is more likely to be generated nearer to the illuminated point x. This 
approach provides a reasonable approximation because x' subtends a greater differential 
solid angle as it moves nearer to x. The probability density function p is then designed 
to produce sample positions in which the distance \\x — x'\\ is weighted toward the value 
(d — r) (Figure 2). The suggested p generates sample positions with these characteris-
tics by selecting w' according to an appropriate linear function along the height of the 
cylinder and by selecting (f)' with a cosine distribution about the vector defined by x 
and the center of the cylinder. 

The following steps assume a uvw coordinate system where the cylinder center is 
the w axis and the base is at the coordinate origin (Figure 2). This simplifies calcu-
lations and requires the use of only a simple coordinate transformation. It is further 
assumed that cylindrical luminaires are diffuse, since fluorescent tubes and neon tubes 
are nearly diffuse, and that the ends of the cylinder do not emit light. Sample positions 
are generated in the following manner. 
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1. Generate {(jy'^w'). Let ^i and ^2 be random numbers such that ^1,^2 ^ [0^1) ^^d 
let D = j ^ - ^ with di the distance from the origin to x and d2 the distance from 
the point (0,0, h) to x: 

{(()', w')= Uiir^ ; yd^ — T^ (2^) [l + ̂ -V(-l-^)'-4^^2]) 

2. Find x^ Let x — (xu^Xy^x^)- Then 

( T \ V 

- {xu cos 0' — x̂ ; sin 0 j 5 ;̂  i^v cos </>' + x̂ ^ sin 0'), it;'). 
3. Return x^ and p(x'): 

, „ f-2D , 1 + D\ dcoscj)' 
p{x ) = —n^-w H — 7 = = . 

It should be noted that as the distance between x and the luminaire becomes large, 
simpler strategies can be utilized with similar results. Simpler strategies should be used 
when possible because they require less computation per sample, provided that the 
strategy does not introduce too much error. For example, an acceptable simplification 
of the preceding strategy would set w' = ^2^- This would in turn simplify the probability 
density function to 

pix') = 
d cos (f)' 

2rhVd^ - r2 

Determining when to use a simple or complex strategy is subject to statistical analysis. 
It should also be noted that these strategies have been designed for diffuse environ-

ments. Because the Monte Carlo estimates are unbiased, they will work for environments 
with more complex reflective properties, but many samples may then be required. 
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This gem describes a simple extension of ambient light to directional light for the 
improvement of progressive refinement radiosity images (Cohen et al. 1988). Directional 
light gives the user a much better impression of the scene geometry than ambient light, 
for only a little additional expense. The approach described here exploits the same 
approach as ambient light to estimate the final illumination, but includes a directional 
component. Although the new technique presented here is simple and gives much better 
results than the conventional ambient light, surprisingly it has been neither described 
in literature nor implemented. 

0 Background 0 

The most commonly used radiosity method is the progressive refinement approach (Co-
hen et al. 1988). It starts with an initial radiosity solution of low accuracy, which is then 
continuously improved, converging to the final solution. Intermediate images can be dis-
played after each iteration step. However, the illumination of the environment is usually 
inadequate during early iterations. The visual feedback can be improved by ambient 
light, which provides an a priori estimate of the final illumination. The ambient light 
depends on the unshot radiosities and the reflectivity of the environment. Although the 
estimate itself is quite good, the quality of early intermediate images using ambient 
light is still unsuitable in most cases. Since ambient light does not account for surface 
orientation, there are no contrasts between surfaces of uniform material, such as walls 
in a room. This makes it impossible to see the shape of objects and their distance from 
the viewing position. In fact, the user typically does not have the impression of viewing 
a three-dimensional scene during early iterations, especially in regions occluded from 
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all shooting patches. The problem is especially troublesome for complex scenes, where 
the progressive refinement algorithm converges very slowly. 

0 Illumination Estimation by Ambient Light 0 

The difference between the current radiosity values and the complete solution can be 
estimated based on the amount of radiosity that has not yet been "shot," that is, 
radiosity not distributed to the environment (Cohen et al. 1988). The estimate uses the 
average unshot radiosity of all patches in the scene, given by 

AB.„ ^ 2 ^ . (1) 

where AB^ denotes the unshot radiosity and Ai the area of patch i. On average, without 
knowing where unshot radiosity will arrive, a fraction pav will be reflected, where pav 
denotes the average reflectance in the scene, 

llPi' ^i /r)\ 

Prom the reflected radiosity, some fraction will be rereflected, and so on. The global 
interreflections can therefore be approximated by an infinite sum, 

R=l + p,, + pl^ + pt + '" = . (3) 
^ Pav 

The amount of radiosity that will be received by a patch at later iterations can be 
estimated by 

^estimate = R ' ^Bav • (4) 

Since the incoming direction is not known in advance, Bestimate is used to represent 
ambient light (Cohen et al. 1988). For display purposes, the following estimate of the 
final radiosity of patch or element i is conventionally used: 

Bi = Bi + Pi ' Bestimate • (5) 

0 Illumination Estimation by Directional Light 0 

Although the incoming direction of radiosity that will be received at later iterations is 
not known, it is not necessary to use Bestimate ^ purely ambient light. It can also be 
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assumed to be directional, falling onto a patch or element i from an arbitrary direction. 
If L is the normalized vector pointing to this incoming direction, and N is the surface 
normal, the diffuse illumination of the patch due to the estimated directional light can 
be computed by the dot product {N • L), as in simple illumination models (Phong 
1975). In practice, BesUmate should be used as partly ambient and partly directional 
light. Therefore the displayed radiosity can be computed by the following formula: 

^display = Bi + Pi- Bestimate • [{1 - d) + d • max(0 , ( iV • L))] . (6) 

The parameter d determines the fraction of directional light, li d = 1, Bestimate is 
used as purely directional illumination; for d = 0, it is purely ambient. The parameter 
d can be interactively changed by the user after each image. Typically, d ^ 0.5 gives 
best results. There exist several possibilities in choosing the incoming direction of the 
estimated directional light. A good choice is to use the point of view as a virtual light 
source, so that L points to the virtual camera. The advantage of this choice is that 
the directional light illuminates all parts of the scene seen by the user. This enables 
the user to perceive the orientation of all visible surfaces. However, if walkthroughs 
are performed with this technique during early iterations, the directional component 
of estimated illumination will change from image to image. Another possibility is to 
use several virtual point light sources distributed in the scene, or several predefined 
incoming directions specified by the user. In both cases, the directional component has 
to be split up among the light sources or incoming directions. Bad choices are using the 
light sources or the patches with the most unshot energy as virtual light sources. In the 
first case, the effect of direct illumination is increased, which is computed during the 
first iterations anyhow, while regions in shadow are not improved. In the second case, 
the incoming direction would change at each iteration step, thus irritating the user. 

0 Results 0 

Radiosity images generated with the method described here give a much better impres-
sion of the scene geometry than with pure ambient light, especially during early iteration 
steps, maintaining a useful approximation of the correct illumination. Examples appear 
as Color Plates V.7a-V.7c. The contribution of estimated directional illumination de-
creases at each progressive refinement iteration in the same manner as the classical 
ambient light, so that the generated images converge continuously to the correctly il-
luminated image. The additional expense of the new method—the computation of the 
dot product—is insignificant and can be performed by the graphics hardware. 
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Halftoning and Image 
Processing 

The gems in this section describe methods used either to create scenes having a discrete 
structure (halftoning) or to analyze them, thus reconstructing a continuous model where 
possible (image processing). 

The gem by Tobler, Purgathofer, and Geiler (VI.l) showcases state-of-the-art re-
search in constructing ordered dither matrices used for digital halftoning. The book's 
color plates and monochromatic images illustrate their success; a full description of 
the methods is the subject of a journal article, published concurrently. Wong and Hsu 
describe a new variation upon precipitation-based halftoning, itself an emerging topic. 
Their method (VI.2) produces demonstrably superior results, with illustrations accom-
panying the stepwise refinements they describe. Eker (VL3) presents a screen-coordinate 
line-clipping algorithm that produces an invariant set of "on" pixels independent of end-
point position along the line that underlies the segment. The problem is common to 
window-based systems; he provides a newer method of solution. Done and Rubio de-
scribe an algorithm (VI.4) that reconstructs bitmap shapes into vector motion chains. 
Their pattern-based method of attack is closely related to the theory of cellular au-
tomata. Along similar lines, Hsu and Lee (VI.5) provide an exact and reversible inverse 
to the popular Bresenham line-drawing algorithm. Careful attention is paid to the best 
placement of endpoints common to two vectors, creating a method that produces coor-
dinate pairs from a bitmap scene. Both methods are well suited to lossless, high-ratio 
compression of fax documents as well as to bitmap magnification by way of coordinate 
transformation. Sharma (VI.6) reconsiders adaptive image refinement. Here, images 
are sampled at lower resolution when full detail is not required (as in browsing). His 
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sampling heuristic is based upon object priority; extensions to this early work might 
ultimately offer animated display at low data rates by minimizing the computations 
associated with perceptually unimportant scene features. Finally, Cross (VL7) provides 
a random point sampling pattern having the minimum statistical correlation to a set 
of edges at arbitrary slope. His highly concise results represent many CPU hours spent 
"distilling" scene data with the aid of neural networks. (Note: the book's floppy disk 
and associated FTP mirrors offer his latest vintages.) 
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This gem presents an improved halftoning technique using dispersed dots.^ This corre-
sponds to finding a microdot distribution that approximates the intensity levels that 
have to be rendered. An improved threshold matrix for ordered dithering is presented 
that avoids unwanted low-frequency portions without introducing too much random 
noise. Since the new method produces images of high quality, it is ideally suited for 
output generation in high-end image processing systems. 

0 Introduction 0 

Ordered dithering is a digital halftoning technique (Ulichney 1987) that generates mi-
crodot distributions by using a so-called threshold matrix. This matrix of threshold 
values is replicated and put on top of the image. If the intensity of the pixel is lower 
than its corresponding threshold value, a microdot is set in the output image. Thus, 
neighboring pixels are compared to different threshold values. 

There are two major variants of ordered dithering: 

• Dispersed Dot Dithering (Lippel and Kurland 1971, Bayer 1973): If consecutive 
threshold values are placed far from each other within the matrix, halftoning of an 
image of constant intensity will produce a number of dispersed microdots. Since 
current threshold matrices are almost always based on regular orderings of the 
threshold values, the resulting output image will display highly visible patterns. 

^Bgised on "Forced Random Dithering: Improved Threshold Matrices for Ordered Dithering" by 
W. Purgathofer, R. F. Tobler, and M. Geiler, which appeared in the Proceedings of the First IEEE 
Conference on Image Processing, November 13-16, 1994, Austin, Texas, pp. 1032-1035. 
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• Clustered Dot Dithering: If consecutive threshold values are placed in a special 
sequence within the matrix, the microdots will join to create larger dots. The larger 
dots will result in a visible raster that is superimposed on the output image. This 
method will produce images similar to those found in cheap newspapers. 

To overcome these artifacts, various improvements have been suggested that distribute 
the quantization error made at each pixel (Knuth 1987, Lippel and Kurland 1971). All 
of these methods reduce the performance of the original algorithm. A different method 
that does not introduce regular patterns, random threshold dithering^ can be achieved 
by comparing each pixel to a random value between 0 and 1 that is generated anew for 
each pixel of the input. But this method, also known under the name dithering with 
white noise (Ulichney 1988), introduces a great deal of noise into the output image. 

Random threshold dithering can also be done with the ordered dithering algorithm, 
by using a huge matrix with the threshold values placed in random ordering. Thus, 
random threshold dithering and ordered dithering with completely regular matrices 
can be viewed as the two extreme cases of a whole range of dithering matrices with 
various degrees of randomness in the distribution of threshold values. 

0 Improved Threshold Matrices 0 
Since ordered dithering has very good characteristics in terms of performance and 
achievable parallelism, our goal was to find threshold matrices for this algorithm that 
have improved characteristics compared to previously known matrices. A threshold ma-
trix used for ordered dithering has to satisfy the following criteria: 

• It should not introduce all-too-obvious regular patterns into the dithered image. A 
certain degree of randomness is useful to avoid this kind of artifact. 

• It should not be too random, so that the amount of noise introduced by the dithering 
process does not degrade the image information too much. 

• It should not introduce artifacts at the boundaries between replicated threshold 
matrices. Thus, the algorithm to generate the matrix has to compensate for these 
boundaries. 

A New Way to Generate the Matrices 

In order to derive the computation of such in-between matrices, it is useful to think 
about a different algorithm for generating these matrices: selecting positions for the 
threshold values one by one, starting with the lowest value. This corresponds to adding 
microdots to a dot distribution as the desired intensity level slowly changes from white 
to black. Additional constraints can be specified to influence the emerging pattern of 
values. If the microdots (points) are thrown in randomly according to an equal distri-
bution, and the matrix is made as large as the image, a matrix for random threshold 
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dithering can be generated. The other extreme can be achieved by using the following 
rule: Put each new point in the position farthest away from all previous points. This 
rule specifies a set of matrices that contains the completely regular matrices for ordered 
dithering (Bayer 1973). After introducing a repulsive force field generated by all points 
already included in the matrix, new values can be thrown in randomly, and their posi-
tion can be changed according to the force field. The force-field function used can be 
arbitrarily chosen to influence the resulting dot distribution. 

The Force-Field Function 

In order to produce isotropic images, the force-field function should be radially sym-
metric. The function should also discourage additional points from being placed close 
to already-existing points to avoid clustering. Therefore, the following function for gen-
erating the force field of points thrown into the threshold matrix has been chosen: 

fir) = exp (- (^y^ . (1) 

Here r = \/x^ + y^ is the distance from the point, and p and s are parameters to 
control the function. As new points are added, their force fields are added to a force-
field matrix. To avoid problems at the boundaries of the repeatedly used threshold 
matrix, the top and bottom edge and the left and right edge of the force-field matrix 
are joined, changing it topologically to a torus. 

Selecting Positions for Threshold Values 

In order to avoid being caught in local minima of the force-field matrix, a large number 
of empty positions from the matrix are randomly selected, and the force-field intensities 
at these positions are compared. The new point is then fixed at the randomly selected 
position having minimum value. Here the number of selected positions governs the 
precision with which the global minimum is found. Selecting half of all free positions 
for finding the minimum and choosing the parameter values s = 0.5 and p = 0.5 for 
the force-field function yields dithering matrices that are best suited for generating 
dithering patterns without too many artifacts. 

The Size of the Matrix 

Nowadays most images use pixel values in the range [0...255]. In order to achieve 
the same resolution in the number of intensity levels, the matrix has to be at least 16 
by 16 points: A matrix of size n by n can generate n? + 1 dot patterns of different 
density if images with constant intensity levels are used. In general, bigger matrices are 
better than smaller matrices. Not only is the resolution in the number of intensity levels 
higher, but they also introduce less obvious recurring patterns of dots, which can be 
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Figure 1. A 150 dpi image rendered using (top left to bottom right) random threshold dithering, ordered 
dithering with regular matrix, clustered dot dithering, ordered dithering with improved matrix. 

quite visible for small matrices. Bigger matrices use more memory; therefore, the upper 
limit is given by the amount of fast memory that is available. A matrix with a size of 
300 X 300 pixels seems to be a realistic value, since there are almost no artifacts due to 
recognizable repeating patterns. For this size of matrix, the memory requirements are 
ninety kilobytes (if the input image has intensity levels in the range [0. . . 255]), which 
is small enough for the matrix to completely reside in the secondary caches of current 
hardware. The resulting algorithm is therefore extremely fast. 

Using Multiple Matrices for Color Images 

In color printing, three or four color channels are overlaid to produce intermediate colors 
by subtractive color mixing. A lot of methods introduce highly visible moire patterns 
into the output image, since they produce very regular dot distributions (Roetling 1976). 
In conventional printing this problem is solved by twisting the channel patterns by a few 
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degrees against each other, a technique not apphcable in computer-generated images. 
The new method can avoid this problem, if different matrices are used for each channel 
(or the same matrix with different offsets). The overlaid matrices are then completely 
uncorrelated and therefore not subject to any interference. 

0 Results 0 
Figure 1 (Color Plate Vl.la-d) shows the results of applying a few different algorithms 
on the same image. The improved matrices avoid too much random noise (compare ran-
dom threshold dithering) and regular dot distributions introduced by threshold patterns 
(compare ordered dithering with regular matrix and clustered dot dithering). 

The presented method is very fast since it is derived from ordered dithering (the time 
for generating the threshold matrix does not need to be considered, since this is a one-
time operation), can be parallelized easily, and generates dot distributions for dithering 
that do not exhibit too many artifacts. Although the contrast of the produced images 
is a little low, this can be overcome by proper image preparation. 
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Halftoning techniques are used to display continuous tone pictures on bilevel displays 
and printers (or on those with a very limited number of shades). The most popular 
and well-known techniques are ordered dither and error diffusion. The latter produces 
aperiodic patterns with limited low-frequency components, a useful property (Ulichney 
1987), but its dispersed dots suffer from an excessive smudging, which is especially 
objectionable on high-resolution devices. Ordered dither, on the other hand, is capable 
of clustering the dots produced by using a properly designed dither matrix. However, 
a regular dither pattern is then clearly visible in the output picture. A comparison of 
most digital halftoning techniques can be found in the literature (Schumacher 1991, 
Ulichney 1987). 

Recently, researchers have been investigating new halftoning techniques that traverse 
images along a space-filling curve (Cole 1990, Velho and de Miranda Gomes 1991, Zhang 
and Webber 1993), based upon a Peano curve algorithm of the last decade (Witten 
and Neal 1982). The space-filling curve halftoning is attractive because of the pleasant 
smooth grains in the resultant image and the aperiodicity of the halftone pattern. Velho 
and de Miranda Gomes {op. cit.) further proposed a clustered-dot space-filling curve 
halftoning algorithm that reduces the smudging problem. However, clustering the dots 
naively would blur the image excessively. This gem presents two improvements, selective 
precipitation and adaptive clustering., used to minimize blurring. 

0 Selective Precipitation 0 
The first improvement is to precipitate black dots selectively. The original clustered-dot 
space-filling curve halftoning algorithm precipitates the black dots at a fixed location, 
say, at the beginning of each cluster. This results in a poor approximation to the original 
image when the original gray values in a particular cluster are not gathered around that 
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a. Grayscale Image Pixels 

b. Original Dithering Result 

c. After Selective Precipitation 

Figure 1. Halftoning (a 1D continuous tone image) using precipitation. 

a. Grayscale Image Pixels 

b. Velho and Gomes suggestion 

c. After Selective Precipitation 

Figure 2. Halftoning using selective precipitation. 

fixed location (Figure 1). Although Velho and de Miranda Gomes have briefly suggested 
that the white subregion can be centered at the pixel with the highest intensity in order 
to preserve details, this may still result in a poor approximation (Figure 2). 

By placing the black output dots over the area with the highest total gray value, a 
better approximation can be obtained. This technique is called selective precipitation. 
The number of black dots to be output in the current cluster is determined by summing 
all gray values inside the cluster. This number is then used as the length of a moving 
window that shifts within the halftone cluster. The objective is to find the position of 
the moving window having the highest summed gray pixel value. The black dots are 
then precipitated at that position. 

In essence, spatial offsets are applied to localize the position of maximum dot density. 
This approach advances the original ARIES technique researched extensively at Xerox 
(Roetling 1976). The basic algorithm is sketched below. 
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Input 

1. input [] : a one-dimensional array of continuous tone pixels on the range [0. . . 1] 
presented as a one-dimensional array in the order of the space-filling traverse. 

2. c l u s t e r s i z e : the cluster size. 
3. c lusterstart: the index of the current cluster's first element. 
4. graysum: cumulative gray sum within the current cluster. 

winlen := [graysumj 
graysum := graysum - winlen 
winsum := 0 
maxsum := 0 
wins ta r t := c l u s t e r s t a r t 
for i := wins ta r t t o (winstar t+winlen- l ) do 

begin 
winsum := winsum + input[i] 

end 

while (winstart+winlen) - clusterstart < clustersize 

begin 

if maxsum < winsum 

begin 

maxsxim := winsum 

rightplace := winstart 

end 

winsum := winsum - input[winstart] + input[winstart+winlen] 

winstart := winstart + 1 

end 

Output 

1. Black dots are produced at rightplace for winlen positions. 
2. The final quantization error is in graysum. 

The time complexity of this process is clearly linear. 

0 Adaptive Clustering 0 

Another factor that causes the blurring is the rigid grouping of output black dots 
(Figure 3). Here, the original gray values are grouped at opposite ends of the cluster. 
Presented with such data, selective precipitation can generate black dots only at the 
one end having a higher total gray value. A better approximation can be obtained by 
dividing the cluster into two smaller clusters and performing the selective precipitation 
process in both clusters. 
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a. Grayscale Image Pixels 

b. After Selective Precipitation 

c. Cutting the cluster into 2 parts 

Figure 3. Selective precipitation with adaptive clustering. 

One method of locating the point of subdivision is finding the sharp edges. Since 
human eyes are more sensitive to high-frequency changes, blurring phenomena on sharp 
edges are more noticeable. A partitioning of clusters at sharp edges therefore preserves 
sharp details. This approach is used; the improvement is called adaptive clustering. 

Since the space-filling curve goes through each pixel in the image exactly once, it 
effectively scales down the 2D edge detection problem into a ID problem. It is therefore 
sufficient to employ merely a ID filter along the space-filling curve in order to detect 
sharp edges. That is, the curve's traverse constitutes a continuous image signal. Apply-
ing the standard ID negative of the Laplacian of the Gaussian filter (Jain 1989) can 
detect these sharp edges along the chain (signal). The formula of the filter is 

exp(-xV2o-2) 

27r 
1 - ^ 

where a is the standard deviation and x is the input signal. A filter kernel with a width 
of seven pixels (cr = 1) is sufficient. 

The adaptive clustering algorithm is now outlined. Traverse the image pixels along 
a chosen space-filling cover, forming a cluster whenever N (the maximum cluster size) 
pixels have been traversed or a sharp edge is encountered, whichever comes first. Perform 
selective precipitation upon the current cluster. The pseudocode follows. 

Input 

1. N: maximum cluster size. 
2. T: threshold. 
3. M: number of input pixels. 
4. input [1 . .M]: ID pixel data in preselected order. 
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graysum := 0 
clustersize := 0 
clusterindex := 0 
lastconvol := 0 
for index := 0 to M-1 do 
begin 

convol := InvLaplGaussian(input, 

graysum := graysum + input[index] 
clustersize := clustersize + 1 
if Iconvol-lastconvoll > T or clustersize > N 
begin 

precipitate(input, graysum 

index-3) 
Convolve array with seven sample window 
centered about current pixel. 
Accumulate total gray. 
Increase current cluster. 

clustersize := 0 
clusterindex := index 

end 
lastconvol := convol 

clustersize, clusterindex); 
Perform selective precipitation outlined 
in the previous pseudocode. 
Begin next cluster. 

end 

The sensitivity of the edge detection filter affects the resulting halftone image and 
may be controlled with a user-defined threshold T. This value can also be determined 
automatically using previous techniques (Schlag 1991). A lower threshold detects addi-
tional edges, resulting in potentially smaller clusters. 

Figures 4 and 5 show the performance of the improved halftoning method. Note 
the excessive blurring, seen as a loss of floor texture [Figure 4(b)] or of fine image 
detail [Figure 5(b)]. This blurring phenomenon is significantly reduced when selective 
precipitation and adaptive clustering is employed [Figures 4(c) and 5(c), respectively]. 

0 C Implementation <> 

* Halftoning using Space Filling Curve with adaptive clustering and 
* selective precipitation 

* Limitation: 
* Only process image with size 2vn x 2Vn where n is positive integer. 

unsigned char **path; /* space-filling curve path */ 
/* 
* path[] is a global array storing the information to move along 
* the space-filling curve. 
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Figure 4, Teapot, (a) Original grayscale image (256x256). (b) Space-filling dithering; cluster size N = 9 
pixels, (c) Selective precipitation with adaptive clustering; N = 9. 
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Figure 5. F16 factory, (a) Original grayscale Image (256x256). (b) Space-filling dithering; cluster size 
A/ = 9 pixels, (c) Selective precipitation with adaptive clustering; A/ = 9. 
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genspacefill() is a function to generate the information in path[]. 
This function is implemented based on a gem in Graphics Gems II, 
Ken Musgrave, "A Peano Curve Generation Algorithm". 

macro to move along the space-filling curve using the * move 
• 

*/ 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 

0 is a 
the 

TRUE 
FALSE 
BLACK 
WHITE 
LEFT 
RIGHT 
UP 
DOWN 
END 
move(X 

macr 
infor 

1 
0 
255 
0 
0 
1 
2 
3 
255 

,y) switch (path[x][y]) 
{ 
case UP: y++; break 
case DOWN: y--; break 
case LEFT: x--; break 
case RIGHT:x++; break 

} 

Description of parameters: 

picture, 
out, 
maxclustersize, 
thresh, 
do_sp, 

do ac. 

2D array holding the grayscale image. 
2D array holding the dithered image. 
Max cluster size, N. 
Edge detection threshold T. 
Flag to switch on/off selective precipitation. 
To switch off the selective precipitation, 
set do_sp = FALSE. 
Flag to switch on/off adaptive clustering. 
To switch off the adaptive clustering, set do_ac=FALSE 

void spacefilterwindow(int **picture, int **out, int maxclustersize, 
int thresh, char do_sp, char do_ac) 

char edge ; 
char ending; 
int accumulator; 
int currclustersize; 
int frontx, fronty; 
int windowx, windowy; 
int clusterx, clustery 
int windowlen; 
int winsum; 
int maxsum; 
int rightplace; 
int ^cluster; 
int last, i,j, tempx, 
long filter[7] = {-1, 

/* Flag indicates sudden change detected */ 
/* flag indicates end of space-filling curve */ 
/* Accumulate gray value */ 
/* Record size of current cluster */ 
/* Pointer to the front of the cluster */ 
/* Pointer to first pixel applied with filter */ 
/* Pointer to first pixel in current cluster */ 
/* Size of the moving window */ 
/* Current moving window's sum */ 
/* Maximum moving window's sum recorded */ 
/* Position of the moving window with max sum */ 
/* An array hold the pixel of current cluster */ 

tempy, currx, curry; /* temp variables */ 
-5, 0, 13, 0, -5, -1}; /* ID -ve Lap. Gauss, filter */ 
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long convolution; /* Convolution value in this turn */ 
long lastconvolution; /* Convolution value in last turn */ 
/* 
* Description of the pointer along the space-filling curve. 

* clusterx, 
* clustery 

windowx, 
windowy 

I 
V 

currx, 
curry 

frontx, 
fronty 

I 
V 

Cluster 

I 
/\ I 

/ \ I 
- / \ I 
\/ \/ I 

-ve Laplacian of Gaussian Filter 
V 

if ((cluster=malloc(sizeof(int)*maxclustersize))==NULL) 

{ 
fprintf(stderr,"not enough memory for clusterXn"); 
return; 

} 
genspacefill(); /* generates the spacefilling path */ 

convolution=0; 
currclustersize=0; 
accumulator=0; 
for (frontx=0, fronty=0, i=0 ; i<7 ; i++) 

{ 
if (i<3) 
{ 
cluster[currclustersize] = picture[frontx][fronty]; 
accumulator += cluster[currclustersize]; 
currclustersize++; 

} 
if (i==3) 
{ currx = frontx; curry = fronty; } 

convolution += filter[i]*(long)(picture[frontx][fronty]); 
move(frontx,fronty); /* assume the image has at least 7 pixels */ 

} 
lastconvolution = convolution; 
clusterx=0; clustery=0; 
windowx= 0; windowy= 0; 
edge=FALSE; 
ending=FALSE; 
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while (TRUE) 

{ 

if (do_ac) /* switch on/off adaptive clustering */ 

( 
/* do convolution */ 
convolution = 0; 
for (tempx=windowx, tempy=windowy, i=0 ; i<7 ; i++) 
{ 

convolution += fliter[i]*picture[tempx][tempy]; 
move(tempx,tempy); 

} 

/* detect sudden change */ 
if ( (convolution >= 0 && lastconvolution <=0 

&& abs(convolution-lastconvolution)>thresh) 
I I (convolution <= 0 && lastconvolution >=0 

&& abs(convolution-lastconvolution)>thresh)) 
edge=TRUE; /* force output dots */ 

} 

/* Output dots if necessary */ 
if (edge || currclustersize >= maxclustersize || ending) 

{ 
edge=FALSE; 

/* Search the best position within cluster to precipitate */ 
rightplace = 0; 
if (do_sp) /* switch on/off selective precipitation */ 
{ 
windowlen = accumulator/BLACK; 
winsum = 0; 
for (i=0; i<windowlen; i++) 
winsum += cluster[i]; 

for (maxsum=winsum, last=0; i<currclustersize; i++, last++) 
{ 
winsum+= cluster[i] - cluster[last]; 
if (winsum > maxsum) 
{ 
rightplace=last+l ; 
maxsum=winsum; 

} 
} 

} 

/* Output dots */ 
for (i=0 ; currclustersize!=0 ; currclustersize--, i++) 

{ 

if (accumulator>=BLACK && i>=rightplace) /* precipitates */ 

{ 

out[clusterx][clustery]=BLACK,• 
accumulator-=BLACK; 

} 
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else 
out[clusterx][clustery]=WHITE; 

move(clusterx,clustery) 
} /* for */ 

if (ending) 
break; 

} /* if */ 

cluster[currclustersize] = picture[currx][curry], 
accumulator += cluster[currclustersize]; 
currclustersize++ ; 
if (patli [currx] [curry] ==END) 
ending = TRUE; 

move(currx,curry); 
move(windowx,windowy); 
move(frontx,fronty); 

} /* wliile */ 
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0 Introduction <> 

This gem considers the problem of "pixel-perfect" line clipping. The task is to gener-
ate precisely those pixels of a rasterized line that lie within a given clipping rectangle. 
This requirement arises naturally in window systems when redrawing an exposed rect-
angle containing part of a rasterized line. Any pixel imperfection will show up as a 
discontinuity in the line. Clipping the line to the rectangle, rounding each clipped end-
point to the nearest pixel, and rasterizing the resulting line is not an adequate solution 
(Figure 1). Rasterizing the line and then clipping the pixels is inefficient; an improved 
method is known (Pike 1983). In comparison to other clippers, it avoids missing pixels 
at the ends of the clipped segment by using a more sophisticated rounding technique, 
and avoids off-by-one errors in the positions of the generated pixels by adjusting the 
starting conditions of the fine rasterizer (Bresenham 1965). 

The solution presented here is based on Pike's method but with several refinements: 
integer clipping tests in the style of Dorr (Dorr 1990) are used, and the calculation of 
subsequently unused products is avoided, as suggested by Krammer (Krammer 1992). 
Also, a novel idea is introduced: that of choosing at which end to start drawing the fine 
in order to minimize the number of multiplications and divisions required for clipping. 
In fact, the algorithm requires at most one division that is used to establish algebraically 
the intersection of the line and rectangle at the point where pixel production commences. 
Termination occurs when the final in-rectangle pixel is generated and is detected by 
discrete methods. 

0 Algorithm 0 

Without loss of generality, assume that the clipping rectangle is specified by bottom-left 
and top-right corners (x/, yt) and (x .̂, yt) with xi < Xr^ yb ^ Uti and the line is specified 
by endpoints (xi.yi) and (x2, ̂ 2). Then put Ax = X2 - xi; Ay = y2 - yi. 

Copyright (c) 1995 by Academic Press, Inc. 
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off-by-one 
error 

Figure 1, Improper line rasterization when clipping endpoints to the nearest pixel. 

The algorithm produces a set of pixels. Ambiguity in pixel choice occurs when the line 
passes exactly midway between two pixels. A uniform rounding (bias) based on octants 
is one solution (Bresenham 1987). This is often impractical: Most implementations 
"fold" this symmetry into one octant or quadrant. In practice there are two choices: 
either round toward (xi,yi) or round toward (x2,^2)- Here the algorithm takes a flag, 
allowing the user to select between endpoints. If, after comparing the endpoints against 
the clipping rectangle, it is advantageous to exchange the endpoints and draw the line 
starting from the other end, this flag is inverted to preserve the rounding direction and 
ensure that the same set of pixels is generated. 

For the sake of exposition, consider merely the case A^ > 0, A ;̂ > 0, Â ^ > A^ with 
rounding toward (x2,y2)- With a careful consideration of symmetry, the other fifteen 
cases can be implemented cheaply. The pixels (x, y) in the rasterization of the undipped 
line are given by 

y = yi + t;(.-x,) + l (1) 

for X = xi, xi + 1 , . . . , X2, and the Bresenham error term r at each pixel (x, y) is given 
by 

r - 2Ay{x - XI + 1) - 2A^(y - yi) - A^. 

Outcode Computation 

Rectangle-object intersection tests traditionally employ a "space partitioning" defined 
by the extension of the rectangle's edges. The classic Cohen-Sutherland line-clipping 
algorithm (Newman 1979) computes an outcode using (at most) four comparisons for 
each endpoint. The outcode encodes the endpoint's half-plane membership as a four-bit 
number. Here a type which is the number of bits set in an endpoint's outcode is also 
computed. The half-planes, outcodes, and types are shown in Figure 2. In the usual 
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Figure 2. Outcode and type computation for endpoints. 

way, a line that lies completely within one half-plane can be rejected. This occurs when 
a bitwise-and of its outcodes is nonzero. 

Clipping the First Endpoint 

If the first endpoint is of type 0, no clipping is necessary. Otherwise, if it is of type 2 
and (under the previous assumptions) must lie outside the left and bottom edges, the 
edge to which it should be clipped must be determined. Remember, however, that it 
is the pixel set and not the line that must be clipped: The line may intersect one edge 
while the pixel set may need to be clipped to the other. Using Equation (1), the pixel 
set must be clipped along the bottom edge if 

yi + ^ ^ ^ ^ - ^ 1 ) + ^ < 2/6, 

and otherwise along the left edge. This inequality can be simplified, giving 

2Ay{xi - xi)-^ AJ: < 2Aj:{yb-yi)-

As a result of this test, one of the two set bits in the outcode can reset to zero. 
The (adjusted) outcode now indicates the proper clipping edge. For clipping to the 

left edge, the starting coordinates {xs^ys) will be Xs <— xi and ^5 —̂ yi + 1 , where 

t = it'̂ ' Xl) + 
1 2Ay{xi - xi) + A^ 

One must test the ys against yt- If ys is greater, the line hes entirely above the clip-
ping rectangle and is rejected. Otherwise, the Bresenham error term at {xg, ys) can be 
calculated from the Bresenham error term at (xi,yi) by adding 

2Ay{xi - xi) - 2A:,t. 
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For clipping to the bottom edge, the starting coordinates {xs^Vs) will be ys ^- Vb^ 
and Xc will be the least x such that 

yi + = yb-

It can be shown that Xg = xi +1^ where 

2A^{yb - vi) - A:, + 2Ay - 1 
t = 2A, 

One must test Xg against x^. If Xs is greater, the line lies entirely to the right of the 
clipping rectangle and is rejected. Otherwise, the Bresenham error term at {xg^Vs) can 
be calculated from the Bresenham error term at (x 1,7/1) by adding 

2Ayt-2A^{yb-yi). 

Clipping the Second Endpoint 

The key idea when clipping the second endpoint is that the line-rectangle intersection 
need not be computed algebraically. Instead, the Bresenham line-drawing algorithm 
is terminated when it encounters an edge of the clipping rectangle. The extra tests 
required to detect this may be removed from the pixel drawing loop by precomputing 
the number of repetitions. This requires that one determine which edge is (first) hit. 

If the second endpoint is of type 0, no clipping is necessary. Otherwise, if it is of type 
2 and (under the previous assumptions) must lie outside of the top and right edges, the 
edge to which it should be clipped must be determined. Using Equation (1), the pixel 
set must be clipped along the top edge if 

Vi ^J^r-X,) + l > Vu 

and otherwise along the right edge. This inequality can be simplified, giving 

2 A ^ ( ^ t - y i ) + A^ < 2Ay{xr-xi) + l. 

As a result of this test, one of the two set bits in the outcode can reset to zero. 
The (adjusted) outcode now indicates the proper clipping edge. For clipping to the 

right edge, the Bresenham algorithm must terminate after it has completed iL Xy Xg 
steps to the right. 

For clipping to the top edge, the Bresenham algorithm must terminate after it has 
completed n = yt — ys steps upwards. Here the loop repeats until the conditional y-step 
is executed for the (n + l) th time. An alternative version of Bresenham's algorithm 
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is used where the loop counter is only decremented and tested inside the conditional 
^-step. 

Which Way Around to Draw the Line? 

Allowing for common subexpressions, one can count the multiplications and divisions 
needed to clip the first endpoint and update the Bresenham error term depending on 
its type. The results are summarized in the following table. 

Type 

0 
1 
2 

Multiplications 

0 
2 
3 

Divisions 

0 
1 
1 

For the second endpoint, two multiplications are needed if it has type 2, and none oth-
erwise. Clearly it is advantageous to swap the endpoints whenever the second endpoint 
has type 0 and the first endpoint has a nonzero type. Less obviously, a multiplication 
is saved by swapping the endpoints when the first endpoint has type 1 and the second 
endpoint has type 2. 

0 Putting It All Together 0 

The biggest difficulty in implementing this approach is finding an elegant and efficient 
way of handling all sixteen cases. Note that the rounding direction for integer division 
in ANSI C is only defined for positive numbers. Some implementors get around this 
difficulty by using a preprocessor flag to select different fragments of code depending 
on whether the target architecture has symmetric or asymmetric rounding (Dorr 1990). 
The approach taken here is to ensure that division is applied only to positive operands. 
Therefore, the absolute value of A ;̂ (Ay) is taken, and the sign is stored in a separate 
variable Sx (sy). This divides the number of cases by four and is also convenient for 
implementing Bresenham's algorithm. 

It turns out that all the expressions used in tests and for calculating clipped coor-
dinates change by at most one if the opposite rounding direction is assumed [toward 
(xi^yi)] for rasterization. Thus, four cases can be collapsed to two by incorporating a 
0-1 flag, dir^ or its complement into such expressions. 

