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Preface to the Fourth Edition

As I was writing this Fourth Edition of my book Nonlinear Optics, 1 found the opportunity
to recall the history of my intrigue with the study of nonlinear optics. I first learned about
nonlinear optics during my senior year at MIT. I was taking a course in laser physics taught
by Dr. Abraham Szdke. A special topic covered in the course was nonlinear optics, and Prof.
Bloembergen’s short book on the topic (Nonlinear Optics, Benjamin, 1965) was assigned as
supplemental reading. I believe that it was at that point in my life that I fell in love with nonlin-
ear optics. I am attracted to nonlinear optics for the following reasons. This topic is founded on
fundamental physics including quantum mechanics and electromagnetic theory. The laboratory
study of nonlinear optics involves sophisticated experimental methods. Moreover, nonlinear
optics spans the disciplines of pure physics, applied physics, and engineering.

In preparing this Fourth Edition, I have corrected some typos that made their way into the
Third Edition. I also tightened up and clarified the wording in many spots in the text. In ad-
dition, I added new material as follows. I added a new chapter, Chapter 14, dealing with the
nonlinear optics of plasmonic systems. In Chapter 2 I added a new section on advanced phase
matching concepts. These concepts include noncollinear phase matching, critical and noncrit-
ical phase matching, phase matching aspects of spontaneous parametric downconversion, the
tilted pulse-front method for THz generation, and Cherenkov phase matching. The first three
sections of Chapter 13 as well as Section 13.8 have been substantially rewritten to improve the
pedagogical structure. A new section (Section 13.7) has been added that deals with Keldysh
theory and tunneling ionization. Section 4.6 now includes a simple derivation of the Debye—
Hiickel screening equation. Finally, at the level of detail, I have included the following new
figures: Fig. 2.3.4, Fig. 2.10.2, Fig. 5.6.2, Fig. 7.5.2, and Fig. 7.5.4.

I give my great thanks to the many students and colleagues who have made suggestions
regarding the presentations given in the book and who have spotted typos and inaccuracies in
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Preface to the Fourth Edition

the Third Edition. My thanks go to Zahirul Alam, Aku Antikainen, Erik Bélanger, Nick Black,
Frédéric Bouchard, Thomas Brabec, Steve Byrnes, Enrique Cortés-Herrera, Israel De Leon,
Justin Droba, Patrick Dupre, James Emery, Marty Fejer, Alexander Gaeta, Enno Giese, Mojtaba
Hajialamdari, Henry Kapteyn, Stefan Katletz, Kyung Seung Kim, Samuel Lemieux, Yanhua Lu,
Svetlana Lukishova, Giulia Marcucci, Adrian Melissinos, Jean-Michel Ménard, Mohammad
Mirhosseini, Margaret Murnane, Geoffrey New, Rui Qi, Markus Raschke, Razif Razali, Orad
Reshef, Matthew Runyon, Akbar Safari, Mansoor Sheik-Bahae, John Sipe, Arlee Smith, Phillip
Sprangle, Andrew Strikwerda, Fredrik Sy, and Anthony Vella. I also give my thanks to the
many classroom students not mentioned above for their thought-provoking questions and for
their overall intellectual curiosity.

Robert W. Boyd

Ottawa, ON, Canada
Rochester, NY, United States
January 2, 2020
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Preface to the Third Edition

It has been a great pleasure for me to have prepared the latest edition of my book on nonlinear
optics. My intrigue in the subject matter of this book is as strong as it was when the first edition
was published in 1992.

The principal changes present in the third edition are as follows: (1) The book has been
entirely rewritten using the SI system of units. I personally prefer the elegance of the gaussian
system of units, which was used in the first two editions, but I realize that most readers would
prefer the SI system, and the change was made for this reason. (2) In addition, a large number
of minor changes have been made throughout the text to clarify the intended meaning and to
make the arguments easier to follow. I am indebted to the countless comments received from
students and colleagues both in Rochester and from around the world that have allowed me
to improve the writing in this manner. (3) Moreover, several sections that treat entirely new
material have been added. Applications of harmonic generation, including applications within
the fields of microscopy and biophotonics, are treated in Subsection 2.7.1. Electromagnetically
induced transparency is treated in Section 3.8. Some brief but crucial comments regarding
limitations to the maximum size of the intensity-induced refractive-index change are made
in Section 4.7. The use of nonlinear optical methods for inducing unusual values of the group
velocity of light are discussed briefly in Section 3.8 and in Subsection 6.6.2. Spectroscopy based
on coherent anti-Stokes Raman scattering (CARS) is discussed in Section 10.5. In addition, the
appendix has been expanded to include brief descriptions of both the SI and gaussian systems
of units and procedures for conversion between them.

The book in its present form contains far too much material to be covered within a conven-
tional one-semester course. For this reason, I am often asked for advice on how to structure a
course based on the content of my textbook. Some of my thoughts along these lines are as fol-
lows: (1) I have endeavored as much as possible to make each part of the book self-contained.
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Preface to the Third Edition

Thus, the sophisticated reader can read the book in any desired order and can read only sections
of personal interest. (2) Nonetheless, when using the book as a course text, I suggest starting
with Chapters 1 and 2, which present the basic formalism of the subject material. At that point,
topics of interest can be taught in nearly any order. (3) Special mention should be made re-
garding Chapters 3 and 6, which deal with quantum mechanical treatments of nonlinear optical
phenomena. These chapters are among the most challenging of any within the book. These
chapters can be skipped entirely if one is comfortable with establishing only a phenomeno-
logical description of nonlinear optical phenomena. Alternatively, these chapters can form the
basis of a formal treatment of how the laws of quantum mechanics can be applied to provide
detailed descriptions of a variety of optical phenomena. (4) From a different perspective, I am
sometimes asked for my advice on extracting the essential material from the book—that is, in
determining which are topics that everyone should know. This question often arises in the con-
text of determining what material students should study when preparing for qualifying exams.
My best response to questions of this sort is that the essential material is as follows: Chapter 1
in its entirety; Sections 2.1-2.3, 2.4, and 2.10 of Chapter 2; Subsection 3.5.1 of Chapter 3;
Sections 4.1, 4.6, and 4.7 of Chapter 4; Chapter 7 in its entirety; Section 8.1 of Chapter 8; and
Section 9.1 of Chapter 9. (5) Finally, I often tell my classroom students that my course is in
some ways as much a course on optical physics as it is a course on nonlinear optics. I sim-
ply use the concept of nonlinear optics as a unifying theme for presenting conceptual issues
and practical applications of optical physics. Recognizing that this is part of my perspective in
writing, this book could be useful to its readers.

I want to express my thanks once again to the many students and colleagues who have given
me useful advice and comments regarding this book over the past fifteen years. I am especially
indebted to my own graduate students for the assistance and encouragement they have given to
me.

Robert Boyd
Rochester, New York
October, 2007
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Preface to the Second Edition

In the ten years since the publication of the first edition of this book, the field of nonlinear
optics has continued to achieve new advances both in fundamental physics and in practical
applications. Moreover, the author’s fascination with this subject has held firm over this time
interval. The present work extends the treatment of the first edition by including a considerable
body of additional material and by making numerous small improvements in the presentation
of the material included in the first edition.

The primary differences between the first and second editions are as follows.

Two additional sections have been added to Chapter 1, which deals with the nonlinear opti-
cal susceptibility. Section 1.6 deals with time-domain descriptions of optical nonlinearities, and
Section 1.7 deals with Kramers—Kronig relations in nonlinear optics. In addition, a description
of the symmetry properties of gallium arsenide has been added to Section 1.5.

Three sections have been added to Chapter 2, which treats wave-equation descriptions of
nonlinear optical interactions. Section 2.8 treats optical parametric oscillators, Section 2.9 treats
quasi-phase-matching, and Section 2.11 treats nonlinear optical surface interactions.

Two sections have been added to Chapter 4, which deals with the intensity-dependent re-
fractive index. Section 4.5 treats thermal nonlinearities, and Section 4.6 treats semiconductor
nonlinearities.

Chapter 5 is an entirely new chapter dealing with the molecular origin of the nonlinear op-
tical response. (Consequently the chapter numbers of all the following chapters are one greater
than those of the first edition.) This chapter treats electronic nonlinearities in the static ap-
proximation, semiempirical models of the nonlinear susceptibility, the nonlinear response of
conjugated polymers, the bond charge model of optical nonlinearities, nonlinear optics of chi-
ral materials, and nonlinear optics of liquid crystals.
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In Chapter 7 on processes resulting from the intensity-dependent refractive index, the sec-
tion on self-action effects (now Section 7.1) has been significantly expanded. In addition,
a description of optical switching has been included in Section 7.3, now entitled optical bista-
bility and optical switching.

In Chapter 9, which deals with stimulated Brillouin scattering, a discussion of transient
effects has been included.

Chapter 12 is an entirely new chapter dealing with optical damage and multiphoton absorp-
tion. Chapter 13 is an entirely new chapter dealing with ultrafast and intense-field nonlinear
optics.

The Appendices have been expanded to include a treatment of the gaussian system of units.
In addition, many additional homework problems and literature references have been added.

I would like to take this opportunity to thank my many colleagues who have given me advice
and suggestions regarding the writing of this book. In addition to the individuals mentioned in
the preface to the first edition, I would like to thank G. S. Agarwal, P. Agostini, G. P. Agrawal,
M. D. Feit, A. L. Gaeta, D. J. Gauthier, L. V. Hau, F. Kajzar, M. Kauranen, S. G. Luki-
shova, A. C. Melissinos, Q-H. Park, M. Saffman, B. W. Shore, D. D. Smith, I. A. Walmsley,
G. W. Wicks, and Z. Zyss. I especially wish to thank M. Kauranen and A. L. Gaeta for suggest-
ing additional homework problems and to thank A. L. Gaeta for advice on the preparation of
Section 13.2.



Preface to the First Edition

Nonlinear optics is the study of the interaction of intense laser light with matter. This book is
a textbook on nonlinear optics at the level of a beginning graduate student. The intent of the
book is to provide an introduction to the field of nonlinear optics that stresses fundamental con-
cepts and that enables the student to go on to perform independent research in this field. The
author has successfully used a preliminary version of this book in his course at the University
of Rochester, which is typically attended by students ranging from seniors to advanced PhD
students from disciplines that include optics, physics, chemistry, electrical engineering, me-
chanical engineering, and chemical engineering. This book could be used in graduate courses
in the areas of nonlinear optics, quantum optics, quantum electronics, laser physics, electroop-
tics, and modern optics. By deleting some of the more difficult sections, this book would also
be suitable for use by advanced undergraduates. On the other hand, some of the material in
the book is rather advanced and would be suitable for senior graduate students and research
scientists.

The field of nonlinear optics is now thirty years old, if we take its beginnings to be the
observation of second-harmonic generation by Franken and coworkers in 1961. Interest in this
field has grown continuously since its beginnings, and the field of nonlinear optics now ranges
from fundamental studies of the interaction of light with matter to applications such as laser
frequency conversion and optical switching. In fact, the field of nonlinear optics has grown
so enormously that it is not possible for one book to cover all of the topics of current inter-
est. In addition, since I want this book to be accessible to beginning graduate students, I have
attempted to treat the topics that are covered in a reasonably self-contained manner. This con-
sideration also restricts the number of topics that can be treated. My strategy in deciding what
topics to include has been to stress the fundamental aspects of nonlinear optics, and to in-
clude applications and experimental results only as necessary to illustrate these fundamental
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issues. Many of the specific topics that I have chosen to include are those of particular histori-
cal value.

Nonlinear optics is notationally very complicated, and unfortunately much of the notational
complication is unavoidable. Because the notational aspects of nonlinear optics have histor-
ically been very confusing, considerable effort is made, especially in the early chapters, to
explain the notational conventions. The book uses primarily the gaussian system of units, both
to establish a connection with the historical papers of nonlinear optics, most of which were
written using the gaussian system, and also because the author believes that the laws of elec-
tromagnetism are more physically transparent when written in this system. At several places in
the text (see especially the appendices at the end of the book), tables are provided to facilitate
conversion to other systems of units.

The book is organized as follows: Chapter 1 presents an introduction to the field of nonlin-
ear optics from the perspective of the nonlinear susceptibility. The nonlinear susceptibility is
a quantity that is used to determine the nonlinear polarization of a material medium in terms
of the strength of an applied optical-frequency electric field. It thus provides a framework for
describing nonlinear optical phenomena. Chapter 2 continues the description of nonlinear op-
tics by describing the propagation of light waves through nonlinear optical media by means of
the optical wave equation. This chapter introduces the important concept of phase matching
and presents detailed descriptions of the important nonlinear optical phenomena of second-
harmonic generation and sum- and difference-frequency generation. Chapter 3 concludes the
introductory portion of the book by presenting a description of the quantum mechanical theory
of the nonlinear optical susceptibility. Simplified expressions for the nonlinear susceptibility
are first derived through use of the Schrodinger equation, and then more accurate expressions
are derived through use of the density matrix equations of motion. The density matrix formal-
ism is itself developed in considerable detail in this chapter in order to render this important
discussion accessible to the beginning student.

Chapters 4 through 6 deal with properties and applications of the nonlinear refractive index.
Chapter 4 introduces the topic of the nonlinear refractive index. Properties, including tensor
properties, of the nonlinear refractive index are discussed in detail, and physical processes that
lead to the nonlinear refractive index, such as nonresonant electronic polarization and molecular
orientation, are described. Chapter 5 is devoted to a description of nonlinearities in the refrac-
tive index resulting from the response of two-level atoms. Related topics that are discussed in
this chapter include saturation, power broadening, optical Stark shifts, Rabi oscillations, and
dressed atomic states. Chapter 6 deals with applications of the nonlinear refractive index. Top-
ics that are included are optical phase conjugation, self focusing, optical bistability, two-beam
coupling, pulse propagation, and the formation of optical solitons.

Chapters 7 through 9 deal with spontaneous and stimulated light scattering and the related
topic of acoustooptics. Chapter 7 introduces this area by presenting a description of theories of
spontaneous light scattering and by describing the important practical topic of acoustooptics.



Preface to the First Edition

Chapter 8 presents a description of stimulated Brillouin and stimulated Rayleigh scattering.
These topics are related in that they both entail the scattering of light from material disturbances
that can be described in terms of the standard thermodynamic variables of pressure and entropy.
Also included in this chapter is a description of phase conjugation by stimulated Brillouin
scattering and a theoretical description of stimulated Brillouin scattering in gases. Chapter 9
presents a description of stimulated Raman and stimulated Rayleigh-wing scattering. These
processes are related in that they entail the scattering of light from disturbances associated with
the positions of atoms within a molecule.

The book concludes with Chapter 10, which treats the electrooptic and photorefractive ef-
fects. The chapter begins with a description of the electrooptic effect and describes how this
effect can be used to fabricate light modulators. The chapter then presents a description of the
photorefractive effect, which is a nonlinear optical interaction that results from the electrooptic
effect. The use of the photorefractive effect in two-beam coupling and in four-wave mixing is
also described.

The author wishes to acknowledge his deep appreciation for discussions of the material in
this book with his graduate students at the University of Rochester. He is sure that he has learned
as much from them as they have from him. He also gratefully acknowledges discussions with
numerous other professional colleagues, including N. Bloembergen, D. Chemla, R. Y. Chiao,
J. H. Eberly, C. Flytzanis, J. Goldhar, G. Grynberg, J. H. Haus, R. W. Hellwarth, K. R. Mac-
Donald, S. Mukamel, P. Narum, M. G. Raymer, J. E. Sipe, C. R. Stroud, Jr., C. H. Townes,
H. Winful, and B. Ya. Zel’dovich. In addition, the assistance of J. J. Maki and A. Gamliel in the
preparation of the figures is gratefully acknowledged.
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Chapter 1

The Nonlinear Optical Susceptibility

1.1 Introduction to Nonlinear Optics

Nonlinear optics is the study of phenomena that occur as a consequence of the modification of
the optical properties of a material system by the presence of light. Typically, only laser light
is sufficiently intense to modify the optical properties of a material system in this manner. The
beginning of the field of nonlinear optics is often taken to be the discovery of second-harmonic
generation by Franken et al. (1961), shortly after the demonstration of the first working laser
by Maiman in 1960." Nonlinear optical phenomena are “nonlinear” in the sense that they occur
when the response of a material system to an applied optical field depends in a nonlinear manner
on the strength of the applied optical field. For example, second-harmonic generation occurs
as a result of the part of the atomic response that scales quadratically with the strength of the
applied optical field. Consequently, the intensity of the light generated at the second-harmonic
frequency tends to increase as the square of the intensity of the applied laser light.

In order to describe more precisely what we mean by an optical nonlinearity, let us consider
how the dipole moment per unit volume, or polarization P(t), of a material system depends on
the strength E (r) of an applied optical field.” In the case of conventional (i.e., linear) optics, the
induced polarization depends linearly on the electric field strength in a manner that can often
be described by the relationship

P(t)y=eoxVE@), (1.1.1)

It should be noted, however, that some nonlinear effects were discovered prior to the advent of the laser. The
earliest example known to the author is the observation of saturation effects in the luminescence of dye molecules
reported by G. N. Lewis et al. (1941).

Throughout the text, we use the tilde (~) to denote a quantity that varies rapidly in time. Constant quantities,
slowly varying quantities, and Fourier amplitudes are written without the tilde. See, for example, Eq. (1.2.1).

Nonlinear Optics. https:/doi.org/10.1016/B978-0-12-811002-7.00010-2
Copyright © 2020 Elsevier Inc. All rights reserved. 1
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where the constant of proportionality x (! is known as the linear susceptibility and € is the
permittivity of free space.” In nonlinear optics, the optical response can often be described as a
generalization of Eq. (1.1.1) by expressing the polarization P(r) asa power series in the field
strength E (1) as

Pt)y=eo[x PEO)+ xPE* )+ xPE 1) + -]
=PV + PP+ PO)+---. (1.1.2)

The quantities x® and x @ are known as the second- and third-order nonlinear optical sus-
ceptibilities, respectively. For simplicity, we have taken the fields P(r) and E(¢) to be scalar
quantities in writing Eqgs. (1.1.1) and (1.1.2). In Section 1.3 we show how to treat the vector na-
ture of the fields; in such a case x () becomes a second-rank tensor, x ? becomes a third-rank
tensor, and so on. In writing Egs. (1.1.1) and (1.1.2) in the forms shown, we have also assumed
that the polarization at time ¢ depends only on the instantaneous value of the electric field
strength. The assumption that the medium responds instantaneously also implies (through the
Kramers—Kronig relations ") that the medium must be lossless and dispersionless. We shall see
in Section 1.3 how to generalize these equations for the case of a medium with dispersion and
loss. In general, the nonlinear susceptibilities depend on the frequencies of the applied fields,
but under our present assumption of instantaneous response we take them to be constants.

We shall refer to PP (1) = ¢ X(Z)E 2(1) as the second-order nonlinear polarization and to
PG (1) = ¢ X(3)E 3(1) as the third-order nonlinear polarization, and so on for higher-order
terms. We shall see later in this section that physical processes that occur as a result of the
second-order polarization P are distinct from those that occur as a result of the third-order
polarization P®. In addition, we shall show in Section 1.5 that second-order nonlinear op-
tical interactions can occur only in noncentrosymmetric crystals—that is, in crystals that do
not display inversion symmetry. Since liquids, gases, amorphous solids (such as glass), and
even many crystals display inversion symmetry, x ® vanishes identically for such materials,
and consequently such materials cannot produce second-order nonlinear optical interactions.
On the other hand, third-order nonlinear optical interactions (i.e., those described by a x
susceptibility) can occur for both centrosymmetric and noncentrosymmetric media.

We shall see in later sections of this book how to calculate the values of the nonlinear sus-
ceptibilities for various physical mechanisms that lead to optical nonlinearities. For the present,
we make a simple order-of-magnitude estimate of the size of these quantities for the common
case in which the nonlinearity is electronic in origin (see, for instance, Armstrong et al., 1962).
One might expect that the lowest-order correction term P@ would be comparable to the linear

* Except where otherwise noted, we use the SI (MKS) system of units throughout this book. The appendix to this

book presents a prescription for converting among systems of units.
See, for example, Landau and Lifshitz (1960) Section 62 or the discussion in Section 1.7 of this book for a
discussion of the Kramers—Kronig relations.

-
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response P! when the amplitude of the applied field E is of the order of the characteristic
atomic electric field strength Ey = e /(47‘[6061(2)), where —e is the charge of the electron and
ag = 4meghi?/me? is the Bohr radius of the hydrogen atom (here % is Planck’s constant divided
by 27, and m is the mass of the electron). Numerically, we find that E, = 5.14 x 10 V/m.
We thus expect that under conditions of nonresonant excitation the second-order susceptibility
x @ will be of the order of x ")/ E,. For condensed matter x (1) is of the order of unity, and we
hence expect that x @) will be of the order of 1 / Egt, or that

x® ~1.94x 1072 m/V. (1.1.3)

2

2> which for condensed matter is of the

Similarly, we expect x @ to be of the order of xV/E
order of

x® ~3.78 x 1072 m?/V2. (1.1.4)

These predictions are in fact quite accurate, as one can see by comparing these values with
actual measured values of X(z) (see, for instance, Table 1.5.3) and X(3) (see, for instance, Ta-
ble 4.3.1).

For certain purposes, it is useful to express the second- and third-order susceptibilities in
terms of fundamental physical constants. As just noted, for condensed matter x V) is of the
order of unity. This result can be justified either as an empirical fact or can be justified more
rigorously by noting that x 1) is the product of atomic number density and atomic polarizability.
The number density N of condensed matter is of the order of (ap)~3, and the nonresonant
polarizability is of the order of (ap). We thus deduce that )((1) is of the order of unity. Using
the expression for E quoted above, we similarly find that x® ~ (4meg)3h*/m?e’ and x 3 ~
(41 €) 8 /m*e'0. See Boyd (1999) for further details.

The most usual procedure for describing nonlinear optical phenomena is based on express-
ing the polarization P (1) in terms of the applied electric field strength E(1), as we have done
in Eq. (1.1.2). The reason why the polarization plays a key role in the description of nonlinear
optical phenomena is that a time-varying polarization can act as the source of new components
of the electromagnetic field. For example, we shall see in Section 2.1 that the wave equation in
nonlinear optical media often has the form

n?9’E 1 9*PN-
2 a2 et a2

V2E —

(1.1.5)

where n is the usual linear refractive index and c is the speed of light in vacuum. We can
interpret this expression as an inhomogeneous wave equation in which the polarization PN-
associated with the nonlinear response acts as a source term for the electric field E. Since
32PNL /312 is a measure of the acceleration of the charges that constitute the medium, this
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equation is consistent with Larmor’s theorem of electromagnetism, which states that acceler-
ated charges generate electromagnetic radiation.

It should be noted that the power-series expansion expressed by Eq. (1.1.2) need not nec-
essarily converge. In such circumstances the relationship between the material response and
the applied electric field amplitude must be expressed using different procedures. One such
circumstance is that of strong resonant excitation of an atomic system, in which case an appre-
ciable fraction of the atoms can be removed from the ground state. Saturation effects of this
sort can be described by procedures developed in Chapter 6. Even under nonresonant condi-
tions, Eq. (1.1.2) loses its validity if the applied laser field strength becomes comparable to the
characteristic atomic field strength E,(, because of strong photoionization that can occur under
these conditions. For future reference, we note that the laser intensity associated with a peak
field strength of Ey; is given by

1
Iy = EeocEgt =3.5x 102 W/m? = 3.5 x 10'® W/cm?. (1.1.6)
We shall see later in this book (see especially Chapter 13) how nonlinear optical processes
display qualitatively distinct features when excited by such super-intense fields.

1.2 Descriptions of Nonlinear Optical Processes

In the present section, we present brief qualitative descriptions of a number of nonlinear optical
processes. In addition, for those processes that can occur in a lossless medium, we indicate
how they can be described in terms of the nonlinear contributions to the polarization described
by Eq. (1.1.2)." Our motivation is to provide an indication of the variety of nonlinear optical
phenomena that can occur. These interactions are described in greater detail in later sections of
this book. In this section we also introduce some notational conventions and some of the basic
concepts of nonlinear optics.

1.2.1 Second-Harmonic Generation

As an example of a nonlinear optical interaction, let us consider the process of second-harmonic
generation, which is illustrated schematically in Fig. 1.2.1. Here a laser beam whose electric
field strength is represented as

E@t)=Ee ™ +ce. (1.2.1)

* Recall that Eq. (1.1.2) is valid only for a medium that is lossless and dispersionless.
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FIGURE 1.2.1: (a) Geometry of second-harmonic generation. (b) Energy-level diagram describing
second-harmonic generation.

is incident upon a crystal for which the second-order susceptibility x ¥ is nonzero. The non-
linear polarization created in such a crystal is given according to Eq. (1.1.2) by PP (1) =
eox P E(1)? or explicitly by

PP (1) =2e0x PEE* + (eox P E% 2" tc.c.). (1.2.2)

We see that the second-order polarization consists of a contribution at zero frequency (the first
term) and a contribution at frequency 2w (the second term). According to the driven wave
equation (1.1.5), this latter contribution can lead to the generation of radiation at the second-
harmonic frequency. Note that the first contribution in Eq. (1.2.2) does not lead to the generation
of electromagnetic radiation (because its second time derivative vanishes); it leads to a process
known as optical rectification, in which a static electric field is created across the nonlinear
crystal.

Under proper experimental conditions, the process of second-harmonic generation can be so
efficient that nearly all of the power in the incident beam at frequency w is converted into radi-
ation at the second-harmonic frequency 2w. One common use of second-harmonic generation
is to convert the output of a fixed-frequency laser to a different spectral region. For example,
the Nd: YAG laser operates in the near infrared at a wavelength of 1.06 um. Second-harmonic
generation is routinely used to convert the wavelength of the radiation to 0.53 um, in the middle
of the visible spectrum.

Second-harmonic generation can be visualized by considering the interaction in terms of
the exchange of photons between the various frequency components of the field. Accord-
ing to this picture, which is illustrated in part (b) of Fig. 1.2.1, two photons of frequency w
are destroyed, and a photon of frequency 2w is simultaneously created in a single quantum-
mechanical process. The solid line in the figure represents the atomic ground state, and the
dashed lines represent what are known as virtual levels. These levels are not energy eigenlevels
of the free atom but rather represent the combined energy of one of the energy eigenstates of
the atom and of one or more photons of the radiation field.

The theory of second-harmonic generation is developed more fully in Section 2.6.
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1.2.2 Sum- and Difference-Frequency Generation

Let us next consider the situation in which the optical field incident upon a second-order non-
linear optical medium consists of two distinct frequency components, which we represent in
the form

E(t) = Eje ' 4 Ere '@ 4 coc. (1.2.3)

Then, assuming as in Eq. (1.1.2) that the second-order contribution to the nonlinear polarization
is of the form

PP =eoxPEW®?, (1.2.4)
we find that the nonlinear polarization is given by

P’S(Z) (t) — 60X(2) [E12e—2ia)1t + E%e_Ziwzt + 2E1Eze—i(w1+w2)l‘
+2E Eje @17 4 cc] 4+ 2e0x P[EIET + E2E3). (1.2.5)

It is convenient to express this result using the notation

PA(t) = Z P(wy)e iont, (1.2.6)

where the summation extends over positive and negative frequencies w,. The complex ampli-
tudes of the various frequency components of the nonlinear polarization are hence given by

PQw1) =eoxPE] (SHO),
PQw) =eoxPE; (SHG),
P(w +w) =2e0xPEE>  (SFG), (1.2.7)
P(w1 —a) =2¢x P E1E;  (DFG),
P(0) =2e0x P (E\Ef + E2ES)  (OR).
Here we have labeled each expression by the name of the physical process that it describes, such
as second-harmonic generation (SHG), sum-frequency generation (SFG), difference-frequency

generation (DFG), and optical rectification (OR). Note that, in accordance with our complex
notation, there is also a response at the negative of each of the nonzero frequencies just given:

P(201) =eox PE?,  P(—2wy) =eox P E3?,

P(—w —w2)=2€ox(2)ETEik, P(a)z—a)l)=2€ox(2)E2Ef. (128)
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However, since each of these quantities is simply the complex conjugate of one of the quantities
given in Eq. (1.2.7), it is not necessary to take explicit account of both the positive and negative
frequency components.*

We see from Eq. (1.2.7) that four different nonzero frequency components are present in the
nonlinear polarization. However, typically no more than one of these frequency components
will be present with any appreciable intensity in the radiation generated by the nonlinear op-
tical interaction. The reason for this behavior is that the nonlinear polarization can efficiently
produce an output signal only if a certain phase-matching condition (which is discussed in de-
tail in Section 2.7) is satisfied, and usually this condition cannot be satisfied for more than one
frequency component of the nonlinear polarization. Operationally, one often chooses which fre-
quency component will be radiated by properly selecting the polarization of the input radiation
and the orientation of the nonlinear crystal.

1.2.3 Sum-Frequency Generation

Let us now consider the process of sum-frequency generation, which is illustrated in Fig. 1.2.2.
According to Eq. (1.2.7), the complex amplitude of the nonlinear polarization describing this
process is given by the expression

P(w1 4+ @) =2e0x P E | Es. (1.2.12)

In many ways the process of sum-frequency generation is analogous to that of second-harmonic
generation, except that in sum-frequency generation the two input waves are at different fre-
quencies. One application of sum-frequency generation is to produce tunable radiation in the

* Not all workers in nonlinear optics use our convention that the fields and polarizations are given by Egs. (1.2.3)
and (1.2.6). Another common convention is to define the field amplitudes according to

1 . .
E@) = 5( fe i EleT' 2 fcc),

1 .
P(t) = 5 Xn:P/(CUn)elw"t,

where in the second expression the summation extends over all positive and negative frequencies. Using this
convention, one finds that

1 1
P'Qo) = seox PEE, Py = Seox P EY, (12.9)
P'(w) +wp) = ox P E}E, P'(w) —wp) =eox PE|EY, (1.2.10)
P'(0) = eox P (E| E* + ESEY). (1.2.11)

Note that these expressions differ from Eqs. (1.2.7) by factors of %
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FIGURE 1.2.2: Sum-frequency generation. (a) Geometry of the interaction. (b) Energy-level description.

ultraviolet spectral region by choosing one of the input waves to be the output of a fixed-
frequency visible laser and the other to be the output of a frequency-tunable visible laser. The
theory of sum-frequency generation is developed more fully in Sections 2.2 and 2.4.

1.2.4 Difference-Frequency Generation

The process of difference-frequency generation is described by a nonlinear polarization of the
form

P(w) — ) =2e0x P E1E3 (1.2.13)

and is illustrated in Fig. 1.2.3. Here the frequency of the generated wave is the difference of
those of the applied fields. Difference-frequency generation can be used to produce tunable
infrared radiation by mixing the output of a frequency-tunable visible laser with that of a fixed-
frequency visible laser.

Superficially, difference-frequency generation and sum-frequency generation appear to be
very similar processes. However, an important difference between the two processes can be
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FIGURE 1.2.3: Difference-frequency generation. (a) Geometry of the interaction. (b) Energy-level de-
scription.
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deduced from the description of difference-frequency generation in terms of a photon energy-
level diagram (part (b) of Fig. 1.2.3). We see that conservation of energy requires that for
every photon that is created at the difference frequency w3z = w; — wp, a photon at the
higher input frequency (w;) must be destroyed and a photon at the lower input frequency
(w2) must be created. Thus, the lower-frequency input field is amplified by the process of
difference-frequency generation. For this reason, the process of difference-frequency gener-
ation is also known as optical parametric amplification. According to the photon energy-
level description of difference-frequency generation, the atom first absorbs a photon of fre-
quency w; and jumps to the highest virtual level. This level decays by a two-photon emis-
sion process that is stimulated by the presence of the w, field, which is already present.
Two-photon emission can occur even if the w, field is not applied. The generated fields in
such a case are very much weaker, since they are created by spontaneous two-photon emis-
sion from a virtual level. This process is known as parametric fluorescence or as sponta-
neous parametric downconversion and has been observed experimentally (Harris et al., 1967,
Byer and Harris, 1968). The theory of difference-frequency generation is developed more fully
in Section 2.5.

1.2.5 Optical Parametric Oscillation

We have just seen that in the process of difference-frequency generation the presence of radia-
tion at frequency w» or w3 can stimulate the emission of additional photons at these frequencies.
If the nonlinear crystal used in this process is placed inside an optical resonator, as shown in
Fig. 1.2.4, the wy and/or w3 fields can build up to large values. Such a device is known as
an optical parametric oscillator. Optical parametric oscillators are extremely useful sources of
tunable radiation because of their extremely broad tuning ranges. Such a device is broadly tun-
able because any frequency w» that is smaller than w; can satisfy the condition w; + w3 = wy
for some frequency ws. In practice, one controls the output frequency of an optical parametric
oscillator by adjusting the phase-matching condition, as discussed in Section 2.7. The applied
field frequency w; is often called the pump frequency, the desired output frequency is called
the signal frequency, and the other, unwanted, output frequency is called the idler frequency.

¥ N\ @, (signal)
R

=06 +0
1 2 3 @

B — X
(pump) —_—
@, (idler)

FIGURE 1.2.4: The optical parametric oscillator. The cavity end mirrors have high reflectivities at fre-
quencies wy and/or ws. The output frequencies can be tuned by means of the orientation of the crystal.
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1.2.6 Third-Order Nonlinear Optical Processes
We next consider the third-order contribution to the nonlinear polarization
PO1) =eox P E@®) . (1.2.14)

For the general case in which the field E(r) is made up of several different frequency com-
ponents, the expression for P (¢) is very complicated. For this reason, we first consider the
simple case in which the applied field is monochromatic and is given by*

E(t) = Ecoswt. (1.2.15)

Then, through use of the identity cos? wr = }1 cos 3wt + % cos wt, we can express the nonlinear
polarization as

- 1 3
PO = ZEOX(3)53 cos 3wt + Zeox(3)83 cos wt. (1.2.16)

The significance of each of the two terms in this expression is described briefly below.

1.2.7 Third-Harmonic Generation

The first term in Eq. (1.2.16) describes a response at frequency 3w that is created by an applied
field at frequency w. This term leads to the process of third-harmonic generation, which is
illustrated in Fig. 1.2.5. According to the photon description of this process, shown in part (b)
of the figure, three photons of frequency w are destroyed and one photon of frequency 3w is
created in this process.

(a) b) - —g-—-p-
0]
w __1__
_—
L) ® w 3w
X 3w

EEEE— 1l

V_

FIGURE 1.2.5: Third-harmonic generation. (a) Geometry of the interaction. (b) Energy-level description.

* Here we are describing the field in terms of purely real quantities for the pedagogical value of introducing such a
notation.
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FIGURE 1.2.6: Self-focusing of light.

1.2.8 Intensity-Dependent Refractive Index

The second term in Eq. (1.2.16) describes a nonlinear contribution to the polarization at the
same frequency as that of the incident field; this term hence leads to a nonlinear contribution to
the refractive index experienced by a wave at frequency . We shall see in Section 4.1 that the
refractive index in the presence of this type of nonlinearity can be represented as

n=nqg+nyl, (1.2.17a)

where ng is the usual (i.e., linear or low-intensity) refractive index, where

ny = > x® (1.2.17b)
2
4n06()c

is an optical constant that characterizes the strength of the optical nonlinearity, and where I =
%noeocé' 2 is the intensity of the incident wave.

Self-Focusing

One of the processes that can occur as a result of the intensity-dependent refractive index is
self-focusing, which is illustrated in Fig. 1.2.6. This process can occur when a beam of light
having a nonuniform transverse intensity distribution propagates through a material for which
ny is positive. Under these conditions, the material effectively acts as a positive lens, which
causes the rays to curve toward each other. This process is of great practical importance because
the intensity at the focal spot of the self-focused beam is usually sufficiently large to lead to
optical damage of the material. The process of self-focusing is described in greater detail in
Section 7.1.

1.2.9 Third-Order Interactions (General Case)

Let us next examine the form of the nonlinear polarization

PO =eox PV E®)? (1.2.182)
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induced by an applied field that consists of three frequency components:
E(t)=Eje ' + Eye ™' + Eze”' +c.c. (1.2.18b)

When we calculate E(r), we find that the resulting expression contains 44 different frequency
components, if we consider positive and negative frequencies to be distinct. Explicitly, these
frequencies are

w1, w2, w3, 3w1, 3wz, 3w3, (W1 + W2 + w3), (W] + W2 — W3), (1.2.19)
(@1 + w3 — w2), (w2 + w3 — w1), Qo] £ w2), Qw| £ w3), 2wz £ 1), (1.2.20)
(20)2 + a)3), (2(03 + 0)1), (20)3 + a)z), (1.2.21)

and the negative of each. Again representing the nonlinear polarization as

PO@) =" P(wa)e ", (1.2.22)

we can write the complex amplitudes of the nonlinear polarization for each of the positive
frequencies as

P(w1) =eox P (3E\E} + 6E2E5 + 6EsE})Ey, (1.2.23)

P(w) = €ox P (6E\Ef +3E2E5 + 6E3E}) Es, (1.2.24)

P(w3) = eox P (6E\E} + 6E2E5 + 3E5E}) E3, (1.2.25)
PGBw) =ecxVE],  PQBw)=coxVE},  PQGuws)=exVE3,

P(o1 + w2 + w3) = 6e0x VE| E> E3,
P(w +wy —w3) = 660X(3)E1E2E§k,
P(w1 + w3 — ) = 660x P E\ E5E},
P(wn + w3 — w)) = 6e0x P E2 E5ET,

PQRwi 4+ wn) = 360X(3)E12E2, PQRwi + w3) = 360X(3)E12E3,
PQwy+w1) =3e0xVE3E1,  PQuy+w3)=3e0xVEFE3,
PQuw3 +w) =3ex P EIE], PQws +w) =3eox P ESEa,
PQwi —wy) =3eox P EIES,  PQwi —w3) =3ex P ETES,
PQwy — w) =3eox P EZET, PQwy — w3) =3eox P ESE},
PQws —w1) =3ex P EZE},  PQws—an) =3ex VEIE;

(1.2.26)

We have displayed these expressions in complete detail because it is very instructive to study
their functional form. In each case the frequency argument of P is equal to the sum of the
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frequencies associated with the field amplitudes appearing on the right-hand side of the equa-
tion, where we adopt the convention that a negative frequency is to be associated with a field
amplitude that appears as a complex conjugate. Also, the numerical factor (1, 3, or 6) that ap-
pears in each term on the right-hand side of each equation is equal to the number of distinct
permutations of the field frequencies that contribute to that term.

Some of the nonlinear optical mixing processes described by Eq. (1.2.26) are illustrated in
Fig. 1.2.7.

@) ol Gl
o,
0 —> 0, =0 +0,+0, TTAT T
3)
Oy ——> 4 - ®, @,
0, — > __1l__

(b)

0 — > 0,=0+0,-0, o, @,
0, ——> P — --3---1-
Oy ———> ®, o,

FIGURE 1.2.7: Two of the possible mixing processes described by Eq. (1.2.26) that can occur when
three input waves interact in a medium characterized by a x @ susceptibility.

1.2.10 Parametric versus Nonparametric Processes

All of the processes described thus far in this chapter are examples of what are known as
parametric processes. The origin of this terminology is obscure, but the word parametric has
come to denote a process in which the initial and final quantum-mechanical states of the system
are identical. Consequently, in a parametric process population can be removed from the ground
state only for those brief intervals of time when it resides in a virtual level. According to the
uncertainty principle, population can reside in a virtual level for a time interval of the order of
h/SE, where SE is the energy difference between the virtual level and the nearest real level.
Conversely, processes that do involve the transfer of population from one real level to another
are known as nonparametric processes. The processes that we describe next are examples of
nonparametric processes.
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One difference between parametric and nonparametric processes is that parametric pro-
cesses can always be described by a real susceptibility; conversely, nonparametric processes
are described by a complex susceptibility by means of a procedure described in the following
section. Another difference is that photon energy is always conserved in a parametric process;
photon energy need not be conserved in a nonparametric process, because energy can be trans-
ferred to or from the material medium. For this reason, photon energy level diagrams of the sort
shown in Figs. 1.2.1, 1.2.2, 1.2.3, 1.2.5, and 1.2.7 to describe parametric processes play a less
definitive role in describing nonparametric processes.

As a simple example of the distinction between parametric and nonparametric processes,
we consider the case of the usual (linear) index of refraction. The real part of the refractive
index describes a response that occurs as a consequence of parametric processes, whereas the
imaginary part occurs as a consequence of nonparametric processes. This conclusion holds
because the imaginary part of the refractive index describes the absorption of radiation, which
results from the transfer of population from the atomic ground state to an excited state.

1.2.11 Saturable Absorption

One example of a nonparametric nonlinear optical process is saturable absorption. Many mate-
rial systems have the property that their absorption coefficient decreases when measured using
high laser intensity. Often the dependence of the measured absorption coefficient & on the in-
tensity / of the incident laser radiation is given by the expression

@0

o0=——
14 1/1

(1.2.27)
where « is the low-intensity absorption coefficient, and I is a parameter known as the satura-
tion intensity. Here the absorption coefficient is defined by « = —(1/1)(d1/dz)), which leads
to the result that 7 (z) = I (0) exp(—az).

Optical Bistability

One consequence of saturable absorption is optical bistability. One way of constructing a
bistable optical device is to place a saturable absorber inside a Fabry—Perot resonator, as illus-
trated in Fig. 1.2.8. As the input intensity is increased, the field inside the cavity also increases,
lowering the absorption that the field experiences and thus increasing the field intensity still fur-
ther. If the intensity of the incident field is subsequently lowered, the field inside the cavity tends
to remain large because the absorption of the material system has already been reduced. A plot
of the input-versus-output characteristics thus looks qualitatively like that shown in Fig. 1.2.9.
Note that over some range of input intensities more than one output intensity is possible. The
process of optical bistability is described in greater detail in Section 7.3.
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in saturable out
> absorber E
FIGURE 1.2.8: Bistable optical device.
I A

out

Y

I

in

FIGURE 1.2.9: Typical input-versus-output characteristics of a bistable optical device.

FIGURE 1.2.10: Two-photon absorption.

1.2.12 Two-Photon Absorption

In the process of two-photon absorption, which is illustrated in Fig. 1.2.10, an atom makes a
transition from its ground state to an excited state by the simultaneous absorption of two laser

photons. The absorption cross section o describing this process increases linearly with laser
intensity according to the relation

oc=01, (1.2.28)

where o is a coefficient that describes strength of the two-photon-absorption process. (Recall
that in conventional linear optics the absorption cross section ¢ is a constant.) Consequently, the
atomic transition rate R resulting from two-photon absorption scales as the square of the laser
intensity. To see why this is the case, we note that the transition rate R is given by R = o [ /hw,
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and consequently we find that

o@r?
R=——. (1.2.29)
w

Two-photon absorption is a useful spectroscopic tool for determining the positions of energy

levels that are not connected to the atomic ground state by a one-photon transition. Two-photon
absorption was first observed experimentally by Kaiser and Garrett (1961).

1.2.13 Stimulated Raman Scattering

In stimulated Raman scattering, which is illustrated in Fig. 1.2.11, a photon of frequency w
is annihilated and a photon at the Stokes-shifted frequency w; = w — wy is created, leaving
the molecule (or atom) in an excited state with energy hw,. The excitation energy is referred
to as w, because stimulated Raman scattering was first studied in molecular systems, where
hwy corresponds to a vibrational energy. The efficiency of stimulated Raman scattering can
be quite large, with often 10% or more of the power of the incident light being converted to
the Stokes frequency. In contrast, the efficiency of normal or spontaneous Raman scattering is
typically many orders of magnitude lower. Stimulated Raman scattering is described more fully
in Chapter 10.

(a) &
A
[0} Raman Oy =0-0, w g =0-0,
5 medium >
(0]
- *

FIGURE 1.2.11: Stimulated Raman scattering.
Other stimulated scattering processes such as stimulated Brillouin scattering and stimulated
Rayleigh scattering also occur and are described more fully in Chapter 9.
1.3 Formal Definition of the Nonlinear Susceptibility

Nonlinear optical interactions can be described by means of a nonlinear polarization of the form
given by Eq. (1.1.2) only for a material system that is lossless and dispersionless. In the present
section, we consider the more general case of a material with dispersion and/or absorption. In
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this more general case the nonlinear susceptibility becomes a complex quantity relating the
complex amplitude of the polarization to that of the applied electric field.

We assume that we can represent the electric field vector of the optical wave as the discrete
sum of a number of frequency components as

B0 =Y E,r.0. (13.1)

where
E,(r, 1) =E,(r)e " + c.c. (1.3.2)

The prime on the summation sign of Eq. (1.3.1) indicates that the summation is to be taken
over positive frequencies only. It is also convenient to define the spatially slowly varying field
amplitude A, by means of the relation

E,(r) = A,e* T, (1.3.3)
so that

Er 0= Ayeltorom 4. (1.3.4)
n

On occasion, we shall express these field amplitudes using the alternative notation
E,=E(w,) and A, =A(w,), (1.3.5)
where
E(—wp) =E(wy)* and A(—w,) =A(wp)*. (1.3.6)

Using this new notation, we can write the total field in the form

Er.0) =) E(w,)e
= Z A(wy)e' Enr=enl), (1.3.7)

where the unprimed summation symbol denotes a summation over all frequencies, both positive
and negative.
Note that according to our definition of field amplitude the field given by

E(r,7)=Ecos(k - r — wt) (1.3.8)

is represented by the complex field amplitudes

1. 1
E(a)):ié’e’k'r, E(—a)):ige_’k’r, (1.3.9)



18 Chapter 1

or alternatively, by the slowly varying amplitudes
1 1
A(w) = 58, A(—w) = 58. (1.3.10)

In either representation, factors of % appear because the physical field amplitude £ has been
divided equally between the positive- and negative-frequency field components.
Using a notation similar to that of Eq. (1.3.7), we can express the nonlinear polarization as

P(r, 1) = Zp(wn)e—w, (1.3.11)

where, as before, the summation extends over all positive- and negative-frequency field com-
ponents.

We now define the components of the second-order susceptibility tensor Xi(jzlz (wn +
W, Wy, W) to be the constants of proportionality relating the amplitude of the nonlinear po-
larization to the product of field amplitudes according to

2
Pi(on+om)=€0 Y Y X\ (@n + O, 0n, o) Ej(@n) Ex(@n). (13.12)
Jk (nm)

Here the indices ijk refer to the Cartesian components of the fields. The notation (nm) indi-
cates that, in performing the summation over n and m, the sum w, + w,, is to be held fixed,
although w, and w,, are each allowed to vary. Since the amplitude E(w,) is associated with
the time dependence exp(—iwyt), and the amplitude E(w,,) is associated with the time de-
pendence exp(—iwpt), their product E(w,)E (w,,) is associated with the time dependence
exp[—i(w, + wn)t]. Hence the product E(wy)E (wy,,) does in fact lead to a contribution to
the nonlinear polarization oscillating at frequency w,, + wy,, as the notation of Eq. (1.3.12) sug-
gests. Following convention, we have written x®) as a function of three frequency arguments.
This is technically unnecessary in that the first argument is always the sum of the other two. To
emphasize this fact, the susceptibility x @ (w3, w2, w1) is sometimes written as X D (w3; w2, 1)
as a reminder that the first argument is different from the other two, or it may be written sym-
bolically as X(z) (w3 = wr + wy).

Let us examine some of the consequences of the definition of the nonlinear susceptibility as
given by Eq. (1.3.12) by considering two simple examples.

1. Sum-frequency generation. We let the input field frequencies be w; and w; and the sum
frequency be ws, so that w3 = w| + w>. Then, by carrying out the summation over w, and w,,
in Eq. (1.3.12), we find that

Pi(w3) = €0 Z[X,-(fk) (w3, 01, ) E j(w1) Ef(02)
jk

+ X1 (@3, @2, 01 Ej(@2) Ex(@1)]. (1.3.13)
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We now note that j and k are dummy indices and thus can be interchanged at will. We
interchange them in the second term, which becomes Xl.(,f} (w3, w2, w1) Ex(w2) Ej(w1) We next
assume that the nonlinear susceptibility possesses intrinsic permutation symmetry (this sym-
metry is discussed in more detail in Eq. (1.5.6) below), which states that

2 2
Xii) @ + Ony Ony Om) = X(3 (@ + On, O, ). (1.3.14)

Through use of these relations, the expression for the nonlinear polarization becomes

Pi(w3) =260 Y x\ip (@3, o1, ) E (1) Ex (7). (1.3.15)
jk

and for the special case in which both input fields are polarized in the x direction the polariza-
tion becomes

Pi(@3) = 260, 10 (@3, 01, ) Ex (1) Ex (@2). (1.3.16)

2. Second-harmonic generation. We take the input frequency as w; and the generated fre-
quency as w3 = 2w;. If we again perform the summation over field frequencies in Eq. (1.3.12),
we obtain

Pi(w3)=€0 Y x5 (@3, 01, 01) Ej(@1) Ex(@)). (1.3.17)
jk

Again assuming the special case of an input field polarization along the x direction, this result
becomes

Pi(@3) = 0x2) (@3, w1, 1) Ex (1), (1.3.18)

Note that a factor of 2 appears in Eqgs. (1.3.15) and (1.3.16), which describe sum-frequency
generation, but not in Egs. (1.3.17) and (1.3.18), which describe second-harmonic generation.
The fact that these expressions remain different even as w» approaches w; is perhaps at first
sight surprising, but is a consequence of our convention that Xi(jzk) (w3, w1, w2) must approach
X,(,Zzi (w3, w1, w1) as w; approaches w». Note that the expressions for P (2w;) and P(w; + w?)
that apply for the case of a dispersionless nonlinear susceptibility (Eq. (1.2.7)) also differ by
a factor of two. In fact, this behavior makes perfect sense. One should expect the nonlinear
polarization produced by two distinct fields to be larger than that produced by a single field
(both of the same amplitude, say), because the total light intensity is larger in the former case.

In general, the summation over field frequencies (Z(nm)) in Eq. (1.3.12) can be performed
formally to obtain the result

Pi(wn + om) = €0D Y X3 (@n + Om. 0n. 0m) Ej (@n) Ex (0m), (1.3.19)
ik
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where D is known as the degeneracy factor and is equal to the number of distinct permutations
of the applied field frequencies w, and wy,.

The expression (1.3.12) defining the second-order susceptibility can readily be general-
ized to higher-order interactions. In particular, the components of the third-order susceptibility
tensor are defined as the coefficients relating the complex amplitudes of the polarization and
electric field according to the expression

Pi(wo + wp + o) =€ Z Z X,'(;k)[(wo + wp + O, ©o, Wn, D)
jkl (mno)
X E j(wo) Ex(wn) El(@m). (1.3.20)

We can again perform the summation over m, n, and o to obtain the result

3
Pi(wo + wp + wm) = €0D Z Xi(jlzl(a)o + wn + O, Wo, Wp, Op)
I
X Ej(wo) Ex(wn) Ei(@m), (1.3.21)

where the degeneracy factor D represents the number of distinct permutations of the frequen-
cies wy,, wy, and w,.

1.4 Nonlinear Susceptibility of a Classical Anharmonic Oscillator

The Lorentz model of the atom, which treats the atom as a harmonic oscillator, is known to
provide a very good description of the linear optical properties of atomic vapors and of non-
metallic solids. In the present section, we extend the Lorentz model by allowing the possibility
of a nonlinearity in the restoring force exerted on the electron. The details of the analysis dif-
fer depending upon whether or not the medium possesses inversion symmetry.” We first treat
the case of a noncentrosymmetric medium, and we find that such a medium can give rise to a
second-order optical nonlinearity. We then treat the case of a medium that possesses a center of
symmetry and find that the lowest-order nonlinearity that can occur in this case is a third-order
nonlinear susceptibility. Our treatment is similar to that of Owyoung (1971).

The primary shortcoming of the classical model of optical nonlinearities presented here
is that this model ascribes a single resonance frequency (wp) to each atom. In contrast, the
quantum-mechanical theory of the nonlinear optical susceptibility, to be developed in Chap-
ter 3, allows each atom to possess many energy eigenvalues and hence more than one resonance
frequency. Since the present model allows for only one resonance frequency, it cannot properly
describe the complete resonance nature of the nonlinear susceptibility (such as, for example,

* The role of symmetry in determining the nature of the nonlinear susceptibility is discussed from a more funda-
mental point of view in Section 1.5. See especially the treatment leading from Eq. (1.5.33) to (1.5.37).
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the possibility of simultaneous one- and two-photon resonances). However, it provides a good
description for those cases in which all of the optical frequencies are considerably smaller than
the lowest electronic resonance frequency of the material system.

1.4.1 Noncentrosymmetric Media

For the case of a noncentrosymmetric medium, we take the equation of motion of the electron
position X to be of the form

X 4275 4+ ik +ait = —eE(1)/m. (1.4.1)

In this equation we have assumed that the applied electric field is given by E (1), that the charge
of the electron is —e, that there is a damping force of the form™ —2my X, and that the restoring
force is given by

2~ ~2
Frestoring = —mwyX —max-, (1.4.2)

where a is a parameter that characterizes the strength of the nonlinearity. We obtain this form
by assuming that the restoring force is a nonlinear function of the displacement of the electron
from its equilibrium position and retaining the linear and quadratic terms in the Taylor series
expansion of the restoring force in the displacement x. We can understand the nature of this
form of the restoring force by noting that it corresponds to a potential energy function of the
form

UF) =— / Frestoring d% = %mngz + %mai3. (1.4.3)
Here the first term corresponds to a harmonic potential and the second term corresponds to an
anharmonic correction term, as illustrated in Fig. 1.4.1. This model corresponds to the physical
situation of electrons in real materials, because the actual potential well that the atomic electron
feels need not be perfectly parabolic. The present model can describe only noncentrosymmetric
media because we have assumed that the potential energy function U (x) of Eq. (1.4.3) contains
both even and odd powers of X; for a centrosymmetric medium only even powers of X could
appear, because the potential function U (X) must possess the symmetry U (x) = U(—X). For
simplicity, we have written Eq. (1.4.1) in the scalar-field approximation; note that we cannot
treat the tensor nature of the nonlinear susceptibility without making explicit assumptions re-
garding the symmetry properties of the material.

* The factor of 2 in the damping term is introduced for future convenience. By this convention, the full width at
half maximum of the atomic absorption profile in angular frequency units is equal to 2y in the limit of linear
response.
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FIGURE 1.4.1: Potential energy function for a noncentrosymmetric medium.

We assume that the applied optical field is of the form
E(t) = Eje™ 'V 4 Eye ' 4 c.c., (1.4.4)

where E; = E(w1) and E> = E(w3). No general solution to Eq. (1.4.1) for an applied field of
the form (1.4.4) is known. However, if the applied field is sufficiently weak, the nonlinear term
ax? will be much smaller than the linear term a)gi for any displacement x that can be induced
by the field. Under this circumstance, Eq. (1.4.1) can be solved by means of a perturbation
expansion. We use a procedure analogous to that of Rayleigh—Schrédinger perturbation theory
in quantum mechanics. We replace E (t) in Eq. (1.4.1) by LE (t), where A is a parameter that
ranges continuously between zero and unity and that will be set equal to unity at the end of
the calculation. The expansion parameter A thus characterizes the strength of the interaction.
Equation (1.4.1) then becomes

X 42y% + 0df 4+ akt = —reE(@1)/m. (1.4.5)

We seek a solution to Eq. (1.4.5) in the form of a power-series expansion in the strength A
of the perturbation, that is, a solution of the form

F=ax W 4225@ 2353 4 (1.4.6)

In order for Eq. (1.4.6) to be a solution to Eq. (1.4.5) for any value of the coupling strength A,
we require that the terms in Eq. (1.4.5) proportional to A, A2, A3, etc., each satisfy the equation
separately. We find that these terms lead respectively to the equations

PV 12y 4 32D = —eE(r)/m, (1.4.7a)

+2yi? 4+ 03E® + [ V] =0, (1.4.7b)
9 1 027 4245 V5@ =0, ete. (1.4.7¢)

5 (2)

P94y
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We see from Eq. (1.4.7a) that the lowest-order contribution ! is governed by the same
equation as that of the conventional (i.e., linear) Lorentz model. Its steady-state solution is
given by

D@y = xD(wp)e @ 4+ xV(wy)e ™ +c.c., (1.4.8)

where the amplitudes xD(w ) have the form

E .
Dpy=_C = 1.4.9
x M (wj) mD(wj)’ (1.4.9)
where we have introduced the complex denominator function
D(w)) = wj — ] —2iw;y. (1.4.10)

This expression for ¥V (¢) is now squared and substituted into Eq. (1.4.7b), which is solved
to obtain the lowest-order correction term X®. The square of X1 (¢) contains the frequencies
+2w1, 2wy, (w1 + w2), £(w; — @2), and 0. To determine the response at frequency 2wy,
for instance, we must solve the equation

24 2yi? 4 0@ = _a(eEll)/z'ziaf;_zw (1.4.11)
We seek a steady-state solution of the form
D) = x@ Qawp)eHo, (1.4.12)
Substitution of Eq. (1.4.12) into Eq. (1.4.11) leads to the result
)2y = 2B (1.4.13)
D(Q2w1) D*(w1)

where we have made use of the definition (1.4.10) of the function D(w;). Analogously, the
amplitudes of the responses at the other frequencies are found to be

2) B —a(e/m)ZE%
X (2wz)——D(2w2) D2(@n)’ (1.4.14a)
—2a(e/m)*E | E;
@ _ 1.4.14b
O ) = e o) D@ D)’ (1.4.190)
_ 2 *
X (@) — wp) = 2ale/m)"Ei1E; (1.4.14¢)
D(w; — w2) D(w1) D(—w3)
— 2 * _ 2 *
@) = /M ELE 2ate/m)" B2 by (1.4.14d)

D(0)D(w1)D(=w1) = D(0)D(w2) D(—w2)’
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We next express these results in terms of the linear (x (") and nonlinear (x ?)) susceptibili-
ties. The linear susceptibility is defined through the relation

PV (w)=eoxV(w)E()). (1.4.15)
Since the linear contribution to the polarization is given by
PV (wj)=—NexV(w)), (1.4.16)

where N is the number density of atoms, we find using Egs. (1.4.8) and (1.4.9) that the linear
susceptibility is given by
Ne?/(egm)  Ne?/(eom)

D(wj) B a)(z) —w? —Zia)jy.

xV(w)) = (1.4.17a)

For future reference, we note that close to resonance the denominator function D(w;) can be
approximated as D(w;) = 2wo(w; — wp — iy) so that we obtain

_ Ne?/QQegmewo)  Ne*  (wj —ap) +iy
h wj—wy—Iiy ~ 2egmay (wj —wp)? + y?’

xP(w)) (1.4.17b)

where the second form shows explicitly the real and imaginary parts of the susceptibility. This
result is shown graphically in Fig. 1.4.2.

The nonlinear susceptibilities are calculated in an analogous manner. For example, the non-
linear susceptibility describing second-harmonic generation is defined by the relation

PP Qw)) =eox® w1, w1, 1) E(w1)?, (1.4.18)

where P® (2w) is the amplitude of the component of the nonlinear polarization oscillating at
frequency 2w and is given by

PP Qw;)=—Nex®Qw). (1.4.19)
We now introduce expression (1.4.13) for x@ (2w)) to find that

N(/m*)a
eoDQ2w1)D?*(w1)’

x? Qw1 w1, w1) = (1.4.20)

Through use of Eq. (1.4.17a), this result can be written instead in terms of the product of linear
susceptibilities as

2 egma (1 ) 2
X7 Qo1 01, 01) = 15X Qo [xV(en]”. (1.4.21)
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FIGURE 1.4.2: Linear optical response as predicted by the Lorentz model of the atom. The imaginary
part of x 1) gives the atomic absorption profile, and the real part represents a contribution to the real part
of the refractive index. Note that the full-width at half maximum of Im x () is equal to 2y. The vertical
axis is plotted in normalized units. To obtain the numerical value of x(l), the value on the vertical axis
should be multiplied by Ne?/(2egmy).

A crucial conclusion can be drawn from this result. The second-order susceptibility is propor-
tional to the product of three linear susceptibilities. The nature of this dependence is one of the
reasons why one conventionally expresses the second-order susceptibility as a function of three
frequencies, each of which is the argument of one of the linear susceptibilities appearing on
the right-hand side of this equation. The nonlinear susceptibility for second-harmonic genera-
tion of the w; field is obtained trivially from Eqgs. (1.4.20) and (1.4.21) through the substitution
w] —> w).

The nonlinear susceptibility describing sum-frequency generation can be obtained by means
of a similar calculation. We begin with the relations

PP (w1 4 w2) =2€0x P (w1 + w2, @1, 02) E(w1) E(w2) (1.4.22)

and

PP (w; +wy) = —Nex®(w; + w2). (1.4.23)
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Note that in this case the relation defining the nonlinear susceptibility contains a factor of two
because the two input fields are distinct, as discussed in relation to Eq. (1.3.19). By comparison
of these equations with (1.4.14b), the nonlinear susceptibility is seen to be given by

@) N(e3/m2)a
X (w1 + w2, w1, 02) = ; (1.4.24)
€oD(w1 + w2) D(w1) D(w2)
which can be expressed in terms of the product of linear susceptibilities as
@ &ma_ ) M M
X (o1 + w2, 01, 02) = 23 X (01 +@2)x (@) (@2). (1.4.25)

It can be seen by comparison of Eqgs. (1.4.20) and (1.4.24) that, as w, approaches w1, x @ (w; +
w2, w1, ®y) approaches X(2) QRwy, wy, wy).

The nonlinear susceptibilities describing the other second-order processes are obtained in
an analogous manner. For difference-frequency generation we find that

N(e3/m2)a
€0D (w1 — w2) D(w1) D(—wy)

2
€Esma
= ]3263 x V(@ — ) x P (@D x P (—wn), (1.4.26)

x P01 — w2, 01, —n) =

and for optical rectification of the w field we find that

N(e3/m2)a
€0D(0)D(w1) D(—w1)

2
€Esma
=12, X Ox P @)y Vo). (1.4.27)

1?0, 01, —w1) =

The analysis just presented shows that the lowest-order nonlinear contribution to the po-
larization of a noncentrosymmetric material is second order in the applied field strength. This
analysis can readily be extended to include higher-order effects. The solution to Eq. (1.4.7¢),
for example, leads to a third-order or x ® susceptibility, and more generally terms proportional
to A" in the expansion described by Eq. (1.4.6) lead to a x ™ susceptibility.

1.4.2 Miller’s Rule

An empirical rule due to Miller (Miller, 1964; see also Garrett and Robinson, 1966) can be
understood in terms of the calculation just presented. Miller noted that the quantity

x @ (01 + w2, ©1, w)
x V(@1 + w2) x V(1) x D (w2)

(1.4.28)
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is nearly constant for all noncentrosymmetric crystals. By comparison with Eq. (1.4.25), we
see this quantity will be nearly constant only if the combination

2
maeg
N2e3

(1.4.29)

is nearly constant. In fact, the atomic number density N is nearly the same (~10%*2 cm™3) for
all condensed matter, and the parameters m and e are fundamental constants. We can estimate
the size of the nonlinear coefficient a by noting that the linear and nonlinear contributions to
the restoring force given by Eq. (1.4.2) would be expected to become comparable when the
displacement x of the electron from its equilibrium position is approximately equal to the size
of the atom. This distance is of the order of the separation between atoms—that is, of the
lattice constant d. This reasoning leads to the order-of-magnitude estimate that ma)gd = mad?
or that

a= w—%. (1.4.30)

d

Since wg and d are roughly the same for most solids, the quantity ¢ would also be expected to
be roughly the same for all materials for which it does not vanish by reasons of symmetry.

We can also make use of the estimate of the nonlinear coefficient a given by Eq. (1.4.30) to
estimate of the size of the second-order susceptibility under highly nonresonant conditions. If
we replace D(w) by a)é in the denominator of Eq. (1.4.24), set N equal to 1/d>, and set a equal
to a)g /d, we find that x @ is given approximately by

@) e
= 1.4.31
X eomza)gd“ ( )

Using the typical values wp = 1 x 10" rad/s, d =3 A, e =1.6 x 10712 C, and m = 9.1 x
10731 kg, we find that

x®~6.9x10"2m/V, (1.4.32)

which is in good agreement with the measured values presented in Table 1.5.3 (see p. 49).

1.4.3 Centrosymmetric Media

For the case of a centrosymmetric medium, we assume that the electronic restoring force is
given not by Eq. (1.4.2) but rather by

Frestoring = _ma)gi + mbi?’, (1.4.33)
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FIGURE 1.4.3: Potential energy function for a centrosymmetric medium.

where b is a parameter that characterizes the strength of the nonlinearity. This restoring force
corresponds to the potential energy function

UGF)=— / Frestoringd ¥ = %mwg)ﬂ - %mbf“. (1.4.34)
This potential function is illustrated in the Fig. 1.4.3 (for the usual case in which b is positive)
and is seen to be symmetric under the operation X — —Xx, which it must be for a medium
that possesses a center of inversion symmetry. Note that —mb%*/4 is simply the lowest-order
correction term to the parabolic potential well described by the term %ma)(z)iz. We assume that
the electronic displacement X never becomes so large that it is necessary to include higher-order
terms in the potential function.

We shall see below that the lowest-order nonlinear response resulting from the restoring
force of Eq. (1.4.33) is a third-order contribution to the polarization, which can be described by
a x @ susceptibility. As in the case of non-centrosymmetric media, the tensor properties of this
susceptibility cannot be specified unless the internal symmetries of the medium are completely
known. One of the most important special cases is that of a material that is isotropic (as well as
being centrosymmetric). Examples of such materials are glasses and liquids. In such a case, we
can take the restoring force to have the form

Frestoring = —magF + mb(F - P)F. (1.4.35)

where r is the vector displacement of the electron from its equilibrium position. The second
contribution to the restoring force must have the form shown because it is the only form that is
third-order in the displacement r and is directed in the r direction, which is the only possible
direction for an isotropic medium.

