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Figure 1. Partition functionZ � as a function of the order� of the
diagonal matrix
 for several short sequences with similar
CG-content. The continuous line is the Gaussian interpolationF(�) .

depending on the amount of non-null� matrices. Therefore
the weight of each order of
 � represents a measure of
sequence composition as well as the relative importance of the
base-pair and the stacking interaction.

To evaluate all terms as an order of
 � , we track
numerically the number of matrices
 for each term in the
matrix multiplication of equation (27). In Þgure 1 we show
the contribution of each order
 � to the partition function.
We notice a distinctive Gaussian shape forZ � (
) and the
curves are Gaussian interpolationF(�) through the calculated
valuesZ � (
) . The Gaussian or normal distribution is indeed
characteristic of the algebraic binomial expansion, and in
the limit of long sequences the Gaussian regressionF(�)
is Z � (
) itself, i.e. limN→∞ Z � (
) = F(�) . Evidently,
the partition function has a strong temperature dependence,
and using it to compare different sequences would not be
practical. However, unlike the partition function, the maxima
� max of the interpolated Gaussian functionF(�) has no such
strong temperature dependence, and its change with sequence
composition is well behaved as shown in Þgure2.

One should note that for very long sequences calculating
the maximal order of
 by numerically tracking the matrix
multiplication becomes impractical. However, it is possible
to speed up the calculation by reducing the dimension of the
matrices for equation (28) while giving up some numerical
accuracy. For the extreme case of keeping only the Þrst element
of the matrices it is even possible to obtain an analytical result
for the partition function as we will show in section4.2.

4.2. Approximate thermal equivalence

If we use only the Þrst elements of the matrices in
equation (27), the partition function in equation (28) simpliÞes
to

Z =
�

a,b=CG,AT
(� 1 + � a,b)Na,b , (29)

where � a,b = [� (a,b)]1,1, and Na,b is the number of
nearest neighbours of type(a, b). For homogeneous stacking

Figure 2. Maximal ordering parameter� max versus temperature.
Several example sequences of length 16 bp were considered.

parameters we can use� CG,AT = � AT,CG and obtain

Z = � NCG,CG
1 (� 1 + � AT,AT)NAT,AT

× (� 1 + � CG,AT)NAT,CG+NAT,CG. (30)

Using the binomial expansion of( p + q)N and the property
that the maximum of the binomial distribution

�
N
n

�
pnq N−n , (31)

is given by

nmax ≈ N
1 + q/ p

, (32)

we can write an approximate thermal equivalence

� max ≈ NCG,CG + NAT,AT

1 + � AT,AT /� 1
+ NCG,AT + NAT,CG

1 + � CG,AT /� 1
.

(33)

If the parameters of the stacking interactions (equations (4),
(5) and (8)) for different nearest neighbours of typea, b are
known, i.e., for non-homogeneous stacking interactions, the
approximate thermal equivalence can be generalized to

� max ≈
�

a,b

Na,b

1 + � a,b/� 1
=

�

a,b

� 1Na,b

Ca,b
1,1

. (34)

We tested this approximation numerically varying the
sequence lengths and veriÞed that the difference between the
approximate and exact� max (calculated from the single matrix
element partition function of equation (29)) is less than 1%
for sequences longer than 9 bp. This difference drops to less
than 0.2% for sequences longer than 60 bp for any amount of
CG-content. Therefore, for the sequence lengths considered in
this work the approximate� max from equation (33) yields the
same results as calculating the partition function with matrices
of sizeP = 1 in equations (28) or (29). However, they do not
become more accurate for longer sequences when compared
to calculations with larger matrix dimension (P � 2) since
important off-diagonal elements are absent.
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Collisional–radiative model of neon discharge

Figure 8. The examples of the measured spectra and the results of
the fitting procedure shown by arrows (�—). (a) Spectrum no. 1 and
(b) spectrum no. 5.

5. Conclusion

The collisional–radiative model of the neon discharge was
developed in order to determine the reduced electric field
strength in the positive column of the low pressure dc glow
discharge. The optical emission spectra, which were compared
by the least-squares fitting method with the resultant spectra of
the collisional–radiative model, were measured in the positive
column of the discharge for six values of the discharge current.
Furthermore, independent measurements of the electric field
by electric probes were performed.

In the collisional–radiative model populations of 30
excited levels of the neon atom were studied. A number
of elementary processes were taken into account: electron
impact excitation, de-excitation and ionization of neon atoms,
emission and absorption of radiation, metastable–metastable
collisions, metastable and radiative dimer production, Penning
ionization, etc. The electrons were characterized by the EDF in
the two-term approximation, which was determined for a given
E/N by the solution of the Boltzmann kinetic equation. The
steady state values of populations of excited states were found
by the solution of their rate equations by the Runge–Kutta
method. The calculated spectra were fitted by the Marquardt–
Levenberg least-squares algorithm to the measured spectrum
in order to determine the E/N in the discharge.