The remaining two cases are distinguished by whether the slope of the line is less 
than or equal to 45° (the "semihorizontal" case) or greater than 45° (the "semivertical" 
case). These two cases cannot be collapsed easily, so separate code is used for each case; 
however, the most complex part of the algorithm is written as a preprocessor macro 
that is expanded once for each case. 
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Further Refinements 

There are a couple of changes that can be made to the basic implementation to optimize 
it for specific circumstances and hardware. 

First, if a large proportion of the lines are expected to be rectilinear {Ax = 0 or 
A^ = 0), it is advantageous to detect such lines when A ;̂ and Ay are computed and 
use the obvious fast clipping and drawing algorithms for them. 

In clipping the second endpoint when it has type 2, two multiplications are used 
to determine which of two candidate edges will be hit when rasterizing the line. This 
is done so that only a single exit condition is needed for the Bresenham algorithm 
loop. If multiplications are prohibitively expensive on the target architecture while 
lines are expected to be relatively short, it may be advantageous to use a modified 
Bresenham algorithm with two loop counters and two exit conditions and avoid the two 
multiplications. 

0 C Implementation of the Line Clipper 0 
#define LEFT 1 
#define RIGHT 2 
#define BOTTOM 4 
#define TOP 8 

#define SWAP(x, y) { int _t = x; x = y; y = _t; } 

#define OUTCODE(x, y, outcode, type) \ 

{ \ 
if (x < xl) outcode = LEFT, type = 1; \ 
else if (x > xr) outcode = RIGHT, type = 1 ; \ 
else outcode = type = 0 ; \ 
if (y < yb) outcode |= BOTTOM, type++; \ 
else if (y > yt) outcode |= TOP, type++; \ 

} 

ttdefine CLIP(al, a2, bl, da, da2, db2, as, bs, sa, sb, \ 
amin, AMIN, amax, AMAX, bmin, BMIN, bmax, BMAX) \ 

{ \ 
if (outl) { \ 

if (outl & AMIN) { ca = db2 * (amin - al) ; as = amin; } \ 
else if (outl & AMAX) { ca = db2 * (al - amax); as = amax; } \ 
if (outl & BMIN) { cb = da2 * (bmin - bl) ; bs = bmin; } \ 
else if (outl & BMAX) { cb = da2 * (bl - bmax); bs = bmax; } \ 
if (typel == 2) \ 
outl 8c= (ca + da < cb + !dir) ? /(AMIN | AMAX) : /(BMAX | BMIN); \ 

if (outl & (AMIN I AMAX)) { \ 
cb = (ca + da - !dir) / da2; \ 
if (sb >= 0) { if ((bs = bl + cb) > bmax) return; } \ 
else { if ((bs = bl - cb) < bmin) return; } \ 
r += ca - da2 * cb; \ 
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} 
else { 

ca = (cb - da + db2 - dir) / db2; 
if (sa >= 0) { if ((as = al + ca) 
else { if ((as = al 
r += db2 * ca - cb; 

ca) < amin) 
> amax) return; } 
return; } 

else { as = 
alt 
if 

iJ 

= 0; 
(out2) { 
E (type2 
ca = db2 
cb = da2 
out2 Sc= 

al; 

== 
• 

* 

bs = 

2) { 
((out2 
((out2 

(cb + da 

bl, 

& 
& 
< ( 

; } 

AMIN) 
BMIN) 
::a + d: 

? 
? 

Lr; 

al 
bl 
1 ? 

- amin 
- bmin 
/(AMIN 

amax - al); 
bmax - bl); 
AMAX) : /(BMIN | BMAX), 

if (out2 & (AMIN I AMAX)) n = (out2 & AMIN) ? as - amin : amax 
else { n = (out2 & BMIN) ? bs - bmin : bmax - bs; alt = 1; } 

} 
else n (a2 as) a2 - as as - a2; 

void clip(int dir, int xl, int yl, int x2, int y2, 
int xl, int yb, int xr, int yt) 

If dir = 0, round towards (xl, yl) 
If dir = 1, round towards (x2, y2) 

V 

int adx, ady, adx2, ady2, sx, sy; 
int outl, out2, typel, type2; 
int ca, cb, r, diff, xs, ys, n, alt; 

OUTCODE(xl, yl, outl, typel); 
0UTC0DE(x2, y2, out2, type2); 
if (outl & out2) return; 
if ((typel != 0 && type2 == 0) 

SWAP(outl, out2); 
SWAP(typel, type2); 
SWAP(xl, x2); 

II (typel == 2 && type2 == 1)){ 

SWAP(yl, 
dir V= 1 

} 
xs = xl; 
ys = yl; 
sx = 1; 
adx = x2 -
if (adx < 
sy = 1; 
ady = y2 -
if (ady < 
adx2 = adx 

y2) 

xl; 
0) { 

yl; 
0) { 
+ a 

adx -adx; sx = -1; } 

ady = -ady; sy -1; } 
+ adx; 
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/* alternate Bresenham */ 

ady2 = ady + ady; 
if (adx >= ady) { 

k 

^ line is semi-horizontal 

r = ady2 - adx - !dir; 
CLIP(xl, x2, yl, adx, adx2, ady2, xs, ys, sx, sy, 

xl, LEFT, xr, RIGHT, yb, BOTTOM, yt, TOP); 
diff = ady2 - adx2; 
if (alt) { 

for (;; xs += sx) { 
plot(xs, ys); 
if (r >= 0 ) { 

if (--n < 0) break; 
r += diff; 
ys += sy; 

} 
else r += ady2; 

} 
} 
else{ 

for (;; xs += sx) { 
plot(xs, ys); 
if (--n < 0) break; 
if (r >= 0 ) { r += diff; ys += sy; } 
else r += ady2; 

} 
} 

/* standard Bresenham */ 

} 
else { 

/* 
line is semi-vertical 

/* alternate Bresenham */ 

r = adx2 - ady - !dir; 
CLIP(yl, y2, xl, ady, ady2, adx2, ys, xs, sy, sx, 

yb, BOTTOM, yt, TOP, xl, LEFT, xr, RIGHT); 
diff = adx2 - ady2; 
if (alt) { 

for (;; ys += sy) { 
plot(xs, ys); 
if (r >= 0 ) { 

if (--n < 0) break; 
r += diff; 
xs += sx; 

} 
else r += adx2; 

} 
) 
else { 

for (;; ys += sy) { 
plot(xs, ys); 
if (--n < 0) break; 
if (r >= 0 ) { r += diff; xs += sx; } 

/* standard Bresenham */ 
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e l s e r += adx2; 
} 

} 

} 

} 
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Efficient and Robust 2D Shape 
Vectorization 
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Paris, France Canada 

0 Introduction 0 

In computer graphics applications, it is often convenient to be able to convert a shape 
from its bitmap representation to a vectorized form. Indeed, a vectorized form has 
many advantages over a bitmap: It can be transformed without loss of resolution, and 
it is sometimes better suited for the needs of computer vision. This gem presents an 
algorithm to perform the vectorization of arbitrary 2D shapes (a shape is defined here 
as "a set of contiguous pixels of the same color"). We developed the algorithm for a 
computer vision application: The purpose was to study how to train a neural network to 
recognize arbitrarily scaled handwritten digits and required the network to be presented 
with a more meaningful representation of the data than just a raw bitmap (Michaud 
et al. 1993). 

The first part of this gem summarizes the problem, explains how it is usually solved, 
and shows the limits of this technique. The second part presents a simple yet very use-
ful extension of the algorithm, based on pattern matching, that solves the limitations 
raised in the first part. It uses postprocessing rules somewhat similar to the produc-
tion rules found in formal systems. Finally, a third section makes some remarks about 
vectorization that can be useful. 

0 Summary of the Problem 0 

Vectorization transforms a shape into a collection of vectors that delimits its boundaries. 
Since vectorization starts from a coarse approximation of the shape (its rasterization 
on a grid of pixels), it can only produce a limited number of vectors, which can be 
encoded as integers in the [0,7] range (see Figure 1). The collection is also sometimes 

Copyright (c) 1995 by Academic Press, Inc. 
All r ights of reproduct ion in any form reserved. 

IBM ISBN 0-12-543455-3 
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Figure 1 . The original algorithm. 
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Figure 2. Generating the contour. 

called "chain code." The encoding process has already been described by others (Plaziac 
1991, Ballard and Brown 1992), but deserves some explanation. 

The Usual Algorithm 

First, the algorithm generates the boundaries. It does so in four phases, scanning the 
bitmap in a particular direction (leftward, rightward, upward and downward) at each 
phase. Each phase adds a layer of pixels to the shape any time it comes across a 
boundary, a bit as if it were "snowing" on the shape. Figure 2 shows how each of the 
first two phases adds pixels to the bitmap to progressively determine the contour of the 
shape. The other two passes work exactly the same way. 

Finally, the algorithm finds a pixel of the contour of the shape and may now enter 
its main loop (see the following pseudocode). 
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Figure 3. A dead end. 

loop 
mark(p) 
for idelta = 0 to 7 
delta = ccw[idelta] 
if boundary(p+delta) 

addChain(delta) 
p := p + delta 
endif 

while movesRemain() 

// Mark present location. 
// Index of neigbor offsets, ccw. 
// Get unit offset vector. 
// Found neighboring boundary. 
// Record motion. 
// Update location (vector add). 

Limitations 

This algorithm, though it sets the ground rules of chain code generation, is not perfect. It 
especially has problems with thin bitmaps or bitmaps that present very narrow canyons. 
Following are two examples of the kind of problems that usually arise. 

Problem 1. In the first example, the algorithm is applied to a small, lower-case m 
(see Figure 3). The algorithm starts normally at point A, then comes close to a very 
narrow canyon (only one pixel wide), at point B. Since it is checking the directions 
counterclockwise, it falls into the canyon. However, as it continues deeper into the 
canyon, marking the pixels along its way, it does not notice that it is blocking its exit. 
The algorithm terminates at the bottom of the canyon (point C), leaving two-thirds of 
the m unvectorized! 

Problem 2. In the second example, the algorithm is applied to a 1, starting at point 
A (see Figure 4). Theoretically, a good algorithm should walk up a vertical line until 
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Figure 4. A leak. 

point 5 , then take the "staircase" leftward until point C and then go back up until 
point D. However, as it reaches point B, the standard algorithm takes a short cut, 
and goes directly to point D. This comes from the fact that it checks all the directions 
counterclockwise: For thin 45° lines, it has no way of knowing whether route C or route 
D is the best one. 

0 The New Algorithm 0 

A very simple extension will solve the two problems. The trick is to subdivide every 
pixel of the bitmap into a 4 x 4 grid of "smaller" pixels, as shown in Figure 5 (anything 
greater than 2 x 2 (3x3 and beyond) would work too, requiring less memory). However, 
four is a more practical number, since computers can multiply and divide by four very 
easily using bit-shifts. 

At the new scale, problem 1 simply disappears. In a 4 x 4 world, there are no more 
narrow canyons. All canyons are at least four pixels wide. There is no risk of getting 
stuck. 

Problem 2 still persists, but becomes simpler. In the 4 x 4 world, the straight moves 
(left, right, up, down) always have priority over the oblique moves (left-up, right-up, 
left-down, right-down). Oblique routes should only be taken as a last resort, when no 
straight route is possible. Therefore, problem 2 is easily solved by changing the order 
in which the directions are checked. The rightward, upward, leftward, and downward 
directions should always be checked first, and only then the oblique directions. 
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Figure 5. The new algorithm. 

Shortcomings 

The reader will have at least three objections regarding the new method: 

1. The new algorithm generates a chain code at 4x that is much longer than the chain 
code at Ix and very different from it. 

2. The chain code is wrong. Suppose the algorithm is applied to an oblique 45° line 
at I x . Then at 4x one will end up with the chain code for a big staircase instead 
of the chain code for an oblique line. 

3. The new algorithm will be extremely slow. Given a scale factor of 4x, there are 
sixteen times as many pixels to process. 

Two Additional Tricks 

It turns out that two rather simple tricks will overcome most of the problems raised by 
these three remarks. 

1. The first trick is based on an interesting property of the chain code at 4x and 
solves the first two objections. The chain code can be very easily postprocessed to 
obtain a 1 x chain code, using three simple rules of pattern searching. Using C to 
indicate a code value, if the input is a code at 4x and the desired output is a code 
at I x , then the reduction rules are as follows: 
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cccc -
ccc 
cc 
c 

-̂  c 
- {} 
^ cc 
^ c 

reduce to one copy, 
eliminate, 
(ignored). 
identity, 

in which the fourth pat tern rule (identity) subsumes the third. 
A simple example will prove the efficiency and the simplicity of this postprocess-

ing technique (see Figure 5). Scanning manually from Figure 5(a), one naturally 
obtains the following code: 

766662222176666222217666655353322221 

A good algorithm should be able to achieve the same results. The original algorithm 
would certainly fail, since the figure presents both problems 1 and 2. The new 
algorithm applied to the shape yields the following results: 

4x chain code [Figure 5(b)]: 
000 7 6666 eeee eeee eeee eee ooo 2222 2222 2222 2222 222 1 
000 7 6666 eeee eeee eeee eee 000 2222 2222 2222 2222 222 1 
000 7 6666 6666 6666 6666 666 5 444 666 5 444 3 222 444 eee 5 
444 3 222 444 3 2222 2222 2222 2222 222 1 

After postprocessing the 4x code, one obtains the exact result. 

Postprocessed I x chain code [Figure (5a)]: 
766662222176666222217666655353322221 

The second trick does not completely solve the last objection (there is truly more 
processing to do), but it helps considerably. The original algorithm spent most 
of its t ime blindly testing the eight possible directions of motion, which was not 
very efficient. The reader will notice that the chain code at 4x presents many long 
segments of identical continuous values, meaning that the algorithm often keeps on 
moving in the same direction for at least a few steps. By keeping track of the last 
direction in which it was moving and using it as a first guess for the next move, 
the new algorithm can save many computations. 

0 Additional Remarks 0 

Computing the Derivative 

It is often interesting to compute the (discrete) derivative of the chain code, since it 
is invariant under boundary rotations. The derivative of the chain code reflects the 
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change in the orientation of the tangent to the contour as one moves from one point 
of the contour to the next. The derivative cannot simply be the difference between two 
consecutive direction codes, since this would imply many discontinuities. For instance, 
if the current direction is 7 and the next one is 0, the change should not be recorded as 
0 — 7 = —7, but rather as —1, the shortest path on the trigonometric circle. To do this, 
we will use the following implementation: 

C'f, ^ {Ck - Ck-i + 12) mod 8 - 4 . (1) 

The reader should be careful with the mod function, which is here meant as the genuine 
modulo function for relative integers (i.e., —2 mod 8 = 6 and not —2, as some math 
packages will compute. The a mod b function should return the smallest integer r in 
the [0,6—1] range such that bq + r = a). 

The Problem of the Starting Point 

A difficult problem to solve is that of the starting point. Since the chain code reflects 
the contour of the object, it is indeed cyclic. A suitable starting point must be found. 
Ideally, the behavior of the algorithm should be invariant under boundary rotation. 
A canonical form is quite important for certain applications such as optical character 
recognition (OCR). The C + + code presented below chooses the contour pixel closest to 
the upper-left corner of the bounding box of the shape. However, this is just a convention 
and certainly not the perfect choice. 

Extensions 

Though the present method finds merely the contours of 2D objects, voids can be iden-
tified following the generation of the shape's contour. The postprocessing of the chain 
code using a simple pattern matcher is a powerful technique worthy of further study. 
Extended rules sets, particularly those useful for different scale factors, deserve atten-
tion. The interested reader is directed to standard treatments (Olson 1992, Schneider 
1990, Feldman 1992, Freeman 1961) for supplementary information. 

0 C Code <> 

pt2.H 

typedef struct pt2Struct{ 
int x,y; 

} Pt2; 

extern pt2* addPt2(pt2 *a, pt2 *b, pt2 *c); 
extern pt2* subPt2(pt2 *a, pt2 *b, pt2 *c); 
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pt2.C 

#include "pt2.h" 

/* */ 
/* Two utility functions to add and subtract 2D integer points.*/ 

/* */ 
/ * • • * * * • • • * * * • • • • • * • • • * * * • • • • * • * * • • • * • • • • * • * • • • * * * 

pt2* addPt2(pt2 *a, pt2 *b, pt2 *c) 
{ c->x = a->x + b->x; c->y = a->y + b->y; r e tu rn c; } 

pt2* subPt2(pt2 *a, pt2 *b, pt2 *c) 
{ c->x = a->x - b->x; c->y = a->y - b->y; r e tu rn c; } 

chainCode.H 

#define DEFAULT_CODE_LENGTH 512 
#define SCALE 4 

class chainCode{ 
public: 

char* code; 
int length; 

chainCode(); 
/chainCode(); 
void add(char c); 
chainCode* postProcess{); 
void printSelf(); 

}; 

\paragraph{chainCode.C} 
\begin{codingeightpt} 
#include <stdlib.h> 
#include <stdio.h> 
#include "chainCode.h" 

/ • • • • • • • • * * • • • * • • • • • • * • • • • • • • • • • • • • • • • • * • * • • • * • • • • 

/* */ 
/* Class constructor. */ 
/* */ 
/ • • • * * • • * • • • • * • * • • • • • * • • • • • • • • • • • • • • * • • • • • • • • • • * • • • • • * * 

chainCode::chainCode() 

{ 
code = malloc(DEFAULT_CODE_LENGTH * sizeof(char)); 
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code[0] = 'XO'; 
length = DEFAULT_CODE_LENGTH; 
} 

/* */ 
/* Class destructor. */ 

/* */ 

chainCode::/chainCode() 
{ free(code); } 

/* */ 
/* This method appends a new code to the chain. If there */ 
/* is not enough memory left, the function doubles the size */ 
/* of the chain code. */ 
/* It receives as a parameter the new code to be added (c). */ 
/* */ 
/ • • • • • • i t * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

void chainCode::add(char c) 

{ 
int 1 = strlen(code); 

if (1 >= length-1){ 
length *= 2; 
code = realloc(code, length); 

} 
code[1] = c; 
code[1+1] = 'XO'; 
} 

/* */ 
/* This method post-processes a 4x chain code to generate a Ix */ 
/* chain code. A pointer to the Ix code is returned. The method */ 
/* uses the 4 following rules: */ 
/* CCCC -> C : reduce to one copy */ 
/* CCC -> {} : eliminate */ 
/* CC -> CC : (ignored) */ 
/* C -> C : identity */ 
/* */ 

chainCode* chainCode::postProcess() 

{ 
int i = 0, j; 
chainCode *filtCode; 
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filtCode = new chainCode(); 

while (i<length){ 

if (i+SCALE-1 < length){ 

for (j=0; j<SCALE-l; j++) 

if (code[i+j] != code[i+j+l]) 

break; 

if (j == SCALE-1){ 

filtCode->add(code[i]); 

i += SCALE; 

continue; 

} 

} 

if (i+SCALE-2 < length){ 

for (j=0; j<SCALE-2; j++) 

if (code[i+j] != code[i+j+l]) 

break; 

if (j == SCALE-2){ 

i += SCALE-1; 

continue; 

} 

} 

filtCode->add(code[i]); 

i + +; 

} 

return filtCode; 

} 

/ • • • • • • • • • * • • • • • • • • • • • • • • • • • • • • • • • • • • * * • • • • * • * • • • • * 

/* */ 
/* A utility method to display the chain code */ 
/* */ 

void chainCode::printSelf() 
{ printf("\n%s", code); } 

vectorize.C 

#include <string.h> 
#include <stdlib.h> 
#include <limits.h> 
#include "chainCode.h" 
#include "pt2.h" 

/* DEFINITION OF THE CONSTANTS */ 

#define CONTOUR 'C 
#define VISITED 'v' 
#define BLACK '1' 
#define WHITE '0' 
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/* DEFINITION OF THE MACROS */ 

ttdefine PIX(a,b) ((b) * f_size.x + (a)) 
#define PIX2(a,b) ((b) * size->x + (a)) 
#define MIN(x,y) ((x)<(y) ? (x) : (y)) 
ttdefine MAX(x,y) ((x)>(y) ? (x) : (y)) 

/* */ 
/* This is the main function. It receives as a parameter a */ 
/* bitmap image of size 'size' and outputs a chain code. */ 
/* The following constraints are placed on the bitmap: */ 
/* + Each pixel is encoded as a char. */ 
/* + Only white (0) and black (1) pixels are taken into */ 
/* account. */ 
/* + The shape to encode should have no holes and should be */ 
/* in a single piece. */ 
/* */ 
/ * * * * • * * * • • • • * * * * * * * * * * * • • • * • * * • • • * * • • * * * * * * * * * * * • • * • * 

chainCode* encode(pt2 *size, char ^bitmap) 

{ 
static pt2 contour_dir[8] { 1 , 

{ 0 , 

{ - 1 , 
{ 0 , 

{ 1 , 

{ - 1 , 

( - 1 , 

{ 1 , 

0 } , 

- 1 } , 
0 } , 

1 } , 

- 1 } , 

- 1 } , 

1 } , 

1 } } 
chainCode *codel, 

code4; 
char *fatmap, 

direction_code[8] = {'0','2','4','6','1','3','5','7'}; 
int i,j,u,v, 

flag, 
d, distance, 
last_dir; 

pt2 pixel, 
test_pixel, 
start__pixel, 
f_size, 
bbox[2] = {{INT_MAX, INT_MAX}, 

{-INT_MAX, -INT_MAX}}; 

/* CREATE AN EMPTY CHAIN CODE TO RETURN THE RESULT */ 
codel = new chainCode(); 

/* RESCAN THE BITMAP AT A GREATER RESOLUTION (4x4 GREATER) */ 
/* ADD TWO BLANK LINES TO THE LEFT, RIGHT, TOP AND BOTTOM */ 
/* OF THE FATMAP. THESE COULD BE NECESSARY TO AVOID THE */ 
/* CONTOUR TO BE DRAWN OUTSIDE OF THE BOUNDS OF THE MATRIX */ 
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f_size.x = 2 + SCALE*size->x + 2; 
f_size.y = 2 + SCALE*size->y + 2; 
fatmap = malloc{f_size.x * f_size.y * sizeof(char)); 
for (i=0; i<f_size.x * f_size.y; i++) 

fatmap[i] = WHITE; 
for (j=0; j<size->y; j++) 

for (i=0; i<size->x; i++) 
if (bitmap[PIX2(i,j)] == BLACK) 

for(v=0; v<SCALE; v++) 
for(u=0; u<SCALE; u++) 

fatmap[PIX(2+4*i+u, 2+4*j+v)] = BLACK; 

/* GENERATE THE CONTOUR OF THE BITMAP USING 4 SUCCESSIVE */ 
/* PASSES: FOR EACH DIRECTION, WE SCAN EACH LINE UNTIL */ 
/* WE REACH A BLACK PIXEL: THE PIXEL JUST BEFORE IT IS A */ 
/* CONTOUR PIXEL */ 

/* PASS 1: LEFTWARDS */ 
for (j=0; j<f_size.y; j++) 

for(i=l; i<f_size.x; i++) 
if (fatmap[PIX(i,j)] == 

if (flag == 0) { 
fatmap[PIX(i-l, 
flag 

} 
} 

else 
flag 0; 

BLACK){ 

j ) : CONTOUR; 

/* PASS 2: RIGHTWARDS */ 
for (j=0; j<f_size.y; j++) 

for (i=f_size.x - 1; i>=0; i--) 
if (fatmap[PIX(i,j)] == BLACK){ 

if (flag == 0) { 
fatmap[PIX(i+l, j)] = CONTOUR; 

flag 

} 

1; 

} 
else 

flag = 0; 

/* PASS 3: DOWNWARDS */ 
flag = 0; 
for (i=0; i<f_size.x; i++) 

for (j=0; j<f_size.y; j++) 
if (fatmap[PIX(i,j)] 

if (flag == 0) { 
fatmap[PIX(i, 
flag = 1; 
} 

} 
else 

BLACK){ 

j-1)] CONTOUR; 
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flag - 0; 

/* PASS 4: UPWARDS */ 
flag = 0; 
for (1=0; i<f_size.x; i++) 

for {j=f_size.y - 1; j>=0; j--) 
If (fatmap[PIX(l,j)] == BLACK){ 

If (flag == 0) { 
fatmap[PIX(i, j+1)] = CONTOUR; 
flag = 1; 
} 

} 
else 

flag = 0; 

/* COMPUTE THE BOUNDING BOX OF THE CHARACTER (L,T,R,B) */ 
for (j=0; j<f_size.y; j++) 

for(i=l; i<f_size.x; i++) 
if (fatmap[PIX(i, j) ]==^CONTOUR) { 

bbox[0].X = MIN(i, bbox[0].x); 
bbox[0].y = MIN(j, bbox[0].y); 
bbox[l].x = MAX(i, bbox[l].x); 
bbox[l].y = MAX(j, bbox[l].y); 
} 

/* DETERMINE THE CONTOUR PIXEL CLOSEST TO THE UPPER LEFT CORNER */ 
/* OF THE BOUNDING BOX */ 

distance = INT_MAX; 
for (j=0; j<f_size.y; j++) 

for(1=1; i<f_size.x; i++) 
if (fatmap[PIX(i,j)]==CONTOUR){ 

d = (i-bbox[0].x) * (i-bbox[0].x) + (j-bbox[0].y) * (j-bbox[0].y); 
if (d < distance) { 

distance = d; 
start_pixel.x = i; 
start_pixel.y = j; 
> 

} 

/* BEGIN THE ENCODING PROCEDURE */ 
pixel.X = start_pixel.x; 
pixel.y = start_pixel.y; 
fatmap[PIX(pixel.X, pixel.y)] = VISITED; 
last_dir = 4; 
while(0 < 1) { 

/* AT FIRST, CHECK THE PIXEL IN THE LAST KNOWN DIRECTION */ 
addPt2(&pixel, &contour_dir[last_dir], &test_pixel); 
if (fatmap[PIX(test_pixel.x, test_pixel.y)] == CONTOUR){ 

pixel.X = test_pixel.x; 
pixel.y = test_pixel.y; 
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fatmap[PIX(pixel.X, pixel.y)] = VISITED; 
code4.add(direction_code[last_dir]); 
} 

/* CHECK ALL THE POSSIBLE DIRECTIONS, CLOCKWISE */ 
for (i=0;i<8;i++) { 

addPt2(&pixel, &contour_dir[i], &test_pixel); 
if (fatmap[PIX(test_pixel.x, test_pixel.y)] == CONTOUR){ 

pixel.x = test_pixel.x; 
pixel.y = test_pixel.y; 
fatInap[PIX(pixel.x, pixel.y)] = VISITED; 
code4.add(direction_code[i]); 
last_dir = i; 
break; 
} 

} 
if (i == 8) 

break; 

} 

/* WRITE THE LAST MOVE TO THE OUTPUT VECTOR */ 
for (i=0; i<8; i++) { 

subPt2(&start_pixel, &pixel, &test_pixel); 
if (test_pixel.x==contour_dir[i].X && test_pixel.y==contour_dir[i].y){ 

code4.add(direction_code[i]); 
break; 
} 

} 

/* POST-PROCESSING LOOP: */ 
/* GO BACK TO A LOWER RESOLUTION BY FILTERING THE 4x CODE */ 

codel = code4.postProcess(); 
return codel; 

} 
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0 Introduction 0 

Jagged edges, appearing in digitized images due to aliasing, are often magnified when 
images are being manipulated (e.g., enlarged or rotated). To eliminate this nuisance, 
many techniques have been developed to reconstruct analytical representations of jagged 
edges (Chryssafis 1986), also described in other gems and/or cited below. Edge recon-
struction techniques are also employed in commercial graphics packages to extract out-
lines from scanned artwork. This "vectorization" is an essential step when subsequent 
processing involves clipping frames, enlargement, or producing high-resolution output. 

Published techniques include least-squares minimization (Cantoni 1971), the con-
struction of regions of bounded precision (Williams 1981), edge following (Roth 1982), 
an edge inference algorithm (Bloomenthal 1983) based on the recognition of repeated 
jag patterns, and the use of simple templates for smoothing staircase patterns (Olsen 
1990). 

Some of these methods (Cantoni 1971, Williams 1981) need quadratic time to render 
(in the worst case), since the original data has to be traced more than once. Pattern-
based techniques generate more lines than are needed, should no obvious jag patterns 
be identified. Finally, none of these methods is designed with an underlying digitization 
model in mind. 

This gem presents an algorithm for fitting a sequence of line segments to the jagged 
edge contour formed by a chain of pixels. Only a single trace through the pixel edges is 
required. The algorithm is based on the inverse process of Bresenham's midpoint line 
algorithm (Bresenham 1965). Only integer arithmetic is required in the reconstruction 
process, and the time complexity of the algorithm is 0{N), where N is the number of 
raster edges in the given image. The efficiency of the algorithm makes it useful as a pre-
processing pass used to locate the sharp corners prior to employing conventional curve 
fitting techniques, as are described in a previous gem (Schneider 1990). Furthermore, 
the straight lines resulting have a valuable property: They can perfectly reconstruct the 

Copyright (c) 1995 by Academic Press, Inc. 
All r ights of reproduct ion in any form reserved. 
IBM ISBN 0-12-543455-3 ^ ^ ^ 
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Figure 1. (a) Pixel edge patterns exhibiting dominant and transverse directions (three-edge patterns, 
symmetric cases omitted), (b) The U-turn case forcing a quick stop. 

original jagged pattern if re-rasterized using Bresenham's algorithm. This reversibility 
makes it possible to use the fitted edges as a lossless data representation of the original. 

0 Outline Reconstruction 0 
Given an image in bitmap form, the positions of pixel edges can be extracted by simple 
comparison of adjacent pixels, described in a previous gem (Feldman 1992). 

Assume that the existence of jagged edges is a result of having applied Bresenham's 
algorithm to a set of imaginary line segments, the set that is the objective. It follows 
that all the possible line segments that could be fitted to a jagged edge must fall within 
±0.5 pixel length from their corresponding pixel edges. A line segment is allowed to 
start or end at any position along a pixel edge or along the normal to the midpoint of 
that pixel edge (within ±0.5 pixel length from the midpoint). The reason for this shall 
be apparent later. 

Establishing the Dominant and Transverse Directions 

By examining the first few consecutive pixel edges, one can establish a dominant direc-
tion (toward which more pixel edges point) and a transverse direction (toward which 
fewer pixel edges point) of the intended line segment. This in effect classifies the direc-
tion of the intended line segment into one of the octants as in Bresenham's algorithm. 
The possible patterns of the first few pixel edges are shown in Figure 1. 

Inverse Midpoint Algorithm 

The line extending (in the transverse direction) 0.5 pixel length on either side from the 
midpoint of a pixel edge is called the bounding window of that pixel edge. Now for 
the first pixel edge we could extend two lines from the starting point to the ±0.5 pixel 
length positions on the bounding window. The slopes of these lines correspond to the 
maximum and minimum gradient limits for the set of possible line segments that could 
have produced the jagged pattern so far (Figure 2). 
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Figure 2. The bounding windows of the pixel edges. Corresponding gradient ranges are shaded. 

Similarly, each subsequent pixel edge has its own bounding window and gradient lim-
its. Therefore, in stepping onto a new pixel edge, the gradient limits are tightened. The 
minimum gradient limit becomes the larger of the previous and the current minimum 
gradient limits. Similarly, the updated maximum gradient limit is the smaller of the 
previous and the current maximum gradient limits. 

To avoid the use of floating-point coordinates to represent the endpoints, coordinates 
with a predefined subpixel resolution are used. Hence, any gradient limit can be repre-
sented as a pair of integers, that is, the components of the gradient vector, dx and dy. 
Thus, a comparison between two gradient limits involves only a test of the sign of the 
cross product of the gradient vectors: dxi x dy2 — dx2 x dy\. Note that only two integer 
multiplications and one integer comparison are required. 

TernnJnation Criteria 

Consideration of pixel edge extension stops on meeting any of the following conditions: 

1. The orientation of the next pixel edge is neither dominant nor transverse. 
2. Two consecutive transverse pixel edges are encountered. 
3. The maximum gradient limit no longer exceeds the minimum gradient limit. 

Now the bounding window on the preceding pixel edge is the last consecutive bound-
ing window through which one can "see" from the starting point. The fitted line segment 
shall end here, at a position (on the bounding window) closest to the midpoint of the 
last successful pixel edge; hence the assumption of the position of the starting point. 

It is important that the fitted line segment does not touch any edges of the bounding 
windows. Otherwise, one cannot uniquely identify the appropriate pixel edge when 
recovering the jagged pattern. 
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Figure 3. Establishing final location of an endpoint that cannot be located in the initial windows. 

Locating the Endpoint 

Because of the finite resolution of endpoint coordinates, it is possible that no endpoint 
can be established even before the gradient limits cross over. Three solutions to this 
problem are considered. The first is to introduce an extra test on the tightening of 
gradient limits: If there is no point within the new bounding window (under the subpixel 
resolution) that can satisfy the gradient limits, then the new pixel edge will not be 
considered. Instead, the line will end within the last bounding window. Using this 
method means that an extra test is needed for each pixel edge. The line segments fitted 
are also not the longest possible (Figure 3). This method was rejected, as it would 
results in many more line segments than are necessary. 

The second method of solution proceeds irrespective of resolution until the gradient 
limits cross over. It then backtracks along previous pixel edges until an endpoint be-
neath the level of subpixel resolution can be found. This method finds line segments 
of maximum length. In practice, backtracking beyond one pixel edge is rarely required 
given a subpixel resolution of 1/16 pixel. 

The first two methods terminate the line segments at an arbitrary point within the 
bounding window, for example, the one closest to the midpoint, and restart from that 
point. This occasionally results in shorter fitted lines having a more ragged appearance. 
The third method overcomes this problem by testing all the feasible ending positions 
within the last bounding window to determine which gives the longest continuing line. 
This gives the best results and increases the execution time by only a constant factor 
proportional to the subpixel resolution. 
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(a) (b) 

Figure 4. A test image reconstructed exactly using line segments, (a) With backtracking (276 line 

segments; 0.071 sec), (b) With exhaustive endpoint testing (261 line segments; 0.776 sec). 

0 Reconstructing the Jagged Edges 0 
To recover the original jagged pattern from the hne segments fitted, one need only 
apply Bresenham's midpoint line algorithm (Heckbert 1990). Since our Une segments 
neither start nor end at the midpoints of any pixel edge, the initial value of the decision 
variable must be preloaded with the offset having a precision scaled in proportion to 
the subpixel resolution. A sample implementation is presented below. 

0 C Implementation <> 
/* revfit.h: definitions for reversible straight line reconstruction routines */ 
#include "GraphicsGems.h" 
#define HRZ 1 
#define VRT 2 
/* Watch out for the precision of 'int' type. Make sure that the max */ 
/* coordinate value * SUBPIXRES can be stored in an 'int'. */ 
#define SUBPIXRES 32 

• • • • • • • • • • • • A ^ • • • • • • • • • • • • • • • • • • • • ^ t • • • • • • / 
/* typedef for Edgelist: the list of edges where lines are to be fitted */ 

•k-k-k-k-k-k-k-k-k-k-k-k-k-k-k* k k - k k - k - k k - k k k k k k k k k k k k k k k k k k k k k k - k - k - k k k k k k k I 
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typedef struct { 
int x,y; 
int dir; 
} PixelEdge; 

typedef struct { 
int Nedges; 
int current; 
PixelEdge *list; 
} Edgelist; 

+ve 

V 
1 - - > +ve 

*/ 
*/ 
*/ 

/* in bitmap resolution 
/* <--H edge 
/* (x,y)--> * I <-- V edge 

/* number of edges in the list */ 
/* current edge being visited */ 
/* the list of edges found from the pixmap */ 

int fitlines(Edgelist el, boolean Pretest, boolean TryAllEndPts, 
IntPoint2 *lines, int MaxLines); 

void linestojagged(int Nlines, IntPoint2 *lines); 

/* 
revfit.c : edge reconstruction and the inverse process. 