The equation of motion for the electron displacement from equilibrium is thus

¥+ 2yF 4 i — b(E - D)F = —eE(1)/m. (1.4.36)
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We assume that the applied field is given by
E(t) =Eje ' + Eye ' 4 Eze ' +coc.; (1.4.37)

we allow the field to have three distinct frequency components because this is the most general
possibility for a third-order interaction. However, the algebra becomes very tedious if all three
terms are written explicitly, and hence we express the applied field as

E(t) = ZE(wn)e—fwnf. (1.4.38)

The method of solution is analogous to that used above for a noncentrosymmetric medium. We
replace E(?) in Eq. (1.4.36) by AE(r), where A is a parameter that characterizes the strength of
the perturbation and that is set equal to unity at the end of the calculation. We seek a solution
to Eq. (1.4.36) having the form of a power series in the parameter A:

i) = D@0 + 2820 + 235V +- - (1.4.39)

We insert Eq. (1.4.39) into the equation of motion (1.4.36) and require that the terms propor-
tional to A" vanish separately for each value of n. We thereby find that

2D + 2)/;.(1) JrC()(Z)f.(l) — —eE(t)/m, (1.4.40a)
FO 4 2),;(2) + wgf«(b =0, (1.4.40b)
FO 4 ny'G) + wg;@) _ b(f-(l) .f-(l))f-(l) =0 (1.4.40¢)

forn =1, 2, and 3, respectively. Equation (1.4.40a) is simply the vector version of Eq. (1.4.7a),
encountered above. Its steady-state solution is

i) =)t (@e o, (1.4.41a)
where
r'D(w,) = w (1.4.41b)

with D(wy) given as above by D(w,) = a)% — a),% — 2iwyy. Since the polarization at frequency
wy is given by

PO (w,) = —NerV(w,), (1.4.42)

we can describe the Cartesian components of the polarization through the relation

PO on) =Y n o) 14.43)
J
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Here the linear susceptibility is given by
1
1 @n) = x D (@n)si; (14.43b)

with x D (w,) given as in Eq. (1.4.17) by

xD(wy) = —— (1.4.43¢)
€

and where §;; is the Kronecker delta, which is defined such that §;; =1 fori = j and §;; =0
fori # j.

The second-order response of the system is described by Eq. (1.4.40b). Since this equation
is damped but not driven, its steady-state solution vanishes, that is,

2 . (1.4.44)

To calculate the third-order response, we substitute the expression for #(I)(r) given by
Eq. (1.4.41a) into Eq. (1.4.40c), which becomes

. . b [E(wm) - E(n)]E(@))
3) 3) 2=3) _ 14
2 ofiY = - ) 13 D (@) D (@n) D(@y)

mnp

x e H@ntontop)t (1.4.45)

Because of the summation over m, n, and p, the right-hand side of this equation contains many
different frequencies. We denote one of these frequencies by w; = w;, + @, + wp. The solution
to Eq. (1.4.45) can then be written in the form

PV ) =Y 1P (wg)e . (1.4.46)
q

We substitute Eq. (1.4.46) into Eq. (1.4.45) and find that r® (w,) is given by

be3 [E(wn) - E(wy)E(w))
m3 D (wy) D(w,) D(wp)

(~wp —iwg2y +og)rP @) =~ )
(mnp)

(1.4.47)

where the summation is to be carried out over frequencies wy,, w,, and w, with the restriction
that w,, + w, + w, must equal w,. Since the coefficient of r® (wg) on the left-hand side is just
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D(wy), we obtain

Doy =— 3 be*[E(wn) - B(wn) IE(w))

3 . (1.4.48)
m> D(wg) D(wm) D(wn) D(w))

(mnp)

The amplitude of the polarization component oscillating at frequency wj is given in terms of
this amplitude by

PP (w,) = —Ner® (w,). (1.4.49)
We next recall the definition of the third-order nonlinear susceptibility given by Eq. (1.3.20):

PP () =0y > xff,?,(wq,wm,wn,wp)E_/(wm)Ek(wn)El(wp)- (1.4.50)
Jkl (mnp)

Since this equation contains a summation over the dummy variables m, n, and p, there is more
than one possible choice for the expression for the nonlinear susceptibility. An obvious choice
for this expression for the susceptibility, based on the way in which Eqs. (1.4.48) and (1.4.49)
are written, is

Nbe43jk3i1
€Om3D(wq)D(wm)D(a)n)D(wp) '

While Eq. (1.4.51) is a perfectly adequate expression for the nonlinear susceptibility, it does
not explicitly show the full symmetry of the interaction in terms of the arbitrariness of which
field we call Ej(w,,), which we call E}(w,), and which we call E;(w)). It is conventional
to define nonlinear susceptibilities in a manner that displays this symmetry, which is known
as intrinsic permutation symmetry. Since there are six possible permutations of the orders in
which E(wp), Ex(w,), and Ej(w,) may be taken, we define the third-order susceptibility to
be one-sixth of the sum of the six expressions analogous to Eq. (1.4.51) with the input fields
taken in all possible orders. When we carry out this prescription, we find that only three distinct
contributions occur and that the resulting form for the nonlinear susceptibility is given by

Nb€4[3ij8kl + 8ik5jl + Siléjk]
360””3D(wq)D(a)m)D(wn)D(wp) .
This expression can be rewritten in terms of the linear susceptibilities at the four different

frequencies wg, Wy, wy, and w, by using Eq. (1.4.43c¢) to eliminate the resonance denominator
factors D(w). We thereby obtain

3
X,'(jk)](a)q’ Wi, Wp a)p) = (1.4.51)

3
XS (@ Om. o, wp) = (1.4.52)

bmey 1) 1) (1) %))
i @)X @n)x D (@) x P (p)]

X [8ijék + 8ikdj1 + 616 jk]- (1.4.53)

3)
Xijkl(wQ’ Wy, O, Wp) =

We can estimate the value of the phenomenological constant b that appears in this result by
means of an argument analogous to that used above (see Eq. (1.4.30)) to estimate the value of
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the constant a that appears in the expression for x ?. We assume that the linear and nonlinear
contributions to the restoring force given by Eq. (1.4.33) will become comparable in magni-
tude when the displacement X becomes comparable to the atomic dimension d, that is, when
majd = mbd?, which implies that

2
]

b=—3.

(1.4.54)

Using this expression for b, we can now estimate the value of the nonlinear susceptibility.
For the case of nonresonant excitation, D(w) is approximately equal to a)g, and hence from
Eq. (1.4.52) we obtain

Nb 4 4
A (1.4.55)
eom3wy  eomiwyd’
Taking d =3 A and wo =7 x 1013 rad/sec, we obtain
x® ~ 344 pm?/V? (1.4.56)

We shall see in Chapter 4 that this value is typical of the nonlinear susceptibility of many
materials.

1.5 Properties of the Nonlinear Susceptibility

In this section we study some of the formal symmetry properties of the nonlinear susceptibility.
Let us first see why it is important that we understand these symmetry properties. We consider
the mutual interaction of three waves of frequencies wi, w2, and w3 = w1 + wy, as illustrated
in Fig. 1.5.1. A complete description of the interaction of these waves requires that we know
the nonlinear polarizations P(w;) influencing each of them. Since these quantities are given in

wl
602 >

FIGURE 1.5.1: Optical waves of frequencies w1, w2, and w3 = w1 +w» interact in a lossless second-order
nonlinear optical medium.
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general (see also Eq. (1.3.12)) by the expression

Pi(wn+om)=€0 Y Y X (@n + O, 0, 0) Ej(@n) Er (0m), (1.5.1)
jk (nm)

we therefore need to determine the six tensors quantities

X,,k(wl w3, —w2), X,Jk(wl, —wy, w3), X,Jk(wz,w3,—a)1)

X,jk(wz, —w1, w3), X,jk(w3 w1, w2), and X,jk(w&wz,an)

and six additional tensors in which each frequency is replaced by its negative. In these expres-
sions, the indices i, j, and k can independently take on the values x, y, and z. Since each of
these 12 tensors thus consists of 27 Cartesian components, as many as 324 different (complex)
numbers need to be specified in order to describe the interaction.

Fortunately, there are a number of restrictions resulting from symmetry considerations that
relate the various components of x ®, and hence far fewer than 324 numbers are usually needed
to describe the nonlinear coupling. In this section, we study these formal properties of the
nonlinear susceptibility. The discussion will deal primarily with the second-order x ® suscep-
tibility, but can readily be extended to x ® and higher-order susceptibilities.

1.5.1 Reality of the Fields

Recall that the nonlinear polarization describing the sum-frequency response to input fields at
frequencies w, and w,, has been represented as

Pi(r,1) = Pi(wp + wp)e @nFeml 4 P, — @y)e! @ntom (1.5.2)

Since P;(r, 1) is a physically measurable quantity, it must be purely real, and hence its positive-
and negative-frequency components must be related by

Pi(—wy, — wm) = Pi(wp + om)™. (1.5.3)

The electric field must also be a real quantity, and its complex frequency components must
obey the analogous conditions:

Ej(—wy) = Ej(wa)", (1.5.42)
Ex(—om) = Ex(om)”. (1.5.4b)

Since the fields and polarization are related to each other through the second-order suscepti-
bility of Eq. (1.5.1), we conclude that the positive- and negative-frequency components of the
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susceptibility must be related according to

2
X357 (= n = Om, =00, —0m) = X3 (@n + O, O, o). (1.5.5)
Thus, the negative-frequency susceptibilities can be obtained directly from the positive-
frequency quantities. There is no need to measure or calculate each of these quantities sep-
arately.

1.5.2 Intrinsic Permutation Symmetry

Earlier we introduced the concept of intrinsic permutation symmetry when we rewrote the ex-
pression (1.4.51) for the nonlinear susceptibility of a classical, anharmonic oscillator in the
conventional form of Eq. (1.4.52). In the present section, we treat the concept of intrinsic per-
mutation symmetry from a more general point of view.

According to Eq. (1.5.1), one of the contributions to the nonlinear polarization P;(w;, +
wp) 1s the product X,-(jz/f (wn + W, W, W) E j(wy) Ex (). However, since j, k, n, and m are
dummy indices, we could just as well have written this contribution with n interchanged with
m and with j interchanged with k, that is, as ; k)(a),, + Wm, O, wp) Ex(wp) Ej(wy,). These
two quantities must be equal, because they differ only by the formal interchange of dummy
variables. We thus require that the nonlinear susceptibility must itself possess this property,
namely that it must remain unchanged by the simultaneous interchange of its last two frequency
arguments and its last two Cartesian indices:

Xis (@n + O, On, Om) = Xio) (@n + O, O, @) (1.5.6)
This property is known as intrinsic permutation symmetry. More physically, this condition is
simply a statement that it cannot matter which is the first field and which is the second field in
products such as Ej(wy) Ex(wp,).

Note that this symmetry condition is introduced purely as a matter of convenience. For
example, we could set one member of the pair of elements shown in Eq. (1.5.6) equal to zero
and double the value of the other member. Then, when the double summation of Eq. (1.5.1)
is carried out, the result for the physically meaningful quantity P;(w, + w,) would be left
unchanged.

This symmetry condition can also be derived from a more general point of view using the
concept of the nonlinear response function (Butcher, 1965; Flytzanis, 1975).

1.5.3 Symmetries for Lossless Media

Two additional symmetries of the nonlinear susceptibility tensor occur for the case of a lossless
nonlinear medium.
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The first of these conditions states that for a lossless medium all of the components of
Xff;? (wn + wm, 0, wy) must be real. This result is obeyed for the classical anharmonic oscil-
lator described in Section 1.4, as can be verified by evaluating the expression for x® in the
limit in which all of the applied frequencies and their sums and differences are significantly
different from the resonance frequency. A general proof that x  is real for a lossless medium
is obtained by verifying that the quantum-mechanical expression for x ® (which is derived in
Chapter 3) is also purely real in this limit.

The second of these new symmetries is full permutation symmetry. This condition states
that all of the frequency arguments of the nonlinear susceptibility can be freely interchanged,
as long as the corresponding Cartesian indices are interchanged simultaneously. In permuting
the frequency arguments, it must be recalled that the first argument is always the sum of the
latter two, and thus that the signs of the frequencies must be inverted when the first frequency
is interchanged with either of the latter two. Full permutation symmetry implies, for instance,
that

lek(w3—w1+w2)—xjk)( W] =Wy — w3). (1.5.7)

However, according to Eq. (1.5.5), the right-hand side of this equation is equal to X j kl (a)1

—wy + w3)*, which, due to the reality of X(Q) for a lossless medium, is equal to X ki (a)l
—wy + w3). We hence conclude that

X (@3 = w1 + w) = {1} (@1 = —0n + 03). (1.5.8)
By an analogous procedure, one can show that
lek(w3 w; +wy) = Xk,)(a)z w3 — 01). (1.5.9)

A general proof of the validity of the condition of full permutation symmetry entails verify-
ing that the quantum-mechanical expression for y ® (which is derived in Chapter 3) obeys this
condition when all of the optical frequencies are detuned many linewidths from the resonance
frequencies of the optical medium. Full permutation symmetry can also be deduced from a
consideration of the field energy density within a nonlinear medium, as we show next.

1.5.4 Field Energy Density for a Nonlinear Medium

The condition that the nonlinear susceptibility must possess full permutation symmetry for a
lossless medium can be deduced from a consideration of the form of the electromagnetic field
energy within a nonlinear medium.
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For the case of a linear medium, the energy density associated with the electric field

Ei()=)_ Ei(wy)e " (1.5.10)
n
is given according to Poynting’s theorem as
1~ ~ 1 O
U:E(D-E):§Z<D,~Ei>, (1.5.11)

i
where the angular brackets denote a time average. Since the displacement vector is given by

Di(t)y=¢€0 Y €&iEj(t)=e0y D eij(wn)Ej(wn)e ", (15.12)
j j n

J

where the dielectric tensor is given by

€ij(wp) = dij +x,-(jl)(wn), (1.5.13)

we can write the energy density as

1

U= %0 S T EF (o) Ei(wn) + %‘) Y Y Efonx @nEj@).  (15.14)
n ij n
Here the first term represents the energy density associated with the electric field in vacuum
and the second term represents the energy stored in the polarization of the medium.

For the case of a nonlinear medium, the expression for the electric field energy density
(Armstrong et al., 1962; Kleinman, 1962; Pershan, 1963; Shen, 1968) associated with the po-
larization of the medium takes the more general form

€0 (1)
U==- Zanx,.j (n) E} () E ()
L
€0 @ .
=+ ? szijk (—wn — O, O, a)n)Ei (wm +wn)Ej(wm)Ek(a)n)
ijk mn
€0 3y
o D D K~ @0 = &n = O, O 0, @) (1.5.15)
ijkl mno

X E,*(wm + wp + a)o)Ej (0m) Ex(wn) Ef(wo) + -+ - .

For the present, the quantities X(z)’, XG),, ... are to be thought of simply as coefficients in
the power series expansion of U in the amplitudes of the applied field; we show below how
these quantities are related to the nonlinear susceptibilities. Since the order in which the fields
are multiplied together in determining U is immaterial, the quantities )’ clearly possess full
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permutation symmetry, that is, their frequency arguments can be freely permuted as long as the
corresponding indices are also permuted.

In order to relate the expression (1.5.15) for the energy density to the nonlinear polarization,
and subsequently to the nonlinear susceptibility, we use the result that the polarization of a
medium is given (Pershan, 1963; Landau and Lifshitz, 1960, Section 10) by the expression

aUu

Pi(wp) = m

(1.5.16)

Thus, by differentiation of Eq. (1.5.15), we obtain an expression for the linear polarization as

P wom) =0 ) i) @) Ej(on). (1.5.172)
7

and for the nonlinear polarization as*

2 2)
P,'( )(wm +wn) = GOZ in(jk) (—om — wp, O, 0p) Ej(0n) Ex(wn)

Jk (mn)
(1.5.17b)
Pi(3) (@Om + op + o) = €0 Z Z Xl'(fjgl(_wm — Wy — Wy, Wi, Wy W)
jkl (mno)
% E j(@m) Ex (0n) E1(@0). (1.5.17¢)

We note that these last two expressions are identical to Egs. (1.3.12) and (1.3.20), which define
the nonlinear susceptibilities (except for the unimportant fact that the quantities x ) and y '
use opposite conventions regarding the sign of the first frequency argument). Since the quanti-
ties x @' possess full permutation symmetry, we conclude that the susceptibilities x ) do also.
Note that this demonstration is valid only for the case of a lossless medium, because only in
this case is the internal energy a function of state.

1.5.5 Kleinman’s Symmetry

Quite often nonlinear optical interactions involve optical waves whose frequencies w; are much
smaller than the lowest resonance frequency of the material system. Under these conditions,
the nonlinear susceptibility is essentially independent of frequency. For example, the expres-
sion (1.4.24) for the second-order susceptibility of an anharmonic oscillator predicts a value
of the susceptibility that is essentially independent of the frequencies of the applied waves
whenever these frequencies are much smaller than the resonance frequency wq. Furthermore,

* In performing the differentiation, the prefactors % % JT, ... of Eq. (1.5.15) disappear because 2, 3, 4, ... equiva-
lent terms appear as the result of the summations over the frequency arguments.
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under conditions of low-frequency excitation the system responds essentially instantaneously
to the applied field, and we have seen in Section 1.2 that under such conditions the nonlinear
polarization can be described in the time domain by the relation

P(t) =eox PE*(1), (1.5.18)

where x @ can be taken to be a constant.

Since the medium is necessarily lossless whenever the applied field frequencies w; are very
much smaller than the resonance frequency wy, the condition of full permutation symmetry
(1.5.7) must be valid under these circumstances. This condition states that the indices can be
permuted as long as the frequencies are permuted simultaneously, and it leads to the conclusion
that

Xin(@3 =01+ @) = x (@1 =—w) + 03) = ;=03 — 1) (1.5.19)
=t @y =+ o) =3 (@ =—01+w3)  (1520)
_X],k(wl = w3 — w2).

However, under the present conditions x ® does not actually depend on the frequencies, and
we can therefore permute the indices without permuting the frequencies, leading to the result

X3 =01+ ) = x (@3 =01 + 02) = x;) (@3 = 01 + ©))
= X,k)(w3 w] t+wy) = Xj,k(a)3 w1 +w2)
= X (@3 = w1 + w)). (1.5.21)

This result is known as the Kleinman symmetry condition. It is valid whenever dispersion of
the susceptibility can be neglected.

1.5.6 Contracted Notation

We now introduce a notational device that is often used when the Kleinman symmetry condition
is valid. We introduce the tensor

[e)

S X (1.5.22)

dijik =

and for simplicity suppress the frequency arguments. The factor of % is a consequence of his-
torical convention. The nonlinear polarization can then be written as

Pi(wn +on) =€0 Y > 2dijx E(0n) Ex(wn). (15.23)
Jjk (nm)

We now assume that d; j is symmetric in its last two indices. This assumption is valid whenever
Kleinman’s symmetry condition is valid and in addition is valid in general for second-harmonic
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generation, since in this case w, and w,, are equal. We then simplify the notation by introducing
a contracted matrix d;j; according to the prescription

jk: 11 22 33 23,32 31,13 12,21

l: 1 2 3 4 5 6 (1.5:24)

The nonlinear susceptibility tensor can then be represented as the 3 x 6 matrix

din dip diz dis dis die
dij=|dn dy dy dyu dys d |. (1.5.25)
dy1 dzp di3z dis dis  dse

If we now explicitly introduce the Kleinman symmetry condition—that is, we assert that the in-
dices d; jx can be freely permuted, we find that not all of the 18 elements of d;; are independent.
For instance, we see that

dip =dip =dr12 =d (1.5.26a)
and that
di4 =di23 = dy13 = ds. (1.5.26b)

By applying this type of argument systematically, we find that d;; has only 10 independent ele-
ments when the Kleinman symmetry condition is valid; the form of d;; under these conditions
is

din dip diz digs dis die

dij=|die dy dy dy dis dp|. (1.5.27)
dis dy di3z dyz diz dig

Using this notation, we can describe the nonlinear polarization leading to second-harmonic
generation in terms of d;; by the matrix equation

Ex(@)? ]
2
P, (20) dy dp diy du dis dig]| 2
PyQw) | =2e) | dy dyy dn day dos das E;(@) . (1.5.28)
P, (2w) dy dyn dy dy dys d ] | 2Ev(@E(@)
2E¢(0)E;(w)
_2Ex(w)Ey(a))_

When the Kleinman symmetry condition is valid, we can describe the nonlinear polarization
leading to sum-frequency generation (with w3z = w| + w>) by the equation
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Py (w3) din dip diz dis dis dis
Py(w3) | =4eo | do1 dp drz drs das dog
P;(w3) dy1 dyx diz dig dis  dse |
B E (w1)Ex(w2)
Ey(wl)Ey(a)Z)
E;(w1) E;(w2)
X : ' . 1.5.29
Ey(@1)E=(@2) + E<(1) Ey (@) (15:29)
E, (wl)Ez(a)Z) + Ez(a)l)Ex (02)
_Ex(wl)Ey(a)Z)+Ey(a)1)Ex(a)2)_

As described above in relation to Eq. (1.3.16), the extra factor of 2 comes from the summation
over n and m in Eq. (1.5.23).

1.5.7 Effective Value of d (def)

For a fixed geometry (i.e., for fixed propagation direction and polarization) it is possible to
express the nonlinear polarization giving rise to sum-frequency generation by means of the
scalar relationship

P(w3) =4epdetiE (1) E(w2), (1.5.30)
and analogously for second-harmonic generation by
P Qw) = 2€0dest E (@), (1.5.31)
where
E@)=E@)]| and P(w)=|P@)|

In each case, defr is obtained by first determining P explicitly through use of Eq. (1.5.28) or
(1.5.29) and then calculating its norm P (w) = |P(w)|.

A general prescription for calculating deg; for each of the crystal classes has been presented
by Midwinter and Warner (1965); see also Table 3.1 of Zernike and Midwinter (1973). They
show, for example, that for a negative uniaxial crystal of crystal class 3m the effective value of
d is given by the expression

deff = d31 8inO — dhy cos O sin 3¢ (1.5.32a)

under conditions (known as type I conditions) such that the two lower-frequency waves have
the same polarization, and by

deft = dap cos 0 cos 3¢ (1.5.32b)

under conditions (known as type II conditions) such that the polarizations are orthogonal. In
these equations, 6 is the angle between the propagation vector and the crystalline z axis (the
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optic axis), and ¢ is the azimuthal angle between the crystalline x axis and the projection of the
propagation vector onto the xz crystalline plane.

1.5.8 Spatial Symmetry of the Nonlinear Medium

The forms of the linear and nonlinear susceptibility tensors are constrained by the symmetry
properties of the optical medium. To see why this should be so, let us consider a crystal for
which the x and y directions are equivalent but for which the z direction is different. By say-
ing that the x and y directions are equivalent, we mean that if the crystal were rotated by 90
degrees about the z axis, the crystal structure would look identical after the rotation. The z axis
is then said to be a fourfold axis of symmetry. For such a crystal, we would expect that the
optical response would be the same for an applied optical field polarized in either the x or the

y direction, and thus, for example, that the second-order susceptibility components XZ(,%; and

xz(fi would be equal.

For any particular crystal, the form of the linear and nonlinear optical susceptibilities can be
determined by considering the consequences of all of the symmetry properties for that particular
crystal. For this reason, it is necessary to determine what types of symmetry properties can
occur in a crystalline medium. By means of the mathematical method known as group theory,
crystallographers have found that all crystals can be classified as belonging to one of 32 possible
crystal classes depending on what is called the point group symmetry of the crystal. The details
of this classification scheme lie outside of the subject matter of the present text.” However, by
way of examples, a crystal is said to belong to point group 4 if it possesses only a fourfold axis
of symmetry, to point group 3 if it possesses only a threefold axis of symmetry, and to belong
to point group 3m if it possesses a threefold axis of symmetry and in addition a plane of mirror
symmetry parallel to this axis.

1.5.9 Influence of Spatial Symmetry on the Linear Optical Properties of a Material
Medium

As an illustration of the consequences of spatial symmetry on the optical properties of a mate-
rial system, let us first consider the restrictions that this symmetry imposes on the form of the
linear susceptibility tensor x (1. The results of a group theoretical analysis shows that five dif-
ferent cases are possible depending on the symmetry properties of the material system. These
possibilities are summarized in Table 1.5.1. Each entry is labeled by the crystal system to which
the material belongs. By convention, crystals are categorized in terms of seven possible crystal

* The reader who is interested in the details should consult Buerger (1963) or any of the other books on group
theory and crystal symmetry listed in the bibliography at the end of this chapter.
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TABLE 1.5.1: Form of the linear susceptibility tensor x () as determined by the symmetry properties of
the optical medium, for each of the seven crystal classes and for isotropic materials. Each nonvanishing
element is denoted by its Cartesian indices.

[xx xy xz
Triclinic yX yy yz :|
L z2x 2y 22
[xx 0 «xz
Monoclinic 0 yy O i|
Lzx 0 zz
[xx 0 O
Orthorhombic 0 yy O :|
L0 0 zz
Tetragonal [xx 0 0
Trigonal 0 xx O i|
Hexagonal L0 0 zz
Cubic 00
Isotropic 0 ax 0
L0 0 xx

systems on the basis of the form of the crystal lattice. (Table 1.5.2 on p. 46 gives the correspon-
dence between crystal system and each of the 32 point groups.) For completeness, isotropic
materials (such as liquids and gases) are also included in Table 1.5.1. We see from this table
that cubic and isotropic materials are isotropic in their linear optical properties, because x V)
is diagonal with equal diagonal components. All of the other crystal systems are anisotropic
in their linear optical properties (in the sense that the polarization P need not be parallel to
the applied electric field E) and consequently display the property of birefringence. Tetragonal,
trigonal, and hexagonal crystals are said to be uniaxial crystals because there is one particu-
lar direction (the z axis) for which the linear optical properties display rotational symmetry.
Crystals of the triclinic, monoclinic, and orthorhombic systems are said to be biaxial.

1.5.10 Influence of Inversion Symmetry on the Second-Order Nonlinear Response

One of the symmetry properties that some but not all crystals possess is centrosymmetry, also
known as inversion symmetry. For a material system that is centrosymmetric (i.e., possesses a
center of inversion) the x ® nonlinear susceptibility must vanish identically. Since 11 of the
32 crystal classes possess inversion symmetry, this rule is very powerful, as it immediately
eliminates all crystals belonging to these classes from consideration for second-order nonlinear
optical interactions.

Although the result that x ® vanishes for a centrosymmetric medium is general in nature,
we shall demonstrate this fact only for the special case of second-harmonic generation in a
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medium that responds instantaneously to the applied optical field. We assume that the nonlinear
polarization is given by

P(t)=eox®E* (1), (15.33)
where the applied field is given by

E(t) = € cos wt. (1.5.34)

If we now change the sign of the applied electric field E(r), the sign of the induced polariza-
tion P(z) must also change, because we have assumed that the medium possesses inversion
symmetry. Hence the relation (1.5.33) must be replaced by

5 =12
—P(t)=eoxP[-EM], (1.5.35)

which shows that
—Pt)=eox P EX1). (1.5.36)

By comparison of this result with Eq. (1.5.33), we see that 13(t) must equal —ﬁ(t), which can
occur only if P(¢) vanishes identically. This result shows that

x@ =o0. (1.5.37)

This result can be understood intuitively by considering the motion of an electron in a
nonparabolic potential well. Because of the nonlinearity of the associated restoring force, the
atomic response will show significant harmonic distortion. Part (a) of Fig. 1.5.2 shows the
waveform of the incident monochromatic electromagnetic wave of frequency w. For the case
of a medium with linear response (part (b)), there is no distortion of the waveform associated
with the polarization of the medium. Part (c) shows the induced polarization for the case of
a nonlinear medium that possesses a center of symmetry and whose potential energy function
has the form shown in Fig. 1.4.3. Although significant waveform distortion is evident, only odd
harmonics of the fundamental frequency are present. For the case (part (d)) of a nonlinear, non-
centrosymmetric medium having a potential energy function of the form shown in Fig. 1.4.1,
both even and odd harmonics are present in the waveform associated with the atomic response.
Note also the qualitative difference between the waveforms shown in parts (c) and (d). For the
centrosymmetric medium (part (c)), the time-averaged response is zero, whereas for the non-
centrosymmetric medium (part (d)) the time-average response is nonzero, because the medium
responds differently to an electric field pointing, say, in the upward direction than to one point-
ing downward.*

* Parts (a) and (b) of Fig. 1.5.2 are plots of the function sin wt, part (¢) is a plot of the function sin wf — 0.25 sin 3wt,
and part (d) is a plot of —0.2 + sinwt + 0.2 cos 2wt.
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FIGURE 1.5.2: Waveforms associated with the atomic response.
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1.5.11 Influence of Spatial Symmetry on the Second-Order Susceptibility

We have just seen how inversion symmetry when present requires that the second-order sus-
ceptibility vanish identically. Any additional symmetry property of a nonlinear optical medium
imposes additional restrictions on the form of the nonlinear susceptibility tensor. By explicit
consideration of the symmetries of each of the 32 crystal classes, one can determine the al-
lowed form of the susceptibility tensor for crystals of that class. The results of such a calculation
for the second-order nonlinear optical response, which was performed by Butcher (1965), are
presented in Table 1.5.2. Under those conditions (described following Eq. (1.5.23)) where the
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second-order susceptibility can be described using contracted notation, the results presented in
Table 1.5.2 can usefully be displayed graphically. These results, as adapted from Zernike and
Midwinter (1973), are presented in Fig. 1.5.3. Note that the influence of Kleinman symmetry
is also described in the figure. As an example of how to use the table, the diagram for a crystal
of class 3m is meant to imply that the form of the d;; matrix is

0 0 0 0 dy —dn
dij=|—dyx do 0 d3y O 0
dy1 dy dyz O 0 0

The second-order nonlinear optical susceptibilities of a number of crystals are summarized
in Table 1.5.3. This table should be used only with some caution. There is considerable spread
in the values of the nonlinear coefficients quoted in the literature, both because of the wave-
length dependence of the nonlinear susceptibility and because of measurement inaccuracies.
A detailed analysis of the measurement of nonlinear coefficients has been presented by Shoji et
al. (1997). The references cited in the footnote to Table 1.5.3 provide more detailed tabulations
of nonlinear coefficients.

1.5.12 Number of Independent Elements of x l(le)c (w3, w2, W1)

We remarked in relation to Eq. (1.5.1) that as many as 324 complex numbers must be specified
in order to describe the general interaction of three optical waves. In practice, this number is
often greatly reduced.

Because of the reality of the physical fields, only half of these numbers are independent (see
Eq. (1.5.5)). Furthermore, the intrinsic permutation symmetry of x ® (Eq. (1.5.6)) shows that
there are only 81 independent parameters. For a lossless medium, all elements of x ® are real
and the condition of full permutation symmetry is valid, implying that only 27 of these numbers
are independent. For second-harmonic generation, contracted notation can be used, and only 18
independent elements exist. When Kleinman’s symmetry is valid, only 10 of these elements are
independent. Furthermore, any crystalline symmetries of the nonlinear material can reduce this
number further.

1.5.13 Distinction between Noncentrosymmetric and Cubic Crystal Classes

It is worth noting that a material can possess a cubic lattice and yet be noncentrosymmetric. In
fact, gallium arsenide is an example of a material with just these properties. Gallium arsenide
crystallizes in what is known as the zincblende structure (named after the well-known mineral
form of zinc sulfide), which has crystal point group 43m. As can be seen from Table 1.5.2 or
from Fig. 1.5.3, materials of the 43m crystal class possess a nonvanishing second-order nonlin-
ear optical response. In fact, as can be seen from Table 1.5.3, gallium arsenide has an unusually
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TABLE 1.5.2: Form of the second-order susceptibility tensor for each of the 32 crystal classes. Each
element is denoted by its Cartesian indices.

Crystal System Crystal Class Nonvanishing Tensor Elements
Triclinic 1=C All elements are independent and nonzero
1= Y Each element vanishes
Monoclinic 2=0C XYZ, XZY, XXY, XYX, YXX, YYY, YZZ, YIX, YXZ, ZYZ, ZZY, ZXY, ZYX
(twofold axis parallel to y)
m=Cyp XXX, XYY, XZZ, XZX, XXZ, YYZ, VIV, VXY, YYX, ZXX, ZVY, 222, 22X,
zxz (mirror plane perpendicular to ¥)
2/m=Cypp Each element vanishes
Orthorhombic 222 =Dy XYZ,XZY, YZX, YXZ, ZXY, ZyX
mm?2 = Co, XZX,XXZ, YyZ, YZY,2XX,ZYy, 22Z
mmm = Doy, Each element vanishes
Tetragonal 4=0Cy XYz = —YXZ,XZy = —YIX,XZX = YV, XXZ = yYyZ, XX = 2YY,
22%,2Xy = —ZyX
4:54 Xyz = YXZ,XZy = YIX,XIX = —YyIy,XXZ = —YYI,
ZXX = —Zyy,IXy =ZyX
422 = Dy XyZ = —YyXZ,XZy = —YIX, Xy = —ZYX
dmm = Cyqy XZX = YyZY,XXZ = yyZ,IXX =ZYYy, 222
42m = Doy XyZ = YyXZ,XZy = yZX,ZXy = ZyX
4/m = Cyy, Each element vanishes
4/mmm = Dyy, Each element vanishes
Cubic 432 =0 XyZ = —XZY = yIX = —yXZ =Xy = —ZyX
43m =Ty XYZ =XZY = yIX = YXZ =Xy = yX
23=T XYZ = yzX = ZXy,XZY = yXZ7 = ZyX
m3 =Ty, m3m = Oy, Each element vanishes
Trigonal 3=C3 XXX = —Xyy = —yyz = —YXYy,XyZ = —YXZ,XZy = —YIX,
XZX = YZY, XXZ =YY, YYY = —YXX = —XXY = —XYX, XX =
ZYY, 222, 2XY = —ZyX
32=Dj3 XXX = —Xyy = —YyYyX = —YXy,XyZ = —YXZ,XZy = —YIX,
Xy = —ZyX
3m =Cszy XZX = YTV, XXZ = YYZ, ZXX = ZYY, 222, YYY = —YXX = —XXy =
—xyx (mirror plane perpendicular to X)
3=2S¢,3m = D34 Each element vanishes
Hexagonal 6=Cg XYZ = —yXZ,XZy = —YIX,XZX = YZV,XXZ = YyZ, ZXX = 7Yy,
222, ZXy = —ZyX
6=Csy, XXX = —XYy = —yXy = —YyX, yyy = —yXX = —XyX = —XXy
622 = Dg XYZ = —YXZ, XY = —YyXZ,ZXy = —ZYX
6mm = Cegy XZX =Yy, XXZ = yyZ,IXX =2V, 222
6m2 = D3y, YYY = —YXX = —XXYy = —XYX
6/m = Cegy, Each element vanishes
6/mmm = Dgy, Each element vanishes
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FIGURE 1.5.3: Form of the d;; matrix for the 21 crystal classes that lack inversion symmetry. Small
dot: zero coefficient; large dot: nonzero coefficient; square: coefficient that is zero when Kleinman’s
symmetry condition is valid; connected symbols: numerically equal coefficients, but the open-symbol
coefficient is opposite in sign to the closed symbol to which it is joined. Dashed connections are valid
only under Kleinman’s symmetry conditions. (After Zernike and Midwinter, 1973.)

large second-order nonlinear susceptibility. However, as the zincblende crystal structure pos-
sesses a cubic lattice, gallium arsenide does not display birefringence. We shall see in Chapter 2
that it is usually necessary that a material possess adequate birefringence in order that the phase
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Uniaxial crystal classes (Continued)
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FIGURE 1.5.3: (continued.)

matching condition of nonlinear optics be satisfied. Because gallium arsenide does not possess
birefringence, it cannot normally participate in standard phase-matched second-order interac-
tions.

It is perhaps surprising that a material can possess the highly regular spatial arrangement of
atoms characteristic of the cubic lattice and yet be noncentrosymmetric. This distinction can be
appreciated by examination of Fig. 1.5.4, which shows both the diamond structure (point group
m3m) and the zincblende structure (point group 43m). One sees that the crystal lattice is the
same in the two cases, but that the arrangement of atoms within the lattice allows carbon but not
zincblende to possess a center of inversion symmetry. In detail, a point of inversion symmetry
for the diamond structure is located midway between any two nearest-neighbor carbon atoms.
This symmetry does not occur in the zincblende structure because the nearest neighbors are of
different species.
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TABLE 1.5.3: Second-order nonlinear optical susceptibilities for several crystals.
Material Point Group d;; (pm/V)
Ag3ASS3 3m = C3v d22 =18
(proustite) di5=11
AgGaSe, 42m = Dyy dzg =33
AgSbS; 3m =Cgzy di5 =38
(pyrargyrite) dyp =9
beta-BaB,04 (BBO) 3m =Cgzy dyy =2.2
(beta barium borate)
CdGeAs, 42m = Doy dzg =235
CdS 6mm = Ceg dz3 =178
dy1 =—40
GaAs 43m ds =370
KH,PO4 2m dze =0.43
(KDP)
KD, POy 2m dze =0.42
(KD*P)
LilO3 6=Cg dis=-5.5
dy1 =-17
LiNbO3 3m =Csz, dz; = —30
d31 =-59
Quartz 32=Ds di1=0.3
di4 =0.008

Notes: Values are obtained from a variety of sources. Some of the more complete tabulations are those of R. L. Sutherland (1996),
that of A. V. Smith, http://www.as-photonics.com/snlo, and the data sheets of Cleveland Crystals, Inc.

To convert to the gaussian system, multiply each entry by (3 x 1078) /4m =2.386 x 10~ to obtain d in esu units of cm/statvolt.
In any system of units, x @ =2q by convention.

(a) diamond structure

(b) zincblende structure

o GaorZn
O AsorS

FIGURE 1.5.4: Tllustration of (a) the diamond structure and (b) the zincblende structure. Both possess a
cubic lattice and thus cannot display birefringence, but the carbon structure is centrosymmetric, whereas

the zincblende structure is noncentrosymmetric.
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1.5.14 Distinction between Noncentrosymmetric and Polar Crystal Classes

As noted above, of the 32 crystal point groups, only 21 are noncentrosymmetric and conse-
quently can possess a nonzero second-order susceptibility x ®). A more restrictive condition is
that certain crystal possess a permanent dipole moment. Crystals of this sort are known as polar
crystals, or as ferroelectric crystals.” This property has important technological consequences,
because crystals of this sort can display the pyroelectric effect (a change of permanent dipole
moment with temperature, which can be used to construct optical detectors)” or the photore-
fractive effect, which is described in greater detail in Chapter 11. Group theoretical arguments
(see, for instance, Nye, 1985) demonstrate that the polar crystal classes are

1 2 3 4 6
m mm2 3m 4mm Omm

Clearly, all polar crystal classes are noncentrosymmetric, but not all noncentrosymmetric crys-
tal classes are polar. This distinction can be seen straightforwardly by means of an example
from molecular physics. Consider a molecule with tetrahedral symmetry such as CCly. In this
molecule the four chlorine ions are arranged on the vertices of a regular tetrahedron, which is
centered on the carbon ion. Clearly this arrangement cannot possess a permanent dipole mo-
ment, but this structure is nonetheless noncentrosymmetric.

1.5.15 Influence of Spatial Symmetry on the Third-Order Nonlinear Response

The spatial symmetry of the nonlinear optical medium also restricts the form of the third-order
nonlinear optical susceptibility. The allowed form of the susceptibility has been calculated by
Butcher (1965) and has been summarized by Hellwarth (1977); a minor correction to these re-
sults was later pointed out by Shang and Hsu (1987). These results are presented in Table 1.5.4.
Note that for the important special case of an isotropic optical material, the results presented in
Table 1.5.4 agree with the result derived explicitly in the discussion of the nonlinear refractive
index in Section 4.2.

1.6 Time-Domain Description of Optical Nonlinearities

In the preceding sections, we described optical nonlinearities in terms of the response of an
optical material to one or more monochromatic applied fields. We found that the induced non-
linear polarization consists of a discrete summation of frequency components at the harmonics
of and the sums and differences of the frequencies present in the applied field. In particular, we

* The subtle distinctions among polar, pyroelectric, piezoelectric, and ferroelectric crystals are described by Nye,
1985, pages 78-81.
T The operation of pyroelectric detectors is described, for instance, in Section 13.3 of R. W. Boyd (1983).
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TABLE 1.5.4: Form of the third-order susceptibility tensor x® for each of the crystal classes and for
isotropic materials. Each element is denoted by its Cartesian indices.

Isotropic

and

Cubic

They are:

are:

Hexagonal

They are:

There are 21 nonzero elements, of which only 3 are independent. They are:

YYZZT = ZZYY = ZZXX = XXZT = XXYY = YyXX,
YZYZ = ZYTY = ZXZX = XZXZ = XYXYy = YXYX,
YZZY = ZYYZ = ZXXZ = XZZX = XYYX = YXXY;

XXXX = Yyyy = 2222 = XXYYy + XyxXy + Xyyx.

XXXX = yyyy = 2222,
YyzZ = ZZXX = XXy,
7Yy = XXZZ = YYXX,
YZYZ = ZXIX = XYXY,
Y7y = XIXZ = YXYX,
YZZY = ZXXZ = XYyX,
ZyyZ = XZZX = yXXY.

XXXX = YYYy = 2222,

For the two classes 23 and m3, there are 21 nonzero elements, of which only 7 are independent.

For the three classes 432, 4_13m, and m3m, there are 21 nonzero elements, of which only 4 are independent. They

YYZZ = ZZYY = ZZXX = XXZZ = XXYy = YYXX,
VYZYZ = ZYZTY = ZXIX = XZXZ = XYXYy = YXYX,
YZZY = ZYYZ = ZXXZ = XZZX = XYyX = YXXY.

For the three classes 6, 6, and 6/m, there are 41 nonzero elements, of which only 19 are independent.

XXYY = Yyxx,
2222, XYYX = yxxy
XXXX = YYYYy = XXYY + XyyX + XyXYy, ’
XYXYy = yxyx,
YyiT = XXZ2Z, Xyi7 = —yxziz,
ZZYY = 2ZXX,  ZZXY = —ZIYX,
ZYyZ = ZXXZ, IXYZ = —ZYXZ,
yZZY = XZZX, XZZY = —YZIIX,
YZyZ = XZXZ, XIyZ = —YIXZ,
ZyZy = ZXZX, IXZy = —ZYZX,
YYXy = —XXyx,
XXXy = —YYyX = Yyxy + yxyy +xyyy, VXYY = —XYXX,
XYyy = —yxxx.

(1.5.38)
(1.5.39)
(1.5.40)

(1.5.41)
(1.5.42)
(1.5.43)
(1.5.44)
(1.5.45)
(1.5.46)
(1.5.47)

(1.5.48)
(1.5.49)
(1.5.50)
(1.5.51)

continued on next page
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TABLE 1.5.4: (continued.)

For the four classes 622, 6mm, 6/mmm, and 6m2, there are 21 nonzero elements, of which only 10 are inde-
pendent. They are:

XXYYy = Yyyxx,
222%, _
XXXX = yyyy = xxyy +xyyx +xyxy, | 0T T I
XYXy = yxyx,
yyiz = XXx2Z, (1.5.52)
7Yy = 22XX, (1.5.53)
ZyyzZ = 7XXxZ, (1.5.54)
yzzy = X7ZX, (1.5.55)
yZyz = X7XZ, (1.5.56)
Zyzy = ZXZX. (1.5.57)

Trigonal
For the two classes 3 and 3, there are 73 nonzero elements, of which only 27 are independent. They
are:

XXYy = yyxx,
o XYYX = yxxy,
XXXX = Yyyyy = XXyy + XYyX + Xyxy,
XYXy = yXyXx,
Yyzz = XX22, XYyZZ = —YyXZZ,
Yy = 2IXX, ZIXY = —IIYX,
ZyyzZ = ZXXZ, ZXYZ = —ZYXZ,
yzzy = X2zX, XZZy = —YIZX,
YIyZ = XIXZ, XIYI = —YIXZ,
ZyZy = ZXZX, ZXZY = —ZYIX,
YyXy = —XXyx,
XXXy = —=yYyx = yyxy + yxyy +xyyy, YXyy = —Xyxx,
XYyy = —YXXX.
YYYZ = —yXXZ = —XyXZ = —XXYyZ, (1.5.58)
VYYZYy = —yXZX = —XYZX = —XXZY, (1.5.59)
VZYY = —yZXX = —XZYX = —XZXY, (1.5.60)
ZYYY = —ZYXX = —ZXYX = —ZXXY, (1.5.61)
XXXZ = —XYYZ = —yXyZ = —YyyXZ, (1.5.62)
XXZX = —XYyZy = —YyXZy = —YYIX, (1.5.63)
XZXX = —yzXy = —YIyX = —XZVY, (1.5.64)
ZXXX = —ZXYY = —ZYXY = —ZYYX. (1.5.65)

For the three classes 3m, 3m, and 32, there are 37 nonzero elements, of which only 14 are independent. They
are:

XXYy = yyxx,

2222, XYYX = yxxy

XXXX = YyYYyy = XXYY + Xyyx + xXyxy, ’
XYXy = yXxyx,

continued on next page
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TABLE 1.5.4: (continued.)

VyZZ = XX2Z, XXXZ = —XyyZI = —YyXyI= —YyyXxz,

ZZYy = ZZXX,  XXIX = —XYZy = —yXZy = —yYIX,

IYYT = ZXXZ, XZXX = —XZYy = —yIXY = —yIYX,

VIZY = XIZX, XXX = —IXYY = —ZIyXYy = —ZIYYX,
yiyzZ = X7xZ2,

yzy = ZXZX.

Tetragonal B
For the three classes 4, 4, and 4/m, there are 41 nonzero elements, of which only 21 are independent.
They are:

XXXX =Yyyy, 222Z,

XX =2Z2YYy,  XYIZ = —YXZL, XXYY =YYXX, XXXY = —YYyX,
XXZZ =22yYy, ZIXY = —ZIYX, XYXY=YXYX, XXYyX=—YyXy,
IXTX =2yZy, XYL = —YIXL,  XYYX = YXXY,  XYXX = —YXYY,
XZXZ =YZyZ, IXZY = —ZYIX, YXXX = —XYYY,
IXXZ=2yyZ, ZXyZ= —ZYyXZ,

XZZX = yz2y,

XZZy = —YyzzX.

For the four classes 422, 4mm, 4/mmm, and 4_12m, there are 21 nonzero elements, of which only 11 are inde-
pendent. They are:

XXXX =YYyy, 222%,
Yyzz =XX7Z, YIZY =XZZX XXYY = YYXX,
ZZYy = 22xXx, Yyl =X7XZ XYXy = yxXyx,
ZYYZ =ZXXZ, ZYIY =ZXIX XYYX = yXXy.

Monoclinic
For the three classes 2, m, and 2/m, there are 41 independent nonzero elements, consisting of:

3 elements with indices all equal, (1.5.66)
18 elements with indices equal in pairs, (1.5.67)
12 elements with indices having two y’s one x, and one z, (1.5.68)
4 elements with indices having three x’s and one z, (1.5.69)
4 elements with indices having three z’s and one x. (1.5.70)
Orthorhombic
For all three classes, 222, mm2, and mmm, there are 21 independent nonzero elements, consisting of:
3 elements with indices all equal, (1.5.71)
18 elements with indices equal in pairs. (1.5.72)

Triclinic
For both classes, 1 and 1, there are 81 independent nonzero elements.




54  Chapter 1

described the nonlinear response in the frequency domain by relating the frequency components
P (w) of the nonlinear polarization to those of the applied optical field, E ().

It is also possible to describe optical nonlinearities directly in the time domain by consid-
ering the polarization P(¢) that is produced by some arbitrary applied field E(¢). These two
methods of description are entirely equivalent, although description in the time domain is more
convenient for certain types of problems, such as those involving applied fields in the form of
short pulses; conversely, description in the frequency domain is more convenient when each
input field is nearly monochromatic.

Let us first consider the special case of a material that displays a purely linear response. We
can describe the polarization induced in such a material by

13“)(t)=eo/oO RV()E(t — 1) dx. (1.6.1)
0

Here RV () is the linear response function, which gives the contribution to the polarization
produced at time ¢ by an electric field applied at the earlier time ¢ — 7. The total polarization is
obtained by integrating these contributions over all previous times t. In writing Eq. (1.6.1) as
shown, with the lower limit of integration set equal to zero and not to —oo, we have assumed
that R (7) obeys the causality condition R (7) = 0 for T < 0. This condition expresses the
fact that PV (¢) depends only on past and not on future values of E ().

Equation (1.6.1) can be transformed to the frequency domain by introducing the Fourier
transforms of the various quantities that appear in this equation. We adopt the following defini-
tion of the Fourier transform:

E(w) = / E@)e' dt (1.6.2a)
E@t) = L f E(w)e " dw (1.6.2b)
27 J_ oo

with analogous definitions for other quantities. By introducing Eq. (1.6.2b) into Eq. (1.6.1), we
obtain

o0 o0

- d .

PO (1) =€0/ dr/ 2P RO (1) E(w)e~@t=D
0 —0 27

*do [ (1) ot —iwt
=€ — dtRY(1)e'“" E(w)e (1.6.3)
—00 2 0

or

o0

- d .

P“)(z):eo/ O D (w: w)E(w)e ", (1.6.4)
00 2T
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where we have introduced an explicit expression for the linear susceptibility
S .
x D (w; w) = / dt R (7)ele". (1.6.5)
0

Equation (1.6.4) gives the time-varying polarization in terms of the frequency components of
the applied field and the frequency dependent susceptibility. By replacing the left-hand side of
this equation with [ P ) (w) exp(—iwt) dw/27 and noting that the equality must be maintained
for each frequency w, we recover the usual frequency domain description of linear response:

PY(w) =eoxV(w; 0)E(w). (1.6.6)

The nonlinear response can be described by analogous procedures. The contribution to the
polarization that is second-order in the applied field strength is represented as

o0 o0
ﬁ(2>(r)=60/ dn/ dty R® (11, 0)E(t — 1)E(t — 1), (1.6.7)
0 0

where the causality condition requires that R(z)(rl, 17) = 0 if either 71 or 1 is negative. As
above, we write E(t — t1) and E (¢t — 12) in terms of their Fourier transforms using Eq. (1.6.2b)
so that the expression for the second-order polarization becomes

- d d
P(z)(t):eo/ a)1/ a)2/ dn/ d‘CzR(z)(‘L’l )

XE(a)l)e_lw'(t TI)E(w e~ iwy(t—17)

d d
- 60/ = / L2 4 @y w1, 0 E@DE(@ne ™™, (168)
where we have defined w, = w| + w7 and have introduced the second-order susceptibility
00 00 )
X (o 01, ) = / dr| / dry RP (1, )¢ @1miHeem) (1.6.9)
0 0

This procedure can readily be generalized to higher-order susceptibilities. In particular, we can
express the third-order polarization as

- ® d d d
P 1) = e / wl/ = / D (s @1, 02, 3)
oo 2 J_

X E(w1)E(w2)E(w3)e” ""“, (1.6.10)
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where w, = w1 + w2 + w3 and where

o0 o0 o0
X(3)(wa;w1,wz,w3)=/ dfl/ de/ dt;
0 0 0

x RO (11, 13, 13) e/ (@171 H 02Tt Ts), (1.6.11)

To summarize the results of this subsection, we have seen in Eq. (1.6.5) that the frequency-
dependent linear susceptibility is the Fourier transform of a time-domain linear response
function. We have similarly found in Eq. (1.6.9) that the frequency-dependent second-order
susceptibility is the Fourier transform of a time-domain second-order response function, and
we found in Eq. (1.6.11) that the frequency-dependent third-order susceptibility is the Fourier
transform of a time-domain third-order response function.

1.7 Kramers—Kronig Relations in Linear and Nonlinear Optics

Kramers—Kronig relations are often encountered in linear optics. These conditions relate the
real and imaginary parts of frequency-dependent quantities such as the linear susceptibility.
They are useful because, for instance, they allow one to determine the real part of the sus-
ceptibility at some particular frequency from a knowledge of the frequency dependence of the
imaginary part of the susceptibility. Since it is often easier to measure an absorption spectrum
than to measure the frequency dependence of the refractive index, this result is of considerable
practical importance. In this section, we review the derivation of the Kramers—Kronig relations
as they are usually formulated for a system with linear response, and then show how Kramers—
Kronig relations can be formulated to apply to some (but not all) nonlinear optical interactions.

1.7.1 Kramers—Kronig Relations in Linear Optics

We saw in the previous section that the linear susceptibility can be represented as

o0

x V() = x V(0 w) = / RV (v)e'" dr, (1.7.1)
0

where the lower limit of integration has been set equal to zero to reflect the fact that RV ()

obeys the causality condition R (1) =0 for T < 0. Note also (e.g., from Eq. (1.6.1)) that

RD (1) is necessarily real, because it relates two inherently real quantities P(¢) and E (). We

thus deduce immediately from Eq. (1.7.1) that

xV(—w) = xP(w)*. (1.7.2)

Let us examine some of the other mathematical properties of the linear susceptibility.
In doing so, it is useful, as a purely mathematical artifact, to treat the frequency w as a
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complex quantity @ = Re w + i Im w. An important mathematical property of x(w) is the
fact that it is analytic (i.e., single-valued and possessing continuous derivatives) in the up-
per half of the complex w plane, that is, for Im w > 0. In order to demonstrate that x (w) is
analytic in the upper half plane, it is adequate to show that the integral in Eq. (1.7.1) con-
verges everywhere in that region. We first note that the integrand in Eq. (1.7.1) is of the form
RW (1) expli (Re w)t]exp[—(Im w)t], and because R (1) is everywhere finite, the presence
of the factor exp[—(Im w)t] is adequate to ensure convergence of the integral for Im w > 0.
For Im w = 0 (that is, along the real axis) the integral can be shown to converge, either from
a mathematical argument based on the fact the R()(r) must be square integrable or from the
physical statement that y (w) for w real is a physically measurable quantity and hence must be
finite.
To establish the Kramers—Kronig relations, we next consider the integral

oo (g, /
Im=/ X (@)do (1.7.3)

/
e W —w

We adopt the convention that in expressions such as (1.7.3) we are to take the Cauchy principal
value of the integral—that is,

oo ., (1) Ndaw' w—358 ., (1) NYdaw' 00 (1) Ndw'
/ LJQLQEHmU° liﬂL3+/ 1—@lﬁ} (1.7.4)
w

N ) =0 J_ oo o —w s O —w

We evaluate expression (1.7.3) using the techniques of contour integration, noting that the de-
sired integral is given by Int = Int(A) —Int(B) —Int(C) where Int(A), Int(B), and Int(C) are the
path integrals of x () (w')/(w’ — w) over the three paths shown in Fig. 1.7.1. Because x V()
is analytic in the upper half plane, the only singularity of the integrand x (’)/(@’ — ) in the
upper half-plane is a simple pole along the real axis at ' = w. We thus find that Int(A) =0
by Cauchy’s theorem because its closed path of integration contains no poles. Furthermore,
Int(B) = 0 since the integration path increases as |’|, whereas for large |@'| the integrand
scales as x ()/|’|, and thus the product will tend toward zero so long as x () approaches
zero for sufficiently large '. Finally, by considering the limit 7, — 0 and using standard tech-
niques from residue theory, we find that Int(C) = —mi x (). By introducing these values into
Eq. (1.7.3), we obtain the result

—i /oo x WD) deo

xD(w)=— : (1.7.5)
T Jo @ —0

By separating x D (w) into its real and imaginary parts as x M (w) =Re xD(w)+i Imy D (w),
we obtain one form of the Kramers—Kronig relations:
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Im(w’)

(a) complex @’ plane

e - Re@)
orgn polePat o' = @

(b) desired path of integration

L
=

o’ ‘ NP
(c) path A I
> m/rz
0" Np

(d) pathB

() path C + A"
0~ N p

FIGURE 1.7.1: Diagrams used in the contour integration of Eq. (1.7.3). (a) shows the complex o’ plane,
(b) shows the desired path of integration, and (c), (d), and (e) show paths over which the integral can be
evaluated using the techniques of contour integration. In performing the integration the limits r; — oo
and rp, — 0 are taken.

1 ImxP(0)do'
Re x V(@) = - / Imx " (@) dor (1.7.6a)
T

/
50 o —w

1 [ RexyD(w)do
Imx(l)(w)z——/ M. (1.7.6b)
T

/
—so o —w
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These integrals show how the real part of x (! can be deduced from a knowledge of the fre-
quency dependence of the imaginary part of x (!, and vice versa. As mentioned above, it is
usually easier to measure absorption spectra than the frequency dependence of the refractive
index, it can be quite useful to make use of Eq. (1.7.6a) as a means of predicting the frequency
dependence of the real part of x 1.

The Kramers—Kronig relations can be rewritten to involve integration over only (physically
meaningful) positive frequencies. From Eq. (1.7.2), we see that

RexV(—w)=Rex (@),  Imx"(~0)=—Imx" (). (17.7)
We can thus rewrite Eq. (1.7.6b) as follows:

" 1 (9 RexD(w)de 1 [®RexVD(w)do
Im y V(w) = —— -_ -
Y 0

—o0 o —w b4 o —w
1 [®RexV(w)de 1 [*®RexV(w)do
= e — (1.7.8)
0 o +w 7 Jo o —w
and hence
2w [ Re V(e
Im x O (w) = “)/ X @) . (1.7.92)
T 0 a)/2 _ a)2
We similarly find that
2 1 [ESYPN;
Re x " (w) = —‘“/ m/)z(i(wz)da)’. (1.7.9b)
T we—w

1.7.2 Kramers—Kronig Relations in Nonlinear Optics

Relations analogous to the usual Kramers—Kronig relations for the linear response can be
deduced for some but not all nonlinear optical interactions. Let us first consider a nonlinear
susceptibility of the form X(3) (wg; w1, w2, w3) With wy = w1 + wr + w3 and with wy, wy, and
w3 all positive and distinct. Such a susceptibility obeys a Kramers—Kronig relation in each of
the three input frequencies, for example,

1

3 .
X()(w05wlaw25w3)=_/ /
T J_so Wy — W)

© xO(w; w1, @y, w3)

da), (1.7.10)

where ), = w1 + ), + w3. Similar results hold for integrals involving | and . The proof of
this result proceeds in a manner strictly analogous to that of the linear Kramers—Kronig rela-
tion. In particular, we note from Eq. (1.6.11) that x O (wy; w1, w2, w3) is the Fourier transform
of a causal response function, and hence XG) (wg; w1, wo, w3) considered as a function of its
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three independent variables w1, w2, and w3, is analytic in the region Imw; > 0, Imw; > 0, and
Im w3 > 0. We can then perform the integration indicated on the right-hand side of Eq. (1.7.10)
as a contour integration closed in the upper part of the complex w, plane, and obtain the indi-
cated result. In fact, it is not at all surprising that a Kramers—Kronig-like relation should exist
for the present situation; the expression x @ (wg; w1, w2, @3) E (1) E (02) E (w3) is linear in the
field E (w7) and the physical system is causal, and thus the reasoning leading to the usual linear
Kramers—Kronig relation is directly relevant to the present situation.

Note that in Eq. (1.7.10) all but one of the input frequencies are held fixed. Kramers—Kronig
relations can also be formulated under more general circumstances. It can be shown (see, for
instance, Section 6.2 of Hutchings et al., 1992) by means of a somewhat intricate argument that

x " (wo; 01 + pro, w2+ pro, ..., wp + pro)
1 oo ()¢, . /, /, o, /
_ 1 X"y 01 + pr1o’, w2 + prow Wy + pp@’) do/ (17.11)

it J_ o o —w

where p; > 0 for all i and where at least one p; must be nonzero. Among the many special cases
included in Eq. (1.7.11) are those involving the susceptibility for second-harmonic generation

1 o0 (2)2 /; /’ /
X(z)(2a);w,w):,—/ S i “) 4oy (1.7.12)
i) s o —w
and for third-harmonic generation
1 o ,03) 3 /; /’ /7 /
X(3)(3a);a),a),a)):,—/ X« w, @@ w)da)’. (1.7.13)
i) s o —w

Kramers—Kronig relations can also be formulated for the change in refractive index induced
by an auxiliary beam, which is described by a susceptibility of the sort x 3 (w; w, w1, —w1). In
particular, one can show (Hutchings et al., 1992) that

1 oo ,(3) /; /’ - do'
x(3>(w;w,w1,—w1)=—f X o, o, —o) dey (1.7.14)

it J_o o —w

Probably the most important process for which it is not possible to form a Kramers—Kronig
relation is for the self-induced change in refractive index, that is, for processes described by
the nonlinear susceptibility X(3) (w; w, w, —w). Note that this susceptibility is not of the form
of Eq. (1.7.10) or of (1.7.11), because the first two applied frequencies are equal and because the
third frequency is negative. Moreover, one can show by explicit calculation (see the problems
at the end of this chapter) that for specific model systems the real and imaginary parts of x
are not related in the proper manner to satisfy the Kramers—Kronig relations.

To summarize the results of this section, we have seen that Kramers—Kronig relations, which
are always valid in linear optics, are valid for some but not all nonlinear optical processes.
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Problems

1. Conversion from Gaussian to SI units. For proustite Xy(i)y has the value 1.3 x 10~7 cm/stat-
volt in Gaussian units. What is its value in MKS units? [Ans: 5.4 x 10~ m/V/]

2. Numerical estimate of nonlinear optical quantities. A laser beam of frequency w carrying

1 W of power is focused to a spot size of 30- um diameter in a crystal having a refrac-
tive index of n = 2 and a second-order susceptibility of x® =4 x 10~!! m/V. Calculate
numerically the amplitude P (2w) of the component of the nonlinear polarization oscillat-
ing at frequency 2w. Estimate numerically the amplitude of the dipole moment per atom
1 (2w) oscillating at frequency 2w. Compare this value with the atomic unit of dipole mo-
ment (eag, where ag is the Bohr radius) and with the linear response of the atom, that is,
with the component p©(w) of the dipole moment oscillating at frequency w. We shall see
in the next chapter that, under the conditions stated above, nearly all of the incident power
can be converted to the second harmonic for a 1-cm-long crystal.
[Ans: PQw) = 4.7 x 10~1 C/m3. Assuming that N = 10%® atoms/m>, uQw) =
4.7 x 1073 Cm = 5.56 x 10~ '%eaq, where eay = 8.5 x 10730 Cm. By comparison,
P(w)=9.7 x 107 C/m? and p(w) =9.7 x 1073* Cm = 1.14 x 10~*eag, which shows
that u(2w)/p(w) =4.9 x 1076,

3. Perturbation expansion. Explain why it is unnecessary to include the term A% in the
power series of Eq. (1.4.6).

4. Tensor properties of the anharmonic oscillator model. Starting from Eq. (1.4.52), rele-
vant to a collection of isotropic, centrosymmetric, anharmonic oscillators, show that the
nonlinear susceptibility possesses the following tensor properties:

X1122 = X1212 = X1221 = X1133 = X1313 = X1331 = X2233 = X2323
= X2332 = X2211 = X2121 = X2112 = X3311 = X3131 = X3113
1 1 1
= X3322 = X3232 = X3223 = 3X1111 = 3X2222 = 3X3333, (1.7.15)

with all other elements vanishing. Give a simple physical argument that explains why
the vanishing elements do vanish. Also, give a simple physical argument that ex-
plains why x;;x possesses off-diagonal tensor components, even though the medium is
isotropic.

5. Comparison of the centrosymmetric and noncentrosymmetric models. For the noncen-
trosymmetric anharmonic oscillator described by Eq. (1.4.1), derive an expression for
the third-order displacement ¥ and consequently for the third-order susceptibility
Xl(?)“(wq, W, Wy, 0p). Compare this result to that given by Eq. (1.4.52) for a purely
centrosymmetric medium. Note that for a noncentrosymmetric medium both of these con-



62

Chapter 1

10.

11.

12.

tributions can be present. Estimate the size of each of these contributions to see which is
larger.

Determination of degr. Verify Egs. (1.5.32a) and (1.5.32b).

Formal properties of the third-order response. Section 1.5 contains a description of
some of the formal mathematical properties of the second-order susceptibility. For the
present problem, you are to determine the analogous symmetry properties of the third-
order susceptibility x ®. In your response, be sure to include the equations analogous to
Egs. (1.5.1), (1.5.2), (1.5.5), (1.5.6), (1.5.8), (1.5.9), and (1.5.21).

Consequences of crystalline symmetry. Through explicit consideration of the symmetry
properties of each of the 32 point groups, verify the results presented in Tables 1.5.2 and
1.5.4 and in Fig. 1.5.3.

[Notes: This problem is lengthy and requires a more detailed knowledge of group theory
and crystal symmetry than that presented in this text. For a list of recommended readings
on these subjects, see the reference list to the present chapter. For a discussion of this
problem, see also Butcher (1965).]

Subtlety regarding crystal class 432. According to Table 1.5.2, x® possesses nonvanish-
ing tensor elements for crystal class 432, but according to Fig. 1.5.3 d;; for this crystal
class vanishes identically. Justify these two statements by taking explicit account of the
additional constraints that are implicit in the definition of the d;; matrix.
Kramers—Kronig relations. Show by explicit calculation that the linear susceptibility of an
optical transition modeled in the two-level approximation obeys the Kramers—Kronig rela-
tions, but that neither the total susceptibility x nor the third-order susceptibility x ®) obeys
these relations. Explain this result by finding the location of the poles of x and of x®.
[Hints: x " and x® are given by Eqs. (6.3.33) and y is given by Eq. (6.3.23).]
Kramers—Kronig relations. For the classical anharmonic oscillator model of Eq. (1.4.20)
show by explicit calculation that x ® (2w; w, ) obeys the Kramers—Kronig relations in
the form (1.7.12). Show also that X(z) (w1; w3, —wy) does not satisfy Kramers—Kronig
relations.

Example of the third-order response. The third-order polarization includes a term oscillat-
ing at the fundamental frequency and given by

P(3)(a)) = 360X(3)|E(a))|2E(w).