The comparison of calculated and experimental results
of E/N in the positive column of the low pressure dc glow
discharge shows agreement of the measured and the calculated
values. The calculated E/N values ranged from 3 to 12 Td
depending on the discharge current. The model sensitivity to
the E/N was found to be higher for higher E/N . The aim
of the next work will be to apply this method to the study of
discharges, at which the determination of the E/N by electric
probe diagnostics is not possible (e.g. atmospheric pressure
discharges).

Acknowledgments

The work was supported by the research project
MSM0021622411 of the Ministry of Education of the
Czech Republic and by grants nos 202/06/0776, 202/05/0777
and 202/06/1473 of the Czech Science Foundation. VH
and AK acknowledge the support of the research project
MSM 0021620834.

References

[1] van der Sijde B, van der Mullen J J A M and Schram D C 1984
Collisional radiative models in plasmas Beitr. Plasmaphys.
24 447–73

[2] Behnke J F, Deutsch H and Scheibner H 1985 Investigation
about stepwise excitation cross sections in rare gases
Contrib. Plasma Phys. 25 41
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Figure 1. (a) Schematic crystal structure of the orthorhombic
MTeMoO6 and (b) network of the MO6 octahedra. In (b), the dashed
lines represent the square-planar lattice of M ions.

needed to estimate the lattice and electronic contribution to
the total speciÞc heat for MnTeMoO6, which will be described
later. The starting materials, MnO, ZnO, TeO2 and MoO3 were
weighed in appropriate metal ratios and ground intimately in
an agate mortar. The mixtures were pressed into pellets, and
then the pellet was sealed in an evacuated silica tube to prevent
the loss of reagents by the volatilization. These ampules were
heated at 873 K (for MnTeMoO6) or 823 K (for ZnTeMoO6)
for 12× 3 h with intermediate grinding and pelletizing.

2 .2 . ∑o w d er x-ra y a n d n eu t ro n d i ff ra ct i o n mea √ u rem en t √
The powder x-ray diffraction (XRD) measurements were
performed at room temperature in the range 10→� 2 � � 120→

using a 2� step size of 0.02→with Cu K� radiation on a Rigaku
MultiFlex diffractometer. Powder neutron diffraction (ND)
proÞles were also measured for MnTeMoO6 (at 3.3 K, 11 K
and room temperature) and ZnTeMoO6 (at room temperature)
in the range 3→ � 2 � � 153→at intervals of 0.02→with
a wavelength of 1.814 24 ûA. Measurements were performed
by the Kinken powder diffractometer for high efÞciency and
high resolution measurements, HERMES, of the Institute for
Materials Research (IMR), Tohoku University [17], installed at
the JRR-3M reactor in Japan Atomic Energy Agency (JAEA),
Tokai. The x-ray and neutron diffraction data were analyzed by
the Rietveld technique, using the program RIETAN2000 [18].

Figure 2. Powder x-ray diffraction proÞles for (a) MnTeMoO6 and
(b) ZnTeMoO6. The calculated and observed diffraction proÞles are
shown on the top as a solid line and cross markers, respectively. The
vertical markers show positions calculated from Bragg reßections.
The bottom trace is a plot of the difference between the calculated
and observed intensities.

2 .3 . M ag n et i c √ u √ cep t i b i l i t y a n d √ p eci Þ c h ea t m ea √ u remen t √
The temperature dependence of the magnetic susceptibilities
was measured under both zero-Þeld-cooled (ZFC) and Þeld-
cooled (FC) conditions in an applied Þeld of 0.1 T over the
temperature range 1.8Ð400 K using a SQUID magnetometer
(Quantum Design, MPMS-5S). In addition, speciÞc heat
measurements were performed using a relaxation technique
with a commercial physical property measurement system
(Quantum Design, PPMS model) in the temperature range 1.8Ð
300 K. The sintered sample in the form of a pellet was mounted
on a thin alumina plate with grease for better thermal contact.

3. Results and discussion

3 . . C r y√ t a l √ t r u ct u re
The title compounds MnTeMoO6 and ZnTeMoO6 were
successfully prepared as a single phase. Figure2 shows their
powder x-ray diffraction proÞles. Both data were indexed
with an orthorhombic unit cell (a ′ 5.3 ûA, b ′ 5.0 ûA,
and c ′ 8.9 ûA) with the space group∑ 21212 (No. 18), and
analyzed by the Rietveld method using the structural model for
CoTeMoO6 [14]. The calculated proÞles are plotted in Þgure 2,
which gives a good agreement with the observed proÞles. The
obtained lattice parameters are consistent with those in earlier
works [1, 12]. The structural parameters determined by XRD
measurements are shown in supplementary tables (available at
stacks.iop.org/JPhysCM/21/046006).

The powder neutron diffraction measurements were
performed for MnTeMoO6 (at 3.3 K, 11 K, and room
temperature) and ZnTeMoO6 (at room temperature). Their
diffraction proÞles are shown in Þgures 3 and 4, respectively.
The Rietveld analyses of the data indicate that both compounds
adopt the same structure as CoTeMoO6 [14], and are consistent

2
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