*/ 
ttinclude <stdio.h> 
#include "GraphicsGems.h" 
#include "revfit.h" 

#define HalfSUBPIXRES (SUBPIXRES/2) 
#define ESTABLISHED 127 
#define MAXRUN 2000 /* max no of pixel edges in a line */ 

extern DrawPixelEdge(int x, int y, int V_H); /* a user supplied function */ 
/* for drawing a PixelEdge */ 

* typedef's for sub-pixel resolution pixel edges and gradient bounds * 

typedef struct { 
int xl,yl; /* from (coordinates multiplied by sub-pixel resolution) */ 
int x2,y2; /* to (coordinates multiplied by sub-pixel resolution) */ 

} Pedge; 

typedef struct { 
int ly,Ix; /* lower limit */ 
int uy,ux; /* upper limit */ 

} Bound; 

/* midpt coordinates of a Pedge #define MidX(e) (((e).xl+(e).x2)/2) 
#define MidY(e) (((e).yl+(e).y2)/2) 
#define Is_Horizontal(d) (abs(d)==HRZ) /̂  
#define Is_Vertical(d) (abs(d)==VRT) /* 
#define against(a,b) (!((a)+(b))) /̂  
#define Bound_OK(b) (slopecmp((b).uy,(b).ux,(b).ly,(b).Ix)) 
#define WithinBound(dy,dx,b) (slopecmp((dy),(dx),(b).ly,(b).Ix) &&\ 

slopecmp((b).uy,(b).ux,(dy),(dx))) 

a horizontal direction? (1, -1) */ 
a vertical direction? (2, -2) */ 
whether two directions are opp. */ 
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* Get_Pedge(): Returns a pointer to the current Pedge from the list el. * 
* The position of the cursor of list is not modified. * 
* Returns NULL if no more edges in the list. * 
* Coordinates multiplied by sub-pixel resolution. * 

static Pedge *Get_Pedge(Edgelist el) { 
static Pedge e; 
int dir; 
if (el.current>=el.Nedges) return NULL; 
if {Is_Horizontal(dir=(el.list[el.current].dir))) { 
e.yl=e.y2=el.list[el.current].y*SUBPIXRES + HalfSUBPIXRES; 
e .xl=el . list [el .current] .x*SUBPIXRES 

- (dir>0 ? HalfSUBPIXRES : -HalfSUBPIXRES); 
e.x2=e.xl + (dir>0 ? SUBPIXRES : -SUBPIXRES); 

} 
else { 

e.xl=e.x2=el.list[el.current].x*SUBPIXRES + HalfSUBPIXRES; 
e.yl^el.list[el.current].y*SUBPIXRES 

- (dir>0 ? HalfSUBPIXRES : -HalfSUBPIXRES); 
e.y2=e.yl + (dir>0 ? SUBPIXRES : -SUBPIXRES); 

} 
return &e; 
} /* Get_Pedge() */ 

/ • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • ^ 

* forward(): Update the cursor of the list to the next edge. * 
* • • • • • • • • * • • • • • • • • • * * • • • • • • • • • • • • • • • * * • • • * • • • * • • • • 

#define forward(el) (( (el) .current)++) 

/ • • • * • * • • • * • * * • * * • • • • • * • • * • • * • * • * • • • • • * • • • • • * • • • * • • • * • • • • * • * • • • 

* backward() : Move baclc the cursor of the list one place so that * 
* the previous edge can be visited again. * 
• • * • • • * * • * • • • • • • • • • • • • • • • • • • • • * * * * • • • • • • * • • • • • • • • • • * • • * * • • • 

#define bacl<:ward(el) (( (el) . current)--) 

/ • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • \ 

* wayof(): return a direction. * 

/* the directions no.s are chosen s.t. dl==-d2 if dl,d2 are opp. */ 
static int wayof(Pedge e) { 
int d=e.x2-e.xl; 
return d ? d/SUBPIXRES /* 1 or -1 for horizontal edge */ 

: (e.y2 - e.yl)/HalfSUBPIXRES; /* 2 or -2 for vertical edge */ 
} /* wayof0 */ 

/ • • • • * • • • • * • • • • • • * • • * • * * • • * • * • • • • • • • • • • • • • * * • • • • • • • * * • • • • • 

* slopecmpO : True if grad vector of the 1st is on the counter-clocJcwise * 
* side of the 2nd one * 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • ^ 

static int slopecmp(int dyl,int dxl, int dy2,int dx2) { 
return (long)dx2*dyl > (long)dxl*dy2; 

} /* slopecmp() */ 
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* calcboundO: calc the bounds (the pair of gradient limits) for the Pedge * 
^ • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • * * * * * * * * * * * * * 

void calcbound(int dominantdir, Pedge e, int Sx, int Sy, 
Bound* b, IntPoint2 *gradU, IntPoint2 *gradL) { 

/* gradU and gradL shall be filled with the gradients just within the limits */ 
int dy,dx; 

if (Is_Horizontal(dominantdir)) { /* horizontal dominant direction */ 
b->uy = (e.yl+e.y2+SUBPIXRES)/2-Sy; 
b->ux = (e.xl+e.x2)/2 -Sx; 
b->ly = (e.yl+e.y2-SUBPIXRES)/2-Sy; 
gradU->x = gradL->x = b->lx = b->ux; 
gradU->y = b->uy-l; gradL->y = b->ly+l; 

} 
else { /* up or down dominant direction */ 

b->uy = (e.yl+e.y2)/2 -Sy; 
b->ux = (e.xl+e.x2+SUBPIXRES)/2-Sx; 
gradU->y = gradL->y = b->ly = b->uy; 
b->lx = (e.xl+e.x2-SUBPIXRES)/2-Sx; 
gradU->x = b->ux-l; gradL->x = b->lx+l; 

} 
if (!Bound_OK(*b)) { /* swaps the bounds if necessary */ 
IntPoint2 p; 
dx=b->ux; dy=b->uy; 
b->ux=b->lx; b->uy=b->ly; 
b->lx=dx; b->ly=dy; 
p=*gradU; *gradU=*gradL; *gradL=p; 

} 
} /* calcboundO */ 

* fitlines() : The reversible straight line edge reconstruction routine * 
******************************************************** 

int fitlines(Edgelist el, boolean Pretest, boolean TryAllEndPts, 
IntPoint2 *lines, int MaxNLine) { 

/* * 
* el : The supplied list of PixelEdges. 
* Pretest : l=perform pre-test on each pixel edge, i.e., stop as soon as 
* a valid end pt cannot be found on a pixel edge. 
* 0=Allows stepping back. 
* TryAllEndPts: l=Try all possible end-pts, 0=Use the one closest to mid-pt. 
* lines[] : A preallocated array to be filled with end pts of fitted lines 
* Note: Coordinates of the end pts are multiplied by SUBPIXRES. 
* MaxNLine : The size of the lines[] array. 
* */ 
int i,linescount,startp,Nendpt,Nstartpt,NPedges,Nbound; /* counters */ 
int Sx,Sy,Ex,Ey, Ux,Uy,Lx,Ly, maindir,trnsvrse,dnow, ndir,dir[3]; 
flag breaktrace, starttrace; /* flags */ 
int currentsave, bestpt, maxlen, bestpt_currentsave, bestpt_Nendpt; 
IntPoint2 startpts[SUBPIXRES],endlist[SUBPIXRES],bestpt_endlist[SUBPIXRES]; 
Pedge Pedgehistory[MAXRUN],e,last,*nextp,estartsave,bestpt_last; 
Bound bound[MAXRUN]; 
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el.current=0; 
e = *Get_Pedge(el) ; 
Sx = MidX(e); 
Sy = MidY(e); 

/* set cursor to the first edge */ 
/* first edge */ 

if {ITryAllEndPts) { 
lines[0].X = Sx; 
lines[0].y = Sy; 
linescount=l; 

} 
else { 
flag hori = Is_Horizontal(wayof(e))i 
Nstartpt=0; 
startpts[0].X = Sx; 
startpts[0].y = Sy; 
for (i=l;i<HalfSUBPIXRES;i++) { /* 

startpts[Nstartpt ].x = hori ? 
startpts[Nstartpt++].y = !hori ? 
startpts[Nstartpt ].x = hori ? 

/* record the 1st starting pt. 

the list of possible init. starting pts 

Sx-i 
Sy+i 
Sx-i 

startpts[Nstartpt++].y = !hori ? Sy+i 

Sx; 
Sy; 
Sx; 
Sy; 

} 
startp=0; /* counter for the list of possible starting pts (startpts[]) 
bestpt_currentsave=currentsave=el.current; /* save these for rewinding 
estartsave=e; 
maxlen=bestpt=-l; /* no best starting pt (bestpt) yet 
linescount=0; 

} /* if (ITryAllEndPts) .. else .. */ 

for (starttrace=TRUE;;) { 
if (starttrace) { 
dir [0] =wayof (e) ; ndir^^l; 
starttrace=0; breaktrace=0; 
Pedgehistory[0]=e; 
NPedges=l; 
Nbound= 0; 
} /* if (starttrace) */ 

/* loop for all PixelEdges */ 
/* beginning of a new line segment */ 
/* no.of distinct directions so far */ 

/* the first Pedge traced */ 
/* reset the counters */ 

last=e; 
forward(el); /* go on to the next PixelEdge */ 
if ((nextp=Get_Pedge(el))!=NULL) { /* get a new Pedge */ 
Pedgehistory[NPedges++]=*nextp; 
e=*nextp; 
dnow=wayof(e); /* direction of the current edge */ 

} 

if (nextp==NULL || ndir==ESTABLISHED){ /* maindir and trnsvrse established */ 
Bound b; 
IntPoint2 gradU,gradL; 
flag lowerupdated, upperupdated; 

if (nextp!=NULL) { 
calcbound(maindir,e,Sx,Sy,&b,&gradU,&gradL); 
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bound[Nbound]=bound[Nbound-1]; 

lowerupdated=upperupdated=FALSE; 
if (slopecmp(bound[Nbound-1].uy,bound[Nbound-1].ux, 

b.uy,b.ux)) { /* update tlie upper limit */ 
bound[Nbound].uy=b.uy; 
bound[Nbound].ux=b.ux; 
upperupdated=TRUE; 
} 
if (slopecmp(b.ly,b.Ix, 

bound[Nbound-1].ly, 
bound[Nbound-1].Ix)) { /* update the lower limit */ 

bound[Nbound].ly=b.ly; 
bound[Nbound].lx=b.Ix; 
lowerupdated=TRUE; 
} 

} /* if (nextp!=NULL) */ 

if (nextp==NULL || /* no more PixelEdge */ 
(dnow!=trnsvrse && dnow!=maindir) || /* U-turn */ 
(dnow==trnsvrse && dnow==wayof(last)) || /* 2 trnsvrse edges */ 
! Bound_OK (bound[Nbound] ) | | /* not witliin limits */ 
(Pretest && /* if Pretest, check if tliere is any pt witliin limits */ 
( (lowerupdated && !Wit]iinBound(gradU.y, gradU.x, bound [Nbound] ) ) || 
(upperupdated && !Wit]iinBound(gradL.y, gradL .x, bound [Nbound] )))) ) { 

/* now we sliall calculate the starting pt for tlie next trace */ 
for (;;) {/* loop until tlie endpoint lies wittiin tlie gradient limits */ 
int dx,dy,tmp; flag exact,EndptOK; 

Ex=MidX(last); Ey=MidY(last); 
if (Nbound==0) { /* i.e. first few PixelEdges. tlierefore mid-pt is olc */ 
if (TryAllEndPts){ 
endlist[0].x=Ex; endlist[0].y=Ey; 
Nendpt=l; 
} 
brealc; /* end pt found */ 

} 

b = bound[Nbound-1]; 

dx= Ex - Sx; /* tlie slope of the mid-pt of the last Pedge */ 

dy= Ey - Sy; 

if (TryAllEndPts && el.current-currentsave>maxlen) { 
/* find all possible end pts only if length longer than maxlen so far */ 
int h,addy,addx; 

i f (abs(maindir)==l) { addy=l; addx=0; } e l s e {addy=0; addx^l;} 
i f (WithinBound(dy,dx,b) ) { /* chec]<: mid-pt f i r s t */ 

end l i s t [0 ] .x=Ex; end l i s t [0 ] .y=Ey; Nendpt=l; 
} 
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else Nendpt=0; 
for (h=l; h<SUBPIXRES/2; h++) { 
if (WithinBound(dy+addy*h,dx+addx*h,b)) { 
endlist[Nendpt ].x = Ex + addx*h; 
endlist[Nendpt++].y = Ey + addy^h; 
} 
else if (WithinBound(dy-addy*h,dx-addx*h,b)) 
endlist[Nendpt ].x = Ex - addx*h; 
endlist[Nendpt++].y = Ey - addy*h; 
} 
} /* for (h) */ 
Ex=endlist[0].x; Ey=endlist[0].y; 
EndptOK = Nendpt>0; 

/* offset from mid-pt 

else { /* TryAllEndPts==FALSE. just calc the pt closest to the mid-pt */ 
if (!slopecmp(dy,dx,b.ly,b.Ix)) { 
/* 
* dy dx is equal or below the lower limit. 
* i.e. the slope just above the lower limit should be taken. 
* if the lower gradient limit hits exactly on a sub-pixel res point, 
* the truncation of the integer division has done part of the job. 

if (Is_Horizontal(maindir)) { 
tmp= dx*b.ly; exact= (dx==0 
Ey = tmp/b.lx + Sy + (b.lx>0 ? 

} 
else { 
tmp= dy*b.lx; 
Ex = tmp/b.ly 

exact= (dy==0 
Sx + (b.ly>0 7 

I tmp%b.lx:= = 0) ; 
(b.ly>0 ? 1 
{b.ly>0 ? -exact 

I tmp%b.ly==0); 
(b.lx>0 ? -exact 
(b.lx>0 ? 1 

exact) 

-1 )); 

-1 ) 
exact)); 

} 
EndptOK = Pretest || WithinBound(Ey-Sy,Ex-Sx,b); 
} 
else if {!slopecmp(b.uy,b.ux,dy,dx)) { 
/* 
* dy dx is equal or above the upper limit. 
* i.e. the slope just below the upper limit should be taken. 
* if the upper gradient limit hits exactly on a sub-pixel res point, 
* the truncation of the integer division has done part of the job. 
*/ 

tmp= dx*b.uy; exact= (tmp%b.ux==0); 
Ey = tmp/b.ux + Sy + (b.ux>0 ? (b.uy>0 

: (b.uy>0 
} 
else { 
tmp= dy*b.ux; exact= (tmp%b.uy==0); 
Ex = tmp/b.uy + Sx + (b.uy>0 ? (b.ux>0 

: (b.ux>0 

7 
7 

7 
7 

-exact 
1 

1 
-exact 

:-l ) 
: exact)); 

: exact) 

:-l )); 
} 

EndptOK = Pretest || WithinBound(Ey-Sy,Ex-Sx,b); 

} 
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else /* dy,dx is within the limits, i.e. midpoint is taken. */ 
EndptOK=l; 
} /* if (TryAllEndPts)..else.. */ 

if (EndptOK) break; /* if Pretest is TRUE, EndptOK always TRUE */ 
else { /* no valid endpoint can be found, step back one edge */ 
backward(el); 
last = Pedgehistory[--NPedges-2]; 
Nbound--; 

} /* for (;;) */ 
breaktrace=TRUE; 

/* until a valid end pt is found 
/* one line segment found. 

} 
limits not crossed over yet 
one more new valid bound 

/* continue to get another Pedge 

else { /* 
Nbound++; /* 
continue; 
} /* if (various trace breaking conditions) */ 
} /* if (nextp==NULL || ndir==ESTABLISHED) */ 
else { /* i.e. dominant and trnsvrse direction not yet established */ 
breaktrace = FALSE; 
if (ndir<3) { 
for (1=0;i<ndir;i++) ( / 
if (against(dnow,dir[i])) { / 
breaktrace = TRUE; / 
Ex=MidX(last); Ey^MidY(last); 
if (TryAllEndPts) { 

endlist[0].x=Ex; endlist[0].y=Ey 
Nendpt=l; 

} /* if (TryAllEndPts) */ 
} /* for 0 */ 
} 
if (ndir<2 || dnow!=dir[l] 
dir[ndir]=dnow; 
ndir++; 
} 

} 

compare with previous dir's 
there is a 'U' turn ... 
therefore an early stop 

dir[0]!=dir[l]) { 

if (ndir==3) 

{ 

/* now we can establish the directions.., 
/* _ I */ 
/* _| or _| */ if (dir[0]!=dir[l]) { 

maindir=dir[2]; 
if (dir[l]-:-dir[2] ) { 
trnsvrse=dir[0]; /* the 1st dir is the trnsvrse dir 
if (Is_Horizontal(maindir)) { 
Ux = Lx = MidX(e) - Sx; 

Uy = (Ly = e.yl-Sy-HalfSUBPIXRES) +SUBPIXRES; 

} 
else { 
Uy = Ly = MidY(e) - Sy; 
Ux = (Lx = e.xl-Sx-HalfSUBPIXRES) +SUBPIXRES; 
} 
) 
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else { 
trnsvrse=dir[1]; 
if (Is_Horizontal(maindir)) { 
Lx = Ux = MidX(e)-Sx; 
Ly = (Uy = MidY{e)+HalfSUBPIXRES-Sy) -SUBPIXRES; 
} 
else { 
Ly = Uy = MidY(e)-Sy; 
Lx = (Ux - MidX(e)+HalfSUBPIXRES-Sx) -SUBPIXRES; 
} 
} 

} 
else { 
maindir=dir[0]; 
trnsvrse=dir[2]; 
if (Is_Horizontal(maindir)) { 

I */ 

Lx = e.xl 
Ux = Lx + 
Uy = Ly = 
} 
else { 
Ly = e.yl 

+ (maindir>0 ? -HalfSUBPIXRES : HalfSUBPIXRES) - Sx; 
(maindir>0 ? SUBPIXRES : -SUBPIXRES); 
MidY(e) - Sy; 

Uy 
Ux 

Ly 
Lx 

+ (maindir>0 
(maindir>0 ? 
MidX(e) - Sx; 

? -HalfSUBPIXRES : HalfSUBPIXRES) - Sy 
SUBPIXRES : -SUBPIXRES); 

bound[0].lx=Ux; 

} 
} 
if (slopecmp(Ly,Lx,Uy,Ux)) { 
bound[0].uy=Ly; bound[0].ux=Lx 
bound[0].ly=Uy; 
} 
else { 
bound[0].uy=Uy; 
bound[0].ly=Ly; 

} 
Nbound=1; 
ndir = ESTABLISHED; 
} /* if (ndir==3) */ 
/* if (ndir==ESTABLISHED)., 

bound[0] 
bound[0] 

ux=Ux; 
lx=Lx; 

/* swap the grad limits if necessary */ 
/* Ly Lx larger */ 

/* Uy Ux larger */ 

/* first bound established */ 

.else. 

if (breaktrace) { 

backward(el); 

one line ended 

/' last pixel edge shall be the start of another line. 

if (TryAllEndPts) { 
if (maxlen < (el. current-currentsave) ) { /'* 
maxlen = el.current-currentsave; /̂  
bestpt_last=last; /* 
bestpt=startp; /* 
bestpt_currentsave=el.current; /* 
for (i=0; i<Nendpt; i++) bestpt_endlist[i]=endlist[i]; /* save end pts */ 
bestpt_Nendpt=Nendpt; /* save the no. of end pts */ 
} 

longer than the longest */ 
longest distance so far */ 
save the last edge */ 
update the best pt so far*/ 
save the cursor for el */ 
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startp++; /* next starting pt in startpts[] */ 
if (startp >= Nstartpt) { /* all starting pts have been tried */ 
currentsave=el.current=bestpt_currentsave; /* save the ending pos */ 
estartsave=e=bestpt_last; /* save the ending Pedge */ 
lines[linescount++] = startpts[bestpt]; /* record the best pt */ 
if (linescount>=MaxNLine) return -1; /* too many lines */ 
if (bestpt_currentsave>=el.Nedges-1) { /* no more Pixel edges ? */ 
lines[linescount++]=bestpt_endlist[0]; /* record end pt as well */ 
return linescount>=MaxNLine ? -1 : linescount;/* done */ 

} 

Nstartpt=bestpt_Nendpt; /* use the list of end pts as starting pts */ 
for (i=0; i<bestpt_Nendpt; i++) startpts[i]=bestpt_endlist[i]; 

startp=0; /* consider the first one in the new list */ 
Sx=startpts[0].x; Sy=startpts[0].y; 
maxlen=bestpt=-l; /* reset maxlen and bestpt to undefined */ 

} 
else { /* i.e. startp<Nstartpt. try next starting point */ 
Sx=startpts[startp].x; Sy=startpts[startp].y; /* next starting pt */ 

/* rewind and start again */ 
el.current=currentsave; 
e=lastrestartsave; 
} /* if (startp>=Nstartpt) ... else ... */ 

} 
else { /* i.e. TryAllEndPts==FALSE. simply start at the end pt again */ 
Sx=Ex; Sy=Ey; e=last; 
lines[linescount].x=Ex; lines[linescount++].y=Ey; 
if (linescount>=MaxNLine) return -1; /* too many lines */ 

if (el.current>=el.Nedges-1) return linescount;/* no more Pedges, done */ 

} 
starttrace=TRUE; /* start again */ 
} /* if (brea]ctrace) */ 

} /* for (starttrace=TRUE;;) infinite loop */ 
} /* fitlinesO */ 

* T H E I N V E R S E P R O C E S S * 

#define divisible(a,b) ((a)%(b)==0) 
#define ishori(x,y) (divisible(x,SUBPIXRES)||\ 

divisible(y+HalfSUBPIXRES,SUBPIXRES)) 
#define isvert(x,y) (divisible(y,SUBPIXRES)||\ 

divisible(x+HalfSUBPIXRES,SUBPIXRES)) 
#define sign(x) ((x)>=0 ? 1 : -1) 
#define Trunc(n) ((n)/SUBPIXRES*SUBPIXRES) 
static int lastx,lasty,lastdir; /* to avoid duplicated pixel edges */ 

static void drawHPedge(int x, int y) { /* draw a horizontal pixel edge */ 
if (lastx=:=x && lasty==y && lastdir==HRZ) /* starting edge==last ending edge */ 

return; 
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lastx=x; lasty^y; lastdir=HRZ; 
DrawPixelEdge(x/SUBPIXRES, y/SUBPIXRES, HRZ); /* call the user function */ 
} /* drawHPedgeO */ 

static void drawVPedge(int x, int y) { /* draw a vertical pixel edge */ 
if (lastx==x && lasty==y && lastdir==VRT) /* starting edge==last ending edge */ 
return; 

lastx=x; lasty=y; lastdir=VRT; 
DrawPixelEdge(x/SUBPIXRES, y/SUBPIXRES, VRT); /* call the user function */ 
} /* drawVPedge0 */ 

* makejaggedline(): A modified Bresenham's midpoint algorithm. Based on * 
* the code from the original Graphics Gem. Neither the starting pt * 
* nor the ending pt need to be at the mid-pt of a pixel edge. * 
* The decision variable has been scaled by SUBPIXRES and preloaded * 
* with the offset from a 'proper' starting pt, i.e. the mid-pt of the * 
* first pixel edge pointing to the dominant direction. * 

static makejaggedline(int xl, int yl, int x2, int y2) { 
int d, x, y, ax, ay, sx, sy, dx, dy, finaltrnsvrse; 

dx = x2-xl; ax = abs(dx)*SUBPIXRES; sx = sign(dx)*SUBPIXRES; 
dy = y2-yl; ay = abs(dy)*SUBPIXRES; sy = sign(dy)*SUBPIXRES; 

if (ax>ay) /* x dominant */ 

{ /*============*/ 

if (isvert(xl,yl)) /* 1st edge is trnsvrse. skip to the mid-pt */ 
{ /* of the next dominant dir edge. */ 
y=Trunc(yl + HalfSUBPIXRES) + sy/2; 
x=Trunc(xl) + HalfSUBPIXRES + sx/2; 
drawVPedge(x-sx/2,y-sy/2); /* draw the skipped edge */ 
} 
else { /* 1st edge is dominant, shift to the mid-pt */ 
x=Trunc(xl + HalfSUBPIXRES); 

y=Trunc(yl) + HalfSUBPIXRES; 

} 
/* preload decision var 'd' with offset x-xl, y-yl. (if any) */ 
d = ay - (ax>>l) + ay* (x-xl)/sx - ax* (y-yl)/sy; 
for (;;) { 
drawHPedge(x,y); 
if (abs(x-x2) < HalfSUBPIXRES) return; /* final edge is a dominant one */ 
X += sx; 
finaltrnsvrse = dx>0 ? x>x2: x<x2; 
if (d>0 I I finaltrnsvrse) { /* if the final edge is a trnsvrse */ 
drawVPedge(x-sx/2,y+sy/2); /* one, draw it before stopping */ 
y += sy; 
d -= ax; 
} 
if (finaltrnsvrse) return; 
d += ay; 
} /* for (;;) */ 
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e l s e /* y dominant */ 
{ /* = = = = := = = = = = = = */ 

if (ishori(xl,yl)) /* 1st edge trnsvrse. skip to the mid-pt */ 
{ /* of the next dominant dir edge */ 
x=Trunc(xl + HalfSUBPIXRES) + sx/2; 
y=Trunc(yl) + HalfSUBPIXRES + sy/2; 
drawHPedge(x-sx/2, y-sy/2); /* draw the skipped edge */ 
} 
else { /* 1st edge is dominant, shift to the mid-pt */ 
x=Trunc(xl) + HalfSUBPIXRES; 

y=Trunc(yl + HalfSUBPIXRES); 

} 
/* preload decision var 'd' with offset x-xl, y-yl (if any) */ 
d = ax - (ay»l) + ax* (y-yl)/sy - ay* (x~xl)/sx; 
for (;;) { 
drawVPedge(x,y); 
if (abs(y-y2) < HalfSUBPIXRES) return; /* final edge is a dominant one */ 
y += sy; 
finaltrnsvrse = dy>0 ? y>y2 : y<y2; 
if (d>0 I I finaltrnsvrse) { /* if the final one is a trnsvrse */ 
drawHPedge(x+sx/2, y-sy/2); /* one, draw it before stopping. */ 
X += sx; 
d -= ay; 
} 
if (finaltrnsvrse) return; 
d += ax; 
} /* for (;;) */ 

} /* if (ax>ay)... else ...*/ 
} /* makejaggedline() */ 

* linestojagged(): reconstruct a sequence of pixel edges from given lines * 
* by calling the makejaggedline() function. * 

void linestojagged(int Nlines, IntPoint2 *lines) { 
int from_x, from__y, i; 
lastdir=0; 
for (from_x=lines [0] .X, from_y=lines [0] .y, i = l; i<Nlines; i++) { 
makejaggedline(from_x,from_y,lines[i].x,lines[i].y); 
from_x=lines[i].x; from_y=lines[i].y; 
} 
} /* linetojagged() */ 
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0 Introduction 0 
This gem presents an extension to image refinement algorithms by incorporating adap-
tive refinement: an image based on priority. 

The generation of pixel values, whether by an abstract process (rendering) or by 
empirical sampling (scanning), is a sequential process. For interactive purposes, this 
does not provide the user a "thumbnail" preview of the entire image. Fast production 
of reduced-quality image is of value both in previewing systems and in production of 
frames whose objects show rapid, dynamic changes. 

A previous gem (HoUasch 1992) addresses the issue of providing an overall image of 
reduced quality. His algorithm repeatedly subdivides the image into equal-size rectangles 
and displays each rectangle as a solid region whose uniform color is taken from the lower-
left corner of that rectangle. It may be regarded as a low-resolution (point) sampling 
of the image rendered by a ray tracer. Subsequently, the pixel is replicated to the full 
size of the rectangle (Schumacher 1991). The main drawback of the technique is that 
it necessarily treats all the rectangles equally. Thus, it fails to exploit the homogeneity 
present, whose subdivision is better deferred. 

In contrast, an adaptive algorithm prioritizes rectangles, providing demonstrably bet-
ter results at an equivalent cost of execution (Figure 1; Color Plate VI.6). The main 
algorithm, which maintains and makes references to a heap-based priority queue, is 
described below. 

0 Pseudocode 0 
1. i n s e r t (heap, f i r s t _ r ec t ) ; 

2. while !empty (heap) do { 

3. top_rect = top (heap); 

4 . draw_rect ( top.rect) ; 

5. if !( ( top . rec t .wid th ==1) && (top_rect .height == 1)) { 

Copyright (c) 1995 by Academic Press, Inc. 
All r ights of reproduct ion in any form reserved. 
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6. split (top.rect, sub_rect_A, sub_rect_B) , 

7. new_sample (sub_rect_A.) ; 

8. new_priority (sub_rect_A) ; 

9. insert (heap, sub_rect_A) ; 

10. new_sainple(sub_rect_B) ; 

11 . new_priority (sub_rect-B) ; 

12. i n s e r t (heap, sub_rect-B) ; 

1 3 . } 

1 4 . } 

0 Details 0 
Each heap entry represents a rectangular region containing the following information 
about the region: the lower-left and the upper-right corners, the color of the sample 
at the lower-left corner, and the priority of the region. Displaying a solid rectangle 
is platform-dependent and is assumed to be much faster than the sampling process. 
Splitting of a rectangle is always performed along the longest dimension of the rectangle, 
that is, if the length of the rectangle is more than its width, then the rectangle is 
divided vertically into two equal-size subrectangles; otherwise, the rectangle is divided 
horizontally. 

There are various metrics for priority, ranging from the more complicated sequential 
probability test ratio (SPRT) (Maillot et al. 1992) to the simplistic area of the rect-
angle. [The algorithm then degenerates to a form similar to the method of an earlier 
gem (Hollasch 1992).] Here, we describe an easy-to-implement, fast metric to assign 
priorities, based on area and intensity variation of the region. The formula used for 
calculating priorities can be expressed as 

PL,R = ai * yl + a2 * / + as * Pp, (1) 

where PL,R denotes the priority of the rectangle with lower-left and upper-right corners 
at L and i?, respectively. A defines the fractional screen area: 

A = {R^-L:, + l)^{Ry-Ly-^ 1)/(A^^ * A^ )̂, (2) 

where Nx and Ny are the width and height of the image, respectively. Pp is the priority 
of the parent rectangle, and / is the intensity variation of a region and is computed 
as follows. The average luminance value (sum of r, g, and b components) for each of 
the top, bottom, left, and right external boundaries of a rectangle are read from the 
frame buffer. The absolute difference with the luminance value of the rectangle color is 
then computed, and the maximum of these differences is used as a measure for intensity 
variation, after normalizing its range to [0,1]. The parameters all lie on the unit interval: 
0 < { A , / , P } < 1. Then, ai,a2, and as are constants that can be varied to give more 
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Nonadaptive (8000 rectangles) Nonadaptive (16,000 rectangles) 

Adaptive (8000 rectangles) Adaptive (16,000 rectangles) 

Figure 1. Progressive refinement. 
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control over the refinement process. To keep the range of the priorities in [0,1], we have 
YA=I ^i — 1' leaving two control parameters, as as := 1 — (ai + a2). 

Techniques suggesting a rectangle sampling at other than the lower-left corner of 
the pixel (rectangular) region exist (Chiu et al. 1994) (see also page 359) and can be 
incorporated into the algorithm at the cost of storing the location of the sample. 
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0 Introduction 0 

This gem examines the results of an automated gradient search of optimized samphng 
patterns. The intent is to find a set of samples that perform better than other sampling 
patterns, yet require no evaluation as they are precomputed. 

The present approach extends methods described in a previous gem (Chiu et al. 1994) 
whose introduction is restated below: 

Monte-Carlo integration is often used to compute pixel values. For every pixel, a set of sample 
points is generated. The radiances of each point are then computed and averaged. To avoid 
aliasing, the sample points must be generated randomly such that every point is equally likely 
to be selected. However, a sampling pattern that is "too random" can overemphasize some parts 
of the pixel, resulting in excessive noise unless the number of samples is very large. 

0 The Experiment 0 

The test images are a set of uniformly distributed anti-aliased lines, produced by ex-
haustive oversampling in order to produce an "exact" image (Figure 1). It is assumed 
that any sampling pattern that performs well on this test image will perform well on 
any pixels with a uniform edge orientation distribution. The optimal sampling patterns 
will then exhibit minimal mean-squared error relative to the test image. 

A Monte-Carlo integration was conducted on the Silicon Graphics Onyx 
Reality Engine, taking advantage of its hardware accumulation buffer (Haeberli and 
Akeley 1990) as follows: For each sample, translate the viewpoint from the origin by 
the specified fraction of a screen pixel and scan-convert the line distribution; add the 
resulting image into the accumulation buffer. The contents of the accumulation buffer 
represent the final image scaled up by Ng (the number of samples). The mean-squared 
error is the sum of the squared difference between the generated image and the refer-
ence image, divided by the total pixels: l/7VpX^^j(testij—exact^j)^. This error measure 
defines the goodness of a set of samples. 

oco 
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Figure 1. The goal of the gradient search, 
an image of 400 lines in a uniform distribution 
anti-aliased with 1000 samples. 

Figure 2, Another reference image; a sim-
ple test scene sampled 1000 times. 

A genetic algorithm performed the gradient search, combining portions of the best-
performing sets of samples, with mutation introduced to avoid stagnation. The nature 
of a genetic algorithm requires a large population to ensure diversity; hardware support 
kept run times within reason. 

The initial population was composed of random^ N-rooks (Shirley 1991), jittered 
(Cook et al 1984), and multijittered (Chiu et al 1994) samples. In each successive 
generation, the sampling patterns were crossbred according to fitness to produce a new 
test set. The offspring were compared against the reference image to produce new fitness 
measures. 

0 Results 0 
Optimized sampling patterns of Â s = 4 and TV̂  = 16 are shown in Figures 3 and 4. 

The per-pixel mean-squared error of the optimized samples is much better than even 
multijittered at four samples per pixel (Table 1); the advantage decreases with increasing 
samples per pixel. Time constraints restrict present results to Ns < 64; the trend 
suggests similar performance for larger sizes. A comparison of all methods against a 

Table 1. Average mean-squared error in reproducing Figure 1 (maximum error is 255^ = 65025). 

1 Ns 
4 

16 
64 

1 256 

Random 

1457.60 
355.41 
134.58 
36.04 

A/^-Rooks 

1027.18 
721.01 
703.88 
702.69 

Jittered 

897.09 
125.99 

19.47 
7.30 

Multijittered 

800.79 
108.96 

18.27 
7.52 

Optimized | 
501.87 

96.16 
23.93 

no data 
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Figure 3. Three optimized sets of four sam-
ples. 

0.2 0.4 0.6 0.8 1 

Figure 4. Three optimized sets of sixteen 
samples. 

simple test scene (Figure 2) appears in Table 2. The optimized sample sets are strongly 
competitive for Ng < 16. For larger sizes, while the accuracy of the optimized sets is 
finer than one bit per color component, the comparatively weaker performance indicates 
that these sample sets would benefit from further optimization. 

0 Conclusions 0 

Sampling patterns optimized for a uniform distribution of edges may be found using 
an experimental gradient search. The results of the experiment support the initial hy-
pothesis that samples optimized for a uniform distribution of edges will produce low 
error for images in general; that is, one can use fewer samples. The speed of contempo-
rary graphics hardware can generate a large set of samples quickly; a large static set of 
sampling patterns would be a useful tool. 

Because of the size limitations, only sample sets of moderate size are reproduced on 
this volume's diskette; larger sample sets (and the software that produced them) are 
available on the Gems FTP servers and its mirrors. 

Table 2. Average mean-squared error in reproducing the scene shown In Figure 2. 

1 Ns 
4 

16 
64 

1 256 

Random 

12.3337 
3.1280 
0.6886 
0.3170 

AT-Rooks 

5.9019 
2.9004 
2.7522 
2.7435 

Jittered 

7.7491 
0.8900 
0.1175 
0.0210 

Multijittered 

4.8132 
0.5607 
0.0783 
0.0161 

Opt imized 
4 .30309 
0.88102 
0.23542 

no data 
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0 Example Sampling Pattems 0 

/* Example sample patterns appearing in Graphics Gems V 
'"Sampling Patterns Optimized for Uniform Distribution of Edges' 
Figures 3 and 4. */ 

typedef float sample[2]; 

sample foursamples[3][4]={ 
{{0.274942, 0.884325}, {0.797099, 0.207128}, 
{0.765063, 0.715779}, {0.122774, 0.282759}}, 

{{0.152302, 0.657716}, {0.649413, 0.907929}, 
{0.305133, 0.221223}, {0.784722, 0.280605}}, 

{{0.775219, 0.152203}, {0.846312, 0.737633}, 
{0.247618, 0.777035}, {0.228821, 0.197385}}}; 

sample sixteensamples[3][16]={ 
{{0.755279, 0.0497319}, {0.384479, 0.688268}, 
{0.666094, 0.868388}, {0.317172, 0.0331764}, 
{0.729309, 0.43103}, {0.0867931, 0.368519} 
{0.322668, 1.0}, {0.442302, 0.572752} 
{0.889074, 0.606985}, {0.0343768, 0.191404} 
{0.910321, 0.872547}, {0.92479, 0.345332} 
{0.289126, 0.389783}, {0.896551, 0.141167} 
{0.23357, 0.678942}, {0.11281, 0.526939}}, 

{{0.740161, 0.0942363}, {0.384479, 0.688268}, 
{0.642662, 0.884825}, {0.324146, 0.0213393}, 
{0.729309, 0.43103}, {0.0867931, 0.368519}, 
{0.306925, 0.995787}, {0.442302, 0.572752}, 
{0.889074, 0.606985}, {0.0343768, 0.191404}, 
{0.910321, 0.872547}, {0.92479, 0.345332}, 
{0.299325, 0.371848}, {0.896551, 0.141167}, 
{0.226811, 0.658172}, {0.27796, 0.873217}}, 

{{0.73534, 0.316016}, {0.755279, 0.0497319}, 
{0.152649, 0.442638}, {0.917626, 0.771549}, 
{0.0492709, 0.836601}, {0.0642901, 0.155284}, 
{0.94238, 0.458705}, {0.392657, 0.644079}, 
{0.626425, 0.534164}, {0.0918845, 0.468493}, 
{0.372743, 0.0552449}, {0.217678, 0.319869}, 
{0.460074, 0.759592}, {0.827202, 0.875453}, 
{0.596844, 0.352386}, {0.387125, 0.96096}}}; 
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utilities 

The gems in this section describe general graphics utihties. All place heavy emphasis 
on their underlying C code, which provides an extensive and proven solution to a well-
known problem. In some cases, the emphasis is upon extensions, bug fixes, or refinements 
to previous gems. In nearly all cases additional code not otherwise appearing in print 
is included on the diskette. 

Schlick (VII. 1) provides a set of wave generators having adjustable waveform. The 
curve family and parameters are chosen to provide a wide range of effects using a man-
ageable set of controls. Immediate applications include the noise-like functions used by 
Perlin to simulate texture. Green and Hatch (VII.2) provide a thorough solution to 
the intersection of a polygon and a cube. Their work updates a prior gem, includes a 
number of useful mathematical and procedural optimizations, and takes advantage of 
Hatch's library, surveyed below. Bouma and Vanecek offer a collision detection heuristic 
(VII.3) which is in turn based upon a generic and highly robust polygon-plane inter-
section routine (VII.4), derived from the second author's thesis research. This routine, 
while seldom invoked directly, provides the essential procedure central to nearly all 3D 
(polygon-polygon) intersection routines. Narkhede and Manocha (VII.5) implement a 
polygon triangulation procedure based upon Seidel's algorithm. The method offers both 
low computational complexity bounds plus a practical run-time performance, making 
it worthy of an audience beyond computational geometers. Karinthi (VII.6) provides a 
Z-buffer renderer assembled using "off-the-net" components capable of high-resolution 
color output given standard scene files. Finally, Paeth (VII.7) surveys four graphics 
libraries. The description includes excerpts from a primary work by Scheepers and May 
as well as discussions of the methods and code provided by authors whose related gem 
contributions appear elsewhere in this volume. 

365 
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Ovii.1 
Wave Generators for Computer 
Graphics 

Christophe Schlick 
Laboratoire Bordelais de Recherche en Informatique (LaBRI) 
Talence, France 
schlick® labri. u-bordeaux. fr 

0 Introduction 0 
The work of Perlin (Perlin 1985, 1989) shows that combining simple generic operators 
(e.g., noise, turbulence, bias, gain) allows the creation of complex specific visual effects 
such as marble, fire, or water. Though first presented as a procedural approach to 
texturing, the ideas have been generalized to many computer graphics applications 
(Upstill 1989), including modeling, deformation, rendering, and animation. This gem 
provides several wave generators that represent some basic tools for creating many 
regular or random visual effects in computer imagery. 