Assume that the field at frequency w includes two contributions that propagate in the di-
rections given by wave vectors k| and ky. Assume also that the second contribution is
sufficiently weak that it can be treated linearly. Calculate the nonlinear polarization at the
fundamental frequency and give the physical interpretation of its different terms.
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Chapter 2

Wave-Equation Description of Nonlinear
Optical Interactions

2.1 The Wave Equation for Nonlinear Optical Media

We have seen in the last chapter how nonlinearity in the response of a material system to an in-
tense laser field can cause the polarization of the medium to develop new frequency components
not present in the incident radiation field. These new frequency components of the nonlinear
polarization act as sources of new frequency components of the electromagnetic field. In the
present chapter, we examine how Maxwell’s equations describe the generation of these new
components, and more generally we see how the various frequency components of the field
become coupled by the nonlinear interaction.

Before developing the mathematical theory of these effects, we give a simple physical pic-
ture of how these frequency components are generated. For definiteness, we consider the case
of sum-frequency generation as shown in part (a) of Fig. 2.1.1, where the input fields are at
frequencies w; and w,. Because of nonlinearities in the atomic response, each atom develops
an oscillating dipole moment that contains a component at frequency w; + w>. An isolated atom
would radiate at this frequency in the form of a dipole radiation pattern, as shown symbolically
in part (b) of the figure. However, any material sample contains an enormous number N of
atomic dipoles, each oscillating with a phase that is determined by the phases of the incident
fields. If the relative phasing of these dipoles is correct, the field radiated by each dipole will
add constructively in the forward direction, leading to radiation in the form of a well-defined
beam, as illustrated in part (c) of the figure. The system will act as a phased array of dipoles
when a certain condition, known as the phase-matching condition (see Eq. (2.2.14) in the next
section), is satisfied. Under these conditions, the electric field strength of the radiation emitted
in the forward direction will be N times larger than that due to any one atom, and consequently
the intensity will be N2 times as large.

Let us now consider the form of the wave equation for the propagation of light through a
nonlinear optical medium. We begin with Maxwell’s equations, which we write in SI units in
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(a) o,
E— ()()3 =()01 +w2
_—
H
(b) CL)1+C()2
(©)

the form*
vV-D=5,
V-B=0,
. oB
VXE=——,
ot
) ) R
VxH=—+].
ot

(2.1.1)
(2.1.2)

(2.1.3)

2.1.4)

We are primarily interested in the solution of these equations in regions of space that contain

no free charges, so that

0,

0
and that contain no free currents, so that

J=o.

* Throughout the text we use a tilde (~) to denote a quantity that varies rapidly in time.

2.1.5)

(2.1.6)
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We also assume that the material is nonmagnetic, so that
B = oH. (2.1.7)

However, we allow the material to be nonlinear in the sense that the fields D and E are related
by

D=¢E+P, (2.1.8)

where in general the polarization vector P depends nonlinearly upon the local value of the
electric field strength E.

We now proceed to derive the optical wave equation in the usual manner. We take the curl
of the curl-E Maxwell equation (2.1.3), interchange the order of space and time derivatives on
the right-hand side of the resulting equation, and use Eqs. (2.1.4), (2.1.6), and (2.1.7) to replace
V xB by o (3D /0t), to obtain the equation

2

8 3
VXVXE+M08—2D 0. (2.1.92)

We now use Eq. (2.1.8) to eliminate D from this equation, and we thereby obtain the expression

VxVxE 1821?: L op 2.1.9b
x V x +28t2 60028t2' (2.1.9b)
On the right-hand side of this equation we have replaced 1o by 1/€oc? for future convenience.
This is the most general form of the wave equation in nonlinear optics. Under certain condi-
tions it can be simplified. For example, by using an identity from vector calculus, we can write
the first term on the left-hand side of Eq. (2.1.9b) as

VxVxE=V(V-E)-V’E. (2.1.10)

In the linear optics of isotropic source-free media, the first term on the right-hand side of this
equation vanishes because the Maxwell equation V - D=0 implies that V - E = 0. However,
in nonlinear optics this term is generally nonvanishing even for isotropic materials, as a conse-
quence of the more general relation (2.1.8) between D and E. Fortunately, in nonlinear optics
the first term on the right-hand side of Eq. (2.1.10) can usually be dropped for cases of interest.
For example, if E is of the form of a transverse, infinite plane wave, V - E vanishes identically.
More generally, the first term can often be shown to be small, even when it does not vanish
identically, especially when the slowly varying amplitude approximation (see Section 2.2) is
valid. For the remainder of this book, we shall usually assume that the contribution of V(V - E)
in Eq. (2.1.10) is negligible so that the wave equation can be taken to have the form
be 132 1 %P
V°E =2 aﬂE_eocZ YR (2.1.11)

Alternatively, the wave equation can be expressed as
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VZE- ——D=0 (2.1.12)
where D = EOE +P.
It is often convenient to split P into its linear and nonlinear parts as
P=pP" + P (2.1.13)

Here PO is the part of P that depends linearly on the electric field strength E. We can similarly
decompose the displacement field D into its linear and nonlinear parts as

D=D" + PN, (2.1.14a)
where the linear part is given by

DY = ¢E +PD, (2.1.14b)
In terms of this quantity, the wave equation (2.1.11) can be written as

- 1 92DM 1 92PN
eoc? 92 € 92

(2.1.15)

To see why this form of the wave equation is useful, let us first consider the case of a lossless,
dispersionless medium. We can then express the relation between D)) and E in terms of a real,
frequency-independent dielectric tensor €(!) as

DY = eV - E. (2.1.16a)
For the case of an isotropic material, this relation reduces to simply
DY = eVE, (2.1.16b)

where €1 is a scalar quantity. Note that we are using the convention that €y = 8.85 x

10~!2 F/m is a fundamental constant, the permittivity of free space, whereas (! is the di-

mensionless, relative permittivity which is different for each material. For this (simpler) case

of an isotropic, dispersionless material, the wave equation (2.1.15) becomes
. eW?E 1 97PN

VE - ——

Ry :—eocz—atz . (2.1.17)

This equation has the form of a driven (i.e., inhomogeneous) wave equation; the nonlinear
response of the medium acts as a source term that appears on the right-hand side of this
equation. In the absence of this source term, Eq. (2.1.17) admits solutions of the form of free
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waves propagating with velocity ¢/n, where n is the (linear) index of refraction that satisfies
n?=em,

For the case of a dispersive medium, we must consider each frequency component of the
field separately. We represent the electric, linear displacement, and polarization fields as the
sums of their various frequency components:

Er, 0= E.r,0), (2.1.182)
DV, =Y DV, ), (2.1.18b)
PN = S PN ), (2.1.18¢)

n

where the summation is to be performed over positive field frequencies only, and we represent
each frequency component in terms of its complex amplitude as

E,(r,7) =E,(r)e ' +c.c., (2.1.19a)
D (r, 1) =DV (r)e " +c.c., (2.1.19b)
PML(r, 1) = PN (r)e i@ 4 cc. (2.1.19¢)

)
n

If dissipation can be neglected, the relationship between DY’ and E,, can be expressed in terms

of a real, frequency-dependent dielectric tensor according to
DV (r, 1) = eoeV(wy) - En(r, 1). (2.1.20)

When Egs. (2.1.18a) through (2.1.20) are introduced into the wave equation in the form of
(2.1.15), we obtain a wave equation analogous to (2.1.17) that is valid for each frequency com-
ponent of the field:

eV(w,) 9°E, 1 9PNt
2 ez T eoc? 912
The general case of a dissipative medium is treated by allowing the dielectric tensor to be a
complex quantity that relates the complex field amplitudes according to

V2E, —

(2.1.21)

D (r) = egeV(wy) - E, (r). (2.1.22)

This expression, along with Egs. (2.1.18) and (2.1.19), can be introduced into the wave equation
(2.1.15), to obtain

2 ‘U;% ) w;% NL
\% E"(r)+c_2€ (co,,)-E,,(l')=—€07P,1 (r). (2.1.23)

This equation is the frequency-domain version of the wave equation and is often referred to as
a Helmbholtz equation.
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2.2 The Coupled-Wave Equations for Sum-Frequency Generation

We next study how the nonlinear optical wave equation that we derived in the previous section
can be used to describe specific nonlinear optical interactions. In particular, we consider sum-
frequency generation in a lossless nonlinear optical medium involving collimated, monochro-
matic, continuous-wave input beams. We assume the configuration shown in Fig. 2.2.1, where
the applied waves fall onto the nonlinear medium at normal incidence. For simplicity, we ig-
nore double refraction effects. The treatment given here can be generalized straightforwardly
to include nonnormal incidence and double refraction.*

>

1 Q2)

degp= 5 X —> ;=0 10,

L —>

FIGURE 2.2.1: Sum-frequency generation.

The wave equation in Eq. (2.1.21) must hold for each frequency component of the field and
in particular for the sum-frequency component at frequency ws. In the absence of a nonlinear
source term, the solution to this equation for a plane wave at frequency w3 propagating in the
+z direction is

Ex(z,1) = Aze! k32930 4 ¢ ¢ (2.2.1)

where’

n3ws3

ky = n3 =€V (wy), (2.2.2)

and where the amplitude of the wave A3 is a constant. We expect on physical grounds that,
when the nonlinear source term is not too large, the solution to Eq. (2.1.21) will still be of the
form of Eq. (2.2.1), except that A3 will become a slowly varying function of z. We hence adopt
Eq. (2.2.1) with Az taken to be a function of z as the form of the trial solution to the wave
equation (2.1.21) in the presence of the nonlinear source term.

We represent the nonlinear source term appearing in Eq. (2.1.21) as

Py(z,1) = Pse ™' +c.c., (2.2.3)

* See, for example, Shen (1984a), Chapter 6.
T For convenience, we are working in the scalar field approximation; n3 represents the refractive index appropriate
to the state of polarization of the w3 wave.
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where according to Eq. (1.5.28)
Py =4epdettE1 Er. (2.2.4)
We represent the applied fields (i =1, 2) as
Ei(z,1) = Eie "' 4+ cc., where E;=A;eit. (2.2.5)
The amplitude of the nonlinear polarization can then be written as
P3 = degdefr A Ape' F11RIT = proiithka)z (2.2.6)

We now substitute Egs. (2.2.1), (2.2.3), and (2.2.6) into the wave equation (2.1.21). Since
the fields depend only on the longitudinal coordinate z, we can replace V2 by d?/dz>. We then
obtain

d2A3 . dAs 6(1)(w3)w2A3 o
|:d—Z2+2lk3d—Z _k§A3+ 6723 el(k3z w3t)—|—C.C.
—Ad > .
= 2 Al e 2.2.7)

Since k% = 6(1)(a)3)a)§ /cz, the third and fourth terms on the left-hand side of this expression
cancel. Note that we can drop the complex conjugate terms from each side and still maintain
the equality. We can then cancel the factor exp(—iw3t) on each side and write the resulting
equation as

dzﬁ + 2ik3 dAs — _4deffa)§ AlAzei(lirkz*kz.)Z_ (2.2.8)

dz? dz c?

It is usually permissible to neglect the first term on the left-hand side of this equation on the
grounds that it is very much smaller than the second. This approximation is known as the slowly
varying amplitude approximation and is valid whenever

dAsz
3 dz

d?As
. (2.2.9)

dz?

This condition requires that the fractional change in A3 in a distance of the order of an optical
wavelength must be much smaller than unity. When this approximation is made, Eq. (2.2.8)
becomes
dA 2id ,
A3 _ ZIQefD3 4 Ayl Bk, (2.2.10)
dz n3c
where n3 is the refractive index experienced by the w3 wave and where we have introduced the
quantity

Ak =k + ko — k3, (2.2.11)
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which is called the wavevector (or momentum) mismatch. Equation (2.2.10) is known as a
coupled-amplitude equation, because it shows how the amplitude of the w3 wave varies as a
consequence of its coupling to the w; and w, waves. In general, the spatial variation of the w
and w, waves must also be taken into consideration, and we can derive analogous equations for
the w1 and w; fields by repeating the derivation given above for each of these frequencies. We
hence find two additional coupled-amplitude equations given by

dA 2id, i

1 _ laeff@w] A3A;e—1Akz’ (2212&)
dz nic
dA 2id, i

2 _ Ldeffw2 A3AT€7£N(Z. (2.2.12b)
dz nac

Note that, in writing these equations in the forms shown, we have assumed that the medium is
lossless. For a lossless medium, no explicit loss terms need be included in these equations, and
furthermore we can make use of the condition of full permutation symmetry (Eq. (1.5.8)) to
conclude that the coupling coefficient defr has the same value in each equation.
For future reference, we note that Eq. (2.2.10) can be written more generally in terms of the
slowly varying amplitude p3 of the nonlinear polarization as
dA; _ iw3 iAkz (2.2.13)
dz 2epnsc
where according to Eq. (2.2.6) p3 is given by P3 = p3expli(k; + k2)z]. Analogous equations
can of course be written for the spatial variations of Aj and A».

2.2.1 Phase-Matching Considerations

For simplicity, let us assume that the amplitudes A; and Aj of the input fields can be taken
as constants on the right-hand side of Eq. (2.2.10). This assumption is valid whenever the
conversion of the input fields into the sum-frequency field is not too large. We note that, for the
special case

Ak =0, (2.2.14)

the amplitude A3 of the sum-frequency wave increases linearly with z, and consequently that
its intensity increases quadratically with z. The condition (2.2.14) is known as the condition
of perfect phase matching. When this condition is fulfilled, the generated wave maintains a
fixed phase relation with respect to the nonlinear polarization and is able to extract energy
most efficiently from the incident waves. From a microscopic point of view, when the condition
(2.2.14) is fulfilled the individual atomic dipoles that constitute the material system are properly
phased so that the field emitted by each dipole adds coherently in the forward direction. The
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total power radiated by the ensemble of atomic dipoles thus scales as the square of the number
of atoms that participate.

When the condition (2.2.14) is not satisfied, the intensity of the emitted radiation is smaller
than for the case of Ak = 0. The amplitude of the sum-frequency (w3) field at the exit plane of
the nonlinear medium is obtained in this case by integrating Eq. (2.2.10) from z=0to z = L,
yielding

A3(L) =

. L : i AKL
2idesraz A1 A2 / o™k g 2idefrz A1 A <e’ — 1> (2.2.15)
0

iAk
The intensity of the w3 wave is given by the magnitude of the time-averaged Poynting vector,
which for our definition of field amplitude is given by

I; =2njeocl Ai)?, i=1,2,3. (2.2.16)

nsc nsc

We thus find that the intensity of the generated wave is given by
2

8n6d2a)2A 2A2 iAkL_l
1, = Sm3€oders 3| 1171A2]" | e 2.2.17)
n3c Ak
The squared modulus that appears in this equation can be expressed as
eIAKL 12 _2 e AL\ (e AL\ 2L2(1 —cos AkL)
Ak B AkL AkL B (AkL)?
]
AkKL/2
= 2 SBRLID) o G2 akL ). (22.18)
(AkKL/2)?

Finally, our expression for /3 can be written in terms of the intensities of the incident fields by
using Eq. (2.2.16) to express |A; |2 in terms of the intensities, yielding the result

2d%.w3 1 I AkL
= 22 sincz(—) (2.2.19)
n1nyn3epc 2

Note that the effect of wavevector mismatch is included entirely in the factor sinc?(AkL/2).
This phase mismatch factor is plotted in Fig. 2.2.2.

It should be noted that the efficiency of the three-wave mixing process decreases as |Ak|L
increases, with some oscillations occurring. The reason for this behavior is that if L is greater
than approximately 1/Ak, the output wave can get out of phase with its driving polarization,
and power can flow from the w3 wave back into the w; and w> waves (see Eq. (2.2.10)). For
this reason, one sometimes defines

Leoh =2/Ak (2.2.20)

to be the coherent buildup length of the interaction, so that the phase mismatch factor in
Eq. (2.2.19) can be written as

sinc?(L /Legh). (2.2.21)
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FIGURE 2.2.2: Effects of wavevector mismatch on the efficiency of sum-frequency generation.

2.3 Phase Matching

We saw in Section 2.2 that for sum-frequency generation involving undepleted input beams, the
intensity of the generated field at frequency w3 = w; + w» varies with the wavevector mismatch

Ak =ky +ky — k3 2.3.1)

according to

(2.3.2)

Jy = 1 |:sin(AkL/2) ]2.

(AKL/2)

This expression predicts a drastic decrease in the efficiency of the sum-frequency generation
process when the condition of perfect phase matching, Ak = 0, is not satisfied.

For nonlinear mixing processes that are sufficiently efficient to lead to depletion of the input
beams, the functional dependence of the efficiency of the process on the phase mismatch is no
longer given by Eq. (2.3.2). However, even in this case the efficient generation of the output
field requires that the condition Ak = 0 be maintained.

Behavior of the sort predicted by Eq. (2.3.2) was first observed experimentally by Maker
et al. (1962) and is illustrated in Fig. 2.3.1. Their experiment involved focusing the output
of a pulsed ruby laser into a single crystal of quartz and measuring how the intensity of the
second-harmonic signal varied as the crystal was rotated, thus varying the effective path length
L through the crystal. The wavevector mismatch Ak was nonzero and approximately the same
for all orientations used in their experiment.

The phase-matching condition Ak = 0 is often difficult to achieve because the refractive
index of materials that are lossless in the range w; to w3 (we assume that | < wy < w3)
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FIGURE 2.3.1: (a) Experimental setup of Maker et al. (b) Their experimental results.

shows an effect known as normal dispersion: the refractive index is an increasing function of
frequency. As a result, the condition for perfect phase matching with collinear beams,

mior | Mo M3 (2.3.3)

C C c

where
w1 + w2 = w3, (2.3.4)

cannot be achieved. For the case of second-harmonic generation, with w; = wy, w3 = 2w,
these conditions require that

n(wy) =nwy), (2.3.5)

which is clearly not possible when n(w) increases monotonically with w. For the case of sum-
frequency generation, the argument is slightly more complicated, but the conclusion is the
same. To show that phase matching is not possible in this case, we first rewrite Eq. (2.3.3) as

_ nop +nw

1 (2.3.6)

w3
This result is now used to express the refractive index difference n3 — n» as

a1 +nowy —now3z  njwp —na(w3 —wy) N — naw
3—ny) = — —
w3 w3 w3

’
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or finally as

ns —ny = (n1 — ng) . (2.3.7)
w3
For normal dispersion, 73 must be greater than n,, and hence the left-hand side of this equation
must be positive. However, ny must also be greater than n, showing that the right-hand side
must be negative, which demonstrates that Eq. (2.3.7) cannot possess a solution.

In principle, it is possible to achieve the phase-matching condition by making use of anoma-
lous dispersion, that is, the decrease in refractive index with increasing frequency that occurs
near an absorption feature. However, the most common procedure for achieving phase match-
ing is to make use of use of birefringence, which is displayed by many crystals. Birefringence
is the dependence of the refractive index on the direction of polarization of the optical radia-
tion. Not all crystals display birefringence; in particular, crystals belonging to the cubic crystal
system are optically isotropic (i.e., show no birefringence) and thus are not phase-matchable by
this procedure.

The linear optical properties of the various crystal systems are summarized in Table 2.3.1.

In order to achieve phase matching through the use of birefringent crystals, the highest-
frequency wave w3 = w1 + w» is polarized in the direction that gives it the lower of the two
possible refractive indices. For the case of a negative uniaxial crystal, as in the example shown
in Fig. 2.3.2, this choice corresponds to the extraordinary polarization. There are two choices
for the polarizations of the lower-frequency waves. Midwinter and Warner (1965) define type I
phase matching to be the case in which the two lower-frequency waves have the same polar-
ization, and type II to be the case where the polarizations are orthogonal. The possibilities are
summarized in Table 2.3.2. No assumptions regarding the relative sizes of w; and w; are im-
plied by the classification scheme. However, for type II phase matching it is easier to achieve
the phase-matching condition (i.e., less birefringence is required) if wy > w; for the choice of
w1 and wy used in writing the table. Also, independent of the relative values of w; and w;,
type I phase matching is easier to achieve than type I1.

TABLE 2.3.1: Linear optical classification of the various crystal systems.

System Linear Optical Classification
Triclinic, monoclinic, orthorhombic Biaxial

Trigonal, tetragonal, hexagonal Uniaxial

Cubic Isotropic

Careful control of the refractive indices at each of the three optical frequencies is required
in order to achieve the phase-matching condition (Ak = 0). Typically phase matching is ac-
complished by one of two methods: angle tuning and temperature tuning.
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FIGURE 2.3.2: Dispersion of the refractive indices of a negative uniaxial crystal. For the opposite case
of a positive uniaxial crystal, the extraordinary index n. is greater than the ordinary index n,.

TABLE 2.3.2: Phase-matching methods for uniaxial crystals.

Positive uniaxial Negative uniaxial
(ne > ng) (ne < ng)
Type | nfw3 =njw| +njw; nfw3 =njw| +njw
Type 1T nfw3 =njw| +njw nfw3 =njo) +njan

Angle Tuning

This method involves precise angular orientation of the crystal with respect to the propagation
direction of the incident light. It is most simply described for the case of a uniaxial crystal, and
the following discussion is restricted to this case. Uniaxial crystals are characterized by a partic-
ular direction known as the optic axis (or ¢ axis or z axis). Light polarized perpendicular to the
plane containing the propagation vector k and the optic axis is called the ordinary polarization.
Such light experiences the ordinary refractive index n,. Light polarized in the plane containing
k and the optic axis is called the extraordinary polarization and experiences a refractive index
ne(6) that depends on the angle 6 between the optic axis and k according to the relation™

1 _sin29 cos2 6
ne(0)2 2 n2

(2.3.8)

Here 7. is the principal value of the extraordinary refractive index. Note that n.(6) is equal
to the principal value n. for & = 90 degrees and is equal to n, for & = 0. Phase matching is
achieved by adjusting the angle 6 to obtain the value of n.(6) for which the condition Ak =0
is satisfied.

* For a derivation of this relation, see, for example, Born and Wolf (1975), Section 14.3; Klein (1970),
Eq. (11.160a); or Zernike and Midwinter (1973a), Eq. (1.26).
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As an illustration of angle phase matching, we consider the case of type I second-harmonic
generation in a negative uniaxial crystal, as shown in Fig. 2.3.3. Since n. is less than n, for
a negative uniaxial crystal, one chooses the fundamental frequency to propagate as an ordi-
nary wave and the second-harmonic frequency to propagate as an extraordinary wave, in order
that the birefringence of the material can compensate for the dispersion. The phase-matching
condition (2.3.5) then becomes

ne(2w, 0) = no(w), (2.3.9)
or

sin% @ cos2 9 . 1
iew)?  noRw)?  no(w)?’

(2.3.10)

In order to simplify this equation, we replace cos? @ by 1 — sin? 6 and solve for sin? @ to obtain

¢ 2
(O] @

® ordinary i extraordinary

FIGURE 2.3.3: Geometry of angle-tuned phase matching of second-harmonic generation for the case of
a negative uniaxial crystal.

1 1
2 2
sin2 9 = ”0(1‘”) ”0(21“’) . 2.3.11)

MeCw)?  now)?

This equation shows how the crystal should be oriented in order to achieve the phase-matching
condition. Note that this equation does not necessarily possess a solution for a physically real-
izable orientation angle (that is, a real value of the angle 8). For example, if for some material
the dispersion in the linear refractive index is too large or the birefringence is too small, the
right-hand side of this equation can have a magnitude larger than unity and consequently the
equation will have no solution.

The determination of the phase matching angle can be performed as a function of the wave-
lengths of the two input waves. The results of such a calculation are shown in Fig. 2.3.4 for
type-I collinear phase matching in lithium niobate. Lithium niobate is a negative uniaxial crys-
tal, and thus the two longer-wavelength waves have o polarization and the high-frequency
wave has e polarization. The label on each curve gives the phase matching angle, that is,
the angle between the wavevector of the waves and the optic axis of the crystal. This plot



Wave-Equation Description of Nonlinear Optical Interactions 79

was obtained through use of the refractive index data of Jundt (1997) and of Edwards and
Lawrence (1984) which were analyzed by the commercial software package SNLO (http://
www.as-photonics.com/snlo).

400 600 800 1000 1200 1400 16001800
/\3 [nm]

FIGURE 2.3.4: Phase matching curves for type-I collinear phase matching in lithium niobate. Here A3 is
the wavelength of the wave with the highest frequency, and the low frequency waves have wavelengths
A1 and A;. The number that labels each curve is the phase matching angle in degrees.

Temperature Tuning

There is one serious drawback to the use of angle tuning. Whenever the angle 6 between the
propagation direction and the optic axis has a value other than 0 or 90 degrees, the Poynting
vector S and the propagation vector Kk are not parallel for extraordinary rays. As a result, ordi-
nary and extraordinary rays with parallel propagation vectors quickly diverge from one another
as they propagate through the crystal. This walkoff effect limits the spatial overlap of the two
waves and decreases the efficiency of any nonlinear mixing process involving such waves.

For some crystals, notably lithium niobate, the amount of birefringence is strongly tempera-
ture-dependent. As a result, it is possible to phase-match the mixing process by holding 6 fixed
at 90 degrees and varying the temperature of the crystal. The temperature dependence of the
refractive indices of lithium niobate has been given by Hobden and Warner (1966).

2.4 Quasi-Phase-Matching (QPM)

Section 2.3 describes techniques that utilize the birefringence of an optical material to achieve
the phase-matching condition of nonlinear optics. This condition must be maintained for the ef-
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ficient generation of new frequency components in any nonlinear optical interaction. However,
there are circumstances under which these techniques are not suitable. For instance, a partic-
ular material may possess no birefringence (an example is gallium arsenide) or may possess
insufficient birefringence to compensate for the dispersion of the linear refractive indices over
the wavelength range of interest. The problem of insufficient birefringence becomes increas-
ingly acute at shorter wavelengths, because (as illustrated very schematically in Fig. 2.3.2) the
refractive index of a given material tends to increase rapidly with frequency at high frequen-
cies, whereas the birefringence (that is, the difference between the ordinary and extraordinary
refractive indices) tends to be more nearly constant. Another circumstance under which bire-
fringence phase matching cannot be used is when a particular application requires the use of
the ds3 nonlinear coefficient, which tends to be much larger than the off-diagonal coefficients.
For example, for lithium niobate, the d3; coefficient is equal to 4.35 pm/V, whereas the ds3
coefficient is equal to 27 pm/V. However, the d33 nonlinear coefficient can be accessed only if
all the interacting waves are polarized in the same direction. Under this circumstance, even if
birefringence is present it cannot be used to compensate for dispersion.

A technique known as quasi-phase-matching can be used when normal birefringence-based
phase matching cannot be implemented. The idea of quasi-phase-matching is illustrated in
Fig. 2.4.1, which shows both a single crystal of nonlinear optical material (part (a)) and a
periodically poled material (part (b)). A periodically poled material is a structure that has been
fabricated in such a manner that the orientation of one of the crystalline axes, often the ¢ axis of
a ferroelectric material, is inverted periodically as a function of position within the material. An
inversion in the direction of the ¢ axis has the consequence of inverting the sign of the nonlin-
ear coupling coefficient defr. This periodic alternation of the sign of deff can compensate for a
nonzero wavevector mismatch Ak. The nature of this effect is illustrated in Fig. 2.4.2. Curve (a)
of this figure shows that, in a perfectly phase matched interaction in an ordinary single-crystal
nonlinear optical material, the field strength of the generated wave grows linearly with prop-
agation distance. In the presence of a wavevector mismatch (curve c), the field amplitude of

(@) T

ot
= A—

FIGURE 2.4.1: Schematic representations of a second-order nonlinear optical material in the form of (a)
a homogeneous single crystal and (b) a periodically poled material in which the positive ¢ axis alternates
in orientation with period A.
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the generated wave oscillates with propagation distance. The nature of quasi-phase-matching is
illustrated by curve (b). Here it is assumed that the period A of the alternation of the crystalline
axis has been set equal to twice the coherent buildup length Lo of the nonlinear interaction.
Then, each time the field amplitude of the generated wave is about to begin to decrease as a
consequence of the wavevector mismatch, a reversal of the sign of d.¢r occurs which allows the
field amplitude to continue to grow monotonically.

. (a) with perfect phase-matching
| (b) with quasi-phase-matching

L (c) with a wavevector
mismatch

field amplitude

<

FIGURE 2.4.2: Comparison of the spatial variation of the field amplitude of the generated wave in a
nonlinear optical interaction for three different phase matching conditions. Curve (a) assumes that the
phase-matching condition is perfectly satisfied, and consequently the field amplitude grows linearly with
propagation distance. Curve (c) assumes that the wavevector mismatch Ak is nonzero, and consequently
the field amplitude of the generated wave oscillates periodically with distance. Curve (b) assumes the
case of a quasi-phase-matched interaction, in which the orientation of the positive ¢ axis is periodically
modulated with a period of twice the coherent buildup length L}, in order to compensate for the in-
fluence of wavevector mismatch. In this case the field amplitude grows monotonically with propagation
distance, although less rapidly than in the case of a perfectly phase-matched interaction.

A mathematical description of quasi-phase-matching can be formulated as follows. We let
d(z) denote the spatial dependence of the nonlinear coupling coefficient. In the example shown
in part (b) of Fig. 2.4.1, d(z) is simply the square-wave function which can be represented as

d(z) = defr sign[cos(2mz/A)]; (2.4.1)

more complicated spatial variations are also possible. In this equation, defr denotes the nonlin-
ear coefficient of the homogeneous material. The spatial variation of the nonlinear coefficient
leads to a modification of the coupled-amplitude equations describing the nonlinear optical in-
teraction. The nature of the modification can be deduced by noting that, in the derivation of
the coupled-amplitude equations, the constant quantity der appearing in Eq. (2.2.6) must be
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replaced by the spatially varying quantity d(z). It is useful to describe the spatial variation of
d(z) in terms of a Fourier series as

d@)=deic Y Gmexpliknz), (24.2)

m=—00

where k;,, = 2mm/A is the magnitude of the grating vector associated with the mth Fourier
component of d(z). For the form of modulation given in the example of Eq. (2.4.1), the coeffi-
cients G,, are readily shown to be given by

G = (2/mm) sin(mm /2), (2.4.3)

from which it follows that the fundamental amplitude G is given by G| = 2/m. Coupled-
amplitude equations are now derived as in Section 2.2. In performing this derivation, one
assumes that one particular Fourier component of d(z) provides the dominant coupling among
the interacting waves. After making the slowly varying amplitude approximation, one obtains
the set of equations

dA 2iwdy,

dZ — - A3A§e—i(Akm_2km)Z’ (2443)
dA 2iwod i

dA 2iwsd ;

dZ3 — IZ);C m A 1 Azel Akmz , (244C)

where d,, is the nonlinear coupling coefficient which depends on the Fourier order m according
to

dpm = dettG (2.4.5)
and where the wavevector mismatch for order m is given by
Ak =k + ko — k3 + ki (2.4.6)

Note that these coupled-amplitude equations are formally identical to those derived above
(that is, Egs. (2.2.10), (2.2.12a), and (2.2.12b)) for a homogeneous material, but they involve
modified values of the nonlinear coupling coefficient d.ff and wavevector mismatch Ak. Be-
cause of the tendency for d,, to decrease with increasing values of m (see Eq. (2.4.3)), it is most
desirable to achieve quasi-phase-matching through use of a first-order (m = 1) interaction for
which

Ak =ki +hy —ks —27/A,  dp = (2/7)defr. (2.4.7)
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From the first of these relations, we see that the optimum period for the quasi-phase-matched
structure is given by

A =2Leon =27/ (k1 + ka — k3). (2.4.8)

As a numerical example, one finds that L} is equal to 3.4 um for second-harmonic generation
of radiation at a wavelength of 1.06 pm in lithium niobate.

A number of different approaches have been proposed for the fabrication of quasi-phase-
matched structures. The idea of quasi-phase-matching originates in the very early paper by
Armstrong et al. (1962), which suggests slicing a nonlinear optical medium into thin segments
and rotating alternating segments by 180 degrees. This approach, while feasible (see, for ex-
ample Szilagyi et al., 1976), is hampered by the required micrometer-scale thinness of the
individual layers. A breakthrough came when it was discovered that the procedure for growing
lithium niobate crystals from a melt could be controlled so as to obtain a crystal with a periodic
modulation of the orientation of the ferroelectric domains and hence in the sign of defr. QPM
was demonstrated in this manner by Feng et al. (1980), Lim et al. (1989), Magel et al. (1990),
Fejer et al. (1992), and Myers et al. (1995). A further breakthrough came when Yamada et al.
(1993) demonstrated the use of a static electric field to invert the orientation of the ferroelectric
domains (and consequently of the crystalline ¢ axis) in a thin sample of lithium niobate. In
this approach, a metallic electrode pattern in the form of long stripes is deposited onto the top
surface of a lithium niobate crystal, whereas the bottom surface is uniformly coated to act as
a ground plane. A static electric field of the order of 21 kV/mm is then applied to the mate-
rial, which leads to domain reversal only of the material directly under the top electrode. QPM
based on periodic poling has also been reported in gallium arsenide (Vodopyanov et al., 2004),
potassium titanyl phosphate (KTP) (van der Poel et al., 1990), and lithium tantalate (Meyn and
Fejer, 1997). Quasi-phase-matched materials offer promise for many applications of nonlinear
optics, some of which are outlined in the review of Byer (1997).

The examples described above involve induced phase matching in materials that possess
a second-order x ® nonlinear response. This approach is somewhat related to work aimed at
inducing a second-order response in amorphous materials through the application of an intense
static electric field. Under certain circumstances, the induced response persists even after the
static field is removed. Such effects have been observed in silica glass waveguides (Myers et
al., 1991) and in amorphous silicon nitride (Grassani et al., 2019). Furthermore, Khanarian et
al. (1990) have demonstrated that polymeric materials can similarly be periodically poled by
the application of a static electric field.

2.5 The Manley-Rowe Relations

Let us now consider, from a general point of view, the mutual interaction of three optical waves
propagating through a lossless nonlinear optical medium, as illustrated in Fig. 2.5.1.
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FIGURE 2.5.1: Optical waves of frequencies w;, @,, and w3 = w| + w» interact in a lossless nonlinear
optical medium.

We have just derived the coupled-amplitude equations (Egs. (2.2.10) through (2.2.12b)) that
describe the spatial variation of the amplitude of each wave. Let us now consider the spatial
variation of the intensity associated with each of these waves. Since

I,‘ = Zl’lié()CAiA;k, (2.5.1)

the variation of the intensity is described by

dI; dA; dA;.") 252

— =2n;€pc| AT + A;
dz i€0 < 4z i dz
Through use of this result and Eq. (2.2.12a), we find that the spatial variation of the intensity of
the wave at frequency w is given by
dl 2deffa)%
— =2n;€egc———
dz kic?
= 4deodefrw (i A3ATA§€_iAkZ + C.C.)

(iATA3A%e 2% fcc.)

or by

U eodegreos Im(A3 AT AZe 25 2.5.3
d—z——éoeffwl m(A3A}Ale )- (2.5.3a)
We similarly find that the spatial variation of the intensities of the waves at frequencies w; and
w3 is given by

dl,

7 = —8e0defic Im(A3ATA5e™ 85, (2.5.3b)
Z
dl .
2 = _8epdesoos Im(A A) Agel 29)
Z

= 8e0defrw3 Im(A3 AT ASe ™ 2K%). (2.5.3¢)

We see that the sign of d 11 /dz is the same as that of d I, /d z but is opposite to that of d I3 /dz. We
also see that the direction of energy flow depends on the relative phases of the three interacting
fields.
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The set of Egs. (2.5.3) shows that the total power flow is conserved, as expected for propa-
gation through a lossless medium. To demonstrate this fact, we define the total intensity as

I=1L+0L+4 1. (2.54)

We then find that the spatial variation of the total intensity is given by
dl _ dli dI, dIs
dz dz dz dz
= —8eodefr(w1 + w2 — w3) Im(A3ATA5e ' 2K%) =0, (2.5.5)
where we have made use of Egs. (2.5.3) and where the last equality follows from the fact that

w3 = wi + wy.
The set of Egs. (2.5.3) also implies that

d (1 d (1 d (1
)\ L2 =_L(2), (2.5.6)
dz\ w1 dz\w dz \ w3

as can be verified by inspection. These equalities are known as the Manley—Rowe relations
(Manley and Rowe, 1959). Since the energy of a photon of frequency w; is hw;, the quantity
I; /w; that appears in these relations is proportional to the intensity of the wave measured in
photons per unit area per unit time. The Manley—Rowe relations can alternatively be expressed

as
d(hL I d(n I d(n I
(242 )=0, (L +2)=0 (L -Z)=0. @57
dz\wr» w3 dz\w; w3 dz\w; @

These equations can be formally integrated to obtain the three conserved quantities (conserved

in the sense that they are spatially invariant) M1, M5, and M3, which are given by
Y O R B VAN | L N VAU (2.5.8)

w2 W3 w] w3 w] w2

These relations tell us that the rate at which photons at frequency w; are created is equal
to the rate at which photons at frequency w, are created and is equal to the rate at which
photons at frequency w3 are destroyed. This result can be understood intuitively by means of
the energy level description of a three-wave mixing process, which is shown in Fig. 2.5.2. This
diagram shows that, for a lossless medium, the creation of an @ photon must be accompanied
by the creation of an @, photon and the annihilation of an w3 photon. It seems at first sight
surprising that the Manley—Rowe relations should be consistent with this quantum-mechanical
interpretation, when our derivation of these relations appears to be entirely classical. Note,
however, that our derivation implicitly assumes that the nonlinear susceptibility possesses full
permutation symmetry in that we have taken the coupling constant desr to have the same value
in each of the coupled-amplitude equations (2.2.10), (2.2.12a), and (2.2.12b). We remarked
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FIGURE 2.5.2: Photon description of the interaction of three optical waves.

earlier (following Eq. (1.5.9)) that in a sense the condition of full permutation symmetry is a
consequence of the laws of quantum mechanics.

2.6 Sum-Frequency Generation

In Section 2.2, we treated the process of sum-frequency generation in the simple limit in which
the two input fields are undepleted by the nonlinear interaction. In the present section, we treat
this process more generally. We assume the configuration shown in Fig. 2.6.1.

The coupled-amplitude equations describing this interaction were derived above and appear
as Eqgs. (2.2.10) through (2.2.12b). These equations can be solved exactly in terms of the Jacobi
elliptic functions. We shall not present the details of this solution, because the method is very
similar to the one that we use in Section 2.7 to treat second-harmonic generation. Details can
be found in Armstrong et al. (1962); see also Problem 2 at the end of this chapter.

Instead, we treat the somewhat simpler (but more illustrative) case in which one of the
applied fields (taken to be at frequency w») is strong, but the other field (at frequency wi) is
weak. This situation would apply to the conversion of a weak infrared signal of frequency w; to
a visible frequency w3 by mixing with an intense laser beam of frequency w; (see, for example,
Boyd and Townes, 1977a). This process is known as upconversion, because in this process the
information-bearing beam is converted to a higher frequency. Usually optical-frequency waves
are easier to detect with good sensitivity than are infrared waves. Since we can assume that the

W — —_> W
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1
w0, ——> defi= 5 X — o,

w _-— - = EE— =
3 > Wy, =0, +w,

FIGURE 2.6.1: Sum-frequency generation. Typically, no input field is applied at frequency w3.
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amplitude A, of the field at frequency w; is unaffected by the interaction, we can take A to
be a constant in the coupled-amplitude equations (Egs. (2.2.10) through (2.2.12b)), which then
reduce to the simpler set

dA; —iAkz

— =K A3e (2.6.1a)
dz
dA ;
T KA etinke (2.6.1b)
dz
where we have introduced the quantities
2iwldest 2iwidest
K = 1 x Kz = 3 Ar, 2.6.2
1 P 3T e 2 (2.6.2a)
and
Ak =k 4+ ky — k3. (2.6.2b)

The solution to Egs. (2.6.1) is particularly simple if we set Ak = 0, and we treat this case
first. We take the derivative of Eq. (2.6.1a) to obtain

d*A, dAs
=K —.
dz? dz
We now use Eq. (2.6.1b) to eliminate d A3 /dz from the right-hand side of this equation to obtain
an equation involving only A (z):

(2.6.3)

TA_ 4, (2.6.4)

where we have introduced the positive coupling coefficient x> defined by

2 242 2
47 a)3deff|A2|

2
=-K1K3= 2.6.5
K 1K3 kikact (2.6.5)
The general solution to Eq. (2.6.4) is
A1(z) = Bcoskz+ Csinkz. (2.6.6a)

We now obtain the form of A3z(z) through use of Eq. (2.6.1a), which shows that A3(z) =
(dAy/dz)/ Ky, or
— Bk Ck

sinkz + — coskz. (2.6.6b)
Ky

Az(z) =

We next find the solution that satisfies the appropriate boundary conditions. We assume that
the w3 field is not present at the input, so that the boundary conditions become A3(0) = 0 with



88 Chapter 2

A1(0) specified. We find from Eq. (2.6.6b) that the boundary condition A3(0) = 0 implies that
C =0, and from Eq. (2.6.6a) that B = A1(0). The solution for the w; field is thus given by

A1(z) = A1(0)coskz
and for the w3 field by
A3(2) = —A, (O)KLl sinkz.

We next express the ratio /K as follows:

Ky~ (kik3)'2c? 2iwlder A%

1/2
K 2w103des|A2|  kic? _i(mes /2|4,
n3wi

The ratio |A3|/ A3 can be represented as

|[A2] Az [A2| _ Az]Az] A2 _ it
Ay Ay A} 14212 |Az

9

where ¢, denotes the phase of A>. We hence find that

niws
n3wi

1/2 .
A3(2) :i( ) A1(0)sinkze'?2.

The nature of the solution given by Egs. (2.6.7) and (2.6.9) is illustrated in Fig. 2.6.2.

A5

(2.6.7)

(2.6.8)

(2.6.9)

Let us next solve Egs. (2.6.1) for the general case of arbitrary wave vector mismatch. We

seek a solution to these equations of the form

A](Z) — (Feigz + Ge—igZ)e—iAkZ/z’
A3(Z) — (Ceigz + De—igZ)el'AkZ/Z’

IAz‘z\ ]A

intensity

L
o
Kz

(2.6.10)
(2.6.11)

FIGURE 2.6.2: Variation of |A|? and |A3|? for the case of perfect phase matching in the undepleted-

pump approximation.
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where g gives the rate of spatial variation of the fields and where C, D, F, and G are con-
stants whose values depend on the boundary conditions. We take this form for the trial solution
because we expect the w; and w3 waves to display the same spatial variation, since they are
coupled to each other. We separate out the factors e*2¥2/2 because doing so simplifies the
final form of the solution. Equations (2.6.10) and (2.6.11) are now substituted into Eq. (2.6.1a),
to obtain

(igFeigZ _ l-gGe—igz)e—(l/Z)iAkz _ %iAk(FeigZ + Ge—igz)e—(l/Z)iAkz
= (K1Ce'$* + K De™'8%) = (1/2iAke, (2.6.12)

Since this equation must hold for all values of z, the terms that vary as €% and e /4% must each
maintain the equality separately; the coefficients of these terms thus must be related by

F(ig — 3iAk) = K| C, (2.6.13)
~G(ig + 5iAk) = K\ D. (2.6.14)
In a similar fashion, we find by substituting the trial solution into Eq. (2.6.1b) that
(igceigz _igDe—igZ)e(l/Z)iAkZ+ %l‘Ak(Ceigz+De—igz)e(l/2)iAkZ
= (K3Fe'$* + K3Ge™'8%)e1/210k, (2.6.15)
and in order for this equation to hold for all values of z, the coefficients must satisfy
C(ig + 3iAk) = K3F, (2.6.16)
—D(ig — 3iAk) = K3G. (2.6.17)

Equations (2.6.13) and (2.6.16) constitute simultaneous equations for F and C. We write
these equations in matrix form as

- 1
—5A —-K F
i(s = 344) . [ } 0.
—K3 i(g+5ak) | LC
A solution to this set of equations exists only if the determinant of the matrix of coefficients
vanishes, i.e., if
g’ =—KiK3 + Ak (2.6.18)

As before (cf. Eq. (2.6.5)), we introduce the positive quantity k> = —K1K3, so that we can
express the solution to Eq. (2.6.18) as

g=1/k2+ 1AK% (2.6.19)
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In determining g we take only the positive square root in the foregoing expression, since our
trial solution (2.6.10) and (2.6.11) explicitly contains both the e™8% and e 8% spatial variations.

The general solution to our original set of equations (2.6.1) is given by Eqgs. (2.6.10) and
(2.6.11) with g given by Eq. (2.6.19). We evaluate the arbitrary constants C, D, F, and G
appearing in the general solution by applying appropriate boundary conditions. We assume that
the fields A; and Az are specified at the input plane z = O of the nonlinear medium, so that
A1(0) and A3(0) are known. Then, by evaluating Egs. (2.6.10) and (2.6.11) at z = 0, we find
that

A1(0)=F +G, (2.6.20)
A3(0)=C+ D. (2.6.21)
Equations (2.6.13) and (2.6.14) give two additional relations among the quantities C, D, F, and
G. Consequently there are four independent linear equations relating the four quantities C, D,
F, and G, and their simultaneous solution specifies these four quantities. The values of C, D,

F, and G thereby obtained are introduced into the trial solutions (2.6.10) and (2.6.11) to obtain
the solution that meets the boundary conditions. This solution is given by

K | Ak .
A(z) = [Al(O) cosgz + <?1A3(0) + 12—gA1(0)> Singz}e_(l/z)’m‘z, (2.6.22)

—iAk

As(z) = [A3(0) cos gz + < A3(0) + %A1(0)> sin gz]e“ﬂ)"“z, (2.6.23)

In order to interpret this result, let us consider the special case in which no sum-frequency
field is incident on the medium, so that A3(0) = 0. Equation (2.6.23) then reduces to

K .
A3(z) = =2 A1 (0) sin gz e(1/ViAkz (2.6.24)
g

and the intensity of the generated wave is proportional to

|K3?

——sin’ gz, (2.6.25)
g

1432)|* = |4,0)°

where g is given as before by Eq. (2.6.19). We note that the characteristic scale length g ~! of the
interaction becomes shorter as Ak increases. However, as Ak increases the maximum intensity
of the generated wave decreases. Since, according to Eq. (2.6.25), the intensity of the generated
wave is inversely proportional to g2, we see that as Ak is increased the maximum intensity
of the generated wave is decreased by the factor |K3 12 / (k% + %Akz). This sort of behavior is
illustrated in Fig. 2.6.3, in which the predictions of Eq. (2.6.25) are displayed graphically.
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FIGURE 2.6.3: Spatial variation of the sum-frequency wave in the undepleted-pump approximation.

2.7 Second-Harmonic Generation

In this section we present a mathematical description of the process of second-harmonic gen-
eration, shown symbolically in Fig. 2.7.1. We assume that the medium is lossless both at the
fundamental frequency w; and at the second-harmonic frequency w; =2w1, so that the non-
linear susceptibility obeys the condition of full permutation symmetry. We treat the interacting
waves as plane waves of infinite transverse extent. Our discussion closely follows that of one
of the first theoretical treatments of second-harmonic generation (Armstrong et al., 1962).

We take the total electric field within the nonlinear medium to be given by

E(z,0) = E1(z,0) + Ea(z, 1), (2.7.1)

where each component is expressed in terms of a complex amplitude E;(z) and slowly varying
complex amplitude A ;(z) according to

Ej(z,t) = Ej(x)e "' +c.c., (2.7.2)
for j =1, 2, where
Ej(z) = Aj(2)e™e, (2.7.3)
and where the propagation constants and refractive indices are given by
ki =njwije, nj=[eD()]"> (2.7.4)

We assume that each frequency component of the electric field obeys the driven wave equation
(see also Eq. (2.1.21))

0’E; V) d’E; 1 8 5
9z? 2 A2 ec2arr

(2.7.5)
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FIGURE 2.7.1: Second-harmonic generation.

The nonlinear polarization is represented as
PNz, 1) = Pi(z,1) + Pa(z, 1) (2.7.6)
with
Pj(z,1) = Pj(z)e /" fcc., j=1,2. (2.7.7)

The expressions for the polarization amplitudes are given according to Egs. (1.5.28) and
(1.5.29) by

Pi(2) = de€oderr E2 Ef = degderAr ATe! F27k03 (2.7.8)
and
P(2) = 2€0deit E = 2€qdefrATe® 1%, (2.7.9)

Note that the degeneracy factors appearing in these two expressions are different. We obtain
coupled-amplitude equations for the two frequency components by methods analogous to those
used in Section 2.2 in deriving the coupled-amplitude equations for sum-frequency generation.
We find that

dA;  2iwides

4z T k2 ArATe !Bk (2.7.10)
and
% - i‘gf;ffA%eiAk{ @2.7.11)
where
Ak = 2k; — ko. 2.7.12)

In the undepleted-pump approximation (i.e., A; constant), Eq. (2.7.11) can be integrated im-
mediately to obtain an expression for the spatial dependence of the second-harmonic field
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amplitude. More generally, the pair of coupled equations must be solved simultaneously. To
do so, it is convenient to work with the modulus and phase of each of the field amplitudes
rather than with the complex quantities themselves. It is also convenient to express these am-
plitudes in dimensionless form. To do so, we write the complex, slowly varying field amplitudes
as

1/2
I i1
A= o u1e'?, (2.7.13)
1/2
! i$
Ay = Smacoc ure' %2, (2.7.14)

Here we have introduced the total intensity of the two waves,
I=1+1I, (2.7.15)
where the intensity of each wave is given by
I; =2njeoclAj . (2.7.16)

As a consequence of the Manley—Rowe relations, the total intensity / is invariant under propa-
gation. The real, normalized field amplitudes © and u, are defined such that u% + u% is also a
conserved (i.e., spatially invariant) quantity that satisfies the relation

u1(2)* +uz(2)* = 1. (2.7.17)
We next introduce a normalized distance parameter
¢=z/l, (2.7.18)

where

2 1/2
ninaepc C
[=(-! 2.7.19
( 21 ) a)ldeff ( )

is the characteristic distance over which the fields exchange energy. We also introduce the
relative phase of the interacting fields,

0 =2¢1 — ¢ + Akz, (2.7.20)
and a normalized phase-mismatch parameter

As = Akl (2.7.21)
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The quantities u ;, ¢;, ¢, and As defined in Eqgs. (2.7.13) through (2.7.21) are now introduced
into the coupled-amplitude equations (2.7.10) and (2.7.11), which reduce after straightforward
(but lengthy) algebra to the set of coupled equations for the three real quantities uy, u2, and 6:

d
S s sind, (2.7.22)
dg
d
auz _ —u?sing, (2.7.23)
dg

cosb d

—=A — (Inufus). 2.7.24
ac 1 e dg( uiu2) 2.7.24)
This set of equations has been solved under general conditions by Armstrong et al. We shall
return later to a discussion of the general solution, but for now we assume the case of perfect
phase matching so that Ak and hence As vanish. It is easy to verify by direct differentiation
that, for As =0, Eq. (2.7.24) can be rewritten as

d 2

— In (ujuz cos9) =0. (2.7.25)
d¢

Hence the quantity In(cos Gu%uz) is a constant, which we call InT", so that the solution to
Eq. (2.7.25) can be expressed as

uluycos =T. (2.7.26)

The quantity I" is independent of the normalized propagation distance ¢, and thus the value of I"
can be determined from the known values of u, up, and 0 at the entrance face to the nonlinear
medium, ¢ = 0.

We have thus found two conserved quantities: u% + u% (according to Eq. (2.7.17)) and
u%uz cos6 (according to Eq. (2.7.26)). These conserved quantities can be used to decouple
the set of equations (2.7.22)—(2.7.24). Equation (2.7.23), for instance, can be written using
Eq. (2.7.17) and the identity sin? 6 + cos®# = 1 as

‘;—”;2 = £(1 —u3)(1 —cos?6)"*. (2.7.27)

Equations (2.7.26) and (2.7.17) are next used to express cos? @ in terms of the conserved quan-
tity I' and the unknown function u;; the resulting expression is substituted into Eq. (2.7.27),
which becomes

duts , ( 2 >1/2 , ( 2 )1/2
—=x(1-u5)| 1 — —— =x(l-uy))|(l — ———=— . 2.7.28
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This result is simplified algebraically to give

duy 1/2
2ar = +[(1—u3)’u3 - 1],
or
2
‘Z—”{z = +2[(1 — ud)*ud — 12"/, (2.7.29)

This equation is of a standard form, whose solution can be expressed in terms of the Jacobi
elliptic functions. An example of the solution for one particular choice of initial conditions
is illustrated in Fig. 2.7.2. Note that, in general, the fundamental and second-harmonic fields
interchange energy periodically.

J

—
T
|

u?

fraction of total power,

FIGURE 2.7.2: Typical solution to Eq. (2.7.29), after Armstrong et al. (1962).

The solution of Eq. (2.7.29) becomes particularly simple for the special case in which the
constant I" vanishes. The condition I' = 0 occurs whenever the amplitude of either of the two
input fields is equal to zero or whenever the fields are initially phased so that cosf = 0. We
note that since I" is a conserved quantity, it is then equal to zero for all values of ¢, which in
general requires (see Eq. (2.7.26)) that

cosf =0. (2.7.30a)

For definiteness, we assume that
sinf = —1 (2.7.30b)

(rather than 4-1). We hence see that the relative phase of the interacting fields is spatially in-
variant for the case of I' = 0. In addition, when I" = 0 the coupled-amplitude equations (2.7.22)
through (2.7.24) take on the relatively simple forms
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d

R (2.7.31)
d¢

d

222 (2.7.32)
d¢

This second equation can be transformed through use of Eq. (2.7.17) to obtain

duy
i 1—u3, (2.7.33)

whose solution is
ur = tanh(¢ + &), (2.7.34)

where ¢ is a constant of integration.
We now assume that the initial conditions are

u1(0) =1, uz(0) =0. (2.7.35)

These conditions imply that no second-harmonic light is incident on the nonlinear crystal, as is
the case in most experiments. Then, since tanh 0 = 0, we see that the integration constant ¢ is
equal to 0 and hence that

ur(¢) =tanh¢. (2.7.36)

The amplitude u of the fundamental wave is found immediately through use of Eq. (2.7.32)
(or through use of Eq. (2.7.17)) to be given by

u1(¢) =sechce. (2.7.37)

Recall that ¢ = z/1. For the case in which only the fundamental field is present at z = 0, the
length parameter of Eq. (2.7.19) is given by

(n1n2)'/%c

= (2.7.38)
2w1dett| A1 (0)]

The solution given by Eqgs. (2.7.36) and (2.7.37) is shown graphically in Fig. 2.7.3. We see
that in the limit ¢ — oo all of the incident radiation is converted into the second harmonic.
In addition, we note that tanh (¢ 4 ¢g) has the same asymptotic behavior for any finite value
of ¢p. Thus, whenever I" is equal to zero, all of the radiation at the fundamental frequency will
eventually be converted to the second harmonic, for any initial ratio of u to u».



Wave-Equation Description of Nonlinear Optical Interactions 97

T T I T

1_

/ u (fundamental )

normalized field amplitude
T

~ u, (second harmonic)

1 I 1 1

0 1 2 3

normalized propagation distance, {=z/¢

FIGURE 2.7.3: Spatial variations of the fundamental and second-harmonic field amplitudes for the case
of perfect phase matching and the boundary condition u>(0) = 0.

{=z/1¢

FIGURE 2.7.4: Effect of wavevector mismatch on the efficiency of second-harmonic generation.

As mentioned above, Armstrong et al. have also solved the coupled-amplitude equations
describing second-harmonic generation for arbitrary Ak. They find that in this case the solution
can also be expressed in terms of elliptic integrals. We shall not reproduce their derivation here;
instead we summarize their results graphically in Fig. 2.7.4 for the case in which no radiation is
incident at the second-harmonic frequency. We see from the figure that the effect of a nonzero
propagation-vector mismatch is to lower the conversion efficiency and to lead to an oscillatory
solution.

As an illustration of how to apply the formulas derived in this section, we estimate the
conversion efficiency for second-harmonic generation attainable using typical cw lasers. We
first estimate the numerical value of the parameter ¢ given by Eqgs. (2.7.18) and (2.7.38) at the
plane z = L, where L is the length of the nonlinear crystal. We assume that the incident laser
beam carries power P and is focused to a spot size wq at the center of the crystal. The field
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strength A1 can then be estimated by the expression

P 2

Iy = — =2n1€0cAy. (2.7.39)
Twg

We assume that the beam is optimally focused in the sense that the focal spot size wg is chosen

so that the depth b of the focal region is equal to the length L of the crystal, that is,*

. 2nw(2)
T a/m

(2.7.40)

where A; denotes the wavelength of the incident wave in vacuum. From Egs. (2.7.39) and
(2.7.40), the characteristic value of the laser field amplitude under these conditions is seen to

be given by
P 1/2
A= , 2.7.41
! (Eoc)\.l L) ( )
and hence the parameter ¢ = L /[ is given through use of Eq. (2.7.38) by
1672d2,LP\'/?
(=\—""—7% . (2.7.42)
€ocninaiy

Typical values of the parameters appearing in this equation are deff = 4 x 1072 m/V, L =
0.01m, P =1W, A =0.5x10"%m, and n = 2, which lead to the value ¢ = 0.14. The efficiency
n for conversion of power from the w; wave to the wy wave can be defined by
- u3(L)
ui(0)’

(2.7.43)

and from Eq. (2.7.36), we see that for the values just given, 7 is of the order of 2%. However,
under optimized conditions, an efficiency as large as 55% has been observed (Chaitanya Kumar
etal., 2011).

2.7.1 Applications of Second-Harmonic Generation

Surface Nonlinear Optics

One important application of second-harmonic generation is its use as an exacting diagnostic
of the surface properties of optical materials. As noted above, second-harmonic generation is a
forbidden process for a material that possesses a center of inversion symmetry. The surface of
a material clearly lacks inversion symmetry, and thus second-harmonic generation can occur at

* See also the discussion of nonlinear interactions involving focused Gaussian beams presented in Section 2.10.
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the surface of a material of any symmetry group. For the same reason, the intensity and angular
distribution of surface second-harmonic generation depends critically on the morphology of
a surface and on the presence of impurities on the surface of the material. Good reviews of
the early work in this area are given by Shen (1985, 1989), and procedures for calculating the
intensity of the second-harmonic light are given by Mizrahi and Sipe (1988a). Second-harmonic
generation at a surface is described more fully in Section 2.9.

Nonlinear Optical Microscopy

An important application of harmonic generation is nonlinear microscopy. One motivation
for using nonlinear effects and in particular harmonic generation in microscopy is to provide
enhanced transverse and longitudinal resolution. Resolution is enhanced because nonlinear
processes are excited most efficiently in the region of maximum intensity of a focused laser
beam. Microscopy based on harmonic generation also offers the advantage that the signal is
far removed in frequency from unwanted background light that results from linear scattering
of the incident laser beam. Moreover, light at a wavelength sufficiently long that it will not
damage biological materials can be used to achieve a resolution that would normally require a
much shorter wavelength. Harmonic-generation microscopy can make use either of the intrinsic
nonlinear response of biological materials or can be used with materials that are labeled with
nonlinear optical chromophores. Microscopy based on second-harmonic generation in the con-
figuration of a confocal microscope and excited by femtosecond laser pulses was introduced
by Curley et al. (1992). Also, harmonic-generation microscopy can be used to form images of
transparent (phase) objects, because the phase matching condition of nonlinear optics depends
sensitively on the refractive index variation within the sample being imaged (Muller et al.,
1998).

Guo et al. (1997) have used tomography based on second-harmonic generation to character-
ize biological materials. Gauderon et al. (1998) have demonstrated three-dimensional imaging
based on second-harmonic generation with fs laser pulses. They used this method to char-
acterize the microcrystal structure of lithium triborate. Campagnola et al. (1999) have used
second-harmonic generation to produce images of live cells. Moreaux et al. (2000) have used
styrl dyes as labels to image membranes using second-harmonic generation microscopy.

Third-harmonic generation has also been used for imaging applications. Muller et al. (1998)
have demonstrated imaging of transparent objects using microscopy based on third-harmonic
generation. Yelin and Silberberg (1999) have constructed a scanning microscope based on third-
harmonic generation and have used it for the imaging of biological materials.

Nonlinear optical interactions that do not entail harmonic generation also have been shown
to hold great promise in optical microscopy. For example, Gustafsson (2005) has shown that
through the use of structured illumination and a sample that exhibits saturable absorption, he
was able to achieve a transverse resolution of 50 nm. Moreover, Westphal and Hell (2005) have
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shown the depletion of fluorescence by means of stimulated emission can be used to achieve
extremely high subwavelength resolution (in particular, 16 nm or 1/50 of their operating wave-
length) in optical microscopy.

2.8 Difference-Frequency Generation and Parametric Amplification

Let us now consider the situation shown in Fig. 2.8.1, in which optical waves at frequencies w3
and w interact in a lossless nonlinear optical medium to produce an output wave at the differ-
ence frequency w» = w3 — w1. For simplicity, we assume that the w3 wave is a strong wave (i.e.,
is undepleted by the nonlinear interaction, so that we can treat A3 as being essentially constant),
and for the present we assume that no field is incident on the medium at frequency w>.

The coupled-amplitude equations describing this interaction are obtained by a method anal-
ogous to that used in Section 2.2 to obtain the equations describing sum-frequency generation
and have the form

dAl _ 2'ld ffwlA A* lAkZ

e (2.8.1a)
dA, 2id
d—; - %A AtelBkz, (2.8.1b)
where
Ak =k3 — ki — ko (2.8.2)

We first solve these equations for the case of perfect phase matching—that is, Ak = 0. We
differentiate Eq. (2.8.1b) with respect to z and introduce the complex conjugate of Eq. (2.8.1a)
to eliminate d A}/dz from the right-hand side. We thereby obtain the equation

d*A,  Ad%otw3
= A3AL A, = k2 Ay, 2.83
12 ket 34342 k“Az ( )

where we have introduced the real coupling constant ¥ given by

) 4d> ffa) a)2

K= — 24507, (2.8.4)
kikoct
0, —> —> O,
_ 1@
O —> dog= 5 X —> O
0, - > > 0,=0,-0

FIGURE 2.8.1: Difference-frequency generation. Typically, no input field is applied at frequency w».
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A

amplitude

FIGURE 2.8.2: Spatial evolution of A; and A; for difference-frequency generation for the case Ak =0
in the constant-pump approximation.

The general solution to this equation is

As(z) = Csinhkz + Dcoshkz, (2.8.5)

where C and D are integration constants whose values depend on the initial conditions.
We now assume the initial conditions

A2(0)=0,  A;(0) arbitrary. (2.8.6)

The solution to Eqgs. (2.8.1a) and (2.8.1b) that meets these initial conditions is readily found to
be

A1(2) = A1 (0) coshrz, 2.8.7)
12 A
Ax(z) = i(”lwz) 3 A%(0)sinhkz. (2.8.8)
nawi |As3]

The nature of this solution is shown in Fig. 2.8.2. Note that both the w; and the w» fields ex-
perience monotonic growth and that asymptotically each field experiences exponential growth
(i.e., for kz > 1, each grows as ¢“%). We see from the form of the solution that the w; field
retains its initial phase and is simply amplified by the interaction, whereas the generated wave
at frequency w; has a phase that depends both on that of the pump wave and on that of the w;
wave. This behavior of monotonic growth of both waves is qualitatively dissimilar from that of
sum-frequency generation, where oscillatory behavior occurs.

The reason for the different behavior in this case can be understood intuitively in terms of
the energy-level diagram shown in Fig. 2.8.3. We can think of diagram (a) as showing how the
presence of a field at frequency w; stimulates the downward transition that leads to the genera-
tion of the w; field. Likewise, diagram (b) shows that the w; field stimulates the generation of
the w; field. Hence the generation of the w; field reinforces the generation of the w» field, and
vice versa, leading to the exponential growth of each wave.

Since the w field is amplified by the process of difference-frequency generation, which is
a parametric process, this process is also known as parametric amplification. In this language,
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FIGURE 2.8.3: Illustration of how the generation of light at frequency w; reinforces the generation of
light at frequency w; and vice versa.

one says that the signal wave (the w; wave) is amplified by the nonlinear mixing process, and an
idler wave (at wy = w3 — wy) is generated by the process. If mirrors that are highly reflecting at
frequencies w| and/or w; are placed on either side of the nonlinear medium to form an optical
resonator, oscillation can occur as a consequence of the gain of the parametric amplification
process. Such a device is known as a parametric oscillator and is described in greater detail in
the following section. The first cw optical parametric oscillator was built by Giordmaine and
Miller (1965, 1966). The theory of parametric amplification and parametric oscillators has been
reviewed by Byer and Herbst (1977).

The solution to the coupled-amplitude equations (2.8.1) for the general case of arbitrary
Ak # 0 makes a good exercise for the reader (see Problem 4 at the end of this chapter).

2.9 Optical Parametric Oscillators

We noted in the previous section that the process of difference-frequency generation necessar-
ily leads to the amplification of the lower-frequency input field. This amplification process is
known as optical parametric amplification, and the gain resulting from this process can be used
to construct a device known as an optical parametric oscillator (OPO). These features are sum-
marized in Fig. 2.9.1. Here we adopt the standard notation (see part (a) of the figure) that the
highest-frequency wave is known as the pump wave and the lower-frequency waves are known
as the signal and idler waves. There is no consistent usage regarding the naming of the signal
and idler waves. However, the desired output wave is typically referred to as the signal wave.
The gain associated with the process of optical parametric amplification can in the presence
of feedback produce oscillation, as shown in part (b) of the figure. If the end mirrors of this
device are highly reflecting at both frequencies ws and wj, the device is known as a doubly
resonant oscillator; if they are highly reflecting at ws or w; but not at both, the device is known
as a singly resonant oscillator. Note that when an OPO is operated near the point of degeneracy
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(b)
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FIGURE 2.9.1: (a) Relationship between difference-frequency generation and optical parametric am-
plification. (b) The gain associated with the process of optical parametric amplification can be used to
construct the device shown, which is known as an optical parametric oscillator.

(ws = wy) it tends to operate as a doubly resonant oscillator.” The optical parametric oscillator
has proven to be a versatile source of frequency-tunable radiation throughout the infrared, vis-
ible, and ultraviolet spectral regions. It can produce either a continuous-wave output or pulses
of nanosecond, picosecond, or femtosecond duration.