0 Noise 0 
The most ubiquitous operator is the noise function. It generates a distribution hav-
ing a user-controlled randomness while maintaining valuable statistical properties of 
invariance under translation or rotation and limited spectrum bandpass. Several imple-
mentations of the noise function have been proposed since its original development; a 
remarkably elegant recursive implementation appears in a previous gem (Ward 1991). 
Because the original noise routine was intended for solid texturing, it is often imple-
mented as a 3D function that maps a point on the Euclidian space R^ onto a scalar 
value on the unipolar or bipolar interval^ [0,1] or [—1,1]. 

Despite all its useful properties, the noise function also includes a few weaknesses. 
In many situations (for instance, in rendering or animation), there is a need only for ID 
randomness; in such cases, using a 3D noise generator involves wasteful calculations. 
Another drawback of noise (at least with the usual implementations) is that it provides 
random signals that always have C^ continuity. Therefore, many natural phenomena 
that involve C^ and C~^ randomness (Peitgen and Saupe 1988) cannot be simulated 
by noise without specific post-treatment of the function. 

^The first form is recommended, as transformation to the second is straightforward: "t += t - 1 ; " . 

Ofi"7 
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0 Description 0 
This gem corrects the previous weaknesses by introducing wave generators as an ad-
dendum to the noise function. Three monodimensional operators are presented here: 
Rwave (rectangular wave), Twave (triangular wave), and Swave (sine wave). Each maps 
R onto [0,1] providing C~^, C^, and C^ continuity, respectively. Each function *wave 
takes four parameters: 

t : wave parameter (t G R), 
s : shape factor (—1 < 5 < 1), 
f : frequency variance (0 < / < 1), 
a : amplitude variance (0 < a < 1). 

The default waves {s = f = a = 0) are shown in parts (a) of Figures 1-3. Following 
the idea of the integer lattice (Perlin 1985), the routines are implemented so that the 
extrema of the functions are located at integer values for t. In other words, the period 
of each function is 2: 

Vp G IN Xwave (2p, 0,0,0) == 1 and Xwave (2p+l, 0,0,0) = 0. 

The shape factor s allows a stretch either toward low values {s < 0) or toward high 
values {s > 0). The resulting waves with three different values for the shape factor are 
shown respectively in parts (b), (c), and (d) of Figures 1-3. The stretching effect is 
obtained by using the rational bias function described elsewhere (Schlick 1994). 

The frequency variance / and the amplitude variance a are used to introduce some 
noise to the waves, either in the frequency domain (a = 0, / 7̂  0), in the amplitude 
domain (a ^ 0, / = 0), or in both (a ^ 0, / 7̂  0). These AM, FM and hybrid AM+FM 
waves appear respectively in parts (b), (c), and (d) of Figures 4-6. 

The amount of noise that may be introduced is strictly bounded to preserve the prop-
erties defined by Perlin. For instance, even with maximum frequency domain variance 
( / = 1), the pseudoperiod of the wave stays within the range [1,4]. Similarly, maximum 
amplitude domain variance (a = 1) keeps the wave's local maximum (minimum) within 
[̂ , 1] ([0, ^]). Therefore, parameters / and a provide a double continuum between four 
kinds of waves: 

/ = 0 and a = 0 
/ — 0 and a = 1 
f = I and a = 0 
f = 1 and a = 1 

constant-frequency/constant-amplitude, 
constant-frequency/varying-amplitude, 
varying-frequency/constant-amplitude, 
varying-frequency/varying-amplitude. 

0 Extensions 0 
In the preceding description, no precision has been given about the relationship between 
the wave parameter t and the point (x, y, z) for which the wave function is computed. 
At least three different schemes may be used, giving three different visual effects: 
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(a) s = 0.0 / = 0.0 a = 0.0 ( b ) . = 0.6 / = 0.0 a -= 0.0 

(c) s = 0.9 / = 0.0 a = 0.0 (d) s = - 0 . 6 / = 0.0 a = 0.0 

Figure 1 . Rectangular-like waves for different shape factors. 

(a) s = 0.0 / = 0.0 a = 0.0 (b) s = 0.6 / = 0.0 a = 0.0 

XXAAX /YYYY^ 
(c) s = 0.9 / = 0.0 a = 0.0 (d) s = - 0 . 6 / = 0.0 a = 0.0 

Figure 2. Triangular-like waves for different shape factors. 

AAAAA 7V7VA7VA 
(a) s = 0.0 / = 0.0 a = 0.0 (b) s = 0.6 / = 0.0 a = 0.0 

UJJO. AAAAA 
(c) s = 0.9 f = 0.0 a = 0.0 (d) s = - 0 . 6 / = 0.0 a = 0.0 

Figure 3. Sinusoidal-like waves for different shape factors. 

• t = ax + by + cz, which provides planar waves (every point at a given distance from 
the plane ax + by + cz = 0 has the same wave value). 

• t = \/{ay — hxY + {bz — cy^ + {ex — az)'^^ which provides cylindrical waves (every 
point at a given distance from the axis directed by (a, 6, c) has the same wave value). 

• t = \Jx^ + y^ + ^^, which provides spherical waves (every point at a given distance 
from the origin has the same wave value). 
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muiRR ^ ^ ^ 
(a) s = 0.0 / = 0.0 a = 0.0 (b) s = 0.0 / = 1.0 a = 0.0 

LP-
(c) s = 0.0 / = 0.0 a = 1.0 (d) s = 0.0 / = 1.0 a = 1.0 

Figure 4. Rectangular-like waves for different frequency and amplitude variances. 

(a) s = 0.0 / = 0.0 o = 0.0 (b) s = 0.0 / = 1.0 a = 0.0 

(c) s = 0.0 / = 0.0 a = 1.0 (d) s = 0.0 / = 1.0 a = 1.0 

Figure 5. Triangular-like waves for different frequency and amplitude variances. 

AAAAA ANXAK 
(a) 5 = 0.0 / = 0.0 a - 0.0 (b) 5 = 0.0 / = 1.0 a = 0.0 

( c ) 5 = 0.0 / = 0.0 a - 1 . 0 ( d ) 5 = 0.0 / = 1.0 a = 1.0 

Figure 6. Sinusoidal-like waves for different frequency and amplitude variances. 

Although using only monodimensional waves is sufficient in many cases, wave genera-
tors in higher dimensions (with similar shape and variance factors) would be a valuable 
extension. A naive solution could be to create such waves by multiplying or averaging 
several orthogonal monodimensional waves. Unfortunately, such a process alters the 
statistical properties of the resulting waves. The only solution is to devise a specific 
scheme for each new dimension. The 2D case is already tricky but can be implemented 
with a reasonable effort (a future gem?). The 3D case appears to be much more difficult; 
volunteers are welcome. 
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0 Source Files 0 

/* 
WAVE.H : Christophe Schlick (10 September 1993) 

This package provides 3 routines for generating rectangular-like, 
triangular-like and sine-like waves including specific features. 

"Wave Generators for Computer Graphics" 
in Graphics Gems V (edited by A. Paeth), Academic Press 

\* 

#ifndef _WAVE_ 
#define _WAVE_ 

extern double Rwave (register double t, double s, double Fvar, double Avar) 
extern double Twave (register double t, double s, double Fvar, double Avar) 
extern double Swave (register double t, double s, double Fvar, double Avar) 

#endif 

/* 
WAVE.C : Christophe Schlick (10 September 1993) 

This package provides 3 routines for generating rectangular-like, 
triangular-like and sine-like waves including specific features. 

"Wave Generators for Computer Graphics" 
in Graphics Gems V (edited by A. Paeth), Academic Press 

\* 

# include <math.h> 
#include "wave.h" 

/* 
** Macro functions 
*/ 

#define ABS(a) ((a) < 0 ? -(a) : (a)) 
#define FLOOR(a) ((a) < 0 ? (int) ((a)-1.0) : (int) (a)) 
#define MAX(a,b) ((a) > (b) ? (a) : (b)) 
#define MIN(a,b) ((a) < (b) ? (a) : (b)) 

/* 
** rnd : Random function (adapted from Greg Ward in Graphics Gems II) 

static double rnd (register long s) 

{ 
s = s << 13 V s; 

return (( (s*(s*s*15731 + 789221)+1376312589) & 0X7FFFFFFF) / 2147483648.0) 

} 
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#define FRND(a) rnd (17*(a)) 
#define ARND(a) rnd (97*(a)) 

/* 
** Rwave : Rectangular-like monodimensional wave 

•*• * 
** Input : t = Wave parameter 
** s = Shape factor (in [-1,1]) 
** f = Frequency variance (in [0,1]) 
** a = Amplitude variance (in [0,1]) 

double Rwave (register double t, double s, double f, double a) 

{ 
register int i, j; 

register double a, b; 

i = j = FLOOR (t); t -= i; j++; 

if (f) { 

a = (FRND (i) - 0.5) * f; 
b = (FRND (j) -0.5) * f + 1 . 0 ; 

t = (t-a) / (b-a); 
} 
if (i & 1) {i++; j--; t = 1.0-t;} 
t = (s < 0.0) ? (t+s*t) / (1.0+s*t) : (s > 0.0) ? t / (1.0-s+s*t) : t; 
t = t < 0 . 5 ? 0 . 0 : 1 . 0 ; 

if (a) { 
a = ARND (i) * a * 0.5; 
b = ARND (j) * a * 0.5; 
t = a + t * (1.0-a-b); 

} 
return (t); 

} 

/* 
** Twave : Triangular-lilce monodimensional wave 

** Input : t = Wave parameter 
** s = Sliape fac tor (in [-1,1]) 
** f = Frequency variance (in [0,1]) 
** a = Amplitude variance (in [0,1]) 
*/ 

double Twave (register double t, double s, double f, double a) { 
register int i, j; 
register double a, b; 

i = j = FLOOR (t); t -= i; j++; 
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if (f) { 
a = (FRND (i) - 0.5) * f; 
b = (FRND (j) - 0.5) * f + 1.0; 
if (t < a) { 

i--; j--; t++; a++; 
b = a; a = (FRND (i) - 0.5) * f; 

} else if (t > b) { 
i++; j++; t--; b--; 
a = b; b = (FRND (j) -0.5) * f + 1 . 0 ; 

} 

t = (t-a) / (b-a); 

} 

if (i & 1) {i++; j--; t = 1.0-t;} 
t = (s < 0.0) ? (t+s*t) / (1.0+s*t) : (s > 0.0) ? t / (1.0-s+s*t) : t; 

if (a) { 
a = ARND(i) * a * 0.5 
b = ARND(j) * a * 0.5 
t = a + t * (1.0-a-b) 

} 

return (t); 

} 

/* 
** Swave : sinusoidal-like monodimensional wave 

** Input : t = Wave parameter 
** s = Shape factor (in [-1,1]) 

f = Frequency variance (in [0,1]) 
a = Amplitude variance (in [0,1]) 

V 

double Swave (register double t, double s, double f, double a) 

{ 
register int i, j; 
register double a, b; 

i = j = FLOOR (t); t -= i; j++; 

if (f) { 
a = (FRND (i) - 0.5) * f; 
b = (FRND (j) - 0.5) * f + 1.0; 
if (t < a) { 

i--; j--; t++; a++; 
b = a; a = (FRND (i) - 0.5) * f; 

} else if (t > b) { 
i++; j++; t--; b--; 
a = b; b = (FRND (j) - 0.5) * f + 1.0; 

} 
t = (t-a) / (b-a); 

} 
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i f ( i & 1) { i++; j - - ; t = 1 . 0 - t ; } 
t = (s < 0 .0 ) ? ( t + s * t ) / ( 1 . 0 + s * t ) : (s > 0 .0) ? t / ( 1 . 0 - s + s * t ) : t ; 
t *= t * ( 3 . 0 - t - t ) ; 

i f (a) { 
a = ARND(i) * a * 0 .5 
b = ARND(j) * a * 0 .5 
t = a + t * ( 1 . 0 - a - b ) 

} 
r e t u r n ( t ) ; 

} 
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0 VII.2 
Fast Polygon-Cube Intersection 
Testing 

Daniel Green Don Hatch 
Autodesk — Multimedia Division Silicon Graphics, Inc. 
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daniel.green @ autodesk.com hatch @ sgi.com 

0 Overview 0 
This gem generalizes previous triangle-cube intersection methods (Voorhies 1992) to 
support arbitrary n-gons. Convex, concave, self-intersecting, and degenerate polygons 
are fully treated, and the new algorithm is more efficient and robust. The implementa-
tion uses the C vector macro library vec.h created by the second author (page 404). 

0 Background 0 
Efficient polygon-cube intersection testing is an important problem in computer graph-
ics. Renderers can profit from fast polygon tests against display volumes, often avoiding 
the more expensive clipping operation. Likewise, bounding volume techniques can utilize 
such fast tests on the faces of polyhedral volumes. 

The previous gem cited above gives an algorithm that tests whether a given triangle 
intersects the axially aligned cube of unit edge centered at the origin. 

A related gem (Greene 1994) describes an efficient algorithm for testing convex poly-
hedra against axially aligned boxes. That algorithm works by attempting to find a 
plane separating the two figures. That work mentions that the intuitive approach is 
inefficient because of the number of possible intersection calculations. (The intuitive 
approach contains an intersection test of each polygon edge with each cube face, fol-
lowed by intersecting each cube diagonal with the polygon body.) 

0 Description <> 
The approach presented here is a hybrid of the two previous techniques. It contains only 
a single intersection calculation, which is rarely performed because of the trivial tests 
that precede it. The rest of the calculations are of the same sort of fast inequality tests 
from the second work. This new implementation, however, is not restricted to convex 
figures. 
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Table 1. Intersection routines. 
Function Name 

polygon_intersects_cube 
fast_polygon_intersects_cube 
trivial-vertex-tests 
segment_intersects_cube 
polygon_contains_point_3d 

File Name 

pcube.c 
fpcube.c 
fpcube.c 
pcube.c 
pcube.c 

Description 

low-level definitive test 
high-level wrapper test 
trivial reject/accept test 
low-level edge test 
used internally, also generally useful 

The top-level entry points of the implementation are described in Table 1. Further 
instructions appear within the heavily commented source code released with this book. 

The previous triangle testing approach is elegant and sound, and the general approach 
has been retained, which proceeds from cheap trivial accept and reject tests through 
more expensive edge and face intersection tests. These individual tests have also been 
broken out into separate functions in order to allow higher-level routines to be built 
on top of them—such as general polyhedra and polygon mesh tests—without having to 
suffer redundant tests on shared vertices or edges. 

The composite f ast_polygon_intersects_cube function replaces Voorhies' origi-
nal triangle-cube intersection function. It calls t r i v i a l _ v e r t e x _ t e s t s (essentially un-
changed) and, failing classification, invokes the definitive polygon_intersects_cube 
function. This overall behavior is unchanged from the original code: 

1. Trivial vertex tests. 
2. If any edge intersects the cube, return TRUE. 
3. If the polygon interior intersects the cube, return TRUE. 
4. Return FALSE. 

Step 1: Trivial Vertex Tests 

The main algorithmic difference in the new point-plane tests is that in a number of 
places tests are no longer performed against planes that cannot possibly give useful 
information. For example, when the function determines that a point is located to the 
left of the cube, testing is not done against the cube's right face plane. 

The t r i v i a l _ v e r t e x _ t e s t s function can be used to test an entire set of vertices for 
trivial rejection or acceptance. This test is useful for quickly classifying polyhedra or 
entire polygon meshes. Another useful application is in testing for trivial rejection of 
polyhedral bounding volumes against view volumes (described more fully in the next 
section). 

The t r i v i a l _ v e r t e x _ t e s t s function stops testing vertices as soon as it determines 
that at least one vertex is to the inside of each plane. For example, suppose that at least 
one vertex has been found to be to the right of the left face plane, and one is found to 
be below the top face plane, and likewise for the other four face planes. There is then 
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Intersecting Non-intersecting 
Figure 1. Two-dimensional analogue of segment-cube intersection test. 

no point in classifying any of the remaining vertices against the face planes because it 
is impossible that the vertices as a set all lie outside any one of those planes. 

Step 2: Segnnent-Cube Intersection Test 

A naive implementation of this step consists of checking whether either endpoint of the 
segment is inside the cube, and, if not, checking whether the segment intersects any of 
the six cube faces. Such an implementation, however, is inherently error-prone: It gives 
a false negative when, due to floating-point roundoff error, the segment slips through 
the "cracks" between adjacent cube faces. In fact, the original gem's implementation 
suffers from exactly this problem. 

The approach used here is to convert this part of the problem into a different problem 
space: Testing whether a line segment intersects the cube is equivalent to testing whether 
the origin is contained within the convex solid obtained by sweeping a unit cube from 
(being centered at) one segment endpoint to the other. This solid is a skewed rhombic 
dodecahedron. The code to implement this test consists of just twelve point-plane 
sidedness tests, so it is computationally more efficient than the original six line-plane 
intersections plus six point-within-polygon tests, in addition to being more robust. 

Figure 1 shows the analogous situation in two dimensions, where the swept convex 
solid is simply a hexagon. The line segment intersects the square if and only if the 
hexagon contains the center of the square. 

Any intersection test can be recast in this way. In general, testing whether two objects 
A and B have any points in common is equivalent to testing whether the origin is 



378 0 Utilities 

contained within the composite object: 

{a-b\ a e Aandb G B}. 

This reasoning can be apphed to the entire original polygon-cube intersection prob-
lem by recasting it as a single point-within-solid test. However, in order to handle 
non-convexity or tiny facets in the composite solid, the analysis required is much more 
complex than simple sidedness tests. For this reason, that approach was specifically 
rejected, although the method is appropriate for the segment-cube intersection step. 

Step 3: Polygon Interior-Cube Intersection Test 

Since it is now known that no vertex or edge intersects the cube, this step only needs to 
test whether any of the four cube diagonals intersects the interior of the polygon. This 
observation was utilized in the original gem's implementation. The new implementation 
goes a step further and uses the fact that it is sufficient to test against only the one 
diagonal that comes closest to being perpendicular to the plane of the polygon; if 
the polygon intersects any of the cube diagonals, it will intersect that one. Finding 
that diagonal is trivial, so this part of the implementation is up to four times as fast 
as the original. Omitting the intersection tests with the other three diagonals avoids 
another case of numerical instability in the original gem's implementation: Calculating 
the intersection point of the polygon's plane with a cube diagonal that is almost parallel 
to that plane can result in a divide-by-zero or unstable solution. 

The last part of this step is to test whether the polygon contains the point that is 
the intersection of the polygon's plane with the chosen diagonal. This test is performed 
by the function polygon_contains_point_3d, which is made externally visible since it 
may be useful for other applications. 

0 Polyhedron-Cube Intersection Testing 0 

When used to test polyhedra, the functions included in this module only test for inter-
sections with points, edges, and surfaces, not volumes. If no such intersection is reported, 
the volume of a polyhedron could still contain the entire unit box. That condition would 
then need to be checked for with an additional point-within-polyhedron test. The origin 
would be a natural point to check in such a test. Below is C-like pseudocode that puts 
all the pieces together for a fast, complete polyhedron-cube intersection test. 

switch(trivial_vertex_tests(verts)) 
{ 

case 1 
case 0 
case -1 

return TRUE /* trivial accept */ 
return FALSE /* trivial reject */ 
for each edge 
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i f ( segmen t_ in te r sec t s_cube(edge) ) 
r e t u r n TRUE 

for each face 
i f ( f a s t _ p o l y g o n _ i n t e r s e c t s _ c u b e ( . . . , TRUE, TRUE)) 

r e t u r n TRUE 
r e t u r n polyhedron_conta ins_poin t (polyhedron , o r ig in ) 

} 

Notice that when a box is used as a modehng-space bounding polyhedron, testing its 
intersection against a view volume can often be performed in either direction. In other 
words, not only can the box be transformed by the viewing transformation that takes 
the view volume to the unit cube and then tested there, but the view volume can also 
be transformed by the transformation that takes the bounding box to be the unit cube 
and the test performed there. In the latter case it is the world-space truncated pyramid 
of the view volume that becomes the polyhedron being tested. 

0 Conclusions 0 

A set of highly optimized intersection tests was described that support a fast polygon-
cube intersection test at the highest level. The latter supports operations upon general 
n-gons. All intersection routines are freestanding, making them good candidates for 
direct replacement of related routines described previously in this series. Production 
versions of this gem's code may be found in the subdirectory pcube on the accompa-
nying diskette and FTP mirrors. The companion library may be found in vec.h and is 
described in gem VII.7 of this volume. 

0 Bibliography 0 

(Greene 1994) Ned Greene. Detecting intersection of a rectangular solid and a convex 
polyhedron. In Paul S. Heckbert, editor, Graphics Gems / F , Chapter 1.7, pages 
74-82. AP Professional, Boston, 1994. 

(Voorhies 1992) Douglas Voorhies. Triangle-cube intersection. In David Kirk, editor, 
Graphics Gems III, Chapter V.7, pages 236-239. AP Professional, Boston, 1992. 



0 VII.3 
Velocity-based Collision 
Detection 

William Bouma 
Purdue University 
Department of Computer Sciences 
West Lafayette, Indiana 
bouma @ cs.purdue.edu 

George Vanecek, Jr. 
Purdue University 
Department of Computer Sciences 
West Lafayette, Indiana 
hittp://www. cs.purdue. edu/people/vanecek 

0 Introduction 0 

This gem presents a simple method for speeding up colhsion detection between moving 
polyhedra (Vanecek, Jr. 1994). An inexpensive test based on the relative velocities of 
points will determine that a polygon cannot possibly be in collision. By applying the test 
to all polygons in an object, one can eliminate on average half of the candidate polygons. 
The algorithm is used as a preprocessing step to reduce the work of the full collision 
test, which generally requires computationally expensive operations such as polygon 
intersection. The technique can be employed when objects are in close proximity and 
applies to both convex and nonconvex polyhedra. 

The procedure is based on the following intuitive principle: At any instant, roughly 
half of the polygons on a moving object will be facing in the general direction of motion, 
and the other half will be facing away. When considering the possibility of collision 
between pairs of objects, the polygons on one object that face backward in their relative 
direction of motion cannot collide with the other object. A dot product between the 
polygon normal and the relative velocity of a point in the polygon tests if that point 
is moving in a direction that could allow it to collide. The test extends cheaply to 
the entire polygon by applying it either to the vertices of the polygon, or merely to 
those of a simpler bounding polygon (e.g., a rectangle). The alert reader will notice the 
similarities between this method and the well-known back-face culling method often 
used when rendering polygons (Foley et al. 1990). 

0 Preliminaries 0 

Consider a polyhedron oriented in the global frame of reference with its local center 
indicated by the vector r . The velocity of the center is given as the time derivative r 
and the angular velocity about the center is given as u). Using r., r^ and a;, any point 
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/ r 

O 

Figure 1. Instantaneous velocity p at point p. 

p = r + c has an instantaneous velocity (as shown in Figure 1) given by the equation 

p = r + u: X c. (1) 

Given two polyhedra Si and Sj in the same global frame of reference, the relative 
velocity at point p of object Si as seen by an observer fixed on Sj is 

P^j=P^-PJ (2) 

where the instantaneous velocities p^ and Pj are defined by Equation (1). Note tha t 
point p is expressed in terms of both Si and Sj as 

p = r- + Ci = Vj + Cj. (3) 

Expanding Equation (2) using Equation (1) and Equation (3), we obtain 

Pij = aij+px LOji, (4) 

where aij = r^ — Vj — uJi x ri + UJJ X r^, and ujji — QJJ — Ui are constants for a given 
time t. Wi th this equation, we can compute the relative velocity for any point p without 
having to compute the points Q or Cj in the coordinate space of either Si or Sj. 

0 Algorithm 0 
Consider an object Si moving in the presence of another object Sj. The instantaneous 
velocity vectors are obtained for the object at some time t. Given a face / of Si in the 
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Figure 2. Point p, fixed on S/, is moving away from face f when 0 < 7r/2. 

global frame of reference, let p ^ f. The angle 6 between the normal vector n / of face 
/ and p^j describes whether p is moving toward the outside directly above / or not. It 
follows that if 6 is less than 7r/2, then 

Pzj • ^ / > 0, (5) 

which indicates that in the local neighborhood of p, p is moving toward the empty 
space above / , and therefore p can possibly collide with some part of Sj within this 
local neighborhood (refer to Figure 2). It follows that \/p G / , {Pij - Uf < 0) implies 
that the entire face is moving away from any portion of Sj that may lie directly above 
it. Therefore, / cannot collide with Sj at the time t. 

The task is simplified by the linear property of the relative velocity vector-space. The 
linearity implies that for any two points pi,P2 ^ / that fail Equation (5), all points 
along the line segment joining pi and p2 must also fail it. Thus, it is sufficient to check 
just the vertices of some convex polygon that completely encloses the face. If all of the 
vertices satisfy p^j • n / < 0, then so does every point within the polygon. 

Note that there is an efficiency trade-off depending on how the bounding polygon is 
chosen. The more area the polygon covers, the more likely it is that a vertex will satisfy 
Equation (5). Thus, the corresponding face may be kept even though no points in the 
face are moving in a direction of collision. Though one could apply the convex hull of 
the face as the bounding polygon, any performance gain might be outstripped given a 
face whose convex hull is not sparse. The speed could degrade significantly if the convex 
hull of a face has a large number of vertices. It is best to choose for each face the most 
tightly approximating polygon using a small constant number of vertices (Weghorst 
et al 1984). 
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0 Implementation 0 
Care must be taken in coding the algorithm to ensure that all variables lie within a 
common frame of reference. Object velocities are commonly kept as global coordinates, 
while object geometries remain local. The local reference frame for an object changes 
over time subject to the velocities incident upon it. The transformation 

p = R^p^ + r^ (6) 

maps a point p^ in the local frame to a corresponding point p in the global. The mapping 
uses a 3 X 3 rotational matrix, R ,̂ and the translation vector r^. To get a common frame 
of reference, one can either apply Equation (6) to the polygon vertices of Si and use 
Equation (4) in the global frame, or instead move the relative velocities into the local 
frame of Si. Since there is only one linear component and one angular component to the 
velocity, but there are many polygon points, it is more efficient to do the latter. The 
modified Equation (4) then becomes 

in the local frame of s ,̂ where afj = R~^a^j and uj^^ = R~^U;J^. 

0 The C++Code 0 
The C + + code provides a simple working example of the cull function that prints 
out the polygons that have been culled. The function is intended to be incorporated 
into an animation system as just one component of a collision detection package. For 
convenience, the code uses the vector and matrix definitions in the algebraS.h package 
from Gems IV. 

/ / - * - C++ - * -
// by Bill Bouma and George Vanecek Jr. Aug, 1994. 
// Compile by: g++ -02 -s -o cull cull.cc algebraS.o -Im 
#include "algebraS.h" // See Graphics Gems IV, pg534-557 
typedef vec3 Point; // Points are not Vectors 
typedef vec3 Vector; // Vectors are not Points 
typedef unsigned int Index; // Array Indices 
typedef unsigned int Counter; 

class Polygon { 
public: 

Polygon ( const char pid, 
const Vector& nV, 
const Counter nPs, 
const Point* const p ) 

: id(pld), pts(p), nPts(nPs), normalVector(nV){ } 
const Vector& normal( ) const { return normalVector; } 
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char name( ) const { return id; } 
Counter nPoints( ) const { return nPts; } 
const Point& point( const Index i ) const { return pts[i]; } 

private: 
const char 
const Counter 
const Point* 
const Vector 

}; 

id; 
nPts; 

const pts; 
normalVector; 

// Unique Id 
// pts[0..nPts-1] 
// Points around Polygon 
// Unit Vector 

class MovingPolyhedron { 
public: 
MovingPolyhedron { const char pid, 

const Vector& rv, 
const Vector& w , 
const Vector& wv, 
const mat4& m, 
const Counter nP, 
const Polygon* const ps ) 

: id(pld), r(rv) 
const Polygon& 
void 

private: 
const char 
const Polygon 
const Counter 
Vector 
Vector 
Vector 

mat 4 

}; 

v(w) , w(wv) , R(m) , polys (ps), nPolys(nP) { } 
polygon( const Index i ) const { return polys[i]; } 

cull( const MovingPolyhedron& ) const; 

id; // Unique Id 
const polys; // Points in local coordinates 

nPolys; // polys[0..nPolys-1] 
r; // Center of Rotation (in world coords.) 
v; // Linear Velocity (in world coords.) 
w; // Angular Velocity (in world coords.) 
R; // Orientation Matrix 

void MovingPolyhedron::cull( const MovingPolyhedron& j ) const 

{ 
const mat4 Rli = ((mat4&)R).transpose(); 
const Vector aij = Rli * (v - j.v - (w V r) 
const Vector wij = Rli * (j.w - w); 
for( Index gi = 0; gi < nPolys; ++gi ) { 
const Polygon& g = polygon(gi); 
for ( Index pi = 0; pi < g.nPointsO 

if( ( aij + (g.point(pi) V wij )) 
break; 

cout << "Polygon " << g.name() << 
<< " is" << ( pi == g.nPointsO 
<< "culled." << endl; 

(j.w V j . r) ) ; 

++pi ) 
* g.normal() > 0.0 ) 

of Polyhedron " << i( 
" " : " not ") 

} 
} 

const Counter NPolyPoints = 4; 
const Counter NFaces = 6; 
static const Point leftPoints[NPolyPoints] = { 

Point(-1,-1,-1), Point(-l,-l, 1), Point(-l, 1, 1) , 
static const Point rightPoints[NPolyPoints] = { 

Point(-1, -1) }; 
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Point( 1, 
static cons 

Point(-l, 
static cons 

Point(-1, 
static cons 

Point(-1 
static cons 

Point(-1 
static cons 

Polygon( 
Polygon( 
Polygon( 
Polygon( 
Polygon( 
Polygon( 

}; 

1,-1), Point( 1, 1,-1), Point( 1, 
t Point topPoints[NPolyPoints] = 
1,-1), Point(-l, 1, 1), Point( 1, 

t Point bottomPoints[NPolyPoints]= 
1,-1), Point( 1,-1,-1), Point( 1,-

t Point backPoints[NPolyPoints] = 
-1,-1), Point(-l, 1,-1), Point( 1, 
t Point frontPoints[NPolyPoints] = 
1, 1), Point( 1,-1, 1), Point( 1, 

t Polygon cube[NFaces]= { 
Vector(-1 
Vector( 1 
Vector( 
Vector{ 
Vector( 
Vector( 

0, 
0, 
1, 

-1, 
0, 
0, 

0), 
0), 
0). 
0). 
-1), 
1). 

NPolyPoints, 
NPolyPoints, 
NPolyPoints, 
NPolyPoints, 
NPolyPoints, 
NPolyPoints, 

1, 1), Point( 1,-1, 1) 

{ 
1, 1), Point( 1, 1,-1) 

{ 
1, 1), Point(-l,-l, 1) 

{ 
1,-1), Point( 1,-1,-1) 

{ 
1, 1), Point(-1, 1, 1) 

leftPoints 
riglitPoints 
topPoints 
bottomPoints 
bacJcPoints 
frontPoints 

int main() 

{ 
MovingPolyliedron A( 

MovingPolytiedron B i 

A.cull( B ); 
B.culK A ) ; 

Vector(10,10, 0 
Vector( 0, 0, 0 
Vector( 0, 0, 0 
identitySDO , 
NFaces, cube ); 
•B' , 

Vector(10,10,10 
Vector( 0, 0,-1 
Vector( 0, 1, 0 
identity3D(), 
NFaces, cube ); 

// Position 
// Velocity 
// Angular Velocity 

// Position 
// Velocity 
// Angular Velocity 
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This gem presents an algorithm that partitions a polygon lying in 3D space by a plane, 
resulting in three lists of zero or more polygons. If the plane intersects the polygon trans-
versely, the algorithm cuts the polygon by the plane and returns a list of new polygons 
that lie above and a list of new polygons that lie below the plane. This algorithm under-
pins many BSP tree and polygon intersection libraries. Splitting a polygon is a common 
problem encountered in many 3D geometric applications such as boundary represen-
tation (B-Rep) to BSP tree conversion (Thibault and Naylor 1987), B-Rep to MSP 
tree conversion (Vanecek, Jr. 1991), Boolean set operations on polyhedra (Vanecek, Jr. 
1989), and convex decomposition. The algorithm presented here extends the convex-
polygon splitting algorithm presented in Gems III (Chin 1992) to nonconvex polygons 
that may contain nonmanifold and adjacent, collinear vertices. 

To illustrate the operation, consider as an example the polygon in Figure 1(a). The 
dashed line indicates the intersection with a transversal cut plane. When cut, the poly-
gon splits into four polygons lying above the cut plane and four polygons below, as is 
shown in Figure 1(b). 

The algorithm is implemented in C + + and developed under GNU's C + + compiler 
version 2.5.8. The C + + code presented here is a stand-alone code using minimally suffi-
cient abstract data types defined as classes. It has been carefully crafted and thoroughly 
tested. 

0 The Representation of Polygons 0 

A polygon is typically represented by a counterclockwise ordered sequence of points 
defining the line segments that border the polygon. This sequence of points is then 
represented either as an array of points or as a linked list of dynamically allocated 
points. The former is used when the shape of the polygon is fixed, while the latter is 
used when changes to the shape of the polygon are required. 
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ki 
(a) (b) 

Figure 1. A sample polygon with 30 points shown (a) before the cut and (b) after the cut. The dashed 
lines denote the transversal cut plane. 

For our purpose, however, it is easier to operate on a representation of a polygon 
that is based on its bordering edges rather than one that is based only on the points. A 
class DEdge (a directed edge data type) is defined and forms a circular, doubly linked 
list of directed edges around the polygon. 

class DEdge { 
public: 

DEdge* 
DEdge* 
const Point& 
const Point& 
Where 
Where& 
WhereSc 
double& dis 
//. . . 

next ( 
prev ( 

srcPoint { 
dstPoint ( 

where ( 
srcWhere ( 
dstWhere ( 
tFromRefP ( 

const 
const 
const 
const 
const 

Although by itself there is no concept of a proper orientation, the orientation of the 
polygon is assumed so that in relation to the support plane of the polygon, the polygon 
is ordered counterclockwise when viewed from above the polygon, where above is in the 
direction of the support plane's normal. This is a common convention used by boundary 
representations for solids. 

0 The Algorithm 0 

The problem of partitioning a polygon by a plane would be simpler if the polygon could 
be assumed to be convex. A single pair of directed edges would be inserted, and the 
polygon would split into two new polygons (Chin 1992). It would still be simple, if the 
edges of the polygon could be assumed to cleanly cross the cut plane. However, not only 
can edges with two different orientations lie on the cut plane, but the existence of inner 
holes connected by a bridge edge can cause a crossing that does not lead to a transition 
from the outside to the inside (or vice versa) of the polygon, and the polygon can also 
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Nonmanifold Vertex 

Cut Plane 

Bridge Edge 

Figure 2. A polygon with a hole connected by a bridge edge (i.e., two oppositely oriented collinear and 

overlapping directed edges), and with a nonmanifold vertex. 

contain nonmanifold vertices (a vertex that has more than two incident edges). These 
cases are illustrated in Figure 2. 

For a polygon with manifold vertices, the introduction of new edges can be based 
purely on local topology (assuming that each vertex of the polygon contains a classifi-
cation label). This label, having a value of either ABOVE, ON, or BELOW, gives the vertex's 
position relative to the cut plane. For a few cases involving nonmanifold vertices, geo-
metrical information (i.e., the orientation and angle of the edges in relation to the cut) 
must be used to determine the appropriate places to insert the new edges. 

The splitting of the polygon, *g, by the cut plane, cut, is performed by the following 
routine: 

void split( Polygon*& g, const Plane& cut, 
List<Polygon>& above, 
List<Polygon>& on, 
List<Polygon>& below ) 

{ 
Counter nOnDEdges = 0; 
DEdge* onDEdges[g.nPoints()]; 
switch( g->classifyPoints( cut, nOnDEdges, onDEdges ) ) { 
case ONABOVE: 
case ABOVE: 
above << g; 
break; 

case ON: 
on << g; 
break; 

case ONBELOW: 
case BELOW: 
on << g; 
break; 

default/* case CROSS */: 
assert( nOnDEdges >= 2 ); 
g->complexCut( cut, nOnDEdges, onDEdges, above, below ); 



VI1.4 Spatial Partitioning of a Polygon by a Plane 0 389 

collectFaces ( nOnDEdges, onDEdges, above, below ); 
g->anchor = NULL; 
g->nDEdges = 0; 
delete g; 

} 

g = NULL; 

} 

The routine returns three hsts containing the new polygons partitioned into sets lying 
above, on, or below the cut plane. It also deletes *g. 

The partitioning begins by classifying all the points against the cut plane and splitting 
any directed edges that cross the cut plane. 