Let us recall the treatment of Section 2.8 on how to calculate the gain of the process of opti-
cal parametric amplification. For convenience, we label the pump, signal, and idler frequencies
as wp = w3, ws = w1, and w; = w;. We take the coupled-amplitude equations to have the form
(see also Egs. (2.8.1))

dA;  2iwjdes

T e At @919
dA, 2iwld ;

where Ak = k3 — k; — k. These equations possess the solution (see Problem 4 at the end of
this chapter)

| Ak :
Al(z) = [A 1(0) (cosh gz — ’2— sinh gz) + ﬂA§(0) sinh gz]elAkZ/z, (2.9.2a)
g g

Ak .
Ay(z) = [AZ(O) <cosh 27— ’2—g sinh gz> + %AT(O) sinh gz] GO (2.90h)

where we have introduced the quantities

2iw?desr A
g = [k} — (Ak/2)?]"* and k= ]’C—ezf” (2.9.3)
iC
For the special case of perfect phase matching (Ak = 0) and under the assumption that the input
amplitude of field A, vanishes (A;(0) = 0), the solution reduces to

A1(z) = A1(0) cosh gz = 1 A1(0) exp(g2) (2.9.42)

* In principle, polarization effects can be used to suppress cavity feedback for either the signal or idler wave for the
case of type-II phase matching.
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—— A7 (0)sinh gz = O(1)A7(0) exp(gz). (2.9.4b)

n1w2)1/2 Az
|A3]

Are) =i

nawi
In each expression, the last form gives the asymptotic value for large z, and the symbol O(1)
means of the order of unity. One sees that asymptotically both waves experience exponential
growth, with an amplitude gain coefficient of g.

Threshold for Parametric Oscillation

We next consider the threshold condition for the establishment of parametric oscillation. We
treat the device shown in Fig. 2.9.1(b), in which the two end mirrors are assumed to be identical
but are allowed to have different (intensity) reflectivities R; and R at the signal and idler
frequencies.

We first present a simple model of the threshold condition by taking it to be a statement
that the fractional energy gain per pass must equal the fractional energy loss per pass. Under
the assumptions of exact cavity resonance, of perfect phase matching (Ak = 0), and that the
cavity is doubly resonant with the same reflectivity at the signal and idler frequencies (that is,
Ri=R>=R, (1 — R) <« 1), this condition can be expressed as

(e*$% — 1) =2(1 - R). (2.9.5)

Under the realistic condition that the single-pass exponential gain 2g L is not large compared to
unity, this condition becomes

gL=1—R. (2.9.6)

This is the threshold condition formulated by Giordmaine and Miller (1965, 1966).

The threshold condition for optical parametric oscillation can be formulated more formally
as a statement that the fields within the resonator must replicate themselves each round trip.
For arbitrary end-mirror reflectivities at the signal and idler frequencies, this condition can be
expressed, again assuming perfect phase matching, as

A1(0) = [A 1(0) cosh gL + % A%(0) sinh gL}(l — 1), (2.9.7a)

K*
A3(0) = [A;(O) coshgL + -2 A1(0) sinth}(l — 1), (2.9.7b)
8
where I; = 1 — R;je~%! is the fractional amplitude loss per pass, o; being the absorption
coefficient of the crystal at frequency wj. By requiring that both of Egs. (2.9.7) be satisfied
simultaneously, we find the threshold condition to be

hily

coshgL =1+ ——"F—.
§ Ry —

(2.9.8)
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The threshold conditions for both doubly resonant oscillators and singly resonant oscillators are
contained in this result. The doubly resonant oscillator is described by taking the limit of low
loss for both the signal and idler waves (/1, l» < 1). In this limit, cosh gL can be approximated
by 1+ % g”L?, leading to the conclusion that the threshold condition for a doubly resonant
oscillator is

$°L* =11, (2.9.9)

in consistency with Eq. (2.9.6).

The threshold condition for a singly resonant oscillator can be obtained by assuming that
there is no feedback for the idler frequency, that is, that /; = 1. If we assume low loss for the
signal frequency (that is, /; < 1), the threshold condition becomes

¢2L? =21. (2.9.10)

Note that the threshold value of gL for a singly resonant oscillator is larger than that of the
doubly resonant oscillator by a factor of (2/1,)!/2. Despite this fact, it is usually desirable to
configure optical parametric oscillators to be singly resonant because of the increased stability
of singly resonant oscillators, for reasons that are explained below.

For simplicity, the treatment of this subsection has assumed the case of perfect phase match-
ing. It is straightforward to show that the threshold condition for the case Ak # 0 can be
obtained by replacing g by g2 sinc?(AkL/2) in Egs. (2.9.9) and (2.9.10).

Wavelength Tuning of an OPO

The condition of energy conservation ws + w; = w, allows any frequency ws smaller than w),
to be generated by an optical parametric oscillator. The output frequency wg can be controlled
through the phase-matching condition Ak = 0, which invariably can be satisfied for at most
one pair of frequencies ws and wj. The output frequency bandwidth can often be narrowed by
placing wavelength-selective items (such as etalons) inside the OPO cavity.

The principles of phase matching were described earlier in Section 2.3. Recall that phase
matching can be achieved either by varying the orientation of the nonlinear crystal (angle phase
matching) or by varying the temperature of the crystal.

2.9.1 Influence of Cavity Mode Structure on OPO Tuning

Let us now take a more detailed look at the tuning characteristics of an OPO. We shall see that
both the tuning and stability characteristics of an OPO are very different for the singly resonant
and doubly resonant cases.

Note first that under typical conditions the cavity mode spacing and cavity resonance width
tend to be much smaller than the width of the gain curve of the optical parametric amplification
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- 10 MHz ~ 100 GHz

A

Ave ~ 1 GHz

FIGURE 2.9.2: Schematic representation of the gain spectrum (the broad curve) and cavity mode struc-
ture of an OPO. Note that typically many cavity modes lie beneath the gain profile of the OPO.

process. This circumstance is illustrated in Fig. 2.9.2." Let us next consider which of these
cavity modes will actually undergo oscillation.

For the case of a singly resonant oscillator (displayed in part (a) of Fig. 2.9.3), the situation
is relatively simple. Oscillation occurs on the cavity mode closest to the peak of the gain curve.
Note also that (barring mechanical instabilities, etc.) oscillation will occur on only one cavity
mode. The reason for this behavior is that once oscillation commences on the cavity mode
closest to the peak of the gain curve, the pump power becomes depleted, thus lowering the gain
to the value of the loss for this mode. By assumption, the gain will be smaller at the frequencies
of the other cavity modes, and thus these modes will be below threshold for oscillation. This
behavior is very much analogous to that of a homogeneously broadened laser, which tends to
oscillate on a single cavity mode.

Consider now the different situation of a doubly resonant oscillator (Fig. 2.9.3(b)). For a
doubly resonant oscillator, oscillation is very much favored under conditions such that a signal
and its corresponding idler mode can simultaneously support oscillation. Note from the figure
that neither of these modes is necessarily the mode closest to the peak of the gain curve (which
occurs at Ak = 0). As a consequence doubly resonant oscillators tend not to tune smoothly.
Moreover, such devices tend not to run stably, because, for example, small fluctuations in the
pump frequency or the cavity length L can lead to disproportionately large variations in the
signal frequency.

The argument just presented, based on the structure of Fig. 2.9.3(b), presupposes that the
cavity modes are not equally spaced. In fact, it is easy to show that the cavity mode spacing for

* This example assumes that the cavity length L. is 15 ¢cm so that the cavity mode spacing Ave = ¢/2L. is 1 GHz,
that the cavity finesse F is 100 so that the linewidth associated with each mode is 1 GHz/F = 10 MHz and that
the width of the gain curve is 100 GHz. This gain linewidth is estimated by assuming that AkL (which is zero at
the center of the gain line and where L is the crystal length) drops to the value 7 at the edge of the gain line. If
we then assume that Ak changes with signal frequency because of material dispersion, and that dn/dv is of the
order of 10~ 13 sec, we obtain 100 GHz as the gain bandwidth.
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(a) , —— frequency for which Ak =0
I
I
I
I
1 > (Ds
L OPO oscillates on nearest cavity mode
frequency for which Ak =0
I
I
I > o,
I
I
I
0, < !
(where @, + ®; = ©,) OPO oscillates here! J

FIGURE 2.9.3: (a) Symbolic representation of the mode structure of a singly resonant OPO. (b) Sym-
bolic representation of the mode structure of a doubly resonant OPO. The signal-frequency and idler-
frequency axes increase in opposite directions, such that at each horizontal point ws + w; has the
fixed value wp. Thus, any point on the axis represents a point where the energy conservation relation
ws + wj = wy is satisfied, although only at points where signal and idler modes occur at the same hori-
zontal point is the double-resonance condition satisfied.

a cavity of length L. filled with a dispersive medium is given by

1 ¢ dn
_ . (&) —
= S @aL. where n*®’ =n +v o (2.9.11)

Ve

(see Problems 7 and 8 at the end of this chapter), which normally is not constant as a function
of frequency v. Here n(¢) is known as the group index.

Let us next examine more quantitatively the nature of the decreased stability of the doubly
resonant oscillator. We first estimate the characteristic frequency separation dw between the
peak of the gain curve and the frequency of actual oscillation, which is illustrated pictorially in
Fig. 2.9.3(b). To do so, it is convenient to first introduce the quantity

Ao=awp— o™ — o™, (2.9.12)

S

where a)gm) is one of the signal cavity-mode frequencies and similarly for a)i(m). Clearly, oscil-

lation can occur only for a pair of modes such that Aw ~ 0 (or more precisely where Aw < dw,
where Sw, is the spectral width of the cavity resonance). Note next that in jumping by one
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cavity mode for both ws and wj, the quantity Aw will change by the amount

5(Aw)—2n< ¢ ¢ )— ”C("Eg) _”‘Eg)) (2.9.13)
2n§g)Lc an(g)LC LC ngg)nl(g) . 9.

We next estimate the value of the frequency separation w by noting that it corresponds to
a change in Aw from its value near the point Ak = 0 to its value (= 0) at the oscillation point.
Unless the length of the OPO cavity is actively controlled, the value of Aw near Ak =0 can be
as large as one-half of a typical mode spacing or

A 1 27 TC (2.9.14)
wo = — = s .
"= 2\2merL, )~ 2n@L,

where 1(®) is some typical value of the group index. The number of modes between the peak of
the gain curve and the actual operating point under this situation is thus of the order of

Awg n®

N = = (2.9.15)
and the characteristic frequency separation dw is thus given by
2mc e 1
dw=AwN =~ (2.9.16)

——— N=—
2n@® L, 2L, (ngg) _ nl(g))

Note that this shift can be very large for n

The model just presented can be used to estimate an important quantity, the operational
linewidth 8w (©PO) of the oscillator. We noted above that in principle an OPO should oscillate
on a single cavity mode. However, because of unavoidable technical noise, an OPO might be
expected to oscillate (simultaneously or sequentially) on several different cavity modes. The
technical noise might be in the form of mechanical vibrations of the OPO cavity, leading to a
jitter of amount e, in the resonance frequency of each cavity mode. Alternatively, the technical
noise might be in the form of the spectral breadth dw,, of the pump radiation. Whichever effect
is larger might be expected to dominate, and thus the effective value of the technical noise is
given by Swefr = max(dw,, §wp). Analogously to Eq. (2.9.15), one then expects the number of
modes that undergo oscillation to be given by

© @,

5weff _ max(&op, 5a)c)

Noeo = = 2.9.17
P 5 (Aw) §(Aw) ( )
Consequently, the OPO linewidth is expected to be
(osc) ng
Sw = NopoAw, = — max(wy, Swe). (2.9.18)
(s) @) p
Ng —ng

Note that the linewidth of an OPO tends to be much greater than that of the pump field or that
of the bare OPO cavity. Active stabilization can be used to decrease this linewidth.
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Equation (2.9.18) has important implications in the design of OPOs. Note that this expres-
sion formally diverges at the point of degeneracy for a type-I (but not a type-1I) OPO. The
narrower linewidth of a type-II OPO compared to that of a type-I OPO constructed of the same
material has been observed in practice by Bosenberg and Tang (1990).

We conclude this section with a brief historical summary of progress in the development
of OPOs. As mentioned above, the first operating OPO was demonstrated by Giordmaine and
Miller (1965, 1966); it utilized the nonlinear optical response of lithium niobate and worked
in the pulsed regime. Continuous-wave operation of an OPO was demonstrated by Smith
et al. (1968) and utilized a BayNaNbsO5 nonlinear crystal. Interest in the development of
OPOs was renewed in the 1980s as a consequence of the availability of new nonlinear mate-
rials such as -BaB;04 (beta-barium borate or BBO), LiB3O5 (lithium borate or LBO), and
KTiOPO4 (KTP), which possess high nonlinearity, high resistance to laser damage, and large
birefringence. These materials led to the rapid development of new OPO capabilities, such as
continuous tunability from 0.42 to 2.3 um in a BBO OPO with conversion efficiencies as large
as 32% (Bosenberg et al., 1989), and OPOs that can produce tunable femtosecond pulses in
KTP Edelstein et al., 1989. The use of quasi-phase-matching in periodically poled lithium nio-
bate has also been utilized to produce novel OPOs. For additional information, the reader might
refer to Byer et al. (1973), Simon and Tittel (1994), and Ebrahimzadeh and Dunn (2001).

2.10 Nonlinear Optical Interactions with Focused Gaussian Beams

In the past several sections we have treated nonlinear optical interactions in the approximation
in which the interacting waves are taken to be infinite plane waves. However, in practice, the
incident radiation is usually focused into the nonlinear optical medium in order to increase
its intensity and thereby increase the efficiency of the nonlinear optical process. The present
section explores the nature of nonlinear optical interactions that are excited by focused laser
beams.

2.10.1 Paraxial Wave Equation

We begin by deriving what is known as the paraxial wave equation. We assume that each fre-
quency component of the beam obeys a wave equation of the form of Eq. (2.1.21)—that is,
1 °E, 1 3P,

V’E, — = . 2.10.1
"(e/n)? 912 T epc? or? ( )

We next represent the electric field E, and polarization P, as

E,(r,1) = A, (r)e!%ni=ond) Lo (2.10.2a)
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P,(r, 1) = pu(r)e! Knz=en) 4 ¢ o (2.10.2b)

Here we allow E,, and P, to represent nonplane waves by allowing the complex amplitudes A,
and p, to be spatially varying quantities. In addition, we allow the possibility of a wavevector
mismatch by allowing the wavevector of P, to be different from that of E,,. We next substitute
Egs. (2.10.2) into (2.10.1). Since we have specified the z direction as the dominant direction of
propagation of the wave E,, it is useful to express the Laplace operator as V2 = 8%/3z> + V2,
where the transverse Laplacian is given by V% =92/0x% + 8%/9y? in rectangular coordinates
and is given by Vi = (1/r)(3/3r)(rd/dr) + (1/r)?3%/d¢?, where r? = x> + y?, in cylindrical
coordinates. As in the derivation of Eq. (2.2.10), we now make the slowly varying amplitude
approximation, that is, we assume that any longitudinal variation of A, can occur only over
distances much larger than an optical wavelength. We hence find that Eq. (2.10.1) becomes

IA 2
2ikna—” 4 V2A, = — 1 etk (2.10.3)
Z €

where Ak =k, — kj,. This result is known as the paraxial wave equation, because the approxi-
mation of neglecting the contribution 32A /32> on the left-hand side is justifiable insofar as the
wave E,, is propagating primarily along the z axis.

2.10.2 Gaussian Beams

Let us first study the nature of the solution to Eq. (2.10.3) for the case of the free propagation
of an optical wave, that is, for the case in which the source term containing p,, vanishes. The
paraxial wave equation is solved in such a case by a beam having a transverse intensity distri-
bution that is everywhere a Gaussian and that can be represented in the scalar approximation as
(Kogelnik and Li, 1966)

A, 7) = A-20_ o /w@)? iki? 2R () (i (@) (2.10.42)
w(z)
where
w(z) = wo[ 1+ (Az/mwd)’]"? (2.10.4b)

represents the 1/e radius of the field distribution, where
R(2) = z[1+ (rw}/rz)’] (2.10.4¢)
represents the radius of curvature of the optical wavefront, and where

®(z) = —arctan (hz/7w) (2.10.4d)
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represents the spatial variation of the phase of the wave (measured with respect to that of an
infinite plane wave). In these formulas, wg represents the beam waist radius (that is, the value
of w at the plane z = 0), and A = 2nc¢/nw represents the wavelength of the radiation in the
medium. The angular divergence of the beam in the far field is given by 6 = A/mwg. The
nature of this solution is illustrated in Fig. 2.10.1.

(@)

/el 2w(z)

field amplitude

© { b |

2w
22w 0 22w

(4] o

FIGURE 2.10.1: (a) Field amplitude distribution of a Gaussian laser beam. (b) Variation of the beam
radius w and wavefront radius of curvature R with position z. (c) Relation between the beam waist
radius and the confocal parameter b.

For theoretical work it is often convenient to represent the Gaussian beam in the more com-
pact (but less intuitive) form (see Problem 10 at the end of the chapter)

A(r,z) = i.e—’z/w(%““? ), (2.10.52)
1+i¢
Here*
¢ =2z/b (2.10.5b)

* Note that the quantity ¢ defined here bears no relation to the quantity ¢ introduced in Eq. (2.7.18) in our discussion
of second-harmonic generation.
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is a dimensionless longitudinal coordinate defined in terms of the confocal parameter
b =2mwi/A = kwi, (2.10.5¢)

which, as illustrated in part (c) of Fig. 2.10.1, is a measure of the longitudinal extent of the
focal region of the Gaussian beam. It is worth noting that the confocal parameter b is related
to another standard quantity known as the Rayleigh range zg through the relation b = 2zg.
The total power P carried by a Gaussian laser beam can be calculated by integrating over the
transverse intensity distribution of the beam. Since P = [ I(r)2nrdr, where the intensity is
given by I = 2negc|A|?, we find that

P = negcrw| Al (2.10.6)

2.10.3 Harmonic Generation Using Focused Gaussian Beams

Let us now treat harmonic generation excited by a fundamental beam of frequency w and a
Gaussian transverse profile. For generality, we consider the generation of the gth harmonic.*
According to Eq. (2.10.3), the amplitude A, of the g-th harmonic (that is, the w; = qw fre-
quency component) of the optical field must obey the equation

2
dA w .
Zlkqa—;+V%Aq =—C_;1 X((I)A‘llelAkZ’ (2.10.7)

where Ak = gk; — k; and where we have set the complex amplitude p, of the nonlinear
polarization equal to p, = € X(q)A?. Here x @ is the nonlinear susceptibility describing gth-
harmonic generation—that is, X(Q) = X(‘f)(qa) =w+4+w+- -+ w), and A; is the complex
amplitude of the fundamental wave, which according to Eq. (2.10.5a) can be represented as

Ay 202010
AL(r,2) = ———e " /W IHO), 2.10.8
1(r,2) T4ic ( )
We work in the constant-pump approximation. We solve Eq. (2.10.7) by adopting the trial

solution

Ag(D) 22014
Aglr 2= eI, (2.109)
where A, (z) is a function of z. One might guess this form for the trial solution because its
radial dependence is identical to that of the source term in Eq. (2.10.7). Note also that (ignoring

* Our current treatment is valid for both even and odd values of ¢, even though the nonlinear susceptibility x@
would normally be expected to vanish for even values of ¢ for noncentrosymmetric media of the sort implicitly
assumed here.
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fundamental
- —

third harmonic, g = 3
fifth harmonic, g =5

FIGURE 2.10.2: Variation of the beam parameter w(z) in the focal region for the fundamental and third-
and fifth-harmonic beams. All three fields have the same confocal parameter b, although the beam waist
radius wq and far field diffraction angle scale as g ~!/2.

the longitudinal variation of A,(z)) the trial solution corresponds to a beam with the same
confocal parameter as the fundamental beam Eq. (2.10.8); this behavior makes sense in that the
harmonic wave is generated coherently over a region whose longitudinal extent is equal to that
of the fundamental wave. If the trial solution Eq. (2.10.9) is substituted into Eq. (2.10.7), we
find that it satisfies this equation so long as A, (z) obeys the (ordinary) differential equation

dA H iAkz
_q:ﬂx((ﬁ ‘1167_1 (2.10.10)
dz 2ng4c (1 +ig)e
This equation can be integrated directly to obtain
iqw
Ay (2) = TL3@ A1 (Ak, 20, 2), (2.10.11a)
2nc
where
z eiAkz’ d7’
Jy(Ak,z0,2) = (2.10.11b)

o I+ 2i7' /b)1~1 ,

and where z( represents the value of z at the entrance to the nonlinear medium. We see that the
harmonic radiation is generated with a confocal parameter equal to that of the incident laser
beam, as shown in Fig. 2.10.2. Hence the beam waist radius of the gth harmonic radiation
is ql/ 2 times smaller than that of the incident beam, and the far-field diffraction angle Og =
A/mwg is ¢'/? times smaller than that of the incident laser beam. We have solved Eq. (2.10.7)
by guessing the correct form (Eq. (2.10.9)) for the trial solution; a constructive solution to
Eq. (2.10.7) has been presented by Kleinman et al. (1966) for second-harmonic generation and
by Ward and New (1969) for the general case of gth-harmonic generation.

The integral appearing in Eq. (2.10.11b) can be evaluated analytically for certain special
cases. One such case is the plane-wave limit, where b > |z¢/, |z|. In this limit the integral
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FIGURE 2.10.3: Dependence of the phase-matching factor J3 for third-harmonic generation on the nor-
malized confocal parameter b Ak, in the tight-focusing limit.

reduces to
z  Ake! eiAkz _ eiAkZo
J,(Ak,z0,2) = 184y = , 2.10.12
S (Ak, 20,2) /zoe =t (2.10.122)
which implies that
|J4(Ak, z0,2)|" = L*sinc — (2.10.12b)

where L = z — z is the length of the interaction region.

The opposite limiting case is that in which the fundamental wave is focused tightly within
the interior of the nonlinear medium; this condition implies that zo = —|z¢|, z = |z|, and b K
|zol, |z]. In this limit the integral in Eq. (2.10.11b) can be approximated by replacing the limits
of integration by plus and minus infinity—that is,

. /
o0 ¢ Akz dZ/

oo (14+2i7//b)a~ 1"
This integral can be evaluated by means of a straightforward contour integration. One finds that

0, Ak <0,

Jq(Ak7 ZOsZ): _n _
S (B 2e PR Ak > 0.

(2.10.13b)

This functional form is illustrated for the case of third-harmonic generation (¢ = 3) in
Fig. 2.10.3. We find the somewhat surprising result that the efficiency of third-harmonic gen-
eration in the tight-focusing limit vanishes identically for the case of perfect phase matching
(Ak = 0) and is maximized through the use of a positive wavevector mismatch. This behavior
can be understood in terms of the phase shift of 7 radians that any beam of light experiences
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FIGURE 2.10.4: Tllustration of why a positive value of Ak is desirable in harmonic generation with fo-
cused laser beams. (a) Wavevector diagram for third-harmonic generation with Ak positive. Even though
the process is phase mismatched, the fundamental beam contains an angular spread of wavevectors and
the phase-matched process illustrated in (b) can occur with high efficiency. (c) Conversely, for Ak nega-
tive, efficient harmonic generation cannot occur.

in passing through its focus. This effect is known as the phase anomaly and was first studied
systematically by Gouy (1890). For the case of nonlinear optics, this effect has important con-
sequences over and above the phase shift imparted to the transmitted light beam, because in
general the nonlinear polarization p = eyx ¢ )A‘f will experience a phase shift that is ¢ times
larger than that experienced by the incident wave of amplitude A;. Consequently, the nonlinear
polarization will be unable to couple efficiently to the generated wave of amplitude A, unless
a wavevector mismatch Ak is introduced to compensate for the phase shift due to the passage
of the incident wave through its focus. The reason why Ak should be positive in order for
this compensation to occur can be understood intuitively in terms of the argument presented in
Fig. 2.10.4.

Boyd and Kleinman (1968) have considered how to adjust the focus of the incident laser
beam to optimize the efficiency of second-harmonic generation. They find that the highest
efficiency is obtained when beam walkoff effects (mentioned in Section 2.3) are rendered negli-
gible, when the incident laser beam is focused so that the beam waist is located longitudinally at
the center of the crystal and the ratio L /b is equal to 2.84, and when the wavevector mismatch
is set equal to Ak = 3.2/L. In this case, the power generated at the second-harmonic frequency
is equal to

2. (2.10.14)

128n2w{’d§ffL]P2
c'niny

Here K is a numerical constant that depends on the system of units in which this equation is
evaluated. For the Gaussian system, which was used in the original work, K = 1.068. In ad-
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dition, Boyd and Kleinman show heuristically that other parametric processes, such as sum-
and difference-frequency generation, are optimized by choosing the same confocal parameter
for both input waves and applying the same criteria used to optimize second-harmonic genera-
tion. The effects of focusing on various third-order processes have been analyzed by Bjorklund
(1975).

2.11 Nonlinear Optics at an Interface

There are certain nonlinear optical processes that can occur at the interface between two dis-
similar optical materials. Two such examples are shown schematically in Fig. 2.11.1. Part (a)
shows an optical wave falling onto a second-order nonlinear optical material. We saw earlier
(in Section 2.7) how to predict the amplitude of the second-harmonic wave generated in the
forward direction. But in fact, a much weaker second-harmonic wave is generated in reflection
at the interface separating the two materials. We shall see in the present section how to predict
the intensity of this reflected harmonic wave. Part (b) of the figure shows a wave falling onto a
centrosymmetric nonlinear optical material. Such a material cannot possess a bulk second-order
nonlinear optical susceptibility, but the presence of the interface breaks the inversion symme-
try for a thin region (of the order of one molecular diameter in thickness) near the interface,
and this thin layer can emit a second-harmonic wave. The intensity of the light emitted by this
surface layer depends sensitively on the structural properties of the surface and especially upon

(a)

20 X(Z) }'
éry /(DY
-

(b)

icentrosymmetric material

- symmetry broken

20
/ at surface
-

FIGURE 2.11.1: Illustration of second-harmonic generation in reflection at the surface of (a) a second-
order nonlinear optical material and (b) a centrosymmetric nonlinear optical material.
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the presence of molecules absorbed onto the surface. For this reason surface second-harmonic
generation is an important diagnostic method for studies in surface science.

Let us consider in greater detail the situation illustrated in part (a) of Fig. 2.11.1. We assume
that the wave at the fundamental frequency incident on the interface can be described by

Ei(r,?) = Eij(w)e ' +c.c. where Ei(w;) = Aj(w;j)e’ K@), (2.11.1)

This wave will be partially reflected and partially transmitted into the nonlinear optical material.
Let us represent the transmitted component as

ET(w;) = Ar(w;)e K1) T, 2.11.2)

where the amplitude ATt(w;) and propagation direction kt(wji) can be determined from the
standard Fresnel equations of linear optics. For simplicity, in the present discussion we ignore
the effects of birefringence; we note that birefringence vanishes identically in crystals (such as
GaAs) that are noncentrosymmetric yet possess a cubic lattice. The transmitted fundamental
wave will create a nonlinear polarization at frequency ws = 2w; within the medium that we
represent as

P(r, 1) = Pe 7' 4 c.c. where P = pe™©) T and p = peox P A2(wp)  (2.11.3)

where K (ws) = 2Kkt(wj) and where P is the unit vector p = p/|p|.

The details of the ensuing analysis differ depending upon whether p lies within or is per-
pendicular to the plane of incidence. Here we treat only the case of p perpendicular to the plane
of incidence (also known as the TE geometry); a treatment of the other case can be found for
instance in Bloembergen and Pershan (1962) or in Shen (1984b). As described by Eq. (2.1.23),
this nonlinear polarization will give rise to radiation at the second-harmonic frequency w;s. The
generation of this radiation is governed by the wave equation in the form

VZE(ws) + [e(@9)@? /e |E(ws) = —(0?/eoc?)pre’™ ™ (2.11.4)

where p is the component of p perpendicular to the plane of incidence. Here €(w) is taken
to be €7 (w) in the nonlinear medium and as €g (w) in the linear medium. The formal solution
to this equation consists of a particular solution plus a general solution to the homogeneous
version of this equation obtained by setting its right-hand side equal to zero. It turns out that we
can meet all of the appropriate boundary conditions by assuming that the homogeneous solution
is an infinite plane wave of as yet unspecified amplitude At(ws) and wavevector kt(ws). We
thus represent the solution to Eq. (2.11.4) as

(@ /€0c?) o

E =A ik (@) , 2.11.5
T(ws) = AT(ws)e + o — ko PLe ( )
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FIGURE 2.11.2: (a) Geometry showing the creation of a transmitted and reflected second-harmonic wave
at the surface of a second-order nonlinear optical material. (b) Definition of the electric and magnetic field
vectors for the case in which P is perpendicular to the plane of incidence.

where the second term on the right-hand side represents the particular solution, with ks =
Je(ws)ws/c, and with [kr(ws)|* = er(ws) w2 /c?. The electromagnetic boundary conditions at
the interface require that the components of E and of H tangential to the plane of the interface
be continuous. These boundary conditions can be satisfied only if we postulate the existence of
a reflected, second-harmonic wave that we represent as

ER(05) = AR (ws)eKR@)T, (2.11.6)

In order that the boundary conditions be met at each point along the interface, it is necessary that
the nonlinear polarization of wavevector ky = 2kt (w;), the transmitted second-harmonic wave
of wavevector kr(ws), and the reflected second-harmonic wave of wavevector kg (ws) have
identical wavevector components along the plane of the interface. This situation is illustrated
in Fig. 2.11.2, where we let x be a coordinate measured along the interface in the plane of
incidence and let z denote a coordinate measured perpendicular to the plane of incidence. We
thus require that

k; = kR,x(U)s) = kT,x (ws) (2.11.7)
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(note that k} = 2kt x (w;)). Furthermore, we can express the magnitude of each of the propaga-
tion vectors in terms of the dielectric constant of each medium as

kr(ws) = €1 (ws) ws/c, (2.11.82)
kr (@s) = &> (05) ws/c, (2.11.8b)
ki(wp) = ey * (@) wi/c, (2.11.8¢)

where, as before, eg denotes the dielectric constant of the linear, incident medium and et de-
notes the linear dielectric constant of the nonlinear medium. For mathematical convenience,
we also introduce a fictitious dielectric constant € associated with the nonlinear polarization
defined such that

ks = el Jc. (2.11.9)

From Egs. (2.11.7) through (2.11.9) we can readily determine expressions relating the angles
6i, R, 65, and Ot (see Fig. 2.11.2), which are given by

1/2

e/ (i) sin6; = ey *(ws) sin O = €1/ *(ws) sin b7 = €, sin b (2.11.10)

This equation can be considered to be the nonlinear optical generalization of Snell’s law.

We next apply explicitly the boundary conditions at the interface between the linear and
nonlinear medium. According to Eq. (2.11.5), p1 will lead to the generation of an electric field
in the £, = E, direction, and in accordance with Maxwell’s equations the associated mag-
netic field will lie in the xz plane (see part (b) of Fig. 2.11.2). The continuity of the tangential
components of E and H then leads to the equations

Ey: AR (ws) = Al (w5) + p1/[eoes — er(wy))],

He:  —ey 2 (09) AR (wy) cosbr = e1/* (ws) AT (ws) cos b
2
+ picostyes’ [[eoles — er(y))]. 2.11.11)

Here the perpendicular symbol L is introduced as a reminder that we are treating the case in
which the incident light is polarized perpendicular to the plane of incidence. These equations
are readily solved simultaneously to obtain expressions for A}i and AE. These expressions are
then introduced into Egs. (2.11.5) and (2.11.6) to find that the transmitted and reflected fields
are given by

_pelsR@)T

eo[e%/z (ws) cos b + ell{/z(ws) cosbRr] [e%/z (ws) cos B + esl/z cos 05]
— Afi(ws)eiklz(ws)-r, (2.11.12a)

EX(ws) =
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1/2 1/2

€oler(ws) — € e%/z (ws) cosOT + eé/z(a)s) cos6R

(2.11.12b)

The transmitted second-harmonic wave is thus composed of a homogeneous contribution with
propagation vector kT and an inhomogeneous wave with propagation vector k;. We see from
Fig. 2.11.2 that ky; — kt must lie in the z direction and is given by

ky — kt = AKZ = (ws/c)[ed/? cos 65 — e3> (s) cos b1 2. (2.11.13)
If this result is introduced into Eq. (2.11.12b), we can express the transmitted field in the form
(@2 /eocP)py (€DK — 1 er (o0)-
ET — AR s ikt (ws) T
J_(a)s) |: J_(ws) + ber(ws) Ak e
= Al () M@, (2.11.14)

This equation has the form of a plane wave with a spatially varying amplitude; the spatial
variation is a manifestation of imperfect phase matching of the nonlinear optical interaction.
The present formalism demonstrates that the origin of the spatial variation associated with
wavevector mismatch is the interference of the homogeneous and inhomogeneous solutions of
the driven wave equation.

Let us interpret further the result given by Eq. (2.11.14). We assume that Akz is much
smaller than unity for propagation distances z of interest. We then find that, correct to first
order in Ak, the amplitude of the transmitted wave is given by

i(@/c)piz

(@/c)*pL(iz)
2epel/2(ws)

— AR
deokr(my) L@

Al (05) = AR (5) + (2.11.15)
We see that the amplitude of the generated wave grows linearly from its boundary value
AI}_ (ws). We also see from Eq. (2.11.12a) that Afi (wg) will be given to order of magnitude
by
pPL
AR (wg) = ———, 2.11.16
1 (@s) deoe ( )
where € is some characteristic value of the dielectric constant of the region near the interface.
On the basis of this result, Eq. (2.11.15) can be approximated as

TpL

Al (wg) ~ =
1 (@) coc

[1 = 2ikt(ws)z]. (2.11.17)

This result shows that the surface term makes a contribution comparable to that of the bulk term
for a thickness ¢ given by

t=A/4m. (2.11.18)
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Let us next examine the situation of Fig. 2.11.1(b), which considers harmonic generation
at the interface between two centrosymmetric media. An accurate treatment of such a situation
would require that we know the nonlinear optical properties of the region near the interface
at a molecular level, which is not possible at the present level of description (because we can
rigorously deduce macroscopic properties from microscopic properties, but not vice versa).
Nonetheless, we can make an order-of-magnitude estimate of the amplitude of the reflected
wave for typical materials. Let us model the interface between two centrosymmetric materi-
als as possessing a second-order susceptibility x ® confined to a thickness of the order of a
molecular dimension ag. Here x® is a typical value of the second-order susceptibility of a
noncentrosymmetric material. This assumption taken in conjunction with Eq. (2.11.18) leads
to the prediction

T . dmap 1 )
A | (centrosymmetric) = TA | (noncentrosymmetric)

~1073 AE (noncentrosymmetric). (2.11.19)

This result is in agreement with the predictions of more detailed models (see, for instance,
Mizrahi and Sipe, 1988b).

2.12 Advanced Phase Matching Methods

Types of Phase Matching

In the examples given thus far in the present chapter, we have been considering collinear phase
matching, which is illustrated for sum-frequency generation in Fig. 2.12.1(a). More gener-
ally, one can consider noncollinear phase matching, also known as vector phase matching,
which is illustrated in Fig. 2.12.1(b). A subtlety occurs when we allow the possibility of a
wavevector mismatch, as shown in Figs. 2.12.1(c) and (d). For the case of a vector interaction
(Fig. 2.12.1(d)), we see that the wavevector mismatch

Ak =k; +ky, — k3 (2.12.1)

can have both longitudinal and transverse components. When working in the paraxial approx-
imation, one often assumes that the transverse components of Ak must vanish so that Ak has
a component only along the direction of propagation. We note that this assumption is rigor-
ously true for plane waves of infinite transverse extent, as there cannot be any uncertainty in
the transverse wavevector in this case.

We now turn to the case of angle phase matching in birefringent crystals and point out some
additional behavior. In Fig. 2.12.2 we show plots of the refractive index as a function of the
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FIGURE 2.12.1: (a) Collinear phase matching; (b) noncollinear (vector) phase matching. (c) and (d)
Three wave interactions with a wavevector mismatch.
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FIGURE 2.12.2: Refractive index surfaces for (a) negative and (b) positive uniaxial crystals. These
curves show how the refractive index varies as a function of the propagation direction (k-vector direction)
within the crystal.

propagation direction through the crystal.” We shall find that curves of the sort are extremely
useful in understanding the nature of phase matching by means of angle tuning.

Beam Walk-Off Effects

We next describe a feature of birefringence phase matching that can under many circum-
stances limit the efficiency of the nonlinear process. In general, the wave vector k and the
Poynting vector S are not parallel to one another in an anisotropic medium, as illustrated in
Fig. 2.12.3. We reach this conclusion by first recalling the relation S = E x H, which shows
that S must be perpendicular to the E. However, the Maxwell equation V - D = 0 (written for a
medium without free charges) leads to the transversality condition that k must be perpendicular

* These plots should not to be confused with the index ellipsoid, which plays an important role in the theory of
crystal optics. Since k = nw/c, the plots of Fig. 2 have the same shape as a plot of k as a function of propagation
direction for constant frequency w. These plots are known as a plots of the normal surface or of the k surface.
The relation between the k surface and the index ellipsoid are well explained in Saleh and Teich (2007) and in
Zernike and Midwinter (1973b).
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FIGURE 2.12.3: Orientation of the E, D, B, H, k, and S vectors in an anisotropic material.

to D. Because D and E are not in general parallel in a anisotropic medium, k and S are also
generally not parallel. These vectors are parallel only for beams of ordinary polarization or, for
extraordinary polarization, for propagation along the optic axis or for propagation perpendic-
ular to it. Phase-matching conditions dictate the directions of the k vectors, but energy flow
occurs in the direction of the Poynting vector S. Thus the interacting beams tend to walk away
from each other as they propagate. The consequences of this beam walk-off are slightly dif-
ferent for type-I and type-II interactions. The consequences tend to be more severe for type-II
interactions, because the two input beams can walk so far away from one another that they no
longer overlap within the nonlinear material.

Critical and Non-Critical Phase Matching

An important distinction in nonlinear optics is that between critical and noncritical phase
matching. We can understand this distinction by means of the example of infrared upconversion.
Because infrared detectors tend to be much noisier than visible detectors, an infrared signal
can sometimes be better detected by first converting it to a visible frequency by means of a
nonlinear optical interaction (Boyd and Townes, 1977b; Vandevender and Kwiat, 2004). In
the situation described in Fig. 2.12.4, a weak infrared signal beam of frequency w, and wave
vector ko that one wants to detect is combined with a strong pump beam of frequency w; and
wave vector k; in a second-order nonlinear optical crystal. The sum-frequency radiation at
frequency w; + w» is then at an optical frequency. Oftentimes the signal to be detected has a
broad angular extent. One wants to determine how large a divergence angle 46 can be used
and still produce good conversion efficiency. Several possibilities exist. This interaction can
be phase matched using standard angular phase matching, as shown in Fig. 2.12.4(b). The
diagram is drawn for the case of type-I phase matching in a negative uniaxial crystal. In this
situation, the wavevector mismatch increases approximately linearly as the direction of k; is
moved away from the phase-matching angle. This situation is known as that of critical phase
matching, because the phase matching relation is satisfied only for one particular direction of
the of k, field. A more tolerant situation is that shown in part (c) of the figure. Through use of
noncollinear phase matching, the curve for the directions of k, can be made to be tangent to the
curve for the sum frequency ksz. In such a situation, the wavevector mismatch Ak increases only
quadratically with the angular deviation of k, from the phase-matching direction. This situation
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FIGURE 2.12.4: Distinction between critical and noncritical phase matching. (a) One wants to form the
sum frequency of the pump wave k; and a signal wave k, of wide angular extend §6. (b) Critical phase
matching; the phase mismatch scales approximately linearly with §6. (c) Noncritical phase matching; the
phase mismatch scales only quadratically with §6. (d) Noncollinear phase matching at 90 degrees from
the optical axis (OA). This situation is most desirable because walk-off is eliminated because 6 = 90°
and also beam walk-off effects are eliminated.

is known as noncritical phase matching. However, this situation still suffers from beam walk-off
effects. The optimal strategy is to obtain phase matching at an angle of 90 degrees from the optic
axis, as shown in part (d). This procedure leads to noncritical phase matching while avoiding
beam walk-off effects.

Phase Matching of Spontaneous Parametric Down Conversion (SPDC)

We next consider the process of spontaneous parametric down conversion (SPDC). As illus-
trated in Fig. 2.12.5, SPDC is a process in which a single pump photon splits into two daughter
photons conventionally known as the signal and idler photons. As this process is seeded only
by the electromagnetic vacuum, it is a purely quantum process, and in fact the photons created
by this process possess strong quantum properties. A complete treatment of the SPDC process
would require us to develop a full quantum description of the electromagnetic field. While such
a description is well understood, its treatment falls outside of the scope of the present book.
We will instead rely on heuristic arguments to describe the correlations of the radiation cre-
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ated by SPDC and refer the reader to several of the excellent text books that treat the quantum
properties of nonlinear optical interactions. (Several suggestions are listed at the end of this
chapter.)

(a) (b) (<)

FIGURE 2.12.5: (a) Schematic illustration of the process of spontaneous parametric downconversion
(SPDC). (b) Energy-level description and (c) wavevector description of the process.

The properties of SPDC are qualitatively very different for type-I and type-II phase match-
ing. For definiteness, here we consider down-conversion in beta-barium borate (8-BBO), a neg-
ative uniaxial crystal.

We consider first the process of type-I SPDC in a negative uniaxial crystal. For simplicity,
we here consider only the case of degenerate downconversion, that is, w; = w;. Fig. 2.12.6
shows schematically the observed behavior as one gradually rotates the crystal to vary the
phase-matching condition. Part (a) shows the behavior when the pump angle 6 in the notation
of Fig. 2.12.5 is too small and the collinear wavevector mismatch Ak = k| + k) — k3 =njw; +
nawy — n3ws is negative. No downconverted light is observed. Part (b) shows the behavior at
the exact collinear phase matching angle. In this case, the downconverted light is observed only
on the axis defined by the pump beam. Parts (c)—(e) show what happens when the pump angle is
successively increased still further. In this case, phase matching is observed under noncollinear
conditions. The generated light is now emitted in a cone surrounding the transmitted pump
beam. The emitted light has strong quantum properties. Regions diametrically opposite on the
emission cone are found to contain the same number of photons, to an accuracy much better
than the inherent fluctuation in the number in either region. The sort of behavior has been
observed experimentally in the high gain limit (Souto Ribeiro et al., 1997; Jedrkiewicz et al.,
2006).

We next turn to the process of type-1I SPDC, again for the case of a negative uniaxial crystal.
Detailed analysis (Kwiat et al., 1995) shows that each of the signal and idler photons can again
be emitted in the form of a ring pattern, but because they experience different refractive indices
the two rings are centered on different propagation directions. The geometry of the SPDC
process is illustrated in Fig. 2.12.7.
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FIGURE 2.12.6: Behavior of spontaneous parametric downconversion in a type-I, negative uniaxial crys-
tal as a function of the wave vector mismatch.

optic axis

idler (o)

FIGURE 2.12.7: Geometry of spontaneous parametric downconversion in a negative uniaxial crystal for
a type-II interaction.

Crucially, under certain phase matching conditions these two rings intersect at two locations.
This sort of behavior is illustrated in Fig. 2.12.8. At these locations, the two photons are found to
be entangled in their state of polarization. Entanglement in the present context has the following
meaning. Although a photon detected in one of these regions has a 50/50 chance of having either
the ordinary (o) of extraordinary (e) polarization, nonetheless, whenever the photon from one
of the regions is found to be o polarized, the photon from the other region is found to be e
polarized and vice versa.

Other geometries can also be used to produce polarization entanglement. One particularly
useful procedure is the two-crystal procedure of Kwiat et al. (1999). This procedure uses two
relatively thin crystals in close contact, each fabricated for type-I phase matching. The two
crystals are rotated by 90 degrees with respect to one another, and the pump beam is polarized
at 45 degrees to the principal axes of the two crystals. Each crystal produces light by SPDC,
and the polarization of the light from each crystal is orthogonal to that of the other. Because
the crystals are very thin, there is no way to know which crystal produced the light. The down-
converted photons are thus entangled in their states of polarization. Specifically, if the light from
one crystal has H (for horizontal) polarization and the light from the other has V (for vertical)
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polarization, the quantum state of the polarization of the emitted light can be represented by

HH+VV
=" (2.12.2)

/2

Polarization entanglement of this sort is found to have myriad applications in quantum infor-
mation. Some examples are given in Giovannetti et al. (2004).
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FIGURE 2.12.8: Behavior of spontaneous parametric downconversion in a type-I, negative uniaxial crys-
tal as a function of the crystal rotation angle. For the two panels on the bottom right the two rings intersect
at two locations. Polarization entanglement occurs under these circumstances. (Kurtsiefer et al., 2001).

Tilted-Pulse-Front Method for the Generation of THz Radiation

We next describe some of the special considerations that occur for the phase-matched gen-
eration of THz radiation. THz radiation is often generated by illuminating a second-order
nonlinear optical material such as lithium niobate with a short, intense near-infrared (NIR)
light pulse often generated by a Ti:sapph laser operating at 800 nm. The generation process
is often referred to as optical rectification, although it is perhaps better described as a form of
difference-frequency generation involving the process x &) (wTHz; ONIR + @WTHz, —WNIR). Here
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wtH 1s the THz frequency to be generated and wnir is the nominal frequency of the near-
infrared pump laser. We assume that both wnir and wnir + wTH, lie within the spectrum of the
pump pulse.

A wavelength of 800 nm corresponds to a frequency of 375 THz, which is very much
larger than that of the radiation to be generated at approximately 1 THz. It is because of this
great frequency difference that phase matching can become qualitatively different from that of
visible-frequency nonlinear optics.

The phase matching condition for such a process, assumed for the present to be collinear, is
given by

Ak = k(wNIR + @THZ) — k(0NIR) — k(wTHZ) = 0. (2.12.3)

This equation can be written in terms of refractive indices as

1
Ak = ;[” (wNIR + @THZ) (ONIR + @THz) — N(WONIR)ONIR — (@TH)wTH ] =0 (2.12.4)

We now simplify this equation by expressing n(wNIR + @THz) aS a power series in wrHz to
obtain n(wNir) + (dn(wNR)/doNR)@TH, = ng(WNIR)wTH, Where in the last form we have
introduced the standard expression for the group index ng. In addition, we drop the resulting
term ng (wNIR) @THZ WTH; because it is much smaller than the term ng(wNR) @THZ @NIR. With
these substitutions the phase-matching condition becomes simply

ng(wNR) = n(wrtHZ) (2.12.5)

This result was first obtained by Nahata et al. (1996) who also demonstrated phase matching
by this method using ZnTe as their nonlinear material. This result seems at first sight surpris-
ing, because one might think that a phase matching condition should depend only on phase
velocities and not on a group velocity. This result can be understood intuitively by noting that a
nonlinear optical processes driven by an intense short pulse can be thought of as impulsive pro-
cesses. The short pulse excites each molecule which then “rings” and emits its own radiation.
The nature of constructive interference for the emitted radiation depends on its phase velocity.
However, the moment of time at which the impulsive excitation occurs depends on the group
velocity.

The phase matching condition of Eq. (2.12.5) was derive under the assumption of collinear
propagation. If the waves are not collinear, it is to be replaced by

ng(wNIR) €OS Y = n(WTHz), (2.12.6)

where y is the angle between the two beams. One obtains this result by taking the projection
of the group velocity of the excitation beam onto the direction of the phase velocity of the
generated beam.



Wave-Equation Description of Nonlinear Optical Interactions 129

THz generation under noncollinear conditions often takes the form of emission in a
Cherenkov cone. The basic mechanism is illustrated in Fig. 2.12.9(a). A short intense pulse of
near-infrared radiation propagates through a second-order nonlinear crystal with group velocity
vg (wNIR). Secondary waves are generated at each point along its trajectory, which interfere to
form the cone-shaped radiation pattern. The condition for the constructive interference of the
individual wavelets is that

Up (wtHZ)

cosfc = ,
Vg (WNIR)

(2.12.7)
where 6c is defined in the figure and is known as the Cherenkov angle and v, (wtH,) is the
phase velocity at the THz frequency. Note by comparison of Eq. (2.12.6) and Eq. (2.12.7) that
the THz emission process is automatically phase matched for y = 6c.

(a) ,
THz conical phase
front and pulse front
Vg (wNIR)T
THz output
pump pulse /
propagates
at velocity
Vg (wiIR)
Up(wrH)T
() pump phase front

and pulse front

THz phase front
and pulse front

THz output

pump phase front

pump pulse front

Y

x@ nonlinear crystal

FIGURE 2.12.9: Methods for producing THz radiation through nonlinear optical interactions.
(a) Cherenkov-cone generation. In time 7', a short pulse of near-infrared radiation will travel a distance
Vg (wNir)T . In this time, the THz wavefront generated by the earliest-arriving part of the pulse will have
traveled a distance v, (wth,) T . The Cherenkov angle is thus given by 6c = cos™ v p(@THZ) /Vg (ONIR) ]
(b) Tilted-pulse-front method. When the incident plane-wave pump beam diffracts off a grating, the phase
front and the pulse front are no longer parallel. By setting the pulse-front angle y equal to the Cherenkov
angle Oc, one can ensure that there is no spatial walk-off between the pump pulse and the generated THz
wave. For simplicity, the refraction of the pulse front at the entrance to the nonlinear crystal is ignored.
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A limitation to the efficiency of THz generation based on the use of the interaction of
Fig. 2.12.8(a) is the spatial walk-off of the two interacting beams. As illustrated in the fig-
ure, the THz radiation is emitted at nearly right angles to the propagation direction of the pump
beam. As an example, for lithium niobate the NIR group index is given by ng(wNr) = 2.25
and the THz phase index is given by n(wtnHz) = 4.96 so that the Cherenkov angle is equal to
64 degrees (Hebling et al., 2008).

A solution to the problem of low conversion efficiency because of beam walk-off is the tilted
pulse-front method, which has been described and implemented by Hebling et al. (2002, 2008).
For a short optical pulse, the spatial extent of the pulse in the longitudinal direction is much
smaller than that in the transverse directions. (One sometimes hears that ultrashort laser pulses
are “flying pancakes.”) The pulse front describes the instantaneous spatial distribution of pulse
energy. The tilted pulse-front method is illustrated in Fig. 2.12.9(b). The near-infrared pump
pulse is first diffracted from a grating, and as a result the wavefronts and pulse fronts are no
longer parallel. The pump pulse then enters the nonlinear crystal, which is cut and oriented as
shown in the figure. THz radiation is generated in the phase matched (Cherenkov) direction.
The pulse fronts are oriented so that they coincide with the THz wave fronts, and as a result
there is no spatial walk-off between the pump and generated THz radiation.

Problems

1. Infrared upconversion. One means of detecting infrared radiation is to first convert the
infrared radiation to the visible by the process of sum-frequency generation. Assume that
infrared radiation of frequency w; is mixed with an intense laser beam of frequency w» to
form the upconverted signal at frequency w3 = w1 + w»>. Derive a formula that shows how
the quantum efficiency for converting infrared photons to visible photons depends on the
length L and nonlinear coefficient des of the mixing crystal, and on the phase mismatch
Ak. Estimate numerically the value of the quantum efficiency for upconversion of 10-um
infrared radiation using a 1-cm-long proustite crystal, 1 W of laser power at a wavelength
of 0.65 um, and the case of perfect phase matching and optimum focusing.

[Ans.: ng =2%.]

2. Sum-frequency generation. Solve the coupled-wave equations describing sum-frequency
generation (Egs. (2.2.10) through (2.2.12b)) for the case of perfect phase matching
(Ak = 0) but without making the approximation of Section 2.6 that the amplitude of the
wy wave can be taken to be constant.

[Hint: This problem is very challenging. For help, see Armstrong et al. (1962).]

3. Systems of units. Rewrite each of the displayed equations in Sections 2.1 through 2.5 in

the Gaussian system of units.
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10.

11.

Difference-frequency generation. Solve the coupled-amplitude equations describing
difference-frequency generation in the constant-pump limit, and thereby verify Egs. (2.9.2)
of the text. Assume that w; + wy = w3, where the amplitude A3 of the w3 pump wave is
constant, that the medium is lossless at each of the optical frequencies, that the momentum
mismatch Ak is arbitrary, and that in general there can be an input signal at each of the
frequencies w1, wy, and w3. Interpret your results by sketching representative cases of the
solution and by taking special limiting cases such as that of perfect phase matching and
of only two input fields.

Second-harmonic generation. Verify that Eq. (2.7.29) possesses solutions of the sort
shown in Fig. 2.7.2.

Second-harmonic generation. Solve the coupled-amplitude equations for the case of
second-harmonic generation with the initial conditions A, = 0 but A; arbitrary at z = 0.
Assume that Ak is arbitrary. Sketch how |A(2w)|? varies with z for several values of Ak,
and thus verify the results shown in Fig. 2.7.2.

Mode structure of an optical cavity. Verify Eq. (2.9.11).

[Ans.: Assume that the refractive index »n is a function of v and require that an integral
number m of half wavelengths fit within the cavity of length L.. Thus mA/2 = L. or,
since A = ¢/nv, we obtain nv = cm/2L.. We want to determine the frequency separa-
tion of adjacent modes. Thus, A(nv) = A(cm/2L.) where A refers to the change in the
indicated quantity between adjacent modes. Note that A(nv) = nAv + vAn =nAv +
v(dn/dv)Av =[n +v(dn/dv)]Av and that A(ecm/2L;) =c/2L.A(m) =c/2L.. Thus,

c Ug_ c

Av= _ e
" T 2Lcn+vdnjdv)  2L.  2ngle

l

where vy = ¢/[n + v(dn/dv)] is the usual expression for the group velocity and where
ng =n+v(dn/dv) is the group index.]

Mode structure of an optical cavity. Generalize the result of the previous problem to the
situation in which the cavity length is L but the material medium has length L. < L.
Quasi-phase-matching. Generalize the discussion of the text leading from Eq. (2.4.1) to
Eq. (2.4.6) by allowing the lengths of the inverted and noninverted sections of nonlinear
optical material to be different. Let A be the period of the structure and [ be the length
of the inverted region. Show how each of the equations in this range is modified by this
different assumption, and comment explicitly on the resulting modification to the value of
dg and to the condition for the establishment of quasi-phase-matching.

Gaussian laser beams. Verify that Egs. (2.10.4a) and (2.10.52a) are equivalent descriptions
of a Gaussian laser beam, and verify that they satisfy the paraxial wave Eq. (2.10.3).
Gaussian laser beams. Verify the statement made in the text that the trial solution given by
Eq. (2.10.9) satisfies the paraxial wave equation in the form of Eq. (2.10.7) if the amplitude
A, (z) satisfies the ordinary differential equation (2.10.10).
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12.

13.

14.

15.

16.

17.

18.

19.

Phase matching with focused beams. Evaluate the integral appearing in Eq. (2.10.13a) and
thereby verify Eq. (2.10.13b).

Third-harmonic generation. Assuming the condition of perfect phase matching, derive
and solve exactly the coupled-amplitude equations describing third-harmonic generation.
You may assume that the nonlinear optical material is lossless. Include in your anal-
ysis the processes described by the two susceptibility elements x® (3w; w, w, w) and
X(3) (w; 3w, —w, —w). Calculate the intensity of the third harmonic wave as a function
of the length of the interaction region for the following two situations: (a) In the limit in
which the undepleted pump approximation is valid. (b) For the general case in which the
pump intensity cannot be assumed to remain constant.

Poynting’s theorem. Derive the form of Poynting’s theorem valid for a nonlinear optical
material for which D = EOE +PwithP= Eo[X(])E + )((2)1:12 + X(3)E3]. Assume that the
material is nonmagnetic in the sense that B = uoH.

Backward second-harmonic generation. Part (c¢) of Fig. 2.1.1 implies that second-
harmonic generation is radiated in the forward but is not appreciably radiated in the
backward direction. Verify that this conclusion is in fact correct by deriving the coupled-
amplitude equation for a second-harmonic field propagating in the backward direction,
and show that the amplitude of this wave can never become appreciable. (Note that a more
rigorous calculation that reaches the same conclusion is presented in Section 2.11.)
Second-harmonic generation. Consider the process of second-harmonic generation both
with Ak = 0 and Ak # 0 in a lossless material. State the conditions under which the
following types of behavior occur: (i) The fundamental and second-harmonic fields pe-
riodically exchange energy. (ii) The second-harmonic field asymptotically acquires all of
the energy. (iii) The fundamental field asymptotically acquires all of the energy. (iv) Part
of the energy resides in each component, and this fraction does not vary with z.
Manley—Rowe relations. Derive the Manley—Rowe relations for the process of second-
harmonic generation. The derivation is analogous to that presented in Section 2.5 for the
process of sum-frequency generation.

Phase-matching requirements. Explain why processes such as second-harmonic genera-
tion can be efficient only if the phase-matching relation Ak = 0 is satisfied, whereas no
such requirement occurs for the case of two-photon absorption.

Elementary treatment of second-harmonic generation. The treatment of second-harmonic
generation presented in the text is in many ways too mathematically complicated to allow
for a simple conceptual understanding of the process. As an alternative, simpler approach,
carry through the suggestion presented the sentence that follows Eq. (2.7.12). In particular,
solve Eq. (2.7.11) in the undepleted pump limit and then use this result to express the
intensity of the generated field in terms of the intensity of the fundamental field, the length
L of the interaction region, and the value Ak of the wavevector mismatch.
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20.

21.

22,

23.

24,

25.

26.

Cascaded optical nonlinearities. The intent of this problem is to develop an understanding
of the phenomenon known as cascaded optical nonlinearities. By cascaded optical non-
linearities, one means that, through propagation, a second-order nonlinearity can mimic
a third-order nonlinearity. In particular, in this problem you are to calculate the phase
shift acquired by an optical wave in propagating through a second-order nonlinear optical
material under conditions of nearly phase-matched second-harmonic generation, and to
determine the conditions under which the phase shift acquired by the fundamental wave
is approximately proportional to the product of the path length and the intensity.

To proceed, start for example with Egs. (2.7.10) and (2.7.11), and show that one can
eliminate A, to obtain the equation

d*A, dA;

2t iAkd—Z —T%(1—2|A1/Ao*)A; =0,

where I" is a constant (give an expression for it) and Ag is the incident value of the fun-
damental field. Show that under proper conditions (give specifics) the solution to this
equation corresponds to a wave whose phase increases linearly with the length L of the
nonlinear material and with the intensity I of the incident wave.

Optimum focusing and second-harmonic generation. Explain why it is that under optimum
focusing conditions the power generated at the second harmonic frequency scales linearly
rather than quadratically with the length L of the nonlinear crystal. (See Eq. (2.10.14).)
Harmonic generation with focused Gaussian beams. Develop and elucidate a conceptual
understanding of why the intensity of the generated harmonic signal vanishes whenever
the phase mismatch factor AkL is negative or zero. (See Fig. 2.10.3.)

Magnetic response. Explain why it is that for most optical interactions, whether linear or
nonlinear, the interaction results primarily from the electric field E and not the magnetic
field B of the incident radiation.

Efficiency of Second-Harmonic Generation. Equation (2.10.14) gives the predicted effi-
ciency for second-harmonic generation of Gaussian beams under conditions of optimum
focusing. This equation was derived by Boyd and Kleinman (1968) in a calculation based
on the Gaussian system of units. Repeat this calculation using the SI system of units. (Of
course, the final result is necessarily the same, but the details of the calculation may seem
to be quite different.)

Size of a Gaussian laser beam. Show that the fraction of the power of a Gaussian laser
beam that is contained in an area of radius w(z) centered on the beam axis is given by
1 —1/e? =0.865.

Coupled-amplitude equations for quasi phase matching. Derive Egs. (2.4.4). Note that the
form of these equations at first sight may appear strange, but it is straightforward to show
that they are correct.
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Chapter 3

Quantum-Mechanical Theory of the
Nonlinear Optical Susceptibility

3.1 Introduction

In this chapter, we use the laws of quantum mechanics to derive explicit expressions for the
nonlinear optical susceptibility. The motivation for obtaining these expressions is at least three-
fold: (1) these expressions display the functional form of the nonlinear optical susceptibility
and hence show how the susceptibility depends on material parameters such as dipole transi-
tion moments and atomic energy levels, (2) these expressions display the internal symmetries
of the susceptibility, and (3) these expressions can be used to make predictions of the numeri-
cal values of the nonlinear susceptibilities. These numerical predictions are particularly reliable
for the case of atomic vapors, because the atomic parameters (such as atomic energy levels and
dipole transition moments) that appear in the quantum-mechanical expressions are often known
with high accuracy. In addition, since the energy levels of free atoms are very sharp (as opposed
to the case of most solids, where allowed energies have the form of broad bands), it is possible
to obtain very large values of the nonlinear susceptibility through the technique of resonance
enhancement. The idea behind resonance enhancement of the nonlinear optical susceptibility is
shown schematically in Fig. 3.1.1 for the case of third-harmonic generation. In part (a) of this
figure, we show the process of third-harmonic generation in terms of the virtual levels intro-
duced in Chapter 1. In part (b) we also show real atomic levels, indicated by solid horizontal
lines. If one of the real atomic levels is nearly coincident with one of the virtual levels of the
indicated process, the coupling between the radiation and the atom becomes particularly strong
and the nonlinear optical susceptibility becomes large.

Three possible strategies for enhancing the efficiency of third-harmonic generation through
the technique of resonance enhancement are illustrated in Fig. 3.1.2. In part (a), the one-photon
transition is nearly resonant, in part (b) the two-photon transition is nearly resonant, and in
part (c) the three-photon transition is nearly resonant. The formulas derived later in this chapter

Nonlinear Optics. https:/doi.org/10.1016/B978-0-12-811002-7.00012-6
Copyright © 2020 Elsevier Inc. All rights reserved. 137
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(a) (b)

Y Y

FIGURE 3.1.1: Third-harmonic generation described in terms of virtual levels (a) and with real atomic
levels indicated (b).

(a) (b) (©)
A A A
A A A
A A A
Y Y Y

FIGURE 3.1.2: Three strategies for enhancing the process of third-harmonic generation.

demonstrate that all three procedures are equally effective at increasing the value of the third-
order nonlinear susceptibility. However, the method shown in part (b) is usually the preferred
way in which to generate the third-harmonic field with high efficiency, for the following reason.
For the case of a one-photon resonance (part a), the incident field experiences linear absorption
and is rapidly attenuated as it propagates through the medium. Similarly, for the case of the
three-photon resonance (part c), the generated field experiences linear absorption. However, for
the case of a two-photon resonance (part b), there is no linear absorption to limit the efficiency
of the process.

3.2 Schroédinger Equation Calculation of the Nonlinear Optical
Susceptibility

In this section, we present a derivation of the nonlinear optical susceptibility based on quantum-
mechanical perturbation theory of the atomic wave function. The expressions that we derive
using this formalism can be used to make accurate predictions of the nonresonant response
of atomic and molecular systems. Relaxation processes, which are important for the case of
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near-resonant excitation, cannot be adequately described by this formalism. Relaxation pro-
cesses are discussed later in this chapter in connection with the density matrix formulation of
quantum mechanics. Even though the density matrix formalism provides results that are more
generally valid, the calculation of the nonlinear susceptibility is much more complicated when
performed using this method. For this reason, we first present a calculation of the nonlinear sus-
ceptibility based on the properties of the atomic wavefunction, since this method is somewhat
simpler and for this reason gives a clearer picture of the underlying physics of the nonlinear
interaction.

One of the fundamental assumptions of quantum mechanics is that all of the properties of
the atomic system can be described in terms of the atomic wavefunction ¥ (r, t), which is the
solution to the time-dependent Schrodinger equation

3 .
i hy. (3.2.1)
31
Here H is the Hamiltonian operator™
H=Hy+ V@), (3.2.2)

which is written as the sum of the Hamiltonian I:IO for a free atom and an interaction Hamil-
tonian, V (¢), which describes the interaction of the atom with the electromagnetic field. We
usually take the interaction Hamiltonian to be of the form

Vi)=—p-E@), (3.2.3)

where ft = —ef is the electric-dipole moment operator and —e is the charge of the electron.