Where Polygon:rclassifyPoints( const Plane& cut, 
Counter& nOnDEdges, 
DEdge* onDEdges[] ) 

{ 
first 0->srcWhere() = cut.whichSide( first()->srcPoint() ); 
Where polyW = first()->srcWhere(); 
forEachDEdge( d ) { 
d->dstWhere() = cut.whichSide( d->dstPoint() ); 
polyW = Where( polyW | d->dstWhere() ); 
if( d->where() == ABOVEBELOW ) { 

split( cut, d ); 
onDEdges[nOnDEdges++] = { d = d->next() ); 
d->srcWhere() = ON; 

} else if( d->srcWhere() == ON ) 
onDEdges[nOnDEdges++] = d; 

} 
return polyW; 

} 

After the classification, no edge crosses the cut plane and each point is labeled as lying 
either ABOVE, ON, or BELOW the cut plane. Furthermore, the edges that have a source 
vertex on the cut plane are retained for further processing if needed. At this point 
it will be known if the polygon lies completely above, on, or below the cut plane, in 
which ca^e the polygon is added to the proper list and the operation completes. If, on 
the other hand, the polygon crosses the cut plane, the polygon is split by calling the 
Polygon: : complexCut method with the collected edges whose source vertices lie on the 
cut plane. 

void Polygon::complexCut( const Plane& cut, 
const Counter nOnDs, DEdge* const onDs[], 
List<Polygon>& above, List<Polygon>& below) 

{ 
sortDEdges( nOnDs, onDs, cut.normal() V plane().normal() ); 
Index startOnD = 0; 
DEdge* srcD = NULL; 
while( srcD = getSrcD( onDs, startOnD, nOnDs ) ) { 

DEdge* const dstD = getDstD( onDs, startOnD, nOnDs ); 
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assert( dstD 1= NULL ); 
addBridge( srcD, dstD ); 
if( srcD->prev()->prev()->srcWhere() == ABOVE ) 
useSrc = srcD->prev(); 

else if( dstD->dstWhere() == BELOW ) 
useSrc = dstD; 

The first step sorts the directed edges (with source vertices that lie on the cut plane 
as returned by function Polygon: i c lass i fyPoin ts ) . The edges are ordered by their 
source vertex in increasing distance along a cut direction (e.g., left to right) by the 
method 

void Polygon::sortDEdges( const Counter nOnDs, DEdge* const onDs[], 

const VectorSc cutDir ) 

{ 
assert( nOnDs >= 2 ); 
const Point& refP = onDs[0]->srcPoint(); 
for( Index i = 0; i < nOnDs; ++i ) 
onDs[i]->distFromRefP() = cutDir * ( onDs[i]->srcPoint() - refP ); 

for( i = nOnDs-1; i > 0; --i ) 
for( Index j = 0, k = 1; k <= i; j = k++ ) 

if( onDs[j]->distFromRefP() > onDs[k]->distFromRefP() || 
onDs[j]->distFromRefP() == onDs[k]->distFromRefP() && 
onDs[j]->dstWhere() == ABOVE ) 

swap( onDs[j], onDs[k] ); 
} 

Typically, the number of these edges is small (e.g., two). Consequently, a bubble sort is 
used. The sorted edges are then scanned in left-to-right order and used to determine a 
source and a destination edge between whose source vertices new edges will be inserted. 
The next source directed edge is obtained by 

static DEdge* useSrc = NULL; 
static DEdge* getSrcD( DEdge* const onDs[], 

Index& start, const Counter nOnDs ) 
{ 
if( useSrc ) { 
DEdge* const gotit = useSrc; 
useSrc = NULL; 
return gotIt; 

} 
while( start < nOnDs ) { 

const Where prevW = onDs[start]->prev()->srcWhere(); 
const Where nextW = onDs[start]->dstWhere(); 
if( prevW == ABOVE && nextW == BELOW || 

prevW == ABOVE && nextW == ON && 
onDs[start]->next0->distFromRefP() < onDs[start]->distFromRefP() || 

prevW == ON && nextW == BELOW && 
onDs [start]->prev()->distFromRefP() < onDs [start]->distFroinRefP () ) 

return onDs[start++]; 
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++start; 

} 

return NULL; 

} 

The next destination directed edge is obtained by 

static DEdge* getDstD{ DEdge* const onDs[], 
IndexSc start, const Counter nOnDs ) 

{ 
while{ start < nOnDs ) { 

const Where prevW = onDs[start]->prev()->srcWhere(); 
const Where nextW = onDs[start]->dstWhere(); 
if( prevW == BELOW && nextW == ABOVE || 

prevW == BELOW && nextW == BELOW || 
prevW == ABOVE && nextW == ABOVE || 
prevW == BELOW && nextW == ON && 

onDs[start]->distFromRefP() < onDs[start]->next()->distFromRefP() || 
prevW == ON && nextW == ABOVE && 

onDs[start]->distFromRefP() < onDs[start]->prev()->distFromRefP() ) 
return onDs[start++]; 

++start; 
} 

return NULL; 

} 

These two functions step through the ordered edges, onDs, using s t a r t , the index 
into the array. If a sector is defined to be the area on the inside of the polygon taken at 
a vertex, there are sixteen possible sector/cut-plane classifications. These are shown in 
Table 1. The table has four columns and sixteen rows. The first column shows a sector 
characterizing a class of such sectors. A sector of some directed edge g has three vertices, 
labeled for simplicity a, /3, and 7. The second and third columns mark the sectors that 
are correspondingly the source and destination of a new edge. Of all sixteen possible 
sectors, only three sectors can cause an edge pair to be started, and only five can 
cause the new edges to terminate. The fourth column gives a condition that is used to 
recognize that sector. In the condition, a < V, a = V, and a > V indicate that a is 
correspondingly below, on, and above the cut plane V. 

Given the source and destination edges, two new directed edges are created and 
spliced in between the source and the destination edges (as shown in the example of 
Figure 3) by the method 

void Polygon:caddBridge{ DEdge* const leftBelow, DEdge* const rghtAbove ) 

After all the new edges have been inserted, new polygon headers are created, and 
associated with the edge cycles. Since, however, it is not known how many times the 
edge cycle loops back and touches the cut plane, the constructor for the new polygon 
resets all the vertex classification labels to prevent the loop from belonging to more 
than one polygon header. 



392 0 utilities 

Table 1. ^y marks possible source and destination sectors for a new edge, a, p and 7 refer to the 
classification for the vertices of the sector. V is the cut plane, a <V indicates that vertex a is below the 
cut plane. 

a , f3, -y 

0 

^ 

^ 

/N 
A 
(^ 

\ ^ 

S r c 

V 

D s t 

V 

V 

V 

V 

Condition 

a < P , 7 > P 

a < p , 7 = p , ^ < 7 

a < P , 7 = P , 7 < / ? 

a < P , 7 < P , concave 

a < P , 7 < P , convex 

a = V,j>V,a< P 

a = P , 7 > P , / ? < a 

a = V,-f <V,a< p 

a, P, 7̂ 

r 
-^iV 

^tr^ 

j) 
iv 

u 
V 

S r c 

^ 

V 

D s t 

V 

Condition 

a = P , 7 < P , / 3 < a 

a — V,j = V,a < ^ 

a = 7^,7 = ' P , 7 < a 

a > P , 7 < P 

a > p , 7 = 7:>,/3<7 

a > P , 7 = P , 7 < / ^ 

a > P , 7 > P , convex 

a > V,j > V, concave 

Before 

Figure 3. A polygon before and after one iteration of the edge insertion step. Each arrow indicates a 
directed edge and its orientation. 

static void collectFaces( const Counter nOnDs, DEdge* const onDs[], 
List<Polygon>& above, List<Polygon>& below ) 

{ 
for( Index i = 0; i < nOnDs; ++i ) 
if( onDs[i]->srcWhere() == ON ) 

if( onDs[i]->dstWhere() == ABOVE ) 
above << new Polygon( onDs[i], plane() ); 

else if( onDs[i]->dstWhere() == BELOW ) 
below << new Polygon( onDs[i], plane() ); 

Because of multiconnected polygons (i.e., with holes), the insertion of a pair of edges 
does not always split the polygon if the edge connects to an inner loop. Only after 
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another edge pair is inserted on the other side of the hole does the polygon split into 
two. In general, inserting n edge pairs can split the polygon into as few as two polygons, 
or as many as n + 1 polygons. 

Finally, here is a simple test-code fragment given Polygon* g and const Plane 
cut Plane showing how to split the polygon and print the result. 

List<Polygon> above; 
List<Polygon> on; 
List<Polygon> below; 
split( g, cutPlane, above, on, below); 
printPolys( "Above", above); 
printPolys( "On", on); 
printPolys( "Below", below); 

For the sake of readability, the code presented for functions getSrcD and getDstD 
is written with the assumption of having vertices with at most two incident sectors. If 
nonmanifold vertices having more than two incident sectors fall on the cut plane, the 
two functions have to collect all coincident sectors and select from them the innermost 
sectors to be cut. This can be easily done by finding the sectors having the smallest 
angle between the cut vector and the out-edge. 
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0 Introduction 0 
Computing the triangulation of a polygon is a fundamental algorithm in computational 
geometry. In computer graphics, polygon triangulation algorithms are widely used for 
tessellating curved geometries, such as those described by splines (Kumar and Manocha 
1994). Methods of triangulation include greedy algorithms (O'Rourke 1994), convex hull 
differences (Tor and Middleditch 1984) and horizontal decompositions (Seidel 1991). 

This gem describes an implementation based on Seidel's algorithm {op. cit.) for tri-
angulating simple polygons having no holes. It is an incremental randomized algorithm 
whose expected complexity is 0 ( n log* n). In practice, it is almost linear time for a 
simple polygon having n vertices. The triangulation does not introduce any additional 
vertices and decomposes the polygon into n — 2 triangles. Furthermore, the algorithm 
generates a query structure that can be used to determine the location of a point in 
logarithmic time. Related gems include incremental Delaunay triangulation of a set of 
points (Lischinski 1994) and polygonization of implicit surfaces (Bloomenthal 1994). 

<> Overview of the Triangulation Algorithm 0 
The algorithm proceeds in three steps as shown in Figure 1. 

1. Decompose the Polygon into Trapezoids. Let 5 be a set of nonhorizontal, non-
intersecting line segments of the polygon. The randomized algorithm is used to create 
the trapezoidal decomposition of the X — Y plane arising from the segments of set S. 
This is done by taking a random ordering 5 i , . . . , 5^ of the segments in S and adding one 
segment at a time to incrementally construct the trapezoids. This divides the polygon 
into trapezoids (which can degenerate into a triangle if any of the horizontal segments 
of the trapezoid is of zero length). The restriction that the segments be nonhorizontal 
is necessary to limit the number of neighbors of any trapezoid. However, no generality 
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(a ) (b) (c ) 

Figure 1, Generating monotone polygons from the trapezoid formation. 

is lost because of this assumption, as it can be simulated using lexicographic order-
ing. That is, if two points have the same F-coordinate, then the one with the larger 
X-coordinate is considered higher. The number of trapezoids is linear in the number 
of segments. Seidel proves that if each permutation oi si,... ^Sn is equally likely, then 
trapezoid formation takes 0(nlog* n) expected time {op. cit.). 

2. Decompose the Trapezoids into Monotone Polygons. A monotone polygon is 
a polygon whose boundary consists of two y-monotone chains. These polygons are 
computed from the trapezoidal decomposition by checking whether the two vertices of 
the original polygon lie on the same side. This is a linear time operation. 

3. Triangulate the Monotone Polygons. A monotone polygon can be triangulated 
in linear time by using a simple greedy algorithm that repeatedly cuts off the convex 
corners of the polygon (Fournier and Montuno 1984). Hence, all the monotone polygons 
can be triangulated in 0{n) time. 

0 Data Structures for Implementation 0 
All the data structures used in the implementation are statically allocated. The trape-
zoid formation requires a structure where the neighbors of each trapezoid and its neigh-
boring segments can be determined in constant time. Therefore, for every trapezoid, 
the indices of its neighbors and the segments are stored in its table-entry T. 

The query-structure Q, used to determine the location of a point, is implemented as 
described by Seidel. The same Q can be later used for fast point-location queries. Both 
Q and T are updated as a new segment is added into the existing trapezoid formation. 
This entails splitting in two the trapezoid(s) in which the endpoints of the segment lie, 
then traversing along the edge of the segment to merge in any neighboring trapezoids 
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Table 1 . Performance on randomly generated polygons. 

Number of Vertices 

10 
50 

100 
500 

1000 
5000 

10000 
50000 

100000 

Running Time 

0.9 ms 
3.5 ms 
6.7 ms 

42.7 ms 
97.6 ms 

590.0 ms 
1.24 s 

7.3 s 
15.45 s 

which both share the same left and right edges and also share a horizontal edge. All the 
monotone polygons are stored in a single linked list with pointers to the first vertex in 
the list stored in a table. 

0 Implementation Notes 0 

Table 1 shows the average running time of the algorithm for randomly generated data 
sets of various sizes. All the measurements were taken on an HP Series 735 with execu-
tion times averaged over one hundred repetitions. 

Empirical testing has proven the method robust across wide classes of input data. 
The present implementation uses an e (epsilon) tolerance when testing for floating-
point equality. This computation occurs when determining whether a point lies to the 
left (right) of a segment or when detecting coincident points. This tolerance could 
potentially be removed by substituting a well-crafted point-in-polygon test (Haines 
1994). 

The triangulation code is invoked through the main interface routine, 

i n t t r iangula te_polygon(n, v e r t i c e s , t r i a n g l e s ) ; 

with an n-sided polygon given for input (the vertices are specified in canonical anti-
clockwise order with no duplicate points). The output is an array of n —2 triangles (with 
vertices also in anticlockwise order). Once triangulated, point-location queries can be 
invoked as 

in t i s_point_ins ide_polygon(ver tex) ; 

additional details appear in the C source code that accompanies this gem. 
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This gem describes the software implementation of a high-precision color Z-buffer ren-
derer. The system is virtual: No frame-buffer hardware is assumed. Instead, a twenty-
four-bit color model supported by a number of widely available Internet utilities (Fleis-
cher and Salesin 1992, Foley et al 1990) creates a desirable and highly portable system. 

0 Description 0 
The sequence of steps that map (in perspective) a scene description onto a raster file 
appears in Figure 1. This gem leverages off several freely available utilities to embody 
each function block. First, the input is presented using a slightly modified version of the 
Neutral File Format (NFF) used in the Standard Procedural Database (SPD) created as 
a universal means of scene description (Haines 1987). Twenty-four-bit color descriptors 
are used, which ultimately represent each output pixel. The matrix library underpinning 
both the viewing transformation plus other vector-based computation is taken from the 
SPHIGS package (Foley et al 1990). Rasterization is based upon the fixed point methods 
whose routines appear in a previous gem (Fleischer and Salesin 1992); extensions include 
a 2D RGBZ interpolator. The pixel values are written in TARGA format using file write 
and display routines^ taken from Paul Rivero's LUG library. 

This gem is written in C and compiles under the Gnu C compiler on Unix platforms. 
Source code appears on the gems disk and FTP mirrors. The commands are: 

ZRendvl (NFFfile) (TARGAfile) 
s x l l (TARGA) 

renders input onto output file, 
displays the output (.tga) file. 

Read Input Lighting —^ Viewing 
Transformation 

—> Rasterization —^ Output 
TARGA file 

Figure 1. The z-buffer rendering pipeline. 

^The author thanks Todd Montgomery for his assistance. 
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The very first source code appearing in Graphics Gems described a three-dimensional 
vector library. Written humbly in C and offered without an accompanying gem, it 
introduced that volume's first appendix.^ From these simple beginnings it is fitting 
that Volume V should conclude with a cornucopia of extended graphics libraries. Four 
complete works are presented; full run-time details may be found in each library's 
sources. 

0 Overview 0 

The libraries are a synthesis of many ideas appearing as full-fledged gems in Volume 
IV. The lineage of each entry may be traced to the revised C entry (Glassner and 
Haines 1994) and/or the related C+-I- library (Done 1994). Methods of n-dimensional 
Euclidean geometry (Hanson 1994) provide a means of dimension extension, as does 
the perp-dot product (Hill 1994). 

The libraries have both production and research application. For practical purposes, 
straightforward naming conventions assist both maintenance and a "correctness by con-
struction" style of design. Utility functions support memory allocation, stream I/O, or 
assertion macros, thereby providing run-time diagnostics or otherwise ensuring proper 
operation. As research tools, they have been used to explore the regular polytopes, 
Rubik's hypercube, hyperplane rotation, and the mixed orthographic/perspective pro-
jections as is possible when viewing a scene in 4D world coordinates upon a 2D display. 

The libraries are written in both C and C++ and offer a number of extensions. Oper-
ators in C + + allow a compelling polymorphism: vl = v2 * f operates naturally upon 
vectors or scalars with equal facility; the elements in the right-hand side can commute. 

^The library was revised by Bogart in Volume II. 
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Table 1. 
Title, 
Contributor (s) 

A Graphics Math Library 

Ferdi Scheepers & Stephen May 

A Toolbox of Macro Functions 
Christophe Schlick 

Penultimate Vector Macros 
Don Hatch 

The C Vector Library in 4D 

Steve Hill 

Features of the extended graphics libraries. 
Source 

Directory 

libgm 
C+-h (all) 
mactbox 

C 

vec-h 

c,c++ 
GG4D 

C 

M a c r o -

b a s e d 

s o m e 

inl ines 

yes, 

entirely 

yes 
( inC) 

few 

Maximum 
dimension 

3 

(4) 
3 

(4) 
n 

(n+l) 
4 

(5) 

Additional 
comments 

The compleat C + + 
graphics library 

Elegant macros are 
gentle on the eyes 

C / C + + macros to go 
in any dimension 

The 4D tour de force 
(includes 4D projections) 

Macros^ are used to advantage by all and by two exclusively [in C + + the i n l i n e may 
substitute (Lippman 1991)]. Macros support fast in-line evaluation of small routines 
without procedure overhead—their traditional use. They provide further leverage when 
used to redefine functions or even macros, thereby providing a means of "rewriting" a 
library at compile time for operation at increased dimension or with double precision 
operators substituting for f loa t . The basic capabilities are summarized in Table 1. 

Each complete library resides on disk in a private directory whose name appears in 
column two. The maximum dimension n (column four) lists the dimension of intended 
use; partial extent ion to dimension (n + l) is typically present to support the use of 
homogeneous coordinates. 

0 A Graphics Math Library 0 

The C + + graphics library libgm (eight files) created by Scheepers and May supports a 
wide range of traditional vector- and scalar-based geometric operations. It is the largest 
library and of value as a direct C + + upgrade to previous entries in this series. It is 
production software in the best sense, employing the naming conventions' consistent and 
nonconflicting use typical of the genre (Anderson et al. 1991). Other features include 
scalar definitions at twenty-digit precision, i n l i n e versions of simple functions, and an 
a s se r t macro used to verify expected function input values. 

Standard vector operations through 3D are supported, with matrix support extended 
to basic 4 x 4 operations (including inversion). Utility operations include range clamps 
and linear and Hermite interpolators. Lower-level routines (macros) provide other useful 
functions, such as "fuzzy" floating-point equality, of value when (for instance) dealing 

^An early macro-based graphics library by Hollasch appears as an appendix in Volumes II and III 
(Hollasch 1991, 1992). 
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Op Description 

Table 2. libgm vector operators. 
Usage Op Description Usage 

[i] 

[i] 

= 
+= 

- = 
•k — 

access component i 
2D: i G { 0 , l } 
3D: ie {0,1,2} 

change component i 

2D: i e {0,1} 
3D: i e {0,1,2} 

assign 
destructive add 
destructive subtract 
destructive scalar multiply 

f - v [ 0 ] ; 

v [ 0 ] = f; 

v l = v 2 ; 
v l += v 2 ; 
v l -= v 2 ; 
v l * - f; 

/ = 

+ 

-
-
• 

• 

/ 

= = 
I -

destructive scalar divide 
requires: divisor ^ 0 

addition 
subtraction 
negation (unary) 
scalar pre-multiply 
scalar post-multiply 
scalar divide 

requires: divisor ^ 0 
equality (fuzzy) 
inequality (fuzzy) 

v l 

v l 
v l 
v l 
v l 
v l 
v l 

i f 
i f 

/= f; 

= v2 + v 3 ; 
= v2 - v 3 ; 
= - v 2 ; 
= f * v 2 ; 

= v2 * f; 
= v2 / f; 

(v l == v2) . . . 
(v l != v2) . . . 

with redundant vertices in space models which nonetheless differ slightly to the limits 
of machine precision. 

As an illustration of style and use, a culled set of representative operations are pre-
sented in Tables 2 and 3. Further details on constructor use and additional operations 
and functions may be found in the prototypes gm* .h or the source gmMatrix*. c. 

0 A Toolbox of Macro Functions 0 

The C-language macro-based toolbox consists of ten *.h files, supporting more than 
three-hundred entries. The toolbox is based entirely on macros, hence the preference 
of the name "toolbox" over "library." Macros have zero function overhead, but this 
advantage is not without some cost. Local variables cannot be declared inside macros 
and (in six of the 300+) an additional parameter supplies a temporary variable. 

An important feature of the toolbox is that even procedure-like macros return a 
value, allowing them to appear as expressions within assignment and if statements. 
This functional style of invocation is nicely supported within the macro bodies using 
the lesser-known , (comma) operator in C. 

The kernel of the toolbox, t oo l .h , is based upon the original GraphicsGems.h and 
provides classical constants, and basic and extended functions. The latter includes 
clamping or rounding-off, floating-point comparison with tolerance, plus linear, car-
dinal, and Hermite interpolation. The file also provides general-purpose macros for 
memory handling, text file manipulation, and run-time error management in the re-
spective macros *_MEM, *_FILE, and *JERROR. 

The essential files s i n t . h , u in t . h , and r e a l . h define scalar operations upon val-
ues having type in t , unsigned in t , and f loa t /double . These scalar macros are used 
to derive the types s intvec2 through realmat4 that support 2D, 3D, and 4D opera-
tions on vectors and matrices. The related I/O macros GET_SINT, PUT_REALVEC2, and 
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Function 

Table 3. 
Description 

libgm utility functions. 
Usage 

gmAbs(f) 
gmCe i l ( f ) 
ginClainp(f , f l , f 2 ) 
gmCube(f) 
gmDegrees( f ) 
gmFloo r ( f ) 
gmFuzEQ(f l , f2) 
gmFuzGEQ(fl , f2) 
gmFuzLEQ(fl, f2) 
gmlnv( f ) 
g m l s Z e r o ( f ) 
g m L e r p ( f , f l , f 2 ) 

ginMax(fl, f2) 
gmMax(fl , f 2 , f 3 ) 
gmMin( f l , f 2 ) 
ginMin(fl , f 2 , f 3 ) 
gmRadians ( f ) 
gmRound{f) 
ginSign(f) 
g m S l i d e ( f , f l , f 2 ) 

ginSmooth{f) 
gmSqr(f) 
ginSwap(fl , f2) 
gmSwap( i l , 12 ) 
gmTrunc(f) 
gmZSign(f) 

absolute value of f 
least integer greater than or equal to f 
clamp f to [ f 2 , f 3 ] 
f3 
convert angle in radians, f, to angle in degrees 
greatest integer less than or equal to f 
t r u e iff f 1 is fuzzy equal to f 2 
t r u e iff f 1 is fuzzy greater than or equal to f 2 
t r u e iff f 1 is fuzzy less than or equal to f 2 
inverse of f, f ^ 0 
t r u e iff f is fuzzy equal to 0 
linear interpolation from f 1 (when f = 0) 

to f 2 (when f = 1) 
maximum of f 1 and f 2 
maximum of f 1 and f 2 and f 3 
minimum of f 1 and f 2 
minimum of f 1 and f 2 and f 3 
convert angle in degrees, f, to angle in radians 
f rounded to nearest integer 
sign of f ( - 1 iff f < 0) 
hermite interpolation from f 1 (when f = 0) 

to f 2 (when f = 1) 
smooth hermite interpolate of f 

swap f 1 and f 2 
swap i l and 12 
f truncated 
zero or sign of f (—1, 0, or 1) 

fl 

fl 

= gmAbs(f2); 
= gmCeil(f2); 

gmClamp(f, fl, f2) ; 

fl 

fl 

fl 

if 

if 

if 

fl 

if 

f3 

f = 

f = 

f = 

f = 

fl 

fl 

fl 

= gmCube(f2); 

= gmDegrees(f2); 

= gmFloor(f2); 

(gmFuzEQ(fl,f2)) 

(gmFuzGEQ(fl,f2)) 

(gmFuzLEQ(fl,f2)) 

= gmlnv(f2); 

(gmIsZero(f) ) ... 

= gmLerp(f,fl,f2) 

: gmMax(fl,f2); 

: gmMax(fl,f2,f3); 

: gmMin(fl,f2); 

• gmMin(fl,f2,f3); 
= gmRadians(f2) ; 

= gmRound(f2); 

= gmSign{f2); 

f3 = gmSlide(f,fl,f2) , 
fl = gmSmooth(f2); 
fl = gmSqr(f2); 

gmSwap(f1,f2); 

gmSwap(il,12); 

f1 = gmTrunc(f2); 

fl = gmZSign(f2); 

GET_UINTMAT3 also lend support. This methodology allows complete type substitution 
simply by setting a compiler switch, for example, -DSINGLE_SINT, or adding a #def ine 
SINGLE_SINT, thereby redefining all macros. 

The remaining five *. h files provide an exhaustive set of vector and matrix manipula-
tion tools. Their macros support operations including creation, duplication, arithmetic 
operations, comparison with tolerance, interpolations, dot or cross products, matrix 
determinant, transposition, and inversion. 

The name of any macro takes the form ac t ion . type where "action" describes the 
macro operation and "type" the parameter type, for example, MIN_VEC2(V,A,B)- This 
helps memorization of names and facilitates an eventual extension of the toolbox. Note 
that while the macros are defined in all cases, some cannot provide meaningful results, 
for example, matrix inversion upon the integers. 
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(Editor's note: The root solver QUADRATIC(a,b,c) requiring no temporaries and re-
turning the number of roots is a work of art. Although it will not affect calculations at 
double precision, please note the last two digits of #def ine PI.) 

<> Penultimate Vector Macros 0 

This entry provides a major step in the direction of an ideal and hence "ultimate" macro 
library. In practice, the utility of even the most carefully crafted graphics library is 
lost when confronted with vectors having dimensional or type mismatch. This library's 
reason for existence is compelling: support code reuse in its broadest sense. This is 
achieved in an ironic fashion: Here it is the source code (the C program vecJi .c) that 
rewrites the macro file vec.h for given dimension n. 

A machine-produced macro library has numerous advantages. Automatically pro-
duced files are easily tailored to their target application, are not prone to spurious 
typos, and can easily provide a uniform naming convention. The method works with a 
flourish: The vec.h file appearing in the distribution accompanying a companion gem 
(page 375) was created by executing the command vecJi 4. 

The library supports garden-variety vector and matrix arithmetic operations upward 
through cross product and inversion, respectively. The former are generalized by us-
ing Hanson's definition {op. cit.) in preference to other alternatives (Goldman 1992); 
inversion is performed using Cramer's rule, taking advantage of macros that compute 
determinant and adjoints. Hill's "perp-dot" {op. cit) is also employed. 

Finally, the library supports conformality in a highly extended sense. For instance, 
multiplying a 4 x 4 matrix by a 3 x 3 matrix produces a 4 x 4 result in a natural way. 
(In theory, the smaller matrix is augmented, placing I's on the diagonal and O's on the 
off-diagonal of the added row and column. In practice, the multiplications by zero and 
one are elided in the macro's definition, further increasing run-time efficiency.) As a last 
example of extended operation, the matrix operations support both row vector premul-
tiplication and column vector postmultiplication. (Accordingly, the table of operations 
gives mathematical names only; parameter considerations are a nonissue.) 

Table 4. Generic operations supported by vec.h . 
assign 

dot product 
trace 
set to identity 
linear interpolation 

add 
cross product 
assign 
compare 

subtract 
transpose 
round to integer 
compare with zero 

scalar multiply 
determinant 
fill with constant 
square of magnitude 

scalar divide 
adjoint 
set to zero 
squared difference 
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0 The C Vector Library in 4D 0 
This library's emphasis is on 4D graphics in its broadest generahty. The C + + Hbrary 
by Done {op. cit.) was recoded in C and the scope of operation widened to support 
5 x 5 matrices. The traditional (and bulky) matrix procedures which, for example, 
assign all elements en masse are largely absent. Replacing them are the affine matrix 
operations (rotation, translating, and scaling) which operate on coordinates (x, y, z, w) 
in homogeneous coordinates. Beyond simplifying coding style, this makes the library a 
useful research vehicle in the interactive exploration and visualization of 4D Euclidean 
space. Two affine matrices appear below. 

^V^a;5 ^yi ^zi ^w) 

f So: 0 0 0 0 \ 
0 Sy 0 0 0 
0 0 5^ 0 0 

0 0 0 5̂ y 0 

V 0 0 0 0 1 / 

^yw{0) = 

/ 1 0 0 0 0 \ 
0 cos^ 0 - s i n ^ 0 
0 0 1 0 0 
0 sine 0 cos^ 0 

\ 0 0 0 0 1 / 

The first supports independent (anamorphic) scaling given four parameters presented 
as a four-vector. The second rotates a matrix about the y — w hyperplane by an amount 
0. (There are six hyperplanes of rotation in 4D, an extension of the three axes of rotation 
in 3D.) 

Perspective operations in 4D (which become orthographic projection in the limit) can 
be defined by analogy to their 3D counterparts; representative matrices appear in the 
source listings. 

0 Contributors 0 
One library was created by authors not appearing elsewere in this volume. These contrib-
utors are Ferdi Scheepers and Stephen May (Ohio State University, Columbus, Ohio), 
ferdi@cgrg.ohio-state.edu, and smay@cgrg.ohio-state.edu. 

The editor wishes to thank those contributing to this and related works for their 
cooperation and patience in providing additional material on short notice. 
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Adaptive clustering (halftoning), 302 
Adaptive image refinement, 355, plates 
Algorithm 

Bresenham, exact clipping, 317 
Bresenham, inverse, 338 
Cohen-Sutherland, 315 
de Boor, 217 
de Casteljau, 199, 217 
Descartes-Euler-Cardano, 8 
Ferrari, 7 
Neumark, 9 
Seidel, 394 
Sutherland-Hodgman, 51 

Ambiguous face, 99 
Angle subdivision, see Ellipsoid generation 
Arcs 

chord subdivision, nonuniform, 171 
chordal deviation, 169 
circular, 168 
de Casteljau subdivision, variant, 174 
radius of curvature, 168 
vertex deviation, 170, 174 

Area 
polygon, 35 
quadrilateral, 37 
spherical triangle, 44 
vectors, 35 

ARIES technique (halftoning), 303 
Axial deformation, 139 

B 

B-spline curves 
de Boor algorithm, 217 
divided difference interpolation, 213, 217 
identities of basis functions, 163 
nonuniform rational, 216 
smooth connecting, 191 

Back to front polygon rendering, 126 
Back-face culling, 127 
Bernstein basis functions, 149 
Bezier curves 

arc length of, 199 
blossoms of, 191, 215 
control polygon, 204 
de Boor points, 194 

identities of Bernstein basis functions, 149 
interpolating form, linear, 213 
Gaussian quadrature, 199 
knot insertion, 194 
rendering of, 206 
smooth connection, 191 
subdivision, parametric, see de Casteljau 

algorithm 
vertex deviation, 174 

Bidirectional reflectance distribution function, 
285 

Binary space-partitioning trees, 121 
Body centered cubic lattice (bcc), 68, see also 

Truncated octahedron 
BRDF, see Bidirectional reflectance distribution 

function 
Bresenham algorithm (pixel rendering) 

exact clipping, 317 
inverse algorithm, pixel to vector, 338 

BSP trees, see Binary space-partitioning trees 

Catmull-Rom interpolation, 107 
Catmull-Rom splines, 218 
Cell ambiguity, 98 
Chain code, 324, see also Edge contour 
Characteristic matrix, see Conic sections 
CIELAB, CIELUV color spaces, 62 
Circumspheres (space packing), 67, 270 
Chpping 

scanline-object, 242 
Sutherland-Hodgman, 51 
vector-viewport, 314 
view frustum, 127 

Cohen-Sutherland clipping algorithm, 315 
Collision testing, viewpoint 

moving polyhedra, 380 
static polygons, 128 

Cone-line intersection, 227 
Conic sections, 72 
Continued fractions, 26 
Contours 

edge, 338 
surface, 99 

Coordinate 
barycentric, 211 
homogeneous, 112, 214 

407 
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transformation, 111 
unit-cube frame representation, 141 

Covariance matrix, 113 
Cubic 

lattice, body centered, 68, see also Truncated 
octahedron 

lattice, face centered, 68, see also Rhombic 
dodecahedron 

symmetric polyhedra, 78, 83 
marching cubes, 98 
tricubic interpolation, 107 

Cubic equations 
Descartes-Euler-Cardano, 8 
Ferrari's, 7 
Neumark's, 9 

Cubic lattices, 62 
Cuboctahedron, 70 
Culling 

back-face, 127 
view-frustum, 127 

Cylindrical luminaire, 285 

de Boor algorithm, 217 
de Boor-Fix formulas, 160, 166 
de Casteljau algorithm, 199, 217 
Decomposition 

into parallelohedra (space packing), 67 
quotient space, 61 
Seidel's algorithm (trapezoids, triangles), 394 
singular value, 115 

Delaunay triangulation, 270 
Descartes-Euler-Cardano algorithm, 8 
Descartes' law of signs, 154 
Directional light, 290 
Dirichlet cell, 62, 270 
Distance approximations, 78 
Dithering, see Ordered dithering 
Divergence theorem, 40 

Face centered cubic lattice (fee), 68, see also 
Rhombic dodecahedron 

Ferrari's algorithm, 7 
Fluorescent lights, see Cylindrical luminaire 

Girard's formula, 44 
Graphics libraries, 400 
Green's theorem, 40 

H 

Halftoning, 297, 302 
Hermite interpolation, 212, 401 
Hexakis octahedron, 82, plates 
Hierarchical traverse, 246 

Interpolation 
B-spline, divided differences, 213, 217 
Bezier curves, 213 
Hermite, 212, 401 
RGBZ, 398 
slerp, 62 
tricubic, 107 

Intersection 
cone-line, 227 
moving polyhedra-viewpoint, 80 
polygon-cube, 375 
quadrangle surface-line, 232 
scanline-object, 242 
swept sphere-line, 258 

Lagrange polynomials, 210 
Least-squares fit, linear, 92 
Lie algebra, 59 
Line parameterization, 92 

Edge contours, 338 
Ellipse intersections 

equations, 75 
figure, 6 

Ellipsoid generation, 179 
Euclidean geometry, n-D 

graphics libraries, extended, 400 
n-D rotation, 55, 405 
n-D solids, 79 

Euclidean norm, see Distance approximations 
Euler angles, see Quotient space decomposition 

M 

Marching cubes, 98 
Marsden identities, 160, 166 
Mathematician's tea, 37 
Menelaus' theorem, 213 
Mensuration, see Area and Volume 
Microdot distribution, 297 
Moire patterns, 300 
Monte-Carlo integration, 359 
Multihnearity, 215 
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N 

Nearest neighbor, 3D, 65 
Neumark's algorithm, 9 
Neutral file format (NFF), 398 
Noise function, see Wave generators 
NURBS, see B-splines, nonuniform rational 

Octahedral subdivision, see Ellipsoid 
generation 

Optical character recognition (OCR), 329 
Optimal sampling patterns, 359 
Ordered dithering, 297, plates 
Oriented lines, 50 

Packing 
body centered cubic (bcc), 68 
face centered cubic (fee), 68 
circumspherical, 67, 270 

Painter's algorithm, see Back to front polygon 
rendering 

Parallelohedron, 67 
Perp-dot product, 400 
Polygon partitioning 

concave, 50 
general 2D in 3D, 386 
by half-space membership, 122 
triangulation, 394 

Polyhedra figures 
cube (hexahedron), 67 
elongated dodecahedron, 67 
hexagonal prism, 67 
hexakis octahedron, 83, plates 
octahedron, 83 
rhombic dodecahedron, 67, 68, 83 
trapezoidal icositetrahedron, 83 
truncated octahedron, 68 

Polylines, 212 
Polytopes, semiregular, 67, 78, 83 
Progressing refinement, radiosity, 290, 

plates 

Quadric surfaces, 3 
Quartic equations, 4 

Descartes-Euler-Cardano, 8 
Ferrari's, 7 
Neumark's, 9 

Quaternions, as rotation groups, 62, 84 
Quotient space decomposition, 61 

Rational curves, 214 
Rational numbers, 25 
Rendering software 

Bezier curves, 206 
Bresenham algorithm, exact clipping, 317 
BSP tree based, 131 
Z-buffer based, 398 

RGBZ interpolation, 398 
Rhombic dodecahedron (bcc packing), 68 
RoUing ball, 55 
Rotation groups, 59 

S-patch surfaces, 219 
Sagitta, 169 
Sampling 

Optimal patterns, 359 
Solid-angle based, 287 
Stochastic supersampling, 248 

Scanline-object rejection, 242 
Seidel's algorithm, 394 
Selective precipitation (halftoning), 302 
Sequential probability test ratio, 356 
Shape vectorization, 323 
Simplex object, 99 
Singular value decomposition, 115 
Slerp interpolation, 62 
Software packages, see Rendering software and 

Graphics libraries 
Space subdivision, Voronoi, 268 
Spatial classification 

n-D semiregular cubic solids, 78 
n-D Voronoi cells, 270 
parallelohedral decomposition (space packing), 

67 
Spherical polygons, 42 
Spherical projection, 43 
SPHIGS package, 398 
SPRT, see Sequential probability test ratio 
Square root 

fixed point, 22 
floating point, inverse, 16 

Staircase patterns, 338 
Stochastic supersampling, 248 
Subdivision 

angle, see Ellipsoid generation 
arcs, circular, 168 
Bezier, parametric, see de Casteljau algorithm 
chord, nonuniform, 171 
curve, 174 
space (Voronoi), 268 
surface, 104 
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Surface description 
by n-D cubic cells, 98 
by quadrangle mesh, 235 
by triangular mesh, 232 
by voxel, 273 

Surfaces 
cell ambiguity, 98 
contours, 99 
quadric, 3 
S-patch, 219 
subdivision, 104 
tensor-product, 219 
tessellated, 232 

Sutherland-Hodgman clipping, 51 
SVD, see Singular value decomposition 
Swept spheres, 258 

TARGA file format, 398 
Tensor product surfaces, 219 
Tessellated surfaces, 232 
Theiessen tessellation, see Voronoi 

diagrams 
Theorem 

divergence, 40 
Green's, 40 
Menelaus, 213 

Threshold matrices, 297 
Trapezoidal 

decomposition, from polygon, 394 
icositetrahedron, 83 
test, 236 

Triangle, decomposition from polygon, 395 
Tricubic interpolation, 107 
Truncated octahedron (fee packing), 68 
Tubular extrusions, see Swept spheres 

View-frustum culling, 127 
Volume 

hexahedron, 39 
polyhedron, 37 
tetrahedron, 38 

Voronoi diagrams, 269 
Voxel walking, 273 

W 

Wave generators, 367 

Z-buffer, 398 
zonotopes, 70 



0 Volume l-V Cumulative Index 

Format : volume number .page number 

Absorption coefficient, II.279-II.280 
Absorption index, 11.280 
A-buffer, 1.76 
Active edge list, I.92-I.93 
Adaptive clustering (halftoning), V.302 
Adaptive image refinement, V.355 
Adaptive meshing, radiosity, shadow boundary 

detection, II.311-II.315 
Adaptive prediction-correction coders, II.94-11.95 
Adaptive subdivision, of surface, IV.287 
Addresses, precalculating, 1.285-1.286 
Adjacent facets, normals, 11.239 
Adjoint matrices, 1.538 
Affine matrix 

group, 11.345 
inverse, II.348-II.349 

Affine modeling transformations, normal vectors, 
I.539-I.542 

Affine transformation, see also Transformation 
decomposing, III. 116 
unit circle inscribed in square, III. 170 