3.2.1 Energy Eigenstates

For the case in which no external field is applied to the atom, the Hamiltonian His simply equal
to Ho, and Schrodinger’s equation (3.2.1) possesses solutions in the form of energy eigenstates.
These states are also known as stationary states, because the time of evolution of these states is
given by a simple exponential phase factor. These states have the form

Y (X, 1) =y (r)e "t (3.2.42)

* We use a caret above a quantity to indicate that the quantity such as Hisa quantum-mechanical operator. For the
most part, in this book we work in the coordinate representation, in which case quantum-mechanical operators
are represented by ordinary numbers for positions and by differential operators for momenta.
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By substituting this form into the Schrodinger equation (3.2.1), we find that the spatially
varying part of the wavefunction u, (r) must satisfy the eigenvalue equation (known as the
time-independent Schrddinger equation)

Hou, (v) = Epit, (r), (3.2.4b)

where E,, = hw,. Here n is a label used to distinguish the various solutions. For future con-
venience, we assume that these solutions are chosen in such a manner that they constitute a
complete, orthonormal set satisfying the condition

/u:‘nun d°r = 8. (3.2.5)

3.2.2 Perturbation Solution to Schrodinger’s Equation

For the general case in which the atom is exposed to an electromagnetic field, Schrodinger’s
equation (3.2.1) usually cannot be solved exactly. In such cases, it is often adequate to solve
Schrodinger’s equation through the use of perturbation theory. In order to solve Eq. (3.2.1)
systematically in terms of a perturbation expansion, we replace the Hamiltonian (3.2.2) by

H=Ho+ V@), (3.2.6)

where A is a continuously varying parameter ranging from zero to unity that characterizes the
strength of the interaction; the value A = 1 corresponds to the actual physical situation. We now
seek a solution to Schrodinger’s equation in the form of a power series in A:

v, )=y Qw0 +ryPVa, ) + 12y P+ (3.2.7)

By requiring that the solution be of this form for any value of A, we assure that ¥™) will be
that part of the solution which is of order N in the interaction energy V. We now introduce
Eq. (3.2.7) into Eq. (3.2.1) and require that all terms proportional to AV satisfy the equality
separately. We thereby obtain the set of equations

gy ©
ih ‘gt = Hyy©, (3.2.82)

3¢(N) . .
ih =Hyy™M +vyWN-D  N=1,23.... (3.2.8b)

Eq. (3.2.8a) is simply Schrodinger’s equation for the atom in the absence of its interaction with
the applied field; we assume for definiteness that initially the atom is in state g (typically the
ground state) so that the solution to this equation can be represented as

v O, 1) = ug(rye ' Esl/h, (3.2.9)
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The remaining equations in the perturbation expansion (Eq. (3.2.8b)) are readily solved by
making use of the fact that the energy eigenfunctions for the free atom constitute a complete set
of basis functions, in terms of which any function can be expanded. In particular, we represent
the Nth-order contribution to the wavefunction ¥ V) (r, ¢) as the sum

yMa,n=>"a™ OuEe . (3.2.10)
[

Here al(N) (t) gives the probability amplitude that, to Nth order in the perturbation, the atom is
in energy eigenstate / at time 7. If Eq. (3.2.10) is substituted into Eq. (3.2.8b), we find that the
probability amplitudes obey the system of equations

ihy oM u@e ™ =3 g Ve, (3.2.11)
I )

where the dot denotes a total time derivative. This equation relates all of the probability am-
plitudes of order N (the left-hand side) to all of the amplitudes of order N — 1 (the right-hand
side). To simplify this equation, we multiply each side from the left by «, and integrate the
resulting equation over all space. Then through use of the orthonormality condition (3.2.5), we
obtain the equation

aM ) =i a VOV @e o, (3.2.12)
1

where we have introduced the frequency difference w,,; = w,, — w; and where we have intro-
duced the matrix elements of the perturbing Hamiltonian, which are defined by

Vit z(m\?\l)=/u;\7u,d3r. (3.2.13)

The form of Eq. (3.2.12) demonstrates the usefulness of the perturbation technique; once
the probability amplitudes of order N — 1 are determined, the amplitudes of the next higher
order (N) can be obtained by straightforward time integration. In this manner a simple con-
structive procedure can be used to obtain correction terms to the wave function of arbitrarily
high order. In particular, we find that

t ) ,
a0y =@in"Yy / dt' Vo (tYa™ =V @ yetom?. (3.2.14)
i —0

We shall eventually be interested in determining the linear, second-order, and third-order
optical susceptibilities. To do so, we shall require explicit expressions for the probability am-
plitudes up to third order in the perturbation expansion. We now determine the form of these
amplitudes.
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To determine the first-order amplitudes a(l)(t) we set a in Eq. (3.2.14) equal to §;g,
corresponding to an atom known to be in state g in zeroth order. We represent the optical field
E(¢) as a discrete sum of (positive and negative) frequency components as

E(t) =) E(wpe ", (3.2.15)
p

Through use of Egs. (3.2.3) and (3.2.15), we can then replace V(') by — Zp I
E(w),)exp(—iwpt’), where p,,; = f ur pu d3r is known as the electric-dipole transition mo-
ment. We next evaluate the integral appearing in Eq. (3.2.14) and assume that the contribution
from the lower limit of integration vanishes™; we thereby find that

1 K - E(wp)
D5y = = N Eme D) iwpg—wp)t 3.2.16
a,’(0) h; o e (3.2.16)

We next determine the second-order correction to the probability amplitudes by using
&)

Eq. (3.2.14) once again, but with N set equal to 2. We introduce Eq. (3.2.16) for a,,  into
the right-hand side of this equation and perform the integration to find that
alP () = ZZ o E(wq)][umg E@D ing—op-opr. (3.2.17)
52 (a)ng a)q)(wmg a)p)

pqg m

Analogously, through an additional use of Eq. (3.2.14), we find that the third-order correc-
tion to the probability amplitude is given by

(3)(t) _ 3 ZZ [I’Lvn E(wr)] ”’nm E(a)q) [M’mg E(wp)]

(wvg —Wg — wr)(wng —wp — a)q)(a)mg - a)p)

pqr mn

T a)q—wr)t_ (3.2.18)

3.2.3 Linear Susceptibility

Let us use the results just obtained to describe the linear optical properties of a material sys-
tem. According to the rules of quantum mechanics, the expectation value of the electric-dipole
moment is given by

P) = (Vlilv), (3.2.19)

* We note that there is no mathematical justification for ignoring the lower limit of integration. This mathemat-
ical difficulty does not occur within the context of the density-matrix formalism of quantum mechanics, to be
developed later in this chapter.
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where 1 is given by the perturbation expansion (3.2.7) with A set equal to one. We thus find that
the lowest-order contribution to (p) (i.e., the contribution linear in the applied field amplitude)
is given by

(B0) = (v @laly®)+(v ) (3.2:20)

where ¥ © is given by Eq. (3.2.9) and (1 is given by Egs. (3.2.10) and (3.2.16). By substi-
tuting these forms into Eq. (3.2.20) we find that

pD) = ZZ ﬂgm[ﬂmg E(w))] - (g - E(@p)]* g don). (32.21)
mg — Wp a)*g wp

In writing Eq. (3.2.21) in the form shown, we have formally allowed for the possibility that
the transition frequency wy,g is a complex quantity. We have done this because a crude way of
incorporating damping phenomena into the theory is to take w,,, to be the complex quantity
wmg = (Ey — Eg)/h — iy, /2, where I'y, is the population decay rate of the upper level m.
This procedure is not totally acceptable, because it cannot describe the cascade of population
among the excited states nor can it describe dephasing processes that are not accompanied by
the transfer of population. Nonetheless, for the remainder of the present section, we shall allow
the transition frequency w,, to be a complex quantity in order to provide an indication of how
damping effects could be incorporated into the present theory.

Eq. (3.2.21) is written as a summation over all positive and negative field frequencies w,,.
This result is easier to interpret if we formally replace w, by —w), in the second term, in which
case the expression becomes

(1) ZZ(ILgm Ring - E(wp)] [M’gm 'E(Q)p)]ﬂmg)e_iwpl. (3.2.22)

*
Wpg T @p

We now use this result to calculate the form of the linear susceptibility. We take the linear
polarization to be P = N (p(V), where N is the number density of atoms. We next express the
polarization in terms of its complex amplitude as P() = > » PO (w p) exp(—iwpt). Finally, we

introduce the linear susceptibility defined through the relation Pi(l)(a) p) =€) F Xi(j])E j(@p).
We thereby find that

i) Joi
le)(wp) — éih Z( :ugmfmg 4 N;gmﬂmg ) (3.2.23)
0h = \wmg —wp Wy, +wp

The first and second terms in Eq. (3.2.23) can be interpreted as the resonant and antiresonant
contributions to the susceptibility, as illustrated in Fig. 3.2.1. In this figure we have indicated
where level m would have to be located in order for the corresponding term to become resonant.
Note that if g denotes the ground state, it is impossible for the second term to become resonant,
which is why it is called the antiresonant contribution.
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(a) (b)

g I S ]
FIGURE 3.2.1: The resonant (a) and antiresonant (b) contributions to the linear susceptibility of
Eq. (3.2.23).

3.2.4 Second-Order Susceptibility

The expression for the second-order susceptibility is derived in a manner analogous to that used
for the linear susceptibility. The second-order contribution (i.e., the contribution second order
in V) to the induced dipole moment per atom is given by

B?) = (¥ ||y @)+ (v D a|y D)+ (@] a]y @), (3.2.04)

where ¥ © is given by Eq. (3.2.9), and ¥ and v® are given by Eqgs. (3.2.10), (3.2.16), and
(3.2.17). We find that (p‘®) is given explicitly by

(2) ZZ(Mgn[”'nm -E(a)q)][ﬂmg E(wp)] e~ @pteq)t
» pq mn (Ong — wp — @g)(@Wmg — wp)
[Hng ‘E(@g)]* Wy [img 'E(wp)]e_i(wl’_wq)f
(W}, — 0g) (@mg — wp)
[ang ’ E(wq)]*[l'l'nm ' E(a)p)]*/l'mg ei(“’ﬁ"'“’q)t) .

(g — @g) (@, — g — wg)

(3.2.25)

As in the case of the linear susceptibility, this equation can be rendered more transparent by
replacing w,; by —w, in the second term and by replacing w, by —w, and w, by —w,, in the
third term; these substitutions are permissible because the expression is to be summed over
frequencies w, and w,. We thereby obtain an expression in which each term has the same
frequency dependence:

2 Ronlpm - E(@)][ g - E(@p)]
b T ;;( (@ng — @p — @g)(Wmg — @p)
(gn - E(@) Iy [ g - E(wp)]
(w;l*g + wg) (Wmg — wp)
[ gn - E(@q) [ Ry - B(@p) [ g )ei(w,,+wqt).
(g + 0g) (W), + wq + wg)

(3.2.26)
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FIGURE 3.2.2: Resonance structure of the three terms of the second-order susceptibility of Eq. (3.2.27).

We next take the second-order polarization to be PO =N (p@) and represent it in terms of
its frequency components as P? = >, P® (w,) exp(—iw,t). We also introduce the standard
definition of the second-order susceptibility (see also Eq. (1.3.13)):

2 2
Jjk (pq)
and find that the second-order susceptibility is given by
Ml Kot g

(a)ng —wp — a)q)(a)mg - a)p)

5 N
Xiji(@p + g, 0q, wp) = w2 ! Z(
mn

i ik
Mgnl/vhm:umg
(a)ﬁg + wg)(Wng — wp)
o e Mo )

(w:g + a)q)(a),”;zg +wp +wy)

(3.2.27)

In this expression, the symbol P; denotes the intrinsic permutation operator. This operator tells
us to average the expression that follows it over both permutations of the frequencies w, and
wy of the applied fields. The Cartesian indices j and k are to be permuted simultaneously. We
introduce the intrinsic permutation operator into Eq. (3.2.27) to ensure that the resulting ex-
pression obeys the condition of intrinsic permutation symmetry, as described in the discussion
of Egs. (1.4.52) and (1.5.6). The nature of the expression (3.2.27) for the second-order suscep-
tibility can be understood in terms of the energy level diagrams depicted in Fig. 3.2.2, which
show where the levels m and n would have to be located in order for each term in the expression
to become resonant.

The quantum-mechanical expression for the second-order susceptibility given by Eq. (3.2.27)
is sometimes called a sum-over-states expression because it involves a sum over all of the ex-
cited states of the atom. This expression actually is comprised of six terms; through use of
the intrinsic permutation operator P;, we have been able to express the susceptibility in the
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form (3.2.27), in which only three terms are displayed explicitly. For the case of highly non-
resonant excitation, such that the resonance frequencies wy,g and w,g can be taken to be real
quantities, the expression for x ? can be simplified still further. In particular, under such cir-
cumstances Eq. (3.2.27) can be expressed as

ik
2) /’Lgnlu/ﬂm/’l’mg

where w, = ), + w,. Here we have introduced the full permutation operator, Pr, defined such
that the expression that follows it is to be summed over all permutations of the frequencies
wp, wy, and —ws—that is, over all input and output frequencies. The Cartesian indices are to
be permuted along with the frequencies. The final result is then to be divided by the number
of permutations of the input frequencies. The equivalence of Egs. (3.2.27) and (3.2.28) can be
verified by explicitly expanding the right-hand side of each equation into all six terms. The six
permutations denoted by the operator P are

(—wg, Wy, a)p) — (—wg, Wp, a)q)’ (wq, —Wg, a)p), (a)qa Wp, —Wg ),
(C()p, _a)O"a)q)a (a)paa)Q9_a)(7)'
Since we can express the nonlinear susceptibility in the form of Eq. (3.2.28), we have proven

the statement made in Section 1.5 that the second-order susceptibility of a lossless medium
possesses full permutation symmetry.

3.2.5 Third-Order Susceptibility

We now calculate the third-order susceptibility. The dipole moment per atom, correct to third
order in perturbation theory, is given by

BP) = (v Q|aly D)+ (D ||y @)+ (¥ Paly D)+ (v D] aly @). (3.2.29)

Formulas for ¢ @, ¢ 4@ 43 are given by Egs. (3.2.9), (3.2.10), (3.2.16), (3.2.17), and
(3.2.18). We thus find that

B = m oy

pqr mnv

X ( ﬂgv[ﬂ'un i E(a)r)][”'nm ) E(wq)][ﬂmg E(C()p)] e_i(a)p+wq+a)r)t
(a)vg — Wy —Wg — a)p)(a)ng —Wg — a)p)(wmg - a)p)

[Ing ° E(wr)]*”/vn [Ian : E(wq)][”“mg N E(wp)]

(a)?;g - a)r)(a)ng —Wq — a)p)(wmg - a)p)

efi(w,,+wq7wr)t
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[1yg - E(r)]* [y - E(@q) 1" iy [ Mg -E(wp)]e_,-(wp_wq_wr)t
(W}, — 0 (W), — 0 — wg)(Opg — @p)
[y - E(w) ] [y - E(@) I [ - E(0p)]* g e+i(w,,+wq+wr)r>
(a):jg — a),)(a),”;g —wy — a)q)(w;‘;g — Wy —Wg — wp)

(3.2.30)

Since the expression is summed over all positive and negative values of w,, wy, and w,, we can
replace these quantities by their negatives in those expressions where the complex conjugate of
a field amplitude appears. We thereby obtain the expression

=Y

pqr mny
8 ( ool - E(@p) 1[Iy - E(@) 1[I - E(@))]
(wyg — wp — wyg — wp)(Wpg — Wy — Wp)(Wmg — ®p)
gy - E(wr) 1y, [y - E(wg) 1 1yg - E(wp)]
(w,”jg + ) (Wng — g — wp)(Opg — wp)
(g - E(wr)]it,, - E(wg) 1 m [ g - E(wp)]
(}y + o) (W, + @r + @g) (Omg — ®p)
gy - E(@p)1[1y, - E(@) Ry, - E(@p) 11 g
(e + o)Wy + Or + 0g) (W), + 0r + ©q + wp)>
x e~ H@ptegtont (3.2.31)

We now use this result to calculate the third-order susceptibility: We let PO =NpO) =
Do P® (wy) exp(—iwst) and introduce the definition (1.3.21) of the third-order susceptibility:

3
Pewp+ogto) =€y Y X (@, 0, 0 0p) Ej(@r) Ei (0g) Ex(@)).
hij (pqr)
We thereby obtain the result

(3)
ij,'h(a)a’ Wy, Wgq, (Up)

=—=Pr
eoh’ (Wvg — W — Wy — Wp)(Wpg — Wg — Wp)(Wmg — @p)

mny
J gk i g h
”“gvll’vn”’nm”“mg

(w?jg + a)r)(a)ng —Wg — wp)(a)mg - a)p)
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[ Ty T
(w]"jg + w,)(a);;g + wp + wg)(Wmg — wp)

(3.2.32)

”’év”’inﬂzm”’];%g i|
(a);‘jg + a)r)(a);‘lg + w, + a)q)(a);jlg +wr +wg + wp) '

Here we have again made use of the intrinsic permutation operator P; defined following
Eq. (3.2.27). The complete expression for the third-order susceptibility actually contains 24
terms, of which only four are displayed explicitly in Eq. (3.2.33); the others can be obtained
through permutations of the frequencies (and Cartesian indices) of the applied fields. The loca-
tions of the resonances in the displayed terms of this expression are illustrated in Fig. 3.2.3.
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FIGURE 3.2.3: Locations of the resonances of each term in the expression (3.2.32) for the third-order
susceptibility.

As in the case of the second-order susceptibility, the expression for x ® can be written very
compactly for the case of highly nonresonant excitation such that the imaginary parts of the
resonance frequencies (recall that w;, = (E; — Eg)/h —iI';/2) can be ignored. In this case, the
expression for x ) can be written as

(3)
ij,‘h(a)av Wy, Wgq, a)p)

k ,J i ,h
N W i Moy 1
=—Pry. gvZ t nm”me : (3.2.33)
eoh (wvg - wc)(a)ng —Wq — wp)(wmg - a)p)

where w, = w), + wy + w, and where we have made use of the full permutation operator Pr
defined following Eq. (3.2.28).
3.2.6 Third-Harmonic Generation in Alkali Metal Vapors

As an example of the use of Eq. (3.2.33), we next calculate the nonlinear optical susceptibility
describing third-harmonic generation in a vapor of sodium atoms. Except for minor changes
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in notation, our treatment follows that of the original treatment of Miles and Harris (1973).
We assume that the incident radiation is linearly polarized in the z direction. Consequently, the
nonlinear polarization will have only a z component, and we can suppress the tensor nature of
the nonlinear interaction. If we represent the applied field as

E(r,1)=E|(r)e ' +c.c., (3.2.34)
we find that the nonlinear polarization can be represented as
P(r,1) = P3(r)e 3 +cec., (3.2.35)
where
P3(r) =eox Y (Bw)E;. (3.2.36)

Here x 3)(3w) is an abbreviated notation for the quantity x 3 (3w = w4+ ® + w). The nonlinear
susceptibility describing third-harmonic generation is given, ignoring damping effects, by

N
X(3)(3w) = EO? Z,Uvgv,uvnluvnm,umg

mnyv

1
8 [(wvg ~30) (ng — 20) (g — @)
1

(wvg +w) (wng —2w) (a)mg — )
1

(wvg + 0)(Wyg + 20) (Wng — w)

+ ! :| (3.2.37)
(wvg + w) (a)ng +2w) (U)mg + 3w)

Eq. (3.2.37) can be readily evaluated through use of the known energy-level structure and
dipole transition moments of the sodium atom. Fig. 3.2.4 shows an energy-level diagram of
the low-lying states of the sodium atom and a photon energy-level diagram describing the
process of third-harmonic generation. We see that only the first contribution to Eq. (3.2.37)
can become fully resonant. This term becomes fully resonant when w is nearly equal to wy,,
2w is nearly equal to wyg, and 3w is nearly equal to w,g. In performing the summation over
excited levels m, n, and v, the only levels that contribute are those that obey the selection rule
Al = +£1 for electric-dipole transitions. In particular, since the ground state is an s state, the
matrix element w,,g will be nonzero only if m denotes a p state. Similarly, since m denotes a
p state, the matrix element w,, will be nonzero only if n denotes an s or a d state. In either
case, v must denote a p state, since only in this case can both ., and 4, be nonzero. The two
types of coupling schemes that contribute to x ) are shown in Fig. 3.2.5.
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FIGURE 3.2.4: (a) Energy-level diagram of the sodium atom. (b) The third-harmonic generation process.
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FIGURE 3.2.5: Two coupling schemes that contribute to the third-order susceptibility.

Through use of tabulated values of the matrix elements for the sodium atom, Miles and
Harris (1973) calculated numerically the value of x ® as a function of the vacuum wavelength
A =2mc/w of the incident laser field. The results of this calculation are shown in Fig. 3.2.6.
A number of strong resonances in the nonlinear susceptibility are evident. Each such resonance
is labeled by the quantum number of the level and the type of resonance that leads to the reso-
nance enhancement. The peak labeled 3 p(3w), for example, is due to a three-photon resonance
with the 3 p level of sodium. Miles and Harris also presented experimental results that confirm
predictions of their theory.

Because atomic vapors are centrosymmetric, they cannot produce a second-order response.
Nonetheless, the presence of a static electric field can break the inversion symmetry of the
material medium, allowing processes such as sum-frequency generation to occur. These effects
can be particularly large if the optical fields excite the high-lying Rydberg levels of an atomic
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FIGURE 3.2.6: The nonlinear susceptibility describing third-harmonic generation in atomic sodium va-
por plotted versus the vacuum wavelength of the fundamental radiation (after Miles and Harris, 1973).

system. The details of this process have been described theoretically by Boyd and Xiang (1982),
with experimental confirmation presented by Gauthier et al. (1983) and Boyd et al. (1984).

3.3 Density Matrix Formulation of Quantum Mechanics

In the present section through Section 3.7, we calculate the nonlinear optical susceptibility
through use of the density matrix formulation of quantum mechanics. We use this formalism
because it is capable of treating effects, such as collisional broadening of the atomic resonances,
that cannot be treated by the simple theoretical formalism based on the atomic wave function.
We need to be able to treat such effects for a number of related reasons. We saw in the previous
section that nonlinear effects become particularly large when one of the frequencies of the inci-
dent laser field, or when sums or differences of these frequencies, becomes equal to a transition
frequency of the atomic system. But the formalism of the previous section does not allow us to
describe the width of these resonances, and thus it cannot tell us how accurately we need to set
the laser frequency to that of the atomic resonance. The wavefunction formalism also does not
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tell us how strongly the response is modified when the laser frequency lies within the width of
the resonance.

Let us begin by reviewing how the density matrix formalism follows from the basic laws
of quantum mechanics.” If a quantum-mechanical system (such as an atom) is known to be in
a particular quantum-mechanical state that we designate s, we can describe all of the physical
properties of the system in terms of the wavefunction v (r, t) appropriate to this state. This
wavefunction obeys the Schrodinger equation

iy s 1)

= Hysn, 3.3.1)

where H denotes the Hamiltonian operator of the system. We assume that H can be represented
as
H=Hy+ V@, (33.2)

where Hy is the Hamiltonian for a free atom and V (1) represents the interaction energy. In order
to determine how the wavefunction evolves in time, it is often helpful to make explicit use of
the fact that the energy eigenstates of the free-atom Hamiltonian Hy form a complete set of
basis functions. We can hence represent the wavefunction of state s as

Yo(r, 1) =Y Ch(O)un(r), (33.3)
n
where, as we noted in Section 3.2, the functions u, (r) are the energy eigensolutions to the
time-independent Schrodinger equation
Hotn (v) = Eyty (1Y), (3.3.4)

which are assumed to be orthonormal in that they obey the relation

/ w (O, (v) d°r = Spn. (3.3.5)

The expansion coefficient C, (¢) gives the probability amplitude that the atom, which is known
to be in state s, is in energy eigenstate n at time t. The time evolution of ¥ (r, ) can be
specified in terms of the time evolution of each of the expansion coefficient C; (¢). To determine
how these coefficients evolve in time, we introduce the expansion (3.3.3) into Schrédinger’s
equation (3.3.1) to obtain

ih) dcj,(t) un(r) = Y Cy () Huy (r). (33.6)

* The reader who is already familiar with the density matrix formalism can skip directly to Section 3.4.
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Each side of this equation involves a summation over all of the energy eigenstates of the system.
In order to simplify this equation, we multiply each side from the left by u, (r) and integrate
over all space. The summation on the left-hand side of the resulting equation reduces to a single
term through use of the orthogonality condition of Eq. (3.3.5). The right-hand side is simplified
by introducing the matrix elements of the Hamiltonian operator H, defined through

Hpp = / u’ (t) Huy, (v) d°r. (3.3.7)

We thereby obtain the result
. d
IFLEC;;(I) = En Hyyu C (2). (3.3.8)

This equation is entirely equivalent to the Schrodinger equation (3.3.1), but it is written in terms
of the probability amplitudes C; (¢).

The expectation value of any observable quantity can be calculated in terms of the wave-
function of the system. A basic postulate of quantum mechanics states that any observable
quantity A is associated with a Hermitian operator A. The expectation value of A is then ob-
tained according to the prescription

(A) = / YAy, d3r. (3.3.9)

Here the angular brackets denote a quantum-mechanical average. This relationship can alterna-
tively be written in Dirac notation as

(A) = (v | A|vrs) = (s] A ), (3.3.10)

where we shall use either |1/5) or |s) to denote the state s. The expectation value (A) can be ex-
pressed in terms of the probability amplitudes C; (¢) by introducing Eq. (3.3.3) into Eq. (3.3.9)
to obtain

(A) =) CorChAmn, (3.3.11)
mn
where we have introduced the matrix elements A,,, of the operator A, defined through

Amn :<um|A|un>:fu:1Aund3r. (3.3.12)

As long as the initial state and the Hamiltonian operator H for the system are known, the
formalism described by Eqs. (3.3.1) through (3.3.12) is capable of providing a complete de-
scription of the time evolution of the system and of all of its observable properties. However,
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there are circumstances under which the state of the system is not known in a precise manner.
An example is a collection of atoms in an atomic vapor, where the atoms can interact with one
another by means of collisions. Each time a collision occurs, the wave function of each inter-
acting atom is modified. If the collisions are sufficiently weak, the modification may involve
only an overall change in the phase of the wave function. However, since it is computationally
infeasible to keep track of the phase of each atom within the atomic vapor, from a practical
point of view the state of each atom is not known.

Under such circumstances, where the precise state of the system is unknown, the density
matrix formalism can be used to describe the system in a statistical sense. Let us denote by p(s)
the probability that the system is in the state s. The quantity p(s) is to be understood as a
classical rather than a quantum-mechanical probability. Hence p(s) simply reflects our lack of
knowledge of the actual quantum-mechanical state of the system; it is not a consequence of any
sort of quantum-mechanical uncertainty relation. In terms of p(s), we define the elements of
the density matrix of the system by

pum =Y P($)CyrCy. (3.3.13)
N

This relation can also be written symbolically as
Pnm = CCy, (3.3.14)

where the overbar denotes an ensemble average, that is, an average over all of the possible
states of the system. In either form, the indices n and m are understood to run over all of the
energy eigenstates of the system.

The elements of the density matrix have the following physical interpretation: The diagonal
elements py;, give the probability that the system is in energy eigenstate n. The off-diagonal
elements have a somewhat more abstract interpretation: p,, gives the “coherence” between
levels n and m, in the sense that p,, will be nonzero only if the system is in a coherent su-
perposition of energy eigenstate n and m. We show below that the off-diagonal elements of the
density matrix are, in certain circumstances, proportional to the induced electric dipole moment
of the atom.

The density matrix is useful because it can be used to calculate the expectation value of
any observable quantity. Since the expectation value of an observable quantity A for a system
known to be in the quantum state s is given according to Eq. (3.3.11) by (A) =), C3*C3 An,
the expectation value for the case in which the exact state of the system is not known is obtained
by averaging Eq. (3.3.11) over all possible states of the system, to yield

(A) = " p(s) Y CyrChAmn. (3.3.15)
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The notation used on the left-hand side of this equation means that we are calculating the
ensemble average of the quantum-mechanical expectation value of the observable quantity A.*
Through use of Eq. (3.3.13), this quantity can alternatively be expressed as

ﬁ: ZlonmAmn- (3316)

nm

The double summation in the equation can be simplified as follows:

> punm = 2(2 i ) = Y (54),,, = (5 ).

n

where we have introduced the trace operation, which is defined for any operator M by TrM =
> My, The expectation value of A is hence given by

(A) =Tr(pA). (3.3.17)

The notation used in these equations is that p denotes the density operator, whose n, m matrix
component is denoted Py, ; ﬁA denotes the product of p with the operator A; and (ﬁA)nn
denotes the n, n component of the matrix representation of this product.

We have just seen that the expectation value of any observable quantity can be determined
straightforwardly in terms of the density matrix. In order to determine how any expectation
value evolves in time, it is thus necessary only to determine how the density matrix itself evolves
in time. By direct time differentiation of Eq. (3.3.13), we find that

d dcs  dCyt
Pom =Y _ p(s)cfn*cf, + Zp(s)(c“‘ + —= Cf,). (3.3.18)

— dt "o dt dt
For the present, let us assume that p(s) does not vary in time, so that the first term in this expres-
sion vanishes. We can then evaluate the second term straightforwardly by using Schrodinger’s
equation for the time evolution of the probability amplitudes equation (3.3.8). From this equa-
tion we obtain the expressions

dc;

fn* dtn — _CS*Zan
CA*

"odt

Y e = e

* In later sections of this chapter, we shall follow conventional notation and omit the overbar from expressions such
as (A), allowing the angular brackets to denote both a quantum and a classical average.
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These results are now substituted into Eq. (3.3.18) (with the first term on the right-hand side
omitted) to obtain

P p(s)% > (CIC3* Hum — CFC Hay). (3.3.19)
S v

The right-hand side of this equation can be written more compactly by introducing the form
(3.3.13) for the density matrix to obtain

. i
Pnm = % Zv:(panvm — Hyy pom). (3.3.20)

Finally, the summation over v can be performed formally to write this result as

R I —is

Pnm = ﬁ(,oH - Hp) = ?[ ] - (3.3.21)
We have written the last form in terms of the commutator, defined for any two operators A and
Bby[A, Bl=AB - BA.

Eq. (3.3.21) describes how the density matrix evolves in time as the result of interactions that
are included in the Hamiltonian H. However, as mentioned above, there are certain interactions
(such as those resulting from collisions between atoms) that cannot conveniently be included in
a Hamiltonian description. Such interactions can lead to a change in the state of the system, and
hence to a nonvanishing value of dp(s)/dt. We include such effects in the formalism by adding
phenomenological damping terms to the equation of motion (3.3.21). There is more than one
way to model such decay processes. We shall often model such processes by taking the density
matrix equations to have the form

Pnm = %[ 1, 5], — Yam (Pum — oA’ (3.3.22)

Here the second term on the right-hand side is a phenomenological damping term, which indi-
cates that py,, relaxes to its equilibrium value ,0,(,3,?) at rate Yy, . Since yy, is a decay rate, we

assume that ¥, = Ymn. In addition, we make the physical assumption that
oD —0 for n#m. (3.3.23)

We are thereby asserting that in thermal equilibrium the excited states of the system may contain
population (i.e., p,(,i,q) can be nonzero) but that thermal excitation, which is expected to be an
incoherent process, cannot produce any coherent superpositions of atomic states (,0,(5,?) =0 for
n#m).

An alternative method of describing decay phenomena is to assume that the off-diagonal
elements of the density matrix are damped in the manner described above, but to describe the
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damping of the diagonal elements by allowing population to decay from higher-lying levels to
lower-lying levels. In such a case, the density matrix equations of motion are given by

Prm = —ih—l[ﬁ Plups = YomPums 1 #m, (3.3.24a)
Pnn = —ihi! I:I /3 nn Z L Omm — Z Cnn Onn - (3.3.24b)
Em>En Em <En

Here T, gives the rate per atom at which population decays from level m to level n, and, as
above, Yy, gives the damping rate of the pj,;,, coherence.

The damping rates y;,;, for the off-diagonal elements of the density matrix are not entirely
independent of the damping rates of the diagonal elements. In fact, under quite general condi-
tions the off-diagonal elements can be represented as

Vm = 5 (T + D) + 3,150, (3.3.25)

Here, ', and '), denote the total decay rates of population out of levels n and m, respectively.
In the notation of Eq. (3.3.24b), for example, [, is given by the expression

Tv= > Ty (3.3.26)

n’ (En/<En)

The quantity y,f,ffl) in Eq. (3.3.25) is the dipole dephasing rate due to processes (such as elastic
collisions) that are not associated with the transfer of population; y(co ) is sometimes called the
proper dephasing rate. To see why Eq. (3.3.25) depends upon the population decay rates in the
manner indicated, we note that if level x has lifetime t, = 1/I",, the probability to be in level n
must decay as

1Cu ()| = [Ca@)] e, (33.27)
and thus the probability amplitude must vary in time as
Ca(t) = Cp(0)e ™1 @nl e~ Tnl/2, (3.3.28)
Likewise, the probability amplitude of being in level m must vary as
Con(t) = Cpp (0)e 1@t = Tmt /2, (3.3.29)
Thus, the coherence between the two levels must vary as
CH(1)C (1) = CH(0)C,py (0~ @mnt =Tt /2, (3.3.30)

But since the ensemble average of C,Cy, is just p,,, whose damping rate is denoted y,,,,, it
follows that

Ymn = 3T + ). (3.3.31)
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FIGURE 3.3.1: A two-level atom.

3.3.1 Example: Two-Level Atom

As an example of the use of the density matrix formalism, we apply it to the simple case
illustrated in Fig. 3.3.1, in which only the two atomic states a and b interact appreciably with
the incident optical field. The wavefunction describing state s of such an atom is given by

Ys(r, 1) = C)(Hua(r) + Cp(t)up(r), (3.3.32)

and thus the density matrix describing the atom is the two-by-two matrix given explicitly by

|::0aa pabi| — |: CHC; Cacl;k ] (3 3 33)
Pba  Pbb C,C: C,Cp ' o

The matrix representation of the electric-dipole-moment operator is

R 0
M=>[ ““”}, (3.3.34)
MUba 0
where p;; = W;i = —e(i|z|j), —e is the electron charge, and Z is the position operator for the

electron. We have set the diagonal elements of the electric-dipole-moment operator equal to
zero on the basis of the implicit assumption that states a and b have definite parity, in which
case {(a|r|a) and (b|r|b) vanish identically as a consequence of symmetry considerations. The
expectation value of the dipole moment is given according to Eq. (3.3.17) by (i) = Tr(p1).
Explicitly, i is represented as

b= |:,0aa ,Oab:||: 0 Mab:| _ |:/0ab/1vba ,Oaa//vabi| (3.3.35)
Pba  Pbb || Hba O PbbMba  Pbaltab

and thus the expectation value of the induced dipole moment is given by

() =Tr(PfL) = Pabitba + Pbalab- (3.3.36)

As stated in connection with Eq. (3.3.14), the expectation value of the dipole moment is seen
to depend upon the off-diagonal elements of the density matrix.
The density matrix treatment of the two-level atom is developed more fully in Chapter 6.
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3.4 Perturbation Solution of the Density Matrix Equation of Motion

In the last section, we saw that the density matrix equation of motion with the phenomenologi-
cal inclusion of damping is given by
—irg (eq)

,énm = ?[H’ ﬁ]nm — Vnm (;Onm — Pnm ) 34.1)

In general, this equation cannot be solved exactly for physical systems of interest, and for this
reason it is useful to develop a perturbative technique for solving it. This technique presupposes
that, as in Eq. (3.3.2) in the preceding section, the Hamiltonian can be split into two parts as

H=Hy+ V), (3.4.2)

where Hy represents the Hamiltonian of the free atom and 140 represents the energy of inter-
action of the atom with the externally applied radiation field. This interaction is assumed to be
weak in the sense that the expectation value and matrix elements of V are much smaller than
the expectation value of Hy. We usually assume that this interaction energy is given adequately
by the electric-dipole approximation as

V=—p EQ, (3.4.3)

where ji = —eF denotes the electric-dipole moment operator of the atom. However, for gener-
ality and for compactness of notation, we shall introduce Eq. (3.4.3) only when necessary.

When Eq. (3.4.2) is introduced into Eq. (3.4.1), the commutator [ﬁ , 0] splits into two terms.
We examine first the commutator of ﬁo with p. We assume that the states n represent the
energy eigenfunctions u, of the unperturbed Hamiltonian Hy and thus satisfy the equation
ﬁoun = E,u, (see also Eq. (3.3.4)). As a consequence, the matrix representation of ﬁo is
diagonal—that is,

HO,nm = Eydpm- (344)

The commutator can thus be expanded as

[I'}O’ ﬁ]nm = (IQOK3 - KSFIO)nm = Z(HO,nvpvm — PnvHo,vm)

v

= Z(Enanvpvm — PuvSum Em)
v
= Enonm — Emponm = (En — En) Pum.- (3.4.5)

For future convenience, we define the transition frequency (in angular frequency units) as

_ En—En (3.4.6)
Wy = 7 . 4.
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Through use of Egs. (3.4.2), (3.4.5), and (3.4.6), the density matrix equation of motion (3.4.1)
thus becomes
i

(V28— Yim (prm — pa). (34.7)

Prm = —1Opm Prm —
We can also expand the commutator of V with  to obtain the density matrix equation of motion
in the form™

. . i
Pnm = —1Wnpm Pnm — 7 Z(Vn\)pvm = PnvVom) = Vam (pnm - :015?1(11))- (3.4.8)
v

For most problems of physical interest, Eq. (3.4.8) cannot be solved analytically. We there-
fore seek a solution in the form of a perturbation expansion. In order to carry out this procedure,
we replace V;; in Eq. (3.4.8) by AV;;, where A is a parameter ranging between zero and one
that characterizes the strength of the perturbation. The value A = 1 is taken to represent the
actual physical situation. We now seek a solution to Eq. (3.4.8) in the form of a power series
in A—that is,

pam = PO + 10 432D 4. (3.4.9)

We require that Eq. (3.4.9) be a solution of Eq. (3.4.8) for any value of the parameter X. In order
for this condition to hold, the coefficients of each power of A must satisfy Eq. (3.4.8) separately.
We thereby obtain the set of equations

5O = —iwam %) — Yum (050 — pasi). (3.4.10a)
pim = —(i@um + yam)p™D — ik [V, 5O . (3.4.10b)
pim = —(ium + yam)p® —in [V, 5], (3.4.10¢c)

and so on. This system of equations can now be integrated directly, since, if the set of equa-
tions is solved in the order shown, each equation contains only linear homogeneous terms and
inhomogeneous terms that are already known.

* In this section, we are describing the time evolution of the system in the Schrédinger picture. It is sometimes

convenient to describe the time evolution instead in the interaction picture. To find the analogous equation of

motion in the interaction picture, we define new quantities oy, and O’,Ef,?) through

—iwpmt (eq) (eq) o~ i@nmt

Pnm = Onme Pnm = Onm

In terms of these new quantities, Eq. (3.4.8) becomes

i . )

- — Lwpyt Lwym!t (eq)

Onm = _ﬁ E [anavme Wt —oppe " va] — Ynm (Unm — Onm )
v
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Eq. (3.4.10a) describes the time evolution of the system in the absence of any external field.
We take the steady-state solution to this equation to be

P = pa (3.4.11a)
where (for reasons given earlier; see Eq. (3.3.23))
oD — 0 for n#m. (3.4.11b)

Now that ,0,5(,)12 is known, Eq. (3.4.10b) can be integrated. To do so, we make a change of vari-
ables by representing ,o,(lm as

o'V (1) = S (1)e Ewmmtyam)t, (3.4.12)
The time derivative ,0,(,}12 can be represented in terms of S,S,‘J as

P = — (i @ + Vo) Siye ™ onm Tyt 1 ) = onnFyum)t, (3.4.13)

These forms are substituted into Eq. (3.4.10b), which then becomes

(1 iy ~(0 | Wnm nm
S — ?[V’ PO elienmtymi, (3.4.14)
This equation can be integrated to give
t .
1 “Iro (0 | Wpm nm !
s :/_OOF[V(%),,& ettt ar (3.4.15)

This expression is now substituted back into Eq. (3.4.12) to obtain
t .
—i - . _ -
p,gl,g (1) = /OO F[V(t/)’ p(o)]nme(lwnm+)’nm)(t 1) dt’. (3.4.16)

In similar way, all of the higher-order corrections to the density matrix can be obtained. These
expressions are formally identical to Eq. (3.4.16). The expression for p,%), for example, is
obtained by replacing p© with ¥ =1 on the right-hand side of Eq. (3.4.16).

3.5 Density Matrix Calculation of the Linear Susceptibility

As a first application of the perturbation solution to the density matrix equations of motion, we
calculate the linear susceptibility of an atomic system. The relevant starting equation for this
calculation is Eq. (3.4.16), which we write in the form

t
e —i A R . ,
Ior(l}yz(t) —e (lwnm+ynm)l/ dl‘/f[V(I/), p(O)]nme(lwnm+ynn,)l . (351)

—00
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As before, the interaction Hamiltonian is given by Eq. (3.4.3) as

V() =—p-E@), (3.5.2)
and we assume that the unperturbed density matrix is given by (see also Eqs. (3.4.11))

O'—0 for n#m. (3.5.3)
We represent the applied field as

E(t) =) E(wp)e ", (3.5.4)
p

The first step is to obtain an explicit expression for the commutator appearing in Eq. (3.5.1):

[V©). 59, =D VOl — o0V ) um]
v
= - Z [ﬂnvpng% - pr(l(n)z)”’vm] E(t)
v

= —(pSon = PVt - E(). (3.5.5)

Here the second form is obtained by introducing V() explicitly from Eq. (3.5.2), and the third
form is obtained by performing the summation over all v and utilizing the condition (3.5.3).
This expression for the commutator is introduced into Eq. (3.5.1) to obtain

; t
l _(; ~ . ’
P (©) = = (Pigm = Py ) B - €~ (o7t f E(r)ellom Tyt gy (3.5.6)

h —00
We next introduce Eq. (3.5.4) for E(7) to obtain
i
10122 (t) = ﬁ(plgg)r)n - plg(l)l))”'nm : ZE(C’)IJ)
p

t
D% e_(iwnm+ynm)t/ e[i(wnm_a)p)+ynm]t, dt, (357)
—00

The second line of this expression can be evaluated explicitly as

(i (@nm—@p)+Vamt’ t —iwpt
o=@ +yim)t ( _e " ) = - e’ , (3.5.8)
1 (wpm — a)p) + VYam /| o [ (Wpm — wp) + Yam
and ,o,(l}?,), is thus seen to be given by
3 n X E(a) )e—ia)pt
’% —n 1( ’5221 —Pég))z nm p (3.5.9)

b (Wnm — a)p) — [ Ynm



Quantum-Mechanical Theory of the Nonlinear Optical Susceptibility 163

We next use this result to calculate the expectation value of the induced dipole moment*:

(R@)=Tr(p"V 0 Z P

_ Honn [ - E(wp)]e r!
:2 :h (P — pl § . (3.5.10)
m m " ) » (Wnm — a)p) — 1 ¥Ynm

We decompose (ji(¢)) into its frequency components according to

(1(0)=>(m(wp))e " (3.5.11)
p
and define the linear susceptibility tensor x () (w) by the equation
P(wp) = N{p(wp)) = eox V(@) -E(w)), (3.5.12)

where N denotes the atomic number density. By comparing this equation with Eq. (3.5.10), we
find that the linear susceptibility is given by

N K
x“)(wp)=€0—hZ(p,5?,31 p\D) mnZnm (35.13)

(Wnm — @p) — 1 ¥Ynm
p

nm

The result given by Eqgs. (3.5.12) and (3.5.13) can be written in Cartesian component form as

Pi(wp) = N{pi(wp)) =Y eox} (@p) Ej(wp) (3.5.14)
with
Py = D (o — i) oo (35.15)
i b eoh m " (@nm _a)p) - iVnm' o

nm

We see that the linear susceptibility is proportional to the population difference p,(,?,% p,(,(,)q),

thus, if levels m and n contain equal populations, the m — n transition does not contribute to
the linear susceptibility.

Eq. (3.5.15) is an extremely compact way of representing the linear susceptibility. At times it
is more intuitive to express the susceptibility in an expanded form. We first rewrite Eq. (3.5.15)
as

(0) ann /le]1m

" (@Wnm — wp) — 1 ¥Ynm

N i J
I (3.5.16)

n .
eoh o (@Onm — a)p) — ¥Ynm

x5 (@ p)—

* Here and throughout the remainder of this chapter we are omitting the bar over quantities such as (1) for sim-
plicity of notation. Hence, the angular brackets are meant to imply both a quantum and an ensemble average.
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We next interchange the dummy indices n and m in the second summation so that the two
summations can be recombined as

i, i,
M, _ N ) [ Fopan Hinm Ly M }
Xii (wp) = P — — , . (35.17)
Y b eoh Z m (@Onm — a)p) —VYnm (@Omn — a)p) — Ymn

nm

We now use the fact that w,,;, = —wnm and Y, = Vinn to write this result as

N i J i J
X,-(,-l)(wp) _ v Zp(O) [ FonnHnm + Fnm Himn } (3.5.18)

eoh . i (Wnm — a)p) — [ Ynm (wnm + wp) + i Vam

In order to interpret this result, let us first make the simplifying assumption that all of the
population is in one level (typically the ground state), which we denote as level a. Mathemati-
cally, this assumption can be stated as

o0 =1, O'—0 for m=#a. (3.5.19)

IOmm

We now perform the summation over m in Eq. (3.5.18) to obtain

(1) N PanMna Hnattan ]
My N : + . . 3.5.20
Xij (@p) eoh 2n:|:((1)na —wp) = iYna  (Wna +@p) +iVna ( )

We see that for positive frequencies (i.e., for @, > 0), only the first term can become resonant.
The second term is known as the antiresonant or counterrotating term. We can often drop the
second term, especially when w),, is close to one of the resonance frequencies of the atom.
Let us assume that w, is nearly resonant with the transition frequency w,,. Then to good
approximation the linear susceptibility is given by

N i, N . i (wpa—wp)+i
(1) Hantna i) na P Yna

ey N _N . (3521
Xl] ( p) €0h (wpa — wp) — 1 Vna thﬂanﬂna (Wna — wp)z + Vnzu ( :

The real and imaginary parts of this expression are shown in Fig. 3.5.1. We see that the imag-
inary part of x;; has the form of a Lorentzian line shape with a linewidth (full width at half
maximum) equal to 2y;,,.

3.5.1 Linear Response Theory

Linear response theory plays a key role in the understanding of many optical phenomena,
and for this reason we devote the remainder of this section to the interpretation of the re-
sults just derived. Let us first specialize our results to the case of an isotropic material. As a
consequence of symmetry considerations, P must be parallel to E in such a medium, and we
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FIGURE 3.5.1: Resonance nature of the linear susceptibility.

can therefore express the linear susceptibility as the scalar quantity x ! (w) defined through
P(0) = eox D (w)E(w) and given by

N 1 1

(¢)) — 1 2

1 V@) =—73 " Ikl [ — + : ] (3.5.22)
€oh = 3TN (Wpg — @) —iVpa  (Wng + ©) + i Yna

For simplicity we are assuming the case of a J = 0 (nondegenerate) ground state and J = 1
excited states. We have included the factor of % for the following reason: The summation over n
includes all of the magnetic sublevels of the atomic excited states. However, on average only
one-third of the a — n transitions will have their dipole transition moments parallel to the
polarization vector of the incident field, and hence only one-third of these transitions contribute
effectively to the susceptibility.

It is useful to introduce the oscillator strength of the a — n transition. This quantity is
defined by

N 2m0)na|”«na|2

fna - 3hez

Standard books on quantum mechanics (see, for example, Bethe and Salpeter, 1977) show that
this quantity obeys the oscillator strength sum rule—that is,

(3.5.23)

> fra=1. (3.5.24)
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If a is the atomic ground state, the frequency wy,, is necessarily positive, and the sum rule hence
shows that the oscillator strength is a positive quantity bounded by unity—that is, 0 < f,,, < 1.
The expression (3.5.22) for the linear susceptibility can be written in terms of the oscillator
strength as

N frq€? 1 1
V@) =) Jna [ — + : }
2e0mwpg | (Wna — ©) — i Vna (Wna + ) +iVna

n

2
:me[ . Ne®/egm } (3.5.25)
n Dha

2 — w? = 2iwyn,

In the latter form, the expression in square brackets is formally identical to the expression for the
linear susceptibility predicted by the classical Lorentz model of the atom (see also Eq. (1.4.17)).
We see that the quantum-mechanical prediction differs from that of the Lorentz model only in
that in the quantum-mechanical theory there can be more than one resonance frequency wy,.
The strength of each such transition is given by the value of the oscillator strength.

Let us next see how to calculate the refractive index and absorption coefficient. The re-
fractive index n(w) is related to the linear dielectric constant €1 (w) and linear susceptibility
X M (w) through

n) =veD (@) =/1+xD(@) =1+ ix V(). (3.5.26)

In obtaining the last expression, we have assumed that the medium is sufficiently dilute (i.e.,
N sufficiently small) that x () « 1. For the remainder of the present section, we shall assume
that this assumption is valid, both so that we can use Eq. (3.5.26) as written and also so that we
can ignore local-field corrections (cf. Section 3.9). The significance of the refractive index n(w)
is that the propagation of a plane wave through the material system is described by

E(z,1) = Ege'®79D 1 cc., (3.5.27)
where the propagation constant & is given by
k=n(w)w/c. (3.5.28)

Hence, the intensity [ = nceo(E (z,1)?) of this wave varies with position in the medium ac-
cording to

1(2) = Iye %%, (3.5.29)
where the absorption coefficient « is given by

a=2n"w/c, (3.5.30)
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and where we have defined the real and imaginary parts of the refractive index as n(w) =
n’ +in”. Alternatively, through use of Eq. (3.5.26), we can represent the absorption coefficient
in terms of the susceptibility as

a=xYw/e, (3.5.31a)

where x (D (w) = x V" +ixD”. Through use of Eq. (3.5.25), we find that the absorption coef-
ficient of the material system is given by

nuN 2 2
e~y fralNe [ Yna ] (3.5.31b)
n

2m€0C)/na (a)na - a))2 + ynza

In obtaining this result, we have replaced w in Eq. (3.5.31a) by w,,, which is valid for a narrow
resonance.

It is often useful to describe the response of a material system to an applied field in terms of
microscopic rather than macroscopic quantities. We define the atomic polarizability y (V) (w) as
the coefficient relating the induced dipole moment {u(w)) and the applied field E(w)*:

(n(@)) =y P (@E(w). (3.5.32)

The susceptibility and polarizability are related (when local-field corrections can be ignored)
through

xD(w) =Ny D(w), (3.5.33)

and we thus find from Eq. (3.5.22) that the polarizability is given by

1 1 1
Wy LN 1, 2 . (3534
4 @) th2n:3|”“na| |:(wna — ) _iyna + (a)na +a))+iynui| ( )

Another microscopic quantity that is often encountered is the absorption cross section o, which
is defined through the relation

a = No. (3.5.35)

The cross section can hence be interpreted as the effective area of an atom for removing ra-
diation from an incident beam of light. By comparison with Egs. (3.5.31a) and (3.5.33), we
see that the absorption cross section is related to the atomic polarizability y () = y (D 4 j5 ()7
through

o=yVw/ec. (3.5.36)

* Note that many authors use the symbol « to denote the polarizability. We use the present notation to avoid
confusion with the absorption coefficient.
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Eq. (3.5.34) shows how the polarizability can be calculated in terms of the transition fre-
quencies wy,, the dipole transition moments u,,, and the dipole dephasing rates y,,. The
transition frequencies and dipole moments are inherent properties of any atomic system and
can be obtained either by solving Schrodinger’s equation for the atom or through laboratory
measurement. The dipole dephasing rate, however, depends not only on the inherent atomic
properties but also on the local environment. We saw in Eq. (3.3.25) that the dipole dephasing
rate y,,, can be represented as

Vm = 5 (T + D) + 3,150, (3.5.37)

Next we calculate the maximum values that the polarizability and absorption cross section
can attain. We consider the case of resonant excitation (w = w,,) of some excited level n. We
find, through use of Eq. (3.5.34) and dropping the nonresonant contribution, that the polariz-
ability is purely imaginary and is given by

) _ i|an’a|2

Yies = 76077%1/& . (3.5.38)
We have let n” designate the state associated with level n that is excited by the incident light.
Note that the factor of % no longer appears in Eq. (3.5.38), because we are now considering a
particular state of the upper level and are no longer summing over n. The polarizability will take
on its maximum possible value if y,, is as small as possible, which according to Eq. (3.5.37)
occurs when y,f,C;l) = 0. If a is the atomic ground state, as we have been assuming, its decay
rate I, must vanish, and thus the minimum possible value of y,;, is %Fnr.

The population decay rate out of state n’ is usually dominated by spontaneous emission. If
state n’ can decay only to the ground state, this decay rate is equal to the Einstein A coefficient
and is given by

3 2
_ a)na |”'n/a |

= . 3.5.39
3meghc3 ( )

If o = %Fnr is inserted into Eq. (3.5.38), we find that the maximum possible value that the
polarizability can possess is

)\’ 3
M _;
yi) = i6m <E) . (3.5.40)

We find the value of the absorption cross section associated with this value of the polarizability
through use of Eq. (3.5.36):

322

—. 3541
o ( )

Omax —
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These results show that under resonant excitation an atomic system possesses an effective linear
dimension approximately equal to an optical wavelength.

Recall that the treatment given in this subsection assumes the case of a J = 0 lower level
and a J = 1 upper level. More generally, when J, is the total angular momentum quantum
number of the lower level and Jj is that of the upper level, the maximum on-resonance cross
section can be shown to have the form
gy A2

Omax = —

, 3542
8a 27 ( )

where g, =2Jp 4 1 is the degeneracy of the upper level and g, = 2J, 4 1 is that of the lower
level. Furthermore, we have implicitly assumed in the treatment given above that the lower-level
sublevels are equally populated, as they would be in thermal equilibrium. If the ground level
sublevels are not equally populated, due for instance to optical pumping effects, the result of
Eq. (3.5.42) needs to be modified further. To account for these effects, this equation is to be
multiplied by a numerical factor that lies between 0 and 3. The cross section vanishes, for
example, for an atom that is optically pumped so that the direction of the dipole transition
moment is perpendicular to that of the electric field vector of the incident radiation, and it attains
its maximum value when these directions are parallel. These considerations are described in
greater detail by Siegman (1986).

3.6 Density Matrix Calculation of the Second-Order Susceptibility

In this section we calculate the second-order (i.e., x ¥) susceptibility of an atomic system. We
present the calculation in considerable detail, for the following two reasons: (1) the second-
order susceptibility is intrinsically important for many applications; and (2) the calculation of
the third-order susceptibility proceeds along lines that are analogous to those followed in the
present derivation. However, the expression for the third-order susceptibility x ® is so com-
plicated (it contains 48 terms) that it is not feasible to show all of the steps in the calculation
of x®. Thus the present development serves as a template for the calculation of higher-order
susceptibilities.

From the perturbation expansion (3.4.16), the general result for the second-order correction
to p is given by

t .
2) _ ,—(iowm~+Yam o A(1 [ Onm+Yam)t
p2) = ¢~ wnmtyum)t /ME[V,/O( 1, et gy’ (3.6.1)

where the commutator can be expressed (by analogy with Eq. (3.5.5)) as

(V. AV, = =Y (anpln) — P8 tum) - ECO). (3.6.2)

v
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In order to evaluate this commutator, the first-order solution given by Eq. (3.5.9) is written with
changes in the dummy indices as

) _ © _  (0) Kym 14 lwpt
om =P (0l = £3) ; (Wvm — @p) — iYvm
and as
Wy E(wp)(wp)  _;
A =7 (o) = ) Y e i, 664

> (@ny — a)p) — [ Yny

The applied optical field E@) is expressed as

E(t) =) E(wg)e . (3.6.5)
q
The commutator of Eq. (3.6.2) thus becomes
V.50, =-h" Z (o5 = P)

[”'nv ‘E(w) 1y, - E(wp)] —i(wp+w )t
x Z (@ym _wq)_iyvm ¢

pq

n! Z (0 — )

. Z [”’nv "E(@p) [y _-E(wq)] ot @ptwg)t (3.6.6)
- (Wny — @p) = i ¥y

This expression is now inserted into Eq. (3.6.1), and the integration is performed to obtain

=TT
v

5 {p,S?,L Py [y - E@)] [y - E(@p)]
2 [ @um — @p — @) = i Vaml[(@om — @p) — i Vom]
o = o [y - E(@)[ By, - Blwg)] }
w2 [(wnm — wp — a)q) — 1Yum][(@ny — wp) —iyml
=" Kumye HOrtedt, (3.6.7)
v pq

We have given the complicated expression in curly braces the label K, because it appears in
many subsequent equations.
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We next calculate the expectation value of the atomic dipole moment, which (according to
Eq. (3.3.16)) is given by

1) =" Oty (3.6.8)
nm

We are interested in the various frequency components of (i), whose complex amplitudes
(m(w;)) are defined through

(i)=Y (p(a))e ! (3.6.9)

Then, in particular, the complex amplitude of the component of the atomic dipole moment
oscillating at frequency w), + @y is given by

(r(@p+0)) =" Kumvhpn, (3.6.10)
nmv (pq)
and consequently the complex amplitude of the component of the nonlinear polarization oscil-
lating at frequency w, + wy is given by
PP (0, +g) = N{p(@p + @) =N Y > Kumo - (3.6.11)
nmv (pq)
We define the nonlinear susceptibility through the equation
2 2
PP (wp+ o) =€) > xin(@p+0q. 04 0p)E;(0q) Ex(wp), (3.6.12)
ik (pq)

using the same notation as that used earlier (see also Eq. (1.3.13)). By comparison of
Egs. (3.6.7), (3.6.11), and (3.6.12), we obtain a tentative expression for the susceptibility tensor
given by

2
Xi(jlz[tem] (0p + g, wg, @p) =

eoh?
0) (0) Mi Mf;vlik
X P — P " = , (a)
%{ mm VU (a)nm —wp —a)q) —anm][(wum —U)p) —l)/pm]
i ik
— (0@ — O P o Mgy } ®
v " [(wnm — ®p — wq) = LYnm][(Wny — @p) — iYny]

(3.6.13)
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We have labeled the two terms that appear in this expression (a) and (b) so that we can keep
track of how these terms contribute to our final expression for the second-order susceptibil-
ity.

Eq. (3.6.13) can be used in conjunction with Eq. (3.6.12) to make proper predictions of
the nonlinear polarization, which is a physically meaningful quantity. However, Eq. (3.6.13)
does not possess intrinsic permutation symmetry (cf. Section 1.5), which we require the sus-
ceptibility to possess. We therefore define the nonlinear susceptibility to be one-half the sum
of the right-hand side of Eq. (3.6.13) with an analogous expression obtained by simultaneously
interchanging w, with w, and j with k. We thereby obtain the result

) N
Xijk (@p + g, g, wp) = Tl
i)k
(O) (0) /’Lmnlu/ﬂl)/-’l/ym
X Pmm — P , - (ar)
; mm vy [[(wnm —wp — C()q) - lynm][(a)um - Cl)p) - lyym]
i ko,
+ /-’Lmn.lu’nu/‘l“l)m : ] (a2)
nm — Wp — Wq) — L Vnm vm — Wgq) — L Vvm
[( wp — wg) — iYpm]l(@ wq) = i Yvm]
0k
Mo Mvm L
(,of,?)) Ior(t(r)z))[ mnMvm My (b))

[(wnm — wp — wq) — 1Ynm]1[(@ny — wp) —iYml

[(wnm — wp — a)q) — 1Ynm1[(@ny — wq) —iyml

(3.6.14)

This expression displays intrinsic permutation symmetry and gives the nonlinear susceptibility
in a reasonably compact fashion. It is clear from its form that certain contributions to the suscep-
tibility vanish when two of the levels associated with the contribution contain equal populations.
We shall examine the nature of this cancellation in greater detail below (see Eq. (3.6.17)). Note
that the population differences that appear in this expression are always associated with the two
levels separated by a one-photon resonance, as we can see by inspection of the detuning factors
that appear in the denominator.

The expression for the second-order nonlinear susceptibility can be rewritten in several
different forms, all of which are equivalent but provide different insights in to the resonant
nature of the nonlinear coupling. Since the indices m, n, and v are summed over, they consti-
tute dummy indices. We can therefore replace the indices v, n, and m in the last two terms
of Eq. (3.6.14) by m, v, and n, respectively, so that the population difference term is the
same as that of the first two terms. We thereby recast the second-order susceptibility into
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the form

) N 0 0
lek(a)p +a)q, a)q, a)p) == 2€0h2 Z (Iofnr)n - 10151)))

mnv
y { i Bro W
[(wnm — wp — a)q) — 1 Yum[(@ym — a)p) — i Yvm]

(ar)

P oom
+ : : (a2)
[(wnm — wp — wq) — 1Yum][(@ym — a)q) — i Yvm]
- . : (b1)
[(wun — @p — wg) — iyun][(@ym — @p) — iYum]
[(wyn — wp — a)q) — iyunll(@ym — wq) — i Yum]

(b2) (3.6.15)

We can make this result more transparent by making another change in dummy indices: we
replace indices m, v, and n by [, m, and n, respectively. In addition, we replace wy,, w,, and
WOmn BY —wpmi, —wy1, and —wy,,, respectively, whenever one of them appears. Also, we reorder
the product of matrix elements in the numerator so that the subscripts n, m, and / are “chained”
in the sense shown and thereby obtain the result

@) __N © _ ©
Xijk (@p + g, 0q, wp) = el E (o — o)
Imn

{ M;nﬂﬁmﬂfnl (ar)
[(wn1 — wp — wq) — iy ]l[(Wm — wp) — i Ymi]
M;nuﬁmlurjnl (a2)
[(wn1 — wp — wq) — iy ]l(@m — a)q) — i Ymi]
'uljnu“itmluﬁd
+ . . (b1)
[(wnm + wp + Cl)q) + i Yum [ (Wm1 — wp) — i Ymi]
ki 0
HinHnm P : } (by) (3.6.16)
[(@Wnm + @p + 0g) + i Ynm][(Wm1 — @gq) — i Ymi]

One way of interpreting this result is to consider where levels /, m, and n would have to be
located in order for each of the terms to become resonant. The positions of these energies are
illustrated in Fig. 3.6.1. For definiteness, we have drawn the figure with @, and w, positive. In
each case the magnitude of the contribution to the nonlinear susceptibility is proportional to the
population difference between levels [ and m.

In order to illustrate how to make use of Eq. (3.6.16) and to examine the nature of the cancel-
lation that can occur when more than one of the atomic levels contains population, we consider
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FIGURE 3.6.2: Three-level atomic system.

the simple three-level atomic system illustrated in Fig. 3.6.2. We assume that only levels a, b,
and c interact appreciably with the optical fields and that the applied field at frequency w; is
nearly resonant with the @ — b transition, the applied field at frequency w, is nearly resonant
with the b — c transition, and the generated field frequency ws = w| + w» is nearly resonant
with the ¢ — a transition. If we now perform the summation over the dummy indices /, m,
and n in Eq. (3.6.16) and retain only those terms in which both factors in the denominator are
resonant, we find that the nonlinear susceptibility is given by

2
Xi(ﬂg(wy w2, ®1)

i)k
- N {(p(o) - ﬂ(o))[ Mkt ]
2eoh? aa bb [(wea — @3) — iVeall(@pa — @1) — i Ybal
i Jok
©_ O Paclcpllba ] }
(0~ |: : : . (3.6.17)
( cc bb ) [(wea — @3) — iveall(wep — w2) — ivep]

Here the first term comes from the first term in Eq. (3.6.16), and the second term comes from
the last (fourth) term in Eq. (3.6.16). Note that the first term vanishes if pSE) = 22) and that the
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second term vanishes if 1015(1? = ,oé(c)) . If all three populations are equal, the resonant contribution

vanishes identically.

For some purposes it is useful to express the general result (3.6.16) for the second-order
susceptibility in terms of a summation over populations rather than a summation over popu-
lation differences. In order to cast the susceptibility in such a form, we change the dummy
indices [, m, and n to n, [, and m in the summation containing p,i?,L but leave them unchanged
in the summation containing ,ol(lo ). We thereby obtain the result

2
Xi(jk)(wp + Wy, g, @p)

. ' k
_ N Zp(O){ M;nﬂijzm,uml @)
2e0h? &= | (@t — 0p — wg) = iva)[(@mi — @p) = i Vl]

ik J
[(wn1 — wp — a)q) — iynll(@m — wq) —iYmil
k i J
[(@Wmn — Wp _a)q) — 1 Ymnl[(@ni +a)p)+iynl] :
i k
[(@mn — @p = @q) = i Y [ (@nt + @q) + iVl ?
[(wnm + wp + a)q) + i Yum ] [(Wm — C‘)p) — iYmil
P .
[(wnm + wp + U)q) + i Yum][(Wmi — C‘)q) — i Ymi]
ko J i
4 Mlnﬂnmﬂinl (b/)
[(wmi + wp +a)q) + i Ymi][(@n +0)p) + iVl !
D
+ M“l]n'unmu“:nl } (b/)
[(wml+a)p+a)q)+iyml][(wnl+wq)+iynl] 2

(3.6.18)

As before, we can interpret this result by considering the conditions under which each term
of the equation can become resonant. Fig. 3.6.3 shows where the energy levels [, m, and n would
have to be located in order for each term to become resonant, under the assumption the w, and
wy, are both positive. Note that the unprimed diagrams are the same as those of Fig. 3.6.1 (which
represents Eq. (3.6.16)), but that diagrams b and b}, represent new resonances not present in
Fig. 3.6.1.

Another way of making sense of the general eight-term expression for x ® Eq. (3.6.18) is to
keep track of how the density matrix is modified in each order of perturbation theory. Through
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FIGURE 3.6.3: The resonances of Eq. (3.6.18).

examination of Egs. (3.6.1) through (3.6.7), we find that the terms of type a, a’, b, b’ occur as
the result of the following perturbation expansion:

0 1 2 0 1 2
@) pom = P = Pom @) ) = pi = pim,

0 1 2 0 1 2
®): pY — piy) = pla, ®): P — piy) = oo

However, in writing Eq. (3.6.18) in the displayed form, we have changed the dummy indices
appearing in it. In terms of these new indices, the perturbation expansion is

0 1 2 0 1 2
@: o) = o = ons @) oy = oy, = o

0 1 2 0 1 2
(b): pl(l ) ,0,51[) - ,Or(mf, (®'): ,0[(1 ) ,Ol(n) - ,Ol(m)-

(3.6.19)

Note that the various terms differ in whether it is the left or right index that is changed by each
elementary interaction and by the order in which such a modification occurs.
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! \{kl *"3,\” \{n

I 11
(b)) (b,) (b)) (b))

FIGURE 3.6.4: Double-sided Feynman diagrams.

A convenient way of keeping track of the order in which the elementary interactions occur
is by means of double-sided Feynman diagrams. These diagrams represent the way in which
the density operator is modified by the interaction of the atom with the laser field. We represent
the density operator as

p =)l (3.6.20)

where |) represents the key vector for some state of the system, (1| (the bar vector) represents
the Hermitian adjoint of (|, and the overbar represents an ensemble average. The elements of
the density matrix are related to the density operator p through the equation

Pum = (n|p|m). (3.6.21)

Fig. 3.6.4 gives a pictorial description of the modification of the density matrix as indicated
by the expressions (3.6.19). The left-hand side of each diagram indicates the time evolution
of |Y), and the right-hand side indicates the time evolution of (|, with time increasing verti-
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cally upward. Each interaction with the applied field is indicated by a solid arrow labeled by
the field frequency. The trace operation, which corresponds to calculating the output field, is
indicated by the wavy arrow.” It should be noted that there are several different conventions
concerning the rules for drawing double-sided Feynman diagrams (Boyd and Mukamel, 1984;
Prior, 1984; Yee and Gustafson, 1978).