Aggregate objects, 11.264 
Albers equal-area conic map projection, 

I.321-I.325 
Algebra, see Matrix; Vector 
Algorithm 

Bresenham, see Bresenham's algorithm 
Cohen-Sutherland, V.315 
de Boor, V.217 
de Casteljau, V.199, V.217 
Descartes-Euler-Cardano, V.8 
Ferrari, V.7 
Neumark, V.9 
Seidel, V.394 
Sutherland-Hodgman, V.51 

Aliasing, narrow domains, II. 123-11.124 
Alpha blending, 1.210-1.211 
Alpha buffer, 1.218 
Alpha compositing operators, 1.211 
Alternating Bresenham edge-calculator, 

III.350-III.351 
Altitudes, triangles, intersection, 1.22 
Ambiguous face, V.99 
Angle-preserving matrix group, 11.345 

Angles 
encoding, bit patterns, 1.442 
not uniform, III.128-III.129 
subdivision, see Ellipsoid generation 
sum and difference relations, 1.16 

Animation 
camera control, IV.230 
collision detection, IV.83 
morphing, IV.445 
recording, I.265-I.269 

double-framed order, I.265-I.266 
2 1/2-D depth-of-field simulation, III.36-III.38 

Anti-aliased circle generation, II.445-11.449 
Anti-aliased lines, rendering, 1.105—1.106 
Anti-aliasing, 1.37, IV.370, IV.445, see also Area of 

intersection 
advanced, algorithm, 1.194-1.195 
combining spatial and temporal, III.376-III.378 
edge and bit-mask calculations, III.345-III.354, 

III.586 
pixel, 1.73 
polygon scan conversion, 1.76-1.83 
triangular pixels, III.369-III.373 

Anti-aliasing filters, 1.143 
common resampling tasks, 1.147-1.165 

box filter, 1.149 
choices of filters, 1.148 
comparative frequency responses, 1.161 
comparison of filters, 1.151-1.152 
continuous, sampled, and discrete signals, 

1.147 
decimation, 1.147-1.148 

with Lanczos2 sine function, 1.160—1.161 
Gaussian filter, 1.150-1.153 
Gaussian 1/2 filter frequency response, 1.163 
Gaussian 1/V2 filter frequency response, 

1.164 
half-phase filter frequency response, 

I.162-I.163 
interpolation, 1.147-1.148 

by factor of two with Lanczos2 sine 
function, 1.158-1.159 

with Gaussian 1/2 filter, 1.152-1.154, 
1.156 

with Gaussian 1/^2 filter, 1.154-1.156 

411 
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Anti-aligising filters (cont.) 
Lanczos2 sine functions frequency response, 

1.164-1.165 
Lanczos-windowed sine functions, 

1.156-1.158 
sine function, 1.156-1.157 
tent filter, 1.149-1.150 
zero-phase filter frequency response, 1.162 

cone plus cosine, 1.145-1.146 
Gaussian filter, 1.144-1.145 
minimizing bumpy sampling, 1.144-1.146 

Apple patent, II.31-II.32 
Apollonius problem, solution, III.203-III.209 

10th problem, II. 19-11.24 
Approximation, IV.241 
Arcball, IV. 175 
Archimedean solids, semi-regular, 11.177 
Archival media, 11.165 
Arcs 

chordal deviation, V.169 
circular, V.168 
de Casteljau subdivision, variant, V.174 
chord subdivision, nonuniform, V.171 
vertex deviation, V.170, V.174 
radius of curvature, V.168 

Arctangent, approximation, II.389-11.391 
Area 

computing, binary digital image, II. 107-11.111 
planar polygon, IV.3, IV. 141 
polygon, II.5-II.6, V.35 
quadrilateral, V.37 
spherical polygon, IV. 132 
spherical triangle, V.44 
triangle, 1.20, IV. 140, IV. 161 
vectors, V.35 

Area of intersection 
circle and half-plane, 1.38-1.39 
circle and thick line, 1.40-1.42 
two circles, 1.43-1.46 

Area-to-diff'erential-area form factor, 11.313 
ARIES technique (halftoning), V.303 
Arithmetic 

complex, IV. 139 
exponentiation, IV.385, IV.403 
floating point, IV.125, IV.422 
integer, IV.123, IV.449, IV.526 

Asymmetric filter, II.52-11.53 
Autumn terminator, II.440-11.441 
Axes, transforming, 1.456-1.459 
Axial deformation, V.139 
Axis-aligned bounding boxes, transformation, 

1.548-1.550 
Axis-amount representation, conversion with 

matrix, I.466-I.467 
Azimuthal equal-area projection, 1.317 

Azimuthal equidistant projection, 1.316-1.317 
Azimuthal projections, 1.314-1.317 

B 

Backface culling, I.346-I.347, I.544-I.545, V.127 
Back to front polygon rendering, V.126 
Banding, 1.263 
Bartlett filter, III. 13, III. 15 
Barycentric coordinates, IV. 162 
Bernstein basis, 11.406, 11.409 
Bernstein basis functions, V.149 

integration, 1.604-1.606 
Bernstein-Bezier, equation conversion to, 

I.409-I.411 
Bernstein polynomials, 1.613-1.614, 11.407, 

II.409-II.410, 11.428 
Betacam, 11.154 
Beta function, integral form, III.150-III.151 
Beveling, 1.107-1.113 
Bezier control points, derivation, 11.377 
Bezier curve-based root-finder, 1.408-1.415 

bounding box, 1.413-1.414 
conversion to Bernstein-Bezier form, 

I.409-I.411 
finding roots, 1.411-1.415 
root-finding algorithm, 1.412-1.413 

Bezier curves and surfaces, 1.613-1.616, 
II.412-II.416, IV.256, IV.261, see also 
Cubic Bezier curves 

arc length of, V.199 
blossoms of, V.191, V.215 
control polygon, V.204 
de Boor points, V.194 
de Casteljau Evaluation Algorithm, 1.587-1.589 
derivative formulcis, 11.429 
differentiation, 1.589-1.590 
fitting to digitized curve, 1.616-1.624 
Gaussian quadrature, V.199 
identities of Bernstein basis functions, V.149 
interpolating form, linear, V.213 
interpolation using, III.133-III.136 

code, III.468 
implementation, III. 136 
numeric solution, III. 134 
symbolic solution, III.134-III.135 

knot insertion, V.194 
least-squares approximations, 11.406 
monomial evaluation algorithm, 1.590-1.591 
multivariate approximation, II.409-11.411 
notation, 1.587 
parametric surface, IV.278, IV.290 
parametric versus geometric continuity, 

II.430-II.431 
properties, 1.587-1.593 
rendering of, V.206 



Volume l-V Cumulative Index 0 413 

smooth connection, V.191 
subdivision, parametric, see de Casteljau 

algorithm 
in terms of Bernstein polynomials, 

I.613-I.614 
univariate approximation, II.406-11.408 
vertex deviation, V.174 

Bezier form, conversion, 1.609-1.611 
from monomial form, 1.591-1.592 
to monomial form, 1.592-1.593 

Bezier simplices, 11.412 
Bezier triangles, conversion to rectangular patches, 

III.256-III.261, III.536 
Bias function, IV.401 
Bidirectional reflectance distribution function, 

V.285 
Bilinear interpolation, see Interpolation 
Binary digital image, 11.107 

computing area, circumference, and genus, 
II.107-II.111 

algorithm, II.109-II.111 
method, II. 107-11.109 

Binary order, animation recording, 1.266-1.269 
Binary recursive subdivision, ray-triangle 

intersection, II.257-II.263 
Binary space partitioning tree, III.226, 

V.121-V.138 
ray tracing with, III.271-III.274, III.538 

Bisection, Strum sequences, 1.420-1.421 
Bit arithmetic, see also Element exchanging 

bit rotation (tables), 11.84 
counting under a mask, 11.372 
finding first on bit, 11.366, 11.374 
reading a write-mask, 1.219 
palindrome generation, 11.369 
power of two, test, 11.366 
tallying on/off bits, II.374-II.376 

BitBlt, IV.486 

generalized, algorithm, 1.193-1.194 
Bitmap, IV.466, IV.486 

black-and-white, compositing, III.34-III.35 
scaling operations, optimization, III.17-III.19, 

III.425 
stretching, III.4-III.7, III.411 

Bitmap rotator, 90-degree, II.84-11.85 
Bit-mask calculations, III.352-III.354, III.586 
Bits 

conversion with digits, 1.435 
interleaving, quad- and octrees, 1.443-1.447 
patterns, encoding angles, 1.442 

Black-and-white bitmaps, compositing, 
III.34-III.35 

Blobby model, IV.324 
Blue-green plane, domain, II. 120-11.122 

Blue scanlines, adjusting minimum and maximum, 
II.122-II.123 

Blur, see Image, filter 
Body centered cubic lattice (bcc), V.68 
Body color model, II.277-II.282 

theoretical basis, II.277-II.278 
Bottom-Up, 11.206, II.208-II.209 
Boundary generator, composited regions, 

III.39-III.43, III.441 
Bounding box, IV.26, IV.74 

axis-aligned, transformation, 1.548-1.550 
fifth-degree polynomial, 1.413-1.414 
radiosity, II.304-II.305 

Bounding method, torus, II.254-11.255 
Bounding sphere, I.301-I.303 
Bounding volume algorithm 

linear-time, III.301-III.306 
worst C£Lse, III.302 

Bounding volumes 
cone, III.297 
cube, III.295-III.296 
cylinder, III.296-III.297 
Hnear-time simple, III.301-III.306 
polygon, III.296 
rectangular, primitives, III.295-III.300, III.555 
sorting, 11.272 
sphere, III.298-III.299 
torus, III.299 

Box, 1.326 
intersection with ray, fast, 1.395-1.396 
Kuhn's triangulation, III.246-III.247, 

III.252-III.253 
Box filter, 1.149, 1.180, II.51-II.52, III.13, III.15 
Box-sphere intersection testing, 1.335-1.339 
Branching, I.558-I.561 
BRDF, V.285 
Bresenham's algorithm, 1.101 see also Line 

drawing 
exact clipping, V.317 
inverse algorithm, pixel to vector, V.338 
line drawing algorithm, 1.105-1.106, 

III.4-III.5 
spheres-to-voxels conversion, 1.327-1.329 

Bresenham's circles, 11.448-11.449 
Brightness mapping, IV.415 
B-spline curves, IV.252 

de Boor algorithm, V.217 
divided difference interpolation, V.213, V.217 
identities of basis functions, V.163 
non-uniform rational, IV.256, IV.286, V.216 
smooth connecting, V.191 

B-splines, II.377-II.378 
cubic, knot insertion, II.425-11.427 
parametric surface, IV.286 
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BSP trees, see Binary space-partitioning trees 
Bump mapping, 11.106, IV.433 
Bumpy sampling, anti-aliasing filters that 

minimize, 1.144-1.146 
Butz's algorithm, 11.25 

Cache performance, increasing, 11.87 
Caching, 11.268 
Camera transformation, IV.230 
Canonical fill algorithm, 1.279 
Cardano's Formula, 1.405 
Cartesian color cubes, 1.254-1.255 
Cartesian products 

color pixels, 1.254-1.256 
extensions, 1.256 

Cartesian triple, factoring into, 1.255—1.256 
Cartography, see Map projections 
Catmull-Rom interpolation, V.107 
Catmull-Rom splines, V.218 
Cell ambiguity, V.98 
Cell occupancy, for different grid sizes, 

1.262 
Center of gravity, triangles, 1.20-1.21 
Center of mass, superquadrics. III. 139 
Central projection, 1.315 
Centroid of a polygon, IV.3 
Chain code, V.324, see also Edge contours 
Chain rule, 11.184 
Change matrix, iteration, 1.468-1.469 
Change-of-focus simulation, III.38 
Channel, frame buffer, 1.217-1.218 
Characteristic matrix, V.72 
C header file, III.393-III.395 
Chebychev polynomials, 1.60 
Chord-length parameterization, 1.617, 1.621 
Chrominance, 11.150 
Cibachrome, II. 164-11.165 
Cibatrans, II. 164-11.165 
CIELAB, CIELUV color spaces, V.62 
Circle 

anti-aliased generation, II.445-11.449 
area of intersection 

with half-plane, 1.38-1.39 
with thick Hne, 1.40-1.42 
two circles, 1.43-1.46 

bounding, II.14-11.16 
Bresenham's algorithm, 1.327-1.329 
circumscribing a triangle, IV.47, IV. 143 
containing intersection of two circles, 

II.17-11.18 
drawing, shear algorithm, 1.192 1.193 
inscribing a triangle, IV. 145 
integral radius, on integral lattices, 

I.57-I.60 

intersection 
with line, 2D, 1.5-1.6 
with rectangle, fast checking, 1.51-1.53 

with radials, 11.383 
tangent line 

perpendicular to line, 1.8-1.9 
to two circles, 2D, 1.7-1.8 
2D, 1.5 

touching three given circles, II. 19-11.24 
2D, I.4-I.5 

Circle clipping algorithm, III.182-III.187, III.487 
Circular arc, straight-line approximation, 

II.435-II.439 
Circular arc fillet, joining two lines, 

III.193-III.198, III.496 
Circumcenter, triangles, 1.20-1.23 
Circumcircle, IV.47, IV. 143 
Circumference, computing, binary digital image, 

II.107-II.111 
Circumradius, triangles, 1.20-1.23 
Circumspheres (space packing), V.67, V.270 
C^ joint, between cubic Bezier curves, 11.432 
CLAHE (contrast limited adaptive histogram 

equalization), IV.476 
Class numbers, 1.115-1.116 
Clipping 

complex, 11.44 
generic convex polygons, 1.84-1.86 
line 

n-dimensional, IV. 159 
in 2D and 4D, IV. 125 

scanline-object, V.242 
Sutherland-Hodgman, V.51 
3D homogeneous, triangle strips, 

II.219-II.231 
2D, see Two-dimensional clipping 
vector-viewport, V.314 
view frustum, V.127 

Closed loops, cubic spline interpolation formulas, 
I.580-I.582 

Clustered-dot dither, 11.63 
C macros, vector operations, III.405 
Cohen-Sutherland clipping algorithm, V.315 
Coherence, 11.26 

measure, 11.28, 11.30 
Collision detection, IV.83 
Collision testing, viewpoint 

moving polyhedra, V.380 
static polygons, V.128 

Color 
image display, IV.415 
quantization, IV.422 
subroutines useful for RBG images, IV.534 

Color cube, I.233-I.234, 1.254-1.255 
Color descriptor table, 11.144 
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Color dithering, II.72-11.77 
conventions, 11.72 
error-propagation dithering, II.75-11.77 
gamma correction, II.72-11.73 
ordered dithering, II.73-11.75 

Color hardcopy, frame buffer, II. 163-11.165 
Color maps (LUTS), 1.216-1.218, IV.401, IV.413 

animation, random algorithm, II. 134-11.137 
basic architecture, 1.215 
geometrically determined, 1.233, 11.143 
interpolation, 11.138 
manipulation, 1-to-l pixel transforms, 1.270-1.274 
pseudo, PHIGS PLUS, II. 138-11.140 
visible selections, III.77, IV.413 

Color pixels, Cartesian products, 1.254-1.256 
Color printers, 11.165 
Color quantization, see also Octree quantization 

algorithm details and analysis, II. 131-11.132 
based on variance minimization, 11.127 
Cartesian, 1.254 
color statistic computations, II. 128-11.131 
error, II. 126-11.128 
experimental results, 11.133 
onto fourteen values, 1.233 
inverse color mapping, 11.116 
octree based, 1.287 
optimal, statistical computations, II. 126-11.133 
onto sixteen values, 11.143 
variance minimizing, optimal, 11.126 

Color reduction filter, III.20-III.22, III.429 
Color reference frame, 11.148 
Color rendering, linear, III.343-III.348, III.583 
Color solid, four-bit, I.235-I.236 
Color statistics, computations, II. 128-11.131 
Color television monitor, calibration, II. 159-11.162 
Combinatorics, inclusion-exclusion, II. 129-11.130 
Compact cubes, III.24-III.28 
Compaction algorithm, 11.89 
Compact isocontours, III.23-III.28 

compact cubes, III.24-III.28 
cube-based contouring, III.23-III.24 

Complex clipping, 11.44 
Complexity analysis, RGB triples, 1.244 
Complex number, IV. 139 
Composited regions, boundary generator, 

IIL39-III.43, III.441 
Compositing stage. III.37 
Compression, 11.49 

image file, II.93-II.100 
Compression ratios, 11.97, 11.100 
Compression techniques, 11.89 
Computational cost, jitter generation, 1.67-1.68 
Concave polygon 

scan conversion, 1.87-1.91 
testing for, IV.7 

Conducting medium, light reflection, 11.286 
Cone 

bounding volume. III.297 
equation for, IV.321 
intersection of ray with, IV.355 

Cone-ellipsoid intersection, 1.321-1.322 
Cone-line intersection, V.227 
Cone plus cosine, 1.145-1.146 
Conformal mapping, see Map projections 
Conic sections, V.72 
Conjugate diameters, III.169-III.171 
Connection algorithm, 2-D drawing, 

III.173-III.181, III.480 
definitions, III.173-III.174 
overcrossing correction, III.179-III.180 
translate and rotate algorithm, III.174-III.179 

Constants, full precision, 1.434 
Constraints for interactive rotation, IV. 177 
Continued fractions, V.26 
Continuity conditions, cubic Bezier curves, 

I.615-I.616 
Continuous image, 1.246 
Continuous signals, 1.147 
Contour data, defining surfaces from, 1.558-1.561 
Contours 

defining, 1.554 
edge, V.338 
surface, V.99 
swept, I.562-I.564 

Contrast 
cursor, IV.413 
display of high, IV.415 
enhancement, IV.401, IV.474 

Contrast enhancement transform, 1.197-1.198, 
I.201-I.202, I.270-I.271, 1.274 

Convex 
polygon, IV.7, IV.25, IV. 141 
polyhedron, collision detection, IV.83 

Convex decompositions, polygons, 1.97 
Convolution, IV.447 
Convolution kernel, 11.50-11.51 
Coordinate frames, I.522-I.532 

matrix representation, 1.524 
problem solving examples, 1.527-1.532 
vectors and points, I.522-I.523, 1.526 

Coordinate Rotation Digital Computer, see 
CORDIC 

Coordinates 
barycentric, V.211 
homogeneous, 1.523, V.112, V.214 
nonhomogeneous, 1.523 
transformation, V . l l l 
unit-cube frame representation, V.141 

Coplanar sets, of nearly coplanar polygons, 
III.225-III.230, III.512 
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CORDIC, vector rotation, 1.494-1.497 
Corner rounding, IV. 145 
Corner value, 1.553-1.554 
Cosine 

angles between lines, 2D, 1.11 
in exponentials, 1.15 

Covariance matrix, V.113 
C-Print, II. 164-11.165 
Crack prevention, IV.292 

space packing lattices, 11.174 
Cramer's Rule, 1.538, IV.90, IV. 142, IV. 164 
Cross product, II.333-11.334 

in four dimensions and beyond, III.84-III.88 
identity, IV. 158, IV.397 
matrix, 1.473 
n-dimensional, IV. 156, IV. 167 
sign calculation, II.392-11.393 
in 2D, IV.140 

Cross-section, positioning and orienting, 1.570 
Cube 

bounding volume, III.295-III.296 
dihedral, II. 174-11.175 
intersection with triangle, III.236-III.239, 

III.521 
Cube-based contouring, III.23-111.24 
Cubic, see also Cubic lattices 

symmetric polyhedra, V.78, V.83 
marching cubes, V.98 
tricubic interpolation, V.107 

Cubic Bezier curves, 1.579, 1.614, II.428-II.429 
continuity conditions, 1.615-1.616 
forward differencing, I.600-I.601, 1.603 
geometrically continuous, II.428-11.434 

Cubic B-sphne, III.14-III.15 
Cubic curve, 11.413 

planar, 1.575-1.578 
Cubic equations 

Descartes-Euler-Cardano, V.8 
Ferrari's, V.7 
Neumark's, V.9 

Cubic lattices, V.62 
body centered, V.68 
face centered, V.68, see also Rhombic 

dodecahedron 
Cubic roots, I.404-I.407 
Cubic spline interpolation formulas, 1.579-1.584 

closed loops, 1.580-1.582 
open curves, 1.582-1.583 

Cubic tetrahedral algorithm, delta form-factor 
calculation, III.324-III.328, III.575 

Cubic tetrahedron, adaptation of hemi-cube 
algorithm, II.299-11.302 

Cubic triangle, 11.413 
conversion to rectangular patches, 

III.260-IIL261 
Cuboctahedron, 1.237, V.70 
Culling 

backface, I.346-I.347, I.544-I.545, V.127 
view-frustum, V.127 

Cumulative transformation matrix. III.295 
Current object area, 11.28 
Cursor, IV.413 
Curvature vector, 1.568 
Curves and surfaces, 11.405, see also Surfaces 

anti-aliased circle generation, II.445-11.449 
Bezier, see Bezier curves and surfaces 
B-spline, IV.252 
fitting, see Digitized curve fitting 
great circle plotting, 11.440-11.444 
interpolation with variable control point 

approximation, II.417-11.419 
intersection of cubic, IV.261 
knot insertion, IV.252 
Menelaus's theorem, II.424-11.427 
number of segments, 11.435-11.436 
open, cubic spline interpolation formulas, 

I.582-I.583 
Peano, IL25-II.26 
polynomials, symmetric evaluation, 

II.420-II.423 
rational, IV.256 
reparametrization, IV.263, IV.441 
smoothing, IV.241 
straight-line approximation of circular arc, 

II.435-II.439 
subdivision, IV.251 

Curve tessellation criteria, III.262-III.265 
Cyclic sequences, fast generation, III.67-III.76, 

III.458 
N = 2, III.67-III.68 
iV = 3, III.68-III.70 
Â  = 3,4,6, III.70-IIL71 
N = 6 derivation, III.71-III.73 
N = 6 triggering, III.73-III.74 
Â  = 7, III.74-III.75 
Â  = 24, III.75-III.76 

Cylinder 
bounding volume, III.296-III.297 
with changing cross-sections, 1.570-1.571 
equation for, IV.321 
generalized, reference frames, 1.567 
intersection of ray with, IV.353, IV.356 
normal vector, IV.359 

Cylindrical equal area, 1.318-1.319 
Cylindrical equirectangular map, 1.310 
Cylindrical luminaire, V.285 
Cylindrical maps, I.310-I.311 
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Darklights, III.366-III.368 
Databases, direct charting, 1.309-1.310 
Data smoothing, IV.241 
Data structure, see also Grid 

octree, IV.74 
scanUne coherent shape algebra, 11.32-11.34 

Data value, 1.30 
DDA, see Line drawing 
DDA algorithm, 1.595 
de Boor algorithm, V.217 
de Boor-Fix formulas, V.160, V.166 
de Casteljau algorithm, V.199, V.217 
de Casteljau Evaluation Algorithm, 1.587-1.589, 

I.604-I.605 
Decimation, 1.148, see also Resampling 

Gaussian 1/2 filter, frequency response, 1.163 
Gaussian 1 /v^ filter, frequency response, 1.164 
Lanczos2 sine functions, frequency response, 

1.164-1.165 
by factor of four, 1.161 
by factor of three, 1.160 
by factor of two, I.158-I.159 

by two, frequency response 
half-phase filters, 1.162-1.163 
Lanczos2 sine functions, 1.164-1.165 
zero-phase filters, 1.162 

Decision tree, III.176-III.177 
Decomposition 

into parallelohedra (space packing), V.67 
quotient space, V.61 
Seidel's algorithm (trapezoids, triangles), V.394 
singular value, V.115 

Delauney triangulation, IV.47, V.270 
Del operator, 1.594-1.595, 1.598 
Delta form factor, 11.313 

calculation, cubic tetrahedral algorithm, 
III.324-III.328, III.575 

DeMoivre's Theorem, 1.15 
Density, superquadrics, III.139-III.140 
Depth buffer, 1.218 
Depth cuing, 1.365 
Depth of field, III.36 
2 1/2-D Depth~of-field simulation, computer 

animation, III.36-III.38 
Descartes-Euler-Cardano algorithm, V.8 
Descartes' law of signs, V.154 
Destination pixel, contributors to. III. 12 
Determinant, IV.154, IV.167 
Diagram layout, IV.497, IV.505 
Diameters, conjugate, III.169-III.171 
Dielectric materials, fresnel formulas, II.287-11.289 
Difference, scanline coherent shape algebra, 

II.39-II.40 

Difference equation, IV.245 
Differentiation algorithm, Bezier curves, 

I.589-I.590 
Diffuse reflection, 11.233 
Digital cartography, see Map projections 
Digital computation, half-angle identity, 

II.381-II.386 
Digital dissolve effect, I.221-I.232 

case study, I.229-I.231 
faster mapping, I.227-I.228 
first attempt, I.223-I.224 
further research, I.231-I.232 
optimizations, 1,230-1.231 
randomly traversing 2D array, 1.221-1.222 
scrambling integers, I.222-I.223 

Digital filtering, see Discrete convolution 
Digital generation, sinusoids, III.167-III.169 
Digital halftoning, II.57-II.71, IV.489, V,297, 

V.302 
clustered-dot dither, 11.63 
contrast adjustment during, II.63-11.64 
error diffusion dithering, II.65-11.71 
horizontal lines, 11,60-11.61 
magic-square dither, II.60-11.62 
to multiple output levels, II.64-II.65 
ordered dither matrix, 11.58-11.60 
threshold dithering, II.58-11.63 

Digital images, color hardcopy, II. 163-11.165 
Digital fine drawing, I.99-I.100 
Digitized curve fitting, automatic, algorithm, 

I.612-I.626 
chord-length parameterization, 1.617, 1.621 
implementation notes, 1.624-1.625 
Newton-Raphson iteration, 1.621-1.623 
scalar curves, 1.616 

Digits, conversion with bits, 1.435 
Directional light, V.290 
Direction ratios, 1.456-1.457 
Direct lighting, distribution ray tracing, 

III.307-III.313, III.562 
Dirichlet cell, V.62, V.270 
Discrete convolution, image smoothing and 

sharpening, II.50-11.56 
Discrete image, 1.246 
Discrete laplacian filter, 11,53-11.54 
Discrete signals, 1.147 
Discriminator, 1.101 
Display, high fidelity, IV.415 
Dissolve algorithm, I.225-I.227 
Distance approximations, 1.423, V.78 
Distance 

between two polyhedra, IV.83 
to an ellipsoid, IV. 113 
to a hyperplane, IV. 161 
to a line, IV. 143 
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Distance (cont.) 
n-dimensional, IV. 120 
3D, fast approximation, 1.432—1.433 

Distance measures 
approximate vector length, 1.429 
equations of unit distance, 1.428 
fast approximation to 3D Euclidian distance, 

I.432-I.433 
fast approximation to hypotenuse, 1.427 
full-precision constants, 1.434 
high speed, low precision square root, 

I.424-I.426 
Distance variable, 1.105 
Distribution check, III.131-III.132 
Distribution ray tracing, direct lighting, 

III.307-IIL313, III.562 
Dither, IV.489 
Dithering, see Ordered dithering 
Dithering matrix, 1.177 
Divergence theorem, V.40 
Dodecahedron, 11.176 

dihedrals, 11.175, 11.177 
transformation of sphere, 11.241 

Dot products 
n-dimensional, IV. 158 
for shading, 1.348-1.360 

direct algorithm, I.351-I.352, 1.359 
directing vectors, 1.348 
new algorithm, 1.351-1.352, I.359-I.360 
reflection of light, 1.349-1.352 
refraction, I.353-I.354 
Snell's law, I.353-I.354 

in 2D, IV.140 
Double-angle relations, 1.17 
Double-framed order, 1.265-1.266 
Double speed Bresenham's, 1.101-1.102 
Dual solids, 1.236-1.237 
Duff's formulation, 11.418 
Duratrans, II. 164-11.165 
Dymaxion gnomonic projection, 1.316 
Dynamic range of image, IV.415, IV.422 
Dynamic simulation, mass and spring model, 

IV.506 

Earth, ellipsoidal approximation, 1.309, IV. 135 
Edge calculations, anti-aliasing, III.345-III.354, 

III.586 
Edge contours, V.338 
Edge detectors, 11.105 
Edge images, noise thresholding, II. 105-11.106 
Edge preservation, IV.61 
Edge-sharpening convolutions, 11.55 

applied before halftoning, II.70-11.71 
Edge structure, II.86-11.87 

Eigenvalues, II.324-11.325, see also Matrix, 
eigenvalues 

Element exchanging, see also Cyclic sequences 
subtraction-based, 1.172 
of three or more values, 111.67 
XOR-based, 1.171, 1.436 

Ellipse intersections 
equations, V.75 
figure, V.6 

Ellipsoid, IV. 113 
box-sphere intersection testing, generalizing, 

I.338-I.339 
equation. III.276 
intersection with cone, 1.321-1.322 
superquadric 

inertia tensor, III.140-III.144 
"inside-outside" function. III. 148 
normal vectors. III. 148 
parametric surface functions. III. 147 
shells, III.154-III.157 
volume. III. 140 

Ellipsoid generation, V.179 
Euclidean geometry, n-D 

graphics libraries, extended, V.400 
n-D rotation, V.55, V.405 
n-D solids, V.79 

Elliptical arc, parametric, see Parametric elliptical 
arc algorithm 

Elliptical cone, equation. III.277 
Elliptical cylinder, equation, III.276 
Elliptical hyperboloid, equation. III.277 
Elliptical paraboloid, equation. III.277 
Elliptical torus 

cross section, II.251-11.252 
equation, II.251-11.252 
intersection with ray, II.251-11.256 

Embedding plane, intersection with ray, 
I.390-I.391 

Embossing, IV.433 
Encoded image data, rotation, II.86-11.88 
Encoding, adaptive run-length, II.89-11.91 
Energy balance criterion. III.320 
Enlargement, monochrome images, smoothing, 

I.166-I.170 
Error diffusion dithering, II.65-11.71 

blue noise added, 11.70 
edge-enhanced, 11.70-11.71 
introduction of random noise, 11.69 
serpentine raster pattern, 11.67, 11.69 

Error-propagation dithering, II.75-11.77 
Euclidean dimensions, four, III.58-III.59 
Euclidean distance, see Distance 
Euclidean norm, 1.423, V.78 
Euler angle, IV.222, see also Quotient space 

decomposition 



Volume l-V Cumulative Index 0 419 

Evolute, IV. 116 
Exact computation of 2-D intersections, 

III.188-III.192, III.491 
Apollonius problem solution, III.203-III.209 

Excircle, IV.47, IV. 143 
Exponentiation, IV.385, IV.403 

Face centered cubic lattice (fee), V.68, see also 
Rhombic dodecahedron 

Face-connected line segment generation, 
n-dimensional space, III.89-III.91 

Face dihedrals, II.174-IL175 
Faceted shading, 11.234, 11.236 
Factorial polynomials, 1.595-1.596 
Fast anamorphic image scaling, 11.78—11.79 
Fast fill algorithm, precalculating addresses, 

I.285-I.286 
Fast Fourier transform algorithms, 11.368-11.370 
Fast lines, rendering on raster grid, 1.114-1.120 

Hobby's polygonal pens, 1.114-1.117 
software implementation, 1.117-1.120 

Fast memory allocator, 111.49-111.50 
Fat curve, generation, 11.43 
Fat lines, rendering on raster grid, 1.114-1.120 
Fence shading, IV.404 
Fermat primes, 1.18 
Ferrari's algorithm, V.7 
Feuerbach circle, IIL215-III.218, IV. 144 
Fiber bundle, IV.230 
Fill algorithms, I.278-I.284 

canonical, 1.279 
optimal, 1.281-1.282 
processing shadows, 1.280-1.281 

Fillet, IV. 145 
Filter, see Image, filter 
Filtered image rescahng, IIL8-IIL16, III.414 

magnification. III.9 
minification, I I I .9-III . i l 

Filter post-processing stage. III.37 
Filter windows, I.194-I.195 
Finite difference, IV.241 
First decomposition algorithm, III.99-III.100 
First derivative filters, 11.105 
First fundamental matrix, 1.543-1.544 
Fixed-point trigonometry, CORDIC, 

L494-I.497 
Flipped bit count, 11.368 
Floating point arithmetic, IV. 125, IV.422 
Floating point pixel format, II.81-II.82 
Floyd-Steinberg error propagation, II.75-11.76 
Floyd-Steinberg filter, 11.68 
Fluorescent lights, see Cylindrical luminaire 
Fog, simulating, 1.364-1.365 
Font rendering, three-pass algorithm, 1.193 

Form factor 
accurate computation, III.329-III.333, 

III.577 
vertex-to-vertex, III.318-IIL323 

Forms 
diff"erences with vectors, 1.533-1.535 
triangular interpolants, 1.535-1.538 

Forward differencing, I.594-I.603, IV.251 
Bezier cubics implementation, 1.603 
DDA algorithm, 1.595 
Del operator, I.594-I.595, 1.598 
factorial polynomials, 1.595-1.596 
locally circular assumption, 1.599-1.600 
Newton's formula, I.596-I.598 
step size determination, 1.599-1.601 
subdividing, I.601-I.603 

4 x 4 matrices, IL351-II.354 
Fourier transform, II.368-II.370 
Frame buffer, 1.215-1.216, 11.115, see also Image 

associated color map, 1.217 
color hardcopy, II. 163-11.165 
color quantization statistical computations, 

II.126-II.133 
fill algorithms, I.278-I.284 
inverse color map, computation, II. 116-11.125 
mapping RGB triples, II. 143-11.146 
PHIGS PLUS, II.138-II.142 
plane, I.217-I.218 
random color map animation algorithm, 

II.134-II.137 
setting monitor white point, II. 159-11.162 
television color encoding, II. 147-11.158 

Free-form surface, see Surfaces, parametric 
Frenet frame, 1.567-1.568 
Fresnel formulas 

approximations for applying, II.287-11.289 
dielectric materials, II.287-11.289 
wavelength-dependent reflection and refraction, 

II.286-II.287 
Fresnel reflectance curve, 11.284, 11.289 
Fresnel transmission curve, 11.284, II.288-II.289 
Frexp, 11.82 
Full-precision constants, 1.434 

Gain function, IV.401 
Gamma correction, IV.401, IV.423 

color dithering, II.72-II.73 
Gamma correction function, 1.199, 1.203-1.206, 

1.270, 1.273 
Gamma function, computation, III.151-III.152 
Gaussian filter, I.144-I.145, I.150-I.153 
Gaussian 1/2 filter 

frequency response, 1.163 
interpolation, I.152-I.154, 1.156 
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Gaussian l / \ / 2 filter 
frequency response, 1.164 
interpolation, 1.154-1.156 

Gaussian random numbers, 11.136 
Gaussians, uniform rotations from, III. 129 
Gaussian weighted filter, II.51-11.53 
Gauss-Jordan elimination, 11.349 
General direction ratios, 1.457 
Genus, computing, binary digital image, 

II.107-II.111 
Geodesies, 1.315, 11.440 
Geometric constructions, interpolation of 

orientation with quaternions, II.377-11.380 
Geometric continuity, I.615-I.616, II.430-II.431 
Geometry 

n-dimensional, IV.83, IV. 149 
2D, IV.138 

Girard's formula, see Spherical triangle area 
G^ joint, between cubic Bezier curves, 11.432 
Gnomonic projection, 1.315 
n-gon, 1.18 
Gouraud renderer, III.345-III.347 
Gouraud shading, 1.84, II.235-II.236, IV.60, 

IV.404, IV.526 
Gram-Schmidt orthogonalization procedure, 

III.108-III.109 
modified, III.112-III.113, III.116 

Graph, display of, IV.505 
Graphic design, IV.497, IV.505 
Graphics libraries, V.400 
Graphics workstations, motion blur, 

III.374-III.382, III.606 
Graph labels, nice numbers, 1.61-1.63 
Gray interior points, 1.244 
Gray ramp, II. 163-11.164 
Great circle, IV. 132 

arc, code to draw, IV. 178 
plotting, II.440-11.444 

Green's theorem, V.40 
Grid 

for fast point search, IV.61 
for faster point-in-polygon testing, IV.29 
interpolating in a, IV.521 
iso-surface of grid data, IV.326 
traversing a 3D, IV.366 

Gridded sampling, progressive image refinement, 
III.358-III.361, III.597 

Group theory, II.343-II.344 
of infinitesimal rotations, III.56-III.57 

H 

Haar test. III. 125 
Half-angle identity, digital computation, 

II.381-II.386 
Half-angle relations, 1.16 

Half-open intervals, polygon scan conversion, 
III.362-III.365, III.599 

Half-phase filters, frequency response, decimation 
by two, 1.162 

Half-plane, area of intersection, with circle, 
I.38-I.39 

Half-space testing, 1.240-1.241 
Half-tangent, II.381-II.386 
Halftoning, see Digital halftoning 
Halftoning matrix, 11.58 
Hardware, scrambling integers in, 1.222-1.223 
Hashing, for point search, IV.61 
Hashing function, 3D grid, 1.343-1.345 
Hash tag, III.386-III.387 
Haze, simulating, 1.364-1.365 
HDTV, II.154-II.155 
Heckbert's algorithm, 11.127 
Hemi-cube algorithm, 11.299, III.324 

cubic tetrahedral adaptation, 11.299-11.302 
Hemispherical projection, triangle, III.314-III.317, 