3.6.1 x? in the Limit of Nonresonant Excitation

When all of the frequencies w,, wy, and w, + w, differ significantly from any resonance fre-
quency of the atomic system, the imaginary contributions to the denominators in Eq. (3.6.18)
can be ignored. In this case, the expression for x ®) can be simplified. In particular, terms (a3)
and (b1) can be combined into a single term, and similarly for terms (a’l) and (b»). We note that
the numerators of terms (aé) and (b) are identical and that their denominators can be combined

as follows:

1 1
+
(Wmn — wp — wq)(wnl + a)q) (—Wmn + wp + wq)(a)ml - a)p)
1 [ 1

(Wmn — wp — a)q) L Wni + Wy wml - a)p

1 [ Wi — wp — w1 — }

(Wmn — wp — a)q) (w1 + Cl)q)(a)ml - 60]7)

1 Wmn —

(Wmn — wp — a)q) (wn1 + a)q)(a)ml - a)p)
1

- . (3.6.22)
(wn1 + Cl)q)(a)ml - a)p)

The same procedure can be performed on terms (a’l) and (by); the only difference between this
case and the one treated in Eq. (3.6.22) is that w, and w, have switched roles. The frequency

dependence is thus

1

. (3.6.23)
(wn1 + Cl)p)(wml - wq)

* In drawing Fig. 3.6.4, we have implicitly assumed that all of the applied field frequencies are positive, which
corresponds to the absorption of an incident photon. The interaction with a negative field frequency which cor-
responds to the emission of a photon, is sometimes indicated by a solid arrow pointing diagonally upward and
away from (rather than toward) the central double line.
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The expression for x ?) in the off-resonance case thus becomes

2
Xi(jlz(wp + Wy, 0g, @p)

N 0 Mi Mj Mk
— 30 { InHnm Ky @)
Imn

2EOh2 (w1 — wp — wq)(wml - wp)
i kT
(wn1 — wp — CUq)(wml - wq)
ik
My Moy
P (b1), (a))
(wni +C()q)(a)ml - wp)
ki J
’u’ll’l/"L;lm’u'ml (b2) (al)
(wni +Cl)p)((1)ml - wq) T
k,J i
I i Mg )
(Omi + @p + @g) (Wn1 + @p) !
Jo ki
Pintnm i } (b)) (3.6.24)
(wm1 + wp +wq)(0)nl + (Uq)

Note that only six terms appear in this expression for the off-resonance susceptibility,
whereas eight terms appear in the general expression of Eq. (3.6.18). One can verify by ex-
plicit calculation that Eq. (3.6.24) satisfies the condition of full permutation symmetry (see also
Eq. (1.5.7)). In addition, one can see by inspection that Eq. (3.6.24) is identical to the result
obtained above (Eq. (3.2.27)) based on perturbation theory of the atomic wavefunction.

There are several diagrammatic methods that can be used to interpret this expression. One
of the simplest is to plot the photon energies on an atomic energy-level diagram. This method
displays the conditions under which each contribution can become resonant. The results of such
an analysis gives exactly the same diagrams displayed in Fig. 3.6.3. Eq. (3.6.24) can also be
understood in terms of a diagrammatic approach introduced by Ward (1965).

3.7 Density Matrix Calculation of the Third-Order Susceptibility

We now turn to the calculation of the third-order susceptibility. The third-order correction to
the density matrix is given by the perturbation expansion of Eq. (3.4.16) as

t .
3 —(@0nm+Vam “'ro oA 2 i Wnm~+Ynm !
pr(mz = ¢~ U@mmtyum)t /;OO ?[V, P )]nme(lw L 3.7.1)
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where the commutator can be represented explicitly as

(V.52 == (Hanple) — 052 ) - E (D). (3.7.2)

v

Expressions for ,o ) and ,0 ) are available from Eq. (3.6.7). Since these expressions are very
complicated, we use the abbreviated notation introduced there:

Pl =D D Kume ™ @rten, (373)

where K,,,; has been displayed explicitly. We also represent the electric field as

E(t)=) E(w)e " (3.7.4)
r
The commutator thus becomes
[V '5(2) - ZZ Ky E(wr)] vml€ —i@pFogtont
vl pqr
+ D [Hom E@p)]Kype ™ @rteatent, (3.7.5)
vl pqr

The integration of Eq. (3.7.1) with the commutator given by Eq. (3.7.5) can now be per-
formed. We obtain

,0(3) _ Z Z{ [y, - E(wp) 1Ky

ol par (@Wnm — wWp — Wg — @r) = 1Yam

[ - E(@) 1Kt . }e—i(wp+wq+wr)f_ (3.7.6)
(@nm — @p = g = @) = i Vum

The nonlinear polarization oscillating at frequency w), + w, + w, is given by

P(wp + 0y + ) = N(i(wp + 04 + or)), (3.7.7)
where
= Pumbn = Y _(M(5))e " (3.7.8)

We express the nonlinear polarization in terms of the third-order susceptibility defined by (see
also Eq. (1.3.21))

3
Pr(wp +wq +wr) = GOZZX]EJ'?],[(Q)[) +wy + o, 0, 0g, ©p)
hij pqr
x E () Ei(0g) En(@)). (3.7.9)
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By combining Egs. (3.7.6) through (3.7.9), we find that the third-order susceptibility is given
by
X (@p + 0g + @p, 0, 0, ) = iPz Z
kjih \77P q q>=p 6()h3

nmvl

0 ©

{ (owm — P )kt 1, @)
[(wnm — wp — wg — @) — iVaum]l[(@ym — 0p — 0g) — iYym][(@im — @p) — iVim]
0 0 j i
_ (pl(l ) - pl(zv))ﬂgn/dw/ﬁmﬂﬁ[ (b)
[(wnm — wp — Wg — @r) = 1Ynm][(@ym — wp — a)q) — i Yum][(@v — wp) — iyl
0 0 j i
(Plgv) - ,01(1 ))Mkmnﬂ\jzmﬂi;l'u?v
— . . . (c)
[(wnm — wp — Wg — @) = 1Yum][(@ny — wp — wq) —iym][(@r — wp) — iyl
0 0 j j
(o) = oan itk om 14}, 121
+ . . . Y
[(wnm — wp — Wg — @r) = 1Yum][(@ny — wp — wq) — iym][(wn1 — a)p) — i Yni]
(3.7.10)

Here we have again made use of the intrinsic permutation operator P;, whose meaning is
that everything to the right of it is to be averaged over all possible permutations of the input
frequencies w), wy, and w,, with the cartesian indices £, i, j permuted simultaneously. Next,
we rewrite this equation as eight separate terms by changing the dummy indices so that [ is
always the index of ,ol.(? ) We also require that only positive resonance frequencies appear if the
energies are ordered so that E, > E, > E,, > E;, and we arrange the matrix elements so that
they appear in “natural” order, / — m — n — v (reading right to left). We obtain

3) B N ©
ijih(a)p +wy + wr, W, wg, Wp) = 60?731 Z oY

vnml
valu“lj)”l’bilmugzl
X : ; . (a1)
[(wu — wp — Wg — ) — iypi][(wn — wp — a)q) — iyni]l(@m — wp) — i Ymi]
I’L?v“]fm“{lmuv:nl (a2)
[(@ny — wp — wg — @) — iyny][(Wmy — ©p — 0g) — i ymul[(@vr + @p) +iyuil
[(wny — Wp — Wg — ) — iynol[(@ym + wp + a)q) + iYoml[(@Wmr — wp) — i Ymi]
P .
Mlv“i}n“ﬁm'u}]nl (b))
[(wmn — wWp — Wg — @) = 1Ymnl[(@n1 + wp + a)q) + iyull(ww + a)p) + iyl
Jok ik
Ky Mvn My K (Cl)

[(wvn + wp + w4 + r) + iyun][(wn — wp — wq) — i1y ll(@m — wp) — iYmil
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'u“;lvu‘jin'ufzmujnl
+ . : . (c2)
[(wnm + wp +wy + r) + 1 Yum ][ (@my — wp — a)q) — 1Ymv][(@u + a)p) + iyl
11 o B
+ . : . (d1)
[(wnm + wp +wg + r) + 1 Yum1[(@vm + wp + U)q) + i Ymv][(@m1 — a)p) — i Ymil
L W Bt L
+ , . . . (d2)
[(wmi + wp +wg + r) + i Ymil[(@n + wp + a)q) + iyull(ww + a)p) + iyl
(3.7.11)

For the general case in which w,, w,, and w, are distinct, six permutations of the field frequen-
cies occur, and thus the expression for x @) consists of 48 different terms once the permutation
operator Py is expanded. The resonance structure of this expression can be understood in terms
of the energy level diagrams shown in Fig. 3.7.1. Furthermore, the nature of the perturbation
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FIGURE 3.7.1: The resonance structure of the expression (3.7.11) for the third-order nonlinear suscep-
tibility.
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FIGURE 3.7.2: Double-sided Feynman diagrams associated with the various terms in Eq. (3.7.11).

expansion leading to Eq. (3.7.11) can be understood in terms of the double-sided Feynman
diagrams shown in Fig. 3.7.2.

We saw in Section 3.2 that the general expression for the third-order susceptibility calculated
using perturbation theory applied to the atomic wavefunction contained 24 terms. Eq. (3.2.33)
shows four of these terms explicitly; the other terms are obtained from the six permutations of
the frequencies of the applied field. It can be shown that Eq. (3.7.11) reduces to Eq. (3.2.33)
in the limit of nonresonant excitation, where the imaginary contributions (iy,g) appearing in
Eq. (3.7.11) can be ignored. One can demonstrate this fact by means of a calculation similar
to that used to derive Eq. (3.6.23), which applies to the case of the second-order susceptibility
(see Problem 5 at the end of this chapter).

In fact, even in the general case in which the imaginary contributions iy,s appearing in
Eq. (3.7.11) are retained, it is possible to rewrite the 48-term expression (3.7.11) in the form
of the 24-term expression (3.2.33) by allowing the coefficient of each of the 24 terms to be
weakly frequency-dependent. These frequency-dependent coefficients usually display reso-
nances at frequencies other than those that appear in Fig. 3.7.1, and these new resonances
occur only if the line-broadening mechanism is collisional (rather than radiative). The nature
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of these collision-induced resonances has been discussed by Bloembergen et al. (1978), Prior
(1984), and Rothberg (1987).

3.8 Electromagnetically Induced Transparency

Electromagnetically induced transparency (EIT) is a powerful technique that can be used to
render a material system transparent to resonant laser radiation while retaining the large and
desirable nonlinear optical properties associated with the resonant response of a material sys-
tem. EIT was first described theoretically by Harris et al. (1990), although EIT shares some
features with processes described earlier by Gray et al. (1978) and by Tewari and Agarwal
(1986). EIT also shares some similarity with the process known as lasing without inversion
(Harris, 1989; Kocharovskaya and Khanis, 1988; Scully et al., 1989). EIT has been observed
both in atomic systems (Boller et al., 1991; Field et al., 1991) and in solids (Ham et al., 1997;
Zhao et al., 1997). Laboratory studies have confirmed that EIT can be used to enhance the
efficiency of nonlinear optical processes including nonlinear frequency conversion (Hakuta et
al., 1991; Jain et al., 1996) and optical phase conjugation (Hemmer et al., 1995; Li and Xiao,
1996). Moreover, EIT plays a key role in the generation of “slow light” (Budker et al., 1999;
Boyd and Gauthier, 2002; Hau et al., 1999; Inouye et al., 2000; Kash et al., 1999). In addition,
it has been predicted that EIT can enhance the properties of a much broader range of processes,
including squeezed-light generation (Lukin et al., 1999) and low-light-level photonic switch-
ing (Harris and Yamomoto, 1998; Imamoglu et al., 1997). More information about EIT can be
found in the review articles on EIT cited at the end of this chapter.

Let us analyze a prototypical example of EIT. The situation is illustrated in part (a) of
Fig. 3.8.1. Laser fields at frequencies w and wy are applied to an atomic system with the intent of
generating radiation at the sum frequency w4 = 2w+ w;. One would normally expect that strong
absorption of light at frequency w4 would severely limit the efficiency of the sum-frequency
generation process. However, we shall see that by allowing the field at frequency ws to be a
strong saturating field one is able to eliminate absorption at the @ — d transition frequency
while maintaining a large four-wave-mixing susceptibility.

Our goal is to treat the sum-frequency generation process illustrated in part (a) of Fig. 3.8.1
and to show how it can be excited more efficiently through use of EIT techniques. As a first step,
we examine how absorption at a specified frequency can be essentially eliminated by means of
the EIT process. Later in this section we shall return to the study of sum-frequency generation
and show that the nonlinear response leading to this process can remain large even when linear
absorption at the output frequency is eliminated.

We thus first examine how linear absorption at frequency w4 is modified by an intense
saturating field of amplitude E; at frequency wy, as illustrated in part (b) of Fig. 3.8.1. To treat
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FIGURE 3.8.1: Typical situation for observing electromagnetically induced transparency.

this problem, we need to include states a, d, and c in the atomic wavefunction. Common sense
might suggest that we thus express the wavefunction as

Y (e, 1) = C(Dua (e + Ch(yua(t)e ! + CL(tuc(r)e ™", (3.8.1)

where hw; is the energy of level j, and solve Schrodinger’s equation to determine the time
evolution of the expansion coefficients C,(z), Cél(t), and C/(r). But in fact the calculation
proceeds much more simply if instead we work in the interaction picture and represent the
wavefunction as

U (r, 1) = Ca(Dug(t) + Ca(®)ug(X)e " + Co(t)ue(r)e ™ (@4t (3.8.2)

In fact, this representation makes sense because in a driven system the coefficients are expected
to oscillate at the driving frequency, not at the resonance frequency. We require that ¥ (r, )
obey Schrodinger’s equation in the form

oy

- = Hy with H=Hy+V, (3.8.3)

ih

where in the rotating-wave and electric-dipole approximations we can express the interaction
energy as

V = —[i(Eqe ™' 4 E¥elsh), (3.8.4)

We next proceed to derive equations of motion for the coefficients C;. We begin by intro-
ducing the wave function (3.8.2) into Schrodinger’s equation (3.8.3) to obtain

ih[Cuua —+ Cdude*l'wztl‘ _ iw4cdude*l'w4t + Ccuce*l’((/);‘fa)s)[
— i (w4 — @) Cettce™ =)' ]
= Caﬁa)aua + thwdude_iw4t + Cchwcuce_i(w4_“’s)’

+ V[Catta + Cauge ¥ + Cetce™ @491, (3.8.5)
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We turn this result into three separate equations by the usual procedure of multiplying suc-
cessively by u,*, ug*, and u.* and integrating the resulting equation over all space. Assuming
the quantities u ; to be orthonormal, we obtain

ihCy = hwyCy + VagCae ¥4t
ih[Cdefiw“t — ia)4Cdefiw4t] = ﬁa)dcdefiw“t + Vi Co + Vdcccefi(w“*%)t,
iR[Cee™ @70 —j(ay — wy)Coe™ @470 = hepo Coe™ (@70 4V yCqe™ 14!

(3.8.6)
We next introduce the explicit forms of the matrix elements of V:
V= Vig = —laaEse™' ¥,
Vi =Veg=—pcaEre'™". (3.8.7)
Also, we measure energies relative to that of the ground state a so that
hwg — hwge =0, howg — hwgg, hwe — hweg. (3.8.8)
In addition, we introduce the Rabi frequencies
Q=pgaEs/h and Q= pucqaE /N (3.8.9)
Egs. (3.8.6) thus become
Ca =iCaQ%,
Ca—i8Cq=iCyQ+iCcLy,
Ce—i(8—AN)Ce=iCyQF, (3.8.10)
where
S=w4 —wy, and A=ws— wyc. (3.8.11)

We want to solve these equations correct to all orders in €25 and to lowest order in 2. One
might guess that one can do so by ignoring the first equation and replacing C, by unity in the
second equation. But to proceed more rigorously, we perform a formal perturbation expansion
in the field amplitude 2. We introduce a strength parameter A, which we assume to be real, and
we replace 2 by A£2. We also expand C; as a power series in A as

Ci=CP+acV +272¢P 4. (3.8.12)
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where j = a, c, or d. By introducing these forms into each of the three equations of expres-
sion (3.8.10), we obtain

CO 42 =icrer +icP a2,
(€ —iscP)+a(CP —iscP)=icPar+icPu2 +icP o +ic
[ —i@— AP+ A[CP —is — a)cP ] =icrer +iclr2ar.
(3.8.13)
‘We next note that because these equations must be valid for arbitrary values of the parameter A,

the coefficients of each power of A must satisfy the equations separately. In particular, the
portions of Eqgs. (3.8.13) that are independent of A are given by:

¢ =0,
CO —isc? =icte+icl;,
O —i— e =icVqr. (3.8.14)

We take the solution to these equations to be the one corresponding to the assumed initial
conditions—that is,

c®=1 and cP=c¥ =0, (3.8.15)

for all times. Next, we note that the portions of Egs. (3.8.13) that are linear in A are given by:

¢V =0
¢V —isc =i +iclq,
¢ —i - e =icPer. (3:8.16)

We take the solution to the first equation as C(g]) = 0 for all times. We now drop the superscript
(1) on the remaining equations for notational simplicity. We thus need to solve the equations

Ca—i8Ca=iQ+iQC,,

Ce—i(8—AN)C.=iQCy. (3.8.17)
Note that these equations are consistent with the “guess” that we made earlier in connection
with Egs. (3.8.10). Note also that there are no time-dependent coefficients on the right-hand

sides of Egs. (3.8.17). (This is in fact why we chose to work in the interaction picture.) We can
thus find the steady state solution to these equations by setting the time derivatives to zero:

0=Q+8C; + QC,,
0=0Q2Cy+ (8 — A)C,. (3.8.18)
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We solve these equations algebraically to find that

QG —A)

Cy= .
T2 =806 —A)

(3.8.19)

The physical quantity of primary interest is the induced dipole moment, which can be de-
termined as follows:

p=wlaly) ={Oaly D)+ {yPaly®)

= (a|fi|d)Cqe " + c.c. = paaCae " + c.c. (3.8.20)

We thus find that the dipole moment amplitude is given by

QB+ A

p=—t @+ 4) (3.8.21)

€27 — (6 + A)S

and consequently that the polarization is given by

P=Np=eoxVE, (3.8.22)

which implies that

MO Nlitdal? 6+ A)
eff eoh |12 — (8 + A

(3.8.23)

Note that we have called xégf) an effective linear susceptibility because it depends on the inten-
sity of the w; field.

Next, we add damping, using a phenomenological description. We let y; and y, be the
decay rates of the probability amplitudes to be in levels d and e respectively. By examination
of Egs. (3.8.17) we see that we can model the effects of damping by replacing é by § + iy, and
A by A +i(y. — vq). We thus find that Eq. (3.8.21) becomes

Mad9(8+A+ch)

p= - . (3.8.24)
Q12 = (8 +iva) S+ A +ivye)
and that the form of x éflf) is given by
N 26+ A+i
a |taal” (8 + A +iye) (3.8.25)

T Q12— G +iva) S+ A+ive)

Note that when both fields are turned to the exact resonance (§ = A = 0), the susceptibility
becomes simply

1 _ N |:Uvda|2i)/c

= 3.8.26
Xefr eoh |Qs|2 + VeVa ( )
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3/ = (wy - wgy) / Vg d/Vq = (wy—wgy) / Vg

FIGURE 3.8.2: (a) and (b) Illustration of reduced optical absorption based on EIT. In the examples
shown, A = ws — wy, is set equal to 0 and the ratio y,./yy is set equal to 0.01. The absorption spectrum
is shown in the presence of a strongly saturating field (a) and a weakly saturating field (b). In each case
the absorption nearly vanishes at line center, and the absorption spectrum in the complete absence of the
saturating field (labeled €25 = 0) is shown for comparison. (c) and (d) The magnitude of the nonlinear
response leading to sum-frequency generation is shown. In each case the nonlinear response remains
appreciable at the frequency of nearly complete transparency.

which is purely imaginary. In this case, the absorption experienced by the field at frequency w4
can be rendered arbitrarily small by choosing the field €2; to be saturating. The nature of the
modification of the absorption spectrum is illustrated in parts (a) and (b) of Fig. 3.8.2. In part (a),
we see that in the presence of a strongly saturating field the absorption feature splits into two
components, with each component separated from the center of the feature by the Rabi fre-
quency |€2;| associated with the strong field. In part (b), we see that in the presence of a weakly
saturating field a pronounced dip is induced in the absorption profile. In each case the absorp-
tion drops to nearly zero at the position of the resonance.

We now calculate the response leading to sum-frequency generation. We express the wave-
function in the interaction picture as

Y (r, 1) = Ca(Dua(r) + Cp()up(r)e "
+ Co(Due(X)e™ 2P + Cy(t)ug(r)e ' Cote (3.8.27)
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As before, this wavefunction must satisfy the Schrodinger equation (3.8.3). We thereby find
that

ih[Caua + Cpupe " — iwCpupe ™ + Coupe " — 2iwCoupe™
+ Cyuge 1 Gotoot _ i(2a) + wc)Cdude_i(z‘“Jr‘””)’]
= hwbaCbube_i“” + hwcaCCuce_iz‘”t + hwdacdude_i(zw+w‘)t
+ V[Cata + Cpupe™ " + Cetice ™" + Cyuge™" )], (3.8.28)
We now separate this expression into four equations by the usual method of multiplying

successively by u,*, up™*, u.*, and us™ and integrating over all space. Recalling from Eq. (3.8.8)
that hw,, = 0, we find that

ihCa = VpCpe ™t
iR(Ch — i0Cp)e ™" = liwp Cpe ™" + VipgCq + Ve Coe 2",
iM(Ce — i20C)e 2" = fiwey Coe 2P 4 VopCpe '@ 4 Vg Cge ! Cotedt
lh[Cd - 1(2(,() + a)C)Cd]e_(z“H"“s)f = hwducde_(2w+a)s)t + Vdccce—iZa)z' (3.8.29)
We next represent the matrix elements of the interaction Hamiltonian as
Via = Vap* = —pa Ee ™" = —hQpge ',
Veb = Vbc* = _Mche_iwt = _thbe—iwt’

Vie = Veq* = —pacEse %" = —hQqee ™', (3.8.30)

and introduce the detuning factors as

51 = w — wpg, b =2w—we, and A =w; — wyc. (3.8.31)
‘We thus find that
C,=iCp2, (3.8.32a)
Cp —iCpd1 = iCoQpq +iCcQLy, (3.8.32b)
Ce—iCedy =iCpQup +iCa2., (3.8.32¢)
Cqg—iCy(8r+ A) =iCeQye. (3.8.32d)

We wish to solve these equations perturbatively in 25, and 2 but to all orders in €24.. We first
note that consistent with this assumption we can ignore Eq. (3.8.32a) altogether, as |Cp| << |Cy|
and therefore C, & 1. In solving Eq. (3.8.32b), we can drop the last term because |C.| < |Cp]|.
Then setting C, = 1 and taking C), = 0 for the steady-state solution, we find that

Cp = —a/81. (3.8.33)
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We next need to find the simultaneous, steady-state solutions to Egs. (3.8.32¢) and (3.8.32d).
We set the time derivatives to zero to obtain

_ CpQep n CdQZC’

—C,
) )
_Cchc
Cog=—. 3.8.34
=T ( )

We now introduce the first of these equations into the second and make use of Eq. (3.8.33) to
obtain

— 20 QbR Quacl?
C,= bardchradce 4 | dcl (3.8.35)
8182(82 + A) (82 + A)é2
and thus to find that
Qe Qp 2 Q> 1!
__ R4cQepQa [1_ Q¢ ] (3.836)
8162(82 + A) 52(82 + A)
Qe Qep R
=- decb b (3.837)
81[62(82 + A) — [€24¢7]
The induced electric dipole moment at the sum frequency is now calculated as
P = (VIaly) = (uqlit|Caug) +c.c. = naaCa + c.c. (3.8.38)
We thus find that the complex amplitude of the induced dipole moment is given by
p= —MadS2dc82ch2ba _ —MadHdcHebHba EzEs _ 3€0X(3)E2Ec
5100282+ A) — [Qacl?]  BP81[62(82 + A) — |Qqc|?] N '
(3.8.39)
We thus find that
3) _ _Nﬂadﬂdc:ucbﬂba (3840)

 3ehd1[62(82 + A) — |Qucl2]

Asin Eq. (3.8.25), we can add the effects of damping to this result by replacing §, with 3 +iy,
and replacing 62 + A with 6 + A + iy;. We thus find that

3 _ —N WadltdeliehUba
3e0hd1[(82 +ive) (82 + A +iva) — [Qacl?]

Note that in the limit |24.| — O this result reduces to the usual expression for the reso-
nant contribution to the third-order susceptibility. Some of the numerical predictions given
by Eq. (3.8.41) are shown in Fig. 3.8.2(c) and (d). We see that in each case the nonlinear re-
sponse remains appreciable at the position of the initial resonance, and even shows a peak for
the conditions of panel (d).

(3.8.41)
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3.9 Local-Field Effects in the Nonlinear Optics

The treatment of the nonlinear optical susceptibility presented thus far has made the implicit
assumption that the electric field acting on each atom or molecule is the macroscopic elec-
tric field that appears in Maxwell’s equations. In general, one has to distinguish between the
macroscopic electric field and the effective electric field that each atom experiences, which is
also known as the Lorentz local field. The distinction between these two fields is important
except for the case of a medium that is so dilute that its linear dielectric constant is nearly equal
to unity.

3.9.1 Local-Field Effects in Linear Optics

Let us first review the theory of local field effects in linear optics. The electric field E that
appears in Maxwell’s equations in the form of Egs. (2.1.1) through (2.1.8) is known as the
macroscopic or Maxwell field. This field is obtained by performing a spatial average of the
actual (that is, microscopic) electric field over a region of space whose linear dimensions are
of the order of at least several atomic diameters. It is useful to perform such an average to
smooth out the wild variations in the electric field that occur in the immediate vicinity of the
atomic nuclei and electrons. The macroscopic electric field thus has contributions from sources
external to the material system and from the charges of all of the molecules that constitute the
system.

Let us now see how to calculate the dipole moment induced in a representative molecule
contained within the material system. We assume for simplicity that the medium is lossless and
dlspers10nless so that we can conveniently Tepresent the fields as time-varying quantities. We
let E represent the macroscopic field and P the polarization within the bulk of the material.
Furthermore, we represent the electric-dipole moment induced in a typical molecule as

f)ZGOV(I)EIOCa (3.9.1)

where y(l) is the usual linear polarizability* and where Eloc is the local field—that is, the
effective electric field that acts on the molecule. The local field is the field resulting from all
external sources and from all molecules within the sample except the one under consideration.

We calculate this field through use of a procedure described by Lorentz (1952). We imagine
drawing a small sphere centered on the molecule under consideration, as shown in Fig. 3.9.1.
This sphere is assumed to be sufficiently large that it contains many molecules. The electric field
produced at the center of the sphere by molecules contained within the sphere (not including the
molecule at the center) will tend to cancel, and for the case of a liquid, gas, or cubic crystal, this

* Many authors use the symbol « to represent the linear polarizability. We use the symbol y(l) to avoid confusion
over the use of « for the absorption coefficient.
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E

loc
1 &

FIGURE 3.9.1: Calculation of the Lorentz local field.

cancellation can be shown to be exact. We can then imagine removing these molecules from the
sphere, leaving only the molecule under consideration, which is then located at the center of an
evacuated sphere within an otherwise uniformly polarized medium. It is then a simple problem
in electrostatics to calculate the value of the field at the center of the sphere. The field, which
we identify as the Lorentz local field, is given by (see also Born and Wolf, 1975, Section 2.3,
or Jackson, 1975, Section 4.5)

~ 1 -~

Eioc =E+ —P. (3.9.2)
R

By definition, the polarization of the material is given by

P = Np, (3.9.3)
where N is the number density of molecules and p is the dipole moment per molecule, which
under the present circumstances is given by Eq. (3.9.1). By combining Egs. (3.9.1) through
(3.9.3), we find that the polarization and macroscopic field are related by

- . 1 -
P:Nmym(E+§%P) (3.9.4)

It is useful to express this result in terms of the linear susceptibility x (), defined by
P=¢yx VE. (3.9.5)

If we substitute this expression for P into Eq. (3.9.4) and solve the resulting equation for y (1,
we find that
Ny®
M _
X =———. (3.9.6)
1—Iny®

For the usual case in which the polarizability y! is positive, we see that the susceptibility
is larger than the value Ny ! predicted if we ignore local-field effects. We also see that the
susceptibility increases with N more rapidly than linearly.
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Alternatively, we can express the result given by Eq. (3.9.6) in terms of the linear dielectric
constant

eM =14 D, (3.9.7)

If the left-hand side of Eq. (3.9.6) is replaced by x (! = (¢ — 1) and the resulting equation
is rearranged so that its right-hand side is linear in (1), we find that the dielectric constant is
given by the expression

- =1nyD, (3.9.8a)

This equation (often with € replaced by n?) is known as the Lorentz—Lorenz law. Note that,
through rearrangement, Eq. (3.9.8a) can be written as

M 42 1
i S . (3.9.8b)
Eq. (3.9.6) can thus be expressed as
M 49
MONS SR (3.9.8¢)

3
This result shows that y (1 is larger than Ny (1) by the factor (¢! +2) /3. The factor (¢ +2)/3

can thus be interpreted as the local-field enhancement factor for the linear susceptibility.
3.9.2 Local-Field Effects in Nonlinear Optics

In the nonlinear-optical case, the Lorentz local field is still given by Eq. (3.9.2), but the polar-
ization now has both linear and nonlinear contributions:

P=pP-+ P\ (3.9.9)
We represent the linear contribution as
PL = Negy VEjqc. (3.9.10)

Note that this contribution is “linear” in the sense that it is linear in the strength of the local
field. In general it is not linear in the strength of the macroscopic field. We next introduce
Egs. (3.9.2) and (3.9.9) into this equation to obtain

5 S 1 -
P = Negy P (E + 3—€OPL + 3—60PNL). (3.9.11)
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We now solve this equation for P and use Egs. (3.9.6) and (3.9.7) to express the factor
Ny M that appears in the resulting expression in terms of the linear dielectric constant. We
thereby obtain

Pl =[e) — 1](eoE + 1PNF). (3.9.12)
Next we consider the displacement vector
D = ¢)E + P =¢E + P- + P, (3.9.13)

If the expression (3.9.12) for the linear polarization is substituted into this expression, we obtain
- . M 42\ .
D = o VE + (%)PNL. (3.9.14)

We see that the second term is not simply PNL | as might have been expected, but rather that
the nonlinear polarization appears multiplied by the factor (¢(V + 2)/3. We recall that in the
derivation of the polarization-driven wave equation of nonlinear optics, a nonlinear source term
appears when the second time derivative of D is calculated (see, for example, Eq. (2.1.9a)). As
a consequence of Eq. (3.9.14), we see that the nonlinear source term is actually the nonlinear
polarization pNL multiplied by the factor (¢ + 2)/3. To emphasize this point, Bloembergen
(1965) introduces the nonlinear source polarization defined by

- M 12\ .
pNLS — (%)PNL (3.9.15)
so that Eq. (3.9.14) can be expressed as
D = e VE + PNIS, (3.9.16)

When the derivation of the wave equation is carried out as in Section 2.1 using this expression
for D, we obtain the result

- ¢V ’E 1 92PNLS
VXVXE+ — .

2 912 :_6062 12 (3517

This result shows how local-field effects are incorporated into the wave equation.

The distinction between the local and macroscopic fields also arises in that the field that
induces a dipole moment in each atom is the local field, whereas by definition the nonlinear
susceptibility relates the nonlinear source polarization to the macroscopic field. To good ap-
proximation, we can relate the local and macroscopic fields by replacing P by Pl in Eq. (3.9.2)
to obtain

e =B+ L VE=[1 4 1 (e — 1)]E.
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or

N RONEN
Eioc = 3 E. (3.9.18)

We now apply the results given by Eqgs. (3.9.17) and (3.9.18) to the case of second-order
nonlinear interactions. We define the nonlinear susceptibility by means of the equation (see also
Eq. (1.3.13))

PiNLS(CUm +wy) =€ Z Z X,'(jzlz (wm + Wy, Oy wn)Ej (wm) Ex(wn), (3.9.19)
jk (mn)
where
6(1)(wm +wp) +2
3

and where the quantities E ; (wy,) represent macroscopic fields. The nonlinear polarization (i.e.,
the second-order contribution to the dipole moment per unit volume) can be represented as

PN (@ + ) = ( )PiNL(wm + on) (3.9.20)

PNY(om + 0n) =Neo Y D Bijk(@m + 0n Om, 02) EX(0n) EX (@), (3.9.21)
jk (mn)

where the proportionality constant f;;; is known as the second-order hyperpolarizability. The
local fields appearing in this expression are related to the macroscopic fields according to
Eq. (3.9.18), which we now rewrite as

1)
E (@) = (%)E (m)- (3.9.22)

By combining Eqgs. (3.9.19) through (3.9.22), we find that the nonlinear susceptibility can be
represented as

x,-(jz,f (wm + @n, Om, wn)
= ﬁ(z) (wm + Wy, W, a)n)N:Bijk(a)m + wn, Om, wn), (3.9.23)

where

5(2) (wm + @y, Oy, W)

~ (6(1)(60m + ) + 2) (e(l)(wm) + 2> <€(1)(wn) + 2)

(3.9.24)

gives the local-field enhancement factor for the second-order susceptibility. For example,
Eq. (3.6.18) for x® should be multiplied by this factor to obtain the correct expression in-
cluding local-field effects.
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This result is readily generalized to higher-order nonlinear interaction. For example, the
expression for x ) obtained ignoring local-field effects should be multiplied by the factor

£(3)(wl + o + wp, 0, W, wy)

_ (6(%)1 + o + wn) + 2) (e“)(a)z) + 2)
B 3 3

(1) 0]
X (6 (@m) +2)<E (w”)+2), (3.9.25)

3 3

Our derivation of the form of the local-field enhancement factor has essentially followed
the procedure of Bloembergen (1965). The nature of local-field effects in nonlinear optics can
be understood from a very different point of view introduced by Mizrahi and Sipe (1986).
This method has the desirable feature that, unlike the procedure just described, it does not
require that we introduce the somewhat arbitrary distinction between the nonlinear polarization
and the nonlinear source polarization. For simplicity, we describe this procedure only for the
case of third-harmonic generation in the scalar field approximation. We assume that the total
polarization (including both linear and nonlinear contributions) at the third-harmonic frequency
is given by

P(Bw) = Negy P (3w) Eoc B3o) + Negy P Bw, w, w, w) E} (w), (3.9.26)

where y(V(3w) is the linear polarizability for radiation at frequency 3w and where
Y@ Bw, w, w, w) is the hyperpolarizability leading to third-harmonic generation. We next use
Egs. (3.9.2) and (3.9.18) to rewrite Eq. (3.9.26) as

PQGw) = Neoy“>(3w)[E(3w) + %P(Z&a))]
0
(1) 3
+ Neoy @ Go, 0, o, w)(%) E)’. (3.9.27)

This equation is now solved algebraically for P (3w) to obtain

PQw) =

NyDBw)EGBw) Ny®QGw,w,w,w) (e(l)(w) +2

3
E(w)’. (3.9.28)
1-INyD@w)  1-1 NyDGw) 3 )

We can identify the first and second terms of this expression as the linear and third-order polar-
izations, which we represent as

PBw) =eox P Bw)EBw) + cox® GBw, », », w)E(w)°, (3.9.29)
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where (in agreement with the unusual Lorentz—Lorenz law) the linear susceptibility is given by

NyDGw)
1-tNyDGBw)’

xPGw) = (3.9.30)

and where the third-order susceptibility is given by

D (w) + 2)3(e<1>(3w) +2
3 3

We have made use of Eq. (3.9.8b) in writing Eq. (3.9.31) in the form shown. Note that the
result (3.9.31) agrees with the previous result described by Eq. (3.9.25). Experimental results
demonstrating the influence of local-field effects on the linear and nonlinear optical response
have been presented by Maki et al. (1991).

Throughout this section, we have made the implicit assumption that the material under con-
sideration is chemically homogeneous. Different considerations come into play for the case of
molecules of one chemical species embedded in a host material of a different species. This sit-
uation has been treated by Glauber and Lewenstein (1991). They find that in this case the local
field factor is given by 3¢ /(2¢(D + 1) rather than by (¢! + 2)/3 as given in Eq. (3.9.8¢).
Dolgaleva et al. (2007) verified this type of dependence for the radiative lifetime of emitting
nanoparticles embedded in a host material. The analysis of local-field effects in composite
materials comprised of two or more constituents is an area of active current research. In a com-
posite material, the local electric field can vary considerably in space, and this effect can lead
to an overall enhancement of the nonlinear optical response. These effects have been described
by Fischer et al. (1995) and by Nelson and Boyd (1999).

x?PGw, 0, w, w) = ( )Ny(3)(3a),a),a),a)). (3.9.31)

Problems

1. Estimate of the refractive index of an atomic vapor. Starting (for instance) from Eq. (3.5.20),
perform an estimate of the magnitude of the on-resonance absorption coefficient of a dense
atomic vapor assuming that the atomic number density is N = 107 cm ™3, that u = 2.5ea,
that the transition vacuum wavelength is 0.6 um, and that the transition is homogeneously
broadened with a linewidth (FWHM) of 10 GHz. Under the same conditions, calculate the
maximum value of the real part of the refractive index near the peak of the absorption line.
(These values are realistic under laboratory conditions. See for instance Maki et al., 1991.)

[Ans.:a =8 x 10* em™!, n(™M2) — 12 ]

2. Estimate of the refractive index of glass. Starting (for instance) from Eq. (3.5.20), perform
an estimate of the magnitude of the real part of the refractive index of glass at visible wave-
lengths. Choose realistic values for the atomic number density, dipole transition moment,
and detuning from resonance.
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3. Maximum value of the on-resonance cross section. Verify Eq. (3.5.42).

4. Permutation symmetry of the nonlinear susceptibility. Show that Eq. (3.6.24) possesses full
permutation symmetry.

5. Resonant nonlinear optical response. Derive, using the density matrix formalism, an ex-
pression for the resonant contribution to the third-order susceptibility x *) describing third-
harmonic generation as illustrated below.

3w

Assume that, in thermal equilibrium, all of the population resides in the ground state. Note
that since all input frequencies are equal and since only the resonant contribution is re-
quired, the answer will consist of one term and not 48 terms, which occur for the most
general case of x 3. Work this problem by starting with the perturbation expansion (3.4.16)
derived in the text and specializing the ensuing derivation to the interaction shown in the
figure.

[Ans.: X,S.l?h@w, w,w,w)

k 0 i ,h

__N HaaPacPebMba ]
ol [(wda — 3w) — iVaall(@ca — 20) — iyeall(@pa — @) — i ¥pa]

6. Model calculation of the nonlinear susceptibility. Consider the mutual interaction of four

optical fields as illustrated in the following figure. Assume that all of the fields have the

same linear polarization and that in thermal equilibrium all of the population is contained

in level a. Assume that the waves are tuned sufficiently closely to the indicated resonances
that only these contributions to the nonlinear interaction need be taken into account.

C

R
CO2
b:_—
ALY
0| —f—d
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You may work this problem either by specializing the general result of Eq. (3.7.11) to
the interaction shown in the figure or by repeating the derivation given in the text and
specializing at each step to this interaction.

(a) Calculate the four nonlinear susceptibilities

x (w4 =01 + w1 — 03), x (w3 =01 + w1 — ),

x (w1 = 03 + w4 — o), x (w2 = w3 + w4 — 1)

that describe the four-wave mixing process, and determine the conditions under which these
quantities are equal.
(b) In addition, calculate the nonlinear susceptibilities

x (@1 =01 + w2 — ), xP (w2 =wr +o_w))

that describe two-photon absorption of the @ and w; fields, and determine the conditions
under which they are equal. [Experimental investigation of some of the effects described
by these quantities is reported by Malcuit et al., 1985.]

7. Generalization of Problems 4 and 5. Repeat the calculation of the resonant contributions
to x® for the cases studied in Problems 4 and 5 for the more general situation in which
each of the levels can contain population in thermal equilibrium. Interpret your results.
[Note: The solution to this problem is very lengthy.]

8. Pressure-induced resonances in nonlinear optics. Verify the statement made in the text
that Eq. (3.7.11) reduces to Eq. (3.2.33) in the limit in which damping effects are negligi-
ble. Show also that, even when damping is not negligible, the general 48-term expression
for x @ can be cast into an expression containing 24 terms, 12 of which contain “pressure-
induced” resonances.

9. Electromagnetically induced transparency. The goal of this problem is to determine how
the linear susceptibility x () (2w + wy) and the nonlinear optical susceptibility x ) (wsum =
w1 + w1 + wy) are modified when the field at frequency wjy is a strong saturating field. We
shall find that under appropriate circumstances the presence of the strong field can signif-
icantly decrease the (unwanted) linear absorption experienced by the sum frequency field
while leaving the magnitude of the nonlinear response relatively unaffected. This problem
was worked out in the body of the text using the wavefunction formalism. For this prob-
lem, you are to treat this problem using the density-matrix formalism, using the coupling
scheme shown in the accompanying figure. Note that level b is appreciably detuned from
a one-photon resonance but that all other excited states are excited at a near resonance
frequency.
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Chapter 4

The Intensity-Dependent Refractive Index

The refractive index of many optical materials depends on the intensity of the light used to mea-
sure the refractive index. In this chapter, we examine some of the mathematical descriptions of
the nonlinear refractive index and examine some of the physical processes that give rise to
this effect. In the following chapter, we study the origin of optical nonlinearities in molecular
systems, in Chapter 6 we study the intensity-dependent refractive index resulting from the res-
onance response of an atomic system, and in Chapter 7 we study some physical processes that
result from the nonlinear refractive index.

4.1 Descriptions of the Intensity-Dependent Refractive Index
The refractive index of many materials can be described by the relation
n=ng+ i E?), (4.1.1)

where ng represents the usual, weak-field refractive index and 7, is a new optical constant
(sometimes called the second-order index of refraction) that gives the rate at which the refrac-
tive index increases with increasing optical intensity.” The angular brackets surrounding the
quantity EZ represent a time average. Thus, if the optical field is of the form

E(®t)=E()e " +c.c. (4.1.2)
so that

(E()?)=2E()E(0)* =2|E@)[,

(4.1.3)

* We place a bar over the symbol n; to prevent confusion with a different definition of ny, which is introduced in
Eq. (4.1.15).
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we find that
n = no + 2| E()|*. (4.1.4)

The change in refractive index described by Eq. (4.1.1) or (4.1.4) is sometimes called the optical
Kerr effect, by analogy with the traditional Kerr electrooptic effect, in which the refractive
index of a material changes by an amount that is proportional to the square of the strength of
an applied static electric field.

Of course, the interaction of a beam of light with a nonlinear optical medium can also be
described in terms of the nonlinear polarization. The part of the nonlinear polarization that
influences the propagation of a beam of frequency w is

PN (@) = 360x P (0 = 0 + 0 — 0) | E()| E(w). (4.1.5)

For simplicity we are assuming here that the light is linearly polarized and are suppressing the
tensor indices of x ®; the tensor nature of x @ is addressed explicitly in the following sections.
The total polarization of the material system is then described by

PN (w) = cox VE (@) + 3e0x P | E(@)| E (@) = eo xefrE (o), (4.1.6)
where we have introduced the effective susceptibility
2
xett = xV +3x V| E@)]”. 4.1.7)

In order to relate the nonlinear susceptibility x ) to the nonlinear refractive index n,, we note
that it is generally true that

n? =1+ Xefr, (4.1.8)

and by introducing Eq. (4.1.4) on the left-hand side and Eq. (4.1.7) on the right-hand side of
this equation, we find that

[0+ 2| E@)[ ] =14 x© +3x?|E@)|*. (4.1.9)

Correct to terms of order |E(w)|?, this expression when expanded becomes n% +
4nois |E()|? = (1 + x V) + [3x | E(w)|?], which shows that the linear and nonlinear re-
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@ E(o) E(w) e

— 1 —

®) (strong wave)
Ew) -/
\ 2@ E(e) '™
E@) —> —_>
(probe wave)

FIGURE 4.1.1: Two ways of measuring the intensity-dependent refractive index. In part (a), a strong
beam of light modifies its own propagation, whereas in part (b), a strong beam of light influences the
propagation of a weak beam.

fractive indices are related to the linear and nonlinear susceptibilities by

no=(1+x)"? (4.1.10)
and
3,3
iy =X 4.1.11)
4ng

The discussion just given has implicitly assumed that the refractive index is measured using
a single laser beam, as shown in part (a) of Fig. 4.1.1. Another way of measuring the intensity-
dependent refractive index is to use two separate beams, as illustrated in part (b) of the figure.
Here the presence of the strong beam of amplitude E () leads to a modification of the refrac-
tive index experienced by a weak probe wave of amplitude E(w’). The nonlinear polarization
affecting the probe wave is given by

PN (o) =6e0xP (0 = + 0 — w)}E(w)FE(w/). (4.1.12)

Note that the degeneracy factor (6) for this case is twice as large as that for the single-beam
case of Eq. (4.1.5). In fact, for the two-beam case the degeneracy factor is equal to 6 even if @’
is equal to w, because the probe beam is physically distinguishable from the strong pump beam
owing to its different direction of propagation. The probe wave hence experiences a refractive
index given by

n=nq-+ 2ﬁ§cmss) ‘ E(w) 2,

(4.1.13)
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where
3y 3
g = 2L (4.1.14)
2ng
Note that the nonlinear coefficient fzgcross) describing cross-coupling effects is twice as large

as the coefficient 77 of Eq. (4.1.11) which describes self-action effects. Hence, a strong wave
affects the refractive index of a weak wave of the same frequency twice as much as it affects its
own refractive index. This effect, for the case in which n, is positive, is known as weak-wave
retardation (Chiao et al., 1966).

The quantity 717 is helpful for the conceptual understanding of nonlinear optical phenomena.
However, in practice it is usually more convenient to use an alternative method for describing
the intensity-dependent refractive index™ by means of the quantity n, defined by the equation

n=nqg+nsyl, (4.1.15)
where I denotes the time-averaged intensity of the optical field, given by
I =2neoc| E()|’. (4.1.16)

Here we have expressed the refractive index in terms of its real and imaginary parts as n =
n’ 4+ in” and similarly for ng and n,. Since the total refractive index n must be the same using
either description of the nonlinear contribution, we see by comparing Eqs. (4.1.4) and (4.1.15)
that

22| E()]* = nal, 4.1.17)
and thus that 725 and n, are related by

np

ny = (4.1.18)

= — ,
nyeoc

where we have made use of Eq. (4.1.16). If Eq. (4.1.11) is introduced into this expression, we
find that n5 is related to x @ by

3
np=-———x®9. (4.1.19)
dnonyeoc

This relation can be expressed numerically as

m? 283 m?
— )= =). 4.1.20
n2<W> non6X (Vz) ( )

* For definiteness, we are treating the single-beam case of part (a) of Fig. 4.1.1. The extension to the two-beam
case is straightforward.
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TABLE 4.1.1: Typical values of the nonlinear refractive index®.

Mechanism ny X 1(?)11 Response time
(cm2/W) (m2/v?2) (sec)
Electronic polarization 10-16 10722 1015
Molecular orientation 1014 10720 10712
Electrostriction 1014 1020 1072
Saturated atomic absorption 10~10 10-16 10-8
Thermal effects 10-¢ 10-12 10-3
Photorefractive effect” (large) (large) (intensity-dependent)

a
b

For linearly polarized light.

The photorefractive effect often leads to a very strong nonlinear response. This response usually cannot be described in terms of
ax® (oran no) nonlinear susceptibility, because the nonlinear polarization does not depend on the applied field strength in the
same manner as the other mechanisms listed.

Nonlinear susceptibilities are sometimes quoted in gaussian units. Procedures for converting
between the gaussian and SI units are presented in the appendix. One useful relation is the
following:

2\ 1272 0.0395
nz(%) = 107 O esu) = 2o D esu). 4.1.21)
I’lOC nO

Some of the physical processes that can produce a nonlinear change in the refractive index
are listed in Table 4.1.1, along with typical values of nj, of X(3), and of the characteristic
time scale for the nonlinear response to develop. Electronic polarization, molecular orientation,
and thermal effects are discussed in the present chapter, saturated absorption is discussed in
Chapter 7, electrostriction is discussed in Chapter 9, and the photorefractive effect is described
in Chapter 11.

In Table 4.1.2 the experimentally measured values of the nonlinear susceptibility are pre-
sented for several materials. Some of the methods that are used to measure the nonlinear
susceptibility have been reviewed by Hellwarth (1977). As an example of the use of Table 4.1.2,
note that for fused silica the value of 7 is approximately 3 x 107'¢ cm? /W = 3 x 10720 m?/W.
Thus, a laser beam of intensity / = 1 GW/cm? = 10 TW/m? can produce a refractive index
change of 3 x 1077, Even for As,S3 glass, the resulting change in refractive index is only ap-
proximately 700 times larger. Even though the fractional change in refractive index is usually
very small, refractive index changes of this order of magnitude can lead to dramatic nonlinear
optical effects (some of which are described in Chapter 7) for the case of phase-matched non-
linear optical interactions. Very recently, material systems have been identified for which the
fractional change in refractive index can be of the order of unity. One such example is indium
tin oxide, for which the change in index is 0.7 (Alam et al., 2016).
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TABLE 4.1.2: Third-order nonlinear optical coefficients of various materials®.

Material ‘ ng ‘ X ®) (m? /V2) ‘ ny (cm? /W) ‘ Comments and references”
Crystals
AlyO3 1.8 3.1x10722 2.9x10716 1
Cds 2.34 9.8 x 10720 51x1071% | 1,1.06 um
Diamond 242 2.5x 10721 1.3x 10713 1
GaAs 3.47 1.4x 10718 33x 10713 15, 1.54 pm, B = 10.2 cm/GW
Ge 4.0 5.6x10719 99x 10~ | 2, THG |x®|
LiF 1.4 6.2x10723 9.0x 10717 1
Si 34 28x10718 2.7x 10714 15, 1.54 pm, B = 0.79 cm/GW
TiO, 2.48 2.1x10720 9.4 x 10713 1
ZnSe 2.7 6.2x 10720 3.0x1074 | 1,1.06 um
Glasses
Fused silica 1.47 2.5% 10722 3.2x 10716 1
AsyS3 glass 2.9 4.1x10719 2.4x10713 14
BK-7 1.52 2.8x 10722 3.4x 10716 1
BSC 1.51 5.0x 10722 6.4x 10716 1
Pb Bi gallate 23 2.2x 10720 13x10714 | 4
SF-55 1.73 2.1x 10721 20x 10715 1
SF-59 1.953 43 x 10721 33x10715 1
Nanoparticles
CdSSe in glass 15 1.4x 10720 1.8x 1074 | 3, nonres.
CS 3-68 glass 1.5 1.8x 10716 23x10710 | 3 res.
Gold in glass 15 2.1x10716 26x10710 | 3 res.
Polymers
Polydiacetylenes
PTS 8.4x 1018 3.x 10712 5, nonres.
PTS —5.6x 10710 —2x10710 6, res.
9BCMU 27x10718 | 7. |ny|, res.
4BCMU 156 | —13x10°1° —15x10713 8, nonres, 8 = 0.01 cm/MW
Liquids
Acetone 1.36 1.5x 10721 24x10715 | 9
Benzene 1.5 9.5x 10722 12x10715 | 9
Carbon disulfide 1.63 3.1x 10720 32x 10714 | 9 7 =2psec
CcCly 1.45 1.1x 10721 1.5%x 10715 9
Diiodomethane 1.69 1.5%x 10720 15x10714 | 9
Ethanol 1.36 5.0 x 10722 77x10716 | 9
Methanol 1.33 43 %1072 69x10716 | 9
Nitrobenzene 1.56 5.7x 10720 6.7x10714 | 9
Water 1.33 2.5x 10722 41x10716 | 9

continued on next page
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TABLE 4.1.2: (continued.)

Material no ‘ X(S) (m2 /Vz) | ny ((:m2 /W) ‘ Comments and references”
Other materials
Air 1.0003 1.7x107% 50x1071 | 10
Ag 28x10719 2, THG | x|
Au 7.7 x 10719 2, THG |x @]
7.6 x 10717 3.36i x 10714 16, 17, Z-scan, 6 ps, 630 nm
Vacuum 1 3.4x 10741 1.0x 10734 11
Cold atoms 1.0 7.1x 1078 0.2 12, (EIT BEC)
Fluorescein 1.5 (2.8 +2.8i) x 108 0.035(1 +10) 13, =0.1s
dye in glass
Indium tin 0.4 1.1x10~10 18, measured under ENZ
oxide conditions

4 This table assumes the definition of the third-order susceptibility X(S) used in this book, as given for instance by Eq. (1.1.2) or
by Eq. (1.3.21). This definition is consistent with that introduced by N. Bloembergen (Nonlinear Optics, Benjamin, New York,
1964). Some workers use an alternative definition which renders their values four times smaller. In compiling this table we have
converted the literature values when necessary to the present definition.

b References for Table 4.1.2: (1) L.L. Chase and E.W. Van Stryland, Section 8.1 of CRC Handbook of Laser Science and Technol-
ogy, CRC Press, Boca Raton, FL, 1995; (2) N. Bloembergen et al., Opt. Commun. 1, 195 (1969); (3) E.M. Vogel et al., Phys. Chem.
Glasses 32,231 (1991); (4) D.W. Hall et al., Appl. Phys. Lett. 54, 1293 (1989); (5) B.L. Lawrence et al., Electron. Lett. 30, 447
(1994); (6) G.M. Carter et al., Appl. Phys. Lett, 47,457 (1985); (7) S. Molyneux, A.K. Kar, B.S. Wherrett, T.L. Axon, and D. Bloor,
Opt. Lett. 18,2093 (1993); (8) J.E. Erlich et al., J. Mod. Opt. 40, 2151 (1993); (9) R.L. Sutherland, Handbook of Nonlinear Optics,
Chapter 8, Marcel Dekker, Inc., New York, 1996; (10) D.M. Pennington et al., Phys. Rev. A 39, 3003 (1989); (11) H. Euler and B.
Kockel, Naturwiss Enschaften 23, 246 (1935); (12) L.V. Hau et al., Nature 397, 594 (1999); (13) M.A. Kramer, W.R. Tompkin, and
R.W. Boyd, Phys. Rev. A 34,2026 (1986); (14) R.E. Slusher et al., J. Opt. Soc. Am. B 21, 1146 (2004); (15) M. Dinu et al., Appl.
Phys. Lett. 82,2954 (2003); (16) N. Rotenberg et al., Phys. Rev. B 75, 155426 (2007); (17) the subtleties involved in determining
the nonlinear coefficients of gold are described in R.W. Boyd et al., Optics Commun. 326, 74 (2014); (18) M.Z. Alam, 1. De Leon,
and R.W. Boyd, Science 352, 795 (2016).

4.2 Tensor Nature of the Third-Order Susceptibility

The third-order susceptibility Xi(j3k)l is a fourth-rank tensor, and thus is described in terms of
81 separate elements. For crystalline solids with low symmetry, all 81 of these elements are
independent and can be nonzero (Butcher, 1965). However, for materials possessing a higher
degree of spatial symmetry, the number of independent elements is very much reduced; as we
show below, there are only three independent elements for an isotropic material.

Let us see how to determine the tensor nature of the third-order susceptibility for the case
of an isotropic material such as a glass, a liquid, or a vapor. We begin by considering the
general case in which the applied frequencies are arbitrary, and we represent the susceptibility
as Xijki = Xi(flzl (w4 = w1 + w2 + w3). Since each of the coordinate axes must be equivalent in an
isotropic material, it is clear that the susceptibility possesses the following symmetry properties:

X1111 = X2222 = X3333, (4.2.1a)
X1122 = X1133 = X2211 = X2233 = X3311 = X3322, (4.2.1b)
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X1212 = X1313 = X2323 = X2121 = X3131 = X3232, (4.2.1¢)
X1221 = X1331 = X2112 = X2332 = X3113 = X3223- (4.2.1d)

One can also see that the 21 elements listed are the only nonzero elements of x ), because
these are the only elements that possess the property that any cartesian index (1, 2, or 3) that
appears at least once appears an even number of times. An index cannot appear an odd number
of times, because, for example, x1220 would give the response in the X direction due to a field
applied in the x; direction. This response must vanish in an isotropic material, because there is
no reason why the response should be in the +x direction rather than in the —x; direction.

The four types of nonzero elements appearing in the four equations (4.2.1) are not indepen-
dent of one another and, in fact, are related by the equation

X111 = X1122 + X1212 + X1221- 4.2.2)

One can deduce this result by requiring that the predicted value of the nonlinear polarization
be the same when calculated in two different coordinate systems that are rotated with respect
to each other by an arbitrary amount. A rotation of 45 degrees about the X3 axis is a convenient
choice for deriving this relation. The results given by Eqgs. (4.2.1) and (4.2.2) can be used to
express the nonlinear susceptibility in the compact form

Xijkl = X11228; 8kl + X12128ik0 j1 + X122168:16 jk - (4.2.3)

This form shows that the third-order susceptibility has three independent elements for the gen-
eral case in which the field frequencies are arbitrary.

Let us first specialize this result to the case of third-harmonic generation, where the fre-
quency dependence of the susceptibility is taken as x;jx (3w = @ + @ + ). As a consequence
of the intrinsic permutation symmetry of the nonlinear susceptibility, the elements of the sus-
ceptibility tensor are related by x1122 = x1212 = x1221 and thus Eq. (4.2.3) becomes

XijklBw =0+ v+ w) = 1122060 =0 + o + w)(8;;8k + 8ikdj1 + 8i8jx). (4.2.4)

Hence, there is only one independent element of the susceptibility tensor describing third-
harmonic generation.

We next apply the result given in Eq. (4.2.3) to the nonlinear refractive index, that is, we
consider the choice of frequencies given by x;jx/(@w = @ + w — w). For this choice of frequen-
cies, the condition of intrinsic permutation symmetry requires that x1122 be equal to x1212, and
hence y;jx can be represented by

Xijkl(w=0+ov—-0)=xn1n@=0+wv—w)
X (881 + 8ikdj1) + x1221(@ = w + @ — w) (816 jk)- (4.2.5)
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The nonlinear polarization leading to the nonlinear refractive index is given in terms of the
nonlinear susceptibility by (see also Eq. (1.3.21))

Pi(w) =3¢ Z Xijki(® =0+ o© — 0)Ej(0) E(0) El(—w). (4.2.6)
jkl

If we introduce Eq. (4.2.5) into this equation, we find that
P; = 6€0x1122Ei (E-E*) + 3€0x1221 E; (E - E). (4.2.7)
This equation can be written entirely in vector form as
P =6¢e0x1122(E - E)E + 3¢9 x1221 (E - E)E*. (4.2.8)

Following the notation of Maker and Terhune (1965) (see also Maker et al., 1964), we introduce
the coefficients

A=6x1122 (or A =3x1122 +3x1212) (4.2.92)
and
B =6x1221, (4.2.9b)

in terms of which the nonlinear polarization of Eq. (4.2.8) can be written as
P=¢)A(E-E")E + %eoB(E -E)E*. (4.2.10)

We see that the nonlinear polarization consists of two contributions. These contributions have
very different physical characters, since the first contribution has the vector nature of E, whereas
the second contribution has the vector nature of E*. Thus, for example, for circularly polarized
light, the first contribution produces a nonlinear polarization with the same handedness as E,
whereas the second contribution produces a nonlinear polarization with the opposite hand-
edness. The consequences of this behavior on the propagation of a beam of light through a
nonlinear optical medium are described below.

The origin of the different physical characters of the two contributions to P can be un-
derstood in terms of the energy level diagrams shown in Fig. 4.2.1. Here part (a) illustrates
one-photon-resonant contributions to the nonlinear coupling. We will show in Eq. (4.3.14) that
processes of this sort contribute only to the coefficient A. Part (b) of the figure illustrates two-
photon-resonant processes, which in general contribute to both the coefficients A and B (see
Egs. (4.3.13) and (4.3.14)). However, under certain circumstances, such as those described
later in connection with Fig. 7.2.9, two-photon-resonant processes contribute only to the coef-
ficient B.
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@ (b) g

FIGURE 4.2.1: Diagrams (a) and (b) represent the resonant contributions to the nonlinear coefficients A
and B, respectively.

For some purposes, it is useful to describe the nonlinear polarization not by Eq. (4.2.10) but
rather in terms of an effective linear susceptibility defined by means of the relationship

Pi=>cox " E;. 4.2.11)
j

Then, as can be verified by direct substitution, Eqs. (4.2.10) and (4.2.11) lead to identical pre-
dictions for the nonlinear polarization if the effective linear susceptibility is given by

x5 = e0A'(E-E*)5;; + YeoB'(E,EY + E} Ej), (4.2.122)
where
A'=A—3B=6x12 352 (4.2.12b)
and
B’ = B =6x1221. (4.2.12¢)

The results given in Eq. (4.2.10) or in Eqgs. (4.2.12) show that the nonlinear susceptibility
tensor describing the nonlinear refractive index of an isotropic material possesses only two in-
dependent elements. The relative magnitude of these two coefficients depends on the nature of
the physical process that produces the optical nonlinearity. For some of the physical mecha-
nisms leading to a nonlinear refractive index, these ratios are given by

B/A=6, B'JA'=-3 formolecular orientation, (4.2.13a)
B/A=1, B'JA'’=2 for nonresonant electronic response, (4.2.13b)
B/A=0, B'JA'=0 for electrostriction. (4.2.13¢)

These conclusions will be justified in the discussion that follows; see especially Eq. (4.4.37)
for the case of molecular orientation, Eq. (4.3.14) for nonresonant electronic response of bound
electrons, and Eq. (9.2.15) for electrostriction. Note also that A is equal to B by definition
whenever the Kleinman symmetry condition is valid.
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The trace of the effective susceptibility is given by

Trxij =Y xii = (3A'+ B)E-E*. (4.2.14)

1

Hence, Tr x;; vanishes for the molecular orientation mechanism. This result can be understood
from the point of view that molecular orientation does not add any “additional polarizability,”
it simply redistributes the amount that is present among different tensor components. For the
resonant response of an atomic transition, the ratio of B to A depends upon the angular mo-
mentum quantum numbers of the two atomic levels. Formulas for A and B for such a case have
been presented by Saikan and Kiguchi (1982).

4.2.1 Propagation through Isotropic Nonlinear Media

Let us next consider the propagation of a beam of light through a material whose nonlinear
optical properties are described by Eq. (4.2.10). As we show below, only linearly or circularly
polarized light is transmitted through such a medium with its state of polarization unchanged.
When elliptically polarized light propagates through such a medium, the orientation of the po-
larization ellipse rotates as a function of propagation distance as a consequence of the nonlinear
interaction.

Let us consider a beam of arbitrary polarization propagating in the positive z direction. The
electric field vector of such a beam can always be decomposed into a linear combination of left-
and right-hand circular components as

E=E . 6,+E o_, (4.2.15)
where the circular-polarization unit vectors are illustrated in Fig. 4.2.2 and are defined by
xX+iy

7
By convention, 6 1 corresponds to left-hand circular and ¢ _ to right-hand circular polarization

(for a beam propagating in the positive z direction).
We now introduce the decomposition (4.2.15) into Eq. (4.2.10). We find, using the identities

61= (4.2.16)

0L =0, 64-04+=0, 6+ -0x=1,
that the products E* - E and E - E become

E*.-E=(EX6% +E*6*) (E;64+E_6_)=E*E{+E*E_
=|E{P+|E_?
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FIGURE 4.2.2: The 6 and 6 _ circular polarizations.

and
E-E=(Ey6++FE 6_) - (E46++E_06_)=E{E_+E_E;=2E,E_,

so Eq. (4.2.10) can be written as

PNC = 0 A(|E+|? + |E_|*)E + €0 B(E+ E_)E*. (4.2.17)
If we now represent Py in terms of its circular components as

PNY=pP. 6,4+ P 6_, (4.2.18)

we find that the coefficient P is given by

Py =e0A(|E4|* +|E_|*)E4 + €B(E{E_)E*

= A(|E+I> +|E-P)Ex +eBIE-|Ey4
=€A|E4|’E4 +€9(A+ B)|E_|*E4 (4.2.192)

and similarly that
P_=€yA|E_|?E_ +€y(A+ B)|E4|’E_. (4.2.19b)
These results can be summarized as
Py=eoxi"Ex, (4.2.202)
where we have introduced the effective nonlinear susceptibilities
N = A|EL” + (A + B)|Ex|%. (4.2.20b)

The expressions (4.2.15) and (4.2.18) for the field and nonlinear polarization are now intro-
duced into the wave equation,

(1) 52 2

(D PEGH 1 9%

V2E )= — —P
@ 1) ¢z 9t? €oc? 9t?

, 4.2.21)
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where E(Z, t) = Eexp(—iwt) 4 c.c. and IB(Z, t) = Pexp(—iwt) + c.c. We next decompose
Eq. (4.2.21) into its 6 + and 6 _ components. Since, according to Eq. (4.2.20a), P+ is pro-
portional to E, the two terms on the right-hand side of the resulting equation can be combined
into a single term, so the wave equation for each circular component becomes

(eff) 02 1
- € 0°E ,t
VZE:I:(Z, t) — i—2$’ (4.2223)
C ot
where
E:(teff) —eMy XEL- (4.2.22b)

This equation possesses solutions of the form of plane waves propagating with the phase ve-

locity c/ni, where n4 = [eff)]l/Z. Letting n% =W we find that

nh =nd+ xN=nd + [AIEL? + (A + B)|E<[*]
1
:ng(l + n—z[A|Ei|2 +(A+ B>|E¢|2]),
0

and thus, noting that the second term in the last expression is much smaller than the first, that

1
nt ~no+ —[AlEL|* + (A + B)|E<|*]. (4.2.23)

2n

We see that the left- and right-circular components of the beam propagate with different phase
velocities. The difference in their refractive indices is given by

B
An=ny—n_=—/(E_|* - |E4]). (4.2.24)
2np

Note that this difference depends upon the value of the coefficient B but not that of the co-
efficient A. Since the left- and right-hand circular components propagate with different phase
velocities, the polarization ellipse of the light will rotate as a function of propagation distance
within the medium.”*

In order to determine the angle of rotation, we express the field amplitude as

E@) =E 6, +E_6_=A, "G + A_¢"-2G_
— (A+ei(]/2)Anwz/c&+ + A_e—i(l/2)Anwz/06__)ei(l/Z)(n++n_)wZ/c' (4'2‘25)

We now introduce the mean propagation constant k,, = %(n+ + n_)w/c and the angle

0= %An;z, (4.2.262)

* Recall that a similar effect occurs in the linear optics of optically active materials.
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in terms of which Eq. (4.2.25) becomes

E(z) = (A164e + A_6_e7)efnz, (4.2.26b)
y y )
\ y

s > X > X
N 0

incident transmitted

FIGURE 4.2.3: Polarization ellipses of the incident and transmitted waves.

As illustrated in Fig. 4.2.3, this equation describes a wave whose polarization ellipse is the
same as that of the incident wave but rotated through the angle 6 (measured clockwise in the
xy plane, in conformity with the sign convention for rotation angles in optical activity). This
conclusion can be demonstrated by noting that

NN
. +ig X +iy

ote ) 4.2.27)
72
where X’ and y’ are polarization unit vectors in a new coordinate system—that is,
x' =xcosf — ysin#, (4.2.28a)
y = xsinf + ycosf. (4.2.28b)

Measurement of the rotation angle 6 provides a sensitive method for determining the nonlinear
coefficient B (see also Eqs. (4.2.24) and (4.2.26a)).

As mentioned above, there are two cases in which the polarization ellipse does not rotate.
One case is that of circularly polarized light. In this case only one of the 64 components is
present, and we see from Eq. (4.2.23) that the change in refractive index is given by

1
dncircular = 2—A|E|2a (4.2.29)
no

which clearly depends on the coefficient A but not on the coefficient B. The other case in
which there is no rotation is that of linearly polarized light. Since linearly polarized light is a
combination of equal amounts of left- and right-hand circular components (i.e., |E_ |2=|E + 1),
we see directly from Eq. (4.2.24) that the index difference Arn vanishes. If we let E denote the
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total field amplitude of the linearly polarized radiation, so that |E|> = 2|E,|> = 2|E_|?, we
find from Eq. (4.2.23) that for linearly polarized light the change in refractive index is given by

SMlinear = L(A +1B)|E*. (4.2.30)
2np

Note that this change depends on the coefficients A = 61122 and B = 61221 as A+ %B, which
according to Egs. (4.2.2) and (4.2.9) is equal to 3x1111. We see from Egs. (4.2.29) and (4.2.30)
that, for the usual case in which A and B have the same sign, linearly polarized light experiences
a larger nonlinear change in refractive index than does circularly polarized light. In general
the relative change in refractive index, dnjinear/ S circular, 1S €qual to 1 + B/2A, which for the
mechanisms described after Eq. (4.2.10) becomes

4 for molecular orientation,

ONlinear 3 . . ..
— =13 for nonresonant electronic nonlinearities,
SN circular ..

1 for electrostriction.

For the case of two laser beams counterpropagating through a nonlinear material, the theoret-
ical analysis is far more complex than that just presented for the single-beam situation, and a
variety of additional phenomena can occur, including polarization bistability and polarization
instabilities including chaos. These effects have been described theoretically by Gaeta et al.
(1987) and have been observed experimentally by Gauthier et al. (1988, 1990).

4.3 Nonresonant Electronic Nonlinearities

Nonresonant electronic nonlinearities occur as the result of the nonlinear response of bound
electrons to an applied optical field. This nonlinearity usually is not particularly large (x ® ~
10722 m?/V? is typical) but is of considerable importance because it is present in all dielectric
materials. Furthermore, recent work has shown that certain organic nonlinear optical mate-
rials (such as polydiacetylene) can have nonresonant third-order susceptibilities as large as
10~'7 m?/V? as a consequence of the response of delocalized 7 electrons.

Nonresonant electronic nonlinearities are extremely fast, since they involve only virtual
processes. The characteristic response time of this process is the time required for the electron
cloud to become distorted in response to an applied optical field. This response time can be
estimated as the orbital period of the electron in its motion about the nucleus, which according
to the Bohr model of the atom is given by

T =2map/v,

where ag = 0.5 x 10719 m is the Bohr radius of the atom and v ~ ¢/137 is a typical electronic
velocity. We hence find that 7 ~ 1071® s = 100 attosec.
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4.3.1 Classical, Anharmonic Oscillator Model of Electronic Nonlinearities

A simple model of electronic nonlinearities is the classical, anharmonic oscillator model pre-
sented in Section 1.4. According to this model, one assumes that the potential well binding the
electron to the atomic nucleus deviates from the parabolic potential of the usual Lorentz model.
We approximate the actual potential well as

U (1) = sma|t)* — mblr[*, (4.3.1)

where b is a phenomenological nonlinear constant whose value is of the order of w% /d?, where
d is a typical atomic dimension. By solving the equation of motion for an electron in such a
potential well, we obtain expression (1.4.52) for the third-order susceptibility. When applied to
the case of the nonlinear refractive index, this expression becomes

Nbe*[8;8k1 + 8ikd 1 + 8i18 k]
3eom3D(w)?} D(—w)

3
Xi(jk)z(“)=“’+w_w) =

: 4.3.2)

where D(w) = a)(z) —w*=2i wy . In the notation of Maker and Terhune (Eq. (4.2.10)), this result
implies that

2Nbe*

A=B= .
eom3D(w)? D(—w)

(4.3.3)

Hence, according to the classical, anharmonic oscillator model of electronic nonlinearities, A is
equal to B for any value of the optical field frequency (whether resonant or nonresonant). For
the case of far-off-resonant excitation (i.e., @ << wyp), we can replace D (w) by a)g in Eq. (4.3.2).
If in addition we set b equal to a)g /d?, we find that

N 4
3) ~ ¢ —. (4.3.4)
eom>wyd?

For the typical values N =4 x 10?2 cm™3,d =3 x 10719 m, and wg = 7 x 10" rad/s, we find
that x® ~3 x 10722 m?/V2.
4.3.2 Quantum-Mechanical Model of Nonresonant Electronic Nonlinearities

Let us now see how to calculate the third-order susceptibility describing the nonlinear refractive
index using the laws of quantum mechanics. Since we are interested primarily in the case of
nonresonant excitation, we make use of the expression for the nonlinear susceptibility in the
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form given by Eq. (3.2.31)—that is,

3)
ijih(a)o'v Wy, Cl)q, (,l)p)

k ,J i ,h

N Mgnﬂnm:umlﬂlg
=P E , 4.3.5
60713 i |: (wng - a)P) ] ( )

Imn - wo)(wmg — Qg — wp)(a)lg

where w, = 0, + w; + w,. We want to apply this expression to the case of the nonlinear
refractive index, with the frequencies arranged as X,Sl?h (w,w,w, —w) = )(,S-?h (w=w+w—w).
One sees that Eq. (4.3.5) appears to have divergent contributions for this choice of frequencies,
because the factor w,,; — w; — w, in the denominator vanishes when the dummy index m is
equal to g and when w), = —w,; = tw. However, in fact this divergence exists in appearance
only (Hanna et al., 1979; Orr and Ward, 1971); one can readily rearrange Eq. (4.3.5) into a form
where no divergence appears. We first rewrite Eq. (4.3.5) as

3
ijih(wa, Wy, Wg, Wp)

N P Z/ Mgnﬂrﬁmﬂfnlﬂ?g
=—=PrF
€0ﬁ3 (wng - a)cr)(a)mg — Qg — a)p)(a)lg - wp)

Imn

k ,,J i ,h

Wenting sy 14

-3 gn e gl lg . (4.3.6)
n (wng - wa)(wq + 6Up)(wlg - (Up)

Here the prime on the first summation indicates that the terms corresponding to m = g are to be
omitted from the summation over m; these terms are displayed explicitly in the second summa-
tion. The second summation, which appears to be divergent for w; = —w), is now rearranged.
We make use of the identity

1 1 1

XY Xty T x+nx 4.3.7)

with X = w, + wp and ¥ = wjy — w), to express Eq. (4.3.6) as

(3)
Xkﬂh(a)a’ @y, a)q7 wp)

N ’ Mgnﬂfzmﬂinlﬂ?g
=i 2
€0 (wng - a)a)(wmg —Wg — CUp)(a)lg - wp)

Imn

T (Wng — w0 ) (wig + wg) (g — wp) -
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in addition to the contribution

k i h
Py g Mg K 11 43.9)
F . D,
T (ng — o) (wig + 0g) (@ +wp)

However, this additional contribution vanishes, because for every term of the form
k ,J i ,h
Wonting gy
(wng - wa)(wlg + wq)(wq + wp)

(4.3.10a)

that appears in Eq. (4.3.9), there is another term with the dummy summation indices n and
[ interchanged, with the pair (—w,, k) interchanged with (w,,7), and with the pair (w, h)
interchanged with (w,, j); this term is of the form

i bk
Wy gy Mg I
sl g gn M8 . (4.3.10b)
(wlg + (l)q)(wng — wo ) (W — Wy)
Since wy = wp + wy + wy, it follows that (wy + @) = —(w, — ws), and hence the expres-

sion (4.3.10a) and (4.3.10b) are equal in magnitude but opposite in sign. The expression (4.3.8)
for the nonlinear susceptibility is thus equivalent to Eq. (4.3.5) but is more useful for our present
purpose because no apparent divergences are present.

We now specialize Eq. (4.3.8) to the case of the nonlinear refractive index with the choice of
frequencies given by X,S.?h (w, w, w, —w). When we expand the permutation operator Pr, we
find that each displayed term in Eq. (4.3.8) actually represents 24 terms. The resonance nature
of each such term can be analyzed by means of diagrams of the sort shown in Fig. 3.2.3.*
Rather than considering all 48 terms of the expanded version of Eq. (4.3.8), let us consider only
the nearly resonant terms, which would be expected to make the largest contributions to x .
One finds, after detailed analysis of Eq. (4.3.8), that the resonant contribution to the nonlinear
susceptibility is given by

N
6 €oh’
k ,,h i J k ,h Joi h k i J h k Joi

(wng —w) (wmg —2w) (wlg —w)

3 3
lejgh(a),a),a), —w) = X,Ejl?h(a):a)-i-a)—w) =

Imn

k . J , h i k i ,h hoio ko, hoJ ko0
B Z Wonng g lig + HgnMngHor g + Wentng W o lig + HgnMng g
- (wng — W) (w1 — w)(Wig — ®) '

(4.3.11)

* Note, however, that Fig. 3.2.3 as drawn presupposes that the three input frequencies are all positive, whereas for
the case of the nonlinear refractive index two of the input frequencies are positive and one is negative.
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@ oo (b)
j(ori) h (or k)
|--—p--=-7- —g---T--n
I —-2--T-n
i (or j) k (or h) i(orj)| h(ork) j(ori) |k(orh)
8 8

FIGURE 4.3.1: Resonance nature of the first (a) and second (b) summations of Eq. (4.3.11).

Here the first summation represents two-photon-resonant processes and the second summation
represents one-photon-resonant processes, in the sense illustrated in Fig. 4.3.1.

We can use Eq. (4.3.11) to obtain explicit expressions for the resonant contributions to the
nonvanishing elements of the nonlinear susceptibility tensor for an isotropic medium. We find,
for example, that x1111(w = w + ® — w) is given by

X Z MznﬂzmMZI'u?g
1111 =
3e ﬁ3 (Wng — W) (Wmg — 20)(w1g — W)
Z Hanbtng i . (4.3.12)
3€0h% (wng — w)(wig — w)(wig — )

Note that both one- and two-photon-resonant terms contribute to this expression. When o is
smaller than any resonant frequency of the material system, the two-photon contribution (the
first term) tends to be positive. This contribution is positive because, in the presence of an ap-
plied optical field, there is some nonzero probability that the atom will reside in an excited state
(state [ or n as Fig. 4.3.1(a) is drawn). Since the (linear) polarizability of an atom in an excited
state tends to be larger than that of an atom in the ground state, the effective polarizability of
an atom is increased by the presence of an intense optical field; consequently this contribu-
tion to X(3) is positive. On the other hand, the one-photon contribution to 1111 (the second
term of Eq. (4.3.12)) is always negative when w is smaller than any resonance frequency of the
material system, because the product of matrix elements that appears in the numerator of this
term is positive definite. We can understand this result from the point of view that the origin of
one-photon-resonant contributions to the nonlinear susceptibility is saturation of the atomic re-
sponse, which in the present case corresponds to a decrease of the positive linear susceptibility.
We can also understand this result as a consequence of the ac Stark effect, which (as we shall
see in Section 6.5) leads to an intensity-dependent increase in the separation of the lower and
upper levels and consequently to a diminished optical response, as illustrated in Fig. 4.3.2.
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FIGURE 4.3.2: For w < wy, the ac Stark effect leads to an increase in the energy separation of the ground
and excited states.

In a similar fashion, we find that the resonant contribution to x1271 (or to %B in the notation
of Maker and Terhune) is given by

IS s o 41,
X1221 = 3 E sz e s . (4.3.13)
3eoh ~ (Wng — @) (Wmg — 20)(wig — )

The one-photon-resonant terms do not contribute to x1221, since these terms involve the sum-
mation of the product of two matrix elements of the sort ,ug / ,uly 2 and this contribution always
vanishes.”

We also find that the resonant contribution to x1122 (or to %A) is given by

N 1+ (g P My iy g Mm g A7)
h% Z

X1122 =
12273 (@ng — ©) (g — 20) (@) — ©)

N IS kg oy 1A,
-y st ne ol I . (4.3.14)
3eoh (a)ng — ) (a’mg — ) (a)lg — )

4.3.3 x in the Low-Frequency Limit

In practice, one is often interested in determining the value of the third-order susceptibility
under highly nonresonant conditions—that is, for the case in which the optical frequency is
very much smaller than any resonance frequency of the atomic system. An example would be
the nonlinear response of an insulating solid to visible radiation. In such cases, each of the terms
in the expansion of the permutation operator in Eq. (4.3.8) makes a comparable contribution
to the nonlinear susceptibility, and no simplification such as those leading to Egs. (4.3.11)
through (4.3.14) is possible. It is an experimental fact that in the low-frequency limit both x1122
and 1201 (and consequently x1111 = 2x1122 + X1221) are positive in sign for the vast majority of

* To see that this contribution vanishes, choose x to be the quantization axis. Then if p* ol is nonzero, M [ must
vanish, and vice versa.
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TABLE 4.3.1: Nonlinear optical coefficient for materials showing electronic nonlinearities®.

Material no x1111 (M2/v2) ny (m2/W)

Diamond 242 21 x 10722 10x 10720
Yttrium aluminum garnet 1.83 8.4x 10722 8.4x10720
Sapphire 1.8 42x10722 3.7x10720
Borosilicate crown glass 1.5 3.5x 10722 4.4%10720
Fused silica 1.47 2.8x10722 3.67x 10720
CaF, 1.43 224 x 1072 3.1x10720
LiF 1.4 1.4 x 10722 2.0x 10720

4 Values are obtained from optical frequency mixing experiments and hence do not include electrostrictive contributions, since

electrostriction is a slow process that cannot respond at optical frequencies. The value of 715 is calculated as 719 = 37w x1111/n0-
(Adapted from Hellwarth (1977), Tables 7.1 and 9.1.)

optical materials. Also, the Kleinman symmetry condition becomes relevant under conditions
of low-frequency excitation, which implies that x;122 is equal to xj221, or that B is equal to A
in the notation of Maker and Terhune.

We can use the results of the quantum-mechanical model to make an order-of-magnitude
prediction of the value of the nonresonant third-order susceptibility. If we assume that the opti-
cal frequency w is much smaller than all atomic resonance frequencies, we find from Eq. (4.3.5)
that the nonresonant value of the nonlinear optical susceptibility is given by

4
3) SN

~ , 4.3.15
eoh3a)8 ( )

X

where p is a typical value of the dipole matrix element and wg is a typical value of the
atomic resonance frequency. It should be noted that while the predictions of the classical model
(Eq. (4.3.4)) and the quantum-mechanical model (Eq. (4.3.15)) show different functional de-
pendences on the displayed variables, the two expressions are in fact equal if we identify d with
the Bohr radius ag = 47w eph? / me?, u with the atomic unit of electric dipole moment —eag, and
wo with the Rydberg constant in angular frequency units, wg = me*/ 327126(%?13. Hence, the
quantum-mechanical model also predicts that the third-order susceptibility is of the order of
magnitude of 3 x 10722 m?/V?2. The measured values of x ® and n, for several materials that
display nonresonant electronic nonlinearities are given in Table 4.3.1.

4.4 Nonlinearities Due to Molecular Orientation

Liquids that are composed of anisotropic molecules (i.e., molecules having an anisotropic po-
larizability tensor) typically possess a large value of n,. The origin of this nonlinearity is the
tendency of molecules to become aligned in the electric field of an applied optical wave. The
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@) (b) E 4p

FIGURE 4.4.1: (a) A prolate spheroidal molecule, such as carbon disulfide. (b) The dipole moment p
induced by an electric field E.

optical wave then experiences a modified value of the refractive index because the average
polarizability per molecule has been changed by the molecular alignment.

Consider, for example, the case of carbon disulfide (CS,), which is illustrated in part (a)
of Fig. 4.4.1. Carbon disulfide is a cigar-shaped molecule (i.e., a prolate spheroid), and conse-
quently the polarizability a3 experienced by an optical field that is parallel to the symmetry axis
is larger than the polarizability «; experienced by a field that is perpendicular to its symmetry
axis—that is,

o3 > aj. 4.4.1)

Consider now what happens when such a molecule is subjected to a static electric field, as
shown in part (b) of the figure. Since a3 is larger than o, the component of the induced dipole
moment along the molecular axis will be disproportionately long. The induced dipole moment p
thus will not be parallel to E but will be offset from it in the direction of the symmetry axis.
A torque

T=pX E (4.4.2)

will thus be exerted on the molecule. This torque is directed in such a manner as to twist the
molecule into alignment with the applied electric field.

The tendency of the molecule to become aligned in the applied electric field is counteracted
by thermal agitation, which tends to randomize the molecular orientation. The mean degree
of molecular orientation is quantified through use of the Boltzmann factor. To determine the
Boltzmann factor, we first calculate the potential energy of the molecule in the applied electric
field. If the applied field is changed by an amount dE, the orientational potential energy is
changed by the amount

dU =—-p-dE=—p3dE3 — p1dE}, (4.4.3)
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where we have decomposed E into its components along the molecular axis (£3) and perpen-
dicular to the molecular axis (E;). Since

p3 =0o3E3 4.4.4)
and
p1=a1Eq, (4.4.5)
we find that
dU = —a3E3 dEs — o1 E1dEq, (4.4.6)
which can be integrated to give
U=—3(a3E5 + o1 E}). (4.4.7)

If we now introduce the angle 6 between E and the molecular axis (see Fig. 4.4.1(b)), we find
that the orientational potential energy is given by
U= —%[a3E2cos29 + o E? sin29]
= —Ja1 E* — $ (a3 — ) E* cos® 6. (4.4.8)
Since o3 — o1 has been assumed to be positive, this result shows that the potential energy is

lower when the molecular axis is parallel to E than when it is perpendicular to E, as illustrated
in Fig. 4.4.2.

E
lower potential higher potential
energy energy

FIGURE 4.4.2: Alignment energy of a molecule.

Our discussion thus far has assumed that the applied field is static. We now allow the field to
vary in time at an optical frequency. For simplicity we assume that the light is linearly polarized;
the general case of elliptical polarization is treated at the end of the present section. We thus
replace E in Eq. (4.4.9) by the time-varying scalar quantity E(¢). The square of £ will contain
frequency components near zero frequency and components at approximately twice the optical
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frequency w. Since orientational relaxation times for molecules are typically of the order of
a few picoseconds, the molecular orientation can respond to the frequency components near

zero frequency but not to those near 2w. We can thus formally replace E? in Eq. (4.4.9) by E2,
where the bar denotes a time average over many cycles of the optical field.

We now calculate the intensity-dependent refractive index for such a medium. For simplic-
ity, we first ignore local-field corrections, in which case the refractive index is given by

n=1+4yx=14N(a), (4.4.9)

where N is the number density of molecules and where (o) denotes the expectation value of the
molecular polarizability experienced by the incident radiation. To obtain an expression for (),
we note that the mean orientational potential energy is given by (U) = —% |E|*(r), which by
comparison with the average of Eq. (4.4.8) shows that

(@) = a3({cos? 0) + a1 (sin? 8) = a1 + (a3 — y)(cos? ). (4.4.10)

Here (cos?6) denotes the expectation value of cos?6 in thermal equilibrium and is given in
terms of the Boltzmann distribution as

[dQcos? @ exp[—U(0)/kT]

29\ _
(cos”6) = [dSzexpl—U (0)/kT]

, (4.4.11)

where [ d$2 denotes an integration over all solid angles. For convenience, we introduce the
intensity parameter

J=L(az — o) E2/kT, (4.4.12)
and let d2 = 27 sin@d6. We then find that (cos” #) is given by

fér cos? 6 exp(J cos? 6) sinf df

44.13
T exp(J cos26) sinf df ( )

(cos2 9) =

Egs. (4.4.9) through (4.4.13) can be used to determine the refractive index experienced by fields
of arbitrary intensity E2.

Let us first calculate the refractive index experienced by a weak optical field, by taking the
limit J — 0. For this case we find that the average of cos? @ is given by

_ Jg cos*Osinfdf

2 —
feos”6)y = [Tsingdo

(4.4.14)

W=

and that according to Eq. (4.4.10), the mean polarizability is given by

(@)o = %03 + 3. (4.4.15)
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Using Eq. (4.4.9), we find that the refractive index is given by
ng=1+N(3o3+ 3a1). (4.4.16)

Note that this result makes good physical sense: in the absence of processes that tend to align
the molecules, the mean polarizability is equal to one-third of that associated with the direc-
tion of the symmetry axis of the molecule plus two-thirds of that associated with directions
perpendicular to this axis.

For the general case in which an intense optical field is applied, we find from Egs. (4.4.9)
and (4.4.10) that the refractive index is given by

n* =1+ N[aj + (a3 — ap){cos? )], (4.4.17)

and thus by comparison with Eq. (4.4.16) that the square of the refractive index changes by the
amount

n?— n% = N[%al + (a3 — oc1)<cos2 9) — %og]

= N(az — ap)((cos?0) — 1). (4.4.18)

Since n? — n% is usually very much smaller than n%, we can express the left-hand side of this

equation as

n* — n§ = (n — no)(n +no) = 2no(n — no)

and thus find that the refractive index can be expressed as
n=nqo+6én, (4.4.19)

where the nonlinear change in refractive index is given by

Sn=n—ng= %}(% — ay)([cos?8) — 1). (4.4.20)

The quantity (cos? @), given by Eq. (4.4.13), can be calculated in terms of a tabulated function

(the Dawson integral). Fig. 4.4.3 shows a plot of (cos®6) — % as a function of the intensity

parameter J = %(053 — al)ﬁ/kT.

In order to obtain an explicit formula for the change in refractive index, we expand the
exponentials appearing in Eq. (4.4.13) and integrate the resulting expression term by term. We
find that

1 4 8J2

2
0 . 4.4.21
leos™0) =3+ 35+ oa5 * (42D
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FIGURE 4.4.3: Variation of the quantity ((cos®8) — %), which is proportional to the nonlinear change
in refractive index §n, with the intensity parameter J. Note that for J < 5, dn increases nearly linearly
with J.

Dropping all terms but the first two, we find from (4.4.20) that the change in the refractive index
due to the nonlinear interaction is given by

5= (3 —a) ot = Ny — al)ZE—z. (4.4.22)
2nyg 45  45ng kT
We can express this result as
sn =i, E2, (4.4.23)
where the second-order nonlinear refractive index is given by
_ N (a3 —ay)?
ny = g kT (4.4.24a)
Equivalently, we find through use of Eq. (4.1.18) that
n N_ @) (4.4.24b)

- 45nonyepc kT

using the convention that n = ny + ny/ and where n6 is the real part of ng. Note that nj is
positive both for the case a3 > o1 (the case that we have been considering explicitly) and for
the opposite case where a3 < «1. The reason for this behavior is that the torque experienced by
the molecule is always directed in a manner that tends to align the molecule so that the light
sees a larger value of the polarizability.



The Intensity-Dependent Refractive Index 229

A more accurate prediction of the nonlinear refractive index is obtained by including the

effects of local-field corrections. We begin with the Lorentz—Lorenz law (see also Eq. (3.9.82)),
n =1 L N@) (4.4.25)
—— = -N{o), 4.
n2+2 3

instead of the approximate relationship (4.4.9). By repeating the derivation leading to

Eq. (4.4.24a) with Eq. (4.4.9) replaced by Eq. (4.4.25) and with the time average of E? re-

placed by that of the Lorentz local field (see the discussion of Section 3.9), we find that the

second-order nonlinear refractive index is given by

_ N (n%+2)4(a3—a1)2 (4.4.26)

= 45noneqc 3 kT

Note that this result is consistent with the general prescription given in Section 3.9, which
states that local-field effects can be included by multiplying the results obtained in the absence
of local field corrections (that is, Eq. (4.4.24b)) by the local-field correction factor L3 = [(n(z) +
2)/3]* of Eq. (3.9.25).

Finally, we quote some numerical values relevant to the material carbon disulfide. The
maximum possible value of dn is 0.58 and would correspond to a complete alignment of the
molecules. The value J = 1 corresponds to a field strength of E ~ 3 x 10° V/m. Through use
of Eqs. (4.4.12) and (4.4.24b) and the value ng = 1.63, we find that no =3 x 10722 m?/W.

4.4.1 Tensor Properties of x 3) for the Molecular Orientation Effect

Let us now consider the nonlinear response of a collection of anisotropic molecules to light of
arbitrary polarization. Close et al. (1966) have shown that the mean polarizability in thermal
equilibrium for a molecule whose three principal polarizabilities a, b, and ¢ are distinct can be
represented as

(aij> = O[(sl'j + Yij» (4427)
where the linear contribution to the mean polarizability is given by

a=1ta+b+o), (4.4.28)

and where the lowest-order nonlinear correction term is given by

vij=C Y (3881 — 8i8u) EL°(1) E[* (). (4.4.29)
kil
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Here the constant C is given by

_(a—b)?+(b—0)?+(a—c)?

Cc ;
90kT

(4.4.30)

and E'°° denotes the Lorentz local field. In the appendix to this section, we derive the result
given by Eqs. (4.4.27) through (4.4.30) for the special case of an axially symmetric molecule;
the derivation for the general case is left as an exercise to the reader. Next, we use these results to
determine the form of the third-order susceptibility tensor. We first ignore local-field corrections
and replace E,l{"c (1) by the microscopic electric field Ex (1), which we represent as

Ex(t) = Exe ' +c.c. (4.4.31)
The electric-field-dependent factor appearing in Eq. (4.4.29) thus becomes
EX(t)E*(t) = ExE] + E}E. (4.4.32)
Since we are ignoring local-field corrections, we can assume that the polarization is given by

Pi=eo Y N{ij)E; (4.4.33)
j

and thus that the third-order contribution to the polarization is given by

PP =N yijE;. (4.4.34)
j

By introducing the form for y;; given by Eqgs. (4.4.29) and (4.4.32) into this expression, we find
that

P =eoNCY (38u8j1 — 8ij0u) (ExEf + E{ENE;,
jki
which can be written entirely in vector form as
PO =NC[3(E-E*)E+3(E-E)E* — (E-E")E — (E-E"E]
=€ NC[(E-E")E +3(E-E)E*]. (4.4.35)
This result can be rewritten using the notation of Maker and Terhune (see also Eq. (4.2.10)) as
PY = A(E E"E + 1 B(E - E)E*, (4.4.36)

where the coefficients A and B are given by B = 6A = 6 NC, which through use of the expres-
sion (4.4.30) for C becomes

(4.4.37)

N2 2 2
B:6A=N[(a by*+b—c)+(a—roc) ]

15kT
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This result shows that for the molecular orientation effect the ratio B/A is equal to 6, a result
quoted earlier without proof (in (4.2.13a)). As in Eq. (4.4.26), local-field corrections can be
included in the present formalism by replacing Eq. (4.4.37) by

n3+2>4N (a—b)24 (b —c)?+ (a—c)?
3 15kT '

B=6A= ( (4.4.38)

4.5 Thermal Nonlinear Optical Effects

Thermal processes can lead to large (and often unwanted) nonlinear optical effects. The origin
of thermal nonlinear optical effects is that some fraction of the incident laser power is absorbed
in passing through an optical material. The temperature of the illuminated portion of the ma-
terial consequently increases, which leads to a change in the refractive index of the material.
For gases, the refractive index invariably decreases with increasing temperature (at constant
pressure), but for condensed matter the refractive index can either increase or decrease with
changes in temperature, depending on details of the internal structure of the material. The time
scale for changes in the temperature of the material can be quite long (of the order of seconds),
and consequently thermal effects often lead to strongly time-dependent nonlinear optical phe-
nomena.

Thermal effects can be described mathematically by assuming that the refractive index 7
varies with temperature according to*

d -
ﬁ:no—l—(—n)Tl, 4.5.1)

dT
where the quantity (dn/dT) describes the temperature dependence of the refractive index of a
given material and where 77 designates the laser-induced change in temperature. We assume
that 7 obeys the heat-transport equation

aTy - -
(PoC) =~ =k V2T =l (). (4.5.2)

Here (ppC) denotes the heat capacity per unit volume, « denotes the thermal conductivity, and
« denotes the linear absorption coefficient of the material. We express the heat capacity in the
form (poC) because most handbooks tabulate the material density pg and the heat capacity per
unit mass C rather than their product (p9C), which is the quantity of direct relevance in the
present context. Representative values of dn/dT, (poC), and k are shown in Table 4.5.1.

Eq. (4.5.2) can be solved as a boundary value problem for any specific physical circum-
stance, and hence the refractive index at any point in space can be found from Eq. (4.5.1). Note

* As elsewhere in this text, a tilde is used to designate an explicitly time-dependent quantity.
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TABLE 4.5.1: Thermal properties of various optical materials.

Material (poC) (Jfem3)? « (W/m K) dn/dT (K~1)P
Diamond 1.76 660

Ethanol 1.91 0.168

Fused silica 1.67 1.4 1.2x 1079
Sodium chloride 1.95 6.4 —3.6x 107
Water (liquid) 4.2 0.56

Air® 12x1073 26 x 1073 —1.0x 107

4 (ppC) is the heat capacity per unit volume and « is the thermal conductivity. More extensive listings of these quantities can be

found in the CRC Handbook of Chemistry and Physics, Section D, and in the American Institute of Physics Handbook, Section 4.
b an /dT is the temperature coefficient of the refractive index. It can be either positive or negative, and for condensed matter
typically lies in the range +3 X 1073 KL, See for instance the American Institute of Physics Handbook, Section 6b.

¢ C is measured at constant pressure. Values are quoted at STP. Under other conditions, the values of these quantities can be found
by noting that to good approximation (pgC) is proportional to the density, « is independent of the density, and that for any ideal
gasdn/dT =—(n—1)/T.

ﬁ 2R 1
power P or
energy Q f—— [ —»

FIGURE 4.5.1: Geometry for the description of thermal nonlinear optical effects.

that thermal nonlinear optical effects are nonlocal, because the change in refractive index at
some given point will in general depend on the laser intensity at other nearby points. For our
present purposes, let us make some simple numerical estimates of the magnitude of the thermal
contribution to the change in refractive index for the situation shown in Fig. 4.5.1. We assume
that a circular laser beam of intensity /o and radius R (and consequently power P = 7 R21p)
falls onto a slab of optical material of thickness L and absorption coefficient c.

Let us first estimate the response time t associated with the change in temperature for
this situation. We take t to be some measure of the time taken for the temperature distribu-
tion to reach its new steady state after the laser field is suddenly switched on or is switched
off. For definiteness we assume the latter situation. We then estimate T by approximating
a7y /9t in Eq. (4.5.2) by T/ and by approximating V2T as T;/R2. Eq. (4.5.2) then becomes
(poC)Ti /T ~ kT / R, from which it follows that

_(mO)R?
TR —.
K

(4.5.3)

We can estimate numerically the response time 7 for condensed matter by adopting the typical
values (poC) = 10° J/m3 K,x =1W/mK, and R = 1 mm, and thus find that t ~ 1 s. Even for
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a tightly collimated beam with R = 10 um, we find that t & 100 ps. These response times are
much longer than the pulse duration 7" produced by most pulsed lasers. One thus reaches the
conclusion that, in the consideration of thermal effects, the power (or alternatively the intensity)
is the relevant quantity for continuous-wave laser beams, but that the pulse energy Q = PT (or
alternatively the fluence, the energy per unit cross-sectional area) is the relevant quantity in the
consideration of pulsed lasers.

4.5.1 Thermal Nonlinearities with Continuous-Wave Laser Beams

We have just seen that the analysis of thermal effects in nonlinear optics is different for contin-
uous wave than for pulsed radiation. Let us consider first the case of continuous-wave radiation.
Under steady-state conditions the equation of heat transport then reduces to

—« V2T = al(r). (4.5.4)

This equation can be solved explicitly for any assumed laser profile I(r). For our present
purposes it suffices to make an order-of-magnitude estimate of the maximum temperature
rise Tl(max) at the center of the laser beam. To do so, we replace V>T; by —T](max)/ R?, and
thereby find that
a I(max) RZ
T = (4.5.5)

K

where 1M®) is the laser intensity at the center of the laser beam. Then from Eq. (4.5.1) we
estimate the maximum change in refractive index as

I(max)RZ
An— (;’_T> o TR 45.6)
K

We can express this change in terms of an effective nonlinear refractive index coefficient ngh)

defined through An = ngh) 1™ {0 obtain

dn\ aR?
(th)
=|—=)—. 4.5.7
"2 (dT) K ( )

Note that this quantity is geometry-dependent (through the R? factor) and hence is not an
intrinsic property of an optical material. Nonetheless, it provides a useful way of quantify-
ing the magnitude of thermal nonlinear optical effects. If we estimate its size through use of
the values (dn/dT) =10 K ', a =1 cm™!, R=1 mm, and x = 1 W/m K, we find that
ngh) = 107> cm?/W. By way of comparison, recall that for fused silican, = 3 x 1071¢ cm?/W.
Even for a much smaller beam size (R = 10 um) and a much smaller absorption coeffi-
cient (@ = 0.01 cm™'), we still obtain a relatively large thermal nonlinear coefficient of
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ngh) =107 ¢cm?/W. The conclusion to be drawn from these numbers is clear: thermal ef-

fects are usually the dominant nonlinear optical mechanism for continuous-wave laser beams.
Analyses of thermal effects in nonlinear optics have been presented by Bespalov et al. (1989),
Hoffman (1986), Martin and Hellwarth (1979), and Tochio et al. (1981). Recent experimental
investigations of thermal nonlinear optical effects in gases have been reported by Bentley et al.
(2000).

4.5.2 Thermal Nonlinearities with Pulsed Laser Beams

As mentioned earlier, for most pulsed lasers the induced change in refractive index is pro-
portional to the pulse energy Q = f P(t)dt rather than to the instantaneous power P(1) (or
alternatively it is proportional to the pulse fluence F = [ I (1) dt rather than to the pulse inten-
sity (¢)). For this reason, it is not possible to describe the change in refractive index in terms
of a quantity such as ngh). Rather, A7 increases (or decreases) monotonically during the time
extent of the laser pulse. Nonetheless one can develop simple criteria for determining the condi-
tions under which thermal nonlinear optical effects are important. In particular, let us consider
the conditions under which the thermal change in refractive index

d
An® = (£ ) gm0 (4.5.8)
dT

will be greater than or equal to the change resulting from the electronic response
An® =n{r. (4.5.9)

We estimate the maximum change in temperature Tl(max) induced by the laser beam as follows:
For a short laser pulse (pulse duration 7z, much shorter than the thermal response time 7 of
Eq. (4.5.3)), the heat transport equation (4.5.2) reduces to

aT, .
(,OOC)y =al(r); (4.5.10)

we have dropped the term —« V2T because in a time tp <K T at most a negligible fraction
of the absorbed energy can diffuse out of the interaction region. By approximating d77/9d¢ as
Tl(max) /tp, we find that

(max) _ o I(max) [p
! (poC)

By combining Eqgs. (4.5.8) through (4.5.11), we find that the thermal contribution to the change
in refractive index will exceed the electronic contribution if the laser pulse duration satisfies the

4.5.11)
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inequality

1
n5 (poC)

tp > (dn/T)a 4.5.12)

If we evaluate this expression assuming the typical values néel) =3 x 1071 cm?/W, (poC) =
1 x 10 J/m3 K, (dn/dT) =1 x 107> K~!, & =1 cm™!, we find that the condition for the
importance of thermal effects becomes

tp > 30 psec. (4.5.13)

We thus see that thermal effects are likely to make a contribution to the nonlinear optical re-
sponse for all but the shortest (¢, < 30 psec) laser pulses.

4.6 Semiconductor Nonlinearities

Semiconductor materials play an important role in nonlinear optics both because they pro-
duce large nonlinear optical responses and because these materials lend themselves to the
construction of integrated devices in which electronic, semiconductor laser, and nonlinear op-
tical components are all fabricated on a single semiconductor substrate.

A key feature of semiconductor materials is that their allowed electronic energy states take
the form of broad bands separated by forbidden regions. The filled or nearly filled bands are
known as valence bands and the empty or partially empty bands are known as conduction bands.
The energy separation between the highest valence band and the lowest conduction band is
known as the band-gap energy E,. These concepts are illustrated in Fig. 4.6.1(a). A crucial dis-
tinction associated with the nonlinear optical properties of a semiconductor material is whether
the photon energy fiw of the laser field is greater than or smaller than the band-gap energy. For
hw > Eg, as illustrated in part (b) of the figure, the nonlinear response results from the transfer
of electrons to the conduction band, leading to a modification of the optical properties of the
material. For the opposite case liw < E, the nonlinear response is essentially instantaneous
and occurs as the result of parametric processes involving virtual levels. We treat these two
situations separately.

4.6.1 Nonlinearities Resulting from Band-to-Band Transitions

For hw > E, the nonlinear response occurs as the result of band-to-band transitions. For all
but the shortest laser pulses, the nonlinear response can be described in terms of the conduction
band population N., which can be taken to obey a rate equation of the form

dN: al (Ne—N2)
dt  how TR ’

(4.6.1)



236 Chapter 4
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FIGURE 4.6.1: (a) The valence band (VB) and conduction band (CB) of a semiconductor are separated
by energy E,. For hw > E, (b), the nonlinear response results from the transfer of electrons to the
conductions band, whereas for iw < E (c), the nonlinear response involves virtual transitions.

where « is the absorption coefficient of the material at the laser frequency, NC(O) is the conduc-
tion band electron population in thermal equilibrium, and 7y, is the electron—hole recombination
time. In steady state this equation possesses the solution

alt R

ho
However, for the common situation in which the laser pulse duration is shorter than the material
response time Tg, the conduction-band electron density increases monotonically during the
laser pulse.

The change in electron concentration described by Eq. (4.6.1) leads to a change in the optical
properties by means of several different mechanisms, which we now describe.

N.=N©O 4 (4.6.2)

Free-Electron Response

To first approximation, electrons in the conduction band can be considered to respond freely to
an applied optical field. The free-electron contribution to the dielectric constant is well known
(see, for example, Eq. (13.7.3)) and has the form

w2

P
e(w)y=¢ — ———, 4.6.3
() = €p oo+ 1/0) (4.6.3)
where €5, is the contribution to the dielectric constant from bound changes, a)f, is the square
of the plasma frequency and is given by a)?, = N.¢*/egm, and 7 is an optical response time
that in general is not equal to tg and is typically much shorter than it. Since N, increases with
laser intensity, €(w) is seen to decrease with laser intensity. In the steady-state limit, we can
derive an approximate expression (see Problem 11) for the intensity-dependent refractive index
as n =ngy + nyl, where
) N.(0)e?

ey Ne©e® 464
=T e+ i/7) (@04
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and

€2aTR

ny = (4.6.5)

2epnomhw’’
Note that n; is proportional to 3. One thus expects this mechanism to become dominant at
long wavelengths. If we evaluate this expression using the characteristic values m = 0.1 m,
(note that m in Eq. (4.6.5) is the effective mass of the conduction-band electron), ng = 3.5,
a=10*cm™!, how = 0.75 eV, 1, = 10 nsec, we find that n, = 3 x 10710 mZ/W, a reasonably
large value.

Modification of Optical Properties by Plasma Screening Effects

A direct consequence of the presence of electrons in the semiconductor conduction band is
that the material becomes weakly conducting. As a result, charges can flow to shield any unbal-
anced free charges, and the Coulomb interaction between charged particles becomes effectively
weakened. In the classical limit in which the electrons obey a Maxwell-Boltzmann distribution,
the screened potential energy between two point particles of charge e becomes

2

V()= ———e™*", (4.6.6)
dmweegr

where € is the (real) dielectric constant of the semiconductor material and where

N 2
o= | e (4.6.7)
eegkT

is the Debye—Hiickel screening wavenumber.

Let us pause here to briefly sketch the derivation of expression (4.6.6) for the screened
Coulomb potential. We note that the electrostatic potential @ (r) and the total charge density
o (r) must be related by Poisson’s equation

—1
V2®(r) = - p(r). (4.6.8)

We model the semiconductor as an electron plasma, that is, we assume that the electrons are
free to move within the material, whereas the positive ions are fixed in position. We assume that
the spatial distribution N.(r) of the conduction-band electrons is determined by the Boltzmann
factor, that is, by

Ne(r) = N ge ¢V ®/ksT (4.6.9)

where kp is Boltzmann’s constant and 7 is the kinetic temperature of the electron ensemble.
Under homogeneous conditions, the potential ®(r) and electron density N (r) become spa-
tially uniform. Let us now assume that a point charge Q (assumed positive for definiteness) is
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introduced into the system and placed at the origin of the coordinate system. Electrons will be
drawn toward Q, with the effect of decreasing the field created by Q0 when measured at large
distances. Closer to Q, the shielding will not be complete. We now estimate the form of the
potential distribution in the vicinity of Q. The total charge density is now given by

p(r) = Q8(r) — e AN,(r), (4.6.10)

where §(r) is the Dirac delta function and where AN, (r) is the change in the electron distribu-
tion induced by the reaction to the point charge Q. We see by expanding Eq. (4.6.9) in a power
series in V (r) that to first order in the potential the quantity AN, (r) is given by

AN.(r) =—N.oeV(r)/kpT. (4.6.11)

Egs. (4.6.10) and (4.6.11) are now introduced into Poisson’s equation (4.6.8), which can then
be rewritten as

(V2 —k2)d(r) = _—IQ(S(r), (4.6.12)
€€

where we have introduced the Debye—Hiickel screening wavenumber

| N.e2
= ¢ (4.6.13)
cegkT

The inverse of this quantity is known as the Debye length

eeokT
Ap=1/k= N (4.6.14)

The Debye length defines the distance scale over which electrostatic forces are important in
a material medium. Eq. (4.6.12) can readily be solved to provide the form of the screened
Coulomb potential. One finds that

D(r) = ——e ", (4.6.15)
dmeegr

Eq. (4.6.6), quoted above, follows from this result by noting that V (r) = —e®(r).

One consequence of the reduction of the strength of the Coulomb interaction is that exci-
tonic features can disappear at high conduction-band electron densities. Let us recall briefly the
nature of excitonic features in semiconductors. An electron in the conduction band will feel a
force of attraction to a hole in the valence band as the result of their Coulomb interaction. This
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FIGURE 4.6.2: Absorption spectrum of Cu;O at a temperature of 4.2 K. The spectral features result from
transitions from the top of the valence band to the exciton level labeled in the figure. (After Tayagaki et
al., 2005.)

attraction can be sufficiently strong that the pair forms a bound state known as an exciton. Ex-
citonic energy levels typically lie slightly below the edge of the conduction band, at an energy
given by

E,=E. — R*/n°, (4.6.16)

where n is the principal quantum number, E. is the energy of the bottom of the conduction
band, and R* = h? (2mra§2)_1 is the effective Rydberg constant. Here m, is the reduced mass
of the electron-hole pair and a; = A eoh®(mye*)~! is the effective first Bohr radius. Labora-
tory results showing absorption features associated with transitions to these excitonic levels are
shown in Fig. 4.6.2. Often only the lowest exciton states contribute significantly to the semicon-
ductor absorption spectrum. The situation in which only the n = 1 state contributes is shown
in the conceptual sketch of Fig. 4.6.3(a). In the presence of a laser beam sufficiently intense to
place an appreciable population of electrons into the conduction band, plasma screening effects
can lead to the disappearance of these excitonic resonances, leading to an absorption spectrum
of the sort shown in part (b) of the figure. Let A« denote the amount by which the absorption
coefficient has changed because of the presence of the optical field. The change in absorption
coefficient is accompanied by a change in refractive index. This change can be calculated by
means of the Kramers—Kronig relations (see Section 1.7), which in the present context we write
in the form

¢ f Ac(@)de (4.6.17)
0

An(w) = p T
where the principal part of the integral is to be taken. The change in refractive index is shown
symbolically in part (c) of Fig. 4.6.3. Note that An is positive on the high-frequency side of the
exciton resonance and is negative on the low-frequency side. However, the change in refractive

index is appreciable only over a narrow range of frequency on either side of the exact resonance.
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FIGURE 4.6.3: Schematic low-temperature absorption spectrum of a semiconductor in the absence (a)
and in the presence (b) of an appreciable number of optically excited conduction band electrons. (c) The
modification of the refractive index associated with the optically induced change in absorption coeffi-
cient.

Change of Optical Properties Due to Band-Filling Effects

As electrons are transferred from the valence band to the conduction band, the absorption coef-
ficient of a semiconductor must decrease. This effect is in many ways analogous to saturation
effects in atomic systems, as described in Chapter 6, but in the present case with the added
complexity that the electrons must obey the Pauli principle and thus must occupy a range of
energies within the conduction band. This process leads to a lowering of the refractive index for
frequencies below the band edge and a raising of the refractive index for frequencies above the
band edge. The sense of the change in refractive index is thus the same as that for a two-level
atom. The change in refractive index resulting from band filling can be calculated more pre-
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FIGURE 4.6.4: (a) For hw < E,, the nonlinear response involves virtual transitions. Under many cir-
cumstances, virtual two-photon processes (b) make a larger contribution to the nonlinear response than
do one-photon processes (c).

cisely by means of a Kramers—Kronig analysis of the sort described in the previous paragraph;
details are described, for instance, by Peyghambarian et al. (1993, Section 13-4).

Change in Optical Properties Due to Band-Gap Renormalization

For reasons that are rather subtle (exchange and Coulomb correlations), the band-gap energy
of most semiconductors decreases at high concentrations of conduction band electrons, with a
resulting change in the optical properties.

4.6.2 Nonlinearities Involving Virtual Transitions

Let us next consider the nonlinear response of a semiconductor or insulator under the condition
hw < Eg, as illustrated in Fig. 4.6.4(a). In this situation, the photon energy is too small to allow
single-photon absorption to populate the conduction band, and the nonlinear response involves
virtual processes such as those shown in parts (b) and (c) of the figure. The “two-photon” pro-
cess of part (b) usually is much stronger than the “one-photon” process of part (c) except for
photon energies hw approaching the band-gap energy E,. In the approximation in which only
the two-photon process of part (b) is considered, a simple model can be developed to describe
the nonlinear response of the material. We shall not present the details here, which involve
some considerations of the band theory of solids that lie outside the scope of the present work.
Sheik-Bahae et al. (1990, 1991) have addressed this problem theoretically and have shown that
the dominant contribution to the imaginary part of the nonlinear response is the two-photon ab-
sorption process shown in Fig. 4.6.4(b). The real part of the nonlinear response is then obtained
through a Kramers—Kronig transform of the imaginary part. Specifically, they find that the real
part of the nonlinear refractive index coefficient defined such that An = n,I can be expressed
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as

hc\/Ep
2
2n0E§'

np=K Gr(hw/E,), (4.6.18)

where E, =21 eV, K can be considered to be a single free parameter whose value is found
empirically to be 3.1 x 103 in units such that £ p and E, are measured in eV and n; is measured
in cm?/W, and where G is the universal function

—2+46x —3x2 —x% — 2x* = 3x5 +2(1 — 20)320(1 — 2x)
64x° ’
where ©(y) is the Heaviside step function defined such that ®(y) =0for y <0and O(y) =1

for y > 0. In the same approximation, the two-photon absorption coefficient defined such that
o = oo+ BI is given by

Ga(x) =

(4.6.19)

KVE
B= ;F” Fy(2hw/Ey), (4.6.20)
nOEg
where F> is the universal function
(2x —1)%?
FQx)=————— for 2x>1 (4.6.21)
(2x)3

and F»(2x) = 0 otherwise. These functional forms are illustrated in Fig. 4.6.5. Note that the
process of two-photon absorption vanishes for iw < %E ¢ for reasons of energetics. Note also
that the nonlinear refractive index peaks at hw/E, ~ 0.54, vanishes at hw/Eg ~ 0.69, and is
negative for hw/E, 2 0.69. Note also from Eq. (4.6.18) that ny scales as Eg_4. Thus narrow-
band-gap semiconductors are expected to produce a much larger nonlinear response than large-
band-gap semiconductors. These predictions are in very good agreement with experimental
results; see, for instance, Fig. 4.6.6. In plotting this figure, some additional contributions to the
nonlinear response not included in Eqs. (4.6.18) through (4.6.21), such as the Raman effect
and linear and quadratic Stark effects, have been included in the prediction (Sheik-Bahae et al.,
1991).

In general, both the slow, band-to-band nonlinearities considered earlier and the instan-
taneous nonlinearities considered here occur simultaneously. Said et al. (1992) have studied
several semiconductors under conditions such that both processes occur simultaneously, and
they find that the change in refractive index is well described by the equation

An=nyl 4+ o, N, (4.6.22)

where as usual n; gives the instantaneous nonlinear response and where o, is the change in
refractive index per unit conduction band electron density. Their measured values of these quan-
tities as well as the two-photon-absorption coefficient are given in Table 4.6.1.
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FIGURE 4.6.5: Variation of the nonlinear refraction coefficient ny and the two-photon-absorption coef-
ficient with photon energy Aw according to the model of Sheik-Bahae et al. (1990).

TABLE 4.6.1: Nonlinear optical coefficients of several semiconductors.

Semiconductor B (m/TW) ny (m2 /W) or (m3)

ZnSe at 532 nm 58 —6.8x 10718 —0.8x 10727
GaAs at 1064 nm 260 —4.1x10717 —6.5x 10727
CdTe at 1064 nm 260 -3x10°V7 —5x107%
ZnTe at 1064 nm 42 1.2x 10717 —0.75x 10727

After Said et al. (1992).

4.7 Concluding Remarks

Throughout this chapter, we have assumed that the refractive index variation An scales mono-
tonically with laser intensity as An = n3I. In fact, for any given material there is a maximum
change in refractive index that can be observed. This maximum index change comes about ei-
ther because of saturation effects or because there is a maximum laser intensity that can be used
in order to avoid laser damage effects. A particularly large value of the refractive index vari-
ation of Anpax = 0.14 has been reported by Brzozowski et al. (2003). This large change was
observed in an InGaAs/InAlGaAs multiple quantum well sample at a wavelength of approxi-
mately 1500 nm and using a pulse fluence of 116 uJ/cm?. Quite recently, even larger values
have been reported. Alam et al. (2016) report the value Anpax = 0.7 in indium tin oxide, and
Caspani et al. (2016) report the value Anmax = 4.4 in aluminum-zinc oxide.
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FIGURE 4.6.6: Comparison of the predictions (solid line) of the model of Sheik-Bahae et al. (1991) with
measured values (data points) of the nonlinear refraction parameter 7, for a variety of materials.

For certain conceptual purposes, it can be useful to express the nonlinear susceptibility in
dimensionless form (see, for instance, Kok et al. (2002)). One prescription for doing so is to
define the dimensionless susceptibility as

3
xS = Ef @, 4.7.1)

where Elz,max is the largest electric field that can be produced in free space by a single pho-
ton. Since a pulse of light can be localized to a volume of the order the cube of the vacuum
wavelength A, one finds that

how 2
73 = 260E7 oy (4.7.2)
and thus that
A
1S = oy, (4.7.3)

N 2€0A3 X
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For the case of fused silica (x @ = 2.5 x 10722 m?/W?) and a wavelength of 1.0 um, this
expression for the dimensionless nonlinear suscpetibility becomes when evaluated becomes
XS) = 4.5 x 10713, This number can be taken to represent a typical value of XS). The small-
ness of this number quantifies the notion that nonresonant nonlinear optical interactions tend
to be extremely weak, at least on a local scale. It is only the cumulative effect of nonlinear in-
teractions taking place over large distances that allows nonlinear processes to produce intense
output fields. It should be noted, however, that for some of the largest reported optical non-
linearities the dimensionless susceptibility can become large. For example, for the case of the
nonlinear response of a Bose—Einstein condensate, as quoted in Table 4.1.2, the dimensionless

susceptibility becomes Xl()3) ~ 100.

Problems

1. njy for a lossy medium. Generalize the derivation of Eq. (4.1.19) to allow the linear refrac-
tive index to be a complex quantity ny.

[Ans: Replace n% in the denominator of Eq. (4.1.19) by ng Reng.]

2. Tensor properties of x ) for an isotropic medium. Derive Eqgs. (4.2.2).

3. Ellipse rotation. A 1-cm-long sample of carbon disulfide is illuminated by elliptically po-
larized light of intensity / = 1 MW /cm?. Determine how the angle through which the
polarization ellipse is rotated depends upon the ellipticity of the light, and calculate nu-
merically the maximum value of the rotation angle. Quantify the ellipticity in terms of the
parameter § where (—1 < 6 < 1) which defines the polarization unit vector through the
relation

X+ 18y
[Hint: The third-order nonlinear optical response of carbon disulfide is due mainly to
molecular orientation. ]

4. Sign of x®. Verify the statement made in the text that the first term in expression (4.3.12)
is positive whenever w is smaller than any resonance frequency of the atomic system.

5. Tensor properties of the molecular orientation effect. Derive the result given by Egs. (4.4.27)
through (4.4.30) for the general case in which a, b, and c¢ are all distinct.

[This problem is extremely challenging.]

6. Thermal nonlinearities. In Section 4.5, we basically used dimensional analysis to make
an order-of-magnitude estimate of the size of thermal nonlinearities. In this problem, we
consider a situation in which the equation of heat transport can be solved exactly.
Consider a laser beam of diameter D and power P propagating through a long glass rod
of diameter D». The outer surface of the glass rod is held at the fixed temperature Tj.
Assume steady-state conditions, and make the simplifying assumption that the transverse

€ =
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10.

11.

intensity profile of the laser beam is uniform. Determine the local temperature 7 at each
point within the glass rod and determine the maximum change in refractive index. Evaluate
numerically for realistic conditions.

Nonlinearity due to the magnetic force. Consider a plane electromagnetic wave incident
upon a free electron. If the field is strong enough, the electron will acquire sufficient
velocity that the magnetic force Fys = (—e/c)v x B has a noticeable effect on its motion.
This is one source of the nonlinear electronic response.

(a) Show that for an optical plane wave with electric field E = X (Egetka=@0) 4 ¢ c.) the
electromagnetic force on an electron is

Fem = —e(Ege™™ +c.c.)[§<1 — g) +z(§):|

How large (order of magnitude) can x /c become for a free electron in a beam with a peak
intensity of 10'7 W/cm??

(b) Derive expressions for x @) (2w) and x @ (0) for a collection of free electrons in terms
of the electron number density N. (You may assume there are no “frictional” forces.) In
what direction(s) will light at 2w be emitted?

(c) Derive expressions for x ¥ (w) and x @ (3w).

(d) Good conductors can often be modeled using the free electron model. Assuming the
magnetic force is the only source of optical nonlinearity, make a numerical estimate (order
of magnitude) of x 3 (w) for gold.

Nonlinear phase shift of a focused gaussian beam. Derive an expression for the nonlin-
ear phase shift experienced by a focused gaussian laser beam of beam-waist radius wg
carrying power P in passing through a nonlinear optical material characterized by a non-
linear refractive index ny. Perform this calculation by integrating the on-axis intensity
from z = —o00 to z = +00. Comment on the accuracy of this method of calculation, and
speculate regarding computational methods that could provide a more accurate prediction
of the nonlinear phase shift.

Nonlinear phase shift of a focused gaussian beam. Assuming the validity of the procedure
used in the previous question (that is, by integrating from —oo to +00), determine numer-
ically the nonlinear phase shift that can be obtained by a focused gaussian laser beam in
propagating through optical glass, when the power of the beam is adjusted to be just below
the laser damage threshold. Assume initially that the glass is a plate 1 cm thick, but also
describe how the phase shift scales with the thickness of the glass plate. For definiteness,
assume that the beam waist is at the center of the glass block, and assume that bulk (not
surface) damage is the limiting process. Take I (damage) = 10 GW /cm?.

Nonlinear phase shift of a focused gaussian beam. Same as the previous problem, but
assume that surface damage is the limiting process.

Semiconductor nonlinear response. Derive Eq. (4.6.5).
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Chapter 5

Molecular Origin of the Nonlinear
Optical Response

In Chapter 3, we presented a general quantum-mechanical theory of the nonlinear optical sus-
ceptibility. This calculation was based on time-dependent perturbation theory and led to explicit
predictions for the complete frequency dependence of the linear and nonlinear optical suscep-
tibilities. Unfortunately, however, these quantum-mechanical expressions are typically far too
complicated to be of use for practical calculations.

In this chapter we review some of the simpler approaches that have been implemented to
develop an understanding of the nonlinear optical characteristics of various materials. Many of
these approaches are based on understanding the optical properties at the molecular level. We
also present brief descriptions of the nonlinear optical characteristics of conjugated polymers,
chiral molecules, and liquid crystals.

5.1 Nonlinear Susceptibilities Calculated Using Time-Independent
Perturbation Theory

One approach to the practical calculation of nonlinear optical susceptibilities is based on the
use of time-independent perturbation theory (see, e.g., Jha and Bloembergen, 1968 or Ducuing,
1977). The motivation for using this approach is that time-independent perturbation theory is
usually much easier to implement than time-dependent perturbation theory. The justification
of the use of this approach is that one is often interested in the study of nonlinear optical
interactions in the highly nonresonant limit w < wg (where w is the optical frequency and wq
is the resonance frequency of the material system), in order to avoid absorption losses. For
w <K wo, the optical field can to good approximation be taken to be a quasi-static quantity.

Nonlinear Optics. https:/doi.org/10.1016/B978-0-12-811002-7.00014-X
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To see how this method proceeds, let us represent the polarization of a material system in
the usual form*

P=coxVE+eoxPE> +eox@PE> +.-.. (5.1.1)

We can then calculate the energy stored in polarizing the medium as

E
W:-/ ﬁ(E/)dE/=—lX(I)Ez—lx(z)ES—lx(3)E3--.
0 2 3 4

WO LW L w® (5.1.2)

The significance of this result is that it shows that if we know W as a function of E (either
by calculation or, for instance, from Stark effect measurements), we can use this knowledge to
deduce the various orders of susceptibility x . For instance, if we know W as a power series
in E we can determine the susceptibilities as’

(n—1) _ nw®
EoEn '

X (5.1.3)

More generally, even if the power series expansion is not known, the nonlinear susceptibilities
can be obtained through differentiation as

—_— . (5.1.4)
eo(n —1)! 9En E=0

X

Before turning our attention to the general quantum-mechanical calculation of W, let us see
how to apply the result given by Eq. (5.1.3) to the special case of the hydrogen atom.

5.1.1 Hydrogen Atom

From considerations of the Stark effect, it is well known how to calculate the ground-state
energy w of the hydrogen atom as a function of the strength E of an applied electric field
(Schiff, 1968; Sewell, 1949). We shall not present the details of the calculation here, both
because they are readily available in the scientific literature and because the simplest method

* As a notational convention, in the present discussion we retain the tilde over P and E both for slowly varying

(quasi-static) and for fully static fields.

For time-varying fields, Eq. (5.1.3) still holds, but with W and E" replaced by their time averages, that is, by
(WY and (E™). For E = Ee~!®! 4 c.c., one finds that E = 2E cos(w? + ¢), and E" = 2" E" cos" (ot + ¢), 0
that (E") = 2" E" (cos" (wt + ¢)). Note that (cos?(wf + ¢)) = 1/2 and (cos* (wr + ¢)) = 3/8.
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for obtaining this result makes use of the special symmetry properties of the hydrogen atom
and does not readily generalize to other situations. One finds that

w 1 9/ E\> 355/ E\*
WD) S22 4 (5.1.5)
2R 2 4\ E, 64 \ Ey

where R = me*/ 32ﬂ2€(2)h2 = 13.6 eV is the Rydberg constant and where E, = e /4neoa§ =

m?e’ /(4meg) it =5.14 x 10! V/m is the atomic unit of electric field strength. We now take
W to be given by W = Nw, where N is the number density of atoms, and introduce Eq. (5.1.5)
into Eq. (5.1.3). We thus find that

9
xV'=Na where o= 3 ag, (5.1.6a)
3555 a,/
X(3)=Ny where y:Y C;%, (5.1.6b)

where ag = 4megh? / me? is the Bohr radius. Note that these results conform with standard
scaling laws for nonresonant polarizabilities

o >~ atomic volume V, (5.1.7a)
y o V713, (5.1.7b)

5.1.2 General Expression for the Nonlinear Susceptibility in the Quasi-Static Limit

A standard problem in quantum mechanics involves determining how the energy of some state
[Y,) of an atomic system is modified in response to a perturbation of the atom. To treat this
problem mathematically, we assume that the Hamiltonian of the system can be represented as

H=Hy+V, (5.1.8)

where Hy represents the total energy of the free atom and 1% represents the quasi-static pertur-
bation due to some external field. For the problem at hand we assume that

V=—/E, (5.1.9)

where [t = —ex is the electric dipole moment operator and E is an applied quasi-static field.
We require that the atomic wavefunction obey the time-independent Schrodinger equation

HYn) = wl ). (5.1.10)
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For most situations of interest, Eqs. (5.1.8)—(5.1.10) cannot be solved in closed form, and must
be solved using perturbation theory. One represents the energy w, and state vector |i,) as
power series in the perturbation as

wa = wi +wi +wP 4 (5.1.11a)
1) = [ O) + [¢ )+ [ P) + - (5.1.11b)

The details of the procedure are well documented in the scientific literature; see, for instance,
Dalgarno (1961). One finds that the energies are given by

wy = eEfnixin) (5.1.12a)
w® = 22 (nlx|s)(s|x|n)
=’k Z 0 _ 0 (5.1.12b)
SE3 (n]x|s) S|x|l‘)(t|x|n)
E Z (0) (0))( ) _ (0))’ (5.1.12¢)
w® _e4E4Z {n|x|s) (s|x|t><t|x|u><u|x|n>
0 0 0 0 0
o= W — M w® — MW - w®)
2 E2uw® ”|x|u uIXIn>

The prime following each summation symbol indicates that the state n is to be omitted from
the indicated summation. Through use of these expressions one can deduce explicit forms for
the linear and nonlinear susceptibilities. We let W = N w, assume that the state of interest is the
ground state g, and make use of Egs. (5.1.3) to find that

2¢? XosX
XV =Na, a=oan="0) =£28 (5.1.13a)
sAg 58
3e3 XotXpsX
XP=NB, B=Pux="5 Y, S (5.1.13b)
sty L1898
4e4 XouXutXtsX XotXioXosX
3) _ _ _ T gututtistsg gtAtgrgsisg
X9 =Ny, V—yxxxx—h3<z i) B )
s.tutg  U8TIETSE 5,148 18%sg
(5.1.13¢)
where hiwg, = w(o) — wéo), and so on. We see that x® naturally decomposes into the sum

of two terms, which can be represented schematically in terms of the two diagrams shown in
Fig. 5.1.1. Note that this result is entirely consistent with the predictions of the model of the
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FIGURE 5.1.1: Schematic representation of the two terms appearing in Eq. (5.1.13c¢).

nonlinear susceptibility based on time-dependent perturbation theory (see Eq. (4.3.12)), but is
more simply obtained by the present formalism.

Egs. (5.1.13) constitute the quantum-mechanical predictions for the static values of the lin-
ear and nonlinear susceptibilities. Evaluation of these expressions can be still quite demanding,
as it requires knowledge of all of the resonance frequencies and dipole transition moments
connecting to the atomic ground state. Several approximations can be made to simplify these
expressions. One example is the Unséld approximation, which entails replacing each resonance
frequency (e.g., wsg) by some average transition frequency wy. The expression (5.1.13a) for the
linear polarizability then becomes

262 ’
T

o= (glxls)(s]x|g). (5.1.14)

N
We formally rewrite this expression as

262 A N ’
a:h—m<g\x0x|g) where 0=2s: |s)(s]. (5.1.15)

We now replace 0 by the unrestricted sum

0=>"ls)sl, (5.1.16)

which we justify by noting that for states of fixed parity (g|x|g) vanishes, and thus it is imma-
terial whether or not the state g is included in the sum over all s. We next note that

> lsisl =1 (5.1.17)
N
by the closure assumption of quantum mechanics. We thus find that
2¢? 5
= —{(x*). 5.1.18
o hieog <x > ( a)

This result shows that the linear susceptibility is proportional to the electric quadrupole moment
of the ground-state electron distribution. We can apply similar reasoning to the simplification
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of the expressions for the second- and third-order nonlinear coefficients to find that

3¢3
p= _hz—a)g<x3)’ (5.1.18b)
4e*
Y = e [(x*) — 2(x)]. (5.1.18¢)

These results show that the hyperpolarizabilities can be interpreted as measures of various
higher-order moments of the ground state electron distribution. Note that the linear polarizabil-
ity and hyperpolarizabilities increase rapidly with the physical dimensions of the electron cloud
associated with the atomic ground state. Note further that Eqs. (5.1.18a) and (5.1.18c) can be
combined to express y in the intriguing form

4
2 8 (™)
=oa” — where = —2|. 5.1.19

"= o ¢ [ (x2)2 ] -1
Here g is a dimensionless quantity (known in statistics as the kurtosis) that provides a measure
of the normalized fourth moment of the ground-state electron distribution.