III.569 
Hermite interpolation, V.212, V.401 
Hermite polynomial, II.398-II.399 
Hexagonal construction, 1.238 
Hexakis octahedron, V.82 
Hidden-surface removal stage, HI.37 
Hierarchical traverse, V.246 
Hierarchy traversal, II.267-11.272 

bottom-up method, II.270-II.271 
caching, 11.268 
combining top-down and bottom-up 

approaches, II.270-11.271 
top-down list formation, II.268-11.269 

High coherence, 11.28, 11.30 
High dimensional, see A^-dimensional 
Highlight, see Specular reflection 
Hilbert curve, II.27-II.28 

coherence of transversal sequences, II.28-11.30 
Histogram equalization, IV.474 
Hobby's polygonal pens, 1.114-1.117 
Hollow objects, box-sphere intersection testing, 

I.337-I.338 
Homogeneous coordinates, 1.523 

clipping lines using, IV. 128 
n-dimensional, IV. 154 
subroutine library for 2D and 3D, IV.534 

Homogeneous media, light absorption, 
II.278-II.280 

Hopf fibration, IV.232 
Horner's rule, II.420-11.421 
Hot colors, 11.147, II.152-11.153 
Hot pixels 

repairing, II. 155-11.156 
test, n. l55-II .157 

Householder matrix, III. 118 



Volume l-V Cumulative Index 0 421 

HSL Saturation, 1.449 
HSL-to-RGB transform, fast, I.448-L449 
HSV Saturation, 1.448 
Hue Saturation Value, 1.239-1.240 
Hybrid predictor, n .97 -n . l 00 
Hypercones, H. l lT 
Hyperface, n i . 89 -n i .91 
Hyperlattice, HI.89-ni .90 
Hyperplane, parametric formula, IV. 162 
Hyperspace, see AT-dimensional 
Hypertexture procedural volume model, IV.401 
Hypervoxel, III.89 
Hypotenuse 

fast approximation, 1.427-1.431 
derivation, I.427-I.429 
error analysis, 1.429-1.431 

triangles, 1.57-1.59 

I 

Icosahedron, dihedrals, 11.175, 11.177 
Identity, matrix, 1.473 
IEEE fast square root, III.48, III.446 
IEEE floating point, IV. 125 
Illumination, Phong model, IV.385, IV.388 
Image 

display, high fidelity, IV.415 
enhancement, IV.474 
filter 

bilinear/trilinear reconstruction, IV.445, 
IV.521 

color reduction, code. III.429 
convolution, IV.447 
embossing, IV.433 
first derivative, 11.105 
nonuniform quadratic spline, II. 101-11.102 

quantization, IV.422 
resampling, IV.440, IV.449, IV.527 
thinning, IV.465 
warping, IV.440 

Image file compression, II.93-11.100 
hybrid predictor, II.97-II.100 
prediction-correction coding, II.93-11.94 

adaptive, II.94-II.95 
Image processing, 11.49, HI.3, see also Digital 

halftoning 
adaptive run-length encoding, II.89-11.91 
bitmap scaling operation optimization, 

III.17-III.19, HI.425 
color dithering, II.72-II.77 
color reduction filter, III.20-III.22, III.429 
compact isocontours, III.23-III.28 
compositing black-and-white bitmaps, 

III.34-III.35 
fast anamorphic image scaling, II.78-11.79 
fast bitmap stretching, III.4-III.7, III.411 

fast boundary generator, composited regions, 
III.39-IH.43, III.441 

filtered image rescaling, III.8-III.16, HI.414 
image file compression, II.93-11.100 
image smoothing and sharpening by discrete 

convolution, II.50-11.56 
isovalue contours from pixmap, 111.29-111.33, 

III.432 
90-degree bitmap rotator, II.84-11.85 
noise thresholding in edge images, II. 105-11.106 
optimal filter for reconstruction, II. 101-11.104 
pixels, II.80-11.83 
run-length encoded image data rotation, 

II.86-II.88 
2 1/2-D depth-of-field simulation for computer 

animation, III.36-III.38 
Image reconstruction, optimal filter, II. 101-11.104 
Image refinement, progressive, gridded sampling, 

III.358-III.361, III.597 
Image rescahng, filtered, III.8-III.16, III.414 
Image scaling, f2ist anamorphic, II.78-11.79 
Image sharpening, by discrete convolution, 

II.50-IL56 
Image smoothing, by discrete convolution, 

IL50-II.56 
Implicit surface, see Surfaces, implicit 
Importance sampling, HI.309 
In center, triangles, 1.20-1.21 
Incircle, IV. 145 
Inclusion-exclusion, combinatorics, II. 129-11.130 
Inclusion isotony, HI.64 
Inclusion testing, see Polygon, point in polygon 

testing 
Inertia tensor 

superquadric, IIL140-III.145, III.153 
world coordinates, HI. 145 

Infinitesimal rotations, group theory, III.56-III.57 
Inhomogeneous media, light absorption, 

II.280-II.281 
InputFace, 11.196 
InputVertex, 11.196 
In radius, triangles, 1.20-1.21 
InsertBridge, II.199-II.201 
"Inside—outside" function, superquadrics, 

III.147-III.148 
Integer arithmetic, IV. 123, IV.449, IV.526 
Integers, II.371-II.372 

counting through bits under mask, II.372-11.373 
scrambling, 1.222-1.223 
tallying on bits, II.373-II.376 

Integer square root algorithm, H.387-II.388 
Intensity, 11.233, II.278-II.279 

interpolation between adjacent pixels, 11.445 
Interactive 

camera control, IV.230 
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Interactive (cont.) 
cursor display, IV.413 
image warp control, IV.440 
orientation control, IV. 175 

Interlace artifacts, reduction, III.378-III.379 
Interlacing, III.376 
InterPhong shading, II.232-11.241 

analysis of formula, II.238-11.240 
applications, 11.241 

Interpolation, 1.148 
Bezier curves, V.213 
bilinear interpolation in 2D array, IV.445, 

IV.475, IV.521 
B-spline, divided differences, V.213, V.217 
by factor of two, Lanczos2 sine function, 

I.158-I.159 
formulas, cubic spline, 1.579-1.584 
Gaussian filter, 1.150-1.153 
Gaussian 1/2 filter, I.152-I.154, 1.156 
Gaussian 1/v^ filter, 1.154-1.156 
Hermite, V.212, V.401 
of image, see Image, filter 
linear. III. 122 

fast, IV.526 
versus splined. III. 122 

logarithmic space, III. 121 
of ID data, IV.241 
quaternion, with extra spins, III.96-III.97, 

III.461 
RGBZ, V.398 
slerp, V.62 
tent filter, 1.149-1.150 
tricubic, V.107 
trilinear interpolation in 3D array, IV.328, 

IV.521 
using Bezier curves, III.133-III.136, 

III.468 
Interpolation coefl^icients 

closed loops, 1.581 
open curves, 1.583 

Intersection 
box and polyhedron, IV.78 
cone-hne, V.227 
cubic curves, IV.261 
line, see Line, intersections 
moving polyhedra-viewpoint, V.80 
plane-to-plane, III.233-III.236, III.519 
polygon-cube, V.375 
quadrangle surface-line, V.232 
ray with 

cone, IV.355 
cylinder, IV.353, IV.356 
hyperplane, IV. 165 
implicit surface, IV. 113 
polygon, IV.26 

quadric surface, III.275-III.283, III.547 
voxel grid, IV.366 

rectangle and polygon, IV.77 
scanline coherent shape algebra, 11.37 
scanline-object, V.242 
swept sphere-line, V.258 
triangle-cube, III.236-III.239, III.521 
of two circles, circle containing, II.17-11.18 
two-dimensional, exact computation, 

III.188-III.192, III.491 
two polyhedra, IV.83 

Interval arithmetic, III.61-III.66, III.454 
Interval sampling, II.394-11.395 
Inverse color map, 11.116 

adjusting blue scanlines, II. 122-11.123 
aliasing, II.123-II.124 
computation, II. 116-11.125 
convexity advantage, II. 119-11.124 
domain in blue-green plane, II. 120-11.122 
incremental distance calculation, 11.117—11.119 
ordering, II. 124-11.125 

Inverse of a matrix, see Matrix, inverse 
IRE unites, 11.152 
Irradiance, III.319-III.320 
Iso-surface, IV.324 
Isotropic transformations, normal vector, 1.542 
Isovalue contours, from pixmap, III.29-III.33, 

III.432 
Iteration, rotation tools, 1.468 

Jacobian matrix, 11.184, III.155, III.158 
Jarvis, Judice, and Nanke filter, 11.68 
Jell-O, IV.375 
Jitter, generation, 1.64-1.74 

computational cost, 1.67-1.68 
error analysis, 1.72 
sampling properties evaluation, 1.69-1.72 

Jittered sampling, IV.370 
Jitter function 

use in ray tracing, 1.72-1.74 
using look-up tables, 1.65-1.67 

K 

Knot insertion, IV.252 
into B-splines, II.425-II.427 

Kochanek-Bartels formulation, II.417-11.419 
Kronecker delta function, IV. 158, IV. 167 
Kuhn's triangulation, box, III.246-III.247, 

III.252-III.253 

Label placement on maps, IV.497 
Lagrange polynomials, V.210 
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Lambertian radiosity model, 11.385 
Lambert 's law of absorption, 11.279 
Lanczos2 sine function 

decimation, 1.160-1.161 
frequency response, 1.164-1.165 
interpolation by factor of two, 1.158-1.159 

LanczosS filter, III. 14, III. 16 
Lanczos-windowed sine functions, 1.156-1.158 
Lattice, integral, integral radius circle on, 1.57—1.60 
Law of cosines, 1.13 
Law of sines, 1.13 
Law of tangents, 1.13 
Layout, IV.497, IV.505 
Ldexp, II.82-IL83 
Least-squares approximations, Bezier curves and 

surfaces, II.406-IL411 
Least-squares fit, linear, V.92 
Length-preserving matrix group, 11.344-11,345 
Level set, 1.552 
Levi-Civita symbol, IV. 158, IV. 167 
Lie algebra, V.59 
Light 

absorption 
homogeneous media, II.278-11.280 
inhomogeneous media, II.280-11.281 
translucent media, II.277-11.282 

reflection, 11.282 
Lighting, see also Illumination 

computations. III.226 
Light sensing device, II. 161-11.162 
Line 

area of intersection, thick, with circle, 1.40-1.42 
clipping, see Clipping, line 
distance to point, I.IO, II.10-II.13 
intersection, see also Scanline coherent shape 

algebra 
Apollonius's 10th problem, II. 19-11.24 
bounding circle, II. 14-11.16 
calculation, polygons, 1.128 
with circle, 1.5-1.6 
circle containing intersection of two circles, 

II. 17-11.18 
distance from point to line, II. 10-11.13 
of line segments, II.7-II.9, III.199-III.202, 

III.500 
Peano curve generation algorithm, 

IL25-II.26 
point of, 2D, I . l l 
segments, 11.7-11.9 
space-filling curve, IL27-II.28 
3D, 1.304 
2D, IV.141 
traversal, II.26-IL27 

joining two with circular arc fillet, 
III.193-III.198, III.496 

segment, face connected, generation in 
n-dimensional space, III.89-III.91, 
III.460 

subsegment. III. 189 
tangent 

to circle, 1.5 
to circle and perpendicular to line, 1.8-1.9 
to two circles, 1.7-1.8 

vertical distance to point, 1.47-1.48 
Linear color rendering, III.343-III.348, III.583 
Linear congruential generators, 1.67 
Linear feedback shift register, 1.222 
Linear interpolation, see Interpolation 
Linear transformations, IL335-II.337 

nonsingular, decomposing, III.108-III.112 
singular, decomposing, IIL112-III.116 

Line drawing, 1.98 
anti-aliasing lines, 1.105-1.106 
digital, I.99-I.100 
for fast linear interpolation, IV.526 
fat lines on raster grid, 1.114-1.120 
filling in bevel joints, 1.107-1.113 
symmetric double step line algorithm, 

I.101-I.104 
for 3D voxel traversal, IV.366 
two-dimensional clipping, 1.121—1.128 

Line-edge intersections, uniform grid, 1.29-1.36 
Line equation. III. 190 
Line parameterization, V.92 
Line structures, 2D, L3-I.4 
Lissajous figure. III. 166 
Locally circular assumption, 1.599-1.600 
Lookup table (LUT), IV.424, IV.449, IV.468, see 

also Color maps 
color, 11.139 
nonlinear pixel mappings, 1.253 

Logarithmic space, interpolation, III. 121 
Lorentz transformations, III.59-III.60 
LU decomposition, 11.349 
Luminaires, power from, 11.307 
Luminance-color difference space, 11.147 
Luminance meter, II. 159-11.160 

M 

M2, 11.154 
Mach band effect, II.235-II.236 
Magic square 

dither, II.60-II.62 
as outer product, 11.74 

Magnification of image, IV.449 
Mailbox, 11.264 

algorithm, 11.268 
Mailbox technique, III.285-III.286 
Manhat tan distance, 1.432, II.258-II.259 
Map-making, IV.497 
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Mapping 
nonlinear pixels, 1.251-1.253 
original colors onto representatives, 1.291 
RGB triples, II. 143-11.146 
3D, 1.306 

Map projections, I.307-I.320 
Alber's, I.321-I.325 
central (gnomonic), 1.315, III.314 
cylindrical, 1.310, 11.440, III.290 
equal area, 1.312, 1.318, 1.321 
Mercator's conformal, 1.313, 11.445 
orthographic, 1.316 
Sanson's sinusoidal, 1.314 
stereographic, 1.316, 11.385 

Maps, cyHndrical, I.310-I.311 
Marching cubes, IV.325, V.98 
Marsden identities, V.160, V.166 
Martian panoramas, III.291-III.293 
Mass, superquadric, III.139-III.140, III. 152 
Mathematician's tea, V.37 
Matrix 

of central moments, IV. 194 
decomposition, IV.207 

into simple transformations, II.320-11.323 
determinant, IV.154, IV.167 
eigenvalues 

3 x 3 matrix, IV. 195 
4 x 4 matrix, IV.201, IV.209 

exponential, II.332-II.333 
inverse, IV. 199, IV.534 
subroutine library for 3 x 3 and 4 x 4 , IV.534 

Matrix groups, 11.344 
affine, 11.345 
angle-preserving, 11.345 
inverse, II.348-II.349 
length-preserving, II.344-11.345 
membership and privileges, II.346-11.347 
nonsingular, 11.345 

inverse, 11.350 
window-to-viewport, 11.344 

inverse, 11.348 
Matrix identities, 1.453-1.454 
Matrix inversion, I.470-I.471, II.342-II.350 

elementary, 11.347 
evaluation strategy, II.347-II.348 
problem statement, 11.342 

Matrix multiplication, fast, 1.460-1.461 
Matrix orthogonalization, 1.464 
Matrix techniques, 11.319 

cross product, 11.333-11.334 
data recovery from transformation matrix, 

II.324-II.331 
4 x 4 matrices, II.351-II.354 
linear transformations, II.335-11.337 
notation, 11.338 

pseudo-perspective, II.340-11.341 
quaternions, II.351-11.354 
random rotation matrices, II.355-II.356 
shear, II.339-II.340 
small sparse matrix classification, II.357-11.361 
tensor product, 11.333-11.334 
transformations as exponentials, II.332-II.337 

Matrix-vector, II.360-II.361 
Mechanical simulation, mass and spring model, 

IV.506 
Median cut algorithm, 1.288 
Median finding, 3 x 3 and 5 x 5 grid, 1.171-1.175 
Medical imaging, contrast enhancement, IV.474 

volume data, IV.324, IV.366, IV.521 
Memory allocator, III.49-III.50, III.448 
Menelaus's theorem, II.424-II.427, V.213 
Mensuration, see Area; Volume 
Mercator projection, 1.311-1.313 
Meridians, I.310-I.311 
Mesh 

computing normals for 3D, IV.60 
generation for 2D region, IV.47 

Metric properties, transformations, 1.543-1.544 
Metric tensor, 1.543-1.544 
Microdot distribution, V.297 
Mirror image, transformation matrices, 1.474 

data recovery from, 11.327 
Mitchell filter, III.15-III.16 
Modeling, see also Curves and surfaces; Polygon 

affine transformations, 1.539-1.542 
Modified cylindrical equidistant projection, 1.311 
Modified facet shading, II.236-II.237 
Moire patterns, III.339-III.340, V.300 
Molecular graphics, IV. 193 
Mollweide's Formula, 1.13 
Monitor, white point, setting, II. 159-11.162 
Monochromatic triples, 11.146 
Monochrome enlargements, smoothing, 1.166-1.170 

pattern within rules, 1.169 
rules, 1.166-1.167 

Monomial evaluation algorithm, Bezier curves, 
1.590-1.591 

Monomial form, conversion 
from Bezier form, I.592-I.593 
to Bezier form, I.591-I.592 

Monte Carlo 
label placement, IV.498 
sampHng, IV.370 

Monte Carlo integration, III.80, V.359 
spectral radiance, 111.308 

Morphing, IV.445 
Motion blur, graphics workstation, III.374-III.382 

code, III.606 
combining spatial and temporal anti-aliasing, 

III.376-III.378 
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computing on fields, IIL375-IIL376 
implementation tricks, III.380-111.382 
interlace artifact reduction, III.378-III.379 
pixel shifts, III.380-III.381 
supersampling in time, III.374-III.375 

Multidimensional sum tables, 1.376-1.381 
d-dimensional, 1.380-1.381 
three-dimensional, 1.378-1.380 
two-dimensional, 1.376—1.377 

Multi-indices, 11.412 
Multilinearity, V.215 
Multiple-angle relations, 1.17 
Multiple output levels, halftoning to, II.64-11.65 
Multivariate approximation, Bezier curves and 

surfaces, 11.409 

N 

Narrow domains, aliasing, II. 123-11.124 
National Television Systems Committee, encoding 

basics, II.148-II.152 
AT-dimensional 

distance, IV. 120 
extent, overlap testing, III.240-III.243, III.527 
geometry, IV. 149 
space, face connected line segment generation, 

III.460 
Nearest neighbor, V.3D, V.65 
Nearest-point-on-curve problem, 1.607-1.611 

Bezier form conversion, 1.609-1.611 
problem statement, 1.608-1.609 

Nesting, I.467-I.468 
Negative light, III.367 
Neumark's algorithm, V.9 
Neutral file format (NFF), V.398 
Newell's method, plane equation of polygon, 

III.231-III.232, III.517 
Newton-Raphson iteration, digitized curve fitting, 

I.621-I.623 
Newton's Formula, 1.14, I.596-I.598 
NextFaceAroundVertex, II. 195-11.196 
Nice numbers, for graph labels, 1.61-1.63 
Nine-point circle, IV. 143 
Noise function, V.367 
Noise thresholding, edge images, II. 105-11.106 
Nolid, 1.238 
Nonhomogeneous coordinates, 1.523 
Nonlinear pixel mappings, 1.251-1.253 
Nonlocality tension, 11.238 
Nonsingular matrix group, 11.345 

inverse, 11.350 
Nonuniform random point sets, via warping, 

III.80-III.83 
Normal buflPer, I.257-I.258 

Normal coding, I.257-I.264 
encoding methods, 1.258-1.263 

improving, 1.263-1.264 
index number, 1.260 
principles, I.258-I.259 

normal buffer, 1.257-1.258 
Normal map, 1.260 
Normal vector, 1.539-1.540 

of cylinder, IV.359 
of ellipsoid, IV.113-IV.114 
interpolation, IV.404 
n-dimensional, IV. 156 
rotation, IV. 168 
superquadrics. III. 148 
in 2D, IV.138 
vertex, IV.60 

Normals, see Surface normal 
NTSC encoding, see Pixel encoding 
Null transform, 1.196-1.197 

Numerical and programming techniques, 11.365, 
III.47 

arctangent, approximation, II.389-11.391 
bit picking, II.366-11.367 
cross product, in four dimensions and beyond, 

III.84-III.88 
face-connected line segment generation, 

n-dimensional space, III.89-III.91, 
III.460 

fast generation of cyclic sequences, 
III.67-III.76, III.458 

fast memory allocator, III.49-III.50, III.448 
Fourier transform, II.368-II.370 
generic pixel selection mechanism, III.77-III.79 
half-angle identity, II.381-II.386 
IEEE fast square root, III.48, III.446 
integer square root algorithm, II.387-11.388 
interval arithmetic, III.61-III.66, III.454 
interval sampling, II.394-11.395 
nonuniform random point sets, via warping, 

III.80-III.83 
Perlin noise function, recursive implementation, 

II.396-II.401 
rolling ball, III.51-III.60, III.452 
sign of cross product calculation, II.392-11.393 
using geometric constructions to interpolate 

orientation with quaternions, 
II.377-II.380 

NURBS (nonuniform rational B-spline), IV.256, 
IV.286, V.216 

Object area, II.26-11.27 
Object space partitioning, III.284-III.287 
Object-space rendering, 11.26 
Octahedral subdivision, see Ellipsoid generation 
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Octahedron, dihedrals, II.174-II.175 
Octree, 1.288, IV.74 

bit interleaving, 1.443-1.447 
Octree quantization, 1.287-1.293 

algorithm, 1.289 
color table filling, I.290-I.291 
evaluation of representatives, 1.289-1.290 
improvements, I.291-I.292 
mapping onto representatives, 1.291 
memory and computational expense, 

I.292-I.293 
principle, 1.288 

Octree-to-Boundary conversion, II.214-11.218 
Octree-to-PCS, II.214-II.215 
Offset prints, 11.165 
1-to-l pixel transforms, I.196-I.209 

color-map manipulation, 1.270-1.274 
contrast enhancement transform, 1.197-1.198, 

I.201-I.202, I.270-I.271, 1.274 
gamma correction function, 1.199, 1.203-1.206, 

1.270, 1.273 
null transform, 1.196-1.197 
photo-inversion transform, 1.196, 1.198, 

I.270-I.271 
quantization transform, 1.196-1.197, 1.199, 

1.270, 1.272 
sawtooth transform function, 1.203, I.207-I.209 

Opcode, 11.36 
Open curves, cubic spline interpolation formulas, 

I.582-I.583 
Optical character recognition (OCR), V.329 
Optimal sampling patterns, V.359 
Ordered dithering, I.176-I.178, V.297 

color, II.73-II.75 
matrix, II.58-II.60 

Orientation, of triangle, IV. 144 
Orientation control, IV. 175 

mouse-driven, rolling ball, III.51-III.60, III.452 
Oriented lines, V.50 
Orthogonalization, matrix, 1.464 
Orthogonal loops, 1.105 
Orthogonal projection 

transformation matrices, 1.475 
in 2D, IV.142 

Orthogonal transformations, normal vectors, 
I.542-I.543 

Orthographic projection, 1.309, 1.316 
Orthonormal base 

movement from one to another, 1.508 
3D viewing and rotation using, 1.516-1.521 

general rotations, 1.520-1.521 
new approach, 1.517-1.520 
UVN coordinate system, 1.518-1.519 
viewing transformation, pseudo-code, 1.521 

Overcrossing correction, III.179-III.180 
Overlapping testing, n-dimensional extent, 

III.240-III.243, III.527 

Packing 
body centered cubic (bcc), V.68 
face centered cubic (fee), V.68 
circumspherical, V.67, V.270 

Painter's algorithm, see Back to front polygon 
ordering 

Paint program, IV.433 
PAL encoding, II.153-II.154 
Panoramic virtual screen, ray tracing, 

III.288-III.294, III.551 
Parallel connected stripes representation, 

II.203-II.204 
Parallelepiped, IV. 155, IV. 161 
Parallelogram, IV. 140 

approximation, 1.183-1.184 
Parallelohedron, V.67 
Parallel projection, transformation matrices, 1.475 
Parametric continuity, 1.616, 11.430-11.431 
Parametric elliptical arc algorithm 

code, III.478 
conjugate diameters, III.169-III.171 
digital generation of sinusoids, III.167-III.169 
quarter ellipse, III.164-III.165 
simplifying computation, III.171-III.172 

Parametric surfsice, see Surfaces, parametric 
Parametric surface functions, superquadrics, 

III.146-III.147 
Partitioning 

object space, III.284-III.287 
3-D polygons, III.219-III.222, III.502 

Patch, see Surfaces, parametric 
Patch visibility index, 11.313 
Pattern mask, 11.57 
PCS-to-boundary conversion, 11.205 
PCS-to-Chain procedure, II.205-II.206 
Peano curve, 1.28, II.27-11.28 

coherence of transversal sequences, II.28-11.30 
generation algorithm, 11.25-11.26 

Perception 
of brightness, IV.416 
of texture patterns, IV.487 

Perimeter, triangles, 1.20 
Periodic plane tesselation, 1.129-1.130 
Perlin noise function, recursive implementation, 

II.396-II.401 
Perp-dot product, IV. 139, V.400 
Perpendicular bisector, IV. 139 

intersection, triangles, 1.22-1.23 
Perpendicular vector, see Normal vector 
Perspective, n-dimensional, IV. 153 
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Perspective projection, transformation matrices, 
1.475 

PHIGS PLUS, II.138-II.142, 11.420 
implementation, II. 141-11.142 
pseudo color 

interpolation, II. 140-11.141 
mapping, II. 138-11.140 

Phong illumination (specular formula), IV.385, 
IV.388 

Phong shading (normal vector interpolation), 
IV.60, IV.404 

Phosphors 
chromaticity, 11.151 

coordinates, 11.161 
spectral emission curve, II. 160-11.161 

Photo-inversion transform, 1.196, 1.198, I.270-I.271 
Physically based methods, for graph layout, IV.506 
PipeUne accelerator, III.383-III.389 
Pixel, II.80-II.83 

angular width, III.289 
band, anti-aliasing, II.445-11.446 
components, II. 109-11.110 
destination, contributors to. III. 12 
gamma-corrected byte storage, 11.80 
locations, II.33-II.34 
nonlinear mappings, 1.251-1.253 
remapping, 11.78 
replication, 11.79 
selection mechanism, III.77-III.79 
sub-sampling, 11.79 
triangular, anti-aliasing, III.369-III.373 
unportable bits, 11.81 

Pixel coordinates, L246-I.248 
continuous, 1.246 
converting, I.247-I.248 
discrete, 1.246 
along unit axis, 1.250 

Pixel encoding, see also Color quantization 
floating point, common exponent, 11.80 
hyperbolic, IV.422 
logarithmic {/i - 255 law), 1.251-1.253 
non-linear luminance scaling, IV.415 
NTSC broadcasting, 11.147 

Pixel value, dynamic range, IV.415, IV.422 
Pixmap, generating iso-value contours from, 

III.29-III.33, III.432 
Planar cubic curves, 1.575-1.578 
Planar polygon, area, 11.170 
Planar rotations, III.124-III.126 
Planar subdivision, IV.47 
Plane 

arbitrary, partitioning 3D convex polygon with, 
IIL219-III.222, III.502 

comparing two, III.229-III.230 

crystallographic groups, 1.129-1.133 
embedding, intersection with ray, 1.390-1.391 
frame buffer, I.217-I.218 
intersection of three, 1.305 
periodic tilings on raster grid, 1.129—1.139 

wallpaper groups, 1.129-1.133 
signed distance to point, III.223-III.224, III.511 

Plane equation of polygon, Newell's method, 
III.231-III.232, IIL517 

Plane-to-plane intersection, III.233-III.236, III.519 
Point 

distance to line, 1.10, II. 10-11.13 
vertical, I.47-I.48 

generating random, triangles, 1.24-1.28 
generation equation, 11.179 
mutual visibility, 1.30-1.31 
signed distance to plane, III.223-III.224, III.511 
3D, I.522-I.523, 1.526 

Point distributions (uniform) 
interval (progressive), II.394-11.395 
sphere, 1.320, III. 117, III. 126 
triangle, 1.24 

Point in polygon testing, IV. 16, IV.24 
Point-on-line test, 1.49-1.50 
Point-triangle intersection, II.259-11.261 
Polar decomposition of matrix, IV.207 
Polygon, see also Polyhedron 

area, II.5-II.6, IV.3, IV.141 
spherical, IV. 132 

bounding volume, III.296 
centroid, IV.3 
convexity testing, IV.7, IV.25, IV.141 
intersection 

calculation, 1.128 
fast scan conversion, 1.96 
with ray, I.390-I.394 

nearly coplanar, grouping into coplanar sets, 
III.225-III.230, III.512 

plane equation, Newell's method, 
III.231-III.232, III.517 

point in polygon testing, IV. 16, IV.24 
random point, 1.24-1.28 
shading, IV.404 
Sutherland-Hodgman clipper, III.219-IIL222 
texture-space images, 1.366-1.367 
3-D, partitioning, IIL219-III.222, III.502 
triangulation, IV.47 
from twisting reference frames, 1.567-1.568 
user-provided display routines, radiosity, 

II.295-II.298 
Polygonal pens, 1.114-1.117 
Polygonization 

implicit surface, IV.324 
parametric surface, IV.287 
planar region, IV.47 
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Polygon partitioning 
concave, V.50 
general 2D in 3D, V.386 
by half-space membership, V.122 
triangulation, V.394 

Polygon scan conversion, 1.76-1.83, IV.404 
algorithm, I.77-I.82 
arbitrary polygons, 1.92-1.97 
background, 1.76-1.77 
concave, I.87-I.91 
fast, I.92-I.97 

active edge lists, 1.92-1.93 
convex decompositions, 1.97 
intersecting polygons, 1.96 
traffic between registers and memory, 1.92 
x-transition table, 1.93-1.95 
y extrema and memory requirements, 

I.95-I.96 
generic, and chpping, 1.84-1.86 
half-open intervals, III.362-III.365, III.599 
implementation notes, 1.82-1.83 
reducing code redundancy, 1.84 
vertices during scan conversion, 1.78-1.79 

Polygon stretching, 1.127-1.128 
Polyhedra figures 

cube (hexahedron), V.67 
elongated dodecahedron, V.67 
hexagonal prism, V.67 
hexakis octahedron, 83 
octahedron, V.83 
rhombic dodecahedron, V.67-V.68, V.83 
trapezoidal icositetrahedron, V.83 
truncated octahedron, V.68 

Polyhedron, see also Polygon 
collision detection, IV.78, IV.83 
convex, ray intersection, II.247-11.250 
exact dihedral metrics, II. 174-11.178 
inferring topology, IV.61 
normal vector, IV.60 
regular, II.174-II.175 
3D, I.565-I.566 
volume, II.170-II.171 

Polylines, V.212 
circular arc, II.435-II.437 

Polynomial equations, bracketing real roots, see 
Strum sequences 

Polynomials 
Horner's rule, II.420-II.421 
symmetric evaluation, II.420-11.423 

Polytope, IV.84, IV. 149 
semiregular, V.67, V.78, V.83 

Pool, III.49 
Popularity algorithm, 1.288 

Post-concatenation, transformation matrices, 
I.476-I.481 

PostScript language, IV. 145, IV.380 
Power relations, 1.15 
Prediction-correction coding, II.93-11.94, see also 

Image file compression 
Primitives, rectangular bounding volumes, 

III.295-III.300, III.555 
Product relations, 1.16 
Programming techniques, see Numerical and 

programming techniques 
Progressing refinement, radiosity, V.290 
Progressive image refinement, gridded sampling, 

III.358-III.361, III.597 
Projection 

Albers equal-area conic map, 1.321-1.325 
azimuthal, I.314-I.317 
data recovery from transformation matrix, 

II.329-II.331 
equations, view correlation, II. 182-11.183 
general, 1.318 
hemispherical, triangle, III.314-III.317, III.569 
Mercator, 1.311-1.313 
n-dimensional, IV. 152 
properties, digital cartography, 1.307-1.308 
Sanson-Flamsteed sinusoidal, 1.312-1.314 
transformation matrices, 1.475 
onto vector in 2D, IV. 142 

Projective transformations, decomposing, 
III.98-III.107 

first decomposition algorithm, III.99-III.100 
fourth decomposition algorithm, III.104-III.106 
second decomposition algorithm, III.100-III.102 
third decomposition algorithm, III.102-III.104 

Proximity testing, I.237-I.239 
Pseudo color 

interpolation, PHIGS PLUS, II. 140-11.141 
mapping, PHIGS PLUS, II. 138-11.140 

Pseudo-perspective, II.340-11.341 
Pyramid geometry, rendering with iterated 

parameters, II. 186-11.187 
Pythagorean relation, 1.57 
Pythagorean theorem, 1.599 
Pythagorean triangles, prime, 1.58 

Quad-edge data structure, IV.48 
Quadratic spline, nonuniform, II. 101-11.102 
Quadratic surface, equation, III.275-III.279 
Quadratic triangles, conversion to rectangular 

patches, III.256-III.259, III.536 
Quadric surface, V.3, see also Surfaces, implicit 

intersection with ray, III.275-III.283, III.547 
surface normal, III.282-III.283 
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Quadtree/octree-to-boundary conversion, 
II.202-II.218 

Bottom-Up, 11.206, IL208-II.209 
Octree-to-Boundary conversion, 11.214—11.218 
Octree-to-PCS, II.214-II.215 
parallel connected stripes representation, 

II.203-II.204 
PCS-to-boundary conversion, 11.205 
PCS-to-Chain procedure, II.205-II.206 
quadtree-to-boundary conversion, 11.21 l-II.213 
Quadtree-to-PCS, IL211-II.213 
Top-Down, II.206-II.208, 11.210 

Quadtrees, 11.31 
bit interleaving, 1.443-1.447 

Quadtree-to-PCS, II.211-II.213 
Quantization, see also Color quantization 

comparison of techniques, 1.293 
logarithmic, IV.420, IV.422 

Quantization transform, 1.196-1.197, 1.199, 1.270, 
1.272 

Quarter ellipse algorithm, III. 164-111.165 
Quartic equations, V.4 

Descartes-Euler-Cardano, V.8 
Ferrari's, V.7 
Neumark's, V.9 

Quartic roots, I.406-I.407 
Quaternions, I.498-I.515, II.351-II.354, IV.151, 

IV.175, IV.209, IV.222, IV.232 
algorithmetic implementation, 1.509-1.515 
definition, I.499-I.500 
geometric construction interpolation of 

orientation, II.377-II.380 
interpolation with extra spins, III.96-III.97, 

III.461 
movements from one orthonormal base to 

another, 1.508 
properties, I.501-I.502 
as rotation groups, V.62, V.84 
rotations. III.57 

in 3D space, 1.503-1.506 
set of unit, properties, 1.502-1.503 

Quotient space decomposition, V.61 

Radiosity, II.293-II.294, III.227, III.269-III.270 
accurate form-factor computation, 

III.329-III.333, III.577 
adaptive meshing, shadow boundary detection, 

II.311-II.315 
advantage, 11.295 
extensions, II.308-II.309 
fast vertex update, II.303-II.305 
form factors, 11.295 

hemi-cube algorithm, cubic tetrahedral 
adaptation, II.299-II.302 

linear approximation, vertex-to-vertex form 
factors, III.318-III.323 

progressive, II.296-11.297 
implementation, II.297-11.298 
refinement, II.306-11.307 

ray-traced form factors, II.312-11.313 
by ray tracing, II.306-11.310 
sending power with rays, II.307-11.308 
user-provided polygon display routines, 

II.295-II.298 
Random, see also Jitter 

integers, generation, 1.438-1.439 
points in triangles, 1.24-1.28 

Random color map animation algorithm, 
II.134-IL137 

Random distributions, see also Point distributions 
general equations, 111.80 
interval (progressive), II.394-11.395 
jitter sampling, 1.64, IV.370 
pseudo-random (PRN) sequences, 1.222-1.225 
rotation matrices, 11.355, corrigendum: III. 117 

Random noise function, II.396-11.401 
Random-number generator, 11.136 
Random rotation matrices, II.355-11.356, 

III.117-III.120, III.463 
Random rotations, uniform, III.124-III.132, 

III.465 
from Gaussians, III. 129 

Raster grid 
periodic tilings of plane, see Plane, periodic 

tilings on raster grid 
rendering fat lines, 1.114-1.120 

Raster image, 90-degree rotation, 11.86 
Rasterizing, see Scan conversion 
Raster representation, 11.111 
Raster rotation, fast algorithm, 1.179-1.195 

advanced anti-aliasing, 1.194-1.195 
arbitrary rotation, 1.186-1.187 
circle drawing, 1.192-1.193 
comparisons, 1.190-1.191 
font rendering, 1.193 
further work, 1.195 
generalized BitBlt, 1.193-1.194 
history, I.191-I.192 
implementation, 1.187-1.190 
parallelogram approximation, 1.183-1.184 
rational rotation, 1.184-1.186 
rotation through shearing, 1.181-1.183 
statement of problem, 1.180 

Raster shearing, 1.179, 1.183-1.184 
Rational curves, V.214 
Rational numbers, V.25 
Rational rotation, 1.184-1.186 
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Ray 
definition, 11.248 
intersection with 

elliptical torus, II.251-II.256 
object, eliminating calculations, 

III.284-III.287 
quadric surface, III.275-III.283, 111.547 
sphere, I.388-I.389 

Ray-box intersection, fast, 1.395-1.396 
Ray-convex polyhedron intersection, 11.247-11.250 
Ray equation, 11.180 
Rayleigh probability density function, 11.106 
Ray-object intersection, 1.387 

tags, II.264-II.266 
Ray-plane intersection, II.258-11.259 
Ray-polygon intersection, 1.390-1.394 
Ray-polyhedron test, II.247-II.250 
Ray rejection test, I.385-I.386, III.281-III.282 
Rayshade, 11.186, II.188-II.190 
Ray tagging, voxel-based ray tracing, II.264-11.266 
Ray tracing, II.245-II.246, III.269 

algorithm, 1.64 
avoiding incorrect shadow intersections, 

II.275-II.276 
body color model, II.277-II.282 
with BSP tree, III.271-III.274, III.538 
code, IV.420, IV.534 
distribution, direct lighting, III.307-III.313, 

III.562 
eliminating ray-object intersection calculations, 

III.284-III.287 
hemispherical projection of triangle, 

III.314-III.317, III.569 
hierarchy traversal, II.267-II.272 
intersection 

ray and sphere, I.388-I.389 
ray with quadric surface, III.275-III.283, 

III.547 
intersection testing, see Intersection 
jitter function use, 1.72-1.74 
linear-time simple bounding volume, 

III.301-III.306 
minimal, IV.375 
panoramic virtual screen, 111.288-111.294, 

III.551 
radiosity by, II.306-II.310 
ray-convex polyhedron intersection, 

II.247-II.250 
ray-object intersection, 1.387 
ray-polygon intersection, 1.390-1.394 
ray rejection test, 1.385-1.386 
recursive shadow voxel cache, II.273-11.274 
sampling, IV.370 
shadow attenuation, II.283-II.289 

transparent objects, shadow attenuation, 
I.397-I.399 

voxel-based, II.264-II.266 
Ray-triangle intersection, 1.393 

binary recursive subdivision, 11.25 7-11.263 
constraints, 11.257 
point-triangle intersection, II.259-11.261 
ray-plane intersection, 11.258-11.259 
C/, V computation, II.261-II.262 