These expressions can be simplified still further by noting that within the context of the
present model the average transition frequency wy can itself be represented in terms of the
moments of x. We start with the Thomas—Reiche—Kuhn sum rule (see, for instance, Eq. (61) of
Bethe and Salpeter, 1977), which states that

2m
- il kgl = Z, (5.1.20)
k
where Z is the number of optically active electrons. If we now replace wyg by the average tran-

sition frequency wg and perform the summation over k in the same manner as in the derivation
of Eq. (5.1.18a), we obtain

Zh (5.1.21)
0= 2m(x2)
This expression for wp can now be introduced into Egs. (5.1.18) to obtain
462m 2 2
o=— (x*)7, (5.1.22)
B 5 <x ) (x ) (5.1.23)
32¢*m3

r =2 () ~20P). 5.1.24
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Note that these formulas can be used to infer scaling laws relating the optical constants to the
characteristic size L of a molecule. In particular, one finds that o ~ L4, B~ L7, and y ~ Lo,
Note the important result that nonlinear coefficients increase rapidly with the size of a molecule.
Note also that « is a measure of the electric quadrupole moment of the ground-state electron dis-
tribution, B is a measure of the octopole moment of the ground-state electron distribution, and
y depends on both the hexadecimal pole and the quadrupole moment of the electron ground-
state electron distribution.”

5.2 Semiempirical Models of the Nonlinear Optical Susceptibility

We noted earlier in Section 1.4 that Miller’s rule can be successfully used to predict the second-
order nonlinear optical properties of a broad range of materials. Miller’s rule can be generalized
to third-order nonlinear optical interactions, where it takes the form

x O (wa, w3, 02, 01) = Ax D(wg) xV(@3) x V(@) xP(wr), (5.2.1)

where w4 = w1 + wy + w3 and where A is a quantity that is assumed to be frequency indepen-
dent and nearly the same for all materials. Wynne (1969) has shown that this generalization of
Miller’s rule is valid for certain optical materials, such as ionic crystals. However, this general-
ization is not universally valid.

Wang (1970) has proposed a different relation that seems to be more generally valid. Wang’s
relation is formulated for the nonlinear optical response in the quasi-static limit and states
that

X(3) — Q/(X(l))27 where Q/ B g//Neffhwo, (522)

and where Neg = Nf is the product of the molecular number density N with the oscillator
strength f, wg is an average transition frequency, and g’ is a dimensionless parameter of the
order of unity that is assumed to be nearly the same for all materials. Wang has shown em-
pirically that the predictions of Eq. (5.2.2) are accurate both for low-pressure gases (where
Miller’s rule does not make accurate predictions) and for ionic crystals (where Miller’s rule
does make accurate predictions). By comparison of this relation with Eq. (5.1.19), we see that
g’ is intimately related to the kurtosis of the ground-state electron distribution. There does not
seem to be any simple physical argument for why the quantity g’ should be the same for all
materials.

* There is an additional contribution to the hyperpolarizability B resulting from the difference in permanent dipole
moment between the ground and excited states. This contribution is not accounted for by the present model.
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Model of Boling, Glass, and Owyoung

The formula (Eq. 5.2.2) of Wang serves as a starting point for the model of Boling et al. (1978),
which allows one to predict the nonlinear refractive index constant n, on the basis of linear
optical properties. One assumes that the linear refractive index is described by the Lorentz—
Lorenz law (see Eq. (3.9.8a)) and Lorentz oscillator model (see Eq. (1.4.17) or Eq. (3.5.25))
as

n?—1 1
s = e (5.2.3a)
2
o= af);e / ZZ’ (5.2.3b)
2

where f is the oscillator strength of the transition making the dominant contribution to the
optical properties. Note that by measuring the refractive index as a function of frequency it is
possible through use of these equations to determine both the resonance frequency wg and the
effective number density N f. The nonlinear refractive index is determined from the standard
set of equations

3 242
m=——x®, xO=r1'Ny, L=" 2 (5.2.42)
dn-egc 3
2
y = ii, (5.2.4b)
)

Eq. (5.2.4b) is the microscopic form of Wang’s formula (5.2.2), where g is considered to be a
free parameter. If Eq. (5.2.3b) is solved for «, which is then introduced into Eq. (5.2.4b), and
use is made of Eqs. (5.2.4a), we find that the expression for n; is given by

(> +2)2(n* - D(gf)

= 5.2.5
2 6n2egc hwo(Nf) ( )

This equation gives a prediction for n, in terms of the linear refractive index n, the quantities
wo and (N f) which (as described above) can be deduced from the dispersion in the refractive
index, and the combination (gf), which is considered to be a constant quantity for a broad
range of optical materials. The value (gf) = 3 is found empirically to give good agreement with
measured values. A comparison of the predictions of this model with measured values of n, has
been performed by Adair et al. (1989), and some of their results are shown in Fig. 5.2.1. The
two theoretical curves shown in this figure correspond to two different choices of the parameter
(gf) of Eq. (5.2.5). Lenz et al. (2000) have described a model related to that of Boling et al.
that has good predictive value for describing the nonlinear optical properties of chalcogenide
glasses.
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FIGURE 5.2.1: Comparison of the predictions of Eq. (5.2.5) with experimental results. After Adair et al.
(1989).

5.3 Nonlinear Optical Properties of Conjugated Polymers

Certain polymers known as conjugated polymers can possess an extremely large nonlinear
optical response. For example, a certain form of polydiacetylene known as PTS possesses a
third-order susceptibility of 3.5 x 1078 m?/V2, as compared to the value of 2.7 x 10720 m?/V?
for carbon disulfide. In this section some of the properties of conjugated polymers are described.

A polymer is said to be conjugated if it contains alternating single and double (or single and
triple) bonds. Alternatively, a polymer is said to be saturated if it contains only single bonds.
A special class of conjugated polymers is the polyenes, which are molecules that contain many
double bonds.

Part (a) of Fig. 5.3.1 shows the structure of polyacetylene, a typical chainlike conjugated
polymer. According to convention, the single lines in this diagram represent single bonds and
double lines represent double bonds. A single bond always has the structure of a ¢ bond, which
is shown schematically in part (b) of the figure. In contrast, a double bond consists of a o bond
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FIGURE 5.3.1: (a) Two common representations of a conjugated chainlike polymer. (b) Standard repre-
sentation of a single bond (left) and a schematic representation of the electron charge distribution of the
single bond (right). (c) Standard representation of a double bond (left) and a schematic representation of
the electron charge distribution of the double bond (right). (d) Two representations of the same polymer
chain with the locations of the single and double bonds interchanged, suggesting the arbitrariness of
which bond is called the single bond and which is called the double bond in an actual polymer chain.
(e) Representation of the charge distribution of a conjugated chainlike polymer.

and a 7 bond, as shown in part (c) of the figure. A 7 bond is made up of the overlap of two p
orbitals, one from each atom that is connected by the bond.

The optical response of o bonds is very different from that of = bonds because o electrons
(that is, electrons contained in a o bond) tend to be localized in space. In contrast, 7 electrons
tend to be delocalized. Because 7 electrons are delocalized, they tend to be less tightly bound
and can respond more freely to an applied optical field. They thus tend to produce larger linear
and nonlinear optical responses.

7 electrons tend to be delocalized in the sense that a given electron can be found anywhere
along the polymer chain. They are delocalized because (unlike the o electrons) they tend to be
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located at some distance from the symmetry axis. In addition, even though one conventionally
draws a polymer chain in the form shown in part (a) of the figure, for a long chain it would be
equally valid to exchange the locations of the single and double bonds. The actual form of the
polymer chain is thus a superposition of the two configurations shown in part (d) of the figure.
This perspective is reinforced by noting that p orbitals extend both to the left and to the right
of each carbon atom, and thus there is considerable arbitrariness as to which bonds we should
call single bonds and which we should call double bonds. Thus, the actual electron distribution
might look more like that shown in part (e) of the figure.

As an abstraction, one can model the 7 electrons of a conjugated chainlike polymer as being
entirely free to move in a one-dimensional square-well potential whose length L is that of the
polymer chain. Rustagi and Ducuing (1974) performed such a calculation and found that the
linear and third-order polarizabilities are given by

8L3 256L°

oa=———— and = 5.3.1
3agm 2N v 45a3 2 ON> ( )

where N is the number of electrons per unit length and ag is the Bohr radius. (See also Prob-
lem 3 at the end of this chapter.) It should be noted that the linear optical response increases
rapidly with the length L of the polymer chain and that the nonlinear optical response increases
even more rapidly. Of course, for condensed matter, the number of polymer chains per unit
volume N will decrease with increasing chain length L, so the susceptibilities x (! and x
will increase less rapidly with L than do o and 8 themselves. Nonetheless, the present model
predicts that conjugated polymers in the form of long chains should possess extremely large
values of the nonlinear optical susceptibility. Some experimental results that confirm the L3
dependence of the hyperpolarizability are shown in Fig. 5.3.2. Large values of the nonlinear
optical response has also been studied for the material Cgp, which consists of essentially free
electrons constrained to lie on the surface of a sphere (Blau et al., 1991).

5.4 Bond-Charge Model of Nonlinear Optical Properties

In a collection of free atoms, the natural basis for describing the optical properties of the
atomic system is the set of energy eigenstates of the individual atoms. However, when atoms
are arranged in a crystal lattice, it becomes more natural to think of the outer electrons as
being localized within the bonds that confine the atoms to their lattice sites. (The inner-
core electrons are so tightly bound that they make negligible contribution to the optical re-
sponse in any case.) Extensive evidence shows that one can ascribe a linear polarizability and
higher-order polarizabilities to each bond in a molecule or crystalline solid (Levine, 1969;
Chemla, 1971). This evidence also shows that the polarizability of one bond is reasonably
unaffected by the nature of nearby bonds. Thus, the susceptibility of a complex system can be
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FIGURE 5.3.2: Measured dependence of the value of the hyperpolarizability y1111 on the number of
double bonds in the molecule. The data are from Hermann and Ducuing (1974) and the straight line has
a slope of 5 in accordance with Eq. (5.3.1). To convert y to SI units of m>/V2, multiply each value by
1.4 x 10714,

predicted by summing (taking proper account of their orientation) the responses of the various
bonds present in the material. Bond hyperpolarizabilities can be determined either experimen-
tally or by one of several different theoretical approaches.

The bond-charge model is illustrated in Fig. 5.4.1. Part (a) of this figure shows a bond
connecting atoms A and B. As an idealization, the bond is considered to be a point charge of
charge g located between the two ions. The quantities r4 and rp are the covalent radii of atoms
A and B and d =r4 + rp is known as the bond length. According to Levine (1973), the bond
charge is given by

qg=eny(1/e + 1 fo), (5.4.1)

where 7, is the number of electrons per bond, € is the static dielectric constant of the material,
and f, is a parameter known as the fractional degree of covalency of the bond.

Part (b) of Fig. 5.4.1 shows how the bond charge ¢ moves in the presence of an electric
field E that is oriented parallel to the bond axis. The charge is seen to move by an amount
dr =« E/q, where | is the polarizability measured along the bond axis, and consequently
the ion-to-bond-charge distances r4 and rp change by amounts

—Arpa=Arg=4ér=qE/q. 54.2)
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FIGURE 5.4.1: The bond-charge model applied to a chemical bond between constituents A and B.
Parts (b) and (c) show how the charge moves in response to applied electric fields.

Part (c) of the figure shows how the bond charge moves when E is applied perpendicular to
the bond axis. In this case §r = o] E /g, and to lowest order the distances r4 and rp change by
amounts

5r2 ozf_E2
Arp=—= , (5.4.3a)
2ra  2rag?
arg = 3 _UE (5.4.3b)
rB_ZrB_ZVqu. o

We see that a field parallel to the bond axis can induce a linear change in the distances r4
and r g, but that a field perpendicular to the axis can induce only a second-order change in these
quantities.

Let us now see how to make quantitative predictions using the bond-charge model (Chemla
et al., 1974). According to Phillips (1967) and Van Vechten (1969), the (linear) bond polariz-
ability can be represented as

2
_ o v3nEo

(o +2a2) = 2a0)* DS, (5.4.4)
8

o=

W | =

where ag = 4neoh2/me2 is the Bohr radius, Ey = me4/2(477.so)2h2 is the Rydberg unit of
energy, D is a numerical factor of the order of unity, and E, is the mean energy gap associated
with the bond. This quantity can be represented as

E;=E,+C?, (5.4.5)
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where Ej, is the homopolar contribution given by
Ej =40d~ %2, (5.4.6a)

and where C is the heteropolar contribution given by

C=15¢*R (Z—A _ Z—B)ez, (5.4.6b)
ra re

where z4 and zp are the number of valence electrons on atoms A and B, respectively, and where
exp(—kR) is the Thomas—Fermi screening factor, with R = %(rA +rp) = %d . The numerical
factor in Eq. (5.4.6a) presupposes that d is measured in angstroms and E}, in electron volts.

The bond-charge model ascribes the nonlinear optical response of a material system to the
variation of the bond polarizability «;; induced by an applied field E ;. Explicitly one expresses
the bond dipole moment as

1 2 3
pi=p" +p7+p7 4+

o+ (2 e+ (% \g g |+
_[w dair) . 1 .
WOTN\BE; ) T 2\eEE )T

= (oi)oE; + BijkE;E1 + Vijmn EjExE + - -+ . (5.4.7)

Let us now calculate the hyperpolarizabilities B;jx and y;jx. Since the model assumes that
the bonds are axially symmetric, the only nonvanishing components of the hyperpolarizabilities
are

:3|| = Bz, BL = Brzxs (5.4.8a)
VI = Vzzzzo V1 = Vxxxxs VIL = Vzzxx (5.4.8b)

where we have assumed that z lies along the bond axis. We next note that, as a consequence of
Egs. (5.4.3), a transverse field £ | cannot produce a first-order (or in fact any odd-order) change
in Uij, that is,

9 q
(E) a;j =0 for g odd. (5.4.9)
We also note that the present model obeys Kleinman symmetry, since it does not consider the
frequency dependence of any of the optical properties. Because of Kleinman symmetry, we can
express B = 0oy /0E; as

00y,

ﬁl_ aEx’

(5.4.10)
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which vanishes by Eq. (5.4.9). We likewise find that

1 9%y,
=-—7-—=0. 5.4.11
IL=737% E,dE; ( )
We thus deduce that the only nonvanishing components are By, y|, and y, which can be ex-
pressed as

) 0
Bi=rt =3, (5.4.12a)
0E) 0E)
o 3 %
=98 30w (5.4.12b)
y = on 35 (5.4.12¢)
IE3 4 9E% o

The equations just presented provide the basis of the bond-charge model. The application of
this model requires extensive numerical computation which will not be reproduced here. In
brief summary, the quantities £, and C of Egs. (5.4.6) are developed in power series in the
applied fields £} and E | through use of Eqgs. (5.4.2) and (5.4.3). Expression (5.4.4) for « can
then be expressed in a power series in the applied field, and the hyperpolarizabilities can be ex-
tracted from this power series expression through use of Egs. (5.4.12). Finally, susceptibilities
Xl-(f;? and Xl.(j3131 are determined by summing over all bonds in a unit volume, taking account of
the orientation of each particular bond. This model has been shown to provide good predictive
value. For instance, Chemla et al. (1974) have found that this model provides ~30% accu-
racy in calculating the third-order nonlinear optical response for Ge, Si, and GaAs. Table 5.4.1
gives values of some measured bond hyperpolarizabilities. In addition Levine (1973) provides
extensive tables comparing the predictions of this model with experimental results.

TABLE 5.4.1: Representative bond hyperpolarizabilities y
in units of 1.4 x 1079 m3/v2.2

Bond A =1.064 um A =1.907 um
C-Cl 0.90 +£0.04 0.7725

C-H 0.05+0.04 —0.0275

O-H 0.42+0.02 0.5531

c-C 0.324+0.42 0.6211

C=C 1.03+1.52 0.61

Cc-0 0.24+0.19 0.30

C=0 0.82+1.1 0.99

4 After Kajzar and Messier (1985).
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5.5 Nonlinear Optics of Chiral Media

Special considerations apply to the analysis of the nonlinear optical properties of a medium
composed of a collection of chiral molecules. A chiral molecule is a molecule with a “handed-
ness,” that is, the mirror image of such a molecule looks different from the molecule itself. By
way of example, simple molecules such as CS;, HyO, CHy are achiral (that is, are not chiral)
and are identical to their mirror images; however, many organic molecules including simple
sugars such as dextrose are chiral.

In the context of linear optics, it is well known that chiral media display the property of
optical activity, that is, the rotation of the direction of linear polarization of a light beam as it
passes through such a material. (See, for instance, Jenkins and White, 1976.) A material is said
to be dextrorotatory if the direction of the polarization rotates in a clockwise sense (looking into
the beam) as the beam propagates; if the polarization rotates counterclockwise, the medium is
said to be levorotatory. Two molecules that are mirror images of each other are said to be
enantiomers. An equal mixture of two enantiomers is said to be a racemic mixture. Optical
activity obviously vanishes for a racemic mixture.

Let us now turn to a discussion of the nonlinear optical properties of chiral materials.
A liquid composed of chiral molecules is isotropic but nonetheless noncentrosymmetric (see
Fig. 5.5.1), and thus it can possess a second-order nonlinear optical response. As we shall see,
such a medium can produce sum- or difference-frequency generation, but not second-harmonic
generation, and moreover can produce sum- or difference-frequency generation only if the two
input beams are non-collinear. The theory of second-order processes in chiral media was devel-
oped by Giordmaine (1965) and was studied experimentally by Rentzipis et al. (1966). More
recent research on the nonlinear optics of chiral media includes that of Verbiest et al. (1998).

(a) (b)

AR

FIGURE 5.5.1: (a) A collection of right-handed spirals and (b) a collection of left-handed spirals. Each
medium is isotropic (looks the same in all directions), but neither possesses a center of inversion sym-
metry.

Let us now turn to a theoretical description of second-order processes in chiral materials.
We represent the second-order polarization induced in such a material as

Pi(ws) =260 Y X\ (05 = o1 + 0)) E; Fy, (5.5.1)
jk
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where E; represents a field at frequency w; and Fj represents a field at frequency w; (which
can be a negative frequency). We now formally rewrite Eq. (5.5.1) as

Pi=¢g Z S,'j]((Eij + Eij) + €p Z Aijk(Ej Fp — Eij), (5.5.2)
Jjk Jjk

where S;j; and A;j; denote the symmetric and antisymmetric parts of X,-(jzzf and are given by

1

Sije =5 (ki1 + X)) (5.5.3a)
1

Aijie= 5 (X5 — Xi)- (5.5.3b)

Note that A; jx vanishes for second-harmonic generation or more generally whenever the Klein-
man symmetry condition is valid.

347 nm
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FIGURE 5.5.2: Experimental setup to observe sum-frequency generation in an isotropic, chiral medium.

cell containing arabinose

The tensor properties of the quantities S;;; and A;j; can be deduced using methods anal-
ogous to those described in Section 1.5. For the case of an isotropic but noncentrosymmetric
medium (which corresponds to point group c0oo) one finds that S;;; vanishes identically and
that the only nonvanishing elements of A;j; are

A123 = Az31 = Aznp. (5.5.4)
Consequently the nonlinear polarization can be expressed as
P=¢yA23 ExF. (5.5.5)

The experimental setup used by Rentzipis et al. to study these effects is shown in Fig. 5.5.2.
The two input beams are at different frequencies, as required for Aj»3 to be nonzero. In ad-
dition, they are orthogonally polarized to ensure that E x F is nonzero and are noncollinear
to ensure that P has a transverse component. Generation of a sum-frequency signal at 2314 A
was reported for both dextrorotatory and levorotatory forms of arabinose, but no signal was
observed when the cell contained a racemic mixture of the two forms. The measured value of
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A2z was 1.3 x 10718 m/V; for comparison note that d| (quartz) = 1.61 x 10~ m/V. A de-
tailed reexamination of the second-order nonlinear optical properties of this system has been
presented by Belkin et al. (2001).

5.6 Nonlinear Optics of Liquid Crystals

Liquid crystal materials often display large nonlinear optical effects. The time scale for the
development of such effects is often quite long (milliseconds or longer), but even response
times this long are adequate for certain applications.

Liquid crystals are composed of large, anisotropic molecules. Above a certain transition
temperature, which varies significantly among various liquid crystal materials but which might
typically be 100°C, these materials exist in an isotropic phase in which they behave like or-
dinary liquids. Below this transition temperature, liquid crystals exist in a mesotropic phase
in which the orientation of adjacent molecules becomes highly correlated, giving rise to the
name liquid crystal. At still lower temperatures liquid crystal materials undergo another phase
transition and behave as ordinary solids.

Several different types of order can occur in the mesotropic phase. Two of the most common
are the nematic phase and the chiral nematic phase (which is also known as the cholesteric
phase), which are illustrated in Fig. 5.6.1.

FIGURE 5.6.1: Two examples of ordered-phases (mesophases or mesotropic phases) of liquid crystals.
(a) In the nematic phase, the molecules are randomly distributed in space but are aligned such that the
long axis of each molecule, known as the director, points in the same direction. (b) In the chiral nematic
phase, the molecules in each plane are aligned as in the nematic phase, but the director orientation rotates
between successive planes.

We next present a brief summary of the development of the field of liquid-crystal nonlinear
optics. As early as 1973, Wang and Shen reported an optical nonlinear response for the isotropic
phase of a nematic liquid crystal. Hanson et al. (1977) reported self-focusing of light in a
liquid crystal medium. Giant nonlinearities of liquid crystals in their mesotropic phase were
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reported by Zeldovich et al. (1980) and by Khoo and Zhuang (1980). Janossy and Kosa (1992)
showed that this response could be further increased by doping the liquid crystal with dye
molecules to increase the light-matter interaction. The studies reported above were conducted
using continuous wave laser radiation. Hsiung et al. (1984) reported strong nonlinear response
for excitation with pulsed radiation, even for laser pulse durations significantly shorter than
the response time of the liquid crystal material. Peccianti et al. (2000) reported waveguiding in
liquid crystal materials assisted by the application of a static electric field. This history has been
reviewed more extensively by Khoo and Shen (1985) and by Lukishova (2000). The optical
properties of liquid crystals have been described more generally by Khoo (2007).

Liquid crystalline materials possess strong nonlinear optical effects in both the isotropic
and mesotropic phases. In the isotropic phase, liquid crystal materials display a molecular-
orientation nonlinear response of the sort described in Section 4.4, but typically with a much
larger magnitude. This response is strongly temperature dependent. In one particular case,
Hanson et al. (1977) find that the nonlinear coefficient n, and the response time t are given
by

_254x1075 m’K

ny, = , T >T*, (5.6.1)
no(T —T* W
£2800/T (K)
T=— 7% 107" nsK, T >TF%, (5.6.2)

where T* = 77°C is the liquid-crystal transition temperature. In the range of temperatures from
130 to 80°C, 1, ranges from 3.2 to 60 x 10™!3 cm?/W and 7 varies from 1 to 72 nsec. These
ny values are 10 to 200 times larger than those of carbon disulfide.

Liquid crystal materials possess even stronger nonlinear optical properties in the mesophase
than in the isotropic phase. Once again, the mechanism is one of molecular orientation, but in
this case the process involves the collective orientation of many interacting molecules. The
effective nonlinear response can be as much as 10° times larger than that of carbon disulfide.

Experimental studies of nonlinear optical processes in nematic liquid crystals are often per-
formed with the molecules anchored at the walls of the cell that contains the liquid crystal
material, as shown in Fig. 5.6.2.

The analysis of such a situation proceeds by considering the angle 8 4 6y between the
director and the propagation vector k of the laser beam. Here 6y is this angle in the absence
of the laser field and 6 is the reorientation angle induced by the laser beam. It can be shown
(Khoo, 2007) that this quantity obeys the relation®

d?*o |A|?

K| =zt (n? — nf,)? sin2(0 + 6p) =0. (5.6.3)

* For definiteness we assume the geometry of Fig. 5.6.2(b), and we use gaussian units as in Khoo’s treatment.
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FIGURE 5.6.2: Typical cell configurations for studying optical processes in nematic liquid crystals.
(a) Planar alignment: The molecules are induced to anchor at the upper and lower glass walls by rubbing
these surfaces to induce small scratches into which the molecules attach. (b) Homeotropic alignment:
A surfactant is applied to the cell windows to induce the molecules to align perpendicular to the plane of
the window.

§ > I
\director

FIGURE 5.6.3: Nature of director reorientation and typical molecular alignment of a homeotropic-
alignment, nematic-liquid-crystal cell in the presence of an intense laser beam.

Here K is an elastic constant of the liquid crystal and n, and n, are the ordinary and
extraordinary values of the refractive index of the nematic liquid crystal in the absence of the
influence of the incident laser beam. This equation is to be solved subject to the boundary
conditions at the input (z = 0) and output (z = d) planes of the cell. Khoo and Shen (1985)
shows that if this procedure is carried through one finds that the director orientation typically
has the form shown in Fig. 5.6.3 and that the resulting change in refractive index, averaged over
the length of the cell, can be expressed as An = nyI where

_ (n2—n2)?sin*(2B) d?

5.6.4
24K c ( )

This expression can be evaluated for the conditions d = 100 pm, n2 — n2 = 0.6, K1 =
10~%(dyne), B = 45°, giving

n,=5x 1077 m?/W. (5.6.5)
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Problems

1. Stark shift in hydrogen. Verify Eq. (5.1.5).

2. Nonlinear response of the square-well potential. Making use of the formalism of Sec-
tion 5.1, calculate the linear and third-order susceptibilities of a collection of electrons
confined in a one-dimensional, infinitely deep, square-well potential. Note that this calcu-
lation constitutes a simple model of the optical response of a conjugated polymer. (Hint:
See Rustagi and Ducuing, 1974.)

3. Classical calculation of the second-order response of chiral materials. Consider an anhar-
monic oscillator for which the potential is of the form

1
V= 5(kax2 + kpy® + kczz) + Axyz.
Calculate the response of such an oscillator to an applied field of the form
E@) = Ele_iwlt + Eze_ia)zt +c.c.

Then by assuming that there is a randomly oriented distribution of such oscillators, derive
an expression for y @ of such a material. Does it possess both symmetric and antisymmetric
contributions? Show that the antisymmetric contribution can be expressed as

P=xnLE1 X Ea,
V = S (kax? + kpy? + kez?) + Axyz.
Calculate the response of such an oscillator to an applied field of the form
E() =E e ' + Ese ' 4 cc.

Then by assuming that there is a randomly oriented distribution of such oscillators, derive
an expression for x ® of such a material. Does it possess both symmetric and antisymmetric
contributions? Show that the antisymmetric contribution can be expressed as

P= XNLEl X Ez.
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Chapter 6

Nonlinear Optics in the Two-Level
Approximation

6.1 Introduction

Our treatment of nonlinear optics in the previous chapters has for the most part made use of
power series expansions to relate the response of a material system to the strength of the applied
optical field. In simple cases, this relation can be taken to be of the form

P)y=exVE®) +eoxPE®)?> +eoxPE@) +---. (6.1.1)

However, there are circumstances under which such a power series expansion does not con-
verge, and under such circumstances different methods must be employed to describe nonlinear
optical effects. One example is that of a saturable absorber, where the absorption coefficient «
is related to the intensity I = 2negc|E|* of the applied optical field by the relation

@0

a=—" (6.1.2)
1+1/1

where « is the weak-field absorption coefficient and /5 is an optical constant called the satura-
tion intensity. We can expand this equation in a power series to obtain

a=ao[l— (/1) + U/I)* = /1) +---]. (6.1.3)

However, this series converges only for / < I, and thus only in this limit can saturable absorp-
tion be described by means of a power series of the sort given by Eq. (6.1.1).

It is primarily under conditions such that a transition of the material system is resonantly
excited that perturbation techniques fail to provide an adequate description of the response of
the system to an applied optical field. However, under such conditions it is usually adequate
to deal only with the two atomic levels that are resonantly connected by the optical field. The
increased complexity entailed in describing the atomic system in a nonperturbative manner
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is thus compensated in part by the ability to make the two-level approximation. When only
two levels are included in the theoretical analysis, there is no need to perform the sums over
all atomic states that appear in the general quantum-mechanical expressions for x ®) given in
Chapter 3.

In the present chapter, we shall for the most part concentrate on the situation in which a
monochromatic beam of frequency w interacts with a collection of two-level atoms. The treat-
ment is thus an extension of that of Chapter 4, which treated the interaction of a monochromatic
beam with a nonlinear medium in terms of the third-order susceptibility x ® (v = w + @ — w).
In addition, in the last two sections of this chapter we generalize the treatment by studying
nondegenerate four-wave mixing involving a collection of two-level atoms.

Even though the two-level model ignores many of the features present in real atomic sys-
tems, there is still an enormous richness in the physical processes that are described within
the two-level approximation. Some of the processes that can occur and that are described in
the present chapter include saturation effects, power broadening, Rabi oscillations, and optical
Stark shifts. Parallel treatments of optical nonlinearities in two-level atoms can be found in
the books of Allen and Eberly (1975) and Cohen-Tannoudji et al. (1989) and in the reviews of
Sargent (1978) and Boyd and Sargent (1988).

6.2 Density Matrix Equations of Motion for a Two-Level Atom

We first consider the density matrix equations of motion for a two-level system in the absence
of damping effects. Since damping mechanisms can be very different under different physical
conditions, there is no unique way to include damping in the model. The present treatment thus
serves as a starting point for the inclusion of damping by any mechanism.

b

a
FIGURE 6.2.1: Near-resonant excitation of a two-level atom.

The interaction we are treating is illustrated in Fig. 6.2.1. The lower atomic level is denoted
a and the upper level b. We represent the Hamiltonian for this system as

H=Hy+ V@), 6.2.1)

where I:IO denotes the atomic Hamiltonian and V(t) denotes the energy of interaction of the
atom with the electromagnetic field. We denote the energies of the states @ and b as

E,=hw, and E,=haoy. (6.2.2)
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The Hamiltonian Hy can thus be represented by the diagonal matrix whose elements are given
by

HO,nm == Enanm- (6.2.3)

We assume that the interaction energy can be adequately described in the electric dipole
approximation, in which case the interaction Hamiltonian has the form

V(t)=—RE®). (6.2.4)

We also assume that the atomic wave functions corresponding to states @ and b have definite
parity so that the diagonal matrix elements of (i vanish—that is, we assume that pt,, = ppp =0
and thus that

Vaa = Vp = 0. (6.2.5)
The only nonvanishing elements of V are hence Via and V3, which are given explicitly by
Vg = Vi = —pa E(2). (6.2.6)

We describe the state of this system by means of the density matrix, which is given explicitly
by

b\ — |:/0ua pub:|’ 6.2.7)
Pba  Pbb

where pp, = p],. The time evolution of the density matrix is given, still in the absence of
damping effects, by Eq. (3.3.21) as

. T oA _l T A 5H
Pnm = ?[H’ 'O]nm - E[(Hp)nm - ('OH)ﬂm]

—i
= 7 Z(anpvm — pnvHym). (6.2.8)
v

We now introduce the decomposition of the Hamiltonian into atomic and interaction parts
(Eq. (6.2.1)) into this expression to obtain

. . I
Pnm = —1Wnm Pnm — ﬁ Xv:(vnvpvm = Puv Vom), (6.2.9)

where we have introduced the transition frequency wy,, = (E, — E;,)/h. For the case of the
two-level atom, the indices n, m, and v can take on the values a or b only, and the equations of
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motion for the density matrix elements are given explicitly as

. ) i

Pba = —IWpa Ppa + ﬁVba (b — Paa), (6.2.10a)
. —i

Pbb = E(Vbapab — Pba Vab), (6.2.10b)
. —i

Paa = ?(Vabpba — Pab Vba)- (6.2.10¢)

It can be seen by inspection that
Pbb + Paa =0, (6.2.11)

which shows that the total population ppp, + pg, is a conserved quantity. From the definition of
the density matrix, we know that the diagonal elements of p represent probabilities of occupa-
tion, and hence that

Paa + ovp = 1. (6.2.12)

No separate equation of motion is required for p,p, because of the relation p,p = ,OZ e

Egs. (6.2.10) constitute the density matrix equations of motion for a two-level atom in the
absence of relaxation processes. These equations provide an adequate description of resonant
nonlinear optical processes under conditions where relaxation processes can be neglected, such
as excitation with short pulses whose duration is much less than the material relaxation times.
We next see how these equations are modified in the presence of relaxation processes.

6.2.1 Closed Two-Level Atom

Let us first consider relaxation processes of the sort illustrated schematically in Fig. 6.2.2. We
assume that the upper level b decays to the lower level a at a rate 'y, and therefore that the
lifetime of the upper level is given by T; = 1/T'p,. Typically, the decay of the upper level
would be due to spontaneous emission. This system is called closed, because any population
that leaves the upper level enters the lower level. We also assume that the atomic dipole moment
is dephased in the characteristic time 7», leading to a transition linewidth (for weak applied
fields) of characteristic width yp, = 1/T>.*

* In fact, one can see from Eq. (6.3.25) that the full width at half maximum in angular frequency units of the
absorption line in the limit of weak fields is equal to 2y;,,.
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FIGURE 6.2.2: Relaxation processes of the closed two-level atom.

We can describe these relaxation processes mathematically by adding decay terms phe-
nomenologically to Eqgs. (6.2.10); the modified equations are given by

. i 1 i
Pba = —(lwba + _>,0ba + = Vba(0rb — Paa), (6.2.13a)
7 n

) —pbb 1

Pvb = —— — = (ViaPab — Pba Vab), (6.2.13b)
T, h

. Pbb L

Paa = Tl + %(Vbapab — Pba Vab)- (6.2.13¢)

The forms of the relaxation terms included in these equations will be justified in the discussion
given below. One can see by inspection of Eqs. (6.2.13) that the condition

Pbb + Paa =0 (6.2.14)

is still satisfied.

Since Eq. (6.2.13a) depends on the populations ppp, and p,, only in terms of the population
difference, ppp — paa, it is useful to consider the equation of motion satisfied by this difference
itself. We subtract Eq. (6.2.13c) from Eq. (6.2.13b) to find that

—20pp
T,

d 2i
E(pbb — Paa) = - %(Vbapab — Pba Vab)- (6.2.15)

The first term on the right-hand side can be rewritten using the relation 20pp = (0pp — Paa) +
(Pbb + Paa) = (Pbb — Paa) + 1, where we have made use of Eq. (6.2.12), to obtain

(b — Paa) + 1
T

This relation is often generalized by allowing the possibility that the population difference
(opp — ,oaa)(eQ) in thermal equilibrium can have some value other than —1, the value taken
above by assuming that all of the population resides in the ground state in thermal equilibrium.
This generalized version of Eq. (6.2.16) is given by

d 2i
E(pbb — Paa) = — - E(Vbal)ab — Pba Vab)- (6.2.16)

(Pbb = Paa) = (Pbo — Paa)®V  2i
= T = = = Voapab = poaVap)- (62.17)

d
E(Pbb — Paa) = —
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We therefore see that for a closed two-level system the density matrix equations of motion
reduce to just two coupled equations, Eqs. (6.2.13a) and (6.2.17).

In order to justify the choice of relaxation terms used in Egs. (6.2.13a) and (6.2.17), let us
examine the nature of the solutions to these equations in the absence of an applied field—that
is, for V, = 0. The solution to Eq. (6.2.17) is

[065(t) = Paa(®)] = (obp — paa)
+{[£650) = Paa ()] = (pbp = paa) P~ T. (6.2.18)

This equation shows that the population inversion [ ppp (1) — paq(¢)] relaxes from its initial value
065 (0) — paa(0) to its equilibrium value (ppp — paq)©? in a time of the order of Tj. For this
reason, 77 is called the population relaxation time.

Similarly, the solution to Eq. (6.2.13a) for the case Vp, = 0 is of the form

Pra(t) = ppa(0)e @rat /T2, (6.2.19)

We can interpret this result more directly by considering the expectation value of the induced
dipole moment, which is given by (see also Eq. (3.3.36))

() = Tr(PR) = 1abPa(t) + baPab(t) = abppa(0)e (/T 4 ¢ c.
= [Kabopa(@)e ! +c.c.]e™ /T2 (6.2.20)

This result shows that, for an undriven atom, the dipole moment oscillates at frequency wp,
and decays to zero in the characteristic time 75, which is hence known as the dipole dephasing
time.

For reasons that were discussed in relation to Eq. (3.3.25), 77 and T are related to the
collisional dephasing rate y, by

1 1
—=— 7. 6.2.21
Y + Ve ( a)

For an atomic vapor, y, is usually described accurately by the formula
Ye=CsN + CyNy, (6.2.21b)

where N is the number density of atoms having resonance frequency wp,, and Ny is the number
density of any “foreign” atoms of a different atomic species having a different resonance fre-
quency. The parameters C; and C s are coefficients describing self-broadening and foreign-gas
broadening, respectively. As an example, for the resonance line (i.e., the 3s — 3 p transition) of
atomic sodium, 77 is equal to 16 nsec, Cy = 1.50 x 1077 cm? /sec, and for the case of foreign-
gas broadening by collisions with argon atoms, Cy = 2.53 x 10~2 cm?/sec. The values of T7,
Cs, and C ¢ for other transitions are tabulated, for example, by Miles and Harris (1973).
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FIGURE 6.2.3: Relaxation processes for the open two-level atom.
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6.2.2 Open Two-Level Atom

The open two-level atom is shown schematically in Fig. 6.2.3. Here the upper and lower levels
are allowed to exchange population with associated reservoir levels. These levels might, for
example, be magnetic sublevels or hyperfine levels associated with states a and b. The system
is called open because the population that leaves the upper level does not necessarily enter the
lower level. This model is often encountered in connection with laser theory, in which case the
upper level or both levels are assumed to acquire population at some controllable pump rates,
which we take to be A and A, for levels b and a, respectively. As previously, we assume that the
induced dipole moment relaxes in a characteristic time 75. In order to account for relaxation and
pumping processes of the sort just described, the density matrix equations (6.2.10) are modified
to become

. . 1 i

Pba = — | iWpa + — ) Pba + + Vba(Pbb — Paa)s (6.2.22a)
T h

. i

Pob =rp — L (opp — pﬁq)) - ﬁ(VbuPub — Pba Vab), (6.2.22b)

. i

Paa = *ra — La(Paa — pc(zfzq)) + ﬁ(vbapab — Pva Vab)- (6.2.22¢)

Note that in this case the total population contained in the two levels a and b is not conserved
and that in general all three equations must be considered. The relaxation rates are related to
the collisional dephasing rate y, and population rates ' and I';, by

1
e 2T +Ta) + ve. (6.2.23)

6.2.3 Two-Level Atom with a Non-Radiatively Coupled Third Level

We next consider the energy level scheme shown in Fig. 6.2.4, which is often used to model
a saturable absorber. Population spontaneously leaves the optically excited level b at a rate
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FIGURE 6.2.4: Relaxation processes for a two-level atom with a nonradiatively coupled third level.

I'pa + e, where 'y, is the rate of decay to the ground state a, and 'y, is the rate of decay
to level c. Level c acts as a trap level; population decays from level ¢ back to the ground state
at a rate I'.,. The lifetime 7, of population in level c is given by 7, = 1/ "¢, and is usually
assumed to be the longest time scale in the problem. In addition, any dipole moment associated
with the transition between levels a and b is damped at a rate y,. These relaxation processes
are modeled by modifying Eqgs. (6.2.10) to take on the form

: . i

Pba = —(Wpa + Vba) Pba + ﬁVba (Pbb — Paa)s (6.2.24a)
. i

P = —(Lba + Tbe) ppb — ﬁ(vbapab — PbaVab), (6.2.24b)
Pec = Ubepop — LeaPecs (6.2.24¢)
. i

Paa = UbaPob + UeaPec + ﬁ(Vbapab — Pba Vab)- (6.2.24d)

It can be seen by inspection that the total population in the three levels is conserved, that is, that

/éaa + ﬁbb + /bcc =0.

6.3 Steady-State Response of a Two-Level Atom to a Monochromatic
Field

We next examine the nature of the solution to the density matrix equations of motion for a
two-level atom in the presence of a monochromatic, steady-state field. For definiteness, we
treat the case of a closed two-level atom, although our results would be qualitatively similar for
any of the models described above (see Problem 1 at the end of this chapter). For the closed
two-level atomic system, the density matrix equations were shown above (Eqs. (6.2.13a) and
(6.2.17)) to be of the form

d 1 i
- Pba — — ] a p— a _Va — Paa) 6.3.1
i (la)b +T2>/0b +h ba(Pbb — Paa) ( )

(Pbb — Paa) — (Pbb — Paa) P 2i
= T - —Voapab = poaVap). (6:3.2)

d
E(pbb — Paa) = —
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In the electric dipole approximation, the interaction Hamiltonian for an applied field in the form
of a monochromatic wave of frequency w is given by
V=—RE(@)=—p(Ee ™™ + E*e!™), (6.3.3)
and the matrix elements of the interaction Hamiltonian are then given by
Voo = —tpa(Ee™"" + E*e'™). (6.3.4)

Egs. (6.3.1) and (6.3.2) cannot be solved exactly for Vj, given by Eq. (6.3.4). However,
they can be solved in an approximation known as the rotating-wave approximation. We recall
from the discussion of Eq. (6.2.20) that, in the absence of a driving field, pp, tends to evolve
in time as exp(—iwpyt). For this reason, when w is approximately equal to wp,, the part of Vj,
that oscillates as e ™! acts as a far more effective driving term for pp, than does the part that
oscillates as ¢'®!. It is thus a good approximation to take Vj, not as Eq. (6.3.4) but instead as

Via = —ppa Ee . (6.3.5)

This approximation is called the rotating-wave approximation. Within this approximation, the
density matrix equations of motion (6.3.1) and (6.3.2) become

d . 1 I —iwt
E,Oba =—\10Wps + ?2 Pba — ﬁ/"vba Ee (Ppb — Paa), (6.3.6)
i(p ) = — (Pbb = Paa) = (Pbb — Paa)?
dt bb aa T,
2i . .
+ %(MbaEe lwtpab - MabE*elwtpba)- (6.3.7)

Note that, in the rotating-wave approximation, pp, is driven only at nearly its resonance fre-
quency wpg, and ppp — paq 18 driven only at nearly zero frequency, which is its natural frequency.

We next find the steady-state solution to Eqs. (6.3.6) and (6.3.7), that is, the solution which
is valid long after the transients associated with the turn-on of the driving field have died out.
We do so by introducing the slowly varying quantity op,, defined by

Pba(t) = opa(t)e ™. (6.3.8)
Egs. (6.3.6) and (6.3.7) then become
d ) 1 i
7;0ba = (@ — wpa) — B Oba — £MbaE(,0bb — Paa)s (6.3.9)
i( _ )= — (b6 — Paa) — (Ppb — :Oaa)(eq)
dr Pbb — Paa) = T,
2i N
+ _(MbaEUab — mapE Gba)- (6.3.10)

h
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The steady-state solution can now be obtained by setting the left-hand sides of Egs. (6.3.9) and
(6.3.10) equal to zero. We thereby obtain two coupled equations, which we solve algebraically
to obtain

(Pb> — Paa) V(1 + (© — Wpa)*TF]
1+ (@ — 0pa)2TE + /B b 2 EPTI TS

_ Mba Ee™ie! (b — Paa)
=opge ' = ) 6.3.12
Pba ba (@ — wpa +1/T2) ( )

Pbb — Paa = (6.3.11)

We now use this result to calculate the polarization (i.e., the dipole moment per unit vol-
ume), which is given in terms of the off-diagonal elements of the density matrix by (see also
Eq. (3.3.36))

P(t) = N(ji) = N Tr(p/t) = N (tabPba + IbaPab), (6.3.13)

where N is the number density of atoms. We introduce the complex amplitude P of the polar-
ization through the relation

P(1)=Pe ' +cc., (6.3.14)

and we define the susceptibility x as the constant of proportionality relating P and E according
to

P=¢yxE. (6.3.15)
We hence find from Eqgs. (6.3.12) through (6.3.15) that the susceptibility is given by

_ Nlwsal*(orb — Paa)
eol(w — wpa +i/T)

(6.3.16)

where ppp — paq 1S given by Eq. (6.3.11). We introduce this expression for [ppp — 044] into
Eq. (6.3.16) and rationalize the denominator to obtain the result

_ N(ovb = paa) @ ppa|* (@ — wpa — i/ T) T3 [€oh
1+ (@ — wpa)2 T3 + (4/h) | ppa |2 EI2T1 T

(6.3.17)

Note that this expression gives the total susceptibility, including both its linear and nonlinear
contributions.
We next introduce new notation to simplify this expression. We introduce the quantity

Q=2[upal |E|/D, (6.3.18)
which is known as the on-resonance Rabi frequency, and the quantity

A=w— wpg, (6.3.19)
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which is known as the detuning factor, so that the susceptibility can be expressed as

] AT, —i
1+ AT+ Q2T T,

1
X = [N(pbb — paa) P | tpa|* — (6.3.20)

€oh
Next, we express the combination of factors set off by square brackets in this expression in
terms of the normal (i.e., linear) absorption coefficient of the material system, which is a directly
measurable quantity. The absorption coefficient is given in general by*
2w 2w

a="—Imn="—Im[(1+ x)"?], (6.3.21a)
C C

and, whenever the condition |x | < 1 is valid, the absorption coefficient can be expressed by

1)
a=—Imgy. (6.3.21b)
c

If we let ag(A) denote the absorption coefficient experienced by a weak optical wave de-
tuned from the atomic resonance by an amount A, we find by ignoring the contribution Q277 7>
to the denominator of Eq. (6.3.20) that «g(A) can be expressed as

ao(a) = 20O (6.3.222)
1+ AT}
where the unsaturated, line-center absorption coefficient is given by
wp 1
a(0) = ——= [N(pbb ~ Paa)*? WF—}. (6.3.22b)
c eoh

By introducing this last expression into Eq. (6.3.20), we find that the susceptibility can be
expressed as

_ a0 (0) AT, —i
C wpa/c 1+ N2TP 4+ QAT T

(6.3.23)

In order to interpret this result, it is useful to express the susceptibility as x = x’ +i x” with
its real and imaginary parts given by

; ap(0) 1 AT /14 Q2T T,
@pa/C 1+ QI Ty 1 + AT} /(1 + Q2T Ty)’

* To justify the first equality of Eq. (6.3.21a), we recall that the absorption coefficient « is implicitly defined by

(6.3.24a)

the relation /(z) = 1(0) exp (—az), where I(z) = 2negc|E (z)l2 is the optical intensity. We also recall that the
propagation of a plane-wave field in the z direction is described by E(z) = E(0) exp(ikz) = E(0) exp(inwz/c).
We thus find that 7 (z) = 2negcE(z) E*(z) = 1(0) exp(—2Imn w z/c). By comparison of the two expressions for
1(z), find that e =2Imnw/c.
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, op(0) ( 1 ) 1
= . 6.3.24b
X Wpa/C 1+ Q277 1 —|—A2T22/(1 + Q2T 1) ( )

We see from these expressions that, even in the presence of an intense laser field, x’ has
a standard dispersive lineshape and x” has a Lorentzian lineshape. However, each of these
lines has been broadened with respect to its weak-field width by the factor (1 + Q2T17>)'/2. In
particular, the width of the absorption line (full width at half maximum) is given by

2
Awpwin = 7 (1+ Q7T 7). (6.3.25)
2

The tendency of spectral lines to become broadened when measured using intense optical fields
is known as power broadening. We also see (e.g., from Eq. (6.3.24b)) that the line center value
of x” (and consequently of the absorption coefficient «) is decreased with respect to its weak-
field value by the factor (1 + Q2T Tz)l/ 2 The tendency of the absorption to decrease when
measured using intense optical fields is known as saturation. This behavior is illustrated in
Fig. 6.3.1.

Re X

ImX

AT2 =(w- @, )T2

FIGURE 6.3.1: Real and imaginary parts of the susceptibility x (in units of agc/wp,) plotted as functions
of the optical frequency w for several values of the saturation parameter Q27] T5.
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It is convenient to define, by means of the relation

|EI?

QT = ——,
142 |E§)|2

(6.3.26)

the quantity E?, which is known as the line-center saturation field strength. Through the use of
Eq. (6.3.18), we find that E? is given explicitly by

h2
B = ————. (6.3.27)
‘ 4 pa*Ti T2

The expression (6.3.23) for the susceptibility can be rewritten in terms of the saturation field

strength as

_ —a(0) AT, —i
" wpaf/c 14 A2TF 4 |E2/|EOPR

(6.3.28)

We see from this expression that the significance of EV is that the absorption experienced by
an optical wave tuned to line center (which is proportional to Im x evaluated at A = 0) drops
to one-half its weak-field value when the optical field has a strength of E?. We can analogously
define a saturation field strength for a wave of arbitrary detuning, which we denote E2, by
means of the relation

|EAPP = |EO) (1 4+ A%T3). (6.3.29)

We then see from Eq. (6.3.28) that Im x drops to one-half its weak-field value when a field of
detuning A has a field strength of E SA.

It is also useful to define the saturation intensity for a wave at line center (assuming that
n —1] <K 1) as

10 =2¢c| EC|7, (6.3.30)
and the saturation intensity for a wave of arbitrary detuning as
12 =2e0c| EA]P = 19(1 + A2T3). (6.3.31)

In order to relate our present treatment of the nonlinear optical susceptibility to the pertur-
bative treatment that we have used in the previous chapters, we next calculate the first- and
third-order contributions to the susceptibility of a collection of two-level atoms. By performing
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a power series expansion of Eq. (6.3.28) in the quantity |E|?/| EY|? and retaining only the first

and second terms, we find that the susceptibility can be approximated as

—an(0) [ AT — i 1 E|?
I )( > lz)(l _ 72|_0|2> (6332)
wpa/c \ 1+ A2T; 1+ AT |EY)|

We now equate this expression with the usual power series expansion x = xV +3x®|E?|
(where X(S) = X(3)(a) = w + o — w)) to find that the first- and third-order susceptibilities are
given by

, 6.3.33a

Wpa/C 1—|—A2T22 ( )

3 _ “0(0)[ Al —i ] L (6.3.33b)
Bwpa/c L (1+ A2TH?2 ||ED|?

The frequency dependence of x ) as given by this expression is illustrated in Fig. 6.3.2. Note
that the sign of x® is the opposite of that of x (. One can understand this result by noting that
x @ represents a saturation of the optical response.

For some purposes, it is useful to express the nonlinear susceptibility in terms of the line-
center saturation intensity as

0 AT, —i 72
MO 20(0) [ 2! ] co¢ (6.3.34a)

" Bwpa/c| (1 + A2TH2] 1)

or, through the use of Egs. (6.3.22a) and (6.3.31), in terms of the saturation intensity and ab-
sorption coefficient at the laser frequency as

MO ao(A)(AT, — i) 2¢pc

e 15 (6.3.34b)

Note also that the third-order susceptibility can be related to the linear susceptibility by
—x )] —x ey

A — = . 6.3.35
X 3(1+ AZTZZ)IEA?I2 3|EA? ( )

Furthermore, through use of Eqgs. (6.3.22b) and (6.3.27), the first- and third-order susceptibili-
ties can be expressed in terms of microscopic quantities as

T, | AT, —i
D — | N(opp — pug) @Dy P2 | 22270 6.3.36a
X [ (b6 — Paa) Y| tbal th]l+A2T22 ( )
T\T} AT, —i
X =—=3N(onp = paa) | tpal* —35 (6.3.36b)

coh® (1+ AT
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(a)
=0
~
0
®
%
£
1
-5 0 5

ATz =(o— (’Oba)TZ

FIGURE 6.3.2: Real and imaginary parts of the third-order susceptibility x * plotted as functions of the
optical frequency w.

In the limit AT > 1, the expression for x ¥ reduces to

@) _

—. 6.3.37
RA3 T, ( )

1 = =3N(oep ~ paa)®? | 1tba
Let us consider the magnitudes of some of the physical quantities we have introduced in
this section. Since (for n = 1) the intensity of an optical wave with field strength E is given by

I =2¢pc|E|?, the Rabi frequency of Eq. (6.3.18) can be expressed as

Aupal (T \'?
Q= —| — . 6.3.38
h <26()C> ( )

Assuming that |upq| = 2.5eag = 2.0 x 102 Cm (as it is for the 3s — 3 p transition of atomic
sodium) and that / is measured in W/cm?, this relationship gives the numerical result

298\ 172
M) . (6.3.39)

Q[rad/sec] =27 (1 x 109)< 77
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Hence, whenever the intensity / exceeds 127 W/ cm?, Q /2m becomes greater than 1 GHz,
which is a typical value of the Doppler-broadened linewidth of an atomic transition. Intensities
this large are available from the focused output of even low-power, cw lasers.

The saturation intensity of an atomic transition can be quite small. Again using |upq| =
2.0x 1072 Cm, and assuming that 71 = 16 nsec (the value for the 3p — 3s transition of atomic
sodium) and that 7>/ T1 = 2 (the ratio for a radiatively broadened transition; see Eq. (6.2.21a)),
we find from Eq. (6.3.30) that

I} =527 m—VZ =527 EZ (6.3.40)
cm m

Lastly, let us consider the magnitude of x ® under conditions of the near-resonant excitation
of an atomic transition. We take the typical values N = 10 ¢cm3, (Pbb — Paa) P = —1,
tpa =2.0 x 10722 Cm, A = w — wpe =27c (1 em™ 1) = 6 x 10'° rad/sec, and T»/ Ty =2,
in which case we find from Eq. (6.3.37) that x® =2.1 x 1071 m?/V?2. Note that this value is
very much larger than the values of the nonresonant susceptibilities discussed in Chapter 4.

6.4 Optical Bloch Equations

In the previous two sections, we treated the response of a two-level atom to an applied optical
field by working directly with the density matrix equations of motion. We chose to work with
the density matrix equations in order to establish a connection with the calculation of the third-
order susceptibility presented in Chapter 3. However, in theoretical quantum optics the response
of a two-level atom is often treated through use of the optical Bloch equations or through related
theoretical formalisms. Although these various formalisms are equivalent in their predictions,
the equations of motion look different within different formalisms, and consequently different
intuition regarding the nature of resonant optical nonlinearities is obtained. In this section, we
review several of these formalisms.

We have seen (Egs. (6.3.9) and (6.3.10)) that the density matrix equations describing the
interaction of a closed two-level atomic system with the optical field

E@t)=E@{)e ' +cc., (6.4.1)

can be written in the rotating-wave approximation as

d ) 1 i
7;0ba = [l (0 — wpa) — 72:|O'ba - £MbaE(,0bb — Paa) (6.4.2a)
d (Pbb — Paa) — (Pbb — Paa) Y
—-(Pbh = Paa) = = - . (6.4.2b)
t T

2i
+ %(Mba Eoup — MabE*Uba)’ (6.4.2¢)
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where the slowly varying, off-diagonal density matrix component o, (¢) is defined by
Ppa(t) = opa(D)e ™. (6.4.3)

The form of Egs. (6.4.2) can be greatly simplified by introducing the following quantities:
1. The population inversions

W= ppp — Paa and WV = (opp — paa) Y (6.4.4a)
2. The detuning of the optical field from resonance,*
A=w— wpy (6.4.4b)
3. The atom—field coupling constant
Kk =2fpa/h. (6.4.4¢c)

We also drop the subscripts on o3, for compactness. The density matrix equations of mo-
tion (6.4.2) then take the simpler form

d i A ! LikE (6.4.5a)
—0=|iA— — o —5ikEw, 4.
dt T 2

d — D

Ew:—%-ﬁ-i(KEU*—K*E*G). (6.4.5b)

It is instructive to consider the equation of motion satisfied by the complex amplitude of the
induced dipole moment. We first note that the expectation value of the induced dipole moment
is given by

() = TI'(/S,CL) = Pbalab + PabMba = O'ba:uabe_iwt + Gabﬂbaeiwt- (6.4.6)

A

If we define the complex amplitude p of the dipole moment (/1) through the relation
() = pe'® +cc., (6.4.7)
we find by comparison with Eq. (6.4.6) that

P = Oballab- (6.4.8)

Egs. (6.4.5) can hence be rewritten in terms of the dipole amplitude p as

d 1 h

d—’; - <iA — E)p ~ JilePEw, (6.4.92)
dw w—w® 4

& Y T imEpY). 6.4.9b
' T - m(Ep”™) ( )

*Note that some authors use the opposite sign convention for A.
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These equations illustrate the nature of the coupling between the atom and the optical field.
Note that they are linear in the atomic variables p and w and in the applied field amplitude E.
However, the coupling is parametric: the dipole moment p is driven by a term that depends
on the product of E with the inversion w, and likewise the inversion is driven by a term that
depends on the product of E with p.

For those cases in which the field amplitude E can be taken to be a real quantity, the density
matrix equations (6.4.5) can be simplified in a different way. We assume that the phase conven-
tion for describing the atomic energy eigenstates has been chosen such that up, and hence «
are real quantities. It is then useful to express the density matrix element o in terms of two real
quantities u and v as

o= 3u—iv). (6.4.10)

The factor of one-half and the minus sign are used here to conform with convention (Allen and
Eberly, 1975). This definition is introduced into Eq. (6.4.5b), which becomes

d 1
E(u —iv) = (iA — E)(u —iv) —ikEw.

This equation can be separated into its real and imaginary parts as

N (6.4.11a)
—u=Av— —, 4.11a
dt T>
d A — 2 4 KE (6.4.11b)
— UV =—AU — — KLW. A
dt T

Similarly, Eq. (6.4.5b) becomes
d —
Ew:—%—xm. (6.4.11¢)

The set (6.4.11) is known as the optical Bloch equations.
We next show that in the absence of relaxation processes (i.e., in the limit 77, 75 — o0) the
variables u, v, and w obey the conservation law

u? + vt uw?=1. (6.4.12)
First, we note that the time derivative of u? + vZ + w? vanishes:
d d
—(u2 +0% + wz) — +2v—+2w—
dt t t

dt
=2ulAv —2vAu +2vk Ew — 2wk Ev
=0, (6.4.13)
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where we have used Egs. (6.4.11) in obtaining expressions for the time derivatives. We hence
see that u”? 4+ v* + w? is a constant. Next, we note that before the optical field is applied the
atom must be in its ground state and hence that w = —1 and u = v = 0 (as there can be no
probability amplitude to be in the upper level). In this case we see that u? + v + w? is equal
to 1, but since the quantity u> + v> 4+ w? is conserved, it must have this value at all times. We
also note that since all of the damping terms in Eqs. (6.4.11) have negative signs associated
with them, it must generally be true that

W+ +w? <. (6.4.14)

6.4.1 Harmonic Oscillator Form of the Density Matrix Equations

Still different intuition regarding the nature of resonant optical nonlinearities can be obtained
by considering the equation of motion satisfied by the expectation value of the dipole moment
induced by the applied field (rather than considering the equation satisfied by its complex am-
plitude). This quantity is given by

~ A

M = (L) = ppaltab + C.C. (6.4.15)

For simplicity of notation, we have introduced the new symbol M rather than continuing to

use (/). Note that M is a real quantity that oscillates at an optical frequency.
We take the density matrix equations of motion in the form

. . 1 i -
Pba = — | iWpg + 7 ) Pba — 7 Mba EW, (6.4.16a)
T h
. w—w® 4E
w = _T + ? Im(wapppa), (6.4.16b)

where the dot denotes a time derivative. These equations follow from Egs. (6.2.6), (6.2.13a),
and (6.2.17) and the definition w = ppp — 044. Here E is the real, time-varying optical field; note
that we have not made the rotating-wave approximation. We find by direct time differentiation
of Eq. (6.4.15) and subsequent use of Eq. (6.4.16a) that the time derivative of M is given by

M = ppattap + c.C.

) 1 i ~
= —(iwpa + = ) Prattab — | 1tpal* Ew +c.c.
T h
1
= —(ia)ba + F)pbaﬂah +c.c. (6.4.17)
2
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We have dropped the second term in the second-to-last form because it is imaginary and disap-
pears when added to its complex conjugate. Next, we calculate the second time derivative of M
by taking the time derivative of Eq. (6.4.17) and introducing expression (6.4.16a) for ppa:

= : 1.
M = _(la)ba + _>,0ba,u/ab —+ c.c.
1

, 1\? if. 1 8
=\1®Wpba + = | Pbattab + 7| 1Wba + |Mba|2Ew +c.c.
T Ip)

h
or
M= (—wlz,a + b + %)Pbaﬂab — 2 P Ew + coc. (6.4.18)
T T h

If we now introduce Eqgs. (6.4.15) and (6.4.17) into this expression, we find that M obeys
the equation

2
1

a3 - -M 2w
Mol M=—r -0

9 =~
Ew. 6.4.19
T22 FL I/“Lba| w ( )

M+

Since wl% , 1s much larger than 1/ T22 in all physically realistic circumstances, we can drop the
first term on the right-hand side of this expression to obtain the result
2

M+ =M+ wp, M =—
1

2Wpa

- |itpa* Ew. (6.4.20)

This is the equation of a damped, driven harmonic oscillator. Note that the driving term is
proportional to the product of the applied field strength E () with the inversion w.

We next consider the equation of motion satisfied by the inversion w. In order to simplify
Eq. (6.4.16b), we need an explicit expression for Im(pp, ). To find such an expression, we
rewrite Eq. (6.4.17) as

) 1
= —iwpa(Ppattap — C.C.) — Tz(pbaﬂab +c.c)

M
= 2wpa Im(ppa hab) — 7’ (6.4.21)

which shows that

= M
Im(ppaitap) = (M + —) (6.4.22)

2wpa
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This result is now introduced into Eq. (6.4.16b), which becomes

w — wD 2E [+ M
. (6.4.23)

w=— + + —
T hwpa T

Since M oscillates at an optical frequency (which is much larger than 1/75), the term M/ T;
can be omitted, yielding the result
w — w€D 2 s

D= — EM. 6.4.24
w T1 + ha)ba ( )

We see that the inversion w is driven by the product of E with M, which is proportional to the
part of M that is 90 degrees out of phase with E. We also see that w relaxes to its equilibrium
value w©® (which is typically equal to —1) in a time of the order of T7.

Egs. (6.4.20) and (6.4.24) provide a description of the two-level atomic system. Note that
each equation is linear in the atomic variables M and w. The origin of the nonlinear response
of atomic systems lies in the fact that the coupling to the optical field depends parametrically
on the atomic variables. A linear harmonic oscillator, for example, would be described by
Eq. (6.4.20) with the inversion w held fixed at the value —1. The fact that the coupling de-
pends on the inversion w, whose value depends on the applied field strength as described by
Eq. (6.4.24), leads to nonlinearities.

6.4.2 Adiabatic-Following Limit

The treatment of Section 6.3 considered the steady-state response of a two-level atom to a cw
laser field. The adiabatic-following limit (Grischkowsky, 1970) is another limit in which it is
relatively easy to obtain solutions to the density matrix equations of motion. The nature of the
adiabatic-following approximation is as follows: We assume that the optical field is in the form
of a pulse whose length 7, obeys the condition

Ty K T, Ty; (6.4.25)

we thus assume that essentially no relaxation occurs during the optical pulse. In addition, we
assume that the laser is detuned sufficiently far from resonance that

|0 = wpal > T3 7, tpa E /R (6.4.26)

that is, we assume that the detuning is greater than the transition linewidth, that no Fourier
component of the pulse extends to the transition frequency, and that the transition is not
power-broadened into resonance with the pulse. These conditions ensure that no appreciable
population is excited to the upper level by the laser pulse.
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To simplify the following analysis, we introduce the (complex) Rabi frequency
Q) =2up E(t)/h, (6.4.27)

where E(t) gives the time evolution of the pulse envelope. The density matrix equations of
motion (6.4.5) then become, in the limit 77 — oo, T» — 00,

do . 1.

I =iAo — §le, (6.4.28a)
d

d_’;’ — —i(Q*0 — Qo). (6.4.28b)

We note that the quantity w? 4+ 40¢* is a constant of the motion whose value is given by
wl(0) + 4o () = 1. (6.4.29)

This conclusion is verified by means of a derivation analogous to that leading to Eq. (6.4.12).

We now make the adiabatic-following approximation, that is, we assume that for all times
the atomic response is nearly in steady state with the applied field. We thus set do/dt and
dw/dt equal to zero in Egs. (6.4.28). The simultaneous solution of these equations (which in
fact is just the solution to (6.4.28a)) is given by

w0

o () 2A

(6.4.30)

Since w(t) is a real quantity, this result shows that o (¢) is always in phase with the driving field
Q(t). We now combine Egs. (6.4.29) and (6.4.30) to obtain the equation

2 WP
w(t) +T_1’ (6.4.31)
which can be solved for w(¢) to obtain
—|A
w(t) = 4] (6.4.32)

AT+
This expression can now be substituted back into Eq. (6.4.30) to obtain the result
A Q@)

ot)y=—"— —]———.
1Al /A2 4+ 1Q@0))?

(6.4.33)

We now use these results to deduce the value of the nonlinear susceptibility. As in
Egs. (6.3.11) through (6.3.17), the polarization P is related to o (¢) (recall that o = o3,,) through

P = Nugpo, (6.4.34)
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which through use of Eq. (6.4.33) becomes

A INupQ@
po_ A Nra20) (6.4.35)
Al /A2 + Q)2

Our derivation has assumed that the condition |A| > [€2]| is valid. We can thus expand
Eq. (6.4.35) in a power series in the small quantity 2|/ A to obtai