Real roots, bracketing, see Strum sequences 
Reconstruction of continuous function from 

discrete samples, IV.521 
Rectangle, intersection with circle, fast checking, 

I.51-I.53 
Rectangular Bezier patches, conversion of Bezier 

triangles, III.256-III.261, III.536 
Rectangular bounding volumes, primitives, 

III.295-III.300, III.555 
Recursion property, Bernstein polynomials, 1.614 
Recursive shadow voxel cache, II.273-11.274 
Reference frames 

calculation along space curve, 1.567-1.571 
rotation minimizing frames, 1.569 
twisting, polygons from, 1.567-1.568 

Reference geoid, 1.309 
Reflectance, IV.385, IV.388 
Reflection, wavelength-dependent, II.286-11.287 
Refraction 

Snell's law, I.353-I.354 
wavelength-dependent, 11.286-11.287 

Regions, 1.560 
Relative motion, transformations, III. 122 
Relaxation, IV.498, IV.506 
RemoveEdge, 11.198 
Rendering, III.337, see also Illumination; Ray 

tracing; Shading 
anti-aliasing 

edge and bit-mask calculations for, 
III.349-III.354, III.586 

triangular pixels, III.369-III.373 
darklights, III.366-III.368 
fast linear color, III.343-III.348, III.583 
motion blur on graphics workstations, 

III.374-III.382, III.606 
pipeline accelerator, 111.383-111.389 
polygon scan conversion, using half-open 

intervals, III.362-III.365, III.599 
shader cache, III.383-III.389 
shadow depth map, III.338-III.342, III.582 

Rendering software 
Bezier curves, V.206 
Bresenham algorithm, exact clipping, V.317 
BSP tree based, V.131 
Z-buffer based, V.398 

Rending equation. III.307 
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Representative color, 11.116 
Representative tree, III.228 
Resampling, see also Anti-aliasing 

curve, IV.441 
image, IV.440, IV.449 

Rescaling, filtered image, III.8-III.16, III.414 
Residency masks, III.284-III.287 
RGB, transform from HSL, I.448-I.449 
RGB-to-YIQ encoding, 11.151 
RGB triples, mapping, II. 143-11.146 

onto four bits, 1.233-1.245 
algorithm design, 1.241-1.242 
Cartesian quantization versus polyhedra, 

I.244-I.245 
complexity analysis, 1.244 
cuboctahedron, 1.237 
dual solids, I.236-I.237 
eight-point color cube, 1.233-1.234 
four-bit color solid, I.235-I.236 
gray interior points, 1.244 
half-space testing, 1.240-1.241 
hexagonal construction, 1.238 
nolid, 1.238 
proximity testing, 1.237-1.239 
related methods, I.239-I.240 
rhombic dodecahedron, 1.236 
three versus four bits, 1.243-1.244 

RGB values 
gamma-corrected, 11.157 
unencodable, 11.147 

RGBZ interpolation, V.398 
Rhombic dodecahedron, 1.236 

bcc packing, V.68 
Rigid-body motion, equations, superquadric, 

III.149-III.150 
Ritter's simple bounding sphere technique, 

III.305-III.306 
RMS error, 11.104 
Roberts's method, 11.96 
Rolling ball, III.51-III.60, III.452, V.55 
Rolling-ball algorithm 

extensions, III.56-III.60 
four Euclidean dimensions, III.58-III.59 
group theory of infinitesimal rotations, 

III.56-III.57 
implementation, III.54-III.56 
Lorentz transformations, III.59-III.60 
quaternion rotations, III.57 
using, III.53-III.54 

Root finding, 1.403 
Bezier curve-based, see Bezier curve-based 

root-finder 
cubic, I.404-I.407 
for polygonization, IV.326 
quartic, I.406-I.407 

ray tracing, see Intersection 
subroutines, IV.558 

Root-finding algorithm, I.412-I.413 
Rotation 

bit patterns for encoding angles, 1.442 
data recovery from transformation matrix, 

11.326 
Euler angle, IV.222 
fast 2D-3D, I.440-I.441 
about general line, orthonormal bases, 

I.520-I.521 
geometrical representation, 1.503-1.504 
interactive 3D, IV. 175 
n-dimensional, IV. 151 
quaternion, see Quaternions 
raster, see Raster rotation 
run-length encoded image data, II.86-11.88 
3D space, see also Orthonormal base 

quaternions, 1.503-1.506 
transformation matrices, 1.474 
twist control, IV.230 

Rotation groups, V.59 
Rotation matrix, 1.180, see also Random rotation 

matrices 
homogeneous, 11.352 
random, II.355-II.356 

Rotation matrix methods, 1.455 
fast matrix multiplication, 1.460-1.461 
matrix inversion, 1.470—1.471 
matrix orthogonalization, 1.464 
rotation tools, 1.465-1.469 
transforming axes, 1.456-1.459 
virtual trackball, I.462-I.463 

Rotation minimizing frames, 1.569 
Rotation tools, I.465-I.469 

converting between matrix and axis-amount 
representations, 1.466-1.467 

iteration, 1.468 
nesting, I.467-I.468 
transformation inverses, 1.468 

Rounded corners, IV. 145 
Run-length encoding, adaptive, II.89-11.91 

Sagitta, V.169 
Sampled data, defining surfaces from, 1.552-1.557 
Sampled signals, 1.147 
Sampling 

optimal patterns, V.359 
solid-angle based, V.287 
stochastic, IV.370 

supersampling, V.248 
Sampling Theorem, 1.147 
Sanson-Flamsteed sinusoidal projection, 

I.312-I.314 
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Satellite, 111.24 
Sawtooth transform function, 1.203, I.207-I.209 
Scaling 

bitmap, optimization, III.17-III.19, III.425 
data recovery from transformation matrix, 

IL327-II.328 
transformation matrices, 1.474-1.475 

Scan conversion, 1.75, see also Polygon scan 
conversion 

lines in 3D, IV.366 
Scanline coherent shape algebra, II.31-11.45 

algorithm, II.34-II.37 
applications, II.41-11.44 
background, II.31-II.32 
data structures, II.32-11.34 
difference, II.39-II.40 
improvements, II.44-11.45 
intersection, 11.37 
union, II.38-II.39 
utility functions, II.40-11.41 

Scanline depth gradient, Z-buffered triangle, 
I.361-I.363 

Scanline-object rejection, V.242 
Scatterplot, IV. 193, IV.497 
Seed fill algorithm, 1.275-1.277 
Segment data structures, II.33-11.34 
Seidel's algorithm, V.394 
Selective precipitation (halftoning), V.302 
Sequential probability test ratio, V.356 
Serpentine raster pattern, 11.67, 11.69 
SetWings, II.194-II.195 
Shader cache, III.383-III.389 

effectiveness. III.388 
implementation, III.385-III.388 
logical arrangement, 111.384 
results, III.388-III.389 
shading cache, 111.385 

Shading 
fast dot products, I.348-I.360 
fence, IV.404 
Gouraud, IV.60, IV.404, IV.526 
Phong, IV.60, IV.404 
from z-buffer, IV.433 

Shading rays, caching, 11.268 
Shading techniques, incremental and empirical, 

IL233-IL236 
Shading tension, 11.238 
Shadow algorithm, II.284-II.285 
Shadow attenuation, II.283-11.289 

naive scheme, II.283-II.284 
wavelength-dependent reflection and refraction, 

II.286-II.287 
Shadow boundaries 

detection, adaptive meshing in radiosity, 
II.311-II.315 

subdivision criteria, II.313-11.315 
visibility index, 11.313 

Shadow cache, 11.273 
Shadow depth map, III.338-III.342 

boundary case, III.340-III.341 
code, III.582 
Moire pattern problem, III.339-III.340 
optimization. III.341 

Shadow generation, approximations, 11.283 
Shadow object caching, 11.268 
Shadows, 1.278 

attenuation for ray tracing transparent objects, 
I.397-I.399 

filling, I.280-I.281 
intersections, avoiding incorrect, II.275-11.276 

Shadow voxel cache, II.273-II.274 
Shaft culUng, III.333 
Shape 

algebra opcodes, 11.36 
decomposition, 11.32 
parameters, 11.431, 11.433 

Shape-box routine, II.40-11.41 
Shape construction, 1.551 
Shape representations, stored as linked lists, 11.32 
Shape vectorization, V.323 
Shared chord, 1.44 
Sharpening filter, II.53-11.55 
Shear, II.339-II.340, I I I . l lO- I I I . l l l , III.113 

data recovery from transformation matrix, 
II.328-II.329 

geometry, 11.339 
Shearing 

algorithm, 1.188 
raster rotation through, 1.181-1.183 
scan-hne, 1.187-1.190 

Shear matrices, 1.181 
Short loops, unrolling, III.355-III.357, III.594 
Shuffle generator, 1.66 
Signed distance, point to plane, III.223-III.224, 

III.511 
Simplex 

dividing boxes into, III.252-III.253 
n-dimensional, IV. 149 
polygonization with tetrahedra, IV.326 
splitting into simploid, III.253-III.255 
subdividing, III.244-III.249 

applications, III.248-III.249 
code, III.534 
recursively, III.244-III.246 
symmetrically, III.246-III.248 

Simplex object, V.99 
Simploids, III.250-III.255, see also Box; Simplex 

dividing boxes into simplices, III.252-III.253 
splitting simplices into, III.253-III.255 

Simulated annealing, IV.498 
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Sine function, 1.156-1.157 
Lanczos2 

decimation by, 1.160-1.161 
interpolation by factor of two, 1.158-1.159 

Lanczos-windowed, 1.156—1.158 
Sine, in exponentials, 1.15 
Singular value decomposition, IV.209, V.115 
Sinusoids, digital generation, III.167-III.169 
Skeleton, image, IV.465 
Slerp interpolation, V.62 
Small sparse matrix, classification, II.357-11.361 
Smoothing, II.53-II.54 

of data, IV.241 
Smoothing algorithm, monochrome enlargements, 

1.166-1.170 
Smooth shading, see Shading 
Snell's law, refraction, 1.353-1.354 
Snub disphenoid, 11.178 
Snub figures, II.177-II.178 
Sobel and Prewitt operators, 11.105 
Software, see also Rendering software 

graphics libraries, V.400 
scrambling integers in, 1.223 
engineering, IV.377 

Solid modeling, III.226 
Solids 

box-sphere intersection testing, 1.335-1.337 
quasi-regular, II.174-11.175 

Space curve, reference frame calculation, 
I.567-I.571 

Space-filling curves, II.3-II.4, II.27-II.28 
Space packing lattices, crack prevention, 

11.174 
Space subdivision, Voronoi, V.268 
Span, 1.278 

data structure, 11.33 
processing, II.34-11.35 

Span conversion, unrolling short loops, 
III.355-IIL357, III.594 

Sparse matrix 
classification, II.357-II.361 

zero structures, II.357-11.358 
multiplying a vector, II.360-11.361 

S-patch surfaces, V.219 
Spatial classification 

n-T> semiregular cubic solids, V.78 
n-D Voronoi cells, V.270 
parallelohedral decomposition (space packing), 

V.67 
Spatial da ta structure, see Bounding box; Grid; 

Octree 
Spatial rotations. III. 128 
Special effects 

contrast enhancement, I.197-I.198, I.201-I.202, 
L270-I.271, 1.274 

dissolve, see Digital dissolve effect 
photo-inversion, 1.196, 1.198, I.270-I.271 

Spectral decomposition of matrix, IV.209 
Spectral radiance. III.307 
Specular reflection, 11.234, IV.385, IV.388, IV.404 
Sphere, 1.326 

bounding volume, III.298-III.299 
box-sphere intersection testing, 1.335-1.339 
intersection with ray, 1.388-1.389 
moving on, II.172-11.173 

Spheres-to-voxels conversion, 1.327-1.334 
Spherical 

arc, IV. 132 
code to draw, IV. 178 
polygon, IV. 132 

excess, IV. 132 
Spherical coordinate transformation, 1.317-1.318 
Spherical distribution, uniform, III.126-III.127 
Spherical luminaire, importance sampling, 

III.310-III.311 
Spherical polygons, V.42 
Spherical projection, V.43 
SPHIGS package, V.398 
Spinors, III.57 
Splined interpolation. III. 122 
Splines, 1.585-1.586, see also B-spline; Curves and 

surfaces 
SplitEdge, II. 197-11.198 
SPRT, V.356 
Square root 

fixed point, V.22 
floating point, inverse, V.16 
high speed, low-precision, 1.424-1.426 
IEEE, III.48, III.446 

Square root algorithm, II.387-II.388 
Staircase patterns, V.338 
State, code generation, 11.35 
Statistics, visualizing 3D data, IV. 193 
Stereographic map, 1.316, 11.385 
Stipple, IV.487 
Stirling's numbers, 1.597 
Stochastic sampling, IV.370 
Stochastic supersampling, V.248 
Storage-free swapping, 1.436-1.437 
Stretcher-algorithm, III.6 
Stretching, bitmap, III.4-III.7, III.411 
Strum sequences, 1.416-1.422 

characteristics, 1.420 
counting sign changes, 1.419-1.420 
driving algorithm, 1.418-1.419 
example, 1.417-1.418 
method of bisection, I.420-I.421 
pseudo-division of polynomials, 1.419 

Strum's Theorem, I.416-I.417 
Stucki filter, 11.69 
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Subdividing motion, transformations, III. 123 
Subdivision 

angle, see Ellipsoid generation 
arcs, circular, V.168 
Bezier, parametric, see de Casteljau algorithm 
chord, nonuniform, V.171 
curve, V.174 
parametric curve, IV.251, IV.263 
parametric surface, IV.287 
simplices, III.244-III.249, III.534 
space (Voronoi), V.268 
surface, V.104 
triangulation, IV.47 

Subgroup algorithm, III.129-111.131 
Subpixel coordinates, 1.77-1.78 
Subtabulation, 1.601 
Sum tables, multidimensional, see 

Multidimensional sum tables 
Superquadrics 

review, III.137-III.138 
rigid physically based, III.137-III.159, III.472 

center of mass. III. 139 
derivation of volume, mass, and inertia 

tensor, III.152-III.159 
equations of rigid-body motion, 

III.149-III.150 
inertia tensor, III.140-III.145 
"inside-outside" function, III.147-III.148 
normal vectors. III. 148 
parametric surface functions, III.146-III.147 
quantities, III.138-III.145 
volume, density, and mass. III. 139-111.140 

Surface description 
by n-D cubic cells, V.98 
by quadrangle mesh, V.235 
by triangular mesh, V.232 
by voxel, V.273 

Surface normal 
quadric surface, III.282-III.283 
3D models, I.562-I.566 
torus, determination, 11.256 

Surface-normal transformations, 1.539-1.547 
affine modeling transformations, 1.539-1.542 
backface culling, 1.544-1.545 
composition, 1.543 
isotropic transformations, 1.542 
orthogonal transformations, 1.542-1.543 
shading, 1.545-1.547 
transformations of metric properties, 

I.543-I.544 
Surfaces, see also Curves and surfaces 

cell ambiguity, V.98 
contours, V.99 
defining 

from contour data, 1.558-1.561 

from sampled data, 1.552-1.557 
assumptions, 1.552-1.553 
methods, 1.553-1.557 

implicit 
blob, IV.324 
cone, IV.321, IV.355 
cylinder, IV.321, IV.353, IV.356 
ellipsoid, IV.113 
hyperplane, IV. 154 
polygonization, IV.324 

parametric 
B-spline, IV.286 
Bezier, IV.278, IV.290 
bilinear Coons patch, IV.438 
biquadratic rectangular, IV.278 
ellipsoid, IV.114 
hyperplane, IV. 162 
NURB (nonuniform rational B-spline), 

IV.286 
poly gonizat ion, IV.287 
quartic triangular, IV.278 
rational, IV.286 
reparametrization, IV.278 
subdivision, IV.287 

polyhedron, see Polyhedron 
quadric, V.3 
S-patch, V.219 
subdivision, V.104 
tensor-product, V.219 
tessellated, V.232 

Surface shading, 11.234 
SU(2) spinors, III.57 
Sutherland-Hodgman algorithm, 11.220, 11.231 
Sutherland-Hodgman clipping, V.51 
Sutherland-Hodgman polygon clipper, 

III.219-III.222 
SVD, IV.209, V.115 
Swapping, see Element exchanging 
Swept contours, 1.562-1.564 
Swept spheres, V.258 
Symmetric double step line algorithm, 1.101-1.104 

double speed Bresenham's, 1.101-1.102 
line drawing, 1.101 
using symmetry, 1.102-1.104 

Symmetric evaluation, polynomials, 
II.420-II.423 

Synthetic actor, 11.241 

TARGA file format, V.398 
Television color encoding, II. 147-11.158 

chrominance, 11.150 
color reference frame, 11.148 
component systems, 11.154 
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HDTV, II.154-II.155 
hot-pixel test, 11.155-11.157 
IRE unites, 11.152 
luminance-color difference space, 11.147 
NTSC encoding basics, II. 148-11.152 
PAL encoding, II. 153-11.154 
unencodable RGB values, 11.147 

Temporal refinement, progressive, recording 
animation in binary order, 1.265-1.269 

Tensor 
modern view, 1.533—1.535 
product, II.333-II.334, III.85 

matrix, 1.473 
surfaces, V.219 

Tent filter, I.149-I.150, II.51-II.52 
Tessellated surfaces, V.232 
Tessellation, see Polygonization 
Tetrahedron, dihedrals, II. 174-11.175 
Text, placement on maps, IV.497 
Texture 

bump mapping, IV.433 
environment mapping, IV.435 
synthesis, IV.401 

Texture cell, I.366-I.367 
types, I.371-I.372 

Textured cylinder, I.366-I.367 
Texture map indices, interpretation, 1.366—1.376 

algorithm, I.373-I.375 
decision tree, I.369-I.371 
replicating cells to create larger texture, 1.369 
rigid transformation of square cell, 

I.374-I.375 
texture space as two-torus, 1.367-1.368 
types of cells, I.371-I.372 

Texture mapping, III.227 
Texture-space images, polygons, 1.366—1.367 
Theiessen tessellation, 11.117, IV.47, V.269 
Theorem 

divergence, V.40 
Green's, V.40 
Menelaus, V.213 

Thinning, image, IV.465 
Thomas precession. III.60 
3 x 3 matrix, zero structures for, II.358-11.359 
Three-dimensional geometry, 1.297-1.300, 11.169, 

III.213, see also Digital cartography 
backface cuHing, I.346-I.347 
Bezier triangle conversion to rectangular 

patches, III.256-III.261, III.536 
boxes, 1.326 
curve tessellation criteria, III.262-III.265 
fast n-dimensional extent, III.240-III.243, 

III.527 
grouping nearly coplanar polygons into 

coplanar sets, III.225-III.230, III.512 

homogeneous clipping, triangle strips, 
II.219-II.231 

InterPhong shading, II.232-II.241 
intersection 

of three planes, 1.305 
of two lines, 1.304 

mapping, 1.306 
moving on a sphere, II.172-11.173 
Newell's method, III.231-III.232, III.517 
planar polygon, area, 11.170 
plane-to-plane intersection, III.233-III.236, 

III.519 
polyhedra 

exact dihedral metrics, II. 174-11.178 
volume, II. 170-11.171 

quadtree/octree-to-boundary conversion, 
II.202-II.218 

signed distance from point to plane, 
III.223-III.224, III.511 

simploids, III.250-III.255 
spheres, 1.326 
spheres-to-voxels conversion, 1.327-1.334 
subdividing simplices, III.244-III.249, III.534 
3D grid hashing function, 1.343-1.345 
3D polygon partitioning, III.219-III.222, 

III.502 
triangle-cube intersection, III.236-III.239, 

III.521 
triangles, III.215-III.218 
view correlation, II. 181-11.190 
viewing geometry, II. 179-11.180 
winged-edge model maintenance, II.191-11.201 

Three-dimensional grid, defining surfaces from 
sampled data, 1.552-1.557 

Three-dimensional homogeneous clipping, triangle 
strips, II.219-II.231 

against non-normalized clipping volume, 
II.224-II.225 

algorithm study, II.220-II.223 
data study, II.219-II.220 
implementation, II.225-IL229 
memory considerations, II.223-11.224 

Three-dimensional models, surface normals, 
I.562-I.566 

Three-dimensional polygons, partitioning, 
III.219-IIL222, III.502 

Three-dimensional vector C, library, III.399 
Threshold dithering, IL58-II.63 
Thresholding matrix, 11.57, V.297 
Tick marks, 1.61-1.63 
Tilings, periodic, plane on raster grid, 1.129-1.139 
Top-Down, IL206-II.208, 11.210 
Topology 

polygon data, IV.61 
rotation space, IV.230 
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Toroids, superquadric 
inertia tensor, III. 141 
"inside-outside" function, III. 148 
normal vectors, III. 148 
parametric surface functions, III. 147 
shells, III.157-III.159 
volume. III. 140 

Torus 
bounding volume. III.299 
determining surface normal, 11.256 
efficient bounding, II.254-IL255 

Trackball, virtual, I.462-I.463 
Transformation, III.95 

angle-preserving, IV. 199 
axis-aligned bounding boxes, 1.548-1.550 
decomposing linear and affine, III.108-III.116 
as exponentials, II.332-11.337 
fast random rotation matrices, III.117-III.120 
interpolation, using Bezier curves, 

III.133-III.136, III.468 
keyframing, III.121-III.123 
length-preserving, IV. 199 
matrix, see Matrix 
projective, decomposing, III.98-III.107 
quaternion interpolation with extra spins, 

III.96-III.97, III.461 
relative motion. III. 122 
rigid physically based superquadrics, 

III.137-III.159, III.472 
subdividing motion. III. 123 
subroutines, IV.534, IV.558 
3D, coding, see Quaternions 
uniform random rotations, III.124-III.132, 

III.465 
for visualization, IV. 193 

Transformation identities, 1.485-1.493 
anisotropic scaling following rotation, 1.490 
commuting 

rotation and anisotropic scaling, 1.490 
rotation and isotropic scaling, 1.488 
skewing and isotropic scaling, 1.489 

exchanging order 
of skews, 1.491 
of translation and rotation, rules, 1.487 

matrix representations of primitive 
transformations, 1.492-1.493 

reversing order 
skewing and anisotropic scaling, 1.489 
translation and scaling, 1.487 
translation and skewing, 1.488 

rotation expressed as 
combination of skews and scales, 1.489 
three skews, 1.489 

skew expressed as two rotations and a scale, 
1.491 

Transformation inverses, 1.468 
Transformation matrix, 1.472-1.475 

data recovery, II.324-II.331 
mirror image, 11.327 
projection, II.329-II.331 
rotation, 11.326 
scaling, II.327-II.328 
shear, IL328-II.329 
translation, 11.326 

DDA coefficient conversion between-step sizes, 
1.602 

mirror image, 1.473 
notation, 1.472, I.485-I.486 
observations, 1.472 
post-concatenation, 1.476-1.481 

computational cost comparison, 1.479-1.481 
direct, I.478-I.479 
implementation, 1.476-1.477 

primitive transformations, 1.492-1.493 
projection, 1.474 
rotation, 1.473 
scahng, I.473-I.474 
translation, 1.472 

Transforming axes, 1.456-1.459 
Transition table, I.93-I.95 
Translate and rotate algorithm, III.174-III.179 
Translation, transformation matrices, 1.473 

data recovery from, 11.326 
Translucent media, light absorption, II.277-11.282 
Translucent objects, ray tracing, shadow 

attenuation, II.283-II.289 
Transmission coefficient, 11.278 
Transparent objects, ray tracing, shadow 

attenuation, I.397-I.399, II.283-IL289 
Transpose of the inverse, 1.541 
Trapezoidal 

icositetrahedron, V.83 
test, V.236 
decomposition, from polygon, V.394 

Traversal, II.26-II.27 
coherence, 11.30 

Triangle, I.20-I.23, III.215-III.218 
area, 1.20 
in center, 1.20-1.21 
center of gravity, 1.20-1.21 
circumcenter, 1.20-1.23 
circumradius, 1.20-1.23 
decomposition from polygon, V.395 
generating random points, 1.24-1.28 
hemispherical projection, III.314-III.317, 

III.569 
hypotenuse, 1.57-1.59 
intersection 

of altitudes, 1.22 
of perpendicular bisectors, 1.22-1.23 
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with ray, 1.393, IL257-II.263 
perimeter, 1.20 
prime pythagorean, 1.58 
in radius, I.20-I.21 

Triangle-cube intersection, III.236-IIL239, III.521 
Triangle filter, II.51-IL52, III.13, III.15 
Triangle strips, three-dimensional homogeneous 

clipping, II.219-II.231 
Triangular interpolants, 1.535-1.538 
Triangular luminaire, importance sampling, 

III.312-III.313 
Triangular pixels, anti-aliasing, IIL369-III.373 
Triangulation, IV.47 
Tricubic interpolation, V.107 
Trigonometric formulas 

basic formulas, 1.12-1.17 
dihedral, 11.174 
halved tangent, 1.184-1.185, 11.381 
spherical, 1.317, II.442-II.445 
values, closed-form expressions, 1.18-1.19 

Trigonometry 
angle sum and difference relations, 1.16 
DeMoivre's Theorem, 1.15 
double-angle relations, 1.17 
fixed-point, CORDIC, I.494-I.497 
functions, 1.18-1.19 

sums and differences, 1.14 
half-angle relations, 1.16 
inverse functions, 1.14 
Law of Cosines, 1.13 
Law of Sines, 1.13 
Law of Tangents, 1.13 
Mollweide's Formula, 1.13 
multiple-angle relations, 1.17 
Newton's Formula, L14 
power relations, 1.15 
product relations, L16 
sines and cosines and exponentials, 

L15 
Trilinear interpolation, see Interpolation 
Triple scalar product, IV. 155 
Tristimulus values, II.159-II.160 
Truncated octahedron (fee packing), V.68 
Tubular extrusions, V.258 
Twist reduction in animation, IV.230 
Two-dimensional array, randomly traversing, 

digital dissolve effect, 1.221-1.222 
Two-dimensional clipping, 1.121-1.128 

algorithm, 1.124-1.126 
approximation error, 1.186 
basic considerations, 1.123-1.124 
implementation, 1.126-1.127 
integers and vectors, 1.121-1.122 

Two-dimensional drawing, intersection, exact 
computation, III.188-III.192, III.491 

Two-dimensional geometry, 1.3-1.11, II.3-II.4, 
III. 163, see also Triangle 

area, polygon, II.5-II.6 
circles, 1.4-1.5 
connection algorithm, III.173-III.181, III.480 
cosine of angle between lines, 1.11 
distance from point to line, 1.10 
fast circle clipping algorithm, III.182-III.187, 

III.487 
intersection of circle and line, 1.5-1.6 
lines tangent 

to circle and perpendicular to line, 1.8-1.9 
to two circles, 1.7-1.8 

line structures, 1.3-1.4 
parametric elliptical arc algorithm, 

III.164-III.172, III.478 
point of intersection between lines, 1.11 
point-on-line test, 1.49-1.50 
triangles, I.20-I.23 

Two-dimensional prediction, 11.95 
Two-dimensional rendering, circles of integral 

radius on integer lattices, 1.57—1.60 
Two-dimensional screen point, 11.181 
Two-dimensional template, minimum, 11.95 
Two-dimensional vector C, library. III.396 

U 

Uniform distributions, see Point distributions and 
Random distributions 

Uniform grid, line-edge intersections, 1.29-1.36 
Uniform quantization, 1.288 
Unimodular transforms, 1.135 
Union, scanline coherent shape algebra, II.38-11.39 
Unit quaternions, set, properties, 1.502-1.503 
Univariate approximation, Bezier curves and 

surfaces, II.406-II.407 
Unrolling short loops, span conversion, 

III.355-IIL357, III.594 
Utility functions, scanline coherent shape algebra, 

II.40-II.41 
UVN coordinate system, 1.518-1.519 
C/, V values, II.261-II.262 

Variable control point approximation, curve 
interpolation, II.417-II.419 

Variance minimization, color quantization based 
on, 11.127 

Vector operations, C macros, III.405 
Vector rotation, CORDIC, I.494-I.497 
Vectors 

cross product, see Cross product 
differences with forms, 1.533-1.535 
dot product, see Dot product 
norm, IV. 120 
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Vectors (cont.) 
normal, see Normal vector 
subroutine library for 2D, 3D, and 4D, IV.534, 

IV.558 
3D, 1.522-1.523, 1.526 
triangular interpolants, 1.535—1.538 

Vertex dependence, II.238-II.239 
Vertext normal, IV.60 

computing, 1.563-1.565 
Vertex-to-vertex form factors, linear radiosity 

approximation, III.318-III.323 
Vertical distance, point to line, 1.47-1.48 
Vertical sampling. III.291 
Video signal amplitudes, 11.152 
View correlation, II.181-II.190 

chain rule, 11.184 
example, II.188-11.190 
implementation details, II. 185-11.188 
iteration parameters, 11.184—11.185 
mathematical basis, II. 182-11.185 
projection equations, II. 182-11.183 
pyramid geometry, rendering with iterated 

parameters, II. 186-11.187 
2D screen point, 11.181 

View-frustum culling, V.127 
Viewing, 3D, see Orthonormal base 
Viewing geometry, II. 179-11.180 
Viewing transformation, pseudo-code, 1.521 
Virtual screen 

cylindrical, III.290-III.291 
panoramic, ray tracing, III.288-III.294, III.551 

Virtual trackball, 1.462-1.463 
Visibility algorithm, I.30-I.31 
Visibility index, 11.313 
Visualization 

of graph, IV.505 
of n-dimensional data, IV. 149 
of 3D point data, IV. 193 

Visualization for Planetary Exploration Lab, 
III.291 

Volume 
hexahedron, V.39 
n-dimensional parallelepiped, IV. 155, IV. 161 
n-dimensional simplex, IV. 154 
polyhedron, V.37 
superquadrics, III.139-III.140, III. 152 
tetrahedron, IV. 162, V.38 

Volume model, procedural "hypertexture", IV.401 
Volume rendering, IV.324, IV.366, IV.521 
Voronoi diagram, 11.117, IV.47, V.269 
Voxel cache, II.273-II.274 
Voxel subdivision, 3D grid hashing function, 

1.343 
Voxel traversal, IV.366 
Voxel walking, V.273 

W 

Wallpaper groups, tiling in raster grids, 
I.133-I.139 

Warp, IV.440 
Wave generators, V.367 
Wavelength-dependent reflection and refraction, 

II.286-II.287 
WEdgeData structuTe, II.192-11.194 
Wedge product, III.85-III.88 
Whitening filter, 11.95 
White point 

chromaticities, II. 148-11.149 
monitor, setting, II. 159-11.162 

Wide line bevel joints, algorithm for filling in, 
I.107-I.113 

Winding number, IV.22, IV.25 
transitions, 1.94-1.95 

Window data structure, 11.42 
Window-to-viewport matrix group, 11.344 

inverse, 11.348 
Window tree, 11.42 
Winged-edge data structure, IV.48 
Winged-edge library, fundamental operations, 

11.191 
Winged-edge models, maintaining, II. 191-11.201 

Euler operators, 11.197 
inputFace, 11.196 
inputVertex, 11.196 
InsertBridge, II. 199-11.201 
NextFaceAroundVertex, II.195-11.196 
RemoveEdge, 11.198 
SetWings, II. 194-11.195 
SplitEdge, II. 197-11.198 
WEdgeData structure, II.192-11.194 

World coordinates, inertia tensor. III. 145 
Write-only write mask, reading, 1.219-1.220 
WShape, 11.192 
Wu's algorithm, 11.127 
Wu's anti-aliased circles, II.448-11.449 

algorithm, 11.447 

X-Z 

XOR cursor, III.77, IV.413 
X-transition table, 1.93—1.95 
Y extrema, polygon fast scan conversion, 1.95-1.96 
Z-buffer, V.398 

shading from, IV.433 
Z-buffered triangle, scanline depth gradient, 

I.361-I.363 
Zero-phase filters, frequency response, decimation 

by two, 1.162 
Zero structures, II.357-II.358 

for 3 X 3 matrix, II.358-II.359 
Zonotopes, V.70 



Other AP PROFESSIONAL Titles of Interest 

GRAPHICS GEMS PACKAGE 
Special Package---Buy the First Three Hardcover Volumes for the Price of Two! 
GRAPHICS GEMS- Edited by Andrew J. Glassner 
GRAPHICS GEMS II - Edited by James Arvo 
GRAPHICS GEMS III- Edited by David Kirk 

The GRAPHICS GEMS Series was started in 1990 by Andrew Glassner. The vision and pur- 
pose of the Series was--and still is--to provide tips, techniques, and algorithms for graphics 
programmers. All of the gems are written by programmers who work in the field and are moti- 
vated by a common desire to share interesting ideas and tools with their colleagues. Each 
volume provides a new set of innovative solutions to a variety of programming problems. 

ISBN: 0-12-270350-2 ONLY $99.95 

FROM PIXELS TO ANIMATION- An Introduction to Graphics 
Programming 
by James Alan Farrell 

/ /  
From Pixels to Animation: An Introduction to Graphics Programming will serve as an intro- 
duction to graphics programming as well as a complete graphics reference for the experi- 
enced graphics programmer. It covers the basics of graphics programming, from how a 
graphics monitor works to how to draw realistic 3-D images. The book thoroughly explains the 
history and inner workings of graphics theories and monitors, and includes advanced topics 
and tools--so that even experienced graphics programmers will benefit. A basic knowledge 
of C is assumed, but no prior graphics experience is necessary. 

ISBN: 0-12-249710-4 Paperback, $39.95 

TEXTURING AND MODELING: A Procedural Approach 
by David Ebert, F, Kenton Musgrave, Darwyn Peachey, 
Ken Perlin, Steve Worley 

This book contains a toolbox of procedures upon which programmers can build a library of 
procedural textures and objects. Procedural rendering, modeling, shading and texturing are 
of growing importance in computer graphics and animation, and, this is the first comprehen- 
sive book covering these topics. It also includes extensive explanations of how these func- 
tions work, and how to design new functions. 

ISBN" 0-12-228760-6 Hardcover, $49.95 



VIRTUAL REALITY EXCURSIONS 
With Programs in C 
by Christopher D. Watkins and Stephen R. Marenka B 
This book makes the current applications of virtual reality accessible to the PC user. The 
authors have developed software, the 3D World Editor, and an Architecture Visualizer that 
enables readers to create their own virtual environments. The topical coverage is extensive 
and focuses on a few primary application areas: 3D CAD modeling and architectural model- 
ing, flight simulation, and gaming. 3D Glasses Included! 

ISBN: 0-12-737865-0 Paperback, $39.95 

LEARNING WINDOWS TM PROGRAMMING WITH VIRTUAL REALITY 
by Christopher D, Watkins and Russell J, Berube Jr, ! /  
This is an innovative book for teaching programming. Throughout the book, readers will 
develop a 3-D Virtual Reality game as they learn the Windows programming techniques. The 
3-D engine provided with the book generates textured and interactive 3-D imagery like those 
found on two very popular shareware games~Wolfenstein 3-D and Doom. Explanations for 
development in both DOS and Windows (3.1 and higher) are included. 

ISBN: 0-12-737842-1 Paperback, $39.95 

RADIOSITY AND REALISTIC IMAGE SYNTHESIS 
by Michael F. Cohen and John R. Wallace 

This is the first book to provide a comprehensive look at the radiosity method for image syn- 
thesis and the tools required to achieve quality results. The book provides valuable assis- 
tance to professionals involved in creating realistic computer images~ including architects 
and industrial designers, and to those in the entertainment and advertising industries, com- 
puter aided design, computer graphics (including virtual reality), and medical imaging fields. 
Includes 16 pages of full-color images. 

ISBN: 0-12-178270-0 Hardcover, $49.95 



3-D SOUND FOR VIRTUAL REALITY AND MULTIMEDIA APPLICATIONS 
by Durand R. Begault 

One of the key underlying technologies of immersive virtual reality (VR) is 3-D sound. This is 
the first introduction to 3~D sound theory and applications aimed at the commercial 
engineer. It will provide the reader with an understanding of the communication chain 
between source and listener. Special features include components of spatial auditory displays 
and psychoacoustics of spatial hearing. Begault overviews many different applications for 
spatialized sound, including: auditory feedback, communication systems, aeronautics, com- 
puter music, sonification, television and computer interfaces. 

ISBN" 0-12-084735-3 Hardcover, $49.95 

USING DIGITAL VIDEO / / /  by Arch Luther 

Digital motion video and sound are now available for any personal computer and can be 
installed inexpensively and easily by any PC user. This book teaches the principles of digital 
video and audio, and provides a comprehensive look at the technical aspects of both analog 
and digital video. It also provides all the information necessary to incorporate and distribute 
video and audio into existing applications, electronic presentations, and information, including 
production and postproduction. 

ISBN" 0-12-460432-3 Paperback, $34.95 

VIDEO COMPRESSION FOR MULTIMEDIA 
by Jan Ozer 

..... .: " "~ . . . .  , : ~ i  

© 

This book thoroughly covers and demonstrates the latest compression technologies including 
JPEG, MPEG, Fractals, Vector Quantization and Wavelets. Readers will learn how to apply 
compression theory during filming to create footage that compresses well on a digital plat- 
form. Ozer also explains how to optimize compression settings to achieve the highest possi- 
ble compressed video quality and how to create and integrate video into windows applications. 

ISBN: 0-12-531940-1 Paperback, $39.95 
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Plate Vl.la. Random dithering. Plate Vl.lb. Ordered dithering. 

Plate VI.lc. Clustered dot dithering. Plate Vl.ld. Ordered dithering (improved). 



PlateV.Ta. 
light. 

Original scene under an ambient Plate V.7b. Directional illumination under 
ambient sources. 

Plate V.7c. Final convergence to a radiometric 
solution. 

Plate II.7. Hexakis octahedron approximating 
the unit sphere. 

Plate VI.6. Adaptive progressive refinement 
(8000 rectangles). 




